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PREFACE TO

MATHLIB

INTRODUCTION

The ultimate objective of mathematics is to compute a number or a collection of
numbers. Most mathematics textbooks and handbooks provide the equations, but do
not provide a simple, inexpensive means for evaluation. In this age of personal and
supercomputers, the hardware is available for computation, but the software currently
available for implementing the computation has several major shortcomings:

Since the operating systems available for most computers are not object-oriented
and were thus never really designed for computation, the numerous collections
of mathematics and engineering programs available in various languages are
difficult to use because the programs require significant special user data setup
and compilation. There is no immediate execution capability such as found on the
HP 48, and the operating system, while understanding the difference between a
real number and a string, has no idea how to multiply a real number times a
complex array. You cannot just push the x key.

Some of these limitations have been overcome in the past decade by the
introduction of large mathematics software packages, which provide, in essence,
an operating system on top of the one supplied with the computer which has some
object-oriented computing capability. However, the affordable ones are generally
very incomplete, requiring the user to purchase several incompatible packages,
and the complete ones are generally very expensive, requiring also a very
expensive computer with many megabytes of memory and disk space.

Only with very expensive laptop PCs having many megabytes of memory and
disk space are these mathematics packages in any sense portable.
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The HP 48 Engineering Mathematics Library (MATHLIB) provides capabilities similar
to these large expensive packages, but is much easier to use. In addition, both the
hardware and software are less expensive by a factor of 10, are completely portable,
and optionally, can be both programmed and executed from either a PC or a MAC.

OBJECT-ORIENTED COMPUTATION

The HP 48 is an object-oriented computer containing a custom CPU and a custom
operating system that are designed for computation. The HP 48 supports 32 object
types and does know how to multiply a real number times a complex array. It
provides immediate execution in the sense that if you put the real number and a
collection of complex numbers delimited with brackets [ ] to denote a complex vector
on the stack and push x, the complex product is immediately computed. The user does
not even have to store the real number or complex array as variables in memory.

MATHLIB adds three additional object types to the HP 48:

» Symbolic arrays, which can be used to represent vector and matrix functions for
which a complete set of algebra and calculus operations is defined.

» Polynomial lists, which provide very fast polynomial algebra and calculus.

e Root vectors corresponding to polynomial lists, except for a scale factor, which
provide very fast inverse Laplace and z transform symbolic solutions to
differential and difference equations, residue integration, and filter design
calculations.

All of the HP and MATHLIB 1,110 user-programmable commands are object-oriented
and immediately executable. Arrays do not have to be dimensioned.

PROGRAMMABLE COMMANDS AND MENUS

MATHLIB provides programmable commands instead of menu-driven commands for
a very good reason. The fields of mathematics and engineering are pervaded by a
bewildering collection of redundant parameter definitions, different subsets of which
are used by different authors. Each user may prefer his or her own set as opposed to
those chosen for MATHLIB. Since all of the MATHLIB commands are algebraic and
programmable, it is extremely easy for each user to define his or her own version of
each command, which then accepts inputs using the parameters and units oftheir choice.
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In addition, since the HP 48 makes the creation of user-defined menus so easy, the
user can very quickly create his or her own menus for his or her own commands that
use the units and parameters of his or her choice. Thus, the user can evaluate the

most difficult operations in mathematics with the same ease as pushing the x button
on a calculator. As explained in Chapter 25, if you put matrix A on the stack and
push EASOV, the symbolic matrix ®(t) = e*is returned, solving the symbolic matrix
differential equation ®’(t) = A ®(t). Similarly, matrix difference equations can be
solved with z transforms.

The user can also download data sets from a PC or Macintosh, push the x key from
that computer, and upload the result to the computer.

EVALUATE EQUATIONS AS THEY ARE WRITTEN

With MATHLIB,the user does not have to learn (or try to remember) a complicated
programming language in order to evaluate equations. For example, consider
evaluating the regular Coulomb wave function F;(n, p) defined by:

F,(n, = 2+ e-cie TIAN] rap gin op 42, i2p),Ln, p) rer °F (L+1-in P)

where I'(z) is the Gamma function, and M(a, b, z) is Kummer’s confluent
hypergeometric function. The following program evaluates F;(n, p):

< > L nm p « 27"LxEXP(-nxn/2-ixp)xABS(GAMMA(L+1+ixn))/
GAMMA(Q2xL+2)xpMNL+1)xMABZ(L+1-ixn , 2xL+2 , ix2xp)’ DNUM » >.

Observe that the program looks exactly like the equation and can be stored in a
variable FLnp. To evaluate F,;(.4, 5) you may either place 3, .4, 5 on the stack and
push the FLnp key, or put 'FLnp(3, .4, 5)' on the stack and push EVAL.

Next, suppose you wish to compute the dot product between two N-dimensional vectors
X and Y defined as the sum

N

DOT, Y) = ¥ X,Y, N = SIZE(X) = SIZE(Y).
k=1

Then the corresponding program would be

< > XY « X SIZE EVAL » N 'Z(k=1,NX(k)xY(k)) > >.

xix



SCOPE OF MATHLIB

The scope of MATHLIB is very broad in the sense that it provides mathematical
capability to support many different fields of study and ranges from very basic to very
advanced mathematics. Since the menus, and thus the manual, are built around
subject areas, each menu may contain a mixture of basic, intermediate, and advanced
material. MATHLIB is also an introduction to symbolic and complex computation
since it provides all the tools with applications plus much tutorial material.

Part 1 is the MATHLIB tables of complex functions. It begins with the simpler, more
common functions and progresses to the more difficult and esoteric ones. While the
advanced student may be interested in all the mathematical subtleties of branch cuts
and Riemann surfaces, the less experienced student may simply wish to evaluate them
as a great improvement over interpolating some table. Numerous functions are
provided, even though many of the functions are interrelated so that the user does not
require advanced mathematical knowledge of these relationships in order to evaluate
specific functions of interest. In addition, numerous parameter conversion commands
are provided so the user again can evaluate without extensive knowledge of all the
parameter relationships. The user can thus plot an elliptic function as easily as a sine
function. The slower evaluating functions can be tabulated during lunch.

Part 1 also provides numerous commands for approximating data and functions.

Part 2 provides extensive symbolic algebra, calculus, and linear algebra tools. The
symbolic algebra and calculus commands enhance and expand the extensive symbolic
capability already built into the HP 48. A complete set of fast polynomial operations
is provided in addition to an extensive set of symbolic algebraic operations commands
and programs. An advanced algebra and calculus example dealing with hundreds of
terms is also provided to demonstrate big problem techniques.

The Part 2 complex linear algebra commands range from eight linear solvers and
simple array commands to advanced matrix decomposition theory and algorithms. The
modern techniques of unitary decomposition are covered in detail with access to the
internal functions for eigen analysis and singular value decomposition. Numerous
commands for manipulating the parts of matrices are also provided.

Part 3 provides many of the more common statistical tests for means, variances, and

distributions. Contingency table analysis, correlation and rank correlation tests are
also provided in addition to analysis of variance and covariance. Over 50 forward and
inverse probability distributions are provided in addition to multi-server queueing
distributions and related commands. Linear regression is covered in Part 1.
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Part 4 begins by extending the linear algebra operations of Part 2 to symbolic matrix
functions. This provides the mathematical framework for the advanced differential
equation solution programs, in addition to providing extensive vector calculus tools.

A command for order four Runge-Kutta numerical solutions to scalar, vector, and
matrix nth order differential equations is then presented with several examples.

Part 4 then covers the Heaviside partial fraction expansion and residue integration
topics with applications to inverse Laplace transforms. With this foundation, symbolic
solution of linear differential equationsis addressed with a number ofexamples. Then
the symbolic solution of state space differential equations is covered. Finally, examples
of vector line and volume integration are given. While not explicitly addressed, the
commands of Part 4 can be extended to general tensor analysis.

The first chapter of Part 5 is devoted to complex data and signal processing. It begins
with easy topics such as numerical differentiation and integration of data vectors,
finding peaks, valleys, minimums, and maximums. Then it moves into more advanced
topics such as discrete Fourier transforms, Wiener-Levinson solutions, correlation,
Toeplitz matrix operations, digital spectral analysis, and linear convolution.

The next two chapters cover analog and digital filter design and analysis. Various
related subjects, including computing symbolic inverse z transforms and state space
controllable, observable, and Jordan canonical forms, are also covered. This material

is generally intermediate to advanced subjects in electronic and controls engineering,
though today good statistics packages are expected to contain much of this capability.

Part 6 contains 84 basic vector and matrix commands that extend the HP 48 scalar
algebraic capability to vectors and matrices. Thus, the user can avoid dealing with the
elements of arrays on the stack.

The appendices provide basic reference material in calculus and transform theory.
The extensive indices allow the user to easily find the solution to any problem.

WHO WILL FIND IT USEFUL

MATHLIB is designed like a handbook in that it provides a very broad capability,

though only a subset of that capability will be used during a given session. A quick
scan of the Table of Contents will convince anyone of the enormous power contained
in this library. However, it should be remembered that not all of the 1,110 available
user-programmable commands involve enormously sophisticated mathematics.
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Many of the commands simply provide basic algebra, calculus, differential equation
solutions, solutions to linear systems ofequations, statistics and probability, and vector
analysis for physics applications. A student can use command IXFRM to symbolically
solve differential and difference equations without understanding the details of
complex residue integration. As the user grows in his or her understanding of applied
mathematics and engineering, more and more of MATHLIB will become useful.

Unlike so many other software packages, MATHLIB clearly explains exactly whatis
computed with each command and provides access to the internal commands so the
student can experiment with algorithms and learn. The top-level commands are also
available so the student has an unlimited collection of correct answers. The manual
contains a great deal of tutorial material, and extensive examples are given with each
command. The HP 48SX with MATHLIB provides 1,110 programmable commands and
thousands of real and complex functions to solve the user’s problems.

MATHLIB will be useful in any of the following subject areas:

» Basic and advanced algebra with solutions of equations
» Basic and advanced statistics, probability, and queueing theory
Basic and advanced differential and integral calculus

» Basic and advanced differential equations
Basic and advanced linear algebra and matrix decomposition theory

» Basic and advanced vector analysis and analytic geometry
» Basic and advanced engineering mathematics
» Basic and advanced physics, general relativity, and tensor analysis
» Static and dynamic analysis of mechanical systems
Thermodynamics and heat transfer analysis

» Electricity, magnetism, and electromagnetic propagation
» Electronics and communication theory design and analysis
* Analog and digital IIR and FIR filter design and response analysis
* Linear system theory with control analysis and synthesis
» Spacecraft dynamics and aerospace engineering
» Evaluation of higher transcendental functions and applications

» State space design, analysis, and differential equation solutions
» Applied mathematics, computer science, and numerical analysis
* Mechanical vibrations and the analysis of structures
* Fluid mechanics, hydraulics, and related problems
* Modulation theory, noise, and spectral analysis

« Mathematical approximation of data and functions
» Laplace, Fourier, Hilbert, and z transforms with applications

* Analog and digital signal processing and simulation
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MATHLIB will solve a 40 x 40 linear system of equations with iterative refinement of
the solution in under 4 minutes. With the powerful symbolic algebra and calculus
programs provided, it can perform difficult symbolic integrations, such as

[ta + Bt + Ct3 + sin(t) ]* dt,

involving hundreds of terms. It supplies a full set of algebra and calculus commands
for symbolic vector and matrix functions, including symbolic matrix inversion and
complex matrix residue integration. Symbolic higher transcendental functions with
defined derivatives are available, as discussed, in Appendix A.

MATHLIB will be useful to a student from an entry-level algebra, statistics, or
calculus course clear through the doctoral level and professional practice. The scope
of Chapter 22 on statistics has been limited so that calculus is not required. Similarly,
the scope of Chapter 19 has been limited to basic topics in symbolic algebra and
calculus. Chapter 20 on linear algebra begins with basic topics, such as solving linear
systems of equations, and leaves the advanced matrix decomposition topics for last.

While the HP 48 is obviously not the fastest computer available and is no competition
for a large, expensive mathematics package when computing carpet plots, most
scientists and engineers rarely require more than a few numbers in a session. The
slower HP 48 evaluation speed is easily offset by the log-on and setup time required
by large computer packages, which are much more difficult to use. You cannot simply
put your problem on the stack and push a key for the answer.

MATHLIB provides very high quality reliable software and makes symbolic and
complex computation both understandable and affordable to everyone. Programming
is simply keystrokes enclosed within French quotes — there is no complicated computer
programming language that must be learned (remembered) to solve large problems.

Over 700 MATHLIB example, test, application, and symbolic function programs have
been written. Additional applications software is in development (see Appendix A).

TO THE INSTRUCTOR

The literature is almost void of textbooks to help the student and the professional get
offthe real number line into the world of complex computation where the real scientific
and engineering problems are solved. MATHLIB attempts to fill that void, while at
the same time providing an inexpensive means for performing the actual symbolic and
complex computations on an inexpensive, completely portable, graphics calculator.
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A number of basic entry-level texts are becoming available for the HP 48. What the
parent wants to hear is that the student does not need yet another software package
or plug-in card for each and every college course. MATHLIB provides more symbolic
and complex computation than is elsewhere available at any price. Since hundreds of
examples are given in this manual, the student can quickly apply the commands to his
or her problems and applications.

My four year old boy can run a singular value decomposition (SVD) program, but does
he learn anything? A student can run an SVD program on a $20,000 university
workstation, but does he or she learn anything? To learn, what the student needs is
access to all the little building blocks which are combined to produce an SVD. The
modular and object-oriented design of MATHLIB provides access to those internal
building blocks, so the student can experiment and learn. Since the top-level
commands are also available, the student has an unlimited source of correct examples.

As the list on page xxii implies, MATHLIB is designed to provide symbolic and
complex computation across a broad spectrum of applications. It can be used in a
large number of college courses and research activities. It can also be used as a
secondary textbook which allows the student to put theory into practice. Finally, it
can be used as a textbook for basic to advanced courses in symbolic and complex
numerical analysis, where the theory is proved by actual computation.

By providing students custom menus containing those specific commands the
instructor wishes the students to use, a teacher can focus the students on the relevant
methodology, and application areas of interest, in any particular course. Hundreds of
example and application programs are available, as discussed in Appendix A.

As technology evolves, symbolic and complex computation grow in importance. Why
should every scientist and engineer need also to be an expert on compilers and
operating systems? Now students can solve their computational problems without
becoming computer scientists. Even difficult solutions are only a push of a menu key
away, on an inexpensive object-oriented graphics computer: the HP 48 with MATHLIB.
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OVERVIEW OF
MATHEMATICS LIBRARY

INTRODUCTION

The HP 48 Engineering Mathematics Library (MATHLIB)is one of the most powerful
and complete mathematics, statistics, linear algebra, and digital signal and data
processing packages ever written. The ROM card included with this manual is the
most sophisticated computer chip ever manufactured. It consists of 715 new HP 48
commands, bringing the total number of calculator commands to 1,110. While the HP
48 does not have the horsepower of a supercomputer, the speed of the Math Library
commands is adequate for all student applications, as well as many professional ones.

FEATURES OF THE HP 48 MATH LIBRARY

e One of the largest computer tabulations of complex mathematics functions ever
published, over 300, and most have 10-digit accuracy. No interpolations required
and no strange confusing normalizations to remove! Call them from your HP
programs or tabulate them for your PC applications.

» Single-button plotting of all HP 48, MATHLIB, and all real and complex user
defined functions stored in the VAR directory. Linear, semi-logarithmic, and log-log
plots are available with titles and labeled axes.

e User-friendly interface via a special system of 36 menus grouped by application
areas. The HP custom menu and custom keyboard features are still available.

1
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Vector and Matrix Language: Numerous commands are provided for manipulating
arrays without dealing with the elements. Examples include vector plots, swap
column, replace row, copy column, insert row, delete column, sort row, as well as
numerous vector and matrix scalar commands that perform the same arithmetic
operation on each element ofan array, such as absolute value and the SIN function,

without the user having to put the elements on the stack. Random uniformly and
normally distributed arrays are created with MATHLIB commands, including
bivariate normally distributed real and complex vectors and matrices.

Over 100 statistical operations and tests, including T tests for means, F tests for
variances, x’ and Kolmogorov-Smirnov tests for distributions, correlation and

Spearman rank correlation tests, contingency table analysis, one- and two-way

analysis of variance, analysis of covariance, median and mode estimation,
histograms, vector and matrix sorting, and multiple regression ofdata with complex
polynomials and functions, plus analysis of variance and computation of singular
values. Mann-Whitney, Wilcoxon signed rank, and Kruskal-Wallis tests.

Over 50 statistical probability distributions and their inverses. Confidence intervals
are directly computed with the inverse distributions. Multi-server queueing
distributions and related calculations.

Over 100 data and signal processing operations, including FFTs, time domain and
FFT convolution, deconvolution, correlation, IIR filter convolution, interpolation,

decimation, Wiener-Levinson design ofleast squares filters, 10 windowing functions,
and bilinear transforms with frequency warping. Butterworth, Chebyshev, elliptical,
Bessel, and both IIR and FIR digital filter design. Zero and pole transformations of
lowpass analog and digital designs to the highpass, bandpass, and bandstop cases.
Peak and valley analysis, test waveforms, uniform and normal noise sources, analytic
signals. Linear and logarithmic scale plotting of complex responses for analog and
digital filters. Group delay plots. Wavelet transforms.

Taylor series, rational function, 15 polynomial, and very general least squares
approximations with analysis of variance and singular values.

Over 200 vector and matrix commands including rank, LU, QR, bidiagonal,

tridiagonal, upper Hessenberg, singular value, Schur, and Cholesky decompositions
with Householder reflections, and Givens rotations. Complete computation of
eigenvalues and eigenvectors of complex square matrices as well as the singular
values and singular vectors of arbitrary complex matrices. With the 15-digit HP 48
internal precision, small matrices can be decomposed at 10-digit accuracy.
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e Over 50 symbolic vector and matrix commands. Algebra and calculus operations
include dot and cross products, determinants, inverses, gradients, divergences,
curls, and Lapldacians in eight orthogonal curvilinear coordinate systems. Evaluation
of vector line and volume integrals.

e Evaluation of complex contour integrals, complex residues, and symbolic inverse
Laplace and z transforms. Applications to differential and difference equations.

e Both Runge-Kutta numerical and symbolic solutions to scalar, vector, and
simultaneous differential equations. Many examples are given.

Both symbolic and numerical solutions of state space matrix differential and
difference equations. Reduction of state space equations to transfer functions.
Conversion between controllable, observable, and Jordan canonical forms.

e Over 200 algebra operations, including three powerful complex coefficient
polynomial root solvers. Techniques for algebra involving hundreds of terms.

e Over 50 data editing, sorting, windowing, clipping, and peak and valley analysis
commands. Numerical differentiation and integration of data.

» Detailed command explanations with hundreds ofexample software applications are
provided. Extensive indices for searching and finding commands in library.

« Up to 160 K of RAM still available for user applications and data. Serial port
connects to PCs and MACs for programming, execution of commands, and data
transfer. Over 700 application, example, and test programs are available.

Except when plotting poles and zeros of transfer functions, all of the TDAT
commands are available in parallel with the Math Library, including linear,
logarithmic, exponential, and power data curve fitting.

GETTING STARTED

See the HP 48 owner’s manual. The HP 48SX has two ports for installing plug-in
cards. The Math Library may be plugged into either port. Be sure that the calculator
is turned OFF when inserting or removing the card. After the card is installed, turn
the calculator ON, and the library will automatically ATTACH to the HOME directory.
Now push LIBRARY and you will see MATH displayed on one of the soft menu keys.
Pushing the MATH key displays the first page of the Math Library main menu.
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The first page of the main menu is shown below and on the next page. Six commands
appear on each page of the menu; there are 120 menu pages. This manual has been
carefully written to follow the format shown below where the command definition is
given in a table, and explanations and examples are given with the command. All of
the Math Library command tables are organized like this one.

MATHLIB MAIN MENU
 

 

 

  

 

 

FUNCTION COMMAND INPUTS OUTPUTS

DISPLAY MATHLIB MENU
COMMAND NONE OF
DIRECTORY COMMANDS
 

MENUE (menu evaluate) is a command which computes and displays 36 MATHLIB
menus. The names of the 34 command menus appear like VAR directories, though
they are neither directories nor commands. Each command menu is a collection of
programmable commands grouped by application area. MATHLIB adds 715 new
commands (824 programs including internal hidden functions) to the HP 48’s 395

commands for a total of 1,110 user commands (programmable operations).

 

 

 

 

 

  
 

PLOT 1 REAL OR
FUNCTION FL COMPLEX PLOT
LABELS

PLOT 1 REAL OR
FUNCTION FL PL COMPLEX PLOT

WITH LABELS

PLOT 2
FUNCTIONS FL1 FL2 PL TWO REAL
WITH LABELS PLOTS
(REAL ONLY)

FL = { { DIRECTORY PATH} 'FUNCTION' INDEPENDENT VARIABLE
STARTING VALUE NUMBER OF POINTS }PLOT INCREMENT

See CSERS function in Chapter 17.     
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MATHLIB MAIN MENU
FUNCTION COMMAND INPUTS OUTPUTS

 

   
 

PL={(X)Y) "XAXISTITLE" "Y AXIS TITLE"} where (X,Y) is location where
axes cross. See the plot functions in the { PLOT } menu discussed in Chapter 2.  
For example: { {HOME} 'DNUKj(z,.2)' z .4 0 20 } computes the Jacobian elliptic

function dn(z, .2) versus z = 0, .4, .8, . . . 7.6 and plots it.

For a labeled plot, { (10,.5) "2.5X" "dn(X,.2)" } can be used. d = 0 for linear scale
and § = 1 for logarithmic scale of independent variable.

 

Le C UeC VALUE
F(z) eC zeC

COMPLEX
INTEGRATION  

 

  
 

Numerically integrates analytic F(z) from z = L to z= U. See Chapters 4 and 6 for
examples.

 

neNORO n STACK

OBJECTS

KEEP

 

 

  
 

Keeps the first n objects on the stack while deleting all objects above n.       
 

The MENUE command displays 36 menus that allow the user to easily access the 715
MATHLIB commands. There are two top-level menus which display the 34
programmable command menus like VAR directories. When MENUE is pushed, 18
menu labels are displayed on 3 menu pages. These are summarized on the next page.

FTNS is also a top-level menu which displays 18 menu labels. It provides access to
the 17 function menus summarized on page 7 of this chapter. This application
oriented menu system provides a far more user-friendly interface than that afforded
by the main menu. As explained in the HP 48 owner’s manual, when MATHLIB is
attached, all of the 715 commands are global commands just like the 395 HP 48
commands. All of the library commands may be used in user application programs.
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MENUE OVERVIEW

MENU MENU DESCRIPTION NUMBER OF
NAME COMMANDS

PLOT PLOTTING OPERATIONS 12

FTNS MENUS FOR MATHEMATICS FUNCTIONS 301

NUMB NUMBER THEORY CALCULATIONS 22

ALGB SYMBOLIC ALGEBRA OPERATIONS 42

LINAG LINEAR ALGEBRA OPERATIONS 66

MATR SPECIAL MATRIX OPERATIONS 58

STAT STATISTICAL ANALYSIS TOOLS 48

PROB PROBABILITY DISTRIBUTIONS 30

IPROB INVERSE PROBABILITY CALCULATIONS 20

BIVN BIVARIATE NORMAL DISTRIBUTION 7

QUE MULTI-SERVER QUEUEING THEORY 12

SYMB SYMBOLIC VECTORS AND MATRICES 57
PLUS DIFFERENTIAL EQUATIONS

PROC DATA PROCESSING OPERATIONS 48

FILTR FILTER DESIGN OPERATIONS 54

WIND WINDOW, CLIPPING AND FIR DESIGN 36

VECTR SPECIAL VECTOR OPERATIONS 24

VSAG VECTOR SCALAR ALGEBRA 30

MSAG MATRIX SCALAR ALGEBRA 32        
The detailed contents of these 36 menus and most of the HP 48 system menus are
given in the menu maps of Appendix H on pages 579 through 586.
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FUNCTIONS OVERVIEW { FTNS }
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MENU MENU DESCRIPTION NUMBER OF
NAME COMMANDS

TRIG ADDITIONAL TRIGONOMETRIC 12
FUNCTIONS

HYP ADDITIONAL HYPERBOLIC FUNCTIONS 17

EXPIN EXPONENTIAL INTEGRAL FUNCTIONS 18

GAMA GAMMA AND RELATED FUNCTIONS 12

ERROR ERROR AND RELATED FUNCTIONS 14

BESEL BESSEL FUNCTIONS OF INTEGER 20
ORDER

SBESL SPHERICAL BESSEL FUNCTIONS 12

ELLIPI ELLIPTICAL INTEGRALS 25

JACOB JACOBI ELLIPTICAL FUNCTIONS 36

THETA THETA AND RELATED FUNCTIONS 42

CHYPR CONFLUENT HYPERGEOMETRIC 18
FUNCTIONS

PCLDR PARABOLIC CYLINDER FUNCTIONS 12

GHYP GAUSSIAN HYPERGEOMETRIC 6
FUNCTIONS

LGDR GENERALIZED LEGENDRE FUNCTIONS 6

STRUV COMPLEX STRUVE FUNCTIONS 6

POLY ORTHOGONAL POLYNOMIALS 15

MISC MISCELLANEOUS FUNCTIONS 30
   UPDIR  RETURN TO MENUE-LEVEL MENUS  598
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ORGANIZATION OF THE MANUAL

This manual is organized around the 34 MATHLIB command menus. In a few cases
more than one menu is discussed in a chapter. The same command is included in
several menus where applicable for user convenience. Some HP 48 commands are also
repeated to save the user typing time.

Each chapter contains a brief overview of the command table that follows. The
command table format was chosen so that all the applicable information would be easy
to find with the command.

ORGANIZATION OF THE MENUS

The menus begin with the plotting operations in PLOT. These commands are provided
to simplify the plotting offunctions and data, and to significantly improve speed. They
allow the user to plot any HP 48, MATHLIB, or user function with one command.
LOG-LOG plots are available.

Pushing FTNS moves into the numerous complex plane mathematics tables. The
TRIG and HYP menus provide solutions to wave and diffusion differential equations
in rectangular coordinates. These menus contain a full set of trigonometric and
hyperbolic functions. These are the most widely known transcendental functions, and
half of them are provided with the HP 48.

EXPIN, GAMA, and ERROR provide evaluation of some of the simpler higher
transcendental functions throughout the complex plane. EXPIN contains exponential
integrals and related functions. GAMA contains complete and incomplete gamma and
related functions. ERROR contains the error function, Fresnel integrals, and related
functions.

The BESEL and SBESL menus provide differential equation solutions in circular
cylindrical coordinates, in addition to evaluating numerous complex integrals. BESEL
contains all the Bessel functions of integer order and SBESL all the spherical Bessel
functions. Evaluation for complex arguments is provided. Evaluation of Bessel
functions with complex order is provided in the CHYPR menu.

ELLIPI, JACOB, and THETA evaluate numerous elliptic integrals and functions.

ELLIPI contains all the elliptic integrals with analytic continuation. JACOB contains
the numerous Jacobian elliptic and related functions. THETA evaluates the numerous
theta functions and their derivatives.
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Then we move into the more advanced higher transcendental functions. CHYPR
provides evaluation of the complex confluent hypergeometric functions and many of
their special cases. Both basic solutions to the confluent hypergeometric equation
M(a, b, z) and U(a, b, z) are provided, including the logarithmic case. PCLDR provides
the parabolic cylinder functions, which are differential equation solutions in parabolic
cylindrical coordinates.

GHYP then provides the general Gaussian hypergeometric function and some special
cases. Using these commands, LGDR evaluates the Associated Legendre functions,
which are the solutions to differential equations in spherical coordinates. Both P*(z)
and Q,"(z) are provided for complex argument, order, and degree. STRUV provides the
complex Struve functions.

POLY provides numerous orthogonal polynomials. They are available in both symbolic
and numerical forms.

The MISC menu is devoted primarily to the approximation of functions. Polynomial,
rational, and least squares approximations are provided. Returning to the MENUE
menu level with the UPDIR key, NUMB provides the number theoretic functions, as
well as Bernoulli and Euler polynomials. This completes the MATHLIB tables of
complex functions.

The ALGB menu provides symbolic algebra and calculus, Taylor series, polynomial
arithmetic and calculus, and complex root-solving commands. Many of the commands
work with polynomiallists instead of the symbolic polynomials since it is much faster.
Symbolic hypergeometric functions are also provided, in addition to many special
algebraic identity, expansion, and manipulation programs.

The Math Library contains one of the most powerful and complete linear algebra
packages ever written. Access is provided to all the internal functions. These
commands are provided in the LINAG and MATR menus for numerical arrays and the
SYMB menu discussed below for function and symbolic arrays.

The next five menus provide numerous statistical functions and probability
distributions. STAT contains many standard statistical tests. PROB and IPROB
provide many common probability distributions and their inverses for computing
confidence intervals. BIVN contains commands to evaluate all the upper and lower
combinations ofthe bivariate normal probability distribution. The QUE menu contains
commands for solving multi-server queueing theory problems. PROB, IPROB, and
BIVN contain one of the most complete sets of probability tables ever published.
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The SYMB menu provides the capability of symbolic vector and matrix operations.
These commands provide the foundation for solving scalar, vector, and matrix
differential equations. Commands for both symbolic and numerical solutions to
differential equations are provided. SYMB also provides commands for evaluating
symbolic inverse Laplace and z transforms using complex residue integration and
vector calculus operations such as gradients, divergences, and curls in various
coordinate systems. Commands are presented for solving state space differential
equations. Examples of vector line and volume integration are also given. The
applications of CHAOS is currently a hot research topic.

The next three menus provide data and signal processing operations. PROC contains
numerous commands for analyzing and processing data. Included are numerical
derivatives and integrals, peak and valley analysis, fast Fourier transforms,
convolution and correlation, Wiener-Levinson least squares solutions, interpolation,
and decimation. FILTR contains commands for design and analysis ofboth analog and
digital filters including elliptic ones. Additional commands are provided for conversion
between transfer function and canonical state space representations of linear systems.
Combined with the commands in the windowing menu WIND, digital FIR and IIR
filters can be designed in the lowpass, highpass, bandpass, and bandstop cases. The
computation and study of WAVELET TRANSFORMS is very easy with MATHLIB.

The VECTR menu is the vector analog of the matrix menu MATR and provides
numerous commands for manipulating the elements of vector arrays.
Vector and matrix scalar arithmetic are provided by the commands in the VSAG and
MSAG menus. They extend basic scalar functions such as LN, EXP, and ABS to array
objects on the HP 48.

The HP 48 is designed to make creation of custom menus and keyboard definitions

very easy. The program <« { PADD PSUB PMPY PDVD PDERV PINTG } TMENU
> stored in a variable MYMENU brings up a polynomial operations menu whenever
MYMENUis evaluated (the MYMENU key pushed). Hence, the user can easily build
his or her own menus. See Chapter 15 of the HP 48 owner's manual for more detail.

ASSUMPTIONS

This manualis not intended to be a stand-alone textbook. While Chapter 3 does give
a very brief tutorial on complex analysis, as do many other chapters on various
subjects, we generally assume that the reader is already familiar with the subject
matter. Equations are given in this manual to make clear what each command
actually evaluates, but they are not a substitute for a textbook on each subject.
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We also assume that the reader carefully studies the operation of each command
before using it. Many of the internal Math Library commands have been made
accessible to the user for his or her applications. It is prohibitive for every command
to test the validity of every input all the time because of ROM space and execution
time. While the software makes reasonable checks on the inputs, ultimately the user
must read the directions and make sure his or her inputs are valid. Numerous
examples are given to make clear what inputs each command requires.

Apart from Appendix H, this manual is not a tutorial on how to operate and program
the HP 48. We assume that the user has understood the HP 48 owner's manual.

APPLICATIONS

For the student, the HP 48 Math Library is an unlimited source of correct answers and
worked examples related to basic calculus, advanced calculus, differential equations,
vector analysis, vector calculus, linear algebra, statistics, signal processing, and
numerous engineering problems.

The Math Library not only provides solutions to complicated calculations such as
eigenvalues and eigenvectors, but also provides the tools for learning and
understanding all the individual steps associated with such calculations. Since the
Math Library covers many different areas of mathematics, statistics, engineering,
computer science, and digital signal processing, it has broad application in many
courses. Many of the recently published textbooks contain homework problems which
assume the student has access to a computer and various software packages. While
they might provide a SVD program, for example, they do not provide all the little
building blocks so you can learn to write your own. Now that capability is available
on an inexpensive calculator.

For the professional, the Math Library is the ideal tool for quick analyses and a source
of correct answers when testing and debugging PC and mainframe computer programs.
Most of the complex higher transcendental functions are already available for use in
engineering analyses. While a typical problem using a set of Fortran programs
purchased with your textbook could take several hours to set up and compile, the HP
48 with the Math Library could solve the same problem in minutes.

For those who never did care to know the theory or how to program a computer, the
answer is only the push of a button away. The Math Library is also one of the most
complete tabulations ofcomplex functions and probability distributions ever published,
making it an important reference for any technical library.
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ARGUMENTS AND STACK DIAGRAMS

The HP 48 is an RPN calculator that also supports algebraic notation. All of the Math
Library commands are algebraic, that is, both global and local variables can be used
as arguments. The HP 48 command TRN is not algebraic. While the program <« —
M <M TRN » » works, the program « - M "TRN(M)' > does not. The first program
puts matrix M on the stack and then evaluates the Hermitian transpose command
TRN. The second would symbolically produce the same result ifTRN were algebraic.
The Math Library command TRNH is also the Hermitian transpose, and since it is
algebraic, « » M 'TRNH(M)' » works as well as « > M « M TRNH > ».

Consequently, the universal stack diagram for all of the Math Library commands is

'FUNCTION( X,, , ... , X, , X; )’ EVAL

which is equivalent to placing each argument on the stack and evaluating FUNCTION

N: Xy

2x, FUNCTION
1. X,

Thus, the N arguments of command FUNCTION are put on the stack in the order
shown, and the command FUNCTION is evaluated. This is standard RPN and RPL
notation and evaluation. This universal stack diagram generally also applies to the
algebraic HP 48 commands, though there are a few exceptions such as XROOT.

In using algebraic notation, the arguments may be global variables, local variables,
and numbers. Nevertheless, we frequently use the shortcut notation FUNCTION(
[1 2 3 45], 7), where the first argument in this case happens to be a vector, but
might also be an array (matrix), a list, or a program. The HP 48 editor will complain
endlessly if you actually type this. When you see these notations in this manual, they
are to be interpreted one of two ways:

» Evaluate 'FUNCTION(c,7)', where the variable o contains [1 2 3 4 51].
* Put the two arguments on the stack and evaluate FUNCTION.

Both interpretations are correct and are equivalent according to the MATHLIB
universal stack diagram. See also the tutorial in Appendix H, which provides some
explicit examples of how to evaluate commands and functions on the HP 48, in
addition to explaining how the stack works.
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COMMAND NAMES

All of the command names in the Math Library use uppercase English characters, plus
occasionally other HP 48 symbols. The exception is lowercase p, which evaluates =.

RESERVED VARIABLES AND CHARACTERS

The variable ROOTX is used by the internal solver in the Math Library and will
appear in the current VAR directory. The complex integration error is stored in IERR
when CINTG is called. Similarly, the variables pD1g, pD2g8, and pD3o appear during

plotting, where ois the HP 48 character number 164. oooo is used and purged (unless
SVBAR, MATT, or MATcrash due to bad inputs). ¥, HP 48 character number 165,
is used for the plot independent variable so the symbol X is available for symbolic
algebraics. All uses of ¢ in MATHLIB commands correspond to HP 48 character 216,
which is typed as O followed by ETC (a, blue right arrow, 9). See page 54 of HP 48
owner's manual. jis HP 48 character 161 (a, blue right arrow, DEL).

SYSTEM FLAGS

RADIAN MODE (Flag -17 set and -18 clear) must be set for the Math Library
commands to compute correctly. The commands D—>R and R—D are available for

conversion between degrees and radians.

WORD SIZE (Flags -5 to —10) should be set to its default value of 64.

NUMERICAL RESULTS (Flag -3) must be clear so symbolic operations can be
performed.

USER FLAGS

MATHLIB uses none of the user flags.

CUSTOM MENU AND KEYBOARD FEATURES

All of the custom menu and keyboard features are still available for the user. Collect
the commands you need into a custom menu and define the user keys to save yourself
typing time. See Appendix H and Chapter 15 of the HP 48 owner’s manual.
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FUNCTION NOTATION AND DEFINITIONS

The notation and definitions in the Math Library are based on those chosen in
Handbook of Mathematical Functions, (Abramowitz and Stegun, National Bureau of
Standards, Applied Mathematics Series (AMS) 55, June 1964), which is currently
published by Dover. We reference this book as AMS 55.

ACCURACY

Estimates of accuracy are provided with the commands. Most apply to accuracy on the
real number line and may not hold everywhere in the complex plane. These are
performance estimates and not guarantees. The user is invited to use references, the
complex integration command CINTG, and other techniques to check the accuracy of
the various MATHLIB approximations. In some cases commands have been provided
simply to make comparisons with AMS 55 easier. The MATHLIB functions and matrix
commands have also been rigorously tested against several other large computer
mathematics packages throughout the complex plane. The symbolic commands and
operations have also been extensively tested. Over 700 application, test, and symbolic
function programs have been written and tested, and are available. See Appendix A.

AMS 55 depends on Lagrange interpolation to extend its tables. Should you still need
it, you may type in the below program where vectors Y and X of the same size N are
the dependent and independent data values, N is the number of values used in the
interpolation, and x is the value of the independent variable for the interpolation. By
interchanging the roles of X and Y, PLINT also does inverse interpolation for x.

PLINT: « > Y X x « Y SIZE EVAL X x VSUB VABS 1 FINDN 'Y' OVER
GET YY 5  NnyCD«<«-1n"STO+ 1 N1-FORm1Nm
- FOR j Xj GET x - 'X' jm + GET x - DUP2 - 'C' j 1 + GET
'D' j GET - SWAP / ROT OVER x 'C' j ROT PUT x 'D' j ROT PUT
NEXT IF n 2 x Nm - < THEN 'C' n 1 + GET ELSE 'D' n GET
-1 n' STO+ END 'y' STO+ NEXT y >» >» »

PLINT([2 3.5 49 53 58],[1 19 2.6 3.2 3.71, 3) =5.21339822729

The accuracy of this type of interpolation does not always improve as the number of
terms is increased, so use it with caution. For an arbitrary choice of points, there
exists a continuous function for which the polynomial approximation error goes to
infinity as the number of interpolation points goes to infinity. MATHLIB offers
numerous orthogonal approximation techniques, which are much better.
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MULTIPLICATION SYMBOL

While the HP 48 uses a 90-degree rotated * to denote multiplication, this manual uses
the symbol x. When the meaning is clear, the multiplication symbol is often omitted,
even though you must type it in on the calculator.

STYLE

Having searched through many thousand-page software manuals desperately seeking
the bottom line amongst all the words, I have written this manual very differently.
A picture is worth a thousand words, and this manual is a collection of pictures
documenting the operation of each command. The bottom line and examples are
presented with each command. The command table format neatly organizes all this
information. When commands appear in more than one menu, generally so does their
description. I hope you like my manual.

COMMON PROBLEMS

As explained above, the HP 48 must be in RADIAN MODE. If you notice that the
answers are wrong in calculations, first check to see if you hit the wrong key and the
HP 48 is no longer in radian mode. RAD should always be displayed in the status
area of the display when you use MATHLIB.

Many of the MATHLIB internal programs use symbolic algebraic operations. The
numerical results Flag —3 must be clear. Many of the examples also assume that Flag
-2 is clear, though the MATHLIB software itself does not care.

On the HP 48, '1+ix2' is a symbolic object, and (1,2) is a complex number. Matrix
commands generally assume a 2 x 2 or larger matrix, and not row or column vectors.

The HP commands QUOTE and APPLY do not work with Library objects.
Consequently, there is no way to make a numerical command such as GAMMA work
symbolically. Chapter 19 discusses our approach to symbolic arguments and provides
examples. Programs are available, as discussed, in Appendix A.

If the program argument to V1F1, V2F1, M1F1, M2F1, S1F1, or L1F1 contains a
local variable that contains an object that is not a number, it will not properly
evaluate. You must instead store the object in a global variable, which can be later
purged. See the EASOV program near the end of Chapter 25 for an example.
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MENUE is a programmable command and will not execute while the HP 48 is in edit
mode. To use the typing aids in MENUE, put the program to be edited on the stack
and push the LIBRARY MATH MENUE keys to get into MATHLIB. Now go into the
menu of interest. Then push EDIT, followed by LAST MENU. Now you are back in
MATHLIB and can access the typing aids in that menu. Use the same approach with

any custom or temporary menus you have defined.

MEMORY MANAGEMENT AND SPEED TIPS

The HP 48 is a LISP-like computer with a garbage collector. The same CPU you are
trying to compute with may not be available due to garbage collection and memory
management. Always keep unnecessary objects off the stack. When using lists and
symbolic matrices, make heavy use of the HP NEWOB command to release pointers
so the garbage collector can keep up with the garbage creation.

Always evaluate symbolic expressions as soon as possible. Delaying can put too much
on the stack and cause the memory management to hang. Execution of the program

< 'EXP(z*2)' z 8 TAYLR »>

using the HP 48 command TAYLR will expand EXP(z?) into a Maclaurin series, but
it takes 44 minutes. The same computation with MATHLIB commands COEFL or
TALRI1only takes 2.6 minutes. The same expansion, but computing 14 terms, only
takes MATHLIB 9.3 minutes, whereas TAYLR will eventually abort with an "out of
memory" error and then spend hours cleaning up the garbage. Evaluating and
collecting terms on the fly can make huge speed differences.

The HP 48 garbage collector generally only starts when the memory manager runs out
of memory. You may force it to start with the program sequence « MEM DROP ».

Techniques for working with expressions containing hundreds of terms are discussed
in Chapter 19. While EXCO is provided on the ROM, for many problemsit is the slow
approach. Expanding z°(3z**+5z") with EXPAN or EXCO will expand z’ to
zxzxzxzxzxzxz and similarly z** as part of the effort, whereas « PARE COLCT » will
expand z2(3z*+527) to z2x(3xz**)+z"x(5xz") and then collect as 5xz>"+3xz% in seconds.

When editing large equations, you will save a lot of time by pushing EDIT instead of
using the equation editor. The equation editor is very nice, but very slow. Pressing
any keys while the HP 48 is building an equation can cause strange results. Push
ATTN when you tire of waiting, and if you lose the equation, try LAST STACK.



SPECIAL PLOTTING OPERATIONS

INTRODUCTION

This chapter presents the 12 special plotting operations in the PLOT menu. The
PLOT commands are specially designed to make the plotting of functions, filters,
windows, FFTs, spectrums, phases, and group delays very easy and fully automatic.
For most functions, it is far faster to use CSERS to convert them to a vector of values
for plotting than it is to present the function itself to the HP 48 plot commands. Input
vectors can be HP [ ] arrays or symbolic vectors { } which are lists.

These plot commands take a vector of real or complex values. If V has 64 elements,
then the abscissa (X AXIS) ranges from 0 to 63. It is assumed by the software that the
values in the vector are of the form finT), forn = 0, 1, .. ., N-1, where N is the size
of the vector, and T is the sampling period. This assumption works for almost every
situation. The values which are plotted are computed via linear interpolation over the
values f{nT). Most of the HP 48 plot functions such as scaling, centering, zooming, and
zero—crossing determination are still available. However, differentiation is not
available since there is no explicit equation. Derivatives can be plotted using DER1
and DER2.

VECTOR PLOTS WITH AND WITHOUT LABELS

PLT1 and PLT2 provide single and double real plots without labels. PLTC provides
complex plots without labels. PLT1L, PLT2L, and PLTCL provide the same plots
with labels.

17
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FUNCTION PLOTS

FPLOT, FPLT1, and FPLT2 provide direct plotting of all HP 48, user, and MATHLIB
functions. They use the MATHLIB command CSERS to compute the vector of values

for plotting.

LOGARITHMIC AND LOG-LOG PLOTS

The above function plot commands can produce LOG-LOG plots.

OVERLAYING PLOTS

PLTS3 provides the capability to add real plots to existing plots.

PLOTTING DERIVATIVES AND INTEGRALS

Examples showing how to plot derivatives and integrals are given.

POLE AND ZERO PLOTS

Plotting poles and zeros of transfer functions is discussed in Chapter 27.

PRINTING PLOTS

Pushing STO in the graphics plot window will put the plot on the stack. PR1 will
then print the plot on the HP 48 printer. Alternatively, you may use the HP 48 HOT
PRINT, which is discussed on page 605 of the HP 48 owner’s manual.

STORING PLOTS FOR LATER VIEWING

Pushing STO in the graphics plot window will put the plot on the stack. This graphics
plot may be stored in any variable. To view it at another time, recall it to the stack
and type PICT ENTER STO. Now push GRAPH, and it will be displayed.
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PLOTTING MENU { PLOT }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

PLOT VECTOR   

 

VeR  PLOT V
 

 
be at least 2.

PLT1([1 2]) plots a straight line with a slope of 1.

All of the plot functions provide HP 48 FUNCTION type plots. All of the scaling is
automatic. The software even works when you ZOOM or center so that the values

off either end of the vector are plotted, though these values themselves are
meaningless. However, this gives the user the capability to zoom into any region of
the plot of interest. The values of V for PLT1 must be real, and the size of V must

 

PLOT TWO
VECTORS

 

  
Vi, V2 eR

 
PLOT V1, V2

 

PLT2([1 2], [2 1]) plots two intersecting lines with slopes of 1 and -1.

V1 and V2 must have the same size, > 2, and both be real.

 

PLOT VECTOR

 

  
VeC

 
PLOT VR, VI
 

V must be complex, and the size of V must be at least 2.

PLTC([ (1,2) (2,1) ]) plots two intersecting lines with slopes of 1 and -1.

 

 

   

 

   

PLOT VECTOR VeR PLOT V
WITH LABELS DRAW AXIS

PLOT TWO PLOT V1, V2
VECTORS Vi, V2 eR DRAW AXIS

WITH LABELS

PLOT VECTOR VeC PLOT VR, VI
WITH LABEL DRAW AXIS   
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PLOTTING MENU { PLOT }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

V =[ VECTOR OF LENGTH > 2] such as the output of CSERS discussed in
Chapter 17.

L={(XY) "XAXISTITLE" "Y AXIS TITLE"}

 where (X,Y)is the location where the axes cross, and X € [0, SIZE(V)-1]. See
Chapter 19 of the HP 48 owner's manual. V1 and V2 must have the same size.

An example plot label list for the plot example dn(z,.2) on the next page is

{ (10,.5) "2.5X" "dn(X.,0.2)" }.

 

Multiple plots are constructed using linear interpolation of values and automatically

scaled based on the first plot, which is V1 in the case of PLT2 and the real part of
V in the case of PLTC.

 

 PLOT FUNCTION FL REAL OR
WITHOUT COMPLEX
LABELS 8 €[0, 1] PLOT

 

    
FL = { { DIRECTORY PATH} 'FUNCTION' INDEPENDENT VARIABLE

START VALUE FINAL VALUE NUMBER OF POINTS }

All three of the function plot commands in this menu use CSERS to compute the
real or complex vector of values for plotting. They may be called from any user
directory, and the function need not be in the same user directory. HP 48 and

MATHLIB functions are all in { HOME }. § = 0 evaluates the independent variable
with a linear scale, while 6 = 1 evaluates the independent variable with a base 10

logarithmic scale. START VALUE < FINAL VALUE.

When 6 = 1, then 0 < START VALUE < FINAL VALUE.     
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PLOTTING MENU { PLOT }
 

FUNCTION COMMAND INPUTS OUTPUTS    

FPLOT({ { HOME } 'DNUKj(z,.2) z 0 7.6 20}, 0)

evaluates the MATHLIB Jacobian elliptic function dn(z, .2), creating the vector of
values

[dn(0,.2) dn(.4,.2) dn(8,.2) ...dn(7.6,.2)]

using CSERS and then calls PLT1 to produce the plot of the function.

  
 

 

   

PLOT ONE FL PL REAL OR
FUNCTION WITH COMPLEX

LABELS 8 €[0, 1] PLOT

PLOT TWO FL1 FL2 PL TWO
FUNCTIONS REAL
WITH LABELS 8 (0, 1] PLOTS
(REAL ONLY)  
The above two commands are like FPLOT, but they also provide labeled plots.

 

LOGARITHMIC PLOT EXAMPLES

The following examples provide example semi-logarithmic and LOG-LOG plots:

< { {HOME} 'LN(z) z .1 10 20 } 1 FPLOT »

<{ { HOME} 'LOG(2"(4xLN(z))) z .1 10 20 } 1 FPLOT >».

Observe that the plots are linear.   
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PLOTTING MENU { PLOT }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

 PLOT VECTOR VeR PLOT OF V  

 

 

PLT3 allows the user to add a plot to an existing plot. While all the other plot
commandsfirst erase PICT before plotting, PLT3 plots over any existing plots.

Observe that the plot of V is always full scale, and thus the scale of the PLT3 plot
may not be the same as the existing plots.

 

PLOTTING FROM OTHER USER DIRECTORIES

The following two programsillustrate how to plot user-defined functions located in
other user directories. The first program, PLTT2, creates the directory MYDIR1 in
the HOME directory and the subdirectory MYDIR2 in the MYDIR1 directory. It can

be executed from any user directory and will return to that user directory after
creating MYDIR1, including storing the functions COS2 and EXP2 in the MYDIR1
directory and storing the function SIN4 in the MYDIR2 subdirectory. After running

PLTTZ2, then PLTT3 may be executed again from any user directory. PLTT3
provides a demonstration of the FPLOT, FPLT1, and FPLT2 commands.

PLTT2: « PATH { HOME } EVAL 'MYDIR1' CRDIR { MYDIR1} EVAL
'MYDIR2' CRDIR <« — a < 2xEXP(ixa)) NUM > >

'EXP2' STO <« — a "2xCOS(0)' » 'COS2' STO { MYDIR2} EVAL
< — a '4xSIN(c)' > 'SIN4' STO HOME EVAL >

PLTT3: < {{MYDIR1} 'EXP2(X)) X 0 7 50 } DUP 0 FPLOT { (25,0)
"X AXIS" "Y AXIS"} 0 FPLT1 {{MYDIR1 MYDIR2} 'SIN4(X) X 0 7 50}

{ { MYDIR1} 'COS2(X) X 0 7 50} {(0,0) "X AXIS" "Y AXIS"} 0 FPLT2 »

   INTERLEAVING VECTOR DATA VALUES FOR PLOTTING

—ROW, COL, -VTR, RNLV, and CNLV are available in the MATR menu.   
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PLOTTING MENU { PLOT}
 

FUNCTION COMMAND INPUTS OUTPUTS    

OVERLAYING PLOTS

The following program demonstrates overlaying plots with PLT3. It may be stored
and executed from the same user directory in which you stored PLTT2 and PLTT3

and will overlay the last plot left in PICT after executing PLTT3.

PLTT4: < {{ HOME} 'COS(X) X 0 7 50} 0 CSERS PLT3 »

Observe that after running PLTT4, full scale is now [-1, 1] when using COORD.
Also, if you use ZOOM or one of the other replot options, only the 'COS(X)' function
is replotted, since it is now the current plot stored in EQ and the only plot that the

HP 48 knows about.

 

 

HP ERASE NONE BLANK GRAPH    

ERASE clears PICT.

 

   

 

UP DIRECTORY NONE PARENT MENU
 

DEGLITCHING DATA PLOTS

Occasionally, the data vector you wish to plot may have some small values (the
ones whose shape you wish to see in the plot) and one or more large values which
will consume the plot range if you plot the vector as it is. There are a number of
remedies. See the commands DGLIT, VSUBS, VREPL, CLIPB, CLIPN, and

CLIPPfor ideas.   
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PLOTTING MENU { PLOT }
  

  
FUNCTION COMMAND INPUTS OUTPUTS

 
 

PLOTTING DERIVATIVES AND INTEGRALS

The commands DER1 and DER2 are available for plotting derivatives. The
commands LINT and RINT are available for plotting integrals.

DEMS: <« "NUMERICAL DERIVATIVES" 4 DISP { { HOME} 'SIN(X) X .1 0
100 } 0 CSERS "COMPUTE FIRST DERIV" 3 DISP DUP DER1 10 x

SWAP "COMPUTE SECOND DERIV" 3 DISP DER2 100 x { (49,0) "10X"
"COS(X) & -SIN(X)" } PLT2L >

DEMI: < "NUMERICAL INTEGRATION" 4 DISP { { HOME} 'SIN(X)' X .1 0
100 } 0 CSERS "COMPUTING INTEGRAL" 3 DISP DUP LINT .1 x 1

VSUB { (49,0) "10X" "SIN(X) & -COS(X)" } PLT2L »

The 1 VSUB in the above program inserts the constant of integration.

 

REAL PLOTS WITH LABELS

DEMY: < "REAL BESSEL Y(0,X)" 4 DISP { { HOME} '"YNOX(0,X) X .5 5
25 } 0 CSERS { (12,0) "2X" "YO(X)" } PLTIL »

 

COMPLEX PLOTS WITH LABELS

DEMD: < "COMPLEX SPH HANKEL" 4 DISP { { HOME} 'SH1Z(1,X) X 5
5 20 } 0 CSERS { (9.50) "2X" "h1(1,X)=j1 + iy1" } PLTCL »

   The HP 48 has a very general plotting and graphics capability. If you experiment
with the many options and find that the commands in this menu no longer work, try

the RESET command discussed on page 323 of the HP 48 owner's manual.  
  

 



TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

INTRODUCTION

This chapter presents the 29 commands in the trigonometric and hyperbolic functions
menus. It also offers a short tutorial on the basic concepts associated with complex
analysis to clarify notation. These concepts are used in this and the following
chapters. A program for the Kronecker delta function is also given in the TRIG menu.

Throughout this manual we make use of set theory notation. Define N to be the set
of positive integers that are called the natural numbers. The symbols x € N say that
variable x must be a natural number such as 1, 2, . . .. Similarly, x €I says that x is
an integer variable, thatis, a variable that takes on integer values. The integers are
the natural numbers, their negatives, and zero. We also use x eR and z € Cto denote
that x is a real variable and z is a complex variable.

COMPLEX VARIABLES

The concept of complex variables arises out of the observation that no real number can

be the solution of z* + 1 = 0. In fact, the solution must be something like z = /-1 .

The concept of /-1 results in a paradox. While

GD =, FD==ENED = VT 1
The paradox is resolved by the introduction of the notation i for /-1 and properly

choosing the positive root. Observing that (+2)* = 4, on the HP 48, /4 = 2, which is
the positive root. This subject is addressed in more depth at the end of the chapter.

25
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In 1779 Euler adopted the notation i’ = —1 and the vector space approach to describing
complex numbers as x + iy = z, where x and y are real. We denote this by x, y eR and
z € C. The complex conjugate of z is z' = x — iy. All the properties of complex numbers
then follow from the properties of the real numbers x, y and the definition of i. If you
put lowercase i on the stack of the HP 48 and push -NUM,it will evaluate to (0,1),
representing a complex number with 0 for its real part and 1 for its imaginary part.

TRANSCENDENTAL FUNCTIONS

Transcendental functions are ones which cannot be produced by a finite number of the
ordinary algebraic operations: addition, subtraction, multiplication, and division.
Thus, they must be represented as infinite series. Simple ones like sin(z) are often
called elementary functions since they are widely known. Less known ones generally
get the title of higher transcendental functions or special functions, even though they
are just functions.

 Consider the simplest of all differential equations: cs = f(z), where f(z), is some

unknown solution. If we assume f(z) is some power series, then

N d N N-1

fiz) = Y a, z" 2 na, z"'=Y (m+1 a, z"
n=0 n=0

Consequently, we can write

df(z)

dz

Choosing a, = 1/n!, we discover that the above sum exactly equals zero for all N, and
N

. Z

since Lim NTC 0 for all |z| < =, we have proved that the solution f(z) is a
Noe

 

n=1

 f(z) -
N-1

=Yla,-(n+1a,lz"+ayz".
n=0

transcendental function.

COMPLEX EXPONENTIAL FUNCTION

One can show that the function f(z) has several interesting properties, such as f(z + w)
= f(z) fw). f{1) is known as Euler’s constant e. If you put lowercase e on the stack and
push -NUM, the HP 48 will evaluate it for you. f(z) is the complex exponential
function EXP on your calculator. Since e* with z = x + iy equals



CH 3: TRIG HYP TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 27

 

X+, x - (iy)"ex =e 2 =

= x — lyy

e* 12 amr * 24 2n + DI
eo *2n., 2n oo *2n+l -

oo ( Hn yn } oo ( 1n y 2n+1

© 2 ey HV en
e * [cos(y) + i sin(y)],

n=0

we have an interpretation for e* in terms of real functions with real arguments. The
above equation is called Euler’s formula in honor of its discoverer.

COMPLEX NATURAL LOGARITHM

Suppose f(z) = ¢*. Then what is the inverse function f! such that f(f(z) = z?
Obviously it’s the LN command on the HP 48, but observe that since cos(y) = cos(y +
i2nm) and sin(y) = sin(y + i2nn) for any integer n €L, in general Ln is not unique. The
n = 0 solution is called the principal value and is what LN actually computes. This
principal value is denoted by In in AMS 55. In general, Ln(e’) =z + i2nt = x + iy +
i2nz. Since for real x eR, Ln(x) is only defined for x > 0, in the complex plane Ln(z)
is defined everywhere except at the origin and the negative real axis.

Logarithms with other bases are defined by Log,(z) = LN(z)/LN(a). Similarly, z* =
EXP(a Ln(z)) = *™®. The base 10 commands LOG and ALOG are examples.

COMPLEX CIRCULAR FUNCTIONS

By the same steps we used to express e” in terms of cos y and sin y, we have for
complex z

ei? =cosz + 1sin z, e? =cosz - isin z.

Rearranging these two equations gives definitions for complex cos z and sin z.

   

1 : _s ; 1 :
cosz = 3 [ei +e iz] sin z = = [ei -e iz],

Now we can define all of the other trigonometric functions.

sin z COS Z 1 1
tan z = cot z = — , csc z = sec z = 

cos z’ sin z sin z’ cos z
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SIN, COS, and TAN are available on the HP 48 keyboard, while COT, CSC, and SEC
are in the TRIG menu. The sin and cos functions are the solutions of the differential

equation

d? f(z)
dz?

+ f(z) = 0.

COMPLEX HYPERBOLIC FUNCTIONS

Two other useful sums of exponentials define the complex hyperbolic functions cosh z
and sinh z.

   

cosh z = 5 [e? +e 77, sinh z = 5 [e: -e7.

Now we can define all of the other hyperbolic functions.

inh cosh 1 1
tanh z = shiz , cothz = — z , c¢schz = — , sechz = —m—.

cosh z sinh z sinh z cosh z

HP 48 commands SINH, COSH, and TANH and Math Library commands COTH,
CSCH, and SECH are all available in the HYP menu. With these definitions we have
the relations

cos z = cosh iz, tan z
sin z = -i sinh iz, cot z

i csch iz,
sech iz.

-i tanh iz, csc z
i coth iz, sec z

The sinh and cosh functions are the solutions of the differential equation

d? fiz)
- f(z) = 0.

dz?

CIRCULAR FUNCTIONS IN TERMS OF REAL AND IMAGINARY PARTS

With the above definitions, explicit formulas can be written for the real and imaginary
parts of the trigonometric functions. Let z = x + iy. Then

COS Z cos x cosh y - i sin x sinh y, sin z = sin x cosh y +1 cos x sinh y,

sin 2x + i sinh 2y ¢ sin 2x - i sinh 2y

cos 2x + cosh 2y ’ cot z cosh 2y - cos 2x °
tan z   
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HYPERBOLIC FUNCTIONS IN TERMS OF REAL AND IMAGINARY PARTS

With the above definitions, explicit formulas can be written for the real and imaginary
parts of the hyperbolic functions. Let z = x + iy. Then

 
 

cosh z = cosh x cosy + 1 sinh x sin y, sinh z = sinh x cosy +i cosh x sin y,

sinh 2x + i sin 2y sinh 2x - i sin 2y
h = = .

tanh z cosh 2x + cos 2y ’ coth z cosh 2x - cos 2y

INVERSE CIRCULAR FUNCTIONS

From the equations for the real and imaginary parts we observe that cos z and sin z
are periodic with respect to x, but single-valued with respect to y. Consequently,

COS W = z, Arccos z = *arccos z + 2kn = tw + 2km,
sin w = z, Arcsin z = (-1)* arcsin z + kn = (-1)* w + km,
tan w = z, Arctan z = arctan z + kn =w + kn z2? # -1,

where k €l, arccos, arcsin, and arctan are the principal values and are the HP 48
keyboard commands ACOS, ASIN, and ATAN, respectively. The other three inverse
circular functions are

arccot z = arctan 1/z, arccsc z = arcsin 1/z, arcsec z = arccos 1/z,

which are the commands ACOT, ACSC, and ASEC, respectively, in the TRIG menu.

INVERSE HYPERBOLIC FUNCTIONS

From the equations for the real and imaginary parts we observe that cosh z and sinh
z are periodic with respect to y, but single-valued with respect to x. This is just the
reverse of the circular functions. In Chapters 9 through 11 we will present the elliptic
functions that are doubly periodic, that is, periodic in both x and y. The single
periodicity in y results in the definitions



30 TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS CH 3: TRIG HYP

cosh w = z, Arccosh z = xarccosh z + 2kni = +w + 2kmi,
sinh w = z, Arcsinh z = (-1)* arcsinh z + kni = (-1)* w + kni,
tanh w = z, Arctanh z = arctanh z + kni = w + kmni,

where k €L arccosh, arcsinh, and arctanh are the principal values and are the HP 48
keyboard commands ACOSH, ASINH, and ATANH,respectively. The other three
inverse hyperbolic functions are

arccoth z = arctanh 1/z, arccsch z = arcsinh 1/z, arcsech z = arccosh 1/z,

which are the commands ACOTH, ACSCH, and ASECH, respectively, in the HYP

menu.

SOME USEFUL TRIGONOMETRIC IDENTITIES

sin z Tz cos z = sin| = - z
2 ) lJ )
n T

z cot z = — -Z9 wf7 1)
sin A cos B + cos A sin B

cos(A + B) = cos A cos B # sin A sin B
tan A + tan B

: o

tan(A + B) = ———
1 ¥ tan A tan B

cot(A + B) = cot AcotB 1

cot A + cotB

2cos Acos B =cos (A -B) + cos (A +B)
2 sin Asin B = cos (A - B) - cos (A + B)
2 sin A cos B = sin (A - B) + sin (A + B)

2 cos? A =1 + cos 2A
2 sin? A = 1 - cos 2A

sin? A + cos? A = 1

sin 2A = 2 sin A cos A

cos 2A = cos’ A - sin’? A

tan 2A = tan

1 - tan’ A
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sin A - 1 -cos A

2 \ 2

cos A - 1 + cos A

2 \ 2

on A __sinA _1-cosA
2 1 +cos A sin A

sin A + sin B = 2 sin  A+B AsxB
COS

2 2

cos A+cosB=2cos ABs A-B  

2
A+B. A-B  cos A -cos B = - 2 sin 7

an A + tan B = SA
cos A cos B

arcsin a + arcsin b = arcsin (a y/1 - b2 + b /1 - a?)

= arccos (y1 - a2 1 - b2 5 ab)

arccos a + arccos b = arccos (ab # y/1 - a? y/1 - b?)

= arcsin (b {1 - a2 + a {1 - b?)
ath arctan a + arctan b = arctan
1 5 ab

SOME USEFUL HYPERBOLIC IDENTITIES

sinh(A + B) = sinh A cosh B + cosh A sinh B
cosh(A + B) = cosh A cosh B + sinh A sinh B
tanh(A + B) = tanh A + tanh B

1 + tanh A tanh B
coth A cothB + 1

coth(A + B) =
coth A + coth B
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2 cosh A cosh B = cosh (A + B) + cosh (A - B)
2 sinh A sinh B = cosh (A + B) - cosh (A - B)
2 sinh A cosh B = sinh (A + B) + sinh (A - B)

2 cosh? A = 1 + cosh 2A
2 sinh? A = cosh 2A - 1

cosh? A - sinh? A = 1

 
 

  

  

 

sinh 2A = 2 sinh A cosh A

cosh 2A = cosh? A + sinh? A
oh oA < 2th A

1 + tanh? A

ion A _ [cosh A 1
2 y)

A cosh A +1cosh A = A
2 2

oop A __sithA _ cosh A - 1
2 1+coshA  smhA

sinh A + sinh B = 2 sinh A *B con A*B

cosh A + cosh B = 2 cosh AB coon A°2

cosh A - cosh B = 2 sioh AB gio &°5

tanh A + tanh B =(A
cosh A cosh B

arcsinh a + arcsinh b = arcsinh (a 1 + b%2 + b y/1 + a?)

= arccosh (y1 + a2 y/1 + b? + ab)

arccosh a + arccosh b = arccosh (ab + ya2 - 1 yb? - 1)

= arcsinh (b ya? - 1 + a {b% - 1)

arctanh a + arctanh b = arctanh ath
1 + ab
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COMPLEX ANALYSIS

A very brief, high-level summary of a few of the fundamental concepts associated with
calculus on the complex planeis given below for those who have never been introduced
to it. It is designed to help those who have never had the joy of complex analysis
courses grasp and use the powerful capability built into the HP 48 and the MATHLIB.
A tutorial review of real calculus is given in Appendices C and D.

COMPLEX LIMITS

The notions of continuity and differentiability are more complicated in the complex
plane. Whereas in the real case the concept of limits dealt with a point on a line, now
we must deal with a point in a two-dimensional vector space for which there is an
infinite number of lines passing through it, and the limit for each line could be
different. Let z = x + iy and f(z) = u(x, y) + i v(x, y) where u(x, y) and v(x, y) are real.
Then if Az = Ax + Ay, we have that f(z + Az) = u(x + Ax, y + Ay) + 1 v(x + AX, y + Ay),
and the order in which Ax and Ay go to zero can matter in the complex plane. For
example, let us evaluate the limits LN(0 + iAy), LN(0 - iAy), and LN(Ax) as Ax and Ay
go to zero. The first two cases evaluate the limit on a line coinciding with the
imaginary axis, but the second case corresponds to a 180-degree rotation of the line in
the first case. The third case corresponds to a line coinciding with the positive real
axis. We have

LN( (0,1.E-200) ) =(-460.517018599,1.57079632679),
LN( (0,-1.E-200) ) = (-460.517018599,-1.57079632679),
LN( (1.E-200,0) ) =(-460.517018599,0).

The limits are all different. The HP 48 is great for evaluating limits numerically.

A limit at a point in the complex plane only exists when the limit on all lines passing
through that point have the same value. More rigorously, the limit of f(z) as z goes to
z, exists only if for some complex number w, (the limit) corresponding to each positive
number ¢€, there exists a positive number 8 such that |f(z) — w,| < € whenever |z -
z,| < 8 and z # z,. When, in addition, f(z,) = w,, then f(z) is continuous at z,.
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COMPLEX DERIVATIVES

Derivatives in the complex plane are defined in terms of the partial derivatives du/ox,

dw/dy, dv/ox, and dv/dy. Based upon the above limit considerations, the derivative of
f exists if and only if the Cauchy-Riemann conditions are satisfied.

Ey) | FEY gq Sky | FEY
ox dy dy ox

Consequently, the derivative of f equals

df(2)(=) = Ou + i ov = ov -_ i Su

dz ox ox dy dy

A function f(z) is analytic at z, if its derivative exists at every point z in the
neighborhood of z,. f(z) is analytic in a domain if it is analytic at every point in that
domain. An entire function is one which is analytic throughout the entire complex z
plane. If two functions are analytic in a domain D, then their sum, difference, and
product are analytic in D. Their quotient is also analytic, except at points where the
divisor equals zero. An analytic function of an analytic function is analytic.

¢’ is an entire function that equals its derivative. Ln(z) is analytic with derivative 1/z
everywhere except the origin and the negative real axis. It follows that sin z, cos z,
sinh z, and cosh z are entire, and the other circular and hyperbolic functions are
analytic except at those points where they are not defined because the divisor goes to
zero (e.g., tan z is not defined at z = 1/2 because cos 7/2 = 0). All polynomials are
entire functions. The nice thing about analyticity is that the calculus rules for complex
functions of a complex variable follow the same rules as those of a real function of a

real variable. Thus, d sin z/dz = cos z.

 

d sin z _ J[sin x cosh y] + j Olcos x sinh y]

 

% i = = cos x cosh y - i sin x sinh y = cos z,

and using the second half of the derivative formula

dsinz _ Jcos x sinh y] _, dlsin x cosh y] = cos x cosh y - i sin x sinh y = cos z.
dz dy Oy
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COMPLEX INTEGRALS

The integral of a real function with respect to a real variable was easy to understand
because it was simply the area under the curve. However, the integral from z, to z,
of f(z) is a far more complicated concept. First of all, there is an infinite number of
paths between z, and z,. For example, we might go from z, over to z; and loop 50
times before heading over to z,. For this reason, complex integrals are called contour
integrals, and it is often necessary to specify the path.

Consider the integral definition of the natural logarithm:

Ln(z) = a - In@z) + i2kn,

where k el. Remembering that t is a complex variable and that 1/t is analytic
everywhere except the origin, the value ofk must have something to do with the path
t takes from 1 to z. Let us review some of the basic notions associated with complex
integration.

[= f(z) dz = [ [ux, y) +i v(x, y)lldx + i dy]

= [ux dx - vx) dy + ifv(x y) dx + ux, y) dy,

where C is the path of the integrals from z, to z,. The above integrals are actually line
integrals defined by path C. Consequently, many ofthe properties of complex integrals
come out of vector analysis. For example, if f(z) is analytic with a continuous
derivative at all points in a region R, then the above integral is independent of path.
In fact, if contour C consists of a finite number of simple closed curves, then by Green’s
theorem the above line integrals can be written as the surface integrals

Joos Jf (2- Spo + [L235
By the Cauchy-Riemann conditions, both integrands equal zero, so the entire integral
equals zero.

If R is a simply connected region bounded by curve C, f(z) is analytic in R, and z, is
in R, then Cauchy’s formula says that

_ 1 _f@
f(z 2nd loom
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Consequently, our integral definition of the natural logarithm may be interpreted as
follows:

» The principal value of the integral, In(z), is that part whose path does not
pass through or enclose the origin. Since the function 1/t is analytic in the
region of the path, the integral over this path only depends on the end points

In(z) and In(1) = 0.

» The i2kn part of the integral corresponds to a path which encircles the origin
k times. k > 0 for counterclockwise paths, and k < 0 for clockwise ones.

» The total integral is the sum of the integrals along each of the paths.

See pages 58 and 62 for a numerical demonstration. The integral definitions for the
inverse circular and hyperbolic functions are interpreted similarly.

   

   

Arccos z = | dt Arcsin z = [* dt Arctan z = [* dt
“1-2 *i-¢ 01+¢

Arccosh z = [* dt Arcsinh z= [* dt Arctanh z = [* dt

Lo 0 1+? 01-12

In general, if f(z) is analytic over the region of integration, then its integral follows the
same rules as those for real functions of a real variable. Complex integration over
analytic paths is provided by the command CINTG.

BRANCHES

Consider the function f(z) =z. This function is not continuous on the negative real
axis. Evaluate the following limits on your HP 48:

* V(-1,+1.E-200) = (5.E-201,+1) = (1,A+1/2)
« V(-1,-1.E-200) = (5.E-201,-1) = (1,A-1/2)

Thus, the functiony/zis analytic everywhere except the negative real axis. The line
from the origin to —is called a branch cut, and the origin is called a branch point.
LN(z) has the same branch cut. By excluding the branch cut we make LN analytic so
its derivative and integral obey the usual rules of calculus. This we call the principal
branch. In general, Ln(z) = LN(z) + i2kn, so each value of k defines a branch, and the
cut between each of these branches is the negative real axis.
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Less obvious is the fact that the square command SQ has a branch cut along the
negative real axis due to the fact that it computes the argument in the range (-r, nt.
Thus ¥(SQ(2)) # z for |arg z| > 7/2 because neither command is analytically continued
beyond (-r, tl. The square of (-1, 1) = V243n/4 is actually 24.3n/2, not 24-n/2. The

square root of 2431/2 is Y243n/4 = (-1,1) whereas the square root of 24-1/2 =(0,-2)

is Y2A-n/4 = (1,-1). Similar comments apply to the XROOT and power » commands.
Therefore, care must be used when programming the HP 48 for complex values. In
Chapter 15 on the Legendre functions, we encounter expressions like ¥(z2-1), which
must be evaluated as ¥(z—1W¥(z+1) in order to avoid wrong answers due to this issue.
Analytically continued definitions are easy to create, but it is easier and faster to
simply use care in programming.

Similarly, ATAN(TAN((-2,1))) = (1.14159265359,1). Subtracting © gives the expected
answer, (-2,1). Hence, care must be exercised in evaluating complex functions.

ANALYTIC CONTINUATION

Now let us change over to polar coordinates by defining z = x + iy = re*:

X =r Cos 0, y =r sin 6, r=vy(x*+y%, 0=argz= arctan(y/x),

where r is the magnitude and 0 is the argument of z. Observe thaty/z = yr eik2mon
fork =0,1,..., n- 1The value is thus not unique, but the HP 48 command
XROOT will only give you one of these values. Both (1,-1) and (-1,1) are equal to
V(-2i), but the HP 48 will only give you the first one. Consequently, care must be used
in complex computations to insure that you have the branch that you want. The right-
shifted 1 key switches between rectangular and polar argument displays on the HP 48.

Now if f(z) = u(r, 6) + i v(r, 8), where u(r, 6) and v(r, 6) are real functions, then the
Cauchy-Riemann conditions for f(z) to be analytic at z = re” are

du (r,0) 1 adv (r, 6) 1 du(r,@ _ ovr 6)
or T 00 To or
 

Given the principal branch LN defined over -n < 6 < ©, how do we extend the
definition to all values of 6? The process of extending this definition is called analytic
continuation. There are a number of ways to do it, but the one of interest here is
contour integration. The generalization of the restricted integral definition of LN,
which excludes loops around the origin, to paths which include loops around the origin
extends the definition ofLN to Ln. Contour integrals are thus one way functions can
be analytically continued. |



38 TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS CH 3: TRIG HYP

Consider next Euler’s integral of the second kind, which is commonly called the
gamma function.

T(z) = | ett*1dt  Re(z) > O.

Now how do we extend the definition to Re(z) < 0? One way is by the reflection
formula

I'(z) T(1- z) = -z I'(-z) I'(z) = ® csc ©z,

and another way is Hankel’s contour integral:

1

I'(z)
 

_ 1 —4)-2 o-t=== [1 et dt,

where the path of integration C starts at + on the real axis, circles the origin in the
counterclockwise direction, and returns to the starting point. While the second method
is of theoretical interest, the first method is of practical use in evaluation.

Where possible and practical, the Math Library provides evaluation of analytically
continued definitions of the higher transcendental functions over [0, =) and (-=, =].

SUMMARY

If you wish to evaluate complex integrals, complex integration over analytic paths is
provided by CINTG in the next chapter. The residue evaluation commands RESDP
and RESDA given in Chapter 25 are also available to help you. The integral tables
in Appendix D also apply to complex integrals along analytic paths.

More often, you may simply wish to know what number the integral equals. The
following 13 chapters of this manual present commands which evaluate hundreds of
difficult complex integrals for you. The transcendental functions they evaluate are
also solutions to complex differential equations.

ACCURACY

The accuracy of the functions in the TRIG and HYP menus is about 10 digits.
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TRIGONOMETRIC FUNCTIONS
MENU { FTNS TRIG }
 

   
 

 

 

 

 
 

 

FUNCTION COMMAND INPUTS OUTPUT

COSECANT zeC VALUE

ARC COSECANT zeC VALUE

SECANT zeC VALUE

ARC SECANT zeC VALUE

COTANGENT zeC VALUE

ARC zeC VALUE
COTANGENT

ARG [0, 2r] zeC VALUE

ATAN [0, 2n] x,y eR VALUE   

 

 

ARG2 is like ARG except it returns the argument in radians in the range [0,2r].

ATN2 is the parallel function to ARG2 whose inputs are the real part x and the
imaginary part y. ARG is in the HP MTH PARTS menu.

 

 

 

 

HP RAD —s DEG reR VALUE

HP DEG — RAD deR VALUE

I'(z) zeC VALUE

UP DIRECTORY NONE PARENT MENU 

 

  
 

KRONECKER DELTA FUNCTION §_.

Kd: «> mnemnes==3>»   
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TRIGONOMETRIC FUNCTIONS
MENU { FTNS TRIG }
 

   
FUNCTION COMMAND INPUTS OUTPUT
 

The additional trigonometric functions are implemented by inversion of the
appropriate HP trigonometric functions; consequently, a divide-by-zero erroris

equivalent to an infinite result error for these commands.

Please note that neither the HP 48 nor the MATHLIB trigonometric functions are
analytically continued beyond (-r, nt] and as a result ATAN(TAN( (-2,1) )) =

(1.14159265359,1). Subtracting = gives the expected answer of (-2,1).

 

For definitions see Chapter 4 of Abramowitz, M., and Stegun, |.
Handbook of Mathematical Functions, AMS 55, Washington, D.C. 1964.

  
  

EVALUATION OF PRODUCTS

2

 Infinite product representations of functions such as sin z = II 1- are
n=1

rarely used in numerical approximations because they tend to converge very Slowly.
For this example, 100 terms only get you 2 digits of accuracy for z = 1.5.

N

Nevertheless, you can evaluate the finite product J] f(n) with this program:
n=0

n 2x?

<«< > FOFNn N « 1 FOFn 1 N FORNn n FOFn x NEXT » >.

A more useful type of product evaluation is

Sz z z z z Ne’~Y ZZ =1+1+H1+ 21+... + E|||=A[1+ 2
$n! 1 2" 3 N

 

n=1 n

« >2ZN<«1N1FORnzn/x14+ -1 STEP » >.
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FUNCTION INPUTS OUTPUTS

HYPERBOLIC zeC VALUE
SINE (HP)

ARC
HYPERBOLIC zeC VALUE
SINE (HP)

HYPERBOLIC zeC VALUE
COSINE (HP)

ARC
HYPERBOLIC zeC VALUE
COSINE (HP)

HYPERBOLIC zeC VALUE
TANGENT (HP)

ARC
HYPERBOLIC zeC VALUE
TANGENT (HP)

HYPERBOLIC zeC VALUE
COSECANT

ARC
HYPERBOLIC zeC VALUE
COSECANT

HYPERBOLIC zeC VALUE
SECANT

ARC
HYPERBOLIC zeC VALUE
SECANT

HYPERBOLIC zeC VALUE
COTANGENT      
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HYPERBOLIC FUNCTIONS MENU
{ FTNS HYP }
 

 

    

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

ARC
HYPERBOLIC zeC VALUE

COTANGENT

EXPM (HP) x eR VALUE

Evaluates e* — 1 very accurately for small values of x.

LNP1 (HP) x > -1 VALUE   

 

 

Evaluates LN(x + 1) more accurately than the LN command for small values of x.

 

 

 

I'(z) zeC VALUE

y(z) zeC VALUE

UP DIRECTORY NONE PARENT MENU

 

    
The additional hyperbolic functions are implemented by inversion of the appropriate
HP hyperbolic functions; consequently, a divide-by-zero error is equivalent to an

infinite result error for these commands.

Please note that neither the HP 48 nor the MATHLIB hyperbolic functions are
analytically continued beyond (-=,x], and as a result ATANH(TANH( (1, 2) )) =

(1,-1.14159265359). Adding ir gives the expected answer of (1, 2).

  For definitions see Chapter 4 of Abramowitz, M., and Stegun, I.
Handbook of Mathematical Functions, AMS 55, Washington, D.C. 1964.   



EXPONENTIAL INTEGRAL
AND RELATED FUNCTIONS

INTRODUCTION

This chapter presents the 18 exponential integral and related functions menu. These
functions are special integrals of the transcendental functions presented in the last
chapter. The functions are rigorously defined in the command table.

EXPONENTIAL INTEGRALS

EIOX, E10Z, and ENOZ evaluate the exponential integrals Ei(x), E,(z), and E_(z).

LOGARITHMIC INTEGRAL

LIOX evaluates the logarithmic integral Li(x).

SINE AND COSINE INTEGRALS

SINT, CINT, SHIZ, and CHIZ evaluate the integrals Si(z), Ci(z), Shi(z), and Chi(z).
The functions Shi(z) and Chi(z) are often called the hyperbolic sine and cosine
integrals. These commands include asymptotic expansions. You can easily check the
accuracy of these commands using CINTG. Asymptotic expansions 5.2.34 and 5.2.35
with 5.2.8 and 5.2.9 in AMS 55 are only correct for positive real z.

43
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SINC SQUARED INTEGRAL

The sinc function used in Fourier analysis is defined by sinc(z) = sin(z)/z. Its indefinite
integralis given by SINT, and the indefinite integral of sinc’(z) is given by SCINT.

RELATED INTEGRALS

Evaluation of several related functions and integrals is also provided.

COMPLEX PLANE NUMERICAL INTEGRATION

CINTG provides complex integration over analytic paths. See Chapter 25 for residue
integration. See also pages 58 and 62 for a numerical demonstration of Cauchy’s
integral formula.

CAUCHY PRINCIPAL VALUE

The integral from minus infinity to infinity is actually a double limit defined by

I fit) dt = Lim [™ fit) dt.
TT, > YT)

If f(t) is not integrable in the Riemann or Lebesgue sense, the integral may only exist
for the special Cauchy principal value definition where T, = T, = T and

I fit) dt = Lim : fit) dt.
T > =

By this definition the integral of odd functions over (—co, =) is zero. The definition of
the exponential integral Ei(x) is a variation on this concept. Here the sum of the
integrals

Lim t+ [tle y dt
£,6 > 0 J: I.

in general is not defined. By defining ¢, = €, = € and then taking the limit € — 0, the
infinite parts of the integrals exactly cancel, resulting in a finite, well-defined integral
for x > 0.
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EXPONENTIAL INTEGRAL MENU
{ FTNS EXPIN }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

x>0 VALUE   

 

Ei(x)
 

t

Ei(x) = -[" e dt = -Lim I: tet + [te dt = I Yo dt
-X £—>0 Xx

where the Cauchy principal value is used at the origin. Accuracy is about 10 digits.

ANALYTIC CONTINUATION

EIOX is analytically continued for complex arguments by the relationships

Ei(z) = -E,(-z) |argz|> 0, E,(z) = -Ei(-z) larg z| <=,

E, (x * i0) = —Ei(x) ¥ im, _Ei(x) = V[E,(=x + i0) + E(x = i0)] x > 0.

 

x > 1 VALUE
  

 

 
Li(x)
 

The logarithmic integral Li(x) = Ei( LN(x) ). Accuracy is about 10 digits.

 

zeC VALUE
 

 

  
   - ©!

E,(z) = I = dt larg z| < ©

This command has an accuracy of about 10 digits. E10Z(z) = ENOZ(1,z).

E.(z)=[e*-zE@))Vn n=1,2,...   
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EXPONENTIAL INTEGRAL MENU
{ FTNS EXPIN }
 

 

 

 

  
 

 
FUNCTION COMMAND INPUTS OUTPUTS

E,(z) neNORO VALUE
zeC

© ~zt

E,(2) = | dt Rez>0

By analytic continuation the definition can be extended to |arg z| < =.

This command has an accuracy of about 10 digits.

 

 
 

 

 

   
 

 

 

   
 

 

 

   
Si(z) zeC VALUE

Ci(z) zeC VALUE

z Sint z cost -1
Si(z) = J: —— dt Ci(z) =v + LN(z) + J:— dt larg z| < ©

These commands have an accuracy of about 10 digits.

SCINT zeC VALUE

z 5 . sin(z)
I sinc(t) dt larg z| < = where sinc(z) =

This command has an accuracy of about 10 digits.

sin(z)/z zeC VALUE

sinc?(z) zeC VALUE
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EXPONENTIAL INTEGRAL MENU
{ FTNS EXPIN }
 

 

 

   

 

 

 

 

   

 

 

 

 

   

 

  

FUNCTION COMMAND INPUTS OUTPUTS

Shi(z) zeC VALUE

Chi(z) zeC VALUE

. z sinh t z cosh t - 1shiz) = [T—=—dt  Chilz) =y +N(2) + [ —F—— dt lagz| <=

These commands have an accuracy of about 10 digits.

577215664902 NONE VALUE

This is Euler's constant.

o,(z) neNORO zeC VALUE

B.(2) neNORO zeC VALUE

= [Tn a2 - 1 n a-zta,(2) = |“tredt Rez>0 B.(2) |tre

These commands are evaluated using the relationships

a(z)=z""I(n+1,z)and B,(2) =z" [T(n+1,-2) -T(n + 1, 2) ],

using the analytically continued definition of the incomplete gamma function INCGC
given in Chapter 12. See the accuracy comments given there.

 

 

rz) zeC VALUE       
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EXPONENTIAL INTEGRAL MENU
{ FTNS EXPIN }
 

 

   

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

y(z) zeC VALUE

The above two commands are discussed in Chapter 5.

COMPLEX LeC UeC VALUE
INTEGRATION F(z) eC zeC

 

    

 
CINTG numerically integrates analytic F(z) from z = L to z = U. The integration is
along the straight-line path from L to U. F(z) must be analytic on both the path
and all neighborhoods of the path. Singularities can be avoided by performing
integrations along several simply connected paths. The aggregate path may

encircle any poles of F. For example, the integral of 1/z from 1 to (2, 3) equals
LN( (2,3) ) = (1.28247467873, .982793723247). Consider setting 7 SCI to speed

integration. The complex integration error is stored in HP reserved variable IERR.
For evaluation of complex residues, see RESDP and RESDA in Chapter 25.

 

 

   
UP DIRECTORY NONE PARENT MENU
   For definitions see Chapter 5 of Abramowitz, M., and Stegun, I.

Handbook of Mathematical Functions, AMS 55, Washington, D.C. 1964.

   

 

 

  



GAMMA AND RELATED FUNCTIONS

INTRODUCTION

This chapter presents the 12 gamma function and related commands. The gamma
function I'(z) is a generalization of the factorial function. In fact, I'(n + 1) = n!, where
! is the factorial function on your calculator. The PERMF command given in the
MISC menu in Chapter 17 is the complex generalization of the permutation function
PERM on the HP 48. The reciprocal of the complex beta function B(w, z) is a complex
generalization ofthe combinations function COMB on the calculator. Both the gamma
function and the beta function have definite integral representations. If these
integrals are turned into indefinite integrals, one obtains the incomplete gamma and
beta functions.

GAMMA AND BETA FUNCTIONS

Commands GAMMA and BETA evaluate the complex gamma and beta functions
analytically continued to the entire complex plane. The only singularities of I['(z) are
simple poles with residues (-1)"/n! for z = -n wheren =0, 1, . ... 1/I(z) is an entire
function. The factorial function ! is sometimes denoted as the IT function. Il(z) = z!.

49
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INCOMPLETE GAMMA FUNCTION

INCG and INCy are the incomplete gamma functions I'(a, z) and Ya, z). PINCG is
the Pearson incomplete gamma function I(u, p). INCy; is the normalized incomplete
gamma function y*(a, z). These are analytically continued for complex arguments
using the incomplete gamma functions given in Chapter 12 as a special case of the
confluent hypergeometric function.

INCOMPLETE BETA FUNCTION

INCB and INCare the incomplete beta functions I(a, b) and B,(a, b). These are
analytically continued for complex arguments using the incomplete beta function given
in Chapter 14 as a special case of the Gaussian hypergeometric function.

DIGAMMAAND POLYGAMMA FUNCTIONS

The commands PSI and DNPSI provide the complex digamma and polygamma

functions.

DOUBLE FACTORIAL FUNCTION

The command i; provides the double factorial function !!.

RELATIONSHIPS ASSOCIATED WITH THE RATIO OF GAMMAFUNCTIONS

Using the reflection formula for the gamma function, relationships are defined for the
ratio of gamma functions.
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GAMMA FUNCTION MENU
{ FTNS GAMA }

 

 

FUNCTION COMMAND INPUTS OUTPUTS
 

rz) zeC VALUE   

 

 

GAMMA is the analytically continued gamma function often defined by Euler's
integral of the second kind given by

Iz) = I ett" dt  Re(z) > 0.

Two relationships which hold for the Gamma function are the recurrence formula

Nz+1)=zI(z)=2!=2z(z- 1)!

and the reflection formula

I'(z) I'(z - 1) = -z I'(-z) I'(z) = © csc nz.

This command yields about 10-digit accuracy throughout the complex plane,
except in the neighborhood of the poles located at z = 0, -1, -2, . . ..

 

 
zeC VALUE

 

   

PSI is the digamma function defined by y(z) = d [In [(z)Jdz = [d['(z)/dz}/T'(2).

Recurrence formula: wy(z + 1) = y(z) + 1/z.
Reflection formula: (1 - z) = y(z) + = cot nz. This command yields about 10-digit accuracy throughout the complex plane,

except in the neighborhood of the poles located at z = 0, -1, -2, . . ..

For special arguments, see the equations at the end of this menu.   
 



 

 

 

GAMMA FUNCTION MENU
{ FTNS GAMA }

FUNCTION COMMAND INPUTS OUTPUTS
 

   

 

I'(a, z) aeC zeC VALUE
 

Ia, z) = I: et ta! dt

For z > 0 and a > 0 this command yields about 10-digit accuracy. For a = 0, -1,
-2,..., I'(a, z) = z* E,_,(z), where E,(z) is the exponential integral defined in
Chapter 4. For the other cases, INCGC defined in Chapter 12 is used for the
evaluation. Numerical stability of INCGC is very poor neara =0, -1, -2, . . ..

Thus, the numerical limit does not approach the actual value given by

z° E,_.(2)

in the neighborhood of the poles of I'(z).

 

 

   
v(a, z) aeC zeC VALUE
 

v(a, z) = I'(@) —- I'(a, z) = GAMMA(a) - INCG(a, z). The result is undefined for z = 0
and Re a < 0, as well as the poles located ata =0, -1, -2, . . ..

 

 

 

  
PEARSON I(u, p) ueC peC VALUE
   Iu, p) = oh [iret tPdt =1 -T (p+1, uyp+1)(p+1)

This command is evaluated with the above equation using INCG for I'(a, z).    
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GAMMA FUNCTION MENU
{ FTNS GAMA }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

   

 

B(w, 2) weC zeC VALUE
 

The beta function may be defined in terms of Euler's integral of the first kind:

B(z, w) = I t= (1-9 dt=

This command yields about 10-digit accuracy throughout the complex plane except
in the neighborhoods of the singularities of the complex gamma function.

 

(a, b) abeC |z|<1 VALUE 

 

   

l(a, b) = B,(a, b)/B(a, b)

For a, b > 0 and z > 0, this command yields about 10-digit accuracy. For other
input values, INCBH discussed in Chapter 14 is evaluated.

 

 

 

  
. z2eC VALUE
 

  
DNPSI(1, z) is the trigamma function which is the derivative of y(z).

This command yields about 10-digit accuracy throughout the complex plane except
in the neighborhood of the singularities at 0, -1, -2, . . ..

d "y(z) - th e™(n(z) = = (=1)! -—vi (2) ro (-1) J ToT d¢ Rez>0, 

where y"(z) is the polygamma function. See also page 56.    



 

 

  

GAMMA FUNCTION MENU
{ FTNS GAMA }

FUNCTION COMMAND INPUTS OUTPUTS

Y(a, 2) aeC zeC VALUE   

 

 

For real z, yis a single-valued analytic function of a and z possessing no finite
singularities.

x — x X ot pa-1via = fg [re ta! dt Re a> 0

It is evaluated using the confluent hypergeometric function discussed in Chapter 12
as:

z%  a=0,-1, -2
vaz) = Lae a+1, za +1).  

This function is plotted for real a and z on page 261 of AMS 55.

 

 

 

  
B,(a, b) abeC |z|<1 VALUE
 

B,(a, b) = /: t>' (1-t"'dt Rea>0, Reb>0, [z]<1

INCis analytically continued and evaluated as z° F(a, 1 —- b, a + 1, z)/a where F
is the Gaussian hypergeometric function discussed in Chapter 14.

  

 

     (n)!! neNORO VALUE

- em! =246...(2m) =2"ml n = 2m
Co l@em-1=135...@2m-1)=2"T(m + 5)A/t n= 2m-1   
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GAMMA FUNCTION MENU
{ FTNS GAMA }

FUNCTION COMMAND INPUTS OUTPUTS

CH 5: GAMA

 
 

 
   
 

RELATIONSHIPS ASSOCIATED WITH THE RATIO OF GAMMA FUNCTIONS

The complex generalization of the permutations command PERM is defined by

PERMF(z, 1) =T(z + 1)T(z + 1 - 1)

and similarly Pochhammer’s symbol

POCH(z, n) = (2), = I'(z + n)/T'(z).

These two commands are available in the MISC menu discussed in Chapter 17.

The complex generalization of the binomial coefficient (combinations) can be
defined by the following equation for COMBF:

Z| _ _JPERMF(z, r)/rl r=0,1,2,...
i COMBF. 1 i r=-1,-2,...

PERMF, POCH, and COMBF are all numerically stabilized in MATHLIB for integer
values of the second argument. While the second argument may be real or

complex, these cases are not stabilized. From the reflection formula for the gamma
function, the following identities hold:

PERMF(-z, n) = (-1)" PERMF(z + n - 1, n)

POCH(-z, n) = (-1)" POCH(z - n + 1, n)

COMBF(=z, n) = (-1)" COMBF(z + n - 1, n).

  NONE PARENT MENU
  

UP DIRECTORY  
 

 
 

 



56 GAMMAAND RELATED FUNCTIONS CH 5: GAMA

 

GAMMA FUNCTION MENU
{ FTNS GAMA }
 

FUNCTION COMMAND INPUTS OUTPUTS    

THE GAMMA AND DIGAMMA FUNCTION FOR SPECIAL ARGUMENTS

(2) =yn  T(n+%)=2"@2n-1)'V=x

y(1) = —y=- .577215664902 where y is Euler's constant and command ¥.
n-1

yin) =-y+Y k' n=22
k=1

y(¥s) = -y-21In2=- 1963510026021

1 1
vey zmz afte ge ep] n>1

 

SYMBOLIC POLYGAMMA FUNCTION

Program DNPSIS(n,z) is the symbolic y"(z), and derDNPSIS(n,z,dn,dz) is its
defined derivative. See the end of Chapter 19 and Appendix A. Observe that

v2) =T(n +1) (<1)n+ 1,2) =T(n + 1) (<1)™" &(1, n + 1, 2)

where {(s, a) and &(z, s, a) are discussed on page 112.

   For definitions see Chapter 6 of Abramowitz, M., and Stegun,|.
Handbook of Mathematical Functions, AMS 55, Washington, D.C. 1964.

 

    



ERROR FUNCTION AND FRESNEL
INTEGRALS

INTRODUCTION

This chapter presents the 14 error function and Fresnel integral commands in the
ERROR menu. These are special integrals of the exponential, sine, and cosine
functions where the argument is quadratic in the independent variable.

ERROR FUNCTION

ERFZ and ERFCZ provide evaluation of the complex error function erf(z) and the
complementary error function erfc(z). These are related to the normal distribution
function.

FRESNEL INTEGRALS

There are three sets of definitions for these functions that are in use. SOFZ, COFZ,

S10Z, C10Z, S20Z, and C20Z evaluate all three of the sets S(z), C(z), S,(z), C,(z),
Sy(z), Cy(2).
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RELATED FUNCTIONS

ZOFZ evaluates Z(z), which is the derivative of the normal probability distribution,
which is called the normal probability density function. The relations are

UtPN(0,1,x) = erfe(x / V2) / 2, LTPN(0,1,x) = erfe( — x / V2) / 2,

where UPN and LTPN are the MATHLIB commands for the upper and lower tails

of the normal probability distribution discussed in Chapter 23.

INERFC evaluates the nth integral of the complementary error function i* erfe(z).

COMPLEX PLANE NUMERICAL INTEGRATION

CINTG provides complex integration over analytic paths. See Chapter 25 for residue
integration. Program AINTG on page 62 provides the capability of doing a sequence
of complex integrations. AINTK({Z,,Z,,2,,...,Zy},F,z) computes the sum:

[Py dz + [*F@) dz +... + ["Fla) da.
Z, Z, Zy.

NUMERICAL DEMONSTRATION OF CAUCHY’S INTEGRAL FORMULA

Cauchy’s integral formula states that the integral of f(z) around a closed contour C
encircling a pole z, of f(z) is equal to 2ri times the residue of f(z) at z = z,:

§f(z) dz = 2mix Res; (z,).

More generally, the integral is equal to 2ri times the sum of the residues of f(z) for
each of the poles of f(z) which are enclosed by contour C. Consider the gamma function
with residues of (-1)"/n!atz=-nforn=0, 1,.... Then the integral of I'(z) around
a given pole z = — n must equal 2ri x (-1)"/n!. The program CIF on page 62
numerically computes the integral as the three legs of a triangle around the pole of the
gamma function at z = —n for input n = 0, 1, . . . in a counterclockwise sense. Then it
computes the integral using Cauchy’s integral formula.

DAWSON’S INTEGRAL

A program is given for evaluating Dawson’s integral using ERFZ.
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ERROR FUNCTION AND FRESNEL
INTEGRAL MENU { FTNS ERROR }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

 S(z)  

 

  zeC VALUE
 

CINTG(0

S(2) = [‘ sin31?) dt

In the region 2 < |z| < 5, the complex approximation is less than 10 digits.
Consequently, you may want to use CINTG to perform the integration numerically.

, (1,2), 'SIN(nt*2/2)' , t ) = (36.7254648839, 15.5877511043)

 

C(z)
 

 

 
zeC

 
VALUE
 

 
ce = [ cof51°] dt

In the region 2 < |z| < 5, the complex approximation is less than 10 digits.
Consequently, you may want to use CINTG to perform the integration numerically.

CINTG(0 , (1,2) , 'COS(mt*2/2)' , t ) = (16.087871374, —36.2256879928)

 

Sy(2) zeC VALUE
 

C,(2)  

 

 zeC  VALUE
  S,(2) = S(z//n/2) and C,(2) = C(zi/mi2)    
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CH 6 : ERROR

 

 

ERROR FUNCTION AND FRESNEL
INTEGRAL MENU { FTNS ERROR }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

S,(z) zeC VALUE

C,(2) zeC VALUE   

 

 

S,(2) = S(Vz/(n/2) ) and C,(z) = C(yz/(n/2) )

 

 

   
erf(z) VALUE
 

ERFZ and ERFCZ have an accuracy of about 10 digits. For real z, the uppertail
ERFCZ is actually computed and then subtracted from 1. For complex inputs,

including ones with an imaginary part of 1E-200, the lower tail ERFZ is computed.
This value is subtracted from 1 to get ERFCZ.

 

 

    

   erfc(z) zeC VALUE

erfc(z) = 1 - erf(z)

Z(2) = zeC VALUE
(2m)exp(-Z?/2)
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ERROR FUNCTION AND FRESNEL
INTEGRAL MENU { FTNS ERROR }   
 

   

 

 

 

 

 

 

 

  

 

 
 

 

  

 

 
 

FUNCTION COMMAND INPUTS OUTPUTS

i" erfc(z) neNORO VALUE
zeC

1 1
M— =, 22 M21 2 5

in = [Tierfe(t) dt =e 2 - 2 2[ erfo(z) = [7 erfc(t) = — or [ET

z =)
where M is the confluent hypergeometric function.

I'(z) zeC VALUE

y(z) zeC VALUE

See Chapter 5.

COMPLEX LeC UeC VALUE
INTEGRATION F(z) eC zeC

CINTG numerically integrates analytic F(z) from z = L to z = U. The integration is
along the straight-line path from L to U. F(z) must be analytic on both the path
and all neighborhoods of the path. Singularities can be avoided by performing
integrations along several simply connected paths. The aggregate path may

encircle any poles of F. For example, the integral of 1/z from 1 to (2, 3) equals 
LN( (2,3) ) = (1.28247467873, .982793723247). Consider setting 7 SCI to speed

integration. The complex integration error is stored in HP reserved variable IERR.
For evaluation of complex residues, see RESDP and RESDA in Chapter 25.   
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ERROR FUNCTION AND FRESNEL
INTEGRAL MENU { FTNS ERROR }
 

   
FUNCTION COMMAND INPUTS OUTPUTS
 

NUMERICAL DEMONSTRATION OF CAUCHY’S INTEGRAL FORMULA

Program AINTG below performs a sequence of N complex integrations between
each pair of numbers in list (vector) L of SIZE N + 1 > 2. See page 58.

«> LFz«<«01L SIZE EVAL 1 - FOR K 'CINTG(L(K),L(K+1),F,z)'

—NUM + NEXT >»

Program CIF runs in about 21 minutes. Inputn=20,1,2,.. . See page 58.

CIF. <7 > nN <N SCI [(-5-1) (5,0) (-5,1) (-5,-1)] n VSUB
'‘GAMMA(Z)' Z AINTG '2xmxix(-1)™n/n!' >NUM STD »> > »

For n = 3, the integral equals (0, -1.0471975512).
For n = 4, the integral equals (0, .261799387799).

 

 
EVALUATION OF DAWSON'S INTEGRAL

[Feat = Ln erf(-iz)
0

The following program may be used to evaluate Dawson’s integral:

DAWS: <« —» a < 'ixVn/2xERFZ(-ixa)) -NUM > >.

 

UP DIRECTORY NONE PARENT MENU
   

 

   
For definitions see Chapter 7 of Abramowitz, M., and Stegun,|.

Handbook of Mathematical Functions, AMS 55, Washington, D.C. 1964.

 

     



BESSEL FUNCTIONS OF
INTEGER ORDER

INTRODUCTION

This chapter presents the 20 commands in the BESEL menu which evaluate Bessel
functions of integer order. Chapter 8 gives commands for evaluation of spherical
Bessel functions. For evaluation of Bessel functions of complex order and complex
argument, additional commands are provided in Chapter 12. We present a short
overview of these functions here.

Sine, cosine, and exponential functions are associated with solutions to physics
problems in rectangular coordinates. Bessel or cylinder functions are associated with
solutions in circular cylindrical coordinates. Bessel’s differential equation is

Po tsmifa-Gweo
dz? z dz

where the + case gives rise to the ordinary Bessel functions and the — case gives rise
to the modified Bessel functions. Remembering from Chapter 3 that the distinction
between the trigonometric and hyperbolic differential equations was also the sign, we
have these analogies:
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trigonometric functions ordinary Bessel functions
hyperbolic functions modified Bessel functions
exponential functions Hankel functions

Bessel functions are also useful in performing integrations. Bessel transforms are the
analog of Fourier transforms and are very well tabulated.

ORDINARY BESSEL FUNCTIONS

J(z) denotes the Bessel function of the first kind. The Bessel function of the second
kind, Y,(z), is also called Weber's function or Neumann’s Bessel function of the second
kind, denoted by N,(z). Bessel functions of the third kind, H(z) and H,?(z), are
generally called Hankel functions. In general, both the order v and the argument z
can be complex. These solutions are related by

J(z) cos(vm) - J_[(2)

Y(2) = sin(vr)
 ’

where the right side of the equation is replaced by its limiting value when v is an
integer or zero.

H(z) = J(2) +i Y,(2)

H®@z) = J(2) - i Y,(2)

Other relations include

J.(2 =(-1)"J(z), HUPR =e" Hz),
Y.(2= (-1)"Y(2, HZ=e™ Hz).

By analytic continuation, we have for integer m:

J(z elmm) = eimvn J(z),

Y(z e'™) =e'™Y(2) + 2i sin(mvr) cot(vr) J(z),
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Hz e™ = -e"" Hz), H%ze™ = -e™ H2).

J.(z), K(z), H"(z), and H,®(z) satisfy the recurrence relations:

2v
€,2) + 6,(2) = —€[2)

€(2) - 6,(2) =2 Gz)

62) = 6,0) - ~€2)

62) = - 6,2) + ~6,2)

J(z) may be represented by the integrals

i"

J.(z) = 1 Ir cos(z sin 6 - nO) db = IK e'*%% cos (nf) do.
nT Jo nt Jo

 

The following identities are useful:

cos(z sin 0) = Jy(z) + 2 YJ, cos(2k0) sin(z sin 6) = 2 YJ,@) sin{(2k +1)6}
k=1 k=0

cos(z cos 0) = Jy(z) + 2 YS (1k J,(z) cos(2k0) cos z = Jy(z) + 2 YS (1k J,(2)
k=1 k=1

sin(z cos 0) = 2 Y (1) Jo.1(2) cos{(2k+1)6} sin z = 2 Y (-1)F Jo.1(2)
k=0 k=0

1 = J,@+2 ¥J,@
k=1
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MODIFIED BESSEL FUNCTIONS

I(z) denotes the modified Bessel function of the first kind, and K(z) denotes the
modified Bessel function of the second kind. In general, both the order v and the
argument can be complex. These solutions are related by

2) = nr Iz) - I(2)

K(2) = 2 sin(vm)

where the right side of the equation is replaced by its limiting value when v is an
integer or zero.

I(z) = e™? J(z e™) -n < arg z < 2

I(z) = e™™ J(z e2) n/2 <argz<m

K(2z) = zit e™2 H(z e™?) -n < arg z < 1/2

K(z) = -in e™ HPz e™) -m2<argz<n

, , 2
Y,(ze'™?) = eiV*D™2 |(z) - — e "2 K(z) -n < arg z < n/2

Other relations include

I.(2) =1(2), K_(z) = K(2).

By analytic continuation we have for integer m:

I(z eimn ) - e imvn I(z),

K(z e'™) = e'™ K(z) - in sin(mvrn) csc(vr) I(z).

I(z) and e"" K(z) satisfy the recurrence relations:

€,(2) = €,..(2) = Ze
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Cz) = €(2) - 6,0)

€(z) + C,(2) =2 €.(2)

Cz) = €,(2) + 6,0)

I.(z) may be represented by the integral

1 (=
I(z) = = | e”“*? cos(nd) do.

nt Jo

The following identities are useful:

"0° = Iz) +2} L(2) costkd)
k=1

e?sin® — I,(z) +2 y (-1)k L,..(z) sin{(2k+1)08} + 2 y (-1)k L,(z) cos(2k0)
k=0 k=1

cosh z = [)(z) + 2 } L,(2) sinh z = 2) I,(2)
k=1 k=0

1-= I,(z) + 2 y (-D*L,(2)

k=1

er =L@ +2) Lm  e’=L@ +2Y(-D*L@
k=1 k=1

KELVIN FUNCTIONS

For real v and x > 0, the Kelvin (Thomson) functions are defined as

ber, x + ibei, x = J(x e®*) = eM [(x e™),
. . : . 1. .

ker, x +ikei, x =e™ K(x e™) = <in Dy gid
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They are solutions to the differential equation

2 2
dw  1dw [V0 Co.
dx? x dx

Relations between solutions include

ber_, x = cos(vr) ber, x + sin(vr) bei, x + (1/2) sin(vn) ker, x,

bei_, x = -sin(vn) ber, x + cos(vr) bei, x + (2/n) sin(vn) kei, x,

ker_, x = cos(vn) ker, x - sin(vn) kei, x,

kei_, x = sin(vr) ker, x + cos(vn) kei, x,

ber(-x) = (-1)" ber,(x), bei(-x) = (-1)" bei(x).

Recurrence relations for the Kelvin functions include

v2 1
fi. + f,. == Tx (f, = g.), f, = 2/2 f,.. + Eyl = f, = 8-1)

Vv 1 \% 1
f] = ~f = 2 f,., + gy.) f, + x f, == Vz f,., + go)

where f, and g, are defined in pairs as either of the four groups

f, = ber, x and g, = bei, x, f, = bei, x and g, = -ber, x,

f, = ker, x and g, = kei, x, f, = kei, x and g, = -ker, x.

Other relations for the derivatives are

v2 ber; x = ber, x + bei, x, V2 bei; x -ber, x + bei, x,

V2 ker; x = ker, x + kei, x, V2 kei] x -ker, x + kei, x.
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BESSEL FUNCTIONS OF INTEGER
ORDER MENU { FTNS BESEL }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

Jn(2)   

 

nel zeC  VALUE
 

JNOZ uses downward recurrence with normalization — accuracy is about 10 digits.

  x eR VALUE
 

 

 

 x eR  VALUE
 

 

 

  
nel x eR

 
VALUE
 

For real x, YNOX uses upward recurrence, starting with polynomial approximations
YOOX and Y10X. For complex z, use the slower YNOZ discussed later in this

menu. Y,(z) has a branch point at the origin, Y,(0) = «, so Y,(-2) is complex. This
command has an accuracy of about 7 digits.

 

Yo(x) x eR VALUE
 

Y,(x)

 

  x eR  VALUE
 

AMS 55 says the accuracy of these fast polynomial approximations is 7 digits.

 

 

  
nel zeC  

VALUE
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BESSEL FUNCTIONS OF INTEGER
ORDER MENU { FTNS BESEL }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

 

 

 x eR  VALUE
 

 

 

   
 

For real x, KNOX uses upward recurrence, starting with polynomial approximations
KOOX and K10X. For complex z, use the slower KNOZ discussed later in this

menu. K(z) has a branch point at the origin, K(0) = «, so K(-2) is complex. This
command has an accuracy of about 7 digits.

 

 

   
 

 

  

 

 
  
 

 

ker,(x) + i kei,(x)

 

  

 

 
 

  KEN& is evaluated using the relation

ker(x) + i kei(x) = e™2 K(x e™).  
 



CH 7 : BESEL BESSEL FUNCTIONS OF INTEGER ORDER

 

BESSEL FUNCTIONS OF INTEGER
ORDER MENU { FTNS BESEL }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

H(z) nel zeC VALUE

H,@(z) nel zeC VALUE   

 

 

Hz) = J(2) +1 Y,(2)

H(z) = J(z) - i Y,(2)

The accuracy of the Hankel function commands is set by YNOZ. YNOZ and KNOZ
provide about 10 digits, except in the transition region. Around 6 to 12, accuracy

drops to about 7 digits.

 

 

 

  
nel zeC VALUE
 

YNOZ uses upward recurrence based on the values of Y,(z) and Y,(z). It provides
10-digit accuracy except in the transition region around 6 to 12, where it drops to

about 7 digits.

 

 

 

 nel zeC VALUE
 
 

KNOZ uses upward recurrence based on the values of K,(z) and K,(z). It provides
10-digit accuracy except in the transition region around 6 to 12, where it drops to

about 7 digits.

 

Iz) zeC VALUE
 

UP DIRECTORY NONE PARENT MENU  
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BESSEL FUNCTIONS OF INTEGER
ORDER MENU { FTNS BESEL }
 

FUNCTION COMMAND INPUTS OUTPUTS
   
 

REAL ARGUMENT FASTER HANKEL FUNCTION EVALUATION

When the argument is real, the below programs evaluate the Hankel functions
significantly faster than HINZ and H2NZ.

HINX: « > n x < 'JNOZ(nx) + ix YNOX(n,x)) NUM »> >

H2NX: « — n x < 'JNOZ(n,x) — i x YNOX(n,x) —NUM »> »

 

  
See Chapter 9 of Abramowitz, M., and Stegun, |. Handbook of Mathematical

Functions, AMS 55, Washington D.C., 1964.

Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Tables of Integral
Transforms, 2 Volumes, New York, McGraw-Hill, 1954.

Luke, Y., Integrals of Bessel Functions, New York, McGraw-Hill, 1962.

Oberhettinger, F., Tables of Bessel Transforms, New York, Springer-Verlag, 1972.

Watson, G., A Treatise on the Theory of Bessel Functions, New York, Cambridge
University Press, 1966.   
   



SPHERICAL BESSEL FUNCTIONS

INTRODUCTION

This chapter presents the 12 spherical Bessel function commands in the SBESL menu.
Like the Bessel functions in Chapter 7 they are of integer order (actually integer and
a half), but they do support complex arguments.

ORDINARY SPHERICAL BESSEL FUNCTIONS

Ordinary Spherical Bessel Function of the First Kind: j.(z) =yn/2z) J,5(z)

Ordinary Spherical Bessel Function of the Second Kind: y,(z) =y=/Q2z) Y,,s(2)

Ordinary Spherical Bessel Functions of the Third Kind:

h,(2) = j(2) +1 y,(2) ={n/@22) H,,;"(z)

h,2(z) = j.(2) - i y.(2) =/=/22) H,,;()
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MODIFIED SPHERICAL BESSEL FUNCTIONS

Modified Spherical Bessel Function of the First Kind: i,(z) =y/n/Q22) I,,(2)

Modified Spherical Bessel Function of the Second Kind: i,?(z) =y/n/(2z) 1_,_s(z)

Modified Spherical Bessel Function of the Third Kind: k.(z) =y/n/(2z) K,,s(z)

AIRY FUNCTIONS

AIOZ and BIOZ provide evaluation of the Airy functions Ai(z) and Bi(z).

NOTATION DIFFERENCES

MATHLIB notation differs slightly from AMS 55. AMS 55 denotes i_‘“(z) by i_(z) and
gives no name to i®(z).

EVALUATION COMMENTS

The commands in this menu are interrelated in that for negative order they call each
other. SJNZ provides the basic downward recurrence with normalization operation
for the group. The function j,(z) = [ sinc(z) - cos(z) 1/ z is the normalizing function.
If you are so unlucky as to hit upon a value which causes SJNZ to exactly equal zero,
the software will crash with a divide by zero error. The only value of z which I have
found is z = 4.49340945791 which is the first zero of j,(z). If you hit upon another
value, simply change the least significant digit of z by +1. When using the HP 48
solve application to find the roots of j(z), the equation 'SINZ(n,z)=T" for T = 0 works
just fine even for n = 1. With an initial guess above or below the first zero, the root
solver computes either 4.49340945790 or 4.49340945792 for the first root of j,(z).
There is a very small probability that you will ever have a divide by zero error on the
HP 48 since only numbers less than +1E-499 underflow to zero. However, if you do
have a problem, use the following program to change the least significant digit. Since
the desired accuracy is only 10 digits, it will not significantly change the result.

SINZP: « > n z <« IFERR n z SINZ THEN DROP2 n =z

1999999999998 x SJNZP END > »
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SPHERICAL BESSEL FUNCTIONS
MENU { FTNS SBESL }

FUNCTION COMMAND INPUTS OUTPUTS

nel zeC VALUE

  

 

 

 

   

 

in(2)
 

SJNZ uses downward recurrence with normalization for n > 0. The accuracy is
about 10 digits.

 

nel zeC VALUE
  

 

 Ya(2)
 

SYNZ uses upward recurrence for n > 0. The accuracy is about 10 digits.

 

 

  

 

 
 

 

h.(z) nel zeC VALUE

h,@(z) nel zeC VALUE

hz) = ja(2) +i ¥a(2) h,2(2) = ja(2) = 1 Ya(2)

i.(z) nel zeC VALUE
  

 

 
 

SIT1NZ uses downward recurrence with normalization for n > 0. The accuracy is
about 10 digits.

  
nel zeC VALUE

  

 

 (2)
 

SI2NZ uses upward recurrence for n > 0. The accuracy is about 10 digits.   
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SPHERICAL BESSEL FUNCTIONS
MENU { FTNS SBESL }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

Kn(2)   

 

nel zeC  VALUE
 

SKNZ uses upward recurrence. The accuracy is about 10 digits.

 

Ai(z) zeC VALUE
 

Bi(z)

 

  zeC  VALUE
 

AIOZ and BIOZ evaluate the ascending series defined below. Accuracy degrades
for ABS(z) > 5. For asymptotic approximation, see page 123.

Ai(z) = 0.355028053888 f(z) — 0.258819403793 g(z)
Bi(z) = v3 [0.355028053888 f(z) + 0.258819403793 g(z)]

f(z) = > 3 (113), za
zn

 92) -> 3 (213),

where (e), is Pochhammer’s symbol defined as

3n+1

@n+)!
 )

 

 

 

(0 + 1/3), = 1 3" (a + 1/3), = (3a + 1)(3a + 4) (Ba + 3n - 2),

where a is arbitrary and n=1, 2, . . ..

I'(z) zeC VALUE

(2) zeC VALUE

UP DIRECTORY NONE PARENT MENU

 

      For definitions, see Chapter 10 of Abramowitz and Stegun, AMS 55.     



ELLIPTIC INTEGRALS

INTRODUCTION

This chapter presents the 25 commands in the ELLIPI menu. This and the next two
chapters deal with elliptic functions and integrals. The singularly periodic
trigonometric and hyperbolic functions discussed in Chapter 3 are special cases. A
doubly periodic analytic function is called an elliptic function. Seventeen Weierstrass
and related elliptic function programs are also available. See Appendix A.

PARAMETER DEFINITIONS

The area of elliptic integrals and related functions is pervaded by a bewildering
collection of redundant parameters, different subsets of which are used by different
authors. The Math Library provides numerous conversion functions so the user can
use the set he or she prefers.

e AMS 55 defines m to be "the parameter" and m;, = 1 — m to be the
"complementary parameter” where 0 <m, m, <1.

« AMS 55 defines k to be the "modulus" and k' to be the "complementary
modulus" where by definition 0 <k, k' < 1, k? = m and (k')*> = m,.

e AMS 55 defines a to be the "modular angle" and w/2 - a to be the
"complementary modular angle" where sin a = k and cos a = k'.
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e AMS 55 defines K and iK ' to be the "quarter periods" where K is the
complete elliptic integral of the first kind with parameter m, and K ' is the
complete elliptic integral of the first kind with parameter m,, which we just
defined as the complementary parameter.

Clearly, given any one of the eight, the other seven are determined. The following
commands are available for the conversions:

MTM; Converts between m and m; SIN Converts a (rad) into k
KTK; Converts between k and k' ASIN Converts k into o (rad)
M-K Converts m into k COS Converts a (rad) into k'
M«K Converts k into m ACOS Converts k' into o (rad)
o—K; Converts a (deg) into k' KOKP Converts k' into K
aK; Converts k' into a (deg) K;OK; Converts k' into K'
KP—-M Converts k' into m KP<~M Converts m into k'

where deg is degrees and rad is radians. The K; and KP symbols that suffix command
names are used as a reminder that the input is k' and not k.

AMS 55 expresses its elliptic functions in terms of a and m, whereas in most problems
k' is what is specified, and k' is often a very small number. Since

COS( ACOS( 1E-10) ) = 1.048966E-10,

precision is easily lost by working with a and m. Consequently, the Math Library uses
k' throughout its commands. However, the above commands allow the user to work
with the parameters of his or her choice.

Two related definitions are the nome q and the complementary nome q,, defined by:

q = EXP[ - nK'/K], q,; =EXP[-nK/K"'].

The command KP—Q(k') computes nome q, and KP—-Q(k) computes the
complementary nome q,.

There are two basic forms for the elliptic integrals, which differ by a trigonometric
substitution. The trigonometric form is nice for understanding the properties of these
integrals, and the polynomial form is the one most useful in applications. The upper
limit of the integral in trigonometric form is defined as the "amplitude," which is the
angle ¢. In polynomial form, the upper limit is x = sin ¢. While AMS 55 tabulates
using the parameter ¢, we prefer to work with the parameter x.
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Conversions may be performed with the commands

¢—>X Converts ¢ (deg) to x SIN Converts ¢ (rad) to x
¢—X Converts x to ¢ (deg) ASIN Converts x to ¢ (rad).

With the provided conversion software, the user can write and store in the VAR
directory elliptic functions and integrals that use the parameters of his or her own
choice.

JACOBI ELLIPTIC FUNCTIONS

Trigonometric and hyperbolic functions were discussed in Chapter 3. The
trigonometric functions have periods of 2 and =:

sin(z + 2n7m) = sin(z), cos(z + 2nm) = cos(z),

tan(z + nn) = tan(z),

for n el while the hyperbolic functions have periods of i2n and in

sinh(z + i2nm) = sinh(z), cosh(z + i2nm) = cosh(z),

tanh(z + inw) = tanh(z),

for n el. Consider the integral definition of the inverse sin function

arcsin(z) = I dt

"1 -t2

By a change in integration variable of t = iw, we have

arcsin(z) = = - jarcsinh(iz).
[ idw

’ y1 + w?
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Suppose z is real. Then the arcsin integral goes from 0 to z on the real axis, while the
arcsinh integral goes from 0 to iz on the imaginary axis. We can thus say that the sin
function is periodic on the real axis and the sinh function is periodic on the imaginary
axis. Elliptic functions are periodic on both the real and imaginary axes, and the
trigonometric and hyperbolic functions are special cases of them.

Consider the following integral which we define to be the function u:

x dt

“Va - £31 - mt?)

It is immediately obvious that for m = 0, u = arcsin(x). With the change of variable
t = sin 6, u equals

 uu =

uu =

Iarcsin(x) de _ [¢ deo }

o “bo
Y1 - m sin? 6 V1 - m sin 0

The first form is the polynomial form, and the second is the trigonometric form. As
the integral on the previous page defined the inverse sin function arcsin, this integral
defines the inverse of the Jacobi elliptic function sn(u, k) = sn(u|m) = sn(¢\a), where
¢ = arcsin x in the notation of AMS 55. Similarly, we have the definitions

sn(u, k) = sin ¢, cn(u, k) = [1 - sn’(u, k)]”* = cos ¢, dn(u, k) = [1 - k? sn’(u, k)]*?,

where cn(u, k) is a generalization of the cos function: sn(u, 0) = sin u, and cn(u, 0) =
cos u. The nine other Jacobi elliptic functions can be defined in terms of these three.
An additional function that is defined is am(u, k) = ¢ = arcsin(sn(u, k)). Commands
for evaluating all of the Jacobi elliptic functions are given in the JACOB menu
discussed in Chapter 10.

The theta functions given in the THETA menu discussed in Chapter 11 are important
because every one of the Jacobi elliptic functions can be expressed as the ratio of two
theta functions.
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ELLIPTIC INTEGRALS

The incomplete elliptic integral of the first kind is in fact the above integral u. It
defines the inverse of the Jacobi elliptic function sn(u, k) which is denoted by F(¢\o)
= F(¢|m) = F(x, k) = u. The complete elliptic integral of the first kind is F(w/2\a) =
F(/2|m) = F(1, k). The complete integral specifies the quarter periods K and iK' of
the elliptic functions since

K = F(1, k), K'=F(1,k").

The commands KOKP and K;OK; compute the complete integrals, and FXKP
computes the incomplete integral. UZKP also computes the incomplete integral F(z,
k), but it allows z to be complex.

If R(x, P(x)) is a rational function of x, and P? is equal to a cubic or quartic polynomial
in x, then the integral

| R(x, P(x)dx

is called an elliptic integral. In general, integrals of rational functions can be factored
into a part that can be evaluated by elementary functions and a part which is the sum
of integrals that take on one of three canonical forms. These forms are the elliptic
integrals of the first, second, and third kind and are the nontrivial part of the
numerical evaluation problem. The ELLIPI menu commands evaluate all three, plus
several related functions defined in AMS 55.

The incomplete elliptic integral of the second kind is defined as

E(p\o) = E(u|m) = E(x, k) = E(ulk)
= [*dn*w,k) dw =m, u + m |en?(wk) dw =u -m [* sn(w)k) dw
= [fa -t2* a - me) dt= [° A - m sin? 0)dt

and is evaluated by the command EXKP. E(n/2\a) = E(1, k) is the complete elliptic
integral of the second kind and is denoted by E in AMS 55. This is evaluated by
EOKP. AMS 55 also defines E' = E(1, k'), which may be evaluated as EOKP(k). Note
carefully the AMS 55 shift in notation: F(¢|m) versus E(u|m) = E(ulk), where u =
F(p|m).
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Two related elliptic integrals in use which are not discussed in AMS 55 are

cos? © do
B(p\a) = B(p|m) = B(x, k) = lana

V1 - m sin? 0

os sin’ 0 do
D(p\a)= D(¢|m) = D(x, k) = |——

Y1 - m sin? 0

and are evaluated by the commands BXKP and DXKP.

The incomplete elliptic integral of the third kind is defined as

II(n; ¢\a) = II(n; u|m) = II(n, x, k) = II(n, ulk)

= [*@ -n sin? 0(1 - m sin? 6)* do

= [*@ =n) - £2)- mt )1* dt
= I [1 - n sn%(w, k)]! dw

with x = sn(u|m) = sn(u, k) = sin ¢, and is evaluated by IINXKP. The complete

elliptic integral of the third kind is II(n, 1, k) = II(n; ®/2 \ a).

ZUKP evaluates Jacobi’s zeta function, and AXKP computes Heuman’s lambda
function. UZKP computes complex u where complex z = sin ¢. SNUK; computes
complex z = sin @, given complex u. K;OK evaluates the ratio of quarter periods K '/K.

The functions E(ulk) and Il(n, ulk) are available. They are EUKPS and IINUKPS,
which are available with defined derivatives. So is ZXKPS. See Appendix A.

Other relations include

F(x,k) = F(kx, k™' )/k E(ulk) = k Ekulk™) -m, u fork > 1

F(o| - m) = (1 + m)™ { Km/[1 + m]) - F(w/2 - ¢|m/[1+m])}

E(u| - m) = (1 + m)”* E(u[1+m]*|m/[1 + m])

— m sn(u[l + m]*|m/[1+m]) cd(u[1+m]*|m/[1 + m])
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ELLIPTICAL INTEGRALS MENU
{FTNS ELLIPI }
 

 

   

 

 

  

FUNCTION COMMAND INPUTS OUTPUTS

F(x, k) x, K' €[0,1] VALUE

F(x, k) = I x dt F(7, .3) = 0.856338019724
"Jd - £90 - k%?)

The accuracy is about 10 digits. F(1, 1) = FXKP(1, 0) = oo.

FXKP, EXKP, BXKP, DXKP, KOKP, K;OKj, EOKP, and ZXKP all use the method
of Arithmetic-Geometric Mean for the computation. Accuracy degrades near

singularities. However, K and K' remain accurate for 1E-499 < k' <
.999999999999. Note that KTKP(.999999999999) = 1.41421356237E-6 > 1E-499.

 

 

   
E(x, Kk) x, k' €[0,1] VALUE
 

Ex, k) = IV1 - m sin? 0 do E(7, .3) = 0.707444537922

The accuracy is about 10 digits.

 

B(x, k) x, k' €[0,1] VALUE

 

    

cos? 0 do

V1 - m sin? 0

The accuracy is about 10 digits.

B(x, k) = IN B(.7, .3) = 0.692718808952    
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ELLIPTICAL INTEGRALS MENU

{ FTNS ELLIPI }
 

  

 

  
 

FUNCTION COMMAND INPUTS OUTPUTS

D(x, K) x, kK €[0,1] VALUE

sin’ Odo D(.7, .3) = 0.163619210767D(x, k) = [f—

Y1 - m sin? 0

The accuracy is about 10 digits. D(1, 1) = DXKP(1, 0) = oo.

 
  
 
  
 

 

X = sin ¢ | ¢e[0, 90] IN DEG VALUE

K' = cos a | elo, 90] IN DEG VALUE

K = F(1, K) K e[0, 1] VALUE

K' = F(1, K) K e[0, 1) VALUE 

 

  
 

KOKP(.3) = 2.62777333206 KiOKj(.3) = 1.60804861992

 
 

 

  
 

 
 

 

  
   

E = E(1, K) K €[0, 1] VALUE

EOKP(.3) = 1.09647751739

In,x, K) x, K e[01] neR VALUE

Im, x, k) = | dt nx? < 1  

1 -nt) Yad -t31 - m t2)
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }
 

   
FUNCTION COMMAND INPUTS OUTPUTS
 

Observe that the integrand has a simple pole at t = 1¥n. If you integrate through it,
you will obtain a meaningless complex number. This rather complicated command is
an implementation of the equations in Section 17.7 of AMS 55. Two comments are in
order. First, in the circular case where m < n < 1, there is a pole in the equations at

n =m, and as one approaches the pole the equations become very sensitive to

numerical error. TINXKP gives a "Bad Argument Value" error whenever it branches

into this circular case and y1-n/k’ > 0.99999995. However,then=mandn <m
cases can be evaluated since different equations are used. The differences in these
cases are usually in the 7th decimal of the input. This should hopefully protect the
user from bad outputs. Also, Equation 17.7.21 is missing a parenthesis, and the

second term should read:

= =n In{(1 + yn sin @)(1 - yn sin g)7}.

TINXKP reproduces all the numbers in the examples and tables of AMS 55.
Here are the examples.

I1(1/16:45°\30°) = TINXKP(1/16 , 0—X(45) , a—Kij(30)) = 0.813845432979
T1(1/16;90°30°) = TINXKP(1/16 , 1 , 0—K;(30)) = 1.74305520342

I1(5/8:45\30°) = TINXKP(5/8 , 6—X(45) , a—Kj(30)) = 0.921129573345
I1(5/8:90°\30°) = TINXKP(5/8 , 1 , a—K;(30)) = 2.80098923985

I1(5/4:45°\30°) = TINXKP(5/4 , 6—X(45) , a—Kij(30)) = 1.13213569491
I1(~1/4:45°\30°) = TINXKP(<1/4 , 0—X(45) , a—Kj(30)) = 0.769872357412

 

   

 

Z(u|m) = Z(ulk) ueC Keo, 1] VALUE
 

ZUKP is Jacobi's zeta function. Since the notation used by AMS 55 is very
confusing, we present some tutorial discussion so that the relationships

and commands are clear. This is given on the next page.    
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }

FUNCTION COMMAND INPUTS OUTPUTS

 

    

Let us begin by defining two programs. The first evaluates the Jacobi zeta function
using the command ZUKP, while the second program evaluates the definition of

Jacobi’s zeta function 17.4.27 in AMS 55.

ZXKP: « =» X k « X k FXKP k ZUKP » »>

ZXKj: « —» X k 'EXKP(Xk) - FXKP(X,k) x EOKP(k) / KOKP(k)' >,

where Kk in these programs is the complementary modulus k' = cos a and X = sin ¢.
These two programs yield the same value for the Jacobi zeta function defined by

Z(e\0) = Z(x, k) = E(x, K) — E x F(x, K)/K = Z(u|m) = Z(ulk) where u = F(x, K).

Table 17.7 in AMS 55 is a tabulation of Z(¢\a) K = Z(x, k) K. In particular, the
following program evaluates the values found in that table:

ZTBL: « » ¢ a "ZXKP( ¢—X(9) , a—Kij(a) ) x KOKP( a—Kj(ax) )) >

where ZXKP can be replaced by ZXKj. The accuracy is about 7 digits. Also

Z(u|m) = Z(ulk) = E(u|m) — u E/K = E(u]k) —u E/K where u = F(x, k)

By definition, Z(ulk) is the logarithmic derivative of the Jacobi theta function ©(u, k).

Z(ujk) = ©'(u, k)/O(u, k) = 2 In O©(u, k)

and can be related to the Neville theta functions and the Jacobi elliptic functions by    
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }
 

    

 

 ZUKP((.3,1E-100),.5) =

Z(ulk) = Z(u|m) = = ><
s=1

 

 

ZUKP(.3,.5) = 0.124982130858

FUNCTION COMMAND INPUTS OUTPUTS

90k)  en(uk) dn(u,k) %(w,k)  dn(uk) sn(u,k)
2k) = 3TT men 0 ZWte tT aml

on k) sn(u, k) en(u, k) ¥(u, k)+ k? ’ ’

Z(ulk) =3 nok Zul) =5

which corrects equation 16.34.3 in AMS 55.

The Jacobi zeta function Z(ujk) can be expressed as a power series in nome q:

- sin (rsw/K),

where q and K are functions of the modulus k. However, ZUKP uses the method of
Arithmetic—-Geometric Mean based on Landen’s transformation for computation.

(0.124982130858, 3.74313467818E-101)

While the ZUKP command has an accuracy of about 7 digits on the real numberline,
accuracy does degrade with the increasing imaginary part of u. The above power

series may provide more accurate results for complex u.
described in the THETA menu discussed in Chapter 11.

It is command TNUK;   
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }

FUNCTION COMMAND INPUTS OUTPUTS

| x Ke[0,1] VALUE

 

 

 

 

 

   

 

Ay(X, K)
 

AXKP is Heuman's lambda function Ay(@\a) = A4(x, kK) = F(x, K')/K' + K Z(x, k') m/2.

Ao( .3,.6) =AXKP(.3, KTKP( .6) ) = 0.271095891688,

where Z(x, k) is defined above with the ZUKP command. The accuracy is about 7

 

  
 

 

 

 

 

digits.

x €[0,1] VALUE IN DEG

k' €[0,1] VALUE IN DEG

m €[0,1] VALUE

k €[0,1] VALUE

k, k' €[0,1] VALUE

m, m' €[0,1] VALUE

zeC Kk€[0,1] VALUE  

 

 
 

AZKP evaluates A(g\a) = A(z, k) = dn(u, k) = V(1 - k® 2%), defined by 16.1.5 in
AMS 55. 

A( (2, .3),.5)=AXKP((.2, .3), KTKP(5)) =
(1.0063409827, —1.49054845801E-2)

where z = sn(u, Kk) = sin ¢, and u = F(x, k). The accuracy is about 10 digits.

 

K'/K = k' (0,1) VALUE
F(1, K')/F(1, k)     
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }

FUNCTION COMMAND INPUTS OUTPUTS

a =K/K Be(0,1) k €(0,1)
B = BEST GUESS

 

 

 

 

INVERSE OF KjOK

   

 

 

KjOK computes ratio of quarter periods. k = 0 or 1 results in an error.

 

 

   

 

 

m=1- (Kk)? K' [0,1] VALUE

u(z,k) zeC Kk€[0,1] VALUE

z(u, kK) = sn(u, k) ueC Kk€[0,1] VALUE
 

UZKP computes the complex elliptic integral F(z, k) = u(z, k) = sn”'(z, k). SNUK;
computes its complex inverse z(u, k) = sn(u, k). UZKP uses FXKP when z is real,
and much slower complex integration otherwise. See the command CINTG in
Chapters 4 and 6. SNUK; evaluates the complex Jacobian elliptic function

sn(u, k) = sin ¢ discussed in Chapter 10.

SNUK;( UZKP( (.15,.4) , 5), .5) = (0.15, 0.399999999999)

The accuracy is about 10 digits. Do not integrate through any poles.

 

 
NONE PARENT MENU

 

 

 
UP DIRECTORY
 

ANALYTIC CONTINUATION

The four incomplete elliptic integral commands FXKP, EXKP, BXKP, and DXKP,plus
AXKP, do accept complex values of x. However, accuracy degrades from 10 digits at
arg x = 0 to 0 digits for |arg x| = n. You can get a good estimate of accuracy for the

complex region of interest by comparing the outputs of UZKP and FXKP. The
following relations on the next page are available:   
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ELLIPTICAL INTEGRALS MENU
{ FTNS ELLIPI }

 

 

FUNCTION COMMAND INPUTS OUTPUTS   
 

F(-x,K) = = F(x, Kk) E(x, k) = — E(x, k)

and fortan 6 =sinh ¢  F(ip\a) = i F(6\/2 — 0)
E(ip\a) = —i E(6\n/2 — a) + i F(6\/2 — a) + i tan 6 ¥(1 — cos? a sin® 6)

F(sm + @|m) = 25K + F(o|m) E(u + 2K|k) = E(ulk) + 2E

E(u + 2iK '[k) = E(ulk) + 2i(K' = E')

D(z, kK) = [ F(z, k) — E(z, k) Ym B(z, k) = [ E(z, k) - m, F(z, k) ym

 

  
For definitions see Chapters 16 and 17 of Abramowitz and Stegun, Handbook of

Mathematical Functions, AMS 55, 1964.
Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental

Functions, Volume 2, New York, McGraw-Hill, 1953.
Gradshteyn, |., and Ryzhik, |., Table of Integrals, Series, and Products, New York,

Academic Press, 1980.
Hancock, H., Theory of Elliptic Functions, New York, Dover, 1958.

Korn, G., and Korn, T., Mathematical Handbook For Scientists and Engineers, New
York, McGraw-Hill, 1961.

Magnus, W., Oberhettinger, F., Soni, R., Formulas and Theorems for the Special
Functions of Mathematical Physics, New York, Springer-Verlag, 1966.

Morse, P., and Feshbach, H., Methods of Theoretical Physics, New York, McGraw-
Hill, 1953.

Whittaker, E., and Watson, G., Modern Analysis, New York, Cambridge Univ. Press,
1969.   
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JACOBI ELLIPTIC FUNCTIONS

INTRODUCTION

This chapter presents the 36 commands in the JACOB menu. These commands
evaluate the Jacobi elliptic functions. See Chapter 9 for an introduction to elliptic
functions and definitions.

JACOBIAN ELLIPTIC FUNCTIONS

The basic three functions sn(u, k), en(u, k), and dn(u, k) were defined in Chapter 9 in
terms of elliptic integrals. The other nine functions are defined in terms of these as:

cn(u, k)
cd(u, k) = Ine©

_ sn(u, k)
sd(u, k) = Ina©

1
nd(u, k) = dn(u,

sn(u, k) = k?* sn(ku, k™) en(u, k) = dn(ku, k™)

dn(u, k)
dc(u, k) = on©

1
nc(u, k) = ona,

sn(u, k)
sc(u, k) = ne®)

ns(u, k) =

ds(u, k) =

cs(u, k) =

dn(u, k) = en(ku, k™)

Ifm>0,n=m/M1+m],andn =v(1 +m), then 0<pn<1and

sn(u| -m) = sdmu|p)M, cn(u| -m) = edu |p),
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1

sn(u, k)
dn(u, k)

sn(u, Kk)
cn(u, k)

sn(u, k)

fork>1

dn(u| -m) = nd(nu|p).
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All of these functions are available in the JACOB menu. They are computed by the
method of Arithmetic—-Geometric Mean. The group sn, cn, and dn are first computed
with NUKP. Then the group conversion commands N—D, N->C, N—S are used to
convert the "n" group into the "d", "c¢", or "s" groups, using the above equations.
Finally, the individual function is isolated. The function am(u, k) is also available as
the command AMUKP. The below table shows how all the trigonometric and
hyperbolic functions are special cases of the Jacobian elliptic functions.

 

 

  

 

 

 

 

 

FUNCTION m=0 m=1 FUNCTION m=0 m=1

sn(u |m) sin u tanh u dc(u |m) sec u 1

cn(u|m) cos u sech u nc(u|m) secu cosh u

dn(u|m) 1 sech u sc(u |m) tan u sinh u

cd(u |m) cos u 1 ns(u|m) csc u coth u

sd(u|m) sin u sinh u ds(u|m) csc u csch u

nd(u|m) 1 cosh u cs(u|m) cot u csch u             
CONVERSION COMMANDS

Conversion commands are again available between k, k', m, and m,.

QUARTER PERIODS

Since all of the above Jacobian elliptic functions allow u to be complex,it is important
to know the periods and location of poles. These can be determined with the
commands KOKP and K;OK;, which compute K and K', respectively.

ARITHMETIC-GEOMETRIC MEAN

AGMN provides user access to one of the MATHLIB internal arithmetic—geometric
mean commands for experimenting with applications of Landen’s transformation.
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JACOBIAN ELLIPTIC FUNCTIONS

MENU { FTNS JACOB }
 

 

 

 

 

 
 

 

 

 

 

 

 

    

FUNCTION COMMAND INPUTS OUTPUTS

ueC Kk€[0,1] sn

ueC Kk€[0,1] cn

ueC Kke€[0,1] dn

ueC Kk€[0,1] cd

ueC Kk€[0,1] sd

ueC kK€[0,1] nd

ueC K€[0,1] dc

ueC Kk€[0,1] nc

ueC Kk€[0,1] sc

ueC Kk€[0,1] ns

ueC Kk€[0,1] ds

ueC Kk€[0,1] cs 
 

These 12 commands evaluate the 12 Jacobian functions. Accuracy is about 10 digits
for either real or complex arguments.

   
 

 

 

     

 

SET XFORM sn, cn, dn cd, sd, nd

SET XFORM cd, sd, nd sn, cn, dn

SET XFORM sn, cn, dn dc, nc, sc

SET XFORM dc, nc, sc sn, cn, dn

SET XFORM sn, cn, dn ns, ds, cs

SET XFORM ns, ds, cs sn, cn, dn  
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JACOBIAN ELLIPTIC FUNCTIONS
MENU { FTNS JACOB }
 

FUNCTION COMMAND INPUTS OUTPUTS   
 

The above 6 commands perform transformations between the sets.

 

COMPUTE N SET ueC Kke€[0,1] sn, cn, dn
 

COMPUTE D SET ueC Kk€[0,1] cd, sd, nd
 

COMPUTE C SET ueC Kk€[0,1] dc, nc, sc
 

COMPUTE S SET ueC Kk€[0,1] ns, ds, cs 

 

  
 

These four commands compute each of the sets.

 

EXAMPLES FROM AMS 55

nc(1.9965 |.64) = NCUK;(1.9965,.6) = —-1392.11113637 (which corrects the
answer in AMS 55)

dn(.2|.19) = DNUK;(.2,KP<M(.19)) = DNUK;j(.2,.9) = .996252664327
dn(.2|.81) = DNUK;|(.2,KP«<M(.81)) = .984056028964
cn(.2|.81) = CNUK;|(.2,KP<M(.81)) = .980278536974

dc(.672|.36) = DCUK;|(.672,KP<M(.36)) = 1.17401900743
sn(.672|.36) = SNUK;(.672,.8) = .609519691787

¢s(.5360162|.09) = CSUK|(.5360162,KP«<—M(.09)) = 1.69180832853
sn(.61802|.5) = SNUK;(.61802,KP«M(.5)) = .564575752946

sc(.61802]|.5) = SCUK;(.61802,.707106781187) = .68401814101

 

   u(z, k)
   

lzeC Keo] VALUE
   UZKP computes the complex elliptic integral F(z, k) = u(z, k) = sn”'(z, k). SNUK;

computes its complex inverse z(u, k) = sn(u, k).
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JACOBIAN ELLIPTIC FUNCTIONS
MENU { FTNS JACOB }
 

   
FUNCTION COMMAND INPUTS OUTPUTS
 

UZKP uses FXKP when z is real, and much slower complex integration otherwise.
See the command CINTG in Chapters 4 and 6.

SNUK|( UZKP( (.15,.4) , .5), .5) = (0.15, 0.399999999999)

The accuracy is about 10 digits. Do not integrate through any poles.

 

 

   
am(u|m) = am(u, k) | ueC  Ke[0,1] VALUE
 

am(u, k) = @ = arcsin(sn(u, k))

 

   
 

 

 

 

 

K'=cos a a €[0,90] VALUE

o = acosk' k' [0,1] VALUE

k=vm m [0,1] VALUE

m = k? k [0,1] VALUE

K=v(1-K) k, k' €[0,1] VALUE

ms=m,=1-m m, m, €[0,1] VALUE

K = F(1, K) k' €[0,1] VALUE

K'=F(1, k k' €[0,1] VALUE 

 

  
 

KOKP(.3) = 2.62777333206  KjOK;(.3) = 1.60804861992

 

m=1— (kK)? k' [0,1] VALUE
 

kK =v(1 -m) m e[0,1] VALUE   
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JACOBIAN ELLIPTIC FUNCTIONS
MENU { FTNS JACOB }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

ARITHMETIC- ueC 4: C LIST
GEOMETRIC 3: ¢ LIST

MEAN K' €(0,1] 2: B LIST
1: C/A LIST   

 

 

Starting with a, = 1, b, = kK, and c, = k, AGMN computes the squences of a,, b,, c,,
and c/a, fork =1, 2, ..., nsuchthat |c,| < 1TE-11. The sequences are:

ay, = (ac + b)/2 Bit = Yaeb, Cir = (a — by)/2

ALIST={a, a,...a,} BLIST={b, b,...b,} CLIST={c, c,...C, },

where the A LIST is computed as VECTD( C LIST, C/A LIST). The ¢ LIST is
created by defining ¢, = 2" a, u and successively computing ¢,_;, ¢,_5, - - ., ¢o tO

obtain the ¢ LIST ={ ¢, ¢o, ... @, } using the recurrence relation

C
sin (2¢,_; - ¢,) = — sin Q -

ay

For more detail see pages 571, 577, 578, 598, and 599 of AMS 55.

 

UP DIRECTORY NONE PARENT MENU
  

 

 
   For definitions, see Chapter 16 of Abramowitz and Stegun,

Handbook of Mathematical Functions, AMS 55, 1964.     
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THETA AND RELATED FUNCTIONS

INTRODUCTION

This chapter presents the 42 theta and related functions in the THETA menu. The
theta functions can be used to compute not only the Jacobian elliptic functions, but
also the Weierstrasselliptic and related functions discussed in Chapter 18 ofAMS 55.
Commands are given for evaluating the Jacobian theta and eta functions as well as
Neville’s theta functions. It is assumed that the reader is familiar with the definitions
and relations presented in Chapters 9 and 10.

Lerch’s transcendent ®(z, s, a) is discussed at the end of this menu. The Weierstrass
elliptic and related functions, as well as Lerch’s transcendent, are available. See
Appendix A.

METHOD OF COMPUTATION

All of the theta functions in the THETA menu are evaluated by computing the first 40
terms of their expansion in the nome q defined in Chapter 9. The region of definition
is 0 < k, k' < 1. Evaluation with a modulus of 0 or 1 will eventually result in some

error. The range of accurate evaluation is 1E-499 < k' < 0.999999999999. See the
KP—Q command.

Theta functions with complex nome q are also available.
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NOTATION

AMS 55 uses the notation 9(z, q) where the nome q is a function of k. We prefer the
notation 3(z, k) since the evaluation of the nome is internal to many of the commands.
As with all the other elliptic and related functions in the Math Library, k', not k, is
what is used for the command input. The nome q is evaluated by the command
KP—-Q. Thus, KP-Q(k') = qk), and KP-Q(k) = q,(k). However, the more general
¥,(z|q) for n = 1, 2, 3, and 4 are available in this menu along with their logarithmic
derivatives. This allows evaluation in the cases where the nome q is complex. AMS
55 also uses the notation ¥,(z|m) = 9,(zlq) = 0,(z, k) for n = 1, 2, 3, and 4. In some
references, 9, is denoted as 9, or just 0.

CONVERSION COMMANDS

Conversion commands are available between the parameters k, k', m, m,, and a. They
are also available for conversion between degrees and radians, as well as between ¢
and x.

JACOBIAN THETA FUNCTIONS

Jacobi’s theta functions correspond to the sigma functions of Weierstrass. Both are
entire functions and hence not elliptic functions. However, they are very useful for
computing elliptic functions. The four basic theta functions may be defined by the
Fourier expansions given by 16.27.1-4 of AMS 55:

V,(z, k) = 9,(zlq) = 2 q¥* } (-1" q"? sin(2n + 1)z,
n=0

Vy(z, k) = Oy(zlg) = 2 q¥* Yq"? cos(2n + 1)z,
n=0

V3(z, k) = O4(zllg) = 1 +2) q" cos 2nz,
n=1

V,(z, kK) = 0,(zlq) = 1 + 2) (-1)" q™ cos 2nz.
n=1
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Other authors use different notation such as given by equations 16.31.1-4 in AMS 55:

O(u, k) = O(u|m) = ¥,(v, k) = 0,(v/n, k), ©O,(u, k) = ©,(u|m) = %(v, k) = 6,(v/r, k),

H(u, k) = H(u|m) = 9,(v, k) = 6,(v/r, k), H,(u, k) = H,(u|m) = 9,(v, k) = 0,(v/r, k),

where v = (ru)/(2K), ©, ©,, H, and H, are Jacobi’s notation for the theta and eta

functions, and 6,(w, k) through 6,(w, k) for w = u/(2K) are alternative definitions not

presented in AMS 55 but heavily used in other references. One clue to which
definition is being used are the identities for the partial derivative:

9,'(0, k) = 0,00, k) 9,00, k) 9,00, k), 0,'(0, k) =  0,5(0, k) 0,5(0, k) 6,00, k).

Thus, 6,(w, k) = 0,(wr, k), 0,(w, k) = 9,(wr, k), 6,(w, k) = 9,(wr, k), 0,(w, k) = 0,(wmr,
k), the derivative 0,'(w, k) = © ¥,'(wr, k), and similarly for the other derivatives. The
Math Library does not evaluate the 6 functions directly, but programs using these
relations are given at the end of this menu to compute them in terms of the O theta
functions.

Also observe that d ©(u, k)/du = 0'(u, k) = (n/2K) 9,'(v, k), and similarly for the other
functions.

NEVILLE’S THETA FUNCTIONS

AMS 55 also gives formulas for Neville’s theta functions, which are normalized

versions of 3, through 9,. The following relations are true:

 

8,00, k) = 0,0, k) = V2K/x , 9,0, k) = 6,00, k') = V2K'/x,

9,00, k) = 6,00, k) = V2kK/n , 9,00, k) = 6,0, k) = V2k'K/=,

9,00, k) 0,0, k) 9,0,k) 00, k)
0,00, kK) 0,0, kK) Vk, 0,0, k) 6,00, kK) he

3 3 '

0,0, Kk) = ZEKE 6,0, k) = 1 9,00, k).
IL
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The four Neville theta functions are defined by

2K 9,(v, k) V,(v, k)

Welw MP Tse
Vy(v, k) V,(v, k)

Oe B= 55,0 0 = 50,1

where again v = (mru)/(2K), and the above definition of ¥,(u, k) corrects Equation
16.36.6 in AMS 55 to agree with Definition 16.36.1 in AMS 55 using 16.31.3. Also
observe that 9,'(0, k) = 1.

RELATIONS TO OTHER FUNCTIONS

If p and r are any of the two letters s, ¢, n, d, then the Jacobian elliptic function
denoted as pr(u, k) is given by

. 9,(u, k)
pr(u, ) = 9.(u, k) ‘

For example:

(u, k)
sn(u, k) = on©

¥,(u, k)

The Jacobi zeta function Z(u|m) = Z(ulk) = d In ©(u,k)/du. See Chapter 9 for more
relationships between the Jacobi zeta function, Neville theta functions, and Jacobi
elliptic functions. Since few of these functions are actually tabulated, it is through
these numerous relationships that the Math Library software has been verified.

COMPLEX NOME q

As noted above, in general the nome can be complex, but is not arbitrary. Theta
functions with complex nome arise in differential equations, Weierstrass elliptic

functions with negative discriminant, and the theory of modular functions. The theta
function series expansions only converge for realistic values of |q| < 1. A collection
of useful Weierstrass parameter conversion programs is available. See Appendix A.
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 ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

 

 

 

  

 

  

FUNCTION COMMAND INPUTS OUTPUTS

X = sin @ ¢ €[0, 90] VALUE

@ = asin x x €[0, 1] VALUE

u = F(z, k) zeC Ke[0,1] VALUE

z(u, k) ueC  Ke[0,1] VALUE
  

SNUKj( UZKP( (.15,.4) ,

sn(u, k) = sin ¢ discussed in Chapter 10.

5),5)=

UZKP computes the complex elliptic integral F(z, k) = u(z, k) = sn”'(z, k). SNUK;
computes its complex inverse z(u, k) = sn(u, Kk).
and much slower complex integration otherwise. See the command CINTG in
Chapters 4 and 6. SNUK] evaluates the complex Jacobian elliptic function

UZKP uses FXKP when z is real,

(0.15, 0.399999999999)

The accuracy is about 10 digits. Do not integrate through any poles.

 

 

    

 

 
 

 OSUK;( (1,1.3), .5) =

K = cos o a €[0, 90] IN DEG VALUE

a = acos kK K [0,1] VALUE IN DEG

9.(u, K) luec Ke) VALUE

0,(u, k) = onwa > (1 J gD sin(2n + 1)v v = nu/(2K)

(1.31317174007, 1.19787536389)
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

   

 

8,(u, k) ueC kKe(0,1) VALUE
 

 

2

i2 q"™" cos(2n + 1)v v = nu/(2K)

8CUK;j( (1,1.3), = (1.06225552965, —-.774472185718)

    
  
lueCc Ke@©1) VALUE Vy(u, K)  
  

Bu, K) = |— ! +2Y q" cos - v = nu/(2K)
n=1

0DUK;j( (1,1.3) , .5) = (.908073863295, -.472905740602)

 

3.(u, K) k' €(0,1) VALUE  

 

   

 

n=1

By(u, K) = | =a +2 Y ( -1)" q™ cos 2nv | v = mu/(2K)

ONUK( (1,1.3) , .5) = (1.12411321044, .667485006988) 
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

u(e, a) K'(o) g, a €(0, 90) 2: ¢ K/90
e AND a IN DEG 1. K

eu, ky ak) uel k'e(0,1) 2:90 u/K
1: a IN DEG     

 

 

These commands do the parameter conversions for Tables 16.1 & 2 in AMS 55. 2: 443928333920 = ug
ca~U(@5, 13) = % 965925826280 = kg

Using the values ug and kg' as inputs, we can compute the tables in AMS 55.

OSUKi(ugks) = .429981306357 ONUKi(us.ks) = 1.00312296844
TSUKi(ug.ks) = 2.10786899898 TNUK(ugks) = 1.31242775141E-2

 

 

Jacobi ©(u, k) ueC Kke(01) VALUE
   
 

Ou, k) = 9,(mu/(2K), k)

OUKP( (1,1.3) , .5) = (.931346790133, .553022607462)

 

 

 

 Jacobi ©,(u, k)  
ueC Kk (0,1) VALUE
  0,(u, K) = 9,(ru/(2K), Kk)

01UK;j( (1,1.3), .5) = (1.06398999473, -.554103577682)  
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

Jacobi H(u, k)  

 

 ueC Kke(0,1)  VALUE
 

HUKP( (1,1.3), .5) = (1.01248410589, .923588080498)

Hu, k) = 9,(mu/(2K), Kk)

 

 

 

  
 

 

 

Jacobi H,(u, k) ueC  ke(0,1) VALUE

Hy(u, k) = 9,(nu/(2K), k)

H1UK;( (1,1.3) , 5) = (1.15827233828, —.844476384867)

K = F(1, k) k' [0,1] VALUE

K' = F(1, K) K' [0,1] VALUE 

 

  
 

KOKP(.3) = 2.62777333206 KjOK;(.3) = 1.60804861992

 

B4(zlq)  

 

 
z,qeC

 
VALUE
   01ZQ( (1,1.3) , KP=Q(.5) ) = (1.76723769408, 1.18807415237)

Vy(2lq) =29™ Y (-1)" 9"sin(2n + 1)z
n=0   
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

,(zllq)   

 

z,qeC  VALUE
 

B,(zlq) =29™ Yq" cos(2n + 1)z
n=0

02ZQ( (1,1.3) , KP—Q(.5) ) = (.957780179854, -1.57455611577)

 

V5(z1q)

 

  
z,qeC

 
VALUE
 

,(zllg) =1 +2) q™ cos 2nz
n=1

03ZQ( (1,1.3) , KP—>Q(.5) ) = (.510224328668, —1.03713037683)

 

V4(zlq)

 

  
z,qeC

 
VALUE
 

V,(zlq) =1 +2 YY (-1)" q™ cos 2nz
n=1

04ZQ( (1,1.3) , KP—>Q(.5) ) = (1.47693527836, 1.05199635225)  
 

K=v(1-K) k, K' [0,1] VALUE
     

 

m, m' €[0,1]  VALUE  
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ELLIPTIC THETA FUNCTIONS
MENU{ FTNS THETA}

FUNCTION COMMAND INPUTS OUTPUTS

9,'(u, KYOU, K) |

 

 

   

 

lueCc Ke) VALUE
 

ERA nu
3.0, Kk) 2K 0,(v, K) V=2K
  

 

 

 

  
 

  

9.'(u, Ku, K) kK (0,1) VALUE

0K nm 0K nu
3.0, K) 2K 0,, K) V=3K

TCUK;j( (1,1.3), .5) = (-.278078208109, —.684889156809)

 

 

 

  
 

 

9,(u, K)/0,(u, K) kK e(0,1) VALUE

9K on OK nu
5,0, K) 2K BW, K V=3K
 

TDUK;( (1,1.3) , .5) = (-.592082367372, —.388749606913)   
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }

FUNCTION COMMAND INPUTS OUTPUTS

09,'(u, K)/9,(u, Kk)

 
 

  
   

 

ueC  k'e(0,1) VALUE
 

rn 9'(v, kK nu
— Vv TE —

2
  

TNUK|( (1,1.3) , 5) = (.715301239463, —.318307098105)

 

 

   
NOME q(k) k' (0,1) VALUE
 

qk) = EXP[-K'/K] qk) = EXP[-n K/K'] = q(K)

KP—Q(.5) = 8.57957337009E-2

KP—Q(.999999999999) = 1.24999999989E-13 KP—Q(1E-499) = .995719458905

These two extreme values are accurate. 1E-499 < k' < .999999999999 is the

range of accurate evaluation.

Note that KTKP(.999999999999) = 1.41421356237E-6.

 

 

 

  
9,0, K) kK (0,1) VALUE
 

2° KP k k'
33,'(0, K) = =

DO1K;(.5) = 1.05852086498    
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 ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

 

   

 

 

FUNCTION COMMAND INPUTS OUTPUTS

0,'(ullq)/9,(ulla) uqeC VALUE

Y,'(ullq)
SR)=cotu + 4 Yr sin 2nu

T1UQ( (1,1.3) , KP—Q(.5) ) = (.293890873496, —1.02539686221)

 

 

 

  B,'(ullg)/B,(ullq) u,qeC VALUE
 

0,'(ulq) - 2n2 tanu +4 Y (-1) —Sl) 2. ) T-gz Sin 2nu

T2UQ( (1,1.3) , KP>Q(.5) ) = (-.339826244986, -.985896117324)

 

 

 

  
V5"(ullq)/5(ullq) u,qecC VALUE
  B,'(ula) = q"

EXOT) =4 2 (-== sin 2nu 
T3UQ( (.7,.5) , KP—>Q(.5) ) = (-.470804467752, —.153824793726)   
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

u,qeC VALUE   

 

9,'(ulq)/V,(ulq)
 

9,'(ullq) >

Y,(u lq) - n=1

T4UQ( (.7,.5) , KP—Q(.5) ) = (.538068742, —-3.85746574343E-2)

 

 

  
  

 

 
 

 
 

HP RAD — DEG reR VALUE

HP DEG — RAD deR VALUE

Ln[o,(o + PB, K)/ o,BeC VALUE
(a — B, K)] kKe(0,1)

(a + B, kK) sin(o + B) = an
In -BR In Snte=p) | 4 2 TT ogF on 2na sin 2np

LNO1( (1,2) (4,5) .5) = (.746453329441, -3.04241369601)  
 

o,BeC VALUELn[d,(c. + B, K)/
k' (0,1)V(r — B, K)]   

 

 
 

(a +B, K) cos(o + P) = (-1)" q*
nN Sap =I =P) +43 ETE sin 2no sin 2np  

LNO2( (.1,.2) , (.4,.5) .5) = (.148665261996, —.247135067716)  
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

Ln[d,(c + B, K)/ a peC VALUE
ya — B, K)] k' €(0,1)    

 

 

n Oo +B. 1 =4 > Cf a sin 2na sin 2n
le -Bk “4&4 nn 1-g” * P

  

LNO3( (.1,.2) , (4,5) .5) = (5.06376342136E-2, —.173164633243)

 

Ln[o,(a + B, K)/

By(0 — B, K)]
oa, BeC VALUE
kK (0,1)

 

     
Y,(0 + B, k) = 1 q°

In 5.0 BW =4 2 nT ogr on 2na sin 2np 

LNO4( (.1,.2) , (4,5) .5) = (1.35910093279E-2, .256261444948)

 

m=1-k? K' [0,1] VALUE
 

 

   UP DIRECTORY NONE PARENT MENU
 

EVALUATION OF THE 6,(w, k) THETA FUNCTIONS

Programs to evaluate these four functions and their logarithmic derivatives are
given on the next page. See the equations on page 99. The k input to these

programs is, as usual, the complementary modulus kK'.   
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 ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }
 

FUNCTION  COMMAND INPUTS
 

OUTPUTS
 
 

01ZK;:

02ZK;:

03ZK;:

04ZKj:

 
<

> Wk «

> Wk «

-> Wk «

> WwW Kk «<

'91ZQ( nxw , KP—Q(K) )'

'92ZQ( mxw , KP—Q(K) )'

'93ZQ( mxw , KP—Q(K) )'

'94ZQ( mw , KP-Q(K) )'

TIUKj: « » Ww k « nxTIUQ( mxw , KP-Q(K) )) ->NUM > >

T2UKj: « » Ww k « nxT2UQ( mxw , KP-Q(k) )) ->NUM > >

T3UKj: « » Ww k « 'nxT3UQ( mxw , KP-Q(k) )) -NUM > >

T4UKj: « > Ww k <« 'txT4UQ( mxw , KP-Q(k) )' -NUM > »>

—-NUM > »

NUM > »

NUM > »

NUM > »

 

 
For definitions see Chapters 16 of Abramowitz and Stegun, Handbook of

Mathematical Functions, AMS 55, 1964.
Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental

Functions, Volume 2, New York, McGraw-Hill, 1953.
Gradshteyn, |., and Ryzhik, l., Table of Integrals, Series, and Products, New York,

Academic Press, 1980.
Hancock, H., Theory of Elliptic Functions, New York, Dover, 1958.
Jahnke, E., and Emde, F., Tables of Functions, New York, Dover, 1945.
Korn, G., and Korn, T., Mathematical Handbook For Scientists and Engineers, New

York, McGraw-Hill, 1961.  
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ELLIPTIC THETA FUNCTIONS
MENU { FTNS THETA }

FUNCTION COMMAND INPUTS OUTPUTS

  
    

Magnus, W., Oberhettinger, F., Soni, R., Formulas and Theorems for the Special
Functions of Mathematical Physics, New York, Springer-Verlag, 1966.

Morse, P., and Feshbach, H., Methods of Theoretical Physics, New York, McGraw-

Hill, 1953.
Whittaker, E., and Watson, G., Modern Analysis, New York, Cambridge Univ. Press,

1969.

 

LERCH'S TRANSCENDENT @(z, s, a)

Lerch’s transcendent is a generalization of the Riemann zeta and polylogarithm
functions. Riemann showed that {(z) can be expressed as an integral of 0,(w, k).

D(z, s, a) =Y (00 +n)sz" 1z| < 1
n=0

1 - ts! e™ 1 - ts! e (1-ot dt

D(z, s, 0) = m9). 1-2ze dt = role et -2z

RE a > 0, and either z is not on the branch cut from 1 to « with RE s > 0

or z=1and RE s > 1.

 

Lerch’s transcendent is available. See Appendix A. Special cases include the
generalized Riemann zeta function {(s, a) = ®(1, s, a), Euler's dilogarithm £,(z) =

Zz ®(z, 2, 1), the polylogarithm (Jonquiere) function ££(z) = z ®(z, n, 1), the
Fermi-Dirac function F(n) = e" I'(k + 1) ®(-e", k + 1, 1),

and ®(z, 1, a) =o" ,F,(1, 0; 1 + a; 2), |Z] <1.

21% I'(s) {(s) cos = =m (1-8) 22T(1-s) {1-s) sin = = n'"® {(s)       
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS

INTRODUCTION

This chapter presents the 18 commands in the confluent hypergeometric function
menu. Besides solving very general differential equations and providing a method of
evaluating numerous integrals, they offer a means of analytically continuing many
functions. Table 13.6 in AMS 55 shows the numerous special cases of these functions.
The CHYPR menu contains commands for evaluating both of the confluent
hypergeometric functions in addition to many special cases. Generalized
hypergeometric functions are discussed at the end. Additional special cases are in the
GAMA, ERROR, and BESEL menus and the parabolic cylinder function menu PCLDR.

CONFLUENT HYPERGEOMETRIC FUNCTIONS

There are two basic hypergeometric functions in use. The first is Kummer’s function

M(a, b, z) = ,F,(a; b; 2):
- (a), z"

M(a, b, z) = >or (a), = a(a+1)a+2) ... (a+n-1), (a), = 1,
n=0 n .

where arguments a, b, z are complex, and (a), = I'(a + n)/T'(a) is Pochhammer’s symbol.
Note that (a), is well defined for a = negative integer even though neither gamma
function itself is defined. Command POCH in the MISC menu provides numerically
stable evaluation of (a), for all complex values of a and all integer values of n.

113



114 CONFLUENT HYPERGEOMETRIC FUNCTIONS CH 12 : CHYPR

The second basic function is Tricomi’s U(a, b, z) defined by

_ mn M@,b,z) ; M(l+a-b, 2-b, 2)

veb2) 3p Fa ca-bId) T@T2-b) I

Observing all the possible ways U(a, b, z) might be undefined as b goes to an integer,
you will be surprised to learn that U(a, b, z) is well defined for all b, while F(a, b, z)
is undefined or singular for negative integer values of b. Clearly, many cases must be
considered when evaluating these functions in the complex plane, requiring numerous
sets of equations. The commands MABZ and UABZ evaluate these two functions.
DNM and DNU evaluate their nth derivatives. When the logarithmic solution of

U(a, b, z) is required, the computation can take over a minute, due to the evaluating
of three infinite series of digamma functions, in addition to evaluating MABZ twice.

 

INCOMPLETE GAMMA FUNCTIONS

INCGC and INCyC provide analytically continued evaluation of the incomplete
gamma functions I'(a, z) and y(a, z) defined in Chapter 5. :

BESSEL AND KELVIN FUNCTIONS

JVOZ, YVOZ, IVOZ, KVOZ, H1VZ, and H2VZ provide analytically continued
evaluation of the Bessel functions J(z), Y,(z), I(z), K(z), H"(z), and H,”(z). BEV&
and KEV& provide evaluation of the Kelvin functions ber,(x) + i bei(x), and ker,(x)
+ 1 kei,(x) defined in Chapter 7 for real order and non-negative argument.

WHITTAKER AND COULOMB WAVE FUNCTIONS

MKnZ and WKpZ provide Whittaker’s functions M,(z) and W,(z). Programs are also
given for evaluating the Coulomb wave functions F;(n, p) and G;(n, p).

ACCURACY CONSIDERATIONS

The nicest thing one can say about the hypergeometric functions is that almost every
common function is a special case of them. The nastiest thing one can say is that
except for a very limited range of arguments, they are useless for evaluating these
functions. MABZ reproduces the numbers in AMS 55 and Slater to 10-digit accuracy
(the tables are less than 10 digits), which of course is on the real number line.
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However, the process of analytically extending these functions to arbitrary complex
arguments does create numerical problems for large argument values, even though
MATHLIB uses the best asymptotic expansions available. For example, consider
computing I(x) using M(a, b, z) with the equation given on page 118.

I,(10) = 777.188286404 RESULT = 777.1883936

I1,;(10) = .104371490706 RESULT = .249472373707

I,(100) = 9.47009387301E41 RESULT = 9.47009387308E41

I,,(100) = 3.47368638152E41 RESULT = 3.47368638152E41

There is very good agreement between the numbers for z = 100, but very poor
agreement for n = 15 and z = 10. This problem is due to the limited computational
precision of the HP 48. Twelve digits are not enough. Consequently, a few test cases
in the complex region of interest are worth making. Accurate cases include M(a, b, z)
and U(a, b, z) for a equal to a negative integer or zero and U(a, b, z) for a + 1 - b equal
to a negative integer or zero. These cases are polynomials. U(1, b, z) or U(a,a, z) for
non-negative integer a is also accurate since it is evaluated using ENOZ. Apart from
these special cases, UABZ uses MABZ in its evaluation and large magnitudes of
argument a generally result in erroneous results from MABZ as in the I;(10) example
above. Accurate evaluation of the hypergeometric functions for large arguments
requires unlimited large precision arithmetic which is not practical on the HP 48. A
useful test program for measuring the accuracy of MABZ and UABZ is given below.
It compares the result from KVOZ with K(z) evaluated using UABZ for v, z € C.

z 2 x UABZ p« > vzevz KVOZ v 5 + 2 +

Z X > >

x 1

Vv x z EXP / 2 A x
Vv
Vv

Within the range of convergence, hypergeometric functions provide analytically
extended methods of evaluating I(z) for complex v and z as well as numerous other
functions. Since there are no complex plane tabulations for M(a, b, z) and U(a, b, z),
special cases are also the primary means of software verification off the real number
line. For sufficiently small arguments (less than 1), they provide a full 10 digits of
accuracy in the complex plane. But for larger arguments, there are no general
asymptotic formulas that work all the time for all combinations of parameters.

Also note that since U(a, b, z) is not analytically continued beyond (-=, =], if we used
it to evaluate YVOZ, H1VZ, and H2VZ, the values would be only valid in three of the
four complex plane quadrants. Other equations are used for all the Bessel functions.
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
  
 

 

   

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

M(a,b, z) ab, zeC VALUE

NTH DERIVATIVE a,b,zeC neN VALUE

M(a, b, 2)

9” Ma, b, 2) = @®, M@ +n, b +n, z)
dz™

n

Neither is numerically defined for b = 0, -1, -2, . . . with the exception MABZ(a, a, z)
= EXP(z) for a > 0. The commands are not numerically stable near these poles and

singularities. See the accuracy comments on page 115.

 U(a, b, 2) a,b zeC VALUE

 NTH DERIVATIVE a,b,zeC neN VALUE
U(a, b, 2)  

 

  
 

= UG, b, z) = (-1)* (@), UG@ +n, b + n, 2)

Numerical instability may be observed in the neighborhood of b = 0, +1, £2, . . ..
|z] < 1E-20 results in a bad argument error since these cases are not programmed.

In the region 6 < |z| < 20 the accuracy of MABZ and UABZ can be very poor.

 I'(a, z)
 

 

  
a,zeC VALUE

 

_ z*E,_,z a=0-1-2,...

Te. 2) = Ul -a,1 - a, 2)

Numerical instability may be observed in the neighborhood of a = 0, -1, -2, . . ..   
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

va, z)

 

 

   

 

a,zeC VALUE
 

v(a, z) = z* M(a, a + 1, -z)/a

Undefined at and numerically unstable in the neighborhood of a = 0, -1, -2, . . ..

 

 

 

  
J,(2) v,zeC VALUE
 

I) = AD ea My + 520+ 1,22) ve-l -15 2...
I'v +1)

J5(10) = —.234061528189 JVOZ(5,10) = —.234061527314

J,5(10) = 4.50797314374E-3 JVOZ(15,10) = 4.50797314367E-3

J5(100) = -7.41957369642E-2 JVOZ(5,100) = -7.4195736964E-2

J,5(100) = 1.51981212243E-2 JVOZ(15,100) = 1.519812122222E-2

 

 

   
v,zeC VALUE
  Y,(2) = -2 [end yy + 5,1 + 2v, 2iz) + eA US + v, 1 + 2v, -2iz)]

TC

Y((10) = .1354030477 YVOZ(5,10) = .135403046641
Y,5(10) = -6.364745877 YVOZ(15,10) = —6.36474587695

Y((100) = —2.948019628E-2 YVOZ(5,100) = —2.94801962796E-2
Y,5(100) = 7.879068695E—2 YVOZ(15,100) = 7.87906869454E—2

Accurate for v equal to a negative integer, but unstable in the neighborhood.    
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

1(2) v,zeC VALUE

 

 

   

 

 

12) = Fos eM + 5, 2v+ 1,2) v#-l -15 2...

5(10) = 777.188286404  IVOZ(5,10) = 777.188286404
(10) = .104371490706  IVOZ(15,10) = .104371490706

(100) = 9.47009387301E41  IVOZ(5,100) = 9.470093873E41
(100) = 3.47368638152E41  IVOZ(15,100) = 3.47368638152E41

 

 

    
K,(2) v,zeC VALUE

Kz) =n 22) e2U(v + 5, 2v + 1, 22)

Ks(10) = 5.75418499E-5 KVOZ(5,10) = 5.75418499828E-5
K,s(10) = .2656563849 KVOZ(15,10) = .26565638374

Ks(100) = 5.27325611E-45 KVOZ(5,100) = 5.2732561133E-45
K,5(100) = 1.42348325E-44 KVOZ(15,100) = 1.42348325115E-44

Accurate for v equal to a negative integer, but unstable in the neighborhood.

 

 

 

  
H,"(z) v,zeC VALUE
 

HOR) = 2 BD o-tse94k Yiy + 5, 2v + 1, -2iz)
T    
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
 

FUNCTION COMMAND INPUTS OUTPUTS
 

H,®(z)  

 

 v,zeC  VALUE
 

T

H(z) = J(2) +1 Y,(2),

HO) = 2 oe eink Yly + 5, 2v + 1, 2iz)

Note that H,'"(z) and H,/?(z) are actually evaluated from the relations

H,2(z) = J(2) - i Y,(2).

 

 

 

  
 

 

 

 

  
 

 

 

 

  
 

 

 

 

  
 

   

 

  

ber,(x) + i bei,(x) x>0 VALUE

ber,(x) + i bei(x) = J(xe*™**)

ker,(x) + i kei,(x) x>0 VALUE

ker,(x) + i kei(x) = .5ir H,(xe)

M..(2) kK MNZeC VALUE

M(2) = 2° eZ Mu -x + .5, 1 +2, 2)

W,,(2) KM, zeC VALUE

W,(2) =2"°e™ Un -x+.51+2y,2)

(2) zeC VALUE
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

 

     
BEHAVIOR OF U(a, b, z) AT THE BRANCH CUT

The negative real axis is the branch cut of U(a, b, z). The discontinuity equals

2m 1b Ma-be1,2-b,-E) b#2, 3, ...
Uta,b,-§+i0) - Uab,-¢-i0) = T® TCH

(-1)b2 T Ma b, -§) b=2,3,...
I'(a-b + 1DI(b)

for & > 0 which corrects Erdelyi, Volume |, page 263, Equation 16. This proves that
YVOZ, H1VZ, and H2VZ would be only valid in three of the four quadrants if U(a, b, z)

is used for the computation since the "i" in the argument z of U(a, b, z) is a
90-degree rotation in the complex plane.

U(1.5, 2, (-2,1E-499) ) — U(1.5, 2, (-2,~1E-499) ) = (0, .914051587489)

U(1.5, 2.3, (-2,1E-499) ) — U(1.5, 2.3, (-2,-1E-499) ) = (0, .820913698703)  Observe that the branch cut vanishes when a is a negative integer or zero. U is also
one-valuedwhenb=n+1,n=1,2,... and a is one of the integers 1, 2, . . ., n, so

that U becomes a polynomial in z™.

 

COULOMB WAVE FUNCTIONS

Coulomb wave functions are the solution of the differential equation

dw |; _2n _ LL+D w =20.

dp? p p?

The general solution is w = C, F(0, p) + C, G.(n, p), where C, and C, are constants.   
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

 
F.(m, p) is the regular Coulomb wave function, and G(n, p) is the irregular

(logarithmic) Coulomb wave function. For sufficiently small arguments, these may be
[levaluated in terms of the confluent hypergeometric functions M(a, b, z) and U(a, b, z).

The equations are

 
E.(n, = 2L e "n/2-ip +1+in)| rer ppg oq -i ,2L +2, i2L(n, p) TCL +2) p (L n 2)

Gun, §) = 1207 eveenek LrTA phUL41min,22, 29) + 4 Fyn, 0)

For large arguments, use the equations in AMS 55. When n = 0, these equations
reduce to p times a spherical Bessel function:

F.(0, p) =p ip) G(0, p) = - p Yi(P),

which corrects 14.6.6 in AMS 55.  
FLnp: « =» L n p <« "2"XEXP(-nxn/2-ixp)xABS(GAMMA(L+1+ixn))/
GAMMA(2xL+2)xpML+1)xMABZ(L+1-ixn , 2xL+2 , ix2xp)' NUM > »> 

Glnp: « =» L n p <« "ix2ML+1)XEXP(nxn/2-ixp+ixmxL)xGAMMA(L+1-ixn)/

ABS(GAMMA(L+1-ixn))xpM(L+1)xUABZ(L+1-ixn , 2xL+2 , ix2xp) + ixFLnp(Ln,p)’

—NUM >» »>

For real arguments, the Coulomb wave functions are real, so the magnitude of the
imaginary part is a good measure of accuracy. For example:    
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
 

FUNCTION  
COMMAND  

INPUTS  
OUTPUTS
 

 

FLnp(0, 20, 5) = (1.64766608015E-16, —2.1241E-27)

FLnp(0, 20, 10) = (68046931991.5, —1.73519055679E14)

FLnp(10, 10, 5) = (3.28278060513E-10, 5.535E-21)

FLnp(10, 1, 5) = (6.42377335421E-4, —7.0343E-14)

where the large imaginary part in the second case indicates that the computation
diverged. The magnitude of the imaginary part should be small compared to that of

the real part.

Similarly, for GLnp we have the example:

GLnp(0, 10, 1) = (3087903858.71, —-68978.60974),

which is accurate to about 4 digits. Similarly,

GLnp(0, 1, 5) = (-.898415236924, .000000342631)

GLnp(0, 10, 5) = (-3527957308.07, -51091675548.3)

GLnp(5, 2, 5) = (5.62984618287, 6.016727E-7)

GLnp(10, 5, 5) = (91871.589099, 5.08717267472E-3),

where clearly GLnp(0, 10, 5) did not numerically converge.

  UP DIRECTORY
 

 

 
NONE

  PARENT MENU
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

AIRY FUNCTIONS AND THEIR DERIVATIVES

The Airy functions and their derivatives are easily computed in terms of Bessel
functions. For { = 2/3 z*?, the relationships are

Az) = sz [ Lu0) - 1,0 1 =n y2/3 KD),

Ai(-2) = Vz [50 + I40 1,

Ai'(z) = 572 [ Lyg(0) - Ly1 = nt 24/3 Kp),
Ai'(-z) = I Zz [ J550) - Jos(0) 1,

Bi(z) = Vz/3 [ I_,,0 + I,(0) 1,

Bi(-z) = vz/3 [ J_15(0) = J50 1,

Bi'(z) = z/\3 [ Ip) + LO) 1,
Bi'(-z) = z/V3 [ J_py() + d,5(01.

The Airy functions and their derivatives may thus be evaluated using JVOZ, IVOZ,
and KVOZ.    
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CONFLUENT HYPERGEOMETRIC
FUNCTIONS MENU {FTNS CHYPR}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

GENERALIZED HYPERGEOMETRIC FUNCTIONS

= (0,0), ... (0), zn»

 

F0,05,..,03 Bua,Bs 2) = Tyra—gs= Sr
F,(a; b; z) is given in this menu and , F(a, b; c; z) is given in Chapter 14.

= (0), z"
0 Fi(B; 2) = YHi Fla; 2) = > =

The below programs compute these hypergeometric functions.

FOF1: « —» PB z 'Z(n=0,100,z*n/POCH(p,n)/n!)’ >

FIFO: « — o z 'Z(n=0,100,2"nxPOCH(o,n)/n!)’ >

 

For definitions see Chapter 13 of Abramowitz and Stegun,
Handbook of Mathematical Functions, AMS 55, 1964.

Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental

Functions, 3 Volumes, New York, McGraw-Hill, 1953.

Luke, Y., Integrals of Bessel Functions, New York, McGraw-Hill, 1962.

Slater, J., Confluent Hypergeometric Functions, New York, Cambridge Univ.
Press, 1960.      
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PARABOLIC CYLINDER
FUNCTIONS

INTRODUCTION

This chapter presents the 12 commands in the parabolic cylinder function menu.
These functions are solutions to the wave equation in parabolic coordinates. The
Bessel functions discussed in Chapters 7 and 8 are circular cylinder functions, whereas
these are parabolic cylinder functions. These functions can be evaluated in terms of
the Confluent Hypergeometric functions discussed in Chapter 12. Commands are
given for both the classical Weber-Hermite functions as well as the newer AMS 55
normalized functions. Special input test commands are also provided.

WEBER-HERMITE FUNCTIONS

The commands DVOZ, EV0Z, and EV1Z evaluate Weber's functions D(z), E“(z), and
EP(z), respectively. The parabolic cylinder function D(z) is related to the Hermite
polynomials H(z) and He(z) discussed in Chapter 16 by the equations

H(2) = 2*2 e* D(2/2), D,(z) = e =" He(2).

These are the functions found in the older references (before 1964).
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AMS 55 PARABOLIC CYLINDER FUNCTIONS

In Chapter 19 of AMS 55, three newer parabolic cylinder functions are discussed.

Commands UOAX and VOAX evaluate the functions U(a, x) and V(a, x) defined by

UG, x) = D_,4,®) ve 0 = T20gn ma Dom)+ Dyol0),

which are solutions to the differential equation

2
[= aly -o.

a? (4

AMS 55 also discusses the function W(a, +x) which is evaluated by WOAX and

satisfies the differential equation

2
dy + [= -— oy = 0.

dx? 4

The complex solutions

E(a, x) = kK W(a, x) +i 3 W(a, -x) E*(a, x) = gt W(@, x) - i K? W(, -x)

where k = v(1 + e¥™) — e™ and 1/k = V(1 + €™) + e™ are also used.

The discussion in Section 19.16 of AMS 55 implies that the second term in W(a, +x)

defined below is missing a e™* factor. It is not.

The Math Library generally agrees with the five digit tables in AMS 55, though some
small differences have been noticed around U(5, 5) and W(5, 5).

INPUT TEST COMMANDS

Three special input test commands are also given. They test numbers to see if they
are integers, negative integers, or nonpositive real numbers.
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PARABOLIC CYLINDER
FUNCTIONS MENU {FTNS PCLDR}
 

 

 

   

 

 
 

 
 

 

   
 

 

 

 

  

FUNCTION COMMAND INPUTS OUTPUTS

U(a, x) aekR x>0 VALUE

V(a, x) ack x>0 VALUE

W(a, +x) a, x eR VALUE

ost ay ING01% Mie}, , fixW(@, tx) =— 3 1. -ix?/4 1,,.3 3 1; 22/7 * V2 [T+in)| xe™ M(ia+3, 2, Jix?)

D.(z) v,zeC VALUE

D(z) = 22 e** U(-v/2, 0.5, z%[2)

E92) v,zeC VALUE

E."(2) v,zeC VALUE 
 

 EP@) = 2 eM M(-v/2, 1/2, z%2)

EP@) = 2z eM M((1 - v)/2, 3/2, z%2)
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PARABOLIC CYLINDER
FUNCTIONS MENU {FTNS PCLDR}  
 

 

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

rz) zeC VALUE

v(z) zeC VALUE

TEST NOT zeC 1 IF TRUE
POSITIVE 0 IF FALSE

TEST IF zeC 1 IF TRUE
INTEGER 0 IF FALSE

TEST NEGATIVE zeC 1 IF TRUE
INTEGER 0 IF FALSE  

 

 
 

TNP returns a 1 unless z is real and z > 0.

Tl returns a 0 unless z is a real integer in LL

TNI returns a 0 unless z is a negative real integer or zero.

 
UP DIRECTORY

 

 

  
NONE PARENT MENU
 

For definitions see Chapters 13 & 19 of Abramowitz and Stegun,
Handbook of Mathematical Functions, AMS 55, 1964.

Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental
Functions, Volume 2, New York, McGraw-Hill, 1953.

Whittaker, E., and Watson, G., Modern Analysis, New York, Cambridge Univ.
Press, 1969.    
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GAUSSIAN HYPERGEOMETRIC
FUNCTION

INTRODUCTION

This chapter presents the six commands in the Gaussian hypergeometric function
menu. Besides solving a very general differential equation and providing a method of
evaluating numerous integrals, they offer a means of analytically continuing and
evaluating many functions. Both confluent hypergeometric functions discussed in
Chapter 12 can be obtained as limiting cases of the Gaussian hypergeometric function.
AMS 55 lists many of the special cases. MATHLIB provides the incomplete beta
function in this menu and the associated Legendre functions in the next chapter and
menu.

GAUSSIAN HYPERGEOMETRIC FUNCTION

The basic Gaussian hypergeometric function is defined by the series

= (a),(b), zn» Ic) T@a+ nb+n) zo
F(a, b, ¢, z) = F(a, b;c;z) = Yo oT = Term YTem~ =

n=0 n=0

129
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where again (a), = I'(a + n)/T'(a) is Pochhammer’s symbol, which can be evaluated by
POCH in the MISC menu. The convergence of this series depends on a number of
conditions. For example, when either a or b is equal to a negative integer —n, then F
reduces to a polynomial of degree n. Through the use of linear and nonlinear
transformations, the definition of F can be extended to the entire complex plane. The
trick is, of course, to find the right transformation for your application that avoids
dropping negative integers or zeros into the argument of any gamma functions. For
example, as c goes to a negative integer or zero:

lim 1 Fe, b, ¢, 2) = mina7 : z®' Fa +m+1,b+m+1 m +2 z).
c~-m C m + !

FOGC evaluatesthis case, and D2F1 evaluates the nth derivative of F using the F2F1

command. F2F1 evaluates a practical subset of the numerous cases. When F reduces
to a polynomial, z can be almost anything. When F does not reduce to a polynomial,
then either |z| < 1, or for a — b not an integer, F can be evaluated everywhere with
F2F1 except the branch cut on the real axis from 1 to «. Equations for the various
logarithmic solution cases where a, b, and c¢ are integer related are given in AMS 55
and Erdelyi. These cases can generally be approximated with F2F1.

RELATIONS

There are a number of simple relations which apply to Gaussian hypergeometric
functions. The first is symmetry of the a and b arguments: F(b, a, ¢, z) = F(a, b,c, z).
Secondly, for all b, F(a, b, b, z) = (1 — z)™. When either a or b is a negative integer,
say —m, the series becomes a polynomial:

m (-m),(b), zn»
F(-m, b, Cc, z) =  — = .

n=0

 

Several of the polynomials discussed in Chapter 16 are special cases of F(a, b, c, z).
AMS 55 lists a number of other special cases. In addition, for integers j, k, m for m
+c#0,-1,-2,... AMS 55 lists numerous interrelations between the six functions

Fa+ 1,b, cz), F(a,b + 1, c, z), and F(a, b, ¢ = 1, z) in terms of the hypergeometric
functions F(a + j,b + k, ¢ + m, z). Also,forc#0,-1,-2,...and RE(c -a -b)>0, we
have the special case



CH 14 : GHYP GAUSSIAN HYPERGEOMETRIC FUNCTION 131

I'c) T'(c - a -Db)
F@@, b,c, 1) = .

I'c - a) I'(c - b)

EVALUATION OF F(a, b, c, z)

The circle of convergence of the Gaussian hypergeometric function is the unit circle.
F2F1 gives a bad argument error if the arguments do not correspond to a convergent
case. For example, when RE(c — a — b) < -1, the infinite series always diverges when
|z| =1 and z # 1. There is absolute convergence for RE(c — a — b) > 0 and conditional
convergence in between. When neither a or b is a negative integer, the series is
undefined forc = 0, -1, -2, .. ..

As with the confluent hypergeometric functions, the accuracy ofF2F1 is limited by the
12-digit precision of the HP 48. Large values of the a or b arguments can result in
erroneous computation.

AMS 55 lists a number of linear transformations which are useful identities. For

example:

Fla, b,c, z2)=(1 -2°*P Fc -a,c-b,c, 2)

= (1 “Dt Efne-be z
z -1
 

 “4-9Fhe no z }
z -1

To evaluate cases where |z] is close to 1 and |arg (1 — z)| < © use the formula

Fa, b,c, z) = LOTC=2"D) pop asb-c+1,1-2
I'(c -a)['(c-b)

+ I'(c)['(a +b -¢) a _ z)°vb F (c -ac - b, Cc -a- b + 1, 1 - z)

I(@I'(b)

when c # a + b + m for integer m. Formulas for the other cases are given in AMS 55.
Quadratic and cubic transformations are also available.



132 GAUSSIAN HYPERGEOMETRIC FUNCTION CH 14 : GHYP

 
 

GAUSSIAN HYPERGEOMETRIC
FUNCTION MENU { FTNS GHYP }

 
 

 

  

FUNCTION COMMAND INPUTS OUTPUTS

F(a, b, c, 2) a,b,ceC VALUE
|z| £1

NTH DERIVATIVE a,b,ceC VALUE
F(a, b, c, z) |z| <1 neN

F(a, b, ¢, z)/T'(c) a,b,ceC VALUE
|lz| <1  

 

 In the above Gaussian hypergeometric functions the case where |1 - z| < .01 and
c = a + b+ mwhere mel is not programmed. To evaluate it add a small number

to your choice of a, b, or c.

For small a and b and |z| < .95, you generally get about 10 good digits. As |z|
approaches 1, the approximations break down and you may only get 3 good digits.
When a or b get large compared with c, the approximations go bad. For these

cases, try the linear transformations or recurrence formulas. The below formulas
can be used to check accuracy (AMS 55 lists many more):

F(1,1,2,2)=-z"In(1 =z) F(5,1,15,-2%) =z" arctan z 
Fa, 5+a,.52)=[(1+22+ (1 -27%)2

See Chapter 15 for more discussion related to these functions.

ANALYTIC CONTINUATION

F2F1, D2F1, and FOGC do evaluate F for |z| > 1, provided argz=0 anda -b is
not an integer, using linear transformations. If you get a bad argument error, you

will have to carefully think out which case (equations) you are evaluating and
modify your inputs accordingly.     
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GAUSSIAN HYPERGEOMETRIC
FUNCTION MENU { FTNS GHYP }
 

   FUNCTION COMMAND INPUTS OUTPUTS
 

EXAMPLES

F2F1(1.2, -3, .7, 23) = -28587.4631188

F2F1(1.2, 0.8, 3.5, 0.9) = 1.46874542178

F2F1(7.8, -5.3, 4.11, (3,-1)) = (-521.277031973 , 1576.50699403)

The case F2F1(7.8, -5.2, 4.11, (3,-1)) will result in a bad argument error since
b - a=-12. To evaluate it you may either program the equations in AMS 55 or do

the approximation:

F2F1(7.8, -5.2000000001, 4.11, (3,-1) ) = (-71.9253996891, 1468.8278948).

F has a branch cut from 1 to +e, so F is not continuous there.

F2F1(7.8, -5.2000000001, 4.11, (2, + 1E-8))
= (-35.9525409978 , + 26.1210477685)

 

 

   
(a, b) abeC |z|<1 VALUE
  INCBH provides analytic continuation for the incomplete beta function. See

Chapter 5.

INCBH is not defined ata, b,ora+b=0, -1,-2,....

 

rz) zeC VALUE
  UP DIRECTORY NONE PARENT MENU    
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GAUSSIAN HYPERGEOMETRIC
FUNCTION MENU { FTNS GHYP }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

NOTES ON THE HYPERGEOMETRIC FUNCTION

When either a or b is a negative integer, say a = -m, the series becomes a
polynomial:

(cm)0), znF(-m, b, c, 2) = Xo oT

Erdelyi and AMS 55 define this equation to hold even when c is a negative integer,
suchthatc=-m-jforj=0,1,2,... eventhough forj=0, F(-m, b, -m, z) =

(1 — 2). We follow their definition for j > 0, but use (1 — z)™® for j = 0. However,
the user should understand that even with these definitions, F2F1 is not numerically

stable in the neighborhood of ¢c equal to a negative integer.

F2F1(-5, 2.5, -5, .5) = 5.65685424949

F2F1(-5, 2.5, -5.0000000001, .5) = 5.09460449191

F2F1(-5.0000000001, 2.5, —4.999999999, .5) = 5.03837951961

F2F1(-5.0000000001, 2.5, (-5,1E-499), .5)
= (5.09460449248,5.62249757281E488)

 

For definitions see Chapters 15 of Abramowitz and Stegun, Handbook of
Mathematical Functions, AMS 55, 1964.

Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental
Functions, Volume 1, New York, McGraw-Hill, 1953.     



15

LEGENDRE AND STRUVE
FUNCTIONS

INTRODUCTION

This chapter presents the six commands in the Legendre function menu LGDR and the
six commands in the Struve function menu STRUV. The Legendre functions are
solutions to wave and diffusion differential equations in spherical coordinates and are
thus commonly called spherical harmonics. Struve functions are useful for evaluating
certain integrals, and since there are only two functions, we have included them in this
chapter.

In the below discussion of Legendre functions, we assume that the reader is very
familiar with the definitions, properties, and transformations of Gaussian
hypergeometric functions.

ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions of the first and second kind are denoted by P*(z)
and Q(z), where v is the degree and p is the order. The associated Legendre
functions may be defined in terms of the Legendre functions P,(z) and Q(z) for p = m
=1,2,... by the relations

d™ P (2)
PIG)= (F< DR SE, QR=F-Q@

135
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Clearly, P,%(z) = P,(z) and Q,(z) = Q,(z). When pn = 0 and v is an integer n, then P,(z)
is called a Legendre polynomial. P_(z) is one of the orthogonal polynomials discussed
in Chapter 16. The Legendre function Q,(z) may be expressed in terms of P,(z). P,"(z)
is trivial to compute, and all the rest are more difficult.

In general, degree v and order pu are complex. The associated Legendre functions may
be defined by

  

B2 -
Pl(z) = 1 = F(-v, v+1, 1-p, 1h 1-z| <2,

I(1-p) =

SE I'v+p+1) oo v vQl@) = elrno tis mn 1(z2-1)m2 Fl1+3+3 Sid, vs, 2) lz| > 1,

where the hypergeometric function transformation formulas discussed in Chapter 14
extend the definitions to z € C.

VALUES ON THE CUT

In general, neither of the associated Legendre functions is continuous at the real axis
line between —1 and 1. Consequently, a special definition is used for this cut through
the complex plane. It is

pix) = e*™2 Px + i0) -1<x<1 where f(x + i0) = lim f(x # ig),
0

qi(x) = = e “im le2 Qlx +10) + e™2 QJ(x - 10) -1<x<1.

The commands PuVX and QuVX evaluate p(x) and q(x), respectively.

When v and n equal the non-negative integers n and m, p,"(x) = 0 for m > n, p,’(x) =
l,andform=1,2,...

Pox) = (-1)™ 2m - DD! [1 - x2], Pix) = x (2m + 1) p(x),

so the computation is trivial using the recurrence formula implemented by PQUP.
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RELATIONS BETWEEN LEGENDRE FUNCTIONS

In practice, a number of relations are useful in evaluating the associated Legendre
functions.

Pl(-z) = e*'" P¥(z) - - e " sin[n(v + n)] Q(z), Ql(-z) = -e*"™ Q(z),

where the upper sign is used when IM(z) > 0 and the lower sign when IM(z) < 0. On
the cut we have

Py(-x) = p(x) cos[n(v + W)] - = ¢,'(x) sin[xn(v + w],

0,(-X) = -q;@)cos[n(v + W)] - 2 py@ sin[n(v + w)],

where 0 < x < 1. For negative degree we have

- ipn B + MB . .

P*_(0) =P’), Qa) =o csVEEE

+

QEsnl+ pI
sin[z(v - p)]
 

and for negative order:

-B - Iv-p+Dpe _ 2 -iprg: B -B — a2 A T(v-p+1) opPY@= [rnin@"Re MshumQie)], Qe) eIEiQre).

The recurrence formula used by PQUP for both Pf(z) and Q(z) is

vV-wWP@=Qv-1DzPl@@-(v +p -1)PLE.

Two other useful recurrence formulas satisfied by both P*(z) and Q(z) are

PM@) = 22 - DV (v - 1) zP}@) - (v + 1) PL@),

P'.@ =P’,@+ @v +1) 2 - DP).
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POLYNOMIALS P,™(z)

Some authors fail to carefully make the distinction between formulas in the general
case and ones which only apply to the cut. Consequently, we derive a basic formula
which is missing in AMS 55.

1 -2z 
 ) [1 -2z| <2_ 1 z +1

z -1

br
Fv, v+1,1-p

Observe that the ¢ argument 1 — pn of the hypergeometric function F(a, b, c, z) is the
same as that of the gamma function. This special case is handled by the FOGC
command, which properly evaluates the case where n goes to one of the integers 0, 1,
2, .... We are about to prove the following fact that you can try on the HP 48. For
non-negative integers n and r, we have

FOGC(-n, n+1, 1-n-r,2z) = 0 r>0 zeC

Hence, P,"(z) = 0 for non-negative integers m = n + r and n whenever m > n. If we
apply the second hypergeometric function linear transformation listed in Chapter 14
to our above definition of P*(z), we get the equation

p2 Vv n-v -

Pi) = [221 2+ "2% p(y 4 ov, 1-p 221)
z -1 I'd - p) z +1

 
 

Taking the limit as p goes to the non-negative integer m, using the equation in
Chapter 14, we have

P.(2) = El [z+1]" 2-v (Vn (-m-v), = F [m-. —v, m+1, 23)

z- m! z+1 z+1
  

Observe that if v = m, then the hypergeometric function equals 1, because for any
positive integers r and s we have

9 0), (-0, zk
FO -1,5, = =1,©, -1, s, 2) X or ©

F(r052=)xOz_,
Z ©, KX
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The following formula can be derived from the reflection formula for the gamma
function.

I'z + 1)
(2), = (-1) Tz +1 -3) =(-1@z +1 -9), zeC s=0,12,....

Now if this seems hard to believe, evaluate POCH(-5.5, 3) = -POCH(3.5, 3). The
POCH command in the MISC menu evaluates (z), = POCH(z, n) in a numerically
stable way for z eC and n el. Using the (-z), formula and setting v= m — r for non-
negative integer r, we have

 

(-m+n), (2m+n),  (1-p, @+1-D,  @m-)! Cm-n!  _ { gmt r=0
2mm! 2mm) (-0)! (m-1)! m! 2=* (0 r>0

sincer = m — v > 0 implies 2m - r > 0, because v = n equals a non-negative integer.
Hence, P,"(z) = 0 for m >n, Pz) = 1, andform=n=1,2,.. .,

Po(z) = 2m - DN [22 - 1]™2,

where (2m - 1)!! is the command {j(2m — 1). From the recurrence formula we also

have

P_.,(2 =m +1) z P_(2),

which can be compared with the related formulas for z = x on the cut. These formulas
combined with PQUP are fast for computing the associated Legendre functions of
integer order and degree. When m = 0, you can compute symbolically or numerically
the polynomials with the command POFX discussed in Chapter 16. A few examples

are

Pl) = 1 Pl) =z P@) = (32° - 1) Py(2) = 22[5z* - 3]

Pl@) = yz? - 1 P,(z) = 3z/z2 - 1 P@) = 2[52° - 1] Vz? - 1
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P.(z) = 3[z% - 1] Piz) = 15z[z% - 1] P;(z) = 15[z% - 1°72.

Alternatively, using the differentiation formula for P,"(z) we have

d™ P_(2)

dz m
Pl(z) = [2% - 1]™ = [2% - 112 2m - DN,

so P_™(z) = 0 for m > n, since the derivative of the constant (2m - 1)!! is zero.

Observe that as discussed in Chapter 3, both the v’ and SQ commands on the HP 48
have branch cuts on the negative real axis. AS A CONSEQUENCE, ALL THE
EXPRESSIONS IN THIS CHAPTER LIKE (z>-1)> FOR a €C MUST BE
EVALUATED ON THE HP 48 AS (z-1)**(z+1)*> IN ORDER TO OBTAIN THE

CORRECT RESULT.

FUNCTIONS Q,"(z)

In general, the functions Q(z) can be written as

 
. [D2] a1

QM = @W,@, a= Z) Wo 3 Bl0,

where W__,(z) is a polynomial of degree n — 1 and W_,(z) = 0. If we define R,(z) =
W__,(z), then R_(z) satisfies the same recurrence relations as P(z) and Q(z), which is
the easiest way to compute it. The below programs return the algebraic polynomials
P,(z) and R,(z) from O to input v.

PSSV: « > ve {z1} 1z 5 L ap «2 v FORk PB '@xk-1V/kxzxB-(k-1)
/kxo! EVAL EXCO DUP 'L' STO+ 'B' STO 'o’ STO NEXT L >>»

WSSV: « 5 v«{-10} 0-1 >L ap «<2 v FORk PB '(2xk-1)/kxzxp-(k-1)
/kxa' EVAL EXCO DUP 'L' STO+ 'B' STO 'a’ STO NEXT L >>»

Observe that Q,"(z) is a transcendental function, not a polynomial, and Q,™(z) # 0 for
m > n. Some examples are
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 Q@ =a = 1 In 2) = a Py(z)
z-1

Q@ =az-1=aPl@-1

Qf- BED 2

  

  

z 22 = P;(z) - 2

0, _ (5z® -32) _5,,2_ 0 _52,2Qe) = aE 22 2a Be) 2a 2

1. -1 2. _ _2Z 3, _ 622-2
Q(2) J Q; (2) 22-1 Q(2) (z2-1)”

1 -Z 2,  _ 2 3,.\ _ -8z
Q(@) = — ta yz2-1 Q@ = 221 Q (2) = @-1"

 

2.2 2.3

Uo = E22. anf Qe - X12 +a 3 (z2-1)
z2-1 z2-1

- -15z%

+

13 15 3
Q;(@ = ee Q;(@ =

[02

rE+a Vz2-1 Ga - 5

(z2-1) 2/2-

— 4 2 _Q(z) _ 15z% + 25z 8
+a 15z (z%2 - 1)

z? - 1

Aw _ 152° + 402° - 332
5 = + a 15 (22 - 1),

(z° -1)
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Observe the explicit poles at z = +1 in these equations. These formulas allow you to
use the recurrence relations given above.

P_"(x) AND Q,"(x) ON THE CUT

AMS 55 and Erdelyi state general rules for obtaining explicit formulas for p,"(x) and
q,"(x) on the cut —1 < x < 1 where P,(z) and Q(z) are, in general, discontinuous:

e replace z — 1 by (1 - x)e*™"
e replace z + 1 by (x + 1)
e replace (z> - 1) by (1 - x)e*"

for z = x + 10 where =* i0 is the limit as € goes to zero of ie. P,™(z) and p,(x) defined
in the next section is a counterexample to the rules, so use the definition, not the
rules. Some explicit formulas are

Pox) = 1 Pr) = x P,(®) = 53x* - 1) Ps) = Jx[5x* - 3]

pix) = -y1-x2 p(x) = -3xy/1-x2 p(x) = -2[5x*-1] J1-22

 

p2(x) = 3[1-x7] pax) = 15x[1-x7 p(x) = -15[1 -x2?

@ = w= 11a (12) = a pl) QW =ax-1=apl®-1

Pw =aD3gpl- 2
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5x3-3 5 2 5 2
00 = «C2230Delian- 2x22

. -1 2 2x 3 -6x%-2(x) = x = (x) =WOES TT YT om

  0l®) = pa - a J1-x2 Pw) = —2 Cw = 5%

 

_2e2

dx) = X22 yx f1-22 Po) XXL 43 (1-xY
1-x2 -x?

3 -8 1 -15x3 + 13x 2 (% 2 2)
x) = —— x) = —————— -ayl-x?|[=x2-=

* (1-x%*? “ 2/1- x 2 2

-15x4 + 25x% - 8
5 +a 15x (1 - x?)a(x) =

1 -x

-15x5 + 40x? - 33x

1 - x?"
 qx) = -a 15 (1 - x)”,

OTHER SPECIAL CASES

We noted above that P(x) is a particularly easy case. AMS 55 lists several more.
Specifically:



144 LEGENDRE AND STRUVE FUNCTIONS CH 15 : LGDR STRUV

P@) = 2 - DV {[z + @* - DR + [z+ @F - DRY2m

P= [2=i- aR (lz + G2 - DIR - [z + @- DWI
T Vv +

Q, =i ETP (z? - 1)14 [z + (z? - 1)12)v-12

Qe) = ivan EDL fp 2 - ype

27? -
P@=e

On the cut, these formulas become

P,(0) = (=x){[x+i(1 -x)P"MR + [x-i(1-xH1}2m

apy _ os 2 AX) ane _ ric DIRTY
py, (x) iy vel {Ix +i(1 -x%)™] [x -i(1 -x*)"T"})

q,"@ = +i 5 ValZ (1-x)™M {+HxP? - x-ixD)

4,"® = ynf2 grrr { [x+i(1 -xH)W12 4 [x-i(l -x?3)V2]v-12)
V+
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271 - xy)?
p, (x) = Tw +

Observe that p,(x) violates the AMS 55 rules for formulas on the cut, but does satisfy
the definition of on the cut. The first four of the above five equations can be nicely
expressed using the trigonometric substitution x = cos 0 as:

12 cos[(v + 1/2)0]
Pv (cos 0) = 2/ - 0 € ©, )sV T = B I

p.(cos 0) = 2 V2In sin[(v + 1/2)6] 0 € (On),

2v + 1 J/sin

aP(cos 8) = - ymz SBI+ 128]g omy,
sin ©

q,"(cos 0) = V2m_ cosl(v + 1/2)6] 0 € (O,m).
2v + 1 sin ©

These equations explicitly show the poles at x = +1 when p = 1/2.

COMPUTATION OF DERIVATIVES

Derivatives ofboth P*(z) and Q,*(z) are easily computed from the recurrence relations:

B

z* -1) =9 =v +p-p+ D2 - 1 PH@) - pz PH),
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B

(z? - 1) = =vz Plz) - (v + p) P,(2).

RECURRENCE FORMULAS FOR ON THE CUT

With the exception ofthe recurrence relation implemented by PQUP which also works
for p(x) and q(x), the formulas are different on the cut. For x on the cut, the
formulas for p(x) and q,"(x) are

prim) + ZEAE ply + (v - WE + p+ DPI=
1-x2

pL) - pla= @v + 1D) YT - x2 pl},

PL) - xpi=v - p+ DY - x2 pl),

X Pr- pra= (v + w y1 - x2 p!'®),

V - B) xP@ - (v + Bp) pM = v1 - x2 pW,

V-p + DPA- +p +) xpl® =-x2 pw),

B

a - xy BO v+Dxp/® -@-p+1)p,®

= -vx py(®) + (v + p) py).
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SURFACE HARMONICS

Solutions to Laplace’s and Poisson’s equations in spherical coordinates are in the form
of even and odd surface harmonics Y.

Ye,"(6, ¢) = cos m¢ p,(cos 0) Yo,"(6, ¢) = sin mo p,(cos 0),

where 0 <0 < rm and 0 < ¢ <2n. Using complex notation, this can be written as

Y." (8, ¢) = e'™® p"(cos 0) = Ye,(6, ¢) +i Yo,"(0, 9).

For m = 0, these spherical harmonics are called zonal harmonics, since they only
depend on 6, and the nodal lines divide the sphere into zones. The ones for m = n are
called sectoral, since the nodal lines divide the sphere into sectors. For 0 < m < n,
they are called tesseral harmonics. These functions are mutually orthogonal
eigenfunctions being one-valued and continuous for the two-dimensional surface of
the sphere defined by x* + y* + z* = 1, where x = sin 6 cos ¢, y = sin 0 sin ¢, and z =
cos 0. These are most easily evaluated by the formulas for p(x) and p_,,"(x) derived
above and by use of the recurrence relation PQUP.

PROLATE AND OBLATE SPHERICAL AND BISPHERICAL COORDINATES

Solutions to Laplace’s and Poisson’s equations in prolate and oblate spherical
coordinates as well as bispherical coordinates can be expressed in terms of the
Legendre functions p,"(x) and q,"(x). See Morse and Feshbach for details.

TOROIDAL COORDINATES

Solutions to Laplace’s and Poisson’s equations in toroidal coordinates can be expressed
in terms of the Legendre functions P,_,,"(cosh m) and Q,_;,"(cosh 1) for 0 <M < oo.
These are commonly called toroidal or ring functions and can be evaluated with the
commands PuVZ and QuVZ.

CONICAL FUNCTIONS

The conical functions are the solution of the differential equation:
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a-SY -aWoops -2) Ww =o,
dz

where A is a real parameter. The solutions can be expressed in terms of the Legendre
functions

Plea), QlLip.a(2),

and for z equals real x = cos 0 on the cut,

ple.n(cos 0), q'.n(cos 0), 0 e (0m).

GEGENBAUER FUNCTIONS

The Gegenbauer functions C,“(z) and D,““(z), which are solutions to the Gegenbauer
differential equation, can also be expressed in terms of the Legendre or Gaussian
hypergeometric functions. C_“(x) is one of the orthogonal polynomials discussed in
Chapter 16.

LEGENDRE SOFTWARE VERIFICATION

Since the user may easily be confused by the equations and rules which do not work
in the literature, numerous explicit examples have been provided. Remember,
however, ALL THE EXPRESSIONS IN THIS CHAPTER LIKE (z’-1)*2 FOR a €C
MUST BE EVALUATED ON THE HP 48 AS (z-1)**(z+1)** IN ORDER TO OBTAIN
THE CORRECT RESULT. Also, LN((z+1)(z-1)) must be evaluated as
LN(z+1)-LN(z-1) on the HP 48 to avoid incorrect results for some values of z. The
general Legendre commands given below do agree with all these special cases
throughout the entire complex plane.
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STRUVE FUNCTION

The Struve function H(z) is provided by HVOZ and defined by the power series
expansion

- v+ - (-1)° (z/2)*H(z) = (2/2) ) T(n+3/2) I'(n+v+3/2)°
n=0

 

where for integer k > 0, the case v = —(k+1/2) is evaluated as H_,,(2) = (-1)* J,1,(2).
For large arguments of |z|, the asymptotic expansion

1 =! I'k +1/2)
H(z) = Y(z) + TT 2 T(v+1/2-k) (z/2)%-v+1
 larg z| < =

may be used for |arg z| < =.

MODIFIED STRUVE FUNCTION

The modified Struve function Lz) is provided by LVOZ and defined by the power
series expansion

(z/2)*"

T(n+3/2) [(n+v+3/2)’
 L(z) = (2/2)! y

n=0

where for integer k > 0 the case v = —(k+1/2) is evaluated as L_g,(2) = I,5(z). For
large arguments of |z|, the asymptotic expansion

wl (Dk+1/2)

= I'(v+1/2-k) (z/2)%+1
 L(z) =I(2) + 1 larg z| < ®/2

may be used for |arg z| < n/2. Neither HVOZ nor LVOZ includes asymptotic
expansions.
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ASSOCIATED LEGENDRE
(SPHERICAL HARMONICS) MENU

{ FTNS LGDR }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

P(x) ON THE uveC VALUE
CuT -1<x<1    

 

 

PuVX(3,3,0.5) = —9.7427857926 PuVX(0.5 , (1,2) , —0.5) = —28.2756816323

 

un veC VALUEQ(x) ON THE

-1<x<1CUT   

 

 
 

QuVX(3,1,0.5) = —6.1584028714  QuVX(0.5, (1,2) , —0.5) = (0,44.3949135345)

 

P,, P,, pn eC VALUE

v,,V,zeC

RECURRENCE
UP   

 

 
 

PQUP provides upward recurrence over degree v for fixed order 1 and argument z
for all four of the Legendre functions provided in this menu. Since the accuracy of
F2F1 degrades for large values of a and b, PQUP provides a means to evaluate
the Legendre functions of large degree. AMS 55 states that upward recurrence is
not stable for QUVX for positive arguments, but is stable for negative arguments.

The recurrence formula used by PQUP for P*(z), Q*(z), p.*(z), and q,%(2) is

(v-1) Py) = @v-1) 2 P42) - (v+p-1) PL);

so clearly,if at any step v = pu, you will get a divide-by-zero error.   
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ASSOCIATED LEGENDRE
(SPHERICAL HARMONICS) MENU

{ FTNS LGDR }
FUNCTION COMMAND INPUTS OUTPUTS

 
 

 

 

   
 

Let = denote any of the four Legendre functions in this menu. Then the inputs are
1 =2,M2), P,=E,,2),peC vi eC vel and ze Cwhere v - vi must be a

positive integer greater than 1. The output is Z(2).

PQUP( PuvZ( (0.2,0.4), (0.1,0.3) , 0.5), PuvZ( (0.2,0.4), (1.1,0.3), 0.5) ,
(0.2,0.4), (0.1,0.3), (10.1,0.3) , 0.5) = (-0.810572838932,0.398391225278) which
agrees to 8 digits and is more accurate than PuVZ( (0.2,0.4) , (10.1,0.3) , 0.5)

= (-0.810572835215,0.398391226872) 
PQUP( QuvZ( (0.2,0.4) , (0.1,0.3), 0.5) , QuVvZ( (0.2,04), (1.1,0.3) , 0.5) ,

(0.2,0.4), (0.1,0.3), (10.1,0.3) , 0.5) = (-0.162225425703,0.198658115425) which
agrees to 11 digits with

Quvz( (0.2,0.4) , (10.1,0.3) , 0.5) = (-0.162225425704,0.198658115428)

PQUP( QuVX(3, 2, +0.5) , QuVX(3, 3, +0.5) ,3,2, 10, +0.5) =
(-244.565823867,-2.77433298954E-9) and
QuVX(3,10,+0.5) = (~244.565823878,-2.E-9)

PQUP( QuVX(3, 2, -0.5) , QuVX(3,3, -0.5),3,2,10, -0.5) =
(-244.565823867,-2.77433298954E-9) and
QuVX(3,10,-0.5) = (—244.565823904,-2.E-9)

PQUP( QuVZ(3, 2, (0.5+1E-499) ) , QuvZ(3, 3, (0.5,+1E-499) ) , 3,2, 10,
(0.5,+1E-499) ) = (-407.13092507,5244.565823867).

Thus, "on the cut" we get with pn = 3:

0.5e™ [iQ(0.5 +i 1E-499) — i Q,,>(0.5 — i 1E-499)]
= (—244.565823867,-2.34829958282E-9)

which is accurate to about 10 digits.   
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ASSOCIATED LEGENDRE
(SPHERICAL HARMONICS) MENU

{ FTNS LGDR }
FUNCTION COMMAND INPUTS OUTPUTS

i v,zeC VALUE

  
 

   

 

P."(z)
 

PUVZ(1,3,(-1,2)) = (87.7653601152,-25.4314458127)

PuVZ( (0.2,0.4) , (0.1,0.3) , -0.5 ) = (0.699644761889,-2.25868375442)

 

 

 

  
Q(z) wv, zeC VALUE
 

QuVZ(05, (1,2), (1,1) ) = (4.65272798248,17.69617794)

QuVZ( (0.2,0.4) , (0.1,0.3) , 0.5 ) = (~6.40043495202E—2,-0.605644017674)
 

   

 

UP DIRECTORY NONE PARENT MENU
 

For non-negative integers pu and v > p, the following programs combined with
PQUP provide very fast computation of p*(x) and P*(z). The equations are given

above for p,"(x), p,.."(x), P,"(z) and P__,"(2).

PMMX:« —» pu X « IF pu THEN '(-1)"uxjj(2xp-1)x(1-X*2)A(w/2)' —NUM
ELSE 1 END DUP 'Xx(2xu+1)' -=NUM x >» »

PMMZ:« — p Z < IF p THEN 'jj(2xu-1)x(Z+1)MNw2)x(Z-1)w/2) —NUM
ELSE 1 END DUP 'Zx(2xu+1)' 5NUM x > »>     
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ASSOCIATED LEGENDRE
(SPHERICAL HARMONICS) MENU

{ FTNS LGDR }
FUNCTION COMMAND INPUTS OUTPUTS

 

 

 

    

EVALUATION OF p,"(x) AND P,™(z)

For natural numbers m and n with n > m + 2, the below programs provide fast
evaluation of the Legendre functions p,"(x) and P,"(z):

PMNX: « > m nx <mx PMMX mM mn x PQUP > »>

PMNZ: « > mnz<mzPMMZ m mn z PQUP > »>

 

For definitions see Chapters 8 of Abramowitz and Stegun, Handbook of
Mathematical Functions, AMS 55, 1964.

Erdelyi, A., Magnus,W., Oberhettinger, F., and Tricomi, F., Higher Transcendental
Functions, Volume 1, New York, McGraw-Hill, 1953.

Morse, P., and Feshbach, H., Methods of Theoretical Physics, New York,
McGraw-Hill, 1953.       
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 STRUVE FUNCTION MENU
{ FTNS STRUV }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

 

 

 veC zeC  VALUE
 

 

 

  
veC zeC

 
VALUE
 

LVOZ( (0.1,0.3) , (4,3) ) = (-8.93683914434,4.69252342842)

 

See page 149 for asymptotic expansions for HVOZ and LVOZ.

 

 

 

 

  

Y,(2) v,zeC VALUE

(2) v,zeC VALUE

r(z) zeC VALUE 
 

See Chapters 5 and 7 for definitions.

 

UP DIRECTORY

 

  NONE
 PARENT MENU
    For definitions see Chapters 12 of Abramowitz and Stegun, Handbook of

Mathematical Functions, AMS 55, 1964.     
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ORTHOGONAL POLYNOMIALS

INTRODUCTION

This chapter presents the 15 commands in the orthogonal polynomial menu POLY.
The orthogonal polynomials, besides solving various differential equations, are also
useful in the approximation offunctions. These polynomials can be evaluated in either
symbolic form (the equation itself) by using symbolic inputs or in numerical form by
using numbers for inputs. The command PMAT in the MISC menu of Chapter 17
performs polynomial approximations for all the polynomials in this menu. The
CHEBY command in the WIND menu provides the discrete orthogonal Chebyshev
polynomial. FMAT, a faster, less general version of PMAT, is also provided. See

Chapter 28.

JACOBI: P,“P(x) and G,(p,q,x)

GEGENBAUER ULTRASPHERICAL: C,“(x)

CHEBYSHEV: T(x), U(x), C(x), S,(x), and shifted T,*(x), U,*(x)

LEGENDRE: P(x)

155
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LAGUERRE: L“(x) and L(x)

HERMITE: H,(x) and He,(x)

BERNOULLI AND EULER POLYNOMIALS

These polynomials are not orthogonal, but are available in the NUMB menu in
Chapter 18.

CONTINUOUS CHEBYSHEV POLYNOMIALS

The T(x) is also available in coefficient list form as command TOFXL in Chapter 28.

DISCRETE CHEBYSHEV POLYNOMIALS

The discrete Chebyshev polynomials are provided by the command CHEBY in Chapter
28.
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ORTHOGONAL POLYNOMIALS

 

157

 

 

 

ORTHOGONAL POLYNOMIALS
MENU { FTNS POLY }  
 

FUNCTION  COMMAND  INPUTS  OUTPUTS
 

The below commands provide polynomials in variable v of degree n. The inputs
to these commands may be numbers or symbols. In MATHLIB, the degree is

generally the last argument for polynomial commands.

 

 

 

 

 

 

 

 

  
       

Jacobi a Bvn VALUE OR
P_P(x) EQUATION

Jacobi pgvn VALUE OR
G,(p, 9, X) EQUATION

Gegenbauer VALUE OR
Ultraspherical a Vv n EQUATION

C(x)

Chebyshev Vv n VALUE OR

T,(x) EQUATION

Chebyshev Vv n VALUE OR

U,(x) EQUATION

Chebyshev Vv n VALUE OR

C(x) EQUATION

Chebyshev Vv n VALUE OR
S,(x) EQUATION

SHIFTED Vv n VALUE OR
T,(x) EQUATION

SHIFTED Vv n VALUE OR
U,(x) EQUATION

Legendre vn VALUE OR
P(x) EQUATION  
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ORTHOGONAL POLYNOMIALS
MENU { FTNS POLY }
 

  
 

 

  
 

FUNCTION COMMAND INPUTS OUTPUTS

Laguerre oa vn VALUE OR

L,(x) EQUATION

Laguerre Vv n VALUE OR
L(x) EQUATION

Hermite Vv n VALUE OR

H,(x) EQUATION

Hermite Vv n VALUE OR
He,(x) EQUATION

UP DIRECTORY NONE PARENT MENU   

 

 

SOME RECURRENCE RELATIONS

To(0) = 2X To) = Toy) Up,y(x) = 2x U(x) = U,(x)

Spx) =X Six) = S,i(x)  Cpi(x) = x C(x) = C(x)

(+1) P,,.,(x) = (2n+1)x P,(x) = n P,_,(x)

(n+ 1) L./®(x) = [(2n +o + 1) = x] LX) = (n + 0) L,_,(x)

H (x) =2x H(x) - 2n H,_,(x) He,, (x) = x He,(x) — n He,_,(x)n+1 n+1

 

For definitions see Chapters 22 of Abramowitz and Stegun, Handbook of
Mathematical Functions, AMS 55, 1964.    
 



17

APPROXIMATION OF FUNCTIONS
AND DATA SETS

INTRODUCTION

This chapter presents the 30 commands in the MISC menu. Most of the MISC
commands provide random data and deterministic function approximation techniques.
They include polynomial, rational, and least squares approximation. The least squares
approximation commands are very general and allow complicated polynomial and
nonlinear function approximations. MISC is also the home of a number of
miscellaneous commands. Related commands are given in the ALGB, LINAG, PROC,
FILTR, and WIND menus.

POLYNOMIAL APPROXIMATIONS

PMAT computes the forward transformation matrix required for orthogonal
polynomial approximations, including economized minimax ones. A faster but less
general version of PMAT is the FMAT command discussed in Chapter 28. FEVAL

evaluates polynomial approximations.

RATIONAL APPROXIMATIONS

RATAP provides rational approximations offunctions. For the same number ofterms,
it is also the inverse of the polynomial long divide command, PLDVD, given in

Chapter 19. REVAL evaluates rational approximations.

159
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LEAST SQUARES APPROXIMATIONS WITH ANALYSIS OF VARIANCE

LREG provides multiple linear regression ofcomplex data, including generation of the
analysis of variance table, standard errors or singular values, and both T and F
statistics for the fit. LSSOV extends the LREG analysis to combinations of
polynomials and nonlinear functions. Commands for least squares filter design are
found in the WIND menu discussed in Chapter 28.

TAYLOR AND MACLAURIN SERIES

TALR1 and TALR2 provide one- and two-dimensional Taylor series expansions.
COEFL and COEFYV provide Maclaurin series expansions. These commands are far
faster than the HP command TAYLR. See also page 450.

SYMBOLIC EQUATIONS

Given a polynomial list of coefficients and a symbol, PEQN and XEQN convert them
into pretty symbolic equations.

GENERATION OF COMPLEX SERIES

CSERS is a very general command that will reduce any HP 48, Math Library, or VAR
directory user function into a real or complex time series for processing and plotting.

MISCELLANEOUS FUNCTIONS

Commands include TIMIT, the Marcum Q function MQ, complex permutations
PERMF, Pochhammer’s symbol POCH, and the sorting commands UNIQE, SSORT,
and ZSORT.

DISCRETE CHEBYSHEV POLYNOMIAL APPROXIMATIONS

Discrete Chebyshev polynomial approximations are discussed in Chapter 28.
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
FUNCTION COMMAND INPUTS OUTPUTS

LISTL &<[0,1] [ VALUES |

 

 

   

 

EVALUATE SERIES
 

L = { { DIRECTORY PATH} 'FUNCTION' INDEPENDENT VARIABLE START
VALUE FINAL VALUE NUMBER OF POINTS} For example:

{ {HOME} 'DNUK;j(z,.2)' z 0 7.6 20 } computes the library elliptic function dn(z, .2)
versus z at the values z = 0, 4, .8, . . ., 7.6 and stores them in the vector

[dn(0, .2) dn(4, .2) ... dn(7.6, .2)]. CSERS can be called from any user directory,
and the function need not be in the same user directory. HP 48 and MATHLIB

functions are all in { HOME }. 8 = 0 evaluates the independent variable with a linear
scale, while 8 = 1 evaluates the independent variable with a logarithmic scale. See

Chapter 2 for examples.

 

TAYLOR SERIES F AND L POLYNOMIAL
  

 

 
 

F is any function and L is the list { INDEPENDENT VARIABLE VALUE TO EXPAND
ABOUT NUMBER OF TERMS }.

For example: F ='EXP(-(X-1)*2)' and L = { X 1 8 } expands the function of X
about X,=1 and computes the first 8 terms =

"1 —(-14+X)*2 +.5(-1+X)"4 —1.66666666667(—1+X)"6 +4.16666666667E—2(-1+X)"8'.

 

  

 

F,L1,L2 POLYNOMIAL
 

TAYLOR SERIES
 

F is any function of two variables, and L1, L2 are the corresponding lists. For
example:

'EXP(X+iY)’ L1={X04} L2={Y'2xn' 3}
yields a two-dimensional Taylor series expansion of EXP(X + iY).    
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL L AND V POLYNOMIAL
EVALUATION OR NUMBER   

 

 

Given coefficient list L = { a, a, a, ... a,_,} and independent variable V, FEVAL
computes ZX(k=0,n-1,a, V*k). CAREFULLY NOTE THE ORDER OF THE
COEFFICIENTS. While FEVAL can be used for symbolic values of V, XEQN

below is preferred. For example:

FEVAL({4527},z) = 4+ (5+(2+72)2)2 = 4452 +22 +72

 

 

 

  

EXPAND F IS ANY
COLLECT FUNCTION FUNCTION

COMPLETELY
 

EXCO uses MULTIto first algebraically expand F until there is no change and then
algebraically collect F until there is no change. See page 570 of the HP 48 owner's

manual.

 

P = PROGRAM |2: RESULT
OR 1: TIME IN SEC

'USER COMMAND’

EXECUTION TIME

   

 

 

TIMIT is the only MATHLIB command that modifies the HP 48 word size. It sets the
word size to 64, which is the default word size. Then it evaluates MEM DROP to start

the garbage collector, which improves the time reliability, and uses TICKS to compute
the execution time of program P. TIMIT( <« 2 SIN ») and

TIMIT(<« 4 (1,2) JNOZ » ) are examples.     
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
FUNCTION COMMAND INPUTS OUTPUTS

COEFFICIENTS F,V,N COEFFICIENTS

 

 

   

 

 

Reduces a function F in variable V to a coefficient list of length N + 1, which is its

Maclaurin series expansion. See FEVAL for coefficient order. If F = '4z*~22°+52-6'
then COEFL(F,z,4) ={ 65-204}, COEFL(F,z6)={-65-20400} and

COEFL('EXP(-t)'t,4) ={1-1.5-1/6 1/24}.

 

COEFFICIENT F V N ROW VECTOR
VECTOR

 

    

Same as COEFL except output is in row vector form for multiplying in polynomial

 

applications.

ORTHOGONAL FORWARD
POLYNOMIAL TRANSFORM

APPROXIMATION MATRIX
MATRIX  

 

   
Given any orthogonal polynomial function F such as found in the { FTNS POLY }

menu with coefficientlist L, PMAT computes the forward transformation matrix that
can be used for polynomial approximations. For example, L = {12} and F = "PofpX"

specifies the Jacobi polynomial P,P = P_('®while { } "TOFX" specifies the
Chebyshev polynomial T(x). Polynomials may also be defined in the current user
directory, but must have the same form as those in the Math Library. N + 1 is the

number of terms and equals the dimensions of the transformation matrix. The forward
matrix expresses each of the orthogonal polynomials in terms of a power series in x",
where x is some arbitrary variable. The inverse matrix (use INV or MINV) expresses

the x" in terms of the polynomials.    
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

See also the FMAT command in the WIND menu in Chapter 28 for a faster, less

general version of PMAT.

For example, consider a Chebyshev polynomial economized minimax approximation
of cos(x), which has an error less than SE-5.

< {} "TOFX" 8 0 PMAT DUP INV 'COS(x)' 'x' 8 COEFV SWAP x DUP
—VTR VL "T" PEQN HALT DROP HALT SWAP x —-VTR VoL x’ XEQN

>

The program will halt displaying the cos function in terms of the Chebyshev
polynomials T,.

'1.93762420065E-7xT8 - 4.18526787032E-5xT6 + 4.95334201284E-3xT4
— .229806857642xT2 + .765197753904xT0".

Push CONT and edit the vector, setting all values to zero after column 5. Push
CONT again and observe the approximation:

'3.96267361025E-2 x* — .499240451387 x* + .999957953559".

The transformation matrices need only be computed once and then may be stored in
VAR. These are the same matrices given in Chapter 22 of AMS 55, but

MATHLIB computes any degree.

Discrete Chebyshev polynomial approximations are discussed in Chapter 28.    
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
  FUNCTION

 
COMMAND

 INPUTS  OUTPUTS
 

Offset O provides the capability of computing the coefficients of an offset variable.
For example, PopX gives the Jacobi polynomial in standard form as Za(x—1)*. With

0O=0, PMAT provides the coefficients of Zb,x¥, which is numerically more efficient, but

does not allow direct comparison with standard tabulations such as in AMS 55. Offset
O solves that problem. To reproduce Table 22.1 in AMS 55 and also the P,""

example given there, evaluate the following program:

< {11} "PopX"51PMAT DUP INV OVER 1 2 8 48 384 3840 6 —ARRY
D—->M SWAP x DUP 6 EROW V—L 4 SRBRND 'Z-1'" XEQN 3840 / >.

 

LIST ROUND
 

 

  
ROUNDED LIST
 

Given list L of numbers and integer N, SRND applies « N RND » to each element of
list L. See page 148 of the HP 48 owner's manual.

 

POLYNOMIAL
EQUATION     

POLYNOMIAL LIST
STRING S  

PRETTY
EQUATION
 

PEQN( { (-7,-24) (19,8) (-5,0) 1},"T") ="T3 + (-5,0) T2 + (19,8) T1 + (-7,-24) TO'

  
POLYNOMIAL
EQUATION     

POLYNOMIAL LIST
VARIABLE V  

PRETTY
EQUATION
  XEQN( { (-7,-24) (19,8) (5,0) 1}, 2) = 2° + (-5,0) 22 + (19,8) Z + (-7,-24)   
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MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

RATIONAL L n 2: P COEF LIST
APPROXIMATION 1: Q COEF LIST

 

   
 

Rational approximations are often more accurate than polynomial approximations. A
rational function r(z) of degree N approximating a function f(z) has the form;

rz) = P() _ Po * PZ * Pez? +. oy + Pp"

q() 1+qz+qz2+...,+q.z™

where m + n = N, and without loss in generality we have set q, = 1. Form = 0, r(z) is
just a polynomial in z so polynomial approximations may be regarded as a special
case of rational approximations. RATAP uses the Pade approximation technique,

which chooses the N parameters of r(z) so that the Maclaurin expansions of r(z) and
f(z) agree for the first N terms. The inputlist L is the Maclaurin series expansion of

f(z) obtained from COEFL and has size N. Parameter n is the number of coefficients
in the numerator as shown in the above equation. The user may use N, the size of L,
and n to determine the degree of the numerator and denominator of r(z). n e[1, NJ.

The inverse process of computing the input coefficientlist from the rational
approximation can be done with the PLDVD command in the ALGB menu. Consider

the approximation of e™:
COEFL('EXP(-x)',x,5)={1 -1 1/2 -1/6 1/24 -1/120}. Then we have the

results:

 
_l22{1 -06 0.15 -1/60}RATAP(L4) = {2 {1 04 005}.

Using FEVALto evaluate the Maclaurin series approximation of erepresented by L
in the range [0.2, 1], we find that the maximum absolute value of error is 1.21E-3,
whereas using REVALto evaluate the rational approximation results in a maximum

error magnitude of 6.33E-5.   
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 MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
  
  
FUNCTION COMMAND INPUTS OUTPUTS

RATIO P Q v VALUE
EVALUATION  

 

  
 
REVALis like FEVAL except that it evaluates the ratio of two polynomials P/Q such

as those output from RATAP. For the above example,
REVAL(P,Q,1) = .367816091955.

 LINEAR M = MATRIX 3: MATRIX
REGRESSION 0 = FLAG 2: 6 VECTOR

£20 1: COEF VECTOR 

 

  
 
LREG is a general multiple-linear regression program. For simple single-variable

linear regression, the HP 48 has the functions built in along with several transformed
fits. Linear, logarithmic, exponential, power, and best are all available. See Chapter

21 of the owner's manual.

LREG and LSSOV are designed for more complicated models with multiple
parameters. LREG also computes a complete analysis of variance table with sums of

squares and coefficient standard deviations for performing F and T tests on the
estimate. The simplest linear regression model is y = a + bx. Given a set of complex
x values and a set of corresponding complex y values, we find the values of a and b
which minimize the mean square error between the given set of y values and the

predicted set of y values using the equation y = a + bx. Multiple regression extends
this idea to several sets of x values, say x,, X,, . ., X,. We now choose the

coefficients a, b,, b,, . . ., b, to minimize the mean square error between the given y
data and the equation (model) y = a + b,x, + bx, + . . ., + bx,. Once this basic
modeling capability is in place, it can be extended to more complicated models.

LSSOV on page 175 extends the model to the form:  
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aly) =a +b f(x, Xo... X)+ oo. +b F(X, Xo LL, X),

where g is an arbitrary function of y, and f,, f,, . . ., f, are arbitrary functions of x,, x,,
. ., X,. Exponentiation of both sides of the linear model gives the equation

g'(y) =e= e* x EXP(b, f,(Xy, Xa -- . X)) X oo, X EXP(bg fo(Xyy Xo «oy Xp),

so the basic model can be transformed into exponential, logarithmic, and power law
models. Numerous commands are available in the VSAG and MSAG menus for

transforming your data.

General nonlinear functions and data can be locally modeled as multivariate
polynomials by using a Taylor or Maclaurin series expansion.

xX, + +
of
ox, 2 _. ox. n

=a +b, x, +b, x, +... +b, X +C XX +.

y =f(x;, Xp ... X,) = £(0, 0, ... 0) + X, + =—  

LREG assumes that the input data in matrix M lies vertically with the y data being the
last column and the previous columns being the corresponding sets of x data. With

the matrix editor and GOJ set, it is easy to enter your data. However, you may prefer

to enter your data horizontally with GO— set and use TRNP to transpose your data
into input form. In this case, y is entered as the last row. M can be expressed in

terms of X and Y using the commands CCMB and CSPLT:

2: X
1: Y.  M=CCMB( X,Y) CSPLT(M 0) = {

THERE MUST BE AS MUCH DATA AS THE NUMBER OF COEFFICIENTS TO BE

COMPUTED. LREG and LSSOV do not compute underdetermined cases.    
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X19 Xq2 =~ Xqp T X41 Xp = Xyy Yi

xo [| Talg Teey
Xm1 Xm2 = Xmn 1 Xmt Xm2 = Xmn Ym

The M matrix, of size m x (n+1), is input by the user, and the Z matrix, which is the X
matrix augmented with a column of 1 values, is computed and used by LREG as

explained on the next page. There are two distinct cases which must be considered
separately since the equations are different. Flag 6 = 1 specifies that the user wants
a fit with parameter a not constrained to zero, whereas 6 = 0 specifies that the user
wants a fit through the origin with a = 0. When 6 = 0, the X matrix is used for the

regression computation, whereas when 6 = 1, the Z matrix is used.

J, =a +b, x, +b, x, +.. +b, x, where k=1,2, ..m a=0 if 6=0
_ 1 m m A

y ==VY SSE =) (yy - Vi)?
k=1 k=1

Y (yi -y)? e= Y G-y? 6=1
SST = SSR + SSE =§ SSR = «I

Yi 0=0 DIR 0=0
k=1 k=1

where y, is the least squares estimate corresponding to the kth set (row) of x data,
SST is the total sum of squares, SSR is the sum of squares due to regression, and

SSE is the sum of squares due to error.     
 



APPROXIMATION OF FUNCTIONS AND DATA SETS CH 17 : MISC

  

 
   
 

MISCELLANEOUS FUNCTIONS
AND APPROXIMATIONS MENU

{ FTNS MISC }
FUNCTION COMMAND INPUTS OUTPUTS

The solution coefficient vector is given by

olEB BETSY STN EY ene1

where superscript T denotes transpose, and superscript H denotes Hermitian
transpose. When C exists, the solution can be performed by command OSOVR in

the LINAG menu. The user specifies this means of solution by an € = 0 input. Even
when C' is either singular or nearly singular, a least squares solution still exists and
can be computed via singular value decomposition (SVD) using LSVDR. By choosing

¢e to be a small positive number, the user specifies a SVD solution using € as the
convergence test parameter. See the LINAG menu for more details.

The output of LREG is a sum of squares matrix, a vector of coefficient standard
deviations, and the solution coefficient vector. The elements of the matrix are

Regression : [DFR SSR MSR] MsR - SSR

Error : |DFE SSE MSE or DFR ne

Total : [Total SST F MSE = pr

where m and n are the dimensions of X, and 6 is input as 1 or 0.

When € = 0, the elements of the ¢ vector returned to level 2 of the stack are the
standard errors of the regression coefficients returned to level 1 of the stack and

equal 6, = V(MSE C,,), corresponding to each coefficient. Defining b, = a, then t, =
b, / o, has the t distribution with DFE degrees of freedom where it is understood that
t, does not exist for 6 = 0. UtPT is available to compute the probability, and IUtPT is

available for computing confidence intervals.     
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When ¢ > 0, the elements of the ¢ vector are the singular values of the X matrix when
0 = 0 and the singular values of the Z matrix when 6 = 1. The square of these

singular values are the eigenvalues of C~', but there is no one-to-one relationship to
the solution coefficients other than through the unitary SVD matrices used in the
computation of the solution (see the discussion in the LINAG menu). The SVD
solution is significantly slower, and for 6 = 0, the number of X columns must be
greater than 1 (n > 1). Nevertheless, if C™' is nearly singular,it is the solution of

choice.

The F ratio equals MSR/MSE with DFR and DFE degrees of freedom. The probability
and confidence interval can be computed using UtPF and IUtPF.

The coefficient of multiple determination R? and its adjusted version RZ are given by:

rz. SSR _, SSE RZ. 1 _ SSE[m-n-6)
SST SST’ . SST/(m-6)

CONSTRAINTS: m — n — 0 > 0 for positive degrees of freedom, n + 6 > 2 for a SVD

(e > 0) solution.

For example, suppose we are given the Y data [ (-6,42) (8,33) (-20,41) (29,-1)]
and the associated X data [ (1,1) (3,4) (7,9) (2,-5)] and

[ (4,7) (5,2) (1,4) (3,-2)]. Then:

1,1) 47) (-642

(34 (5,2 (8,33)

(7,9) (1,4) (-20,41)

(2,-5) (3,-2) (29,-1)      
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2 5873.0 2936.5

3: [2 2.9842 1.4921

4 5876 1968.0
2: [ 0.1147 0.1405 ]
1: { (0.9637,2.033) (3.877,2.937) }

LREG(M,0,0) =

2 5873.0 2936.5

3: [2 2.9842 1.4921

4 5876 1968.0
2: [19.50 9.07 |
1: { (0.9637,2.033) (3.877,2.937) }

UtPF(2,2,1968) = 5.079E-4, UtPT(2}t,) = 2.590E-3, UtPT(2,t,) = 8.336E-4

LREG(M,0,1E-8) =

2 2538.2 1269.1

3: (1 1.3196 1.3196

3 2539.5 961.76
2: [0.9158 0.1109 0.1717 |
1: { (-0.8390,-0.5951) (0.9897,2.021) (4.000,2.938) }

LREG(M,1,0) =

 

EXCLUDED CASES IN SIMPLE ENGLISH

If Mis 1 x 2, then LREG will only find a solution for =e =0. If Mis 1 x 3, then

there is no LREG solution because this is an underdetermined case. If Mis 2 x 2 or
3 x 2, then LREG can find a solution for all cases except 6 = 0 and € > 0. Itis

possible to construct pathological cases which will terminate with a divide-by-zero
error when € = 0. For these cases, slightly change the data, or use the SVD solution.    
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2 2538.2 1269.1

3:|1 1.3196 1.3196

3 2539.5 961.76
2: [18.41 1.430 8.561 |
1: { (-0.8390,-0.5951) (0.9897,2.021) (4.000,2.938) }

LREG(M,1,1E-8) =

UtPF(2,1,961.76) = 2.280E-2, UtPT(1t,) = 0.4631, UtPT(1.t,) = 3.134E-2,
UtPT(1t,) = 2.201E-2

The F and T statistics can easily be computed by the FSTAT and TSTAT commands
below.

As stated above, the condition for a positive error degrees of freedomis m-n-0 >
0. However, the LREG solution is valid when m — n — 6 = 0, though the analysis of
variance is no longer defined. Consequently, when m — n — 6 = 0, LREG returns the
value of SSE instead of the analysis of variance matrix to level 3 of the output, and in
the case where ¢ = 0, the vectorreturned to level 2 is ¥(C,,) without multiplication by
the undefined MSE. It should be understood that SSE is just the square of the output
of LSERR defined in the LINAG menu and, thus,is in fact the mean-squared value of

the error. Consider the following examples:

[62 (5.6) | E 0LREG ,1,0=42:13 1]
(2.3) (9.7) 1: { (-05,2.5) (2.5,-1.5) }     
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3: 1.1E-20
eq oa (5.6) 1, tes = H 3170 4.4609 |

(23) 9.7) 1: { (-0.5,2.5) (2.5,-1.5) }

3:0
Lreq| oa (3.2) eo , 0, 0] = E [ 1.5207 0.7500 ]

(2,3) (6,5) (9,7) 1: { (4.375,-1.125) (-0.625,-0.125) }

3: 5.33E-20
|. ]2:105909 9573]

, 0, 1E-8 = 11: { 4.375,-1.125)
(-0.625,-0.125) }

When using the SVD solution option, do not make ¢ too small. Often € = 1E-4 is
adequate. The maximum number of iterations per column is set at 20. For more

information, see the LINAG menu.

 eq (1,2) (3,2) (5.8)

(23) (6,5) (9,7)

 

 

4.-2: LREG

F STATISTICS LREG OR LSSOV OUTPUT
OUTPUT 1: UTPF(DFR,

DFE,F) 

 

   
FSTAT computes the F statistic UtPF( DFR , DFE, F).    
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5:-3: LREG
T STATISTICS OUTPUT

AND LREG OR LSSOV |2: UtPF(DFR,

F STATISTICS OUTPUT DFE,F)

1: [ UtPT
VECTOR ]

Compute F and T statistics (only when € = 0). See above examples.

LEAST SQUARES | FLVL D 6 ¢ SAME AS LREG
SOLVE   

 Given the function list FL (symbolic vector SV as defined in the SYMB menu), the
variable list VL, and the data matrix D, LSSOV provides the least squares solution

and analysis of variance like LREG, butit is far more general. Parameters 6 and ¢
are the same as in LREG, and the output has the same form as that of LREG. The
below discussion assumes that the readeris very familiar with the material discussed

above. An understanding of symbolic vectors (SYMB menu) is helpful.

The data matrix D is just like the M matrix input to LREG. The first n columns of D
are values for the independent variables x; forj=1,2,...,mandk=1,2,...n.

The n + 1 column of D is the corresponding values of the dependent variable y, for j =
1, 2, ..., m. Function list FL contains all the non-constant terms of the model whose

linear combination will equal the estimate of y. More specifically, if CL is the

coefficient list output from LSSOV,then:

- {SboT( FL. cL) 8=0
Y =\1sDOT({1}+FL,CL) © =1    
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where the SDOT command performs a symbolic DOT product of two symbolic vectors
that are HP 48 list objects and { 1} + {f, f,} ={ 1 f, f,}. By applying the appropriate
nonlinear transformation to the Y vector, this model can be extended to more general
models, as discussed under the LREG command. Again we see that the equations

depend on the value of 6. The below examples will make this clearer.

Variable list VL is a list of those variable symbols used in FL as independent
variables. The size oflist VL is exactly equal to n, and the X entries of the D matrix
are values for those variables. LSSOV gives a bad-dimension error if the size of VL

is not exactly equal to the number of columns of D minus one.

As a first simple example, let D = M, where M is defined on page 171.

FL={x; X}=VL={x; X}

FL defines the model to be of the formy = b, x, + b, x, when 6 = 0, and y = b, + b, x,
+ b, x, when 8 = 1. Thus, the constant term b, is specified by 6 and is never included

in FL. With these definitions for FL, VL, and D, the output of LSSOV is identical to
that of LREG given on pages 172 and 173. Thus, the capabilities of LREG are a

subset of the capabilities of LSSOV.

Next consider the simple polynomial model y = by + b, x + b, x? + by, x*> + b, x*. Then: FL = {x 'x"2' 'xA3' 'x\4'}, FV = {x},

and we have the result given on the next page.

 

THERE MUST BE AS MUCH DATA AS THE NUMBER OF COEFFICIENTS TO BE
COMPUTED. LREG and LSSOV do not compute underdetermined cases.   
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(3: 2.01E-14
a 25.2) [2204 1.374
GAT) (-1096,.2720) 2 0310  .04783

LSSOV| FL, VL, (7.9) (-26793,-67672)| ,1,0 = | Coa0
(2,-5) (-2980,2673) (2.2146,1.2978)

1: (0.8471,2.9282)
(4.0079,1.0111)
(2.9993,2.9996) }

(5.1,3) (-5357,2101)  
The SVD solution with ¢ = 1E-6 yields SSE = 3.04E-12 and the singular values:

17044.15, 245.9897, 33.5068, 0.38899, 2.06429.

Consider now the more general model

aly) =a+ by f(x, Xo... X) + oo. +b F(X, Xa LLL, X)

where g(y) is some user-chosen function which is invertible and one-to-one. For

example, the inverse of LN is EXP. If you choose to linearize your problem by taking
LN of both sides of the equation, then the n + 1 column of the D matrix, which we
have denoted as the Y vector, would contain the values LN(y,) fork =1,2,..., m.
The commands CCMB, CSPLT, and the commands in the VSAG menu make such

transformationstrivial. Now the above approximation is specified by:

FL = {f(x Xo 00 Xp)" aX Xo ooo X0) ony (Xn Xan ony X)' )

where we observe that there are n independent variables and either gq or q + 1
coefficients required, depending on whether 6 = 0 or 1. The n independent variables

are specified by the list VL ={x, x, ..., X,}.     
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Now the condition for a positive error degrees of freedomism -q-6 > 0. Asin
LREG,the software does compute the solution for m — q — 6 = 0, but SSE is returned
instead of the analysis of variance matrix, and when ¢ = 0, the level 2 output is v(C,,)
fork=1,2,... q. The condition for a SVD solution (¢ > 0) is q + 6 > 2. Consider

the following example. Given the data matrix:

(0.1,0.1) (0,0.1) (-22.1,52.1)

(0,0.1) (0.1,0) (-50.6,-19.1)

D=| (00 (020.1) (-23.84.1)

(0.1,0.2) (0.20) (-24.7,-8.3)

(0.2,0.3) (0.20.3) (-12.6,13.2)

let us model y (the third column) as the sum of E(w), y(z), C(w), and J,(z), where w
is the first column and z is the second column of D. The functions are

e -z2t

t n

y(z) = PSI(z) = d[ LN( I'(z)) }/dz where I'(z) is the gamma function,

dt , E.(w) = ENOZ(n,w) = exponential integral = |”
1

C(w) = COFZ(w) = Fresnelintegral = IAv co3 2 dt

J,(z) = JVOZ(v,z) = Bessel function of first kind.

Define FV = { 'ENOZ(4,w)' 'PSl(z)’ 'COFZ(w)' 'JVOZ(0.3,z)'}and VL ={w z}.

Then we have the results shown on the next page.    
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4 7723.22 1930.80

3: |1 7.83E-5 7.83E-5

LSSOV(FL,VL,D,0,0) = 5 7723.22 24654044
2: [ 0.1327 1.70E-3 7.61E-2 7.26E-2 ]
a { (.77731,2.20243) (4.9936,2.00112)

" (2.01264,2.81358) (3.02578,1.91889) }

3: 3.79E-17
2: [16.64 1.89 0.305 0.103 7.60E-3 ]

LSSOV(FL,VL,D,1,1E-8) = { (0.10717,-.32398) (.34078,3.1195)

1:  (4.9932,2.00034)  (1.91711,3.22934)
(3.08706,1.93301) }

While the above example is obviously contrived, it does demonstrate the capability of
LSSOV. A more practical example might be fitting the sums of orthogonal

polynomials, such as those in the POLY menu, to your data.

One of the issues associated with least squares estimation is that of parameter
reduction. For example, how much is the above model degraded if one of the four
functions in the above modelis eliminated. While we give no recommendations on
how to reduce your model, LSSOV computes all the major parameters, including

singular values, to help you in that reduction.

Since the size of the solution matrix C™' is either nxn or (n + 1)x(n + 1), depending on
whether 6 = 0 or 6 = 1, and does not depend on the number of data sets m, even

large data sets can be processed with LREG and LSSOV. While the SVD solution is
slower, it always converges, and the zero or very small singular values identify

redundant model parameters.     
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LSSOVis basically a user setup command for LREG. Given inputs FL, VL, and D,
LSSOV computes the M matrix and calls LREG for the solution. As a result,

pathological cases can be created which result in one of the cases discussed at the
bottom of page 172. If you get a bad-argument or a bad-dimension error, then LREG
does not like its inputs, and you will have to figure out what needs to be changed.
M, as created by LSSOV, has m rows (same as D), and SIZE(FL) + 1 columns.

Related commands are given in the STAT, PROC, and WIND menus.

 

WEIGHTED LINEAR REGRESSION AND LEAST SQUARES ESTIMATION

While LREG and LSSOV do not explicitly handle the case of weighted least squares,
it is easy to add. Let W be the positive semidefinite diagonal matrix of appropriate
dimension. Then the desired solution is to the linear system X" W Xs =X"WY

for0=0,andZ"WZs=2"WYforo=1. Thus, the LREG and LSSOV solutions
are special cases with W equal to the identity matrix. Denoting by D the square root

of the W matrix, which can be input as a vector, square rooted by VSRT, and
converted to a diagonal matrix S for multiplying by using D—M, we then solve the

system with inputs (S X) = X, and (SY) =Y,.  
 

SYMBOLIC DOT
PRODUCT

A, B eSM OR SV VALUE
OR A 

 

   

SDOT computes symbolic dot products. See the SYMB menu for definitions.

fal={1}+{xy}={1xy}ando2={25 4 65}, then

SDOT( 01, 02) = 2.5 + 4x + 6.5" .     
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oo LIST LIST

  
 

   

 

LIST REVERSE
 

0={12345} LREV(0)={54321}

 

PERMUTATIONS zeC reC VALUE
   

 

 

PERMF(z,r) = T(z + 1)/[T(z + 1 — 1)

PERM is special case of PERMF.

 

zeC neC VALUE
 

 

   

Pochhammer’s symbol: (a), = I'(a + n)/T’(n) for n lL.

POCH is used by the hypergeometric functions for numerical stability.

 

PARAMETERS VALUE
o,B=>0

MARCUM Q
FUNCTION  

 

   

k"x EXP(-[x2+ 02]/2) Ij(ax)dx,

where |_ is the modified Bessel function of the first kind. This computation can be
very slow. Consider setting 7 SCI mode for the integration.     
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DO UNTIL NO P = PROGRAM RESULT
CHANGE

See page 569 of the HP 48 owner's manual.

TEST IF REAL M eSM OR SV SM OR SV OR A
OR A 

 

  
 

TIFREtests its argument M to see if every element has an imaginary part whose
magnitude is less than 1E-8. If every element does, then TIFRE returns the real part
of M. M may be a standard vector or matrix object. It can also be a list of numbers

or a symbolic vector or matrix.

 

COUNT UNIQUE V = VECTOR OR |SYMBOLIC MATRIX
LIST 

 

  
 

UNIQE returns a symbolic matrix. Thefirst row is the unique elements of V, and the
second row is the corresponding number of times they occur in V. UNIQE uses the
SAME command to determine uniqueness, so for numbers, use the vector input which
forces 1 to be the same as (1, 0). After appropriately rounding V, UNIQE can be used

to determine the number of unique roots and the multiplicity of those roots, so the
process of computing partial fraction expansions, residues for inverse Laplace

transforms, and Jordan forms can be automated. Examples follow.  
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UNIQE([1 2 3145 2])={{31452}{12112}}

SSIZE of the result is { 2 5 }, so there are 5 unique elements of V. Similarly,

UNIQE({A B C A BC A})={{B C BC A}{1 11 3}}.

 

SORT
REV, >=<0

[ VECTOR ] LIST OF LISTS

 

 

   

SSORT sorts the elements of the root vector V according to whether the real part is
greater than, equal to, or less than 0. This is useful in Laplace transform

applications. The output is a list containing three lists, which contain the sorted roots.

SSORT([(-1,2) (0,1) (1.2)])={{(1.2)} {(0.1)} {(-1,2)}}

 

SORT
ABS V, > = < 1

[ VECTOR | LIST OF LISTS

  

 

  

ZSORTsorts the elements of the root vector V according to whether the absolute
value is greater than, equal to, or less than 1. This is useful in z transform

applications. The output is a list containing three lists, which contain the sorted roots.

ZSORT ([5 1 2])={{2} {1} {5}}    
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SIGN FUNCTION zeC SIGN

 

 

   

 

 

Same as HP 48 SIGN command except that SIGNP(0) = 1.

 

UP DIRECTORY NONE PARENT MENU   
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NUMBER THEORY CALCULATIONS

INTRODUCTION

This chapter presents the 22 number theory commands in the NUMB menu. The
NUMB commands provide greatest common divisor, least common multiple, factoring,
and prime number search, in addition to computation of Fibonacci, Bernoulli, Euler,
Riemann zeta, and Stirling numbers. Bernoulli and Euler polynomials are also
provided.

CALCULATIONS

GCD and LCM compute the greatest common divisor and the least common multiple.
FACTR factors natural numbers into primes, and FMPY multiplies those factors.
PRIME searches for prime numbers in a specified range. 999,999,999,999 is the
largest natural number which can be represented on the HP 48. Large integer
arithmetic with unlimited precision is available for the HP 48. See Appendix A.

NUMBERS AND POLYNOMIALS

FIBON, BR, and ER compute the Fibonacci, Bernoulli, and Euler numbers,
respectively. BPOLY, BCOEF, EPOLY, and ECOEF compute the Bernoulli and
Euler polynomials and coefficients. RZETA and CZETA compute the Riemann zeta
and complementary zeta functions. STRL1 and STRL2 compute Stirling numbers of
the first and second kind. The generalized Riemann zeta function is discussed at the
end of the menu.

185
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NUMBER THEORY MENU {NUMB}
 

 

FUNCTION COMMAND INPUTS OUTPUTS

GREATEST 3: GCD
COMMON a,beN 2: t
DIVISOR 1: s

 

   
 

GREATEST COMMON DIVISOR of 426 and 732 is 6 with s = 55 and t = -32.
GCD(ab)=s a +tb; 6 = 55 x 426 - 32 x 732.

 

 

    

 

 

    

 

LCM a, beN LCM

LEAST COMMON MULTIPLE = LCM(a,b) = ab/GCD(a,b);
LCM(426,732) = 51972.

FACTOR neN LIST

FACTR(123456789) = { 3 3 3607 3803 }.

MULTIPLY L = LIST 2: LIST
FACTORS FROM FACTR 1: n

 

    

3 3 3607 3803}FMPY( {3 3 3607 3803} {243.8se

 

PRIME
NUMBERS

n,meN LIST

O<n<m 

 

     PRIME computes all the prime numbers in the interval [ n, m].

PRIME(451,491) = { 457 461 463 467 479 487 491 }.

  



 

CH 18 : NUMB NUMBER THEORY CALCULATIONS 187

 NUMBER THEORY MENU {NUMB}

 
   

 

FUNCTION COMMAND INPUTS OUTPUTS

FIBONACCI reNORO NUMBER
NUMBERS r = ORDER  
 

r

F, = Fr + Fro

The Fibonacci numbers may be defined by the recurrence formula:

where F,=0and F, = 1.

The closed form expression for them is

1

 

V5[5(5)2 2

where a and PB are called the golden mean numbers.

FIBON(O)=0 FIBON(1)=1 FIBON(2) = 1

 

1
/5

[a" = Bl,  

 
 

 

  

   
  

FIBON(3) =2 FIBON(4) = 3

BERNOULLI reNOR 0 NUMBER
NUMBERS B, r = ORDER

BR(O)=1 BR(1)=-1/2 BR(2) =1/6 BR(3)=0 BR(4)=-1/30

BERNOULLI reNOR 0 POLYNOMIAL
POLYNOMIAL r = ORDER IN v

BERNOULLI reNOR 0 COEFFICIENT
COEFFICIENTS r = ORDER LIST

 

 

 

 
 
  B,(x) = BPOLY(x,4) = x* — 2x® + x* - 1/30 BCOEF(4) = {1/30 0 1 -2 1} 
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NUMBER THEORY MENU {NUMB}
 

   
FUNCTION COMMAND INPUTS OUTPUTS

EULER reNORO NUMBER
NUMBERS E, r = ORDER  

 

 
 

ER(O)=1 ER(1)=0 ER=-1 ER@3)=0 ER@4)=5

 

 

 

 

  
 

 

 

 

 

  
 

 

EULER reNORO POLYNOMIAL
POLYNOMIAL r = ORDER IN v

EULER reNORO COEFFICIENT
COEFFICIENTS r = ORDER LIST

E,(x) = EPOLY(x, 4) = x* - 2x% + x ECOEF(4)={0 1 0 -2 1}

¢(n) RIEMANN neN NUMBER
ZETA FUNCTION n>2

COMP RIEMANN neN NUMBER
ZETA FUNCTION n> 1

=Y k™ =Y (-1)42k + 1)"
k=1 k=0

RZETA(4) = 1.08232323371 CZETA(2) = .915965594177 = Catalan constant

S,™ STIRLING m,neN
NUMBER OF NUMBER
FIRST KIND 0<m<n 

 

  
 

(-1)"™S,™is the number of permutations of n symbols which have exactly m
cycles.  
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NUMBER THEORY MENU {NUMB}
 

    

 

FUNCTION COMMAND INPUTS OUTPUTS

x(x-1) ... x-n+1) = 3" 8x = _X_ _ pERM(x,n) = PERMF(x,n)
m=0 (x-n)!

S_M™=gmn_pngm 
where S,2=8"=1,8@=0forn>0, and S,= (-1)""(n-1)..

STRL1(2,4) = 11

For large arguments, the accuracy of STRL1 degrades. Forfull 12-digit integer
accuracy (the limit on the HP 48) with large arguments, see the Stirling transform

command STRLT in the WIND menu of Chapter 28.

 

   

 

S,™ STIRLING m,neN
NUMBER OF NUMBER
SECOND KIND 0<m<n
 

S.™is the number of ways of partitioning a set of n elements into m non-empty
subsets.  S, Ri =m s™ + s,™",

where §%=8"=8"=1,8%=0forn> 0, and S,"" = COMB(n,2).

STRL2(2,4) = 7 
 

EXPRESSION EXPRESSION

EXPRESSION EXPRESSION

HP COLCT

HP EXPAN
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NUMBER THEORY MENU {NUMB]}
 

 

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

EXPAND
COLLECT EXPRESSION EXPRESSION

COMPLETELY

VALUE OFi NONE (0,1)

VALUE OF rn NONE 3.14159265359

UP DIRECTORY NONE PARENT MENU   

 

 

SUMS OF RECIPROCAL POWERS

The Riemann zeta function {(n) and the complementary Riemann zeta function p(n)
are examples of reciprocal powers that are tabulated in AMS 55. Two others are

oo

n(n) = > (-1)k™ = (1-2")¢(n), Mn) = 3° (2k+1)" = (1-27)(n),
k=1 k=0

which can be evaluated using the RZETA command.  
 

GENERALIZED RIEMANN ZETA FUNCTION

The generalized Riemann zeta functions {(s,a) and {(s) = {(s,1) are defined by
00

is, @) =) (a +n)® RE s > 1.
n=0

C(s, a) is a special case of Lerch’s transcendent ®(z, s, a) discussed on page 112.
E(s, a) is available for RE a > 0 and s e C. See Appendix A.

 

For definitions see Chapters 23 and 24 of Abramowitz and Stegun,

Handbook of Mathematical Functions, AMS 55, 1964.      
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SYMBOLIC ALGEBRA
AND CALCULUS

INTRODUCTION

This chapter presents the 42 symbolic algebra and calculus commands in the ALGB
menu. The ALGB commands provide Taylor series, polynomial arithmetic, polynomial
calculus, three complex coefficient root solvers, conversion between symbolic
polynomials and polynomial lists, and algebraic simplification. Since most of the
commonly used functions are special cases ofhypergeometric functions, four commands
provide symbolic series expansions of these functions and all their special cases.
Related commands are given in the MISC menu for polynomial operations and
approximations. The HP 48 solve application can be used with all the MATHLIB
functions provided they are treated as real functions of real variables. See page 74 for
an example, solving for the zeros ofj(x), and Chapter 17 of the HP 48 owner’s manual.

TAYLOR SERIES EXPANSIONS

TALR1 and TALR2 provide one- and two-dimensional Taylor series expansion about
any specified point. COEFL reduces symbolic polynomials to polynomiallists that are
lists of the polynomial coefficients. COEFL also provides Maclaurin series expansions
of algebraic expressions. Both arithmetic and calculus operations are much faster
using polynomial lists than performing the same operation with the symbolic
polynomial itself. Given a polynomial list, FEVAL provides fast polynomial
evaluation, while PEQN and XEQN provide pretty symbolic equations. See also the
advanced series approximation material on page 450.

191
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POLYNOMIAL ARITHMETIC AND CALCULUS

PADD, PSUB, PMPY, PDVD, and PLDVD for arbitrary degree polynomials provide
the basic arithmetic operations for polynomials. PDERV and PINTG provide
differentiation and integration for polynomials. RDERV computes the derivative of

the quotient of two polynomials.

COMPLEX COEFFICIENT ROOT SOLVER

Given the polynomial list P, PROOT creates a companion (Frobenius) matrix whose
eigenvalues are the roots of P. It then solves for those eigenvalues. AROOT uses
Laguerre’s method for finding all of the roots. LROOT, which seeks a single root
given the user’s guess, is provided for difficult problems. DEFLT automatically
determines how many times a root is repeated and deflates the polynomial list
accordingly. CLIST computes the polynomial from its roots.

HYPERGEOMETRIC FUNCTIONS

H1F1, DH1F1, F2F1, and DH2F1 provide the hypergeometric functions and their
derivatives in symbolic form. The majority of the transcendental functions are special
cases of these functions, so this is a fast way of obtaining a power series expansion of
these functions. For example, M(a,a,z) = EXP(z) for all values of a.

M(a,a,2) = HIFl(a,a,2) = 'Z(n=0,N,POCH(a,n)/POCH(a,n)xz"/n!)’

Canceling the identical numerator and denominator POCH(a,n) factor with the
equation editor, we have the Taylor series expansion of EXP(z):

EXP(z) = 'Z(n=0,N,z"/n!)".

UTILITIES

EVLZ provides an unconditional multiple TMATCH command for replacing any or all

arguments of algebraic expressions.

SUMZX provides for easy symbolic evaluation of hypergeometric and other symbolic
power series. It explicitly evaluates the terms, including symbolically expanding
Pochhammer’s symbol (z),, which is evaluated by POCH(z,n).
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TECHNIQUES FOR SOLVING BIG PROBLEMS ON THE HP 48

Ten powerful and useful algebraic manipulation and substitution programs are given.
Then techniques for algebraically manipulating hundreds of terms in big algebra and
calculus problems on the HP 48 are demonstrated.

ROOT SOLVING AND POLYNOMIAL LIST CONVENTIONS

MATHLIB follows several conventions with respect to polynomial lists and vectors
containing the roots of polynomials. The polynomial P(z) = a, + a,z + a,z> + a,z° + .
.» + a,z" is represented by the list object { a, a, a, a; ... a, }, which is an order
corresponding to increasing powers of z. This order is chosen to maximize the speed
of polynomial evaluation with commands like FEVAL. The same polynomial can be
represented within a scaling factor by its root vector [ r; r, r; ... r, 1, where the
polynomial P(z) =C(z-r1) (z-15) (z-15) ...,(z -r,), where C is the complex scale
factor. Given the polynomial list, PROOT and AROOT return the corresponding root
vector. Given the root vector, CLIST returns the corresponding polynomial list scaled
so that a, = 1. If a; # 0 and you wish to scale the list so that a, = 1, command PSCAL
found in the FILTR menu will rescale the polynomial list.

In order for these two representations of polynomials to work properly, we need the
symbol [ ] to represent no roots, but this symbol (an empty vector) is not valid syntax
on the HP 48. Consequently, MATHLIB uses { } to represent it. The root vector
corresponding to the polynomial lists { } and { 1} is [ ], which we represent by { }. The
polynomial list corresponding to the root vector { } is { 1 }. The command LZDEL,
which deletes the unnecessary trailing zeros in a polynomial list, and the commands
CLIST, PROOT, and AROOT all understand these conventions. The analog and
digitalfilter commands in the FILTR and WIND menus also understand and use these
conventions.

CONVERGENCE FAILED is displayed when the root finder cannot converge the
roots according to the input arguments. When this happens, push ATTN and the
software will return what roots it has found. The display will show where the
convergence failed so you can count the number of true roots which were converged.

SYMBOLIC HIGHER TRANSCENDENTAL FUNCTIONS

Example programs are given for extending the numerical MATHLIB functions to
symbolic ones with defined derivatives. See also Appendix A.



194 SYMBOLIC ALGEBRA AND CALCULUS CH 19 : ALGB

 

 

ALGEBRA AND CALCULUS MENU
{ ALGB }

FUNCTION COMMAND INPUTS OUTPUTS

TAYLOR SERIES |

 

 

   

 

F AND L POLYNOMIAL
 

F is any function and L is the list { INDEPENDENT VARIABLE VALUE TO
EXPAND ABOUT NUMBER OF TERMS }.

For example: F = 'EXP(—(X-1)*2)' and L = { X 1 8 } expands the function of X
about X,=1 and computes the first 8 terms =

"1 —(-1+X)*2 +.5(-1+X)"4 -1.66666666667(—1+X)"6 +4.16666666667E—-2(—1+X)"8'.

 

TAYLOR SERIES  

 

  
F, L1, L2 POLYNOMIAL
 

F is any function of two variables and L1, L2 are the corresponding lists. For
example:

'EXP(X+iY)' L1={X04} L2={Y2rn 3}
yields a two-dimensional Taylor series expansion of EXP(X+iY).

 
 

POLYNOMIAL
ADD

COEFFICIENT COEFFICIENTS
LISTS L1 & L2 L1 + L2 

 

  
 

Adds polynomials of arbitrary degree.
Each coefficientlist represents a polynomial. Given the list and an independent
variable x, FEVAL below will compute the polynomial. Given a polynomial in x,
COEFL below will compute a list of coefficients which represent the polynomial.  

{a, a, a, ... a,,} represents X(k=o,n-1,a, x"k). CAREFULLY NOTE THE ORDER OF THE COEFFICIENTS

For example: (503759) +{47497082}={9771612982}.  
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ALGEBRA AND CALCULUS MENU

 

 

  

 

 

{ ALGB }
FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL COEFFICIENT COEFFICIENTS
SUBTRACT LISTS L1 & L2 L1 -L2
 

Subtracts polynomials of arbitrary degree.
For example: {02581} -{({5972180}={-5-7-260-8}.

Observe that in polynomial arithmetic and calculus, trailing zeros are meaningless
and are deleted by the MATHLIB, but leading (left-most) are very significant. Thus:

{2581}-{5972180}={-3-41-1-1-8).

 

POLYNOMIAL
MULTIPLY  

 

 
COEFFICIENT
LISTS L1 & L2  

COEFFICIENTS
L1 x L2
 

Multiplies polynomials of arbitrary degree.

For example: { 258 1} x {5972180} ={104399 11677 4450658 }.

 

POLYNOMIAL
DIVIDE

 

 

 

COEFFICIENT
LISTS L1 & L2

 

3: QUOTIENT
2: REMAINDER
1: DIVISOR
  with remainder { -927 -2195 -3422 }.

Divides polynomials of arbitrary degree. See also PLDVD in this menu.

L1/L2={5972180}/{25810}={466-6380}

Thus, {2581} x {466-6380} + { -927 -2195 -3422}={5972 18}.
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ALGEBRA AND CALCULUS MENU
{ ALGB }
 INPUTS OUTPUTS

  
FUNCTION COMMAND

 

 
SYMBOLIC POLYNOMIAL ARITHMETIC

The above four commands also work for symbolic arguments. PDVD checks the
first element of the numerator to see if it is a number. If it is not, then PDVD uses

EXCO to clean up the algebra.

PADD({A B C D},{E F})={'A+E' 'B+F' C D}

PSUB({A BC D},{E F})={'A-E' 'B-F C D}

PMPY({A B C D},{E F})

= { '"AXE' 'AxXF+BxE' 'BXF+CxE' 'CxF+DxE' 'DxF'}=1L

 
 

3:{A BC D}
PDVD(L,{E F})= 2:{0}

1: {E F)

POLYNOMIAL L AND V POLYNOMIAL
EVALUATION OR NUMBER 

 

 
 

Given coefficient list L = { a, a, a, ... a,_,} and independent variable V, FEVAL
computes X(k=0,n-1,a3, Vk). CAREFULLY NOTE THE ORDER OF THE

COEFFICIENTS. While FEVAL can be used for symbolic values of V, XEQN below

is preferred. For example:

 
FEVAL({4527)},2z) = 4+ (5+(2+72)z)2 =4+5z +222 +728  
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ALGEBRA AND CALCULUS MENU

  
 

  

 

 

{ ALGB }
FUNCTION COMMAND INPUTS OUTPUTS
COEFFICIENTS F,V,N COEFFICIENTS
 

COEFL(F,z4)={-65-204},

'4z*-22°+52-6', then:

COEFL(EXP(-t)',t,4) = { 1 =1 5 1/6 1/24}.

Reduces a function F in variable V to a coefficient list of length N + 1, which is its
Maclaurin series expansion. See FEVAL for coefficient order. If F =

COEFL(F,z6) ={-65-20400},

 

 

 

  
 

 

 

   
 

 

 

   

LIST REVERSE L = LIST LIST

LREV({12345})={54321)

HP COLCT EXPRESSION EXPRESSION

HP EXPAN EXPRESSION EXPRESSION

EXPAND
COLLECT EXPRESSION EXPRESSION

COMPLETELY

HP TMATCH EXPRESSION EXPRESSION

HP MATCH EXPRESSION EXPRESSION

HP | (where) EXPRESSION EXPRESSION
  owner's manual.

For the above commands, see Chapter 22 as well as page 570 of the HP 48   
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ALGEBRA AND CALCULUS MENU
{ ALGB }
 

 

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

EVALUATE FUNCTION F F {Va} |
COEFFICIENT VARIABLES V a  
 

COEFE( 'SIN(xt)xEXP(-oxt)' , t, T ) = 'SIN(wxT)XEXP(-axT)'

 

 

 

  

HP APPLY 2: symbol list name(symbols)
1: name

HP QUOTE symbol or object symbol or object 
  

See the HP 48 Programmer's Reference Manual.

 

SYMBOLIC
M(a, b, z)

a,b, z EXPRESSION

 

SYMB NTH
DERIVATIVE
OF M(a, b, 2)

a,b, z

neN

EXPRESSION

 

SYMBOLIC

F(a, b, ¢c, 2)

a,b,cz EXPRESSION

  SYMB NTH
DERIVATIVE
OF F(a, b, c, 2)  

 

 a,b,c z

neN  EXPRESSION

  H1F1 is the symbolic form of the confluent hypergeometric function M(a, b, z).
H2F1 is the symbolic form of the Gaussian hypergeometric function F(a, b, c, z).
The symbol N is reserved as the number of terms in these four commands, so do

not use it as an input variable.   
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 ALGEBRA AND CALCULUS MENU
{ ALGB }

FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

Numerous functions are special cases of these two functions. For example, €?,
sin(z), cos(z), J,(2), I.(z), y(a,x), erf(z), and most of the common polynomials are all

special cases, to list a few. Consequently, the above four commands provide
series approximations for all these functions and their derivatives, as well as

symbolic equations for them. For more details see AMS 55.

The commands EVLX and SUMX may help you manipulate these symbolic
expressions. EVLX provides a means of replacing any or all the symbols in an
algebraic expression. SUMZ will explicitly evaluate the terms of the above four
commands provided the second argument of POCH is a number, which it is for
H1F1 and H2F1. For DH1F1 and DH2F1, it is when n is a number, n eN.

 

SYMBOLIC
EVALUATE SUM

EXPRESSION S EXPRESSION
LISTL 

 

  
 

EVLX replaces symbols in algebraic S. List L of even size lists in pairs the current
symbol and its replacement symbol or number. EVLZ provides a special capability

like a multiple, unconditional TMATCH command.

EVLI( '£(n=1,N,POCH(a,n)xz*/n!)' , {a A z 2} ) = 'Z(n=1,N,POCH(A,n)xZ*n/n""

 

COMPUTE SUM SUM S NeN SUM

 

   
 

Replaces upper symbolic limit of the sum in algebraic S with number N and
evaluates the sum (LOWER LIMIT MUST BE A NUMBER).

NOTHING MAY BE LEFT OF THE ZX.

SUMZX('’Z(n=1,N, z’n/ n!') , 4) = "5xz"2 + .1666667xz"3 + 4.1666667E-2xz"4 + Z'  
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ALGEBRA AND CALCULUS MENU
{ ALGB }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

EVALUATE F = FUNCTION F
COMPLETELY OR EXPRESSION    

 

 

Uses MULTI to cause repeated EVAL commands until no change.

 

 

  

 

 
 

 

HP ISOLATE 2: SYMB, SYMB,
VARIABLE 1: GLOBAL

HP QUADRATIC 2: SYMB, SYMB,
SOLUTION 1. GLOBAL

See Chapter 22 of the HP48 owner's manual.

POLYNOMIAL 3: COEF LIST
ROOT 2:e>0 [ VECTOR]

1: MAX TRYS   

 

 
 

PROOT takes the complex coefficient list L (see FEVAL for definition and order)
and creates a Frobenius matrix M. EIGEN is used to compute the eigenvalues of
M, which are the complex roots of L. For example let f(x) = x*> — 0.2x* + 7° + x?
-35x+2=0.ThenlistL={2-3517-0.21}. Withe=1E-10, the roots are

(.140377913, £2.7314490896), (-.908563257, 0), (.413903715, +.3506447075).

MAX is the maximum numberof iterations (say 20) EIGEN is allowed to converge
each eigenvalue. If the solution fails at some eigenvalue, the diagonal matrix is still

returned, but only the last values of the vector (the ones which converged) are
actual roots.    
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 ALGEBRA AND CALCULUS MENU
{ ALGB }

FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

CONVERGENCE FAILED is displayed when the root finders cannot converge the
roots according to the input arguments. When this happens, push ATTN, and what
roots it has found are returned. The display shows where the convergence failed,

sO you can count the number of true roots.

 

POLYNOMIAL
ROOT

L v & MAX [ VECTOR |

 

 

  
 

AROOT uses Laguerre’s method for solving for all the roots of the polynomial
defined by the complex coefficient list L. Value v is the initial guess for all of the

roots, and ¢ sets the convergence criterion. MAX (say 100) is the maximum

iterations allowed to converge each root. After converging each root, DEFLT is
used to remove that root from polynomial L.

The most difficult polynomial root solutions occur when there are repeated roots.
Consider the example: 'x'? + 99x" — 377x'® - 26395x° + 149080x® + 1703048x’
— 15440048x° + 8684864x° + 302914240x* — 1377763200x° + 2718976000x°
— 2620320000x + 1008000000" = (x-2)° (x-5) (x+6) (x7) (x+10) (x—10) (x+15)

(x+100). Withv = 0, ¢ = 1E-8, and MAX = 100, we only get two roots:
(1.98607080, 0) and (1.99562237, —1.32705219E-2). Dropping €¢ = 1E-4 yields the
roots: (1.98607080, 0) (1.99563474, —1.32669871E-2) (1.99563459, .0132665015)
(2.01132960, 8.27241365E-3) (2.01133027, —-8.27192808E-3) (5, 0) (-6, 0) (7, 0)

(-10, 0) (10, 0) (-15, 0) (-100, 0).

The average of the first 5 roots is (2, 0) to 11 digits. LROOT can be used to verify
that (2,0) is the true root, and DEFLT can be used to remove it from P, giving the

reduced polynomial
{ (-31500000, 0) (3135000, 0) (1619500, 0) (-108650, 0) (-23945, 0) (673, 0)

(109,0) 1 }, which is easily solved since all the roots are unique.   
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ALGEBRA AND CALCULUS MENU

 

 

 

 

  

{ ALGB }
FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL L v & MAX ROOT
ROOT
  LROOT uses Laguerre’s method for solving for a single root of the polynomial

defined by the list L. Value v is the initial guess, and e sets the convergence
criterion. For example,let the polynomial be 2° + (-5,0) z° + (19,8) z + (-7,-24).
The output of COEFL is { (-7,-24) (19,8) (-5,0) 1}. With v = 8 and €¢ = 1E-10, the
output of LROOT is (1.00000124,2.00000221). The actual roots are [ (1,2) (1,2)

 

 

 

  

(3,-4) l

DEFLATE 3: POLYNOMIAL 3: REMAINDER
POLYNOMIAL 2: ROOT 2: ROOT rr

1:e>0 1: NUMBER

 

remainderis less than or equalto ¢.

DEFLT successively divides polynomial P by divisor D = { —r 1 }, where r is a root
of P as long as the absolute value of the remainder is less thane. P and D are

polynomiallists. For example, let P = { (-7,-24) (19,8) (-5,0) 1 },r= (1,2), and e =
1E-8. Then D = { (-1,-2) 1}, and DEFLT returns the remainder { (-3,4) 1 }, the
root r, and the multiplicity of the root 2. If instead r = (-1,2), then P is returned to

level 3, the root to level 2, and 0 to level 1, since (-1,2) is not a root of P. Root ris
considered a true root of P if, after division by D, the absolute value of the

 
POLYNOMIAL
DERIVATIVE   

 

POLYNOMIAL
LIST  

POLYNOMIAL
LIST

  PDERV computes the derivative of the polynomial represented by the list L. The
derivative of polynomial { (-7,-24) (19,8) (-5,0) 1 } is { (19,8) (-10,0) (3,0) },

corresponding to the polynomial (3,0) z*2 + (-10,0) z + (19,8).
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ALGEBRA AND CALCULUS MENU

 

 

  
  

  

   

{ ALGB }
FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL 2: NUMERATOR 2: NUMERATOR
DERIVATIVE OF 1:Q= 1:
QUOTIENT DENOMINATOR DENOMINATOR
 

RDERV computes the derivative of the quotient of polynomials P and Q. For
example, if P={3-41}and Q ={ -48 44 -12 1 }, then the derivative of the

quotient P/Q has the numerator { 60 —-24 —13 8 —1 } and the denominator
{ 2304 -4224 3088 -1152 232 -24 1 }.

 

symbolic elements.
The commands PDERV, RDERYV, and PINTG do allow polynomiallists with

 

 

 

  

POLYNOMIAL 2: POLY LIST P INTEGRATED
INTEGRATION 1: NUMBER OR POLYNOMIAL

SYMBOL LIST
 

Given the polynomial list P and integration constant C, PINTG computes the
polynomial list of the integral of the polynomial corresponding to list L.

PINTG({ (19,8) (-10,0) (3,0)},1)={1(19,8) (-5,0) (1,0) }.

 

POLYNOMIAL
EQUATION  

 

 
2: POLY LIST
1: STRING S  

PRETTY
EQUATION
   + (-7,-24) TO.

PEQN( { (-7,-24) (19,8) (-5,0) 1}, "T") = 'T3 + (=5,0) T2 + (19,8) T1   
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FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL 2: POLY LIST PRETTY
EQUATION 1: VARIABLE V EQUATION

XEQN( { (-7,-24) (19,8) (<5,0) 1} ,'2') = 2° + (-5,0) 22 + (19,8) Z + (-7,-24).

POLYNOMIAL COEFFICIENT 3: QUOTIENT
LONG DIVISION LISTS L1 & L2 2: REMAINDER

neN 1: DIVISOR

 
  

 

 
 PLDVDis very different than PDVD. PLDVD begins by computing the first n terms

of the reciprocal of the polynomial represented by L2 with padding. Then it
multiplies that result by the polynomial represented by L1. The remainder is then
computed as that polynomial, when added to the product of the quotient and the

divisor (L2), is equal to the polynomial represented by L1.

3{1 '-A 'A"2 '-A"3 }
PLDVD({1},{1 m4) -{zl0 0 00 'A"4}

1: {1 A}

As a result, PLDVD gives a very different result for the PDVD first example.

3:{25 -1.75 -2.125
12.0625 -20.28125 }

PLDVD({5972180},{25810},5)=422{00000 15.03125
150.1875 20.28125 }

1: {2 56 8 1 0}

 
While | do not wish you to make a habit of breaking conventions, PADD, PSUB,
PMPY, PDVD, PLDVD, and LZDEL do accept [ VECTOR ] inputs where the nth

value in the vector corresponds with the nth value of the normal list input.  
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Observe thatlike all polynomial commands, the trailing zeros in the input lists are
ignored. PLDVD essentially reduces a rational polynomial to the first n terms of its
power series expansion, the quotient, plus higher order terms contained in the
remainder. For the same number of terms, PLDVD and RATAP are inverses of

each other. RATAP computes rational approximations of power series, and
PLDVD computes power series approximations of rational functions.

3:{1 -1 12 -1/6
1/24 -1/120}

PLDVD( {I -0.6 0.15 -1/60},{1 0.4 0.05},6)=1{2:{000000
00125 1/2400 )

1: {1 4 05] 
The magnitude of the remainder is a measure of the goodness of the

approximation. Applications of both these commands are discussed in Chapter 27.

   COEFFICIENT
LIST

[ VECTOR | LIST

 

    

Given vector V containing the roots of some polynomial, CLIST computes the
corresponding polynomial list.

 

LIST ROUND L N ROUNDED LIST

 

    

Given list L of numbers and integer N, SRND applies « N RND » to each element
of L. See page 148 of the HP 48 owner's manual.    
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LIST ZERO LIST LIST
DELETE    

 

 

Removes the contiguous zeros at the right of list L. For example:

LZDEL({12304000})={12304},

LZDEL({A BC DO O0})={ABC D}.

 

TEST IF REAL M eSM OR SV SM OR SV OR A
OR A

 

    

TIFRE tests its argument M to see if every element has an imaginary part whose
magnitude is less than 1E-8. If every element does, then TIFRE returns the real
part of M. M may be a standard vector or matrix object. It can also be a list of

numbers or a symbolic vector or matrix.

 

 

   
UP DIRECTORY NONE PARENT MENU
 

SPECIAL ALGEBRA IDENTITY AND EXPANSION PROGRAMS

The following ten programs provide various identities and algebraic expansion
capabilities. MTHS supplies missing HP 48 identities. PARE, PARED, and POLYE

provide parenthesis expansion. TRIGE expands various trigonometric forms.
TOEXP expresses trigonometric and hyperbolic functions in terms of exponentials.
CEXPE expands complex exponential forms. CNJE evaluates complex conjugates.

SREIM is a symbolic equivalent of CR and isolates the symbolic real and
imaginary parts of equations. CREIM is like R—C, but works with algebraic
expressions. These programs may be refined to meet your specific needs.

These ten programs are available. See Appendix A.
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SYMBOLIC ALGEBRAIC ANALYTIC FUNCTION IDENTITIES

The program MTHS provides identities for LN(EXP(&)), LOG(ALOG(&)),
ASIN(SIN(&)), ACOS(COS(&)), ATAN(TAN(&)), ASINH(SINH(&)),

ACOSH(COSH(&)), ATANH(TANH(&)), Y(SQ(&)), INV(1/&), EXP(LNP1(&)),
EXPM(LN(&)), ¥(-&) = ¥(&)i where & denotes any argument. The identities LN(e)

= 1 and LN(INV(e)) = -1 are also provided.

MTHS: « — F <« F "MATH IDENTITIES" 3 DISP { 'LN(EXP(&X))' &X }
TMATCH DROP { 'LOG(ALOG(&X))' &X} TMATCH DROP { 'ASIN(SIN(&X))

&X} TMATCH DROP {'ACOS(COS(&X))' &X} TMATCH DROP
{ 'ATAN(TAN(&X))' &X} TMATCH DROP { 'ASINH(SINH(&X))' &X} TMATCH
DROP { 'ACOSH(COSH(&X))' &X} TMATCH DROP {'ATANH(TANH(&X))' &X }

TMATCH DROP { VSQ(&X)' &X} TMATCH DROP { 'INV(1/&X)' &X}
TMATCH DROP {'EXP(LNP1(&X))' '&X+1'} TMATCH DROP { 'EXPM(LN(&X))

'&X-1'} TMATCH DROP {V-&X' W&Xxi'} TMATCH DROP {'LN(e)' 1}
TMATCH DROP { 'LN(INV(e))' -1} TMATCH DROP »> »

PARENTHESIS EXPANSION UTILITIES

PARE expands forms like a(btc) and (btc)a and PARED forms like (bxc)/d.

PARE: « —» f « "EXPAND A(BxC)" 3 DISP 0 — F « f DO {'&Cx(&A+&B)'
'&Cx&A+&Cx&B' } TMATCH 'F' STO {'&Cx(&A-&B)' '&Cx&A-&Cx&B'}

TMATCH 'F' STO+ F UNTIL 0 == END DO {'(&A+&B)x&C' '&Ax&C+&Bx&C'
} TMATCH 'F' STO {'(&A-&B)x&C' '&Ax&C-&Bx&C'} TMATCH 'F' STO+ F

UNTIL O == END > >» >»

 
PARED: « — f « "EXPAND (B+C)D" 3 DISP 0 — F <« DO {'(&A+&B)/&C'
'&A/&C+&B/&C' } TMATCH 'F' STO { '(&A-&B)/&C' '&A/&C-&B/&C'} TMATCH

'F' STO+ F UNTIL 0 == END > > »   
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PARENTHESIS EXPANSION UTILITY

Program POLYE expands the binomial forms (atb)*n and c(atb)*n for n e N. Then
it expands the parentheses of the resulting expression.

POLYE: « — F < "EXPAND (A+B)"N" 3 DISP F { '&Cx(&A+&B)"&N'
's(K=0,&N,&Cx&ANKX&NVKIx&BA(&N-K)/(&N-K)!'} TMATCH DROP

{ '&Cx(&A-&B)*&N' 'Z(K=0,&N,&Cx&AKX&NVKIx(-&B)N&N-K)/(&N-K)!" }
MATCH DROP{ '(8A+&B)*&N' 'E(K=0,&N,&AKx&NVKIX&BA&N-K)/(&N-K)!" }
TMATCH DROP{ '(&A-&B)"&N' 'X(K=0,&N,&AKx&NYKIx(-&B)N(&N-K)/(&N-K)! }
TMATCH DROP EVAL { '&Cx(&A+&B) '&Cx&A+&Cx&B'} TMATCH DROP

{ '&Cx(&A-&B)' '&Cx&A-&Cx&B'} TMATCH DROP
{ (-&A)A&N' '(=1)"&Nx&AM&N'} TMATCH DROP EVAL { '(&A+&B)x&C'
'&Ax&C+&Bx&C'} TMATCH DROP { '(&A-&B)x&C' '&Ax&C-&Bx&C'}
TMATCH DROP { '(-&A)*&N' '(-1)"&Nx&A*&N'} TMATCH DROP

{ (&AX&B)"&N' '&AN&Nx&B*&N' TMATCH DROP EVAL COLCT > »

 
 

FAST ALGEBRAIC EXPANSION AND COLLECTION

The HP 48 EXPAN command can be very slow in expanding certain expressions.
For example, expanding z%°(3z**+5z’) with EXPAN will expand z’ to zxzxzxzxzxzxz
as part of the effort. Similarly, it will expand z*° and z*®. Only after fully expanding
the expression can you use COLCT to yield an expression without parentheses.
As more symbols get put on the stack as part of the expansion, the slower EXPAN
works, and the memory manager may become completely occupied with cleaning
up garbage. If the objective is simply to eliminate the parentheses, there is a great

deal of wasted effort both in the expansion and the eventual collection.

However, the program « PARE COLCT » will expand z%°(3z**+52’) to
2%%(3xz*?)+z%x(5xz’) and then collect as 5xz*’+3xz®in seconds.   
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TRIGONOMETRIC EXPANSIONS

Program TRIGE provides expansions for SIN(&A+&B), COS(&A+&B), TAN(&A+&B),
SIN(&A)*n, and COS(&A)"n for n = 2, 3, 4 where &A and &B denote any argument.

TRIGE: « — F < "TRIG IDENT EXPAND" 3 DISP F {'SIN(&A+&B)
'SIN(&A)xCOS(&B)+COS(&A)xSIN(&B)' } TMATCH DROP { 'SIN(&A-&B)'
'SIN(&A)xCOS(&B)-COS(&A)xSIN(&B)' } TMATCH DROP { 'COS(&A+&B)’
'COS(&A)xCOS(&B)-SIN(&A)xSIN(&B)' } TMATCH DROP { 'COS(&A-&B)'
'COS(&A)xCOS(&B)+SIN(&A)xSIN(&B)' } TMATCH DROP { TAN(&A+&B)'

'(TAN(&A)+TAN(&B))/(1-TAN(&A)xTAN(&B))' } TMATCH DROP { 'TAN(&A-&B)
'(TAN(&A)-TAN(&B))/(1+TAN(&A)xTAN(&B))' } TMATCH DROP { 'COS(&A)"2'

'5+.5xCOS(2x&A)' } TMATCH DROP { 'COS(&A)3'
 75xCOS(&A)+.25xCOS(3x&A)' } TMATCH DROP {'COS(&A)*4'

'375+.5xCOS(2x&A)+.125xC0S(4x&A)' } TMATCH DROP { 'SIN(&A)"2"
'5-.5xCOS(2x&A)' } TMATCH DROP { 'SIN(&A)"3'

' 75xSIN(&A)—.25xSIN(3x&A)' } TMATCH DROP { 'SIN(&A)"4'
'3755xCOS(2x&A)+.125xC0S(4x&A)' } TMATCH DROP » »

 

SYMBOLIC CONVERSION TO EXPONENTIAL FORM

TOEXP convents SIN, COS, SINH, and COSH to exponential form. This is useful in
many integration problems.

TOEXP: « — F <« "TO EXP FORM" 3 DISP F
{ 'SIN(&)' 'EXP(&xi)/(0,2)-EXP(-&xi)/(0,2)'} TMATCH DROP

{ 'COS(&)' 'EXP(&xi)/(0,2)+EXP(-&xi)/(0,2) } TMATCH DROP
{ 'SINH(&)' '.5xEXP(&)-.5xEXP(-&)'} TMATCH DROP

{ 'COSH(&)' '.5xEXP(&)+5xEXP(-&)'} TMATCH DROP » >     
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COMPLEX EXPONENTIAL EXPAND

Program CEXPE expands complex exponentials of the form e*?, e**, e**, e*, ft,
and a’.

< — F < "EXPAND EXP(iz)" 3 DISP F { 'EXP(&A+ix&B)'
'EXP(&A)xCOS(&B)+EXP(&A)xSIN(&B)xi'} TMATCH DROP { 'EXP(&A-ix&B)'
'EXP(&A)xCOS(&B)-EXP(&A)xSIN(&B)xi' } TMATCH DROP { 'EXP(&A+&Bxi)’
'EXP(&A)xCOS(&B)+EXP(&A)xSIN(&B)xi' } TMATCH DROP {'EXP(&A-&Bxi)’

'EXP(&A)xCOS(&B)-EXP(&A)xSIN(&B)xi' } TMATCH DROP { 'EXP(ix&)'
'COS(&)+SIN(&)xi' } TMATCH DROP { 'EXP(-ix&)' 'COS(&)-SIN(&)xi' }

TMATCH DROP {'EXP(&xi)' 'COS(&)+SIN(&)xi'} TMATCH DROP { ‘i"&A’
'COS(nx&A/2)+SIN(nx&A/2)xi' } TMATCH DROP

{ '&AAN' 'COS(LN(&A))-SIN(LN(&A))xi' } TMATCH DROP { 'LN(EXP(&A))' &A }
TMATCH DROP EVAL COLCT > »

 

COMPLEX CONJUGATE EVALUATE

Program CNJE attempts to evaluate the CONJ operations in the input expression.

CNJE: « » E « E CEXPE "EVAL CONJ" 3 DISP 0 —- F « DO

{ 'CONJ(&A+&B)' 'CONJ(&A)+CONJ(&B)'} MATCH 'F' STO {'CONJ(&A-&B)'

'CONJ(&A)-CONJ(&B)' } {MATCH 'F' STO+ F UNTIL 0 == END EVAL

{ 'CONJ(ix&)' '-&xi'} TMATCH DROP {'CONJ(&xi)' '-&xi'} TMATCH DROP

{ 'CONJ(—(&xi))' '&xi'} {MATCH DROP EVAL {'CONJ(&)' &} TMATCH

DROP EVAL COLCT >» > >   
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SYMBOLIC C—R TO SEPARATE THE REAL AND IMAGINARY PARTS

Program SREIM trys to separate the real and imaginary parts of a symbolic
expression. Like the ISOL command, it may fail, especially with complicated

expressions.

SREIM: « — F « F CNJE CEXPE POLYE PARE PARED COLCT DUP
{'&xi' '&x0'} MATCH DROP {'i 0} TMATCH DROP {'-i' 0} TMATCH
DROP EVAL SWAP '-i' x PARE COLCT {'&xi' '&x0'} {MATCH DROP

{i 0} TMATCH DROP {'-i' 0} TMATCH DROP EVAL » »

 

SYMBOLIC R—»C TO COMBINE THE REAL AND IMAGINARY PARTS

CREIM: « > RC <«cRC'iI"'X + >>»

 

EXAMPLE - ALGEBRA TECHNIQUES FOR BIG PROBLEMS

It is told that an aerospace engineer was stuck with the hydrodynamic flow problem
of evaluating the following particularly difficult integral:

[LA + Bt + Ct? + sin(t) |* dt.  After two long weeks, he was able to expand the integrand into its 256 terms three
times. However, since he obtained three different answers and could not determine
which was correct, he gave up. We present our solution on the next few pages.
This is a big problem, and you will need 25 K to 30 K bytes of free memory to run

it. If you run short, modify EX4 on the next page to purge IEQN and IEQNI.    
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The following program will give you the 256 terms in about 35 minutes.

EX1: « '(A + Bz + Cz"3 + SIN(z) )*4' POLYE POLYE POLYE PARE »>

However, the above 256 terms contain terms with SIN(z)*n for n = 2, 3, and 4. An
investment in TRIGE will eliminate all the powers of the SIN function, resulting in

even more terms. A second investment in PARE will again eliminate the
parentheses, so we are ready to integrate the hundreds of terms. EX2 takes about

31 minutes (times may vary depending on a variety of conditions).

EX2: « TRIGE PARE 'lEQN' STO >,

which stores the result in the variable IEQN. Then the program

EX3: « 0 z IEQN z | EVAL '[EQNI' STO »>

will perform the integration in 6.7 minutes. The output consists of a part which is
completely integrated and a part which is not. The following program will isolate

these two parts.

EX4: < IEQNI {'f(0,2,&,2)' 0} {MATCH DROP 'IEQN{' STO IEQNI
{'&A+/(0,2,4B,z) &B} MATCH DROP 'IEQN2' STO »

The completed part of the integral is now stored in IEQN1, and the remaining
integrand in IEQN2. Since the HP 48 does not have megabytes of memory for

massive integral tables, we will have to give it a little help. From standard integral

tables, we have

Zz nk

[zr sin az dz = -} kK! HES cos(az + km/2),
k=0 k)a    
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k=0

n n-k

[zr cos az dz =), k! HES sin(az + kn/2).

Observe that the integral depends on the values of n and a in addition to z. In
particular, n=1,2,...,9anda=1,2,..., 4. Using commands from the SYMB

menu discussed in Chapter 25, the following program constructs an 8 x 10
symbolic function matrix of coefficients. The first four rows are coefficients of sin kz
fork =1, 2, 3, and 4. The second four rows are coefficients of cos kz fork = 1, 2,

3, and 4. In addition, the columns are coefficients of z" forn=0,1,...,9. By

isolating these coefficients, the above integral formulas can be directly applied.

Program EX2 made the integrand linear in sin kz and cos kz fork = 1, 2, 3, and 4.

By substituting a variable S1, S2, . . ., S8 for these, we can isolate the coefficients
by computing the gradient with respect to each. The result is a column vector of
coefficients, each being a polynomial in z. By now expanding these coefficients
into a Maclaurin series, we isolate the coefficients of z"forn=0,1,...,9. The

result is a symbolic column vector of polynomial coefficient lists, which is also an 8
x 10 symbolic matrix as defined in Chapter 25. Program EX5 computes the matrix

in about 22 minutes.

EX5: « 1 4 FOR K 'SIN(Kxz)' EVAL "S" K + OBJ—> NEXT 1 4 FOR K
'COS(Kxz)' EVAL "S" K 4 + + OBJ» NEXT {8 2} -»SOB —» L « IEQN2
1 8 FOR K "MATCH " K + 3 DISP L K SERW TMATCH DROP NEXT "

COMPUTE GRAD" 3 DISP L 2 SECOL SGRD SEXCO
< z 9 COEFL » L1F1 'IEQN3' STO > »    
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Now substitution of the above two integral formulas is simple, since the row number
corresponds to the value of a and the column number corresponds to value of n.

EX6 provides the integral formulas as a function of row number and column
number. It is called by EX7 below.

EX6: « > rc « -2 SF IF r 4 < THEN
'-%(k=0,c-1,kIXCOMB(c-1,k)xz*(c-1-K)/r’(k+1)xCOS(rxz+kxn/2))'

ELSE r 4 - 'T STO

'Z(k=0,c-1,kIxCOMB(c-1,k)xz*(c—1-k)/r*(k+1)xSIN(rxz+kxn/2))'
END EVAL -2 CF > »

 
Program EX7 completes the integration and stores the final result in IEQN1.

EX7: « 1 8 FOR R 1 10 FOR C IEQGN3 R C 2 LIST SGET DUP IF 0
SAME NOT THEN R C EX6 x END 'I[EQN1' STO+ NEXT NEXT > »

This entire example requires a little over 1.6 hours to compute, and the final

equation for the integral consists of hundreds of terms. Use the | (where)
command to evaluate it.

 

SYMBOLIC ALGEBRA AND CALCULUS WITH LIBRARY FUNCTIONS

The HP 48 commands APPLY and QUOTE were not designed to work with library
objects. Consequently, the program « A GAMMA » will evaluate to an error. The

easiest way to include the MATHLIB higher transcendental functions in your
symbolic algebra and calculus computations is to create a number of symbolic
functions which call the library commands when all the arguments are real or

complex numbers. A number of example programs are given below with derivative
definitions. Over 200 are available, as discussed, in Appendix A. They supply full
symbolic capability, including derivatives, for the functions in Chapters 3 through 15.   
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SYMBOLIC FUNCTION AND DERIVATIVE DEFINITION EXAMPLES

Many HP 48 calculators have a bug in the APPLY command so it does not work
properly. The first rule is never use the APPLY command to create a symbolic

function definition, because for some arguments,it will not differentiate properly.

For example, the program « — z <« 'APPLY(YYS,z)) EVAL » » stored in
variable YYS defines the symbolic function YYS. If YYS is evaluated with argument

Z, then the resulting function 'YYS(Z)' properly differentiates to 'derYYS(Z,1)'.
However, if YYS is evaluated with argument '4xZ’, the resulting function 'YYS(4xZ)'
differentiates to 'derYYS(4xZ,0)' instead of the correct function 'derYYS(4xZ,4)'.

The below program sequences combined with special command EVLX create
symbolic functions which will differentiate properly.

GAMMAS: « —» z « IF z TYPE 1 < THEN z GAMMA ELSE 'GAMMAS(a)'
oo z 2 LIST EVLEY END > »

PSIS: « > z « IF z TYPE 1 < THEN z PSI ELSE 'PSIS(a)' a z 2
—LIST EVLY END > »

DNPSIS: « > nz «IF n TYPE 1 <z TYPE 1 < AND THEN n z
DNPSI ELSE 'DNPSIS(a,B) a n p z 4 —LIST EVLE END > »  
derm!: « —» A dA < IF dA 0 SAME THEN 0 ELSE

'GAMMAS(A+1)xPSIS(A+1)xdA' EVAL COLCT END > »>

derGAMMAS: « — A dA < IF dA 0 SAME THEN 0 ELSE
'GAMMAS(A)xPSIS(A)xdA' EVAL COLCT END » »

derPSIS: « » A dA <« IF dA 0 SAME THEN 0 ELSE 'DNPSIS(1,A)xdA'
EVAL COLCT END > »    
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FIRST DERIVATIVE EXAMPLE

Compute the derivative of 4"/n!. 
DEX1: « '4"n/n!" n 9 »>

= '1.38629436112x4"n/n! — 4nx(PSIS(1+n)xGAMMAS(1+n))/n!*2'.

Since GAMMAS(1+n) = n!, this reduces to 4"/n![1.38629436112-y(1+n)].

 

FIRST DERIVATIVE EXAMPLE

Compute the derivative of 4"/I'(n + 1).

DEX2: < '4"n/GAMMAS(n+1)' n 0 »>

= '—(PSIS(1+n)/GAMMAS(1+n)x4*n) + 1.38629436112/GAMMAS(1+n)x4n'.

 

SECOND DERIVATIVE EXAMPLE

Evaluate the second derivative of z° cos(2z)T'(z) at z = 1.3.

DEX3: < 'z/3xCOS(2xz)/GAMMAS(z)’ z 3 EXCO z 3 EXCO DUP z 1.3 2
—>LIST | »

The result is -10.8782061908.      
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COMPLEX LINEAR ALGEBRA

INTRODUCTION

This chapter presents the 66 complex linear algebra commands in the LINAG menu.
The LINAG commands include linear solutions, least squares solutions, singular value

decomposition (SVD), tests for special matrices, Gaussian decomposition of matrices,
Householder reflections and decompositions, Givens rotations, bidiagonal and
tridiagonal decompositions, upper Hessenberg decomposition, Schur decompositions for
the Hermitian and general cases, Cholesky factorization, as well as characteristic
polynomial computation, eigenvalues, and eigenvectors. Utilities provided include
matrix reordering based on pivot vectors, normal and Hermitian transposition,
determinants, various matrix norms, matrix trace and minor operations.

Numerous related commands are given in the MATR, VECTR, VSAG, MSAG, SYMB,
and PROC menus. Commands for manipulating parts of matrices and vectors are
given in the MATR and VECTR menus. Matrix and vector scalar algebra commands
are given in the MSAG and VSAG menus. Symbolic array (matrix and vector function)
operations are given with the calculus and differential equation commands in the
SYMB menu. Toeplitz solution commands are given in the PROC menu.

DEFINITIONS

Many of the commands available in the LINAG menu are advanced topics in linear
algebra. The following definitions are given to make the command explanations clear.
Let matrix M € C have m rows and n columns. Then M is of order m x n.

217
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VECTOR: A vector V is an ordered collection of numbers or functions where the
ordering is one-dimensional and the elements are denoted by V, for j=1,2,..., N
where N is the dimension or SIZE of the vector. This menu is limited to vectors
containing real or complex numbers only. The HP 48 supports three kinds of vectors:
The basic vector is denoted by [ V; V, ... Vy], the column vector is denoted by [[ V,
1[V,] ... [ Vy ]], and the row vector is denoted by [[ V, V, ... Vy 1I. The column and
row vectors are special cases of matrices and share all the matrix commands.

MATRIX: A matrix is an ordered collection of numbers or functions where the
ordering is two-dimensional and the elements are denoted by M,, where j=1, 2, .. ,
mandk =1,2,...,n. M,is a column vector and M,, is a row vector. This menu is
limited to matrices containing real or complex numbers only. The HP 48 denotes
matrices by [[ M,; ... M, I[M,; ... M, 1 ... [M,, .. M_Il

ADDITION AND SUBTRACTION: Matrix addition and subtraction are defined as
simply the sum or difference between corresponding elements. A + B implies A, + B;,

for all j and k.

INNER OR DOT PRODUCT: The DOT product is defined for vectors and equals the
sum of the products of pairs of corresponding vector elements. A « B = X(j=1,N,A, x B)).
The square root of A « A is the Frobenius (Euclidean) norm of vector A. This is
computed by the HP command ABS. When A and B are complex, then the dot product
is A « CONJ(B), where CONJ computes the complex conjugate of B.

MATRIX PRODUCT: The matrix product A x B is the computation of the m x n inner
products of the rows of A and the columns of B. Thus, if C = A x B, then C=
Z(e=1,m,A,, x By).

DETERMINANT: The determinant of a square matrix is a special permuted product
of the elements; it is provided by the HP command DET.

RANK: The rank of matrix M is the dimension of the range of M. If M has rank r,
then: M contains exactly r linearly independent rows and r linearly independent
columns, there is an r x r submatrix of M which has a nonzero determinant, and r <
min{m, n}. A matrix of rank r = min{m, n} is said to have or be of full rank.

CONSISTENT: If there is at least one solution, then a linear system is consistent.
The linear system Mx =b is consistent if and only if rank [Mb] = rank M, where [Mb]
is the augmented matrix with additional column b. The system x, + 2x, = 1 and x, +
2x, = 2 is obviously inconsistent and has no solution. If square matrix M has full

rank, then the linear system is consistent for all b.
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NONSINGULAR: A matrix is nonsingular if m = n and it has full rank. If M is
nonsingular, then: inverse M™! exists and M M™! = I, the identity matrix; Mx = b is
consistent for all b; and Mx = b is a FULLY DETERMINED linear system with
solution x = M™'b. Similarly, the linear system xM = b is fully determined if M is
nonsingular and x = bM™.

UNDERDETERMINED: Underdetermined systems are ones which have more than
one feasible solution. The linear system Mx = b is underdetermined if m < n since
there are fewer equations than unknowns. If M is square but not of full rank, then

the system is also underdetermined. The usual approach is to choose the solution for
which Mx - b = 0 and the norm of x is minimized. Then x = MY(MMF¥)"'b, where the
superscript H denotes Hermitian transpose.

OVERDETERMINED: Overdetermined systems are ones which have more equations
than unknowns. The linear system Mx = b is overdetermined if m > n and M has full
rank. The system is thus inconsistent. The usual approach is to choose the solution

for which the norm of Mx — b is a minimum that is a least squares solution. Then x
= (M"M)'M"b. The inverses used in the underdetermined and overdetermined cases
are Moore-Penrose pseudoinverses, which generally work when M has full rank.
When M is rank-deficient, then either MM" or M"M may be singular, and the
Moore-Penrose technique fails with a divide-by-zero error.

SINGULAR VALUE DECOMPOSITION LEAST SQUARES: All of the above linear
system solution cases are special cases of the singular value decomposition (SVD)
approach to linear solutions. The SVD least squares solution commands, while having
longer execution time, will always converge to a minimum norm solution, which is
exact in the fully determined case. The nonzero singular values of a matrix are
invariant under conjugation, transposition, and the addition of zero element rows and
columns to make the matrix larger.

TRANSPOSE: The transpose of matrix M, denoted by superscript T, swaps the row
and column indices. If C = M” then Cx = M;. The Hermitian transpose, denoted by
superscript H, also conjugates the elements. C = M¥ implies Ci, = CONJ( M,; ).

SYMMETRIC: A matrix M e Cis symmetric if M™ = M.

HERMITIAN: A matrix M eC is Hermitian if MY = M.

ORTHOGONAL: Two vectors are orthogonalif their dot product is zero. A matrix
MeR is orthogonal if each pair of column vectors is orthogonal. Thus, if M is
orthogonal, then MM” = M™ = I.
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UNITARY: A matrix M eC is unitary if MM" = MFM =I.

NORMAL: A matrix M eC is normal if MM¥ = M*M.

TRACE: The trace of a square matrix is the sum of its diagonal elements.

MINOR: The determinant of a square submatrix. If the submatrix isa principal
submatrix, then the minor is a principal minor. The signed minor [(-1)¥ DET M] is
called a cofactor.

EIGENVALUES AND EIGENVECTORS: For square matrix M eC, if there exists a
linear solution to Mx — Ax = 0 for vector x # 0 and scalar A, the value of A is an
eigenvalue (characteristic value) of M, and x is an eigenvector (characteristic vector)
of M. More rigorously, x is a right eigenvector of matrix M.

SCHUR VECTORS: The column vectors of the unitary matrix associated with the
Schur decomposition. Only when M is normal are the Schur vectors also the
eigenvectors of M.

SINGULAR VALUES AND SINGULARVECTORS: For rectangular matrix M € C, the
singular value decomposition (SVD) of M = U D V¥, where U and V are unitary and
D is real and diagonal. The values of D are the singular values of M. Also, D = U"
M V. The columns of U are the left singular vectors, and the columns of V are the
right singular vectors of matrix M. The square of the nonzero singular values of M
equals the nonzero eigenvalues of MY M and those of M MY,

CHARACTERISTIC POLYNOMIAL: The characteristic polynomial of square matrix
M is the equation DET{AI-M} = 0. The roots of this polynomial are eigenvalues of M.

CONDITION NUMBER: Ratio of the largest and the smallest singular values.

LINEAR AND LEAST SQUARES SOLUTIONS

Linear and least squares solutions are given in pairs for the unknown vector on the
right Mx = b which is normally the case, as well as the unknown vector on the left, xM
=b. LSOVL and LSOVR handle the fully determined cases, USOVL and USOVR
handle the underdetermined cases, and OSOVL and OSOVR handle the
overdetermined cases. The last four commands compute least squares solutions using
the Moore—-Penrose pseudoinverse technique. Commands for least squares data fitting
are in the MISC menu.
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SINGULAR VALUE DECOMPOSITION (SVD)

When the matrix MM” or M”M does not have full rank, LSVDL and LSVDR are
available for least squares solutions. The matrix of singular values is also returned.
The diagonal elements are the singular values, and the off-diagonal elements are a
measure of the decomposition accuracy. These commands use SVD, which performs
a full singular value decomposition of M. B«M will remove the singular values of the
matrix and place them in a vector, while commands SVDMI and SVDDI are available
for computing the inverse of the SVD matrix. The unitary matrices associated with
the SVD are also returned if the flag requesting them is set.

LU AND LDLT DECOMPOSITION

The most common type of matrix decomposition uses Gaussian reduction. GLUD
provides the LU decomposition of M into the product of a lower triangular and an

upper triangular matrix. Row pivoting is used to improve the accuracy of the
decomposition. When M is nonsingular, this LU decomposition can be continued,
resulting in M decomposed into the product of a lower triangular, a diagonal, and an
upper triangular matrix (transposed lower triangular matrix). This command is
performed by LDLTD. The commands GAUSS and AGAUS provide access to the
internal decomposition programs used for the Gaussian elimination.

SCHUR DECOMPOSITION AND THE EIGEN PROBLEM

The Schur decomposition is the standard means by which the dense eigen problem is
solved. There are two cases which must be considered. When matrix M is normal,
then the Schur decomposition M = QDQF provides the eigenvalues as the elements of
the diagonal matrix D and the eigenvectors as the columns of the unitary matrix Q.
SCRSD performs this decomposition by first using HTRDD to reduce M to a
tridiagonal matrix and second using EIGNS to iteratively converge the off-diagonal
elements to zero. Double implicit Wilkinson shifting is employed to speed the

convergence.

The general eigen problem is solved similarly with the command SCHRD. UHESD
is used to decompose M into upper Hessenberg form. Then EIGEN iteratively
converges the elements below the diagonal to zero. The resulting Schur decomposition
thus takes the form M = QTQ", where the eigenvalues ofM are the diagonal elements
of the upper triangular matrix T, and the associated Schur vectors are the column
vectors of Q. EIGEN employs double implicit complex shifting to speed convergence.
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Since computing the eigenvectors in the general case is quite tricky, I suggest that you
study the techniquesin the literature. A program for one technique, the inverse power
method, is given at the end of this chapter.

Commands WSQR and GSQR provide user access to the internal eigen iteration
software. They perform a single iteration on any part of a matrix, and loops can be
built around them. WSQR is used with Hermitian matrices, and GSQR is used with
arbitrary matrices.

When only the eigenvalues are required, CPOLY may be used to compute the
coefficients of the characteristic polynomial associated with a matrix M. AROOT may
then be used to solve for the roots whose values are the eigenvalues of M. However,
since the CPOLYalgorithm computes various powers of matrix M, this approach has
poor accuracy when the matrix has a large range of values.

CHOLESKY DECOMPOSITION

CHOLD provides Cholesky factorization of a Hermitian positive definite matrix M =
GG! into the product of a matrix G with its Hermitian transpose. When M is real,
then G is its square root.

COMPUTATION OF RANK AND QR DECOMPOSITION

HRQR uses Householder reflections to compute the rank of matrix M and the QR
decomposition M = QR where Q is unitary and R is upper triangular. Column pivoting
is used to preserve accuracy. The program returns matrix R, the rank, the pivot
vector, and a list containing the reduction history. This list can be input to the
command HBDU to construct the unitary matrix Q.

BIDIAGONAL DECOMPOSITION

HBDD computes a bidiagonal decomposition of the form M = UBV®, where U and V
are unitary and bidiagonal B has zero elements except for those on the diagonal and
the first superdiagonal. HBDD returns matrix B and two lists containing the
reduction history. The commands HBDU and HBDV convert these lists into the U
and V matrices.
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HBDDR also performs the bidiagonal decomposition M = UBVY, but in addition

rotates all the values of B onto the positive real axis. It can be proven that this
rotation of the bidiagonal elements with unitary matrices is unique. The U and V
unitary matrices are also returned on the stack.

HOUSEHOLDER REFLECTIONS

Unitary decompositions are the ones of choice for eigen and SVD analyses.
Householder reflections are used to introduce zeros into rows and columns, while

Givens (Jacobi) rotations are used to zero individual matrix elements. HTRDD uses

symmetric Householder reflections to decompose a Hermitian matrix M = VI'VE, where
V is unitary and T is tridiagonal with all elements equal to zero except those on and
just above or below the diagonal. UHESD uses Householder reflections to decompose
an arbitrary matrix M = VHV" to upper Hessenberg form, where V is unitary and H
is like upper triangular form, but it also has nonzero elements just below the diagonal.

Access to the internal Householder reflection software is provided. HOUSE and
VHOUS construct the Householder reduction vector, RHOUS and CHOUS apply it
to the rows and columns of the matrix being reduced without spending the computer
time to actually construct the associated unitary reflection matrix, and PHOUS
constructs the unitary reflection matrix given the Householder vector.

GIVENS AND JACOBI ROTATIONS

Access to the internal Givens rotation software is provided. GIVEN and GROT
construct in compact 2 x 2 matrix form the elements of the complex Givens rotation
matrix. Commands RROT and CROT then expand the compact rotation matrix and
apply it to the specified rows and columns.

CHARACTERISTIC POLYNOMIAL

The characteristic polynomial of a matrix can be constructed several ways. CPOLY
constructs it directly from the traces of the powers of matrix M. This is fast but can
be inaccurate. Alteratively, SCRSD and SCHRD can be used to solve for the
eigenvalues of M, and then CLIST will construct the polynomial list. Given the
polynomial list, XEQN constructs the algebraic symbolic polynomial.
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MATRIX NORMS

RABS and CABS provide the Frobenius (Euclidean) norm for each row and column
of a matrix. A vector is returned. HP commands RNRM and CNRM return the
maximum value ofthe vector elements, and the commands RABS2 and CABS2 return
the square of the values returned by RABS and CABS in a vector. RABS2 and
CABS2 are in the MSAG menu.

RANK AND CONDITION NUMBER

HRQR is the fastest way of determining the rank of a matrix in MATHLIB. It uses
column pivoting and generally will be sufficient. The most reliable method uses the
singular value decomposition command SVD and is thus slower. The condition
number may be computed from the output of SVD as the ratio of the largest singular
value and the smallest singular value.

POWER METHOD FOR COMPUTING EIGENVALUES AND EIGENVECTORS

The Schur decomposition approach is generally more accurate than the power method,
but requires computation of all the eigenvalues. The power method is useful when
only a few of the largest or a few of the smallest eigenvalues are required. Programs
are given at the end of Chapter 26 for computing the largest and smallest eigenvalues
of Hermitian Toeplitz matrices along with their associated eigenvectors. These
programs can be easily generalized to the general complex matrix case. By the use of
deflation, as many eigenvalues and eigenvectors as required can be computed.

A program using the inverse power method for computing the eigenvectors of matrices
in the general complex case is given at the end of this chapter. It uses SCHRD with
flag F = 2 to compute the upper Hessenberg decomposition, its associated unitary
matrix, and the eigenvalues. Then it iterates to compute each eigenvector.

TESTING EIGENVALUES AND EIGENVECTORS

The commands A? and AV? provide tests of whether a given number or vector is an
eigenvalue or eigenvector of a matrix. They may also be used to determine the
accuracy of convergence. Command EVS? tests whether two eigenvectors are the same
except for normalization. These commands are given in the MATR menu discussed in
Chapter 21.
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LIMITATIONS OF THE SOFTWARE

The matrix commands in this menu are intended for matrices of at least size 2 x 2.
Arrays of dimension 1 x n or m x 1 are vectors. Given a random real 40 x 40 matrix
and a dimension 40 random real column vector, LSOVR will solve the system in under
4 minutes. Given a random real 10 x 10 matrix with £¢ = 1E-8 and F = 0, SVD will
compute the singular values in under 23 minutes. Given the same matrix with € =
1E-8 and F = 0, SCHRD will compute the eigenvalues in 35 minutes. While CPOLY
combined with AROOT for ¢ = 1E-6 will compute the eigenvalues in a little over 3
minutes, they may be inaccurate for some matrices. Given the same 10 x 10 matrix
with € = 1E-8, program EVSOV will compute all the eigenvalues and eigenvectors in
about 53 minutes. The program «0 1 1 S MRDN », where S equals { 40 40} or
{ 10 10 }, will compute the random matrix for you. Smaller matrices are faster;
complex matrices are slower.

CONVERGENCE OF SOLUTIONS

The convergence of eigenvalues and singular values can require some experimentation.
If € is too small, convergence may never occur due to numerical errors. Matrices with
repeated eigenvalues are very difficult to converge and € = 1E-4 may be required. If
there is still no convergence, consider spoiling the matrix by adding a small random
matrix to it to slightly shift the eigenvalues. Random matrix commands are given in
the MSAG menu. CONVERGENCE FAILED is displayed when eigen and SVD
computations fail to converge according to the user’s input arguments.

There is always a small probability that at some point in the decomposition, a pivot
element may become exactly zero. Ifyou are this unlucky, add a small number to your
matrix with MADD or add a small random matrix to your matrix. The HP 48 has a
numerical range of over +1E+499. Adding a small number to your matrix will not
change the final result, but it will avoid pathological numerical problems with pivot
elements perfectly equaling zero.

Internal to MATHLIB decompositions, a zero mean, standard deviation less than
1E-25, uniformly distributed "random" matrix is added to the input matrix. The seed
is fixed for repeatability, and it will have no effect on results, except for pathological
cases such as decomposing an all-zero matrix and observing that the algorithm
pivoted the all-zero data.
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LINEAR ALGEBRA MENU {LINAG]}
FUNCTION COMMAND INPUTS OUTPUTS
LINEAR SOLVE

LINEAR SOLVE

 

 
BeC AeC SOLUTION

BeC AeC SOLUTION
  

 

  
 

LSOVL provides the XA = B solution and LSOVR provides the AX = B solution in
fully determined cases. They use RSD once to improve the accuracy of the solution.

The RSD command is discussed on page 361 of the HP 48 owner's manual.

 
LINEAR SOLVE

LINEAR SOLVE

BeC AeC SOLUTION

 
 

 

  BeC AeC SOLUTION

 

USOVL provides XA = B solution and USOVR provides AX = B solution in
underdetermined cases. They use the Moore-Penrose technique and RSD once to

improve the accuracy of the solution.

 
LINEAR SOLVE

LINEAR SOLVE

BeC AeC SOLUTION

BeC AeC SOLUTION
 

 

 

  
  

OSOVL provides XA = B solution and OSOVR provides AX = B solution in
overdetermined cases. They use the Moore-Penrose technique and RSD once to

improve the accuracy of the solution.

 

NOTES ON DIMENSIONALITY

Let matrix A have m rows and n columns. Then A has order mxn. The left
solution is XA = B and the right solution is AX = B. Let X have order R, x C,

and B have order R, x C,. Note that B is either a row vector, a column vector, or a
matrix of correct dimension. B #[ VECTOR ]. Then we have the dimensionality

relationships given on the next page. The right solution is the common one.   
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LINEAR ALGEBRA MENU {LINAG]}
FUNCTION COMMAND INPUTS OUTPUTS

 
 

 

   
 

FULLY DETERMINED LEFT: C, = C, and A has order nxn with rank A = n
FULLY DETERMINED RIGHT: R, = R, and A has order mxm with rank A = m 
UNDERDETERMINED LEFT: C, > C, and A has order mxn with m>n and rank A=n
UNDERDETERMINED RIGHT: R, > R, and A is order mxn with n>m and rank A=m

OVERDETERMINED LEFT: C, < C, and A has order mxn with n>m and rank A = m
OVERDETERMINED RIGHT: R, < R, and A has order mxn with m>n and rank A = n

When the system is consistent but A is rank-deficient, LSOVL and LSOVR give you
a correct solution, but do not tell you that it is not unique. The M matrix on page
234 with B = [[2][2][2]] has solutions of the form [[-1][0][1]] + a [[-1][2][-1]] for
arbitrary a € C, but LSOVR only gives you the ao = .448053766453 solution. When
you doubt that A is full rank, use LSVDL and LSVDR. They give the unique
minimum Euclidean norm solution and also return the singular values. If the above
six commands abort with a divide-by-zero error, A is probably rank-deficient.

 

 

LEAST SQUARES BeC AeC 2: SVD MATRIX
SVD SOLVE e>0 1: SOLUTION

LEAST SQUARES BeC AeC 2: SVD MATRIX
SVD SOLVE e>0 1: SOLUTION  

 

 
 

LSVDL provides XA = B solution and LSVDR provides AX = B solution. The above
six commands are special cases of these two commands. These two commands
require considerably more execution time, but do provide least squares solutions in
the rank—deficient case where A"A in the right solution or AA" in the left solution is

singular. Parameter ¢ sets the accuracy of the SVD, and MAX is the maximum
number of allowed iterations per column to converge each singular value. If the
MAX value (say 20) is reached, then the current estimate of the SVD matrix

probably having nonzero superdiagonal elements is returned with a wrong solution.
SVDMI computes the inverse SVD matrix using 10e for its threshold. When m <n,

the matrix is internally decomposed by SVD in transposed form.
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  LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND    

INPUTS OUTPUTS

 
The column and iteration numbers are displayed during execution.

CONVERGENCE FAILED is displayed when LSVDL or LSVDRfails to converge
according to the user's input arguments. Push ATTN. The column numbertells

where the convergence failed.

 

 

 

LEAST SQUARES BeC AeC XeC VALUE
ERROR

LEAST SQUARES BeC AeC XeC VALUE
ERROR    
 

These commands return the root mean square error of XA — B and AX —- B.

EXAMPLE LINEAR AND LEAST SQUARES SOLUTIONS

In this first example, the A matrix is square and has full rank. Therefore, all four
right hand solver commands given above compute the same solution.

(12,0) (2,-3) (-1,4) 42) (3,1)

A=(152 (53) (-21) B=(®63) (92

(1 7) (7.4) (6,3) (6, -2) (-5,3)

(1757,.4159)  (.40086,.8958)
X = |(.7636,-.5312) (.9828,-.7436)

(-.03,-.482) (-1.1596,.6755)

The error for the first three linear solvers is 3.317E-11 while that for LSVDR is

9.523E-11 using €¢ = 1E-11. The singular values are 17.3368, 4.1064, 9.1964, and
the SVD matrix for this example is    
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

17.3368 0 0

0 41064 O

0 0 9.1964].

Taking the Hermitian transpose of the above B vector, this example can be repeated
for the four left-hand solution commands. For the same matrix A, the result is

5 - oa 6,-3) (6.2)

|(3,-1) 9.-2) (-5,-3)

 

_ [0728,-.2545) (-.0601,-.5677) (.6075,-.2406)
| (-.7478,.435) (.1.5866,-1.1284) (-.4895,-.3248)|.

Now that the above eight linear solvers have been demonstrated in the general
complex case,let us focus on some simple real cases to better understand the
capabilities of this software. Consider the underdetermined case using USOVR:  125 7 1 8.2

2.1333
A=[156 7 B=|5 =

189 10 4 24
-.0667|. The mean squared error is 3.6729E-11. An example overdetermined case using

OSOVR is  
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LINEAR ALGEBRA MENU {LINAG}
 

   
 

FUNCTION COMMAND INPUTS OUTPUTS

156 52109
105 2

“5 2 3 = ls X =|-.26155

29746 |,
8 43 4

where the mean squared error is 0.03057. If B" = [ 5 2 3 4], then the solution is

X" =[.11842 5032 .39146 ] and the error is 0.27514. With e = 1E-11 and MAX =
10, LSVDR gives the identical result with the singular values 13.0780, 5.9392,

2.9480. Consider next the rank-deficient example where A has a rank of 2. Using
USOVR we obtain

0
123 4 1

1/9
A=|156 7 B=12] X=

1/9
189 10 3

1/9].

LSVDR gives the same result with the singular values 19.6403, 1.12246, 0.

CONVERGENCE FAILED is displayed when LSVDL, LSVDR, and SVD fail to
converge according to the user's input arguments. Push ATTN. The column

numbertells where convergence failed.

  SINGULAR VALUE|
DECOMPOSITION |

3: U IF F=1 ONLY

Ae C 2: VIF F=1 ONLY

1: D 

 

  
 

Given arbitrary m x n matrix A, SVD computes the singular value decomposition D =
U" AV, where U and V are unitary and U D V" = A. D has the same dimensions as

A, and the magnitude of the major diagonal elements are the singular values.   
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

In the special case where A is symmetric, U = V, and the symmetric Schur
decomposition SCRSD can be used to compute the same result.

1 2 3 25.46241 0 0

4 5 6 .29066
A = e=1E-11 D = 0 0

7 8 9 0 0 0

10 11 12 0 0 0

1409 8247 -.0115 -.5476
5045 -.7608 .

3439 4263 4235 .7216 8 «082U - v -|sras —os71
547 0278 -8125 .1997 5745 -.0571 -.8165

£445 6465 4082).
.7501 -3706 .4005 -.3736

The algorithm uses HBDDR to decompose complex A into a bidiagonal, non-
negative real matrix, which is then diagonalized using Givens rotations and double
implicit Wilkinson shifting relative to A"A to speed the convergence. For the above

example, ABS(UDV" - A) = 6.565E-10. Consider next the example

1,2) (22 (3.2) 1808731 0 0
A=|@41) 53) (61)| D=| 0 104124 ©

(7.2) (8,3) (9,3) 0 0 1.32851  
using € = 1E-11. The error is ABS(UDV" - A) = 3.315E-10. Flag F specifies

whether the unitary matrices U and V are computed, and parameter MAX sets the
maximum number of iterations allowed to converge each column. If MAX value (say
20) is reached, then the current estimate of the SVD matrix probably having nonzero
superdiagonal elements is returned with the associated unitary matrices if requested.
When m < n, the matrix is internally decomposed in transposed form to minimize the
execution time. The column and iteration numbers are displayed during execution.  
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FUNCTION COMMAND INPUTS OUTPUTS

EXTRACT MeC Oel [ VECTOR]
DIAGONAL   

9 10 11 12

B«<M extracts any set of diagonal elements from an m x n matrix M. If offset O
equals zero, then the main diagonal is extracted. When O > 0, then the Oth

superdiagonal is extracted. When O < 0, then the Oth subdiagonal is extracted.

12 3 4 B-M(M0) = [16
M=|5 6 7 8 B-BM2) - [38

B-M(M,-2) = [9]

11]

 

 

 

 

 

TRANSPOSE AeC MATRIX

HERMITIAN AeC MATRIX
TRANSPOSE    
The Hermitian transpose of A is the transpose of the complex conjugate of A.

 

 

 

    

 

 

TEST IF AeC ¢>0 1 IF TRUE, ELSE
SYMMETRIC 0

TEST IF AeC €>0 1 IF TRUE, ELSE
HERMITIAN 0

TEST IF AeC ¢>0 1 IF TRUE, ELSE
ORTHOGONAL 0

TEST IF UNITARY AeC ¢>0 1 IF TRUE, ELSE

0    



CH 20 : LINAG COMPLEX LINEAR ALGEBRA 233

 
 

 

 LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

In the above four tests, € > 0 is used to set the numerical precision. For example,
SYM? computes A minus its transpose and evaluates the maximum of the absolute
value of that difference. If it is less than g, a 1 is returned, and if it is not, a 0 is

 

 

 

returned.

HP CONSTANT 2: SIZE

MATRIX OR MATRIX MATRIX

1: VALUE

HP IDENTITY NUMBER MATRIX

MATRIX OF ROWS

HP REDIMENSION 2: OLD MATRIX NEW MATRIX

1: SIZE

 

     
See page 359 of the HP 48 owner's manual for complete definitions.

 

ROW REORDER MeC VeN MATRIX M

 

    

Given an m x n matrix M and an integer vector V of size m with elements 1, 2, . . ,
m in some order, RORDR interchanges the order of the rows of M according to the

content of V. An example is given below and is continued on the next page.

123 4586
M=|4586| V=[312] = |7809

789 123     
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The interpretation of the elements of V is to regard it as a "where | want that row to
be" specification. [3 1 2] says put the first row in the third row, the second row in
the first row, and finally put the third row in the second row. V can be created by
SRTI, by several of the matrix decomposition commands in this menu, or by hand.
Now the inverse transformation is "where did | come from," which is in this example

[2 3 1]. A way to do these permutations is to construct a permutation matrix P by
creating an m x m identity matrix using IDN and then using RORDR to orderit.
Then pre-multiplication (P x M) by P reorders M. Since P x P™' = | equals the

identity matrix |, the inverse row permutation is produced by pre—multiplication by
P.

 

   

 

COL REORDER MeC VeN MATRIX M
 

Given an m x n matrix M and an integer vector V of size n with elements 1, 2,.. ., n

in some order, CORDR interchanges the order of the columns of M according to the
content of V.

123 2 3 1
M=(456] V=[8312] = |586 4

7809 897

Column permutations are very similar to row permutations. V is the "where do |
want the columns to be" vector. If P is a column permutation matrix, then

post-multiply by P (M x P) to permute.

 

 

   
INVERSE ORDER V=[VECTOR ]eN [ VECTOR]
 

Given any valid row or column permutation vector V such as used in RORDR and
CORDR,this command creates the required vector V to put the rows or columns

back where they were.     
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LINEAR ALGEBRA MENU {LINAG}
 

FUNCTION COMMAND INPUTS OUTPUTS
 

MATRIX INVERSE

 

  MATRIX M  INVERSE MATRIX
 

MINV is slower than INV, but more accurate. It solves MX = | for X with LSOVR.

 

 

    

 

 

 

 

 

HILBERT MATRIX N MATRIX

Creates an N x N Hilbert test matrix.

HP ROW NORM MATRIX NORM

HP COLUMN MATRIX NORM

NORM    
For the above HP commands, see page 359 of the HP 48 owner's manual.

 

ROW ABS
 

 

 
MATRIX AeC

 
[ VECTOR]
 

Computes the square root of the sum of the squares of the absolute values of the
elements in each row and returns the values in a vector. This is the Frobenius

(Euclidean) norm of each row.

 

COLUMN ABS
 

 

 
MATRIX AeC

 
[ VECTOR]
   Computes the square root of the sum of the squares of the absolute values of the

elements in each column and returns the values in a vector. This is the Frobenius

(Euclidean) norm of each column.

    



236 COMPLEX LINEAR ALGEBRA

 

CH 20 : LINAG

 

 

LINEAR ALGEBRA MENU {LINAG}
 

 

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

LU SQUARE MATRIX 3: PIVOT VECTOR
DECOMPOSITION AeC 2: L MATRIX

1: U MATRIX 
 

A =

123

1586

279

Employs Gaussian transformations to decompose matrix A into the product of a
lower triangular matrix L times an upper triangular matrix U. Row pivoting is

employed to improve the accuracy.

1 00

510

S11

2 7 9 279

015 15| = [1 56 6| =PA

0 0 O 123

The pivot vector [3 2 1] is returned to stack 3, the L matrix to stack 2, and the U
matrix to stack 1. Observe that the product is the row-pivoted version of A. The
Gaussian decomposition matrix which computed U from A is the product L™' x P,

where P is the permutation matrix created by applying the pivot vector to an identity
matrix I. Note that A is singular, giving U a row of 0s.

 

 

 

 

001 1 00 00 1

P=1010 L'=|-510 L'P=|01 -5 L-'PA =U

100 -1 11 11 1

[3 2 1] is an example of a pivot vector that equals its own inverse.

LOWER x NONSINGULAR 4: PIVOT VECTOR
DIAGONAL SQUARE MATRIX 3: L MATRIX
x UPPER MeC 2: DIAG VECTOR

DECOMPOSITION 1: U MATRIX    This decomposition of a nonsingular matrix uses Gaussian transformations to
express the row-pivoted matrix M as the product of L x D x U. For example:    
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FUNCTION COMMAND INPUTS OUTPUTS
   
 

24 3 2

36 5 2

25 2 -3

4 5 14 14

1 000O0 4 0 O

5 100 025 0

75 910 0 0 1

5 611 0 0 O

1.25 35 35) [4 5 14 14
1 2 -4| [25 2 -3

1

0
0 0 1 -5| |365 2

0 0 0 1 24 3 2]o
o
O

O
©

where the pivot vector is [4 3 2 1], LDU = PM, and P is the permutation matrix.
Note that the diagonal matrix is returned as a vector. The command D—M discussed

below will convert that vector into a diagonal matrix for multiplying.

   

 

APPLY GAUSS AeC VeC R C REDUCED
TRANSFORM MATRIX

COMPUTE AeC C RS RF VECTOR V
TRANSFORM   

 

 
 

AGAUS and GAUSS are the two internal programs which perform the LU
decomposition. Given matrix A, the column C to be processed, the first row of that
column RS, and the final row of that column RF, GAUSS computes the vector V,

which AGAUS requires to transform the elements of column C from RS + 1 to RF to
zero. Given the original matrix A and the vector V, plus the starting row R and

starting column C, AGAUS processes matrix A and returns the result.
An example is given on the next page.     
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FUNCTION COMMAND INPUTS OUTPUTS

279
A=|156| GAUSSA1,13) =[1.55]=V

123

2 7 9
AGAUS(AV,1,1) =|0 15 1.5

0 -15 -15

 

HOUSEHOLDER MATRIX A eC 4: LIST
RANK AND QR mz2=n 3: PIVOT VECTOR

DECOMPOSITION 2: RANK
e>0 1: R MATRIX  

 

 
 

HRQR decomposes m x n matrix A into the product of a unitary matrix Q and an
upper triangular matrix R. The number of rows cannot be less than the number of
columns. Column pivoting is used to preserve accuracy. This command computes
matrix R, and the HBDU command computes Q from the output list. For e = 1E-8:

1 2 3 -16.432 -1.826 -14.606

1 656 6 -. .A - A - 0 8165 .8165

1 8 9 0 0 0

1 11 12 0 0 0

The rank of this matrix is 2, and the pivot vector equals [2 3 1]. The list that is
output allows reconstruction of the unitary (orthogonal since A is real) Q matrix.

For this example, it equals     
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LINEAR ALGEBRA MENU {LINAG}
 

FUNCTION
 
COMMAND

 
INPUTS

 
OUTPUTS
 

{[[1]1[.309][.463][.618]] [110-327 ][-789]]},

which is a list containing two column vectors since the rank of A is two.

The SVD is the most reliable rank determination.

 

HOUSEHOLDER
QR Q

COMPUTATION  

 

 

L = LIST FROM
HRQR OR HBDD

 

UNITARY
Q OR U
MATRIX
 

qQ =
691 -472

HBDU computes the unitary (orthogonal) Q matrix from the list output of HRQR and
HBDD. Since Q is unitary (orthogonal), R = Q" x A x IT as shown in the example:

-.183 -.816 -.400 -.374

-.365 -408 .255 .797

-548 0

-730 .408 -.546 .0488

010

=0 0 1 QR =

100

where IT denotes the column pivot matrix associated with the HRQR pivot vector.

3 12

6 15

9 1 8

12 1 11

=A  
 

HOUSEHOLDER
BIDIAGONAL

DECOMPOSITION  

 

 

MATRIX AeC

m>n2>2  

3: U LIST
2: V LIST
1: B MATRIX
   HBDD computes the bidiagonal decomposition of matrix A. Ux B x VF = A

and B = U" x A x V where matrices U and V are unitary (orthogonal if A real).
The number of columns cannot exceed the number of rows. An example is

given on the next page.   
 



240 COMPLEX LINEAR ALGEBRA CH 20: LINAG

 
 

LINEAR ALGEBRA MENU {LINAG]}
 

   
 

FUNCTION COMMAND INPUTS OUTPUTS

1 2 3 -12.884 21876 0

A.|% 5 8 g.| 0 2246 -613

7 8 9 0 0 0

10 11 12 0 0 0

The ULIST={[[1][.288][.504][.720]] [[1]1[-289][-753]] [1]
[ -.434 ]]} and the V LIST ={[[ 1][ .447 ]] }. The U unitary matrix is

evaluated from the U list using HBDU, while the V unitary matrix is evaluated
from the V list using HBDV below.

-.078 -833 -.011 -.548
1 0 0

-310 -451 423 .722
U-= V=(0 -687 -.745

-.543 -.0689 -.812 .200

 

0 -.745 .667
-776 312 400 -.374

HOUSEHOLDER OUTPUT LIST UNITARY
COMPUTATION FROM HBDD MATRIX
OF V MATRIX Vv  

 

  
HBDV constructs the V matrix from the HBDD list. In the case where the

decomposed matrix has only two columns, HBDD returns the list { }.
Nevertheless, HBDV( { } ) properly constructs V.      
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FUNCTION COMMAND INPUTS OUTPUTS

HOUSEHOLDER SYMMETRIC OR 2:VIFF=1
TRIDIAGONAL HERMITIAN 1: T MATRIX

DECOMPOSITION MATRIX 

 

  
 

HTRDD computes the tridiagonal decomposition of a Hermitian (symmetric if
real) matrix A. Vx Tx V"=Aand V*' x A x V = T, where matrix V is

unitary (orthogonalif A real) and T is real even when A is complex. If F = 0,
then only the tridiagonal matrix is returned. For example:

 

134 1 -5 0 1 0 0

A=[(328 T=|-5 10.32 1.76 V=(0-6-8

483 0 1.76 -5.32 0-8 6

HOUSEHOLDER ARBITRARY 2: VIFF =1
UPPER SQUARE 1: H MATRIX

HESSENBERG COMPLEX
DECOMPOSITION MATRIX 

 

  
 

Given the square matrix A € C, UHESD will perform the decomposition
VH x A x V = H, where H is upper Hessenberg and unitary V is the product

of Householder matrices. For example:

123 1 0 0 1 -3.597 -.248

A=(4586 V =|0 -496 -.868 H =|-8.062 14.046 2.831

7889 0 -.868 .496 0 8308 -.046   
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FUNCTION COMMAND INPUTS OUTPUTS

HERMITIAN | SQUARE AeC 2:QIFF=1
SCHUR ONLY

DECOMPOSITION £>0 1:D     

 

 

Cascading HTRDD with EIGNS to produce the Schur decomposition is the
standard means by which the dense symmetric and Hermitian eigen

problem is solved. EIGNS employs double implicit Wilkinson shifting to speed
the convergence of the eigenvalues and eigenvectors. Q" AQ=Dand QD Q" =

A, where Q is unitary and D is diagonal. The eigenvalues are the diagonal
values of D, and the columns of Q are the eigenvectors. Fore = 1E-10 and F = 1:

(2,0) (1,-3) (24) (-3.2826,0) (0,0) (0,0)

A=|13) (60 21) D = (0,0) (8.7638,00 (0,0)

2,4) (2,-1) G0) (0,0) (0,00 (4.5188,0)

(-.7075,0) (-5714,0)  (-.186,-.3721)
Q = |(-.0258,.3737) (-.4711,-.3865) (.4027,.5711)

(.1739,-.5735) (-.4288,.3441) (-.3185,.4869)|

F = 1 requests that the unitary matrix Q be returned, and ¢ is used by EIGNS.

MAX is the maximum number of iterations allowed to converge each eigenvalue.

CONVERGENCE FAILED is displayed when SCRSD, SCHRD, EIGNS, and
EIGENfail to converge according to the user's input arguments. Push

ATTN. The column numbertells where convergence failed.     
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LINEAR ALGEBRA MENU {LINAG]}  
 

 

FUNCTION COMMAND INPUTS OUTPUTS

GENERAL SQUARE AeC 3: VIFF=2
COMPLEX SCHUR 2:.QorHIFF=£0
DECOMPOSITION    

 

e>0 1: T

 

Cascading UHESD and EIGEN to produce the Schur decomposition is the standard
means by which the dense general eigen problem is solved. EIGEN employs double
implicit real and complex shifting to speed the convergence of the eigenvalues and
Schur vectors. Q"AQ=Tand QT Q" = A, where Q is unitary and T is upper

triangular. The eigenvalues are the diagonal values of T, and the columns of Q are
the Schur vectors. For example with ¢ = 1E-10:

1.2) 2,1) (3.1)

A=((14) 42 (52

(1,3) (7.5) (9,2)

(13.2157,6.5589) (1.8464,3.7257) (-3.3742,1.4993)
T = (0,0) (-.1466,.1489) (-.178,2.2271)

(0,0) (0,0) (.9309, -.7079)

(-.0684,-.274) (-.2294,-.5065) (-.2547,-.7391)
Q = (-.0867,-.4927) (-.5374,-.3223) (.4059,.4385)

(-.2304,-.7855) (.4344,.3308) (-.1781,.0123)

ge is used by EIGEN. F = 1 requests that the unitary matrix Q associated with the
Schur decomposition be returned. For F = 2, matrices V and H associated with the
UHESDoutput are returned to levels 3 and 2 of the stack, while the T output of

EIGENis returned to level 1. MAX is the maximum number of iterations allowed to
converge each eigenvalue. A program for computing the eigenvectors of A from the

SCHRD output with F = 2 is given at the end of this chapter.
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LINEAR ALGEBRA MENU {LINAG}
 

 

FUNCTION COMMAND INPUTS OUTPUTS

SYMMETRIC SQUARE A eC 2:QIFF=1
EIGEN MATRIX | ONLY
DECOMPOSITION ¢ e>0 1:D   

 

 

Given tridiagonal matrix A, EIGNS performs unitary transformations to reduceit to a
diagonal matrix whose diagonal values are the eigenvalues of A. U" AU =D and U
D UH = A. Wilkinson double implicit shifting is employed to speed convergence of
the eigenvalues and eigenvectors. The algorithm iterates on each diagonal value
a,until the absolute value of a,,_; < €. The column and iteration numbers are

displayed during execution.

1300

2
A = 3520 e = 1E-10

0286 4

0048

-80074 0 0 0

5. 0 256635 0 0
| 0 0 6.82303 0

0 0 0 11.41135

83614 .34704 -41969 -.0655

-.50189 .1812 -81461 -.22733

20145 -.74104 -.11301 -.63048

-.09156 .54552 .38406 -.73927     
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LINEAR ALGEBRA MENU {LINAG]}
FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

Flag F specifies whether the unitary matrix U is computed, and parameter MAX sets
the maximum number of iterations allowed to converge each column. If MAX value
(say 20) is reached, then the current estimate of the eigenvalue matrix probably
having nonzero superdiagonal elements is returned with the associated unitary

matrices if requested.

 

GENERAL EIGEN
MATRIX

DECOMPOSITION |

SQUARE A eC 22.QIFF=1
ONLY

 

 

  e>0 1: T
 

Given upper Hessenberg matrix A, EIGEN performs unitary transformations to
reduce it to an upper diagonal matrix whose diagonal values are the eigenvalues of
A. U"AU=Tand UT U" =A. Both real and complex double implicit shifting are

employed to speed convergence of the eigenvalues and Schur vectors. The
algorithm iterates on each value a,until the absolute value of a,_; < ¢.

For e = 1E-10, we have

12 3 4

56 7 8

09 10 1

00 12 13

(-1.5432,0) (-2.9487,4.341) (-1.1712,1.8399) (-.8931,.3359)
(00)  (2.4856,-1.5511) (3.5722,2.9824) (1.9384,2.898)
(0,0) (0,0) (2.4856,1.5511) (5.1333,.0921)
(0,0) (0,0) (0,0) (26.5721,0)    
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

(-.2286,-.086) (-.4133,-.0631) (.8389,.2421) (.0561,0)
(1877,0706) (.6623,-.5069) (.382,-.1893) (.267,0)

~ |(-.685,-.2576)  (.0713,032) (-.2045,-.0486) (,6436,0)
(.5652,.2126) (-.3008,.1816) (-.0355,1019) (.7073,0)

Flag F specifies whether the unitary matrix U is computed, and parameter MAX sets
the maximum number of iterations allowed to converge each column. If MAX value
(say 20) is reached, then the current estimate of the eigenvalue matrix probably
having nonzero superdiagonal elements is returned with the associated unitary

matrices if requested.

 

 

SYMMETRIC SQUARE A eC
MATRIX EIGEN F = FIRST ROW MATRIX A

STEP L = LAST ROW    
Performs a single eigen iteration on A from row (column) F to row L. This program
gives the user access to the internal symmetric (Hermitian) eigen software, and
loops can be built around it. Matrix A must be tridiagonal. The user may iterate

over any portion of the matrix.

1300 3116 1535 0 0
3520 1535 495 21072 0

A = WSQR(A,1,4) =
0286 4 0 2.1072 3.9614 -.2738
0048 0 0 -.2738 11.4002

A second application of WSQR(A,1,4) will converge A,, to the eigenvalue 11.41135.    
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LINEAR ALGEBRA MENU {LINAG]}
 

 

FUNCTION COMMAND INPUTS OUTPUTS

GENERAL MATRIX SQUARE A eC
EIGEN STEP F = FIRST ROW MATRIX A

L = LAST ROW   

 

 

Performs a single eigen iteration on A from row (column) F to row L. This program
gives the user access to the internal general complex eigen software, and

loops can be built around it. Matrix A must be upper Hessenberg.
The user may iterate over any portion of the matrix.

 
12 3 4 2637 -.1607 -.9768 2.4129
56 7 8 40963 1.0068 -.5293 3.3281

A = GSQR(A,1,4) =
09 10 11 0 6.9457 2.8476 -1.7658
00 12 13 0 0 -5.1049 26.4092

Two more applications of GSQR(A,1,4) converge A,, to the eigenvalue 26.5721.

 

TRACE

MATRIX MINOR

MATRIX M VALUE

M ROW# COL# MATRIX

 

 

    
Performs first step in computing a minor or cofactor, that of extracting the submatrix
where row R and column C have been deleted. To complete, call DET and adjust

the sign.

 

HOUSE A C FR LR COLUMN
VECTOR

 

    

Extracts the Cth column subset from A from the first row FR to the last row LR and
calls VHOUS to compute the appropriate Householder vector for reduction of that
column. By transposing A first and properly adjusting parameters C, FR, and LR,

HOUSE can also be used for row reduction.    
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS ~ OUTPUTS

ROW HOUSE

 

 

  

 

A X RC REDUCED A 
  

Applies Householder matrix in a pre—multiplication sense to introduce zeros
into a specified portion of a column. A is the matrix, X is the Householder
vector obtained from HOUSE, R is the first affected row, and C is the first

affected column. Only the lower right part of A is reduced.

 
COLUMN HOUSE

 

 

  
A X RC REDUCED A

 

Applies Householder matrix in a post-multiplication sense to introduce zeros into a
specified portion of a row. A is the matrix, X is the Householder vector obtained

from HOUSE, R is the first affected row, and C is the first affected column.
Only the upper right part of A is reduced.

 
HOUSEHOLDER V = [ VECTOR | COLUMN

VECTOR VECTOR 

 

  
 

Computes Householder vector required to zero out all but the first element of V.
For example, let V =[ 4 2 5 3]. Then the output column vector X is

[1] [1762] [.4406] [2644 ]).

 
HOUSEHOLDER X = COLUMN MATRIX

MATRIX VECTOR 

 

  
 

Given the Householder vector column vector X, PHOUS computes the unitary
matrix P such that PV =[a 00 ... 0 ]". For the above example,

PV=[-7348]1[0][0] 0]. When X is real, then P is orthogonal.
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LINEAR ALGEBRA MENU {LINAG]}
 

 
 

  

 

FUNCTION COMMAND INPUTS OUTPUTS

GIVENS ROW A R1 R2 C

(COLUMN) 6 MATRIX

ROTATION AeC m2n   
For the complex values of matrix A located at { R1 C } and { R2 C }, GIVEN extracts
these values a and b, respectively, and calls GROT to compute the appropriate 6

matrix to zero { R2 C } with RROT. Similarly, GIVEN(TRNH(A),C1,C2,R) will

compute 6 to zero { R C2 } with CROT. The compressed 2 x 2 6 matrix is
expanded and applied to the appropriate elements by RROT and CROT.

 

ROW ROTATION
GIVENS (JACOBI)|

 

 

 
0 A Rl R2 C
AeC m2>2n  

ROTATED A

  
RROT applies a Givens rotation defined by matrix 6 to matrix A starting with column
C. The affected rows are R1 and R2. The appropriate value of 8 is computed by

either GIVEN or GROT.

 

GIVENS COLUMN
ROTATION

 

  
0 A C1 C2 R
AeC m=2n  

ROTATED A

 

CROT applies a Givens rotation defined by matrix 6 to matrix A starting with row R.
The affected columns are C1 and C2. The appropriate value of 6 is computed by

either GIVEN or GROT.

  GIVENS ROW
(COLUMN)
ROTATION   

 

a,beC

 
0 MATRIX

  For complex a and b, GROT computes matrix 6 so that:   
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FUNCTION COMMAND INPUTS OUTPUTS

o xz] 12] OR [ab]x®"=[z0] zeC

TO DIAGONAL V = [ VECTOR] DIAGONAL
MATRIX MATRIX

TO DIAGONAL DIAGONAL [ VECTOR ]
VECTOR MATRIX 

 

  
 
D—M places the elements of vector V into the diagonal of square zero matrix M.
Given square matrix M, DM removes the diagonal elements and places them

into a vector.

 CHOLESKY
DECOMPOSITION  

 

AeC £¢ MAX MATRIX G
A=GG"  
 

CHOLD computes the Cholesky decomposition of a positive definite Hermitian
(symmetric) matrix. € > 0 sets the convergence accuracy, and MAX is the

maximum number of iterations per column.

(120) (2,-3) (1,4)

A=| 23) (60) (21)

(-1,-4) (-2,-1) (3,0)    
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

 

    

(3.34666,0) (-.852760)  (.13667,.23233)
G =| (8419,1.20781) (1.04667,1.27659) (-.00759,.32732)

(-.31087,-1.35357) (.06349,-.33287) (-.60907,.76513)

CHOLD uses SCRSD. If the real part of any eigenvalue is negative or if the
absolute value of the imaginary part of any eigenvalue is greater than Se, then the

NOT POSITIVE DEFINITE error is returned.

 

HOUSEHOLDER MATRIX A eC 3: U
BIDIAGONAL 2: V

DECOMPOSITION m=2=n22 1: B

 

    
HBDDR uses HBDD to bidiagonalize A. Then it computes the unique unitary

transformation to rotate the decomposition onto the positive real axis.
UxBxVi=AandB=U"xAxV.

 

  
INVERT SVD
MATRIX

ARBITRARY DeC| SVDINVOFD

    

SVDMIis an internal command used by the SVD linear solvers. Input D is the
matrix of singular values that is output by SVD.

The pseudoinverse matrix used in SVD and least squares problems is obtained by
inverting the nonzero singular values of matrix D. For those singular values of D for
which |D;| > , SVDDIreplaces those values with their reciprocal values. All others

are set to zero. If D is m x n, then the returned inverse is n x m.    
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LINEAR ALGEBRA MENU {LINAG}
 

FUNCTION COMMAND INPUTS OUTPUTS
 

  
INVERT SVD ARBITRARY V eC SVD
DIAGONAL INVERSE
VECTOR e>0 OF V    

When computing the SVD of matrices, the singular values can be extracted using
the BM command. SVDDI performs the same operation as SVDMI, except that it

performs it on the extracted vector V. B—M can be used to convert V back to a
square or rectangular diagonal matrix. SVDDI is a MATHLIB internal command

which is used by SVDMI to compute the pseudoinverse matrix.

 

SQUARE MATRIX POLYNOMIAL
M LIST

CHARACTERISTIC
POLYNOMIAL  

 

   

  
Given square matrix M, CPOLY computes its characteristic polynomial DET(M — Al).

For example:

1562

M=1471 = {69 48 -16 1 }.

058

The roots of the characteristic polynomial are the eigenvalues (characteristic values)
of M. Using XEQN(LIST,A) we obtain the characteristic equation

2° — 16)2% + 46) + 69.

Using AROOT(LIST, 0, 1E-9,100), we compute the eigenvalues:

[ -1.07282527025 5.61165926221 11.461166008 ].
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL
ROOT

 

 

L v ¢ MAX [ VECTOR ]

   

 

 

AROOT uses Laguerre’s method for solving for all the roots of the polynomial
defined by the complex coefficient list L. Value v is the initial guess for all of the

roots, and ¢ sets the convergence criterion. MAX (say 100) is the maximum
iterations allowed to converge each root. After converging each root, DEFLT is used

to remove that root from polynomial L.

The most difficult polynomial root solutions occur when there are repeated roots.
Consider the example: x? + 99x'" — 377x'° — 26395x° + 149080x® + 1703048x’
— 15440048x° + 8684864x° + 302914240x* — 1377763200x° + 2718976000x>
— 2620320000x + 1008000000" = (x-2)° (x5) (x+6) (x7) (x+10) (x10) (x+15)

(x+100). With v= 20, ¢ = 1E-8, and MAX = 100, we only get two roots: (1.98607080,
0) and (1.99562237, -1.32705219E-2). Dropping € = 1E-4 yields the roots:
(1.98607080, 0) (1.99563474, —1.32669871E-2) (1.99563459, .0132665015)

(2.01132960, 8.27241365E-3) (2.01133027, -8.27192808E-3) (5, 0) (-6, 0) (7, 0)
(-10, 0) (10, 0) (-15, 0) (-100, 0). The average of the first 5 roots is (2, 0) to 11

digits. LROOT can be used to verify that (2, 0) is the true root and DEFLT can be
used to remove it from P giving the reduced polynomial { (-31500000, 0) (3135000,
0) (1619500, 0) (-108650, 0) (-23945, 0) (673, 0) (109, 0) 1 } which is easily solved

since all the roots are unique.

CONVERGENCE FAILED is displayed if, for the input parameters, AROOT cannot
converge all the roots. Push ATTN.

 

EIGENVECTORS OF COMPLEX MATRICES - JORDAN CANONICAL FORM

The EVSOV program on the next page solves for the eigenvectors of a general
complex square matrix A with distinct eigenvalues, using inverse poweriterations.

The output is a vector of eigenvalues on level 1 and a nonunitary similarity
transformation matrix Z whose columns are the eigenvectors of input matrix A.
D=2Z"'"AZandZD Z' = A, where D is diagonal with eigenvalue elements.    
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LINEAR ALGEBRA MENU {LINAG}
FUNCTION COMMAND INPUTS OUTPUTS

  

 

 

   
 

Since SCHRD only computes approximate eigenvalues, the software will not detect
repeated eigenvalue cases which require block techniques. The resulting D matrix
for distinct eigenvalues is the Jordan canonical form and Z the associated similarity
transformation. If the eigenvalues are too good, MINV may fail, so you must make
them not so good. With H — Al almost singular, convergence is very fast. See

Chapter 7 of Golub and Van Loan for the algorithms and theory.

EVSOV: « > Ae M « Ag 2 M SCHRD D«M DUP SIZE EVAL DUP
IDN {} VHDNIL «1 N FOR K "SOLVE VECTOR " K + 3 DISP
D KGET HI 3 PICK x — MINV D (1,00 CON -» A Q U « DO Q U x
U U CONJ DOT / 'U' STO UNTIL H A U & 10 x AV? END 'L' U VL

STO+ >» NEXT VL VL N N 2 LIST RDM TRNP x D > > »>

Chapter 27 discusses other approaches to computing Jordan canonical form.

 

NONE PARENT MENU
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SPECIAL MATRIX OPERATIONS

INTRODUCTION

This chapter presents the 58 special matrix operations in the MATR menu. The
MATR commands include object conversion, sorting, and rearrangement, as well as
numerous primitives for extracting and replacing subsets of elements. They allow the
user to manipulate the data in matrices without putting the elements on the stack.
Commands for creating diagonal matrices, companion matrices, and Hermitian
Toeplitz matrices, and testing eigenvalues and eigenvectors are also provided.

OBJECT TYPE CONVERSION

The commands —ROW and —COL provide conversions from vector objects and
symbolic vector objects (lists) to row vectors and column vectors. -VTR converts both
column and row vectors (matrix objects) into vector objects. M—RL and M«RL
convert between standard matrix objects and a list of vectors, each of which contains
the elements of a row of the matrix. Similarly, M—CL and M«CL convert between
a matrix and a list of vectors, where each vector is a column of the matrix. To roll
(rotate) the rows or columns of matrix M, see the VROT command in Chapter 26.

RROLL: « > M ao « M MRL a VROT MRL > »>

CROLL: « > M aa « M MCL a VROT MCL > »

255
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SORTING AND REVERSING

RSORT and RSRTI sort the rows of a matrix according to the values in a specified
column into ascending or descending order. CSORT and CSRTI similarly sort the
columns of a matrix according to the values in a specified row. REV— performs a
right-left reversal of the columns of a matrix, while REVT performs an up-down
reversal of the rows of a matrix.

TESTING EIGENVALUES AND EIGENVECTORS

A? and AV? test the accuracy of eigenvalues and eigenvectors. EVS? compares the
equivalence of two eigenvectors in the general complex case. A program for testing if
a matrix is diagonal is also given.

SPECIAL MATRICES

DIAG and COMP create diagonal and companion matrices. HTOEP creates
Hermitian Toeplitz matrices from their first column.

ELEMENT MANIPULATIONS

Forty-one additional commands provide for value and subset inserting, deleting,
swapping, copying, interleaving, de-interleaving, and moving, as well as matrix
splitting and splicing.

RANDOM MATRICES

MRDU and MRDN provide random matrices with uniform and normal statistics.
MRDC provides two jointly normal matrices with a user-specified correlation. MRDC

can also be used to create random complex matrices. MRDS and MRDH create
random symmetric and Hermitian matrices. These five commands are in the MSAG
menu discussed in Chapter 31.

SOFTWARE LIMITATIONS

Matrix commands assume a minimum 2 x 2 size, and not row or column vectors.
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MATRIX OPERATIONS MENU
 

 

   
 
 

 

 

  

 

 

  

    

 

FUNCTION COMMAND INPUTS OUTPUTS

182 182
ERWS||9 5 3(,2,1,2|=[95] EcoLs||9 5 3,3,1,3|=[237]

467 467

M = MATRIX MATRIX WITH
REPLACE ROW V = REPLC VTR PART OF ONE

SUBSET R = REPLC ROW ROW REPLACED
F = FIRST COL

REPLACE M = MATRIX MATRIX WITH
COLUMN V = REPLC VTR PART OF ONE
SUBSET C = REPLC COL COLUMN

F = FIRST ROW REPLACED

182 18 2]
RRWSI|(9 5 3/,[01],3,2/=/9 53

467 401

182 102
RcoLs|l9 5 3|,[01],2,1[=1]9 1 3

467 467

EXTRACT M = MATRIX
PARTIAL RCrec SUBMATRIX

SUBMATRIX    
 



260 SPECIAL MATRIX OPERATIONS CH 21 : MATR

 

 
 

MATRIX OPERATIONS MENU

 

 

  

 

 
 

FUNCTION COMMAND INPUTS OUTPUTS

REPLACE MATRICES M & A
PARTIAL R C MATRIX

SUBMATRIX

182 8 2

EPSM||9 5 3(,1,2,3,3(=/53

467 6 7

182 182

RPSM|9 5 3 0 2. =013
467 027

R = First row, C = First column, r = Last column, c¢ = Last column

 

 

 

 

  
   236

M = MATRIX MATRIX WITH
INSERT ROW V = INSERT VTR AN ADDITIONAL

R = INSERT ROW ROW

M = MATRIX MATRIX WITH
INSERT COLUMN | V = INSERT VTR AN ADDITIONAL

| C = INSERT COL COLUMN

182
182 053

IROW||® 5 3(,[2386], 4 -
467

467
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MATRIX OPERATIONS MENU

 
   
 

 

 

 

 

  
 

4 67

FUNCTION COMMAND INPUTS OUTPUTS

182 1282

ICOY(9 5 3/,[236],2|=|9 353

4 6 7 4667

DELETE ROW M = MATRIX MATRIX WITH
R = DEL ROW ONE LESS ROW

DELETE M = MATRIX MATRIX WITH
COLUMN C = DEL COL ONE LESS COL

182 182 182 18

DRO 05 3,2 | DCOL||9 5 3|,3|=(9 5
4 6 7

4 67 4 6

Deleting the only row (column) results in an —-ARRYerror.

 

 

 

 

  

R1 & R2 ROW MATRIX WITH
SWAP ROWS NUMBERS ROWS

SWAPPED

SWAP COLUMNS C1 & C2 COL MATRIX WITH
NUMBERS COLS SWAPPED

 

Examples are given on the next page.    
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FUNCTION COMMAND INPUTS OUTPUTS

182 467 182 128
SROW|(9 5 3|,1,3|=[9 5 3 scole 53,2,3/=|9 35

467 182 467 476

MOVE ROW F = FROM ROW M WITH MOVED
T = TO ROW ROW

MOVE COLUMN F = FROM COL M WITH MOVED
T=TO COL COLUMN

182 9 53 182 8 2 1
MROW|9 5 3|,1,3|=/4 6 71 Mcollo 53[,1,3/=|539

467 182 467 67 4

COPY ROW F = FROM ROW M WITH ROW F
T = TO ROW COPIED TO T

COPY COLUMN F=FROMCOL MWITHCOLF
T = TO COL COPIED TO T

18 2 182 182 18 1
CROW||9 5 3|,1,3|=|9 53 ccollos 3,1,3/=9509

46 7 182 467 464   
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MATRIX OPERATIONS MENU

 

 

 

 

 

  

{ MATR }
FUNCTION COMMAND INPUTS OUTPUTS

TRANSPOSE M = MATRIX TRANSPOSED M

TO VECTOR COLUMN OR [ VECTOR]
ROW VECTOR
 

-SVIR([[1)[2][3]1)=[123] SVTR([[123]])=[123]

 

EXTRACT ROW Like ERWS but entire row R
 

EXTRACT COL Like ECOLS but entire column C
 

REPLACE ROW Like RRWS but entire row R
 

REPLACE COL Like RCOLS but entire column C
 

 

    

EXTRACT M = MATRIX SUBMATRIX
LOWER RIGHT R = FIRST ROW R=C=1
HAND SIDE OF C = FIRST COL RETURNS

MATRIX ENTIRE MATRIX

REPLACE M = MATRIX MATRIX
LOWER RIGHT A = SUBMATRIX M AND A MAY
HAND SIDE OF BE THE SAME

MATRIX SIZE
 

182

4 67  8 2

6 7

182
01

ESBM|9 6 3|,1,2 |=|5 3 nsamo 5 3|.[0 1] <Jo 0

4 6 7

The above six commands allow row, column, and submatrix manipulations with

fewer dimensional specifications than their above equivalents.

182

4 0 2

 
  



264 SPECIAL MATRIX OPERATIONS CH 21 : MATR

  

 

MATRIX OPERATIONS MENU

 

 

 

{ MATR }
FUNCTION COMMAND INPUTS OUTPUTS

TO ROW LIST | M = MATRIX {[ROWA1]...}

TO MATRIX L = ROW LIST MATRIX   

 

 

M—RL([[123][456])={[123][456]}

M—RL({[123] [456]})=[[123][456]]

 

TO COL LIST M = MATRIX {[COL1]...}
 

 

 

  TO MATRIX L = COL LIST MATRIX
  M—-CL([[123][456]1)={[14]1[25][36]}

M—CL({[14] [25] [36]})=[[123][456]]

 

ROW M = MATRIX MATRIX
INTERLEAVE  

 

  
 

  
Given matrix M with an even number of rows, this command interleaves the second

half of the matrix with the first half. For example:

1 2 3 1 2 3
4 5 6 7 8 9

M = RNLV(M) =
7 8 9 4 5 6
10 11 12 10 11 12

RNLYV can also be used to interleave the values of column vectors.   
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MATRIX OPERATIONS MENU
{ MATR }

FUNCTION COMMAND INPUTS OUTPUTS

COLUMN M = MATRIX MATRIX
INTERLEAVE

 

 

   

 

 

Given matrix M with an even number of columns, this command interleaves the

right half of the matrix with the left half.

12 3 4 13 2 4
M=|56 7 8 CNLV(M) =|5 7 6 8

9 10 11 12 9 11 10 12

CNLYVcan also be used to interleave the values of row vectors.

 

 

ROW M = MATRIX MATRIX
DE-INTERLEAVE

COLUMN M = MATRIX MATRIX
DE-INTERLEAVE  

 

  
 

Given matrix M with an even number of rows (columns), these commands
de-interleave each pair of two rows (columns), thus providing the inverse

transformations corresponding to RNLV and CNLV.

 

M = MATRIX R TWO MATRICES

M = MATRIX C TWO MATRICES

ROW SPLIT

COLUMN SPLIT

 

 

 

  
 

Given matrix M, these commands split M into two matrices, the first having the first
R rows (C columns) of the original matrix, and the second having the remainder.

Examples are given on the next page.     
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MATRIX OPERATIONS MENU
{ MATR }

FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

[1324
RSPLTM2) = {1% |5 7 6 8

1: [9 11 10 12]]

 

 

 

 

 

ROW COMBINE TWO MATRICES MATRIX

COLUMN TWO MATRICES MATRIX
COMBINE  
 

Given matrices M1 and M2, these commands perform the inverse transformations
corresponding to RSPLT and CSPLT of combining two matrices into one.  
 

 

 

 

  
 

   
MATRIX MATRIX M LEFT RIGHT REV

REVERSE —

MATRIX MATRIX M UP DOWN REV
REVERSE T

123 32 1 123 7809

REV—| |4 5 6| |=|6 5 4 REVT| |4 5 6| |=|4 5 6

7 89 9 8 7 7 89 123

ROW GET M R C 2: Mpc

1: Mpc. 
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MATRIX OPERATIONS MENU
{ MATR }
 

 

   

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

COLUMN GET M R C 2: Ma
1: Mg.1c

123
RGET||4 5 6], 2, 2| - (22

7809

REPLACE M,VeC Oel MATRIX
DIAGONAL

 

    

B—M replaces the offset diagonal elements of M with V. If O = 0, then the main
diagonalis replaced. When O > 0, then the Oth superdiagonal is replaced. When
O < 0, then the Oth subdiagonal is replaced. Matrix M may be m x n and V must

be a [ VECTOR ] of correct size.

123 1 2 3
BoM||4 5 6|,[1011], -1|=|10 5 6

7809 7 119

 

EXTRACT
DIAGONAL

MeC Oel [ VECTOR |

 

 

     B«M extracts any set of diagonal elements from an m x n matrix M. If offset
O = 0, then the main diagonalis extracted. When O > 0, then the Oth

superdiagonal is extracted. When O < 0, then the Oth subdiagonal is extracted.
An example is given on the next page.
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MATRIX OPERATIONS MENU

 

   
 

 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

123 4 B<MM,0) =[ 16 11]
M=56 7 8 B«B(M2) =[38]

9 10 11 12] BeMM-=2)=[9]

HP 2: MATRIX MATRIX
REDIMENSION 1: LIST

HP IDENTITY NUMBER OF MATRIX
MATRIX ROWS

HP CONSTANT 2: LIST OR
MATRIX MATRIX MATRIX

1: VALUE  

 

  
 

See page 359 of the HP 48 owner's manual for complete descriptions.

 

DIAGONAL NeN Oel MATRIX
MATRIX   

 

 
 

  DIAG creates an N x N matrix with ones on the Oth diagonal where |O| < N - 1.

0000

tooo

"o100

0010

DIAG( 4, -1)   
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MATRIX OPERATIONS MENU

{ MATR }
FUNCTION COMMAND INPUTS OUTPUTS

COMPANION L = {LIST} MATRIX
MATRIX   

 

  
COMP creates a companion matrix corresponding to list L of size not less than 3.

0 10

COMP({8 4 68 2})=(0 0 1
-4 -2 3

Commands TRNP, REVT, and REV— will create the other companion matrix forms.

 

CREATE
HERMITIAN
TOEPLITZ
MATRIX  

 

 

V = ANY HP
REAL OR
COMPLEX
VECTOR  

MATRIX

 

Given the first column V, HTOEP computes the corresponding Hermitian Toeplitz
matrix. The first value of V must be real, and the size of V must be > 2.

 

TEST IF AIS
EIGENVALUE

 

  
M = MATRIX

A = EIGENVALUE  
1 IF TRUE
0 IF FALSE
   A? computes |DET(M - Al)| and compares the result with €. Since ¢ is an input,

A? can be used to measure the accuracy of convergence of an eigenvalue
calculation.   
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MATRIX OPERATIONS MENU
{ MATR }

FUNCTION COMMAND INPUTS OUTPUTS

TEST IF V IS M= MATRIX 1 IF TRUE
EIGENVECTOR A Ve 0 IF FALSE  

 

  
AV? computes ABS( [M - Al]V ) and compares the result with €. Clearly, if A is not
an accurately computed eigenvalue,this test is meaningless. Use the A? testfirst.

 

 

 

 

TEST IF VECTORS 1 IF TRUE
VECTORS ARE U AND V 0 IF FALSE
THE SAME e>0   

Two vectors are the same if they have the same dimension and direction. EVS?
normalizes U and V by the same method. It computes

| 1 — [U eVJABS(U)/ABS(V)/SIGNP( Ue V') |

and compares the result with €¢ > 0. EVS? is useful in comparing eigenvector
computations by different algorithms that result in different normalizations and
rotations in the complex plane. ESV? can also be used to test the accuracy of

convergence of an iterative vector calculation. U and V may be any HP 48 vector
of the same length.

 

TEST IF MATRIX M IS DIAGONAL WITHIN ¢ > 0

DIAG?” « > M ¢ « M SIZE EVAL MIN - N « M N ZERO 0 BM
MABS MMAX € < > »>

   UP DIRECTORY NONE PARENT MENU
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STATISTICAL OPERATIONS
AND TESTS

INTRODUCTION

This chapter presents the 48 statistical operation and test commands in the STAT
menu. The STAT commands compute standard statistical parameters, such as the
mean, and perform numerous statistical tests. Many other statistics related
commands are given in the PROB, IPROB, BIVN, QUE, MISC, LINAG, MATR,
VECTR, PROC, WIND, VSAG, MSAG menus.

DESCRIPTIVE STATISTICS

n, o, ADEV, SKEW, KURT, and VARM compute mean, sample standard deviation,

absolute deviation, skewness, and kurtosis. ROWpn, COLn, ROWo, and COLoc
perform mean and standard deviation matrix calculations.

MEASURES OF ASSOCIATION

TTSV, TTDV, and TTPS perform T tests for different means. FTDV performs an F
test for different variances. CDT1 and CDT2 perform y? tests for distributions. KST1
and KST2 perform Kolmogorov—-Smirnov tests for distributions. LCNT computes the
linear correlation coefficient. SRCTT performs the Spearman rank correlation T test.

271
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CONTINGENCY TABLE ANALYSIS

CTAZ2D analyzes contingency tables and computes the degrees offreedom, contingency
coefficient, x2, and the x? probability of association.

ANALYSIS OF VARIANCE

AVAR1, AVAR2, and ACOVR perform one- and two-way analysis of variance and
one-way analysis of covariance. These are used for testing of data. Analysis of
variance commands associated with linear regression, curve and data fitting, and least

squares approximation are given in the MISC menu.

MEDIAN AND MODE ESTIMATION

MEDIN and MODE estimate the median and mode of a data set.

HISTOGRAMS AND CUMULATIVE DISTRIBUTIONS

HIST computes a data histogram vector from the input data. It is normalized so that
it is an estimate of the probability density function. CUMZX will convert that
histogram to a cumulative distribution function by computing the cumulative sum.

SORTING

SRTT, SRT, and SRTI provide vector sorting. Matrix sorting commands are in the
MATR menu.

RANDOM VECTORS

RNDU and RNDN provide random vectors with uniform and normal amplitude
statistics. For random matrices, see the MSAG menu.

DATA SMOOTHING

MAVE provides moving averages of data.
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UTILITIES

Numerous data manipulation commands are also provided.

COMPLEX ARGUMENTS

The n, 6, ADEV, VARM, COVAR, LCNT, CUMZ, MAVE, VADD, VSUB, RNUM,
CNUM, ROWp, COL, ROWo, and COLG commands do support complex arguments.

DATA ENTRY COMMENTS

Several of the commands take matrices as inputs. Generally a data set lies across a
row. With the matrix editor and GO— set,it is easy to enter your data. However, you
may prefer to enter your data vertically with GOJ set and use TRNP to transpose
your data into input form. In this case, y is entered as the last column.

NONPARAMETRIC STATISTICS WITH RANKS

There are far too many tests to include them all on the ROM. The tricky part of tests
involving ranks is computing the midranks. Program RANK at the end of the menu
will do this for you. An example Mann-Whitney test is then presented as an example
of how to use the SRTI and RANK outputs to perform various tests.

ADDITIONAL STATISTICAL TESTS

Several additional statistical test programs are given in Appendix A. They use
commands from various menus on the ROM and involve some advanced programming
techniques. They include the Wilcoxon signed rank test, the Kruskal-Wallis test, and
the generalization of command SRCTT, Spearman’s rank correlation test with
repeated data and midranking.

SOFTWARE LIMITATIONS

Matrix commands generally assume a matrix with a minimum 2 x 2 size, and not row
vectors of size 1 x n nor column vectors of size m x 1.
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

 

    

Note that none of the commands in this menu makes use of the TDAT variable or
the numerous associated HP 48 commands. All of that capability can be used in

parallel with the commands given below. See your HP 48 manual for details.

 

 

 

   

 

 

 

   

 

MEAN | V =[VECTOR]e C VALUE

1 N

B=—3 V, N = SIZE(V) = 2
N n=1

w([13245])=3

STANDARD V = [VECTOR] e C VALUE

DEVIATION

1 N

02=——Y |v, - pu? N=SIZE(V) 22
N-1 n=1

o([13245])=15811

ABSOLUTE V = [VECTOR] e C VALUE
DEVIATION  

 

   
N

ADEV = = 3 iv, - u| N= SIZEV) > 2     
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STATISTICAL OPERATIONS MENU
{ STAT }
 

   
FUNCTION COMMAND INPUTS OUTPUTS
 

ADEV([13245])=15

   
    

 

  

   
    

 

 

 

   

SKEWNESS | v= [VECTOR] e R VALUE

N [v - uP
SKEW = + |" "BI N= sIZE(V) 2 2

N n=1 g

SKEW([13245]) = .634632

KURTOSIS | V = [VECTOR] € R VALUE

N [vy - 4

wnt - {1 3 0 Ts N = SIZE(V) = 2
N n=1 o

KURT([13245])=-2.17388

o® AND p 1 V=[VECTOR]e C| 2: VARIANCE
1: MEAN

MEDIAN | V = [VECTOR] € R VALUE   

 

   The MEDIAN is the argument x for which the cumulative distribution F(x) = 2.
Input vector V is first sorted. The MEDIAN is then taken to be the middle value. If

the sorted vectoris V =[V, V, V;... Vy], then the median is
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

 

   
 

MED 22Vin)1) N EVEN

MEDIN([1542243333])=MEDIN([1223333445])=3

 

MODE V = [VECTOR] € R 2: [HISTOGRAM]
1: LIST

 

   
 

The MODE is the argument x for which the probability density function is a
maximum. MODE uses HIST to sort and histogram the data based on the number

of bins NB specified. That histogram is an estimate of the probability density
function for the data. MODE then locates the position of the (first) maximum in that

histogram L. In addition to the data histogram, MODE returns a list:

L MAX-MIN  MAX-MIN

NB NB
 L+MIN MIN MAX I= L S LU MIN MAX },

where L is the MODE, S is the data value step size which determines the location
of the thresholds, MAX is the maximum value and MIN is the minimum value in the
data. The range of data values corresponding to the estimated mode is defined by

the interval: (LL=LU -S, LU].

For example, let V=[1542243333]and NB =5. Then the histogram is
[1 2 4 2 1]andthelistis{3 .8 34 1 5}, sothe MODE is 3 and the

range of data values corresponding to that mode is ( 2.6 , 3.4]. Thresholds were
set every .8 over the range 1 to 5.      
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STATISTICAL OPERATIONS MENU

 

 

{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

COVARIANCE | [VECTORS] VALUE
Viand V2 e C  

 

  
N

COVAR = —_ 3° [V,, - s(VI)I[Ve, - VAI*  N = MIN(N,, Ny)

COVAR([134568],[23457910])=6.2

 

 

    

 
 

 

T TEST [ VECTORS ] 2: t

SAME VARIANCE Viand V2 € R 1: UtPT(DF,t)

t= — b(V1) - k(v2) DF = N, + N, - 2
(N,-1)0*(V1) + (N,-1)0%V2) (1 1.

Student’s t-test for significantly different means when the two distributions are
thought to have the same variance. Small values of probability indicate that V1 and

V2 have different means.

TTSV([3567810],[6789111314])= [20 -2.079
1: 6.178E-2

 

T TEST
DIFFERENT VAR

 

[ VECTORS] 2: t
V1 and V2 € R 1: UtPT(DF1)      This command is discussed on the next page.
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

 

    

o?(V1) , ef

 

 

 

¢ = BVT) - p(v2) DF - Ny No

o?(V1)  o2(V2) [VINE | [0*(V2IIN,F
N, N, Ny - 1 N, - 1

Student’s t-test for different means when the two distributions are thought to have

significantly different variances. A small value of probability indicates that V1 and
V2 have different means.

2: -2.118TTDV([3567810],[6789111314]) = {2 5.784E-2

 

T TEST
PAIRED
SAMPLES

[ VECTORS ]

Viand V2 e R -
-

N
D

—
UtPT(DF,t)

 

    
t = p(V1) - u(V2) DF = N - 1

| 02(V1) + 03(V2) - 2COVAR(V1, V2)
N

 

 

Student's t-test in the case of N paired samples, where N is the size of V1 and V2.
A small value of probability indicates that V1 and V2 have different means. An

infinite result error means the test is invalid for the data set.

TTPS([3567810],[154568])= (2: 5.000
1: 4.105E-3     
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STATISTICAL OPERATIONS MENU
{ STAT}

FUNCTION COMMAND INPUTS OUTPUTS

[ VECTORS | 2: F

Viand V2 €e R 1:

UtPF(DF,DF,F)

 

 
F TEST

DIFFERENT VAR

   

 

 

DF, =N, -1 DFp=N,-1 F=0%V1)[e3(V2) o(V1) = o(V2)
DF, =N,-1 DFp=N, -1 F =0o%V2)/e2(V1) o(V1) < o(V2)

F test for significantly different variances. A small value of probability indicates that
V1 and V2 have different variances.

 

FTDV([3567810],[154568]) = {2 br

CHI-SQUARE [ VECTORS ] 2: 42
DISTRIBUTION ViandVe R 1: UtPC(DF.x)

TEST DF   

 

 
 

N 1 -V 2

x2 = y MV,= Vo)DF = N - 1 if zero constraints

Chi-square distribution test where V1, is the number of events observed in the nth
bin, and V,, is the number expected according to some known distribution. N is the
size of V1 and V. A small value of probability indicates that the distributions are

different.

CDT1([3567810],[154568],5)= {2 2.007     
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 STATISTICAL OPERATIONS MENU
{ STAT }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

CHI-SQUARE [ VECTORS | 2: %°
DISTRIBUTION ViandV2e R 1: UtPC(DFx?)

TEST DF   

 

 

DF = N - 1 if zero constraints.

Chi-square distribution test for comparing two data sets. N is the size of V1 and
V2. A small value of probability indicates that the distributions are different.

CDT2([3567810],[154568],5) = {2 oa

 

KOLMOGOROV- [ VECTORS ] 2:
SMIRNOV TEST 1ViandVe R c

o

TKSWN D) 

 

   

V1 is the estimated cumulative distribution function, and V is samples from the a
priori cumulative distribution. N is the size of V1 and V. HIST and CUMZ can be

used to create these vectors.

D =MAX |[V1, -V,| ne[1N]

Small values of probability indicate that the cumulative distributions are different.

KST1([0.1.35.7.91],[02.4.6.891])= {2 0.100     
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

KOLMOGOROV-
SMIRNOV TEST

 

  
[ VECTORS] 2:D
ViandV2e R 1: UTKS(V(N/2)D) 

 

  
 

V1 and V2 are the estimated cumulative distribution function distributions. N is the

size of V1 and V2. HIST and CUMZX can be used to create these vectors.

D = MAX |[V1, = V2,| ne[1.N]

Small values of probability indicate that the cumulative distributions are different.

KST2([0.1.3.5.7.91],[0.01.02.03.04.11])= {z 0.800

 

 

 

1: 2.267E-2

LINEAR [ VECTORS ] CORRELATION
CORRELATION Viand V2 e C COEFFICIENT r  
 

-.COVAR(V1, V2)
o(V1)a(V2)

For normally distributed vectors V1 and V2, the distribution of r was first derived by
Fisher in 1915, but is not well behaved and is difficult to compute. Letting N denote

the minimum SIZE of V1 and V2, for N < 10 the approximate T statistic
T = WW((N = 2)/(1 - r?)) with N — 2 degrees of freedom is often used. Recognizing

the problems with r, Fisher created the Fisher z-transform:
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STATISTICAL OPERATIONS MENU
{ STAT }
 

    

  

FUNCTION COMMAND INPUTS OUTPUTS

UNE) zo fn ne), re -z- 1 IN (1+) : AM) | ees =

which is useful for N > 10. The significance level for which r differs from r,,, and
for which two measured values of r differ is given by the equations:

otf |z - z| N-3 orfc zy - zy]

V2 1 12IN, 3 N,-3

 
 

  

 

where the complementary error function is available in the { FTNS ERROR } menu.

 

HISTOGRAM V = [VECTOR] € R 2: [HISTOGRAM]
NB = # OF BINS 1: {MAX MIN}

 

    

HIST computes a histogram vector of length NB of the data in vector V. The
histogram is normalized so that the sum of all the values is 1. In addition to the

histogram, the maximum and minimum values are returned in a list. Use CUMZ to
create cumulative distribution.

HIST([1542243333],5) = {2 32421]

 

 

 

   

 

SORT T V = [VECTOR] € R [ VECTOR ]

T = increasing value with increasing position [1 2 3].

SORT | V = [VECTOR] € R [ VECTOR ]       
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STATISTICAL OPERATIONS MENU
{ STAT }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

   

SORT T WITH | V=[VECTOR]e R| 2: [ VECTOR]
SORTED INDEX 1: [ INDEX]   
 

SRTT([2537])=[2357] SRTL([2537])=[7532]
SRTI([2537]) = 2:[2357] 1:[1324]

Suppose vector V originated as either a row or column in a matrix M. Index vector
| is the required vector for sorting matrix M according to row (column) V by using

 

 

RORDR or CORDR.

RANDOM i = MEAN
VECTOR WITH c = STAND DEV RANDOM
UNIFORM s = SEED [ VECTOR|
AMPLITUDE N = SIZE
STATISTICS

RANDOM iu = MEAN
VECTOR WITH c = STAND DEV RANDOM

NORMAL s = SEED [ VECTOR |]
AMPLITUDE N = SIZE
STATISTICS

 

   
 

RNDN(1,2,11,8) creates an eight dimensional vector with elements that are
normally distributed with mean value of 1 and standard deviation of 2.

 

CUMULATIVE V = [VECTOR] e C| V =[ VECTOR ]
SUM OF VALUES SIZE = N SIZE =N + 1 

 

  
   CUMZ([.1.2.42.1])=[0.1.3.7.9 1.]  
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STATISTICAL OPERATIONS MENU

 

 

{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

MOVING V = [VECTOR] € C [ VECTOR |]
AVERAGE    

 

 

Performs a moving average on the data using n points in each average. If less
than n points are available, then it uses the points that are available. Use for data

smoothing.
MAVE([1313131313],2)=[1222222222]

 

VECTOR ADD
SCALAR

V =[VECTOR]e C| [VECTOR]
s = SCALAR V +s

 

    

VADD([1234],2)=[3456] VSUB([3456],2)=[1234]

 

 

VECTOR SUB V = [VECTOR] € C [ VECTOR]

SCALAR s = SCALAR Vis

CONTINGENCY 5: N

TABLE ANALYSIS CONTINGENCY 4: DF

OF TWO MATRIX M € R 3: 2

DISTRIBUTIONS 2: UtPC(DFx?

1: C   

 

 

CTA2D first eliminates any rows and columns for which the row (column) sum is
zero. Denoting by R, and C, these sums, and letting N equal the sum overj of R

(or over k of C, ) and defining ny, = RC,/N:

35> My-my)” C = DF = (J-1)(K-1X ny = x2 +N = ) ),
k
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

  

 

 

   
 

where C is the contingency coefficient. DF is the degrees of freedom. J and K
are the row and column dimensions of M after deletion of all rows and columns
whose sums are zero. A small value of probability UtPC indicates a significant
association. Consider the following contingency table represented by the matrix

40 10 2 60

M=|8 35 50 5

10 16 8 14

Then N = 257, DF = 6, x* = 130.7099416, UtPC = 9.10987391862E-26, and
C = .580631832281.

 

SPEARMAN 4: r
RANK [ VECTORS | 3: DF

CORRELATION VIANDV2e R 2: t
T TEST 1: UtPT(DF.})  

 

 
 

Each of the input vectors is sorted and ranked. The index output of SRTI is used
for that rank, and midranks are not used. See Appendix A for a more general

version of this test for data sets with repeated values where midranking is used. r

is the correlation coefficient of those ranks computed by LCNT, DF is the degrees
of freedom, and t is the t statistic. A small value of probability UtPT indicates

significant correlation. t = W(DF/(1 — *)) and DF = N - 2, where N is the size of V1
and V2. For example, let:

V1 =[82679198 7452869579 78 8480698173]
V2 =[817585 90806094 78 83 76 84 69 72 88 61 ].

Then r = .7607142857, DF = 13, t = 4.225619798, UtPT = 9.91128612E-4.     
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STATISTICAL OPERATIONS MENU
{ STAT }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

ANALYSIS OF M = MATRIX € R 2: MATRIX
VARIANCE 1: UtPF(DF1,DF2,
(ONE-WAY) SIZE(M) > {2 2} F)   

 

 

  

The one-way analysis of variance is used to test if observed differences among r
sample means can be attributed to chance or whether they are indicative of actual
differences among the corresponding population means. AVAR1 assumes that

each row of M is a set of observations whose means and standard deviations can

be computed using ROW and ROWo below. AVAR1 computes all the values of
the complete ANOVA table and UtPF. The table is the matrix

Treatments : |TrSS DF1 TrMS

Within treatments : |ESS DF2 EMS].

Total : |TSS Total F

The total sum of squares TSS is

2
rn

DF1 =r - 1
rn 53m) r

TSS = YY Mj - tke DF2 = Yn, -r
j=1 k=1 r J=1

yn ESS = TSS - TrSS .
I=

Pathological values can result in divide-by-zero errors. Slightly change the input
data values,if this occurs.
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 STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

 

    

The treatment sum of squares TrSS is

 

 

 

 

n 2 rn 2 TMS = —

A ESS
TrSS = 2. n - : EMS = DF2

) : n, F = 1TMS
I=1 EMS

n, is the number of observations in the jth sample of M computed by RNUM below,
r is the number of rows of M, ESS is the error sum of squares, DF1 is the treatment

degrees of freedom, and DF2 is the error degrees of freedom. For example,
consider the below scores obtained from four schools:

1 2 3 4 5 6 7

School 1 88 99 96 68 85

School 2 78 62 98 83 61 88

School 3 80 61 74 92 78 54 77

School 4 71 65 90 46

88 99 96 68 85 0 O 93044 3 310.15
78 62 98 83 61 88 0 :AVART _ 2:(3599.56 18 199.98
80 61 74 92 78 54 77 4530 21 1.55

71 65 90 46 0 0 O 1: .2358

A small value of UtPF indicates that the means are significantly different. Since
.2358 is not very small, we cannot conclude that the means are significantly

different. However,     
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

13944.5 1 13944.5
12 1 JE 2: 101 6 16.833
90 80 90 80 140455 7 828.386

1: 1.165E-7

AVAR1

The zeros of each row are regarded as not being data. If your data contains many
zeros, you may get divide-by-zero errors. Enter your true zero values as small

numbers. AVAR1 uses the RNUM command.

 
3: MATRIX

ANALYSIS OF M = MATRIX € R 2: UtPF(DF1,DF3,
VARIANCE F1)
(TWO-WAY) SIZE(M) > {2 2} 1: UtPF(DF2,DF3, F2) 

 

 
 

The two-way analysis of variance examines variability amongst rows and columns
of the matrix M. Each is considered independently. It is assumed that each

element of M represents one observation and that row and column effects do not
interact. AVAR2 computes all the values of the ANOVA table plus both the row

and column F distribution probabilities. The table is the matrix

Row sum of squares : [RSS DF1 F1

Column sum of squares : [CSS DF2 F2

Error sum of squares : |[ESS DF3 TSS

Pathological values can result in divide-by-zero errors. Slightly change the input
data values,if this occurs.     
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STATISTICAL OPERATIONS MENU
{ STAT }
 

     
FUNCTION COMMAND INPUTS OUTPUTS

Ce RSSr c 2
2 SS1 = ——TSS = Mi - SRSS = 55J fc -S 23 x ossCA ESS = TSS - RSS - CSS SS2 - Fo

css - 3 ar -s 5-3 c wre _ ESS
k=t \I=1 22 | / S83 = DF3

The degrees of freedom are DF1 =r-1, DF2=c - 1, and DF3 = (r - 1)(c - 1).
The row F ratio is F1 = SS1/SS3, and the column F ratio is F2 = SS2/SS3. For

example:

29.167 2 15.909

7687) 4425 3 1545
AVAR2 ||l2 4 4 3|| - cs 6 38.017

4 653 2: 3.993E-3
1: 0.297

 
Now the small value of the row probability indicates a significant difference in the
means of each row, while the not very small column probability 0.297 indicates that

nothing can be concluded with respect to the means of the columns. In other
words, the variances of each row are small relative to the differences in means
between rows, whereas the variances of each column are large relative to the

differences in means between columns.     
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STATISTICAL OPERATIONS MENU
{ STAT }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

ANALYSIS OF M = MATRIX € R 2: MATRIX
COVARIANCE 1: UtPF(DF3,DF4,
(ONE-WAY) SIZE(M) > {4 2) F)   

 

 

The AVAR1 command dealt with testing the results of treatments without
considering the statistics of that which was treated. ACOVR considers both. We

denote the data before treatment as x, fork = 1, 2, . . ., n, and the data after
treatment as vy; fork=1,2,...,n and forj=1,2,... rwhere ris the number of

groups. The ACOVR input matrix consists of 2r rows of data with the x and y data
sets interleaved. The output is the complete ANOCOVtable in the form of a matrix

and UTPF.

Treatments : (DF1 ASSx ASP ASSy DF3 ASSy AMSy

Within treatments : [DF2 WSSx WSP WSSy DF4 WSSy WMSy

Total : |Total TSSx TSP TSSy Total TSSy F

Treatments is sometimes called among groups and within treatments called within
groups.

Matrix M can be expressed in terms of its X and Y rows, using the commands
defined below:

M = RNLV( RCMB( MX , MY ) RSPLT( RDLV(M) ,r) = {2 yo

Now ASSx, WSSx, and TSSx are the TrSS, ESS, and TSS outputs of AVAR1(MX),
and ASSy, WSSy, and TSSy are the TrSS, ESS, and TSS outputs of AVAR1(MY),

respectively. Similarly, DF1 and DF2 are the DF1 and DF2 outputs of both
AVAR1(MX) and AVAR1(MY). Equations for the other outputs are given on the

next page.    
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STATISTICAL OPERATIONS MENU

  
   
 

{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

TSP

-

3° S ASSy“HZ Tssg - Tssy - OSFL AMSY = “opy
VS SX 2 WMsg = WSSP
2% >. Yi WSS§ = WSSy - bce Dra

ASP = Yt Net) _ g ] ) < _ y
2 n, ASSy = TSSy - WSSy F = cd

WSP = TSP - ASP

r n rn

203% X Vic
§=kl_IFkl_ pF3-r-1, DF4= Yn -r-1.

dn -
I=

Considerthe following example where [ 11 9 5 8 12 ] is the first set of Y data and
[4527 6]is the third set of X data. Use RNLV and RCMB to put your data into

the required interleaved form.

 
(5 31 4 6]

1195 8 12 2 253 -16 768 2 86.578 43.289

acovallZ 4 7 3 _/2|12 468 696 1088 11 5202 .481
1738 2 14 49.333 68 185.6 13 91.870 89.976
4 52 7 8 1: 1.523E-7

17 9513 11  
The small value of probability indicates there is a significant difference in means. If

AVART1 is applied to just the Y data sets, the result is  
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STATISTICAL OPERATIONS MENU
{ STAT }
 

    

 

FUNCTION COMMAND INPUTS OUTPUTS

1195 8 12 768 2 384

AVARIIl1 73 8 2||={% 108.8 12 9.067

185.6 14 4.2357 95 13 11 1: 4.088E-2

Observe that the value of F is larger and the value of UtPF is smaller for the
ACOVR test than the AVAR1 test. Thus, use of the X data can improve the

reliability of the test.

When the size of the data sets is not equal, the rows may be zero-filled. Observe
the comments given with the AVAR1 command concerning zero values in M.

 

 

 

ROW NUMBER M = MATRIX e C [ VECTOR]

COLUMN M = MATRIX e C [ VECTOR]
NUMBER     

RNUM and CNUM are useful when analyzing data sets of unequal length which
have been entered as either rows or columns of a matrix where the nonexistent

items of each set are entered as zeros in the rows or columns of matrix M. These

commands return the number of items in each row (column) excluding the zeros.
True zero values should be entered as small numbers.

 

LIST ROUND L N ROUNDED LIST

 

    

Given list L of numbers and integer N, SRND applies « N RND » to each element
of L.

 

ROW MEAN    
 

   
M = MATRIX e C [ VECTOR ]
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

M = MATRIX € C [ VECTOR |

  

 
   

 

COLUMN MEAN  
 
ROW and COLy are useful when analyzing data sets of unequal length that have
been entered as either rows or columns of a matrix where the nonexistent items of

each set are entered as zeros in the rows or columns of matrix M. These

commands compute the row (column) sums and normalize that sum by the number
of nonzero items. See RSUM and CSUM in the MSAG menu.

 

 

  

ROW STANDARD M = MATRIX e C [ VECTOR |]
DEVIATION

COLUMN
STANDARD M = MATRIX e C [ VECTOR ]
DEVIATION

 

 
 
ROWo and COLo are useful when analyzing data sets of unequal length that have
been entered as either rows or columns of a matrix where the nonexistent items of
each set are entered as zeros in the rows or columns of matrix M. The standard
deviation formula given on page 274 is applied to each row (column) where the
means are computed by ROWp (COLp) and N is computed by RNUM (CNUM).

 V N TWO VECTORS  
VECTOR SPLIT

 

 

 
Given vector V and 0 < N < size of V, VSPLT divides V into two vectors. Nis the
size of the first. Given vectors V1 and V2, VCMB splices them into a single vector

[V1 V2].

 TWO VECTORS ONE VECTOR  VECTOR
COMBINE   
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STATISTICAL OPERATIONS MENU
{ STAT }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

ROW M = MATRIX MATRIX
INTERLEAVE    

 

 

Given matrix M with an even number of rows, this command interleaves the second

half of the matrix with the first half. For example:

1 2 3 1 2 3
4 5 6 8 9

M = RNLV(M) =
7 8 9 4 5 6
10 11 12 10 11 12

 

ROW M = MATRIX MATRIX
DE-INTERLEAVE  

 

  
 

Given matrix M with an even number of rows, this command de-interleaves each

pair of two rows, thus providing the inverse transformations corresponding to RNLV.

 

ROW SPLIT M = MATRIX R TWO MATRICES

 

   
 

Given matrix M, this command splits M into two matrices; the first having the first R
rows of the original matrix, and the second having the remainder.

12 3 4 1324
M=(56 7 8 RSPLT(M,2) -

{

& Lae
9 10 11 12 1: [9 11 10 12]     
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STATISTICAL OPERATIONS MENU
{ STAT }

 

 

FUNCTION COMMAND INPUTS OUTPUTS
 

TWO MATRICES MATRIX   

 

ROW COMBINE
 

Given matrices M1 and M2, this command performs the inverse transformation
corresponding to RSPLT of combining two matrices into one.

 

HP SIZE [ VECTOR ] { SIZE }
{ LIST } SIZE 

 

  
 

NONPARAMETRIC STATISTICS AND COMPUTING RANKS

Program RANK computes the ranks with midranking of sorted vector V.

RANK: « -» V « V SIZE EVAL 1 0 —- N J K « WHILE 'J<N' REPEAT

IF 'V(J+1)2V(J) THEN J 1 'J' STO+ ELSE J 2 + 'K' STO WHILE

'V(MIN(N,K))==V(J) AND K<N' REPEAT 1 'K' STO+ END JK + 1 - 2 / J

K 2 - START DUP NEXT K 'J' STO END END IF 'J==N' THEN N END

N —ARRY > > » 
As an example of using SRTI and RANK, consider the Mann-Whitney test on two
independent random samples. MWT computes the t statistic. See page 1018 of
Pfaffenberger and Patterson for this example. Let V1 =[55 70 70 65 62 81

72 58 67 50]and V2 =[50 91 90 62 75 88 84 78 82 80] t=
MWT(V1,V2).

< => V1 V2 « V1 V2 VCMB SRTI SWAP RANK V1 SIZE EVAL —» | V

N<«O1NFORK'V'' KGET GET + NEXT NN 1 + x2 / -N V2

SIZE EVAL ROT >>»

The sorted output of SRTI is the input to RANK. The index output of SRTI is used
to index the appropriate values in the RANK output to be summed. t = 19. Other
tests can be performed with similar programs. See Appendix A for more examples.    
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STATISTICAL OPERATIONS MENU
{ STAT }

FUNCTION COMMAND INPUTS OUTPUTS

P NONE PARENT MENU
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PROBABILITY DISTRIBUTIONS

INTRODUCTION

This chapter presents the 57 probability distribution commands in the PROB, IPROB,
and BIVN menus. The PROB menu contains 27 of the more common univariate
probability distributions used in statistics and engineering. To aid in the construction
ofhypothesis-testing thresholds and receiver operating characteristic curves (ROC), 19
inverse probability distribution functions are given in the IPROB menu. The BIVN
menu provides four Bivariate Normal distribution commands.

PROB MENU

Definitions for each distribution are provided to avoid all possible confusion.

Chi-square F distribution Normal
T distribution Exponential Weibull
Extreme value Uniform Cauchy
Laplace Gamma Beta
Non-central y* Non-central F Non-central T
Binomial Hypergeometric Negative binomial
Poisson Kolmogorov-Smirnov Rayleigh
Rician Marcum I'y Marcum Py
Combinations Permutations Factorial

297
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IPROB MENU

The inverse probability functions provide direct computation of confidence limits and
intervals. Where closed form inverse distribution functions exist, they are used.
Where they do not, the HP 48 root solver is used for the computation.

Chi-square F distribution Normal
T distribution Exponential Weibull
Extreme value Uniform Cauchy
Laplace Gamma Beta
Binomial Negative binomial Poisson
Kolmogorov—-Smirnov Rayleigh Marcum I'y

BIVN MENU

All combinations of upper tail and lower tail probabilities are given for the bivariate
normal distribution.

ADDITIONAL PROBABILITY DISTRIBUTIONS

There are a few distributions that are not on the ROM. These include log-normal,
Maxwell, sech-square, Fermi-Dirac, and Bose-Einstein. They are available along
with a tabulation of means, variances, density functions, and characteristic functions

for the ROM distributions. See Appendix A.
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
FUNCTION COMMAND INPUTS OUTPUTS

UPPER TAIL v = DEGREES OF VALUE
CHI-SQUARE FREEDOM (DF)

 

 

   

 

 

Q(x2|v) = [22 T(v/2)]" |: 2g gt 4220 v0

When v is an integer n, then UTPC(n,x?) = UtPC(n,x?).

 

 

    
UPPER TAIL F vy and v, are DF VALUE
DISTRIBUTION

v2 vo?

QF vy, Vp) = ——7 I:TNA yy ey)2 dt F220 vy, vy >0
B{zVi: Vo)

When v, and v; are integers, then UTPF = UtPF.

 

 

    
UPPER TAIL i = MEAN, © = VALUE
NORMAL STANDARD DEV

. 1 ~(t - pp
PX 2x} = | SIVUlall PRE

x oven 20  
UTPN = UPN always, but UtPN is algebraic.    
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
 

 

  

 

  
 

 

 

 

   

 

 

    

 

FUNCTION COMMAND INPUTS OUTPUTS

UPPER TAIL T v = DF VALUE
DISTRIBUTION

1 1 [rt x25=1 - 1 M\° 21-A(t]v) = 1 WB3) [i= dx t>0 v>0

UtPT(v, t) = UTPT{(v,|t|) t<O.

When v is an integer n, then UTPT(n, t) = .5 UtPT(n,t) t>0.

LOWER TAIL un = MEAN, oc = VALUE
NORMAL STANDARD DEV

LTPN(u, o, x) = 1 = UtPN(u, o, x)

UPPER TAIL n= MEAN, oc = VALUE
EXPONENTIAL STANDARD DEV

EXP(-(x -uw)/o-1) x2pu-0 o>0

UPPER TAIL Parameter c VALUE
WEIBULL  

 

     P{X > x} = EXP(-x"c)

n="rc +1)

x20 ¢>0

o’=T(c +1) - 2
The substitution x = (y - §)/a o> 0 is common.
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
 

 

  

 

 

FUNCTION COMMAND INPUTS OUTPUTS

UPPER TAIL n= MEAN, c =
EXTREME STANDARD DEV VALUE
VALUE
 

and can be expressed in terms of u and c as

The Type | distribution is commonly written as P{X > x} = 1 — EXP{ e"*-9/9)

 

 

   
 

 

 

 

  
 

 

 

   

1 - EXP( - EXP] -(x-p)nt / (v6) —y]) o> 0.

UPPER TAIL 1 = MEAN, ¢ = VALUE
UNIFORM STANDARD DEV

(M+ V(36%) -x)/ (126°)  |x-p| <¥(36°) 6>0

UPPER TAIL Parameters VALUE

CAUCHY 0 a

S-ATAN[ (x -6)a)r a>0

UPPER TAIL iL = MEAN, ¢ = VALUE
LAPLACE STANDARD DEV
   EXPly2(u -X)/o}/2

1 - EXPly2(x - p)/o]2
g>0

g>0

X2p

X<u   
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
 

 

 

 

  
 

FUNCTION COMMAND INPUTS OUTPUTS

UPPER TAIL Parameter

GAMMA a VALUE

(ERLANG)

I'(a, x)T(@ x=>20 a>0

Substitutions like x = (y — a)/p are common.

With a = uK, n> 0, K> 0, this is also called the Erlang-K distribution.

 

 

   
 

 

UPPER TAIL Parameters VALUE
BETA ab

l,_(b,a) a,b>0 0<x<1

Substitutions like x = (y — a)/(B — a) are common.

LOWER TAIL Parameters VALUE

BETA ab

 

   
 

LTPB(a, b, x) = 1 — UTPB(a, b, x) = I.(a, b) ab>0

with x real, LTPB(a, b, x) = 0 for x <0 and LTPB(a, b, x) = 1 for x > 1.

   UPPER TAIL
NON-CENTRAL
CHI-SQUARE

 

  

Ais
non-centrality
parameter  

VALUE

 

 

  



CH 23 : PROB IPROB BIVN PROBABILITY DISTRIBUTIONS 303

 
 

 

MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
FUNCTION COMMAND INPUTS OUTPUTS

 

     

= (V2)"
Qlv, A) =), ( 2) eM Q?lv+2n) ¥*=20 v>0 A220

n=0 *

 

 
 

 

     
 

UPPER TAIL Ais
NON-CENTRAL F non-centrality VALUE
DISTRIBUTION parameter

_w2)",QF Vy, Vou A) = Y © QF|jvy +2n, vy) F220 v,v,>0 A220

UtnC, UtnF, and UtnT evaluate the shown power series so accuracy degrades
with large non-centrality. The closeness to 1 for zero arguments is a measure of

this accuracy.

 

 

    

  

UPPER TAIL dis
NON-CENTRAL T non-centrality VALUE

DISTRIBUTION parameter

= (8%2)" vo _
QTIv, 8) = ¥. —5-— Liz5 +n) X=T20 v>0 320

n=0      
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

UPPER TAIL
BINOMIAL

N nop VALUE

   

 

 

> (4 |p opr 0<n<N nNeN O0<pc<1

 

 

 

  
 

 

LOWER TAIL X n VALUE
HYPER- N Cc

GEOMETRIC

X N-x

clk JlIn-k
y N 0<c<MINxn n+x<N nx N, ceN
k=0

n

x and n are interchangeable.

UPPER TAIL
NEGATIVE n x p VALUE
BINOMIAL

 

   
   - - 1 P
("era q9=7q p=g=1-49 O<p<1 n, x eN

forx=0, 1, 2,.... This is also known as the Pascal distribution.
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
FUNCTION COMMAND INPUTS OUTPUTS

UPPER TAIL N m VALUE
POISSON

N=01,2

UPPER TAIL
KOLMOGOROV- A VALUE

SMIRNOV

x20

UPPER TAIL Gc Xx VALUE
RAYLEIGH

EXP( -x%262) x20 o>0

UPPER TAIL VALUE
RICIAN    
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB}
FUNCTION COMMAND INPUTS OUTPUTS
 

   
  

This computation can be very slow.

The Marcum Q function is available. See { MISC MQ }.

 

 

 

  
 

 

UPPER TAIL N PB VALUE
MARCUM T

XN gx
J; “w= B>0 N=1 2...

UPPER TAIL N rp VALUE
MARCUM P,    

 

 

B

. N-1)2

J: (7) eM I(ANTX)dx B20 r20 N=12... 
This computation is extremely slow. Consider setting the mode to 7 SCI.

 

 

  

HP COMB n, meN VALUE

HP PERM n,meN VALUE

HP FACTORIAL REAL NUMBER VALUE 

 

  
 

See page 147 of the HP 48 owner's manual.

       

 

UP DIRECTORY NONE PARENT MENU
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MATHEMATICAL PROBABILITY
DISTRIBUTIONS MENU { PROB }
 

FUNCTION  
COMMAND

 
INPUTS  OUTPUTS
 

 Press, 1961.

Abramowitz and Stegun, Handbook of Mathematical Functions, AMS 55, 1964.

Johnson, N., and Kotz, S., Distributions in Statistics, 4 Volumes, New York, Wiley,
1969-72

Marcum, J., "Statistical Theory of Target Detection by Pulsed Radar",
IRE Transactions on Information Theory, New York, April 1960.

Raiffa, H., and Schlaifer, R., Applied Statistical Decision Theory, Cambridge, M.1.T.  
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INVERSE PROBABILITY
DISTRIBUTIONS MENU { IPROB }
FUNCTION COMMAND INPUTS OUTPUTS

P = PROBABILITY a

 

 

   

 

INVERSE UTPC
 

Inverse Upper Tail Chi-Square: x? such that UTPC = P € [0,1] v>0

IUTPC( 4.5, 0.5) = 3.85375376767

 

  

 

INVERSE UTPF P = PROBABILITY F   
 

Inverse Upper Tail F Distribution: F such that UTPF = P € [0,1] Vey Vp > 0

IUTPF(4.5, 6.3, 0.5) = 0.955677662077

 

INVERSE UTPN P = PROBABILITY X
 

 

  
 

Inverse Upper Tail Normal Distribution: x such that UTPN = P € [0,1] c>0

IUTPN(4.3,1.7,05)=43

 

 

 

  
INVERSE UTPT P = PROBABILITY t
 

Inverse Upper Tail T Distribution: t such that UTPT = P € [0,1] v>0

IUTPT(4.3, 0.5) = 0.735766623839     
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INVERSE PROBABILITY
DISTRIBUTIONS MENU { IPROB }
FUNCTION COMMAND INPUTS OUTPUTS

P = PROBABILITY X

 

 

INVERSE UTPE     

 

 

Inverse Upper Tail Exponential: x such that UTPE = P € [0,1] c>0

IUTPE( 4.2 ,1.7, 0.5) = 3.67835020695

 

  
P = PROBABILITY X

 

 
INVERSE WEIB
 

Inverse Upper Tail Weibull: x such that WEIB = P € [0,1] c>0

IWEIB( 1.7, .5) = 0.806061017186

 

INVERSE EXTV P = PROBABILITY X
 

 

  
 

Inverse Upper Tail Extreme Value: x such that EXTV = P € [0,1] c>0

IEXTV(-1.7,23,.5)=-2.07785378824

 

P = PROBABILITY X
 

 

  
INVERSE UNIF
 

Inverse Upper Tail Uniform: x such that UNIF = P € [0,1] c>0

IUNIF( -45,1.7,.5) = -45     
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INVERSE PROBABILITY
DISTRIBUTIONS MENU { IPROB }
FUNCTION COMMAND INPUTS OUTPUTS

INVERSE CAUCH

 

 

   

 

| P = PROBABILITY x
 

Inverse Upper Tail Cauchy: x such that CAUCH = P e [0,1] oa>0

ICAUCH( -45,17,.5)=-45

    
   

INVERSE LAPL | P = PROBABILITY X
 

Inverse Upper Tail Laplace: x such that LAPL =P e [0,1] c>0

ILAPL( -45,1.7,.5)=-45

 

  
| P = PROBABILITY X

 

 INVERSE UTPG
 

Inverse Upper Tail Gamma: x such that UTPG =P € [0,1] aso

IUTPG( 2.4, .5)=2.07615703799

 

INVERSE UTPf P = PROBABILITY X

 

    

Inverse Upper Tail Beta: x such that UTPB = P € [0,1] a,b>0

IUTPB( 1.7 ,4.3, 0.5) = 0.25812987721     
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 INVERSE PROBABILITY
DISTRIBUTIONS MENU { IPROB }
FUNCTION COMMAND INPUTS OUTPUTS

INVERSE LTP P = PROBABILITY X

 

 

   

 

 

Inverse Lower Tail Beta: x such that LTPB = P € [0,1] a,b>0 
ILTPB( 1.7 ,4.3, 0.5) = 0.25812987721

 

  
P = PROBABILITY D

 

 

INVERSE BINM
 

Inverse Upper Tail Binomial: p suchthat BINM=Pe [0,1] O0<n<N n,NeN

IBINM( 7, 3,05) = 0.364116086448

   
INVERSE NEGB P = PROBABILITY p

    

Inverse Upper Tail Negative Binomial: p such that NEGB = P € [0,1] n, x eN  
INEGB(3,7,05)=0.713763331977

 

INVERSE POSN
  

 

 
| P = PROBABILITY m
 

Inverse Upper Tail Poisson:  m such that POSN = P € [0,1] NeN

IPOSN( 7, 0.5) = 6.66963707455    
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INVERSE PROBABILITY
DISTRIBUTIONS MENU { IPROB }
FUNCTION COMMAND INPUTS OUTPUTS

INVERSE UTKS | P= PROBABILITY A

 

    
    

Inverse Upper Tail Kolmogorov-Smirnov: A such that UTKS = P € [0,1]

IUTKS( 0.5 ) = 0.82757355519

    
INVERSE RAYL P = PROBABILITY X

    

Inverse Upper Tail Rayleigh: x such that RAYL = P € [0,1] c>0

IRAYL( 1.7, 0.5) =2.00159703828

 

INVERSE MN | P = PROBABILITY B

 

   
 

Inverse Upper Tail Marcum I: B such that MyN = P € [0,1] NeN

IMYN( 4 , 0.5 ) = 3.67206074885

 

UP DIRECTORY NONE PARENT MENU    
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BIVARIATE NORMAL
DISTRIBUTION MENU { BIVN }

 

 

 

 

 

  

 

  

FUNCTION INPUTS OUTPUTS

PROBABILITY x,yeR re[-1,1] VALUE

P{X>x,Y2>y}

PROBABILITY x, yeR re[-11] VALUE
PX>x,Y<yj}

PROBABILITY x, yeR re[-11] VALUE

PX<x,Y2>y}

PROBABILITY x,yeR re[-11] VALUE
P{X<x,Y<y}
 

PUXLY(1,2,.3)=0.149967356516

_ _17r= _Ah2, 2.Lh, k. 1) = Lk, ho 1) = o- [rr oxp[- 1(h? +k? -2hk cos w)cosec? w]dw

for h, k > 0. This calculation can be extended to the entire real numberline.

Substitutions like x = (X - ,)/c, and y = (Y — pu)/c, are common.

There are much faster numerical approximations than this integral, but they are
very unreliable when |r| is not small. This integral always delivers 10 good digits.

A faster version of PLXLY is given on the next page.

 

 

     

 

 

UPPER TAIL see { PROB } VALUE

NORMAL

LOWER TAIL see { PROB } VALUE

NORMAL

UP DIRECTORY NONE PARENT MENU   
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BIVARIATE NORMAL
DISTRIBUTION MENU { BIVN }

FUNCTION COMMAND INPUTS OUTPUTS

314

 
 

    

  FASTER COMPUTATION OF BIVARIATE NORMAL DISTRIBUTION

The below program LTBN provides faster computation of the bivariate probability
PLXLY from which the other three probabilities can also be computed. However,

its accuracy degrades as |r| approaches 1. Use PLXLY to determine the accuracy
of LTBN in the region of interest.

< > X Y r < "BIVARIATE NORMAL" 3 DISP 1 X 1 Y — X0 X1 YO Y1
< '+SQ()xXxY/2" NUM 3 50 FOR K X0 NEG X1 DUP 'X0' STO X x +
K 1 — / DUP 'X{'" STO YO NEG Y1 DUP 'YO' STO Y x + K 1 — / DUP

'Y1' STO x 'MKx(K-1)VK' NUM x + NEXT 'EXP(=(SQ(X)+SQ(Y))/2)/2/x’
SNUM x 'LTPN(0,1,X)xLTPN(0,1,Y)’ »NUM + > > »

PLXLY(1, 2, 0.1) = LTBN(1, 2, 0.1) = .823640898881

PLXLY(1, 2, 0.9) = .841096187037

LTBN(1, 2, 0.9) = .84109570565

Thus, we have the relations:

Px<X,y<Y,r)=LTBN(XY,r) Px2>X,y<Y,r) =LTBN(-X,Y, -r)

Px<X y>Y,r)=LTBN(X-Y,-r) Px=Xy=2Y,r =LTBN(=X, -Y, 1)

 
For theory only see AMS 55.

For theory and CORRECT NUMBERS and CORRECT EXAMPLES, see Tables of
the Bivariate Normal Distribution Function and Related Functions, AMS 50, 1959.    
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MULTI-SERVER
QUEUEING DISTRIBUTIONS

INTRODUCTION

This chapter presents the 12 queueing theory commands in the QUE menu. QUE
gives commands for the probability distributions and moments that are associated with
multi-server queues for an infinite population, but a finite waiting space. Since this
model is not available in most textbooks, we overview the mathematics for the user.

MODEL FORMULATION

Let N(t) be the number of customers being processed plus those waiting to be
processed at time t > 0. Thus, N(t) is the number of customers in the system. Define

P_(t) = P{N(t) = n} = the probability that exactly n customers are in the system.
A, = the mean arrival rate of customers (expected number of arrivals per unit

time) when there are n customers in the system.
11, = the mean departure rate for customers (expected number of departures per

unit time) when n customers are in the system.
P;;(At) = P{ N(t + At) = | N(t) =i } = the Markovian transition probability for

a change in the number of customers in the system.
M = maximum number of customers in the system.
s = the number of identical servers.

315
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We make the following realistic assumptions relative to the customer transition
probability:

BIRTH POSTULATE: P,,..(At) = A,At + o(At)

DEATH POSTULATE: P,.(At) = m,At + o(At) pg = 0

MULTIPLE CHANGE: PAD) =o)  [i-j|22

Lim 2® - 0where o(t) is any function such that The first two equations
0 t

characterize single transitions in terms of A, and p,. The third says transitions occur
one at a time.

These equations lead to a differential equation for P(t):

Li Pa + AD - PO dPO
=A _P (1) + P (D - (h +u )P (0).

At-0 At dt a-tPact®

+

BpPrg@®

-

(A +pPO
 

PURE ARRIVAL (BIRTH) PROCESS

Assume that A, =A and p,=0forn=0, 1,2, .... Then the solution is

n

Py =e™ Po =ed nap
n!

Thus, P_(t) is Poisson-distributed with parameter At, and the probability of less than
K arrivals during the interval (0, t) is

K-1 n
yaT&A) gga,
n=0 n! I'K)

which equals UTPG(K, At) = 1 - POSN(K, At). If T is the time required to obtain
exactly K arrivals, then P{T > t} = UTPG(K, At). The probability of no arrival in time
T is UTPEQAY, 47%, T).
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PURE DEPARTURE (DEATH) PROCESS

Now we assume that A, =0 and p, = pn for n = 1, 2, .. .. This case mathematically
parallels arrivals. Noting that (M - n) is the number of departures during the interval
(0, t), the probability of no departure and the probability of (M — n) < M departures are

Pt) =e pp = BO P@®=1- 3 P (1)M ? n (M-n)! ’ 0 ~ n\*’/*

MATH LIBRARY MODEL

The differences between queueing theory models are in the definition of A, and pn,.
This model assumes an infinite population of customers but limited space. Thus, A,
= A for 0 <n <M and zero otherwise, where M is the limit on the number of customers
which can be either waiting or getting served. Let all the servers be identical with
service rate pn. Departure rate is related to the service rate by p, = ns provided 0 <n
<s. However, when n > s, then the departure rate remains at sp since we assume
those waiting to be served either never leave the queue or if they do, then they are
instantly replaced. This model has been called the M/M/c/K queueing system, which
is different from the finite population multiple repairman M/M/c/K/K queueing system.

The more common M/M/c multi-server queueing model is a special case of the
MATHLIB model. Simply set parameter M to a large positive integer in the following

commands. See also the examples.

The resulting equations are given in the menu. Other queueing models are easily
programmed.

OTHER QUEUEING MODELS

Other models are very easily programmed. For a nice summary of the equations used
in the various queueing models, see Allen.
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QUEUEING THEORY MENU {QUE}
 

FUNCTION
 
COMMAND

 
INPUTS

 OUTPUTS
 

Assumptions and definitions:

STEADY STATE MULTI-SERVER QUEUE WITH FINITE WAITING SPACE

Arrival rate Poisson-distributed with the mean arrival rate A.
Departure rate exponentially distributed with mean departure rate p.
Number of identical servers equals s e NN.
Loading intensity factor equals p = A/(us) < 1.
M is the maximum processing load modeling finite waiting space M >s, M eN.
D, is the time that an arrival must wait in the queue before being processed.

LM is the expected queueing plus processing load.
LQM is the expected queueing load.

LPM is expected processing load.

WM is expected time an arrival is in the system including processing time.
WQM is expected time an arrival is waiting in the queue for processing.
PQB is the probability that all servers are busy.
PNSM is the steady state probability that n arrivals are in the system.
PDQW is the probability that D, > t.

 

 

 

 

 

 

 

    
 

 

TOTAL LOAD Ss, M, A, u VALUE

QUE LOAD s,M, A, u VALUE

PROC LOAD s,M, A, n VALUE

TIME IN SYSTEM s, MA, un VALUE

TIME IN QUEUE s,M, A, nu VALUE

PROB OF BUSY s, M, A, u VALUE

PROB{ n in s,M, A, nu, n VALUE
system }

PROB{ D, > t } s, M, A, u, t VALUE   
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QUEUEING THEORY MENU {QUE}
 

 

 

 

  

FUNCTION COMMAND INPUTS OUTPUTS

EXPONENTIAL | see { PROB) VALUE

GAMMA see { PROB } VALUE
(ERLANG)

POISSON see { PROB } VALUE

UP DIRECTORY NONE PARENT MENU   

 

 

  

Define the Poisson arrival and exponential departure rates to be

AL =dA 0<n<M uw o={Nu 0<n<s
0 n>M " SU n=>s .

This model corresponds to an infinite population of automobiles that need repair, s
available mechanics to perform the repairs, and an equivalent marketing staff of M
— s individuals to go out and find customers to come stand in the queue to be
served. When M = s, marketing only takes place when one or more mechanics is
idle, so LQM = WQM = PDQW = 0. The model thus characterizes customer search

requirements. The probability equations are

n!

PNSM =P," =4 r,

so s<n<M 
where P, is given by:
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  QUEUEING THEORY MENU {QUE}
FUNCTION COMMAND 

  INPUTS OUTPUTS

2] 2 1

s Tr mm _ AM-s
PM = y H \1 p(1 p )

2. “nl tl {d-p)

 

 

and is the probability that all servers are idle. The probability that all servers are
busy is

-1

P,=1-Y P"
n=0

wn

The probability that the waiting time to be served is greater than t is

 

A S

or M-s-1 n st k

PDQW = P(D, >t} = ol pi 3 pr HD ope
S! =0 k=0 k

from which the moments can be evaluated.

MLM = LPM + LQM WM = WOM + — wam = LGM

A sAM

LPM = = i - Sr] Lam = LlpPsopt P(1 (M-9)(1 =p)    
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QUEUEING THEORY MENU {QUE}
FUNCTION COMMAND INPUTS OUTPUTS

  

 

 

   
 

QUEUEING EXAMPLES

Consider a message-switching center which receives an average of 250 messages
per minute. The transmission rate is 1,600 characters per second with an average

length of 360 characters. Then the average arrival rate A = 250/60 = 25/6
messages per second, and the average service rate is p = 1600/360 = 40/9. The

loading intensity factor A/u = .9375 and s = 1.

First assume an infinite number (K = 200) of buffers are provided. Then we have:
average number of messages in the system = LM = 15.00, average number of

messages in the queueing buffer = LQM = 14.06, average utilization = LPM = .94,
average response time = WM = 3.60 seconds, average time in the queue = WQM
= 3.37 seconds, probability of the queue being busy = PQB = .94. The probability
that the 199 buffers (200 — 1) are full is PNSM(1,200,A,1,199) = 1.65E-7. To keep
from having to enter the data more than once, use the LAST STACK command.

Messages are lost if there is no available buffer. Suppose the probability of all the
buffers being full is chosen to be 5E-3. How many buffers are required? Since
PNSM(1,41,A,11,40) = 5.06E-3 and PNSM(1,42,A,,41) = 4.73E-3, 41 buffers are
required, and LM = 12.14, LQM = 11.21, WM = 2.91 seconds, and WQM = 2.69

seconds.

Suppose a computer software manufactureris planning a telephone help facility
and the average question takes 5 minutes to answer. An average of 36 calls per
hour are expected. If less than 0.5%ofall callers must wait more than a minute,

how large a staff is required?

The calling rate is A = 36/60 = 0.6 per minute, and the service rate pn = 1/5 = 0.2
per minute. Since PDQW(8, 200,0.6,0.2,1) = 0.00476, eight people answering eight

phones are required. For 8 people, the probability of a caller having to wait is
PQB = 0.0129.    
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QUEUEING THEORY MENU {QUE}  

 

FUNCTION  
COMMAND

 INPUTS  OUTPUTS
 

 
Allen, A., Probability, Statistics, and Queueing Theory, Cambridge, Academic Press,

Kleinrock, L., Queueing Systems, Volume |: Theory, New York, Wiley, 1975.

Kleinrock, L., Queueing Systems, Volume Il: Computer Applications, New York,
Wiley, 1976.

Saaty, T., Elements of Queueing Theory, New York, McGrapw-Hill, 1961.      
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SYMBOLIC ARRAYS
AND ADVANCED CALCULUS

INTRODUCTION

This chapter presents the 57 symbolic array and differential equation commands. The
SYMB commands extend the numerous array commands for numbers to functions.
These extensions provide the mathematical framework for:

e Vector and matrix algebra
e Vector and matrix calculus
e Gradient, divergence, curl, and Laplacian in eight orthogonal curvilinear
coordinates

* Numerical solution of scalar, vector, and matrix differential equations
» Symbolic solution of scalar, vector, and matrix differential equations
* Scalar and matrix partial fraction expansions
» Symbolic calculation of scalar and matrix inverse Laplace and z transforms
» Evaluation of complex contour integrals
» Evaluation of scalar and matrix complex residues
* Solution of state space differential equations
» Evaluation of vector line integrals
» Evaluation of vector volume integrals
» Applications in electronic and control systems

To accomplish this, we exploit the generality of the HP 48 list object to formulate
symbolic vector and matrix objects. Some of the material is rather advanced, and we
assume the reader is familiar with basic vector, matrix, calculus, and differential
equation concepts.

323
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STRUCTURE OF SYMBOLIC VECTORS AND MATRICES

Symbolic vectors and matrices follow the same conventions as HP 48 array objects, and
the dimensionality rules are the same. However, the elements of symbolic arrays can
include functions as well as real and complex numbers. The array delimiters are
braces instead of brackets:

HP ARRAY SYMBOLIC ARRAY

VECTOR [123 4] {ABCD}

COLUMN VECTOR [[11[213]] {AHBHCH
ROW VECTOR [12 3 41] {ABCD}
MATRIX (1213 41] {A BHC DJ}

Thus, a symbolic vector is an HP 48 list and a symbolic matrix is a list oflists.

LINEAR ALGEBRA

Symbolic array algebraic commands SADD, SSUB, SMPY, and SDOT provide
addition, subtraction, and multiplication. SCHS provides negation and STRN
provides non-Hermitian transposition. STRAC and SDET provide the trace and
determinant operations. SABS is the Frobenius (Euclidean) norm. SMI provides
symbolic matrix inverses. SRND, SRE, and SIM extend the HP 48 commands RND,
RE, and IM to symbolic matrices. TIFRE is a handy cleanup function which
automatically discards the imaginary part of the elements of a symbolic matrix or list
when it is insignificant. SSIZE and SCNJ extend the SIZE and CONJ commands
to symbolic objects. These and only these sixteen commands work for either symbolic
or HP 48 arrays, BUT ALL MATRIX (VECTOR) ARGUMENTS MUST BE THE SAME
TYPE AND DIMENSION. You cannot add a symbolic array to an HP 48 array object
nor can you add a vector to a column vector. The dimensions and the type must be the
same. Type conversion commands are given below.

SMNR provides the matrix minor operation, and SCROS provides vector cross-product
operations. SADDS and SSUBS provide the matrix add and subtract scalar function
operations.

LREV in the VECTR menu is available for reversing symbolic vectors (lists). Symbolic

vectors may be rotated with command VROT. This will also roll (rotate) the rows of
a symbolic matrix. Commands ZFILN and REDN will zero-fill and reduce the size
of symbolic vectors. The last three commands are discussed in Chapter 26.
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CONVERSION COMMANDS

M—-SO and MSO provide conversion between HP 48 matrices and symbolic
matrices. L—»SO0 and L«SO provide conversion between symbolic column vectors and
vectors.

The commands VREV, 5ROW, and COL do accept symbolic vector (list) inputs, but
all the elements must be numbers since the output is an HP array object.

SUBSET EXTRACTION AND REPLACEMENT

Vectors may be extracted from matrices or used to replace rows or columns of matrices
with the commands SERW, SECOL, SRRW, SRCOL. The VSUBS and VREPL

commands in the VECTR menu can also be used for extracting and replacing parts of
symbolic vectors (lists).

OBJECT COMMANDS

SOB- puts a symbolic array on the stack, and -SOB converts the elements on the
stack into a symbolic array. They are the equivalent of the HP 48 OBJ— and —OBJ
commands and follow the same rules. SGET and SPUT perform the GET and PUT
operations for symbolic arrays.

SYMBOLIC ALGEBRA OPERATIONS

Symbolic algebra commands include SCOLC, SEXPD, SEXCO, SEVAL, SVBAR
(where), MATT, MATJ!, SNUM, S1F1, and L1F1. Program S2F1 (M2F1 for symbolic
matrices) is available. See Appendix A.

Vector commands VECTX, VECTD, and V2F1 in the VSAG menu do accept symbolic
vectors as inputs and return a symbolic vector if either input is a symbolic vector.

VECTOR AND MATRIX CALCULUS

SDERV and SINTG provide vector and matrix differentiation and integration.
Gradient, divergence, and curl commands are provided by SGRD, SDIV, and SCURL.
The Laplacian is provided as the composition of the gradient and divergence.
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RUNGE-KUTTA DIFFERENTIAL EQUATION SOLVER

DESOL is a very flexible and powerful Runge-Kutta differential equation integrator
for scalar, vector, and matrix differential equations. Nth order differential equations
can be expressed in terms of vector differential equations and solved. Examples for
each case are given.

SYMBOLIC DIFFERENTIAL EQUATION SOLUTIONS

HVSDE provides Heaviside partial fraction expansions. RESDP and RESDA
compute complex residues. The IXFRM command provides both symbolic inverse
Laplace and z transforms. These commands combined with SMI provide powerful
capability for solving scalar, vector, and matrix linear differential equations by Laplace
transform techniques. Examples are given in the menu.

If, for the specified root or roots and the value of € > 0, these programs conclude that
a specified root is in fact not a root, they will abort with a "Bad Guess(es)" error.
Either € is too small or you need to more accurately compute the root(s). Polynomials
with repeated roots are very difficult to compute accurately. See the AROOT example.

STATE SPACE SOLUTIONS

SMI can also compute the resolvent matrix for state space matrix differential equation
applications. Related commands are also given in the FILTR menu discussed in
Chapter 27, including zero—pole calculations, controllable, observable, and Jordan
canonical forms. Chapter 28 extends these techniques to discrete state space systems.

VECTOR LINE AND VOLUME INTEGRATION

Examples of vector line and volume integration are given.

PLOTTING SYMBOLIC VECTORS

The vector plot programs in the PLOT menu discussed in Chapter 2 do support
plotting symbolic vectors (SV), which are lists. However, all the elements must be
numbers.
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SYMBOLIC MATRICES are defined to have the form:

{ LIST1 LIST2 LIST3 ... LISTN}

where N is the number of rows, each of the N lists has the same size, and that size
is the number of columns. The elements may be numbers or functions.

Dimensionality rules are the same as those for HP 48 arrays. Let SM denote the set
of symbolic matrices. Two special cases are the set of symbolic column vectors

denoted by SC and the set of symbolic row vectors denoted by SR. Closely related
to the set of symbolic matrices is the list object itself, which also can be used with
many of the below operations. Let SV denote the set of symbolic vectors which are
the same as the HP 48 list object. Let A demote a standard HP 48 array. Below

are simple examples:

 

{{A B C} { {a} {{A B C D}} € SR
{D E F { B}
{G6 H I) {Cc SIZE = { 1, 4}
{J K L} {D}

{M N O01) })e sM {EB} })e sc { A B C D E} € sv

SIZE = { 5, 3} SIZE = { 5, 1} SIZE = { 5}

 

WARNING: Lower case "e" and "i" are specially defined symbols on the HP 48. The
SADD example below will halt with a + errorif the "E" is changed to "e."

 

A+B A, B eSM OR SV A+B
OR A   
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A, B eSM OR SV A-B
OR A

  

 

 

A-B

   

 

 

A and B may be SM, SC, SR, or SV, but A and B must have the same dimensions.

SADD({{A B}{C D}}).{{E F}{G H}})
= {{'E+A"' 'F+B'} {'G+C' 'H+D'} }

SSUB({A B C},{D E F})={'A-D' 'B-E' 'C-F'}

 

 

AxB AeSM OR A AxB
    

A is an SM, and B is a properly dimensioned SM, SV or scalar. For example:

SMPLY({{A B}{C D}},{{E}{F}})={{'AXE + BxF'} { 'CxE + DxF'}}

SMPLY({{A B}{C D}},{E F})={{'AXE + BxF'} { 'CxE + DxF'}}

SMPLY({{A B}{C D}},E)={{'AxE'" 'BXE'} { 'CxE' 'DxE'}}

 

DOT PRODUCT A, B eSM OR SV VALUE
OR A 

 

   

Vectors A and B may be SC or SR, but A and B must have the same dimensions.

SDOT({A B C D},{E F G H})="AxE + BxF + CxG + DxH'    
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FUNCTION COMMAND INPUTS OUTPUTS

CHANGE SIGN M SM OR SV -M
OR A

SCHS({{A B}{C D}})={{"-A"'-B'}{*-C" '-D'}}

TRANSPOSE M eSM OR A TRANSPOSE M
 

STRN({{A B C}{E F G}})={{A E}{B F}{C G}}

 

SYMBOLIC
OBJECT TO
STACK

   

M eSM OR SV

SOB—( { {A B}
{CD} (EF}})

SOB—({A B C})

 

STACK

T
N
O
R
O
O
N

}

=
~

nN

N
e
h

   This command operates like the OBJ— command for HP vectors and arrays.   
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 STACK TO SM   
   L = (#R #C}, {#}, #  SM

 

—SO0B operates like the -ARRY command for vectors and arrays and provides the
functional inverse operation for the command SOB—. Like the -ARRY command,

the { } may be omitted when specifying the SIZE of a symbolic vector SV.

 EXTRACT ROW MeSM ROW # SV

 EXTRACT
COLUMN  

 

MeSM COL #

  
SV

 

SERW and SECOL extract the specified row (column) of M as a symbolic vector.

SECOL({{A B}{C D}},2)={B D}

 REPLACE ROW

 

 

 

  

MeSM V eSV M WITH V
ROW # INSERTED

REPLACE MeSM V eSV M WITH V
COLUMN COLUMN # INSERTED

   SRRW and SRCOL replace the specified row (column) of M with SV V.

SRCOL({{A B}{C D}}.{E F},2)={{A E}{C F}}   
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SYMBOLIC | MeSM OR SV
MATRIX v = VARIABLE M, V

DERIVATIVE

 

    
The derivative of a matrix or vector is the derivative of each element. SDERV

applies differentiation for the specified variable v to each element of M. See Chapter
23 of the HP 48 owner's manual.

SDERV( { 'SIN(z)' 'COS(z)'},z) ={'COS(z)' '-SIN(z)' }

 

   
SYMBOLIC | MeSM OR SV INTEGRAL
MATRIX | L=LOWER LIMIT L UM,
INTEGRAL | U= UPPER LIMIT Vv]

v = VARIABLE    
The integral of a matrix or vectoris the integral of each element. SDERV applies

integration for the specified variable v and limits to each element of M. See Chapter
23 of the HP 48 owner's manual.

SINTG( { 'SIN(z)' 'COS(z)'},0,z,2) ={'1-COS(z)' 'SIN(z)' }

 

 

   

SYMBOLIC M € SM OR SV
MATRIX SCALAR s = SCALAR Mi =M, +s

ADD
 

SADDS( { 'COS(z)' 'SIN(z)'}, '2*3') = { 'z"3+COS(z)' '2*3+SIN(z)'}     
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SYMBOLIC M SM OR SV
MATRIX SCALAR s = SCALAR M, = M, -s

SUBTRACT

 

SSUBS( {'COS(z)' 'SIN(z)' } , 'z*3') = { '-z"3+COS(z)' '-z"3+SIN(z)' }

 SM COLCT M eSM

 SM EXPAND  

 

 M e SM  
 

SCOLC and SEXPD apply the algebraic commands COLCT and EXPAN to each
element of M. See Chapter 22 of the HP 48 owner's manual.

 

 

 

 

  

MATRIX TO MATRIX M SM M
SYMBOLIC VECTOR M SVM
MATRIX

SYMBOLIC SM M MATRIX M
MATRIX TO SVM VECTOR M
MATRIX

 

M-SO([[1 2][3 4]])={{12}{3 4}}

MSO({1 23 4})=[1 2 3 4]

M—SO and M«SO convert between ordinary HP 48 array objects and symbolic
matrices and vectors. The elements must be numbers, not functions.

 SV (LIST) TO SM   

 

 
L eSV

 
SC
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SM TO SV (LIST) V €SC OR SR SV
OR SV   

 

 

L—>SO0O and L«SO are for conversion of vectors only.

L—SO({A B C}) {
L—SO({{A B C}})={A

 

  

 

 
GET FOR SM MeSM L={RC}| {RC} ELEMENT
 

SGET is the symbolic matrix equivalent of the HP 48 GET command. For symbolic
vectors, use GET. Both row and column must be specified.

SGET({{A B}{C D}},{12})=8B

 

MeSM L={RC) M WITH V
PUT FOR SM V = NEW AT {R C)

ELEMENT

 

    
SPUTis the symbolic matrix equivalent of the HP 48 PUT command. For symbolic

vectors, use PUT. Both row and column must be specified.

SPUT({{A B}{C D}},{12},E)={{AE}{C D}}
 

 

 

SM EVAL M eSM OR SV M, EVAL

SM EXCO M eSM OR SV M,  EXCO

SM | (where) M eSM OR SV M, L |
L = LIST     
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SM TMATCH M € SM OR SV M, L
L = LIST T™MATCH DROP

SM MATCH M eSM OR SV M, L
L = LIST {MATCH DROP

SM —NUM M eSM OR SV M,, ->NUM   

 

 

The above six commands simply apply the stated algebraic operation to each of the
elements of the symbolic matrix or vector. See Chapter 22 of the HP 48 owner's

manual.

 

SV CROSS-
PRODUCT

A, B eSC OR SV 3 DIM
SV

 

    

SCROS computes the cross-product for two three-dimensional symbolic vectors.

SCROS({A B C},{D E F})={'BxF-CxE' '-AxF+CxD' 'AxE-BxD' }

 

DETERMINANT

 

   
M eSM OR A VALUE
   SDET computes the determinant of square m x m symbolic matrices.

SDET({{A B}{C D}})="'DxA - BxC'

For m > 3 and M € SM, SDET is quite slow due to the numerous algebraic
collections.
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SYMBOLIC LINEAR SOLUTIONS - CRAMER'S RULE

Given the fully determined linear system Ax = b where A is n x n and nonsingular,
the ith value of the solution vector x, say x, is given by x, = SDET(A) / SDET(A),
where A is the A matrix with its ith column replaced with vector b. An example of

this technique is given below under simultaneous differential equations.

 MINOR M eSM M MINOR
ROW COLUMN 

 

  
 
Performs first step in computing a minor or cofactor, that of extracting the submatrix
where row R and column C have been deleted. To complete, call SDET and adjust

the sign. An example application of SDET and SMNR in solving state space
differential equations using Laplace transform techniques is given near the end of

this table.

SMNR({{A B C}{D E F}{G H 1}},2,3)={{A B}{G H}}

 GRADIENT V ¢  

 

 
lo L={z,...2y VECTOR

 
 
SGRD computes the N-dimensional gradient of a scalar function ¢(z,, z,, . . ., Zy).

Given ¢ = 2x%%z%, then Vo = 6x%%2* i + 4x%yz*j + 8x%?2°k

SGRD('2xA3yr2z74" , {x y z}) = { '6xP2yA2zM' 'dxAByzA4' '8xA3yr2zh3' )

where the multiplication operators x are not shown but obviously required.    
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DIVERGENCE DIM 3 VECTOR SCALAR
VeV X y z

 

 

   

 

 

SDIV computes the divergence of a three—-dimensional vector function V € SC or
SV.

Given A = x°z i — 2y°2° j + xy’z k, then VeA = 2xz - 6y°z° + xy?

SDIV( { 'xh2z' '-2y*3z"2' 'xyM2z'},x,y,z) =" - 6y*2z"2 + xy"2 + 2xZ'

where the multiplication operators x are not shown but obviously required.

 

DIM 3 VECTOR VECTOR

X y z
CURL

VxV  

 

  
 

SCURL computes the curl of a three—-dimensional vector function V € SC or SV.

Given A = x2%i - 2x%z j + 2yz* k, then V x A = (2z* + 2x%) i + 3xZ2% j — 4xyz k

SCURL( { 'xz"3' '-2x"2yz' '2yz"4'} x,y,z) = { '2x"2y+2z"4' '3xz"2' '-4xyz'}

where the multiplication operators x are not shown but obviously required.

 

 
LAPLACIAN V2 ¢ V2o(x,y,2)=V o [VoY,2)]
 

The Laplacian operation is implemented as the composition of the gradient and the
divergence commands. It is not provided as a command since that would limit its

generality for the orthogonal curvilinear coordinate systems discussed below.     
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GENERAL ORTHOGONAL CURVILINEAR COORDINATES

The above three commands and the Laplacian can be used with other orthogonal
coordinate systems. For scalar ¢ and vector A, which are functions of the

orthogonal curvilinear coordinates u,, u,, and u,, the general expressions are

  

 

 

10 0
h,

1

Ve=|0 1 01 [Va]

10 0 he

VeA=—1_ve|l| 0 hh, © A(u,,u,,us)
h;h;h, 0 0 hh,

hy 0 0 h, 0 0

VxA-= J 0h, 0|vx||0 h O|A(u,umuy
"#310 0 h 0 0 h,

Examples are given on the next page.   
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Rectangular coordinates O{x, y, z} u, =X, U,=Y, Uy=2 X=X, y=Y, Z2=2

Cylindrical polar coordinates Ofr ,¢ ,z} u, =r, U,=0, U;=2
X=rcos¢, y=rsing, z=z

hy=1, h,=r, hy=1 r>0 ¢e€[-n, n]

Spherical polar coordinates Ofr, 6, ¢} u, =r, U,=06, U;=¢
X=rsin@cos¢d, y=rsinbsing, z=rcosoO

hy=1, hy,=1, hy=rsin¢ r>0 06¢€[0,n] ¢e[-n, 7]

SPECIAL NOTE: the HP 48 uses the nonstandard convention of making
the angle off the z axis the third value of the triplet {r,6,¢} instead of
the second. Thus, the 6 and ¢ on page 171 of the HP 48 owner's
manual correspond to the ¢ and 6 here, respectively. Also, the
calculator allows the angle off the z axis to be outside the range [0, 7],
which is mathematically wrong since 6 and ¢ become inconsistent.

Parabolic cylindrical coordinates O{u,v,z} h,=h, hy,=h, h;=h,

X = 2(u?-v? y=u z=z v20

h,=h, =yu?2+v? h,=1 wuzeR

Paraboloidal coordinates O{u, v, ¢} hy=h, hy=h, hy=h,

X=uvcosd y=uvsing z=-=u2-v? u v20 ¢e [0, 2n]

h, = h, = {u?+ v2 h, = uv

nv
]
=     
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 Elliptic cylindrical coordinates O{u, v, z) h=h, hy,=h, hy=h,

y=asinhusinv z=z u>0 Vv €[0, 2n]

h, = h, = a ysinh?u + sin®v h,= 1

a>o0

X = a cosh u cos v,

Prolate spheroidal coordinates Of, n, ¢} hy=h, hy,=h, hy;=h,

x = a sinh§ sin n cos y = a sinh§ sin n sing z =acosh cosn £20

h.=h=a {sinh% + sin? h, =asinhf sinm ne [0, n] ¢e [0, 2n]

a>0

Oblate spheroidal coordinates Of, n, ¢}

x

h

hy=h, hy=h  hy=h,

y =a cosh cos m sing z =a sinh sinn &>0

e=h =a {sinh%€ + sin®n h, =a coshf cos n mne[-n2,n/2] ¢€[0,2n]

a>0

a cosh cos mn coso

 EXAMPLE - DIRECTIONAL DERIVATIVES

In whatdirection from the point (3, 1, —1) is the directional derivative of ¢ = x*y*z°
a maximum? Evaluate 'SGRD( x"2y?4z"3, { x y z})' ={ '2xy?z*3' '4x"2y*3z*3'
'3x"2y*4z72'}. Then put { x 3y 1 z —-1 } on the stack and push SVBAR to obtain

the symbolic vector { -6 -36 27 }, which corresponds to -6i — 36k + 27k. The
directional derivative is a maximum, in this direction. Push SABS to compute the

magnitude of this maximum, which equals 45.39824.    
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ABSOLUTE M eSM OR SV VALUE
VALUE OR A   

 

 

Square root of the sum of the squares of the absolute values of the elements.

SABS({{2 5} {A 3}})=V(38+ABS(A)*2)
 

 

   
TRACE M eSM OR A VALUE
 

The trace of a square matrix is the sum of the diagonal elements. M must be
square.

STRAC({{A B C}{D E F}{G H I}})="1+E +A

 

MATRIX ELEMENT
OPERATIONS

M eSM OR SV My «<P> EVAL
P = PROGRAM

 

    

S1F1 executes the program P on each element of M. It is similar to the V1F1 and
M1F1 commands. See also the L1F1 command at the end of this menu.

S1F1({ 1.25 3.46 -8.16},<« —Q >) ={'5/4' '173/50' '—(204/25)' }

S1F1({A B C D},< EXP »)={'EXP(A) 'EXP(B)' 'EXP(C) 'EXP(D)'}

S1F1({{A B}{C D}},< ATAN »)=

{ {'ATAN(A)' 'ATAN(B)' } { 'ATAN(C)' 'ATAN(D)' }     
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FUNCTION COMMAND INPUTS OUTPUTS

ORDER FOUR 5: P = PROGRAM
RUNGE-KUTTA 4: a =INITIALCOND SOLUTION
DIFFERENTIAL 3: a = START VAL LIST
EQUATION 2: b = END VALUE
SOLUTIONS 1: N = # POINTS    

DESOL solves scalar, vector, and matrix nth order nonlinear differential equations by
the Runge-Kutta method. P is a program, and the differential equation must be of
the form y’ = P(t, y) where y is a scalar, vector, or matrix, and t is the integration
variable. The initial condition a = y(a) must have the same dimension as y(t) and

y'(t, y). The integration is performed N times using (b — a)/N for the step size, where
a and b are the start and end values. Build adaptive step size logic around DESOL.

SCALAR DIFFERENTIAL EQUATION EXAMPLE

As a simple scalar example consider y’ =t —y + 1 with y(0) = 1.
P=<«->ty't-y+1'">»>anda-=1.

With a=0,b = 1, and N = 10 we obtain the result { 1 1.0048375 1.01873090141
1.040818422 1.07032028892 1.10653093443 1.14881193438 1.19658561867

1.24932928973 1.3065699912 1.36787977441 } with a maximum error 3.332E-7.

VECTOR DIFFERENTIAL EQUATION EXAMPLE

Next consider the response of a simple two-loop RLC electrical circuit whose
currents are described by the differential equations:

I) =-4l, +3, +6,1,(0)=0,and I,’ = -2.4l, + 1.6], + 3.6, 1,(0) =0. ThenletP =
<« > tv«[-43][-2416]][[6][36]] > AC <«'AXV + C'

NUM > > >

anda =[[0][0]]. Witha=0,b=0.5,andN =5 we obtain the result:    
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{[[O]1[01] I[[.5382552][.31962624]] [[ .968498737528 ][ .568782173035 ]]
[[ 1.31071903921 ][ .760733131868 ]] [[ 1.58126523897 | [ .906320617947 ]]

[[ 1.79350749012 ] [ 1.01440241677 ]] }. The maximum integration error for this
example is 2.193E-5.

SECOND ORDER DIFFERENTIAL EQUATION EXAMPLE

Next consider the second order initial-value problem y” — 2y’ + 2y = e¢® sint, 0 <t<
1, y(0) = -0.4, y'(0) = -0.6. Define u,’(t) = u,(t) and u,’(t) = €® sin t — 2u,(t) + 2u,(t)
with initial conditions u,(0) = -0.4 and u,(0) = -0.6. LetP= « > t v « [[0 1]

[-22]]{{ 0} {'EXP(2xt)SIN({t)'}} >» AC « Av x C SEVAL MSO + >>>
and a=[-04][-0.6]]. Witha=0, b=.5 and N = 5, we obtain:

{[[-0.4][-0.6]] [[ -461733342331 ][ -.631631242117 ]] [[ -.525559883217 ]
[ -.640148947771]] [ —.588601435615][ —-.613663805926 ]] [[ -.646612306037 ]

[ -.536582028658 ]] [[ -.693566655301 ] [ —.388738097323 ]] }
with a maximum error of 5.96E-7.

 

POLYNOMIAL
ROOT

3: COEF LIST
2:e>0 [ VECTOR ]
1: MAX STEPS   

 

 

PROOT takes the complex coefficient list L (see FEVAL for definition and order) and
creates a Frobenius matrix M. EIGEN is used to compute the eigenvalues of M,

which are the complex roots of L. For example let f(x) = x° — 0.2x* + 7x® + x* — 3.5x
+2=0.ThenlistL={2-3517-0.21}. Withe=1E-10, the roots are

(.140377913, £2.7314490896), (-.908563257, 0), (.413903715, £.3506447075).
MAX is the maximum number ofiterations (say 20) EIGEN is allowed to converge

each eigenvalue. This description is continued on the next page.     
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If the solution fails at some eigenvalue, CONVERGENCE FAILED will be displayed.
Push ATTN, and the diagonal matrix will be returned, but only the last values of the

vector (the ones which converged) are actual roots.

 POLYNOMIAL L v &¢ MAX [ VECTOR ]
ROOT  

 

  
 

AROOT uses Laguerre’s method for solving for all the roots of the polynomial
defined by the list L. Value v is the initial guess for all of the roots, and ¢ sets the

convergence criterion. MAX (say 100) is the maximum iterations allowed to
converge each root. After converging each root, DEFLT is used to remove that root
from polynomial L. The most difficult polynomial root solutions occur when there are
repeated roots. Consider the example: 'x'? + 99x" — 377x'® — 26395x° + 149080x° +

1703048x’ — 15440048x° + 8684864x° + 302914240x* — 1377763200x® +
2718976000x° — 2620320000x + 1008000000" = (x-2)° (x-5) (x+6) (x=7) (x+10)
(x=10) (x+15) (x+100). Withv = 0, ¢ = 1E-8, and MAX = 100, we only get two
roots: (1.98607080, 0) and (1.99562237, —1.32705219E-2). Dropping € = 1E-4
vields the roots (1.98607080, 0) (1.99563474, —1.32669871E-2) (1.99563459,

.0132665015) (2.01132960, 8.27241365E-3) (2.01133027, -8.27192808E-3) (5, 0)
(-6, 0) (7, 0) (-10, 0) (10, 0) (-15, 0) (-100, 0). The average of the first five roots is

(2, 0) to 11 digits. LROOT can be used to verify that (2, 0) is the true root, and
DEFLT can be used to remove it from P, giving the reduced polynomial

{ (-31500000, 0) (3135000, 0) (1619500, 0) (-108650, 0) (-23945, 0) (673, 0)
(109, 0) 1}, which is easily solved since all the roots are unique.

If the solution fails at some root, CONVERGENCE FAILED will be displayed. Push
ATTN, and the computed roots will be returned.  
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FUNCTION INPUTS OUTPUTS

HEAVISIDE 4: NUMERATOR

EXPANSION 3: DENOMINATOR LIST

FORMULA 2: ROOT rr

1:e>0    

 

 

HVSDE computes the partial fraction expansion coefficients associated with the ratio
of polynomials P and Q using the Heaviside expansion rule. ris a real or complex

root of Q, and ¢ is used by DEFLT internally to determine if the root is repeated. If r
is not a root of Q within ¢, then a "Bad Guess(es)" error message is given. An

example is given below.

 

Consider the computation of the inverse Laplace transform of the expression:

  

cp
 

5s2- 15s - 11 Caf A . B . Cc . D
s%- 53% + 652 + 4s - 8 s+1 (s-2° (s-22 5-2

Define the coefficient lists P = { -11 -155}and Q={-846 -51} and sete =
1E-10. Then HVSDE(P, Q, -1, ¢) = { -1/3 } and HVSDE(P, Q, 2, &) = { -7 4 1/3},
so A=-1/3,B=-7,C =4, and D = 1/3. The inverse transform is thus given by:

1 -t 2t t > t 0-2) 1 1 -t 2t 2 1
3€ +e em + $B + 3 = - 3° +e ast + 4% + 5]

Programs can be built around HVSDE to automate inverse Laplace transforms in
order to solve linear constant coefficient differential equations when the numeratoris

a polynomial.     
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FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL 4: NUMERATOR

RESIDUE 3: DENOMINATOR VALUE

EVALUATION 2: ROOT r

11:e>0

 

   
 

RESDP evaluates the residues of the poles of Q in the case where both P and Q
are polynomial lists and can be used to evaluate contour integrals by the Residue
Theorem. If ris not a root of Q within g, then a "Bad Guess(es)" error is given.

For example, determine the residue at z = i of the equation z%(z° - 22° + z - 2).
Converting the equation to polynomial coefficients gives P= {00 1 } and

Q={-21-21}. Withr=(0, 1) and e = 1E-10, the residue is equal to (.1, -.2).

Next considerthe residue of z' (z + 2)at z=-2. LetP ={1} and
Q={081261},r=-2 and e = 1E-10. Then the residue at -2 equals -1/8.

RESIDUE INTEGRATION EXAMPLE

  

x2 dx _ z2 dz

JZ X 6 +42x 5 +4x * +4x 3 +5x 2 42x +2 - f 26+225+4z2%+42°+522 +422 +2
[9i-12 3-4i rn

zn 100= "50°

where contour C includes the real axis and encloses the upper half complex plane.
Use AROOT to determine that the enclosed poles are at z = i of order 2 and

z=-1+ioforder1. Use COEFL to compute P={001}and Q =
{2254421}. Withe=1E-10, use RESDP to evaluate the residue of (0, 1),

which equals (-.12, .09) and the residue of (-1, 1), which equals (.12, -.16). Now
add the residues and multiply by 2r(0, 1) to obtain .14r.    
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RESIDUE INTEGRATION EXAMPLE

dz

40 iz 2 dz (1)
k 5 + 3 sind - §. 5 3 =) - $32 + 10iz — 3 = 27i +) = 5

+

 

 

2i

where contour C is the circle of unit radius with center at the origin. Use AROOT to
find the poles, which are at -3i and -i/3. Only —i/3 lies inside C. Use COEFL to
compute P={2}and Q ={ (-3,0) (0,10) 3}. Withe=1E-10 andr = (0, -1/3),

the residue equals (0, -.25).

 

    

  

5: NUMERATOR
ARBITRARY 4: VARIABLE a VALUE OR
RESIDUE 3: DENOMINATOR EQUATION

EVALUATION 2: ROOT r

    

  RESDA evaluates the residues of the poles of Q, where Q is a polynomial and F is
a function of a. RESDA provides the capability to directly integrate inverse Laplace
transforms and solve differential equations. Transform the integral into the form of a

complex contour integral and apply the Residue Theorem to obtain the result.

If r is not a root of Q within g, then a "Bad Guess(es)" error message is given.

Examples are given on the next page.    
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SYMBOLIC INVERSE LAPLACE TRANSFORM EXAMPLES

Computethe inverse Laplace transform of s (s + 1)(s - 1).
Let a = s and define F = 'sxEXP(sxt). (s + 1)*(s — 1)? implies Q={11-2-211

}, and with € = 1E-10 the residues are

1 1 1 1—et-_t%tfor r=-1 and —te'- —e'for r= 1.
16 8 8 16

The sum of these residues is the desired inverse transform.

Similarly, evaluate the inverse Laplace transform of 1/(s* + 2s + 1). From AROOT
the roots are (0, +1) = +i, so with F = 'EXP(st)', a =s,andQ={102 0 1 }, we find

that the residues equal -.25 t e™ = .25 i e*", so the sum of the residues equals
(sint —t cos t)/2, which is the desired inverse Laplace transform.

If e = 2.718... evaluates, then whatis returned is correct, but is complex numbers

raised to the t power. See the next few pages for techniques to keep e* symbolic.

 

 

 

 

SYMBOLIC F a D SYMBOLIC
INVERSE e>0 EQUATION

TRANSFORM   
IXFRM computes symbolic inverse Laplace and z transforms using residue

integration. F is the numerator function, a is the variable of integration, D is the
denominator root vector, and € > 0 is used internally by RESDA to compute the

residues. UNIQE internally determines if there are repeated roots in D.
The degree of the numerator must be less than that of denominator D so that the

inverse transform does not contain Dirac delta functions; see the second example.      
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If € is too small, then a "Bad Guess(es)" error message may be given by RESDA.

 

INVERSE LAPLACE TRANSFORM EXAMPLE

Considerfirst the example given above with the HVSDE command. We will compute
the symbolic equation for the response.

cp! 5s2 - 15s - 11 _ gt A, B ,_GC ,_D

s4 - 553 + 6s2 +4s - 8 s+1 (5-2° (s-22 8-2
  

Clear Flag —2 so that e will not evaluate to a number. Define F = (5s —15s — 11)e®..
The integration variable is s. The denominator root vectoris[-1 2 2 2] and

e = 1E-10. Using these inputs to IXFRM, the following program computes the
symbolic equation for the inverse Laplace transform.

IXFRM1: « {-11 -15 5} s XEQN 'ersxt) x s 1E-10 IXFRM »

The result is '-(.333333333333xe"-t)
+((3.49999999999xLN (e)2x"2xeMN(2xt))+3.99999999999xLN(e)xtxe (2x1)

+.333333333323xe"(2xt))"

Observing that LN(e) = 1, this expression reduces to:

1_ 2 2 1- —0 e- |-3.5t 44 —|.
3 * * * 3     
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INVERSE LAPLACE TRANSFORM EXAMPLE

Consider next an example where the degree of the numerator and denominator are
equal. Then the result will contain a Dirac delta function since the inverse Laplace

transform of 1 is the Dirac delta function &(t).

1 2s3 -4s + 8 - 2A + B + C + D }

83 + 782 «17s + 15 s + (2, -1) Ss + (2, 1) s +3

Clear Flag -2 so that e will not evaluate to a number. Then the following program
will compute the inverse Laplace transform for you.

  

IXFRM2: « {6 -4 0 2} [ (-2,1) (-2,-1) (-3,00] > N D « N D CLIST

PDVD DROP s XEQN ‘'ersxt) x s D 1E-10 IXFRM 't>0' SWAP ROT

EVAL IFTE » »

The result is: 'IFTE(>0 , (2,-7)xeM((=2,+1)xt) + (2,+7)xe((=2,~1)x1)
+ (-18,0)xeN(=3,0)xt)) , 2),

so the inverse transform is given by:

25(t) + (2, -7)e2M + (2, 7)e2NM - 18e 3,

where we see that the 2 if t = 0 corresponds to 2 times the Dirac delta function &(t).

In general, IXFRM will only compute the finite portion of the inverse Laplace
transform. See page 384 for ideas on how to automate the process of dealing with

the Dirac delta function d(t) part of the response.     
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LINEAR DIFFERENTIAL EQUATIONS

A linear ordinary differential equation of order r has the form

d'w dw

dz’ * a2) dz"!
  a,(2) +... +8a(2w = f(z).

The general solution can be expressed as the sum of any particular integral and the
general solution of the homogeneous linear differential equation

dw dw

dz’ " 82) dz"!
  8,(2) +... +a(2w = 0.

The superposition theorem applies, and every linear combination of solutions is also
a solution. The r solutions w,(z) are linearly independent in domain D if and only if

the Wronskian determinant differs from zero for all z € D.

Wiz) WZ)  W(2)

(1) 0) Cm

WW, Wy, . . . W) = Wi @ "2 1) Ww,

Nz) wiz) - wi)

SDETprovides the capability to compute Wronskians.

In the case where the linear differential equations have constant coefficients, the
homogeneous solution is probably most easily written down by inspection. However,
it is instructive to understand that IXFRM will compute it also. For example, consider

the homogeneous linear differential equation on the next page.     
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We) 5 dW) gq dWE) 7 ME), pup -0
dz4 dz? dz?

In differential operator notation using D to denote differentiation, the equation is

[D*-5D*+9D*-7D+2]w(z)=0,

which can be written in Laplace transform notation as

[s*-58°+9s°-7s+2]W(s)=0.

The root vector may be computed using AROOT and equals [1 1 1 2].

Letting F = '((C1x(s-1)"2+C2x(s-1)+C3x2!)x(s-2)+C4x(s-1)"3)xe’(sxt)', a = s,
D=[1 11 2], and e¢ = 1E-10, we obtain from IXFRM the solution

'LN(e)"2xt"2xC3xe’ + LN(e)xtxC2xe™ + Cixert + Caxer(2xt)".

Observing that LN(e) = 1, the solution is

wit) =Cle'+C2te! +C3t2e!' + C4e?,

Given the initial conditions w(0) = WO, w(0) = W1, w®(0) = W2, and w®(0) = W3,
the coefficients C1, C2, C3, and C4 can be computed. The below program first
computes the symbolic equation for the solution w(t). Then it computes equations

for the first three derivatives of w(t). All four equations are evaluated at zero and the
symbolic equations stored in a list L. Then the SGRD and L1F1 commands are

used to create a symbolic coefficient matrix for the unknown coefficients. The matrix
is then inverted, yielding equations for the coefficients in terms of the initial

conditions. The program IXFRMS3 is given on the next page.    
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IXFRM3: <« '((C1x(s-1)"2+C2x(s-1)+C3x2!)x(s-2)+C4x(s-1)"3)xe’(sxt)' s
[1112] > F aD <« F a D .0000000001 IXFRM HALT {'LN(e)' 1}

TMATCH DROP COLCT HALT {} > WL <«<W {tO} | 'L STO+ W 13
START t 0 {'LN(e) 1} TMATCH DROP EXCO DUP {t 0} | 'L' STO+
NEXT DROP L LREV « {C1 C2 C3 C4} SGRD » L1F1 M«SO INV 10
RND M—SO {W0 W1 W2 W3} SMPY L«SO HALT 'L' STO W 1 4 FOR
K "C" K + OBJ» L K GET 2 LIST TMATCH DROP NEXT EXCO > > >

 
After the coefficients are computed, they are substituted into the equation for w(t)
and the result returned. Be sure that Flag -2 is clear so that e does not evaluate.

TA2xWO0xet — 2.5xt"2xWixeM + 2xtr2xW2xert — .5xt2xW3xet — 2xtxWixert +
3xtxW2xer — txW3xeM — WOxer(2xt) + 3xW1xer(2xt) — 3xW2xer(2xt) +

W3xer(2xt) + 2xWO0xert — 3xW1xert + IxW2xert — W3xeAt'

Now suppose WO = 2, W1 = -3, W2 = 4, and W3 is not specified, but w(1) = 8. The
following program computes w(t) in terms of these specified parameters.

IXFRM4: « {WO 2 Wi -3 W2 4} | DUP -2 SF EVAL -2 CF {t 1} |
EXCO 8 = W3 ISOL EQ— 2 —LIST | EXCO »  

The result is given by:

'6.1304837674xt"(2)xeM — 4.7390324652xtxe’ — .2609675348xe(2x1) +
2.2609675348xe’t’

Other initial and boundary conditions can be handled similarly.    
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INVERSE LAPLACE TRANSFORM DIFFERENTIAL EQUATION SOLUTIONS

Solve w”(t) + 2 w'(t) + 5 w(t) = e™* sin t, with w(0) = 0 and w’(0) = 1. The first thing
we need is the Laplace transform of e™ sin t. This is most easily read out of a table,

but it is instructive to actually compute it with IXFRM5. Observing that

e'sint=[e" - eM 0, 2),

IXFRMS integrates the Laplace transform integral definition from 0 to T. The
TMATCH operation essentially takes the limit as T — co. The following two

MATCH commands algebraically isolate the numerator and denominator. AROOT

is then used to compute the roots of the denominator polynomial.

IXFRM5: <« 0 T 'EXP(((-1,1)-s)xt)/(0,2) — EXP(((-1,—1)-s)xt)/(0,2)' t | EVALC
{ 'EXP(&xT)' 0} TMATCH DROP COLCT DUP { '&A/(&B-s)'

'&Ax(CONJ(&B)-s)'} IMATCH DROP EXCO SWAP { '&A/&B+&C/&D' '&Bx&D'}
IMATCH DROP EXCO DUP s 4 COEFL 0 .0000000001 100 AROOT »

LW"(t)} + 2 LW'(1)} + 5 Lw(t)} = L{e'sint}

{s2ZW(s) - sw(0) -w'(0) } +2 {s Ws) -w(@)} +5 W(s)a
$° +28 +2

2W(s) = sc +28 +3

(®) s4 + 4s® + 1182 + 14s + 10

From AROOT, the denominator root vector is [ (-1,1) (-1,-1) (-1,-2) (-1,2) ].
The program on the next page uses IXFRM to compute the solution.    
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< 's"2+2xs+3' 'eMsxt)' x s [(=1,1) (=1,-1) (=1,-2) (-1,2) ] .0000000001 IXFRM
>

The result is '(0,—1/6)xe((=1,1)xt) + ((0,1/68)xeM(=1,-1)xt) + ((0,1/6)xe((=1.-2)xt) +
(0.—1/8)xeM(=1,2)xt)))’ = 1/3 e( sin t + sin 21).

SIMULTANEOUS DIFFERENTIAL EQUATION SOLUTION EXAMPLE

Solve x’(t) = 2x(t) — 3y(t) and y’'(t) = y(t) — 2x(t) with initial conditions x(0) = 8 and
y(0) = 3. Taking the Laplace transform yields the linear system

old
This system can be solved either using Cramer's rule or the symbolic matrix inverse

utility command SMI given below. By Cramer's rule we have

 

s-2 3 |

2 s-1

 

  

 

  

3

X(s) = 3 s-1 = Bs - 17 ,

2 3 s2-3s -4

2 s-1

Ee

2 3 3s -Y(s) = = — 22

$s -3s - 42 3

2 s-1       
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INPUTS
  

OUTPUTS
 

< {{'s-2" 3 }{
'‘eMsxt)' —» V K
IXFRM {{'s-2' 8

2 's—1')
{

so x(t) = 5e™ + 3e* and y(t) = 5e™" — 2e*.

< {{8

}{2 3

The following program computes these solutions using Cramer's rule.

} SDET s 4 COEFL 0 .0000000001 100 AROOT
3}{3 's-1'}} SDET EXCO K x s V .0000000001
}} SDET EXCO K x s V .0000000001 IXFRM > »

 

COEFFICIENTS
 

 

  
COEFFICIENTS
 

Reduces function F in variable V to a coefficient list of size N + 1, which is its

Maclaurin series expansion. See { MISC } for more detail.

 

COEFFICIENT
LIST  

 

[ VECTOR |]

  
LIST

 

corresponding polynomial list.
Given vector V containing the roots of some polynomial, CLIST computes the

 

SM AND SV
ROUND  

 

L €eSM OR SV
OR A  

ROUNDED SM

   of L.
Given SM L of numbers and integer N, SRND applies « N RND » to each element    
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FUNCTION COMMAND INPUTS OUTPUTS

SYMBOLIC MeSMORA [2:D=
MATRIX INVERSE | DENOMINATOR

UTILITY SQUARE M 1:N =
SIZE(M) > (2 2} NUMERATOR  

 

 
 

For a. = 0, D is the determinant of M, N is the adjugate of M, and N/D is the inverse
of M. For a = 1, 2, SMI returns polynomiallists for computing (s | - M)™', which is
the resolvent matrix used for solving state space differential equations by Laplace

transform techniques using Leverrier’s algorithm. SMI is significantly faster when M
is an ordinary square HP 48 matrix.

The next few pages will explain this rather complicated command.

 

STATE SPACE LINEAR DIFFERENTIAL EQUATION APPLICATIONS

There was no room on the ROM to program the following example techniques, but
the useris invited to write his or her own applications programs using the below

techniques. These techniques demonstrate some of the power that is built into the
Math Library. The numerical Runge-Kutta solution approach was illustrated above,

so we focus on symbolic solutions.

Find the state transition matrix ®(t) for the system defined by the vector differential
equation

-1 00

dx = = - de) = = = Atat A x 0 44 |x at A &(1) ot) e™.

oO -10     
 



CH 25 : SYMB SYMBOLIC ARRAYS AND ADVANCED CALCULUS 357

SYMBOLIC VECTORS &
MATRICES PLUS ADVANCED

CALCULUS { SYMB }
FUNCTION COMMAND INPUTS OUTPUTS

 

 
 

 

   
 

STATE SPACE EXAMPLE - TAYLOR SERIES EVALUATION

The simplest way to obtain a numerical solution is by evaluating the first N terms of
the Taylor series expansion of e'. The following program "EATN" does this:

<«—>A ao N « A SIZE EVAL DUP IDN >R C | « IF 'R#C' THEN 1281
DOERRENDA a x 'A" STOI N1 FOR K Ax K/ | + -1 STEP >>».

0.006738 0 0

EATN(A,5,100) = 0 -0.0004086 0.0009081

0 -0.0002270 0.0004894

which is the value of ®(5) with an error of 7.8E-8. The program "EATE" evaluates
the exact solution &(t):

< > a < {{'EXP(-t) 0 0}{0 '(1-2xt)xEXP(=2xt)’ '4xtxEXP(-2xt)'}
{0 'AXEXP(2xt) '(1+2xt)xEXP(-2xt)'}} t a 2 —LIST SVBAR M«SO > >.

 

STATE SPACE EXAMPLE - ALGEBRAIC SERIES EXPANSION METHOD

The first step is to evaluate SCHRD(A,1E-10,0,20). The eigenvalues of A are the
diagonal elements of the output matrix and equal -1, -2, and -2. By the Jordan
Decomposition Theorem, the elements of ®(t) must be a linear combination of e™,

e?, and te, where the last function is associated with the repeated -2 eigenvalue.
The program "EAT" algebraically computes the first few terms of ®(t). Most of the

execution time is the algebraic cleanup by SEXCO.     
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EAT: « - A oa N « A SIZE EVAL DUP IDN MSO - RC I « IF
'R#C' THEN 1281 DOERR END A M—>SO a SMPY 'A' STO | N 1 FOR K

A SMPY K INV SMPY | SADD -1 STEP SEXCO >>>

Using TALR1 it may be verified that:

- 1 1 1et=1- t —t2 - —t3 —14 — ee 0,

"20 "8 "24
e = 1 _ 2t + 4,0 —_— 8,3 + 16,4 —- 0 © eo,

2 6 24

Use EAT(A,t,4) to compute the first few terms of the Taylor expansion of EXP(A).

100 [-t 0 0] [t%2 0 © \

eA -1010/+|0 4t 4t+|o0 612 82 + ooo =| + A + AZ + eee

0 0 1 0 -t oO 0 2t2 -2t2

[ 1.0 1,5. 1.4
1-t+—t-—1°+—1%- eee 0 0

2 6 24

- 0 1-41+6t2-1813,344 wee 41-81248t3- oe
3 3

0 (1 222-5 - 1-21250-21 one 
Recognizing the series expression for e™ and e™ gives the solution:    
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et 0 0

eM =10 (1-2t)e® 4te™®

0 te? (1+2t)e 2

where the math trick on e™ terms is to use the Jordan result to prove each of the A,
for j, k = 2, 3 must in fact have the form (a; + b,t)e™, so one simply arranges the
terms to solve for a, and b,. The program EATE above evaluates this equation.
More directly, use SCHRD(A,1E-10,1,20) to perform the Schur decomposition of

A=QTQ"

-1 0 O 1 0 0

T=(0 -2 -5 Q =|0 .8944 4472

0 0 -2 0 4472 -.8944

The Schur decomposition is as close to Jordan form as one can get with unitary
transformations. The required functions are included in the Math Library to

implement the Bartels-Stewart algorithm, which will transform the Schur into the
non-unitary Jordan decomposition:

100(|-1 0 O||1 O O

A=|021(0 -2 10 1 -1

0110 0 -2/|0 1 2

Computation of Jordan canonical form is discussed in Chapters 20 and 27.      
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STATE SPACE EXAMPLE —- RESOLVENT MATRIX (LAPLACE TRANSFORM)
APPROACH  

Laplace transforming the state differential equation gives the below equation for the
inverse of the resolvent matrix R(s):

s+1 0 O

R's) =[sl-A]=| 0 s+4 -4

0 1 s

SMNR and SDET may be used to evaluate the cofactors and the determinant of
R7'(s), yielding the inverse. The below program "RESOV" performs this symbolic

matrix inverse with inputs A and s:

<—> A a « A SIZE EVAL DUP IDN MSO —» R C | « IF 'R#C' THEN
1281 DOERR END | a SMPY A M—SO SSUB 'A' STO 1 R FOR J 1 C
FOR K A J K SMNR SDET '(-1)A(J+K)' ->NUM x | K J 2 LIST ROT

SPUT 'I' STO NEXT NEXT | A SDET > >».

(s+2> © 0

s(s+1) 4(s+1)
(s+1)(s+2)?(s+1)(s+2) 0 ~(s+1) (s+1)(s+4)

100 00 ©
1000 - To
+

000 © 4 sa

R(s)

   
Perform a partial fraction expansion by evaluating the coefficients with HVSDE.    
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100 000 000
1 . . 1 i}Rs) — [000+ — 010 2° 2 4

000 00 1 0-12

Summing and inverse transforming using RESDA give the desired result.

 

STATE SPACE EXAMPLE - LEVERRIER’'s THEOREM AND SYMBOLIC MATRIX
INVERSION

The example on the previous page demonstrated the inverse Laplace transform

solution approach. Now we explain how the SMI command can be used to both
generalize and simplify the solution.

Define the n x n complex matrices F,, F,, . . ., F, and the scalars 6,, 6,, . . ., 6,
where n > 2 as follows:

F.=1, 0,=-TrAF/1, F,=AF, +6, 0,=-TrAF/2, ...
F., = AF,_, + 0,4, 0, = - Tr F./n

where Tr denotes the trace operation and | is the identity matrix. Then:

3 S"'F, +S"?F, + eee +sF+ F
R(s) = (51 = A)! = — STI Tesel, AF. +01 =0, 

DET (sl - A) =s" +0,s"" +... +6,,5 +86, =(s-A)s-1) ...(s-A),      
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where the A, are the eigenvalues of A and the poles of the system.

For s = 0, we also have a method for computing the symbolic inverse A = — F./0_,
where -0, is the determinant of A. Thus, Leverrier's Theorem gives us an

alternative method for performing the matrix inversion associated with the resolvent
matrix approach. SMI implements this algorithm.

The adjugate or non-Hermitian adjoint of a matrix A is the transpose of the cofactors
of A. F_is the adjugate of A, and by Cramer's rule A~' = ADJ A/DET A. With these

definitions, we have 
 

1: DET A
SMI(A0) = {5 ADJ A

2: 4
-1 00 40 0 -1 0 O

SMO 4 4/,0|=14.19 0 4 A'=(0 0 -1

0 -10 0 14 0 25 -1

2; s3+552+8s+4

s«1 0 0 s2:4s+4 0 0
SMI| 0 s+4 4,0 =1.. 0 one acu

0 1 s
0 -s-1 s2+5s+4

after algebraic cleanup with EXCO and SEXCO (this takes a long time). This is the
result obtained in the previous resolvent matrix example.    
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A much faster way to compute the same result is SMI(A,1) and SMI(A, 2), which
avoid symbolic algebraics and work with polynomial lists. Specifically, the above

result can be written as:

100 [400 [400
s2l010/+s|0 1 4/+|0 0 4
00 1 0-15 [0-14

R(s) =
s3 +532 +8s +4

SMI(A,2) returns the numerator matrices in a list that is a matrix polynomial list for
A €A and a corresponding list of symbolic vectors for A eSM. NOTE THAT SMI
RETURNS A MEANINGLESS RESULT FOR 1 x 1 MATRICES: SIZE(A) > {2 2}.

Computation of the inverse Laplace transform requires the evaluation of the 9
residues represented by the 9 numerator polynomials divided by the denominator
polynomial. SMI(A,1) computes these 10 polynomials directly for ease of residue

integration with RESDP and RESDA. The result is

2: D 2:{4851}
’ 441 000

{ Ny Ni, Nin { { } { }

100 {000} {000}
sMil0 -4 4, 1/=1, Na Ne Np to {011} {440}

0 10 Pooh {000} {-1-10}
N, N, ..N.,]} (4511)

where {4 4 1}/{4 8 5 1}isthe R(s) polynomialratioand{4 4 0}/{4 8
5 1} is the Ry(s) polynomial ratio. Solution of these nine polynomial ratios yields
the nine scalar differential equation solutions which constitute the desired matrix
differential equation solution ®. See the FILTR menu in Chapter 27 for additional

commands and discussion on State Space.     
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STATE SPACE EXAMPLE - COMPLETE SOLUTIONS

The previous examples have illustrated the theory associated with solving symbolic
state space differential equations. Using the command L1F1 defined below, the
following program EASQV provides the complete solution. A similar program is

given in Chapter 28 for discrete state space systems.

EASOV: « > A <« A SIZE > S < IF S {1 1} SAME THEN 515 DOERR
END A 1 SMI SWAP 0 .0000000001 100 AROOT 'V' STO « s XEQN

'eMsxt)’ x s V .0000000001 IXFRM > L1F1 'V' PURGE {'LN(e)' 1} MAT?
{ 'LN(INV(e))' —=1} MATT SEXCO SOB— DROP S —SOB » > »

Consider the following complex A matrix:

(-1,2) (00) (0,0)

0.0) (0-4) (4.2
(0,0) (2,-1) (-6,-1)

A

Then the solution is

EASOV(A) = eM =| 0 29(-2-9t_g(4-2t _og(-2-31t,0g (4-21

0 ol2M_gl4-2t _g(-2-3t,0g (4-21

The following program will test the solution by computing the differential equation.

TEA: « —> A EA v « EA v SDERV {'LN(e) 1} MATT {'LN(INV(e))' -1}
MATT SEXCO A M—SO EA SMPY SSUB SEXCO » »     
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FUNCTION COMMAND INPUTS OUTPUTS

REAL PART OF M eSM OR SV OR REAL PART
SM A

IMAGINARY PART | M eSM OR SV OR IMAGINARY PART
OF SM A

TEST IF REAL SM OR SV OR A| M eSM OR SV OR
A  
 

TIFREtests its argument M to see if every element has an imaginary part whose
magnitude is less than 1E-8. If every element does, then TIFRE returns the real

part of M. M may be a standard HP 48 vector or matrix object. It can also be a list
of numbers or a symbolic vector or matrix.

SRE, SIM, TIFRE, and SCNJ also work for real and complex number arguments.

   

 

 

  

 

 

 

   

SYMBOLIC SIZE | M cSM OR SV OR SIZE
| A

SYMBOLIC CONJ [McSMORSVOR| M, CON
A

LIST ELEMENT | 2: LIST L <P> EVAL
OPERATIONS | 1: PROGRAM  
 

L1F1 is similar to S1F1 butit specifically treats the input L as a list. L1F1 provides
the capability to apply program P to the elements of lists, including when the

elements are lists but L is not a symbolic matrix. See the previous page for an
example usage of L1F1.

   UP DIRECTORY
 

 

 
NONE

 
PARENT MENU   
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VECTOR INTEGRATION - LINE INTEGRALS

Compute the total work done in moving a particle in a force field given by F = 3xyi —
5zj + 10xk alonga curve x =t? + 1, y=2t%, z=t*fromt=1tot=3. TOTAL
WORK = J; Fedr. Type in the following program and store it in a variable LI:

« > FrPLUv<«LUF13FORKT KGET PK GET 2 —LIST
MATT SCOLC NEXT P v SDERV SDOT EXCO v | EVALC > ».

Define force F = { '3xy' '-5z' '"10x' }, positionr={ xyz},
path P = { 't"2+1' '2t"2' 't*3'} and put them on the stack in that order. Next put 1,
3, and 't' on the stack and evaluate the program to get 2440 for the total work done.

Otherline integrals can be computed similarly.

VECTOR INTEGRATION - VECTOR VOLUME INTEGRALS

Let F = 2xzi — xj + y’k. Evaluate [Jz F dV over the volume defined by the region R
bounded by the surfaces x =0, y=0, y=6, z=x% and z = 4. Type in the

following program:

<« > FrR«F 13 FOR KR K SERW EVAL r K GET SINTG SEXCO

NEXT » ».

Place on the stack the symbolic force vector { '2xz' '—x' 'y*2' }, the variable vector { z
y x } which also specifies the order of integration, and the symbolic matrix { {'x"2' 4}
{0 6} {0 2} } which defines the integration limits in the same order as the variable

vector. Now evaluate the program to obtain the vector volume integral
{ 128 -24 384 } or 128i — 24j + 384k.      
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DATA PROCESSING
AND SIMULATION

INTRODUCTION

This chapter presents the 48 data processing and simulation commands in the PROC
menu. The PROC commands provide fast Fourier transforms (FFT), Wiener-Levinson
least squares solutions for Toeplitz systems, design ofleast squares filters, convolution,
correlation, data interpolation and decimation, peak and valley analysis, random and
special waveform creation, numerical integration of waveforms, numerical
differentiation of waveforms, plus a large number of processing tools.

Related commands are given in the FILTR and WIND menus for designing common
filters and windows. Statistics functions are given in the STAT menu. Perfect
reconstruction filter banks and wavelet transforms are discussed in Appendix G.

NUMERICAL DERIVATIVES AND INTEGRALS

DER1 and DER2 provide numerical differentiation of waveforms and data contained
in vectors. DERI uses five-point interpolation to accurately estimate the first

derivative while DER2 uses five-point interpolation to accurately estimate the second
derivative. LINT provides numerical integration from the left, while RINT provides
numerical integration from the right. Except at the end of the vectors, both
integration commands use five-point interpolation for accuracy.

369
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PEAK AND VALLEY DATA ANALYSIS

When analyzing data, it is often desirable to know the location of the next peak, valley,
maximum, or minimum in the data. These functions are provided by the commands
FINDP, FINDV, FINDX, and FINDN, respectively.

FAST FOURIER TRANSFORM ANALYSIS

FFT and IFFT provide forward and inverse fast Fourier transforms of data. The FFT
twiddles are computed by the command TWIDL, and BITRV performs the FFT bit
reversal that properly orders the output data. The FFT software is limited to powers
of 2 in vector size. Programs DFT and IDFT provide discrete Fourier transforms of
any vector size, but are slower.

FFT implements a forward discrete Fourier transform (DFT), and IFFT implements

an inverse DFT.

N-1 1 No
DFTX), = y, = Y, xe 2N IDFT(Y), = x, = Ni yeZN

k=0 n=

These are the standard electrical engineering definitions.

WIENER-LEVINSON SOLUTIONS FOR TOEPLITZ SYSTEMS

WL1 and WL2 provide solutions to Hermitian Toeplitz linear systems. By exploiting
Toeplitz symmetries, far larger linear systems can be solved than is numerically
possible with the linear solvers given in the LINAG menu. A matrix R is Toeplitz if
the values of its elements R;, = f(j — k) depend only on the difference between j and k.
A matrix that is symmetric and Toeplitz has elements that only depend on the
absolute value ofthis difference. Thus, the value of an element is uniquely determined
by its distance from the upper left corner to lower right corner diagonal. As a result,
all the data values are uniquely determined by either the first row or first column of
R. Covariance matrices of complex stationary systems have the Hermitian Toeplitz
property.
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CONVOLUTION AND CORRELATION

CONYV and CCORRprovide the data convolution and correlation operations using the
FFT software. The data sets need not be the same length since the data vectors are
automatically zero-filled. VMPY, VDVD, and VCORR provide data convolution,
deconvolution, and correlation without using the FFT commands. ICONYV provides the
convolution operation for IIR recursive filters. It can also be used to numerically solve
difference equations.

DIGITAL INTERPOLATION AND DECIMATION

VDEC decimates data sets to a lower sampling rate. Offsets are selectable. VINTP
performs the first step in digital data interpolation, that of zero filling. The
interpolation process may then be completed using the FFT and filtering software.
Examples are given in the FILTR menu.

RANDOM AND WAVEFORM VECTORS

RNDU and RNDN provide random waveforms with uniform and normal amplitude
statistics. RNDC provides two jointly normal waveforms with a user-specified
correlation coefficient. RNDC can also be used to create random complex waveforms.

Any waveform for which the Math Library or HP 48 has a function can be created
using the CSERS command in the MISC menu. Squarewave and triangular

waveforms are created by SQWV and AWAV. INDEX and PINDX provide amplitude
and phase ramps.

PROCESSING TOOLS

An additional 16 commands are provided to simplify data processing operations.
Commands include zero filling, data truncation, rotation, reflection, spectrum, phase,
phase unwrapping, moving averages, and data deglitching. Programs for Hermitian
Toeplitz matrix inversion and the power method of eigen analysis are given for
spectral estimation. Two linear convolution programs are also provided.
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FUNCTION COMMAND INPUTS OUTPUTS
 

NUMERICAL
FIRST

DERIVATIVE
V = [VECTOR] e C [ VECTOR |

 

NUMERICAL
SECOND

DERIVATIVE   

 

V = [VECTOR] € C  [ VECTOR]

 

DER1 and DER2 use five-point interpolation over the entire vector in order to
maintain accuracy. SIZE(V) > 7. The following program will provide a nice demo for

these two commands:

<{{HOME} 'SIN(z) z 0 10 100} 0 CSERS DUP "DER1" 3 DISP DERT
10 x SWAP "DER2" 3 DISP DER2 100 x

{ (49,0) "10X" "COS(X) & -SIN(X)"} PLT2L >.

 

 

 

 

 FROM THE RIGHT §

NUMERICAL
INTEGRATION V =[VECTOR]e C| [VECTOR]
FROM THE LEFT

NUMERICAL
INTEGRATION V =[VECTOR]e C| [VECTOR] 
 

LINT and RINT use five-point interpolation except at the ends of the vector to
maintain accuracy. SIZE(V) > 5. The following program is a nice demo:

<{ {HOME} 'SIN(z)’ z 0 10 100} 0 CSERS DUP "INTEGRATE" 3 DISP LINT .1
x 1 VSUB {(49,0) "10X" "SIN(X) & —COS(X)"} PLT2L ».

 

CREATE INDEX
VECTOR  
 

  
N = SIZE

 
[123...N]   
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[ (1,40) (1,41)
N = SIZE (1,42)

 (LAIN-1]) ]

CREATE PHASE
INDEX VECTOR

   

 

 

INDEX(8)=[12345678]and PINDX(8) =[ (1,0) (.5403,.8415) (-.4161,.9093)
(-.99,.1411) (-.6536,-.7568) (.2837,-.9589) (.9602,-.2794) (.7539,.657) ], which
equals, when displayed in polar form, [ (1,40) (1,A1) (1,42) (1,A3) (1,A-2.2832)

(1,A-1.283) (1,4-.2832) (1,A.7168) ]. In order to see the linear nature of the phase,
evaluate VTRUR, which unwraps the phase in radians: 'VTRUR(PINDX(8))' EVALto

gettheresult[01234567].

 

 

 

     

FIND NEXT PEAK | V = [VECTOR] e R| POSITION OF
STARTING ATs | OF SIZE N NEXT PEAK

se[1, N] VALUE

FIND NEXT V = [VECTOR] e R| POSITION OF
VALLEY OF SIZE N NEXT VALLEY

STARTING AT s se[1, N]

FIND MAXIMUM V = [VECTOR] e R| POSITION OF
VALUE OF V IN OF SIZE N MAXIMUM VALUE
RANGE n €[s, N] se[1, N]

FIND MINIMUM V = [VECTOR] e R| POSITION OF
VALUE OF V IN OF SIZE N MINIMUM VALUE
RANGE n €[s, N] sell, N]
 

Observe that the outputs of the above four commands are the location, not the
value. LetvectorV=[153421]. Then FINDP(V,2) = 4, FINDV(V,2) = 3, but
FINDV(V,3) = NONE FOUND. Similarly, FINDX(V,3) = 4, FINDN(V,1) = 1, and

FINDN(V,2) = 6.

 

  
SUM OF VALUES | V = [VECTOR]e €| ZX (n=1,N,V,)  
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CUMULATIVE V = [VECTOR] e C| CUMULATIVE
SUM OF VALUES SUM OF VALUES

 

LetV=[153421]. Then VZ(V)=16 and CUMZ(V)=[0169 13 15 16]. Note
that the SIZE of CUMX is 1 greater than V so that it can be used as a cumulative

distribution function.

The input to VX and CUMX may be symbolic vectors (lists), but in the case of
CUMZ, all the elements must be numbers because the output is a vector.

 

 

 

     

FAST V = [VECTOR] € C
FOURIER TRANSFORMED

TRANSFORM W, N OUTPUT OF [ VECTOR |
(FFT) TWIDL

INVERSE V = [VECTOR] € C
FAST TRANSFORMED

FOURIER W, N OUTPUT OF [ VECTOR|
TRANSFORM TWIDL

(IFFT)

COMPUTE FFT N = TRANSFORM 2: TWIDDLES
TWIDDLE SIZE = 2" 1:N
VECTOR

FFT BIT V N=2 BIT REVERSED V
REVERSAL N = SIZE OF V
   The size of the transform must be a power of 2, such as 4, 8, 16, 32, 64, 128, . ..

The twiddle vector may be precomputed and stored in memory in a variable W, for

example. BITRVis called from the FFT so that the FFT output is in proper order.
The order of the values is [X, X; X; X3 . ..

As part of the computation, BITRV changes the HP 48 word size to LOG, N.

Xn-1 ]-   
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For example, create the program: « {64} 0 CON [1] 3 VREPL HALT 64 TWIDL IFFT
PLTC » and store it in a variable FFT1. Now evaluate FFT1, and the calculator will
halt with the vector: [001 00 ... 0] displayed. Press CONT, and the real and
imaginary parts of the inverse transform will be plotted. The real part is a COS
wave and the imaginary part is a SIN wave. They both have exactly 2 cycles

because x, = 1. BITRV resets the word size to its original value when it finishes.
However, if BITRV does not finish, you must manually reset it with: 64 STWS.

 

 

WIENER- V = COVAR 2: h VECTOR
LEVINSON VECTOR 1: e VECTOR
SOLUTION Ve C

WIENER- RHS VECTOR 2: h VECTOR
LEVINSON V = COVAR 1: e VECTOR
SOLUTION VECTOR € C

 

   
 

WL1 and WL2 provide solutions to Hermitian Toeplitz systems of linear equations: R
h = ¢ where R is an N x N Toeplitz matrix such as an autocovariance matrix, h is
the unknown column vector, and ¢ is the known "right-hand side" (RHS) column

vector. In statistical applications h represents the minimum mean square errorfilter
associated with the Wiener-Hopt Equation defined by R and ¢. The V argument in

WL1 and WL2 is the first column of the R matrix. There are two cases:

 
WL1 provides the solution in the case where TRNP(¢) =[ Py 00 ... 0] and P, is the

resulting mean square error associated with filter solution h.

WL2 provides the solution in the general case where ¢ is equal to the RHS vector.

With both solutions the sequence of errors is returned to Level 1 of the stack in a
vector. The size of V and RHS must be the same and be 2 or greater. Applications

in spectral estimation and analysis are given at the end of this menu.

Examples are given on the next page and in Chapter 28.    
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WL1 and WL2 provide statistical least squares solutions. If you specify a singular
(noise-free) deterministic problem, expect to get a divide-by-zero error during the

calculation!

The program

< 0 15 FOR K 'EXP(-K"2)' NUM NEXT 16 -ARRY DUP PLT1 HALT WL1 PLT1

PLT1 »

will create a covariance vector in Level 1 of the stack and HALT. Press CONT, and
WL1 will compute the solution and plot it. The errors in the solution will be plotted
first. Then the solution is plotted. The first value of e is V(1), which must be real,

and the last value of e is the number Py. The next program illustrates WL2:

< 16 UNITI 0 15 FOR K 'EXP(-K*2)' -NUM NEXT 16 —ARRY DUP PLT1
HALT WL2 PLT1 PLT1 ».

 

 

FFT Vi,V2e C [ VECTOR]
CONVOLUTION

FFT CROSS- Vi,V2e C [ VECTOR |
CORRELATION

 

    

  
CONV and CCORR both provide FFT convolution. In the case of CCORR the FFT
of V2 is conjugated before multiplying the transforms. V1 and V2 do not need to be
the same size. The larger vector is zero-filled to twice its size (and the next power

of 2) and the smaller vector is zero-filled to the same size before Fourier
transforming. The resulting product of transforms is then inverse-transformed. The
result is a linear convolution and correlation since the circularly convolved values are

deleted from the vector. See also VMPY and VCORR on pages 381 and 382.

CCORR([1 53 421],[1234567])=
[7 41 56 75 76 68 52 36 21 11 4 1]
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RANDOM i = MEAN
VECTOR WITH oc = STAND DEV RANDOM
UNIFORM s = SEED [ VECTOR |
AMPLITUDE N = SIZE
STATISTICS

RANDOM iw = MEAN
VECTOR WITH c = STAND DEV RANDOM

NORMAL s = SEED [ VECTOR |]
AMPLITUDE N = SIZE
STATISTICS

 
 

 

  
 

RNDU(1,2,11,8) creates an 8-dimensional vector with elements that are uniformly
distributed with mean value of 1 and standard deviation of 2.

 

 

POWER V =[VECTOR]e €C| VECTOR: IV, [2
SPECTRUM

PHASE IN V = [VECTOR] € C VECTOR:
DEGREES  

 

  + ARG(V) x 180/n

 

PHASE( [ (1,2)

SPECT([ (1,2) (2,3) (3,4) (45)])=[51325 41]

(2,3) (3,4) (4,5)]) = [ 63.4349 56.3099 53.1301 51.3402 ]

Phase is simply the argument in degrees.

 
ZERO FILL

 

 

  
[ VECTOR | [ VECTOR ]
   Doubles the length of V and fills the tail with zeros.

ZFILL([1 2 3])=[12300 0]   
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DATA PROCESSING MENU {PROC}
 

FUNCTION COMMAND INPUTS OUTPUTS
 

TRUNCATE [ VECTOR | [ VECTOR |   

 

 

Truncates V of SIZE N to a length equal to the integer part of (N/2) = IP(N/2) for
N>1.

HALF([1 2 300 0])=[1 2 3]

 

ZERO FILL [ VECTOR ] [ VECTOR]

 

    

If N > 2 is the SIZE of V, ZFIL1 creates a vector of length 2N — 2 and zero-fills the
tail.

ZFIL1([1 2 3])=[1 2 3 0]

 

TRUNCATE [ VECTOR | [ VECTOR ]

 

    

Truncates V of SIZE N to length integer part of (N/2) + 1 = IP(N/2) + 1 for N > 2.

HALF1([1 2 3 0])=[1 2 3]

 

 

ZERO FILL [ VECTOR] n [ VECTOR ]
    

Zero-fills vector V to a size n > the SIZE of V.

ZFILN([1 2 3],5)=[12 3 0 0]

 

ZFILN, REDN, and VROT also work for symbolic vectors (lists).

   TRUNCATE
 

 

  
[ VECTOR] n [ VECTOR ]
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Truncates vector V to length n. 0 <n < the size of V.

REDN([1 23 00],3)=[1 2 3]

 

VECTOR ROTATE [ VECTOR] n [ VECTOR ]
  

 

  

Rotates the elements of vector V. n > 0 is a rotate left and n < 0 is right.
In| < SIZE of V

VROT([1 2 3 45],2)=[3 45 1 2]

 

VECTOR
REFLECT

V = [ VECTOR | [ VECTOR]

 

    

If N is the SIZE of V, REFLT creates a vector of length 2N — 2. The additional N —
2 values are: forj=N+1 ..., 2N-2, V,=CONJ( Vy). N23.

REFLT([ (1.2) (2,3) (3,4) (45) ]) =[ (1,2) (2,3) (3,4) (4.5) (3,-4) (2,-3) ]
 

VECTOR
DECIMATE

V =[ VECTOR ] [ VECTOR ]

nFeN  

 

   

F is the decimation factor, and n is the position of first value to be retained.

0 < n < F always.

fV=[123..15]then VDEC(V,1,3) =[147 10 13]
fV=[123..15]then VDEC(V,2,3) =[258 11 14]
fV=[123..15]then VDEC(V,25) =[27 12]      
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DATA PROCESSING MENU {PROC}
 

 

FUNCTION COMMAND INPUTS OUTPUTS

VECTOR V = [ VECTOR ] [ VECTOR|
INTERPOLATE Fe N   

 

 

Performs the first step in FFT interpolation, that of zero-filling. F > 1 must be an
integer. For example, if

V=[1471013],then VINTP(V,3)=[10040070010001300].

Other examples of decimation and interpolation are given with the FTRV2 command
in the FILTR menu discussed in Chapter 27.

 

SQUARE WAVE L = LIST [ VECTOR]

 

   
 

Generates a rectangular waveform of values that are either zero or one. L =
{T1 T2 T3 TS N }, where the times T1, T2, T3, and TS have the same units. T1 is

the offset to the beginning of the first 1 value, T2 is the length of time that a 1 value
persists, and T3 is the period of the waveform. N is the number of samples to be
computed of the waveform, and TS is the sampling period of those samples. For

example, the program <« {1.53 5.1 100 } SQWV PLT1 »> will give a picture of the
waveform. The reason the transition points are not perfectly vertical in the plot is

associated with the interpolation scheme used by the plot program, and not the data
itself.

 

TRIANGLE WAVE

 

   
L = LIST [ VECTOR |
 

Generates a triangular waveform of values that vary between zero and one. L =
{ T1 T2 T3 TS N }, where the times T1, T2, T3, TS have the same units. T1 is the
offset to the first 0 value, T2 is the rise time, and T3 is the period of the waveform.

N is the number of samples to be computed of the waveform, and TS is the
sampling period of those samples. For example, the program

< {1.535.1100} AWAV PLT1 » will give a picture of the waveform.     
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DATA PROCESSING MENU {PROC}
 

 

   

FUNCTION COMMAND INPUTS OUTPUTS

PHASE UNWRAP V = REAL UNWRAPPED
IN DEGREES [ VECTOR ] PHASE VECTOR

 

 

PHASU provides phase unwrapping where the input vector contains phases in
degrees, such as the output of PHASE. The values must be in the range

[-180, 180]. VTRUD uses PHASE to compute the phase and then calls PHASU to
do the unwrapping. For radian arguments use the ARGU and VTRUR commands in

the VSAG menu discussed in Chapter 30.

 

PHASE UNWRAP
IN DEGREES

V = COMPLEX UNWRAPPED
[ VECTOR] PHASE VECTOR

 

    

VTRUD( PINDX(7) )

=[0 57.2958 114.5916 171.8873 229.1831 286.4789 343.7747 |]

 

MOVING
AVERAGE

V =[VECTOR]e €C| [VECTOR]

 

    

Performs a moving average on the data in V using n points in each average. If less
than n points are available, then it uses the points that are available.

MAVE([-11-22-11],2)=[-10-50.50]

 

 

CONVOLUTION V1, V2 = [ VECTOR ]
[VECTORS]

DECONVOLUTION V1, V2 = 2: [ QUOTIENT]
[VECTORS] 1: [REMAINDER]  
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DATA PROCESSING MENU {PROC}
 

 

FUNCTION COMMAND INPUTS OUTPUTS

CORRELATION V1, V2 = [ VECTOR |
[VECTORS]   

 

 

The above three commands provide convolution, deconvolution, and cross-
correlation for complex vectors without use of the FFT commands. They are

generally faster than FFT convolution when one of the two vectors is short, such as
when performing a digital Hilbert transform.

VMPY([123],[4586])=[4 13 28 27 18]

CONVprovides the same result: [ 4 13 28 27 18], but takes longer.

VDVD( [4 13 28 27 18] , [1 23]

)

={20 6]

Convolution and deconvolution are mathematically equivalent to polynomial
multiplication and division. The zero remainder in this example shows that the

deconvolution is exact.

VCORR([123],[456])=[617 3223 12]

where as with CCORR and COVAR,it is the second vector (V2) that has been
conjugated. The corresponding output from CCORRis[6 17 32 23 12]. See
the Hilbert transform demo program in the FILTR menu discussed in Chapter 27

which uses VMPY and the applications of VCORR in spectral estimation discussed
on page 386 of this chapter.

 

IIR CONVOLVE N DY X [ VECTOR] 

 

   

Given the numerator N and denominator D, z transform polynomial lists in z™', initial

condition vector Y = [y(-1) y(-2) ... ] of size 1 less than D, and input vector X,
ICONV convolves X with the filter and outputs the response. If X=[1 0 0...0]

andY =[0 ... 0], then the output is the impulse response of the filter.     
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DATA PROCESSING MENU {PROC}
FUNCTION COMMAND INPUTS OUTPUTS

 

     
Given the IIR filter defined by the difference equation

N M

y(n) = -3 Dey y(n - Kk) + 3 Ney x(n - K),
k=1 k=0

the one-sided (causal) z transform is given by

N k M

Y'@) = <3 Dy z*[Y'@ + 3 ¥(-n) 2° + 33 Nyy 2% X70).
k=1 n=1 k=0

The response is the inverse z transform of the equation

M N k

2 Neg 27 2 Dy.y 27 2 y(-n) z"

Y*(2) = TAD X*(2) - AQ) 
N

Ai) = 1+). D,, z7~.
k=1

The following program, ICNVN, provides K values of the IIR convolution where input
X is the impulse response of the filter specified by the polynomials NX and DX.

ICNVN: «—> N D Y NX DX K « NX DX DUP SIZE 1 - ZERO K UNITI
ICONV N D Y 4 ROLL ICONV > »>

The following program, TIRRC, will perform an IIR convolution using ICNVN and
then will compute it symbolically using the program ICNVS on the next page.

TIRRC: «> ND Y NX DX K<« NDY NX DX KICNVN > Ve«eN DY
NX DX ICNVS {HOME} OVER n 0 K 1 - K 6 —LIST 0 CSERS Vx» >>

If the unit step response of the filter is desired, then NX ={1}and DX ={1 -1}.
LetN={1},D={1 -9 .81} corresponding to y(n) = .9y(n-1) — .81y(n-2) + x(n).

With Y = [1 1], TIRRC correctly works Example 3.6.1 in Proakis and Manolakis
twice. The answer in my edition of the textbook is in error.      
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DATA PROCESSING MENU {PROC}
FUNCTION COMMAND INPUTS OUTPUTS

  

 

 

   
 

Using command IXFRM discussed in Chapters 25 and 27, allows the same result to
be computed symbolically. Program ICNVS performs the computation.

ICNVS: « > N D Y NX DX « N NX PMPY D DX PMPY PZINV SWAP
OVER PDVD DROP z XEQN 'z*n-1)' x z 4 ROLL 0 1E-10 100 AROOT
1E-10 IXFRM IF OVER SABS 0 > THEN 'n>0' SWAP ROT EVAL IFTE

ELSE SWAP DROP END IF Y ABS 0 > THEN D SIZE 1 - - E S « Y
1E-90 VADD D LREV 1 S VSUBS PMPY 1 S VSUBS LREV D PZINV
SWAP OVER PDVD DROP z XEQN 'zAn-1) x z 4 ROLL 0 1E-10 100
AROOT 1E-10 IXFRM IF OVER SABS 0 > THEN 'n>0' SWAP ROT EVAL

IFTE ELSE SWAP DROP END E SWAP - > END » »

 

Program ICNVS demonstrates several techniques. First of all, it automates the
proper handling of improper rationals, e.g., whether the symbolic residue integration
performed by IXFRM provides the value for n = 0, or it must be computed by PDVD.

This automation is provided in both halves of the program.

The first half computes the response to input x(n). If the degree of the numerator N
x NX exceeds that of the denominator D x DX, you will crash with a divide-by-zero
error because you have violated causality. To fix this, choose integer m > 0 and

replace 'zA(n-1)" in ICNVS with 'zA(n-1+m)'. Also replace 'n>0' by 'n>m' and
increase the CSERS inputs by m.

The second half computes the response to the initial conditions y. If you choose
m > 0, then the second half must be similarly adjusted. The fancy combination of

the LREV, VSUBS, and PMPY commands performs the double sum in the
numerator of the above equation. The "Y 1E-90 VADD" guarantees this trick does
not fail due to zero initial conditions, while having no numerical effect on the result.

These techniques can also be applied to the computation of inverse Laplace
transforms. For theory, see either Stearns and David or Proakis and Manolakis.

Examples are also given in the FILTR menu discussed in Chapter 27, where the
related commands PLDVD and IXFRM are discussed.    
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DATA PROCESSING MENU {PROC}
 

FUNCTION COMMAND INPUTS OUTPUTS
 

UNIT IMPULSE   

 

N = SIZE  [ VECTOR ]
 

UNITI(5) = 1
UNITI creates a vector of size N whose first value is one and the rest are zero.

0000]

 

RANDOM
VECTOR WITH

NORMAL
AMPLITUDE
STATISTICS   

 

un = COMPLEX
MEAN

c = COMPLEX ©
p = CORRELATION
COEFFICIENT  

RANDOM
[ VECTOR ]

 

RNDC creates two normally distributed vectors and stores them as a complex
vector. The real part of the mean and standard deviation is associated with the real
part of the resulting vector. The correlation coefficient p is real and p €[-1, 1]. The

command C—R will separate the vectors.

RNDC( (1,2), (3,4), .5, 1, 8) creates a complex, normally distributed random
vector of size 8. The real part has mean 1 and standard deviation 3, while the

imaginary part has mean 2 and standard deviation 4. The correlation between the
real and imaginary parts is 0.5.

 

DEGLITCH   

 

V = [VECTOR] e C
 

[ VECTOR|
 

This command replaces a small amount of bad data in V with linearly interpolated
values over the range of [F + 1, L — 1] where F + 2 <L. For example:

[121045] 2 4 DGLITyields[123 45].

 

REAL PLOT [ VECTOR | ONE PLOT
 

UP DIRECTORY  
 

  NONE    PARENT MENU
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FUNCTION COMMAND INPUTS OUTPUTS

 

    

DIGITAL SPECTRAL ANALYSIS APPLICATIONS

MATHLIB provides the tools to implement many of the digital spectral analysis
techniques in the literature. Included are the classical techniques of autocorrelation,

cross-correlation, correlograms, periodograms, autoregressive moving average

(ARMA), autoregressive (AR), moving average (MA), Yule—Walker and modified
Yule-Walker, maximum entropy method (MEM), linear prediction (LP), Prony

method, and singular value and eigen subspace decomposition techniques. For
details, see Marple’s textbook. See also IEEE Signal Processing Magazine, April
1992 and IEEE PGIT, March 1992 for general time-frequency representations with
wavelets, STFTs, quadratic TFRs, and multiresolution processing. The following

program creates and plots a complex time series for N a power of 2.

< > N « "COMPUTE DATA " N + 3 DISP N INDEX DUP 'ix2xmx.25'
—-NUM x VEXP SWAP 'ix2xnx.35' —-NUM x VEXP + 0 (.2,3) 0 1 N
RNDC + DUP PLTC DUP N TWIDL FFT DUP HALF1 VABS PLT1 > »

 

TOEPLITZ MATRIX INVERSE

TINV inverts a Hermitian Toeplitz matrix given its first column V. The inverse is not
Toeplitz.

TINV: « 5 V « V SIZE EVAL DUP UNITE NU <« ON1- FOR KU

K NEG VROT V WL2 DROP —COL NEXT 2 N START CCMB

NEXT >» >» »

Define the Hermitian Toeplitz matrix by the vector V = [ (3,0) (-2,.5) (.7,-1)].
Then its inverse is

(75637,0)  (65287,-.02389) (.26274,-.15924)
TINV(V) = |(.65287,02389) (1.195860)  (.65287,-.02389)

(26274,.15924) (65287,02389)  (.75637,0)     
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POWER METHOD OF EIGEN ANALYSIS 
The below two programs compute the smallest and largest eigenvalues with

associated eigenvectors, respectively. They use the power method with Rayleigh
quotient and are for Hermitian Toeplitz matrices only. V is the first column of the
matrix, T = HTOEP(V) is the matrix, and € > 0 specifies the desired convergence
accuracy. If only eigenvalues are required, the second DO UNTIL END loop may
be omitted in the below programs. MAXA is easily modified for arbitrary matrices.

MINA: « > Ve <«<V (1,00 CON 10 » U A « DO U U V WL2 DROP 'U
STO U CONJ DUP ROT DOT SWAP U DOT DUP INV 'U STOx / UNTIL
AA 3 PICK "A STO ROT - SWAP / ABS ¢ < END V HTOEP —» T «

DO U V WL2 DROP DUP DUP CONJ DOT / 'U' STO UNTIL T A U ¢ 10
Xx AW? END > UX > > »

MAXA: « > T ¢ « T 1 ECOL (1,00 CON 10 > U A « DO U U CONJ
DUP T U x DUP 'U’ STO DOT ROT ROT DOT DUP INV 'U" STOx /

UNTIL A A 3 PICK 'A' STO ROT - SWAP / ABS ¢ < END DO T U x U
DUP CONJ DOT / 'U' STO UNTIL T A U € 10 x AV? END U A >>>

Define the Hermitian Toeplitz matrix by the vector V =[ (3,0) (-2,.5) (.7,-1) ].

MINA(V,1E-10) = 2: [ (.13791,-.01742) (.21272,0) (.13791,.01742)], 1: 0.48869

MAXA(T,1E-10) = 2: [ (.48359,.18404) (-.59688,0) (.48359,-.18404)], 1: 6.5491

Program DM uses MAXA to solve for the eigenvalues and eigenvectors of matrix M
= HTOEP(V). Then it deflates the space (removes the eigenvalue and eigenvector
from M) and solves for the next one. By this means, all of the eigenvalues and

eigenvectors are computed, and the final M is the zero matrix.

DM: « > Me « M SIZE 1 GET {} {} > NLA LV « 1 N START M ¢
MAXA DUP2 'LA' STO+ 'LV' STO+ SWAP —COL DUP ABS / DUP TRN x

x M SWAP - 'M' STO NEXT LV LA > > »     
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LINEAR CONVOLUTION OF REAL WAVEFORMS WITH FILTERS (FFT)

The program FFTLC linearly convolves any real waveform defined byits digital
values contained in the vector X with a frequency domain filter of length N, which

must be a power of 2. The program FILTR given below is a dummyfilter of all ones,
which can be modified by the user for his or her application. FFTLC uses the

overlap-and-save algorithm to produce a linearly (not circularly) convolved output.
Since the inputis real, the number of FFTs can be reduced by a factor of 2 by
exploiting symmetries as explained in most texts on digital processing. This is

provided by MUX, DMUX, and SPLIT below. TSTW below provides an example test
waveform. The n input in TSTW must be > 1.5N.

FFTLC: « > X N « IF X SIZE EVAL N 15 x < THEN 515 DOERR END
"INITIALIZE SE" 4 DISP N 1 -— N 2 / N TWIDL DROP — N2 N1 T

<«< X 1 NVSUBS X N1 1 + DUP N2 + VSUBS R—-C T N FFT DMUX N
FILTR MUX T N IFFT SPLIT N1 1 + N VSUBS VCMB X SIZE EVAL N

Nt + -N/IP >YM
<IFMO> THEN "RUNSE" 4 DISP 1 1 M + 1 - FOR K X K N x 1
+ DUP N2 + VSUBS X K N x NT + 1 + DUP N2 + VSUBS R—»C T N
FFT DMUX N FILTR MUX T N IFFT SPLIT R—»C N1 1 + N VSUBS C-R

VCMB Y SWAP VCMB 'Y' STO NEXT END Y > > > »

FILTR: « = XY N<« XY >»

MUX: « > XY <«XREYIM-XIMY RE + (0,1) Xx + >»

DMUX: « =» V « V 2 / C»R DUP2 VREV -1 VROT SWAP VREV -1

VROT 4 PICK OVER + 4 PICK 4 PICK - R—-C ROT 4 ROLL +

3 ROLL 4 ROLL - RC » »

SPLIT: « — V « C—oR TIFRE SWAP TIFRE SWAP » »>

TSTW: « > n « 03 8 1 n5 LIST SQWV LINT >» »     
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LINEAR CONVOLUTION OF REAL WAVEFORMS WITH FILTERS (TMIC)

The FFT is a genus 1 transform defined by the block size N. An example of a
genus 3 transform is given below. In the digital processing and multi-rate filtering

literature, it is called transmultiplexing. H3ON computes a polyphase filter of length
3N. Program ITM combined with a forward FFT provides a forward transform into
the frequency domain. Program TM combined with a forward FFT provides an

inverse transform back to the time domain. Using these transforms, TMIC3 provides
linear convolution of input waveform vector X with filter FILTR defined above. TMIC

is an abbreviation for transmultiplexer interference canceler. Higher genus
transforms provide better orthogonality in the frequency decomposition of

waveforms. N=8, 16, 32,.... Do not use N = 2 or 4.

TMIC3: « > X N « IF X SIZE EVAL N 55 x < THEN 515 DOERR END
" INITIALIZE TMIC" 4 DISP N HON 3 N x DUP 1 - N 2 / N TWIDL

DROP -1 N EINDX 5 H N3 N2 NT T S «02 FOR KH X KN x 1 +
DUP N2 + VSUBS N ITM H X K N x N1 + 1 + DUP N2 + VSUBS N
ITM RC T N FFT DMUX S VECTX NEXT 1 3 START 6 ROLL 6 ROLL
N FILTR MUX T N FFT SPLIT NEXT vCMB vCMB VCMB VCMB VCMB N
ZERO SWAP VCMB DUP H N N1 TM N1 1 + N VSUBS X SIZE EVAL 5
NxNl + -N/IP->VYM<«<«IFMO> THEN "RUN TMIC" 4 DISP
33M +1 -FORKHXKNXx1+ DUP N2 + VSUBS N ITM H X K

N x NIT + 1 + DUP N2 + VSUBS N ITM R»C T N FFT DMUX S
VECTX N FILTR MUX T N FFT SPLIT VCMB V SWAP VCMB 'V' STO K
2 x4 -Nx1+ DUP N2 + N + N3 + V ROT ROT VSUBS H N Nf

TM Y SWAP VCMB 'Y' STO NEXT END Y >» > > »

ITM: « > H X N « 0 N 1 = FOR n 'I(k=0,2,H(n+Nxk+1)xX(3xN-n-Nxk))’
NUM NEXT N —ARRY > »

TM: « > X HN Nl « 01 FOR jON1t 1 - FOR n
"2(k=0,5,H(N+N1xk+1)xX(5xN+n+1-Nxk+jx(N+N1)))’ -NUM NEXT

NEXT N —ARRY N1 x > »>    
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H30ON: « — N <« .911437827766 .411437827766 — H1 H2 « 0 3 N x 2 /
FOR K '142x(H1xCOS(2xmxK/3/N)+H2xCOS(4xnxK/3/N))'’ NUM NEXT 3 N x

2/1+ SARRY 3/ N/ REFLT 3 N x 2 / VROT > > »

 

DISCRETE FOURIER TRANSFORMS

The following two programs provide forward and inverse DFTs. They are slower
than the FFT but do allow the input vector a to be any size 7.

DFT: « > an<«{}n1-->1tnl « a OBI DROP 1 n1 FOR K +
NEXT 't" STO+ 1 n1 FOR B "FORWARD DFT" B + 3 DISP

'EXP(-ix2xnxp/m) -NUM — W « 1 1 m1 FOR K DUP x NEXT n —ARRY
oo DOT 't' SWAP STO+ » NEXT 1 OBJ—» —ARRY > > »>

IDFT: « > am<«<{}n1-->1n1 «a OBJ DROP 1 n1 FOR K +
NEXT n / 't STO+ 1 n1 FOR B "INVERSE DFT" B + 3 DISP

'EXP(ix2xmxp/m)’ >NUM —» W « 1 1 n1 FOR K DUP x NEXT m —ARRY
o DOT nm / 7" SWAP STO+ >» NEXT 1 OBJ— —ARRY > > >

 

Abramowitz, M., and Stegun, |., Handbook of Mathematical Functions, AMS 55,
1964, Chapter 25.

Cadzow, J., Foundations of Digital Signal Processing and Data Analysis, New York,
Macmillan, 1987.

Marple, Digital Spectral Analysis, Englewood Cliffs: NJ, Prentice-Hall, 1987.
Hlawatsch, F., and Boudreaux-Bartels, G., "Linear and Quadratic Time-Frequency

Signal Representations," IEEE Signal Processing Magazine, New York, Vol.
9, No. 2, April, 1992.

IEEE Transactions on Information Theory, New York, Vol. 38, No. 2, March, 1992,
special issue on wavelet transforms and multiresolution signal analysis.

The rest of the references are listed at the end of Chapter 27.     
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FILTER DESIGN AND ANALYSIS

INTRODUCTION

This chapter presents the 54 filter design and analysis operations in the FILTR menu.
The FILTR commands provide Butterworth, Chebyshev, elliptic, and Bessel filter
design software, with heavy emphasis on elliptic filters. Tools for analyzing the
complex response and group delay are also provided. Additional tools are provided for
extending the capabilities to many other filter designs.

Combined with the bilinear transform and windowing functions in the WIND menu,
these designs can be extended to digital IIR and FIR filter design. IXFRM provides
symbolic inverse Laplace and z transforms. State space filter design and analysis are
also covered in this chapter.

LINEAR AND LOGARITHMIC FILTER RESPONSE

Given the zero and pole vectors, or the corresponding polynomial lists plus the
response specification, FTRV1 and FTRV2 compute the complex response. The output
is a complex vector with the response as a function of frequency, which may be Fourier
transformed with the FFT command to obtain the impulse response and plotted by any
of the plot programs. Similarly, TVT1 and tVT2 provide filter group delay as a
function of frequency. FTRVL provides the complex response using a logarithmic
frequency scale. Numerous analysis tools are given in the PROC menu.

391
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BUTTERWORTH FILTERS

BPOLE computes the Butterworth pole vector required for computing the response
and computing the component values for realization.

CHEBYSHEYV FILTERS

CPOLE computes the Chebyshev pole vector required for computing the response and

computing the component values for realization.

ELLIPTIC FILTERS

ESOLYV combined with EPOLE and EZERO solves for the location of the zeros and
poles based on the design specification by solving the necessary elliptic nonlinear
equations. The zeros and poles are returned in vectors and can be used to compute the
component values for realization. QMIN computes the frequencies of minimum
stopband attenuation, and QMAX computes the frequencies of maximum passband

insertion loss.

BESSEL FILTERS

A simple program is given as an example for computing the Bessel polynomialfilter.

The complex coefficient root solvers PROOT andAROOT are available to compute the

corresponding pole vector. Besselfilters of any order can be designed with these tools.
This example shows that the MATHLIB software is written in sufficient generality to
support the analysis of almost any filtering problem. The BESLF command provides
the Bessel filter coefficients.

HIGHPASS, BANDPASS, AND BANDSTOP DESIGN

The command LLP is available for scaling lowpass designs. LHP, LBP, and
L—BS provide scaling and conversion from lowpass designs to highpass, bandpass,
and bandstop designs.
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DIGITAL FILTER DESIGN

BILNT provides the bilinear transform used to transform analog filter designs into
digital ones. It is also useful for transforming differential equations into difference
equations. Frequency warping is provided by the command WARP. DHBRT designs
digital Hilbert transformers for creating analytic signals and introducing 90° phase
shifts.

STATE SPACE ANALYSIS AND SYNTHESIS

Conversion from state space to the zeros and poles of the transfer function is the
difficult computational problem solved by command S—ZP. Given the transfer
function, TF—C and CTO can be used to compute the state space representations in
both the controllable and observable canonical form realizations. COMT computes the

controllability and observability matrices. From the zeros and poles, the Jordan
canonical forms can also be computed.

COMPLEX PLANE POLE PLOTS

Given the pole or zero vector, POLEP provides a plot of the roots in the complex
plane. POLEP can be used to plot the roots of both Laplace and z transform root
vectors.

POLYNOMIAL COEFFICIENT AND ROOT VECTOR CONVENTIONS

The commands in the FILTR menu follow the same conventions as defined in the

ALGB menu discussed in Chapter 19. You must understand these conventions to
operate the software in this menu.

DIMENSIONALITY

The "linear" in linear filtering allows easy normalization of units. The squared
magnitude function for an analog N-pole Butterworth filter is of the form:

Hie)? =1 H@EH(-s) = 1
1+ (wfio)™ 1 + (sfio)™N
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where o is the usual Fourier transform variable and s is the usual Laplace transform
variable. Then the poles which are the roots of the denominator are located at:

1
s, = (-D® (i 2n £) , = 2n f..

Defining the normalized variable q = s/(2r f), we obtain an equation for the
normalized roots. If you place 2: '(q/i)"(2xN)=-1', 1:'q' on the stack and push ISOL,
the HP 48 returns the symbolic solution 'q=EXP(2xnxixn1/(2N))x(-1)A"INV(2xN)xi'.
Thus, the normalized roots are on the unit circle, and the s roots are on the 2x f, circle.
Hence, we can perform filter design in radians/sec, Hertz, or normalized (f, = 1) Hertz
and later transform the filter the desired case. All of the MATHLIB software is based
on normalized designs with commands provided to later transform the filters to the
actual frequencies.

In the case of using the bilinear transform to map the Laplace transform equations
into z transform equations, this normalization concept has an additional subtlety. In
the transformation we express the variable s in terms of the variable z, and in
particular its reciprocal z'.

1-z7!

1+z71
2Q 5S,

where Q is usually written as 1/T in most of the texts, but, in fact, in linear filtering
theory, because of the normalization concepts just presented, Q need have no relation
at all to the digital sampling period T. In particular,

a 2nfT
20 172 for z=” equals 20 T “| - iq.

1 +z 2
  

Hence, the proper units must be preserved between T and the cutoff frequency f, when
prewarping the cutoff frequency, but afterward the units may be again normalized.
While input parameter Q in BILNT is included for generality in some mathematics
applications, in filtering problems using MATHLIB, Q should always equal 0.5 so that
the resulting digital filters are properly normalized.
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ROOT VECTOR CONVENTION

Computing polynomial lists from root vectors is very fast compared to using the
complex root solvers to go the other direction. Consequently, the MATHLIB filter
design software uses root vectors as the basic input, with commands available to

always compute the equivalent lists. This approach also allows easy sectioning and
component computation from the roots. The disadvantage to this approach is that the
filter overall gain is not carried along with the filter, but is easily introduced when the
design is complete, using the GAIN1 command.

A second reason for using the root vector convention is numerical. As soon as a filter
design is translated out even into kilohertz, the polynomial coefficients will take on a
huge range in values, making it difficult if not impossible for any root solver using a
reasonable number of digits precision to solve for the roots without first scaling the
design back to unity. Consequently, designing filters with the roots is far more
accurate than designing with the polynomial coefficients.

SYMBOLIC INVERSE TRANSFORMS

The IXFRM command provides symbolic computation of inverse Laplace and z
transforms. This is useful for computing impulse responses and performing filter
approximations. It can also be used to symbolically solve linear differential equations.

INSERTION LOSS

The insertion loss or passband peak-to-peak ripple in dB denoted by a_,, may also be
specified in terms of the reflection coefficient p or the ripple factor €, which is not in
dB. Defining equations and conversion commands are provided by p—AX, p—AX,
AX—e, and AX«e¢ in the FILTR menu. These and additional conversion commands

are available in the WIND menu discussed in Chapter 28.

BANDPASS AND BANDSTOP DESIGNS

MATHLIB follows the standard practice of using geometric bandpass and bandstop
designs. The low-frequency input FL and the high-frequency input FH define the
analog band edges. The analog bandwidth is then FH - FL, and the center frequency
is then v(FH FL) on a logarithmic scale.
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STATE SPACE CONVENTIONS

A time-invariant dynamical or state or phase space system may be represented in
terms of the equations:

my = A x@®+B u® y® = C x(® + D u(y,

where x(t) is the n x 1 state vector, y(t) is the 1 x m output vector, u(t) is the 1 x p

input vector, and A, B, C, D are the state, input, and output matrices. While the
commands in the FILTR menu can be extended using the MATR menu commands, all
of the commands in this menu are limited to single-input, single-output systems.
Thus, y(t) and u(t) are scalars, D is a 1 x 1 matrix, B is a column vector, C is a row
vector, and A is an n x n matrix. See page 447 for discrete state space systems.

STATE SPACE TO ZEROS AND POLES

MATHLIB uses the symbolic matrix inverse command SMI to compute the zeros and
poles of a state space system. This method was chosen both for speed and because it
easily handles zeros at infinity. A detailed description of SMI is given in Chapter 25.

PRACTICAL ISSUES WITH JORDAN DECOMPOSITION

Within numerical constraints, program EVSOV given at the end of Chapter 20 will
compute the Jordan decomposition of matrix M if all the eigenvalues are distinct. If
you then compute Z' M Z, and the result is not diagonal within £ > 0, you probably
have repeated eigenvalues, and EVSOV will not compute the Jordan decomposition.

Chapter 9 of Bronson gives a very detailed discussion of creating Jordan canonical
decompositions by computing linearly independent generalized eigenvectors.
MATHLIB can implement all of those techniques. However, the issues of accurate
eigenvalue and rank determination make the techniques difficult in practice. Round-
off error makes it very difficult to determine the existence and multiplicity of repeated
eigenvalues. Furthermore, difficult rank decisions must be made at every stage, and
the final computed block structure critically depends on those decisions.

The technique we demonstrate at the end of this chapter, while still suffering from the
transfer function root determination accuracy problem, is possibly more intuitive than
generalized eigenvectors. See the literature for more details.
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FILTER DESIGN MENU { FILTR }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

FILTER VECTOR Z FS KeN [ VECTOR |
8 €[0, 1]    

 

 

FTRV1 computes frequency samples of a transfer function's response where the
transfer function is specified by the root (zero) vector Z. FS is the digital sample
rate, and even K > 4 is the total length of the output response vector spanning the
frequency range [ 0, (K-1) FS/ K]. Thus, the frequency scale is linear and K
MUST BE EVEN. The positive frequency response values are given by the index
values k €[0, K/2] and the negative frequency response values are given by the
index values k €[K/2 + 1, K — 1] and are the conjugate reflection of the positive

frequency values. This symmetry corresponds to a time domain impulse response
which is real. Also, the complex value of the K/2 term, which should be small in

realistic applications, is replaced by its absolute value to make sure that it does not
introduce imaginary values into the impulse response when IFFT is used to

compute the impulse response of the filter. A complex time domain filter is handled
by computing the response associated with the real part and the imaginary part

separately and adding the responses. In the case of an analytic filter, this
corresponds to zeroing the negative frequency values of the response. The

response of the empty vector [ ] symbolized by { } is a vector of all ones. Examples
are given below after introducing the next command.

When § = 0, FTRV1 treats the input as the roots of the Laplace transform variable
s, which is evaluated as i», and thus provides the normal Fourier frequency

response. When 8 = 1, then the inputis treated as a digitalfilter in the variable z7,
which is evaluated as e™ = e™". In the digital case FS is normally 1 or 0.5 since

the period of eis 1.

Z may be either a root vector or the corresponding polynomial list.

 
N D FS KeN [ VECTOR]FILTER VECTOR

d €[0, 1]   

 

 
 

FTRV2 computes the response in the case where there are both zeros and poles.     
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FTRV2 computes the response in the case where there are both zeros and poles
specified by the N vector, such as the output of EZERO, and the D vector, such as
the output of EPOLE. FTRV2 calls FTRV1 twice, inverts the denominator response

with VSINV, and multiplies the two vectors using VECTX. VSINV discussed in
Chapter 30 handles zeros in a special way. The program

< 6 BPOLE 4 40 0 FTRV2 20 VROT DUP SPECT VLOG 10 x PLT
PHASE PLT1 »

computes the poles and zeros of a 6-pole Butterworth filter and plots the spectrum

in dB and the phase in degrees over the frequency range [-2, 2] Hertz. The 3 dB
frequency ofthis filter is 1 Hz, and since FS = 4 Hz, the 3 dB point on the plot is at

the value of 10 = 40/4. At 2 Hz the filter response is down 35 dB from the DC
response. PHASU is available in the PROC menu to unwrap the phase response.

The inverse FFT command IFFT in the PROC menu will compute the impulse
response of a filter, given the output of FTRV2. The "20 VROT" simply rotates the
response so that zero frequency is at the center of the plot. A digital example is

given on the next page.

N and D may be either root vectors or the corresponding polynomial lists.

 

Consider the digitalfilter represented by the numerator root vector { } representing
the empty root vector [ ] and the denominator root vector [ -1/0.6 ]. Using the

below command R—CL to compute the coefficient lists, we have

2: {1
{1

R—CL({},[ -1.66666666667 ]) = Ty }
66666666667 1 },

so the root vectors represent the digitalfilter     
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FUNCTION COMMAND INPUTS OUTPUTS

Ha)- 1 0.6
 166666666667 +z 1 +062

The following program plots the amplitude response and phase of this digital filter

<{} [-1.66666666667] 1 40 1 FTRV2 DUP VABS PLT1 PHASE PLT1 >

This is an example of an infinite impulse response (IIR) filter. Its impulse response
is easily evaluated and plotted using the commands ICONV and UNITI found in the
PROC menu. Store the following program in a variable named IDEM1. It is used

in several examples in this chapter.

IDEM1: <« {} [ -1.66666666667 ] R—»CL 0 GAIN1 [0] "COMP IMPULSE
RESPONSE" 3 DISP 9 UNITI ICONV DUP PLT1 »

Observe our example filter is a highpass filter since the polynomial roots are in z™,
not z. Using the below command RZINV,the corresponding root vectors in z are
[0] and [ -0.6]. Using R—CL, these roots in z correspond to the polynomial

coefficient listsinz {0 1}and {0.6 1} . GAIN1 in this example is used
unconventionally to normalize the impulse response at zero to one.

FILTER RESPONSE NORMALIZATION

With the output vector from FTRV2 at Level 1 of the stack, the program steps DUP

n GET ABS / will normalize the output of FTRV2. For the lowpass and bandstop
cases, the DC gain is usually normalized to 1, so n = 1. For the highpass case, the

highest frequency (represented by the N/2 + 1 value where N is the size of the
vector) is normalized with n = N/2 + 1. For the bandpass case, the value of the

filter at the center frequency is normally set to 1, so n is that index value
corresponding to the center frequency. A lowpass Butterworth filter example is

given below.    
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 INTERPOLATION OF THE IMPULSE RESPONSE

The plot of the impulse response for the above example filter is not pretty because
there are only nine values plotted. Interpolation provides a means of increasing the

sampling rate to obtain a better approximation to the underlying analog impulse
response. The below two programs interpolate the output of IDEM1 by a factor of
eight and compare the resulting impulse responses. The second program, while
more difficult conceptually, is both faster and more accurate since it avoids the use

of an imperfect 10-pole Butterworth filter.

 

< IDEM1 —» V « "ZERO FILL FOR INTERP" 3 DISP V ZFIL1 8 VINTP 128
TWIDL FFT DUP SPECT PLT1 "BUILD LP FILTER" 3 DISP 10 BPOLE 16

INV L—>LP 1 128 0 FTRV2 DUP 1 GET ABS / DUP SPECT PLT3
"APPLY LP FILTER" 3 DISP VABS VECTX 7 x 128 TWIDL IFFT HALF RE

DUP PLT1 "OVERLAY PLOTS" 3 DISP V PLT3 V > »

< IDEM1 — V « V ZFIL1 16 TWIDL FFT DUP SPECT PLT1 "ZERO FILL
FFT" 3 DISP 128 ZFILN DUP SPECT PLT1 8 x 128 TWIDL IFFT HALF
RE DUP PLT1 "OVERLAY PLOTS" 3 DISP V PLT3 1 8 VDEC V 1 8

VSUBS - > »

Application of the decimation command VDEC to the interpolated output with first
value n = 1 and decimation factor F = 8 reproduces to 10 digits the IDEM1 output

with the second program.

 

DELAY VECTOR Z F KeN [ VECTOR]
d €[0, 1]  

 

  
 

tVT1 computes the frequency samples of a transfer function’s group delay where
the transfer function is specified by the root (zero) vector Z.     
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K = 3 is the size of the output vector containing the group delay evaluated at the
frequencies k F/(K - 1) for k €[0, K — 1]. Thus the frequency scale is linear, and
the frequencies are non-negative. The group delay of the empty root vector [ ]

symbolized by { } is a vector of all zeros. An example is given below.

When 6 = 0, TVT1 treats the input as the roots of the Laplace transform variable s,
which is evaluated as im, and thus provides the normal Fourier frequency response.
When § = 1, then the input is treated as a digital filter in the variable z', which is
evaluated as e”“ = 2". In the digital case, FS is normally 1 or 0.5 since the

period of e”%" is 1.

 DELAY VECTOR

 

N DF KeN [ VECTOR|
8   
 

TVT2 computes the group delay for a filter specified by the numerator root (zero)
vector N and the denominator root (pole) vector D. tVT2 calls tVT1 twice and

differences the results. The below program computes and plots the group delay of
a 6-pole Butterworth filter.

< 6 BPOLE 2 40 0 tVT2 PLT1 »

Observe that the delay at zero is 3.8637 s and the peak delay at a little less than 1
is 6.4897 s.

Similarly, the group delay for our above digitalfilter example is plotted by the
program:

<{) [-1.66666666667] 1 40 1 TVT2 PLT1 >.

This group delay is easily verified by differentiating the phase with the DER1
command.

Neither of the N, D, or Z inputs to tVT1 or tVT2 may be polynomial lists.    
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EVALUATE H(F)

 

 

 

 
| F = FREQUENCY VALUE

d €[0, 1]

  

   
 

Given the complex vector H containing the roots (zeros) of some transfer function
(or the corresponding polynomiallist) and the frequency F, HOFw computes the

complex value of H(F). This is the MATHLIB internal command called by FTRV1 to
evaluate filter responses.

 

  
EVALUATE H(F) | F = FREQUENCY VALUE

8 €[0, 1]   
 

Given the complex vector H containing the roots (zeros) of some transfer function
and the frequency F, TOF® computes the value of the group delay for that transfer
function. This is the MATHLIB internal command used by tVT1 to evaluate group

delay. 
 

HERTZ VERSUS RADIANS PER SECOND

Rigorously speaking, the input frequencies to the above six commands would be in
radians per second mo = 2nf. In practice in the analog case, if the filter is scaled for
Hentz instead of radians, then the above commands can accept the input frequency

in Hertz. The below commands L—LP, LHP, L-»BP, and L—BS will do this
scaling for you. However, the digital filters all involve nonlinear transformations

(¢'>) and thus do not scale. The above six commands and WARP below have all
been written for normalized Hertz inputs in the digital case where & = 1. They

internally multiply by the 2r factor. By normalized Hertz we mean F = fT in Hertz-
seconds where f is the actual frequency in Hertz and T is the sampling period in

seconds. F €[0, 0.5]. We recommend that you always work in Hentz.   
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FUNCTION COMMAND INPUTS OUTPUTS

LOG SCALED N D K>1 [ VECTOR ]
FREQUENCY 0<L<H OF SIZE K
RESPONSE   

Given the filter numerator and denominator root vectors (polynomial lists) N and D,
lower and upper frequency limits L and H, and the number of values K, FTRVL

constructs a filter response vector like FTRV2, except that the frequency scale is
logarithmic and the negative frequency response is not computed. Thus,

LOG-LOG plots can be viewed. For example, the below program shows the
geometric symmetry of lowpass to bandpass transformations using command

L—BP:

<6 BPOLE 2 8 L—»>BP .4 40 40 FTRVL DUP SPECT VLOG 10 x PLT{
VTRUD PLT3 »

 

POLE PLOT

 

  
POLE OR ZERO

VECTOR  
SCATTER PLOT

 

  
POLEP provides the capability of plotting the zeros and poles of both analog and

digitalfilters represented by their corresponding root vectors.

WARNING: THIS IS THE ONE COMMAND IN THE MATH LIBRARY WHICH

USES XIDAT. If the current directory has a ZDAT with data you do not wish to lose,
then store it in a different variable.

< 6 BPOLE POLEP » plots the left half plane poles of the Butterworth filter.

<6 BPOLE DUP NEG VCMB POLEP » plots all the poles of |H(f)|>.

z transform responses can also be plotted with POLEP. If H(z) is a polynomial in z
and is realizable (roots of H(s) lie in the left half plane), then all its roots are in or
on the unit circle. However, if H(z) is a realizable polynomial in z™', then the roots

are on or outside the unit circle.   
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FUNCTION COMMAND INPUTS OUTPUTS
 

REQUIRED D?e[0,1] REQUIRED
FILTER ORDER T=10R20R3 FILTER ORDER   

 

 

FORDR can be used to estimate the required filter order. Parameter a, is the
maximum passband insertion loss in dB from zero to F_ Hertz, and a, is the

minimum attenuation in dB for frequencies greater than or equal to F,. D? equals 1
if you are doing a digital design and 0 if you are doing an analog design. The three

filter types supported are

T = 1: BUTTERWORTH T = 2: CHEBYSHEV T = 3: ELLIPTIC.

FORDR(1,1.4,05,50,0,1)
FORDR(1,1.4,05,50,0,2)
FORDR(1,1.4,05,50,0,3)

FORDR( 0.1, 0.15,05,50,1, 1)
FORDR( 0.1, 0.15,05,50,1, 2
FORDR( 0.1, 0.15,05,50, 1, 3

n
o
n

»
©

FORDR uses the equations given on page 241 of Rabiner and Gold.

   
  

 

ROOT VECTOR | N=NUMERATOR 2: NUMERATOR
VARIABLE {| D= 1:
INVERT | DENOMINATOR DENOMINATOR    

Given the ratio of two polynomials in some variable a, RZINV transforms the
polynomials defined by the numerator root vector N and the denominator root

vector D into root vectors of o".

RZINV({}, [1 2 41) -{2]1

Observe that the three zeros at infinity associated with the empty root vector { }
become zeros at 0.  
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FUNCTION COMMAND INPUTS OUTPUTS

ROOT VECTORS N = NUMERATOR 2: NUMERATOR
TO COEFFICIENT D= 1:

LISTS DENOMINATOR DENOMINATOR  
Given the ratio of two polynomials in some variable a, R—CL transforms the
polynomials defined by the numerator root vector N and the denominator root
vector D into the ratio of polynomial lists in the variable a by applying CLIST to

both N and D.

RZINV({},[1 2 a1) -
2: {1}
1:{-8 14 -7 1)

 

POLYNOMIAL
LIST VARIABLE

INVERT  

 

 

N = NUMERATOR
D=

DENOMINATOR  

2: NUMERATOR

1:

DENOMINATOR
 

Given the ratio of two polynomials in some variable a, PZINV transforms the
polynomials defined by the numerator polynomial list N and the denominator

polynomiallist D into polynomial lists of o".

 

 

 

 

2: 1RZINV({1}.{-8 14 -7 1}) - {219 %%4 1s)

BUTTERWORTH N = # POLES 2: {}
FILTER 1:[ VECTOR]    Returns complex vectors containing the zeros and poles of an Nth order

Butterworth filter. The following program computes the zeros and poles of an order
6 Butterworth filter, computes its complex response, and plots the complex

response. Push ATTN, and the magnitude of the response in dB will be plotted.   
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Then push ATTN to obtain the phase of that response in degrees.

<6 BPOLE 4 64 0 FTRV2 DUP PLTC DUP VABS VLOG 20 x PLT
PHASE PLT1 »

 

CHEBYSHEV
FILTER

N = # POLES

-
=

N
D

A

<
<

ECTOR ]

 

    

Returns complex vectors containing the zeros and poles of an Nth order Chebyshev
filter. The parameter a, is the maximum value of passband insertion loss in dB.

AX—e¢convents a, to ripple factor, and AX«e converts ripple factor into a,in dB.
For example:

<1 6 CPOLE 4 64 0 FTRV2 DUP PLTC DUP VABS VLOG 20 x PLT1
PHASE PLT1 »

 

MODULAR
ANGLE

 

    

Given the highest frequency of the passband F, and the lowest frequency of the
stopband F,, this command computes the corresponding modular angle 6 in

degrees. 6 = 180/r arcsin(F/F).

 

E SOLVE nF M1 M2 n

 

    

This rather complicated program converts design specifications into parameters
which determine the location of the poles and zeros of the Zolotarev rational

function better known as an elliptic filter.     



CH 27 : FILTR FILTER DESIGN AND ANALYSIS 407

 

 

FILTER DESIGN MENU { FILTR }
FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

This class of filter contains ripple in both the passband and the stopband. While in
theory the desired filter is determined from any three of the parameters (a,..,, @mins
F/F, and n), it is more practical to specify all four and experiment with the design.
A theoretically feasible design is not necessarily a good one. In terms of a lowpass

filter, a, is the maximum value of insertion loss in the passband response and
should not exceed 1 dB, a, is the minimum value of the stopband attenuation, F,

is the highest frequency of the passband, F, is the lowest frequency of the
stopband, and n is the order of the filter. Flag F should normally be set to zero.

The output is magic parameters M1, M2, and n. In his handbook, Zverev calls M1
and M2: Q_ and Q,, which he also uses for F, and F, when there is no relationship.
What you need to know about M1 and M2 is that M1 < 1 and M2 > 1 by some

margin for a goodfilter design. For example, let a, = .43 dB and a, = 52 dB.
Use OFCFS to compute the modular angle 6 and assume it equals 40°. Let n = 35.

Then execute ESOLV(.43,52,40,5,0). Once the first nonlinear elliptic integral
equation is solved, the software checks to see if there is a feasible solution. If
none exists, a "Bad Guess(es)" error message is given. If a solution does exist,
then the program proceeds to solve the second nonlinear elliptic equation. The

outputs are M1=.951193300626, M2=1.4797408173, n=5.

THE NUMERICAL STABILITY OF THE NONLINEAR SOLUTION CAN CRUMBLE!
Alwaysplot your filter to be sure it is what you desire. The best plot is upside-

down. For example, take the output of FTRV2 and evaluate:

< VABS VLOG -20 x PLT1 »>

If F #0, then the stack is pushed and a list is added to the bottom containing seven
numbers: { Aa, M1xM2 x, e™ K, k,' K,/K,}in Zverev's Chapter 4

notation. In this example case:

{ 10.2892576613 1.40757021685 .782150272736 2.6393683224E-3
8.50810580912 8.07304021053E-4 .184623536422 }.     
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The following program provides a nice demo.

< 43 52 40 5 0 ESOLV HALT -» M1 M2 n « M1 M2 n EZERO M1 M2
n EPOLE HALT 6.4 64 0 FTRV2 VABS VLOG -20 x PLT1 M1 M2 n

QMIN M1 M2 n QMAX > >

 

 

ELLIPTIC M1 M2 N2>3 [ VECTOR]
    

Returns a complex vector containing the zeros of an Nth order elliptic filter. For the
above example, the zeros are (0, £1.53805762513) and (0, £2.31869860758).

 

ELLIPTIC M1 M2 N>2 [ VECTOR |
 

 

   

Returns a complex vector containing the poles of an Nth order elliptic filter. For the
above example, the poles are (-8.35064686904E-2, +.967447758756),

(-.284661101405, +.667520621612), and (-.41865463206, 0).

 

ELLIPTIC
  

 

 
M1 M2 N>2 [ VECTOR |
 

Returns a vector of frequencies where the stopband has its minimum attenuation.
For the above example, the frequencies are 1.47979408173, 1.75295423683, and

4.26537368353.

 

 

 

  
ELLIPTIC M1 M2 N2>2 [ VECTOR]
 

Returns a vector of frequencies where the passband has its maximum insertion
loss. For the above example, the frequencies are .329999273518, .802970315637,

and .951193300626.  
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FUNCTION COMMAND INPUTS OUTPUTS

Amax(P) REFLECTION a, in dB
COEF p
 

a. =-10 x LOG(1 — SQ(p/100))

Computes a, in dB given the reflection coefficient in percent.

p = 100 v(1 - ALOG(-a,,/10))

The voltage-standing—wave ratio VSWR = (1 + p/100)/(1 - p/100).

 

 

 

 

   

 

 

 

 

  

P(amay) a... in dB pin %

RIPPLE FACTOR a. in dB €
€

= Y10%12— 1 a_, = 10LOG(1 + ¢€?)

Qpnax € a. iN dB

POLY RESCALE POLYNOMIAL POLYNOMIAL
LIST LIST
   PSCAL({2 4 6})={1 2 3}.

Provided the first element in polynomial list L is not zero, PSCAL rescales the list
such that the first element in the list is 1. For example:   
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ANALYSIS OF OTHER FILTER DESIGNS INCLUDING BESSEL FILTERS

The filter tools in this menu can be used for otherfilter designs also.

Given the filter transfer function, either PROOT or AROOT below can be used to

create the zero and pole vectors used by FTRV1, FTRV2, 1VT1, and TVT2.

The following program will create the Laplace transform of a Bessel, maximally flat
time delay,filter:

< — L « 'Z(n=0,L,(2xL-n)!/2*(L-n)/n!/(L-n)!xs*n)' EVAL > »>

Calling the output of the above program B(s), then the Besselfilter response is
B(0)/B(s). Evaluate the above program with L = 7 and then using COEFL(B,s,7) to

compute the coefficient list results in the output list

{ 135135 135135 62370 17325 3150 378 28 1 }.

Now solve for the roots of this polynomial using PROOT to obtain the vector:

[ (-2.6856768790, +5.4206941304) (-4.070139164, +3.5171740494)
(—4.758290526, £1.739286058) (-4.971786862, 0) ]

with e = 1E-10. This root vector may be normalized to Hertz by dividing by 27.

The numerator root vector is { }. Use POLEP to plot the poles, FTRV1 to compute
the response, and tVT1 to compute the group delay.

Other filter designs may be analyzed similarly.

 

COEFFICIENTS F V N COEFFICIENTS

 

    

Reduces function F in variable V to a coefficientlist of size N + 1, which is its
Maclaurin series expansion. See the MISC menu for examples.     
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FILTER DESIGN MENU { FILTR }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL | | L e& MAX [ VECTOR |
ROOT    

 

 

PROOT computes the roots of polynomials with complex coefficients. PROOT

takes the complex coefficient list L (see FEVAL for definition and order) and
creates a Frobenius matrix M. EIGEN is used to compute the eigenvalues of M,
which are the complex roots of L. For example,let f(x) = x° = 0.2x* + 7x® + x® -
35x +2=0.ThenlistL={2-3517 -0.21}. Withe =1E-10 the roots are
(.140377913, £2.7314490896), (-.908563257, 0), (.413903715, £.3506447075).
MAX is the maximum number of iterations (say 20) EIGEN is allowed to converge
each eigenvalue. If the solution fails at some eigenvalue, the diagonal matrix is still
returned, but only the last values of the vector which converged are actual roots.

 

POLYNOMIAL L v ¢ MAX [ VECTOR ]
ROOT  

 

  
 

AROOT uses Laguerre’s method for solving for all the roots of the complex
polynomial defined by the list L. Value v is the initial guess for all of the roots, and
¢ sets the convergence criterion. MAX (say 100) is the maximum iterations allowed
to converge each root. After converging each root, DEFLT is used to remove that
root from polynomial L. The most difficult polynomial root solutions occur when

there are repeated roots. Consider the example: 'x'? + 99x" — 377x'° — 26395x° +
149080x® + 1703048x” — 15440048x° + 8684864x° + 302914240x* — 1377763200x°
+ 2718976000x2 — 2620320000x + 1008000000" = (x-2)° (x-5) (x+6) (x-7) (x+10)
(x=10) (x+15) (x+100). With v = 0, ¢ = 1E-8, and MAX = 100, we only get two
roots: (1.98607080, 0) and (1.99562237, —-1.32705219E-2). Dropping € = 1E-4
yields the roots: (1.98607080, 0) (1.99563474, —1.32669871E-2) (1.99563459,

.0132665015) (2.01132960, 8.27241365E-3) (2.01133027, —-8.27192808E-3) (5, 0)
(-6, 0) (7, 0) (-10, 0) (10, 0) (-15, 0) (-100, 0). The average of the first 5 roots is

(2, 0) to 11 digits. LROOT can be used to verify that (2, 0) is the true root and
DEFLT can be used to remove it from P giving the reduced polynomial

{ (-31500000, 0) (3135000, 0) (1619500, 0) (-108650, 0) (—-23945, 0) (673, 0)
(109, 0) 1}, which is easily solved since all the roots are unique.     
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FILTER DESIGN MENU { FILTR }
FUNCTION COMMAND INPUTS OUTPUTS

& n PARAMETER § AND 1 IN 2:a_ dB
CONVERSION VOLTS 1:a_dB  

 

 
 

If the passband peak-to-peak response is specified as varying from 1 + dto 1 - 9,
and the maximum stopband response is n, then a_;, = 20 LOG([1+6}/m) dB and a,
= 20 LOG([1+0)/[1-0]) dB. Rabiner and Gold use this notation where & = d,, n = d,.

 

BESSEL FILTER

 

 

 
N= ORDER 20

 
COEFFICIENT

LIST
 

BESLF computes the denominator coefficient list for an Nth order Besselfilter.

 

PREWARP FREQ
 

 

 
FREQUENCY

 
FREQUENCY
 

TaN22F)2 F 0. 7

WARP provides frequency prewarping that is used with the bilinear transform. The
input frequency is normalized, and F = f T where f in Hertz is the actual frequency

and T in seconds is the sampling period. When designing digitalfilters, the
frequencies input to the commands L—LP, L—-HP, L—BP, and L—»BS should be
prewarped. This will properly set the filter shape after using BLINT to perform the

bilinear transform. See the below examples.

 

LOWPASS TO
LOWPASS

 

 

 

N = NUMERATOR
D =

DENOMINATOR  

2: NUMERATOR

1:

DENOMINATOR
   L—LP is a frequency scaling command which does not change the filter shape.   
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FILTER DESIGN MENU { FILTR }
FUNCTION COMMAND INPUTS OUTPUTS

 

 

 

   
 

Design an analog 6-pole Chebyshev filter with a, = 1 dB and cutoff frequency f, =
10 KHz. Plot it over the range -32 KHz to 32 KHz using a linear scale with

amplitude in Watts and phase in degrees: « 1 6 CPOLE 10000 L—LP 64000
64 0 FTRV2 32 VROT DUP SPECT PLT1 PHASE PLT1 »

Design a digital IIR lowpass filter using the bilinear transform based on a 6-pole
Butterworth design with cutoff frequency 2 KHz and sampling rate 10 KHz. Plot the

poles and zeros as well as the response from -5 KHz to 5 KHz: « 6 BPOLE
2000 .0001 x WARP L—LP .5 BILNT DUP2 RZINV POLEP POLEP 1 64

1 FTRV2 32 VROT DUP SPECT PLT1 PHASE PLT1 »

 
N = NUMERATOR 2: NUMERATOR
D= 1:
DENOMINATOR DENOMINATOR

LOWPASS TO
HIGHPASS

  

 

 
 

L—HP is a general frequency scaling and lowpass-to-highpass transformation
command. For a fixed frequency, L—»HP is its own inverse.

Design an analog highpass 6-pole Chebyshev filter with 1 dB ripple and cutoff at 20
KHz. Plot the poles and the response over the range 0 to 32 KHz:

< 1 6 CPOLE DUP POLEP 20000 L—HP 64000 64 0 FTRV2 HALF1 DUP
SPECT PLT1 PHASE PLT1 »

Design a digital IIR highpass filter with cutoff 30 KHz and sampling rate 100 KHz
based on a 6-pole 1 dB ripple Chebyshev analog design and plot the complex

response: « 1 6 CPOLE 30000 .00001 x WARP L—-HP .5 BILNT DUP2
RZINV POLEP POLEP 1 64 1 FTRV2 32 VROT PLTC » Observe that the

real part is even and the imaginary part is odd.

 

NOTE THAT IN SEVERAL OF THE EXAMPLES IN THIS CHAPTER WE USE THE
COMMAND VROT TO CENTER THE ORIGIN IN THE MIDDLE OF THE PLOT.     
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FILTER DESIGN MENU { FILTR }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

LOWPASS TO N = NUMERATOR 2: NUMERATOR
BANDPASS D = 1:

 

DENOMINATOR DENOMINATOR    
L—BP is a general frequency scaling and lowpass-to-bandpass transformation

command.

Design an analog 5 pole Butterworth bandpass filter with cutoff frequencies 10 KHz
and 20 KHz, plot the zeros and poles, and plot the response over 1 KHz to 200

KHz on a logarithmic scale:
< 5 BPOLE 10000 20000 L—»BP DUP2 POLEP POLEP 1000 200000 64
FTRVL DUP 32 GET ABS / DUP VABS VLOG 20 x PLT1 PHASE PLT1 »

Design a digital IIR bandpass filter based on a 5-pole Butterworth analog design.
The sampling rate is 100 KHz and the cutoff frequencies are 20 KHz and 30 KHz.
< 5 BPOLE 20000 .00001 x WARP 30000 .00001 x WARP L—BP 5

BILNT DUP2 RZINV POLEP POLEP 1 64 1 FTRV2 DUP 16 GET ABS /
HALF1 DUP SPECT PLT1 PHASE PLT1 »

 

LOWPASS TO N = NUMERATOR 2: NUMERATOR
BANDSTOP :D = 1:

DENOMINATOR DENOMINATOR  

 

  
L—BS is a general frequency scaling and lowpass-to-bandstop transformation

command.

Design an analog 5 pole Butterworth bandstopfilter with cutoff frequencies 5 KHz
and 40 KHz, plot the zeros and poles, and plot the response over 1 KHz to 200

KHz on a logarithmic scale.
< 5 BPOLE 5000 40000 L—BS DUP2 POLEP POLEP 1000 200000 64

FTRVL DUP 1 GET ABS / DUP VABS VLOG 20 x PLT1 PHASE PLT1 »>     
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FUNCTION COMMAND INPUTS OUTPUTS

 

    

Design a digital IIR bandstop filter based on a 5-pole Butterworth analog design.
The sampling rate is 100 KHz and the cutoff frequencies are 20 KHz and 30 KHz.
< 5 BPOLE 20000 .00001 x WARP 30000 .00001 x WARP L—BS 5
BILNT DUP2 RZINV POLEP POLEP 1 64 1 FTRV2 DUP 1 GET ABS /

HALF1 DUP SPECT PLT1 PHASE PLT1 »

 

 

 

   

  

BILINEAR N = NUMERATOR 2: NUMERATOR
TRANSFORM D = 1:

DENOMINATOR DENOMINATOR

The bilinear transform is defined by the equations

_ _ 2-1

z+ 1 1 +27! 20-8’

where s is the Laplace transform variable and z is the z transform variable.

BLINT transforms a filter defined by the numerator root vector N and the
denominator root vector D. The output numerator and denominator are the

corresponding root vectors corresponding to the inverse of the z transform variable
z which is z7'. If the root vector of the z transform variable z is desired, RZINV will

compute it. This Bilinear transformation is very useful for transforming analog filter
designs into digital filter designs. In these cases, Q = 0.5 and BILNT is its own

inverse.

BILNT([2]. [1 2 11,08) = {2 [51 14     
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FILTER DESIGN MENU { FILTR }
FUNCTION COMMAND INPUTS OUTPUTS

  
   
 

DIGITAL IIR DESIGN COEFFICIENT EXAMPLES

The following examples provide specific infinite impulse response (IIR) digital
coefficient examples of the above six commands using a 2-pole Butterworth filter for
the analog design. Since the design is based on root vector calculations, the gain
is arbitrary. GAIN1 is used in the below programs in order to set the filter gain at

the desired frequency to 1.

In the below examples the sampling period T = 0.0001.

f. = 1 KHz and 3.5 KHz for the lowpass and highpass examples.

FL = 1.5 KHz and FH = 3.5 KHz in the bandpass and bandstop examples.

LOWPASS: « 2 BPOLE 1000 .0001 x WARP L—LP .5 BILNT R—>CL
PSCAL 1 GAIN1 »>

N = { 6.74552738888E-2 .134910547778 6.74552738888E-2 }
D={1 -1.14298050254 .412801598095 }

HIGHPASS: «2 BPOLE 3500 .0001 x WARP L—HP .5 BILNT R—CL
PSCAL -1 GAINT »

N ={.131106439916 -.262212879832 .131106439916 }
D={1 .747789178264 .272214937926 }

BANDPASS: « 2 BPOLE 1500 .0001 x WARP 3500 .0001 x WARP L—BP
5 BILNT R—CL PSCAL 10 SRND (0,-1) GAIN1 »>

N = { .20657208385 0 -.4131441677 0 .20657208385 }
D={1 0 .3695273773 0 .1958157127 }

BANDSTOP: « 2 BPOLE 1500 .0001 x WARP 3500 .0001 x WARP L—BS
5 BILNT R—»CL PSCAL 10 SRND 1 GAIN1 >
N ={.3913357725 0 .782671545 0 .3913357725 }

D={1 0 .3695273773 0 .1958157127 }    
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FILTER DESIGN MENU { FILTR }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

DIGITAL NUMBER OF COEFFICIENT
HILBERT TAPS IS [ VECTOR ]

TRANSFORMER 2 x IP(N + 1)/2)  

 

 

DHBRT computes the tap weights for a digital Hilbert transformer, which produces
a 90° phase shift when a signal is convolved with it. The output coefficients should
be windowed. A nice demo is created by the below example you can type in and
store in variable HBRTD. The sampling period equals 12/40 = 0.3, so that the
delay through the Hilbert transformer is 1.8 = 6 x 0.3, and the length of the

convolved response is 1.8 + 13.5 =1563=12 + 11 x 0.3.

< "COMPUTE FILTER" 3 DISP 11 DHBRT 12 HAMM VECTX — h <
{ {HOME} 'SIN(x) x 0 12 40} 0 CSERS "CONVOLVING" 3 DISP h

VMPY {{ HOME} '-COS(x)' x -1.8 13.5 51} 0 CSERS SWAP PLT2 > »

 

SET GAIN TO 1
AT F  N = NUMERATOR 2: NUMERATOR

D = 1:

DENOMINATOR DENOMINATOR 

 

  
 

Given the numerator and denominator coefficient lists N and D, GAIN1 sets the
gain to 1 at the frequency specified by F by evaluating the gain at F and

normalizing. See above examples.

 
In the z transform case F =z = ¢® 7, so to set the DC gain of a lowpassfilter, F =
1. To set the gain of a highpass filter, f T = 0.5, so F = —1. For a bandpass filter

centered atf T = 0.25, F = (0, 1) or 2”! = (0, —1). For a bandstop filter, the DC gain
is usually set with F = 1. F must be a real or complex number.

Once the gainis setto 1, « N G SMPY » will set it to G at that frequency.

The following examples demonstrate analog filter normalization and plotting with
coefficient lists.   
 



418 FILTER DESIGN AND ANALYSIS CH 27 : FILTR

 
 
 

FILTER DESIGN MENU { FILTR }
FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

< 5 BPOLE 10000 20000 L—»BP R—CL PSCAL (0,15000) GAIN1 DUP2
64000 64 0 FTRV2 VABS PLT1 »>

< 5 BPOLE 10000 20000 L—»BP R—CL PSCAL (0,15000) GAIN1 DUP2
1000 200000 64 FTRVL VABS VLOG 20 x PLT1 »

It is important to note that the order in which the commands RZINV, R—CL, and

PZINV are called does result in different filter gains. For example:

<[0] [06] RoCL PZNV > = F171)

2: {1
<[0] [06] RZINV RCL > = 7 11 doccosseee? 1)

PSCAL( {1.66666666667 1})={1 0.6}.

 
SYMBOLIC F a D SYMBOLIC
INVERSE EQUATION

TRANSFORM e>0 

 

  
 

IXFRM computes symbolic inverse Laplace and z transforms using residue
integration. F is the numerator function, a is the variable of integration, D is the
denominator root vector, and € > 0 is used internally by RESDA to compute the
residues. UNIQE internally determines if there are repeated roots in D. The
degree of the numerator must be less than that of D; see the examples.

SEE ALSO THE EXAMPLES GIVEN IN CHAPTER 25.

The following simple example of inverse z transformation calls the IDEM1 program
on page 399 and then computes the first six values from the inverse z transform for

comparison.    
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FILTER DESIGN MENU { FILTR }
 

 
FUNCTION COMMAND INPUTS OUTPUTS

  
 

<IDEM1 1 6 VSUBS {}[ -1.66666666667 ] RZINV SWAP CLIST z XEQN
'zAn-1)' x z ROT .000000001 IXFRM > E « E SWAP 0 5 FORK E n K

2 LIST | NEXT 6 —ARRY > >

The filter roots are first converted to polynomiallists. Then the numerator is
converted to an algebraic equation, which is multiplied by the inverse z transform
kernel 'z*(n-1)". IXFRM then computes the symbolic inverse transform, which is

evaluated at the same values as the IDEM1 output for comparison.

The following example designs a digital bandpass IIR filter. The resulting
numerator and denominator polynomials have the same order, so they must be
divided prior to computing the residues. The quotient in this example equals 1,

corresponding to a 1 value at zero in the time domain, which is represented by a 1
for the zero value of the response. The fact that 1 is the zero value of the

response is alternatively derivable from the initial value theorem for z transforms.
After computing the equation for the impulse response, the following program
compares it with the impulse response computed by convolution. The plots are

overlaid.

< 2 BPOLE .15 WARP .35 WARP L—BP .5 BILNT DUP2 RZINV DUP2
R—CL PDVD DROP z XEQN 'z*n-1) x z 4 ROLL 5 ROLL DROP

.0000000001 IXFRM 'n>0' SWAP ROT EVAL IFTE { HOME} OVER n 0 15
16 6 —LIST 0 CSERS RE DUP PLT1 4 ROLL 4 ROLL R—»CL PSCAL
[0 0 0 0] 20 UNITI ICONV RE 1 16 VSUBS DUP PLT3 DUP2 - »

It is interesting to compare the above digital impulse response with the
corresponding one for the analog filter from which the design is based. The

following program computes the symbolic inverse Laplace transform and overlays
the plots of the digital one. Observe that in the analog case, the initial value

theorem for Laplace transforms proves that 0 is the value of the analog impulse
response at zero. Observe that the 2r is required since the filter is in Hertz, not

radians per sec.    
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FILTER DESIGN MENU { FILTR }

COMMAND INPUTS OUTPUTS 
  

FUNCTION
 
 
< 2 BPOLE .15 .35 LBP SWAP CLIST s XEQN 2 © -NUM x s x t Xx
EXP x s ROT .0000000001 IXFRM { HOME} OVER t 0 15 50 6 —LIST

0 CSERS RE PLT3 »

Now the form of the output equation for the inverse Laplace transform may look
unfamiliar since the value of e has been evaluated in the equation. The following
program provides a more familiar equation in terms of exponentials for the inverse

Laplace transform. However, it evaluates significantly slower.

< 2 BPOLE .15 .35 L—»BP SWAP CLIST s XEQN 'zA(sxt)’ x s ROT
.0000000001 IXFRM z 'EXP(2xm)' 2 —LIST TMATCH DROP { HOME }

OVER t 0 15 50 6 —LIST 0 CSERS RE PLT3 »

The above impulse responses are causal. Since it is real, the anti-causal response
associated with the right half plane poles is just a time-reversed response. The

sum of these two corresponds to a phase linearfilter with poles in the left and right
half planes, which can be approximated by truncating the response and inserting a

delay. FIR filter design is discussed in Chapter 28.

 RATIONAL Ln 2: P COEF LIST
1: Q COEF LISTAPPROXIMATION   

 

 
 

The inverse FIR problem is the same as the rational approximation problem
discussed in Chapter 17 and is solved by the MATHLIB command RATAP. Given
a polynomial (in this case in z™"), find the rational approximation forit (the IIR filter).

For example, suppose we have an impulse response givenby L={1 -1 1/2

—1/6 1/24 -1/120 }, which in the digital processing world is interpreted as 1 — z7' +
2782 —- 27%6 + z*/24 - z7°/120. Then one choice of IIR filters that corresponds to

this impulse response is given by the infinite impulse response filter:     
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_[2{1 -06 0.15 -1/60} _ 1-062" + 0.1522 - 2-360
RATAP(L4) = {3 {1 04 005) CTT o4zL0052

The inverse of the RATAP command is PLDVD,discussed in Chapters 19 and 28.

Techniques are discussed in Chapter 28 for obtaining FIR prototypes.

 

 

 

 

   

LIST REAL PART L = { LIST} REAL PART

LIST IMAG PART L = { LIST} IMAGINARY
PART

STATE SPACE MATRICES 2: NUMERATOR
TO ZEROS AND A, B,C,DeC 1:

POLES £20 DENOMINATOR
 

S—ZP computes the zeros and poles (e > 0), or the numerator and denominator
polynomiallists (e < 0), of the single-input, single-output state space transfer

function defined by the A, B, C, and D matrices. When € > 0, S—»ZP uses AROOT
to solve for the roots with an initial guess of 0 and a maximum number of iterations
set at 100. If convergence fails, the current estimate of the roots is returned. See

the AROOT command for more detail. Matrix A must be 2 x 2 or larger.

2 47 4

A=359 B=16

0 42 8
C=[35 9 D = [0]     
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With € = 0, the numerator and denominator coefficients are

N={48 168 114} D={-8 -24 -9 1}.

With € = 1E-10, the numerator and denominator roots are

N =[ -.387723706279 -1.08596050425 ]

D =[-.39413910354 -1.81137610056 11.2055152041 ].

Observe that S—ZP has properly handled the numerator root at infinity. The DC
gain is 48/(-8) = —6, and the gain at infinity is zero. Since one of the denominator
roots is in the right half plane, the system is unstable. The commands EROW and
ECOL can be used to extend S—ZP to multivariable state space systems. This

example is continued below.

 

Programs and examples are given in Chapter 28 to extend these commands to the
discrete state space case, including solving matrix difference equations.

 

 

TRANSFER N = NUMERATOR 4: A MATRIX
FUNCTION TO D= 3: B MATRIX
CONTROLLABLE DENOMINATOR 2: C MATRIX

FORM POLY LISTS 1: D MATRIX   
 

TF—C converts the numerator N and denominator D polynomial lists, such as the
output of S—ZP, and computes the state matrices in controllable form for a single-

input, single-output system.

TF—C({48 168 114},{-8 -24 —9 1})=     
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FUNCTION COMMAND INPUTS OUTPUTS

010 0
A=0 0 1 B=|0

8 249 1
C = [48 168 114] D = [0]

The commands S—ZP, TF—C, and CTO collectively offer an easy way to reduce any
single-input, single-output state space system to either controllable or observable

canonical form. Polynomial lists N and D must correspond to a state space system
with SIZE(A) > {2 2}. Thus, SIZE(D) > 3. Also, SIZE(N) < SIZE(D) for realizability.

 

CONTROLLABLE 4: A MATRIX 4: A MATRIX
TO AND FROM 3: B MATRIX 3: B MATRIX
OBSERVABLE 2: C MATRIX 2: C MATRIX

FORM 1: D MATRIX 1: D MATRIX

 

    
CTO converts between controllable and observable forms. CTO is actually just a
command which transposes the input matrices and swaps B and C. For the above

example the result is

00 8 48
A=|10 24 B = [168

019 114
C=[0 0 1] D = [0]

CTO can also be used to switch between controllable and observable Jordan

canonical forms. See the below example.    
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FUNCTION COMMAND INPUTS OUTPUTS
 

C & O MATRICES A E=BORC MATRIX   

 

 

COMT computes either the controllability or observability matrix for a single-input,
single-output state space system. The inputs are the square state matrix A of size

2 x 2, or greater, and vector E of appropriate dimension.

Given A and E, if E is a column vector, COMT assumes that it is the state input
vector B and computes the controllability matrix. If E is a row vector, then COMT
assumes that E is the state output C vector and computes the observability matrix.

For the above example, the controllability and observability matrices are

4 88 912

U=[B : AB : ~ : A™'B] = 6 114 1194

8 40 536

c 3 5 9
CA

v=| |=|21 73 84
261 785 972

CAN-1

Since the rank of both matrices is 3, the system is both controllable and
observable. A linear time-invariant dynamical system is irreducible if and only if it is

both controllable and observable. By using the EROW and ECOL commands,
COMT can be extended to the multivariable case.

   See page 542 of Golub and Van Loan for a Schur decomposition alternative
approach to matrix function evaluation which does not require the less numerically

stable Jordan decomposition.    
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JORDAN CANONICAL FORM

Consider the following dynamical system where the A matrix was studied in
Chapter 25.

-1 00 0

A=|10 44 B=|2

0 10 3
C=[2 0 1] D =[1]

Using S—2ZP, the polynomial lists are N={ 14 21 8 1}andD={4 8 5 1}.
The zeros and poles are Z =[ -1 (-3.5,£1.3228756553) and P=[ -1 -2 -2].

Using COMT, the controllability and observability matrices for the system are

00 O 2 0 1

U=(2 4 -24 V=-2 10

3 -2 4 2 4 4

where the fact that U has a rank of 2 indicates that the system needs reducing.
Using TF—C,the controllable canonical form is TF—C(N,D).

010 0
A=|0 0 1 B=|0

4 8 -5 1
C = [10 13 3] D = [1]

Using COMT and HRQR to compute rank, the controllability and observability
matrices are   
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FUNCTION COMMAND INPUTS OUTPUTS

00 1 10 13 3
Uu=10 1 -5 V=|[-12 -14 -2

1-517 8 4 4

and the rank of U is 3, while that of V is only 2 (with ¢ = 1E-8). Using CTO to
convert to observable form, we have

00 -4 10
A=[10 -8 B =[13

01 -5 3
C=[00 1] D = [1]

The U and V matrices for this form are the same as above, except swapped and
transposed.

Using HVSDE to compute partial fraction expansions, we have, where N and D are
defined above:

HVSDE(N,D,-1,1E-8)={0}
HVSDE(N,D,-2,1E-8)={4 3}

so the transfer function for the system is

0 4 3
+ + +1,

s +1 (s +22? s+2
 

where the zero coefficient of the s = —1 term again tells us that the system is
unreduced. Taking this into account, the controllable Jordan form is

  Jordan canonical form for distinct eigenvalue matrices is discussed in Chapter 20.
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yields the Jordan form given above.

FUNCTION COMMAND INPUTS OUTPUTS

: 1 J
A = B =

0 -2 1
C=[4 3 D = [1]

and CTO will convert this to observable Jordan form.

Now that we have demonstrated the power of MATHLIB, let us work the problem
correctly. Immediately, observing that N and D have a common root, we eliminate

it to get an irreducible system and obtain the new numerator and denominator
polynomials N, = {14 7 1}and D,={4 4 1}. Applying HVSDE to these lists   
 

 

 

  

POWER V = [ VECTOR ] IV; [2
SPECTRUM

PHASE IN V=[ VECTOR] ARG(V) x 180/r
DEGREES
 

SPECT([ (1,2) (2,3) (3,4) (4,5)]) =[5 13 25 41]

PHASE([ (1,2) (2,3) (3,4) (4,5) ]) = [ 63.4349 56.3099 53.1301 51.3402 ]

 

VECTOR LOG V = [ VECTOR ] LOG(V)
 

LIST ROUND  

 

 L = { LIST}  ROUNDEDLIST
 

SRND applies « N RND » to each element of thelist.

 

    

 

  

PLOT REAL VeR PLOT OF V
VECTOR

PLOT VECTOR VeC PLOT VR, VI   
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FILTER DESIGN MENU { FILTR }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

PLOT VECTOR V eR PLOT OF V

UP DIRECTORY NONE PARENT MENU   
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FIR DESIGN AND
DISCRETE COMPUTATIONS

INTRODUCTION

This chapter presents the 36 FIR design and discrete computation commands in the
WIND menu. The WIND commands provide most of the data windows used in digital
signal processing. Three clipping commands are also provided, in addition to filter
parameter conversion and FIR design commands. Discrete Chebyshev polynomial and
Wiener-Levinson approximations are also included in this chapter. Solving discrete
state space difference equations and transfer functions is covered at the end.

WINDOWING

The WIND menu provides the following windows:

Hamming HAMM Gaussian GAUS
General Hamming GENH Parzen PARZ
Hanning HANN Kaiser KAISR
Bartlett BARTL Welch WELC
Blackman BLAC Rectangular ONE

which are my versions of these window functions, obeying the FFT symmetry
properties that are fundamental to the application of discrete Fourier transforms to
continuous problems.
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CLIPPING

CLIPP, CLIPN, and CLIPB provide positive, negative, and both positive and
negative clipping, respectively.

FIR DIGITAL FILTER DESIGN AND APPROXIMATION

Programs and examples of finite impulse response (FIR) digital filter designs are
provided. FIRID provides designs based on ideal prototypes, and IXFRM and
PLDVD provide designs based on arbitrary prototypes.

DISCRETE CHEBYSHEV POLYNOMIAL APPROXIMATION

FMAT, CHEBY, DOCAP, and STRLT provide discrete orthogonal Chebyshev
polynomial approximations to digital impulse responses and digital waveforms.

ADAPTIVE FILTERS USING WIENER-LEVINSON SOLUTIONS

WL1 and WL2 provide additional least squares design techniques for digitalfilters.

DISCRETE HILBERT TRANSFORMER DESIGN

DHBRT in the FILTR menu of Chapter 27 designs digital Hilbert transformers.

DISCRETE STATE SPACE DIFFERENCE EQUATIONS

Programs are given demonstrating the computation of discrete state transition
matrices for state space difference equations. Calculation of transfer functions and
impulse responses is also demonstrated.

WAVELET TRANSFORMS

Perfect reconstruction filter banks and compactly supported wavelet transforms are
discussed in Appendix G. Example Haar wavelet matrix programs are also given.
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
 

 

  

 

 
 

 

  

 

 

FUNCTION COMMAND INPUTS OUTPUTS

HAMMING NeN NEVEN [ WINDOW ]

54 — .46 COS(2nk/N) for ke[0, N-1] N>4

GENERAL NeN N EVEN [ WINDOW ]
HAMMING
 

o — (1 — 0) COS(2nk/N) for ke[0, N-1] ae[0,1] N24

 

 

 

  
 

 

  

 

 
 

 

  

 

 

HANNING NeN N EVEN [ WINDOW ]

5 — .5 COS(2nk/N) for k €[0, N-1] N= 4

BARTLETT NeN N EVEN [ WINDOW ]

1 — ABS(2k - N)/N for ke[0,N-1] N=4

BLACKMAN NeN N EVEN [ WINDOW |
 

42 — 5 COS(2nk/N) + .08*COS(4nk/N) for k €[0, N-1] N > 4

 

GAUSSIAN
  

 

NeN NEVEN
 

[ WINDOW ]  
   EXP(-a(k — N/2)*2) for k €[0, N-1] a>0 N=>4  
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS

NeN NEVEN [ WINDOW ]

 

 

PARZEN    

 

 

1 — ABS(2k — N)/(N + 1) for k €[0, N-1] N>4

 

   

 

 

 

 

KAISER NeN N EVEN [ WINDOW ]

ey - (Ik “NaN
olPVT - MT or ke[o,N-1] B>0 N=4

l,[B]

WELCH NeN N EVEN [ WINDOW |

 

    

1 -[(2k — N)/(N + 1)? for ke[0, N-1] N>4

 

PLOTTING THE WINDOWS

The following program will plot all of the above windows: 
<« > LWw<«L EVAL W OBJ— DUP PLT1 L LREV 1 GET 2 / VROT

PLT1 >» »

where list L contains the window parameters, and W is a string with the name of
the desired window. For example, let L = { 1 64 } and W = "KAISR" and execute
the program. First the window will be plotted with the peak in the center. Press

ATTN, and the window will be plotted with the peak value at zero.   
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 FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
 

FUNCTION COMMAND INPUTS OUTPUTS
 

CLIP POSITIVE V = [ VECTOR | [ WINDOW |
CL = CLIP LEVEL   

 

 

IF V(k) > CL THEN V(k) = CL.

 

CLIP BOTH V =[ VECTOR ] [ WINDOW ]
CL = CLIP LEVEL 

 

   

IF |V(k)] > CL THEN V(k) = SIGN(V(K)) CL.  
 

CLIP NEGATIVE V =[ VECTOR ] [ WINDOW ]
CL = CLIP LEVEL

 

    

IF V(k) < CL THEN V(k) = -CL.

 

EXAMPLES OF CLIPPING OPERATIONS

LetV=[18-24-463]. Then CLIPP(V,5)=[15 24-453],

CLIPB(V,3) = [13-23 -333], and CLIPN(V,2)=[18 24-26 3].

 

 

   
RECTANGULAR SIZE =N [ VECTOR]
   

The rectangular window is simply a vector of all ones. ONE(5)=[1 1 1 1 1].   
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

IDEAL FIR | FL FH L C [ VECTOR |
DESIGN FL, FH e [0, 0.5 ]

 

    
FIRID performs FIR filter designs based on ideal prototype filters. FL and FH are
the normalized (see page 402) upper and lower frequency limits in Hertz seconds.
For lowpass designs, FH is arbitrary, and for highpass designs, FL is arbitrary. L is

the filter length. C is the case:

C = 1: LOWPASS C =2: HIGHPASS C = 3: BANDPASS C = 4: BANDSTOP

The equations for the impulse responses in these cases forn=0, 1, .. ., L-1 are

h(n) = 2 FL SINC[2r FL (n-L/2)],

hye(n) = SINC[r(n-L/2)] - 2 FH SINC[2r FH (n-L/2)],

hge(n) = 2 FH SINC[2r FH (n-L/2)] - 2 FL SINC[2r FL (n-L/2)],

hes(n) = 2 FL SINC[2r FL (n-L/2)] + SINC[r (n-L/2)]
- 2 FH SINC[2r FH (n-L/2)].

For a good discussion of the theory, see Stearns and David.

Their examples in Chapter 8 are computed with the demo program FIR:

« > FLFHLPWC «FL FHL C FIRID DUP PLT1 P OBJ—» DROP
W OBJ— DUP PLT3 VECTX DUP PLT3 DUP 2 L LN 2 LN / CEIL *
SWAP OVER ZFILN SWAP TWIDL FFT DUP VABS PLT1 DUP VTRUD

PLT3 > »     
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS
 

   
  

P is a parameterlist to be used by the window command specified by string W.

FIR(0.2, 0,20, {20}, "HAMM", 1) =[ 0 -.00345 —.00393 .00721 .02007 0
_.05163 —.05054 .08533 .29592 .4 .29592 .08533 —.05054 —.05163

0 .02007 .00721 -.00393 —.00345 ]

FIR(0, 0.25, 20, {20} ,"ONE",2)=[0 -.03537 0 .04547 0 -.06366 0
.1061 0 -.31831 .5 -31831 0 .1061 0 -.06366 0 .04547 0 -.03537]

FIR( 0.15, 0.35, 20, {20} , "HAMM" ,3)=[0 0 -.0127 0 .02481 0 .06381 0
-.27614 0 4 0 -27614 0 .06381 0 .02481 0 -.0127 0] FIR( 0.15, 0.35, 20, {20} , "HANN" ,4)=[0 0 .00723 0 -.02155 0 -.06123

0 27382 0 6 0 .27382 0 -.06123 0 -.02155 0 .00723 0]

The filter coefficients are returned to Level 2 of the stack and the FFT of them to

Level 1 of the stack. Observe that the filter phase is only linear in the passband.

   

SYMBOLIC F ao D SYMBOLIC
INVERSE EQUATION

TRANSFORM e>0

 

  
 

IXFRM computes symbolic inverse Laplace and z transforms using residue
integration. F is the numerator function, a is the variable of integration, D is the
denominator root vector, and € > 0 is used internally by RESDA to compute the
residues. UNIQE internally determines if there are repeated roots in D. The

degree of the numerator must be less than that of D.

See the examples in Chapters 25 and 27.  
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS
 

   
 

IXFRM EXAMPLE

Given the filter z transform, IXFRM is one of the methods for computing the impulse
response for FIR approximation. The following program does a complete phase
linear FIR filter design based on an IIR filter derived from a Butterworth analog

design. Since the numerator and denominator polynomials have the same degree,
the constant corresponding to the time equals zero value in the time domain, must
be divided out. The quotient is then the value at 0. Given the equation for the
impulse response, CSERSis then used to generate L (say 32) values of the

impulse response, which is windowed with a rectangular window (ONE) and FFT'd
to the frequency domain for plotting. The original IIR filter plot is then overlaid for
comparison. Multiplication with VECTX by the +1 output of EINDX performs the
phase linear modification of the transfer function so that after it is inverse FFT'd, it

is properly rotated in the time domain for phase linearfiltering. The outputfilter
coefficients are plotted and returned to the stack.

< 32 > L « 6 BPOLE .1 WARP L—LP .5 BILNT —- N D « N D RZINV
DuP2 R—CL PDVD DROP z XEQN 'z*n-1)'xz 4 ROLL 5 ROLL DROP
.00000001 IXFRM 'n>0' SWAP ROT EVAL IFTE {HOME}OVER n 0 L 1
- L 6 LIST 0 CSERS RE DUP PLT1 DUP L ONE VECTX 2 L LN 2
LN / CEIL » DUP 'L' STO SWAP OVER ZFILN SWAP TWIDL FFT VABS
DUP HALF1 PLT1 N D 1 L 1 FTRvV2 VABS DUP HALF1 PLT3 OVER -1
L 2/1 + EINDX REFLT VECTX L TWIDL IFFT RE DUP PLT1 > > »

Hence, while the FIRID design is always based on ideal prototype filters, IXFRM
and PLDVD below allow you to base the design on almost any prototypefilter with

which you wish to begin. More examples on the use of IXFRM are given in
Chapters 25 and 27.

This and the below PLDVD example can be generalized to filter lengths that are not
a powerof 2, using the DFT and IDFT programs on page 390 of Chapter 26.    
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

POLYNOMIAL COEFFICIENT 3: QUOTIENT
LONG DIVISION LISTS L1 & L2 2: REMAINDER

neN 1: DIVISOR   

 

 

PLDVD provides a direct means of approximating a digital IIR filter function. For
more details, see Chapter 19. The following example is like the above one, but

uses PLDVD instead of IXFRM.

< 32 » L « 6 BPOLE .1 WARP L—LP .5 BILNT R—»CL PSCAL 1 GAIN{
— ND « N DL PLDVD DROP LREV HALT DROP DUP L ONE VECTX
2 LLN2LN/CELL *» DUP 'L' STO SWAP OVER ZFILN SWAP TWIDL
FFT VABS DUP HALF1 PLT1 ND 1 L 1 FTRV2 VABS DUP HALF1

PLT3 OVER -1 L 2 / 1 + EINDX REFLT VECTX L TWIDL IFFT RE DUP

PLT1 > >» »

After completing the long division, the program halts so you can examine the
magnitude of the remainder. Push CONT, and the program will complete and plot
the design. The underlying IIR response is then overlaid for comparison. EINDX is
used to rotate the FIR coefficients into proper position. PLDVD provides a phase
linearelliptic filter-based design alternative to a Parks—McClellan iterative optimum

design.

 

    

ORTHOGONAL 3: PARAM LIST FORWARD
POLYNOMIAL 2: POLYNOMIAL TRANSFORM

APPROXIMATION 1: DEGREE MATRIX

MATRIX    
 

FMAT is like PMAT discussed in Chapter 17 except that it is less general, since
offsets are not possible, and faster, since the input polynomial function such as
TOFXL creates polynomial lists directly and not symbolic algebraic expressions

which must be reduced to Maclaurin series coefficient lists.    
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

FMAT combined with TOFXL provides a useful set of transformations in the study
and design of optimum phase linear FIR filters such as ones designed by the

Remez exchange algorithm.

As discussed in Rabiner and Gold, a linear phase FIR filter can be written as

H(e™) = H*(e) giPF-oe)

where H*(e') is purely real and can be expressed as a polynomial in cos(nw) =
T.(cosw) for w €[0, nt]. Defining x = cosw, as discussed in Chapter 17, PMAT and
FMAT provide polynomial coefficient transformations between polynomials in

cos(nw) and polynomials in cosw = x €[-1, 1].

The forward matrix expresses each of the orthogonal polynomials in terms of a
power series in xX" where x is some arbitrary variable. The inverse matrix expresses
the x" in terms of the polynomials. The following example begins with a polynomial

list in T,(z) and convents it to a list in z". The polynomial in z" is then converted
back to one in T(z).

«< {42638} >L «{} "TOFXL" L SIZE 1 - FMAT DUP INV —» TF
Tl « L VL -ROW TF x DUP —VTR V-L z XEQN HALT DROP TI x

—VTR VL 10 SRND "T" PEQN »> > »>

 

MATRIX
INVERSE

MATRIX M INVERSE
MATRIX 

 

   

MINV is slower than INV, but more accurate. It solves MX =| for X with LSOVR.

 

CHEBYSHEV
Ta(X)

n = DEGREE COEFFICIENT
n=0,1,.... LIST     
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }

 

 

FUNCTION COMMAND
  INPUTS  OUTPUTS
  TOFXL computes a coefficient list for the Chebyshev polynomial T(x). Its equation

is given by the TOFX command in the POLY menu discussed in Chapter 16.
TOFXL@4)={1 0 -8 0 8}.

 

DISCRETE
CHEBYSHEV
POLYNOMIALS  

 

 

N + 1 = NUMBER
OF DATA POINTS

n = DEGREE  

COEFFICIENT
LIST

 

The discrete Chebyshev polynomial f(x) is an orthogonal polynomial of the discrete
variable x taking on the values x, =m (m=0, 1, 2, . . ., N) which is defined by:

. S(n)fn+m)xt(N-m)! _
f.(x) = > (-1) HI m -mINI =0,1,. , N

where integer n is the degree of the polynomial.

CHEBYreturns a coefficient list for the polynomials. Use FMAT to build a
transformation matrix. The coefficients are given by the above equation with the

xV/(x — m)! = PERMF(x, m) deleted.

 

DISCRETE
CHEBYSHEV

APPROXIMATION   

 

ynyn=0,1...,N
T = PERIOD
L = ORDER  

3: b COEF VECT
2: M MATRIX
1: Bp COEF LIST
   DOCAP performs least squares discrete orthogonal Chebyshev polynomial

approximations using FMAT, CHEBY, and STRLT below.  
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

Given data y, sample period T > 0, and the order of the approximation L, 2 <L <
N where N + 1 is the size of y, DOCAP constructs the least squares estimate of y:

L

y = y b, f.(x), b, =
n=0

It then uses FMATto transform the coefficients into a polynomial in PERMF(x,m).
Finally, it uses STRLT to transform the coefficients into a polynomial in t where

t = T x, T is the sampling period, and B, are the coefficients.

L

y=3 Bt"
n=0

The variable x in these equations must be an integer, and the sampling must be
uniform. The b coefficients and the b to B transformation matrix M are also

returned. See Chapter 22 of AMS 55 and Stearns and David for more details.

«5 5020 >NLTt<«ONFORXXT xt STO
"10xtA3-3xt*2-5xt-1" -NUM NEXT N 1 + —-ARRY T L DOCAP > »>

The b and B coefficient outputs of this test program are

b=[-196 -5296 1.95999999998 -.470400000085 5.333E-10 -1.476E-9 ]],  B = { -1.00000000105 -4.99999995916 -3.00000032266 10.0000009285
-1.10064822985E-6 4.57144676025E-7 }.    
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

Now it is important to understand that the transformation from the b to the p
coefficients is not orthogonal. You therefore must know how many B coefficients

are required, or you will introduce unnecessary errors into your B coefficients, which
in larger problems can be huge. Since the b coefficients are associated with

orthogonal polynomials, the magnitude of the last two coefficients indicates that
they should be zero. Replacing the last two b coefficients with 0 and multiplying (b
x M = B) yields the B coefficients you will get if you only ask for L = 3 coefficients in

the above example. V—L will make the B vectorinto a list.

B = { -1.00000000011 -4.99999999881 -3.0000000028 10.0000000018 0 0}

These P coefficients are 1 to 2 orders of magnitude more accurate than those

 

above.

STIRLING L = COEFFICIENT

TRANSFORM APPROXIMATION MATRIX

ORDER    

 

 

 STRLT sets up a matrix for easily implementing the following relation for Stirling
numbers of the first kind, which allows PERMF(x,n) to be expressed as a

polynomial in x.

x(x-1)(x-2) ... (x-n+1) = PERMF(x,n) =} S™ xm

Using the notation in AMS 55, the elements of the (L + 1) x (L + 1) matrix are      
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }

  
 

 

 
 

   
 

FUNCTION COMMAND INPUTS OUTPUTS

10 0 0 - O
01 0 0 ~0

os 1 0 ..0 So. 1
S 0 n>0

0s"sP 1 .o0 Ss _

0 si" s® s? .. 1]  
This matrix can be used to transform a polynomial in PERMF(x,n) into one in x.

Stirling numbers of the first kind are discussed in Chapter 18.

 

   

 

  

WIENER- V = COVARIANCE 2: h VECTOR
LEVINSON VECTOR 1: e VECTOR

SOLUTION Ve C

WIENER- RHS VECTOR 2: h VECTOR
LEVINSON V = COVARIANCE 1: e VECTOR
SOLUTION VECTOR e C
 

WL1 and WL2 provide solutions to Hermitian Toeplitz systems of linear equations:
R h = ¢, where R is an N x N Toeplitz matrix such as an autocovariance matrix, h
is the unknown column vector, and ¢ is the known "right-hand side" (RHS) column
vector. In statistical applications h represents the minimum mean square error filter
associated with the Wiener—Hopt Equation defined by R and ¢. The V argument in

WL1 and WL2 is the first column of the R matrix. There are two cases:    
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FUNCTION COMMAND INPUTS OUTPUTS

 

    

WL1 provides the solution in the case where TRNP(¢) =[ Py, 00 ... 0] and
P, is the resulting mean square error associated with filter solution h.

WL2 provides the solution in the general case where ¢ is equal to the RHS vector.

With both solutions the sequence of errors is returned to Level 1 of the stack in a
vector.

The size of V and RHS must be the same and be 2 or greater. WL1 and WL2
provide statistical least squares solutions. If you specify a singular (noise-free)
deterministic problem, expect to get a divide-by-zero error during the calculation!

 
The program:

< 0 15 FOR K 'EXP(-K*2)' -NUM NEXT 16 —ARRY DUP PLT1 HALT WL1 PLT1

PLT1 >

will create a covariance vector in Level 1 of the stack and HALT. Press CONT and
WL1 will compute the solution and plot it. The errors in the solution will be plotted
first. Then the solution is plotted. The first value of e is V(1), which must be real,

and the last value of e is the number P,,.

The next program illustrates WL2:

< 16 UNITI 0 15 FOR K 'EXP(-K*2)' -NUM NEXT 16 —ARRY DUP PLT1
HALT WL2 PLT1 PLT1 »>     
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DESIGN OF FIR ADAPTIVE INTERFERENCE CANCELERS

One interesting application of the Wiener-Levinson algorithm is the design of
adaptive interference cancelers, which whiten the environment by placing notches
where there are interferers. The below programs E3 and E6 create interference
environments characterized by their power spectral densities (PSD) and put the

power spectrum on the stack. WF2 plots the input PSD, constructs a filter from that
PSD, which is also plotted, and plots the filter output response after convolution. In

practice the PSD would have been estimated from the received signal by any
number of methods discussed in the literature. Many of these techniques can be

implemented by MATHLIB.  E3: <{8} (1,0) CON 3 (80,80) PUT 7 (80,80) PUT »

E6: < {33} (.035,0) CON 10 (4,4) PUT 12 (6,4) PUT 14 (8,5) PUT 16
(10,0) PUT 18 (4,8) PUT 20 (4,6) PUT 22 (4,1) PUT REFLT »

WF2: « "LOG PLOT INPUT PSD" 3 DISP DUP DUP SIZE EVAL 0 —- N
PWR <« SPECT DUP VLOG 10 x DUP VMIN N 2 / 1 + SWAP R-C
"FREQ" "PWR DB" 3 —LIST PLTIL N TWIDL IFFT DUP 1 GET ABS
'PWR' STO RE DUP SIZE 0 CON 1 1 PUT SWAP WL2 VMIN PWR /
LOG 10 x SWAP N TWIDL FFT VSRT "LOG PLOT FILTER" 3 DISP DUP
SPECT VLOG 10 x DUP VMIN N 2 / 1 + SWAP R—C "FREQ" "PWR

DB" 3 —LIST PLTIL "LOG PLOT OF OUTPUT" 3 DISP ROT OVER VECTX
SPECT VLOG 10 x DUP VMIN N 2 / 1 + SWAP R—-C "FREQ" "PWR

DB" 3 —LIST PLTIL > »

Now it is very important to observe not only the shape of the plots, but also the
variation in dB of the power levels, since while the final output plot is not absolutely

flat (white), the peak-to-peak interference power has been reduced by orders of
magnitude in dB. Thus, the filter canceled the interference and did an extremely

good job, given only its PSD.     
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FUNCTION COMMAND INPUTS OUTPUTS

VOLTS TO dB VALUE IN VOLTS VALUE IN dB

> 0

V IN dB = 20 LOG(V)

dB TO VOLTS VALUE IN dB VALUE IN VOLTS

NEPERS TO dB VALUE IN VALUE IN dB

NEPERS

V IN dB = 8.68588963808 x V

dB TO NEPERS VALUE IN dB VALUE IN

NEPERS

d n PARAMETER 2: 5INVOLTS > 0 2: a,, dB

CONVERSION 1:a_. dB 
 

minamin = 20 LOG

If the passband peak-to-peak response is specified as varying from 1 + dto 1 - 6
and the maximum stopband response is mn, then:

([1+8] /m ) and a, = 20 LOG ( [1+5] / [1-8] ).

Rabiner and Gold use this notation where 3 = 8, and n = §,.

 

d n PARAMETER
CONVERSION   

 

 
2: a, dB
1: a,,dB    —-

-
N
D

3
O
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FUNCTION COMMAND INPUTS OUTPUTS

REFLECTION REFLECTION ma IN dB
COEFFICIENT COEFFICIENT p
CONVERSION p € [0, 100)   

a,= -10 x LOG(1-SQ(p/100))

Computes a,,, in dB given the reflection coefficient in percent.

p = 100 Y(1 - ALOG(-a,,,/10))

The voltage-standing-wave ratio VSWR = (1+p/100)/(1-p/100).

 

 

 

  

REFLECTION a. INdB REFLECTION
COEFFICIENT COEFFICIENT p
CONVERSION a. 20

RIPPLE FACTOR a. INdB £
CONVERSION 8.20   

a__ = 10LOG(1 + ¢?)

 

 

 

 

 

RIPPLE FACTOR 20 Bay IN dB
CONVERSION

VECTOR MPY Viov2 V1, x V2,  
VECTX is useful for applying windowsto filters.

VECTX([35471],[42315])=[1210127 5]

 

UP DIRECTORY   

 

 
NONE

 
PARENT MENU    
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 FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS

 

    

DISCRETE STATE SPACE SYSTEMS

See Chapters 25, 26, and 27 for state space conventions and techniques. In z
transform notation for A, B, C, D € C, the matrix state equations are

z X(z) = A X(z) + B U(z), Y(z) = C X(z) + D U(z).

where A is a square matrix and D is a 1 x 1 matrix.
The below programs assume that the SIZE(A) > {2 2}.

The following program will compute the symbolic state transition matrix @&(n) by
computing the inverse z transform of z (zl + A)". Note that z 2"= 2".

ZASOV: « > A « A SIZE 5 S « A 1 SMI SWAP 0 1E-10 100 AROOT

'V' STO « z XEQN 'z*n' x z V 1E-10 IXFRM »

L1F1 'V' PURGE SOB— DROP S —»SOB >» >» »

The next program uses IXFRM to compute the symbolic impulse response from the
z transform transfer function which is computed by command S—TF.

IXFRMD: « > AB CD¢e<« ABC D eg S»ZP DUP2 R—CL PDVD

DROP z XEQN 'zA(n-1) x z 4 ROLL 5 ROLL DROP 1E-10 IXFRM IF

OVER SABS 0 > THEN 'n>0' SWAP ROT EVAL IFTE ELSE SWAP DROP

END >» > »>

The theory is given in Chapter 7 of Proakis and Manolakis. For example, let

A=[[0 1]J[1 1],B=[[O]J[1]L.C=[[1 1]; D=[[1]],e=1E-10.

Then the above programs compute the same results as given in Example 7.5.9 of
Proakis and Manolakis. While the MATHLIB output symbolic equations are not as

pretty as those in the the text, the answers do agree to 10 digits.
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FIR DESIGN AND DISCRETE
COMPUTATIONS MENU { WIND }
FUNCTION COMMAND INPUTS OUTPUTS
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SPECIAL VECTOR OPERATIONS

INTRODUCTION

This chapter presents the 24 special vector operations in the VECTR menu. The
VECTR commands include object conversion, sorting, rearrangement, as well as
numerous primitives for extracting and replacing subsets of elements. They allow the
user to manipulate the data in vectors without putting the elements on the stack.

OBJECT TYPE CONVERSION

The commands V—L and V«L provide conversions between vector and list objects.
—VTR converts both column and row vectors (matrix objects) into vector objects. It
is the inverse of the commands 4ROW and —COL found in the MATR menu. If the
input to ->VTR is already a vector, it simply returns that vector.

SORTING

SRTT and SRTsort vectors and put the elements into ascending or descending order.

The command SRTI combines SRTT with bookkeeping so that an index is output
defining all the position interchanges. This is useful for sorting matrices based on
vectors using RORDR and CORDR.
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REVERSING

VREV and LREV reverse the order of the elements in vectors and lists.

ELEMENT MANIPULATIONS

Seventeen additional commands provide for value and subset inserting, deleting,
swapping, copying, and moving, as well as vector splitting and splicing.

ADVANCED APPROXIMATIONS WITH SERIES

The VSUBS command affords a number of interesting advanced series
approximations. In the below examples, let fiz) ~ £ az" be the N term Maclaurin
series approximation for f(z) represented by polynomial list L as defined on page 193.

POWER: The Maclaurin series polynomial list for [f(z)]™ is computed by PTOM:

<«<—>L m «L SIZE—->N « L 2 m START LL PMPY 1 N VSUBS NEXT » »

REVERSION OF SERIES: Let w = X az". Find coefficients b, such that z = X b,w".

REVS: « 5 L<L SIZE 5 N<N UNITI VoL L 3 N START DUP L PMPY
1 N VSUBS NEXT N —LIST M«SO MINV 2 EROW VL >>»

Observe that z = f™![ f(z) ] = f~[w] ~ Z bw" is the inverse of the f(z) function.

INVERSE AND RATIO OF SERIES: See the PLDVD command on page 204.

COMPOSITION OF TWO SERIES: Let f(z) be defined as above and also define gw]
~ XZ ¢,w" to be the first N terms of the Maclaurin series for g[w] represented by list G.
Then the first N terms of g[ f(z) ] are computed by the below program CFG.

<«<—>L G«G SIZE N«GNNVSUBS N1-1FOR KL PMPY G K
K VSUBS PADD 1 N VSUBS -1 STEP > > »

ForL={2 -5 .01 -.005 .00004 }, (0.1) = FEVAL(L,0.1) = 1.950095004. FEVAL(
PTOM(L,3) , 0.1) = 7.415958858 ~ (1.950095004)*. FEVAL(REVS(L) , 1.950095004) =

0.0999999977. f{ f(0.1)) = 1.02647988216. FEVAL( CFG(L,L), 0.1) = 1.02647988195.
CFG is useful for computing the Maclaurin series of v[1+f(z)], for example.
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VECTOR OPERATIONS MENU

 

 

 

   

 

  
 

{ VECTR }
FUNCTION COMMAND INPUTS OUTPUTS

VECTOR TOLIST VECTOR LIST

LIST TO VECTOR LIST [ VECTOR|

VolL([[123]])={123) Vel({123})=[123]

TO VECTOR VECTOR [ VECTOR |

 

    

SVTR([[112][38]])=-VTR([[123]])=->VTR([123])=[123]

 

 

    

 

 

SORT T [ VECTOR | [ VECTOR]

T = increasing value with increasing position [1 2 3]

SORT | [ VECTOR |] [ VECTOR]

SORT T WITH [ VECTOR ] 2: [ VECTOR |]
SORTED INDEX 1: [ INDEX] 

 

   
SRTT([2537])=[2357] SRTL([2537])=[7532]

SRTI([2537]) = 2:[2357] 1:[1324]

Suppose vector V originated as either a row or column in a matrix M. Index vector
| is the required vector for sorting matrix M according to row (column) V by using

RORDR or CORDR. See pages 233 and 234. SIZE(V) > 2 to be sorted.

   
 

   
VTR REVERSE [ VECTOR] [ VECTOR]
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VECTOR OPERATIONS MENU
{ VECTR }

FUNCTION COMMAND INPUTS OUTPUTS

LIST LIST

 

 

LIST REVERSE    

 

 

VREV([12345])=[54321] LREV({12345})={54321)

 

X INSERTED AT LARGER
INSERT VALUE LOCATION L VECTOR WITH X

ATL   

 

 

IVAL([12345],94)=[123945]

 

DELETE VALUE SMALLER
AT LOCATION L VECTOR

WITHOUT X AT L
DELETE VALUE

 

 

  
 

DVAL([123945],4)=[12345]

 

 

 

SWAP VALUE SWAP VALUES AT L1 AND L2

MOVE VALUE MOVE VALUE ATFTOT

COPY VALUE COPY VALUE AT F INTO T

 

  
 

SVAL([12345],2,5)=[15342]
MVAL([12345],2,5)=[13452]
CVAL([12345],4,1)=[42345]     
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VECTOR OPERATIONS MENU
{ VECTR }

FUNCTION COMMAND INPUTS OUTPUTS

VECTOR INSERT INSERT VI INTO V STARTING AT |.
OUTPUT VECTOR IS LARGER

DELETE VALUES IN RANGE F TO L.
OUTPUT VECTOR IS SMALLER

 

  

 

VECTOR DELETE   

 

 

 

 

VINST ([12345],[000] ,3)=[12000345]
VDEL ([12000345],3,5)=[12345]

VECTOR EXTRACTS SUBSET OF V
SUBSET FROM FTO L

VECTOR REPLACES THE PART OF V1 WITH
REPLACE V2 STARTING AT POSITION F

 

   
VSUBS([12345],2,5)=[2345]

VREPL([12345],[89],2)=[18945]

Both VSUBS and VREPL also work forlists (symbolic vectors).

 

 

VECTOR SPLIT V N TWO VECTORS    

Given vector V and 0 < N < size of V, VSPLT divides V into two vectors. N is the

size of the first.

 

VECTOR TWO VECTORS ONE VECTOR
COMBINE  

 

   

Given vectors V1 and V2, VCMB splices them into a single vector [ V1 V2].      
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VECTOR OPERATIONS MENU
{ VECTR }
 

 

FUNCTION COMMAND INPUTS OUTPUTS

LIST ZERO LIST LIST
DELETE    

 

 

Removes the contiguous zeros at the right of list L. For example:

LZDEL({12304000})={12304}.

 

 

   
LIST ZERO-FILL LISTS N and D LISTS N and D
 

Adds zeros to the right of the smaller of the lists N and D so that they have the
same size.

LZFIL( (1234), (56]) -{

 

VECTOR OF
ONES

N = SIZE [ VECTOR|

 

 

   

ONE creates a vector of all ones. ONE(4)=[1 1 1 1]

 

UNIT IMPULSE N = SIZE [ VECTOR|
 

 

   

UNITI creates a vector of size N whose first value is one and the rest are zero.

UNITI(S) =[1 0 0 0 0]

   UP DIRECTORY NONE PARENT MENU
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VECTOR SCALAR ALGEBRA

INTRODUCTION

This chapter presents the 30 vector scalar algebra commands in the VSAG menu. The
VSAG commands generally treat vectors as a collection of ordered values and provide
the common arithmetic functions for those values so that the user can apply the same
operation to the data without having to put the individual elements on the stack.
Maximum and minimum value commands are also provided along with random vector
creation commands.

ARITHMETIC

Commands VADD, VSUB, VECTX, and VECTD provide the basic +, -, x, and /
functions. VSINV provides the vector invert function INV. Multiplying or dividing
all the elements by a constant is provided by the HP 48 x and / commands. VECTX
is known as the Hadamard product.

SIMPLE FUNCTIONS

VLOG, VALOG, VLN, VEXP, VSQ, VSRT, VABS, VARG, VMOD, VRND, VFLOR,
and VCEIL apply the associated HP 48 command to each element of the vector. V1F1
and V2F1 are available for applying other commands, such as SIN, to each element
of a vector.
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EXTREME VALUE

VMAX and VMIN find the maximum and minimum values of vectors.

ARGUMENT UNWRAP

ARGU and VTRUR provide argument unwrapping in radians for argument and

complex vectors.

RANDOM VECTORS

RNDU and RNDN provide random vectors with uniform and normal amplitude
statistics. RNDC provides two jointly normal vectors with a user-specified correlation

coefficient.

LIMITATIONS OF SOFTWARE

Several of the programs in this menu like VMAX assume that the SIZE(V) => 2.
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VECTOR SCALAR ALGEBRA
MENU { VSAG }
 

 

    

 

 

 

 

 

 

  
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

VECTOR MAX V = [ VECTOR| MAX VALUE

VECTOR MIN V = [ VECTOR ] MIN VALUE

VMAX([1325-1])=5 VMIN([1325-1]) = -

VECTOR V = [ VECTOR | [ VECTOR |]
SCALAR ADD s = SCALAR V,+s

VECTOR V = [ VECTOR ] [ VECTOR |
SCALAR s = SCALAR V,-s

SUBTRACT

VADD([ 13 25-11,2)=18 8 4 7 1]
VSUB([1325-1],2)=[-1 10 3 -3]

VECTOR LOG V = [ VECTOR ] LOG(V)

VECTOR ALOG V = [ VECTOR | ALOG(V)   

 

  
 

VLOG([3 5 4 7 1])=[.4771 .699 .6021 .8451 0]
VALOG([3 5 4 7 1])=[1000 100000 10000 10000000 10 ]

    
 

  
 

VECTOR LN V = [ VECTOR ] LN(V)

VECTOR EXP V = [ VECTOR | EXP(V)

VLN ([3 5 4 7 1])=[1.0986 1.6094 1.3863 1.9459 0]
VEXP([3 5 4 7 1])=[20.09 148.41 54.6 1096.63 2.72]   
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VECTOR SCALAR ALGEBRA
MENU { VSAG }
 

 

 

FUNCTION COMMAND INPUTS OUTPUTS

VECTOR SQ V =[ VECTOR] SQ(V)

VECTOR Y V =[ VECTOR ] v(V)   

 

 

VSQ([3 547 1])=[9 25 16 49 1]
VSRT([3 5 4 7 1])=[1.732 2.236 2 2.646 1]

 
VECTOR MPY

VECTOR DIVIDE

V1 V2 V1, x V2,
 

 

 

  V1 V2 V1, + V2
 

VECTX([3 54 7 1],[42315])=[12 10 12 7 5]
VECTD([12 10 12 7 5],{3 54 7 1})={4 2 3 1 5)

V1 and V2 may be HP vectors or symbolic vectors (lists). If either V1 or V2 is a
list, then the output vector is also a symbolic vector(list).

 
VECTOR ABS

VECTOR ARG

V = [ VECTOR ] ABS(V)

V =[ VECTOR | ARG(V)  

 

  
 

The outputs of VARG, ARGU, and VTRUR are in radians. If degrees is desired,
then use PHASE, PHASU, or VTRUD in the { PROC } menu.

   VABS([ (1,2) (2,3) (3,4) ] = [ 2.2361 3.6056 5]
VABS([ (1,2) (2,3) (3,4) ] = 1.1071 .9828 .9273 ]

VECTOR V = REAL UNWRAPPED
UNWRAP IN [ VECTOR| ARGUMENT
RADIANS VECTOR 
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MENU { VSAG }
VECTOR SCALAR ALGEBRA

 

 

FUNCTION
 COMMAND

 INPUTS  OUTPUTS
 

unwrapping.

ARGU provides argument unwrapping where the input vector contains arguments in
radians, such as the output of VARG. The values must be in the range [-=, Tt].
VTRUR uses VARG to compute the argument and then calls ARGU to do the

 

VECTOR
UNWRAP IN
RADIANS  

 

 

V = COMPLEX
[ VECTOR ]

 

UNWRAPPED
ARGUMENT
VECTOR
 

VTRUR([ (1,0) (1,2) (2,-3) (3,-8) (-2,-5) (-1,5) (1,1) ])

=[0 1.1071 -.9828 -1.212 -1.9513 -4.515 -5.4978]

 

VECTOR INV
 

 

 
V = [ VECTOR |

 
V. INV
 

VSINV({})={}.

VSINV([ (1,2) (0,0) (3,4) ]) =[ (.2,-.4) (0,0) (.12,-.16)]

VSINV has an interesting feature. It inverts zeros by returning zeros. Also,

 

 

 

 

CEILING   

 

  

VECTOR MOD V =[ VECTOR ] MOD(V;,n)

nelN

VECTOR ROUND V =[ VECTOR ] V n RND

nel

VECTOR FLOOR V =[ VECTOR ] FLOOR(V)

VECTOR V =[ VECTOR ] CEIL(V)   
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MENU { VSAG }
VECTOR SCALAR ALGEBRA

 

FUNCTION COMMAND
  

INPUTS  OUTPUTS
 

See the HP 48 owner's manual for the commands MOD, RND, FLOOR, and CEIL.

 

 

 

 

  

RANDOM i = MEAN
VECTOR WITH c = STAND DEV RANDOM
UNIFORM s = SEED [ VECTOR ]
AMPLITUDE N = SIZE
STATISTICS

RANDOM iw = MEAN
VECTOR WITH oc = STAND DEV RANDOM

NORMAL s = SEED [ VECTOR |]
AMPLITUDE N = SIZE
STATISTICS
 

RNDN(1,2,11,8) creates an eight dimensional vector with elements that are
normally distributed with mean value of 1 and standard deviation of 2.

 

RANDOM
VECTOR WITH

NORMAL
AMPLITUDE
STATISTICS  

 

 

un = COMPLEX
MEAN

oc = COMPLEX ©

CORRELATION
COEFFICIENT  

RANDOM
[ VECTOR|

   RNDC creates two normally distributed vectors and stores them as a complex
vector. The real part of the mean and standard deviation is associated with the

real part of the resulting vector. The correlation coefficient p is real, and p €[-1, 1].
The command C—R will separate the vectors.
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VECTOR SCALAR ALGEBRA
MENU { VSAG }

FUNCTION COMMAND INPUTS OUTPUTS

 

     

RNDC( (1,2), (3,4), .5, 1, 8) creates a complex, normally distributed random
vector of size 8. The real part has mean 1 and standard deviation 3, while the

imaginary part has mean 2 and standard deviation 4. The correlation between the
real and imaginary parts is 0.5.

 

EXPONENTIAL
INDEX

acC NeN [ VECTOR ]

 

    

EINDX creates an exponential index vector whose first element equals 1 and the
others equal a"forn=1,2,...,N- 1.

EINDX(2,7)=[1 2 4 8 16 32 64]

 

   

 

VECTOR V = [ VECTOR ]
CONSTANT [ VECTOR |
DELETE C = CONSTANT
 

VCDEL deletes all the elements equal to constant C in V and returns what is left.
{ } is returned if all the elements of V are equal to C, symbolizing an empty vector

[1

VCDEL([1 2 0 4],0)=[1 2 4] VCDEL([1 1 1],1)={}    
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VECTOR SCALAR ALGEBRA
MENU { VSAG }
 

 

  

 

FUNCTION COMMAND INPUTS OUTPUTS

VECTOR V =[ VECTOR]
ELEMENT V, «<P> EVAL

OPERATIONS P = PROGRAM   
VIF1([1 2 3],< COS >) =[ COS(1) COS(2) COS(3)]

 

VECTOR
ELEMENT

OPERATIONS  

 

 

VECTORS V1 V2
P = PROGRAM

 

V1, V2
< P >»

EVAL
 

V2F1([1 2 3],[4 5 6],<ATN2 >) =[ ATN2(1,4) ATN2(2,5) ATN2(3,6) ]

V1 and V2 may be HP vectors or symbolic vectors (lists). If either V1 or V2 is a
list, then the output vector is also a symbolic vector (list). The elements of V1 and

V2 may be symbolic.

 

VECTOR OF
ZEROS

 

  
N = SIZE

 
[ VECTOR]

 

ZERO creates a vector of all zeros. ZERO(4)=[0 0 0 0]

   UP DIRECTORY

 

  
NONE

   PARENT MENU
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MATRIX SCALAR ALGEBRA

INTRODUCTION

This chapter presents the 32 matrix scalar algebra commands in the MSAG menu.
The MSAG commands generally treat matrices as a collection of ordered values and
provide the common arithmetic functions for those values so that the user can apply
the same operation to the data without having to put the individual elements on the
stack. Maximum and minimum value commands are also provided along with random
matrix creation commands.

ARITHMETIC

Commands MADD, MSUB, MATX, and MATD provide the basic +, -, x, and /
functions. Multiplying or dividing all the elements by a constant is provided by the
HP 48 x and / commands. MATX is known as the Hadamard product.

SIMPLE FUNCTIONS

MLOG, MALOG, MLN, MEXP, MSQ, MSRT, MABS, MARG, MMOD, MRND,
MFLR, and MCEIL apply the associated HP 48 command to each element of the
vector. M1F1 and M2F1 are available for applying other commands, such as SIN, to

each element of a matrix.
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EXTREME VALUE

MMAX and MMIN find the maximum and minimum values of matrices.

MATRIX NORMS

RSUM, CSUM, Rz0D, Cz0D, RABS2, and CABS2 provide various matrix norms.

RANDOM MATRICES

MRDU and MRDN provide random matrices with uniform and normal statistics.
MRDC provides two jointly normal matrices with a user-specified correlation. MRDC
can also be used to create random complex matrices. MRDS and MRDH create
random symmetric and Hermitian matrices.

LIMITATIONS OF SOFTWARE

Several of the programs in this menu like RSUM assume that there are at least two
columns. Similarly, MMAX assumes that M has at least two elements.
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FUNCTION COMMAND INPUTS OUTPUTS

MATRIX MAX M = MATRIX MAX VALUE

MATRIX MIN M = MATRIX MIN VALUE

18 18
MMAX]|4 6|| = 9 MMIN||4 6] = 1

2 9 2 9

MATRIX SCALAR | M = MATRIX My = My +s
ADD s = SCALAR

MATRIX SCALAR | M = MATRIX My = My —s
SUBTRACT s = SCALAR

18 3 10 18 16
MADD||4 6|,2 |=|6 8 MSUB||4 6,2 [=|2 4

2 9 4 11 2 9 0 7

MATRIX LOG M = MATRIX LOG(M,)

MATRIX ALOG M = MATRIX ALOG(M,)

18 0 .803 13 10 1000
MLOG]|4 6|| = |.602 .778 MALOG||4 6|| = [10000 1000000

2 9] |.301 954 2 4) 100 10000    
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FUNCTION COMMAND INPUTS OUTPUTS

MATRIX LN M = MATRIX LN(M,,)

MATRIX EXP M = MATRIX EXP(M;)

13 0 1.099 13 2.718 20.086

MLN|(4 6|| = [1.386 1.792 MEXP||4 6|| = (54.598 403.429

2 4 693 1.386 2 4 7.389 54.598

MATRIX SQ M = MATRIX SQ(M,)

MATRIX Vv M = MATRIX (My)

13 1 9 1 9 13

MSQ|(4 6(| = |16 36 MSRT}|(16 36|| = (4 6

2 4 4 16 4 16 2 4

MATRIX MPY M1, M2 = MATRIX M1, x M2,

MATRIX DIVIDE M1, M2 = MATRIX M1, + M2,

13 [42 4 6 4 6| [4 2 13

MATX||4 6|, [3 5|| = |12 30 MATD||12 30(, 3 5|| =|4 6

24 16 2 24 2 24 1 6 2 4

ROW SUM M = MATRIX [ VECTOR]
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MATRIX SCALAR ALGEBRA

{ MSAG }
FUNCTION COMMAND INPUTS OUTPUTS

COLUMN SUM M = MATRIX [ VECTOR |

13 13
RSUM|[4 8|| = [4 10 6] csuM||4 8|| = [7 13]

2 4 2 4

ROW SUM PLUS M = MATRIX 2: [VECTOR]
DEL ROW IF 2=0 | 1: M  

 

 
 

of zero.

10 2:11 6]
RzoD||4 -4|| = tl

2 4 2 4

Output is a vector of row sums and matrix M after removing the rows having a sum

10

CzO0D(4 4

2 4

If all rows (columns) are deleted, an —-ARRY error occurs.

2: [7]
1

1: 14

2

 

   
 

  

COL SUM PLUS M = MATRIX 2: [ VECTOR ]
DEL ROW IF Z=0 1. M

MATRIX ABS M = MATRIX ABS(M,)   
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MATRIX SCALAR ALGEBRA

 

  
 

 
 

 

 

 

 

{ MSAG }
FUNCTION COMMAND INPUTS OUTPUTS

(1.2) (23) [2.238 3.608 (1,2) (23) [1.107 83
was]2 el - | 5 oo wary el - pe 896

MATRIX ARG M = MATRIX ARG(M,)

MATRIX MOD M = MATRIX MOD(M,,n)

MATRIX ROUND M = MATRIX M n RND

MATRIX FLOOR M = MATRIX FLOOR(M,)

MATRIX CEILING M = MATRIX CEIL(M,) 

 

  
 

See the HP 48 owner's manual for the commands MOD, RND, FLOOR, and CEIL.

 

ROW NORM MATRIX M [ VECTOR]
 

COLUMN NORM  

 

 MATRIX M  [ VECTOR |
 

These sum the squares of the absolute values of the elements in each row
(column) and return the values in a vector. This is the square of the Frobenius
(Euclidean) norm of each row (column). RABS2 and CABS2 are like RABS and

CABS except that the sum is not square-rooted.

   RANDOM
MATRIX WITH
UNIFORM
AMPLITUDE
STATISTICS  

 

 

uw = MEAN
6 = STAND DEV

s = SEED
L={RC)

 
RANDOM

RxC

MATRIX    



CH 31 : MSAG MATRIX SCALAR ALGEBRA

 

469

 
 

{ MSAG }
MATRIX SCALAR ALGEBRA

 

 

 

  

 

 

FUNCTION COMMAND INPUTS OUTPUTS

RANDOM i = MEAN
MATRIX WITH oc = STAND DEV RANDOM
NORMAL s = SEED RxC

AMPLITUDE L={RC} MATRIX
STATISTICS

RANDOM i = COMPLEX
MATRIX WITH MEAN RANDOM
NORMAL 6 = COMPLEX RxC

AMPLITUDE p= MATRIX

COEFFICIENT
 

MRDC creates two normally distributed matrices and stores them as a complex
matrix. The real part of the mean and standard deviation is associated with the

real part of the resulting matrix. The correlation coefficient p is real, and p €[-1, 1].
The command C—R will separate the matrices.

MRDU, MRDN, and MRDC call RNDU, RNDN, and RNDC, respectively, to obtain

the random values. Then RDM is used to create the matrix.

 

 

STATISTICS   

 

  

RANDOM iw = MEAN SQUARE
SYMMETRIC c = STAND DEV RANDOM
MATRIX WITH s = SEED R x R
NORMAL L={RC} C=R MATRIX

STATISTICS

RANDOM iw = MEAN SQUARE
HERMITIAN oc = STAND DEV RANDOM
MATRIX WITH s = SEED R x R
NORMAL L={RC} C=R MATRIX    



 

470 MATRIX SCALAR ALGEBRA

 

CH 31 : MSAG

 

{ MSAG }

 

MATRIX SCALAR ALGEBRA

 

FUNCTION
 
COMMAND  INPUTS  OUTPUTS
 

 (M + MY)2.

MRDS calls MRDN to obtain a random normal matrix M of mean pn and standard
deviation v2xo. Then MRDS computes (M + M")/2.

MRDH calls MRDC to obtain a random complex normal matrix M of mean pu,
standard deviation ¥2xo, and correlation coefficient 0. Then MRDH computes

 

MATRIX
ELEMENT

OPERATIONS  

 

 

M = MATRIX
P = PROGRAM

 
M, <P> EVAL

 

M1F1([[1 2][3 4]],< COS ») =[[ COS(1) COS(2)][ COS(3) COS(4) J]

 

MATRIX
ELEMENT

OPERATIONS  

 

 

M1 M2 =
MATRIX

P = PROGRAM  
Mi Mi

< P >» EVAL

 

M2F1([[1 2][3 4] .[[5 6] 7 8]],<ATN2 >)
= [[ ATN2(1,5) ATN2(2,6) || ATN2(3,6) ATN2(4,8) |]

 

UP DIRECTORY  

 

 
NONE

 
PARENT MENU
  

  



APPENDIX A

AVAILABILITY OF OVER 700
APPLICATION, TEST, AND

SYMBOLIC FUNCTION PROGRAMS

INTRODUCTION

There are over 500 MATHLIB application, test, and example programs that are
available. They include the nontrivial examples in the manual. Also available are
over 200 symbolic function and symbolic function defined derivative programs as
described at the end of Chapter 19. This software is available on a ROM card from
which you can transfer the source code programs to your VAR directory to edit and use
in your particular applications. The 11 directories are each small enough that you do
not need to buy a RAM card to store them. By distributing this software on a ROM
card, you are saved the expense of buying a 128 K RAM card and the PC interface kit.
This software comes with program summaries and directory menu maps. Since the
17 Weierstrass elliptic function programs are not covered in this manual, they are
discussed in the application software manual. Additional application programs are
currently under development. Ifyou are interested in these programs, please write the
author at the user support address on page 473 or call the author at (703) 938-0832.
This software is under copyright protection. Any redistribution is strictly prohibited.

ADVANCED NONPARAMETRIC TESTS

Three additional statistics nonparametric test programs are given below. They involve
advanced MATHLIB programming and are out of the spirit of trying to keep the
material in Chapter 22 palatable to beginning students. The examples and theory are
discussed in Chapter 20 ofPfaffenberger and Patterson, which is referenced in Chapter
22 of this manual. Program RANK is given on page 295 of Chapter 22.
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WILCOXON SIGNED RANK TEST

Given two data vectors of equal length, WILCX computes the r statistic for
nonparametrically testing if the means are the same.

< > V1 V2 « V1 V2 - 0 VCDEL DUP SIZE EVAL SWAP DUP VABS SRTI
SWAP RANK ROT —»COL ROT RORDR —-VTR « SIGN » V1F1 VECTX
SSORT DUP 1 GET VI SWAP 3 GET VI NEG MIN »> »

For example, if V1 = [ 200 150 300 400 120 250 320 175 100 500 ] and V2 =
[225 375 650 380 100 250 410 180 130 60], thenr = 5.

KRUSKAL-WALLIS TEST

The Kruskal-Wallis test is an extension of the Mann-Whitney test discussed in
Chapter 22 where there are more than two populations. Each population is a column
of input matrix M, and program KWT computes the t statistic for the test.

« > M «<M SIZE DUP EVAL - SRC «MR C x 1 2 LIST RDM

—-VTR SRTI SWAP DUP RANK SWAP DUP SIZE EVAL SWAP 0 VCDEL

SIZE EVAL - VSUB —-COL SWAP IORDR RORDR S RDM DUP CNUM DUP

ROT CSUM OVER DUP VX 1 + x 2 / - VSQ OVER VECTD SWAP VX DUP

1 + x/12 x VE >» > »

For M=[[25 18 26][22 23 28 1[31 21 24]1[26 0 25]1[20 24 32]], thet
statistic equals 5.24642857144, which is more accurate than the 5.233 text answer.

SPEARMAN RANK CORRELATION TEST

Program SRHO is a more general version of SRCTT in that it allows repeated data
values and applies midranking to them. For the SRCTT example given in Chapter
22, SRHO computes the same t statistic since rho =r.

< — V1 V2 « V1 DUP SIZE EVAL SWAP SRTI SWAP RANK —COL SWAP
IORDR RORDR —VTR V2 SRTI SWAP RANK —»COL SWAP IORDR RORDR
—VTR - DUP DOT OVER 1 OVER SQ - x / 6 x 1 + >» »

For V1=[90 100 75 80 60 75 85 40 95 65]and V2=[70 60 60 80 75 90
100 75 85 65 ], rho =.024242424244,



APPENDIX B

WARRANTY AND
USER SUPPORT

USER SUPPORT

You can get answers to your questions concerning the operation of the MATHLIB
commands from the author. If you do not find the information in this manual or the
HP 48 owner’s manual, contact the author at (703) 938-0832. I can provide technical
assistance only about the operation of the MATHLIB commands. User support does
not include consultation about your particular applications nor tutoring on your
mathematics and engineering problems. For questions on the calculator,
programming, or HP 48 commands, please call Hewlett-Packard at (503) 757-2004.

Numerous programs have been provided in this manual to demonstrate the use of the
commands and programming techniques. You may type in these programs or obtain
them from the author. Each owner of this book is granted a one-user individual
license to use these programs in his or her applications. However, the distribution of
copies ofthese programs to others, by any means and in any form, is strictly prohibited.

If you believe you have found a software bug which is not simply a lack of accuracy
due to the computational limitations of the HP 48 or the noted limitations of the
MATHLIB software, please write the author at:

Dr. John F. Holland

P.O. Box 3008

Oakton, VA 22124 USA

Please include a complete description of the bug and the related circumstances or
application program it occurs in, plus your name, address, and phone number.
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WARRANTY

Academic Press, Inc. ("AP") and the author cannot and do not warrant the performance
or results that may be obtained by using this software and manual ("the product”).
This includes the examples. The product is sold "as is" without warranty of any kind
(except as hereafter described), either expressed or implied, including, but not limited
to, any warranty of performance or any implied warranty of merchantability or fitness
for any particular purpose. AP and the author shall not be responsible under any
circumstances for providing information on the corrections to errors and omissions
discovered in the product at any time. AP warrants only that the ROM card on which
the software program is recorded is free from defects in material and faulty
workmanship under normal use and service for a period of ninety (90) days from the
date the product is delivered. The purchaser’s sole and exclusive remedy in the event
of a defect is expressly limited to either replacement of the ROM card or refund of the
purchase price, at AP’s sole discretion. This warranty does not apply if the product
has been damaged by accident or misuse or as the result of service or modification.
ROM card environmental limits are given on page 660 of the HP 48 owner's manual.

In no event, whether as a result of breach of contract, warranty or tort (including
negligence), will AP or the author be liable to purchaser for any damages, including
any lost profits, lost savings, or other incidental or consequential damages arising out
of the use or inability to use the product or any modifications thereof, or due to the
contents of the software programs, even if AP or the author has been advised of the
possibility of such damages, or for any claim by any other party.

Any request for replacement of a defective ROM card must be postage prepaid and
must be accompanied by the original defective ROM card, your mailing address and
phone number, and proof of date of purchase and purchase price. Send such requests
to the author at the above address. AP and the author shall have no obligation to
refund the purchase price or to replace a ROM card based on claims of defects in the
nature or operation of the product.

Some states do not allow limitation on how long an implied warranty lasts, nor
exclusions or limitations of incidental or consequential damages, so the above
limitations and exclusions may not apply to you. This warranty gives you specific
legal rights, and you may also have other rights which vary with jurisdiction.

The re-export of United States origin software is subject to the United States laws
under the Export Administration Act of 1969 as amended. Any further sale of the
product shall be in compliance with the United States Department of Commerce
administration regulations. Compliance is your responsibility and not that of AP.



APPENDIX C

LIMITS, DERIVATIVES,
AND FORMULAS

INTRODUCTION

This appendix presents some of the common relationships and formulas used in
differential calculus. In addition, we review the concept of limits. This discussion is
limited to real functions of a real variable denoted by x eR and f(x) eR. Extensions
to complex functions of a complex variable are given in Chapter 3.

DEFINITIONS

FUNCTION: A function f(x) is a relationship or mapping which defines the numbers
fix) in terms of the numbers x. The set of values for which x is defined is called the
domain of f(x), and the corresponding set of values for which f(x) is defined is called
the range. f(x) = ¢ where c eR is the constant function, fix) =ax" + a__,;x"+... + a,x
+ a, is a polynomial function,

Xx +2

xyx?2 +1

f(x) =

is an algebraic function, and f(x) = sin(x) is a transcendental function. When the
domain of f(x) is the integers I or the natural numbers N, say n eN, then f(n) is called
a sequence. fin) = (2n - 1)n = 1, 3/2, 5/3, 7/4, 9/5, . . ., for n eN is a sequence.

475



476 LIMITS, DERIVATIVES, AND FORMULAS APPENDIX C

LIMITS: When a sequence for large n tends toward a single number, then that
numberis called the limit of the sequence. The limit of fin) = (2n — 1)/n as n — oo is
2. The limit of g(n) = (-1)" as n — « does not exist. Define the functions x(n) = (2n
— 1)/n and g(x) = x. Then as n — =, x — 2. In this context we may define the limit
of g(x) as x goes to 2 as g(x) — 4 as x — 2. Since the sequence x(n) < 2 for all n eN,
we say it is a sequence from below or from the left. Observe that the sequence never
takes on the value of its limit. The sequence y(n) = (2n + 1)/n also has 2 as its limit,
but y(n) > 2 for all n e N. This is an example of a limit from above or from the right.
The statement that the limit of f(x) as x — a exists implies both the limit from the left
and that from the right exist and are equal.

CONTINUITY: f(x) is said to be continuous at x = x, if

1) f(x,) isdefined 2) lim f(x) exists 3) lim f(x) = fx).
X > X X > X,

More rigorously for h > 0, f(x) is left continuous at x, if

1) flx,) isdefined 2) lim f(x,- h) exists 3) lim fx,- h) = f(x).
h->0 h-0

and f(x) is right-continuous at x, if

1) flx,) isdefined 2) lim f(x,+h) exists 3) lim flx,+h) = f(x,).
h->0h->0

When these limits are equal, then we say that f(x) is continuous at x = x,.

NEIGHBORHOOD: For each real number c, we refer to an open interval containing
c as a neighborhood. Thus, if a < ¢ <b, then (a, b) is a neighborhood of ¢c. A punctured
or deleted neighborhood of c is the interval (a, b) with the point ¢ removed.

DERIVATIVE: The derivative of f(x) from the left is the limit of the ratio

dfx)” _ lim fix - h) - f(x)
dx = h—0 ~h
 

where h > 0. Similarly, the derivative from the right is the limit



APPENDIX C LIMITS, DERIVATIVES, AND FORMULAS 477

dix): _.. fix +h) - f(x)
= lim ——8M.

dx h->0 h
 

When these limits are equal, then we say f(x) is differentiable at x.

dix)  dflx)" dfx)
- £/

dx dx = dx = '()
 

If f(x) is differentiable at x, then f(x) must also be continuous at x. The geometric
interpretation of f '(x) is as the slope of f(x). Higher-order derivatives are denoted by

 

dl dfx)

|

_ dx _, — £@ d"® _ cw3I|-a =f" (x) = fP(x), po = f™(x).

LIMIT THEOREMS

The following relationships are available for evaluating limits. Let c eR, and

lim f(x) = A, lim g(x) = B.
X >a X—>a

Then if h(x) = ¢ = a constant for all x, limh(x) = c¢
X—>a

lim[c * f(x)] = cA, lim[f(x) + g(x)] = A = B,

. _ fx A
Lim[f(x) » g(x)] = A+B, lim FC] B #0,

lim VE) = VA for VA € R.
X >a
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If g(x) is continuous at A, then

lim g(f(x)) = g(lim f(x)) = g(A).
X—a X—a

L’HOSPITAL’S RULE

L’Hospital’s rule handles the cases where the limit of the ratio of two functions cannot
be evaluated as the ratio of the limits because they both go to either 0 or infinity. Let
the functions f(x) and g(x) be differentiable at every number other than a in some
deleted neighborhood of a with g'(x) # 0 in that neighborhood. If

lim f(x) = lim g(x) = 0,
X—>a X—a

or if

lim fix) = +0 AND lim g(x) = zoo,

then

f(x) f(x)lim —2 = ——.,
ED a ET

The above two cases are the 0/0 and «/~ cases. The 0 » = case is handled by

lim f(x) * g(x) = lim To = lim =

the co — oo case by

lim [1/(x)] - [1/g(x)] = lim£0

and the 0°, °, and 1~ cases by

lim fx)!® = EXP[lim g(x) LN f(x)].
X >a Xx —>a
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With the 1E+499 range of the HP 48,it is very easy to evaluate limits numerically.

CHAIN RULE

The chain rule handles the cases of derivatives of functions of functions. Let f(y) and
y(x) be differentiable functions. Then

dfly) dfly) dy
dx dy dx

DERIVATIVE FORMULAS

Let ¢c eR but ¢ # 0, and u(x), v(x), and w(x) be differentiable functions of x. Then

d = d Cc = c-1

i [c] =0, I [ x°] cx,

d — 4d c = c-1 4d« x] 1, rm [u°x)] c u(x) rm [u(x)],

d —e. 4 4d - 4d . . 4dI [cux)] ¢ u(x), & [u)v(x)] v(x) I u(x) u(x) ax v(x).

It is common not to explicitly show the argument x. Additional formulas are

drvw] = ov uw I pw dU
dx dx dx dx

du dv
V—-u—

+3): dx dx vz0,

dx Vv v2

d [c d (1 2 du c du
— |Z] = — =] = -1 eo = - — eo —,

a [u]

=

° 5 cr ET TE &
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ELEMENTARY TRANSCENDENTAL FUNCTIONS

The elementary transcendental functions are defined in Chapter 3. They are

» Exponential function
Six trigonometric functions

» Six hyperbolic functions

Also defined in Chapter 3 are the inverses of these functions:

» Logarithmic function
» Six inverse trigonometric functions
» Six inverse hyperbolic functions

Derivatives of these functions are listed below.

X—eX=¢
dx

dhx=2
Xdx

d 1 du
= log,(u) = = log,(e) = a>0 and a#1

where the last two follow from the identities:

In(e) _ 1In(u)
log,(u) = Tota)’ log,(e) = Ina Ina)

d , du

x T° I

dp 1de
dx u dx

d u uFr In(a) 7

al = eu In@

In(ab)=Ina+Inb In(ab)=lna-Inb In(@®=blna lne=1 e**®

[sin u] = cos u foot u] = osc? u

9 [cos u] = sinu 3 4 sec u] = sec u tan u 32
dx dx dx dx

+ fan u] = sect u fesc u] = esc u cot u

APPENDIX C
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i 1 du d 1 du
— [arcsin

u]

= a 9 rarccot

ul

= - du
ax u] — & 3, Lerceot ul =

d 1
2 farccos u] = - ! Qu 2 faresec uj = —— 2

dx 1-2 & wu? - 1

d 1 du d _ 1 du
— tan = = — [arccsc u] = ~——— —3 re u] 1 + ua? dx dx oa?-1 &

sinh u] = cosh u 2. footh u] = -esch? u

2 foosh v] = sinh u 2. fsech u]= -sech u tanh u 3°

2 fant u] = sech? u 2 fosch u] = -esch u coth u

9 Jarcsinh uy] = —2_ 98 9 farccoth u = —L_ du

dx 1 +u2 dx dx 1 -u? d&x

d 1 du d _ 1 du
— [arccosh u] = — — [arcsech u] = §— —

d 1 du d _ 1 du
— tanh = a — [arccsch u] = # ————
rll u] 1 - uw? dx dx wi+a? &

where the upper sign of # is used for RE(u) > 0, and the lower sign is used for RE(u)
< 0. All of these formulas are also valid for the general complex case.

da» . in 7) d? _ 7)
sin x = sin|x + — cos X = COs|x + —

dx" 2 dx® 2
  

MULTIVARIATE CALCULUS

Differentiation for functions of several variables is the natural extension of that for a
single variable. We simply define the limits one variable at a time and use the symbol
d instead of d to point out that it is a partial derivative, not a total derivative as
defined below. Assuming that the right and left derivatives with respect to each
variable are equal, for two variables the partial derivative limits are
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HX, ¥) _ fig fx + hy) - fx y)
ox h-0 h ’

f(x, y) _ lim f(x, y + h) - f(x, Y)

dy h-0 h

Now suppose w = f(x, y, z, t) where x, y, and z are also functions of time t. Then the
total derivative of w with respect to t is

This can also be written in terms of the differentials dx, dy, dz, and dt.

dw=FL ax + Lg. goo Tyx Ty Ta" a

where we have simply multiplied both sides of the equation by dt and treated the
differentials by the usual rules of algebra.

VECTOR AND MATRIX CALCULUS

Definitions for vectors and matrices are given in Chapter 20. Commands for symbolic
vectors and matrices (arrays) are given in Chapter 25. In general, the derivative of
an array is simply the derivative ofeach element using the above definitions and rules.
Command SDERY provides this. However, there are several special vector derivative
operations which are useful in solving various problems in physics.

Define the vector operator V by the equation

S05. 0, 3,
x dy oz

where i, j, and k denote the unit vectors in the standard rectangular coordinate
system. Also define the three-dimensional vector differential dr = i dx + j dy + k dz.
We can now very compactly represent the above total differentials by
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“fre Vw Na ls

where the symbol * denotes dot product. If you see Maxwell's equations in their
original form before the nabla notation V, you will quickly appreciate the notation.

GRADIENT

When the V operator is applied to a scalar function ¢, the result is called the gradient
of ¢. In general, a gradient can be N-dimensional and is provided by command SGRD.

2; , 90. ulVo-= k¢ ir +

Vo « a, where a is any unit vector, is called the directional derivative of ¢ in the

direction a.

DIVERGENCE

The divergence is in general the dot product of V with a three-dimensional vector V(x,
y,2)=V,i+Vj+Vk

av av av
—Y 4 z+

x ody Oz
  

By convention, V operates on that to the right so that Ve VV ¢ V. The command
SDIV provides the divergence operation.

CURL

The curl or rotation of V(x, y,z) =V, i+ V, j + V, kis the cross-product V x V.

2 a 3 2s z a
VxV = i+ |—= - Z1j + —_Y __*lk

dy dz oz ax x dy
  

The command SCURL provides the curl operation.
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LAPLACIAN

The Laplacian is the composition of the operations V « (V ¢) = V2? ¢ and equals

vi-y.y- 2 , 2% ,&
x? dy? oz? ’

FORMULAS INVOLVING V

If F and G are differentiable vectors, ® and ¥ are differentiable functions, and a € C:

dF JF JFG*WF=GZ +65 +GE =i(G+VF,)+jG+*VE,)+k(G*VF,)
* ox Y dy oz

V@ +¥) =Vo + Vy V(o®) = oo Vd
Ve(F+G)=VeF+VeG Ve(@F)=aVeF
VxF+G=VxF+VxG | Vx(@F)=aVxF
VVeF)=V2F+Vx (VxF) V x (V®) = 0
Vx (VxF)=V(VeF) - VF Ve(VxF)=0

VOY) =YVDO+DdPVY
VFEFeGR) =F eV)IG+ (GeVF+Fx(VxG)+Gx(VxF)

Ve(@F)=®(VeF) + (VD) F
Ve(FxG)=Ge(VxF)-F«(VxQ)
(G » V)OF = F(G » VO) + O(G *V)F
Vx(@®F)=® (Vx F) + (VO) x F
VxEFxG=(GeVF-F eV)G+F{VeG) -G(VeF)
(GeVF=UVxFxFR+VF+eGR-FVeR+GVeF)-Fx(VxGQ)

-G x (VxF)]

Also note that if r = xi + yj + z Kk, then [ F(r) » VIr = F(x).

With MATHLIB all these operations can be performed on the HP 48 in eight

orthogonal curvilinear coordinate systems.
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INTEGRAL CALCULUS
AND TABLES

INTRODUCTION

This appendix briefly discusses the relationships and formulas used in integration.
In addition, we briefly survey several types of integrals. The discussion is limited to
real functions of a real variable. Extensions to complex functions ofa complex variable
are discussed in Chapter 3 and defined for these tables at the end of this appendix.

The HP 48 does not have the vast megabytes of memory required to hold large
numbers of integral formulas. Consequently, we provide the below collection. An
example of advanced techniques for working with integral formulas is given on page
212.

SUMMATION NOTATION

The symbol X is commonly used to denote summation. In the equation

ay +ax +ax’ +... +axt+ax¥=) a x"

n is the summation index, 0 is the lower limit, and N is the upper limit. In general,
both summation limits can be infinite. Finite summations are implemented on the HP
48 by the command X.
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RIEMANN OR COMMON INTEGRATION

A Riemann integral is the limit of a special sum which converges to the area under the
function. Let f(x) be defined on interval [a, b] and x, be numbers such that: x; = a,

x, =b,and xy < x; <X,<...<X,; <X, Letthenumberszex,_;, x]forn=1,2,.
..n. In particular, choose x, — x,_; = 1/N for positive integer N and define Ax = (b -
a)/N. Then the sum

N

Y flz,) Ax
n=1

is with increasing N a better and better rectangular approximation to the area under
f(x) over the range (a, b). The limit as N — «is in fact the exact area under f(x) which
defines the Riemann or common integral.

N blim }> flz,) Ax = [* fx) dx = F(b) - F(a)
N > ew p=)

When the integration limits are indefinite, we use the notation

Fx) = [ fx) dx.

Given the definition, one simply applies the formulas to perform integration.

GENERAL INTEGRATION FORMULAS

Let f(z) and g(z) be functions and a and b be constants. Then we have

LINEARITY: [[af(z) + bg(z)]dz=a|flz)dz + b | gz) dz.

ANTIDERIVATIVE: Integration is the inverse of differentiation.

2 [ fz) dz = f(z) and [ft dz = f(z).

INTEGRATION BY PARTS: |f'(z) g(z) dz = f(z) g(z) - | f(z) g'(z) dz.

CHANGE OF VARIABLE: | f(z) dz = | f [g(w)] g'(w) dw where z = g(w).



APPENDIX D INTEGRAL CALCULUS 487

CHAIN RULE: |g)" g'(2) dz = [g(z)]**"/(n+1) for n # -1, but | [g(z)] * g'(z) dz =
In [g(z)].

OTHER INTEGRAL DEFINITIONS

The above integrals use the differential notation dz. This is not unique. As with
differential calculus we can also write

F(z) = 2 dz = [ d Fz).

and the change of variable formula as

Fz) = [flg@) g'(2) dz = [ flg(=)] dg).

These are commonly called Stieltjes integrals. The notion of dF(z) and dg(z) can be
made quite abstract where now we use the notation du(z) and we call n(z) the measure
defined on some abstract space. These abstract integrals are generally called Lebesgue
integrals. Lebesgue-integrable in the sense of ordinary Riemann-like integrals means
that the integrand is absolutely integrable, that is, f(z) is absolutely integrable in the
interval (a, b) if the integral |.° |fiz)| dz < . Absolute integrability (summability)
justifies limit interchanges. The difficult part of calculus lies in the understanding of
in what sense the limits exist and in what sense they may be interchanged.

BASIC FORMULAS

 

 

[&-m. [erde= 22 nee

[edz = ea [1bdz = b*
alnb

[hzdz=z2lnz-2 [a*hadz =a"
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[ orfie) da = LOT yoy

 

[Hd yp gy
f(z)

[sinzdz = cos z

[ dz = -cot z
sin? z

 

 

 [ dz =In (z + yz2+a?)
z2+a?

 

APPENDIX D

[a f(z)+b]*"!+h? f/ =[ Ia f@ b® f(z) dz ToD)

fiz) dz _ 2Tor:
a a “

[cos z dz =sinz

 

 

 

 

[ dz = 1 arctanh 2 = -1 arccoth 2
az-zz2 a a a a

[ = te B= z
aZ-z? la] la]
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[ sinh z dz = cosh z [ cosh z dz = sinh z

dz dz[or = hz [i = tanh

[ tanh z dz = In cosh z [ coth z dz = In sinh z

[es [roe [3wo

RATIONAL FUNCTION INTEGRATION

A rational function is the ratio of two polynomials with no common roots. To integrate
an arbitrary rational function f(z)/g(z), the polynomials must first be divided into the
form f(z)/g(z) = f,(z) + f,(z)/g(z), where f,(z) is a polynomial in z and the degree of f(z)

~ is less than that of g(z). The command PDVD will do this division for you. The HP
48 command | will then integrate f(z) directly. Next use AROOT or PROOT to find
the roots of g(z). Given these roots, use HVSDE to perform a partial fraction
expansion of f,(z)/g(z). The resulting terms can then be integrated using these tables.

(a + bz)**!
[@+bordz = =o n+ -1

n+2 n+l

[ za + bay dz = @ 212) _ aa + bz n+ -1, -2
b2 n+2) b2+1)

n+ n+ n+l

[22@ bards = L |@rB 5 @ D7, 2 (a+ bo)

b3 n+3 n+2 n+l

nz-1,-2,-3
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dz _ In(a + bz) iz _ _ 1

(a + bz) b
(a + bz)? 2b(a + bz)?

[2

_

-- 1 [ z dz _a+bz -ailn@a + bz)

(a + bz)? b(a + bz) a + bz b?

Zz dz - 1 . a

/ @@a + bz? b? nc * ba) a+ =

[= = 1 1 + a nel, 2
@+bz" b’| (@-2)@ +b? (@- I)+ bz)!

  

 [ 2” dz = 5 [3 @ + 6" - 20a + bo) + a? la + bo)

  

  

a+bz pl

2
[ 2” dz -Lla+bz-2amnG@ +b) - |

(a + bz)? b3 a + bz

2 2
[ g* ge = 1 |in@ + bz) + 22a _ a

(@ + bz b3 a+bz 23 + bz)?

 

 

f z2 dz 1 -1 \ 2a

@+bz2® b3|(m-3)@a+bz"® (@-2)@ + bz)?
2

a n=+123
- (@ - D@ + bz)*!
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dz

/ z(a + bz)

INTEGRAL CALCULUS

 fe
  

dz

| z(a + bz)?

dz

/ z(a + bz)’

dz

/ z%(@a + bz)

_ 1 1. fa +bz

aa + bz) a2 z

1(2a + bz)? | z

2\ a + bz a + bz

1 b a + bz
= -_—— + —

az a? Zz

1
al

  

 

 

  

dz

/ z3@ + bz)

dz

z%(@ + bz)?

 

— n
N

&
n
N

[

 

— n
N

&
n
N

[

 

_2bz -a . b? z

2%? a \a +b

_ __a+2bz «Bnet

a?z(a + bz) al z

FORMS CONTAINING c? +z? OR z’-c?

 

 

 

 

1 z z dz 1 2 2
— arctan — = +—In(c® + z
C Cc [== 2 ( )

1 pferz) 25,2 z dz - 1

2c \c-z (c? + zd) 1 2n(c? + z%)"®
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f dz _ 1 z + (2n - 3) [= dz |

(c2 +z)» 2)n-1)| (c? + zd)! (c? + zo)!

dz _ 1 _ z _ @n - 3) im

(z%2 - cH»  2¢)n -1) (z? - cH! (z? - cH!

/ 24d = le? - oy [ z dz = -1 n#0
z2 -c2 2 (z? - cH! 2n(z? - cH

FORMS CONTAINING a + bz AND c + ez

 

dz _ 1 Cc + ez

+bz)(c +ez) ae -bc \a + bz

z dz 1 a C

+ bz)(c + ez) ae - be In(a bz) ° In(c e)

b

 

dz _ 1 1 _,_e  c+ez
+bz)’(c +ez) ae -bcla+bz a -bc a+bz

 

z dz -a _ c jp Sez

+bz)’c +ez) bac -bc)a +bz) (ae - bc)? a +bz

z? dz a? 1
  

2
= + = In(c+ez)

+bz)’(c +ez) b?(@e -bc)a +bz) (ae - bc)? [©

» Bee20)1 w)
b2
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+a bz 4, - bz , ae

Cc + ez e el
  c In(c + ez)

FORMS CONTAINING a + bz"

 

 

[ dz ol ian 2/80 ab>0

a +bz2 fab a

dz _ 1 Ip 2 +2z/-ab _ 1 arctanh ZV 2D ab < 0

a + bz? 2,/-ab a - zy/-ab - y -ab a

  

 
 

  

  

[2% = 1 grctan 2 [2d xz a5 &
a? + b%2 ab a a+bz2 b bb’ a+ bz?

z dz dz 1 a+ bz= 1 Ing ba? EE
| 2b @ + bz) rae 2ab a - bz

Ea +x](a + bz%? 2a(a +Toh a +yw

dz _ z eu dz

@@ + bzH™*1  2ma(a + bz?)™ 2ma (a + bz?H™

[ z dz _ 1

(a + bzH)m +! 2bm(a + bz?)™
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[ z? dz _ -Z . 1 dz

(a + bz)™*!  2mb@ + bz®)H® 2mb (@ + bz?®)™

dz 1 z? dz __1_b [ dz

[50 2 [= 2 2
z(a +bz?) 2a a + bz z’@a + bz?) az a’ a+bz

  

 

  

a + bz? 3a |2 a + bz? J/3 Vab

[ zds lm a + bz’ + V3 arctan 22Va0

a+b’ 3p ab ( Va + 2° V3 y/ab

 

 

   

  

   

 

  

| dz _ Vb) 1, 2%+22 Va) + 2/2) , ,2VIED lo
a+bzt 22 2 2 afb) + 2/aj@b) 2 a/b) - 2°

4 4

froEni2 | eoa + bz z - y/-ab J/-a/b

[2% 1 won 2 abso
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2 _ [cab
/ 2d 1 In Z afb ab<0
a+bz* 4b/-ab 22+ [ab

1, 22-22 Val(@®) +22@) , arctan 2 Val@b)

2 2422 afb)+2ai@5) 2 Val) - 2°
ab>0

[ 2? dz _ 1

a +bz* 4p Yaj@n)

  

402pe2] <0
z + {-ab V-a/b

 [ z? dz 1

a+bz' gpa

 

  

3
[ z' dz Lin @ + bz%) [—& ly z

a +bz4 4b x@ +bz®) an a + bz®

FORMS CONTAINING c’ = z*

  
3dz s Lp t2) , 1 arctan 22 F ©

c+ 23 6c? cr? %4f3 cy3

  

[SE - z 2 [=

 [ dz =_1 Z von nfSE
(c? + 231 3ncd (c+ zd
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3 3z dz 1c +z 1 tan 22 FC

6c c +z) c/3 ¢y/3

 

[ zdz _ z? 1 [ z dz

c3 +23» 33 +z} 337 cPirzd
 

 

 

 

  

 

 

2z dz _ 1 z + (3n - 2 z dz

(cd +z»! 3ncd| (c? zd) (c? + z3

2 2[ZL oy lies 2) z* dz =z 1

cl +z? 3 (c? + z3 +! 3n(c? + z3)®°

[ dz _ 1 In z’
zcd +23) 33 cPizd

3dz _ 1 LL In 2

z(c® + 2% 3c3cP+zd) 35 cP: zd

dz - 1 +L [dz
zc? + z3 1! 3nc3cd +z) cd zc: zd)

[2--1 1 [2 dz
z2(c? + 23) cz 37 dial

dz _ 1 dz 1 z dzatiate5z2(c? + z3n +1 c zc? + z3)® c (c? + z3)" +1
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FORMS CONTAINING c* + z*

  

 

 

2 21 1, 22+cz2 +c + arctan cz 2

2¢3 212 22 -czy2 +c? c? - Zz?

[pn SE amen 2
2¢3 12 Cc -z c

2 2, ,2
1 arctan Z- [ z dz 1 pc tz

2c? c? ct -z% 4c? 2-2?

1 1, 2 -czf2 +c? + arctan czy2 

 

  

2c/2 [2 z? + czy2 + c? c? - z?

3
1112 aretan 2 [a = + Lin(c® + 29
22 c-z c ct + z¢ 4

FORMS CONTAINING a + bz + cz*

Z=a+bz+cz2 q=4ac-Db?
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q<0

LS
qQ*’ Z
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Z2 cqZ q Z
 

[lz Ob-ngprab, 2 dz

 

TRIGONOMETRIC FUNCTION INTEGRALS

The substitution w = 2 arctan z will replace any rational function of sin z and cos z by
a rational function of w.

cw?2w 1-w dz 2 dw
cos z = =

1+w? 1+w? 1+w?
   sin z =

After integrating, return to the original variable with z = tan(w/2).

sin az dz = - L cos az cos az dz = 1 sin az
a a
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[ (tan 82) dz = - = In cos az [ (cot a2) dz = ~ In sin az

[ Goce) dz = 2 inte az + tan 0) = + In nf% + 7)
a a 4 2

  

[ (esc ez) dz = L Inesez - cot az) = = In tan 2
a a 2

[ Gin® ez) dz = - = cos az sin az + “z= Jz - sin 2az
2a 2 4a

[ in? a2) dz = - <- (cos az)(sn® az + 2)
a

8 4a 32a

[ (cos? az) dz = —— sin az cos az + z= 2 + —_ sin 22
2a 2 2 4a

3 _ 1 2 4 _ 3z sin 2az sin 4az
[ (cos az) dz = —— (stn az)(cos az + 2) [ (cost a2) dz = == + ™ + a  

 
 [ dz = [ (esc? a2) dz = - = cot az [ dz = [ (sect a2) dz = ~ tan az

sin? az cos? az
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sin(m - n)z _ sin(m + n)z
 

 

 

 

   

J tin maxein na) dx =

=

yom+m men

[ (cos mz)(cos nz) dz = sinfm - n)z | sin(m + n)z m? + n?

2(m - n) 2(m + n)

[ in az)(eos 82) dz = _ sin’ az

[ Gin mz)(cos nz) dz = - cos(m - m)z _ cos(m + m)z m? # n?

2(m - n) 2(m + n)

[ (sin? arcoaz) dz = Losin daz + 2 [MLE go 1 CEE
32a cos? az a Cos az a

 

  

i m __ cos” _ sin”! az[ Gin az)(cos™ az) dz @ + Da [ Gio™ az)(cos az) dz - Da

[ie lanes lm anf + Z)

cosaz , __-1 _ _cscaz [= dz 1 tan az
sin? az a sin az a (sin az)(cos az) a

[oa = [oom vm 3)

(sin az)(cos’ az) a 2
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[2ola
(sin? az)(cos az) a

[SEYo
(sin? az)(cos? az) a

[ costa + bz) dz = + since + ba)

1 + cos az a 2

[EE _G=rz+- xr

1 + sin az a 4

dz 1dz1 fm
| oot some fs

dz 1
(1 + sin az)?|

INTEGRAL CALCULUS

az + L In Tr, a

a 4 2

501

[sin @ +b) dz = - + costa + bz)

dz | nT az

1 + sin az a 4 2

[Elgg

1 - cos az a 2

5)2

az + In tan

2 2

oan az
6a 4 2
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/ Sin az =-.1 r_ + Loco 3

(1 - sin az)? 2a 4 2 6a 4 2

sinzdz _z _a dz

a+bsinz bb bY' a+bsinz

  

  

[—%  _-lnwmz-2f dz_
(sin z2)(@a + bsinz) a 2 a’ a+bsinz

[ dz - b cos z + a dz

(@ +bsinz® (@2-bH)@ +bsinz) a?-b2’ a+bsinz

sinzdz  _ a cos z . b dz

(@ +bsinz? (b?-a)@+bsinz) b2-a2’ a+bsinz

cosaz dz =z - 1 tan 22 [=== dz = -z - 1 cot BZ
a + cos az a 2 1 - cos az a

[masinl)tm
(cos az)(1 + cos az) a 4 2 a 2

[ dz = 4 lof = 1 az
-_= = — + — - — cot —

(cos az)(1 - cos az) a 4 2 a 2
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[—&Log lpi
(1 - cos az)? 2a 2 6a 2

__Cosaz dz = 1 tan 82 _ 1 (gp? 22
(1 + cos az)? 2a 2 6a 2

cosas 4 182 1oa
(1 - cos az)? 2a 2 6a 2

[wzde _z_ a di
a+bcosz bb bY a+bcosz

[ dz 1p REARS dz
(cos z)@a +bcosz) a 2 4 a’ a+bcosz

dz _ b sin z _ a [ dz

@+bcosz? (@B?-2a%)@a+bcosz) b2-a2’ a+bceosz

cos zdz  _ a sin z _b dz

@+bcosz? (@%2-bY)@a+bcosz) a2-b2’ a+bcosz

[2gos Lind + cos ar) 52 3-4 Lind + sin az)
1 + cos az a 1 + sin az a

[—%1lym=

(sin az)(1 + cos az) 2a(l + cos az) 2a 2
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dz

(cos az)(1 + sin az)

f sin az

(cos az)(1 + cos az)

cos az

(sin az)(1+ sin az)

sin az

(cos az)(1 + sin az)

cos az

(sin az)(1 + cos az)

INTEGRAL CALCULUS

- 1 — —

Poatsnag) 2a In w(3 + 5)

= 1 in(sec az + 1)
a

dz = - L Incsc az + 1)
a

Gellan
2a(1 + sin az) 2a 4 2

dz=-—2" +1 inten1 1 az

2a(1 + cos az) 2a 2

 Thsin az + cos az a 2

| aay(sin az + cos az)?

dz

[Troe ios

In a,x
2 8

1 4
—_— az ¥ —a 5)

=: 1 inf1 + tan 7
a 2

 

dz
/ 2 ne?

1 jp btancz +a

btancz - aa‘ cos cz - b? sin? cz 2abc

[zGiner)dz=L sin az - Z cos az
a? a

APPENDIX D
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2,2 _
[22 Giner) dz = Z snes - "2 cos az

a? al

2,2 _ 2,3 _
[2 (sin az) ds = 222-6 sin az - 22 oc as

at al

[ 7 (cos a2) dz = cos az + Z sin az
a? a

2,2 _
[ 2 (cos az) dz = 22222 » 22 2 in az
 

a a

3a2z% - 6 az’ - 6z
[ 2° (cos a2) dz = == cos az + ———— sin az

at al

 

0 rs  . n)z** 1[2 (sin az) dz = > k! (bh) coz ‘+ kr

 

2 = n) z** _ 1[ 2° (cos az) dz 3 kt (3) 5safes + 5 en)

[i—da=5 22, Dini + sina)
1 + sin az a(l + sin az) a2

[ Zz dz = Z tan 22 + 2 In cos 2

1 + cos az a 2 a2 2
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[ z cm Zot 2,2 gn ®

1 - cos az a 2 a? 2

[ErSBZ 4 oan 2 [rsnz

1 + cos z 2 1 -cosz

Pv—cosazdz=-_<Sna __
/ a 1 - cos az a

[ (tan® az) dz

[ (an® a2) dz =

[ (tan" az) dz

 

 

 

a 1 + cos az a

[ (cot* az) dz

1 an? az + 1 In cos az
2a a

tan’ az 1 nz + Zz
3a a

n-1

tan’ az - [ tan? az) dz
an - 1)

APPENDIX D

= —z cot =
2

1 otaz -z
a
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[ (cof 2) dz = - - cof? az ~ + In sin az
2a a

 

[ (cot az) dz = - — cof’ az + + cot az + z
3a a

[ sin az dz = - L arcsin PCOS az

y1 + bZsin’ az ab y1 + b?

[—2%4-1 cosaz + 1-07 az)
y1 - b? sin az ab

[—252 4 = 1 inf sinaz + I + b7 sin’ az)
y1 + b? sin? az ab

| === dz = — arcsinb sin 22)
y1 - b? sin? az

INVERSE TRIGONOMETRIC FUNCTION INTEGRALS

— a2,2
[ (arcsin az) dz = z arcsin az + 2%

a

1 - a%z?
| (@rccos az) dz = z arccos az - -

607
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[ (arctan az) dz = z arctan az

[ (@rccot az) dz = z arccot az +

[ (arcsec az) dz = z arcsec az -

| (arcesc az) dz = z arcesc az +

[ z (arcsin az) dz = [20%
4a?

[ 2 (arceos az) da = = [(2a%?
4a?

INTEGRAL CALCULUS APPENDIX D

2 In(1 + a2z?)

Ln + a2?
2a

+ In{ az + a%z? - 1)

4 Infaz + ya%? - 1)

- 1) arcsin(az) + az \1 - a’? |

- 1) arccos(az) - az y1 - aZz?

2,2
[ 2 cian 82) dz = 222% arctan az - =

2,2
[ z (arccot az) dz = L122 arccot az + —

2 2a

arcsin az, _ 1-1 -a%? _ arcsin az
z2 z z

~ a2. 2[accoaz ds 1 occos az + atm LVL a‘z

Zz Zz Zz
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2,2arctanazdz _ 1. . _8, 1+a%
22 Z 2 22

2
arccot82 4, — _ 1 grecotaz - 2m —Z

z? z 2 a%? +1

~ 2.2
[ (arcsin az)? dz = z (arcsin az)? - 2z + -a%z2" sin az

~ 2.2
[ (arccos az)? dz = z (arccos az)? - 22 - "2% arccos az

a

(arcsin az)’ [ arccosaz 4 1 (arccos az)?1

V1 - az? 2a 1 - a%z? 2a

arctan az 4, _ 1 (arctan az) arccotaz 4, _ _ 1 (arccot az)?
a2? + 1 2a az? + 1 2a

z? I)[ 7 (arcsec a2) dz = =- arcsec az - —— ya%z* - 1

[ z (arcesc a2) dz Z arccso az + aZz? - 1
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EXPONENTIAL FUNCTION INTEGRALS

[edz =e [e=dz =
a

[edz =e [redz=201

m | ZzT

ze dz =e} (-1f——
/ X (m -r1)! ar!

 [emzdr = 2712 1 eg,
a a z

 | dz - wale[2 a>0 b>0
ac™z + be™ my/ab b

[ de - 1 we[3 a>0 b>0
ae™ -be™ mab b
 

 
 

2 ay gg = BERT eX Gln -

|e 2) In a [= ac (b+ ce™)

[ z e¥ dz = es [zeraz=- 2c"

(1 + az?) a(1 + az)
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e* [a sin(bz) - b cos(bz)]
a? + b?

 [ e* [sin(bz)] dz =

[ e® [sin®)] [sin(ca)] dz= £= 1G =O sind - Az + 8 cosb - o)]
2a? + ® - oy

_e¥[(b + c)sin(b + c)z + a cos(b + c)z]

2[a® + b + co)
 

fe [sin(bz)] [cos(cz)] dz= e“ [asin (b-c)z -(® -c)cos (b - c)z]

2[a2 + b - 0)
e¥[asin( +c)z -(b +c) cos (b + c)z]

2[a® + (b + c)]
+
 

e"” cos c _ e™[a cos (2bz + c) + 2b sin (2bz + c)]

2a 2(a? + 4b?)
  [ e* [sin(®2)][sin(bz + ©] dz =

-e* sin ¢ . e® [a sin(2bz +c) - 2b cos(2bz +c)]

2a 2(a? + 4b?)
 [ e* [sin(2)][cos(bz + c)] dz =

€
 [ e* [cos(bz)] dz = — [a cos(bz) + b sin(bz)]
a? +

e*[(b-c) sin(b-c)z + a cos(b-c)z]

2[a% + (b-c)’]
e® [(b+c) sin(b+c)z + a cos(b +c)z]

2[a% + (b + ¢)’]

[ e* [cosz)licos(ca)] dz =

+
 

e* cos c . e® [a cos(2bz +c) + 2b sin(2bz +c)]

2a 2a? + 4b?)
 [ e* [cos®ba)][cos(bz + ©)] dz =
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[ * I[cosbz)lsin(bz + o)] dz = e® sinc ea sin(2bz+c) - 2b cos(2bz +0)]
2a 2(a? + 4b?

 [ z e* (sin bz) dz 22(asin bz = b cos ba)
a +

pas [@® - b? sin bz - 2ab cos bz]
a +

 [ 2.6% (cos br) dz ZS (@cos bz + b sin bn)
a +

ez

- —— [(@% - b> cos bz + 2ab sin bz]
(a? + b?)?

LOGARITHMIC FUNCTION INTEGRALS

[mz dz=znz-2 [rmad-%me-%

2 2,2 a4 _ (1  (-In 2)’[22 (n2) dz nz 2 [ (nz dz (rntzd i

zo+1 zl

[ 2" (in a2) dz = In az -
n +1 @m + 1)?
  

 nz?dz=z(z?-2zlnz +22 (n z)* 1 “1[= dz (n z)*
n+1
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dz dz 1= In = -

[fiz =n [ow a oma
  

[2m nor da = (1p BL ge yy (laf
m +1 0 rl(m + 1)*°

[in Gz +b) dz = 22D naz +b) - 2 

 [lesb gy oy, 2200 yg 4h

z? b bz

 

Zz - 8a

[lo Zita =e ome o- 6-0-2

_ 2 _ g2[Sle Zit e- im? a 1, 2" -a
az2 Z-a z Z +a z2

   

[In @* + a%] dz = z In@z* + 2%) - 22 + 2 arctan ~

z +a
[ Mn@* - 2%] dz = z Inz® - a) - 22 + a ln —— 

[ 2 nG? + 2%] dz = : 2? + 2?) In(z? + 2?) - 57

[lolz ++a%)| dz = z Ine ++ -=
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HYPERBOLIC FUNCTION INTEGRALS

 

[ sinh z dz = cosh z [ cosh z dz = sinh z

[ tanh z dz = In cosh z [ coth z dz = In sinh z

[ sech z dz = arctan(sinh 2) [ esch z dz = In tanh(z/2)

[ z (sinh 2) dz = z cosh z - sinh z [ z (cosh 2) dz = z sinh z - cosh z

[ (sech 2)(tanh 2) dz = -sech z [ (csch z)(coth 2) dz = -eschz

[ ink? 2) az = B22 2 [ cost? 2) az = TE22 2
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[ Gand? 2) dz = z - tanh z [ (cotl?’ z) dz = z - coth z

[ (sech? 2) dz = tanh z [ (esch? 2) dz = ~coth

[ (sinh mz)(sinh nz) dz = sinh(m +n)z _ sinh(m -n)z
 

 

 

2 2

2(m +n) 2(m -n) men

[ (cosh mz)(cosh nz) dz = sinh(m +n)z . sinh(m -n)z m? # n?

2(m +n) 2(m -n)

(sinh mz)(cosh nz) dz = cosh(m +n)z . cosh(m -n)z m? # n?

2(m +n) 2(m -n)

INVERSE HYPERBOLIC FUNCTION INTEGRALS

J [awesin 2) dz = » arcsinn 2 - 27+ a? a>0
a a
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J (ewctanh 2) cz = 2 arctash 2

[ [arcots 4 dz = z arccoth

[ z [acta 2 dz

/ z [arcotn 2 dz

[ (arcsech z) dz =

[ z (arcsech z) dz

[ (arccsch z) dz =

[ z (arccsch z) dz
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2 2
=[Z - 2 larccosh 2 - 222-22 a>0

2 4 4

ZB mEr-2 [F<
2 a

Z +2 n@? - a? Zl > 1
a 2 a

2 _ o2
=2Z "8 arctanh 2 + 22 A <1

a 2 a

2 _ a2
=z 8 arccoth Z + & Zs

a 2 a  

z arcsech z + arcsin z

2
5 arcsech z - J - z?

5 stassdl 5 + 2 stusich 3
Zz

z2

— arccsch z +
2

we
z

1
2
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IRRATIONAL FUNCTION INTEGRATION

Many irrational integrals can be reduced to rational function integrals by the correct
substitution. If the integrand is rational except for a radical of the form:

1. Vaz+b, the substitution az + b = w" will replace it with a rational integrand. For

example, let 1 — z = w?. Then z = 1 - w?, dz = - 2w dw, and the below integralis

dz _ pri 1+w _

I o= J 2f 5 ; = | nw(l -w?)

1 -yl-z

1 + 1-2

  

  

2. ya+bz+z2, the substitution a + bz + z* = (w — 2)’ will replace it with a rational

integrand. For example, let z° + z + 2 = (w — z)>. Then the below integralis

Ziw+22_ 2z=¥ 2 dz = ZW +w+2) dw Jizz =

1+2w (1 +2w)? 1+2w
 

yzi+z+2+2-2Hi

Fe
     

 

 
dz _ _

Dimes ofv2 3x     

3. ya+bz-z2 = (a +z)(-z), the substitution a + bz — 2’ = (a + z)’ w” or a + bz - 2°

(B - z)* w? will replace it with a rational integrand. Let 5 -4z -z>= (5 + z)(1 — 2)
= (1 - z)? z2. Then the below integralis

2_z=¥ 3 go II (haw=
1+w? (1 +w?)? 1+w
  

[=__ 3 1BCCREaEe.

(5-4z-z%7 18 w 18 Ww] 95-47-22
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4. a? - b%z?, the substitution z= (a/b)sinw gives a y1 - sin? w = a cos w.

5. ya? + b%z%, the substitution z = (a/b)tan w gives a {1 + tan’ w = a sec w.

6. yb%z? - a%, the substitution z= (a/b) secw gives a ysec? w - 1 = a tan w.

FORMS CONTAINING a + bz

 

[a +z + a + bz)? [ ofabz dz = - 22 = 3b2NGa + bay

15b2

[ 22+ dz = 2(8a? - 12abz + 15b2z%)y/(a + bz)?

105b°

 [EEPREYxaGEICSIp=! 7 kl! (m-k)! (2k+3)

[PE -2ateaf EZ
zya + bz

[farbeg . _Jarbz b dz
2z

 

 

z 2 zya + bz

dz _ 2y/a + bz [ z dz - 2 -bn) oo

ya + bz b ya + bz 3b?
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 [ z? dz - 2(8a? - 4abz + 3b2z?) +

ya + bz 15b3

 

  

21a
2(a + bz) ?bo)? dz[@ bz) dz 2 = 1)

 

 

 

4+n 2+n

2. _ 2 |@+b)? see
[z@+b2) dz b2 4 +n 2+n

2 _
felave =2 [1[¥20ww aw w =a + bz
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FORMS CONTAINING a + bz AND Je + ez

 

  

 

 

[ dz _ 1 In [bc + ez) + bela + bz)(c + ez) J? be > 0

J@ + bz)c +ez) be Cc + ez

[ dz _ 2 arctan V-be(a + bz)(c + ez) be < 0

J@ + bz)(c + ez) be b(c + ez)

[ J@ + bz)(c + ez) dz = (ae - bo)J + ez) (a + bz)(c + ez)

_ (ae - be)? [ dz
8be (@a + bz)(c + ez)

 

     

 
 

 

 

dz _ 1 mn © ya + bz - (ae - bce (ae -boje > 0

(c +ez)ya + bz (ae -bc)e ea + bz + (ae - bc)e

dz = 2 arctan —< V8* DZbe (ae-bc)e < 0
(c +ez)ya + bz |/-(ae - bce J/-(ae - bc)e

z dz _ y(@ +bz)c +ez) ae + bc dz

(a + bz)(c + ez) be 2be (a + bz)(c + ez)

[ dz _ -2y/(a + bz)(c + ez)

(c + ez)/(a + bz)(c + ez) (ae - be)(c + ez)
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(c + ez) dz _ y(@ +bz)(c +ez) _ ae -| dz

J(@ + bz)(c + ez) b J(@ + bz)(c + ez)

 

  [ergadz = St ¢z (c + ez) dz

a + bz lc + oi | J(@ + bz)(c + ez)

[ (c +e)" dz _ 2(m!)* a + bz 3 -

dee

BI"en! (c + ez)

J@

+5 bCm + 1)! [Th b (1)?

FORMS CONTAINING yz? + a?

[ 2?+a?  XCET TY Inlz + |

 

ft = deff]
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[x2 _ p2
[22 dz =z? - a? - Ja] arcsec =

z a

[z& poop [osetia ase 

2 4
[Vasaaz = 5 2 @ ea+ LEP eal + Tine + 2T x 2?)

+z z dz -1dz - =
J V(x? + a?’ a? Jz? + a? J Vz? + a%® fz? + a?
  

 

[2amda = Laeay

[Te atan = 2am ea+ 5 ay? a? - Line + a? x 2)

[2 Tat de = (5 2 = Za?) Vue2
15
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2 2LWare SU WANN =rs
(x2 + a? 2 2

3
[ z2 dz _ 1 (z? + a? ¥ a?%/z? + a?

ZZ + a? 3

[ dz _ z? + a?

23 x2 -a2 2%’ 2)’ a
[ dz yz oat 1 arcsec =

[2 asad= 2a =a= LE Vay - LE Taw

F 2 le +z? t 2?)

[yieatds 2’ + 8% | yly +1
Zz z
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[ 2’ +a’ z? + a? 1, a+yz’ +a’

z3 2z2 2a z

  

n   

2 2 2 2Vz -a Z° - a 1 z
[F—" - + arcsec —

z3 2z2 2|a| a

(z? + a?)?

| H 

[zie
4

Zz

 

2 —-

z”dz Z_ tine +2?tad)
Vz? + a?’ ) Vz? + a?
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[ dz _ 1 3 paryz’ +a’3

z3 Jz? + a?) 28272 JzZ + a? 2a%/z2 + a?  2a° z

  

dz 1 3 3 z
= - - arcsec —

J z3 yz? - a?’ 2a?%? yz? - a? 2a%/z2 - a? 2]a’| a

m m-2[2 etpri, Bl [2
z2 + a? 2? + a2

z™™ (Cm)! Jz?:a2 ri-1)!DY 2\m - 1 n2-1dz = Fa)" '(2z
J z2 + 5 & 22m)? > (2)!

+ (za?) Inz +z? + a?) ]

2m+1 m 2

[ z Z=yZta: } (21)! (m!) (x42)z2

22 + a2 r=0 (2m +1)! (x)?

 [a

—

= 72 + a2 ml (m -1)!m! (2r)122™-%-1

zz? + a? 0 (2m)! (zad)mT zx!

dz _ Cm)! fe+ a? > (-1ym-+1 ri(c-1)!

2m +122m L727, a2 (m!) 2(2n)!(4a2)m2%

PGVLSA hs |
Zz22m~2m +1
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[ dz _ (em)! |Z? - a® & tl-1)!

2m Lz7—

a2

@)

|

a’ = 2Qn)@ad)2
1 z

+ ———— arcsec —
22m |g |2m+1 a

 

[ dz __ yz - a? [ dz _ yz? - a?

@-one aE ® @ avaa? aE)

[fla 2? +a dz =a [f(atan u, asec u) sec’ u du u=arctan 2 a>0

[f(z Vz2-2%) dz =a [f (asec u atanu) sec utan udu u=arcsec 2 a>0
a

FORMS CONTAINING ya? - z?

[VT2 da = J oa + a? arin
lal

dz .  Z
—— = arcsin — = -arcos —
a? - z2aT a] a]
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[ITZ go pa af2

 [2% - m2 [27-2 dz = - 2 aT2

2 4

[Va —25 a = 4 2f@? - x3+ 22 a7 27 + 3 arcsin ZL.

  f z dz 1dz _ z

[(a® - z?)3 a? [a2 - z2

[ ofa= - L far

ICoCOREA)

1.2_2 2 @ - 22°
5 15

[ 24@*-2>’ dz = - sVa’- z%)’ + 2far z?)?® + er z? + L arcsin Ti
a
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z2 dz Zz [53 a .Z= - = ya? - z2 + = arcsin —
/ 2 2 la]

  

a? - z?

dz _ @? - z?
2

z4/z? - z? az

2 2 2 2-z -z z[ a dz = - V8 I

z? z la|

  

 

3[ z° dz --2 aT 27 2h 27 = - a - 2 EF + 2)

a? - z?

APPENDIX D
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al - 72 m m a? — 72

[ 2 4, . Cm m3 3 HE-D! omer p21, 87%0 KX
a2 _ 22 (m!)? r=1 22m-2r+1 20)! 92m |a|

2?! 7-3 vw _(2!(m!)? mor, 2dz = -ya? - z =da) z
J a? - z2 Zz (2m + 1)(!)?
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f dz a? - z2 m- 2 dz
= - +

z™/aZ - 22 (m-1)a2z®! (m-1)a? z™4a? - z?

 Ema @oDimeor
[ zm [a2 - 22 a X 2 (1)? (2m)! a2m272041

[ dz _ ey] yaZ - z? rli(-1)!

2m +1 2T2 @m)?| a? =) 221)! (da)12%

. 1 In 2 va? - x?
22mg2m+1 Z

dz _ 1 1 (bya? -z2 + zya” - v2) a? > b2

Of aT2 ger b? - 2?

[ dz - 1 arctan 2b?- a® b? > a?
(b2 - z%)y/a? - 2? byb? - a? bya? - z?2

dz _ 1 arctan zya? + b?

b? + x%)y/a? - z2 bya? + b? bya? - z2

[yo-2? go Vat eb? z ya? + b? _ arsin _Z
b2 + 22 b| la| yz2 + b? la]
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[fl, Va? - 27) dz =a [f(asinu acosu) cos udu
o Zz

u = arcsin — a>0
a

FORMS CONTAINING ya + bz + cz?

  

Z =a + bz + cz? q = 4ac - b? k=

[&-Lla 2z +b c>0 [% = _L arcsin 2e22b c<O0
Z |e Ja V2. = V-4

[ dz _ 2(2cz +b) dz _ 2(2cz + 2 . 2%)

ZyZ W/Z ZZ 3¢/Z \Z

i dz _ (cz + bahm - Hk"! Wen!

Z® JZ ql@o)VZ r=0 (4kZ)(r!)?

_Qcz+byZ 1 dz
[V2 4c xl

_ (cz + b)yZ , 3), 3 rd[2/Z & SZ (7 | =
8c 2k 8k?

 2cz + bWZ (,, SZ 15 572 JZ dz = ZZ (72, 32, DD),
[72 12¢ 4k = 16k? | B

i
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[z* VZ dz = (2n +2)! k(2cz + BZ <= ri(r+1)!(4KZ) .

c r[(@+ 1)!dk"! =o (2r+2)

 

—

&

°[
N

“ud B
l

VZ

 

zdz _ VZ “ry dz

ZZ (Qn - Dz 27 za2Z

 [Ldn Bl Rote&
2c 4c?

 

[Zidz  @b° -daciz 2b 1 dz

Zyz cqyZ cz

[Zz (@b-dacz + 2b, dac + (Gn - I dz

Z%Z (2n - 1)cqZ* "YZ (n - I)eq yARRN/
 

  
3 2 2[Ph (2S Hn) g (wh%

3c 12¢2 83 3c? 4c? 16¢3 N
|
&

/
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&
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_ZyZ bRcz +b) __b
[ zVZa 3c 8c? Vz ai | N

e

 [ezZa-Z2 2 (70a
5c

[or vEa-(o-2) BE Xe[gy
6c 4c 16c?

[GL ._ Llp2eZ bzrda
z Z va z
 

  

  

FORMS INVOLVING 2az - z2

 [Vr =a da = 5 fa - wfoan= 2+ aans 2

[= arcos 2%

=

arcsin 22
2az - z2 a] [2]
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r=0 2°7'2r+1)!(n+2)!n!

\ asearcsin 28

221! (n +2)! la
 

[mn- 2? _ Qaz - 2 ,_n-3 [ 20z - 2%

(3 - 2n)az® (2n-3)a z"!

  z" dz = Jaz-22 y Co)! -1)a™" 21 4 (2n)!a™ arcsin 28

Paz — 22 F120!@!)? 2° (nl)? la]

[—%«2Sy 2@-Dinl en)
z™2az - z?2 r=0 (n)!(r!)arzt!

dz Z-a [ z dz _ z

2: a%f2az - z2 2: ay2az - z2(Raz - z*)? (Raz - z“)?

MISCELLANEOUS ALGEBRAIC FORMS

[—%— -ilz +a + 222 + 23

 yaz? + ¢ + In(z/a + Yaz? + c) a>0

o
l

2y/a
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 [ az? + cd = Zaz? vc

 

  dz _ 2 "
i ar - c<0
zy/az® + C ny -c c

[ dz -Linfzya + az’ +c) a>0
az? +c Va

[ dz Lb ae — | a<o0

az? +c y-a ¢

i Zz  _  z KN 22%(m-1)iml Qn)
 

 

@z? + )™*% faz? + ¢ 0 (Cm)!(@)’c™(az? + co)

(az? + cm
2 | omt% =[ z(az om+% dz Gme3a
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[ (1 +z?dz Jl 22 1 ra

 

A -z2)f1+2¢ V2 1-2

[ A-z)d _ 1. z/2

a - z)y/1+ V2 z4

— arc
1 +

a + yz" + a’2

[ma =

dz 2 , a

rR

{igo dues

COMPLEX EXTENSION OF TABLES

 

 2 arcsin7 asin ®I
N

APPENDIX D

In the world of real numbers, In(x) and v(x) are not defined for negative x. In the
world of complex numbers, In(z) and V¥(z) are well defined everywhere except the
negative real axis where the branch cut is. See the tutorial in Chapter 3. The
conditions on certain integrals given above should be interpreted as to stay away from
any branch cuts. Otherwise, all the above integrals apply to complex integration over
analytic paths which do not encircle any poles of the integrand. Far more extensive
integral tables are given in:

Gradshteyn, I., and Ryzhik, 1., Table of Integrals, Series, and Products, New York,
Academic Press, 1980.
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MISCELLANEOUS SERIES

INTRODUCTION

This appendix gives a brief overview of approximation theory and also provides a short
collection of finite and infinite series.

WEIERSTRASS APPROXIMATION THEOREM

The reason MATHLIB has so many commands which deal with polynomials is the
Weierstrass approximation theorems, which state that if real function f{x) is
continuous on the closed interval [a, b], then for every € > 0, there exists

N
1. a real polynomial P(x) = }~ a, x* such that |f(x) - P(x)| <¢, and

k=0 |

M
2. a real trigonometric polynomial T(x) = y [¢, cos kox + B, sin kox] such that

k=0
fix) - T(x)| <€

for all x €[a, b]. The commands PMAT and FMAT allow polynomials to be expressed
in terms of other polynomials. If f(x) is a rational function (the ratio of two
polynomials), then PLDVD can be used to approximate it with a polynomial. If f(x)
is infinitely differentiable and the series converges, then f(x) can be represented by its
Taylor series in the region of convergence as

oo (k)

fix) =) 2 (x - a)
k=0

537
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TALR1 and TALR2 provide one- and two-dimensional Taylor series expansions.
When a = 0, these expansions are called Maclaurin series expansions.
provides one-dimensional Maclaurin series expansions.

COEFL
The residue integration

commands RESDP and RESDA allow evaluation of Laurent expansions. Calculation
oftrigonometric polynomial (Fourier) approximationsis discussed in Appendices F and
G.

COMMON FINITE SERIES

 

 

x = do+l) 2-0 ,0 1
2 2 2 3 "2%

J = |n@+D) yr-2,20, 0 an

y = B , ,(m+1) -B(0)

k=1 n +1

m E 1 -D™ E_(0
Y (1m -kke = um + Dr COTEO oN
k=l 2

> (})xr= aro n=0,1, 3 ky _(m+1} oo
k=0 k=n \I n+l

n n

n\ ok pak — n _ r\(s \_(r+s> (;)e b (a+b) n=01,... > (1) (a) 2) rn sn
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3 (-)! k 3) =0
k=1

= pk (20 _ a f2n§ or 3]-crf2)k=0

B 1 —

N
2 |

pu
t

 

4
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SE) reo

3 (271) 2 gm
m1 \2k-1

= K nf _n )

k=1 (+) :

- _hke1 (DMyoy)

y (-1k! k® 3) = (-1)r! n!

2n+1 2
“1k he =0> CD A

YT kgt- Hz) nz"
0 a-z¢ 1-z
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sin kp = Snl@+1)6/2] sin n6/2 y cos kg = Cosl(n+1)6/2] sin n6/2
k=1 sin 6/2 1 sin 6/2

n . 2 n .
in[(2k -1)0] = Sin” nd 2k-1)0] = Sin 206

2. snl 0] — 2 cos 0] oo

y I sin kg = Sn 10 _ n cos[(2n-1)8/2]
k=1 4 sin? 6/2 2 sin 6/2

y k os ko < DSn[(n-16/2] 1 - cos nd
k=1 2 sin 6/2 4 sin? 6/2

n+l .

-1 k-1 o: 2k-1)0] = (-1)* sin[(2n +2)0]> CD sin[k-1)0] (-1)" —=

n

y (-1Dk cos kf = - . + (-1)° cos[(2n + 1)0/2]

k=1 2 cos 6/2

= sin? k§ = 1 _ cos+1)@ sin n@ = cos? k@ = I cos(n+1)@ sin n6
2 2 2 sin © 2 2° 2sin0

n-1
ak sin kB = asin [1 -a”cos nb] - [1 - a cos 6] a® sin nb

1 - 2a cos 0 + a?
 

” 1 —
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n-1
Yak cos ko = 1 -acos 0 +a”! cosn-1)0 - a® cos nd

k=1 1 -2acos® +a?

COMMON INFINITE SERIES

   

   

 

641

e'=expz=EXPz=1+2 + 2% + Z ,
1! 2! 3!

- _1\2 _1\3
mz =(221), 1 (z-1)y , 1(z-1y RE z > %

z 2 z 3 z

Inz=@E-1)-7@1)+ e1-... |z-1] <1 z+#0

Inz = z-1 1(z-1y | 1(z-1Y REz >0 z=+0
z+1 31\z+1 5\z+1

1( z VV 1( z V REz>-a#z
In(z+a Ina +2 z + — + = +...
w+) (=) 15 s (755) a>0

3 5 7
sinz=2z-2 +%2 _%Z ,

3! 5! A!

cosz=1- 2.20 _2%,

2! 4) 6!

3 5 7 _1\0-192n¢~2n _

tanz =z + 2 + 22 ,17z + LCV 27RT-DB,,gy, lz] < =

3 15 315 (2n)!
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3 s -1)*122B
cotz=l-z_2 _2 _ CU2Ba0, lz] < =

z 3 45 945 (2n)!

3 5 -1)n-1 2n-1_

ccgolaz, 1, 312 (CDT2@QTT-DB,, |z| <=

z 6 360 15120 (2n)!

2 4 6 -1)°

secz=1+% +32 61z RSLVE lz] < Z
2 24 720 (2n)! 2

o -1 no2n-1p

In sin z = » C1'2™B, 2n |z| <7

z a=1 n(2n)!

= (-)r22-122_1)Bover ey CUZICNUBY
a1 n(2n)! 2

= (-)r122p2-1_1)Bpz gn CDV2REDB, a
z 1 n(2n)!

3 5
sinhz =z + 2 + Z 4 z’ +

3! 5! IA!

4 6
coshz=1+%2 +2 ,Z ,
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3 5 7 2n(~2n _

tanh z = z - z + 2z° - 172° + + 2 @ DB20-1 + |z| <>

3 15 315 (2n)! 2

3 5 2n

cothz=14+2_2 22 _ e 2Bon_ lz] < =

z 3 45 945 (2n)!

3 5 2n-1 _

cschz=21-2,72 _ 3lz° .2e7-DB,DBja-1 lz] < =z 6 360 15120 20)!

2 4 6

sechz = 1 - 2 + 5%. _ 612° | Bo ,m, lz] < =

2 24 120 2n)! ;

elnz oq 4g Zoo 320 82° 32° 5627 |

2! 4! 5! 6! ri

 

 

  
3 0375 3577

arcsin z =

z

+ = , 10327 14352" | lz] < 1
23 2045 2040607

3 5 7
arctan z = z - = + 2 _Z |z| <1 and z2 + -1

3 5 7
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arcanz = 2-2. Lo Lo. lz] > 1 and 2% # -1
z

 = 2 - nt z2n+1 Cz) +i S@) = z 1 3 inz?

ert 2 = nl (20+1) Mz 35)

_(z v _® (-z%/4)* _ z v _* (z?4)k

Le 2) > I! T(v +k +1) Le) 3 2 kl T(v +k +1)

K =F 3 Lm) E=3F-3p Lm

-n 0-1 k

Yo = - E22 5 GD 2) + 2 Ing) 1,2)
aI+ P+k+1)] 2ZH

 

-n 0-1 k
K,(2) = we y fend - 2) - -n° In(z/2) I(z)

k=0 *

C2 oe dara EYEY [GD parked] ER 

a(a-1)z2 , e(@-1)(x-2)z° .

2! 3!
 1+2)* = 1+az+
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CONTINUOUS TIME TRANSFORMS

INTRODUCTION

This appendix presents the basic concepts and formulas associated with Laplace,
Fourier, and Hilbert transforms. We leave the rigorous details of convergence to the
references. However, we do overview distribution theory since it is a key concept in
the practical application of transforms to engineering problems. Many of the
transform integrals only exist in a Cauchy principal value sense, which is defined on
page 44 of Chapter 4. For an exhaustive list of transform pairs, see Erdelyi.

DISTRIBUTION FUNCTIONS

The central function in distribution theory is the Dirac delta function, 6(t). This
function has no pointwise defined values other than to say that &(t) = 0 for t # 0, and
S(t) = eo for t = 0. Its real definition is as a limit in the mean, which we will shortly
define. The sequence of functions which converge in the mean to &(t) is not unique.
The Riemann—Lebesgue lemma states that if ¢(t) is absolutely integrable in (a, b), then

lim IK ee¢o(t) dt = 0

where a and b are finite or infinite constants. In the sense ofthis integral, we say
that the limit in the mean (LIM) of e™" = 0 as @ — c. Since e™= cos wt — i sin ot,

we also have the generalized limits or limits in the mean:

545
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LIM sin ot = 0, LIM cos wt = 0.
wW —> oo wW —> oo

Let ¢(t) be continuous at the origin, and consider the following integral:

I Sin 0b 4) dt = IE I + I: SIN Ob 4) dt.
rt rt
 

 

Since ¢(t)/t is integrable in the (-w, —¢) and (g, =) intervals, it follows from the

Riemann-Lebesgue lemma that as ® — oo, the first and last integrals go to zero. Also,
for sufficiently small € > 0:

sin x

nx

sin Wt
— dx,   

[e sin ot

rit
ot) dt ~ 6(0) [* dt = 90) |

and since

~ SIN X
| dx = 1
-— TX
 

we see that

 lim [© inot ot) dt = ¢(0).

We define any function g(w, t) with the property

lim J glo, t) ot) dt = 60),
Ww — oo

where (a, b) contains the origin, to be a Dirac delta function. For example,

LIM sin ot

wW — oo t

 = 3(t).
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The integral of 8(t) is the unit step function u(t).

_(t _J1 t>0at) = [* 50de = {2 re

Clearly, u(0) could be reasonably defined to be any number in [0, 1]. Defining it to
equal 2 generally works provided integrals over (0, =) are evaluated as if they were
over (—g, =), where € > 0 but goes to zero. This "detail," denoted by (07, «), is required
so that &(t) fulfills its ultimate objective in Laplace and Fourier transform theory —
that of providing the identity function for convolution, e.g., having a transform value
of 1 so that 8(t) convolved with any function or distribution y(t) equals y(t). For
example,

I~ 8t - 1) u(t) dt = ult) = J 8(t - 1) dr.

For a good introduction to distribution theory, see Appendix I in Papoulis. For more
detail see both Zemanian and Lighthill. Formulas include

t 8(t) = 0, t &/'(t) = -3(t), = < Int],t

f(t) §™(t) = y (-1)k (7) £®(0) §™W(t),

k=0

[7 87) ot) dt = (<1900).

FOURIER TRANSFORMS

The forward and inverse Fourier transforms are defined by:

Fo) = FTAIo) = [7 fit) e™dt, fit) = #1 Flo) It) = =[” Fle* do.

The properties of the transform include
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LINEARITY: F[ a, fit) + a, ft) (0) = 0; FL £1) 1) + op FL) Aw).

SYMMETRY: If F(e) = F[ f(t) (w), then F[ F(t) J) = 2r f-).

TIME SCALING: If F(w) = &[ f(t) l() and c eR, then F[ flct) J(@) = F(w/c)/|e].

TIME SHIFTING: If Fw) = F[ f(t) (0), then F[ fit - 1) lw) = F(w) e™".

FREQUENCY SHIFTING: If F(w) = F[ f(t) (), then F[f(t) I(w) = Flo - Q).

TIME DIFFERENTIATION: If F(w) = #[ f(t) I(@), then F[ f(t) lo) = (in)" Fw).

FREQUENCY DERIVATIVES: If F(w) = ZFfit) lw), then F[ (-it)" f(t) lw) = F(a).

CONJUGATION: If F(w) = F[ ft) I), then F[ f(t) Jo) = F "(-w).

TIME REVERSAL: If F(o) = &[ ft) l(©), then F[ fi-t) lo) = Fo).

TIME CONVOLUTION: If Fy(0) = &[ f(t) (©) and Fy(0) = F[ f,(t) lw), then

£0) ® ft) = [7 £0) ft - ©)de

is the convolution of f,(t) with f,(t), and FL f,(t) ® £,(t) 1(®) = F(0) Fy(w). We also have
the equalities f® g=g®fandf® (g®h) = f® g) ® h.

MULTIPLICATION: If F,(0) = F[ f,(t) (0) and Fy) = F[ f(t) I(o), then

F(0) ® Fy) = = [7 FiFy- 0 do

is the convolution of F,(») with F,(0), and &'[ F,(0) ® Fy(0) I(t) = f(t) f(t).

COMPLEX TIME CORRELATION: If F,(0) = F[ f,(t) (0) and Fy(w) = F[ f(t) lw),
then

£(t) = f(t) ® fy(-t) = |"£0 £5 -t) de

is the convolution of f,(t) with f,(-t), and F[ f,(t) J(®) = F,(w) F,(0). Also we have that

F[f(-t) lw) = Fi(-0) F,(-o).
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REAL TIME CORRELATION: If F,(n) = &#[ f(t) J(w) and Fy(w) = F[ f,(t) l(w), then

£(t) = £,(t) ® f)(-t) = |"£0£0 - b) de

is the convolution of f(t) with f,(-t) and F[ f(t) (0) = F,(®) Fy(-0). Also, we have that

F[f(-t) lw) = Fi(-0) Fyn).

MODULATION: If Fw) = ZFfit) I(), then FT ft) cos pt I(®) = [F(® + B) + Fo — B)/2
and ZF [ fit) sin Bt Jo) = i [Fe + B) - Flo - B)I/2.

Some common functions used in Fourier transform analysis include:

 

: t|: sin t 0 Jt|>T 1 - lt] t| <Tsine(t) = ——, p(t) = {0 21. a- T eT
0 lt] > T

sign(t) = 2u(t) - 1 = 1 b>. s(t) = ¥ 8(t - nT).

Some of the more common transform pairs follow.

Fat) Jw) =1 F[¢) lw) = G{o)® n=0,1,...

F[1 lw) = 2x 8m) Flt"w)=2ri"8"(w) n=0,1,...

F[ Unt) (0) = —i sign(@) Ft" I) = -it (-io)*sign(@)(n - 1)! n=1,2,...

F[ sign(t) lw) = 2/(iw) Ft" sign(t) Jo) = 2 n/Gw)™! n=0,1,...

Ful) lo) =n do) + (0)! FLt"ult) Jo) =ni*0) + nie)n=0,1,...

Fe (ow) = 2r &w + io) Filtrelw) =2ni"8+i) n=0,1,...

Fle*ul) Jo) =(a+iw)! Flt"e™ ult)o) =no+ io)! a>0, n=0,1,...

Flt] lw) = 2 0? F[ t*sign(t) J) = 2 To + 1) Go)? o> -1

F[ sin ot J(®) = in[6(w + a) — dw — o)] F[ cos at Jo) = nld® + oa) + 8m — a)]
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FF [ sinh at J(®) = ir[6(® + io) — dw — ia)] F[ cosh at J(®) = n[6(w + ia) + dw — 1ia)]

F[ prt) Jw) = 2 T sinc(wT) J [ sinc(at) l(w) = (n/a) p,(®)

F[ a;(t) lo) = T sincX(wT/2) FF [ sinc(at) (0) = (n/a) q,,(®)

Fst) Iw) =Qsy(w) Q=02mn)/T Fe" Jw) = 2a (0? + 0?)

F[ e™cos Bt u(t) Iw) = (o+iw) [(o+ie)*+71! FL e™sin pt ult) Xo) = Bp [(o+io)+p
io

B? - w?
 F [ u(t) cos Bt Jo) = S18 +B) + &o - PI +

SF [ ut) sin Bt Nw) = Tis +B) - dw - P)] + P-o

2n
7| Evan[0-0 nto - no Q-=55

n=-oo n=-oo

Fle? Jo) = z e@1éh Bg eC

F [cos at? J(w) = ,|= co - 2

F [ sin at? J(0) = - = sal2 - 2)

Note that for x eR and a > 0, 8(x) ® 3(x + in) = 0. Distribution theory is a way of
avoiding more formal Stieltjes integration.
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POISSON’S SUM FORMULA: If F(w) = & [f(t)](w), then

2
T

1Y ft + 0D) = =3 e'™FQ) ©
n=-oo —-=

Consider the special case of this formula where f(t) = 0 for t < 0 and t > T, and define

gt) = ¥ fit + nT).
n=-oo

By Poisson’s sum formula we see that
y

g(t) = y Tn e ina

n=-oo

 

is the Fourier series expansion of periodic g(t) with coefficients

F(nQ)

T
 

_ 1 qr -i nQt
= T J ft) e dt.

The Fourier transform of periodic g(t) is

Gl) = 33 —22["glean gp = 3 0 Fn) 8o - no)
n=-oo n=-oo

 

Hence, the Fourier transform of a periodic function is a train of Dirac delta functions
with coefficients Q F(nQ). Alternatively, G(w) = F(w) Q s,(®), which is the Fourier
transform of f(t) ® s(t), which was our original definition of g(t).

HILBERT TRANSFORMS

The Hilbert transform of f(t) is simply the convolution of f(t) with 1/(nt). If y(t) is the
Hilbert transform of x(t), y(t) = H [f(t)](t), then z(t) = x(t) + 1 y(t) is an analytic signal
since J[ 1/(nt) I(w) = —1 sign(w) and FF[z(t))(®) = 2 U(w) X(0), where X(w) = F[x(t)](®).
Thus, the Fourier transform of an analytic signal z(t), is zero for ® < 0. A causal
function f(t) has the property that f(t) = 0 for t < 0. Viewed as a function of real
radian frequency w, the Fourier transform of z(t) is causal in frequency o.
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A few of these transform pairs are

H[ (nt) I(t) = -8(t) HI 81) It) = Vint)

H [ sin(Bt + a) I(t) = —cos(Pt + a) H [ cos(Pt + a) I(t) = sin(Bt + av)

H [ sinc(at) I(t) = (1 - cos at)/(at) H[ (1 - cos at)/(at) I(t) = —sinc(at)

In general, if x(t) = a(t) cos[Bt + ¢(t)] is bandpass, then H[ x(t) I(t) = a(t) sin[Bt + ¢p(t)].
Hilbert transformation thus performs a 90-degree phase shift on bandpass signals.

LAPLACE TRANSFORMS

The forward and inverse Laplace transforms are defined by:

of + ico- 1F(s) = 90 fit) Is) = [~ f(t) e™*dt, fit) = 270 Fs) It) = — [*"" F(s) e* ds
a = 1

The properties of the transform include

LINEARITY: df o, f(t) + oy f(t) 1(s) = oy LL f(t) 1s) + 0, LL f(t) 1(s).

TIME SCALING: If F(s) = &[ f(t) I(s) and ¢>0, then ¢[ flct) 1(s) = F(s/c)/c.

TIME SHIFTING: If F(s) = &[ f(t) I(s), then &[ fit — 7) U(t — 1) I(s) = F(s) e™ 17> 0.

FREQUENCY SHIFTING: If F(s) = &[ ft) I(s), then <[ e™ f(t) I(s) = F(s - Q).

TIME DIFFERENTIATION: If F(s) = €[ f(t) I(s), then

Pl f(t) 1(s) = s” F(s) - s" 0) — s"2 20) —. . . — £0).

FREQUENCY DERIVATIVES: If F(s) = &[ f(t) 1(s), then &[ (-t)" fit) 1(s) = F™(s).

TIME INTEGRATION: If F(s) = ¢[ f(t) I(s), then &[ [,* f(z) dt 1(s) = F(s) / s.

FREQUENCY INTEGRATION: If F(s) = &[ f(t) 1(s), then €[ fit)/t I(s) = |.” F(z) dz.

TIME CONVOLUTION: If F(s) = &[ f,(t) I(s) and Fy(s) = <[ £,(t) 1(s), then
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t

£0) ® £0) = [1 £0 ft - © de

is the convolution of f;(t) with f(t), and I[ f(t) ® f,(t) 1(s) = F(s) Fy(s).

MULTIPLICATION: If Fy(s) = ¢[ £,(t) I(s) and Fy(s) = <I f,(t) I(s), then

1 oL+iooFi(s) ® Fy(s) = — [7 Fy) Byfs - a) da

is the convolution of F,(s) with Fy(s) and €7'[ F,(s) ® Fy(s) I(t) = f,(t) f(t).

INITIAL VALUE THEOREM: If F(s) = ¥[ f(t) I(s) and f(t) is causal, then

n-1

f(0*) = lim [ s F(s) 1, £0) = lim|s™'F(s) - YY s™™ £f™(0) |
8 — oo § — oo m=0

FINAL VALUE THEOREM: If F(s) = 4[ f(t) I(s), then

Iim[ s F(s) ] = feo) < oo.
s > 0

Some of the more common transform pairs follow. Letv eCbut v#-1,-2,....

g(t) Is) = 1 gL 8™(t) I(s) = 8"

911s) =s" gl t's) =T(v + 1) ss

gle? 1s) =[s + al’ gt e™ 1s) =T(v+1)[s +a]?

dl sin Bt 1(s) = p [s* + pI ot"sin Bt 1(s) =i Iv) [(s + iP)™ — (s — if)™)/2

d[ cos Bt 1(s) = s [s* + BI dt"! cos Bt 1(s) = T(v) [(s + iB)+ (s — if)™V/2

d[ sinh Bt 1(s) = B [s* - BI gt! sinh Bt 1(s) = Tv) [(s = PB)= (s + B)™1/2

d[ cosh Bt I(s) = s [s* — BI”! dl t"* cosh Bt 1(s) = TV) [(s = B)™ + (s + P)V/2

glesin Pt 1(s) = B [(s + a)? + BI} Ll e™cos Bt I(s) = (s + a) [(s + a)’ + PI
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where I'(z) is the GAMMA command whose symbolic form is defined in Chapter 19.

Sttls)=-y-Ins ts) = —(-s)[Ins -ym)ITn) n=23,...

gtte™](s)=-y-In(s+a) REs>-REa«

thes) =-1D"(s+a)'[Ins+0a)- yn) In) REs>-REa,n=2,3,...

&[ t™! sin Bt 1(s) =i [In(s - if) - In(s + iB)J/2 RE s > [IM P|

Lt cos Pt I(s) = -y-InV(s* +p?) RE s> [IM |

<[ t™ sinh Bt I(s) = [In(s + B) - In(s - p)V/2 RE s > |RE B|

ot! cosh Bt I(s) = -y— In V(s?- B) RE s > |RE B|

where 7 is the command vy, and y(z) is the PSI command whose symbolic form is
defined in Chapter 19. Forn=2,3,... and RE s > |IM B|, we have:

Ltsin Bt 1(s) = (—1)™ {(s+ip)"" [In(s+ip) — y(n)] — (s-iB)™[In(s—if) — w(m)IM2 I(n)]

St cos Bt 1(s) = (-1)" {(s+iB)"" [In(s+iP) — w(n)] + (s=ip)"* [In(s—iB) — W(n)]/[2 I'(n)]

Similarly, forn = 2, 3, . . . and RE s > |RE |, we have:

of t™ sinh Bt 1(s) = (=D{(s+p)"" [In(s+P) — y(n)] = (s—P)** [In(s—B) — y(m)]/[2 [(n)]

Sl t™ cosh Bt 1(s) = (-1)" {(s+p)"[In(s+P) — w(n)] + (s—B)"* [In(s-P) — y(n)]}/[2 I'(n)]

We also have the formulas:

t+)" s)=a'™e*E(as) a>0andn=0,1,2,...

(£2 + 1)Is) = [w/2 — Si(s)] cos s + Ci(s) sin s

where E(z) is the exponential integral, Si(z) is the sine integral, and Ci(z) is the cosine
integral. Other trigonometric forms are:

ol |sin Bt| 1(s) = B [s® + B*1"! coth[ns/(2B)] PB > 0

fl [cos Pt] 1(s) = [s* + P*1™" {s + PB cschlns/(2B)]} PB > 0
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dl sin at sin Bt 1(s) = 20Bs [s> + (a + P)*I' [s* + (a -= B)’I" RE s > [IM(o = PB)

dl cos at sin Pt 1(s) = B(s®—a+p?) [s® + (0 + PPI[s* + (a — BT" RE s > |IM(a + B)|

d[ cos at cos Bt 1(s) = s(s’+a+B?) [s? + (0 + BI! [s® + (a = B)’T' RE s > |[IM(a = B)|

ot sin? Bt 1(s) = In[1 + 4(B/s)*/4 RE s > 2 |IM B|

dl t™* cos? Bt J(s) = —-y - In[s® (s* + 4%)] RE s> 2 |IM B|

Forms involving vt are:

Vat” t+o)1s) =ns”erfcV(os) |argoal<m

dl (nt)ult — 0) 1(s) = s* erfe ¥(os) 20

oP{nt + 0)1s) = s# e* erfc (as) [argo] <n

og(mt)e2I(s) = 7 EXP(a¥/s) erfc ¥(os) |argo| <n

St"1(s) = Vm 27 [1e305e . .. 20-1] s™* n=1,2,...

gl 2¥(t/m) 1(s) = 57 oS(nt)1(s) = 52

df (mB)sin 2 (Bt) I(s) = s™2 e* Jl (np)cos 2 V(Pt) I(s) = s7% e™*

J[ (np) sinh 2 V(Bt) 1(s) = 5732 oP o[ (np) cosh 2 V(Bt) I(s) = gV2 bs

ot! sin(2BVt) I(s) = mw erf(B¥s) RE s>0

o[ t™ sin 2V(Bt) 1(s) = -i V(n/s) eP’® erf (iV(B/s)} RE s>0

[ t7* cos 2V(Bt) I(s) = V(n/s) e?’* RE s>0

ot sinh 2V(Bt) 1(s) = V(n/s) e®’® erf (Y(B/s)} RE s>0

o[ t™ cosh 2V(Bt) 1(s) = V(n/s) e?’* RE s>0

ot sinh? V(Bt) 1(s) = V(n/s) [e®’5-1)/2 REs>0

of t™ cosh? V(Bt) 1(s) = v(n/s) [e®’* + 11/2 RE s>0
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Formulas involving In t with RE > 0 are:

Ll t*Int 1(s) = TP) s[y(B) - In s] SIntls)=-s"[y+Ins]

g[ In(1 + at) I(s) = s7! e¥ E(s/t) d In(t + a) I(s) = s[In a + e* E,(0s)]

where |arg a| < 7, and as noted in Chapter 4, E,(z) = -Ei(-z) for |arg z| < =.

Formulas for the error function erf with a > 0 are:

ol erf t/(2a) I(s) = s™* EXP(0’s?) erfc os

ol (own)EXP(-t*(20)° 1(s) = EXP(0?s®) erfc as

ol a”! EXP(a’) erf avt I(s) = s7# (s — a?) dg EXP(a’t) erfc aVt I(s) = s* (Vs + a)!

ol erfc B/(2Vt) I(s) = ste®'® of (4) i" erfe P/(2Vt) 1(s) = s~2+D 7B Ys

where f>0,n=0, 1,.. ., and i" erfc z denotes the nth integral of the complementary

error function erfc z.

[ (rt) — a EXP(a’) erfc av't I(s) = 's + a)!

dl (nt)+ a EXP(a’) erf aft 1(s) = Vs (s — a?)

L(b-ay*eerf[V(b-aNtll(s)=(s+a)'(s+b)™

ode* EXP(a’) erfc{avt + PA2Vt)} Is) =s™ (a+ Vs)eeB20

Formulas related to the exponential integrals are:

fl e* {In(a + b) + E,([a + blt)} I(s) = (s — a)In(s + b)

&[ cos t Si(t) — sin t Ci(t) I(s) = (s* + 1)In s

&[ - sin t Si(t) — cos t Ci(t) I(s) =s (s+ 1)" In s

Eta) Is) =s'Inl+as) o>0

Sl tle™-e1s)=In[(s +a)(s+Db)]
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og2 Citt/o) I(s) = =s' In(1 + 08>) a> 0

$[21n a -2Ci(at) I(s) =s™ In(s* + 2°) o> 0

dg2 {at In a + sin at - at Ci(at)} Is) =as?In(s* +a) a>0

¢[ Si(at) Is) = s™* arctan(o/'s)

Formulas involving Bessel functions are:

J Jy(at) I(s) = (s* + a®)7* dla" Jat) Is) =W(s?+ad) -sl’(s®+a)™ v>-1

dt Jy(at) I(s) = s (s* + a®)™?

dgt J,(at) I(s) = a (s* + a®)™"?

d[ Vr {t/(2a)}"* J,(at) Is) =T(n) (s* + a®)™ n> 0

dna" t!d(at) Is) =V(s®+a®)-sI" n>0

d[ I(at) I(s) = (s* — a®)™* dl a’ I(at) Is) =[s -V(s® + ad)(s?-ah)™ v>-1

dl t I(at) I(s) = s (s* — a®)™?

gt I(at) I(s) = a (s* — a®)™?

gl Vr {t/(2a))"1,(at) Is) = Tn) (s* -a®)™ n>0

df e2]{(a — b)t/2} 1(s) = (s + a)(s + b)™

dntle®™?[{(a-bit/2ls)=(@a-b)"V(s+a)+V(s+bI* n>0

Vr [t/a -b)P"e@2]{(a-bit/2} Is) =I) (s+a)™(s+b)™ n>0

ol (Ho)? J,(ZV(at) Ns) =s™e™® nu>0

9 (FZ I(2 (ot) ) (8) = s% */* p> 0

dl n! (nt)Hy,(Vt) I(s) = (20)! (1 — §)" 72 Hermite polynomial

odn! (m)™* Hy,,,(Vt) I(s) = (2n + 1)! (1 — 5) s™3? Hermite polynomial
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s S(t - mo = ow T>0
|n=0

 

> 1
2 (-1) ot - nfs = T+e T > 0

= 1
§ > ot -— = sinh T>0

z 1
2 2 (-1) ot = [2n + ums = Cosh T>0

S(t) + 2 3 (-1)" dt - ams =tanh Ts T > 0
L n=1
-

= 1-(2n + 1B — ——2 >. e B S(t — Smh(Ts + Pp) T>0

2 > en + DB o(t +T —-A =TRE T>0 T>0

Inverse Laplace transforms are easily computed with the IXFRM command. The
symbolic higher transcendental functions with defined derivatives, which are required
for some of the residue integrations, are available. See Appendix A.

Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F., Tables of Integral
Transforms, 2 Volumes, New York, McGraw-Hill, 1954.

Lighthill, M., FourierAnalysis and GeneralizedFunctions, New York, Cambridge Univ.
Press, 1970.

Papoulis, A., The Fourier Integral and its Applications, New York, McGraw-Hill,
1962.

Zemanian, A, Distribution Theory and Transform Analysis, New York, McGraw-Hill,
1965.
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DISCRETE TIME TRANSFORMS

INTRODUCTION

Again we will leave the rigorous details to the Chapter 27 references and focus on the
basic concepts. Discrete time waveforms are created by a process called sampling,
which can be modeled mathematically as multiplying the input function x(t) by the
sampling distribution s(t):

28) = x(t) 5,0) = xt) ¥ 8 - nT) = ¥° xT) &t - nT),
n= -oo n=-oo

where T is the sampling period. Now let Q = 2r/T, & [ ] denote Laplace transform, and
F[ 1 denote Fourier transform. Since FFs(t) (0) = Q sy(w) and multiplication in the
time domain corresponds to convolution in the frequency domain, we have the result

FLx® Jw= [7 QY 80 - nQ) FI xt) o-o)do = QF FT x(t) Ko-ng).
n= -oo n= -—oo

The process of sampling has repeated periodically the transform of x(t), Z[ x(t) l(w),
with period Q. The Nyquist sampling theorem defines the minimal conditions such
that the periodic repetitions of &[ x(t) l(w) do not overlap (alias).

' This can be extended to multidimensional sampling lattices in the presence oftiming
jitter, level errors, and track-hold amplifier hardware errors. See Holland.

559
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Now suppose that x(t) is causal, that is, x(t) = 0 for t < 0. Then the Laplace transform

of x(t) is

oo

gl xb) Is) = ¥, x(nT) em.
n=0

Define X(z) to be the z transform of x(t). Then we have the relations

oo

X(z) = ¢[ x,t) IIn@=)/T) = YY x(nT)z™.
n=0

If z is evaluated on the unit circle as z = ¢' **N we have the discrete Fourier series

oo

Xk] =} x(nT) e 2,
n=0

Computing the inverse discrete Fourier series gives the result

N oo

y(nT) = = Y X[k] e! 2= ¥ x(nT + tNT) # x(nT).
k=0 r=-oo

Hence, in general y(nT) is an aliased version of x(nT). If in addition to causality we
require that x(nT) = 0 for n > N, then y(nT) does equal x(nT), and the discrete Fourier
series formula can be used as the discrete Fourier transform. This is how the discrete
transforms relate to the continuous ones and is covered in far more detail in the

references for Chapter 27.

z TRANSFORM

The forward and inverse z transforms are defined by:

X@) = { xin] 12) = ¥ xin] 2, x[n] = {7 X(z) Jn) = § X@zm dz,
n=-oo

where x[n] = x(nT), and C is a closed contour which encircles the origin. The above z
transform is called the two-sided or bilateral z transform. The one-sided or unilateral

z transform is



APPENDIX G DISCRETE TIME TRANSFORMS 561

X*(z) = {’[ x[n] Iz) = ) xn] z™.
n=0

DEFINITIONS: Let uln] = u(nT) denote the unit step function and d[n] the unit
sample sequence. uln] = 1 for n > 0, and zero otherwise. 8[n] = 1 for n = 0, and equals
zero otherwise.

The properties of the z transform are

LINEARITY: {[ o, x,[n] + 0, x,[n] 1(z) = a, {[ x,[n] 1(z) + a, {[ x,[n] 1(2).

TIME SHIFTING: If X(z) = {[ x[n] I(z), then {[ x[n - k] 1(z) = z7™* X(2).

SCALING IN Z DOMAIN: If X(z) = {[ x[n] 1(z), then {[ a" x[n] 1(z) = X(a™'z).

TIME REVERSAL: If X(z) = {[ x[n] 1(z), then {[ x[-n] 1(z) = Xz).

Z DOMAIN DIFFERENTIATION: If X(z) = {[ x[n] 1(z), then

dX(z)

dz
 {[ n x[n] Iz) = -z

TIME CONVOLUTION: If X,(z) = {[ x,[n] I(z) and X,(z) = {[ x,[n] 1(z), then

x[n] = x,[n] ® x,[n] = } x,[m] x,[n - m]

is the convolution of x,[n] with x,[n], and {[ x[n] 1(z) = X,(z) X,(2).

MULTIPLICATION: If X,(z) = {[ x,[n] }(z) and X,(z) = {[ x,[n] 1(z), then

- - 1 z -1X() = X,@ ® X,(2) = 5 § X,(w) X, 2] wl dw

is the convolution of X,(z) with X,(z), {'[ X(z) I(n) = x,[n] x,[n], and C is a contour
which encloses the origin and lies within the common region of convergence.
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TIME CORRELATION: If X,(z) = {[ x,[n] 1(z) and X,(z) = {[ x,[n] 1(z), then

pln] = x,[n] ® x,[-n] = y x,[m] x,[m - n]
m= —oo

is the correlation of x,[n] with x,[n], and {[ p[n] I(z) = X,(z) X,(z™).

INITIAL VALUE THEOREM: If X(z) = {[ x[n] I(z) and x[n] is causal, then

lim X(z) = x[0].
Zz > oo

Some of the common z transform pairs follow.

TIME: © = t/T DISCRETE Z TRANSFORM

a(t) d[n] 1

ot - kT) o[n — Kk] zx

u(t) uln] zz - 1]!

T u(t) n un] z [z - 1]

a* u(t) a” uln] z[z - a]

T a* u(t) n a" u[n] azlz-al?

72 u(t) n® u[n] z (z+1) [z - 117°

7° u(t) n’ uln] z (z" +4z +1) [z - 1]

a*u(-t-T) a" u[-n - 1] -z [z — a]?

Ta‘ u(-t -T) n a" u[-n - 1] azlz- al?

sin Qt u(t) sin Qn u[n] z sin Q [z* - 2z cos Q + 1]

cos Qt u(t) cos Qn u[n] z (z — cos Q) [2° — 2z cos Q + 1]!
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TIME: © = t/T

sinh Qt u(t)

cosh Qt u(t)

ee" u(t)

a’ sin Qt u(t)

a’ cos Qt u(t)

e*" sin Qt u(t)

e*" cos Qt ut)

Te*ut)

12 7" u(t)
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DISCRETE

sinh Qn u[n]

cosh Qn u[n]

e*" u[n]

a" sin Qn u[n]

a" cos Qn u[n]

e*" sin Qn un]

e*" cos Qn uln]

n e*" uln]

2 ,-ann® e*" un]

Z TRANSFORM

z sinh Q [2% — 2z cosh Q + 1]!

z (z — cosh Q) [2% — 2z cosh Q + 1]!

z[z-e™

az sin Q [z* — 2za cos Q + a’]™*

az (z — a cos Q) [22 — 2za cos Q + a’]™!

20-1
ze“sin Q[z2 -2ze* cos Q + e

z ez — e™* cos Q)[z% — 2ze™ cos Q
+ e~20!

ze*[z - ee?

ze*(z+e%[z-e"?

Inverse z transforms are easily computed with the IXFRM command.

DISCRETE FOURIER TRANSFORM

The forward and inverse discrete Fourier transforms (DFT) are defined by:

x[n] = IDFT[ X[k] I(n) =

N-1

X[k] = DFTx[n] Ik) = y x[n] e = ZtkoN

n=0

N-

y X[k] el 2nko/N

—

Z|
=

where X[k] is the DFT of x[n]. The properties of the DFT are

PERIODICITY: x[n + N] = x[n] and X[k + NJ] = X[k].

LINEARITY: If x[n] = o, x,[n] + a, x,[n], then X[k] = a, X,[k] + a, X,[Kk].
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TIME REVERSAL: If y[n] = x[ =n MOD NI] = x[N - n], then

Y[k] = X[ -k MOD NJ = X[N - KI.

CIRCULAR TIME SHIFT: If y[n] = x[n — m MOD NI, then Y[k] = X[k] e~ ZX,

CIRCULAR FREQUENCY SHIFT: If yin] = x[n] ¢' >, then

Y[k] = X[k - m MOD NI.

CONJUGATE: If y[n] = x'[n], then Y[k] = X'[ - k MOD NJ] = X'[N - kl.

CONVOLUTION: If X[k] = DFTx,[n] I(k) and X,[k] = DFTx,[n] 1(k), then

N-

y[n] = x;[n] ® x,[n] = x,[m] x,[n - m MOD N]

= X,[m] x;[n - m MOD N]

z
38

O
o

—

3 i o
S

is the circular convolution of x,[n] with x,[n], and DFT[ y[n] 1(k) = X[k] X,[k].

MULTIPLICATION: If X[k] = DFT{ x,[n] I(k) and X,[k] = DFTx,[n] I(k), then

N

Y Xm] Xk - m MOD N]

—

YIk] = X,[k] ® X,[k] I

z
8

-
o

z
l
2
]

3

1 X,[m] X[k - m MOD N]

o

is the circular convolution of X[k] with X,[k], and IDFT[ Y[k] I(n) = x,[n] x,[n].

CORRELATION: If X,[k] = DFTx,[n] 1(k) and X,[k] = DFT[ x,[n] 1(k), then
N-1

pln] = x,[n] ® x,[-n] = } x,[m] x,[m - n MOD N]
m=0

is the circular correlation of x,[n] with x,[n], and DFT{ p[n] Ik) = X,[k] X,Tk].

The commands FFT and IFFT perform forward and inverse DFTs for N equal to a
power of two. Programs DFT and IDFT are also available for arbitrary N.
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Commands FFT and IFFT use the classic decimation-in-time algorithm. The first step
is the bit reversal of the data. This is performed by the command BITRV. There are
self-sorting in-place algorithms available. See Temperton. By using tensor product
notation, one can fine tune an FFT algorithm to a particular computer architecture of
interest. Commands RORDR and CORDR can be used to build the permutation
stride matrices and the below program KPRD will perform the tensor (Kronecker)
products. See Granata. The matrix approach to representing discrete Fourier
transforms and other discrete transforms is introduced in the next section. Two
dimensional FFTs are available. See Appendix A.

PERFECT RECONSTRUCTION FILTER BANKS

Thediscrete Fourier transform is easily represented as a matrix multiply. Define W
= e7?N where N is the size of the DFT. Then if X[k] = DFTx[n] 1, we have

X[0] wo wo we . Wo x[0]

X[1] wo Ww 1 W 2 i. W N-1 x[1]

X[2] = WwW 0 Ww 2 Ww 4 i” Ww 2(N-1) x[2] = Mx }

XIN-1]] [W° WNL W2N-D WN [[4[N-1]

Consider each row of the above matrix as a finite impulse response (FIR) filter. Then
each output value X[k] represents one value of the convolution of the kth row with the
input sequence x[n], in particular, the convolution output with input x[n] for n = 0, 1,
. .., N=1. In addition, for a sufficiently long sequence x[n], the convolution of each of
the matrix rows with x[m], xm + 1], . . ., x[m + (N-1)] for m = 0, 1, . . ., provides
outputs X[k]. Now the discrete Fourier transform theorem says for each non-
overlapping block of N input values, the outputs X_[k] for m = 0 are sufficient to
perfectly reconstruct the input values x[0], x[1], . . ., xIN-1]. Thus, the convolution
outputs X_[k] may be decimated by a factor of N, and only the values X[0], X[1],. . .,
X[N-1] retained. This is called maximal or critical decimation. The commands VDEC

and VINTP are available for decimating and interpolating sequences.

The above transform may be regarded as an example of sub-band decomposition. The
forward transform is called the analysis operation and the inverse transform (IDFT)
is called the synthesis operation. Observe that the inverse transform matrix is the

Hermitian transpose of the above matrix M divided by N. The program on the next
page constructs the above DFT matrix.
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< > N « 'EXP(-ix2xn/N)) 5NUM -» W « 0 N 1 - FOR K W K 4
N EINDX —»ROW NEXT 2 N START RCMB NEXT > > >

Again regarding each row of the DFT matrix as a FIR filter, the z transform of that
filter can be written as

N-1
H(z) =) Wmz™m r=01,...,N-1

m=0

where r denotes the row. The collection of these values forms the column vector

H,(z) 1

H,(z) z!
H(z) = = MV(2) Vi(2) =

H,_ (2) Z —(N-1)

which mathematically defines the analysis operation. The corresponding synthesis
operation is H"(z™!). The value of H*(z")H(z) after reordering the sumsis

N-1 N-1 N-1
HH(z-)H(z) = y y y W -rmg my rng -n

m=0 n=0 r=0

which is the overall system transfer function. Observing that

z m-n 3 W rn-m) -{ N m
= 0 m #

we have the result that HY(z)H(z) = N® This is the condition for perfect
reconstruction, that is, having decomposed and decimated the input sequence x[n] into
N sub-bands with analysis filter H(z), we can perfectly reconstruct x[n] by using the
synthesis filter H"(z"') within a scale factor. Please note, however, perfect
reconstruction only implies that aliasing can be canceled, not that it does not occur.

Suppose we wish to reduce the aliasing error between sub-bands. This can be done by
employing a polyphase filter of length gN, for genus g = 1, 2, . . ., ahead of the DFT.
After appropriate decimation, this effectively increases the impulse response of each
of the N sub-bandfilters to gN samples, which improves the isolation between the sub-
bands. By using this technique, the unwindowed DFT 13 dB sub-band isolation can
be made over 100 dB using a genus 8 design.
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In the polyphase filtering case, the above equations generalize to H(z) = P(z)Vy(z)
where P(z) is an N x N matrix. The condition for perfect reconstruction is that
Vy(zH)PH(z)P(z)V\(z) equals a constant as it did in the DFT case with P(z) = M.
Thus, we are motivated to examine the properties of M, the DFT matrix, which give
rise to perfect reconstruction. M has orthogonal rows and columns so that M"M =
MM! = NI. A matrix is said to be paraunitary if it satisfies the quadratic condition
PY(zH)P(z) = P(z)PH(z}) = cI, for c eR. This is the key perfect reconstruction property.

Clearly,if P(z) is paraunitary, so is MP(z). Consequently, if P(z) is a diagonal matrix
with elements P_(z), the rows of H(z) = MP(z)V\(z) are

N-1
H(z) =) Wmz™P(2) r=01..,N-1

m=0

which is the standard polyphase filter expression in the signal processing literature.
Observe that P_"(z)P_(z) =c form = 0, 1, .. ., N - 1 in this special case.

For g > 1 and P(z) a FIR filter, the elements of P(z) take the form of the sums

p,(2) = aN.2 s,tr=0,1,...,N-1

o
m —

= n o
S

where a® are coefficients of an N x gN matrix A with 0 <s < N. In the IIR case, each
p.(z) could be an infinite Laurent expansion. Hence, P(z) is called a Laurent matrix.

The existence of a matrix P(z!) which, apart from a constant, is the inverse of P(z)
has an interesting implication. Since the inverse of P(z) is the adjoint of P(z) divided
by the determinant of P(z), DET P(z) # 0. Thus, P(z) must be full rank for all |z| =
1. If P(z) is FIR, and invertible, then P(z!) can be made realizable by inserting
sufficient delay. The minimum delay is the McMillan degree of a rational matrix.

Let N = 2. Then M reduces to the Haar matrix [1 1][1 -1]] and MP(z) is the column
vector [[Py(z) + P,(z)I[P,(z) — P,(z)]] which we define to equal H(z) = [[H(2)I[H,(z)]].
H(z) is the analysis filter and is H"(z™!) the synthesis filter. The transfer function of
the system is H*(z")H(z) and equals

Hy'(z WH(z) + H(z HH,(2) = 2[Py(z MPyz YN) + Pz MP(zM)] = 2c .

Now if Hy(z) and H,(z) are chosen to be a quadrature mirror filter (QMF) pair so that
H,(z) = Hy(-z), then the transfer function becomes H,(z")H,(z) + H,(-zHH,(-2).
These relations can be computed symbolically, using the commands in Chapter 25.
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One method of implementing a N = 2" sub-band decomposition is by building a tree of
lowpass-highpass sub-band analysis and synthesis filters. In this case, discrete
wavelet transforms and polyphase DFTs are essentially the same. The differences are
associated with how one descends in resolution between stages of the tree. For more
detail, see Gopinath. After a short digression, we will generalize these results.

INTERFERENCE CANCELLATION APPLICATIONS

Observe that while perfect reconstruction is an important requirement in coding and
data compression applications,it is less important in adaptive interference cancellation
(AIC) applications where sub-band isolation is far more important. This is due to the
fact that the spectrum of the input signal is modified by the AIC, making the perfect
cancellation of aliasing components impossible. In AIC applications, the transform
simply provides a computationally efficient linear convolution engine and the
polyphase filter improves the sub-band isolation. The transmux interference canceler
software on pages 388 through 390 provides linear convolution, but the polyphase filter
design does not satisfy the perfect reconstruction orthogonality requirements.
However, it does provide linear convolution with over 30 dB sub-band isolation. The
classic methods of providing linear convolution with DFTs:

1. Factor of 2 zero pad

2. Overlap and save
3. Overlap and add

are quite intuitive and easy to understand with a few simple pictures. However,
achieving linear convolution with lapped transforms (DFT with polyphasefilter) is not
as intuitive for higher genus wavelet and Fourier transforms. What is true is that, for
equalfilter and data block sizes, the AIC transform convolver should operate at least
a factor of 2 above critical decimation as do the linear convolution commands and
programs in Chapter 26. This factor of 2 provides the anti-aliasing provision required
to extract linearly convolved outputs. This factor of 2 is built into the programs on
pages 388 through 390. They show how it may be implemented.

With the availability of the multishot optimum (minimum probability of error)
Radon-Nikodym derivative sequential demodulation technology, reducing the
interference to an innovations process is jointly optimum. One can design the best
AIC, since there are no signal of interest (SOI) AIC distortion or intersymbol
interference issues to consider, even with multi-million tap filters. Since the AIC
never "sees" the SOI, the interference canceler is easy to adapt.
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GENERALIZED WAVELET TRANSFORMS

The above transformation matrices for sub-band decomposition play two roles relative
to wavelets. The first is the notion of a generalized wavelet transform unifying a
collection of linear transformations and approximations. The second is that of
providing the scaling and wavelet vectors for the calculation of wavelets. Observe that
the perfect reconstruction properties follow from the N x gN coefficient matrix A,
defined above. Gopinath states that all orthogonal and biorthogonal wavelet bases
with compactly supported wavelets are special cases of FIR filter bank theory. Using
the terminology of Heller, we define a complex N x N Haar wavelet matrix A to be one
which satisfies the orthogonal row condition AA" = NI and the linear condition

N-1

J A, = Nd, :

The above defined DFT matrix M satisfies these conditions, for example. Now Heller
shows that an N x N complex matrix A is a Haar wavelet matrix if and only if

10
A =

0U

where U is an (N - 1) x (N - 1) unitary matrix and h is the canonical Haar matrix of
rank N defined by

h

  

    

 

[ 1 1 - . - - 1]

1 1 1“(N-1.| 2— 2. w w _:
WN \ N-1 | N-1 \ N-1

h =

s2+s s2+s \ s2+s

0 w i" w 0 _|N N
2 2 

where s = (N —-k)and k=1,2,... N — 1 are the row numbers of the matrix. In

general, the top row of a wavelet matrix A is called the scaling vector or lowpass vector

and the other rows are the wavelet vectors or bandpass (highpass for N = 2) vectors.
The program CHAAR on the next page computes the canonical Haar matrix h.
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<«< > Ne« NONE VoL IF N1> THEN DUP -» V « N 1 - 1 FOR
S NS DUP SQ + v DUP S ONE x SWAP S x NEG S 1 + IVAL
V LZFIL DROP -1 STEP » END N LIST M«SO REV-> > »>

This is a particularly normalized upper Hessenberg form. The programs below
compute several example Haar wavelet matrices. Use the command LSOVL to
compute U. COSM computes the discrete cosine transform (DCT) matrix.

<«< > N « NONE VoL 1 N1 - FOR R 0 N 1 - FOR C 'V2x
COS(Rx(2xC+1)xn/2/N)’ ->NUM NEXT N LIST NEXT N —LIST MSO >»

Another example is the normalized discrete Chebyshev polynomials. CBYM uses
command CHEBY to compute this example Haar wavelet matrix.

<« 5 Nee ONI1-FORn N1-nCHEBY -  L<«<O0ON1-FORmMmO

n FOR k m k PERMF NEXT n 1 + LIST L SDOT NEXT >» N

—LIST V((2xn+1)x(N-1)!/(N+n)!xPERMF(N-1,n))) —-NUM SMPY NEXT

N LIST MSO »> »

Walsh matrices are Hadamard matrices which have been ordered in a specific way.
These are flat wavelet matrices, since all of the elements have the same absolute value.
Using the tensor (Kronecker) product program KPRD, HDM computes some example
Hadamard matrices. Use the Chapter 20 and 21 commands for reordering.

HDM: « » N «IF N 1 == THEN [[1]] ELSE [[1 1][1 -1]] IF N 2 >
THEN —- M « M 2 N START M KPRD NEXT >» END END »> »

KPRD: « MN M1 « MN SIZE EVAL > RC «1 R FOR J 1 C FOR K
MN J K 2 SLIST GET M1 x IF K 1 > THEN CCMB END NEXT IF
J 1 > THEN RCMB END NEXT > > »

As stated above, the wavelet matrix A is in general N x gN, when P(z) is FIR.

0 0 0 0
ay a, "a;  a,Ng

1 1 1 1
A = QQ a; Aynq

N-1 N-1 N-1 N-1
aq a, a, * 8gN-1

In order that P(z) be a paraunitary Laurent matrix, A must satisfy
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YY ain al=c¢d,.9,, a=a’, a’ =0fork<0andk>gN.
k=-0

Heller defines a rank N, genus g, N x gN wavelet matrix as one satisfying the
normalized paraunitary Laurent matrix conditions with ¢ = N, and the linear condition

N-1 gN-1

y p,(1) = )D a, = NJ, .
r=0 k=0

An example is Daubechies’ wavelet matrix of rank 2 and genus 2.

1 1] 401 3 -3 3] *|-1+/3 3/3 -3+/3 14/3

where we note that the Haar (paraunitary) transform of her coefficients results in a
matrix which also satisfies the paraunitary Laurent conditions with ¢ = 1, is a QMF
pair, but fails to satisfy the linear condition. Thus, finding "good" coefficients is not
trivial. Row sums are easily performed with the RSUM command, and symbolic
Laurent matrices may be constructed and tested using the commands in Chapter 25.

: N 1/8 3 4B 1|_ 1|143 343 3-43 143

The significance of the above conditions on the elements of the A matrix extends
beyond perfect reconstruction filter banks. These conditions give rise to tight frames,
that is, a set of scaling and wavelet functions that behave like orthonormal bases
relative to expansions and expansion coefficients. See the wavelet tight frame theorem
in Gopinath and the discussion in Alpert. Research in this area is still evolving.

An example of an orthogonal transformation used in digital processing which is not a
Haar wavelet matrix is the Karhunen-Loeve transform (KLT). The KLT is essentially
the Schur decomposition. In practice, this decomposition is normally applied to a
covariance matrix which is Hermitian Toeplitz. The programs on page 387 provide
this capability. Principal factor (component) analysis is the process of representing
(approximating) a signal or data using the principal eigenvalues and associated
eigenvectors. The large eigenvalues are the principal ones and the small ones are
thrown away to deflate the space. Nearest—neighbor classification algorithms are
cursed by high dimensionality, so reducing the size of the space is important.

Binomialfilters are used in coding and are related to discrete Hermite sequences and
transforms (DHT). The theory is in Haddad. Programs are available. See Appendix
A. Neither the KLT nor the DHT satisfy the linear wavelet matrix condition.



572 DISCRETE TIME TRANSFORMS APPENDIX G

If s(x) is the scaling function and w(x) for m = 1, 2, . . ., N — 1, are the wavelet
functions, the coefficients of the scaling vector (top row) can be used to solve for s(x).
The coefficients of the other rows with s(x) can then be used to solve for the wavelet
functions. Let N = 2 and the wavelet matrix A equal

 

A = a; a, =~ |

by, b, or by

Then we solve

2g-1 2g-1

sx) =} a,s(2x -k) wx) =} bs@x -k).
k=0 k=0

See Alpert and Gopinath. For a comparison of wavelet, short-time Fourier transforms
(STFT), and various time-frequency representations (TFR), see Hlawatsch. Compactly
supported wavelets and transforms are easily computed with MATHLIB. Wavelet
exploration programs and a tutorial on computation are available. See Appendix A.
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EVALUATING COMMANDS,
HP 48 MENUS AND KEYBOARDS,
AND PROGRAMMING TUTORIAL

INTRODUCTION

Learning to evaluate with simple programs on the HP 48 is very important, because
if you get a strange answer, you will have a written record of your keystrokes to
review.

This appendix gives a quick overview of how to evaluate commands, build temporary
menus, make user keyboard assignments, and do programming on the HP 48.

The HP 48 has 12 keyboards. The six system ones are

1. UNSHIFTED 2. ALPHA SHIFTED
3. LEFT-SHIFTED (YELLOW) 4. ALPHA LEFT-SHIFTED
5. RIGHT-SHIFTED (BLUE) 6. ALPHA RIGHT-SHIFTED

The six user ones are the same, but the HP 48 must first be put into USR mode by
pressing LEFT-SHIFTED ALPHA once to press a single user key, or twice to stay in

the user keyboard mode until LEFT-SHIFTED ALPHA is pressed a third time to
return to the system keyboards. Upper- and lower-case English characters are on
keyboards 2 and 4, while Greek characters are on keyboard 6. The keyboard overlay
kit is a useful thing to have because the keyboard layout takes time to learn. Page 52
of the HP 48 owner's manual shows most of the unlabeled keys on the HP 48
keyboard. In particular menus, the key definitions do change, as explained in the
owner's manual.

573
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MENUS

By MENU, we mean the displayed definitions of the unshifted top six white HP 48

keys which appear at the bottom of the HP48 graphics display. The HP 48 has over
60 system menus, and MATHLIB has 34 application menus. The key strokes
LIBRARY MATH MENUE, where LIBRARY is the left-shifted A key, take you into
the MATHLIB system of menus. User menus can also be built as shown below. Each
menu may have one or more pages which are accessed by pushing the NXT key.

OBJECTS AND COMMANDS

Everything from a number, an equation, a program, an array, to a list is an object on
the HP 48. User objects are stored in directories and displayed in the VAR menu by
pushing the VAR key. The key sequence 2 ' T W O STO stores the number
2 in the variable TWO, which is then displayed in the VAR menu.

A command is a programmable operation. There are 1,110 HP 48 and MATHLIB
commands. User programs are user commands. To compute on the HP 48, you
evaluate. Evaluating a program runs the program. Pushing the TWO key in the VAR
menu evaluates TWO and puts the contents, the number 2, on Level 1 of the stack.

EVALUATING COMMANDS

Here are six ways to evaluate sin(2) = .909297426826 on the HP 48. The first four use
Reverse Polish Notation (RPN), where the argument is placed on the stack and then
replaced by the result. The last two use the ' key to define algebraic notation.

e Push the 2 key, then the ENTER key, then the SIN key.
e Push the 2 key, then the SIN key.
e Push the 2 key, the ENTER key, then the S key, then the I key, then the N

key, then the ENTER key.
Push the 2 key, the ENTER key, then the S key, then the I key, then the N

key, then the EVAL key.
Push the ' key, then the SIN key, then the 2 key, then the ENTER key, then

the EVAL key.
e Push the ' key, then the SIN key, then the 2 key, then the EVAL key.

If you are getting a different answer, you probably need to push the left-shifted 1 key
to put the HP 48 into radians mode, with RAD displayed in the display status area.
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As if these were not enough, how about these algebraic approaches:

» Push the ' key, then the S key, then the I key, then the N key, then the
() key, then the 2 key, then the ENTER key, then the EVAL key,

* Push the ' key, then the S key, then the I key, then the N key, then the
() key, then the 2 key, then the EVAL key,

where the S I N is alpha SIN, alpha CST, alpha STO, and () the is left-shifted + key.

Now in case you do not like any of these eight ways, there is nearly a countable
infinite number of alternatives. For example, type in the program « — z 'SIN(z)'
> and store it in a variable called MYSIN. The key strokes are:

«<> — z SPC ' SIN z ENTER ' M Y S I N STO

where <>» is the left-shifted — key and — is the alpha right-shifted 0 key. Then by
substituting MYSIN for SIN in the above eight ways, we have created eight more.

Now suppose the SIN key is broken, you can not remember that MYSIN evaluates the
SIN function, and you do not wish to keep typing S I N. Then type in the program
< { SIN } TMENU >» and store it in a variable MYMENU, for example.

<> {} SIN» T MEN U ENTER ' M Y M E N U STO

where the P key moves the pointer right one character so that TMENUis after the
closing brace } and thus not inside the list. Then each time you push the MYMENU
key or:

* Push the ' key, then the MYMENU key, then the ENTER key, then the
EVAL key,

* Push the ' key, then the MYMENU key, then the EVAL key,
«ETC... ETC... ETC...

you evaluate the command MYMENU, which redefines the top six keys of the
keyboard and places SIN above the first key. Now you can evaluate the SIN function
by pressing the 2 key, followed by pressing this new SIN key or ETC... ETC... ETC

Now you may not like this approach because you must go to the VAR directory to push
the MYMENU key. The program <« { SIN } 'CST' STO » will also create a menu with
SIN in it, but you need only press the CST key on the keyboard to access the menu.
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If you are still having trouble evaluating the SIN function, why not assign a user key
to it? There are six (planes of) user keyboards, and you can assign SIN to any key of
any of the six user keyboards. The program « { SIN 43.1} STOKEYS » makes the
TAN key on the unshifted user keyboard also the SIN function. Now you may push
the 2 key, then the USR key (left-shifted alpha) to activate the user keyboard mode,
and finally push the TAN key to evaluate sin(2), or. . ..

Still having trouble? Try: ENTRY 2 SIN ENTER

ENTRYis the right-shifted a key. The above evaluation techniques apply to all the
MATHLIB commands in addition to most ofthe HP 48 algebraic commands. Algebraic
commands are those for which the notation 'SIN(2)' works and are called functions on
page 42 of the HP 48 owner’s manual. All of the MATHLIB commands are algebraic,
and since each provides one or more operational capabilities, each command provides
one or more functions in the common English language definition of function.

EVALUATION AND THE STACK

The HP 48 does not have a real stack such as in the old days of calculators. The HP
48 stack is an ordered display of data pointers showing objects available to commands
as arguments for immediate evaluation. In the above examples, placing 2 on the stack
made 2 the next available argument to any single argument command that the user
might choose to evaluate by pushing the SIN key, for example. Alternatively, while
2 is on the stack, we can add below it SIN, followed by either ENTER or EVAL, which
evaluates the SIN command, which in turn looks above in the stack for its argument.
The algebraic notation 'SIN(2)' put on the stack, followed by pushing the EVAL key,
1s interpreted as "evaluate the SIN command whose argument is 2."

More complicated algebraics are interpreted similarly. The HP 48 interpretation of the
algebraic 'SIN(2)xPERMF(4,3)' is to evaluate the SIN command with argument 2 and
place the result in temporary memory. Then evaluate MATHLIB command PERMF
with first argument of 4 and second argument of 3, and finally, multiply the results.
Thus, 'SIN(2)xPERMF(4,3) EVAL is equivalent to the keystrokes:

2 SIN 4 ENTER 3 ENTER P E R M F ENTER x

Hence, the HP 48 is a computer with a CPU and memory. It is also a calculator since
it has an immediate execution capability. The stack is an ordered display of the
arguments available for immediate execution which is called command evaluation. In
RPN, commands take their arguments (which are called objects) in order from the stack.
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PROGRAMMING THE HP 48

In its most basic sense, programming on the HP 48 is simply wrapping French quotes,
<>, around a series of keystrokes. The program « 2 SIN 4 3 PERMF x »
evaluates the above equation. Using algebraic notation, the program<« 2 4 3 —» A
B C 'SIN(A)xPERMF(B,C)' » also evaluates it where the notation — A B C defines

the local variables A, B, C. This program could also be written with explicit evaluation
as< 2 4 3 > A B C <« 'SIN(AXPERMF(B,C)) EVAL » ». To generalize the
program for any inputs, use « — A B C 'SIN(A)xPERMF(B,C)' », where now the

user must place on the stack the required arguments 2, 4, and 3 before executing
(evaluating) this program. Alternatively, « -» A B C « A SIN B C PERMF x
> »> computes the same result. Over 700 programming examples are available for
MATHLIB,as discussed in Appendix A. See also Part 4 of the HP 48 owner’s manual.

CUSTOM MENUS AND KEYBOARDS

The program « { PADD PSUB PMPY PDVD PLDVD "" PDERV RDERV PINTG
} TMENU >» stored in a variable PMENU will bring up a two page polynomial menu
each time PMENU is evaluated. The first page contains five algebra commands, and
the second page (push NXT) contains three calculus commands. The same list stored
in a variable 'CST' will provide the same menu each time you push the CST key, until
the variable 'CST' is purged or you move to another directory.

The program « { PADD 21.3 PSUB 22.3 PMPY 23.3 PDVD 24.3 PLDVD 25.3
PDERV 21.6 RDERV 22.6 PINTG 23.6 } STOKEYS » assigns the five algebra
operations to the MTH, PRG, CST, VAR, and A keys on the right-shifted user keyboard
and the three calculus commands to the MTH, PRG, and CST keys on the user alpha
right-shifted keyboard. The program « 0 DELKEYS {S} STOKEYS » will restore
all the user keyboard definitions to the standard ones. Similarly, the program <« {
PMENU 21.1} STOKEYS » assigns the above polynomial temporary menu example
to the unshifted user MTH key so that USR MTH brings up the polynomial menu.

The program « { MENUE 21.1} STOKEYS » assigns the unshifted user keyboard
MTH key to the MATHLIB command MENUE. Provided you are not in EDIT mode,
pushing this key will evaluate MENUE, which takes you into the MATHLIB system

of 34 applications menus. To get to the MATHLIB menus during editing, see page 16.

For more detail on customizing the HP 48, see Chapter 15 of the owner's manual. I
recommend that you never use command ASN, but always use STOKEYS, even for one
key as in the above MENUE example. ASN does not work properly my HP 48s.
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OPERATIONAL USE OF MENUS

Menus serve two basic purposes on the HP 48. Since pushing the menu key evaluates
the object stored there, it is a convenient way of computing. You simply place the
arguments in order on the stack and push the key. It is also useful in programming
as a typing aid. The following keystrokes factor the number 123456.

LIBRARY MATH MENUE NUMB ENTRY 1 2 3 4 5 6 FACTR ENTER

SUBROUTINES

The HP 48 is a Lisp-like computer. Any program can call any other program. Any
program can also call itself.

CONDITIONAL STRUCTURES

o IF test-clause THEN true-clause END

o IF test-clause THEN true-clause ELSE false-clause END
» CASE test-clause-1 THEN true-clause END

test-clause-2 THEN true-clause END

test-clause-n THEN true-clause END

optional-default-clause END

LOOP STRUCTURES

oe start finish START loop-clause NEXT
oe start finish FOR counter loop-clause NEXT
o start finish START loop-clause increment STEP
oe start finish FOR counter loop-clause increment STEP
* DO loop-clause UNTIL test-clause END
» WHILE test-clause REPEAT loop-clause END

HP 48 MATRIX EDITOR TIP

When using the matrix editor, right-shifted ENTER, you may enter elements such as
2 — V3 by typing 2 SPC 3 v NEG + ENTER, for example.
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HP48 SYSTEM MENUS

MENU SUB KEY KEY KEY KEY KEY KEY

MENU 1 2 3 4 5 6

MTH PARTS PROB HYP MATR VECTR BASE

MTH PARTS ABS SIGN CONJ ARG RE IM

MIN MAX MOD % %CH %T

MANT XPON IP FP FLOOR CEIL

RND TRNC MAXR MINR

MTH PROB COMB PERM | RAND RDZ

UTPC UTPF UTPN UTPT

MTH HYP SINH ASINH COSH ACOSH TANH ATANH

EXPM LNP1

MTH MATR CON IDN TRN RDM DET RSD

ABS RNRM CNRM

MTH VECTR XYZ RAZ RAA CROSS DOT ABS

Vo —-V2 —-V3 D-R R-D

MTH BASE HEX DEC OCT BIN STWS RCWS

RL RR RLB RRB R-B B-R

SL SR SLB SRB ASR

AND OR XOR NOT

PRG STK OBJ DSPL CTRL BRCH TEST

PRG STK OVER ROT ROLL ROLLD PICK DEPTH

DUP DUP2 DUPN DROP2 DRPN

PRG OBJ OBJ— EQ- —ARRY —LIST —-STR —-TAG

R-C C-R DTAG —UNIT TYPE VTYPE

SIZE POS REPL SUB NUM CHR

PUT GET PUTI GETI

PRG DSPL PICT PVIEW LINE TLINE BOX ARC

PIXON PIXOFF PIX? PX->C C-»PX SIZE

—GROB BLANK GOR GXOR REPL SUB

—-LCD LCD- CLLCD DISP FREEZE TEXT

PRG CTRL DBUG SST SST! NEXT HALT KILL

INPUT PROMPT DISP MENU WAIT KEY

DOERR ERRN ERRM ERRO BEEP OFF

PRG BRCH IF CASE START FOR DO WHILE

THEN END NEXT STEP UNTIL REPEAT

ELSE IFERR IFT IFTE

PRG TEST AND OR XOR NOT SAME TYPE

== #* < > < >

SF CF FS? FC? FS?C FC?C

PRINT PR1 PRST PRSTC PRLCD PRVAR CR

DELAY OLDPRT           
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

580 HP48 TUTORIAL APPENDIX H

HP48 SYSTEM MENUS

MENU SUB KEY KEY KEY KEY KEY KEY
MENU 1 2 3 4 5 6

vo SEND RECV SERVER KGET FINISH SETUP
RECN PKT KERRM OPENIO CLOSEIO
XMIT SRECV STIME SBRK BUFLEN

Oo SETUP IR'W ASCII BAUD PARIT CKSM TRANSIO

LEFT- STD FIX SCI ENG SYM BEEP
SHIFTED STK ARG CMD CNCT ML CLK
MODES DEG RAD GRAD XYZ RAZ RAA

HEX DEC OCT BIN FM,

RIGHT- ASN STOKEYS RCLKEYS DELKEYS MENU CST
SHIFTED TMENU RCLMENU STOF RCLF SF CF
MODES FS? FC? FS?C FC?C

LEFT- MEM BYTES VARS ORDER PATH CRDIR
SHIFTED TVARS PVARS NEWOB LIBS ATTACH DETACH
MEMORY MERGE FREE ARCHIVE RESTORE PGDIR

RIGHT- STO+ STO- STOx STO/ INCR DECR
SHIFTED SINV SNEG SCONJ
MEMORY

EDIT «SKIP —SKIP «DEL —DEL INS TSTK

SOLVE SOLVR ROOT NEW EDEQ STEQ CAT

PLOT PLOTR PTYPE NEW EDEQ STEQ CAT

PLOT PTYPE FUNCTION CONIC POLAR PARAMETRIC TRUTH BAR
HISTOGRAM SCATTER

PLOT PLOTR ERASE DRAW AUTO XRNG YRNG INDEP
DEPN PTYPE RES CENT SCALE RESET
AXES DRAX LABEL xH xW PDIM

ALGEBRA COLCT EXPAN ISOL QUAD SHOW TAYLR
TMATCH {MATCH | APPLY QUOTE —-Qn

LEFT- SET ADJST ALRM ACK ACKA CAT
SHIFTED DATE+ DDAYS DATE TIME TSTR TICKS
TIME —HMS HMS— HMS+ HMS-

L TIME ADJST HR+ HR- MIN+ MIN- SEC+ SEC-
CLKADJ

L TIME ALRM >DATE >TIME A/PM EXEC RPT SET
STOALARM RCLALARM DELALARM FINDALARM

L TIME ALRM WEEK DAY HOUR MIN SEC NONE
RPT

L TIME SET —DATE —TIME A/PM 12/24 M/D            
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HP48 SYSTEM MENUS

MENU SUB KEY KEY KEY KEY KEY KEY

MENU 1 2 3 4 5 6

STAT I+ CLZ NEW EDITZ STOZ CAT

TOT MEAN SDEV MAX® MINX BINS

XCOL YCOL BARPL HISTP SCATR LINE

LR PREDX PREDY CORR Cov MODL

2X IY IXA2 IYA2 IXxY NZ

STAT MODL LIN LOG EXP PWR BEST

LEFT- LENG AREA VOL TIME SPEED MASS

SHIFTED FORCE ENRG POWR PRESS TEMP ELEC

UNITS ANGL LIGHT RAD VISC

L UNITS LENG m cm mm yd ft in

Mpc pc lyr au km mi

nmi miUS chain rd fath ftUuS

mil Rn A fermi

L UNITS AREA m/2 cm”2 b yd~2 ftr2 in~2

kmA2 ha a mifr2 miUSA2 acre

L UNITS VOL mA3 st cm”3 yd”3 ftA3 in”3

1 galUK galC gal qt pt

ml cu ozfl 0zUK tbsp tsp

bbl bu pk fbm

L UNITS TIME yr d h min 3 Hz

L UNITS SPEED m/s cm/s ft/s kph mph knot

c ga

L UNITS MASS kg g 1b oz slug 1bt

ton tonUK t ozt ct grain

u mol

L UNITS FORCE N dyn gf kip Ibf pd!

L UNITS ENRG J erg Kcal cal Btu ftxlbf

therm Mev eV

L UNITS POWR w hp

L UNITS PRESS Pa atm bar psi torr mmHg

inHg inH20

L UNITS TEMP °C °F K °R

L UNITS ELEC v A Cc Q F w

Fdy H mho S T Wb

L UNITS ANGL ° r grad arcmin arcs ST

L UNITS LIGHT fc flam Ix ph sb Im

cd lam           
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HP48 SYSTEM MENUS

MENU SUB KEY KEY KEY KEY KEY KEY
MENU 1 2 3 4 5 6

L UNITS RAD Gy rad rem Sv Bq Ci

R

L UNITS VISC P St

RIGHT- CONVERT UBASE UVAL UFACT UNIT
SHIFTED
UNITS

MATRIX EDIT VEC «WID WID- GO— Gol
+ROW -ROW +COL -COL —STK TSTK

A ECHO VIEW PICK ROLL ROLLD LIST
DUPN DRPN KEEP LEVEL

GRAPH ZOOM Z-BOX CENT COORD LABEL FCN

GRAPH ZOOM XAUTO X Y XY EXIT

GRAPH FCN ROOT ISECT SLOPE AREA EXTR EXIT
F(X) F' NXEQ

RIGHT- PURG EXECS EDIT STK VIEW
SHIFTED
TIME SAME AS LEFT-SHIFTED TIME AND THEN CAT

VAR UNSHIFTED = EVALUATE LEFT-SHIFTED = STORE CONTENTS RIGHT-SHIFTED = RECALL CONTENTS

USER APPLICATION MENUS

NAME KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6
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MATHLIB APPLICATION MENUS

MENU KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6

MENUE PLOT FTNS NUMB ALGB LINAG MATR

OR STAT PROB IPROB BIVN QUE SYMB

UPDIR PROC FILTR WIND VECTR VSAG MSAG

PLOT PLT1 PLT2 PLTC PLTI1L PLT2L PLTCL

FPLOT FPLT1 FPLT2 PLT3 ERASE UPDIR

FTNS TO MATHLIB FUNCTION MENUS

NUMB GCD LCM FACTR FMPY PRIME FIBON

BR BPOLY BCOEF ER EPOLY ECOEF

RZETA CZETA STRL1 STRL2 COLCT EXPAN

EXCO i Pp UPDIR

ALGB TALR1 TALR2 PADD PSUB PMPY PDVD

FEVAL COEFL LREV COLCT EXPAN EXCO

TMATCH {MATCH | COEFE APPLY QUOTE

H1F1 DHI1F1 H2F1 DH2F1 EVLE SUMZ

EVALC ISOL QUAD PROOT AROOT LROOT

DEFLT PDERV RDERV PINTG PEQN XEQN

PLDVD CLIST SRND LZDEL TIFRE UPDIR

LINAG LSOVL LSOVR USOVL USOVR OSOVL OSOVR

LSVDL LSVDR LSERL LSERR SVD BM

TRNP TRNH SYM? HRM? ORTH? UNIT?

CON IDN RDM RORDR CORDR IORDR

MINV HILBT RNRM CNRM RABS CABS

GLUD LDLTD AGAUS GAUSS HRQR HBDU

HBDD HBDV : HTRDD UHESD SCRSD SCHRD

EIGNS EIGEN WSQR GSQR TRACE MINOR

HOUSE RHOUS CHOUS VHOUS PHOUS GIVEN

RROT CROT GROT D-M D&M CHOLD

HBDDR SVDMI SVDDI CPOLY AROOT UPDIR

MATR —>ROW —-COL RSORT RSRTI CSORT CSRTI

ERWS ECOLS RRWS RCOLS EPSM RPSM

IROW ICOL DROW DCOL SROW SCOL

MROW MCOL CROW CCOL TRNP —-VTR

EROW ECOL RROW RCOL ESBM RSBM

M-RL MRL M-CL MCL RNLV CNLV

RDLV CDLV RSPLT CSPLT RCMB CCMB

REV REVT RGET CGET B->M BM

RDM IDN CON DIAG COMP HTOEP

A? AV? EVS? UPDIR

STAT n c ADEV SKEW KURT VARM

MEDIN MODE COVAR TTSV TTDV TTPS

FTDV CDT1 CDT2 KST1 KST2 LCNT

HIST SRTT SRT! SRTI RNDU RNDN

CUMZ MAVE VADD VSUB CTA2D SRCTT

AVAR1 AVAR2 ACOVR RNUM CNUM SRND

ROWn COLp ROWo COLc VSPLT VCMB

RNLV RDLV RSPLT RCMB SIZE UPDIR         
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MATHLIB APPLICATION MENUS

MENU KEY 1 KEY 2 KEY 3 KEY 4 KEY § KEY 6

PROB UPC UrPF UPN UPT LTPN UTPE

WEIB EXTV UNIF CAUCH LAPL UTPG

UTPB LTPB UmC UmF UT BINM

LTPH NEGB POSN UTKS RAYL RICE

MyN MPN COMB PERM ! UPDIR

IPROB IUTPC IUTPF IUTPN IUTPT IUTPE IWEIB

IEXTV IUNIF ICAUCH ILAPL IUTPG IUTPP

ILTPB IBINM INEGB IPOSN IUTKS IRAYL

IMyN UPDIR

BIVN PUXUY PUXLY PLXUY PLXLY UPN LTPN

UPDIR

QUE LM LQM LPM WM wQM PQB

PNSM PDQW UTPE UTPG POSN UPDIR

SYMB SADD SSUB SMPY SDOT SCHS STRN

SOB— —SOB SERW SECOL SRRW SRCOL

SDERV SINTG SADDS SSUBS SCOLC SEXPD

M-SO MSO L-SO L«SO SGET SPUT

SEVAL SEXCO SVBAR MATT MAT! SNUM

SCROS SDET SMNR SGRD SDIV SCURL

SABS STRAC S1F1 DESOL PROOT AROOT

HVSDE RESDP RESDA IXFRM COEFL CLIST

SRND SMI SRE SIM TIFRE SSIZE

SCNJ L1F1 UPDIR

PROC DER1 DER2 LINT RINT INDEX PINDX

FINDP FINDV FINDX FINDN vz CUM

FFT IFFT TWIDL BITRV WL1 WL2

CONV CCORR RNDU RNDN SPECT PHASE

ZFILL HALF ZFIL1 HALF1 ZFILN REDN

VROT REFLT VDEC VINTP SQwWv AWAV

PHASU VTRUD MAVE VMPY VDVD VCORR

ICONV UNITI RNDC DGLIT PLT1 UPDIR

FILTR FTRV1 FTRV2 tVT1 tVT2 HOFw 1OFw

FTRVL POLEP FORDR RZINV R-CL PZINV

BPOLE CPOLE 6FCFS ESOLV EZERO EPOLE

QMIN QMAX p—AX peAX AX—e AXee

PSCAL COEFL PROOT AROOT dn—oA BESLF

WARP LLP L-HP L-BP L-BS BILNT

DHBRT GAIN1 IXFRM RATAP SRE SIM

S—-ZP TF-C cto COMT SPECT PHASE

VLOG SRND PLT1 PLTC PLT3 UPDIR

WIND HAMM GENH HANN BARTL BLAC GAUS

PARZ KAISR WELC CLIPP CLIPB CLIPN

ONE FIRID IXFRM PLDVD FMAT MINV

TOFXL CHEBY DOCAP STRLT WL1 WL2

V-DB V«DB N-DB N«DB dn—A SneA

p—AX pe—AX AX—e AXeg VECTX UPDIR           
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MATHLIB APPLICATION MENUS

MENU KEY 1 KEY 2 KEY 3 KEY 4 KEY § KEY 6

VECTR V-L VeL —-VTR SRTT SRT! SRTI

VREV LREV IVAL DVAL SVAL MVAL

CVAL VINST VDEL VSUBS VREPL VSPLT

VCMB LZDEL LZFIL ONE UNITI UPDIR

VSAG VMAX VMIN VADD VSUB VLOG VALOG

VLN VEXP vsQ VSRT VECTX VECTD

VABS VARG ARGU VTRUR VSINV VMOD

VRND VFLOR VCEIL RNDU RNDN RNDC

EINDX VCDEL V1F1 V2F1 ZERO UPDIR

MSAG MMAX MMIN MADD MSUB MLOG MALOG

MLN MEXP MSQ MSRT MATX MATD

RSUM CSUM RX0D Cz0D MABS MARG

MMOD MRND MFLR MCEIL RABS2 CABS2

MRDU MRDN MRDC MRDS MRDH MI1F1

M2F1 UPDIR

MATHLIB FUNCTION MENUS

MENU KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6

FTNS TRIG HYP EXPIN GAMA ERROR BESEL

OR SBESL ELLIPI JACOB THETA CHYPR PCLDR

UPDIR GHYP LGDR STRUV POLY MISC UPDIR

TRIG CSC ACSC SEC ASEC COT ACOT

ARG2 ATN2 R-D D-R GAMMA UPDIR

HYP SINH ASINH COSH ACOSH TANH ATANH

CSCH ASCSCH SECH ASECH COTH ACOTH

EXPM LNP1 GAMMA PSI UPDIR

EXPIN EIOX LIOX E10Z ENOZ SINT CINT

SCINT SINC SINC2 SHIZ CHIZ ¥

oaNOZ BNOZ GAMMA PSI CINTG UPDIR

GAMA GAMMA PSI INCG INCy PINCG BETA

INCB DNPSI INCy; INCB ii UPDIR

ERROR SOFZ COFZ S10Z C10Z S20Z C20Z

ERFZ ERFCZ ZOFZ INERFC GAMMA PSI

CINTG UPDIR         
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MATHLIB FUNCTION MENUS

MENU KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6

BESEL JNOZ JoozZ J10Z YNOX YOOX Y10X
INOZ 100X 110X KNOX K0OX K10X
BEN& KEN& HINZ H2NZ YNOZ KNOZ
GAMMA UPDIR

SBESL SINZ SYNZ SH1Z SH2Z SIINZ SI2NZ
SKNZ AIOZ BIOZ GAMMA PSI UPDIR

ELLIPI FXKP EXKP BXKP DXKP o—X a—Kj
KOKP KOK; EOKP TIINXKP ZUKP AXKP
eX aK] M-K MK KTKP MT™™;
AZKP KOK IK;OK KP->M UZKP SNUK;
UPDIR

JACOB SNUK; CNUK; DNUK; CDUK; SDUK; NDUK;
DCUK; NCUK; SCUK; NSUK; DSUK; CSUK;
N-D ND N-C NC N-S NS

NUKP DUKP CUKP SUKP UZKP AMUKP
a—Kij aK M-K M«K KTKP MTM;
KOKP KOK; KP->M KP«M AGMN UPDIR

THETA 0X 0X UZKP SNUK; a—K; aK;

8SUK; OCUK; 6DUK; ONUK; ea—U goe—U
oUKP 01UK; HUKP H1UK; KOKP KiOK;
01Z2Q 027Q 03ZQ 047Q KTKP MTM;
TSUK; TCUK; TDUK; TNUK; KP-Q D61K;
T1UQ T2UQ T3UQ T4UQ R-D D-R
LNe1 LN62 LNe3 LNe4 KP->M UPDIR

CHYPR MABZ DNM UABZ DNU INCGC INCYC
Jvoz YVOZ IVOZ KVOZ H1VZ H2VZ
BEV& KEV& MKpZ WKnpZ GAMMA UPDIR

PCLDR UOAX VOAX WOAX DVOZ EV0Z EV1Z
GAMMA PSI TNP TI TNI UPDIR

GHYP F2F1 D2F1 FOGC INCBH GAMMA UPDIR

LGDR PuvX Quvx PQUP Puvz Quvz UPDIR

STRUV HVOZ LVOZ YVOZ IVOZ GAMMA UPDIR

POLY PopX GPQX CaOX TOFX UOFX COFX
SOFX TSFX USFX POFX LoOX LOFX
HOX HEOX UPDIR

MISC CSERS TALR1 TALR2 FEVAL EXCO TIMIT
COEFL COEFV PMAT SRND PEQN XEQN
RATAP REVAL LREG FSTAT TSTAT LSSOV
SDOT LREV PERMF POCH MQ MULTI
TIFRE UNIQE SSORT ZSORT SIGNP UPDIR

UPDIR TO MATHLIB APPLICATION MENUS       
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ACOT ARC COTANGENT TRIG

ACOTH HYPERBOLIC ARC COTANGENT HYP

ACOVR ONE-WAY ANALYSIS OF COVARIANCE STAT

ACSC ARC COSECANT TRIG

ACSCH HYPERBOLIC ARC COSECANT HYP

ADEV STATISTICAL ABSOLUTE DEVIATION STAT

AGAUS APPLY GAUSSIAN TRANSFORMATION LINAG

AGMN ARITHMETIC-GEOMETRIC MEAN JACOB

AIOZ AIRY FUNCTION Ai(z) SBESL

AMUKP COMPUTE ELLIPTIC FUNCTION am(u, k) JACOB

ARG2 ARGUMENT IN [0, 2] RANGE TRIG

ARGU PHASE UNWRAP ARGUMENT VECTOR IN RADIANS VSAG

AROOT LAGUERRE COMPLEX POLYNOMIAL ROOT SOLVER ALGB

ASEC ARC SECANT TRIG

ASECH HYPERBOLIC ARC SECANT HYP

ATN2 FOUR-QUADRANT ARC TANGENT (ATAN2) TRIG

AVARI1 ONE-WAY ANALYSIS OF VARIANCE STAT

AVAR2 TWO-WAY ANALYSIS OF VARIANCE STAT

AX—e ayax TO RIPPLE FACTOR FILTR

AXee RIPPLE FACTOR TO ayx FILTR

BARTL BARTLETT WINDOW WIND

BCOEF COMPUTE BERNOULLI COEFFICIENTS NUMB

BEN& KELVIN FUNCTION ber,(x) + i bei(x) BESEL

BESLF BESSEL FILTER COEFFICIENT LIST FILTR

BETA BETA FUNCTION B(z, w) GAMA

BEV& GENERAL KELVIN ber,(z) + i bei,(z) CHYPR     
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BILNT BILINEAR TRANSFORM FILTR

BINM UPPER TAIL BINOMIAL DISTRIBUTION PROB

BIOZ AIRY FUNCTION Bi(z) SBESL

BITRV PERFORM FFT BIT REVERSAL PROC

BLAC BLACKMAN WINDOW WIND

BPOLE POLES OF BUTTERWORTH FILTER FILTR

BPOLY COMPUTE BERNOULLI POLYNOMIALS NUMB

BR COMPUTE BERNOULLI NUMBERS NUMB

BXKP INCOMPLETE ELLIPTIC INTEGRAL B(x, k) ELLIPI

BM EXTRACT DIAGONAL FROM MATRIX MATR

B-M INSERT DIAGONAL VECTOR IN MATRIX MATR

cto CONTROLLABLE FORM T OBSERVABLE FORM FILTR

CoOX GEGENBAUER POLYNOMIAL C,®(x) POLY

CZ0D COLUMN SUM WITH COL DELETE IF ZERO MSAG

C10Z FRESNEL INTEGRAL C(z) ERROR

C20Z FRESNEL INTEGRAL Cz) ERROR

CABS EUCLIDEAN NORM OF EACH COLUMN LINAG

CABS2 EUCLIDEAN COLUMN NORM SQUARED MSAG

CAUCH UPPER TAIL CAUCHY DISTRIBUTION PROB

CCMB COMBINE TWO MATRICES BY COLUMNS MATR

CCOL COPY MATRIX COLUMN MATR

CCORR FFT CROSS-CORRELATION PROC

CDLV DE-INTERLEAVE MATRIX COLUMNS MATR

CDT1 x* TEST FOR DISTRIBUTIONS (1 DATA SET) STAT

CDT2 x* TEST FOR DISTRIBUTIONS (2 DATA SETS) STAT

CDUK; JACOBI ELLIPTIC FUNCTION cd(u, k) JACOB     
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CGET EXTRACT MATRIX COLUMN SUBSET MATR

CHEBY DISCRETE ORTHOGONAL CHEBYSHEV POLYNOMIAL WIND

CHIZ EXPONENTIAL INTEGRAL Chi(z) EXPIN

CHOLD CHOLESKY MATRIX DECOMPOSITION LINAG

CHOUS APPLY HOUSEHOLDER VECTOR TO MATRIX LINAG

CINT COSINE INTEGRAL Ci(z) EXPIN

CINTG COMPLEX NUMERICAL INTEGRATION EXPIN ERROR

CLIPB CLIP ALL PEAKS WIND

CLIPN CLIP NEGATIVE PEAKS ONLY WIND

CLIPP CLIP POSITIVE PEAKS ONLY WIND

CLIST COMPUTE POLYNOMIAL FROM ROOTS ALGB

CNLV INTERLEAVE MATRIX COLUMNS MATR

CNUK;| JACOBI ELLIPTIC FUNCTION cn(u, k) JACOB

CNUM COUNT NUMBER OF ENTRIES IN EACH COLUMN STAT

COEFE COEFFICIENT EVALUATION ALGB

COEFL ONE-DIMENSIONAL MACLAURIN SERIES (LIST OUT) MISC

COEFV ONE-DIMENSIONAL MACLAURIN SERIES (VECT OUT) MISC

COFX CHEBYSHEV POLYNOMIAL C(x) POLY

COFZ FRESNEL INTEGRAL C(z) ERROR

COLn MEAN VALUE OF EACH MATRIX COLUMN STAT

COLo STANDARD DEVIATION OF EACH MATRIX COLUMN STAT

COMP CREATE COMPANION MATRIX MATR

COMT CONTROLLABILITY-OBSERVABILITY MATRIX FILTR

CONV FFT CONVOLUTION PROC

CORDR REORDER MATRIX COLUMNS USING PIVOT VECTOR LINAG

COT COTANGENT TRIG     
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COTH HYPERBOLIC COTANGENT HYP

COVAR COVARIANCE OF TWO VECTORS STAT

CPOLE POLES OF CHEBYSHEV FILTER FILTR

CPOLY MATRIX CHARACTERISTIC POLYNOMIAL LINAG

CROT COLUMN GIVENS ROTATE LINAG

CROW COPY MATRIX ROW MATR

csc COSECANT TRIG

CSCH HYPERBOLIC COSECANT HYP

CSERS CREATE COMPLEX SERIES FROM FUNCTION MISC

CSORT MATRIX COLUMN SORT 1 MATR

CSPLT SPLIT MATRIX BY COLUMNS MATR

CSRTI MATRIX COLUMN SORT MATR

CSUK; JACOBI ELLIPTIC FUNCTION cs(u, k) JACOB

CSUM COMPUTE VECTOR OF COLUMN SUMS MSAG

CTA2D CONTINGENCY TABLE ANALYSIS STAT

CUKP COMPUTE C SET OF JACOBI ELLIPTIC FTNS JACOB

CUMs CUMULATIVE SUM OF VALUES PROC

CVAL COPY VECTOR VALUE VECTR

CZETA COMPLEMENTARY RIEMANN ZETA FTN NUMB

DO1K; COMPUTE DERIVATIVE 9,0, k) THETA

D2F1 NTH DERIVATIVE OF F(a, b, , z) GYHP

DCOL DELETE MATRIX COLUMN MATR

DCUK; JACOBI ELLIPTIC FUNCTION dc(u, k) JACOB

DEFLT DEFLATE POLYNOMIAL BY DIVIDING OUT ROOT ALGB

DERI NUMERICAL FIRST DERIVATIVE PROC

DER2 NUMERICAL SECOND DERIVATIVE PROC       
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DESOL RUNGE-KUTTA DIFFERENTIAL EQUATION SOLUTIONS SYMB

DGLIT DEGLITCH DATA POINTS OF VECTOR PROC

DHI1F1 SYMBOLIC NTH DERIVATIVE M(a, b, z) ALGB

DH2F1 SYMBOLIC NTH DERIVATIVE F(a, b, c, z) ALGB

DHBRT DESIGN DIGITAL HILBERT TRANSFORMER FILTR

DIAG CREATE DIAGONAL MATRIX MATR

DNM NTH DERIVATIVE OF M(a, b, z) CHYPR

DNPSI POLYGAMMA FUNCTION "(z) GAMA

DNU NTH DERIVATIVE OF U(a, b, z) CHYPR

DNUK; JACOBI ELLIPTIC FUNCTION dn(u, k) JACOB

DOCAP LEAST SQUARES APPROXIMATION WITH CHEBY WIND

DROW DELETE MATRIX ROW MATR

DSUK; JACOBI ELLIPTIC FUNCTION ds(u, k) JACOB

DUKP COMPUTE DSET OF JACOBI ELLIPTIC FTNS JACOB

DVAL DELETE VECTOR VALUE VECTR

DVOZ PARABOLIC CYLINDER D(x) PCLDR

DXKP INCOMPLETE ELLIPTIC INTEGRAL D(x, k) ELLIPI

DoM VECTOR TO DIAGONAL MATRIX LINAG

DM DIAGONAL MATRIX TO VECTOR LINAG

E10Z EXPONENTIAL INTEGRAL E(Z) EXPIN

ECOEF COMPUTE EULER COEFFICIENTS NUMB

ECOL EXTRACT ENTIRE MATRIX COLUMN MATR

ECOLS MATRIX EXTRACT COLUMN SUBSET MATR

EIGEN GENERAL EIGEN DECOMPOSITION LINAG

EIGNS SYMMETRIC & HERMITIAN EIGEN DECOMPOSITION LINAG

EINDX CREATE EXPONENTIAL INDEX VECTOR VSAG    
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EIOX EXPONENTIAL INTEGRAL Ei(x) EXPIN

ENOZ EXPONENTIAL INTEGRAL E(z) EXPIN

EOKP COMPLETE ELLIPTIC INTEGRAL E ELLIPI

EPOLE POLES OF ELLIPTIC FILTER FILTR

EPOLY COMPUTE EULER POLYNOMIALS NUMB

EPSM EXTRACT PARTIAL SUBMATRIX MATR

ER COMPUTE EULER NUMBERS NUMB

ERFCZ COMPLEMENTARY ERROR FUNCTION erfc(z) ERROR

ERFZ ERROR FUNCTIONerf(z) ERROR

EROW EXTRACT ENTIRE MATRIX ROW MATR

ERWS MATRIX EXTRACT ROW SUBSET MATR

ESBM EXTRACT SUBMATRIX MATR

ESOLV SOLVE FOR ELLIPTIC FILTER PARAMETERS FILTR

EV0Z PARABOLIC CYLINDER E“(z) PCLDR

EV1Z PARABOLIC CYLINDER E,*(z) PCLDR

EVALC EVALUATE COMPLETELY ALGB

EVLE MULTIPLE UNCONDITIONAL TMATCH COMMAND ALGB

EVS? TEST IF EIGENVECTORS ARE THE SAME MATR

EXCO EXPAND AND COLLECT COMPLETELY MISC

EXKP INCOMPLETE ELLIPTIC INTEGRAL E(x, k) ELLIPI

EXTV UPPER TAIL EXTREME VALUE DISTRIBUTION PROB

EZERO ZEROS OF ELLIPTIC FILTER FILTR

F2F1 GAUSSIAN HYPERGEOMETRIC F(a,b, c, z) GHYP

FACTR FACTOR INTEGER INTO PRIMES NUMB

FEVAL EVALUATE POLYNOMIAL APPROXIMATION MISC

FFT DISCRETE FOURIER TRANSFORM PROC     
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FIBON COMPUTE FIBONACCI NUMBERS NUMB

FINDN FIND LOCATION OF NEXT MINIMUM PROC

FINDP FIND NEXT DATA PEAK LOCATION PROC

FINDV FIND NEXT DATA VALLEY LOCATION PROC

FINDX FIND LOCATION OF NEXT MAXIMUM PROC

FIRID FIR DESIGN BASED ON IDEAL PROTOTYPE WIND

FMAT FAST POLYNOMIAL APPROXIMATION MATRIX WIND

FMPY MULTIPLY PRIME FACTORS NUMB

FOGC RATIO F(a, b, c, z) / Ic) GHYP

FORDR COMPUTE REQUIRED FILTER ORDER FILTR

FPLOT PLOT ONE FUNCTION WITHOUT LABELS MAIN PLOT

FPLT1 PLOT ONE FUNCTION WITH LABELS MAIN PLOT

FPLT2 PLOT TWO FUNCTIONS WITH LABELS MAIN PLOT

FSTAT LINEAR REGRESSION F STATISTICS MISC

FTDV F TEST FOR DIFFERENT VARIANCES STAT

FTRV1 ANALOG AND DIGITAL FILTER RESPONSE FILTR

FTRV2 ANALOG AND DIGITAL FILTER RESPONSE FILTR

FTRVL LOGARITHMIC FREQUENCY SCALE RESPONSE FILTR

FXKP INCOMPLETE ELLIPTIC INTEGRAL F(x, k) ELLIPI

GAIN1 SET GAIN OF FILTER TO 1 AT A FREQUENCY FILTR

GAMMA GAMMA FUNCTION Iz) GAMA

GAUS GAUSSIAN WINDOW WIND

GAUSS COMPUTE GAUSSIAN TRANSFORMATION LINAG

GCD GREATEST COMMON DIVISOR NUMB

GENH GENERALIZED HAMMING WINDOW WIND

GIVEN COMPUTE GIVENS ROTATION LINAG   
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GLUD GAUSSIAN LU MATRIX DECOMPOSITION LINAG

GPQX JACOBI POLYNOMIALG.(p, q, X) POLY

GROT COMPUTE GIVENS ROTATION LINAG

GSQR GENERAL EIGEN DECOMPOSITION STEP LINAG

HIF1 SYMBOLIC HYPERGEOMETRIC M(a,b, z) ALGB

HINZ HANKEL FUNCTION H,™z) BESEL

H1UK; JACOBI ETA FUNCTION H,(u, k) THETA

H1VZ GENERAL HANKEL H,"(z) CHYPR

H2F1 SYMBOLIC HYPERGEOMETRIC F(a, b, c, z) ALGB

H2NZ HANKEL FUNCTION H,®(z) BESEL

H2VZ GENERAL HANKEL H,%(z) CHYPR

HALF TRUNCATES TO HALF THE LENGTH PROC

HALF1 TRUNCATES TO HALF THE LENGTH + 1 PROC

HAMM HAMMING WINDOW WIND

HANN HANNING WINDOW WIND

HBDD HOUSEHOLDER BIDIAGONAL DECOMPOSITION LINAG

HBDDR HOUSEHOLDER BIDIAG DECOMPOSITION LINAG

HBDU COMPUTE HOUSEHOLDER U UNITARY MATRIX LINAG

HBDV COMPUTE HOUSEHOLDER V UNITARY MATRIX LINAG

HEOX HERMITE POLYNOMIAL He,(x) POLY

HILBT COMPUTE HILBERT MATRIX LINAG

HIST COMPUTE DATA HISTOGRAM STAT

HOFo EVALUATE RESPONSE AT A FREQUENCY FILTR

HOUSE COMPUTE HOUSEHOLDER VECTOR LINAG

'HOX HERMITE POLYNOMIAL H,(x) POLY

HRM? TEST IF MATRIX IS HERMITIAN LINAG     
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HRQR HOUSEHOLDER RANK AND QR DECOMPOSITION LINAG

HTOEP CREATE HERMITIAN TOEPLITZ MATRIX MATR

HTRDD HOUSEHOLDER TRIDIAGONAL DECOMPOSITION LINAG

HUKP JACOBI ETA FUNCTION H(u, k) THETA

HVOZ COMPLEX STRUVE FUNCTION H(z) STRUV

HVSDE HEAVISIDE EXPANSION FORMULA SYMB

I100X BESSEL FUNCTION I(x) BESEL

110X BESSEL FUNCTION I(x) BESEL

IBINM INVERSE BINOMIAL DISTRIBUTION IPROB

ICAUCH INVERSE CAUCHY DISTRIBUTION IPROB

ICOL INSERT COLUMN IN MATRIX MATR

ICONV RECURSIVE IIR CONVOLVE WITHOUT FFT PROC

IEXTV INVERSE EXTREME VALUE DISTRIBUTION IPROB

IFFT INVERSE DISCRETE FOURIER TRANSFORM PROC

IKjOK INVERSE OF QUARTER PERIOD RATIO K;OK ELLIPI

ILAPL INVERSE LAPLACE DISTRIBUTION IPROB

ILTPB INVERSE BETA DISTRIBUTION IPROB

IMYN INVERSE MARCUM TI, DISTRIBUTION IPROB

INCB INCOMPLETE BETA FUNCTION Bya, b) GAMA

INCy INCOMPLETE GAMMA ¥(a, z) GAMA

INCyC GENERAL INCOMPLETE GAMMA ¥(a, z) CHYPR

INCy; INCOMPLETE GAMMA ¥'(a, z) GAMA

INCB INCOMPLETE BETA FUNCTION I,(a, b) GAMA

INCBH GENERAL INCOMPLETE BETA Ia, b) GHYP

INCG INCOMPLETE GAMMA I'(a, z) GAMA

INCGC GENERAL INCOMPLETE GAMMA I'(a, z) CHYPR    
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INDEX CREATE AMPLITUDE INDEX VECTOR PROC

INEGB INVERSE NEG BINOMIAL DISTRIBUTION IPROB

INERFC NTH INTEGRAL OFerfc(z) = i" erfe(z) ERROR

INOZ BESSEL FUNCTION I,(z) BESEL

IORDR COMPUTE INVERSE PIVOT VECTOR LINAG

IPOSN INVERSE POISSON DISTRIBUTION IPROB

IRAYL INVERSE RAYLEIGH DISTRIBUTION IPROB

IROW INSERT ROW IN MATRIX MATR

IUNIF INVERSE UNIFORM DISTRIBUTION IPROB

IUTKS INVERSE KOLMOGOROV-SMIRNOV DISTRIBUTION IPROB

IUTPB INVERSE BETA DISTRIBUTION IPROB

IUTPC INVERSE x? DISTRIBUTION IPROB

IUTPE INVERSE EXPONENTIAL DISTRIBUTION IPROB

IUTPF INVERSE F DISTRIBUTION IPROB

IUTPG INVERSE GAMMA DISTRIBUTION IPROB

IUTPN INVERSE NORMAL DISTRIBUTION IPROB

IUTPT INVERSE T DISTRIBUTION IPROB

IVAL INSERT VECTOR VALUE VECTR

IVOZ GENERAL BESSEL I(z) CHYPR

IWEIB INVERSE WEIBULL DISTRIBUTION IPROB

IXFRM SYMBOLIC INVERSE LAPLACE AND z TRANSFORM SYMB FILTR WIND

JOOX BESSEL FUNCTION J(x) BESEL

J10X BESSEL FUNCTION J,(x) BESEL

JNOZ BESSEL FUNCTION J(z) BESEL

JVOZ GENERAL BESSEL J(z) CHYPR

K0oOX BESSEL FUNCTION K(x) BESEL       



 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

MATHLIB COMMAND INDEX 597

ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

K10X BESSEL FUNCTION K,(x) BESEL

KAISR KAISER WINDOW WIND

KEEP KEEPS FIRST N OBJECTS ON STACK MAIN

KEN& KELVIN FUNCTION ker,(x) + i kei,(x) BESEL

KEV& GENERAL KELVIN ker,(z) + i kei,(z) CHYPR

KNOX BESSEL FUNCTION K(x) BESEL

KNOZ BESSEL FUNCTION K(z) BESEL

KOKP COMPLETE ELLIPTIC INTEGRAL K ELLIPI

KPM CONVERT PARAMETER m TO k' JACOB

KP->M CONVERT k' TO PARAMETER m THETA

KP-Q COMPUTE NOME q(k) THETA

KST1 KOLMOGOROV-SMIRNOV DISTRIBUTION TEST STAT

KST2 KOLMOGOROV-SMIRNOV DISTRIBUTION TEST STAT

KURT STATISTICAL KURTOSIS STAT

KvOZz GENERAL BESSEL K(z) CHYPR

KTKP CONVERT BETWEEN MODULUS k AND k' THETA

KiOK QUARTER PERIOD RATIO K /K ELLIPI

KjOKj COMPLETE ELLIPTIC INTEGRAL K' ELLIPI

L1F1 LIST ELEMENT OPERATIONS SYMB

LaOX LAGUERRE POLYNOMIAL L,(x) POLY

L-BP LOWPASS TO BANDPASS AND SCALING FILTR

L-BS LOWPASS TO BANDSTOP AND SCALING FILTR

LHP LOWPASS TO HIGHPASS AND SCALING FILTR

L-LP LOWPASS FILTER SCALING FILTR

LAPL UPPER TAIL LAPLACE DISTRIBUTION PROB

LCM LEAST COMMON MULTIPLE NUMB    
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LCNT CORRELATION COEFFICIENT TESTS STAT

LDLTD LOWER DIAGONAL UPPER DECOMPOSITION LINAG

LINT NUMERICAL INTEGRATION FROM LEFT PROC

LIOX LOGARITHMIC INTEGRAL Li(x) EXPIN

LM COMPUTE TOTAL LOAD QUE

LNe1 COMPUTE Ln[9,(c. + B, k¥9,(ct — B, k)] THETA

LN62 COMPUTE Ln[9,(c. + B, k¥9,(ct — B, k)] THETA

LN63 COMPUTE Ln[84c + B, k¥d4(ct — B, k)] THETA

LNo4 COMPUTE Ln[8,(c + B, k¥9,(c — B, k)] THETA

LOFX LAGUERRE POLYNOMIALL(x) POLY

LPM COMPUTE PROCESSING LOAD QUE

LQM COMPUTE QUEUEING LOAD QUE

LREG LINEAR REGRESSION WITH ANOVA AND SVD MISC

LREV LIST ELEMENT REVERSE VECTR

LROOT SINGLE ROOT COMPLEX POLYNOMIAL ROOT SOLVER ALGB

LSERL LEAST SQUARES ERROR - LEFT SOLVE LINAG

LSERR LEAST SQUARES ERROR - RIGHT SOLVE LINAG

LSOVL FULLY DETERMINED SOLVE LEFT LINAG

LSOVR FULLY DETERMINED SOLVE RIGHT LINAG

LSSOV LEAST SQUARES APPROXIMATIONS WITH ANOVA MISC

LSVDL SVD LEAST SQUARES SOLVE LEFT LINAG

LSVDR SVD LEAST SQUARES SOLVE RIGHT LINAG

LTP LOWER TAIL BETA DISTRIBUTION PROB

LTPH LOWER TAIL HYPERGEOMETRIC DISTRIBUTION PROB

LTPN LOWER TAIL NORMAL DISTRIBUTION PROB

LVOZ COMPLEX STRUVE FUNCTION Lz) STRUV       
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LZDEL DELETE TRAILING ZEROS IN LIST ALGB

LZFIL ZERO-FILL LISTS TO SAME SIZE VECTR

L&SO SYMBOLIC MATRIX TO SYMBOLIC VECTOR SYMB

L-SO SYMBOLIC VECTOR TO SYMBOLIC MATRIX SYMB

MyN UPPER TAIL MARCUM I DISTRIBUTION PROB

MI1F1 ONE-MATRIX-ELEMENT OPERATIONS MSAG

M2F1 TWO-MATRIX-ELEMENT OPERATIONS MSAG

MABS MATRIX ELEMENT ABS MSAG

MABZ CONFLUENT HYPERGEOMETRIC M(a, b, z) CHYPR

MADD MATRIX SCALAR ADDITION MSAG

MALOG MATRIX ELEMENT ALOG MSAG

MARG MATRIX ELEMENT ARG MSAG

MATD MATRIX ELEMENT + MSAG

MATX MATRIX ELEMENT x MSAG

MATT SYMBOLIC MATRIX TMATCH COMMAND SYMB

MAT! SYMBOLIC MATRIX {MATCH COMMAND SYMB

MAVE VECTOR MOVING AVERAGE PROC

MCEIL MATRIX ELEMENT CEILING MSAG

MCOL MOVE MATRIX COLUMN MATR

MEDIN MEDIAN OF A DISTRIBUTION STAT

MENUE EVALUATE MENU SYSTEM MAIN

MEXP MATRIX ELEMENT EXP MSAG

MFLR MATRIX ELEMENT FLOOR MSAG

MINOR COMPUTE MINOR OF MATRIX LINAG

MINV MATRIX INVERSE USING LSOVR LINAG

MKnZ WHITTAKER’S FUNCTION M,(z) CHYPR    
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MLN MATRIX ELEMENT LN MSAG

MLOG MATRIX ELEMENT LOG MSAG

MMAX MATRIX MAXIMUM VALUE MSAG

MMIN MATRIX MINIMUM VALUE MSAG

MMOD MATRIX ELEMENT MOD MSAG

MODE MODE OF A DISTRIBUTION STAT

MPN UPPER TAIL MARCUM Py DISTRIBUTION PROB

MQ MARCUM Q FUNCTION MISC

MRDC RANDOM COMPLEX BIVARIATE NORMAL MATRIX MSAG

MRDH RANDOM NORMAL HERMITIAN MATRIX MSAG

MRDN RANDOM NORMALLY DISTRIBUTED MATRIX MSAG

MRDS RANDOM NORMAL SYMMETRIC MATRIX MSAG

MRDU RANDOM UNIFORMLY DISTRIBUTED MATRIX MSAG

MRND MATRIX ELEMENT RND MSAG

MROW MOVE MATRIX ROW MATR

MSQ MATRIX ELEMENT SQ MSAG

MSRT MATRIX ELEMENT v MSAG

MSUB MATRIX SCALAR SUBTRACTION MSAG

MULTI DO UNTIL NO CHANGE MISC

MVAL MOVE VECTOR VALUE VECTR

MCL COLUMNLIST TO MATRIX MATR

M-CL MATRIX TO COLUMN LIST MATR

MK CONVERT MODULUS k TO m THETA

MK CONVERT m TO MODULUS k THETA

MM; CONVERT BETWEEN PARAMETER m AND m, THETA

MRL MATRIX TO ROW LIST MATR     
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MRL ROW LIST TO MATRIX MATR

M—SO MATRIX TO SYMBOLIC MATRIX SYMB

MSO SYMBOLIC MATRIX TO MATRIX SYMB

NCUK; JACOBI ELLIPTIC FUNCTION nc(u, k) JACOB

NDUK;| JACOBI ELLIPTIC FUNCTION nd(u, k) JACOB

NEGB UPPER TAIL NEGATIVE BINOMIAL DISTRIBUTION PROB

NSUK; JACOBI ELLIPTIC FUNCTION ns(u,k) JACOB

NUKP COMPUTE N SET OF JACOBI ELLIPTIC FTNS JACOB

NC SET TRANSFORM FROM N—C SET JACOB

NeC SET TRANSFORM FROM NC SET JACOB

NeD SET TRANSFORM FROM ND SET JACOB

N-D SET TRANSFORM FROM N—D SET JACOB

N-DB NEPERS TO dB WIND

NDB dB TO NEPERS WIND

N-S SET TRANSFORM FROM N—S SET JACOB

NeS SET TRANSFORM FROM NS SET JACOB

ONE CREATE A VECTOR WITH ELEMENTS EQUAL TO 1 VECTR

ORTH? TEST IF MATRIX IS ORTHOGONAL LINAG

OSOVL OVERDETERMINED SOLVE LEFT LINAG

OSOVR OVERDETERMINED SOLVE RIGHT LINAG

p LOWERCASE P GIVES THE VALUE OF = NUMB

PopX JACOBI POLYNOMIAL P,“#(x) POLY

Puvx LEGENDRE FUNCTION P.*x) ON CUT LGDR

PnVZ LEGENDRE FUNCTION P.*(z) LGDR

PADD POLYNOMIAL ADDITION ALGB

PARZ PARZEN WINDOW WIND   
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

PDERV POLYNOMIAL DERIVATIVE ALGB

PDQW PROBABILITY OF WAITING MORE THAN T QUE

PDVD POLYNOMIAL DIVISION ALGB

PEQN PRETTY POLYNOMIAL EQUATION IN Tn MISC

PERMF EVALUATE COMPLEX PERMUTATIONS MISC

PHASE COMPUTE PHASE IN DEGREES PROC

PHASU UNWRAP PHASE VECTOR IN DEGREES PROC

PHOUS COMPUTE HOUSEHOLDER MATRIX LINAG

PINCG PEARSON INCOMPLETE GAMMA I(u, p) GAMA

PINDX CREATE PHASE INDEX VECTOR PROC

PINTG POLYNOMIAL INTEGRATION ALGB

PLDVD POLYNOMIAL LONG DIVIDE ALGB

PLT1 PLOT ONE VECTOR WITHOUT LABELS PLOT

PLT1L PLOT ONE VECTOR WITH LABELS PLOT

PLT2 PLOT TWO VECTORS WITHOUT LABELS PLOT -

PLT2L PLOT TWO VECTOR WITH LABELS PLOT

PLT3 OVERLAYS ADDITIONAL PLOT ON PICT PLOT

PLTC COMPLEX PLOT VECTOR WITHOUT LABELS PLOT

PLTCL COMPLEX PLOT VECTOR WITH LABELS PLOT

PLXLY BIVARIATE NORMAL DISTRIBUTION BIVN

PLXUY BIVARIATE NORMAL DISTRIBUTION BIVN

PMAT POLYNOMIAL APPROXIMATION MATRIX MISC

PMPY POLYNOMIAL MULTIPLICATION ALGB

PNSM PROBABILITY OF N IN SYSTEM QUE

POCH EVALUATE POCHHAMMER’S SYMBOL MISC

POFX LEGENDRE POLYNOMIAL P,(x) POLY     
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

POLEP PLOT ZEROS AND POLES OF RESPONSE FILTR

POSN UPPER TAIL POISSON DISTRIBUTION PROB

PQB PROBABILITY OF BUSY QUE

PQUP UPWARD RECURRENCE FOR P AND Q LGDR

PRIME COMPUTE PRIME NUMBERS IN RANGE NUMB

PROOT MATRIX COMPLEX POLYNOMIAL ROOT SOLVER ALGB

PSCAL POLYNOMIAL LIST SCALE a, TO 1 FILTR

PSI DIGAMMA FUNCTION w(z) GAMA

PSUB POLYNOMIAL SUBTRACTION ALGB

PUXLY BIVARIATE NORMAL DISTRIBUTION BIVN

PUXUY BIVARIATE NORMAL DISTRIBUTION BIVN

PZINV z TO z! SUBSTITUTION - POLYNOMIAL LISTS FILTR

Quvx LEGENDRE FUNCTION Q,*x) ON CUT LGDR

Qnvz LEGENDRE FUNCTION P*(z) LGDR

RCL ROOT VECTORS TO POLYNOMIAL LISTS FILTR

ROD ROW SUM WITH ROW DELETE IF ZERO MSAG

RABS EUCLIDEAN NORM OF EACH ROW LINAG

RABS2 EUCLIDEAN ROW NORM SQUARED MSAG

RATAP RATIONAL APPROXIMATION OF FUNCTIONS MISC

RAYL UPPER TAIL RAYLEIGH DISTRIBUTION PROB

RCMB COMBINE TWO MATRICES BY ROWS MATR

RCOL REPLACE ENTIRE MATRIX COLUMN MATR

RCOLS MATRIX REPLACE COLUMN SUBSET MATR

RDERV POLYNOMIAL DERIVATIVE OF QUOTIENT ALGB

RDLV DE-INTERLEAVE MATRIX ROWS MATR

REDN TRUNCATE VECTOR TO LENGTH N PROC    
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

REFLT VECTOR COMPLEX REFLECT PROC

RESDA ARBITRARY RESIDUE EVALUATION SYMB

RESDP POLYNOMIAL RESIDUE EVALUATION SYMB

REVAL EVALUATE RATIONAL APPROXIMATION MISC

REV—> LEFT-RIGHT MATRIX REVERSE MATR

REVT UP-DOWN MATRIX REVERSE MATR

RGET EXTRACT MATRIX ROW SUBSET MATR

RHOUS APPLY HOUSEHOLDER VECTOR TO MATRIX LINAG

RICE UPPER TAIL RICIAN DISTRIBUTION PROB

RINT NUMERICAL INTEGRATION FROM RIGHT PROC

RNDC RANDOM COMPLEX BIVARIATE NORMAL VECTOR PROC

RNDN RANDOM NORMALLY DISTRIBUTED VECTOR PROC

RNDU RANDOM UNIFORMLY DISTRIBUTED VECTOR PROC

RNLV INTERLEAVE MATRIX ROWS MATR

RNUM COUNT NUMBER OF ENTRIES IN EACH ROW STAT

RORDR REORDER MATRIX ROWS USING PIVOT VECTOR LINAG

ROWn MEAN VALUE OF EACH MATRIX ROW STAT

ROWo STANDARD DEVIATION OF EACH MATRIX ROW STAT

RPSM REPLACE PARTIAL SUBMATRIX MATR

RROT ROW GIVENS ROTATE LINAG

RROW REPLACE ENTIRE MATRIX ROW MATR

RRWS MATRIX REPLACE ROW SUBSET MATR

RSBM REPLACE SUBMATRIX MATR

RSORT MATRIX ROW SORT T MATR

RSPLT SPLIT MATRIX BY ROWS MATR

RSRTI MATRIX ROW SORT | MATR       
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

RSUM COMPUTE VECTOR OF ROW SUMS MSAG

RZETA RIEMANN ZETA FUNCTION NUMB

RZINV z TO z™! SUBSTITUTION - ROOT VECTORS FILTR

S—>ZP STATE SPACE TO ZEROS AND POLES FILTR

S1F1 SYMBOLIC MATRIX ELEMENT OPERATIONS SYMB

S10Z FRESNEL INTEGRAL S,(z) ERROR

S207Z FRESNEL INTEGRAL S,(z) ERROR

SABS SYMBOLIC MATRIX ABS COMMAND SYMB

SADD SYMBOLIC MATRIX ADDITION SYMB

SADDS SYMBOLIC MATRIX SCALAR ADD SYMB

SCHRD GENERAL SCHUR DECOMPOSITION LINAG

SCHS SYMBOLIC MATRIX CHANGE SIGN SYMB

SCINT SINC SQUARED INTEGRAL EXPIN

SCNJ SYMBOLIC VECTOR AND MATRIX CONJ SYMB

SCOL SWAP MATRIX COLUMNS MATR

SCOLC SYMBOLIC MATRIX COLLECT SYMB

SCROS SYMBOLIC VECTOR CROSS PRODUCT SYMB

SCRSD SYMMETRIC & HERMITIAN SCHUR DECOMPOSITION LINAG

SCUK; JACOBI ELLIPTIC FUNCTION sc(u, k) JACOB

SCURL SYMBOLIC CURL SYMB

SDERV SYMBOLIC MATRIX DERIVATIVE SYMB

SDET SYMBOLIC MATRIX DETERMINANT SYMB

SDIV SYMBOLIC DIVERGENCE SYMB

SDOT SYMBOLIC MATRIX DOT PRODUCT SYMB

SDUK; JACOBI ELLIPTIC FUNCTION sd(u, k) JACOB

SEC SECANT TRIG   
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

SECH HYPERBOLIC SECANT HYP

SECOL SYMBOLIC MATRIX EXTRACT COLUMN SYMB

SERW SYMBOLIC MATRIX EXTRACT ROW SYMB

SEVAL SYMBOLIC MATRIX EVAL COMMAND SYMB

SEXCO SYMBOLIC MATRIX EXCO COMMAND SYMB

SEXPD SYMBOLIC MATRIX EXPAND SYMB

SGET SYMBOLIC MATRIX GET COMMAND SYMB

SGRD SYMBOLIC GRADIENT SYMB

SH1Z SPHERICAL HANKEL FUNCTION h,"(z) SBESL

SH2Z SPHERICAL HANKEL FUNCTION h,®(z) SBESL

SHIZ EXPONENTIAL INTEGRAL Shi(z) EXPIN

SIINZ SPHERICAL BESSEL FUNCTION i,%(z) SBESL

SI2NZ SPHERICAL BESSEL FUNCTION i,%(z) SBESL

SIGNP SIGN FUNCTION WITH SIGNP(0) = 1 MISC

SIM SYMBOLIC MATRIX IMAGINARY PART SYMB

SINC SINC FUNCTION = sinz/z EXPIN

SINC2 SQUARE OF SINC FUNCTION EXPIN

SINT SINE INTEGRAL Si(z) EXPIN

SINTG SYMBOLIC MATRIX INTEGRATION SYMB

SINZ SPHERICAL BESSEL FUNCTIONj.(z) SBESL

SKEW STATISTICAL SKEWNESS STAT

SKNZ SPHERICAL BESSEL FUNCTION k(z) SBESL

SMI SYMBOLIC MATRIX INVERSION UTILITY SYMB

SMNR SYMBOLIC MATRIX MINOR SYMB

SMPY SYMBOLIC MATRIX MULTIPLICATION SYMB

SNUK; JACOBI ELLIPTIC FUNCTION sn(u, k) JACOB       
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

SNUM SYMBOLIC MATRIX -NUM COMMAND SYMB

SOB- SYMBOLIC MATRIX TO STACK SYMB

SOFX CHEBYSHEV POLYNOMIAL S(x) POLY

SOFZ FRESNEL INTEGRAL S(z) ERROR

SPECT COMPUTE POWER SPECTRUM PROC

SPUT SYMBOLIC MATRIX PUT COMMAND SYMB

sSQWYV GENERATE SQUARE WAVE PROC

SRCOL SYMBOLIC MATRIX REPLACE COLUMN SYMB

SRCTT SPEARMAN RANK CORRELATION TEST STAT

SRE SYMBOLIC MATRIX REAL PART SYMB

SRND SYMBOLIC MATRIX AND VECTOR ROUND SYMB

SROW SWAP MATRIX ROWS MATR

SRRW SYMBOLIC MATRIX REPLACE ROW SYMB

SRTI SORT T WITH SORTED INDEX VECTR

SRTT SORT VECTOR T VECTR

SRT! SORT VECTOR { VECTR

SSIZE SYMBOLIC VECTOR AND MATRIX SIZE SYMB

SSORT SORT ACCORDING TO RE(s) >=<0 MISC

SSUB SYMBOLIC MATRIX SUBTRACTION SYMB

SSUBS SYMBOLIC MATRIX SCALAR SUBTRACT SYMB

STRAC SYMBOLIC MATRIX TRACE SYMB

STRL1 STIRLING NUMBER FIRST KIND NUMB

STRL2 STIRLING NUMBER SECOND KIND NUMB

STRLT STIRLING COEFFICIENT TRANSFORM WIND

STRN SYMBOLIC MATRIX TRANSPOSE SYMB

SUKP COMPUTE S SET OF JACOBI ELLIPTIC FTNS JACOB   
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

SUMZ SUM SYMBOLIC SERIES ALGB

SVAL SWAP VECTOR VALUES VECTR

SVBAR SYMBOLIC MATRIX | (WHERE) COMMAND SYMB

SVD SINGULAR VALUE MATRIX DECOMPOSITION LINAG

SVDDI INVERT SVD DIAGONAL VECTOR LINAG

SVDMI INVERT SVD MATRIX LINAG

SYM? TEST IF MATRIX IS SYMMETRIC LINAG

SYNZ SPHERICAL BESSEL FUNCTIONy,(z) SBESL

T1UQ LOGARITHMIC DERIVATIVE 9,(ullq) THETA

T20Q LOGARITHMIC DERIVATIVE 9,(ullq) THETA

T3UQ LOGARITHMIC DERIVATIVE 9,(ullq) THETA

T40UQ LOGARITHMIC DERIVATIVE 9(ullq) THETA

TALR1 ONE DIMENSIONAL TAYLOR SERIES MISC

TALR2 TWO DIMENSIONAL TAYLOR SERIES MISC

TCUK;| LOGARITHMIC DERIVATIVE 9(u, k) THETA

TDUK;| LOGARITHMIC DERIVATIVE 9(u, k) THETA

TF-C TRANSFER FUNCTION TO CONTROLLABLE FORM FILTR

TI TEST IF INTEGER PCLDR

TIFRE TEST IF REAL AND MAKE REAL SYMB

TIMIT COMPUTE EXECUTION TIME MISC

TNI TEST IF NEGATIVE INTEGER OR ZERO PCLDR

TNP TEST IF NOT POSITIVE REAL NUMBER PCLDR

TNUK; LOGARITHMIC DERIVATIVE 9,(u, k) THETA

TOFX CHEBYSHEV POLYNOMIAL T,(x) POLY

TOFXL CHEBYSHEV POLYNOMIAL T,(x) LIST WIND

TRACE COMPUTE TRACE OF MATRIX LINAG     
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

TRNH HERMITIAN MATRIX TRANSPOSE LINAG

TRNP NON-HERMITIAN MATRIX TRANSPOSE LINAG

TSFX CHEBYSHEV SHIFTED POLYNOMIAL T(x) POLY

TSTAT LINEAR REGRESSION T STATISTICS MISC

TSUK;| LOGARITHMIC DERIVATIVE 9,(u, k) THETA

TTDV T TEST FOR MEANS DIFFERENT VARIANCE STAT

TTPS T TEST FOR MEANS PAIRED SAMPLES STAT

TTSV T TEST FOR MEANS SAME VARIANCE STAT

TWIDL COMPUTE FFT TWIDDLE VECTOR PROC

UmC UPPER TAIL NON-CENTRAL yx? DISTRIBUTION PROB

UmF UPPER TAIL NON-CENTRAL F DISTRIBUTION PROB

UmT UPPER TAIL NON-CENTRAL T DISTRIBUTION PROB

UPC UPPER TAIL x* DISTRIBUTION PROB

UTPF UPPER TAIL F DISTRIBUTION PROB

UPN UPPER TAIL NORMAL DISTRIBUTION PROB

UtPT UPPER TAIL F DISTRIBUTION PROB

UABZ CONFLUENT HYPERGEOMETRIC U(a, b, z) CHYPR

UHESD UPPER HESSENBERG DECOMPOSITION LINAG

UNIF UPPER TAIL UNIFORM DISTRIBUTION PROB

UNIQE IDENTIFY AND COUNT UNIQUE ELEMENTS MISC

UNIT? TEST IF MATRIX IS UNITARY LINAG

UNITI CREATE UNIT IMPULSE VECTOR: [1 0... 0] VECTR

UOAX PARABOLIC CYLINDER U(a, x) PCLDR

UOFX CHEBYSHEV POLYNOMIAL U,(x) POLY

USFX CHEBYSHEV SHIFTED POLYNOMIAL T,(x) POLY

USOVL UNDERDETERMINED SOLVE LEFT LINAG     
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

USOVR UNDERDETERMINED SOLVE RIGHT LINAG

UTKS UPPER TAIL KOLMOGOROV-SMIRNOV DISTRIBUTION PROB

UTPB UPPER TAIL BETA DISTRIBUTION PROB

UTPE UPPER TAIL EXPONENTIAL DISTRIBUTION PROB

UTPG UPPER TAIL GAMMA DISTRIBUTION PROB

UZKP COMPLEX INCOMPLETE ELLIPTIC F(x, k) THETA

ViF1 ONE-VECTOR-ELEMENT OPERATIONS VSAG

V2F1 TWO-VECTOR-ELEMENT OPERATIONS VSAG

VABS VECTOR ELEMENT ABS VSAG

VADD VECTOR SCALAR ADDITION VSAG

VALOG VECTOR ELEMENT ALOG VSAG

VARG VECTOR ELEMENT ARG VSAG

VARM STATISTICAL MEAN AND VARIANCE STAT

VCDEL VECTOR CONSTANT ELEMENT DELETE VSAG

VCEIL VECTOR ELEMENT CEILING VSAG

VCMB COMBINE TWO VECTORS INTO ONE VECTOR STAT

VCORR VECTOR CORRELATION WITHOUT FFT PROC

VDEC VECTOR DECIMATE PROC

VDEL DELETE A PORTION OF A VECTOR VECTR

VDVD VECTOR DECONVOLUTION WITHOUT FFT PROC

VECTD VECTOR ELEMENT + VSAG

VECTX VECTOR ELEMENT x VSAG

VEXP VECTOR ELEMENT EXP VSAG

VFLOR VECTOR ELEMENT FLOOR VSAG

VHOUS COMPUTE HOUSEHOLDER VECTOR LINAG

VINST INSERT VECTOR INTO VECTOR VECTR       
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

VINTP VECTOR INTERPOLATE PROC

VLN VECTOR ELEMENT LN VSAG

VLOG VECTOR ELEMENT LOG VSAG

VMAX VECTOR MAXIMUM VALUE VSAG

VMIN VECTOR MINIMUM VALUE VSAG

VMOD VECTOR ELEMENT MOD VSAG

VMPY VECTOR CONVOLVE WITHOUT FFT PROC

VOAX PARABOLIC CYLINDER V(a, x) PCLDR

VREPL REPLACE VECTOR SUBSET VECTR

VREV VECTOR ELEMENT REVERSE VECTR

VRND VECTOR ELEMENT RND VSAG

VROT VECTOR ROTATE BY + N PROC

VSINV VECTOR ELEMENT INV VSAG

VSPLT SPLIT VECTOR INTO TWO VECTORS STAT

vsQ VECTOR ELEMENT SQ VSAG

VSRT VECTOR ELEMENT ¥ VSAG

VSUB VECTOR SCALAR SUBTRACTION VSAG

VSUBS EXTRACT VECTOR SUBSET VECTR

VTRUD PHASE UNWRAP COMPLEX VECTOR IN DEGREES PROC

VTRUR ARGUMENT UNWRAP COMPLEX VECTOR IN RADIANS VSAG

\'> SUM OF VALUES IN DATA VECTOR PROC

V->DB VOLTS TO dB WIND

V&DB dB TO VOLTS WIND

VoL CONVERT VECTOR TO LIST VECTR

VeL CONVERT LIST TO VECTOR VECTR

WARP PREWARP FREQUENCY FOR z TRANSFORM FILTR     
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

WEIB UPPER TAIL WEIBULL DISTRIBUTION PROB

WELC WELCH WINDOW WIND

WKnZ WHITTAKER’S FUNCTION W,(2) CHYPR

WL1 WIENER-LEVINSON SOLUTION TYPE 1 PROC

WL2 WIENER-LEVINSON SOLUTION TYPE 2 PROC

WM COMPUTE TIME IN SYSTEM QUE

WOAX PARABOLIC CYLINDER W(a, x) PCLDR

wqQM COMPUTE TIME IN QUEUE QUE

WSQR SYMMETRIC EIGEN DECOMPOSITION STEP LINAG

XEQN PRETTY POLYNOMIAL EQUATIONIN z" MISC

YOOX BESSEL FUNCTION Y,(x) BESEL

Y10X BESSEL FUNCTION Y,(x) BESEL

YNOX BESSEL FUNCTION Y,(x) BESEL

YNOZ BESSEL FUNCTION Y,(z) BESEL

YVOZ GENERAL BESSEL Y(z) CHYPR

ZERO CREATE A VECTOR WITH ELEMENTS EQUAL TO 0 VSAG

ZFIL1 ZERO-FILLS TO TWICE THE LENGTH - 2 PROC

ZFILL ZERO-FILLS TO TWICE THE LENGTH PROC

ZFILN ZERO FILL VECTOR TO LENGTH N PROC

ZOF7Z DERIVATIVE OF ERROR FUNCTION Z(z) ERROR

ZSORT SORT ACCORDING TO ABS(z) > =< 1 MISC

ZUKP JACOBI'S ZETA FUNCTION Z(u, k) ELLIPI

—COL VECTOR TO COLUMN VECTOR MATR

—-ROW VECTOR TO ROW VECTOR MATR

—-SOB STACK TO SYMBOLIC MATRIX SYMB

—-VTR ROW OR COLUMN VECTOR TO VECTOR VECTR    
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

oNOZ EXPONENTIAL INTEGRAL a,(z) EXPIN

o—Kj CONVERT MODULAR ANGLE a TO k' THETA

oKj CONVERT k' TO MODULAR ANGLE o. THETA

BNOZ EXPONENTIAL INTEGRAL B,(z) EXPIN

y EULER'S CONSTANT EXPIN

Sn—oA CONVERSION FROM §, 8, TO a, a, WIND

SneA CONVERSION FROM a,a,,, TO 8, 5, WIND

AWAV GENERATE TRIANGULAR WAVE PROC

AZKP ELLIPTIC DELTA FUNCTION A(z, k) ELLIPI

ea—U CONVERSION FOR AMS55 TABLES THETA

eaeU CONVERSION FOR AMS 55 TABLES THETA

01UK; JACOBI THETA FUNCTION Ou,k) THETA

01ZQ THETA FUNCTION 9,(zllq) THETA

022Q THETA FUNCTION 9,(zllq) THETA

032Q THETA FUNCTION 94(zllq) THETA

047Q THETA FUNCTION 9,(zliq) THETA

8CUK; NEVILLE’S THETA FUNCTION 9(u,k) THETA

6DUK; NEVILLE’S THETA FUNCTION 9,(u, k) THETA

OFCFS COMPUTE ELLIPTIC MODULAR ANGLE FILTR

ONUK; NEVILLE’S THETA FUNCTION 9,(u, k) THETA

6SUK; NEVILLE’S THETA FUNCTION 9,(u, k) THETA

6UKP JACOBI THETA FUNCTION Xu, k) THETA

A? TEST IF EIGENVALUE MATR

AV? TEST IF EIGENVECTOR MATR

AXKP HEUMAN’S LAMBDA FUNCTION A(x,k) ELLIPI

a STATISTICAL MEAN STAT     
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ALPHABETIC COMMAND SUMMARY AND MENU INDEX

MATHLIB DESCRIPTION DEFINITION MENU
COMMAND (ALL ARE IN MAIN)

IINXKP INCOMPLETE ELLIPTIC INTEGRAL IX(n, x, k) ELLIPI

pAX ayn TO REFLECTION COEFFICIENT FILTR

p-AX REFLECTION COEFFICIENT TO ayn FILTR

c STATISTICAL STANDARD DEVIATION STAT

10Fo EVALUATE GROUP DELAY AT A FREQUENCY FILTR

TVT1 ANALOG AND DIGITAL GROUP DELAY FILTR

TVT2 ANALOG AND DIGITAL GROUP DELAY FILTR

0X CONVERT AMPLITUDE ¢ TO x THETA

0X CONVERT x TO AMPLITUDE ¢ THETA

QMAX LOCATION OF PASSBAND MAX ATTENUATION FILTR

QMIN LOCATION OF STOPBAND MIN ATTENUATION FILTR

i GIVES THE VALUE OF i = (0, 1) NUMB

DOUBLE FACTORIAL FUNCTION (n)!! GAMA     
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SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

SYMBOL FUNCTION MENU COMMAND

ABS Absolute value HP ABS

Ai(z) Airy function SBESL AIOZ

am(u, k) Amplitude ¢ = arcsin(sn(u, k)) JACOB AMUK;

arccos z Inverse of cos z HP ACOS

arccosh z Inverse of cosh z HYP ACOSH

arccot z Inverse of cot z TRIG ACOT

arccoth z Inverse of coth z HYP ACOTH

arccsc z Inverse of csc z TRIG ACSC

arcesch z Inverse of csch z HYP ACSCH

arcsec z Inverse of sec z TRIG ASEC

arcsech z Inverse of sech z HYP ASECH

arcsin z Inverse of sin z HP ASIN

arcsinh z Inverse of sinh z HYP ASINH

arctan z Inverse of tan z HP ATAN

arctanh z Inverse of tanh z HYP ATANH

arg z Argumentof z HP ARG

B(x, k) Elliptic integral ELLIPI BXKP

B(z, w) Beta function GAMA BETA

bei, x Kelvin function BESEL BEN&

ber, x Kelvin function BESEL BEN&

Bi(z) Airy function SBESL BIOZ

B, Bernoulli number NUMB BR

B,(x) Bernoulli polynomial NUMB BPOLY

B.(a, b) Incomplete beta function GAMA INCB

C(z) Fresnel integral ERROR COFZ

C,(x) Fresnel integral ERROR C10Z

C(x) Fresnel integral ERROR C20Z

cd(y, k) Jacobielliptic function JACOB CDUK;



616

SYMBOL

CEIL

Chi(z)

Ci(z)

C,(x)

cn(y, k)

C.(x)

COMB

CONJ

cos z

cosh z

cs(u,k)

cot z

coth z

csc z

csch z

D(x, k)

dc(u, k)

DET

dn(y, k)

ds(u, k)

D(z)

e

E

E(x, k)

Ey(z)

Ei(x)

n

E(x)

SYMBOL INDEX

FUNCTION

Smallest integer greater or equal to argument

Hyperbolic cosine integral

Cosine integral

Gegenbauer ultraspherical polynomial

Jacobi elliptic function

Chebyshev polynomial of the second kind

Binomial coefficient: COMB(a, b) = al/[bl(a — b)!]

Complex conjugate often denoted by z' = CONJ(z)

Cosine function

Hyperbolic cosine function

Jacobi elliptic function

Cotangent function

Hyperbolic cotangent function

Cosecant function

Hyperbolic cosecant function

Elliptic integral

Jacobi elliptic function

Determinant of a matrix

Jacobi elliptic function

Jacobi elliptic function

Parabolic cylinder function

Euler’s constant e = 2.71828182846

Complete elliptic integral of the second kind

Incomplete elliptic integral of the second kind

Exponential integral

Exponential integral

Euler number

Euler polynomial

SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

MENU

HP

EXPIN

EXPIN

POLY

JACOB

POLY

HP

HP

HP

HP

JACOB

TRIG

HYP

TRIG

HYP

ELLIPI

JACOB

HP

JACOB

JACOB

PCLDR

HP

ELLIPI

ELLIPI

EXPIN

EXPIN

NUMB

NUMB

COMMAND

CEIL

CHIZ

CINT

CaOX

CNUK;

COFX

COMB

CONJ

COs

COSH

CSUK;|

COT

COTH

CSC

CSCH

DXKP

DCUK;

DET

DNUK;

DSUK;

DVOZ

e

EOKP

EXKP

E102

EIOX

ER

EPOLY
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SYMBOL

E(2)

erfz

erfc z

E,(2)

Ez)

exp z = e°

F(a, b, c, z)

JF(OyenByers)

f(x)

F,

Fm)

F(x, k)

F.(n, p)

FLOOR

FP

8: and g;

Gym, p)

G.(p, q,%)

He,(x)

h,(2)

h,?(z)

H,(x)

H(z)

Iorl

i

I(u, p)

IM z

i" erfc z

SYMBOL INDEX

FUNCTION

Exponential integral

Error function

Complementary error function

Weber's parabolic cylinder function

Weber’s parabolic cylinder function

Exponential function

Gaussian hypergeometric function ,F(a; b; c; z)

Generalized hypergeometric function

Discrete orthogonal Chebyshev polynomial

nth Fibonacci number

Fermi-Dirac function

Incomplete elliptic integral of the first kind

Regular Coulomb wave function FLnp

Greatest integer less than or equal to argument

Fractional part of real number

Invariants associated with Weierstrass elliptic functions

Irregular Coulomb wave function GLnp

Jacobi polynomial

Hermite polynomial

Spherical Bessel function of the third kind

Spherical Bessel function of the third kind

Hermite polynomial

Struve function

Identity matrix

(0, 1) = &™

Pearson incomplete gamma function

Imaginary part of z

Repeated integral of the error function

MENU

EXPIN

ERROR

ERROR

PCLDR

PCLDR

HP

GHYP

CHYPR

WIND

NUMB

THETA

ELLIPI

CHYPR

HP

HP

ELLIPI

CHYPR

POLY

POLY

SBESL

SBESL

POLY

STRUV

HP

HP

GAMA

HP

ERROR

COMMAND

ENOZ

ERFZ

ERFCZ

EV0Z

EV1Z

EXP

F2F1

NONE

CHEBY

FIBON

PROGRAM

FXKP

PROGRAM

FLOOR

FP

PROGRAM

PROGRAM

GPQX

HEOX

SH1Z

SH2Z

HOX

HVOZ

IDN

PINCG

IM

INERFC
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SYMBOL

i,(2)

i,2(z)

IP

I(z)

I(a, b)

Jx(2)

J,(2)

k

K

K:

kei, x

ker, x

k,(2)

K(2)

K'

Lh, k, p)

Li(x)

lim or Lim

In or Ln

L,(x)

L,(x)

&.(z)

log or Log

Lz)

m

m,

MAX

MIN

SYMBOL INDEX

FUNCTION

Modified spherical Bessel function of the first kind

Modified spherical Bessel function of the second kind

Integer part of a real number

Modified Bessel function of the first kind

Incomplete beta function

Spherical Bessel function of the first kind

Bessel function of the first kind

Modulus of Jacobian elliptic functions

Complete elliptic integral of first kind

Complementary complete elliptic integral of first kind

Kelvin function

Kelvin function

Modified spherical Bessel function of the third kind

Modified Bessel function of second kind

Complementary modulus of Jacobian elliptic functions

Cumulative bivariate normal probability

Logarithmic integral

Limit

Natural base e logarithm

Generalized Laguerre polynomial

Laguerre polynomial

Polylogarithm (Jonquiere) function

Base 10 logarithm

Modified Struve function

Parameterin elliptic functions

Complementary parameter in elliptic functions

Maximum

Minimum

SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

MENU

SBESL

SBESL

HP

BESEL

GAMA

SBESL

BESEL

THETA

ELLIPI

ELLIPI

BESEL

BESEL

SBESL

BESEL

THETA

BIVN

EXPIN

HP

HP

POLY

POLY

THETA

HP

STRUV

THETA

THETA

HP

HP

COMMAND

SIINZ

SI2NZ

IP

INOZ

INCB

SJINZ

JNOZ

SEVERAL

KOKP

K{OK

KEN&

KEN&

SKNZ

KNOZ

SEVERAL

SEVERAL

LIOX

EVAL

LN

LaOX

LOFX

PROGRAM

LOG

LvVOZ

SEVERAL

SEVERAL

MAX

MIN



SYMBOL

M(a, b, z)

M,,(@)
MOD

n

nc(u, k)

nd(u, k)

ns(u, k)

PERM

P(x)

P(x)

p(x)

P*(z)

#(z; 8, 85)

q

q

q,"(z)

Q(z)

RE z

S(z)

S,(z)

Sy(z)

sc(u, k)

sd(u, k)

Sec Z

sech z

Shi(z)

Si(z)

sign(z)

SYMBOL INDEX

FUNCTION

Kummer’s confluent hypergeometric function ,F,(a; b; z)

Whittaker function

x MOD y = x - y FLOOR(x/y)

Characteristic ofelliptical integral of the third kind

Jacobi elliptic function

Jacobi elliptic function

Jacobi elliptic function

Permutation: PERM(a, b) = al/(a — b)!

Jacobi polynomial

Legendre spherical polynomial

Associated Legendre function on the cut

Associated Legendre function of the first kind

Weierstrass elliptic function - also p(z|0, ©")

Nome in theta functions

Complementary nome in theta functions

Associated Legendre function on the cut

Associated Legendre function of the second kind

Real part of z

Fresnel integral

Fresnel integral

Fresnel integral

Jacobi elliptic function

Jacobi elliptic function

Secant function

Hyperbolic secant function

Hyperbolic sine integral

Sine integral

Sign of z

SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

MENU

CHYPR

CHYPR

HP

ELLIPI

JACOB

JACOB

JACOB

HP

POLY

POLY

LGDR

LGDR

ELLIPI

THETA

THETA

LGDR

LGDR

HP

ERROR

ERROR

ERROR

JACOB

JACOB

TRIG

HYP

EXPIN

EXPIN

HP
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COMMAND

MABZ

MKnZ

MOD

IINXKP

NCUK;

NDUK;

NSUK;

PERM

PopX

POFX

PnVX

PnVZ

PROGRAM

KP-Q

KP-Q

QnVX

Quvz

RE

SOFZ

S10Z

S20Z

SCUK;|

SDUK;

SEC

SECH

SHIZ

SINT

SIGN
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SYMBOL

sin z

sinc(z)

sinh z

S,™

8,™

sn(u, k)

S,(x)

tan z

tanh z

Tr

T,(x)

T,(x)

U(a, b, z)

Ula, x)

U,(x)

U,(x)

V(a, x)

W(a, x)

W,(2)

Ya(2)

Y.(z)

Z(u, k)

Z(z)

o

a,(z)

Bu(2)

B(n)

Y

SYMBOL INDEX

FUNCTION

Sine function

Sinc function = sin(z)/z

Hyperbolic sine function

Stirling number of the first kind

Stirling number of the second kind

Jacobi elliptic function

Chebyshev polynomial of the first kind

Tangent function

Hyperbolic tangent function

Trace of matrix

Chebyshev polynomial of the first kind

Shifted Chebyshev polynomial of the first kind

Tricomi’s confluent hypergeometric function

Parabolic cylinder function

Chebyshev polynomial of the second kind

Shifted Chebyshev polynomial of the second kind

Parabolic cylinder function

Parabolic cylinder function

Whittaker function

Spherical Bessel function of the second kind

Bessel function of the second kind

Jacobi zeta function

Normal probability density function

Modular angle

Exponential integral

Exponential integral

Complementary Riemann zeta function

Euler’s constant y = 0.577215664902

SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

MENU

HP

EXPIN

HYP

NUMB

NUMB

JACOB

POLY

HP

HYP

LINAG

POLY

POLY

CHYPR

PCLDR

POLY

POLY

PCLDR

PCLDR

CHYPR

SBESL

BESEL

ELLIPI

ERROR

THETA

EXPIN

EXPIN

NUMB

EXPIN

COMMAND

SIN

SINC

SINH

STRL1

STRL2

SNUK;

SOFX

TAN

TANH

TRACE

TOFX

TSFX

UABZ

UOAX

UOFX

USFX

VOAX

WOAX

WKnZ

SYNZ

YNOZ

ZUKP

ZOFZ

SEVERAL

oNOZ

BNOZ

CZETA

Y
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SYMBOL

Ya, z)

(a, z)

I(z)

Y(a, 2)

a(t)

Som

A(z, k)

A=g,}-27g}

g(n)

Es, a)

0(z; 82 8)

H(u, k)

H,(u, k)

n(n)

O(u, k)

O,(u, k)

9,(zllq)

Vy(zllq)

3(zllq)

9,(zllq)

9.z, k)

V4(z, k)

9,(z, k)

9,(z, k)

8,(z, k)

Ax, k)

Mn)

n

SYMBOL INDEX

FUNCTION

Incomplete gamma function

Incomplete gamma function

Gamma function

Incomplete gamma function

Dirac delta function

Kronecker delta function (= 0 if m # n; =1 if m = m)

Elliptic function A(p\a) = A(z, k) = dn(u, k)

Discriminant associated with Weierstrass elliptic functions

Riemann zeta function

Generalized Riemann zeta function

Weierstrass zeta function — also {(z|®, ©’)

Jacobi’s eta function

Jacobi’s complementary eta function

1-2" n)

Jacobi’s theta function

Jacobi’s complementary theta function

Theta function for complex nome

Theta function for complex nome

Theta function for complex nome

Theta function for complex nome

Neville’s theta function

Neville’s theta function

Neville’s theta function

Neville’s theta function

Theta function forn = 1, 2, 3, 4

Heuman’s lambda function

(1-27) &(n)

Mean

MENU

GAMA

GAMA

GAMA

GAMA

SYMB

TRIG

ELLIPI

ELLIPI

NUMB

NUMB

ELLIPI

THETA

THETA

NUMB

THETA

THETA

THETA

THETA

THETA

THETA

THETA

THETA

THETA

THETA

THETA

ELLIPI

NUMB

STAT
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COMMAND

INCy

INCG

GAMMA

INCy;

NONE

PROGRAM

AZKP

PROGRAM

RZETA

PROGRAM

PROGRAM

HUKP

H1UK;

RZETA

6UKP

01UK]

01Z2Q

027Q

037Q

047Q

0CUK;|

6DUK;

6NUK;|

6SUK;|

PROGRAM

AXKP

RZETA
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SYMBOL INDEX FOR MATHEMATICAL FUNCTIONS

SYMBOL

T

I(x)

I(n, x, k)

Oo

0(z; 82 83)

z

¢

D(z, s, A)

vz)

y(z)

o and ©’

(o)!!

Vo

VeA

VxA

vie

z" = CONJ(z)

A

Vx = V(x)

I

[

I

SYMBOL INDEX

FUNCTION

Archimede’s constant © = 3.14159265359

x) = x!

Incomplete elliptic integral of the third kind

Standard deviation

Weierstrass sigma function - also o(z |o, ®’)

Summation

Amplitude ¢ = am(u, k)

Lerch’s transcendent

Polygamma function

Digamma function = logarithmic derivative of I'(z)

Half-periods associated with Weierstrass elliptic functions

Absolute value of z

Pochhammer’s symbol I(a + n)/T(a)

Binomial coefficient = (a)! / [(a — b)! bl]

Factorial function n! = I(n + 1)

Double factorial function

Gradient of function ¢

Divergence of vector A

Curl of vector A

Laplacian of function ¢

Denotes conjugate — exceptions: y'(a, z), T,"(x), and U,"(x)

Exponentiation: 342 =9

Square root of x

nth root of x

Symbolic or real numerical integral

Complex contour integral over analytic paths

Complex residue integral over closed paths

MENU

HP

HP

ELLIPI

STAT

ELLIPI

HP

JACOB

THETA

GAMA

GAMA

ELLIPI

HP

MISC

HP

HP

GAMA

SYMB

SYMB

SYMB

SYMB

HP

HP

HP

HP

HP

ERROR

SYMB

COMMAND

TT

!

IINXKP

PROGRAM

AMUKP

PROGRAM

DNPSI

PSI

PROGRAM

ABS

POCH

COMB

SGRD

SDIV

SCURL

Vel[Vo]

CONJ

XROOT

CINTG

RESDA
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A

A = set of standard HP 48 array objects 327
Absolute deviation 274

Absolute value
Column 235, 468

Matrix 340
Row 235, 468

Absolute integrability 487
Accuracy 14
Accuracy of eigenvalues and eigenvectors 256
Adaptive filtering 444, 568

Add
Matrix scalar 465

Plots 22
Polynomials 194

Symbolic arrays 327
Vector scalar 284, 331, 457

Adjoint 362
Adjugate 356, 362

Airy functions 76, 123
Algebra

Polynomial 191-196, 202-205
Techniques 206-215
Symbolic arrays 327-335

Algebraic

Command 12, 574-577

Expansion 16, 206-213

Expressions 140
Function definition 475

Notation 12, 577
Aliasing 560, 566

Amplitude
Elliptic function 78

Filter 399, 417
Ramp 377

Analog filters 395-414, 419
Analysis

Complex 25, 33-38
Contingency table 284

Offilters 391-448
Of covariance 290-292

Of variance 286-289

Signal 369-390

Analysis filters 565-568
Analytic

Continuation 37
Filter 397
Function 34-38
Signal 551

ANOCOV table 290

ANOVA table 286, 288
Antiderivative 486
Apply command 214, 215

Approximation

Data 167-180, 439

Discrete Chebyshev 439

Least squares 175-180, 226-231
Linear regression 167-174

Maclaurin series 163, 197, 410

Pade 166
Polynomial 163-165, 199, 204, 437, 570, 571

Rational 166, 420

Taylor series 161, 194
Wavelet 569-572

AR 386

Argument

Commands 12, 566, 576
Of a complex number 37

Unwrapping 458

Arithmetic

Matrix 218, 465
Polynomial 194-196

Symbolic array 327-329
Vector 457

Arithmetic-geometric mean 96
ARMA 386

Array 218, 323-325, 327

Arrival rate 315

Associated Legendre function 135-137
Autocorrelation 386

Autoregressive 386
Axis 20-22

B

Bandpass 395, 414, 417, 434, 569
Bandstop 395, 414, 417, 434

Bartlett window 431
Bernoulli 187
Besselfilter 410, 412

Bessel functions
Complex order 117-119, 557

Integer order 63-72
Spherical 73-76

Beta distribution 302, 310, 311

Beta function 53, 54, 133

Bidiagonal decomposition 239, 251

Big problem techniques 16, 211-214

Bilinear transform 415



624 SUBJECT INDEX

Binomial coefficient 55

Binomial distribution 304, 311
Binomial expansion 208

Binomial filter 571
Birth and death processes 316

Bispherical coordinates 147
Bit reversal for FFT 374, 565

Bivariate normal distribution 313, 314
Blackman window 431

Branches 36, 37, 69, 70, 120, 133, 136, 536
Butterworth filter 393, 394, 404, 405

C

C = set of complex numbers 25
Calculus

Complex 33-38
Differential 475-484

Differential equations 341, 347-364
Integral 48, 61, 211-216, 345-347, 485-536
Matrix 331
Polynomial 202, 577

State space 357-364

Vector 335-339, 482-484

Canonical form

Controllable 422-424
Jordan 253, 359, 396, 425

Observable 422-424
Cartesian coordinates 338
Catalan beta function 188

Catalan constant 188
Cauchy distribution 301, 310

Cauchy principal value 44, 45, 545
Cauchy-Riemann conditions 34, 37

Cauchy’s integral formula 35, 58, 62, 345-347
Causality 383, 384, 551, 559, 560

Ceiling 459, 468
Chain rule 479, 487

Characteristic polynomial 252, 361

Characteristic value (see Eigenvalue)
Chebyshev

Filter 404, 406

Polynomials 155-157, 164, 438-447, 570
Chi-square distribution 299, 302, 308

Chi-square test 279, 280, 284
Cholesky decomposition 222, 250

Circular convolution 564
Circular cylindrical coordinates 63

Circular functions (see Trigonometric)
Clipping 433

Coefficient
Bernoulli 187

Euler 188
List conventions 193

Cofactor 220, 247, 335, 360

Collect 16, 197, 208, 332

Column norm 235, 468

Column operations 234, 257-267, 330, 467
Column vector 218, 324, 327

Combination (linear) 175, 350, 357

Combinations 55, 306

Combine real and imaginary parts 211
Combine rows and columns 266, 295

Combine vectors 293, 453
Command 574

Common problems 15
Companion matrix 269

Complementary
Error function 60, 556

Modular angle 77
Modulus 77

Parameter 77
Riemann zeta function 188

Complete elliptic integrals 81-85

Complex

Analytic integration 35, 48, 61
Conjugate evaluate 26, 210

Derivatives 34
Exponential expand 210

Exponential function 26
Integrals 35, 38, 58, 62, 485-536

Limits 33
Residues 35, 38, 58, 62, 345-347

Variables 25
Condition number 220, 224

Confidence intervals 298
Confluent hypergeometric functions 113-121
Conical functions 147

Conjugate 26, 210, 218, 219, 232, 365

Consistent equations 218, 219
Contingency coefficient 284

Contingency table analysis 284
Continuity 33, 476

Contour integration 35, 48, 61, 62, 345-347
Controllability 422-426

Conventions

Hertz 393, 402
Polynomial list 193
Root vector 395

State space 396, 447
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Symbolic array 324, 327

Convergence failed 193, 225
Convolution 376, 381-384, 388-390,

547-553, 559-564, 568
Copy 262, 452

Correlation 376, 382, 386, 548, 562, 564

Correlation coefficient 385, 460, 469
Correlation test 281, 285, 472
Correlograms 386

Cosine integral 46, 47
Coulomb wave function 120, 121

Count unique 182
Covariance 277, 290-293

Cramer's rule 335, 354
Critical decimation 565

Cross-correlation 376, 382, 386

Cross-product 334, 483

Cumulative sum of values 283, 374

Curl 336, 483

Curvilinear coordinates 337-339
Cut 36, 37, 120, 133, 136, 142, 144-146, 536

Cylinder functions 63
Cylindrical polar coordinates 338

D

Dawson’s integral 62

DCT 570

Debye functions 112, 188, 190
Decimation 379, 400

Decomposition
Bidiagonal 239, 251

Cholesky 250
Jordan 253, 359, 396, 425

LDLTD 236
LU 236

QR 238
Schur 242, 243
SVD 230
Tridiagonal 241

Upper Hessenberg 241

Deconvolution 381, 382
Deflate 202, 387

Deflation 224, 387, 571

Deglitching data 23, 385
De-interleaving data sets 264, 265, 294

Delay of filter 400-402

Delete
List zero 206, 454

Row and column 261

Value 452

Vector 453
Vector constant 461

Departure rate 315, 317, 318
Derivatives

Curl 336, 483
Definitions 34, 475

Divergence 336, 483
Examples 216
Gradient 335, 483
Laplacian 336, 484

Numerical 372

Partial 482

Polynomials 202, 203
Symbolic arrays 331

Symbolic function 215
Determinant 218, 334

Deviation
Absolute 274

Row and column 293
Standard 274

DFT 370, 390, 563-565

Difference equation solutions 383, 447

Differentiable 477-479, 484, 537
Differential equation solutions 341, 347-355, 357-364

Differential notation 479, 482-484

Differentiation (see Derivatives)

Digamma 50, 51, 56, 114
Digitalfilter design 412-417, 434-437, 567-572

Dilogarithm function 112
Dimension 365
Dirac delta function 347, 349, 545, 546, 551
Discrete Chebyshev polynomials 439, 570

Discrete Fourier transform (see DFT)

Discrete state space 447

Discrete transform
Binomial 571

Chebyshev 570
Cosine (DCT) 570

Fourier (see DFT)
Haar 569, 570

Hadamard 570
Hermite 571

Karhunen-Loeve 571
Lapped 568
Walsh 570
Wavelet 569-572

Distribution functions 545-547
Distributions (see Probability)

Divergence 336, 483
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Domain 475

Dot product 218, 328
Double factorial function 54

Doubly periodic 77, 80

E

e 26

Eigenvalues 220-225, 242-245, 252-256, 269

Eigenvectors 220-222, 224, 225, 242-244, 253

Elliptic
Cylindrical coordinates 339

Filters 406-408
Functions 80, 91-94

Integrals 81-85
Entire function 34

Erlang distribution 302, 319
Error function 60, 61

Estimation (see Approximation)
Eta function 99, 104

Euler 26, 27, 37, 51, 53, 56, 112, 188

Evaluate completely 200

Evaluation 574-576
Execution time 162

Expand collect completely 162, 190, 197
Expansion

Complex exponential 210
Parenthesis 207, 208

Trigonometric 209
Exponential distribution 300, 309

Exponential function 26, 480,487, 510-512

Exponential integral 45, 46

Extract 232, 258, 259, 263, 267, 330
Extreme value distribution 301, 309

F

F distribution 299, 303, 308

F statistic 279, 286-292, 174
Factor number into primes 186

Factorial function 49, 306
Fast Fourier transform (see FFT)

Fermi-Dirac function 112

FFT 369-371, 374, 376, 388-390, 563-565

Fibonacci numbers 187
Filter design 391-438
Find

Maximum 373
Minimum 373

Peak 373

Valley 373
FIR filters 434-437, 566-571

Fisher z transform 281

Flags 13

Fourier transform

Continuous 547-551

Discrete 370, 390, 563, 565

Frequency

Prewarping 412

Transformation of filters 395, 412-415

Fresnel integrals 59
Frobenius matrix 192, 200

Functions 475

G

y 47

Gain 395, 399, 416, 417, 422
Gamma distribution 302, 310

Gamma function 51
Gaussian hypergeometric function 129-134

GCD 186
Gegenbauer functions 148

Gegenbauer polynomials 157
Gegenbauer ultraspherical 157

General Hamming window 431
Generalized hypergeometric functions 124

Generalized Riemann zeta function 56, 112, 190
Get for symbolic arrays 333

Get row or column 266
Givens rotations 223, 249

Golden mean numbers 187
Gradient 213, 335, 483

Greatest common divisor 186
Group delay 400-402

H

Haar wavelet matrix 569

Hamming window 431
Hankel functions

Complex order 118, 119
Integer order 64, 71, 72

Spherical 73, 75
Hanning window 431

Heaviside expansion formula 344
Hermite polynomials 125, 158, 557
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Hermitian

Matrix 219, 469
Matrix test 232
Toeplitz 375, 386, 387, 442-444, 571

Transpose 232
Hertz convention 393, 402
Hessenberg 221, 223, 224, 241, 245, 247

Heuman’s lambda function 88
Highpass 413, 416, 417, 434, 569

Hilbert matrix 235
Hilbert transform 551, 552

Hilbert transformer 417
Histogram 282

Householder reflections 223, 238-241, 247, 248,

251
Hyperbolic functions 28-32, 41, 42, 481,

514-516

Hypergeometric distribution 304
Hypergeometric functions 113-116, 124,

129-134, 138

I

i 25

I = set of integers 25
Identities

Algebraic 207-211

Bessel functions 64-68

Gamma function 51, 55, 56

Hyperbolic 31, 32

Psi function 51, 56
Series 537-544

Trigonometric 30, 31

Identity matrix 233

IIR filters 412-421
Imaginary part of symbolic matrices 365

Implicit shifting 242-245
Impulse response 382-385, 397-401, 418-420,

434, 436, 447

Incomplete
Beta function 53, 54, 133
Gamma function 52, 54, 116

Elliptic integrals 81-85

Index
Amplitude 372
Exponential 461

Phase 373
Summation 485

Initial conditions 341, 342, 351-355, 382-384

Initial value theorem 419, 553, 562

Inner product 218

Insert
Row and column 260

Value 452
Vector 453

Insertion loss 395
Integrable 487, 545, 546

Integration
Complex analytic functions 48, 61, 58

Complex residues 35, 38, 62, 345-347
Definitions 35, 36, 486, 487

Numerical 372
Polynomials 203

Symbolic arrays 331

Vector line 35, 366

Vector volume 366
Interference cancellation 388-390, 444, 568

Interleave 264, 265, 294
Interpolation

Data rate 380, 400, 401

Data vector 385

Lagrange 14
Plotting 17

Inverse Laplace transform 344-349, 351-355,

360-364, 420, 552-558

Inverse of matrices 235, 356, 361-363

Irrational integrals 517-536

J

Jacobi
Elliptic functions 91-95

Eta function 99, 104

Polynomial 157

Rotation 223, 249
Theta function 99, 103

Zeta function 85-87
Jonquiere function 112
Jordan canonical form 253, 254, 359, 396, 423-427

K

Kaiser window 432

Keep 5
Kelvin functions 67, 68, 70, 119
Keyboard 13, 565, 567-569
Kolmogorov—Smirnov distribution 280, 281, 305, 312

Kronecker delta function 39

Kronecker product 570
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Kruskal-Wallis test 273, 472

Kummer’s hypergeometric function 113
Kurtosis 275

L

Labels for plots 19-21, 24
Lagrange interpolation 14

Laguerre polynomial 158
Laguerre’s method 192, 201, 202, 253, 343, 411
Landen’s transformation 92
Laplace

Distribution 301, 310
Root sort 183

Transform 344-349, 351-355, 360-364,

418-420, 552-558

Laplace’s equation 147
Laplacian 336, 484

Laurent expansion 538
Laurent matrix 567, 571

LCM 186
LDLTD 221, 236

Least common multiple 186
Least squares 167-180, 226-231, 375, 439-441, 444

Lebesgue 44, 487, 545, 546
Legendre

Associated functions 135-146
Functions 135, 136, 140

Polynomials 135, 136, 138-140, 157
Lerch’s transcendent 56, 112

Level errors 559
Leverrier’s theorem 361

L’Hospital’s rule 478

Limit 33, 44, 353, 476-478, 485-487, 545

Limit in the mean 545
Line integrals 35, 366
Linear

Convolution with FFTs 388, 568
Convolution with transmultiplexers 389, 390
Correlation tests 281, 282, 285, 472
Prediction 386

Regression 167-174

Solutions 226-231
Loading intensity factor 318, 321
Log-log plots 21, 403

Logarithmic function 27, 35, 36, 480, 487, 512-514
Logarithmic integral 45
Long division of polynomials 204, 437

Lowpass 405-408, 412-414, 416, 417, 434, 569

LU decomposition 221, 236, 237, 276
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M

1 (mean) 274

MA 386

Maclaurin series 16, 163, 166, 168, 197, 213, 355, 538
Magnitude 37

Mann-Whitney test 273, 472
Marcum distribution functions 306, 312

Marcum Q function 181
Matrices

Calculus 331
Characteristic polynomial 220, 223, 252

Determinant 218, 334

DCT 570

DFT 565-567, 570
Haar 569-571

Hadamard 570
Hermitian 219, 232, 469

Hermitian toeplitz 269
Inverse 235, 356

Minor 220, 247, 335
Norm 224, 235, 340, 468

Normal 220
Orthogonal 219, 232

Paraunitary 567, 570, 571
Polyphase 567, 571

Random 468, 469

Rank 218, 224, 238

Symmetric 219, 232, 469
Toeplitz 375, 386, 387, 442-444
Trace 220, 247, 340

Transpose 219

Unitary 220, 232
Walsh 570

Wavelet 569-571

Maximal decimation 565
Maximum 373, 457, 465

Maximum entropy method 386
Mean of distribution 274
Median of distribution 275

Memory management 16

Menu maps 579-586

Menus 3-10, 569, 579-586
Midranking 273, 285, 295, 472

Minimum 373, 457, 465
Minor 220, 247, 335, 360

MOD 459, 468
Mode of distribution 276

Modeling
Least squares 167-180
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Queueing 315, 317, 319

Modified
Bessel function 66, 67, 70, 74-76

Struve function 149
Modular angle 77, 406

Modulus 77
Moore-Penrose pseudoinverse 219, 220, 226

Move
Row and column 262

Value 452
Moving average 284, 381
Multidimensional sampling lattices 559
Multiple linear regression 167-180

Multiply factors 186
Multivariable state space system 422, 424

Multivariate calculus 481

N

N = set of natural numbers 25

Nearest—neighbor classification 571
Negation of symbolic matrices 329

Negative binomial distribution 304, 311

Neighborhood 476

Neumann function 64
Neville’s theta function 87, 100-102, 106, 107

Noise 460
Nome q 78, 97, 98, 100, 107

Non-central
Chi-square distribution 302, 303

F distribution 303
T distribution 303

Nonparametric tests 273, 295, 471, 472

Nonsingular matrix 219, 221, 227, 236, 335

Norm of matrix 224, 235, 340, 468
Normal distribution 57, 275, 299, 300, 308,

313, 314

Normal matrix 220, 221

Nyquist sampling theorem 559

oO

Oblate spheroidal coordinates 147, 339
Observability 423-427

One vector 454
Organization 8

Orthogonal curvilinear coordinates 337-339

Orthogonal

Matrix 219

Matrix test 232

Polynomials 155-158, 439, 570, 571
Overdetermined 219, 220, 226-229

Overlay for keyboard 573
Overlay plots 23, 400

P

Pade approximation 166
Parabolic cylinder functions 125-127

Parabolic cylindrical coordinates 338

Parameter m 77, 78

Parenthesis expansion 206-208
Partial derivative 481-484

Partial fraction expansion 344

Parzen window 432

Pascal distribution 304

Peak search 373
Pearson’s incomplete gamma function 52
Perfect reconstruction filter banks 565-568, 570, 571

Periodic 29, 30, 77, 80, 551, 559

Periodograms 386

Permutation matrix 234, 236
Permutations 181, 306

Phase 377, 427
Phase linear 434, 436-438

Phase unwrapping 381
Pivoting 233, 234, 236-239

Plotting
Complex 19

Derivatives 24
Functions 20, 21

Integrals 24
Labels 20, 21, 24

Logarithmic 21
Overlay 22

Vector 19
Pochhammer’s symbol 55, 76, 113, 130, 160,

181, 192

Poisson
Distribution 305, 311, 316, 318, 319

Equation 147
Poisson’s sum formula 551
Pole and zero plots 403

Polygamma function 50, 53, 56

Polylogarithm function 112
Polynomial approximations 439-441, 163-165
Polynomial function 475

Polynomial list conventions 193
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Polynomial operations

Arithmetic 194-196, 204, 205

Conventions 193
Deflation 202
Derivatives 202, 203
Evaluation 162, 165, 167, 196, 203, 204

Integrals 203

Polynomials
Binomial 571

Bernoulli 187
Chebyshev 157, 438, 439

Chebyshev discrete 439, 570
Euler 188
Gegenbauer ultraspherical 157
Hermite 158

Hermite discrete 571
Jacobi 157

Laguerre 158
Legendre 138, 157

Polyphase filters 389, 390, 566-568
Positive definite matrix test 250, 251

Power method for eigen problems 224, 253,
254, 387

Power spectrum 377
Prime number search 186

Principal component (factor) analysis 571
Printing plots 18

Probability distributions 297-322
Programming 577, 578

Prolate spherical coordinates 339
Psi function 51

Put for symbolic arrays 333

Q

QMF (quadrature mirror filter) 567

QR decomposition 238, 239

Quarter periods of elliptic functions 81, 84

Queueing theory and distributions 315-322

R

R = set of real numbers 25
Radian mode 13, 15

Radon-Nikodym derivative demodulation 568
Random

Matrices 468-470
Vectors 377, 385, 460

Range 475

Rank of a matrix 218, 230, 231, 238, 239

Ratio of gamma functions 55
Rational approximation 166

Rational function 489
Rayleigh distribution 305, 312

Rayleigh quotient 387
Real part of symbolic matrices 365

Rectangular coordinates 338

Reflect 379

Reflection coefficient 409, 446
Regression (see Linear regression)

Remez exchange algorithm 438
Replace

Diagonal 267
Rows and columns 259, 263

Submatrix 260, 263
Vectors 453

Reserved variables 13
Residue integration 35, 38, 58, 62, 345-347

Resolvent matrix 360-364
Reverse array 266, 452

Reversion of series 450
Rician distribution 305

Riemann integration 486, 487

Riemann-Lebesgue lemma 545, 546

Riemann zeta function 112, 188, 190

Ripple 395, 406, 407, 409, 413, 446

Roll a matrix 255
Root solving 200-202

Root vector conventions 395
Rotate a vector 379

Round for symbolic matrices 355
Row norm 235, 468
Row operations 233, 257, 267, 330, 466, 467

Row vector 218, 324, 327

Runge-Kutta differential solutions 341, 342

S

Y (summation) 485

o (standard deviation) 274
Sample rate conversion 400

Sampling 559
SC = set of symbolic column vectors 327

Scaling vector 569
Schur 220, 221, 224, 242-247, 359, 424
Search (see Find)
Sectoral harmonics 147
Semi-logarithmic plots 21
Sequence of errors 375, 443
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Sequences 475, 476

Series
Composition 450

Inversion 204
Maclaurin (see Maclaurin series)

Power of 450
Ratio 204
Reversion 450
Taylor (see Taylor series)

Sign 184, 549
Simulation 369

Simultaneous 335, 354
Sinc function 46, 549, 550, 552

Sine integral 46, 47
Singular value decomposition 170, 171, 177,

179, 180, 219-221, 224, 225, 227-230,

251, 252

Singular vectors 220
Skewness 275

SM = set of symbolic matrices 327
Smoothing 284
Solving for zeros of library functions 74, 191

Sorting

Laplace transform 183

Matrix 257, 258

Unique 182
Vector 451

With index 451
z transform 183

Spearman rank correlation test 273, 285, 472

Spectral estimation 386

Spectrum 377, 427, 444

Speed tips 16

Spence’s integral 112
Spherical Bessel functions 73-75

Spherical harmonics 147
Spherical polar coordinates 338

Splitting 265, 293, 294, 453
Squarewave waveform 371

SR = set of symbolic row vectors 327
Stack tutorial 576-578

Standard deviation 274
State space

Continuous 356-364, 393, 421-427
Conventions 396, 447

Discrete 393, 421-427, 447
STFT 386, 572

Stieltjes integration 487, 550
Stirling numbers 188, 189, 441, 442

Struve function 149, 154

Student T distribution 300, 303, 308

Subset 130, 176, 247, 256, 258, 259, 325, 450, 453

Subspace decomposition 386, 387, 571

Summation notation 485
Surface harmonics 147
SV = set of symbolic vectors 327

Swap
Row and column 261, 262
Value 452

Symbolic array
Algebra 328, 329

Conjugate 365
Conventions 324, 327

Cross-product 334
Determinant 334

Differentiation 331, 335-339
Element operations 332-334, 340, 365

HP array conversion 332, 333
Imaginary part 365

Integration 331
Inverse 356, 361-363

Minor 335
Real part 365

Scalar algebra 331, 332

Size 365

Stack commands 329, 330, 333
Test if real 365

Transpose 329
Symmetric matrix 219, 232, 469

Synthesis filters 565-568

T

T distribution (see Student T)

T test 167-179, 277, 278, 285
Taylor series 16, 161, 168, 194, 357-359, 537, 538

Tensor product 570
Tesseral harmonics 147

Test
Diagonal 270

Eigenvalue 269
Eigenvector 270

Hermitian 232
If integer 128
If negative integer 128
If not positive 128
If real (symbolic array) 365
Orthogonal 232
Positive definite 250, 251
State transition matrix 364
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Symmetric 232

Unitary 232
TFR 388, 572

Theta functions 97-112
Thomson functions (see Kelvin functions)

Time series 161, 386
Timing jitter 559

TIMIT 162
Toeplitz matrix 224, 269, 369-371, 375, 386,

387, 442

Toroidal coordinates 147

Trace 220, 247, 340, 361
Track-hold amplifier errors 559

Transcendental functions 26
Transfer function and state space 421-423

Transition matrix 356, 364, 447
Transmultiplexer 389

Transpose 219, 232, 329
Triangular 221-223, 236, 238, 243, 371, 380

Tricomi’s hypergeometric function 114

Tridiagonal decomposition 221, 241

Trigamma function 53
Trigonometric functions 25-40

Truncate vector 378
Twiddles for FFT 374

U

Ultraspherical polynomials 157
Underdetermined 219, 220, 226-229

Uniform distribution 301, 309
Unique 182

Unitary matrix 171, 220-224, 230-232,

238-246, 248, 251, 253, 359
Unit impulse vector 385, 454
Unwrapping 381, 458, 459
Upper Hessenberg 221, 223, 224, 241, 243,

245, 247
User Support 473

Vv

Valley search 373
Variance 275, 277, 286, 288

Vector line integrals 366
Vector volume integrals 366

Voltage-standing—wave ratio 409, 446

Ww

Warranty 473
Wavelets and transforms 386, 569-572

Wavelet vector 569
Weber-Hermite functions 125

Weibull distribution 300, 309
Weierstrass approximation theorem 537

Weierstrass elliptic functions 77, 97, 98
Weighted least squares 180

Welch window 432
Where command ( | ) 197, 333

Whittaker’s functions 119

Wiener-Levinson 370, 375, 442, 444

Wilcoxon signed rank test 273, 472

Window

Bartlett 431
Blackman 431

Gaussian 431
General Hamming 431

Hamming 431
Hanning 431

Kaiser 432
Parzen 432
Rectangular 433
Welch 432

Wronskian determinant 350

Y

Yule-Walker 386

Z

z transform 183, 382-384, 394, 403, 415-419, 436,

447, 560-563

Zero and pole plots 403

Zero-delete (list) 206, 454

Zero-fill 377, 378, 400, 454
Zero vector 462

Zeta function (Jacobi) 85-87

Zeta function (Riemann) 188

Zolotarev rational function 406

Zonal harmonics 147
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