
HP 48SX MATH LIBRARY
GENERAL APPLICATION

PROGRAMS

John F. Holland, Ph.D.





HP 48SX MATH LIBRARY
GENERAL APPLICATION

PROGRAMS

John F. Holland, Ph.D.

Applications Software for the

HP 48SX Engineering Mathematics Library

An Introduction to Symbolic and Complex
Computation with Applications

Published by Academic Press @ 1 (800) 321-5068



Copyright © John F. Holland 1992.
All rights reserved.

No part of this software and manual may be reproduced, transmitted,
or stored in a retrieval system in any form or by any process, electronic,
mechanical, photocopying or means yet to be invented, without specific
prior written permission of the author.

THE SOFTWARE, EXAMPLES, AND THIS MANUAL ARE
PROVIDED "AS IS"ANDARE SUBJECTTO CHANGE WITHOUT
NOTICE. JOHN HOLLAND MAKES NO WARRANTY OF ANY
KIND WITH REGARD TO THIS SOFTWARE OR MANUAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
ANY PURPOSE.

THE SOFTWARE AND MANUAL PRESENTALGORITHMS AND
PROGRAMS FOR SOPHISTICATED MATHEMATICS AND
ENGINEERING APPLICATIONS WHICH REQUIRE SUITABLE
EXPERTISE TO OBTAIN MEANINGFUL AND ACCURATE
RESULTS WHEN APPLIED TO REAL WORLD PROBLEMS.
ACCORDINGLY,JOHNHOLLAND SHALLNOTBE LIABLE FOR
ANYERROR OR FOR MONETARYDAMAGES OFANYKIND IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR
USE OF THIS SOFTWARE, THE EXAMPLES, OR THE MANUAL.
SEE LIMITEDWARRANTYAND DISCLAIMER IN APPENDIXA.

The owner of this book is granted a one-user, non-commercial license
to use the enclosed software in his or her applications. However, the
distribution or redistribution of copies of this software to others, by any
means and in any form, is strictly prohibited. Those purchasing this
software on disk, can make copies for backup and downloading only.



TABLE OF CONTENTS

Overview and Menu Maps 1
Getting Started » Using the ROM Card Programs ¢ Editing the
Applications Programs ¢ Running the Programs ¢ Purging the
Directory ¢ Organization of the Directories ¢ Application
Program Menu Maps * Example — Large Integer Arithmetic

Manual Program Summaries 9
Introduction * MAN1 Directory * MAN2 Directory « LGDR
Directory * MAN3 Directory « MAN4 and MANS5 Directories ¢
MANG6 and MANT7 Directories

Symbolic Function Programs 15
Introduction ¢ Theory of Operation ¢ Finding Functions of
Interest » Example Session

Lerch’s Transcendent and Related Functions 17

Introduction ¢ Lerch’s Transcendent ¢ Polylogarithm Function

Probability and Characteristic Functions 19
Introduction ¢ Probability Functions e Expectations and
Moments ¢ Beta Distribution ¢ Binomial Distribution e
Bivariate Normal Distribution ¢ Bose-Einstein Distribution e
Cauchy Distribution ¢ Chi-square Distribution ¢ Dirac Delta
Distribution ¢ Exponential Distribution ¢ Extreme Value
Distribution ¢ F Distribution ¢ Fermi-Dirac Distribution e
Gamma Distribution ¢ Geometric Distribution e
Hypergeometric Distribution ¢ Kolmogorov-Smirnov
Distribution  Laplace Distribution ¢ Log-normal Distribution
e Marcum P, Distribution ¢ Marcum I'y Distribution e
Maxwell Distribution ¢ Negative Binomial Distribution e
Normal Distribution (univariate) * Non-central F Distribution
» Non-central T Distribution « Non-central ¥*> Distribution e
Pareto Distribution ¢ Poisson Distribution ¢ Rayleigh
Distribution ¢ Rician Distribution * Sech-squared Distribution
e T Distribution ¢ Uniform Distribution ¢ Wald Distribution
e Weibull Distribution

11l



Advanced Probability Distributions 31
Introduction  Kolmogorov-Smirnov One-Sample Statistic e
Non-central Beta Distribution  Joint Distributions of Real
Random Variables ¢ Joint Distributions of Complex Random
Variables ¢ Evaluation Techniques  Joint First and Second
Order Complex Statistics » Kolmogorov—Smirnov Two-Sample
Statistic » Nonlinear Control Theory Distributions

Advanced Graphics and Other Techniques 39
Introduction ¢ Advanced MATHLIB Plotting ¢ Rounding
Algebraic Equations ¢ Advanced Symbolic Derivative
Techniques » Simulating Difficult Computations * Continued
Fraction Expansions ¢ Polynomial Greatest Common Divisor
Shifting the Center of Computation « Symbolic Tricks

Weierstrass Elliptic Functions 49
Introduction e Reduction of Elliptic Integrals  Legendre
Elliptic Integrals o Weierstrass Elliptic Integrals e The
Weierstrass Functions « Example Computations

Wavelets and Filter Banks 53
Introduction ¢ Quadrature Mirror Filters ¢ Paraunitary
Conditions » Discrete Hermite Transform  Example Wavelet
Matrices » Daubechies’ D, and Dy Coefficients « Daubechies’
Regularity Condition « Computing Daubechies’ Scaling Vector
D,, » Computing the Scaling and Wavelet Functions « Wavelet
Orthogonality Conditions ¢ Linear Conditions ¢ Computing
Individual Values ¢ Perfect Reconstruction Filter Banks e
Orthogonal or Paraunitary Filter Banks ¢ Biorthogonal Perfect
Reconstruction Filter Banks ¢ Properties of FIR Solutions e
Pollen Product and the Parameterization of Compactly
Supported Wavelets » Special Symbolic Programs

v



10

11

12

Rank M Wavelet Matrices and Wavelets 81
Introduction ¢ Rank M Generalizations ¢ Daubechies’
Regularity Condition « Computing Rank M Scaling Vectors e
Algebraic Structure of Wavelet Matrices « Computing Rank M
Wavelet Vectors ¢ Computing Rank M Wavelets « Rank M
Generalized Wavelet Transforms e Equivalent Notions of
Regularity « Rank M Biorthogonal Case ¢ Filter Banks as
Generalized Transforms « Perfect Reconstruction Filter Banks
» Cosine Modulated Wavelet Matrices * Comments on the
Linear Constraint « Unitary FIR Filter Banks With Symmetry
e Other Filter Bank Design Techniques » Time-Varying Filter
Banks and Wavelets » Wavelet Packets

Wavelets and Approximations 133
Introduction ¢ Short Time Fourier Transform e Gabor
Transform ¢ Uncertainty Principle « Comments on Windows e
Discrete STFT ¢ Discrete Time STFT ¢ Continuous Wavelet

Transform e Discrete Wavelet Transform ¢ Discrete Time

Wavelet Transform e Computation of Wavelet Moments e
Daubechies’ Wavelet Computation Method « Computation ofthe
Wavelet Transform ¢ Multiresolution and Wavelet Packets

Other Included Software 149
Introduction « Fast Machine Language FFT and Convolver e
Linear Programming « 3D Plots « Calendar Program

Warranty and User Support 153

If Your Software Came on a Disk 155

Constants and Units 156

Index 159



PREFACE

This applications package, like MATHLIB itself, is motivated by a
desire to make serious symbolic and complex computation both
understandable and affordable. It contains about 370 examples from
the MATHLIB manual which show how to apply MATHLIB to your
specific applications without searching for typing errors. The moments
and evaluation of over 40 probability distributions are also included.

In addition, it contains over 200 symbolic function definitions with
defined derivatives. Thirteen additional probability distributions are
included as well as 17 Weierstrass elliptic function programs. The
large number of Legendre function special cases provide starting
functions for the various recurrence formulas. They also demonstrate
how to program these functions so as to stay on the correct branch as
discussed on pages 37 and 140 of the MATHLIB manual.

As promised, this manual contains a detailed tutorial on the subject of
wavelets and related engineering topics including the M-band case.
Wavelets seem to be the hottest research topic of interest to the
mathematics and engineering communities today. Over 70 related
programs are included. The wavelet material is rich with symbolic and
numerical algorithms and techniques. Many thanks to Howard
Resnikoff and Peter Heller at Aware, Inc. and Ramesh Gopinath at Rice

University for many fruitful discussions on this subject.

A number of symbolic and computational techniques are also covered.
These include advanced MATHLIB plotting, continued fraction
expansions, polynomial greatest common divisor, rounding algebraic
equations, advanced symbolic derivative techniques, simulating difficult
computations, large integer arithmetic, and various symbolic tricks.

A very fast machine language FFT became available this summer and
it is included in this package.

John F. Holland

November, 1992

vi
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OVERVIEW AND
MENU MAPS

INTRODUCTION

The enclosed ROM card contains over 700 MATHLIB application,
example, test, and symbolic function programs. The symbolic functions
have defined derivatives. This software is broken up into 11 directories
so that any one of them may be transferred to your VAR directory for
editing and incorporation in your application programs without
requiring an additional memory RAM card to be purchased.

By distributing this software on ROM card, it saves you the expense of
buying a 128 K RAM card and the PC interface kit. You can load the
directory containing the programs of interest into the approximately 30
K of RAM which comes with your calculator and purge the directory
when you finish to make room for other programs. Then when you
need those programs at a later time, you can again load them from the
ROM card. The MANTYdirectory is the largest one and is under 21 K
bytes in size. If your software came on disk, see Appendix B.

GETTING STARTED

See the HP 48SX owner’s manual. The HP 48SX has two ports for
installing plug-in cards. This application card may be plugged into
either port. Be sure that the calculator is turned OFF when inserting
or removing the card. After the card is installed, turn the calculator
ON and push LIBRARY followed by either PORT1 or PORT2 depending
upon which port you plugged the ROM into. Now 11 directory names
plus one program name are displayed on two menu pages. Program
MVER displays the version number and the copyright notice.

1



2 OVERVIEW AND MENU MAPS CH1

USING THE ROM CARD PROGRAMS

In order to use the programs on the ROM card, they must first be
transferred to your VAR directory. Push the VAR key and enter the
directory in which you wish to store the ROM program or directory.
Then push LIBRARY, PORT1 or PORT2, and NXT if required. Now
the object you wish to transfer is displayed above the white keys.

Push the white key below the directory (program) you wish to transfer
(MAN]1for example). Now that directory has been recalled to the stack
as an HP 48 object. To store it in the current VAR directory, you must
give it a name. Push the ' key on the HP 48 keyboard and type the
name MAN1 for example. Push ENTER and the object will appear on
Level 2 of the stack while the name '"MAN1' appears on Level 1 of the
stack. Push the STO key and the object will be stored in the VAR
directory as MAN1. Now push the VAR key and you will see MAN1
displayed in thefirst page of the current directory. You may now treat
MAN1 as you would any other HP 48 directory (program).

EDITING THE APPLICATIONS PROGRAMS

If you look at the programs without the MATHLIB library attached,
calls to the library appear as: XLIB 857 XXX where XXX is a
number. The HP 48 editor will not let you edit programs which contain
calls to the MATHLIB library unless the library is attached. However,
once the library is attached, then the XLIB 857 XXX is replaced by
the more familiar command name and you now can edit the programs.

When the MATHLIB ROM is installed, it automatically attaches to the
HOMEdirectory. Commands to manually attach or detach MATHLIB
are on the second page of the HP 48 MEMORY menu.

RUNNING THE PROGRAMS

The MATHLIB library must be attached to run the programs which use
the library. Once MATHLIB is attached, you may run these application
programs as you would any other HP 48 programs.

If only one program is of interest, copy the program to another directory
and then purge the MATHLIB application directory, so you have more
memory available for running your applications.
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PURGING THE DIRECTORY

When you have finished with a directory, you may purge it with the
PGDIR command on the third page of the HP 48 MEMORY menu.

ORGANIZATION OF THE DIRECTORIES

The below table summarizes the 11 directories on the ROM card. The
first eight directories follow the MATHLIB manual and include
examples from the manual. The three symbolic function and defined
derivative directories SD1, SD2, and SD3 follow.

 

 
 

 

 

 

 

 

 

 

  
 

 

 

 

 

DIRECTORY OVERVIEW

DIRECTORY SUBJECT

MANUAL RELATED DIRECTORIES

MAN1 CHAPTERS 1 - 8 PLUS INTAG AND WEF

MAN2 CHAPTERS 9 - 14

LGDR CHAPTER15

MAN3 CHAPTERS 16 - 19

MAN4 CHAPTERS 20 - 21

MANS5 CHAPTERS 22 - 25

MAN6 CHAPTERS 26 - 28

MAN7 CHAPTER 29 - APPENDIX H

SYMBOLIC FUNCTION DIRECTORIES

SD1 ALL BUT ELLIPTIC FUNCTIONS

SD2 ELLIPTIC RELATED FUNCTIONS

SD3 ALTERNATE BESSEL FUNCTIONS       
APPLICATION PROGRAM MENU MAPS

Menu maps are given on the next four pages for the programs on the
MATHLIB GENERAL APPLICATIONS ROM card.
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rMENU I SUB | KEY 1 ] KEY 2 KEY 3 KEY 4 KEY & KEY 6 ]

MATHLIB MANT MAN2 LGDR MAN3 MAN4 MAN5
APPLICATIONS 1 MANG6 MAN7 SD1 SD2 SD3 MVER
 

 

 

 

 

 

 

 

MAN1 PLINT PLOT PLTD INTAG K& PROD1
PROD2 COMBF ERROR H1NX H2NX WEF

MAN1 PLOT PLTT1 PLTT2 PLTT3 PLTT4

MAN1 PLTD DEMY DEMH DEMD DEMI DEMS

MAN 1 INTAG ADDS SUBS MPYS NEGS SoP P5S
ADDP PLOTS RNDS TYPEA DERV1 DERV2

MAN1 ERROR AINTG CIF DAWS

MAN1 WEF POZG PPZG 202G 602G GoE E-G
w-sG w—oE Gow E-w G-KP E—-KP
w—KP G-A E-A o—Q nOF®
 

 

 

 

 

 

 

 
 

MAN2 ELLIPI JACOB THETA CHYPR PCLDR1 GHYP

MAN2 ELLIPI ELLIPIY KOKP1 ELLIPI2 ELLIPI3 ELLIPK ELLIPI5
ELLIPI6 ELLIPI7 ELLIPIB ZXKP ZXKi ZTBL
ZUKP1 AXKP1 AZKP1 UZKP1

MAN2 JACOB JACOB1 JACOB2 UZKP1 KOKP1

MAN2 THETA POLYL FX THETA1 THETA2 THETA3 THETA4
THETAS THETA6 THETA? THETAS 012K 627K
032K MsiKrJ TIUK; T2UK; T3UKj T4UKj
PZS Z

MAN2 CHYPR JVozZi YVOZ1 IVOZ1 KVOZ1 AABZ Flnp
Glnp FOF1 F1FO

MAN2 GHYP INCBH1 GHYP1
 

 

 

 

 

 

 

 

 

 

X.5X       
LGDR PSSV WSSV PuvXi QuvXi PQUP1 PQUP2

PQUP3 PQUP4 PQUPS PuvZi QuvzZi PMMX

PMMZ PMNX PMNZ STRUVE TEST

LGDR TEST PTST Pl Ql PIX QIx X5

X.5X

LGDR TEST P11Z P12Z P13Z P22z P23z P33z

PI

LGDR TEST Q10Z Q20Z Q30z Q11Z Q21Z Q312

Ql Qi2z Q227 Q32z Q13z Q23z Q33z

LGDR TEST P11Z P12z P13z P22z P23z P33z

PIX

LGDR TEST Q10z Q20Z Q302 Q112 Q21Z Q31Z

QIX Q12z Q227 Q32Z Q132 Q23z Q33z

LGDR TEST PP.5 PM.5 QP.5 QM5 PvvZ

X5

LGDR TEST PP.5 PM.5 QP.5 QM5 PvvZ    
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MENU suB KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6

MAN3 POLY MISC NUMB ALGB

MAN3 POLY PafX1 coxi TOFX1 UOFX1 POFX1

MAN3 MISC CSERS!1 TALR1A FEVAL1 PMAT1 PMAT2 PEQN1
RATAP1 LREG? LREG2 LREG3 LSSOV1 CMAT
Lssov2 UNIQE1 SORT1

MAN3 NuMmB GCD!1 FACTR1 PRIME1 FIBON1 BR1 ER1

MAN3 ALGB TALR1A PADD1 PSUB1 PMPY1 PDVD1 FEVAL1
EVLEt SUME PROOT1 AROOT1 LROOT1 DEFLT1
PDERV1 RDERV1 PINTG1 PEQN1 PLDVD1 IDEN
DERD CFE ECFE PGCD PGCDI

MAN3 ALGB MTHS PARE PARED POLYE TRIGE CEXPE
IDEN CNJE SREIM CREIM TOEXP EX1 EX2

EX3 EX4 EXS5 EX6 EX7

MAN3 ALGB GAMMAS PSIS DNPSIS ders| derGAMMAS derPSIS
DERD DEX1 DEX2 DEX3
 

 

 

 

 

MAN4 LINAG MATR MKSQ

MAN4 LINAG LSOV1 LSOV2 LSOV3 LSOV4 LSOV5 SVD1
SVD2 BeM1 ORDER1 GLUD1 LDLTD1 HRQR1
HBDD1 HTRDD1 UHESD1 SCRSD1 SCHRD1 EIGNS1
EIGEN1 CHOLD? CPOLY1 SVDE EVSOV

MAN4 MATR RROLL CROLL —ROW1 -COL1 RSORT1 RSRTI
CSORT1 CSRTN ERWS1 ECOLS1 RRWS1 RCOLS1
EPSM1 RPSM!1 IROW1 ICoL1 DROW1 DCOL1
SROW1 SCOoL1 MROW1 MCOL1 CROW1 ccoLt
SVTR1 SVTR2 ESBM1 RSBM!1 M—RL1 M«RL1
M-CL1 MCL1 RNLV1 CNLV1 RSPLT1 CSPLT1

B-oM1 B—M1 B«M2 B«M3 DIAG1 COMP1

DIAG?
 

 

 

 

 

 

MANS STAT PROB LTBN SYMB

MANS STAT FZT1 FZT2 FISHZ LCNTx CTA2D1 SRCTTH

AVAR1A AVAR1B AVAR2A ACOVR1 RANK MWT

MWT1 WILCX WILCH KWT KWT1 SRHO

SRHO1 KS1S8 KS1P KS2s FOFC FOFCS

MANS PROB LOGN MAXW SECHS FRMID BOSEE GEOM

WALD PRETO

MANS SYMB S2F1 SYMB1 SYMB2 SYMB3 SYMB4 SYMBS

SGRD1 SDIV1 SCURL1 DESOL1 DESOL2 DESOL3

IXFRM1 IXFRM2 IXFRM3 IXFRM4 IXFRMS IXFRM6

IXFRM7 A EATN EATE EAT RESOV

SMI SMI2 SMI3 SMi4 EASOV A2

TEA VLINI VVOLI
 

 

 

      H3ON     MAN6 PROC FILTR WIND DFT IDFT

MAN6 PROC DER2A LINT1 FFT1 WL1AP WL2AP SQWV1
AWAV1 ICNVN TIRRC ICNVS TIRRD DATA
TINV MINA MAXA DM FFTLC FILTR
MTL:‘X DMUX SPLIT TSTW TMIC3 IT™
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MENU suB KEY 1 KEY 2 KEY 3 KEY 4 KEY 5 KEY 6

MANSG FILTR FTRV2A FTRVZ28 IDEM1 IDEM2 IDEM3 WVT2A
WVT2B FTRVL1 POLEP1 POLEP2 BPOLE1 CPOLE1
ESOLV1 BESF L-LP1 L-LP2 LoHP1 L-HP2
L—BP1 L-BP2 L-BS1 L-BS2 BILNT1 BILNT2
BILNT3 BILNT4 DHBRT1 GAIN1A GAIN1B IXFRM1
IXFRM2 IXFRM3 IXFRM4 RATAPt S—oZPt JORDAN
LSS1 LSS2

MANS WIND PLTW FIR IXFRM1 PLDVD?1 FMAT1 DOCAP1
E3 E6 WF1 WF2 TTOFXL TESTF

ZASOV SMS IXFRMD HNS KAISER
 

 

 

FFTML
 

 

 

 

 

 

 

 

MAN7 VECTR APPH WAVE

MAN7 VECTR PTOM REVS CFG

MAN7 APPH PKEY TMPM CST™ KSIN EXMP PMENU

KEYP KEYO KEYM

MAN?7 WAVE FFT2D HAAR SOLVE SYMB QMFL QMF

SINDX SDEC SINTP SCMB LNLV LDLV

MAN7 WAVE FFT2 IFFT2 WMOM SOovJ DEMO DWT2

FFT2D IDWT2 IDWT3 CLEN DWT2.1 IDWT2.1

MAN7 WAVE DFTM CHAAR COSM CBYM HDM KPRD

HAAR DHPM DHP WD4 WDé R2G4 R4G4

R4G8 TROW TESTV SWD4 SWDé TRWS

MAN7 WAVE D2G QOFZ POFY MOZ MCOZ CLPM

SOLVE DMG COsSM CWM SOVN VALUE CRN

CLPCF LPFIL WSOV SSov SMAT SSUM

POFZ POMY MOMZ COPT QOZ1 Y-ZT

MAN?7 WAVE LAURT PTRN PPRD1 PPRD2 ZINV ZFRM

SYMB CMPL CMPG CLPC EOFM CGC ROFM

SPTLR BEXCO BMLT P-S SHP Z-0

MAN?7 FFTML FFT™M IFFTM ABSV ANGL CONVM
 

 

 

 

 

 

 

         
SD1 TRIG HYP EXPI GAMA ERROR BESLX

SBESL HGM LGDR GAMMAS PSIS DNPSIS

POCHS JVOZS YVOZS H1VZS HavZs IVOzZS

KVOZS deram! derGAMMAS derPSIS derDNPSIS derPOCHS

derJVOZS derYVOZS derH1VZS derH2VZS derlVOZS derKVOZS

SD1 TRIG CSCs ACSCS SECS ASECS COTS ACOTS

derCSCS derACSCS derSECS derASECS derCOTS derACOTS

SD1 HYP CSCHS ACSCHS SECHS ASECHS COTHS ACOTHS

derCSCHS |derACSCHS derSECHS |derASECHS derCOTHS derACOTHS

SD1 EXPI ENOZS SINTS CINTS SINCS SINC2S SHIZS

CHIZS derENOZS derSINTS derCINTS derSINCS derSINC2S

derSHIZS derCHIZS

SD1 GAMA BETAS INCGS INCYS INCy;S INCBS INCBS

PERMFS COMBFS derBETAS derINCGS derINCYS derINCyiS

derINCBS derPERMFS derPERM derCOMBFS

SD1 ERROR ERFZS ERFCZS COFZS SOFZS derERFZS derERFCZS

derCOFZS derSOFZS

SD1 BESLX |COPY SD3 BESLX: YNOXS - KNOXS & EDIT SD1 "V* DERIVATIVES: V5 NANDZ - X    
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MENU SuB KEY 1 KEY 2 KEY 3 KEY 4 T KEY § KEY 6

SD1 SBESL SJINZS SYNZS SH1ZS SH2ZS SIINZS SI2NZS

SKNZS AIOZS BIOZS derSJINZS derSYNZS derSH1ZS

derSH2ZS derSI1INZS derSI2NZS derSKNZS derAlOZS derBIOZS

SD1 HGM MABZS UABZS F2F1S FOF1S F1FOS derMABZS

derUABZS derF2F1S derFOF1S derF 1FOS

SD1 LGDR PuvXS QuVvXS PuvZs QuvZs derPuVXS derQuVXS

derPuVZs derQuVZS
 

 

 

 

 

 

SD2 ELLIPI JACOB THETA

SD2 ELLIPI FXKPS EXKPS BXKPS DXKPS TINXKPS ZXKPS
EUKPS TINUKPS ZUKPS derFXKPS JerEXKPS 4oTINXKPS

derZXKPS derEUKPS 4erINUKPS derZUKPS

SD2 JACOB SNUK;S CNUK;S DNUK;S CDUK;S SDUK;S NDUK;S
DCUK;S NCUK;S SCUK;S NSUK;S DSUK;S CSUK;S

derSNUK(S derCNUK;S derDNUKS derCDUKS derSDUKiS derNDUK;S
derDCUK|S derNCUK;S derSCUKS derNSUK;S derDSUK;S derCSUK;S

SD2 THETA 8SUK;S 8CUK;S 6DUK;S ONUK;S 012QS 822QS
032QS 842QS TSUK;S TCUK;S TDUK;S TNUK;S
TiuQs T2uQS T3UQS T4UQS deroSUK|S deroCUK;S

deroDUK;S derBNUKS derg1zQS ders2zQS dere3zas dere4ZQS
 

  

  
  
 

 

        
   

SD3 BESLX SBESL *Jvozs* "YVOZS* "H1vVZS" "Ha2vZs*

"ivozs* "KvOzs* derlVOZS derYVOZS derH1VZS derH2VZS

derlVOZS derKVOZS

SD3 BESLX YNOXS H1NXS H2NXS KNOXS derYNOXS derH1NXS

derH2NXS derKNOXS

SD3 SBESL "SJUNZS* "SYNZS" "SH1ZSs" "SH2ZSs" "SIINZS" "SI2NZsS*

"SKNZS" "AlOZS" "BIOZS" derSJNZS derSYNZS derSH1ZS

derSH2ZS derSIINZS derSI2NZS derSKNZS "derAlOZS" "derBIOZS*

"PROGRAM" MEANS AFTER COPYING PROGRAM FROM SD1 DIRECTORY TO SD3 DIRECTORY    
 

EXAMPLE - LARGE INTEGER ARITHMETIC

Suppose you wish to perform large integer exact arithmetic. Push

HOME. Then push LIBRARY, PORT1 or PORTZ2, and MAN1 to recall
the MANI1directory to the stack. Now type' M A N 1 ENTER.
Now the directory is on Level 2 of the stack and the name 'MAN1' is on
Level 1 of the stack. Push STO to store the directory and push the
VAR key to display it. The MAN1 directory is now displayed above the
left-most white key on the HP 48. Pushing the MAN1 key (the white
key below the MAN1), enters the directory. Now the first six menu
names ofthe MAN1 directory are displayed. Push the fourth key under
INTAG. Now the twelve programs in the INTAG subdirectory are
displayed on two pages (push NXT key) and you are ready to compute.



8 OVERVIEW AND MENU MAPS CH1

These programs use the string object as a way of representing large
integers on the HP 48. Arithmetic is performed by converting the
string to a polynomial with S—P, performing the operation, and
converting the resulting polynomial back to a string with P—S. The
programs S—P, P-S, and ADDP are internal programs and should not
be used directly. The operations available in this directory are:

1. ADDS provides addition
2. SUBSprovides subtraction
3. MPYS provides multiplication
4. NEGS provides negation

Suppose we wish to add the base 10 numbers 123456789123456789 and
1111. Type "1 2 3 456 789123456 78 9 ENTER
"1 1 1 1 ENTER. Now the stack contains:

2: "123456789123456789"
1: "1111"

and we are ready to add. Push the ADDS key for the result
"00123456789123457900", which can be viewed by pushing the EDIT
(left-shifted +/-) key. Note that the left most 00 is not significant while
the right most 00 is significant. Now suppose we need to negate the
result. Push NEGS and observe that the result is that a minus sign
has been added to the string giving "-00123456789123457900" for the
result. The NEGS program is convenient because the HP 48 editor will
not let you type a minus sign in an empty string. However," 1 2 +/-
ENTER does put "-12" on the stack.

To cube the number 123456789, put "123456789" on Level 1 of the
stack and press ENTER twice to copy it up to Level 3 of the stack. Two
pushes of the MPYS key yields the exact cube of 123456789 which
equals "1881676371789154860897069".

Now when you are finished with the MAN1 directory, you may purge
it. Push HOME since we stored MAN1 in the HOME directory. Now
push MEMORY NXT NXT ' M A N 1 ENTER PGDIR to purge
MAN1 from the HOME directory.

The last five programs in the INTAG subdirectory are discussed in
Chapter 7.
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MANUAL PROGRAM
SUMMARIES

INTRODUCTION

The below 8 tables summarize the application programs contained in
this manual and its related program directories. Page references
enclosed with brackets [ ] refer to the MATHLIB manual, not to this
manual. When the comment applies to all of the programs contained
in a subdirectory, then only the subdirectory name is given.

MAN1 DIRECTORY

The MANI1directory contains programs related to Chapters 1 through
8 of the MATHLIB manual. It also contains programs for performing
large unlimited precision arithmetic. The operation of these integer
arithmetic programs is discussed in Chapter 3 of this manual.

Seventeen Weierstrass elliptic function and related programs are also
given in this directory. These are discussed in Chapter 8 of this
manual.

The MAN1 INTAG subdirectory also contains advanced graphics
software and programs for rounding numbers in symbolic equations.
Programs for advanced derivative techniques are also given. These
programs are discussed in Chapter 7.
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MAN1 DIRECTORY

SUB DIR PROGRAM COMMENTS

PLINT LAGRANGE INTERPOLATION [14]

PLOT PLOTTING DEMONSTRATIONS [19 - 23]

PLTD PLOTTING DEMONSTRATIONS [21, 24]

K& KRONECKER DELTA FUNCTION 3, [39]

PROD1, PROD2 PRODUCT EVALUATION [40]

INTAG ADDS LARGE INTEGER ADDITION

INTAG SUBS LARGE INTEGER SUBTRACTION

INTAG MPYS LARGE INTEGER MULTIPLICATION

INTAG NEGS LARGE INTEGER NEGATION

INTAG S-P CONVERT TO POLYNOMIAL

INTAG P-S CONVERT FROM POLYNOMIAL

INTAG ADDP ADDITION IN POLYNOMIAL FORM

INTAG PLOTS SPECIAL PLOT PROGRAMS

INTAG RNDS ROUND SYMBOLIC EQUATIONS

INTAG TYPEA ALGEBRAIC TYPE PROGRAM

INTAG DERV1 ADVANCED DERIVATIVE TECHNIQUES

INTAG DERV2 ADVANCED DERIVATIVE TECHNIQUES

COMBF COMPLEX COMBINATIONS [55]

ERROR AINTG COMPLEX PLANE INTEGRATION ([58, 62]

ERROR CIF CAUCHY'S INTEGRAL FORMULA DEMO [58, 62]

ERROR DAWS DAWSON'S INTEGRAL [62]

HINX, H2NX HANKEL FUNCTIONS [72]

WEF WEIERSTRASS ELLIPTIC FUNCTION PROGRAMS

MAN2 DIRECTORY

The MAN2 directory covers Chapters 9 through 14 in the MATHLIB
manual. The majority of these are examples from the manual.

The polylogarithm function, Lerch’s transcendent, and the Riemann
generalized zeta function are also included in this directory.
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MAN2 DIRECTORY

SUB DIR PROGRAM COMMENTS

ELLIPI  [ELLIPI1 - ELLIPI8 MANUAL EXAMPLES [83 - 85]

ELLIPI ZXKP, ZXK; JACOBI ZETA FUNCTION [86]

ELLIPI ZTBL COMPUTES TABLE 17.7 IN AMS 55 [86]

ELLIPI ZUKP1 - UZKP1 MANUAL EXAMPLES [87 - 89)

JACOB MANUAL EXAMPLES [94, 95]

THETA POLYL, FX POLYLOGARITHM FUNCTIONS [112]

THETA THETA1 - MANUAL EXAMPLES [101 - 110]
THETAS

THETA 81ZK; - T4UK; ALTERNATE THETA FUNCTIONS [99, 111]

THETA PZSaN LERCH'S TRANSCENDENT ®(z,s,a) [112]

THETA ZSaN RIEMANN ZETA FUNCTION £(s,) [112, 190]

CHYPR JVOZ1 - KVOZ1 MANUAL EXAMPLES [117, 118]

CHYPR AABZ U(a,b,z) AT THE BRANCH CUT [120]

CHYPR FLnp, GLnp COULOMB WAVE FUNCTIONS [120 - 122]

CHYPR FOF1, F1FO HYPERGEOMETRIC FUNCTIONS [124]

PCLDR1 TEST PROGRAM

GHYP MANUAL EXAMPLES [133]

LGDR DIRECTORY

This is the Legendre and Struve function directory. In addition to the
examples in the manual, it contains a large number of special cases,
listed in the MATHLIB manual. Deriving all these special cases is
harder than one might think because it is surprisingly easy to make
errors. These special cases provide starting functions for the various
recurrence relations given in Chapter 15 of the MATHLIB manual.
They also demonstrate how to program these functions so as to stay on
the correct branch as discussed on pages 37 and 140 of the MATHLIB
manual. The three X suffix MAN2 LGDR TEST subdirectories are the
X "on the cut" programs and the other three are the general complex
plane programs.
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LGDR DIRECTORY

SUB DIR PROGRAM COMMENTS

PSSV, WSSV P.(z) AND Q,(z) SYMBOLIC RECURRENCE [140]

PuVX1, QuVX1 MANUAL EXAMPLES [150]

PQUP1 - PQUP5 MANUAL EXAMPLES [150, 151]

PuVZ1, QuVZ1 MANUAL EXAMPLES [152]

PMMX - PMNZ P."(x) AND P,"(z) [152, 153]

STRUVE STRUVE FUNCTION EXAMPLES [154]

TEST PI EXAMPLE P,"(z) [139, 140]

TEST QI EXAMPLE Q."(z) [141]

TEST PIX EXAMPLE p,"(x) [142]

TEST QIX EXAMPLE q"(x) [142, 143]

TEST X.5 EXAMPLES [144]

TEST X.5X EXAMPLES [144]

MAN3 DIRECTORY

The MANS3 directory covers the examples in Chapters 16 through 19 in
the MATHLIB manual. Included are the algebraic identity and
symbolic calculus programs discussed in Chapter 19. The symbolic
function directories discussed in the next chapter contain a far more
extensive set of derivative definitions.

 

 
 

 

 

 

 

 

 

 

 

 

 

MAN3 DIRECTORY

SUB DIR PROGRAM COMMENTS

POLY TEST PROGRAMS [157 - 158]

MISC MANUAL EXAMPLES [161 - 183]

NUMB MANUAL EXAMPLES [186 - 189]

ALGB MANUAL EXAMPLES [194 - 206]

ALGB CFE - ECFE CONTINUED FRACTION EXPANSIONS

ALGB PGCD - PGCDI POLYNOMIAL GREATEST COMMON DIVISOR

ALGB IDEN MTHS - TOEXP MANUAL PROGRAMS [207 - 211]

ALGB IDEN EX1 - EX7 MANUAL EXAMPLES [211 - 214]

ALGB DERD |GAMMAS-derPSIS MANUAL PROGRAMS [215]

ALGB DERD| DEX1 - DEX3 MANUAL EXAMPLES [216]         
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MAN4 AND MANS5 DIRECTORIES

These directories cover the examples in Chapters 20 through 25 of the
MATHLIB manual. It is surprisingly easy to make typos when typing
in a matrix. Consequently, these directories provide them. MANS also
gives 13 additional probability distributions not in MATHLIB.

 

 

 

 

 

 

 

 

     
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

MAN4 DIRECTORY

SUB DIR PROGRAM COMMENTS

LINAG LSOV1 - CPOLY1 MANUAL EXAMPLES [228 - 252]

LINAG SVDE SVDE COMPUTES VALUES RELATED TO THE
SVD OF INPUT MATRIX A USING 2 SCHUR

DECOMPOSITIONS. COMPARE WITH SVD.

LINAG EVSOV EIGENVECTOR PROGRAM [254]

MATR RROLL, CROLL MANUAL PROGRAMS [255]

MATR —ROW1 - COMP1 MANUAL EXAMPLES [257 - 269]

MATR DIAG? MANUAL PROGRAM [270]

MKSQ MAKES MATRIX WITH R < C SQUARE

MANS DIRECTORY

SUB DIR PROGRAM COMMENTS

STAT FZT1 - LCNTz LINEAR CORRELATION PROGRAMS [282]

STAT CTAD1 - MWT1 MANUAL EXAMPLES [284 - 295]

STAT WILCX - SRHO1 MANUAL EXAMPLES [471, 472]

STAT KS1S LOWER TAIL KS 1 SAMPLE D DIST

STAT KS1P UPPER TAIL KS 1 SAMPLE D,* DIST

STAT KS2S LOWER TAIL KS 2 SAMPLE D,,, DIST

STAT FOFC c = |p|? DIST FOR SAMPLE CORRELATION COEF

STAT FOFC2 C = |P|? DISTRIBUTION FOR NON-ZERO MEANS

PROB LOGN LOWER TAIL LOG-NORMAL DISTRIBUTION

PROB MAXW LOWER TAIL MAXWELL DISTRIBUTION

PROB SECHS LOWER TAIL SECH-SQUARED DISTRIBUTION

PROB FRMID LOWER TAIL FERMI-DIRAC DISTRIBUTION

PROB BOSEE LOWER TAIL BOSE-EINSTEIN DISTRIBUTION

PROB GEOM LOWER TAIL GEOMETRIC DISTRIBUTION

PROB WALD LOWER TAIL WALD DISTRIBUTION
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MANS DIRECTORY

SUB DIR PROGRAM COMMENTS

PROB PRETO UPPER TAIL PARETO DISTRIBUTION

LTBN BIVARIATE NORMAL DISTRIBUTION [314]

SYMB S2F1 SYMBOLIC MATRIX ELEMENT OPERATIONS

SYMB SYMB1 - TEA |[MANUAL EXAMPLES AND PROGRAMS (328 - 364]

SYMB VLINI, VWOLI VECTOR INTEGRATION EXAMPLES [366]        

MAN6 AND MAN7 DIRECTORIES

These directories contain example programs from Chapter 26 through
the end of the MATHLIB manual. MAN7 also contains example
wavelet programs which are discussed in more detail in Chapters 9
through 11 of this manual. The machine language FFT directory is
discussed in Chapter 12.

 

 

 

 

 

 

 

 

  

MANG6 DIRECTORY

SUB DIR PROGRAM COMMENTS

PROC DER2A - AWAV1 MANUAL EXAMPLES [372 - 380]

PROC ICNVN - H3ON MANUAL APPLICATION PROGRAMS (382 - 390]

FILTR MANUAL EXAMPLES [398 - 427]

WIND EXAMPLE PROGRAMS [432 - 447]

WIND KAISER EXAMPLE WINDOW PROGRAM

DFT DISCRETE FOURIER TRANSFORM (DFT) [390]

IDFT INVERSE DFT PROGRAM [390]     
  

 

MAN? DIRECTORY
 

 

 

 

 

SUB DIR PROGRAM COMMENTS

VECTR EXAMPLE PROGRAMS [450]

APPH EXAMPLE PROGRAMS [575 - 577]

WAVE WAVELET PROGRAMS [566 - 572

FFTML DONATED MACHINE LANGUAGE FFT       
 



3

SYMBOLIC FUNCTION
PROGRAMS

INTRODUCTION

This chapter introduces the three symbolic function and defined
derivative directories. SD1 is the largest symbolic function directory on
the ROM. This was necessary in order to keep together the necessary
functions. The elliptic functions are to some degree separable and are
in SD2. Alternative defined derivative definitions for the Bessel
functions are given in SD3 which have derivative formulas which are
defined at zero. If these directory layouts do not meet your needs,
create your own directory using the SD1, SD2, and SD3 programs.

THEORY OF OPERATION

While in a given directory or subdirectory, the HP 48 will automatically
evaluate all the programs in that directory. If it does not find a
particular function, then it searches the higher level directories for it.
This is discussed in Chapter 7 of the HP 48 owner’s manual.
Consequently, to access and use the symbolic function and defined
derivative programs, you simply enter the directory where the function
of interest is located and proceed to use its definition. Examples are
given below and at the end of Chapter 19 of the MATHLIB manual.
Please note that with the exception ofBETA, PERM, PERMF, COMBEF,
and POCH, derivatives are only defined with respect to the single major
argument, and not with respect to degree, order, or modulus.

16



16 SYMBOLIC FUNCTION PROGRAMS CH3

FINDING FUNCTIONS OF INTEREST

The symbolic functions are generally laid out in directories by function
type. Exceptions for SD1 are that GAMMAS, PSIS, DNPSIS, POCHS,
JVOZS, YVOZS, H1VZS, H2VZS, IVOZS, and KVOZS are in the top
level of the SD1 directory so that they are available to all the lower
level directories. See the menu maps. Note that the symbolic function
names are the MATHLIB names with an S suffix. Some copying and
editing is required to fill out the SD1 and SD3 directories. See menus.

EXAMPLE SESSION

Suppose you need to evaluate the complex derivative of the equation

z3cos(4z)erf(2z)

I(z?)

where erf(z) is the error function and I'(z) is the gamma function. Push
HOME and PURGE the objectz if it exists in the HOME directory. The
keystrokes are ' z ENTER PURGE. Now push LIBRARY, either
PORT1 or PORT2, NXT, and SD1. Now the SD1 directory is on Level
1 of the stack. To name it type ' S D 1 ENTER, and push STO to
store the SD1 directory. Now push VAR and the SD1 directory will
appear under the first white key. Push that key and then push the
ERROR key to enter the error function subdirectory. Note that the
error function is in this directory and the gamma function is in the
parent directory. Thus all the required functions are defined. Type

< 'z"3xCOS(4xz)xERFZS(2xz)/GAMMAS(z*2)' z ¢ EXCO »>

and enter this program on Level 1 of the stack. Now push EVAL for
the result

'—(2xERFZS(2xz)xPSIS(z"2)/GAMMAS(z*2)xCOS(4xz)xz"4)

+2.25675833418/GAMMAS(z22)xCOS(4xz)x.135335283237”z"(2xz)

xz"3+3xERFZS(2xz)/GAMMAS(z*2)xCOS(4xz)xz"2

-4xERFZS(2xz)/GAMMAS(z"2)xSIN(4xz)xz"3'

I suggest you use EDIT to view the equation since the HP 48 equation
editor takes a long time and you may run out of memory. To evaluate
this derivative at z = (1, 0.2), put { z (1,.2) } on Level 1 of the stack
and push | (o right-shift VAR on the HP 48 keyboard) followed by
ENTER. The answer is (-4.37712900266, 6.65709260038).
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LERCH’S TRANSCENDENT
AND RELATED FUNCTIONS

INTRODUCTION

There are a number of useful functions which are related to Lerch’s
transcendent defined on page 112 of the MATHLIB manual. However,
definitions do vary and in this chapter we discuss the various
definitions.

LERCH’S TRANSCENDENT

Lerch’s transcendent is defined by the equations

®(z, s, ) = Y (@ +n)*z" lz| < 1
n=0

 

1 - ts-l e—at 1 - ts-l e(l-a)t dt

Oz, s, @) = I“(s)jo 1- ze™ dt = I“(s)fo et

RE o > 0, and either z is not on the branch cut from 1 to « with
REs>0o0r z=1and REs > 1.

- Z

The generalized Riemann zeta function {(s, o) = ®(1, s, o) is a special
case which is evaluated by ZSaN in the MAN2 directory. In general,
PZSoN evaluates Lerch’s transcendent. The N argument of these
programs sets the integration precision. N = 7 usually works. & is
useful in evaluating certain integrals in statistical quantum mechanics.
See Tolman, for example. POLYL evaluates the polylogarithm function.

17



18 LERCH’S TRANSCENDENT AND RELATED FUNCTIONS CH 4

POLYLOGARITHM FUNCTION

There are several definitions of the polylogarithm function currently in
use. The MATHLIB definition follows that of Erdelyi and Magnus (see
the Chapter 11 references in the MATHLIB manual). We define the
polylogarithm as &£,(z) = z®(z, s, 1). In Chapter 27, AMS 55 only
discusses Euler’s dilogarithm. Their definition is flx) = &,(1 - x).
Spanier proposes the definition diln(x) = -&,(1 - x). The dilogarithm is
also called Spence’s integral for n = 2 and is related to the Debye
function. The connection between the dilogarithm function and Lerch’s
transcendent may be seen by comparing the power series expansions.
AMS 55 defines the dilogarithm as

f(X)="£x ll’lt dt=i (1 -ZX)

t -1 e~ n

where the sum converges for 0 < x < 2. We also have the sum

 

oo

zd(z, 2, 1) = L(2) = Z
n=1

=}

z
 — lz| <1

From Lerch’s transformation, one obtains Jonquiere’s relation

L(z) + e™ L(1/z) = (?(1;)) e ™? C[l - s, %j 

Form=1,2,3,...,¢(z)=(-1)"'¢¥_(1/z) and

@(z) + (-1 &(1/z) = --(3”-‘,-)— Bm(-]-“—.’:]
m! 2m

for m = 2, 3, 4, .. .. This corrects equation 18 on page 31 of Erdelyi,

Volume I. These equations provide analytic continuation of the basic
series for |z| > 1. Similarly, fix) + f{il/x) = -[In x]*/2 for 0 < x < 1 and
f{x) + fll - x) = -In x In(1 - x) + ©%/6 for 0 < x < 1. While &,(z) has the
same branch cut as @, f has the negative real axis for its branch cut.
All of these definitions are easily programmed with MATHLIB and
programs for POLYL and FX are given in the MAN2 THETA directory.
FX(.35, 7) = .80608268951, POLYL(.5, 1.7, 7) = .605426124605, and
PZSaN(1, .5, 2.6, 7) = ZSaN(.5, 2.6, 7) = -2.90496492738. Also we have
ZSaN(3, 1, 7) = PZSaN(1,3, 1, 7) = RZETA(3).

Spanier, J., and Oldham, K., An Atlas of Functions, New York,

Hemisphere Publishing Corp., 1987.
Tolman, R., The Principles of Statistical Mechanics, New York, Oxford

University Press, 1938.
See Chapter 11 of the MATHLIB manual for the other references.
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PROBABILITY AND
CHARACTERISTIC

FUNCTIONS

INTRODUCTION

This chapter overviews probability functions and related moments such
as characteristic functions. It provides numerous formulas for various
probability functions and their moments. Programs for the log—normal,
Mazxwell, sech-squared, Fermi-Dirac, Bose-Einstein, Wald, Pareto, and
geometric distributions are given in the MANS directory. The others
are on the MATHLIB ROM card.

PROBABILITY FUNCTIONS

A real-valued function F(x) is called a (univariate) cumulative

distribution function if

1. F(x) is non-decreasing, that is, F(x,) < F(x,) whenever x, < x,
2. F(x) is continuous from the right
3. F(-e) =0 and F(e) = 1

The cumulative distribution function can be represented as the integral
of the probability density function fx) by

Fx) = [* flo) dot = f*dF(o)

19



20 PROBABILITY AND CHARACTERISTIC FUNCTIONS CH5

To avoid more formal Lebesgue counting measure, we allow f(x) to
contain distribution functions such as the Dirac delta function discussed
in Appendix F of the MATHLIB manual. As discussed on page 547, we
now define the unit step function u(x) such that u(0) = 1, so that it will
be continuous from the right (see page 476 of the MATHLIB manual).
With this formalism, we can now treat discrete and continuous
distributions together. For example, consider the lower tail of the
Poisson distribution (see page 305 in the MATHLIB manual)

x-1 n oo n

Fx) =) e™ 12! =) e™ I:ll! ux-n-1 x=0,1,2, ...
n=0

  

Thus, the Poisson probability density function is

m n

n!
 flx) =) e

n=0

8(x-n-1)

EXPECTATIONS AND MOMENTS

The expected value of a function g(x) is

Elgx) = [~ g0 fix) dx = [ gx) dFx)
Examples include the nth moment about the origin

pn, = f_: x " flx) dx

where p'; = m = p is the mean, the nth central moment

n, = _[:[x - m]" f(x) dx

where 1, = p', - m? = ¢® is the variance, and the characteristic function

(io) = o(w) = f" el flx) dx

where ®(y) is called the moment generating function and ¢(w) is the
characteristic function. Observe that from the Maclaurin series
expansion of e* that the moments about the origin equal

p'n - i-n¢(n)(0) - (b(n)(O)

where ®™(x) denotes the nth derivative of ®(x). The cumulant function
is the natural logarithm of the characteristic function

: = (o)"
Y(io) = y(o) = In ¢(@) = ¥ x, —;

n=0 :

where ¥, is the nth cumulant. x, = m, x, = 6%, x; = p,, and x, = n, —
3n,°>. The coefficient of skewness is v, = ky/(x,)** = ny/c® and the
coefficient of excess (Kurtosis) is ¥, = k,/(x,)* = n,/o* - 3.
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In general, for j = 1, 2, . . . ¥ = K,,(k,)®". The central moments are
related to the moments about the origin by

mo= ) n (-1Y p',; m’
= \J

and conversely

p"n = E (r.l) l‘ln-j mJ

= )

The remainder of this chapter provides data on 34 of the MATHLIB
probability distributions. They are listed in alphabetic order.

BETA DISTRIBUTION

The beta distribution is defined by

1 x
P(xla, b) = mfo ta1(1 - t)bdt a,b>0 0<x<1

with mean a/(a + b), variance ab/[(a + b)? (a + b + 1)], skewness 2(a -
b)/(a + b + 2), excess

 

a+b+l [3(a+b+ 1)[2a +b)? +abla +b - 6)] _3
ab ab(a +b + 2)a +b + 3)

and the nth moment about the origin p', = B(a + n, b)/B(a, b). The

characteristic function is M(a, a + b, iw).

BINOMIAL DISTRIBUTION

The binomial distribution is defined by
n

2:[ij“(1—p)N‘s 0<n<N, O<p«l
s=0 S

where n and N are non-negative integers and let q = 1 - p. It has
mean Np, variance Npq, skewness (@ - p)¥N(Npq), excess (1 -
6pq)/(Npq), and cumulants x, = Np, and x,,, = pq dx,/(dp) for n = 1, 2,

. The characteristic function is (q + pe™)™.
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BIVARIATE NORMAL DISTRIBUTION

Command BIVN evaluates the bivariate normal distribution given by

F(x, y) = [f_z flo, B) dadp

where f(x, y) is the bivariate normal probability density function

1 ((x-p,)2 2r(x—p,Xy - p,) (y-p,)’)

1 - -rflX, y)-~e 21-r%

216,0,{1 - r2

with means p, and p,, variances 6, and 6,, and correlation coefficient
r. All the cumulants of order 3 and higher are zero. The characteristic
function is

 - +

' 0,03 A

oo, @, = e ~(0]w; + 10,0y, + Gyeo + By
1 WO

See the related distributions discussed in Chapter 6.

BOSE-EINSTEIN DISTRIBUTION

The Bose-Einstein distribution is defined by

_(x -aff dt >0

Pixla, B) = [ g Plexpa) — Bl
 

with mean m = -&,(B)/[a In(1 - B)] and variance -2¢,(B)[a? In(1 - B)] -
m?. In general, n', = -n'é_,(B)/Io" In(1 - ). &_(z) is the polylogarithm
function discussed in Chapter 4. See the program BOSEE in MANS for
the closed form distribution function.

CAUCHY DISTRIBUTION

The Cauchy distribution is defined by
) dti} .

0P(x|0, o) J; rall + (t - 0)Yo] o >

with no moments or cumulants defined. The characteristic function is
iBw - ajw|e' )
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CHI-SQUARE DISTRIBUTION

The chi-square distribution is defined by
-1 .

P(x%|v) = [2“’21’(v/2)] f: t¥21 e 2 dt v>0, ¥20

with mean v, variance 2v, skewness 2¥*v"? excess 12v!, and
cumulants k.., = 2"n'v for n = 0, 1, . . .. The characteristic function is

(1 - 2iw)™.
n+l

DIRAC DELTA DISTRIBUTION

The Dirac delta function can be considered a probability distribution
with zero mean and zero variance. As discussed in Appendix F of the
MATHLIB manual, the Dirac delta can be defined as the limit in the
mean of a zero mean normal distribution as 6 — 0.

EXPONENTIAL DISTRIBUTION

The exponential distribution is defined by

P(x|p, o) = fx cle t-nro¥o dt x2np-6, 6>0
p-o

with mean p, variance ¢?, skewness 2, excess 6, and cumulants x;, = p

and x, = (n - Dlc” forn =2, 3, .. .. The characteristic function is given

by e“*- (1 - icw)™.

EXTREME VALUE DISTRIBUTION

The Type I extreme value distribution is defined by

P(x[E, 6) = 9'1fx e0 exp[-e] dt 0 >0

with mean & - Oy(1) = £ + 79, variance 7°0%/6, skewness —6**y®(1)n®,
excess 36y()n™* = 2.4, and cumulants x, = (-6)" y"V(1) for n = 1, 2,
.. .. The characteristic function is given by e I'(1 - i®0).
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F DISTRIBUTION

The F distribution is defined for vy, v, > 0 by

vv,,/2 va/z .
P(Fler VD) - _T;__fll)_ . t(v,,-2)/2 (VD + th)—(vaD)/2 dt F>0

(v3V)
with mean vp/(v, -2) for v, > 2 and variance

, 2va(vy + vy - 2)

Cvp(vp - 24(vp - 4)

The characteristic function is ¢(w) = E{e**} = M(vy/2, —vp/2, —iovy/vy).

 vp > 4

FERMI-DIRAC DISTRIBUTION

The Fermi-Dirac distribution is defined by

_(x of dt >0

Pixla, B) = [ s Blexpot) = B1
 

with mean m = -&,(-B)/[a In(1 + B)] and variance —28,(-B)/[o? In(1 + B)]
- m?’. In general, n', = -n'9,(-p)la” In(1 - B). <.(z) is the
polylogarithm function discussed in Chapter 4. See the program
FRMID in MANS for the closed form distribution function.

GAMMA DISTRIBUTION

The gamma distribution is defined by

P(x|v) = [I"(a)]_1 f: tele™dt a>0 x20

with mean a, variance a, skewness 2a™"?, excess 6/a, and cumulants x_
=(n-1Dlaforn=1,2,.... The characteristic function is (1 — iw)™.

GEOMETRIC DISTRIBUTION

The geometric distribution, evaluated by GEOM in MANS5,is defined by

Y p1-pr 0O<p<l1l x=0,1,...
n=0

with mean (1 - p)/p, variance (1 - p)p~?, skewness (2 - p)[1 - p]‘m,. and
excess 6 + p%/(1 — p). The characteristic function is p[1 - (1 - p)e*]™..
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HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is defined by

0<c<MINxn) n+x<N nx,N, ceN

 

with mean np, variance npq(N - n)/(N - 1), and skewness

])
where p = x/N and q =1 - p = (N - x)/N. The characteristic function
is

 

F(-n, -x, N-x-n+1,e")

 

KOLMOGOROV-SMIRNOV DISTRIBUTION

The Kolmogorov-Smirnov distribution is defined by

1-2Y (-)rte™ A>0
n=]1

with the corresponding probability density function

8L Y (-1)n-t g2 A20
n=1

The mean is ¥(/2)In 2 and the variance is %8 - n[ln 2]%2. The nth

moment about zero is

, n/2 + 1)
p'n 2n/21

E (l)ml -n

me=1]1

This is the asymptotic distribution. The exact distribution for a small
number of observations is discussed in Chapter 6.
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LAPLACE DISTRIBUTION

The Laplace distribution is defined by

P(x|a, B) = [* (2B1e~ dt
with mean q, variance 2p%skewness 0, excess 3, and cumulants x, = a,
K, = 2P% Ky, = 0, and x,, = 2n)!p*n for n = 1, 2, . . .. The
characteristic function is e®“(1 + B?w?)™.

LOG-NORMAL DISTRIBUTION

The log-normal distribution is defined by

P(x|0, o) = je" [t - 8)Y2r61! exp[-%{In(t - 8) - {)%c?] dt

with mean exp({ + 6%/2) and variance oo — 1)e* where o = exp(c?). In
general, p'. = exp(n{ + n’6%/2). See the program LOGN in MANS5for
the distribution function.

MARCUM P, DISTRIBUTION

The Marcum Py distribution is defined for x > 0 by

X (N-1¥2

fo (‘N‘:‘R’] eNB [(J4NRt) dt R>0 N=1,2,...

with mean N(R + 1), variance N(2R + 1), skewness 2N(3R + 1)[N(2R +

1)17%?, excess 6(4R + 1)[N(2R + 1)’I", and cumulants x, = N(n - D!(nR
+ 1) forn=2,3,.... Thecharacteristic function is

e -NR e NR/A1 + iw)

(1 + io)N

This distribution is related to the non-central x* distribution by the
identity MPN(N, R, x) = UC(2NR, 2N, 2x) within numerical error.

MARCUM I DISTRIBUTION

This is the special case of the Marcum P, distribution with R = 0.
N-1 -t

fx(t—N_—el)Tdt XZO, N=1,2,...
0
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MAXWELL DISTRIBUTION

The Maxwell distribution is defined by

P(x|o) = fox Holn t2e*dt a>0 x>0

with mean 2[rna]™, and variance 3/(2a) - 4/(na). In general, p',,_, =
2nloa™¥Nnforn=1,2,...,and pn,,_, = 20(2n-1)!'(20)™ forn = 2, 3,.

. See the program MAXW in MANS5for the distribution function.

NEGATIVE BINOMIAL DISTRIBUTION

The negative binomial distribution is defined for n, x e N by

= - 1 P
Z[“*“]pkq“ g PrgTite O<pcdk=x k

with mean nP, variance nPQ, skewness (P + Q)[nPQ]™, excess (1 +
6PQ)InPQIL. The characteristic function is (Q - Pe)™.

NORMAL DISTRIBUTION (UNIVARIATE)

The univariate normal (Gaussian) distribution is defined by

x 1
P(x|p, o) = L, 7

T

e - wW¥(20% dt >0
 

with mean p, variance 6%, skewness 0, excess 0, and cumulants x, = 1,

x, = 6, and x, = 0 for n > 0. The characteristic function is
e -c*w*/2 e ipw

From the relations for conditional probability density functions,

flx, y)
f(y |X) = W

so if f(x, y) is the bivariate normal density discussed on page 22, then
the conditional density of y given x is also normal

y-n,-ro,(x-n,)/c,F

- 2?2(14!)

fiy|x) = =
o,¥2n(l - r?)
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NON-CENTRAL F DISTRIBUTION

The non-central F distribution is defined for F > 0 by

P(Flvy, v 1) = [" fitlvg vp, W dt vy vp > 0, 420
where the probability density function f(t|vy, vp, A) is

oo n (V +2n)(v,,o2n)/2
E e -2 (Mz') N

£ n! Bl(vy+2n)/2, vy/2]

with mean vp(vy + A)[vy(vp — 2)I"! and variance

2(%]1(“ + W2+ (vy + 20(vp - 2)

vy (vp = 2)%(vp - 4)

 

t(vN¢2n-2)’2 [VD+(VN +2n)t]—(vn*2n*vb)/2

 

The characteristic function is

Emz’) ]e“m Mvi/2 + n, ~vif2, -lovy/vy)n=0

 

NON-CENTRAL T DISTRIBUTION

The non-central T distribution is defined for v > 0 and §, t > 0 by

1 v Vw2 -vd? -6x
Pit|v, §) =— |—— exp| ———- Hh| —— |dxel) e

where the function Hh(zV2) = (2"'n)* i erfc z. It has the mean m =
(v/2)"* & T(Y(v - 1))/T(v/2) and the variance v(1 + §%)/(v - 2) - m?.

NON-CENTRAL y? DISTRIBUTION

The non-central chi-square distribution is defined for x* > 0 by

2 (v-2)/4

P(x%lv, A) = f: -;-(-%] e/2 I(v_2),2(\/kt> dt v>0, A2>0

with mean v + A, variance 2(v + 21), skewness 2V2(v + 3A)[v + 2A]732,
excess 12(v + 4\)[v + 2A]%, and cumulants x, = 2"(n - 1)!(v + nA). The
characteristic function is (1 - 2iw)™?explioA(1 - 2im)™].
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PARETO DISTRIBUTION

The Pareto distribution is defined by 1 - (k/x)* fork >0,a> 0, x>k
with probability density function ak®x**!, mean ak/(a — 1), variance
ak*(a - 1)%(a - 2)"' for a > 2, and p', = ak"/(a - n). See PRETO.

POISSON DISTRIBUTION

The Poisson distribution is defined by

Ye"— m>0, x=0,1,...
n.

n=0

 

with mean m, variance m, skewness m2, excess m™’, and cumulants
K, =m for n =1, 2,.... The characteristic function is exp[m(e'” - 1)].

RAYLEIGH DISTRIBUTION

This is the special case of the Marcum Py distribution with R = 0 and
N = 1. It is also the Marcum I'; distribution.

RICIAN DISTRIBUTION

This is the special case of the Marcum Py distribution with N = 1.

SECH-SQUARED DISTRIBUTION

The sech—-squared (logistic) distribution is defined for x > 0 by

P(x|n, @ = [“(2)sech?lot - w1 dt @ >0
with mean p, variance n*2 /(120”2), and skewness 0. The
characteristic function for y = 2a(x — p) is o csch o so with x = y/(2a)
+ 1, the characteristic function of x is

d(w) = lzt-(—;- csch(—’%] e lon

The odd cumulants of y are all zero and for n even, the cumulants of y
x,(y) = 6(2% - 1)B.. Thus, the odd cumulants of x are zero and the even
ones are K,(x) = x,(y)[2a]™. See the program SECHS in MANS for the
distribution function.
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T DISTRIBUTION

The T distribution is defined by

-1 ¢ x2 v+1)/2

At]v) = [/\7 B(, v/2)] L (1 + TT dx t20 v>0

with mean 0, variance v/(v — 2) for v > 2, skewness 0, and excess 6/(v

- 4) for v > 4. The characteristic function is

/2

o(@= Elexplio—— = [12L (zrowve1 v, [120
Vv 2Vv W

 

UNIFORM DISTRIBUTION

The uniform distribution is defined by

P(x|p, h) =Lxmh'1 d¢ p-h2<x<p+he

with mean p, variance h%12, skewness 0, excess —1.2, cumulants x,_,,

=0forn=1,2,..,andx,, = h*B,/(2n) where B,is the rth Bernoulli
number. The characteristic function is 2 sinthw/2)e™/(hw).

WALD DISTRIBUTION

The Wald (inverse Gaussian) distribution is defined by

P(x|p, A) = fo" YAM(2rt3 e MW7gt p A >0, x>0

with mean p, variance p%A, skewness 3V(p/A), excess 15p/A, and
cumulants x, = (2n-3)!!p>A" for n = 2, 3, . . .. See the program
WALD in MANS for the distribution function.

WEIBULL DISTRIBUTION

The Weibull distribution is defined by

P(x|c) = fox ctlexp(-t)dt ¢>0, x20

with mean m = I'(¢c™! + 1) and variance ['(2¢™! + 1) - m?2.
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ADVANCED PROBABILITY
DISTRIBUTIONS

INTRODUCTION

There are a number of useful probability distributions which are
generally avoided in textbooks because they are too hard to compute.
An example is the exact distribution of the correlation coefficient which
I avoided discussing on pages 281 and 282 of the MATHLIB manual.
There are many important probabilities used in engineering and
statistics which involve advanced functions, but nevertheless are easy
to evaluate with MATHLIB, given an understanding of the higher
transcendental functions. Some of these are covered in this chapter.

KOLMOGOROV-SMIRNOV ONE-SAMPLE STATISTIC

Probability command UTKS computes the upper tail of the asymptotic
Kolmogorov—-Smirnov distribution. This is generally used when there
are over 35 observations. For smaller numbers of observations, the
exact finite sample size distribution is preferred.

Define the Kolmogorov-Smirnov one-sample statistic

Dy = sup|Sy(x) - F,(x)|

where Sy(x) is the empirical distribution function, F,(x) is the true
distribution function, and sup is the supremum (least upper bound or
maximum). Also define the one-sided Kolmogorov—-Smirnov statistics

Dy = sup[Sy(x) - F,(x)] Dy = sup[F,(x) - Sy(x)]

31
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The statistics Dy, Dy*, and Dy~ are independent of the continuous
cumulative distribution F,(x) = Prob{X < x}. Let the N observations be
X, <X, <...<X, and define the empirical distribution Sy(x) by

0 for x < X|

S(x) = -I% for X <x<X., n=12...N-1
1 for X, <x

Commands HIST and CUMX can be used to create the Sy(x) vector.
For large N, the distribution of Dy, is given by

z w
lim ProbiD, < =1-2 (-1)m-1 g -2m'z’ = J(2)
Noe N ‘/]J ;?;;

and 1 - L(z) is evaluated by command UTKS. Forc=0,1,2,... the
exact distribution is given by

 

!
Prob{DN < —(-:-} - N e N Ryy(c)

N N

where R,,(c) is defined for all integers j, all non-negative integers k, ¢
=1,2,...N, and R;,(c) satisfies the recurrence formula

2c-1 1
Rya(©=e™ 3 R,@ 5 for [jl<c -1

s=0

with the initial values of R,o(c) = 1, R((c) = 0 for j # 0, and R;,(c) = 0
for |j| 2 c. Program KS1S in the MANS directory implements these
equations which are Kolmogorov’s original equations. Program KS1S
reproduces the probability tables in Birnbaum’s paper.

Birnbaum’s and Tingey’s equations reproduce the numbers in L. Miller’s
tables for the D" statistic. The upper tail distribution is

c c IP[N -¢] N

b (N -c - s+s)r!Prob{DN > N} ¥ Z; (S]

which is evaluated by program KS1P in the MANS5 directory. The
corresponding asymptotic distribution for Dy* is

-22z7lim Prob)Dy <
z

N-oo VEE_-

D, and Dy have identical distributions because of symmetry.

=1-e 
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NON-CENTRAL BETA DISTRIBUTION

Let x,” be non-central x* with 2a degrees of freedom and non-centrality
parameter A, and let x,” be central x*> with 2b degrees of freedom.
Define the statistic x = x,? [x,® + x,’]"". Then x has the non-central beta
density function defined by Rao as

flx|a, b, A) = e2 M(a + b, a, A’x/2) [B(a, b)]"! x2~! (1 - x)°"!

where M(a, b, z) is Kummer’s confluent hypergeometric function, B(a,
b) is the beta function, and A is the non-centrality parameter. As
formidable as it may seem to integrate this density to obtain the
cumulative distribution function, there are a number of practical

applications wherein the evaluation is surprisingly easy. Suppose b is
an integer. By Kummer’s transformation

M(a + b, a, A%x/2) = e**? M(-b, a, -A%x/2)

This reduces the confluent hypergeometric function to a polynomial and
MABZ will evaluate it very fast. Thus, the distribution function can
quickly be evaluated as a numerical integral.

JOINT DISTRIBUTIONS OF REAL RANDOM VARIABLES

Omura and Kailath have compiled distribution, density, and
characteristic functions for distributions related to normal variables.
Included in their report are the RATIOS: Gaussian/Gaussian, Gaussian/
Rayleigh, Gaussian/Rice, Rayleigh/Rayleigh, Rice/Rayleigh, and
Rice/Rice; SUMS: central x* + central x?, central x> + non-central x?, and
non-central x? + non-central x*; DIFFERENCES: central % - central y?,
non-central x> - central y?, and non-central y* - non-central x?%
PRODUCTS: Gaussian x Gaussian, Rayleigh x Rayleigh, Rayleigh x
Rice, and Rice x Rice. The Gaussian distribution is the same as the

normal distribution. Some of these results are based on K. Miller,

Multidimensional Gaussian Distributions.

JOINT DISTRIBUTIONS OF COMPLEX RANDOM VARIABLES

K. Miller has derived a useful collection of complex distribution
functions for hypothesis testing of complex random variables. We will
now focus on a few of his results and evaluation techniques for them.
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Let z,, z,, . . . zy be two dimensional independent complex random
vectors with zero mean and positive definite covariance matrix

., |Cn O _
= G = O; + 10,

G2 Oy
where * denotes complex conjugation. Let z." = [u, v]Jforn=1,2,.
. . N and define the second order statistics

N N

wl = E Iu‘nl2 w2 = E Ivn|2

n=1 n=1

N

r= u,v, =r, +ir,
ne=l

Then the joint probability density of these statistics is

(wyw, = [r[2-?
(N - D!(N -2)!(DET )V

for w,, w, > 0, w,w, > |r|?, =0 < 1}, T, < o and O otherwise. Defining

w, T N o
Q = = E z,Z,

r’ W,y n=1

where H denotes Hermitian transpose, this can be written as the
bivariate complex Wishart density function

DET Q)N-2Q) = ( ) e

(N - DI(N - 2)!(DET %)

=2[o\1) + GyF; + (0,W, + Oy Wy)/2]
 flw,, Wy, T}, 1) =

-Tr QR
 

where DET denotes determinant and Tr denotes trace. The joint
density of w, and w, is then

(wlwz)(N—IVZ

fw, W) =OETD¢IN-1(2I012Ww1w2 )
for w,, w, > 0 and O otherwise.

 

Consider next the normalized correlation functions p; = r;/w and p, =
ro/w where w = (w, + w,)/2 = % z"z. Their joint density function is
given by f(p,, p,) which equals

(2N - 1)22N-1[1 _ (pi + pg)](zN-SW .
1 B?

702(DET )V FINN+aN-3 22? (12
 

2

for p,> + p,> < 1 and O otherwise. F(a, b, ¢, z) is the Gaussian
hypergeometric function and parameters o and B equal
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o = 2[0,p, + Gyp, + (O} + Oy,)/2]

B = [0, - Oplyl - (Pf + Pg)

Finally, consider the modulus of the sample correlation coefficient

r
p =

YW1 W,

Then the density function of |p| is given by

fllp) = 2(N - DA - A|pl@ - [p[»* F(N, N, 1, [A[*|p[?)

 

where the complex correlation coefficient A is defined by

Cis

Y0102

A= -
 

With ¢ = |p|?the density of ¢ is

flo) = (N - 1D(1 - AN - ™2 FN, N, 1, [A[20)

This density and f{lC) on the next page can be used for exact small
sample tests with LCNT. See page 281 of the MATHLIB manual.

EVALUATION TECHNIQUES

The difficult part of integrating the above three density functionsis the
Gaussian hypergeometric function. Using the first linear
transformation formula given on page 131 of the MATHLIB manual we
have the equalities

FON, N+, N-2,2 =01 -2"!F-5 -1, N - 2, 2)
FIN,N, 1,2 =(1-2™F1-N,1-N,1, 2

Now the b = -1 in the upper equation and the a = b = 1 - N in the
lower equation reduces F(a, b, ¢, z) to a polynomial. By evaluating the
distribution function with the right side of these equations, the
hypergeometric function command F2F1 simply evaluates a polynomial
and thus numerical integration is quick. See program FOFC in the
MANS5directory to evaluate the distribution function of ¢ = |p|.

JOINT FIRST AND SECOND ORDER COMPLEX STATISTICS

K. Miller generalizes the above density functions to include the cases
where the means are not zero. Define the complex first order statistics
and the complex second order statistics
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1N

X=-N-2un=X1+iX.z

n=1

1 N

Y==Y v =Y, +iY
N;Z:l 1 2

AR DX = ot - X1-finz_,:|un * =5 Xl

) Wy
W2=-I¢Z |V,,"Y|2=W‘|Y|2

S —

1 - . . . p .

"N X @ -X0 =Y =P +iP = g - XY

The joint density of W, and W,, iW,, W,), is then

N N(Wlwz)(N-z)l‘Z . (

- (O'n‘v1 + o”wz) I 2 )

(N-2)((DET D[rgN2 © N-22N [0, [yW,W,

Let P, = R//W and P, = R/W where W = (W, + W,)/2. The joint density
function fiP,, P,) is identical to f(p,, p,) with N replaced by N - 1.
Define the modulus of the sample correlation coefficient

p-_=X C = [P]?
JW,W,

The density of |P| and C are f{|p|) and flc) with N replaced by N-1.

 

 

filC) =(N - 2)(1 - APVM1 -ON*F(N-1,N-1, 1, |A]*)C)

See program FOFC2 in the MANS5 directory for the distribution
function.

KOLMOGOROV-SMIRNOV TWO-SAMPLE STATISTIC

The Kolmogorov-Smirnov one-sample test compared an empirical
distribution with the true distribution. The two-sample test compares
two empirical distributions Sy(x) and Sy(x). Define the two-sample
Kolmogorov-Smirnov statistic

Dyn = sup|Sy(x) - Sy(x)|

Let the first M observations be X, < X, <. .. £ X,, and define the
empirical distribution Sy(x) by
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0 for x <X,

S,(%) = % for X <x<X., m=12...M-1
1 for X, <x

Let the second N observations be Y, < Y, <. .. <Yy, and define the
empirical distribution Sy(x) by

0 for x <Y,

Sy(x) = % for Y, <x<Y,, n=12...N-1

1 for Y, <x

Commands HIST and CUMX can be used to create Sy(x) and Sy(x)
vectors.

Smirnov first introduced this statistic in 1939. It took over a decade
before its distribution was found even for equal sample sizes.
Command KST2 performs the M = N asymptotic test.

. l MN
MlysIJTw P m DMN < d = L(d)

where L(d) is defined on page 32 and 1 - L(d) is evaluated by command
UTKS. In general, the lower tail distribution can be evaluated as

AM, N)
P(D d =( MN < ) M + N

M

where A(M, N) is computed by the recursion

Am+1,n+1)=Alm+1,n)+ Alm,n+ 1)

with the boundary conditions

AO,n)=A(m,0) =1

where these formulas only apply for m and n non-negative integers and

N N
fi(m -Md) <n«< fi(m + Md)

with strict inequality, and otherwise A(m, n) = 0. This method of
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computation is due to Hodges and is explained in Gibbons. Program
KS2S in MANS5 evaluates this distribution which reproduces most the
numbers in Gibbon’s table taken from Kim (table errors are random).

NONLINEAR CONTROL THEORY DISTRIBUTIONS

Nonlinear communication and control analysis such as Fokker-Planck
solutions give rise to many rather nasty probability density functions
involving various higher transcendental functions. MATHLIB has been
designed to make the evaluation of such densities possible without the
researcher having to make a large effort to write special software. An
example is the phase error density for a phase lock loop

_ exp(Bo + acosd)

flo) = 4n’exp(-nf) [Ly(a)|?
 J:m exp(-By - acosy) dy

where the argument and order of the Bessel function is complex.
Lindsey gives derivations and summaries of these distributions.
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ADVANCED GRAPHICS AND
OTHER TECHNIQUES

INTRODUCTION

This chapter explains some useful techniques that can be used with
MATHLIB and the HP 48 calculator. The programs discussed in this
chapter are located in the MAN1 INTAG and MAN7 WAVE SOLVE
subdirectories. We begin by explaining how to extend the MATHLIB
plotting commands to custom plot applications. Then we cover
advanced TMATCH techniques which provide the capability to perform
rounding of algebraic equations on the HP 48. Finally, we discuss
doing difficult symbolic computations with MATHLIB and the HP 48.

ADVANCED MATHLIB PLOTTING

The MATHLIB plot commands make plotting of functions and arrays
very easy, but it is not obvious how to incorporate this capability into
custom applications. MATHLIB provides the HP 48 with special
compiled library functions which linearly interpolate the input array
and thus behave as if a continuous function was input to the HP 48
function plot software. MATHLIB automatically stores these functions
in the variable EQ in the current VAR directory. While these binary
functions cannot be edited on the HP 48, they still can be used in your

applications. There are three unique plot functions - the ones
associated with PLT1, PLT2, and PLT3. PLTC uses the same
function as PLT2 and the plot with label commands also use the same
functions. We illustrate by example how to use these functions.

39
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Program PLOTS creates a special directory called PLOT and proceeds
to create a user version of PLT1 and PLT3. In particular, PT1 and
PT3 create double sized 90° rotated plots which are ideal for printing
large sized plots with the HP 82240B printer. The size of plot, # 131d
by # 262d, is a good size for the printer. Since the plot is rotated by
90°, the # 262d can be increased within HP 48 memory limitations to

very long X axis plots.

Move program PLOTS to the HOMEor other directory where you want
the PLOT directory created. PLOTS begins by doing simple plots to get
MATHLIB to store the special plot functions into EQ. Then it moves
these functions to a new variable so they are user accessible. When you
run PLOTS, each time you plot the straight line, simply push ATTN to
leave the graphics window and allow the program to continue running

(pushing ATTN outside the graphics window stops the program and you
will have to start again). When PLOTS finishes, the user plot functions
PT1, PT3, and PREST will be created along with the other required
variables and functions. PREST simply changes the size of the plot
window back to the default size # 131d by # 64d. PLOTS can be
generalized for other user plot applications.

ROUNDING ALGEBRAIC EQUATIONS

The MAN1 INTAG subdirectory has two other programs which you may
find useful. TYPEA is simply an algebraic version of the HP 48
command TYPE. It is used by program RNDS. RNDS uses the
conditional capability of the HP 48 command TMATCH to round the
numerical values in equation E to N places. This technique can also be
extended to lists and symbolic matrices.

ADVANCED SYMBOLIC DERIVATIVE TECHNIQUES

This section presents by example techniques for doing difficult symbolic
computations without hanging the HP 48 memory management. Some
techniques have already been discussed on pages 16 and 211 through
214 of the MATHLIB manual. The results of this example are required
to compute rank M wavelet matrices, but here we simply focus on the
evaluation problem ofcomputing the nth symbolic derivative of [d(z)]™!
for some collection of functions d(z). The first derivative is easy and
equals (-N-1)[d(z)]"™¥2d'(z). The next derivative is a little messier and
equals (N+1)(N+2)[d(z)]™V*[d(2)P + (-N-D[d(z)]1™V2d?(z).
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In problems like this and the hydrodynamic flow problem discussed on
page 211 of the MATHLIB manual,it is surprisingly easy to makelittle
mistakes doing these computations by hand. It is also surprisingly easy
to hang the memory manager on any symbolic computer performing
computations such as the problem we are now considering. Program
DERV1 in the MAN1 INTAG subdirectory creates a directory for doing
these derivatives. Move this program to a convenient directory (or
leave it where it is) and evaluate it. It creates a directory called DDIR
which contains 5 programs. Recall DHHI1 to the stack.

'—(D(0,Z2)A-N(2)xD(1,Z)xN(1))'

This is a pseudofunction representing the first derivative of [d(z)]™!
which has a number of interesting properties. The first is invariance
to the EXCO command. You can test this by evaluating EXCO with
this equation on the stack. This property is important because as we
clean up the equation after each successive differentiation, we want to
minimize the size of the expression (relative to the memory manager)
and keep the expression compact for fast evaluation. Pseudofunction

D(N,X) is defined by the program D(N, X)

<« > NX< Dop) o NB X 4 SLIST EVLE > >

which symbolically represents the Nth derivative of d(z) with respect to
argument X. Its defined derivative program is derD(N, X, dN, dX).

<« - N X dN dX <« 'DIN+1,X) EVAL > »

The definition of N is contained in PARTZ and has the defined

derivative derN(N,dN)=0: « - N dN <« 0 » ».

Pseudofunction N(n) = N + n for some to be specified value N. This
notation keeps EXCO from expanding and collecting terms like (N + n).
Now place pseudofunction DHH1 on Level 1 of the stack. Pressing
PARTZ will then create a pseudofunction representing its derivative
which should be stored in DHH2. By this means successive derivatives
can be evaluated. The seventh derivative will require several hours to
compute and is a very large equation.

Pressing DERV2 creates the directory COPT which contains two
programs and the variable N. Program COVT converts the
pseudofunctions DHHKk into equations for evaluation which must then
be stored in COPT as Dk for k = 1, 2, . . . for the wavelet application.
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SIMULATING DIFFICULT COMPUTATIONS

Consider efficiently evaluating the dilation equation

gm-1

sxm® = Y a, s(xm"™! - k)
k=0

given s(x) #0forx =1, 2,... S where x, m, g, and n are integers with

mg=2,3,...,andn=1,2, ... Forexample,let m=3,g=2, and
S = 2. Then the first set of terms correspond to n = 1 and are

s(1/3) = a, s(1) s(2/3) = a, s(2) + a, s(1)
s(4/3) = a, s(2) + a; s(1) s(5/3) = a; s(2) + a, s(1)
s(7/3) = a5 s(2) s(8/3) =0

where we observe that s(3/3), s(6/3), and s(9/3) = 0 are given and thus
not recomputed. After interleaving the values, we have s(x/3) for x =
1, 2,...9 and we are ready to compute the values s(x/9) for x = 1, 2,
4,5, 17,8, ...25, and 26 where again we do not recompute existing

values such as s(3/9). The first few are

s(1/9) = a, s(1/3) s(2/9) = a, s(2/3)
s(4/9) = a, s(4/3) + a, s(1/3) s(5/9) = a, s(56/3) + a, s(2/3)

It is clear that if one can decipher the patterns, dilation equations can
be efficiently evaluated. The trick is of course to get the equations
correct. Program SSUM in the MAN7 WAVE SOLVE directory
simulates these computations using the symbolic capability of
MATHLIB and the HP 48. Equation simulation is a very powerful
technique for debugging difficult evaluation problems.

Given m, g, and n, SSUM first builds a symbolic coefficient list for the

a, coefficients for k = 0, 1,... gm - 1. Program CRN provides the
value of S. Next, the symbolic functions s(x) represented by Sx are
created. Now we are ready to run the simulation. Counter j starts at
zero so m’ = 1. The terms of the dilation equation are then computed
on the stack and placed in a symbolic matrix. The tricky operations
involving the STRN command perform the interleaving operation. The
program then does a HALT so you can examine what has been
computed and see if it is correct. Press CONT and SSUM will compute
the next set of terms up to the input value n. This powerful technique
is useful in numerous applications.
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CONTINUED FRACTION EXPANSIONS

Continued fraction expansions are useful. They look like

 

and are often written as

b + a, 8 8, )
o b+ b+ b+ b, +

Program CFE in the MAN3 ALGB directory will compute a continued
fraction expansion (CFE) of any rational polynomial function. The
inputs are the numerator and denominator polynomial lists N and D,
respectively. The expansion is computed by the sequence PDVD SWAP
PDVD SWAP « ¢ ¢ until |a,| < 1E-10. Observe that the sequence
always terminates. The output is a list of polynomial lists on Level 2
corresponding to the b, polynomials and a list ofnumbers corresponding
the numbers a,. For example, consider realizing an electrical network
for the Laplace transform impedance function

st +10s%2+9

s3 + 4s

 

Z(s) =

2: {{0 1} {0 V/6}
CFE({9 0 10 0 1},{0 4 0 1}) = {0 2.4} {0 5/18} {9}}

1: 1 11 1 0}

which represents the equation

Z(S) =S +

S 1
—_ e —_——

6 24s + 18
Ss

Now the CFE corresponds to removing poles at infinity of first the
impedance function, then the reciprocal of the remaining impedance
function, . . .. The result is a series inductance of 1H, a shunt
capacitance of 1/6F, another series inductance of 2.4 = 12/5H, and

finally a shunt capacitance of 5/18F. For general circuit design, CFE
must be modified so it does not divide out inverse resistances or
compute negative circuit component values.
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To evaluate a CFE, one implements the recurrence

A(s) = b(s)A,_y(s) + a,A,_,(s) B,(s) = b,(s)B,_,(s) + a,B,_,(s)

forn=1, 2, ... N starting with the values

A(s) =1, Ays)=bys), B_(s)=0, Bys) =1

The resulting rational function is then given by Z(s) = Ay(s)/By(s).
Program ECFE performs this algorithm and is the functional inverse
of CFE. These techniques are called the Euclidean algorithm.

POLYNOMIAL GREATEST COMMON DIVISOR

The greatest common divisor (GCD) of polynomials a(s) and b(s) is the
highest degree polynomial d(s) which exactly divides both a(s) and b(s).
If the degree of d(s) is zero (d is a constant), then a(s) and b(s) are said
to be coprime. In the above example, the GCD of the numerator and
denominator polynomials was 9, so these polynomials are coprime. The
first step in the continued fraction expansion of a(s)/b(s) is

a(s) = b(s)q,(s) + ry(s)

where q,(s) is the first quotient (s in the above example) and r,(s) is the
first remainder (6s®> + 9 in the above example). By single stepping
through program CFE, you can follow along. Observe that from the
above equation, any divisor of a(s) and b(s) must also be a divisor of
r(s). Hence, the GCD of a(s) and b(s) must also be the GCD of b(s) and
r,(s). Now we invert and divide again

b(s) = r,(s)qy(s) + ry(s)
r,(s) = 1,(8)qs(s) + T4(s)

To(S) = T4(8)q,(s) + r,(s)

Ty_o(8) = 1y_)(8)qn(s) + ry(s)

ry_i(s) = ry(s)ay,,(s)
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Since the degree of the remainder continually decreases, it must
eventually become zero. The last equation shows that the desired GCD
must also be the GCD of ry_,(s) and ry(s). Since ry,,(s) = 0, the last
non-zero remainder ry(s) must be the GCD of a(s) and b(s). Program
PGCD calls CFE for the continued fraction expansion and selects the
last non-zero remainder. Then it calls PSCAL to scale the final result.

PGCD({9 0 10 0 1},{0 4 0 1})=(1)}

so we see that the numerator and denominator polynomials in the
above example are coprime. For a(s) = 12s? + 10s + 2 and b(s) = 3s® +
10s + 3, then the GCD is 3s + 1.

PGCD( {2 10 12},{3 10 3})={1 3}

Observe that the order of the arguments of PGCD is reversible.

The GCD of polynomials a(z) and b(z), say d(z), can be written as a
linear combination of a(z) and b(z) since

r,(z) = a(z) - b(z)q,(z) = a(z) + [-q,(z)]b(z)
1y(z) = b(z) — q)(2)r,(z) = [-qy(z)]a(z) + {1 + [-qy(2)][-q,(z)]}b(z)

up to ry(z). Thus, there exist polynomials s(z) and t(z) such that

d(z) = s(z)a(z) + t(z)b(z)

Program PGCDI also computes the GCD, but in addition it performs the
above recurrence to compute s(z) and t(z).

3: {-10 -30}
PGCDI({2 10 12}, {3 10 3}) =]2: (-6 -10 -12}

1: {4 10 3}

where the unnormalized GCD is {-10 -30},

d(z) = =30z - 10, t(z) =-1222-10z - 6, s(z)=3z>+ 10z + 4.

Using commands PMPY and PADD, we find that

s(z)a(z) = 36z* + 150z% + 154z® + 60z + 8
t(z)b(z) = -36z* — 150z° - 154z - 90z - 18

Adding these two equations gives the unnormalized d(z) = -30z - 10.
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Observe that the order of the arguments for PGCDI is not reversible.

3: {GCD LIST}
PGCDI({a(z) LIST}, {b(z) LIST}) = 2: {t(z) LIST}

1: {s(z) LIST}

SHIFTING THE CENTER OF COMPUTATION

There are a number of situations where efficient use of the MATHLIB
polynomial commands requires a few tricks. Suppose f(z) is a
polynomial in z and we wish to compute the product fz)f(z™!). It is
clear how to do it symbolically, but this is slow. For example, consider
the product

M+z+221[1+2z'+2%=22+221+3+2z+72°

Since the polynomial commands only consider positive (negative)
powers of z, they cannot directly compute this product. However,
suppose we redefine the problem as follows

22+ 22+ 2[22 +z+ 1] =22 + 22° + 32* + 22° + 26

Now this is a product which PMPY can compute since it contains only
non-negative powers of z.

PMPY({1 1 1},{111})={123 2 1}

and we simply need to note that the result should be multiplied by z2,
not z™*, since we used another trick, omitting the two leading zeros in

the first argument and thus shifting it back by z2. Thus,

z2{1 +z+221[22+2z+11})=2z2+22'+ 3 + 2z + 2°

This is called shifting the center ofcomputation. The minimum shift is
the minimum of the degree in z and the degree in z7'.

A more sophisticated example is computing the composition of the
polynomial fiw) and the polynomial w = z + 2 + z”'. Basic polynomial
composition computations was covered on page 450 of the MATHLIB
manual. Program Y—-ZT in the MAN7 WAVE SOLVE directory
provides an easy example.
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SYMBOLIC TRICKS

There are a number of tricks which can be useful in large symbolic
computations. Ultimately, computational speed on any computer
depends on the cleverness of the user. See MAN7 WAVE SYMB.

Suppose we have computed a large symbolic polynomial in z" containing
dozens of symbolic coefficients. We would like to collect all the
coefficients of each power of z together. In particular, we would like to
create a symbolic coefficient list. Maclaurin series command CLIST is
one approach, but because the coefficients are symbolic and the
equation is large, the best one can hope for is not to run out of memory.
It is very slow. Consider the following program SPTLR

< > PN <P {z°&0 '&0} TMATCH DROP EVAL DUP

{}+ EL<«1NFORJ'L P 'z '&N ~ 0 &N J # 3
—LIST TMATCH DROP EVAL E - COLCT 'z J ~ 1 2
—LIST TMATCH DROP EVAL STO+ NEXT L > > »>

where P is the symbolic polynomial in z" forn =0, 1,... N, and N is
the degree of the polynomial. The program begins by computing the
coefficient of z° = 1. The TMATCH command replaces all occurrences
of z" for n > 0 with the value of zero. EVAL then gets rid of all those
terms leaving the ones we want. These are then stored in coefficient
list L and also in E. Then we play the same trick ford =1,2,... N to

isolate the coefficients with the additional steps:

1. The coefficients of z° will always be included in the isolated
equation. E - COLCT gets rid of them.

2. After isolating the terms we want, we then must get rid of
the z" factor. We accomplish this by substituting 1 for z".

The result is the desired polynomial coefficient list. For those of you
who have not gotten around to reading the HP 48 manual, & and &
followed by other characters define wildcard names relative to the
TMATCH command. The above program only works with the wildcard
symbols as written.

To quickly multiply a large polynomial in z by z™, isolate the z° terms
and multiply by (z" - 1). Push EXCO. Use < { 'z"&' 'zA(&+m)'}
TMATCH DROP EVAL > for the other terms and combine. Now use
COLCTto get rid of the unwanted z° terms which are not times z™.
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One of the general principles discussed on page 16 of the MATHLIB
manual, is that of minimizing what is on the stack and in local
memory. The following version of MULTI (see page 569 of the HP 48
owner’s manual) that we call BMLTI uses global memory instead of
stack memory, to apply program P to a stack object.

< > P <« 'boogd’ STO DO oooo P EVAL oooa QOVER 'oooog’

STO UNTIL SAME END ocooo 'sooc’ PURGE > »

where o is the o LEFTSHIFTED 6 key. Still applying the same
principle, program BEXCO is like SEXCO, but may be faster in large
applications. Input M is a symbolic matrix.

< > M <« SSIZE DUP EVAL x - S N « M SOB— DROP
N —LIST 'TEMP' STO 1 N FOR J TEMP J GET "EXPAND "
J + 3 DISP <« EXPAN » BMLTI "COLLECT" J + 3 DISP <«
COLCT > BMLTI 'TEMP' J ROT PUT NEXT TEMP 'TEMP

PURGE OBJ— DROP S -»SOB » > »

The program converts M to a list which it stores in the global variable
TEMP. Then it recalls M to the stack, one element at a time, and first
expands it completely, then collects it completely using BMLTI. In
some applications, we only want to get rid of parentheses, and not to
expand z® into zxzxzxzxzxzxzxz. The following two programs can be
useful. With equation E on the stack, P-S

< 5> E < E {'z"& 'Z(&)'} TMATCH DROP > >

will substitute pseudofunction Z(n) for z" so that EXPAN cannot
expand it. The back substitution is performed by S—P.

< > E <« E {'Z(&) 'z°&'} TMATCH DROP > >

By using « P—-S » as the program argument to L1F1 and S1F1,
these substitutions can be applied to lists and symbolic matrices.

Divide and conquer is another basic principle. Use these tricks to break
your problem into pieces. An example of breaking large symbolic
integrals into pieces is given on page 212 of the MATHLIB manual.
Store the pieces in global memory as BEXCO does, and operate on each
piece at a time. For example, suppose you have a nasty equation and

half the terms include the SIN function. Then the TMATCH
substitution { 'SIN(&)' 0} isolates the terms without the SIN function.
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WEIERSTRASS ELLIPTIC
FUNCTIONS

INTRODUCTION

This chapter explains the basics of the Weierstrass theory of elliptic
integrals. It is equivalent to the Legendre theory discussed in Chapter
9 of the MATHLIB manual. The seventeen Weierstrass elliptic function
and parameter conversion programs in the MAN1 subdirectory WEF
are also discussed.

REDUCTION OF ELLIPTIC INTEGRALS

Consider the elliptic integral I = JR(x, y) dx where y* = a,x* + a,x® + a,x
+ a;x + a,. Legendre’s theorem states that integral I can be expressed
as a linear combination (with constant coefficients) of integrals of the
following types:

dx aOX2/2 + a,x dx

f y dx, I = f (x - oy
I, = 5 , =

where ¢ is a constant.
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LEGENDRE ELLIPTIC INTEGRALS

If y* has the Legendre form y* = (1 - x*)(1 - k’?), then I, = F, I, = %(F
- E), and

d(x?) 1- - -n
Is f2(x2 -eHM1 - xHA -k=xHY®
 

where the first integral on the right can be evaluated in terms of
elementary functions and F, E, and IT are the Legendre elliptic
integrals of the first, second, and third kind, respectively. Elliptic
integrals of the first and second kinds have exactly two independent
periods. Elliptic integrals of the third kind have three independent
periods.

WEIERSTRASS ELLIPTIC INTEGRALS

In the Weierstrass form, y* = 4x* — g,x — g,, and the elliptic integrals
of the three kinds are

dx

L= f(4x3 — 82X -~ gs)”

dxL =
3 J.(x - o)(4x?® - gx - g)*
 

Let o and o' denote a pair of complex numbers with IM(w/®n) > 0. We
call  and o' the half-periods of an elliptic function f(z) = iz + 2Mo +
2Nw') where M and N are integers. The study of elliptic functions f(z)
can thus be reduced to the study of their properties over one period in
two dimensions, which is called the fundamental period parallelogram.
Let W = 2Mow + 2Nw'. Then the sums over all M and N excluding the
M = N = 0 values are g, = 60XW™ and g, = 140ZW° which defines the
invariants g, and g,. The discriminant A is the number A = g,® - 27g.%.
We consider only the cases where g, and g, are real, which covers most
applications. Thus, A is real and the formulas are dichotomized by A
>0 and A < 0. The A = 0 case is discussed by AMS 55, but the software
does not have this case programmed since it can be approximated by A
equals a small number. Homogeneity relations also allow the
restriction to non-negative g,.
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Now y* = 0 = 4e® - g,e - g, has three roots which we denote by e_ for n
=1, 2, 3. We label them to be unique by defining e, to be real and non-
negative unless g; = 0 when e, = 0. Root e, = -a + if where a > 0 and
B > 0. Root e, = CONdJ(e,) = —-a - ip.

Now that we have the basic parameter definitions in place, I can tell

you the good news - that you probably will not need to understand
them. Let o denote the parameters », ®, SIGN(A); G denote the
invariants g, and g;; and E denote the roots e,, e,, and e;,. MATHLIB
offers the following programs for parameter conversion between sets:
G-E, E-5G, 0-G, o-E, G-, and E-»wn. Thus, given the parameters
of either set, you can convert to the other sets.

In addition, conversion to the complementary modulus k' is available
with the programs w—KP, GoKP, and E-5KP. Calculation of the
discriminant A is performed by G—A and E-5A. Given w and o', ©>Q
computes the complex nome q. Program nOFo is an internal program
used in the calculation of the Weierstrass sigma function.

THE WEIERSTRASS FUNCTIONS

The Weierstrass sigma function o(z |0, ©') = 6(z; g,, g;) is evaluated by
oOFZ. The Weierstrass zeta function {(z|w, ©') = {(z; g,, g;) = 6'(z)/o(2)
is the logarithmic derivative of 6(z|w, ®') and is evaluated by ZOZG.
The Weierstrass g(z|o, 0') = 9(z; g, g,) = -{'(z|0, ©') is evaluated by
POZG. The fourth function is the derivative g'(z|o, ®') = 9'(z; g,, g;)
which is evaluated by PPZG. These programs use the equations on
pages 649 and 650 of AMS 55.

Returning to the above integral I = JR(x, y)dx, let x = p(z; g,, g;) and
y = 9(z; g, g). Since [p’(z))* = 4p%z) - g,0(z) - g,, the integral I =
IR[g(2), 9'(z)] p’(z)dz where the integrand is a rational function of g(z)
and &’(z) and may be evaluated in terms of Weierstrass zeta functions
and their derivatives.

For more details, see Chapter 18 of AMS 55 and the references of

Chapters 9, 10, and 11 of the MATHLIB manual. Erdelyi has a good
explanation ofhow one evaluates elliptic integrals with these functions.
Gradshteyn and Ryzhik give a nice summary of the properties of elliptic
functions.
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EXAMPLE COMPUTATIONS

The input-output stack conventions for the set conversion programs
G-E, E-5G, 0-G, 0-E, G-oo, and E-o is

3: 3: e
2: © 2: e, 2: g,

1: SIGN(A) or A 1: e, 1: g,

These are also the input conventions for GSKP, E-KP, G-A, E—A,
and ®—>Q. The arguments for »>KP(w, ®') are ® and ®'. Some
numerical examples are:

Given o = 10 and o' = 11i, ®—>E(10, (0,11), 1) gives the values e,
1.68430411404E-2, e, = -2.16625762695E-3, and e,
-1.46767835133E-2 where the 1 defines the sign(A) > 0. As a check,
now push E—o which gives o = 10, o' = (0,11), and A = 8.99023187289
E-10. Now push 0—G to get g, = 1.00757736252E-3 and g, = 2.14200
999934E-6. Now as an accuracy check push G-ow to get o =
10.0000000446, o' = (0, 10.9999999044), and A = 8.99023219043E-10.

Similarly, for A < 0, »—E(10, (0,11), -1) gives e, = (-2.16625762695E-3,
3.08425890166E-2), e, = 4.3325152539E-3, and e; =
(-2.16625762695E-3, -3.08425890166E-2). Pushing E—G yields g, =
-3.74874912371E-3 and g; = 1.65668099372E-5. Now G—A gives the
value for A = -6.00920194277E-8.

The stack conventions for POZG, PPZG, ZOZG, and cOZG are all the

same. For example, POZG(z, g,, g;) evaluates @(z; g,, g;). Thus,
POZG( (.07,.1), 10, 2) = (-22.9745001048, -63.0532328498) and POZG
((.1,.03), -10, 2) = (76.5883327117, -50.5037916911).

0—Q(10, 20i, 1) = 1.86744273171E-3, 0-Q(5, 7i, -1) = (O,
110901278363, PPZG((3, 2), w—>G(5, T7i, -1)) = (-6.91819875372E-4,
.047713052692), c0ZG((.4, 1.3), 8, 4) = (.278079995729, 1.27278494989),
c0ZG((.8, .4), 7, 6) = (.814657646488, .388194735751), ZOZG((9, 19),
0—G(10, (0, 20), 1)) = (.0743949200186, —.000468795788), v—KP(10,
(0, 20)) = .985171431018, and w—KP(5, (0, 7)) = .906274901297.

Please note the abuse in notation in the above PPZG and ZOZG
examples. If you enter what I have written algebraically, the HP 48
will complain over wrong argument count. If you simply enter the
arguments and push the WEF menu keys, everything is fine.
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WAVELETS AND FILTER
BANKS

INTRODUCTION

The subject of wavelets has been studied for several years by the
mathematics community, as an alternative to the more traditional
Fourier based analysis techniques. The close connection between
multirate filter bank theory and wavelets has resulted in much interest
in wavelets by the signal processing community. While the ink is not
dry on hundreds of research papers, this and the next two chapters
attempt to present a partial overview of the subject with as little
mathematical eloquence as possible, and with as many detailed steps
in the derivations as seems reasonable.

Wavelets can be a difficult subject to learn and use if one does not have
the required symbolic, polynomial, and digital processing tools in place.
Results are often stated in the most complicated way possible and some
emerging texts on wavelets, while claiming to be introductions to the
subject, read more like highly specialized research monographs.

Before studying Fourier approximation theory, one normally learns
what a sine function is. This is our approach in the next 3 chapters.
Over 70 wavelet related programs are presented.

63



54 WAVELETS AND FILTER BANKS CH9

One of the mistruths that pervades the wavelet literature is that they
are easy to compute. Compared with even a hypergeometric function,
they are not. Classical orthogonal approximation theory involves
functions such as sines, cosines, and polynomials in z" which in today’s
computer technology are easy to compute using power series and other
expansions. Now we have to deal with translations and dilations of
functions which are evaluated by a new set of digital algorithms. Sines
and cosines are numerically orthogonal to more than 10 digits using
simple Chebyshev approximations. This is observed with DFTs.
Getting 10 digit orthogonality between a numerically approximated
Daubechies scaling and wavelet function, by comparison, requires an
extraordinary amount of computation. See pages 66 and 101.

All orthogonal and biorthogonal wavelet bases with compactly
supported wavelets are special cases of FIR filter bank theory. The
orthogonal case is the Daubechies phase nonlinear approach and the
biorthogonal one is the phase linear approach wherein much of the
orthogonality may be given up. Cosine modulated filter banks and
other techniques are currently being investigated.

This chapter continues the discussion of wavelets which began in
Appendix G of the MATHLIB manual. The software we will be
discussing is located in the WAVE subdirectory of the MAN7 directory.
The first subdirectory in WAVE is FFT2D which contains the two
dimensional FFTs discussed on page 565 of the MATHLIB manual.
The next three directories are the wavelet program directories.

We begin by completing the discussion of wavelet coefficient matrices.
In particular, we focus on the 2-band case in this chapter. Since the
scaling and wavelet function orthogonality for this case is built on the
concept of quadrature mirror filters, we review it in detail. Then we

examine methods of computing scaling and wavelet functions. Next we
consider orthogonal and biorthogonal perfect reconstruction filter banks.

The 2-band case is, in essence, a basic lowpass-highpass frequency
decomposition. The scaling function is the lowpass filter and the
wavelet is the highpass filter. Chapter 10 then expands the theory to
the M-band case, where the scaling function remains the lowpass filter,
but now we have a collection of wavelets providing bandpass filters.
Chapter 11 then addresses wavelets and approximations.

The following discussions assume intimate knowledge of z transforms.
We list numerous relationships which are foundational to the theory.
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QUADRATURE MIRROR FILTERS

Let h,(n) be a FIR filter with N real non-zero coefficients. We define
the corresponding quadrature mirror filter (QMF) as hy(n) = (-1)"h,(n)
forn=0,1,...N - 1. The z transform of hy(n) is

oo

Hyz = 3 z"hm = 3 z™(-1rhyn) = Hy(-2)
n= —oco n=—oo

The Fourier transform of these filters can be computed by evaluating
z on the unit circle as z = e. When plotted over » €[0, ], Hy(e") =
H,(-€e') is the mirror image of H,(e*). Define hy(n) = h,(N-1-n) to be
a time reversed h,(n). Then its z transform is

N-1 N-1

Hyz) = Y, z™hyn) =) z"h(N -1-n)
n=0 n=0

N-1
=z®DYy z"h(m) =z NP H((z™?)

m=0

which apart from the delay z*¥ -7, is like H,(z), but a function of z’
instead of z. Also define h,(n) = (-1)'™h(N - 1 - n). Then

N-1 N-1

H(z) = ) z"h() =Y z™(-D)¥!"h(N -1 -n)
n=0 n=0

N-1

- z—(N-l) E Zm(—l)mhl(m) - z-(N-l) Hl(_z —1)

m=0

~«N-1which apart from the delay z , is like H,(z), but a function of z*
instead of z. Thus,

Hy(e') = e~ P H(e™) and H,(e") =N~V H,(-e™™).

Noting that -1 = €', we also have that H,(e'”) = H(e'“*"),

e~ PHy(e") = H,(e™) = H,'(e'),

eV~ VH,(e") = H(e“"*™) = H,(e').

Hence, |Hy(e*)|* = |H,(e)|? and |H,(e™)|* = |Hy(e")|%
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PARAUNITARY CONDITIONS

Recall that the discussion in Appendix G presented conditions on the
coefficient matrix A such that P(z!)P(z) = cI. These conditions were
summarized at the top of page 571. After deriving a few relations, we
will revisit these conditions. Define H,(z) = H,,(z) + z"'H,,(z) where

N2 N2-1

Hy= 3 h@n)z™ H,= Y h(@n+ 1z (D
n=0 n=0

where we will assume that N is an even integer. Observe that H,,(-z)
= H,,(z) and H,,(-z) = H,,(z). Then we have the relations

H,z)H(z™') = H(z)H,;(z™") + H,,(2)H,,(z™)
+zH(2)H,,(z™") + z7'H,,(z)H,,(z ™)

H,(-z)H,(-z"') = H((z)H,((z™") + H,,(z)H,,(z ™)

-zH(z)H,,(z™") - z'H,(z)H,(z ™)

Adding these equations gives

HI(Z)HI(Z 1) + Hl( -Z)Hl( -z 1) (2)

= 2H,(z)H,(z"") + 2H,(z)H,,(z ™)

so it follows that

H,(z)H,(z) + H,(z)H,(2)

= 22 NU[H,(z)H,(z™") + H,(z)H,(z™)]

and that the following identities hold

H,(z) + Hy(z) = 2H,,(2) H,(z) - Hy(z) 2z 'H,,(z)

H,(z) + H(z) = 2z"NVYH,(z™) H,(z) - H,(z) 97 -N-Dy Hn(z -1y

Now consider the paraunitary conditions on the coefficients of h,(n).
Leta,’=h(n)and a,' = h,(n). From page 571 of the MATHLIB manual
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Y &, a’,=¢d,.8, a@a=-a", a’=0fork<Oandk>2¢g
k=-o

We show that theseconditions imply that H,,(z)H,(z"") + H,,(2)H,,(z™)
= 2 and thus |H,,(e*)|* + |H,,(e)|* = 2 for real coefficients.

Hy(z)H,(z ™) + Hy(2)H,,™) =
N2 NR
E Z hl(2m)h1(2n)z'2(m’“) (3)

m=0 n=0
N/2-1 N/2-1

+Y Y hC@m + Dh(@n + 1)z2="
m=0 n=0

Let m — n = k. Then this equation can be written as

NP2
Y z%*| Y hi2k + 2n)h,(2n)
k n=0

Nr2-1 (4)

+ Y h(2k +2n + Dh(2n + 1)
n=0

N-1

=Y z%* Y h(2k +nh(n) =Y z%*25, =2
k n=0 k

Thus, if the filter coefficients satisfy the paraunitary conditions, we
have from (2) that

H,2)H,z") + H(2)H,z™) = 4 )

where we have used the identity

H,(z)H,(z™") = 2z NVH(-z )z N"'H,(-z) = H(-z")H(-z) (6)

Consequently, define the filter vector H'(z) = [H(z) H,(z)]l. Then we
have proved that H(z})H(z) = H¥(-z")H(-z) = 4.

Now h,(n) is the scaling coefficient vector and h,(n) is the wavelet
coefficient vector. Observe that by construction for all k eI

N-1

Y h,(2k + n)h,(n)
n=0
N-1

=Y (-1)ZN1h2k + N - 1 - n)(-D¥'"h(N - 1 - n)
n=0
N-1 N-1

=Y (-1D)*m™h,(2k + m)(-1)"h,(m) = ¥} h,(2k + m)h,(m) = 25,
m=0 m=0
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N-1 N-1
Y h(k +nhm =Y h(@k + n)(-D¥'"h(N-1-n)=0
n=0 n=0

so the wavelet coefficients also satisfy the paraunitary conditions.

Hence, the orthogonality condition on the scaling vector h,(n) gives rise
to paraunitary filter banks with perfect reconstruction. The wavelet
vector is derived from the scaling vector in a way that the orthogonality
is preserved. It is the nature of the QMF that makes the scaling and
wavelet vectors orthogonal. When we get to the biorthogonal case, you
will observe that this latter orthogonality due to the QMF is all that is
left.

Now we depart from the theory and learn to compute wavelet matrices
as well as scaling and wavelet functions. Then we will return to it.

DISCRETE HERMITE TRANSFORM

The first page of the WAVE HAAR menu contains the programs given
in Appendix G of the MATHLIB manual. On the second page of the
menu, DHPM uses DHP to build the discrete Hermite transform
matrix.

EXAMPLE WAVELET MATRICES

Programs WD4 and WD6 construct 4 and 6 coefficient wavelet matrices.
See page 571 of the MATHLIB manual for definitions. The arguments
are angles in radians and the equations are from Tewfik [10]. The
resulting matrices always satisfy the wavelet matrix conditions, but not
necessarily the Daubechies regularity condition which we will examine
below. WD4 constructs a genus 2 matrix and WD6 constructs a genus
3 matrix. Genus is Daubechies regularity plus one. Programs R2G4,
R4G4, R4G8 construct example flat wavelet matrices with the indicated
Rank and Genus.

Program QMFL in the WAVE directory computes the QMF coefficients
of h,(n) given the scaling vector list h,(n). Program QMF uses QMFL
to construct the filter wavelet matrix A whose first row is the h,(n)
coefficients and whose second row is the h,(n) coefficients. The sign of
the second row is arbitrary. By using -h,(n), the plots of the wavelet
functions are the same as in Daubechies’ paper [3].
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SINDX is a symbolic version of command EINDX. SDEC, SINTP, and
SCMB are symbolic vector versions of the commands VDEC, VINTP,
and VCMB. LNLV and LDLV are special list interleave and
deinterleave programs used internally by the Pollen product program
discussed below.

Returning to the third page of the WAVE HAAR subdirectory, program
TROW will test the orthogonallity conditions of any wavelet matrix.
The inputs are the matrix, the first row number, the second row
number, and the offset. TESTV tests certain regularity conditions.
SWD4 and SWD6 are symbolic versions of the first row of WD4 and
WD6, respectively, except for a normalization factor. TRWS is a
symbolic version of TROW. Examples are given below.

DAUBECHIES’ D, AND Dy, COEFFICIENTS

Daubechies’ coefficients, denoted by D,,, have the property that for each
g, Hy(z) = [1 + z7'¥Q,(z). This is required by her regularity condition.
Thus, the polynomial {1 2 1} must divide the D, coefficients and {1 3
3 1} must divide the D coefficients. As our first example, let us
compute angle 6 such that WD4 will compute the D, coefficients given
on page 571 of the MATHLIB manual. The program

< SWD4 {1 2 1} PDVD DROP »

symbolically divides the output list from SDW4. Since the remainder
must be zero, we immediately obtain the equation 2 — 4C = 0 where C
= cos 0 and S = sin 6 in the SWD4 coefficient list. Thus, cos 6 = 0.5 so
0 =1/3. Nowletustryit. « p 3 / WD4 > computes Daubechies’ D,
coefficients. The coefficients in her paper are these divided by v2.

The orthogonality conditions may be tested using TROW. The
programs: « M 1 1 O TROW >, « M1 2 O TROW », and
<M 2 2 O TROW » test the orthogonality of the first row with the
first row, the first row with the second row, and the second row with
the second row, respectively. Matrix M is the output of WD4 and O
defines the offset equal to RxO where R is the rank of M (the number
of rows) and O is an integer. Other example wavelet matrices can be
tested similarly. TRWS allows you to test the symbolic coefficients
output by SWD4 and SWD6. RSUM can be used to verify the linear
conditions stated on page 571 of the MATHLIB manual.
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Except for division by a factor of 4, SWD6 computes the first row of the
genus 3 wavelet matrix output from WD6 using the Pollen product
program in the SYMB subdirectory. It may not run if you change the
structure of the WAVE directory. For this 6 coefficient system, there
are two angles which must be specified. Define C = cos 0,, S = sin 0,,
D = cos 6,, and T = sin 6,. The program

< SWD6 {1 3 3 1} PDVD DROP »

symbolically divides the output list from SWD6. Since the remainder
must be zero in the case of Daubechies’ coefficients, we have the
equations:

-4+8CT-85D-8C+4S+8D -4T =0

-12 + 16CT - 16SD - 24C + 8S + 24D -8T =0

-8+ 8CT -8SD -16C +4S + 16D - 4T =0

Subtracting the third equation from the first gives 4 + 8C - 8D = 0 so
we obtain the relation D = C + 0.5. With the remainder on Level 1 of
the stack, type in {D 'C+.57 ENTER MATT SEXCO to make this
substitution and obtain the simplified equations

-8CS +8CT -4T =0
-16CS + 16CT - 8T =0
-8CS + 8CT -4T =0

which are the same equation, CS = (C - .5)T, repeated three times.
Now

T =y1-D2 =y1 - (C + .5 S =y1-C?

so [CSP? = CX1 - C?) = (C - .51 - (C + .5)’] which reduces to the
quadratic equation C* - 2C + 0.375 = 0. The program

 

< {375 -2 1} 0 1E-10 100 AROOT »

will compute the root vector [.209430584958 1.79056941504]. The first
root is the only feasible answer so 0, = 1.35980373244 and 6, =
-.782106384744. Using these angles, WD6 will compute Daubechies’
coefficients (the ones in her paper are divided by v2). Use TROW and
RSUM to check the conditions. Tewfik’s entire paper is on computing
good scaling vectors without Daubechies’ regularity condition.
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DAUBECHIES’ REGULARITY CONDITION

Daubechies’ regularity condition is that the filter H,(z) have as many
zeros at —1 as possible. We have already exploited this fact in the
above examples where we noted that H,(z) = [1 + z7'¥Q,(z). In Fourier
transform notation this is Hy(e*) = [1 + e7]*Q,(e”) so H,(e') has a zero
of order g at ® = n. This is equivalent to the sum (see page 106)

2g-1

Y -D)"n™hm =0 m=0,1...g-1
n=0

Program TESTV computes this sum. The D, coefficients satisfy this
equation for m = 0 and 1. The Dcoefficients satisfy it for m < 2.

COMPUTING DAUBECHIES’ SCALING VECTOR D,

Now we will compute Daubechies’ coefficients in the general case. The
program D2G in the WAVE SOLVE subdirectory does this computation.
The argument of D2G is the genus g = 2, 3, . . .. From Daubechies’
paper [3], we need to solve the equation

g-1 _ 1 1 k

Py) = Q@Qeh =% [E 1 K| —gazy| @
= k 2 4

for Q.(z) where

_ 1

y=3
I 1 1

z+z) l1-y-= *qE (z + z‘l) (8)

A
J
\
H

and P,(y) is the solution of the Bezout equation

(1 - yPEP(y) +y*P(1 -y) =4 9)

Observe that y(z = €*) = sinf(w/2) and 1 - y(z = €*) = cosX(w/2).
Program QOZ1 illustrates the slow inaccurate brute force solution. It
computes the composition of the P(y) polynomial with the y polynomial
in z. Then it computes the roots and chooses the minimum phase ones.
A better approach is to observe that if we solve for the roots of P,(y)

Py)=cy-r)ly-r)...(y-r,) ceC
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then the roots in z can be computed from

y=—%(1-z‘1)2=rn n=01...g-1 (10)

for each of the y roots. This is equivalent to solving the quadratic
equation 1 + (4r, - 2)z”! + z2 = 0. The minimum phase roots are given
by the equation

zn'l=1-2rn+2\/rnz-rn n=01...g-1

Program QOFZ performs this calculation. Since QOFZ solves a
polynomial of degree g — 1, instead of degree 2(g — 1), the solution is
both faster and more accurate than the approach in Daubechies’ paper
which is implemented by QOZ1. Given these roots, we then multiply
by [(1 + z!)/2]® (which is computed by MOZ) and normalize the
resulting coefficients. Program QMF will construct the wavelet matrix
and you are ready to test the matrix with the WAVE HAAR programs
TROW and TESTV.

COMPUTING THE SCALING AND WAVELET FUNCTIONS

Let the scaling function be s(x) and the wavelet function be w(x). Then
s(x) and w(x) are completely determined from the wavelet matrix

 

A= a a; - a2g-l]

bo b1 b2g-1

by solving

2g-1 2g-1

sx) = Y a,s(2x - k) w(x) = Y b,s@x - k).
k=0 k=0

MATHLIB uses the elegant approach suggested by Strang [9]." The
scaling function equation can be written for g = 2 as the equation

' Programs for implementing Daubechies’ computational method [3] are
given in Chapter 11.
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l:s(l)} a; 89/g(1)
= s(0) =s(3) =0

s(2) a3 a,5||s(2)

and similarly for g = 3 as

s(1)| (21 8 0 0lyq)

2 a a 2s()= 3 8 &, 85||s(2) s(0) = s(5) = 0

s(3)| |a; a, a; a,||s(3)

s(4) 0 0 a, a,|ls(4)

Program SMAT sets up the matrix. Now the linear condition on the
scaling vector coefficients can be written as a, + a, + . . . a5,;,= 1 and
a, + ag +...8a,_; = 1. Thus, the sums of the values in each column of
these matrices is 1. It follows that [[1 1 ... 1]]is a left eigenvector of
these matrices corresponding to the eigenvalue A = 1. Hence, the
solution of these equations is simply the right eigenvector for A = 1.

Program SSOV solves the SMAT output matrix for the right eigenvector
corresponding to A = 1 using the power method. If the matrix has
several eigenvalues clustered near one, the solution may never converge
because the power method tends to have problems with repeated
eigenvalues. If SSOV does not converge, you may either use SCHRD
or try modifying the program to solve for the eigenvector corresponding
to 1 + € where € is a small number less than the required precision.

WSOV calls these two programs and then uses the s(x) solution to
compute the initial values of w(x) using for g = 2 the equation

[w(l)} {bl bo} {s(l)} O mw(3)=0
= W =W =

w(2)| |bs by||s(2)

and similarly for g = 3
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9 b. b, b, bw(2) _ (P P2 D1 Bo s(2) w(0) = wi5) = 0

w3)| |b; b, b, by||s(3)

w4)] |0 0 b, b,|s4)

Once these initial solutions are computed, SOVN uses recursion to
compute the values in between by the formulas (also see page 42)

2g-1 2g-1

sx/2) = Y} a.sx - k) w(x/2) = Y bys(x - k).
k=0 k=0

Observe that these are compact support scaling and wavelet functions
having the same support as the wavelet matrix scaling and wavelet
vectors, 2g — 1. The inputs to SOVN are the wavelet matrix, ¢ > 0
which sets the convergence precision of the eigenvector solution, and n
which defines the resolution. The output is a 2 x 2™'(2g - 1) + 1
matrix. The first row is the scaling function and the second row is the
wavelet. The below program computes the D,, case and plots first the
scaling function and then the wavelet. Then it plots their spectrums.

< 5 D2G QMF 1E-10 4 SOVN M—-RL OBJ-— DROP SWAP
DUP2 PLT1 NEG PLT3 128 TWIDL DROP OVER 128 REDN
OVER 128 FFT VABS HALF1 PLT1 3 PICK 128 REDN

SWAP 128 FFT VABS HALF1 PLT3 »

WAVELET ORTHOGONALITY RELATIONS

Now that we have computed a scaling and wavelet function, let us
examine the consequences of the conditions placed on the scaling and
wavelet vectors. Let ¢ denote the space of absolutely square
summable real sequences o, where it is understood that n eI and finite
sequences are zero filled so that o, is well defined for all n. Define the
norm of that space by

172

[y = [}: Ianlz] < e

where it is understood that the summation is over all n € L Similarly,
define the norm of a real function f by
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172
< oo1611, = |[7 0P dx

 

which is commonly called the L?> norm. The ¢ and L symbols are used
because these are Lebesgue integrals and norms.

Consider the consequences of the scaling vector coefficient conditions
combined with the dilation equation on the integral

f_: s(x - j)s(x - k) dx

- 7% a.s@x -1 -m ¥ a, sCx - kI - n) dx
= %EZ a, a, fws(2[x - j]1 - m) s2[x - k] - n) 2dx

—o0

for jk eL Definer =k - j and let n = 2r + m. Then we have

1 .
Y ¥ a, 8.,5%k - j] - m) 2dx

m rw=j-k

Now if s(x) € L?, then the integral is finite. Consequently,for j # k, the
original integral is zero since the coefficient sum is zero for j # k. Thus,
the scaling function is orthogonal to its integer translates.

I: s(x - j) s(x - k) dx = |[s]]; 8,

where §,, is the Kronecker delta function. Next consider the wavelet.

f_: w(x - jw(x - k) dx

- f_: Y b,s@x-jl-m) b, sx -kl -n)dx

- %EZ b, b, [s(2lx - j] - m) s(2x - k] - n) 2dx

for jk eL Definer =k - jand let n = 2r + m. Then we have

1 o
7L Xbyb,[Ts%elx - ) - m) 2dx

m r=j-

so if s(x) € L?, the integral is finite and equals ||s(x)||,>. Noting that

E bm b2r+m = E (—l)mam (_1)2r*ma2r-om = E ama‘lr*m

it follows that the wavelets are also orthogonal to their integer
translates.
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f_: wix - j) w(x - k) dx = ||s|[; &,

Finally, the orthogonality between w(x) and s(x) follows from

f_: s(x - jwx - k) dx

- [7Y a,s@x -j] -m) ¥ b, s@lx - Kl - n) dx

—;-ZE a_b_ J‘_:s(2[x - jl - m) s(2[x - k] - n) 2dx

so by the same argument

fw s(x -j)wx -k)dx =0

LINEAR CONDITIONS

The integral of the dilation equation is consistent with the linear
condition placed on the scaling vector coefficients

f: s(x) dx = f_: Y a, s(2x - m)dx

= %g a, I:s(2x - m) d(2x) = —;—zm: a, f_: s(x) dx

Since | s(x) dx # 0, we can divide both sides of the equation and obtain
the linear condition on the scaling vector coefficients

Y a, =2

Similarly,

f_: w(x) dx = f_m Y b, s2x - m) dx

= %zmj b, f“s(2x - m) d(2x) = %§ b, f“s(x) dx = 0

Since the sum of the wavelet vector coefficients is zero, the integral of
the wavelet is zero. As a quick check, compute the D, scaling and
wavelet functions with SOVN with n = 5. Using command RSUM,the
scaling vector sums to 64 and the wavelet vector sums to —-1.7E-10.
These sums approximate the above linear condition integrals. The
number of values is 193. Use the sequence: 1 RSPLT DOT to check
the orthogonality of the scaling and wavelet functions. The result is
.04. Now compute the row norms with RABS2 to get about 64. Thus,
the orthogonality of the approximated functions is v.04/64 = .025 (32
dB), which is less than 2 digits. This justifies my comments on page 53.
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COMPUTING INDIVIDUAL VALUES

Program VALUE in the WAVE SOLVE menu will extract values from
the scaling and wavelet vectors output by SOLN. The first argument
V is the vector. The second argument N is the support which equals 2g
- 1. The third argument is the value of x. The program computes the
value of the function at x MOD N. For example, given the wavelet for
D, with n = 5, VALUE(V,3,1) = .3660254037 and VALUE(V,3,2) =
1.36602540374. Since Daubechies effectively divides her wavelet
coefficients by ¥2 and negates them, her wavelet values differ by -v2.

PERFECT RECONSTRUCTION FILTER BANKS

We now examine in more detail the properties associated with perfect
reconstruction. Form the 2 x 2 aliasing component matrix as [8]

H,(z) H( -z)}
A(z) = [H(z) H(-z)] =

H,(z) H,(-2)

 

The determinant of A(z) is (see page 57)

DET A(z) = H(z)H,(-z) - H,(-z)H(2)
- HI(Z)('Z)_(N'DHI(Z —1) - Hl(-Z)Z —(N-l)Hl( -z —1)

= -z NP[H(z)H(z™") + H(-z)H,(-z )]
= -4z -(N-1)

simply a constant times a delay. This is a fundamental property of
perfect reconstruction filter banks. Similarly,

, 1
B(z) = A(z) —

1 1 _ fi HIO(Z) Z _IHH(Z)

fi 1 -1 -zNVzH(z7Y) z NDH,(z))

and DET B(z) = 4z, Now factor B(z) as

H..(z) H,,(2)

B=y2| 0}50(2)[1 0}

   

H,(z) H,(2)||p 2z 0 z!

  

where we define similarly to (1)

H,(z) = -z"V z H,(z") and H,(z) = 2" z H,,(z™) (11)

so that H,(z) = H,(z) + z'H,,(z) as H,(z) = H)y(z) + z'H,,(z). It follows
that DET C(z) = 2z""? and that the polyphase matrix C(z) is only a
function of z2. We thus have the representation of C(z) in terms ofA(z)
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e
You can demonstrate these properties to yourself as follows: from the
WAVE SOLVE directory, use D2G to compute a scaling vector, then
from the WAVE directory create a wavelet matrix with QMF, then from
the WAVE SYMB directory add z (or any symbol) to Level 1 of the stack
and push LAURT to create a symbolic Laurent (polyphase) matrix
which is C(z), and finally use SDET and EXCO to evaluate
symbolically the determinant. For the g = 3 case, the result is

C(z) = A(z)%

 

'.000000000001xz"-2 + 2xz”-4 + .000000000001xz*-6'

so DET C(z) = 2z™*. Application of the SMPY and SEXCO commands
allow you to multiply and simplify the inverse transformation

|:1 0 “:1 1
C(z)

0 z! -1

The result (rounded to just a few digits) is

= A(z)

 

H,(z) = .47 + 1.14z"-1 + .65z"-2 - .19z2"-3 - .12x"-4 + .049x"-5
H,(-z) = .47 - 1.14z”-1 + .65z*-2 + .19z"-3 - .12x"-4 - .049x"-5
H,(z) = -.049 - .12z~-1 + .192*-2 + .65z"-3 - 1.14x"-4 + 47x*-5

H,(-z) = -.049 + .12z*-1 + .19z"-2 - .65z"-3 - 1.14x"-4 - 47x*-5

The coefficients of these polynomials are the D, ones as expected.

After Vetterli [12], define P(z) = H,(z)H,(-z). Then DET A(z) = P(z) -
P(-z). Since DET A(z) = -4z"™?, P(z) can have only a single non-zero
odd-indexed coefficient. For our above example

P(z) = '-.0234275 + .1953125xz"-2 - 6.E-13z"-3 - 1.171875xz"-4
- 2xz"-5 - 1.171875xz"-6 — 1.E-12xz"-7 + .1953125xz"-8
- .0234375xz"-10'

so the only non-zero odd-indexed coefficient is -2z™°. P(z) satisfying this
condition is called a valid product polynomial. In general, any
factorization of a valid P(z) = P,(z)P,(z) gives a possible FIR perfect
reconstruction filter bank with H,(z) = P,(z) and H,(z) = P,(-z). Given
a FIR filter H,(z), then any filter H,(z) such that P(z) = H,(z)Hy(-2) is
a valid product polynomial is called a complementary filter.
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Consider the filter bank defined by the equation

 

Hl(z) Hl( _Z)

H4(Z) H4( -Z)

 

Y(z) = [G,(2) GJz)]A(z){X(Z) } = [Gy(2) G,2)] X(Z)}

) X(-z)X(-z

The output equals

Y(z) = [G,(z)H,(2) + G(2)H(2)]X(z)

+ [Gy(z)H(-2) + G,(z2)H(-2)]X(-2)

If G,(z) = H,(z'") and G,(z) = H,(z"") then we have from (5)

Y(z) = 4X(z) + [H(z )H,(-z) + H,(z HH,(-2)]X(-2) = 4X(z)

where we have used the identity

H,(zY)H,(-z) = z¥'H(-2)(-z)"PH\(z"!) = -H,(z )H,(-2)

Thus, perfect reconstruction depends on a very delicate cancellation of
terms which places constraints on the coefficients including that N in
these equations be an even integer. One final relationship is

H/(z)H,(z™") = H((2)Hy(z™") + H;;(z)H,(z™)
zH(z)H,,(z™!) + z'H,(z)H,,(z ™)

= -zN1z2-1H,(z)H,,(z) + zN'z'H,(z2)H,(2)
+ zNH,(z)H,(2) - z NV22H,(z)H,,(2)

+ 28[H@- z2(H,)7}

+

so we have that H,(z)H,(z"') and H,(z"))H,(z) are polynomials in z! with
no even terms. Consequently,

H,(z)H,(z") + H(~2)H,(-z) = 0 12)

These relations may be summarized by the equations

APzHA(z) = A(z)A%(z") =41 and CHF(z!)C(z) = C(z)CH(z) = 21

C(z) is a 2 x 2, genus g = N/2 example of the Laurent (polyphase)
matrix P(z) discussed on page 567 of the MATHLIB manual.
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In the past 15 pages, we have steamed through numerous relationships
with numerical and symbolic examples so you will have them for
reference. Now let me show you why it works. Using the QMF
identities, we have

G,(z) = H(z") = -z""'H,(-z) and G,(z) = H(z™") = 2"'H,(-2)

Consequently, G(z)A(z) = [G,(z) G,(z)] A(z) = [c 0] where c is given by

¢ = zNV1[-H,(-z)H,(z) + H(-z)H,(z)] = -z""'DET A(z) = 4

Hence, the paraunitary properties follow directly from the properties of
the determinant of A(z). The synthesis filter G(z) is chosen such that,
except for a possible delay times a constant, G(z)H(z) = DET A(z) = P(z)

— P(-z) where P(z) is a valid product polynomial.

ORTHOGONAL OR PARAUNITARY FILTER BANKS

The filter banks and associated wavelets we have studied so far are
orthogonal ones. After Mallot [5] and Daubechies, the wavelet vector

was chosen to be the QMF associated with the scaling vector. The
definition of H,(z) was carefully chosen so the equations would explicitly
show the associated delay and we would not have to make statements
like "except for a phase factor." However, the results hold for N equal
to any even integer such as N = 2 for most of Daubechies equations or
N = 2g for our H,(z) definition. The filter bank orthogonality was
proved on page 46 and the resulting scaling function and wavelet
orthogonality was proved on page 54. After summarizing the properties
of these filter banks, we will then generalize our results to biorthogonal
filter banks where the perfect reconstruction property still holds, but we
trade orthogonality for other desirable properties such as linear phase.

PROPERTY 1: The product oftwo paraunitary matrices is paraunitary.

PROPERTY 2: The determinant of a paraunitary matrix is a constant
times a delay.

PROPERTY 3: The form of all filters which are complementary to H,(z)
and give rise to a rank 2 paraunitary perfect reconstruction
filter bank is z2**! H,(-z™') for some integer k.

PROPERTY 4: All of these results depend on N being even.
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PROPERTY 5. The statement that A(z) or C(z) is paraunitary is
equivalent to the statement that the wavelet coefficient matrix A is
paraunitary. The paraunitary property of A(z) and C(z) follows from
the orthogonality of the wavelet matrix by construction, see (4).
Conversely, symbolically computing C(z)C"(z) and comparing
coefficients of the same powers of z implies the paraunitary property of
the wavelet coefficient matrix A. See Chapter 10 for details.

BIORTHOGONAL PERFECT RECONSTRUCTION BANKS

The above wavelet constructions have the disadvantage that they are
inherently phase nonlinear. Consequently, let us examine more closely
a few relations. Define H,(z) to be the Daubechies filter

1+2z7!Hl(z)=[ . ] Q@ 

Then

1 +z1]e
H,z)H((z™) = |: 2 ] Q(z)gQg(Z i, I:l ; Zi|g
  

 

2

- [1 ; } "2Q@Qe
=(1 -yE Py

where we have rewritten the definition of y in (8) as

1-2z12 1 +2z|2- -l v = -1- ey
1 -2z g 1 -2z|#

Hl(—z)Hl(—z'1)=[ 5 J Qg(—z)Qg(-z'l)[ 5 ]

1 - 2

{ - Z} " (-2Q-2)Q-z
=y®P(1 -y)

Using identities (5) and (6) we then have derived the Bezout equation
(9) which is equivalent to (5). Thus, H,(z) is an asymmetric
decomposition of the allpass requirement given by (5) which leads to
phase nonlinear filters because all of the roots of Q/(z) are minimum
phase.

  

Similarly,

  

 

We can generalize the above equations as follows. Define the filters
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-1N,

Hy(2) = {1 +2z ] Q,(z)z™ (13)

-17N,
Hl(z) - [1 +2Z :l Qz(z)z-ng (14)

where N, + N, = N which must be an even integer, n, - n, = [N, - N,J/2
which is an integer, and Q,(z) and Q,(z) satisfy the identities

Q,(2)Qy(z ™) = Q,(zH)Qy(z) = Pyuly)

Q,(-2)Q,(-z 1) = Q,(-z ) Qy(-2) = Pyy(1 - y)

Then we have that

1 + z N2 n,-n

:| N/2(y) |: 2 ] z*"

1 Nl:+Zj| N/2(y) Z,-n, =N,

=(1 Y2 Pyo(y)

  

l(z _I)Hl(z) =[

 

  

— 2N,
g-z-bfi(-z>-[1] P,,(1 -y)[l - z] (=g)™

- N

F z} Pyl - y) ()%™
- yN/2 PN/Z(I _ y)

and hence perfect reconstruction

H(z)H(z) + H(-zYH/(-2) = 4 (15)

 

Observe that P(z) = H,(z"")H,(z) is a valid product polynomial having
only a single non-zero odd-indexed (even-indexed) coefficient (see page
75 for explanation). The phase linear constraint requires that each root
of Py,(y) be associated with either Q,(z) or Q,(z), thatis, the double root
in z defined by (10), must not be split between Q,(z) and Q,(z).
Furthermore, the complex roots of Py,(y) must not be split between
Q,(z) and Q,(z), if you want real filter coefficients.

Consider the special case where N, = 0 and Q,(z) = 1. Then we have

1 +zH,(z) =[ "22 J z N2 Hy(z) = Pyy(y) 

The following program will test these filters to determine if they are
valid product polynomials.
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<« > N « N 2/ POFZ N MOZ PMPY DUP QMFL PSUB > »

where N must be an even integer.

Vetterli [11], Cohen [1], Daubechies [2], and Feauveau [4], have studied
the special case where n; = 0 and Q,(z) = 1 defined by

1 +z1N

7| H\(z) = [

and its complementary filter

1+2z! 1 +z]|NN2 2

H\(z) =[ 5 ] z"N Pys(y) =[ 2 } 2™ Pyy(y)

and some more general cases. Program MOZ evaluates H,(z) and
program MCOZ evaluates H,(z). Given these two lists, CLPM creates
wavelet matrices corresponding to both lists. The following program
computes the examples in the papers [1] and [2] and plots the results.

  

< > N1 N2 « N1 MOZ N1 N2 MCOZ CLPM -» M1 M2 <«
M1 1E-10 3 SOVN DUP 1 EROW PLT1 2 EROW PLT3 M2
1E-10 3 SOVN DUP 1 EROW PLT1 2 EROW PLT3 > > >

Remember that N, + N, = N must be an even integer. If N1 = 1, then
N2=1,3,.... IfN1=2,then N2=0,2,.... For N1=2, you will find
that the solution gets to the step where COMPUTE AV FOR A = 1 is
displayed, but the solution never converges. This is because the
eigenvector matrix is not full rank and SSOV can find no solution.
When you tire of waiting carefully push once any key except ATTN.
This will cause the program to HALT with a beep and the message
ENTER DIMENSION k AV AND PUSH CONT, where k is some
integer. You now have several options. Since you are in a HALT state,
all the local variables are still defined and if you wish to verify that the
dilation matrix T minus the identity matrix has a zero determinant,
you can with the program sequence (T k IDN - DET DROP where
DROP removes the determinant from the stack). However, to continue
with the scaling and wavelet computations, you must now place a k
dimensional vector on Level 1 of the stack without disturbing the other
numbers sitting on the stack. Using a priori knowledge that the N1 =
2 case corresponds to a scaling function that is a hat function, a
reasonable choice is a vector of the form [0 ... 0 2 0 ... 0] with
dimension k. You can use the matrix editor to create this vector and
place it on Level 1 of the stack. Then push CONT to continue the
computation. The N1 =2 case seems to be the only one with this problem.
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Program CLPCF in the WAVE SOLVE directory allows you to study all
of the cases defined by (13) and (14). Since the n, and n, are simply
polynomial shifts, we can ignore them. The inputs to CLPCF (compute
linear phase complementary filters) are N, and N, where N, + N, = N
must be even. After solving for the roots of Py,(y), the program
displays a temporary menu and HALTs with the root vector on Level
1 of the stack and the message "SPLIT P(y) ROOTS THEN PUSH
CONT." When you are finished, the roots of Py,(y) which you want
associated with Q,(z) should be on Level 2 of the stack and those to be
associated with Q,(z) on Level 1 of the stack.

Following the polynomial root vector conventions defined on page 193
of the MATHLIB manual, if either Q,(z) or Q,(z) equals 1, then the
associated root vector is { }. The temporary menu gives you a key for
this. Keys for the MATHLIB commands SCOL, CORDR, IORDR, and
CSPLT allow you to easily rearrange the root vector so that the roots
to be associated with Q,(z) can be placed at the left side of the row
vector and those to be associated with Q,(z) placed at the right side of
the row vector. CSPLT then splits the vector for you. By pushing
ENTER to copy the root vector to Level 2 of the stack and using the
RND command, you can more easily view the roots. Once the roots are
split, push CONT to complete the computation. H,(z) is returned on
Level 2 of the stack and H,(z) is returned to Level 1 of the stack.

As an example, we can compute the above example using MOZ and
MCOZ by placing N1 and N2 on the stack and pushing the CLPCF key.
When the program halts, push the { } key and then the SWAP key.
Now push CONT and the same result (within a scale factor) will be
computed.

If N, is odd (and thus N, is odd), then the resulting complementary
filters have even length which may be the same length or lengths
differing by some factor of 2. If N, is even, then both filters are of odd
length differing by some factor of 2. The smaller filter can thus be zero
filled by adding half of the zeros at the beginning of the list and half of
the zeros at the end of the list as to create two phase linear polynomial
lists of the same length. LPFIL will do this for you. The arguments of
LPFIL are the two lists. LPFIL will make the smaller list larger.

Ignoring phase shifts, define the QMF H,(z) = H,(-z) and H(z) = H,(-z)
corresponding to H,(z) and H,(z), respectively. Then the analysis filter
is defined as H(z) = [H,(z) Hy(z)]" and the synthesis filter by G(z) =
[H(z") HizY]. Then using (15), the transfer function is
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H,(z)H,(z) + Hz HHz) = (1 - yN2P,(y) + yMP(1 -y) = 4

The two complementary filter coefficients, after zero filing to the same
length (see LPFIL), may be transformed into wavelet matrices with the
program QMF. Program CLPM creates these two wavelet matrices for
you. Program SOVN will use these matrices to compute the scaling and
wavelet functions. See also program SOVJ discussed in Chapter 11.

When N, is odd, then the phase linear symmetry causes the two
wavelet matrices to behave like a paraunitary pair since the ir-er
product (resulting in a 2 x 2 matrix) is the identity matrix times a
constant. However, while each wavelet matrix exhibits the usual

orthogonality properties between the scaling and wavelet vectors, the
two matrices are not mutually orthogonal. Furthermore, none of the
vectors are orthogonal to their integer translations. Hence, the name
biorthogonal. Since CLPM outputs two wavelet matrices, these may be
called dual bases or complementary bases.

PROPERTIES OF FIR SOLUTIONS

We summarize a number of properties of FIR solutions which are
proved in Vetterli [12]. Programs for continued fraction expansions and
polynomial greatest common divisor are available in the MAN3 ALGB
directory and are discussed in Chapter 7. The symbolic programs are
in the MAN7 WAVE directory.

Vetterli’s definition of product polynomial and complementary filter
given on page 68, does not conveniently extend into the M-band and
biorthogonal cases. Consequently, we introduce a new definition which
is equivalent to his, but is less confusing as we generalize our results.
Observe that P(z) = H,(z)H,(-z) = H,(z)H,(z")z"™", Our definition is

P(z) = H(z)Hy(z™) (16)

for two filters H,(z) and Hi(z). Observe that P(z) = H,(z)H,(z"!) has a
single non-zero even-indexed value, the coefficient of z°. With this
definition, the Bezout equation (15) can be written as

P(z) + P(-z) = 4

The below results make use of this definition.
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PROPERTY 6: Linear phase perfect reconstruction FIR solutions have
either of the following forms:
(a) Both filters are symmetric and of odd lengths, differing by an
odd multiple of 2.
(b) One filter is symmetric and the other is antisymmetric, both
lengths are even, and are equal or differ by an even multiple of 2.

PROPERTY 7: An even length linear phase filter has a unique same
length complementary filter. An odd length N linear phase filter
has a unique N - 2 length complementary filter.

Given a linear phase filter of length greater than 3, defined by its
polynomial list L, program CMPL will compute the complementary
filter. For example, if L = {.25 .75 .75 .25}, then CMPL(L) = {-.5 1.5
1.5 -5} = C and PMPY(L, C) = {-.125 0 1.125 2 1.125 0 -.125}
which is clearly a valid polynomial product. If L = {125 .5 .75 .5
.125}, then CMPL(L) = {-1 4 -1} and the corresponding product
polynomial is {-.125 0 1.125 2 1.125 0 -.125}.

Program MOZ is an easy way of creating a linear phase filter. It is
known as the binomial filter. For this special case of linear phase
filters, MCOZ also computes the complementary filter. In particular,
MCOZ@3,1)={-.5 1.5 1.5 -.5} and MCOZ(4, 0) = {-1 4 -1} as above.

PROPERTY 8: There is always a complementary filter to the binomial
filter.

The involution of the polynomial H(z) is Hy(z™'). Apart from a delay
factor z**, the involution of any polynomial represented by the
polynomial list {1 2 3 4 5} is simply the reversal of the coefficients,
{543 2 1).

N N N

H(z) = Y az™, Hz") =Y az"=z) ay,z™
n=0 n=0 n=0

Thus, we compute involutions with the MATHLIB command LREYV or
when appropriate VREV. The above examples were phase linear
wherein, apart from a delay, the involution of the filter was equal to the
filter. Thus, no reversal was required. However, in the general case,
we must perform it. See also the discussion on shifting the center of
computation given on page 46.

PROPERTY 9: In the general case, a length N filter has N - 2
complementary filters of length N - 2.
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Given an arbitrary filter of length N defined by the polynomial list L,
program CMPG will compute any of the N — 2 complementary filters of
length N - 2. The inputs are the list L and the position p=1, 2, . ..
N - 2. For example, CMPG({1 2 3 4 5}, 3) = {-1/3 2/3 -1/3} with
corresponding product polynomial {-1/3 0 0 0 0 2 -4/3} while for p
= 1, the complementary filter is {-10/3 8/3 -1/3} with product
polynomial {-1/3 2 1 0 -1 0 -50/3) = PMPY({1 2 3 4 5}, {-1/3
8/3 -10/3}).

From polynomial theory (see Chapter 7), given polynomials a(z) and
b(z), then

a(z)p(z) + b(z)q(z) = ¢(z)

has a solution p(z) and q(z) where the greatest common divisor of a(z)
and b(z) divides c(z). Restating (5) and viewing the 4 as the c(z), we
have that

H,(z)H,(z"") + H,(z)H,(z™") = 4

From definitions (1) and (11), it follows that:

PROPERTY 10: For H,(z) and H,(z) to form a perfect reconstruction
pair, it is necessary and sufficient that any of the pairs {H,,(z),
H,,(2)}, {(H,,(2), H,,(2)}, {H,(2), H,,(2)}, or {H,,(z), H,,(z)} be coprime
except for factors of z"forn =0, 1, .. ..

For a coefficient list L which represents H,(z), zero fill on the right so
that the size of L is even. Now use program LDLV in the MAN7 WAVE
directory to create the polyphase filter lists representing H,,(z) and
H,,(z). For example, from the MAN7 WAVE SOLVE directory, run the
program <« 4 MOZ 0 + LDLV » which computes the Level 2 list
{.125 .75 .125} = a(z) and the Level 11list {.5 .5 0} = b(z). Now push
HOME MAN3 ALGB PRE (left-shifted NXT), and finally PGCDI to
compute the greatest common divisor (GCD). The result is that GCD
= {-.5} so that the polynomials are coprime. The q(z) polynomial is
{-1.375 -1 -.125} and the p(z) polynomial is {1.5 .5}

PROPERTY 11: Given a linear phase filter H,(z) of odd length N, and
its length N - 2 linear phase complement H(z), all higher degree
linear phase filters complementary to H,(z) are of the form

Hy(z) = z2"Hy(z) + E(z)H,(-2) a7
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where

E(z) = f: an[z -2n-1) z-(4m—2n)] (18)

n=1

Program CLPC computes linear phase complementary filters. The two
inputs are the polynomial list L and the value of m. It calls program
EOFM to compute E(z). For example CLPC({1 4 6 4 1}, 2) ={ Al
'—(4xAl) '6xAl+A2" '—(4xAl1)-4xA2' '-.125+A1+7xA2' '.5-8xA2'
'—.125+A1+7xA2' '-(4xA1)-4xA2' '6xAl1+A2' '-(4xAl) Al }. The
corresponding product polynomial is (use SEXCO to clean up the
algebraic expressions)

{A1l 0 '-(4xAl1)+A2' 0 '-.125+6xA1-3xA2' 0 '1.125-3xAl1+2xA2' 2
'1.125-3xA1+2xA2" 0 '-.125+6xA1-3xA2' 0 '-(4xA1)+A2' 0 Al}

Observe that the complementary filter holds for all values ofA1 and A2
and that it produces a valid product polynomial since P(z) + P(-z) = 4.
CLPC will compute complementary filters for an even number of
coefficients, but the result is not phase linear.

PROPERTY 12: All filters Hy(z) of length N + 2m - 2, which are
complementary to a length N filter H,(z), have the form

Hy(z) = z**Hy(z™") + R(z)H(-z) (19)

where R(z) = R(-z) is a polynomial of degree 2(m - 1) defined by
m-1

R(z) = E B, z ~2n (20)

n=0

k=0,1,...m, and H,(z) is a length N - 2 complementary filter.

Program CGC computes complementary filters in the general case. The
three inputs are the polynomial list L representing H(z), m =1, 2, . .
., and k. It calls program ROFM to compute R(z). For example, CGC({1
2 3 4}, 2,1 ={ '-(4xB1)" '3xB1' '2-4xB0-2xB1' '-1+3xB0+B1'

'—(2xB0)' B0 }. Remembering to reverse this polynomial with LREV,
the corresponding product polynomial after cleanup with SEXCO is

{BO 0 '-1+2xB0+B1' 0 '1-7xB0+2xB1' 2 '8-16xB0-7xB1' 0
'-(16xB1)' }

which is a valid product polynomial with P(z) + P(-z) = 4.
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POLLEN PRODUCT AND THE PARAMETERIZATION OF
COMPACTLY SUPPORTED WAVELETS

In the beginning of this chapter we carefully defined the filters H,(z)
through H,(z). The paraunitary properties only work between H,(z) and
H,(z), and not between H,(z) and Hy(z). If you modify Pollen’s papers
[6] and [7] to use H,(z) instead of H,(z), then you obtain a beautiful
parameterization of rank 2 compactly supported wavelets.

Define polyphase matrix C,(z) = C,(z)h™'C,(z) where each of the C(z)
polyphase matrices has the form defined on page 67

ng(Z) H;;(Z) (21)

Hy(z) Hy(2)

and h is a 2 x 2 Haar matrix which we define as

C.(2) =

_ 1 1

1 -1

though other choices are possible. We note in this case that h™ = h/2.
Now the entries of C(z) are defined by (1) and (11).

H,"(z) = Hyy(z) + zH,}(2) n=123 (23)

H,"(z) = Hy(z) + zH,}(z)

We define the Pollen product of polynomials H,(z) and H,%(z) to be
H,3(z) if and only if Cy(z) = C,(z)h™'C,(2z). Thus, given H,'(z) and H,*(z),
we compute the polyphase matrices C,(z) and C,(z), compute the matrix

product C,(z)h™'C,(z), and finally extract H,,’(z) and H,,*(z) to compute
H%(z). You can actually carry out this procedure symbolically using the
program LAURT in the MAN7 WAVE SYMB directory. Its inputs are
the wavelet matrix and some independent variable symbol z. A much
faster way is to use the Pollen product programs PPRD1 and PPRD2 in
the same directory.

(22)

  

The importance of the Pollen product lies in the fact that higher genus
scaling vectors can be represented as Pollen products of lower genus
scaling vectors. We used this fact on page 60 to symbolically compute
a genus 3 coefficient vector from two genus 2 scaling vectors. Program

SWD6 simply changes directories, calls PPRD1, and returns to the
HAAR directory. The inputs to PPRD1 are the two scaling vector lists.
It calls program QMF to convert the second list into a wavelet matrix
and then calls PPRD2 for the solution. PPRD2 provides more
generality. Pollen products are discussed more generally in the next chapter.
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SPECIAL SYMBOLIC PROGRAMS

To compute the symbolic z transform, given a polynomial list, use the
command XEQN. Program LAURT computes polyphase matrices given
the wavelet matrix (which must be an HP array) and the independent
variable. To generalize it to symbolic matrices, see the techniques in
PPRD2. PTRN performs a non-Hermitian paraunitary transpose of a
polyphase matrix. The inputs are the symbolic matrix and the
independent variable to be inverted. Given an algebraic symbolic
function F(z) and the symbol z, ZINV computes F(z™'). SZINV does the
same thing, except that the first input is a symbolic array. Z-o
performs the z = €' substitution for you. For more details, edit the
programs or print them. The remaining programs in the SYMB
directory are discussed on pages 47 and 48.
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RANK M WAVELET
MATRICES AND WAVELETS

INTRODUCTION

This chapter presents the M-band generalization ofthe 2-band wavelet
software presented in the last chapter. Some of the first examples of
perfect reconstruction filter banks were given by Smith and Barnwell
[34]. Vaidyanathan then noticed the importance of the unitary property
and reinterpreted results from classical scattering theory yielding
factorization theorems for rational matrix functions, unitary on the unit
circle. For a history see [44] and for excellent surveys see [45] and [50].
I have used the Koilpillai and Vaidyanathan cosine-modulated perfect
reconstruction FIR filter bank software to design rank 64 genus 8 filters
having over 100 dB subband isolation [25].

This chapter focuses on M-band (rank M or scale M or multiplicity M)
Daubechies wavelet matrices and programs to compute them. While
this class of filters is not optimum for all filtering problems, it is good
for polynomial interpolation. Given the wavelet matrix, program SOVN
discussed in Chapter 9, will compute the M-band scaling and wavelet
functions. Program SOVJ discussed in Chapter 11 does also.

81
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We begin by generalizing some of the concepts associated with perfect
reconstruction filters. Then we more closely examine Daubechies’
regularity condition. The computation ofM-band wavelet matrices and
wavelets is then discussed along with programs which compute them.
Finally, we discuss the biorthogonal and other extensions.

RANK M GENERALIZATIONS

Pollen [29] has worked out an explicit formula for all Daubechies genus
2 scaling vector coefficient polynomials with rank m =2, 3, . . ..

(1+z1 +z2+...4z2@2 (z-1_p 1)

m(l-r)

based on Daubechies [4] where the root r is given by

m2 + 2 +y32m? + 1)

m? -1

 a(z) =

 

Note that r is always real and r, = 1/r_. Pollen [29], Linden [30], Heller
[17], and Resnikoff [31] have worked out explicit formulas for the
higher genus cases and in particular, Heller [18], Steffen [39], and
Gopinath [12] have developed computational approaches for any rank
and genus scaling vector with Daubechies regularity. This is
implemented by program DMG in the MAN7 WAVE SOLVE directory.

Observe that the Daubechies maximum number of zeros at © (see page
61) translates in the higher rank case to a maximum number of zeros
at 2nk/m fork =1, 2,... m - 1. The factor

f]-((z)=1+z'1+z’2+...z“"““=—1_z— (2)
1-z71

provides those zeros and the pole at z™! = 1 cancels the zero at z”! = 1
so that perfect reconstruction is possible. The generalization of (1) is

of the form (Daubechies proves H¥(z) gives rise to regularity [4])

H(z)[g, + gz+ - - - + q,_z"8V] = HY2)Q,(2) @)

where q, + q; + ... + q,_; = 1 so that H¥1)Q,(1) = m. H5(z) provides the
Daubechies regularity and Q.(z) provides the perfect reconstruction
filter bank paraunitary property. The Q(z) coefficients are determined
from the linear and quadratic wavelet matrix conditions. Daubechies
regularity is equivalent to a maximally flat scaling vector design. In
the orthogonal case, the scaling vector determines the wavelet vectors.
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Consider a system of m FIR filters
mg-1

H(z=Y a’z* s=0,1,... m-1 4)
k=0

where the coefficients are elements of the m x mg wavelet matrix A
0 0 0 0

8 & a8 - 8N,

1 1 1 1
A = a a, 8y - N 5)

aoN-l aIN-l azN-l " agl;—_ll

Define the partial sums
g-1

PlAL}(z) = Y a’z™ r=0,1,... m-1 (6)
k=0

so that
m-1

H(z) = Y PAlz)z" s=0,1,...m-1 (7
r=0

Observe that this construction is simply the m generalization of
definitions (9-1) and (9-11). We now form the M-band generalization
of the polyphase matrix C(z) defined on page 67.

-

P[AL)(z) - P[AL _(z)

P[Al(z) = -~ P[A(z) - (8)

  P[A); "'(2) PlA]; )(2)|

We require that the wavelet coefficients satisfy the linear constraint
gm-1

Eaks=m850 s=0,1,... m-1 9)

k=0

and furthermore we will show that

PAYD =1 r=0,1,...m-1 (10)

The paraunitary condition P[A](z)P[A]"(z!) = m] where H denotes
Hermitian transpose and I is the identity matrix is equivalent to the
quadratic coefficient constraint
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Y &8., =md,.5,,, a=a", a,°=0 for k<0, k>mg. (A1)
k= -oco

We also have the paraunitary condition P[A]"(z)P[A](z) = mI which is
equivalent to the quadratic constraint

m-1 o0

Y Y &l nen, = M8,8, (12)
=) rw-oo

Heller [18] and for the m = 2 case Strang [40] relate the paraunitary
conditions to on an abstract symbol in order to derive conditions on the
scaling vector. We derive those conditions by two alternative means.
The first is as a modulated filter bank from which the existence of the
H(z) filter is demonstrated. What we are exploiting in this derivation
is the DFT convolution theorem as discussed in Appendix G of the
MATHLIB manual and page 104 which leads to paraunitariness. The
second means shows that we are not simply designing a DFT modulated
bank. We obtain (11) and (12) as a result of these two derivations.

Given the definition of H(z) in (4), compute the product
Hs(ze i2nn/m)H‘(Z -1e -i21m/m)

-1 g-1m-1 g-1 (13)
< (k'- E E E Eamhkarek7 (r/-pm+(k’-k)g i2nn(k’-kVm

r=0 r’=0 k=0 k'’=0

Now only the exponential term depends on n and if we sum from n =
0 to m - 1, the sum equals m if k’ = k, and equals zero otherwise.
Hencewe have

- - 8 -
E H(Zeflnn/m)H,(Z le 121m/m) =1m E E E a,m,ka,'m.kz (r’-nm

n=0 r=0 r’'=0 k=0

Next definea=r'-rsor =r + a. Then we have
-1m-1

E H(Ze12nn/m)H(z -le-12nn/m) =m Ezamz Z arm¢karu’1¢k¢am (15)
n=0 r=0 k=0

Now if the left side of (15) equals m?3,,, then clearly (11) must be true.
Conversely, if (11) holds, then (15) must equal m?3,,. Consequently, the
wavelet matrix orthogonality condition (11) is directly related to a
pseudo-QMF bank and (15) is the M-band generalization of (9-5) with
(9-6), remembering that |H,(e')|? = |H,(e')|* as noted at the bottom
of page 55. In the above construction we used the DFT kernel to exploit
the convolution theorem. Taking the real part, yields a cosine
modulated bank. Banks of this type were discussed by Smith and
Barnwell [34] and are still used today [25].
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m-1

E H,(ze i2nn/m)H.‘l(z —le -i21m/m) =m 28

n=0

For s’ = s, (16) is a statement that each of the H(z) is a spectral factor
of an Mth band filter [27]. See the polyphase filter equations (38) and
(39). A number of interesting relationships immediately follow. Linear
condition (10) implies that H(1) = m§,,. Consequently,

m-1 m-1
E IHo(eiznn/m)|2 - |Ho(1)|2 + E IHO(ei2nn/m)|2 =m?2 a7

n=0 n=1

(16)
88’

so we have the result

Hy(e”™™) =0 n=12,... m-1 (18)

which is a constraint on the scaling vector leading to the pseudo-QMF
bank perfect reconstruction properties. This constraint implies that the
scaling vector must contain a multiplicative factor of the form H(z).
Define the partial sum

g-1

0

C, = Ear*Pm
p=0

Then
mg-1 m-1g-1

0 5 0 iZ a, e i2nkn/m - E anpm el2nrn/m

k-O r-o p-o

m-1
= E c.e -i2rnrn/m _ m8n0

r=0

which is simply the DFT of ¢, having only a DC term. This proves that
¢, = 1 for all r, which is stated by (10), and that the dilation matrix
constructed by program SMAT will for all m again have the left
eigenvector [1 . .. 1] corresponding to an eigenvalue of 1. Thus, SOVN
will compute the scaling and wavelet functions for all ranks m.

Our second derivation exploits (12) and does not involve any
modulation. Compute the sum

m-1

Y H@=zH,(z7)
8=0 (19)

m-1g-1g-1 m-1 g-1

- P 8 (r'-r)m+~k’-k)=2 XYY Y anaaia .,z
8=0 r=0 r’'=0 k=0 k’=0

By (12), the sum over s on the right is zero unless k" =k and r’ = r.
Alternatively, for P[A](z) to be paraunitary, (19) must not depend on z
so (12) must be true and we have
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m-1 m-1g-1m-1

YH@HY =Y ¥ Y 8okl
pyrd ,;-01 r=0 k=0 (20)

=Y m=m?
k=0

Observe that (20) is the generalization of (9-5) without (9-6). As in
(17) we can write

m-1 m-1

Y HMP = HD* + 3 [HD)* = m? 2D
s=0 s=]

giving us the result we already knew

H(1)=0 s=1,2,.. m-1 (22)

that the sum of the elements in any wavelet vector is zero.

Comparing (16) and (17) with (20) and (21), we have a basic
paraunitary equivalence. Summing the Fourier modulated filters
across the bank is analogous to summing down the filter bank. Thus,
we can simulate the entire filter bank using modulated versions of the
scaling vector. Once the scaling vector is computed, then the wavelet
vectors can be computed from the scaling vector. See (39) and (40).

DAUBECHIES’ REGULARITY CONDITION

Daubechies’s [2] original statement ofher regularity condition was that
the frequency response have an order g zero at = n. Thus, the scaling
vector filter must the form H,(z) = [1 + z7'1°Q/z). This condition
ensures Holder continuity (smoothness) of the scaling function [4], [5].
Strang [40] observed that this was equivalent to perfect interpolation
of polynomials having degree less than g. This is also equivalent to the
g — 1 order vanishing moments of the wavelets. Again we modulate the
bank to exploit the DFT convolution theorem and associated
paraunitary property.

Let A(w) be the magnitude squared of the Fourier transform of the
scaling vector lowpass filter defined by

A(w) = |Hy(e™)H,(e ) |2

Now (16) can be written as
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m-1

Y A(w +2rn/m) = m? (23)
n=0

Perfect interpolation of the monomial x(t) = t* for a given k means that
the response of the bank to x(t) is the monomial t*. From page 549 of
the MATHLIB manual

Flt* o) =2ri* §*w)

where &) is the Dirac delta function. From page 547 using the
Fourier symmetry property

k

F(e'®)§®(w) = E (k) F®(1) §%-9(w)

s=0 ®

where F(z) denotes the z transform and F(e'®) the associated Fourier
transform. Using the equivalence concept discussed at the end of the
last section, we multiply both sides of (23) by §®(w). Then

k m-1
E (k) 2 A")(Znn/m) S(k-s)(m) - m2 8“‘)(0))

s=0 s n=0

Now A®(2rn/m) =0forn=1,... m-1ands=0,...g- 1because it
contains the factor HE&e'*)HE(e™), so this reduces to

k
E(k) A®0) 5<k-s)(0)) =m? ™)

s=0 s

Now in order for the two sides to be equal, we must have A(0) = m? and
A®(@) =0fors=1,...g - 1. Consequently, we require that the
scaling vector be maximally flat and satisfy (Strang [42], Heller [18],
Zou [52], [564], and Gopinath [12])

A®eiZm) =0 n=0,1,... m-1, s=1,2,...g- 1249

Herrmann [24] published a closed form expression for rank 2 maximally
flat filters in 1971. His formula, given by (9-7) and computed by
POFY,is the same formula rediscovered by Daubechies [2] in 1988. We
also observe that, as in the case of equation (17), the filter H &z)
canonically satisfies the maximally flat constraint.

Observe that since (3) contains the factor H8z), the only constraints on
Q,(z) which remain to be specified to achieve regularity and the
paraunitary property are A(0) = m®> and A®(0)=0fors=1,...g- 1.
We will shortly see that A®(0) = 0 does not imply that H,®(0) is zero.
In fact, regularity implies that it cannot be zero. This is explained on
page 106.
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Now consider the wavelet moments. In general we can write

fwxjws(x)dx
mg-1 - j -

= f” y (_IE)_{___H.}(_:_I.(.]J a, f s(mx - k) dx
™ k=0 -

mg-1 (25)

m!-! t(i)g ki a’ f_:(mx - k) s(mx - k) mdx
r=0 k=0

J mg-1

m -1 E(’r)z kia f_:x " s(x) dx
r=0 k=0

Define the moments

ues, ) = [0 wx) dx (26)
mg-1

Ms,j) = 3 ki a @D
k=0

where w,(x) = s(x). Then we can write

J .

a(s, ) =my (1) MGs, j - 0 pl0, 1) 28)
r=0 r

Now the argument goes like this. Suppose the monomials x’ for j = 0,
1, ... g - 1 are perfectly represented as a linear combination of the
translates of the scaling function

mg-1

x’=Y ¢ sx-k j=01,...g-1 (29)
k=0

where

e = [0 % sx - k) dx (30)
Then in general, the moments n(0, j) # 0, but since the wavelets are
orthogonal to s(x) and thus to x!, p(s,j)=0fors=1,2,... m -1 and
j=0,1,...g-1. Thus M(s,r)=0forr=0,1,...g- 1. Conversely,

suppose that the M(s, r) are all zero for s = 1,2,... m - 1. Then u(s,
j) = 0 for all j and the response of the bandpass filters is zero. Since we
have a perfect reconstruction filter bank which perfectly reproduces the
monomials x’ for j= 0, 1, ... g - 1, the only filter left in the bank to
produce that output is the lowpass section which is the scaling function.

This is the continuous wavelet argument. See Chapter 11 for examples
and a nice demonstration. By forcing H(z) to be a factor in the scaling
vector, we obtain g — 1 order of regularity. The result is a maximally
flat filter. See also page 106.
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COMPUTING RANK M SCALING VECTORS

Define the z transform of the scaling vector as

Hy(z) = HE%(2)Q,(z) (31)

where H%z) and Q,(z) are defined by (2) and (3). Observe that

z™ -z™ 1-cosmw _ sin’(mw/2) (32)2 -
-1y = - =H(z)H(z ™) 2 -7 -z 1 - cos @ sin%(/2)

for z =. Noting that

 

IP[m/2] m

cosS m@ = 2m-lcosmw + E (_1)1(_(!!1-1-11) 2m-2k—1cosm—2km (33)

k=1 LA

we can write
m-1

h(x) = Hz)H((z™?) = Z o,x" (34)
n=0

where x = [z + z7')/2 = cos o for z = €. Similarly, define

r(x) = Q(z)Q,z) and flx) = h¥x)r(x)m™ (35)

The constraints of the previous section can now be written as f{1) = 1,
f(1)=0 s=1,2,...g- 1. This is because we achieve regularity by
forcing HEz) to be a factor in the solution. Thus, all we need specify is
that we want a paraunitary bank. Given these constraints and the fact
that we know h(x), Heller [18] uses the following approach to solve for
r(x). Since r(x) is a polynomial, it must satisfy its own Taylor
expansion

g-1 r(k)(l)

rx) =} —g— (x -
k=0 *

about x = 1. But r(x) = f{x) [h(x)]8, so we have

-B0() 0| ()o]
Applying the constraints reduces this equation to

o) - {(%ymxn-s}

x=1

x=1

so r(x) equals
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g-1 k g-1

r(x) = )_‘,H,— (Fd;] [h(x)]“} x - 1D*=Y Bx -1 36
* =1 k=0k=0

Now define x = 1 — 2y which is the same definition as (9-8). Then we
have

g-1

rx) = ¥, B, (-2y)* = P7(y) @7
k=0

where P,"(y) is the M-band generalization of P(y) defined in (9-7) and
is computed by program POMY in the MAN7 WAVE SOLVE directory.
Program DMG in the same directory computes the scaling vector by
first calling POMY to get the polynomial P,"(y). Thenit calls QOFZ to
compute the minimum phase Q,(z). Thenit calls MOMZ to get the H¥(z)
polynomial, multiplies, and normalizes.

The POMY computation is a little involved. It uses the advanced
derivative techniques discussed on page 40. The required derivatives
for up to genus 6 are stored in subdirectory COPT of the MAN7 WAVE
SOLVE directory. To compute higher genus solutions, you will need to
compute the symbolic equations for D6, D7, . . . as explained in Chapter
7 and store them in the SOLVE subdirectory COPT. The formulas
require thousands ofbytes and there is no room on the ROM. Programs
DERV1 and DERV2 will do these computations for you, but plan ahead.
The symbolic calculations require several hours on the HP48, but once
completed and stored in COPT, they evaluate in seconds.

POMY begins by computing (33) and (32). Then it tabulates the
derivatives of h(x) which it stores in a variable DDATA after entering
the COPT subdirectory. The equations D1, D2, . . . are formulas for

[d(x)]™N"! derivatives where N = g — 1 and d(x) is the h(x) polynomial
represented by its polynomial list. When it finishes, r(x) has been
computed, DDATA purged, and the program returns to the SOLVE
directory. Finally, it does the x — 1 = -2y substitution.

POMY, QOFZ, and MOMZ are internal programs used by DMG, which
is the M-band generalization of D2G. Given the rank m and the genus
g, DMG computes the Daubechies scaling vector. Examples are given
after we discuss the computation of the wavelet vectors.

In Chapter 9 we showed for the rank 2 case that H(z) defined by (31)
satisfied the Bezout equation (see page 71). Equation (16) with s" =s

= 0 is the M-band generalization discussed below.
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ALGEBRAIC STRUCTURE OF WAVELET MATRICES

On page 86 we introduced a notion of equivalent sums. Let us explore
it in more detail. Let G,*(z) = P[A],%(z) with definitions (4), (6), and (7).
Then (16) can be written as

m-1

E H(ze?vm)H(z -le -i2™m) = m 2§,

n=0 Ll e _

= E E E Gr'(z)G:’ (Z -l)zr’-rei21m(r’-r)/m (38)

n=0 r=0 r’'=Q

m-1 -,

=m Y G'@G, z7
r=0

from which we get the relation
m-1 -,

Y G'@G() = ms,,, (39)
r=0

The independence of n in the argument of G,(z) follows from its
polyphase definition (6). We similarly get from (20) that

m-1 -

Y G'@G(z™) = md,,, (40)
s=0

While (39) is the sum across the rows of P[A](z), (40) is the sum down
the columns of P[A](z). By the paraunitary property this comes as no
surprise, but I wanted to make these relations explicit. From the
paraunitary viewpoint, P[Al(z)P[A]*(z™) = P[A(z)P[ANz) = ml.
However, from the linear viewpoint, P[Al(z) and P[A]%(z) are very
different since

m-1

Y PIAJ(D) = m3,, (41)
r=0

but the same sum on P[A]"(z) is just m numbers with the sole property
that their sum equals m. The above relations imply a significant
amount of algebraic structure must exist. Heller, et al, have worked
out many of the details and we summarize some of their results [21].

Define:

SV(m, g) = set of all scaling vectors of rank m and genus g.

WM(m, g) = set of all wavelet matrices of rank m and genus g.

H(m) = WM(m, 1) = Haar wavelet matrices.
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As quoted on page 569 of the MATHLIB manual, an m x m complex
matrix h is a Haar matrix if and only if it can be represented as'

10

0U
where h is the canonical Haar wavelet matrix shown on page 569 and
computed by program CHAAR in the MAN7 WAVE HAAR directory,
and U is a unitary matrix. See the MATHLIB manual for examples.

(42)h = h = Uh

  

In general, for any wavelet matrix a e WM(m, g), there is a well defined
mapping from WM(m, g) to H(m) which is the definition of the
polyphase matrix P[a](1). P[al(1) is called the characteristic Haar
wavelet matrix. Observe that the map a — P[al(1) commutes with left
matrix multiplication by U and that U is invertible.

Consequently, for a e WM(m, g), define the map

x(a) = Plal(1) = h

Then we have

WM(m, g) —{) H(m)

Define the inverse mapping to be WM,(m, g) = x"'(h). Then

WM(m, g) = |J WM,(m, g)
he H(m)

is a disjoint union. Define the set

WG,(m, g) = |J WM,(m, g)
1<g

which we call the wavelet group of rank m at the Haar wavelet matrix
h. The group operation is the Pollen product discussed on page 79. Let
a’ e WG,(m, g’) and a” e WG,(m, g”’) where h e Him). Then a € WM(m,
g’ + g” - 1) is the Pollen product of a” and a” if and only if

Plal(z) = Pla’]l(z)h "'P[a” 1(z)

From the properties of matrix products, the Pollen product is
noncommutative, associative, P[al(z) must be paraunitary, and therefore

an inverse must exist. In fact, the unit element of WG,(m, g) is h.

As an example, consider the Pollen product of

' Gopinath has an equivalent state space approach to characterizing
M-band wavelet matrices [12]. Linear condition (9) is the reason h is

not simply a unitary matrix. See page 126.
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I
, |0 &1 8 8 8 &

Tt owt owt ot ot oyt
by b; b; by by by

with corresponding Laurent (polyphase) matrix

a

a, +a,z2+a,z"
Pla’l(z) =

/ /- !/ - / !/ - /b, +b,z?% + b,z b, +bjz?% +byz™

4 4/ /- /-
a, +a;z 2 +a,z

and

/" /" " "
8 4, a; aja =

" " "oy n
by by by by

PPRD2( {APO AP1 AP2 AP3 AP4 AP5}, {{APPO APP1 APP2 APP3)
{BPPO BPP1 BPP2 BPP3}} ) will compute this pollen product for you.
PPRD2 is in the MAN7 WAVE SYMB directory and is limited to rank
2 Pollen products. The result is a genus 4 coefficient system with 8
coefficients. The first and last equal

[/1
a, = 5[30/ ao” * ao/bo” +8,8 - 31, o”}

1 /1 N Iy ! !N Iy !

a7=-2-[a4a3 +a,by + a;ag 'asba]

The same computation can be repeated with the wavelet coefficients of
a’, the second row of a’, to obtain those eight coefficients.

Finally, if a” e Him’) and a” e H(m”), then the tensor product of a’ and
a” is in Him'm”). Tensor (Kronecker) products can be performed with
program KPRD in the HAAR directory. If a eH(m), then the
determinant of a equals m™.

What makes the algebraic structure of wavelet matrices important is
the it provides a way to compute the wavelet vectors from the scaling
vector. The very clever part of Heller’s solution technique [21] is his
exploitation of the above relationships between a wavelet matrix and
its associated Haar wavelet matrix. This allows him to only solve
linear equations since m of the orthogonality and m of the linear
conditions are built into this relationship. You will see this in the proof
below.
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COMPUTING RANK M WAVELET VECTORS

After Heller [21], define the m x mg wavelet matrix as

o pg°

B! B
a=|p |= B2 (43)

m-1 m-1

and similarly define the associated Haar wavelet matrix as

‘hO

h=| : (44)

hm-l

Now « is the scaling vector

o=[a a ...a,,1=p" =[by b ... bp,] (45)

which can be broken up into g subblocks

o = [an, 8pe.; - Bpeagor] k=0,1...g-1 (46)

The wavelet vectors can be broken up similarly

B.L = [bnjlk bnjlk‘l . o e buik*g-l] k = 0, 1, ... 8- 1 (47)

forj=1,2,...m - 1. Define the right and left shift operators

L:C™ 5 C™ R:Cm — Cm (48)

by
L*a =[a,, ap.; ... 2, 0 ... 0] (49)

and

R¥a =[0 ... 0 a, a, ... &y,1] (50)

fork=0,1,...g- 1. We say that a scaling vector is nondegenerate if
neither a, and o,_, is the zero vector. Using (s, *) to denote dot
product, the orthogonality conditions (11) can now be written as

(Lo, ) =mg, j=0,...g-1

(Lig, B*) = 0 j=0,...g-1 s=0,...m-1 (571)
(LiB% o) =0 j=0,...g-1 s=0,...m-1
(Lg%, B*Y)=md,,, j=0,...g-1, s=0,...m -1
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Observe that

a, = R¥'L*a

displays each o, as the rightmost m elements of an mg length vector
while

o, = LE'Re¥,

displays each a, as the leftmost m elements of an mg length vector. We
say that the wavelet vectors are nondegenerate if

ReBiz0  j=1,...g-1 (52)

A wavelet matrix is nondegenerate if its scaling vector and wavelet
vectors are all nondegenerate.

Let o € SV(m, g) be nondegenerate. Then the vectors

{a, Let, . . ., L*'a}

and the vectors

{a, Ra, ..., R}

are linearly independent vectors. Furthermore, if f € WM(m,g) is also
nondegenerate, then

(B’ RBY, ..., R'B)

are linearly independent vectors. Suppose we choose the left shifted o
vectors to form the vector space V|,

(53)
a

g-1

V,=1) ¢, L¥a
k=0

and denote the orthogonal complement of V, by V_*, thatis

V')={ye C™:{y,x)=0forall x eV}

Since
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(L*o, R¥a) =(L**a, a)=0 k'’ >0 (54)

the right shifted vectors R*a € V_* for k > 0 and thus can be used as a
basis for the wavelet vectors.” Thus, let

g-2

Bi=Y ¢ Ro +E’ (55)
=0

where E:=[0 ... 0 E/ E/ ... E_/]is an mg length vector
independent of R*a so that the Haar wavelet matrix constraint

g-1 . g-1

> B=Y RILTBI=h (56)
k=0 k=0

may also be satisfied. Substitution of (55) into (56) gives m
inhomogeneous linear equations in the variables ¢/ and E/

1=0 k=0

g-2 |8-1

Z ¢/ {E Re-1L* R’(le +Ei=nhi &7

From (51) we also require that

(L*B’, @) = (B, R*a) = 0 (58)
which gives g — 1 additional linear equations

g-2 .
Y ¢/(Ro,R¥a) + (E, R*a)=0 O0<k<g-1 (59
=0

Equation (59) for k = g — 1 actually follows from the previous g - 2
equations and the Haar condition and is not an independent equation.
Consequently, we use the m equations (57) and the g - 1 equations (59)
fork=0,1,...g-2toforma(m+g-1) x (m + g — 1) linear system.

Program CWM in the MAN7 WAVE SOLVE directory uses this
technique to compute M-band wavelet matrices. We give examples
below. The proof of Theorem 4.8 in [21] gives much insight into the
nature of the solution. We repeat it here adding a few details.

' Heller has also done the alternative construction where R*o. €V, and
L*o eV* for k > 0. It has the form

-2
Bj=gz ¢/ Lo + EJ (60)

=0

where E’=[Ej E/ ... E_/ 0 ... 0]is an mg length vector and
gives rise to a very different set of wavelets.
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THEOREM Let the genus g 2 1. If {cj, ... c,4, Ej,.. . Ejlisa
solution to the equations (57) and (59), then the wavelet system given by
(55) satisfies the orthogonality conditions (51) as well as the Haar
condition (56). Moreover, each wavelet vector [is nondegenerate ifand
only if ¢/ # 0.

Proof:
(i): The Haar condition (56) is satisfied by construction as is the

orthogonality condition (51)
g-2 . )

Y ¢ (R, R*a) +(E, R*a)=0 O0<k<g-2 (6D
=0

(ii): We need to show that (59) holds for k = g — 1. Thus,

(L4=(bR @) =el (Ro, Rea) + (B4 R@)
must equal zero. The Haar condition (56) can be rewritten as

hi=% LeiRep
=0 (63)
-2 |s-1

=) < {Z Le-! R‘“’a} + LetEY

o
L
]

=

=0 k=0

The linear constraint (10) on the scaling vector o gives
g-1

1=Y Ls'Rha (64)
n=0

where 1 is the m dimensional unit row vector [1 . . . 1]. The

orthogonality of the Haar rows implies 0 = (1, h) forj=1,2,...m -
1 so we have

n=0 I=0 k=0

= T - (65)(Y Le?R™a, Y, ¢’ |Y, LE'R‘a|+ LE'Ei) =0

The second term equals
g-1 g-1

(Y Lte'Rra, L2 El) =) (R"oq, EY)
n=0 o2 n=0 (66)

=(R#?a, El) + ¥ (R" 0, EJ)
n=0

By construction, this equals using (51) or (61)
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g-2 g-2

(RE1o, E)-Y ¢' Y (R"o, R ) (67
=0 n=0

The first term of (65) can be rewritten as
g-2 . g-1 g-1

Y ¢/(Y L:'R"a, 3 L&' RF ! 0) (68)
l=0 n=0 k=0

For any integers a and b, the following identity holds
g-1-MAX(a,b)

Y (oo)
k=0 (69)

g-1
E (Lg-l R&°k a, L&-! Rb+k (1)

k=0

The sums in the dot product of (68) are over a rectangle 0 <n<g-1
and 0 <k <g-1-1 Keeping in mind that R‘a. = 0 fork > g - 1, we
can rewrite this double sum in two parts. If n is the X axis and k is the
Y axis of the rectangle, and we sum along diagonals, then the sum

g-1 g-1
E E <Lg-1 R™' a, Le&-1 Ri*r a) (70)

n=0 r=0

(R®a, R* a)

includes all terms on the diagonal from (0, 0) and also all terms below
and to the right of the diagonal. Note that the upper limit of the n
summation is g — 1, not g — 2. The terms above the diagonal are

g-1 g-1
E E (Lg-l R’ o, Le&-1 Ri+rs ) (71)

s=0 r=0

Applying identity (69) to both (70) and (71), then adding the results, the
dot product in (68) is

g-1 -1

Y R o, Ra)+Y (oRo) (72)
n=0 s8=0

The second term of (72) is zero by (54), so we can write (68) as
g-2  g-1

Y ) (R, R )
1=0 n=0 (73)

g-2 g-2  g-2

=Y g(R*', Ra)+ Y Y (R o, R )
=0 =0 n=0

Adding (73) to (67), gives the desired result that (65) equals
g-2 .

(R#' 0, EY) + 3 ¢/ (R*' 0, R'a) = (R*' a, Bi) =0 (74)
1=0

which is what we needed to prove.
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(iii): Parts (i) and (ii) showed that the right shifted and unshifted
scaling vector a is orthogonal to

(R¥a,B)=0 k=0,...g-1, j=1,...m-1 (@

Now we need to show that the left shifted scaling vector o is also
orthogonal to f. We have

(L*a, B’y = (L*'a, RB) k>0 (76)

By (55)

RB = ng ¢/ Ra 77
l=0

since R E' = 0. Consequently,fork=1,...g-1,andj=1,... m-1

(L¥! q, RBI) = 322 czj (L*! o, R"*! )

l=0 (78)

g-2 )

=Y ¢/ (o, Ra) = 0
=0l

(iv): Next we want to show for j = 1,... m - 1 that the right shifted
wavelet vector R* B’ is orthogonal to all wavelet vectors . For s > 0
we have

g-2 .

(R, B=Y ¢/(R*a,pi)=0 s>0 (79
I=0

by parts (i) and (ii).

(v): By the techniques of part (ii) and the results of (iv) we have

(h,h) = (5 Lo RY B S LERYB

- ¥ (e RLR)
T T WO RPLLORTE) g

- REBLE X (L RTBD)

- (B5, BY) + 3 [(R* B, BY) + (BR* V') ]
= <Bj’ le} = msjj'
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Observe that it is through the exploitation of the relationship between
the wavelet matrix and the Haar wavelet matrix, that the quadratic
conditions are implied by the linear ones.

(vi): Finally, we want to show that the wavelet vectors B’ are
nondegenerate if and only if ¢ # 0. From (55) this immediately follows

Re-1Bi = ch R&! o (81)

since a is assumed to be nondegenerate. QED

COMPUTING RANK M WAVELETS

Program CWM computes rank M wavelet matrices using the technique
presented in the previous section. It has four inputs.

SCALING VECTOR FOR m AND g
RANK m
GENUS g
m x m HAAR WAVELET MATRIXB

W
k

CWM is in the MAN7 WAVE SOLVE directory. For your convenience
COSM has been provided in the menu for computing a DCT Haar
wavelet matrix. The program simply goes over to the HAAR directory
to get the matrix so if you rearrange the WAVE directory, it may no
longer work. For other Haar wavelet matrices, simply edit COSM.

Once the wavelet matrix is computed, you can compute the scaling
function and M-band wavelets using SOVN, which assumes that the
number of rows of the wavelet matrix equals the rank and the number
of columns of the wavelet matrix is mg. The following example
program computes and plots the scaling and wavelet functions.

< >mgne<mgDMG m g m COSM CWM 1E-10 n
SOVN—-> M « 1 M SIZE 1 GET FOR J M J EROW PLT1

NEXT M> > >

The inputs are the rank m, the genus g, and the depth ofapproximation
n. See also the rank 2 examples in Chapter 9.

Some authors believe thatit is important to center the wavelet support
around zero. I do not agree and my arguments are given on page 46.
Since the support of the M-band wavelets (size of the SMAT matrix) is
somewhat irregular, program CRN(m, g) is available to computeit.
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I define the support to always begin at zero and to equal the interval
[0, CRN(m, g) + 1], (theoretically [0, (mg - 1)/(m - 1)], [4]). The
number of points computed by SOVN is in general m™*'[CRN(m, g) + 1]
+ 1. Observe that the scaling vector computed by DMG is always real.
Consequently, the Haar matrix used by CWM must also be real since
the DMG scaling vector cannot be a basis for complex wavelet vectors.

To test the accuracy of a wavelet matrix, use the program

«<—>M<c MM TRNP x DUP DM p / DUP SIZE 1 GET -
N « N ZERO 0 BoM MABS RSUM VI N N1 - x/ »>>>

For m = 4 and g = 4, the accuracy is about 11 digits or 110 dB dynamic
range. This is an HP 48 limitation. Now compute the scaling and
wavelet functions using n = 2 so that the resulting matrix is 4 x 321.
This takes about 32 minutes, the time required to evaluate the SIN
command nearly 70,000 times on the HP 48. Running the above
paraunitary test, now on the function matrix, yields an accuracy of
about v8.3E-5 = 9E-3 (41 dB) which is a little over 2 digits. This is
better than the result on page 66 due to both increased regularity and
increased rank. See Chapter 11 for an alternative computation method.

Now let us examine the moments. The below integrals should be zero.

fkawn(x)dx=0 n=1l,.m k=1...g-1

The following program will approximate these integrals. Input M is the
above computed function matrix and g is the genus.

« > Mg«MSIZE EVAL {} >  m NL «1g 1 - FOR
J 0O N1-FOR K K J A~ NEXT N -ARRY DUP N ONE
DOT / - V<«2 m FOR K'L' M K EROW V DOT STO+
NEXT > NEXT L VL g 1 - m 1 - 2 -SLIST RDM TRNP

> > >

The output is a matrix whose rows correspond to the wavelet vectors
and whose columns correspond to the moments x, x%, x3, . . .. For the
above example with m = 4 and g = 4, the resulting matrix is

-2E-12 -3E-12 -3E-12

5E-12 6E-12 T7E-12

1E-12 2E-12 3E-12
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Thus, even with poor orthogonality, the wavelet moments are on the
order of the HP 48 precision which is impressive. The following
program will allow you to check the moments of the wavelet matrix. It
is the M-band generalization of program TESTV in the MAN7 WAVE
HAAR directory.

< > Vm«V SIZE EVAL - N «
"Zk=0,N-1,k*mxV(k+1))/Z(k=0,N-1,k*m)" EVAL > > »

With the wavelet matrix on the stack, use ENTER 2 EROW to extract
the first wavelet vector. The put m = 1 on the stack and evaluate the
program. After noting the result, push LAST STACKtodom=2.. ..
The result is

-3E-12 -5E-12 -7E-12

8E-12 1E-11 2E-11

2E-12 4E-12 T7E-12

which is again on the order of the HP 48 precision. Hence, in spite of
the fact that the orthogonality of the wavelet approximations is poor,
the regularity of the approximations is very good.

RANK M GENERALIZED WAVELET TRANSFORMS '

The accurate paraunitary property of the wavelet matrices defines a
transform independent of their associated continuous wavelets. The
wavelet matrix is a filter bank. From (12) we have that

m-1 g-1

Y Y &le, = md, (82)
s=0 r=0

Let x[n] be a discrete sequence and define c,* to be its discrete block
transform

o0 mg-1

¢, = Y @yx[n] = 2:0 a, x[n - mr] (83)

where r may be regarded as the block index and s as the subband
(bank) index. Then we can derive the inverse transform as follows

' See also pages 143 through 147 for an alternate derivation of the
wavelet transform.
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xnl = Y =x[n'18,,
n’-—eo

1 oo m-1 g-1
- / -8 8

- .I-Tl- E x[n ] E E an"mr Ay mr
n'=—w s=0 r=0 (84)

1 m-1 g-1 o

- 8 a® /

- Tn- Z Z Anemr E nomr x[n’]
s=0 r=0 n’=-oo

1 m-1 g-1
8 8

= Tn- E 8n.mr Cr
" o r=0

Observe that for genus = 1, this is simply a Haar transform. The
MAN7 WAVE HAAR directory contains several examples including the
DFT as discussed in Appendix G of the MATHLIB manual. In
particular, let a,* = €™, Then the above formulas reduce to the
standard DFT. For g > 1, we have a polyphase filter bank and a lapped
transform.

From (83) and (84) we have Parseval’s formula
m-1 g-1

Y XY e’
s=(0 r=0

m-1 g-1 oo oo

=Y Y Y Y &lxklxk’]
8=0 r=0) k=-o k'm-o (85)

©o oo

Y m3s,,x[k]lx[k’]
k"w k'--w

-m Y [xk]f = m [|x[k]|[} < e
k=-co

Harmuth [16] and others have been promoting non-Fourier transform
solutions to various problems for many years. The above transform
definition thus unifies a large number of transform theories in the
literature.

We can also define the generalization of the discrete Fourier series as

12wxinl ==Y Y a'nc (86)
m s=0 r=-c

using (83) with its corresponding Parseval formula

m-1 oo1
x|, ==X ¥ le'? < 87)

8=0 r=-o

Let g = 1 and suppose that the two sequences x,[n] and x,[n] have
transform coefficients §,° and £,°, respectively. Consider the convolution



104 RANK M WAVELET MATRICES AND WAVELETS CH 10

of these two sequences.

m-1 m-1 1 m-1 m-1 , A

E x,[k] x,[n - k] = E 2 E E ay a,. && (88)
k=0 k=0 s=0 s’'=0

In order for a convolution theorem to exist for thistransform, the sum
over k must be zero for s’ #s. Suppose that a,* = e?™¥™ is the mth root
of unity. Then the right side of (88) is

— ei2n(s-s')k/m ei2nns/m é; g;

o m* 305 (89)
1 m-1 . s

= EEg 12rne/m & &
=0

Thus, the DFT is unique, because it transforms delays into phase shifts,
which gives rise to a convolution theorem. As explained in Appendix
G of the MATHLIB manual, this same DFT property is also key to the
paraunitary property associated with polyphase matrices.

Now the z transform also has a convolution theorem as discussed on

page 561 of the MATHLIB manual.
oo m-1

Y Y x[klxn-klz™
ne— k=0 (90)

m-1

= Y x[klz™* X,(2) = X,(2)X,(2)
k=0

for the assumed support [0, m - 1] of x,[k]. From (84) or (86) we have

1 m-1 g-1 o

X(Z) = _ crs ans*mr z"

m sz-; ,z.o: n-E—oe (91)

= —_— C, \Z

m % re0
where A‘(z) is the indicated partial z transform of the filter bank
coefficients. Thus, there is no basic convolution formula with respect
to the coefficients c,”.

Let p[n] = p, + p;n + . . . + p;,n° be a polynomial and suppose

1% 0 Lo (92)
p[n] = an+mr crm

=0-

Then
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g-1 =

Y'Y 8'nal, =0 5>0
=0 n= —oco

1

m
d -—

=Z pk E nkanimr

crs = E 5"nB-rmr p[n]

n = —oo

k=0 n=-oo
d mg-1

- /_ k=8

by (11). Since the p, are arbitrary, it follows that
mg-1

Y n*a’=0 s=1,...m-1, k=0,...d (99
n=0

Conversely, if (94) holds, thenc¢,"=0fors=1,.. . m-1, r=0,.. .,
g — 1 and by the perfect reconstruction property

m-1 g-1 g-1

p[n] = E E ansunr cr. = E ar?omr cro (95)

s=0 r=0 r=0

A wavelet matrix is said to be lowpass of degree d if
mg-1

MG, =Y kia’=0 j=0,...d, s>0 (96)
k=0

We showed on page 88 that if a wavelet matrix is lowpass of degree d,
then so are the wavelet functions, that is, they have regularity d.

From the linear condition (9), every wavelet matrix is lowpass of degree
0. Consequently, as proved on page 85

g-1

Y 1al,=1 n=0,...m-1 97
r=0

We also have the relations

g-1 g-1

mzralgf-mzrar?omr—
0,...m—1 (98)=n n =

r=0 r=0

g-1 0 g-1 0 g-1 0

m? r?a)., -m?2Y r?a, +2mn Yy ra, =n? (89
r=0 r=0 r=0

Thus, if the wavelet matrix is lowpass of degree d, the coefficients c,°,

associated with the polynomial p[n] of degree d, are linear combinations
of the moments of a,°.
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EQUIVALENT NOTIONS OF REGULARITY

The above discussion combined with that on pages 86 through 88 lead
us to the equivalence of several definitions of regularity. A FIR scaling
vector is said to be regular of order N if:

1) Perfect interpolation of discrete polynomial sequences of degree
N by the scaling vector.

2) Nth order vanishing of the wavelet vector moments.
3) The frequency response of the scaling vector is maximally flat so

that A®e?™™)=0forn=0,... m-1lands=1,...N.
4) Perfect interpolation of polynomials of degree N by the scaling

function.
5) Nth order vanishing of the wavelet moments.

The zeros of the filter H¥(z) require that

(100)
H™) =0 n=1,2,...m-1, s=1,2,...g-1

which implies regularity condition 3 for values of n # 0. But observe
that

4 | mg-1 (101)
oHo(€™)o = Hy”(1) = ¥ a, (<in)* = (-i)* M(O, s)

n=0

which cannot be zero if we are to satisfy condition 1. Any change in the
flx) design constraints given on page 89 results in a wavelet matrix
which is not paraunitary. All of these conditions are exactly right.
Nevertheless, given the scaling vector polynomial list L computed by
DMG, you can use the following program to verify that H,®(1) # 0 for
s=1,...g-1

<—> L s<«<L SIZE EVAL —» N 'Z(k=0,N-1,L(k+1)xk”"s)' > >

Observe that from the zeros of H&z) thatforn=1,.. . m -1

d* o k mg - 1 L

“SHyee)|, = (<ir Y j*al en =g (102
© =

by (100). Hence, for 0 <n <m
m-1 g-1

Y ¥ [k + mrPal,, ez=0 (103)
k=0 r=0

which implies that each of the partial moments
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-1

3 (k+mrral,, 104)
r=0

must be a constant independent of k. This is the generalization of (97).
The following program computes these partial moments. V is the
scaling vector, m is the rank,ands=0,1,...g - 1.

«—>V ms «V SIZE EVAL - N« 0m 1 - FOR k Z(r=0
JN/m-1,(k+mxr)*sxV(k+mxr+1))) -NUM NEXT m —-ARRY >> >

The next program computes the autocorrelation matrix corresponding
to the wavelet matrix M.

<« > M<«MSIZE EVAL 5  m N<«1m FORJ M J
EROW DUP VCORR NEXT m —LIST M«RL > > >

Observe that every mth value except the center value is zero. Using
the command CSUM, you can verify (20) by summing down the
columns of the autocorrelation matrix. The result is a vector with all
zero elements except the center value which equals m®.

There are yet some other notions of regularity which are more rigorous
(see [2] and [4]). In [5], Daubechies defines sum rules which are
equivalent to (104) in the rank m case. The dilation equation

N

fix) = Y a. flmx - k) (105)
k=0

is called a two-scale difference equation. If fix) is an L' solution of

(105), that is f{x) is absolutely integrable, and

fON fix) dx = 1

then f(x) is Holder continuous

fix) - fiy)] < Clx -yl (106)
with the Holder exponent o = |In A|/In 2.

As the genus increases, there is increased regularity and we can speak
of the Lth derivative f™(x) being Holder continuous. Specifically she
shows that there exists a number A such that fix) has | AN |, the floor
of AN, continuous derivatives and f/(x) has Holder exponent AN — L.
She uses the notation C“ to denote the subset of R of functions f(x)
which are continuously differentiable L times everywhere.
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In [3], Daubechies makes a distinction between the Lth derivative of a
wavelet being continuous and the wavelet moments being zero. While
the latter can lead to the former, it does not necessarily follow, in

general. In the case of compactly supported wavelets, w_(x) e C¥! only
if w_(x) has N vanishing moments [3]. However, the Daubechies rank
2 wavelets are in C*™ where p ~.2. This means that about 80% of the
zero moments are wasted relative to regularity in terms of continuous
higher order derivatives and a given regularity could be achieved with
a shorter coefficient set with only N/5 vanishing moments. The
importance of vanishing moments versus continuous derivatives
depends on the application. A detailed discussion of all this is beyond
the scope of this tutorial, and I refer you to her papers.

Additional notions of regularity given by Strang [40] are:

6) Smooth functions f(x) can be approximated with error O(h®) by
combinations at every scale h = 27:

|| fx) - E a, s(2x - k) ||, < C27" || fP(x) ||,
k

7) Wavelet coefficients of a smooth function f{x) decay like

ff(x) w(2x) dx < C27°

Both Daubechies and Strang also examine the eigenvalues and
eigenvectors of the two-scale transition matrix computed by program
SMAT to formulate additional meanings of regularity.

Finally, we point out that a longer filter (higher genus) can be useful,
independent of regularity, to obtain other objectives. Longer filters can
produce better subband isolation, for example.

RANK M BIORTHOGONAL CASE

On page 84 we derived equation (18)
m-1

E Hs(zeiZnn/m)Hs',(z -lg -i2Zmvm) - 25"' (107)

n=0

from which we have the special case
m-1

Y Hyze'™™)H,(z ‘e ¥™m) = m? (108)
n=0

where Hy(z) = H&z)Q,(z) as defined by (31). Equation (37) defined
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P,"(y) = Q(2)Qz ™ (109)

where y is defined by (9-8). Equation (32) may be generalized as

: . 1 - cosim(w + 2rn/m)]i2rn/m -1, -i2rn/m) o 110
H(ze ) Hz"e ) 1 - cosl® + 2nn/m] (110
 

where again z = . Define the generalization of y to be
1

v =v(n) = = [1 - cos(w + 2rn/m)] (111)
2

noting that v(0) = y. Observe that (110) is a real function for real w.
Define the generalization of x = cos ® to be

u = u(n) = cos[w + 2rn/m] (112)

where we note that u(0) = x and that (110) is a polynomial in u.

Consider the rank 2 case again. The method of solution is given on
pages 61 and 62. This was generalized to the rank m case on page 89.
Comparing solutions with (108) through (110), we see that the same
steps apply yielding the scaling vector polynomial.

HyZ) =a, +aZ +8,Z22%+...+a,2@ (113

where Z = ze'™™ = z(-1)*n. For n = 0, this is just the scaling vector.
To obtain the wavelet vector we let n = 1 and perform the following
factorization to isolate the coefficients.

(114)

Hy(-2z) =z™[az™" + a(-1)z™2 + ... +a,,(-1)]

Observe that the new coefficients are not only modulated, but in the
process of introducing it into the coefficients, the coefficients are
reversed. If you are having trouble following this, see page 46. These
are precisely the same steps which program QMFL uses to compute the

wavelet vector. For s’ = s, (107) is a statement that each H(z) is a
spectral factor of a Mth band filter [27].

One can generalize the rank 2 biorthogonal case on page 72 as follows.
Define

H%z) = HMz) QUz) z ™ (115)

Hz) = H'(z) Q¥z) 2™ (116)
where N, + N, = 2g, and n, - n, = (N, - N,)/2. Also define
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Qi@ Q¥z™) = Q'™ Q¥z) = PM(y) 117
so with these definitions,

H%z)H%z ™) = H¥z) H¥z ") PM(y) (118)

By adding m as an input to program CLPCF and changing POFY to
POMY as well as changing MOZ to MOMZ, program CLPCF can be
generalized to the rank m case. However, there is little point to doing
it, since there currently is no way to compute the M-band phase linear
wavelet vectors. In particular, the generalization of (111) to m > 2
introduces complex coefficients and you will find that the wavelet
matrix is not paraunitary. In addition, the results of Soman [38] and
Gopinath [13], [14] are more general results.

FILTER BANKS AS GENERALIZED TRANSFORMS

In many practical engineering applications, filter banks can be useful
as generalized transforms, even when there is no true convolution
theorem. Perfect reconstruction is important in coding applications, but
often irrelevant in adaptive filtering applications.

Lapped transforms are often used simply to obtain efficient convolution
engines. This generally entails blocking the data. Block transforms
such as the DFT provide circular convolution, and special techniques
are required to realize linear convolution. The result is normally a
filter bank which is a factor of two above critical decimation, as

discussed on page 568 of the MATHLIB manual. Consider two
examples. Move to the MAN6 PROC directory and run the following
program.

< 100 ZERO 40 1 PUT 8 FFTLC »

Program FFTLC is discussed on page 388 of the MATHLIB manual.
Now examine the output time series, which to 10 digit accuracy is all
zeros except for the 40th value which is a 1. This is what we expect for
the impulse response from a perfect reconstruction filter bank such as
the FFT. Now modify the program substituting TMIC3 for FFTLC and
run it again. The result is a time series with 60 values since values
were lost at each end initializing the polyphase filters associated with
the transmux. Observe that the nonzero values are
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V(5) =V(37) = 5.7915938E-3
V(13) = V(29) = -5.7915938E-3

Vil =1

Thus, the output has the 1 value, but it also has four additional outputs

since the polyphase filter design does not correspond to a perfect
reconstruction filter bank. Changing 40 to 41 in the above transmux
example yields the output

V(6) = V(38) = .0009307532
V(14) = V(30) = -.0009307532

V(22) =1

where the nonzero values are shifted by 1 and the magnitudes are
different.

Now let us look at the equations to see where we lose perfect
reconstruction. The analysis transform may be written as

mg-1

yq(k) - E h()) x(k - 1) ei?rk-bam (119)

i=0

which is the convolution of the analysis polyphase filter h(n) with the
frequency shifted x(n)e'”™¥™ input. The k is the time index, the q is the
generalized frequency index, g is the genus, and m is the size of the
underlying DFT, which is the N input to FFTLC and TMIC3. The
corresponding synthesis transform is

m-1 mg-1

z(n) = Y e-izneme-bam N o) y(n - j) (120)
q=0 j=0

where g(n) is the synthesis polyphase filter. Setting j = s + mr/2, we
can rewrite (120) as

m?2-1 2g-1

zin) = Y Y &s +mr/2)z g “#nemg-baim y(n -s -mr/2) (121)
s=0 r=0 q=0

Now decimation by a factor m/2 means that y(n - s - mr/2) = 0 for
n — s # jm/2 for some j which implies that s = n MOD m/2 and the sum
over s in (121) vanishes. Substituting (119) into the sum over q right
hand part of (121) gives

mg-1 m-1
Z h()x(n -s-mr/2 -1) Z g -iZx(n-mg+1-n+s+mr/2 +l)g/m (122)

=0 q-O

Now the sum over q is zero unless
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s+mr/2 +l=mg-1 (123)

so (122) reduces to

m x(n - mg + 1) h(mg -1 -s - mr/2) (124)

and (121) becomes

z(n) = mx(n-mg+1)
2g-1 (125)

x Y, gnMODm/2 + mr/2)h(mg-1-nMODm/2 - mr/2)
r=0

Thus, perfect reconstruction requires that
2g-1

(126)
m Y gnMODn/2 + mr/2)h(mg - 1 - nMODm/2 - mr/2) =1

r=0

and that
2g-1 aa27)
Y g(nMODm/2 + mr/2)h(mk - 1 - nMODm/2 - mr/2) = 0
r=0

for k # g. Now in our transmux example, g(n) = h(n) = h(3m - 1 - n)
forn =0,1,...3m - 1, so the following program will test these
orthogonality conditions.

<« > NR « N3 x ZERO N H30N OVER VCMB VCMB N
2/ > Hn «1n FOR J 'Xr=6,11,HJ+rxn)xH(J+rxn+RxN))’

—-NUM NEXT n 5ARRY N x n x 10 RND > > >

The result for N = 8 is

1 111]
[-.0057915938 -.0009307532 .0032909467 -.0009307532]
[ .0057915938 .0009307532 -.0032909467 .0009307532]
[0 0 0 O]D

D
o
o
W
O

and similarly for R < 0. Comparing these values with the amplitudes
of the transmux output values explains their origin. The following
program will plot the frequency response of the polyphase filter.

< 8 H30ON 128 ZFILN 128 TWIDL FFT HALF1 VABS VSQ
1E-9 VADD VLOG 10 x PLT1 »

Observe that the first lobe is down 33 dB from the main lobe which
compares with 13 dB for an FFT with no window. Thus, the polyphase
filter improves the subband isolation by 20 dB.
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We now show that the computational cost of this improvement is small.
Analysis bank (119) may be rewritten as

y(km/2) = z:g h(s + mr/2) x(mk/2 - s - rm/2) eiz"‘“’m"’q(’i‘zs)

= (-1)k mz-:l u,(k) e “#*™ = (1) DFT,[u,(k))(q)

where k is n(')::' the half block index and

u,(k) = gz.f h(s + mr/2) x(mk/2 - s - rm/2) (129)
r=0

Since g = 3, the above convolution is over only 3 values. Given u,(k)
and u,(k + 1) for k even, we mux them up as in TMIC3 and DFT them
both. After demuxing the two FFTs, the second one must then be
modulated by (-1)% This is performed by multiplying by the S vector.
Now define

m-1

v(n) = Y e ¥ramy(IP(2n/m)m/2 - mr/2) (130)
q=0

= DFT,[y(IP(2n/m)m/2 - mr/2)l(n)
Then ignoring delays since they are implemented by proper array
indexing, (121) can be written as

2g-1

z(n) = ¥, gmnMODm/2 + mr/2) v(n) (131)
r=0

The output convolution in our example contains 6 terms. The tricky
part of the synthesis bank is extracting the linearly convolved values,
which is the reason the analysis and synthesis banks are not
symmetric. See the software for details.

Now a different set of filter coefficients could lead to a perfect
reconstruction filter bank, but to satisfy both orthogonality and
subband isolation (in interference canceler applications, the aliasing
does not cancel) requires more coefficients and thus longer convolutions.
This is the trade space. While there is no true convolution theorem for
the transmux, the interpretation of applying a symmetric and real
multiplicative weighting function to the pseudospectrum values at the
output of the analysis bank does have meaning provided the filter is
computed in terms of those pseudospectrum values. For more
discussion on transmultiplexing, see [1] and [32].
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PERFECT RECONSTRUCTION FILTER BANKS

Independent of the wavelet movement, Vaidyanathan and his students
have been characterizing FIR perfect reconstruction filter banks for a
number of years. They have shown that the polyphase matrix P[A](z)
defined by (8) can be written in state space form as [12]

PlAl(z) = C(zI - QB + D (132)

corresponding to the state space system in z transform notation

2X(z) = QX(z) + BU), Y@=CX(+ DUz  (133)

The rank of Q is the minimal number of delays to realize the system
and equals the degree of DET P[A](z). Every polyphase matrix and
every wavelet matrix of McMillan degree g — 1 can be written as [9]

(134)
PlAlz) =[1 -1 -zYv,;v7]...[I-Q-zYvv,"]h

where h is the characteristic Haar (unitary) matrix of the wavelet
matrix A and v,, ... v,are each m dimensional vectors of unit length.
A polyphase matrix of degree g — 1 has genus g, but for m > 2, a genus
g wavelet matrix need not always have degree g - 1 [22].

Equation (134) is the Vaidyanathan parameterization for filter banks
and thus wavelet matrices. In his papers he derives the minimum
number ofparameters required to characterize these matrices. Observe
that given the Vaidyanathan parameterization, the Pollen product
discussed on page 92 easily follows. Writing (134) as

g-1

P(Alz) = [] L,[Al2) h (135)
k=1

where each L,[A](z) is a degree 1 lattice matrix, then

P[Al(z) = P[A’)z)h 'P[A” )(z) = LIA’)z) LIA” }z) h  (136)

If H(z) is the corresponding analysis filter, then

H(z) = P[Al(z ™) V_(2) 137)

where Vi(z) = [1 z7' ...z™", Hence, if P[Al(z) has degree g - 1,
then P[A](z") has degree m(g - 1) and the rows of H(z) each have

degree mg - 1. A real Haar (unitary) matrix h must satisfy (':)

constraints. Each v, has m - 1 independent parameters. Thus, the
total number of angles in the parameter space is [47]
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N,=m-1g-1 +(}) (138)
Since the Haar wavelet matrix must also satisfy linear condition (9),
the number of parameters is further reduced by m - 1. Thus, the
number of parameters is [54]

N, =(m -g -2 +(}) (139)2

For m = 2, there are (2 - 1)(g - 2) + 1 parameters to determine which
equals g — 1. This is the number of parameters programs WD4, WD6,
SWD4, and SWD6 use.

We close this section by summarizing some properties of perfect
reconstruction filter banks [50]. If H(z) is the analysis polyphase
matrix and G,/(z) is the synthesis polyphase matrix, a sufficient
condition for perfect reconstruction is

[G,@Hyz) = 2% (140)

for non-negative integer k. Other solutions are obtained by
pseudocirculant shifting of the identity matrix [46], and are therefore
similar within a delay to the solution (139). A necessary and sufficient
condition for the existence of G,(z) is that the determinant of H(z) be
a monomial in z.

A subset of the set of perfect reconstruction systems are those for which
the analysis and synthesis filters have the same length. Vetterli shows
that for equal length filters, the orthogonality of overlapping blocks is
a sufficient condition for perfect reconstruction. This was the condition
(127) which the transmux failed to satisfy.

A subset of the analysis/synthesis systems of equal length are those
with identical (within a time reversal) analysis and synthesis filters.
A necessary and sufficient condition for this subset is that

[Hy(z )" H(z) = 1 (141)

H(z) be paraunitary and we choose G,(z) = 77k H,(z™).

The following six sections summarize some alternative perfect
reconstruction filter bank design techniques. They involve brute force
nonlinear optimization schemes and are thus not well suited to the HP
48. Koilpillai reports 100 iterations per coefficient is typical [25]. For
these design techniques, I recommend that you do the design on a PC
and then download the result to the HP 48 for analysis.
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COSINE MODULATED WAVELET MATRICES

Koilpillai has developed a design technique for M-band perfect
reconstruction filter banks of length N = 2am, o € N[25]. The bank is
explicitly cosine modulated. The analysis and synthesis filters, H,(z)
and G,(z) respectively for k = 0, ... m - 1, of the pseudo-QMF bank
are obtained by modulating a real symmetric impulse response fin)

hy(n) = 2ftn) cos{(2k + 1)-2%[:1 X 1] : ek] (142) 

2

 g(n) = 2f(n) cos[(2k ' 1)-2%(11 -2 1) _ ek] (143)

forn=0,... N-1landk=0,...m- 1. It is easily verified that

g(n) =h(N -1 -n) G2 =zNV HYzY) (144

Define

- ) - L] i E (145)
Cyn = 2 cosl:(zk + l}m(n —T] + ( 1) z:|

where we have picked one possible definition for 6,. See [25] for others.
By the periodicity of the cosine modulation

Crinoomn = (-7 ¢, r=0,...a-1 (146)

for non-negative integer r. Now the z transform of the lowpass
prototype filter fln) can be written as

N-1

Y fin)z™
n=0

2m-1|a-1

Y |Y fls +2mr) z'2“”]z" (147)
s=0 r=0

2m-1
E Fs(z 2mr) z®

s=0

F(z)

so the analysis filters can be expressed as
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N-1 N-1

Y himzm=Y ¢, fm)z™
n=0 n=0

H,(z)

2m-1 m-1

Y ¢,z Y (-1fls + 2mr)z2 (148)
s=0 r=0

2m-1

= E ceo 2F(-2%™)
s=0

Koilpillai proves that the necessary and sufficient conditions for the
prototype filter fin) to give rise to a unitary filter bank are that

F(z)F,(z) + F..(z)F,_.(2) = % s=0,...m -1 (149)

Observe that from the even symmetry of F(z)

F(z) =zVYF,,.(z7) (150)

and thus if we define J = [m/2] to be the floor of m/2, then (150) can
be written as:

1. For m even

F(z)F,(z) + F,.(z)F__(2) = % s=0,...J -1 (181

2. For m odd

F(z)F(z) + F..(z)F._(2) = -;- s=0,...d-1
1 (152)

FJ.(Z -I)FJ(Z) = z

The derivation of (149) gives good insight into why it all works, so we
repeat Koilpillai’s derivation. Let C and S be the Type IV discrete
cosine transform (DCT) and discrete sine transform (DST) matrices,
respectively [51]. The elements are defined by

(153)
[Cl,, = -2—cos[-1t—( +-1—j[n+i)} 0<k,n<m-1

’ \m m

 

2 2

(154)
2 . T 1 1

[S]k‘n.:\TH-SInI:?n_( +§][n+§]j| Osk,nSm-l

From [51] we have the identities
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[C]I'=C = [CH [S]' =S = [SHH (155)

Let I, denote the m x m identity matrix and define the m x m reflection
matrix J, which is also called an exchange matrix or reverse operator

as (apply REV— or REVT to I_ to create it)

00 .01

00 -10

J =l: &+ « & i (156)

01.00

10.00

Also define the cosine modulation matrices

[A],, = 2 cos[(2k + 1)-2%(n “m + -21-) . (-1)*%] 157)

[Adyn =2 cos[(Zk . 1)51:;(n + %) + (-1)“%} (158)

for 0 <k, n <m - 1. The matrices A; and A, can be written in terms
of C and S as follows

Ay=ym [C +AS] A, =ym [C - AS] (159)
where A is an m x m diagonal matrix whose non-zero elements are
given by [A], = (-1)*fork = 0, ... m - 1. With these definitions, we
can write

AJM'A, = m[2I_ + CAS + SAC] (160)

AMA, = m[2I_ - CAS - SAC] (161)

AJ'A, = m[-CAS + SAC] = -AA, (162)

From the definitions, we also have

[ASJm]k,n = (—1)k[SJm]k,n = (—l)k[S]k,(m—l-n)
. T T 1 1

= (-1)* g sin [E(Zk +1) - ?n_[k + -2-) (n + E]} (163)

-z cos [%(k +3)X %]] - [c),,
for 0 <k, n £ m - 1 which yields the identities
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ASJ, =C AS = CJ, SA =J,C (164)

Substitution of (164) into (160) through (162) yields

AfA) = 2m[I +J.] (165)

AMA=2m[I- J.] (166)

APA =ASA=0 (167)

Now define the m x m matrices

[Bolin = Cxn [Bidin = Cknem O0<k,n<m -1 (168)

Then it is easily verified that:

1. For o even

B, = (-D)" A, B, = (-1 A, (169)

2. For o odd
Bo - (_1)(a-1)/2 Ao Bl = (=1)@-172 A1 (170)

Hence, it follows that

B,"B, = 2mlI, + (-1)*">J,] (€71)

B,"B, = 2m[l, - (-1)*>J,] (172)
BB, = BB, = 0 (173)

These are the key identities which we require for the derivation.

Equation (148) can be written as
m-1

Hk(z) = E {ck.s Fs(_z Zm) z™ + ck,(s-»m) Fs»m(-z 2m) z-(S*m)} (174)
8=0

so we define the m x m diagonal matrices

[Dy(2)),, = F(-2) [D,(2)],, = F,..(-2) (175)

fors=0,...m - 1. Then we can write

h(z) = [B,D,(z?") + z™B,D,(z*]V_ = Ez™V_(z) (176)

where the analysis filter vector is

h(z) = [H(z) Hz)...H__2] (177)

V.(z)=[1 z' ... z*V" and E(z) is the polyphase (Laurent) matrix.
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Perfect reconstruction means E¥(z)E(z) = m I so we have using
identities (171) through (173)

E H(z ") E(z)
= 2m(D,"(z 2®)[I_ + (-1)™"1J_]D,(z ™)

(178
+ D,z *)[I, - (-1)™-PJ_]1D,(z?™)} ’

= 2m[D,(z 2®)D,(z?™) + D(z?®)D,(z?)] =m I_
Rewriting (178) as m scalar equations gives (149).

For m = 2, a pair of filters {P(z), Q(z)} satistying (149)

Pz )P(z) + Q ¥z 1)Q2) =1 (179)

are called power complementary pairs which have been explicitly
parameterized by Vaidyanathan [43] as

 

P(z) Ifil cos6, sinB, ||1 ¢ |cos, (180)

Q(z) R sin6, -cos8,||0 z-!|| |sin6,

Koilpillai’s design approach is to implement the M-band case with
length N = 2am coefficient vectors (genus 20) as m power
complementary pairs {F,, F,,} fors =0,... m - 1. By (150) this can
be reduced to J power complementary pairs and there are thus o x J
parameters 0,,, fors=0,...J-1landk=0,... a- 1. The resultis

F(z) 1 o cos6,, sinb,, |[1 o0 cos6,,| (181)

F,..(2) - —\/E: k= sin@,, -cosO,,||0 z-!|| [sinb,,

The Koilpillai design approach does not generally lead to a wavelet
matrix because the linear condition

—
—

N-1 2m -1

Y hm =Y ¢, F(-1)=m (182)
n=0 =0

is not satisfied for most prototype filters fin). Gopinath [8] has worked
out a parameterization for the wavelet case which we now will describe.
Define the angle sum

0,=Y 6, (183)

and consider first the m even case. From (181) we have
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F,(-1) 1 ol [|cosB,, -sin®,, |cos6,,

F,..(-1) _21;-1 sin@,, cos0,, sin@,, (184)

1 cos( ea0 es.k) 1 [cos@,J

V2|sin(Y=1 6,,)| V2][sine,
From (150) we also have

{Fm_l_,(—l)}={(—1)“"”&(-1)}= 1[(—1)<a-1>cose,J (185)

For(-D |[(-DeF,,(-1)| 2 |(-1)*Psine,

For m odd, the above equations are true fors =0, ...dJ - 1 and the Jth
power complementary pair is a pure delay. See (149) and (199).

 

1 |4
-1) = — —(q - (186)F,(-1) 5 cos(z(a 1))

1 T
-1) = —sin|l—(q - (187)F;..(-1) 2sm(2(a 1))

The cosine modulation can be written as

- (188)
Cypn = 2 cos[(2k + 1)%@ - N2 1) + (—1)“%} = 2 cosP,,

forn=0,...dJ - 1 which defines B,,. Similarly,

Chnem = 2 COS[BI(,n + g(2k + 1)} = -2 (-1sinB,, (189)

Crom-1-n = 2 (-1* (-1)""sinP, (190)

Cem-1-n = 2 (-1cosP,| (191)

forn=0,...J - 1. From (182) we then have for m even
N-1 J-1

nz-% h,(n) = .}:3 le,F(-1) + ¢,..F,..(-1) (192)

+ ck,m-l—sFm—l—s(—l) + ck,2m—1—sF2m-1—s(-1)]

Hence, we can write
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N-1 J-1

Y hyn) J_E [cosB,, cosO, - sinB,, sin®,
n=0 s=0

cosBOB sin®, + sinf,, cosO,]
J-1 (193)

J—E [cos(B,, + ©,) + sin(B,, + ©,)]
s=0

J-1 1t
2y sm[— + Bo., +9]
s=0

Now (193) requires that

Zsm( +Bo.+e) J (194)
s=0

+
"

which can only happen if each of the J terms of the sum equals 1, the
maximum value of sin x, so we have that

sin(% + Bo* esJ -1 (195)
fors = 0,...dJ -1 which implies

T T T= — - = —Q - — (196)1 Bo.s 50 =7 (2s +1)

For odd m with J = (m - 1)/2 we have from (145)

Coy = 2 cos[g(a ~ 1)) (197)

Cogem = 2 sin(%(a - 1)] (198)

50 ¢y5 Fy(=1) + ¢4yom Fium(~1) = 1 and (193) for odd m is
N-1 J-1 s

Y hm) =2) sm[—+[308+®]+1=m (199)
n=0 s8=0

so we again obtain (194) through (196). Condition (149) with (182)
cause the m x N h,(n) coefficient matrix to be a rank m, genus 2a
wavelet matrix like the ones discussed at the beginning of this chapter.

THEOREM [Gopinath 8]: For every integer m, there exists cosine

modulated wavelet tight frames of length 2am, that can be explicitly
parameterized by J(o. - 1) angles. In particular, forN = 2m, there exists
a cosine modulated wavelet tight frame.
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Observe that the wavelet matrix has J less parameters than the
Koilpillai parameterization on page 120 due to the linear constraint
(182). Also note that while f(n) is symmetric, from (188) through (191),
h,(n) is not a phase linear filter.

We now consider two examples from Gopinath’s paper [8]. Let m = 2
and N = 4. Then a = 1 and from (196)

Therefore, the prototype filter fin) is given by

cosf,, cos(31/8) sin(n/8)

\/é_ fl ) sin 60,0 sin (31'(/8) COS(K/S)
n) = =

sin 60,0 sin (31/8) cos(r/8)

cosf,,| Lcos(3/8)] |sin(n/8)

The cosine modulation vector for the ¢,, coefficients is

cos(-1/8) cos(n/8)

_ cos(@8) | cos(n/8)

cos(3n/8) | sin(n/8)

cos(51/8) -sin (n/8)

and the corresponding scaling vector is

cos(n/8)sin (n/8)

cos®(n/8)

B, = 2 cos(n/8)sin (n/8)

-sin®(n/8)

The cosine modulation vector for the c,, coefficients is

-cos(31/8) -sin(n/8)

0 -cos(3n/8) .2 -sin (1/8)

cos(m/8) cos(n/8)

-cos(m/8) -cos(n/8)

and the corresponding wavelet vector is

(200)

(201)

(202)

(203)

(204)
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-sin®(n/8)

h, = \/5 -cos(n/8) sin(n/8) (205)

cos?(n/8)

-cos(n/8) sin(n/8)

Observe that the wavelet vector is the QMF of the scaling vector.

h,(n) = (-1**h3 -n) n=0,...3 (206)

The scaling vector can be easily typed in so that you can plot and
analyze the scaling function and wavelet. Observe that {1 1} perfectly
divides the scaling vector once and the resulting wavelet has 0
regularity. This may be compared with the Daubechies minimal length
scaling vector D, which can be divided by {1 1} twice and thus has
regularity 1 (see page 59). The autocorrelation is

1-42 3 +42 3 +42 1-y2 @207
4 0 4 2 4 0 4
    

Also observe that the cosine modulated scaling function and wavelet,
while different from the D, ones, do have some similarities. For a 193
value approximation of the scaling and wavelet functions (n = 5), the
normalized crosscorrelation is 3.4E-2 (29 dB) which, like the
Daubechies ones, is not very orthogonal. This can be compared with
the results on pages 66 and 101.

As we increase o, we obtain more design flexibility relative to the
prototype fln). This can be used to increase regularity or for a more
desirable filter shape. Gopinath’s second example illustrates increasing
the regularity of the cosine modulated bank to 1 with an 8 coefficient
system. For o = 2 we have from (196) that

T n
Oy =60+ 6, =7 - 8~ 78 (208)

and there is J(o — 1) = 1 angle which may be chosen. For regularity,
this can be chosen so that

7

Y (-1D)*k hyk) =0 (209)
k=0

is satisfied or so that {1 2 1} divides the 8 coefficient polynomial as on
page 60. The vectors are
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[ cos9,

,

cosf,

,

| i0. €058, ~sin(n/8)]
—COSOQJ SlneO,O sin (n/8)

sin@,, cosf,, cos(n/8)

sin®, ; sin@, cos(n/8)fi fn) = . 0.1 ' 0.0 C=2 . (
sin@,, sin@ sin (1/8)

sin®,; cosf, -sin(/8)
_cos,, sind, -cos(n/8)
o5,costy,| |-cos(n/8)

and the scaling vector is

[—sin (/8) cosB,, cos,

-sin(n/8) cos6,, sin@,,

cos(n/8) sin@,, cosb,

cos(n/8) sin6, sin@

sin(n/8) sin6,, sin6,,

-sin(n/8) sin6,, cosf,

cos(n/8) cos@,, sinf,   -cos(n/8) cosB,; cosBy

Solving for the angle 6,,, we obtain

5 _11t+ . \/5+1
01 = 37 arcsin 1

1l = . \/5+1
90,1= 2Z+1t—arcs1n 7

 

or
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(210)

(211)

(212)

(213)

where arcsin is assumed to return a value in [-7/2, ©/2]. This combined
with (208) completely determines the two angles. The resulting two
angles 6,, are given by 0.716674224145 and 1.63952026605 and 6,,
= Tn/8 - 6,,. The corresponding scaling vectors for these two cases are:
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CASE 1 CASE 2
 
 

0.181677109432 0.0165461952688
  

-0.365384036868 0.033277255681

-0.382115097273 0.580338401984

  
 

 

 

 

0.768499439618 1.16716073216

0.318322890567 0.48345380473

0.158277255678 -0.240384036867

0.88211509728 -0.0803384019836
 

0.438607341563 0.0399460490234     
Use QMF to compute the wavelet matrix and SOVN to compute the
scaling function and wavelet. Case 1 results in a fractal like scaling
function and wavelet, each having Fourier transforms which are not at
all smooth, while case 2 produces a smooth scaling function and wavelet
having also nice smooth spectrums. Case 2 resembles the Daubechies
D¢ scaling function and wavelet which has regularity 2. Hence,
regularity does not always imply smoothness. The above results are
generalized in [14] unifying the [25] and [26] approaches.

COMMENTS ON THE LINEAR CONSTRAINT

All of the wavelets considered have had a linear constraint on the
scaling vector coefficients. See (9) and (182), for example. Computing
the Fourier transform of the two-scale difference equation

N-1

s(x) = ¥ a, stmx - n) (214)
n=0

gives

oo iw/m*°

S(w) = H _I_.!(_ea__)} S(0) (215)

n=1

 

where S(w) = F [ s(x) J(w) is the Fourier transform of the scaling
function and
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N-1

He'™®) = ¥} a, e-ion (216)
n=0

This may be derived as follows.

N-1 -

S =Y a, f s(mx - n) e“* dx

oo
= a m™ s(y) e @mom ¢
X Js Y (217)

N-1

=m™* Y a, e ™™ S(w/m)
n=0

H iw/m H iw/m H iw/m?

. HEe™ S(w/m) = He™™)He™™) S(w/m?)
m m m

Now suppose that H(1) > m. Then clearly, the above product diverges.

Next suppose the H(1) < m. Then clearly, the above product is trivially
equal to zero. Thus, the linear condition is associated with a
meaningful Fourier transform existing as well as tight frames [9].

Observe that the alternative normalization E¥(z))E(z) = I with the
corresponding linear constraint

N-1

H1) =Y a,=ym (218)
n=0

also works since the denominator m in (215) is replaced by vm.

The linear condition is often ignored in the engineering literature in
favor of only considering the perfect reconstruction properties of the
filter bank. This gives more degrees of freedom for better filter design,
od versus (o — 1)J, for the cosine modulated filter bank. However,
there is no wavelet tight frame unless the linear condition (9) and the
orthogonality conditions (11) and (12) hold.

UNITARY FIR FILTER BANKS WITH SYMMETRY

Filters in a modulated filter bank cannot be phase linear [14].
However, if one takes an unmodulated approach for m > 2, then there
is a solution. Soman [38] has parameterized paraunitary filter banks
with linear phase. Gopinath has extended that characterization to
several additional types of symmetry [13]. These include pairwise-shift
symmetry
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h,_,_(n) = (-1)" h(n) k=0,...,m-1 (219)
n=0..,N-1Hm -1 _k(Z) = Hk( "Z)

and pairwise-conjugated-shift symmetry

h;.() =CD"h(N -1 -n) k

n
0,...,m- 1(220)

H.,(2)=z®YH(-z7") 0,..,N-1

These are considered with and without linear phase symmetry

h() = +h(N -1 -n) k=0,...,m-1 (221)
H(z) = +z "V H(z™) n=0...,N-1

Gopinath obtains parameterizations for all these cases. In addition, he

shows how the linear condition (9) can be introduced so that one obtains
wavelet tight frames. This theory is currently limited to the m even
case, but it does allow one to construct M-band phase linear wavelets.

OTHER FILTER BANK DESIGN TECHNIQUES

In [12], Gopinath gives a computational procedure for solving for
scaling vectors which can be viewed as the M-band generalization of
the Vetterli complementary filter concept discussed in Chapter 9.
Gopinath also develops a state space computational approach for
solving for the M-band wavelet vectors.

In the remainder of this chapter, we will not be concerned with wavelet
tight frames. We simply regard the impulse response of each filter in
the bank (each row of the coefficient matrix) as discrete-time-wavelets.
These wavelets may or may not be orthogonal and in essence give a
new name to classical perfect reconstruction filter bank theory.

Nayebi [28] has developed an M-band procedure for computing the
synthesis filter coefficients, given the analysis filter coefficients, which
is optimum in the least squares sense. A conjugate gradient algorithm
is used to iteratively improve the analysis filter design. Shenoy [33]
gives an improved design procedure for multirate filters which is then
compared with the more common Parks-McClellan design. Herley [23]
has some new results on the 2-band design of IIR perfect
reconstruction filter banks.
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TIME-VARYING FILTER BANKS AND WAVELETS

Sodagar [35] has some new results on maintaining the perfect
reconstruction property while the analysis bank is changed. Because
of the filter bank decimation, a sequence of synthesis filters are
required.

WAVELET PACKETS

Wavelet packets or nonuniform filter banks have been studied by many
including Soman [36] and [37] who shows how tree structures can be
related to parallel M-band bank structures.
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WAVELETS AND
APPROXIMATIONS

INTRODUCTION

The past two chapters examined the computation of wavelets and their
properties. Now we study the transform aspect of wavelets and how it
compares with the Fourier transform. Programs are given for

computing the discrete wavelet transform.

At the time of writing this chapter, several texts and books have

become available. References [2], [3], and [5] present wavelets from the

mathematics point of view. References [1] and [11] present wavelets
from an engineering point of view. A nice overview of time-frequency
signal representation is given in [8].

We begin by reviewing the short time Fourier transform and windows.
Then the wavelet transform is defined. A program for computing
wavelet moments is given as well as one for computing wavelets by
Daubechies method which is closely related to the actual wavelet
transform computation. Finally, programs for computing wavelet
transforms are presented.

133



134 WAVELETS AND APPROXIMATIONS CH 11

SHORT TIME FOURIER TRANSFORM

The short time Fourier transform (STFT) is a name given to a generic
set of windowed Fourier transforms. In the continuous case, the STFT
of fit) may be defined as

FQ, 1) = f" ft) gt - 1) e 9t dt 1)

with inverse transform

fit) = [[TFQ D gyx - t) '™dQdr )

We derive the conditions on g;(t) and g,(t) as follows

1 (o (o (= ) . 3)
flt) = -2_1ELLL flo) e 72 g'(a - 1) go(t - t) edadQdr

Since

L[ et 0 40 - &t - @

equation (3) reduces to

fit) = [7[" flw) g0 - 1) gyt - t) &t - @) dads
_ b)

=ft) (" gt - v gt - v do

so the last integral in (5) must equal 1.

GABOR TRANSFORM

Consider an example where g,(t) and g,(t) are defined by

g(t) = Cre ™" g,(t) = Cpe ™" 6)

A STFT with a Gaussian window is commonly called a Gabor
transform. Command GAUS provides this window. From pages 548
and 550 of the MATHLIB manual, we have the transform relations

.9-—[ e-fi](t -1 ](Q) - L;_ e—fl’/('ifil) eiflt (7)

F[ e- Q) = /% o "B o -iat 8

so that the last integral in (5) equals
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T
«/EB—=1 9

and we may choose the coefficients as

o [b o[ a0

UNCERTAINTY PRINCIPLE

 C.C,

 

 

The Fourier transform uncertainty principle [9] states that if a function
f(t) vanishes at infinity faster than t™

Lim yt fit) = 0 (11)
t2o

then D,D, > ¥(n/2) and that equality only holds for Gaussian functions
where

D2 =E- ("t |ftt))? dt [[Hwpd=- a2

DZ=E" [~ o|Fw® do f IF()[? do = 2nE (13)

and F(w) is the Fourier transform of fit). Thus, the better we isolate
frequency (small D), the poorer the isolation of time (large D,). The
Gabor Gaussian window attempts to make the best trade.

COMMENTS ON WINDOWS

The literature is filled with applications of windows. They can be very
useful in system identification, spectral estimation, speech pitch and
formant analysis, estimation of group delay and instantaneous
frequency, and parameter estimation problems. They are also useful in
filter design applications. MATHLIB provides 10 windows and others
are easily programmed. See the KAISER example in MAN6 WIND.

However, a common misapplication is in optimum minimum probability
of error demodulation theory in the presence of colored noise. While a
window may improve one’s ability to estimate the interference
environment for adaptive interference cancellation, the same window
introduces a time varying amplitude modulation onto the signal of
interest which ultimately will increase the symbol error rate. In over
20 years of simulating and building optimum demodulators, I have
never found windowing to improve the symbol error rate.
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DISCRETE STFT

A special case of the above STFT is where we define

Q =kQ, T = n1, (14)

so that the transform becomes

Fik, n] = f" fit) gt - nt,) e™ dt (15)

with corresponding inverse transform

fit) = ==Y Y FIk, n] e™®gyt - nt,) (16)
kw-0o n=m-oo

 

DISCRETE TIME STFT

If in addition, f{t) has been Nyquist sampled (without loss in generality
we assume at a sampling rate of 1 Hz), then as explained on page 559
of the MATHLIB manual, (12) can be rewritten as

= . 17
Fk, n] = Y fli] g,li - n] e-2x/™ k=0,...,M—1( )

= oo

where we now assume that the window g,[k] is real with compact
support.

CONTINUOUS WAVELET TRANSFORM

Let y(t) denote the mother wavelet function and define

1 (t-bYot = — 18)o)
whose Fourier transform is given by

 

¥,(Q) = ya ¥@Q) e*n 19)

The continuous wavelet transform (CWT) is defined as

Wita, b) = [y,fib) dt = (v,,, D) (20)

where the (e, *) denotes inner or dot product. The inverse transform
is given by

1 (- - dadb=oI-f —W,(a, b) v, 21)

where
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_ (= [P 29Cy = [ do (22)

Non-negative a is the scaling parameter and b is the translation
parameter. A waveletis said to be admissible if C,, < e which implies

¥(0) = [~ y() dt = 0 23)
Comparing (1) with (20), we observe that the STFT is a function of a
modulation parameter Q and a translation parameter T, while the CWT
is a function of a dilation or scaling parameter a and a translation
parameter b. While the values of D, and D, are constant throughout
the (€, 1) plane, they are not for the CWT in the (a, b) plane. To see
this, suppose y(t) is centered at (t,, €,) and define [1]

ol =E7 [Tt - ) [ydt 24)

ca=E" [T(@- Q) ¥do (25)

Then vy,,(t) is centered at (b + at,, Qy/a) and

D2 =E"! f“(t-b-at)? |y,t)dt =ac®  (26)

D; - B[“fo - 2 1wP a0 27)a m
l
a

o
O
w

—o00

which corrects (5.28) in [1].

An example mother wavelet is the second derivative of the Gaussian
sometimes called the Mexican hat wavelet [5]

yit) = (1 -tH e WQ) =y2n Qe (28
which corrects (5.25) in [1]. For the Gabor transform defined above

B e [ leords2 [Tew ae [ -k [ F@P da
SO

2 _ [ (= _ 1 30D, -‘/;LH |f(t)l2dt-4—B (30)

DI =|x ["[FQdo = 2np (31)

using the relationships in Chapter, 5 of the MATHLIB manual and
DD’ = /2. For the Mexican hat wavelet centered at (0, 0)



138 WAVELETS AND APPROXIMATIONS CH11

E= [ woPd =5 [" #@P d-# (32)

SO

4 (- 7
62 - — t2 (t) 2 dt -

(33)

‘osyn L ()] 6

: 4 (e
o = —=

|

@ [¥(@QF dQ = 5n 34)
a 3‘/; .[,.,

and D’D.? = 35n/6 which is almost a factor of 12 larger than for the
Gabor transform. Thus, after giving up 11 dB of performance, we can
take what is left and steer it around using (26) and (27).

Most of the operations associated with the STFT are related to
modulations and translations, which form the Weil-Heisenberg group.
Similarly, the group of dilations and translations associated with
wavelet transforms are called the Affine group [6].

DISCRETE WAVELET TRANSFORM

A special case of the above CWT is where we define

a=a=m* b = nbya,* = nm X (35)

and generalize to the M-band case

Yixa(t) = m*? y(m 5t - n) (36)
forj=0,... m-1 so that

m-1 = o 3
fit) = E Z E Ciin Wjin(t) Ckn = (fit), \"j,k,n(t)>

j-O k®-c nw-oo

7)

which can also be written as [7]

= m-1 e oo

fit) = 3 Coom Vool + 2 X X Cun Ykt (38)
n=-e j=1 k=1 n=-w

where

Vornlt) = ¢k,n(t) =m* ¢(m¥*t - n) 39)

is the scaling function and
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mg-1

vt =ym ¥ hk) ymt - k) (40)
k=0

where h;is the jth row of the associated wavelet matrix.

DISCRETE TIME WAVELET TRANSFORM

In a similar fashion to the discrete time STFT, by letting the variable
t = Tl for [ €, equations (36) through (40) can be converted to a

discrete time form.

COMPUTATION OF WAVELET MOMENTS

From the above discussion, the wavelet coefficients are computed from
the formula

G = D) Wy,() dt @1
In the previous two chapters we pointed out that while the Strang
method of computation gives accurate values, for any reasonable
investment in computation equivalent to computing the sine function
70,000 times, we only have two digits of orthogonality between the
wavelets. This is because we did not compute enough values.

One way of circumventing this problem is to assume f{t) can be locally
approximated by its Maclaurin series expansion so that (41) can be
computed in terms of moments. This works because the moments can

be exactly computed. From (10-26) through (10-28) we have

nes, ) = [x7 yx) dx (42)
mg-1

Ms, ) = 3 k' hk) 43)
k=0

W, ) = m31 Y (1) Mis, j - 1) w0, 1 (44)
r=0

Thus, for s = 0

(0, j) = m--! XJ: () M0©, j - ©) (o, ) (45)
r=0

which can be recursively solved for the moments of the scaling function.
Given these, (44) will compute n(s, j) forj=1,...,m - 1.
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Given the wavelet matrix M and the depth J, WMOM in MAN7 WAVE
FFT2D computes all the moments M(s, j) and n(s, j) up to k’ and t’.

<« > MJ <M SIZE EVAL M1 EROW (1} {} - m N V

C D« 0J FOR K 'D' 'Z(n=0,N-1,n"KxV(n+1))) -NUM STO+
NEXT 1 J FOR K 'C

'Y(n=0,K-1,COMB(K,n)xD(K-n+1)xC(n+1))/(m~A(K+1)-m)' -NUM
STO+ NEXT C -5ROW 2 m FORI M I EROW {}] - W E
< 0 J FOR K 'E' 'Z(n=0,N-1,n"KxW(n+1))) -NUM STO+

NEXT 0 J FOR K
'T(n=0,K,COMB(K,n)xE(K-n+1)xC(n+1))/m~A(K+1)) -NUM NEXT

{1} J 1 + + -ARRY RCMB D' E STO+ » NEXT D OBJ—
DROP m J 1 + 2 -»LIST —-ARRY > > »

Two matrices are returned. The moments t" for n = 0, . . ., J are
returned in column n + 1 of the matrix on Level 2 of the stack where
each row of the matrix corresponds to the associated scaling function or
wavelet. The moments k" forn =0,. . ., J are returned in column n +
1 of the matrix on Level 1 of the stack where each row of the matrix
corresponds to the associated scaling or wavelet vector. The rank ofthe
input wavelet matrix must be at least 2. For the Daubechies D,
wavelet matrix with J = 3, the output matrices are:

2 1.26795 .80385 -1.22243 (46)

0 0 1.73205 9.29423

{1 63397 .40192 .13109 (47)

0 0 .21651 .78678
As shown below, these moments can be propagated through the filter
bank to compute the wavelet transform.

DAUBECHIES’ WAVELET COMPUTATION METHOD

The Strang method of wavelet computation, used in the previous two
chapters, gives exact values within numerical error. Daubechies uses
a different approach to computing the scaling function and wavelets [4].
For a reasonable investment in computation, her technique yields good
enough values for plotting, but relative to 10-digit precision, all of the
values are wrong. The two advantages of her technique are that we
need not solve for an eigenvector and secondly and most important, the
values are consistently wrong in such a way that the scaling function
and wavelet approximations are always mutually orthogonal.



CH 11 WAVELETS AND APPROXIMATIONS 141

Noting that from (10-9), H,(1) = m, rewrite (10-215) as

  

  

o0 iw/m*®D(ma) = H H(e )} (48)

n=0 m

where we also assume that ®(0) = 1. Define the partial product

K H iw/m*®

n=0 m

Then
io/m iw

<D(D(m (1)) - H(e ) H(e ) (50)

m m

We now derive a practical implementation of (49) as a means of
approximating the scaling function and wavelets. By the time scaling
property of the Fourier transform discussed on page 548 of the
MATHLIB manual, we have

H( iux/m)

v{—i—} (t) = hy(mt) GD
m

Define the filter impulse response

hyt) =Y a/ 8t - k) (52)

Then it follows that k

hy(mt) = ¥ a, 8mt - k) (53)
k

Now m ¢,(mw) is the transform of the convolution

[hy(t) ® hymt)lt) =Y ¥ a, a,, f"" &t - k) d(m(t - 1] - k') dr
k k' -

= g kE a, a) dmt - mk - k') 54)

For each k" MOD m, there are mg + g — 1 values of t for which there is
a discrete nonzero output value.

t=k += =k +lk’/ml + kK’ MOD m (55)
There are m sets of these values which are all interleaved making a
total of
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m[mg + g - 1] =m?g +m(g - 1) (56)

After two iterations, there are

(GY))

mm?g +m(g -1) +g-11=md®z + m?2 + m)(g - 1)

values and after dJ iterations
J

m’lg + {E m k}(g -1 (58)
k=1

values. The following two programs demonstrate the practical
implementation for m = 2.

SOVS: « > VJ « V12 VDEC V 2 2 VDEC - HO Hl <«
1 J START V HO VMPY -ROW V H1 VMPY -ROW RCMB

TRN OBJ— EVAL x —-ARRY V' STO NEXT V > > »

SOVW: « 5 VJ « V12 VDEC V 2 2 VDEC - HO H1 «
V QMFL V' STO 1 J START V HO VMPY

—»ROW V H1 VMPY -ROW RCMB TRN OBJ— EVAL x
—ARRY V' STO NEXT V » > »

where the wavelet expansion is based on the formula

 

  

(e'® - iwm®y H.(e®)
¥(mo) = ——d) = [] He®m)| 7 (59)

m e m m

forj=1,..., m- 1. Vis the scaling vector and J is the depth of
approximation. SOVW must be run in the MAN7 WAVE directory so

that QMFL is available. The M-band version of this program is SOVJ
given below and is in the MAN7 WAVE FFT2D directory.

<« > MJ «<«M SIZE EVAL OVER/ 5 m g « M 1 EROW
g m 2 -5LIST RDM M-CL - C « 1 J FOR n

"CONVOLUTION " n + 3 DISP 1 m FOR K "WAVELET " K
1 -+4DISPMK EROW - V « V C 1 GET VMPY

—-ROW 2 m FOR L V C L GET VMPY -ROW RCMB NEXT
TRN OBJ— EVAL x {1} SWAP + —-ARRY IF K 1 > THEN

RCMB END > NEXT M' STO NEXT M > > > >

where M is the wavelet matrix and J is the depth of approximation.
The output matrix rows correspond to the wavelet matrix rows and the
number of columns is given by (58).
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The Strang method of solution implemented by SOVN required that we
set up a matrix whose eigenvector determined the scaling function on
the integers. Program CRN computes the dimension of that matrix. As
a result, the SOVN output matrix may have extra zeros on the right.
If you wish to overlay the plots of the output rows from SOVN and
SOV, you can use the command LZDEL to (approximately) delete the
trailing zeros of the SOVN output vectors (rows) before plotting.

Since the Daubechies method of computation only involves convolving
the filter bank with itself, the orthogonality of the bank results in the
orthogonality of the scaling function and wavelet approximations for all
J. Given the output matrix from SOVJ for one of the Daubechies
wavelet matrices computed by CWM, the sequence « DUP TRN x »
will compute the correlation matrix which is, within numerical
precision, a constant times the identity matrix. The fact that the exact
Strang solution exhibits such poor orthogonality says that regardless of
rank and regularity, wavelets are not smooth functions. However, by
the Daubechies algorithm, we can construct smooth approximations to
them. In the next section we will see that we compute the wavelet
transform in a similar fashion to the SOVJ algorithm by iteratively
convolving the wavelet moments computed in the previous section with
the filter bank.

COMPUTATION OF THE WAVELET TRANSFORM

We now look at the computation of the wavelet transform. From (40)
we have

m®*D% y(m*'t - n) =Y h() m*? y(mm* 't - n] - 1)
l

(60)

which gives the identity

Wikt = 20 DD oymn.D) (61)
l

Now multiply both sides by some function f(t) and integrate. We have

Cik-1n = Ehj(l) Cokmnet = X h( - mn) ¢y, (62)
l l

Thus, given the scaling function coefficients ¢,,, defined by (41)

Coxn = [ A8 0,() dt = m* {7 f(t) om*t - m) dt (63)
we can use repeated convolution with the filter bank (reversed in time)
to compute the other scaling function and wavelet coefficients.
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For ¢(t) has compact support, then for sufficiently large k, ¢(m*t - n)
approaches a Dirac delta function and we have the approximation

- (64)
Coxn = M2 L, f(t) ¢(m ¥t - n) d(m ¥t) ~ m "¥2 fim *n)

so it common in the discrete case where f{t) = finT) to take T = m™ and

use the samples of f(t) as the starting coefficients [7].

Alternatively, suppose that f{it) can be locally approximated by its
Maclaurin series X d, t. Then we have

Cokn =M™ Y d [T (m¥[x + ) () dx
- -

(65)
l

5 [2) e [ x ow e
q=0

=m™ Y d, m*
l

where the last integral is n(0, q).

Observe that if we choose the discrete approximation (64) and define
x[n] = m*? film™n), except for the sign convention for n and r, (62) is the
same as (10-83) discussed on page 102 which we called the rank M
generalized wavelet transform. Index k in (62) keeps track of how
many times we run the data through the bank which determines the
multiresolution decomposition of x[n] as explained below.

From (40) we have the identity forj=0,..., m -1

[7 vyomx - ndx

=Vm ¥ h® [ yymx - ) yy(mx - n) dx  (66)
- .

= ym h,(n)

so we have from (41) and (37)

Coxs = _[: flt) m*? y,(m *t - s) dt 67

m-1

= ¢..| m™ym't - n) m¥ y,(m*t - s) dt
J,rn ) J 0

j=0 r n

From (40)

y(m't - n) = \/—r;l— Z hj(q) Yo(m ™'t - mn - q) (68)
q

so (67) is zero unless k =r + 1 and s = mn + q. Hence,
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m-1 o0

Coke = 2, 2 h(s-mn)c,. (69)
j-O n=-co

Alternatively, from (68) and (10-12)
m-1 o

Y Y h(s -mn)y,.t
j=0 ne-x

m-1 o-3 3 s - mn) ThO Yomn®
J-O Nn= —oco

= E Z h(s - mn) Eh(r mn) y,,(t) (70)
J-O n= —oco

= E%k,(t) E E h(s - mn) h(r - mn)
J.O N = —co

= Y Voi) 8, = Wy,(t)

so multiplying by fit) and integrating again gives (69). Gopinath gives
the more general biorthogonal derivation [7].

Equation (62) defines the basic analysis recursion and (69) defines the
basic synthesis recursion. These are implemented in the programs
below. Consider the 2-band case. Let operator L represent the lowpass
analysis operation and H be the corresponding highpass or wavelet
operation as defined by (62). Assuming (64) we write

FO,I =L F,, F1,1 =H Fo,o

(71)
to describe the analysis operation where F; | denotes the jth output
after r iterations. The corresponding synthesis operation defined by
(69) may be written as

Foo=LFy, +HF,,

(72)
Thus,

F,, =[L"'L + H HIF,

(73)
which is a statement of the Bezout equation discussed in Chapter 9.
Now the wavelet transform iteratively splits the lowpass output into
highpass and lowpass pairs. Thus,

F,,=LF,,=LLF,, F,=HF,;,=HLF,,

(74)
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The next stage is

Fos=LF,,=LLLF,, F,=HF,,=HLLF,,

(75)
Hence, the recomposition or synthesis is

Fo=L (L' [L'F,+HF;1+HF,}+HF,,

(76)
which is the so called tree or pyramid decomposition and recomposition.
It is implemented by the below demonstration programs.

The below program DEMO computes three rank 2 forward wavelet
transforms. The corresponding partial inverse transform is then
computed by IDWT3. IDWTS3 is like the inverse wavelet transform
program IDWT2, but the final summation is left out so you can see the

result. Program CLEN gets rid of the leading and trailing zeros.

< 3 {SOLVE} EVAL D2G { FFT2D} EVAL QMF 0 1 1 16
RNDN > MV « VM DWI2 M DWT2 M DWT2 M IDWT3
DUP2 PLT1 PLT3 + CLEN M IDWT3 OVER PLT3 + CLEN

M IDWT3 OVER PLT3 + CLEN V - > >

The above program computes a genus 3, rank 2 wavelet matrix and a
length 16 random vector. It then calls DWT2 three times to compute
the wavelet transform defined by (75). Then it calls IDWT3 to perform
the recomposition defined by (76). The following program computes the
forward transform.

DWT2: « - V M <« "FORWARD DWT" 3 DISP V M 2

EROW VREV VMPY 2 2 VDEC VM 1 EROW VREV VMPY

2 2 VDEC » >

DWT2 convolves the input V with each of the reversed rows of the
wavelet matrix and decimates the result by a factor of 2. At each stage
of the recomposition, the Level 1 IDWT3 output contains the lowpass
smoothed approximation (the blurry representation of V) and Level 2
contains the highpass approximation error generally called the detail.
After plotting, DEMO performs the required addition.

IDWT2: « - V2 V1 M <« "INVERSE DWT" 3 DISP V2 2

VINTP M 2 EROW VMPY V1 2 VINTP M 1 EROW VMPY +

2/ »»
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IDWT3: « - V2 V1 M <« "INVERSE DWT" 3 DISP V2 2
VINTP M 2 EROW VMPY 2 / V1 2 VINTP M 1 EROW

VMPY 2 / > »

CLEN: « > V « V 10 RND LZDEL VREV LZDEL VREV > >

After completing the recomposition, DEMO subtracts the original vector
V to show the difference within roundoff error is zero. All of these
programs are available in the MAN7 WAVE FFT2D directory. DEMO
does directory switching so ifyou change WAVE, it may no longer work.
For largerfilters and data, use the FFT convolver as discussed in [10].

DWT2 is not an efficient implementation because half of the computed
values are decimated. A better implementation is as follows [10].

< > VM <« "FORWARD DWT" 3 DISP V 1 2 VDEC V 2 2
VDEC M REV- CDLV DUP SIZE 2 GET 2 / CSPLT —» V1 V2
M2 M1 <« V1 M1 2 EROW VMPY V2 M2 2 EROW VMPY +
Vi M1 1 EROW VMPY V2 M2 1 EROW VMPY + > > >

Similarly, IDWT2 is not efficient since we interpolate and hence, we
waste multiplies on zero values. A more efficient implementation is

<« > V2 V1 M <« "INVERSE DWT" 3 DISP M CDLV DUP

SIZE 2 GET 2 / CSPLT - M2 M1 « V2 M2 2 EROW

VMPY V2 M1 2 EROW VMPY VCMB —-ROW CNLV V1 M2

1 EROW VMPY V1 M1 1 EROW VMPY VCMB —-ROW CNLV

+ -5VIR 2/ > > >

These techniques generalize to the M-band case such as in the SOVJ
program.

MULTIRESOLUTION AND WAVELET PACKETS

As equations (71) through (76) demonstrate, the basic wavelet
decomposition sequentially decomposes the "DC" output from the
previous stage. A multiresolution analysis consists of a sequence of
closed subspaces {V_|m €I} of L%R). In our above example, we used
the operators L and H to orthogonally decompose the given space. Each
subsequent space was a subset of the previous space. In practice, one
applies the operators L and H until further decomposition of the "DC"
band is no longer fruitful.
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The M-band generalization, creates a collection of bandpass outputs
plus the "DC" output. At each stage,it is only the "DC" output which
continues to be decomposed. The wavelet packet concept says that
given the four outputs Fy,, F,3, F,,, and F,, as defined in (76), one can
proceed to define new multiresolution decompositions for each of these
four outputs and that the decompositions need not be the same. Thus,
the nonuniform filter bank concept.

The quality of the wavelet decomposition and representation obviously
depends on which wavelet one chooses. This presentation and software
has mostly focused on the Daubechies wavelets. However, many
researchers are involved with searching the infinite space of wavelets
attempting to find the optimum one for specific applications. Others
simply view wavelets as alternative filter bank design techniques for
subband encoders.
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OTHER INCLUDED
SOFTWARE

INTRODUCTION

There are a number of programs which have been donated to the HP
calculator bulletin board. Many have been collected by Joseph Horn
and are distributed by EduCALC on Goodies Disks. The programs are
free and provided as is and without any support from anyone. You use
them at your own risk. EduCALC may be reached at 1 (800) 535-9650.

None of this software is under copyright and it may be copied and
distributed without limitation.

Ken Cooke has taken the time to write a very fast machine language
FFT program which I have included on the ROM as a convenience to
those without PC download capability. If you bought this application
package on disk, then the other programs discussed in this chapter are
also on your disk as are the D6 and D7 programs discussed on page 90.

Again, I did not write this software, I do not support it, and you use it

at your own risk. If you purchased this applications package on disk,
the author’s own description is also included. For questions about these
programs, contact the authors.
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FAST MACHINE LANGUAGE FFT AND CONVOLVER

Ken Cooke at kcooke@milton.u.washington.edu has written a very fast
machine language FFT. It uses the same definition of the FFT as
MATHLIB, is about a factor of 28 faster than my commands, and is
done in 15-digit precision. The HP 48 library compiler has many
limitations and mixing various program types is not included. If all the
MATHLIB programs were the average size of these machine language
FFT programs, MATHLIB would only contain 143 commands. There
are five programs included in the MAN7 FFTML directory:

e FFTM forward FFT
e I[IFFTM inverse FFT

« ABSV  array absolute value
* ANGL array angle (phase)
e CONVM linear convolution and correlation

FFTM and IFFTM do the twiddle computation internally and like FFT
and IFFT, the input vector must have a size which is an integer power
of 2. The ABSV program is equivalent of VABS and MABS and the
ANGL program is equivalent to the VARG and MARG commands.
ANGL returns the argument according to the current angle mode.

Program CONVM, which I wrote, is the equivalent of the CONV and
CCORR commands. The first two inputs to CONVM are the same as
these two commands and the outputs are the same as these commands.
The third input to CONVM is a flag, 0 if you want the CONV output
and 1 if you want the CCORR output. The FFT source code is
available on Goodies disk 7. See also FFT.DOC on the disk.

By moving these programs to the HOME directory, you can use these
programs by editing the application programs to call these five
programs instead of the equivalent MATHLIB commands. This will
improve the speed of your FFT applications.

LINEAR PROGRAMMING

George Chow has donated a set of linear programming programs which
use the simplex method of solution. Since notation varies between
texts, I will walk you through his example filling in a few points.

Maximize 3x, + 2x, subject to the constraints x; + 2x, < 3, 2x, - x, < 2,
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-X; + 2%, =1, %, 20, and x, 2 0. We need two slack variables x, and x,
to turn the first two inequalities into equalities. However, this does not
give us an identity submatrix so we do not have a starting feasible
solution. Consequently, we add the artificial variable x; to get a
starting feasible solution. The table with the right hand side (RHS) as
the left most column according to his convention is

X, X X3 X; X;

x,23 1 2 10 0

x,2 2 -1 010

x, 1 -1 2 0 0 1

0-3-200 0

where the objective row, usually on the top, is the bottom row. The
author’s phase 0 is usually called phase 1. This step drives the
artificial variable x, out of the basis. We do this by pivoting on either
the -1 or the 2 in the third row where x; enters the basis. Following
the author’s example, we pivot on the -1 bringing x, into the basis and
removing X, from the basis. The result is

X, X X3 X4 X

x;, 4 0 4 1 0 1

x, 4 0 3 01 2

x; -1 1 -2 0 0 -1

-3 0 -8 0 0 -3

The next step is to make the -1 in the left column non-negative. We
do this by pivoting on the -2 in the third row which replaces x, with x,
as a basis variable. The table is now

X, X, X3 X, Xg

x, 2 2 0 1 0 -1

x, 25 15 0 0 1 5

x, 5 -5 10 0 .5

1 4000 1
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Now we are ready for phase 2. We need to bring x, back into the basis.
Following the example, we pivot on the 2 in the first row and second
column. The result is

X, X X3 X, X4

x,11 0 5 0 -5

x,1 0 0 -75 1 1.25

x, 1 0 1 25 0 .25

500 2 0 -1

so the solution is x, = X, = 1 with maximum 5. See the SIMPLEX and
SIMPLEX.DOC files.

3D PLOTS

Dave Jansen has written a 3D surface plotter. See the PLT3D.DOC
and PLT3D files.

CALENDAR PROGRAM

CALDR is a modified version of a calendar program written by Eric B.
Davis. The inputs are the month and year. For example,

< 12 1996 CALDR »

displays December, 1996.



APPENDIX A

WARRANTY AND
USER SUPPORT

USER SUPPORT

You can get answers to your questions concerning the operation of the
MATHLIB software from the author. Ifyou do not find the information
in this manual, the MATHLIB manual, or the HP 48 owner’s manual,

contact the author at (703) 938-0832. I can provide technical assistance
only about the operation of the MATHLIB commands and programs.
User support does not include consultation about your particular
applications nor tutoring on your mathematics and engineering

problems. For questions on the calculator, programming, or HP 48
commands, please call Hewlett-Packard at (503) 757-2004.

If you believe you have found a software bug which is not simply a lack
of accuracy due to the computational limitations of the HP 48 or the
noted limitations of the MATHLIB software, please write the author at:

Dr. John F. Holland

P.O. Box 3008

Oakton, VA 22124 USA

Please include a complete description of the bug and the related
circumstances or application program it occurs in, plus your name,

address, and phone number.
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LIMITED WARRANTY AND DISCLAIMER

The author cannot and does not warrant the performance or results
that may be obtained by using this software and manual ("the
product”). This includes the examples. The product is sold "as is"
without warranty of any kind (except as hereafter described), either
expressed or implied, including, but not limited to, any warranty of
performance or any implied warranty of merchantability or fitness for
any particular purpose. The author shall not be responsible under any
circumstances for providing information on the corrections to errors and
omissions discovered in the product at any time. The author warrants
only that the ROM card on which the software program is recorded is
free from defects in material and faulty workmanship under normal use
and service for a period of ninety (90) days from the date the product
is delivered. The purchaser’s sole and exclusive remedy in the event of
a defect is expressly limited to either replacement of the ROM card or
refund of the purchase price, at the author’s sole discretion. This
warranty does not apply if the product has been damaged by accident
or misuse or as the result of service or modification. ROM card
environmental limits are given on page 660 of the HP 48 owner’s
manual.

In no event, whether as a result of breach of contract, warranty or tort
(including negligence), will the author be liable to purchaser for any
damages, including any lost profits, lost savings, or other incidental or
consequential damages arising out of the use or inability to use the
product or any modifications thereof, or due to the contents of the
software programs, even if the author has been advised of the
possibility of such damages, or for any claim by any other party.

Any request for replacement of a defective ROM card must be postage
prepaid and must be accompanied by the original defective ROM card,
your mailing address and phone number, and proof of date of purchase
and purchase price. Send such requests to the author at the above
address. The author shall have no obligation to refund the purchase
price or to replace a ROM card based on claims of defects in the nature
or operation of the product.

The re-export of United States origin software is subject to the United
States laws under the Export Administration Act of 1969 as amended.
Any further sale of the product shall be in compliance with the United
States Department of Commerce administration regulations.
Compliance is your responsibility and not that of the author.



APPENDIX B

IF YOUR SOFTWARE CAME
ON A DISK

HP 48SX FILES

If you purchased your software on disk, you may download any of the
HP 48SX program files to the calculator. Once the files have been
loaded into your VAR directory, you may follow the instructions given
in Chapter 1. The following files without a suffix can be downloaded.

MAN1 MAN?2 LGDR
MAN3 MAN4 MANS5
MANG6 MAN7 SD1
SD2 SD3 MVER
D6 D7 SIMPLEX
PLT3D CONS CALDR

Follow the instructions in your HP 48SX owner’s manual and those
which came with your download hardware and Kermit software.

DOCUMENTATION FILES

The documentation files FFT.DOC, SIMPLEX.DOC, and PLT3D.DOC
can be viewed on your computer.
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CONSTANTS AND UNITS

If your software came on disk, the following are in the CONS directory.

NAME VALUE VAR’

Atomic mass unit (u) 1.6605655 x 107" kg u
Avogadro’s number (N) 6.0221367 x 10® (mol)™ NA
Bohr magnetron (115) 9.2740154 x 10" Jem*’Wb uB
Boltzmann’s constant (k = R/N) 1.380658 1072 J/K k
Compton wavelength of electron (h/myg) . . . .. 2.42631058 x 1072 m Ac

Dirac’s constant (h/2n = ) 1.05457266 x 107 Jes hbar
Electronic charge (e) 1.60217733 107 C q
Electron rest mass (m,) 9.1093897 x 107 kg me
Faraday constant (¥) 9.6485309 x 10* C/mol F

Fine structure constant (o = [p,c?(4m)][e¥(nc)]) 7.29735308 x 1073 a
First Bohr electron-orbit radius (a,) 5.29177249 x 10! m a0
Gravitation constant (G) 6.67259 x 10" Nem%kg® G
Ice-point (standard temperature) 273.1500 °K StdT

Magnetic flux quantum (® = h/2e)) 2.06783461 x 10°* Wb o
Neutronrest mass(m,) . ................ 1.6749543 x 10%" kg mn

Nuclear magneton (py = eW[2m,)) 5.0507866 x 107" J/T nN
Permeability in free space (,) 4n x 107" H/m no

Permittivity in free space (g,) 8.8541878176 x 1002 F/m €0
Planck constant (h) 6.6260755 x 107 Jes h
Protonrest mass (my) . . ................. 1.6726231 x 107%" kg mp
Radiation constant (¢, = 2rthc?) 3.741832 107" Wem? cl
Radiation constant(c, = he/k) 1.438786 x 10”2 meK c2
Rydberg wave numberfor infinite mass (R_)  1.0973731534 x 10’ m™! Reo
Speed oflight in vacuum (c = [1,g,]™"%) 2.997924580 x 10° m/s c
Speed of sound indry airat 0°C . ... ....... 331.36 m/s ss

Standard atmosphere (atm) 101,325 N/m?® StdP
Standard gravitational acceleration (g,) 9.80665 m/s* g
Standard volume of ideal gas (V,) 22,4141 leatm/mol Vm

Stefan-Boltzmann constant (¢ = ©?k*/[60%%¢?]) 5.67051 x 10~ W/m¥K* oo
Universal gas constant (Ry) . ............. 8.31451 J/(moleK) R
Wien displacement-law constant (A,,,T) 2.897756 x 107 meK c3

* Variable name in the constants directory CONS. R_ = [n,c*/(47m)F{m,e*/(4mn’c)].
NOTE: mol = gmol = gram-mole # gemol and lbmol = pound-mole = 453.59237 mol.
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INTERNATIONAL SYSTEM OF UNITS (SI UNITS)

SYMBOL NAME QUANTITY RELATIONS

A ampere electric current basic unit

C coulomb electric charge Aes

cd candela luminous intensity basic unit

F farad electric capacitance AesgeV!

H henry electric inductance Vese Al

Hz hertz frequency s

Jd joule work, energy Nem

K kelvin temperature degree basic unit

kg kilogram mass basic unit

Im lumen luminous flux cd e sr

Ix lux illumination Im e m™2

m meter length basic unit

mol mole amount of substance basic unit

N newton force kg e m ¢ 572

Pa pascal pressure, stress Nem™?

rad radian plane angle supplementary unit

s second time basic unit

S siemens electric conductance Q!

ST steradian solid angle supplementary unit

T tesla magnetic flux density Wb ¢ m™

v volt voltage, electromotive force WeAl

W watt power Jes!

Wb weber magnetic flux Ves

Q ohm electric resistance VeA      
 

FACTOR

10

10
10°
10°
10°
1012

1015

1018

PREFIX SYMBOL FACTOR PREFIX

DECIMAL MULTIPLES AND FRACTIONS OF UNITS

SYMBOL

 

  
deca

hecto

kilo

mega

giga
tera

peta

exa

D or da

m
o
R
Q
Z
=
T

107!
1072
107
107
10°°

1072
10—15

10-18

deci

centi

milli

micro

nano

pico

femto

atto P
™
M
o
B
T

g
0
o
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U.S. CUSTOMARY SYSTEM OF UNITS (FPS SYSTEM)

SYMBOL NAME QUANTITY RELATIONS

Btu British thermal unit work, energy 778.128 ft o Ibf

deg degree plane angle supplementary unit

°F degree Fahrenheit temperature basic unit

ft foot length basic unit

g standard gravity acceleration 32.174 ft » sec™®

hp horsepower power 550 Ibf e ft « sec™

1b pound-mass mass 1bf e g™*

1bf pound-force force basic unit

pd poundal force Ib e ft e sec™®

sec second time basic unit

sl slug mass Ibf o ft! o sec?

METRIC SYSTEM OF UNITS (MKS SYSTEM)

SYMBOL NAME QUANTITY RELATIONS

°C degree Celsius temperature basic unit

cal calorie work, energy 0.42665 m » kgf

deg degree plane angle supplementary unit

dyn dyne force 107 kgf

erg erg work, energy 10m o kgf

g standard gravity acceleration 9.80665 m e sec™

hp horsepower power 75 kgf e m o sec™

kg killogram-mass mass kgf e g!

kgf killogram-force force basic unit

m meter length basic unit

sec second time basic unit   
     
  

See Chapter 13 of the HP 48SX Owner’s Manual and pages 581 and
582 of the MATHLIB manual for units and conversions.

Cohen, R. and Taylor, B., "The 1986 CODATA Recommended Values of
the Fundamental Physical Constants,” In Journal of Physical and
Chemical Reference Data, Vol. 17, No. 4, National Bureau of
Standards, 1988.

HP Solve Equation Library Application Card, Hewlett Packard, 1990.

Tuma, J., Handbook of Numerical Calculations in Engineering, New
York, McGraw-Hill, 1989.



INDEX

Algebra examples 5, 12

Beta distribution 21

Bezout equation 61, 71, 90, 145
Binomial distribution 21
Binomialfilter 76

Biorthogonal case 71-75, 108-110

Bivariate normal distribution 22
Bose-Einstein distribution 22

Cauchy distribution 22

Characteristic function 20
Chi-square distribution 23
Complementary filter 68, 75-78
Composition of two series 6, 14, 46

Confluent hypergeometric functions 4, 11
Continued fraction expansions 5, 12, 43

Contour integration 4, 10
Convolution 6, 103, 104, 110, 113, 150
Coprime 44, 77
Correlation coefficient distribution 35, 36

Coulomb wave functions 4, 11
Cumulant function 20

Custom menus 6, 14

Custom keyboards 6, 14

Dawson’s integral 4, 10
Derivative techniques 40
Dilation equation 42, 56, 62, 64, 65, 107

Dirac delta distribution 23
Discrete Chebyshev transform 6

Discrete cosine transform 6, 100

Discrete Hermite transform 6, 58
Discriminant 50

Elliptic integrals 4, 11, 49-52

Euclidean Algorithm 44

Exchange matrix 118
Expectations 20

Exponential distribution 23
Extreme value distribution 23

F distribution 24

Fermi-Dirac distribution 24

Filter design examples 6, 14

169

Gamma distribution 24
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Haar matrix 6, 91-94, 96, 97, 100

Hadamard matrix 6
Holder continuous 107

Holder exponent 107
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Interference cancellation 110-113, 135
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Asymptotic 25
One-sample 31
Two-sample 36
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Linear condition 66, 83, 105, 126, 127, 182

Linear programming 150-152
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Machine language FFT 6, 150
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Matrix examples 5, 13
Maxwell distribution 27

McMillan degree 114
Mean 20

Moment generating function 20
Moments 20, 21
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Non-central ¥ distribution 28
Number theory examples 5, 12
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Parseval’s formula 103
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Plotting

Advanced 39

Demonstrations 4, 10
3D 152
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Pollen product 60, 79, 92, 93, 114

Polylogarithm function 4, 11, 18

Polynomial examples 5, 12

Polyphase filter 110-112
Polyphase matrix 67-69, 79, 80, 83,

91-93, 103, 114, 115
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Power of a series 6, 14
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14, 19

Processing examples 5, 14
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Regularity 61, 82, 86-88, 106-108
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Rounding algebraic equations 40

INDEX

Sech-squared distribution 29
Shifting the center of computation 46

Short time Fourier transform 134, 136,

137

Signal processing examples 5, 14
Simulating difficult computations 42

Skewness 20

Statistics examples 5, 13

Struve functions 4, 12

Sum rules 107
Symbolic matrix examples 5, 14
Symbeolic tricks 47
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Tensor product 6, 93

Test if diagonal 5, 13

Theta functions 4, 11
Tight frames 122, 127, 128

Transmultiplexing 5, 110-113
Two-scale difference equation 42, 64, 107,

126

Uniform distribution 30
User support 153

Valid product polynomial 68, 72, 75-78

Variance 20

Wald distribution 30
Warranty 154
Wavelets 6, 53-148

Computation 62-64, 100-102, 140-143

Cosine modulated 116-126
Matrices 58, 62, 83, 92, 93, 100

Moments 139, 140
Packets 129, 147
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Wavelet transforms 102-105, 143-147
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