
Using the HP49G for System
RPL Programming

Eduardo M Kalinowski
ekalin@iname.com

January, 2001

Contents
1 Introduction 3

2 The Entry Points Library 4

3 About Key Assignments 5

4 Hacking Tools 6
4.1 Operating Tools for the HP49 9

5 The Compiler 10

6 Disassembly 12
6.1 Disassembly of Built-in Commands 12

1

7 The Editor, and Emacs 13
7.1 Emacs Customization . 17

8 Debugging 19

9 Conclusion 20

2

1 Introduction

This document will describe tools for the HP49G calculator that
make it a suitable programming environment for System RPL devel-
opment. The HP49G calculator includes a built-in compiler, disassem-
bler and some sort of debugger (which, to say the truth, could be im-
proved), plus some other little tools that can be of use to the System
RPL programmer. However, for big programming tasks that is not
enough: some other tools are necessary to make programming easier.
Because of this, some third-party tools will also be described. With a
good knowledge of the built-in and third-party tools the HP49G can
be used as a complete and compact programming environment. All the
tools described here can be downloaded from The HP Software Archive,
http://www.hpcalc.org.

Although several times comparisons with HP48 or PC programs
are made, no experience with them is necessary.

The built-in programming tools you will need are, by default, not
accesible to the user. They are in two libraries, which are not attached
by default. Library 256 contains several useful commands for “hack-
ing” with the calculator, and the disassembler. Library 257 contains
MASD, the compiler. You should have these libraries always attached.
If you have extable installed (and you should — see section 2), then
library 256 will be automatically attached. Library 257 (MASD) does
not really need to be attached, because it is possible to call MASD from
library 256. Nevertheless, it is still good to have it attached.

The STARTUP variable is useful to configure the calculator. This
variable (which must be in the HOME directory) contains an object to be
executed after each warmstart. It can be used to set all parameters
lost by a warmstart that you want to keep, or to do anything else you
want. The following program will set user mode (which is lost in a
warmstart); for efficient programming it is almost essencial to make
some key assignments.

� -62 SF �

3

2 The Entry Points Library

For System RPL development, the extable library is virtually
essencial. This library contains the tables of entry points and ad-
dresses. It is with the help of this library that you can write DUP and
get the correct address for this command; without it, you would need to
enter PTR 3188 every time or write an equate for this command man-
ually. In disassembly (including the System RPL stack (see section 4)
— flag -85), it allows you to get the name of the commands, instead of
only their addresses. This way, this library is pretty much essential

Download extable to your calculator and install it as any other
library. That’s all you need to do to use command names instead of
addresses.

This library contains the entry point tables (not visible to the
user) and a few useful commands. It appears in the library menu, and
it contains five user-accessible commands.

The first command, nop, does nothing :-). I suppose there was
a command in that position before, but it was removed, and another
command that does nothing was put there not to change the other XLIB
numbers.

The other four commands, fortunately, are sometimes useful :-)
(at least for the Emacs library). The GETADR command returns the ad-
dress of an entry. Just put the name of the entry (a string) in level one
and run it. The inverse operation is done by GETNAME: give it an address,
and it will return the name of the entry.

If you do not know exactly the name of an entry, the last two
commands will help you. Put a string with the first few letters of the
command in level one, run GETNAMES and, voilà, a list with the names
of all commands that start with those letters is returned. The last
command, GETNEAR, is even more powerful: give it a string, and all
commands whose names contain that string (even if in the middle of
the command) will be returned.

4

3 About Key Assignments

Even though assigning keys is not directly related to System
RPL programming, I will describe here the KEYMAN library, written
by Wolfgang Rautenberg. The latest version of January, 2001. This
library simplifies the assignment, deletion and recalling of keys, but,
most importantly, allows a key to behave differently if it is pressed
longer than usual, or to behave differently if the key is double pressed.

You will find several commands inside this library. The A?D com-
mand is used to assign and delete keys. To assign something to a key,
put the object in level one and press A?D shortly. Then, press the key
you want to assign to (shifts, and shift-holds work, of course). The key
is assigned. To delete an assignment, press A?D for a longer time, and
then the key from which you want to remove the assignment. The com-
mand RclK allows one to recall the assignment of any key. It works like
the previous commands: press it (briefly) and then the key. A longer
press will return a list of all the keys assigned.

The commands above are just other ways to do what was already
possible with the built-in commands. But the real power is in the IfE?P,
IfD and IfL commands. The first serves two functions: it allows a key
to have different meanings when in edit mode and when not or to have
different meanings when in program mode and when not. To use it, put
the object to be run in edit or program mode in level two, the object to
be run in normal mode in level one, and press IfE?P. A short press will
create a program that evaluates the object in level two if the calculator
is in edit mode, or the object in level one if not. A longer press does the
same, but the test is based on whether program entry mode is active or
not.

The IfD and IfL commands are similar. To use IfD, put in level
two the object to be run if the key is pressed twice like a computer
mouse — double pressed — and put in level one the object to be run if
the key is pressed once. Run IfD, and you will have a single program
that executes one of the objects according to how the key was pressed.
The command IfL is similar, but it allows different actions based on
how long the key is pressed: you have seen this behaviour in the A?D

command. The object to be run in a long press is in level two.
Finally, two other commands can sometimes be useful: →TO?

5

inserts the System RPL command TakeOver in the beginning of the
program when the key is pressed shortly. This is necessary if you want
the command to be executed while the command line is active. A longer
press inserts UnlockAlpha in the beginning of the program, useful when
it is assigned to an alpha-shifted key. Finally, SA recalls the standard
assignment for any key. This is used when you want to add new func-
tionality to a key. When this standard assignment is a command in a
library (that is, a ROM Pointer, also called a XLIB name), the pointer
is recalled to level two, and its contents is put in level one.

In the following sections, there will occour many examples of key
assignments built with these commands.

4 Hacking Tools

The tools described here make the life of the programmer easier.
First, the built-in tools in the HP49G will be described. Later, a third-
party library will be described.

Before describing the built-in tools found in library 256, I will
mention a flag that is very useful to System RPL programmers: flag
-85. When this flag is set, the “System RPL Stack” is active: in the
stack the objects are decompiled before being displayed. That means
that, where one would see just External with the normal stack, the
name for the entry (or PTR and the address, if no name is found) will
be displayed, if you have the extable library (see section 2) installed
(you should). Play with it a bit and you will see how useful it can
be. Some objects (most notabily real numbers and integers) keep their
usual notation, but in the interactive stack all objects are decompiled.
This “System RPL Stack” is like the one produced by the command SSTK

command of the JAZZ library for the HP48 calculators.
Probably you will be switching between the two kinds of stack

display all the time. It is a good idea to assign a simple program to a
key to toggle this display. I have it assigned to Right-Shift MODE. This
normally is the key that marks the end of selection in edit mode. Since
this key is unused when not in edit mode, it is a good example of the
use of the KEYMAN library. To create this assignment, first put the
program to be run when in edit mode in level two. This is easy: just

6

use SA to recall it, running SA then pressing Right-shift MODE. Then,
write a simple User RPL (or even System RPL, if you want) program to
toggle flag -85 (this task if left to the reader — but read the description
of OT49 in section 4.1 first). Finally, press IfE?P briefly and use →TO?

on the resulting program (because you want it to be run while in edit
mode), and assign it to the key, with A?D or the ASN command.

Library 256 contains some useful tools for the programmer. This
library does not show up in the library menu (because it does not have
a title), but you can get its menu by typing 256 MENU. If the library is
attached (as it should be), you can type the commands, look up them
in the catalog and an option will appear in the Apps menu, which says
“Development lib”, giving access to all the commands in the library.

Here is a description of the commands present in the library:

→H “To hex”: This converts an object into a string of hexadecimal char-
acters. A common tool since the HP48 days to ease transfer of
binary objects.

H→ “From hex”: This is the opposite transformation: creates an object
from a string of hexadecimal characters.

→A “To address”: Given an object, this command returns the address
of the object, which is always a five-nibble hxs. Objects whose
address is less than # 80000h are in ROM, and objects whose ad-
dress is greater than that are in RAM.

A→ “From address”: This recalls the object at the specified address.

A→H “Address to hex”: This converts # 272FEh into "EF272".

H→A “Hex to address”: The opposite transformation: converts "EF272"

into # 272FEh.

→CD “To code”: Converts a string of hex digits into a Code object.

CD→ “From code”: Converts a Code object into a string of hex digits.

S→H “String to hex”: Converts a string into its characters’ hexadecimal
representation. For example, since 5A, 59 and 58 are the hexadec-
imal codes for X, Y and Z respectively, "XYZ" becomes "8595A5".

7

H→S “Hex to string”: the opposite transformation.

→LST “Make list”: Creates a list from a usermetaobject or another com-
posite. A usermetaobject is any number of objects in the stack
followed by a count — a real number. Be careful, because this
command is not sufficiently argument-protected.

→ALG “Make algebraic”: Creates an algebraic object from a usermetaob-
ject or another composite. This may easily result in 'Invalid

Expression'.

→PRG “Make program”: Creates a program from a usermetaobject or
another composite.

COMP→ “From composite”: Explodes any composite object into a user-
metaobject.

→RAM “To RAM”: Dumps any ROM object into RAM. Can extract some
commands for disassembly, but see section 6.1 for more informa-
tion.

SREV “Reverse string”: Reverses a string, very fast.

POKE Writes data to any address in RAM. Put in level two a hxs with the
address, and in level one a string of hex digits to be written at that
address. This is a very easy way of destroying any “masterpiece”
you have created on the calculator :-).

PEEK Extracts raw hex digits from any address. Put the address in level
two (an hxs) and the number of nibbles to get (another hxs) in
level one.

APEEK “Address peek”: Like PEEK, but always gets five nibbles, returning
them as a hxs.

R�SB “Real↔ system binary”: Converts reals to bints and vice-versa.

SB�B “System binary↔ binary”: Converts bints to hxs’s, and vice-versa.

LR�R “Long real↔ real”: Converts long reals to reals and vice-versa.

8

S�N “String↔ name”: Converts strings to identifiers (global names) and
vice versa.

LC�C “Long complex↔ complex”: Converts long complexes to complexes
and vice-versa.

ASM→ “From ASM”: Disassemble Code objects (machine-language) into
source code.

BetaTesting Returns a string with some names (of beta testers of the
calculator?).

CRLIB “Create library”: A library creator.

CRC Calculates the CRC. The argument is a string of hex digits.

MAKESTR “Make string”: Creates a string with the number of characters
given in level one (a real number).

SERIAL Returns a string with the internal Serial Number of the HP49.

ASM Provides access to the MASD compiler. See section 5 for more infor-
mation.

ER Used in conjunction with ASM. See section 5 for more information.

→S2 Disassembles an object. See section 6 for more information.

XLIB� Creates a XLIB (rompointer) from the library number (level two)
and command number (level one). Although the � in the name
suggests this is a toggler, it can only create rompointers, not ex-
tract them.

4.1 Operating Tools for the HP49

Wolfgang Rautenberg (e-mail: raut@math.fu-berlin.de) is the
author of a library called Operating Tools (or OT49 for short) with sev-
eral commands, some of which are useful to the System RPL program-
mer. The latest version of this library is of February 2001.

OT49 contains a library creator and splitter. To split any library,
just put its number in the stack and run D↔L.

9

The DType command displays the type of the object in level one.
If that object is a rompointer (XLIB) or flashpointer, its contents is re-
called (unless it’s pure machine-language code) and the contents’ type
is displayed, with an asterisk appended.

The most useful command, in my opinion is 3tog. It toggles be-
tween three representations of composite objects: as a list, as a pro-
gram and as a usermetaobject.

Another very useful command is Fl�. It is a flag toggler. Just
give the number of the system or user flag, run it, and the flag is tog-
gled. It will also display in the header what has just been done.

The→XU command strips unnecessary stuff such as the � � de-
limiters from User RPL programs. The resulting program will be a
little faster, but uneditable. You can, however, change it easily with
the help of other OT49 commands.

5 The Compiler

The compiler included in the HP49G calculator is MASD. It is a
newer version of the compiler found in the MetaKernel program for the
HP48G calculators. If you have already used the MetaKernel, then you
probably can skip most of this section. But, even if you have never used
MASD, there should be no difficulties learning how to use it. There are
no big differences between MASD syntax and that of other System RPL
compilers such as JAZZ (for the HP48 calculators), the HP Tools or the
GNU Tools.

MASD is called with the command ASM. It expects a string in
level one, and returns the compiled object. If there are errors, the string
and a list will be put in the stack. This list is used by the ER command,
described shortly.

The first difference to be observed from those that are coming
from JAZZ or one of the PC Tools is that MASD, for some unknown
reason, need the source to end with a @ character. This character must
be on a line by itself, at the start of the line, and with no character after
it (not even a newline). This way, it is pretty much cumbersome and
useless. (To be useful, it would be the character marking the end of the

10

source, but there should not be all those restrictions on its placement,
and text after it should be allowed — and ignored). However, if you use
Emacs’ RPLCPL (see section 7), the @ comes in handy.

The other thing to note concerns the current MASD mode. There
are two modes, controlled by flag -92: Assembly Language mode (flag
-92 cleared) and System RPL mode (flag -92 set). Probably, you will set
flag -92 and thus MASD will be by default in System RPL mode. Then,
nothing else needs to be changed to compile System RPL programs (just
add the @ in the end). It is still possible to compile Assembly Language
code in System RPL mode: just put the code between CODE and ENDCODE.

If you are in Assembly Language mode, it is possible to compile
System RPL code inserting these two lines before the source:

!NO CODE

!RPL

Both are called directives. The !NO CODE directive tells MASD
not to compile our source as if it were Machine Language code. (Again,
you can insert assembly language code between CODE and ENDCODE). It
is a good idea to always put these two lines at the start of all programs
even if you use System RPL mode: this way, the source can be compiled
regardless of the flag settings.

Here is a simple program source ready for MASD:

!NO CODE

!RPL

::

DUPTYPEZINT?

case

FPTR2 �Z>R

DUPTYPEREAL? ?SEMI

SETTYPEERR

;

@

The above is the disassembly of the CKREAL entry. As you can see,
it automatically converts integers to real numbers.

11

While the compilation is being done, a status screen displays the
compilation status (only in ROMS after version 1.19-5). This displays
the time elapsed so far, the number of instructions compiled, the av-
erage number of instructions compiled by second and the status of the
compilation. However, probably you will not be able to see any of the
information of this status screen, because MASD is very fast: the only
thing you will see is some kind of screen blink.

It is a nice idea to assign the ASM command to a key: you will
need it many times.

If there was an error during compilation, the original string is
put in level two, and a list is put in level one. In this case, run the ER

command. It will display a list of errors for you to choose, and will jump
directly to that error in the source. Correct the error, press ENTER and
the choose another error, until all errors have been corrected. Then,
run ASM (and ER, if necessary) again. Better yet, use the ASM2 command
from library 257, which calls ASM and then, if there was any error, ER.

6 Disassembly

As it was briefly mentioned in the description of Library 256 (see
section 4), the command →S2 is the disassembler. It will disassemble
any object, in level one, into its source code suitable for reassembly
with MASD. Unfortunately, there are still some bugs in MASD, which
prevent some disassembled objects to be correctly re-assembled. We all
hope that in a newer version this bugs will be corrected.

6.1 Disassembly of Built-in Commands

Often, one wants to see how one of the built-in commands in the
HP’s ROM is built. The JAZZ library for the HP48 calculators made
that easy. Unfortunately, it is difficult to do that with only the tools in
the HP49G. But, with the help of the CQIF? (Comment Qu’Ils Font?)
library, written by Pierre Tardy (e-mail: tardyp@iname.com), currently
at version 1.7.5β, that task is simplified. It contains several tools for
the HP49G hacker. I will not describe everything from the library here,

12

read its documentation if you want to know what else it can do for you.
The most useful command is CQIF?. After some experimentation

with this command, you will find it so useful that you will assign it to
some key. In section 7, I will develop (with the help of KEYMAN and
Emacs) a very useful assignment involving CQIF?.

This command is the basic way to disassemble some part of the
HP’s ROM. It accepts several kinds of inputs. If you give a string with
the name of an entry, that entry is disassembled. You can put an ad-
dress (a hxs), and run CQIF? to disassemble whatever is at that address.
It will also accept the entry pointer itself, rompointerss and flashpoint-
ers. To ease the disassembly of User RPL commands, you can enter the
command inside a list or program (that is, enter { DUP } or � DUP � to
disassemble the User RPL command DUP).

Note that if the object you want to disassemble is written in ma-
chine language, you should tell this to CQIF? by dupping the object be-
fore running the command. With two copies of the object in the stack,
a assembly language disassembly will be done.

In my experiences with CQIF?, you might need to run this com-
mand more than once to disassemble some commands. This is normal.
Just remove any unnecessary junk from the stack, keeping the last re-
sult of CQIF? and run it again. Eventually you will reach the command.

Another useful command is DISPATCH. It does a virtual dispatch
based on the object types. To use it, put the objects you would use
as arguments to some command in the stack. Then, recall that com-
mand (probably using CQIF?) to level one. Run DISPATCH. The object
that would be run for those argument types (by means of some dis-
patching command like CKn&Dispatch) is put in level one.

The other commands are not so useful to System RPL programs.
But it is a nice idea to read the documentation and see what CQIF? can
do for you.

7 The Editor, and Emacs

The HP49G editor is much better than the one in the HP48 cal-
culators. However, it can be made even better. There are two variables

13

that are run before entering and after leaving the editor. We will see
what can be done with them. I will also describe a library that en-
hances the editor with some very nice features.

Before starting the editor, the variable STARTED is run. You can
put a program in this variable to be run before editing any object. And,
after leaving the editor, the EXITED variable is run. There are many
things these variables can do. A very simple (and very useful) thing is
to remove the header during editing, giving a few more lines of text.
After the editor is exited, the header is restored to the default setting.
It is very simple to do this: STARTED just needs to clear the header:

� 0 →HEADER �

And EXITED restores the header:

� 2 →HEADER �

Change 2 to 1 if you normally use only one line of header. Note
that Emacs (see below) remove the header automatically.

For even better customization of the editor there is the Emacs li-
brary, written by Carsten Dominik (e-mail: dominik@astro.uva.nl) and
Peter Geelhoed (e-mail: P.F.Geelhoed@student.tn.tudelft.nl). This
library gives the editor some of the features of the famous GNU Emacs
editor, such as completion, automatic indentation, incremental search,
and a macro language. The latest version, at the time of this writing,
is 0.5001. Again, I will not describe everything in the library — see the
manual for more information.

Probably the most useful feature of the Emacs library is com-
mand completion. Just that is worth loading the library in the calcula-
tor. It is activated by the RPLCPL command. This is only useful in edit
mode, so you will need it assigned to a key, with TakeOver before. If you
have the KEYMAN library (see section 3), just put a program like this:

� RPLCPL �

and run →TO?. Then, assign the resulting object to a key. It is a nice
idea to assign it to the same key both with and without the alpha-mode

14

on. Of course, you do not need a program. Just the rompointer (got
with { RPLCPL } HEAD or some similar trick) is enough, but you must
still run→TO?.

To try it, enter the first few letters of any User RPL command.
Press the key to which you assigned RPLCPL. If there was only one com-
mand starting with those letters, what you typed will be completed. If
there were more than one, a choose box will appear from which you
can select the derised command. The command line will be completed.
This is something really useful.

Provided you have the extable library installed (as you should
— see section 2), the completion also works for System RPL command
names. If the last character in the string is a @ (as required by MASD),
then System RPL completion is automatically used. (This is the only
useful use of the @). As an added bonus, if you press the key to which
RPLCPL is assigned longer, then the lookup of System RPL commands
is done with GETNEAR (see section 2). You can then enter case, ask for
completion, and get all words that have case in the middle — not only
in the beggining. You don’t need the KEYMAN library installed for this
to work.

Another command that sometimes is useful is DYNCPL. It should
also be assigned to some key, and also does completion. But it looks in
the file you are editing for words that start with the typed letters. It is
useful for the names of local variables and such. It works in a slightly
different way: press the key, and the word will be completed with the
first word. To accept it, press ENTER. To abort, press ON. To search for
another match, press the same key that invoked DYNCPL. Any other key
will accept the match and execute that key.

But wait — there is more! Another command that is useful to be
assigned to a key is RPLED. This command imitates the ED command in
the JAZZ library: it decompiles the object in level one, opens an editor
for you to edit it, and, upon exit, recompiles the object (if you are lucky,
that is. If the object cannot be compiled because of some MASD bug,
use Right-Shift HALT to put the string in the stack, and exit with ON).
A menu with useful operations (described below) is also displayed. If
you call RPLED when in edit mode, the menu is redisplayed.

To get a description of all the commands in the menu, read the
documentation that comes with Emacs. Here I will present the most

15

useful ones:
CO.. calls RPLCPL. Left-shift CO... calls DYNCPL. See above for

explanations of these commands.
With ARG? you can run a command several times. Press it, then

enter the number of times you want the command to be repeated, fol-
lowed by ENTER. Then, press the key. For example, ARG?, 4 ENTER,
Backspace will delete four characters.

F..ind starts an incremental search. Press this key, then start
typing the string you want to find. Type as many characters as nec-
essary, then press ENTER to go to that cursor position. To cancel the
search and go back to where the search started, press ON. Press the
right arrow to find the next match.

HALT suspends the editor and goes back to the stack. To return
to the editor, press CONT (Left-shift ON).

Pressing left-shift Help toggles between the minifont and the cur-
rent font.

Right-shift Help is the menu of Emacs configuration. A choose
box appears with several actions. Selecting Options will show a dia-
log, which allow you to configure two aspects of Emacs: whether the
minifont is used by default, and whether the third page of the menu
contains some templates for System RPL and Assembly Language de-
velopment. There are also options to edit the emacs variable (described
in section 7.1), to edit the diagram variable (used by the SDiag library,
but this variable is not discussed in this document), and to make some
key assignments for you.

|→ indents the current line according to context. However, it is
better to write the code already indented than to correct it later... Still,
sometimes (such as when cutting and pasting), this can save some time.
When left-shifted, removes * from the beginning of the current line (or
all the selected lines), and when pressed right-shifted inserts the *.

{↔}, when pressed in a delimiter, jumps to the matching one.
Works with :: and ;, { and } and a few others.

(→) shows the stack diagram for the entry point under the
cursor. For this to work, the SDiag library, written by Denis Martinez
and Carsten Dominik and distributed with Emacs, must the installed.
Not all commands are documented, but this can be of great help.

16

DOB is a very, very useful command. If you have ever used JAZZ’s
ED editor, this works similarly to the Right-shift Y key. It disassembles
the entry under the cursor, and its source is viewed in another editor.
Exit this sub-editor with ON or ENTER to go back to the original edit-
ing section. Of course, you can call DOB again in the sub-editor. This
command requires the CQIF? library (see section 6.1).

This command is also very useful, and, because of the similarity
with the CQIF? command, is suitable to assignment to the same key.
When it is called in edit mode, DOB is called. When not, CQIF? is called.
It is very easy to create an assignment like this with KEYMAN (see
section 3). First, put the list { DOB CQIF? } in the stack, and use OBJ→
or COMP→ to explode it. Drop the number of objects and run IfE?P.
Use →TO? to add TakeOver to the object (since it needs to work in edit
mode), and assign it to a key. If you have used the HP48 and JAZZ,
Right-shift-hold +/- or Right-shift-hold 1/x will remind ED, and will not
interfere with the normal operation.

Actually, the above is not really necessary. By default, DOB will
call CQIF? when it is called outside edit mode.

The last page of the Emacs menu contains some templates for
System RPL and Assembly Language programming. Try them, you
will easily discover what they do.

If you need help with Emacs menu commands, just press Help.
It will display a screen describing the two pages of the Emacs menu.
Each page is represented by three rows of labels, which mean, from top
to bottom, the unshifted action, the left-shifted action and the right-
shifted action. Some commands are inverted, these have different ac-
tions when pressed longer.

7.1 Emacs Customization

Another feature the Emacs library shares with the GNU Emacs
editor is the ability of customization: if present, the emacs variable in
the HOME directory will be added to the Emacs menu.

This variable contains a list to define the menu, in a manner
similar to the CST menus. The objects behave in a slightly different
manner, though: a string is inserted at the cursor position, a program

17

is executed (you do not need to include TakeOver in this program), and
an identifier is replaced by the contents of the variable. There can also
be sub-lists of two elements: the first should be a string that will be dis-
played in the menu. The second element is the action to be executed,
one of the object types discussed above. The second element can be an-
other list, with actions for the unshifted, left-shifted and right-shifted
presses, as in CST.

When a string is inserted in the editor, any control sequences
in this string are interpreted. These control sequences form a macro
language. All of them start with the | character. Here is a list of all
these control sequences:

|f Go forward one character.

|b Go backward one character.

|n Go the the next line.

|p Go to the previous line.

|a Go the the beginning of current line.

|e Go to the end of current line.

|< Go to the beginning of the file.

|> Go to the end of the file.

|F Go to the beginning of the next word.

|B Go to the beginning of the the current word, or to the beginning of
the previous word if the cursor is already at the beginning of a
word.

|h Delete the previous character.

|d Delete the character the cursor is on.

|H Delete from the current position to the position |B would go.

|D Delete from the current position to the position |F would go.

18

|k Delete from the current position to the end of the line.

|K Delete from the current position to the beginning of the line.

|[Set the start of the selection.

|] Set the end of the selection.

|C Clear the selection.

|l Select the current line, excluding the final newline.

|L Select the current line, including the final newline.

|w Move the selection into the clipboard.

|W Copy the selection into the clipboard.

|z Delete the selection and append it to the clipboard contents.

|Z Copy the selection and append it to the clipoard contents.

|y Insert the contents of the clipboard.

|m Insert a newline character.

|| Insert the bar character, |.

|@ Show the current position with an arrow and makes a little pause.
Used in debugging.

|* Mark a position. When the macro finishes, the cursor moves to this
position.

8 Debugging

The debugging facilities for System RPL of the HP49G are the
same as for User RPL: the built-in debugger (accessed by pressing
ORG, that is, Left-shift CAT, NXT twice and RUN). Unfortunately, it does
not work very well with some commands, which will be described later.

19

To start debugging, put the program or the name of the variable
in which the program is stored in level one and press DBUG. Then, use
the other commands to examine the program. The SST command ex-
ecutes the next step in the program and displays what has just been
executed. You’ll need the System RPL stack (see section 4) active for
this to be useful. If the command being run is a sub-routine, SST ex-
ecutes this as a single step. SST↓ is similar, but if the command is a
sub-routine, it steps into this sub-routine and executes its first com-
mand.

To see the next two actions of the program, but not execute them,
press NEXT. To stop the program being debugged, press KILL. To make
it resume its normal operation, press CONT (Left-shift ON).

To insert a breakpoint into your program, insert the command
HALT (xHALT for System RPL programmers) in the program at the point
you want the program to stop. Then use the commands above to debug
the program.

The debugger does not work with commands that take argu-
ments from the runstream, such as ' or IT. Do not try stepping over
one of these commands, the only thing you will get is a nice crash :-).
Currently, the only way to debug these commands is by inserting xHALT

after these commands, and using CONT to skip past the next xHALT.

9 Conclusion

This document has described the facilities the HP49G calculator
has for programming, especially the ones useful for System RPL pro-
grammers. But, since these tools, although very good, are not enough,
some tools written by other HP49G users have been described. With
a good knowledge and efficient use of both the built-in and the third-
party tools, the HP49G can be used as a complete programming envi-
ronment for System RPL development.

I would like to thank the several people that, direct or indirectly
helped me in writing the document: Joe Horn and Eric Rechlin for
their description of the commands in library 256; Carsten Dominik for
writing Emacs and SDiag and also for reviewing this document; Peter

20

Geelhoed for writing Emacs and reviewing the document; Denis Mar-
tinez for writing SDiag, Pierre Tardy for writing CQIF? and reviewing
the document; and Wolfgang Rautenberg for writing OT49 and KEY-
MAN, and for reviewing the document.

21

	Cover
	Introduction
	The Entry Points Library
	About Key Assignments
	Hacking Tools
	Operating Tools for the HP49

	The Compiler
	Disassembly
	Disassembly of Built-in Commands

	The Editor, and Emacs
	Emacs Customization

	Debugging
	Conclusion

