
[fi/” HEWLETT
PACKARD

Owner’s Manual

LT

Sy

51719

Regulatory Information

U.S.A.

The HP 48 generates and uses radio frequency energy and may interfere with

radio and television reception. The HP 48 complies with the limits for a Class B

computing device as specified in Part 15 of FCC Rules, which provide reasonable

protection against such interference in a residential installation. In the unlikely

event that there is interference to radio or television reception (which can be

determined by turning the unit off and on), try the following:

m Reorienting or relocating the receiving antenna.

s Relocating the HP 48 with respect to the receiver.

For more information, consult your dealer, an experienced radio/television

technician, or the following booklet, prepared by the Federal Communications

Commission: How to Identify and Resolve Radio-TV Interference Problems.

This booklet is available from the U.S. Government Printing Office, Washington,

D.C. 20402, Stock Number 004-000-00345-4. At the first printing of this manual,

the telephone number was (202) 783-3238.

Europe

Declaration of Conformity (according to EN45014)

Manufacturer’s name: Hewlett-Packard

Manufacturer’s address: Corvallis Division Singapore Mfg. Div.

1000 NE Circle Blvd. 1150 Depot Road

Corvallis, OR 97330 Singapore 0410

declares that the following product

Product name: HP 48
conforms to the following product specifications

EMC: CISPR 22 / EN 55022 class B,
prEN 55101-2, prEN55101-3

Safety: IEC 950 / EN 60950

Quality Department

Hewlett-Packard Company

Corvallis Division

Comments on the HP 48 Owner’s

Manual

Your evaluation of this manual helps us improve our publications.

Please circle a response for each of the statements below.

HP 48 Owner’s Manual

Strongly Strongly
disagree Disagree Neutral Agree agree

@ @ ® @ ®

I am satisfied with the product documentation . .1 2 3 4 5

I can find the information Iwant12 3 45

The information in the manual is accurate .1 2345

I can easily understand the information .1 2345

The manual contains enough examples .1 2345

The examples are appropriate and helpful .1 2345

Comments:

Name:

Address:

City/State/Zip:

Occupation:

Phone: ()

S
3
1
V
1
S
@
3
l
I
N
N

3
H
L

NI
a
3
v
w

di
A
H
V
Y
S
S
3
0
3
N

3
9
V
1
S
O
d
O
N

|
I
I
I
”
I
”
I
I
|
I
I
I
|
I
I
|
I
|
I
I
|
I
|
I
I
I
I
|
I
“
l
l
|
“
|
l
|
l
l
l
|
l
l
|
l
”

£
.
6
6
-
0
€
€
2
6
H
O
S
I
T
I
V
A
H
O
O

a
A
1
g
3
1
0
4
1
0

3IN
0
0
0
1

N
O
I
S
I
A
I
Q
S
I
T
T
V
A
H
O
O

I
N
I
N
1
H
V
Y
d
3
A
N
O
I
L
V
I
N
I
W
N
O
O
A
d

A
N
V
J
I
W
O
O
@
d
v
A
H
O
V
d
-
L
I
3
T
M
3
H

3
3
S
S
3
4
A
A
V
A
8
A
i
v
d
3
8
T
I
M
3
O
V
i
S
O
d

H
O
‘
S
I
T
I
V
A
H
O
O

8
€
"
O
N
L
I
N
H
Y
3
d

V
N

S
S
V
1
0
L
S
H
I
d

1IVIN
A
1
d
3
4
S
S
3
A
N
I
S
N
E

HP 48 Owner’s Manual

@ The contents of this manual are printed on recycled paper.

(bfi HEWLETT
PACKARD

HP Part No. 00048-90091

Printed in U.S.A. November 1991

Edition 1

Notice

This manual and any examples contained herein are provided “as is”

and are subject to change without notice. Hewlett-Packard Company

makes no warranty of any kind with regard to this manual, including,

but not limited to, the implied warranties of merchantability and

fitness for a particular purpose. Hewlett-Packard Co. shall not be

liable for any errors or for incidental or consequential damages in

connection with the furnishing, performance, or use of this manual or

the examples herein.

© Copyright Hewlett-Packard Company 1990, 1991. All rights

reserved. Reproduction, adaptation, or translation of this manual

is prohibited without prior written permission of Hewlett-Packard

Company, except as allowed under the copyright laws.

The programs that control this product are copyrighted and all

rights are reserved. Reproduction, adaptation, or translation of those

programs without prior written permission of Hewlett-Packard Co. is

also prohibited.

© Trustees of Columbia University in the City of New York, 1989.

Permission is granted to any individual or institution to use, copy,

or redistribute Kermit software so long as it is not sold for profit,

provided this copyright notice is retained.

Hewlett-Packard Company

Corvallis Division

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

Printing History

Edition 1eNovember 1991

Contents

Part 1. Building Blocks

1. Trying Out the HP 48

Looking It Over

Getting Ready }

Operating the Calculator

Using Memory

Ways to Solve Problems .

Doing Numeric Keyboard Calculatlons .

Doing Algebra

Solving Equations for Unknown Values

Getting Answers Graphically .

Making Your Own Functions .

Programming . .

Using Numbers w1th Unlts .

Keeping Track of Time

The Keyboard and Display

Organization of the Display

The Status Area, Annunciators, and Messages

The Stack .

The Command Line . .

Menu Labels . .

Organization of the Keyboard

Using the Keyboard and Display .

Getting Attention! S

Keying In Numbers

Keying In Characters (the Alpha Keyboard)

Keying In Objects with Delimiters .

Working with Menus

Setting the Display Mode

1-2

1-4

1-5

1-13

1-17

1-17

1-22

1-29

1-33

1-39

1-40

1-44

1-47

2-1

2-1

2-3

2-4

2-4

2-4

2-6

2-6

2-7

2-11

2-11

2-14

Contents-1

3. The Stack and Command Line

Using the Stack for Calculations 3-2

Making Calculations 3-2

Manipulating the Stack 3-4

Recalling the Last Arguments 3-5

Restoring the Last Stack e 3-6

Displaying Objects for Viewing and Edltlng Coe e 3-6

The Command Line and the EDIT Menu 3-8

The Interactive Stack 3-9

Using the Command Line e ... 315

Accumulating Data in the Command Llne e ... 315

Selecting Command-Line Entry Modes 3-16

Recovering Previous Command Lines 3-18

Other Stack Commands 3-18

4. Objects

Real Numberso 4-2

Complex Numbers 4-2

Binary Integers 4-3

Arrays LLo 4-4

Names . . . e e ee 4-5

Algebraic ObJects e e ee 4-6

Programs oo 4-6

StringsoL 4-7

Lists . . . C e e e ee 4-7

Graphics ObJects e ee 4-7

Tagged Objects 4-8

Unit Objects 4-9

Directory Objects e 4-10

Built-In Functions and Commandse 4-10

Additional Object Types 4-12

Manipulating Objects 412

Determining Object Types . . . Ce e 4-18

Separating Variable Names by Ob]ect Type e 4-19

Evaluating Objects 4-20

Contents-2

5. Calculator Memory
Types of Memory . . . e 5-1

Finding Out about Memory Usagee 5-2
Saving and Restoring the Stack 9-3

Clearing All Memory . . C e e 9-3

Responding to Low-Memory Condltlonse 9-4

6. Variables and the VAR Menu

Naming Variables 6-1

Creating Variables . . . e 6-2

Using the Contents of Varlablese 6-4

Evaluating Variable Names 6-4

Recalling the Contents of Varlablese 6-5

Changing the Contents of Variables 6-5

Using Quoted and Unquoted Variable Names 6-6

Using the VAR Menu and REVIEW Catalog 6-7
Purging Variableso 0 oL 6-8

Recovering from Errors oL 6-9

Doing Variable Arithmetic 6-10

7. Directories
Learning about Directories 7-1

Creating Subdirectories . . . e ee 7-3

Accessing Variables in Dlrectorles ee 7-4

Changing Directories . . . e ee 7-b

Purging Variables and Dlrectorles C ee 7-5

Using Directory Objects on the Stack 7-6

8. More about Algebraic Objects
Entering Algebraicso L. 8-1

Evaluation of Algebraics 8-2

The Evaluation Process 8-2

Stepwise Evaluation . . . e 8-3

Symbolic and Numeric Resultse 8-3

Automatic Simplification 0 L. 8-5

Rules of Algebraic Precedence 8-5

Expressions and Equations 8-6

Related Topics 8-7

Contents-3

Part 2. Hand Tools

9. Common Math Functions

Algebraic Syntax and Stack Syntax 9-1

Arithmetic and General Math Functions 9-3

Fraction Conversion Functions 9-4

Exponential, Logarithmic, and Hyperbohc Functlons . 9-6

Percent Functions . . . e 9-7

Trigonometric Functions, Angle Mode andT .. 9-8

Selecting the Angle Mode 9-8

Trigonometric Functions 9-8

The Constant = 9-9

Angle Conversion Functions . . . e 9-11

Factorial, Probability, and Random Numbers e 9-13

Other Real-Number Functions 9-14

Using Symbolic Constants . . . e 915

Using Values for Symbolic Constants e oo o .. 9186

Using Flags to Interpret Symbolic Constants 9-17

Using Symbolic Arguments with Common Math

Functions oo oL 9-18

10. User-Defined Functions

Creating a User-Defined Function 10-1

Executing a User-Defined Function 10-2

Differentiating a User-Defined Function 10-3

Nesting User-Defined Functions . . . Ce 10-4

The Structure of a User-Defined Functlon Ce e 10-5

11. Complex Numbers

Displaying Complex Numbers 11-1

Entering Complex Numbers . . . Coe 11-3

Assembling and Taking Apart Complex Numbers . 11-4

Calculating with Complex Numbers 11-5

Using Complex Numbers on the Stack 11-6

Using Complex Numbers in Algebraics 11-7

Real Calculations with Complex Results 11-9

Additional Commands for Complex Numbers 11-10

Choosing Complex Numbers or Vectors 11-12

Contents-4

12.

13.

14.

Vectors

Displaying 2D and 3D Vectors

Entering 2D and 3D Vectors

Assembling and Taking Apart 2D and 3D Vectors .

Calculating with 2D and 3D Vectors . .

Additional Vector Commands

Choosing Complex Numbers or Vectors

Unit Management

Overview of the Units Application

Units and Unit Objects

The UNITS Catalog Menu .

Creating a Unit Object

Using Unit Objects in Algebralcs

Converting Units

Using the UNITS Catalog Menu

Using CONVERT . .

Using the CST Menu

Using UBASE (for SI Base Umts) .
Converting Dimensionless Units of Angle .

Factoring Unit Expressions .

Calculating with Units . .

Working with Temperature Umts .

Converting Temperature Units

Calculating with Temperature Units .

Creating User-Defined Units .

Additional Commands for Unit ObJects

Binary Arithmetic

Setting the Wordsize

Setting the Current Base .

Entering Binary Integers . .

Calculating with Binary Integers

Additional Binary Integer Commands

12-1

12-4

12-5

12-8

12-14

12-15

13-1

13-2

13-2

13-3

13-7

13-8

13-8

13-9

13-10

13-11

13-12

13-13

13-14

13-17

13-17

13-18

13-21

13-22

14-1

14-2

14-3

14-3

14-4

Contents-5

15. Customizing the Calculator

Using Custom (CST) Menus
Creating a Custom Menu

Enhancing Custom Menus

Creating a Temporary Menu

Defining the User Keyboard

Selecting User Modes

Assigning and Unassigning User Keys

Disabling User Keys . . .

Recalling and Editing User Key As51gnments .

Setting Calculator Modes Coe

Using the MODES Menu

Using System Flags

Part 3. Power Tools

16.

17.

The EquationWriter Application

How the EquationWriter Application Is Organized

Constructing Equations

Entering Equations .

Controlling Implicit Parentheses

EquationWriter Examples

Editing Equations .

Backspace Editing

Command-Line Editing .

Inserting an Object from the Stack

Replacing a Subexpression with an Algebralc ObJect

Viewing and Editing Objects with the EquationWriter

Application . . e

The HP Solve Application

The Structure of the HP Solve Application .

Using Equations, Expressions, and Programs .

Specifying the Current Equation

Entering a New Current Equation .

Reusing an Existing Equation .

Summary of SOLVE Menu Operations .

Solving the Current Equation . .

Finding a Solution

Checking the Solution . .

Finding Other Solutions .

Contents-6

15-1

15-1

15-3

15-4

15-5

15-5

15-6

15-9

15-10

15-10

15-11

15-12

16-2

16-4

16-5

16-11

16-12

16-16

16-16

16-17

16-21

16-22

16-23

17-2

17-3

17-3

17-4

17-6

17-11

17-12

17-12

17-16

17-17

18.

Using Guesses .

Summary of SOLVR, Menu Operatlons .

Interpreting Results .

When a Solution is Found

When No Solution is Found .

Choosing the HP Solve or Plot App]lcatlon .

Using the HP Solve Application with Unit Objects

Customizing the SOLVR Menu

Solving Two or More Equations .

Finding the Solution of a Program

How the HP Solve Application Works

How the Root-Finder Uses Initial Guesses

Halting the Root-Finder .

Displaying Intermediate Guesses .

How the Menu of Variables Is Created .

Basic Plotting and Function Analysis

The Structure of the Plot Application . .

Using Equations, Expressions, and Programs .

Specifying the Current Equation and Plot Type .

Changing the Current Equation and Plot Type .

Summary of PLOT Menu Operations

Setting Plot Parameters and Drawing the Plot

Specifying the Independent Variable .

Setting the Display Ranges or Scaling

Resetting Plotting Parameters

Drawing the Graph .

Choosing Connected or Dlsconnected Plottmg

Summary of Basic PLOTR Menu Operations .

How DRAW Plots Points oo

Plotting Two or More Equations

Working in the Graphics Environment .

Working with the Plot . .

Using Zoom Operations

Analyzing Functions . . .

More about Function Analys1s

17-17

17-17

17-18

17-19

17-21

17-22

17-23

17-25

17-27

17-30

17-31

17-32

17-32

17-33

17-33

18-2

18-4

18-4

18-5

18-7

18-8

18-9

18-9

18-10

18-11

18-14

18-15

18-17

18-18

18-19

18-22

18-22

18-25

18-32

Summary of Zoom and Function Analys1s Operatlons 18-34

Contents-7

19. More about Plotting and Graphics Objects

Refining Plots Co 19-1

Using Plotting Range 1nstead of DlsplayRange Co 19-1

Specifying Axes and Labels Ce 19-2

Specifying Resolution . . . Coe 19-3

Summary of Plot-Refinement PLOTR Menu

Operations . . . C e e e e 19-5

Understanding the PPAR Varlable C e e e 19-6

Using Plot Coordinates 19-8

Changing the Size of PICT 19-9

Choosing Plot Types 1912

Function Plots 19-14

Conic Sections 19-14

Polar Plots 19-16

Parametric Plots 19-17

Truth (Relational) Plots 19-18

Plotting Programs and User-Defined Functlons oo 1920

Plotting with Units 1921

Drawing Statistical Plots e s o192

Adding Graphical Elements to PICT e . 19-22

Adding Elements Using the Graphics Env1ronment . 19-22

Adding Elements Using Commands 19-25

Working with Graphics Objects on the Stack 19-26

Using Stack Operations in the Graphics Environment 19-26

Using Stack Commands for Graphics Objects 19-27

Using Stack Commands with PICT 19-30

20. Arrays

Displaying Arrays 20-1

Entering Arrays . . e 20-2

Using the MabanmterApphcatlone 20-2

Using the Command Line 20-5

Viewing and Editing Arrays 20-6

Calculating with Arrays 209

Calculating with Complex Arrays 20-13

Calculating with Algebraic Syntax 20-15

More Matrix Commands 20-16

Advanced Topics Relating to Matrlces Co. 20-18

Contents-8

21.

22.

Statistics

Organizing Statistical Data .
Setting Up the Current Statistical Ma‘mx

Entering Statistical Data .

Editing Statistical Data .

Summary of Data-Entry STAT Menu Operatlons

Using the Statistics Catalog

Calculating Single-Variable Statistics

Getting Sample Statistics

Getting Population Statistics . .

Calculating Paired-Sample Statistics . .

Plotting Statistical Data . i

Plotting Scatter Plots

Plotting Bar Charts .

Plotting Histograms . .

Summary of Plotting Commands

Calculating Summation Statistics .

Calculating Test Statistics

Understanding the Statistics Parameter Varlable

Algebra

Finding Symbolic Solutions

Isolating a Single Variable

Solving Quadratic Equations . i

Getting General and Principal Solutlons i

Showing Hidden Variables .

Summary of Commands for Symbohc Solutlons .

Rearranging Terms

Collecting Like Terms .

Expanding Products and Powers .

Summary of Commands for Collection and Expansmn

Using the Rules Transformations

Making User-Defined Transformations .

Using the | (Where) Function .

21-1

21-2

21-2

21-4

21-4

21-5

21-8

21-8

21-10

21-10

21-13

21-14

21-15

21-17

21-18

21-19

21-20

21-23

22-1

22-2

22-3

22-5

22-7

22-8

22-8

22-9

22-9

22-11

22-11

22-23

22-25

Contents-9

23. Calculus
Differentiating Expressions .

Differentiating Step-by-Step

Differentiating Completely .

Differentiating User-Defined Functions .

Creating User-Defined Derivatives .

Summing Finite Series . ..

Deriving Taylor’s Polynomial Approxnnatlons

Integrating Expressions

Doing Symbolic Integration

Doing Numeric Integration .

More about Integration . .

How the HP 48 Does Symbohc Integratlon .

The Accuracy Factor and the Uncertainty of

Integration

24. Time, Alarms, and Date Arithmetic
Using the Clock (Date and Time) .

Displaying the Date and Time

Setting the Date and Time .

Summary of Date and Time Operatlons

Setting Alarms .

Using Appointment Alarms

Using Control Alarms

Stopping Repeating Alarms

Summary of Alarm Operations

Reviewing and Editing Alarms

Using Alarms in Programs .

Calculating with Dates and Times

Making Date Calculations .

Making Time and Angle Calculatlons

Part 4. Programming

25. Programming Fundamentals
Understanding Programming .

The Contents of a Program

Calculations in a Program

Structured Programming .

Where to Find More Informatlon

Entering and Executing Programs .

Contents-10

23-1

23-1

23-3

23-4

23-4

23-5

23-8

23-10

23-10

23-14

23-18

23-18

23-18

24-1

24-2

24-2

24-4

24-5

24-5

24-9

24-9

24-11

24-12

24-15

24-17

24-17

24-18

25-1

25-2

25-4

25-4

25-5

25-6

26.

27.

Viewing and Editing Programs

Creating Programs on a Computer
Using Local Variables

Creating Local Variables . .

Evaluating Local Names .

Defining the Scope of Local Vanables

Creating User-Defined Functions as Programs

Manipulating Data on the Stack

Using Subroutines . .

Single-Stepping through aProgram

Tests and Conditional Structures

Testing Conditions

Using Comparison Functlons

Using Logical Functions

Testing Object Types

Using Conditional Structures and Commands

The IF...THEN...END Structure

The IFT Command . . .

The IF...THEN..ELSE..END Structure .

The IFTE Function .

The CASE...END Structure

Conditional Examples .

Loop Structures

Using Definite Loop Structures

The START..NEXT Structure

The START...STEP Structure

The FOR..NEXT Structure

The FOR...STEP Structure

Using Indefinite Loop Structures

The DO...UNTIL...END Structure .

The WHILE...REPEAT...END Structure .

Using Loop Counters .

Using Summations instead of Loops .

25-11

25-12

25-13

25-13

25-15

25-16

25-17

25-18

25-19

25-21

26-1

26-2

26-3

26-4

26-4

26-5

26-5

26-5

26-6

26-6

26-7

27-1

27-2

27-4

27-6

27-8

27-10

27-10

27-12

27-13

27-15

Contents-11

28.

29.

30.

31.

Flags

Types of Flags .

Setting, Clearing, and Testlng Flags .

Recalling and Storing the Flag States

Interactive Programs

Stopping for Data Input . .

Using PROMPT...CONT for Input

Using DISP FREEZE HALT...CONT for Input .

Using INPUT...ENTER for Input .

Beeping to Get Attention

Stopping for Keystroke Input .

Using WAIT for Keystroke Input

Using KEY for Keystroke Input

Displaying Program Output

Labeling Output with Tags . . .

Labeling and Displaying Output as Strlngs .

Pausing to Display Output . . }

Summary of Data Input and Output Commands

Using Menus with Programs

Using Menus for Input .

Using Menus to Run Programs

Turning Off the HP 48 from a Program

Error Trapping

Causing and Analyzing Errors

Trapping Errors

The IFERR...THEN..END Structure .

The IFERR...THEN...ELSE...END Structure .

More Programming Examples

Fibonacci Numbers .

FIB1 (Fibonacci Numbers, Recurswe Verswn)

FIB2 (Fibonacci Numbers, Loop Version)

FIBT (Comparing Program-Execution Time) .
Displaying a Binary Integer .

PAD (Pad with Leading Spaces)
PRESERVE (Save and Restore Prev1ous Status)

BDISP (Binary Display) .

Median of Statistics Data

SORT (Sort a List) i

LMED (Median of a List)

Contents-12

28-1

28-2

28-4

29-1

29-1

29-4

29-5

29-12

29-13

29-13

29-13

29-14

29-14

29-15

29-16

29-17

29-18

29-19

29-20

29-23

30-1

30-4

30-4

30-5

31-2

31-2

31-3

31-5

31-7

31-7

31-8

31-10

31-14

31-14

31-16

MEDIAN (Median of Statistics Data)
Expanding and Collecting Completely .

MULTI (Multiple Execution) .

EXCO (Expand and Collect Completely)
Minimum and Maximum Array Elements

MNX (Minimum or Maximum Element—Version 1) .
MNZX2 (Minimum or Maximum Element—Version 2)

Verification of Program Arguments .

NAMES (Check List for Exactly Two Names)

VFY (Verify Program Argument) . .
Bessel Functions .

Animation of Successive TaylorsPolynomlals

SINTP (Converting a Plot to a Graphics Object)
SETTS (Superimposing Taylor’s Polynomials)
TSA (Animating Taylor’s Polynomials)

Programmatic Use of Statistics and Plotting

Trace Mode .

Inverse-Function Solver

Animation of a Graphical Image

Part 5. Printing, Data Transfer, and Plug-Ins

32.

33.

Printing

Setting Up a Printer

Printing . . .

Doing Advanced Prlntlng

Setting Up a Serial Printer . .

Understanding the PRTPAR Varlable

Transferring Data to and from the HP 48

How the HP 48 Transfers Data . .

Types of Data You Can Transfer

Choosing a Transfer Model .

Setting the I/O Parameters i
Transferring Data between Two HP 48s

Transferring Data between a Computer and HP 48

Preparing the Computer and HP 48 .

Transferring Variables and Files

Backing Up All of HP 48 Memory .

Choosing and Using File Names

Receiving Data from Other Calculators

31-17

31-20

31-20

31-21

31-23

31-23

31-26

31-30

31-30

31-32

31-34

31-36

31-36

31-37

31-38

31-40

31-44

31-45

31-47

32-1

32-3

32-7

32-9

32-11

33-1

33-2

33-3

33-3

33-8

33-10

33-10

33-12

33-14

33-15

33-16

Contents-13

34.

Sending Kermit Commands .

Getting Information about Kermit Errors

Summary of Kermit Commands .

Sending and Receiving Data without Kermlt

Making a Serial Connection

Understanding ASCII Transfers . . .

Understanding the IOPAR Variable .

Memory, Plug-In Cards, and Libraries

Types of Memory . .

Installing and Removing Plug—In Cards (Not HP488)
Preparing a New RAM Card . .

Installing and Removing RAM and ROM Cards

Using Plug-In Cards (Not HP 48S)
Using RAM Cards R

Using Application Cards .

Using Port 0 .

Merging, Freeing, and Protectmg Memory (Not HP 488)

Expanding User Memory (Not HP 48S) .
Backing Up Data . Co

Backing Up Individual ObJects

Backing Up All of Memory .

Using Library Objects .

Creating Libraries . .

Setting Up Libraries .

Using Libraries . .

Summary of Library Commands

Part 6. Appendixes

A. Support, Batteries, and Service

If Things Go Wrong . .

Answers to Common Questlons .

Environmental Limits

When to Replace Batteries .

Changing Batteries .

Testing Calculator Operatlon .

Self-Test .

Keyboard Test

Port RAM Test . .

IR Loop-Back Test

Contents-14

33-16
33-17
33-17
33-19
33-22
33-22
33-24

34-1
34-2
34-2
34-5
34-8
34-9

34-10
34-10
34-11
34-14
34-15
34-15
34-18
34-19
34-20
34-20
34-22
34-23

A-1

A-6

A-6

A-7

A-11

A-12

A-13

A-14

A-15

S
a

v
&=

Serial Loop-Back Test .

Limited One-Year Warranty

If the Calculator Requires Service .

Messages

HP 48 Character Codes

Menu Numbers and Menu Maps

HP 48 System Flags

Comparing the HP 48 and HP 41

What’s the Same

The Stack

Calculations

Commands .

Memory

Programming . .

Operation Index

Index

A-16
A-17
A-18

F-1

F-2

F-5

F-8

F-10

Contents-15

Part 1

Building Blocks

Trying Out the HP 48

This first chapter gives you a chance to try a few

things with your HP 48. You’ll see how to do a

variety of basic tasks—using some of the tools

provided by the HP 48.

If you’re already familiar with using the HP 41 or

a similar RPN calculator, you may want to skip

ahead to appendix F, “Comparing the HP 48 and

HP 417

Here are some suggestions for using this chapter:

m Try the examples. They’ll give you a good idea of how you can use

the HP 48.

m Headings highlight the steps for doing certain tasks. You can

experiment, if you want—but the examples are probably your best

guide for trying things out.

m You can turn off the calculator at any time—when you turn it on

again, it’ll be ready to continue where you left off.

m If you run into trouble, see “If Things Go Wrong” on page A-1.

Note This chapter gives only selected information about

i the HP 48. See the other chapters to get more

fi complete information.

Trying Out the HP 48 1-1

1 Looking It Over

(ra evsr)

o ALE < 10

£ HOME } <g

 2

D@D@DD%
)&@&&
) o) 8l (<) (W) ()
@ @ @™@@
eo))(7
Ao
{amunmu
0D@

¢XN (o) () (%) ()

1. Stack levels 7. Backspace

2. Command line 8. Menu labels and keys

3. Enter command line 9. Message area

4. Alpha mode 10. Annunciators

5. Shift keys

6. On, off, attention

1-2 Trying Out the HP 48

10.

. Stack levels. The stack holds the data you’re currently working

with. Each numbered stack level holds one item of data, called an

object. The stack can have more levels than show in the display.

. Command line. Numbers and other text you type accumulate in

the command line. The command line is displayed only while

you’re using it.

. Enter command line. The key processes the text in the

command line.

. Alpha mode. The (o) key turns the alpha keyboard on and off.

You use the alpha keyboard to type letters and other characters.

Shift keys. The orange (&) (left-shift) key activates the operations

labeled in orange above most keys. The blue () (right-shift)
key activates the operations labeled in blue, plus other unlabeled

operations.

. On, off, attention. The key turns on the HP 48. After it’s on,

the key means “Attention!”—it deletes the command line and

stops whatever’s going on. You also use () and this key to turn

off the HP 48.

Backspace. If there’s a command line, («) deletes the character to

the left of the cursor. If there’s no command line, this key deletes

the contents of stack level 1.

. Menu labels and keys. The labels at the bottom of the display

show the operations for the six menu keys below.

Message area. This part of the display shows the name of the

current directory and any prompts and messages.

Annunciators. Annunciators indicate the current status of the

calculator, including shift-key and alpha status.

The keyboard contains labels for many operations. Some are printed

on the keys themselves—the “main” operations. Others are printed in

orange and blue above the keys—the “shifted” operations.

The following table lists the labels for the main and shifted operations

on the keyboard—plus it shows the row and position where each label

occurs, counted from the top and left. You may find this helpful while

you’re becoming familiar with the HP 48 keyboard—especially as you

try the examples in this manual.

Trying Out the HP 48 1-3

Keys and Their Row/Position Locations

ACOS
ALGEBRA
ASIN
ATAN
ATTN
CLR
CONT
cos
CST
DEF
DEL
DROP
EDIT
EEX
ENTER
ENTRY
EQUATION
EVAL
Bx

GRAPH
HOME
1/0
LAST ARG
LAST CMD

4,2
6,4
4,1
4,3
9,1
5,5
9,1
4,2
2,3
3,2
5,4
5,5
5,2
5,3
5,1
6,1
5,1
3,3
4,6
3,4
3,1
2,2
8,3
8,4

LAST MENU 84

LASTSTACK 8,3
LIBRARY 2,5

LN 4,6

LOG 4,5

MATRIX 5,1

MEMORY 2,4

MODES 2,3
MTH 2,1
—NUM 3,3

NXT 2,6

OFF 9,1
ON 9,1

PLOT 6,3

POLAR 8,2
PREV 2,6

PRG 2,2
PRINT 2.1
PURGE 5,4
—Q 3,3

RAD 8,2
RCL 3,2

REVIEW 3,5
SIN 4,1

SOLVE 6,2
SPC 9,4

STAT

STO

SWAP

TAN

TIME
UNITS

Up
USR

VAR

VISIT
22

S

7,3
3,2
3,6
43
7,2
74
3,1
6,1
2,4
5,2
4,4
4,4
4,4
4,5

4,6
4,5
5,3
5,3
5,2
9,5
8,5
7,5
6,5
9,2

—
‘
[
l
T
P
‘
%
Q
J
M
:
‘
Q

6,1
9,4
4,3
4,1
4,2
9,4
5,5
9,2
9,3
3,1
9,3
9,3
6,5

6,5
7,5

8,5
9,5
9,5
2,5
3,5
3,4
3,6

Getting Ready

To turn the HP 48 on and off:

m To turn it on, press (ON).

m To turn it off, press ()(OFF)—that is, press the blue () key, then

press the key with the blue “OFF” label above it (the key).

To adjust the display contrast:

m To darken the display, turn on the HP 48, then hold down the

key and press (1)

m To lighten the display, turn on the HP 48, then hold down the

key and press (=).

1-4 Trying Out the HP 48

The examples in this chapter assume the HP 48 is in its initial,

default condition—they assume you haven’t changed any of the HP 48

operating modes. (To reset the calculator to this condition, see “If

Things Go Wrong” on page A-1.)

Operating the Calculator

When you use the HP 48, you use commands to process numbers or

other objects and get results. Most of this action takes place in the

command line and on the stack.

Some commands are labeled on the keyboard—others are presented

in menus in the display. Your data might be numeric—or it might

contain algebraic variables or text.

General rule for executing commands:

1. Enter the arguments for the command, if any.

2. Execute the command.

An argument is an item of data—an object—that’s used by a

command to get a result. The number of arguments depends on the

command—some commands use no arguments, others use one or two

or more. For example, “addition” requires two arguments, “tangent”

requires one, and “set standard display” requires none.

The idea of entering two numbers and then executing “addition” —or

entering an angle and then executing “tangent”—may seem unusual

at first. But it’s part of a consistent and efficient operating scheme

that uses a stack-based syntax, sometimes called RPN (“Reverse

Polish Notation”). (This is somewhat different from earlier HP RPN

calculators, such as the HP 41, which prompted for information after

certain commands, such as STO and FIX.)

To enter more than one argument, you can press (ENTER) after each

argument—or you can press to include more than one argument

in the command line.

Trying Out the HP 48 1-5

Example: Turn on the HP 48, then add 12 and 34.

Type and terminate the first number.

12 (ENTER)

Type the second number.

34

12

Add the two numbers you’ve entered.

 : 45SeMAe
When you start to key in numbers or other data, the command line

automatically appears near the bottom of the display—and your input

shows up there.

When you execute a command—such as or in the previous

example—the command line disappears and the result shows up on

the stack. The stack is a sequence of storage locations in memory, and

the first few are shown in the display:

m As you enter numbers or other objects, previous objects move up to

higher levels of the stack.

1-6 Trying Out the HP 48

m As you delete objects from the bottom of the stack, the remaining

objects move down.

m As you execute commands, they remove objects from the bottom of

the stack and replace them with the results.

m The number of existing stack levels changes according to the

number of objects present—from 0 to hundreds or more.

To delete the command line:

m Press (ATTN). (That’s the name of the key while the calculator
is turned on.)

To delete the object in level 1 of the stack:

m Press («) or (&9)(DROP), but only if there’s no command line.

(DROP is above the («) key.)

To clear the whole stack:

m Press ()(CLR). (CLR is above the (&) key.)

Objects are kept on the stack until you use or delete them. It’s a good

idea to clear the stack occasionally to recover memory.

Example: Enter four numbers and add the last two, then delete the

result and clear the stack.

Clear the stack and enter 12, 34, 56, and 78.

@R { HOME }
12 (ENTER) 34 (ENTER) 56 (ENTER) 78 T 15

P 3

L, -
[PAETE]PROEHYP[HATE[VECTE]ERSE

Add the last two numbers.

{ HOME }
4z

3: 12
2 34
1: 134
[PAFTE]PROEHYPMATE[VECTR]ERZE

Trying Out the HP 48 1-7

Delete the result.

®

Clear the whole stack.

12
34

@ { HOME }

4:
3z
%:

SWeT

To correct what you’re typing in the command line:

1. Start typing a number or other object.

2. If necessary, press («) or (®) to move the # cursor to the error.

4.

To

1.

2.

(You can use (A) and (¥) if the command line has more than one
line—if the command line disappears when you press (&) or (¥),

press to recover.)

. Delete the error:

m To delete the character to the left of the cursor, press (e).

m To delete the character under the cursor, press (DEL).

Type the correct characters.

edit the object in level 1 of the stack:

Press (d3) (EDIT)
Edit the displayed information. Press («) or () to move the cursor.

Press or (#) to delete characters. (You can use (A) or (V) if the

object has more than one line.)
Press to save the changes (or press to discard
them).

Example: Enter the number 5045.661, then change the “04” to “40”.

Enter the number.

5045.661 (ENTER) 23
1 aH45. 661
PET:]PROE |HYP |MATRIVELTR]EAZE |

1-8 Trying Out the HP 48

Start editing the number.

(«)(EDIT
4545, 661
[£SEIP[SKIP#]£DEL[DEL+INZu]+3TE]

Make the changes.

® 10
o468+, 661
[£5KIP[sKIPH[£UEL |UEL3[IN3[+3Th

Save the changes.

2:
94A5. 661

EREETERErRSRRe

To get back to the stack display at any time:

m Press (ATTN). In certain situations, you may have to press it more

than once.

To view the whole stack:

1. Press (A) while the stack is displayed and no command line is

present.

2. To see other levels of the stack, press (&) and (¥).

3. Press to return to normal operation.

Viewing the stack this way doesn’t change the contents of the stack in

any way.

To use a menu command:

1. Press the key or keys that get the menu you want.

2. If necessary, press or ()(PREV) to get to the menu page for

the command you want.

3. If the command requires data, enter the data. (You can do this

before you get the menu, if you want.)

4. Press the white menu key below the label for the command. (In

this manual, normal menu labels and menu keys are shown like

THIE)

Trying Out the HP 48 1-9

R

S
R
E
R

-

Many HP 48 commands are contained in menus—groups of operations

labeled across the bottom of the display. The (MTH), (PRG), (CST), and

keys get certain menus. In addition, shifted keys with orange

labels on darker backgrounds get other menus, such as (49)(MODES).

Some menus contain other submenus—such as the MTH (math) menu.
If a menu label has a “bar” over the top-left corner, it gets a submenu.

For example, in the MTH menu, FAETE gets a submenu. Some

menus contain more than six entries—so those menus have more than

one “page” of labels. For example, the MTH PARTS menu has four

pages—press to see each page.

To go from a submenu to any other menu, just go to the new menu

directly—you don’t go back “up” from a submenu.

Example: Find 15 percent of 145. The % command is in the MTH
PARTS menu.

Clear the stack and enter 145 and 15. Then get the MTH menu.

(>)(CR) 1: 145
145 15
MTH

15+
IEERARE

Get the PARTS submenu, find the % command, and calculate 15% of
145.

7

1: £1.7a
IGTN.TT

Example: Find 6! (6 factorial). The ! command is in the MTH

PROB menu.

Clear the stack and key in 6. Then get the MTH PROB menu.

@R I

6 (MTH) FE b
- AEEERELTEE

Execute the ! command to find 6!.

7

1: 7l
[cOME[PERM]¢[RAWD[ROZ|

1-10 Trying Out the HP 48

To type letters and other characters:

m To type an individual letter, press (@), then press the key with that

letter next to it.

m To type a sequence of letters, press (o) (@), press the sequence of

letter keys, then press (a). (If you press to immediately

enter the command line, you don’t need the final (a).)

m To type any number of letters, hold down (@), press the letter keys,

then release (o).

The d annunciator at the top of the display turns on while the

“alpha” keyboard is active. If you press (a) twice, the d locks on until

you press (o) again or process the command line.

Letter keys are labeled in white to the right of the keys. When d is

on, the letters are active. You can type numbers with d on or off.

You can type commands and other kinds of information

letter-by-letter, as you’ll see throughout this chapter. In the examples

in this manual, characters you type are shown only as “ABC”—but to

type them, you have to use (@), such as

@DA@B@C
@@ABC(@

(@) (hold) A B C (release)

To enter any type of object:

1. Type the delimiters for the type of object you’re entering, if any.

2. Enter the information by pressing command keys or typing

characters.

3. Press (ENTER).

Each type of object represents a different kind of information. Here’s

a partial list of different types of objects and their corresponding

delimiters—the punctuation that defines the type of object.

Trying Out the HP 48 1-11

—
h

R
R

Objects Delimiters Examples

Real Number none 14,75

Complex Number i 1 (parentheses) W1

String " 1 (quotes)

Array [1 (brackets) Cd.8-1.38.11

Umit (underscore) 11.5_¥4

Program % % (program quotes)

Algebraic © ' (tick marks)

List + ¥ (braces)

Built-In Command none

Name none or

" (tick marks)

Most commands work with several types of objects—so you have

fewer commands to remember. For example, you can add more than

just numbers—the + command works with real numbers, complex

numbers, arrays, strings, algebraic objects; and others.

Example: Enter the two text strings “HELLO” and “ WORLD”,

then combine them.

Clear the stack and enter the first string. (Remember: Use (@) when

you type the letters below.)

@)(CLR) 21
HELL 1: "HELLO"

@9 © [EOME[PERM]!|RAWD]ROZ|

Enter the second string—notice it starts with a space. (Use (@) when
you type the letters below.)

D WORLD ?) "HEHEH::

[COME[PERM]![FaMD]R0|

Combine (add) the strings.

2
1: "HELLO WORLD"
TI)TT

1-12 Trying Out the HP 48

Using Memory

Although the stack can contain many pieces of information—many

objects—the most convenient place to store information for later

use 1s in variables. A variable is just a place in memory where an

object is stored—any type of object. So a variable can contain a single

number—or it can contain a complex program.

Each variable has a name you give it. You use the name to identify

and access the object stored there.

(A variable is similar to a register in earlier HP calculators, such as
the HP 41—except that a variable has a name you give it and can

contain any type of object, even a program.)

To store any type of object in a new variable:

1. Enter the object.

2. Press () and type a name for the variable. (Use the (a) key as

required—make sure the o annunciator is off when you’re done.)

3. Press (STO).

You can use descriptive names for variables. A name can be as short

as one letter—or as long as 127 characters. Names can’t be the same

as built-in commands and can’t start with numbers.

Example: Find the square root of 2 and store the value in a variable

named N1.

Clear the stack and find the square root of 2.

>)(CR) 2
1: 1.414213562372 (&x
[COME[FERM]![RAMD]K02|

Key in the name NI. (Use (o) when you type the letter below. Make

sure the d annunciator is turned off at the end of this step.)

(CJN1 } 1. 41421356237

Store the result.

STO ¢

Trying Out the HP 48 1-13

To store any type of object in an existing variable:

1. Enter the object.

2. Press (VAR).

3. Press () = for the name of the variable you want.

(Substitute the desired menu key for rigpa)

The VAR (variable) menu contains names of existing variables.

To recall a stored object:

m Press (VAR), then press (@) name for the name of the variable.

or

m Press () and type the name of the variable, then press ()(RCL).

To “use” a stored object:

m Press (VAR), then press rizme for the name of the variable.

or
m Key in the name of the variable (without (7) tick marks) and press

(ENTER).
For numbers and other data-type objects, “using” an object simply

means recalling its contents. For a program, “using” means running

the program.

Example: Store the width and length of a 3-by-5 rectangle in W and

L, then use those values to find the area. Store the result in existing

variable N1.

Enter and store the width and length. (Use (@) when you type the

letters below.)

duacol
q:5 4

() W (To 2
12

|TGITT|

Recall the two values.

b e 3

1: 9
IATOII|

1-14 Trying Out the HP 48

Multiply to find the area.

) 2:

Store the area in existing variable N1.

Recall the area from NI.

1: 15
|IOOIIN

To edit (“visit”) a stored object:

1. Press ().

2. Press (VAR), then press riazme for the name of the variable.

3. Press (2)(VISIT).

4. Edit the displayed information. Press (<€), (), (4), and (¥) to move

the cursor. Press or () to delete characters.
5. Press to save the changes (or press to discard

them).

Example: Store the text string “BEGINNER” under the name TXT.

Then change it to “WINNER”.

Clear the stack and enter the text string in quotes. (Use (o) when you

type the letters below.)

()(CLR) 1: "BEGIMNNER"
@)() BEGINNER TTOYO

Store the text in TXT. (Use (&) when you type the letters below.)

O TXT L |
IEEEETTT

Get ready to edit the stored object. (Press if you don’t see the

TXT menu label.)

() TE +BEGIMMER"@)= TTTeNi

Trying Out the HP 48 1-15

Move the cursor to the first letter, then delete the first three letters

and insert the new one. (Use (@) when you type the letter below.)

®>) w "|J4NNER"
EHIP[EKIRDEL[DELNSu[+-5TH]

Save the changes.

To delete a stored object (the variable):

1. Press ().

2. Press (VAR), then press riama for the name of the variable.

3. Press (&9)(PURGE).

Example: Delete the text string stored in variable TX7T'.

Enter the name of the variable. (Press if you don’t see the TXT

menu label.)

Delete the object—and the name disappears from the menu.

(*2) (PURGE) %

OOB—

To delete all stored objects (all variables):

1. Don’t do this if there are any stored objects you want to keep.

2. Press (»)(PURGE) (right shift).
3. Press to delete them (or press to not delete them.)

1-16 Trying Out the HP 48

Ways to Solve Problems

You can use the HP 48 to solve problems in different ways. The next

several topics introduce some of them:

Doing numeric keyboard calculations (page 1-17).
Doing algebra (page 1-22).
Solving equations for unknown values (page 1-29).
Getting answers graphically (page 1-33).

Making your own functions (page 1-39).
Programming (page 1-40).

Doing Numeric Keyboard Calculations

Numeric keyboard calculations are handy for one-time problems

involving strictly numeric results. You can do stack-based calculations

(described on the next few pages) and algebraic calculations (described

after that). (These calculations also illustrate the basic syntax for
other HP 48 commands.)

See “Using Memory” on page 1-13 to find out how to store and recall

objects, such as numbers.

To calculate with two numbers:

Enter the first number.

Press (or (SPQ)).

Enter the second number.

Press the command key.N
N

Example: Calculate 45 x 78.

45 X 1: 3514
WL[wW[[|

Example: Calculate 20~2.

20 2 9 1: . BB25
OOONA

Trying Out the HP 48 1-17

Example: Calculate the percent change from 88 to 99.

88 (ENTER) 99 1: 12.5
(MTH) FRETS (NXT) HOH TPNNNS

To calculate with one number:

1. Enter the number.

2. Press the command key.

Example: Calculate &=

62.5 1: Hl6
|m:mmmmlnm-|

Example: Calculate /166.

166 1: 12. 8848987267
IATNNT

To use previous results (with no command line):

m To use the result in level 1 with a one-number calculation, press the

command key.

m To use the result in level 1 with a two-number calculation, enter the

second number, then press the command key.

m To use the results in levels 1 and 2 with a two-number calculation,

press the command key.

m To swap the numbers in levels 1 and 2, press () or ()(SWAP).

Example: Calculate 12+ 13 + 14.

12 (@TER) 13 D 1 @ 1 39
IEICHTRTNRT

Example: Calculate v/5 — 1.

5 1) 1: 1. 2368679775
MMB[00=2iH=T

Example: Calculatem (Pressing () swaps the numerator into

level 2 before pressing (3).)

06 (ENTER) 14.5 (%)
15 (ETER)) @

1-18 Trying Out the HP 48

To key in large and small numbers (powers of 10):

1. Key in the mantissa. Press if the mantissa is negative.
2. Press (EEX). (It types an E for “exponent.”)

3. Key in the exponent—the power of 10. Press if the exponent

1s negative.

For a number like —1.602 x 1071°, the mantissa is —1.602 and the

exponent is —19.

Example: Find the number of molecules in 13.5 grams of sodium

hydroxide (NaOH). The solution is Na X m/MWwhere Ny is

Avogadro’s number (6.022 x 1023), m is 13.5, and MW is the sum of

the atomic weights of sodium, oxygen, and hydrogen (23, 16, and 1).

Clear the stack, then enter Avogadro’s number.

@ED
6.022 23
Multiply by 13.5.

135 (%)

Add the first two atomic weights.

23 (ERTER) 16 @)

Add the third atomic weight to the previous result.

1@

Divide the two values already on the stack.

®

7

1: b.BECEZ3
ECHEEHR

2

1: 8. 1297E24
|TTRTRTTl|

1:

TATO|

s 8. 1297E24
39

1:
|ITTRTI|

s 8. 1297E24
46 I 2. B32425E23

Tie

Trying Out the HP 48 1-19

To enter the value of =:

1. Press ()(m).

2. Press (o)(=NUM).

7 is normally expressed as a symbol—you have to press (#)(2NUM) to

get a numeric value.

Example: Calculate the value of 27.

Clear the stack, enter 2, and enter the value of 7. (You don’t have to

press (ENTER).)
()(CLR)
2
B@@ @)ENm)

Multiply the two numbers.

®

To calculate “algebraically”:

1. Press (7).

2. Enter the numbers, operators, and parentheses in left-to-right

order. Press () to skip past right parentheses.

3. Press (EVAL) (or press (»)(=NUM) if the expression contains 7 or

other symbolic constant).

Example: Calculate 2072.

20092 |'2E1"-2' '
TAATITT

Evaluate the expression.

1: . HEZS
ITTNNN

Example: Calculate 12 4 13 + 14.

OlEB@ M '12+13+14'
|mnln1mnmnnm|

Evaluate the expression.

1 39
IEICEEEEETRRNe

1-20 Trying Out the HP 48

Example: Calculate v/5 — 1.

1

O®5s1 '[5-1"
ITTNAN

Evaluate the expression.

(EVAL) 1: 1. Z36H673775
IGICHTRTNRNT

Example: Calculatem.

OB O®E@O@ 06069145 ‘15, B6*14.5) '
|nmnmnmnm|

Evaluate the expression.

(EVAL) 1: 17, 2413793163
MINMg(MO0&%iH=T

To set the angular units for trig functions:

m To switch from degrees to radians, press («q)(RAD).

m To switch back to degrees, press (&9)(RAD).

At the top of the display, + shows that radians are active—no

annunciator means degrees are active. If you’re a calculus student, you

may want to have radians active.

To change the display format for numbers:

m For “standard” format, press (@)(MODES) =Ti: .
m For n decimal places, enter the number 7, then press («9)(MODES)

Fls .

m For scientific format, enter the number of decimal places, then press

(@)(WODES) &L
m For engineering format, enter the number of digits after the first

one, then press@m

m To change the fraction mark to perlod (+) or to comma (), press

()(MODES) @)FREY)
In “standard” format, all numbers are shown with full precision—

all significant digits after the decimal are displayed. Internally, full

precision is always maintained, regardless of the display format.

Trying Out the HP 48 1-21

Example: Calculate e®. Then display. it with 2 decimal places, in

scientific format with 4 decimal digits, and with full precision.

Clear the stack and find e®.

@)(CR) 1: 148.413159163
oGl CHIN[M[Hoe|]ek[1]

Change to 2 Fix format.

2 (¢(MODES) F 1 1: 148, 41
INNTRD

Change to 4 Sci format.

Change to Standard format.

1: 148. 413159163
(70u]Fii[50l[EWG]svria[EEERs

Doing Algebra

You can do symbolic math on the HP 48—meaning you can calculate

with symbols, as you do in algebra. So you can write equations on

the HP 48, you can solve equations for certain variables, and you can

“plug in” values and get numeric results.

Algebraic notation that contains an = sign is called an equation.

Notation that does not contain an = sign is called an exzpression. For

example, 2 + y? = r? is an equation, and 1 + z? is an expression.

You use algebraic objects to represent expressions and equations. You

create them as described below. You store and recall them the same

way you store and recall numbers—see “Using Memory” on page 1-13.

1-22 Trying Out the HP 48

To enter an expression or equation using the EquationWriter
application:

1. Press (@)(EQUATION)
2. Key in the numbers, variables, operators, and parentheses in the

expression or equation.

m To key in a fraction, press (A) to start the numerator. Press (»)

to end the numerator—and again to end the denominator.
m To end each subexpression of an operator, press (). (See the

explanation below.)
m To correct a nearby typing mistake, press () one or more times.

(The X busy annunciator may turn on.)

m To recover from a major mistake, press and start over.

3. Press (or press to discard the entry).

In the EquationWriter application, the arguments of algebraic

functions are called subexpressions. Most subexpressions appear inside

parentheses—some are displayed graphically, such as the subexpression

for “square root.” You press () to end a subexpression and continue

with the rest of the expression or equation.

Example: Use the EquationWriter application to enter this

stress-analysis equation

t
sin(2¢) =——

(sxgsy)2 —|—t2

Clear the stack and start the EquationWriter application. (If you

make a mistake entering the equation, see step 2 above.)

@EE
(<) (EQUATION)

ITITS

Trying Out the HP 48 1-23

Key in the left side of the equation. (Use (@) when you type the letters

in the equation.)

24 (&)
SINCZ-AIO

|IIMTRRO0|

Key in the equal sign and the numerator of the fraction.

®2E)
DT :

SINCZH) =T
|fiflfllfl:flmfl:ml

Key in the square root and start the parenthetic expression.

=0 SIN(ZA)=
o

IERDIN=TB00

Complete the inner fraction and end the parentheses.

A)SX(=)SY ()

e SIN(Z A)=
- [SH—SY]D

2
|ITMTB0|

Key in the power, then complete the equation.

20)
TED?2 T

SINCEA)= =

’[SHS‘r']T

B0RBTBO S0

1-24 Trying Out the HP 48

Enter the equation on the stack—it appears in symbolic form.

12 'SINCZ#RI=T~J(((5H-
ST122+!

[5T0Fii5CiENG[51Ha[eEERs
Store the equation using the name MOHR. (Use (@) when you type the

letters below.)

() MOHR (57G)

Press to see the MOHR label.

To enter an expression or equation in the command line:

1. Press (7).

2. Key in the numbers, variables, operators, and parentheses in the

expression or equation in left-to-right order. Press () to skip past

right parentheses.

3. Press (ENTER).

Example: Use the command line to enter the expression

1/(27) x +/G/L.

Key in the first fraction.

1@1@
|= 1

@20®@E@®) E:flm—-
Key in the square root term.

ME@HOCOL 1z
"1o(2En)l (GoLe!
[HOE]WLThL]|

Enter the expression on the stack, then store it using the name FREQ.

o1
FREQ (5T0O) 1:

Trying Out the HP 48 1-25

To edit an expression or equation:

m If it’s in level 1, press («q)(EDIT). After editing, press to

save the changes (or press to discard them).
m If it’s stored, press (7)), press rmarms for the name, and press

(2)(VISIT). After editing, press to save the changes (or

press to discard them).

You can edit expressions and equations the same way you edit other

objects. See “Operating the Calculator” on page 1-5 and “Using

Memory” on page 1-13.

To do symbolic math:

m To use a command with one argument, key in the algebraic object

(the expression or equation), press (ENTER), and press the command

key.

m To use a command with two arguments, key in the first algebraic

object, press (ENTER), key in the second, press (ENTER), and press

the command key.

m To use algebraic objects already on the stack, press the command

key.

You make symbolic calculations the same way you make numeric

calculations—except you can use algebraic objects instead of just

numbers.

Example: Use symbolic math to create the equation y = 1 — e~ %%,

Starting at the left, enter y and the number 1. (Use (@) when you type

the letters in the equation.)

O Y@7 2: v
1- :

m [FREG[MOHE]WLW1|

Enter the argument —az.

OO A ® X ETER) : !
1

Calculate e=%%,

@@ 3 v
I VERP(—AER)

RNTITT

1-26 Trying Out the HP 48

Subtract to calculate 1 — e=%%.

®

1 ITI 1

1 '1-ERPC-R*k)
[FREC[MOHR]W |L [W1 [|

Form an equation from the two expressions.

B3

Z:

1: 'Y=]-ERP(-A=K)"
[FRECJMONE]WLN1|

To solve an equation for a variable:

1. Enter or recall the expression or equation to level 1 of the stack.

Press (7), enter the name of the variable to solve for.

Press (q)(ALGEBRA) I =0.

Optional: To create the variable named on the left-hand side of the

equation and store the right-hand expression there, press («q)(DEF).

N

ISOL requires that the variable appear in the equation only one time.

(If the variable appears more than once, you may be able to simplify

the equation—see the instructions following the next example. If the

equation is linear or second-order in a variable that appears more than

once, you can use QUAD to solve for the variable.)

The inverses of many functions have more than one value. If your

equation contains such functions, you normally get the general

solution—it may contain variables such as nf or sI representing

arbitrary integers or signs.

Example: Solve for Ty in the following heat transfer equation, then

create variable TH containing the resulting expression:

q
U= —————

A(Tg —Tr)

Clear the stack and type the equation. (Use (@) when you type the

letters below.)

®ER)
()EQUATION) 0
ST RHTDD

[FREGJMORE]WLW1|

Trying Out the HP 48 1-27

Enter the equation and specify the variable name to solve for. (Use (o)

when you type the letters below.)

1t 'U=0sCReCTH-TLD)!
() TH ' THe

[FRER[MOHE]WLW1|

Solve for the variable.

(€(ALGEERA) 1: TH=OALTLY
[COLCT]EXPA |1Z0L[GUAD |ZHOWM[THYLE]

Create variable TH from this equation, then recall it.

(w)(DEF) 1: 'O-U-A+TL!
(VAR) TH [TH[FREG[MOKE]b|L|NI|

To simplify an expression or equation:

1. Press (&)(ALGEBRA),
2. Simplify the expression or equation:

m To expand products and powers for further simplification, press

E ¥ one or more times.

m To collect and combine like terms, press i

To evaluate an expression or equation:

1. Enter or recall the expression or equation to level 1 of the stack.

2. Press (EVAL). (To get a strictly numeric result, press (¢»)(=NUM)

instead—or after (EVAL).)

When you evaluate an expression or equation, current values of

existing variables are substituted for their names. If a name doesn’t

exist as a variable, the name i1sn’t replaced. Normally, built-in HP 48

constants, such as 7, are evaluated only if you press (¢)(=NUM).

Example: Express sin(27ft) in terms of = and as a numeric value,

where f=2100 and ¢t=0.0003. (The calculation assumes the angular
units are radians.)

Clear the stack and enter the expression. (Use (&) when you type the

letters below.)

@ED
OE:@0@@BF DT

1: 'SINCZ#psf=T0 !
TTTT

1-28 Trying Out the HP 48

Create the variables F' and T with the given values. (Use (o) when
you type the letters below.)

2100 (ENTER) () F 12 IRET) !
0003 T IT75

Set Radians mode, then evaluate the expression.

QEAD) 1: | SINCZ#w<2108+. 0063
(EVAL)

TF7H[FREQ[HOHR]W

Simplify the expression.

 ()(ALGEBRA) LHILET 1: IGINCL, 2E*0!
[TITTSNTT

Express the answer as a numeric value. (If you didn’t need the answer

in terms of 7, you could have skipped and EEET

change back to Degrees mode.

)(Num) 1: -. feadbB6E7419
@RAD) (TTTTN)T

Solving Equations for Unknown Values

If you want a numeric solution for an unknown in an equation, you

can use the HP Solve application. You can solve for a value of any

variable without changing the equation. This means you don’t have to

solve for the variable symbolically.

If you solve an equation, the HP 48 tries to make the difference

between the two sides equal to zero. If you solve an ezpression, it tries

to make its value zero.

Trying Out the HP 48 1-29

To set up a new equation or expression for solving:

1. Enter the equation or expression on the stack.

2. Press («)(SOLVE).

3. Get the equation or expression:

m To store a copy of the equation or expression for future use,

press ¥, type a name for it without pressing (a), and press

(ENTER).
m To not store a copy, press ETER .

4. Press Bl VE.

The SOLVR menu that’s created has “white” menu labels for variables

in the equation or expression. The white labels mean that the SOLVR

menu works differently from the VAR menu—as described below.

To store a value in a variable:

1. Enter the value

2. Press menu key

desired menu key for

- for the variable name. (Substitute the

-

To solve for an unknown value:

1. Make sure you store values in all variables. (You don’t have to
store a value in the one you want to solve for.)

2. Press (&) or the variable name to solve for.

The message Zgroor Ziam Eeverzal at the top of the display

means a solution was found. A different message means you should

evaluate the problem further.

You can solve an equation or expression over and over—for different

known values, and for different combinations of known and unknown

variables—as shown in the following example.

Example: Find the inductance required for an inductor-capacitor

circuit to have a resonant frequency of 18,000 Hz if the capacitance is

33x10° farads. The equation for this problem is

= 1

- 2%\/@

1-30 Trying Out the HP 48

Clear the stack and use the EquationWri

equation. (Use (@) when you type the let

@@
(<)(EQATION
Fr@OM ! ®
: Q@D@ELEC

Put the equation on the stack and get th

()GEoE)

Name the new equation CKT, then get t

annunciator 1s already turned on, so you

CKT

Store the two known values. (Reminder:
keys, not alpha keys.)

GA) 6

Solve for the inductance.

ter application to key in the

ters below.)

eL
Za-JLCO

[T=PTTTT

e SOLVE menu.

Mo current equation.
Epter eqns press HEW

3
1= 'F=l-s0F#u*](L*C))' ROOT MEK[EDEG[STERCHT

he SOLVR menu. (The o

shouldn’t press (&).)

CET: 'F=1-(2#wel{L*C ..

4:

—
2
0
0

 I.F 1L L I ¢ IS 1l]

Keys like

GEEEEE

4z
H

2
I.F ILL I C IETEl Il |

Zero

4:

3
1: L= 7.369H38656HE-H TO[=N||

Trying Out the HP 48 1-31

If the closest available value is 2.2x 1076, solve for the actual resonant

frequency.

Zero

—
0
0

L: 2.36988865607°E-6
18678, 9220473

CECEmEal-]
To find a certain solution out of several:

1. Enter a guess for the variable to solve for. The value should be

somewhat near the solution you want—at least nearer to the one

you want than to other possible solutions.

or that variable name to store the guess.

i for the same variable name.
If the equation or expression has more than one possible solution,

the calculator stops when it finds just one. You can find a different

solution by storing a guess in the variable you’re solving for—it tells

the HP Solve application where to start searching.

However, if your problem has several solutions, you should also

consider solving it graphically. See the next section, “Getting Answers

Graphically.”

To look at current variable values:

1. Press (|9)(REVIEW).
2. Press (ATTN) when you’re done.

To get the HP Solve variable menu after an interruption:

m Press ()(SOLVE) (right shift).

To re-solve an old equation or expression again:

1. Press ()(SOLVE).

2. Press: i

3. Press (¥) a,ndv@ to move the pointer to the equation or expression

you want.

F to set up that equation or expression for solving.

1-32 Trying Out the HP 48

You can also attach units to the values you’re entering and finding.
See “Using Numbers with Units” on page 1-44.

Getting Answers Graphically

If you want to see the graphical behavior of an expression or equation

and get numeric solutions for one particular variable, you can use the

Plot application. You don’t have to solve for the variable symbolically.

The information in this section assumes you’re making “function”

plots—y as a function of z. Other types of plots are possible.

To set up a new expression or equation for plotting:

1. Enter the expression or equation on the stack.

2. Press (&)(PLOT).
3. Get the expression or equation:

m To store a copy of the expression or equation for future use,

press type a name for it without pressing (a), and press

(ENTER).
m To not store a copy, press ZTER .

4. Verify at the top of the display that the plot type is FLIMITION. If

it’s not, press 1FE ELHHD |

5. Press EER

To store a value for a constant:

1. Press (»)(SOLVE) (right shift).
2. Enter the value.

3. Press i for the variable name.

4. Press (»)(PLOT) (right shift).

Only the independent variable value changes during plotting. All

other variables are considered constants.

Trying Out the HP 48 1-33

To plot an expression or equation:

1. Set up the expression or equation for plotting:

2. Press (1), type the name of the independent variable from your

expression or equation, and press THIEF.

3. Key in a value for the extreme left end of the horizontal axis, press

or (ENTER), key in the extreme right value, and press ;

4. Press EEHEE.

5. Press HLITH.

The range of the vertical axis is calculated automatically.

If you’re plotting an equation with an expression to the left of the

equal sign, two curves are plotted—representing the two halves of the

equation. If you’re plotting an expression—or an equation with just a

variable name to the left of the equal sign—only one curve is plotted.

To turn the graphics display on and off:

m To turn off the graphics display, press (ATTN). Then,if you want to

return to the plotting setup screen, press ()(PLOT) (right shift).
m To turn on the graphics display, press (€) (or (¢&9)(GRAPH)) while no

command line is present.

Example: Plot the total resistance of a parallel resistor circuit given

by the expression

1
1 1
R TR,

where Rs is 1500 ohms, and R; varies from 10 to 5000 ohms.

Clear the stack and key in the expression. (Use (&) when you type the

letters below.)

®EB
()(EQuATIoN) |
IO1IER®E®1IER2 T

RITR20
LEL¢IEEEl1]

1-34 Trying Out the HP 48

Put the equation on the stack and make it the current equation. (The
d annunciator turns on automatically.) Make sure the displayed plot

type is FUMCTION. Then set it up as the equation to plot.

(ENTER) ot tupe: FUMCTIOHN

EE: $z/(1ffil+1ffi'2)'
Ep: 1 1@)(LoT)

Pl

RIR2 k1
(if needed) et

Yl
Make R1 the independent variable, and set its range to 10 to 5000.
(Use (@) when you type the letter below.)

(ORI IHEER
10 5000 HFHE

Set R2 to 1500. (Note the right shift.)

()(SOLVE) 1500 R2: 1500
4z
3z
%:

Ll.u_lL&aJ[EEI 1[[]

Draw the plot. (Note the right shift.)

@)(CLeD E

I [Z-EOR[CENT[COORD]LAEEL] |

Return to the stack display.

13
ETEEATBTBTRTED

Trying Out the HP 48 1-35

To estimate coordinates:

1. View the plot in the graphics display.

2. Press (a), (V), (®), and (») to move the + cursor to the desired

point.

3. Press i to see the (z,y) coordinates of the cursor.

4. Press or any menu key to turn off the coordinate display.

5. Optional: Press to put the coordinates on the stack.

To solve for a significant point:

1. View the plot in the graphics display.

2. Press (4), (¥), (€), and (») to move the + cursor near the point of

interest.

3. Press: FLH .

4. Solve for the coordinates:

m To find an z value where the curve crosses the z-axis, press

ROOT .
m To find a point where two curves intersect, press THELT.

m To find a critical point, such as a maximum or minimum, press

EHTE (extremum).
5. Préés (ATTN).

6. Press EHIT .

The calculated values from these functions are put on the stack.

Example: The volume of an open tray formed from a 4-by-8 piece

of sheet metal is given by (4 — 2x)(8 — 2z)x, where z is the height
of the tray (between 0 and 2). Find the maximum volume and the
corresponding z value.

Enter the expression. (Use (@) when you type the letters below.)

O®OO42X®) o

12 '(4-r#H)*#(B-Fek)£’
@8@2®X®®X [ERRZE[DRALAUTO[HERGYEMG[INDER]

1-36 Trying Out the HP 48

Set up the expression for plotting. (The d annunciator turns on

automatically.)

PLOT) HEMTRAY (ENTER :(LoD HEW TRAYENTED) [FIat topetFRCTION..ittty IndE'F"= 'R1|

e 16 SHEA
yi-161.6538 1153.8461

[ERRZE|DRAL [AUTD[HEMG]VRN[INDEP]

Make X the independent variable, and set its range to 0 to 2. (Use (o)
when you type the letter below.)

() X THE
0 2 HRHE

Wi A z
y:-161.6538 1153.8461

[ERHZE|DERE]BUTD[WEMS |YRR|IMDEP |

Plot the expression.

200M [Z-EOR[CENT[COORD[LAEEL] FCH

Move the cursor anywhere near the maximum and solve for the

coordinates of the maximum. (JFF SCREEH is displayed before the
result.)

(@) and (&) as needed)

W IEATE

EXTRM: (.B45299461622.12.316B05742]

Trying Out the HP 48 1-37

Move the cursor to another point on the curve, get the cursor

coordinates, and put them on the stack. (Your cursor position may

differ.)

((¥) and (<) as needed)

(.282307692308.7.370352
Return to the stack display. The (z,y) coordinates for the two points

you found are on the stack.

Ewtrm: (,045299461..
) O29PapE02305,

> 57535}
—
J

[EFAZE|DALAUTD[HENG[VEHG[INDEP

To get back to the setup menu after an interruption:

m Press ()(PLOT) (right shift).

To re-plot an old equation or expression:

1. Press (&q)(PLOT).

2. Press [©[HT .

3. Press (¥) and (&) to move the pointer to the equation or expression

you want.

4. Press FLIUTE to set up that equation or expression for plotting.

1-38 Trying Out the HP 48

Making Your Own Functions

If you often make a certain calculation that’s not built into the HP 48,

you can create a user-defined function. Then you can use the new

function for numeric and symbolic calculations.

To create a user-defined function:

1. Enter an equation that specifies the function name and its

arguments on the left side, and the expression that defines the

calculation on the right side.

2. Press (9)(DEF).

The syntax for the function definition is

‘namei argl « arg2... 1=expression’. For example,

TANVGEOAB Cr=qA+RE+H0 -3 18 a valid definition.

To use a user-defined function with the stack:

1. Enter the required argument values on the stack in the same order

as they appear in the left side of the function definition. (The last

argument should be in stack level 1.)
2. Press ristie for the name of the user-defined function.

To use a user-defined function in an expression:

1. Press (7).

2. Press Ha

3. Press (q)((O))

4 . Key in the algebraic arguments in their proper order and separated

by commas.

. Press (ENTER) (or press () to continue the expression).

Example: Define a function KE that calculates the kinetic energy of

a moving body, given by %mvz. Find the kinetic energy for m=14.5

and v=127.9. Also, write an expression for the total energy of two

bodies with masses m; and ms and velocities v; and vs.

for the name of the user-defined function.

o
t

Clear the stack and enter the equation that defines the function. (Use

(@) when you type the letters below.)

)(CR) 1: 'KECM, V)=, S#M="2!
OKE@OM@E@QV® [ERAZE[UFAR]AUTD|HEHIS]1ENISINDEP
@B S®ME V(D2 (ENTER)

Trying Out the HP 48 1-39

Create the user-defined function.

@G 1:
[EFifi3E]DRkAUTDMGYN[INDEF]

Calculate the kinetic energy for the first problem.

14.5 127.9 = KE 1: 118598, 4725
|KE |%[TRAv]K1 |R|R1K2|

Write the expression for the total kinetic energy. (Use (&) when you

type the letters below.)

O @OM@OV ®
KE @O M2 @0 V2

FE
 s 118398, 4723

1: :'II:iE(NI,'s-'IHHE(NE,'-.-'Z

INTOT

If you stored values in variables M1, M2, VI, and V2, you could

evaluate this expression.

Programming

For repetitive problems that aren’t suited to symbolic expressions or

other techniques, you can create programs. You can use programs to

perform any sequence of operations you want. The keys you press

for a keyboard calculation represent a series of commands—you can

include those commands in a program to do the same calculation.

A program is simply a sequence of commands, numbers, and other

objects that are processed in order. A program is an object—so it

occupies one level of the stack, and you can store it in a variable.

However, a complete “program” often consists of several programs

that work together—much like subroutines.

You create programs as described below. You store and recall them

the same way you store and recall other objects—see “Using Memory”

on page 1-13.

1-40 Trying Out the HP 48

To enter a program:

1. Press (q)(«»).

2. Enter the commands, numbers, and other objects in the order you

want them processed.

m For a command, press the command key or type its name.

m For a number, type the number. Press to separate two

consecutive numbers.

For a variable, press fiame or type its name.

For a symbolic expression, press (), enter the expression, and

press (»).

m For any other object, type its delimiters, enter its contents, and

press ().

3. Press (ENTER).

Lines you enter in a program can be as long or short as you want. You

can start a new line any time by pressing (%) (=) (newline). Yourline

breaks are discarded when you press (ENTER).

For calculations, you can use “stack” calculations (entering data and

executing commands) or “symbolic” calculations (entering expressions

and evaluating them). They can look quite different in a program, but

can give the same results.

In a program, a variable name behaves the same as when you press

the corresponding key in the VAR menu.

Example: Create a program that squares two numbers from levels

1 and 2 of the stack, then finds the absolute value of the difference:

|zy? — z5?|.

In order, the program squares the number in level 1, swaps the values

in levels 1 and 2, squares the new number in level 1, subtracts the

values in levels 1 and 2, and finds the absolute value of the result.

Clear the stack and start entering the program.

@ED
D®@@@EE)@@

1:
« S0 SWAP S0 +
%
EEENETEEEETEGTE

Complete the program.

& S SWAP SO - ABS + IEERTTT

Trying Out the HP 48 1-41

Put the program on the stack.

2:
« 50 SWAP 5@ - ABS
*

Store the program in variable DIFF. (Use (@) when you type the

letters below.)

(D DIFF 1
KEHEELTR

To enter a simple program with local variables:

1. Press (q)(«»).

Press (#)(>).

3. Enter names for one or more local variables. Press to separate

names.

4. Press (') and enter a symbolic expression that uses the local

variable names.

5. Press (ENTER).

Local variables are temporary variables. The — command takes

numbers or other objects from the stack and stores them in the

temporary variables—then those values are used to evaluate the

[\
]

symbolic expression. By using local variables and a symbolic

expression, you have a program that’s easy to create and understand.

Example: Rewrite the previous DIFF program so that it uses local

variables to calculate |2,2 — z.,2|.

Enter the program. (Use (@) when you type the letters in this

example.)

@@@E)X2 69 X1 ()
O() X192
O X2 () 2 E@TER)
Store the program in variable DIFF.

IIPTT

21

12 & + w2 K1 '"ABSCKIE
—H2"e)! »
ITRIT

1-42 Trying Out the HP 48

To execute a program:

m Press (VAR), then press rizns

program is stored.

or
m Key in the variable name where the program is stored (without (%)

tick marks) and press (ENTER).
or

m Put the program in level 1 of the stack and press (EVAL). (The

program is removed from the stack, then it starts executing.)

for the variable name where the

If you store a program in a variable, you can execute it by name in

any other program—just include the variable name.

To interrupt an executing program:

m Press (ATTN).

Example: Use the previous DIFF program to find |6% — 92|.

1: 45
[wiFFke&[Thav]k1k2

9 (ENTER) 6 (VAR)

To edit a program:

m If it’s in level 1, press (&q)(EDIT). After editing, press to

save the changes (or press to discard them).
m If it’s stored, press ('), press Fiame for the name, and press

()(VISIT). After editing, press to save the changes (or
press to discard them).

You edit programs the same way you edit other objects. See

“Operating the Calculator” on page 1-5 and “Using Memory” on page

1-13.

Trying Out the HP 48 1-43

Using Numbers with Units

Many physical problems involve values with associated measurement

units, such as 17.5 meters and 324 calories per second. The HP 48 lets

you attach units of measure to numeric values. Such combinations are

called unit objects. The HP 48 provides more than 100 built-in units—

and you can combine them at will into compound units.

To include units with a number:

1. Enter the number. You don’t have to press (ENTER).

2. Press (&9)(UNITS).

3. Press (NXT) as required, then press the menu key for the

appropriate category of units.

4. Press (NXT) as required, then press (iiniit for the units you want.

Press (@) Liriit instead if you want the inverse of the units.

(Substitute the desired unit menu key for uriit .)
5. For compound units, repeat steps 2 through 4 for each individual

unit in the compound unit.

Example: For the element silicon, its atomic radius is 1.46 angstroms

and its density is 2.33 grams per cubic centimeter. Enter these values.

Clear the stack and enter the atomic radius.

>R 7
1.46 («\)(UNITS) LEHE 1: 1.46_4

-~ MLw&[FERMI][|

Start entering the density.

2.33 ()(UNITS) HHES iz

Complete the compound units for density.

(®)(UNITS): widL (@) CH& 2: 1%fi

1-44 Trying Out the HP 48

To calculate with units:

1. Enter values with units.

2. Execute commands.

Units are automatically converted and combined during the

calculation—you don’t have to do any additional work.

However, you must use consistent units for certain operations, such

as addition. Consistent units are units that have the same physical

dimensions, such as length or density. For such operations, the answer

is automatically converted to the units from the value in level 1.

Example: Find the final velocity of an object in free fall after 8

seconds if it starts with an upward velocity of 5 centimeters per

second. The final velocity is calculated as vo — gt, where g is 9.8 m/s?.

Clear the stack and enter values with units for vy, ¢, and t.

@ED
5 (eD(ONITS) &F
9.8 (@(UNITS)
@@ T

Multiply ¢ and t.

x) 2t S_cmss
1: 78.4_m<s
ITTTN

To get the answer with the same units as vy, you want to have vy in

level 1 when you combine terms. So make gt negative, exchange the

values in levels 1 and 2, then add the values to get the final velocity.

> 1: -7835_cm-s
TTTTRS

To convert units to a built-in unit:

1. Enter the value with its original units.

Press ()(ONITS).
Press the menu key for the appropriate category of units.

Press (&) for the units you want to convert to.N

Trying Out the HP 48 1-45

Example: Convert 14 ¢cm/s to mi/hr.

Clear the stack, and enter and convert the value.

 (2)(CLR) 1: .313171H3B8858_mph
14 (@)(UNITS) SPEED CH -3 (175[cHi/3[F175 |KPR]HPATKNOT]
@) !

To convert to any units:

1. Enter the value with its original units.

2. Enter any number (such as 1) and attach the units you want to

convert to.

3. Press@m (right shift).
4. Press 1.

The numeric value of the second argument is ignored during the

conversion.

Example: Convert 9.8 m/s? to ft/s?.

Clear the stack and enter the value.

)(CR) 1: 9,8_m/5¢
9.8 ()(UNITS) SFEEL H-& [k

|

O

[

H[MIN]=

|

HZ

|

BT TIHHE @) =
Enter a number with the desired units. (Because the denominator

units are in the current menu, enter them first.)

1) 5 () 2 %: 918{:?,’5:%

LEHE

&

FT -QIOUTS) LEHE FT Te
Convert the units. (Note the right shift.)

(@)(ONITS) Ty 1: %2. 1522309711 _ft-s"

[COWY[UERSE]UNAL[UFRCT[+UNIT]|

To delete units from the number in level 1:

1. Press ((»)(UNITS) (right shift).

2. Press LI¥AL (unit value).

1-46 Trying Out the HP 48

To use units with the HP Solve application:

1. Store values with appropriate units in all variables—including a

guess with units for the unknown variable.

2. Solve the equation.

The HP 48 automatically converts units during the process, and it

converts the solution to the units you specified. If any units are

incompatible during the calculation, an error occurs.

The HP Solve menu keys automatically reuse current units for

variables. To change a variable value without changing the units, store

just the numeric value. To change the value and units, store a value

with units. To delete units from a variable, enter the numeric value,

then press mame

Keeping Track of Time

You can use the built-in clock to get the time and date, to set alarms,

and to do other time-related operations.

To change the time or date format:

1. Press@m

2. Press ZET

3. Set the format

m To change the date format between month-day-year and

day . month . year, press ii

m To change the time format between 12-hour (AM and PM) and
24-hour (no AM or PM), press L&24,

Trying Out the HP 48 1-47

To set the time and date:

1. Press@m

2. Press Sk

3. Enter the date as MM.DDYYYY or DD.MMYYYY (depending on
the current date format), where MM is the month (01 to 12), DD
is the day (01 to 31), and YYYY is the year (such as 1991).

4. Press =DIHT .
5. Enter the time as HH.MMSSsss (12-hour or 24-hour), where HH is

the hour (0 to 24), MM is the minutes (00 to 59), and SSsss is the
integer and decimal seconds (0 to 59999 ...).

6. Press =11H .

7. To change the time between AM and PM, press H.-FH .

Example: Set the time and date to 3:25 PM on February 7, 1992—

or to the current time and date, if you want. (This example assumes

month/day/year and 12-hour formats.)

Clear the stack and set the date—use today’s actual date, if you want.

@ED

(Q)@ME) BET 2.071992 SEFT :} :HI‘IHE T 0207798 04:04:43P

H
%:

IIEII-

Set the time—use the current time, if you want.

HOME T 02/07/92 03:25:05P

1
4:
3
z
1
EXTl TR ATFEREC]IO.

To see the time and date:

m Press (q)(TIME). (The time and date turn off when you leave the
TIME menu.)

1-48 Trying Out the HP 48

To turn the permanent time-and-date display on and off:

1. Press (¢q)(MODES).

2. Press (NXT).

3. Press il E

To set an alarm:

1. Press@m
2. Press HIEH .

3. To set an alarm date different from today, enter the date as

MM.DDYYYY or DD.MMYYYY (depending on the current date
format), then press &

4. Enter the alarm time as HHMMSSsss (12-hour or 24-hour), then
press & T1t

5. To change the alarm time between AM and PM, press #HFH

6. Press@- enter a short message as a text string, then press

7. Press EE‘i

When the alarm time arrives, the HP 48 beeps for several seconds, the

message is displayed, and the () annunciator turns on.

To respond to an alarm:

m During the beeps, press any key, such as (ATTN).

or
m After the beeps stop, press@m(TIME) to see the alarm message,

then press F '

Example: Set an alarm for a few minutes from now.

Set the alarm time—you don’t have to change the date. (Use an alarm

time that’s a few minutes from the time in your display.)

E;__-?:% { HOME } 0207792 03:ESEEP

U Fnter_alarm, press
PRI B2-B7-92 EE 3= BBP

TTPWMil

Trying Out the HP 48 1-49

Enter a message. (Use (@) when you type the letters below.)

@() HELLO EHEL
{ HOME } 02/07/92 03:E?EEF

Enter_alarm, press
R27a05% B+ 35+b

BTGEEERAIRS

Set the alarm and return to the stack display.

SET
HOME } 02/07/92 03:28:34P

¢
g
3
2
1
ITTTTNT

Wait until the alarm occurs and the beeps stop. The alarm time and

message are displayed only during the beeps. The () annunciator

stays on (though it’s not shown below).

View the alarm message.

()(@ME)

Acknowledge the alarm.

HOME } 02/07/92 03:30:24P

L
T:
3
2
1
TTTRTT

{ HOME } 02/07/98 03:31:48P

Past _due_alar
RI BE!B?!BE83 38: BEP
HELL(O

BTTTtTTI

HOME T 02/07/92 03:34:58P

'
—
‘
N
U
.
'
!
—
&
-

i TT)ATTR

Press to return to the MTH menu.

1-50 Trying Out the HP 48

2
The Keyboard and Display

This chapter describes the keyboard and display

in detail. It shows how to enter information and

how to understand displayed information.

Organization of the Display

For most operations, the display is divided into three sections. This

configuration is called the stack display. Each section is described in

the following topics.

ALG 1
1 HOME 1 <— Status area

Stack —> {

and
Command line —> 'H+B'+

| EEECEERETRAIEREES |< Menu labels

The Status Area, Annunciators, and Messages

The status area displays:

m Annunciators. They indicate the current status of the calculator.

m The current directory path. When you turn the calculator on for

the first time, the current directory path i1s £ HOFME . Directories

divide memory into parts, much as files do in a file cabinet—they’re

covered in chapter 7.

The Keyboard and Display 2-1

7
gfié.

.

m Messages. They inform you when an error has occurred, or provide

other information to help you use the calculator more effectively.

In the table that follows, the first six annunciators appear at the

very top of the display. The other annunciators and the directory

path share their “territory” with messages—a message replaces the

annunciators and directory path. When you clear the message, the

directory path and any active annunciators reappear.

(fi HEWLETT
PACKARD

Annunciator area { o @ X §—>\
Current £ HOME 1 } Message area

directory a:
path ol

|
1 H+E 1 *

[PAET]FEOEHYP[MATE|MECTR]ERZE

Annunciators

Symbol Meaning

&1 Left-shift is active (you pressed (&)).

=3 Right-shift is active (you pressed (p»)).

a The alpha keyboard is active (you can type letters and

other characters).

() Alert. An appointment has come due or a low battery

condition has been detected. See the message in the

status area for information. (If no message displayed,

turn the calculator off and on. A message describing

the cause of the alert should appear.)

X Busy—mnot ready to process new input. However, the

calculator can remember up to 15 keystrokes while

busy and then process them when free.

> Transmitting data to an external device.

2-2 The Keyboard and Display

Annunciators (continued)

Symbol Meaning

RFAD Radians angle mode is active.

GRAD Grads angle mode is active.

Fad Polar/Cylindrical coordinates mode is active.

B Polar/Spherical coordinates mode is active.

HALT Program execution has been halted.

1 2 % 4 5| The indicated user flags are set.

1SR The user keyboard is active for one operation.

USER The user keyboard is active until you press («q)(USR).

ALG Algebraic-entry mode is active.

FRG Program-entry mode is active.

The Stack

The stack is a series of storage locations for numbers and other

objects. The locations are called levels 1, 2, 3, etc. The number

of levels changes according to how many objects are stored on the

stack—from none to hundreds or more.

As you enter new numbers or other objects on the stack, the stack

grows to accommodate them—new data moves into level 1, and older
data is “bumped” to higher levels. As you use data from the stack,

the number of levels decreases as the data moves down to lower levels.

The stack display shows level 1 and up to three additional levels. Any

additional levels are maintained in memory, but you normally can’t see

them.

For more information about the stack and command line, see “Using

the Stack for Calculations” on page 3-2.

The Keyboard and Display 2-3

The Command Line

The command line appears whenever you start keying in or editing

text. The stack lines move up to make room. If you type more than

21 characters, information scrolls off the left side of the display, and

an ellipsis (..) appears to tell you there is more information “in that

direction.”

After you finish using the command line, the stack display moves down

into the command line area.

For more information about the stack and command line, see “Using

the Command Line” on page 3-15.

Menu Labels

Menu labels across the bottom of the display show the operations

associated with the six white menu keys across the top of the

keyboard. See “Working with Menus” on page 2-11 for information

about using menus.

Organization of the Keyboard

The HP 48 keyboard has six levels or “layers,” each containing a

different set of keys:

m Primary keyboard, represented by the labels on the key faces. For

example, (1), (7), (ENTER), (TAN), and (&) are all keys on the primary

keyboard.

m Left-shift keyboard, activated by pressing the orange (€q) key on the

primary keyboard. A left-shift key is labeled in orange and located

above and to the left of its associated primary key. To execute

ASIN, for example, you press the (&) key followed by the associated

key.
m Right-shift keyboard, activated by pressing the blue () key on

the primary keyboard. A right-shift key is labeled in blue and

located above and to the right of its associated primary key. To

execute —NUM, for example, you press the () key followed by the

associated (EVAL) key.

2-4 The Keyboard and Display

m Alpha keyboard, activated by pressing the (a) key on the primary

keyboard. An alpha key is labeled in white and located to the right
of its associated primary key. Alpha keys are all capital letters. To

generate “N”, for example, you press (a) followed by the associated

key. When the alpha keyboard is active, the number pad

generates its primary numeric characters.

m Alpha left-shift keyboard, activated by pressing (@) and then orange
() on the primary keyboard. Alpha left-shift characters are

primarily lowercase letters, along with some special characters. To

type “n”, for example, you press (], then (&), and then (STO).

(Alpha left-shift characters are not shown on the keyboard.)

m Alpha right-shift keyboard, activated by pressing (o) and then

blue () on the primary keyboard. Alpha right-shift characters

are Greek letters and other special characters. To generate A, for

example, you press (@), then (), and then (NXT). (Alpha rlghtshift

characters are not shown on the keyboard.)

The unshifted and shifted Alpha keyboards are shown on page 2-8.

)B () (W)| e
=J‘ Right - shift

(_enTer

|

[+/-) (EEx) (DEL) (@) o

(a) (7) (8] (o) (=]

()4) (5])(e) [x] Primary

When you press (&) (left-shift) or () (right-shift) to access the
shifted operations printed above the primary keys, the &Y or Iad

annunciator turns on to indicate that left-shift or right-shift is active.

To cancel a shift key:

m To change to the other shift key, press the other shift key.

m To just clear the shift key, press the shift key again.

The Keyboard and Display 2-5

Using the Keyboard and Display

Getting Attention!

When the HP 48 is on, becomes the (attention!) key.

Generally, (ATTN) halts the current activity—so you can immediately

start your next task or recover from an unexpected situation.

To stop whatever’s happening:

m To delete the command line, press (ATTN).

m To cancel a special environment and restore the stack display, press

ATTN).

m To cancel a running program, press (ATTN).

Keying In Numbers

The basic type of data you’ll use is numbers. Although the HP 48

accepts different types of numbers (real numbers, complex numbers,

vectors, etc.), you key in all numeric values the same way. When you

key in numbers in the stack display, they’re displayed in the command

line.

To key in a simple number:

1. Press the appropriate number and (-} keys.

2. If the number is negative, press (*/=).

To delete the command line:

m Press (ATTN).

Example: Enter the number —123.4 in the command line.

Key in the digits.

123 () 4 1723.9+4
[TTTR(T3BT

Make the number negative.

-123, 44
ARRTARCE

2-6 The Keyboard and Display

Press (the key) to delete the command line.

To correct a typing mistake:

m Press (¢) (the backspace key) to erase the mistake, then retype it

correctly.

To key in a number as a mantissa and an exponent:

1. Key in the mantissa. If it’s negative, press to change its sign.
2. Press (EEX). (It types an E for “exponent.”)

3. Key in the exponent—the power of 10. If it’s negative, press (*/).

Example: Enter 1.2 x 1073,

Enter the mantissa (1.2).

1.2 1.04
sARAERAR

Enter the exponent (—3).

(EEX) 3 1.2E-3+4
B [PRETZ]PROEVP[HATR[VECTH]BAZE

Press to delete the command line.

Keying In Characters (the Alpha Keyboard)

Whenever you key in letters and other characters, you use the alpha

keyboard. The d annunciator turns on whenever the alpha keyboard

is active—whenever Alpha-entry mode is active. Characters you type

in the stack display are displayed in the command line.

The primary (unshifted) alpha assignments are printed on the

keyboard to the lower right of each key. In addition, many keys have

left- and right-shifted alpha assignments. (All uppercase letters are

unshifted, while their lowercase counterparts are left-shifted.) To keep

the HP 48 keyboard from appearing too cluttered, most of the alpha

left- and right-shift keys are not shown on it. For your reference, the

next illustration shows the unshifted and shifted alpha keys.

The Keyboard and Display 2-7

Alpha Keys J

a «a b pc A d 5 e € f @

a)(8)lo] @ e -

@. @ .-

@@@ @CJ @ i
Imnzr;/Replace @ characters

Lowercase\‘_j»./
lock —> () #

To key in one character:

m Press (o) and key in the character.

or

m Hold down (@), key in the character, then release (a).

To key in several characters:

m Press (@)(a), key in the characters, press (a).

or

m Hold down (@), key in the characters, then release (o).

Pressing (o) one time activates Alpha-entry mode for one character.

For example, pressing (o) then types .

Pressing (o) twice in a row locks Alpha-entry mode. Alpha-entry mode

remains active until you press (o) again or press (ENTER).

You can press and hold down (a) while you type several characters in a

row—the @ annunciator turns off when you release (a).

2-8 The Keyboard and Display

To lock or unlock the lowercase keyboard:

m If d is locked on, press (&q)(a).

m If d is off, press (a)(#)(a)

Only letter keys are affected while lowercase Alpha-entry mode is

locked. To get uppercase letters, you must use (4q). Lowercase mode

automatically unlocks when you press (ENTER), (ATTN), or execute a

command.

Example: Type the phrase “HP 48 power!” in the command line.

(This example shows one sequence of (a) keystrokes, though you can

use a different sequence as mentioned above.)

Type the quote marks and HP /8. The d can be on or off while

typing the number characters.

@)) (@ H (o) P(sPC) 48 1:
"HP 43+
[PAETZ]PROEHYPMATE[VECTE]ERZE

Type the space, lock Alpha-entry mode and lowercase, and type

power.

@)(@) @) power

"HP 48 pauer+
[PARTE[PROEHYP[MRTR[VECTR]ERZE

Type the exclamation mark.

(w)(BEL) 1:
"HP 48 power |+
[PARTPRDEBYP_[MATE [WECTE]BAZE

Press to delete the command line and cancel Alpha-entry

mode.

To key in an accented character:

1. Type the base character (without an accent).

2. Press the accent key (immediately after the base character).

To generate an accented character during editing, position the cursor

to the right of the letter and then type the accent. The letter to the

immediate left is changed.

The Keyboard and Display 2-9

The HP 48 provides five accent marks (*, *, 7, *, and) that you can

use with appropriate letters. In addition, the alpha (»)(etc) key works

in conjunction with certain other letters. These six keys are the alpha

left- and right-shift keys associated with the primary keys (7), (8), and

(9). (See the alpha-keyboard diagram on page 2-8.)

You can use the accent marks and the (»)(etc) key to generate other

special characters, as shown in the following table.

Use ()(etc) Use Any Accent Mark

To Change: To: To Change: To:

A A i :::

E 3 [B
- -, =1
= ks 1

] P] 1

b

Example: Key in the characters = and &.

Key in the lowercase letter w. (Use (@) (&) (*5).)

! iPEOEHYP[HATR|YECTR]BAZE

Key in the " accent character. (Use (@) () (7))

14
hflmmm

Key in the uppercase letter il.

O A0
hmmm

Change the i1 to &. (Use (@) () (9).)

©) @)(etd) fm_‘

fimmm

Press to delete the command line and cancel Alpha-entry

mode.

2-10 The Keyboard and Display

Note Keystroke examples in the rest of this manual

i show the alpha characters without the (a) key. For

% example, the keystrokes for entering "HELLI" onto

the stack are shown as ()(™") HELLO (ENTER).

Even though it’s not shown in the keystrokes, you

still must activate Alpha-entry mode in one of the

ways described above before entering the alpha

characters.

Keying In Objects with Delimiters

Real numbers represent one type of object. Most other types of

objects require special delimiters to indicate the type of object. For

example, a text string requires " " delimiters.

To key in an object with delimiters:

m For opening and closing delimiters, press the delimiter key, then key

in the data. (The delimiter key types both delimiters.)

m For a single delimiter, press the delimiter key where required in the

data.

Objects and delimiters are described in chapter 4.

Working with Menus

A menu is a set of operations defined for the six blank menu keys at

the top of the keyboard. The current operations are described by the

six menu labels at the bottom of the display.

The Keyboard and Display 2-11

4)
fifi HEWLETT

PACKARD

ALG

Menu labels PARTS] PROEHYP |MATE [VECTR] ERSE

menu keys —> (),)e
o)) (cs) (van) (A& foct)

Some menus have multiple sets of labels, called pages. If a menu label

has a bar over the left corner, it selects another menu—a submenu.

To display a menu:

1. Press the key or keys corresponding to the menu you want.

2. If necessary, change to the menu page you want:

m To move to next page, press (NXT).

m To move to the previous page, press (|)(PREV).

m To move to the first page, press ()(PREV) (right shift).

Many of the keys on the HP 48 keyboard display menus: (MTH), (PRG),

(CsT), (VAR), and all of the shifted keys with orange labels on darker

backgrounds (such as («q)(MODES)).

For menus with more than six entries, you can cycle through its pages,

eventually returning to the first page. In the following illustration of

the MTH PROB menu, notice how and ()(PREV) work.

2-12 The Keyboard and Display

PROB

v

1} <COMB PERM ! RAND RDZ
[+ PREV

UTPC UTPF UTPN UTPT A
J

With a few exceptions, when you want to go to another menu, simply

press the keys for that menu—you don’t “get out” or “back out” of

one menu to go to another—you just go to the new one. (The special

menus that act a little differently are explained in later chapters.)

Example: Get the MTH menu and notice that each menu key has a

bar over its left corner and, therefore, calls another menu.

MTH [PAETZ]PROEHYP[MATE|VECTR]BASE

Get the PROB submenu and display the second page.

NXT |TATTTN|

Return to the MTH menu.

MTH RTRAR

To switch to the previous menu:

m Press () (LAST MENU).

There may be times when you are working primarily with a particular

menu, but need to use commands in another menu. For example, you

may need to leave briefly the third page of the STAT menu to use a

command in the second page of the MTH PROB menu.

When you switch from one menu to another, the HP 48 stores the

identity and page number of the last menu you were in. Pressing

()MENU) (found over the key) returns you to that menu.

Menus of menus (such as the MTH menu) aren’t stored as the last
menu.

The Keyboard and Display 2-13

To perform a menu operation:

m Press the menu key below the label for the operation.

Example: Display the MTH PROB (math probability) menu and

calculate 7! (7 factorial).

Key in the 7 and execute the factorial function.

7 FRUE | 1: aH4A
TNT

Setting the Display Mode

The display mode controls the format the HP 48 uses to display

numbers. (Regardless of the current display mode, a number is always

stored as a signed, 12-digit mantissa with a signed, 3-digit exponent.)

The keys for setting the display mode are located in the MODES

menu (()(MODES)). A = in the menu label indicates the mode is
active—for instance, %7l means Standard mode is active.

To set the display mode:

m For standard format, press ()(MODES) &710
m For n decimal places, enter the number n, then press («q)(MODES)

Eid

m For scientific format, enter the number of decimal places, then press

m For engineering format, enter the number of digits after the first

one, then press (¢q)(MODES) EHG

m To change the fraction mark to period or to comma, press

(S(@ODES) @EREY) FH:

2-14 The Keyboard and Display

Display Modes

Key Programmable Description

Command

(EMODES) (pages L and 4);
Bk STD Standard mode. Displays numbers

using full precision. All significant

digits to the right of the decimal point

are shown, up to 12 digits.

FIX Fix mode. Displays numbers rounded to

a specified number of decimal places.

Real numbers on the stack are displayed

with digit separators—commas (for
period fraction mark) or periods (for

comma fraction mark). Uses a number

from the stack for the number of

decimal places.

SCI Scientific mode. Displays a number as a

mantissa (with one digit to the left of

the decimal point) and an exponent.

Uses a number from the stack for the

number of decimal places in the

mantissa.

ENG Engineering mode. Displays a number

as a mantissa followed by an exponent

that is a multiple of 3. Uses a number

from the stack for the number of

mantissa digits to be displayed after the

first significant digit.

. Fraction mark. Switches fraction mark

(the character that separates the integer

and fractional part of the number)

between period and comma. = in the

label indicates a comma fraction mark.

Example: Key in 12345.6789 and show it in various display modes,

starting with two decimal places.

12345.6789 1: 12, 345.68
2 (¢)(MODES) Fli NORTROEEE0

The Keyboard and Display 2-15

Switch to scientific notation with a 5-decimal-place mantissa.

Switch to engineering notation with a 4-digit mantissa (3 digits after

the first digit).

3iENE 1: 12.35E3
|mmfizfinmm|

Return to Standard display mode.

i 1: 12345, 6789
BEIDRENEHERDETD

2-16 The Keyboard and Display

The Stack and Command Line

The stack is a series of storage locations for

numbers and other objects. The locations are

called levels 1, 2, 3, etc. The number of levels

changes according to how many objects are stored

on the stack—the number is limited only by the

amount of memory available. If the stack is empty,

no data is available there—not even zeros.

In general, you enter numbers and other objects

onto the stack, and then execute commands that

operate on the data. As you enter new objects, the stack grows to

accommodate them—mnew objects move into level 1, and older objects

are “bumped” to higher levels. As you use objects, they’re removed

from the stack, the number of levels decreases, and the remaining

objects move down to lower levels. You usually work with only the

first few levels of the stack—higher levels hold objects that you can

use as needed.

The stack display shows level 1 and up to three additional levels. Any

additional levels are maintained in memory, but you normally can’t see

them.

The command line is closely tied to the stack. You use it to key in (or

edit) text and then to process it, transferring the results to the stack.

This chapter covers:

m Using the stack for calculations.

m Viewing and editing the contents of the stack.

m Using the command line.

The Stack and Command Line 3-1

Using the Stack for Calculations

You do ordinary calculations by entering objects onto the stack

and then executing the appropriate functions and commands. The

fundamental concepts of stack operations are:

B A command that requires arguments (objects the command

acts upon) takes its arguments from the stack. (Therefore, the

arguments must be present before you execute the command.)

m The arguments for a command are removed from the stack when the

command is executed.

m Results are returned to the stack so that you can see them and use

them in other operations.

Making Calculations

When you execute a command, any arguments in the command line

are put onto the stack before the command is executed. So you don’t

have to press to put the arguments on the stack—you can

leave one or more arguments in the command line when you execute

the command. (You should still think of the arguments as being on

the stack, though.)

To use a one-argument command:

m Enter the argument into level 1 (or into the command line).
m Execute the command.

Example: Use the one-argument commands LN (((2)(LN)) and INV
((1/=)) to calculate 1/In 3.7.

3.7 (@) 1: 764331518286
BBRTBD

To use a two-argument command:

m Enter the first argument and then the second argument. The first

argument should be in level 2, and the second in level 1 (or in the
command line).

m Execute the command.

3-2 The Stack and Command Line

A two-argument command acts on the arguments (objects) in levels 1
and 2, and returns the result to level 1. The rest of the stack drops

one level—for example, the previous contents of level 3 move to

level 2. The arithmetic functions (+, —, x, /, and *) and percent
calculations (%, %CH, and %T) are examples of two-argument

commands.

Example: Calculate 85 — 31.

85 310 1 54
ATTT=TR(10

Example: Calculate v/45 x 12.

HE12X 1: oH. 49544719
IPT=TTlT(50

Example: Calculate 4.7%1.

4.7 2.1 1: 20, f8rerP98
TTP=T)0

To enter more than one argument in the command line:

m Press to separate arguments.

Example: Calculate v/2401.

2401 4 @@ 1 7

To use previous results (chain calculation):

m If necessary, move the previous results to the proper stack level for

the command.

m Execute the command.

Chain calculations involve more than one operation. The stack is

especially useful for chain calculations because it retains intermediate

results.

Example: Calculate (12 + 3) x (7 + 9).

12 (ENTER) 3 () 2: 15
7 ENTER) 9 () 15

The Stack and Command Line 3-3

Notice that the two intermediate results remain on the stack. Now,

multiply them.

&) 1: 248
TNNTBEEE0

Example: Calculate 232 — (13 x 9) + g First, calculate 232 and the

product 13 x 9.

foe : B13 :9 BRSO
Subtract the two intermediate results and calculate %

0 i 7147857140085 e BRIRO
Add the two results.

Manipulating the Stack

To swap the objects in levels 1 and 2:

m Press (&9)(SWAP) (or () when no command line is present).

The SWAP command is useful with commands where the order is

important, such as —, /, and * ((2), (), and ™)).

Example: Use (|9)(SWAP) to help calculate \/%W’ First, calculate

V13 +8.

DO@ eRN
Enter 9 and swap levels 1 and 2.

9 (q)(sWAP 7 9
1: 4. 28227269496
LTITTTT0

Divide the two values.

® 1: 1.96396181212
TTRTST

3-4 The Stack and Command Line

To duplicate the object in level 1:

m Press = [:LiF (or press (ENTER) if no command
line is present).

The DUP command duplicates the contents of level 1 and pushes the

other stack contents up one level.

Example: Calculate -4713 + (Flfi)ll. First, calculate the inverse of 47.5

and duplicate the value.

47.5 2 2. 18526315789E-2
[+ 5.18576315/09E-7
BEIDOEEEEITEERDEETD

Raise the value to the 4th power.

109D

Add the result to the original value.

1: 2. 105282801 69E-7
BRTERDOR

To delete the object in level 1:

m Press (|)(DROP) (or («) when no command line is present).

When you execute the DROP command, the remaining objects on the

stack drop down one level.

To clear the entire stack:

m Press ()(CLR) (the CLEAR command).

Recalling the Last Arguments

To recali the arguments of the last command:

m Press ()(LAST (the LASTARG command).

The LASTARG command places the arguments of the most recently

executed command on the stack so that you can use them again.

The Stack and Command Line 3-5

Example: Use ()(LAST_ARG) to help calculate In 2.3031 +

2.3031. First, calculate In 2.3031, then retrieve the argument of LN.

((CAST_ARG) is the blue, right-shifted label above the key.)

2.3031 (@)(IN) %: 83425%@3%%%

(@)ARG) B0RRTBEETD

Add the two numbers.

1: 3. 137356084152
DNNTROR

LASTARG is particularly useful for more complicated arguments, such

as matrices.

Restoring the Last Stack

To restore the stack to its previous state:

m Press (69)(LAST STACK).

(7))STACK) restores the stack to the way it was before you

executed the most recent command.

Displaying Objects for Viewing and Editing

You can’t always see all of the objects on the stack—you can see only

the beginning of large objects, and you can’t see objects that have

changed levels and scrolled off the display.

The HP 48 gives you a choice of environments for viewing and editing

objects. An environment defines a particular display and keyboard

behavior—it determines how you see and change the object.

To view or edit an object:

1. Depending on the location of the object and the desired

environment, press the keys listed in the table below.

2. View or edit the object according to the rules of the environment.

3. Exit the environment:

m To exit after viewing, press (ATTN).

3-6 The Stack and Command Line

m To save changes you’ve made, press (ENTER).

m To discard changes you’ve made, press (ATTN).

Depending on the location of an object, you have up to three ways to

view or edit it.

Viewing or Editing an Object

Location of Viewing/Editing Keystrokes to
Object Environment View or Edit

Level 1 Command line («)(EDIM)

Best ™

Interactive Stack (a)

Level n Command line n ()(VISIT)

Best n ()Y

Interactive Stack a)

Variable name Command line () name (2)(VISIT)

Best () name ()(V)
The command line is the simplest viewing and editing environment:

m The EDIT menu is displayed, which provides operations that make

it easier to edit large objects. (See “The Command Line and the

EDIT Menu” below.)

m Real and complex numbers are displayed with full precision

(standard format), regardless of the current display mode.

m Programs, lists, algebraics, units, directories, and matrices are

formatted onto multiple lines.

m All the digits of binary numbers, all the characters in strings, and

entire algebraic expressions are displayed.

The “best” editing environment is the one that’s most appropriate

based on the type of object. Algebraic objects and unit objects are

copied into the EquationWriter environment (see “Viewing and

Editing Objects with the EquationWriter Application” on page 16-23).

Matrices are copied into the MatrixWriter environment (see “Viewing

The Stack and Command Line 3-7

;
’
%
g
i

S

i i
S

.

and Editing Arrays” on page 20-6). All other object types are copied

into the command line.

The Interactive Stack is an environment for viewing, editing, and

manipulating all objects on the stack. See “The Interactive Stack” on

page 3-9.

The Command Line and the EDIT Menu

If a command line is present, press (|q)(EDIT) to get the EDIT menu.

Also, the EDIT menu is displayed whenever you perform a viewing or

editing operation as described in the previous section.

Certain operations in the EDIT menu use the concept of a word—a

series of characters between spaces or newlines. For example, pressing

E skips to the beginning of a word.

EDIT Menu Operations

‘ Description

Moves the cursor to the beginning of the current word.

Moves the cursor to the beginning of the next word.

Deletes characters from the beginning of the word to

the cursor.

Deletes characters from the cursor to the end of the

word.

Deletes characters from the beginning of the line to the

cursor.

Deletes all characters from the cursor to the end of the

line.

IHE Switches the command-line entry mode between Insert

mode (# cursor) and Replace mode (E cursor). A = in
the menu label indicates Insert mode is active.

Activates the Interactive Stack. (See the next topic,

“The Interactive Stack.”)
3-8 The Stack and Command Line

Example: Enter an algebraic object on the stack.

(\)(EQUATION) A (1) B (2) L AL
CoD?2 TNATO

Edit the expression to make C? become C3.

(WEDT) 5EIF: (O@ 'A+B-C"34
3 T FSe[N

Save the change, then view the edited equation in the EquationWriter

environment.

© B

A+—=5
C

Return to the stack.

1 |FeB3!
BIDIREROETD

The Interactive Stack

The normal stack display i1s a “window” that shows level 1 and as

many higher levels as will fit in the display. The Interactive Stack lets

you:

Move the window to see the rest of the stack.

Move and copy objects to different levels.

Copy the contents of any stack level to the command line.

Delete objects from the stack.

Edit stack objects.

View stack objects in an appropriate environment.

The Interactive Stack is a special environment in which the keyboard

is redefined for a specific set of stack-manipulation operations only.

You must exit the Interactive Stack before you can execute any other

calculator operations.

When you activate the Interactive Stack, the stack pointer turns on

(pointing to the current stack level), the keyboard is redefined, and

the Interactive-Stack menu is displayed.

The Stack and Command Line 3-9

{ HOME 1

45 1.2345

Current g % Egg%
stack level —> [{p {A1.2345 }

[EcHn [IPick: [ROLL JROCLDJLEVEL]|

Stack pointer

To use the Interactive Stack:

1. Press (A) (or press #%TE in the EDIT menu) to activate the

Interactive Stack.
2. Use the keys described in the following table to view or manipulate

the stack.
3. Press (or (ENTER)) to leave the Interactive Stack and show

the changed stack.

4. Optional: To cancel changes made to the stack in the Interactive
Stack, press (9] (LAST STACK).

If a command line is present when you select the Interactive Stack,

just the ELHIkey appears in the menu.

3-10 The Stack and Command Line

Interactive-Stack Operations

LD

g " e L
E
E

_
l

SRR

Key Description

@
ELHD Copies the contents of the current stack level into the

command line at the cursor position.

WIEW Views or edits the object in the current level using the

“best” environment. Press when finished

editing (or to abort).

Views or edits the object specified by the name or

stack-level number using the “best” environment. Press

when finished editing (or to abort).

Copies the contents of the current level to level 1

(equivalent to n PICK).

Moves the contents of the current level to level 1, and

rolls (upwards) the portion of the stack beneath the
current level (equivalent to n ROLL).

Moves the contents of level 1 to the current level, and

rolls (downwards) the portion of the stack beneath the
current level (equivalent to n ROLLD).

Creates a list containing all the objects in levels 1

through the current stack level (equivalent to n
—LIST).

Duplicates levels 1 through the current stack level

(equivalent to n DUPN). For example, if the pointer is

at level 3, levels 1, 2, and 3 are copied to levels 4, 5,

and 6.

Drops levels 1 through the current stack level

(equivalent to n DROPN).
The Stack and Command Line 3-11

w

Interactive-Stack Operations (continued)

Description

R

Clears all the stack levels above the current level.

Enters the current stack level number into level 1.

Moves the stack pointer up one level. When prefixed

with (&), moves the stack pointer up four levels

(\9)(PgUp) in the following keyboard illustration);
when prefixed with (), moves the stack pointer to the

top of the stack ((2)@) in the following keyboard

illustration).

™ Moves the stack pointer down one level. When prefixed

with (&), moves the stack pointer down four levels

((\9)(PgDn) in the following keyboard illustration);
when prefixed with (), moves the stack pointer to the

bottom of the stack (()(¥) in the following keyboard
illustration).

(\x)(EDIT) |Copies the object in the current level into the

command line for editing. Press when finished
editing (or to abort).

(2)(isIT) Copies the object specified by the name or stack-level

number into the command line for editing. Press

when finished editing (or to abort).

@ Deletes the object in the current level.

Selects the next page of Interactive-Stack operations.

Exits the Interactive Stack.

Exits the Interactive Stack.
Most of the operations in the menu have equivalent programmable

commands—see “Other Stack Commands” on page 3-18.

3-12 The Stack and Command Line

The redefined keyboard for the Interactive Stack looks like this:

s)
Hhehdhdbdhd
TRe
DOOOMmO e

Exits Interactive @ DEQVISITD fi S Deletes current

Stack ————>ENTER (+-] (] (@) <—— level

DO
@O0

Exits Interactive [] [} [] [

Swok ——em [J [JL JI

When you press (@) or ()(VISIT) in the Interactive Stack, the
object in the current level must be a real number or a variable name:

m A real number (integer part) specifies the object in the

corresponding stack level.

m A variable name specifies the object stored there.

When you press “ik or i , the object is copied into the

“best” environment for viewing oredltlng Algebraic objects and unit

objects are copied into the EquationWriter environment (see “Viewing

and Editing Objects with the EquationWriter Application” on page

16-23). Matrices are copied into the MatrixWriter environment (see
“Viewing and Editing Arrays” on page 20-6). All other object types

are copied into the command line. Press to return the edited

object to its original stack level, or to end the session without

change.

The Stack and Command Line 3-13

To copy an object from the stack into the command line:

1. Put the cursor in the command line where you want the object

placed.

2. Press ()(EDIT) #51kE. (If the command line has only one line,

you can press (A) instead.)

3. Press (A) and (V) to move the Interactive Stack pointer to the

desired object and press ELHii .

4. Press (or (ENTER)) to leave the Interactive Stack.

Example: Use the Interactive Stack to insert the number 1.2345 into

the command line, creating the list « # 1. 2245 .

Put these numbers on the stack.

1.2345
2.3456
3.4567

Start entering the list.

@A

+

Select the Interactive Stack.

@

Move the pointer to level 3, echo the object, and leave the Interactive

Stack.

@@ EcHo

Put the list on the stack.

3-14 The Stack and Command Line

Using the Command Line

The command line is essentially a workspace for creating objects—

a space where you enter and edit your input to the HP 48. The

command line appears whenever you enter or edit text (except when

you’re using the EquationWriter or MatrixWriter applications).

Accumulating Data in the Command Line

You can key any number of characters into the command line, using

up to half of the available memory. To enter more than one object in

the command line, use spaces, newlines (((2)(«<=2)), or delimiters to
separate objects. For example, you can key in 12 34 to enter two

numbers—if you press (ENTER), they’re entered onto the stack—or, if

you press (1), they’re entered and then added.

If you enter an @ character not inside a string in the command

line, it and the adjacent text are treated as a “comment” and are

stripped away when you press (ENTER). See “Creating Programs on a

Computer” on page 25-12.

When you type in the command line, characters are normally inserted

at the cursor position—any trailing characters move to the right. The

following keys are active when the command line is present.

The Stack and Command Line 3-15

Command Line Operations

Key Description

=0) Move the cursor left and right in the command line.
()@ and (»)(») move the cursor far left and far

right.)

am™ If the command line has more than one line, move the

cursor up and down one line. ((»)(A) and (»)(V) move
the cursor to the first and last line.)

If the command line has only one line, (A) selects the

Interactive Stack, and (¥) displays the EDIT menu.

(9 Erases the character to the left of the cursor.

DEL Deletes the character at the current cursor position.

(«)(EDIT) Displays the EDIT menu, which contains additional

editing operations.

(2)(ENTRY) Changes the command-line entry mode to
Program-entry mode or Algebraic/Program-entry

mode, as described below.

Processes the text in the command line—moves objects
to the stack and executes commands.

Selecting Command-Line Entry Modes

Four command-line entry modes make it easier for you to key

in various types of objects. Usually the entry mode you need is

automatically activated for you.

m Immediate-Entry Mode. (Activated automatically, indicated by

no entry-mode annunciator.) Immediate-entry mode is the default

mode. In Immediate-entry mode, the contents of the command line

are entered and processed immediately when you press a function or

command key (such as (1), (SIN), or (STO)).

m Algebraic-Entry Mode. (Activated when you press (7). Indicated

by the &L annunciator.) Algebraic-entry mode is used primarily

for keying in names and algebraic expressions for immediate use.

In Algebraic-entry mode, command keys act as typing aids (for

example, (SIN) types : ¥). Other commands are executed

immediately (for example, or ()(PURGE)).

3-16 The Stack and Command Line

m Program-Entry Mode. (Activated when you press (4)(«») or

(\x))({3)—indicated by the FEG annunciator.) Program-entry
mode is used primarily for entering programs and lists. It’s also

used for command-line editing ((«q)(EDIT) and (»)(VISIT)). In
Program-entry mode, function keys and command keys act as typing

aids (for example, (SIN]m types SIH and (STO) types 5Ti). Only

non-programmable operations are executed when you press a key

(for example, (ERTER), (VAR), or (%) ENTRY).
m Algebraic/Program-Entry Mode. (Activated when you press (7)

while in Program-entry mode—indicated by the FLG and FRG

annunciators.) Algebraic/Program-entry mode is used for keying

algebraic objects into programs. In Algebraic/Program-entry mode,

function and command keys behave as they do in Algebraic-entry

mode (for example, types SIH:). Pressing a command key

(for example, (STO)) restores Program-entry mode.

To change entry modes manually:

« Press (@)ERTRY).
Pressing ((»)(ENTRY) switches from Immediate-entry to Program-entry
mode, and between Program-entry and Algebraic/Program-entry

modes.

[ENTRY ENTRY -
Immediate >[ENTRY Program e Algebraic / Program

entry |> entry |, entry

]

()(ENTRY]) allows you to accumulate commands in the command

line for later execution. For example, you can manually invoke

Program-entry mode to enter # 5 + I into the command line, and

then press to calculate v/4 4+ 5. (®)(ENTRY) also makes it

easier to edit algebraic objects in programs.

Example: Calculate 12 — log(100) by including the LOG command

in the command line. First, enter the command line.

12 100 (@)(ENTRY) ()(LOG) 12 188 LOG +
)ATB33

The Stack and Command Line 3-17

Process the command line to complete the calculation.

ETER) O

Recovering Previous Command Lines

The HP 48 automatically saves a copy of the four most recently

executed command lines.

To retrieve a recent command line:

1. Press («q)(LAST CMD) (found over the key).

2. If necessary, press (4.q)(LAST CMD) one or more times to retrieve an

earlier saved command line.

Other Stack Commands

The following table describes additional commands from the PRG

STK menu that are programmable and that manipulate the stack.

Example
Command/Description

Input Output

DEPTH Returns the o o 1&

number of objects on the i 16 Zs A

stack. 1 A 1 =

DROP2 Removes the e iz

objects in levels 1 and 2. s i@

DROPN Removes the first

n + 1 objects from the stack

(n isin level 1).

oAl

DUP Duplicates the object

in level 1.
3-18 The Stack and Command Line

Command/Description
Example

Input Output

DUP2 Duplicates the

objects in levels 1 and 2.

pe
d
P
e
l
o
0
E
3

wn
 m
m

 m
m

;s

s
P
3
0
T
W

ws
 m
m

 m
m

 a
n

DUPN Duplicates n £ &

objects on the stack, starting 5 o
at level 2 (n is in level 1). 43 43

1 5oL

OVER Returns a copy of = z

the object in level 2. I z
1%

PICK Returns a copy of 43

the object in level n + 1 to

level 1 (n is in level 1).

e
P
l

03
3
W

e
l

f
u
3
O
0
R
E

ROLL Moves object in

level n + 1 to level 1 (n is in
level 1).

i
P
i
o

L
A

P
t

F
u
t
o
0
5
3
W

sz
 m

m
s

oa
m

ROLLD Rolls down a £

portion of the stack between =

level 2 and level n + 1 (nis 4

in level 1). =

o

 ROT Rotates the first

three objects on the stack

(equivalent to = ROLL).

The Stack and Command Line 3-19

4

Objects

o The basic items of information the HP 48

{} uses are called objects. For example, a

~ 1 1\ real number, a matrix, and a program are

‘_? each an object. On the stack, an object

EDN s occupies a single level—so you can enter
any of them into one stack level—or store

it in a variable.

9

The HP 48 can store and manipulate

several types of objects:

Real Numbers Programs Directory Objects

Complex Numbers Strings Backup Objects

Binary Integers Lists Library Objects

Arrays Graphics Objects XLIB Names

Names Tagged Objects Built-In Functions

Algebraic Objects Unit Objects Built-In Commands

Many HP 48 operations are the same for all object types—for

example, you use the same procedure to store a real number, matrix,

or program. Other operations apply to only certain object types—for

example, you can’t take the square root of a program.

This chapter introduces the HP 48 object types, shows some examples

of how you use different types of objects, and covers some commands

that manipulate objects. Each object type is covered in more detail in

another chapter.

Objects 4-1

Real Numbers

The numbers &, ~#. &and 4. FE1S are examples of real numbers.

The following illustration shows the range of real numbers the HP 48

can store.

Numbers Other Than O That the HP 48 Can Store

// \

Qverflow Underflow Overflow

————M\AATA_fl—t—

! ! !
-0.99999999999 x 10499 9.99999999090 x 10 499

Ax10499 o 1x10-499

Complex Numbers

A complex number is represented by a pair of real numbers delimited

by parentheses. You can enter and display complex numbers in

rectangular or polar form:

m Rectangular form. z + iy, displayed as <z:y .

m Polar form. (re'?), displayed as i r; 4607,

Complex numbers are also used to represent the coordinates of a point

in two dimensions.

Example: Add the complex numbers 14 + 9 and 8 — 12:.

If the R<Z or Ras annunciator is on, press (¢»)(POLAR) to set

Rectangular coordinate mode (no coordinate annunciator).

Enter the complex numbers into levels 1 and 2. Use a space to

separate the real and imaginary parts of each complex number.

@) 14 (srC) 9 (ENTER) % {él‘}ig%

B 12 BNEEOR0

4-2 Objects

Add the two values.

Complex numbers are covered in chapter 11.

Binary Integers

HP 48 binary integers are unsigned integers stored as a sequence of

binary bits (rather than as decimal digits). They’re delimited by a #

character preceding the number and by an optional lowercase letter

(ky, o, o, or k) that identifies the current base. You can enter binary

integers in hexadecimal, decimal, octal, or binary base. The binary

base mode, set in the BASE menu (displayed by pressing (MTH)

EFZE), determines which base is active.

Example: Calculate B17:6 + 47s. Display the result in hexadecimal

base.

Select hexadecimal base and enter the two values. Append the

lowercase letter = ((@) (¢9) O) to the octal value to specify its base.

Q) 020 2o 23 # B17h
@@BT@) I W50
()&) 470 (ENTER) 0]TTTSR

Add the two values.

1: # B3Eh
[WEiDECDCTEIN_|SThiz[RCHz)

Press [iEl. to return to decimal base.

Binary integers are covered in chapter 14.

Objects 4-3

Arrays

Arrays can be one-dimensional vectors or two-dimensional matrices.

The delimiters for arrays are square brackets (I 1). The HP 48
MatrixWriter application helps you enter and edit matrices.

Example: Multiply the following matrix and vector.

[1 -2 O]X?
4 5 -3 5

Enter the vector as [2 1 2]. Use spaces to separate the components.

@O 2 GFO) | (5FS)2 (ERTER) 1 [212]
KRDNECTE EEET

Now use the MatrixWriter application to enter the matrix. First,

select the MatrixWriter application.

@)@ATRR)

[TT T

Enter the first row.

1 (ENTER) B—

2 (52 (ENTER) -
0 (ENTER)

_q.:

IR0TTe

Start a new row and enter the three values. You can enter them one

at a time, or you can enter them all at once by separating them with

spaces.

®
1(559) 5 (B0 3 (FF) (ENTER)

Tl 0T TS

4-4 Obijects

Now enter the matrix into level 1.

: [212]
I: [[1-28]

[45-3 1]
HEDECOCTEIN[ETHE[RCHE]

To do the multiplication, the matrix must be in level 2 and vector

must be in level 1, so swap the levels. (Pressing (») when no command

line is present is the same as pressing («)(SWAP).)

) % [[1-28 E 2[1425._:‘.

EERNGANTRETE

Multiply them.

® 1: LAY]
ATATTTT

Arrays are covered in chapter 20.

Names

Names are used to identify variables. If you want to put a name on

the stack without evaluating it, enclose it between ' (tick) characters.

Example: Enter the names A7 and B! and multiply them.

Enter the names on the stack. The Fi.iz annunciator comes on when

you press (7).

)AL 2: Al(D B1 RErE
Multiply the two names.

> 1: 'A1#B]"
ICT=EEN IT=CSETTT

The result is an algebraic expression containing the two names.

Variable names are covered in chapter 6.

Objects 4-5

Algebraic Objects

Algebraic objects, like names, are delimited by two marks.

Algebraics represent mathematical expressions and, on the stack, have

a conventional “computer form” like these two examples:

FERIOD=2#wsl (LENGTH-G

PATERCOECE

The EquationWriter application helps you enter and manipulate

algebraic objects by displaying them as they might appear printed in a

book. For example, this is how the PERIOD equation above would

look in the EquationWriter environment:

PERIOD=21 LE”GGTH

[TATTVTAT(T

Algebraic objects, often referred to as algebraics in this manual, are

covered in chapter 8. The EquationWriter application is covered in

chapter 16.

Programs

Programs are sequences of commands and other objects enclosed by

the delimiters # and #. For example, given a real number argument in

level 1 representing the radius, this program computes the area of a

circle:

S om o+HUM 2 %

The delimiters prevent the commands from being executed as you

enter them. Instead, they’re executed later when you evaluate the

program object.

Programming is covered in part 4 (chapters 25 through 31).

4-6 Objects

Strings

Strings are sequences of characters, usually used to represent text in

programs. They’re delimited by quotation marks. For example, you

can enter the string "Miror of & Matrixz" onto the stack and then

print it.

A counted string 1s an alternate string form in which the number of

characters is specified. Counted strings are prefaced with # n, where

n is a real integer. % designates that the string is a counted string,

and n specifies the number of characters to be gathered into the

string. For example, entering C# 7 AEC DEF GHI from the command

line results in the creation of the string "HEC DEF". The leftover GHI

is entered as a name, just like it would be entered if it were on the

stack by itself.

Another form of the counted string prefaces the string with C# #.

This form specifies that all characters remaining on the command line

are put into the string.

Lists

Lists are sequences of objects grouped together, delimited by braces—

for example, © ¥ & 1 . Lists allow you to combine objects so they can

be manipulated as one object.

Graphics Objects

Graphics objects encode the data for HP 48 “pictures,” including plots

of mathematical data, custom graphical images, and representations of

the stack display itself. They’re created by certain plotting commands,

and they’re viewed in the Graphics environment. They can also be put

on the stack and stored in variables. On the stack, a graphics object is

displayed as

Graphic n = m

Objects 4-7

where n and m are the width and height in pizels. (A pixel is one dot

in the display.)

Creating and manipulating graphics objects is covered in chapters 18

and 19.

Tagged Objects

A tagged object consists of any object combined with a tag that labels

that object. Tagged objects are keyed in as

itag: object

The colons delimit the tag. When a tagged object is displayed on the

stack, the leading colon is dropped for readability.

Example: Enter the numbers 5 and 9 with tags “B1” and “B2”, and

then calculate the product.

Enter the tagged objects.

@@B &) 5 ETER)
@@ B2 ®) 9 ETER)
Calculate the product.

)

The tags were ignored by (x).

Tagged objects are particularly useful for labeling the contents of

variables and program output (see “Labeling Output with Tags” on

page 29-14).

4-8 Objects

Unit Objects

A unit object consists of a real number combined with measurement

units. The underscore character (_) separates the units from the

number—for example, &_m and 2.7 _k+ Stm

50.8 ft/sExample: Calculate =

Enter the unit objects 50.8 ft/s and 2.5 s.

50.8 (|)(UNITS) LEHG FT o1 SH.8_ft-s
(Q@NTS) TIME @) & : 7
25 &

Divide the two values.

® 1: 2H.32_ft-5"2
IOITOA

Algebraic objects can contain unit objects, such as

Pl G ke

Paty

When units are included in algebraic objects, the EquationWriter

application helps you enter, edit, and manipulate them. Here is the

same expression as it’s displayed by the EquationWriter application:

2

[4_ 25_&9'_"'_]
5

11,5kan |
5

PARTZ]PROEHYP|HATF[VECTR|ERSE
Unit objects are covered in chapter 13.

Objects 4-9

Directory Objects

The HP 48 uses directory objects to set up a hierarchical directory

structure for data you store. Directory objects are covered in chapter

7.

Built-In Functions and Commands

Built-in functions and built-in commands are subsets of HP 48

operations. An operation is any action the calculator can perform.

(Every time you press a key, you execute an operation.) Later on, it

will be helpful to know if an operation can be included in a program,

if it can be included in an algebraic object, and if it has an inverse or

derivative. Therefore, operations are classified by these categories

throughout this manual:

m Operation. Any action built into the calculator represented by a

name or key.

s Command. Any programmable operation.

m Function. Any command that can be included in algebraic objects.

m Analytic function. Any function for which the HP 48 provides an

inverse and derivative.

4-10 Objects

Analytic functions are a subset of functions—functions are a subset of

commands—and commands are a subset of operations.

SIN, for example, 1s an analytic function—it has an inverse

and derivative, can be included in an algebraic object, and is

programmable. SWAP (the command to swap stack levels 1 and 2),

however, is just a command—it can be included in a program, but it

can’t go in an algebraic and has no derivative or inverse.

The operation index in appendix G tells you how each operation is

classified. Also, throughout the manual, HP 48 activities are referred

to as operations, commands, functions, or analytic functions where

appropriate.

Built-in function and built-in command objects describe the HP 48

command set. You can think of them as built-in program objects.

(Operations that aren’t commands are not objects—you can’t include

them in programs.)

Objects 4-11

Additional Object Types

Three object types involve operations with plug-in cards (covered in

chapter 34):

m Backup objects. They are created when you store objects in a

plug-in memory card.

m Library objects. A library is a directory of commands and

operations that are not built into the calculator. Libraries can be

provided by a plug-in application card, or they can exist in built-in

or plug-in RAM.

m XLIB names. These are objects provided by plug-in application

cards.

Manipulating Objects

You can use several commands for assembling, disassembling, and

modifying portions of objects. These commands (except +) are

located in the PRG OBJ (program object) menu ((PRG) ©iE.J).

Example
Command/Description

Input Output

+ (@) Combines two 2t RO 2
strings or lists, or adds an 1: £ 23| 1: Az =

object to a string or list.

2 "RECY 2
1: "LE" 1 "ABCLE"

4-12 Objects

L. Example
Command/Description

Input Output

—ARRY (#AEER) Stack
to array; combines real or

complex numbers into an

n-element rectangular vector

or a matrix of dimensions

nby m. (norinmiisin
level 1.)

P
o
d
o
n
f
s
0

e
l
P
R

[a
nl

pa
n} At f
d

P
l
R

g

£

o
o
e

e
t
P
0
3

[f1 21

L
R

bl

' g b

e
P
3
3
J
J
n

1
1
! 1

1 A 0
T

fo
d

f
d

CHR. Character; returns

the character corresponding

to the character code. (See
the character set in appendix

C.)

e
t na
m 14 be
x

o
t

C—R Complex to real; o o

separates a complex number 1: (s B

(or complex array) into two
real numbers (or real arrays)
representing the real part

and the imaginary part.

DTAG Delete tag; removes 1: ArlEm 1 123

the tag from a tagged object.
 EQ— Equation to stack; e e Y

splits an equation into its PR ii TR

left and right sides.

Objects 4-13

Command/Description

character code corresponding

to the character.

Input Output

GET Gets the nth (in 2 L4 581 |2
level 1) element of a vector, s & 1 =

matrix, or list, or the £n mz

element of a matrix. L4 5

L7 & %131 &

1: 4 1z 7

2 [04 5 &)

78 911 &

i: L2 1 G is T

2 AEBE O 2

13 = 1 B

GETI Get and increment; 3 [4 5 &l

same as GET, except also z [d 58l |2 =

returns the vector, matrix, i: i 5

or list to level 3 and the

number of the next element o 2: [[4 5 &1

to level 2. 28 L[4 5 &l LV o8 211

0y & =11 &3 5

1% B 1 7

= L0435 &3

2y L[4 3 &1 L7 & 917

1: = 2 13 o

—LIST Stack to list; & i &

creates a list containing n z z

(in level 1) objects. 1 20 iy frEe

NUM Returns the 18 e 1 £

4-14 Objects

Example
 Command/Description

Input Output

OBJ— Object to stack; o 2

separates a complex 1 e S 1 =

number, array, or list into

its elements (same as C—R, =t &

ARRY—, and LIST—); for : o

arrays and lists, also returns i: L &=] i: L

the number of elements or

dimensions to level 1. For d 1

strings, removes the string i z

delimiters and executes the 2 : 5

contents as a command is oL 1 o £

line (same as STR—). For [11 1 22 %
algebraics, separates the

outermost function and i g3 1

its arguments. For units, s i =

separates the number and i s Ty

the unit expression. For iz T2 Wy i 3

tagged objects, separates the

tag and the object. ans mn 2 o= L4 15

4t 41 A
s H PR

1t R+ B ;
Objects 4-15

Command/Description
Example

Input Output

POS Position of an object 2Lt R B Cox |2

in a list, or position of one i: o is =

string within another.

Z: "ABCDEFG" 2

"DE" 13 4
PUT Replaces the nth z {4 3 &1 3:

element of a vector, matrix, s 20| 2

or list, or the n melement 1: 7 i 04 7 &1

of a matrix, with the

contents of level 1. (n or Z: L0435 81 I
£n mZ is in level 2.) LF g 211 2:

=i 4 18 [D4 5 &1

i: z [z & %13

D LT B9 =

1: A 1 £ 7 A9 &

PUTI Put and increment; i L4 5 &1 3

same as PUT, except also s Z 2 L4 7 &1

returns the list or array to 1s 7ol =

level 2 and the number of

the next element to level 1. Z: [04 5 &1 5

Iy o8 211 =8 D04 5 &1

= L7 B 93

1z A 1z =

4-16 Objects

Example
Command/Description

Input Output

REPL Replace; replaces @2 4R B O L =H

a portion of a list or string Z: zo| B

in level 3. Takes the 1: IF G 1s SR F G D3

replacement object from

level 1 and the position in s AR oY 3

the list or string to start s o2

the replacement from level 1: iF G is €A B F G

2. (How REPL works with
graphics objects is described Z: TR OB =

under “Using Stack H g zZ=

Commands for Graphics 1s {F Gy 1: IR B F G2

Objects” on page 19-27.)

R—C Real to complex; 23 -7 Z=

combines two real numbers 1 - 1z (o g2

or arrays into a complex

number or complex array.

SIZE Number of elements ir fuUH 2 x| Ls =

in a list; number of

characters in a string; 1: "ABRCDEFGH 1: ¥

dimension of an array; and

size of a graphics object. 1: [[4 5 &1 1: L2 G

[V 2 2733

2: # &d

GREARHIC &xlZ 1 #12d

—STR Object to string; 1: "R+E! 1: TrR+RY

converts an object to a

string.
Objects 4-17

Example
 Command/Description

Input Output

SUB Subset of a list or LA B OB
string. The positions of 21 o2

the beginning and ending is 5 i LB

elements are in levels 2 and

1. Zi "ARBCDEFGT 3

li i “I i"!‘ i

—TAG Stack to tag;

combines two objects to b levalue: 123

form a tagged object.

—UNIT Stack to unit; &

assembles a scalar from level 1: 17 ._m i EEM

2 and a unit expression from

level 1 to form a unit object.

GET, GETI, PUT, and PUTI allow name arguments in place of the

array argument. For example, evaluating '#1' 2 GET returns the

second element of AI; evaluating 'Fz' & "HEC" FUT replaces the

second element in A2 with “ABC”.

Determining Object Types

There are 20 types of objects used in the HP 48. Each object type is

represented by an integer.

4-18 Objects

Object Type Numbers

4

Object TYPE Object TYPE |
Number Number |

Real number 0 Binary integer 10

Complex number 1 Graphics object 11

String 2 Tagged object 12

Real array 3 Unit object 13

Complex array 4 XLIB name 14

List 5 Directory 15

Global name 6 Library 16

Local name 7 Backup object 17

Program 8 Built-in function 18

Algebraic object 9 Built-in command 19
To find the type of object in level 1:

m Press OEl (NXT) THFE (the TYPE command).

To find the type of object stored in a variable:

1. Press () and enter the name of the variable.

2. Press HEL UTYEE (the VIYPE command).

The TYPE and VIYPE commands return a number representing the

type of object. VI'YPE returns —1 if the variable doesn’t exist.

Separating Variable Names by Object Type

To get a list of variables containing one type of object:

1. Enter the TYPE number for the object type you want.

2. Press (&9)(MEMORY) TWHEE (the TVARS command).

The TVARS command returns a list containing the names of variables

in the current directory containing that object type. For example,

pressing THHESZ with 2 in level 1 returns a list of all the names of

variables containing programs. If no variables contain that object

type, TVARS returns an empty list to the stack.

Objects 4-19

Evaluating Objects

Evaluation is the fundamental calculator operation for prodding

an object into action. Evaluation is often implicit in calculator

operations—it happens when commands are executed, programs are

run, etc.

To evaluate an object in level 1:

m Press (the EVAL command).

The result of evaluating an object can be a sequence of subsequent

actions, which can include further evaluations. The following table

describes the effect of evaluating different types of objects.

Obj. Type Effect of Evaluation

Local Name Recalls the contents of the variable. If appropriate,

the contents can then be explicitly evaluated using

the EVAL command.

Global Name Calls the contents of the variable:

m A name is evaluated.

m A program is evaluated.

m A directory becomes the current directory.

m Other objects are put on the stack.

If no variable exists for a given name, evaluating

the name returns the quoted name to the stack.

Program Enters each object in the program:

m Names are evaluated, unless delimited by tick

marks ((7)).

m Commands are executed.

m Other objects are put on the stack.

4-20 Objects

Obj. Type Effect of Evaluation

List Enters each object in the list:

m Names are evaluated.

m Programs are evaluated.

m Commands are executed.

m Other objects are put on the stack.

Algebraic Enters each object in the algebraic:

m Names are evaluated.

m Commands are executed.

m Other objects are put on the stack.
 Other Objects Puts the object on the stack.

Example: Suppose you created two global variables:

m TWOPI contains the real number 6.28318530718.

m CIRCUM contains the program # TWOFT % 3

The label ZTFEL in the VAR menu represents CIRCUM . When you

press £ IR, here’s what happens:

1.

2. The program stored in the variable CIRCUM is evaluated.

3.

4. The real number stored in the variable TWOPI is returned to the

The name CIRCUM is evaluated.

The name TWOPI (the first object in the program) is evaluated.

stack.

. The command * (multiply) is executed.

Objects 4-21

Calculator Memory

Every operation you perform with your HP 48

requires memory. This chapter describes the types

s of memory, shows how to find out about memory

usage, and tells how to respond to low-memory

conditions.

Types of Memory

The HP 48 has two types of memory:

m Read-only memory (ROM). Memory that’s dedicated to specific

operations and cannot be altered. The HP 48 has 256 KB

(kilobytes) of built-in ROM, which contains its command set.
Except for the HP 48S model, you can expand the amount of ROM

by installing plug-in application cards, which are described in

chapter 34, “Using Plug-in Cards and Libraries.”

m Random-access memory (RAM). Memory that you can change. You

can store data into RAM, modify its contents, and purge data. The

HP 48 contains 32 KB of built-in RAM. Except for the HP 48S

model, you can increase the amount of RAM by adding memory

cards, which are described in chapter 34.

RAM is also called user memory because it’s memory that you (the

user) have access to. You use or manipulate user memory when you

enter an object on the stack, save an object in a variable, delete

a variable, create an equation or matrix, run a program, etc. In

addition, the HP 48 does some system cleanup from time to time to

free memory for current operations.

The next two chapters, “Variables and the VAR Menu” and

“Directories,” cover the organization and management of user memory.

Calculator Memory 5-1

Finding Out about Memory Usage

To find out how much memory is available:

m Press (@)(MEMORY) HEM (the MEM command).

The MEM command returns the number of bytes of unused user

memory. For exmaple, an empty memory for the HP 485X should

show about Z&E&EEE bytes of available memory (with no RAM cards

installed).

To get the memory size and checksum of the object in level 1:

m Press (9)(MEMORY) Ei¥ TE%(the BYTES command).

The BYTES command returns:

m Level 2: Checksum. The checksum is a binary integer specific to

the object. You can use checksums to ensure that you’ve keyed

in a large object (for example, a program or matrix) properly by

comparing the checksum of the listing with the checksum you get

after you’ve keyed it in. (Most programs in part 4 of this manual

have a checksum at the end of the listing to help you verify that

you’ve keyed in the program correctly.)

m Level 1: Number of bytes. The amount of memory in bytes the

object takes up. If the object is a variable name, the memory used

by the variable’s name and contents is returned. If it’s a built-in

object, 2.5 bytes is returned.

Additional memory commands are covered in chapter 6, “Variables

and the VAR Menu,” and in chapter 7, “Directories.”

5-2 Calculator Memory

Saving and Restoring the Stack

Certain HP 48 operations clear the stack—but you may want to keep

the data stored there. You can save the contents of the stack in a

variable, then restore the stack later.

To save the stack in a variable:

1. Press e

2. Press B]

3. Press (7)), type a name to use for storing the stack data, and press

STO).

f-, to get the size of the stack

To restore the stack from a variable:

1. Optional: Press ()(CLR) to clear the current stack contents.

2. Press and the menu key for the name you used for storing the

stack data.

3. Press (PRG): fiEd 0B+ to expand the list.
4. Press («) to drop the number of restored objects.

If you don’t clear the stack, the current contents move up to levels

above the restored contents.

Clearing All Memory

Clearing memory erases all information you’ve stored and resets all

modes to their default settings. Therefore, you probably won’t do this

very often, or at least not without careful forethought.

Calculator Memory 5-3

To clear all memory:

1. Press and hold down these three keys simultaneously: (ON), the

leftmost menu key (A), and the rightmost menu key (F).
2. Release the two menu keys, then release (ON). The calculator beeps

and displays the message Tiw To Fecouver Memora?.

3. Press. Hii . The HP 48 beeps and displays Memory Clear.

If necessary, you can cancel the clearing operation before releasing

by continuing to hold down as you press the second menu

key from the left (B). You can also answer ¥E#% to the Trw To

Fecover Memory? prompt—however, the calculator may not be able

to recover all memory at that point. You probably would lose at least

your stack, alarms, and user-key assignments.

Responding to Low-Memory Conditions

HP 48 operations share memory with the objects you create. Normal

calculator operation becomes slow or fails if user memory is sufficiently

full. When a low-memory condition occurs, the HP 48 returns one of a

series of low memory warnings. These messages are described below in

order of increasing severity.

“No Room for Last Stack”. If there’s not enough memory to save a

copy of the current stack, the message Mo Foom £ oLast Stack

is displayed when ENTER is executed. Also, the LAST STACK

operation ((4q)(LASTSTACK))is disabled.

This condition indicates that user memory is getting full. You should

make more room by deleting unnecessary objects from the stack or

deleting unnecessary variables.

“Insufficient Memory”. If there isn’t enough memory to complete

execution of an operation, Irzuficiernt Memorw is displayed. If

the LAST ARG operation (((»)(LASTARG)) is enabled (flag —55 is
clear), the original arguments are restored to the stack. If LAST ARG

is disabled (flag —55 is set), the arguments are lost.

Delete unnecessary objects from the stack or delete unnecessary

variables.

5-4 Calculator Memory

“No Room to Show Stack”. The HP 48 may complete all pending

operations and then not have enough free memory to display the

stack. In this case the calculator displays Mo REoom To Show Stack

in the top line of the display. Those lines of the display that would

normally display stack objects, now show those objects only by type,
ifor example, Feal Humber, Alasberaic, and so on.

The amount of memory required to display a stack object varies

with the object type. If there’s no room to show the stack, delete

unnecessary objects from the stack or delete unnecessary variables—

or store a stack object in a variable so that it doesn’t have to be

displayed.

“Out of Memory”. In the extreme case of low memory, there is

insufficient memory for the calculator to do anything—display the

stack, show menu labels, execute a command, etc. In this situation

you must clear some memory before continuing. A special it of

Memorw procedure is activated, which starts with the following

dlsplay.

Out of Memory

Purge?

1: Real Array

To respond to the “Out Of Memory” prompts:

m To delete the indicated object, press

m To keep the indicated object, press . il

m To stop the procedure and see if the condltlonis fixed, press

When the procedure starts, the display asks whether or not you want

to purge the object (described by object type) in level 1—a real array

in the example above. If you delete it, the choice is repeated for the

new level 1 object. The succession of stack objects continues until

the stack is empty or you press Hii . Then, the prompt to delete

level 1 is replaced by a prompt to discard the contents of LAST CMD

()cMD))—and then to delete other items in this order:

1. Stack level 1 (repeated).
2. The contents of LAST CMD.

Calculator Memory 5-5

The contents of LAST STACK (if active).
The contents of LAST ARG (if active).
The variable PICT (if present).
Any user-key assignments.

Any alarms.

The entire stack (unless already empty)
Each global variable by name.

Each port 0 object by tagged name.C
X
N

O
W

—
_

Note It is possible for the purge sequence to begin with

the command line and then cycle through the stack,

%J the contents of LAST CMD, etc. If you answer

Bii to the purge prompt for the command line,

you’ll be returned to the command line when you

terminate the Dt of Femory procedure.

The prompt for variables (prompt 9 above) starts with the newest

object in the HOME directory and then proceeds with successively

older objects. If the variable to be purged is an empty directory,

WEZ purges it. If the directory is not empty, ¥E#% causes the

variable-purge sequence to cycle through the varlables (from newest to

oldest) in that directory.

Whenever you like, you can try to terminate the Tt of Femorg

procedure by pressing (ATTN). If sufficient memory is available, the

calculator returns to the normal display; otherwise, the calculator

beeps and continues with the purge sequence. After cycling once

through the choices, the HP 48 attempts to return to normal

operation. If there still is not enough free memory, the procedure

starts over with the sequence of choices to purge.

5-6 Calculator Memory

6
Variables and the VAR Menu

A wvariable is a named storage location that contains

an object. Variables let you store and retrieve

information using meaningful names. For example,

you can store the acceleration of gravity, 9.81 m/s?,

into a variable named G and then use the name to

refer to the variable’s contents.

The HP 48 uses two types of variables:

m Global variables. Common variables that remain in memory until

you purge them.

m Local variables. Temporary variables created by programs. They

exist only while a portion of the program is being executed and

can’t be used outside the program.

This chapter covers only global variables. Local variables are covered

under “Using Local Variables” on page 25-13.

Naming Variables

Variable names can contain up to 127 characters, and can contain

letters, digits, and most other characters. If a name is too long to fit

in a menu label, only the beginning of the name is shown.

Uppercase and lowercase letters are not equivalent—even though they

appear the same in menu labels.

The following characters can’t be included in names:

m Characters that separate objects: space, period, comma, &, and

object delimiters # [1 * ' £ ¢ » % & :

m Mathematical function symbols: + -~ % .

_j‘ = i 1 H i

Variables and the VAR Menu 6-1

Names can’t begin with a digit. You can’t use command names (for

example, SIN, 7, or 7) as variable names. Also, PICT is a special

name used by the HP 48 to contain the current graphics object and

can’t be used as a variable name. Certain names are legal variable

names, but are used by the HP 48 for specific purposes. You can

use these names, but remember that certain commands use them as

implicit arguments—if you alter their contents, those commands may

not execute properly. These variables are called reserved variables:

m FQ refers to the current equation used by HP Solve and Plot

applications.

CST contains data for custom menus.

YDAT contains the current statistical matrix.

ALRMDAT contains the data for an alarm being built or edited.

YPAR contains a list of parameters used by STAT commands.

PPAR contains a list of parameters used by PLOT commands.

PRTPAR contains a list of parameters used by PRINT commands.

IOPAR contains a list of parameters used by IO commands.

sl, s2, ..., are created by ISOL and QUAD to represent arbitrary

signs obtained in symbolic solutions.

m nl, n2, ... are created by ISOL to represent arbitrary integers

obtained in symbolic solutions.

m Names beginning with “der” refer to user-defined derivatives.

Creating Variables

To create a variable by storing an object:

1. Enter the object to store.

2. Enter the name of the variable. (Press (7) and type the name.)

3. Press (STO) (the STO command).

The STO command removes the object and name from the stack and

stores the object in a variable with that name. If the variable doesn’t

exist, it’s created in the current directory. (Directories are covered in

chapter 7. If you haven’t created any directories, all your variables are

created in the HOME directory.) If the variable does exist, the new

object replaces the old object.

You can store any object type in a variable.

6-2 Variables and the VAR Menu

To get the VAR menu of variables:

m Press (VAR).

The VAR menu contains a menu key for each variable in the current

directory. You can use variable keys to type variable names and to

access the contents of variables. See “Using the VAR Menu and

REVIEW Catalog” on page 6-7.

Example: Create the variable VCT1 containing the vector [1 2 3].

Enter the vector [1 2 3].

(@)@ 1 (ERC) 2 (SkC) 3 (ENTER) 1: [123]
TIOTB

Key in the variable name and press (STO). If it’s not displayed, display

the VAR menu to see the new variable.

 () VCT1 (s10) [WCTL[OFFKE&[TRAt]F1

To create a variable from a symbolic definition:

1. Enter an equation with a name on the left side and a symbolic

definition on the right side.

2. Press (&9)(DEF) (the DEFINE command).

The DEFINE command can create variables from equations. If in level

1 you have an equation with a valid name as its left side, executing

DEFINE stores the expression on the right side of the equation in the

name on the left.

Example: Use DEFINE to store 6 in the variable A. Press

'fi=6 ' ()(DEF).

If flag —3 is clear (its default state), DEFINE stores the expression

without evaluation. If you’ve set flag —3, the expression to be stored

is evaluated to a number, if possible, before it’s stored. For example,

the keystrokes *F=i@+i&"' («q)(DEF) create variable A and store in it

tla+iet if flag —3 is clear and z# if flag —3 is set.

Variables and the VAR Menu 6-3

Using the Contents of Variables

After you’ve created a variable, you can access its contents two ways:

m Fvaluate the variable’s name. (This is the most common way of
using variables.)

m Recall the variable’s contents.

Evaluating Variable Names

Evaluating a variable name calls the object stored in the variable:

Name. The name is evaluated (calling its object).
Program. The program runs.

Directory. The directory becomes the current directory.

Other Object. A copy of the object is returned to the stack.

To evaluate a variable name:

m Press the variable’s key in the VAR menu.

or
m Enter the variable name (not inside tick marks) and press (ENTER).

For example, & evaluates G, and G evaluates G.

Example: Create three variables—A containing 2, B containing 5,

and ALG containing the expression '#+E'. Then evaluate them from

the VAR menu.

Display the VAR menu and create the variables.

VAR [ALs&n[wcTi|oiFFKE|

2ENTER) (DA

5 (ENTER) () B (5T0)
O A @ B @R() ALG GT9)
Evaluate ALG, B, and A. The contents of the variables are put on the

stack.

3¢ 'A+B!
s 2
1: &
[ALs |B [A[WCTL]OIFF [KE |

6-4 Variables and the VAR Menu

Recalling the Contents of Variables

Recalling a variable puts a copy of its contents on the stack—mnothing

is evaluated.

To recall the contents of a variable:

m Press () and the variable’s key in the VAR menu.

or
m Enter the name of the variable (inside tick marks), then press
(®)(RCL) (the RCL command).

Because recalling requires more keystrokes than evaluating a variable

name, recalling is used primarily to get a copy of a variable containing

a program, directory, or name. (For other object types, just evaluate

the name.)

Example: Store a program in ADD2, then recall it.

Enter the program, then store it.

@ TTOT|
(D ADD2

Recall the program stored in ADD2.

() ALz 1: €+ + ¥
(ropE [nLs |B [#[WCTL]DIFF |

Changing the Contents of Variables

To change the contents of a variable:

m Enter the new contents in level 1, then press (&q) and the variable’s

key in the VAR menu.

or
m Enter the variable name in level 1 (inside tick marks), then press

(»)(VISIT), edit the contents, and then press (ENTER).

or
m Enter the new contents in level 2 and the variable name in level 1

(inside tick marks), then press (STO) (the STO command).

Variables and the VAR Menu 6-5

Example: Change the contents of ADD2 from # + + ¥ to & Z + #.

Enter the new contents.

(Q)(«») 2 (+) (ENTER 1: €2+ »
(b2ALGEAJVWCTL[DIFF

Store the new contents in ADD2.

(&) AL

|ISRATRI0AT|

Using Quoted and Unquoted Variable Names

The " delimiter is very important when you’re entering a variable

name. It determines whether the name is evaluated or not when you

press (ENTER). If the ' delimiter is present, evaluation is prevented—if

there’s no delimiter, the unquoted name is automatically evaluated.

To enter a variable name:

m To put the name on the stack, press (7)), then type the name or

press its VAR menu key.

m To automatically evaluate the name, type the name or press its

VAR menu key (without pressing (7).

Commands such as STO, RCL, and PURGE take a quoted variable

name as an argument from the stack.

When you evaluate an unquoted variable name, the action taken

depends on the object type of the contents. (See the earlier topic,

“Evaluating Variable Names.”)

If you execute an unquoted name that doesn’t exist (it’s a formal

variable, no variable has been created with that name), the name is
put on the stack with quotes. The ability to use names without having

to create variables enables you to do symbolic math with the HP 48.

6-6 Variables and the VAR Menu

Using the VAR Menu and REVIEW Catalog

The VAR menu ((VAR)) contains a label for each global variable you’ve
created in the current directory.

To use the VAR menu:

m To evaluate a variable name, press its menu key.

m To recall a variable’s contents, press (o) and the menu key.

m To change a variable’s contents, enter the new contents on the stack,

then press (&q) and the menu key.

m To type a variable name when the command line is in Algebraic- or

Program-entry mode, press the menu key.

m To display the REVIEW catalog of variables, press («q) (REVIEW).

(Press to return to the stack display.)

The REVIEW catalog shows the full names and contents of variables

on the current page of the VAR menu. The next keystroke you

make cancels the review, redisplays the stack, and then executes the

keystroke itself. If the VAR menu contains more than six labels, use

(NXT) and (9)(PREV) to change menu pages.

Example: Create a variable named OPTION containing 6.011991
and display the VAR menu.

6.011991
() OPTION (s70)

Recall the value of the variable.

@0t
Enter the name of the variable.

OaorrLo

| TN TRTEEERETRCETIIT|

1: 6.H611991

1z

OPTIOjAOD2ALGB# VTl

Variables and the VAR Menu 6-7

Display a catalog of the variables.

(@)(REVIEW) OFTION: 6.811991
ADD2: & 2 + %
ALG: 'A+E’
Br 5
A: 2
VCTI: [123 1

o]TNTIN
Press to return to the stack display.

To reorder the VAR menu:

1. Create a list containing variable names in the order you want them

to appear in the VAR menu. The list doesn’t have to include all

the names—omitted names are positioned after included names.

2. Press ()(MEMORY) LiELER (the ORDER command).

One way to createthe list (step 1) is to execute the VARS command
(@m “%). VARSreturns a list containing all the
variables in the current directory. You can then edit the list.

Purging Variables

To purge one variable:

1. Enter the variable name.

2. Press ()(PURGE) (the PURGE command).

Example: Purge the variable OPTION created in the previous

example. (You can type the name or use the variable’s menu key as a

typing aid.)

() OPTION (¥9)(PURGE) NTTOW|
or

O AFTIE (&)(PURGE)

6-8 Variables and the VAR Menu

To purge more than one variable:

1. Create a list (with ¢ delimiters) containing the names of the
variables to be purged. (Press to put it in level 1.)

2. Press (&9)(PURGE) (the PURGE command).

To get a list of all variables in the current directory, press

(x)(MEMORY) FEEZ(the VARS command). You can edit this list,
then execute PURGE.

Example: Suppose you had created the variables A, B, C', D, and

FE—and now you want to purge A, B, and C. First, create the list

£ A E C ¥ containing the names to purge—press (&){3).#

E= £ (ENTER). (Notice that places the command line

in Program-entry mode.) Then press (|9)(PURGE) to delete those

variables.

To purge all variables:

1. Press ()(PURGE), a typing aid that displays CLYHF in the

command line.

2. Press (ENTER) to execute the command.

The CLVAR (clear variables) command purges all the variables in the
current directory. Since this command can erase a great deal of data,

there’s no immediate-execution key for it.

Recovering from Errors

To undo a STO or PURGE command for one variable:

1. Press (»)(LAST ARG) before executing any other operations.

2. Press (STO).

If you accidentally overwrite or purge a variable by pressing or

(9)(PURGE), then ((#)(LAST returns the contents of the variable

prior to the error and the variable name to the stack. Then, you can

press to restore the variable.

Variables and the VAR Menu 6-9

Doing Variable Arithmetic

The variable arithmetic commands perform arithmetic operations

on a variable’s contents without retrieving the contents to the stack.

The commands are located in the MEMORY Arithmetic menu

(@[WEMORY)).
Variable Arithmetic Commands

Key Programmable Description
Command

(2»)(MEMORY):

: STO+ Adds, subtracts, multiplies, or divides

STO— two objects, where one is taken from

STO= the stack and the other is the contents

STO/ of a variable specified by a name on the

stack. The new object is the level 2

object plus, minus, times, or divided by

the level 1 object, and it’s stored in the

specified variable.

SINV Computes the inverse, negative, or

SNEG complex conjugate of the contents of

SCONJ the variable named on the stack. The

result replaces the original contents of

the variable.

6-10 Variables and the VAR Menu

Variable Arithmetic Examples

Command Previous Stack Contents Final

Contents Contents

of ABC of ABC

STO+ 10 = "HELC! 16

1 &

STO— 10 = 3 -7

1 'REC?

STO/ 20 2 'AEC! 10
1 =

20 2 5 0.25

1 'REC!

Two additional commands, INCR and DECR, are used primarily in

programming. They’re covered under “Using Loop Counters” on page

27-13.

Variables and the VAR Menu 6-11

Directories

Directories let you organize variables
into meaningful groupings. They also

_ let you “bury” information that you use

" infrequently and protect data that you

don’t want programs (or people) to alter
accidentally.

This chapter covers these topics:

Understanding what directories are.

Creating subdirectories.

Creating and accessing variables in directories.

Changing, purging, and manipulating directories.

Learning about Directories

The HP 48 lets you organize your variables in a hierarchical

structure—so that you can work with collections of variables, rather

than all variables at once. This helps keep your VAR menu from

getting too cluttered—and helps separate variables that aren’t related.

A directory is an object containing a collection of variable names

and corresponding stored objects. The current directory is the one

directory that’s active—the one whose variable names appear in the

VAR menu.

Directories 7-1

Consider the following directory structure.

HOME

| | | |
PROG M EQUN G

| | | |
FNCT MATH STK A CHEM PSIC

ARAY TRIG C B A

The HOME directory is always the top-level directory. In this

example, it contains four variables—two variables (PROG and
EQUN) are names of subdirectories. Moving downward, MATH is a

subdirectory of PROG, and ARAY is a subdirectory of MATH. (You

can also say that MATH 1is the parent of ARAY, PROG is the parent

of MATH, and HOME is the parent of PROG.)

The sequence of directories—starting from HOME—that leads to

a directory is the path of that directory. The path of FQUN is

£ HOME E@H . The path of ARAY is « HOME FREOG MATH ARAY .

The path of the current directory is the current path—which is shown

in the status area of the display.

Current
path —>

7-2 Directories

A directory is normally stored in a variable—and when its name

appears in the VAR menu, its menu label has a bar over the top-left
corner to show that it’s a directory.

The HOME directory is the only directory that exists when the

calculator is turned on for the first time. You create other directories

as needed.

To put the path of the current directory on the stack:

m Press ()(MEMORY) EHTH (the PATH command).

The PATH command returns the path of the current directory

in the form of a list of directory names. For example, if ARAY

were the current directory and you executed PATH, the list

£ HOME PROG MATH ARAY * would be returned to level 1. (You
can evaluate a directory path with EVAL to switch to the directory

specified by the path.)

Creating Subdirectories

To create a subdirectory in the current directory:

1. Enter a name for the subdirectory. (Press (7) and type the name.)

2. Press (&9)(MEMORY) £E[: 1 E(the CRDIR command).

The new name is added to the VAR menu. A bar over the top-left

corner of the menu label indicates that it’s a directory.

When you create a variable, it’s added to the current directory. If

the variable name already exists in that directory, the new variable

overwrites the previous contents.

Example: Create two subdirectories in the HOME directory. Name

them FQUN and PROG.

If necessary, press (»)(HOME) to make HOME the current directory.

(The status area should display ¢ HOME *.) Then, display the VAR

menu. (Your VAR menu may be different.)

VAR |IATIIST|

Directories 7-3

Create the subdirectories.

(D) EQUN (&)(MEMORY)
() PROG CEDIR

The names of the new directories have been added to the VAR menu.

A bar over the left side of each label indicates that they’re directories.

Now, switch to the FQUN directory. Its VAR menu is initially empty.

|TRTRTECERNO|

BRI

l{ HOME EQUN } |

Store '¥=SIM({x2' into a variable named WAVE. Its label is placed
in the VAR menu.

MY ®EEM X |o
(D WAVE

Accessing Variables in Directories

When you evaluate a name, the HP 48 searches the current directory

for that name. If the name isn’t there, the HP 48 searches the parent

directory, continuing upwards, if necessary, all the way to the HOME

directory. This provides several useful features (examples are taken
from the diagram on page 7-2):

® A variable in the HOME directory can be accessed from any other

directory as long as there is no other variable with the same name

along the current path. For example, variables M and G can be
accessed from anywhere. However, if the PROG directory contained

another variable M, that variable would be used when PROG,

MATH, or ARAY was the current directory.

m Variables beneath the current directory can’t be accessed. For

example, when EQUN is the current directory, you can’t access

variables in the PSIC directory.

m You can use duplicate variable names. For example, the two

variables A are untelated—one can be accessed from MATH and

ARAY | the other from PSIC.

7-4 Directories

Changing Directories

To switch to any directory:

m Enter a list (with £ ¥ delimiters) starting with HOME and
containing the path to the directory, then press (EVAL).

To switch to a subdirectory:

m Press the menu key for that directory in the VAR menu.

or
m Enter the unquoted directory name and press (ENTER).

or
m Enter a list containing the path to a lewer-level directory you want

and press (EVAL).

To switch to a higher directory:

m To switch to the next higher directory, press (¢9)(UP) (the UP

command).
m To switch to the HOME directory, press (»)(HOME) (the HOME

command).

m To switch to any higher directory along the current path, enter the

unquoted directory name and press (ENTER).

Purging Variables and Directories

You use the PURGE command to delete selected variables in the

current directory. See “Purging Variables” on page 6-8 for details.

But if you want to delete a directory, you usually must delete all

variables in that directory first.

To purge all variables in a directory:

m Press (@)(PURGE}—a typing aid that displays CL%FAR in the

command line—then press to execute the command.

or

a Press (G)(MEMORY) #HES, then press ()(PURGE).

Directories 7-5

The CLVAR command purges all variables in the current directory.

The VARS command returns a list containing all the variables in the

current directory. Empty subdirectories are successfully purged by

these steps. However, if the current directory contains a subdirectory

that’s not empty (it contains variables), you get an error, leaving that
subdirectory as the first entry in the VAR menu.

To purge an empty directory:

1. Switch to its parent directory.

2. Enter the directory’s name. (Press (), then press the directory’s

menu key or type its name.)

3. Press («q)(PURGE).

Or, after a directory is empty, you can purge it with other variables

using the PURGE or CLVAR command.

To purge a directory that’s not empty:

1. Make sure you know what you’re deleting before you do this.

2. Switch to i1ts parent directory.

3. Enter the directory’s name. (Press (7)), then press the directory’s

menu key or type its name.)
4. Press (|q)(MEMORY) FGLIE (the PGDIR command).

Using Directory Objects on the Stack

A subdirectory is a variable containing a directory object. Creating a

subdirectory with CRDIR (create directory) is analogous to creating
other variables with STO, except that you are specifically creating

a variable containing an empty directory object. For example, ()

EQUN LE[LIE creates a directory EQUN by storing an empty

directory object into a variable named EQUN .

To recall a directory object to the stack:

m Press () followed by the directory’s menu key in the VAR menu.

or
m Enter the directory’s name (press (7), then press the directory’s

menu key or type its name), then press (@) (RCL).

7-6 Directories

Directory objects are displayed as:

DIR

name; objecty

names objects

EMD

where name,, is the name of a variable in the directory, and object,,

is the contents of that variable. The words [*IF and EM[: are the

delimiters of the directory object. (You can also create or edit a

directory of this form in the command line.)

Because subdirectories are variables containing a particular type of

object, you can manipulate them like other variables. For example,

you can recall them to the stack and then store them in another

directory. This provides a way to copy or move subdirectories.

HOME is a special directory that is not a variable. Therefore, you

can’t manipulate it as an object the way you can manipulate other

directories.

Example: Change the directory name FQUN to BIO.

Switch to the HOME directory, then recall the FQUN directory to the

stack.

@)(o)
(D EQUN @)D

 1: DIR
gEHE 'W=SINCR)!

[PrOG[EcUMaboa[ALGB&
Store it using the new name.

() BIO |TTRIETENT|

Purge the old directory, then check the VAR menu.

|ANTTRTI|

A
(s2)(MEMORY) FOLTH

Directories 7-7

7 Note If you recall a directory to the stack and then change

i the directory contents, the copy on the stack will

% change as well.

 7-8 Directories

More about Algebraic Objects

Algebraic objects (algebraics for short) are the
vehicle for symbolic mathematics in the HP 48.

This chapter addresses topics that will help you

understand better the behavior of algebraics:

m Evaluation of algebraics.

m Rules of algebraic precedence.

m Expressions and equations.

Entering Algebraics

You can enter equations and expressions in the command line—or

you can use the EquationWriter application. (The EquationWriter

application is described in chapter 16.) Algebraic objects are delimited

by two ' marks.

To enter an algebraic in the command line:

1. Press (7).

2. Key in the numbers, variables, operators, and parentheses in the

expression or equation in left-to-right order. Press () to skip past

right parentheses.

3. Press (ENTER).

For algebraic syntax, arguments usually appear in their common

locations: before and after functions like + and /, or inside
parentheses after functions like SIN and MAX.

More about Algebraic Objects 8-1

Evaluation of Algebraics

Fvaluation moves an algebraic towards its numeric value.

To evaluate an algebraic in level 1 (or in the command line):

m Press (the EVAL command).

The Evaluation Process

To understand what to expect when you evaluate an algebraic,

recognize that an algebraic is equivalent to a program (introduced in

chapter 1). A program is simply a series of objects enclosed by #=

delimiters. Evaluating a program means: “Put each object in the

program on the stack, and, if the object is a command or unquoted

name, evaluate it.” The same procedure is carried out when an

algebraic is evaluated. Names in algebraics normally aren’t quoted (if

necessary, you can use the QUOTE function to prevent evaluation).

Suppose variable X contains the value 3, and Y has value 4. When

you execute 'H+Y' EWAL, 7 is returned to the stack. Here’s how:

1. The name X is evaluated, returning = to level 1 of the stack.

2. Y i1s evaluated, returning 4 to level 1 and pushing = to level 2.

3. + is evaluated, taking the arguments = and 4 from the stack and

returning 7.

Now suppose variable X contains the value 3 and variable T is

formal—meaning it has no value stored in it, it doesn’t exist. When

you execute 'H-T*' EWFAL, 'Z-T' is returned to the stack. Here’s

how:

1. X is evaluated, returning = to level 1.

2. T is evaluated. Because T has no value associated with it, it just

returns 'T* to level 1, pushing = to level 2.

3. This time ~ takes arguments = and 'T' from the stack. Because

'T' is an algebraic, — returns an algebraic '=-T" to level 1.

8-2 More about Algebraic Objects

Stepwise Evaluation

Evaluation is a stepwise process—EVAL causes only one level of

substitution.

Example: Evaluate 'JFR#E', where A contains 'E+S', B contains

"Hezt) and X contains E.

Create the three variables.

(D) B @) 5 (ENTER) () A (5T0) ITTTOO|
OX @2 E@TER) O B GO
3XG0

Evaluate 'JA#E'. Each occurrence of A evaluates to 'E+%5' and each

occurrence of B evaluates to 'Hs21.

() AX)B 1: '[(B+2)#(K20 !
® TTRIT

Evaluate the algebraic again. Once again, each occurrence of B

evaluates to '#-2'. Furthermore, each occurrence of X evaluates to

1: 'J(Hs2+5)%]1.5'
STTTATAT

Evaluate again to complete the process.

1: 3. 8242646352
B0[PrOG[abba[ALGB&

Symbolic and Numeric Results

In the previous example, the HP 48 was in Symbolic Results mode—

repeated evaluation resulted in the progressive resolution of symbolic

terms until a numeric result was obtained. This is the default state for

the calculator. If you select Numeric Results mode, algebraics evaluate

directly to a number in one step.

More about Algebraic Objects 8-3

To switch to Numeric Results mode or to Symbolic Results mode:

m Press ()(WODES)
{Z%ME means Symbolic Results mode is active. Z%#H means

Numeric Results mode is active.

Or, you can set or clear flag —3 to change the results mode. The

results mode governs execution of functions—algebraics are affected

indirectly.

Example: Evaluate the algebraic from the previous example in

Numeric Results mode. Then restore Symbolic Results mode.

(€(MoBES)¥ 1: 3. 8242646352
O AX)B BNEERGOEETD

B

Note that in Numeric Results mode, evaluation of an algebraic that
contains a formal variable (one in which no object is stored, one

that doesn’t exist) generates an error because that variable prevents
obtaining a numeric result. For example, in Numeric Results mode,

evaluation of '#+T' where X has value 3 and T is formal leaves Z in

level 2 and 'T' in level 1, and displays the message:

+ Errors

Undef ined Hams

To evaluate an algebraic directly to a numeric resuit:

m Press ()(>Num) (the =NUM command).

The —NUM command evaluates an algebraic in level 1 (or in the
command line) directly to a numeric result regardless of the results
mode:

1. Switches to Numeric Results mode (if Symbolic Results mode is

active).
2. Executes EVAL.

3. Turns Symbolic Results mode back on (if it was on before execution
of =NUM).

8-4 More about Algebraic Objects

Automatic Simplification

When you evaluate certain functions, they replace certain symbolic

arguments or combinations of arguments with simpler forms. For

example, when you evaluate '1%4', the % function detects that one of

its arguments is 1, so the expression is replaced by ''. The following

table shows several examples of automatic simplification.

Original Expression Simplified Expression

"RES-

"ERPOLMORY !

'COMJCRECH Y !

Rules of Algebraic Precedence

The precedence of operators in an algebraic determines the order of

evaluation of terms. Operations with higher precedence are performed

first. Algebraics are evaluated from left to right for operators with the

same precedence. The following list gives HP 48 functions in order of

precedence, from highest (1) to lowest (11):

1. Expressions within parentheses. Expressions within nested

parentheses are evaluated from inner to outer.

Functions like SIN or LOG that require arguments in parentheses.

I (factorial).

Power () and square root ().

Negation (-), multiplication (%), and division ().

Addition (+) and subtraction (-).

I
A

T
o
l

Comparison operators (== # < » £).

More about Algebraic Objects 8-5

8. Logical operators AND and NOT.

9. Logical operators OR and XOR.

10. The left argument for | (where).

11. Equals (=).

Example:

CHeER! Cubes A, then adds B to that quantity, since ™ has a
higher precedence than +.

"ATCEEEY! Raises A to the power 3+B, since an expression

within parentheses has a higher precedence than .

Expressions and Equations

An ezxpression is an algebraic that does not contain an = function.

An equation is an algebraic that does contain an = function. For

example, "SIHCE~ATAM2%+&%5 " is an expression, and

' is an equation. EIMCRI=ATAMNC 2RDb

When you use an equation as the argument of a function, the function

1s applied to both sides, and the result is also an equation. For

example, 'H=Y"' SIH returns 'HIHCHI=SIHOY 2.

In the HP 48, the = sign generally means equating two expressions.

The DEFINE command ((«9)(DEF)) interprets = differently—it stores
the expression on the right side of the = sign in the name on the left

side.

8-6 More about Algebraic Objects

Related Topics

This chapter does not cover all aspects of algebraic objects—they’re

used in many different ways in the HP 48. You can find related topics

in the following sections of the manual:

m “Using Symbolic Constants” on page 9-15.

m “Using Symbolic Arguments with Common Math Functions” on

page 9-18.

m “Using Complex Numbers in Algebraics” on page 11-7.

m “Using Unit Objects in Algebraics” on page 13-7.

In addition, in chapters 17, 18, 19, 22, 23, and 25 through 31, you’ll

see how algebraics are used extensively in the HP Solve application,

plotting, algebra, calculus, and programming.

More about Algebraic Objects 8-7

Part 2

Hand Tools

9
Common Math Functions

The MTH menu ((MTH)) is a menu of four
specific mathematical menus. Many of the

common math functions described in this

chapter either are found on the keyboard or

are located in the PARTS, PROB, HYP, and

VECTR menus, which are submenus of the

MTH menu. Press to see menu labels

for these submenus.

Algebraic Syntax and Stack Syntax

As described under “Built-In Functions and Commands” on page 4-10,

functions are a subset of commands. The difference between functions

and other commands is that functions can be included in algebraics.

This means that functions can take their arguments from the stack

like other commands, or they can be executed in algebraic syntax as

part of a symbolic expression.

Example: Algebraic Syntax. Calculate the sine of 30° using a

symbolic expression.

Make sure Degrees mode is set.

(«<)(MODES BEG |EEE0TTDI|

Activate Algebraic-entry mode and enter the expression, supplying the

argument in algebraic syntax.

O @En) 30 (ENTER) 1: 'SINC3E)
[0hnGRAD|12a2Fad

Common Math Functions 9-1

Evaluate the expression.

1: .3
[TTNDW

Example: Stack Syntax. Calculate the sine of 30° using an
argument from the stack.

Enter the argument on the stack.

30 i]

Calculate the sine of the argument.

SIN 21 .5

Keep in mind as you work through the rest of this chapter that you

can execute these functions both ways. The rest of this chapter

describes:

m The various sets of functions for manipulating real numbers. You

can also use many of these functions with other object types.

m The HP 48 built-in symbolic constants—, e, i, MAXR (maximum

real number), and MINR (minimum real number).

9-2 Common Math Functions

Arithmetic and General Math Functions

Many arithmetic and general math functions are found on the

keyboard.

Arithmetic and General Math Functions

Key Programmable Description

Command

INV Inverse.

Vv Square root.

D) SQ Square.

NEG Change sign. Changes the sign of the

number in the command line. When no

command line is present, executes

a NEG command (changes the sign of

the argument in level 1).

+ Level 2 + level 1.

Level 2 — level 1.

Level 2 x level 1.

Level 2 = level 1.

Level 2 raised to the level 1 power. The

A command is

H
o
®
o
®

algebraic syntax for the

tytot.

XROOT The zth (in level 1) root of a real value
in level 2. The algebraic syntax for the

XROOT command is 'H#EO0T zays ',

g

Example: Calculate 2.711%1-6 First, enter 2.7.

2.7 1: 2.7
[EIEE)ITNIe

Next, calculate 1.1 x 1.6.

1.1 et oy
1.6 (%) 1: 1.76

[MOTNII

Common Math Functions 9-3

Now, do the exponentiation.

1: 3. 74381218967
0TTDI

Example: Calculate v/28.

28 @@ |1= 3. B365889?188I
)TTNTII

Example: Enter the complex number (2,4) and negate it.

@2 4 1: (=2,-4)
[DES

o]

RAD[GRAD[HYZ

o)

o2

|

Rds

|

Compare the previous results to what happens when you press

immediately after keying in the 4.

@) 2 (5PS) 4 (/) (ENTER) Ff (E%,—ig

OR
Example: Use a function name (unevaluated) in an algebraic
expression.

O®)5 1: g
[0ESA0[GRAD]272Fa2Fdd

Evaluate the expression.

1: 2. 2368679775
[0ESRAD[GRADHYSFddFdd

Fraction Conversion Functions

Two functions enable you to find a “best-guess” fractional

approximation to a real number. The fraction is returned as an

algebraic expression involving the division of two integers.

9-4 Common Math Functions

Fraction Conversion Functions

Key Programmable Description

Command

YD) —Q Quotient approximation. Returns
“best-guess” fraction for a real number,

reflecting the accuracy implied by the

display mode.

(ELGEERA) (page 2):
—Qm Quotient-7 approximation. Returns

“best-guess” fraction for a real number,

possibly including = and reflecting the

accuracy implied by the display mode.

The accuracy of the fractional approximation is dependent on the

display mode. If the display mode is Standard ((«q)(MODES) &7TL),
the approximation is accurate to 11 significant digits. If the display

mode is n Fix, the approximation is accurate to n significant digits.

—Qm computes both the fractional equivalent of the original number

and the fractional equivalent of the original number divided by 7,

and then compares the denominators. It returns the fraction with

the smallest denominator—this fraction might be the same fraction

returned by —Q, or it might be a different fraction multiplied by =.

Example: Convert 7.896 to a pure fraction using —Q.

789 @) émmmm;?%%

Common Math Functions 9-5

Exponential, Logarithmic, and Hyperbolic
Functions

Exponential and Logarithmic Functions

Key Programmable Description

Command

(x)@%) ALOG Common (base 10) antilogarithm.

()(og) LOG Base 10 logarithm.

EE) EXP Natural (base e) antilogarithm.

(>N LN Natural (base e) logarithm.

Hyperbolic Functions

Key Programmable Description

Command

MTH HiF

SINH Hyperbolic sine: (e® —e™")/2.

ASINH Inverse hyperbolic sine: sinh™! z.

COSH Hyperbolic cosine: (e* +e~%)/2.

ACOSH Inverse hyperbolic cosine: cosh™! z.

THHH TANH Hyperbolic tangent: sinh z/cosh z.

HITHH ATANH Inverse hyperbolic tangent:

sinh_l(z/\/l —z?).

EXPM e’ — 1. Argument z is in level 1.

(EXPM is more accurate than EXP

when the argument to e” is close to 0.)

LHEL LNP1 In (z 4+ 1). Argument z is in level 1.
(LNP1, In plus 1, is more accurate than

LN when the argument to In is close to

1)
Example: Calculate the hyperbolic sine of 5.

5 Hil 1: 4. 2032165778
[ZINH[A5INH]COZH[ACOZH]THNR[RTAN |

9-6 Common Math Functions

Percent Functions

Percent Functions

Key Programmable Description
Command

FRETE (page 2):

% A percent of B, or B percent of A (A is
in level 2, B is in level 1): (A x B)/100.

%CH The percent change from A to B, as a

percentage of A (A is in level 2, B is in

level 1): ((B — A)/A) x 100.

BT %T The percent of total (the total, A, is in
level 2 and the value, B, is in level 1):

(B/A) x 100.

Example: Calculate 12.5% of 650.

650 12.5 1: 8l.23
: IATATNNN

FRET :
Example: Calculate the percent change between 8 and 8.5.

8 8.5 1: 6.25
LN [is[0 [= [2CH [=T |

Example: If 35 out of 500 units fail a test, what percentage failed?

500 I 2
35 =F IATATATS

Common Math Functions 9-7

Trigonometric Functions, Angle Mode, and ©

Selecting the Angle Mode

The angle mode determines how the calculator interprets angle

arguments and how it returns angle results.

Angle Modes

Mode Definition Annunciator

Degrees /360 of a circle. (none)

Radians 1 /o7 of a circle. AL

Grads !/400 of a circle. GRAD
To change the angle mode from the keyboard:

m Press (9)(RAD) to switch between Radians mode and Degrees mode.
(If Grads mode had been previously selected in the MODES menu,

this switches between Radians mode and Grads mode instead.)

or

m Press (9)(MODES) (NXT) (NXT), then [LEGL , EHD , or GEAD .
The = in the menu label indicates the active mode.

Trigonometric Functions

For trigonometric functions, the angle arguments and results are

interpreted as degrees, radians, or grads, depending on the current

angle mode.

9-8 Common Math Functions

Trigonometric Functions

Key Programmable Description

Command

SIN SIN Sine.

(«x)(AsIN) ASIN Arc sine.

COS COS Cosine.

(9)(Acos) ACOS Arc cosine.

TAN TAN Tangent.

(®)(ATAN) ATAN Arc tangent.

Example: Set Radians mode, then calculate the sine of 1.1 radians.

()(MODES) RAL 1: . 9912673600861
11 |mmmmmmrml

The Constant »

The number 7 cannot be represented exactly in a finite number of

decimal places. The calculator provides a 12-digit approximation

(3.14159265359) to w. The HP 48 also provides a symbolic constant
that represents 7 exactly.

In Raedians mode, the SIN, COS, and TAN functions recognize

the argument 7 and return exact results. SIN and COS also

recognize 7/5.

To enter the symbolic constant ' 7' in level 1:

m Press (q)(@).

If Numeric Results mode is active (the MODES menu shows @ &%|

flag —3 is set), you get the numeric approximation instead.

To replace ‘= with its 12-digit value:

m Press (2)(NUM) (the —=NUM to-number command).

See “Using Symbolic Constants” on page 9-15 for more information

about 7 and other symbolic constants.

Common Math Functions 9-9

Example: Calculate cos ("/2) and cos (7/4). (Thi
the calculator is in Symbolic Results mode—the |

1 of the MODES menu has a = in it.)

example assumes

Z4He label on page

If necessary, switch to Radians mode. Then, put 'w' in level 1 and

divide it by 2.

()(MOBES) (5XT) (55T) L: 2!
@23 ITR0TDI

Calculate the cosine.

cos 1:
ITTDI

Now, enter /4.

B@4E 2
1: '1-4'
IRTTTI

Now, calculate cos (7/4).

cos 21 A
1: 'COSCw-4)"
DEG[RAlGRADHVEB2Rdd

The HP 48 retains the symbolic constant 7 and returns a symbolic

expression. Use —NUM to calculate a numeric result.

(>NUM) 2t B
=) 1: . FB7186781186

DEiSRls[GRAD402fodFdd

Press - to switch back to Degrees mode.

9-10 Common Math Functions

Angle Conversion Functions

Two commands in the MTH VECTR menu convert values between

decimal degrees and radians. Four other commands in the TIME
menu let you do degrees-minutes-seconds calculations using

hours-minutes-seconds (HMS) format. See “Making Time and Angle
Calculations” on page 24-18.

In Degrees mode, angle arguments and results use decimal degrees.

Angle Conversion Functions

Key Programmable Description

Command

MTH Z1E(page 2):

b D—R Degrees to radians. Converts a number

from a decimal degree value to its

radian equivalent.

R—D Radians to degrees. Converts a number

from a radian value to its decimal

degree equivalent.

DTV (page 3):
S —HMS Decimal to HMS. Converts a number

from decimal degrees to HMS format.

HHE+ HMS— HMS to decimal. Converts a number

from HMS format to decimal degrees.

HMS+ Adds two numbers in HMS format.

HMS-— Subtracts two numbers in HMS format.

Common Math Functions 9-11

The following illustrates the conversion to and from HMS format:

Decimal Hours-Minutes-Seconds

Format Format

=HMS S
142673.~1.2536228
TH_' HMS » ““‘“j{

Hours (or Fractional seconds
degrees)

Seconds

hours (or degrees)

Hours (or degrees)

Example: Convert 1.797 radians to degrees. First, enter 1.797.

1.79 (ENTER) 1: '1.79%7'
@@® RTTN)e

Use the R—D function. (The function acts independently of the
current angle mode.)

 (MTH) HEL NXT 1: 'R+0(1, 79%m)'
IPTNTT

Use —NUM to obtain a numeric result.

C) 1 322.2
IRTTWT

Example: Add 25.2589 degrees to 34 degrees, 55 minutes, 31.22

seconds.

Convert 25.2589 degrees to HMS format.

[FHME[HMERS+JHME-]]|

25.2589 (&)(TWE) (NXT) (NXT) I: 25. 153204

Add 34 degrees, 55 minutes, and 31.22 seconds to the result.

34.553122 s 1: 6. 118376
[PHHZ[HMzZ %[HHEs[HE=][]

9-12 Common Math Functions

Factorial, Probability, and Random Numbers

Factorial, probability, and random number commands are found in the

MTH PROB menu ((MTH) FREOE).

Probability Commands

Key Programmable

Command

Description

COMB

FERN PERM

i !

FHHD RAND

RDZ

Number of combinations of n (in level
2) items taken m (in level 1) at a time.

Number of permutations of n (in level
2) items taken m (in level 1) at a time.

Factorial of a positive integer. For

non-integers, ! returns I'(z + 1).

Returns the next real number n

(0 < n < 1)in a pseudo-random

number sequence. Each random number

becomes the seed for the next random

number.

Takes a real number from level 1 as a

seed for the next random number (from
RAND). 0 in level 1 creates a seed
based on the clock time. A sequence of

random numbers can be repeated by

starting with the same nonzero seed.

Example: Calculate the number of combinations and permutations of

10 objects taken 4 at a time.

FROB
10 (ENTER) 4 ¢)T

ot c1d
: ob48

[corE[PERM]¢RAND]ko2|

Common Math Functions 9-13

Other Real-Number Functions
The functions in the following table are found in the MTH PARTS

menu ((WTH) |

Example
Command/Description

Input Output

ABS Absolute value. i: -1z |1 iz

CEIL Smallest integer i: -3.5 i =

greater than or equal to the

argument. iz 2.5 iz 4

FLOOR Greatest integer 1: .9 1 &
less than or equal to the

argument. 1z -5, 9 iz -7

FP Fractional part of the 1: S.234 |1 254

argument.

1: -5.224 1: -. 234

IP Integer part of the 1: -S.234 i =5

argument.

iz .23 i: I

MANT Mantissa of the 1: 1.28E12 i 1.22

argument.

MAX Maximum; the Zs S| 1 5

greater of two arguments. iz -G

MIN Minimum; the lesser = = 1z —&

of two arguments. 1z =

MOD Modulo; remainder Z: & i: z

of 4/g. AMOD B = 1: 4
A — B FLOOR (4 /p).

9-14 Common Math Functions

Command/Description

RND Rounds number Zr 1.2245678

according to argument: i:

0 < n <11 rounds to n FIX,

—11 < n < —1 rounds to n Z: 1.2245678

significant digits, and n = 12 i: -

rounds to the current display

format.

SIGN Returns +1 for i: -2.7 s -1

positive arguments, —1 for

negative arguments, and 0

for arguments of 0.

TRNC Truncates number

according to argument:

0 < n < 11 truncates to

n FIX, =11 <n < -1
truncates to n significant i:

digits, and n = 12 truncates

to the current display

format.

XPON Exponent of the 1: 1.22E45 1= 45

argument.

0 e
t

o
t

a
2
D
X
g L =

L
I

P e
t

for
ele

i 5
l
J T

i

b
t

[
l

i

I e [
]
i o L [}

Using Symbolic Constants

The HP 48 has five built-in constants: =, e, i, MAXR (maximum

real number), and MINR (minimum real number). Use lowercase
letters for ¢« and e. The examples under “The Constant 7#” on page 9-9

show the use of 7. The constant ¢ is covered under “Using Complex

Numbers in Algebraics” on page 11-7.

Common Math Functions 9-15

Example: The following keystrokes calculate e?'5 two ways—using

and using e.

First, use the keyboard function.

25 (@E) {: 12. 1824939667
T0IGAE

Second, enter a symbolic expression using e. (The keystrokes for the

letter “¢” are (@) (&) E.)

OeD25 ? 12. 182493%5%?

[cOHE[PERH]![RAND]D2|

Execute —NUM to completely evaluate the expression to a number.

)(=Num) 2t 12.1824939667
1: 12. 1824939667
TR=TTITRT

Using Values for Symbolic Constants

You can use the constants in their symbolic form or as their

machine-approximated values. When the MODES menu shows

Z%Mum | which is its default state, functions operating on symbolic

constants return symbolic results. This state is called Symbolic Results

mode. When the menu shows %M | Numeric Results mode is

active—functions return numeric results.

To switch to Numeric Results mode or to Symbolic Results mode:

m Press (&@)(MODES) &M

Example: Assuming Symbolic Results mode is currently active (the

MODES menu shows Z'%s), compare the effects of entering = and e

in Symbolic Results mode and in Numeric Results mode.

Enter 7 and e in Symbolic Results mode. (The keystrokes for the
letter “e” are (@) () E.)

@@ e

9-16 Common Math Functions

Enter 7 and e in Numeric Results mode.

@@ -@D ;
c.

STGRTRT

Press & ill to restore Symbolic Results mode.

Using Flags to Interpret Symbolic Constants

System flags —2 (Symbolic Constants) and —3 (Numeric Results)
control whether evaluating symbolic constants return symbolic or

numeric results. The default setting for both flags is “clear.”

To control the evaluation of symbolic constants:

m To leave a symbolic constant unchanged, clear flags —3 and —2

(their default states). Press ((»)(®NUM) to replace the constant with

its numeric value.

m To replace a constant with its numeric value, set flag —3.

m To replace a constant with its numeric value exzcept when it’s the

argument of a function, clear flag —3 and set flag —2. Press

or (®)(=NUM) to replace the function with the numeric result.

The —NUM command always returns a numeric result, regardless of

the flag settings. (The MODES menu always shows the state of flag

—3: mvHe if clear, 2¥H if set.)

Example: To see the effect of the flag settings, clear both flags and

enter w. (Note the right shift.)

2 (=»)(MODES LBE 1: !
3 e [THEW]KELM[STOFRELF|ZFCF

@@

Now, set flag —2 and press (|9)(ar). It produces a numeric result.

204 BE % 3 14159265%‘%'
2@ TOSTAR

Common Math Functions 9-17

Now, enter the ezpression w. Because flag —3 is clear, the result is

symbolic.

O@)@ ENTER) 3:

%= 3. 14139265359
: n‘

Divide the symbolic 7 by 2.

Q)

EVAL returns a numeric result with the current flag settings.

TNN

Press 2 (*/2) to return to the default flag settings. (If you set

flag —3, press 3 (/)G tE)

Using Symbolic Arguments with Common Math
Functions

Functions that take real numbers as arguments also take symbolic

arguments in the same way. For example, if ABS were executed with

an argument of X instead of a number, the expression 'RES{H*

would be returned to the stack. Then, if the variable X contained a

value, pressing would evaluate the expression for that value. (If

flag —3 is set, a function taking a symbolic argument from the stack

automatically evaluates to a number, if possible, when the function is

executed.)

9-18 Common Math Functions

10
User-Defined Functions

The HP 48 lets you complement the built-in

functions (such as SIN, LN, and MAX) with your
own user-defined functions. A user-defined function

behaves like a built-in function is several ways:

m It takes its arguments from the stack or in algebraic syntax.

m It takes symbolic arguments.

m It can be differentiated.

Creating a User-Defined Function

The DEFINE command lets you create a user-defined function

directly from an equation. The equation must have the form

'namet arguments r=expression .

To create a user-defined function:

1. Enter an equation that specifies the function name and its

arguments on the left side, and the expression that defines the

calculation on the right side. On the left side, use commas to

separate multiple arguments.

2. Press (&9)(DEF) (the DEFINE command).

Example: Use DEFINE to create CMB, a user-defined function that

calculates the number of combinations C' of n different items taken 1,

2,3, ... natatime: C =2" — 1.

User-Defined Functions 10-1

Enter the equation for CMB. (Use (&) to type lowercase letters.)

O CMB () n () 1: 'CMBCn)=2"n-1"
Q20901 [THEW[RCLM]STOF[RCLF]SFCF

Execute DEFINE. Select the VAR menu and note that it now contains

the user-defined function CMB.

(w)(DEF)

Example: Create a user-defined function to calculate the

surface area of a cylinder from its radius and height. Enter

TECYL Oy hrsZewersheZenrT2t and press () (DEF).

Executing a User-Defined Function

A user-defined function is executed just like a built-in function—it

can take numeric or symbolic arguments, either from the stack or in

algebraic syntax.

To execute a user-defined function:

m To use the stack, put the arguments on the stack in the same order

they appear in the left side of the function definition (the last

argument should be in stack level 1), then press the function key in

the VAR menu (or type the function name and press (ENTER)).

m To use algebraic syntax, press (7), press the function key in the

VAR menu (or type the function name), press (|)(()), enter the

algebraic arguments in their proper order and separated by commas,

then press (ENTER) (or press (EVAL) to evaluate the expression).

Example: Execute the user-defined function CMB from the earlier

example to make the following calculations.

Calculate the total number of ways to combine one or more of four

items (n = 4).

4 DHE 1: 15
Immmmflnl

10-2 User-Defined Functions

For the same value of n, calculate the combinations in algebraic

syntax.

O tneE M+ Z: 15
| I: 15

@ CHEEID|PEOGADDRALGE

Calculate CMB(Z) in algebraic syntax, where Z is a formal variable.
(Purge Z to make sure is doesn’t contain an object.)

Z ()(PURGE) 1% 1pag_{1

E&AD

Differentiating a User-Defined Function

User-defined functions operate much like built-in functions—you can

even differentiate user-defined functions. Differentiation is covered in

detail under “Differentiating Expressions” on page 23-1.

Example: Calculate

—cot z
dx

where cot ¢ = cosz/sinz. The HP 48 has no built-in cotangent
function. However, you can create a user-defined function for

cotangent. (This example assumes that variable X doesn’t exist in the

current directory—you can press () X («q)(PURGE).)

First, select Radians mode. Then, enter the defining equation for the

cotangent function.

(®)RAD) (if necessary) 1: }":[;,DT(HFEDS(H)J’SIN(
D COT @O X B@E) '
(cos) X () () (SIN) X (ENTER) [CHE]®

|

B

|

h[WAVE]|

User-Defined Functions 10-3

Execute DEFINE to create the user-defined function COT. Next,

enter the expression 'COTCx3 ') enter the variable name X to indicate

the variable of differentiation, then perform the differentiation. (If

variable X exists, you probably won’t get this answer.)

(@@ED) 1t '=(SINCX)/SINCH))-
@AR) (1) EOT @D X ENTER) COSERI<COSTH)/ST
%% IRSTT(eTT

Press (&9)(RAD) to return to Degrees mode.

You can use any variable as an argument to COT—that variable is

automatically substituted into the original definition for COT'.

Nesting User-Defined Functions

Just like built-in functions, user-defined functions can be included in

the defining expression of a user-defined function.

Example: Write a user-defined function to calculate the ratio of

surface area to volume of a box. The formula for this calculation is

A 2(hw + hl + wl)

V hwl

where h, w, and [are the height, width, and length of the box.

First, create a user-defined function BOXS to calculate the surface

area of the box. Use the EquationWriter application to key in the

equation. (Use (#) to type lowercase letters.)

()(EaTATION)
BOXS (&)h GF9) w GF9) | &)
@E2X@@L@w@Dh [3lho, 1)=2:(huthl+wll
PR DvE!

20T[CHEB0[PROG[AODEALG

Enter the equation and create the user-defined function.

|ONTLTT
(@(@ED)

10-4 User-Defined Functions

Now create a user-defined function BOXR to calculate the ratio of

surface area to volume. Use the EquationWriter application to key in

the equation.

(+2) (EQUATION)
BOXRQ) xP y 5P z ()
@(AR) EOHE (@)X
Gy ER)z)Dx Xy ®) 2

_BOXS (%4, 2)

szl2R(%,4,2)

TRTTT(TT
Enter the equation and create the user-defined function.

|WATs
(@(@ED)

Use BOXR to calculate the ratio of surface area to volume for a box

9 inches high, 18 inches wide, and 21 inches long. Enter the height,

width, and length, then execute BOXR.

9 18 21 1: . 428571428571
(VAR) ECHE IIT

Note that BOXS was defined using h, w, and [as variables, and that

BOXS takes z, y, and z as arguments in the definition for BOXR. It

makes no difference if the variables in the two definitions match—each

set of variables is independent of the other.

The Structure of a User-Defined Function

A user-defined function is actually a program:

m It consists solely of a local variable structure whose defining

procedure is a symbolic expression. The syntax is:

% < pame; nameg ... name, 'erpression’

m It takes an unlimited number of arguments (can use an unlimited

number of local variables), but returns one result to the stack.

Local variables are described under “Using Local Variables” on page

25-13.

User-Defined Functions 10-5

Example: Use VISIT to see the structure of user-defined function

CMB from the example on page 10-1.

@R () e @EED « > n '2nel
b 3l

Press to return to the stack display.

You can see that the command sequence

CHEOnI=Etn-10 DEFIME

is equivalent to creating the program

£ o o PEm-l

and storing it in CMB.

10-6 User-Defined Functions

11
Complex Numbers

Most functions that work with real numbers also

work with complex numbers. So, the way you

use complex numbers 1s similar to the way you use

real numbers.

This chapter covers:

Entering complex numbers.

Interpreting and controlling the display format of complex numbers.

Assembling and taking apart complex numbers.

Calculating with complex numbers.

Using complex numbers in algebraics.

Determining when to use complex numbers and when to use vectors.:

The examples in this chapter assume the calculator is set to Degrees

mode. (Press («9)(MODES) 5 to set Degrees mode.)

Displaying Complex Numbers

You can display complex numbers as either rectangular coordinates or

polar coordinates—in Rectangular mode or in Polar mode.

To display rectangular coordinates for complex numbers:

u Press ()(POLAR) until no coordinate annunciator is on.

or

= Press (a7) (MODES) (NXT) (NXT)

Complex Numbers 11-1

To display polar coordinates for complex numbers:

m Press ()(POLAR) until the R«Z or Fis coordinate annunciator is

on.

or
m Press (q)(MODES) (NXT)(NXT) REsZ or Eas

Even though only two coordinate modes are needed for complex

numbers, three coordinate modes are available on the HP 48 (to
provide for three-dimensional vectors)—Rectangular mode, Cylindrical

mode, and Spherical mode. Cylindrical mode (E«Z) and Spherical

mode (R<£<) are interchangeable for complex numbers—they’re both

Polar mode.

Complex numbers are displayed inside parentheses. In rectangular

form, the real and imaginary parts are separated by a comma. (If

the Fraction Mark is set to comma, they’re separated by a semicolon

instead.) In polar form, the magnitude and phase are separated by a

comma and angle sign (). (The angle is based on the current angle
mode: Degrees, Radians, or Grads.) Regardless of how complex

numbers are displayed, the HP 48 stores them internally in rectangular

form.

Display Modes

—— _' ! — Rectangular Polar
Real axis L a

R (a,b) r, <0)
L Imaginary axis

11-2 Complex Numbers

Entering Complex Numbers

You can enter complex numbers using either rectangular coordinates

or polar coordinates.

To enter a complex number:

m To enter rectangular coordinates, press (49)(()), enter the

coordinates separated by or ()(), and press (ENTER).

m To enter polar coordinates, press (|9)(()), enter the coordinates

separated by (»)(&), and press (ENTER).

m To use the current coordinate mode, enter the two coordinate values

and press (|q)(2D) (but only if flag —19 is set). (Don’t enter x.)

Flag —19 (Complex Mode) specifies whether (9)(2D) (the —V2

command) creates 2D vectors (clear) or complex numbers (set).

The internal rectangular representation of all complex numbers has

the following effects on polar numbers:

m 0 is normalized to the range £180° (+7 radians, £200 grads).

m If you key in a negative r, the value is made positive, and @ is

increased by 180° and normalized.

m If you key in an r of 0, 6 is also reduced to 0.

Example: Enter the number 3 + 4i (rectangular coordinates). First,
make sure Degrees angle mode and Rectangular coordinate mode are

set.

@mmxD) |TNTTN|
BEG B

Enter the rectangular complex number.

@)@ 3 (5PS) 4 (ENTER) |1' (3,4)|
)NTDP

Example: Enter the number 5.393 at 158.2 degrees (polar

coordinates).

5.39 158.2 1: (3,4)
S>3 @) (5.39«158. 2+

[TTTNW

Complex Numbers 11-3

Enter the polar number on the stack. It’s converted to match the

current coordinate mode (in this case, Rectangular mode).

> (3,4)
(-5, BE453868689,
¢, BB167EEI367)
ITNNT

Now change the coordinate mode and watch how the complex number

changes.

(POLAR) 2t (5,453, 1381823542)
@ 1: (5.39,£158.2)

ITTRP

Press ()(POLAR) again to return to Rectangular mode.

Assembling and Taking Apart Complex
Numbers

To assemble a complex number from coordinates on the stack:

m Press (9)(2D) (but only if flag —19 is set). The coordinates are
interpreted according to the current coordinate mode.

To take apart a complex number on the stack:

m Press (&9)(2D). The returned values are the same as the displayed

coordinates. (Flag —19 doesn’t matter.)

Rectangular Mode

—>

2: X [«=][2D]
1: y <— 1: (x,y)

Polar Mode

—>

2: r| [«=l[2D]
1: B <— 1: (r, <6)

11-4 Complex Numbers

See also the R—C and C—R functions under “Additional Commands

for Complex Numbers” on page 11-10.

The programmable equivalents of («q)(2D) are the —V2 and V—

commands. (See “Additional Commands for Complex Numbers” on
page 11-10.)

Example: Assemble the complex number (3,—5) from its components 11
on the stack, then take it apart again. (This example assumes Degrees

angle mode and Rectangular coordinate mode are active.)

Set flag —19, then enter the parts on the stack.

19 G7) ()([WODES) ((KT)

~

&F 2z g3 (ENTER) b (*/=) (ENTER 1' 2Y)TO

Assemble the complex number.

CYem) 1' (3,-3)
[THENCLH |STOF [RCLF |5F |CF |

Take apart the complex number.

@D 2: 3
I“lfl:

Calculating with Complex Numbers

A complex number, like a real number, is a single object. So you can

use complex numbers as arguments for commands, and you can use

them in symbolic expressions. For symbolic calculations, you can enter

a complex number as a coordinate pair inside parentheses or as an

expression involving the symbolic constant 7 (v/—1).

To calculate with complex numbers:

m To use stack syntax, enter the complex numbers, then execute the

command.

m To use algebraic syntax, enter a complex number in one of the

following ways, then press (ENTER), (EVAL), or (=*NUM).

o To use parentheses, press (9q)(() between the two coordinates—

even if you include .

Complex Numbers 11-5

o To use 7, press (@) («q) I for the symbolic constant.

Using Complex Numbers on the Stack

A complex number is a single object—just as a real number is a single

object. Most functions that work with real numbers also work with

complex numbers.

Example: For the two circuits shown, Ohm’s law defines the

real-valued resistance R as R=FE-+I and the complex-valued

impedance Z as Z=FE-=I. (This example assumes Degrees angle mode

is active.)

Given a voltage potential of 10 volts and a current of 2 amperes,

calculate the resistance R.

10 (ENTER) 2 (3) 1: 5
IIRSTI

Given a voltage of (10,4.0) and a current of (2,X.30), calculate the
complex impedance. (First, make sure Polar coordinate modeis

active.)

()(POLAR) (if necessary) 2

QONEDIED [i

Change the coordinate mode to Rectangular.

@EEER)

s 2
1: 54.33812?91892,—2.5

TATTTT

11-6 Complex Numbers

In polar form, the complex impedance has a magnitude of 5 and a

phase angle of —30 degrees. By changing to the rectangular form,
you see that the same complex number implies a resistive component

of 4.33 ohms and a reactive component of —2.5 ohms. The negative

phase and reactance tell an electrical engineer that the impedance is

capacitive, rather than inductive.

Example: Calculate

(9 +4¢) + (-4 + 39)

(3479

(This example assumes Degrees angle mode and Rectangular

coordinate mode are active.)

Enter the first two complex numbers.

@O 9 GFO) 4 EVTER) 12 (9,4)
@OOEI3 -

[THEN[RCLM]STOF[RCLE]SFCF

You do not need to press (ENTER) before pressing (1)

1 (5,7)
RSNT

Divide the result by 3 + 1.

@O3E)O 1: (2.2.1.6)
fllfl’

Using Complex Numbers in Algebraics

You can represent a complex number in an algebraic in these ways:

m As a coordinate pair inside parenthesis delimiters.

m As an expression involving the symbolic constant i.

The components of a complex number may be real numbers (as in

the expression 'H+1:1,23") or they may be formal variables (as

in the expression '#+:A:E»"). Upon entry, this second form is

automatically converted to an equivalent form, 'H+{F+B%is".

Algebraics containing complex numbers can be manipulated

symbolically in the same way as real-number expressions.

Complex Numbers 11-7

Note When you enter a complex number as part of a

symbolic expression, you must use (&9)()) to separate

*J the real and imaginary parts. (If the Fraction Mark

is set to comma, (49)() generates a semicolon to

separate the parts.)

Example: Calculate the sine of (.6,2).

EN)@) 6@2 EvAD 1: (7, 17429548841,
O 29933??8649)

THENTRCLMSTOF[RELE]FGF

Example: Calculate the two square roots of the complex number

8—61¢. Because the / function ((()) returns only one root, use the
ISOL (isolate) command to solve for W in the equation W? = 8 — 6i.
(The ISOL command is described under “Isolating a Single Variable”

on page 22-2.)

First, enter the algebraic.

AW?2@E) 1' 'N“E(8,-61'
 @O S@E@0O 6 [TMENTRCLM]STOF[RELE]2| CF

Enter the name of the variable to be isolated (W) and execute the
ISOL command to solve for that variable.

(D W (ENTER) 1' 'W=51#(3, —1)'
()(ALGEBRA) L&l (RTTTS

The variable =1 stands for 1. Thus, the two square roots are 3 —

and —3 + 1.

Example: Use the EquationWriter application to enter an

expression representing the complex number 2 — 2iv/3. Then evaluate

the expression to get a complex result. (This example assumes

Rectangular coordinates mode is active.)

11-8 Complex Numbers

Enter the expression. (Enter “i” as (@) (e 1.)

()EUATON)
2(0) 2[@&)3

Use the =INUM command to evaluate the expression and return a

complex number.

(@)(Num) 1: (2,-3.46410161514)
(TTTTS

Real Calculations with Complex Results

The complex-number capabilities of the HP 48 can affect the results

of real-number operations. Certain calculations that would result in

an error on most calculators yield valid complex results on the HP 48.

For example, the HP 48 returns a complex number for the square root

of —4. Also, the arcsine of 5 yields a complex result.

You’ll find that for most calculations, the HP 48 gives you the type of

result (real or complex) you expect. However, if you find that you get

complex results when you expect real results, check your program or

keystrokes for these potential causes:

m The data you supplied to the calculator may be outside the range of

the formula you are calculating.

m The formula (or its execution) may be incorrect.

m A rounding error at a critical point in the formula may have

compromised the computation.

m A complex result may be unexpected, but correct, for your problem.

Complex Numbers 11-9

Additional Commands for Complex Numbers

Most commands that operate on real numbers also operate on complex

numbers (such as SIN, INV, * LN, and —Q). The following table

describes additional commands that are especially useful for complex

numbers.

Referring to the table, V— and —V2 are found in the MTH VECTR

menu. NEG is executed in Program-Entry mode by pressing (*/).

C—R, R—C, and OBJ— are found in the PRG OBJ menu. The

remaining commands are found in the MTH PARTS menu.

. Example
Command/Description

Input Output

ABS Absolute value; 1: Coedn i: 5

v 2?4+ 2.

ARG Polar angle of a 1: Clgll 1z 45

complex number.

CONJ Complex conjugate 1: (230 is 2y =30

of a complex number.

C—R Complex to real; 1 (230 2: z

separates a complex number 1: z

into two real numbers, the

rectangular coordinates z

and y.

IM Imaginary (y) part of a 1: o 1: -3

complex number.

NEG Negative of its 1: (2.-12 1: C=2a 10

argument.

OBJ— Object to stack; iz e, 52 2 4

separates an object (complex i: o

number, array, or list) into

its elements.
11-10 Complex Numbers

 Command/Description

Input Output

RE Real (z) part of a 1: Cd4,-33 Lz 4
complex number.

R—C Real to complex; z -7 |1 (=720

combines two real numbers i -2

into a complex number

(z,9)-

SIGN Unit vector in the 1: =P 1: oy 30

direction of the complex

number argument;
_r Y

Fwo

=
2V— Separates a complex 1: (D £38D

number into two real 1z

numbers z and y or r and

6, depending on the current

coordinates mode. The

example assumes Polar and

Degrees modes.

En
}
o)

 —V2 If flag —19 is set,

assembles two real numbers

into a complex number (z,y)
or (r,A.0), depending on the

current coordinate mode.

The example assumes Polar

and Degrees modes.

V
o e i E B [x

x]

e L
n
Complex Numbers 11-11

Choosing Complex Numbers or Vectors

Complex numbers and two-dimensional vectors can be similar in many

ways. Sometimes you may have difficulty choosing the better object

type to use for a given problem (and sometimes either type will work).

The main advantages of using complex numbers are that they’re

allowed as elements of vectors and matrices and that most real-number

operations work on them. The main advantages of using vectors are

that they’re not limited to two dimensions and that vector operations

like DOT and CROSS work on them.

If you make the wrong choice at the start of a calculation, you can

convert from one type to the other.

To convert to a 2D vector or to a complex number:

m To take apart a complex number in level 1 and reassemble the parts

as a vector, clear flag —19, then press (&9)(2D) (&9)(2D).
m To take apart a 2D vector in level 1 and reassemble the parts as a

complex number, set flag —19, then press («q)(2D) () (2D).

Example: Convert the complex number (3,4) into a vector. (This
example assumes Rectangular and Degrees modes are active.)

Enter the complex number.

@3 GED) 4 ENTER) 1 (3,4)
[COLCT]EXPH [120U[RUAD [SHOWTHYLE]

Clear flag —19 so that (¢q)(2D) assembles a vector.

19

¢

(2)(MODES) L: (3,4
YIT

Take apart the complex number and reassemble the parts into a

vector.

eW) 1: [34]
[THEN]CLH]STOF [RELF [5F |F |

11-12 Complex Numbers

12
Vectors

The HP 48 has special facilities for working with

2-dimensional (2D) and 3-dimensional (3D) vectors.

All vectors are array objects. The general case

of n-dimensional vectors is covered in chapter 20,

“Arrays”—this chapter deals primarily with 2D and

m Interpreting and controlling the display format of vectors.

m Entering vectors.

m Assembling and taking apart vectors.

m Calculating with vectors.

m Determining when to use complex numbers and when to use vectors.

Displaying 2D and 3D Vectors

You can display 2D vectors as either rectangular components

(L X Y 1) or polar components (I R A 1)—in Rectangular mode or

in Polar mode.

Vectors 12-1

Two-Dimensional Display Modes

Rectangular Polar

 y 5 bl I <6l

2D Vector Components

You can display 3D vectors as rectangular components ([X Y Z 1),
cylindrical components ([R A Z 1), or spherical components

(L R & A 1)—in Rectangular mode, in Cylindrical mode, or in
Spherical mode.

Three-Dimensional Display Modes

Rectangular Cylindrical Spherical

[abc] [rxy <0 ¢c] |Ir <6 «¢]

3D Vector Components

Polar mode is actually two modes—Cylindrical mode and Spherical

mode. For 2D vectors, Cylindrical and Spherical modes are

interchangeable—both give the same two-dimensional results.

12-2 Vectors

To display rectangular components:

m Press ()(POLAR) until no coordinate annunciator is on.

or

m Press NELTE

To display polar (cylindrical or sphericai) components:

m Press (»)(POLAR) until the F«Z or Fas coordinate annunciator is

on.

or

m Press NEOTI

spherical/polar).

FiZ (for cylindrical/polar) or |Fis (for

You can also change the coordinate mode in page 3 of the MODES

menu (@)(MODES) ({XT))-
The = in the menu label and the coordinate annunciator indicate the

active coordinate mode:

m Rectangular mode: “® no annunciator.

m Cylindrical mode: | Fi&7# FExZ annunciator.

m Spherical mode: Esim FEas annunciator.

Vectors are displayed inside [1 delimiters. In rectangular form, the

components are separated by spaces. In polar (cylindrical or spherical’

form, angles are preceded by an angle sign (£). (The angle is based on
the current angle mode: Degrees, Radians, or Grads.) Regardless

of how vectors are displayed, the HP 48 stores them internally in

rectangular form.

If you want to analyze a right triangle, you can use the rectangular

coordinates of a vector to represent the sides of the triangle, and the

polar coorinates to represent the hypotenuse and one angle of the

triangle. If you enter one type of coordinates, you can simply change

the coordinate mode to see the other parameters.

Vectors 12-3

Entering 2D and 3D Vectors

You can enter 2D and 3D vectors using any type of components:

rectangular, cylindrical/polar, or spherical/polar.

To enter a 2D or 3D vector:

m To enter a specific type of components, press («q)([1), enter the

components separated by or (#)(&), and press (ENTER).

(Press (»)(&) just before each angular component.)
m To use the current coordinate mode, enter the two or three

component values and press (.9)(2D) or (#)(3D) (but use ()(2D)
only if flag —19 is clear). (Don’t enter «.)

Flag —19 (Complex Mode) specifies whether («q)(2D) (the —V2
command) creates 2D vectors (clear) or complex numbers (set).

The internal rectangular representation of all vectors has the following

effects on displayed polar (cylindrical and spherical) vectors:

m ¢ is normalized to within +180° (7 radians, £200 grads).

m ¢ is normalized to within 0 to 180° (0 to m radians, 0 to 200 grads).

If you key in a negative r, the value is made positive; § is increased

by 180°, ¢ by 90°, and both are normalized.

m If ¢ is 0° or 180°, 4 is reduced to 0°.

If you key in an r of 0, § and ¢ are reduced to 0°.

Example: Enter the vector [3 4] (rectangular components). First,
make sure Degrees mode and Rectangular mode are set.

(«)(RAD) (if necessary) |DIIRTT

MELTRE =vE

Enter the rectangular vector.

@3 4 1: [34]
IRIP(TIT

12-4 Vectors

Example: Entry the vector 5.39 at 158.2 degrees (polar components).
(When entering polar vectors, you don’t need a space to separate the

elements—the angle sign acts as the separator.)

D539@1582 1 341
[5.39£158. 7+
EEDRIGTR

Enter the polar vector on the stack. It’s converted to match the

current display mode (in this case, Rectangular mode).

: [34]
: [-5, BA453866689

2. 88167263362 1
IEWRWTR

1
Now change the coordinate mode and watch how the vectors change.

()(POLAR) 2: [5 £53.13081823542.,
1: [5.39 <158.7 1]
TNPel(TTlT

Press ()(POLAR) again to return to Rectangular mode.

Assembling and Taking Apart 2D and 3D

Vectors

To assemble a 2D or 3D vector from components on the stack:

m For two components, press (|q)(2D) (but only if flag —19 is clear).

The components are interpreted according to the current coordinate

mode.

m For three components, press (#)(3D). The components are

interpreted according to the current coordinate mode.

To take apart a 2D or 3D vector on the stack:

m For a 2D vector, press (|)(2D). The returned values are the same as

the displayed components. (Flag —19 doesn’t matter.)

m For a 3D vector, press ()(3D). The returned values are the same as

the displayed components.

Vectors 12-5

Rectangular Mode

.
2: X [
1: vyl <«|1 [xy]

Polar Mode

e

2 L
1; ol «— |1 [r, <6]

Assembling and Taking Apart 2D Vectors

Rectangular Mode

3: X —> s

2: y [elsD] 2
1: z <— 1: xyZ

Cylindrical Mode

3: r —>

2: 6 |(rl[3D]
1: z| <|1 <62

Spherical Mode

3 r —>
2 o |
1: o < 1: [r<6 <¢]

Assembling and Taking Apart 3D Vectors

The programmable equivalents of (&9)(2D) are V— and —V2, and

the programmable equivalents of ()(3D) are the V— and —V3

commands. (See “Additional Vector Commands” on page 12-14.)

Example: 2D Vector. Assemble the two-dimensional vector [3 5]
from its components on the stack, then take it apart again. (This

example assumes Rectangular coordinate mode is active and flag —19

is clear.)

12-6 Vectors

Enter the real-number components.

3 5 o: 3
1: a
[ve w@ [Fao[CROZE]DOT [AES |

Assemble the vector.

®)(D) 1: [35]
Live ofad [Fad[CROZE]DOT [AES |

Separate the vector into its components.

=) §= %

Live wFa2 [Fao[CROZE]0OT |AES |

Example: 3D Vector. Assemble the three-dimensional vector

[10 X240 X20] from its components, then take it apart again. (This

example assumes Degrees mode is active.)

Set Spherical coordinate mode, then enter the real numbers associated

with the vector.

 VEIOE ipas 3 18

10 (SPC) 240 (SFC) 20 (ENTER) 2 240
IEEET0GTR

Assemble the vector. (Note that 240° is converted to —120° when the
angles are normalized.)

(D) 1: [18 «-128 <28]
RP)RTT

Take the vector apart.

>ED)

Press ()(POLAR) to return to Rectangular mode.

Vectors 12-7

Calculating with 2D and 3D Vectors

A vector, like a real number, is a single object. So you can use vectors

as arguments for commands. You can add and subtract vectors—

you can multiply and divide vectors by scalars—and you can execute

special vector commands (DOT, CROSS, and ABS) with them. (The
absolute value function ABS returns the magnitude of a vector.)

To calculate with vectors:

m Enter the vectors on the stack, then execute the command.

Example: Finding the Unit Vector. A unit vector parallel to a given
vector is found by dividing a vector by its magnitude. Find the unit

vector for [3 4 5]. (This example assumes Rectangular coordinate
mode and Degrees angle mode are active).

Enter the vector.

3 (ENTER) 4 (ENTER) 5 (@)ED) 1 [345]
IIIT)ATlAT

Duplicate the vector and compute its magnitude.

(ENTER) FEZ e [3451
1: 7. B7186781187
DIP(TTlT

Divide the vector by its magnitude to get the unit vector.

® 1: [424264868712
. 965685424949
. 7071086781186]

[o]kg2[Faa[CROZE]DOT|RE:|

Example: Finding the Angle between Vectors. The angle between
two vectors is given by

V1.V2

V1| |V2|

Calculate the angle between the vectors [3 4 5] and [20 X.30 X.60].
(This example assumes Rectangular and degrees modes are active.)

angle = cos™! [

12-8 Vectors

Enter both vectors. (Notice the change to Spherical mode for entering
the second vector.)

3 (ENTER) 4 (ENTER) 5 (2)(3D) c: [7.87186781187 £5,

LR rm 1: [26 <30 <66]

20 30 60 (@)ED) TRNsTT

Take the dot product.

1: 129.641816151
TI3(RTlT

Return the vectors to the stack.

()(LASTARG) 3¢ 129.641816151
2: [7.87186781187 45,
1: [P8 <38 <60 1]
TI3(TTlTR

Use ABS to find the magnitude of each vector.

 HEE (©@)EwaAP) % 129'6418161%%1

I: 7. 67106761157
LHvE |Fd?[Rulow[CROSE]DOT |AES |

Multiply the magnitudes and divide the result into the dot product.

®¥E 1: . 916708416465
#veR[Rd<w[CROZE]DOTRES

Use ACOS to find the angle.

()(Acos) 1: 23. 9516253446
HvEFad[klw[CROSS]DOTHES

Example: Finding the Component in One Direction. The following
diagram represents three 2D vectors. Find their sum, and then use

DOT to resolve them along the 175° line. (This example assumes
Degrees mode is active.)

Vectors 12-9

170 <143° 185 <62°

175°

100 <261°
Set Polar mode (Cylindrical mode in this case), then enter the three
vectors.

(MTH) ¥ Rad 3 [178 £143 1Tamhoe [o4185 (ENTER) 62 (S)(2D) : 4100 261 ($) (D) Y2[Ra?Ko[CROSE]DOTRES

Add them.

1: [178.937166537
£111.148894255 1

IEEO AEETT

Enter the unit vector of 175°.

1 175 (9)(2D) ? [1?8.93?%6?53%‘%1.1
: &<

IDSRSNT

Find the scalar representing the magnitude of the force along the 175°

line.

poT 1: /8. 8385649005
I0NPATT

This illustration shows how the vectors add and then resolve in the

given direction.

12-10 Vectors

f

100 4261°l

179 <111°
175° [

170 «143°

185 <62°

Example: Taking Vector Cross Products. For the crank below, find
the moment about the origin, and find the force transferred along the

axis of the crank.

\>
The moment is found by taking the vector cross product of the crank

radius and force vectors. To take a cross product, enter the vectors

in the same order that they appear in the cross-product formula:

M =r x F. (This example assumes Degrees mode is active.)

Vectors 12-11

Set Polar mode and enter the radius and force vectors.

(MTH) HELTRE Eaiz ? : 545 5 TE% %

5 (ENTER) 63 (Q)@D) : <
547 200 (¢)(2D) IPP()TlT

Take the cross product. (Notice that the result is a three-dimensional

vector.)

Popi 1: EBI?ES. 26551477 <A

AT0(TRTTR

You would expect this three-dimensional vector to be positive and

parallel to the z axis. This can be verified by inspection and the right

hand rule. Change to Rectangular mode to make the verification

easier.

(@)(PoLAR) 1: 5 B B 1865.26551477

)NNsWT
Now return the original vectors to the stack and change back to Polar

mode.

(@)ARG)()(POLAR) 3 [1865.265?1§?Eséa.j.

1: [547 «-168]
RN)sTT

Duplicate the radius and divide it by its magnitude to get the unit

vector.

(ENTER) HEE 3¢ [1865,26551477 £8.,
® © ik [947 «-1608]

1: 1 £63 1
RI()RIlT

Take the dot product to find the scalar representing the magnitude of

the force along the crank.

poT 2= [1863.26521477 <M.,
1: -400, HoB474786
NNPATT

The negative magnitude indicates that the force is opposed to the

direction of the crank’s unit vector. (See the next example.)

Example: Continuation. To add a small twist to the previous
example, suppose the force vector is not on the same plane as the

12-12 Vectors

crank. If the force is [547 A.200 A.87] (thus the force vector rises out
of the paper at a modest 3°), find the moment, the force transmitted

along the axis of the crank, and the thrust force along the z axis.

Enter the radius and force vectors. (Use Cylindrical mode with a
z-value of 0 for the radius vector, and use Spherical mode for the

force.)

Rag 2t [5«63 <98]

EmeEmen [
547 200 87 @ED)
Take the cross product.

CERE 1: [1868.726884977
e]E-E? £4. 394726H3566

IRW)9TTT

This time the resulting moment is not directed precisely along the z

axis. Switch to Rectangular mode and see the z-axis component. (The
useful moment along the crank has a magnitude of almost 1863.)

Al 1: [127, 5376468594
-64. 9836736311
1862, /H923321]
IITTWT

Now get the original vectors back on the stack. Notice that the thrust

problem has been solved through the switch to Rectangular mode.

(The thrust—the z-component of the vector—is approximately 28.6.

Note that it is positive and comes out of the paper the same as the

force vector. The same value could have been calculated through a

more general approach of calculating the dot product of the unit

vector associated with the z axis [0 0 1] and the force vector.)

@)TASTARS) i [2,7699504987_4.4..
I: [-513,387428175

-186, B2B674883
28. 6277680649 1

EEDIRRSTTR

Compute the force along the crank.

Q 2: [127.237648594 6.,
HEE (&RBoT 1: -399. 582219513

INNlRMBT

Vectors 12-13

Additional Vector Commands

The following commands interpret their arguments and return results

using the current coordinate mode. These commands are found on
page 2 of the MTH VECTR menu ((MTH) ¥EZTE (NXT)).

Example
Command/Description

Input Output

V— Separates a vector i [51 |2 =

(or complex number) into i @
its component elements

according to the current 1: [5 296 21

coordinate mode. The

examples assume Degrees

mode.

i
oP

[
l

L
R

—V2 If flag —19 is clear, [z «£z&8]

assembles two real numbers

into a 2-element vector

according to the current

coordinate mode. The

example assumes Polar and

Degrees modes.

1

o
t

fe
te

[
t

]

1 P

e BTSEE S5choel ¥ S0—V3 Assembles three real

numbers into a 3-element

vector according to the

current coordinate mode.

The example assumes

Spherical and Degrees

modes.

o
l
o
t

b
t

T
o

3
2

o
Additional commands for manipulating vectors are —ARRY, GET,

GETI, OBJ—, PUT, and PUTI. These are covered in the table under

“Manipulating Objects” on page 4-12.

12-14 Vectors

Choosing Complex Numbers or Vectors

Complex numbers and two-dimensional vectors can be similar in many

ways. Sometimes you may have difficulty choosing the better object

type to use for a given problem (and sometimes either type will work).

See “Choosing Complex Numbers or Vectors” on page 11-12 for a

comparison and example.

Vectors 12-15

13
Unit Management

 The Units application contains a catalog of 147

units that you can combine with real numbers to

create unit objects. The Units application lets you:

m Convert units. For example, you can convert the unit object 1&_#1

to 128_imor . 8458_m.

m Factor units. For example, you can factor 2&_l with respect to 1_H

and return @_H#m-z.

m Calculate with units. For example, you can add 1&_ft= to

18_mph and return 24,87_ft5.

Overview of the Units Application

The Units application consists of two menus:

m The UNITS Catalog menu ((«9)(UNITS)), which contains all the
HP 48 units, organized by subject. You use the UNITS Catalog

menu to create unit objects and to convert between related units in

the catalog.

m The UNITS Command menu (((»)(UNITS)), which contains

commands for converting units and for managing unit objects.

Unit Management 13-1

Units and Unit Objects

The Units application is based on the International System of Units

(SI) The International System specifies seven base units: i (meter),
= (kilogram), = (second), # (ampere), ¥ (kelvins), =d (candela), and

. (mole). The UNITS Catalog menu contains the seven base units
and 141 compound units derived from the base units. For example, ir

(inch) is .0254 1, and Fou (Faraday) is 96487 F#=.

A unit object has two parts: a number (a real number) and a unit
expression (a single unit or multiplicative combination of units). The

two parts are linked by the character. For example, Z_ir (2 inches),

4#1_H (X Newtons), and . = F+ (8.303 US gallons per hour)
are umt objects. Like otherobJect types a unit object can be placed

on the stack, stored in a variable, and used in algebraic expressions

and programs.

 L

When you perform a unit conversion, the HP 48 replaces the old

unit expression with a new unit expression (specified by you), and
automatically multiplies the number by the appropriate conversion

factor.

The UNITS Catalog Menu

The UNITS Catalog menu ((«9)(UNITS)) displays a three-page menu

of “subject” keys, each of which, when pressed, displays a submenu

of related units. For example, (¢9)(UNITS) FEEZE displays a

two-page menu of units for pressure.

The individual keys in each submenu behave differently from standard

menu keys, as described throughout this chapter. In Immediate-entry

mode, when you press the

m Unshifted key, the HP 48 creates a unit object that corresponds to

that key. (In Algebraic- or Program-entry modes, the unshifted keys

act as typing aids, echoing the corresponding unit name into the

command line.)

m Left-shifted key, the HP 48 converts the unit object in the command

line or stack level 1 to the corresponding unit.

m Right-shifted key, the HP 48 divides by the corresponding unit. This

helps you create unit expressions with units in the denominator.

13-2 Unit Management

The use of the UNITS Catalog menu is discussed in detail in this
chapter.

Creating a Unit Object

The UNITS Catalog menu provides a simple method for creating a

unit object.

To create a unit object on the stack:

1. Key in the number part of the unit object.

2. Press (|9)(UNITS) and select the subject menu that contains the

desired unit.

3. Press the menu key for the unit you want. (If you want the inverse

of the unit, press () and the menu key.)

4. For compound units, repeat steps 2 through 4 for each individual

unit in the unit expression.

When you press a menu key in the UNITS Catalog menu, the HP 48

first enters a corresponding unit object on the stack with the number

value 1. Then, for an unshifted key, it executes % (multiply)—or for a

right-shifted key, it executes - (divide).

Example: Create the unit object . 5_#+ 3.

Select the VOL submenu of the UNITS Catalog menu.

(B)UNITS) ¥a T)T

N

N|

Key in the number, then append the unit.

3.5 FT%3 1: 3.5_ft"3
IEEERNEEETIRRN

Example: Create the unit object 2_kg#m™Z-s"E.

Key in the number and append the first unit.

32 (@)U HA 12 32ks
IGNEEG

Unit Management 13-3

Append the second unit.

GOIS
Append the units in the denominator.

@)
@

1: 32_kg¥m"2-5"2
TI10O

To create a unit object in the command line:

1. Key in the number.

2. Key in the _ character (press ()(2)). This activates
Algebraic-entry mode.

3. Key in the unit expression as you would an algebraic expression:

m To key in a unit name, either press the corresponding menu key

or spell the unit name.

m To create compound units, press (X), (), "), and (&)((Q) as
required.

Note that unit names are case-sensitive. For example, Hz (hertz)
must be typed with uppercase H and lowercase =. (For legibility,

all letters in menu keys are uppercase. Don’t confuse the menu-key

representation of a unit with its proper name.)

By spelling unit names, you can create a unit object without switching

between submenus in the UNITS Catalog menu. However, the menu

keys eliminate errors resulting from incorrect spelling and incorrect use

of uppercase or lowercase.

Example: Create the unit object &_Et-ft"2%h*°Fin the
command line.

Key in the number and the _ character. Then key in the unit

expression using alpha characters. (To type °, press (@) (2)(6).) Then

enter the unit object.

8 () 1: B_BtusCfi"2#h="F)
Btu @) (@D ft 2 TIOTN
)h) °F

13-4 Unit Management

To create a unit object using the EquationWriter application:

1. Press (¢3)(EQUATION).
2. Enter the number, press (%) (2), and enter the unit expression using

standard EquationWriter notation.

3. Press (ENTER).

The EquationWriter application lets you build algebraics that contain 13

unit objects, showing you the unit expression as you would write it on

paper. Inverse units are displayed in fractional form, and exponents

are displayed as superscripts. (See “Entering Equations” on page

16-5 for details about using the EquationWriter application and unit

objects.)

Example: Use the EquationWriter application to create the unit

object &22%=. (This procedure is explained on page 16-10.)

Select the EquationWriter application. Key in the number and start

the unit expression.

(9(ETETON)
2 @0

32_0

LvF0H [HIN nmi

Key in the numerator of the unit expression.

@) (v)(UNITS) PR
H)

y

SE_E

Lthe1-1

Key in the denominator.

@@ONITS) HEEA HYE)
@ONTS) TEWP °E

Put the unit object on the stack.

1: 32_Ws(m™2£"C)
TIOATN

Unit Management 13-5

To view a unit object using the EquationWriter application:

m Press (V) while the object is in level 1.

To check the spelling and case for a unit:

1. Press (&9)(UNITS) and select the corresponding page in the menu.
2. Press (q)(REVIEW). A temporary display lists each unit on that

menu page.

3. Press (ATTN) to return to the stack.

Example: Check the correct spelling and case for the unit

""" & key in the UNITS ENRG submenu.

QOIS (X0
(SEREVEW)

[[ERG[KCAL[CALETU [FTELE

Press to return to the stack display.

Operators in unit objects follow this precedence order:

1. © » (highest precedence).
2. .-'._.

3. #and -.

For example, 7_ Z is 7 meters per square second, and
-
r_tmoz272 1s T square meters per square second.

You can also insert a unit prefix in front of a unit. Unit prefixes are

letters that indicate powers of ten. For example, mH means “milliamp”

(amp x 1073). The following table lists allowable prefixes. (To key in

u, press (@) () N.)

13-6 Unit Management

Unit Prefixes

Prefix Name Exponent Prefix Name Exponent

E exa +18 d deci -1

- peta +15 o cent -2

T tera +12 M milli -3

G giga +9 U micro —6

B mega +6 r nano -9

koork kilo +3 F pico —12

Foor H hecto +2 femto —15

[deka +1 5 atto —18
Most prefixes used by the HP 48 correspond with standard SI

notation—with one exception:

“da” in SI notation.

“deka” 1s “D” in HP 48 notation and

Note

i

You cannot use a prefix with a built-in unit if the

resulting unit matches another built-in unit. For

example, you cannot use ri to indicate milli-inches,

because iri is a built-in unit indicating “minutes.”

Other pos31ble comblnatlons that match built-in

by kb o

Using Unit Objects in Algebraics

Unit objects are allowed in algebraics—you enter them just as you

enter them in the command line. In addition, the command line

permltssymbohc numbers instead of real numbers converting

Y , for example, to ¥#i _i1 when entered on the stack.

+ and - are allowed in the number. However, the _ character takes

precedence over + and —~. Thus *{4+52 {4 ' EVAL returns %_f+, but

fa+E_FL Y EVAL returns +

Unit Management 13-7

Converting Units

You can convert unit objects to different units using four methods:

The UNITS Catalog menu. Converts to built-in units only.

The CONVERT command. Converts to any units.

The CST (custom) menu. Converts to any units already set up.
The UBASE (base units) command. Converts to SI base units only.

If you’re working with temperature units, see “Working with

Temperature Units” on page 13-17.

Using the UNITS Catalog Menu

The UNITS Catalog menu lets you convert the unit object in stack

level 1 to any dimensionally consistent unit in the menu.

To convert units to a built-in unit:

1. Enter the unit object with the original units.

2. Press (&)(UNITS) and select the subject menu that contains the

desired unit.
3. Press (&q) and the menu key for the desired unit.

Example: Convert 1%_zatm (atmospheres) to irmHgz (inches of
mercury). First, create the unit object 18_atm.

(=)(NITS 1: 18_atm
s IIWNTGG PR

10 Egprr

Convert to inches of mercury.

(®) IHHG 1: 299, 212598425_inHg
|Il:]Ifl|ImE-EI----|

Example: Convert &_ft#1bf .= (foot-pound force per second) to i

(watts). First, enter the unit object.

6 (@) QIQNITS) xT) 1: b_ft+1bfss
EMEG FT#LE [hoHviN3ke
QU TiHE @) @

13-8 Unit Management

Select the POWR submenu and convert to watts.

@mm FUKE 1: 8. 134968/68999_I
o TOOSS

Using CONVERT

You can use the CONVERT command to do any conversion between

dimensionally consistent unit expressions.

To convert to any units:

1. Enter the unit object with the original units.

2. Enter any number (such as 1) and attach the units you want to

convert to.

3. Press (p»)(UNITS) Eiips

CONVERT converts the level 2 unit object using the units from the
level 1 object. It ignores the number part of the level 1 unit object.

Example: Convert 12_§t~Z-min (cubic feet per minute) to ot -
(quarts per hour). Since =tis not in the UNITS Catalog menu, you

must use CONVERT to do the conversion.

Enter the unit object.

12 (q)(UNITS) Ol |1= 12_Ft"3/rr|in|
(K)UNITS) TIHE TINTR

Put the new unit expression on the stack, appended to the number 1.

(The number is ignored.)

1 () (LAST MENU BT ? 12_Ft’l‘}*?ifl
E - |()(CAST MENU) () H 9

Perform the conversion.

(@) (ONITS) iRy 1: 21543.89616839_qt ~h
[COHY[UEAZE]UMALJUFHCT]*UNIT]|

(Note how you can use to bypass the main UNITS

Catalog menu and directly select the previous submenu.)

Unit Management 13-9

Using the CST Menu

If you often execute a specific unit conversion, you may find it

convenient to execute that conversion from the CST (custom) menu,
particularly if the unit expressions are not in the UNITS Catalog

menu.

To set up the CST menu for unit operations:

m Include a unit object with the desired units in the CST menu list—

the number part, of the object is ignored. (See “Creating a Custom

Menu” on page 15-1 for details.)

Unit keys in the CST menu operate the same as keys in the UNITS

menus.

To enter units from the CST menu:

m Press and the menu key for the desired unit. (If you want the
inverse of the unit, press (») and the menu key.)

To convert units to CST menu units:

1. Enter the unit object with the original units.

2. Press (CsT).
3. Press (¢q) and the menu key for the desired unit.

Example: Suppose you often execute unit conversions between

kaeomi (kilograms per cubic meter) and 1k%% (pounds per cubic
foot). Put those unit expressions in the CST menu. (This example
assumes there are no other entries in the CST menu list.)

Build a list that contains the two unit objects. (When you press

()(E3), the HP 48 switches to Program-entry mode, so you have to

key in the _ and - characters.)

(15)@@ 1: % %_kgf’mfl 1_lb-Ft™
(UNITS ’ i B

@ @@OUNTS) oL HeE IEEENN]ATSTTR

PO@DLB ()
@)(UASTMEND) FT°2

13-10 Unit Management

Store the list in the variable CST and display the CST menu. (This

procedure is explained on page 15-1.)

Now convert 1& Z. Enter the unit object.

10 EvEy 1: 18_1b-ft"3
(R(W25IIN

Convert to kilograms per cubic meter.

1: 16H. 18463374kgm"™3
O]TAIYN

Using UBASE (for Sl Base Units)

The UBASE command converts a compound unit into its equivalent

SI base units.

To convert units to Sl base units:

1. Enter the unit object Wlth the original units.

2. Press (()(UNITS)
Example: Convert &

Faz (Pascals) into SI base units.

 @ PREZE 1: 8.3_kas(m*s"2)

Example: Convert Z&_krot into SI base units.

@ZREER 1: 15.4333333333_m~s
30 ' [cONYJuERZE]UvALJUFRCT]uNIT]|

Unit Management 13-11

Converting Dimensionless Units of Angle

Plane and solid angles are dimensionless. You can use the following

dimensionless units as constants in your unit expressions; however the

HP 48 can’t check for dimensional consistency in dimensionless units.

Dimensionless Unit Unit Name Value

Arcmin arcmin ! /91600 unit circle

Arcsec arcs 1 /1296000 unit circle

Degree 1 /360 unit circle

Grad oad 1 /400 unit circle

Radian r 1 /ounit circle

Steradian e ! /47 unit sphere

Some photometric units are defined in terms of steradians. These

units include a factor of ! /4 in their numeric values. Because this

factor is dimensionless, the HP 48 can’t check for its presence or

absence—it can’t check that your units are consistent. The following

table lists photometric units according to whether their definition

includes steradians.

Include Steradians Do Not Include Steradians

Candela (=)

Footlambert (1)

Lambert (1ar)

Stilb (k)

Lumen (1)

Lux (1)

Phot (F‘h)

Footcandle ()

To convert photometric units:

m To convert between photometric units in the same column, the =+

unit is not required.

m To convert between photometric units in different columns, divide

the unit in the left column by =+ or multiply the unit in the right

column by =¢.

13-12 Unit Management

Some examples of consistent photometric units are:

m lri1s consistent with cod#sr.

m {co=r is consistent with 1am.

m lmozr#m™2 18 consistent with 1am.

Factoring Unit Expressions

The UFACT command factors one unit within a unit expression,

returning a unit object whose unit expression consists of the factored

unit and the remaining SI base units.

To factor units within a unit expression:

1. Enter the unit object with the original units.

2. Enter any number (such as 1) and attach the units you want to
factor out.

3. Press (»)(UNITS) i

UFACT factors the units of the level 1 object from the level 2 unit

object.

Example: Factor .5_ka*m™2Z-5"Z with respect to i (Newtons).

First, enter the unit object.

(=)(UNITS)M
QUNTS) A
(w)(@NITS) TI
® :

Key in the unit to be factored.

1 ()(ONITS) FOREE

1: 3.9_ko*m2577
EEEEEEETEEEEEE

2 3.5koME-5"7
1 1_N
TAIRWT

Factor the level 2 unit object.

 @) (UNITS) & 1: 3. 3_N#m
[COWYJUERZE]UNMALUFRET[FUNIT]|

Unit Management 13-13

Calculating with Units

The HP 48 lets you execute many arithmetic operations with unit

objects, just as you execute them with real numbers:

m Addition and subtraction (dimensionally consistent units only).

Multiplication and division.

Inversion.

Raising to a power.

Percentage calculations (dimensionally consistent units only).
Comparisons of values (dimensionally consistent units only).

Trigonometric operations (planar angular units only).

Several additional math operations work only on the number part of

the unit object.

To calculate with unit objects:

1. Enter the unit objects.

2. Execute the commands.

Units are automatically converted and combined during the

calculation. Certain operations require dimensionally consistent

units—units that have the same physical dimensions, such as length or

density. For such operations, results with units are converted to the

units from the object in level 1.

Temperature units require special note—see “Working with

Temperature Units” on page 13-17.

The trigonometric operations SIN, COS, and TAN on unit objects

require a planar angular unit. Planar angular units are radians (),
degrees (), grads (zrad), arc-minutes (arcmin), and arc-seconds
(arzz). The result is a dimensionless real number.

The following functions, described in detail under “Other

Real-Number Functions” on page 9-14, operate on the number part

of a unit object. Each function returns a unit object, leaving the

unit-expression part of the argument unchanged:

ABS FLOOR Ip RND

CEIL FP NEG TRNC

13-14 Unit Management

The SIGN function, described in the same section, returns a number

that indicates the sign of the argument number: +1 for a positive

number, —1 for a negative number, and 0 if the number is 0.

Example Addition. Calculate the sum of &.4_1kf and

% _cune. First, enter the unit objects.

21 .4_1bf
I: 11.9dun
H_[OvWGFKIPLEFPOL

Add the unit objects. The unit conversion is done automatically.

1: 177948, /6461 _dyn
ITNTRT

Example: Subtraction. Subtract =

()QITS) ©E

39
©

Example: Scalar Multiplication and Division. Multiply i

10, then divide by 6.

S@)
10 @ 6 E]

Example Unit Multlpllcatlon and Division. Multiply S&_+%

45§14, then divide by 2.2_« (days). First, multiply the two unit

obJects.

(Q(UNITS) LEHE 1: ceob_f1 "2
50 HCHetY0FTIN

Unit Management 13-15

Enter the third unit object and divide.

@m TLHE 1: /3. 125_ft"2-d
328 0 TNOTAN

®

Example: Inversion. Find the reciprocal of 11.4_g%cm-z™2

11.4 (|)(UNITS) ‘HAEE & 1: E.E‘FIQE?EE‘}SEE—E_S“
(@ENTS) ‘ < Lg¥cm \©)(ONTS) TIHE [wkbH[MIN]&He

Example: Power. Raise Z_f+%.= to the sixth power. Find the

square root of the result. Then find the cube root of that result.

Enter the unit object and raise the unit object to the sixth power.

2 (|)(UNITS) SFEEL FT 5 1: b4_Ft"E;/s"E
6 NIRGWSTT

Now find the square root of the result.

1' 8_ft "3fs“*3
[t105[H[FT25 |KPR |MPH[KNOT)

Find the cube root of the result.

@@

Example: Percentage. 4.Z_cr™Z is what percent of i_in™37

@m WO 1 THeE 1: 29. 6299725198
: IECNGGTNRT

() PARTS(D) =27

Example: Trigonometry. Calculate the sine of 45°.

()(UNITS) (NXT) (NXT) AHEL 1: . A7 186731187
45 EEEEE (5N) I(0TT

13-16 Unit Management

Example: Algebraic Calculation. In algebraic syntax, calculate the

tangent of 40 grad.

Q 40 (@) GRAL 1: . (26342528085
II(TTe

Working with Temperature Units

You work with temperature units the same ways you work with

other units—ezcept you must recognize and anticipate the difference

between temperature level and temperature difference. For example,

a temperature level of 0 °C means “freezing,” but a temperature

difference of 0 °C means “no change.”

When °C or °F represents a temperature level, then the temperature

is a unit with an additive constant: 0 °C = 273.15 K, and

0 °F = 459.67 °R. But when °C or °F represents a temperature

difference, then the temperature is a unit with no additive constant:

1°C=1K,and 1°F =1 °R.

Converting Temperature Units

Conversions between the four temperature scales (K, °C, °F, and

°R) involve additive constants as well as multiplicative factors. The

additive constants are included in a conversion when the temperature

units reflect actual temperature levels—they’re ignored when the

temperature units reflect temperature differences:

m Pure temperature units (levels). If both unit expressions consist of a

single, unprefixed temperature unit with no exponent, the UNITS

Catalog menu or CONVERT performs an absolute temperature

scale conversion, which includes the additive constants.

m Combined temperature units (differences). If either unit expression
includes a prefix, an exponent, or any unit other than a temperature

unit, CONVERT performs a relative temperature unit conversion,

which ignores the additive constants.

Unit Management 13-17

Example: Convert 25_°to "F.

@
25 i} '!:: @)

1: /7_"F
T0TTO

z. First, create the unit

Example Convert

object Z&E _*

@mm : 1: 28_"Cmin
ar INITB

@O |
Enter a unit object containing the new units.

g
PLL g

@OSTUERD | °f 2: 28_"C/min
(LASTMENU) 1: 1_°F~s

Perform the conversion.

@) cF 1: 6_°F/s
[CONYUEAZELUVALUFACTISUNTT|

Calculating with Temperature Units

Temperature units are automatically converted and combined during

calculations.

m Pure temperature units (levels or differences). For the +, —, =, <,

>, <, >, ==, #, %, %WCH, and %T functions, pure temperature
units are interpreted as temperature levels relative to absolute zero

for all temperature scales. Before making the calculation, the

HP 48 converts any Celsius or Fahrenheit temperature to absolute

temperatures. (This may give unexpected results if you actually

intent the temperature units to mean temperature differences

rather than temperature levels—for example, &_ =&_ "+ returns

1%7, twice as far from absolute zero as 0 °C.)

For other functions, pure temperature units are interpreted

as temperature differences—they’re not converted before the

calculation.

m Combined temperature units (differences). Temperature units with
prefixes, exponents, or other units are interpreted as temperature

differences—they’re not converted before the calculation.

13-18 Unit Management

To enter a temperature difference for one of the six functions listed

above, use absolute units (K or °R). For example, you can enter a

difference of 2 °C as &_k.

To interpret a result from one of these functions as a temperature

difference, convert the result to absolute units (K or °R). For example,

a converted result of Z_K means a temperature difference of 2 K or

2°C.

Example: Determine if 12 °C is greater than 52 °F. (The >

command interprets temperatures as levels.) The result shows the test

is true (12 °C is 53.6 °F).

Glauslcul 1: 1
===&=£2

Example: Calculate the temperature change from 29 °C to 17 °C.

(Convert the calculated change to absolute units.)

@mm EHE |1- -12_|<|
IGAT17 =@

Example: Calculate the final temperature for an increase of 18 °F
from the current temperature of 74 °F. (Enter the increase in absolute
units.)

18 *F

® 1: 92_"F
TTITI

Example: For a coefficient of linear expansion a of 20 x 107° 1/°C

and a temperature change AT of 44 °C, calculate the fractional

change of length given by e AT. (The x command interprets

temperatures as differences.)

Il: BBBBB|
TTTTI

20 (€9 (1) 6 @)
44 @

Unit Management 13-19

Example: The ideal gas equation of state is PV = nRT, where P is

the pressure exerted by the gas (in atmospheres), V is the volume of

the gas (in liters), n is the amount of the gas (in moles), R is the ideal
gas constant (0.082057 liter-atmospheres/kelvin-mole), and 7' is the
temperature of the gas (in kelvins).

Assuming ideal gas behavior, calculate the pressure exerted by 0.305

mole of oxygen in 0.950 liter at 150 °C.

First, enter the temperature.

(©J(UNITS) 1: 1568_"C
TEME TTTN

150 °E

Convert the units to kelvins.

@* 11 423. 15_K
ITIT

Multiply T (already in level 1) by n (0.305 mole).

()(UNITS) HAEE 1: 129, BEH"5_K#mol
305 ML u[roc][[[|

)

Multiply »T by R.

082057 (¥9) (UNITS) 1: 10.59A3379628_1*atng B IIII
(#)(UNITS) (NXT) FRES e

QO@D TEHF @) K
@O
HMAEZE (T (NXT) () Mol

&

Divide by V (0.950 liter) to calculate P.

 95 (Q)UNITS) MOL (NxT) L 13 11.1477241714_atm
®

Convert the pressure (in atmospheres) to SI base units.

(@)(UNITS) 1: 1129543, 15167_kg-(m
HEEEE #5"7)

[COWYJUERZE]UMALJUFRCT[*UNIT]|

13-20 Unit Management

Note that in this example the temperature conversion from *C to &

is executed before subsequent operations append additional units to

the unit object. Otherwise, the Celsius temperature would have been

treated as a difference, and the conversion to SI base units would have

produced an incorrect result.

Creating User-Defined Units

If you use a unit that’s not contained in the UNITS Catalog menu,

you can create a user-defined unit that behaves just like a built-in

unit.

To create a user-defined unit:

1. Enter a unit object using built-in or previously defined units that

equals value of 1 new unit.

2. Store the unit object in a variable—the variable name is used as

the name of the new unit.

3. Optional: Add a unit object with the user-defined unit to the CST

menu—see below. The number part is ignored. (This procedure is

explained under “Creating a Custom Menu” on page 15-1.)

You can’t use the unit key in the VAR menu like unit keys in the

UNITS menus—because VAR menu keys store and recall objects.

However, if you add the user-defined unit to the CST menu, you can

use the CST menu key to enter and convert your user-defined units—

just like UNITS menu keys.

Example: Use the built-in unit < (day) to create the user-defined
unit WEEE. (This example assumes there are no other entries in the
CST menu list.)

Enter the unit object ¥_d. Store the unit object in variable WEEK

then enter a list containing the unit object 1 _WEEK.

(QQNITS) TIME 7 B 1: { 1_WEEK }
() WEEK (TONilW
@O 1E0 HEEK

Unit Management 13-21

Store the list in the CST menu and display the menu. (This is

explained under “Creating a Custom Menu” on page 15-1.)

Now convert 14 days to weeks.

3 (@@UNTS) TIHE 14 © 1: 2_EEK
I Weee][[1[|

You can prefix a user-defined unit. However, conflicts between

user-defined units (prefixed or otherwise) and built-in units are

resolved in favor of the built-in unit.

Additional Commands for Unit Objects

Key Programmable Description

Command

@)Cums)
L UVAL Returns the number part of the level 1

unit object to level 1.

Wi —UNIT Combines a number from level 2 with a

unit object from level 1, ignoring the

number part of the level 1 object, to

form a unit object in level 1.

13-22 Unit Management

14
Binary Arithmetic

 O The HP 48 enables you to do binary arithmetic—

E operations that work with binary integers. You

can think of a binary integer as a base 2 number—

although it can be expressed in other number bases,

0 too. When expressed in base 2, it consists of just

0’s and 1’s—each of which is a bit. Eight bits make

up a byle.

On the HP 48, binary integer objects contain from 1 to 64 bits,

depending on the current wordsize. You can enter and display binary

integers in decimal (base 10), hexadecimal (base 16), octal (base 8), or
binary (base 2). The current base determines which base is used to
display binary integers on the stack.

The # delimiter precedes a binary integer. A o, v, o, 0

the binary integer indicates its base—for example, # 1
s 4 e

TRd T 7 LyLE1 180,

r bx following

 oSy O #

Setting the Wordsize

The wordsize is the number of bits used to represent binary integers.

The wordsize can range from 1 through 64 bits—its default is 64 bits.

To set the wordsize:

1. Key in a number from 1 to 64.

2. Press BR THZ (the STWS command). (A fractional
number is rounded to the nearest integer.)

Binary Arithmetic 14-1

To recall the current wordsize:

m Press BHEE EUlE (the RCWS command).

If you enter a binary integer that exceeds the current wordsize, the

number is displayed with its most significant bits truncated—any bits

over 64 are lost, and any bits from the current wordsize to 64 are

“hidden” (you can display them by increasing the wordsize). However,

hidden bits are not used in calculations and are lost when you execute

a command on a binary integer.

Also, the wordsize controls the results returned by arithmetic

operations and other commands. If an argument exceeds the current

wordsize, the excess most significant bits are dropped before the

command is executed. If necessary, results are also truncated.

Setting the Current Base

Binary integers are displayed in decimal, hexadecimal, octal, or binary

base. The default base is decimal.

To set the current base:

1. Press EHEE .

2. Press one of the following keys: @

(decimal), ©2T (octal), or Bl

% (hexadecimal), BELD
(binary).

The & in one of the menu labels identifies the current base.

HEX, DEC, OCT, and BIN are programmable. The settings for flags

—11 and —12 correspond to the current base. (For more information
on flags —11 and —12, see appendix E, “Listing of HP 48 System

Flags.”)

The choice of current base has no effect on the internal representation

of binary integers.

14-2 Binary Arithmetic

Entering Binary Integers

To enter a binary integer:

1. Press (@)(#)

2. Enter the value of the binary integer—valid characters depend on

the base you’re using.

3. Optional: To specify the base, type a base marker: d, i, o, or k.

(Otherwise, the current base is used.)
4. Press (ENTER).

Example: Enter the address 24FF¢ and display it in hexadecimal

base.

BASE “HE
@)2T@)
Now, display it in octal base.

P 1:] ._ 23??0

Example: Enter 101101, while the current base is octal (from the
previous example). (Press (@) (&) B to type “b”.)

@)@ 101101b 1: # 550
RNGTErES

Calculating with Binary Integers

If an argument exceeds the current wordsize, the excess most

significant bits are dropped before the command is executed. If

necessary, results are also truncated. If a calculation produces a

remainder, only the integer portion of the result is retained. The

negative of a binary number is its two’s complement (all bits inverted
and 1 added).

Binary Arithmetic 14-3

To calculate with binary integers:

1. Enter the binary integer objects.

2. Execute the commands.

Example: Calculate 46AF;¢ — 33Dy6. First, switch to hexadecimal

base and enter the two numbers.

BREE HEH
(@)(@) 46AF
@)@ 33D

Execute the (=) command.

9

Example: Divide 6419 by 519. (The remainder of 4d is lost.)

BHEE: BUED 1: # 12d
@)@) 64 :
@56

Additional Binary Integer Commands

The following table contains commands from the MTH BASE menu

((MTH) (EHEZE) that are useful for manipulating binary integer
objects. Unless otherwise stated, each example assumes the wordsize is

set to 24.

14-4 Binary Arithmetic

Command/Description

Input Output

AND Logical bit-by-bit z: # 1ig@k |1 # 10880

AND of two arguments. 1: # 18180

ASR Arithmetic Shift 1 1lgaaior 1: # 1igogib
Right. Performs 1 bit

arithmetic right shift. The 13 # Soegbeh 1: # CoDosoh

most significant bit is

regenerated.

B—R Binary to Real. i # 7350 |1 4E5

Converts a binary integer to

its real integer equivalent.

NOT Returns the iz # FogFarah |1 # FEFoFh
one’s complement of the

argument. Each bit in the

result is the complement of

the corresponding bit in the

argument.

 OR Logical bit-by-bit OR = # iloeb |1 # iligb

of two arguments. 1: # 1@loh

R—B Real to Binary. iz ig |1 % l@igh

Converts a real integer to its
binary integer equivalent.

Binary Arithmetic 14-5

Example
 Command/Description

Input Output

RL Rotate Left. Binary 1s # 1iG@hL Ls #1881k

integer rotates left one

bit. (Example assumes
wordsize=4.)

RLB Rotate Left Byte. 1s # FFFFh 1% # FFFFE8h
Binary integer rotates left

one byte.

RR Rotate Right. Binary i: # 116

integer rotates right one

bit. (Example assumes
wordsize=4.)

1 e i e 3 e [[5
1

i

RRB Rotate Right Byte. 1: # ABEOCE

Binary integer rotates right

one byte.

pe
xi
b
l
b o o
t

+
=

T
l

bu
x)
o pe
xd
[be
x)

o

)] TSL Shift Left. Binary 1: # 118l 1s # 11816

integer shifts left one bit.

SLB Shift Left Byte. 1: # FERE

Binary integer shifts left one

byte.

o o e k
S

o o
l

1 i [
y
R o

SR Shift Right. Binary 15 # 1i8iib 1: # 118l

integer shifts right one bit.

SRB Shift Right Byte. 1% # ABEBOCGR 1: # REE

Binary integer shifts right

one byte.

p
x
i 1 o

XOR Logical bit-by-bit Z:

exclusive OR of the 1:

arguments.
14-6 Binary Arithmetic

15
Customizing the Calculator

The HP 48 provides several ways to customize its

behavior. You can create custom menus containing

the operations you want, you can set up your own

functionality for the user keyboard, and you can

control the calculator’s modes using the MODES

menu and by setting and clearing flags.

Using Custom (CST) Menus

A custom menu is a menu that you create. It can contain menu labels

for operations, commands, and other objects that you create or group

together for your own convenience.

Creating a Custom Menu

The CST menu is defined by the contents of a reserved variable named

CST. So, the way to create a custom menu involves creating a variable

CST that contains the objects you want in your menu.

To create and display the CST menu in the current directory:

1. Enter a list containing the objects you want in the menu. (The
purposes of different object types are described below.)

2. Press (»)(MODES) HEHL (the MENU command).

MENU stores the contents of the list in CST and displays the custom

menu. Alternatively, you can create the CST menu by storing the

custom-menu list in CST just like you would store a list in any

variable—enter the list on the stack and press (&) E&8F or

Customizing the Calculator 15-1

() (>)MmoDES) E£&T (sT0). (The MODES Customization menu
always contains a menu label for CST'.)

To display the CST menu:

m Press .

Objects in the CST menu usually have the same functionality they do

in built-in menus:

m Names. Names behave like VAR menu keys. Thus, if ABC is a

variable name, HEL evaluates ABC, (») HEL recalls its

contents, and (&) HEL stores new contents in ABC. Also, the

menu label for the name of a directory has a bar over the left corner

of the label—pressing the menu key switches to that directory.

m Units. Unit objects act like UNITS Catalog entries. For example,

they have their left-shifted conversion capability.

m Strings. String objects echo the contents of the string, like a typing

aid.

m Commands. Almost all command names behave like normal

command keys. For example, they observe the current entry mode.

You can include backup objects in the list defining a custom menu by

tagging the name of the backup object with its port location. For

example, if 22 TOM were included in the custom menu list, a menu

label Tiifi would represent the backup object TOM in port 2.

If you want to create typing aids for certain commands that affect

program flow (such as HALT, PROMPT, IF..THEN...END, and other

program control structures), include them as string objects, not as

command names.

Example: Create a custom menu containing the built-in command

—TAG, the unit object 1_m™=, a string to serve as a typing aid for

YOLUME) and the variable name CST.

Enter the list of objects.

@@ERY 0Bd +TAS 1+ { +TAG 1_n"3
IOm6)3 "WOLUME" CST 3
@)(—") VOLUME ()

CST

15-2 Customizing the Calculator

Create and display the CST menu.

(»)(MODES) HEHU STITETII

Convert 1075 cm® to m5.

1075 (@) em () 3

Enter the string "“OLLME®.

1: . BA1675_m"3
GraslM3[volu]1]T

@D woLd % BB1A75o3
ESTTEIEEENBTI

Create a tagged object from the contents of levels 2 and 1.

1: YOLUME: .AA1B75_n"3
TMT5A

Display the current contents of CST.

I—
'-
I"
\C
I

'-.-'DLUFIE EE%B?S-m"3
1_

"'JEILUI‘IE" CST J
[TNTN

You can create a CST in each directory in memory, just as you can

for other variables. This lets you have different custom menus in each

directory.

Also, instead of storing the list of objects itself in CST, you can

optionally store the name of another variable that contains the list.

This gives you the ability to have in one directory several variables

that contain different custom-menu lists. That way, you can easily

switch the CST menu from one custom menu to another by simply

storing a new name in CST.

Enhancing Custom Menus

You can enhance the CST menu by creating special menu labels and

by specifying different actions for unshifted and shifted keys.

To create a special menu label for an object:

m Inside the CST list, replace the object by an embedded list of the

form < *label® object .

Customizing the Calculator 15-3

The default label for an object in the CST menu is the underlying
name, command, unit, or typing aid—as many characters as fit in the

space available.

Example: StoringLTAG 1we™3 0 "WOL" "NOLUME" 2

© "CUST" 05T » ¥ in CST gives the same CST menu operatlons as

the previous example but the labels are #THE |, MY o

and LET

To specify functionality for shifted keys:

m Inside the CST list, replace the object by an embedded list of

objects: { objectunshitted 0bjectiess-shite 0bjectright-shie +. (You can
omit the last one or two objects if you want.)

You must specify the unshifted action in order to have the shifted

actions. In addition, you can combine the special-label enhancement

and the shifted-functionality enhancement—see the following example.

Example: Suppose you want the CST menu key %iil. to provide

the following three actions:

WL evaluates a program that stores the value in level 1 in a
variable named VBOX.
() L evaluates a program that computes the product of levels

1, 2, and 3.

n @ML types WIOLUME.

The following CST list provides the desired custom menu. The menu

contains only one label: | %iil. . (See chapter 25 to learn about

programs.)

MR S YWBEOEY OSTO 3w ¥ o om "WOLUME®

Creating a Temporary Menu

The TMENU command creates a temporary menu without overwriting

the contents of the variable C'ST. Temporary menus are most useful in

programming—they’re covered under “Using Menus with Programs”

on page 29-18.

15-4 Customizing the Calculator

Defining the User Keyboard

The HP 48 lets you assign alternate functionality to any key on

the keyboard (including alpha and shifted keys), enabling you to

customize the keyboard for your particular needs. Your customized

keyboard is called the user keyboard, and it’s active whenever the

calculator is in User mode.

The commands for creating and changing the user keyboard are

located in the MODES Customization menu ((¢»)(MODES)).

Selecting User Modes

To activate User mode:

m To activate it for only one operation (1UZFR), press (|g)(USR). (It
turns off after the operation.)

m To activate it for several operations (LISER), press (e9)(USR)
(«®)(USR). (Press (|)(USR) a third time to turn off User mode.)

The («9)(USR) key is a three-way switch, as shown in the following

illustration.

User Mode /(USR] 1-User [+2][UsR] User

Off > Mode > Mode

Execute one operation

[+a][USR]

In 1-User mode (1LIZR annunciator), the user keyboard is active for
one operation. In User mode (LIZEFR annunciator), the user keyboard

remains active until you press (&q)(USR) to turn it off.

If you set flag —61, (|q)(USR) becomes a two-way switch between User

mode on and User mode off. (See “Using System Flags” on page

15-12.)

Customizing the Calculator 15-5

To change the way («)(UsR) operates:

m To make it a two-way switch, type 61 (=)(MODES)
o

m To make it a three-way switch, type 61 ()(MODES)

Assigning and Unassigning User Keys

You can assign commands or other objects to any user keys (including

shifted keys). The behaviors for different types of objects are the same

as for custom menus—see “Creating a Custom Menu” on page 15-1.

To assign one user key:

1. Enter the object to be assigned to the key.

2. Enter the three-digit location number that specifies the key. (See

the diagram below.)
3. Press ()(MODES) Hi&H (the ASN command).

Keyboard column#
|

v
XXX <—— 0or1 = unshifted

? 2 = left-shifted

3 = right-shifted
Keyboard row# 4 = alpha

5 = alpha left-shifted

6 = alpha right-shifted

If the object you’re assigning is a built-in command, use the next

procedure instead.

To assign several user keys:

1. Enter a list containing two key-assignment parameters for

each key—the object to be assigned to the key followed by the

three-digit key location number (see above).
2. Press (»)(MODES) &7k (the STOKEYS command).

15-6 Customizing the Calculator

This is an example of a key-assignment list for STOKEYS:

D
i
xSIMH 41 "=.14" 24,2 REC 11,

You can use 'ZKEY' as an assignment object. It means the

“standard” (unassigned) key definition.

When you press a user key, its assigned object is executed—or,if the

key is unassigned, the standard operation is performed. (You can also

disable keys, as described in the next topic.)

After you’ve assigned a user key, the assignment remains in effect until

you reassign the key using ASN or STOKEYS, or until you unassign

the key. An unassigned user key reverts to its standard definition—the

same as for the standard keyboard.

Example: Assign the typing aid ¥ILLFME to the key (without
otherwise affecting the user keyboard).

Press ()™ VOLUME to create the string object. Press
41 (»)(MODES) #=H to assign the string to the key (row 4,

column 1, unshifted). Now, you can press (&9)(USR) to type
i

WOLUME.

Example: Assign the DUP2 command to (&q)(SWAP) (without
otherwise affecting the user keyboard).

Press (q)([{3) ETE DLEE 36.2 to create
the key-assignment list. Then press ()(MODES) &Tiik to assign

the (&9)(SWAP) key (row 3, column 6, left-shifted). Now, when the

calculator’s in 1-User or User mode, press (¢9)(SWAP) to execute
DUP2.

Example: Assign the standard definitions of the and (&)(USR)
user keys.

Press (€3) (D) SKEY () 26 (1) SKEY () 61.2
m@mg1I'Ii' . The key-assignment list is

] ..!I_ ! L

Alternatively, you can assign each key individually using ASN.

Example: Make the following user key assignments:

m Assign the variable ABC containing £ A E T ¥ to (@) (A).
m Assign the program # OB+ DROF # to (2)(O).
m Assign the command DROP2 to («9)(DROP).
m Assign the string (typing aid) “HEIGHT” to (a) (&)(h).

Customizing the Calculator 15-7

Create the variable ABC containing the list «© A E [* and display the

VAR menu.

@@A B (5P¢) C |AIMl
(O ABC

Enter the key-assignment list for the STOKEYS command.

@@mEC 114 1: { ABC 11.4 « OBJ+
) SHEg tEgs OROP 2 .3 I Pz
@,_®®753) ?5.2 HEIGHT" Z£.5

BTk DROFZ 55.2 NN)
()M HEIGHT (») 22.5 (ENTER)

Execute STOKEYS and activate the user keyboard.

(»)(MODES) &1k fizH[=T0k[RCLE[DELE[HENU]C5T

QTR@GR
Now, retrieve the list in ABC' and use the program assigned to ()(2)
to separate it into its components.

@ 3z ‘A

@0 : :g:
ICENBT(Y[0GS

Execute DROP2, then put the string "HEIGHT" on the stack.

(S)(@EoP) 7 R
@)D@()0 ENTER) 1: "HEIGHT"

[M[ZT0K[RCLE[DELE[MENU]C3T |

Press (|9)(USR) to turn off User mode.

To unassign previously assigned user keys:

m To unassign one user key, enter the three-digit key number, then

press (»)(MODES) BELE.

m To unassign several user keys, enter a list containing the three-digit

key numbers, then press (»)(MODES) LELE.
m To unassign all user keys, press 0 (»)(MODES): LELE

15-8 Customizing the Calculator

An unassigned user key reverts to its standard definition—the same

as for the standard keyboard. If you use DELKEYS with argument 0

to unassign all user keys, all disabled keys are enabled (see the next

topic).

Example: Unassign all user keys.

0 @)(WODES) LE AZHSTOK[KCLE [DELE JMENU]C3T

Disabling User Keys

You can disable user keys that are unassigned—so they do nothing.

This lets you control the user keys that are active, including assigned

keys and standard (unassigned) keys.

If you assign a disabled user key, it becomes enabled.

To disable all unassigned user keys:

m Enter '%° and press ()(MODES) LELE.

To enable and unassign disabled user keys:

m To enable one unassigned key, enter 'ZEE"Y' enter the three-digit

key number, then press ()(MODES) FH&H

m To enable several unassigned keys, enter a list containing ' SkEY

and the three-digit key number for each key, then press ()(MODES)

Z70# . (Include one 'SEEY! for each key.)

m To enable and unassign all user keys, press 0 (»)(MODES) LELE.

To enable and assign disabled user keys:

m To enable and assign one user key, enter the object to be assigned to

the key, enter the three-digit key number, then press ((»)(MODES)

HEk

m To enable all user keys and assign several keys, enter a list with = as

the first object and followed by the assigned object and three-digit

key number for each key assignment, then press (¢»)(MODES)

Customizing the Calculator 15-9

Recalling and Editing User Key Assignments

To recall the current user key assignments:

m Press ()(MODES) ELLE (the RCLKEYS command).

The RCLKEYS command returns to level 1 a list of all the current

user key assignments—pairs of assignment objects and three-digit key

numbers. If the first item in the list is the letter =, then unassigned

user keys are currently enabled—otherwise, unassigned keys are

currently disabled.

To edit the user key assignments:

1. Press ()(MODES) EiLk (the RCLKEYS command).
2. Press (&)(EDIT) and edit the key-assignment list.
3. Press ()(MODES) %7k (the STOKEYS command) to activate

the edited assignments.

Note If you get stuck in User mode—probably with a

“locked” keyboard—because you’ve reassigned or

*J disabled the keys for canceling User mode, hold down

the key and press the C key, then release the C

key first.

Deleted user key assignments still take up from

2.5 to 15 bytes of memory each. You can free this

memory by packing your user key assignments—press

()(MODES) ELLE 0 DELE =T0E.

Setting Calculator Modes

You can use the MODES menu to set certain operating modes. To set

these and other operating modes or conditions, you can set and clear

system flags.

15-10 Customizing the Calculator

Using the MODES Menu

The multiple pages of the MODES menu ((¢9)(MODES)) contain

operations that let you customize the way your calculator operates.

When a menu label has a = in it, that mode is active. For example,

=Z4HMe means Symbolic Results mode is active. (If you want to

change one of these modes in a program, you must set or clear the

appropriate flags—see the next topic.)

MODES Operations

Key | Description

(S(oDES),
=l Switches between symbolic (= in label) and numeric

evaluation.

BEEF Switches between errors beeping (= in label) and not

beeping.

= Switches between saving (= in label) and not saving the

last stack. Affects the action of ()(LASTSTACK).

HEL Switches between saving (= in label) and not saving the
last arguments. Affects the action of ((»)(LASTARG).

LML | Switches between saving (& in label) and not saving in

memory the last command line. Affects the action of

STD)
LHLT Switches between drawing a continuous line to connect

plotted points (EHi®) and plotting points only

Switches between displaying a multiline level 1 as multiple

lines (m in label) and as a single line followed by an

ellipsis.

| = Switches between displaying a clock (= in label) and not

displaying a clock.

Switches between decimal fraction mark and comma

fraction mark (= in label).

Customizing the Calculator 15-11

Using System Flags

The HP 48 provides a number of modes that also let you customize its

operating environment. Most modes are controlled by system flags.

The HP 48 has 64 system flags, numbered —1 through —64. Each flag

can have two states—set (value of 1) or clear (value of 0). The system
flags and the modes they control are described in appendix E.

The commands for setting, clearing, and testing flags are in the

MODES Customization menu (((#)(MODES)). (They’re duplicated in
the PRG TEST menu.) They take flag numbers as arguments.

To use a flag command:

1. Enter the number of the flag (negative for a system flag).
2. Execute the command (see the table below).

Flag Commands

Key Programmable Description

Command

(e»)(MODES) (pages 2 and 3) or TEST (page 3):

B SF Sets the flag.

CF Clears the flag.

FS? Returns true (1) if flag is set and false
(0) if flag is clear.

= FC? Returns true (1) if flag is clear and false
(0) if flag is set.

PR FS?C Tests flag (returns true (1) if set and
false (0) if clear), then clears the flag.

FC?C Tests flag (returns true (1) if clear and

 false (0) if set), then clears the flag.
Example: Automatic Alpha Lock. Ordinarily, Alpha-entry mode

is locked by pressing (@) twice in a row. You can choose instead to

have a single press of (o) automatically activate alpha lock. To select

Automatic Alpha Lock mode, set system flag —60: press 60

()(MODED) 5F

15-12 Customizing the Calculator

Example: User-Mode Lock. Pressing (¢9)(USR) once normally puts
your calculator in User mode for one keystroke—pressing it twice

in a row locks User mode until you press it a third time. To have

User mode “lock in” on the first press, set flag —61: press 61 (/)

()(MIODES) (D)
Example: Evaluating Symbolic Constants. Symbolic constants (e,
i, m, MAXR, and MINR) normally retain their symbolic form when

evaluated. If you want them to be automatically evaluated using their

HP 48 numeric representations, set flag —2: press 2 (e»)(MODES)

NXT =

15

The previous examples show just a few of the ways you can use

flags to customize the way your HP 48 operates. You can also use

flags to affect the display, math operations, printing, plotting, time

management, and various other operations. For the complete listing of

all 64 system flags and what they affect, see appendix E.

Customizing the Calculator 15-13

Part 3

Power Tools

16
The EquationWriter Application

1 The EquationWriter application lets you enter and

review algebraic expressions and equations in the

form most familiar to you—the way they appear

printed in books and journals, and the way you

write them with pencil and paper.

 For example, here’s an equation taken from a

physics text:

t2

v:vo—}—/ a dt
t1

Here’s how the equation would look on the stack:

PRlLy be ma b !

Now, here’s the same equation keyed in using the EquationWriter

application:

t2
u=u8+j adtl

t1

[PHET:]PROE]HVPJHATRIVECTH]ERZE

The EquationWriter Application 16-1

How the EquationWriter Application Is
Organized

The EquationWriter application is a special environment where

the keyboard is redefined and limited to special operations. Keys

corresponding to algebraic functions enter the function name or

graphical function symbol into the equation. For example, pressing

draws a square root sign. You can display any menu—however,

only those keys that correspond to algebraic functions are active. Like

the function keys on the keyboard, the menu keys don’t execute the

corresponding function—they simply enter the function name into the

equation.

The EquationWriter application consists of three modes, each with its

special purpose:

m Entry mode. For entering and editing equations.

m Scrolling mode. For viewing larger equations.

m Selection mode. For editing expressions within equations.

 [PHETS]PROEHYP[MATE[VECTR]BAZE

Scrolling Mode Entry Mode

RULEZ] EDIT EXPRZUE REPL

Selection Mode

16-2 The EquationWriter Application

Special keys on the keyboard are defined below.

Operations in the EquationWriter Application

Key Description

@
®)or (@

)

@O

SPC

€()

@ED

STO

Starts a numerator.

Ends a subexpression. ((2)(®) or ()(¥) ends all

pending subexpressions.)

Invokes selection mode, in which the Selection

environment is active.

Enters ¢ to start a parenthesized term. () (or (¥))
ends the parenthesized term.

Enters the current separator (s or ;) for multiple
parenthetical arguments of functions and the terms of

complex numbers.

Exits the EquationWriter application and evaluates the

equation.

Returns the equation to the stack and exits the

EquationWriter application.

Exits the EquationWriter application without saving

the equation.

Invokes scrolling mode. In scrolling mode, the menu

keys are erased; if the equation is larger than the

display, (&) (V) (€) (®) scroll the display window over

the equation in the indicated direction. Press

(®)(GRAPH) again (or (ATTN)) to return to the previous
mode.

Returns the equation to the command line for editing.

(See “Editing Equations” on page 16-16.)

Returns the equation to the stack as a graphics object.

(See “The Structure of the PLOT Application” on
page 18-2 and “Working with Graphics Objects on the

Stack” on page 19-26 for discussions of graphics

objects.)

The EquationWriter Application 16-3

Operations in the EquationWriter Application (continued)

Key Description

()(CLR) Erases the display without leaving the EquationWriter
application.

(@)[RCL) |Inserts the level 1 object into the equation at the cursor

position. (See “Editing Equations” on page 16-16.)

@) Turns implicit parentheses mode off. Press ()({3)
again to turn implicit parentheses mode back on. (See

“Controlling Implicit Parentheses” on page 16-11.)

(@)™ |Returns the equation to the stack as a string.

Constructing Equations

To start the EquationWriter application:

= Press ($)(EQUATION).
After you start the EquationWriter application, you can enter an

equation or expression (or unit object) using the operations available

in this environment. See “Entering Equations” below.

To view a large equation or unit object:

1. Press (|9)(GRAPH) to activate scrolling mode.
2. Press (€) () (4) () to move the viewing “window.”
3. Press (q)(GRAPH) to return to the previous mode.

To exit the EquationWriter application:

= To put the equation on the stack and exit, press (ENTER).

m To discard the current equation and exit, press (ATTN).

16-4 The EquationWriter Application

Entering Equations

While you’re entering an equation, you don’t have to wait for the

HP 48 to display the result of each key—you can keep typing because

the HP 48 can remember up to 15 keystrokes.

To enter numbers and names:

m Key them in exactly the same way you key them into the command

line. The menu keys in the VAR menu act as typing aids for

variable names.

To include addition, subtraction, and multiplication:

m To enter +, ~, and =, press (1), (=), and (x).

m To do implied multiplication, don’t press (x). (See below.)

You can do implied multiplication (without pressing (X)) in some

situations—a multiply sign (*) is automatically inserted between:

m A number followed by an alpha character, a parenthesis, or a prefix

function (a function whose argument(s) appear after its name)—for
example, when you press 6 (SIN).

m An alpha character and a prefix function—for example, when you

press A (q)2).

m A right parenthesis followed by a left parenthesis.

m A number or alpha character and the divide bar, square-root

symbol, or zth root term—for example, when you press B (&).

2M+LOGEK) +z-%n
T T T No [x] necessary

RGTANERERES | when entering
To include division and fractions:

1. Press (A) to start the numerator.

2. Press (®) to end the numerator ((¥) works too).

3. Press @ to end the denominator.

The EquationWriter Application 16-5

Here’s an alternate way for fractions whose numerator consists of

either one term or a sequence of terms with operators of precedence

greater than or equal to -~ (divide):

1. Type the numerator (without pressing (&)).
2. Press (3) to start the denominator.

3. Press () to end the denominator ((¥) works too).

\//
12,040,N+—-?‘|]

N

>

To include exponents:

1. Press (") to start the exponent.

2. Press () to end the exponent ((¥) works too).

yx

-
HH+1B

PAET:]PROEHYP_[MATE [VECTE]ERZE

16-6 The EquationWriter Application

To include roots:

m To include square root, press to draw the 1 symbol and start

the term, then press () to end the square root term.

m To include zth root, press ()(¥¥) to start the z term outside the T

symbol, press () to draw the { symbol and start the y term inside

the I symbol, then press () to end the zth root term.

3]

|/
T4[L+1-120

 PrkT:]PROEHYP[MATF[VECTR]ERSE

To include functions with parenthetical arguments:

1. Press the function key—or type the name and press (&)())

2. Press (») to end the argument and display .

1+ASINHCK) O

 [ZIMH[AZIMH]CHEH[RCOSH{TAMH |ATHM |

]

To include parenthesized terms:

1. Press (&)((Q) to display the «.
2. Press (») to end the term and display .

The EquationWriter Application 16-7

To include powers of 10:

1.
2.
3.
4.

Press to display E.

If the power is negative, press to display .

Key in the digits of the power.

Press any function key to end the power.

To include derivatives:

1.

2.

@

Press (%) (3) to display g.

Key in the variable of differentiation, then press () to end the

denominator and display .

Key in the expression.

Press () to end the expression and display .

(2]
\ 3 o

EE[H —5]!]

 Pardl:]PEOE HYP[HATE VECTR] EAZE |

> >

To include integrals:

1.

o>
o
t
o
1

Press (@) (/) to display the .r symbol with the cursor positioned at

the lower limit.

Key in the lower limit and press ().

Key in the upper limit and press ().

Key in the integrand and press () to display .

Key in the variable of integration.

Press () to complete the integral.

16-8 The EquationWriter Application

 \//
[SINCH) di O

 PT3NEOEHYF[MATRVECEASE]

>

To include “sigma” summations:

1. Press ()(Z) to display the E symbol. The cursor is positioned

below.

Key in the summation index.

Press () (or ()(=)) to key in the = sign.
Key in the initial value of the index and press ().

Key in the final value of the index and press (»).

Key in the summand.

Press (») to end the summation.

\m//
H+1D
N=1

G| AER.AENECTANGEE

S
O
S
R

e
1o

®] (or [«][=]) >

The EquationWriter Application 16-9

To include units:

1. Key in the number part of the unit object.

2. Press (»)(0) to start the unit expression part of the unit object.

3. Key in the unit expression.

4. Press () to end the expression.

You can build unit objects (described in chapter 13) in the
EquationWriter application. For combination units, press (X) or () to

separate each individual unit in the unit expression. You can key in

unit names in one keystroke by pressing the corresponding menu key

in the UNITS Catalog menu.

[<q][UNITS| LENG FT

(=] -F

K

A
4 5

 m““lfllflfim

To include | (where) functions:

1. Key in a parenthetic expression with symbolic arguments.

2. Press (&q)(ALGEBRA) i to display i. The cursor is

positioned at the bottom right of the symbol.

3. Key in the defining equation for each argument, pressing () or

()(=) to key in =, and to key in the separator between each

equation.

4. Press (») to end the function.

The | (where) function substitutes values for names in expressions. It’s
described under “Using the | (Where) Function” on page 22-25.

16-10 The EquationWriter Application

[+ [ALGEBRA|[NXT] I > (or [«a] [=])

H[H,“r']lx=6 sl

 auui CARET] N

[sPC]—

> (or [&=][=])

Controlling Implicit Parentheses

Implicit parentheses are turned on whenever you start the

EquationWriter application. This means the arguments for (), (%x),

and are normally enclosed in “invisible” parentheses, so that only

(») (or (¥)) ends the argument.

If you turn off implicit parentheses, the argument ends when you enter

the next function—pressing (») doesn’t end the argument.

To turn implicit parentheses on or off:

m Press ()({3). A message showing the current state is displayed
briefly.

Disabling implicit parentheses i1s convenient for entering polynomials,

for example, where exponents are completed when you enter the

function that starts the next term.

Leaving and then restarting the EquationWriter application turns

implicit parentheses on. If you turn off implicit parentheses after

keying in (3), (x), or (¥), but before supplying the argument, implicit

parentheses is not applied to those arguments.

The second example below demonstrates turning off implicit

parentheses.

The EquationWriter Application 16-11

EquationWriter Examples

At the end of each example, instead of pressing to put the
equation on the stack, you can press ((»)(CLR) to clear the display for

the next example. (If you press ((»)(CLR), ignore the (.q)(EQUATION)
instruction at the start of each new example.)

If you make a mistake while you’re keying in an equation, press (¢) to

backspace to the error—or press (#)(CLR) and start again. Note that
the HP 48 may take several seconds to redisplay the equation after

you’ve pressed («) several times. In “Command-Line Editing” on page

16-17, you’ll learn how to edit an equation in the command line.

Example: Key in the equation

t2

v:v0+/ a dt

t1

Select the EquationWriter application and key in the equation up to

the f sign. (After you press (¢9)(EQUATION), you can lock lowercase

alpha for alpha entry by pressing (@)($)(2).)

(9(EQUATIoN)
@O®

u=uE+[0

LAZHSTOK[RCLE [DELE JHENL

Key in the integral sign.

>

u=uE+J
O

ICECNBTRTT

Key in the lower limit and move the cursor to the upper limit.

t1 (%)

O
u=uB+

t1

[AsH|3TOK|RCLE|DELE[MEWU|C5T|

16-12 The EquationWriter Application

Key in the upper limit and move the cursor to the beginning of the

integrand.

t2)

t2
u=uE1+[0

t1

A5H[STOK[RCLE JDELE[MEHU

Key in the integrand and the variable of integration.

a()t

t2
u=ul3+[adtl

t1
LAzH[STOK[RCLEJDELE[MENU]CST

Put the equation on the stack.

1: 'v=uB+f(11,12,4,1)"
ISTATT

Example: Key in the expression X3 + 2X2% — %, first with implicit

parentheses and then without.

@EUAON X () 3)@
X200 s .21
1@X K+2R

AZHSTk[KCLE [DELE [MENU

Clear the display and turn off implicit parentheses.

)(CR) Implicit t» off

@®)
0
A5H[STOK[RCLE [DELE[MENU]CET

The EquationWriter Application 16-13

-|

Key in the expression again.

XEB@OAFD2010X

IGECSTRTTS

Press (q)({3) to turn implicit parentheses on and put hte

expression on the stack.

Example: Key in the equation

2ty2
3 =qa 3

2

3 +y

Key in the equation. (After you press («q)(EQUATION), you can

activate lowercase alpha lock by pressing (@)(9)(@).)

(9(EQUATION)
@O

®>)0>) IEECHBTAN FENEG

Press to put the equation on the stack.

Example: Key in the expression

97N

X2 - 2XYcos—r 4 Y2

2N +1

@)ETo)
X200 2 2N 2X @)Y (€0 w-zvoos|S+%
2@@XNE
2N 1
EZJS EECHBTAFEET

Press to put the expression on the stack.

16-14 The EquationWriter Application

Example: Key in the expression

W%QCOS2(7TX)

)T
@3Y @)
@X) -2zcosrs %]
208@IX ()
20

AEM[STOR[RCLE [DELE[MENU

Press to put the expression on the stack.

Example: Key in the expression

1 xP-1

/o X2MA1 —e

 (&) (EQUATION)
0%]18@ LW eX0 PO 1 [————X 7) 2M) E'HE M+1_H2 M+1

AOFI2M (+) 1

Press to put the expression on the stack.

Example: Key in the expression

165 x 107128
S

()(EQUATION)
165 €9 (O 12 @0 e
(@UNT) : 1.65E-122200
@) A 5

-UNITS

%J@ {NNIOTNOI

Press to put the expression on the stack.

The EquationWriter Application 16-15

Editing Equations

You have several options for editing equations in the EquationWriter

application:

m Backspace editing.

m Command-line editing.

m Inserting an object from the stack into the equation.

m Replacing a subexpression with an algebraic from the stack.

Backspace Editing

If you make a mistake while entering an expression in the

EquationWriter application, you can erase characters back to the error

and fix it.

To edit by backspacing:

m Press («) until you delete the error.

m Complete the expression correctly.

Note, however, that backspacing may be slow in certain situations.

Backspacing is usually appropriate for correcting a mistyped character

or digit—for extensive editing, use command-line editing, described in

the next topic.

Example: Key in the expression sin(z + /y + 180 + 2).

Select the EquationWriter application and start the expression.

“Accidentally” key in 17instead of 1ZE.

()(EQUATION)
EN)
@y 170 SIN(w-Jo+T780

A=H[STOK[RCLE [DELE[MERU]CET

16-16 The EquationWriter Application

Backspace over i, key in the correct number, and finish the

subexpression.

@W®0®)

SIN(:wJo+1880

LA=NSTOK[RCLE JDELE[MERU]C5T
Finish keying in the expression.

Bz

SIN(se[o+188+z) 0
LAZH[STOK[RCLE JDELE[MEHU]C5T Press to put the expression on the stack.

Command-Line Editing

You can edit all or part of an equation in the command line and then

return the edited version to the EquationWriter application.

To edit the full equation:

1. If the equation ends in an incomplete subexpression, complete it.

. Press (&)(EDIT).2

3. Edit the equation in the command line.

4 . Press to save the changes (or press to discard them)
and return to the EquationWriter application.

Example: Key in the expression

50
Z sin(27)
i=1

The EquationWriter Application 16-17

Select the EquationWriter application and key in the expression.

“Accidentally” specify the series index as H instead of I.

 ()(EQUATION)
@O
H () 1 ()50 &)
@@

=W[STOK[RCLE[DELE[MENU]C3T

Suppose that you now realize that you need to change the + to I. Try

using command-line editing.

@ Incnmplete
LIE}{PFESSion

EsmZa-

IGELSTRT(T

The Equatlonerter apphcatlon briefly displays themessage

Iry L z=zz1ian and leaves the cursor at the end of

the equatlon Complete the expression, then start command-line

editing.

1)()€ ;§5H=1,5E’I,SINEE*W“1

£ZEIP[ZEIP# £DEL|DEL®INZ u|+3TE

Change the H to I and return the expression to the EquationWriter

application. (The HP 48 takes a few seconds to return the expression

to the EquationWriter application.)

@®ED!

SH

Ssinlz')
I=1

AZH[STOK[RCLE [DELE[MENU]CET

Press again to put the expression on the stack.

To edit a subexpression of an equation:

1. If the equation ends in an incomplete subexpression, complete it.

2. Press () to activate the Selection environment.

16-18 The EquationWriter Application

3. Press (A) (V) (@) () to move the selection cursor to the top-level

function for the subexpression you want to edit. (See below.)

4. Optional: Press ExbE at any time to show the associated

subexpression—a highlight turns on or off.

5. Press ELiIT to put the current subexpression in the command

line.

6. Edit the subexpression in the command line.

7. Press to enter the revised subexpression into the equation

(or pressm(ATTN) to discard it).
8. Press IT to leave the Selection environment. (If EXIT isn’t

dlsplayed press (=) to return to the Selection menu.)

The Selection environment is a special part of the EquationWriter 16

application used to specify a subexpression in the equation.

A subexpression consists of a function and its arguments. The function

that defines a subexpression is called the top-level function for that

subexpression. For example, in the expression * ' the top

level functlon for the subexpression *E#* is %, the top-level function

for 'E [:* is., and the top level function for FATE

(You can actually specify an individual object, a name for example, as

the subexpression.)

H+BEsDoD 18 +.

You can also use the Selection environment to specify a subexpression

to rearrange using the Rules transformations—see “Using the Rules

Transformations” on page 22-11.

Example: Key in the expression

1
4

tanA/ z¥dz
Z Jo

Select the EquationWriter application and start the expression. In the

argument for TAN, “accidentally” press (x) instead of (3).

(@)(EauATIoN)
TaN) 4 () X () 1
@0®) TAN(44) 'Ja”

AZM[STOK[RCLE JDELE MEMU]CET

The EquationWriter Application 16-19

At this point you realize your mistake. However, you must enter the

remaining arguments for the integral subexpression before activating

the Selection environment.

X@OYE®X

i
TANC44) -JE w' 4w

LAEN[STOK[RCLK [DELK [MEMU|CET
Now activate the Selection environment. Then move the cursor back

to the unintended -.

©
(@) (as required)

1

TANC 484) -L W' dy [TTTTITl
Optional: Highlight the corresponding subexpression for -

EHEE

1
TANCa2 -JB u’ dy

[TTITTTl
Return the subexpression to the command line for editing.

Bl ALG PRG
{ HOME }

g4
%SKIP[sKIPH]£UEL[DEL[INSa[+5Tk]

Replace the # with - and enter the change. (The HP 48 takes a few
seconds to return the expression to the EquationWriter application.)

]

THN[-%] J;u"

E&TeR) O

[RULE=] EWIT EXPFSUE REPL

16-20 The EquationWriter Application

Leave the Selection environment. After several seconds, the normal

cursor reappears at the end of the equation and the last menu is

redisplayed.

 ENIT

THN[%]I;HTdH 0

izH|70k[RCLE [DELE[MENU]C3T

Press to put the expression on the stack.

Inserting an Object from the Stack

The EquationWriter application lets you insert an object from the

stack into an equation you’re entering. The object can be a name, a

real number, a complex number, an algebraic, or a string.

To insert an object from level 1 into an equation:

m Press ()(RCL).

The object is deleted from the stack and inserted at the cursor

position. The delimiters for names, algebraics, and strings are

automatically removed.

Example: Enter the expression

10 2

/ 2 —yde+ vy
0 2

in the command line and duplicate it.

21 gy
1: 'Hre-Y!
Lfi5H[STOK[RCLE[OELE[MEWU]C5T

Select the EquationWriter application and key in the integral sign and

limits of integration.

(@)(EATION
@00® 10

Enter the expression

OXE)20 Y ENTER) ENTER)

iEH[STOK[KCLE JOELEJMENU]CST

The EquationWriter Application 16-21

Insert the integrand into the expression.

 @ED
18

J ey
a

ISTRT(T
Complete the subexpression. Then key in the remainder of the

expression, inserting the second term from the stack.

 ®x®
18 = HE—"l’

D@EDE:E [Vx-vax £510

IEECNBTR[G

Press to put the expression on the stack.

Replacing a Subexpression with an Algebraic Object

The EquationWriter application lets you replace a subexpression or

individual object in an equation. It’s replaced by an algebraic object

taken from the stack.

To replace a subexpression with an algebraic from level 1:

1. If the equation ends in an incomplete subexpression, complete it.

2. Press () to activate the Selection environment.

3. Press (A) (¥) (€) () to move the selection cursor to the top-level

function for the subexpression you want to replace. (See

“Command-Line Editing” on page 16-17.)
4. Optional: Press EHFEat any time to show the associated

subexpression—a highlight turns on or off.

5. Press EERL .

6. Press E# 171 to leave the Selection environment.

The algebraic is deleted from the stack.

16-22 The EquationWriter Application

Viewing and Editing Objects with the
EquationWriter Application

You can use the EquationWriter environment to view and edit an

algebraic or unit object in its EquationWriter form.

To view an existing algebraic or unit object with the EquationWriter
application:

1. View the object:

m If the object is in level 1, press (V).

m If the object is stored in a variable, put the variable name in

level 1 and press (()(¥).

2. Press to return to the stack.

Note that, depending on the length and complexity of the algebraic or

unit object, the HP 48 may take several seconds to display it in the

EquationWriter application.

To edit an object you’re viewing with the EquationWriter application:

1. Use any of the three EquationWriter modes—scrolling mode,

selection mode, and entry mode. See “How the EquationWriter

Application Is Organized” on page 16-2.

2. Press to save the changes (or press to discard them)
and return to the stack.

The EquationWriter Application 16-23

17
The HP Solve Application

To solve an equation for numeric answers by hand, you might use the

following general procedure:

1.

2.

3.

4.

The HP Solve application lets you numerically solve

real-valued equations containing any number of

variables. It’s a convenient alternative to symbolic

math and programming when you want real-valued

numeric results.

17 ;

Write down the equation you want to solve.

If possible, manipulate the equation to solve for the unknown

variable.

Substitute known values for the given variables.

Calculate the value of the unknown variable.

When you use the HP Solve application, you follow a similar

procedure—ezcept you don’t need to do step 2, and that simplifies

the process. And you can repeat steps 3 and 4 as often as you like,

changing the values of one or more variables and solving for any

variable.

The HP Solve Application 17-1

The Structure of the HP Solve Application

The HP Solve application consists of two menus (the SOLVE menu

and the SOLVR menu) and the reserved variable EQ containing the

current equation—the equation you want to solve.

m The SOLVE menu lets you view the current equation or specify a

new current equation. The SOLVE menu also lets you access the

Equation Catalog, so you can select and manage existing equations.

m The SOLVR menu displays the variables for the current equation,

letting you store, solve for, and review the numeric value of each

variable in the equation.

(=] —> |The SOLVE menu:
View current equation. If needed,

specify a new current equation

i oAt

SOLVR The Equation Catalog:

or select the Equation Catalog.

Make an existing equation <] [ALGEBRA|
the current equation.

\L SOLVR

[—> The SOLVR menu:
Display the menu of variables

for the current equation.

17-2 The HP Solve Application

Using Equations, Expressions, and Programs

The HP Solve application can solve for the numeric value of a variable

in an equation, expression, or program:

m Equation. An equation is an algebraic object containing = (for
example, 'F+E=0"). A solution is a value of the unknown variable

that causes both sides to have the same numeric value.

m Expression. An expression is an algebraic object not containing =

(for example, 'FA+E+C"). A solution is a root of the expression—a

value of the unknown variable for which the expression has a value

of 0.

m Program. A program to be solved must return one real number. A

solution is a value of the unknown variable for which the program

returns 0.

Throughout this chapter, the term “equation” refers to all objects used

to create SOLVR menus—equations, expressions, programs, and lists of

equations, expressions, and programs.

Specifying the Current Equation

The current equation is the equation you last solved or plotted. It’s

stored in reserved variable F@Q. You change the current equation each

time you solve or plot a different equation. (To solve the current

equation, see “Solving the Current Equation” on page 17-12.)

To check the current equation:

m Press ()(SOLVE).

A two-line status message gives the current equation and its name—

or, if there’s no current equation, it gives instructions for entering a

new equation. In addition, the SOLVE menu is displayed.

The HP Solve Application 17-3

urrent equat
OTH: '¥= EI*T+FI*T"2«’2' <—— Current equation

tagged with its name

EMEETACENEEAEEARE < SOLVE menu
Entering a New Current Equatlon

You can use either] . to enter a new current

equation. HEH helpsyou enter and name a new current equation

by displaying an instructive message. STERis useful if you want

to store an equation in £@Q without naming it. Named equations

are stored in variables so you can use them again later—unnamed

equations are lost when you change the current equation.

To enter and name a new current equation:

1. Enter the equation in level 1. You can type it in the command line

or use the EquationWriter application.

2. Press (®)(SOLVE) HEM
3. Without pressing (), key in a name for the equation and press

(ENTER).
The equation is stored in a variable with the name you entered—the

variable name is stored in £Q. (If you press without keying in

a name, the equation itself is stored directly in £Q.)

If the “equation” is a program or list, HEL automatically adds

. Efl to the variable name (or s Efif the fraction mark is “;”). This

identifies the variable as containing an object for solving or plotting.

Example: Use HEWM to enter and name the following equation for

the motion of an accelerating body:

at?
r = v0t+ 7

(This equation assumes that variables X, V0, T, and A don’t exist in

the current directory.)

17-4 The HP Solve Application

Key in the equation using the EquationWriter application.

@ED

(<) (EQuATIoN) f72

@WAMTED206)
2

> IEEBTACEEGR

Store the equation as the current equation.

{ HOME } FRa
(©)(SOLVE) HEH ane 1e zauat Tom;

press EMTE

+
L[[[[

In response to the prompt, name the equation MOTN. Don’t press (o)

because HEL automatically locks Alpha-entry mode.

MOTN Current equation:
MOTH: 'R=NB*xT+A*T"2-2'

3:
7

TTTNTT

This equation is solved in the example on page 17-13.

To enter a current equation without naming it:

1. Specify the equation in level 1:

m For a new equation, enter it into level 1.

m For an equation stored in a variable, enter the variable name.

(Press (7)), then press the variable’s menu key or type its name.)

2. Press (|q)(SOLVE) &71E& (the STEQ command).

The STEQ command stores the equation or name in £Q. Note that

an unnamed equation in F@ is lost the next time you store a new

equation in FQ.

The HP Solve Application 17-5

Example: Enter the equation below for the velocity of sound in a

gas, then store it in variable VSOUND. Use STEQ to make it the

current equation.

YRT

M
v =

Select the EquationWriter application and key in the equation. (To

key in -, press (@) () G.)

(SEQuATOD)
vRIE W) BT
T®REXTEM u= |

[ZOLYR]ROOTWEM|ECEG[STEGCAT

Store the equation in VSOUND.

1:
() VSOUND TTST

Use STEQ to make VSOUND the current equation.

@R () a0l
(@G ETER

Current equat
VSOUND: 'w=I(T*R*TfH)'
3

T
EOLUF)FOOTNEMJEDER:[STERCAT

Reusing an Existing Equation

The Equation Catalog shows a listing of all named equations in the

current directory. It’s a special environment tailored to manage

existing equations. The stack display is replaced by the equation

listing, and the keyboard is redefined to execute special operations.

These operations let you select the current equation and combine, edit,

reorder, and purge existing equations. The Equation Catalog lists

all named algebraics, plus all variable names ending in £Q and all

directories in the current directory.

17-6 The HP Solve Application

To get the Equation Catalog:

m Press (q)(SOLVE) LHT

u Press (@ELoT) CAT

u Press (@) (ALGEERA).

Selected entry

D
{ HOME }

WYSOUNDE Tu=TCvRET.,
EB: 'WSOUND'

atalo ointer sdlre i

ap BERT.Ed: &COND CONy.,| oubdirectory
|NANISTK

Variable that does not

contain an equation

To work with an equation in the Equation Catalog:

1. Press (A) and (¥) to move the pointer to the desired entry in the

list.

2. Do the operation:

m To make the equation the current equation andstart solving the

equation using the HP Solve application, press= :

m To view the equation, press and hold * 1EH —release the key to

quit viewing.

To exit the Equation Catalog:

m To exit, update the current equation, and start solving the equation

using the HP Solve application, press &

m To exit without updating the current equatlon press

The following table gives a complete list of operations in the Equation

Catalog environment. The operations work on the selected entry. The

Equation Catalog is used by the HP Solve application and by the Plot

application (described in chapter 18).

The HP Solve Application 17-7

.
.

Operations in the Equation Catalog

Description

HELER

Makes the selected entry the current equation and

displays the PLOTR menu.

Makes the selected entry the current equation and

displays its menu of variables.

Creates or adds to a list of equations. (See “Solving

Two or More Equations” on page 17-27.) ((&q)E&i+
removes the last entry from the list.)

Places the selected entry in the command line for

editing. Press to save the changes—or press
to discard the changes.

Copies the selected entry to the stack.

Clears the display and shows only the selected entry,

without its name, until the key is released. If the

selected entry is a directory, % iEl switches to that

directory.

Makes the selected entry the first entry in the catalog.

If you create a list of n equations with Eii+ OREDER
makes those equations the first n entries in the catalog.

Purges the selected entry from the catalog (and from

the current directory).

Enabling FHZT# shows the names in the catalog (and
in status messages) without their contents. (Enabling

w sets flag —59. The converse is also true.)

"u is useful if the catalog contains many long

equations, since such equations are slow to display.

Moves the catalog pointer up one level. When prefixed

with (&), moves the catalog pointer up one page

((®9)(PgUp) in the following keyboard illustration);
when prefixed with (), moves the catalog pointer to

the top of the catalog (()(@&) in the following

keyboard illustration).

17-8 The HP Solve Application

Operations in the Equation Catalog (continued)

Key Description

™ Moves the catalog pointer down one level. When

prefixed with (4q), moves the catalog pointer down one

page ((«e9)(PgDn) in the following keyboard illustration);
when prefixed with (), moves the catalog pointer to

the bottom of the catalog ()@ in the following
keyboard illustration).

Exits the Equation Catalog.

Executes #% Tl (copies the selected equation to the

stack). If the selected entry is a directory, switches to

the Equation Catalog in that directory.

(0)(UP) |Switches to the Equation Catalog of the parent
directory.

(®)(HOME) |Switches to the Equation Catalog of the HOME

directory.

Hhdhdhhh
PgUp A PREV

(IC) (A
UP_HOME PgDn ¥

(OO

OOOOudd

Executes —smic ——

>

enter [

J

()

J

(]

(oo

CJCJC Y

oIy)
Exits Catalog 7@[JC JC ¢]J

The HP Solve Application 17-9

Example: Use the Equation Catalog to select MOTN (from the
example on page 17-4) as the current equation and start solving it (by

displaying its menu of variables).

Get the Equation Catalog.

-SOLVE LHT

© 1 HOME 1}
MYSOUMD: o=lCyERETM.,
MOTH: 'H=VE*T+RXT"2/

BIO: dir
PROG: dir
B: '¥-2'
RBTRTBTEEE

Move the pointer to MOTN . Then make it the current equation and

display its menu of variables.

() (if necessary) MOTH: '"H=VB*T+A*T2/ ..

—
0
0
P

 Ly It vo Il T Il A IEEEI]

Note that the selected entry doesn’t become the current equation until

you press ZLEE (or FLOTE).

17-10 The HP Solve Application

Summary of SOLVE Menu Operations

The SOLVE Menu

Key Programmable

Command

Description

@G

SR

BEOEET

EDREH

®

QEED

ROOT

STEQ

RCEQ

Selects the menu of variables for the

current equation.

Solves an equation (in level 3) for an

unknown (in level 2), using the guesses
in level 1. ROOT is principally useful

in programs.

Takes the equation from level 1,

prompts for a variable name, stores

the equation in that variable, and

makes the equation in that variable

the current equation.

Places the current equation in the

command line for editing. Press

to store the changes in the
variable and make the edited version

the current equation—or press

to discard the changes.

Stores the level 1 equation as the

current equation.

Recalls the current equation to level 1.

Selects the Equation Catalog.

Redisplays the “current equation”

status message.
The HP Solve Application 17-11

Solving the Current Equation

When you solve the current equation, you store values for known

variables and solve for the value of the unknown variable. You

normally do this using the SOLVR menu, which is a menu of variables

for the current equation.

To begin solving the current equation:

m Press &iil WF in the SOLVE menu or Equation Catalog.

or

m Press (»)(SOLVE) at any time.

In the Equation Catalog, &l
selected equation in the list.

‘F also sets the current equation to the

When you begin solving the equation, you get the SOLVR menu, the

menu of variables for the current equation—the equation stored in

EQ. The SOLVR menu contains:

m A “white” menu key for each variable in the current equation.

m The E:FE = menu key, discussed later in this section.

The variable menu labels are white with black letters. This

emphasizes that the menu operations for variable keys in the HP Solve

SOLVR menu differ from the operations in the VAR menu (or CST
menu).

Finding a Solution

When you solve the current equation, the HP Solve application looks

for only one solution. If the equation might have more than one

solution, see “Finding Other Solutions” on page 17-17.

To solve the current equation:

1. For each variable with a known value, enter the value and press the

variable’s key in the SOLVR menu.

2. Optional: For the unknown variable, enter a “guess” for its value

and press the variable’s key in the SOLVR menu.

3. Press (.q) and the unknown variable’s key in the SOLVR menu to

solve for its value.

17-12 The HP Solve Application

If a variable doesn’t exist, it’s created when you store a known value
or solve for its value. You don’t need to enter a value for a variable if

it already contains the desired value.

If you want to enter a “guess” for a variable, see “Finding Other

Solutions” on page 17-17.

When you solve the equation, you get a message that describes the

outcome of the process. See “Checking the Solution” on page 17-16

and “Interpreting Results” on page 17-18.

To recall a variable’s value:

m Press () and the variable’s key in the SOLVR menu.

To review variable values:

1. Press (q)(REVIEW).
2. Press to return to the stack display.

Example: Assuming the current equation is the equation of motion

of an accelerating body (MOTN), calculate the distance (z) a body
travels in 4 seconds () if its initial velocity (vg) is 2 m/s and it is
accelerating (a) at 3 m/s?. (This equation actually has two solutions
for z—to find the second solution, see “Finding Other Solutions” on

page 17-17.)

(This example assumes that variables X, V0, T, and A do not exist in

the current directory.)

If necessary, get the SOLVR menu. Then store 4 in T'. (T: 4 at the

top of the display tells you 4 has been stored in T'.)

()(SOLVE) (if necessary) |T: 4 I

Now, store 2 in V0 and 3 in A.

|F|= 3 I

 The HP Solve Application 17-13

Solve for z. Note that the numeric result is tagged with the variable
name. The message ZERQ

7 in the status area indicates that a root

(solution) has been found.

Zero

42
3z
7

1: ne 3¢
L v I T I 8 \EEEE |

If the object actually traveled 40 meters with the same initial velocity

and time, what was its acceleration? Store the new values and solve

for a.

2 " 32
A: 4

 @ Le v Il 1T Il 8 IFEEI]

Note that the solution for X from the previous calculation is in level

2—this 1s not the current value of X. Review the current values.

(<) (REVIEW) MOTHE T R=vasT+T27 .

Ya: 2
T: 4
A: 4

Le vl 1 Il 8 IE@EEL1

Press to return to the stack.

Example: The equation for a simple resistive circuit is V = IR,

where V is the circuit voltage, I is the circuit current, and R is the

circuit resistance. Use the HP Solve application to find the value of

when V is 10 volts and R is 20 ohms.

(This example assumes that variables V, I, and R do not exist in the

current directory.)

17-14 The HP Solve Application

Select the HP Solve application, then key in the equation. Use

equatlon.

@EE
@G
OV@OI®R

to name the equation FLEC and make it the current

Curtent e uatlon-
ELEC: 'V=IxR'
4z
3z
P
1:

ROOT WEM[EDEG[FTEGCAT

Display the menu of variables for the current equation.

Supply the known values and solve for the unknown. The resulting

message Z=to in the status area indicates that the equation balances

exactly at the root.

Zero

4:

: I: .5
Ly i1 Il r IGETE 1l

—
0
0

If R is 30 ohms for the same value of I, what is V7 Store the new

value of R, then solve for V.

Now review the values of all the variables.

(@) REVIEW)

Zero

4z
H

z I: .5
1: Ve 15
I s 1=l []

ELEC: 'M=IxR'
Vi 15
I: .5
R: 320

LyLLLsIEEEl__L]

The HP Solve Application 17-15

Press to return to the stack display.

Checking the Solution

After you find a solution to the equation, you can check the solution

by finding how closely the equation balances—how close the solution is

to a true solution, called a root.

To check how well the solution satisfies the equation:

m Press £

 = returns one or two values, depending on the form of the

current equation:

m For an equation, | returns two values—the numeric values of

the left and right sides of the equation. The values are tagged with
LEFT and RIGHT.

m For an expression or program, £ =FFE=returns one value—the

numeric value of the expression or program. It’s tagged with EXFE.

 For an expression, the closer the result returned by £ s to zero,

the more likely it is that the HP Solve application has found a root.

For an equation, the closer the two results returned by E#EE=are to

each other, the more likely it is that the HP Solve application has

found a root. For more information, see “Interpreting Results” on

page 17-18.

Example: Assuming that FLEC is still the current equation, use

E#ERE= to evaluate the two sides of the equation.

Select the SOLVR menu directly and evaluate the equation.

()(soLVE) 7 LEFT: 15
Eipne 1: RIGHT: 15

Ly 101 g IEEE I 1

The left and right sides of the equation are both exactly 15, indicating

the HP Solve application found a root.

17-16 The HP Solve Application

Finding Other Solutions

When you solve for a variable using the HP Solve application, it finds

only one solution—even if other solutions exist. If you’ve already

found a solution for your equation and you want to find another

solution, you can use guesses to guide the root-finder to a different

solution. See “Using Guesses” below.

For a more visual approach to finding solutions, you can use the Plot

application. See “Choosing the HP Solve or Plot Application” on page

17-22.

Using Guesses

You can supply one or more guesses for the unknown variable before

solving for it. Good guesses help in two ways:

m If there’s more than one solution, guesses control which solution is

found.

m Good guesses reduce the time required to find a solution.

To store guesses for a variable:

m To store one guess, enter the value and press the unshifted menu

key.

m To store two or three guesses to bracket a desired solution, enter

a list (with £ * delimiters) containing the guesses, then press the
unshifted menu key.

To find out how guesses affect the solution, see “How the Root-Finder

Uses Initial Guesses” on page 17-32.

Example: Store guesses 0 a

@@ 0G 10 ERTERD) |
for variable V. Press

" to create the list and store it in V.

Summary of SOLVR Menu Operations

The SOLVR menu normally contains a label for each global variable in

the current equation plus the EEFF= label. You can customize this

menu—see “Customizing the SOLVR Menu” on page 17-25.

The HP Solve Application 17-17

To use the SOLVR menu:

m To store a value in a variable, enter the new value on the stack, then

press its menu key.

m To solve for a variable’s value, press (4q) and its menu key.

m To recall a variable’s value, press () and its menu key.

m To type a variable name when the command line is in Algebraic- or

Program-entry mode, press the menu key.

m To calculate the Value of the equation, press

m To review variable values, press (.9)(REVIEW)(Press(ATTN) to
return to the stack dlsplay‘)

The SOLVR menu remains unchanged until a new current equation is

specified.

The catalog of values shows the full names and values of variables

on the current page of the SOLVR menu. The next keystroke you

make cancels the review, redisplays the stack, and then executes the

keystroke itself.

Interpreting Results

The HP Solve application returns a message describing the result

of the root-finding process. You can use this message and other

information to judge whether the result is a root of your equation.

The message is based on the wvalue of the equation—the difference

between the left and right sides of an equation, or the value returned

by an expression or program.

17-18 The HP Solve Application

When a Solution is Found

If a root is found, the HP Solve application returns a message

describing the root:

Zaro The HP Solve application found a point where

the value of the equation is 0 within the

calculator’s 12-digit precision.

i
y

ot 1 a pE
al“everzal The HP Solve application found two points where

the value of the equation has opposite signs, but

it cannot find a point in between where the value

is 0. This may be because:

m The two points are neighbors (they differ by 1

in the 12th digit).

m The equation is not real-valued between the

two points. The HP Solve application returns

the point where the value is closer to 0. If

the value of the equation is a continuous

real function, this point is the HP Solve

application’s best approximation of an actual

root.

The HP Solve Application 17-19

Estremum One of the following occurred:

m The HP Solve application found a point where

the value of the equation approximates a local

minimum (for positive values) or maximum (for
negative values). The point may or may not

represent a root.

m The HP Solve application stopped searching at

49.99999999999E499, the largest or smallest

numbers in the calculator’s range of numbers.

 17-20 The HP Solve Application

To obtain more information, you can:

When No Solution is Found

If the HP Solve application can’t return a result, it displays a message

Evaluate the equation using EZFE=. For an expression or program,

the closer the result is to 0, or for an equation, the closer the two

results are to each other, the more likely it is that the HP Solve

application found a root. You must use judgement in considering

the results.

Plot the expression or equation in the region of the answer. The

Plot application will show any local minimum, maximum, or

discontinuity.

Check the system flags that detect mathematical errors (see
appendix E). For example, flag —25 indicates whether overflow 17

occurred.

indicating the reason:

Ead Gueszies) One or more of the initial guesses lie outside

the domain of the equation—or units for the

unknown variable aren’t consistent with the units

for the other variables (see “Using the HP Solve
Application with Unit Objects” on page 17-23).

Therefore, when the equation was evaluated, it

didn’t return a real number or it generated an

erITor.

Constant? The value of the equation is the same value at

every point sampled.

The HP Solve Application 17-21

Choosing the HP Solve or Plot Application

The HP Solve application and the Plot application both let you find

solutions for an equation.

The Plot application lets you find solutions by working directly with a

picture of the equation. This powerful capability is of great value if

you don’t know what the equation looks like over a range of values.

Specifically, equations can have multiple solutions—and they can have

local minima and maxima.

With the HP Solve application, you use numeric guesses to direct

the root-finder to the desired region of the equation. The Plot

application lets you graph the equation and then move the special

graphics cursor directly to the region of the equation that contains the

desired solution. (See “Analyzing Functions” on page 18-25 for more

information.)

Advantages of Advantages of

HP Solve Application Plot Application

m You can easily store values for |m You can see if an equation has

the known variables and solve multiple solutions or local

for the unknown, and you can extrema.

easily change which variable is
the unknown m You can direct the application

to a specific solution simply by

m You can review the values of moving a cursor, rather than by

the variables in the equation. entering numeric guesses.

m You can use unit objects

requiring automatic unit

conversion.

17-22 The HP Solve Application

Using the HP Solve Application with Unit
Objects

The current equation and any of its variables may contain unit

objects. The SOLVR menu processes unit objects automatically.

To use units with the SOLVR menu:

m To store a value with units in a variable, enter the unit object, then

press the variable menu key.

m To change a variable’s value and keep its old units, enter the number

only, then press the variable menu key.

m To solve for a variable:

1. Enter one or more guesses with the desired units, then press the

variable menu key.

2. Press (4q) and the variable menu key to find the solution.

Keep these guidelines in mind:

m Before solving, all variables must contain a consistent set of units—

including the unknown variable. For example, if the equation is

=EsT! and you’ve stored 2_riin X and Z_= in T, you must

enter a guess for Y with the dimensions length-time. The solution

is automatically converted to the units specified in the guess. If you

enter a guess of 1_ft.<ur, the solution will have units of ¥+ ..

m If you're entering a list of two or three guesses, one of the guesses

must have the appropriate units. (If more than one guess has units,

the units of the last guess and only the number parts of the other

guesses are used.)

m If the equation you’re solving uses or calculates temperature

difference (as opposed to actual temperature level), use K or °F

(not °C or °F). For temperature conversion, use the UNITS catalog

menu.

Note Because the SOLVR menu allows you to change the

number portion of a unit object without affecting

%J the unit, you must purge variables containing unit

objects before using them in equations requiring

numbers only.

The HP Solve Application 17-23

Example: Use the equation C = Q/V to calculate the capacitance C

when @ = 8.9 x 107% coulombs and V = 57 volts.

(This example assumes that variables C, @, and V do not exist in the

current directory.)

Enter and name the equation, then select the SOLVR menu.

S
CAP: 'C=R-Y'

(e (SoLvVE
%

OCE@®QAV HEH 1
CAP (ENTER

2

E; _:.: Ex!l! Fx
1=

.
I [O

.

=O
Enter the known values, then store them.

ST(D

5 (E50)6()
@)EoWE)

|'\-': 5r_V

Store a guess in farads, then solve for the unknown.

@CSTVED 1 F 7o
Tt& -
). e

1: E;: 1.56148356877E-7

eye11
Now change the problem: Solve for V in millivolts for C' = 22

picofarads and @ = 1.7 x 1071° coulombs. Store the new value of Q—
you don’t need to append the unit. Store C with its new unit.

1.7 10 GA): C: Z2_pF l

22 @0 »F
Store a guess for V in millivolts and solve for the unknown.

1 (@) mV Zera

i
2t L= 1.56148356877E-..
1z Uz 7027, 27272¢26_mi
LoovIEEEEL

17-24 The HP Solve Application

Customizing the SOLVR Menu

You can customize the SOLVR menu—so you can specify and solve

equations and perform other calculator operations without leaving the

SOLVR menu:

m Specify the equation to solve.

m Define which equation variables appear in the menu and their order.

m Include other objects in the menu that you can execute.

To create a customized SOLVR menu:

1. Enter a solver-list (with £ delimiters) in level 1. (The content of
the list is described below.)

2. Press (9)(SOLVE) _, enter a name, and press (ENTER).

The equation in the list becomes the current equation. The syntax of

the solver-list is

equation + key-definitions *

where

equation Specifies the equation. It can be an equation or

expression (with ' delimiters), a program object

(with % » delimiters), or the name of an equation,

expression, or program.

key-definitions Specifies the menu keys—each entry defines one

key. Each entry can be either a variable name (with

SOLVR behavior) or other type of object (with CST

behavior). (To include a program that you can

execute, either enter its name in the key-definition as

a sublist of the form + *label” % name # % or enter

the program object itself in the key-definition.)

The CST behavior for various object types in the key-definition list is

described under “Creating a Custom Menu” on page 15-1.

The HP Solve Application 17-25

To include a custom SOLVR menu in the Equation Catalog:

m Enter the solver-list, then use HEE to name it.

or

m Store the solver-list in a variable whose name ends 1n EZ.

The Equation Catalog includes all algebraic objects and all variables

whose name ends in EG. . HEW automatically adds . EG to the name

when the level 1 object is a list or program.

Example: The equation I = 27%f?pva’calculates the intensity of a
sound wave. Suppose you always calculate the value of p and store

it in the corresponding variable prior to using this equation, and so

would like to suppress p from the SOLVR menu.

The solver-list

I=Z¥p28f "Z¥psuxa™2 £ 1 §F u a

when stored in FQ, creates this SOLVR menu for the equation

I-

and suppresses p from the menu. To save this solver-list in the

equation catalog, store it in a variable ending in EQ, for example,

LEQ.

Example: Suppose you want the IP command available in the

SOLVR menu so that you can store integer values in the variables in

the SOLVR menu. The following solver-list list amends the solver-list

in the previous example to include two additional keys: a blank key

and a key that executes IP (integer part).

I=2Fnr2EftZ2eproxs™2' L I Ff wa L 03 IP I 2

The list, when stored in FQ, creates this menu of variables and

functions:

17-26 The HP Solve Application

Solving Two or More Equations

You may often work with two or more related equations—for example,

equations with common variables. Putting several equations in a list

lets you share known and solved values among those equations—and

easily change the equation you’re solving.

To create a list of two or more equations:

1. Press (q)(SOLVE) ©#HT or (»)(ALGEBRA) to get the Equation

Catalog.

2. Press (¥) and (A) to move the pointer to an equation you want to

include.

3. Press Ei# to add the equation to the list. (If necessary, press

(\9) E@+ toremove the last entry from the list.)

4. Repeat steps 2 and 3 for each equation you want to include.

5. Press 2L¥E to begin solving the first equation in the list.

Each time you press E&i+ | a list containing the selected equations is

displayed and updated in the status area.

When you press ZiiL 4F, the list is stored in £ and the SOLVR

menu for the first equation in the list is displayed, with the additional

key HEER |

If the current equation is a list of equations, the equations are

“linked” —you can easily switch the SOLVR menu from one equation

to another.

To begin solving the next equation:

m Press

The equation names rotate in the list, moving the second name to the

beginning of the list—and the variables for that equation appear in

the SOLVR menu.

Example: Create the two equations: 'L=JiR“Z+H"Z' and
PW=nxRT2%H-3'. Use HEM to name them LCONE and VCONE

respectively, and to store them in the Equation Catalog. Then put

the two equations in a list and find the radius of a right circular cone

whose height is 10 meters and whose slant height is 25 meters. Then

find its volume.

The HP Solve Application 17-27

(This example assumes that variables L, R, H, and V do not exist in

the current directory. If you used V in the circuit example on page

17-14 and you’re now in the same directory, you’ll need to purge V.)

Key in and store the first equation.

@ED
(<)(EQuATIoN)
[@O®OO
REZB@®HE)?
(@GEOWE) HEW LCONE ENTER)
Key in and store the second equation.

(x)(EQUATION) Current equation:
V®E)E) @)@) XII:UHE= 'V=mxR"2¥HA3!

RD2B®HEES3

HEH VCONE

urrent equation
CONE: 'L=J(R“2+HA2)'

C
L
g
3
e AT CE FEAB

[ZOLVE]ROOTWEMJEDEG[TEG]CAT

Put the two equations in a list and start solving VCONE. Press (A) or

(V) as required to position the cursor at equation VCONE.

_ERL. T YCONE ¥

(@) or (W) if necessary) PVCONE: ' V=T*R-2%H3
e LCOME: 'L=l(R~Z+H"2)"

CAP: 'C=0-Y’
ELEC: 'M=IxR'

'w.-'SEIUND "=J"L'“.'*R*TKM
[TTTTA TT

Move the cursor to LCONE and execute Eii+

{ VCOME LCOME X

VCOME: 'V=mxR"2*H-3'
BLCONE: ‘'L={CR™2+H~2>"
CAP: 'C=0Q-Y!
ELEC: '\=I*R'
VSOUMD: 'w=TC%RET<M.
[TIRTlTT

Start solving the linked equations.

YCOME: 'V=mxR~2xH-3' !
 4:3:%5Os|

17-28 The HP Solve Application

Display the menu of variables for LCONE. Then supply values for the

known variables and solve for the unknown radius.

Zero

4z

3
[: R: 22.9128784748
IRT=IO4

Switch to the menu of variables for VCONE. You can solve directly

for the volume since the radius and height are already stored in their

variables.

@ Zero

i
: R: #2.9178784748

1: Y: 5497.7871438
CsTTRlJCEEE|

Simply storing a list of equations in £Q doesn’t name the list. If you

don’t name the list, the list is lost if you later change FQ. HE#

adds . Ef} to the name so the list is included in the Equation Catalog.

To name a list of equationscurrently in EQ:

1. Press (&Q)(SOLVE) () Z1E&E(the RCEQ command) to recall the
list to level 1.

2. Press Hill to name the list.

To create and name a list of equations:

1. Press ()(SOLVE) ©#T or ()(ALGEBRA) to get the Equation
Catalog.
Use Eii+ to add the desired equations to the list.

Z1E to copy the list onto the stack.

Press to leave the Equation Catalog.

Press (&)(SOLVE) HEH to name the list.

G
o
M

The HP Solve Application 17-29

Finding the Solution of a Program

The HP Solve application accepts a program as the current

equation. Using a program as the current equation is useful when

the relationship between variables can’t be written symbolically. The

solution is a value of the unknown variable for which the program

returns a value of zero.

To design a program for the HP Solve application:

m The program must take nothing from the stack.

m The program must return only one result.

Example: The UTPC (upper tail chi-square distribution) command

in the MTH PROB menu calculates the probability that a chi-square

random variable with n degrees of freedom is greater than x. The

relationship 1s

UTP = UTPC(n, x?)

where UTP is the unknown variable.

However, the UTPC command can’t be included in a symbolic

equation. But the relationship can be rewritten as an expression that

should equal 0:

UTP — UTPC(n, x%)

This program computes the value of the expression:

UTFP W CHIZ UTPC - &

Use this program to calculate the upper tail probability (UTP) for

CHI2 = 6.2 and N = 5. Then calculate x? to a significance of 0.1

(UTP = 0.1) for 5 degrees of freedom.

Enter the program.

()(CLR) 1: « UTP N CHIZ UTPC -
(«)(») UTP N CHI2 »

-lE: UTF": @ UTPF [UTPH UTPT -—

17-30 The HP Solve Application

Name the program and make it the current equation. Note that

HEW automatically prompts you with . E@ since the object is a

program.

(@EOEE) HEW
CHI

ent equation:
.EQ: &« UTP H CHIZ ..

ETTRNRSR

Display the SOLVR. menu and store the known values. Then calculate

the upper tail probability.

Zero

4:

3:
1: UTP: .?7872416834¢6
DNJEhIEEC__JC

Now store the significance in variable UTP and solve for CHI2.

How the HP Solve Application Works

Pressing a left-shifted menu key in the SOLVR menu activates the

numeric root-finder, which seeks a solution iteratively. Starting with

the guesses you’ve stored in the variable, or the guesses that the

calculator itself provides, it generates pairs of intermediate guesses

until a solution is found. The HP 48 displays Saluwing for ...

while the root-finder is executing.

In searching for a solution, the root-finder seeks a value of

the unknown for which the value of the expression equals 0.

(Equations are treated internally as expressions of the form

' left-side—right-side ') First, the root-finder searches for two points

The HP Solve Application 17-31

where the expression’s value has opposite signs. When it finds a sign

reversal, the root-finder tries to narrow the search region until it finds

a point where the expression’s value is 0.

How the Root-Finder Uses Initial Guesses

You can enter one, two, or three values as guesses. Two or three

values are entered as a list.

m One value. The number is converted to two values by copying the

number and adding a small perturbation to one copy.

m Two values. The numbers identify a region where the search will

begin. If the two guesses yield expression values with opposite

signs, the root-finder usually finds a root between the two numbers

rapidly. If the two guesses yield expression values with the same

sign, the search generally takes longer.

m Three values. The first number should be your best guess for the

root. The second and third numbers are used as two values, above.

Halting the Root-Finder

To halt the root-finder:

m Press (ATTN).

The HP Solve application returns a list containing three values: the

best value found so far plus two values that identify the region that

was being searched.

To restart the root-finder:

1. Put a list of three values in level 1:

m To restart from where it left off, use the list left by the

root-finder.

m To restart in a different region, enter a different list.

2. Press the menu key for the unknown variable to store the list.

3. Press (&) and the menu key for the unknown variable.

17-32 The HP Solve Application

Displaying Intermediate Guesses

= f o1 message, pressingWhile the HP 48 is displaying the S =

any key except displays pairs of intermediate guesses and the

sign of the values of the expression for each guess. If the expression is

undefined at the guess, 7 is shown.

9338555745 1 i1379111, 48 } <—— Intermediate
guesses

=
2
0
0
f

4
|

g L vell T I s IEETEI]
Watching the intermediate guesses can give you information about

the root-finder’s progress—whether the root-finder has found a sign

reversal (the guesses have opposite signs), or if it is converging on a

local minimum or maximum (the guesses have the same signs), or if it

is not converging at all. In the latter case, you may want to halt the

root finder and restart with a new guess.

How the Menu of Variables Is Created

The menu of variables contains a label for each variable in the current

equation. If the variable does not already exist, it is created and

added to the current directory when you store a value in it.

If a variable in the current equation contains an algebraic object (or a

name or program), the variable itself is not included in the menu of

variables. Instead, the variables in the algebraic object are used.

 For example, if the current equation is *# ~*, and B contains the

expression '[+THHIEX ' the menu of variables is:

The HP Solve Application 17-33

Note that for equations that contain a where clause (see “The|
(Where) Function” on page 22-25) or an integral, summation, or
derivative, the placeholder variable appears in the SOLVR menu. For

example, the SOLVR menu for the equation

1
A+B—/ 2XdX =0

0

will contain a key labeled |
placeholder variable.

i, However, you cannot solve for this

17-34 The HP Solve Application

18
Basic Plotting and Function Analysis

The Plot application lets you draw graphs of one

or more functions in various formats, calculate

roots and other parameters, plot statistical data

in various formats, and embellish plots with

additional elements.

18 ¢

To plot a mathematical function by hand you would use the following

general procedure:

1. Write down the function you want to plot.

2. Select the independent variable, for example z, in the function.

Then determine the range of z-values to plot and the number of

(evenly spaced) sample points. From this information, draw an

appropriately scaled z-axis. Then draw an appropriately scaled

y-axis based on your estimates of the function’s value over the

plotted interval.

3. For every value of z, calculate the value of the function f(z), and

plot the corresponding point (z, f(z)).

4. Draw a smooth curve through the points.

When you use the Plot application, you follow a similar procedure, as

you’ll see in this chapter.

This chapter covers basic plotting and analysis of mathematical

functions—how to specify the current equation, how to specify plot

parameters, and how to analyze function plots. (All examples in this

chapter use the FUNCTION plot type.)

Basic Plotting and Function Analysis 18-1

Chapter 19, “More about Plotting and Graphics Objects,” builds on

these concepts, giving information about other plot operations and

about graphics objects.

The Structure of the Plot Application

You can use the Plot application to plot functions represented by

equations (or by expressions or programs). The Plot application

contains special data elements that parallel the elements of the

procedure described above:

m Reserved variable £Q) contains the equation you want to plot. The

equation in F'Q is called the current equation. Note that FQ is also

used by the HP Solve application to build the SOLVR menu.

m Reserved variable PPAR contains specifications for the independent

variable, the display and plotting ranges, the number of sample

points in the plotting range, and the axes.

m PICT, a part of HP 48 memory, is analogous to the piece of paper

on which the plot is drawn.

These data elements are tied to two menus and a special environment:

m The PLOT menu is used for the selection or modification of the

current equation. The PLOT menu is also used to specify the plot

type, which determines how the HP 48 interprets the equation. For

example, the equation may represent a conic section—in this case,

the appropriate plot type is CONIC.

m The PLOTR menu is used to specify the contents of PPAR and to

draw the plot.

m The Graphics environment is used to view the graph, analyze the

mathematical behavior of the plot, and add graphical elements to it.

In general, you use these steps to plot an equation with the Plot

application:

1. Use the PLOT menu to store the equation in F@ and, if necessary,

to specify the plot type.

2. Use the PLOTR menu to set the appropriate plot parameters.

18-2 Basic Plotting and Function Analysis

3. Draw the graph.

4. Use the operations in the Graphics environment to obtain data

from the graph or add graphical elements to it.

The PLOT menu:

[«3] [PLOT]—> View the current equation. If needed,

specify a new current equation or

select the Equation Catalog.

T _BTYPE

T

The PTYPE menu: o

PLOTR Specify the plot type.

The Equation Catalog: .

Make an existing equation <l

the current equation.

l/ _PLOTR
Y '

[F*] [PLOT]—> The PLOTR menu:

Specify the plot parameters

and draw the plot.
\L DBRAW or: AUTO

(=) [GRAPH]——>

|

1Graphics environment:
Analyze plotted functions

and add graphical elements

to the plot.
In the Graphics environment, the display shows the contents of PICT,

and the keyboard is redefined to execute graphics operations. When

the HP 48 finishes a plot, it automatically puts you in the Graphics

environment. If you switch back to the stack display, PICT persists—

you can reenter the Graphics environment at any time to view PICT.

In the Graphics environment you do not have access to the stack.

However, function analysis operations in the Graphics environment

Basic Plotting and Function Analysis 18-3

return their results to the stack. In addition, all or parts of PICT

can be copied to the stack as an object called a graphics object.

Commands in the PRG DSPL menu let you work with graphics

objects on the stack and let you move a graphics object back into

PICT.

Using Equations, Expressions, and Programs

The HP 48 can plot an equation, expression, or program:

s Equation. An equation is an algebraic object containing = (for

example, 'A+E=C").

m Expression. An expression is an algebraic object not containing =

(for example, 'A+E+C").

m Program. A program to be plotted must return one real number.

Throughout this chapter, unless otherwise stated, the term “equation”

refers to all objects used to create plots: equations, expressions,

programs, and lists of equations, expressions, and programs.

You can also plot statistical data—see “Plotting Statistical Data” on

page 21-13.

Specifying the Current Equation and Plot Type

The current equation is the equation you last solved or plotted. It’s

stored in reserved variable £Q. You change the current equation each

time you solve or plot a different equation.

To check the current equation and plot type:

m Press (&)(PLOT)

A two-line status message gives the current equation and the plot

type—or, if there’s no current equation, it gives instructions for

entering a new equation. In addition, the PLOT menu is displayed.

18-4 Basic Plotting and Function Analysis

Plot type message
|

®o2-18=8+1u] <« Current equation
tagged with its name

Plot tflge FUNCTION -
P1: ' 2%
4z
3:
2:

 <—— PLOT menu

Changing the Current Equation and Plot Type

How to specify the current equation and use the Equation Catalog is 18 @
covered in detail in “Specifying the Current Equation” on page 17-3.

Only certain instructions are repeated below.

To enter and name a new current equation:

1. Enter the equation in level 1. You can type it in the command line

or use the EquationWriter application.

2. Press (&@)(PLOT) HEH .

3. Without pressing (a), key in a name for the equation and press

(ENTER).

To change the piot type:

1. Press (@)(PLOT)
2. Press |

3. Press a menu key to select one of the eight plot types.

You can also change the plot type during the next stage, when you’re

setting the plot parameters using the PLOTR menu.

To select and plot an equation from the Equation Catalog:

1. Press (9)(PLOT)

2. Press (A) and (¥) to movethe pointer to the desired entry in the

list.

3. To make the equation the cur

and drawing the plot), press |

t equation (and to start setting up

Basic Plotting and Function Analysis 18-5

Example: Set the current equation to the expression

x3 — 222 — 10z 4 10 and the plot type to FUNCTION.

Key in the expression using the EquationWriter application.

@ED
()EQUATION) X 3 () (D) s 2
2X0D)20) @ n -2 -18W+1680
10X 10

GIRIEEr1]

Store the equation as the current equation.

{ HOME } FRa
(Q)(PLOT) HEHM Hame theeEuation,

press ENTE

+
L[[[[

The HP 48 prompts you to enter a variable name and activates

the alpha keyboard. Enter the name P1. Then set the plot type to

FUNCTION if necessary.

P@D
(BTyPE FI f necessary) —ZEATZ-18%K+ L. Plot type: FUNCTIONAENETE

4z
3z
21
1:

PFLOTE[FTYPE| MEWEDER[STEGCHT

18-6 Basic Plotting and Function Analysis

Summary of PLOT Menu Operations

The PLOT Menu

Key Programmable Description

Command

QoD
FLOTE Selects the PLOTR menu for

specifying the plot parameters in

PPAR and for drawing the plot.

BlRE Displays the PTYPE menu for

specifying the plot type.

BER Takes an equation from level 1,

prompts for a variable name, stores

the equation in that variable, and

makes the equation in that variable

the current equation.

Places the current equation in the

command line for editing. Press

to store the changes in the

varlable and make the edited version

the current equation—or press

to discard the changes.

CBIER STEQ Stores the level 1 equation as the

current equation.

RCEQ Recalls the current equation to level 1.

, Selects the Equation Catalog.

() (REVIEW) Redisplays the “current equation” status message.

Basic Plotting and Function Analysis 18-7

18

Setting Plot Parameters and Drawing the Plot

When you plot the current equation, you first set up the plot by

specifying the independent variable and scaling, then draw the plot.

You normally do this using the PLOTR menu.

To begin setting up the plot:

m Press FLiiTE in the PLOT menu or Equation Catalog.

or
m Press ()(PLOT) at any time.

In the Equation Catalog,

selected equation in the list.

The PLOTR menu display includes a status message describing:

m The plot type (discussed under “Choosing Plot Types” on page

19-12).

m The current plot data—either the current equation or the current

statistical data—if there is any.

m The independent variable and, if specified, the plotting range

(discussed under “Using Plotting Range instead of Display Range”

on page 19-1).

m The display ranges in the horizontal and vertical directions. In this

message, » always indicates the horizontal direction, and 4 always

indicates the vertical direction.

Plot type message

Plot 1 —J:/r:r';%?:dem ||;~13 '«=~'§_*FHEC.{-%EEH(<—— Current equation
—> Indep:'X! tagged with its namee es 6.5 || *

PLOTR ys -3.1 3.2 \

menu —» MEF ZE[DRAERUTD[HENGVRN

GG

[INDEF] x- and y-axis
display ranges

18-8 Basic Plotting and Function Analysis

Specifying the Independent Variable

For function, polar, and parametric plots, the only variable name

you have to specify is for the independent variable. If the current

independent variable isn’t the one you need, you can change it. The

default independent variable is X .

To change the independent variable:

1. Enter the variable name (with ' delimiters).

2. Press 1HEEE in the PLOTR menu.

The role of the independent variable in building function plots is

discussed in more detail under “How DRAW Plots Points” on page

18-17.

Example: If you want to plot 'Z=4#T"Z+&", you must specify

the new independent variable 7. In the PLOTR menu, press (') T

THEEF.

Setting the Display Ranges or Scaling

You can define the ranges of values represented by the plotting area in

either of two ways:

= Display ranges. This lets you directly set the extreme limits of the

plotting area.

m Scales and center. This lets you directly set the intervals represented

by the tick marks along the axes and the coordinates located at the

center of the plot.

Regardless of which method you use, your specifications are shown in

the PLOTR menu display as display ranges, and they’re stored in

PPAR as display ranges.

To set one or both display ranges:

m To change the horizontal range, enter the two limits for the z-axis

(press or to separate the numbers), then press

HEHL in the PLOTR menu.

m To change the vertical range, enter the two limits for the y-axis

(press or (ENTER) to separate the numbers), then press

iEHE in the PLOTR menu.

Basic Plotting and Function Analysis 18-9

The horizontal and vertical display ranges are the ranges of values

represented by the plotting area PICT. If the current display ranges

aren’t the ones you need, you can change them. The default display

range along the z-axis is —6.5 to 6.5 units, and along the y-axis is

—3.1 to 3.2 units.

You may not have to specify the vertical display range—the y-axis

display range is computed for you if you plot the graph with

automatic scaling (using the AUTO command described later).

Example: Specify a display range along the z-axis from —10 to 40

units. In the PLOTR menu, press 10 40 EEHG

To set the scales or center:

m To set the scales, enter the z-axis tick interval, press or

(ENTER), enter the y-axis tick interval, and press 2LHLE in the

PLOTR menu.

m To set the center, enter the (z,y) coordinates as a complex number
(press () =m y), then press iT in the PLOTR menu.

The scales of the z- and y-axes represent the number of units per tick

mark along the axes. You can use SCALE if you want the axes tick

marks to represent meaningful values (such as integer values) or if you

want equal scaling for the two axes. The default z and y scales are 1

and 1.

The center point of the display is specified by a complex number

representing its coordinates. You can use CENTR if you want to see a

certain region of the graph. The default center is (0,0).

Example: Make each z-axis tick mark represent 2 units and each

y-axis tick mark represent 5 units. Make coordinates (40,50) be

located in the center of the display. Press 2 5 ZLHLE and

CH@EL 50 EEHT.

Resetting Plotting Parameters

You can reset all plotting parameters except the plot type to their

default values. (This also erases the plotting area PICT and restores

its default size.)

18-10 Basic Plotting and Function Analysis

To reset plotting parameters:

in the PLOTR menu.m Press

Drawing the Graph

After you've set the plotting parameters, you’re ready to draw the

graph. You can draw it in either of two ways:

= Autoscaling the y-Axis. This lets you draw a graph when you’re not

sure of the appropriate y-axis display range. The vertical display

range is determined by sampling the equation across the z-axis

display range.

m Specifying the y-Axis. This lets you preserve the vertical range or

scaling you’ve specified.

To draw the graph with autoscaling:

in the PLOTR menu. m Press

For function plots, AUTO evaluates the equation at 40 values spaced

equally across the range of the independent variable, computes the

vertical display range, and draws the graph (using DRAW). AUTO

also erases the previous plot in PICT.

To draw the graph with the specified range:

DRAW is faster than AUTO because it doesn’t sample the equation.

Example: Plotting with AUTO. Plot the previous equation P! using

autoscaling and the default plot parameters. (The independent

variable is X, which is the default name.)

Get the PLOT menu and make sure you’re using equation P1.

ELOTE FTot tupe: FUNCTION
®EeD BIf WRBCRRAD]BENH.

Indep"T'

i 20 53
ys 4.5 bb

[ERAZE|DFAKRUTDHEWS[VEHG|INDEF

Basic Plotting and Function Analysis 18-11

Reset the plot parameters and draw the graph using the default plot

parameters.

(NXT)EEZET (not EEEZ) //

QERE) AUTO]

| [2-E0:[CEWT[00RU[LHEEL]FCN|

Press to return to the stack display.

Example: Plotting with AUTO. Use autoscaling to plot the equation

z
— =1
z2 -6

Key in the equation using the EquationWriter application. Name it

p2.

(@EUETN)
XRX@D:20
Qi®O!
(e)(PLOT
KEW P2 (ENTER [PLOTE[PTPE]MEK|EDER[STERCHT

=
ws

ms
==
[

—
M
-
0

Get the PLOTR menu and reset the plotting parameters.

PLOTR (NXT) REBET Plot tupe: FUNCTION
P2t (RRg)-1"
Indep: '¥!

¢ -6.5 6
s -3.1 3.2

[UEPN[PTYPE]RE: |CENT[SCHLEIRESET

Draw the graph using autoscaling. (The vertical lines in the plot

represent the connecting of points at discontinuities in the function—

see the next topic, “Choosing Connected or Disconnected Plotting.”)

(\x)(PREV) HLITO |IL HL

o] —

|Ean\m:lm]nmJ

18-12 Basic Plotting and Function Analysis

Press (&)(REVIEW) to check the PLOTR menu status message to see
the newly computed y-axis display range. (Hold the key

down to keep displaying the message).

(REVIEW) (hold) Plot type: FUNCTIOM
® P2: 'H%’X"E-E)—l'

Indep: '¥'

Wt -b. 3 6,3
9-—5 447368 2.4218526

(200t4]2-£0:]CENT[C00KB[LAEEL]FCN

Press to return to the stack display.

Example: Plotting with DRAW and Ranges. Plot the equation
y = sin(z). Use a display range of —5 to 5 along the z-axis and —1.1

to 1.1 along the y-axis.

Select Radians mode, key in the equation, and store it directly into

EQ without naming it.

(\)(RAD) if necessary) PTot tuperFURCTION
@Y@E}_X Thdept 51
(B)(LoT) =TEH et -6.5 6.5
FLOTR y:-5.447368 2.42185%6

|TeTTT[T
Set the display ranges.

5 5 HREHG Flot tupefPUNCTION
1111 T REHE IndEP' R

N -9 a
ys -1.1 1.1

TTTBTT(D
Erase PICT and draw the graph.

ERFASE DRAL —\ /\

TTR(T(T

Press (®))(RAD) to return to the stack display and select

Degrees mode.

Basic Plotting and Function Analysis 18-13

Example: Plotting with DRAW and Scales. Plot the equation

y = 2z. To make the slope (2) “look” correct, specify equal scaling for

both axes, and put the origin (0,0) at the center of the display.

Key in the equation and store it directly into £@ without naming it.

Select the PLOTR menu and specify the center and scale. For the

scale, specify b units per tick mark. (Note how the display ranges are

recomputed after you execute SCALE.)

@Y@E)?@X PTot Fope: FUNCTION
(QEoD ETE TrdeptB
EiER 325 32,5
@@OWO Y -15.5 16
5 GPQ) 5 SCALE

[LEPH[PTVPE]REZ[CENT[SCHLE[REZET]
Draw the graph.

IEIEIMEHIIEEEIIi

Press to return to the stack display.

Choosing Connected or Disconnected Plotting

Initially, DRAW connects successive computed points with straight

line segments. The connections are made regardless of the relative

positions of the plotted points. This may be graphically undesirable,

such as for a function with a discontinuity. (An earlier example in this

section plots a function with multiple discontinuities, and connects

each point.)

To change the “connect” plotting option:

1. Press ($)(MODES) (NXD).
2. Press iHim or ©LHET .

The connect option is not controlled by a plot parameter—it’s

controlled by a system flag, flag —31, which is initially clear. £Hi&

indicates plotted points are connected (flag —31 clear).

indicates points are not connected (flag —31 set).

18-14 Basic Plotting and Function Analysis

Summary of Basic PLOTR Menu Operations

The PLOTR menu contains the basic commands for setting the plot

parameters and for drawing the plot. Other PLOTR menu operations

are described under “Refining Plots” on page 19-1.

The PLOTR Menu—Basic Plotting Operations

Key Programmable Description

Command

(S)(PLOD) PLOTRor (3)(ALGEBRA) FLUTE:
EREHEE ERASE Erases PICT, leaving a blank PICT of

the same size.

DRAW Draws the plot using the z- and y-axis

ranges. DRAW does not erase

PICT—the plot is added to any

previous contents of PICT. When

executed from a program, DRAW does

not include axes in the graph.

(©9) EEHM executes STEQ.
() LEFH executes RCEQ.)

AUTO Draws the graph using the z-axis

range, and autoscales the y-axis. Any

previous plot in PICT is erased.

When executed from a program,

AUTO only autoscales the y-axis—it

does not draw a graph.

XRNG Sets the display range of the

horizontal axis using two real-number

arguments—xmm and zmax.

((®) 2EHEG recalls the current z-axis

display range.)

Basic Plotting and Function Analysis 18-15

The PLOTR Menu—Basic Plotting Operations (continued)

Key Programmable

Command
Description

TREHE

THRER

RESET

DEVED)

YRNG

INDEP

CENTR

SCALE

Sets the display range of the vertical
axis using two real-number

arguments—ymin and Ymax-

((®) iEHE recalls the current y-axis
display range.

Sets the name in level 1 as the

independent variable. INDEP can also

specify the plotting range for the

independent variable (see “Using
Plotting Range instead of Display

Range” on page 19-1). () IHEEF
recalls the current independent

variable, and its plotting range if

specified.)

Selects the PTYPE menu for changing

the plot type.

Takes a complex number (z,y) and
makes it the center coordinate of the

display. () CEHT recalls the
current center coordinate.)

Takes two real-number arguments.

The first argument sets the z-scale in

units per 10 pixels. The second

argument sets the y-scale.

HLE returns the z- and

Resets all plot parameters except the

plot type to their default states and

erases PICT, restoring it to its default

size (131 pixels wide by 64 pixels

high).

Redisplays the plot parameters.

18-16 Basic Plotting and Function Analysis

How DRAW Plots Points

In this section, it’s necessary to reassert the normal distinction

between equations, expressions, and programs. For function plots,

DRAW treats expressions and programs the same way—but it plots

equations according to their structure and the setting of flag —30, as

shown below.

Contents of EQ Example Graph

' expression ' PoEl!

+

' name=ezpression ' TR Flag —30 clear:

/

30 set:

Di
X] +:

AN
AI

NL
EI

N

Fot' expression=ezpression '

3 e #*# program ¥

__

/

/

DRAW evaluates each expression it plots for a series of values of the

independent variable along the z-axis range. This generates a series of

Basic Plotting and Function Analysis 18-17

points (z, f(z)). The number of values of the independent variable for
which the expression is evaluated depends on the resolution (discussed

in “Specifying Resolution” on page 19-3).

For function plots, the currently specified dependent variable

is ignored. Coordinates of plotted points are generated simply

by evaluating the current equation for a series of values of the

independent variable.

Plotting Two or More Equations

You can plot two or more equations with a single execution of

i by putting the equations in a list.

To create a list of two or more equations:

1. Press (|)(PLOT) ©HT or ()(ALGEBRA) to get the Equation
Catalog.

2. Press (¥) and (A) to move the pointer to an equation you want to

include.

 - to add the equation to the list. (If necessary, press

to remove the last entry from the list.)
4. Repeat steps 2 and 3 for each equation you want to include.

TE to begin setting up the plot for the equations.

Each time you press + | a list containing the selected equatlons 18

displayed and updated inthe status area. When you press F B

the unnamed list is stored in FQ.

To plot a list of equations:

1. Set up the plot parameters using the PLOTR menu.

2. Draw the plot:

m To use autoscaling based on the first equatlon press |

m To use the specified scaling, press

Simply storing a list of equations in £@Q doesn’t name the list. If you

don’t name the list, the list is lost if you later change £Q. HEL

adds . E# to the name so the list is included in the Equation Catalog.

18-18 Basic Plotting and Function Analysis

To name a list of equations currently in EQ:

1. Press (|)(PLOT) () (the RCEQ command) to recall the
list to level 1.

2. Press

o name the list.

To create and name a list of equations:

. or (»)(ALGEBRA) to get the Equation

1. Press (&)(PLOT) !

Catalog.

to add the desired equations to the list.

to copy the list onto the stack.

Press to leave the Equation Catalog.
Press (|)(PLOT) HEW to name the list.

S
t
N

Working in the Graphics Environment

After you execute [[HFHIor i the HP 48 enters the Graphics

environment. The display shows PICT and the GRAPHICS menu.

The Graphics environment, like the Equation Catalog, is a special

environment where the keyboard is redefined and limited to specific

operations. You have access only to the GRAPHICS menu and its

submenus.

To activate the Graphics environment:

m Press i[iEHIor ALITHin the PLOTR menu to plot and view the

resulting graph.

or
m Press ()(GRAPH) (the GRAPH command) at any time.

or
m Press (€) if no command line is present.

To exit the Graphics environment:

m Press (ATTN).

When you exit the Graphics environment, PICT persists—at

any time, you can press (|9)(GRAPH) to return to the Graphics

environment to view PICT.

Basic Plotting and Function Analysis 18-19

Basic Operations in the Graphics Environment

Key Description

@GR

®
@
O

H

A

Displays the coordinates of the cursor position,

replacing the menu keys. Press any menu key to

redisplay the menu labels.

Adds axis labels to PICT.

Sets the mark. If no mark exists, creates the mark at

the cursor. If the mark exists at another location,

moves the mark to the cursor location. If the mark

exists at the cursor location, erases the mark. (All
operations that require a mark create a mark at the

cursor location if no mark exists.)

Switches the cursor style. In the default state

(#-=), the cursor is always dark. In the alternate
state (+-~#), the cursor is dark on a light
background and light on a dark background.

Erases the GRAPHICS menu keys, revealing more of

the graph. Press (=) or any menu key to restore the

GRAPHICS menu.

Moves the graphics cursor in the indicated direction.

When prefixed with (), moves the cursor to the edge

of the display. If the cursor is at the edge of the display

and if PICT is larger than the display, prefixing with

(») moves the cursor to the edge of PICT.

Selects scrolling mode. In scrolling mode, the menu

keys are erased, and, if PICT is larger than the

display, pressing the cursor keys scrolls the display

window over PICT in the indicated direction. Press

(®9)(GRAPH) again to return to the normal Graphics
environment behavior.

Puts the coordinates of the cursor position on the

stack.

Sets the mark (same as HAEE,}

Switches the cursor coordinate display on and off.

Switches the menu keys on and off.
18-20 Basic Plotting and Function Analysis

Basic Operations in the Graphics Environment (continued)

Key Description

STO Copies PICT to the stack.

(«)(REVIEW) Temporarily displays the PLOTR menu status

message. If you hold the key down, the status

message stays until you release it.

()(CLR) |Erases PICT.

Exits the Graphics environment.

Invokes scrolling

mode

Copies PICT

to the stack

Puts

cursor-position

coordinates on

\D@Q@®®
@@@@@LQ.

-
GRAPH ¢ REVIEW¥

L;_’_'__*J

Hihhdbdd
Erases rec-

tangular region

> defined by
mark and cursor

<

the stack ——I>Center () () (PR ()

[

races PICT

Switches /—J[/S [] [] [] Sets mark

cursor siyle) I|<——!Switches

C JC JC J (=] F menulabels
Exits Graphics I on and off

environment —9@ (

J L J (])]

Switches cursor

coordinates on

and off

Basic Plotting and Function Analysis 18-21

Working with the Plot

You can do these types of operations in the Graphics environment:

m Zoom in or out to change the view of the plot—see the next topic

below.

m Do function analysis to get mathematical data from the plot—see

“Analyzing Functions” on page 18-25.

m Add graphical elements to the plot-see “Adding Graphical Elements

to PICT” on page 19-22.)

Using Zoom Operations

The zoom operations in the Graphics environment let you look at a

particular region of the plot in more detail (by zooming in) or look at

more of the plot than is currently displayed (by zooming out).

To plot a different region without rescaling:

1. Press (A) (V) (€) (®) to move the cursor to the point you want

located at the center of the display.

2. Press LEH

To zoom by rescaling the axes:

1. Press & _in the GRAPHICS menu.

2. Specify the scaling:

m To rescale the z-axis and automatically rescale the y-axis, press

, enter the z zoom factor, and press (ENTER).

m To rescale only the z-axis, press: ¥ | enter the z zoom factor,

and press (ENTER).

m To rescale only the y-axis, press | % enter the y zoom factor,

and press (ENTER).

m To rescale the z- and y-axes, press | #% |, enter the one zoom

factor used for both axes, and press (ENTER).

3. Press to return to the GRAPHICS menu.

A zoom factor of 2 zooms out to show twice the axis. A zoom factor

of 0.5 zooms in to show half the axis. The point at the center of the

display stays at the center.

18-22 Basic Plotting and Function Analysis

Example: Identify the number of z-axis intercepts of the expression
2z© — 9z — 10.

Store the expression in EQ), reset the plot parameters, and draw the

graph using autoscaling.

@x@ugg@)(@lo
((ELon) &1
(NXT) RESET 1
(NXT) (NXT) A

st

(200t[2-E0R[ZENT[DORD[LAEEL] |
The expression has a second z-axis crossing outside the display range.

Zoom out along the z-axis.

18

 PRG
{ HOME }

¥ axis zoom.
Enter value {(zoom out
if *1>, press EMTER

+

L[[[[[|
Zoom out by a factor of 2. Note the second z-axis crossing.

2

L/
|Emnmm|

Press to return to the stack display.

To zoom in on a particular region:

1. Press (&) (Y) (@) () to move the cursor to one corner of the desired

area.

2. Press £ Eill% (or HHAEE or (X)) to mark the location.
3. Move the cursor:

m To zoom in on an z-y area, move the cursor to the diagonally

opposite corner of the desired area.

m To retain the current y-axis scale, move the cursor horizontally to

the other end of the z range.

m To retain the current z-axis scale, move the cursor vertically to

the other end of the y range.

Basic Plotting and Function Analysis 18-23

4. Press Z=

To zoom in on a particular region with autoscaling:

1. Press (4) (V) () (®) to move the cursor to one end of the desired z

range (the vertical p051tlon is ignored).
2. Press Z-Eiix (or HEEK or (X)) to mark the location.
3. Move thecursor to the other end of the z range.

4. Press (q)i-E

The second example in the next section uses Z

to identify the roots of the equation.

<+ with autoscaling

Example: Plot the earlier equation PI using autoscaling and the

default plot parameters. Then zoom in on an area to show the

behavior near the origin.

Select PI from the Equation Catalog and plot it.

 (@) BLCEERA) ((¥) if necessary) —

[[2-EOR[CENT[COORD[YENG[INDER|

Use the cursor keys to move the cursor to the upper-left position

shown below and mark the point.

(é)j (@) (as needed) ’/

| RTl)(TW|

Now move the cursor to the lower-right position.

(») (V) (as needed)

[|2-E04]CENT|COORD]LAEEL] FIH||

18-24 Basic Plotting and Function Analysis

Zoom 1n on the area.

T <,

{TTTlRMMR|

Press to return to the stack display.

Analyzing Functions

The GRAPHICS FCN menu lets you analyze the mathematical

behavior of plotted functions. You use the graphics cursor to indicate

the region or point of interest on the graph, then execute the desired

calculation from the menu. You can calculate function values, slopes,

areas under curves, roots, extrema and other critical points, and

intersections of two curves. You can also plot derivatives of plotted

functions.

To do function analysis, the current plot type must be FUNCTION.

In addition, E£Q must contain an equation, expression, or a list of

equations or expressions—it can’t contain a program.

To analyze a plotted function:

1. Press £i# in the GRAPHICS menu.

2. Press (A) (V) () () to move the cursor to the point you want to

analyze. (For certain operations, the cursor merely needs to be near

the point.)

3. Press the menu key for the function analysis operation you want.

See the table below.

4. Press E#17T to return to the GRAPHICS menu.

When you perform a function analysis operation, the HP 48 does the

following:

m Moves the cursor to the corresponding point on the function (if that

point is in the display).

m Displays a message in the lower-left corner of the display showing

the result.

m Returns the result to the stack as a tagged object.

Basic Plotting and Function Analysis 18-25

The GRAPHICS FCN Menu

l Description

 (in the GRAPHICS menu):

Root. Moves the cursor to a root (intersection of the
function and the z-axis) and displays the value of the
root. If the root is not in the display window, briefly

displays the message OFF SCREEEH before displaying

the value of the root.

Intersection. If only one function is plotted, moves the

cursor to a root (same as BT). If two or more

functions are plotted, moves the cursor to the closest

intersection of two functions and displays the (z,y)

coordinates. If the closest intersection is not in the

display window, briefly displays the message OFF

ZCREEHMbefore displaying the coordinates of the
intersection. Slope. Calculates and displays the slope of the function

at the z-value of the cursor, and moves the cursor to

the point on the function where the slope was

calculated.

HEEH Area. Calculates and displays the area beneath the

curve between two z-values defined by the mark and

cursor. (Before you execute this operation, press (x) to

mark one end of the z interval, then move the cursor

to the other end.)

Extremum. Moves the cursor to an extremum (local

minimum or maximum) or other critical point and

displays the (z,y) coordinates. If the closest extremum

or inflection point is not in the display window, briefly

displays the message OFF SCREEM before displaying

the value.

Exit. Exits the GRAPHICS FCN menu back to the

main GRAPHICS menu.

ESIT

18-26 Basic Plotting and Function Analysis

The GRAPHICS FCN Menu (continued)

Description

Key

Function Value. Displays the function value at the

current z-value of the cursor, and moves the cursor to

that point on the function curve.

Derivative Plot. Plots the first derivative of the

function and replots the original function. Also adds

the symbolic expression for the first derivative to the

contents of EQ. (If EQ is a list, F' adds the expression

to the front of the list. If FQ is not a list, F'' creates a

list and inserts the expression to the front of the list.)

Next Equation. Rotates the list in £Q and displays

the equation now at the beginning of the list. (The

second equation is moved to the beginning of the list

and the first equation is moved to the end.)

If you’ve plotted two or more equations by storing a list in EQ (see

“Plotting Two or More Equations” on page 18-18), the function

analysis operations use the first equation in the list, unless otherwise

stated. Press H#EE# in the FCN menu to rotate equations within the

list.

Example: An equation for velocity at constant acceleration is

v = vg + apt.

For an initial velocity vg = 10, and a constant acceleration ag = 5,

find the velocity at ¢ = 2 and find the total displacement z between

t = 0 and ¢ = 10. (The displacementis the area under the curve of
velocity vs. time.)

Key in the equation and store it in £Q without naming it. Use the

SOLVE menu because you can easily store values for vy and ag using

the SOLVR menu.

OVEEVI@AI®T AET 5
(@EoLE)

0

Basic Plotting and Function Analysis 18-27

Set the display mode to 2 Fix so that coordinates and function

analysis results are easy to read in the Graphics environment. Then

get the PLOTR menu. To obtain integer values for the z- and y-axis
tick marks, use SCALE to specify 1 unit per z-axis tick mark and

25 units per y-axis tick mark. This enables exact calculations. Use

CENT to specify the plot center at (5,50). Finally, specify T as the

independent variable.

(0)(MODES) 2 FIH Flot tufieFUHCTIDH

@)(ELoD) D) Treps 117
1 (SPC) 25 ECALE i?dep —{.sa 11.58@
@@5mT59 gr -27.58 134,89
®IERV) DT F6b TRAT
Erase PICT, then draw the graph.

,fi/
200[2-E04]CENT[0O0RD[LREEL]FCN |

Check the coordinates of the graphics cursor. The z-coordinate (the
value of T') is 5.

COORD (or ()

/

]

(5.00.50.00)

Hold down (<€) until the displayed z-coordinate is exactly z. %, (The

cursor moves slowly when coordinates are displayed.)

(@) (hold down)

(2.00.50.00)

18-28 Basic Plotting and Function Analysis

Press any menu key (or or () to redisplay the menu labels. Then

find the value of the function at 7" = 2. The velocity is 20.

_.-F—T"' ;

FOH): 20.00

Now calculate the displacement between 7' = 0 and T = 10. First,

restore the menu keys. Then move the cursor to the y-axis (7 = 0)

and set the mark.

hold down (<€)

>

|OTzo

Display the cursor coordinates, move the cursor to the right edge of

the display, then back until its z-coordinate is 10.

>®
then hold dOWIl @ /

L 4 +

]

(10.00,20,00)

Redisplay the menu labels, and calculate the area—the displacement.

1/
]

ARER: 350.00

Return to the stack and note that the function value and area have

been returned to the stack as tagged objects.

2 Fiw): 2A.00
1: Area: 35H.HH
[ERRZE[DRI |AUTO[WEMIG [VMG[IMDEP]

Basic Plotting and Function Analysis 18-29

Example: For the expression 3 — 22% — z + 2 find the following:

m The number of real roots.

The value of the leftmost root.

The slope of the expression at the leftmost root.

The value of the expression at the y-axis (z = 0).
The coordinates of the local minimum.

Key in the expression and store it in EQ. Reset the plot parameters,

then draw the graph using autoscaling for the y-axis.

OXF30?2@XE?
X2 _//

@D 4 !ET
PREV) HEFTEE)(EREV) 2-E05LENT[CO0RIILKEEL]PN

The region of interest needs enlargement, so set the mark and cursor

as shown.

% (holds down) __P,_,f/

() (hold down)

X +

|2-E04[CENT[COORD[LAEEL]FCH

Now zoom-to-box, autoscaling the y-axis. You can now see that there
are three real roots in this region.

S/

Move the cursor near the leftmost root.

(@) (hold down)

-

i Tl)OM

18-30 Basic Plotting and Function Analysis

Find the value of the root. The cursor moves to the root and the value

of the root is displayed in the lower left corner.

S/
ROOT: -1.00

Calculate the slope of the function at the root. (Press any key to

redisplay the menu labels.) The value you obtain for the slope may

vary slightly from that shown in the following display, depending

on the exact coordinates of the rectangular region you defined

with (&);

G

Lo
SLOPE: 6.00

Move the cursor to the y-axis (z = 0) and find the value of the
function. The cursor moves to the corresponding point on the

function.

hold d A/
—

F(X): 2.01

Move the cursor to an z-axis value near the minimum and find the

coordinates of the local minimum.

(h 1d d)> A/
=

E{TRM: (1.55.-0.63)

Basic Plotting and Function Analysis 18-31

Leave the Graphics environment and note that the results have been

returned to the stack as tagged objects.

¢ HOME +

4z Root: -1.6H
Jt lope! 6.HH
e Fiwa: 2,81
1: Extrm: (1.55,-8.63)
EEECETEGBTKT[T

Example: For the expression in the previous example, plot the

derivative of the expression and find the coordinates of the positive z

value where the derivative and the original expression are equal.

Return to the Graphics environment and plot the derivative.

 [NT
[CEMT[COOED{LREEL] FCM |

Move the cursor near the positive intersection and find the

intersection.

 ®)(holddown) L
N7

I-3ECT: (1.43.-0.59)

Press («)(MODES): &1L to return to the stack

display and Standard display mode.

More about Function Analysis

Analyzing Difficult Plots

Each of the previous function analysis examples has generated a plot

in which the intersection of the z- and y-axes is visible in the display,

providing you with immediate orientation. However, depending on the

expression and the current display ranges, one or both axes may not

18-32 Basic Plotting and Function Analysis

be visible. In such cases, you can press (49)(REVIEW) to determine
what part of the graph you’re looking at.

For example, suppose you plot a graph with autoscaling and don’t

have an z-axis in your graph. If you press («q)(REVIEW) and see a

y-axis display range from 230 to 410, you know the portion of the

graph you’re currently viewing is above the z-axis.

You can use the following ideas to analyze such functions:

m If you want to better understand the general shape of the function

and its relatlonshlp to the axes, you can zoom out to see more of

118 partlculafly suitable for such exploratory

the function.

zooming.

m If you want to identify a particular feature of the function, such as a

root or extremum, you can execute the corresponding operation in

the GRAPHICS FCN menu to return the coordinates of that feature

to the stack. Then leave the Graphics environment and use ZEHT

from the PLOTR menu to bring the feature into view when you

redraw the graph. Analysis of the function’s shape at the feature

may provide insight into the relative position of other features on

the curve. Subsequent zoom operations may then be appropriate.

How the Function Analysis Operations Work

The operations in the GRAPHICS FCN menu are linked to commands

that you can execute outside the Graphics environment. (In this

list, the normal distinction between expressions and equations is

reasserted.)

ROOT Executes ROOT (the numeric root-finder in the HP Solve
application) to find an z-axis intersection. If there are

multiple roots (intersections), the root-finder usually finds

the root closest to the current cursor location. For an

equation, it searches for a root of the expression on the

right side of the equation.

TEELT Executes ROOT. For a single expression or for an

equation whose left side has not been plotted (flag —30

clear), 1 ZELTworks just like EQIT . For an equation
whose left and right sides have been plotted (flag —30

set), it finds the nearest intersection of the left and right

sides. For two expressions, it finds the nearest intersection

Basic Plotting and Function Analysis 18-33

of the expressions. For two equations, it finds the nearest

intersection of the right sides.

BlLipE Executes J, then evaluates the resultant expression at the
z-value of the cursor.

Executes f , using the z-values defined by the mark and

cursor as limits.

Executes 0, then finds the z-value closest to the cursor

that causes the resultant expression to evaluate to zero.

Figs Evaluates the expression at the z-value defined by the

CUrsor.

Executes 8, then puts the resultant expression in a list in

EQ with the original expression, and plots the list.

Summary of Zoom and Function Analysis Operations

Zoom and Function Operations in the Graphics Environment

Description

Displays the GRAPHICS ZOOM menu, which allows

you to rescale and recenter the plot. (See “Using Zoom

Operations” on page 18-22.)

Redraws the graph so the rectangular area whose
opposite corners are defined by the mark and cursor

fills the display. ((«)Z= Eil# redraws the graph so

that the z-range defined by the mark and cursor fills

the display, and autoscales the y-axis.)

CEHT Redraws the graph with the current cursor position at

the center of the display.

Displays the coordinates of the cursor position,

replacing the menu keys. Press any menu key to

redisplay the menu labels.

FLH Displays the GRAPHICS FCN menu for analyzing

function plots. (See “Analyzing Functions” on page

18-25.)

18-34 Basic Plotting and Function Analysis

19
More about Plotting and Graphics
Objects

The previous chapter covered basic plotting

“| of mathematical functions: the plot type was

1 specified as FUNCTIONin all examples, and

a limited set of plot parameters was covered.

This chapter extends the concepts introduced in

chapter 18:

Specifying special options for plots.

Working with plot coordinates.

Changing the size of PICT.

Drawing conic, polar, parametric, truth, and statistical plots.

Plotting programs and user-defined functions.

Plotting with units.

Adding graphical elements to PICT.

Working with graphics objects on the stack.

Refining Plots

You can refine your plots by changing the standard plot setup:

m Plotting a specified part of a display range.

m Specifying special axes labels.

m Specifying a different sampling frequency.

Using Plotting Range instead of Display Range

The plotting range is the range of the independent variable over which

the current equation is evaluated. If you don’t specify the plotting

range, the HP 48 uses the z-axis display range (specified by XRNG) as

the plotting range. However, you can specify a plotting range that’s

different from the z-axis display range:

More about Plotting and Graphics Objects 19-1

m For polar and parametric plots, the independent variable isn’t

related to the z-axis variable—so you specify the plotting range to

control the range of the independent variable.

m For truth and conic plots, you can shorten plotting time by

specifying plotting ranges that are shorter than the z- and y-axis

display ranges. These plot types require you to specify the

dependent variable—you can specify its plotting range different from

the y-axis display range.

To specify a plotting range for a variable:

1. Enter the plotting range:

m To specify only the range, enter the two limits for the range

(press or to separate the numbers).

m To specify the variable name and its plotting range, enter a list

(with £ ¥ delimiters) containing the variable name and the two
limits for the range, and press (ENTER).

2. Set the plotting range:

m To set the plottingra,nge for the independent variable or z-axis

= To set, the plottmgrange for the dependent Varlable press

4 in the PLOTR menu.

If you use INDEP and DEPND with a list to specify both the

independent or dependent variable and its plotting range, the list has

the form

name lower upper =

Example: Specify the plotting range of the independent variable to

be 0 through +10. Press 0 10 THEER.

Example: Specify the independent variable to be 7' and its plotting

range to be 0 through +10. Press ((@)({3) T (») 0 (SPC) 10 (ENTER)
THEER.

Specifying Axes and Labels

If the axes are in the plotting range, ‘FlITEH and

‘Fill automatically draw them with tick marks placed at 10-pixel

intervals. The axes normally intersect at (0,0).

19-2 More about Plotting and Graphics Objects

You can change the coordinates of the intersection point. You can

label the axes with their names and their extreme numeric values. You

can also specify axis labels that are different from the independent and

dependent variables names.

To specify the intersection point or labels for the axes:

1. Enter the information:

m To specify the intersection point, enter the (z,y) coordinates as a

complex number.

m To specify axis labels, enter a list (with £ delimiters)

containing the string for the z-axis label and the string for the

y-axis label, and press (ENTER).

2. Press F#EZin the PLOTR menu.

You can specify both the intersection point and labels using a list of

the form

tzays Yz-labelt Vy-label®

To label the axes using the current AXES data:

m Press L¢ i in the PLOTR menu.

LABEL displays in PICT the names of the independent and

dependent variables (unless you’ve specified labels) and the

coordinates of the end-points of the axes (using the current display

format).

Example Assign the label i to the horizontal axis and the label

_WZ s to the vertical axis (regardless of the names of the independent

a.nddependent Varlables) then label the axes. (The AXES list is

" 2, Press @O@DX2 O@D F(x)

Specifying Resolution

You can specify the interval between values of the independent

variable used to generate the plot. A larger resolution gives faster

plots, but decreases the accuracy of the line connecting the points.

More about Plotting and Graphics Objects 19-3

To change the resolution:

m To enter user units, enter a number for the resolution, then press

FEZ in the PLOTR menu.

m To enter pixels, enter a binary integer (with # delimiter) for the

number of pixels, then press EE% in the PLOTR menu.

m To restore the default resolution, enter 0 (or # &), then press

FEZ in the PLOTR menu.

For all plot types, RES uses a real number argument to define the

interval in user units. For FUNCTION, CONIC, and TRUTH plot

types, you can specify the interval in pixels using a binary integer

argument. (For POLAR and PARAMETRIC plot types, a binary

integer argument doesn’t apply.) The resolution interval is also used

for making certain statistical plots. The default intervals for different

plot types are listed below.

Default Resolution Intervals

Plot Type ’ Default Interval

Equation:

FUNCTION 1 pixel (point plotted in every pixel column)

CONIC 1 pixel (point plotted in every pixel column)

TRUTH 1 pixel (point plotted in every pixel column)

POLAR 2°, 2 grads, or 7/90 radians

PARAMETRIC (independent variable range in user units)/130

Statistical Data:

BAR 10 pixels (specifies bar width)

HISTOGRAM |10 pixels (specifies bar width)

SCATTER (not applicable)

19-4 More about Plotting and Graphics Objects

Summary of Plot-Refinement PLOTR Menu Operations

The following commands in the PLOTR menu let you tailor plot

features.

The PLOTR Menu—Plot Refinement Operations

Key Programmable Description

Command

(x)(PLOT) FLETE or ()(ALGEBRA) FLIITE:

THLER INDEP Sets the name in level 1 as the

independent variable. INDEP can also

specify the plotting range for the

independent variable. ()1
recalls the current independent

variable, and its plotting range if

specified.)

ey DEPND Sets the name in level 1 as the

dependent variable (for conic and
truth plots). DEPND can also specify

the plotting range for the dependent

variable. ()BEEHrecalls the
current dependent variable, and its

plotting range if specified.)

RES Sets the plot resolution. ((»)
recalls the current resolution.)

AXES Sets the coordinates of the axes

intersection using the complex-number

argument from level 1. AXES can also

specify axes labels that are different

from INDEP and DEPND.
((®) BHEE returns the current axes
intersection.)

More about Plotting and Graphics Objects 19-5

The PLOTR Menu—Plot Refinement Operations (continued)

Key Programmable Description

Command

DRAX Adds axes to PICT (Not necessary if
i or mHUTO from

you execute [

the keyboard.)

LABEL Adds axes labels to PICT.

«H Multiplies the vertical scale by the

level 1 argument n. (Zooms n if
n<l.)

i *W Multiplies the horizontal scale by the

level 1 argument n. (Zooms in if
n<l.)

PDIM Changes the size of PICT.

(@) FLiH returns the size of
PICT.)

(<) (REVIEW) Redisplays the plot parameters.

Understanding the PPAR Variable

The HP 48 uses a built-in plot parameter variable named PPAR

to store the plotting parameters. You normally control the plot

parameters using commands in the PLOTR menu. Because PPAR is

a variable, you can have a different PPAR in every directory. PPAR

contains a list with the following objects:

CZmin: Ymin® “Zmax: Ymax: tndep res azes plype depend =

19-6 More about Plotting and Graphics Objects

Contents of the PPAR List

 variable, or a list containing the name

and two real numbers (the vertical

plotting range).

Element Description Default

(Zmin, Ymin) A complex number representing the (—6.5,—3.1)

coordinates of the lower left corner of

the display range.

(Zmax, Ymax) A complex number representing the (6.5,3.2)

coordinates of the upper right corner of

the display range.

indep Independent variable. The name of the X

variable, or a list containing the name

and two real numbers (the horizontal

plotting range).

res Resolution. For equations, a real number 0 (points

or binary integer representing the plotted in

interval between plotted points. For every pixel

statistical data, the meaning varies. column)

azes A complex number representing the (0,0)

coordinates of the axes intersection, or a

list containing the intersection and labels

(strings) for both axes.

ptype Command name specifying the plot type. FUNCTION

depend Dependent variable. The name of the Y

To reset PPAR to its default:

m Press &

The E

=1 in the PLOTR menu.

I operation resets all parameters in PPAR to their default

statesfexcept the plot type—and erases PICT and restores it to its

default size.

More about Plotting and Graphics Objects 19-7

Using Plot Coordinates

The size of PICT (or any graphics object on the stack), or the

position of a point within it, are expressed in terms of horizontal and

vertical coordinates. There are two unit systems for plot coordinates:

m User-unit coordinates. (Or simply “units”.) Represented by a

complex number, giving the horizontal and vertical coordinates.

They’re interpreted according to the first two parameters in PPAR,

(z'min: ymin) and (l'max> ymax)~ For example, if (zmin; ymin) is (_10a

—10) and (Zmax, Ymax) is (10, 10), coordinates (—10, 10) represent
the upper-left pixel in the graphics object. (Graphics objects on the

19 stack don’t have user-unit coordinates.)

(-10, 10) (10, 10)

(-10, -10) (10, -10)

m Pixel coordinates. Represented by a list containing two binary
integers, the horizontal and the vertical pixel numbers. For example,

{#0 #0} represents the upper-left pixel.

{#0 #0} {#130 #0}

{#0 #63} {#130 #63}

19-8 More about Plotting and Graphics Objects

To convert a coordinate to the other type:

m To convert user-units to pixels, enter the complex number <z, gy

and press (PRG) LEFL PP

m To convert pixels to user-units, enter the list £ #ng #ny * and

press = TR

The conversion uses the current parameters in PPAR.

Coordinate Conversion Commands

Key Programmable Description

Command

(PRG) EizEL (page 2):

Baa PX—C Converts pixel coordinates to user-unit

coordinates. Takes the list argument

L #ny #ny I from level 1 and returns

Crayr.

B C—PX Converts user-unit coordinates to pixel

coordinates. Takes .z syfrom level 1

and returns ¢ #ny #n, .

Changing the Size of PICT

You can make PICT larger than its default size (131 by 64 pixels)—
and either keep the same z and y scale factors extended over the new

size, or keep the same z and y display ranges over the new size.

To change the size of PICT:

m To keep the same scaling, enter two complex numbers (with ©

delimiters) specifying the coordinates of diagonally opposite corners

in user-units, then press | _ in the PLOTR menu.

m To keep the same display ranges, enter two binary integers (with #

delimiter) specifying the horizontal and vertical sizes in pixels, then

press B ~ in the PLOTR menu.

The result of the PDIM (PICT dimension) command depends on the

type of coordinates—user-units or pixels—though both forms change

the size of PICT.

More about Plotting and Graphics Objects 19-9

Example: Suppose PICT is currently its default size (#131 wide by

#64 high in pixel units), and the current z-axis display range is —5 to

10 and the y-axis display range is —1 to 2. Assume PICT contains the

graph shown in figure (a) below.

To double the = range of PICT in the horizontal direction and keep

the samescales (units per pixel), enter ©-1if,~1» and ¢Z&, 2> and
press # . (PICT becomes #262 wide by #64 high in pixel

units.) If you redraw the graph, the effect is to add more points to the

graph at both ends, shown in figure (c).

To double the size of PICT in the horizontal direction and the keep

the display ranges the same, enter #z£2 and #&4 and press Fi:xii.

(The scale of the z-axis in units per pixel is halved.) If you redraw the

graph, the effect is to “stretch” the graph, shown in figure (b).

19-10 More about Plotting and Graphics Objects

{#0 #0} (10,2

(-5, -1) {#130 #63}

@

{#0 #0}

{#261 #63}

(b)

(20, 2)

(-10, -1)

(©

Changing the Size of PICT

More about Plotting and Graphics Objects 19-11

Choosing Plot Types

The plot type tells the HP 48 how to interpret the current equation

(or the current statistical data for statistical plot types). The PLOT
menu status message indicates the current plot type.

You can choose eight different plot types:

m Equations. FUNCTION, CONIC, POLAR, PARAMETRIC, and

TRUTH.
m Statistical data. SCATTER, HISTOGRAM, and BAR. (See

“Drawing Statistical Plots” on page 19-21.)

To check the current plot type:

m Press (&)(PLOT).

To change the plot type:

1. Press E1 ¥FE in the PLOT or PLOTR menu.

2. Press a menu key to select one of the eight plot types.

19-12 More about Plotting and Graphics Objects

The PTYPE Menu

Key Programmable Description

Command
SFE (in PLOTR menu):

Equation.

FUNCTION Prepares to plot equations that return

a unique f(z) for each value of z.

DOHID CONIC Prepares to plot conic sections—

circles, ellipses, parabolas, and

hyperbolas.

POLAR Prepares to plot expressions that

return a radius for each value of the

specified polar angle.

PARAMETRIC Prepares to plot equations that return

a complex result for each value of the

specified independent variable.

TELTH TRUTH Prepares to plot expressions that

return a true (1) or false (0) value for
each pair of z and y values, such as

equations with comparison functions.

Statistical Data.

EFR BAR Prepares to draw a bar chart of the

data from a specified column (XCOL)
of the statistical matrix.

HISTOGRAM Prepares to draw a frequency

histogram of the data from a specified

column (YCOL) of the statistical
matrix.

os SCATTER Prepares to plot points from two

columns (XCOL and YCOL) of the

statistical matrix.

More about Plotting and Graphics Objects 19-13

Function Plots

FUNCTION is the default plot type. All the examples in chapter 18

used the FUNCTION plot type.

The FUNCTION Plot Type

Form of Example Points Plotted

Current

Equation

f() P52 420 (2, ()
y=f(z) y=z?’+z+4 |Flag —30 clear: (z, f(x))

Flag —30 set: (z, f(x)) and (z,y)

flz) = g(x) 2 =22 47 (z, f(z)) and (z, g(z))

Example: Plot the equation 2? = 2z + 7.

Set the plot type to FUNCTION, reset the plotting parameters,

and plot an autoscaled graph. (The z-values at which the two lines

intersect are roots of the equation.)

(B)(PLoT)

 LfisEL

Press to return to the stack display.

Conic Sections

The equation for a conic section is second degree or less in both z and

y. For example, the following equations are all valid equations for

plotting conic sections:

19-14 More about Plotting and Graphics Objects

2?2+ y?* +4x+2y—5=0 (circle)

522 +3y* —18 =0 (ellipse)
22 —4r +3y+2=0 (parabola)
202 —3y* +3y—5=0 (hyperbola)

Note that the variable specified by DEPND is used when the plot type

is CONIC. Also note that autoscaling may not be useful for conic

sections—you can use CENT and SCALE instead.

Example: Plot the conic section for the equation

24+’ +4x+2y—5=0.

Set the plot type to CONIC, set the plot parameters, and use

and : to draw a “round” circle.

®)(ELo) Plot tupe: CONIC
EQ: 'X E+'T"“E+4*H+2*”|’—OX@?2@ N

Y24X Depnd: 'Y

D2X®YED5@E)0 st -13 13
i ic y: -G, ¢ 6.4

(DX 1 g [UEPH |PTVPE] KE:|CEMT[SCHLE[RESET

@)@Y [

Q)0 GO 0
2(8PC) 2 &

Plot the conic section.

QED)

2

 _‘—'(

(200[2-E0:[CENT[C00RD]LREEL]FiN_|

Press to return to the stack display.

For conic plots, the HP 48 actually plots the two branches of the conic

section separately. This may introduce one or two discontinuities in

the connected graph, as in the previous example. Specifying a finer

resolution (decreasing the interval between plotted points) helps

eliminate discontinuities (see “Specifying Resolution” on page 19-3).

More about Plotting and Graphics Objects 19-15

Polar Plots

In polar plots, the polar angle is the independent variable—# in this

illustration.

The POLAR Plot Type

Form of Example Points Plotted

Current

Equation

f(9) cosf + sind (f(6),26)

r = f(6) r = 2cosf (f(8), £6)

= constant 0 =027 radial line

f(6) = g(9) 4sinf = r? (f(0), £6) and (g(0), £6)

Unless you specify otherwise, the plots are drawn for a full circle of

the independent variable § (0 through 360 degrees, 27 radians, or

400 grads, according to the current angle mode). See “Using Plotting

Range instead of Display Range” on page 19-1.

If you use autoscaling, the HP 48 computes an appropriate z- and

y-axis display range based on the #-range—but the resulting z- and

y-axis scales may differ.

Example: Plot the polar equation r = 2cos(46) for values of § in the

default range 0° through 360°. (This example assumes Degrees mode

is active.)

19-16 More about Plotting and Graphics Objects

Store the equation in POL. (To key in 6, press (@) (2) F). Select
POLAR plot type, specify the independent variable 8, then draw the

plot using autoscaling.

(«)(RAD) (if necessary)

©(ELoD)
DR@E2® D@0
HEW POL
FTYFE FOLAR

STRSPIl(RTIR

BUTO

Press to return to the stack display.

In this example, autoscaling generates different z- and y-axis scales,

compressing the plot in the vertical direction.

Parametric Plots

In parametric equations, two dependent variables (typically z and

y), represented by the horizontal and vertical axes, are expressed as

functions of an independent variable (typically ?).

For example, these parametric equations define z and y in terms of

the independent variable ¢:

=12 —1t and y=1>—3t

To plot a parametric equation, the equation or program must return

a complex result giving the coordinates (z,y). You must also specify
the plotting range for the independent variable—it’s unrelated to the

z-axis display range. See “Using Plotting Range instead of Display

Range” on page 19-1.

To plot the equations shown above, you can write them as an

expression that returns the complex result x + yi:

PTART+ %E TE-0%T 2

If you use autoscaling, the HP 48 computes an appropriate z- and

y-axis display range based on the plotting range of the independent

variable.

More about Pletting and Graphics Objects 19-17

Example: Plot the equations shown above for values of ¢ in the range

—3 through +3.

Store the expression shown above in PAR. (To key in the complex

number i, press (@) () I.)

AOTEH2T
IXEOQTEDS3
3T

PAR (ENTER) :
(FTEn) [PLOTR[PTVPE[MEW|EDER[STEGCAT

Set the plot type to PARAMETRIC, specify the independent variable

and its plotting range, and draw the graph using autoscaling.

t¥pe= POLAR
TH2-T+i#(T"3-3%.,

@OT GO 3
3 THOER
2w

RSRl(R(TT

Press to return to the stack display.

Truth (Relational) Plots

Truth plots evaluate expressions that return true (any nonzero real

number) or false (0) results. At the coordinates for each pixel, the

pixel is turned on if the expression is true—it’s unchanged if the

expression is false.

The variable you specify using DEPND defines the (independent)

variable for the vertical axis.

Unless otherwise specified, every pixel in the display is evaluated. You

can speed up the plot by specifying a smaller z and y plotting range.

See “Using Plotting Range instead of Display Range” on page 19-1.

Example: Draw a truth plot for the expression < ClSE sy AMD

¥ SIMOE? Pover the z-axis display range —7 to 7/2 radians and

y-axis display range of —1.5 to 1.5. To shorten the plotting time,

specify smaller plotting ranges.

19-18 More about Plotting and Graphics Objects

Select Radians mode, and store the expression in EQ. (To type <

press (o) (&) 2. To type , press (@) (2) 2.) Set the plot type to

TRUTH.

)

(SEAD) (if necessary) e TRUTH
Y < (Cos) X EG: EEDS(H)HHD Y51,

D £ ..@x q.=TEET BHD 2=

Y >

Em)

X o
1:

IGE TRBT

Specify the display ranges—use —1.5 to 1.5 for the y-axis. Specify the

horizontal and vertical variables, and limit their plotting ranges: —2.4 19

to .85 for X, and —1.1 to 1.2 for Y.

iy Eac’® t?EnscmeD Y>S1.)@ CA) (@)Enom) deps £ 5oGNPL S
) EREHE epn - .(ENTER) 2 () (F/=) HEHE pemenis ¥ 11158 3

15mm15 : wi-3.141?9% 1.5?8??5%
X-SPC 24."‘/—- -SPC .85 y:

@-Ymnmmw
(ENTER) (XD DEPH
Draw the plot. (This takes several minutes.)

(@ERE) ERAsE

|TPRTlATTM|

Press (\1)(RAD) to return to the stack display and Degrees

mode.

More about Plotting and Graphics Objects 19-19

Plotting Programs and User-Defined Functions

You can plot more than just expressions and equations—you can also

plot programs. And your expressions, equations, and programs can

include user-defined functions.

You can plot a program if it takes nothing from the stack, uses

the independent variable in the program, and returns exactly one

untagged number to the stack:

m Real result. Equivalent to the expressions f(z) (type FUNCTION)
and r(6) (type POLAR). For example, the program

Fo'w<1l@' THEM 'S#MS-45#M2+356' ELSE 1008 EHDw

[323 — 4522+ 350 if ¢ < 10
f(z) = {1000 if 2 > 10

m Complex result. Equivalent to (z(t), y(t)) (type PARAMETRIC).
For example, the program

PEE-ET MUM YL E-2L UM BT o

plots the parametric equations

r=1>-2 and y=1t>-2t+1

To plot a program, store the program or its name in EQ. Note that

you can’t use the operations in the GRAPHICS FCN menu with plots

of programs.

To plot a user-defined function, include it in an expression, equation,

or program. For example,if you’ve created the COT (cotangent)

user-defined function, you can plot the expression 'COTox' where X

is the independent variable.

19-20 More about Plotting and Graphics Objects

Plotting with Units

You can plot equations that contain unit objects if you observe these

restrictions:

m If the independent variable requires units for £Q to evaluate

properly, you must store a unit object in the independent variable

before plotting. (The number part of the unit object you store is

ignored during plotting.)

m If evaluation of FQ returns a unit object, only the scalar part of the

unit object is used for plotting.

Note that no automatic conversions are performed on the plotted 19

values. If the desired units for the z- or y-axis is i (meters), values

are not converted to meters if the value has units of ¥+ (feet).

Drawing Statistical Plots

You can use two different applications to plot statistical data (data

you’ve accumulated in the statistics variable XDAT):

m Statistics application. This is the simplest way to plot statistical

data. It’s explained in “Plotting Statistical Data” on page 21-13.

m Plot application. This lets you control more of the plot parameters.

It’s explained below.

Plots of statistical data are similar to plots of mathematical data,

except that:

m The data comes from the reserved variable YDAT, rather than from

EQ.

m Instead of specifying independent and dependent variables in PPAR,

you specify analogous columns of statistical data in the reserved

variable YPAR.

m The plot type is specified as BAR, HISTOGRAM, or SCATTER.

To plot statistical data from the Plot application:

1. Change the plot type to BAR, HISTOGRAM, or SCATTER.

More about Plotting and Graphics Objects 19-21

2. Specify appropriate plot parameters. (Press ()(STAT) to find the
Wil and %0l commands for specifying the z and y columns

of IDAT.)
3. Press [iE

 i or HLITH to plot the graph.

When you specify a statistical plot type in the Plot application:

m The status message in the PLOT menu changes to show you the

contents of ¥DAT, rather than FQ. The plot data comes from

YDAT.

m The status message in the PLOTR menu changes to show you the

contents of YDAT, the columns in XDAT corresponding to the z-

and y-axes, and the currently specified statistical model.

m The independent and dependent variables correspond to the column

numbers specified in ¥PAR, rather than variable names specified in

PPAR.

The Plot application lets you specify plot parameters for statistical

plots that aren’t available to you in the Statistics application, such as

m RES lets you specify the number of bins in a histogram plot.

m CENTR and SCALE let you specify, for a scatter plot, display

ranges that are larger than the range of plotted points.

m AXES lets you specify labels for the axes in a bar plot.

Adding Graphical Elements to PICT

You can add graphical elements to PIC'T using interactive operations

in the Graphics environment and using commands.

Adding Elements Using the Graphics Environment

To add graphical elements interactively:

1. View the Graphics environment.

2. Use the GRAPHICS menu to add the element:

m For elements that use a mark, move the cursor to the first point,

press (x) or ‘i to mark it, move the cursor to the second

point, then press the menu key for the operation.

19-22 More about Plotting and Graphics Objects

m For other elements, press the menu key for the operation.

Graphical Element Operations in the Graphics Environment

Description

Turns line-drawing on and off. While turned on, pixels

beneath the cursor are turned on as you move the

cursor across the display. While line-drawing is active,

Dt +m 1s displayed.

T Turns line-erase on and off. While turned on, pixels

beneath the cursor are turned off as you move the

cursor across the display. While line-erase is active,

[T ~= 1s displayed.

LIHE Draws a line between the mark and the cursor, and

moves the mark to the cursor.

TLIHE Toggles pixels on and off along a line between the mark
and cursor. Does not move the mark to the cursor.

BOs Draws a rectangular box using the mark and cursor as
opposite corners.

CIRCL Draws circle centered at the mark with radius defined

by the mark and cursor.

MARE Sets the mark. If no mark exists, creates the mark at

the cursor. If the mark exists at another location,

moves the mark to the cursor location. If the mark

exists at the cursor location, erases the mark. (All
operations requiring a mark create a mark at the

cursor location if no mark exists.)

LEL Erases the rectangular region whose opposite corners

are defined by the mark and cursor.

(@) (CLR) |Clears PICT.

) Sets the mark (same as FAFRE).

DEL Erases a rectangle, same as [EL

More about Pletting and Graphics Objects 19-23

Example: Erase PICT, then use [iiiT# to draw a horizontal line

from the center halfway toward the left edge.

@)(PLOT) ERASE
@ DoT+
(€ (hold down)

LIWE [TLIME| EOH[CIRCL]
Turn off line-drawing. Then use TL I HE to draw a vertical line from

the current cursor position halfway to the top edge. (The first TL THE

just sets the mark.)

BTe

TLIHE

(&) (hold down) l
HE

{TRIATWI[T|
Toggle the line off.

T IHE

LIME JTLINE| EDYJCIRCL]

Press to return to the stack display.

19-24 More about Plotting and Graphics Objects

Adding Elements Using Commands

You can use commands to add graphical elements to PICT—either

from the keyboard or in programs.

To add graphical elements using commands:

1. Enter the coordinates or other arguments required by the

command.

2. Press the menu key for the command.

You can supply coordinate arguments in either user-unit form zsy2

or pixel form { #ny #ny I

Graphical Element Commands

Key Programmable Description

Command

(pages 1 and 2):

LINE Draws a line in PICT between the

coordinates in levels 2 and 1.

TETHE TLINE Same as LINE except that pixels along

the line are toggled on or off, rather

than turned on.

BOX Draws a box in PICT using two

coordinate arguments as opposite

corners.

ARC Draws an arc in PICT centered at a

coordinate (in level 4) with a given
radius (in level 3) counterclockwise from
61 (in level 2) to 2 (in level 1). (The

coordinate and radius must both use

user-units or pixels.)

PIXON Turns on the pixel in PICT specified in

level 1.

FLElE PIXOFF Turns off the pixel in PICT specified in

level 1.

More about Plotting and Graphics Objects 19-25

Graphical Element Commands (continued)

Key Programmable Description

Command

TR PIX? Returns 1 if the pixel specified in level 1

is on; returns & if the pixel is off.

Bzl PX—-C Converts a pixel coordinate

£ #ny #ny ¥ to a user-unit coordinate

CTayr.

Lakn C—PX Converts a user-unit coordinate ¢z sy to a pixel coordinate £ #ny #n, .

Working with Graphics Objects on the Stack

You can put graphics objects on the stack and store them in

variables—just as you can with other types of objects. On the stack, a

graphics object is displayed as

Graphic n = m

where n and m are the width and height in pixels.

When you put a graphics object from the stack into the command

line, it’s displayed as

GROE nom h

where GROEis the delimiter, n and m are the width and height in

pixels, and A is the pixel pattern represented as hexadecimal digits

(0-9 and A-F).

You can work with graphical elements using operations in the

Graphics environment and using commands.

Using Stack Operations in the Graphics Environment

The following operations in the Graphics environment take a graphics

object from the stack or return a graphics object to the stack. These

operations aren’t programmable.

19-26 More about Plotting and Graphics Objects

Stack Operations in the Graphics Environment

Key Description

Superimposes the graphics object from level 1 on

PICT. The upper left corner of the graphics object is

positioned at the cursor.

Puts on the stack the rectangular graphics object

whose opposite corners are defined by the mark and

cursor.

STO Copies PICT to the stack as a graphics object.
Using Stack Commands for Graphics Objects

You can use commands to work with graphics objects and control the

display—either from the keyboard or in programs.

To work with graphics objects on the stack:

1. Recall the graphics object or enter other arguments required by the

command.

2. Press the menu key for the command.

You can supply coordinate arguments in either user-unit form ©z.y:

or pixel form £ #n, #ny .

More about Plotting and Graphics Objects 19-27

Graphics Object Commands

Programmable

Command

Description

Lo

SR

GHOE

PVIEW

SIZE

—GROB

BLANK

GOR

GXOR

(PICT view.) Displays PICT with the
specified coordinate (level 1) at the
upper left corner of the graphics

display. If the argument is an empty

list, displays PICT centered in the

display with scrolling mode activated.

For the graphics object in level 1,

returns the width (level 2) and height
(level 1) in pixels.

(To graphics object.) Converts an
object (level 2) into a graphics object

using real number 7 (0 to 3 from
level 1) to specify the character size.

The resultant graphics object is a string

of small (n=1), medium (n=2), or large
(n=3) characters. For n=0, the
character size is the same as for n=3,

except that for algebraic and unit

objects, the resultant graphics object is

the EquationWriter picture.

Creates a blank graphics object on the

stack of size #ny (in level 2) by #ny (in

level 1).

(Graphics-object OR.) Superimposes
the level 1 graphics object onto the level

3 graphics object. The upper left corner

of the level 1 graphics object is

positioned at coordinates specified in

level 2.

(Graphics-object XOR.) Same as GOR
except that the level 1 graphics object

appears normal on a light background

and inverse on a dark background.

19-28 More about Plotting and Graphics Objects

Graphics Object Commands (continued)

Key Programmable Description

Command

EERL REPL (Replace.) Same as GOR except that
the level 1 graphics object overwrites

the level 3 graphics object where the

level 1 graphics object is located.

ELE SUB (Subset.) Extracts a portion of a
graphics object and returns it to the

stack. It takes three arguments—a

graphics object (level 3) and two

coordinates (levels 2 and 1) that define

the diagonal corners of the rectangle to

be extracted.

—LCD (Stack to LCD.) Displays the graphics
object from level 1 in the stack display,

with its upper left pixel in the upper left

corner of the display. It overwrites all of

the display except the menu labels.

LCD— (LCD to stack.) Returns a graphics

object to level 1 representing the

current stack display.

FREEZE “Freezes” one or more of three display

areas so that they’re not updated until

a key press. (See “Using DISP
FREEZE HALT...CONT for Input” on

page 29-4.) Used with PVIEW in a
program so that PICT persists in the

stack display until a key press.

TERT TEXT Displays the stack display.

Example: Program PIE on page 31-40 uses ARC and LINE to draw

a pie chart. It then recalls PICT to the stack and executes GOR to

merge a label with each slice of the pie chart.

Example: Program WALK on page 31-47 uses a custom graphical

image in a program, executing GXOR in a loop structure to animate

the image.

More about Plotting and Graphics Objects 19-29

Using Stack Commands with PICT

You can use the name FIZT as an argument to several graphics

objects commands described above. For example, the SUB command

accepts PICT as an argument, letting you define a region of PICT

to return to the stack as a graphics object. This is the stack related

equivalent of the ZlIE operation in the Graphics environment.

To put the name PICT on the stack:

m Press Do mmen

The PICT command puts the name FILZT on the stack so you can

access the PICT graphics object as if it were stored in a variable.

To work with PICT on the stack:

m To recall the PICT graphics object to the stack, press

BEFL RICT (2)RCD)
m To store the graphics object in level 1 as the PICT graphics object,

press BERL RBILT (STO)

m To purge the contents of PICT, press LERL Bioy

(@(EURSD).

19-30 More about Plotting and Graphics Objects

20

The HP 48 has extensive capabilities for

entering and manipulating arrays. Array objects

represent both vectors and matrices. A vector

is a one-dimensional array. A matriz is a

two-dimensional array.

This chapter covers these topics:

Using the MatrixWriter application to enter and edit arrays.

Using the command line to enter arrays.

Doing arithmetic operations with arrays.

Working with complex-number arrays.

Two-element and three-element vectors are particularly useful in

engineering—they’re covered in chapter 12, “Vectors.”

Displaying Arrays

A matrix appears on the stack as numbers within nested [1

delimiters. A pair of [I delimiters enclose the entire matrix—

additional pairs enclose each row in the matrix. For example, here’s a

3 x 3 matrix as it appears on the stack:

]]
e

[
e

T
l

o
L

=
]

o 11

Arrays 20-1

A vector (or column vector, mathematically equivalent to a

one-column matrix) appears on the stack as numbers within one level

of [1 delimiters. For example, here’s a 4-element vector as it appears

on the stack:

[12 4 1

The less-frequent row vector (a one-row matrix) appears on the

stack as numbers within two pairs of [1 delimiters. For example,
-
[L 1224 11ishow a4-element row vector appears on the stack.

The current coordinate mode and angle mode affect how 2-dimensional

and 3-dimensional vectors are displayed. See “Displaying 2D and 3D

Vectors” on page 12-1.

Entering Arrays

You can enter an array two ways, as described in this chapter:

m MatrixWriter application. A visual method of entering, viewing, and

editing array elements.

s Command line. The basic object-entry method.

Using the MatrixWriter Application

The MatrixWriter application provides a special environment for

entering, viewing, and editing arrays. The display shows array

elements in individual cells arranged in rows and columns.

Columns

Matrix size ——> [o

Rows \

Cell cursor

Cell /, :

coordinate T30TNT[

20-2 Arrays

To enter a matrix using the MatrixWriter application:

1. Press (»)(MATRIX) to display the MatrixWriter screen and menu.

2. For each number in the first row, enter the number and press

(ENTER).
Press (V) to mark the end of the first row.

4. For each number in the rest of the matrix, enter the number and

press (ENTER).
5. After you’ve entered all of the numbers in the matrix, press

to put the matrix on the stack.

w

While you’re entering a number, the cell coordinate is replaced by the

command line. When you press to store the value in the cell,

the cell cursor normally advances to the next cell.

When you press (V) at the end of the first row, it sets the number

of columns in the matrix and moves the cursor to the beginning of

the next row. You don’t have to press (¥) again—the cell cursor

automatically wraps to each new row.

If the displayed number is wider than the cell width, an ellipsis

indicates “more to the right” (asin 1.2..). The default cell width is
four characters.

Note the two uses of (ENTER): While you’re using the command line

for data entry, enters data into a cell. When a cell coordinate

is displayed, enters the entire matrix onto the stack.

To enter a vector using the MatrixWriter application:

1. Press (»)(MATRIX) to display the MatrixWriter screen and menu.

2. For each number in the vector, enter the number and press (ENTER).

3. After you’ve entered all of the numbers in the vector, press

to put the vector on the stack.

For a vector, you normally use only the first row of data—so you don’t

need to press (V).

To have more flexibility during data entry:

m To enter numbers into more than one cell at a time, press to

separate the numbers, then press to enter them all.

m To compute elements in the command line as you enter them, enter

arguments and press command keys as required (press to

separate arguments), then press to compute the value and

Arrays 20-3

put it in the cell. The commands aren’t executed until you press

(ENTER).
m To make the displayed cells narrower or wider, press =

Example: To enter 2.2% in a cell, press 2.2 4 (ENTER).

Example: Enter the matrix

2 =2 0

1 0 3

-3 5 1

Select the MatrixWriter application.

PEAERD)

TOST T

Key in the first element (cell 1-1).

2

HOl DBT

Enter the value into the cell.

HTE DBREE

Enter the rest of the first row.

2 0

 Hah 0STS

20-4 Arrays

Use (¥) to end the first row. Then, enter rest of the matrix.

™
I &0 0 GFO) 3 GC
3 ((0) @) 5 G20 | (ENTER)

_1 =

TTR0TNT)I

Enter the matrix onto the stack. (This matrix is used in a later
example.)

[ERAZE|DRAL AUTD YFMIS[IMDEF

Using the Command Line

To enter a matrix using the command line:

1. Press (&)1 and ()] to type the delimiters for the matrix and

for the first row.

2. Key in the first row. Press to separate the elements.

Press () to move the cursor past the I row delimiter.

4. Optional: Press (()(«<=2) (carriage return) to start a new row in the
display.

5. Key in the rest of the matrix. You don’t need £ I delimiters for

subsequent rows—they’re added automatically later.

6. Press (ENTER).

@

To enter a vector using the command line:

1. Press (&)1 to type the delimiters for the vector.

2. Key in the vector elements. Press to separate the elements.

3. Press (ENTER).

Example: Use the command lint to enter the matrix

2 21

1 0 4

3 5 2

Arrays 20-5

Key in the delimiters and the first row.

@O@) 2 (EPA) 2 (5 1 [[2 2 14]
[EFAZE[DRk [AUTD |HEMG[VENS[INDER |

Move the cursor past the first 1 and key in the remaining values.

®)@) 1 (5Pc) 0 (SPC) 4 [[2 2 1]
@) 3 5 2 189

3 D 24

EEHEEEEEEBTLT

Enter the matrix onto the stack.

Viewing and Editing Arrays

To view an array using the MatrixWriter application:

1. View the array:

m If the array is in level 1, press ().

m If the array is stored in a variable, put the variable name in

level 1 and press ()(¥).

2. Press to return to the stack.

To edit an array you’re viewing with the MatrixWriter application:

1. Press (€) () (&) (¥) to move the cell cursor. (Use with () to move
the cursor to the far end.)

2. Use the operations listed below to add or edit cells.

3. Press to save the changes (or press to discard them)
and return to the stack.

To view or edit an array using the command line:

1. View the array:

m If the array is in level 1, press («q)(EDIT).

m If the array is stored in a variable, put the variable name in

level 1 and press (2)(VISIT).

2. Optional: Make changes.

20-6 Arrays

3. Press (ENTER) to save any changes (or press (ATTN) to discard

changes) and return to the stack.

Operations in the MatrixWriter Environment

Key Description

Places contents of the current cell in the data entry

line for editing. (Press («q)(EDIT) to get the EDIT
menu.) Press to save the changes, or press

to discard them.

For one-row arrays, toggles between vector entry and

matrix entry. If this key is “on” (), one-row
arrays are entered into the command line as vectors

(example: [12 3]). If it’s “of” (& one-row
arrays are entered as matrices (example: [[1 2 3]]).

Narrows all cells so that one more column appears.

Widens all cells so that one fewer column appears.

Sets left-to-right entry mode. The cell cursor moves to

the next column after data entry.

Sets top-to-bottom entry mode. The cell cursor moves

to the next row after data entry.

Inserts a row of zeros at the current cursor position.

(To insert a row at the bottom, see below.)

Deletes the current row.

Inserts a column of zeros at the current cursor position.

(To insert a column at the far right, see below.)

Deletes the current column.

Copies the current cell to level 1 of the stack.

Activates the Interactive Stack.
If both &% and @ &itiare off (no = in either menu label), the

cursor doesn’t advance after an entry is made.

To add a column to the right of the last column, move the cursor to

that column and enter a value. The rest of the column is filled with

zeros. Use a similar procedure to add a row to the bottom.

Arrays 20-7

Example: Change the matrix entered in the second previous example

2 =2 0 2 =2 4 0

from 1 0 3 to 1 0 1 31

-3 51 -3 5 3 1

If the matrix is on the stack, bring it into level 1—otherwise, enter

the matrix into level 1. Then view the matrix in the MatrixWriter

environment. (This example assumes Gli+s is active.)

(¢) (or enter the matrix)

™

-1: 2
IRITRSDT

Edit element 2-3:

VE®
ECIT () .1 (ENTER)

-1: -3
[ENITVEC[£hI0[ii0s504GO+

Insert a new column in front of column 3, and move the cell cursor to

the top of the new column.

>)0>) ol W@

Set top-to-bottom entry mode. Fill in the new column.

s
4 1 3

-4z @
EDIT WEC [#KID [HID+

20-8 Arrays

Restore left-to-right entry mode, then enter the edited matrix.

GO 1: [[2-248]1]
[1813.1]
[-35311]

[)TBTT

Calculating with Arrays

You can put arrays on the stack and perform mathematical operations

on those arrays. The following tables summarize basic operations you

can use. Other operations are listed under “More Matrix Commands”

on page 20-16.

Arithmetic Operations for Vectors

Key Programmable Description

Command

+ Addition and Subtraction. Adds or

=) - subtracts two vectors that have the

same number of elements. If either

vector contains complex elements, the

resulting vector is complex.

) * Multiplication and Division. Multiplies

=) / or divides a vector by a real or complex

number.

HELTR:

DT DOT Dot Product. Returns the dot product

of two vectors with the same number of

elements.

CROSS Cross Product. Returns the cross

product of two vectors with the same

number of elements.

ABS Length. Returns the length or

magnitude of a vector. (Also in MTH

HES PARTS menu.)

Arrays 20-9

20

For examples of using DOT, CROSS, and ABS with vectors, see

“Calculating with 2D and 3D Vectors” on page 12-8.

Arithmetic Operations for Matrices

Key Programmable Description
Command

INV Inverse. Calculates the inverse of a

square matrix.

+ Addition and Subtraction. Adds or
) - subtracts two matrices that have the

same dimensions.

3] * Scalar Multiplication and Division.

&) / Multiplies or divides each element in the
array by a real or complex number. For

division, the scalar must be in level 1.

Matrix Multiplication. Returns the

product of the two arrays. The number

of columns in the level 2 matrix must

equal the number of rows in the level 1

matrix.

®

Example: Calculate the inverse of the matrix

b
Enter the matrix—use the command line.

@)QD ! EES) 2 1: [[12]
1 (SPC) (ENTER) L1411

®) 5k<) 4 (ENTER) [ERAZE[DRALAUTO[HEWSYRS[INDEP]

Calculate the inverse.

1: [[2 -11
[-.5.5 1]

[ERAZE[DRALAUTD[HEMSYERS[INDER

Example: Calculate the matrix product

F q [2 2 1 4}
9 3 2 4 2 1

20-10 Arrays

Enter the first matrix.

@)@ETRD)
2 (560) 2 (ENTER) ()
4 (SPC) 1 (SPC) 2 (SPC) 3 (ENTER)

Enter the second matrix.

(@)MATRIX) s [[221 [411.
1: c214%]

2 (5P9) 2 (SPC) 1 (SPC) 4 (ENTER) (V) [[
3 (3PC) 4 (3PC) 2 (5PC) 1 (ENTER) m:fi:m%mfiamm

Multiply the matrices.

® 1: [[18 12 6 18]
[11 12617]
[13 16 8 11 1]

[EFAZE[DAkAUTO[RREHG[VEHG[INDER

Arithmetic Operations for a Matrix and a Vector

Key Programmable Description

Command

x) * Matrix-Vector Multiplication. The

number of columns in the matrix (level
2) must equal the number of elements
in the vector (level 1). (The vectoris
treated as a column vector.)

®) / Vector-Matrix Division. The number of
elements in the vector y (level 2) must
equal the number of columns of the

square matrix X (level 1). Returns the
product X'y, often used to solve a

system of linear equations.
Example: Calculate the product

[2 1 3] F’]
4 2 2 1

Arrays 20-11

Enter the matrix.

()MATRIX) 1: [E % % % %]
2 1 3 ® .
4 2 2 [EFiAZE[DFAk

]

AUTO[HENG]VENG[INDEP]

Enter the 1x3 matrix as a vector, then do the multiplication.

@@M3ER)1ERI) 1T 1: [18 161
ERAZE[DFAk [AUTD[HEMG[YENS[INDER]

To solve a system of linear equations:

1. Enter the n-element vector of constants.

2. Enter the nxn matrix of coefficients.

3. Press (3) to get the n-element vector of variable values.

The system of linear equations y = Ax must consist of n equations

and n variables. The solution is calculated as x = A~ 1y.

Example: Solve the following system of three linear, independent
equations with three variables:

3z + y+ 2z = 13

t+ y—8z =-1

—z 4+ 2y + 5z = 13

Enter the constant vector.

@EETRR) 13G 1 GOD 13 |1: [13 -1 13]
[EFHZE]DRALAUTOHRMSYENG|INDER

Enter the coefficient matrix.

()(MATRIX) s [13 -113 1]
3 (5P9) 1 (3PQ) 2 (ENTER) (V) 1: [[31271

1 &B9) 1 (5P9) 8 () (P9 ELL08
1 3£ (SPC) 2 (SPC) 5 (ENTER [TTTT[T

“Divide” the vector by the matrix.

® l: [251]
[ERAZE[DALAUTDRNVRN[IMDER

20-12 Arrays

The values that satisfy the equations are z = 2, y = 5, and z = 1.

Calculating with Complex Arrays

Arrays can contain real numbers or complex numbers—but no other

object types are allowed. A complez array is a vector or matrix that

contains one or more complex-number elements.

You can use complex arrays for the arithmetic operations described

in the previous section. If either argument is a complex array, the

result is a complex array. For example, if you add a real matrix and a

complex matrix, the result is a complex matrix.

20

You can use any command that manipulates real arrays to manipulate

complex arrays—with the exception of the coordinate-mode-dependent

commands (V—, —V2, and —V3). In addition, the commandslisted

below operate on complex arrays.

 Arrays 20-13

Commands for Manipulating Complex Arrays

Keys Programmable Description

Command

NEG Returns an array in which each element

is the negative of the argument array.

PRG) @l (page 2):

Eal R—C Combines two arrays into a complex

array. The array in level 2 becomes the

real part—the array in level 1 becomes

the imaginary part.

Lok C—R Returns to levels 2 and 1 two arrays

containing the real and imaginary parts

of a complex array.

FRRETS:

ELH CONJ Returns the complex conjugate of a

complex array—each element is

conjugated.

EE RE Returns a real array consisting of the

real parts of a complex array.

i IM Returns a real array consisting of the

imaginary parts of a complex array.
Example: Calculate the conjugate of the matrix

1+ 3 7
3 2—41

Select the MatrixWriter application and enter the complex numbers.

@) ! (5kC) 3 (ENTER) ¢33 (2,
@OGO ! ETER) (M)
3 (ENTER)
@) 2 5PS) 4 (*F) (ENTER) -1:

[ELITWEC£MID[WID3G0GO

20-14 Arrays

Widen the columns to see the full entry.

Milis qiins

(2y—dh

ST R0T TS

Put the matrix onto the stack.

1t [¢1,3) (8,1)]
[(3,8) (2,-4) 1]

(EFAZE[DRk [AUTO[HENG[VENGG[INDER]
Compute the conjugate.

(MTH) BFARTE O 1: [[C1,-3) ¢@,-1)_1
[(3,8) (&,4) 1]

ITTTA

Calculating with Algebraic Syntax

You can perform calculations with array elements using algebraic

syntax. The array must be represented by a name in the symbolic

expression or equation.

To enter an array element in a symbolic expression:

1. Inside the expression, enter the array name and press (&)(()).

2. Enter the subscripts for the element:

m For a vector, enter one subscript.

m For a matrix, enter two subscripts separated by («)().

Example: Enter a symbolic expression for the sum of all elements of

a 4-element vector stored in variable VECT.

O@WE) @U4=0 |1 'ECi=1,4,YECTi))!
VECT (@)ENTER). KTTRN

Arrays 20-15

Example: Enter a symbolic expression for the sum of all elements of

a 2 x 5 matrix stored in MATR.

(+2) (EQUATION)
EPIx1IE)20)
EDkE)L1E)50) MATRCJ, k10
MATR (@)QWOk) j

AESSIGH[COWJARGRE1M

Press to put the expression on the stack.

More Matrix Commands

Additional commands for creating and manipulating matrices and

accessing individual elements (—ARRY, GET, GETI, OBJ—, PUT,

and PUTI) are covered under “Manipulating Objects” on page 4-12.

The following commands perform other matrix operations. They’re

located in the MTH MATR menu ((MTH) HETE).

L Example
Command/Description

Input Output

ABS Frobenius (Euclidean) 1: [Lz 21 iz e
norm; square root of the [z 211

sums of the squares of

the absolute values of the

elements.

20-16 Arrays

Command/Description

CNRM Column norm,; i

maximum value (over all L4 5
columns) of the sums of Ly

the absolute values of all

elements in a column.

an o
t

£

£
5
l

be
d
B
b

%3
]

L
y

fo
d

CON Constant; returns a

constant real or complex 1

array using the dimensions

specified by a list {n} or
{n m} or by an existing
array. i

o
l

o
t

[
O

be
ed
e

"
}

he
d

P£ o
0

e

un iDET Determinant; returns 1:

the determinant of a square

matrix.

P
R

b
d

 E
ed

f
o
d

B
[

1

IDN Identity; returns an 1: z

n x n (in level 1) identity

matrix, or replaces the

elements of the matrix in 1:

level 1.

1 f
o uu ™
t

™

|

T
t

f
d
o

5 i
(%

f
d

I
e
t - it

b
d

 L
ed

-

1
1
O

e an ™
1

Bo
oe
ed

e
d

[™
1

T !

=
t
}

3
1

B
t

- g

o
l s B
l

-
y

o e o s b
l

M
o
£

eRDM Redimension;

Redimensions an array. The

new dimensions are in a list

in level 1. Elements preserve

the order of the source array.

o
e

0

r
ol

U
I
S
i
1

e
d g

Pl
b
e
d

b
d

R
e
d

[

e
P
- fa

n}

3,
_L
"x

o
t um

o
t un [

1
O
t

=
y

e e un of
aRNRM Row norm;

maximum value (over

all rows) of the sums of

the absolute values of all

elements in a row.

o
L
e

bo
d

bo
ed
b

w5
1

0
F
0

fo
d

 TRN Transpose;

transposition of the

argument; an n X m matrix

is replaced by an m X n

matrix. (Complex entries are

conjugated.)

s
y uu ™
1
™

fr
l
s

DRE
C
)

be
d

h
d

™ B
b

T x
_
T
,

b
o
e
d

 B
ee
d

L
d

™
1

L
1

i -
|

Arrays 20-17

CON, IDN, RDM, and TRN allow name arguments in place of the
array argument. For example, evaluating the sequence 'Al' 7 COH

replaces the array stored in A1 with a constant array of the same

dimensions.

Advanced Topics Relating to Matrices

Improving the Accuracy of System Solutions

Because of unavoidable rounding errors during calculation, a

numerically calculated solution Z is usually slightly in error. In most

cases these errors will correspond to less than one count in the 12th

digit of each element of A and B.

When additional accuracy is desired, the computed solution Z can

usually be improved by iterative refinement (also known as residual

corrections). Iterative refinement involves calculating a solution to a
system of equations, then improving its accuracy using the residual

associated with the solution.

To use iterative refinement:

1. Use (3) to calculate a solution to the original system AX = B. (Call
the solution Z, an approximation to X, in error by E =X — Z.)

2. Recall B, A, and Z to the stack (in that order), then use F&E

(MTH MATR menu) to calculate the residual R as B — AZ.
3. Use () to solve AE = R for E. (Call the solution F, an

approximation to E.)

4. Use to calculate F + Z, a new approximation to X.

For F + Z to be a better approximation to X than is Z, the residual

R = B — AZ must be calculated to extended precision. The function

RSD does this. You can repeat the refinement process, but most of

the improvement occurs in the first refinement.

Example: This user program solves a matrix equation, including one

refinement using RSD:

o BAEEBEASBAZPICEER DM - o+ 5 %

20-18 Arrays

This program takes two array arguments B and A from the stack,

(the same as /) and returns the result array Z, which will be a refined

approximation to the solution X over that provided by / itself.

Singular Matrices

A singular matrix is a square matrix that doesn’t have an inverse.

You normally get an error if you use to find the inverse of a

singular matrix—or use (3) to solve a system of linear equations having

a singular coefficient matrix.

Because of unavoidable rounding errors, a calculated matrix may be

singular, even though the theoretical result without rounding might

not be singular. If you set flag —22 (Infinite Result Exception),

you won’t get an error if you use or (z) with a singular matrix.
Instead, the HP 48 perturbs the singular matrix by an amount that’s

usually small compared to rounding error. The calculated result

corresponds to that for a nonsingular matrix close to the original,

singular matrix.

Over-Determined and Under-Determined Systems

An under-determined system of linear equations contains more

variables than equations, and the coefficient array has fewer rows than

columns. The following program solves an under-determined system

AX = B using the Moore-Penrose technique: X = AT(AAT)~'B. The
program requires as input the vector B in level 2 and the matrix A in

level 1.

o

m
T
m

I
—
I

e
I
=

TRH % » %

Arrays 20-19

An over-determined system contains fewer variables than equations.

The next program solves an over-determined system using the least

squares method: X = (ATA)~*ATB. Like the previous program,its
input is B in level 2 and A in level 1.

%+ B A
TRM B

TRH A # »o

 20-20 Arrays

21
Statistics

The Statistics application enables you to calculate

single-sample and paired-sample statistics. It also

enables you to draw scatter plots, bar charts, and

frequency histograms.

This chapter shows you how to calculate:

Total, mean, maximum, and minimum.

Sample standard deviation and covariance.

Correlation coefficient.

Curve-fitting with four models (linear, logarithmic, exponential,

power).
= Summary statistics.

m Upper-tail probabilities for various test statistics.

Press (|)(STAT) to display the first page of the STAT menu. If there

is any current statistical data, a message in the display shows the last

values entered.

Organizing Statistical Data

Statistical data for the HP 48 is organized in the form of a matrix.

The matrix contains a row for each date point and a column for each

variable measured at that point.

Statistics 21-1

vari varp .o varm

pointy 11 19 ... Tim

point> 91 a9 e Tom

pomty Tn1 Tno . Tnm

Setting Up the Current Statistical Matrix

The Statistics application uses the data stored in the current statistical

matriz. It’s stored in reserved variable XDAT. You change the

current statistical matrix each time you work with a different set of

data. (Because YDAT is a variable, you can have a different current

statistical matrix for each directory in memory.)

Entering Statistical Data

You can enter statistical data one point at a time, or you can create a

complete matrix of data and make it the current statistical matrix.

To clear the current statistical matrix:

m Press (q)(STAT) ©LE

To key in statistical data with only one variable:

1. Press (&)(STAT).

2. Press to clear previous data.

3. For each point, enter the value and press .E+

To key in statistical data with several variables:

1. Press (&) (STAT).

2. Press to clear previous data.

3. For the first point, create a vector (with [1 delimiters) containing
all the variable values for the point. (Press to separate the

values in the vector.)
4. Press: _ to enter the point.

21-2 Statistics

5. For each remaining point, enter the variable values and press
. You can enter the values for each point as individual

numbers or as a vector.

The first point defines the number of variables. All other data must

have the same number of variables.

To create a matrix and make it the current statistical matrix:

1. Create the matrix and put it in level 1. You can use the

MatrixWriter application, for example.

2. Press (&)(STAT).

3. Store the matrix:

m To store a copy of the matrix for future use, press | HEH | type a

name for it without pressing (a), and press (ENTER).

m To not store a copy, press STEEL.

The matrix itself is stored in the named variable, and the variable

name is stored in XDAT. (If you don’t enter a name, the matrix itself

is stored in YDAT.)

Example: The following table lists the consumer price index (CPI),
producer price index (PPI), and unemployment rate (UR) for the
United States over a 5-year period. Enter the data.

Year CPI PPI UR

1 9.1 9.2 85

2 5.8 4.6 7.7

3 6.5 6.1 7.0

4 76 7.8 6.0

5 1156 19.3 5.8

Set 2 FIX display mode, start the Statistics application, and clear any

previous statistical data.

(©)(MODES) 2 EI No current data. Enter
@ pEE data point, press EZ+

Key in the data for year 1. Remember—enter the first data point as a

vector.

@)@ 9.1 (5P 9.2 (SPC) 8.5 [9.1 9.7 8.5+
IITSBTT

Statistics 21-3

Enter the data into the statistical matrix.

L IEDHT<1>=[9.1@ 9.208 8...|
ZDATC22=

Enter the rest of the data. After the first row, you can enter a row as

simple numbers.

5.8 4.6 770
6.5 6.1 7 Sy
7.6 7.8 6 53
11.5 19.3 Xy

[11.58 19.36. ZDATCS?
ZDATCED

Editing Statistical Data

To revise the last data point:

1. Press(q) 2+ (the ¥— command) in the STAT menu to delete

the last data point.

2. Optional: To revise the deleted data point and reenter it, press

(«)(EDIT), make the changes, and press (ENTER)}—then press

:+ S

The ¥— command removes the last data point in X’DAT, such as from

the most recent X+ operation. The deleted data point is returned to

level 1.

To edit any data point:

1. Press Eli 1 1% in the STAT menu to activate the MatrixWriter

environment.

2. Edit any of the data points.

3. Press to save the changes (or press to discard
them).

Summary of Data-Entry STAT Menu Operations

The first page of the STAT menu contains keys for entering and

manipulating data. The other pages, described throughout this

chapter, contain commands for doing calculations and drawing graphs.

21-4 Statistics

The STAT Menu—Data-Entry Operations

Key Programmable Description

Command

@G
o Y+ Enters data from the stack into the

current statistical matrix.

() =+ Y- Deletes the last data point from the
statistical matrix and returns it to the

stack.

B CLXY Clears the current statistical matrix.

HER Takes a matrix from level 1, prompts

for a variable name, stores the matrix

in that variable, and makes that

matrix the current statistical matrix.

S Places the current statistical matrix in

the MatrixWriter environment for

editing. Press to save the
changes, or press to discard

them.

S STOX Stores the matrix or name in level 1 as

the current statistical matrix.

) ataz RCLY Recalls the current statistical matrix

to level 1.

ERT Displays the catalog of matrices and

subdirectories in the current directory.

(x)(REVIEW) Redisplays the status message relating to the last data entered.

Using the Statistics Catalog

The Statistics Catalog enables you to specify any existing matrix as

the current matrix. It’s a special environment in which the keyboard

is redefined and limited to specialized operations.

Statistics 21-5

To select a matrix from the Statistics Catalog:

1. Press (G)(ETAD
2. Press (&) and (¥) to movethe pointer to the desired entry in the

list.

3. To make the matrix the current matrix, press 1 =4WHE,

T —see the table below.

The Statistics Catalog lists all the variables in the current directory

that contain matrices and all subdirectories in the current directory.

Catalog { HOME ¥
pointer —> IrFI' dir

t[5x3]
E [2x4]

PLOT [2-UAK] EDIT EE]

To exit the Statistics Catalog without selecting a matrix:

m Press (ATTN).

You can use the following operations to manipulate the entry you

select.

Operations in the Statistics Catalog

Description

Makes the selected entry the current statistical matrix,

leaves the catalog, and displays page 2 of the STAT

menu (for calculating single-sample statistics).

Makes the selected entry the current statistical matrix,

leaves the catalog, and displays page 3 of the STAT

menu (for plotting data).

Makes the selected entry the current statistical matrix,

leaves the catalog, and displays page 4 of the STAT

menu (for calculating paired-sample statistics).

21-6 Statistics

Operations in the Statistics Catalog (continued)

Key Description

ElitT Places the selected entry in the MatrixWriter

environment for editing. Press to save the
changes, or press to discard them.

Copies the matrix to the stack.

Lets you view the contents of the entry. If the entry is

a subdirectory, switches to that subdirectory.

Moves the selected matrix to top of the catalog.

Purges the entry (and its corresponding variable).

Selects the next page of Statistics Catalog operations.

Selects the previous page of Statistics Catalog

operations.

(a) Moves the catalog pointer up one level. When prefixed

with (4q), moves the catalog pointer up one page

()(PgUp) in the following illustration). When
prefixed with (), moves the catalog pointer to the top

of the catalog ((»)(@&) in the illustration).

™ Moves the catalog pointer down one level. When

prefixed with (&), moves the catalog pointer down one
page ((\9)(PgDn) in the following illustration). When
prefixed with (%), moves the catalog pointer to the

bottom of the catalog ((#)(¥) in the illustration).

Executes —STK (copies matrix to stack). If the entry
is a subdirectory, switches to that subdirectory, giving

access to any matrices there.

(®)(UP) |Switches to the parent directory.

(»)(HOME) |Switches to the HOME directory.

Exits the catalog.

Statistics 21-7

The redefined keyboard looks like this:

s
S T&x[fig

(LILAv
Dooomo
OO0

Executes ~STK w——)@ D D D D

(JCOCICII)

@ JCoCy

)

J

>CJCIC L
Exits catalog ~——(@ C o¢

 J/

Calculating Single-Variable Statistics

If your statistical data measures a sample of a population, you

calculate sample statistics. If, however, your data measures the entire

population, you calculate population statistics.

Getting Sample Statistics

Use commands in page 2 of the STAT menu to calculate single-sample

statistics. Each command returns a vector containing m numbers,

where m is the number of columns in the matrix. (If m=1, where

each data point consists of only one number, the commands return

one number.) For example,if you have a 3-column matrix in XDAT,

21-8 Statistics

. returns a 3-element vector containing the mean of each

column.

The STAT Menu—Single-Sample Statistics Commands

Key Programmable Description

Command

(R)(ETAT) (page 2):
Toq TOT Total.

MEAH MEAN Mean (average).

ShEY SDEV Sample standard deviation.

MAHE MAXXY Maximum value.

MINE MINXE Minimum value.

BINS Calculates frequencies using the

independent-variable column (XCOL) of
YDAT. Takes as its arguments the

minimum z-value (level 3), the width of
each bin in user units (level 2), and the

number of bins, n (level 1). Returns a
“bins” matrix and an “excess” vector—

see below.

VAR Variance. (Command must be typed.)
The output of BINS is an n x 1 “bins” matrix and a 2-element

“excess” vector:

Level 2: [l ny 1 Lng 1 ... [ny 11

Level 1: [niow Phigh 1

Example: For the CPI data entered in the previous example,

calculate the means, standard deviations, and totals of the CPI, PPI,

and UR data.

(if necessary) 3: [8.18 9.48 7.688]
MEAH % [2.2¢7 5.80 1,14]

E 48.50 47.68 35.66

10T [FHEANT ZDEV[MHART [MINE EINE

Statistics 21-9

Getting Population Statistics

If you calculate the standard deviation or covariance for your data

using SDEV or COV,it’s computed assuming the data measures

a sample of the population. If, however, the data measures the

entire population, you can use the result to calculate the population

statistics.

To calculate population standard deviation or covariance:

to calculate the mean of the data.

. to add the mean data point to YDAT.

L to calculate the population statistics.
to remove the mean data point from YDAT (the

o Press ()

Y- commandj.

Calculating Paired-Sample Statistics

Use commands in pages 3 and 4 of the STAT to compute

paired-sample statistics. When these pages of the STAT menu are

displayed, the status message at the top of the display indicates the

column designations for the independent (z) and dependent (y)
variables and the current statistical model.

Dependent
Independent variable Current

variable - v ¥ model

Acolil Yeool:2 Modl:LIM

4:
3:
o
1z

EARPL{HIZTR [ZCATR]ZLINE

21-10 Statistics

To calculate paired-sample statistics:

1. Enter the column number for the independent variable and press

BEOL

2. Enter the column number for the dependent variable and press

3. Press HIiilil |, then press the menu key for the desired statistical

model.

4. Use commands on page 4 of the STAT menu to calculate

paired-sample statistics—see the listing below. To calculate

predicted values, press | [F first, then us

You can choose one of four statistical models: | L (LINFIT:
linear), ik (LOGFIT: logarithmic), | E#F @ (EXPFIT:
exponential), or | EilE (PWRFIT: power). If you press
(BESTFIT), the 48 selects the model for which the correlation has
the largest absolute value—or, if any data is negative or zero, LINFIT

is selected.

You can also press

next section.

F1E to draw a scatter plot of the data—see the

The STAT Menu—Paired-Sample Statistics Commands

Key Programmable Description

Command

()(STAT) (pages 3 and 4):

mrnL XCOL Takes a column number as its argument,
and makes that column the independent

variable. (() HCGLreturns the

XCOL column number to level 1.)

YCOL Takes a column number as its argument,

and makes that column the dependent

variable. () 4 eturns the
YCOL column number to level 1.)

YLINE Returns the expression representing the

best fit line according to the current

model.

Statistics 21-11

The STAT Menu—Paired-Sample Statistics Commands

(continued)

Programmable

Command

Description

PREDE

LR

PREDX

PREDY

CORR

Cov

Using the current model, computes the

linear regression for the selected

independent and dependent variables,

and returns the intercept (level 2) and
slope (level 1). Also, stores the
intercept and slope values in XPAR.

Takes as its argument a value for the

dependent variable, and computes a

predicted value for the independent

variable. (You must execute LR some
time before PREDX.)

Takes as its argument a value for the

independent variable, and computes a

predicted value for the dependent

variable. (You must execute LR some
time before PREDY.)

Correlation (computed according to the
current model).

Sample covariance (computed according

to the current model).

Displays the menu for selecting a

model: linear, exponential, power, or

logarithmic. Selection is stored in

YPAR.

When you execute these operations, the status message (z, y, and

model) is erased. You can press (¢9)(REVIEW) to redisplay it.

Example: Using the CPI data from the previous examples in this

chapter, calculate the correlation and covariance between CPI and

PPI.

21-12 Statistics

Make sure columns 1 and 2 are the z- and y-variables.

(NXT) (if necessary) Wcolfl Ycol!Z ModlfLIN
1 =00L2 L (if necessary) 5 T B.15 9.90 768

: [2.27 5.80 1.14]
1: 5 44,564 47.868 35,680
TNT DRBLT

Calculate the correlation coefficient and covariance.

NXT) CREE 2 A.96
o l: 12, E-5

Lk|PRED:[PRECY]CORECOVW[HODL]

Example: Using the CPI data from the previous examples in this

chapter, predict the PPI value for a CPI value of 8.5. (This example

assumes you’ve already set the z column to 1, the y column to 2.)

Make sure the statistical model is linear. Then calculate the linear

regression statistics.

(ifnecessary) E= Interceli‘ -18.43
IH (if necessary) ope! 2

LF|PREDH[PRECY]CORFCOV [MODL

1: 16, 38
I3ATU[

Plotting Statistical Data

You can plot statistical data three ways:

m Scatter Plot. For two variables, their values at each data point are

depicted by a dot in the z-y plane.

m Bar Chart. For one variable, its value at each sequential data point

is shown by a vertical bar.

m Histogram. For one variable, the number of times its value falls

within certain ranges—called bins—is depicted by a vertical bar.

Statistics 21-13

The Statistics application provides commands for plotting statistical

data with relative ease. For more plotting control, the Plot application

lets you specify additional parameters for statistical plots—see

“Drawing Statistical Plots” on page 19-21.

Plotting Scatter Plots

A scatter plot shows the relationship between two variables by

plotting a point at each z-y coordinate pair. For variables that

are statistically correlated, the points should cluster along a curve

representing the statistical model.

To draw a scatter plot:

1. Enter the column number for the z-axis variable and press Hiiil

in the STAT menu.

2. Enter the column number for the y-axis variable and press Wil

in the STAT menu.

3. Press 5iiATE in the STAT menu.

4. Optional: Press FLH to draw the curve for the current

statistical model.

5. Press to return to the Statistics application.

To change the statistical model:

1. Press Hiilil in the STAT menu.

2. Press the menu key for the desired model.

Example: Using the CPI data from the previous examples in

this chapter, draw a scatter plot of PPI versus CPI, then plot the

statistical model. (This example assumes you’ve already set the z

column to 1, the y column to 2, and the model to linear.)

Plot a scatter plot of the data.

(if necessary)

AT

+

TRIl(R(TI

21-14 Statistics

Draw the best straight line for the data.

FLH

|2-EOR[CENT[COORD[LHEEL]FOM

Press («9)(MODES) to change the display mode back to

Standard.

Plotting Bar Charts

A bar chart shows the values of one variable in the order they appear

in the statistical matrix.

To draw a bar chart:

1. Enter the column number you want to plot and press {Hiiiilin

the STAT menu.

2. Press | in the STAT menu.

3. Press to return to the Statistics application.

BARPLOT plots a bar chart of the specified column in XDAT. If you

don’t specify a column, the first column in XDAT is used. Data can

be positive or negative, resulting in bars above or below the z-axis.

Example: Records from a gasoline station show the following

relationship between the monthly percentage changes in gasoline price

and amount sold over a 4-month period:

Month Price Sales

(% Change) (% Change)
1 +3.5 -1.2

2 +9.3 —-2.6

3 —6.5 +6.1

4 +2.0 -0.4

Enter the price and sales data using the MatrixWriter application,

and then plot bar charts for the percentage change in price and the

percentage change in sales.

Statistics 21-15

Start the MatrixWriter application.

@AT

[T 0T TS

Enter the price data (vertical entry order).

Bhe 35 9.3 (sPC)

6.5 2

Enter the sales data.

®) 1.2 (7)) GFD) 2.6 () GFO)
6.1 GFO) 4 () ENTER)

Enter the matrix onto the stack and start the Statistics application.

@GEED

 [2-.4 1]
INTNOSTT

Name the matrix and make it the current matrix.

HEW GAS (ENTER) IEEEE%;EE 2 -.4 1 |

Select the column for percentage change in price (the first column in

the statistical matrix).

(D)@D |

IKC01= 1 Ycol:2 I‘Indl:LIHI

21-16 Statistics

Draw the bar chart for percentage change in price.

BRHERL

|2-EDH[CEWT[CODRC[LAEEL]FCH |

Select the column for percentage change in sales (the second column in

the matrix) and draw a bar chart for it.

[2-E0H[CEMT[COORD[LAEEL] FCH

Press to return to the Statistics application.

Plotting Histograms

A histogram divides the range of values of one variable into a number

of bins and for each bin shows the number of data points for which

the variable value falls within the bin. HISTPLOT shows relative

frequency—the maximum y value is the total number of data points.

To draw a histogram:

1. Enter the column number you want to plot and press Hiiiilin

the STAT enu.

2. Press | * in the STAT menu.

3. Press to return to the Statistics application.

HISTPLOT automatically uses 13 bins. To change the number of bins,

enter the number and press in the PLOTR menu (()(PLoT)).
To use the default number of blns press 0 EES

To draw a histogram with specified bins:

1. Optional: If the statistical data isn’t named, press (¢»). &

. HEH |, enter a name, and press (ENTER).

2. Enter the column number you want to plot and press {

the STAT menu.

Statistics 21-17

3. Enter the minimum z-value to use (the lower bound of the range)
and press (ENTER).

4. Enter the width of each bin (positive real number) and press

(ENTER).
5. Enter the number of bins you want and press (ENTER).
6. Press Eit=zin the STAT menu.
7. Press (¢) (or (|)(DROP)) to drop the out-of-range data.
8. ZTEto store the frequency data as the current statistical

 FFELto plot the frequency data.

10. Press to return to the Statistics application.

Notice that the original statistical matrix is replaced in these steps.

You can review the frequency data before you store and plot it. If it’s

not what you want, you can start the steps over. The y-axis of the

“histogram” plotted by | is scaled to the maximum frequency—

not to the number of original data points.

Summary of Plotting Commands

Use commands in page 3 of the STAT menu to plot single- and

paired-sample statistics. When this page of the STAT menu is

displayed, the status message at the top of the display indicates the

column designations for the independent (z) and dependent (y)
variables and the current model.

21-18 Statistics

The STAT Menu—Plotting Commands

BARPLOT

HISTPLOT

SCATRPLOT

Key Programmable Description

Command

(@GD (page 3):
: P XCOL Takes a column number as its

argument, and designates that column

as the independent variable.

YCOL Takes a column number as its

argument, and designates that column

as the dependent variable.

Draws a bar chart using the z-column.

Autoscaled.

Draws a frequency histogram using the

z-column. Autoscaled.

Plots the (z,y) points using the
designated z- and y-columns, and

optionally draws the best line using the

current model. Autoscaled.

When you execute some of these operations, the status message (z, v,

and model) is erased. You can press (|@)(REVIEW) to review the status
information—hold down to prolong the status display.

Calculating Summation Statistics

Use the commands in page 5 of the STAT menu to calculate

summation

STAT menu) to designate z and y

statistics. Use !

 L and %L (in page 3 of the

Statistics 21-19

Summation Statistics Commands

Key Programmable Description

Command

(RETAT) (page 5):
EE ¥X Returns the sum of the entries in the z

(independent) column of ¥DAT.

B XY Returns the sum of the entries in the y

(dependent) column of XDAT.

NXA2 Returns the sum of the squares of the

z-column entries of XDAT.

YYN2 Returns the sum of the squares of the

y-column entries of XDAT.

EaEy YXxY Returns the sum of the products of

corresponding z and y columns in

YDAT.

HE NX Returns the number of rows in YDAT'.

Calculating Test Statistics

Use the commands in the PROB (probability) menu (MTH) FEOE)
to calculate combinations, permutations, factorials, random numbers,

and upper-tail probabilities of various test statistics.

Test statistics are calculated using values you enter on the stack—they

do not use the statistical data stored in YDAT.

Only upper-tail probabilities are covered here—for the other topics,

see “Factorial, Probability, and Random Numbers” on page 9-13.

21-20 Statistics

Test Statistics Commands

Programmable

Command

Description

(page 2):

HTEFE

HTEH

HTET

UTPC

UTPF

UTPN

UTPT

Upper-tail chi-square distribution.

Takes the degrees of freedom from level

2 and a real number (z) from level 1,
and returns the probability that a y?

random variable is greater than z.

Upper-tail f distribution. Takes the

numerator degrees of freedom from level

3, the denominator degrees of freedom

from level 2, and a real number (z)
from level 1, and returns the probability

that a Snedecor’s F random variable is

greater than z.

Upper-tail normal distribution. Takes

the mean from level 3, the variance from

level 2, and a real number (z) from level

1, and returns the probability that a

normal random variable is greater than

z for a normal distribution.

Upper-tail t distribution. Takes the

degrees of freedom from level 2 and a

real number (z) from level 1, and
returns the probability that the

Student’s t random variable is greater

than z.
Note that, when used as an argument for these commands, the number

of degrees of freedom must be between 0 and 499. Also, in the

calculations, the degrees of freedom are rounded to the nearest integer.

Example: The scores on a final exam approximate a normal curve

with a mean of 71 and standard deviation of 11. What percentage of

the students scored between 70 and 897

Statistics 21-21

First, calculate the probability that a student chosen at random

obtained a score greater than 70. (Square the standard deviation to
get the variance.)

FEOE 1: . 236217586697
71 (ENTER) [UTPC[uTRF[UTPNTUTRT]||
11 (@@
70 (LR

Now, do the same calculation for a score of 89.

()ARG) (¢) ot .23621 7286637
89 LITFEH 1: . HoBBB1 752476

(UTPCJUTPF[UTPHUTRT]|

Subtract the two values. About 49% of the students scored between 70

and 89.

© 1: . 482332834221
[uTPeTuTPFJuUTPNTUTPT]1|

21-22 Statistics

Understanding the Statistics Parameter
Variable
The HP 48 uses a built-in statistics parameter variable named

YPAR to store the statistics parameters. You normally control the

parameters using the XCOL, YCOL, LR, and MODL commands

in the STAT menu. Because XPAR is a variable, you can have a

different X'PAR in every directory. YPAR contains a list with the

following objects:

£ independent-col dependent-col intercept slope model

The default contents are £ 1 2 & & LIMFIT .

 Statistics 21-23

22
Algebra

This chapter shows you how to manipulate a

/% symbolic expression or equation much as you would

on a piece of paper. You can solve symbolically for

a variable, and you can simplify and rearrange an

expression or equation.

In this chapter, the term algebraic is used to mean

an algebraic object—a symbolic expression or

equation. The terms ezpression and equation are used only where

the distinction between these two forms of an algebraic object is

important.

Finding Symbolic Solutions

A common goal of algebraic manipulation of an expression or equation

is to “solve for” a variable symbolically—that is, to express one

variable in terms of the other variables and numbers in the expression

or equation. You can solve symbolically using these commands:

m ISOL. Solves for a variable that appears only once in any type of

expression or equation.

m QUAD. Solves for a variable that appears in a quadratic expression

or equation.

Algebra 22-1

Comparison of Commands for Symbolic Solutions

ISOL Command QUAD Command

Variable appears only once. Variable can appear several

times—no rearranging required.

Variable can be any order.

Variable must not be higher than

second order for an exact

solution.

Variable can be the argument of a

nonlinear function (such as SIN).

Isolating a Single Variable

To solve for a variable that appears only once:

1. Enter the algebraic on the stack.

2. Enter the name of the variable (with ' delimiters).

3. Press ()(ALGEERA)
The ISOL command isolates a single occurrence of a variable in an

algebraic—it returns an equation that represents a symbolic solution

of the algebraic:

"variable=expression'

If the algebraic is an expression (it has no =), the expression is treated

as an equation of the form 'expression=&".

The variable to be isolated can be the argument of a function only

if the HP 48 has an inverse for that function. Functions for which

the HP 48 has inverses are called analytic functions in this manual.

For example, you can isolate X in an algebraic containing THH{Hz

or LMbecause TAN and LN have inverses (ATAN and EXP).
However, you cannot isolate X in an algebraic containing IF 3.

The operations index in appendix G identifies the HP 48 analytic

functions.

If there is more than one solution for the algebraic, ISOL includes an

“s” (sign) variable to give a general solution. See “Getting General

and Principal Solutions” on page 22-5.

Example: Use ISOL to isolate A in the equation:

/X + B
T =

X+ A

22-2 Algebra

Key in the equation.

()EWATOM) T @)
@XB(E H+B

XA T= |5+

[UTPCJUTPF[UTPH[UTPT][|

Enter the equation. Then enter the name of the variable and isolate it.

1: 'A=(R+B)-SOCTI-K'
an (TTT0T

(S(@LcERRR) TE0L

Example: Enter the expression ' ¥ E+ :

then press @ toisolate X. You get 'H={loH-BrsE

Solving Quadratic Equations

To solve for a variable in a quadratic:

1. Enter the quadratic equation or expression on the stack.

2. Enter the name of the Varlable (with ' delimiters).

3. Press ($)(ALGEBRA)
The QUAD command solves any algebraic that is up to second order

in the unknown variable. The command is named for its ability to

solve second-order (quadratic) algebraics, but you can also use QUAD

to solve first-order (linear) algebraics. It returns an equation of the
form

'variable=ezxpression’

If you supply an equation that is not first or second order in the

variable to be solved for, QUAD transforms the equation into a second

order polynomial approzimation and then solves that quadratic.

If the algebraic contains other variables, they must not exist in the

current directory if you want those variables to be included in the

solution as formal (symbolic) variables. If they exist in the current

directory, QUAD evaluates them.

If the algebraic is an expression, the expression is treated as an

equation of the form 'ezpression=&".

Algebra 22-3

If there is more than one solution for the algebraic, QUAD includes
@€s” (sign) and “n” (integer) variables to give a general solution. See
“Getting General and Principal Solutions” on page 22-5.

Example: Quadratic. Solve for z in the expression z2 — z — 6.

(This example assumes that variable X does not exist in the current
directory—you can press (") X («9)(PURGE).)

Enter the expression and the name of the variable.

DX20X @6@R 2: KEHE
() X (ETER) Iflifll
Solve for the variable.

()(ALGEERR) ‘GIUAD 1: 'H=(145155).2"
LT=RTVTTT

The solution contains the variable s, which represents an arbitrary +

or — sign. Copy the expression. Then evaluate it for s/ = 1. (To key

in s1, press (o) (&) S1.)

ENTER 1: =31

1 (sl [TTTTTR
EVAL

Now evaluate the expression for s1 = —1

1 (sl 21 =31

-SWAP]_: 1=—EI

LT=R

I

TVTRTT

Example: Quadratic with Other Variables. Solve for z in the

equation 222 — 42 4+ ¢ = 0.

(This example assumes that variables X and C do not exist in

the current directory—you can press (q)({3) X C

(@EURE))
Enter the equation and the variable name X.

D@X2 22T,
é) 0 (TNTR

22-4 Algebra

Solve for the variable in terms of C.

(€ (ALGEBRA) HiLIAiL L 'H=Cheslal (16-840))
o 1

(COLCT]ERP1200[RUAD[ZHOW[TAYLE]

Copy the expression. Calculate the roots for ¢ = 3. The roots are

14 0.70714.

22 1H=C1, 707106781 18..
1831-21% i (1,-.787186781188)

[COLCT]EXPA1200[UAD[ZHOK[TRYLE]
1 (*/- Dsl STO

(«)(SWAP) (EVAL

Example: Linear Equation. Use QUAD to solve for z (which
appears twice) in the equation 3(z + 2) = 5(z — 6).

Key in the equation.

O3¥@EOXD2 1: '"Fx(R+2)=5%(H¥-6)'
@QEX@OXE)6 (ROITSTT

Solve for z.

OX 1: '%=18"
(©)(ALGEERA) [EOLCT]E4PA |1501 |:UAD |SHOV)[TRVLE)

Getting General and Principal Solutions

HP 48 functions always return one result—the principal solution. For

example, /4 always returns +2, and ASIN(.5) always returns 30

degrees or 0.524 radians.

However, when you solve an algebraic for a variable, there may be

more than one solution—and you may want to know what they

are. So the ISOL and QUAD commands normally return a general

solution. A general solution represents the multiple solutions by

including special variables that can take on multiple values:

Algebra 22-5

m s represents an arbitrary + or — sign (+1 or —1). Additional

arbitrary signs in the result are indicated by s2, s3,

m nl represents an arbitrary integer—0, £1, £2, Additional

arbitrary integers are represented by n2, n3,

To specify general or principal solutions:

m To get general solutions, press 1 (»)(MODES)
m To get principal solutions, press 1 ()(MODES)

System flag —1 controls the type of solution returned by ISOL and

QUAD. When you specify principal solutions, arbitrary signs are

always chosen to be 41 and arbitrary integers are always chosen to be

0.

Example: Use ISOL to isolate z in the equation y = sinz2. Find
both the principal and general solutions.

First, enter the equation. Then copy it. Set Radians mode, and set

flag —1. Then, enter the variable to be isolated and get the principal
solution.

OY®BENMX)2 1: H=[ASINGY) !
TRATTTST

(«®)(RAD) (if necessary)

I (%) (@)(MODES) (8XT)
O X @@LGEER) 1}
Clear flag —1. Then swap the copy of the original equation to level

1, enter the variable name, and get the general solution. The result

contains the arbitrary sign s/ and the arbitrary integer nf.

1 ¢/ (2)(MODES) (NXT) 13 H=s1*#l(RSIN(Y)*(-]

)nl+w*nl)!
%;%e [TIT[TT

Press (|9)(RAD) to return to Degrees mode.

22-6 Algebra

Showing Hidden Variables

Sometimes you may want to solve for a variable that’s stored in

another variable. To do this, you have to convert the algebraic so the

hidden variable is visible.

Sometimes you may want to speed evaluation by converting an

algebraic so all variables except certain ones are evaluated.

To convert an algebraic using partial evaluation:

m To show one hidden variable, enter the algebraic on the stack, enter

the variable name (with * delimiters), and press («q)(ALGEBRA)

m To evaluate all variables except chosen ones, enter the algebraic on

the stack, enter a list (with £ * delimiters) containing the variable
names to remain as names, and press (&9)(ALGEBRA) SHIIk .

Example: You want to solve 'fF#E ' for X, where A contains 'H+1*.

Enter the expression '#H#i' and variable ' on the stack and press

I . You get 'is+13%E"' which you can solve for X.

, Where

Example: You want to draw a truth plot of * -

C contains 7 and D contains 5. To save time, evaluate all Varlables

except X and Y. Enter the expression '#-‘+zZ#i»2%[*' and the list

b . You get 'H-w+idE15E

Ly oL
£ ¥ % ¥ on the stack and press

which you can plot.

Algebra 22-7

Summary of Commands for Symbolic Solutions

The ALGEBRA Menu—Symbolic Solution Operations

Keys Programmable Description

Command

(«2)(ALGEBRA):

I ISOL For an algebraic in level 2, isolates the
first occurrence of the variable in

level 1.

£ QUAD Solves the quadratic in level 2 for the

specified variable in level 1.

SHOW Shows the algebraic in level 2 with all

implicit references to the variable in

level 1 made explicit. For a list in level

1, evaluates all variables in the algebraic

in level 2 that are not in the list.

Rearranging Terms

You can sometimes simplify algebraics by expanding subexpressions or

collecting like terms. For example, if a variable occurs more than once

in an algebraic, you may be able to simplify it so the variable occurs

only once—letting you use ISOL to solve for the variable.

A subexpression consists of a function and its arguments. The

function that defines a subexpression is called the top-level function

for that subexpression—it’s the function that’s executed last. For

example, in the expression ‘Fi+E#i-[x' the top level function for the

subexpression 'E#[:' is %, the top-level function for 'E#[.<[' is »

and the top level function for 'H+E#C-[3' is +.

22-8 Algebra

Collecting Like Terms

To collect like terms in an algebraic:

m Enter the algebraic and press («9)(ALGEBRA)

COLCT simplifies an algebraic by doing the following:

m Evaluates numerical subexpressions. For example, * 1+Z+1.0

DLOT returns 4

m Collects numerical terms. For example, ' i+¥+3" returns

TEEE

m Orders factors (arguments of *) and combines like factors. For
example, ¥ - COLET returns

m Orders summands (arguments of + or —) and combines like terms
differing only in a coefficient. For example, *sH+H+¥+3%x: D0LOT

returns ' SEE+Y

COLCT operates separately on the two sides of an equation, so like

terms on the opposite sides of the equation are not combined.

Expanding Products and Powers

To expand products and powers in an algebraic:

m Enter the algebraic and press (&9)(ALGEBRA) E

EXPAN rewrites an algebraic by doing the following:

m Distributes multiplication and division over addition. For example,

THECBHDIY EHER returns THEBHAECT

m Expands powers over sums. For example, 'A™(E+L2 " EHFH

returns ‘HETEEACOT

n Expands positive power integers. For example
e 1hge4 ' and ' x' f+l l i Ei

. returns
EXPAN doesn’t carry out all possible expansions of an algebraic

in a single execution. Instead, EXPAN works down through the

subexpression hierarchy, stopping in each branch of the hierarchy

when it finds a subexpression that it can expand. It first examines the

top-level subexpression (the top level subexpression is the algebraic

Algebra 22-9

itself). If it’s suitable for expansion, EXPAN expands it and stops—

otherwise, EXPAN examines all of the second-level subexpressions.

This process continues until an expansion occurs at some level—no

lower levels are checked.

Example: Expand the expression ‘H™iE# (0™

Enter the expression.

OAN®OBX¥®@O) 1: 'R(B*(C2+0)) C 9 D [COLCT]ERPH1500[RURDSHOW|TAYVLE]

Expand the expression. The first expansion occurs at the second

level—the subexpression E#{i"Z+[is expanded.

(<)(ALGEBRA) EHFH 1: 'A™(BCZ+B=0)"
(TR=RTVTTR

Expand the expression again. The top-level function (the left =) is

expanded.

1: 'A™(B+["2)*R™(B+0)"
(RITTT

Expand the expression again. The first expansion occurs at the third

level—the subexpression &is expanded.

1: :'IIfl“EB*(E*E) J¥R™(B=D

[TTTT
If you were to press EHFH | no further expansion would occur.

Collect like terms.

CEDT 1: 'R(BEC2+B0)
[COLCT]EXPA1200GUAD[SHOM[THYLE]

Example: The EXCO program on page 31-21 completely expands

and collects an algebraic.

22-10 Algebra

Summary of Commands for Collection and Expansion

The ALGEBRA Menu—Collection and Expansion Operations

Keys Programmable Description

Command

() (ALGEBRA):

DT COLCT Simplifies the algebraic in level 1 by

collecting like terms.

ExEH EXPAN Rewrites the algebraic in level 1 by

expanding subexpressions that contain

products and powers.

Using the Rules Transformations

You can rearrange an algebraic in specific step-by-step stages, letting

you get the result in the form you want. The Rules transformations

are algebraic-rearrangement operations that are narrower in their

scope than EXPAN and COLCT. The Rules transformations let you

direct the path of an algebraic rearrangement.

To rearrange an algebraic in specific steps:

1. Put the algebraic in the EquationWriter application:

m To enter a new algebraic, press (|9)(EQUATION) and key it in.

m To use an algebraic in level 1, press (V).

m To use an algebraic stored in a variable, enter the name (with

delimiters) and press (2)(¥).
2. Get the Selection environment:

m From entry mode, press («).

m From scrolling mode, press (|9)(GRAPH) (€.

3. Press (A) (V) («) (®) to move the selection cursor to the top-level

function for the subexpression you want to rearrange. (See below.)

4. Optional: Press ! B at any time to show the associated

subexpression—a highlight turns on or off.

5. Press BlILE% to get the RULES menu. (You can press (=) to return
to the Selection menu.)

Algebra 22-11

6. Press the menu key for the transformation you want. (Or just move

the cursor to not do a transformation.)
7. Repeat step 6 for each transformation you want. (If you move the

cursor, you have to go back to step 3.)

8. Press to save the transformed algebraic (or press to
not save it).

In this section,

is expanded to

specify a name

the definition of subezpression in the previous section

include individual objects. For example, you can

as the subexpression.

After you activate the Selection environment, you move the

selection cursor—it specifies both an object in the algebraic and its

corresponding subexpression.

Operations in the Selection Environment

Key Description

EULES

Selects a menu of relevant rearrangement

transformations for the specified subexpression.

Returns the specified subexpression to the command

line for editing. (See “Command-Line Editing” on page

16-17.)

Highlights the specified subexpression.

Returns the specified subexpression to level 1 of the

stack.

Replaces the specified subexpression with the algebraic

in level 1 of the stack. (See “Replacing a Subexpression

with an Algebraic Object” on page 16-22.)

Exits the Selection environment, restoring the entry

mode cursor at the end of the equation.

Moves the selection cursor to the next object in the

indicated direction. When prefixed with (), moves

the selection cursor to the farthest object in the

indicated direction.

Highlights the specified subexpression (just like

EHFE), but is also active when the RULES menu is

displayed.

22-12 Algebra

The RULES menu may include transformations that aren’t applicable

to the specified subexpression—such menu keys produce a beep. After

you execute a transformation, the selection cursor highlights the new

top level object. The RULES menu is removed whenever you press

any of the following keys: («) () (&) (¥), (=) (to return to the Selection

menu), (ERTER), or (AT,
The tables on the next several pages describe the Rules

transformations and show examples. However, the tables do not

include all patterns for which transformations are applicable.

Note The following tables include examples of

i transformations in the form
»

% before — after

The before and after algebraics are shown in their

command-line form—even though you execute Rules

transformations in the Equation Writer environment.

If you try an example, press (ENTER]) to see the new

expression in command-line form.

The RULES Menu—Universal Transformations

Key Description

DHED Double-negate.
I::i — _......;Ziii

BTHNY Double-invert.

B o— T CTMYORS S
ol Multiply by 1.

H — Al
A+Es1 — AR

Raise to the power 1.

H— AL

e Divide by 1.

A+EE1 — A+E

Algebra 22-13

The RULES Menu—Universal Transformations (continued)

Description

Add 1 and subtract 1.

A— FA+i=1

copbny Collect. Executes a limited form of the COLCT

command in the ALGEBRA menu. Works only on the

subexpression defined by the specified object and

leaves the coefficients of collected terms as sums or

differences.

The RULES Menu—Moving Terms

Key Description

=1 Move-term-left. Moves the nearest neighbor to the

right of the specified function over the nearest neighbor

to the left of the function.

SDD — FECHCBD
k[— PRDR

+0aELED — FED(RE]

#[0 — FAERESC=0

T Move-term-right. Moves the nearest neighbor to the
left of the specified function over the nearest neighbor

to the right of the function.
FA+BEECDEr — A=-BRCD+ED

BT — F=THY OB

1 and 1% are used to move a term over its “nearest

neighbor” to the left or right. A term is an argument of 4+ or — (a

summand), an argument of % or / (a factor), or an argument of =.
Also, these two operations ignore parentheses—you can make them

respect parentheses by executing #1 to make the parenthetical

subexpression a term.

22-14 Algebra

The RULES Menu—Building and Moving Parentheses

Key Description

Parenthesize-neighbors. Parenthesizes the nearest

neighbors of 4+ or *. Has no effect if the specified

function is the first (or only) function in the
expression, because these parentheses are already

present, but hidden.

F+BEC+D — AR CB+DD

Expand-subexpression-left. Expands the subexpression

associated with the specified function to include the

next term to the left. Note that a matched pair of

parentheses may disappear.

FB+DD+F — AOBCeDo+E

 Expand-subexpression-right. Expands the

subexpression associated with the specified function to

include the next term to the right.

ACRRC 4D+E — ARDD+E
The RULES Menu—Commuting, Associating, and

Distributing

Key Description
e Commute. Commutes the arguments of the specified

function.

Algebra 22-15

The RULES Menu—Commuting, Associating, and

Distributing (continued)

Key Description

1 Dlstrlbuteleft.

Distribute-rlght
S;"i‘i s —_ !__l_l__--, R

LH¢H+E'—>|r1 II.Z'I-LII Eid

&H; i Merge-factors-left. Merges arguments of 4+, —, *, and

/, where the arguments have a common factor or a
common single-argument function EXP, ALOG, LN, or

LOG. For common factors, the + indicates that the

left-hand factors are common. Also merges sums where

only one argument is a product.

CAFEDCAFCY — F% (B

H“"I"'I""E — H#l_s

Merge-factors-right. Merges arguments of 4+, —, *, and

/, where the arguments have a common factor. The =
indicates that the right-hand factors are common. Also

merges sums where only one argument is a product.

CRECIE RS0 — (AHBIED

AEF15E — (A+10%E

Double-negate and distribute. Equivalent to = |

followed by & on the resulting inner negatlon

A%E — =¢-A-ED

 Doubleinvert and dlstrlbuteEqulvalent to LIHN

followed by #i¢: on the resulting inner inversion.

Figlh — THYC IH"' Fasgn

EUFCRY — THYCERPR

22-16 Algebra

The RULES Menu—Rearranging Exponentials

Key Description

L% Replace log-of-power Wlthproductof-log.
QN

L Replace productof-log with log-of-power.

(AMEE —

Replace power-product Wlth power-of-power.
E-«n_éu'

- ,...x
..... s IR'I -

Bl Replace powerof-power with power-product.
-
i

 *TREG Replace exponential with trigonometric functions.

(This exampleassumesRadlans mode)
T
Bk

The RULES Menu—Adding Fractions

Key Description

Add fractions. Combines terms over a common

denominator. (If the denominator is already common

between two fractions, use |

)

The RULES Menu—Expanding Trigonometric Functions

Key Description

shEE Expand-trigonometric-definition. Replaces

trigonometric, hyperbolic, inverse trigonometric, and

inverse hyperbolic functions with their definitions in

terms of EXP and LN. (These examples assume

Radlans mode.)

Elhs Expand as product-of-trigonometric-functions.

Expands trigonometric functions of sums and

differences.

SIHOH+YY —

rHECOEREEIHOYS

Algebra 22-17

The RULES Menu—Automatic Multiple Execution

Key Description

e Multiple-distribute-right.

Multiple-distribute-left.

CRHRDED — AElrBsDes

H= Multiple-associate-right.

)=# Multiple-associate-left.

FeoB+dC+Dn s — A+BrCeD

Multiple-merge-factors-right.

A#B+CsR+DsE — CR+CHD xR

Multiple-merge-factors-left.

Multiple-move-term-right.

FER+C+D=E — B+0+D=E~H

+1 | Multiple-move-term-left.

cl
ci

gc
)d

ig
e

w0 Multiple-expand-subexpression right.

A+ CERC+DHE — A+ CB+CHDHE D
 U Multiple-expand-subexpression-left.

Prefixing the previous transformation keys with () causes that

transformation to execute repeatedly until no further change occurs.

Example: Solve for the variable z in the equation

ar =br+c

Do this by rearranging the equation so z appears only once, then

using ISOL.

Select the EquationWriter application and key in the expression.

()(EQUATIO)
AR X @O
BX C A-#=Bx+C0O

(oL=RTROTR

22-18 Algebra

Activate the Selection environment. Then move the selection cursor to

the = sign and get the RULES menu.

@
(«) (5 times)

Flles A-#EB H+C

|NI[TT=CEIIG
Move the term E=i to the left side of the = sign.

wf

 A-raBH=C

TNTTNTT
Merge the two terms on the left side of the = sign.

(A-B)@{=C

Now that z occurs only once in the equation, put the equation on the

stack and isolate z.

1: '"W=C-(A-B)"
(«2) (ALGEBRA) (TTTTNT

()X iszdb

Example: Solve for z in the equation

3(x+2) =5(x — 6)

Select the EquationWriter application and key in the equation.

(@EQAToN
IOXD20
B
SROXA®)

3(K+&)=5-(K-6)0

TR=TTTVTT

Algebra 22-19

Activate the Selection environment and move the selection cursor to

the = sign on the left side of the equation.

=
@®®)

H+E)=5-(H-6)

TR I AT

Highlight the subexpression defined by =. This shows you what part of

the equation will be affected by the rearrangement.

 3HE3E=5(H-6)

 TNTTTT
Move the selection cursor to the = on the right side of the equation

and distribute again.

() (6 times)
RULEE [Dis

3H+IE=0nEob

TITTTT
Move the cursor to the = sign and then move the term = =to the left

side of the equation.

@] (4 tlmes)
ELILES

3H+3-2@H=-(536)

22-20 Algebra

Now that both terms in X are on the same side of the equation,

return the equation to the stack and collect like terms.

1 '6—E*H-—BB'

Now solve for X.

OX 1 1: e8!
[COLCT]EXPA1201[GUADZHOW[TAYLE]

Example: Solve for n in the equation

n—>5 1 n—3

6n—6 9 4n—4

Key in the equation.

()(EQUATION)

(%NE)@l ?3(59]% 8" N51 N-3

@WND3®INDH4
EN-6 9 +H-40

[EOLCT]EXPA

[

1Z0L

|

GUAD

[

HOWTHYLE]

Activate the Selection environment. Move the cursor to the — sign

between the two right-hand terms.

%(ired)as require N-5__lm N-3
G-I8Hq

RULEZ] EDIT EXPEUE REPL

Move the rightmost term to the left side of the equation.

 [N-SJH(N-3 _
BN-6" 4H-49

IITNT

Algebra 22-21

Move the cursor to the — sign in the denominator 4 =H-4 and merge

factors left.

 (h-5), (H-3) 1
66 HN-11 3

Move the cursor to the — sign in the denominator of the first term on

the left side and merge factors left.

WWW®
RULES #H

Move the cursor to the divide bar of that

(50, (N-3) _1
GaCN-1) 4(N-1) 3

term and associate left.

@

[H-5)

[N-3)
4.(N-1) 9

INTNT

Move the cursor to the divide bar of the second term and associate

left.

>
RULESR “H

Move the cursor to the -+ sign between the two terms and merge

factors right.

22-22 Algebra

(H-5) , (H-3)
B 4)1

- 9

Move the cursor to the = sign and move term right.

e (N-5) (N30gy u[l]b 4 9

Put the equation on the stack. Set the display mode to 1 Fix (to see

the result of the subsequent [{il.iT operation more easily). Expand
terms and then collect like terms.

 1: é—%.fi+@.4*fl=—@.1+
¥ 1

[TTTT
 (QMODES) | FI¥

(S(@LcEsRA)
EakR BOLET

Solve for N.

(O N GitEn

1: 'N=4, 8"
[COLCTERP1200[URD[SHOW[THYLE

to return to Standard display mode.Press (&)(MODES)

Making User-Defined Transformations

If the built-in set of Rules transformations do not rearrange

an algebraic in the form you desire, you can make your own

transformations. By making a “custom” transformation, you can

replace occurrences of a pattern with a new pattern. The pattern

can be specific—or it can contain “wildcards” that match any

subexpression and that you can reinsert in the replacement. And

you’re informed whether or not a replacement was made.

You can also make conditional transformations—the transformation

occurs or not depending on a condition you specify.

To make a custom transformation on an algebraic:

1. Enter the algebraic on the stack.

2. Enter a list (with £ ¥ delimiters) that specifies the transformation:

Algebra 22-23

m To make an unconditional transformation, include the search and

replacement patterns (with ' delimiters).

m To make a conditional transformation, include the search and

replacement patterns and the conditional expression (with *

delimiters).

3. Press (&)(ALGEBRA) (XT)
The list specifying the transformation has one of these forms:

‘search' ‘replace’

i ‘tsearch' ‘replace’ ‘conditional'

The TMATCH and |MATCH commands search for the specified

pattern and replace all occurrences of that pattern with the

replacement pattern. For a conditional transformation, the

replacement occurs only if the conditional expression evaluates to a

nonzero value (true).

If a replacement is made, the new expression is returned to level 2—

and 1 (true) is returned to level 1. If a replacement is not made, the

original expression is returned to level 2—and 0 (false) is returned to
level 1.

TMATCH starts its search at the lowest level subexpression and works

up—this works well for simplification. |MATCH starts with the

complete algebraic and works down—this works well for expansion.

Replacement stops at the end of the first level in which a replacement

occurs. You can repeat the transformation to change other levels.

For generalized transformations, the search pattern can contain

“wildcard” names that match any subexpressions. When the

replacement pattern is inserted, each wildcard name is replaced by the

matching subexpression from the search pattern. A wildcard name

consists of an & character ((@) (&) (ENTER)) and a valid variable name,
such as %7,

Example: An extension of the half-angle formula for sine is

sin(2z) = 2sin(z) cos(z)

There is no Rules transformation for this formula, so create a

user-defined transformation list for this transformation. Then use it to

transform the expression 'SIMGZ®CH+1 0",

22-24 Algebra

Create the transformation list. (To key in #, press (@) (¢9)(ENTER).)

OOEN) 2 6 &W)) 13 { 'SINCZ=RID ' '2#2 oW v SINCRM)2SR

Store the list in variable HALF. Then enter the expression to

transform.

() HALF l: 'SINCE*(H+10)!
OEM2XEOXM!? [T]Fi [=0 |ENG|2Hs[EEEP]

Recall the transformation list from the VAR menu, then use |MATCH

to transform the expression. The value in level 1 shows a replacement

occurred.

HALF __ 2t 125SINC+1D5C0S(Ke,
-

Drop level 1 to see the transformed expression.

® 1: ;?*SINEHHJ*EDS(HH

TTSTERATTTlel

As an alternative, you can include the list and the |[MATCH

command in a program—then you can make the transformation in one

step.

Using the | (Where) Function

The | function ((«<9)(ALGEBRA) I)—read as “where”
or “evaluated at”—binds numeric values to variables that occur in

a partially evaluated algebraic. It provides a way to do stepwise

evaluation of integrals and user-defined functions—it provides

substitution information about names, even if the names no longer

exist, as can occur with local variables.

You can also use | to evaluate an algebraic for specific variable values.

Algebra 22-25

.

To evaluate an algebraic for specific variable values:

1. Enter the algebraic on the stack.

2. Enter a list (with £ * delimiters) that contains each variable name
followed by the value to substitute. (See below.)

3. Press (&) (ALGEBRA)
The list of names and values should have the form

namey €rPry ... NAMep €ITPTy

where ezpr can be a number or a symbolic expression. If a variable

named in the list currently exists, its contents are not changed by |

(where).

Example: The evaluation of an integral returns a symbolic result of

the form

fexpri fvar=upper-limit i~expri L var=lower-limit

as described in the next chapter, “Calculus.” Here ezpr is the

integrated expression, still in symbolic form—and wvar is the variable

of integration. Press to substitute the limits of integration.

Example: Consider the user-defined function DRV created by

entering 'R #~&3 ' and pressing (&q)(DEF). Enter
"LREVOZ2 ' and press to return the partially evaluated result

 b

SRRIRPRyt

X is a local variable and exists only while the user-defined function

DRYVis being executed—so the | function supplies substitution

information for the terminated local variable. Press again to

get the final answer 4.

Example: Evaluate A + B, where A = C + D and B = 7. Enter

"A+E' then enter £ H '+l BEF . Press|to get the

expression ‘'iZ+[+F !

22-26 Algebra

23
Calculus

You can use the HP 48 calculus commands

to differentiate expressions, calculate series

summations, derive Taylor’s polynomials, and

perform symbolic and numeric integration.

Differentiating Expressions

You can differentiate a symbolic expression either one step at a time,

80 you can see the substitutions—or completely in one step, so you can

go right to the final result. If your expression contains only analytic

functions (those labeled with “A” in appendix G), you get an explicit

derivative.

Differentiating Step-by-Step

To differentiate an expression step-by-step:

1. Enter a symbolic expression (with * delimiters) for the § function

with the expression to differentiate as the argument.

2. To perform each step, press (EVAL).

When you use J in algebraic syntax, it differentiates the expression

step-by-step. In algebraic syntax, § has the command-line form

favarierpression

where var is the variable of differentiation and ezpression is the

expression you’re differentiating. You can enter the symbolic

expression in the EquationWriter application—see under “Entering

Equations” on page 16-8.

Calculus 23-1

Example: Calculate the derivative of sin z using a symbolic
expression.

(This example assumes that variable X does not exist in the current

directory—you can press (") X (&9)(PURGE).)

Select Radians mode, and key in the derivative of the expression, using

the EquationWriter application.

()(WO5ES) (7XT) (55T
FAD (i necessary)

()EQUATION)
@@ X &) GX

oEH[SIT‘I(HD

Put the expression on the stack, and evaluate the two steps to get the
final result.

1: 'COSCK) !
(EVAL) ITTDPP

Example: Calculate step-by-step the expression

d 2e tan(z® + 1)

(This example assumes that variable X does not exist in the current
directory—you can press (") X (&9)(PURGE).)

Set the angle mode to Radians. Select the EquationWriter application

and key in the derivative.

(®9)(RAD) (if necessary)

(<)(EQUATION)
@@ X)
@X0723) (@) 1

Evaluate the expression.

12 'CI+TANCR™Z+107E) %5
plet2+l)!

DEGRlGRADEVEFu2Fdd

23-2 Calculus

The result still contains a derivative, illustrating the chain rule of

differentiation:

d 9 d
—t 1 — 2 . 2. an(z? + 1) 7 tan(z” + 1) x e (z°+1)

d

(z2+1)

= (1 +tan?®(z? + 1)) x 0%(:52 +1)

The derivative of the tangent function has already been evaluated.

Evaluate the next step, the derivative of z? + 1.

1: QE%:E?I}I(H“EHJ"EJ*E

IENEONAT o3

The operation evaluates the derivative of the sum

d d , d
il 1) = — =
dr(x +1) d:vx +dx1

The derivative of 1 is 0, so the term disappears. Evaluate the next

step, the derivative of z2.

1z 'C1+TAMCA™24120%(
anl)#2#R" (2-11] "
ITTe

The operation reflects the chain rule:

d 2 __ d 2
%75 —%(z) xE(z)

The derivative of 2 has been evaluated. Evaluate the final step.

1: éi}}l{;THN(H"EflL

ITTRPe

Differentiating Completely

To differentiate an expression completely in one step:

1. Enter the expression you want to differentiate (with * delimiters).

2. Enter the variable of differentiation (with ' delimiters).

3. Press (=)(3)

Calculus 23-3

Example: Calculate in one step the expression

d
— tan(z? 1. an(z” + 1)

(This example assumes that variable X does not exist in the current
directory—you can press () X («q)(PURGE).)

Enter the expression. Enter the variable of differentiation.

O @AN) X 07) 2 (1) 1 (ENTER) % 'THN(H"E+}§:

O X EnTeR))mmmmmml
Differentiate the expression.

=@ 1: é(}}lfiTHN(H*&I)"‘E)*E
* 1

DEGRnbGRAD V2 RddRdd

Differentiating User-Defined Functions

You can differentiate user-defined functions. See “Differentiating a

User-Defined Function” on page 10-3.

Creating User-Defined Derivatives

If you execute 0 for a function that has no built-in derivative, 0

returns a new function whose name is der followed by the original

function name. The new function has arguments that are the

arguments of the original function, plus the arguments’ derivatives.

(You can differentiate further by creating a user-defined function to
represent the new derivative function.)

If you execute 8 for a formal user function (a name followed by
arguments in parentheses, for which no user-defined function exists

in user memory), d returns a formal derivative whose name is der

followed by the original user function name, plus the arguments and

their derivatives.

Example: The HP 48 definition of % does not include a derivative. If

you enter '&Z{H{Hy¥11' and press (EVAL), you get

Pdernim Ty afRya3 !

23-4 Calculus

Each argument of the % function results in two arguments for the
der% function—¥ results in ¥ and #Z::3, and ¥ results in % and

S0

To define the derivative function for %, you can enter
i lj‘.:..‘r_ '_ e sidn o s |js=‘ ::l o !:: ::-::':'E‘Ijlzl'l"l:i':':‘ljw1 l-:'“'-_j ! and press @ .

Now you can obtain the derivative of '%¢x, Z%%' by entering the

expression and the variable 3", then pressing (()(8) (¢9) (ALGEBRA)
CL 0T, The result is ', Bkt

Example: Enter the derivative of a formal user function,
fx'Cxlyw330 Then evaluate it by press (EVAL). The result
is

Pederf Cal gw wote Ca e gOliax
]

Summing Finite Series

You can calculate the value of a finite series. You can also use this

capability to explore whether or not an infinite series converges.

To calculate a summation using algebraic syntax:

1. Enter the symbolic expression for the ¥ function with the index,

limits, and summand as arguments.

2. Press (EVAL).

When you use X in algebraic syntax, it has the command-line form

P
Eiindexr=inttials final, summand> !

where indez is the index variable name, nitial and final are the first

and last values of the index variable, and summand is an expression

representing the terms being summed. You can enter the summation

in the EquationWriter application—see under “Entering Equations”

on page 16-9.

To calculate a summation using stack syntax:

1. Enter the name of the index variable you’ll use in the summand

expression (with ' delimiters).
2. Enter the initial value of the index.

Calculus 23-5

3. Enter the final value of the index.
4. Enter an expression for the summand (with * delimiters).
5. Press (2)(T).

Example: Calculate

Qn

n=1

Select the EquationWriter application and key in the % function, the

summation index, the initial value, and the final value.

()(EQUATION)
@O

Key in the summand.

%%D(SNI@ 5@ N
A 1) N@2@N >LU

Calculate the sum.

1: -. 222220220221
ITTDP

Example: For the infinite geometric series

]

§ rn—l

n=1

see whether the series converges or diverges for r = 0.5.

23-6 Calculus

Select the EquationWriter application, and key in the summation

function, the index, and its initial value.

()(E0ATION)
@0
N®1®

Key in a final value for the summation index. Because the HP 48

can’t represent infinity, use a large number, like 500. Then key in the

summand.

500 ()
REGIN@1

Enter the expression. Make two extra copies to use in this and the

next example. Store the value 0.5 in R and calculate the sum. (The

calculation takes several seconds.)

ENTER 1: 2
5 ()R (ET0) IRTT)I

EVAL)

Swap the expression into level 1 and change the final value of the

index to 1000, then calculate the sum again. (The calculation takes

several seconds.) The calculations suggest that the series converges to

2

))ED) 2 : Z
i 1: Z£)(7imes) 19 L

Example: Evaluate the series from the previous example to see

whether it converges or diverges for » = 100. (This example assumes

the summation expression remains from the previous example.)

Calculus 23-7

Set system flag —21 so that numbers larger than MAXR (mazimum
real number) cause an overflow error. Then, swap the remaining copy

of the expression into level 1, store 100 in R, and calculate the sum.

An overflow error occurs, suggesting that the series diverges.

21 (°75) (05) (MODES) (XT)
@
@@ RoLI
100 () R (5T0)

E

Z
3¢ 1.8181818101E498

166
1: 2af
[THENkLMTOF[RCLE]5FCF

Press 21 .F to not generate overflow errors.

Deriving Taylor’s Polynomial Approximations

For any mathematical function represented by a symbolic expression,

you can compute a Taylor’s polynomial approximation about z = 0,

sometimes called a Maclaurin series. You can also specify the order of

the polynomial.

To derive the Taylor’s polynomial approximation about x = 0:

1. Enter an expression for the function being approximated (with *

delimiters).

2. Enter the name of the variable for the polynomial (with

delimiters).
3. Enter the order of the polynomial (the maximum power for the

variable).

4. Press ()(ALGEBRA) T
The TAYLR command can’t be used in algebraic syntax.

Example: Calculate the 3rd-order Taylor’s polynomial about & = 0

for

1

Jita
(This example assumes that variable X does not exist in the current
directory—you can press (") X («9)(PURGE).)

23-8 Calculus

Enter the expression, the polynomial variable, and the order of the

polynomial.

Ol@E®@OIDXEDS 3: 1T(1+R3)!
§‘= ®:

SC)- TRNlI

Derive the approximation. (The calculation takes several seconds.)

(S5 (ALGEBRR) THYLF 1 11331573
(TIRTTTR

Evaluate to complete the calculation.

1: -5ea!
[TIRTTTAT

Example: Calculate the 5th-order Taylor’s polynomial approximation

about z = 0 for sin x.

(This example assumes that variable X does not exist in the current

directory—you can press () X (&q)(PURGE).)

Select Radians mode. Enter the expression, the polynomial variable

(X), and the order of the polynomial. Then find the Taylor’s

polynomial.

(«))(RAD) (if necessary) 1 é:,::_lfa [#8741 /5 | 24~

8TER OTT)
5 ()(ALGEBRA) THYLE

Evaluate the expression for X = 0.5.

 S(OX 1: . 479427833334
(TN WTTB

For comparison, .5 returns . 47%425%5.,.. The approximation is

accurate to five decimal palces.

To derive the Taylor’s polynomial approximation about x = a:

1. Purge a dummy variable Y.

2. Store Y + A in the polynomial variable X .

Calculus 23-9

3. Enter an expression for the function being approximated.

4. Press to change the variable from X to Y.
5. Enter the name of the variable Y.

6. Enter the order of the polynomial.

7. Press (9) TRYLE.
8. Purge variable X.

9. Store X —Ain Y.

10. Press to change the variable from Y to X.

For A in the previous steps, you can use a number or a variable.

TAYLR always evaluates the function and its derivatives at zero. If

you’re interested in the behavior of a function in a region away from

zero, the Taylor’s polynomial will be more useful if you translate the

point of evaluation to that region, as described above. Also, if the

function has no derivative at zero, its Taylor’s polynomial will be

meaningless unless you translate the point of evaluation away from

zero.

Integrating Expressions

You can calculate symbolic integrals for expressions with known

antiderivatives (indefinite integrals). You can also estimate the
numeric value of those and other integrals.

Doing Symbolic Integration

Symbolic integration means calculating an integral by finding a known

antiderivative and then substituting specified limits of integration.

The result is a symbolic expression.

The HP 48 can integrate the following patterns:

m All built-in functions whose antiderivaties contain only built-in

functions (and whose arguments are linear). See the analytic
functions, labeled with “A” in appendix G. For example, *SIH{x»

m Sums, differences, negations, and other selected patterns

of such functions. For example, 'SIHH-00S0H" —

23-10 Calculus

STR
'LHCTHH

m Derivatives of all built-in functions. For example, ' TH¢ {4450
— PATAMOE:

m Polynomials whose base term is linear. For example, * ¢¥~3

— POed

To find a symbolic integral using algebraic syntax:

1. Enter the symbolic expression for the f function with the limits,

integrand, and variable of integration as arguments.

2. Press (EVAD),
When you use f in algebraic syntax, it has the command-line form

Pivlowers uppery integrand, vary '

where lower and upper are the limits of integration, integrand is the

expression being integrated, and var is the variable of integration. You

can enter the integration in the EquationWriter application—see under

“Entering Equations” on page 16-8.

To find a symbolic integral using stack syntax:

In the MODES menu, make sure &%s is displayed.

Enter the lower limit of integration.

Enter the upper limit of integration.

Enter the integrand, the expression you want to integrate (with °

delimiters).
5. Enter the variable of integration (with ' delimiters).
6. Press ()(J)
7. Press (EVAL).

The result of symbolic integration indicates the success of the

integration:

N

m If the result is a closed-form expression—if there is no .Jsign in the

result—the symbolic integration was successful.

m If the result still contains | you can try rearranging the expression

and evaluating again. If rearranging fails to produce a closed form

result, you can estimate the answer with numeric integration,

described under “Doing Numeric Integration” on page 23-14.

Calculus 23-11

Before you press the final (EVAL), a closed-form result of f has the

form

"result] Cvar=uppers—i result| Lvar=lower: '

where result is the closed-form integral, var is the variable of

integration, and upper and lower are the limits. (The | (where)
function is discussed under “Using the | (Where) Function” on page
22-25.

v
/ (2 + 1)de

0

Example: Calculate

(This example assumes variable Y does not exist in the current
directory—you can press (") Y («9)(PURGE).)

Select the EquationWriter application and key in the f function, its

limits, the integrand, and the variable of integration.

()(EQUATION)
D Y 2
™Y &) JH+1dHn
XE)2m@ ! @
(E)X

Evaluate the expression.

ST=TTTTTG

«"ROmE 3

e '1#g+d"2+1)002+])
#3R LRI)| (K=Y)-(15+
ATCE+1 22 CC2+]1 D %aH (K
111 (w=A1)"

LT=RTVTNTR

The result is closed form. Now evaluate again to substitute the limits

into the variable of integration.

1: Y33
[COLCT]EXPA |1200 |GUAD |SHOM[THYLE]

Example: Calculate

y
/ (z? +1)%dz
0

23-12 Calculus

(This example assumes variable Y does not exist in the current

directory—you can press (") Y («9)(PURGE).)

Select the EquationWriter application, then key in the integral sign,

the limits, the integrand, and the variable of integration.

()EATON
@0 v 2

.

)Y &) (42+1)
@WOXD20D1?
D20X

Try to calculate the integral. The operation isn’t successful because

the term ©¥™zZ+13 isn’t linear.

LTIRTIOTR

(EVAL) 13 JCH, Y, (H7E2+107E, R)

[COLCTERP1200[unn[2HOW[THVLE]

Rearrange the expression by expanding and collecting.

(@) ELeEERA)

1: lr\:{\:ll"lliEl, Yo 1+4+2%R7E,

[COLCT]EPA1200[GUADSHOR[TAYLE]
Now evaluate the rearranged expression.

£HIME 3

1z 20”2+ 00(2+])%
arn(n) 11+(4+1 0004
+11#aR0H) 1+1#R] (k=Y
J-(Z#(R (2+]1 - (2+]

LTIRTTTR

Complete the integration by evaluating the | (where) functions.

1: '25(Y"3-3)+Y"0+
(ATTT

To symbolically integrate an expression that’s not integrable:

1. Derive a Taylor’s polynomial approximation to the integrand.

2. Find the symbolic integral of the polynomial.

Not all expressions are directly integrable on the HP 48—see “How the

HP 48 Does Symbolic Integration” on page 23-18. You may be able to

use the TAYLR command to approximate the integrand.

Calculus 23-13

Example: (Calculate

y 2

/ex dz
0

The integrand is not integrable by any of the methods described so far

in this chapter. Calculate a 4th-order Taylor’s polynomial for this

expression and integrate the polynomial.

(This example assumes that variables X and Y do not exist in
the current directory—you can press (&)(3) X Y

@EURD))
Enter the expression. Enter the series variable and the order of the

polynomial, then find the Taylor’s polynomial. (The calculation takes

several seconds.) Then evaluate the result.

O ®@)ED) X 7 2 (ENTER) 1: '1+H02+, SRR
MOX 4 (4)(ALGEBRA) THYLF |NNTNST

Use stack syntax to calculate the integral: Enter the lower and upper

limits and move the integrand to level 1.

0() Y ERTER)
1 1

@) @)L TNART
Enter the variable of integration, integrate the expression, and

evaluate the result. This approximation is less accurate for Y not near

0.

aXx 13 1. 5*(Y200433+Y

7
[TTATATT

Doing Numeric Integration

Numeric integration lets you approximate a definite integral—

even when symbolic integration can’t generate a closed-form result.

Numeric integration employs an iterative numeric procedure to obtain

the approximation.

23-14 Calculus

To find the value of an integral using algebraic syntax:

1.

3.

Specify the accuracy factor for the integrand:

m For an accuracy factor of 107", press n (49)(MODES)

m For an accuracy factor of 10711, press (|@)(MODES) =T[
. Enter the symbolic expression for the f function with the hmlts

integrand, and variable of integration as arguments.

Press (02)(SRUM).
When you use f in algebraic syntax, it has the command-line form

Llowery uppers integrands var: '

To find the value of an integral using stack syntax:

1.

0

9.
6.
7.

Specify the accuracy factor for the integrand:

m For an accuracy factor of 107", press n («q)(MODES) F1I:

m For an accuracy factor of 107!, press (&@)(MODES) &T[:

Enter the lower limit of integration.

Enter the upper limit of integration.

Enter the integrand, the expression you want to integrate (with

delimiters).
Enter the variable of integration (with ' delimiters).
Press ()1

Press ()(NUM).
The display format specifies the accuracy factor. The accuracy factor

determines the acceptable tolerance between the final iterations of the

numeric procedure. Except in rare cases, this factor is the percent

error in the result. For exa ple to speafy an accuracy factor of

0.0001 (0.01%), press 4 Generally, the smaller the tolerance,

the longer the calculation.

To check the uncertainty of the numeric result:

m Press 1ERE .

If the uncertainty of integration IERR is too large, the integral is

unreliable. If JERR is —1, the integral didn’t converge.

Example: Use numeric integration (accuracy factor of 0.0001) to
calculate

2 2

/e’” dx
0

Calculus 23-15

Specify the accuracy factor. Select the EquationWriter application,

key in the integral function, limits of integration, integrand, and

variable of integration.

()@oDES) 4
(2)(EauATIon)
@032 ®)
@OXD2®E®X

E Ewp(7] dwn

IDRTB0330

Calculate the numeric approximation. (The calculation takes several

seconds.)

@)(=Num) 1: 16. 4526
IINTBB

Press &ii: to return to Standard display format.

(In the previous example, you used a Taylor’s polynomial to

approximate the same integral symbolically for Y near 0. Evaluating

that integral for Y = 2 (not near 0) returns the inaccurate result
7.87.)

Example: Calculate Si(2 degrees), where Si(?) is the sine integral
(sometimes used in communications theory)

t .
) sin z

Sl(t)_/o . dz

Because the integrand (sinz)/z is a purely mathematical expression
containing no empirically-derived constants, the only constraint on its

accuracy 1s the round-off error introduced by the calculator. It is,

therefore, at least analytically reasonable to specify an accuracy factor

of 1 x 10~11,

Set the angle mode to Degrees. Set the display mode to Standard.

Key in the integral function, limits of integration, integrand, and

variable of integration.

()(RAD) (if necessary)
(«)(MODES)&1t (if necessary)

(S)(EQUATION)
@032
EDX®EOX®®X

=dil
JE SINCK)
@

B0STNTRO

23-16 Calculus

Put the integral on the stack and make a copy to use later. Calculate

the integral.

@)GUW
Check the uncertainty of integration. The uncertainty is significant

only with respect to the last digit of the integral.

TERE 71 3,4984722PHICE-7
1= 3. 49922336E 13

1: 3. 4904222ZH32E-2
BNRTB

Repeat the calculation for a larger tolerance—an accuracy factor of

0.001. Set the display mode to 3 Fix, move the expression to level 1,

then evaluate it.

(@ODES) 3 Fli
@@ @) EOLL
@)Gum)
Check the new uncertainty of integration. The second uncertainty is

much larger—but it’s still relatively small compared to the value of

the integral—and the calculation is faster.

Press ()(MODES) &7TE to set Standard display mode.

Calculus 23-17

More about Integration

This section gives you some details about symbolic and numeric

integration.

How the HP 48 Does Symbolic Integration

The HP 48 does symbolic integration by pattern matching. The HP 48

can integrate:

m All the built-in functions whose antiderivatives are expressible in

terms of other built-in functions—for example, SIN is integrable

since its antiderivative COS is a built-in function. The arguments

for these functions must be linear.

m Sums, differences, and negations of built-in functions whose

antiderivatives are express1blein terms of other built-in functions—

for example, | #

m Derivatives of all the bulltin functlons—for example,

PTHWCL+ESZ 0 is integrable because it is the derivative of the
built-in function ATAN.

n Polynomlals Whose base term is hnear—for example,

smtegrable since ¥ is a linear term.

22" is not mtegrable since ™2~1s not

linear.

m Selected patterns composed of functions whose antiderivatives

are expressible in terms of other built-in functions—for example,
i TR1.7COE STHCH3" returns 'LHCTARCHD '

The Accuracy Factor and the Uncertainty of

Integration

Numeric integration calculates the integral of a function f(z) by

computing a weighted average of the function’s values at many values

of z (sample points) within the interval of integration. The accuracy

of the result depends on the number of sample points considered;

generally, the more the sample points, the greater the accuracy. There

are two reasons why you might want to limit the accuracy of the

integral:

m The length of time to calculate the integral increases as the number

of sample points increases.

m There are inherent inaccuracies in each calculated value of f(z):

23-18 Calculus

o Experimentally derived constants in f(z) may be inaccurate.

For example,if f(z) contains experimentally derived constants

that are accurate to only two decimal places, it is of little value

to calculate the integral to the full (12-digit) precision of the
calculator.

o If f(z) models a physical system, there may be inaccuracies in the

model.

o The calculator itself introduces round-off error into each

computation of f(z).

To indirectly limit the accuracy of the integral, you specify the

accuracy factor of the integrand f(z), defined as:

true value of f(z) — computed value of f(z)
 accuracy factor <

 computed value of f(z)

The accuracy factor is your estimation in decimal form of the error

in each computed value of f(z). You specify the accuracy factor by

setting the Display mode to n Fix. For example, if you set the display

mode to 2 Fix, the accuracy factor is 0.01, or 1%. If you set the

display mode to 5 Fix, the accuracy factor is 0.00001, or .001%.

The accuracy factor is related to the uncertainty of integration (a

measurement of the accuracy of the integral) by:

uncertainty of integration < accuracy factor x / |f(z)|dz

f(x)

 Calculus 23-19

The striped area is the value of the integral. The dotted area is the

value of the uncertainty of integration. You can see that at any point

z, the uncertainty of integration is proportional to f(z).

The numeric integration algorithm uses an iterative method, doubling

the number of sample points in each successive iteration. When the

algorithm stops, the current value of the integral is returned to level

1, and the uncertainty of integration is stored in the variable IERR.

The error in the final value will almost certainly be less than the

uncertainty of integration.

 23-20 Calculus

24
Time, Alarms, and Date Arithmetic

The Time application gives you a system clock

that shows the current date and time. You can

set alarms that either display messages or perform

other actions you specify. You can also make time 24

and date calculations.

Using the Clock (Date and Time)

When you display the clock, it appears in the upper-right corner of the

display. It shows the current date and time in your choice of formats,

shown in the table below. The formats also determine the way you

enter dates and times in the command line. The following table

illustrates how the clock shows 4:31 PM on February 21, 1992.

Display Format Command-Line

Date:

Month/day/year format Zl.ERlleel

Day.month.year format 21l.82199z

12-hour format 4.3184

24-hour format 18, 531684

Time, Alarms, and Date Arithmetic 24-1

Displaying the Date and Time

To display the date and time:

m To display them temporarily, press («)(TIME).

m To display them permanently, press («q)(MODES) LE . (To
remove the permanent display, press TLEagain.)

The date and time are always displayed while the TIME menu is

active.

To change the date or time format:

1. Press (q)(TIME) =ET

2. Set the format:
m To change the date format between month/day/year and

day.month.year, press B[

m To change the time format between 12-hour (aM and PM) and
24-hour, press iZ-24.

Setting the Date and Time

To set the date:

1. Press (&q)(TIME) SET

2. Enter the date number in the command line using the current date

format (month/day/year or day.month.year)—see the previous

table.

3. Press #DHT .

To set the time:

1. Press (&)(TIME) EET .

2. Enter the time number in the command line using the current time

format (12-hour or 24-hour)—see the previous table.
3. Press =

4. To change the time between AM and PM, press

Example: Set the date and time to 10:08 aAM, April 20, 1992—or to

the current date and time, if you want.

24-2 Time, Alarms, and Date Arithmetic

Get the TIME SET menu. (Make sure 12-hour and month/day/year
formats are active.) Then set the date and time.

-CLR
@ nET 1 HOME 3 04,/20/88 10:0B:43R

‘w24 (if necessary) g

fon

o

(if necessary) 5

10.08 =1 1H 1:

4.201992 =p:HT TNTFEREDI.

Note the new date and time in the status area.

To adjust the time:

1. Press (q)(TIME) HEIET.

2. Enter the number of hours minutes, or seconds to add or subtract

from the current time (a positive number).
3. Press the “+” or “—” menu key for the unit and direction of the

adjustment.

Example: To change standard time to daylight-saving time (1 hour

later), press (&) (TIME) AELIET 1 HE+

Time, Alarms, and Date Arithmetic 24-3

Summary of Date and Time Operations

The TIME Menu—Clock Operations

Programmable

Command

Description

=T1H

—TIME

Sets the number in level 1 as the

current date. The allowable range is

January 1, 1989 to December 31, 2088.

Sets the number in level 1 as the

current time. For 12-hour format, you

can enter a 24-hour time number.

Switches the clock setting between AM

and PM. Adjusts the time for 24-hour

format.

Switches between 12-hour and 24-hour

format.

Switches between month/day/year and
day.month.year format.

()WE) A

HE#

 CLKADJ
Increments the time by one hour.

Decrements the time by one hour.

Increments the time by one minute.

Decrements the time by one minute.

Increments the time by one second.

Decrements the time by one second.

Adds the specified number of clock ticks

(positive or negative) to the time, where
8192 clock ticks equals 1 second. Use

CLKADJ to change the calculator clock

in a program.

24-4 Time, Alarms, and Date Arithmetic

Setting Alarms

You can set two types of alarms, which perform different actions when

they come due:

m Appointment alarm. It displays the message you specified when

you set the alarm. It also sounds a sequence of beeps for about 15

seconds—or until you press a key. You’re expected to acknowledge

an appointment alarm after it comes due.

m Control alarm. It executes the program or other object you specified

when you set the alarm—no other action occurs. You don’t

acknowledge a control alarm.

When you set an alarm, it’s saved in the system alarm list. You can

review and edit alarms using the Alarm Catalog.

To see the next alarm due:

m Press (&) (TIME).

or

m Press ()(REVIEW) in the TIME menu.

Using Appointment Alarms

You can set an appointment alarm to display a message. If an event

repeats periodically, you can specify a repeat interval.

To set an appointment alarm:

1. Press (&)(TIME) HLERM.

2. If the alarm isn’t for today keyin the alarm date using the current

date format, then press i

3. Key in the alarm time using the current time format, then press

STIHE.

4. To change the alarm time between AM and PM, press H:FH .

5. Optional: Key in a message (with " " delimiters), then press

EREL .

6. Optional: To make the alarm repeat at certain intervals, press

EFT key in the number of weeks, days, hours, minutes, or

seconds, and press the menu key for the time unit—or press

HIHE to not repeat.

7. Press | ZET to set the alarm (and show the next due alarm).

Time, Alarms, and Date Arithmetic 24-5

Example: Appointment Alarm. Set an alarm for 9:00 AM on May 18,

1992, the time your report is due.

Set the alarm date and time.

E')Sng. 5_2:2 __:Ti { HOME ¥ oY/80./98 10:10:42R

9STTHE Enter _alarm Eress SET
213HE MON B5-18-9% B9:B8: BEA

-DHTEL-TIME|/PPEXEL|KT|ZET

Enter an alarm message.

DUE TODAY
(g) REPORT DUE TO £HOME 3 04200898 10:11:56R

Enter alarm, press SET
B5>18-9% B9: ai: BEA

REPDRT DUE TODARY

NSTTAT

Set the alarm. The next due alarm is displayed.

i I

{ HOME } 04/20/92 10:13:51R

Mewt alarm:
MON B5-18-9¢ H9:08:B6A
REPORT DUE TODAY

I(TTTRTT

Example: Repeating Appointment Alarm. Set a repeating alarm for

a weekly staff meeting on Fridays at 10:30 AM, beginning May 8, 1992.

Set the alarm time, date, and message.

%JS' !_::!LTFIEM { HOME } 04/20/92 10:15:13R

10.30 STTHE Enter alarm press SET
30 SR RI 95.08~92 1B:38: BEA
@) STAFF MTG STAFF M
EHED

‘ BTGBNCRT

24-6 Time, Alarms, and Date Arithmetic

Set the repeat interval to 1 week.

 GE_

1 Tt i HOME } 04,/20/92 10:157R

Enter _alarm, press SET
FR] BS/Bxaé 16+ 36: AEA
STAFE M
Rpt=1 ueek(s)
EERRERRIR

Set the alarm. The next due alarm is displayed.

IT
1

--
|

{ HOME } 04/20,/92 10:17:35A

Mewt alarm:
FEI A5-H3-92 18:38:68A
STAFF MTG
Ept=1 weekis)

HOJET[RLERRCE[HCERCAT

To respond to an appointment alarm:

m During the beeps, press any key, such as (ATTN).

or
n After the beeps stop, press (q)(TIME) to see the message, then press

(You can then press (ATTN) to return to the stack.)

When an appointment alarm comes due, the (+) annunciator turns

on, the beeper sounds at short intervals for about 15 seconds, and the

alarm message is displayed. If you press a key during the beeps, the

alarm is acknowledged and deleted.

If you don’t acknowledge an alarm during the beeps, the beeper stops

and the message is cleared from the display. A repeating alarm is

normally deleted automatically and rescheduled. A nonrepeating

alarm becomes “past due,” but not deleted—the () annunciator

remains on to show you have a past-due alarm to respond to.

If you have several past-due alarms, you see the oldest one when you

press (&)(TIME). Each time you press FHi:k | the next oldest one is

displayed. The () annunciator turns off when no past-due alarms

remain.

To acknowledge all past-due alarms at once:

m Press HiEHin the TIME menu.

Time, Alarms, and Date Arithmetic 24-7

To stop a repeating alarm:

m See “Stopping Repeating Alarms” on page 24-9.

To save or not save nonrepeating alarms you acknowledge:

m To delete alarms when they’re acknowledged, press 44

(@) (WoDES) o
m To save alarms when they’re acknowledged, press 44

()(MODES) (XD) 5F
Normally, a nonrepeating appointment alarm is deleted when you

acknowledge it. Set system flag —44 to save it instead. However,

having more than 20 past-due alarms may affect calculator

performance—so it’s a good idea to manage the number of alarms in

the system alarm list. (Past-due repeating alarms are never saved.)

To change the way repeating alarms work:

m To automatically delete and reschedule them, press 43

(@)(MODES) (WD)~ EF
m To make them past-due and not reschedule them, press 43

@)(MODES) @XD) ~ &F
Normally, a repeating appointment alarm is automatically deleted

and rescheduled. Set system flag —43 to change that behavior—the

repeating alarm becomes past-due, and it isn’t rescheduled until after

you acknowledge it.

To control the alarm beeper:

m To enable the alarm beeper, press 57 (2)(MODES)

Normally, the alarm beeper sounds when an appointment comes due.

Set system flag —57 to keep the beeper from sounding.

24-8 Time, Alarms, and Date Arithmetic

Using Control Alarms

You can set a control alarm to execute a program or other object. If

you want to execute the object periodically, you can make the alarm

repeat at a specified interval.

To set a control alarm:

1. Press (q)(TIME) HL

2. If the alarm isn’t for today, key in the alarm date using the current

date format, then press @ HHTE.

3. Key in the alarm time using the current time format, then press

FRiHE.

4. To change the alarm time between AM and PM, press F

5. Enter the object or name to be executed, then press EHEL .

6. Optional: To make the alarm repeat at certain intervals, press

EE1 | key in the number of weeks, days, hours, minutes, or

seconds and press the menu key for the time unit—or press

i{iilE to not repeat.

7. Press ZET to set the control alarm.

You don’t acknowledge a control alarm when it comes due—it’s

automatically considered to be acknowledged. Any control alarm

(nonrepeating or repeating) that comes due is always saved in the

system alarm list. Flags —43 and —44, which affect appointment

alarms, have no effect on control alarms.

When a control alarm comes due, a copy of the alarm indez is

returned to level 1, then the specified object is executed. The

alarm index 1s a real number that identifies the alarm based on its

chronological order in the system alarm list—you can use it with

programmable alarm commands, as described under “Using Alarms in

Programs” on page 24-15.

To stop a repeating alarm, see the next topic.

Stopping Repeating Alarms

To delete a repeating alarm:

1. Press (&)(TIME) ©&HT to get the Alarm Catalog.

2. Press (A) and (¥) as required to move the ¥ pointer to the alarm

you want to delete.

Time, Alarms, and Date Arithmetic 24-9

o

3. Press EliED .

4. Press (ATTN).

The Alarm Catalog is described under “Reviewing and Editing

Alarms” on page 24-12.

To recover from a short-interval repeating alarm:

m Press the and keys simultaneously, then release them.

It’s possible for a repeating alarm to have a short enough repeat

interval that it reschedules and executes faster than you can delete it

from the alarm list. This may occur if you mistakenly set a repeating

appointment alarm for a very short interval. It may also occur in the

case of a control alarm that executes a program to take measurements

at short intervals.

The (ON}(a) keystroke sets a state in the calculator that cancels the

rescheduling of the nezt due alarm (presumably the short-interval
repeat alarm). When that alarm comes due—or when you press

the next key—the special “no-reschedule” state of the calculator is

canceled so future alarms aren’t affected. Because pressing a key

cancels the “no-reschedule” state, you should wait until the alarm

comes due before pressing any keys.

To restart the short-interval repeat alarm at a future time, use the

Alarm Catalog to edit the repeating alarm and set a new starting

time. See the next topic for details.

24-10 Time, Alarms, and Date Arithmetic

Summary of Alarm Operations

The TIME Menus—Alarm Operations

Key Programmable Description

Command

(«)(TIME):

HLEHN Selects the ALRM menu for entering an

alarm. The ALRM menu also contains

commands for using alarms in

programs.

ACK Acknowledges the oldest past-due

alarm.

HiEH ACKALL Acknowledges all past-due alarms.

Selects the Alarm Catalog for reviewing

and editing existing alarms.

G (page 1)

BRI
Sets the number in level 1 as the alarm

date. If the year digits are zero, the

current year is used.

Sets the number in level 1 as the alarm

time.

Switches the alarm time between AM

and PM.

Stores the object in level 1 as the alarm

execution action. If the object is a

string, the alarm is treated as an

appointment alarm, displaying the

contents of the string as the alarm

message. If the object is not a string,

the alarm is a control alarm, and the

object is executed when the alarm

comes due. () EHEL recalls the
current object to the stack.)

Selects the RPT menu for setting a

repeat interval.
Time, Alarms, and Date Arithmetic 24-11

The TIME Menus—Alarm Operations (continued)

Key Programmable Description

Command

=Bl Sets the alarm currently being

constructed, and saves it in the system

alarm list.

g

Sets the repeat interval to the number

of weeks, days, hours, minutes, or

seconds specified in level 1.

Cancels the repeat interval.

Reviewing and Editing Alarms

You can review, edit, and delete future and past-due alarms in the

Alarm Catalog. The Alarm Catalog is a special environment where

the keyboard is redefined and limited to special operations.

To get the Alarm Catalog:

in the TIME menu.

or

m Press ()(TIME) (righi-shift).

The Alarm Catalog displays the system alarm list with the ¥ pointer

at the next alarm due. (If there are no alarms in the list, the message

Emptu catalog appears.)

To work with an alarm in the Alarm Catalog:

1. Press (A) and (V) as required to move the pointer to the alarm you

want to use.

2. Perform the operation:

m To delete the alarm, press FlIFED .

m To view the alarm information, press %

m To change the alarm information, press , then update and

set the alarm as described under “Setting Alarms” on pages 24-5

and 24-9.

24-12 Time, Alarms, and Date Arithmetic

When you press ELiT | the selected alarm is removedfrom the

alarm list—it’s not returned there until you press #ET . It is,

however, saved in a reserved variable ALRMDAT untllyou press

To exit the Alarm Catalog:

m Press (ATTN).

Example: Change the alarm for the staff meeting in the previous

example from 10:30 AM to 9:30 AM on the same day.

Select the alarm catalog.

@D -

04/20/92 10:19:20R

16: 380 STAFF M...
B9: B8R REPORT .

IRIRTT

Move the pointer to the 10:30 alarm. (The position of the alarm in

the catalog may vary depending on the specific dates you’ve used in

previous examples.)

(&) or (Y) (as required)
{ HOME ¥ 042098 10:20:344
MOS-B8 18:30R STAFF I"I...
B5-18 @9:886A REPORT .

1 HOME } 04/20/92 10:21:38R

FRI H3-H3-92 18:36:068A
STHFE MTG
RBpt=1 weekis)
TIRTAEEE

Time, Alarms, and Date Arithmetic 24-13

Start editing the alarm.

por 2o
{ HOME } 04/20/92 10:22:30A

Fnter_alarm, press SET
FRI BSfaafaé
STAFF M
Rpt=1 ueek(s)
DHTE[-TIME[,/PH[EXECKPTZET

18: 38: BEA

Set the new alarm time. The next due alarm is displayed.

9.30 &1

 IHE BET
{ HOME } 04/20/92 10:26:07R

Mewt alarm:
FRI H5-H3-97 H9:38:B8A
STAFF MTG
Bpt=1 week(s)

YooYTATIRIl

The following table and illustration summarize the operations

available in the Alarm Catalog.

Operations in the Alarm Catalog

Key Description

FLEL Deletes the selected alarm from the alarm list.

ERELE Switches between displaying the date and time of each

alarm entry and displaying the alarm execution object

only.

BRIl Deletes the selected alarm from the system alarm list

for editing and exits the catalog.

Copies the selected alarm to the stack.

IR Views all information about the selected alarm.

Moves the catalog pointer up or down one level. When

™ prefixed with (&), moves the catalog pointer up or

down one page ((«q)(PgUp) and (&q)(PgDn) in the
following keyboard illustration). When prefixed with

(), moves the catalog pointer to the top or bottom of

the catalog ((2)(&) and (»)(¥) in the following
keyboard illustration).

Copies the selected entry to the stack (same as

EETR).

Exits the catalog.

24-14 Time, Alarms, and Date Arithmetic

s!
b
(IOAe
OO0OO0OONMO
OOO0O0O0O

Executes —STK —>[@ D D D @

OO OO
OO
®OO OO

Exits Catalog —C@[j [] [j [j
J

Using Alarms in Programs

Many of the operations in the Time application that you execute from

the keyboard aren’t programmable. However, the application also

includes several programmable commands that let you control alarms

in programs.

You use a list to specify an alarm—it has the following form:

i date time action repeat

where date and time are the alarm date and time in the current

formats, action is the execution object, and repeat is the repeat

interval in clock ticks (1 clock tick is 1/8192 second).

Time, Alarms, and Date Arithmetic 24-15

Programmable Alarm Commands

Key Programmable Description
Command

LEHM (page 2):

STUAL STOALARM Stores the alarm in level 1 into the

system alarm list and returns its alarm

index n to level 1. The argument for

STOAL can take any one of the

following four forms:

m time (alarm date is current date)
m i date time

m i date time action

m i date time action repeat

EOLAL RCLALARM Takes an alarm index n from level 1,

and returns the corresponding alarm to

level 1.

LELAL DELALARM Takes an alarm index n from level 1 and

deletes the corresponding alarm from

the system alarm list. If n = 0, deletes

all alarms from the system alarm list.

FIHDH FINDALARM |Returns the alarm index n of the first

alarm that comes due after the time

specified in level 1 as follows: if the

level 1 argument is a list of the form

date time =, returns the first alarm

due after that date and time; if the level

1 argument is a real number date,

returns the first alarm due after

midnight on that date; if the level 1

argument is 0, returns the first past-due

alarm.

24-16 Time, Alarms, and Date Arithmetic

Calculating with Dates and Times

You can use the TIME menu to calculate calendar and clock intervals.

Making Date Calculations

To make a date calculation:

1. Press («)(TIME) (NXT).

2. Enter the arguments for the command:

m Enter a date in command-line form using the current date format

(MM.DDYYYY or DD.MMYYYY).
m Enter a time in command-line form (24-hour HH.MMSSs).
m Enter an interval as a real number of days (positive or negative).

3. Press the menu key for the command—see the table below.

The TIME Menu—Date Arithmetic Commands

Keys Programmable Description

Command

() (TME) (page 2):
DRIES DATE+ Returns a past or future date in

number form (MM.DDYYYY or

DD.MMYYYY), given a date in level 2
and the number of days in level 1.

DoAY S DDAYS (Delta days.) Returns the number of
days between the dates in level 2 and

level 1.

LDETE DATE Returns the current date in number

form (MM.DDYYYY or

DD.MMYYYY).

TR TSTR (Time string.) Returns a string object
(characters) describing any valid date
in level 2 and 24-hour time in level 1.
Time, Alarms, and Date Arithmetic 24-17

Example: Find the expiration date for a 120-day option purchased

on July 15, 1991.

Get the TIME menu, enter the known date, key in the number of

days, then calculate the expiration date.

()(TME) (NXT) L: 11.121391
7.151991 [TV(TSITAT

120 BHTES

Example: Find the number of days between April 20, 1982 and

August 2, 1986.

Get the TIME menu, enter the first and second dates, and calculate

the number of days.

()(@ME) 1: 1365
4.201982 [CATE+[D0AYS]DATETIMETZTR JTICK S

8.021986 LAY S

Example: Find the date 90 days from today. (This example assumes

the current date is April 20, 1992.)

Get the current date in level 1.

(QTME) (NXT) LATE 1' 42@1992
ISRTITi

Enter the number of days and calculate the future date. The result1S

July 19, 1992.

30 1- 5291992
LHTES [CATE+[DOAYE]DHTE

|

TIME

|

TETE[TICKS

Making Time and Angle Calculations

To make a time calculation:

1. Press (&) (TIME) (as required).

2. Enter the time arguments for the command in HMS or decimal

format, as required.

3. Press the menu key for the command—see the table below.

24-18 Time, Alarms, and Date Arithmetic

A number with HMS (hours-minutes-seconds) format is represented as
HMMSSs:

H Zero or more digits representing the number of hours.

MM Two digits representing the number of minutes.

5SS Two digits representing the number of seconds.

s Zero or more digits representing the decimal fraction part of

seconds.

To make an angle calculation:

1. Press (&q)(TIME) (NXT) (as required).
2. Enter the angle arguments for the command in HMS or decimal

format, as required.

3. Press the menu key for the command—see the table below.

For angle calculations, you can use angles in degrees-minutes-seconds

(HMS) format—H in HMS format represents degrees. (See also
“Angle Conversion Functions” on page 9-11.)

The TIME Menu—Time Arithmetic Commands

Key Programmable

Command

Description

@D (pages 2 and 3):

‘TIHE

TIiR: £

SN

TIME

TICKS

—HMS

HMS—

HMS+

HMS—

Returns the current time in 24-hour

number form.

Returns the system time as a binary

integer in units of 1/8192 second.

Converts a real number representing

decimal hours (or degrees) to HMS
format.

Converts a real number representing

hours (or degrees) in HMS format to its
decimal form.

Adds two numbers in HMS format,

returning the sum in HMS format.

Subtracts two numbers in HMS format,

returning the difference in HMS format.

Example: Convert 5.27 hours to its HMS equivalent.

Time, Alarms, and Date Arithmetic 24-19

Key in the decimal time and execute the conversion. The answer is 5

hours, 16 minutes, 12 seconds.

(Q)@ME) (NXT) (NXT) L 5.1617
SYYN9.27

Example: Add 5°50" (5 degrees 50 minutes) and 4°30’.

Enter the two angles in HMS format and add them. The answer is

10°20".

()@ME) (NXT) (NXT) L 16,2

 5.5 ENTER ENHE(RDRDTI

4.3 HHE#

To calculate elapsed time in a program:

m Enter a TICKS command at the start and end of the program

segment you want to time, then subtract the two times. If desired,

multiply by 8192 to get the number of seconds.

Example: See the FIBT program on page 31-5.

24-20 Time, Alarms, and Date Arithmetic

Part4

Programming

25
Programming Fundamentals

If you’ve used a calculator or computer before,

you’re probably familiar with the idea of programs.

Generally speaking, a program is something that

gets the calculator or computer to do certain tasks

for you—more than a built-in command might do.

same thing.

Understanding Programming

An HP 48 program is an object with # # delimiters containing a

sequence of numbers, commands, and other objects you want to

execute automatically to perform a task.

For example, if you want to find the negative square root of a number

that’s in level 1, you might press (#/=). The following program

executes the same commands:

o ge e
W i o

Without changing the program, we could show it with one command

per line—similar to other programming languages:

MEG

The next few topics introduce certain aspects of programs:

m Contents.

m Calculations.

m Structured programming.

Programming Fundamentals 25-1

Each of these ideas is explained in detail in chapters 25 through 31—

these next few topics give just an overview.

The Contents of a Program

As mentioned above, a program contains a sequence of objects. As

each object is processed in a program, the action depends on the type

of object, as summarized below.

Actions for Certain Objects in Programs

Object Action

Command FEzecuted.

Number Put on the stack.

Algebraic Put on the stack.

String Put on the stack.

List Put on the stack.

Program Put on the stack.

Global name (quoted) Put on the stack.

Global name (unquoted) m Program ezecuted.
m Name evaluated.

m Directory becomes current.

m Other object put on the stack.

Local name (quoted) Put on the stack.

Local name (unquoted) Contents put on the stack.

As you can see from this table, most types of objects are simply put

on the stack—but built-in commands and programs called by name

cause ezeculion. The following examples show the results of executing

programs containing different sequences of objects.

25-2 Programming Fundamentals

Examples of Program Actions

Program Results

1z 23

is 2

"Hella" € A E Ze "Hz=llo"

1: LA BE G

iR ow 1: Pl

Pst SR= is 2

12+ 5 5 I 21 2 +

1 & + % EVAL # 1: 2
Actually, programs can contain more than just objects—they can also

contain structures. A structure is a program segment with a defined 25

organization. Two basic kinds of structures are available:

m Local variable structure. The + command defines local variable

names and a corresponding algebraic or program object that’s

evaluated using those variables.

m Branching structures. Structure words (like DO...UNTIL...END)
define conditional or loop structures to control the order of

execution within a program.

A local variable structure has one of the following organizations inside

a program:

%+ namey ... name, ‘algebraic'

% <+ mamey ... name, % program i i

The — command removes n objects from the stack and stores them

in the named local variables. The algebraic or program object in

the structure is automatically evaluated because it’s an element of

the structure—even though algebraic and program objects are put

on the stack in other situations. Each time a local variable name

appears in the algebraic or program object, the variable’s contents are

substituted.

Programming Fundamentals 25-3

So the following program takes two numbers from the stack and
returns a numeric result:

2 o+ o5 b 'HESCa-by!

Calculations in a Program

Many calculations in programs take data from the stack—sometimes

put there by the user or by another program. Here are two typical

ways to manipulate that data:

m Stack commands. Operate directly on the objects on the stack.

m Local variable structure. Stores the stack objects in temporary local

variables, then uses the variable names to represent the data in the

following algebraic or program object.

Numeric calculations provide convenient examples of these methods.

The following programs use two numbers from the stack to calculate

the hypotenuse of a right triangle using the formula \/z? + y2.

The first program uses stack commands to manipulate the numbers

on the stack—the calculation uses stack syntax. The second program

uses a local variable structure to store and retrieve the numbers—the

calculation uses stack syntax. The third program also uses a local
variable structure—the calculation uses algebraic syntax. Note that

the underlying formula is most apparent in the third program.

Local variable structures with algebraic objects are favored by many

programmers because they’re easy to write, easy to read, and simple

to debug.

Structured Programming

The HP 48 encourages structured programming. Every program has

only one entrance point—the beginning of the program. It also has

only one exit point—the end of the program. There are no labels

inside a program to jump to—there are no GOTO commands to exit

from. From an external point of view, program flow is extremely

simple—start at the beginning, stop at the end. (Of course, inside the

25-4 Programming Fundamentals

program you can use branching structures to control the execution

flow.)

You can take advantage of structured programming by creating

“building-block” programs. Each building-block program can stand

alone—and it can act like a subroutine in a larger program. For

example, consider the following program:

GETWALUE FIMDAMSWER OUTAMSWER =

This program is separated into three main tasks, each with a

subroutine. The flow is predictable. Only the input and output of

each subroutine matter—the internal workings don’t matter at this

level.

Within each subroutine, its task can be simple—or it can be

subdivided further into other subroutines that perform smaller tasks.

This lets you have relatively simple subroutines—even if your main

program is large.

So, programs become extensions to the set of built-in commands, as

mentioned earlier. You execute them by name. They take certain

inputs, and they produce certain results.

Where to Find More Information

To find information about certain programming topics, look in the

following chapters:

Entering, editing, and running programs—this chapter.

Creating basic programs—this chapter.

Testing programs—this chapter.

Using tests and conditional structures—chapter 26.

Using loop structures—chapter 27.

Using flags—chapter 28.

Creating interactive programs—chapter 29.

Trapping errors in programs—chapter 30.

Checking out example programs—chapter 31.

Finding information about commands—appendix G.

You can also refer to these books:

m The Programmer’s Reference Manual for the HP 48 (part number

00048-90054) contains programming information, including syntax

information for all HP 48 commands, in a reference format.

Programming Fundamentals 25-5

m HP /8 Programming Examples by D.R. Mackenroth,

Addison-Wesley, 1991, is a source of structured programs and

programming techniques.

Entering and Executing Programs

A program is an object—it occupies one level on the stack, and you

can store it in a variable.

To enter a program:

1. Press (&q) («»). The FEG annunciator appears, indicating

Program-entry mode is active.

2. Enter the commands and other objects (with appropriate

delimiters) in order for the operations you want the program to

execute.

m Press to separate consecutive numbers.

m Press () to move past closing delimiters.
3. Optional: Press ()(«2) (newline) to start a new line in the

command line at any time.

4. Press to put the program on the stack.

In Program-entry mode (FEG annunciator on), command keys

aren’t executed—they’re entered in the command line instead. Only

nonprogrammable operations such as («) and are executed.

Line breaks are discarded when you press (ENTER).

To enter commands and other objects in a program:

m Press the keyboard or menu key for the command or object.

or

m Type the characters using the alpha keyboard.

To store or name a program:

1. Enter the program on the stack.

2. Enter the variable name (with ' delimiters) and press (STO).

25-6 Programming Fundamentals

You can choose descriptive names for programs. Here are some ideas

of what the name can describe:

m The calculation or action. Examples: SPH (spherical-cap volume),
SORT (sort a list).

m The input and output. Examples: X—FX (z to f(z)), RH—V
(radius-and-height to volume).

m The technique. Examples: SPHLV (spherical-cap volume using

local variables), SPHSTACK(spherical-cap volume using the stack).

To execute a program:

m Press then the menu key for the program name.

or
m Enter the program name (with no delimiters) and press (ENTER).

or
m Put the program name in level 1 and press (EVAL).

or
m Put the program object in level 1 and press (EVAL).

To stop an executing program:

m Press (ATTN).

Example: Enter a program that takes a radius value from the stack
and calculates the volume of a sphere of radius r using

V= _mr3
3

If you were going to calculate the volume manually after entering the

radius on the stack, you might press these keys:

SD®EE@E43 E E@)ENM)

Enter the same keystrokes in a program. ((»)(<2) just starts a new

line.)

@ £« 314 %3~

SN@@®EEE3E Nl ¢
)@)Num) TTNAAG

Programming Fundamentals 25-7

Put the program on the stack.

1: « 3" *4 %3~
+NUM =
TTTTAA

Store the program in variable VOL. Then put a radius of 4 on the

stack and run the VOL program.

() VoL 1: 268, 882573187
4 (VAR) WL IRYONSB

The program is

E8 ot oo o4 % B o HUM #

Example: Replace the program from the previous example with

one that’s easier to read. Enter a program that uses a local variable

structure to calculate the volume of a sphere. The program is

o MdeSErsetSt UM

(You need to include —NUM because 7 causes a symbolic result.)

Enter the program. (()(<=2)just starts a new line.)

@®
@&GO
0i03HOHDE
3@
@G
Put the program on the stack and store it in VOL.

(ENTER) |TOOOO
(w) ¥oL

Calculate the volume for a radius of 4.

4 BEE 1: 268. B52573106
TIYNI

« 2 '4/3%mar"3!
SNUM 4
2

teoc[1[|

Example: Enter a program SPH that calculates the volume of a

spherical cap of radius r and height A using values stored in variables

R and H.

25-8 Programming Fundamentals

V= %rh2(3r —h)

In this and following chapters on programming, “stack diagrams” show 25
what arguments must be on the stack before a program is executed

and what results the program leaves on the stack. Here’s the stack

diagram for SPH.

Arguments Results

1% volume

The diagram indicates that SPH takes no arguments from the stack

and returns the volume of the spherical cap to level 1. (SPH assumes

that you’ve stored the numerical value for the radius in variable R

and the numerical value for the height in variable H. These are global

variables—they exist outside the program.)

Program listings are shown with program steps in the left column and

associated comments in the right column. Remember, you can either

press the command keys or type in the command names to key in the

program. In this first listing, the keystrokes are also shown.

Programming Fundamentals 25-9

Program: Keys: Comments:

(Q)(») Begins the program.

o 13 Begins the algebraic expression to
calculate the volume.

#TEHZ x) ()@ Multiplies by 7wh?2.

HQED?2
iEERE-H! X« Multiplies by 3r — h, completing

SX)R(E) the calculation and ending the
He)®) expression.

+HLIM ()(=Num) Converts the expression with 7 to

a number.

Ends the program.

Puts the program on the stack.

() SPH Stores the program in variable
SPH.

This is the program:

YionemeeCRER-H Y MU

Now use SPH to calculate the volume of a spherical cap of radius

r = 10 and height A = 3.

First, store the data in the appropriate variables. Then select the

VAR menu and execute the program. The answer is returned to level

1 of the stack.

10Ok 1: 224, 469884942
3(H H|k[pufuwoL][|

SEH

25-10 Programming Fundamentals

Viewing and Editing Programs

You view and edit programs the same way you view and edit other

objects—using the command line. See “Displaying Objects For

Viewing and Editing” on page 3-6.

To view or edit a program:

1. View the program:
m If the program is in level 1, press («9)(EDIT).
m If the program is stored in a variable, put the variable name in

level 1 and press (@»)(VISIT).
2. Optional: Make changes.
3. Press (ENTER) to save any changes (or press (ATTN) to discard

changes) and return to the stack.

()(VISIT) lets you change a stored program without having to do a
store operation. (¢9)(EDIT) lets you change a program and then store
the new version in a different variable. 25 ;

While you'’re editing a program, you may want to switch the

command-line entry mode between Program-entry mode (for editing

most objects) and Algebraic/Program-entry mode (for editing
algebraic objects). The FE and FALLG annunciators indicate the

current mode.

To switch between entry modes:

" Press (@)ENTRY)
Example: Edit SPH from the previous example so that it stores the

number from level 1 into variable H and the number from level 2 into

variable R.

Use VISIT to start editing SPH.

VAR ? 'lfifififi*H*E*(3*R—H
O '

@)D AT[A

Programming Fundamentals 25-11

Move the cursor past the first program delimiter and insert the new
program steps.

®OHE®ED «'H' ST0 'R’ STO 413,
O R ®)GEo) 31 NN

¥

EHIP[ZKIPDEL[DELINZu]+2TE]

Save the edited version of SPH in the variable. Then, to verify that

the changes were saved, view SPH in the command line.

« 'H' S5T0 'R'_STO !
@). [VED) ifififi“*” Z#(3*R-H)'

2

[£ZEIP[SEIP#£DEL[DEL#INZ u]+5TE

Press (ATTN) to stop viewing.

Creating Programs on a Computer

Some people find it convenient to create programs and other objects

on a computer, then load them into the HP 48 using its serial port.

For example, the Program Development Link from Hewlett-Packard

provides a program-development environment tailored to the HP 48.

You can use it to create programs, send them to the calculator, and

run them.

Also, if you’re creating programs on a computer, you can include

“comments” in the computer version of the program.

To include a comment in a program:

m Enclose the comment text between two @ characters.

or

m Enclose the comment text between one @ character and the end of

the line.

Whenever the HP 48 processes text entered in the command line—

either from keyboard entry or transferred from a computer—it strips

away the @ characters and the text they surround. However, @

characters are not affected if they’re inside a string.

25-12 Programming Fundamentals

Using Local Variables

The program SPH in the previous example uses global variables for

data storage and recall. There are disadvantages to using global

variables in programs:

m After program execution, global variables that you no longer need

to use must be purged if you want to clear the VAR menu and free

user memory.
m You must explicitly store data in global variables prior to program

execution, or have the program execute STO.

Local variables address the disadvantages of global variables in

programs. Local variables are temporary variables created by a

program. They exist only while the program is being executed and

cannot be used outside the program. They never appear in the VAR

menu. In addition, local variables are accessed faster than global

variables. (By convention, this manual uses lowercase names for local

variables.) 25

Creating Local Variables

In a program, a local variable structure creates local variables.

To enter a local variable structure in a program:

1. Enter the — command (press (¢)(=)).
2. Enter one or more variable names.

3. Enter a defining procedure (an algebraic or program object) that

uses the names.

i %+ pame; names ... name, 'algebraic'

or

o+ mame; names ... namen E program G

When the — command is executed in a program, n values are taken

from the stack and assigned to variables name;, names, ... name,.

For example, if the stack looks like

Programming Fundamentals 25-13

i HOME }

4:
3: 18

‘ 28
AARGrAAR

then

+ a creates local variable ¢ = 20.

+ & b creates local variables ¢ = 6 and b = 20.

<+ @ b = creates local variables a = 10, b = 6, and ¢ = 20.

The defining procedure then uses the local variables to do calculations.

Local variable structures have these advantages:

m The — command stores the values from the stack in the

corresponding variables—you don’t need to explicitly execute STO.

m Local variables automatically disappear when the defining procedure

for which they are created has completed execution. Consequently,

local variables don’t appear in the VAR menu, and they occupy user

memory only during program execution.

m Local variables exist only within their defining procedure—different

local variable structures can use the same variable names without

conflict.

Example: The following program SPHLV calculates the volume of

a spherical cap using local variables. The defining procedure is an

algebraic expression.

Arguments Results

a

r

1: h i: volume

25-14 Programming Fundamentals

Program: Comments:

*r h Creates local variables r and A

for the radius of the sphere and

height of the cap.

YoSEmEhSRe] SEr—-h! Expresses the defining procedure.

In this program, the defining

procedure for the local variable

structure is an algebraic

expression.

MM Converts expression to a number.

() SPHLV Stores the program in variable
SPHLYV .

Now use SPHLV to calculate the volume of a spherical cap of radius

r = 10 and height A = 3. Enter the data on the stack in the correct

order, then execute the program.

10 3 13 254. 469884942
BEHLY TOTT

Evaluating Local Names

Local names are evaluated differently from global names. When a

global name is evaluated, the object stored in the corresponding

variableis itself evaluated. (You’ve seen how programs stored in

global variables are automatically evaluated when the name is

evaluated.)

When a local name is evaluated, the object stored in the

corresponding variable is returned to the stack but is not evaluated.

When a local variable contains a number, the effect is identical to

evaluation of a global name, since putting a number on the stack is

equivalent to evaluating it. However, if a local variable contains a

program, algebraic expression, or global variable name—and if you

want 1t evaluated—the program should execute EVAL after the object

is put on the stack.

Programming Fundamentals 25-15

Defining the Scope of Local Variables

Local variables exist only inside the defining procedure.

Example: The following program excerpt illustrates the availability

of local variables in nested defining procedures (procedures within

procedures). Because local variables a, b, and ¢ already exist when

the defining procedure for local variables d, e, and f is executed,

they’re available for use in that procedure.

Program: Comments:

No local variables are available.

+ a b c Defines local variables a, b, c.

Local variables a, b, ¢ are

ab + -+ available in this procedure.

+de f Defines local variables d, e, f.

fasldEer Local variables a, b, c and d, e, f

are available in this procedure.

ac s - Only local variables a, b, ¢ are

available.

No local variables are available.

Example: In the following program excerpt, the defining procedure

for local variables d, e, and f calls a program that you previously

created and stored in global variable P1.

25-16 Programming Fundamentals

Program: Comments:

+ ahbc

5 b o4+ oo+

oo oe f Defines local variables d, e, f.

"Fleas(deesd ! Local variables a, b, c and d, e, f

are available in this procedure.

The defining procedure executes

the program stored in variable

PI.

The six local variables are not available in program PI because they

didn’t exist when you created P1. The objects stored in the local

variables are available to program P1 only if you put those objects on

the stack for PI to use or store those objects in global variables.

Conversely, program P1 can create its own local variable structure

(with any names, such as a, ¢, and f, for example) without conflicting

with the local variables of the same name in the procedure that calls

PI.

Creating User-Defined Functions as Programs

The defining procedure for a local variable structure can be either

an algebraic or program object. As discussed in “The Structure of

a User-Defined Function” on page 10-5, a user-defined function is

a program that consists solely of a local variable structure whose

defining procedure is an algebraic expression.

If a program begins with a local variable structure and has a

program as the defining procedure, the complete program acts like

a user-defined function in two ways: It takes numeric or symbolic

arguments, and takes those arguments either from the stack or

in algebraic syntax. However, it does not have a derivative. (The

Programming Fundamentals 25-17

defining program must, like algebraic defining procedures, return only

one result to the stack.)

There’s an advantage to using a program as the defining procedure for

a local variable structure: The program can contain commands not

allowed in algebraic expressions. For example, the loop structures

described in chapter 27 are not allowed in algebraic expressions.

Example: Program BER on page 31-34 calculates a Bessel function

approximation. BER uses a local variable structure whose defining

procedure is a program containing a FOR...STEP structure and a

nested IF...THEN...ELSE...END structure. BER is not differentiable,

but the example in chapter 31 demonstrates that it can take its

arguments either from the stack or in algebraic syntax.

Manipulating Data on the Stack

The programs SPH and SPHLV earlier in this chapter use variables

for data storage and recall. An alternative programming method

manipulates numbers on the stack without storing them in variables.

Although this method may give faster program execution in certain

situations, there are certain disadvantages of the stack-manipulation

method:

m As you write a program, you must keep track of the location of the

data on the stack. For example, data arguments must be duplicated

if they’re used by more than one command.

m A program that manipulates data on the stack is generally harder to

read and understand than a program that uses variables.

Example: The following program SPHSTACKuses the
stack-manipulation method to calculate the volume of a spherical cap.

(SPHLV uses local variables to execute the same calculation in about
30 percent less time.)

Arguments Results

18 A 1% volume

25-18 Programming Fundamentals

Program: Comments:

SWAF Puts the radius in level 1.

3 % Multiplies the radius by 3.

VER - Copies the number in level 2 (the
height) to level 1 and subtracts,
calculating 3r — h.

SWARP S0 % Swaps the original height into
level 1, squares it, and multiplies

by 3r — h.

moE R s Multiplies by 7 and divides by 3,

completing the calculation.

*HLIM Converts algebraic to a number.

Puts the program on the stack.

() SPHSTACK Stores it in SPHSTACK .

Using Subroutines

Because a program is itself an object, it can be used in another

program as a subroutine. When program B is used by program

A, program A calls program B, and program B is a subroutine in

program A.

Example: The program TORSA, calculates the surface area of a

torus of inner radius ¢ and outer radius 6. TORSA 1s used as a

subroutine in a second program TORSV, which calculates the volume

of a torus.

 Programming Fundamentals 25-19

The surface area and volume are calculated by

1
A= 72(b? — a?) V= zl—fl'z(b2 —a*)(b-a)

(The quantity 72(b% — a?) in the second equation is the surface area of
a torus calculated by TORSA.)

Here are the stack diagram and program listing for TORSA.

Arguments Results

12 b 1% surface area

Comments:

Creates local variables a and b.

Calculates the surface area.

ALI Converts algebraic to a number.

Puts the program on the stack.

() TORSA Stores the program in TORSA.

Here is a stack diagram and program listing for TORSV .

Arguments Results

 18 b 1% volume

25-20 Programming Fundamentals

Program: Comments:

+ a b Creates local variables a and b.

Starts a program as the defining
procedure.

a b TORSA Puts the numbers stored in a and

b on the stack, then calls TORSA

with those arguments.

boa - % 4 Completes the volume calculation

using the surface area.

Ends the defining procedure.

Puts the program on the stack.

() TORSV Stores the program in TORSV .

Now use TORSV to calculate the volume of a torus of inner radius

a = 6 and outer radius b = 8.

6 (ENTER) 8 1z 138. 174461616
Tiipaan [TOREWTORZA[ZPHETISPHLY]HK

Single-Stepping through a Program

It’s easier to understand how a program works if you execute it step

by step, observing the effect of each step. Doing this can help you

“debug” your own programs or understand programs written by

others.

To single-step from the start of a program:

1. Put the program or program name in level 1 (or the command

line).

2. Press 5 [ELIGE to start and immediately suspend

execution. The HALT annunciator is displayed in the status area.

3. Take any action:

m To see the next program step displayed in the status area and

then executed, press &E

Programming Fundamentals 25-21

m To display but not execute the next one or two program steps,

press H
m To continue w1th normal execution, press (49)(CONT).
m To abandon further execution, press EILL .

4. Repeat the previous step as desired.

To turn off the HALT annunciator at any time:

m Press BEILL.

Example: Execute program TORSYV step by step. Use a = 6 and

b=28.

Select the VAR menu and enter the data. Enter the program name

and start the debugging. The HAL.T indicates program execution is

suspended.

@)(CLR) WALT
HOME }

5

6 (ENTER) 8 (ENTER) 3
() ToRsy 1 6

CTREL ‘DEUG 1: g

Display and execute the first program step. Notlce that it takes the

two arguments from the stack and stored them in local variables a and

b.

+ab

4z
3z
%:

[IRLLTT

Continue single-stepping until the status area shows the current

directory. Watch the stack and status area as you single-step through

the program.

=251.

1: 136. 174461616
TI

To single-step from the middle of a program:

1. Insert a HALT command in the program where you want to begin

single-stepping.

25-22 Programming Fundamentals

2. Execute the program normally. The program stops when the HALT

command is executed, and the HALT annunciator is displayed.

3. Take any action:

m To see the next program step displayed in the status area and

then executed, press Z&7T

m To display but not execute the next one or two program steps,

press HE®T .

m To continue with normal execution, press (|q)(CONT).
m To abandon further execution, press (kK || .

4. Repeat the previous step as desired.

When you want the program to run normally again, remove the HALT

command from the program.

To single-step when the next step is a subroutine:

m To execute the subroutine in one step, press 55T

m To execute the subroutine step-by-step, press &=.

 executes the next step in a program—if the next step is a

subroutine, © #%7T executes the subroutine in one step. 5T

works just like %1 —except if the next program step is a

subroutine, it single-steps to the first step in the subroutine. Example: In the previous example, you used &5 to execute

subroutine TORSA in one step. Now execute program TORSYVstep

by step to calculate the volume of a torus of radii a = 10 and b = 12.

When you reach subroutine TORSA, execute it step by step.

Select the VAR menu and enter the data. Enter the program name

and start the debugging. Execute the first four steps of the program,

then check the next step.

(@)(CLR) (VAR) TORSA b
10 (ENTER) 12 .
O 3:3z

2 18
1: 12
[DEUS5T[S5T-[HERT[HALT EILL

Programming Fundamentals 25-23

The next step is TORSH. Single-step into TORSA, then check that

you’re at the first step of TORSA.

SETH
HE®T

18
12

i

P
0
0

Press (|9)(CONT) (&9)(CONT) to complete subroutine and program

execution.

The following table summarizes the operations for single-stepping

through a program.

Single-Step Operations

Key Programmable

Command

Description

LTEL

kLG

HEST

e

(x)(ConT) HALT

KILL

CONT

Starts program execution, then

suspends it as if HALT were the first

program command. Takes as its

argument the program or program

name in level 1.

Executes the next object or command

in the suspended program.

 Same as | , except if the next

program step is a subroutine,

single-steps to the first step in that

subroutine.

Displays the next one or two objects,

but does not execute them. The display

persists until the next keystroke.

Suspends program execution at the

location of the HALT command in the

program.

Cancels all suspended programs and

turns off the HALT annunciator.

Resumes execution of a halted program.

25-24 Programming Fundamentals

26
Tests and Conditional Structures

You can use commands and branching structures
that let programs ask questions and make decisions.

Comparison functions and logical functions

test whether or not specified conditions exist.

Conditional structures and conditional commands

use test results to make decisions.

Testing Conditions

A test is an algebraic or a command sequence that returns a test result
to the stack. A test result is either true—indicated by a value of 1—or

it is false—indicated by a value of 0.

To include a test in a program:

m To use stack syntax, enter the two arguments, then enter the test

command.

m To use algebraic syntax, enter the test expression (with '

delimiters).

You often use test results in conditional structures to determine

which clause of the structure to execute. Conditional structures are

described under “Using Conditional Structures” on page 26-4.

Test commands separate into three groups:

s Comparison functions. Compare two objects.

m Logical functions. Combine the results of previous tests.

m Flag-test commands. Test the states of flags, as described in chapter

28, “Flags.”

Tests and Conditional Structures 26-1

Example: Test whether or not X is less than Y. To use stack syntax,

enter ' <. To use algebraic syntax, enter '#<"'. (For both cases,

if X contains 5 and Y contains 10, then the test is true and 1 is

returned to the stack.)

Using Comparison Functions

Comparison functions compare two objects, using either stack syntax

or algebraic syntax.

Comparison Functions

Key Programmable Description

Command

iT (pages 1 and 2):

< Less than.

> Greater than.

= < Less than or equal to.

a > Greater than or equal to.

ma == Tests equality of two objects.

Not equal.

BHME SAME Identical. Like ==, but doesn’t allow a

comparison between the numerical value

of an algebraic (or name) and a
number. Also considers the wordsize of

a binary integer.
The comparison commands return 1 (true) or 0 (false) based on the
comparison—or an expression that can evaluate to 1 or 0. The order

of the comparison is “level 2 test level 1,” where test is the comparison

function.

All comparison commands except SAME return the following;:

m If neither object is an algebraic or a name, returns 1 if the two

objects are the same type and have the same value, or 0 otherwise.

For example,if 6 is stored in X, i & < puts 6 and 5 on the stack,

then removes them and returns 0. (Lists and programs are

considered to have the same value if the objects they contain are

identical. For strings, “less than” means “alphabetically previous.”)

26-2 Tests and Conditional Structures

m If one object is an algebraic (or name) and the other object is an

algebraic (or name) or a number, returns an expression that must be

evaluated to get a test result based on numeric values. For example,

if 6 is stored in X, '=' 5 < returns '¥<5', then =NUM returns 0.

(Note that == is used for comparisons, while = separates two sides of

an equation.)

SAME returns 1 (true) if two objects are identical. For example,

"w+3' 4 SAME returns 0 regardless of the value of X because the

algebraic '#+3' is not identical to the real number 4. Binary integers

must have the same wordsize and the same value to be identical. For

all object types other than algebraics, names, and binary integers,

SAME works just like ==.

You can use any comparison function (except SAME) in an algebraic

by putting it between its two arguments. For example, if 6 is stored in

X, "H45" +HUM returns 0.

Using Logical Functions

Logical functions return a test result based on the outcomes of two

previously executed tests. Note that these four functions interpret any

nonzero argument as a true result.

Logical Functions

Keys Programmable Description

Command

(PRG) TEET (page l):

HHE AND Returns 1 (true) only if both arguments
are true.

OR Returns 1 (true) if either or both
arguments are true.

HORE XOR Returns 1 (true) if either argument, but
not both, is true.

HOT NOT Returns 1 (true) if the argument is 0 (false); otherwise, returns 0 (false).

AND, OR, and XOR combine two test results. For example, if 4 is

stored in Y, % & < 5 AMD returns 1. First, ¥ & < returns 1 to the

Tests and Conditional Structures 26-3

26

stack. AND removes 1 and 5 from the stack, interpreting both as true

results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is

stored in X and 2 is stored in Y, & % < HOT returns 0.

You can use AND, OR, and XOR in algebraics as infiz functions. For

example, 'Z4 5 B04>7 ' +HUM returns 1.

You can use NOT as a prefiz function in algebraics. For example,

"MOT 224 +HUM returns 0 if 7 = 2.

Testing Object Types

The TYPE command ((PRG) TE&T THFE) takes any object as its
argument and returns the number that identifies that object type. For

example, "HELLD" TYFE returns 2, the value for a string object. See

the table of object types on page 4-19 to find HP 48 objects and their

corresponding type numbers.

Using Conditional Structures and Commands

Conditional structures let a program make a decision based on the

result of one or more tests. Conditional structures are built with

commands—called structure words—that work only when used in

proper combination with each other.

Conditional commands let you execute a decision-making process in

which the true-clause and false-clause are each a single command or

object.

These conditional structures and commands are contained in the PRG

BRCH menu ((PRG) EELH):

m [F..THEN..END structure.

m [F..THEN...ELSE...END structure.

m CASE...END structure.

m IFT (if-then) command.
m IFTE (if-then-else) function.

26-4 Tests and Conditional Structures

The IF...THEN...END Structure

The syntax for this structure is

IF test-clause THEHM true-clause EMD ... #

IF...THEN...END executes the sequence of commands in the

true-clause only if the test-clause evaluates to true. The test-clause

can be a command sequence (for example, f# E £) or an algebraic (for

example, 'A=E"). If the test-clause is an algebraic, it’s automatically

evaluated to a number—you don’t need —NUM or EVAL.

IF begins the test-clause, which leaves a test result on the stack.

THEN removes the test result from the stack. If the value is nonzero,

the true-clause is executed—otherwise, program execution resumes

following END.

To enter IF...THEN...END in a program:

m Press (PRG) EECH (&) IF

See “Conditional Examples” on page 26-7.

The IFT Command

The IFT command takes two arguments: a fest-result in level 2 and a

true-clause object in level 1. If the test-result is true, the true-clause

object is executed—otherwise, the two arguments are removed from

the stack.

To enter IFT in a program:

m Press BECH (&)(PREV): IFT

See “Conditional Examples” on page 26-7.

The IF...THEN...ELSE...END Structure

The syntax for this structure is

IF test-clause

THEH true-clause ELZE false-clause EMD'

IF..THEN...ELSE...END executes either the true-clause sequence of

commands if the fesi-clause is true, or the false-clause sequence of

commands if the test-clause is false. If the test-clause is an algebraic,

Tests and Conditional Structures 26-5

it’s automatically evaluated to a number—you don’t need —=NUM or

EVAL.

IF begins the test-clause, which leaves a test result on the stack.

THEN removes the test result from the stack. If the value is nonzero,

the true-clause is executed—otherwise, the false-clause is executed.

After the appropriate clause is executed, execution resumes following

END.

To enter IF...THEN...ELSE...END in a program:

m Press BELH () IE .

See “Conditional Examples” on page 26-7.

The IFTE Function

The algebraic syntax for this function is

"IFTE < tests true-clauses false-clause'

If test evaluates true, the true-clause algebraic is evaluated—

otherwise, the false-clause algebraic is evaluated.

You can also use the IFTE function with stack syntax. It takes three

arguments: a fest-result in level 3, a true-clause object in level 2, and

a false-clause object in level 1.

To enter IFTE in a program or in an algebraic:

m Press BECH (q)(PREV) IFIE .

See “Conditional Examples” on page 26-7.

The CASE...END Structure

The syntax for this structure is

CHZE

test-clause; THEHMtrue-clause; EMD

test-clauses THEHM true-clauseq EHL:

test-clause, THEHM true-clause, EMD

default-clause (optional)

EMD

26-6 Tests and Conditional Structures

The CASE...END structure lets you execute a series of test-clause

commands, then execute the appropriate true-clause sequence of

commands. The first test that returns a true result causes execution

of the corresponding true-clause, ending the CASE...END structure.

Optionally, you can include after the last test a default-clause that’s

executed if all the tests evaluate to false. If a test-clause is an

algebraic, it’s automatically evaluated to a number—you don’t need

—NUM or EVAL.

When CASE is executed, test-clause; is evaluated. If the test is true,

true-clause; is executed, and execution skips to END. If test-clause;

is false, execution proceeds to test-clauses. Execution within the

CASE structure continues until a true-clause is executed, or until all

the test-clauses evaluate to false. If a default clause is included, it’s

executed if all the test-clauses evaluate to false.

To enter CASE...END in a program:

1. Press BECH(u) CAE
CASE...THEN...END...END.

2. For each additional test-clause, move the cursor after a test-clause

END and press (o) o enter THEN...END.

See “Conditional Examples” below.

Conditional Examples

These examples illustrate conditional structures in programs.

Example: One Conditional Action. Both programs below test the
value in level 1—if the value is positive, it’s made negative. The first

program uses a command sequence as the test-clause:

DUF IF & > THEM HMEG EMD =

The value on the stack must be duplicated because the > command

removes two arguments from the stack (0 and the copy of the value

made by DUP).

The following version uses an algebraic as the test clause:

% x % x IF 'w>B' THEM HEG EMD » @

The following version uses the IFT command:

£ DUP 8 » = MEG » IFT %

Tests and Conditional Structures 26-7

Example: One Conditional Action. This program multiplies two
numbers if both are nonzero.

Program: Comments:

wowouy Creates local variables z and y

containing the two numbers from

the stack.

iF Starts the test-clause.

PrEl ! Tests one of the numbers and

leaves a test result on the stack.

! Tests the other number, leaving

another test result on the stack.

AR Tests whether both tests were

true.

THEH Ends the test-clause, starts the

true-clause.

Wod ¥ Multiplies the two numbers

together only if AND returns

true.

EMD Ends the true-clause.

The following program accomplishes the same task as the previous

program:

0% oo & IF 'w AMD g THEM = g % EMD ® 3

The test-clause " AMD u' returns “true” if both numbers are

nonzero.

The following version uses the IFT command:

o owog o tw AMD g TwmEgt IFT 3 ow

26-8 Tests and Conditional Structures

Example: Two Conditional Actions. This program takes a value z
from the stack and calculates sin z/z. At # = 0 the division would
error, so the program returns the limit value 1 in this case.

#0 owo# IF 'wmB@ THEM = SIM = o ELSE 1 EHD = 3

The following version uses IFTE algebraic syntax:

o ow CIFTEC ==, SIHC:!

g 10!

Example: Two Conditional Actions. This program multiplies two
numbers together if they’re both nonzero—otherwise, it returns the

string "ZEROY.

Program: Comments:

* nl n# Creates the local variables.

£ Starts the defining procedure.

IF Starts the test clause.

ril=E AHD nE=0t Tests n1 and n2.

THEH If both numbers are nonzero,

ni nE o# multiplies the two values.

ELEE Otherwise, returns the string
"FZEROY RO,

EM Ends the conditional.

s Ends the defining procedure.

Tests and Conditional Structures 26-9

Example: Two Conditional Actions. This program tests if two

numbers on the stack have the same value. If so, it drops one of the

numbers and stores the other in variable V1—otherwise, it stores the

number from level 1 in V1 and the number from level 2 in V2.

Program:

IF

LUFE

SAME

THEH

DROF

W1YOETO

ELSE

W1YOSTO

Y2 ST
EHL

(D TST

Comments:

For the test clause, copies the

numbers in levels 1 and 2 and

tests if they have the same value.

For the true clause, drops one of

the numbers and stores the other

in V1.

For the false clause, stores the

level 1 number in V1 and the

level 2 number in V2.

Ends the conditional structure.

Puts the program on the stack.

Stores it in TST.

Enter the numbers 26 and 52, then execute TST to compare their

values. Because the two number aren’t equal, the VAR menu now

contains two new variables V1 and V2.

26 (ENTER) 52
TET

[v2 |w1 [7T[TOREN[TOREA[S

26-10 Tests and Conditional Structures

Example: Multiple Conditional Actions. The following program
stores the level 1 argument in a variable if the argumentis a string,
list, or program.

Program: Comments:

¥ oy Defines local variable y.

i Starts the defining procedure.

CARSE Starts the case structure.

Case 1: If the argument is a
g TYFE 2 SAME string, stores it in STR.

THEM o '"STE' STO EHMD

Case 2: If the argument is a list,

g TYFE 5 SAME stores it in LIST.

THEH o 'LIST' STO EHD
Case 3: If the argument is a

y TYPE & SAME program, stores it in PROG.

THEM o "PROGY STO EMD

EHD Ends the case structure.

Ends the defining procedure.

Example: Stack Syntax. This program takes a value from level
1 and displays FOSITIVE if it is positive or zero, and HEGATIYE

otherwise: (The > command compares the number with 0 and returns

a test result for the IFTE command.)

B o= "POSITIVE" "MEGATIWE" IFTE *

Example: Algebraic Syntax. This program is a user-defined

function that takes a number (z) from the stack and calculates
sin(z)/z. If z is 0, the program returns 1.

Tests and Conditional Structures 26-11

27
Loop Structures

You can use loop structures to execute a part of

a program repeatedly. To specify in advance how

many times to repeat the loop, use a definite loop.

To use a test to determine whether or not to repeat

the loop, use an indefinite loop.

Loop structures let a program execute a sequence of commands several

times. Loop structures are built with commands—called structure 27

words—that work only when used in proper combination with each

other. These loop structure commands are contained in the PRG

BRCH menu ((PRG)

START..NEXT and START...STEP.

FOR...NEXT and FOR...STEP.

DO...UNTIL...END.

WHILE..REPEAT...END.

In addition, the ¥ function provides an alternative to definite loop

structures for summations.

Using Definite Loop Structures

Each of the two definite loop structures has two variations:

m NEXT. The counter increases by 1 for each loop.

m STEP. The counter increases or decreases by a specified amount for

each loop.

Loop Structures 27-1

The START...NEXT Structure

The syntax for this structure is

. start finish START loop-clause HEXET ... ®

START..NEXT executes the loop-clause sequence of commands one

time for each number in the range start to finish. The loop-clause is

always executed at least once.

Syntax Flowchart

start 1: start

finish 2: finish

START counter=start

Store finish

v

loop-clause Body of loop <

counter=

counter+1 yes

NEXT ¢/

 Is

counter < »>——
finish?

START...NEXT Structure

START takes two numbers (start and finish) from the stack and stores

them as the starting and ending values for a loop counter. Then, the

loop-clause is executed. NEXT increments the counter by 1 and tests

to see if its value is less than or equal to finish. If so, the loop-clause

is executed again—otherwise, execution resumes following NEXT.

27-2 Loop Structures

To enter START...NEXT in a program:

m Press BECH(9)

Example: The following program creates a list containing 10 copies
of the string "RECH:

1 18 START "ABC" HEXT 18 +LIST =

 Loop Structures 27-3

The START...STEP Structure

The syntax for this structure is

. start finish START loop-clause

increment STEF ... »

START...STEP executes the loop-clause sequence just like

START..NEXT does—except that the program specifies the

increment value for the counter, rather than incrementing by 1. The

loop-clause is always executed at least once.

Syntax Flowchart

start
. 1: start

finish 2: finish

START counter=start

Store finish

Bodyofloop |<

v
1: increment yes

loop-clause

increment

counter=counter+

increment

STEP ‘L

 Is

counter <
finish?

START...STEP Structure

27-4 Loop Structures

START takes two numbers (start and finish) from the stack and stores
them as the starting and ending values of the loop counter. Then
the loop-clause is executed. STEP takes the increment value from

the stack and increments the counter by that value. If the argument

of STEP is an algebraic or a name, it’s automatically evaluated to a

number.

The increment value can be positive or negative. If it’s positive, the

loop is executed again if the counter is less than or equal to final. If

the increment value is negative, the loop is executed if the counter is

greater than or equal to final. Otherwise, execution resumes following

STEP. In the following flowchart, the increment value is positive.

To enter START...STEP in a program:

m Press EF (@)iHET.

Example: The following program takes a number z from the stack

and calculates the square of that number several times (z/3 times):

[P =+ = % w1 START = 50 -3 STERP » @

Loop Structures 27-5

The FOR...NEXT Structure

The syntax for this structure is

. start finish FORE counter loop-clause HERT ... *

FOR..NEXT executes the loop-clause program segment one time for

each number in the range start to finish, using local variable counter

as the loop counter. You can use this variable in the loop-clause. The

loop-clause is always executed at least once.

Syntax Flowchart

start 1: start

finish 2: Tish

counter=start
FOR Store finish

v
loop-clause Bodyofloop <

Counter= yes

counter +1

NEXT

FOR...NEXT Structure

FOR takes start and finish from the stack as the beginning and ending

values for the loop counter, then creates the local variable counter as a

loop counter. Then the loop-clause is executed—counter can appear

within the loop-clause. NEXT increments counier-name by one, and

then tests whether its value is less than or equal to finish. If so, the

27-6 Loop Structures

loop-clause is repeated (with the new value of counter)—otherwise,
execution resumes following NEXT. When the loop is exited, counter
is purged.

To enter FOR...NEXT in a program:

m Press (&)EO

Example: The following program places the squares of the integers 1
through 5 on the stack:

“ 1 5 FOR § j 50 HEHT =
Example: The following program takes the value z from the stack
and computes the integer powers i of z. For example, when z = 12
and start and finish are 3 and 5 respectively, the program returns 123,
12%) and 12°. It requires as inputs start and finish in levels 3 and 2,
and z in level 1. (+ = removes z from the stack, leaving start and
finish there as arguments for FOR.)

@ % w & FOR n 'w*n' EVAL MEXT »

Loop Structures 27-7

The FOR...STEP Structure

The syntax for this structure is

start finish FORE counter loop-clause increment STEF

FOR...STEP executes the loop-clause sequence just like FOR..NEXT

does—except that the program specifies the increment value for

counter, rather than incrementing by 1. The loop-clause is always

executed at least once.

Syntax Flowchart

start 1: start

finish 2: finish

FOR counter=start
Store finish

loop-clause Body of loop <

increment 1:increment

counter=counter+

increment

STEP

FOR...STEP Structure

yes

FOR takes start and finish from the stack as the beginning and ending

values for the loop counter, then creates the local variable counter as a

27-8 Loop Structures

loop counter. Next, the loop-clause is executed—-counter can appear

within the loop-clause. STEP takes the increment value from the
stack and increments counter by that value. If the argument of STEP

is an algebraic or a name, it’s automatically evaluated to a number.

The increment value can be positive or negative. If the increment is

positive, the loop is executed again if counter is less than or equal

to final. If the increment is negative, the loop is executed if counter

is greater than or equal to final. Otherwise, counter is purged and

execution resumes following STEP. In the following flowchart, the

increment value is positive.

To enter FOR...STEP in a program:

m Press BECH ()EOE

Example: The following program places the squares of the integers 1,

3,5, 7, and 9 on the stack:

2 1 % FOR = = SR 2 STEPRP =

Example: The following program takes n from the stack, and returns

the series of numbers 1, 2,4, 8, 16, ... , n. If n isn’t in the series, the

program stops at the last value less than n.

€ 1 SWAF FOR n n n STEP »

Loop Structures 27-9

Using Indefinite Loop Structures

The DO...UNTIL...END Structure

The syntax for this structure is

. 00 loop-clause UMTIL test-clause EMD ... =

DO...UNTIL...END executes the loop-clause sequence repeatedly until

test-clause returns a true (nonzero) result. Because the test-clause is
executed after the loop-clause, the loop-clause is always executed at

least once.

Syntax Flowchart

DO

loop-clause Body of loop <

UNTIL \l/

Test

test-cl |clause v no

1: test result

Is

END test result
on-zero?

DO...UNTIL...END Structure

DO starts execution of the loop-clause. UNTIL marks the end of

the loop-clause. The test-clause leaves a test result on the stack.

END removes the test result from the stack. If its value is zero,

the loop-clause is executed again—otherwise, execution resumes

27-10 Loop Structures

following END. If the argument of END is an algebraic or a name, it’s

automatically evaluated to a number.

To enter DO...UNTIL...END in a program:

m Press BECH (9 bo.

Example: The following program calculates n + 2n + 3n+ ... for

a value of n. The program stops when the sum exceeds 1000, and

returns the sum and the coefficient of =n.

Program: Comments:

DR 1 Duplicates n, stores the value into

+ 0= o n and s, and initializes ¢ to 1.

k3 Starts the defining procedure.

Do Starts the loop-clause.

ot IHCR Increments the counter by 1. (See

“Using Loop Counters” on page

27-13.)

rvo¥ t=' BETO+ Calculates ¢ X n and adds the

product to s.

UMTIL Starts the test clause.

= l8gg > Repeats loop until s > 1000.

EHD Ends the test-clause.

= Puts s and ¢ on the stack.

% Ends the defining procedure.

Loop Structures 27-11

The WHILE...REPEAT...END Structure

The syntax for this structure is

. WHILE test-clause REFERT loop-clause EMHE ... %

WHILE...REPEAT...END repeatedly evaluates test-clause and

executes the loop-clause sequence if the test is true. Because the

test-clause is executed before the loop-clause, the loop-clause is not

executed if the test is initially false.

Syntax Flowchart

WHILE

(—> Test

test-clause ¢

1: test result

REPEAT i/

 test result

non-zero?

i’ yes

Body of loop

 loop-clause

END

WHILE...REPEAT...END Structure

WHILE starts execution of the test-clause, which returns a test result

to the stack. REPEAT takes the value from the stack. If the value

is nonzero, execution continues with the loop-clause—otherwise,

execution resumes following END. If the argument of REPEAT is an

algebraic or a name, it’s automatically evaluated to a number.

27-12 Loop Structures

To enter WHILE...REPEAT...END in a program:

m Press (PRG) H (eq)HHILE.

Example: The following program starts with a number on the stack,

and repeatedly performs a division by 2 as long as the result is evenly

divisible. For example, starting with the number 24, the program

computes 12, then 6, then 3.

WHILE DURP 2 Mol © == REPERT Z -~ DUF EHMD DROP =

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.

(The vectors and arrays must have the same number of columns.)
WHILE...REPEAT...END is used instead of DO...UNTIL...END

because the test must be done before the addition. (If only vectors

or arrays with the same number of columns are on the stack, the

program errors after the last vector or array is added to the statistics

matrix.)

WHILE DUF TYPE 2 == EEPERT E+ EHMD =

Using Loop Counters

For certain problems you may need a counter inside a loop structure

to keep track of the number of loops. (This counter isn’t related to the
counter variable in a FOR...NEXT/STEP structure.) You can use any
global or local variable as a counter. You can use the INCR or DECR

command to increment or decrement the counter value and put its

new value on the stack.

The syntax for INCR and DECR are

. ‘wariable' IMCE ... =

or

. ‘wvariable' DECR ... =

Loop Structures 27-13

To enter INCR or DECR in a program:

m Press (@)(MEMORY) IHCE or [

The INCR and DECR commands take a global or local variable name

(with ' delimiters) as its argument—the variable must contain a real
number. The command does the following:

1. Changes the value stored in the variable by +1 or —1.

2. Returns the new value to the stack.

Example: If ¢ contains the value 5, then '=' IMHCEstores 6 in ¢ and

returns 6 to the stack.

Example: The following program takes a maximum of five vectors

from the stack and adds them to the current statistics matrix.

Program:

I L
A

27-

=+ -

WHILE

DUF TYPE 3 ==

' IHCE

14 Loop Structures

Comments:

Stores 0 in local variable c.

Starts the defining procedure.

Starts the test clause.

Returns true if level 1 contains a

vector.

Increments and returns the value

n c.

Returns true if the counter ¢ <'5.

Returns true if the two previous

test results are true.

Adds the vector to YDAT.

Ends the structure.

Ends the defining procedure.

Using Summations instead of Loops

For certain calculations that involve summations, you can use the

Y. function instead of loops. You can use X with stack syntax or

with algebraic syntax. ¥ automatically repeats the addition for the

specified range of the index variable—without using a loop structure.

Example: The following programs take an integer upper limit n from

the stack, then find the summation

n

>4
j=1

One program uses a FOR..NEXT loop—the other uses X.

Program: Comments:

g 1 ROT Initializes the summation and

puts the limits in place.

FOR Loops through the calculation.

i 5@ o+

HEXT

Program: Comments:

+ Uses X to calculate the

TECi=lama2! summation.

Example: The following program uses X to calculate the summation

of all elements of a vector or matrix. The program takes from the

stack an array or a name that evaluates to an array, and returns the

summation.

Loop Structures 27-15

Program:

EvAL DUP SIZE OBJ=»

IF 1 ==
THEH

* an

"ECislinaaiiny’

ELZE

= amn

lz':.j=15|'"|_! E'il::=1,-l“|_-

ikl

EHMD

27-16 Loop Structures

Comments:

Finds the dimensions of the array

and the number of dimensions.

Tests for one dimension (vector).

For a vector, sums the vector

elements.

For a matrix, sums the matrix

elements.

28
Flags

You can use flags to control calculator

behavior and program execution. You can

think of a flag as a switch that is either on

(set) or off (clear). You can test a flag’s state
e within a conditional or loop structure to make

fl a decision. Because certain flags have unique

meanings for the calculator, flag tests expand

a program’s decision-making capabilities beyond that available with

comparison and logical functions.

Types of Flags

The HP 48 has two types of flags:

m System flags. Flags —1 through —64. These flags have predefined

meanings for the calculator.

m User flags. Flags 1 through 64. User flags are not used by any

built-in operations. What they mean depends entirely on how the

program uses them.

Appendix E lists the 64 system flags and their definitions. For

example, system flag —40 controls the clock display—when this flag is

clear (the default state), the clock is displayed only when the TIME

menu is selected—when this flag is set, the clock is displayed at all

times. (Actually, when you press LE in the MODES menu, you

set or clear flag —40.)

When you set user flag 1 through 5, the corresponding annunciator is

turned on. Certain plug-in cards may use one or more user-flags in the

range 31 through 64.

Flags 28-1

Setting, Clearing, and Testing Flags

Flag commands take a flag number from the stack—an integer 1

through 64 (for user flags) or —1 through —64 (for system flags).

To set, clear, or test a flag:

1. Enter the flag number (positive or negative).
2. Execute the flag command—see the table below.

Flag Commands

Programmable

Command

Description

SF

CF

FS?

FC?

FS?C

FC?C

PRG) TESZT (page 3) or (»)(MODES) (pages 2 and 3):

Sets the flag.

Clears the flag.

Returns 1 (true) if the flag is set, or 0
(false) if the flag is clear.

Returns 1 (true) if the flag is clear, or 0
(false) if the flag is set.

Tests the flag (returns true if the flag is

set), then clears the flag.

Tests the flag (returns true if the flag is
clear), then clears the flag.

Example: System Flag. The following program sets an alarm for

June 6, 1991 at 5:05 PM. It first tests the status of system flag —42

(Date Format flag) in a conditional structure and then supplies the

alarm date in the current date format, based on the test result.

28-2 Flags

Program: Comments:

IF Tests the status of flag —42, the

-42 FC7 Date Format flag.

THEHM If flag —42 is clear, supplies the

£, 151991 date in month/day/year format.

ELSE If flag —42 is set, supplies the

i5. 881991 date in day.month.year format.

EHD Ends the conditional.

1V.85 "TEST COMPLETE® Sets the alarm: 17.05 is the alarm

2 +LIST STORLARM time and “TEST COMPLETE”
is the alarm message.

Example: User Flag. The following program returns either the
fractional or integer part of the number in level 1, depending on the

state of user flag 10.

Program: Comments:

IF Starts the conditional.

i Fg7v Tests the status of user flag 10.

THEHM If flag 10 is set, returns the

IF integer part.

ELSE If flag 10 is clear, returns the

FP fractional part.

EHD Ends the conditional.

To use this program, you enter a number, either set flag 10 (to get the

integer part) or clear flag 10 (to get the fractional part), then run the

program.

Flags 28-3

Recalling and Storing the Flag States

If you have a program that changes the state of one or more flags

during execution, you may also want it to save and restore the original

flag states.

The RCLF (recall flags) and STOF (store flags) commands let you
recall and store the states of the HP 48 flags. For these commands,

a 64-bit binary integer represents the states of 64 flags—each 0 bit

corresponds to a flag that’s clear, each 1 bit corresponds to a flag

that’s set. The rightmost (least significant) bit corresponds to system
flag —1 or user flag 1.

To recall the current flag states:

m Execute RCLF (((»)(MODES) (NXT) RLLFE).

RCLF returns a list containing two 64-bit binary integers representing

the current states of the system and user flags:

L #ng #ny, 2

To change the current flag states:

1. Enter the flag-state argument—see below.

2. Execute STOF ((»)(MODES) ST0R).

STOF sets the current states of flags based on the flag-state argument:

#ng Changes the states of only the system flags.

{ #ns #ny, + Changes the states of the system and user flags.

Example: The program PRESERVE on page 31-8 uses RCLF and

STOF.

28-4 Flags

29
Interactive Programs

Simple programs like those in chapter 25 use data

supplied before program execution and return

results as simple numbers. Such programs may

be difficult to use, particularly if they’re not

documented. You must know what arguments to

enter and in what order, and you must know how

to interpret the results returned to the stack.

If you use interactive programs, they can prompt for data, display

results with explanatory messages or tags, and allow you to choose

how to proceed.

Stopping for Data Input

A program can stop for user input, then resume execution. You can

use several commands to prepare for and suspend execution:

s PROMPT ((¢9)(CONT) to resume).
m DISP FREEZE HALT ((&9)(CONT) to resume).
s INPUT ((ENTER) to resume).

Using PROMPT...CONT for Input

PROMPT uses the status area for prompting, and allows the user to

use normal keyboard operations during input.

Interactive Programs 29-1

To enter PROMPT in a program:

1. Enter a string (with * * delimiters) to be displayed as a prompt in

the status area.
2. Enter the PROMPT command (PRG CTRL menu).

"prompt-siring” FROMFT ... #

PROMPT takes a string argument from level 1, displays the string

(without the " " delimiters) in the status area, and halts program

execution. Calculator control is returned to the keyboard.

When execution resumes, the input is left on the stack as entered.

To respond to PROMPT while running a program:

1. Enter your input—you can use keyboard operations to calculate the

input.

2. Press ()(CONT).

The message is displayed until you press or or until

you update the status area (for example, by pressing («q)(REVIEW)).

Example: If you execute this program segment

& "ABCT" FROMFT 3

the display looks like this:

ABC?

4:
3

¢
PARTS]PEETHTP|HATE[VECTE]EAZE

Example: The following program, TPROMPT, prompts you for the

dimensions of a torus, then calls program TORSA (from page 25-19)

to calculate its surface area. You don’t have to enter data on the stack

prior to program execution.

Arguments Results

1% area

29-2 Interactive Programs

Program: Comments:

"EMTER &, b IM ORDER:® Puts the prompting string on the

stack.

FROMFT Displays the string in the status

area, halts program execution,

and returns calculator control to

the keyboard.

TOREA Executes TORSA using the

just-entered stack arguments.

() TPROMPT Stores the program in
TPROMPT.

Execute TPROMPT to calculate the volume of a torus with inner

radius a = 8 and outer radius b = 10.

Execute TPROMPT. The program prompts you for data.

®)(CR) ENTER a. b IN ORDER:
‘»:.-:: i i

1:
TRITOlTT

Enter the inner and outer radii. After you press (ENTER), the prompt

message is cleared from the status area.

8 10 HALT

8

Continue the program.

@D

TRED] M2W1TET[TOR:EV|TOREA

Note that when program execution is suspended by PROMPT, you

can execute calculator operations just as you did before you started

the program. If the outer radius b of the torus in the previous

example 1s measured as 0.83 feet, you can convert that value to inches

Interactive Programs 29-3

while the program is suspended for data input by pressing .83

12), then (&)(CONT).

Using DISP FREEZE HALT...CONT for Input

DISP FREEZE HALT lets you control the entire display during input,

and allows the user to use normal keyboard operations during input.

To enter DISP FREEZE HALT in a program:

Enter a string or other object to be displayed as a prompt.

Enter a number specifying the line to display it on.

Enter the DISP command (PRG CTRL menu).
Enter a number specifying the areas of the display to “freeze.”

Enter the FREEZE command (PRG CTRL menu).
Enter the HALT command (PRG CTRL menu).O

O
N

. prompt-object display-line LIZF

freeze-area FREEZE HALT ... =

DISP displays an object in a specified line of the display. DISP

takes two arguments from the stack: an object from level 2, and a

display-line number 1 through 7 from level 1. If the object is a string,

it’s displayed without the " " delimiters. The display created by

DISP persists only as long as the program continues execution—if the

program ends or is suspended by HALT, the calculator returns to the

normal stack environment and updates the display. However, .you can

use FREEZE to retain the prompt display.

FREEZE “freezes” one or more display areas so they aren’t updated

until a key press. Argument n in level 1 is the sum of the codes for

the areas to be frozen: 1 for the status area, 2 for the stack/command

line area, 4 for the menu area.

HALT suspends program execution at the location of the HALT

command and turns on the HALT annunciator. Calculator control is

returned to the keyboard for normal operations.

When execution resumes, the input remains on the stack as entered.

To respond to HALT while running a program:

1. Enter your input—you can use keyboard operations to calculate the

input.

2. Press (&)(CONT).

29-4 Interactive Programs

Example: If you execute this program segment

"AECeDEFeGHI" CLLCD 1 DISF 2 FREEZE HALT =

the display looks like this:

ABC
DEF

 [PETE]PROEHVP[HATE[VECTR]BRZE

(The = in the previous program is the calculator’s representation for

the # newline character after you enter a program on the stack.)

Using INPUT...ENTER for Input

INPUT lets you use the stack area for prompting, lets you supply

default input, and prevents the user from using normal stack

operations or altering data on the stack.

To enter INPUT in a program:

1. Enter a string (with " " delimiters) to be displayed as a prompt at

the top of the stack area.

2. Enter a string or list (with delimiters) that specifies the
command-line content and behavior—see below.

3. Enter the INPUT command (PRG CTRL menu).
4. Enter OBJ— (PRG OBJ menu) or other command that processes

the input as a string object.

. "prompt-string" "command-line" IHFUT OB+ ... =

or

. "prompi-string" < command-liner IHFUT OB.d+ ... =

INPUT,in its simplest form, takes two strings as arguments—see the

list of additional options following. INPUT blanks the stack area,

displays the contents of the level-2 string at the top of the stack area,

and displays the contents of the level-1 string in the command line.

Program-entry mode is activated, the puts the insert cursor after the

string in the command line, and suspends execution.

Interactive Programs 29-5

When execution resumes, the input is returned to level 1 as a string

object, called the result string.

To respond to INPUT while running a program:

1. Enter your input. (You can’t execute commands—they’re simply

echoed in the command line.)
2. Optional: To clear the command line and start over, press (ATTN).

3. Press (ENTER).

Example: If you execute this program segment

"Wariable name?" "iVAR:D " IHPUT =

the display looks like this:

PRG
{ HOME }

Variable name?

:VAR: +
ARRAIRe

Example: The following program, VSPH, calculates the volume of a

sphere. VSPH prompts for the radius of the sphere, then multiplies by

4/3 m. VSPH executes INPUT to prompt for the radius. INPUT sets

Program-entry mode when program execution pauses for data entry.

Arguments Results

 1% volume

29-6 Interactive Programs

Program: Comments:

ey in radius® Specifies the prompt string.

e Specifies the command-line string.

In this case, the command line

will be empty.

IHFUT Displays the prompt, puts the

cursor at the start of the

command line, and suspends the

program for data input (the

radius of the sphere).

OB Converts the result string into its

component object—a real

number.

2 Cubes the radius.

4 % 3 o ow ¥ +HUM Completes the calculation.

() VSPH Stores the program in VSPH. 29 ¢

Execute VSPH to calculate the volume of a sphere of radius 2.5.

VAR) WEEH PRG
{ HOME }

Keg in radius

*
ITITIT

Key in the radius and continue program execution.

25 1: £5. 4498469497
ITTTIT

To include INPUT options:

m Use a list (with © » delimiters) as the command-line argument for
INPUT. The list can contain one or more of the following:

o Command-line string (with " " delimiters).
o Cursor position as a real number or as a list containing two real

numbers.

o Operating options ALG, =, or %.

Interactive Programs 29-7

In its general form, the level 1 argument for INPUT is a list that

specifies the content and interpretation of the command line. The list

can contain one or more of the following parameters in any order:

"command-line™ cursor-position operating-options

"command-line*

cursor-position

operating-options

Specifies the content of the command line

when the program pauses. Embedded newline

characters produce multiple lines in the display.

(If not included, the command line is blank.)

Specifies the position of the cursor in the

command line and its type. (If not included, an

insert cursor is at the end of the command line.)

m A real number n specifies the nth character

in the first row (line) of the command line. 0
specifies the end of the command-line string. A

positive number specifies the insert cursor—a

negative number specifies the replace cursor.

m A list {row characterspecifies the row and

character position. Row 1 is the first row (line)
of the command line. Characters count from

the left end of each row—character 0 specifies

the end of the row. A positive row number

specifies the insert cursor—a negative row

number specifies the replace cursor.

Specify the input setup and processing using zero

or more of these unquoted names:

m ALG activates Algebraic/Program-entry mode

(for algebraic syntax). (If not included,
Program-entry mode is active.)

n = ((@) ()(A)) specifies alpha lock. (If not
included, alpha is inactive.)

m verifies whether the result string (without the
" " delimiters) is a valid object or sequence of
objects. If the result string isn’t valid, INPUT

displays the Imwalid Sunt ax message and

prompts again for data. (If not included, syntax

isn’t checked.)

29-8 Interactive Programs

To design the command-line string for INPUT:

m For simple input, use a string that produces a valid object:

o Use an empty string.

o Use a tlabel: tag.
o Use a Etext® comment.

m For special input, use a string that produces a recognizable pattern.

After the user enters input in the command line and presses

to resume execution, the contents of the command line are returned

to level 1 as the result string. The result string normally contains the

original command-line string, too. If you design the command-line

string carefully, you can ease the process of extracting the input data.

To process the result string from INPUT:

m For simple input, use OBJ— to convert the string into its

corresponding objects.

m For sensitive input, use the % option for INPUT to check for valid

objects, then use OBJ— to convert the string into those objects.

m For special input, process the input as a string object, possibly

extracting data as substrings.

Example: The program VSPH on page 29-6 uses an empty

command-line string.

Exampie: The program SSEC on page 29-11 uses a command-line

string whose characters form a pattern. The program extracts

substrings from the result string.

Example: The command-line string "EUFFER LIMITE" displays

EUFFER LIMIT®4 in the command line. If you press 200 (ENTER),

the return string is "BUFFER LIMITEZ2688". When OBJ— extracts

the text from the string, it strips away the @ characters and the

enclosed characters, and it returns the number 200. (See “Creating
Programs on a Computer” on page 25-12 for more information about

@ comments.)

Example: The following program, TINPUT, executes INPUT to

prompt for the inner and outer radii of a torus, then calls TORSA

(page 25-19) to calculate its surface area. TINPUT prompts for a and

b in a two-row command line. The level 1 argument for INPUT is a

list that contains:

Interactive Programs 29-9

m The command-line string, which forms the tags and delimiters for

two tagged objects.

m An embedded list specifying the initial cursor position.

m The % parameter to check for invalid syntax in the result string.

Arguments Results

 13 area

Program:

"Eew in as bBY

it a 3 t! = i 1 E.l Pl

ITHPUT

OB

TORSH

() TINPUT

29-10 Interactive Programs

Comments:

The level 2 string, displayed at

the top of the stack area.

The level 1 list contains a string,

a list, and the verify option. (To

key in the string, press ()™

2@@b
After you press to put

the finished program on the stack,

the string is shown on one line,

with & indicating the newline

character.) The embedded list
puts the insert cursor at the end

of row 1.

Displays the stack and

command-line strings, positions

the cursor, sets Program-entry

mode, and suspends execution for

input.

Converts the string into its

component objects—two tagged

objects.

Calls TORSA to calculate the

surface area.

Stores the program in TINPUT.

Execute TINPUT to calculate the surface area of a torus of inner

radius @ = 10 and outer radius b = 20.

TiHEn
-

{ HOME }
Key in as b

 gt
LLTIR GITNRS

Key in the value for a, press (¥) to move the cursor to the next

prompt, then key in the value for b.

10 (¥) 20

Continue program execution.

TIMPU|MZPH|TRRO] W2W1TET

Example: The following program executes INPUT to prompt for a

social security number, then extracts two strings: the first three digits

and last four digits. The level-1 argument for INPUT specifies:

m A command-line string with dashes.

m The replace cursor positioned at the start of the prompt string (—1).

This lets the user “fill in” the command line string, using () to skip

over the dashes in the pattern.

m By default, no verification of object syntax—the dashes make the

content invalid as objects.

Arguments Results

i first three digits™

1: "last four digits"

Interactive Programs 29-11

Program: Comments:

"Feg in S.5. #" Prompt string.

A - - -1l Command-line string (3 spaces

before the first —, 2 spaces

between, and 4 spaces after the

last —.

IHFUT Suspends the program for input.

DUF 1 3 SUE Copies the result string, then

SHAF extracts the first three and last

= 11 sSUR four digits in string form.

() SSEC Stores the program in SSEC.

Beeping to Get Attention

The BEEP command lets you enhance an interactive program with

audible prompting.

To enter BEEP in a program:

1. Enter a number that specifies the tone frequency in hertz.

2. Enter a number that specifies the tone duration in seconds.

3. Enter the BEEP command (PRG CTRL menu).

... frequency duration BEEF ... *

BEEP takes two arguments from the stack: the tone frequency from

level 2 and the tone duration from level 1.

Example: The following edited version of TPROMPT sounds a

440-hertz, one-half-second tone at the prompt for data input.

Program: Comments:

"EMTER =, b IM ORDER:™

448 .5 BEEF Sounds a tone just before the

prompt for data input.

FROMFT

TORSA

29-12 Interactive Programs

Stopping for Keystroke Input

A program can stop for keystroke input—it can wait for the user to

press a key. You can do this with the WAIT and KEY commands.

Using WAIT for Keystroke Input

The WAIT command normally suspends execution for a specified

number of seconds. However, you can specify that it wait indefinitely

until a key is pressed.

To enter WAIT in a program:

m To stop without changing the display, enter 0 and the WAIT

command (PRG CTRL menu).
m To stop and display the current menu, enter —1 and the WAIT

command (PRG CTRL menu).

WAIT takes the 0 or —1 from level 1, then suspends execution until a 29 ¢

valid keystroke is executed.

For an argument of —1, WAIT displays the currently specified menu.

This lets you build and display a menu of user choices while the

program is paused. (A menu built with MENU or TMENU is not

normally displayed until the program ends or is halted.)

When execution resumes, the three-digit key location number of

the pressed key is left on the stack. This number indicates the

row, column, and shift level of the key. (Key location numbers are

explained under “Assigning User Keys” on page 15-6.)

To respond to WAIT while running a program:

m Press any valid keystroke. (A prefix key such as (&) or (&) by itself

is not a valid keystroke.)

Using KEY for Keystroke Input

You can use KEY inside an indefinite loop to “pause” execution until

any key—or a certain key—is pressed.

Interactive Programs 29-13

To enter a KEY loop in a program:

1. Enter the loop structure.

2. In the test-clause sequence, enter the KEY command (PRG CTRL
menu) plus any necessary test commands.

3. In the loop-clause, enter no commands to give the appearance of a

“paused” condition.

KEY returns 0 to level 1 when the loop begins. It continues to return

0 until a key is pressed—then it returns 1 to level 1 and the two-digit

row-column number of the pressed key to level 2. For example,

returns 51, and (eq) returns 71.

The test-clause should normally cause the loop to repeat until a key 1s

pressed. If a key is pressed, you can use comparison tests to check the

value of the key number. (See “Using Indefinite Loop Structures” on
page 27-10 and “Using Comparison Functions” on page 26-2.)

To respond to a KEY loop while running a program:

m Press any key. (A prefix key such as (&) or (@) is a valid key.)

Example: The following program segment returns 1 to level 1 if

is pressed, or 0 to level 1 if any other key is pressed:

CoDD UMTIL EEY EMD 95 SAHME L o®

Displaying Program Output

You can determine how a program presents its output. You can make

the output more recognizable using the techniques described in this

section.

Labeling Output with Tags

To label a result with a tag:

1. Put the output object on the stack.

2. Enter a tag—a string, a quoted name, or a number.

3. Enter the —=TAG command (PRG OBJ menu).

. object tag +TAG ...

29-14 Interactive Programs

—TAG takes two arguments—an object and a tag—from the stack
and returns a tagged object.

Example: The following program TTAG is identical to TINPUT,
except that it returns the result as AREF: value.

Program: Comments:

1 83

Enters the tag (a string).

Uses the program result and

string to create the tagged object.

C) TTAG Stores the program in TTAG.

Execute TTAG to calculate the area of a torus of inner radius a = 1.5

and outer radius b = 1.85. The answer is returned as a tagged object.

1: AREA: 11.5721111663
1.5 (¥) 1.85 [TThi[35EC[TINPUWEPHTTPRO [V2 |

Labeling and Displaying Output as Strings

To label and display a result as a string:

Put the output object on the stack.

Enter the —STR command (PRG OBJ menu).
Enter a string to label the object (with " " delimiters).
Enter the SWAP + commands to swap and concatenate the strings.

Enter a number specifying the line to display the string on.

Enter the DISP command (PRG CTRL menu).

. object +ETR label SHWAF + lne DISF ... 3

DISP displays a string without its * * delimiters.

Interactive Programs 29-15

Example: The following program T'STRING is identical to TINPUT,

except that it converts the program result to a string and appends a

labeling string to it.

Program: Comments:

YReg in a@s bBY

L Yigisibet L1 @3 W

IHPUT OB+

TORSA
+E5TR Converts the result to a string.

"Area = " Enters the labeling string.

SWAR + Swaps and adds the two strings.

CLLch 1 DISF 1 FREEZE Displays the resultant string,

without its delimiters, in line 1 of

the display.

() TSTRING Stores the program in TSTRING.

Execute TSTRING to calculate the area of the torus with @ = 1.5 and

b = 1.85. The labeled answer is displayed in the status area.

(®)(CLR) Area = 11.5721111603
(VAR) TE1R1 .
15 (¥) 1.85 g

%=

BRT

Pausing to Display Output

To pause to display a result:

1. Enter commands to set up the display.

2. Enter the number of seconds you want to pause.

3. Enter the WAIT command (PRG CTRL menu).

WAIT suspends execution for the (positive) number of seconds in

level 1. You can use WAIT with DISP to display messages during

program execution—for example, to display intermediate program

29-16 Interactive Programs

results. (WAIT interprets arguments 0 and —1 differently—see “Using

WAIT for Keystroke Input” on page 29-13.)

Summary of Data Input and Output Commands

Data Input Commands

Programmable
Command

Description

CONT Restarts a halted program.

(pages 1, 2, and 3):

e

REER

HALT

INPUT

PROMPT

DISP

WAIT

KEY

BEEP

Halts program execution.

Suspends program execution for data

input. Prevents stack operations while

the program is paused.

Halts program execution for data input.

Displays an object in the specified line

of the display.

Suspends program execution for a

specified duration (seconds, level 1).

Returns a test result to level 1 and, if a

key is pressed, the location of that key

(level 2). See the next section,
“Stopping for Keystroke Input.”

Sounds a beep at a specified frequency

(hertz, level 2) for a specified duration
(seconds, level 1).

(PRG) LiZFL (page 4):

Lt

 CLLCD

FREEZE Blanks the display.

“Freezes” a specified area of the display

so that it is not updated until a key

press.

Interactive Programs 29-17

Using Menus with Programs

You can use menus with programs for different purposes:

m Menu-based input. A program can set up a menu to get input

during a halt in a program—then resume executing the same

program.

m Menu-based application. A program can set up a menu and finish

executing, leaving the menu to start executing other related

programs.

To set up a built-in or library menu:

1. Enter the menu number.
2. Enter the MENU command (PRG CTRL menu).

To set up a custom menu:

1. Enter a list (with £ ¥ delimiters) or the name of a list defining the
menu actions. (See “Using Custom Menus” on page 15-1.)

2. Activate the menu:
m To save the menu as the CST menu, enter the MENU command

(PRG CTRL menu).
m To make the menu temporary, enter the TMENU command

(@)(MODES) menu).
The menu isn’t displayed until program execution halts.

Menu numbers for built-in menus are listed in appendix D, “Menu

Numbers.” Libraries menus also have numbers—the library number

serves as the menu number. So you can activate applications menus

(such as the SOLVE and PLOT menus) and other menus (such as the
VAR and CST menus) in programs. The menus behave just as they

do during normal keyboard operations.

You create a custom menu to cause the behavior you need in your

program—see the topics that follow. You can save the menu as the

CST menu, so the user can get it again by pressing (CST). Or you can

make it temporary—it remains active (even after execution stops), but

only until a new menu is selected—and it doesn’t affect the contents of

variable CST.

29-18 Interactive Programs

To specify a particular page of a menu, enter the number as m.pp,

where m is the menu number and pp is the page number (such as

35.02 for page 2 of the TIME menu). If page pp doesn’t exist, page 1

is displayed (35 gives page 1 of the TIME menu).

Example: Enter 2& FEHMLto get page 1 of the MODES menu. Enter

26, 82 MEHLUto get page 2 of the MODES menu.

To restore the previous menu:

m Execute 0 MENU.

To recall the menu number for the current menu:

m Execute the RCLMENU command ((»)(MODES) menu).

Using Menus for Input

To display a menu for input in a program:

1. Set up the menu—see the previous section.

2. Enter a command sequence that halts execution (such as DISP,

PROMPT, or HALT).

The program remains halted until it’s resumed by a CONT command,

such as by pressing (|9)(CONT). If you create a custom menu for input,
you can include a CONT command to automatically resume the

program when you press the menu key.

Example: The following program activates page 3 of the MODES

menu and prompts you to set the angle mode. After you press the

menu key, you have to press (|q)(CONT) to resume execution.

£ FELED MEMU "Select Arnole Mode" PROMPT @

Example: The PIE program on page 31-40 assigns the CONT

command to one key in a temporary menu.

Example: The MNX program on page 31-23 sets up a temporary

menu that includes a program containing CONT to resume execution

automatically.

Interactive Programs 29-19

Using Menus to Run Programs

You can use a custom menu to run other programs. That menu

can serve as the main interface for an application (a collection of

programs).

To create a menu-based application:

1. Create a custom menu list for the application that specifies

programs as menu objects.

2. Optional: Create a main program that sets up the application

menu—either as the CST menu or as a temporary menu.

Example: The following program, WGT, calculates the mass of an

object in either English or SI units given the weight. WGT displays
a temporary custom menu, from which you run the appropriate

program. Each program prompts you to enter the weight in the

desired unit system, then calculates the mass. The menu remains

active until you select a new menu, so you can do as many calculations

as you want.

List: Comments:

"EMGL" & "EMTEE Wt in POUMDE" PROMPT 22.2 & % 2

"I o« “"EMTER MWt in MEWTOME" PROMPT 9.81 « 3 2

() LST Stores the list in LST.

Program: Comments:

LET THEHL = Displays the custom menu stored

in LST.
() WGT Stores the program in WGT.

Use WGT to calculate the mass of an object of weight 12.5 N. The

program sets up the menu, then completes execution.

[Ewci]= [[[|

29-20 Interactive Programs

Select the SI unit system, which starts the program in the menu list.

1 ENTER MWt in HEWTONS

1:
EwsL]= [[[[|

Key in the weight, then resume the program.

12.5 ($9)(CONT) 1: 1, 27420993951
EENEEI

Example: The following program, EIZ, constructs a custom menu

to emulate the HP Solve application for a capacitive electrical circuit.

The program uses the equation £ = 17, where F is the voltage, I is

the current, and Z is the impedance.

Because the voltage, current, and impedance are complex numbers,

you can’t use the HP Solve application to find solutions. The custom

menu in FIZ assigns a direct solution to the left-shifted menu key for

each variable, and assigns store and recall functions to the unshifted

and right-shifted keys—the actions are analogous to the HP Solve

application. The custom menu is automatically stored in CST,

replacing the previous custom menu—you can press to restore

the menu.

29

 Interactive Programs 29-21

Program:

e= =SF

FEML

(ENTER) () EIZ GT0)

Comments:

Sets Degrees mode. Sets flags

—15 and —16 to display complex

numbers in polar form. Sets the

display mode to 2 Fix.

Starts the custom menu list.

Builds menu key 1 for E.

Unshifted action: stores the

object in E. Left-shift action:

calculates I x Z, stores it in £,

and displays it with a label.

Right-shift action: recalls the

object in E.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in EIZ.

For a 10-volt power supply at phase angle 0°) you measure a current of

0.37-amp at phase angle 68°. Find the impedance of the circuit using

ElZ.

Key in the voltage value.

@O0@0

29-22 Interactive Programs

Le+=[||

(1804
lfl-fl---l

Store the voltage value. Then key in and store the current value.

Solve for the impedance.

E 2 (27.83,£-68.80)

@O@@ T -
@ = H

,'%:

Le+=[[I

Recall the current and double it. Then find the voltage.

) I Bt (20.00,4-1.07E-107
2

0 1:
@ E %:

e1+2[[]

Press (|9)(MODES) =7l and ()(POLAR) to restore Standard and

Rectangular modes.

Turning Off the HP 48 from a Program

To turn off the calculator in a program:

m Execute the OFF command (PRG CTRL menu).

The OFF command turns off the HP 48. If a program executes OFF,

the program resumes when the calculator is next turned on.

Interactive Programs 29-23

30
Error Trapping

If you attempt an invalid operation from the

keyboard, the operation is not executed and

an error message is displayed. For example,

if you execute + with a vector and a real

number on the stack, the HP 48 returns the

message + Ertor: Bad Argument Tups

and returns the arguments to the stack (if
Last Arguments is enabled).

In a program, the same thing happens, but program execution is also

aborted. If you anticipate error conditions, your program can process

them without interrupting execution.

For simple programs, you can run the program again if it stops with

an error. For other programs, you can design them to trap errors and

continue executing. You can also create user-defined errors to trap

certain conditions in programs.

Causing and Analyzing Errors

Many conditions are automatically recognized by the HP 48 as error

conditions—and they’re automatically treated as errors in programs.

A command with an improper argument or an improper number of

arguments causes an error in a program. An out-of-range result can

cause an error. An invalid calculator condition can cause an error.

In addition, you—the programmer—can define conditions that

cause an error. You can cause a user-defined error to occur (with

a user-defined error message)—or you can cause a built-in error
to occur. Normally, you’ll include a conditional or loop structure

Error Trapping 30-1

with a test for the error condition—and if it occurs, you’ll cause the

user-defined or built-in error to occur.

To cause a user-defined error to occur in a program:

1. Enter a string (with * * delimiters) containing the desired error
message.

2. Enter the DOERR command (PRG CTRL menu).

To artificially cause a built-in error to occur in a program:

1. Enter the error number (as a binary integer or real number) for the
error.

2. Enter the DOERR command (PRG CTRL menu).

If DOERRis trapped in an IFERR structure (described in the next

topic), execution continues. If it’s not trapped, execution is abandoned

at the DOERR command and the error message is displayed.

To analyze an error in a program:

m To get the error number for the last error, execute ERRN (PRG
CTRL menu).

m To get the error message for the last error, execute ERRM (PRG

CTRL menu).
m To clear the last-error information, execute ERRO (PRG CTRL

menu).

The error number for a user-defined error is #70000h. See the list of

built-in error numbers and messages in appendix B, “Messages.”

Example: The following program aborts execution if the list in level

1 contains three objects.

OB+

IF 3 SAME
THEH "2 OBJECTS IM LIST" DOERR
EHD

E

The following table summarizes error trapping commands.

30-2 Error Trapping

Error Trapping Commands

Key Programmable

Command

Description

LTEL(page 3):

foeew

EERN

ERRE

DOERR

ERRN

ERRM

ERRO

Causes an error. For a string in level 1,

causes a user-defined error: the

calculator behaves just as if an

ordinary error has occurred. For a

binary integer or real number in level 1,

causes the corresponding built-in error.

If the error isn’t trapped in an IFFER

structure, DOERR displays the

message and abandons program

execution. (For 0 in level 1, abandons
execution without updating the error

number or message—like (ATTN).)

Returns the error number, as a binary

integer, of the most recent error.

Returns ## if the error number was

cleared by ERRO.

Returns the error message (a string) for
the most recent error. Returns an

empty string if the error number was

cleared by ERRO.

Clears the last error number and

message.
Error Trapping 30-3

Trapping Errors

You can construct an error trap with one of the following conditional

structures:

s [FERR..THEN...END.

m [FERR..THEN...ELSE...END.

The IFERR...THEN...END Structure

The syntax for this structure is

IFERE trap-clause THEH error-clause EHD ... *

The commands in the error-clause are executed only if an error is

generated during execution of the trap-clause. If an error occurs in the

trap-clause, the error is ignored, the remainder of the trap-clause is

skipped, and program execution jumps to the error-clause. If no errors

occur in the trap-clause, the error-clause is skipped and execution

resumes after the END command.

To enter IFERR...THEN...END in a program:

m Press BEELH (@)(PREV)(®)IFERE.

Example: The following program takes any number of vectors

or arrays from the stack and adds them to the statistics matrix.

However, the program stops with an error if a vector or array with

a different number of columns is encountered. In addition, if only

vectors or arrays with the same number of columns are on the stack,

the program stops with an error after the last vector or array has been

removed from the stack.

£ WHILE DUF TYPE 2 == EEPERT Z+ EHD =

In the following revised version, the program simply attempts to add

the level 1 object to the statistics matrix until an error occurs. Then,

it “gracefully” ends by displaying the message DIME.

30-4 Error Trapping

Program: Comments:

IFEEE Starts the trap-clause.

WHILE The WHILE structure repeats

1 indefinitely, adding the vectors

REFEAT and arrays to the statistics matrix

T+ until an error occurs.

EHD

THEH Starts the error clause. If an error

"LOMEY 1 DISF occurs in the WHILE structure,

{ FREEZE displays the message [OHE in the

status area.

EH: Ends the error structure.

The IFERR...THEN...ELSE...END Structure

The syntax for this structure is

IFERRE trap-clause

THEM error-clause ELSE normal-clause EHD ... #

The commands in the error-clause are executed only if an error is

generated during execution of the trap-clause. If an error occurs in the

trap-clause, the error is ignored, the remainder of the trap-clause is

skipped, and program execution jumps to the error-clause. If no errors

occur in the trap-clause, execution jumps to the normal-clause at the

completion of the trap-clause.

To enter IFERR...THEN...ELSE...END in a program:

m Press @ERD)@1
Example: The following program prompts for two numbers, then

adds them. If only one number is supplied, the program displays an

error message and prompts again.

Error Trapping 30-5

Program:

TEEY IM = AHD

THRUT OB+

UMTIL

i

 30-6 Error Trapping

i

Comments:

Begins the main loop.

Prompts for two numbers.

Starts the loop test clause.

The error trap contains only the

+ command.

If an error occurs, recalls and

displays the Too Faw

Arourment = message for 2

seconds, then puts 0 (false) on
the stack for the main loop.

If no error occurs, puts 1 (true)
on the stack for the main loop.

Ends the error trap.

Ends the main loop. If the error

trap left 0 (false) on the stack,
the main loop repeats—otherwise,

the program ends.

31
More Programming Examples

! The programs in this chapter demonstrate

programming concepts introduced in the previous

chapters. Some new concepts are also introduced.

! The programs are intended to both improve your

{ programming skills and provide supplementary

b functions for your calculator.
e

At the end of each program, the checksum and the program size in

bytes are listed. The checksum is a binary integer that uniquely

identifies the program based on its contents. To verify that you’ve

keyed the program in correctly, execute the BYTES command

(()(MEMORY) E¥TES) with the program name in level 1. The

checksum for the program is returned to level 2, and its size in bytes is

returned to level 1. (If you execute BYTES with the program object in

level 1, before storing the program in its name, you’ll get a different

byte count returned to level 1.)

These programs are also included in the online information of the

Program Development Link, software for developing HP 48 programs

on computers. Using this software, you can cut and paste these

programs from the online information, then load them into the HP 48

via its serial port.

The examples in this chapter assume the HP 48 is in its initial,

default condition—they assume you haven’t changed any of the HP 48

operating modes. (To reset the calculator to this condition, see “If

Things Go Wrong” on page A-1.)

More Programming Examples 31-1

Fibonacci Numbers

This section includes three programs—two demonstrate an approach

to the following problem:

Given an integer n, calculate the nth Fibonacci number F,, where:

Fo=0, i=1 F,=F,1+ F,_»

m FIBI is a user-defined function that is defined recursively—its

defining procedure contains its own name. FIBI is short.

m FIB2 is a user-defined function with a definite loop. It’s longer and

more complicated than FIBI1, but it’s faster.

The third program, FIBT, calls both FIB1 and FIB2, then calculates

the execution time of each subprogram.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

 i: n i: Py

Techniques

m IFTE (if-then-else function). The defining procedure for FIB1
contains the conditional function IFTE, which can take its

argument either from the stack or in algebraic syntax. (FIB2 uses

the conditional structure IF..THEN...ELSE...END.)
m Recursion. The defining procedure for FIB1 is written in terms of

FIB1, just as Fy, is defined in terms of F,_; and F_,.

Program: Comments:

* Defines local variable n.

"IFTECn<1, The defining procedure, an

rs algebraic expression. If n <1,

FIBL(n—13+FIB1cn-233' Fo=n, else Fa=F,_;+F,_,.

() FIB1 Stores the program in FIBI.

31-2 More Programming Examples

Checksum: # 41467d
Bytes: 113.5

Example: Calculate Fg. Calculate Fio using algebraic syntax.

First calculate Fg.

VAR

Next calculate F1g using algebraic syntax.

() FiEl ()10 EVAD % Sg

IWR
FIB2 (Fibonacci Numbers, Loop Version)

Arguments Results

1: n 1t F,

Techniques

m [F..THEN..ELSE..END. FIB2 uses the program-structure form of

the conditional. (FIBI uses IFTE.)

s START...NEXT (definite loop). To calculate F,,, FIB2 starts with
Fo and F; and repeats a loop to calculate successive F; values.

More Programming Examples 31-3

(ERTER) () FIB2 5T0)

Checksum: # 51820d

Bytes: 89

Example: Calculate Fg and Fqp.

Calculate Fg.

6 Fib=

Calculate Fig.

31-4 More Programming Examples

Comments:

Creates a local variable structure.

fn<l1

then F, = n

otherwise ...

Puts Fy and F; on the stack.

From 2 to n does the following

loop:

Copies the latest F (initially Fy).

Gets the previous F (initially Fo).

Calculates the next F (initially
Fg).

Repeats the loop.

Drops F,_;.

Ends the ELSE clause.

Ends the defining procedure.

Stores the program in FIB2.

1: 8
ISTOI

(FIE2JFIEL] 21|EC3T

FIBT (Comparing Program-Execution Time)

FIB1 calculates intermediate values F; more than once, while FIB2

calculates each intermediate F; only once. Consequently, FIB2 is

faster. The difference in speed increases with the size of n because the

time required for FIB1 grows exponentially with n, while the time

required for FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIBI calculating Fi,.
Note the number of intermediate calculations: 1 in the first row, 2 in

the second row, 4 in the third row, and 8 in the fourth row.

Fio

Fg/ \F

e

S5 F,

8

6
\F

S
5

FIBT executes the TICKS command to record the execution time of

FIB1 and FIB2 for a given value of n.

Arguments Results

@y Fy

2y FIBL TIME: 2

18 n v FIERE TIMER 2

Techniques

m Structured programming. FIBT calls both FIBI and FIB2.

m Programmatic use of calculator clock. FIBT executes the TICKS

command to record the start and finish of each subprogram.

m Interactive programming. FIBT tags each execution time with a

descriptive message.

More Programming Examples 31-5

Required Programs

m FIBI (page 31-2) calculates F',, using recursion.

m FIB2 (page 31-3) calculates F', using looping.

Program: Comments:

LUF TICKS SHAF FIEL Copies n, then executes FIBI1,

SWAF TII SLAF recording the start and stop time.

- Bk 2loz - Calculates the elapsed time,

converts it to a real number, and

converts that number to seconds.

Leaves the answer returned by

FIB1 in level 2.

"FIEL TIME" =+TRG Tags the execution time.

FOT TICKES SWAF FIBZ Executes FIB2, recording the

TICKS start and stop time.

SWAF DREOF SWAF Drops the answer returned by

- B+R 8192 - FIB2 (FIBI returned the same
answer). Calculates the elapsed

time for FIB2 and converts to

seconds.
"FIBZ TIME" =TRG Tags the execution time.

() FIBT Stores the program in FIBT.

Checksum: # 22248d

Bytes: 135

Example: Calculate F13 and compare the execution time for the two

methods.

Select the VAR menu and do the calculation.

VAR

i

3: 233
2: FIBL TIME: 34.794¢..
1: FIBZ TIME:

. 12744146625
[FETJFEE[FEL]21|E|

31-6 More Programming Examples

Fi3is 233. FIB2 takes fewer seconds to execute than FIBI. (Your

results will differ depending on the contents of memory and other

factors.)

Displaying a Binary Integer

This section contains three programs:

m PAD is a utility program that converts an object to a string for

right-justified display.

m PRESERVE is a utility program for use in programs that change

the calculator’s status (angle mode, binary base, and so on).

m BDISP displays a binary integer in HEX, DEC, OCT, and BIN

bases. It calls PAD to show the displayed numbers right-justified,

and it calls PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string and, if the string contains fewer

than 22 characters, adds spaces to the beginning.

When a short string is displayed with DISP, it appears left-justified;

its first character appears at the left end of the display. The position

of the last character is determined by the length of the string. By

adding spaces to the beginning of a short string, PAD moves the

position of the last character to the right. When the string (including

leading spaces) is 22 characters long, it appears right-justified; its last

character appears at the right end of the display. PAD has no effect

on longer strings.

Arguments Results

 1: object 1: " object"

Techniques

s WHILE..REPEAT..END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT

More Programming Examples 31-7

clause and test again (if true) or to skip the REPEAT clause and
exit (if false).

m String operations. PAD demonstrates how to convert an object

to string form, count the number of characters, and combine two

strings.

Program: Comments:

+5TR Makes sure the object is in string

form. (Strings are unaffected by
this command.)
Repeats if the string contains

=2 o fewer than 22 characters.

Loop-clause adds a leading space.

EHD Ends loop.

31 7 _
C)PAD Stores the program in PAD.

Checksum: # 38912d

Bytes: 61.5

PAD 1s demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, PRESERVE stores the current

calculator (flag) status, executes the program, and then restores the

previous status.

Arguments Results

1t « program #* 11 result of program

1z 'program name' i: result of program

31-8 More Programming Examples

Techniques

m RCLF and STOF. PRESERVE uses RCLF (recall flags) to record
the current status of the calculator in a binary integer and STOF

(store flags) to restore the status from that binary integer.

m Local-variable structure. PRESERVE creates a local variable

structure to remove the binary integer from the stack briefly; its

defining procedure simply evaluates the program argument, then

puts the binary integer back on the stack and executes STOF.

m Error trapping. PRESERVE uses IFERR to trap faulty execution of

the program on the stack and to restore flags. DOERR shows the

error if one occurs.

Program:

RCLF

STOF ERRH DOERR

(C) PRESERVE (sT0)

Checksum: # 7284d

Bytes: 71

Comments:

Recalls the list of two 64-bit

binary integers representing the

status of the 64 system flags and 31

64 user flags.

Stores the list in local variable f.

Begins the defining procedure.

Starts the error trap.

Executes the program placed on

the stack as the level 1 argument.

If the program caused an error,

restores flags, shows the error,

and aborts execution.

Ends the error routine.

Puts the list back on the stack,

then restores the status of all

flags.

Ends the defining procedure.

Stores the program in

PRESERVE.

PRESFERVE is demonstrated in the program BDISP.

More Programming Examples 31-9

BDISP (Binary Display)

BDISP displays a (real or binary) number in HEX, DEC, OCT, and

BIN bases.

Arguments Results

1: n i n

is 1

Techniques

m IFERR..THEN...END (error trap). To accommodate real-number

arguments, BDISP includes the command R—B (real-to-binary).
However, this command causes an error if the argument is already a

binary integer. To maintain execution if an error occurs, the R—B

command is placed inside an IFERR clause. No action is required

when an error occurs (since a binary number is an acceptable

argument), so the THEN clause contains no commands.

m Enabling LASTARG. In case an error occurs, LASTARG must be

enabled to return the argument (the binary number) to the stack.
BDISP clears flag —55 to enable the LASTARG recovery feature.

m FOR..NEXT loop (definite loop with counter). BDISP executes a

loop from 1 to 4, each time displaying n (the number) in a different

base on a different line. The loop counter (named j in this program)

is a local variable. It is created by the FOR..NEXT program

structure (rather than by a + command) and it is automatically

incremented by NEXT.

m Unnamed programs as arguments. A program defined only by its

and ¥ delimiters (not stored in a variable) is not automatically
evaluated; it is simply placed on the stack and may be used as

an argument for a subroutine. BDISP demonstrates two uses for

unnamed program arguments.

o BDISP contains a main program argument and a call to

PRESERVE. This program argument goes on the stack and is

executed by PRESERVE.

o There are four program arguments that “customize” the action of

the loop. Each program argument contains a command to change

the binary base, and each iteration of the loop evaluates one of

these arguments.

31-10 More Programming Examples

When BDISP creates a local variable for n, the defining procedure

is an unnamed program. However, since this program is a defining

procedure for a local variable structure, it s automatically executed.

Required Programs

m PAD (page 31-7) expands a string to 22 characters so that DISP
shows it right-justified.

m PRESERVE (page 31-8) stores the current status, executes the
main nested program and restores the status.

Program: Comments:
)

Begins the main nested program.

DiLiF Makes a copy of n.

-55 CF Clears flag —b5 to enable
LASTARG.

IFERR Begins error trap.

B Converts n to a binary integer.

THEH If an error occurred, do nothing

EMD (no commands in the THEN

clause).
* N Creates a local variable n and

% begins the defining program.

CLLCD Clears the display.

% BIM = Nested program for BIN.

OCT @ Nested program for OCT.

% DEC # Nested program for DEC.

i HEX # Nested program for HEX.

More Programming Examples 31-11

Program: Comments:

14 Sets the counter limits.

FOR i Starts the loop with counter j.

EvAL Executes one of the nested base

programs (initially for HEX).
n *ETR Makes a string showing n in the

current base.

FAD Pads the string to 22 characters.

g DISF Displays the string in the jth line.

HMEST Increments j and repeats the

loop.

H Ends the defining program.

Z FREEZE Freezes the status and stack

areas.
e Ends the main nested program.

FRESERVE Stores the current flag status,

executes the main nested

program, and restores the status.
&

() BDISP Stores the program in BDISP.

Checksum: # 18055d

Bytes: 191

Example: Switch to DEC base, display #100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the

current base is DEC and enter # 100.

@CEH

@@ 100

31-12 More Programming Examples

Execute BDISP.

BpIzE

ATTN

Although the main nested program left the calculator in BIN base,

PRESERVE restored DEC base. To check that BDISP also works for

real numbers, try 144.

96h
144 - # 144d

|EDIEP[PREZE]PAD |FIET |FIER |FIEL Press to return to the stack display.

More Programming Examples 31-13

Median of Statistics Data
This section contains three programs:

m SORT orders the elements of a list.

m LMED calculates the median of a sorted list.

m MEDIAN uses SORT and LMED to calculate the median of the

current statistics data.

SORT (Sort a List)

SORT sorts a list of real numbers into ascending order.

Arguments Results

 18 & lList 12 £ sorted list =

Techniques

m Bubble sort. Starting with the first and second numbers in the list,

SORT compares adjacent numbers and moves the larger number

toward the end of the list. This process is done once to move the

largest number to the last position in the list, then again to move

the next largest to the next-to-last position, and so on.

m Nested definite loops. The outer loop controls the stopping position

each time the process is done; the inner loop runs from 1 to the

stopping position each time the process is done.

m FOR..STEP and FOR..NEXT (definite loops). SORT uses two

counters: —1 STEP decrements the counter for the outer loop each

iteration; NEXT increments the counter for the inner loop by 1 each

iteration.

31-14 More Programming Examples

Program: Comments:

DLiF SIEZE 1 - 1 From the next-to-last position to

FOR i the first position, begins the outer

loop with counter j.

1 From the first position to the jth

FOR k position, begins the inner loop

with counter k.

LUP k GETI Gets the kth and k+1st numbers

% ROLLD GET in the list and stores them in

+ nl nz local variables n; and ns.

Begins the defining procedure (a

program) for the local variable
structure.

IF nl n2 > If the two numbers are in the

THEHM wrong order, puts them back in

L omE PUTI the opposite positions.

ni PUT
EHD

Ends the defining procedure.

HEST Increments k and repeats the

inner loop.

-1 STEF Decrements j and repeats the

outer loop.

(C) SORT Stores the program in SORT.

Checksum: # 51893d

Bytes: 141.5

Example: Sort the list { 83125 }.

Select the VAR menu, key in the list, and execute SORT'.

1: {12358}
@8 EPY) 3 [ZOKT[EUIZP[PRESE|PAD

|

FIET

|

FIEZ

|

1 (sPC) 2 (SPC) 5 (ENTER

SEET

More Programming Examples 31-15

LMED (Median of a List)

Given a sorted list, LMED returns the median. If the list contains an

odd number of elements, the median is the value of the center element.

If the list contains an even number of elements, the median is the

average value of the elements just above and below the center.

Arguments Results

 1: £ sorted list 1t median of sorted list

Techniques

m FLOOR and CEIL. For an integer, FLOOR and CEIL both return

that integer; for a noninteger, FLOOR and CEIL return successive

integers that bracket the noninteger.

Program: Comments:

DUF SIZE Copies the list, then finds its size.

1+ Z Calculates the center position in

the list (fractional for even-sized
lists).

o Stores the center position in local

variable p.

Begins the defining procedure.

[aLiF Makes a copy of the list.

p FLOOR GET Gets the number at or below the

center position.

AP Moves the list to level 1.

FpoCEIL GET Gets the number at or above the

center position.

+ 27 Calculates the average of the two

numbers.

Ends the defining procedure.

CJ)LMED Stores the program in LMED.

Checksum: # 3682d

Bytes: 77

31-16 More Programming Examples

Example: Calculate the median of the list you sorted using SORT.
(Put the list on the stack, if necessary.)

 @@ 1235 8 ENTER) 1: 3

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector representing the medians of the columns of

the statistics data.

Arguments Results

1 18 [y 29 ... 2yl

Techniques

m Arrays, lists, and stack elements. MEDIAN extracts a column of 3
data from YDAT in vector form. To convert the vector to a list,

MEDIAN puts the vector elements on the stack and then combines

them into a list. From this list the median is calculated using SORT

and LMED.

The median for the mth column is calculated first, and the

median for the first column is calculated last, so as each median

is calculated, it is moved to the stack level above the previously

calculated medians.

After all medians are calculated and positioned correctly on the

stack, they’re combined into a vector.

m FOR..NEXT (definite loop with counter). MEDIAN uses a loop
to calculate the median of each column. Because the medians are

calculated in reverse order (last column first), the counter is used to
reverse the order of the medians.

Required Programs

m SORT (page 31-14) arranges a list in ascending order.

m LMED (page 31-16) calculates the median of a sorted list.

More Programming Examples 31-17

Program: Comments:

FCLE Puts a copy, s, of the current

statistics matrix YDAT on the

stack.

DUF SIFE Puts the list { » m } on the

stack, where n is the number of

rows in YDAT and m is the

number of columns.

OB+ DROP Puts n and m on the stack.

Drops the list size.

+E MM Creates local variables for s, n,

and m.

Begins the defining procedure.

'EDATY TREH Transposes YDAT. Now n is the

number of columns in YDAT and

m is the number of rows. (To key
in the character, press ()(2),

then delete the parentheses.)
Im Specifies the first and last rows.

FOR For each row, does the following:

E- Extracts the last row in XDAT.

Initially this is the mth row,

which corresponds to the mth

column in the original XDAT.

(To key in the ¥— command,

press (Q)ETAD@ I+)
Op.ds DROF Puts the row elements on the

stack. Drops the index list { n }.
mo#LIST Makes an n-element list.

SORT Sorts the list.

LMED Calculates the median of the list.

J ROLLD Moves the median to the proper

stack level.

HEST Increments j and repeats the

loop.

31-18 More Programming Examples

Program: Comments:

rm +AREY Combines all the medians into an

m-element vector.

= STOZE Restores 2DAT to its previous

value.

Ends the defining procedure.

() MEDIAN Stores the program in MEDIAN .

Checksum: # 3947d

Bytes: 136

Example: Calculate the median of the following data.

18 12

4 7

3 2

11 1

31 48

20 17

There are two columns of data, so MEDIAN will return a two-element

vector.

Enter the matrix.

)WMATRIX) 1: [[18_12 1
18 (ENTER) 12 (ENTER) (V) [371
4 (ENTER) 7 (ENTER) Rk
3 (ENTER) 2 (ENTER) IYTTT
11 (ENTER) 1 (ENTER)
31 (ENTER) 48 (ENTER)
20 (ENTER) 17 (ENTER)

Store the matrix in XDAT.

(R DAT(E,=L 20 17 3]
(QGTAD ThE

|

ouE DAT(7 9=

 =
)

-
R
b
A
b
A

2]£+ CLINEM [E0ITE

More Programming Examples 31-19

Calculate the median. The medians are 14.5 for the first column and

9.5 for the second column.

VAR

1: [14.5 9.5]
[Z04T[MENIA[LMEDS0RT[EDISF[PREE

Expanding and Collecting Completely

This section contains two programs:

m MULTI repeats a program until the program has no effect on its

argument.

m FXCO calls MULTI to completely expand and collect an algebraic.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTI

applies the program to the object repeatedly until the object is

unchanged.

Arguments Results

Z: object

15 % program = 1: resulting object

Techniques

m DO..UNTIL...END (indefinite loop). The DO clause contains the

steps to be repeated; the UNTIL clause contains the test that

determines whether to repeat both clauses again (if false) or to exit

(if true).

m Programs as arguments. Although programs are commonly named

and then executed by calling their names, programs can also be put

on the stack and used as arguments to other programs.

m Evaluation of local variables. The program argument to be executed

repeatedly is stored in a local variable. It’s convenient to store an

object in a local variable when you don’t know beforehand how

many copies you’ll need.

31-20 More Programming Examples

An object stored in a local variable is simply put on the stack when

the local variable is evaluated. MULTI uses the local variable name

to put the program argument on the stack and then executes EVAL

to execute the program.

Program: Comments:

Creates a local variable p

containing the program from level

T

1.

Begins the defining procedure.

Lo Begins the DO loop-clause.

DR Makes a copy of the object, now

in level 1.

F EVAL Applies the program to the

object, returning its new version.

LiLiF Makes a copy of the new object.

ROT Moves the old version to level 1. 31

UHTIL Begins the DO test-clause.

SAME Tests whether the old version and

the new version are the same.

EHD Ends the DO structure.

Ends the defining procedure.

() MULTI Stores the program in MULTI.

Checksum: # 34314d

Bytes: 56

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

Given an algebraic object, FXCO executes EXPAN repeatedly until

the algebraic doesn’t change, then executes COLCT repeatedly until

the algebraic doesn’t change. In some cases the result will be a

number.

More Programming Examples 31-21

Expressions with many products of sums or with powers can take

many iterations of EXPAN to expand completely, resulting in a long

execution time for EXCO.

Arguments Results

1: 'algebraic’ 1: 'algebraic'

1: ‘'algebraic’ 1: 2

Techniques

m Subroutines. EXCO calls the program MULTI twice. It is more

efficient to create program MULTI and simply call its name twice

than write each step in MULTI two times.

Required Programs

m MULTI (page 31-20) repeatedly executes the programs that EXCO

provides as arguments.

Program: Comments:

ERPAMH ¥ Puts a program on the stack as

the level 1 argument for MULTI.

The program executes the

EXPAN command.

MULTI Executes EXPAN until the

algebraic object doesn’t change.

% COLCT ® Puts another program on the

stack for MULTI. The program

executes the COLCT command.

FMULTI Executes COLCT until the

algebraic object doesn’t change.

() EXCO Stores the program in EXCO.

Checksum: # 48008d

Bytes: 65.5

31-22 More Programming Examples

Example: Expand and collect completely the expression:

3z(4y + 2) + (8z — 5z)?

Enter the expression.

O3PX®
QOI®YDIEO®
@OQPXO5@ 2
B2

Select the VAR menu and start the program.

i 13 'R+ZenEY-7xR
¥LHPEE"!
ITGTTSTBT

1= ;%e;fi;l;flr*wzjfl 8¥¥-0

ITGBTTTBT

Minimum and Maximum Array Elements

This section contains two programs that find the minimum or

maximum element of an array:

m MNX uses a DO..UNTIL...END (indefinite) loop.

m MNX2 uses a FOR..NEXT (definite) loop.

MNX (Minimum or Maximum Element—Version 1)

Given an array on the stack, MNX finds the minimum or maximum

element in the array.

Arguments Results

2% [Larrayll

 1: [Larrayll 1: z (min or max element)

More Programming Examples 31-23

Techniques

s DO..UNTIL...END (indefinite loop). The DO clause contains the
sort instructions. The UNTIL clause contains the system-flag test

that determines whether to repeat the sort instructions.

m User and system flags for logic control:

o User flag 10 defines the sort: When flag 10 is set, MNX finds the

maximum element; when flag 10 is clear, it finds the minimum

element. You determine the state of flag 10 at the beginning of

the program.

o System flag —64, the Index Wrap Indicator flag, determines when

to end the sort. While flag —64 is clear, the sort loop continues.

When the index invoked by GETI wraps back to the first array

element, flag —64 is automatically set, and the sort loop ends.

m Nested conditional. An IF...THEN...END conditional is nested in

the DO...UNTIL...END conditional—it determines:

o Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on

the status of flag 10.

m Custom menu for making a choice. MNX builds a custom menu

that lets you choose whether to sort for the minimum or maximum

element. Key 1, labeled | , sets flag 10. Key 2, labeled

HIH | clears flag 10.

m Logical function. MNX executes XOR (ezclusive OR) to test the
combined state of the relative value of the two elements and the
status of flag 10.

31-24 More Programming Examples

Program: Comments:

DO UHAR" Defines the option menu. i |

18 5F COMT = 3 sets flag 10 and continues

TN THY execution. FIH clears flag 10

£ 16 COF COMT = 33 and continues execution.

Displays the temporary menu and

THEHU a prompt message.

"hort for MAR or MIM?Y

PROMPT

1 GETI Gets the first element of the array.

L Begins the DO loop.

ROT ROT GETI Puts the index and the array in

levels 1 and 2, then gets the new

array element.

4 ROLL DUP2 Moves the current minimum or

maximum array element from

level 4 to level 1, then copies

both.

IF Tests the combined state of the

= i@ F57 ¥OR relative value of the two elements

and the status of flag 10.

THEM If the new element is either less

SHAR than the current maximum or

EH greater than the current

minimum, swaps the new element

into level 1.

LROF Drops the other element off the

stack.

UHTIL Begins the DO test-clause.

-&4 FE7 Tests if flag —64 is set—if the

index reached the end of the

array.

EHL Ends the DO loop.

SWAF DROP 8 MEMU Swaps the index to level 1 and

drops it. Restores the last menu.

() MNX Stores the program in MNX.

More Programming Examples 31-25

Checksum: # 57179d

Bytes: 210.5

Example: Find the maximum element of the following matrix:

12 56

45 1

9 14

Enter the matrix.

(@)(CR) (@)MATRIX)
12 56 ®
45 1 RN BTTVl =lTT
9 (ENTER) 14 (ENTER) wEEE . l

Select the VAR menu and execute MNX.

MHE Sort for MAX or MIN?

2

[[12 56_1
[451]
[914 1]

TTNNN
Find the maximum element.

M e [[125 1 [45 L.
ab

 ISRISTGEETE

MNX2 (Minimum or Maximum Element—Version 2)

Given an array on the stack, MNX2 finds the minimum or maximum

element in the array. MNX2 uses a different approach than MNX; it

executes OBJ— to break up the array into individual elements on the

stack for testing, rather than executing GETI to index through the

array.

Arguments Results

2t [Larrayll

1# [Larrayl] 12 2 (min or max element)

31-26 More Programming Examples

Techniques

FOR...NEXT (definite loop). The initial counter value is 1. The
final counter value is nm — 1 where nm is the number of elements in

the array. The loop-clause contains the sort instructions.

User flag for logic control. User flag 10 defines the sort: When flag

10 is set, MNX2 finds the maximum element; when flag 10 is clear,

it finds the minimum element. You determine the status of flag 10

at the beginning of the program.

Nested conditional. An IF..THEN...END conditional is nested in

the FOR...NEXT loop—it determines:

o Whether to maintain the current minimum or maximum element,

or make the current element the new minimum or maximum.

o The sense of the comparison of elements (either < or >) based on
the status of flag 10.

Logical function. MNX2 executes XOR (ezclusive OR) to test the
combined state of the relative value of the two elements and the

status of flag 10.

Custom menu for making a choice. MNX2 builds a custom menu

that lets you choose whether to sort for the minimum or maximum

element. Key 1, labeled , sets flag 10. Key 2, labeled

HMIH | clears flag 10.

More Programming Examples 31-27

Program: Comments:

TERE Defines the temporary option

% 1@ SF COMT » 2 menu. . sets flag 10 and

DOUHMINY continues execution. MIH
% 16 CF COMT = 33 clears flag 10 and continues

execution.

Displays the temporary menu and

THEML a pI’OIIlptiIlg message.

"Sort for MAR or MIMEY

FROMFT
DUF OBJ+ Copies the array. Returns the

individual array elements to levels

2 through nm+1, and returns the

list containing n and m to level 1.

Sets the initial counter value.

SHAF OBJ= Converts the list to individual

elements on the stack.

DROF # 1 - Drops the list size, then calculates

the final counter value (nm — 1).
FOE n Starts the FOR...NEXT loop.

DiiFz Saves the array elements to be

tested (initially the last two
elements). Uses the last array
element as the current minimum

or maximum.

IF Tests the combined state of the

=18 OFS7? H0R relative value of the two elements

and the status of flag 10.

THEH If the new element is either less

SHAR than the current maximum or

EHD greater than the current

minimum, swaps the new element

into level 1.

e

 -28 More Programming Examples

Program: Comments:

LROF Drops the other element off the

stack.

HEXT Ends the FOR...NEXT loop.

B FEHL Restores the last menu.

() MNX2 Stores the program in MNX2.

Checksum: # 12277d

Bytes: 200.5

Example: Use MNX2 to find the minimum element of the matrix

from the previous example:

12 56

45 1

9 14

Enter the matrix (or retrieve it from the previous example).

)@ETRR) 1+ [[12 561
12 (ENTER) 56 (ENTER) (V) L85,1]
45 (ENTER) | (ENTER) - N9-m 14-m RNT=PTBlRET

Select the VAR menu and execute MNX2.

HHEE

Find the minimum element.

e 2: [[123561 [45 11

[TTITVel(AT

More Programming Examples 31-29

Verification of Program Arguments

The two utility programs in this section verify that the argument to a

program is the correct object type.

m NAMES verifies that a list argument contains exactly two names.

m VFY verifies that the argument is either a name or a list containing

exactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object

content.

NAMES (Check List for Exactly Two Names)

If the argument for a program is a list (as determined by VFY),

NAMES verifies that the list contains exactly two names. If the list

does not contain exactly two names, an error message is displayed in

the status area and program execution is aborted.

Arguments Results

i: £ walid list = 1:

status-area error message

1: 1 nvalid list 1:

Techniques

m Nested conditionals. The outer conditional verifies that there are

two objects in the list. If there are two objects, the inner loop

verifies that they are both names.

m Logical functions. NAMES uses the AND command in the inner

conditional to determine if both objects are names and the NOT

command to display the error message if they are not both names.

31-30 More Programming Examples

Program:

IF

OBJds

DUF 2 SAME

THEH

CROF

IF

- T M o go SAME

SHAF TYPE & SAME

HOT

THEHM

"Lizst nesds two namss"

LOERR

EHML:

ELSE

DROPH

"Illeqal list size

LOERR

EHL

(D NAMES

Checksum: # 40666d

Bytes: 141.5

Comments:

Starts the outer conditional

structure.

Returns the n objects in the list

to levels 2 through (n + 1), and
returns the list size n to level 1.

Copies the list size and tests if

it’s 2.

If the size is 2, moves the

objects to levels 1 and 2, and

starts the inner conditional

structure.

Tests if the first object is a

name—returns 0 or 1.

Moves the second object to level

1, then tests if it is a name.

Combines test results: If both 31
tests were true, returns 1—

otherwise returns 0.

Reverses the final test result.

If the objects are not both

names, displays an error

message and aborts execution.

Ends the inner conditional

structure.

If the list size is not 2, drops the

list size, displays an error

message, and aborts execution.

Ends the outer conditional.

Stores the program in NAMES.

NAMES is demonstrated in program VFY.

More Programming Examples 31-31

VFY (Verify Program Argument)

Given an argument on the stack, VFY verifies that the argument is

either a name or a list that contains exactly two names.

Arguments Results

18 "name’ 15 "name’

1: 4 wvalid list = 1t £ wvalid list

status-area error message

1t { invalid list % 12 £ invalid list

status-area error message

1: invalid object 1: invalid object

Techniques

m Utility programs. VFY by itself has little use. However, it can be

used (with minor modifications) by other programs to verify that
specific object types are valid arguments.

m CASE..END (case structure). VFY uses a case structure to
determine if the argument is a list or a name.

m Structured programming. If the argument is a list, VFY calls

NAMES to verify that the list is valid.

m Local variable structure. VFY stores its argument in a local

variable so that it may be passed to NAMES if necessary.

m Logical operator. VFY uses NOT to display an error message.

Required Programs

m NAMES (page 31-30) verifies that a list argument contains exactly
two names.

31-32 More Programming Examples

Program:

LiliF

+oM

THEH

arram MHAMES
REMD

srmar 1TFE

THEH

"ot nams o list!

LOERE

EHD

EMD

[SAME HOT

(ERTER) () VFY GTO)

Checksum: # 36796d

Comments:

Copies the original argument to

leave on the stack.

Removes any tags from the

argument for subsequent testing.

Stores the argument in local

variable argm.

Begins the defining procedure.

Begins the case structure.

Tests if the argument is a list. If

so, puts the argument back on

the stack and calls NAMES to

verify that the list is valid, then

leaves the CASE structure.

Tests if the argument is not a

name. If so, displays an error

message and aborts execution.

Ends the CASE structure.

Ends the defining procedure.

Enters the program, then stores

itin VFY.

Bytes: 139.5

Example: Execute VFY to test the validity of the name argument

PAT. (The argument is valid and is simply returned to the stack.)

@)(CR) 1: 'PAT!
(D PAT (ENTER)m ITTNNT

More Programming Examples 31-33

Example: Execute VFY to test the validity of the list argument {

PAT DIANA TED }. Use the name from the previous example, then

enter the names DIANA and TED and convert the three names to a

list.

(7) DIANA (ENTER) 1: { PAT DIANA TED 3
() TED

3 R by

Execute VFY . Since the list contains too many names, the error

message 1s displayed and execution is aborted.

VAR) !

llegal list size

I
‘1'

2
1 { PAT DIANA TED >
NTGGN)

Bessel Functions

37rz'/4) areThe real and imaginary parts of the Bessel function J,(ze

denoted Ber,(z) and Beiy(z). When n =0,

(z/2)* (x/2)°Ber(z) =1— 572 + e

User-defined function BER calculates Ber(z).

Arguments Results

1: 2 1: Ber(2)

Techniques

m Local variable structure. At its outer level, BER consists solely of a

local variable structure and so has two properties of a user-defined

function; it takes numeric or symbolic arguments from the stack

or in algebraic syntax. Because BER uses a DO...UNTIL..END

loop, its defining procedure is a program. (Loop structures are not

31-34 More Programming Examples

allowed in algebraic expressions.) Therefore, unlike a user-defined

function, BER is not differentiable.

m DO...UNTIL...END loop (indefinite loop with counter). Successive

terms in the series are calculated with a counter variable. When

the new term does not change the series value within the 12-digit

precision of the calculator, the loop ends.

m Nested local variable structures. The outer structure is consistent

with the requirements of a user-defined function. The inner

structure allows the storing and recalling of key parameters.

Program: Comments:

* o Creates local variable z.

H Begins outer defining procedure.

T2 UM 21 Enters z/2, the first counter
+ wovers i sum value, and the first term of the

series, then creates local

variables.

Begins inner defining procedure.

o Begins the loop.

SUM Recalls the old sum and

Poygpb-1 0tR calculates the new sum.

S2 JaCoSRGt

EVAL

2 '3t sSTO+ Increments the counter.

DUP 'sum' 5TO Stores the new sum.

UHTIL Ends the loop clause.

== Tests the old and new sums.

EHL: Ends the loop.

LT Recalls the sum.

Ends inner defining procedure.

Ends outer defining procedure.

() BER Stores the program in BER.

Checksum: # 36388d

Bytes: 200.5

More Programming Examples 31-35

Example: Calculate Ber(3).

VAR 1: -. 22138082496
3 BER INNTPP

Calculate Ber(2) in algebraic syntax.

) EEE W2 1: . 7al734182714
CEEF,

|

FV[NAHE[FNi2]MG

[

E4cD)

Animation of Successive Taylor’s Polynomials

This section contains three programs that manipulate graphics objects

to display a sequence of Taylor’s polynomials for the sine function.

m SINTP draws a sine curve, and saves the plot in a variable.

m SETTS superimposes plots of successive Taylor’s polynomials on the

sine curve plot from SINTP, and saves each graphics object in a

list.

m TSA displays in succession each graphics object from the list built

in SETTS.

SINTP (Converting a Plot to a Graphics Object)

SINTP draws a sine curve, returns the plot to the stack as a graphics

object, and stores that graphics object in a variable. Assumes Radians

mode is active.

Arguments Results

Techniques

m Programmatic use of PLOT commands to build and display a

graphics object.

31-36 More Programming Examples

Program: Comments:

TERIMOEYY STER Stores the expression for sin ¢ in

EQ.
FUHCTION '—-Z#w' +HUM Sets the plot type and z- and

DUIF HEG SRHG y-axis display ranges.

-2 2 YEHG

ERAZE DREAM Erases PICT, then plots the

expression.

FICT RECL O'SINT' STO Recalls the resultant graphics

object and stores it in SINT.

ENTER STO tores the program in .(ENTER) SINTP (STO) S h in SINTP

Checksum: # 1971d

Bytes: 91.5

SETTS (Superimposing Taylor’s Polynomials)

SETTS superimposes successive Taylor’s polynomials on a sine curve

and stores each graphics object in a list.

Arguments Results

Techniques

m Structured programming. SETTS calls SINTP to build a sine curve

and convert it to a graphics object.

m FOR...STEP (definite) loop. SETTS calculates successive Taylor’s

polynomials for the sine function in a definite loop. The loop

counter serves as the value of the order of each polynomial.

m Programmatic use of PLOT commands. SETTS draws a plot of

each Taylor’s polynomial.

m Manipulation of graphics objects. SETTS converts each Taylor’s

polynomial plot into a graphics object. Then it executes + to

combine each graphics object with the sine curve stored in SINT,

creating nine new graphics objects, each the superposition of a

More Programming Examples 31-37

Taylor’s polynomial on a sine curve. SETTS then puts the nine new

graphics objects, and the sine curve graphics object itself, in a list.

Program: Comments:

SIMTF Plots a sine curve and stores the

graphics object in SINT'.

17 1 FOR n Sets the range for the FOR loop

using local variable n.

PEIMCEDY 'HY n TRAYLE Plots the Taylor’s polynomial of

STER ERASE DRAW order n.
FICT RCL SIMT + Returns the plot to the stack as a

graphics object and executes + to

superimpose the sine plot from

SINT.

-2 STEF Decrements the loop counter n by

2 and repeats the loop.

31 SIHT Puts the sine curve graphics

16 =L IST object on the stack, then builds a

TSLY STO list containing it and the nine

graphics objects created in the

loop. Stores the list in T'SL.

() SETTS Stores the program in SETTS.

Checksum: # 57905d

Bytes: 138.5

TSA (Animating Taylor’s Polynomials)

TSA displays in succession each graphics object created in SETTS.

Arguments Results

 t
e

e nm

Techniques

m Passing a global variable. Because SETTS takes several minutes to

execute, TSA does not call SETTS. Instead, you must first execute

31-38 More Programming Examples

SETTS to create the global variable TSL containing the list of
graphics objects. T'SA simply executes that global variable to put

the list on the stack.

s FOR..NEXT (definite loop). T'SA executes a definite loop to
display in succession each graphics object from the list.

Program: Comments:

TEL OB Puts the list TSL on the stack

and converts it to 10 graphics

objects and the list count.

1 SWAF FOR = For s from 1 to 10, clears the

ERASE =LCD display, displays the next graphics

i WAIT object, and waits for 1 second.

HEST

() TSA Stores the program in TSA.

Checksum: # 39562d

Bytes: 51

Example: Execute SETTS and TSA to build and display in

succession a series of Taylor’s polynomial approximations of the sin

function.

Set Radians mode. Execute SETTS to build the list of graphics

objects. SETTS takes several minutes to execute. Then execute TSA

to display each plot in succession. The display shows T'SA in progress.

(\x))(RAD) (if necessary)

IEELTETeEEE

Press (q)(RAD) to restore Degrees mode.

More Programming Examples 31-39

Programmatic Use of Statistics and Plotting

Program PIFE prompts for single variable data, stores that data in the

statistics matrix XDAT, then draws a labeled pie chart that shows

each data point as a percentage of the total.

Arguments Results

Techniques

m Programmatic use of PLOT commands. PIE executes XRNG and

YRNG to define z- and y-axis display ranges in user units, executes

ARC to draw the circle, and LINE to draw individual slices.

m Programmatic use of matrices and statistics commands.

m Manipulation of graphics objects. PIE recalls PICT to the stack

and executes GOR to merge the label for each slice with the plot.

m FOR..NEXT (definite) loop. Each slice is calculated, drawn and
labeled in a definite loop.

m CASE...END structure. To avoid overwriting the circle, each label

is offset from the midpoint of the arc of the slice. The offset for

each label depends on the position of the slice in the circle. The

CASE...END structure assigns an offset to the label based on the

position of the slice.

m Preservation of current calculator flag status. Before specifying

Radians mode, PIFE saves the current flag status in a local variable,

then restores that status at the end of the program.

m Nested local variable structures. At different parts of the process,

intermediate results are saved in local variables for convenient recall

as needed.

m Temporary menu for data input.

31-40 More Programming Examples

Program: Comments:

RCOLF + flags Recalls the current flag status

and stores it in variable flags.

FALD Sets Radians mode.

£ "SLICE" E+ Defines the input menu: Key 1

¥ executes X4 to store each data

SCLEARY CLE point in YDAT, key 3 clears

oo YDAT, key 6 continues

COREAMT COMT 3 program execution after data

entry.

THEHMLU Displays the temporary menu.

"Wey waluss into Prompts for inputs.

SLICE, mDRAM = represents the newline

restarts program. character (()(&)) after you
PROMET enter the program on the stack.

ERASE 1 131 HRHG Erases the current PICT and

YREMG CLLCD sets plot parameters.

e wait...s Displays “drawing” message.

ra Fis Chart®

e B2 B 8 6,28 Draws the circle.

FICT RCL =L Displays the empty circle.

RCLE TOT Recalls the statistics data

matrix, computes totals, and

calculates the proportions.

DUF 1@ # Converts the proportions to

percentages.

* pront s Stores the percentage matrix in

prents.

Zom UM % % Multiplies the proportion

G matrix by 27, and enters initial

angle (0).

ot

More Programming Examples 31-41

Program:

+ prop anole

prrop SIZE OB+

DREOF SWAF

a S8y prop n GET2 32

angle' STO+

arngle COS amole SIH

R+ 206 % OVER +

LIME

FICT RCL

anale prop n GET

< = DUF DUR

£
[
l

£
e

LR 1.5

THEH

GROF

EML

P 4.4

THEHM

DROF 13

EHL

1
I

5 4

THEH

CEL 20+

EHD

EHD

31-42 More Programming Examples

Comments:

Stores the angle matrix in prop

and angle in angle.

Sets up 1 to m as loop counter

range.

Begins loop-clause.

Puts the center of the circle on

the stack, then gets the nth
value from the proportion

matrix and adds it to angle.

Computes the endpoint and

draws the line for the nth slice.

Recalls PICT to the stack.

For labeling the slice, computes

the midpoint of the arc of the

slice.

Starts the CASE structure to

test angle and determine the

offset value for the label.

From 0 to 1.5 radians, doesn’t

offset the label.

From 1.5 to 4.4 radians, offsets

the label 15 user units left.

From 4.4 to 5 radians, offsets

the label 3 units right and 2

units up.

Ends the CASE structure.

Program:

prromt=s n GET

1 EHE

+5TR "K' +

1 +GREOE

GOR DUF PICT STO

=L

MEXT
¥ PYIEM

flags STOF
% @ MEMU

(ENTER) () PIE GTO)

Checksum: # 1177d

Bytes: 765

Comments:

Gets the nth value from the

percentage matrix, rounds it to

one decimal place, and converts

it to a string with “%”
appended.

Converts the string to a

graphics object.

Adds the label to the plot and

stores the new plot.

Displays the updated plot.

Ends the loop structure.

Displays the finished plot.

Restores the original flag status.

Restores the previous menu.

(The user must first press

to clear the plot.)

Stores the program in PIE.

Example: The inventory at Fruit of the Vroom, a drive-in fruit

stand, includes 983 oranges, 416 apples, and 85 bananas. Draw a pie

chart to show each fruit’s percentage of total inventory.

@EH
ETE

KEH values into SLICE,
DRAKW

4z
3=
o
1:

More Programming Examples 31-43

restarts program.

IE] [iLERR[|[DRAM]

Clear the current statistics data. (The prompt is removed from the

display.) Key in the new data and draw the pie chart.

B6.27

5.7%

 28%
Press to return to the stack display.

Trace Mode

Programs aENTER and BENTER provide “trace mode” for the

HP 48 using an external printer. To turn on “trace mode,” set flag

—63 and activate User mode. To turn off “trace mode,” clear flag —63

or turn off User mode.

Techniques

m Vectored ENTER. Setting flag —63 and activating User mode turns

on vectored ENTER. When vectored ENTER is turned on and

variable «ENTER exists, the command-line text is put on the stack

as a string and «ENTER is evaluated. Then, if variable BENTER

exists, the command that triggered the command-line processing is

put on the stack as a string and SENTER is evaluated.

Program: Comments:

FR Prints the command line text,

CiF then converts the string to

objects and evaluates it.

() «ENTER Stores the program in «ENTER.
(Press ()to type . You must

use this name.)

31-44 More Programming Examples

Checksum: # 51789d

Bytes: 25.5

Program: Comments:

FE1 DROF Prints the command that caused

FESTC the processing, then drops it and

prints the stack in compact form.

() PENTER Stores the program in BENTER.

(Press ()to type 8. You must

use this name.)

Checksum: # 37631d

Bytes: 28

Inverse-Function Solver

Program ROOTR finds the value of z at which f(z) = y. You supply
the variable name for the program that calculates f(x), the value of y,

and a guess for z (in case there are multiple solutions).

Arguments Results

¢ function name

y-value

 e
T
t

L
R

T-guess 1: z-value

Techniques

m Programmatic use of root finder. ROOTR executes ROOT to find

the desired z-value.

m Programs as arguments. Although programs are commonly named

and then executed by calling their names, programs can also be put

on the stack and used as arguments to other programs.

More Programming Examples 31-45

Program: Comments:

+ frname guslus xguess Creates local variables.

Begins the defining procedure.

wguess 'HTEMF' STO Creates variable XTEMP (to be
solved for).

ATEMF fnams Enters program that evaluates

gusluse — % f(z) —y.

'ATEMP! Enters name of unknown variable.

HoUess Enters guess for XTEMP.

ROOT Solves program for XTEMP.

3 Ends the defining procedure.

'"ATEMP' PURGE Purges the temporary variable.

(CJROOTR Stores the program in ROOTR.

Checksum: # 13007d

Bytes: 163

Example: Assume you often work with the expression

3.72% + 4.52% + 3.9z + 5 and have created the program X—FX to

calculate the value:

0% ow TZ.TELTIHE, DETEZEE. FEs+D

You can use ROOTR to calculate the inverse function. To find the

value of z for which the function equals 599.5 (using a guess in the

vicinity of 1), enter the name 'X+FX' the y-value 59%.5, and the

guess 1—then press The program returns 5 as the
z-value.

31-46 More Programming Examples

Animation of a Graphical Image

Program WALK shows a small person walking across the display.

It animates this custom graphical image by incrementing the image

position in a loop structure.

Arguments Results

 1:

Techniques

m Custom graphical image. (Note that the programmer compiles

the full information content of the graphical image before writing

the program by building the image interactively in the Graphics

environment and then returning it to the command line.)

m FOR...STEP definite loop to animate the graphical image. The

ending value for the loop is MAXR. Since the counter value cannot

exceed MAXR, the loop executes indefinitely.

~— L

= a
1

o
e

5

S s
y

Pe
x] - 5
1

£ 5
1
1

ERASE € # Gd # &4 2

FYIEN

Comments:

Puts the graphical image of the

walker in the command line.

(Note that the hexadecimal
portion of the graphics object is a

continuous integer EZ&E . ..

zzaE. The linebreaks do not

represent spaces.)

Creates local variable walk

containing the graphics object.

Clears PICT, then displays it.

More Programming Examples 31-47

31

Program: Comments:

6d # 254 2 Puts the first position on the

FICT OVER walk GHOR stack and turns on the first

image. This readies the stack and

PICT for the loop.

5 MAER FOR i Starts the loop to generate

horizontal coordinates

indefinitely.

i 131 MOD R+E Computes the horizontal

coordinate for the next image.
$ 23d & =LIST Specifies a fixed vertical

coordinate. Puts the two

coordinates in a list.

FICT OVER walk GHEORE Displays the new image, leaving

its coordinates on the stack.

FICT RBOT walk GEOR Turns off the old image, removing

its coordinates from the stack.

5 STEF Increments the horizontal

coordinate by 5.

() WALK Stores the program in WALK.

Checksum: # 18146d

Bytes: 240.5

Example: Send the small person out for a walk.

 HEL

Press when you think the walker’s tired.

31-48 More Programming Examples

Part5

Printing, Data Transfer, and Plug-ins

32
Printing

This chapter describes how to use your HP 48

with an HP 82240B infrared printer, with an

HP 82240A infrared printer, and with printers
that connect to the serial port.

Setting Up a Printer

You can print on any of the printers mentioned above. However, you

must first make sure the HP 48 and the printer are set up properly.

To set up an HP 82240B printer:

1. Place the HP 48 and the printer on a flat surface. Aim the A

mark (near the Hewlett-Packard logo just above the display)

toward the window on the printer. Keep them within 18 inches (45

centimeters).

2. Press 34 (=)(MODES) oF

clear (its default state).
3. If you previously pressed

PRTPAR—press (1)

to make sure flag —34 is

or any reason, purge variable

@ETED.

Printing 32-1

To set up an HP 82240A printer:

1. Place the HP 48 and the printer on a flat surface. Aim the A

mark (near the Hewlett-Packard logo just above the display)
toward the window on the printer. Keep them within 18 inches (45

centimeters).

2. Press 34 ()(WMODES)
clear (its default state).

3. Press (&)(PRINT) HETERto set up special processing for

HP 48 characters.

The character set in the HP 82240A infrared printer doesn’t match

the HP 48 character set (see appendix C), but OLDPRT sets up the

following adjustments:

m 24 characters in the HP 48 character set (codes 129, 130, 143-157,

159, 166, 169, 172, 174, 184, and 185) aren’t available in the

HP 82240A infrared printer—it prints # instead.

o make sure flag —34 is

m Many extended characters (codes 128 through 255) don’t have the
same character codes. For example, # has code 171 in the HP 48

and code 146 in the HP 82240A printer.

To cancel OLDPRT for an HP 82240A printer:

m Press (7) (VAR) ERTEH (€)(PURGE).

You need to cancel OLDPRT whenever you print a graphics object in

graphics form.

To set up a serial printer:

m See “Setting Up a Serial Printer” on page 32-9.

See your printer manual for instructions about how to operate the

printer.

32-2 Printing

Printing

With certain exceptions, printing commands print objects according to

these guidelines:

m An object is printed with its delimiters.

m An object that doesn’t fit in one line of output continues on the

following lines.

m An array object is printed in expanded form—see below.

m A graphics object is printed in its stack form.

When you print an array in expanded form, each row and column is

labeled. For example, the 2 x 3 array

1 2 3

4 5 6

is printed like this:

Row Array £ 2 3 » < Array dimensions

number > Raw 1

111

21 2

31 3

Column

number

Row 2

11 4

21 5

31 6

 You can perform any printing operation with any compatible printer—

with these exceptions:

m Not all HP 48 characters print properly on an HP 82240A printer.

(Press GEEEEin the PRINT menu to get as many correct

characters as possible.)

m Special characters in the HP 48 character set may not print properly

on a serial printer.

m You can’t print a graphics object on a serial printer.

Printing 32-3

To print the object in level 1:

m Press (»)(PRINT) (right-shift).
or

u Press (&)(PRINT) FE1.

PR1 prints a string with no delimiters. PR1 prints a graphics object

in its graphic form. (OLDPRT must not be in effect while printing a

graphics object.)

To print the display image:

m Hold down (ON), press and release (MTH), then release (ON).

or

a Press (@)(FRINT) £
This operation uses the current DELAY setting. To print the image

ial port using (ON}(MTH), first make sure the port is open—

press in the I/O menu. (OLDPRT must not be in effect while
print g a graphics object.)

Note A low-battery condition may result in consistent

i failure of the printing operation. If you

fi notice consistent failure, replace your calculator

batteries.

To print all objects on the stack:

m To print objects using multiple lines when necessary, press

(«)(PRINT) EEET .

= To print objects truncated to one line each, press («9)(PRINT)

PRST and PRSTC print the stack starting with the object in the

highest stack level.

To print objects stored in variables:

m To print one variable, enter its name (with ' delimiters) and press

(@ERED) P
m To print several variables, enter a list (with £ * delimiters)

containing the variable names, then press (4q)(PRINT) BRI HE.

PRVAR prints graphics objects in their graphic form. It also prints

backup objects. PRVAR searches the current path for the variables

32-4 Printing

you specify, and prints the name and contents of each variable.

(OLDPRT must not be in effect while printing a graphics object.)

To print a string of characters:

1. Enter the characters as a string (with " " delimiters).
2. Press (&)(PRINT) FEEL .

You can print any sequence of characters using PR1. The printer

prints the characters without the " " delimiters. Subsequent printing

begins on the next line.

To print a graphics object as a picture:

m To print the object in level 1, press («q)(PRINT) |

m To print an object stored in a variable, enter its name(w1th !

delimiters) and press («q)(PRINT) ER’

m To print a displayed object, press (ONJH{(MTH).

A graphics object wider than 166 dot columns is printed in

166-column wide segments down the paper, separated by a dashed

line. For example, a 350-column wide graphics object would be

printed in two 166-column segments and one 18-column segment.

(OLDPRT must not be in effect while printing a graphics object.)

The following table summarizes the printing commands.

Printing 32-5

Printing Commands

Key Programmable Description

Command

(=>)(PRINT) PR1 Prints the object in level 1.

When and are pressed
simultaneously and then released,

prints the current display.

QERD:
FE PR1 Prints the object in level 1.

PRST Prints all objects on the stack, starting

with the object in the highest level.

FEZTL PRSTC Prints all objects on the stack in

compact form, starting with the object

in the highest level.

FELLD PRLCD Prints the current display.

PRVAR Searches the current path for the

specified variables, then prints the

name and contents of each one. The

variables are specified by a name or list

in level 1.

e CR Causes printer to do a

carriage-return/line-feed, printing the
contents, if any, of the printer buffer.

DELAY Sets the delay time (not greater than
6.9 seconds) between sending lines of
information to the printer.

L OLDPRT Remaps character codes of printed

 output to those of the HP 82240A

infrared printer.

32-6 Printing

Doing Advanced Printing

You can control other aspects of the printed output.

To set up double-spaced printing:

m To turn on double spacing, press 37 (=)(MODES)

u To turnoff double spacing, press 37 (=»)(MODES)

Flag —37, the Double-Spaced Printing flag, causes double-spaced

printing when it’s set.

To change the delay between printed lines:

m Enter the delay in seconds (not more than 6.9) and press

(@ERED)
The DELAY command lets you specify how long the HP 48 waits

between sending lines of information to an infrared printer. The

default delay is 1.8 seconds to avoid sending data faster than the

printer can print.

You can use a shorter delay setting when the HP 48 sends multiple

lines of information to your printer (for example, when printing a

program). To optimize printing efficiency, set the delay just longer

than the time the printhead requires to print one line of information.

If you set the delay shorter than the time to print one line, you may

lose information. Also, as the batteries in the printer lose their charge,

the printhead slows down, and, if you have previously decreased

the delay, you may have to increase it to avoid losing information.

(Battery discharge will not cause the printhead on an infrared printer

to slow to more than the 1.8 second default delay setting.) To include special HP 48 characters within a text string:

1. Enter in order each part of the string:

m To enter normal text, enter it as a string (with " * delimiters)
and press (ENTER).

m To enter a special character, enter its character code and press

i in the PRG OBJ menu.
2. Press as needed to join the parts into the complete string.

3. Print the string using the PRINT menu.

Printing 32-7

The table in appendix C lists each HP 48 character and its

corresponding character code. You can type most of the characters in

the table from the Alpha keyboard—see the alpha keyboard diagram

on page 2-8. For example, to type #, press (a) (&)(@)-

You can enter any HP 48 character using the CHR command. Certain

characters in the table in appendix C are not on the Alpha keyboard.

To enter one of these characters, you must use CHR.

The HP 82240B Infrared Printer can print any character from the

HP 48 character set.

To include printer commands within a text string:

1. Build the text string—including the special printer command

characters—using £ HE and as described above.
2. Print the string using the PRINT menu.

You can select various printer modes by sending escape sequences and

control characters to the printer. (An escape sequence consists of the

escape character—character 27—followed by additional characters.)

When the printer receives an escape sequence or character code, it

takes appropriate action—but the command itself isn’t printed.

Printer owner’s manuals usually describe the escape sequences and

control codes recognized by the printer.

Example: The following commands send information to the

HP 82240B printer to turn on Underline mode, underline the string

HELLO, and then turn off Underline mode:

27 CHE 251 CHE "HELLO" 2¥ CHE 258 CHR + + + + FPR1

To accumulate data in the printer’s buffer:

1. Press 38 (£2)(MIODES) 5E
2. Use commands in the PRINT menu to send several batches of data

to the printer.

. Press. ©E in the PRINT menu to print the accumulated data.

4. Optional: Press 38 (»)(MODES)
normal printing.

w

You can print any combination of text, graphics, and objects on

a single print line by accumulating data in the printer’s buffer.

Normally, each print command completes data transmission by

32-8 Printing

automatically executing the CR (carriage right) command, which tells

the printer to do a carriage-return/line-feed. Then the printer prints

the data currently in its buffer and leaves the print head at the right

end of the print line. (Alternatively, send character 4 or character 10

to print the buffer.)

Flag —38, the Line-Feed flag, controls the automatic execution of

the CR command. If it’s set, data from subsequent print commands

is accumulated in the printer buffer and is printed only when you

manually execute CR.

For an infrared printer, follow these three rules while flag —38 is set:

m Execute CR before you accumulate more than 200 characters.

Otherwise, the buffer fills up and subsequent characters are lost.

m Allow time for the printer to print a line before sending more data.

The printer requires about 1.8 seconds per line.

Setting Up a Serial Printer

You use the PC version of Serial Interface Cable to connect the

HP 48 and the printer. This cable is also included with the Program 32

Development Link, available from Hewlett-Packard. (For information

about these and other products, see your HP dealer.)

To set up a serial printer:

1. Connect the 9-pin end of an HP 48 serial cable to the serial printer.

If necessary, use a 9-pin to 25-pin adapter.

Printing 32-9

2. Keep the HP logo on the 4-pin connector facing up, then plug the

cable into the HP 48. You should feel it lightly snap into place.

~ Not quite flush

3. Press 34 (»)(MODES) to direct printing output

to the serial port (instead of to the infrared port).

4. Press 33 CF to make sure flag —33 is clear (its default
state).

5. Press (&9)(1/0) SETUE. Then check that the HP 48 and printer

are using the same baud rate and parity. If desired, change the

translate code to give more legible output. Other parameters don’t

affect printing. See “Setting the I/O Parameters” on page 33-3 for

detailed information.

6. If your printer uses XON/XOFF handshaking: Press («9)(1/0)
OFEHT DI UZE to create JOPAR. Then press () iae

()(VISIT) and change the fourth number to 1—for example,
{9508 B @ 13 1 3. Press (ENTER).

7. If your printer doesn’t fit 80 characters on one line, press

(«x)(PRINT) .EE1L to create PRTPAR, then edit the line-length

parameter—see “Understanding the PRTPAR Variable,” the next
topic.

8. If your printer requires an end-of-line sequence other than

carriage-return/line-feed, press (|q)(PRINT) ¥ to create

32-10 Printing

PRTPAR, then edit the end-of-line parameter—see “Understanding
the PRTPAR Variable,” the next topic.

If your printer doesn’t use XON/XOFF handshaking, the printing

delay parameter controls the time delay between lines—see the next

section.

Understanding the PRTPAR Variable

When you first print information with a command from the PRINT

menu, the HP 48 automatically creates the PRTPAR variable in the

HOME directory. PRTPAR is a reserved variable containing a list

that specifies how the HP 48 works with the printer:

delay “remapping” lne-length "end-of-line"

Contents of the PRTPAR List

Element Description Default

delay A real number that specifies the delay 1.8

time between sending lines, in

seconds—6.9 maximum. (Set by
BELHY in the PRINT menu.)

“remapping® A string that represents the current o

remapping of the HP 48 extended

character set. The string can contain as

many characters as you want to remap.

The first character in the string

becomes the new character 128, the

second becomes character 129, and so

on. (Characters not represented in the
string aren’t remapped.) OLDPRT sets

up the remapping string for the

HP 82240A infrared printer.

Printing 32-11

Contents of the PRTPAR List (continued)

 Element Description Default

line-length A real number that specifies the line 80

length, in number of characters, for

serial printing only—it does not affect

infrared printing.

“end-of-line" A string that represents the line Hgdt

termination method for serial printing (characters

only—it does not affect infrared 13 and 10)
printing.

You can edit any parameter in variable PRTPAR. However, the

remapping and end-of-line strings often contain special characters.

To edit the remapping or end-of-line string:

1. Create the desired string on the stack using

procedure is explained on page 32-7.

2. Press (1) FRTPA(@)(VISIT)
3. Move the cursor to the start of the old string parameter and delete

it—you can use iiE}# .

4. Press #51FE ELHI to insert the new string.
5. Press to save the change (or press to discard the

change).

and (1). The

To reset PRTPAR to its default:

w Press () PRTEH()(FURGE)

32-12 Printing

33
Transferring Data to and from the
HP 48

You can load data into your HP 48, and you can

m copy data from your HP 48. You can do this with

two HP 48s—or with an HP 48 and a computer—

or with an HP 48 and some other serial device, such

]

How the HP 48 Transfers Data

The HP 48 uses Kermit file transfer protocol to transfer data and

to correct transmission errors. Kermit protocol was developed at

the Columbia University Center for Computing Activities and is

implemented on most computers.

The commands needed to perform Kermit data transfers are built into

the HP 48. You need nothing more to transfer data between two

HP 48s.

To transfer data to and from a computer, the computer must be

running a program that implements Kermit protocol. If you want

additional information on Kermit protocol, the following books are

available or can be ordered in many bookstores: Using MS-DOS

Kermit by Christine M. Gianone, Digital Press, 1990, and KERMIT,

A File Transfer Protocol by Frank da Cruz, Digital Press, 1987.

The HP 48 also provides commands for non-Kermit serial data

transfers, such as sending data to a serial printer or instrument.

Transferring Data to and from the HP 48 33-1

Types of Data You Can Transfer

The unit of information that you transfer using Kermit protocolis

called a file. To the HP 48, a file can contain any of the following:

m A variable—any type of object stored there.

m An entire directory. When you transfer a directory, the contents of

all the variables and subdirectories under that directory are also

transferred.

m All of user memory—all the variables you’ve created, the user-key

assignments, and the Alarm Catalog.

Whenever you transfer data, you actually send a copy of the data—

the original data is never removed. The transferred data is stored in

the current directory as a variable in another HP 48, or as a file on a

computer.

When you transfer a directory from one HP 48 to another, it’s created

as a normal directory containing its individual variables. This means

that you can use it just like other directories, and its variables are

all accessible. Transferring a directory from one HP 48 to another is

a good way to transfer a set of related objects to be used together

by the destination HP 48. For example, it could contain a set of

programs and related variables.

When you transfer a directory or all of user memory between an

HP 48 and a computer, the data is embedded in a single file, so you

can’t conveniently access the contents of the individual variables in

that file. For this reason, a directory transfer to a computer should

be done mainly for archiving purposes. When the purpose of a file

transfer is to use the file at its destination (for example, to edit a

program on your computer), you should transfer the contents of the

individual variables.

33-2 Transferring Data to and from the HP 48

Choosing a Transfer Model

You can use two different Kermit protocol setups to transfer data

between two devices:

m Local/Local. For each transfer, you operate both devices from their

own keyboards—two “local” devices. (Kermit commands can be
issued by both devices.)

m Local/Server. For each transfer, you operate one device—the “local”

one. The other device—the “server”—takes its orders from the

device you’re operating. (Kermit commands can be issued by only

the local device.)

Local/server mode is convenient because after you set up the server,

you operate only one device.

Setting the 1/0O Parameters

The I/O parameters determine how the HP 48 communicates. In
order for two devices to communicate, you have to make sure they use

the same I/O parameters.

To view and change the HP 48 1/O parameters:

1. Press ()(1/0)

2. To change any parémeter, press the corresponding menu key until

the parameter has the desired value—see the table below.
Recommended parameters for certain types of transfers are

summarized following this table.

Transferring Data to and from the HP 48 33-3

Setup Commands

Key Programmable

Command

Description

BAUD

Bl PARITY

CKSM

TRANSIO

 (Q)REVIEW)

Switches between IR (infrared) and
Wire (serial) modes. In IR mode, I/O
output is directed to the infrared port.

In Wire mode, I/O output goes to the

serial port. (Flag —33 indicates this

setting.)

Switches between ASCII and Binary

modes for sending data. (Flag —35
indicates this setting.)

Steps through 1200, 2400, 4800, and

9600 baud. (The default is 9600 baud.)

Steps through odd (1), even (2), mark
(3), space (4), and no (0) parity. (The
default is no parity.)

Steps through checksum (error

detection) options—the type requested

when initiating a SEND. Choices are 1

(one-digit arithmetic checksum), 2
(two-digit arithmetic checksum), and 3
(three-digit cyclic redundancy check,

or CRC). Should be 3 for IR mode.
(The default is 3.)

Steps through the character
translation options (which character

codes are translated): 0 (no
translation), 1 (code 10) 2 (codes
128-159), or 3 (codes 128-255). Not
used for binary transfers. (The default
is 1.)

Redisplays the setup information.

33-4 Transferring Data to and from the HP 48

The BAUD, PARITY, CKSM, and TRANSIO commands take a

numeric argument from level 1.

Choosing ASCII or Binary Transfer

The HP 48 Kermit protocol provides two transfer modes—ASCII and

Binary. To get the fastest transfers, you generally should use the

following modes for sending data:

m For HP 48-to-HP 48 transfers, use Binary mode.

m For HP 48-to-computer transfers in which you’ll view or edit the

files on the computer, use ASCII mode.

m For HP 48-to-computer transfers in which you’ll merely store the

data on the computer, use Binary mode.

The HP 48 automatically uses Binary mode when sending libraries

and backup objects, and when archiving all of user memory.

While receiving data, the HP 48 treats all files as ASCII unless they

match the special encoding generated for HP 48 binary files—then

the HP 48 automatically switches to Binary mode for files with such

encoding.

In ASCII mode, characters are converted according to the character

translation option. This makes it possible to view and edit such files 33
on a computer. See “Understanding ASCII Transfers” on page 33-22.

In Binary mode, less processing is required. No character conversions

are performed, so received files can’t be displayed on a computer.

Choosing the Parity Option

If the parity setting is a positive number, 1t’s used on both transmit

and receive. If it’s a negative number, it’s used only on transmit,

and parity isn’t checked during receive. The menu key EHE 1T steps

through only positive choices.

To set a negative (transmit-only) parity option, enter the option

number and press ()(ENTRY) EEELT (ENTER). (You can also

edit the parity parameter in JOPAR—see “Understanding the IOPAR

Variable” on page 33-24.)

Transferring Data to and from the HP 48 33-5

Choosing the Translation Option

The translation code affects only data transferred in ASCII mode.

The preferred translation code depends on the type of transfer:

m For HP 48-to-HP 48 transfers, the translation code is ignored if you

use Binary mode. (If you use ASCII mode, the translation code

doesn’t affect the results—just the speed.)

m For HP 48-to-computer and computer-to-HP 48 ASCII transfers,

the translation code depends on the computer software you use

to display or edit the file. See the discussion below. (For binary

transfers, the translation code is ignored.)

The HP 48 character set contains certain characters that can’t be

displayed using most computer software packages. The characters with

codes 160 through 255 require software that supports the ISO 8859

character set. The additional characters with codes 128 through 159

require software designed to support the HP 48, such as the Program

Development Link from Hewlett-Packard.

The translate code determines what happens to these characters when

they’re sent or received by the HP 48:

m If you’re using computer software that doesn’t support some of the

HP 48 characters, use translation code 2 or 3.

m If you’re transferring strings containing binary data, use translation

code 0.

m If you want to simply capture the ASCII data, use translation code

1 (the default).
m If the HP 48 is receiving data containing an **HF header line, the

translation code is ignored—see “Understanding ASCII Transfers”

on page 33-22.

The next table shows the translations performed by the HP 48 during

ASCII transfers. It shows the character codes and characters that are

translated. The “10” and “10,13” entries indicate conversions between

end-of-line sequences using line feed (10) and carriage return (13)
characters. The -trans entries are “backslash” translations that depict

special HP 48 characters as ASCII text—they’re defined in the second

table. (Undefined “backslash” sequences are not changed.)

The second table shows the “backslash” translations for characters

with code numbers above 127—they’re used by translation codes 2 and

3 only, as shown in the first table.

33-6 Transferring Data to and from the HP 48

Summary of ASCII Data Translation Options

Option 0 Option 1 Option 2 Option 3

Data Sent by HP 48

10 — 10,13 10 — 10,13

128 — ~irans

159 — ~.trans

10 — 10,13

o

128 — ~irans

255 — “-irans

Data Received by HP 48

10,13 — 10

10,13 — 10

“trans — char

~EHEE — char ~15% — char

10,13 — 10

o—

“trans — char

“~HES — char

“255 — char

ASCII Character Translations (Character Codes 128-255)

HP 48 HP 48 Trans HP 48 HP 48 Trans HP 48 HP 48 Trans

Code Char Code Char Code Char

128 £ R 142 & = 156 T ~PI

129 = RS 143 * o 157 0 =Gk

130 7 Y 144 +] 158 B ~[1

131 I A 145 - 530 159 e 10

132 I . 5 146 & ~Gd 171 £ L

133 z ~G5 147 £ ~Ge 176 = 0

134 B | 148 4 ~Gn 181 o G

135 m Wl 149 = ~Gh 187 i

136 a e 150 M ~G1 215 ® o

137 £ = 151 F ~G 216 B e

138 = = 152 o ~GE 223 & Gk

139 ey 153 T -Gt 247 + i -

140 o ~Ga 154 o G nnn other nan

141 * N 155 & G
Transferring Data to and from the HP 48 33-7

Transferring Data between Two HP 48s

To set up for HP 48-to-HP 48 transfers:

1. Sender. Change to the directory where the variables to be sent are

located.

2. Sender. Use the I/O SETUP menu to set up IR and Binary modes

and checksum 3.

3. Receiver. Change to the directory where the variables are to be

stored.

4. Receiver. Use the I/O SETUP menu to set up IR mode.
5. Receiver.

m To allow received data to replace existing variables with the same

names, set flag —36.

m To resolve name conflicts by creating new names with number

extensions, clear flag —36 (its default state).
6. Line up the infrared ports by lining up the A marks (near the

Hewlett-Packard logo just above the display). The calculators

should be no farther apart than 2 inches.

3
a
d
w
o
v
d

L
L
I
I
M
I
H

A
L O
O
0

D
O
O
0
O
0
0
O

To transfer a variable (local/local setup):

1. Receiver.
m To store the variable using its original name, press (|)(1/0)

REDW.
m To store the variable using a new name, enter a name (with * or

* delimiters) and press (|)(1/0) B
2. Sender. Enter the name of the variable to be sent (with *

delimiters) and press (&)(1/0)

33-8 Transferring Data to and from the HP 48

3. Optional: To transfer additional variables, repeat the previous

steps.

4. Sender and Receiver. Optional: To conserve battery power, press

To transfer a variable (local/server setup):

1. Server. Press (()(1/0) or (®)(1/0)
2. Local.

m To send a variable, enter the variable name (with ' delimiters)
and press (&9)(1/0) SEHE).

m To get a variable, enter the variable name to get (with °

delimiters) and press (&)(I/0) EGET).
. Optional: To get additional variables, repeat step 2.

Local. To end the session, press

5. Server and Local. Optional: To conserve battery power, press

W

To transfer several variables at once (either setup), use a list of the
form { name; namey ... * as the argument for SEHD or EELET .

To rename transferred variables (local/server setup), use a nested
list of the form £ £ namegq namepew * ... * as the argument for

or KGETL.

To send an HP 48 command to the server (local/server setup):

1. Enter the command as a string (with " " delimiters).
2. Enter the string "C".

3. Press (&)(I/0)

Example: To purge variable ABC on the server, enter

"'REC' PURGE" and "C" and press | =

FET

To end server mode on the HP 48:

m Press (ATTN).

Transferring Data to and from the HP 48 33-9

 33

Transferring Data between a Computer and
HP 48

There are many reasons to transfer information between a computer

and your HP 48—you might want to back up all of your calculator’s

user memory; you might want to edit a calculator program on your

computer; or you might want to write a program on your computer

and then run it on your calculator.

The Program Development Link from Hewlett-Packard provides

a convenient way to transfer data between a computer and your

HP 48. It’s designed for creating and editing HP 48 programs. It

automatically sets up I/O parameters for transferring data and

backing up HP 48 memory.

Preparing the Computer and HP 48

You use a Serial Interface Cable to connect the HP 48 and

the computer. This cable is also included with the Program

Development Link and with the Serial Interface Kit, available from

Hewlett-Packard. (For information about these products, see your HP

dealer.)

To connect a computer and HP 48:

1. Connect the computer end of the serial cable to the serial port on

the computer. If necessary, use a connector adapter. (If you need

more information, consult your computer documentation.)

33-10 Transferring Data to and from the HP 48

2. Keep the HP logo on the 4-pin connector facing up, then plug the

cable into the HP 48. You should feel it lightly snap into place.

Not quite flush

To set up for HP 48-to-computer transfers:

1. HP 48. Press ()(1/0)

parameters:

m Wire mode.

m ASCII or Binary mode—it must match the Kermit mode on the 33
computer. (See “Choosing ASCII or Binary Transfer” on page

33-5.)
m Baud rate must match the Kermit baud rate on the computer.

m Parity must match the Kermit parity on the computer.

m Checksum can be any option—type 1 is the fastest.

m Translation code can be any option. (See “Choosing the

Translation Option” on page 33-6.)

2. HP 48. Change to the directory where the variables are to be sent

from or stored.

3. HP 48.
m To allow received data to replace existing variables with the same

names, set flag —36.

m To resolve name conflicts by creating new names with number

extensions, clear flag —36 (its default state).
4. HP 48. Optional: Press (9)(1/0) CFFEHT to open the HP 48

serial port. (This step isn’t necessary for most connections, but it

prevents difficulties caused by the inability of certain devices to

communicate with a closed port.)

TUF) and set up the following

 Transferring Data to and from the HP 48 33-11

5. Computer. Change to the directory where the files are to be sent

from or stored.

6. Computer. Run the program on the computer that implements

Kermit protocol.

7. Computer. If you’re using Binary mode, and if the Kermit program

on the computer has a Binary mode command, execute the

command.

Transferring Variables and Files

To send a file to the HP 48 (local/local setup):

1. HP 48.

m To store the file in a variable of the same name, press (&q)(1/0)

m To store the file in a variable using a new name, enter a name

(with ' or * delimiters) and press (|)(i/0) EELH.
2. Computer. Execute the Kermit command to send the file, such as

SEND file.
3. Optional: To transfer additionalfiles, repeat steps 1 and 2

4. HP 48. Optional: To conserve battery power, press i

To send a variable to the computer (local/local setup):

1. Computer. Execute the Kermit command to receive a file, such as

RECEIVE.
2. HP 48. Enter the variable name (with ' delimiters) and press

(«®)(/0) EZEHE .
3. Optional: To transfer additional variables, repeat steps 1 and 2

4. HP 48. Optional: To conserve battery power, press

To send several variables at once, use a list of the form

{ name; namey ... + as the argument for *EEH

To transfer data using the HP 48 (local/server setup):

1. Computer. Execute the Kermit command to make it the server,

such as SERVER.
2. HP 48.

m To send a variable, enter its name (with ' delimiters) and press
(0)(/0) =EHE .

m To receive a file into a variable, enter the file name (with " *
delimiters) and press (|)(1/0)

33-12 Transferring Data to and from the HP 48

3. Optional: To transfer additional variables, repeat step 2.

4. HP 48. To end the session, press

5. HP 48. Optional: To conserve battery power, press

To send several variables at once, use a list of the form

{ namey names ... * as the argument for SEHE

To rename received variables, use a nested list of the form

£ £ nameglq naMenew * ... I as the argument fo

To transfer data using the computer (local/server setup):

1. HP 48. Press ()(1/0) or («)(1/0)).
2. Computer.

m To send a file to the HP 48, execute the Kermit command to

send the file, such as SEND file.
m To receive a variable from the HP 48, execute the Kermit

command to receive a file, such as RECEIVE.

3. Optional: To transfer additional variables, repeat step 2.

4. Computer. To end the session, execute the Kermit command to

shut down the server, such as FINISH.

5. HP 48. Optional: To conserve battery power, press

To send a command to a computer server (local/server setup):

1. HP 48. Enter the command as a string (with " " delimiters).
2. HP 48. Enter the string "C".

3. HP 48. Press (q)(1/0)(NXT) F

cr

To send a command to an HP 48 server (local/server setup):

m Computer. Execute a Kermit REMOTE HOST command

command, where command is one or more HP 48 commands or

other objects.

To end server mode on the HP 48:

m HP 48. Press (ATTN).

Transferring Data to and from the HP 48 33-13

Backing Up All of HP 48 Memory

You can back up and restore the contents of the entire HOME

directory in a file on your computer. The HOME directory includes all

variables, user key assignments, and alarms. You can also include all

flag settings if you want.

The Program Development Link from Hewlett-Packard provides

commands for automatically backing up and restoring HP 48 memory

from a computer.

The following steps assume you’ve prepared the computer and HP 48

for data transfer—see “Preparing the Computer and HP 48” on page

33-10.

Caution While backing up memory, make sure the ticking

clock is not in the display. If the clock is in the

w display, it may cause a loss of data stored in memory

after the backup is complete.

To back up all of user memory to a computerfile:

1. Computer. Execute the Kermit command to set up binary transfer,

if available.

2. Computer. Execute the Kermit command to receive a file or make

it the server, such as RECEIVE or SERVER.

3. HP 48. Optlonal To back up flags settings too, press ((»)(MODES)

(NXT) ELLE, enter a flag-variable name (Wlth delimiters), and
press (STO).

4. HP 48. Enter the tagged object = Iz name on the stack, where

name is the name of the file to be created on the computer.

5. HP 48. Press (&9)(MEMORY)

6. HP 48. To end the session, press (&9)(I/O) EIHI=.

7. HP 48. Optional: To conserve battery power, press ELOEE.

ARCHIVE always uses binary transfer, regardless of the

ASCII/Binary setting on the HP 48.

33-14 Transferring Data to and from the HP 48

Caution Use the RESTORE command with care; restoring
backed up user memory completely erases current

w user memory and replaces it with the backup copy.

To restore HP 48 user memory from a computerfile:

1. Transfer the computer file to an HP 48 variable using one of the

data transfer methods from the previous section.

2. HP 48. Enter the received variable name (with ' delimiters) and
press (»)(RCL) to recall the backup object.

3. HP 48. Press (&9)(MEMORY) FESTH.
4. HP 48. Optional: To restore flag settings previously saved, enter

the flag-variable name (with * delimiters), press (@)(RCL), and
press (»)(MODES) ETOE

5. HP 48. Optional: To conserve battery power, press (q)(1/0)

BR

Example: To back up memory into a file named AUGI, enter the

tagged object : Il:ALIG1 as the backup name. Then, if you later

retrieve this data to the HP 48, you can enter 'FLiz1"' and press

()(RCL) to get Backup HOMEDRIR on the stack—ready for the
RESTORE command.

Choosing and Using File Names

The naming conventions for computer files are different from those for

HP 48 variables.

When the HP 48 receives a file from a computer, certain difficulties

may arise due to the computer file name. (You can avoid this problem

by specifying a new name for received data, as described in the

transfer instructions.)

m If the file name contains characters not allowed in a variable name

(such as FiE# or {RECT), the HP 48 terminates the transfer and
sends an error message to the computer.

Transferring Data to and from the HP 48 33-15

m If the file name matches a built-in command (such as SIH or DLUF),
the HP 48 appends a number extension to the name (such as

SIM.1).

m If the name matches a variable name in the current directory and

flag —36 is clear (to protect existing variables), a number extension

is added to the name (such as HAME. 1).

When the HP 48 sends a variable to a computer, its name may be

incompatible with the naming conventions of the computer software.

Transferring such a file can result in a transfer error. (You can avoid
this problem by renaming the variable before sending it.)

Receiving Data from Other Calculators

The HP 48 is capable of receiving data from another calculator that

has an infrared printer output—data is received as string objects.

To do this, you need the INPRT program for the HP 48, which is

available in the Serial Interface Kit and electronically on the HP

Calculator Bulletin Board system—see the inside back cover.

Sending Kermit Commands

If the HP 48 is the local device in a local/server setup, you can use it

to send Kermit commands to be executed by the server—by another

HP 48 or by a computer. If the HP 48 is a server, you can send

Kermit commands to it. The following steps assume the receiving

device is already set up as a server.

To send a Kermit command from an HP 48:

1. Enter the command as a string (with " " delimiters).
2. Enter the packet type as a string (with " " delimiters).

3. Press (q)(/O)(NXT) EET

33-16 Transferring Data to and from the HP 48

The server sends one of the following responses to the PKT command:

m An acknowledging message. The reply to the packet is returned as

a string to level 1—an empty string is returned if no response is

appropriate.

m An error packet. The HP 48 briefly displays the contents of the

error packet. To retrieve it, press (¢9)(1/0) EERE

Example: To request a directory listing, enter "DIRECTORY" and

":" and press BEET . The directory is returned as a string.

Getting Information about Kermit Errors

If a Kermit error occurs during a transfer, the transfer has failed. In

this situation, you’ll usually see a message in the HP 48 display, such

as Irmwalid Sunt =and additional information.

To recall the complete Kermit error packet:

m Press ()(1/0) (NXT) KEEE .

The KERRM command returns the most recent Kermit error packet

as a string. The string is cleared by the CLOSEIO command. 33

Summary of Kermit Commands

The 1/0 Menu—Kermit Commands

Key Programmable Description

Command

(«2)(/0) (pages 1 and 2):

EEHD SEND Sends the contents of one or more

variables to another device. Takes an

argument from level 1—the variable

name or a list of names.

EELW RECV Tells the HP 48 to wait to receive a

variable from another Kermit device.
Transferring Data to and from the HP 48 33-17

The 1/0 Menu—Kermit Commands (continued)

Key Programmable Description

Command

SERVER Puts the HP 48 into Kermit Server

mode. (Also ((#)(/0).) Press to
cancel.

ELET KGET Gets one or more variables from a

server device. Takes an argument from

level 1—the name of the requested

variable or a list of names.

EIHIE FINISH Issues the Kermit FINISH command to

a server device to terminate Server

mode.

SETLE Displays the SETUP menu for setting

I/O parameters.

RELH RECN Same as [EEL %for one variable,

PKT

KERRM

OPENIO

CLOSEIO

except that it takes a name argument.

The received file is stored using that

name.

Provides the ability to send a Kermit

command “packet” to a server. It takes

the packet data field as a string in level

2 and the packet type as a string in

level 1.

Returns the text of the most recent

Kermit error.

Opens the serial port using the I/0O

parameters in JOPAR.

Closes the serial port, clears the

KERRM error message, and clears the

input buffer.

Puts the HP 48 into Kermit Server

mode. (Same as ZERYE.) Press

to cancel.

33-18 Transferring Data to and from the HP 48

Sending and Receiving Data without Kermit

You can send and receive data and commands with serial devices that

don’t use Kermit protocol, such as serial printers and instruments.

You do this using the general-purpose serial I/O commands.

To transfer serial data with a non-Kermit serial device:

1. Press (9)(1/0)

serial device.

2. If the serial device uses receive or transmit pacing (XON/XOFF
signals) during transfers, press (&q)(1I/0) (NXT) £ .
make sure JOPAR exists, then press (VAR) (7)) I @m
m To receive data using pacing, change the third number to 1.

m To send data using pacing, change the fourth number to 1—for

example, £ FEEE B & 1 2 1 &

Press (ENTER).

3. Optional: Press («)(1/0) to open the HP 48 serial

port. (This step isn’t necessary for most connections, but it

prevents difficulties caused by the inability of certain devices to

communicate with a closed port.)

4. To send or receive serial data or commands, use the I/O menu keys

for the desired operations—see the table below.

 = TLIF and set up the I/O parameters to match the

Caution When using the commands described below to

transfer data at 9600 baud, make sure the ticking

w clock is not in the display. If the clock is in the

display, 1t may interrupt a transfer or corrupt the

data being transferred.

Transferring Data to and from the HP 48 33-19

The 1/0 Menu—Serial /O Commands

Key Programmable

Command

Description

(©)(/0) (page 3):

STIHE

XMIT

SRECV

STIME

SBRK

Sends the string in level 1 without

Kermit protocol. After the entire string

1s sent, 1 is returned to level 1. If the

entire string failed to transmit, 0 is

returned to level 1 and the unsent part

of the input string is returned to level

2—execute ERRM to see the error

message.

Receives the number of characters

specified in level 1. For a successful

transfer, the characters are returned to

level 2 as a string, and 1 is returned to

level 1. For an unsuccessful transfer, an

empty or incomplete string is returned

to level 2, and 0 is returned to level 1—

execute ERRM to return the error

message. (An unsuccessful transfer
occurs if the characters contain a parity

error, framing error, or overrun error, or

if fewer than the specified number of

characters are received before the

timeout period expires, 10 seconds by

default.) Characters are taken from the

input buffer—mo waiting occurs if you

specify the number of characters in the

buffer, which is returned by

Sets the serial transmit/receive timeout
to the number of seconds specified in

level 1. The timeout value can be from

0 to 25.4 seconds. If you specify 0, the

HP 48 waits indefinitely, which could

result in excessive battery drain.

Sends a serial BREAK signal.

33-20 Transferring Data to and from the HP 48

The 1/0 Menu—Serial I/0 Commands (continued)

Programmable Description
Command

BUFLEN Returns the number of characters in the

input buffer to level 2, and the error

status to level 1 (1=no framing error or
UART overrun, or 0=framing error or

UART overrun). If 0 is returned to level
1, the number of characters returned to

level 2 represents the part of the data

received before the error—you can use it

to determine where the error occurred.

Note

i

Although XMIT, SRECV, and BUFLEN check

the send and receive mechanisms, the integrity of

the data isn’t checked. One method to check the

integrity of data transmission is for the sending

device to append a checksum to the end of the data

being sent, and for the receiving device to verify the

checksum.

OPENIO, XMIT, SRECV, and SBRK automatically open the

IR/serial port using the current values of the first four JOPAR
parameters (baud, parity, receive p

current IR/wire setting (set usin

and transmit pacing) and the
in the I/O SETUP menu).

If you open the port, the input buffer can receive incoming data (up to

255 characters), even before you execute SRECV.

Transferring Data to and from the HP 48 33-21

Making a Serial Connection

You normally use a Serial Interface Cable to connect the serial port.

This cable is also included with the Program Development Link and

with the Serial Interface Kit, available from Hewlett-Packard. (For
information about these products, see your HP dealer.) The following

diagram shows the wiring used by the PC version of the serial cable

and its adapter.

lolto'

25 — pin

9 —pin

5 GND
3 X
2 RBX

SHIELD

Serial Interface Cable and Adapter (PC Version)

Understanding ASCII Transfers

You must use ASCII mode if you want to display, edit, or print your

HP 48 file using a computer.

When data is sent from the HP 48 in ASCII mode:

m The data is converted from its internal HP 48 format to a sequence

of characters.

m An %%HF header line is added at the beginning of the data. It

describes certain current settings—the translation code, angle mode,

and fraction mark.

When data is received by the HP 48 in ASCII mode:

33-22 Transferring Data to and from the HP 48

m The data is translated (compiled) into the HP 48 internal format.

m If an %%HF header line is present, all modes specified in the line are

set temporarily in the HP 48 for the duration of the transfer—so

that the receiving calculator can accurately reconstruct the object

being sent by the computer. If a mode isn’t specified—or if no

header line is included—the HP 48 uses its current setting.

The %%HF header line provides a convenient way to set up the

translation code, angle mode, and fraction mark—without having to

check their settings at the time of transfer. This is the format of the

header line:

XEHP: T codexRangle:Fimark:;

where

Tucode’ If present, specifies the translation code used when

the HP 48 receives the data: T#&x (no translation),
Tl (code 10), TiZ(codes 128-159), or TZ(codes
128-255). See “Choosing the Translation Option” on page

33-6.

Acangler If present, specifies the angle mode used when the HP 48

recetves the data: F<[x» (degrees), AR (radians), or
FuG» (grads). If the data contains an angle, this setting is
important.

Fimark» If present, specifies the fraction mark used when the

HP 48 receives the data: Fi.» (period) or Fi ;2

(comma). If the data contains a fraction mark, this
setting is important.

If you use your computer to create data (such as an HP 48 program)

or to substantially change data that originally came from your

calculator, you may want to include an %%HF header line at the

beginning of the file. It ensures that the file is transferred and
interpreted correctly.

Example: The header line %%xHF: Rl : causes the angle mode to be

set to degrees during the transfer—the current translation code and

fraction mark are used.

Example: The header line %%HF: TEZ3RCGF <, 2§ causes the

translate code to be set to 2, the angle mode to be set to grads, and

the fraction mark to be set to comma during the transfer.

Transferring Data to and from the HP 48 33-23

Understanding the IOPAR Variable

The reserved variable IOPAR stores the I/O parameters needed to
establish a communications link with a computer. It’s created in

the HOME directory the first time you transfer data or open the

serial port (HFEHT). It’s automatically updated whenever you change

the settings using the commands in the I/O SETUP menu. IOPAR

contains a list consisting of these elements, described in the table

following;:

L baud parity

recetve-pacing transmit-pacing checksum translation-code =

Contents of the IOPAR List

 Not used for binary transfers. See

“Choosing the Translation Option” on

page 33-6.

Element Description Default

baud Baud rate (1200, 2400, 4800, or 9600). 9600

parity Parity (O=none, 1=odd, 2=even, 0

3=mark, 4=space).

recetve- For non-Kermit transfers only 0

pacing (0=disabled, nonzero=enabled). Receive

pacing sends XOFF when the receive

buffer is almost full, and sends XON

when it can take more data.

transmit- For non-Kermit transfers only 0

pacing (0O=disabled, nonzero=enabled).

Transmit pacing stops transmission

when XOFF is received, and resumes

when XON is received.

checksum Error-detection scheme for SEND 3

(1=one-digit checksum, 2=two-digit
checksum, 3=three-digit cyclic

redundancy check).

translation- Character translations (0=none, 1=code 1
code 10, 2=codes 128-159, 3=codes 128-255).

33-24 Transferring Data to and from the HP 48

34
Memory, Plug-In Cards, and Libraries

The HP 48 contains built-in permanent memory

(ROM) and built-in user memory (RAM). A
special built-in memory port (port 0) is also

available for memory operations. Ezcept for the

HP 48S model, the HP 48 also has two plug-in
ports (ports 1 and 2) that let you add to built-in

memory by plugging in application cards and

RAM cards.

This chapter shows:

The types of memory.

Installing and removing plug-in cards (not for the HP 48S).
Expand user memory (not for the HP 48S).

Backing up data.

Using libraries.

Types of Memory

The HP 48 has two types of memory:

m Read-only memory (ROM). Memory that can’t be altered. The

HP 48 has 256 KB of built-in ROM that contains its command set.

Except for the HP 48S, you can expand the amount of ROM by

installing plug-in application cards.

m Random-access memory (RAM). Memory you can change. You can

store data into RAM, modify its contents, and purge data. The

HP 48 contains 32 KB of built-in RAM. Except for the HP 48S, you

can increase the amount of RAM by adding plug-in RAM cards.

Memory, Plug-In Cards, and Libraries 34-1

Installing and Removing Plug-In Cards (Not

HP 48S)

The two ports for installing plug-in cards are designated port 1 and

port 2. Port 1 is closest to the front of the calculator—port 2 is closest

to the back. You can install a card in either port.

obe———Q

If you're installing a new RAM card, read the next section—otherwise,

skip ahead to “Installing and Removing RAM and ROM Cards” on

page 34-5.

Caution Nonapproved plug-in cards and accessories may

cause damage to the HP 48. You can distinguish

w a potentially damaging card or plug-in accessory

from an HP-approved card by looking at the back

side of the card where it plugs into the HP 48. An

approved card has a metal shutter to protect the

HP 48 from static charges. The nonapproved cards

and accessories examined to date by HP do not have

this shutter, but have exposed gold contacts instead.

Preparing a New RAM Card

Before you install a new RAM card, you must install the battery that

came with it.

34-2 Memory, Plug-In Cards, and Libraries

Caution Do not use this procedure for replacing the battery

in a RAM card—it could cause loss of memory in the

w RAM card. To replace a battery, see “To change a

RAM card battery” on page A-9.

To install the battery in a new RAM card:

1. Remove the battery holder from the card by inserting your

thumbnail or a small screwdriver into the groove and pulling in the

direction shown.

2. The grooved side of the battery holder is marked with the +

symbol and the word UP. Insert the battery into the holder with its

+ side up, and then slide the holder into the card.

Memory, Plug-In Cards, and Libraries 34-3

3. Write the date of installation on the card using a fine-point,

permanent marker. The date is important for determining when to
replace the battery.

Battery orientation

symbol

A

4.<.> .@ Write installation

date here

Wirite contents

here

 O

4. Set an alarm in the calculator for 1 year from the date of

installation to remind you to replace the battery. (Depending on

the use, the battery should last between 1 and 3 years. When the

battery needs replacing, a display message will appear—but only if

the card 1s in the calculator. You set this alarm to remind yourself

in case the card isn’t in the calculator when the battery gets low.)
To set an alarm, see “Setting Alarms” on page 24-5. To replace a

RAM-card battery, see “To change a RAM card battery” on page

A-9. 34-4 Memory, Plug-In Cards, and Libraries

Installing and Removing RAM and ROM Cards

Caution Turn off the calculator before you install or remove a
plug-in card. Otherwise, all of user memory could be

w erased.

Also, whenever you install or remove a card, the

HP 48 executes a system halt, causing the contents of

the stack to be lost. See “Saving and Restoring the

Stack” on page 5-3.

To install a plug-in card:

1. If you’re installing a new RAM card, first install its battery—see

the previous section.

2. For a RAM card, check or set the write-protect switch. For a new

RAM card, set it to Read/Write.

m Read Only. You can read the contents of the card, but you can’t

change, erase, or store data. It protects the contents of the RAM

card from being accidentally overwritten or erased.

m Read/Write. You can read, change, and erase the contents and

store data, as you do with built-in user memory.

Read only setting

Read / Write setting

Back side of card

Memory, Plug-In Cards, and Libraries 34-5

Caution To avoid loss of user memory:

m Always turn off the calculator before changing the

write-protect switch on an installed card.

m Do not write protect a RAM card containing

merged memory—you should write protect only

independent memory.

3. Turn off the calculator. Do not press until you’ve completed

the installation procedures.

4. Remove the port cover at the top of the calculator by pressing

down against the grip area and then pushing in the direction

shown. Removing the cover exposes the two plug-in ports.

RA&

@
5. Select an empty port for the card—you can use either port.

 34-6 Memory, Plug-In Cards, and Libraries

6. Position the plug-in card as shown. The triangular arrow on the
card must point down, toward the calculator. Make sure the card is

lined up properly with a port opening and not positioned half in

one port and half in the other.

7. Slide the card firmly into the port until it stops. When you first

feel resistance, the card has about 1/4 inch to go to be fully seated.

8. Replace the port cover by sliding it on until the latch engages.

9. Press to turn on the calculator.

Note When you install a new RAM card and turn on the

i calculator, you get the message Irnsalid Card

% [:at = because the card isn’t initialized. Disregard

the message—the card i1s automatically initialized the

first time you use it.

To remove a plug-in card:

1. If you’re removing a RAM card, make sure it contains independent

memory—see the caution below and “Merging, Freeing, and

Protecting Memory” on page 34-11.

2. Turn off the calculator. Do not press until you’ve removed the

card.

3. Remove the port cover.

Memory, Plug-In Cards, and Libraries 34-7

4. Press against the grip as shown and slide the card out of the port.

5. Replace the port cover.

Caution Never remove a RAM card that contains merged

memory—it will probably cause a loss of data stored

w in user memory. Before you remove the RAM card,

you must free the merged memory. See “Merging,

Freeing, and Protecting Memory” on page 34-11.

If you accidentally remove a card with merged

memory and see the message Feplacs RAM: Press

i+, you can minimize memory loss by leaving the

calculator on, reinserting the card in the same port,

and then pressing (ON).

Using Plug-In Cards (Not HP 48S)

You can extend built-in HP 48 memory by installing a plug-in RAM

card or application card in port 1 or port 2. (The HP 48S has no

plug-in ports.)

34-8 Memory, Plug-In Cards, and Libraries

Using RAM Cards

RAM cards let you increase the amount of RAM in your HP 48. Each

RAM card contains a battery that preserves its contents while the

calculator is turned off and after you’ve properly removed the card

from the calculator. (The calculator batteries power the RAM card
only while the calculator is turned on.)

You set up a RAM card as one of two types of memory—each with its

own benefits. You can change between the two types—but you can’t

use one card as both types at the same time. If you install two RAM

cards, you can set up each card individually.

m Merged memory. The part of user memory that’s contained in

a RAM card—the card’s memory is merged with built-in user

memory. This lets you to expand the amount of user memory for

creating variables and directories, and for putting objects on the

stack. See “Expanding User Memory” on page 34-14.

m Independent memory. RAM memory that’s independent of user

memory—in built-in memory (in port 0) or in a RAM card (in
port 1 or 2). This lets you back up individual objects or entire

directories, much as you’d back up computer files to a disk, then

store it in a safe place. You can also use it to transfer data to

another HP 48 by installing it and copying the objects there. See

“Backing Up Data” on page 34-15.

The following diagram illustrates a system containing two RAM

cards—one containing merged memory and the other containing

independent memory.

Built-in
memo

User Y

memory Plugin Merged
memory

RAM card (do not remove)

Plug-in Independent
RAM card| »memory

(removable)
Memory, Plug-In Cards, and Libraries 34-9

Using Application Cards

Application cards typically contain library objects, which can act as

extensions to the built-in command set. See “Using Library Objects”

on page 34-19.

Using Port O

Port 0 is a special part of memory that operates as independent

memory, similar to independent memory in RAM cards in plug-in

ports. However, port 0 is available even if there are no plug-in ports,

such as in the HP 48S. The memory for port 0 is taken out of user

memory—so objects stored in port 0 decrease the amount of user

memory available. The size of port 0 is dynamic—it grows and shrinks

to accommodate its contents.

NUM1

|

'NumMi’ RoL |NUMI
User 0:NUM1 STO ’NUM1’ PURGE

memory S L

Port 0

|

O:NUM1 0:NUM1

If you don’t have or don’t want to use port 1 or 2, you can use port 0

for storing backup objects and library objects. You can also use port 0

to “hide” data—that is, to have certain variables available in memory

but not appear in any directory.

34-10 Memory, Plug-In Cards, and Libraries

Merging, Freeing, and Protecting Memory (Not

HP 48S)

When you first install a RAM card, it’s set up as independent (“free”)

memory—you can use it to store backup objects and libraries. To

protect your backup objects and libraries, you can use the card’s

write-protect switch to prevent altering the data.

If you want to expand user memory, you set up the card as merged

memory. You must not write-protect a merged card—the HP 48 must

be able to access user memory at all times.

To check the type of memory in a port:

m Enter the port number (1 or 2) and press («q)(MEMORY)
FUHEZ. The result in level 1 indicates the type of memory:

TROMY ROM in an application card.

TSVSREAMY Merged memory in a RAM card.

number Independent memory in a RAM card.

To use an installed RAM card to expand user memory:

1. Make sure the card is not write-protected—make sure its switch is

away from the corner of the card. (Turn off the calculator if you

need to change it.)
2. Enter the port number that the card is installed in (1 or 2) and

press (&)(MEMORY) MERE

Total Built-in Built-in
user user user

memory memory MERGE memory Total

I user
Inde- memory

pendent
memory Merged

of memory

new
card

Memory, Plug-In Cards, and Libraries 34-11

If the card previously contained any backup objects or libraries, the

MERGE command automatically moves them to a special part of

memory called port 0. See “Using Port 0” on page 34-10.

Caution Never remove a RAM card that contains merged

memory—it will probably cause a loss of data stored

w in user memory. Before you remove the RAM card,

you must free the merged memory—see the steps

below.

If you accidentally remove a card with

merged memory and see the message

Feplace RAM: Fress OH, you can minimize

memory loss by leaving the calculator on, reinserting

the card in the same port, and then pressing (ON).

To free a card that’s merged into user memory:

1. Press ()3 to enter an empty list.

2. Enter the port number that the card is installed in (1 or 2).

3. Press (&)(MEMORY) FEEE . (If you get an error, see

below.)
4. Optional: Turn off the HP 48 and unplug the card—see “To remove

a plug-in card” on page 34-7.

If the RAM card is already free (independent memory), you’ll get a

Fort Mot Awvailable error when you execute FREE.

If there isn’t enough memory available to free the RAM card, you’ll

get a memory error when you execute FREE. To check for this

condition, press (¢)(MEMORY) HEFM —the number returned is the

amount of unused user memory in bytes. To be able to free the RAM

card, you must have an unused amount that’s greater than or equal to

the size of the RAM card—otherwise, the HP 48 doesn’t have enough

unused memory to allocate to the card.

If you don’t have enough available memory to free the RAM card, you

can try these ideas to make the available memory large enough:

m Purge unneeded variables from user memory.

m Back up data into another RAM card installed in the other port and

then purge the original variables.

34-12 Memory, Plug-in Cards, and Libraries

m Back up data into port 0, then move the backup objects to the

RAM card as it’s being freed:

1. Determine the amount of data you need to remove from user

memory. (For example, if you’re removing a 128-KB RAM card

and the amount of unused user memory is 126 KB, you must

move at least 2 KB of variables.)
2. Back up that amount of data into port 0 and delete the original

variables.

3. Free the card and move the backup objects there—see the next

steps below.

To free a merged RAM card and move backup objects there:

1. Back up the desired objects into port 0—see “To back up an

object” on page 34-15.

2. Enter a list (with £ * delimiters) containing the simple names of
the backup objects in port 0.

3. Enter the port number that the card is installed in (1 or 2).
Press (q)(MEMORY) (NXT) (NXT) FREE .

5. Optional: Turn off the HP 48 and unplug the card—see “To remove

a plug-in card” on page 34-7.

e~

The objects named in the list are removed from port 0 and stored in

the newly freed RAM card (in independent memory).

Example: Assume backup objects NUMI and ADD3 are stored in

port 0, and a RAM card in port 1 is set up as merged user memory.

To move these two objects to the RAM card so you can store them for

safekeeping, enter £ MMl ARDE X enter 1, and execute FREE. Now

you can remove the card—it contains the two backup objects, which

were also deleted from port 0.

{NUM1 ADD3} 1 FREE
777777 N,>

1:NUM1

1:ADD3

0:NUMH1

0:ADD3

Memory, Plug-In Cards, and Libraries 34-13

Caution To avoid loss of user memory:

m Always turn off the calculator before changing the

fl write-protect switch on an installed card.

m Do not write protect a RAM card containing

merged memory—you should write protect only

independent memory.

To change the write-protect switch with the card installed:

1. Make sure the card contains independent memory—see “To check

the type of memory in a port” on page 34-11.

2. Turn off the HP 48.

3. Move the switch to the correct position:

m For Read Only, the switch is toward the corner of the card.

m For Read/Write, the switch is away from the corner of the card.

Expanding User Memory (Not HP 48S)

You can use a RAM card to expand user memory—just set up the

card as merged memory. If you want to remove the card later, first

you have to free the merged memory.

Caution To avoid loss of user memory:

m Do not write protect a RAM card containing

merged memory.

a Do not unplug a RAM card containing merged

memory.

To set up an installed RAM card to expand user memory:

m Merge the RAM card memory—see “Merging, Freeing, and

Protecting Memory” on page 34-11.

To free or remove a card that’s merged into user memory:

m Free the RAM card memory—see “Merging, Freeing, and Protecting

Memory” on page 34-11.

34-14 Memory, Plug-In Cards, and Libraries

Backing Up Data

The HP 48 uses a special object type, the backup object, to store

backup data. A backup object contains another object, its name, and

its checksum. Simply put, a backup object contains a variable or

directory and its checksum.

Backup objects can exist only in independent memory:

= Port 0.

m Ports 1 and 2 if they contain RAM cards set up as independent

memory. When you first install a card, it’s set up as independent

memory. (Ports 1 and 2 don’t exist in the HP 48S.)

To set up a card as independent memory:

m Free the RAM card memory—see “Merging, Freeing, and Protecting

Memory” on page 34-11. (If you haven’t set up the card as merged

memory, then it’s already set up as independent memory.)

Backing Up Individual Objects

To back up an object:

1. Put the object on the stack.

2. Enter a backup identifier for the backup object to create—see

below.

3. Press (STO).

4. Optional: Purge the original object in user memory.

The STO command creates the backup copy using the port and name

specified by the backup identifier—it has the form

i porti name

where port is the port number (0, 1, or 2), and name is the name

where the backup copy is stored. If you use port 1 or 2, it must be set

up as independent memory. The name of the backup object can be

different from the original name.

You can back up an entire directory (and its subdirectories) in one

backup object by putting the directory object on the stack and

making a backup copy.

Memory, Plug-In Cards, and Libraries 34-15

If a backup object exists with a given backup identifier, you have to

purge the backup object before you can use the identifier for another

backup object.

Example: To back up a program named PGI into independent

memory in port 1, recall the program to the stack by entering 'Fizi'*

and pressing (»)(RCL), then enter the backup identifier = 1:Fz1 and

press (STO).

PG1_| 'PG1’ RCL PG1 PGT’
User 1:PG1 STO PURGE

memory

= - > -
Independent 1:Pai 1:Pa1

memory

(port 1)

Example: To back up the subdirectory named CHEM (in the HOME
directory) in a backup object named BCHEM , press (¢»)(HOME)
> to put the directory on the stack, then enter #1:EBCHEHM

and press

To display a port menu of backup objects and libraries:

1 Press ()(BRI
2. Press E

or Fiik 12 for the port you want.

B displays a menu of backup objects and

ibraries in tha port

To enter the backup identifier of a backup object:

m Display the appropriate PORT menu, then press ((#)(ENTRY), the

menu key for the object, and (ENTER).

To recall a backup object to the stack:

m Display the appropriate PORT menu, then press (@) and the menu

key for the object.

or

m Enter the backup identifier for the backup object and press

E®ED

34-16 Memory, Plug-In Cards, and Libraries

To evaluate a backup object:

m Display the appropriate PORT menu, then press the menu key for

the object.

or

m Enter the backup identifier for the backup object and press (EVAL).

To evaluate several backup objects in a row, enter a list (with £

delimiters) containing the backup identifiers, then press (EVAL).

Example: To run the backup-object program stored in port 0 with

the name BPRG, press (&)(LIBRARY) FLIETH EBEED

To delete a backup object:

m Enter the backup identifier for the backup object and press

(@(EURSD).
To purge several backup objects, enter a list (with £ * delimiters)

containing the backup identifiers, then press («9)(PURGE).

You can’t delete a backup object that you recalled to the stack—you

get the Object in Uze message. If you delete the object from the

stack or store the object in a variable, then you can delete the backup

object.

To search all ports for an object:

1. Enter the backup identifier for the object—ezcept use ifor the port

number. (Press (o) (¢9)(ENTER) to type #.)

2. Execute RCL, EVAL, or PURGE.

If you use the % “wildcard” character for the port number, the HP 48

searches ports 2, 1, 0, and then main memory for the backup object—

it uses the first occurrence of the name.

Example: If you enter :&:EFG1 and press (¢9)(PURGE), you delete

the first occurrence of BPGI in port 2, 1, 0, or main memory.

To get a list of backup objects in a port:

m Enter the port number (0, 1, or 2) and press (¢9)(MEMORY)
FUHE

The PVARS command returns two results. Level 1 indicates the

type of memory contained in the port: "Rdf" (application card),

"SYSRAM" (merged memory), or a number (the number of available

Memory, Plug-In Cards, and Libraries 34-17

bytes in user memory for port 0, or in the port’s independent memory

for port 1 or 2). Level 2 contains a list of backup identifiers and

library identifiers.

To remove an independent RAM card with its backup objects:

m Turn off the HP 48 and unplug the card—see “To remove a plug-in

card” on page 34-7.

To copy backup objects from a card into another HP 48:

1. Turn off the HP 48 and install the card—see “Installing and

Removing RAM and ROM Cards” on page 34-5.

2. Turn on the HP 48.

3. Recall the object to the stack—see “To recall a backup object to

the stack” on page 34-16.

You can also transfer objects between two HP 48s using their infrared

ports—see “Transferring Data between Two HP 48s” on page 33-8.

Backing Up All of Memory

You can back up and restore the contents of the entire HOME

directory in a backup object. The HOME directory includes all

variables, user key assignments, and alarms. You can also include all

flag settings if you want.

You can also back up memory in a computer file. See “Backing Up All

of HP 48 Memory” on page 33-14.

Caution While backing up memory, make sure the ticking

clock is not in the display. If the clock is in the

w display, 1t may corrupt the backup data.

To back up all of user memory in a backup object:

1. Optional: To back up flags settings too, press ((»)(MODES)

ELLFE , enter a variable name (with ' delimiters), and press (STO).

2. Enter a backup specifier for the backup object to create.

3. Press ()(MENMORY)
ARCHIVE backs up only user memory—it does not back up

independent memory.

34-18 Memory, Plug-In Cards, and Libraries

Caution Executing RESTORE owverwrites the entire contents

of user memory with the contents of the backup

w object. To save the stack, you can save it in another

backup object—see “Saving and Restoring the Stack”

on page 5-3.

To restore HP 48 user memory from a backup object:

1. Recall the backup object—see “To recall a backup object to the

stack” on page 34-16.

2. Press (<)(MEMORY) R
3. Optional: To restore flag settings previously saved, recall the

contents of variable containing the flag data and press (»)(MODES)
SELE

Example: To create in port 2 the backup object JUN12 for all of

user memory, enter :=:IH12 and execute ARCHIVE. To then

restore user memory from the backup object, enter &2z .1LiH1Z and

execute RESTORE.

Using Library Objects

A library is an object that contains named objects that can act as

extensions to the built-in command set. The primary use of a library

is to serve as a vehicle for a ROM- or RAM-based application. A

ROM-based library resides in a plug-in application card (such as

the HP Solve Equation Library Application Card) and is installed

by inserting the card into port 1 or 2. (The HP 48S has no plug-in

ports.) A RAM-based library can reside in a plug-in RAM card, or it

can be transferred into user memory from the infrared or serial I/O

port. (See the library’s documentation for details).

Libraries offer several advantages over programs:

m Applications you write are protected from copying because the

contents of a library can’t be viewed, edited, or recalled to the stack.

m Libraries offer faster access to the variables used by applications.

m You can designate variables used in applications as “hidden”

(unnamed) variables, which avoids cluttering the library’s menu.

Memory, Plug-In Cards, and Libraries 34-19

Creating Libraries

You can’t create a library directly on the HP 48. But you can create

one on a computer and load it into the HP 48.

To create a library using a computer:

1. HP 48. Create a directory of the objects you want contained in the

library.

2. HP 48 and Computer. Transfer the directory variable to the

computer—see “Transferring Data between a Computer and

HP 48” on page 33-10.

3. Computer. Execute a library-building program named USRLIB

that resides on your computer—see below.

4. HP 48 and Computer. Transfer the library object to the HP 48.

USRLIB is available electronically on the HP Calculator Bulletin

Board system—see the inside back cover.

Setting Up Libraries

To set up a library:

1. Install the library in a port:

m For an application card library, turn off the HP 48 and insert the

card into port 1 or 2.

m For a RAM-based library, store it in independent memory (port

0, 1, or 2).
2. Attach the library:

m For certain libraries, just turn the HP 48 off and on.

m For other libraries, attach it manually—see below.

To use a library, it must be installed in a port and attached to a

directory in user memory. The attachment may happen automatically

when you install an application card—or you may have to do it

yourself.

34-20 Memory, Plug-In Cards, and Libraries

To store a RAM-based library in independent memory:

1. Put the library object on the stack. (Notice its library number and

name.)

2. Enter the port number for storing the library (0, 1, or 2).
3. Press (STO).

4. Optional: Purge the original library object in user memory.

If you use port 0, the library is always available, even if you remove

plug-in cards. If you use port 1 or 2, in must contain a RAM card set

up as independent memory.

To manually attach a library that’s in a port:

1. Change to the desired directory:

m For access from all directories, change to the HOME' directory.

m For limited access, change to the desired directory. The library

will be available only in this directory and its subdirectories.

2. Enter the library identifier for the library—it has the form

: port: number. See below.

3. Press ($)(MEMORY)
You can attach only one library to each directory—ezcept you can

attach any number to the HOME directory. (See the documentation

that comes with the application card or RAM-based library for any

other information about attaching the library.)

Each library is identified two ways:

m A library identifier, which has the form : port: number, where

number is a unique number associated w1th the hbrary If you press

(x)(LIBRARY) and FIETH, F = fE T2for the port where

you stored the library, the library number appears in the menu.

m A library name, which is a sequence of characters. If you press

(9)(LIBRARY) in the directory where you attached the library or any

subdirectory, the library name appears in the menu.

Memory, Plug-In Cards, and Libraries 34-21

34

To delete a library:

1. Change to the directory where the library is attached.

2. Enter the library identifier for the library in independent memory—

it has the form : port: number.

3. Press again to make a second copy of the library identifier.

4. Press (&9)(MEMORY) BETHE to detach it from the directory.

5. Press ()(PURGE) to delete the library from independent memory.

Using Libraries

To get the menu of operations in a library:

1. If the library isn’t attached to the HOME directory, change to the

directory it’s attached to—or to one of its subdirectories.

2. Press (9)(LIBRARY) and the menu key for the library name.

The LIBRARY menu contains the names of available libraries—

libraries on the current directory path, not just in the current

directory. The menu for an individual library contains the operations

in that library. Press those menu keys to perform library operations.

Example: If you have the HP Solve Equation Library card

installed, it’s automatically attached to the HOME directory. Press

@mEfE TE to display the menu of all the operations in the

EQLIB library.

Example: Suppose your HP 48 has the following directory structure

and attached libraries.

 | | | 1T‘*
HOME PROG M EQUN G Library A Library B

PROG FNCT MATH STAK Library C

MATH ARAY TRG A Library D

If you press@min the HOME directory, the menu includes

B and B . Ifyou press@min the PROG
directory, the menu shows e ol andil

34-22 Memory, Plug-In Cards, and Libraries

Summary of Library Commands

Library Commands

Key Programmable Description

Command

STO STO Stores a library object from level 2

@ED

GVGIRE)

RCL

PURGE

into independent memory in the port

specified in level 1.

Recalls the library object specified by

the library identifier (= port: number)
in level 1.

Purges the RAM-based library
specified by the library identifier

(= port: number) in level 1.

(«9)(MEMORY) (page 2):

LiBs

PVARS

LIBS

ATTACH

DETACH
For the port number specified in level

1, returns to level 2 the list of the

backup identifiers and library

identifiers and to level 1 the type of

memory: "REOM" (application card),
"SYSREAM" (merged memory), or a

number (the number of available bytes
in user memory for port 0, or in the

port’s independent memory for port 1

or 2).

Displays a list containing the names,

library numbers, and port numbers of

all the libraries attached to the current

directory.

Attaches to the current directory the

library specified by the library number

in level 1.

Detaches from the current directory

the library specified by the library

number in level 1.

Memory, Plug-In Cards, and Libraries 34-23

Part6

Appendixes

A
Support, Batteries, and Service

If Things Go Wrong

Whenever you run into problems—either following examples in this

manual or solving your own problems—you can use these hints to get

back on track. There’s more information in the next section, “Answers

to Common Questions,” and in appendix B, “Messages.”

If you want to clear a message:

m Press (the key).

If you get stuck in an unfamiliar condition:

m Press one or more times, until you see the normal stack

display.

If you want to undo a mistake:

m To retrieve the last command line you executed (so you can change

it and execute it again), press («q)(LASTCMD) (above the key).
m To remove the last result and get back the original data, press

(S)(ASTSTATK) (above the key).
m To keep the last result and get back the original data, press

(@)TSTARS) (above the key).
If your command line has invalid syntax:

m Try to figure out what’s wrong with the text in the command line—

especially at the B marker—then edit the line and press (ENTER).

or

m Press (ATTN) (ATTN) to start over.

Support, Batteries, and Service A-1

If you need to reset all calculator operating modes:

1. Press ()&) 1008 (@) () D (to get #1EEsd).
2. Press (@)(CST)(NXT) STHE .

If you need to reset the calculator (and erase all memory):

1. If there’s anything in memory you want to keep, don’t reset the
calculator.

2. Press and hold (ON).

3. At the same time, press the left and right menu keys (A and F),

then release them.

4. Release the key.

5. Press |HiOi

The above steps also erase the contents of a plug-in RAM card—but

only if its RAM is merged with the calculator’s main memory.

If the calculator won’t turn on:

1. Hold down and press several times to check for too light of
a display.

2. Install three new AAA batteries, as described under “Changing

Batteries” on page A-T.
3. Check the calculator. See “Testing Calculator Operation” on page

A-11.

If you think your calculator needs to be repaired:

1. Check its operation. See “Testing Calculator Operation” on page

A-11.
2. Contact the HP Calculator Support department. See the inside

back cover.

3. Send it to Hewlett-Packard. See “If the Calculator Requires

Service” on page A-18.

A-2 Support, Batteries, and Service

Answers to Common Questions

You can obtain answers to questions about using your calculator from

our Calculator Support department. Our experience has shown that

many customers have similar questions about our products, so we’ve

provided this section. If you don’t find the answer to your question

here, contact us at the address or phone number on the inside back

cover.

Q: I’m not sure whether the calculator is malfunctioning or if I'm

doing something incorrectly. How can I verify that the calculator is

operating properly?

A: See “Testing Calculator Operation” on page A-11.

Q: The () annunciator stays on even when the calculator is turned

off. Is anything wrong?

A: This indicates a low-battery condition in the calculator or a RAM

card, or an alarm that is past due. To determine what is causing

the ¢+) annunciator to stay on, turn the calculator off and then on.

A message in the display will identify the problem. See “When to

Replace Batteries” on page A-6 or “Setting Alarms” on page 24-5.

Q: How can I determine how much memory is left in the calculator?

A: Press (.9)(MEMORY) The number of bytes of available
memory will appear at the lower right corner of the display.

For exmaple, an empty memory for the HP 485X should show

approximately ZEE86E bytes of internal RAM (with no RAM cards

installed).

Q: How do I change the number of decimal places the HP 48 displays?

A: Perform the following steps (see “Setting the Display Mode” on
page 2-14):

1. Go to page 1 of the MODES menu: press (¢q)(MODES).
2. Press the number of decimal places you want (0 to 11)

3. Press the menu key for the display format you desire

Support, Batteries, and Service A-3

Q: My numbers contain commas as decimal points. How do I restore

periods?

A: Perform the following steps:

1. Go to page 4 of the MODES menu: press

(€)(MoDES) x)
2. Press the Fffs menu key. (The label shows @ only when comma

is the separator.)

Q: What does an E in a number mean (for ezample, 2.51E-12)?

A: Exponent of 10 (for example, 2.51 x 10713). See “Keying In
Numbers” on page 2-6 and “Setting the Display Mode” on page 2-14.

Q: Why do trig functions give me unezxpected results?

A: The angle mode may be wrong for your problem. Check the angle

mode annunciator: AL means radians, GEALR means grads, and none

means degrees. Press (|q)(RAD) or use the (¢9)(MODES) menu to

change the angle mode.

Q: When I take the sine of m in Degrees mode, why do I get 'SIHuw?!

instead of a number?

A: The calculator is in Symbolic Result mode; 'SIH:ws " is the

symbolic answer. Press (@»)(®NUM) to convert 'ZIHimw? ' to its

numeric equivalent of .0548 up to 11 decimal places (sin 3.14°).
You can also press n page 1 of the MODES menu to change

to Numeric Results mode and prevent symbolic evaluation.

Q: What does “object” mean?

A: “Object” is the general term for all elements of data the HP 48

works with. Numbers, expressions, arrays, programs, and so on, are

all types of objects. See chapter 4, “Objects,” for a description of the

object types accepted by the calculator.

Q: What do three dots (..) mean at either end of a display line?

A: The three dots (called an ellipsis) indicate that the displayed

object is too long to display on one line. To view undisplayed portions

of the object, use the («€) or () cursor keys.

Q: How do I turn off the HALT annunciator?

A: Press 9 ORIl

A-4 Support, Batteries, and Service

Q: The calculator beeps and displays BEad Araument Tupe. What’s

wrong?

A: The objects on the stack aren’t the correct type for the command

PRG OBJ menu) with a number in stack levels 1 and 2 causes this
€ITor.

Q: The calculator beeps and displays Too Few Araument s, What's

wrong?

A: There are fewer arguments on the stack than required by the

command you are attempting. For example, executing with only
one argument or number on the stack causes this error.

Q: The calculator beeps and displays a message different from the two

listed above. How do I find out what’s wrong?

A: Refer to appendix B, “Messages.”

Q:] can’t find some variables that I used earlier. Where did they go?

A: You may have been using the variables in a different directory. If

you can’t remember which directory you were using, you’ll need to

check all the directories in your calculator.

Q: Sometimes my HP 48 seems to pause momentarily during a

calculation. Is anything wrong?

A: Nothing is wrong. The calculator does some system cleanup from

time to time to eliminate temporary objects created from normal

operation. This cleanup process frees memory for current operations.

This happens less often if you make more memory available.

Q: During normal operation, the printer prints several lines quickly,

then slows down. Why?

A: The calculator quickly transmits a certain amount of data to the

printer, then slows its transmission rate to ensure that the printer can

keep up.

Q: How can I increase the printing speed of my HP 82240B Infrared

Thermal Printer?

A: Use an ac adapter with your HP 82240B printer so that the printer

can print faster. Also, set the calculator delay to match the print

speed (see “To change the delay between printed lines” on page 32-7).

Support, Batteries, and Service A-5

Environmental Limits

To maintain product reliability, avoid getting the calculator and

plug-in cards wet and observe the following temperature and humidity

limits:

Calculator:

m Operating temperature: 0° to 45°C (32° to 113°F).

m Storage temperature: —20 to 65 °C (—4 to 149 °F).
m Operating and storage humidity: 90% relative humidity at 40 °C

(104 °F) maximum.

Plug-In Cards:

m Operating temperature: 0 to 45 °C (32 to 113 °F).
m Storage temperature: —20 to 60 °C (—4 to 140 °F).
m Storage temperature for RAM card data retention: 0 to 60 °C (32

to 140 °F).
m Operating and storage humidity: 90% relative humidity at 40 °C

(104 °F) maximum.

When to Replace Batteries

When a low-battery condition exists, the () annunciator remains

on, even when the calculator is turned off. When the calculator is

turned on during a low-battery condition, Marming: LowEat(»is

displayed for approximately 3 seconds:

LowBat (P12 refers to port 1.

LowBat (P21 refers to port 2.

LowBat 52 refers to the calculator (system) batteries.

Replace the RAM card battery or the calculator batteries as soon

as possible after the (*) low-battery annunciator and warning

message appear. If you continue to use the calculator while the ()

annunciator is on, the display will eventually dim and you may lose

calculator and RAM card data.

Under typical use, a RAM card’s battery should last between 1 and

3 years. Be sure to mark the card with the battery-installation date,

A-6 Support, Batteries, and Service

and, in case the RAM card is not in the calculator when the battery

needs replacement, set an alarm for 1 year from that date to remind

you to install a fresh battery. RAM cards do not come with a battery

installed.

Changing Batteries

The HP 48 uses the following kinds of batteries:

m Calculator Batteries. Any brand of size AAA batteries. Be sure

that all three batteries are of the same brand and type. (The use of

rechargeable batteries is not recommended because of their lower

capacity and short low-battery warning time.)

m Plug-In RAM Card Batteries. 3-volt 2016 coin cell.

To replace calculator batteries, use the steps below. To replace RAM

card batteries, see “To change a RAM card battery” on page A-9.

Caution Whenever you remove batteries from the calculator,

be sure the calculator is off and do not press the

w key until the new batteries are installed. If you press

when batteries are not in the calculator, you

may lose all of calculator memory.

To change calculator batteries:

1. Turn the calculator off. You may lose memory in the calculator and

plug-in RAM cards if the calculator batteries are removed when the

calculator is on.

2. Have three, fresh size AAA batteries (of the same brand and type)
at hand. Wipe off both ends of each battery with a clean, dry

cloth.

Support, Batteries, and Service A-7

3. Remove the calculator battery-compartment door by pressing down

and sliding it off away from the calculator. Be careful not to press

the calculator’s key. See the following illustration.

4. Turn the calculator over and shake the batteries out. After the

batteries are out, you should replace them with fresh batteries

within 2 minutes to protect against memory loss.

Warning Do not mutilate, puncture, or dispose of batteries
in fire. The batteries can burst or explode,

% releasing hazardous chemicals. Discard used
batteries according to the manufacturer’s
instructions.

A-8 Support, Batteries, and Service

5. Position the batteries according to the outlines in the bottom of
the battery compartment. Avoid touching the battery terminals.

Batteries are easier to install if the negative (plain) ends are
inserted first, and if the center battery is installed last. See the

following illustration.

6. Replace the battery-compartment door by sliding the tabs on the

door into the slots in the calculator case.

7. Press to turn the calculator on.

To change a RAM card battery:

1. Turn the calculator over and remove the plastic cover over the

plug-in card ports (on the display-end of the calculator).

2. With the RAM card in port 1 or 2, turn on the calculator.

Support, Batteries, and Service A-9

Caution Make sure you turn on the calculator before you

change a RAM card battery. RAM cards run off the
calculator batteries only while the calculator is on.

RAM memory may be lost if you remove a RAM

card battery while the calculator is off or while the

card is not installed in the calculator.

3. Place your index finger in the recess near the exposed end of the

RAM card—this prevents removal of the card from the calculator

when you remove the card’s battery holder. Now insert the

thumbnail of your free hand into the nail grip in the black plastic

at the left side of the end of the card and pull the battery holder

out of the card.

Nail grip

/

4. Remove the old battery from the plastic battery holder.

Warning

G
Do not mutilate, puncture, or dispose of batteries

in fire. The batteries can burst or explode,

releasing hazardous chemicals. Discard used
batteries according to the manufacturer’s
instructions.

5. Install a fresh, 3-volt 2016 coin cell in the plastic battery holder

and reinsert the holder (with battery) into the card. Be sure to

A-10 Support, Batteries, and Service

install the battery with the side marked “+” toward the front of the
card.

6. Mark the card with the battery-installation date, and set an alarm

for 1 year from that date to remind you to change it. (If you

unplug the card, the HP 48 can’t check the card’s battery level.)

7. Replace the plug-in port cover.

Testing Calculator Operation

Use the following guidelines to determine whether the calculator is

functioning properly. Test the calculator after every step to see if

operation has been restored. If your calculator requires service, see “If

the Calculator Requires Service” on page A-18.

If the calculator won’t turn on or doesn’t respond when you press

the keys:

1. Make sure that three fresh batteries are correctly installed in the

calculator.

2. Press and release (ON).

3. If the display is blank, press and hold (ON); press and release

several times until characters become visible; then release (ON). If

no characters appear in the display, the calculator requires service.

4. If a halted program won’t respond when you press (ATTN), try

pressing again.

5. If the keyboard is “locked,” perform a system halt:

a. Press and hold (ON).

b. Press and release the “C” key (the key with C next to it).

c. Release (ON). The empty stack display should appear.

6. If the problem still exists, perform a memory reset:

a. Press and hold (ON).

b. Press and hold the “A” and “F” keys (the keys with A and F

next to them).
c. Release all three keys.

Support, Batteries, and Service A-11

The calculator will beep and display the message Tru To Recower

Memoru? at the top of the display. Press % to recover as

much memory as possible.

If these steps fail to restore operation, the calculator requires service.

If the calculator responds to keystrokes, but you suspect it’s

malfunctioning:

1. Run the self-test described in the next section.

m If the calculator fails the self-test, it requires service.

m If the calculator passes the self-test, you may have made a

mistake operating the calculator. Reread appropriate portions of

the manual and check “Answers to Common Questions” on page

A-3.

2. Contact the Calculator Support department. The address and

phone number are listed on the inside back cover.

Self-Test

If the display turns on, but the calculator does not seem to be

operating properly, run the diagnostic self-test.

To run the self-test:

1. Turn on the calculator.

2. Press and hold (ON).
3. Press and release the “E” key (the key with E next to it).
4. Release (ON).

The diagnostic self-test tests the internal ROM and RAM,

and generates various patterns in the display. The test repeats

continuously until you perform a system halt.

To halt the self-test (system halt):

1. Press and hold (ON).

2. Press and release the “C” key (the key with C next to it).
3. Release (ON). The empty stack display should appear.

If the self-test indicates an internal ROM or RAM failure (if IROM Ok
and IRAM Ok are not displayed), the calculator requires service.

A-12 Support, Batteries, and Service

The diagnostic self-test should be successfully completed before

running any of the tests described in the following sections.

Keyboard Test

This test checks all of the calculator’s keys for proper operation.

To run the interactive keyboard test:

Turn on the calculator.

Press and hold (ON).

Press and release the “D” key (the key with D next to it).
Release (ON).

Press and release the “E” key (the key with E next to it). KE[:1
will appear in the upper left corner of the display.

6. Starting at the upper left corner and moving left to right, press

each of the 49 keys on the keyboard.

S
o
=

If you press the keys in the proper order and they’re functioning

properly, the calculator emits a high-pitch beep at each press of a

key. When you press the 49th key, (1), the displayed message should

change to KB k.

If you press a key out of sequence, a five-digit hexadecimal number

will appear next to KEL1. Reset the keyboard test (do steps 1 through

3 above), and rerun the test.

If a key isn’t functioning properly, the next keystroke displays the hex

location of the expected and the received location. If you pressed the

keys in order and got this message, the calculator requires service.

Be sure to include a copy of the error message when you ship the

calculator for service.

To exit the keyboard test (system hait):

1. Press and hold (ON).

2. Press and release the “C” key (the key with C next to it).

3. Release (ON). The empty stack display should appear.

Support, Batteries, and Service A-13

Port RAM Test

The port RAM test nondestructively tests the ports and the installed

plug-in RAM cards. (Plug-in RAM-card memory is preserved.)

To run the port RAM test:

1. Check that a plug-in RAM card is properly installed in port 1 or

port 2.

2. Verify that the switch on each card is set to the “Read/Write”

position.

Read only setting

Read / Write setting

Back side of card

Turn on the calculator.

Press and hold (ON).

Press and release the “D” key (the key with D next to it).

Release (ON). A vertical line will appear at both sides and at the

center of the display.

7. Press and release (4).

S
G
t

FEAM1L or BAMZ will appear at the top left corner of the display and

the size of the corresponding plug-in RAM card (22K or 122kK) will
appear at the top right corner of the display. 0k will appear to the

right of EAM1 or EAMZ when the port RAM test has been successfully

completed.

A-14 Support, Batteries, and Service

A failure message (for example, RAM1 @@532) will be displayed for
each port that does not contain a plug-in RAM card or if a card’s
read/write switch is in the “write-protect” position. This message

should be ignored.

If Ok doesn’t appear for a RAM card set to read/write, the card

should be moved to the other port and the test rerun. If 0kstill

doesn’t appear, the RAM card should be replaced with a new one.

To return to normal calculator operation (system hait):

1.
2.
3.

Press and hold (ON).

Press and release the “C” key (the key with C next to it).

Release (ON). The empty stack display should appear.

IR Loop-Back Test

This test checks the operation of the send and receive infrared sensors

and their associated circuits.

To run the IR loop-back test:

1.

5.

6.

Turn on the calculator.

2. Press and hold (ON).

3.

4. Release (ON). A vertical line will appear at both sides and at the

Press and release the “D” key (the key with D next to it).

center of the display.

Be sure that the plastic plug-in card cover is in place and that it

covers the clear lamp bulbs in the top end of the calculator.

Press (EVAL).

IRLE will appear at the top left corner of the display. If [kl appears

to the right of IRLE, the calculator passes this test. If Okdoesn’t

appear, the calculator requires service.

To return to normal calculator operation (system halt):

1.

2.

3.

Press and hold (ON).

Press and release the “C” key (the key with C next to it).

Release (ON). The empty stack display should appear.

Support, Batteries, and Service A-15

Serial Loop-Back Test

This test checks the operation of the send and receive circuits of the

serial interface at the top of the calculator.

To run the serial loop-back test:

1. Turn on the calculator.

2. Press and hold (ON).

3. Press and release the “D” key (the key with D next to it).
4. Release (ON). A vertical line will appear at both sides and at the

center of the display.

5. Temporarily connect (short) the middle two pins (pins 2 and 3)
of the 4-pin serial connector at the top end of the calculator. Be

careful not to bend or severely jar the pins.

6. Press (PRG).

LI_LEwill appear at the top left corner of the display. If 0kappears

to the right of LI_LE, the calculator passes this test. If Ikdoesn’t

appear, the calculator requires service.

Note If you inadvertently short pins 1 and 2 or pins 3

i and 4 of the serial connector, the loop-back test will

fi return U_LE 8686861 or U_LE 886862 (test-failed

message), but you will not damage the calculator.

To return to normal calculator operation (system halt):

1. Press and hold (ON).

2. Press and release the “C” key (the key with C next to it).

3. Release (ON). The empty stack display should appear.

A-16 Support, Batteries, and Service

Limited One-Year Warranty

What Is Covered. The calculator (except for the batteries, or damage

caused by the batteries) and calculator accessories are warranted by

Hewlett-Packard against defects in materials and workmanship for

one year from the date of original purchase. If you sell your unit or

give it as a gift, the warranty is automatically transferred to the new

owner and remains in effect for the original one-year period. During

the warranty period, we will repair or, at our option, replace at no

charge a product that proves to be defective, provided you return

the product, shipping prepaid, to a Hewlett-Packard service center.

(Replacement may be made with a newer model of equal or better

functionality.)

This warranty gives you specific legal rights, and you may also have

other rights that vary from state to state, province to province, or

country to country.

What Is Not Covered. Batteries, and damage caused by the batteries,

are not covered by the Hewlett-Packard warranty. Check with the

battery manufacturer about battery and battery leakage warranties.

Damage caused to the HP 48 as the result of using nonapproved plug-in

cards and plug-in accessories is not covered by the Hewlett-Packard

warranty.

This warranty does not apply if the product has been damaged by

accident or misuse or as the result of service or modification by other

than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement

of a product is your exclusive remedy. ANY OTHER IMPLIED

WARRANTY OF MERCHANTABILITY OR FITNESS

IS LIMITED TO THE ONE-YEAR DURATION OF THIS

WRITTEN WARRANTY. Some states, provinces, or countries

do not allow limitations on how long an implied warranty lasts,

so the above limitation may not apply to you. IN NO EVENT

SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries

do not allow the exclusion or limitation of incidental or consequential

damages, so the above limitation or exclusion may not apply to you.

Support, Batteries, and Service A-17

Products are sold on the basis of specifications applicable at the time

of manufacture. Hewlett-Packard shall have no obligation to modify or

update products, once sold.

Consumer Transactions in the United Kingdom. This warranty shall
not apply to consumer transactions and shall not affect the statutory

rights of a consumer. In relation to such transactions, the rights and

obligations of Seller and Buyer shall be determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These

centers will repair a calculator, or replace it with the same model or

one of equal or better functionality, whether it is under warranty or

not. There is a service charge for service after the warranty period.

Calculators normally are serviced and reshipped within 5 working

days.

Note If the contents of your calculator’s memory are

important, you should back up the memory on a

*J plug-in RAM card, another HP 48, or a computer

before sending in the calculator for repair.

m In the United States: Send the calculator to the Corvallis Service

Center listed on the inside of the back cover.

s In Europe: Contact your Hewlett-Packard sales office or dealer, or

Hewlett-Packard’s European headquarters (address below) for the
location of the nearest service center. Do not ship the calculator for

service without first contacting a Hewlett-Packard office.

Hewlett-Packard S.A.

150, Route du Nant-d’Avril

P.O. Box CH 1217 Meyrin 2

Geneva, Switzerland

Telephone: 022 780.81.11

m In other countries: Contact your Hewlett-Packard sales office or

dealer or write to the Corvallis Service Center (listed on the inside
of the back cover) for the location of other service centers. If local

A-18 Support, Batteries, and Service

service is unavailable, you can ship the calculator to the Corvallis

Service Center for repair.

All shipping, reimportation arrangements, and customs costs are

your responsibility.

Service Charge. Contact the Corvallis Service Center (inside back

cover) for the standard out-of-warranty repair charges. This charge

is subject to the customer’s local sales or value-added tax wherever

applicable.

Calculator products damaged by accident or misuse are not covered by

the fixed charges. These charges are individually determined based on

time and material.

Shipping Instructions. If your calculator requires service, ship it to the

nearest authorized service center or collection point.

m Include your return address and a description of the problem.

m Include proof of purchase date if the warranty has not expired.

m Include a purchase order, check, or credit card number plus

expiration date (VISA or MasterCard) to cover the standard repair
charge.

m Ship your calculator postage prepaid in adequate protective

packaging to prevent damage. Shipping damage is not covered by

the warranty, so we recommend that you insure the shipment.

Warranty on Service. Service is warranted against defects in materials
and workmanship for 90 days from the date of service.

Service Agreements. In the U.S., a support agreement is available for

repair and service. For additional information, contact the Corvallis

Service Center (see the inside of the back cover).

Support, Batteries, and Service A-19

Messages

This appendix lists selected HP 48 messages. In the tables below,

messages are first arranged alphabetically by content and then

numerically by message number.

Messages Listed Alphabetically

Message Meaning # (hex)

Ackrnowledged Alarm acknowledged. 619

Alarm Alarm not acknowledged yet. (none)

Autoscaling Calculator is autoscaling z- 610

and/or y- axis.

Awaiting Seruver Indicates Server mode active. CoC

Crd.

Bad Argumesnt Tupe One or more stack arguments 202

were incorrect type for

operation.

Ead Argument Yalue Argument value out of 203

operation’s range.

Bad Guessiesz) Guess(es) supplied to HP Solve| A0l
application or ROOT lie

outside domain of equation.

Bad Facket EBlock Computed packet checksum Co1

check doesn’t match checksum in

packet.

Cam't Edit HMull Attempted to edit a string 102

Char. containing character with code

0.

Messages B-1

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Circular Reference Attempted to store a variable 129

name into itself.

Connecting Indicates verifying IR or serial COA

connection.

Constant? HP Solve application or ROOT A02

returned same value at every

sample point of current

equation.

Copied to stack copied selected 623

equation to stack.

Current equation: Identifies current equation. 608

Leleting Column MatrixWriter application is 504

deleting a column.

Deleting Row MatrixWriter application is 503

deleting a row.

Directory Hot Name of existing directory 12A

Allowed variable used as argument.

Directory Attempted to store a directory 002

Fecursion into itself.

Empty catalog No data in current catalog 60D

(Equation, Statistics, Alarm)

Enter alarm. Alarm entry prompt. 61A

press SET

Enter =gn. press Store new equation in FQ. 60A

HEM

Enter walus (zoom Zoom operations prompt. 622

out if 12y press

EMTER

B-2 Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Extremum Result returned by HP Solve A06

application or ROOT is an

extremum rather than a root.

HALT Mot Allowed A program containing HALT 126
executed while MatrixWriter

application, DRAW, or HP

Solve application active.

I-0 setup menu Identifies I/O setup menu. 61C

Implicit O off Implicit parentheses off. 207

Implicit ¢» on Implicit parentheses on. 208

Incomplete ™), (¥), or pressed 206
Subsxpression before all function arguments

supplied.

Inconsistent Units Attempted unit conversion B02

with incompatible units.

Infinite Eesult Math exception: Calculation 305

such as 1/0 has infinite result.

Inserting Column MatrixWriter application is 504

inserting a column.

Inserting Row MatrixWriter application is 503

inserting a row.

Insufficient Not enough free memory to 001

Memory execute operation.

Insufficient ZE A Statistics command was 603

Lata executed when YDAT did not

contain enough data points for

calculation.

Interrupted The HP Solve application or A03 ROOT was interrupted by

().

Messages B-3

MessagesListed Alphabetically (continued)

Message Meaning # (hex)

Imnwalid

Elemant

Imnuslid

Imwalid

Inualid

Imualid

Trvalid

Inwalid

Irwealid

Irnualid

Imwalid

Inwalid

Hr-au

Card Data

7 il b
l

o

Definition

Dimension

E

IOFPARE

FETPAE

PTYFE

returned object of

wrong type for current matrix.

HP 48 does not recognize data

on plug-in card.

Date argument not real
number in correct format, or

was out of range.

Incorrect structure of equation

argument for DEFINE.

Array argument had wrong

dimensions.

Attempted operation from

GRAPHICS FCN menu when

EQ did not contain algebraic,

or, attempted DRAW with

CONIC plot type when EQ

did not contain algebraic.

IOPAR not a list, or one or

more objects in list missing or

invalid.

Received illegal filename, or

server asked to send illegal

filename.

PPAR not a list, or one or

more objects in list missing or

invalid.

PRTPAR not a list, or one or

more objects in list missing or

invalid.

Plot type invalid for current

equation.

502

008

D01

12C

501

607

C12

C17

12E

C13

620

B-4 Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

Invalid Fepsat Alarm repeat interval out of D03

range.

Invalid Server Invalid command received C08

Crd. while in Server mode.

Inwalid Suntax HP 48 unable to execute 106

or STR— due to

invalid object syntax.

Imvalid Time Time argument not real D02

number in correct format, or

out of range.

Invalid Unit Unit operation attempted with BO1

invalid or undefined user unit.

Invalid User Type or structure of object 103

Function executed as user-defined

function was incorrect.

Inualid Z Data Statistics command executed 601

with invalid object stored in

YDAT.

Invalid £ Data Nonlinear curve fit attempted 605

LHiHegs when YDAT matrix contained

a negative element.

Invalid Z Data Nonlinear curve fit attempted 606

LHCE when YDAT matrix contained

a 0 element.

Imuealid EFAR YPAR not list, or one or more 604

objects in list missing or

invalid.

LAST CHMD Disabled pressed while that 125

recovery feature disabled. LAST STACK pressed while 124
Dizabled that recovery feature disabled.

Messages B-5

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

LASTARG Disabled LASTARG executed while that 205

recovery feature disabled.

LowBat{ 2 Replace calculator batteries (none)
{532, or replace plug-in card

batteries {F13 or (P23,

Low Battery System batteries too low to Cl14

safely print or perform I/0.

Memory Clear HP 48 memory was cleared. 005

Hame Conflict The | (where) function 13C
attempted to assign a value to

the variable of integration or

summation index.

Hame the equations Name equation and store it in 60B

prress EMTER EQ.

Hame the stat Namestatistics data and store 621

data, press ENTER |it in YDAT.

Megat ive Underflow Math exception: Calculation 302

returned negative result,

between 0 and —MINR.

Mo Current , DRAW, or RCEQ 104

Equation executed with nonexistent EQ.

Ho current Plot and HP Solve application 609

equat ion status message.

Mo Room in Port Insufficient free memory in 00B
specified RAM port.

Mo REoom to Save Not enough free memory to 101

Stack save copy of the stack. LAST STACK is automatically

disabled.
B-6 Messages

MessagesListed Alphabetically (continued)

Message Meaning # (hex)

Ho Eoom to Show

Stack

Ho stat

F 1 o 'l‘

data to

Hom—Empty

Directory

Hon—Real Result

Homexistent Alarm

Honexistent ZDAT

Object Discarded

Object In Use

Object Mot in

OFF SCREEHX

Out of Memoryg

Faort

Stack objects displayed by

type only due to low memory

condition.

No data stored in XDAT'.

Attempted to purge nonempty

directory.

Execution of HP Solve

application, ROOT, DRAW, or

f returned result other than

real number or unit.

Alarm list did not contain

alarm specified by alarm

command.

Statistics command executed

when YDAT did not exist.

Sender sent an EOF (Z) packet
with a “D” in the data field.

Attempted PURGE or STO

into a backup object when its

stored object was in use.

Attempted to access a

nonexistent backup object or

library.

Function value, root,

extremum, or intersection was

not visible in current display.

One or more objects must be

purged to continue calculator

operation.

131

60F

12B

12F

D04

602

COF

009

00C

61F

135

Messages B-7

MessagesListed Alphabetically (continued)

Message Meaning # (hex)

Duerf 1o

Fackel #

Farityg Error

Port Clozed

Fort Mot Auailable

Fozitive Underf low

LostFoer

Frocesszing Command

Frotoool Error

Math exception: Calculation

returned result greater in

absolute value than MAXR.

Indicates packet number

during send or receive.

Received bytes' parity bit

doesn’t match current parity

setting.

Possible IR or serial hardware

failure. Run self-test.

Used a port command on an
empty or nonexistent port, or

one containing ROM instead of

RAM. (Ports 1 and 2 don’t
exist in the HP 48S.)

Attempted to execute a server

command that itself uses the

I/0 port.

Math exception: Calculation

returned positive result,

between 0 and MINR.

Calculator turned on following

a power loss. Memory may

have been corrupted.

Indicates processing of host

command packet.

Received a packet whose length
was shorter than a null packet.

Maximum packet length

parameter from other machine

is illegal.

303

C10

C05

C09

00A

301

006

C11

Co7

B-8 Messages

MessagesListed Alphabetically (continued)

Message Meaning # (hex)

Feceive Buffer Kermit: More than 255 bytes Co04

Duerrun of retries sent before HP 48

received another packet.

SRECV: Incoming data
overflowed the buffer.

Feceive Error UART overrun or framing C03

€ITor.

Receiving Identifies object name while COE

receiving.

Retry # Indicates number ofretries CO0B
while retrying packet exchange.

Select a model Select statistics curve fitting 614

model.

Select plot tups Select plot type. 60C

Select repeat Select alarm repeat interval. 61B

interwal

Sending Identifies object name while COD

sending.

Sian REewersal HP Solve application or ROOT A0b

unable to find point at which

current equation evaluates to

zero, but did find two

neighboring points at which

equation changed sign.

Timeout Printing to serial port: C02 Received XOFF and timed out

waiting for XON.

Kermit: Timed out waiting for

packet to arrive.

Messages B-9

MessagesListed Alphabetically (continued)

Message Meaning # (hex)

Too Few Hrouments

Transfer Failed

-
!Unable to Izolat'

i

Undefined Local

Hars

Undef ined Hams

Undef ined Besult

Undefined HLIE

Hame

Wromg Argument

Court

oand Y-axis Zoom.

- EO0M .

i= =T

wSAUTO.

Y 3ElsS TO0oM.

Command required more

arguments than were available

on stack.

10 successive attempts to

receive a good packet were

unsuccessful.

ISOL failed because specified

name absent or contained in

argument of function with no

inverse.

Executed or recalled local

name for which corresponding

local variable did not exist.

Executed or recalled global

name for which corresponding

variable does not exist.

Calculation such as 0/0
generated mathematically

undefined result.

Executed an XLIB name when

specified library absent.

User-defined function

evaluated with an incorrect

number of parenthetical

arguments.

Identifies zoom option.

Identifies zoom option.

Identifies zoom option.

Identifies zoom option.

201

C06

130

003

204

304

004

128

627

625

624

626

B-10 Messages

Messages Listed Alphabetically (continued)

Message Meaning # (hex)

ZERD

Result returned by the HP

Solve application or ROOT

root (a point at which current
equation evaluates to zero).

Identifies no execution action 61E

when E#EL& pressed.

A04

1S a

Messages B-11

Messages Listed Numerically

(hex) l Message

General Messages

001 Insufficient Memoryg

002 Directory Recursion

003 Undet ined Local Hame

004 Undefined #LIE Hame

005 Memory Clear

006 Fower Lost

008 Inwalid Card Data

009 Object In usze

00A Fort Hot available

00B Ho Foom in Port

00C Object Mot in Port

101 Mo Room to Save Stack

102 Can't Edit Hull Char.

103 Irwalid User Function

104 Mo Current Equation

106 Imvealid Suntax

124 LAST STAHCE Dizabled

125 LAST CHMD Dizabled

126 HALT Hot Allowed

128 Hromg Argument Count

129 Circular REefersnce

12A Directory Mot Allowed

12B Hom—Empty Directory

12C Inualid Definition

12E Inwalid FFAE

12F Hom-REeal Eeszult

130 Unable to Izolate

131 Mo Room to Show Stack

Out-of-Memory Prompts

135 Out of Memory

13C Hame Conflict

B-12 Messages

Messages Listed Numerically (continued)

(hex) | Message

Stack Errors

201 Too Few Arguments

202 Bad Argument Tups

203 Bad Argument Yalue

204 Undef ined Hame

205 LASTARG Dizabled
EquationWriter Application Messages

206 Incomplete Subexpression

207 Implicit O off

208 Implicit) on

Floating-Point Errors

301 Fozitive Underf low

302 Hegat ive Underf low

303 Ouerf Low

304 Undefined Result

305 Infinite Result

Array Messages
501 Invalid Dimenzion

502 Imuealid Array Element

503 Deleting Row

504 Deleting Column

505 Inzerting Row

506 Inserting Column
Statistics Messages 601 Imnwalid E Data

602 MHonexisztent ZDAT

603 Insufficient Z Datsa

604 Imwealid EZFRE

605 Inwalid £ Data LHOHeg)

606 Imwalid 2 Data LHO@2

Messages B-13

Messages Listed Numerically (continued)

(hex) | Message

Plot, I/0, Time, and HP Solve Messages

607

608

609

60A

60B

60C

60D

60F

610

614

619

61A

61B

61C

61D

61E

61F

620

621

622

623

624

625

626

627

A01

A02

A03

A04

A0S A06

Imwalid EQ

Current eguation:

Ho current equation.

Enter sans press HEW

Hame the sguations press EHTER

Select plot fups

Empty cataloog

Mo Statistics data to plot

Autoscaling

Select a model

Acknowledged

Enter alarm: press SET

Select repeal interwval

I-0 setup menu

Flot typs:
wa

LOFF SCREEM:

Inuvalid FTYFE

Hame the stat datas press EMTER

Emter walus {zoom out if >12. press EHTER

Copied o stack

¥ axis Zoon woAUTO.

BH1S TOoM.

U aEls TooM.

Constant?

Interrupted

Zero

Sian Rewversal

Extremun

B-14 Messages

Messages Listed Numerically (continued)

(hex) | Message

Unit Management

B01 Imwalid Unit

B02 Inconsistent Units

I/0 and Printing

Co1 Bad Facket Block check

C02 Timeout

C03 Feceiuve Error

C04 Feceive Buffer Ouerrun

C05 Farity Error

C06 Transfer Failed

Cco7 Frotocol Error

C08 Invalid Server Cmd

C09 Fort Closed

CO0A Connecting

COB Fetra #

CoC Awaiting Server Cmd.

CO0D Sending

COE Feceiuving

COF Obiect Dizcarded

C10 Facket #

Cl11 Processing Command

C12 Imwalid IOFAE

C13 Invalid PRTFAR

Cl4 I-0: Batt Too Low

C1b Empty Stack

C17 Irvalid Hame

Time Messages

D01 Inwalid Date

D02 Inwalid Tine

D03 Inwalid REepeat

D04 Momnexiztent HAlarm
Miscellaneous Messages
 70000 |(DOERR error)

Messages B-15

C
HP 48 Character Codes

Except for character numbers 128 through 159, the HP 48 character

set is based on the ISO 8859 Latin 1 character set.

You can type most of the HP 48 characters directly into the display

from the Alpha keyboard—see the alpha-keyboard diagram on page
2-8. However, certain characters are not on the Alpha keyboard—to

enter one of these characters, you refer to it by its character code. You
can enter any HP 48 character this way.

To enter any character as a string:

1. Enter its character code.

2. Press . (the CHR command).

To get the character code for the first character in a string:

1. Put the string in level 1.

2. Press (FRG)
If there’s a character you use frequently that isn’t available on the

primary or alpha keyboards, you can assign the character to the user

keyboard for easy access—see “Assigning User Keys” on page 15-6.

 . (the NUM command).

HP 48 Character Codes C-1

Character Codes

 NUM CHR NUM CHR NUM CHR NUM CHR

&4 255 i 1L

]

. i

L1

0
L
I
0
0

T W]
T

o

0
S

W r

W
o

o

CI
T
o
0

P
l
e

z # &7 : Q9 -

S £ &5 L ig6 =

a7 = &3 E i@1 =

& o8 TaE F 16z ¥

7 a9 ! 71 G i@z o

z 48 g 72 H 164 h

o 41 B = I 185 i

& z * 74 J igs i

3 + o k 167 i

44 2 TE i 1

o w
0

1

D
O
E
T

5 W

S ir -
]
-

0
)

P
L
0
e
G

[
l
e

O

1

i

i i

i i

1 i iig n

i 47 o i 1ii o

i 43 & 26 F iiz F

i 49 i 21 { iiz g

ig oo z 2z E iid r

i9 = = =3 = 113 =

6 52 4 24 T 1ig i

21 53 o 25 i ii7 i

S & 25 i 118 L

55 7 a7 i iis W

= S5 = 28 # iz@

z 57 o a9 N 121 u

oE : S z 12z

=9 : a1 L 123

3 3 Sz 124

& = S 5

T

i

W
O
o
O
E

OB
W

M
M

M
OB

O
WM

W
M

OB
B

M
OB

W
OE

W
W

MM
W

M
M

OB
W

M
W

Om
oW

W

 D
)

0
P
l
e

W o

e
e
t

P
P
y

T
y
o

T

L
o

. -g
k

C-2 HP 48 Character Codes

HP 48 Character Codes C-3

i

i

i

i

i

1

i

i

i

1

i

i

i

i

.
.x
..
..
TL
._
..
L.
..
..
rT
L.
_.
.L
.T
.r
Tx
..
_,
LT
L.
T.
..
_.
L.
T.
._
._
..
.u
.T
..
T.
..
.T
._
._
L.

C
O
G
T
r
i
i

C
R

W
P
e
e
e
e

W
P
s
P
e

W
f
e

D
U
D
0

c
u

D
0
0

0
0

0
l
0
i
T

J
3

S
e

D1
0

_..
“_.

P
t
0
L

0
]
T

OF
D
W

D0
0

P
l
e

O
5
3
o
u

00
0
]
T

U
0
e
0
P
0
5
D

o
0

0
0

=
i

SE
=3
E

=i
i

=T
o7

foe
le
e

e
k

fo
de

k
e

k
e

k
e

k
e

k
e

k
e

k
e
e

o
k

e
l

e
l

k
e

k
e

e
k

k
e

C
O
O
O
D
D

D
D
D
0
0
0
0
o
o
o
]

)
]
e
T

G
e

0
0
P
e

0
5
0
w
0

L
I

W
0
P
e

5
D

o
0

0
0

Do
@
G

BT
BO

ID
mo
w

s
o
m
m

w
o
w
o
r
o
e
o
m

[
O

]
0
&
l

@R
ou

n
e

HD
OE
E
P
f

Fa
d
P

P
l
o
T

P
l
T

T
3

e
l

o
l

T
l

fo
te

 p
ol

e
e
e

o
l

fd
e
e

e
k

e
k
]

Y

o
o
U

O
e

D
0

T
l
e
D

0
0

0
0

I
3
[
l

k
e
o
W o
h

T
b
W
D
e
e
e

NH
_
o
o

R
e
e
D

T
R

oe
k
e
e
e

k
R

[
T

T
R

T
R
e

F
R
O
T
e
T

T
R

T
e

T
k
I

Character Codes (continued)

o o
I

[
y

W
O
T
T
e
D
D
e
O
o
l

e
0

Q
e

Q
e

0
0
T
y

m
o
e
n
e
e

g
T

(T
e
T
)

a
o
m
e
e
R
e
e
e

NUM CHR NUM CHR NUM CHR NUM CHR

D
Menu Numbers and Menu Maps

The following table lists the HP 48 built-in menus and the

corresponding menu numbers. The menu number for a library is the

same as the library number.

Menu Numbers and Names

No. Name No. Name

0 Last Menu 20 MODES

1 CST 21 MODES Customization

2 VAR 22 |MEMORY

3 MTH 23 MEMORY Arithmetic

4 |MTH PARTS 24 |LIBRARY

5 |MTH PROB 25 |PORT 0

6 |MTHHYP 26 |PORT 1

7 |MTH MATR 27 |PORT 2

8 |MTH VECTR 28 |EDIT

9 |MTH BASE 29 |SOLVE

10 PRG 30 |[SOLVE SOLVR

11 |PRG STK 31 |[PLOT

12 PRG OBJ 32 |PLOT PTYPE

13 PRG DISP 33 |PLOT PLOTR

14 PRG CTRL 34 |ALGEBRA

15 |PRG BRCH 35 TIME

16 |PRG TEST 36 |[TIME ADJST

17 PRINT 37 |TIME ALRM

18 |1I/0 38 |TIME ALRM RPT

19 |[I/O SETUP 39 |TIME SET

Menu Numbers and Menu Maps D-1

Menu Numbers and Names (continued)

No. Name No. Name

40 |STAT 50 UNITS ENRG

41 |STAT MODL 51 |UNITS POWR

42 UNITS Catalog 52 UNITS PRESS

43 |UNITS LENG 53 |UNITS TEMP

44 |UNITS AREA 54 UNITS ELEC

45 |UNITS VOL 55 UNITS ANGL

46 |UNITS TIME 56 UNITS LIGHT

47 UNITS SPEED 57 |UNITS RAD

48 UNITS MASS 58 UNITS VISC

49 UNITS FORCE 59 UNITS Command

D-2 Menu Numbers and Menu Maps

MTH

WA VEGTH BASE I Bk Tosi (Dt (Tml Been 7EST|

| ROTI pOlL BOLLD! PIEK DEPTH

Dupz: ‘DUPN IDROP2 DRPN

CEIL: —
Toss

LSt aEA UTAe

e SUNIT TYPE VIVEE

COMB PERM HDZ SUB NUM DGHA
UTPG (UTPE HET

SINH ASINHY 'COSH ACOSH 'TANH ATAN BitY

EXPM NPT BIRE

T LERD

» SICD
CON IDN TRN ADM DET RSD -

ABS| RNRM CNRM CTRL

- DBUG 8T

 INFUT PROM DISP MENU WA KeY
XYZI H<Z R44£ CROSS DOE ABS BOERR [EREND JEREN R0 DREEs OEE

Ve DR RoD

| DECW! O6T BN 8TWS HCOWS

 SR ele

OR RoR Test

AND. OF: TYPE:

e % =
SE GF. GG

MTH and PRG Menus

Menu Numbers and Menu Maps D-3

W CMDN

RAD[GHAD!

EDIT (VECE Wi WD [GO-E E0l

 PLOTR. SOLVR |EQ+ EDIT | 281K (VIEW

ORDER PURG FAST : :

PRINT, 1/O, MODES, MEMORY, GRAPH, MATRIX, EDIT, SOLVE Menus

D-4 Menu Numbers and Menu Maps

PLOT, ALGEBRA, TIME, STAT Menus

Menu Numbers and Menu Maps D-5

TIME (BPEED WASS -
- - - PRESS
PhHESS |Tewe (Elec —

VISC NHG

TeNG:

H op K oR I
MPG.

NM: FATH FTUS: ELEG:

ML L N A G
.A-BEA £DY: H MHO

B OBl DERGD N ANGL

AU Wz mivsr AcRe [° & cao amoms s|

OB YDA ETE LN PH S8 EM
BALGT EALy T e
GZEC ozl TESPT IWeR
PK FBM

sV
M ‘

[m D W Wik § w2 | T

SPeen | » st |
e KPH CIMPHI KNOT
. _____________________]

i
— [][UNTS]
TiAss

| cowv vmase L umacre |
Ka @ e Usive e

STON CTONU OT GRAIN
i WG (4]

EGHGT CVIEWS UBIGKT CROLLY ROLD LUt
o w = m | BUPN: (DRPN: KEEP: (LEVEL

UNITS and Interactive Stack Menus

D-6 Menu Numbers and Menu Maps

E
HP 48 System Flags

This appendix lists the HP 48 system flags in functional groups. You

can set, clear, and test all flags. The default state of the flags is

clear—except for the Binary Integer Wordsize flags (flags —5 through

—10).

System Flags

Flag | Description

Symbolic Math Flags

-1 Principal Solution.

Clear: QUAD and ISOL return a result representing all

possible solutions.

Set: QUAD and ISOL return only the principal solution.

Symbolic Constants.

Clear: Symbolic constants (e, i, 7, MAXR, and MINR)
retain their symbolic form when evaluated, unless the

Numerical Results flag —3 is set.

Set: Symbolic constants evaluate to numbers, regardless of

the state of the Numerical Results flag —3.

Numerical Results.

Clear: Functions with symbolic arguments, including

symbolic constants, evaluate to symbolic results.

Set: Functions with symbolic arguments, including symbolic

constants, evaluate to numbers.
 Not used.

HP 48 System Flags E-1

System Flags (continued)

Flag Description

Binary Integer Math Flags

—5 Binary Integer Wordsize.

thru Combined states of flags —5 through —10 set the wordsize

—10 |from 1 to 64 bits.

—11 Binary Integer Base.

and |HEX: —11 set, —12 set.

—12 DEC: —11 clear, —12 clear.

OCT: —11 set, —12 clear.

BIN: —11 clear, —12 set.

—13 Not used.

and

—14

Coordinate System Flags

—15 Rectangular: —15 clear, —16 clear.

and |Polar/Cylindrical: —15 clear, —16 set.

—16 |Polar/Spherical: —15 set, —16 set.

Trigonometric Angle Mode Flags

—17 Degrees: —17 clear, —18 clear.

and Radians: —17 set, —18 clear.

—18 Grads: —17 clear, —18 set.

Complex Mode Flag

—19 Clear:—V2 and (»)(2D) create a 2-dimensional vector from 2

real numbers.

Set:—V2 and (»)(2D) create a complex number from 2 real

numbers.

Math Exception-Handling Flags

—20 Underflow Exception.

Clear: Underflow exception returns 0 and sets flag —23 or

—24.

Set: Underflow exception treated as an error.

—21 Overflow Exception. Clear: Overflow exception returns £9.99999999999E499 and

sets flag —25.

Set: Overflow exception treated as an error.

E-2 HP 48 System Flags

System Flags (continued)

Flag Description

Math Exception-Handling Flags (continued)

—22 |Infinite Result Exception.

Clear: Infinite result exception treated as an error.

Set: Infinite result exception returns £9.99999999999E499

and sets flag —26.

—23 Negative Underflow Indicator.

—24 Positive Underflow Indicator.

—25 Overflow Indicator.

—26 |Infinite Result Indicator.

When an exception occurs, corresponding flag (—23 through

—26) is set only if the exception is not treated as an error.

—27 Not used.

thru

—29

Plotting and Graphics Flags

—30 [Function Plotting.

Clear: For equations of form y = f(z), only f(z) is drawn.

Set: For equations of form y = f(z), separate plots of y and
f(z) are drawn.

—31 Curve Filling.

Clear: Curve filling between plotted points enabled.

Set: Curve filling between plotted points suppressed.

—32 Graphics Cursor.

Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on

dark background.

I/0 and Printing Flags

—33 |I/O Device.

Clear: 1/0 directed to serial port.

Set: 1/0 directed to IR port.

—34 Printing Device. Clear: Printer output directed to IR printer. Set: Printer output directed to serial port if flag —33 is clear.

HP 48 System Flags E-3

System Flags (continued)

Flag Description

I/0 and Printing Flags (continued)

—35 I/O Data Format.

Clear: Objects transmitted in ASCII form.

Set: Objects transmitted in binary (memory image) form.

—36 RECYV Overwrite.

Clear: If file name received by HP 48 matches existing

HP 48 variable name, new variable name with number

extension is created to prevent overwrite.

Set: If file name received by HP 48 matches existing HP 48

variable name, existing variable is overwritten.

—37 Double-Spaced Printing.

Clear: Single-spaced printing.

Set: Double-spaced printing,.

—38 Line Feed.

Clear: Linefeed added at end of each print line.

Set: No linefeed added at end of each print line.

-39 I/O Messages.

Clear: 1/O messages displayed.

Set: I/O messages suppressed.

Time Management Flags

—40 Clock Display.

Clear: Ticking clock displayed only when TIME menu

selected.

Set: Ticking clock displayed at all times.

—41 Clock Format.

Clear: 12-hour clock.

Set: 24-hour clock.

—42 Date Format.

Clear: MM/DD/YY (month/day/year) format.

Set: DD.MM.YY (day.month.year) format.

E-4 HP 48 System Flags

System Flags (continued)

Flag Description

Time Management Flags (continued)

—43 Repeat Alarms Not Rescheduled.

Clear: Unacknowledged repeat appointment alarms

automatically rescheduled.

Set: Unacknowledged repeat appointment alarms not

rescheduled.

—44 Acknowledged Alarms Saved.

Clear: Acknowledged appointment alarms deleted from

alarm list.

Set: Acknowledged appointment alarms saved in alarm list.
Display Format Flags

—45

thru

—48

Number of Decimal Digits.

Combined states of flags —45 through —48 sets number of

decimal digits in Fix, Scientific, and Engineering modes.
—49

and

—-50

Number Display Format.

Standard: —49 clear, —50 clear.

Fix: —49 set, —50 clear.

Scientific: —49 clear, —50 set.

Engineering: —49 set, —50 set.
—51 Fraction Mark.

Clear: Fraction mark is . (period).

Set: Fraction mark is , (comma).

—52 Single-Line Display.

Clear: Display gives preference to object in level 1, using up

to four lines of stack display.

Set: Display of object in level 1 restricted to one line.
—53 Precedence.

Clear: Certain parentheses in algebraic expressions

suppressed to improve legibility.

Set: All parentheses in algebraic expressions displayed. —54 Not used.
HP 48 System Flags E-5

System Flags (continued)

Flag Description

Miscellaneous Flags

—55 Last Arguments.

Clear: Command arguments saved.

Set: Command arguments not saved.

—56 Error Beep.

Clear: Error and BEEP-command beeps enabled.

Set: Error and BEEP-command beeps suppressed.

—57 Alarm Beep.

Clear: Alarm beep enabled.

Set: Alarm beep suppressed.

—58 Verbose Messages.

Clear: Prompt messages and data automatically displayed.

Set: Automatic display of prompt messages and data

suppressed.

—59 Fast Catalog Display.

Clear: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation and equation

name.

Set: Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PLOTR menus) show equation name only.

—60 Alpha Lock.

Clear: Single-Alpha activated by pressing (a) once. Alpha

lock activated by pressing (o) twice.

Set: Alpha lock activated by pressing (&) once. (Single-Alpha

not available.)

—61 User-Mode Lock.

Clear: 1-User mode activated by pressing («9)J(USR) once.

User mode activated by pressing (&q)(USR) twice.

Set: User mode activated by pressing (|9)J(USR) once. (1-User

mode not available.)

—62 User Mode.

Clear: User mode not active.

Set: User mode active.

E-6 HP 48 System Flags

System Flags (continued)

Flag ! Description
Miscellaneous Flags (continued)

—63 Vectored (ENTER).

Clear: (ENTER) evaluates command line.

Set: User-defined activated.

—64 |Index Wrap Indicator.

Clear: Last execution of GETI or PUTI did not increment

index to first element.

Set: Last execution of GETI or PUTI did increment index to

first element.

HP 48 System Flags E-7

F

Comparing the HP 48 and HP 41

The HP 48 and the HP 41 share the “RPN” stack and “RPN” logic as

the underlying basis of their operation. However, the four-level stack

and fixed-register structure of the HP 41 aren’t adequate for working
with different types of data (different types of objects) and for doing

symbolic calculations. The HP 48 has extended the traditional “RPN”

model to provide the capabilities to carry out its enhanced operation.

To help you get started with the HP 48, this appendix highlights

some of the similarities and differences between the HP 48 and

HP 41. (If you’re familiar with a different RPN calculator from HP,

the comparisons in this appendix should still be helpful.) For a more

extensive discussion, see HP 41/HP 48 Transitions by William C.

Wickes, Larken Publications, 1990.

What’s the Same

RPN Keyboard Calculations

You can calculate with numbers on the HP 48 just as you do on the

HP 41. The underlying “RPN” operation is maintained.

Comparing the HP 48 and HP 41 F-1

The following examples calculate 4 x 15, sin 30°, and 23.

HP 41 HP 48

4 (ENTERD) 15 4 (ERTER) 15
® ®

HP 41 HP 48

30 G0 30 G0

HP 41 HP 48

2 (ENTER) 3 2 (ENTER) 3
D D

Executing Commands

The general rule for the HP 41 and HP 48 is: Enter the data for

the command, then execute the command. The results are normally

returned to the stack.

The Stack

Stack Size

The HP 41 stack contains four registers (X, Y, Z, and T) augmented

by the LAST X register and ALPHA register. Each of the numeric

registers can hold one real-valued number (or six characters). The
ALPHA register can hold 24 characters.

The HP 48 stack contains only as many levels as required for the

number of objects entered. The stack starts at level 1 and grows as

needed. (The display shows the first several levels.) Each stack level
can contain one object—one item of data. An object can be a real

number—or it can be a complex number, a string of characters of any

length, a complete program, or one of several other types of data. The

important point is that the stack is dynamic in both the number of

levels and the complexity of information in each level.

F-2 Comparing the HP 48 and HP 41

If you want to enter text on the HP 48, you enter it as a string object.

This means you can enter text on the stack—so there’s no need for a
separate ALPHA register.

Stack Memory

The HP 41 stack occupies a fixed portion of memory—its size never

changes.

The dynamic HP 48 stack has the advantage that you never lose data

off the stack as you enter new data. However, it has the disadvantage

that you can tie up a significant amount of memory with old data if

you leave it on the stack. You should get in the habit of discarding

unneeded data from the stack.

Clearing the Stack

When you clear the HP 41 X-register or clear the stack, 0 is stored in

the corresponding registers. You can use the 0’s as data.

When you use CLEAR to clear the HP 48 stack, you delete all the

stack objects and levels—there’s nothing left in the stack—there’s no

data available there. If you use DROP to clear level 1 of the stack,

all of the objects on the stack move down, leaving the former level

2 object in level 1 and one less stack level. No clearing operation

generates a 0.

Entering Data

When you enter numbers on the HP 41, you enter them into the

X-register. When you press (ENTER?), the number is duplicated in the
Y-register and stack-lift is disabled.

When you enter a number or other object on the HP 48, you enter it

in the command line—so the stack levels aren’t affected while you

type. When you press (ENTER), the command line is processed—if

you’ve entered a number, it’s put in level 1 and the rest of the stack

objects move up one level. If you press instead, the command

line is deleted, and the stack isn’t changed.

On the HP 48 you can actually enter more than one object in the

command line by pressing after each one. If you enter several

numbers and press (ENTER), all of them are put on the stack in order,

one number per level. If you press some other key, such as (1), it

Comparing the HP 48 and HP 41 F-3

automatically processes the command line (the numbers go on the

stack)—and then the command is executed.

Viewing the Stack

On the HP 41 you can use to view the stack.

On the HP 48 you normally see up to four stack levels in the display.

If you want to see more of the stack, you can press (&) to activate the

Interactive Stack, which lets you browse the entire stack.

Duplicating Stack Data

On the HP 41 you can press to make a copy of the X-register

in the Y-register. And when you remove numbers from the stack,
the number in the T-register is automatically duplicated in the

Z-register—giving an infinite supply of T-register values.

On the HP 48 you execute DUP to duplicate the level 1 object in

level 2. (For convenience, if there’s no command line present, you can

press to do the same thing.) You can use DUP2 and DUPN
to duplicate two or more levels. However, there’s no built-in HP 48

mechanism for automatic replication of data comparable to the HP 41

T-register operation—because the HP 48 stack doesn’t have a fixed

number oflevels. (Of course, you can make a simple program that

returns a given number each time you execute it.)

Reordering Stack Data

You can reorder the HP 41 stack data using RT, RDN, and X<>Y.

The corresponding HP 48 commands are ROLL, ROLLD, and

SWAP—however, ROLL and ROLLD require an argument that

specifies how many stack levels to include in the “roll” operation.

(The stack might have many levels containing data you don’t want to

affect.) Other stack commands are included in the PRG STK (stack)
menu.

F-4 Comparing the HP 48 and HP 41

Calculations

Types of Calculations

HP 41 calculations use RPN syntax. (For a complex calculation, you

usually start with the inner operations because of the fixed stack size.)

HP 48 calculations can use RPN syntax—called stack syntax. (You

can calculate in any order because of the unlimited stack size.)
Alternatively, you can calculate with algebraic syntax. Algebraic

syntax specifies a calculation in algebraic notation—and you can

preserve the calculation in this form or evaluate it for its numeric

value.

These examples calculate 1/4/2. (The third example evaluates the

expression '1-7Z".)

HP 41 HP 48 HP 48

| (ERTERD | (ERTER) DI0@?
2 (&) 2 (&)
® ®

Controlling the Display Format

The HP 41 provides three display formats: fixed, scientific, and

engineering.

The HP 48 provides four display formats: fixed, scientific, engineering,

and standard (the default). Standard format shows only as many
digits as needed to represent the number (up to 12).

Rectangular and Polar Coordinates

On the HP 41 you use two registers to hold the rectangular or polar

coordinates of a 2D vector or complex number. You use the R-P and

P-R commands to convert between coordinate types.

On the HP 48 you use a 2D vector or complex number object to

represent the quantity. You change the coordinate mode to change the

way the object is displayed.

Comparing the HP 48 and HP 41 F-5

These examples show a 2D vector or complex number as polar

coordinates.

HP 41 HP 48 HP 48

1 (ERTERD) 1 | (ERTER) | @O ! EI!
BED @@
@@ @)(o) @)(EoER)
to view)

Commands

Executing Commands

On the HP 41 you can press unshifted and shifted keys to execute

keyboard commands. You can also press and spell a

command name to execute.

On the HP 48 commands appear on unshifted and shifted keys—

notice the left-shift and right-shift prefix keys. Other commands

are located in menus—you execute them by getting the menu and

pressing the appropriate menu key (shown as . in this manual).

For example, you can press to execute the

absolute-value command. You can also execute a command by typing

its name in the command line and pressing (ENTER}—but you have to

use (o) to type alpha characters.

These examples change from Radians mode to Degrees mode.

HP 41 HP 48 HP 48 HP 48

@ED @EDE) @@ DEG
DEG

e

No Prefix Notation

On the HP 41 certain commands require a register number, flag

number, or other such parameter. Each such command prompts for

the parameter after you execute the command name. For example,

F-6 Comparing the HP 48and HP 41

STO 01, FIX 2, and CF 03 get their parameters after you execute the
command names.

On the HP 48 all commands require their arguments to be present on

the stack before you execute the command. For example, you can

execute 'N1' STO, 2 FIX, and 3 CF.

These examples change the display mode to show four decimal places.

HP 41 HP 48

BEX ¢ 1 ()([WODES)

Recovering Previous Data

On the HP 41 you can use LASTX to return the contents of the

L-register—the previous contents of the X-register. This lets you reuse

the data, perhaps to undo the last calculation.

On the HP 48 you can use LASTARG to return all of the arguments

of the most recent command—not just the argument from level 1. You

can use (LAST STACK] to restore the entire stack to the way it was

before the last command.

Removing Input Data

For certain HP 41 commands, input data for the command is left on

the stack after the command is executed. For example, 123 STO 01

leaves 123 on the stack.

For almost all HP 48 commands, the input data for the command is

removed from the stack. For example, 123 'N1' STO leaves nothing

on the stack. This helps keep the stack uncluttered. If you want to

keep a copy of an argument on the stack, you can use DUP to make

an extra copy. For example, 123 DUP 'N1* STO leaves 123 on the

stack. (If there’s no command line, you can press to copy the

level 1 object.)

Comparing the HP 48 and HP 41 F-7

Memory

Memory Organization

HP 41 main memory is separated into data storage registers and

program memory. You set the amount of memory in each section

using the SIZE command. Excess memory in either section isn’t

available for the opposite purpose. In addition, the HP 41 has a

four-level stack and 24-character Alpha register.

HP 48 user memory is not divided or reserved for the purpose of

storing different types of data, including objects on the stack. Memory

is dynamically allocated for objects you enter or store—numbers,

programs, or other types of objects. The number and size of objects is

limited by only the amount of memory available.

HP 41 Memory

Stack

60.00

60.00

0.50

8.00

LAST X
Alpha Reglster

ABCDEFGHIJ

Main Memory

Rpn| O
/—\/

Roq| 123
Rgo |_ABCDEF

01 LBLTDIFF
02 Xt2

 X
<
N
-
H

F-8 Comparing the HP 48 and HP 41

el
S

HP 48 Memory

Dynamic Stack

A+B=C’
/X//L

"Abcdefghij"

60.00

0.50

8.00

Dynamic Command Line

| 456 'N2 STO |

Dynamic Memory

N1: 123
DIFF: «<SQ SWAP SQ - ABS»
Char: *Abcdefghif"

LAST_STACK: {A+B=C’...
"Abcdefghij* 60 .5 2 3}

LAST_ARG:{2 3}
LAST_CMD:{3}

Storing Data

On the HP 41 you store real numbers (and limited alpha data) in
storage registers using the STO command. Each register is identified

by a two-digit parameter, such as Rg;. You have to remember what

information is stored in what registers.

On the HP 48 you store real numbers, alpha strings of any length,

complex numbers, and other types of objects in variables. Each

variable is identified by a variable name that you give it—and it

contains one object. The object can be a simple number, or a large

program—or any other type of object. If you press the key, you

see the names of variables you’ve created. You can choose names that

reflect the meanings of the data stored there, such as N1.

These examples store the number 123 (in register Rgy or variable N1).

HP 41 HP 48 HP 48

123 123 123

01 O@N @

Using Stored Data

On both the HP 41 and HP 48 you can recall and modify stored data.

The HP 48 VAR menu provides shortcuts for working with variables.

These examples recall a stored number (from Rg; or variable N1).

HP 41 HP 48 HP 48 HP 48

01 VAR)H1i @ N1 M@ N1
@ED

Clearing Memory

On the HP 41 you clear a storage register by storing 0 there. You can

use CLRG to store 0 in all registers.

On the HP 48 you use PURGE to delete one or more variables—

they’re removed from memory and their space is recovered. You can

use CLVAR to delete all variables.

Comparing the HP 48 and HP 41 F-9

Programming

Program Content

An HP 41 program consists of numbered lines with one command per

line. A program typically begins with a LBL instruction and ends

with an END or RTN instruction. Certain commands that take a

parameter appear on one line, such as CF 03. The beginning label

often serves as the “name” of the program.

An HP 48 program consists of a sequence of commands, numbers, and

other objects enclosed between # # program quotes. There are no

commands with attached parameters—all such arguments precede the

command, such as 3 CF. A program object has no inherent “name”—

but it gets a name when you store it in a variable, which you name.

These three programs take two numbers 22 and z! from the stack and

calculate |21%2 — £22|. The keystrokes for entering the programs aren’t
shown. (The third program uses local variables, which aren’t available

on the HP 41.)

HP 41 HP 48 HP 48

g1 LBLTDIFF i

o2 SWAFP

@ ¥ =) #

B4 Mtz - O@@
a5 AES DIFF (a)
5k 3

OEE®
DIFF @)

Running Programs

On the HP 41 you can run a program by executing its name.

On the HP 48 you can run a program by typing its name or pressing

its key in the VAR menu.

F-10 Comparing the HP 48 and HP 41

These examples enter the numbers 5 and 6 and run program DIFF.

HP 41 HP 48 HP 48

5 6 5 6 5 6
XEQ (@) (@) DIFF VAR) LilEE
DIFF ENTER

Program Structure

An HP 41 program can have several entry points (LBL commands)

and several exit points (GTO and RTN commands). Branching and
looping are provided by conditional commands, GTO commands, and

ISG and DSE commands. Subroutines are provided by XEQ and RTN

commands—up to six pending returns are allowed.

An HP 48 program has only one entry point (the beginning) and only

one exit point (the end). No “go-to” capability is available. However,

powerful branching and looping structures are available, such as

IF..THEN..ELSE...END and FOR...NEXT. Subroutines are provided

by simply including the name of the “subroutine” program—there’s no

limit to the number of pending returns. All of these features support

structured programming on the HP 48.

These program segments return the value 1 or 2 depending on the

value of a number on the stack.

HP 48 HP 48

m
o
E

o
l

g

 Comparing the HP 48 and HP 41 F-11

These program segments recall two numbers and execute subroutine

DIFF.

HP 41 HP 48

14 RCL &= % ..

15 RCL &89 Wy DIFF

16 HERTLIFF 3

These program segments calculate 2;11 j2. (Thefirst two segments

use looping—the third uses the summation function.)

HP 48 HP 48

 i i i —
=

i i 1 = PECI=1. 18, SECF!

24 CL¥ 1 1@ EYAL
25 LEL @@ FOR j #
26 RCL @@ i s@ o+
27 INT MEXT

a9+

48 ISG @8
41 GTO @&

Storing Programs

On the HP 41 programs are stored in program memory.

On the HP 48 you store programs in variables—just as you store other

types of objects. You can also leave program objects on the stack—a

program occupies just one stack level.

Managing Programs

On the HP 41 you usually manage your program memory—you pack

program memory at certain times to maximize available space, and

you use SIZE to change the amount of available program memory.

On the HP 48 memory is dynamically allocated—all of user memory

is available for programs and other types of objects. The HP 48

automatically cleans up memory to maximize the available space.

F-12 Comparing the HP 48 and HP 41

Managing Intermediate Resuilts

An HP 41 program must take into account the number of values on
the stack. If more than four values are put on the stack, excess values

are lost. You can use storage registers to compensate for the fixed

stack size.

An HP 48 program can take as many arguments as needed from the

stack—and it can return as many objects as needed to the stack—

without concern for losing data. This lets you create building-block

programs that perform given tasks and pass data to each other on the

stack.

Using Flags

The HP 41 provides 56 flags. Flags 00 to 10 are general-purpose

flags—flags 11 to 56 are system flags. You can change the settings of

flags 00 to 29.

The HP 48 provides 128 flags (—1 to —64, and 1 to 64). Flags 1 to 64
are general-purpose flags—flags —1 to —64 are system flags. You can

change all flag settings.

Labeling Output

An HP 41 program can label its output by using ARCL to combine

a number with an alpha label. (The result is an alpha string, which

can’t be used directly in another calculation.)

An HP 48 program can show its output as an alpha string.

Alternatively, it can “tag” a numeric result with an alpha label—and

the result can still be used as a number in another calculation.

These program segments show the number 3 with the label “X”. (The

first two segments return alpha results—the third segment returns a

numeric result, which you can use in further calculations.)

Comparing the HP 48 and HP 41 F-13

HP 41 HP 48 HP 48

sonn STAEG

L
A
o
- i i

1
Jo
ed

£

 F-14 Comparing the HP 48 and HP 41

G
Operation Index

This index contains reference information for all operations in the

HP 48. For each operation, this index shows:

m Name, Key, or Label. The name, key, or menu label associated with

the operation. Operation names appear as keys or menu labels.

m Description. What the operation does (or its value if a unit).

m Type. The type of operation is given by one of the following codes:

Code Description

0O Operation. An operation that cannot be included in the

command line, in a program, or in an algebraic.

C Command. An operation that can be included in programs

but not in algebraics.

F Function. A command that can be included in algebraics.

Analytic Function. A function for which the HP 48 provides
an inverse and derivative.

U Unit.

m Keys. The keys to access the operation. For keys preceded by

“...7, you can access the operation through more than one

menu—to see the keystrokes represented by the “ ... 7 see the

listing in this index for the operation that immediately follows the

“ ... 7. Operations in multipage menus show the applicable menu

page number. Operations that aren’t key-accessible are identified by

“Must be typed in.”

m Page. Where the operation is described in this manual.

Operation Index G-1

The entries in this index are arranged as follows:

Page where

What operation does operation described

Keysto access operation ‘L

ATANH I) Arc hyperbolic tangent
A [MTH] HYP ATAN

chain Chain, length (20 1168402337 m). D-6
U [«a][PREV] p.3 CHAIN

Type code Menu page Value of a unit

Name of operation

Operations whose names contain both alpha and special characters

are listed alphabetically. Operations whose names contain special

characters only are listed at the end of the index.

Name, Key, Description, Type, and Keys Page

or Label

a Are, area (100 m?). D-6

U (|)(UNTS) AREA p2
A Ampere, electric current (1 A). D-6

U ()@NTS) p2
A Angstrom, length (1 x 1010 m). D-6

U ()(UNITS) LEHE p4.

Associate left. 22-15

O («)(EQUATION) (W E

(@) +#H |Executes #H until no change in 22-18

subexpression.

0 ()EATION @) RULEE @) #A
G-2 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

) #B:

Associate right.

O (@)(EQUATION) (@) RULES
Executes |

subexpression.

0 (@ETEN@

_until no change in

22-15

22-18

ABS Absolute value.

FEETZ HES

HAT
F (MTH) 4

9-14

ACK Acknowledges displayed past due alarm.

C («)(@TME)

24-7

ACKALL Acknowledges all past due alarms.

C (@)(TME) ACEA
24-7

ACOS Arc cosine.

A @EDD)

ACOSH Arc hyperbolic cosine.

A (MTH) Hi

9-6

acre Acre, area (4046.87260987 m?).

U («)(UNITS) HE p.2 HE

D-6

Selects TIME ADJST (adjust) menu.

O (EDWE) ApdsT
D-5

Add fractions.

0 (9)(EwATIoN) @

22-17

@@SR

)ESEERA)

Selects ALGEBRA menu.

0 (@GR
Selects Equation Catalog.

O (»)(ALGEBRA)

D-5

17-7

ALOG Common (base 10) antilogarithm.

A @)
9-6

 Selects TIME ALRM (alarm) menu.

O (WIME) HALEHM D-5
Operation Index G-3

Name, Key,

or Label

Description, Type, and Keys Page

AND Logical or binary AND.

(MTH) BHEE p4
F (PRG) TEE&T

14-5

26-3

Selects UNITS ANGL menu.

O («)(UNITS) p.3 HHEL

D-6

Returns evaluated expression(s) as
argument(s) to unevaluated local name.

I (S)(ALGEBRA) p-2 APPLY

ARC Draws arc in PICT from 6, to 8, with

center at (z,y) and radius .

C (PRG)

19-25

ARCHIVE Makes backup copy of HOME directory.

C («)(MEMORY) p.3 HELHI

34-18

arcmin Minute of arc, plane angle.

(4.62962962963 x 1073)

U (@@NTS) p.3

D-6

arcs Second of arc, plane angle. (7.71604938272

x 1077)

U (e)(UNITS) p.3 §

D-6

Calculates and displays area under

function graph between two z-values

specified by the mark and cursor; returns

area to stack.

18-26

Selects UNITS AREA menu.

O («)(unNITS) HEEHR

Returns polar angle 6.

F (MTH)EHEIEZ

11-10

Enables/disables LASTARG recovery.

O (@)(FODES)p.2 ARG
15-11

ARRY— Returns array elements to stack.

C Must be typed in.

G-4 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

—ARRY Combines numbers into array.

C

4-13

Switches between ASCII and binary mode.

O (({/0)EeiuE gaCll

33-4

Arc sine.

A @ED

Arc hyperbolic sine.

A (MTH) | B THHE

9-6

Makes a single user-key assignment.

C (»)(MODES) #&H

15-6

ASR 1-bit arithmetic shift right.

C B - p3 H

14-5

ATAN Arc tangent.

A @ETED
9-9

ATANH Arc hyperbolic tangent.

A ' HIAH

atm Atmosphere, pressure (101325 kg/m-s?)

U («)UNITS)p2EREZS ATH

D-6

ATTACH Attaches specified library to current

directory.

C (@)(MEMORY) p.2 ATTHL

34-21

(@) Aborts program execution; aborts

command line; exits special environments;

clears messages.

0 (oN)

2-6

AU Astronomical unit, length

(1.495979 x 10! m).

U (@)@ONTS) LEHE p2 Al

D-6

 AUTO Scales y-axis.

T

 18-15

Operation Index G-5

Name, Key,

or Label

Description, Type, and Keys Page

Scales y-axis, then plots equation.

FLOTE ®HUTO

O (@)(ELom) AUTH

18-15

AXES Sets specified coordinates of axes

intersection; stores labels.

FLOTE p.3 HEESR

C ()(PLOT)p.3 HHEE

Recalls axes intersection to stack.

FLOTE p3 () B

O (@)PoT)p.3(>)F

19-3

19-5

Switches clock between AM and PM.

0 (®)@ME)SET AFH
Switches alarm time between AM and PM.

O (|@)(TME) ALEH HAFH

24-2

24-5

Barn, area (1 x 1028 m?).

U (@(NTS) AREA B
D-6

bar Bar, pressure (100000 kg/m-s?).

U (©)(UNITS)p.2 FRESE EAE

D-6

BAR Selects BAR, plot type.

C ... FIYFE ERE

19-13

BARPLOT Draws bar plot of data in YDAT.

C (W)ETAD p-3 EAEEL

21-19

Selects MTH BASE menu.

O (MTH)

D-3

Sets one of four available baud rates.

C @SETHE Baun

33-4

Barrel, volume (.158987294928 m3).

U («)(UNITS): ¥lp4EEL

D-6

 Sounds beep.

C (PRG) LTEL p.3 EEEF 29-12

G-6 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

Enables/disables error BEEP.

O (©)(MODES) EEE

15-11

BESTFIT Selects statistics model yielding largest

correlation coefficient (absolute value) and
executes LR.

C (WETA)p4 MOkl EEEST

21-11

BIN Sets binary base.

BASE:-
C () HODEE p4

14-2

BINS Sorts elements in independent variable

column of ¥DAT into N + 2 bins (up to a

maximum of 1048573 bins).

C BEIADPr2 EIHE

21-9

BLANK Creates blank graphics object.

C (PRG) [iEFLp.3. :

19-28

BOX Draws box with opposite corners defined

by specified coordinates.

C (PRG) LiEFL

19-25

Draws box with opposite corners defined

by mark and cursor.

LEHM p.2 Eilg

HUTO p2 B

O (¢)(GRAPH) p.2 ELI

19-23

Becquerel, activity (1 1/s).

U («@unNTS)p.3 EARER @ E#

Selects PRG BRCH (program branch)
menu.

O (PRG) BELH

Btu International Table Btu, energy

(1055.05585262 kg-m?/s?)

U (9)UNTS)p.2 EHEG E

D-6

 bu Bushel, volume (.03523907 m?).

U («)UNITS) %aL p4 . D-6

Operation Index G-7

Name, Key,

or Label

Description, Type, and Keys Page

BUFLEN Returns number of characters in serial

buffer.

C H)/)p3E

33-21

BYTES Returns object size (in bytes) and
checksum for object.

C (S)WEWORY) BTES

B—R Binary-to-real conversion.

C @m

14-5

Speed of light (299792458 m/s).

U (E(UNTS) BREEDp2 =T
D-6

Coulomb,electric charge (1 A-s).

i
D-6

Degrees Celsms temperature

U («JunITS)p2 0

Calorie, energy (4.186 kgmz/sz)

U (e)(UNITS) p.2

D-6

Begins CASE structure.

C EES) !
Types CASE THEN END.

0O m BELH@E

Types THEN END.

O (PRG) EECH ()CHEIE

26-6

26-7

26-7

Selects Equation Catalog.

@EDD
@ED)

0 (@)(ALSEERA)
Selects STAT Catalog

0 @EED
Selects Alarm Catalog.

)
oET

0 (@(wE)

17-7

21-6

24-12

G-8 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

cd Candela, luminous intensity (1 cd).

U (@)UNTS) p.3 p2 Bt

D-6

CEIL Returns next greater integer.

F BEHETZ p3 HETIE

9-14

EEE Redraws graph with center at cursor

position.

 EEHT

CEHTHELT

O (®)(GRAPH) LEHT

18-22

CENTR

Sets center of plot display at specified

(z, y) coordinates.

Ep2 i FHT

C [E]m p.2 CEHT

Recalls plot-center coordinates to stack.

.. FLUTE p2 (o) EEHT

O (E@)FLOT)p.2 () CEHT

18-10

18-16

CF Clearsspecified flag.

C @(MODES) p.2 i

28-2

%CH Returns % change from level 2 to level 1.

F (MTH) FRETS p.2 2CH
9-7

chain Chain, length (20.1168402337 m).
U («)(UNITS) LEHEGp3 CHELH

D-6

CHR Converts character code to one-character

string.

C (PRG) _p3 LHE

4-13

 Curie, activity (3.7 x 1010 1/s).

U («)(NITS)p.3 EHE B D-6

Operation Index G-9

Name, Key,

or Label

Description, Type, and Keys Page

CIRECL Draws circle with center at the mark and

radius equal to the distance from cursor to

mark.

_[FHH p2EIRLL
i p2

0 @G2 LR

19-23

CKSM Selects one of three available checksum

error-detect schemes.

¢ @SETHE [LEEH

33-4

CLEAR Clears stack.

C @EE
3-5

CLR In EquationWriter entry mode, clears

screen.

0 (e)(EWATION) @)(CR)
Clears PICT.

DREBEH ()(CR)

HUTO (@)(ER)

0 (S)ERAPH) @)(CR)

16-4

18-21

Switches ticking clockdlsplay on and off.

O («)(MODES) p.2 B

15-11

CLKADJ Adds specified nurnber of clock ticks to

system time.

C («)@ME)AEIET p.2 LLER

24-4

CLLCD Blanks stack display.

C (PRG) [EFL pdillih

29-17

CLOSEIO Closes I/0 port.

C (Q/OQ)p2CLOsE

33-18

CLX Purges statistical data in YDAT.

C @EED tL:
21-2

CLUSR Purges all user variables.

C Must be typed in.
G-10 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

CLVAR Purges all user variables. 6-9

C ()(PURGE)

cm Centimeter, length (.01 m). D-6

U («)UNTS) LEHE CH

Enables/disables last command line 15-11
recovery.

O (&)(MODES) p.2 LML

cm”2 Square centimeter, area (1 x 10"* m?). D-6

U («)(UNITS) HEEH ©LH2

cm”3 Cubic centimeter, volume (1 x 10m3). D-6

U @@ET) voL

cm/s Centimeters per second, speed (.01 m/s). D-6

U («)(UNITS) BFEED LR5

EHET Switches curve filling on and off. 18-14

O (®)(MODES) p.2 LHET

CNRM Calculates column norm of array. 20-17

C MATE p.2 CHEM

Inserts a row of zeros at current column in 20-7

MatrixWriter application.

0 @WATRX) p-2 *EiL

Deletes current column in MatrixWriter 20-7

application.

O (@)MATRIX)p-2 -EOL

COLCT Collects like terms in expression. 22-9

C ()(ALGEBRA) LHLET
BT Collects like terms in specified 22-14

subexpression.

O (+)(EQUATION) (@)

 COLX Specifies dependent and independent

columns in YDAT.

C Must be typed in.
Operation Index G-11

 feed.C («)PRINT) @

Name, Key, Description, Type, and Keys Page

or Label

COMB Returns number of combinations of n 9-13

items taken m at a time.

F (MTH) EREOE CiiMg

CON Creates constant array. 20-17

C HAET

CONIC Selects CONIC plot type. 19-13

C ... FijEETOHID

CONJ Returns complex conjugate. 11-10

FOMITH)FHRETE COHJ

CONT Continues halted program. 29-17

C (@)D
CONVERT Converts unit object to dimensions of 13-9

specified compatible unit.

C @@
Displays cursor coordinates at bottom left 18-20

of display.

O (4)(GRAPH) EOORD
CORR Calculates correlation coefficient of 21-12

statistical data in YDAT.

C ETAD P4

COS Cosine. 9-9

A (cos)
COSH Hyperbolic cosine. 9-6

A (MTH) H¥E

6{0)% Calculates covariance of statistical data in 21-12

YDAT.

C @EE)p4 CO¥
CR Causes printer to do carriage return/line 32-8

G-12 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

CRDIR Creates a directory 7-3

C («)(MEMORY) i

CROSS Cross product of 2- or 3-element vector. 20-9

C MR =

CST Selects CST (custom) menu. 15-2

0
B Returns contents of CST' variable. 15-2

O (»)(MODES)&t

ct Carat, mass (.0002 kg). D-6

U (|)@UNITS) HAEE p2

Selects PRG CTRL (program control) D-3
menu.

O ETRL

cu US cup, volume (2.365882365 x 10~* m?). D-6

U (&)(unNiTs) #ak p3 Gl

C—PX Converts user-unit coordinates to pixel 19-9

coordinates.

C EczBWEE

C—R Separates complex number into two real 4-13

numbers.

C B

d Day, time (86400 s). D-6

U («)(UNITS) TiHE [

Assembles or takes apart a complex 12-4

number or 2D vector.

0 @E
Assembles or takes apart a 3D vector. 12-4

0 @0ED)
Operation Index G-13

Name, Key,

or Label

Description, Type, and Keys Page

Distribute left.

0 ()(EQUATION) (@) RULES b
. until no change in

subexpression.

@)o

22-16

22-18

Distribute right.

0 (©)(EWATION @ RULES D+
Executes | [i% | until no change in

subexpression.

0 (Q)EWATON @ RULES @) D%

22-16

22-18

DATE Returns system date.

C (@)@ME) p-2 LATE
24-17

DATE+ Returns new date from specified date and

number of days.

C (@)WE) p.2 DATE*

24-17

Sets specified system date.

C («OME) EET

24-2

Sets specified alarm date.

O (w(ME) HLEM :DHTE

24-5

DAY Sets alarm repeat interval to n days.

O («)(ME) HLEM EET b

24-5

LELD Halts program execution before first

object.
O (PRG) LTRL

25-24

DDAYS Returns number of days between two

dates.

C ®)@ME)p.2 BOATE

24-17

DEC Sets decimal base.

BRHZE [DEC

C (®)HobEs pd4 BED

14-2

DECR Decrements value of specified variable.

C (»)(MEMORY) [

 27-13

G-14 Operation Index

Name, Key,

or Label

Description, Type, and Keys

DEFINE Creates variable or user-defined function.

C WEE)

=LEE Expands trigonometric and hyperbolic

functions in terms of EXP and LN

O (¢)(EQUATION) (W) ELILES

DEG Sets Degrees mode.

C (w)(MODES) p.3 .

DEL Deletes character under cursor.

0 @

BEL Erases area whose opposite corners are

defined by mark and cursor.

DEEH p3 DEL
i p.3 HEET

O @GR p3 DEL

() =LEL

Deletes all characters from cursor to start

of word.

0 .. E@DnIT +B

Deletes all characters from cursor to start

of line.

EED@e
0 (@) *hEL

3-8

Deletes all characters from cursor to start

of next word.

@Em bEL*
O ... EBit |

Deletes all characters from cursor to end of

line.

3-8

3-8

 DELALARM Deletes alarm from system alarm list.

LA p.2 BELFAL

 24-16

Operation Index G-15

Name, Key, Description, Type, and Keys Page

or Label

DELAY Sets delay time between lines sent to 32-7

printer.

C ()(PRINT)p.2 BELHY

DELKEYS Clears specified user-key assignment. 15-8

C (»)(MODES) LELE

DEPND Specifies name of dependent plot variable. 19-2

FLOTE p2 LEREH

C ()(PLOT) p.2 BEFH

Recalls dependent plot variable to stack. 19-5

iITE p2 () BEEH. PLD
0 @)FOD) p2 (@) DEEH

DEPTH Returns number of objects on stack. 3-18

DET Determinant of a matrix. 20-17

C (MTH | ;

DETACH Detaches specified library from current 34-22

directory.

C («)MEMORY) p.2 LETHE

Double invert. 22-13

O (¥)(EQUATION) (@) THN

DISP Displays object in specified display line. 29-4

DEEL p4 Dize

C (PRG) iIElL p2 BlgE

DHELD Double negate. 22-13

O («)(EQUATION) (W) BLILES BHEL

DO Begins indefinite loop 27-10

() b|Types DO UNTIL E 27-11

0O (&) B

DOERR Aborts program execution and displays 30-3

specified message.

C LR p.3 DiiERER
G-16 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

DOT Dot product of two vectors. 20-9

C NELTE oy

Ll Turns on pixels as cursor moves. 19-23
| p2 DOTH

..o HUTH p2 BHTH

0 @(m]p2 Dne

L= Turns off pixels as cursor moves. 19-23

DEHEp2 D=

[p.2 hig=

O @meBT

DRAW Plots equation without axes. 18-15

LEHN 18-15

... ELUOTFE DEBHH

O (e)(LoT) BRAH
DRAX Draws axes. 19-6

... BLEIED.

C @)Eo)p3
DROP Drops object in level 1; moves all 3-5

remaining objects down one level.

C (@@EoP)
DROPN Drops n objects from stack. 3-18

C (PRG) =TE pg.2 [LEFH
LERH Drops all objects from stack at and below 3-11

pointer.

O ... #87E p2u&

DROP2 Drops first two objects from stack. 3-18

C (PRG) ETE pg2DROFE

pEer Selects PRG DSPL (program dlsplay) D-3 menu.O (FRG) DEPL
Operation Index G-17

Name, Key, Description, Type, and Keys Page

or Label

DTAG Removes all tags from object. 4-13

C OBpg2 OTAG

DUP Duplicates object in level 1. 3-5

C (PRG) ETE pg2 [UE

DUPN Duplicates n objects on stack. 3-19

C (PRG) ETE pg2 DiEH

Duplicates all objects on stack from 3-11

pointer through stack level 1.

O p2
DUP2 Duplicates objects in level 1 and level 2. 3-19

C (PRG) ETEpg2 DURE
dyn Dyne, force (.00001 kg-m/s?). D-6

U («)UNTS)p.2 FORCE [ivH

D—R Degrees-to-radians conversion. 9-11

F MELTE p2 [iaR

e Symbolic constant e (2.71828182846). 9-15

F @®6)
Copies object in current level to command 3-11

line.

o ... TH i
ELER Returns contents of £Q to command line 17-11 for editing.

@EED EpEn
O (R)EOWE) EED

G-18 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

When command line not active, copies

level-1 object into command line and

selects EDIT menu.

When command line active, selects EDIT

menu.

0 @ED
Selects EDIT menu.

0 @EEERR)@ED
Returns equation to command line and

selects EDIT menu.

0 (©)(EQUATION) (@)ED)
Edits current stack level.

O ... *ETE (&9)EDTD)

3-7

3-8

20-7

16-17

3-12

ERLT Copies selected equation into command

line and selects EDIT menu.

@FOT) CAT ELIT
(@EONE) CAT ED

O ()(ALGEERA)
Copies subexpression into command line

and selects EDIT menu.

0 @EUAN@
Copies selected matrix to MatrixWriter

application.

O (VQ)ETAT) LAl EBIT

Edits current matrix cell.

O (@)(MATRIX) ELLT

Displays selected alarm and selects ALRM

(alarm) menu.

O ()@ME) CHT ERIT

17-8

16-19

21-7

20-7

24-12

 EDITY Copies statistical data in XDAT to

MatrixWriter application.

O (WETAT)ELITE 21-4
Operation Index G-19

EQ.

@EDD AT (@En
@D AT @ Ea

0 @)(ALERA) @)ER

Name, Key, Description, Type, and Keys Page

or Label

EEX Types E or moves cursor to existing 2-7

exponent in command line.

O
Selects UNITS ELEC (electrical) menu. D-6

O («)(UNITS)p.2 ELEE

erg Erg, energy (.0000001 kg-m?/s?) D-6

U («@)(UNITS) p.2 EHEE
ELSE Begins false clause. 26-5

C (PRG) EBELH p3 E

END Ends program structures. 26-5

C BECH p2 EHD
ENG Sets display mode to Engineering. 2-15

C (S)[ODES) EM:
Selects UNITS ENRG (energy) menu. D-6

0 (@@NTS) p2 ,
Enters contents of command line. If no 3-2
command line is present, executes DUP.

O (ENTER)
Switches Algebraic- and Program-entry 3-17
modes.

0 @ETE)
Selects EquationWriter application. 16-4

0 (9)(EQuATION)
B Adds selected equation to list in £Q. 17-27

(\®)(PLOT) T I

@EOWE) AT
0 (@)(ALGEBRA) EB

(&) E@® Removes the last entry from the list in 17-27

G-20 Operation Index

O gl

Name, Key, Description, Type, and Keys Page

or Label

EQ— Separates equation into left and right 4-13

sides.

C (PRG) uEd Efs

ERASE Erases PICT. 18-15

... E

C (@)(FoT) ERASE
ERRM Returns last error message. 30-3

C (PRG) p-3 EEEH

ERRN Returns last error number. 30-3

C ETEE p.3 ERERH

ERRO Clears last error number. 30-3

C CIEL p.3 ERES

eV Electron volt, energy D-6

(1.60219 x 10~kg-m?/s?)

U («@)@UNTS)p.2 EHEG p2 EW
EVAL Evaluates object. 4-20

C
Sets alarm execution action. 24-11

O (@)(TME) HLEM E=EC
() EHEL Recalls alarm execution action to stack. 24-11

O (Q@ME) BLEH ()

Shows alarm-execution action. 24-14

(«)(@TME) EHT EHELE

O (P)OIME)EHELE

Ealid Exits Selection environment. 22-12

0 (E)(EQUATON) (@) EHIT:
Exits FCN (function) menu. 18-26

O ... FiHE=IT

Exits ZOOM menu. 18-22
Operation Index G-21

Name, Key,

or Label

Description, Type, and Keys Page

EXP Constant e raised to power of object in

level 1.

A @E@

EXPAN Expands algebraic object.

C (S)(ALGEBRA) EHFH
22-9

EXPFIT Sets curve-fitting model to exponential.

C (Q)ETAD P4 HMORL E&F

21-11

EXPM Natural exponential minus 1 (e* — 1).

A (MTH) H¥E p2 EHEH

EXPRE Highlights subexpression for which

specified object is top level function.

O (¥))(EQUATION) (W) EHFE

16-22

22-11

Returns expression value or equation

values.

O ... SilLVE EEFE=

17-16

Moves graphics cursor to nearest

extremum, displays coordinates, and

returns them to stack.

O ... FLH E&RIE

18-26

Replace power-product with

power-of-power.

0 (F)(EQUATON) @) RULES E*

22-17

Replace power-of-power with

power-product.

0 ()(EQUATION) (@) RULES E¢3

22-17

Farad, capacitance (1 AZ?-s*/kg-m?).

U («)@UnNITS)p.2 ELEL F

D-6

Degrees Fahrenheit, temperature.

U (9)@UNITS)p.2 TEME

D-6

- T e = Switches displaying equation names only

and names plus contents of equations.
0 _p2 EHET

 17-8

G-22 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

fath Fathom, length (1.82880365761 m).

U («)(UNITS) LEHE p.3 H

D-6

Board foot, volume (.002359737216 m3).

U («)UNITS) WL p4 EFBEH

D-6

fc Footcandle, illuminance

(.856564774909 cd/m?)

U (@@UNTS)p.3 LIGHT FL

D-6

FLH Selects GRAPHICS FCN (function) menu.

DRAM

... CEUTD
O (®)(GRAPH) ELH

Plots statistical model.

(®)(ETAD) p3 &

ELCH

21-14

FC? Tests if specified flag is clear.

TEET p3 EiLZ

C (@)(MODES)p.3 Eiz

28-2

FC?C Tests if specified flag is clear, then clears

it.

 PRG T p3 FCRE

C_(2)(MODES) p-3 FE?C

28-2

Fdy Faraday, electric charge (96487 A-s)

U (9(UNTS)p2 ELEC p2

fermi Fermi, length (1 x 1071% m).

U (@)(UNITS) LEHG p.4 FERNI

FINDALARM Returns first alarm due after specified

time.

C (w)TmME): p-2 FIHEH

FINISH Terminates Kermit server mode.

C WW/O)EIHIE
33-18

 FIX Selects Fix display mode.

C («)(MODES): Fla 2-15

Operation Index G-23

 U («)(UNITS) HEEH Ef=2

Name, Key, Description, Type, and Keys Page

or Label

flam Footlambert, luminance D-6

(3.42625909964 cd/m?)

U QUNTS)p3 LT
FLOOR Next smaller integer. 9-14

F (MTH) F¥ p-3 ELOOR
Switches period and comma fraction mark. 2-1b

O (@) HOLES pd FEH,

FOR Begins definite loop 27-6
C (PRS) BRCH “FOR

Types FORNEXT. 27-7

0 BRECH (@) FOE

Types FOR STEP. 27-9

O (PRG) ERELH()Fik

Selects UNITS FORCE menu. D-6

O («)(UNITS) p.2 ELRELE

FP Returns fractional part of a number. 9-14

F EHETS p3 EF

FREE Frees the memory in a previously merged 34-12

RAM card.

C («)(MEMORY) p.3 EEEE

FREEZE Freezes one or more of three display areas. 19-29

C (PRG) liEEL pd4 EREEZD 29-4

FS? Tests if specified flag is set. 28-2

PRG) IEHT p.3 k&G

C (»)(MODES)p.3 E&:

FS?C Tests if spec1fied flag is set, then clears it. 28-2

PRG -p3 R

C (»)(MODES)p.3 E&in

ft International foot, length (3048 m). D-6

U (@@ONTS) LEHG FT
ft72 Square foot, area (.09290304 m) D-6

G-24 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

ft*3 Cubic foot, volume (.028316846592 m3).

U @O

D-6

ftUS Survey foot, length(304800609601m)

ft/s Feet/second, speed (3048 m/s)

U («)(uNITS)

D-6

ft+lbf Foot-poundf, energy

(1.35581794833 kg-m?/s?).

U @@NTS) p-2

D-6

FUNCTION Selects FUNCTION plot type.

C

19-13

Displays value of function at z-value

specified by cursor. Returns function value

to stack.

0O

18-27

Plots first derivative of functlon replots

function, and adds derlvatlve to FQ.

0O

18-27

Gram, mass (.001 kg)

ga Standard freefall, acceleration

(9.80665 m/s?).
U (&)(ONTS) SFEEL p2 & GH

gal US gallon, volume (.003785411784 m3).

U @)@ Milh p.2 GEL

galC Canadian gallon, volume (.00454609m3).

U (e)(NITS) p-2 GHELED

galUK UK gallon, volume (.004546092 m3).

U @)@NTS) oL p.2 fEHLEH
 GET Gets element from array or list.

C nEd pd GEF 4-14

Operation Index G-25

Name, Key,

or Label

Description, Type, and Keys Page

GETI Gets element from array or list and

increments index.

C OBp4d BETI

4-14

gf Gram-force (.00980665 kg-m/s?).

U («)(UNITS)p-2 EL

D-6

GOR Superposes graphics object onto graphics

object.

C BERL p3 BOE

19-28

Sets top-to-bottom entry mode.

O (@)(MATRIX):

20-7

Sets left-to-right entry mode

O (@)(MATRIX): Gii=

20-7

GRAD Selects Grads mode.

C (¢)(MODES) p.3 GERL

grad Grade, plane angle (.0025).

U @ENTS) 3 AHEL

D-6

grain Grain, mass (.00006479891 kg)

U (9)(UNITS) HASE p.2 GEAIH

D-6

GRAPH Enters Graphics environment.

C (®)(GRAPH)

18-19

Invokes scrolling mode.

()(EQUATION) ()(GRAPH)
LEAN (€)(GRAPH)
AUTE (9)(GRAPH)

0 ()(GRAPH) (w)GRAPH)

16-3

18-20

—GROB Converts object into graphics object.

C (PRG) p.3 EEEN

19-28

GXOR Superposes inverting graphics object onto

graphics object.

C (PRG) BEFL p.3 GHEOE

19-28

Gy Gray, absorbed dose (1 mz/sz)

U @Op3 - s
EJ i

 D-6

G-26 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

h Hour, time (3600 s). D-6

U (S@NTS) TIHE H
H Henry, inductance (1 kg-m?/A2.s?). D-6

U («u)UNITS)p2:ELEE p2:H

«H Adjusts vertical plot scale. 19-6

C ... FlLillE p.3 #H

ha Hectare, area (10000 m?). D-6

HALT Halts program execution. 25-24

C (PRG) CIEL HAL 29-4

HEX Sets hexadecimal base. 14-2

BHEE

C (S)MODES) p4 HEX
HISTPLOT Draws histogram of data in XDAT. 21-19

C (\)ESTAD p3HIZIE

HISTOGRAM Selects HISTOGRAM plot type. 19-13

C ... EIGFE p2 Hizd

HMS+ Adds in HMS format. 9-11

C («)(@TME)p.3 HEHZ+ 24-19

HMS— Subtracts in HMS format. 9-11

C («)@ME)p.3 . 24-19

HMS— Converts from HMS to decimal format. 9-11

C («@ME)p.3 HHz= 24-19

—HMS Converts base 10 number to HMS format. 9-11

C (®)IME) p.3 =HiiE 24-19

HOME Selects HOME directory. 7-5

C (@)([HoME)
HilllE Sets alarm repeat interval to n hours. 24-5

O (®)IME) HLEM EET HOllE

hp Horsepower, power D-6 (745.699871582 kg-m?/s?).
U (©)QUNITS)p.2 EiHE HE

Operation Index G-27

Name, Key,

or Label

Description, Type, and Keys Page

 S Increments time by one hour.

O («)(@ME) #

24-4

Decrements time by one hour.

O (Q)OME)HEIET HE-

24-4

Selects MTH HYP (math hyperbolic)
menu.

0 HiE

D-3

Hertz, frequency (1/s).

U (@@NT) TIH

D-6

Symbolic constant .

F @@)EsT)
9-15

IDN Creates identity matrix of specified size.

20-17

Begins test clause.

C BECH @ 1R

Types IF THEN END.

0O BELH ()1E

Types IF THEN ELSE END.

O (PRG) EELH () IF

26-5

26-5

26-6

Begins test clause.

C EFCH p3 IFERE

Types IFERR THEN END.

0 BRECH p.3 (QIFERE
Types IFERR THEN ELSE END.

O (PRG) EBELH p3 ()1

30-4

30-4

30-5

IF-THEN command.

C (PRG)

26-5

IF-THEN-ELSE function.

F (PRG) EBELH p3 iEiE

26-6

 Returns imaginary part of complex

number or array.

F (MTH) ERETS IH 11-10

G-28 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

n Inch, length (.0254 m).

U («)UNITS) LEHE @IH

D-6

in2 Square inch, area (.00064516 m?).

U («)(UNTS) HEER Tt

D-6

in*3 Cubic inch, volume (.000016387064 m?).

U @)ONTS) WOL

D-6

INCR Increments value of spec1fied variable.

C (2)(MEMORY)

27-13

INDEP

Specifies independent variable in a plot.

 C (@)FLoT) IHHEE

Recalls independent variable to stack.

PLOTE (@) IHEER

O (2)(PLOT) ()IHEER

18-16

18-16

inHg Inches of mercury, pressure

(3386.38815789 kg/m-s?).

U (@)@NTS) p-2 PRESE p.

D-6

mH20 Inches of water, pressure (248.84 kg/ms2).

U ()UNITS)p2 FREEZE p.2

INPUT Suspends program execution, displays

message, and waits for data.

C © p.2 THEOT

o
o
k

e s L Switches between insert/replace character.

O (v)EDIT) 1HE

3-8

INV

Reciprocal (inverse).

A ()
9-3

)09

@®)9) Selects I/O (input/output) menu.

0 QI
Selects Kermit server.

0 @®W9) D-4

33-18
Operation Index G-29

Description, Type, and Keys Page

Integerpartof real number.

9-14

Sw1tchesIR and Wire transmission modes.

eO Q@0 EETUF
33-4

Moves graphics cursor to closest

intersection in two-function plot, displays

intersection coordinates, and returns

coordinates to stack.

0O

18-26

ISOL Isolates variable on one side of equation.

C (¢)(ALGEBRA): 1&iil

22-2

Joule, energy (1 kg-m?/s?).

U (e)(UNITS) p.2 EHEL A

Kelvins, temperature (1 K).

U («)@ONITs)p-2 TEHF

kcal Kilocalorie, energy (4186 kg-m?/s?)

U («@NITS)p2 EHEG KCAL

[
T
T B Clears all levels above current level.

O ... #51E p2 EEEF

3-12

KERRM Returns text of most recently-received

KERMIT error packet.

C (®)0/0)p2 EEEE

33-18

KEY Returns number indicating last key

pressed.

C (PRG)

29-14

m 1
I.
I

Removes menu labels.

DERE p3 EEY

=

O @(GRAPH]p3

18-20

kg Kilogram, mass (1 kg).

U (e)(UNITS) HHEE

 D-6

G-30 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

KGET Gets data from another device.

C (w)(/0) EEET

33-18

KILL Aborts all suspended programs.

C (PRG) i iELB

25-24

kip Kilopound-force (444822161526kgm/sz).

U (QUNTS)Pp2E

D-6

km Kilometer, length (1 km).

U («)UNITS) LEHE p2 KH

D-6

km”2 Square kilometer, area (1 km?

U («)(UNITS) HEEH p.2
 D-6

knot Nautical miles per hour, speed

(.514444444444 m/s).

U (@O

kph Kilometers per hour, speed

(.2777TTTTT778 m/s).

U (w)UNITS):

Liter, volume (.001 m?). D-6

Labels axes with variable names and

ranges.

C (@)Prom)p3 L

19-3

Labels axes with variable names and

ranges.

bbb

O (wa)(GRAPH)

18-20

lam Lambert, luminance

(3183.09886184 cd/mz)

U (@)(@NTS) p3 LIGHT p2 L

D-6

 LAST Returns previous argument(s) to stack.

C Must be keyed in.
Operation Index G-31

 directory.C («)(MEMORY)p.2 L:

Name, Key, Description, Type, and Keys Page

or Label

LASTARG |Returns previous argument(s) to stack. 3-5

C ()(LASTARG)

Displays previous contents of command 3-18

line.

O (¥)(LASTcMD)

Selects last displayed page of previous 2-13

menu.

0 @)STHEWD)
Restores previous stack. 3-6

0 (@ASTSTAK)
Ib Avoirdupois pound, mass (.45359237 kg). D-6

Ibf Pound-force (4.44822161526 kg-m/s?). D-6

U («)(UNTS)p.2 FOELE LEF

Ibt Troy pound, mass (.3732417 kg). D-6

U (w)(@nITs) H Spapp
LCD— Returns graphics object to stack 19-29

representing stack display.

C DEZFL pd4 LCh=

—LCD Displays specified graphics object in stack 19-29

display.

C (PRG) BEFLp4 -

Selects UNITS LENG (length) menu. D-6

LENEL Enters current level number into level 1. 3-12

O ... #51E p2iEWEL

Selects LIBRARY menu. 34-16

O («9)(LIBRARY) 34-22

LIBS Lists all libraries attached to current 34-23

G-32 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

Selects UNITS LIGHT menu.

O (9)@UNITS)p.3LIGHT

Draws line between coordinates in levels 1

and 2.

C FEY

19-25

Draws line from mark to cursor.

 0 @(ékAPH) b.

19-23

YLINE Returns best-fit line for data in YDAT

according to selected statistical model.

C @GEDp3

21-11

LINFIT Sets curve-fitting model to linear.

C (@)GTAT) pA HE

21-11

LIST— Returns list elements to stack.

C Must be typed in.
—LIST Combines specified objects into list.

C (PRG)B m=piaq

4-14

Combines objects from level 1 to current

level into a list.

O ... #37E =

3-11

Im Lumen, luminous flux

(7.95774715459 x 1072 cd).

U («)UNITS)p3 i

D-6

LN Natural (base e) logarithm.

A @@
LNP1 Natural logarithm of (argument + 1).

A HYES p.2 EHEE

LOG Common (base 10) logarithm.

A @@
 LOGFIT Set curve-fitting model to logarithmic.

C ()ETAT)p4 Hbi Libg
Operation Index G-33

Name, Key,

or Label

Description, Type, and Keys Page

LR Calculates linear regression.

C @GEED p4

21-12

Ix Lux, illuminance

(7.95774715459 x 1072 cd/m?).

U (@)UNITS)p3 LIGHT L#

D-6

lyr Light year, length

(9.46052840488 x 10! m).

U (@@NTS) LEHE p2

D-6

Replace log-of-power with productof-log.

0 ()EUATON) @ F
22-17

Replace product-of-log with log-of-power.

O (¢)(EQUATION) () EHLES L3

22-17

Merge-factors-left.

0 (©)(EWATION @)
Executes' ## until no change in

subexpression.

O (w)(EQUATION) (@)

22-16

22-18

Merge-factors-right.

0 (@)(EQUATION @ Fiil
Executes | _until no change in

subexpression.

O («)(EQUATION) HLEE (o) W=

22-16

22-18

Meter, length (1 m). D-6

m”2 Square meter, area (1 m?).

U («)(UNITS) ¢

D-6

m”3 Cubic meter (Stere) volume (1 m3).

U @O

D-6

MANT Mantissa (dec1mal part) of number

F

 9-14

G-34 Operation Index

Name, Key, Description, Type, and Keys Page

or Label
MERE Sets mark at cursor position. 18-20

 O EEEEEH) p3 HARK
Selects UNITS MASSmenu. D-6

O («)(uUNITS) Hi

TMATCH Match-and-replace, beginning with 22-24

subexpressions.

C (S)(ELCERRA) p-2 AT
I|MATCH Match-and-replace, beginning with 22-24

top-level expression.

C («)(ALGEBRA)p.2 .

MEHTE Selects MTH MATR (mathmatnces) D-3

menu.

O (MTH) HATER
Selects MatrixWriter application. 20-3

0 PWARK)
MAX Maximum of two real numbers. 9-14

F

p.2 HEE

MAXR Maximum machine-representable real 9-15

number (9.99999999999E499).

F p.4 HEHE

MAXY Maximum column values 1n statistics 21-9

matrix in YDAT.

C (@GETAT) p2 MAHEZ

MEAN Calculates mean of statistical data in 21-9

YDAT.

C (@EED2
 MEM Bytes of available memory. 5-2

C (EMEMORY) HEH
Operation Index G-35

Name, Key,

or Label

Description, Type, and Keys Page

(@@EoRY)

@)(WEWORY)

Selects MEMORY menu.

0 (@WUEMRY
Selects MEMORY Arithmetic menu.

0 @)WEWSRY)

D-4

D-4

MENU Displays built-in or custom menu.

()(MODES)
C CTEL p.2 MEHU

15-1

29-18

MERGE Merges plug-in RAM card memory with

main memory.

C («)(MEMORY) p.3

34-11

Micron, length (1 x 1075 m).

U («&)(unITS) p4i
D-6

MeV Mega electron volt, energy

(1.60219 x 10713 kg-m?/s?)

U (9)@UNTS)p2 E

D-6

mho Mho, electric conductance

(1 A%s3/kg-m?).

U («)UNITS)p.2 ELEL p.2

D-6

International mile, length (1609.344 m).

U («)(UNITS) LEHE p2 HI

D-6

mi*2 International square mile, area

(2589988.11034 mz).

U («)(UNITS) HEEH p.2]

D-6

mil Mil, length (.0000254 m).
U («)(UNITS) LEHE p4

min Minute, time (60 s).

U ()(UNITS) 1]

MIN Minimum of two real numbers.

F p2

9-14

 Sets alarm repeat interval in minutes.

O (|)TME) ALEN FFT

 24-5

G-36 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

MINR Minimum machine-representable real 9-15

number (1.00000000000E—499).

F (MTH)FARTEp4 HIHE

Increments systemtime b one minute. 24-4

0O (®)@ME)HEIET "

Decrements system time by one minute. 24-4

O (©)@ME)ARLIET HIH

MINX Finds minimum column values in statistics 21-9

matrix in YDAT.

C (@EED 2
miUS US statute mile, length (160934721869 D-6

m).
U (9)@nTs) p3

miUSA2 US statute square mile, area D-6
(258998.47032 m?).
U (@)(ONTS) AREA p.2 ¥

mm Millimeter, length (.001 m). D-6

U (@)ONTS) LEHE

mmHg Millimeter of mercury (torr), pressure D-6

(133.322368421 kg/m-s2).
U (w)(UNTS)p2 PRE

ml Milliliter (cublc centimeter), volume D-6

(1 x 107% m?).

U (@@ONTS) WL p3L
HL Switches multi-line and smglellne display. 15-11

O («)(MODES)p.2: Hil

MOD Modulo. 9-14

F BHETZ p2: Mon

(e9)(MODES) Selects MODES menu. D-4

0 (S)@oDEs)
(»)(MODES) Selects MODES Customization menu. D-4

0 ([@)WoDEs)

Operation Index G-37

Name, Key,

or Label

Description, Type, and Keys Page

 Selects STAT MODL (statistics model)
menu.

O (WETA)p4 HopL

21-11

mol Mole, mass (1 mol).

U (@)ONS) A

p-3

Mpc Megaparsec, length

(3.08567818585 x 10?2 m).

U (9)(UNITS) LEHE p.2 HFL

D-6

mph Miles per hour, speed (.44704 m/s).

U («)UNITS) SFEEL HEH

D-6

MTH Selects MTH (math) menu.

0
D-3

Switches date display format.

0 (QEWE) SET HeD
24-2

Meters per second, speed (1 m/s).

U (e)(UNITS) SFEED Mo

D-6

Newton, force (1 kg-m/s?)

U (&)(UNITS) p.2 EiiF

D-6

Returns number of rows in YDAT.

C @EEDp5 HE
21-20

Negate.

A

Takes algebraic or matrix from stack,

prompts for name, stores named algebraic

in £Q, or named matrix in XDAT.

@ELD HEW
@EOWE) HEH

0 EGTAD HEH

18-5

17-4

21-3

NEWOB Converts object taken from a composite

object or variable into a new, independent

object.

C (x)(MEMORY) p.2 HEHWD

G-38 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

NEXT Ends a definite-loop structure 27-2

C (PRG) EBELHp2 H 27-6

HEHT Displays but does not execute next one or 25-24

two objectsin suspended program.

nmi Nautlcalmlle, length (1852 m). D-6

U («)UNITS) LEHE p.3 HH

HIHE Cancels alarm repeat interval and returns 24-5

to TIME ALRM menu.

O DWE) ALRI RET HOHE
NOT Logical or binary NOT.

0 MBI 26-3

F p4 HOT 14-5

NUM Returns character code offirst character in 4-14

string.

C (PRG)
—NUM Evaluates algebralc to number 8-4

C @EW)
HEED Rotates list of equations in FQ.

SOLVE H=ER 17-27

O ... FiHp2 HHEEG 18-27

NXT Selects next page of menu. 2-12

0 (nxT)
E= Selects PRG OBJ (program object) menu. D-3

O (PRG)©E:
OBJ— Returns object components to stack. 4-15

C e ’

oCT Sets octal base. 14-2

OFF Turns calculator ofi'. 1-4 O (=2)(eFF)

Operation Index G-39

Name, Key,

or Label

Description, Type, and Keys Page

OFF Turns calculator off.

C (PRG) ET p.3:

29-23

OLDPRT Remaps HP 48 character set to match

HP 82240A Infrared Printer.

C ®)ERNT
)p-2 L

E

32-2

Turns calculator on.

0 (M

1-4

OPENIO Opens serial port.

C («9)({/Q)p2 HFEHI

33-18

OR Logical or binary OR.

MTH ZEp4

F (PRG)
 14-5

26-3

ORDER Rearranges VAR menu in order specified

in list.

C (¢9)(MEMORY)

6-8

Puts selected equation at top of Equation

Catalog list.

(®)(SOVE) EAT p.2 OREGER

O (P)(ALGEBRA) p.2 ORDER

Puts selected statistical dataat top of

Statistics Catalog list.

0 @GEED p2

17-8

21-7

OVER Duplicates object in level 2 in level 1.

C S0k OVER

0z Ounce, mass (.028349523135 kg).

U (©)(UNITS) HAss OZ

ozfl US fluid ounce, volume

(2.95735295625 x 107° m3).

U @@WT) V0L p3 0ZFL

ozt Troy ounce, mass (031103475 kg).

U (@ENTS) HASSp2 02T

 D-6

G-40 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

ozUK UK fluid ounce, volume

(2.8413075 x 1075 m3).

U («)(uNITS) p3

D-6

P Poise, dynamic viscosity (.1 kg/m-s)

U (©)@UNTS)p3 41

D-6

Pa Pascal, pressure (1 kg/m-s?)

U («)NITS)p.2 EE

D-6

PARAMETRIC Selects PARAMETRIC plot type.

19-13

PARITY Selects one of 5 possible parity settings.

C B9

33-4

Selects MTH PARTS menu.

O (MTH)EHE

D-3

Returns list containing path to current

directory.

C @EEORY) F

pc Parsec, length (3.08567818585 x 10'° m).

U ()UNITS) LEHEp2

D-6

PDIM

Changes size of PICT.

Ep3iE

C @mp.3 FLt
Recalls size of PICT to stack.

p.3 @ -

O @(W] p3 () Elile

19-9

19-6

pdl Poundal, force (.138254954376 kg-m/s?).

U («)(UNITS) p.2 FhL

D-6

PERM Permutations.

F FEOE FEEHN

9-13

 PGDIR Purges specified directory.

C («)(MEMORY) p.3 ELlilE 7-6
Operation Index G-41

 (e)(PLOT) ELOTE

(e)(PLOT) CHT FLUIE

()(ALGEBRA) FLUTE

O (¢)(SOLVE) EHT FLOTE

Name, Key, Description, Type, and Keys Page

or Label

ph Phot, illuminance (795.774715459 cd/mz) D-6
U @@@ONTS) p3 s

PICK Copies object in level n to level 1. 3-19

C SIE RlICE

Copies object in current level to level 1. 3-11

PICT Returns PICT to level 1. 19-30

C (PRG)
PIXOFF Turns off specified pixel inPICT 19-25

C DERL p2 BFIdiRE

PIXON Turns on specified pixel in PICT. 19-25

C DEFL p2Fl:OH

PIX? Tests whether specified pixel in PICT is 19-26

on or off.

C . p2 FI

pk Peck, volume (. D-6

U (@@ .
PKT Sends KERMIT commands to a server. 33-18

C («w)(/Q)p2 FET
(«)(PLOT) |Selects PLOT menu. D-5

0 @EED
()(PLoT) |Selects PLOT PLOTR menu. D-5

0 @D
BELOT Makes the selected entry the current 21-6

statistical matrix and displays the third

page of the STAT menu.

O)ETAD ; .

Selects PLOT PLOTR menu. D-5

G-42 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

PMAX Sets upper-right plot coordinates.

C Must be typed in.

PMIN Sets lower-left plot coordinates.

C Must be typed in.

Switches between rectangular and polar 11-1
coordinates.

s
POLAR Selects POLAR plot type. 19-13

C ... FIiFE FillaE

POS Returns the position of substring in string 4-16

or object in list.

C (PRG): GEdp3 |

Fiile Selects UNITS POWR (power) menu. D-6

O («)(UNITS) p.2 Fiilik

PREDV Predicted value (same as PREDY).

C Must be typed in.

PREDX Returns predicted value for independent 21-12

variable, given value of dependent variable.

C (WETAD)p4EEEL:

PREDY Returns predicted value for dependent 21-12

variable, given value of independent

variable.

C (W)ETAT)p4 ERELY

Selects UNITS PRESS (pressure) menu. D-6

O («)(UNITS)p.2 ERES

(«®)(PREV) Selects previous page of menu. 2-12

0 @EW)
(®)(PREV) Selects first page of menu. 2-12

0 @EEW)
PRG Selects PRG (program) menu. D-3

0
Operation Index G-43

Name, Key,

or Label

Description, Type, and Keys Page

Selects PRINT menu.

O («)(PRINT)

D-4

PRLCD Prints display.

C @ERED PR
O Simultaneously press (MTH)

32-4

FEIE Selects MTH PROB (probability) menu.

0 PROE:

PROMPT Displays prompt string in status area and

halts program execution.

C TTRE p.2 IEEON

29-2

PRST Prints all objects on stack.

C &
o

32-4

PRSTC Prints all objects on stack in compact

format.

C («)(PRINT)]

32-4

PRVAR Prints name and contents of one or more

variables (including port names).

C (©@ERED |

32-4

PR1 Prints object in level 1.

C (2»)(PRINT)

32-4

psi Pounds per square inch, pressure

(6894.75729317 kg/m-s?).
U («)(UNITS) p.2 EE

D-6

pt Pint, volume (.000473176473 m?).

U ()UNITS)!: p.2

Selects PLOT PTYPE menu.

($)(eLoD)R
ce. = p.2

O (2)(PLoT) p.2

PURGE Purges one or more specified variables.

C (¥)(PURGE) 6-8

G-44 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

Purges one or more specified variables. If

only one untagged variable specified, saves

previous contents for recovery by

LASTARG.

O (9)(PURGE)

6-9

Purges selected equation.

@G
@EoD

0 (P)(ALGEBRA) CHT p2
Purges selected statistical matrix.

0 @EED CATp2 BU
Purges selected alarm.

(®@ME) CHT FURE
O (@)(TIME) EilEE

17-8

21-7

24-12

PUT Replaces element in array or list.

C (PRG) p4d Bil

4-16

PUTI Replaces element in array or list and

increments index.

C - p4F

4-16

PVARS Returns list of current backup objects and

libraries within a port.

C (@MEWORY) p-2 F¥A

34-17

PVIEW Displays PICT with specified pixel at

upper-left corner of display.

C (PRG) LiZEL EWIEN

19-28

PWRFIT Set curve-fitting model to Power.

C (W)ETAD P4, EliR

21-11

PX—C Converts pixel coordinates to user-unit

coordinates.

C (PRG)&}

i p2 ;:'::-4- I

19-9

 —Q Converts number to fractional equivalent.

C B 9-5

Operation Index G-45

Name, Key,

or Label

Description, Type, and Keys Page

QUAD Finds solutions of first or second order

polynomial.

C ()(LSERRA) BUAD

22-3

QUOTE Returns argument expression unevaluated.

F (S)(ALGEBRA) p2 BT
8-2

qt Quart, volume (.000946352946 m)

U @@NTS) oL p2 61
D-6

Calculates and compares quotlents of

number and number/7.

C_(EEGERN) p2 +Er

9-5

Radian, plane angle (.1591549343092).

U (9)@UNITS)p.3 HHEL F

Roentgen, radiation exposure

(.000258 A-s/kg).
U @@ONTS)p3 FAL p2 &

D-6

°R Degrees Rankine, temperature.

U (€)ONTS) p.2 TEHE R
D-6

rad Rad, absorbed dose (.01 m?/s?).

U (@Q@NTS)p3 RAE RAD

D-6

RAD Sets Radians mode.

C_(«)MoDES)p-3 AL

9-8

RAD Switches Radians and Degrees mode.

0 @ED)
9-8

Selects UNITS RAD (radiation) menu.

O (©)([UNITS)p.3 EAD

RAND Returns random number.

C FROE RAHD
9-13

RATIO Prefix form of / used internally by

EquationWriter application.

F Must be typed in.
G-46 Operation Index

Name, Key,

or Label
Description, Type, and Keys Page

RCEQ Returns equation in EQ to level 1.

©EOD@
(EELVE) @) &FLOIE ()

C E@)FoDE)

17-11

RCL Recalls object stored in specified variable

to stack.

¢ @ED

6-5

RCL Inserts algebraic from level 1 into

EquationWriter equation.

0 @ED

16-21

RCLALARM Recalls specified alarm from system alarm

list.

C ()OME) HLEMp.2

24-16

RCLF Returns binary integer representing states

of system flags.

C (@»)(MODES)p.2 ELLE

28-4

RCLKEYS Returns list of current user-key

assignments.

C (@)MODES) RELE

15-10

RCLMENU Returns menu number of current menu.

C (»)(MODES)p.2 ELLHM

29-19

RCLX Recalls current statistical matrix in

YDAT.

C QETAD () &

21-5

RCWS Recalls binary 1nteger WOI'dSlze

C SaaE

14-2

rd Rod, length (5.0292100584m)
U (9)(UNITS) LEHE p3 REL

D-6

RDM Redimensions array.
C (MTH) HMATE ROH

20-17

 RDZ Sets random number seed.

C (MTH)

 9-13
Operation Index G-47

FLOTE p2 ()

O @D2@

Name, Key, Description, Type, and Keys Page

or Label

RE Returns real part of complex number or 11-11

array.

F (mTH 2 RE

RECN Waits for stack-specified data from remote 33-18

source running Kermit software.

C («\)0/9)p2

RECV Waits for sender-specified data from 33-17

remote source running Kermit software.

rem Rem, dose equivalent (.01 m?/s?). D-6

U («)@UnNTS)p.3 EARL REM

REPEAT Begins loop clause. 27-12

C BRCH p.2 BERER
REPL Replaces portion of object with another

like object.

PRG) {iEl p3 FEFL 4-17

C DEFL p3 REEL 19-29

TRERE Replaces portion of PICT with level-1 19-27

graphics object.

DEEN p3 EFERL

... HuTop3 EEFL

O ()(GRAPH) p-3 REFL
Replaces specified subexpression with 16-22

algebraic from stack.

0 (9)(EWATION) (@) REFL
RES Sets spacmg between plotted points. 19-4

C @mp.2 RESR

() EES Recalls spacing to stack. 19-5

G-48 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

BEEET Resets plot parameters in PPAR in the 18-16

current directory to their default states

and erases and resizes PICT

 0 [E)[PLOT)p.2 I

RESTORE Replaces HOME dlrectory with backup 34-19

copy.

C (@MEWORY) p-3

Displays statistical data in YDAT.

0 (@EED) @EVED) 21-5
Displays current equation and plot

parameters.

@EED) 18-16

E)m@m

 ... BuTo@m

0 (S)ERAPM) ()REVEW) 1821
Displays current equation.

0 @EWE)@EEED 17-11
SFLD@EEED 187

Displays current equation and values of 17-13

SOLVR variables.

O ... Z20LY¥E (9)(REVIEW)

Displays unit names corresponding to 13-6

selected menu.

0 QT .. @)EEVEW
Displays pending alarm. 24-5

0 (@)(TME) (@)REVEEW)
In other menus: Lists operation names and 6-7

types.

0 REEEW)

 RL Rotates left by one bit. 14-6

C_ @)B

Operation Index G-49

 menu.0 @EWE) # TBkt

Name, Key, Description, Type, and Keys Page

or Label

RLB Rotates left by one byte 14-6

C ERAZE p.2° :

RND Rounds fractional part of number or name. 9-15

F B Z p4 EHE

RNRM Calculates row norm of array. 20-17

C HEHTE p2 E i

ROLL “Rolls up” n levels of the stack, level n+1 3-19

to level 1.

“Rolls up” stack, pointer level to level 1. 3-11

ROLLD “Rolls down” n levels of the stack, level 2 3-19

to level n.

“Rolls down” stack, level 1 to pointer level. 3-11

O ... t=lk LB

ROOT Solves for unknown variable in equation. 17-11

C (S)EoWwE) ROOT
Moves graphics cursor to intersection of 18-26

function plot and z-axis, displays value of

root, returns value to stack.

O (Q)(GRAPH) FiH E

ROT Moves object in level 3 to level 1. 3-19

Inserts row of zeros at current row. 20-7

O (@)(MATRIX) p.2 R

Deletes current row. 20-7

O (2)MATRIX) p.2 =Riild

R Selects TIME ALRM RPT (alarm repeat) D-5

G-50 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

RR Rotates right by one b1t 14-6

C (MTH) FE

RRB Rotates right by one byte. 14-6

C BRSEp.2
RSD Calculates correction to solution of system 20-18

Activates RULES transformatlon menu for 22-12

specified object.

O (Q)(EQUATION) (@) ELLES

R—B Real-to-binary conversion. 14-5

C (MTH) ERZE p2 E=E

R—C Real-to-complex conversion. 4-17

C (PRG) 0GBpg2 E=D

R—D Radians-to-degrees conversion. 9-11

F (MTH)HELTE =y

Selects Polar/Cyhndrlcal mode. 12-3

MTH)

0 (9)(MODES) p3 R4
= Selects Polar/Spherical mode. 12-3

ST A i

O (&) (MODES) p3 |
s Second, time (1 s). D-6

U («)UNITS) TiHE @ =

S Siemens, electric conductance D-6

(1 A%.s3/kg-m?).
U (&)ONTS) p2 El p2i

SAME Tests two objects for equality. 26-2

C (PRG) TE&T =RME

sb Stilb, luminance (10000 cd/m2) D-6 U («)(UNITS) p.3 L1EH

Operation Index G-51

Name, Key,

or Label

Description, Type, and Keys Page

SBRK Sends serial break.

C ©JWQ)p3.

33-20

SCALE

)

Sets scale of PLOT axes.

C @EEDp2!
Recalls scale to stack.

‘ p2@‘

0 (E)(PLOT]pQ k=

18-10

18-16

SCATRPLOT Draws scatter plot of statistical data in

YDAT.

C (@GTAD p3 GEATE

21-19

SCATTER Selects SCATTER plot type.

C . p2
19-13

SCI Selects SCIentlfic display mode.

C @EODES)

2-15

SCLX Autoscales data in XDAT for scatter plot.

C Must be typed in.

SCONJ Conjugates contents of variable.

C ()(MEMORY) p.2 SiiiH

6-10

SDEV Calculates standard deviation.

C @(fim
p2 = DZE,-"X'T

21-9

i I S
T Sets alarm repeat interval to n seconds.

O){WE) ALRN~RET

24-5

Increments current time by 1 second

O (w(@ME)}

24-4

Decrements current time by 1 second.

0)EWE) AL

24-4

 SEND Sends contents of variable to another

device.

C QW)

 33-17

G-52 Operation Index

Name, Key,

or Label
Description, Type, and Keys Page

SERVER Puts HP 48 into Kermit Server mode.

)
C ®Wo)

33-18

Selects TIME SET menu.

0 @M

Sets alarm.

O («)@ME):

Selects I/O SETUP menu.

O (/O] =ETUF

SF Sets specified flag.

TEET p.

C (@)MODES) p2 5F

28-2

SHOW Reconstructs expression to resolve implicit

variable name.

C («)(ALGEBRA):

22-7

SIGN Returns sign of number.

F (MTH)!

9-15

SIN Sine.

A GH)
9-9

SINH Hyperbolic sine.

A HYE

SINV Replaces contents of variable with its

inverse.

C ()(MEMORY) p.2

SIZE Finds dimensions of list, array, string,

algebraic object, or graphics object.

PRG): iiEil p3 =iF

C (PRG) p-

4-17

19-28
 TSEaE Moves cursor left to next logical break.

@ED *:
O ... EBlT #5Eip 3-8

Operation Index G-53

Name, Key, Description, Type, and Keys Page

or Label

Moves cursor right to next logical break.

SL Shifts left by one bit.

C BASE p3 &L

14-6

SLB Shifts left by one byte.

C (WMTH) BASEp.3 %
14-6

Calculates and displays slope of function

at cursor position, returns slope to stack.

O ... EiH

18-26

slug Slug, mass (14.5939029372kg)

U («)(UNITS) His .

D-6

SNEG Negates contents of variable.

C (»)(MEMORY) p.

6-10

@G

@)G

Selects SOLVE menu.

0 @ED)
Selects SOLVR menu.

O (»)(SoLvE)

17-11

17-17

Selects SOLVR menu.

(S)(EOWE) SOLYE
(\)(SOLVE) ©HT EOLYE

@G
@)(PLoT)

O (»)(ALGEBRA):

17-17

SPC Types a blank space in command line.

O (B9
3-3

Selects UNITS SPEED menu.

 Returns square of level 1 object.

A @) 9-3

G-54 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

SR Shifts right by one bit.

C EHZE p3 2R

14-6

ST Steradian, solid angle

(7.95774715459 x 1072).

U («)(UNTS)p.3 HHEL

D-6

SRB Shifts rightbyonebyte

C (MTH) BHEE p3 EEE

14-6

SRECV Reads spec1fiednumber of characters from

I/0 port.

C («(/0)p.3sRECY

33-20

Slnglesteps through suspended program.

25-24

L
T

L
E
L o v Slngle-stepsthrough suspended program

and its subroutines.

O (PRG)iLTHL=214

25-24

st Stere, volume (1 m3). D-6

Stokes, kinematic viscosity (.0001 m?/s)

U («)UnNTS)p.3 Hizg 51

Begmsdefinite loop

TypesSTART NEXT.

O (PRG) EBRELH(VYEIRET

Types START STEP.

O (PRG) E ()

27-2

27-3

27-5

Selects STAT (statlstlcs)menu.

0 (@GEED
Selects page 2 of STAT menu.

0 @)GETAED
 Selects Standard display mode.

C (w)(MODES) &1k
Operation Index G-55

Name, Key,

or Label

Description, Type, and Keys Page

STEP Ends definite loop.

C H p2
27-4

27-8

STEQ Stores level 1 equation in FQ.

 FEHE@M(Q[
C @EOVD)

17-5

STIME Sets serial transmit/receive timeout.

C W/O)p3ETIHE

33-20

SelectsPRG STK (program stack) menu.

D-3

Sw1tchesLast Stack recovery on and off.

0 (@EDE) p2

15-11

Selects Interactive Stack.

@ED:

0 @EATRX) p-2

3-10

20-7

Copies selected equation to level 1.

... SHHT p2 BEIE

0 (@)(ALCERRR) p2 FETE
Copies selected matrix to level 1.

O (@GTAD BAT H5TE
Copies selected alarm to level 1.

@WD)
0 @D

Copies selected matrlx element to level 1.

O (EPIMATRIX)p.2 *:21K

17-8

21-7

24-14

20-7

STO Stores object in variable.

¢ @ 6-2

G-56 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

STO Stores object in variable and saves 6-9

previous contents of variable for recovery

by LASTARG.

O (s10

Returns EquationWriter equation or PICT 16-3

to stack.

0O 18-21

STOALARM Stores level 1 alarm in system alarm list. 24-16

C (&)ME) HLEMp2sT0RL

STOF Sets state of system and user flags. 28-4

C (»)(MODES)p.2 HTUF

STOKEYS Makes multiple user-key assignments. 15-6

C (@)(MoDES) ETOK
STO+ Adds contents of specified variable and 6-10

specified number or other object.

C (»)(MEMORY) &Tii+

STO- Calculates difference between contents of 6-10

specified variable and specified number or

other object.

¢ @)WEMSRY)
STO=* Multiplies contents of specified variable 6-10

and specified number or other object.

STO/ Calculates quotient of contents of specified 6-10
variable and specified number or other

object.

STOX Stores current statistics matrix in XDAT. 21-5

¢ (QGEED
STR— Converts string to component objects. C Must be typed in.

Operation Index G-57

Name, Key,

or Label

Description, Type, and Keys

—STR Converts object 1nto string.

C (FrRG)
STWS

Sets binary mtegerWordsme

SUB Extracts specified portion of list or string,

or graphics object.

C (PRQ) LEFLp.3 EUE

 4-18

19-29

ST Returns specified portion of PICT to

stack.

 0 @(GRAPH]p3

19-27

Returns specified subexpression to stack.

0 (¥(EQUATION)@

22-12

Sv Sievert, dose equivalent (.01 m2/s?)

U (9)@ONTS)p.3. EAL

D-6

SWAP Exchanges objects in levels 1 and 2

C_ ()(Ewar)
3-4

=0 Switches Symbolic and Numerical Results

mode.

O (&)(MODES): =i

9-16

SYSEVAL Evaluates system object. Use only as

specified by HP applications.

C Must be typed in.

Metric ton, mass (1000 kg).

U («)(UNITS): . p.2
 Tesla, magnetic flux (1 kg/AsZ)

U («)QUNITS) p.21

G-58 Operation Index

Namne, Key, Description, Type, and Keys Page

or Label

Move term left.

0 (@)(EQUATION) @ FLE:
Executes: #7 until no change in

subexpress1on.
0 ()(EQUATION) @) §

22-14

22-18

Move term right.

0 (©)(EIUATION) () U
Executes: T# until no change in
subexpressmn.

O (w)(EQUATION) (W RULES() T+

22-14

22-18

%T Returns percent fraction that level 1 is of

level 2.

F (MTH) FHRTE p2

9-7

—TAG Combines objects in levels 1 and 2 to

create tagged object.

C (PRG)

4-18

TAN Tangent.

A (TAN)

TANH Hyperbolic tangent.

A HiP THHEH

TAYLR Calculates Taylor’s polynomial.

C (SD(ELGERRA) THYLR

thsp Tablespoon, volume

(1.47867647813 x 1075 m3).

U (&)NITS) p3 TEZF

Selects UNITS TEMP (temperature)
menu.

O (w)@nNITS)p.2 TEHE

Selects PRG TEST (program test) menu.

D-3

 Dlsplays stackdlsplay

C (PRG) iz pA4 frEE

 19-29
Operation Index G-59

Name, Key,

or Label

Description, Type, and Keys Page

THEN Begins true clause.

C (PRG) EBRELH p.2 [HEH

26-5

therm EEC therm, energy (105506000 kg-m?/s*)

U («)(UNITS)p.2. p.2 THERE

D-6

TICKS Returns system time as binary integer in

units of clock ticks.

C @ME)p2 Piiks

24-19

TIME Returns current time as a number.

C @ME)p2 TIHE

24-19

@D

@)THE)

Selects TIME menu.

0 @D
Selects Alarm Catalog.

O (=»)(TME)

Selects UNITS TIME menu.

0 (@)@NITS) TEHE

—TIME Sets system time.

C (Q)OME) =ET=T1IH

24-2

STIHME Sets alarm time.

O (®)(ME) Hi

24-5

TLINE Switches pixels on line defined by

coordinates in levels 1 and 2.

C DEFL TLINE

19-25

Switches pixels on and off on line between

mark and cursor.

. p2

| p2!

O @GP p2 TLIHE

19-23

TMENU Displayslist-defined menu but does not

change contents of C’ST.

C @)p.

29-18

ton Short ton, mass (90718474 kg)

U («)(UNTS) HASS p.2 TOH D-6

G-60 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

tonUK Long (UK) ton, mass (1016.0469088 kg).

U @ENms) p-2 ikl

D-6

torr Torr (mmHg), pressure
(133.322368421 kg/ms?).

U (QUNITS)p.2 ERESE TUE

D-6

TOT Sums each column of matrix in EDAT.

C @GEEDp2 TOT
21-9

TRANSIO Selects one of three character translation

settings.

C @@0)ZET!

33-4

Expands trigonometric and hyperbolic

functions of sums and differences.

O («)(EQUATION) (W ELILEE TEGR=

22-17

Replace exponential with trigonometric

functions.

0 (@)(EQUATON) @ RULES #TRE

22-17

Transposes matrix.

C (MTH) HHTIE TEH

20-17

TRNC Truncates (rounds down) number in level
2 as specified in level 1.

F (MTH)EBEIEZ pd TEHD

9-15

TRUTH Selects TRUTH plot type

C ... EIvPE

19-13

tsp Teaspoon, Volume

(492892159375X10_6 3)

U @@NT) ¥OL p3

D-6

TSTR Converts date and time in number form to

string form.

C (@{ME) p-2 TETE

24-17

 TVARS Returns variables containing specified

object type.

C @WMEWORY) p2 THARS 4-19

Operation Index G-61

Name, Key, Description, Type, and Keys Page

or Label

TYPE Returns type-number of argument object. 4-19

PRG) Bl p.2 THFE

C (PRG) TEET E
u Unified atomic mass (1.66057 x 10727 kg). D-6

U (@)ONTS) HASEp3

UBASE Converts unit object to SI base units. 13-11
F (o)(ONITS) UERSE

UFACT Factors specified compound unit. 13-13

C (P)(UNITS) UERCT
—UNIT Combines objects in levels 1 and 2 to 4-18

create unit object.

PRG) LB p.2 #lHIT

C ()(UNITS) #UHIT
(«)(UNITS) |Selects UNITS Catalog menu. D-6

0 @O
()UNITS) |Selects UNITS Command menu. D-6

0 @OUTS)
UNTIL Begins test clause 27-10

C (PRG) .
UPDIR Makes parent directory the current 7-5

directory.

¢ @@
USR Turns User mode on and off. 15-5

0 @O
UTPC Returns probability that chi-square 21-21

random variable is greater than z.

C (MTH) EFOE p.2 UTFD

UTPF Returns probability that Snedecor’s F 21-21

random variable is greater than z.

C FEOE p.2 UTEE

G-62 Operation Index

Name, Key,

or Label
Description, Type, and Keys Page

UTPN Returns probability that normal random

variable is greater than z.

C_@mm) Er

21-21

UTPT Returns probabilitythat Student’s t

random variable is greater than z.

C (MTH) EREOE p.2 UIET

21-21

UVAL Returns scalar of specified unit object.

P (@)ONTS) LAl
13-22

Volt, electrical potential (1 kg-m?/A-s3).

U (@)UNTS)p.2 ELEL

D-6

VAR Calculates variance of statistical data

columns in XDAT.

C Must be typed in.

21-9

VAR Selects VAR (variables) menu.

0 @ER)
6-3

Makes the selected entry the current

statistical matrix and displays the second

page of the STAT menu.

O (W)(STAT) fHET 1=y

21-6

Makes the selected entry the current

statistical matrix and displays the fourth

page of the STAT menu.

21-6

VARS Returns list of variables in current

directory.

C (@DWEWORY) ¥RRE

I Switches vector and array modes.

O ()(MATRIX)

20-7

 HErTE Selects MTHVECTR (math vector) menu.

O (WTM ¥ECTR

 D-3
Operation Index G-63

Name, Key,

or Label

Description, Type, and Keys Page

HIEY

@) WIEH

Copies object in current level into

appropriate environment for viewing.

@) WIEW

Displays selected matrix.

0 (@GETAD) CAT
Displays selected alarm.

0 @D
Copies object stored in variable in the

current level into appropriate environment

for viewin

O

3-11

17-8

21-7

24-12

3-11

Selects UNITS VISC (v1scos1ty) menu.

0 @ENTS) p3#I5E

D-6

If argument is name, copies contents of

associated variable into command line for

editing. If argument is a stack level

number, copies object in that level into

command line for editing.

0 @EEM

3-7

i il=ll i:ii_ i
Selects UNITS VOL (volume) menu.

0 @)UNTS) Wik
D-6

VTYPE Returns type number of object stored in

local or global name.

C (PRG) HE1Hp.2!

4-19

—V2 Combines two real numbers into a 2-D

vector or complex number.

C MELTRE p2. =iz 12-14

G-64 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

—V3 Combines three real numbers into 3-D

vector.

C (MTH) 1E p.2

12-14

V— Separates 2- or 3-element vector according
to current angle mode.

C MECIREp2 s

12-14

Watt, power (1 kg-m2/33)

@ENTS) p2
U @

p2 EEEE W

D-6

*W Adjusts horizontal plot scale.

C Ky

19-6

WAIT Halts program execution for specified

number of seconds or until key pressed.

C (PRG) ETRL p.2 WAIT

29-16

Wb Weber, magnetic flux (1 kg-m?/A-s?).

U («(UNTS)p.2 ELEEC p2HE

Sets alarm repeat interval to n weeks.

O (@(TME) HLEH EET WEEE
24-5

Begins indefinite loop.

c
Types WHILE REPEAT EN

0 EREH (Q)UHILE

27-12

27-13

Increases column width and decrements

number of columns.

0 @WATRR) HIb*

20-7

Decreases column width and increments

number of columns.

O (P)(MATRIX) #MIL

20-7

 Selects z-axis zoom.

O ... ZioH 18-22

Operation Index G-65

Name, Key,

or Label

Description, Type, and Keys Page

¥X Returns sum of data in independent

column in YDAT.

C_@EEDp5 B

21-20

EXA2 Returns sum of squares of data in

independent column in XDAT.

C @ETEDp5

21-20

Selects z-axis zoom with autoscaling.

O ... Zige #elio

18-22

Specifies independent-variable column in

matrix in YDAT.

C (QETADPp3 HLOL

Recalls independent-variable column

number to stack.

21-11

21-11

XMIT Without Kermit protocol, performs serial

send of string.

C «@/0)p.3 HHIT

33-20

XOR Logical or binary exclusive OR.

MTH) EBHESEE p4d

F

14-6

26-3

XPON Returns exponent of number.

F FHETE p.3 HEOH

9-15

XRNG

@) =FHG

Specifies z-axis display range.

FLOTE HEHGO

C ()(PLOT) HEHEG

Recalls z-axis display range to stack.

PLUTE (o) sEHE

O (@)(PLOT) ()HEHE

18-9

18-15

XROOT Returns level 1 root of the real number in

level 2.

A @@

 Selects z- and y-axis zoom.

0

 18-22

G-66 Operation Index

Name, Key,

or Label

Description, Type, and Keys Page

S Selects Rectangular mode.

YELTE

0 @ p3

12-3

YX*Y Returns sum of products of data in

independent and dependent columns in

3DAT.

C (WETAD) PS5

21-20

Selects y-axis zoom.

O ... ZiiE o

18-22

XY Returns sum of data in dependent column

in YDAT.

C (WETAD PS5

21-20

YYN2 Returns sum of squares ofdatain

dependent column in XDAT.

C (H)(sTAD) PS5

21-20

YCOL

@) HooL

Selects indicated column of ¥DAT as

dependent-variable column for two-

varlable statistics.

C (WETADp.3 ¥l

Recalls dependent-variable column number

to stack.

0 @GETADp.3 (@) ¥oil

21-11

21-11

yd International yard, length (.9144 m).

U («)(UNITS) LE}

D-6

yd*2 Square yard, area (.83612736 m)

U («)(UNITS) HEEH

D-6

yd"3 Cubic yard, volume (.764554857984 m?).

U («)UNTS) ¥iob shes
 yr Year, time (31556925.9747 s

U (©)(UNITS) TIHME

Operation Index G-67

Name, Key,

or Label

Description, Type, and Keys Page

YRNG

@)‘RHE

Specifies y-axis display range.

... BLUTE YEHE

C (p)(PLOT) ¥EHE

Recalls y-axis display range to stack.

HLOHN

0 @CD(E®)

18-9

18-16

Zooms in to box whose opposite corners

are defined by mark and cursor.

TEAEN meEn

... tEuTO

0 (@(ERAPH)
Zooms to box, autoscaling yaxis.

18-34

18-34

=

18-22

Adds two objects.

A @)

4-12

9-3

If cursor is on a number, changes sign of

mantissa or exponent of that number.

Otherwise, acts as NEG key.

C &5

2-7

Switches cursor style between

super-imposing and inverting cross.

DEEH p3 #=

WEETE p.3 DN

18-20

 Add and subtract 1.

0 (S)(EQUATION) (@) RULE

 22-14

G-68 Operation Index

Description, Type, and Keys

Subtracts two objects.

A Q@

Double negate and distribute.

O (¥)(EQUATION) (W) RLLEE =13

Multiplies two objects.

A

Multiply by 1.

O (¥)(EQUATION) (W) F

Divides two objects.

A @®

Divide by 1.

O (®)(EQUATION) @ E

22-13

Raises number to specified power.

A D
9-3

Raise to power 1.

O (Q)(EQUATION) (W ELILEE 1

22-13

“Less-than” comparison.

PRG) TEZTp2 &

F @=20@)

26-2

I
N “Less-than-or-equal” comparison.

TEST p2 =

F @®)

26-2

“Greater-than” comparison.

TEST p2 i
F 9@

26-2

v
V “Greater-than-or-equal” comparison.

TEET p2 =

F @)

26-2

 “Equals” function.

A BE) 8-6
Operation Index G-69

Name, Key, Description, Type, and Keys Page

or Label

== “Equality” comparison. 26-2

TEETp2i ==

F @@
#+ “Not-equal” comparison. 26-2

TEZT p2

F @@
(@) Turns alpha-entry mode on and off. 2-8

0 @
Switches implicit parentheses on and off. 16-11

0 (@)EUATON) @ED
G Returns equation to stack as string. 16-4

0 (WEQUATION) ()™
° Degree, plane angle D-6

(2.777TT7TTTT78 x 1073)

U «)UNTS)p.3.
! Factorial. 9-13

MTH

F @@
f Integral. 23-11

A @O
0 Derivative. 23-1

A @O
Q Ohm, electric resistance (1 kg-m?/A%-s3). D-6

U (@@nNTS)p2 ELEC @
% Returns level 2 percent of level 1. 9-7

A (MTH)EHETZ p.2

T Symbolic constant = (3.14159265359). 9-15

F @
X Summation. 23-5

F)

G-70 Operation Index

Name, Key,

or Label

Description, Type, and Keys

X4+ Adds data point to matrix in YDAT.

C @ GEED

y— Subtracts data point from matrix in

YDAT.

C BEAD)®)

Returns square root of level-1 object.

A @)
9-3

Appends local name, or variable of

integration, and its value to evaluated

expression.

F (9)(ALGEBRA) p.2

22-26

Double-invert and distribute.

0 ()(EQUATON)@ RULES 1767
22-16

Switches between 12-hour and 24-hour

display formats.

O @ @WE) SET teszd

24-2

Parenthesize neighbors.

0 (@)ETATDN)@

22-15

Expand-subexpression-left.

0 (@)(EWATOM@ Fiil
Executes:i©% until no change in

subexpression.

0 (9)(EQUATION) () RULES(@)

22-15

22-18

Distribute prefix function.

0 ()(EaUATON) @) |

22-15

Expand-subexpression-right.

0 ([@EUEDN)@ !
Executes | : until no change in

subexpression.

O (+)(EQUATION) (@) RULES@)

22-15

22-18

 Commute arguments.

O (¥))(EQUATION) (W) ELIL

 22-15
Operation Index G-71

 one object.

In catalogs: Moves pointer up one entry.

0@

Name, Key, Description, Type, and Keys Page

or Label

- Creates local variables. 25-13

C
(@) Left shift key. 2-5

0 @)
=) Right shift key. 2-5

O ()
@ With no command line, drops object in 3-5

level 1.

In command line, deletes character to left 2-7

of cursor.

O ®
Deletes contents of current stack level. 3-12
0 ®

&) With no or one-line command line: 3-10

Activates Interactive Stack.

In multi-line command line: Moves cursor 3-16

up one line.

In Interactive Stack: Moves pointer up one 3-12

level.

In Graphics environment: Moves cursor up 18-20

one pixel.

In scrolling mode: Moves window up one 16-3

pixel.

In MatrixWriter application: Moves cell 20-6

CUrsor up one row.

In EquationWriter application: Starts 16-3

numerator.

In Selection environment: Moves cursor up 22-11

G-72 Operation Index

Name, Key, Description, Type, and Keys Page
or Label

Q@) In catalogs: Moves pointer up one page.

In Interactive Stack: Moves pointer up 4 3-12

levels.

0 W@
=)@ In multi-line command line: Moves cursor 3-16

to top line.

In Interactive Stack: Moves pointer to 3-12

highest numbered stack level.

In Graphics environment: Moves cursor to 18-20

top edge of PICT.

In MatrixWriter application: Moves cell 20-6

cursor to top element of current column.

In Selection environment: Moves cursor to 22-12

topmost object.

In catalogs: Moves pointer to top of list.

0 @@
™ With no or one-line command line: 3-7

Activates “best” editor.

In multi-line command line: Moves cursor 3-16

down one line.

In Interactive Stack: Moves pointer down 3-12

one level.

In Graphics environment: Moves cursor 18-20

down one pixel.

In scrolling mode: Moves window down 16-3

one pixel.

In MatrixWriter application: Moves cell 20-6

cursor down one row.

In EquationWriter application: Ends 16-3

subexpression.

In Selection environment: Moves cursor 22-11 down one object.

In catalogs: Moves pointer down one entry.

O ™

Operation Index G-73

 one object left.

0 9

Name, Key, Description, Type, and Keys Page

or Label

@™ In catalogs: Moves pointer down page.

In Interactive Stack: Moves pointer down 3-12

4 levels.

0 @™
=)™ In multi-line command line: Moves cursor 3-16

to bottom line.

In Interactive Stack: Moves pointer to 3-12

level 1.

In Graphics environment: Moves cursor to 18-20

bottom edge of PICT.

In MatrixWriter application: Moves cell 20-6

cursor to last element of current column.

In EquationWriter application: Ends all 16-3

subexpressions.

In Selection environment: Moves cursor to 22-12

bottommost object.

In catalogs: Moves pointer to end of list.

0 @™
« With no command line: Enter Graphics 18-19

environment.

In command line: Moves cursor one 3-16

character left.

In Graphics environment: Moves cursor 18-20

one pixel left.

In scrolling mode: Moves window left one 16-3

pixel.

In MatrixWriter application: Moves cell 20-6

cursor one column left.

In EquationWriter application: Activates 22-11

Selection environment.

In Selection environment: Moves cursor 22-11

G-74 Operation Index

Name, Key, Description, Type, and Keys Page

or Label

) In EquationWriter application and 16-3

(()(GRAPH)) Graphics environments: Invokes scrolling 18-20
mode.

0)W) ()(GRAPH))
)W In command line: Moves cursor to start of 3-16

current line.

In Graphics environment: Moves cursor to 18-20

left edge of PICT.

In MatrixWriter application: Moves cell 20-6

cursor to first element of current row.

In Selection environment: Moves cursor to 22-12

leftmost object.

0 @
Q) With no command line: Exchanges the 3-4

objects in levels 1 and 2.

In command line: Moves cursor one 3-16

character right.

In Graphics environment: Moves cursor 18-20

one pixel right.

In scrolling mode: Moves window right one 16-3

pixel.

In MatrixWriter application: Moves cell 20-6

cursor one column right.

In EquationWriter application: Ends 16-3

subexpression.

In Selection environment: Moves cursor 22-11

one object right.

O ®

Operation Index G-75

 rightmost object.

0 @®

Name, Key, Description, Type, and Keys Page

or Label

) In command line: Moves cursor to end of 3-16

current line.

In Graphics environment: Moves cursor to 18-20

right edge of PICT.

In MatrixWriter application: Moves cell 20-6

cursor to last element of current row.

In EquationWriter application: Ends all 16-3

subexpressions.

In Selection environment: Moves cursor to 22-12

G-76 Operation Index

Index

Index

Special characters

&1 &3 annunciators, 2-3, 2-5

d annunciator, 1-11, 2-3, 2-7

(<) annunciator, 1-49, 2-3,

24-7, A-3, A-6

X annunciator, 2-3

® annunciator, 2-3

1USE annunciator, 2-3, 15-5

<7 annunciator, 11-2, 12-3

Fs« annunciator, 11-2, 12-3

% cursor, 3-8

E cursor, 3-8

character, 3-15, 25-12

£ character

complex number separator,

4-2, 11-2, 11-6

vector separator, 12-3

= character, 1-22, 8-6, 17-3,

18-4

% wildcard, 22-24, 34-17

.. character, A-4

% printed, 32-2

delimiter, 4-3, 14-1

delimiter, 4-9, 13-2

' delimiters

algebraics, 1-20, 1-25, 4-6,

8-1

names, 4-5

' delimiters, 4-7

+ delimiters, 4-2

1 delimiters, 4-4

£ dehimiters, 4-7

e
,

% % delimiters, 4-6

i delimiters, 4-8

C# delimiter, 4-7

T

accuracy of, 9-9

entering, 9-9

in fraction conversions, 9-5

numeric value, 1-20, 9-9, A-4

symbolic constant, 1-20, 9-9,

9-15, A-4

Y. See summations

YDAT

clearing, 21-2

reserved variable, 6-2

size, 21-20

statistical data, 21-2

with Plot, 19-22
YPAR

A

reserved variable, 6-2

statistical parameters, 21-23

with Plot, 19-22

See where function

absolute value, 9-14, 11-10

accented characters, 2-9

accuracy

of w, 9-9

of integrals, 23-15, 23-18

of linear solution, 20-18

of trig functions, 9-9

Index-1

Index

acknowledging alarms, 1-49,

24-7

ADJST menu, 24-4

Alarm Catalog, 24-12, 24-14

alarms

actions, 24-9, 24-11

ALRMDAT, 24-13

ALRM menu, 24-11

annunciator, 1-49, 24-7

appointment type, 24-5

catalog of, 24-12, 24-14

controlling beeper, 24-8

control type, 24-5, 24-9

copying to stack, 24-14, 24-16

deleting repeating, 24-9

display options, 24-14

editing, 24-12

evaluating objects, 24-9,

24-11

execution actions, 24-b

index number, 24-9, 24-16

in programs, 24-15

no response needed, 24-9

not responding, 24-7

past due, 24-7

purging, 24-12, 24-16

recalling action objects, 24-11

repeating, 24-5, 24-8, 24-9

responding to, 1-49, 24-7

reviewing, 24-5, 24-12

saving, 24-8

setting, 1-49, 24-5, 24-9,

24-16

stopping repeating, 24-10

TIME menu, 24-11

types, 24-5

ALG annunciator, 2-3, 25-11

algebra

collecting terms, 1-28, 22-9

expanding terms, 1-28, 22-9

general solutions, 22-5

Index-2

principal solutions, 22-5

quadratic equations, 22-3

rearranging equations, 1-28,

22-8, 22-11, 22-23
RULES menu, 22-13
Rules transformations, 22-11

showing hidden variables,

22-7
symbolic solutions, 1-22, 22-1

user-defined transformations,

22-23
where function, 22-25

Algebraic-entry mode, 3-16

algebraic objects. See algebraics

Algebraic/Program-entry mode,
3-17, 25-11, 29-8

algebraics. See equations,

expressions

action in programs, 25-2

array elements in, 20-15

as graphics objects, 16-3

as strings, 16-4

compared to programs, 8-2

comparing, 26-3

complex numbers in, 11-7

conditional testing, 26-6

delimiters, 1-20, 1-25, 4-6,

8-1
derivatives, 23-1, 23-3

disassembling, 4-15

editing in command line,

1-26, 16-17
editing in EquationWriter,

16-16, 16-23
editing in programs, 25-11

editing subexpressions, 16-18

editing with backspace, 16-16

entering, 1-20, 1-23, 1-25,

8-1, 16-5
entry modes, 3-16, 3-17

evaluating, 1-20, 1-28, 4-20,

8-2, 8-3, 8-5

evaluating one step, 8-3

from stack operations, 1-26,

9-18

functions in, 9-1

general solutions, 22-5

graphics objects from, 19-28

in local variable structure,

1-42, 25-3, 25-13

inserting stack objects, 16-21

integrating numerically, 23-14

integrating symbolically,

23-10

numeric results, 8-3, 8-4

numeric values of, 1-28, 8-2

object type number, 4-19

plotting, 18-1

precedence of operators, 8-5

principal solutions, 22-5

rearranging, 1-28, 22-8, 22-11,

22-23

rearranging programmatically,

31-20

replacing subexpressions,

16-22

selective evaluation, 22-7

showing hidden variables,

22-7

simplification, 8-5

solving graphically, 1-36,

18-26

solving numerically, 1-29,

1-36, 17-1, 17-12, 18-26

solving symbolically, 1-27,

22-1, 22-2, 22-3

subexpressions, 16-19, 22-8

symbolic math, 1-22

symbolic results, 8-3

tests in, 26-3, 26-4

type of object, 4-6

Index

types, 1-22, 8-6, 17-3

unit objects in, 13-7

viewing in EquationWriter,

16-23

algebraic syntax

arguments, 1-20, 8-1

array elements, 20-15

conditional testing, 26-6

derivatives, 23-1

description, 8-1, 9-1

in local variable structures,

25-4

integrals, 23-11, 23-15

summations, 23-5

test commands, 26-1, 26-3,

26-4

user-defined functions, 1-39,

10-2

ALGEBRA menu, 22-8, 22-11

Alpha-entry mode, 2-7. See

also alpha keyboard

alpha keyboard

accented characters, 2-9

automatically locking, 15-12,

29-8

diagram, 2-8

locking lowercase, 2-9

locking on, 1-11, 2-8

operation, 1-11, 2-4, 2-7

ALRMDAT, 6-2, 24-13

ALRM menu, 24-11

analytic functions, 4-10, G-1

angle modes

affect complex numbers, 11-2

affect polar plots, 19-16

affect trig functions, 9-9, A-4

affect vectors, 12-3

annunciators for, 2-3

changing, 1-21, 9-8

description, 9-8

for I/0, 33-23

Index-3

Index

angles

calculations, 24-19

converting, 9-11

dimensionless units, 13-12,

13-14

HMS format, 9-11, 24-19

animation, 31-47

annunciators

alarm (@), 1-49, 2-3, 24-7

alpha o, 2-3

busy X, 2-3

indicate status, 2-1

introduced, 1-3

I/O > 2-3
listed, 2-3

shift keys K2V Iad, 2-3, 2-5

user flags, 28-1

answers to questions, A-3

application cards

expand ROM, 5-1, 34-1

installing, 34-2, 34-5

removing, 34-7

ROM-based libraries, 34-19

using, 34-10

applications, 29-20

appointment alarms, 24-5. See

also alarms

annunciator, 1-49

responding to, 1-49

setting, 1-49

arcs, 19-25

arguments

algebraic syntax, 1-20, 8-1

bad, A-5

defined, 1-5

multiple, 1-5, 3-3

on stack, 1-5, 3-2

recalling last, 3-5

stack syntax, 1-5, 1-17, 3-2

arithmetic

compared with HP 41, F-1,

F-5

functions, 9-3

with angles, 24-19

with arrays, 20-9

with complex arrays, 20-13

with dates, 24-17

with time, 24-18

with units, 1-45, 13-14, 13-18

with variables, 6-10

arrays. See matrices, vectors

algebraic syntax, 20-15

assembling, 20-14

calculations, 20-9, 20-13,

20-16

catalog of, 21-5, 21-6

complex, 20-13

complex conjugates, 20-14

creating, 4-13, 20-17

creating complex, 4-17

delimiters, 4-4

disassembling, 4-15, 11-10,

20-14

editing, 20-6

entering, 20-3, 20-5

getting elements, 4-14, 20-7

maximum and minimum

elements, 31-23

object type numbers, 4-19

one-column, 20-2, 20-7

one-row, 20-2, 20-7

printing, 32-3

purging, 21-7

replacing elements, 4-16

separating complex, 4-13

size of, 4-17

transpose, 20-17

type of object, 4-4

too few, A-b

verifying, 31-30

ASCII mode, 33-4, 33-5, 33-22

attention, 1-3, 2-6

Index-4

autoscaling, 1-34, 18-11, 18-24

axes
intersection, 19-2

labeling, 18-20, 19-2, 19-22
rescaling, 18-22

scaling, 1-34, 18-9

b (base marker), 4-3, 14-1
backslash translations, 33-7

backspace

in command line, 3-16

in EquationWriter, 16-16

introduced, 1-3

backup identifiers, 34-15, 34-16

backup objects

all user memory, 34-18

creating, 34-15

directories, 34-15

evaluating, 34-17

identifiers, 34-15, 34-16

in custom menus, 15-2

in independent memory,

34-15

in port 0, 34-15

listing, 34-17

menu of, 34-16

moving to port 0, 34-12

moving to RAM card, 34-13

object type number, 4-19

purging, 34-17

recalling, 34-16

restoring memory from, 34-19

type of object, 4-12

wildcards, 34-17

bad arguments, A-5

BAR plots

description, 21-13

from Plot, 19-13, 19-21

from Statistics, 21-15

labeling axes, 19-22

Index

resolution, 19-4

base (binary)
affects display, 14-1

options, 4-3, 14-1, 14-2

setting, 14-2

typing, 14-3

BASE menu, 14-2, 14-4

batteries

and I/0, 33-9, 33-12

and printing, 32-4

calculator, A-6

changing (calculator), A-7
changing (RAM card), A-9
disposing, A-8, A-10

low-battery warning, A-6

new RAM cards, 34-2

preserve RAM-card, 34-9

RAM cards, A-6

types, A-7

when to replace, 34-4, A-6

baud rate

HP 48-to-computer, 33-11

serial printer, 32-10

setting, 33-4, 33-24

beeper

controlling, 15-11

for alarms, 24-8

in programs, 29-12

Bessel functions, 31-34

best editing environment, 3-8,

3-11

binary integers

as pixel coordinates, 19-8

bases, 14-1, 14-2

bits displayed, 14-2, 14-3

bits lost, 14-2, 14-3

calculations, 14-3

comparing, 26-3

converting, 14-5

custom display, 31-7

delimiters, 4-3, 14-1

 Index-5

description, 14-1

displaying, 14-2

entering, 14-3

internal representation, 14-2

logic operations, 14-5

object type number, 4-19

representing flags, 28-4

rotating, 14-5

shifting, 14-5

type of object, 4-3

wordsize, 14-1, 26-3

Binary mode, 33-4, 33-5

bins, 19-22, 21-9, 21-18

boxes

drawing, 19-23, 19-25

erasing, 19-23

braces. See delimiters

brackets. See delimiters

branching structures

conditional structures, 26-4,

30-4

loop structures, 27-1

program element, 25-3

BRCH menu, 26-4, 27-1

break (serial), 33-20
bubble sort, 31-14

buffer (serial), 33-20, 33-21

building-block programs, 25-5

built-in commands. See

commands, functions

built-in constants. See symbolic

constants

bytes

available memory, 5-2, A-3

of built-in memory, 5-1, 34-1

used by objects, 5-2

C

C# delimiter, 4-7

cable (serial), 32-9, 33-10, 33-22

Index-6

calculator

battery type, A-7

compared with HP 41, F-1

environmental limits, A-6

features, 1-2

fixing problems, A-1, A-3

general operation, 1-5

questions about, A-3

repair service, A-2, A-18

support. See inside back cover

testing, A-11, A-12, A-13,

A-14, A-15, A-16

turning off, 1-4, 29-23

turning on, 1-4

warranty, A-17

won’t turn on, A-2, A-11

Calculator Support. See inside

back cover

calculus

derivatives, 23-1, 23-3

derivatives of user-defined

functions, 23-4

integrals, 23-10, 23-14

summations, 23-5

Taylor’s polynomials, 23-8,

31-36

user-defined derivatives, 23-4

“case” branching, 26-6

catalogs

Alarm, 24-12, 24-14

Equation, 17-6, 17-8, 17-26,

18-

Review, 6-7

Statistics, 21-b, 21-6

center

setting, 18-10

chain calculations, 1-18, 3-3

character codes

backslash translations, 33-7

canceling remapping, 32-2

from characters, 4-14, C-1

I/O translation, 33-6
listed, C-1
printing with, 32-7

remapping, 32-11, 32-12

remapping for early printers,

32-2

to characters, 4-12, C-1

characters

accented, 2-9

accumulating in printer, 32-8

alpha keyboard diagram, 2-8

backslash translations, 33-7

canceling remapping, 32-2

codes, 4-12, 4-14, C-1

control, 32-8, 32-11

entering, 1-11, 2-7, C-1

in strings, 4-7

I/0 translation, 33-6
list of, C-1

not on alpha keyboard, 32-7

not printable, 32-2

number in print line, 32-11

printing, 32-5, 32-7

remapping, 32-11, 32-12

remapping for early printers,

32-2

size in graphics objects, 19-28

uppercase and lowercase, 2-7,

2-9

checksum (I/0)
HP 48-to-computer, 33-11

HP 48-to-HP 48, 33-8

setting, 33-4, 33-24

checksums

verify backup objects, 34-15

verify objects, 5-2

verify programs, 31-1

chi-square distribution, 21-21

circles, 19-15, 19-23, 19-25

Index

clearing
display, 29-17

flags, 15-12, 28-2

memory, 5-3, A-2

messages, A-1

stack, 1-7, 3-5

user keys, 15-8

variables, 1-16, 6-8

clock

adjusting, 24-3

adjusting in programs, 24-4

changing format, 1-47, 24-2

displaying, 1-48, 15-11, 24-2
format options, 24-1

setting, 1-48, 24-2

ticks, 24-4, 24-15, 24-19
TIME menu, 24-4

collecting terms, 1-28, 22-9

colons. See delimiters

column vectors, 20-2, 20-7

combinations, 9-13

comma

complex number separator,

11-2, 11-8

fraction mark, 2-15, 15-11

command line

arguments go on stack, 3-2

comments in, 3-15

cursor keys, 3-16

deleting, 1-7, 2-6

during program input, 29-8

editing, 1-8, 2-7, 3-16

editing environment, 3-8

entering equations, 1-25

entering objects, 2-11

entry modes, 3-16

insert and replace modes, 3-8

inserting stack object, 3-14

introduced, 1-3

multiple arguments, 1-5, 3-3

multiple objects, 3-15

Index-7

operation, 1-6, 2-4, 3-15

processing, 3-16

recalling previous, 3-18

using in EquationWriter,

16-17, 16-18

commands. See appendiz G

compared with HP 41, F-2,

F-6

computer-to-HP 48 1/0,
33-13

fraction conversion, 9-4

general math, 9-3

general rule, 1-5

HP 48-to-computer 1/0,
33-13

HP 48-to-HP 48 1/0, 33-9

in custom menus, 15-2

in programs, 25-2

list of, G-1

object type number, 4-19

on keyboard, 1-4

stack syntax, 1-17, 3-2

subset of operations, 4-10,

G-1

type of object, 4-11

comments, 3-15, 25-12

comparison functions, 26-1,

26-2, 26-3

complex arrays, 4-19, 20-13

complex conjugates, 6-10, 11-10,

20-14

complex numbers

and 2D vectors, 11-12

arrays of, 20-13

assembling, 11-4, 11-11

calculations, 11-6, 11-10

compared with HP 41, F-5

conjugates, 11-10

coordinate modes, 4-2, 11-1

creating, 4-17

Index-8

delimiters, 4-2, 11-2, 11-3,

12-3

disassembling, 4-13, 4-15,

11-4, 11-10, 11-11

displayed, 11-1

entering, 11-3

from real-number calculations,

11-9

in algebraics, 11-6, 11-7

internal representation, 11-2,

11-3

i (symbolic constant), 11-6,

11-7

normalized, 11-3

object type number, 4-19

polar components, 11-2

rectangular components, 11-1

type of object, 4-2

computer

connecting to HP 48, 33-10

creating libraries, 34-20

creating programs on, 25-12

file names, 33-15

I/O with HP 48, 33-12
restoring HP 48 memory,

33-15
viewing HP 48 data, 33-5,

33-22
conditional commands, 26-4,

26-5, 26-6
conditional structures

“case” branching, 26-6

conditional commands, 26-4

error branching, 30-4, 30-5

examples, 26-7

“if” branching, 26-5, 26-6,

30-4, 30-5

program element, 25-3

test commands in, 26-1, 26-4

CONIC plots, 19-2, 19-4, 19-13,
19-14

conjugates, 6-10, 11-10, 20-14

consistent units, 1-45, 13-14,

17-23
constants. See symbolic

constants

continuing execution, 25-22,

25-23, 29-2, 29-4
contrast (display), 1-4
control alarms, 24-5, 24-9. See

also alarms

control characters, 32-8

converting

algebraics to graphics objects,

16-3
algebraics to strings, 16-4

binary to real, 14-5

characters during I/0, 33-6
complex to real arrays, 20-14

complex to real numbers,

11-10, 11-11
dates to numbers, 24-17

dates to strings, 24-17

decimal to HMS, 9-11, 24-19

degrees to radians, 9-11

HMS to decimal, 9-11, 24-19

numbers to fractions, 9-4

objects to graphics objects,

19-28
pixels to user-units, 19-9,

19-26
radians to degrees, 9-11

real to binary, 14-5

real to complex arrays, 20-14

real to complex numbers,

11-11
stack displays to graphics

objects, 19-29

units, 1-45, 1-46, 13-8, 13-9,
13-10, 13-11

units of angle, 13-12

units of temperature, 13-17

Index

user-units to pixels, 19-9,

19-26
coordinate modes

affect complex numbers, 11-1,

11-4

affect vectors, 12-1, 12-5

annunciators for, 2-3

changing, 11-1, 12-3

coordinates (plot), 19-8, 19-26
correlation (statistical), 21-12
counted strings, 4-7

counters

loop structures, 27-2, 27-5,

27-7, 27-9

negative steps, 27-5, 27-9,

27-13

stepping, 27-13

covariance (statistics), 21-10
critical points, 1-36, 18-26

cross products, 12-8, 20-9

CST, 6-2, 15-1

CST menu, 15-1. See also

custom memus

CTRL menu, 25-24

curly braces. See delimiters

current directory

determines VAR menu, 7-1

displayed in status area, 2-1,

7-2

path of, 7-2

recalling path, 7-3

variables created in, 6-2

current equation

checking, 17-3, 18-4

editing, 17-11, 18-7

in FQ, 17-2, 18-2

menu of variables, 1-30, 17-12,

17-33

multiple roots, 1-32, 17-17

program as, 17-30

Index-9

setting, 1-30, 1-33, 17-4, 17-5,

18-5

solving, 1-30, 1-36, 17-12,

18-26

current statistical matrix, 21-2,

21-5

cursor (command line), 3-8,

29-8

cursor (Graphics)
getting position, 1-36, 18-20

setting style, 18-20

curve fitting, 21-12, 21-14

custom menus

actions depend on objects,

15-2

creating, 15-1

custom labels, 15-3

in each directory, 15-3

in programs, 29-18, 29-19

list of objects, 15-1

menu-based applications,

29-20

objects in, 15-2

shifted keys, 15-4

SOLVR menu, 17-25

switching, 15-3

typing aids in, 15-2

units in, 13-10

user-defined units, 13-21

cyclic redundancy check, 33-4,

33-24

Cylindrical coordinate mode,

11-2, 12-2

D

d (base marker), 4-3, 14-1

data transfer. See I/O
date

calculations, 24-17

changing format, 1-47, 24-2

converting to number, 24-17

Index-10

converting to string, 24-17

displaying, 1-48, 15-11, 24-2

format options, 24-1

setting, 1-48, 24-2

debugging, 25-21, 25-23

decimal places, 2-14

defining

user-defined functions from

equations, 1-39, 10-1

variables from equations, 6-3,

8-6

defining procedures

local variables in, 25-16

local variable structures,

25-13

definite integrals

numeric, 23-14

symbolic, 23-10

Degrees mode, 1-21, 9-8

degrees of freedom, 21-21

deleting

stack objects, 1-7, 3-5, 3-11,

3-18

variables, 1-16, 6-8

delimiters

entering, 1-11, 2-11

' ! for algebraics, 1-20, 1-25,

4-6, 8-1

[1 for arrays, 4-4, 20-1

for binary integers, 4-3,

14-1

i » for complex numbers,

4-2,11-2, 11-3

IR EHMD for directories, 7-7

» for lists, 4-7

[1 for matrices, 20-1

' ' for names, 4-5

% for programs, 4-6, 25-1

* " for strings, 4-7

: for tagged objects, 4-8

_ for unit objects, 4-9, 13-2

[1 for vectors, 12-3, 12-4,

20-2

graphics object, 19-26

list of, 1-12

prevent evaluation of names,

6-6

dependent variable

in conic plots, 19-15

in truth plots, 19-18

plotting range, 19-1

predicting values, 21-12

specifying, 19-5, 21-11

derivatives

algebraic syntax, 23-1

chain rule, 23-3

“der” variables, 6-2, 23-4

in EquationWriter, 16-8, 23-1

in Graphics environment,

18-26, 18-27, 18-34

one-step, 23-3

stack syntax, 23-3

step-by-step, 23-1

user-defined derivatives, 23-4

user-defined functions, 10-3,

23-4

“der” names, 6-2, 23-4

determinants, 20-17

differentiation. See derivatives

dimensionally consistent units,

1-45, 13-14, 17-23

dimensionless units, 13-12

DIR, 7-7

directories

backing up, 34-15

creating, 7-3, 7-6

current directory, 7-1

custom menu in, 15-3

delimiters, 7-7

description, 7-1

evaluating paths, 7-5

Index

evaluating variables

containing, 6-4
in custom menus, 15-2

object type number, 4-19

parent directories, 7-2

paths, 7-2

purging, 7-6

recalling as objects, 7-6

recalling paths, 7-3

sending to computer, 33-2

sending to HP 48, 33-2

stack display, 7-7

stored in variables, 7-3, 7-6

subdirectories, 7-2

switching to, 7-5

type of object, 4-10

variables in, 7-4

directory paths. See current

directory, paths

display. See graphics display,

stack display

adjusting contrast, 1-4

annunciators, 2-2

area numbers, 29-4

clearing, 29-17

command line, 2-4

compact format, 15-11

freezing, 29-4

number format, 1-21, 2-14,

A-3

organization, 2-1

printing, 32-4

showing clock, 24-1

stack levels, 2-3

display modes

affect fraction conversions,

9-5

affect numeric integrals, 23-15

affect rounding, 9-15

affect truncating, 9-15

changing, 1-21, 2-14

Index-11

control number format, 1-21,

2-14
display ranges

and plotting ranges, 19-1

setting, 1-34, 18-9

“do” looping, 27-10

dot products, 12-8, 20-9

double-quote marks. See

delimiters

duplicating stack entries, 3-5

E

E (in numbers), 1-19, 2-7, A-4
e (symbolic ocnstant), 9-15

editing

alarms, 24-12

algebraics, 1-26, 16-16

arrays, 20-6

canceling changes, 3-7

current equation, 17-11, 18-7

in EquationWriter, 16-16,

16-23

in MatrixWriter, 20-6

inserting objects into

algebraics, 16-21

programs, 1-43, 25-11

stack objects, 1-8, 1-26, 3-6

statistical data, 21-4

subexpressions, 16-18, 16-22,

22-12

user key assignments, 15-10

variables, 1-15, 3-6, 6-5

EDIT menu, 3-8

elapsed time, 24-20

ellipses, 19-15

ellipsis (..), A-4

end-of-line (I/0), 32-12
Engineering display mode, 2-15

entering. See characters,

delimiters, equations,

Index-12

matrices, numbers, objects,

programs, vectors

entry mode (EquationWriter),
16-2

entry modes

annunciators for, 2-3

changing manually, 3-17

command line, 3-16

environmental limits, A-6

environments

Alarm Catalog, 24-12, 24-14

“best”, 3-8, 3-11

editing, 3-6

Equation Catalog, 17-6, 17-8

EquationWriter, 16-2

exiting, 2-6

Graphics, 18-3, 18-19

Interactive Stack, 3-9

MatrixWriter, 20-2

Selection, 16-19, 22-12

Statistics Catalog, 21-5, 21-6

EQ
current equation, 17-2, 17-3,

18-2, 18-4

reserved variable, 6-2

equal sign, 1-22, 8-6, 17-3, 18-4

Equation Catalog

creating list of equations,

17-27, 18-18

customized entries, 17-26

displays equations, 17-6, 17-8,

18-5

operations, 17-8

equations. See algebraics

arguments to functions, 8-6

catalog of, 1-32, 1-38, 17-6,

17-8

compared to expressions,

1-22, 8-6, 17-3, 18-4

creating user-defined functions

from, 1-39, 10-1

creating variables from, 6-3,
8-6

critical points, 1-36, 18-26

definition, 1-22, 8-6, 17-3,

18-4
editing. See algebraics
entering. See algebraics
evaluating. See algebraics
general solutions, 22-5

multiple roots, 1-32, 17-17

plotting, 1-34, 18-1

plotting both sides, 18-17,

19-14
plotting multiple, 18-18

polynomial approximations,

22-3, 23-8, 23-13
principal solutions, 22-5

quadratic, 22-3

rearranging, 1-28, 22-8, 22-11,

22-23
slope of, 18-26, 18-27, 18-34

solving graphically, 1-36,

18-26
solving linear systems, 20-11,

20-12, 20-18, 20-19
solving multiple, 17-27

solving numerically, 1-29,

1-36, 17-1, 17-12, 18-26
solving symbolically, 1-27,

921, 22-2, 22-3
splitting, 4-13

EquationWriter

creating equations in, 1-23,

16-5
creating unit objects in, 13-5,

16-10
description, 16-2

editing algebraics, 16-23

editing in command line,

16-17, 16-18
editing subexpressions, 16-18

editing unit objects, 16-23

editing with backspace, 16-16

entering derivatives, 16-8,

23-1
entering exponents, 16-6

entering fractions, 16-5

entering integrals, 16-8, 23-11

entering math operators, 16-5

entering names, 16-5

entering numbers, 16-5

entering parentheses, 16-7

entering powers, 16-8

entering roots, 16-7

entering summations, 16-9,

23-5
entering units, 16-10

entering where function, 16-10

entry mode, 16-2

examples, 16-12

implicit parentheses, 16-11

inserting stack objects, 16-21

modes, 16-2

operations, 16-3

replacing subexpressions,

16-22
Rules transformations, 22-12

scrolling mode, 16-2, 16-3,

16-4
Selection environment, 16-2,

16-3, 16-19, 16-22, 22-12
starting, 16-4

subexpressions, 16-19

viewing algebraics, 16-23

viewing unit objects, 16-23

€rrors

actions in programs, 30-2

analyzing, 30-2

causes, 30-1

causing, 30-2

changing variables, 6-9

clearing last, 30-2

Index-13

conditional structures, 30-4,

30-5

controlling beeper, 15-11

display messages, 30-2

Kermit errors, 33-17

messages listed, B-1

numbers for, 30-2, B-1

recalling messages, 30-2

serial 1/0, 33-20, 33-21

trapping, 30-4, 30-5

user-defined, 30-2

escape sequences, 32-8

evaluation. See individual object

types

defined, 4-20

of algebraics, 1-20, 1-28, 8-2,

8-3, 85

of backup objects, 34-17

of directory paths, 7-5

of local variables, 25-15

of symbolic constants, 9-16,

9-17

of test clauses, 26-5, 26-6,

26-7, 27-11, 27-12

of variable names, 6-4

preventing for names, 6-6

example programs

Bessel functions, 31-34

bubble sort, 31-14

displaying binary integers,

31-7

execution times, 31-5

Fibonacci numbers, 31-2

graphical animation, 31-47

inverse functions, 31-45

maximum and minimum

elements, 31-23

median of statistics data,

31-14

plotting pie charts, 31-40

rearranging algebraics, 31-20

Index-14

Taylor’s polynomials, 31-36

trace mode, 31-44

verifying arguments, 31-30

expanding terms, 1-28, 22-9

exponential functions, 9-6

exponents

display format of, 2-14

in EquationWriter, 16-6

expressions. See algebraics

compared to equations, 1-22,

8-6, 17-3, 18-4

definition, 1-22; 8-6, 17-3,

18-4

derivatives, 23-1, 23-3

editing. See algebraics

entering. See algebraics

evaluating. See algebraics

integrating numerically, 23-14

integrating symbolically,

23-10
plotting. See equations

solving. See equations

EXPR value, 17-16

extremum

in HP Solve, 17-20

of graph, 1-36, 18-26

F

factorials, 9-13

false (test result), 26-1, 26-3

FCN menu, 18-26

f distribution, 21-21

Fibonacci numbers, 31-2

files

backing up memory, 33-14

choosing names, 33-15

defined, 33-2

HP 48-computer I/0, 33-12

restoring memory, 33-15

finite series, 23-5

Fix display mode, 2-15

fixing problems, A-1, A-3

flags

Acknowledged Alarms Saved
(—44), 24-8, 24-9

Alarm Beep (—57), 24-8
Alpha Lock (—60), 15-12
annunciators, 28-1

backing up in backup object,

34-18
backing up on computer,

33-14
binary integer form, 28-4

clearing, 15-12, 28-2

compared with HP 41, F-13

Complex Mode (—19), 11-3,
11-4, 11-11, 12-4, 12-5,
12-14

control behavior, 28-1

Curve Filling (—31), 18-15
default states, E-1

Double-Spaced Printing (—37),
32-7

Function Plotting (—30),
18-17, 19-14

I/O Data Format (—35), 33-4
I/O Device (—33), 32-10,

33-4
Line-Feed (—38), 32-9
Numeric Results (—3), 6-3,

8-4, 9-9, 9-17
Principal Solution (—1), 22-6

Printing Device (—34), 32-10
program control, 28-1

recalling states, 28-4

RECYV Overwrite (—36), 33-8,
33-11, 33-16

Repeat Alarms Not

Rescheduled (—43),
24-8, 24-9

resetting, A-2

restoring states, 28-4

Index

setting, 15-12, 28-2

setting modes, 15-12
storing states, 28-4

Symbolic Constants (—2),
9-17, 15-13

system, 28-1, 28-4, E-1

testing, 15-12, 26-1, 28-2

types, 28-1

user, 28-1, 28-4

User-Mode Lock (—61), 15-5,

15-13

“for” looping, 27-6, 27-8

formal variables

causing errors, 8-4

description, 6-6

evaluating, 8-2

fractional part, 9-14

fraction mark

affects complex numbers,

11-2, 11-8

changing, 2-15, 15-11, A-4

for 1/0, 33-23
fractions

converting to, 9-4

in EquationWriter, 16-5

freeing merged memory, 34-12,

34-13

Frobenius norm, 20-16

function analysis, 1-36, 18-25,

18-32, 18-33, 18-34

FUNCTION plots, 1-33, 18-1,

19-4, 19-13, 19-14

functions. See appendiz G,

user-defined functions

angle conversion, 9-11

equations as arguments for,

8-6

exponential, 9-6

fraction conversion, 9-4

general math, 9-3

hyperbolic, 9-6

Index-15

Index

in algebraics, 9-1
list of, G-1

logarithmic, 9-6

number parts, 9-14

object type number, 4-19

percent functions, 9-7

subset of commands, 4-10,

G-1

symbolic arguments for, 1-26,

9-18

trigonometric, 9-8, 13-14,

A-4

type of object, 4-11

user-defined, 1-39, 10-1, 19-20

G

Gamma function, 9-13

general solutions, 22-5

global names, 4-19

global variables. See variables

action in programs, 25-2

description, 6-1

disadvantages in programs,

25-13
evaluating, 4-20

VAR menu, 6-7

RAl annunciator, 9-8

Grads mode, 9-8

graphics display

clearing, 18-15, 18-21, 19-23

turning on and off, 1-34,

18-19

Graphics environment. See

PICT

adding elements, 19-22, 19-25

clearing, 18-15, 18-21, 19-23

description, 18-3

erasing area, 19-23

function analysis, 1-36, 18-25,

18-32, 18-33, 18-34

Index-16

getting cursor position, 1-36,

18-20

hiding menu labels, 18-20
labeling axes, 18-20

marking position, 18-20,

19-23

modes, 18-20

operation, 18-19

pixel operations, 19-25

saving areas, 19-27

solving the current equation,

1-36, 18-26

stack operations, 19-26

superimposing images, 19-27

turning on and off, 1-34,

18-19

zooming, 18-22, 18-34

GRAPHICS FCN menu, 18-26

GRAPHICS menu, 18-20, 18-34

graphics objects

character size in, 19-28

creating from algebraics, 16-3

creating from objects, 19-28

delimiter, 19-26

extracting images, 19-29

from PICT, 18-4

object type number, 4-19

on the stack, 19-26, 19-27

printing, 32-3, 32-4, 32-5

size of, 4-17, 19-28

superimposing, 19-28

type of object, 4-7

viewing in stack display,

19-29

GRAPHICS ZOOM menu,

18-22

graphs. See Graphics

environment, Plot

Greek letters, 2-5, 33-7, C-1

GROB, 19-26

guarantee, A-17

guesses (HP Solve), 1-32, 17-17,
17-21, 17-23, 17-32

guillimets. See delimiters

H

h (base marker), 4-3, 14-1
HALT annunciator, 2-3, 25-22,

29-4, A-4

halting programs, 25-23

hidden variables, 22-7

HISTOGRAM plots

description, 21-13

from Plot, 19-13, 19-21

from Statistics, 21-17

resolution, 19-4

setting bins, 19-22

HMS format

for angles, 9-11, 24-19

for time, 24-19

HOME directory

backing up, 33-14, 34-18

not a variable, 7-7

restoring, 33-15, 34-19

switching to, 7-5

top directory, 7-2

HP 41 comparison, F-1

HP 82240 printers. See infrared

printers

%%HF header, 33-6, 33-22, 33-23

HP Solve

bad guesses, 17-21

checking current equation,

17-3

compared to Plot, 17-22

current equation in FQ, 17-2

description, 17-2, 17-31

editing current equation,

17-11

Equation Catalog, 1-32, 17-6

guesses, 1-32, 17-17, 17-23,

17-32

Index

intermediate results, 17-33

interpreting results, 17-18

interrupting, 17-32

messages, 17-3, 17-18

multiple equations, 17-27

next equation, 17-27

numeric root-finder, 17-31

placeholder variables, 17-34

recalling values, 17-13, 17-18

reviewing values, 1-32, 17-13,

17-18

setting current equation,

1-30, 17-4, 17-5

solutions, 17-3

SOLVE menu, 17-11

solves programs, 17-3, 17-30

solving for multiple roots,

1-32, 17-17

solving for values, 1-30, 17-12,

17-18

solving the current equation,

17-12

SOLVR menu, 17-12, 17-17,

17-25, 17-33

storing values, 1-30, 17-12,

17-18

types of “equations”, 17-3

unit objects in, 1-47, 17-23

verifying solutions, 17-16

humidity limits, A-6

hyperbolas, 19-15

hyperbolic functions, 9-6

HYP menu, 9-6

|

i

in algebraics, 11-6, 11-7

symbolic constant, 9-15

IERR (integration uncertainty),
23-15, 23-20

Index-17

“if” branching, 26-5, 26-6, 30-4,

30-5

imaginary part

of complex arrays, 20-14

of complex numbers, 4-13,

11-10

Immediate-entry mode, 3-16

implicit parentheses, 16-11

independent memory

backup objects in, 34-15

expanding, 34-9

libraries in, 34-21

moving objects into, 34-13

port 0, 34-10, 34-15

setting up, 34-15

independent variable

plotting range, 19-1

predicting values, 21-12

specifying, 1-34, 18-9, 19-5,

21-11

index number (alarm), 24-9,
24-16

Infrared mode, 33-4

infrared port

selecting, 33-4

testing, A-15

infrared printers

earlier character set, 32-2

printing, 32-3

setting up, 32-1

speed, A-b

insert cursor, 3-8

integer part, 9-14

integers. See binary integers,

real numbers

integrals

algebraic syntax, 23-11, 23-15

IERR contains uncertainty,

23-15, 23-20

in EquationWriter, 16-8,

23-11

Index-18

in Graphics environment,

18-26, 18-34

numeric, 23-14

numeric accuracy, 23-15,

23-18

numeric uncertainty, 23-15,

23-18

operation, 23-18

stack syntax, 23-11, 23-15

symbolic, 23-10, 23-18

using Taylor’s polynomials,

23-13

integration. See integrals

Interactive Stack

editing environment, 3-9

keyboard, 3-13

menu, 3-11

operation, 3-10, 3-11

pointer, 3-9

intermediate results

for HP Solve, 17-33

on stack, 1-18, 3-3

International System of Units,

13-2, 13-11

intersections, 1-36, 18-26, 18-34

invalid syntax, A-1

inverse

of functions, 22-2

of matrices, 20-10

of variables, 6-10

1/0

aligning infrared ports, 33-8

ASCII mode, 33-4, 33-5,

33-22

backing up memory, 33-14

battery use, 33-9, 33-12

baud rate, 32-10, 33-4, 33-24

Binary mode, 33-4, 33-5

calculators with IR, 33-16

checksum, 33-4, 33-24

computer commands, 33-13

computer connection, 33-10

converting characters, 33-6

errors, 33-17, 33-20, 33-21

file-naming, 33-15

files used, 33-2

HP 48 commands, 33-9

HP 48-to-computer, 33-10,

33-12, 33-14

HP 48-to-HP 48, 33-2, 33-8

input buffer, 33-20, 33-21

IOPAR), 33-24

Kermit commands, 33-16,

33-17

Kermit errors, 33-17

Kermit protocol, 33-1

Local/Local setup, 33-3
Local mode, 33-3

Local/Server setup, 33-3
non-Kermit commands, 33-19

parameters for serial printer,

32-9

parity, 32-10, 33-4, 33-5,

33-24

port options, 33-4

protecting variables; 33-8,

33-11, 33-16

restoring memory, 33-15

serial commands, 33-19

serial wiring, 33-22

Server mode, 33-3

setting parameters, 33-3

testing ports, A-15, A-16

to computer, 33-2

translation code, 32-10, 33-4,

33-6, 33-23, 33-24

transmit modes, 33-4, 33-5,

33-22

types of data, 33-2

XON/XOFF pacing, 32-10,

33-19, 33-24

I/O menu, 33-17, 33-20

Index

I0PAR, 6-2, 33-24

I/O SETUP menu, 33-4
ISO 8859, C-1

iterative refinement, 20-18

K

Kermit

errors, 33-17

files, 33-2

file transfer protocol, 33-1

packets, 33-16

sending commands, 33-16

keyboard

alpha, 1-11, 2-4, 2-7

alpha diagram, 2-8

assigning user keys, 15-6

backspacing, 1-8, 2-7

compared with HP 41, F-1

disabling user keys, 15-9

entering characters, 1-11, 2-7

entering delimiters, 1-11, 2-11

entering numbers, 2-6

entering objects, 1-11, 2-11

EquationWriter, 16-2

in programs, 29-13

Interactive Stack, 3-13

introduced, 1-3

keystrokes queued, 2-3

list of labels, 1-4

locked up, 15-10, A-11

math functions, 9-3

menu keys, 2-11

organization, 2-4

primary and shifted, 2-4

shift keys, 2-4, 2-5

six levels, 2-4

testing operation, A-13

unassigning user keys, 15-8

user keys, 15-5

key location numbers, 15-6,

29-13, 29-14

Index-19

 keys. See appendiz G, keyboard

keystrokes

as program input, 29-13

queued, 2-3

killing programs, 25-22, 25-23

L

last arguments

not saving, 15-11
recalling, 3-5

undoing variable changes,

6-9

last command line

not saving, 15-11

recalling, 3-18

last menu, 2-13

last stack

not saving, 15-11

restoring, 3-6

LEFT value, 17-16

letters

accented, 2-9

uppercase and lowercase, 2-7,

2-9

levels. See stack

library identifiers, 34-21

LIBRARY menu, 34-22

library names, 34-21

library objects

attaching, 34-20, 34-21

commands for, 34-23

compared to programs, 34-19

contain objects,; 34-19

creating, 34-20

detaching, 34-22

extend command set, 34-19

from application cards, 34-10

identifiers, 34-21

in independent memory,

34-21

limiting access, 34-21

Index-20

menu of operations, 34-22

moving to port 0, 34-12

names, 34-21

object type number, 4-19

purging, 34-22

RAM- or ROM-based, 34-19

setting up, 34-20

type of object, 4-12

linear equations, 20-11, 20-12,

20-18, 20-19

linear regression, 21-12

lines, 19-23, 19-25

lists

action in programs, 25-2

combining, 4-13

creating, 4-14

delimiters, 4-7

disassembling, 4-15

entering, 2-11

entry mode, 3-17

evaluating, 4-20

finding objects in, 4-16

getting elements, 4-14

object type number, 4-19

of variable names, 6-8

replacing elements, 4-16, 4-17

size of, 4-17

subsets of, 4-18

type of object, 4-7

Local mode, 33-3

local names, 4-19

local variables. See local variable

structures, variables

action in programs, 25-2

creating, 1-42, 25-3, 25-13

description, 6-1

evaluating, 4-20, 25-15

exist temporarily, 1-42, 25-13,

25-14, 25-16

naming, 25-13

local variable structures. See

local variables

advantages, 25-14

as user-defined functions,

25-17

calculations with, 25-4

create local variables, 1-42

25-13

defining procedure, 25-13,

25-16

entering, 1-42, 25-13

in user-defined functions,

10-5

operation, 25-3, 25-13

program element, 25-3

syntax, 1-42, 25-3, 25-13

logarithmic functions, 9-6

logical functions, 14-5, 26-1,

26-3, 26-4

loop structures

counters, 27-2, 27-5, 27-7,

27-9, 27-13

definite, 27-1

“do” looping, 27-10

“for” looping, 27-6, 27-8

indefinite, 27-1, 27-10

keystroke input, 29-14

negative steps, 27-5, 27-9

program element, 25-3

“start” looping, 27-2, 27-4

summation alternative, 27-15

test commands in, 27-10,

27-12

“while” looping, 27-12

low-battery warning, A-6

lowercase letters

entering, 2-7, 2-9

in names, 25-13

in units, 13-4

low-memory conditions, 5-4

M

mantissas, 2-14

mapping (printer characters),
32-2, 32-11, 32-12

mark, 18-20, 19-23

MATH menu. See MTH menu

math operations, 9-1, 9-3

matrices. See arrays

calculations, 20-10, 20-11

determinants, 20-17

Frobenius norm, 20-16

inverses, 20-10

norms, 20-16

one-column, 20-2, 20-7

one-row, 20-2, 20-7

redimensioning, 20-17

statistical data, 21-1

transpose, 20-17

type of array, 20-1

MATRIX menu, 20-7

MatrixWriter

cell entry order, 20-7

deleting columns, 20-7

deleting rows, 20-7

editing arrays, 20-6

entering arrays, 20-3

entering vectors, 20-7

inserting columns, 20-7

inserting rows, 20-7

MATRIX menu, 20-7

operation, 20-2

setting cell width, 20-4, 20-7

statistical data, 21-3, 21-4,

21-5, 21-7

viewing arrays, 20-6

MATR menu, 20-16

maximum

in HP Solve, 17-20

of graph, 1-36, 18-26

MAXR, 9-15

mean (statistical), 21-9 Index-21

= Index

_ memory

amount available, 5-2, A-3

automatic cleanup, 5-1, A-5

backing up in backup object,

34-18

backing up to computer,

33-14

backup objects in, 34-15

checksums of objects, 5-2

clearing all, 5-3, A-2

compared with HP 41, F-8

expanding, 5-1, 34-1, 34-9,

34-11, 34-14

illustration, F-8

independent. See independent

memory

low-memory conditions, 5-4

merged. See merged memory

out-of-memory condition, 5-5

plug-in cards, 5-1, 34-1

protecting, 34-6, 34-14

RAM defined, 5-1, 34-1

recovering, 5-4, 34-8, 34-12

restoring from backup object,

34-19

restoring from computer,

33-15

ROM defined, 5-1, 34-1

storing objects in, 1-13

used by objects, 5-2

user memory defined, 5-1

MEMORY Arithmetic menu,

6-10

MEMORY menu, 5-2

menu-based applications, 29-20

menu descriptions

ALGEBRA, 22-8, 22-11

CST, 15-1. See also custom

menus

EDIT,3-8

GRAPHICS, 18-20, 18-34

Index-22

GRAPHICS FCN, 18-26

GRAPHICS ZOOM, 18-22

Interactive Stack, 3-11

I/0, 33-17, 33-20

I/O SETUP, 33-4

LIBRARY, 34-22

MATRIX, 20-7

MEMORY,5-2

MEMORY Arithmetic, 6-10

MODES, 2-15, 15-11

MODES Customization, 15-5

MTH, 9-1

MTH BASE, 14-2, 14-4

MTH HYP, 9-6

MTH MATR, 20-16

MTH PARTS, 9-7, 9-14

MTH PROB, 9-13, 21-20

MTH VECTR, 9-11, 12-3,

12-14

PLOT, 18-7

PLOTR, 18-15, 19-5

PRG BRCH, 26-4, 27-1

PRG CTRL, 25-24

PRG OBJ, 4-12

PRG STK, 3-18

PRG TEST, 26-2

PRINT, 32-5

PTYPE, 19-13

RULES, 22-13

SOLVE, 17-11

SOLVE SOLVR, 17-12, 17-17,

17-25, 17-33

STAT, 21-5, 21-9, 21-11,

21-19, 21-20

STAT MODL, 21-12

TIME, 24-4, 24-11

TIME ADJST, 24-4

TIME ALRM, 24-11

TIME ALRM RPT, 24-12

TIME SET, 24-4

UNITS Catalog, 13-2, 13-8

UNITS Command, 13-1

VAR, 6-7

menu keys, 2-11. See also menu

labels, menus

menu labels. See menus

bar indicates submenu, 1-10,

2-12, 7-3

bottom of display, 2-4, 2-11

custom, 15-3

Graphics environment, 18-20

introduced, 1-3

white for HP Solve, 1-30,

17-12

menu maps, D-3

menus. See menu keys, menu

labels

custom, 15-1, 29-18, 29-19,

29-20

delayed display, 29-13, 29-18

displaying, 1-9, 2-12

displaying in programs, 29-13,

29-18, 29-19, 29-20

for libraries, 29-18

for plug-in ports, 34-16

for program input, 29-19

labels in display, 2-4

last menu, 2-13, 29-19

list of, D-1

maps of, D-3

numbers for, 29-18, 29-19,

D-1

of library operations, 34-22

pages in, 1-9, 2-12, 29-19

programmatic uses, 29-18

recalling numbers, 29-19

resuming programs, 29-19

running programs, 29-20

using, 1-9, 2-14

white labels, 1-30, 17-12

Index

merged memory
expanding, 34-14

no write-protection, 34-6,

34-14

messages

clearing, A-1

displayed in status area, 2-1

in HP Solve, 17-3, 17-18

in Plot, 18-4, 18-8

in Statistics, 21-1, 21-5, 21-10,

21-12, 21-18, 21-19

list of, B-1

low-memory, 5-4

numbers for, B-1, B-12

prompting, 29-2

minimum

in HP Solve, 17-20

of graph, 1-36, 18-26

MINR, 9-15

mistakes, A-1

model(statistical), 21-11, 21-12,
21-14

mode names

1-User, 15-5

Algebraic-entry, 3-16, 29-8

Algebraic/Program-entry,
3-17, 25-11, 29-8

Alpha-entry, 15-12

ASCII, 33-4, 33-5, 33-22

Binary, 33-4, 33-5

Cylindrical, 11-2, 12-2

Degrees, 9-8

Engineering, 2-15

entry (EquationWriter), 16-2

Fix, 2-15

Grads, 9-8

Immediate-entry, 3-16

Infrared, 33-4

Local, 33-3

Numeric Results, 8-3

Polar, 11-1, 12-1

Index-23

Index

Program-entry, 3-17, 25-6,

25-11

Radians, 9-8

Rectangular, 11-1, 12-1

Scientific, 2-15

scrolling (EquationWriter),
16-2

scrolling (Graphics), 18-20

selection (EquationWriter),
16-2

Server, 33-3

Spherical, 11-2, 12-2

Standard, 2-15

Symbolic Results, 8-3

User, 15-5, 15-13

Wire, 33-4

modes

angle, 1-21, 9-8, 33-23

command line entry, 3-16

coordinate, 11-1, 12-1

display format, 1-21, 2-14

in EquationWriter, 16-2

in Graphics environment,

18-20

I/0O device, 33-4
program entry, 25-6, 25-11

resetting all, 5-3, A-2

results type, 9-16

setting, 15-11, 15-12, 25-11

MODES Customization menu,

15-5

MODES menu, 2-15, 15-11

MODL menu, 21-12

MTH BASE menu, 14-2, 14-4

MTH HYP menu, 9-6

MTH MATR menu, 20-16

MTH menu, 9-1

MTH PARTS menu, 9-7, 9-14

MTH PROB menu, 9-13, 21-20

MTH VECTR menu, 9-11,

12-3, 12-14

Index-24

N

nl

general solutions (integer),
1-27, 22-4, 22-6

reserved variable, 6-2

names

action in programs, 25-2

delimiters, 4-5

duplicate, 7-4

entering, 6-6

evaluating, 4-20, 6-4, 6-6

evaluating variables

containing, 6-4

finding, 7-4

in custom menus, 15-2

menu of, 6-7

object type numbers, 4-19

preventing evaluation, 6-6

reordering in VAR menu, 6-8

restrictions, 1-13, 6-1

type of object, 4-5

variable names, 4-5

negative

exponents, 1-19, 2-7

numbers, 1-19, 2-6, 2-7

of arrays, 20-14

of numbers, 11-10

of variables, 6-10

newlines, 1-41, 25-6, 29-5

normal distribution, 21-21

norms (matrices), 20-16
numbers. See binary integers,

complex numbers, objects,

real numbers

action in programs, 25-2

appearance, 1-21, 2-14, A-3

calculations, 1-17

converting to fractions, 9-4

entering, 2-6

exponential form, 1-19, 2-7

internal representation, 1-21,

2-14

random, 9-13

range of real values, 4-2

rounding, 9-15

sorting, 31-14

truncating, 9-15

with units, 1-44, 13-2

Numeric Results mode

affects symbolic constants,

9-16

evaluating algebraics, 8-3

o

o (base marker), 4-3, 14-1

objects. See object types

actions in programs, 25-2

backing up, 34-15

checksums of, 5-2

combining, 4-13

converting to graphics objects,

19-28

converting to strings, 4-17

created from command line,

3-16

definition, 4-1, A-4

deleting, 1-7, 3-5

delimiters for, 1-12

disassembling, 4-15

editing, 1-8, 1-26, 3-6

entering, 1-11, 2-11

entering in programs, 1-41,

25-6

evaluated by alarms, 24-9,

24-11

evaluating, 4-20

general manipulation, 4-12

HP 48-computer 1/0, 33-12
HP 48-HP 48 1/0, 33-8

in custom menus, 15-2

memory used by, 5-2

Index :

on stack, 1-6

printing, 32-3

storing in variables, 1-13,

1-14, 6-2, 6-5, 6-7

testing types, 26-4

type numbers, 4-18, 26-4

types, 4-1, 4-18

viewing, 3-6

object type numbers, 4-19, 26-4

object types. See objects

OBJ menu, 4-12

operations. See appendiz G

catagories of, 4-10, G-1

list of, G-1

out-of-memory condition, 5-5

over-determined systems, 20-19

P

packets (Kermit), 33-16
pages (menus), 1-9, 2-12

paired-sample statistics, 21-10

parabolas, 19-15

PARAMETRIC plots, 19-2,

19-4, 19-13, 19-17

parent directories, 7-2

parentheses. See delimiters

implicit, 16-11

in algebraics, 1-20, 8-1, 8-6,

11-7

in complex numbers, 11-2,

11-3

in EquationWriter, 16-7,

16-11

parity

choosing, 33-5

HP 48-to-computer, 33-11

serial printer, 32-10

setting, 33-4, 33-24

PARTS menu, 9-7, 9-14

past-due alarms, 24-7

Index-25

Index

paths

description, 7-2

evaluating, 7-5

recalling, 7-3

percent functions, 9-7

period (fraction mark), 2-15,
15-11

permutations, 9-13

PICT

changing size, 19-6, 19-9

clearing, 18-15, 18-21, 19-23,

19-30

contains graphics object, 18-4

contains plot, 18-2, 18-3

copying, 19-27

entering name, 19-30

in Graphics environment,

18-19

putting on stack, 18-21, 19-30

resetting, 18-10, 19-7

saving areas, 19-27

storing object in, 19-30

viewing, 19-28

pie charts, 31-40

pixel coordinates, 19-8

pixels, 19-25, 19-26

placeholder variables, 17-34

Plot. See Graphics environment

adding graphical elements,

19-22, 19-25

autoscaling, 1-34, 18-11, 18-24

axes intersection, 19-2

center, 18-10

checking current equation,

18-4

compared to HP Solve, 17-22

compared with Statistics,

19-21

CONIC plots, 19-14

“connect” option, 15-11,

18-14

Index-26

converting coordinates, 19-9,

19-26

coordinate types, 19-8

current equation in K@), 18-2

cursor position, 1-36, 18-20

dependent variable, 19-5

description, 18-2; 18-17

display ranges, 1-34, 18-9

editing current equation, 18-7

Equation Catalog, 1-38, 17-6,

18-5

erasing area, 19-23

function analysis, 1-36, 18-25,

18-32, 18-33, 18-34

FUNCTION plots, 1-33, 18-1,

19-14

Graphics environment. See

Graphics environment

independent variable, 1-34,

18-9, 19-5

labeling axes, 18-20, 19-2

marking position, 18-20,

19-23

messages, 18-4, 18-8, 19-22

multiple equations, 18-18

PARAMETRIC plots, 19-17

PICT. See PICT

pixel coordinates, 19-8

pixel operations, 19-25

PLOT menu, 18-7

PLOTR menu, 18-15, 19-5

plots programs, 18-4, 19-20

plotting, 1-34, 18-11

plotting ranges, 19-1

plot types, 19-2, 19-4, 19-12,

19-13

POLAR plots, 19-16

PPAR, 19-6, 19-7

PTYPE menu, 19-13

replotting, 18-22

resetting plot parameters,

18-10, 19-7

resolution, 19-3

reviewing parameters, 18-16,

18-21

scaling, 18-10, 18-22

setting current equation,

1-33, 18-5

setting plot parameters, 18-8,

19-6

setting plot type, 1-33, 18-5,

19-12

sides of equations, 1-34, 18-17,

19-14

solving the current equation,

1-36, 18-26

statistical data, 19-22

storing value of constant,

1-33

TRUTH plots, 19-18

types of “equations”, 18-4,

18-17

unit objects, 19-21

user-defined functions, 19-20

user-unit coordinatess, 19-8

zooming, 18-22, 18-34

PLOT menu, 18-7

plot parameters

resetting, 18-10, 19-7

setting, 18-8, 19-6

viewing, 18-16, 18-21

PLOT PLOTR menu, 18-15,

19-5

PLOT PTYPE menu, 19-13

PLOTR menu, 18-15, 19-5

plotting. See Plot

plotting ranges, 19-1

plot type

BAR, 19-4, 19-13, 19-21,

21-15

Index

CONIC, 19-2, 19-4, 19-13,
19-14

FUNCTION, 19-4, 19-13,
19-14

HISTOGRAM, 19-4, 19-13,
19-21, 21-17

operation, 19-12

PARAMETRIC, 19-2, 19-4,

19-13, 19-17

POLAR, 19-2, 19-4, 19-13,

19-16

SCATTER, 19-4, 19-13,

19-21, 21-14

setting, 1-33, 18-5, 19-12

TRUTH, 19-2, 19-4, 19-13,

19-18

plug-in cards. See application

cards, RAM cards

application, 5-1, 34-1

environmental limits, A-6

expanding RAM, 5-1, 34-1

expanding ROM, 5-1, 34-1

installing, 34-2, 34-5

new RAM cards, 34-2

nonapproved, 34-2

removing, 34-7

plug-in ports

for plug-in cards, 34-1

installing cards, 34-2

list of backup objects, 34-17

menu of objects; 34-16

removing cards, 34-7

searching, 34-17

testing, A-14

type of memory in, 34-11,

34-18

wildcards, 34-17

pointer (Interactive Stack), 3-9
Polar coordinate mode, 11-1,

12-1

Index-27

Index

POLARplots, 19-2, 19-4, 19-13,

19-16

polynomials

as approximations, 22-3, 23-8,

23-13

in EquationWriter, 16-11

Taylor’s, 23-8, 23-13, 31-36

population statistics, 21-8, 21-10

port 0

backing up memory into,

34-18

built-in independent memory,

34-10, 34-15

libraries in, 34-21

moving objects into, 34-12

restoring memory from, 34-19

ports. See plug-in ports, serial

port

PPAR

plot parameters, 19-6

reserved variable, 6-2

resetting, 19-7

precedence

symbolic operators, 8-5

unit operators, 13-6, 13-7

precision, 1-21, 2-14

FREG annunciator, 2-3, 25-6,

25-11

PRG BRCH menu, 26-4, 27-1

PRG CTRL menu, 25-24

PRG OBJ menu, 4-12

PRG STK menu, 3-18

PRG TEST menu, 26-2

principal solutions, 22-b

print buffer, 32-8

printers

end-of-line, 32-12

line length, 32-12

print buffer, 32-8

printing objects, 32-3

speed, A-b

Index-28

trace mode, 31-44

printing

accumulating data, 32-8

battery use, 32-4

characters, 32-5, 32-7

control characters, 32-8

display, 32-4

double spaced, 32-7

end-of-line, 32-9, 32-12

escape sequences, 32-8

graphics objects, 32-5

line length, 32-12
objects, 32-3

PRTPAR, 32-11

setting delay, 32-7, 32-11

speed, A-5

stack, 32-4

strings, 32-5

to serial port, 32-9

trace mode, 31-44

variables, 32-4

PRINT menu, 32-5

probability commands, 9-13,

21-20. See also Statistics

problems, A-1, A-3

problem-solving techniques,

1-17

PROB menu, 9-13, 21-20

Program Development Link,

25-12, 31-1, 32-9, 33-6,

33-10, 33-14, 33-22

Program-entry mode, 3-17,

25-6, 25-11

program quotes. See delimiters

programs

actions for object types, 25-2

adjusting clock, 24-4

alarms in, 24-15

are sequences of objects, 1-40,

25-1, 25-2

beeping, 29-12

building-block, 25-5
calculation styles, 1-41, 25-4

causing errors, 30-2

checksums, 31-1

comments in, 25-12

compared to algebraics, 8-2

compared to libraries, 34-19

compared with HP 41, F-10

conditional structures, 26-4,

30-4, 30-5

creating on computer, 25-12

cursor position during input,

29-8

debugging, 25-21

default input, 29-5

delimiters, 4-6

displaying menus, 29-13,

29-18, 29-19, 29-20

displaying output, 29-14,

29-15, 29-16, 29-17

displaying string output,

29-15

editing, 1-43, 25-11

elapsed time, 24-20, 31-5

entering, 1-41, 25-6

entering algebraics in, 3-17

entry modes, 3-17, 25-6, 25-11

entry modes during input,

29-8

error actions, 30-2

evaluating, 4-20

evaluating local variables,

25-15

evaluating variables

containing, 6-4

examples. See example

programs

executing, 1-43, 25-7

finding roots in, 17-11, 31-45

flags in, 28-1

Index

getting input, 29-1, 29-4,

29-5, 29-13, 29-17

graphical elements commands,

19-25

graphics objects commands,

19-27

HALT annunciator, 25-22

halting, 25-23

in local variable structure,

25-3, 25-13

input as strings, 29-6

input sources, 29-1

interactive, 29-1

introduction, 25-1

killing, 25-22; 25-23

labeling output, 29-14, 29-15

local variables. See local

variables

local variable structures, 1-42,

25-3, 25-13. See also local

variable structures

loop structures, 27-1

naming, 25-6

newlines in, 1-41, 25-6

not evaluating local variables,

25-15

not executing in programs,

25-2

objects in, 25-2

object type number, 4-19

on the stack, 25-6

pausing for output, 29-16

plotting, 18-4, 19-20

program flow, 25-4

prompting, 29-1, 29-4, 29-5

recursion, 31-2

resuming, 25-22, 25-23, 29-2,

29-4, 29-19, 29-23

scope of local variables in,

25-16

Index-29

single-step execution, 25-21,

25-22, 25-23, 25-24

size of, 31-1

solving, 17-3, 17-30

stack manipulation, 25-18

stopping, 1-43, 2-6, 25-7

storing, 25-6

structured, 25-4

structures in, 25-3

subroutines, 25-5, 25-19

test commands, 26-1

trapping errors, 30-4, 30-5

turning off calculator, 29-23

type of object, 4-6

used by other programs,

31-32

user-defined functions, 25-17

verifying input, 29-8, 31-30

viewing, 25-11

waiting for keystrokes, 29-13

prompting, 29-1, 29-4, 29-5

PRTPAR, 6-2, 32-10, 32-11

PTYPE menu, 19-13

purging

alarms, 24-12, 24-16

arrays, 21-7

backup objects, 34-17

directories, 7-6

memory, 5-3

variables, 1-16, 6-8, 7-b

Q

RAM cards

as independent memory, 34-9,

34-15

as merged memory, 34-9,

34-14

backing up memory, 34-18

battery (initial), 34-2
battery preserves memory,

34-9

battery (replacing), A-9

battery type, A-7

expanding user memory, 5-1,

34-1, 34-11, 34-14

for backup objects, 34-15

free before removing, 34-8,

34-12

freeing, 34-12, 34-13

initializing, 34-7

installing, 34-2, 34-5

memory types, 34-9

moving objects into, 34-13

new, 34-2

protecting memory, 34-6,

34-14

removing, 34-7

restoring memory, 34-19

testing, A-14

transferring objects, 34-18

type of memory in, 34-11,

34-18

write-protect switch, 34-5,

34-14

quadratic equations, 22-3

questions and answers, A-3

quote marks. See delimiters

random numbers, 9-13

real arrays, 4-19

real numbers

R

FE<Z annunciator, 11-2, 12-3

F«« annunciator, 11-2, 12-3

FHl annunciator, 1-21, 9-8

Radians mode, 1-21, 9-8

Index-30

complex results, 11-9

converting to binary, 14-5

converting to fractions, 9-4

converting to strings, 4-17

object type number, 4-19

range of values, 4-2

type of object, 4-2

real part

of complex arrays, 20-14

of complex numbers, 4-13,

11-11

recalling

alarm action objects, 24-11

alarms, 24-14, 24-16

backup objects, 34-16

current directory path, 7-3

flag states, 28-4

HP 48 memory from computer,

33-15

last arguments, 3-5

last command lines, 3-18

last stack, 3-6

memory from backup object,

34-19

menu numbers, 29-19

user key assignments, 15-10

variables, 1-14; 6-5, 17-13,

17-18

rectangles, 19-23, 19-25, 19-27

Rectangular coordinate mode,

11-1, 12-1

recursion, 31-2

refinement (iterative), 20-18
regression (linear), 21-12
repair service, A-2, A-18

repeating alarms, 24-5, 24-9,

24-10

replace cursor, 3-8

reserved variables, 6-2

resetting

flags, A-2

memory, 5-3, A-2

modes, 5-3, A-2

PICT, 18-10, 19-7

plot parameters, 18-10, 19-7

PPAR, 19-7

residual correction, 20-18

resolution, 19-3

results modes

affect symbolic constants,

9-16

evaluating algebraics, 8-3

Review Catalog, 6-7

RIGHT value, 17-16

rolling stack objects, 3-11, 3-19

ROM cards. See application

cards

root-finder

in Graphics environment,

18-33

in programs, 31-45

intermediate results, 17-33

interrupting, 17-32

operation, 17-31

roots

definition, 17-3

in EquationWriter, 16-7

in Graphics environment,

1-36, 18-26, 18-33

in programs, 17-11, 31-45

message describes, 17-19

method for finding, 17-31

verifying, 17-16

rotate (binary integers), 14-5
rounding numbers, 9-15

row vectors, 20-2, 20-7

RPN. See stack syntax

compared with HP 41, F-1

same as stack syntax, 1-5

RPT menu, 24-12

RULES menu, 22-13

Rules transformations, 22-11,

22-23

S

sl

general solutions (4 or —),
1-27, 22-2, 22-4, 22-6

Index-31

Index

P
—
—

reserved variable, 6-2, 11-8

sample statistics, 21-8, 21-10

scaling, 18-10, 18-22

SCATTER plots

description, 21-13

from Plot, 19-13, 19-21

from Statistics, 21-11, 21-14

resolution, 19-4

setting display ranges, 19-22

Scientific display mode, 2-15

scrolling

in EquationWriter, 16-2, 16-3,

16-4

in Graphics environment,

18-20

Selection environment

editing subexpressions, 16-19,

16-22

EquationWriter mode, 16-2,

16-3

Rules transformations, 22-12

self-test, A-12

semicolon (complex numbers),

11-2) 11-8

serial cable, 32-9, 33-10, 33-22

serial port

connecting printer, 32-9

for I/0, 33-4
for printing, 32-9

selecting, 33-4

testing, A-16

wiring, 33-22

serial printers, 32-3, 32-9

series (finite), 23-5
Server mode, 33-3, 33-9, 33-13

service repair, A-2, A-18

SET menu, 24-4

setting flags, 15-12

SETUP menu, 33-4

shift (binary integers), 14-5

Index-32

shift keys

annunciators, 2-b

canceling, 2-5

in custom menus, 15-4

introduced, 1-3

operation, 2-4

simplification, 8-5

single-sample statistics, 21-8,

21-10

single-step execution, 25-21,

25-22, 25-23, 25-24

ST units

base units, 13-2

converting to, 13-11

size

of arrays, 4-17

of built-in ROM, 5-1, 34-1

of graphics objects, 4-17

of lists, 4-17

of memory, 5-1, 34-1, A-3

of objects, 5-2

of programs, 31-1

of stack, 3-18

of statistics matrix, 21-20

of strings, 4-17

slope, 18-26, 18-27, 18-34

Snedecor’s F distribution, 21-21

SOLVE menu, 17-11

SOLVE SOLVR menu, 17-12,

17-17, 17-25, 17-33

solving. See HP Solve, Plot

current equation, 1-30, 1-36,

17-12, 18-26

equations, 1-29, 17-1

graphically, 1-36, 18-26

in programs, 17-11, 31-45

numerically, 1-29, 1-30, 1-36,

17-1, 17-12, 18-26

programs, 17-3, 17-30

quadratic equations, 22-3

symbolically, 1-27, 22-1, 22-2,

22-3

systems of equations, 20-11,

20-12, 20-18, 20-19

with unit objects, 1-47, 17-23

SOLVR menu, 17-12, 17-17,

17-25, 17-33

sorting numbers, 31-14

Spherical coordinate mode,

11-2, 12-2

square brackets. See delimiters

stack

calculations on, 3-2, 25-4,

25-18

chain calculations, 1-18, 3-3

compact display, 15-11

compared with HP 41, F-2

deleting objects, 1-7, 3-5,

3-11, 3-18

displaying, 1-9, 2-6, A-1

duplicating entries, 3-5

dynamic size, 2-3, 3-1

general manipulation, 3-11,

3-18

graphics objects on, 19-26,

19-27

Interactive Stack, 3-10

introduced, 1-3

last, 3-6

moving objects, 3-11, 3-18

operation, 1-6, 2-3, 3-1, 3-2

printing, 32-4

programmed manipulation,

25-18

putting objects into algebraics,

16-21, 16-22, 22-12

recalling last arguments, 3-5

restoring from variable, 5-3

restoring last, 3-6

rolling objects, 3-11, 3-19

Index

saving as graphics objects,

19-29

saving in variable, 5-3

size of, 3-18

swapping levels, 1-18, 3-4

viewing, 1-9, 3-10

working with PICT, 19-30

stack display

organization, 2-1

returning to, 1-9, 2-6, A-1

viewing, 19-29

viewing graphics objects,

19-29

stack pointer, 3-9

stack syntax

compared with HP 41, F-5

defined, 1-5

derivatives, 23-3

description, 3-2, 9-1

in local variable structures,

25-4

integrals, 23-11, 23-15

summations, 23-6

test commands, 26-1

user-defined functions, 1-39,

10-2

standard deviation, 21-9, 21-10

Standard display mode, 2-15

“start” looping, 27-2, 27-4

statistical data. See Statistics

correlation, 21-12

covariance, 21-10

editing, 21-4

entering, 21-2

frequencies, 21-9; 21-18

in YDAT, 21-2

mean, 21-9

median, 31-14

model, 21-11, 21-12, 21-14

plotting, 21-13

plot types, 21-13

Index-33

Index

population data, 21-8

probabilities, 21-20

putting on stack, 21-7

sample data, 21-8

standard deviation, 21-9,

21-10

summations, 21-19

test statistics, 21-20

upper-tail probabilities, 21-20

using MatrixWriter, 21-3,

21-4, 21-5, 21-7

variance, 21-9

Statistics. See probability

commands

YDAT data, 21-2

YPAR parameters, 21-23

BAR plots, 21-15

calculating model, 21-11

calculations, 21-8, 21-10

clearing data, 21-2

compared with Plot, 19-21

correlation, 21-12

covariance, 21-10

current matrix, 21-2, 21-5

curve fitting, 21-12, 21-14

data structure, 21-1

dependent variable, 21-11

editing data, 21-4

entering data, 21-2

frequency data, 21-9, 21-18

getting matrix, 21-5

HISTOGRAM plots, 21-17

independent variable, 21-11

linear regression, 21-12

mean, 21-9

messages, 21-1, 21-5, 21-10,

21-12, 21-18, 21-19

model, 21-11, 21-12, 21-14

model types, 21-11

MODL menu, 21-12

paired-sample statistics, 21-10

Index-34

plotting data, 21-13

plotting model, 21-14

plot types, 21-13

population statistics, 21-10

predicting values, 21-12

probabilities, 21-20

purging arrays, 21-7

recalling data, 21-5, 21-7

sample statistics, 21-8, 21-10

SCATTER plots, 21-11, 21-14

single-variable statistics, 21-8,

21-10

standard deviation, 21-9,

21-10

statistical data, 21-2

Statistics Catalog, 21-5, 21-6

STAT menu, 21-5, 21-9,

21-11, 21-19, 21-20

summation statistics, 21-19

test statistics, 21-20

two-variable statistics, 21-10

upper-tail probabilities, 21-20

variance, 21-9

Statistics Catalog, 21-5, 21-6

STAT menu, 21-5, 21-9, 21-11,

21-19, 21-20

STAT MODL menu, 21-12

status area, 2-1, 7-2

STK menu, 3-18

storing

alarm action objects, 24-11

alarms, 24-16

equations in FQ, 17-4, 17-5,

18-5

flag states, 28-4

memory in backup object,

34-18

memory on computer, 33-14

objects in variables, 1-13,

1-14, 6-2, 6-5, 6-7, 17-18

programs, 25-6

user key assignments, 15-6

strings

action in programs, 25-2

as program output, 29-15

combining, 4-13

converting objects to, 4-17

counted strings, 4-7

creating from algebraics, 16-4

delimiters, 4-7

executing, 4-15

in custom menus, 15-2

input converted to, 29-6

object type number, 4-19

printing, 32-5

replacing characters, 4-17

sending to serial port, 33-20

size of, 4-17

substrings, 4-16, 4-18

type of object, 4-7

structured programming, 25-4

structures. See branching

structures, local variable

structures

Student’s t distribution, 21-21

subdirectories

creating, 7-3

description, 7-2

in custom menus, 15-2, 15-3

switching to, 7-5

subexpressions

definition, 16-19, 22-8, 22-12

editing, 16-18, 22-12

putting on stack, 22-12

rearranging, 22-12

replacing, 16-22; 22-12

submenus, 1-10, 2-12

subroutines

debugging, 25-23

in programs, 25-5, 25-19

operation, 25-19

single-step execution, 25-23

Index

summations

algebraic syntax, 23-5

alternative to looping, 27-15

calculating value, 23-5

in EquationWriter, 16-9, 23-5

in Statistics, 21-19

stack syntax, 23-6

Support Department. See inside

back cover

swapping stack levels, 1-18, 3-4

symbolic arguments, 1-26, 9-18

symbolic constants

m, 1-20, 9-9

evaluating, 9-16, 9-17

flags affect, 9-17, 15-13

names of, 9-15

numeric values, 9-16

symbolic expressions. See

algebraics, expressions

Symbolic Results mode

affects symbolic constants,

9-16

evaluating algebraics, 8-3

symbols (alpha keyboard), 2-8
syntax errors, A-1

system flags. See flags

systems of equations

over-determined, 20-19

solving, 20-11, 20-12, 20-18,

20-19

under-determined, 20-19

-

tagged objects

as program output, 29-14

creating, 4-18

deleting tag, 4-13

delimiters, 4-8

entering, 2-11

object type number, 4-19

separating, 4-15

Index-35

+ Index

. type of object, 4-8

Taylor’s polynomials

calculating, 23-8

graphing, 31-36

integrating, 23-13

t distribution, 21-21

temperatures

calculations, 13-18

calculator limits, A-6

converting, 13-17

differences, 13-17, 13-18,

13-19

levels, 13-17, 13-18

plug-in card limits, A-6

units of measure, 13-17

test commands

algebraic syntax, 26-1

combining results, 26-3

comparison functions, 26-2

flag tests, 28-2

in conditional structures,

26-1, 26-4

in loop structures, 27-10,

27-12

logical functions, 26-3

results of, 26-1, 26-2

stack syntax, 26-1

types, 26-1

testing

algebraics, 26-3

binary integers, 26-3

calculator, A-11

flag states, 15-12, 28-2

pixels, 19-26

TEST menu, 26-2

test statistics, 21-20

text, 4-7

tick marks. See delimiters

ticks (clock), 24-4, 24-15, 24-19

Index-36

time

adjusting, 24-3

adjusting in programs, 24-4

as ticks, 24-19

calculations, 24-18

changing format, 1-47, 24-2

converting formats, 24-19

displaying, 1-48, 15-11, 24-2

elapsed time, 24-20

format options, 24-1

HMS format, 24-19

setting, 1-48, 24-2

TIME ADJST menu, 24-4

TIME ALRM menu, 24-11

TIME ALRM RPT menu, 24-12

TIME menu, 24-4, 24-11

timeout (serial), 33-20
TIME SET menu, 24-4

too few arguments, A-5

trace mode, 31-44

transferring data. See I/0O
transformations

built-in, 22-11

user-defined, 22-23

translation code

choosing, 33-6

HP 48-to-computer, 33-11

serial printer, 32-10

setting, 33-4, 33-23, 33-24

transmit modes

ASCII, 33-5, 33-22

binary, 33-5

choosing, 33-5

HP 48-to-computer, 33-11

HP 48-to-HP 48, 33-8

selecting, 33-4

transpose, 20-17

trapping errors, 30-1

triangle (right), 12-3
trigonometric functions, 9-8,

13-14, A-4

true (test result), 26-1, 26-3

truncating numbers, 9-15

TRUTH plots, 19-2, 19-4, 19-13,
19-18

two’s complement, 14-3

typing. See keyboard

typing aids, 15-2

U

under-determined systems,

20-19

underscore. See delimiters

undoing

changes to variables, 6-9

mistakes, A-1

unit objects. See units of

measure

calculations with, 1-45, 13-14

calculations with

temperatures, 13-18

consistent units, 1-45, 13-14,

17-23

converting units, 1-45, 1-46,

13-8, 13-9, 13-10, 13-11

converting units of angle,

13-12

converting units of

temperature, 13-17

creating, 1-44, 4-18, 13-3,

13-4, 13-5, 13-10, 13-22

creating in EquationWriter,

16-10

delimiters, 4-9, 13-2

disassembling, 4-15

editing in EquationWriter,

16-23

factoring units, 13-13

graphics objects from, 19-28

in algebraics, 13-7

in custom menus, 15-2

in HP Solve, 1-47, 17-23

Index

inverse units, 1-44, 13-3,

13-10, 16-10

numeric part, 1-46, 13-22

object type number, 4-19

plotting, 19-21

precedence of delimiter, 13-7

precedence of unit operators,

13-6

prefixes for units, 13-6, 13-22

solving with, 1-47, 17-23

type of object, 4-9

user-defined units, 13-21

viewing in EquationWriter,

13-6, 16-23

Units application, 13-1. See

also unit objects, units of

measure

UNITS Catalog menu, 13-2,

13-8

UNITS Command menu, 13-1

units of measure. See unit

objects

based on SI units, 13-2

case-sensitive names, 13-4

checking names, 13-6

converting, 1-45, 1-46, 13-8,

13-9, 13-10, 13-11

converting angles, 13-12

converting temperatures,

13-17

deleting, 1-46, 13-22

dimensionally consistent,

1-45, 13-14, 17-23

entering in EquationWriter,

16-10

factoring, 13-13

in calculations, 1-45, 13-14,

13-18

in custom menus, 15-2

inverse, 1-44, 13-3, 13-10,

16-10

 Index-37

Index

list of, G-1

operators, 13-6

photometric units, 13-12

prefixes, 13-6, 13-22

solving with, 1-47, 17-23

temperature differences, 13-19

temperature units, 13-17,

13-18

unknown variables (solving),
1-30, 17-12

uppercase letters

entering, 2-7, 2-9

in units, 13-4

upper-tail probabilities, 21-20

JZER annunciator, 2-3, 15-5

user-defined derivatives, 23-4

user-defined errors, 30-2

user-defined functions

arguments, 1-39, 10-1, 10-2

creating, 1-39, 10-1

derivatives, 10-3, 23-4

description, 10-1

evaluating, 1-39, 10-2

internal structure, 10-5, 25-17

nesting, 10-4

plotting, 19-20

user-defined transformations,

22-23

user-defined units, 13-21

user flags. See flags

user keys

activating, 15-5

assigning, 15-6

disabling, 15-9

editing assignments, 15-10

operation, 15-5

packing assignments, 15-10

recalling assignments, 15-10

unassigning, 15-8

Index-38

user memory

description, 5-1

expanding, 34-1, 34-9, 34-11,

34-14

user modes

activating, 15-5

annunciators for, 2-3

assigning keys, 15-6

automatically locking, 15-5,

15-13

disabling keys, 15-9

getting unstuck, 15-10

operation, 15-5

unassigning keys, 15-8

user-unit coordinatess, 19-8

1LIEE annunciator, 2-3, 15-5

v

variables

action in programs, 25-2

arithmetic with, 6-10

changing contents, 1-15, 6-5

creating, 1-13, 6-2, 6-3, 8-6

decrementing, 27-13

description, 1-13, 6-1

directories in, 7-3, 7-6

duplicate names, 7-4

editing, 1-15, 3-6, 6-5

entering names, 6-6

error recovery, 6-9

evaluating, 4-20, 6-4, 6-6, 6-7

evaluating selectively, 22-7

evaluating variables

containing, 6-4

finding, 7-4, A-5

formal, 6-6, 8-2, 8-4

global. See global variables

HP 48-computer 1/0, 33-12
HP 48-HP 48 1/0, 33-8

incrementing, 27-13

in custom menus, 15-2

independent, 1-34, 18-9

in other directories, 7-4

listing by object types, 4-19

list of, 6-8

local. See local variables

memory used by, 5-2

menu of, 1-14, 6-3, 6-7

names, 4-5

naming, 1-13, 6-1

preventing evaluation, 6-6

printing, 32-4

protecting for 1/0, 33-8,
33-11, 33-16

purging, 1-16, 6-8

purging all, 1-16, 6-9, 7-5

quoted names, 6-6

recalling contents, 1-14, 6-5,

6-7
recalling in HP Solve, 17-13,

17-18
reordering VAR menu, 6-8

reserved names, 6-2

Review Catalog, 6-7

separating into directories,

7-1
showing hidden, 22-7

showing names and contents,

6-7
solving for values, 1-30, 17-12,

18-26
solving symbolically, 1-27,

22-1, 22-2, 22-3
storing in HP Solve, 17-18

storing objects in, 1-13, 1-14,

6-2, 6-5, 6-7
type numbers of stored objects,

4-19
types of, 6-1

unquoted names, 6-6

using contents, 1-14, 6-4

viewing, 1-32, 3-6, 17-13

variance (statistics), 21-9
VAR menu

description, 1-14, 6-7

displays directories, 7-3

reordering, 6-8

vectored enter, 31-44

vectors. See arrays

and complex numbers, 11-12

angle between, 12-8

assembling, 12-5; 12-14

calculations, 12-8, 12-14,

20-9, 20-11

compared with HP 41, F-5

complex, 20-13

coordinate modes, 12-1

cross products, 20-9

delimiters, 12-4

disassembling, 12-5, 12-14

displayed, 12-1

dot products, 20-9

entering, 12-4, 20-3, 20-5,

20-7

internal representation, 12-3,

12-4

normalized, 12-4

type of array, 20-1

unit vector, 12-8

VECTR menu, 9-11, 12-3, 12-14

viewing

in EquationWriter, 16-23

in MatrixWriter, 20-6

stack objects, 3-6

variables, 3-6

Vroom, Fruit of the, 31-43

w

waiting

displaying output, 29-16

for keystrokes, 29-13

warranty, A-17

Index-39

Index

where function setting, 14-1

in EquationWriter, 16-10 testing, 26-3

in integrals, 23-12 write-protect switch, 34-5, 34-14

operation, 22-25

“while” looping, 27-12 X
wildcards XLIB names, 4-12, 4-19

backup objects, 34-17 XON/XOFF handshaking,
user-defined transformations, 32-10, 33-19, 33-24

22-23, 22-24
Wire mode, 33-4 z

wordsize (binary) zoom factor, 18-22
bits lost, 14-2, 14-3 zooming, 18-22; 18-34

recalling, 14-2 ZOOM menu, 18-22

Index-40

Contacting Hewlett-Packard

For Information about Using the Calculator. If you have
questions about how to use the calculator, first check the table of

contents, the subject index, and “Answers to Common

Questions” in appendix A. If you can’t find an answer in the

manual, you can contact the Calculator Support Department:

Hewlett-Packard

Calculator Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m. to 3:00 p.m. Pacific time

Monday through Friday

For Service. If your calculator doesn’t seem to work properly, see

appendix A for diagnostic instructions and information on

obtaining service. If you are in the United States and your

calculator requires service, mail it to the Corvallis Service Center:

Hewlett-Packard

Corvallis Service Center

1030 N.E. Circle Blvd.

Corvallis, OR 97330, U.S.A.

(503) 757-2002

If you are outside the United States, see appendix A for

information on locating the nearest service center.

HP Calculator Bulletin Board System. The Bulletin Board

provides for the exchange of software and information among HP

calculator users, developers, and distributors. It operates at

300/1200/2400 baud, full duplex, no parity, 8 bits, 1 stop bit.

The telephone number is (503) 750-4448. The Bulletin Board is a

free service—you pay for only the long-distance telephone charge.

Part 1: Building Blocks

1: Trying Out the HP 48

2: The Keyboard and Display

3: The Stack and Command Line

4: Objects

Part 2: Hand Tools
9: Common Math Functions

10: User-Defined Functions

11: Complex Numbers

12: Vectors

Part 3: Power Tools
16: The EquationWriter Application

17: The HP Solve Application

18: Basic Plotting and Function

Analysis

19: More about Plotting and Graphics

Objects

Part 4: Programming

25: Programming Fundamentals

26: Tests and Conditional Structures

27: Loop Structures

28: Flags

13:

14:

15:

20:

21:

22:

23:

24:

29:

30:

31:

Calculator Memory

Variables and the VAR Menu

Directories

More about Algebraic Objects

Unit Management

Binary Arithmetic

Customizing the Calculator

Arrays

Statistics

Algebra

Calculus

Time, Alarms, and Date Arithmetic

Interactive Programs

Error Trapping

More Programming Examples

Part 5: Printing, Data Transfer, and Plug-Ins

32: Printing

33: Transferring Data to and from the

HP 48

34: Using Plug-In Cards and Libraries

Part 6: Appendixes

Support, Batteries, and Service

Messages

HP 48 Character Codes

Menu Numbers and Menu Mapsg
e
w
>

HEWLETT
(’5fi PACKARD
Part Number 00048-90091

Edition 1

English

Printed in U.S.A. 11/91

E:

F:

G:

HP 48 System Flags

Comparing the HP 48 and HP 41

Operation Index

For HP internal use only:

00048-90092

	Cover
	Contents
	Part 1. Building Blocks
	1. Trying Out the HP 48
	2. The Keyboard and Display
	3. The Stack and Command Line
	4. Objects
	5. Calculator Memory
	6. Variables and the VAR Menu
	7. Directories
	8. More about Algebraic Objects

	Part 2. Hand Tools
	9. Common Math Functions
	10. User-Defined Functions
	11. Complex Numbers
	12. Vectors
	13. Unit Management
	14. Binary Arithmetic
	15. Customizing the Calculator

	Part 3. Power Tools
	16. The EquationWriter Application
	17. The HP Solve Application
	18. Basic Plotting and Function Analysis
	19. More about Plotting and Graphics Objects
	20. Arrays
	21. Statistics
	22. Algebra
	23. Calculus
	24. Time, Alarms, and Date Arithmetic

	Part 4. Programming
	25. Programming Fundamentals
	26. Tests and Conditional Structures
	27. Loop Structures
	28. Flags
	29. Interactive Programs
	30. Error Trapping
	31. More Programming Examples

	Part 5. Printing, Data Transfer, and Plug-Ins
	32. Printing
	33. Transferring Data to and from the HP 48
	34. Memory, Plug-In Cards, and Libraries

	Part 6. Appendixes
	A. Support, Batteries, and Service
	B. Messages
	C. HP 48 Character Codes
	D. Menu Numbers and Menu Maps
	E. HP 48 System Flags
	F. Comparing the HP 48 and HP 41
	G. Operation Index

	Index

