

sodovvene 06858886 Seoeee
0008000064 000000008 0000
000 0000060000 00900

500000000 90000
1900000001 100000000 0000

ooooooL 0000

000

.....
.....................
.....................
.....................
....................

.............000! 0000

.....................

................. ‘0000

.....................
® LA o1 ‘0008

® %0000¢ 0000 2000
OOe e/ 0004¢ ‘000000000000
000e o000)000 200000000000
000 vooo! (X11] 000000000000

HP 48SX MACHINE LANGUAGE

DEVELOPMENT LIBRARY

USER’S GUIDE &

REFERENCE MANUAL

Jan Brittenson

HP 48SX

Machine Language Development Library

Version 1.04B

User’s Guide and Reference Manual

July, 1991

This manual and any examples contained herein are provided “as 1s”

and are subject to change without notice. Jan Brittenson makes no war-

ranty of any kind with regard to this manual, including but not limited to

the implied warranty of merchantability or fitness for a particular

purpose. Jan Brittenson shall not be liable for any errors or for incidental

or consequential damages, such as hardware failures, in connection with the

furnishing, performance, or use of this manual or the examples herein.

The MLDL makes use of undocumented internal features of the HP 48

calculator. HP 48 Assembler programming in particluar is not supported

by Hewlett-Packard.

Copyright (© 1991 Jan Brittenson.

Reproduction, adaption, or translation of this manual is prohibited with-

out prior written permission. The programs contained in the MLDL are also

copyrighted. Reproduction, adaptation, or translation of these programs

without prior written permisison is also prohibited.

This manual was set with IATRX in 12pt Courier.

CONTENTS 3

Contents

1 Introduction 5

2 ROM Card Handling 8

3 Library Commands 9

31 - - - « + « o v e oo ooe 9
32 [MLDB].9

3.2.1 MLDB Arguments 10

3.2.2 The MLDLpar Variable 11

3.2.3 Screen 1 — General SATURN State ([A]) 11
3.2.4 Screen 2 — Arithmetic Registers (B]) 12
3.2.5 Screen 3 — Data Registers ([C]) 13
3.2.6 Screen 4 — Return Stack (D]). 13
3.2.7 Screen 5 — Memory Dump ((E]). 14
3.2.8 Screen 6 — ML Instructions ((F]) 14
3.2.9 Screen 7 — Breakpoint Table (MTH]) 15
3.2.10 Screen 8 — Watchpoint Table ((VAR]) 15
3.2.11 The HP 48 Annunciators 16

3.3 The Local Mode MLDB Keyboard 16

3.3.1 Example: ARG Entry 17

3.3.2 Moving Around L. 18

3.3.3 Example: Moving Around 19

3.3.4 Terminating the Program 22

3.3.5 Program Stepping and Running 22

3.3.6 Example: Program Single-Stepping 23

3.3.7 Example: Program Completion 29

3.3.8 Breakpoints 0oL 30

3.3.9 Example: Breakpoints 31

3.3.10 More About Breakpoints 34

3.3.11 Watchpoints, 35

3.3.12 Options e e e e e e 36

3.3.13 Example: Options 37

3.4 MLDB Server Modes 39

3.4.1 Server Mode Commands 40

3.4.2 MLDB Server Modes Command Entry 43

O
aQ

®w
»

CONTENTS

3.4.3 Example: An MLDB Interactive Mode Session 44

3.5 Messages it e e e e e e e e e e e e e e e e 47

3.6 Some MLDB System Considerations 49

3.6.L1 A WordofCaution 49

3.7 ‘MLPRI 50

3.8 ML1| 50
3.8.1 Example: ML1 51

3951
3.9.1 Example: MLOPC 51

3.9.2 Example: MLOPC and ML1 52

The SATURN Processor 53

4.1 Registers Le e e e e e e e 53

4.2 System Register Usage 55

4.3 Instruction Fields 55

4.4 Instruction Set Description 57

4.5 Instruction Set Reference 96

MLDL Command Summary 101

MLDB Local Mode Keyboard Summary 102

MLDL XLIB Numbers 105

Common Abbreviations 106

1 Introduction

The MLDL is a Machine Language Development Library for the HP 48, and

as such is primarily intended for HP 48 Machine-Language Programmers

familiar with the following topics®.

The SATURN instruction set

Assembler programming

e Machine Language debugging

RPL internals - GC, System RPL, PMC

A great source of information on the above topics, and on HP 48 in-

ternals in general, is EduCALC’s “Goodies” disks. Also of value is the

documentation included with Hewlett-Packard’s unsupported development

tools. Some of the conferences on HP’s Handhelds BBS (503-750-4448, 300-

2400 bps, 24hrs) are good sources of information — especially the ones linked

to USENET.

The style used throughout this manual is summarized below.

o Hexadecimal numbers are typeset in boldface whenever they occur in

the main text. Example: 0679B. Decimal numbers are typeset accord-

ing to context, but never in boldface.

e Acronyms are set in SMALL CAPS. Example: RPL

e RPL commands and ML instructions appearing in the main text are

typeset in typewriter font. Example: ATTACH

1See appendix D (page 106) for a list of commonly used abbreviations.

6 1 INTRODUCTION

e RPL listings are set with each line split into two parts: the leftmost

part is the program code, in typewriter font, and flush right on each

line is a comment in oblique type.

o The notation @#address is the object at address . Example: @#3ACO

This manual describes the MLDL. It is not intended to teach assembly

programming in general or HP 48 internals.

The MLDL displays mnemonics according to the AG format, named af-

ter Alonzo Gariepy, who designed it explicitly to resemble the mnemon-

ics of other commonly used processors. Hewlett-Packard also has a set of

mnemonics, described in files bundled with their unsupported development

tools. The HP mnemonics set and assembler syntax do not adhere to a

source-destination model. Instructions sometimes span over several lines, 1t

is column-oriented, and is by some people perceived as somewhat unfriendly.

STAR is an assembler implementing the AG set of mnemonics. It is a

macro assembler, available as free software for a distribution charge. The

standard distribution will compile and run on any UNIX system implementing

ANSI C, vaAX/vMS, MS-DOS, or AmigaDOS. It comes with binary executables

for the latter two systems. STAR Version 1.04.4 can be ordered by mailing a

check or money order for $16 (5 1/4”) or $19 (3 1/2”) to:

STAR Request

c/o L. Highleyman
MIT AI Lab, Rm 772

545 Technology Square

Cambridge, MA 02139

Add $1 if you would like to receive information on future STAR versions.

The MLDL is also available for free in a version that will only run from

RAM. It is non-commercial and available on one of EAuCALC’s “Goodies”

disks. Call EduCALC at (714) 582-2637 for details.

Thanks to A. Gariepy for his restructuring of the SATURN instruction set,

to R. Grevelle and J. Ervin for their continuous testing and helpful advice,

and to everyone near and far who has contributed to charting the HP 48

internals. Thanks also to L. Highleyman for her professional editing of this

manual.

8 2 ROM CARD HANDLING

2 ROM Card Handling

To install the MLDL ROM card, turn the calculator off, remove the card bay

cover, plug in the ROM card in an unoccupied port, replace the opaque cover,

and turn the calculator back on?.

The MLDL will automatically attach to the HOME directory, becoming avail-

able in the |LIBRARY menu.

2See the HP 48 Owner’s Manual, Volume II, pages 636—638 for more details on how to

install cards.

3 Library Commands

3.1 ABOUTMLDL

Paints a screen with the current version and copyright information.

3.2

HP 48 ML Debugger. This description covers the MLDB local mode. The

debugger can also operate in one of two server modes, interactive or proto-

col, described under MLDB Server Modes below. In local mode, the HP 48

display and keyboard, are used to control the debugger. In server mode,

control is maintained via the serial port, either from a dumb ASCII termi-

nal (interactive mode), or from a dedicated front-end (protocol mode). To
ascertain that MLDB is in local mode when invoked, clear user flags 32 and

33:

32 [cF] 33 o]

The MLDB permits you to single-step ML programs, as well as examine

registers and memory contents. Since it single-steps ML only, it is not gener-

ally useful for debugging RPL code, unless you wish to follow an RPL thread

on an ML level.

10 3 LIBRARY COMMANDS

3.2.1 MLDB Arguments

When invoked, MLDB expects an argument in level 1:

Global name (variable)

The value of the global name is recursively used as an argument.

Caution: The value can be another global name, whose value

is then used in turn. If the variable’s value is its own name, an

endless recursion will occur. This is intentional - abort with

[oN}He).
Code object

MLDB halts before the first instruction of the code object. Both

the PC and A registers are set to the address of the first instruc-

tion.

XLIB

The XLIB must be a code object, which becomes the argument.

Binary integer

MLDB treats the binary integer as the address of a prefixed ma-

chine code routine (PMC). It halts at the first instruction of the
PMC. PMCs consist of a 5-nybble pointer to the first instruction,

which is usually, but not always, the address of the PMC plus 5.

@#3A81 (True)

If the token following the MLDB invocation is a code object, the

MLDB halts at its first instruction. Any other type of object re-

sults in an error. When the code object program completes, RPL

execution continues with the next consecutive word. When the

argument is @#3ACO (False) the invocation of MLDB is ignored,
so the invocation can be preceded by a test — for instance a user

flag test, which permits the debugging of individual machine lan-

guage objects embedded in RPL programs to be turned on and

off by setting user flags.

3.2 11

Any other object type

Other objects are ignored — the debugger returns immediately.

Included here is @#3ACO (False).

The MLDB local mode uses PICT (the graphical display) to present infor-

mation. Since all information will not fit on one display, it has been divided

into eight screens. Only one screen is active at any time. Switching between

screens is done by means of the six menu keys - through , the

key, and the key.

The sample screens 1-8 in section 3.2.3 (page 11) are from the PMC at
59CC, and can be approximately reproduced by typing the following;:

#50CCh

3.2.2 The MLDLpar Variable

Some MLDL commands ((MLDB] , m , [MLPR]) automatically create an

MLDLpar variable in the HOME directory, which contains configuration data

and variables used. It is about 650 bytes. Depending on the number of

directories and variables in the HP 48, a significant gain in speed can be

achieved by reordering the HOME directory so the MLDLpar variable appears

last in the menu®.

3.2.3 Screen 1 — General SATURN State ([A])

Mnemonic CALL.4 #0679B

Opcode 8E4CDO

PC, P, Carry, HEX/DEC mode, ST |@:059D1 P:0 CH ST:218

A.A and C.A - |A:000CC C:77794

B.A, D.A, and HST B:729A9 D:00F96 HST:2

DO and 6 bytes @D0 DO:409C1/9540A8240BC9
D1 and 6 bytes @D1 D1:77799/000000000000

Top 3 levels of RSTK RST:00000:00000: 00000

3GSee the ORDER command on page 113 in the HP 48 Quwner’s Manual, Vol I.

12 3 LIBRARY COMMANDS

Mnemonic is the current instruction, pointed to by the PC. Opcode is

the opcode of the current instruction. The third line is the current PC,

P register, the status of the carry bit (a C if carry is set, blank if clear),

HEX/DEC mode (D = DEC mode, H = HEX mode) as set by the SETDEC
and SETHEX instructions, and the low three nybbles of the ST register. These

three lines are common to many of the MLDB screens described below.

Lines four and five are the low five nybbles (the .A field) of the A, B,

C, and D registers, as well as the HST register. Lines six and seven are the

D0 and D1 registers, as well as the contents of the addresses they point to,

as twelve-nybble integers. Thus the address pointed to by either register is

displayed as the rightmost digit, with the next consecutive address being the

next significant digit, and so on. This is because the SATURN CPU stores

integers in memory with the least significant digit (nybble) at the lowest
address, and the most significant digit (nybble) at the highest.

The bottom line is common to several of the screens described below. It

contains the top three RSTK levels.

3.2.4 Screen 2 — Arithmetic Registers ()

Mnemonic CALL.4 #0679B

Opcode 8E4CDO

PC, P, Carry, Hex/Dec mode, ST @:059D1 P:0 CH ST:218

Register A A:00000005444000CC

Register B B:000000000007611E

Register C C:000000000007792C

Register D D:00000000000004D0

Top 3 levels of RSTK RST:00000:00000:00000

See section 3.2.3 (page 12) for an explanation of the top three and bottom

lines.

Lines four to seven are registers A, B, C, and D respectively. All 16

nybbles (64 bits) are displayed.

3.2 13

3.2.5 Screen 3 — Data Registers ([C])

Mnemonic CALL.4 #0679B

Opcode 8E4CDO

PC, P, Carry, Hex/Dec mode, ST @:059D1 P:0 CH ST:218

Register RO R0:053385D439800040

Register R1 R1:00000005444059D1

Register R2 R2:0000000000075BC1

Register R3 R3:0000000544402E92

Register R4 R4:00015075A6375AA1

See section 3.2.3 (page 12) for an explanation of the top three lines.

Lines four to eight are registers R0, R1, R2, R3, and R4 respectively.

All 16 nybbles (64 bits) are displayed.

3.2.6 Screen 4 — Return Stack ([D))

Mnemonic CALL.4 #0679B

Opcode 8E4CDO
PC, P, Carry, Hez/Dec mode, ST @:059D1 P:0 CH ST:218

RSTK levels 0 and 4 RST0:00000 RST4:00000

RSTK levels 1 and 5 RST1:00000 RST5:00000

RSTK levels 2 and 6 RST2:00000 RST6:00000

RSTK levels 3 and 7 RST3:00000 RST7:00000
See section 3.2.3 (page 12) for an explanation of the top three lines.

Lines five to eight are the eight levels of RSTK, displayed as 5-nybble

integers. RSTKO is the top of the stack, and is the most recent return

address or value pushed (by means of the PUSH instruction)*.

4For more details on RSTK operations, see appendix E.

14 3 LIBRARY COMMANDS

3.2.7 Screen 5 — Memory Dump ([(E])

Locations 59A0-59AF 059A0:56113680913420CC

Locations 59B0-59BF 059B0:4E0156716FCC56FD

Locations 59C0-59CF 059C0:015B38D5E0101D95

Locations 59D0-59DF 059D0:08E4CDO8E46C0101

Locations 59F0-59FF O59E0:D230574911191443

Locations 59F0-59FF 059F0:4E4A201101311456

Locations 5A00-5A0F 05A00:12280A50143174E7

Locations 5410-5A1F O5A10:8E58D01311741431
The 128 addresses surrounding the current PC are displayed, with the line

corresponding to the current PC at the center. The location of the current

instruction is indicated by an inverse digit (not reproduced here). Each line

is 16 nybbles, with the leftmost nybble corresponding to the lowest address.

The memory dump addresses can be shifted one nybble using the 4

option (see section 3.3.12 (page 36)).

3.2.8 Screen 6 — ML Instructions ([F])

PC, P, Carry, Hex/Dec mode, ST @:059D1 P:0 CH ST:218

Nezxt 7 instructions #CALL.4##0679B###t#t#t##t#

CALL.4 #06641

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #05B7D

MOVE.W R1,C
The top line is the current PC, P register, the status of the carry bit

(C if carry is set, blank if clear), HEX/DEC mode (D = DEC mode, H =
HEX mode) as set by the SETDEC and SETHEX instructions, and the low three

nybbles of the ST register.

The remaining seven lines are the seven subsequent instructions, with the

next instruction to be executed always appearing in inverse at the top of the

screen (here somewhat crudely illustrated with # characters).

3.2 15

3.2.9 Screen 7 — Breakpoint Table ((MTH))

Breakpoint #1 1:6100 +02

Breakpoint #2 2:6104 -02

Breakpoint #3 3:613A 00

Breakpoints #/-#8: not used 4:0000 00

5:0000 00

6:0000 00

7:0000 00

8:0000 00
Each line corresponds to a breakpoint. There are eight breakpoints, each

consisting of an address and a counter. The address is displayed immediately

following the breakpoint number. Trailing each line is the breakpoint counter,

a signed 2-nybble (8-bit) hex integer. Any breakpoints at the current location

are displayed in inverse.

3.2.10 Screen 8 — Watchpoint Table ([VAR])

Watchpoint #1 00138:9DEFO0C1085D1BF21

Watchpoint #2 01400:8F235A05C965E186

Watchpoint #3 FFFFF:12369B108DADF100

Watchpoint #4 70000:F3C5A0000FB13FB3

Watchpoint #5-#8: not used 00000:2369B108DADF1008

00000:2369B108DADF1008

00000:2369B108DADF1008

00000:2369B108DADF1008
Each line corresponds to a watchpoint. A watchpoint can be set to any

arbitrary address. The display format is consistent with the format of the

memory dump screen.

16 3 LIBRARY COMMANDS

3.2.11 The HP 48 Annunciators

The display annunciators are left undisturbed by the local mode MLDB. If

in server mode, only the I/O annunciator® is used; it will flicker with each

character received over the serial line. The annunciators are left in whatever

state the HP 48 ROM put them in, which means that the busy annunciator is

usually lit and all other annunciators are turned off. For all practial purposes,

as far as the HP 48 ROM is concerned a system RPL program is executing,

even if it is temporarily halted between instructions by MLDB.

The local mode MLDB puts the SATURN microprocessor in light sleep

between keystrokes®, which means that battery consumption is generally low

even if the busy annunciator is lit. Light sleep is not used when in server

mode.

3.3 The Local Mode MLDB Keyboard

A number of keys will accept an argument, refered to as ARG. To enter

ARG, press @ followed by the hex integer which will make up ARG. It is

restricted to 5 hex digits (20 bits). When [0]is pressed, the bottom display
line, regardless of screen currently active, is turned into an ARG entry line:

| ARG : 00000 I

This remains in effect until a non-hex key is pressed, at which point that

key is executed. The hex number entered becomes ARG. Some keys behave

difterently depending on whether ARG was entered;, for instance, does

nothing, in effect cancelling ARG. The backarrow, [<], divides the argument

by 16, in effect shifting it right one digit. The argument is always a 20-bit

unsigned integer. The digits A-F are found on the menu keys. The key

negates the argument (two’s complement).

5The arrow in the upper right corner

SMuch of the HP-48 circuitry is turned off while the display is on; pressing any key

causes a wake-up event which turns the power back on to allow processing of the keystroke.

3.3 The Local Mode MLDB Keyboard

3.3.1 Example: ARG Entry

This example illustrates how to enter the argument.

Begin ARG entry.

Keys Display

17

[0] [ARG: 00000

Enter the hex digit 5.

ARG : 00005

Enter the hex digit 7.

| ARG: 00057

Erase the 7. To do this, shift right one digit.

| ARG : 00005 |

We are now back to where we were before we entered the 7. Enter the digit 9.

[9] [ARG: 00059

Enter two more hex digits, D and 1.

]

[D] ARG: 059D1

Negate (2’s complement).

- ARG : FA62F

Enter three Os.

[0][0][0] ARG : 2F000

18 3 LIBRARY COMMANDS

Erase the last 0.

|ARG : 02F00

Finally, since we are only practicing we cancel ARG.

DEL

3.3.2 Moving Around

Moving around is done with the arrow keys and the key; notice that

none of these keys actually execute the previous instruction, only the PC is

affected. You can also move to a specific address with [ENTER]

Keys Description

[2] Decrement PC by 16 (or 16 x ARG)

[~] Increment PC by 16 (or 16 x ARG)

[<] Decrement PC by 1 (or ARG)

5] |Increment PC by I (or ARG)

[NXT]NXT| Move to next instruction (or ARG instructions
forward)

Set PC to ARG.

3.3 The Local Mode MLDB Keyboard 19

In addition to the movement keys listed previously, there is a mark:

Keys Description

set to the current PC.

+/- Swaps the PC and the mark.
Set mark to ARG, if present. Otherwise the mark is

3.3.3 Example: Moving Around

First, set the PC to 59D1.

Keys

059D1

Increment the PC by 4.

04 [5]

Display

@:059D1 P:0 CH ST:218

#CALL.4##067OB########

CALL.4 #06641

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #O5B7D

MOVE.W R1,C

@:059D5 P:0 CH ST:218

#CLR.A#A###ARHRHBRARHY

CALL.4 #06641

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #O5B7D

MOVE.W R1,C

20 3 LIBRARY COMMANDS

We didn’t really advance the PC by one full instruction, which means that the

PC now points two nybbles into the offset of the previous CALL instruction.

Set the PC back to 59D1 and switch to the memory screen.

059D1 059A0:56113680913420CC
059B0:4E0156716FCC56FD

059C0:015B38D5E0101D95

059D0: O#E4CDO8E46C0101

059E0:D230574911191443

059F0:4E4A201101311456

05A00:12280A50143174E7

05A10:8E58D01311741431
Decrement the PC by 10.

[] 05990:3A6E80D0F40D4F01

059A0:56113680913420CC

059B0:4E0156716FCC56FD

059C0: 0#5B38D5E0101D95

059D0: 08E4CDO8E46C0101

059E0:D230574911191443

059F0:4E4A201101311456

05A00:12280A50143174E7
Set the PC back to 59D1 and switch to the Instructions Screen.

059D1 [ENTER] @:059D1 P:0 CH ST:218
#CALL . 4##67OB####MMM##
CALL.4 #06641
MOVE.W A,R1
CLR.A C
MOVE.P1 #5,C

CALL.3 #05B7D

MOVE.W R1,C
Move the PC forward to the next instruction.

3.3 The Local Mode MLDB Keyboard 21

NXT @:059D7 P:0 CH ST:218

#CALL.4##06641###n#1n%##

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #O5B7D

MOVE.W R1,C

MOVE.A C,@DO
Set the mark and advance three instructions.

@:059D7 P:0 CH ST:218
03 #MOVE . P1##5 , C########

CALL.3 #05B7D
MOVE.W R1,C
MOVE.A C,@DO
MOVE.P5 #02A4E,C
MOVE.W RO, A
MOVE.A A,D1

Swap the mark and the PC.

+/- @:059D7 P:0 CH ST:218

#CALL.4##06641####1###

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #05B7D

MOVE.W R1,C

MOVE.A C,@DO
The arrow keys are most useful for moving around in the memory dump,

but can also be used to arbitrarily increment and decrement the PC to shift

the instruction stream by single nybbles, as illustrated in the example above.

The mark commands are useful for temporarily remembering an address.

22 3 LIBRARY COMMANDS

3.3.4 Terminating the Program

There are four ways to leave the MLDB. The two first, listed below, continue

RPL execution at the next token in the thread. If invoked via the

menu, control is returned to the normal calculator operation. The

third method of leaving the MLDB also listed below, resets the calculator. The

fourth method is to allow the program to run to completion; see section 3.3.5

(page 22) for details.

Keys Description

Exit.

DEL Restore system registers to the state they were in

when the debugger was invoked. This is useful if you

need to exit in the middle of a program and the sys-

tem registers contain random data. It does nothing

if ARG was supplied, in effect acting as an ARG

cancellation key.

Panic exit. Use if you know the calculator will crash

when you exit, which will happen if the memory has

been trashed. Reset the calculator; same as :

3.3.5 Program Stepping and Running

The program can either be single-stepped instruction by instruction, or al-

lowed to run free, which means that the program will run without interfer-

ence until it completes or until it encounters a breakpoint. For a discussion of

breakpoints, see section 3.3.8 (page 30). Instructions can be single-stepped

either shallow or deep. A shallow step is one where CALLs are stepped as a

single instruction. A deep step follows CALLs into subroutines. Both shallow

3.3 The Local Mode MLDB Keyboard

and deep stepping can be given ARGs, in which case the ARG determines

the number of instructions to be single-stepped. If multiple instructions are

stepped, then they are susceptible to breakpoints. The table below lists the

keys controlling program execution.

A single-step of more than one instruction is sensitive to the key.

Pressing during a single-step of more than one instruction will halt

execution. During execution, PICT is displayed unless it has been purged, a

behavior which can be disabled (see section 3.3.12 (page 36)).

Keys Description

Single-step one (or ARG) instruction(s), pointed to
by the PC. Follow CALLs. If ARG, then also suscep-

tible to breakpoints. Will display PICT until done, if

more than one instruction is being single-stepped.

Same as [+], but do not follows CALLs to subroutines;

instead, halt the program upon return from the sub-

routine. The entire subroutine is single-stepped as if

it were a single instruction. Will display PICT until

the subroutine returns, or until finished, if more than

one instruction is being single-stepped.

Redraw the current screen but otherwise do nothing.

Display PICT until released.

Continue execution, run until program completes, a

breakpoint is reached, or a broken [—] CALL execution

completes. Will display PICT while the program runs.

3.3.6 Example: Program Single-Stepping

This example illustrates some basics of single-stepping programs, and points

out the difference between using and [=] It calculates tan 22.5 degrees.

24 3 LIBRARY COMMANDS

The TAN PMC is at 2AC91. It calls several ROM ML routines: 2AEA2 picks

a real from the stack and returns it in registers A and B as a long real. A

long real is basically a real, but it is 84 bits instead of 64, allowing higher

precision. The ML routine at 2AEF6 returns the angle mode (RAD, DEG, or

GRAD) in bits 0 and 1 of the ST register. 2B68F2 calculates the tangent of

the long real in A and B. 2AEES5 truncates the long real to a real and puts

it on the stack, which becomes the final result of the TAN PMC.

Put the angle argument on the stack and invoke MLDB on the TAN PMC (at

location 2AC91).

Keys Display

|STD || DEG ||HEX | CALL.3 #2AEA2
22.5 7802
#2AC91 @:2AC96 P:0 H ST:318
|LIBRARY |[MLDL | [MLDB | A:2AC91 C:73496

B:72A56 D:002FD HST:2

DO:7C1A5/E80007002DCC

D1:7394B/000000071BEC

RST:00000:00000:00000

Switch to the instruction screen.

©:2AC96 P:0 H ST:318
#CALL. 3##2AEA2######14
CALL.3 #2AEF6
CALL.4 #2B6F2
JUMP.3 #2AEE5
MOVE.A C,A
ADD.A C,A
MOVE.1 #7,P

Single-step through the routine at 2AEA2.

3.3 The Local Mode MLDB Keyboard 25

@:2AEA2 P:0 H ST:318
#JUMP . A##20FDO######1
JUMP.A #29FF8
JUMP.A #2A060
JUMP.A #2A0B1
JUMP.A #2B789
JUMP.A #2A12A
CALL.3 #2AEC5

The code at 2AEA2 is actually only a reference. It allows the use of CALLs

with short offsets to addresses far away. This is a common practice when

certain routines are heavily used in specific ROM areas. Single-step one

more instruction.

@:29FDO P:0 H ST:318

#CALL . 3##29FDA####U###

JUMP.4 #2BC4A

MOVE.A @D1,C

SWAP.A C,D1

ADD.A #5,D1

MOVE.W @D1i,A

MOVE.A C,D1

This routine first CALLs 29FDA, and then JUMPs to 2BC4A. The first rou-

tine pops a real off the stack, and the second converts it to a long real.

Single-step again.

Q@:29FDA P:0 H ST:318

#MOVE. A#QD1,CH#n#itn#t#

SWAP.A C,D1

ADD.A #5,D1

MOVE.W @D1,A

MOVE.A C,D1

ADD.A #5,D1

INC.A D

Single-step six more instructions.

26 3 LIBRARY COMMANDS

06 @:29FED P:0 H ST:318

#INC.A#D####A#AHRARHBHEY

SETDEC

JUMP.A #679B

CALL.3 #2A002

JUMP.4 #2BCAO

SWAP.A C,DO

MOVE.5 #705B0,DO
Single-step three more instructions. The last instruction of the three will be

the JUMP to 679B.

03 ©:0679B P:0 D ST:318

#SWAP. A#C,DO#####BH#RHY

MOVE.5 #705B0,DO

MOVE.A C,@DO

MOVE.5 #70579,DO

SWAP.A C,D1

MOVE.A C,D1

MOVE.A C@DO>
=

x
>

0
1
>
O

The ML routine at 679B saves the registers used by the system. It is fifteen

instructions long. Single-step ten instructions.

OA @:067C4 P:0 D ST:318

#MOVE.5##7066E,DO

MOVE.A D,C

MOVE.A C,@DO

RETCLRC

MOVE.5 #7066E,DO

MOVE.A @DO,C

MOVE.A C,D
Execute four instructions. This causes us to return from the subroutine since

the last instruction does a return.

3.3 The Local Mode MLDB Keyboard 27

04 @:29FD4 P:0 D ST:318

#JUMP . 4##2BCAAR#R#BH##

MOVE.A @D1,C

SWAP.A C,D1

ADD.A #5,D1

MOVE.W @D1,A

MOVE.A C,D1

ADD.A #5,D1
Follow the jump.

@:2BC4A P:0 D ST:318

#SETDECH#####ARARHHHUH#

SWAP.M B, A

MOVE.X B,A

ADD.XS A,A

CLR.A A

BRCC #2BC5C

DEC.A A
This 1s the routine that converts the real just popped from the stack into a

long real. With our particular argument, 22.5, it will be 23 instructions long.

Single-step 21 (15 hex) instructions.

015 @:2BCO9E P:0 CD ST:318

#RETCLRCH####H#BHRHBRAH

MOVE.A C,D

POP.A C

CALL.3 #2BC4A

PUSH.A C

MOVE.A D,C

SETDEC
We now have the long real in the A and B registers. The next instruction

returns us to the main TAN PMC.

28 3 LIBRARY COMMANDS

@:2AC9A P:0 D ST:318

#CALL.3##2AEF6########

CALL.4 #2B6F2

JUMP.3 #2AEES

MOVE.A C,A

ADD.A C,A

MOVE.1 #7,P

NOT.A D

Following that single CALLtook a lot of keystrokes. This time, wise from our

experience, we step through the entire next two CALLs as if they were single

instructions. The first ML routine decodes the angle mode into ST bits 0

and 1.

=] @:2A2C9A P:0 D ST:008
#CALL . 3##2B6F24######41
JUMP.3 #2AEES
MOVE.A C,A
ADD.A C,A
MOVE.1 #7,P
NOT.A D
SUB.A #6,D0

Now the angle mode i1s in ST bits 0 and 1. The next ML routine calculates

the tangent of the long real in registers A and B. First switch to screen 2 to

examine the registers.

CALL.4 #2B6F2
8EE4A0
2:2AC9E P:6 CD ST:008
4:00000000000000001
B:02250000000000000
C:000000000000002FE
D:F00000000000002FE
RST:00000:00000: 00000

The long real is the argument 22.5. Calculate the actual tangent.

3.3 The Local Mode MLDB Keyboard 29

] JUMP.3 #2AEES
6042

@:2ACA4 P:F D ST:088
A:0000000000099999
B:0414213562373092
C:0758098311271080
D:0093819582071411
RST: 00000 : 00000 : 00000

The result i1s 0.414213572373092, which will be rounded to 12 digits; the

...092 tail will be truncated. Allow the TAN PMC to run to completion. Only

the JUMP to the routine that rounds and pushes the result onto the stack is

left for us to execute. Simply allow the program to run to completion.

The stack now reads:

1: .414213562373

3.3.7 Example: Program Completion

Start with the stack display, in HEX mode, in the [LIBRARY | |MLDL | sub-

menu. Only the relevant lines of the stack display are included in the example

below. 3244 is the PMC DROP.

First we set display modes and put the two numbers 2 and 1 onto the

stack, followed by the address of the DROP PMC.

30 3 LIBRARY COMMANDS

Keys Display

2 1 #3244

Invoke MLDB and switch to the instruction screen.

©:03249 P:0 H ST:218
#ADD . A##5 ,Di##n#un#tttst

INC.A D

MOVE.A €DO,A

ADD.A #5,D0

JUMP.A @A

MOVE.A C,B

MOVE.1 #3,P

The DROP PMC comnsists of only the first five instructions. Executing the

JUMP @A instruction will cause the program to reach completion. Allow the

program to complete without interference.

Onlythe 2 is left on the stack.

3.3.8 Breakpoints

The MLDB maintains a breakpoint table of eight slots. Each slot consists

of an address and a counter, both of which are displayed when the

key is pressed (see below). The address is 20 bits and the counter is 8
bits. Breakpoints only work in RAM, although they can be set in ROM and

triggered by multiple-instruction single-steps.

3.3 The Local Mode MLDB Keyboard 31

When a breakpoint is triggered, its counter is incremented; if after the in-

crementit is negative (80-FF), the program will continue. Setting a negative
counter is therefore a way of instructing MLDB to “ignore this breakpoint n

times,” where n is in the range 01-7F hex. If the counter is positive, the

program is halted with a “Breakpoint Stop” or “Breakpoint Trap” message,

depending on whether the breakpoint was triggered during a single-step or

free run, respectively. Positive counters indicate how many times the pro-

gram has halted at a specific breakpoint. The breakpoint table is accessible

using the keys in the table below.

Keys Description

MTH Switch to breakpoint table screen. Any entry at the

current PC will be displayed in reverse video.

PRG| Set breakpoint. Wait for a further key, 1-8, which

specifies the breakpoint to set. ARG is the address

the breakpoint is set to. If no ARG is entered, then

the breakpoint is cleared (its address and counter are

set to 00000 and 00, respectively).

STO Set breakpoint counter. Wait for a further key, 1-8,

which specifies the breakpoint whose counter is to be

set. ARG is the new counter value. The counter is

cleared if no ARG is entered. Only the low eight bits

of ARG are used.
3.3.9 Example: Breakpoints

For an illustration on how to enter ARG,see section 3.3.1 (page 17).

Set the PC to 59D1.

32 3 LIBRARY COMMANDS

Keys Display

059D1 CALL.4 #0679B
8E4CDO

@:059D1 P:0 CH ST:218

A:000CC C:77794

B:729A9 D:00F96 HST:2

D0:409C1/9540A8240BC9

D1:77799/000000000000

RST:00000:00000:00000
Switch to breakpoint screen.

:00000 00

:00000 00

:00000 00

:00000 00

:00000 00

:00000 00

:00000 00

:00000 00

MTH

 0
0
N
O

O
W
=

Set breakpoint 1 at 59D1.

059D1 1 #1:059D1#HOO##AMARARUH
:00000 00
:00000 00
:00000 00
:00000 00
:00000 00
:00000 00
:00000 00 0

N
O
O
W

N

The inverse bar in the display above indicates that the breakpoint is set at

the current PC. Examine the subsequent seven instructions by switching to

the instructions screen.

3.3 The Local Mode MLDB Keyboard 33

@:059D1 P:0 CH ST:218

#CALL.4##067OB########

CALL.4 #06641

MOVE.W A,R1

CLR.A C

MOVE.P1 #5,C

CALL.3 #05B7D

MOVE.W R1,C
Switch back to the breakpoint screen, and set breakpoint 5 at 6641.

MTH #1:059D1##00#####H##1Y
06641 5 :00000 00

:00000 00
:00000 00
:06641 00
:00000 00
:00000 00
:00000 000
0

~
N
O

O
W

Single-step 64 instructions. This, like all other instances of ARG,is entered

in hexadecimal, as 40.

040

:069D1 00

:00000 00

:00000 00

:00000 00

#5:06641#+01####RNARHH

:00000 00

7:00000 00

8:00000 00

W
N
-

»

We never really got as far as 64 instructions. Instead we ran into the break-

point at 6641 and stopped there, with a “Breakpoint Stop” message ap-

pearing briefly. The breakpoint table above tells us why we stopped, and

that it is our first stop at this breakpoint. Setting breakpoints and single-

stepping a large number of instructions is the only way to use breakpoints

in ROM. Clear breakpoint 5 counter.

34 3 LIBRARY COMMANDS

5 1:059D1 00
2:00000 00
3:00000 00
4:00000 00

#5: 06641#HOO#MHHAHANMUN
6:00000 00
7:00000 00
8:00000 00

3.3.10 More About Breakpoints

A breakpoint is a CALL.A to an entry in the MLDB. When the breakpoint is

reached, control is transferred to the breakpoint trap handler in the MLDB. It

finds the location of the breakpoint on the return stack (RSTK), looks it up

in the breakpoint table, and proceeds with the general breakpoint processing,

described in section 3.3.8 (page 30). The CALL.A instruction occupies seven

nybbles of memory. Therefore, problems can arise when the program contains

a sequence like the one below:

point: brcc foo ; 3 nybbles

inc.a ¢ ; 2 nybbles

foo: inc.a ¢ ; 2 nybbles

2 nybblesdec.a a s

Picture what would happen if a breakpoint is set at point. It occupies

seven nybbles of memory, and thus overwrites the BRCC, subsequent INC,

and the INC at foo. Assume another part of the program makes a jump to

foo. This will result in a jump into the last two nybbles of the breakpoint

instruction! The program is bound to behave erratically: if we’re lucky this

means mysterious results, if we’re unlucky the calculator will crash.

During a single-step of multiple instructions (actually, during any

single-step with an ARG), the breakpoints are never inserted into the pro-

gram. Instead, each consecutive PC is matched against the breakpoint table,

and if a breakpointis set at exactly that address, the single-stepping will stop.

3.3 The Local Mode MLDB Keyboard 35

This usage of breakpoints is entirely safe, and works under all conditions. It

can, of course, be used for ROM as well as RAM programs. The drawback

is execution speed, although the [—] stepping variant is usually faster than

the variant. Graphics and other CPU-heavy applications take seemingly

forever to run. There 1s no simple solution; you must take the seven-nybble

limit into consideration when writing such programs. Insert NOPs at places

where you know you will want to insert breakpoints.

The [-]single-step does not follow CALLs. It executes the entire subroutine

as if it were one single instruction. When it returns, control returns to MLDB,

which then proceeds with the next instruction in sequence, the one following

the CALL. Time-consuming functions like graphics routines can be placed in

separately debugged and verified subroutines, and the main program calling

these routines can be debugged with [—]. This will generally shorten stepping

times.

During [—] single-step, when a subroutine that is allowed to run free re-

turns or encounters a breakpoint, the program halts. The return address

into MLDB will be on top of the return stack if it encountered a breakpoint.

Pressing to continue at this point will cause the subroutine to con-

tinue running free, until it again reaches a breakpoint or returns, at which

point it returns to MLDB and continues its [—] single-step. The subroutine

can also be single-stepped when it has encountered a breakpoint, but only

until it returns to the caller, at which point it should be allowed to return

by pressing [EVAL.

3.3.11 Watchpoints

The MLDB keeps track of watchpoints in the watchpoint table, which consists

of eight entries. Each entry can be set to any arbitrary address, which will

appear as a memory dump line (see section 3.2.7 (page 14)) in the watchpoint
table screen (screen 8, see section 3.2.10 (page 15)). By default, the addresses
are set to 00000. Watchpoints are useful for monitoring memory contents.

36 3 LIBRARY COMMANDS

Keys Description

VAR If no ARG: switch to the watchpoint table screen.

See section 3.2.10 (page 15) for a description of the
table format.

VAR If ARG: set watchpoint. Expects a further key, 1-

8, which specifies the watchpoint to set. ARG is the

address the watchpoint is set to. Unused watchpoints

are by convention set to 00000.
3.3.12 Options

There are three rather specialized “options” available, numbered 3, 4, and

5. Option 3 is used to switch to ASCII mode, which aids in debugging

programs that do any kind of text processing. Since bytes take up two

nybbles, the ordinary memory dump would not be useful for examining ASCII

characters in memory should the ASCII characters happen to be stored at

odd addresses, if the memory dump were always evenly aligned. Option 4

toggles the alignment between even which is the default, and odd. Option 5

toggles the automatic display of PICT during program execution.

Notice that since the ASCII mode affects ARG entry and all other in-

tegers displayed (instructions being the exception), it is only intended to

be briefly toggled in and out of. The same applies to the memory dump

alignment shift. All options are reset when the MLDB is initially invoked.

3.3 The Local Mode MLDB Keyboard

Keys Description

(513

[Gs7] 4

1] 5

Toggle ASCII mode. All numerical data (except in
instructions) will appear as seven-bit ASCII charac-

ters. Non-printable characters appear as dots (“.”),

and characters with the high bit set will appear in

inverse.

Toggle memory dump alignment. Affects only the

memory dump; instead of the memory dump lines

being evenly aligned, it will be oddly aligned, and

vice versa (see section 3.2.7 (page 14)).

Toggle automatic PICT display during program

execution.

3.3.13 Example: Options

37

Set the PC to 400 and switch to the memory dump screen. The cursor is

placed at the current PC.

Keys

0400 003D0:5A08086300808421
003E0:5808084390800191

003F0:115228084B928008

00400:08F19C015E01E5D4

00410:015D08089115CO7TF

00420:A14C719D0OD015A08

00430:0843D6C4CA347840

00440:00213415231B8310

Display

38 3 LIBRARY COMMANDS

Switch to ASCII mode. Characters with the high bit set appear in inverse

(not reproduced here). Notice that the field sizes are unchanged, which
simplifies recognizing which characters correspond to which hex digits when

toggling back and forth.

1] 3 P

-

:%..6..H.

..4

2. h..4)..

:..1.e.”M

:.U...Q.w

:.D.YP.%.

:.4mL,C..

:0.CQ218.

Toggle back to the “normal” screen.

3 003D0:
O03EO0:

O03FO0:

00400:

00410:

00420:

00430:

00440:

5A08086300808421

5808084390800191

115228084B928008

08F19CO015E01E5D4

015D08089115CO7F

A14C719DODO15A08

0843D6C4CA347840

0C213415231B8310

Shift the dump one nybble.

4 003D1

:A080863008084215

OO3E1l:

O03F1:

00401:

00411:

00421:

00431:

00441:

8080843908001911

15228084B9280080

8F19C015E01E5D40

15D08089115CO7FA

14C719DOD015A080

843D6C4CA3478400

C213415231B83100

3.4 MLDB Server Modes 39

Switch to ASCII mode.

[csT]3 .Q :..h...$Q
a .HoL L.

q :Q’ .H....

:x..Q.aU.

:Q....Ep/

) :Al...Q

.1 :HSFD:th.

A 1%L
Toggle out of both modes.

CST |4 003D0:5408086300808421

CST |3 003E0:5808084390800191

003F0:115228084B928008

00400:08F19CO15EO01E5D4

00410:015D08089115CO7TF

00420:A14C719DOD0O15A08

00430:0843D6C4CA347840

00440:0C213415231B8310

3.4 MLDB Server Modes

User flags 32 and 33 control the MLDB mode:

Server

Flag Local Interactive Protocol

32 Clear Set Set

33 ’ Clear Clear Set

The normal mode of operation, described in the previous sections, is local.

The other two modes are refered to as server modes, and are the interactive

40 3 LIBRARY COMMANDS

mode, in which commands (see Server Mode Commands, below) are entered
on a dumb ASCII terminal or emulator with full editing (see Server Command
Entry, below), and protocol mode, in which the same commands are accepted

as in interactive mode, except no prompts are printed and commands are not

echoed when received. The protocol mode is intended for communication

with software on the development system.

You must set up I/O in the HP 48 before invoking the MLDB in a server

mode’. The MLDB server modes always communicate over the wire, effec-

tively ignoring the state of system flag -33 (I/O device).

3.4.1 Server Mode Commands

Commands can be entered in response to the “*” prompt in interactive mode.

Commands can be sent at any time in protocol mode. Generally, excessive

input is ignored, as are unrecognized commands or commands with invalid

arguments. Command lines of up to 80 characters can be entered. Below is

a list of the 18 recognized commands. The command name is in bold face

and optional arguments are enclosed in brackets. Don’t type the brackets

when entering the commands, they are used in the table for clarity.

"See HP 48 Owner’s Manual, Vol II, pages 617-619 for details on how to set up the

I/0.

3.4 MLDB Server Modes

Command Description

—addr

+offs

-offs

n [n]

s [n]

Set the PC to addr. addr is in the range 00000-

FFFFF.

Add offs to PC. offs is in the range 00000-FFFFF.

Subtract offs from PC. offs is in the range 00000-

FFFFF.

Advance PC forward n instructions. If no n is sup-

plied, the PC i1s advanced one instruction.

Single-step n instructions. Same as the[+]key in local

mode. If no n is entered, one instruction is stepped.

A single-step of more than one instruction can be in-

terrupted by pressing any key, which is ignored.

Single-step n instrutions, but don’t follow CALLs.

Same as the [—] key in local mode. If no n is en-

tered, one instruction or CALL is stepped. A single-

step of more than one instruction can be interrupted

by pressing any key, which is ignored.

Continue free-run execution until the program com-

pletes or a breakpoint is encountered. When the pro-

gram completes, “Exit” is printed and MLDB exits.

Terminate. Exit with current registers.

4]

42 3 LIBRARY COMMANDS

(Continued from previous page)

Command Description

T Terminate. Exit with system registers set up exactly

as they were when MLDB was invoked.

R Reset.

i [n| [addr] Print instructions. n instructions are printed, start-
ing at addr. The first argument 1s always n and the

second is addr. If no addr is entered, the current PC

is assumed. If n is not entered, one (the next) in-

struction is printed. n and addr are both in the range

00000-FFFFF.

x [n]| [addr] Print memory contents. n words of 16 nybbles are
printed, starting at addr, each on a separate line. The

first argument is always n and the second is addr. If

no addr is entered, the current PC is assumed. If n

isn’t entered, one (the next) word is printed. n and
addr are both in the range 00000-FFFFF.

a [n] [addr] Print memory contents in ASCII. n words of 32 nyb-
bles are printed as ASCII characters, starting at addr,

each consecutive word on a separate line. If no addr

is entered, the current PC is assumed. If n is absent,

one (the next) word is listed. n and addr are both in
the range 00000-FFFFF.

3.4 MLDB Server Modes

(Continued from previous page)

Command Description

z

dbn [addr)

hbn [cntr]

1b

Print registers. The HEX/DEC mode is printed as

HD:0 or HD:1. A Oindicates that HEX mode is active,

a 1 means that DEC mode is active.

Print the return stack (the RSTK).

Set breakpoint n at addr. If addris absent, the break-

point is cleared. addrisin the range 00000- FFFFF.

n must be in the range 1-8.

Set breakpoint n counter to cntr. If cntr is absent,

the counter is set to 00. cntr is in the range 00-FF.

u must be in the range 1-8.

List breakpoints.

3.4.2 MLDB Server Modes Command Entry

In both interactive and protocol mode, input can be edited, although no echo

or response can be detected in protocol mode. The following table may be

of help when you try to locate the editing keys on your keyboard. After 80

characters have been typed, any further entry, except the editing keys listed

below, 1s 1gnored.

43

44 3 LIBRARY COMMANDS

Key(s) Description

Backspace, Delete, Erase the last character entered.

or Rubout

Control-W Erase the last word entered.

Control-U or Erase the entire line.

Control-X

Control-R Rewrite input.

Return, Enter, or Execute command entered.

Control-M

3.4.3 Example: An MLDB Interactive Mode Session

Invoke the MLDB with 3223, the address of the SWAP PMC. Pass two argu-

ments to SWAP — 1 and 2.

1 [5PC] 2 [SEC] #3223h [MIDE]

First, we are greeted with a header®.

MLDL 1.04B

Copyright (c) 1991 Jan Brittenson

81n reality, output will rarely resemble the perfection in this example. Specifically, the

number of instructions to be listed was known in advance.

3.4 MLDB Server Modes

Examine the SWAP PMC.

* 19

MOVE.A @Di,C

ADD.A #5,D1

MOVE.A @Di1,A

MOVE.A C,@D1

SUB.A #5,D1

MOVE.A A,QD1

MOVE.A @DO,A

ADD.A #5,DO

JUMP.A @A

Examine the SATURN registers.

* r

CY:0

P:0

PC:03228

A:0000000644403223

B:0960000000074FB3

C:0000000000075FBB

D:0000000000000335

RO :000000000007BCAS5

R1:0000000644403228

R2:00000000000505C6

R3:0000000644400001

R4:00015074EE274F20

DO:7C1A5

D1:75FCO

ST:000

HST:2

HD: 0

45

46

Stack level 1 1s at 75FCO0. Examine level 1.

Which i1s object 2A2DE. Examine this object.

* x 1 75£c0

75FCO:ED2A29C2A2000000

* x 2 2a2de

2A2DE:3392000000000000

2A2EE:0002033920000000

3 LIBRARY COMMANDS

Which is a real (type prefix 2933), the constant 2. Step a few instructions.

* 1

MOVE.A @D1,C

* s

* 1

ADD.A #5,D1

* s

* 1

MOVE.A @D1,A

* s

* 1

MOVE.A C,@D1

* s

* 1

SUB.A #5,D1

* s

* 1

MOVE.A A,@D1

* s

3.5 Messages 47

Let’s see what is left of the PMC routine.

* 1 3

MOVE.A @DO,A

ADD.A #5,DO

JUMP.A QA

Finally, we step a large chunk of instructions. This way we can be sure that

the program completes.

* s 100

Exit

We are done. The HP 48 stack now reads:

3.5 Messages

Stopped

Appears for about a second at the top of the screen. Indicates

that a single-step of multiple instructions was interrupted by

pressing the key.

48 3 LIBRARY COMMANDS

Breakpoint Stop

Appears for about a second at the top of the screen. Indicates

that a single-step of multiple instructions encountered a break-

point.

Breakpoint Trap

Appears for about a second at the top of the screen. Indicates

that the program encountered a breakpoint during free run. This

can occur either during a CALL executed with the[-]key or a free

run initiated with the key.

Fatal Error:

Data Lost

Indicates that the MLDLpar variable (see section 3.2.2 (page 11))
was corrupted or purged, either directly or indirectly, by the pro-

gram being debugged. No recovery is possible. Press any key to

reset (same as [ON}HC]).

Fatal Error:

ROM Card Failure

Indicates that the MLDL ROM card is either broken or a card

other than the original is being used. No recovery is possible.

Press any key to reset.

Fatal Error:

RAM Card Failure

Can only occur with the non-commercial RAM version of the

MLDL(see section 1 (page 6)). Indicates that the RAM it is stored
in is either not working properly or is write-protected. No recov-

ery is possible. Press any key to reset.

3.6 Some MLDB System Considerations 49

3.6 Some MLDB System Considerations

The debugger (MLDB) has been designed specifically so that it will not alter
any static system data or depend on the precise machine configuration.®

The only system data it modifies is the keyboard buffer, since it relies on the

system to respond to the keyboard interrupt and manage the buffer. Testing

has shown that interfering with this will result in poor reliability. There are

three instructions the debugger will refuse to single-step:

RESET The effect of executing this instruction would be

the same as pressing :

CLRB #F,ST This instruction would lock up the calculator since

it would disable all I/O interrupts, most notably

the keyboard.

INTOFF The effect would be similar to that of CLRB #F,ST.

Apart from the aspects outlined above and some system RPL code to do

argument type checking and initial setup, the debugger is self-contained.

3.6.1 A Word of Caution

The [—] keylets you complete an entire CALL. But beware: the return stack is

replaced by one that will cause the called routine to return to the debugger.

Therefore, the routine called cannot rely on specific return stack contents

or remove return addresses from the stack, either of which would invariably

result in a system crash. One example of a ROM routine that actually does

this is CD8E, which jumps to a location in the bank-switched ROM usually

hidden behind user RAM. Most of the trig and log functions are actually

located in this hidden ROM. Despite the effort put into avoiding system

collisions, the HP 48 still remains a largely unprotected system.

Single-stepping a machine code program is in no way less dangerous than

allowing it to run uncontrolled. It merely gives you some control over what

9Assuming that the automatic displaying of PICT has been disabled.

50 3 LIBRARY COMMANDS

happens between instructions. It can even be more dangerous since the

hardware may break if left in certain configurations for longer periods of

time. If you single-step parts of the system ROM, you should be aware of

this risk, although the author at this time has never actually heard of this

occuring!®.

3.7

Print disassembly of ML program. Accepts the same arguments as MLDB,

except for @#3A81 and @#3ACO, which are not recognized. The program

11 Each line printed
consists of a mnemonic preceded by its address; no opcode is included, since

it is usually of low interest. Use ML1 (described below) to build your own

custom disassembler.

is printed on the current print device: IRor wire.

3.8

Disassemble one instruction. Allows you to build your own disassembler with

its own special-purpose user interface. It takes a binary integer in level 1, and

returns two values: in level 2 the mnemonic form preceded by the address,

and in level 1 the address of the next instruction. Thus it is a simple task to

make a number of consecutive calls to ML1. MLOPC can be used to extract

the opcode as a string of hexadecimal digits. Extracting the mnemonic from

the string is reasonably trivial, since it will always be of the form zzzzz:m

where zzzzz is a five-digit address followed by a colon and a blank. The last

part of the string, m, is the mnemonic.

100nder no circumstances will Jan Brittenson or the distributors of the MLDL accept

any responsibility or liability for such damage, regardless of nature and extent. See page

2 for further disclaimers.

11Gee pages 602-611 in the HP 48 Owner’s Manual Volume II. Page 611 explicitly de-
scribes the PRTPAR varniable.

3.9 51

3.8.1 Example: ML1

Type:

#59D1

The stack now reads:

2:"059D1: CALL.4 #06...

1: # 59D7h

3.9

Return opcode as a string of hexadecimal digits. It expects two binary inte-

gers: the starting address in level 2 and the final address plus one in level 1.

It is useful for creating the opcode field in custom disassemblers. The opcode

string returned by MLOPC can be up to 255 digits.

3.9.1 Example: MLOPC

Type:

#59D1 #59D7

The stack now reads:

| 1: "8E4CDO"

52 3 LIBRARY COMMANDS

3.9.2 Example: MLOPC and ML1

This is a somewhat more extensive example of how to use and MLOPC |.

It displays a disassembly in the smallest text size by using —GROB to build

screenfuls in PICT. When a key is pressed, the next screenful of ML is dis-

played.

The checksum for this program is CAE4 hex.

< { # Oh # Oh } PVIEW display PICT
#83h #6h BLANK — B create blank line GROB

< DO loop screenfuls

2 59 FOR L loop pixel rows

DUP ML1 get mnemonic

>

ROT OVER MLOPC

ROT DUP 1 6 SUB

ROT DUP SIZE
" "

10 SUB +
+

SWAP 7 63 SUB
+

1 —GROB

PICT # Oh L R—B

2 —LIST

DUP2 B REPL

ROT REPL

6 STEP

UNTIL O WAIT

56.1 ==

END

get opcode

extract address from mnemonic

opcode, #of hex digits

ten blanks

pad opcode to 10 characters

add padded opcode to address

extract instruction mnemonic

add to address-opcode

convert to GROB

PICT, 0, and pixel row

as pixel address of text line

clear text line

fill in with line GROB

advance L to next text line

main loop: read key

loop until

end of main loop

33

4 The SATURN Processor

4.1 Registers

The HP 48 (SATURN) CPU uses 64-bit arithmetic registers and 20-bit ad-

dress registers. The unit of addressability is a four bit nybble, hence the

address space of the processor is 22° nybbles, or half a megabyte.

Most operations on arithmetic registers can be restricted to particlar

ranges of nybbles, called fields. These fields have been chosen to optimize the

decimal (BCD) arithmetic of the calculator. The format for decimal numbers

is a 1 nybble sign, followed by a 12 nybble mantissa and a 3 nybble exponent,

making 16 nybbles or 64 bits in all.

The four arithmetic registers are called A, B, C, and D. The instruction

set does not allow these registers to be used interchangeably. For example,

registers A and B never interact with register D. Memory operations are

restricted to arithmetic registers A and C, with the bulk of the responsibility

on register C.

There is a 4-bit pointer register, called P, that is used to specify the

position of a one nybble field (.P) or the length of a multi-nybble field (.WP).

The two 20-bit address registers are called D0 and D1, and can be used

interchangeably.

There are five 64-bit temporary registers called R0, R1, R2, R3, and RA4.

The operations they support are restricted to moving and swapping with

registers A and C.

Below is an outline of all the registers in the CPU. Registers that are

used by the system are marked with a dagger: {. The system uses only the

A field (least significant 20 bits) of these registers, which must be restored
after use. Since RSTK is used by interrupts, you should never PUSH or CALL

more than seven addresses onto the return stack.

54 4 THE SATURN PROCESSOR

Arithmetic registers:

15| 14| 13| 12 | 11 10|9|8|7|6|5|4|3|2|1|0|

1

10|9|8|7|6|5|4|3|2|1|0]

|1

o0] 9| 8] 7] 6| 51| 4] 3] 2] 1]

15| 14| 13| 12| 11

o15| 14| 13| 12 | 11 10| 9| 8| 7| 6| 5| 4| 3] 2| 1|

A
B|5]14]13] 12|11

C |

D |

Temporary registers:

R0[15| 14| 13| 12| 11 10| 9| 8] 7| 6| 5] 4] 3] 2] 1] o0

R1|15|14|13|12|11|10|9|817|6}5|4|3|2:110

R2[15|14113|12|11|10|9|8|7|615|4|3|2|1|0

R3| 15) 14| 13| 12| 11| 10| 9| 8 | 7| 6] 5| 4| 3] 2] 1] o

1
L

1
L
|

R4[15|14|13|12111[10}9|Sl7|6}5|4|3|2|1|0

Address registers:

DO | a1 3| 2] 1] o |}

DI | 41 3] 2] 1] 0 |}

Control and status registers:

P o]t
PC [41 3] 2] 1] 0|

RSTK| 4 3| 2] 1] o | x8levels{

ST [3121 1] 0]t

HST [0]7%

N [GTaTe

3

ouT [T
Carry o

4.2 System Register Usage

The B and D registers are used by the system. The least significant 5

nybbles of B points to the top of the RPL return stack, the least signfi-

cant 5 nybbles of D is the free word counter, the size of the free area, which

is (B.A—D1.A)/5. When it reaches zero, a garbage collect is performed;if it
still remains zero after the garbage collect, then the memoryis full.

4.3 Instruction Fields

Each 64 bit register comprises 16 nybbles that can be grouped into fields

for calculation and data movement. These nybbles are numbered from right

to left starting at 0; nybble 0 is the low-order or least significant nybble and

nybble 15 is the high-order or most significant nybble.

Suffix: .P Name: Pointer Field

Start: nybble P Size: 1 nybble

Example: RETZ.P B

L0 1 1P

Suffix: .WP Name: Word to Pointer Field

Start: nybble 0 Size: P-+1 nybbles

Example: OR.WP C,D

| 1 L 1 1 1 1 L 1 I PIP1P2l .|| 1] 0

56 4 THE SATURN PROCESSOR

Suffix: .XS Name: Exponent Sign Field

Start: nybble 2 Size: 1 nybble

Example: NOT.XS C

0 0b b2]

Suffix: .X Name: Exponent Field

Start: nybble 0 Size: 3 nybbles

Example: SUB.X A,C

[1 1 1 2] 1] oo

Suffix: .S Name: Sign Field

Start: nybble 15 Size: 1 nybble

Example: CLR.S B

B

Suffix: .M Name: Mantissa Field

Start: nybble 3 Size: 12 nybbles

Example: MOVE.M B,C

| | 14| 13| 12| 11| 10| 9| 8| 7| 6| 5| 4| 3 | | | |

Suffix: .B Name: Byte Field

Start: nybble 0 Size: 2 nybbles

Example: INC.B C

L 1|0J

4.4 Instruction Set Description 57

Suffix: .W Name: Word field

Start: nybble O Size: 16 nybbles

Example: SWAP.W A,R2

[15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|0]

Suffix: .A Name: Address Field

Start: nybble 0 Size: 5 nybbles

Example: ADD.A 5,D1

|1 1 0 0 0 1 0 1 14l 3l 2] 1]o0

Suffix: .n Name: n Nybble Field

Start: nybble 0 Size: n nybbles

Example: MOVE.8 @DO,A

Ldmgef] 10

Suffix: .Pn Name: Pointer Load Field

Start: nybble P Size: n nybbles

Example: MOVE.P2 25,C

| 0 1 1 1 Jetmdpad| .|[P+ P | | | |

4.4 Instruction Set Description

Each entry in this list consists of one or more mnemonics, a brief description,

opcode, cycle, and carry information. Some entries have opcode construc-

tion tables, and most have some sort of detailed description. Some entries

containing several mnemonics with different opcodes have the opcodes listed

to the left of the corresponding mnemonics.

The cycle data is not always available, in which case it will be replaced

by “???” instead. For some instructions, the number of cycles varies with

58 4 THE SATURN PROCESSOR

opcode or instruction field, in which case the numbers are paired with the

corresponding field parenthesized. The last number may be without a field

pair, in which case it applies to all field sizes not encompassed by the previous

numbers. An n stands for the number of nybbles represented by the field

used 1n the instruction. For field A, for example, n=5.

For instance, “7(A), 3+n” means that for field A the instruction requires

7 cycles, for any other field it requires 3+n. For an M field, this means 3+12

cycles.

The opcode construction tables are best read right-to-left. Look up the

register, field, or combination of interest on the right-hand side, and note

down the corresponding code to the left. Substitute it in the opcode descrip-

tor listed for the instruction.

ADD.f Sy d

Add register to register

Opcode: kkx

Cycles: 7(A), 3+n

Carry:

Set on overflow kk f | s d

K0[P RER
Al WP 1({C B

A2 XS 2|A C

A3 X 3|1C D

A4 S 4| A A

AS M 5|B B

A6 B 6(C C

A7 W 71D D

C A 8|A B

91B C

A[C A

B|D C

4.4 Instruction Set Description

Add contents of field f of register s to contents of field f of register d.

ADD.f i+1,d

Add constant to register

Opcode: 818txi

Cycles: 777

Carry:

Set on overflow t f T

e 0
1| WP 1

2| XS 2

31X 3

4|S

51 M

6| B

7| W

F|A
Add constant i+1 to field fof register d.

O
Q
@

»
=
|
a
,

ADD.A z+1, DO
ADD.A z+1, D1

Add constant to address register

Opcode: 16x (DO0), 17x (D1)
Cycles: 7

Carry:

Set on overflow

Add constant z+1 (range 1-16) to address register D0 or D1.

60 4 THE SATURN PROCESSOR

ADD.A P41, C

Add P pointer plus one to C.

Opcode: 809

Cycles: 8

Carry:

Set on overflow.

Add the value of register P plus one to field A of register C.

AND.f s, d

And register to register

Opcode: 0Etx

Cycles: 4+n

Carry:

Not affected t|f z|s d

o|p ER
1| WP 1|/C B

2| XS 2|1A C

31X 3(C D

4 S 4| A B

5| M 5|B C

6| B 6| C A

7| W 71D C

F|A
Logical AND the value of field f of register swith field f of register d,

placing the result in field fof register d.

4.4 Instruction Set Description 61

83zyy BRBC hf, HST, PC+3+yy

8086xyy BRBC z, A, PC+5+yy

808Axyy BRBC z, C, PC+5+yy

86xyy BRBC z, ST, PC+3+yy

8087xyy BRBS z, A, PC+5+yy

808Bxyy BRBS z, C, PC+5+4+yy

87xyy BRBS z, ST, PC+3+yy

Branch or return if bit set/clear

Gpcode: see above

Cycles: see below

Carry:

Set if taken, else cleared

A/C: test if specified bit z (0-15) is cleared/set; return (RETBC and
RETBS) or branch if true [no cycle data]. ST: test if specified bit z (0-15)
is cleared/set; return (RETBC and RETBS) or branch if true [cycles: 14 taken,
7 otherwise|. HST: test if specified hardware status (HST) bit z mask (see
bit definitions above) is clear; return (RETBC) or branch if true [cycles: 13
taken, 6 otherwise]. All these instructions branch to offset yy if the condition
is true, or if the encoded offset is 00, a return i1s made.

62 4 THE SATURN PROCESSOR

5XxX BRCC PCH+1+4zz

4xx BRCS PC+1+zx

Branch or return if carry set/clear

Opcode: see above

Cycles: 10 taken, 3 otherwise

Carry:

Not affected

Test the carry status, and branch (BRCS/BRCC) to offset zz if condition is
true, or return (RETCS/RETCC) if the encoded offset is 00.

89xyy BREQ.1 P, z, PC+3+4yy

88xyy BRNE.1 P, z, PC+4+3+yy

Branch or return on pointer value

Opcode: see above

Cycles: 13 taken, 6 otherwise

Carry:

Set if taken, else cleared

Compare register P to a constant z, and branch (BREQ/BRNE) or return

RETEQ/RETNE if they are equal/unequal.

4.4 Instruction Set Description 63

ttuyy

ttuyy

ttwyy

ttxyy

zZzZuyy

ZZVYYy

ZZWYY

ZZXYY

BREQ.f
BRNE.f
BRZ.f
BRNZ.f
BRGT.f
BRLT.f
BRGE.f
BRLE.f

s, dy PC+3+yy

s, dy PC+3+yy

sy PC+3+yy

sy, PC+3+yy
s, dy PC+3+yy

s, dy PC+3+yy

s, dy PC+3+yy

s, dy PC+3+yy

Branch or return on arithmetic relation

Opcode: see above

Cycles:

Carry:

Set if taken, else cleared

13+n taken, 6+n otherwise

tt 2z f v v w z|s d

8\ 8B |A O 4 8 C|A B
90 98 |P 1 5 9 D|B C
91 99 WP 2 6 A E|C A
92 9A XS 3 7 B F|D C
93 9B X
94 9C|sS
95 9D M
96 OE |B
97 OF W

Compare field f of register s to either field f or register d or a constant 0

(BRZ/BRNZ), and branch/return if the comparison is true. Conditions: EQ -

equal, NE — not equal, Z — zero, NZ — nonzero, GT — greater than, LT — less

than, GE — greater than or equal, LE — less than or equal.

64 4 THE SATURN PROCESSOR

BUSCB

Bus command “B?”

Opcode: 8083

Cycles: 77?7

Carry:

Not affected

Issue bus command “B” on the system bus; not used in the HP 48.

BUSCC

Bus command “C?”

Opcode: 80B

Cycles: 6

Carry:

Not affected

Issue bus command “C” on the system bus; not used in the HP 48.

BUSCD

Bus command “D?”

Opcode: 808D

Cycles: 777

Carry:

Not affected

Issue bus command “D” on the system bus; not used in the HP 48.

4.4 Instruction Set Description 65

CONFIG

Configurate device

Opcode: 805

Cycles: 11

Carry:

Not affected

Copy field A of the C register into the configuration register of the chip

which has its daisy-in line high and its configuration flag low.

TXXX CALL.3 PC+4+zxx

8Exxxx CALL.4 PCH+6+zrzx

Call subroutine relative

Opcode: see above

Cycles: 12(3), 15(4)

Carry:

Not affected

Call subroutine; push the address of the next instruction onto the return

stack (RSTK) and jump. Ounly 7 levels of stack are available, 8 if interrupts

are disabled. Returning from the subroutine can be done by using any of the

various return instructions; any branch instruction with a zero offset (e.g.,

9FA00 for “RETGE.W C,A”) becomes a return instruction. The relative CALLs

are used by user programs for calling subroutines within the same program;

absolute CALLs are used for calling system ROM subroutines.

66 4 THE SATURN PROCESSOR

CALL.A zzzzx

Call subroutine absolute

Opcode: 8Fxxxxx

Cycles: 15

Carry:

Not affected

Call subroutine; push the address of the next instruction onto the return

stack (RSTK) and jump. Only 7 levels if stack are available, 8 if interrupts

are disabled. Returning from the subroutine can be done by using any of

the various RET instructions; any branch instruction with a zero offset (e.g.,

9FAO00 for “RETGE.W C,A”) becomes a return instruction. The absolute

CALLs are used by user programs for calling subroutines in the system ROM;

relative CALLs are used for calling user subroutines.

CLR.f d

Clear register

Opcode: kkx

Cycles: T7(A), 3+n

4.4 Instruction Set Description

Carry:

Not affected

Set field fof register d to zero.

kk

A8

A9

AA

AB

AC

AD

AE

AF

W
N
=

O
f
8

O
Q
o

x
=
|
a
,

67

$084x CLRB z, A
8088x CLRB z, C
84x CLRB z, ST

Clear bit

Opcode: see above

Cycles: 4(ST), ???(A/C)

Carry:

Not affected

Clear bit z of register C, A, or ST.

CLRB hf HST

Clear hardware status bits

Opcode: 82z

Cycles: 3

68 4 THE SATURN PROCESSOR

Carry:

Not affected

Clear the HST bits corresponding to the mask hf.

CLR.X ST

Clear ST

Opcode: 08

Cycles: 777

Carry:

Not affected

Clear low 12 bits of the status register (ST).

DEC.1 P

Decrement pointer register

Opcode: 0D

Cycles: 3

Carry:

Set on underflow, else cleared

Decrement value of the P register by 1.

4.4 Instruction Set Description 69

DEC.f d

Decrement register

Opcode: kkw

Cycles: 7(A), 3+n

Carry:

Set on underflow, else cleared

Decrement field f of register d by 1.

AO

Al

A2

A3

A4

A5

A6

A7
M
m
O

Q
l
g

O
Q

W
»
=
|
a
,

802 IN.4 A

803 IN.4 C

IN register

Opcode: see above

Cycles: 7

Carry:

Not affected

Copy contents of input register to low 4 nybbles of A or C.

70 4 THE SATURN PROCESSOR

INC.1 P

Increment pointer register

Opcode: 0C

Cycles: 3

Carry:

Not affected

Increment contents of the P register by 1.

INC.f d

Increment register

Opcode: qqu

Cycles: 7(A), 3+n

Carry:

Not affected qq f ul|d

"BO[P 4|4
Bl WP 5|B

B2 XS 6|C

B3 X 71D

B4 S

BS5 M

B6 B

B7 W

E A
Increment contents of field f of register d by 1.

4.4 Instruction Set Description 71

INTOFF

Disable interrupts

Opcode: 808F

Cycles: 5

Carry:

Not affected

Disable keyboard interrupts.

INTON

Enable interrupts

Opcode: 8080

Cycles: 5

Carry:

Not affected

Enable keyboard interrupts.

6xxx JUMP.3 PCH+1+4 22z

8Cxxxx JUMP.4 PCH+2+4zxzx

Jump relative

Opcode: see above

Cycles: 11(3), 14(4)

Carry:

Not affected

72 4 THE SATURN PROCESSOR

Jump relative; set program counter (PC) to destination address. CALL.3
and CALL.4 are used to jump within user programs.

JUMP.A zzzzx

Jump absolute

Opcode: 8Dxxxxx

Cycles: 14

Carry:

Not affected

Jump absolute; set program counter (PC) to destination address. CALL. A

is used to jump to system ROM locations.

JUMP.A @A

Jump register A indirect

Opcode: 808C

Cycles: 23

Carry:

Not affected

Jump to destination whose address is held in the location pointed to by

register A.

JUMP.A @C

Jump register C indirect

Opcode: 808E

Cycles: 23

4.4 Instruction Set Description 73

Carry:

Not affected

Jump to destination whose address is held in the location pointed to by

register C.

JUMP.A A

Jump register A direct

Opcode: 81B2

Cycles: 777

Carry:

Not affected

Jump to destination whose address is held in field A of register A.

JUMP.A C

Jump register C direct

Opcode: 81B3

Cycles: 777

Carry:

Not affected

Jump to destination whose address is held in field A of register C.

MOVE.A 1ID, C

Get ID of current chip

Opcode: 806

Cycles: 11

74 4 THE SATURN PROCESSOR

Carry:

Not affected

The chip which has its daisy-in line high and its configuration flag low

will send its 5-nybble ID register to the system bus which will be loaded into

the low-order 5 nybbles (A field) of the C register.

MOVE.f s, d

Move register to register

Opcode: kkz

Cycles: 7(A), 3+n

Carry:

Not affected kk f

A8[P
A9 WP

AA XS

AB

AC

AD

X

S

M

AE B

W

A

» U

W
>
O

0
0
N
O

»
n

r
#
|
N

Q
W

a
Q
w

Q
>
Q
W

o
Q
o

AF

D

Move field fof register s to field f of register d.

4.4 Instruction Set Description 75

14x MOVE.A s, d

14y MOVE.B s, d

15xt MOVE.f sy d

15yi MOVE.n s, d

Move memory to register

Move register to memory

Opcode: see above (i=n—1)
Cycles: see below

Carry:

Not affected r y| s d t|f

0 8 @DO o|P
i 9 A QD1 1| WP

2 A @DO A 2| XS

3 B @D1 A 31X

4 C C @DO 4 S

5 D C @D1 5| M

6 E @DO C 6| B

7 F @D1 C 7| W

F|A

Move from memory to register A or C; or move from register C or A to

memory. D0 or D1 holds the address where the data should be read from or

written to.

Cycles for read: 18(A), 15(B), 17+n(f), 16+n(n).
Cycles for write: 17(A), 14(B), 16+n(f), 15+n(n).

4 THE SATURN PROCESSOR

76

13w MOVE.A s, Dn

13y MOVE.4 s, Dn

Move register to address register

Opcode: see above

Cycles: 8(A), 7(4)

Carry:

Not affected

Move low 5 or 4 nybbles from register A or C to register D0 or D1. The

4 nybble move leaves the fifth nybble intact.

10j MOVE.W A, Rn

10k MOVE.W C, Rn

11j MOVE.W Rn, A

11k MOVE.W Rn, C

81At0j MOVE.f A, Rn

81At0k MOVE.f C, Rn

81At1] MOVE.f Rn, A

81At1k MOVE.f Rn, C

Move register to temporary register

Move temporary register to register

Opcode: see above

Cycles: 19(W), ??2()

4.4 Instruction Set Description 77

Carry:

Not affected t|f

o|Pp
1| WP

2| XS

31X

4 S

5| M

6| B

7| W

F|A
Move from temporary register Rn to register A or C, or move from register

C or A to temporary register Rn.

81B4 MOVE.A PC, A
81B5 MOVE.A PC, C

Move program counter to register

Opcode: see above

Cycles: 777

Carry:

Not affected

Set field A of register A or C to the current program address. The address

if that of this instruction.

3ix...x MOVE.Pn z...z, C

8082ix...x MOVE.Pn z...z, A

Move constant to register

Opcode: see above (i=n—1)
Cycles: 4+

78 4 THE SATURN PROCESSOR

Carry:

Not affected

Set n-nybble field of register C or A to constant z...z. The n-nybble

field starts at the nybble pointed to by register P, and continues n nybbles,

wrapping from the most significant digit to the least significant, if necessary.

19xx MOVE.2 zz, DO

1Axxxx MOVE.4 zzzz, DO

1Bxxxxx MOVE.5 zzzzz, DO

1Dxx MOVE.2 1z, D1

1Exxx MOVE.4 zzzz, D1

1Fxxxxx MOVE.5 zzzzz, D1

Move constant to address register

Opcode: see above

Cycles: 4(2), 6(4), 7(5)

Carry:

Not affected

Set the low 2, 4, or 5 nybbles of address register D0 or D1 to a constant.

The remaining nybbles, if any, are unaffected.

MOVE.1 z, P

Move constant to pointer register

Opcode: 2x

Cycles: 2

Carry:

Not affected

4.4 Instruction Set Description 79

Set pointer register P to constant z(range 0-15).

80Cx MOVE.1 P, C.z
80Dx MOVE.1 C.z, P

Move pointer register to register nybble

Move register nybble to pointer register

Opcode: see above

Cycles: 6

Carry:

Not affected

Set nybble z of register C to the value of the pointer register. Set pointer

register to nybble z of register C. The least significant nybble is numbered 0;

the most significant is numbered 15.

MOVE.X ST, C

Move status register to register

Opcode: 09

Cycles: 6

Carry:

Not affected

Set field X (low 3 nybbles) of register C to the low 3 nybbles of the status

register, ST.

80 4 THE SATURN PROCESSOR

MOVE.X C, ST

Move register to status register

Opcode: 0A

Cycles: 6

Carry:

Not affected

Set low 3 nybbles of the status register, ST, to field X (low 3 nybbles) of

register C.

NEG.f d

Negate register

Opcode: kku

Cycles: 7(A), 3+n

Carry:

Cleared if zero, else set kk f

B8 P

B9 WP

BA XS

BB X

BC|S

BD M

BE B

W

A

o
>

O
0
|

O
Q
W
=
,

BF

F
Negate field f of register d. Two’s complement if in HEX mode; ten’s

complement if in DEC mode.

4.4 Instruction Set Description 81

420 NOP3

6300 NOP4

64000 NOP5

No operation

Opcode: see above

Cycles: see below

Carry:

Not affected

No operation; do nothing. NOP4 and NOP5 [11 cycles| are relative jumps

with offset 0. NOP3 [10 cycles if carry set, else 3 cycles] is a BRCS to the next

instruction.

NOT.f d

Invert register

Opcode: kkw

Cycles: 7(A), 3+n

Carry:

Cleared

B8

B9

BA

BB

BC

BD

BE

BF

H
m

Y
a
l
g

O
Q
W

>
=
|
Q
,

82 4 THE SATURN PROCESSOR

One’s complement field fof register d. Not affected by whether currently

in HEX/DEC mode.

OR.f sy d

OR register to register

Opcode: 0Etx

Cycles: 44n

Carry:

Not affected t|f r|s d

o|Pp "8|B A
1| WP 9|1C B

2| XS AlA C

31X B|C D

4 S C|A B

5| M D|B C

6| B E|C A

7| W F|D C

F|A
Logical OR field fof register s with field fof register d.

800 OUT.1 C

801 OUT.3 C

OUT register

Opcode: see above

Cycles: 4(1), 6(3)

Carry:

Not affected

4.4 Instruction Set Description 83

Copy the least significant 1 or 3 nybbles from register C to the OUT

register.

POP.A C

POP register

Opcode: 07

Cycles: 8

Carry:

Not affected

Pop off the top value on the 8-level return stack and place it in the least

significant 5 nybbles of register C. Return instructions perform a pop into

the program counter.

PUSH.A C

PUSH register

Opcode: 06

Cycles: 8

Carry:

Not affected

Shift the 8-level return stack down one step, and replace the top level with

the contents of field A of register C. Subroutine call instructions automati-

cally push the current program counter before jumping to the subroutine.

84 4 THE SATURN PROCESSOR

RESET

Hardware reset

Opcode: 80A

Cycles: 6

Carry:

Not affected

Cause the CPU to emit the “System Reset” bus command, resulting in

all chips resetting.

01 RET

02 RETSETC

03 RETCLRC

00 RETSETXM

OF RETI

Unconditional return from subroutine or interrupt

Opcode: see above

Cycles: 9

Carry:

See below

RET returns without affecting the carry. RETSETC returns with the carry

set. RETCLRC returns with the carry clear. RETSETXM returns with the XM bit

in the hardware status register, HST. RETI returns and enables interrupts;

it is used by the system to return from an interrupt.

4.4 Instruction Set Description 85

8086x00

808Ax00

83x00

86x00

8087x00

808Bx00

87x00

500

400

89x00

88x00

ttu00

ttv00

ttw00

ttx00

zzu00

zzv00

zzw00

zzx00

RETBC
RETBC
RETBC
RETBC
RETBS
RETBS
RETBS
RETCC
RETCS
RETEQ.1
RETNE.1
RETEQ.f
RETNE.f
RETZ.f
RETNZ.f
RETGT.f
RETLT.f
RETGE.f
RETLE.f

z, A

z, C

hf, HST

z, ST

z, A

z, C

z, ST
8

S
N

/
&

R
R

Conditional return from subroutine

Opcode: see above and branch instruction

Cycles:

Carry:

See branch instruction

see below and branch instruction

For information on conditions and opcodes, refer to the corresponding

branch instruction. The cycle time for return instructions is the same as for

86 4 THE SATURN PROCESSOR

the branch instructions, with the return-taken cycle time corresponding to

that of the branch taken.

81w RLN.W d

81x RRN.W d

Rotate left one nybble

Rotate right one nybble

Opcode: see above

Cycles: 21

Carry:
Not affected w @

w
N
N
=

O

N
O
O

&

O
Q
W
=
]

Rotatle register C left or right. RRN causes the sticky bit, SB, of the

hardware status register, HST, to be set if the nybble rotated from position

0 to position 15 was nonzero. A zero nybble will not clear the sticky bit; this

must be done with a CLRB instruction. RLN does not affect HST:SB.

RSI

Reset interrupt system

Opcode: 80810

Cycles: 6

Carry:

Not affected

Check if any interrupts are pending; if so, service them, unless already

servicing interrupt, in which case wait until done as flagged by the return

from interrupt (RTI) instruction.

4.4 Instruction Set Description 87

8085x SETB z, A
8089x SETB z, C

Set register bit

Opcode: see above

Cycles: 77?7

Carry:

Not affected

Set bit z (range 0-15) of register A or C.

SETB z, ST

Set status register bit

Opcode: 85x

Cycles: 4

Carry:

Not affected

Set bit z (range 0-15) of the status register, ST.

05 SETDEC

04 SETHEX

Set CPU arithmetic mode

Opcode: see above

Cycles: 3

Carry:

Not affected

88 4 THE SATURN PROCESSOR

Set arithmetic mode to decimal or hexadecimal. In hexadecimal mode, all

arithmetic is performed in unsigned binary. In decimal mode, the instructions

listed below, when involving registers A, B, C, or D will operate in ten’s

complement. In ten’s complement, each nybble has a value 0-9, corresponding

to a BCD digit. The instructions affected by decimal mode are: ADD, SUB,

NEG, INC, and DEC.

SHUTDN

Shutdown bus

Opcode: 807

Cycles: 5

Carry:

Not affected

Cause the CPU to emit the “Shutdown” bus command and stop the

system clock. The result will be a system halt if done when the OUT register

is clear (000).

rrw SLN.f d
rrx SRN.f d

Shift nybble register

Opcode: see above

Cycles: 7(A), 3+n

4.4 Instruction Set Description

Carry:

Not affected

W
N

R
o
l

N
O
O
y

 O
Q
W

r
x
a
,

89

Shift field f of register d left or right one nybble. Zeros are shifted in,

and the nybble shifted out is lost. The sticky bit, SB, of the hardware status

register, HST, is set if the nybble shifted out by SRN was nonzero. SLN does

not affect HST:SB.

819tw SRB.f

81z SRB.W

Shift bit register

Opcode: see above

Cycles: 20(W), 6+n

Carry:

Not affected

d

*
fl
\
l
m
m
#
w
M
H
O
I
“

90 4 THE SATURN PROCESSOR

Shift field f of register d right one bit. Zero bits are shifted in, and the

bit shifted out is lost. The sticky bit, SB, of the hardware status register,

HST, is set if the bit shifted out was nonzero.

SREQ

Service request check

Opcode: 80E

Cycles: 7

Carry:

Not affected

Emit a “Service Request?” bus command, causing the SR bit of the HST

register to become set if any device responds affirmatively. The low 4 bits of

the C register are set to the device, with each bit corresponding to a device.

HST:SR is set to the logical OR of these bits.

qqy SUB.f sy d

qqw SUBN.f s, d

Subtract register

Opcode: see above

Cycles: T(A), 3+n

4.4 Instruction Set Description 91

Carry:

Set on underflow, else cleared qq f y w|s d

BO P O C|B A

Bl WP 1 D|C B

B2 XS 2 E|A C

B3 X 3 F|{C D

B4 S 4 A B

BS M 5 B C

B6 B 6 C A

B7 W 7 D C

E A
SUB: subtract field f of register s from field fof register d. SUBN: subtract

field f of register d from field f of register s. Both place the result in field f

of register d.

SUB.f i+1,d

Subtract constant from register

Opcode: 818tui

Cycles: 777

Carry:
Set on underflow, else cleared. t|f uld

o|p 8| A
1| WP 9B

2| XS A|C

31X B|D

4 S

5| M

6| B

7| W

F|lA
Subtract a small constant 7 (range 0-15) from field f of register d.

92 4 THE SATURN PROCESSOR

18i SUB.A +1, DO

1Ci SUB.A +1, D1

Subtract constant from address register

Opcode: see above

Cycles: 7

Carry:

Set on underflow, else cleared.

Subtract a small constant 7 (range 0-15) from address register D0 or D1.

SWAP.f s, d

Swap register and register

Opcode: kkw

Cycles: 7(A), 3+n

Carry:

Not affected kk f

Swap contents of field fof register s with contents of field fof register d.

4.4 Instruction Set Description 93

13x SWAP.A s, Dn

13z SWAP.4 sy, Dn

Swap register and address register

Opcode: see above

Cycles: 8(A), 7(4)

Carry:

Not affected

Swap contents of least significant 4 or 5 nybbles of register s with the

corresponding nybbles of address register Dn.

12j SWAP.W A, Rn

12k SWAP.W C, Rn

81At2j SWAP.f A, Rn

81At2k SWAP.f C, Rn

Swap register with temporary register

Opcode: see above

Cycles: 19(W), 7?7??+n

94 4 THE SATURN PROCESSOR

Carry:

Not affected t|f

o|pP
1| WP

2| XS

31X

4| S

5| M

6| B

7| W

F|A
Swap contents of field fof register A or C with the corresponding nybbles

of temporary register Rn.

SWAP.1 P, C.n

Swap register nybble and pointer register

Opcode: 80Fn

Cycles: 6

Carry:

Not affected

Swap contents of nybble n of register C with contents of the pointer

register, P.

SWAP.X C, ST

Swap register and status register

Opcode: 0B

Cycles: 6

Carry:

Not affected

4.4 Instruction Set Description 95

Swap contents of field X of register C with the least significant 3 nybbles

of the status register, ST.

SWAP.A A, PC

Swap register A and program counter

Opcode: 81B6

Cycles: 777

Carry:

Not affected

Swap field A of register A with the contents of the program counter (PC).

SWAP.A C, PC

Swap register C and program counter

Opcode: 81B7

Cycles: 777

Carry:

Not affected

Swap field A of register C with the contents of the program counter (PC).

UNCNFG

Unconfigurate device

Opcode: 804

Cycles: 12

Carry:

Not affected

96 4 THE SATURN PROCESSOR

Copy field A of the C register into each data pointer, with the device

addressed by the data pointer unconfiguring.

4.5 Instruction Set Reference

On the following pages is a list of SATURN instructions, in the format in which

they are listed by the MLDL commands. Square brackets refer to optional

elements, and curly brackets to a set of choices. The tiny numbers to the

left are the opcode sizes, in nybbles. A set of choices within square brackets

1s optional, with the first choice being the default. The choices are single

characters unless separated by commas, in which case they are words.

The mnemonics are identical to those used by the STAR macro assembler.

For example:

3 MOVE[.{A4}] ac, Dn

This means that the instruction is MOVE with two arguments: the first

being either register A or C, and the second either DO or D1. The suffix is

optional, but if it appears it must be either .A or .4, with .A being the

default. The opcode size is three nybbles.

. BR{EQ.NE}.1] P, nib, dest

This means that the instruction is either BREQ or BRNE with three argu-

ments: the first is always P, the second a small integer 0-15, and the third a

jump destination. The .1 suffix is optional. The opcode is 5 nybbles.

, ADDf s,d
6 ADD[.A] const, ar
3 ADD[.A] const, Dn
s ADD[A] P+1, C

4.5 Instruction Set Reference 97

. ANDf s,d i i
5 BRBC mask, HST, dest

5 RETBC mask, HST

5 BRB{SC} bit, ST, dest
5 RETB{SC} bit, ST

7 BRB{SC} bit, ac, dest

7 RETB{SC} bit, ac
3 BRC{SC} dest

5 BR{EQ,NE}[.1] P, nib, dest

5 BRarcondf s,d, dest i

5 RETarcondf s,d i

5 BR{Z,NZ}f ar, dest

4 BUSCB

3 BUSCC

s BUSCD

3 UNCNFG

3 CONFIG

3 SHUTDN

3 RESET

3 SREQ

3 MOVE[.A] ID, C

4/5/7 CALL[{34A}] dest

2/3 CLRf ar

2 CLR[.1] P

2 CLR[.X] ST

3 CLRB bit, ST

3 CLRB mask, HST

5 CLRB bit, ac

3 DEC|[.A] Dn

2 DEC].1] P

2/3 DECf ar

3 IN[.4] ac
2 INC/[.1] P

3 INC[.A] Dn

2/3 INCf ar

98

3/6

2+4n

w
o

w
N

N
w

N
w

N
N

w
w

INTOFF

INTON

RSI

JUMP[.{34A}]
JUMP[.A]
JUMP[.A]
MOVEf

MOVEf

MOVEf

MOVE.{1-16}
MOVE.{1-16}
MOVE[.{A4}]
MOVE[.W{]
MOVE[.W{]
MOVE.P{1-16}
MOVE.P{1-16}
MOVE.{245}
MOVE[.1]
MOVE[.1]
MOVE[.1]

X
X

MOVE
MOVE
NEGf
NOTf
ORf
OUT.{SX}
POP[.A]
PUSH[.A]
RET

RET{SET,CLR}
RET{Z,NZ}f
RETI

RETSETXM

RLN[.W]
SETB
SETB

dest

ac

@ac

s,d

ac, @Dn

@Dn, ac

ac, @Dn

@Dn, ac

ac, Dn

ac, Rn

Rn, ac

int, C

int, A

int, Dn

nib, P

P, C.nib

C.nib, P

ST, C

C, ST

4 THE SATURN PROCESSOR

1, 111

v

v

4.5 Instruction Set Reference

SETDEC
SETHEX
SLB.{Wf}
SLN.{Af}
SRB.{Wf}
SRN.{Af}
SUB.{Af}
SUBf
SUBN{Af}
SUBL.A]
SWAP[.A]
SWAP.{Af}
SWAP[.{A4}]
SWAP[{Wf}]
SWAP[.1]
SWAP[.X]

Legend

nib

bit

const

int

mask

ar

ac

Dn

Rn

arcond

-V

ar

ar

ar

ar

s,d

const, ar

s,d

const, Dn

ac, PC

s,d

ac, Dn

ac, Rn

P, C.nib

C, ST

99

1, 111

Nibble number; 0-15

Bit number; 0-15

Small constant; 1-16

Integer

HST bit mask; see table below

Arithmetic register; A, B, C, or D

Register A or C

Address register; DO or D1

Temporary register; RO, R1, R2, R3, or R4

Arithmetic condition; {EQ,NE,GT,LT,GE,LE}
Combinatorial constraints of s,dand f

(see below)

100 4 THE SATURN PROCESSOR

Arithmetic register combinations

s,d s,d s,d s,d

t B,A C,B A,C C,D

1w A,A B,B c,C D,D

11t A,B B,C C,A D,C

Instruction suffixes

f f f f f f f f

w P WP XS X S M B W

v A

Hardware status bits

mask mask mask mask

XM SB SR MP

101

MLDL Command Summary

ABOUTMLDL Display logo, version, and copyright

MLDB SATURN Machine Language Debugger

oby — any,...any,

MLPR Print Machine Language Program

oby — oby

ML1 Disassemble single instruction

#address —— “instruction” #next

MLOPC Return instruction opcode

#address, #address; —— “hexadecimal digits”

102 B MLDB LOCAL MODE KEYBOARD SUMMARY

B MLDB Local Mode Keyboard Summary

Entering ARG:

Keys Description

@ Begin ARG entry. The MLDB will remain in ARG

entry mode until a non-hex key is pressed.

Hex digits.

+/- 2’s complement

Shift ARG right one digit. The most significant digit

1s cleared.

DEL Cancel ARG. Return to general interactive mode.

103

General interaction:

Keys No ARG ARG

Screen: General CPU
State

Screen: Arithmetic

registers

Screen: Data registers

D] Screen: Return stack

Screen: Memory dump

Screen: Instruction

stream

Screen: Breakpoint table

PC = ARG

[<] PC=PC-1 PC =PC - ARG

[+] PC=PC +1 PC =PC + ARG

[2] PC=PC- 16 PC =PC-16 x ARG

(<] PC =PC + 16 PC=PC + 16 x ARG

Display PICT

104 B MLDB LOCAL MODE KEYBOARD SUMMARY

(Continued from previous page)

Keys No ARG ARG

MARK = PC MARK = ARG

+/- MARK « PC MARK « PC

NXT Advance one instruction Advance ARG

instructions

b Clear breakpoint b Set breakpoint bat ARG

b Clear breakpoint b Set breakpoint b counter

counter to ARG

single-step one Single-step ARG

instruction instructions

[—] single-step one instruc- Single-step ARG in-

tion, do not follow CALLs structions, do not follow

CALLs

Let program run free un- Ignored

til completed, or until a

breakpoint is encountered

t Toggle option t

VAR Display watchpoint table

(VAR|w Set watchpoint w to
ARG

105

C wMLDL XLIB Numbers

The command numbers are subject to change at random and without prior

notice. The library number is 444 hexadecimal, which is 1092 decimal.

Command | Number

ABOUTMLDL 1092 0

MLDB 1092 1

MLPR 1092 2

ML1 1092 3

MLOPC 1092 4

106 D COMMON ABBREVIATIONS

D Common Abbreviations

GC Garbage Collect. Recycling of waste products.

ML Machine Language. Sometimes called Machine Code or

Assembler.

PMC Prefized Machine Code. An RPL routine implemented in

ML wherein the type prefix of the PMC routine points to

the first instruction.

RPL Reverse Polish Lisp; also ROM-based Procedural Lan-

guage, depending on who you talk to. The language

of the HP 48. System RPL refers to the internal non-

keyword-based threads.

	Cover
	Contents
	1 Introduction
	2 ROM Card Handling
	3 Library Commands
	3.1 [ABOUTMLDL]
	3.2 [MLDB]
	3.2.1 MLDB Arguments
	3.2.2 The MLDLpar Variable
	3.2.3 Screen 1 — General SATURN State ([A])
	3.2.4 Screen 2 — Arithmetic Registers ([B])
	3.2.5 Screen 3 — Data Registers ([C])
	3.2.6 Screen 4 — Return Stack ([D])
	3.2.7 Screen 5 — Memory Dump ((E])
	3.2.8 Screen 6 — ML Instructions ([F])
	3.2.9 Screen 7 — Breakpoint Table ([MTH])
	3.2.10 Screen 8 — Watchpoint Table ([VAR])
	3.2.11 The HP 48 Annunciators

	3.3 The Local Mode MLDB Keyboard
	3.3.1 Example: ARG Entry
	3.3.2 Moving Around
	3.3.3 Example: Moving Around
	3.3.4 Terminating the Program
	3.3.5 Program Stepping and Running
	3.3.6 Example: Program Single-Stepping
	3.3.7 Example: Program Completion
	3.3.8 Breakpoints
	3.3.9 Example: Breakpoints
	3.3.10 More About Breakpoints
	3.3.11 Watchpoints
	3.3.12 Options
	3.3.13 Example: Options

	3.4 MLDB Server Modes
	3.4.1 Server Mode Commands
	3.4.2 MLDB Server Modes Command Entry
	3.4.3 Example: An MLDB Interactive Mode Session

	3.5 Messages
	3.6 Some MLDB System Considerations
	3.6.1 A Word of Caution

	3.7 [MLPR]
	3.8 [ML1]
	3.8.1 Example: ML1

	3.9 [MLOPC]
	3.9.1 Example: MLOPC
	3.9.2 Example: MLOPC and ML1

	4 The SATURN Processor
	4.1 Registers
	4.2 System Register Usage
	4.3 Instruction Fields
	4.4 Instruction Set Description
	4.5 Instruction Set Reference

	A MLDL Command Summary
	B MLDB Local Mode Keyboard Summary
	C MLDL XLIB Numbers
	D Common Abbreviations

