Engineering Fundamentals Review

<u>Manual</u>

<u>HP49G</u>

CHOTKEH

Engineering Fundamentals Review

<u>Manual</u>

<u>HP49G</u>

EIT-FE, Version 6.1 Ali Badakhshan, P.E., May 2001

Eit-FE Review Software Package Version (6.1)

Copyright 1996, 1998

PART - 1 (SECTION 1 - SECTION 8)

<u>SECTION</u>	DIRECTORY	SUB DIRECTORY(s)	PAGE
ABOUT THE MANUAL AND CALCULATOR FREQUENTLY ASKED QUESTIONS KEYBOARD CALCULATIONS CALCULATOR BUILT-IN FUNCTIONS EXAMPLES START-UP: SOLVED PROBLEMS EXAMPLES			A-1 B-1 C-1 D-1 E-1
<u>1 - DYNAMICS:</u> BANKING ANGLE CIRCULAR MOTION ENERGY LINEAR MOTION PENDULUM PROJECTILE MOTION, HORIZONAL PROJECTILE MOTION, VERTICAL SPRINGS MOTION ON SLOPE SPRING DEFLECTION PULLEYS	DYNA DYNA DYNA DYNA DYNA DYNA DYNA DYNA	BANK CIRM ENRG LINM PEND PROJ/HORIZ PROJ/VERTI SPRIN XMPL/SLOP XMPL/SPRIN XMPL/PULY	1-1 1-3 1-3 1-4 1-5 1-5 1-5 1-6 1-7 1-8 1-8
2 - ELECTRICITY BATTERIES IN PARALLEL CAPACITORS COULOMB LAW IMPEDANCE INDUCTORS KIRCHOFF'S LAW MOTORS: - Elevators - Power - Power - Pumps POWER POWER FACTOR AND PF CORRECTION RESISTORS	ELEC ELEC ELEC ELEC ELEC ELEC ELEC ELEC	BATT CAPC CULMB IMPED INDUC KIRC MOTR/ELEV MOTR/POWR MOTR/PUMP POWR PFAC RESIS	2-1 2-1 2-1 2-2 2-3 2-3 2-4 2-4 2-4 2-5 2-5 2-6
RESISTORS RESONANCE VOLTAGE DROP <u>3 - ENGINEERING ECONOMICS:</u> EQUIVALENT UNIFORM ANNUAL COST BONDS CAPITALIZED COST COMPOUND FACTORS/VALUES DEPRECIATION (DDB, SF, SL, SOYD) INTEREST RATE/INFLATION MORTGAGE PRESENT WORTH RATE OF RETURN	ELEC ELEC ENEC ENEC ENEC ENEC ENEC ENEC	RESIS RESO VDRP ANNU BOND CAPIT FACTR DEPRI INTER MORT PW ROR	2-6 2-6 2-7 3-1 3-1 3-1 3-2 3-2 3-3 3-4 3-4 3-4 3-5
<u>4 - FLUID MECHANICS:</u> BERNOULLI EQUATIONS CAPILLARITY & SURFACE TENSION	FLME FLME	BERN CAPIL	4-1 4-1

<u>SECTION</u>	DIRECTORY SI	UB DIRECTORY(s)	PAGE
4 - FLUID MECHANICS (continued):			
FRICTION FACTOR (MOODY'S CHART)	FLME	FRIC.F	4-2
FRICTION HEAD/LOSS	FLME	FRH.D	4-2
HYDROSTATIC PRESSURE	FLME	HYD.P	4-3
OPEN CHANNEL	FLME	CHAN	4-4
ORIFICE	FLME	ORIF	4-4
PIPE:			
- Area	FLME	PIPE/AREA	4-5
- Flow Quantity	FLME	PIPE/FLOW	4-5
- Velocity	FLME	PIPE/VELO	4-5
- Hydraulic Radius	FLME	PIPE/HYD.R	4-5
PUMPS:			
- Head Added by	FLME	PUMP/HEAD	4-6
- Horsepower	FLME	PUMP/HP	4-6
REYNODLS NUMBER	FLME	REYN	4-6
SPEED OF SOUND:			
- In gas	FLME	SOUND/GAS	4-6
- In liquid	FLME	SOUND/LIQID	4-6
THIN CYLINDER	FLME	CYLIN	4-7
TURBINES (Horsepower)	FLME	TURB	4-7
VENTURI	FLME	VENT	4-7
WATER HAMMER WEIR	FLME FLME	HAMR WEIR	4-7 4-8
WEIR	FLME	WEIR	4-8
5 - GAS PROPERTY CHANGE (IDEAL GAS):			
CONSTANT PRESSURE	GASP	PRESS	5-1
CONSTANT TEMPERATURE	GASP	TEMP	5-1
CONSTANT VOLUME	GASP	VOLM	5-2
ISENTROPIC PROCESS	GASP	ISENT	5-3
POLYTROPIC PROCESS	GASP	POLYT	5-4
THROTTLING STEADY FLOW	GASP	THROT	5-6
IDEAL GAS, GENERAL EQUATIONS	GASP	IDEAL	5-6
WORK, GENERAL EQUATIONS	GASP	WORK	5-6
HORSEPOWER, GENERAL EQUATIONS	GASP	НР	5-6
<u>6 - MATHEMATICS:</u>			
AREA	MATH	AREA	6-1
DETERMINANT (2nd & 3rd order)	MATH	DETER	6-1
HYDRAULIC RADIUS	MATH	HYD-R	6-1
INTERPOLATION	MATH	INTRP	6-2
POLAR/RECTANGULAR COORDINATES	MATH	PL-RC	6-2
QUADRATIC EQUATIONS	MATH	QAD	6-2
SIMULTANEOUS (LINEAR) EQUATIONS	MATH	SIM	6-2
SURFACE	MATH	SURF	6-2
TRIANGLE LAW	MATH	ΔLAW	6-3
VOLUME HP49G BUILT-IN FUNCTIONS:	MATH	VOLM	6-3
- Differentiation			6 1
			6-4 6-4
- Integration - Linear (Simultaneous) Equations			6-4 6-5
- Plotting and calculating roots and areas:			6-5 6-5
- Calculating roots			6-5 6-6
- Calculating 10005			0-0

SECTION	DIRECTORY	SUB DIRECTORY(s)	PAGE
<u>6 - MATHEMATICS (continued):</u>			
- Vectors:			6-6
- Unit vectors			6-7
- Angle between vectors			6-7
- Dot product of vectors			6-7
- Cross product of vectors			6-7
- Absolute value or vectors			6-7
- Addition and subtraction of vectors			6-8
7 - MECHANICS OF MATERIALS:			
COLUMNS:			
- Load	MEMA	CLMN/LOAD	7-1
- Stress	MEMA	CLMN/STRES	7-1
SHAFTS:	MEMA	CEMIN/STRES	/-1
- Angle of twist	MEMA	SHAFT/ANGL	7-1
- Energy stored	MEMA	SHAFT	7-1 7-1
- Horsepower	MEMA	SHAFT	7-1 7-1
- Shear stress	MEMA	SHAFT/SHEAR	7-1 7-1
- Torque	MEMA	SHAFT	
STRESS:	IVIEIVIA	SHAFT	7-1
- Allowable stress	MEMA	STRES	7 0
- Bending stress	MEMA	STRES/BEND	7-2 7-2
- Bending plus normal stress	MEMA	STRES/BND+	-
- Combined stress	MEMA	STRES/BND+	7-2
- Shear stress	MEMA	STRES/COMB STRES/SHEAR	7-2 7-3
THERMAL DEFORMATION:	MEMA	STRES/SHEAR	7-3
- Linear expansion	МЕМА	DEFOR	7 0
- Strain	MEMA	•••	7-3
- Stress	MEMA	DEFOR/STRN	7-3
MISCELLANEOUS:	MENA	DEFOR/STRES	7-3
- Elongation	МЕМА	MSCI	
- Energy stored in loaded member	MEMA	MSCL	7-4
- Polar moment of inertia	MEMA	MSCL (DOLD	7-4
- Radius of gyration	MEMA	MSCL/POLR	7-4
- Shear/Elasticity modulus	MEMA	MSCL	7-4
- Strain	MEMA	MSCL	7-4
Strain	MEMA	MSCL	7-4
8 - THERMODYNAMICS:			
ATMOSPHERIC AIR:			
- Pressure	THER	ATMA	0 1
- Water vapor pressure	THER	ATMA	8-1
- Relative Humidity	THER	ATMA	8-1 8-1
- Specific Humidity	THER	ATMA	
COMPRESSORS:			8-1
- Compression and discharge enthalpy	THER	COMD/ENITU	0 1
- Efficiency	THER	COMP/ENTH COMP	8-1
EFFICIENCY:	THER	COMP	8-1
- Carnot	THER	CCCI	0.0
- Rankin	THER	EFFI	8-2
	HILK	EFFI	8-2

8 - THERMODYNAMICS (continued): GAS: - Enthalpy (h) THER GAS 8-2 - Specific Heat (k) THER GAS 8-3 - Specific Heat Constant (R) THER GAS 8-3 - Specific Heat at Constant Pressure (cp) THER GAS 8-3 - Specific Heat at Constant Volume (cv) THER GAS 8-3 - Ideal Gas equation THER GAS 8-4 - Real gas equation THER GAS 8-4 - Reat flow THER HTEXC/HTFLO 8-4 - Logarithmic Mean Temperature Difference THER HTEXC/LMTD 8-4 - Logarithmic Mean Temperature Difference THER HTEXC/LMTD 8-4 - Logarithmic Mean Temperature Difference THER HTEXC/LMTD 8-5 - Pipe THER HTELO/PIPE 8-5 - Slabs THER HTFLO 8-5 - Reine displacement THER HTFLO 8-5 - Norspower THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Ordefi	SECTION	DIRECTORY	SUB DIRECTORY(s)	PAGE
Enthalpy (h)THERGAS8-2Ratio of Specific Heat (k)THERGAS8-3Specific Heat constant (R)THERGAS8-3Specific Heat at Constant Pressure (cp)THERGAS8-3Specific Heat at Constant Volume (cv)THERGAS8-3Ideal Gas equationTHERGAS8-4Real gas equationTHERGAS8-4HEAT EXCHANGERS:- Heat FlowTHERHTEXC/LMTD8-4HEAT FLOW THROUGH (HEAT TRANSFER):- A filmTHERHTFLO8-5- StabsTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/SLAB8-5- RadiationTHERNGIN8-6- HorsepowerTHERNGIN8-6- NotepowerTHERNGIN8-7- TREFRIGERATION:THERREFRI8-7- Coefficient Of Performance (COP)THERREFRI8-7- HorsepowerTHERREFRI8-7- HorsepowerTHERREFRI8-7- Indray (s)THERSTIM8-8STEAM:THERSTIM8-8- Specific volume (v)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Thermal efficiencyTHERSTIM8-8- Thermal efficiencyTHERSTIM8-8- Specific volume (v)THER	8 - THERMODYNAMICS (continued):			
Ratio of Specific Heat (k)THERGAS8-2- Specific Heat Constant (R)THERGAS8-3- Specific Heat at Constant Pressure (cp)THERGAS8-3- Specific Heat at Constant Volume (cv)THERGAS8-3- Ideal Gas equationTHERGAS8-4- Real gas equationTHERGAS8-4- Real gas equationTHERGAS8-4- Real gas equationTHERGAS8-4- Logarithmic Mean Temperature DifferenceTHERHTEXC/LTFLO8-4- Logarithmic Mean Temperature DifferenceTHERHTEXC/LMTD8-4- Logarithmic Mean Temperature DifferenceTHERHTFLO8-5- A filmTHERHTFLO8-5- SlabsTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/PIPE8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7- Coefficient Of Performance (COP)THERREFRI8-7- Coefficient Of Performance (COP)THERREFRI8-7- HorsepowerTHERREFRI8-7- Indray (t)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Specific volume (v)THERTHERSTIM8-8- S	GAS:			
- Specific Heat Constant (R) THER GAS 8-3 - Specific Heat at Constant Pressure (cp) THER GAS 8-3 - Specific Heat at Constant Volume (cv) THER GAS 8-3 - Ideal Gas equation THER GAS 8-3 - Ideal Gas equation THER GAS 8-3 - Ideal Gas equation THER GAS 8-4 - Real gas equation THER GAS 8-4 - Real gas equation THER GAS 8-4 - HEAT EXCHANGERS: - Heat Flow THROUGH (HEAT TRANSFER): - Heat Flow THROUGH (HEAT TRANSFER): - A film THER HTEXC/LMTD 8-4 HEAT FLOW THROUGH (HEAT TRANSFER): - A film THER HTFLO 8-5 - Pipe THER HTFLO/PIPE 8-5 - Siabs THER HTFLO 8-5 - Natiation THER HTFLO 8-5 - Natiation THER HTFLO 8-5 - INTERNAL COMBUSTION ENGINES: - Engine displacement THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Refrigerant weight require ¹ THER REFRI 8-7 - Refrigerant weight require ¹ THER STIM 8-8 - STIM 8-8 - Suth 8-8 - Quality (x) THER STIM 8-8 - Suth 8-8 - Quality (x) THER STIM 8-8 - Suth 8-8 -	- Enthalpy (h)	THER	GAS	8-2
- Specific Heat at Constant Pressure (cp) THER GAS 8-3 - Specific Heat at Constant Volume (cv) THER GAS 8-3 - Ideal Gas equation THER GAS 8-4 - Real gas equation THER GAS 8-4 HEAT EXCHANGERS: - Heat Flow THER HTEXC/HTFLO 8-4 HEAT FLOW THROUGH (HEAT TRANSFER): - A film THER HTERC/LMTD 8-4 HEAT FLOW THROUGH (HEAT TRANSFER): - A film THER HTFLO/PIPE 8-5 - Siabs THER HTFLO/VIPE 8-5 - Siabs THER HTFLO/VIPE 8-5 - Radiation THER HTFLO/SLAB 8-5 - Radiation THER HTFLO/SLAB 8-5 - Radiation THER HTFLO/SLAB 8-5 - Radiation THER HTFLO/SLAB 8-5 - Radiation THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Thermal efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Refrigerant weight require ¹ THER REFRI 8-7 - Refrigerant weight require ¹ THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific Stam Consumption THER TURB/ENTH 8-8 - Stickale 8-9 - Specific Steam Consumption THER TURB 8-9 - Specific Steam Consumption THER TURB 8-9	- Ratio of Specific Heat (k)	THER	GAS	8-2
- Specific Heat at Constant Volume (cv) THER GAS 8.3 - Ideal Gas equation THER GAS 8.4 - Real gas equation THER GAS 8.4 HEAT EXCHANGERS: - Heat Flow THER HTEXC/HTFLO 8.4 - Logarithmic Mean Temperature Difference THER HTEXC/LMTD 8.4 HEAT FLOW THROUGH (HEAT TRANSFER): - A film THER HTFLO 8.5 - Pipe THER HTFLO 8.5 - Slabs THER HTFLO/SLAB 8.5 - Radiation THER HTFLO/SLAB 8.5 - Radiation THER HTFLO/SLAB 8.5 - Radiation THER HTFLO/SLAB 8.5 - Radiation THER HTFLO 8.5 - NTHER HTFLO/SLAB 8.5 - Radiation THER MGIN 8.6 - Horsepower THER NGIN 8.6 - Horsepower THER NGIN 8.6 - Volumetric efficiency THER NGIN 8.7 - Energy Efficiency Ratio (EER) THER REFRI 8.7 - Energy Efficiency Ratio (EER) THER REFRI 8.7 - Refrigerant weight require ¹ THER 8.5 - Specific volume (v) THER STIM 8.8 - Specific volume (v) THER WER TURB 8.8 - Specific volume (v) THER WER STIM 8.8 - Specific	- Specific Heat Constant (R)	THER	GAS	8-3
- Ideal Gas equationTHERGAS8-4- Real gas equationTHERGAS8-4HEAT EXCHANGERS: Heat FlowTHERHTEXC/HTFLO8-4- Logarithmic Mean Temperature DifferenceTHERHTEXC/LMTD8-4HEAT FLOW THROUGH (HEAT TRANSFER): A filmTHERHTFLO8-5- SlabsTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO8-6INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Toerma efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- Refrigerant weight require ¹ THERREFRI8-7- Refrigerant weight require ¹ THERSTIM8-8- Specific volume (v)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific steam (v)THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- HorspowerTHERTURB8-9- Enthalpy at dischargeTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	- Specific Heat at Constant Pressure (cp)	THER	GAS	8-3
Real gas equationTHERGAS8-4HEAT EXCHANGERS:THERHTEXC/HTFLO8-4- Logarithmic Mean Temperature DifferenceTHRHTEXC/LMTD8-4HEAT FLOWTHROUGH (HEAT TRANSFER):THERHTFLO8-5- A filmTHERHTFLO8-5- SiabsTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO8-5INTERNAL COMBUSTION ENGINES:THERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- HorsepowerTHERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- Enthalpy (h)THERSTIM8-8- StitAM:THERSTIM8-8- Coeffic volume (v)THERSTIM8-8- Futnapy (s)THERSTIM8-8- Futnapy at dischargeTHERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB8-8- Enthalpy at dischargeTHERTURB8-8- Enthalpy at dischargeTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9 </td <td>- Specific Heat at Constant Volume (cv)</td> <td>THER</td> <td>GAS</td> <td>8-3</td>	- Specific Heat at Constant Volume (cv)	THER	GAS	8-3
HEAT EXCHANGERS:- Heat FlowTHERHTEXC/HTFLO8-4- Logarithmic Mean Temperature DifferenceTHERHTEXC/LMTD8-4HEAT FLOW THROUGH (HEAT TRANSFER):THERHTELO8-5- A filmTHERHTFLO8-5- SilabsTHERHTFLO/PIPE8-5- SilabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/SLAB8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- HorsepowerTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7- Coefficient Of Performance (COP)THERREFRI8-7- HorsepowerTHERREFRI8-7- HorsepowerTHERREFRI8-7- Nefrigerant weight require ¹ THERREFRI8-7- Refrigerant weight require ¹ THERSTIM8-8STEAM: Enthalpy (h)THERSTIM8-8- Specific volume (v)THERSTIM8-8- TURBINES: Enthalpy at dischargeTHERTURB8-8- HorsepowerTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	- Ideal Gas equation	THER	GAS	8-4
HEAT EXCHANGERS:- Heat FlowTHERHTEXC/HTFLO8-4- Logarithmic Mean Temperature DifferenceTHERHTEXC/LMTD8-4HEAT FLOW THROUGH (HEAT TRANSFER):THERHTELO8-5- A filmTHERHTFLO8-5- SilabsTHERHTFLO/PIPE8-5- SilabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/SLAB8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- HorsepowerTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7- Coefficient Of Performance (COP)THERREFRI8-7- HorsepowerTHERREFRI8-7- HorsepowerTHERREFRI8-7- Nefrigerant weight require ¹ THERREFRI8-7- Refrigerant weight require ¹ THERSTIM8-8STEAM: Enthalpy (h)THERSTIM8-8- Specific volume (v)THERSTIM8-8- TURBINES: Enthalpy at dischargeTHERTURB8-8- HorsepowerTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	- Real gas equation	THER	GAS	8-4
- Logarithmic Mean Temperature Difference THER HTEXC/LMTD 8-4 HEAT FLOW THROUGH (HEAT TRANSFER): - A film THEAT TRANSFER): - A film THEAT TRANSFER): - A film THEAT TRANSFER): - Pipe THER HTFLO/PIPE 8-5 - Slabs THER HTFLO/SLAB 8-5 - Radiation THER HTFLO/SLAB 8-5 - Radiation THER HTFLO 8-5 INTERNAL COMBUSTION ENGINES: - Engine displacement THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight requirul THER REFRI 8-7 - Refrigerant weight requirul THER REFRI 8-8 STEAM: - Enthalpy (s) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific Steam Consumption THER TURB 8-8 - Specific Steam Consumption STHER STIM 8-9 - Specific Steam Consumption STHER S	HEAT EXCHANGERS:			
HEAT FLOW THROUGH (HEAT TRANSFER):- A filmTHERHTFLO8-5- A filmTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/SLAB8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Tohermal efficiencyTHERNGIN8-6- Coefficient Of Performance (COP)THERREFRI8-7- Coefficient Of Performance (COP)THERREFRI8-7- HorsepowerTHERREFRI8-7- Kefrigerant weight require ¹ THERREFRI8-8STEAM: Enthalpy (a)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES: Enthalpy at dischargeTHERTURB8-8- Enthalpy at dischargeTHERTURB8-8- Enthalpy at dischargeTHERTURB8-8- FifticiencyTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9	- Heat Flow	THER	HTEXC/HTFLO	8-4
HEAT FLOW THROUGH (HEAT TRANSFER):- A filmTHERHTFLO8-5- A filmTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO/SLAB8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- HorsepowerTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Toermal efficiencyTHERNGIN8-6- Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (a)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Specific volume (v)THERSTIM8-8- Enthalpy 1 dischargeTHERTURB8-8- Enthalpy 3 dischargeTHERTURB8-8- Enthalpy 4 dischargeTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9	- Logarithmic Mean Temperature Difference	THER	HTEXC/LMTD	8-4
- A filmTHERHTFLO8-5- PipeTHERHTFLO/PIPE8-5- SlabsTHERHTFLO/SLAB8-5- RadiationTHERHTFLO8-5INTERNAL COMBUSTION ENGINES: Engine displacementTHERNGIN8-6- HorsepowerTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7REFRIGERATION: Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (2)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES: Enthalpy at dischargeTHERTURB8-8- EfficiencyTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
- Slabs THER HTFLO/SLAB 8-5 - Radiation THER HTFLO 8-5 INTERNAL COMBUSTION ENGINES: - Engine displacement THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Thermal efficiency THER NGIN 8-6 - Thermal efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight require ¹ THER REFRI 8-7 - Refrigerant weight require ¹ THER REFRI 8-7 - Enthalpy (5) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Sulting State		THER	HTFLO	8-5
- Slabs THER HTFLO/SLAB 8-5 - Radiation THER HTFLO 8-5 INTERNAL COMBUSTION ENGINES: - Engine displacement THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Thermal efficiency THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-8 - StEAM: - Enthalpy (h) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Enthalpy at discharge THER TURB 8-8 - Efficiency THER TURB 8-8 - Efficiency THER TURB 8-8 - Efficiency THER TURB 8-8 - Specific Steam Consumption THER TURB 8-9	- Pipe	THER	HTFLO/PIPE	8-5
- Radiation THER HTFLO 8-5 INTERNAL COMBUSTION ENGINES: - Engine displacement THER NGIN 8-6 - Horsepower THER NGIN 8-6 - Thermal efficiency THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-7 - Volumetric efficiency THER NGIN 8-7 - Coefficient Of Performance (COP) THER REFRI 8-7 - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-8 - STEAM: - Enthalpy (\(\Lambda)) THER STIM 8-8 - Sintropy (\(\s)) THER STIM 8-8 - Quality (\(\x)) THER STIM 8-8 - Specific volume (v) STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific volume (v) SPAC 8-1 - Specific volume (v)	•	THER	HTFLO/SLAB	8-5
INTERNAL COMBUSTION ENGINES:- Engine displacementTHERNGIN8-6- HorsepowerTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7REFRIGERATION: Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (h)THERSTIM8-8- Specific volume (v)THERSTIM8-8- TURBINES: Enthalpy at dischargeTHERTURB/ENTH8-8- FurtopyTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9		THER	HTFLO	8-5
- HorsepowerTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7REFRIGERATION: Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (h)THERSTIM8-8- Quality (x)THERSTIM8-8- Quality (x)THERSTIM8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- EfficiencyTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
- HorsepowerTHERNGIN8-6- Thermal efficiencyTHERNGIN8-6- Volumetric efficiencyTHERNGIN8-7REFRIGERATION: Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (h)THERSTIM8-8- Quality (x)THERSTIM8-8- Quality (x)THERSTIM8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- EfficiencyTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9		THER	NGIN	8-6
- Thermal efficiency THER NGIN 8-6 - Volumetric efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-8 STEAM: - Enthalpy (h) THER STIM 8-8 - Sintropy (s) THER STIM 8-8 - Quality (x) THER STIM 8-8 - Quality (x) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Enthalpy at discharge THER TURB/ENTH 8-8 - Efficiency THER TURB 8-9 - Specific Steam Consumption THER TURB 8-9				8-6
- Volumetric efficiency THER NGIN 8-7 REFRIGERATION: - Coefficient Of Performance (COP) THER REFRI 8-7 - Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-8 STEAM: - Enthalpy (\1) THER STIM 8-8 - Fntropy (s) THER STIM 8-8 - Quality (x) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 - Enthalpy at discharge THER TURB/ENTH 8-8 - Efficiency THER TURB 8-8 - Horsepower THER TURB 8-9 - Specific Steam Consumption THER TURB 8-9				8-6
REFRIGERATION:THERREFRI8-7- Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM:THERSTIM8-8- Enthalpy (h)THERSTIM8-8- Fntropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-8- Specific Steam ConsumptionTHERTURB8-9	•	THER	NGIN	8-7
- Coefficient Of Performance (COP)THERREFRI8-7- Energy Efficiency Ratio (EER)THERREFRI8-7- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM:THERSTIM8-8- Enthalpy (h)THERSTIM8-8- Fntropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB8-8- HorsepowerTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	•			
- Energy Efficiency Ratio (EER) THER REFRI 8-7 - Horsepower THER REFRI 8-7 - Refrigerant weight required THER REFRI 8-8 STEAM: - Enthalpy (h) THER STIM 8-8 - Fatropy (s) THER STIM 8-8 - Quality (x) THER STIM 8-8 - Quality (x) THER STIM 8-8 - Specific volume (v) THER STIM 8-8 TURBINES: - Enthalpy at discharge THER TURB/ENTH 8-8 - Efficiency THER TURB 8-8 - Horsepower THER TURB 8-9 - Specific Steam Consumption THER TURB 8-9		THER	REFRI	8-7
- HorsepowerTHERREFRI8-7- Refrigerant weight requiredTHERREFRI8-8STEAM:THERSTIM8-8- Enthalpy (1)THERSTIM8-8- Fntropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9		THER	REFRI	8-7
- Refrigerant weight requiredTHERREFRI8-8STEAM: Enthalpy (b)THERSTIM8-8- Fintropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES: Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				8-7
STEAM:THERSTIM8-8- Enthalpy (1)THERSTIM8-8- Fintropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9		THER		
- Fntropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	· • •			
- Fntropy (s)THERSTIM8-8- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9	- Enthaley (1)	THER	STIM	8-8
- Quality (x)THERSTIM8-8- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
- Specific volume (v)THERSTIM8-8TURBINES:THERTURB/ENTH8-8- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
TURBINES:- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
- Enthalpy at dischargeTHERTURB/ENTH8-8- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				•••
- EfficiencyTHERTURB8-8- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9		THER	TURB/ENTH	8-8
- HorsepowerTHERTURB8-9- Specific Steam ConsumptionTHERTURB8-9				
- Specific Steam Consumption THER TURB 8-9				
	- Steam rate	THER	TURB	8-9

PART-2 (SECTION 9)

<u>SECTION</u>	DIRECTORY	SUB DIRECTORY(s)	PAGE
OUICK REFERENCE TO NCEES HANDBOOK			9-1
DYNAMICS	DY		9-2
ELECTRICITY	EL		9-3
ENGINEERING ECONOMICS	EE		9-5
FLUID MECHANICS	FM		9-6
HEAT TRANSFER	HT		9-9
MATHEMATICS	MA		9-14
MECHANICS OF MATERIALS	MM		9-16
THERMODYNAMICS	TH		9-19
CHEMICAL ENGINEERING	CHEM		9-22
CIVIL ENGINEERING	CIVIL		9-25
MECHANICAL ENGINEERING	MECH		9-3 0

This is a two (2) part manual and contains over 900 core engineering fundamental equations all of which are programmed into the Library of HP49G.

Part 1: Is the original reference manual containing over 500 equations, SECTION 1 - 8:

<u>Part 2:</u> Is the quick reference to <u>NCEES HANDBOOK</u>. Most of the 400 core useable and programmable equations are programmed into the calculator. <u>SECTION 9</u>.

HOW TO USE THE CALCULATOR:

When using this software package, ensure that the calculator is in RPN and DEG mode.

1. The key board:

There are three (3) types of distinctive function keys in HP49G:

- 1.1 The hard keys with their functions showed on the face of the keys. They are activated by pressing the key. Throughout this manual, they are identified by bold letters and underlined, like <u>ON</u>, <u>ENTER</u>, <u>NXT</u>, <u>SIN</u>, <u>TOOL</u>, <u>MODE</u>, etc.
- 1.2 The same hard keys with their colored functions showed at the top of the keys. To activate the function, the corresponding color coded [↑] or [↑] must be pressed prior to the subject key. They are identified by underlined symbols (not bold), like <u>LIB</u>, <u>EVAL</u>, <u>PREV</u>, <u>MATH</u>, <u>MTRW</u>, etc.
- 1.3 The soft keys or screen menu keys. There are six (6), F1-F6, keys located just below the screen. To activate the menu item, press the corresponding F key. The screen menu items (Directories, Sub-directories and Equation's name) are identified with plain capital letters (no bold no underline), like PUMP, PIPE, FLME, EXPR=, THER, etc.

2. Useful keys and their functions:

The user must ensure to use the implied \neg or r key, as needed. Numbers in parenthesis (next to the following specified keys) represent the calculator key-board's row and column respectively. For more information refer to <u>Chapter 1</u> of HP catalog.

- <u>ALPHA</u> (7,1) Use to turn the calculator to alphabetical mode. If the key pressed twice, the calculator will stay in this mode. Press again when typing is finished. The key may also be pressed and hold during the typing. Then release when typing is over.
- ANS (10,5) To recall the previous answer (in ALG mode) or last argument (in RPN mode).
- <u>BASE</u> (9,4) To display the list of binary arithmetic objects.

<u>CANCEL</u> (10,1) To cancel the command line.

- <u>CLEAR</u> (4,5) To clear the screen. This symbol is only underlined, means the corresponding r^{\bullet} key must be pressed first.
- <u>CMD</u> (4,1) To display the last four (4) commands/calculations. Highlight and press OK to copy to stack.
- <u>DEL</u> (5,5) To delete the object on level 1.
- <u>EVAL</u> (4,4) To evaluate an expression, written on level 1.
- **ENTER** (10,5) To obtain a result, select an option or duplicate the object on level 1 (**RPN** mode).
- EXPR = This appears on the screen menu, when solving an equation or expression. It is used to calculate the expression. EXPR = is the last symbol on the screen menu. If it does not appear on the first page of the menu, there may be more than six (6) variables in the current equation.

Press **NXT** to ensure no variable is missing.

- LASTARG At RPN mode, press ANS or type LASTARG press ENTER.
- <u>LAST MENU</u> To get only one (1) step back and forth between the menus, press \rightarrow and hold, press <u>PREV</u> (<u>XXT</u>).
- <u>LIB</u> (9,3) To get to the Library to use the Library program.
- MODE (2,2) To set the mode like: RPN/ALGEBRAIC, DEGREE/RADIAN, POLAR/RECTANGULAR, FLAGS, CAS (Computer Algebra System), etc.

<u>MTH</u> (4,4) To display the mathematics menu.

<u>MTRW</u> (4,3) To write a matrix.

<u>NUM</u> To find the numeric value of the answer/object.

NUM.SLV (7,2) To get to numeric equation solver application.

- NXEQ To rotate the list of related equations written under one name. The name of these equations are followed by \rightarrow .
- <u>NXT</u> (3,3) To go to the next page of multiple page screen menu.

- <u>OFF</u> (10,1) To turn the calculator off.
- ON (10,1) To turn the calculator on.
- <u>PREV</u> (3,3) To return back to the previous page of screen menu.
- **SPC** (10,4) To create space between the keyed-in data.
- **<u>STO</u>** (3,2) To store a current object in a variable.
- SWAP At **RPN** mode: press **<u>TOOL</u>**, **<u>F3</u>** (STACK), <u>F2</u> (SWAP)
- **TOOL** (2,3) To display a menu of commands like: EDIT, VIEW, PURGE, etc.
- <u>UPDIR</u> (3,1) To get back to one (1) level higher directory.
- <u>UNITS</u> (8,4) To go to units conversion menu.
- **VAR** (3,1) To display the list of variables contained in the current directory.
- <u>WIN</u> (1,2) To display plotting parameters and draw the specific plot.
- $\underline{\mathbf{Y}} = (1,1)$ To list the equation(s) and data to plot.
- () (8,5) Use to identify/enter the value as a complex number. The real and the imaginary part must be separated by "comma" or "SPC". When writing the expression, use "comma" only. But you may use either of them when entering components of complex numbers inside parenthesis.
- (4,3) The inverted comma as '. Use to write an expression or equation (in **RPN** mode). Also use to specify the equation or variables name.
- $\frac{\#}{2}$ (9,4) To specify/enter a binary integer.
 - (4,5) To delete the object on level 1 (drop) or to delete the character to the left of cursor.
 - ▲ The symbol of angle, to retrieve, press <u>CHARS</u> (4,2), highlight the symbol, press ECHO ENTER. Or press <u>ALPHA</u> → 6.

3. How to identify the name, retrieve, and solve the equation:

- In the solution part of every problem, in Problems and Solutions Book, following statement is used to refer to the subject equation, i.e. Hazen Williams (HAZN) equation, in SI system.
 "Refer to equation (20) SI (FLME/FRICH/HAZN)" (20) is the number of equation in CHOTKEH manual, SI is the SI system, FLME is the main directory for Fluid Mechanic.
 FRICH is the sub-directory for friction head and HAZN is the name of the equation.
 Therefore after getting to LIB, press FLME FRICH HAZN SI.
 Now, by knowing what to look for, get to the Library (LIB).
- 3.2 Press <u>LIB</u> To get to the Library. You should see the menu on the screen.
- 3.3 Look up for the subject directory on the screen menu. You have to go to the subject directory first. If not found, press <u>NXT</u>. When found, press the corresponding F key.
- Follow the same instruction for sub-directory(s). In few occasions there are more than three(3) sub-directories prior to equation's name.
- 3.5 Find the equation/expression name and press the corresponding soft key. The equations with their names followed by \rightarrow , contain more than one equation. See NXEQ in page 2.
- 3.6 You should see the equation's variables listed on the screen menu and the equation, in whole or in part, at the top of the screen. If there are more than six (6) variables in the equation. press <u>NXT</u> to see the rest.
- 3.7 The "EXPR=" symbol is the last on the screen menu. If the equation has more than five (5) variables, press <u>NXT</u>.

<u>NOTE</u>: Throughout the CHOTKEH Manual, the equation's directory/sub-directory names are shown in parenthesis at the right side of the subject's title.

Enter the variable's value: Key in the value and press the corresponding variable's F key.
 You should see the variables symbol and its entered value at the top of the screen. If not correct, enter the correct value again. When finished, press and unknown variable's F key. The answer will appear.

The holders of HP49G may also use the solver's screen feature. Press \rightarrow <u>NUMSLV</u> <u>ENTER</u>. Highlight the variables and input the values. Then highlight the unknown variable and press SOLVE key. If the known variable's value needed to be calculated or unit conversion feature must be used, the user must quit the screen and get back, when the calculation or conversion was performed. This is a time consuming process. Press <u>ON</u> (CANCEL) to quit the screen.

<u>IMPORTANT NOTE</u>: For the equations with complex numbers, which are programmed in the expression form (only in ELECTRICITY SECTION), you will not find the unknown's symbol on the screen. To get the answer, you have to press EXPR = (on the screen menu) and then <u>NUM</u>, if necessary.

- 3.9 If you have to retrieve another equation in the same sub-directory, type **OMENU** press **ENTER** and continue as directed above. Otherwise press <u>LIB</u> for other directories.
- 3.10 After you retrieved the equation, if you observed any inconsistency between the variables in the equation and the ones on the screen menu, first ensure that you retrieved the right equation. If the answer is yes, refer to <u>NOTE 3</u> below.

<u>NOTE 1:</u>

Except for the complex number contained equations/expressions, every equation can be solved for any variable in the equation, if the rest are known.

<u>NOTE 2:</u>

When using CHOTKEH's Library software, stay in HOME directory. If you are using you own created equations, with the units attached to the variables, a new directory must be created and subject equations must be stored in new directory.

To create a new directory, i.e. AAA:

Press _ type AAA, press <u>PRG</u> (4,2) MEM DIR CRDIR

Press <u>VAR</u>, AAA will appear on the screen menu. Press the corresponding soft (F) key, the { HOME AAA } will appear at the top of the screen, which means that the calculator is in AAA directory. Use AAA to write your own equations in this directory. To get back to HOME, press <u>UPDIR</u>.

<u>NOTE 3:</u>

Do not enter the variable's value accompanied with the unit sign, i.e. for L=2 feet, enter 2 not 2_ft. This may happen when using calculator's UNITS conversion feature. The variables' value must all be numeric and consistent. If by error the values are followed by unit signs or the values are represented by an expression, etc., you may get the "**Bad Guess**" error message or may lose the variable's name on the menu. If that happened:

- a. Purge the variable: press <u>'</u> type variable's name press <u>ENTER</u> <u>TOOL</u> F key under <u>PURGE</u>. If did not work:
- b. Press <u>VAR</u> press ALPHA twice type CLVAR press <u>ENTER</u>. This process will purge all variables in the current directory.

<u>NOTE 4:</u>

Although enough care has been taken in compiling the contents of this Manual, writing the programs, and problems and solutions, mostly for educational purposes, the preparer assumes no responsibility resulting from any error or omission in this manual, program, or problems and solutions. The contents of this manual and the associated program are subject to change without prior notice.

FREQUENTLY ASKED QUESTIONS, HP49G

1. The screen is too dark/light, how do I adjust it?

Press the ON key and hold. Push the (+) or (-) key to adjust the shade of the screen.

2. How do I set the calculator to, i.e., three (3) decimal point?

Press \underline{MODE} \checkmark CHOOS \checkmark OK \blacktriangleright key in : 3OK.To reverse:Press \underline{MODE} \checkmark CHOOS \blacktriangle OK OK.

3. How do I display the clock?

Press MODE DISP Scroll down to Clock ICHK OK OK

4. How do I turn the calculator's beeper off?

Press MODE Scroll down to Beep ICHK OK

5. How can I see the entire current equation?

Press the <u>ALPHA</u> key and hold, type EQ, release <u>ALPHA</u> key, press ENTER. Current equation will appear on the screen.

6. How can I get to the previous Menu?

You may go only one step back to the previous menu. Press 🖛 and hold, press <u>PREV</u> (<u>NXT</u>).

7. How can I SWAP the objects displayed on Level 1 and Level 2 of the screen? At RPN mode, press TOOL, F3 (STACK), F2 (SWAP)

8. Although I am following the directions to solve for a variable, in the retrieved equation, why I am not getting the correct answer?

In the majority of cases, instead of pressing \Leftrightarrow and soft key under the subject variable, the user is pressed EXPR =. Also check for the units and calculator mode, i.e. Radian vs Degree or Rectangular vs Polar, etc.

9. While using the program, what should I do if I notice the loss of a variable on the menu or getting error message?

Refer to CHOTKEH's Manual, page A-5, NOTEs 2 and 3 for answer. Then correct the condition as follows: a. Purge the variable: key in ' type variable's name press <u>TOOL</u> PURGE. If did not work:

- b. Press <u>ALPHA</u> twice, type CLVAR press ENTER. This process will purge all variables before the
- directory. If did not work:
- c. Press <u>ON F1 F6</u> keys simultaneously and release. Press soft key under NO. This will re-set the calculator and clears the entire memory. If you have any equation or Directory you want to keep. This is not a right approach.

In this case, to get back to RPN, degree and MTH on the soft menu:

Press <u>MODE</u> CHOOS RPN OK \checkmark CHOOS degree OK FLAGS \blacktriangle (highlight 117) \downarrow CHK OK OK

10. Can I erase or change the data in the CHOTKEH program?

CHOTKEH's programs are built in the calculator, you may not erase it by mistake. Also resetting the calculator or removing the batteries shall not affect the program.

11. Am I allowed to use the HP49G in the examination site?

For permissibility, contact the State Board where you are registered to take the examination.

12. How do I obtain technical support for CHOTKEH products?

Upon the receipt of the package, fill out the Registration form and mail/facsimile to CHOTKEH. There is 120 days of free technical support for registered users. Facsimile your questions to (212)942-8105.

Thank you for purchasing CHOTKEH products.

EXAMPLES OF HP49G NUMERIC KEYBOARD CALCULATIONS

The following calculations are separately done in **RPN** and **ALG** modes. To get to these modes: Press <u>MODE</u> CHOOS, highlight **RPN** or Algebraic, press <u>F6</u> <u>F6</u>

Reverse Polish Notation (RPN)	Algebraic (ALG)
1. Calculate 13 x 96	
Key in: 13 <u>SPC</u> 96 ×	Key in: 13 × 96 <u>ENTER</u>
Answer: <u>1248</u>	Answer: <u>1248</u>
2. Calculate 24 1.5	
Key in: 24 <u>SPC</u> 1.5 ÷	Key in: 24 ÷ 1.5 <u>ENTER</u>
Answer: <u>16</u>	Answer: <u>16</u>
3. Calculate 13 x 96 + 12	
Key in: 13 <u>SPC</u> 96 × 12 +	Key in: 13 × 96 + 12 <u>ENTER</u>
Answer: <u>1260</u>	Answer: <u>1260</u>
4. Calculate 2.5 ⁴	
Key in: 2.5 <u>SPC</u> 4 y ^x	Key in: 2.5 y^z 4 <u>ENTER</u>
Answer: <u>39.0625</u>	Answer: <u>39.0625</u>
5. Calculate 3.6 ⁻⁴	
Key in: 3.6 <u>SPC</u> 4 +/- y ^x	Key in: 3.6 y[*] 4 +/- ENTER
Answer: <u>5.9537E-3</u>	Answer: <u>5.9537E-3</u>
6. Calculate 1/25	
Key in: 25 <u>1/X</u>	Key in: <u>1/X</u> 25 <u>ENTER</u>
Answer: <u>.04</u>	Answer: <u>.04</u>
7. Calculate $\sqrt{75} + \frac{1}{2.5^2}$	
Key in: 75 √ x 2.5 x² 1/x +	'Key in: $\sqrt{\pi}$ 75 + 1 + 2.5 y ^x 2 <u>ENTER</u>
Answer: <u>8.82</u>	Answer: <u>8.82</u>

SAMPLES OF HP49G NUMERIC KEYBOARD CALCULATIONS

Reverse Polish Notation (RPN)	Algebraic (ALG)	
8. Calculate √17 ³ -16 ^{2.5}		
Key in: 17 SPC 3 y^x 16 SPC 2.5 y^x - \sqrt{x}	Key in: \sqrt{x} () 17 y^x 3 - 16 y^x 2.5	
	ENTER	
Answer: <u>62.36</u>	Answer: <u>62.36</u>	
9. Calculate $\sqrt{\frac{13^2-16^{1.5}}{(2.5+2)^2}}$		
Key in: 13 SPC 2 y^x 16 SPC 1.5 y^x -	Key in: √x ()() 13 y ^x 2 - 16 y ^x 1.5	
2.5 SPC 2 + 2 y^x + √x	► + () 2.5 + 2 ► y ^x 2 <u>ENTER</u>	
Answer: <u>2.28</u>	Answer: <u>2.28</u>	
10. Given a voltage (210, $\triangle 0$) and current (1:	1, \angle 15) calculate the complex impedance.	
At POLAR:	At POLAR:	
Key in: () 210 ▲ 0 ► SPC () 11 ▲ 15 +	Key in: () 210 ▲ 0 ► ÷ () 11 ▲ 15	
	ENTER	
Answer: (19.09, <u>A-15</u>)	Answer: (19.09, <u>6</u> -15)	
11. Calculate the Rectangular and Polar equivalent of two (2) impedances, (15 +4 1) and		
$(12, \Delta -5)$, in parallel. $Ze = 1/(1/Z1 + 1/Z2)$		
At Rectangular:	At Rectangular:	
() 15 SPC 4 1/x	Key in: 1 + () 1 + () 15 , 4 ▶ +	
() 12 <u>6</u> 5 +/- 1/x	1 + () 12 & 5 +/- <u>ENTER</u>	
+ 1/ x	Answer: (6.86, 0.44)	
Answer: (6.86, 0.44)	At POLAR	
At POLAR	Answer: (6.87, $\triangle 3.68$)	
Answer: (6.87, 43.68)	If angle -5 did not work, enter 355 (360-5)	

<u>NOTE</u>: To enter the symbol of angel (\triangle): Press <u>ALPHA</u> r 6

To get to POLAR $(R \triangle Z)$ mode, press <u>MODE</u>, highlight Coord System, press CHOOS, highlight Polar, press OK OK. When using POLAR, make sure calculator is in DEG mode, unless the given angle is in Radian.

SELECTED BUILT-IN FUNCTIONS HP49G

DESCRIPTION	PAGE
BINARY ARITHMETICS	1
COMBINATIONS	1
COMPLEX NUMBERS	2
DETERMINANT	2
ELECTRICAL CIRCUITS	2
EXPRESSIONS	3
FACTORIAL	3
LINEAR EQUATIONS	3
PERMUTATION	4
PLOTTING	4
QUADRATIC/POLYNOMIAL EQUATIONS	4
TIME ARITHMETIC	5
UNIT CONVERSION	5

BINARY ARITHMETIC			
Example (1): Convert Hexadecimal 56AB to Decimal	base.		
Press \rightarrow <u>MTH</u> BASE HEX. May also press \rightarrow <u>B</u> Press \rightarrow # 56 <u>ALPHA ALPHA A B ENTER</u> Press DEC *****	ASE HEX Answer: # 22187d		
Example (2): Display the same in Octal base Press OCT	<u>Answer : # 532530</u>		
Example (3): Display the same in Binary base Press BIN	Answer: # 101011010101011b		

Example (4): Divide the above answer by 10101b <u>At RPN mode</u> : Press \Rightarrow # 10101 \div <u>At ALG mode</u> : Press \div \Rightarrow # 10101 <u>ENTER</u>	Answer: #10000100000b		

COMBINATION

Example: Find combination (arrangement without order) (5,4)

<u>At **RPN** mode:</u> Press ∽ <u>MTH</u> <u>NXT</u> PROB Type 5 <u>SPC</u> 4, pres COMB

Answer: 5

<u>At ALG mode:</u> Press ∽ <u>MTH</u> <u>NXT</u> PROB Press COMB, type 5, 4 <u>ENTER</u>

Answer: 5

COMPLEX NUMBER		
Example: Solve $\frac{(9+4i)+(-4+3i)}{(3+i)}$		
At RPN mode:		
Press: '() () 9, 4 \blacktriangleright + () -4, 3 \blacktriangleright	÷ () 3,1	
Press <u>EVAL</u>	Answer: (2.2,1.6) or 2.2+1.6i	
At ALG mode:		
Press: () () 9, 4 \blacktriangleright + () -4, 3 \blacktriangleright \div	() 3,1	
Press <u>ENTER</u>	Answer: $(2.2, 1.6)$ or $2.2 + 1.6i$	

DETERMINANT
Example: Solve $\begin{vmatrix} 1 & -1 & 4 \\ 2 & 11 & -3 \end{vmatrix}$
6 -7 10
At RPN mode:
Press • MTH MATRX NORM NXT. You should see DET on the screen Menu.
Press • MTRW F5 (If necessary to make the GO with right arrow active.)
Key in 1 <u>SPC</u> -1 <u>SPC</u> 4 <u>ENTER</u> ▼ r ◄
Key in 2 SPC 11 SPC -3 ENTER
Key in 6 SPC -7 SPC 10 ENTER ENTER
Press DET <u>Answer: -193</u>

ELECTRIC CIRCUITS

Example: For $(10, \measuredangle 0)$ volt and $(2, \measuredangle 30)$ amps: calculate the impedance. At RPN, DEG, and POLAR mode: Press: '() 10, <u>ALPHA</u> \triangleright 6 0 \triangleright \div () 2, <u>ALPHA</u> \triangleright 6 30 <u>EVAL</u>: <u>Answer: (5, \measuredangle -30)</u> <u>At RPN, DEG, and RECT mode:</u> <u>Answer: (4.33, -2.5)</u>

EXPRESSION

Example: Solve: $2^{(1.1*1.6)} + LOG22 + 1^{2.5}\sqrt{7} * SIN50$ <u>At RPN and DEG mode:</u> Press: ' $2 y^{x} \neg () 1.1 \times 1.6 + + r LOG (22) + r \sqrt{X} 2.5 \rightarrow , 7 + \times SIN 50$ Press <u>EVAL</u> <u>Answer: 6.3978</u> <u>At ALG and DEG mode:</u> Press: $2 y^{x} \neg () 1.1 \times 1.6 + r LOG (22) + r \sqrt{X} 2.5 \rightarrow , 7 + \times SIN 50$ Press <u>ENTER</u> <u>Answer: 6.3978</u>

FACTORIAL				
Example: Solve 5! <u>At RPN mode:</u> Press:	∽ <u>MTH</u> NXT PROB 5 !			
At ALG mode: Press:	<u>Answer: 120</u> → <u>MTH</u> <u>NXT</u> PROB 5 ! <u>ENTER</u> <u>Answer: 120</u>			

LINEAR (SIMULTANEOUS) EQUATIONS

Example: Solve 2x+4y+z=9 for x, y, z -x-3y-z=-8 3x-y+z=-2

At RPN mode: Press \rightarrow MTRW Key in 9 SPC -8 SPC -2 ENTER ENTER Press \rightarrow MTRW F5 (If necessary to make the GO with right arrow active.) Key in 2 SPC 4 SPC 1 ENTER $\checkmark \checkmark \checkmark$ Key in -1 SPC -3 SPC -1 ENTER Key in 3 SPC -1 SPC 1 ENTER ENTER Press \div Answer: x=-1, y=2, z=3

PERMUTATION		
Example: Find Permutation (arrangement with order) (5,4)		
<u>At RPN mode:</u> Press → <u>MTH</u> <u>NXT</u> PROB Type 5 <u>SPC</u> 4, press PERM	<u>Answer: 120</u>	
At ALG mode: Press 5 MTH NXT PROB		
pres PERM, type 5, 4 ENTER	Answer: 120	

PLOTTINGExample: Plot x^2-2x-3 and find the roots. Calculator must be in ALG mode:Press: $\neg Y = (F1)$ CLEAR ADD, key in $x^2 - 2x - 3$ ENTERPress: ERASE DRAW. The curve will appearPress FCN ROOT, read the first root:Answer: Root = -1Press NXT × to locate the cursor. Move the cursor to the right close to intersectionwith x axis. Press ROOT, read the second root:Answer: Root = 3Press ON ON

QUADRATIC/POLYNOMIAL EQUATIONS

<u>Example 1:</u> Solve $2X^2+5X-12=0$ (Quadratic Equation) Press $r \cdot \underline{NUMSLV} \cdot \nabla OK$, key in: [2 <u>SPC</u> 5 <u>SPC</u> -12] OK SOLVE <u>ENTER</u> <u>Answer: 1.5,-4</u>

Example 2:Solve $x^2 - 9 = 0$ (Quadratic Equation)Press $r \cdot \underline{NUMSLV} = 0$ (Quadratic Equation)Press $r \cdot \underline{NUMSLV} = 0$ (Quadratic Equation)Answer: -3, 3

Example 2: Solve $3X^3-1.5X^2-12X+6=0$ (Polynomial Equation) Press $r \rightarrow \underline{NUMSLV} \neq \nabla OK$ Key in: [3 <u>SPC</u> -1.5 <u>SPC</u> -12 SPC 6] OK SOLVE <u>ENTER</u> <u>Answer: .5, -2, 2</u>

TIME ARITHMETIC

To set the time and date: Press rrightarrow TIME, select 3 OK. Move the cursor and choose the options. Example (1): Determine the date 49 days after 7/9/00 For time arithmetic, calculator must be in RPN, Fixed 6 decimal and M/D/Y mode. Press rrightarrow TIME, select Tools OK <u>NXT</u>. Key in 7.092000 ENTER Key in 49 press DATE+ <u>Answer: 08.272000 or 8/27/00</u> Example (2): Calculate number of days between 7/9/00 and 8/27/00 Press rrightarrow TIME, select Tools OK <u>NXT</u>. Key in 7.092000 ENTER Key in 8.272000 press DDAYS <u>Answer: 49 days</u>

UNIT CONVERSION

```
For unit conversion application, calculator must be in RPN mode.
Following is the UNITS catalog menu which converts to built-in units.
Press r \in UNITS to reach to the menu:
TOOLS LENG AREA VOL
                             TIME
                                       SPEED press NXT
MASS FORCE ENRG POWR PRESS TEMP press NXT
ELEC ANGL LIGHT RAD VISC
Example (1): Find equivalent of 8 gallon in cubic feet.
Press r UNITS VOL NXT 8 gal PREV
Press rac{1}{2} ft<sup>3</sup>
                                                 Answer: 1.069 ft<sup>3</sup>
Example (2): Calculate 1.5 yards + 2.5 feet + 3 inches.
Press r→ UNITS LENG 1.5 yd 2.5 ft 3 in
Press + +
                                                 Answer (1): 87 in
Press 🕤 ft
                                                 Answer (2): 7.25 ft
                                                 Answer (3): 2.42 yd
Press 👈 yd
```

START UP

EIT-FE SOLVED PROBLEMS

<u>HP49G</u>

Before practicing, please read pages A-1 through A-5 of CHOTKEH's Manual

<u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing \rightarrow <u>LIB</u>. Calculator in **RPN** mode (No ALG on top of screen)

1- The repayment of a \$100,000 loan during a 30 year period based on equal end-of-the-year installments, at an interest rate of 15% requires annual payments which is most nearly:

(A) \$4,000

(B) 13,800

(C) 15,230

(D) 17,500

(E) 20,800

Solution:

This is an Engineering Economic (ENEC) problem. Refer to page 3-4 for Mortgage. The ID NAME for installment is equation (30) INSTL (ENEC/MORT):

 Select LIB, Press ENEC NXT MORT INSTL. Enter values for variables:

 Enter .15 for I; 30 for n; 100000 for LOAN

 Press ← INSTL

 Answer: INSTL = 15230 (C)

2- A 2" diameter shaft is subject to a torque equal to 10,000 in-lbf. The shearing stress due to torsion is nearly:

(A) 0 psi

(B) 6370 psi

(C) 7650 psi

(D) 12770 psi

(E) 15900 psi

Solution:

This is a Mechanics of Material (MEMA) problem. Refer to page 7-1 for stress in the shaft. The ID <u>NAME</u> for Sheer Stress, in a solid round shaft, is equation (11) SOLID (MEMA/SHAFT/SHEAR):

Select <u>LIB</u>, Press <u>NXT</u> MEMA SHAFT SHEAR SOLID Enter 10000 for **T**; 1 for **r** Press **τ**

Answer: $\tau = 6366$ psi (B)

<u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing r <u>LIB</u>. Calculator in **RPN** mode (No ALG on top of screen)

3- If the interest rate is 12% compounded monthly, the effective rate per annum is most nearly:

(A) 12.00%

(B) 12.12%

(C) 12.34%

(D) 12.68%

(E) 12.96%

Solution:

This is an Engineering Economic (ENEC) problem. Refer to page 3-3 for Interest. The ID <u>NAME</u> for Effective Interest Rate is equation (27) EFFEC (ENEC/INTER)

Answer: iEF = .1268 (D)

4- What is the maximum efficiency of a Carnot cycle operating between temperatures of 980 oF and 500 oF

- (A) 33%
- (B) 50%
- $(C) \quad 67\,\%$

(D) 75%

(E) 100%

Solution:

This is a Thermodynamics (THER) problem. Refer to page 8-2 for efficiency equations. The ID <u>NAME</u> for Carnot Efficiency, with the given temperatures, is equation (15) **TEMP** (THER/EFFI/CARN)

Select <u>LIB</u>, Press <u>NXT</u> THER EFFI CARN TEMP. Enter values for variables. Key in '980+460 <u>EVAL</u>=1440, enter for Th; '500+460 <u>EVAL</u>=960 enetr for Tl Press η <u>Answer</u>: η = .333 or 33% (A)

E - 2

<u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing
→ <u>LIB</u>. Calculator in **RPN** mode (No **ALG** on top of screen)

5- Evaluate the following determinant:

	3	1	-1
y =	4	-2	-1 0 4
	2	1	4

The answer is more nearly:

(A) 33

(B) 121

(C) -48

(D) 77

(F) -11

Solution:

This is a built-in function and shall be calculated as follows:

Press $figure{MTRW}$ F5 (If necessary to make the "GO" with the right arrow active.

Key in 3 <u>SPC</u> 1 <u>SPC</u> -1 <u>ENTER</u> $\checkmark \rightarrow \checkmark$ Key in 4 <u>SPC</u> -2 <u>SPC</u> 0 <u>ENTER</u> Key in 2 <u>SPC</u> 1 <u>SPC</u> 4 <u>ENTER</u> <u>ENTER</u> Press \checkmark <u>MTH</u> MATRX NORM <u>NXT</u> DET

Answer: -48 (C)

6- What input horsepower required for a pump with 80% efficiency, inlet pressure of 10 psia, outlet pressure of 20 psig, and a flow of 5 cfs of water? Assume sea level condition.

(A) 2.90 hp

(B) 10.40 hp

(C) 14.00 hp

(D) 25.00 hp

(E) 40.00 hp

Solution:

This is a Fluid Mechanics (FLME) problem with specific equations in English and SI Systems. Refer to FLUID MECHANIC SECTION, page 4-6 for pumps.

The ID <u>NAME</u> for hp, with the flow in cfs in English system, is equation (71) CFS (FLME/PUMP/HP/ENG):

Select <u>LIB</u>, Press FLME <u>NXT</u> PUMP HP ENG CFS. Enter the values Press ' () 20+14.7-10 \blacktriangleright *144/62.4 <u>EVAL</u> = 57, enter for hA; 5 for cfs; 62.4 for ρ , and .8 for η Press \uparrow hp <u>Answer: hp=40.4 (E)</u> <u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing r <u>LIB</u>. Calculator in **RPN** mode (No ALG on top of screen)

7- An industrial plant draws an average current of 600 amp. daily from a 3 phase, 440 volt, 60 HZ line, at a power factor of .75 lagging. If a condenser improved the power factor to .92 lagging, the new value of average daily current will be most nearly :

(A) 450 amp.

(B) 475 amp.

(C) 490 amp.

(D) 550 amp.

(E) 650 amp.

Solution:

This is an Electricity (ELEC) problem. Refer to gage 2-5 for power equations. The ID <u>NAME</u> for three phase effective Power is equation (51) 3ϕ (ELEC/POWR/EFEC):

Select <u>LIB</u>, Press ELEC <u>NXT</u> POWR EFEC 3ϕ . Enter values. Enter 440 for V; 600 for I; .75 for PF; Press \uparrow P With the calculated power under old power factor; enter .92 for PF (new power factor) Press \uparrow I <u>Answer: I=489 (C)</u>

8- Oil flows through a 6" diameter pipe at a rate of 150 gpm. Its viscosity is 0.001 pound-second per square foot, and its specific gravity is 0.8. Under these conditions, the Reynolds Number NR is most nearly:

(A) 1320

(B) 2000

(C) 3300

(D) 9900

(E) 12400

Solution:

This is a Fluid Mechanics (FLME) problem with specific equations in English and SI Systems. Refer to FLUID MECHANIC SECTION, page 4-5 for pipes. Calculate the velocity first. The ID <u>NAME</u> for velocity, flow in **gpm** in English system, is equation (60) **GPM** (FLME/PIPE/VELO/ENG): Select <u>LIB</u>, Press FLME <u>NXT</u> PIPE VELO ENG GPM. Enter the values for variables. Enter 150 for **gpm**; .5 for **D**; Press \neg V <u>v=1.7 fps</u> (the value for **v** is stored in the calculator) The ID <u>NAME</u> for Reynolds Number, with absolute viscosity, is equation (75) ABSO (FLME/REYN) Select <u>LIB</u>, Press FLME <u>NXT</u> REYN ABSO. Enter the values. Press '62.4x.8 <u>EVAL</u> = 49.92 for ρ ; .001 for μ ; 32.2 for g (values for D & v are stored before) Press \neg NRe <u>Answer NRe=1319 (A)</u> <u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing $rac{1}{}$ <u>LIB</u>. Calculator in **RPN** mode (No ALG on top of screen)

9- A steel shaft 30" long an 2" in diameter is subjected to a torque equal to 60,000 in-lbf. If G is assumed to be 12EE6 psi, the angular rotation, in degree, at the end of the shaft is most near to:

(A) .7

(B) .11

(C) .56

(D) 5.70

(E) 45.00

Solution:

This is a Mechanics of Material (MEMA) problem. Refer to page 7-1 for angle of twist in the shaft. The ID <u>NAME</u> for Angle of Twist, in solid bar is equation (06) SOLID (MEMA/SHAFT/ANGL)

Select <u>LIB</u>, Press <u>NXT</u> MEMA SHAFT ANGLE SOLID Enter 60000 for T; 30 for L; 12E6 for G; 1 for r Press $\neg \Omega$ <u>Answer: $\Omega = 5.47$ (D)</u>

10- Air is compressed in a frictionless manner with no transfer of heat from a condition of 70 oF and 14.7 psia to 1000 psia. What is the resulting air temperature in degree Fahrenheit?

(**A**) 70

(B) 234

(C) 990

(D) 1310

(E) 10340

Solution:

This is a Gas Properties (GASP) problem. Refer to page 5-3 for isentropic process. The ID <u>NAME</u> for temperature, with the given pressure, is equation (27) $\Delta T/P$ (GASP/ISENT)

Select LIB, Press GASP ISENT $\Delta T/P$ Enter the values for variables.Key in '70+460EVAL = 530, enter for T1, 1000 for p2; 14.7 for p1; and 1.4 for k (assumed)Press \neg T2Select UNITSNXTNXTTEMP oR \neg oFAnswer: T2 = 1310 oF (D)

<u>GENERAL NOTE</u>: The entire program is stored in the calculator's library, therefore, first, get to the library by pressing ➡ <u>LIB</u>. Calculator in **RPN** mode (No ALG on top of screen)

11- Water flows through a 2' diameter drain pipe to a level such that a 60 degree arc at the top of the pipe is not wetted.

The hydraulic radius, in feet, is most nearly:

(A) 0.50

(B) 0.58

(C) 0.67

(D) 1.00

(E) 2.00

Solution:

This is a Mathematics (MATH) problem. Refer to page 6-1 for hydraulic radius. The ID <u>NAME</u> for Hydraulic Radius, with the given angle, is equation (10) ANGL (MATH/HYD.R)

Select <u>LIB</u>, Press MATH HYD.R ANGL Enter 1 for r; 360-60=300 for **Q** Press **\clubsuit** HR

Answer: HR = .58 (B)

12- Ten pounds of helium at a constant pressure of 20 psia are heated for two hours at a constant rate of 100 btu/hr. The helium volume is allowed to increase in a frictionless manner from 700 cubic feet to 1000 cubic feet. How much work is done?

(A) 0 ft-lb/hr
(B) 550 Btu
(C) 1110 Btu
(D) 43,200 ft-lb/hr
(E) 86,400 ft-lb/hr

Solution:

This is a Gas Properties (GASP) problem. Refer to page 5-1 for constant pressure process. The ID <u>NAME</u> for the Work Done is equation (07) W (GASP/PRESS).

Select LIB, Press GASP PRESS NXTW. Enter the values for variables.Key in ' 20x144 EVAL = 2880, enter for p1; 1000 for v2; 700 for v1Press \frown WWW=864000 lb-ftTo convert the answer to Btu:Select UNITSNXTENRG ft*lb \frown BTUAnswer: W=1110 btu (C)

E - 6

DYNAMICS		
DESCRIPTION	FORMULA	<u>NAME</u>
BANKING ANGLE: (DYNA/BANK)		
ENGLISH System: (DYNA/BANK/EN	<i>G</i>)	
(01) For motion impeding down	Ω=λτλΝ (<u>.0668*mph²</u>)+λτλΝμ <u>r</u>	DOWN
(02) For motion impeding up	$\Omega = ATAN(\frac{.0668 * mph^2}{r}) - ATAN\mu$	ŪP
(03) Ideal	$\Omega = ATAN(\frac{.0668 * mph^2}{r})$	IDEAL
(04) Height of outside edge	<u>b=RW*SinΩ</u>	HIGHT
SI Units: (DYNA/BANK/SI)		
(05) For motion impeding down	$\Omega = ATAN \left(\frac{.00786 * kmh^2}{r} \right) + ATAN \mu$	DOWN
(06) For motion impeding up	Ω= λτλΝ (<u>.00786*kmh²</u>)-λτλΝμ r	UP
(07) Ideal	$\Omega = ATAN(\frac{.00786 * kmh^2}{r})$	IDEAL
(08) Height of outside edge	<u>b=RW+SinΩ</u>	HIGHT

CIRCULAR MOTION, ACCELERATED: (DYNA/CIRM)

Angle subtended: (DYNA/CIRM/ 0)

(09) With the given α and T	$\theta = \omega_o * t + \frac{1}{2} \alpha * t^2$	α. Τ
(10) With the given α and ω	$\theta = \frac{\omega^2 - \omega_o^2}{2\alpha}$	α. ω
(11) With the given N	θ=2π <i>N</i>	N
<u>Angular acceleration:</u> (DYNA/CIRM/ a)		
(12) With the given α and ω	$\boldsymbol{\alpha} = \frac{\boldsymbol{\omega} - \boldsymbol{\omega}_o}{\boldsymbol{t}}$	ω. Τ

(13) With the given θ and T $\alpha = \frac{2(\theta - \omega_o * t)}{t^2}$ θ . T

DYNAMICS

DESCRIPTION	FORMULA	<u>NAME</u>
<u>Angular velocity</u> (DYNA/CIRM/ ω)		
(14) With the given α and T	$\omega = \omega_o + \alpha * t$	α. Τ
(15) With the given $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}$	$\omega = \sqrt{\omega_o^2 + 2\alpha * \theta}$	α. θ
(16) With the given RPM	$\omega = \frac{2\pi * RPM}{60}$	RPM
<u>Centrifugal force:</u> (DYNA/CIRM/ FC)	
(17) With the given w and an	$\mathbf{F}_{\mathbf{g}} = \frac{\mathbf{W} + \mathbf{a}_{\mathbf{g}}}{\mathbf{g}}$	W.AN
(18) With the given w and v	$\boldsymbol{F}_{c} = \frac{\boldsymbol{W} \ast \boldsymbol{V}^{2}}{\boldsymbol{g} \ast \boldsymbol{r}}$	W . V
(19) With the given w and $\boldsymbol{\omega}$	$\boldsymbol{F}_{c} = \frac{\boldsymbol{W} + \boldsymbol{\Gamma} + \boldsymbol{\omega}^{2}}{\boldsymbol{g}}$	₩.ω
Linear velocity: (DYNA/CIRM/ V) (20) With the given RPM	$V = \frac{2\pi * r * RPM}{60}$	RPM
(21) With the given $\boldsymbol{\omega}$	v = \u03bb * r	ω
Normal acceleration: (DYNA/CIRM/ A	4 <i>N</i>)	
(22) With the given v and r	$a_{r}=\frac{v^{2}}{r}$	V.R
(23) With the given $\boldsymbol{\omega}$ and \mathbf{r}	$a_{p} = r * \omega^{2}$	ω. <i>R</i>
(24) Rotational speed	$RPM = \frac{30}{\pi} (\omega_o + \alpha * t) = RPM_o + \frac{30\alpha * t}{\pi}$	RPM→
<u>Time:</u> $(DYNA/CIRM/T)$	<u>ω-ω</u>	
(25) With the given α and ω	$t = \frac{\omega - \omega_o}{\alpha}$	α.ω
(26) With the given $\boldsymbol{\alpha}$ and $\boldsymbol{\theta}$	$t = \frac{\sqrt{2\alpha * \theta + \omega_o^2} - \omega_o}{\alpha}$	α. θ
(27) With the given $\boldsymbol{\theta}$ and $\boldsymbol{\omega}$	$t=\frac{2\theta}{\omega+\omega_{o}}$	θ. ω

	DYNAMICS		
DESCRIPTION	FORMULA		<u>NAME</u>
ENERGY: (DYNA/ENRG)			
(28) Potential		E _p =m*g*h	POTEN
Kinetic: (DYNA/ENRG/KINET)			
(29) Linear system		$\boldsymbol{B}_{k} = \frac{1}{2}\boldsymbol{m} \ast \boldsymbol{v}^{2}$	LINER
(30) Circular system		$\boldsymbol{E}_{k} = \frac{1}{2} \boldsymbol{I} \ast \boldsymbol{\omega}^{2}$	CIRCU

LINEAR MOTION (DYNA/LINM)

Acceleration: (DYNA/LINM/ A)

(31) With the given \mathbf{v} and \mathbf{t}	$a = \frac{v - v_o}{t}$	V. T
(32) With the given s and t	$\boldsymbol{a} = \frac{2 \left(\boldsymbol{s} - \boldsymbol{s}_o\right) - 2 \boldsymbol{v}_o * t}{t^2}$	S. T
(33) With the given s and v	$\mathbf{a} = \frac{\mathbf{v}^2 - \mathbf{v}_o^2}{2(\mathbf{s} - \mathbf{s}_o)}$	S .V

Displacement: (DYNA/LINM/ S)

(34) With the given a and t	$\boldsymbol{s} = \boldsymbol{s}_o + \boldsymbol{v}_o * \boldsymbol{t} + \frac{1}{2} \boldsymbol{a} * \boldsymbol{t}^2$	A . T
(35) With the given \mathbf{a} and \mathbf{v}	$\boldsymbol{s} = \boldsymbol{s}_o + \frac{\boldsymbol{v}^2 - \boldsymbol{v}_o^2}{2\boldsymbol{a}}$	A . V
(36) With the given t and v	$\boldsymbol{s} = \boldsymbol{s}_{o} + \frac{1}{2} \boldsymbol{t} (\boldsymbol{v}_{o} + \boldsymbol{v})$	T.V

Initial velocity: (DYNA/LINM/ VO)

(37) With the given \mathbf{a} , \mathbf{t} , and \mathbf{v}	v _o = v - a *t	A. T. V
(38) With the given \mathbf{a} , \mathbf{s} , and \mathbf{t}	$\boldsymbol{v}_{o} = \frac{\boldsymbol{s} - \boldsymbol{s}_{o}}{t} - \frac{1}{2}\boldsymbol{a} * \boldsymbol{t}$	A .S.T
(39) With the given \mathbf{a} , \mathbf{s} , and \mathbf{v}	$\mathbf{v}_{o} = \sqrt{\mathbf{v}^{2} - 2\mathbf{a} (\mathbf{s} - \mathbf{s}_{o})}$	A .S.V

DYNAMICS		
DESCRIPTION	FORMULA	<u>NAME</u>
Velocity: (DYNA/LINM/ V)		
(40) With the given \mathbf{a} and \mathbf{t}	v=v o+ a *t	A . T
(41) With the given a and s	$v = \sqrt{v_o^2 + 2a(s - s_o)}$	A .S
(42) With the given \mathbf{a} , \mathbf{s} , and \mathbf{t}	$v = \frac{2(s - s_o)}{t} - v_o$	S. T
Time: (DYNA/LINM/ T)		
(43) With the given \mathbf{a} and \mathbf{v}	$t = \frac{v - v_o}{a}$	A .V
(44) With the given a and s	$t = \frac{\sqrt{v_o^2 + 2a(s - s_o)} - v_o}{a}$	A .S
(45) With the given s and v	$t = \frac{2(s - s_o)}{v + v_o}$	<i>S</i> .V

<u>PENDULUM:</u> (DYNA/PEND) Compound: (DYNA/PEND/COMP)

(46) Angular frequency	$\omega = \sqrt{\frac{m * g * L}{I}} \qquad \omega$
(47) Frequency	$f=\frac{1}{2\pi}\sqrt{\frac{m*g*L}{I}}$
(48) Period	$T=2\pi\sqrt{\frac{1}{m*g*L}}$
Simple: (DYNA/PEND/SIMP)	

(49) Angular frequency	$\omega = \sqrt{\frac{g}{L}}$	ω
(50) Frequency	$f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$	F
(51) Period	$T=2\pi\sqrt{\frac{L}{g}}$	T

DYNAMICS		
DESCRIPTION	FORMULA	<u>NAME</u>
PROJECTILE MOTION: (DYNA/PROJ)		
Horizontal: (DYNA/PROJ/HORIZ)		
(52) Altitude above the base	$y=H_b-\frac{1}{2}g*t^2$	AL TI
(53) Drop angle	$\Omega = ATAN\left(\frac{v_o}{H_b}\sqrt{\frac{2H_b}{g}}\right)$	AN GL
(54) Flight time	$T = \sqrt{\frac{2H_b}{g}}$	TIME
(55) Horizontal displacement (Range)	$R = v_o \sqrt{\frac{2H_b}{g}}$	RANG
<u>Vertical:</u> (DYNA/PROJ/VERTI) <u>Altitude:</u> (DYNA/PROJ/VERTI/ALTI)		
(56) At time t	$y=v_o*t*SinQ-\frac{1}{2}g*t^2$	AT: T
(57) Maximum	$H=\frac{v_o^2*Sin\Omega^2}{2g}$	MAX
Flight Time: (DYNA/FROJ/VERTI/TIM	fE)	

(58) Total	$T = \frac{2v_o * Sin\Omega}{g}$	TOTL

(59) At altitude y	$t = \frac{v_o * Sin\Omega}{v_o} + \sqrt{v_o^2 * Sin\Omega^2 - 2g * y}$	AT:Y
· · ·	g	

Horizontal Displacement: (DYNA/PROJ/VERTI/DISP)

(60) At time t	Ξ =v _o *t*CobΩ	AT: T
(61) At altitude y	$\boldsymbol{x} = \boldsymbol{v}_{o} Cos \Omega \frac{\boldsymbol{v}_{o} sin \Omega + \sqrt{\boldsymbol{v}_{o}^{2} sin \Omega^{2} - 2g + y}}{g}$	AT: Y

(62) Range, total	$R=\frac{\boldsymbol{v}_{o}^{2}*Sin(2\Omega)}{g}$	RANG
-------------------	---	------

DYNAMICS

DESCRIPTION	FORMULA	<u>NAME</u>
Velocity: (DYNA/PROJ/VERTI/VELO)		
(63) Total	$v = \sqrt{v_o^2 - 2g * y}$	V
(64) Horizontal	$v_x = v_o * Cos\Omega$	VX
(65) Vertical	$v_y = v_o * Sin \Omega - g * t$	VY

<u>SPRING:</u> (*DYNA/SPRIN/MASS*)

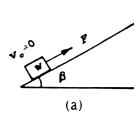
<u>Angular frequency:</u> (DYNA/SPRIN/MASS/ ω)

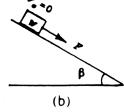
(66) With the given k and w	$\omega = \sqrt{\frac{k * g}{k}}$	K.W
(67) With the given f	ω=2π*f	F
(68) With the given T	$\omega = \frac{2\pi}{T}$	T
<pre>Frequency: (DYNA/SPRIN/ F)</pre>		
(69) With the given k and w	$f = \frac{1}{2\lambda} \sqrt{\frac{k + g}{J}}$	K. N
(70) With the given $\boldsymbol{\omega}$	$f=\frac{\omega}{2\pi}$	ω
(71) With the given T	$f=rac{1}{T}$	Т

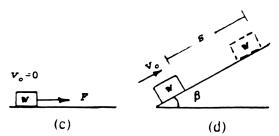
Period: (DYNA/SPRIN/MASS/ T)

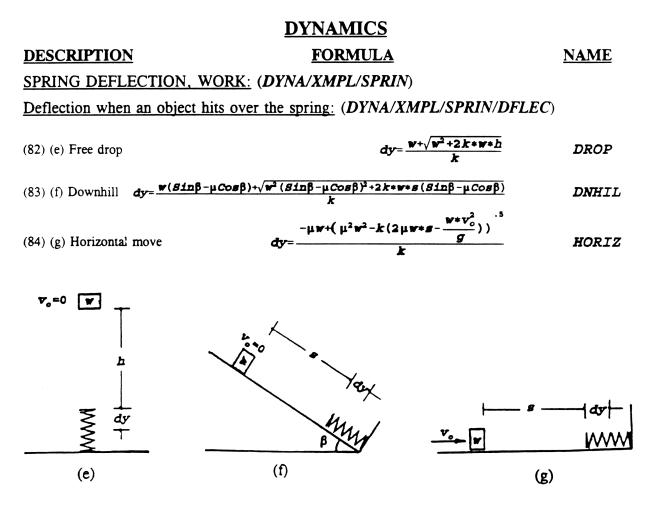
(72) With the given \mathbf{k} and \mathbf{w}	$T=2\pi\sqrt{\frac{W}{k+g}}$	K .W
(73) With the given $\boldsymbol{\omega}$	$T = \frac{2\pi}{\omega}$	ω
(74) With the given T	$T = \frac{1}{f}$	F

DYNAMICS			
DESCRIPTION	FORMULA		NAME
Torsional: (DYNA/SPRIN/TORS)			
(75) Angular frequency		$\omega = \sqrt{\frac{k}{I}}$	ω
(76) Frequency		$f=\frac{1}{2\pi}\sqrt{\frac{k}{I}}$	F
(77) Period		$T=2\pi\sqrt{\frac{1}{k}}$	T


DYNAMICS EXAMPLES: (DYNA/XMPL) MOTION ON SLOPE: (DYNA/XMPL/SLOP) Acceleration: (DYNA/XMPL/SLOP/ACCEL)


(78) (a) Moving uphill	$\mathbf{a} = (\frac{\mathbf{F}}{\mathbf{w}} - \mathbf{Sin}\beta - \mu \cos\beta)g$	UPHIL
(79) (b) Moving downhill	$\boldsymbol{a} = (\frac{\boldsymbol{F}}{\boldsymbol{w}} + \boldsymbol{S} \boldsymbol{i} \boldsymbol{n} \boldsymbol{\beta} - \boldsymbol{\mu} \boldsymbol{C} \boldsymbol{o} \boldsymbol{s} \boldsymbol{\beta}) \boldsymbol{g}$	DNHIL
(80) (c) Moving horizontally	$\boldsymbol{a} = \left(\frac{\boldsymbol{F}}{\boldsymbol{v}} - \boldsymbol{\mu}\right) \boldsymbol{g}$	HORIZ


Displacement: (DYNA/XMPI./SLOP/DISP)


(81) (d) Moving uphill

PULLEYS: (D7NA/XMPI/PI/LY)

(85) (h) Acceleration on slope $a=g\frac{w_1(\cos\beta-\mu \sin\beta)-w_2}{w_1+w_2}$ ACCEL (86) (i) Tension on cables $T=2w_1(1-\frac{w_1-w_2}{w_1+w_2})$ TNSN

DYNAMICS

VARIABLES IDENTIFICATION

<u>SYMBOL</u> <u>DESCRIPTION; UNIT (ENG, SI)</u>

<u>a</u>	Linear acceleration; $ft/s2$, $m/s2$ (1 $ft/s2 = 0.3048 m/s2$).
an	Normal acceleration; $ft/s2$, $m/s2$ (1 ft/s2 = 0.3048 m/s2).
<u>dy</u>	Deflection; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
<u>Ek</u>	Kinetic energy; <u>ft-lbf</u> , <u>J</u> (1 ft-lbf = 1.3558 J(N.m)).
Ep	Potential energy; <u>ft-lbf</u> , <u>J</u> (1 ft-lbf = $1.3558 J(N.m)$).
f	Frequency; cps (cycle per second)
<u>F</u>	Force; <u>lbf</u> , <u>N</u> (1 lbf = 4.4482 N).
<u>Fc</u>	Centrifugal force; <u>lbf</u> , <u>N</u> (1 lbf = 4.4482 N).
2	Acceleration of gravity; $(g = 32.2 \text{ ft/s}2 = 9.81 \text{ m/s}2)$.
<u>h</u>	Height; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
<u>Hh</u>	Launch base altitude from the target; ft , m (1 ft = 0.3048 m).
Ī	Mass moment of inertia; <u>lbm-ft2</u> , <u>Nm-m2</u> (1 lbm-ft2 = 0.04214 kg.m2).
<u>k</u>	Spring constant; $\underline{lbf/ft}$, $\underline{N/m}$ (1 $lbf/ft = 14.5939 N/m$).
<u>kph</u>	Kilometer per hour; $(1 \text{ kph} = 0.62137 \text{ mph})$.
<u>l</u>	Length, pendulum; \underline{ft} , \underline{m} (1 ft = 0.3048 m).
<u>m</u>	Mass; <u>lbm</u> , <u>kg</u> (1 lbm = 0.4536 kg).
mph	Mile per hour; $(1 \text{ mph} = 1.609344 \text{ kph})$.
N	Number of rotations; None.
<u>R</u>	Maximum projectile range on horizontal plane; ft, m (1 ft = 0.3048 m)
Ľ	Radius; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
<u>RPM</u>	Revolution per minute.
<u>RPMo</u>	Initial revolution per minute.
<u>RW</u>	Road's width; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
<u>s</u>	Linear displacement; \underline{ft} , \underline{m} (1 ft = 0.3048 m).
Ξ	Total flight time; sec. : Period; spc. : Tension; lbf, N (1 lbf = 4.4482 N).
t	Time; <u>sec</u> .
<u>Th</u>	Flight time; sec.
<u>v</u>	Velocity; <u>ft/s</u> , <u>m/s</u> (1 ft/s = 0.3048 m/s).
<u>vx</u>	Horizontal velocity; fps, $\underline{m/s}$ (1 ft/s = 0.3048 m/s).
<u>vy</u>	Vertical velocity; fps, $\underline{m/s}$ (1 ft/s = 0.3048 m/s).
<u>w</u>	Weight; lb, \underline{kg} (1 lb = 0.4536 kg).
<u>x</u>	Projectile's horizontal displacement; \underline{ft} , \underline{m} (1 ft = 0.3048 m).
<u>xh</u>	Horizontal displacement; \underline{ft} , \underline{m} (1 ft = 0.3048 m).
Y	Projectile altitude above the base; \underline{ft} , \underline{m} (1 ft = 0.3048 m).
<u>yh</u>	Altitude above the base; ft, m (1 ft = 0.3048 m).

DYNAMICS VARIABLES IDENTIFICATION

SYMBOL	DESCRIPTION; UNIT
α	Angular acceleration; rad/s.
β	Angle with horizontal plane; deg.
μ	Coefficient of friction; decimal.
Ω	Banking, Launch, or Drop angle; deg.
ω	Angular velocity; rad/s.
ωο	Initial angular velocity; <u>rad/s</u> .
θ	Angle subtended; rad.

ELECTRICITY			
DESCRIPTION	FORMULA	NAME	
BATTERIES IN PARALLEL: (ELE	CC/BATT)		
(01) Current through battery #1	$I_{1} = \frac{V_{1} - V_{2} + I + R_{2}}{R_{1} + R_{2}}$	I ₁	
(02) Current through battery #2	$I_2 = \frac{V_2 - V_1 + I * R_1}{R_1 + R_2}$	<i>I</i> ₂	
<u>CAPACITORS:</u> (<i>ELEC/CAPAC</i>)			
Equivalent Capacitance: (ELEC/CA)	PAC/EQUIV)		
(03) Parallel, 2 or 3	$C_{\bullet} = C_1 + C_2 + C_3$	PARA	
Series: (ELEC/CAPAC/EQUIV/SE	ERI)		
(04) Two in Series	$C_{\phi} = \frac{C_1 * C_2}{C_1 + C_2}$	TWO	
(05) Three in Series	$C_{\phi} = \frac{C_1 * C_2 * C_3}{C_1 * C_2 + C_1 * C_3 + C_2 * C_3}$	THREE	
Capacitance Reactance: (ELEC/CAP	AC/REAC)		
(06) With f and C	$\mathbf{X}_{c} = \frac{1}{2\pi * f * C}$	F.C	
(07) With V and I	$\mathbf{X}_{c} = \frac{\mathbf{V}}{\mathbf{I}}$	V . I	
(08) With w and C	$\mathbf{X}_{c} = \frac{1}{\boldsymbol{\omega} \ast \boldsymbol{C}}$	ω. <i>C</i>	
(09) Coulomb Law (<i>ELEC</i>)	$F = \frac{q_1 * q_2}{4\pi * \epsilon * r^2}$	CULMB	
IMPEDANCE: (ELEC/IMPED)			
(10) Magnitude	$z = \frac{v}{r}$	MAG	

	ELECTRICITY	
DESCRIPTION	FORMULA	<u>NAME</u>
Magnitude: R, L, and C in Parallel	(ELEC/IMPED/PARA)	
(11) With \mathbf{R} and \mathbf{C}	$\boldsymbol{Z} = \frac{\boldsymbol{R} \ast \boldsymbol{X}_{c}}{\sqrt{\boldsymbol{R}^{2} + \boldsymbol{X}_{c}^{2}}}$	R.C
(12) With \mathbf{R} and \mathbf{L}	$\boldsymbol{Z} = \frac{\boldsymbol{R} * \boldsymbol{X}_L}{\sqrt{\boldsymbol{R}^2 + \boldsymbol{X}_L^2}}$	R.L
(13) With L and C	$\boldsymbol{\mathcal{Z}} = \frac{\boldsymbol{\mathcal{X}}_{L} \ast \boldsymbol{\mathcal{X}}_{c}}{\boldsymbol{\mathcal{X}}_{L} - \boldsymbol{\mathcal{X}}_{c}}$	L.C
(14) With R , L , and C	$\boldsymbol{\mathcal{Z}} = \frac{\boldsymbol{R} * \boldsymbol{X}_{L} * \boldsymbol{X}_{c}}{\sqrt{\boldsymbol{X}_{L}^{2} * \boldsymbol{X}_{c}^{2} + \boldsymbol{R}^{2} \left(\boldsymbol{X}_{L} - \boldsymbol{X}_{c}\right)^{2}}}$	R.L.C
Magnitude of R, L, and C in Series	E (ELEC/IMPED/SERI)	
(15) With \mathbf{R} and \mathbf{C}	$Z = \sqrt{R^2 + X_c^2}$	R.C
(16) With \mathbf{R} and \mathbf{L}	$Z = \sqrt{R^2 + X_L^2}$	R.L
(17) With C and L	$Z = X_L - X_C$	C.L
(18) With R , L , and C	$\boldsymbol{Z} = \sqrt{\boldsymbol{R}^2 + (\boldsymbol{X}_L - \boldsymbol{X}_C)^2}$	R.L.C

INDUCTORS: (ELEC/INDUC)

Equivalent I:, ductance: (El SC/INDUC/EQUIV)

Parallel:	(ELEC/INDUC/EQUIV/PARA)
-----------	-------------------------

(19) Two in Parallel	$\boldsymbol{L}_{\bullet} = \frac{\boldsymbol{L}_{1} \ast \boldsymbol{L}_{2}}{\boldsymbol{L}_{1} \ast \boldsymbol{L}_{2}}$	TWO
(20) Three in Parallel	$L_{\bullet} = \frac{L_1 * L_2 * L_3}{L_1 * L_2 + L_1 * L_3 + L_2 * L_3}$	THREE
(21) Two or three in Series <u>Inductive Reactance:</u> (ELEC/INDUC/REAC)	$L_{o} = L_{1} + L_{2} + L_{3}$	SE RI
(22) With f and L	$X_L = 2\pi * f * L$	F.L
(23) With V and I	$\mathbf{X}_{L} = \frac{V}{I}$	v . I
(24) With w and L	$X_L = L * \omega$	ω. L

FORMULA

DESCRIPTION

KIRCHOFF'S LAW: (ELEC/KIRC)

Two (2) MESH network: (ELEC/KIRC/2LOOP)

The format of the equations resulted from applying the Kirchoff's Law, are as follow:

 $A_1I_1 + B_1I_2 = C_1$ $A_2I_1+B_2I_2=C_2$

(25) Current in MESH #1

$$I_{1} = EXPR = \frac{C_{1}B_{2} - B_{1}C_{2}}{A_{1}B_{2} - A_{2}B_{1}} \qquad I1$$

NAME

(26) Current in MESH #2

 $I_2 = EXPR = \frac{C_1 A_2 - A_1 C_2}{A_2 B_1 - A_1 B_2}$ 12

Three (3) MESH network: (ELEC/KIRC/3LOOP)

The format of the equations, resulted from applying the Kirchoff's Law, are as follow:

$$A_{1}I_{1}+B_{1}I_{1}+C_{1}I_{3}=D1$$
$$A_{2}I_{1}+B_{2}I_{1}+C_{2}I_{3}=D2$$
$$A_{3}I_{1}+B_{3}I_{1}+C_{3}I_{3}=D3$$

Current in MESH #1

(27)
$$I_1 = EXPR = \frac{(C_3B_2 - C_2B_3)(C_2D_1 - C_1D_2) - (C_2B_1 - C_1B_2)(C_3D_2 - C_2D_3)}{(C_3B_2 - C_2B_3)(C_2A_1 - C_1A_2) - (C_2B_1 - C_1B_2)(C_3A_2 - C_2A_3)}$$
II

Current in MESH #2

(28)
$$I_{2} = EEPR = \frac{(A_{3}C_{2} - A_{2}C_{3}) (A_{2}D_{1} - A_{1}D_{2}) - (A_{2}C_{1} - A_{1}C_{2}) (A_{3}D_{2} - A_{2}D_{3})}{(A_{3}C_{2} - A_{3}C_{3}) (A_{2}P_{1} - A_{1}B_{2}) - (A_{2}C_{1} - A_{1}C_{2}) (A_{3}B_{2} - A_{2}B_{3})} I2$$

Current in MESH #3

(29)
$$I_{3} = \mathbb{E}\mathbb{E}\mathbb{P}\mathbb{R} = \frac{(\mathbf{A}_{3}\mathbf{B}_{2} - \mathbf{A}_{2}\mathbf{B}_{3})(\mathbf{A}_{2}D_{1} - \mathbf{A}_{1}D_{2}) - (\mathbf{A}_{2}\mathbf{B}_{1} - \mathbf{A}_{1}\mathbf{B}_{2})(\mathbf{A}_{3}D_{2} - \mathbf{A}_{2}D_{3})}{(\mathbf{A}_{3}\mathbf{B}_{2} - \mathbf{A}_{2}\mathbf{B}_{3})(\mathbf{A}_{2}C_{1} - \mathbf{A}_{1}C_{2}) - (\mathbf{A}_{2}\mathbf{B}_{1} - \mathbf{A}_{1}\mathbf{B}_{2})(\mathbf{A}_{3}C_{2} - \mathbf{A}_{2}C_{3})}$$

$$I3$$

MOTORS: (ELEC/MOTR)

Elevators: (ELEC/MOTR/ELEV)

English System: (ELEC/MOTR/ELEV/ENG)		
(30) Power in kW	k₩= <u>₩xfpm</u> . 44254 ×η	ĸw
(31) Power in hp	$hp = \frac{w \times fpm}{33000 \times \eta}$	HP

ELECTI		
	RMULA	<u>NAME</u>
SI System: (ELEC/MOTR/ELEV/SI)		
(32) Power in kW	λ₩ = <u>₩×mpm</u> 6118.33×η	ĸw
(33) Power in hp	<u>hp</u> = <mark>₩×трт</mark> 4562.4×η	HP
Power: (ELEC/MOTR/POWR)		
Single Phase: (ELEC/MOTR/POWR/ 1¢)		
(34) Power in kW	$kW = \frac{V \times I \times PF \times \eta_{H}}{1000}$	KW
(35) Power in bp	$hp = \frac{V \times I \times PF \times \eta_{H}}{745.7}$	HP
<u>Three Phase:</u> (ELEC/MOTR/POWR/ 3¢)		
(36) Power in kW	k₩ =	ĸw
(37) power in hp	$hp = \frac{\sqrt{3} \times V \times I \times PF \times \eta_{H}}{745.7}$	HP
Pumps: (ELEC/MOTR/PUMP)		
Horsepower: (ELEC/MOTR/PUMP/HP)		
English System: (ELEC/MOTR/PUMP/HP/E.	NG)	
(38) Flow in gpm	hp= <u>h×gpm×SG</u> 3960×η	GPM
(39) Flow in lbps	bp= <u>b×1bps</u> 550 <η	LBPS
(40) Flow in cfs	$hp = \frac{h \times cfs \times SG}{8,814 \times n}$	CFS
SI System: (ELEC/MOTR/PUMP/HP/SI)	0.01 6 X1	
(41) Flow in m3ps	<u></u> hp= <u>h×m3ps×SG</u> .07615×η	M3PS
(42) Flow in lps	b p= <mark>b×1рs×SG</mark> 76.15×η	LPS
(43) Flow in kgps	hp= <u> h×kgp</u> я 76.15×η	KGPS
Speed: (ELEC/MOTR)		
(44) Rotational speed	$RPM = \frac{120 \times f(1-S)}{P}$	RPM
Torque: (ELEC/MOTR/TORQ)		
(45) English System	$T = \frac{5252.1 \times hp}{RPM}$	ENG
(46) SI System	$T = \frac{7120.8 \times hp}{RPM}$	SI

2 - 4

Ī	CLECTRICITY	
DESCRIPTION	FORMULA	<u>NAME</u>
POWER: (ELEC/POWR)		
Apparent: (ELEC/POWR/APAR)		
(47) Single phase		ıφ
(48) Three phase	<i>P</i> _a =√3 * <i>V</i> * <i>I</i>	Зф
Effective: (ELEC/POWR/EFEC)		
(49) Instantaneous	$P_i = V * I (COS \phi + COS (2 \omega * t + \phi))$	INST
(50) Average, single phase	<i>P=V*I*PF</i>	ıφ
(51) Average, three phase	<i>P=</i> \3 * <i>V</i> * <i>I</i> * <i>PF</i>	Зф
Reactive: (ELEC/POWR/REAC)		
(52) Average, sing'e phase	$P_r = V * I * SIN(ACOS(PF))$	ıφ
(53) Average, three phase	$P_r = \sqrt{3} * V * I * SIN(ACOS(PF))$	3ф
POWER FACTOR: (ELEC/PFAC)		
Power Factor Equations: (ELEC/PFAC	C/EQUA)	
(54) Power Factor with ϕ	$PF = COS(\phi)$	ቀ
(55) Power Factor with X and K	$PF = COS(ATAN\frac{I}{R})$	X . R
(56) Power Factor with W and VA	PF= <u>kw</u> kva	W.VA
(57) Power Factor (Single phase)	$PF = \frac{1000 \times kW}{V \times I}$	ıφ

(58) Power Factor (Three phase) $PF = \frac{1000 \times kW}{\sqrt{3} \times V \times I} \qquad 3\phi$

(59) Power Factor with I1 and I2	$PF_2 = PF_1 \times \frac{I_1}{T_1}$	I1.I2
Power Factor Correction: (ELEC/PFAC/COREC)	-2	

(60) System Power Facto	or PF. =	R. KN+M. KN	SYSPF
	$\sqrt{(M.RW)}$	$\frac{R.KW+M.KW}{\times Tan(\lambda COS(M.PF)))^{2}+(R.KW+M.KW)^{2}}$	01011
(61) Capacitors kVAR	KVAR=(R.KW+H.	RW × ($TAN(ACOS(PF1)) - TAN(ACOS(PF2))$)	KVAR
(62) Capacitors Value, ir	Farad.	$C = \frac{159.15 \times kVAR}{f \times V^2}$	FARAD

ELECTRICITY		
DESCRIPTION	FORMULA	<u>NAME</u>
<u>RESISTORS:</u> (ELEC/RESIS)		
Equivalent Resistance: (ELEC/RES)	IS/EQUIV)	
Parallel: (ELEC/RESIS/EQUIV/P.	ARA)	
(63) Two in parallel	$R_{e} = \frac{R_1 * R_2}{R_1 + R_2}$	TWO
(64) Three in parallel	$R_{\phi} = \frac{R_1 * R_2 * R_3}{R_1 * R_2 + R_1 * R_3 + R_2 * R_3}$	THREE
(65) Series, 2 or 3	$R_{e} = R_{1} + R_{2} + R_{3}$	SE RI
(66) Resistance, general equation	$R = \frac{\rho * L}{A}$	GNRL
(67) Resistance variance with temperature	$R_2 = R_1 (1 + \alpha * dt)$	ΔT
(68) Thermal Coefficient of resistant	$\alpha = \frac{R_2 - R_1}{dt * R_1}$	ΔT
RESONANCE: (ELEC/RESO)		
(69) Angular velocity	$\boldsymbol{\omega}_{\boldsymbol{x}} = \sqrt{\frac{1}{\boldsymbol{L} \boldsymbol{*} \boldsymbol{C}}}$	ANG.V
Capacitance: (EIEC/RESO/CAPAC)		
(70) With L and w	$C_r = \frac{1}{L \star \omega^2}$	L.()
(71) With L and f	$C_r = \frac{1}{L(2\pi * f)^2}$	L.F
Frequency: (ELEC/RESO/FREQ)		
(72) With w and \mathbf{R}	$f_r = \frac{\omega_r}{2\pi}$	ω. <i>R</i>
(73) With L and C	$f_{r} = \frac{1}{2\pi} \sqrt{\frac{1}{L * C}}$	L.C
(74) With f and X	$f_r = f_{\sqrt{\frac{X_c}{X_L}}}$	F.X
Inductance: (ELEC/RESO/INDUC)		
(75) With C and f	$L_r = \frac{1}{C(2\pi * f)^2}$	<i>C</i> . <i>F</i>
(76) With C and w	$L_x = \frac{1}{C * \omega^2}$	<i>C</i> .ω

FORMULA

<u>NAME</u>

DESCRIPTION VOLTAGE DROP: (ELEC/VDRP)

Line Current: (ELEC/VDRP/CURR)

(77) Single phase load	$I = \frac{1000 \times kW}{V \times PF}$	1¢
(78) Three phase load	$I = \frac{1000 \times kW}{\sqrt{3} \times V \times PF}$	3ф

Voltage drop, across a copper conductors: (ELEC/VDRP/DROP)

(79) AWG size Conductors: 14 AWG - 1 AWG, 20 amps - 130 amps:	
VD=.001×L×I(.1257e ^(.2285×ANG) ×PF+(.0552+.00121×ANG)×Sin(Acos(PF)))	AWG
(80) AUGHT size Conductors: 1/0 - 4/0, 150 amps - 230 amps: VD=.001×L×I(.1512e ^(2169×ADT) ×PF+(.05650014×ADT)×Sin(Acos(PF)))	AUT
(81) KCMIL size Conductors: 250 KCM - 1000 KCM, 255 amps - 545 amps:	
$VD=.001 \times L \times I (4.322 \times K \times K^{-4} \times PF+.0835 \times K \times K \times SIN (ACOS (PF)))$	KCM

VARIABLES IDENTIFICATION

SYMBOL DESCRIPTION; UNIT (ENG, SI)

<u>A</u>	Section area of wire; \underline{CM} , $\underline{m2}$ (1 CM = 5.067EE-10 m2).
<u>C</u>	Capacitance, Capacitor value; farad, Charge; Coulomb.
<u>Ce</u>	Equivalent Capacitance; <u>farad</u> .
<u>cfs</u>	Cubic feet per second (1 cfs = $448.83 \text{ gpm} = 0.02832 \text{ m}3/s$).
<u>CM</u>	Circular Mill ($CM = d^2 \times 1 R T 6$, $d = diameter of wire in inch$).
<u>cps</u>	Cycle per second.
<u>dt</u>	Temperature difference; oC.
<u>F</u>	Force; <u>N</u> (Newton) (1 N = 0.22481 lbf).
<u>f</u>	Frequency; <u>cps</u> .
<u>fpm</u>	Feet per minute $(1 \text{ fpm} = 0.3048 \text{ mpm})$.
gpm	Gallon per minute (1 gpm = $0.002228 \text{ cfs} = 6.309\text{EE-5 m}3/\text{s}$).
<u>h</u>	Head; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
Ī	Current; Amp.
kgps	Kilogram per second (1 kgps = 2.2046 lbps).
L	Inductance; <u>henry</u> : Length; <u>ft</u> , <u>m</u> (1 ft = .3048 m).
Le	Equivalent Inductance; henry.
lbps	Pound per second (1 lbps = .4536 kgps).
lps = L/s	Liter per second (1 L/s = $15.85 \text{ gpm} = 0.035315 \text{ cfs}$).
m3ps = m3/s	Cubic meter per second (1 $m3/s = 15850 \text{ gpm} = 35.315 \text{ cfs}$).
<u>M.KW</u>	Motor/Inductive load; <u>kW</u> .
<u>M.PF</u>	Motor/Induction's load Power Factor; None.
<u>mpm</u>	Meters per minute.
Þ	Number of poles; <u>none</u> .
<u>P</u>	Effective Power; watt
<u>Pa</u>	Apparent Power; volt amp
<u>PF</u>	Power Factor; None.
<u>Pi</u>	Instantaneous effective Power; watt
<u>Pr</u>	Reactive Power; <u>var</u> .
Ð	Charge; C (coulomb).

VARIABLES IDENTIFICATION

SYMBOL DESCRIPTION; UNIT (ENG, SI)

<u>r</u>	Distance; <u>ft</u> , <u>m</u> (1 ft = .3048 m).
<u>R</u>	Resistance; ohm.
<u>R.KW</u>	Resistive load; <u>kW</u> .
<u>Ro</u>	Original resistance (at 20 Oc); ohm.
<u>RPM</u>	Revolution Per Minute.
<u>S</u>	Slip; <u>decimal</u> .
<u>SG</u>	Specific Gravity; <u>None</u> .
<u>T</u>	Period of cycle; <u>spc</u> : Torque; <u>ft-lbf</u> , <u>N-m</u> (1 ft-lbf = $1.3558 \text{ N.m} = .13826 \text{ kg.m}$).
<u>t</u>	Temperature; <u>oC</u> : Time; <u>sec</u> .
$\underline{\mathbf{V}}$	Voltage; <u>volt</u>
<u>VD</u>	Voltage Drop; <u>volt</u>
<u>w</u>	Weight; <u>lbf</u> , <u>kg</u> (1 lbf = .4536 kg).
<u>X</u>	Reactance; <u>ohm</u> .
<u>Xc</u>	Capacitive reactance; ohm.
<u>XL</u>	Inductive reactance; ohm.
<u>Z</u>	Impedance; ohm
α	Thermal coefficient of resistance; <u>1/oC</u> .
E	Permittivity; <u>C2/N-m2</u> .
η	Efficiency; decimal.
ባ#	Motor's efficiency; decimal.
ω	Angular velocity; rad/sec. or deg./sec.
φ	Phase angle; <u>deg</u> .
ρ	Resistivity; <u>ohm CM1/ft</u> , <u>ohm.m</u> (1 ohm-CM/ft = 1.6624 E-9 ohm.m).

ANNUAL COST, EQUIVALENT UNIFORM: (ENEC/ANNU)

(01) With Sinking Fund depreciation, SF
$$\mathbf{A} = \frac{\mathbf{1}(\mathbf{P}-\mathbf{L})(\mathbf{1}+\mathbf{1})^n}{(\mathbf{1}+\mathbf{1})^n-\mathbf{1}} + \mathbf{L} + \mathbf{1} + \mathbf{A}\mathbf{E} \qquad SF$$

(02) With SF & uniform gradient, G
$$\mathbf{A} = \frac{\mathbf{1}(\mathbf{P}-\mathbf{L})(\mathbf{1}+\mathbf{i})^{n}}{(\mathbf{1}+\mathbf{i})^{n}-\mathbf{1}} + \mathbf{L} + \mathbf{i} + \mathbf{A}\mathbf{E} + \mathbf{G}(\mathbf{A}/\mathbf{G}, \mathbf{i}, \mathbf{n}) \qquad SF + \mathbf{G}$$

$$\mathbf{A} = \frac{\mathbf{P} - \mathbf{L}}{\mathbf{n}} + \frac{\mathbf{i}}{2 * \mathbf{n}} (\mathbf{n} + 1) (\mathbf{P} - \mathbf{L}) + \mathbf{L} * \mathbf{i} + \mathbf{A} \mathbf{E} \qquad SL$$

(04) Equalized Annual Cost/Income (For up to five (5) years, same interest rate.)

$$A_{eq} = \frac{1(1+1)^{n}}{(1+1)^{n}-1} (A_1(1+1)^{-1} + A_2(1+1)^{-2} + A_3(1+1)^{-3} + A_4(1+1)^{-4} + A_5(1+1)^{-5})$$
 AEQ

BONDS: (ENEC/BOND)

$PW = BSV(1+R)^{-N} + \frac{1 * BFV}{2} \frac{(1+R)^{N} - 1}{R(1+R)^{N}}$	PW
	$PW = BSV(1+R)^{-N} + \frac{1 + BFV}{2} \frac{(1+R)^{n} - 1}{R(1+R)^{N}}$

(06) Rate of Return (approximate)

$$ROR = \frac{\frac{BSV - PV}{n} + i * BFV}{\frac{BSV + PW}{2}} ROR$$

CAPITALIZED COST: (ENEC/CAPIT)

(07) With no periodical replacement	$CC = P + \frac{A}{1}$	N.REP
With periodical replacement/cost: (ENEC/CAPIT/V (08) With in-kind periodical replacement	W. REP) $CC = P + \frac{P - L}{(1 + 1)^{n} - 1} + \frac{A}{1}$	KIND

(09) With other periodical cost	$CC = P + \frac{PC}{(1+1)^{n}-1} + \frac{A}{1}$	OTHER

COMPOUND FACTORS/VALUES: (ENEC/FACTR)

(10) Future to Annual/Annual to Future	$\lambda = \frac{1}{(1+1)^{n}-1} *F$	AF
(11) Gradient to Annual/Annual to Gradient	$\mathbf{A}=\left(\frac{1}{1}-\frac{n}{(1+1)^{n}-1}\right)*G$	A G
(12) Present to Annual/Annual to Present	$\lambda = \frac{1(1+1)^{n}}{(1+1)^{n}-1} * P$	AP
(13) Present to Future/Future to Present	F =(1+1) [*] *P	FP
(14) Gradient to Present/Present to Gradient	$P = \left(\frac{(1+f)^{n}-1}{f^{2}(1+f)^{n}} - \frac{n}{f(1+f)^{n}}\right) *G$	PG

DEPRECIATION: (ENEC/DEPRI) Double Declining Balance: (ENEC/DEPRI/DDB)

(15) For the xth year	$D_{\mathbf{x}} = \frac{2P}{D} \left(1 - \frac{2}{D}\right)^{(\mathbf{x}-1)}$	DX
(16) Book value after z year(s)	$BV_x = P(1-\frac{2}{n})^x$	BVX

(17) After Tax Depreciation Recovery (ATDR)

ATDR = TAX.
$$R\left(\frac{2P}{n(1-\frac{2}{n})} \frac{\left(\frac{(1+i)n}{n-2}\right)^{n}-1}{\left(\frac{(1+i)n}{n-2}\right)^{n}\left(\frac{(1+i)n}{n-2}-1\right)}$$
 RECOV

Sinking Fund: (ENEC/DEPRI/SF)

(18) For the xth year
$$D_x = (P-L) \frac{1}{(1+1)^{n-1}} (1+1)^{(x-1)} DX$$

(19) Book value after x year(s)
$$BV_x = P - (P-L) \frac{1}{(1+1)^x - 1} \frac{(1+1)^x - 1}{1} BVX$$

<u>DEPRECIATION:</u> (ENEC/DEPRI) Straight line: (ENEC/DEPRI/SL)

- - -

(20) For the xth year $D_{x} = \frac{P-L}{R}$	DX	
(21) Book value after x year(s) $BV_{x} = \frac{(P-L)(D-x)}{D} + L$	BVX	
(22) After Tax Depreciation Recovery (ATDR) $ATDR = TAX. R \frac{P-L}{D} \frac{(1+i)^{n}-1}{i(1+i)^{n}}$	REC OV	
Sum Of the Years' Digits: (ENEC/DEPRI/SOYD)		
(23) For the xth year $D_{x} = \frac{2(P-L)(n-x+1)}{n(n+1)}$	DX	
(24) Book value after x year(s) $BV_{x}=P-2(P-L)(n-\frac{x-1}{2})\frac{x}{n(n+1)}$	BVX	
(25) After Tax Depreciation Recovery (ATDR)		
$ATDR = TAX. R\left(\frac{2n}{n(n+1)} \frac{(1+i)^{n}-1}{i(1+i)^{n}} - \frac{2}{n(n+1)} \left(\frac{(1+i)^{n}-1}{i^{2}(1+i)^{n}} - \frac{n}{i(1+i)^{n}}\right)\right)$	RECOV	

INTEREST RATE, COMPOUNDED/INFLATION: (ENEC/INTER)

(26) Continuous (yield)	<i>ic</i> o=e ^{i•y} -1	YIELD
(27) Effective	$\mathbf{iEF} = (1 + \frac{1}{m})^{2} - 1$	EFECT
(28) Equivalent	<i>1EQ</i> =e ^{(<u>ln(1+1)</u>)} -1	EQUIV
(29) Interest and Inflation combined	<i>iINF</i> = <i>i</i> + <i>r</i> (1 + <i>i</i>)	INFLT

MORTGAGE: (ENEC/MORT)

(30) Installment (Periodical Payment) $INSTL = \frac{I(1+I)^{n}}{(1+I)^{n}-1} LOAN$	INSTL
(31) Number of payments	$NP = \frac{-\ln((1-I+LV)/INSTL)}{\ln(1+I)}$	NUMB
(32) Balance after xth payment	$BAL_{x} = \frac{INSTL}{I} (1 - (1 + I)^{(x-x)})$	BALAN
Interest Paid: (ENFC/MORT/	INTER)	
(33) As a part of xth payment	$I_{x} = INSTL(1 - (1 + I)^{x - 1 - s})$	XTH
(34) Total, after xth payment	$I_{t} = INSTL * x - LOAN + \frac{INSTL}{I} (1 - (1 + I)^{(x-n)})$	TOTAL
Principal Paid: (ENEC/MORI	T/ PRINC)	
(35) As a part of xth payment	$P_{x}=INSTL(1+I)^{(x-1-D)}$	XTH
(36) Total, after xth payment	$P_t = LOAN - \frac{INSTL}{I} (1 - (1 + I)^{(x-x)})$	TOTAL

PRESENT WORTH (No depreciation): (ENEC/PW) Before Tax: (ENEC/PW/B.TAX)

(37) With Uniform Annual Expanses

$$PW = -P + (AR - AE) \frac{(1+i)^{n} - 1}{i(1+i)^{n}} + \frac{L}{(1+i)^{n}} UNIF$$

(38) With Uniform Gradient on Annual Expenses

$$PW = -P + (AR - AE - (A/G, 1, n) G) \frac{(1+1)^{n} - 1}{1(1+1)^{n}} + \frac{L}{(1+1)^{n}} GRADI$$

PRESENT WORTH (No depreciation): (ENEC/PW) After Tax: (ENEC/PW/A.TAX)

(39) With Uniform Annual Expanses

$$PW = -P + (AR - AE) (1 - TAX. R) \frac{(1+i)^{n} - 1}{i(1+i)^{n}} + \frac{L}{(1+i)^{n}} UNIF$$

SAL=0

(40) With Uniform Gradient on Annual Expenses

$$PW = -P + (AR - AE - (A/G, i, n) G) (1 - TAX. R) \frac{(1+i)^{n} - 1}{i(1+i)^{n}} + \frac{L}{(1+i)^{n}} GRADI$$

Rate Of Return on Investment: (ENEC/ROR)

(41) With salvage value	$((1+ROR)^{n}-1)AAR + L = P$	SA L>0
	$ROR(1+ROR)^{n}$ (1+ROR) ⁿ	

(42) Without salvage value	$((1+ROR)^{n}-1)AAR = P$
	$ROR(1+ROR)^{n}$

ENGINEERING ECONOMICS VARIABLES IDENTIFICATION

SYMBOL **DESCRIPTION; UNIT** A Annuity; amount. <u>AAR</u> Annual Average Revenue; amount. A1 A2, A3, A4, or A5 = Annual expense/income for different years; amount. AE Annual Uniform Expense; amount. Aeq Equalized Annual Cost/Income; amount. AI Annual Income; amount. APR Annual Percentage Rate; decimal. AR Annual Revenue; amount. ATDR After Tax Depreciation Recovery (Present Worth); amount. Bond's Face Value; amount. BFV BSV Bond's Sale Value; amount. BVx Book value at the end of xth year; amount. CC Capitalized Cost; <u>amount</u> (Initial capital investment to perpetually support project from the interest earned). F Future Value; amount. <u>G</u> Uniform Gradient; amount. I Interest rate per period; APR/12 for monthly payment in case of mortgage; decimal. i = I Interest rate per period; decimal. ("i" is HP48 designated variable. It should not be used for programming.) INSTL Installment (Payment per period); amount. L Salvage Value; amount. LOAN Loan Value; amount. Compound number; None. m N N = 2n (R = ROR/2); <u>none</u>. (Number of payments for bonds with semi annually interest payment. In case of annual interest payment, R = ROR and N = n). Number of Payments or Periods; none. n Р Present Value; amount. PC Periodical Uniform Costs; amount. PW Present Worth; amount. r Inflation rate per period; decimal. R ROR/2 (N=2n); decimal (Rate for bonds with semi annually interest payment. In case of annual interest payment R = ROR and N = n). ROR Rate of Return; decimal. TAX.R Tax rate; decimal. X Period number; none. Y Period; years.

FLUID MECHANICS

DESCRIPTION

FORMULA

<u>NAME</u>

BERNOULLI EQUATIONS: (FLME/BERN)

English System: (FLME/BERN/ENG)

(01) No friction loss	$\frac{p_1}{\rho} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho} + \frac{v_2^2}{2g} + z_2$	NO.HF
(02) With friction loss	$\frac{P_1}{\rho} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho} + \frac{v_2^2}{2g} + z_2 + hf$	W.HF

(03) Friction & minor loss $\frac{P_1}{\rho} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho} + \frac{v_2^2}{2g} + z_2 + h_f + h_{FIT} \qquad HF + \frac{1}{2g} + \frac{1}{$

SI System: (FLME/BERN/SI)

(04) No friction loss	$\frac{P_1}{\rho \times g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho \times g} + \frac{v_2^2}{2g} + z_2$	NO.HF
(05) With friction loss	$\frac{P_1}{\rho \times g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho \times g} + \frac{v_2^2}{2g} + z_2 + hf$	W.HF
(06) Friction & minor loss	$\frac{P_1}{\rho \times g} + \frac{v_1^2}{2g} + z_1 = \frac{P_2}{\rho \times g} + \frac{v_2^2}{2g} + z_2 + h_f + h_{FIT}$	HF+

CAPILLARITY AND SURFACE TENSION: (FLME/CAPIL) Capillary rise: (FLME/CAPIL/PISE)

<u>Capillary rise:</u> (FLME/CAPIL/RISE)		
(07) English System	$h = \frac{4\sigma * COS\beta}{\rho * d}$	ENG
(08) SI System	$h = \frac{0.40788 * \sigma * COS\beta}{\rho * d}$	SI
Surface Tension: (FLME/CAPIL/TENS)		
(09) Surface Tension (General)	$\boldsymbol{\sigma} = \frac{\boldsymbol{P}}{\boldsymbol{L}}$	GENER
(10) Surface Tension (In bulb surrounded by air)	$\sigma = \frac{p * D}{8}$	AIR
(11) Surface Tension (In a droplet or bubble in liquid) $\sigma = \frac{p * D}{4}$	LIQID

FLUID MECHANICS		
DESCRIPTION FOI	RMULA	NAME
FRICTION FACTOR (MOODY CHART): (FLA	ME/FRIC.F)	
(12) Laminar flow, NRe < 2000	f= <mark>_64</mark> NRe	LAMI
(13) Turbulent flow, NRe>4000 $\frac{1}{\sqrt{2}}$	$\frac{1}{E} = -2LOG\left(\frac{\epsilon D}{3.7} + \frac{2.51}{NRe\sqrt{E}}\right)$	TURBU
FRICTION HEAD/LOSS IN PIPE: (FLME/FRI	(C . H)	
Darcy Equations: (FLME/FRIC.H/DARCY)		
(14) General, with the given velocity, in fps	$h_f = \frac{f * L_o * v^2}{2 * g * D}$	GENER
English System: (FLME/FRIC.H/DARCY/EN	VG)	
(15) With the given flow, in gpm	$h_f = \frac{f * L_a * gpm^2}{248528 * g * D^5}$	GPM
(16) With the given flow, in cfs	$h_f = rac{f * L_e * cf B^2}{1.2337 * g * D^5}$	CFS
SI System: (FLME/FRIC.H/DARCY/SI)		
(17) With the given flow, in lps	$h_{f} = \frac{f * L_{o} * lps^{2}}{1233700 * g * D^{5}}$	LPS
(18) With the given flow, in m3ps	$h_f = \frac{f + L_o + m 3 p s^2}{1.2337 + g + D^5}$	M3PS
Hazen-Williams equation (FLME/FRIC.H/HAZN)		
(19) English System	$h_{f} = \frac{3.012 * v^{1.85} * L_{o}}{C_{BW}^{1.85} \cdot D^{1.165}}$	ENG
(20) Si System	$h_f = \frac{6.797 * v^{1.85} * L_o}{C_{BW}^{1.85} * D^{1.165}}$	SI
(21) Fittings, Valves, Entrances	$h_f = \frac{K * v^2}{2 * g}$	FITIN
(22) Nozzle, Orifice, Ventury	$h_f = (\frac{1}{C_v^2} - 1) \frac{v^2}{2 * g}$	NOZL
(23) Sudden Contraction	$h_f = \frac{K_c * v_2^2}{2 * g}$	CONT
Enlargement: (FLME/FRIC.H/NLRG)		
(24) Gradual	$h_{f} = \frac{K_{o}(v_{1}-v_{2})^{2}}{2*g}$	GRAD
(25) Sudden	$b_{f} = (1 - (\frac{D_{1}}{D_{2}})^{2})^{2} \frac{v_{1}^{2}}{2 * g}$	SUDD
(26) Scaled pipe	$h_f = h_{frow} \left(\frac{D_{row}}{D_{scal}} \right)^5$	SCALE

<u>FLU</u>	ID MECHANICS	
DESCRIPTION	FORMULA	<u>NAME</u>
HYDROSTATIC PRESSURE: (FLME	/ HYD.P)	
English System: (FLME/HYD.P/ENC	G)	
Horizontal plate: (FLME/HYD.P/EN	G/HORIZ)	
(27) Density	$\rho = \frac{P}{h}$	DENSI
(28) Gage pressure	p=0*P	PRESS
(29) Vertical force	F =ρ * b *λ	FORCE
Inclined rectangular plate: (FLME/H)	YD.P/ENG/INCLN)	
Pressure: (FLME/HYD.P/ENG/INC	CLN/PRESS)	
(30) Gage pressure	₽= p +L * SINΩ	GAGE
(31) Gage pressure, average	p_{λ} =.5* $\rho(L_1+L_2)$ SINQ	AVER
(32) Location of Center of Gravity	C_{g} =.5(L_{1} + L_{2})	CEN.G
(33) Location of Center of Pressure	$C_{p} = \frac{2}{3} \left(L_{1} + L_{2} - \frac{L_{1} + L_{2}}{L_{1} + L_{2}} \right)$	CEN.P
(34) Normal force on plane	$F=.5*\rho(L_1+L_2)SINQ*A$	FORCE
SI System: (FLME/HYD.P/SI)		
Horizontal plate: (FLME/HYD.P/SI/	HORIZ)	
(35) Density	$\gamma = \frac{P}{h \times g}$	DENST
(36) Gage pressure	₽= p <i>*</i> b *g	PRESS
(37) Vertical force	F =p*b*g*A	FORCE
Inclined rectangular plate: (FLME/H)	YD.P/SI/INCLN)	
Pressure: (FLME/HYD.P/SI/INCL)	N/PRESS)	
(38) Gage pressure	<i>p</i> =ρ <i>*L*g*SIN</i> Ω	GAGE
(39) Gage pressure, average	$\mathcal{P}_{\lambda} = .5 * \rho * \mathcal{G}(L_1 + L_2) SIN\Omega$	AVER
(40) Location of Center of Gravity	$C_{g} = .5 (L_{1} + L_{2})$	CEN.G
(41) Location of Center of Pressure	$C_p = \frac{2}{3} (L_1 + L_2 - \frac{L_1 + L_2}{L_1 + L_2})$	CEN.P
(42) Normal force on plane	\boldsymbol{F} =.5* ρ * $\boldsymbol{g}(L_1+L_2)$ SINQ*A	FORCE

FLUID MECHANICS		
DESCRIPTION	FORMULA	<u>NAME</u>
OPEN CHANNEL: (FLME/CHAN)		
(43) Flow	V=v*A	FLOW
Roughness Constant: (FLME/CHAN/ROC	GH)	
(44) English System	$n = \frac{1.4859 * HR^{\frac{2}{3}} * SLP^{.5}}{V}$	ENG
(45) SI System	$D = \frac{HR^{\frac{2}{3}} * SLP^{\cdot 5}}{V}$	SI
Velocity: (FLME/CHAN/VELO)		
(46) English System	$v = \frac{1.4859 * HR^{\frac{2}{3}} * SLP^{.5}}{D}$	ENG
(47) SI System	$V = \frac{HR^{\frac{2}{3}} * SLP^{.5}}{D}$	SI

ORIFICE: (FLME/ORIF)

Coefficient: (FLME/ORIF/COEF)

(48) Contraction	$C_{c} = \frac{C_{d} * V_{i}}{V_{a}}$	CONT
(49) Discharge	$C_d = \frac{4 * V}{\pi * D^2 * \sqrt{2 * g * h}}$	DISCH
(50) Velocity	$C_{\mathbf{v}} = \frac{C_d}{C_c}$	VELO
Discharge Velocity: (FLME/ORIF/VELO)		
(51) Actual	$v_a = \frac{x}{\sqrt{2 * y/g}}$	ACTU
(52) Ideal	v _i =\/ 2 * g * h	ID EA L
Flow quantity: (FLME/ORIF/FLOW)		
(53) Gage height	$V = \frac{C_d * \pi * D^2}{4} (2 * g * h)^{-5}$	H
(54) Height difference $\mathbf{V} = \frac{C_d * \mathbf{r}}{c_d}$	$\frac{\mathbf{x} * D^2}{4} \left(2g * dh \left(SG_1 - SG_2 \right) \right)^{5}$	ΔH

<u>FLUID</u>	MECHANICS	
DESCRIPTION	FORMULA	NAME
<u>PIPE:</u> (<i>FLME/PIPE</i>)		
(55) Area (full flow)	$\mathbf{A} = \frac{\mathbf{\pi} * D^2}{4}$	AREA
Flow quantity: (FLME/PIPE/FLOW)		
English System: (FLME/PIPE/FLOW/ENG	<i>;</i>)	
(56) Flow in gpm	$gpm = \frac{v * \pi * D^2}{.00891}$	GPM
(57) Flow in cfs	$cfs = \frac{v * \pi * D^2}{4}$	CFS
SI System: (FLME/PIPE/FLOW/SI)		
(58) Flow in lps	$lps=785.4*v*D^2$	LPS
(59) Flow in m3ps	$m3ps = \frac{v * \pi * D^2}{4}$	M3PS
Velocity: (FLME/PIPE/VELO)		
English System: (FLME/PIPE/VELO/E.	NG)	
(60) Flow in gpm	$\boldsymbol{v}=\frac{.00891*gpm}{\pi*D^2}$	GPM
(61) Flow in cfs	$v=\frac{4*cfs}{\pi*D^2}$	CFS
SI System: (FLME/PIPE/VELO/SI)		
(62) Flow in lps	$v=\frac{lps}{785.4*D^2}$	LPS
(63) Flow in m3ps	$v = \frac{4 * m 3ps}{\pi * D^2}$	M3PS
<u>Hydraulic Radius:</u> (<i>FLME/PIPE/HYD.R</i>	()	
(64) General	HR= <u>Flow Area(FA)</u> <u>Wet Perimeter(WP)</u>	GENE R
(65) Central angle given	$HR = \frac{r(.5 * \pi * \Omega - 90 * SIN\Omega)}{\pi * \Omega}$	AN GL
	$90(r-h)*SIN(ACOS(\frac{r-h}{r}))$	

(66) Height of liquid given $HR = .5 * r - \frac{90 (r-h) * SIN(ACOS(\frac{r-h}{r}))}{\pi * ACOS(\frac{r-h}{r})} HIGHT$

FLUID MECHANICS

<u>FLUID N</u>	FLUID MECHANICS		
DESCRIPTION FORMULA		NAME	
PUMP: (FLME/PUMP)			
Head added by: (FLME/PUMP/HEAD)			
English System: (FLME/PUMP/HEAD/E	ENG)		
(67) Flow in gpm	<u>b</u>λ = <u>246858×bp×η</u> <i>g</i>pm×ρ	GPM	
(68) Flow in cfs	$hA = \frac{550 \times hp \times \eta}{cfs \times p}$	CFS	
SI System: (FLME/PUMP/HEAD/SI)			
(69) Flow in lps	<u>hλ</u> = <mark>76150×hp×η</mark> <i>lps</i> ×ρ	LPS	
(70) Flow in m3ps	<u>ba</u> = <u>76.15×bр×η</u> m3рв ×р	M3PS	
Horsepower: (FLME/PUMP/HP)	_		
English System: (FLME/PUMP/HP/ENC	<i>i</i>)		
(71) Flow in gpm	$hp = \frac{hA \times gpm \times \rho}{246858 \times \eta}$	GPM	
(72) Flow in cfs	$hp = \frac{hA \times cfs \times \rho}{550 \times n}$	CFS	
SI System: (FLME/PUMP/HP/SI)			
(73) Flow in lps	$hp = \frac{hA \times lps \times \rho}{76150 \times \eta}$	LPS	
(74) Flow in m3ps	<i>hp=<mark>hA</mark>xm3ps</i> xρ 76.15xη	M3PS	
REYNOLDS NUMBER: (FLME/REYN)			
(75) With Absolute Viscosity	$NR_{e} = \frac{D * v * \rho}{\mu * g}$	ABSO	
(76) With Kinematic Viscosity	$NR_{e} = \frac{D * v}{v}$	KINET	
SPEED OF SOUND: (FLME/SOUND/ENG)			
Gas: (FLME/SOUND/ENG/GAS)			
(77) With variables K, R, T	$c_g = \sqrt{k * g * R * T}$	K. R. T	
(78) With variables \mathbf{K} , \mathbf{p} , $\boldsymbol{\rho}$	$c_g = \sqrt{\frac{k * p * g}{\rho}}$	Κ. Ρ.ρ	
Liquid: (FLME/SOUND/ENG/LIQID)			
(79) With Bulk Modules	$c_1 = \sqrt{\frac{BM * g}{\rho}}$	BULK	
(80) With Coefficient of compressibility	$c_1 = \sqrt{\frac{g}{CM*\rho}}$	COMP	

FLUID MECHANICS			
DESCRIPTION	FORMULA		NAME
THIN CYLINDER: (FLME/CYLIN)			
(81) Hoop stress		$f = \frac{P * r}{t}$	STRES
(82) Thickness of cylinder		$t=\frac{P*r}{f}$	THICK

TURBINE HORSEPOWER: (FLME/TURB/HP)

English System: (FLME/TURB/HP/ENG)		
(83) Flow in gpm	$hp = \frac{gpm * \rho * h * \eta}{246858}$	GPM
(84) Flow in cfs	$hp = \frac{cfs * \rho * h * \eta}{550}$	CFS
SI System: (FLME/TURB/HP/SI)		
(85) Flow in lps	$hp = \frac{h \times 1ps \times \rho \times \eta}{76150}$	LPS
(86) Flow in m3ps	$hp = \frac{h \times m 3ps \times \rho \times \eta}{76.15}$	M3PS

VENTURI: (FLME/VENT)

(87) Flow quantity (with h)	$V = \frac{\pi * C_d * D_1^2 * D_2^2}{4} \left(\frac{2g * dh (SG_1 - SG_2)}{D_1^4 - D_2^4} \right)^{-5}$	HEAD
(88) Flow quantity (with p)	$V = \frac{\pi * C_d * D_2^2}{4 (1 - D_2^4 / D_1^4)^{.5}} + (2g(\frac{p_1 - p_2}{\rho}) + z_1 - z_2)^{.5}$	PRESS
(89) Velocity head	$h_{v} = \frac{V^{2} (D_{1}^{4} - D_{2}^{4})}{2g (SG_{1} - SG_{2}) (\frac{\pi}{4} C_{d} * D_{1}^{2} * D_{2}^{2})^{2}}$	VEL.H

WATER HAMMER: (FLME/HAMR)

(90) Pressure increase	$dp = \frac{\rho * C * dv}{g}$	ΔΡ
(91) Time for shock wave to travel	$t = \frac{2 * L}{C}$	TIME

FLUID MECHANICS

DESCRIPTION FORMULA NAME WEIR, RECTANGULAR, SUPPRESSED: (FLME/WEIR) Flow quantity: (FLME/WEIR/FLOW) $V=3.33*b*b^{\frac{2}{3}}$ (92) English System ENG V=1.838*b*b²3 (93) SI System SI Head: (FLME/WEIR/HEAD) $h = (\frac{V}{3.33*b})^{\frac{2}{3}}$ (94) English System ENG $h = \left(\frac{V}{1.838 * b}\right)^{\frac{2}{3}}$ SI (95) SI System $v = \frac{V}{b(b+PH)}$ (96) Velocity **VELO**

FLUID MECHANICS

VARIABLES IDENTIFICATION

SYMBOL	DESCRIPTION; UNIT (ENG, SI)
A	Area; <u>ft2</u> , <u>m2</u> (1 ft2 = .0929 m2.)
<u>b</u>	Weir's width; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m.)
<u>=</u> <u>BM(E)</u>	Bulk Modules; <u>lbf/ft2</u> .
<u><u> </u></u>	Speed of sound; <u>ft/s</u> , <u>m/s</u> (1 ft/s = .3048 m/s, not given, assume: air: 1130 ft/s, 344.4 m/s
2	water: 4880 ft/s, 1487 m/s.)
<u>Cc</u>	Contraction Coefficient; None.
Cd	Discharge Coefficient; None.
cfs = ft3/s	Cubic foot per second (1 cfs = 448.83 gpm = $0.028317 \text{ m}3/\text{s} = 28.317 \text{ L/s}$)
<u>cg</u>	Speed of sound in gas; ft/s , m/s (1 $ft/s = 0.3048 m/s$.)
<u> </u>	Location of Center of gravity; \underline{ft} , \underline{m} (1 ft = 0.3048 m.)
<u>C.HW</u>	Hazen-William Coefficient; None (Assumed same value for ENG and SI Systems.)
<u>cl</u>	Speed of sound in liquid; $f_{t/s}$, m/s (1 ft/s = 0.3048 m/s.)
<u> </u>	Compressibility; <u>ft2/lbf</u> .
Ср	Location of Center of pressure; \underline{ft} , \underline{m} (1 ft = 0.3048 m.)
<u>Cv</u>	Velocity Coefficient; None.
D	Diameter; <u>ft</u> , <u>m</u> : Diameter of droplet, bubble; <u>ft</u> , <u>m</u> (1 ft = .3048 m.)
<u>d</u>	Depth; <u>ft</u> , <u>m</u> : Diameter; <u>ft</u> , <u>m</u> : Diameter of capillary tube ; <u>ft</u> , <u>m</u> (1 ft = .3048 m.)
<u>dh</u>	Height difference; $\underline{\mathbf{ft}}$, $\underline{\mathbf{m}}$ (1 ft = 0.3048 m.)
dp	Pressure difference; <u>lbf/ft2</u> , <u>Pa</u> (1 lbf/ft2 = 47.88 Pa.)
<u>dv</u>	Velocity difference; ft/s , m/s (1 $ft/s = 0.3048 m/s$.)
<u>F</u>	Force: <u>lbf</u> , <u>N</u> (1 lbf = 4.4482 N.)
ſ	Friction Factor; None : Hoop stress; <u>lbf/s2</u> , <u>Pa</u> (1 lbf/in2 = 6894.8 Pa.)
g	Gravity acceleration; <u>ft/s2</u> , <u>m/s2</u> (g=32.2 ft/s2, g=9.8067 (9.81) m/s2.)
gpm	Gallon per minute (1 gpm = $0.002228 \text{ cfs} = 6.309\text{EE-5 m}3/\text{s} = 0.06309 \text{ L/s}$.)
<u>hA</u>	Added head; ft, m (1 ft = .3048 m.)
<u>hf</u>	Friction head; ft, m (1 ft = .3048 m.)
<u>hFIT</u>	Fittings friction head; ft, m (1 ft = .3048 m.)
HR	Hydraulic Radius; ft, m (1 ft = .3048 m.)
<u>hv</u>	Velocity head; \underline{ft} , \underline{m} (1 ft = .3048 m.)
<u>K/Ke</u>	Coefficient; <u>None</u> .
<u>k</u>	Specific Heat Ratio; None.
L	Length; \underline{ft} , \underline{m} : Distance; \underline{ft} , \underline{m} (1 ft = .3048 m.)
Le	Equivalent length; \underline{ft} , \underline{m} (1 ft = .3048 m.)
lps = L/s	Liter per second (1 L/s = $15.85 \text{ gpm} = 0.035315 \text{ cfs} = 1 \text{ EE-3 m}3/s.$)
m3ps = m3/s	Cubic meter per second $(1 \text{ m}3/\text{s} = 15850 \text{ gpm} = 35.315 \text{ cfs} = 1000 \text{ L/s}.)$
<u>n</u>	Manning roughness constant; <u>None</u> (If not given, assume the design values as; copper: 140, plastic: 130,
	cast iron/concrete/steel: 100 Assumed some value for ENG and SL

cast iron/concrete/steel: 100. Assumed same value for ENG and SI)

FLUID MECHANICS VARIABLES IDENTIFICATION

SYMBOL DESCRIPTION; UNIT (ENG, SI)

<u>NRe</u> Reynold's number; <u>None</u>.

- <u>P</u> Pressure; <u>lbf/in2</u>, <u>Pa</u> (1 lbf/in2 = 6894.8 Pa.)
- **p** Pressure; <u>lbf/ft2</u>, <u>Pa</u> (1 lbf/ft2 = 47.88 Pa.)
- <u>PH</u> Plate's height; \underline{ft} , \underline{m} (1 ft = .3048 m.)
- <u>r</u> Radius of pipe; <u>ft</u>, <u>m</u> (1 ft = .3048 m.) : Radius of cylinder; <u>in</u>, <u>m</u> (1 in = .0254 m.)
- <u>SG</u> Specific Gravity; <u>None</u> : subscript 1 = heavier, 2 = lighter.
- SLP Slope; <u>ft/1000ft</u>.
- t Thickness; in. : Time; sec.
- $\underline{\mathbf{T}}$ Absolute temperature; $\underline{\mathbf{oR}}$.
- <u>V</u> Flow quantity; <u>ft3/s</u>, <u>m3/s</u> (1 ft3/s = .028317 m3/s.)
- <u>v</u> Velocity; <u>ft/s</u>, <u>m/s</u> (1 ft/s = .3048 m/s.)
- <u>va</u> Actual velocity; <u>ft/s</u>, <u>m/s</u> (1 ft/s = .3048 m/s.)
- <u>vi</u> Ideal velocity; <u>ft/s</u>, <u>m/s</u> (1 ft/s = .3048 m/s.)
- <u>x</u> x coordinate from orifice; <u>ft</u>, <u>m</u> (1 ft = .3048 m.)
- <u>y</u> y coordinate from orifice; <u>ft</u>, <u>m</u> (1 ft = .3048 m.)
- <u>z</u> Elevation above datum; <u>ft</u>, <u>m</u> (1 ft = .3048 m.)
- α Blade's angle with x axis; <u>degree</u>.
- β Liquid's angle with the wetted tube wall; <u>degree</u>.
- **E** Specific roughness; <u>ft</u> (If not given, assume the design values as; copper/plastic: 0.000005, cast iron: 0.0008, steel: 0.0002,

concrete: 0.004)

- **η** Efficiency; <u>decimal</u>.
- μ Absolute viscosity; <u>lbf-sec/sf</u>.
- v Kinematic viscosity, <u>ft2/sec</u>.
- Ω Inclination or central angle; <u>deg</u>.
- ρ Density; <u>lb/ft3</u>, <u>kg/m3</u> (If not given for water, assume: 62.4 lb/ft3, 1000 kg/m3.)
- σ Surface tension; $\underline{lbf/ft}$, $\underline{N/m}$ (1 lbf/ft = 14.594 N/m.)

GAS PROPERTY CHANGE (IDEAL GAS)

DESCRIPTION	FORMULA	NAME
CONSTANT PRESSURE: (GASP/PRESS)		
dp=0, Q=dh, c=cp		
(01) Volume change	$\boldsymbol{v_2} = \boldsymbol{v_1} \frac{\boldsymbol{T_2}}{\boldsymbol{T_1}}$	Δv
(02) Temperature change	$\boldsymbol{T_2} = \boldsymbol{T_1} \frac{\boldsymbol{V_2}}{\boldsymbol{V_1}}$	ΔΤ
(03) Enthalpy change	$dh = C_p (T_2 - T_1)$	ΔH
(04) Entropy change	$ds = c_p * \ln \frac{T_2}{T_1}$	۵s
(05) Internal energy change	$du = c_v (T_2 - T_1)$	Δυ
(06) Heat	$Q = C_p (T_2 - T_1)$	Q
(07) Work	$W=p_1(v_2-v_1)$	W

CONSTANT TEMPERATURE: (GASP/TEMP)

dT=0, dh=0, du=0, W=Q, n=1

(08) Pressure change	$p_2 = p_1 \frac{v_1}{v_2}$	Δ₽
(09) Volume change	$v_2 = v_1 \frac{p_1}{p_2}$	Δv
Entropy change: (GASP/TEMP/ ΔS)		
(10) English System	$ds = \frac{R}{778} * \ln \frac{v_2}{v_1}$	ENG
(11) SI System	$ds = R * \ln \frac{v_2}{v_1}$	SI
Heat: (GASP/TEMP/HEAT)		
With P and V: (GASP/TEMP/HEAT/P.V)		
(12) English System	$Q=\frac{p_1*v_1}{778}*\ln\frac{v_2}{v_1}$	ENG
(13) SI System	$\mathcal{Q}=p_1*v_1*\ln\frac{v_2}{v_1}$	SI

GAS PROPERTY CHANGE (IDEAL GAS)			
DESCRIPTION	DESCRIPTION FORMULA		
CONSTANT TEMPERATURE (continued	I): (GASP/TEMP)		
With R, T, and V: (GASP/TEMP/HEAT	/ R . T . V)		
14) English System	$Q=\frac{R*T}{778}*\ln\frac{v_2}{v_1}$	ENG	
(15) SI System	$Q=R*T*\ln\frac{v_2}{v_1}$	SI	
Work: (GASP/TEMP/WORK)			
(16) With P and V	$W=p_1*v_1*\ln\frac{v_2}{v_1}$	P.V	
(17) With R, T, and V	$W=R*T*lnrac{v_2}{v_1}$	<i>R</i> . <i>T</i> . <i>V</i>	

CONSTANT VOLUME: (GASP/VOLM)

dv = 0, W = 0, Q = Au, c = cv		
(10) Pressure change	$P_2 = P_1 \frac{T_2}{T_1}$	<u>4</u> .1
(19) Temperature change	$T_2 = T_1 \frac{P_2}{P_1}$	ΔΤ
(20) Enthalpy change	$db = c_p (T_2 - T_1)$	ΔH
(21) Entropy change	$ds = c_v * \ln \frac{T_2}{T_1}$	۵s
(22) Internal energy change	$du = c_{\tau} (T_2 - T_1)$	Δσ
(23) Heat	$Q = C_{\tau} (T_2 - T_1)$	Q

GAS PROPERTY CHANGE (IDEAL GAS)			
DESCRIPTION	<u>FORMULA</u>	<u>NAME</u>	
ISENTROPIC PROCESS: (GASP/ISENT)			
ds=0, Q=0			
(24) Pressure change (change in volume)	$\boldsymbol{p_2} = \boldsymbol{p_1} \left(\frac{\boldsymbol{v_1}}{\boldsymbol{v_2}} \right)^k$	$\Delta P/V$	
(25) Pressure change (change in temperature)	$p_2 = p_1 \left(\frac{T_2}{T_1}\right)^{\frac{k}{k-1}}$	$\Delta P/T$	
(26) Temperature change (change in volume)	$T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{k-1}$	$\Delta T/V$	
(27) Temperature change (change in pressure)	$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}}$	$\Delta T/P$	
(28) Volume change (change in pressure)	$\boldsymbol{v_2} = \boldsymbol{v_1} \left(\frac{\boldsymbol{P_1}}{\boldsymbol{P_2}} \right)^{\frac{1}{k}}$	$\Delta V/P$	
(29) Volume change (change in temperature)	$v_2 = v_1 \left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}}$	$\Delta V/T$	
(30) Enthalpy change	$db = c_p (T_2 - T_1)$	ΔH	
(31) Internal energy change	$du = c_v (T_2 - T_1)$	Δυ	
Work: (GASP/ISFNT/WORK)			
Closed System: (GASP/ISENT/WORK/C	LOSE)		
(32) With P and V	$W = \frac{P_1 * V_1 - P_2 * V_2}{k - 1}$	P.V	
With CV and T: (GASP/ISENT/WORK	/CLOSE/CV.T)		
(33) English System	$W = 778 * c_v (T_1 - T_2)$	ENG	
(34) English System	$W = C_v (T_1 - T_2)$	SI	
Steady Flow System: (GASP/ISENT/WORK/FLOW)			
With CP and T: (GASP/ISENT/WORK/FLOW/CP.T)			
(35) English System	W=778 * $C_p * T_1 (1 - (\frac{P_2}{P_1})^{\frac{k-1}{k}})$	ENG	
(36) SI System	$W = C_p * T_1 (1 - (\frac{P_2}{P_1})^{\frac{k-1}{k}})$	SI	

5 - 3

GAS PROPERTY CHANGE (IDEAL GAS)

DESCRIPTION	FORMULA	<u>NAME</u>
ISENTROPIC PROCESS: (GASP/	ISENT)	
Work: (GASP/ISENT/WORK)		
Steady Flow System (continued)	: (GASP/ISENT/WORK/FLOW)	
(37) With P and V	$W=\frac{k}{k-1}\left(p_2v_2-p_1v_1\right)$	P.V
Specific Heat Ratio: (GASP/ISENT	Γ/ K)	
(38) With P and V	$k=\ln\frac{p_2}{p_1}/\ln\frac{v_1}{v_2}$	P.V
(39) With P and T	$k = \frac{\ln(p_2/p_1)}{\ln(p_2/P_1) - \ln(T_2/T_1)}$	P.T

POLYTROPIC PROCESS: (GASP/POLYT)

(40) Pressure change (change in volume)	$p_2 = p_1 \left(\frac{v_1}{v_2} \right)^n$	$\Delta P/V$
(41) Pressure change (change in temperature)	$p_2 = p_1 \left(\frac{T_2}{T_1}\right)^{\frac{n}{2-1}}$	$\Delta P/T$
(42) Temperature change (change in volume)	$T_2 = T_1 \left(\frac{V_1}{V_2} \right)^{n-1}$	ለ <i>ጥ/</i> V
(43) Temperature change (change in pressure)	$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{P_1}{D}}$	∆ <i>T/₽</i>
(44) Volume change (change in pressure)	$v_2 = v_1 \left(\frac{p_1}{p_2}\right)^{\frac{1}{2}}$	$\Delta V/P$
(45) Volume change (change in temperature)	$v_2 = v_1 \left(\frac{T_1}{T_2}\right)^{\frac{1}{p-1}}$	$\Delta V/T$
Enthalpy change: (GASP/POLYT/ AH)		
(46) With CP and T	$dh = c_p (T_2 - T_1)$	CP.T
With P and V: $(GASP/POLYT \land DH /P.V)$		
(47) English System	$dh = \frac{n(p_2 * v_2 - p_1 * v_1)}{778(n-1)}$	ENG
(48) SI System	$dh = \frac{n(p_2 * v_2 - p_1 * v_1)}{n - 1}$	SI

GAS PROPERTY CHANGE (IDEAL GAS)			
DESCRIPTION FOI	RMULA	<u>NAME</u>	
POLYTROPIC PROCESS (continued): (GASP/F	POLYT)		
(49) Entropy change	$ds = \frac{C_{\tau}(n-k) * \ln(T_2/T_1)}{n-1}$	۵s	
(50) Internal energy change	$du = c_{v} (T_2 - T_1)$	ΔU	
(51) Heat	$Q = \frac{C_{\tau}(n-k) (T_2 - T_1)}{n-1}$	Q	
Work: (GASP/POLYT/WORK)			
Closed System: (GASP/POLYT/WORK/CLOSE	3)		
(52) With P and V	$W = \frac{P_1 * V_1 - P_2 * V_2}{D - 1}$	P . V	
(53) With R and T	$W=\frac{R*(T_1-T_2)}{n-1}$	R.T	
Steady Flow System: (GASP/POLYT/WORK/F	LOW)		
With H: (GASP/POLYT/WORK/FLOW/H)			
(54) English System	₩=778 * (<u>b₁-b₂)</u>	ENG	
(55) SI System	$W = (\underline{h}_1 - \underline{h}_2)$	SI	
(56) With P and V	$W = \frac{n}{n-1} (p_2 * v_2 - p_1 * v_1)$	P.V	
Specific Heat Ratio: (GASP/POLYT/N)			
(57) With P and V	$n=\ln\frac{p_2}{p_1}/\ln\frac{v_1}{v_2}$	P. V	

(58) With P and T $n = \frac{\ln(p_2/p_1)}{\ln(p_2/P_1) - \ln(T_2/T_1)} \qquad P.T$

GAS PROPERTY CHANGE (IDEAL GAS)

THROTTLING, STEADY FLOW: (GASP/THROT)

dP < 0, dv > 0, dT = 0, dh = 0, du = 0, Q = W = 0

(59) Pressure change	$\boldsymbol{p_2} = \boldsymbol{p_1} \frac{\boldsymbol{v_1}}{\boldsymbol{v_2}}$	ΔP
Entropy change: (GASP/THROD	Γ/ Δ S)	
With R and P: (GASP/THRO)	$T/\Delta S/R.P$	
(60) English System	$ds = \frac{R}{778} * \ln \frac{P_1}{P_2}$	ENG
(61) SI System	$ds = R + \ln \frac{P_1}{P_2}$	SI
With R and V: (GASP/THRO?	$T/\Delta s/R.V$	
(62) English System	$ds = \frac{R}{778} + \ln \frac{v_2}{v_1}$	ENG
(63) SI System	$ds = R + \ln \frac{v_2}{v_1}$	SI
(64) Volume change	$v_2 = v_1 \frac{\mathcal{P}_1}{\mathcal{P}_2}$	Δv
GENERAL: IDEAL GAS, WOR	RK, HP EQUATIONS:	
GAS, IDEAL: (GASP/IDEAL)		
(65) With the given mass	pV = mRT	MASS
(66) With the given mole	pV = nR'T	MOLE
WORK: (GASP/WORK)		
(67) English System	W=778 $(dh+Q) + Z_1 - Z_2 + (\frac{v_1^2 - v_o^2}{2g})$	ENG
(68) SI System	$W=dh+Q+(Z_1-Z_2)*g+(\frac{v_1^2-v_o^2}{2})$	SI
HORSEPOWER: (GASP/HP)		
(69) English System	$hp = \frac{M}{550} (778 (dh+Q) + Z_1 - Z_2 + (\frac{v_1^2 - v_o^2}{2g}))$	ENG
(70) SI System	$hp = \frac{M}{745.7} \left(dh + Q + (Z_1 - Z_2) * g + (\frac{v_1^2 - v_o^2}{2}) \right)$	SI

GAS PROPERTY CHANGE (IDEAL GAS) VARIABLES IDENTIFICATION

<u>SYMBOL</u>	DESCRIPTION; UNIT (ENG, SI)
<u>ср</u>	Specific heat, Constant Pressure; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-oR=4186.8 J/kg.K).
<u>cv</u>	Specific Heat, Constant Volume; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-oR=4186.8 J/kg.K).
g	Gravitational acceleration; $ft/s2$, $m/s2$ (1 ft/s2=0.3048 m/s2).
<u>h</u>	Enthalpy; <u>BTU/lbm</u> , J/kg (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>k</u>	Ratio of Specific Heat; None.
<u>M</u>	Mass in flow; <u>lbm/s</u> , <u>kg/s</u> (1 lbm=0.4536 kg).
<u>m</u>	Mass; <u>lbm</u> , <u>kg</u> (1 lbm=0.4536 kg).
<u>n</u>	Polytropic Exponent; None, Number of moles; pmole, kgmole.
Þ	Pressure; <u>lb/ft2</u> <u>Pa</u> (1 lb/ft2=47.88 Pa).
Q	Heat; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>R</u>	Specific Heat Constant; <u>ft-lbf/lbm-oR</u> , <u>J/kg.K</u> (1 ft-lbf/lbm-R=5.3803 J/kg.K. 1 ft.lbf=1.3558 J).
<u>R'</u>	Universal Gas Constant; 1545.3 ft-lbf/pmole-oR, 8314 J/kgmole.K.
<u>s</u>	Entropy; <u>BTU/lbm-oR</u> , $J/kg.K$ (1 BTU/lbm-oR=4186.8 J/kg.K).
<u>T</u>	Temperature; <u>oR</u> , <u>K</u> .
<u>u</u>	Internal energy; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>V</u>	Volume; <u>ft3</u> , <u>m3</u> (1 ft3=0.0283 m3).
<u>v</u>	Specific volume; $ft3/lbm$, $m3/kg$ (1 ft3/lbm=0.06243 m3/kg).
<u>vi</u>	Velocity at inlet; ft/s , m/s (1 $ft/s=0.3048$ m/s).
<u>vo</u>	Velocity at outlet; ft/s , m/s (1 $ft/s=0.3048 m/s$).
<u>W</u>	Work: <u>ft-lbf/lbm</u> , <u>J/kg</u> (1 ft-lb/lbm=2.989 J/kg).
<u>z</u>	Elevation; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).

MATHEMATICS

DESCRIPTION	FORMULA	<u>NAME</u>
<u>AREA:</u> (<i>MATH/AREA</i>)		
(01) Circle	λ=π * <i>r</i> ²	CIRCL
Circular segment: (MATH	H/AREA/SEGM)	
(02) With the given central an	0	AN GL
(03) With the given height	$\lambda = .5 * r^{2} \left(\frac{\pi \lambda COS(\frac{r-b}{r})}{90} - SIN(2\lambda COS(\frac{r-b}{r})) \right)$	HGHT
(04) Circular sector	$\mathbf{A} = \mathbf{\pi} * \frac{\mathbf{\Omega}}{360} * \mathbf{r}^2$	SECTR
(05) Ellipse	λ= π *a * <i>b</i>	ELIPS
		DTMC
(06) Ring section	$\boldsymbol{\lambda} = \boldsymbol{\pi} \left(\boldsymbol{r}_{o}^{2} - \boldsymbol{r}_{i}^{2} \right)$	RING

DETERMINANT: (MATH/DETER)

(07) Second or		a1 b1 a2 b2 DT2=a,1	b ₂ -b ₁ a 2	DT2
(08) Third order	al bl cl a2 b2 c2 a3 b3 c3		°C 3a 2 b 1	DT3

HYDRAULIC RADIUS: (MATH/HYD.R)

(09) General	HR= <mark>FA(Flow Area)</mark> WP(Wet Perimeter)	GENER
(10) Pipe, with the given central angle	$HR = \frac{r(.5*\pi*\Omega-90*SIN\Omega)}{\pi*\Omega}$	AN GL
	$90(r-h) *SIN(ACOS(\frac{r-h}{r}))$	

(11) Pipe, with the given height $HR = .5 * r - \frac{r}{\pi * \lambda COS(\frac{r-h}{r})}$ HGHT

MATHEMATICS FORMULA DESCRIPTION <u>NAME</u> $\boldsymbol{\lambda}_{\mathbf{g}} = \frac{\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}}{\boldsymbol{B}_{1} - \boldsymbol{B}_{2}} \left(\boldsymbol{B}_{\mathbf{g}} - \boldsymbol{B}_{1} \right) + \boldsymbol{\lambda}_{1}$ INTRP (12) Interpolation POLAR/RECTANGULAR COORDINATES: (MATH/PL-RC) $\Omega = ATAN(\frac{y}{x})$ (13) Angle ANGL $R = (x^2 + y^2)^{-5}$ RDIUS (14) Radius X.COR (15) x Coordinate $\mathbf{x} = \mathbf{R} * \mathbf{COS} \mathbf{\Omega}$ Y. COR (16) y Coordinate $y=R*SIN\Omega$ $\mathbf{z} = \frac{-b \pm (b^2 - 4a * c)^{.5}}{2a}$ QAD→ (17) Quadratic equation

SURFACE: (MATH/SURF)

Cones, Circular: (MATH/SURF/CONE)

(19) base included	$S = \pi * r (r^2 + h^2)^{-5} + \pi * r^2$	FULL
(20) Cone, circular, w/o base	$S=\pi * r (r^2 + h^2)^{-5}$	FACE

Cylinder: (MATH/SURF/CYLIN)

(23) Sphere	<i>8=</i> 4 * x * <i>r</i> ²	SPHER
(22) Cylinder, w/o ends	S=2*x*r*h	FACE
(21) Cylinder, ends included	S=2* * * * * b +2 * * * ²	FULL

MATHEMATICS

DESCRIPTION	FORMULA	NAME
TRIANGLE LAW: (MATH/ LAW)		
<u>Law of Cosine:</u> (MATH/ΔLAW/COS)		
(24) Side of triangle	$\mathbf{a} = (b^2 + c^2 - 2 * b * c * COSA^\circ)^{-5}$	SIDE
(25) Angle of triangle	$\boldsymbol{\lambda}^{\circ} = \boldsymbol{A}COS\left(\frac{\boldsymbol{b}^{2}+\boldsymbol{c}^{2}-\boldsymbol{a}^{2}}{2*\boldsymbol{b}*\boldsymbol{c}}\right)$	AN GL
<u>Law of Sine:</u> (MATH/ΔLAW/SIN)		
(26) Side of triangle	$a = \frac{b * SINA^{\circ}}{SINB^{\circ}}$	SIDE
(27) Angle of triangle	$\lambda^{\circ} = ASIN(\frac{a + SINB^{\circ}}{b})$	ANGL

VOLUME: (MATH/VOLM)

(28) Cone, right, circular	$V = \frac{\pi * r^2 * h}{3}$	CONE
(29) Cylinder, circular	$V=\pi * r^2 * h$	CYLIN
(30) Sphere	$V=\frac{4*\pi*r^3}{3}$	SPHER

DIFFERENTIATION:

The following is the procedure to differentiate a symbolic expression where:

f(x) = Expression to be differentiated and X = variable of differentiation. Please notice that no variable X is stored in the calculator. Otherwise you will get the numerical value of differential. To ensure:

Key in 'X ENTER TOOL PURGE

- * Key in ' f(x) **ENTER**
- * Key in 'X ENTER
- * Press ∂ You will get the symbolic answer.

Note 1. The answer may need to be simplified.

<u>Note 2.</u> If you store a value for **X** and then press <u>NUM</u>, while the differential still located in level 1 of the screen, you will get the numeric value of the differential.

Note 3. You may do the second differentiation:
While the first differential is still in level 1 of the screen key in:
'X ENTER ∂. Ensure no variable X existed in the calculator.

INTEGRATION:

The following is the procedure to find the value of an integral with numeric limits, where:

X1 = lower limit, X2 = higher limit, f(X) = Expression to be integrated, and X = variable of integration.

* Key in ' $\int (x_1, x_2, f(x), x) = ENTER NUM$

LINEAR (SIMULTANEOUS) EQUATIONS:

The built-in MATRIX Application in HP49G is used to solve the linear equations. Following is the procedure for a three (3) variable linear equation. Same rule applies to others.

Equations format:

 $| a_1 x + b_1 y + c_1 z = d_1$ $| a_2 x + b_2 y + c_2 z = d_2$ $| a_3 x + b_3 y + c_3 z = d_3$

Step 1. Write matrix for d1, d2, d3 Press **7** <u>MTRW</u>, key in d1 <u>SPC</u> d2 <u>SPC</u> d3 <u>ENTER</u> <u>ENTER</u>

Step 2. Write matrix for a1, b1, c1; a2, b2, c2; and a3, b3, c3: Press → MTRW, F5 (If necessary to make the "GO" right arrow active) Key in a1 SPC b1 SPC c1 ENTER ▼ ► ◄ Key in a2 SPC b2 SPC c2 ENTER Key in a3 SPC b3 SPC c3 ENTER ENTER

Step 3. Press \div . You will get the answer values in the form of [x y z]

PLOTTING AND CALCULATING ROOTS AND AREAS:

The simplified plotting, root calculation, and area calculation which are performed by the <u>PLOT</u> Application in HP49G, are described below: <u>Calculator must be in ALG mode</u>.

* 1. Press $\forall Y = CLEAR ADD$

- * 2. Key in the expression, f(X) **ENTER**.
- * 3. Press ERASE (to erase the previous plots.)
- * 4. Press DRAW (to plot the function.)

Press ON ON

Calculating Roots:

You should be in the screen with the plotted function.

To find the roots:

- * 1. Press FCN ROOT. Read the first root
- * 2. Press \underline{NXT} X (to locate the cursor).
- * 3. Move the cursor to get close to the point next curve's intersection with X axis.
- * 4. Press ROOT. Read the second value.
- * 5. Follow the above steps (2 to 4) for the next root(s), if any.
- * 6. Press <u>ON</u> (to get back to the normal mode). The roots are on the screen too.

Calculating the Area:

To find the area bounded by the curve, X axis, lower limit (X1), and the higher limit (X2):

- * 1. Plot the expression as described above. But take the following exception for the better vision to the selected area:
- * 2. Press $rightarrow \underline{Y} = CLEAR ADD$
- * 3. Key in the expression, f(X) **ENTER ENTER**.
- * 5. Key in value of X1 ENTER and value of X2
- * 3. Press AUTO ERASE (to erase the previous plots) DRAW. The curve will appear.
- * 5. Press (x,y)
- * 4. Press r
 ▲ . X coordinate should read the value of X1
- * 4. Press X to set the lower limit.
- * 4. Press → . X coordinate should read the value of X2
- * 6. Press <u>NXT</u> FCN AREA. Read the area.
- * 7. When finished, press ON ON (to get back to the normal mode.)

NOTE:

If you have to calculate the area between two (2) curves within the X limits, you have to calculate the area of each curve and X axis and subtract them.

VECTORS:

To perform the vector operations by HP49G, take the following points into consideration:

- 1. Calculator in **RPN** and = (= or exact answer is located at the top of the screen next to **R**).
- 2. The functions are built in calculator's Mathematic (<u>MTH</u>) section, MTH/VECTR.

3. Vectors must be entered in the form of [a <u>SPC</u> b] for two (2) dimension and [a <u>SPC</u> b <u>SPC</u> c] for three (3) dimension vectors.

Unit Vector:

To find a <u>Unit Vector</u>, parallel to a given vector:

- * Press MTH VECTR
- * Key in the vector **ENTER ENTER** (to duplicate the vector on the screen.)
- * Press ABS (to find the magnitude.)
- * Press \div <u>NUM</u>.

Angle Between vectors:

To find the Vectors' angle:

- * Press MTH VECTR
- * Key in the first vector **ENTER**, key in the second vector **ENTER**
- * Press DOT (to calculate the dot product.)
- * Press <u>ANS</u> (to bring the two (2) vectors back to the screen.)
- * Press ABS type SWAP, press ENTER ABS (to calculate the magnitude of both vectors.)
- * Press X (to multiply the magnitudes.)
- * Press \div (to divide the dot product by the products of magnitudes, This is the ACOS of the angle.)
- * Press <u>NUM</u> <u>ACOS</u> (to find the angle.)

Dot Product of vectors:

To find the Dot Product of vectors (V1.V2):

- * Press MTH VECTR
- * Key in the first vector **<u>ENTER</u>**, key in the second vector
- * Press DOT.

Cross Product of vectors:

To find the Cross Product of vectors (V1xV2):

- * Press MTH VECTR
- * Key in the first vector **<u>ENTER</u>**, key in the second vector
- * Press CROSS.

Absolute value (magnitude) of vectors:

- To find the magnitude of vectors:
- * Press MTH VECTR
- * Key in the vector
- * Press ABS.

Addition and subtraction of vectors:

To add or subtract the vectors:

- * Key in the first vector **<u>ENTER</u>**, key in the second vector **<u>ENTER</u>**, the third, etc.
- * Apply the arithmetic operation keys (+ or) as needed.

DESCRIPTION	FORMULA	NAME
COLUMNS: (MEMA/CLMN)		
Load: (MEMA/CLMN/LOAD)		
(01) Euler load, with given \mathbf{E} and \mathbf{I}	$\boldsymbol{F}_{\boldsymbol{\phi}} = \frac{\boldsymbol{\pi}^2 \boldsymbol{*} \boldsymbol{\mathcal{E}} \boldsymbol{*} \boldsymbol{\mathcal{I}}}{(\boldsymbol{\mathcal{C}} \boldsymbol{*} \boldsymbol{\mathcal{L}})^2}$	E. I
(02) Euler load, with given \mathbf{E} , \mathbf{A} , and \mathbf{K}	$\boldsymbol{F}_{\boldsymbol{o}} = \boldsymbol{E} \boldsymbol{*} \boldsymbol{A} \left(\frac{\boldsymbol{\pi} \boldsymbol{*} \boldsymbol{k}}{\boldsymbol{C} \boldsymbol{*} \boldsymbol{L}} \right)^{2}$	E.A.K
Stress: (MEMA/CLMN/STRES)	_	
(03) Euler stress, with given \mathbf{F} and \mathbf{A}	$\sigma_{\phi} = \frac{F_{\phi}}{\lambda}$	F.A
(04) Euler stress, with given E and K	$\sigma_{e} = \frac{\pi^{2} * E}{\left(L * \frac{C}{k}\right)^{2}}$	E.K

SHAFT IN TORSION: (MEMA/SHAFT)

Angle of twist: (MEMA/SHAFT/ANGL) $\mathbf{\Omega} = \frac{\mathbf{180} * T * L}{\mathbf{100}}$ (05) General equation **GENER** π *G*J $\Omega = \frac{360 * T * L}{\pi^2 * G * r^4}$ SOLID (06) Solid round $\Omega = \frac{360 * T * L}{\pi^2 * G * (r_o^4 - r_1^4)}$ (07) Hollow round HOLLO $U = \frac{T^2 * L}{2 * G * J}$ (08) Energy stored ENRG $hp = \frac{T * RPM}{63025}$ HP/ENG (09) Horsepower, English System $hp = \frac{T * RPM}{7120.9}$ (09a) Horsepower, SI System HP/SI Shear Stress: (MEMA/SHAFT/SHEAR) $\tau = \frac{T * T}{J}$ (10) General GENER $\tau = \frac{2T}{\pi * r^3}$ (11) Solid round SOLID $\tau = \frac{2 * T * r_o}{\pi \left(r_o^4 - r_1^4 \right)}$ HOLLO (12) Hollow round $T = \frac{63025 * hp}{1000}$ TORQ/ENG (13) Torque, English System RPM $T = \frac{7120.9 * hp}{RPM}$ TORQ/SI (13a) Torque, SI System

DESCRIPTION	FORMULA	<u>NAME</u>
STRESS: (MEMA/STRES)		
(14) Allowable stress	$\sigma_{\lambda} = \frac{\sigma_{u}}{FS}$	ALOW
Bending stress: (MEMA/STRES/BEND)	
(15) General	$\sigma_b = \frac{M*y}{I_c}$	GENER
(16) Maximum	$\sigma_b = \frac{M * C}{I_c}$	MAX
Bending plus Normal stress: (MEMA/S	TRES/BND+)	
(17) Maximum	$\sigma = \frac{F}{\lambda} + \frac{M * C}{I_c}$	MAX
(18) Minimum	$\sigma = \frac{F}{\lambda} - \frac{M * C}{I_c}$	MIN
Combined stress: (MEMA/STRES/CON	1B)	
Normal stress: (MEMA/STRES/COM	B/NORM)	
(19) Maximum	$\sigma_{\text{BAX}} = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	MAX
(20) Minimum	$\sigma_{\min} = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	MIN
Shear stress: (MEMA/STRES/COMB/SHEAR)		
(21) Maximum	$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$	MAX
(22) Minimum	$\tau_{\min} = -\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$	MIN
(23) Normal	$\sigma = \mathbf{E} * \epsilon$, $\sigma = \mathbf{F} / \lambda$	NRM→
Shear stress: (MEMA/STRES/SHEAR)		
(24) General	$\tau = \frac{M_s * F_s}{I_c * b}$	GENER
Shear stress, Maximum: (MEMA/STR	RES/SHEAR/MAX)	
(25) In a circular section	$\tau_{mr} = \frac{4 * F_s}{3 * \pi * r^2}$	CIRC
(26) In a rectangular section	$\tau_{\mu\nu} = \frac{3 * F_{\mu}}{2 * b * b}$	RECT

DESCRIPTION	<u>FORMULA</u>	NAME
THERMAL DEFORMATION: (MEMA/DI	EFOR)	
(27) Linear expansion	$d_L = \alpha * L_o(t_2 - t_1)$	EXPN
Strain: (MEMA/DEFOR/STRN)		
(28) Axial, with elongation	$\epsilon = \frac{d_L}{L_o}$	ΔL
(29) Axial, with change in temperature	$\epsilon = \alpha (t_2 - t_1), \ \epsilon = \sigma / E$	AXL→
(30) Lateral, with change in temperature	$\epsilon = \mu \alpha (t_2 - t_1), \ \epsilon = \mu \sigma / E$	LAT→
Stress: (MEMA/DEFOR/STRES)		
(31) With the given E and ϵ	σ= Ξ *€	$E.\epsilon$
(32) With change in temperature	$\sigma = \boldsymbol{\mathcal{Z}} \ast \boldsymbol{\alpha} \left(\boldsymbol{t}_2 - \boldsymbol{t}_1 \right)$	ΔT
(33) With elongation	$\sigma = dL * E/L$	ΔL

MISCELLANEOUS (MEMA/MSCL)

(34) Elongation	$d_L = \frac{F * L}{A * E}$	ELNG
(35) Energy stored in loaded member	$U = \frac{F^2 * L}{2\lambda * E}$	ENRG
Polar moment of inertia (MEMA/MSCL/POLR)		
(36) Round hollow shaft	$J=\frac{\pi(r_o^4-r_1^4)}{2}$	HOLLO
(37) Round solid shaft	$J=\frac{\pi * r^4}{2}$	SOLID
(38) Radius of Gyration	$k = \left(\frac{I}{A}\right)^{-5}$	GYRA
(39) Shear/Elasticity Modulus	$G=\frac{E}{2(1+\mu)}$	MDUL
(40) Strain	$\epsilon = \frac{d_L}{L_o}$	STRN

VARIABLES IDENTIFICATION

<u>SYMBOL</u>	DESCRIPTION; UNIT (ENG, SI)
<u>A</u>	Area; $\underline{in2}$, $\underline{m2}$ (1 in2 = 0.000645 m2).
<u>b</u>	Width of section; in, m $(1 \text{ in}=0.0254 \text{ m})$.
<u>C</u>	End resistant coefficient; <u>None</u> . (Both end built in = 0.5, both end pinned = 1, one end built-in and one end
	pinned = 0.7, one end built-in and one end free = $2.$)
<u>c</u>	Distance of extreme fiber from neutral axis; in, m $(1 \text{ in}=0.0254 \text{ m})$.
<u>dL</u>	Elongation; in, m $(1 \text{ in}=0.0254 \text{ m})$.
<u>E</u>	Modules of Elasticity; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
<u>F</u>	Force or load; <u>lbf</u> , <u>N</u> (1 lbf=4.4482 N).
E F Fe	Euler load; <u>lbf</u> , <u>N</u> (1 lbf=4.4482 N).
<u>FS</u>	Factor of Safety; None.
<u>Fs</u> <u>G</u>	Shear force; <u>lbf</u> , <u>N</u> (1 lbf=4.4482 N).
<u>G</u>	Shear Modules; <u>psi</u> , <u>Pa</u> (1 $psi=6894.8 Pa$).
<u>h</u>	Height of beam section; in, m $(1 \text{ in}=0.0254 \text{ m})$.
hp	Horsepower.
Ī	Moment of Inertia; $\underline{in4}$, $\underline{m4}$ (1 in4=4.1623EE-7 m4).
<u>Ic</u>	Centeroidal Moment of Inertia; <u>in4</u> , <u>m4</u> (1 in4=4.1623EE-7 m4).
J	Polar Moment of Inertia; $\underline{in4}$, $\underline{m4}$ (1 in4=4.1623EE-7 m4).
<u>k</u>	Radius of Gyration; <u>in</u> , <u>m</u> (1 in=0.0254 m).
L	Length; <u>in</u> , <u>m</u> (1 in=0.0254 m).
M	Moment; in-lbf, N.m (1 in-lbf= 0.1129848 N.m).
<u>Ms</u>	Statistical Moment; in3, m3 (1 in3=1.6387EE-5 m3).
<u>P</u>	Pressure; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
<u>r</u> .	Radius; \underline{in} , \underline{m} (1 $in=0.0254 \text{ m}$).
<u>ri</u>	Inside radius; in, m $(1 \text{ in}=0.0254 \text{ m})$.
<u>ro</u> DDM	Outside radius; in, m $(1 \text{ in}=0.0254 \text{ m})$.
<u>RPM</u> T	Revolution Per Minute. Torques in lbf. N $m(1 = 1) = 0.1120848 N = 0$
$\frac{T}{t}$	Torque; <u>in-lbf</u> , <u>N.m</u> (1 in-lbf=0.1129848 N.m). Temperature; <u>oF</u> : Thickness; <u>in</u> , <u>m</u> (1 in=0.0254 m).
<u>t</u>	Energy stored in a load member; <u>in-lbf</u> , N.m (1 in-lbf=0.1129848 N.m).
<u>U</u>	Distance of fiber from neutral axis; in, m (1 in=0.0254 m).
<u>v</u>	
α	Coefficient of linear thermal deformation; $1/oF$, $1/oC$.
E	Strain; <u>None</u> .
μ	Poisson's Ratio; <u>None</u> .
Ω	Angle of twist; degree.
σ	Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
σ	Allowable Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
$\sigma_{_{D}}$	Bending Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
σ,	Euler Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
σ	Ultimate/Yield Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).
τ	Shear Stress; <u>psi</u> , <u>Pa</u> (1 psi=6894.8 Pa).

DESCRIPTION	FORMULA	<u>NAME</u>
ATMOSPHERIC AIR: (THER/ATM.A)		
(01) Pressure, dry air	$P_{da} = P_{at} - P_{vv}$	P.DRY
(02) Pressure, total	$P_{at} = P_{da} + P_{vv}$	P. TOT
Pressure, water vapor: (THER/ATM.A/P.	. WV)	
(03) With the given Hs and \mathbf{P}	$P_{\rm ww} = \frac{H_{g} * P_{at}}{.621 + H_{g}}$	HS.P
(04) With the given \mathbf{RH} and \mathbf{P}	P _{wv} =RH*P _{svv}	RH.P
Relative Humidity: (THER/ATM.A/REL.	<i>H</i>)	
(05) With the given Pwv	$RH = \frac{P_{vv}}{P_{vsv}}$	PWV
(06) With the given Pda	$RH = \frac{1.61 * H_g * P_{da}}{P_{gyy}}$	PDA
Specific Humidity: (THER/ATM.A/SPC.	<i>H</i>)	
(07) With the given Pda	$H_{g} = \frac{\cdot 621 * P_{vv}}{P_{da}}$	PDA
(08) With the given Pat	$H_{g} = \frac{.621 * P_{wv}}{P_{at} - P_{wv}}$	PAT

COMPRESSORS: (THER/COMP)

Enthalpy: (THER/COMP/ENTH)

Compression Enthalpy: (THER/COMP/	ENTH/COMP)	
(09) English System	$h = \frac{v_f(p_2 - p_1)}{778}$	ENG
(10) SI System	$h = v_f (p_2 - p_1)$	SI
(11) Actual discharge enthalpy	$b_{2\lambda} = b_1 + \frac{b_{21} - b_1}{\eta}$	ACTU
(12) Ideal discharge enthalpy	$\underline{b}_{21} = \eta (\underline{b}_{2\lambda} - \underline{b}_1) + \underline{b}_1$	IDEAL
(13) Efficiency	$\eta = \frac{h_{21} - h_1}{h_{21} - h_1}$	effi

DESCRIPTION FOR	RMULA	NAME
EFFICIENCY: (THER/EFFI)		
Carnot (THER/EFFI/CARN)		
(14) With the given heats	$\eta = \frac{q_{in} - q_{out}}{q_{in}}$	HEAT
(15) With the given temperatures	$\eta = \frac{T_b - T_1}{T_b}$	TEMP
Rankin (THER/EFFI/RANK)		
(16) With the given heats	$\eta = \frac{q_{1p} - q_{out}}{q_{1p}}$	HEAT
With the given works: (THER/EFFI/RANK/W		
(17) English System	$\eta = \frac{W_{turb} - W_{pump}}{778 q_{in}}$	ENG
(18) SI System	$\eta = \frac{\mathbf{W}_{turb} - \mathbf{W}_{pump}}{\mathbf{Q}_{in}}$	SI

GAS: (THER/GAS)

Enthalpy: (THER/GAS/H)		
With the given P and V: $(THER/GAS/H/P.V)$		
(19) English System	<u>b</u> =u+ <u></u> р*v 778	ENG
(20) SI System	h=u+p∗v	SI
With the given R and T: (THER/GAS/H/R.T)		
(21) English System	<u>b</u> =u+ <u>R*T</u> 778	ENG
(22) SI System	b=u+R∗T	SI
Ratio of Specific Heat (THER/GAS/K)		
(23) With the given cp and cv	$k = \frac{C_p}{C_v}$	CP.CV
With the given \mathbf{R} and \mathbf{cv} : (<i>THER/GAS/K/R.CV</i>)		
(24) English System	$k = \frac{R}{778 * C_{\tau}} + 1$	ENG
(25) SI System	$k = \frac{R}{C_v} + 1$	SI

	<u>IOD II (III) IOD</u>	
DESCRIPTION	FORMULA	NAME
GAS (continued): (THER/GAS)		
With the given R and cp : (<i>THER/GAS</i>)	/ K / R . CP)	
(26) English System	$k = \frac{C_p}{C_p - \frac{R}{778}}$	ENG
(27) SI System	$k = \frac{C_p}{C_p - R}$	SI
Specific Heat Constant: (THER/GAS/R)		
With the given cp and cv: (THER/GAS	S/ R/CP.CV)	
(28) English System	$R=778 (C_p - C_v)$	ENG
(29) SI System	$R = C_p - C_v$	SI
With the given Molecular Weight MW:	(THER/GAS/R/MW)	
(30) English System	$R=\frac{1545.3}{MW}$	ENG
(31) SI System	R= <u>8314</u> MW	SI
Specific Heat, Constant Pressure: (THER	R/GAS/CP)	
(32) With the given \mathbf{k} and $\mathbf{c}\mathbf{v}$	$C_p = k * C_v$	K.CV
With the given k and R: (THER/GAS/	CP/K.R)	
(33) English System	$c_{p} = \frac{k * R}{778 (k-1)}$	ENG
(34) SI System	$c_p = \frac{k * R}{(k-1)}$	SI
Specific Heat, Constant Volume: (THER	/GAS/CV)	
(35) With the given \mathbf{k} and \mathbf{cp}	$c_v = \frac{c_p}{k}$	K.CP
With the given k and R: (THER/GAS/	<i>CV/K.R</i>)	
(36) English System	$C_{v} = \frac{R}{778 (k-1)}$	ENG
(37) SI System	$C_v = \frac{R}{k-1}$	SI

DESCRIPTION	FORMULA	<u>NAME</u>
Gas, Ideal: (THER/GAS/IDEAL)		
(38) With the given mass	p V= m RT	MASS
(39) With the given mole	pV = nR'T	MOLE
(40) Gas, Real	pV=mRTZ	REAL
HEAT EXCHANGER: (THER/HTEXC	2)	
Used Floor (THED/HTEVC/HTELO)		

Heat Flow:(THER/HTEXC/HTFLO)(41) Multiple pass $q=F_c*U*A*LMTD$ Single pass:(THER/HTEXC/HTFLO/SINGL)(42) With the given U and Aq=U*A*LMTD(43) With the given m and cp $q=m*c_p(t_2-t_1)$

Logarithmic Mean Temperature Difference: (THER/HTEXC/LMTD)

Counter flow: (THER/HTEXC/LMTD/COUNT)

(44) English System	$LMTD = \frac{(T_i - t_o) - (T_o - t_i)}{\ln \frac{T_i - t_o}{T_o - t_i}}$	ENG

(45) SI System
$$LMTD = \frac{(T_1 - t_o) - (T_o - t_i)}{\ln \frac{T_i - t_o}{T_o - t_i}}$$
SI

Parallel flow: (THER/HTEXC/LMTD/PARAL)

(46) English System
$$LMTD = \frac{(T_o - t_o) - (T_I - t_I)}{\ln \frac{T_o - t_o}{T_I - t_I}} ENG$$

(47) SI System
$$IMTD = \frac{(T_o - t_o) - (T_i - t_i)}{\ln \frac{T_o - t_o}{T_i - t_i}}$$
SI

THERMODYNAMICS			
DESCRIPTION	FORMULA	<u>NAME</u>	
HEAT FLOW THROUGH: (THER/H)	TFLO)		
(48) A film	$q=b*\lambda(t_1-t_2)$	FILM	
Pipe: (THER/HTFLO/PIPE)			
(49) Un-insulated w/o film	$q = \frac{2\pi * K * l * (t_1 - t_2)}{\ln \frac{r_o}{r_1}}$	BARE	
(50) Insulated w/o film	$q = \frac{2\pi * l * (t_1 - t_2)}{\frac{\ln(\frac{r_o}{r_1})}{\frac{\kappa_1}{\kappa_2}} + \frac{\ln(\frac{r_{ins}}{r_o})}{\frac{\kappa_1}{\kappa_2}}}$	INSUL	
<u>Slab:</u> (THER/HTFLO/SLAB)	K _{pipe} K _{ins}		
Single Section, no film: (THER/HT	FLO/SLAB/SINGL)		
(51) With the given K and L	$q = \frac{K * \lambda (t_1 - t_2)}{L}$	K.L	
(52) With the given U	$q = U * \lambda (t_1 - t_2)$	σ	
Composite Sections: (THER/HTFL)	D/SLAB/COMP)		
(53) With up to 3 sections, no film, 3K	$Q = \frac{\lambda (t_1 - t_2)}{\frac{L_1}{R_1} + \frac{L_2}{R_2} + \frac{L_3}{R_3}}$	3 <i>K</i>	
(54) With 1 film and 1 section, $1h + 1K$	$q = \frac{\lambda (t_1 - t_2)}{\frac{\mathcal{L}_1}{\mathbf{K}_1} + \frac{1}{\mathbf{L}_1}}$	1.**1. K	
(55) With 2 film and 2 sections, $2h + 2K$	$Q = \frac{\lambda (t_1 - t_2)}{\frac{1}{D_1} + \frac{L_1}{R_1} + \frac{L_2}{R_2} + \frac{1}{D_2}}$	2 <i>H2K</i>	
(56) With 2 film and 3 sections, $2h + 3K$	$Q = \frac{A(t_1 - t_2)}{\frac{1}{D_1} + \frac{L_1}{R_1} + \frac{L_2}{R_2} + \frac{L_3}{R_3} + \frac{1}{D_2}}$	2 <i>H3K</i>	
Radiation: (THER/HTFLO/RADIA)			
(57) English System	$q_r = .1713EE - 8 * A * F_o * F_a (T_1^4 - T_2^4)$	ENG	
(58) SI System	$q_{x} = 5.6724EE - 8 * \lambda * F_{o} * F_{a} (T_{1}^{4} - T_{2}^{4})$	SI	

THERMODYNAMICS		
DESCRIPTION	FORMULA	<u>NAME</u>
INTERNAL COMBUSTION ENGI	NES: (THER/NGIN)	
Engine displacement: (THER/NG	IN/DISP)	
(59) English System	$disp = \frac{\pi * BORE^2 * STRF * NCYL}{4}$	ENG
(60) SI System	disp= # *BORE² *STRE*NCYL 4EE3	SI
Indicated horsepower: (THER/NG	SIN/HP)	
With the given power strokes, N	PST: (THER/NGIN/HP/NPST)	
(61) English System	$hp = \frac{\pi * P_{\mu} * BORE^2 * STRK * NPST}{1.584EE6}$	ENG
(62) SI System	$hp = \frac{\pi * P_{a} * BORE^{2} * STRK * NPST}{1.82496 EE6}$	SI
With the given cycle strokes, NCST: (2	THER/NGIN/HP/NCST)	
(63) English System	$\underline{hp} = \frac{\pi * P_{a} * BORE^{2} * STRK * RPM * NCYL}{7 \cdot 92 EE5 * NCST}$	ENG
(64) SI System	$hp = \frac{x * P_{i} * BORE^{2} * STRK * RPM * NCYL}{9.1248 EE5 * NCST}$	SI
(65) Number of power strokes/min	NP.In. 2*RPM*NCYL NCST	<u>אריריר</u>
Thermal efficiency: (THER/NGIN	// ባ<i>TH</i>)	
With the given fuel consumption	. <u>, FC:</u> (<i>THER/NGIN/ դTH /FC</i>)	
(66) English System	η _{εb} = $\frac{2545 * bp}{FC*HV}$	ENG
(67) SI System	$\eta_{th} = \frac{2684975 * hp}{FC * HV}$	SI
With the given fuel consumption	. <u>, SFC:</u> (THER/NGIN/ ηTH /SFC)	
(68) English System	$\eta_{th} = \frac{2545}{SFC + HV}$	ENG
(69) SI System	2684975	et.

(69) SI System $\eta_{ch} = \frac{2684975}{SFC*HV}$ SI

DESCRIPTION FORMULA <u>NAME</u> INTERNAL COMBUSTION ENGINES: (THER/NGIN)

Volumetric efficiency: (THER/NGIN/ **η**V)

With the given engine displacement, DISP	<u>P:</u> (<i>THER/NGIN/</i> η <i>V</i> / <i>DISP</i>)	
(70) English System	$\eta_{v} = \frac{3456 * INAIR}{RPM * d18p}$	ENG
(71) SI System	$\eta_{\tau} = \frac{120 * INAIR}{RPM * d1sp}$	SI
With the given engine bore and stroke: (THER/N (72) English System n ,	<i>GIN/</i> η <i>V /BR.ST</i>) = <u>13824 * <i>INA I R</i> π * <i>RPM</i> * <i>BORE</i>² * <i>STRK</i> * <i>NCYL</i></u>	ENG

4.8*EE5*+*INAIR*

 $\eta_{\psi} = \frac{1}{\pi * RPM * BORE^2 * STRK * NCYL}$

SI

(73) SI System

<u>REFRIGERATION:</u> (*THER/REFRI*)

Coefficient Of Performance: (THER/REFRI/COP)

(74) With the given tons of refrigeration, tonR:	$COP = \frac{4.715 * ton_R}{hp}$	TONR
(75) With the given heats	$COP = \frac{q_{in}}{q_{out} - q_{in}}$	HEAT
(76) With the given temperatures	$COP = \frac{T_{low}}{T_{high} - T_{low}}$	TEMP
Energy Efficiency Ratio: (THER/REFRI/EER)		
(77) With the given hp	$EER = \frac{12000 * ton_R}{745.7 * bp}$	HP
(78) With the given watt	$EER = \frac{12000 * top_R}{watt}$	WATT
Horsepower: (THER/REFRI/HP)		
(79) With the given COP	$hp = \frac{4.715 * ton_{p}}{COP}$	COP
(80) With the given EER	$hp = \frac{16.09 * ton_R}{EER}$	EER

DESCRIPTION	FORMULA	<u>NAME</u>
<u>REFRIGERATION:</u> (THER/REFRI)		
<u>Refrigerant rate:</u> (THER/REFRI/RATE)		
(81) English System	$M = \frac{10 * ton_R}{3 (h_2 - h_1)}$	ENG
(82) SI System	$\underline{M} = \frac{3517.2 * ton_R}{b_2 - b_1}$	SI
<u>STEAM:</u> (<i>THER/STIM</i>)		
(83) Enthalpy, h	<i>b=b_t+X*b_tg</i>	H
(84) Entropy, s	s =s _f +X*s _{fg}	S
Quality (THER/STIM/X)		
(85) With the given h	$\mathbf{X} = \frac{\mathbf{h} - \mathbf{h}_f}{\mathbf{h}_{fg}}$	H
(86) With the given s	$\mathbf{X} = \frac{\mathbf{B} - \mathbf{B}_{f}}{\mathbf{B}_{fg}}$	8
(87) Specific volume, v	<i>v</i> = <i>v_f+X</i> * <i>v_{fg}</i>	V
Steam rate: (THER/STIM/RATE)		
(88) English System	$M = \frac{q}{3600(\underline{h}_1 - \underline{h}_2)}$	ENG
(89) SI System	$\underline{M} = \frac{\underline{W}}{(\underline{h}_1 - \underline{h}_2)}$	SI
TURBINE: (THER/TURB)		

Enthalpy at Discharge: (THER/TURB/ENTH)		
(90) Actual discharge enthalpy	$b_{2\lambda} = b_1 - \eta (b_1 - b_2 I)$	ACTU
(91) Ideal discharge enthalpy	$b_2I=b1+\frac{b_2A-b_1}{\eta}$	ID EAL
(92) Efficiency	$\eta = \frac{h_1 - h_2 A}{h_1 - h_2 I}$	effi

DESCRIPTIONFORMULANAMETURBINE: (THER/TURB)Horsepower: (THER/TURB/HP)

(93) English System	$hp = \frac{M + \eta}{550} (778(h_1 - h_o) + \frac{v_1^2 - v_o^2}{2g})$	ENG
(93) English System	$hp = \frac{2}{550} (7/8(h_1 - h_2) + \frac{1}{2g})$	EN

(94) SI System

$$hp = \frac{M + \eta}{745.7} (h_1 - h_o + \frac{v_1^2 - v_o^2}{2}) \qquad SI$$

Specific Steam Rate: (THER/TURB/RATE)

(95) English System	$SSR = \frac{3413}{3600(h_1 - h_o)}$	ENG
(96) SI System	$SSR = \frac{1000}{h_i - h_o}$	SI

VARIABLES IDENTIFICATION

SYMBOL	DESCRIPTION; UNIT (ENG, SI)
<u>A</u>	Surface area; <u>ft2</u> , <u>m2</u> (1 ft2=0.0929 m2).
BORE	Piston's bore; <u>in</u> , <u>cm</u> (1 in=2.54 cm).
COP	Coefficient Of Performance; None.
ср	Specific heat, Constant Pressure; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm.oR=4186.8 J/kg.K).
<u>cv</u>	Specific Heat, Constant Volume; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm.oR=4186.8 J/kg.K).
disp	Engine's displacement; <u>in3/cyc</u> , <u>L/cyc</u> (1 in3/cyc=0.01639 L/cyc).
<u>EER</u>	Energy Efficiency Ratio; <u>BTU/watt</u> .
Fa	Shape Factor; <u>None</u> .
<u>Fc</u>	Correction Factor; <u>None</u> .
<u>FC</u>	Fuel Consumption; <u>lbm</u> , <u>kg</u> (1 lbm=0.4563 kg).
<u>Fe</u>	Emissivity Factor; <u>None</u> .
g	Gravitational acceleration; $ft/s2$, $m/s2$ (1 $ft/s2 = 0.3048 m/s2$).
<u>h</u>	Enthalpy; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>h</u>	Film coefficient; <u>BTU/hr-ft2.oR</u> , <u>W/m2.K</u> (1 BTU/hr-ft2-oR=5.68 W/m2.K).
<u>hf</u>	Enthalpy of Saturated liquid; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
hfg	Enthalpy of vaporization; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
hg	Enthalpy of Saturated vapor; <u>BTU/lbm</u> , J/kg (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>hp</u>	Horsepower.
<u>Hs</u>	Specific Humidity;None; <u>lbw/lbda</u> , <u>kgw/kgda</u> (1 lbm=0.4536 kg).
<u>HV</u>	Heating Value; <u>BTU/lbm</u> , J/kg (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>h2A</u>	Discharge Actual Enthalpy; <u>BTU/lbm</u> , J/kg (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
<u>h2I</u>	Discharge Ideal Enthalpy; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
INAIR	Intake air quantity; <u>cfm</u> , <u>L/s</u> (1 cfm= $0.47195 L/s$).
<u>K</u>	Thermal Conductivity; <u>BTU/hr-ft-oR</u> , <u>W/m.K</u> (1 BTU/hr-ft-oR=1.731 W/m.K).
<u>k</u>	Ratio of Specific Heat; None.
L	Thickness; <u>ft</u> , <u>m</u> (1 ft=0.3048 m).
l	Length; <u>ft</u> , <u>m</u> (1 ft = 0.3048 m).
<u>LMTD</u>	Logarithmic Mean Temperature Difference; oF, oC.
<u>M</u>	Mass in flow; <u>lbm/s</u> , <u>kg/s</u> (1 lbm=0.4536 kg).
<u>MW</u>	Molecular Weight.
<u>NCST</u>	Number of strokes per each cycle; stroke/cycle.
<u>NCYL</u>	Number of Cylinders; <u>None</u> .
<u>NPST</u>	Number of engine's power strokes per minute; stroke/minute.
<u>m</u>	Mass; <u>lbm</u> , <u>kg</u> (1 lbm=0.4536 kg).
<u>n</u>	Polytropic Exponent; None, Number of moles; pmole, kgmole.
Þ	Pressure; <u>lbf/ft2</u> , <u>Pa</u> (1 lb/ft2=47.88 Pa).
Pat	Atmospheric Pressure; <u>psi</u> , <u>Pa</u> (1 psi=6894.76 Pa).
<u>Pda</u>	Dry Air Partial Pressure; psi, Pa (1 psi=6894.76 Pa).

VARIABLES IDENTIFICATION

<u>SYMBOL</u>	DESCRIPTION; UNIT (ENG, SI)
Pm	Engine's Mean Effective Pressure; psi, kg/cm2 (1 psi=0.07031 kg/cm2).
Pswv	Saturated Water Vapor Pressure; <u>psi</u> , <u>Pa</u> (1 psi=6894.76 Pa).
Pwv	Water Vapor Pressure; <u>psi</u> (1 psi=6894.76 Pa).
Q	Heat/unit of weight; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
Ð	Heat flow quantity; <u>BTU/hr</u> , <u>W</u> (1 BTU/hr=0.2931 W=0.252 kcal/hr).
<u>qr</u>	Radiation Heat flow; <u>BTU/hr</u> , <u>W</u> (1 BTU/hr=0.2931 W=0.252 kcal/hr).
<u>R</u>	Specific Heat Constant; <u>ft-lbf/lbm-oR</u> , <u>J/kg.K</u> (1 ft-lbf/lbm.oR=5.3803 J/kg.K, 1 ft.lbf=1.3558 J).
<u>R'</u>	Universal Gas Constant; <u>1545.3 ft-lbf/pmole-oR</u> , <u>8314 J/kgmole.K</u> .
<u>r</u>	Radius; <u>ft</u> , <u>m</u> subscript i = inside, $o = outside (1 ft = 0.3048 m)$.
<u>RH</u>	Relative Humidity; decimal.
<u>RPM</u>	Revolutions Per Minute.
<u>s</u>	Entropy; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-oR=4186.8 J/kg.K).
<u>sf</u>	Entropy of Saturated Liquid; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-oR=4186.8 J/kg.K).
<u>SFC</u>	Specific Fuel Consumption; <u>lbm/hp</u> , <u>kg/hp</u> (1 lbm=0.4536 k).
sfg	Entropy of vaporization; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-oR=4186.8 J/kg.K).
sg	Entropy of Saturated Vapor; <u>BTU/lbm-oR</u> , <u>J/kg.K</u> (1 BTU/lbm-R=4186.8 J/kg.K).
<u>SSR</u>	Specific Steam Rate; <u>lbm/kw</u> , <u>kg/kw</u> (1 lbm=0.4536 kg).
<u>STRK</u>	Piston's stroke; <u>in</u> , <u>cm</u> (1 in=2.54 cm).
<u>T</u>	Temperature; <u>oR</u> , <u>K</u> .
<u>Ti</u>	Hot fluid inlet temperature; oF, oC.
<u>ti</u>	Cold fluid inlet temperature; oF, oC.
То	Hot fluid outlet temperature; oF, oC.
<u>to</u>	Cold fluid inlet temperature; oF, oC.
tonR	Ton of refrigeration; <u>12,000 BTU/hr</u> , <u>3517 W</u> , <u>3024 kcal/hr</u> .
<u>U</u>	Overall coefficient of heat transfer; <u>BTU/hr-sf-oR</u> , <u>W/m2.K</u> (1 BTU/hr-ft2-oR=5.68 W/m2.K).
<u>u</u>	Internal energy; <u>BTU/lbm</u> , <u>J/kg</u> (1 BTU/lbm=2326 J/kg, 1 BTU=1055 J).
$\underline{\mathbf{V}}$	Volume; $ft3$, $m3$ (1 ft3=0.02832 m3).
<u>v</u>	Specific volume; <u>ft3/lbm</u> , <u>m3/kg</u> (1 ft3/lbm=0.06243 m3/kg).
<u>vf</u>	Specific volume of saturated liquid; ft3/lbm, m3/kg (1 ft3/lbm=0.06243 m3/kg).
<u>vfg</u>	Specific volume of vaporization; <u>ft3/lbm</u> , <u>m3/kg</u> (1 f 3/lbm=0.06243 m3/kg).
vg	Specific volume of saturated vapor; <u>ft3/lbm</u> , <u>m3/kg</u> (1 ft3/lbm=0.06243 m3/kg).
<u>vi</u>	Velocity at inlet; ft/s , m/s (1 $ft/s=0.3048 m/s$).
<u>vo</u>	Velocity at outlet; ft/s , m/s (1 $ft/s=0.3048 m/s$).
$\frac{\mathbf{W}}{\mathbf{X}}$	Work; <u>ft-lbf/lbm</u> , <u>J/kg</u> (1 ft-lbf/lbm=2.9891 J/kg).
<u>X</u>	Quality of steam; decimal.
<u>Z</u>	Compressibility Factor; None.
η	Efficiency; decimal.
ρ	Density; <u>lbm/ft3</u> , <u>kg/m3</u> (1 lbm/ft3=16.0185 kg/m3).
•	

QUICK REFERENCE TO NCEES FE REFERENCE HANDBOOK

This part is prepared to summarize and highlight the more common, useful, and calculator accepted equations in <u>NCEES FE Reference Handbook (January 1996 issue)</u>. Subject equations are programmed in ROM card. By learning the overall concept, the user may retrieve the selected equation and solve it for an unknown variable in a faster and more accurate way without even any need to refer to this part of the manual.

Read the following notes and memorize the naming procedure for an easy access to stored equations:

- 1. Acquaint yourself with the subjects, equations, and the nomenclature of variables and their units in NCEES FE Reference Handbook. Ensure to use the proper unit to get the proper answer.
- 2. Following are the general rules for naming and retrieving the equations, except for Chemical, Civil, and Mechanical Engineering Sections, which are named by the subjects:
 - a. The main directories are representing the following sections in NCEES FE Reference Handbook:

<u>DY</u> NAMICS	DY
<u>EL</u> ECTRICITY	EL
ENGINEERING ECONOMICS	EE
<u>F</u> LUID <u>M</u> ECHANICS	FM
<u>H</u> EAT <u>T</u> RANSFER	HT
MA THEMATICS	MA
MECHANICS OF MATERIALS	MM
<u>TH</u> ERMODYNAMICS	ТН
CHEMICAL ENGINEERING	CHEM
<u>CIVIL</u> ENGINEERING	CIVIL
MECHANICAL ENGINEERING	MECH

- b. The subdirectories are representing the main subjects covered in the Handbook.
- c. The <u>NAME</u> of the equation which will appear on the screen menu, generally, is either the variable's (at the left side of the equation) symbol or other sub-directories recognizable abbreviation.

DYNAMICS

DIRECTORY (DY)

TO FIND	SUB DIR.	SYMB	NAME
Circular motion:			
(01) Tangential velocity	CIRCU	vt	VT
(02) Tangential acceleration		at	AT
(03) Normal acceleration (2 equations)		an	AN→
Linear motion:			
(04) Distance	LINER	S	S
(05) Velocity		v	v
(06) Velocity		v	V^2
Projectile:			
(07) Horizontal velocity	PROJ	vx	VX
(08) Vertical velocity (2 equations)		vy	VY→
(09) Horizontal distance (2 equations)		x	<i>X</i> →
(10) Vertical distance (2 equations)		у	Y →
(11) Weight		w	WGHT
(12) Newton's 2nd law (2 equations)		Σ F	∑F→
Energy:			
(13) Kinetic Energy	ENRG	KE	KE
(14) Kinetic Energy Change		any	ΔKE
(15) Potential Energy		PE	PE
(16) Spring/Potential Energy Stored	ENRG/SPRIN	PE	PE
(17) Spring/Change in Potential Energy		any	ΔΡΕ
(18) Centrifugal Force (2 equations)		Fc	FC→
(19) Tangent of Banking angle		tanθ	TANO

ELECTRICITY

DIRECTORY (EL)

TO FIND	SUB DIR.	SYMB	NAME
Resistivity and Resistors:			
(01) Resistance	RESIS	R	GENER
(02) Resistivity, change in temperature		ρ	ρ.ΔΤ
(03) Resistance, change in temperature		R	$R.\Delta T$
(04) Resistance (total), 3 in series		RT	SERI
(05) Resistance (total), 3 in parallel		RT	PAR3
(06) Resistance (total), 2 in parallel		RT	PAR2
Power in Resistive element			
(07) With V and I	POWR	Р	V.I
(08) With V and \mathbf{R}		Р	V.R
(09) With I and \mathbf{R}		Р	I.R
Capacitors in series and parallel:			
(10) Capacitance, 3 in parallel	CAPAC	Ceq	PARA
(11) Capacitance, 2 in series		Ceq	SER2
(12) Capacitance, 3 in series		Ceq	SER3
Inductors in series and parallel:			
(13) Inductance, 2 in parallel	INDUC	Leq	PAR2
(14) Inductance, 3 in parallel		Leq	PAR3
(15) Inductance, 3 in series		Leq	SERI

ELECTRICITY

DIRECTORY (EL)

TO FIND	SUB DIR.	SYMB	NAME
RC Transients:			
(16) Voltage across capacitor	TRNSI/RC	Vct	VCT
(17) Current		it	IT
(18) Voltage across resistor (2 equations)		VRt	VRT→
<u>RL Transients:</u>			
(19) Current	TRNSI/RL	it	T
(20) Voltage across resistor		VRt	VRT→
(21) Voltage across inductor		VLt	VLT→
Amplifiers:			
(22) Output voltage		vo	AMPLI
Reactance:			
(23) Capacitive reactance (2 equations)	REAC	Xc	XC→
(24) Inductive reactance (2 equations)		XL	XL→
Resonance:			
(25) Radiant resonance frequency (2 equations)	RESO	ω。	ω0→
(26) Series Resonance		ω。	ωOL
(27) Quality Factor, Series (2 equations)		Q	QS→
(28) Quality Factor, Parallel (2 equations)		Q	QP→

ENGINEERING ECONOMICS

DIRECTORY (EE)

TO FIND	SUB DIR.	SYMB	NAME
Discount Factor, Discrete Compound:			
(01) F/P Factor		F	F/P
(02) P/F Factor		Р	P/F
(03) A/F Factor		Α	A/F
(04) A/P Factor		Α	A/P
(05) F/A Factor	FCTR	F	F/A
(06) P/A Factor		Р	P/A
(07) P/G Factor		Р	P/G
(08) F/G Factor		F	F/G
(09) A/G Factor		А	A/G
(10) Non-Annual Compounding		ie	COMP
Discount Factor, Continuous Compound:			
(11) Continuous Compounding F/P		F	F/P
(12) Continuous Compounding P/F		Р	P/F
(13) Continuous Compounding A/F	CONTI	А	A/F
(14) Continuous Compounding F/A		F	F/A
(15) Continuous Compounding A/P		А	A/P
(16) Continuous Compounding P/A		Р	P/A
Depreciation:			
(17) Depreciation, Straight Line		Dj	DEPRI
Inflation:			
(18) Combined interest and inflation rate		d	INFLA

FLUID MECHANICS DIRECTORY (FM)

TO FIND	SUB DIR.	SYMB	NAME
Surface Tension:			
(01) General		σ	GENE
(02) In bulb surrounded by air	CAPIL/TENS	σ	AIR
(03) In a droplet or bubble in liquid		σ	LIQID
(04) Capillary rise	CAPIL	h	RISE
Pressure Field in a Static Liquid:			
(05) Simple manometer equation	PRESS	Ро	РО
(06) Atmospheric pressure (2 equations)		Patm	PA→2
Forces on submerged Surfaces:			
(07) Pressure on submerged surface		р	Р
(08) y coord. of Center of Pressure		у	Y1
(09) z coord. of Center of Pressure	FORCE	z	Z1
(10) y coord. of Center of Pressure		у	Y2
(11) z coord. of Center of Pressure		z	Z2
(12) Force on the plate		F	F
(13) Mass flow rate (2 equations)	MASS	m	<i>M</i> →2
(14) Bernoulli equation, no friction		any	NO.HF
(15) Bernoulli equation, + hf	BERN	any	W.HF
(16) Bernoulli equation, + hf		any	HF+

FLUID MECHANICS

DIRECTORY (FM)

-

TO FIND	SUB DIR.	SYMB	NAME
Fluid flow:			
(17) Velocity distribution for laminar flow		v	V
(18) Shear stress distribution	FLOW	τ	τ
(19) Drag force		FD	FD
(20) Drag coefficient (2 equations)		CD	CD→
Reynolds Number:			
(21) Newtonian fluid	REYN	Re	<i>RE</i> →
(22) Power law fluid		Re'	RE'
(23) Friction head (Darcy equation)	FRIC.H	hf	DARCY
(24) Minor loss, with the given C	FRIC.H/MINO	hf	С
(25) Minor loss, with $C=.04$		hf	C = .04
(26) Pump power equation	-	w	pump
Jet Propulsion:			
(27) Flow quantity	JET	Q	Q
(28) Velocity		V2	V 2
Deflection Blades:			
Fixed blades:			
(29) x component	BLADE	Fx	FX
(30) y component		Fy	FY

FLUID MECHANICS

DIRECTORY (FM)

TO FIND	SUB DIR.	SYMB	NAME
Deflection Blades:			
Moving blades:			
(31) x component (2 equations)	BLADE	Fx	FX→
(32) y component (2 equations)		Fy	FY→
Impulse Turbine:			
(33) Power of turbine	TURB	w	w
(34) Maximum power of turbine		Wmax	WMX
Open Channel Flow:			
(35) Manning's equations English System	CHAN/MANI	v	ENG
(36) Manning's equations SI System		v	SI
(37) Hazen-Williams equation English System	CHAN/HAZN	v	ENG
(38) Hazen-Williams equation SI System		v	SI
(39) Speed of sound	SOUND	с	С
(40) Velocity, Pitot Tube (2 equations)	PITO→	v	<i>V</i> →2
(41) Venturi meter, Flow quantity	-	Q	VENT
Orifice:			
(42) Flow quantity		Q	Q
(43) Coefficient of orifice	ORIF	С	С
(44) Submerged flow quantity (2 equations)		Q	SUB →
(45) Free discharge flow		Q	FREE

DIRECTORY (HT)

12

TO FIND	SUB DIR.	NAME
CONDUCTION:	COND	
<u>Through a plane wall:</u>	COND/WALL	
(01) Rate of heat transfer		Q
(02) Thermal resistance		R
(03) Total resistance		RTTL
(04) Thermal resistance, R1		R 1
(05) Thermal resistance, R2		R2
(06) Intermediate temperature		T2
(07) Surface temperature		Т3
Through a cylindrical wall: (08) Rate of heat transfer (09) Thermal resistance	COND/CYLIN	Q R
CONVECTION:	CONV	
(10) Rate of heat transfer		Q
(11) Thermal resistance		R
Through a straight fin:	CONV/FIN	
(12) Rate of heat transfer		Q
(13) Equation for m		М
(14) Equation for Lc		LC

TO FIND	SUB DIR.	NAME
IO FIND	SUB DIR.	NAME
RADIATION:	RADIA	
(15) Radiation emitted by a body		Q
Radiation heat transfer between two bodies:	RADIA/Q12	
(16) Small to a large body		SMAL
(17) Two (2) black bodies		BLAK
HEAT EXCHANGERS:	HTEX	
Shell and Tube:	HTEX/SHEL	
(18) Overall heat transfer coefficient		U
Log Mean Temperature Difference:	HTEX/LMTD	
(19) Counter current flow in tubular		CONTR
(20) Parallel flow in tubular		PARAL
(21) Heat Transfer/Section Area equation	HTEX	Q/A
<u>Tubular Heat Exchanger:</u>	HTEX/TUBUL	
(22) Rate of Heat Transfer		Q
		V V

TO FIND		
IO FIND	SUB DIR.	NAME
HEAT EXCHANGERS:	HTEX	
<u>Tubular Heat Exchanger:</u>	HTEX/TUBUL	
Nusselt number:	HTEX/TUBUL/NU	
(23) Laminar flow		LAMI
(24) Turbulent flow (2 equations)		TUR→
Liquid Metals:	HTEX/TUBUL	
(25) Constant heat flux	/LIQID	HEAT
(26) Constant wall temperature		ТЕМР
(27) Condensation of pure vapor	HTEX/TUBUL	VAPR
HEAT TRANSFER TO/FROM		
IMMERSED BODY:	IMERS	
Nusselt Number:	IMERS/NU	
Flow parallel to constant temp. flat plate:	IMERS/NU/PLATE	
(28) For $Re < 10^{5}$		RE<.1M
(29) For $Re > 10^5$		RE>.1M
(30) Of a constant temperature of cylinder	IMERS/NU	CYLIN
		SPHER
() / · · · · · · · · · · · · · · · · · ·		
(30) Of a constant temperature of cylinder(31) Of a constant temperature of sphere	IMERS/NU	

TO FIND	SUB DIR.	NAME
CONDUCTIVE HEAT TRANSFER:	COND'	
Steady Conduction With Internal Energy	COND'/ENRG	
Generation:	COND'/ENRG	
Plane wall:	/WALL	
(32) Intermediate temperature at point x		ТХ
	COND'/ENRG	
Long Circular Cylinder:	/CYLIN	Т
(33) Temperature		Q
(34) Heat transfer per unit length		
Transient Conduction, Lump Capacitance	COND'/TRNSI	
Method:		Q
(35) Heat transfer		Т
(36) Temperature variation		QTTL
(37) Total temperature transfered up to time t		BI
(38) Biot number		
NATURAL (FREE) CONVECTION:	CONV'	
Vertical flat plate/cylinder:	CONV'/VERTI	
(39) Heat transfer coefficient		н
(40) Raleigh Number		RAL
Long Horizontal Cylinder and large body:	CONV'/HORIZ	
(41) Heat transfer coefficient		Н
(42) Raleigh Number		RAD

TO FIND	SUB DIR.	NAME
RADIATION:	RADI'	
(43) Two-body problem		2BODY
(44) Radiation Shields		SHILD
(45) Reradiating surface		SURF

MATHEMATICS

DIRECTORY (MA)

TO FIND	SUB DIR.	SYMB	NAME
Straight Line:			
(01) Slope between two (2) points	LINE	m	SLOP
(02) Angle between two (2) lines		α	ANGL
(03) Distance between two (2) points		d	DIST
Quadratic Equations:			
(04) Root 1, x1	QUAD	x 1	X1
(05) Root 2, x2		x2	X2
Conic Sections:			
(06) Parabola		any	PARAB
(07) Ellipse, equation and eccentricity (2 equ.)	CONIC	any	ELIP→
(08) Hyperbola, equation and eccentricity (2 equ.)		any	HYP→
(09) Circle, equation		any	CIRCL
Trigonometry:			
(10) Law of Sines (3 equations)	TRIGO	any	SIN→
(11) Law of Cosines (3 equations)		any	COS→
(12) Determinant, 2nd order		DT	DT2
(13) Determinant, 3rd order	DETER	DT	DT3
(14) Probability, Permutation		Pnr	PERM
(15) Probability, Combination	PROB	Cnr	СОМВ
Ellipse:			
(16) Area	ELIPS	A	AREA
(17) Perimeter		р	PERI
<u>Circular Segment:</u>	CIRCL		
(18) Area	SEGM	A	AREA
(19) Angle		φ	ANGL

MATHEMATICS

DIRECTORY (MA)

TO FIND	SUB DIR.	SYMB	NAME
<u>Circular Sector:</u>	CIRCL		
(20) Area	SECT	A	AREA
(21) Angle		¢	ANGL
Sphere:			
(22) Volume	SPHER	v	VOLM
(23) Area		A	AREA
Por ellele grom.			
Parallelogram:			DEDI
(24) Periphery		p d1	PERI
(25) d1	PARAL	d1	D1
(26) d2		d2	D2
(27) d1d2/ab		d1d2	D1D2
(28) Area (2 equations)		A	AREA→
<u>Regular Polygon (n equal sides):</u>			
(29) Angle		φ	ф
(30) Angle	POLIG	θ	θ
(31) Side		s	S
(32) Perimeter		р	Р
(33) Area		A	Α
(34) Prismoid Volume	PRISM	v	VOLM
Right Circular Cone:			
(35) Volume		v	VOLM
(36) Area	CONE	A	AREA
(37) Ax/Ab ratio		Ax/Ab	AXAB
	<u> </u>	1	
Right Circular Cylinder:			
(38) Volume	CYLIN	v	VOLM
(39) Area		A	AREA
Parabola of Revolution:			
(40) Area of parabola (2 equations)	PARAB	A	AREA
(41) Volume		v	VOLM

MECHANICS OF MATERIALS

DIRECTORY (MM)

TO FIND	SUB DIR.	SYMB	NAME
Engineering strain: (01) Engineering strain	STRN/ENGI	ε	e
(02) Force/Deformation equation		F	F
<u>Shear stress strain:</u>			
(03) Shear Strain	STRN/SHEAR	γ	Ŷ
(04) Shear Modulus		G	G
Loading and Deformation:			
(05) Stress	DEFOR/LOAD	σ	σ
(06) Strain		E	E
(07) Modulus of Elasticity (2 equations)		E	E→
(08) Elongation		δ	δ
Thermal deformations:			
(09) Deformation caused by temp. difference	DEFOR/THER	δt	δΤ
Cylindrical Pressure, Stress:	CYLIN/STRES		
<u>Stress in Wall, internal pressure:</u>			
(10) Tangential (Hoop) stress	WALL/INSID	σt	σΤ
(11) Radial stress		σr	σR
Stress in Wall, external pressure:			
(12) Tangential (Hoop) stress	WALL/OUTSI	σt	σΤ
(13) Radial stress		σr	σR
(14) Stress in caps		σa	CAPS
(15) Stress in thin wall cylinders		σt	THIN

MECHANICS OF MATERIALS

DIRECTORY (MM)

TO FIND	SUB DIR.	SYMB	NAME
<u>Mohr's Circle, Stress:</u>			
(16) Principle, maximum	MOHR	σ1.2	σΜΑΧ
(17) Principle, minimum		σ1.2	σMIN
(18) Shear stress, maximum		τmax	τΜΑΧ
Hook's Law:			
Three dimensional stress case:			
(19) Strain, x axis	HOOK/3DIM	€X	εx
(20) Strain, y axis		€y	€y
(21) Strain, z axis		€Z	€Z
Plane stress case:			
(22) Strain, x axis	HOOK/PLANE	€X	еx
(23) Strain, y axis		€y	€Ÿ
(24) Strain, z axis		€Z	€Z
Torsion:			
(25) Twisting moment per radian of twist	TORS	$T/\mathbf{\Phi}$	Т/ф
(26) Shear stress, hollow thin wall shaft		τ	τ
Stresses in Beams			
(27) Radius of curvature, deflected shaft	BEAM	ρ	1/ρ
(28) Normal Stress in beam, at y distance		σx	σ x 1
(29) Stress in beam, at c distance (2 equations)		σx	σ π 2→
(30) Stress in beam, with S (2 equations)		σx	σ x 3→
(31) Shear flow		q	Q
(32) Shear stress		τxy	τ χ γ

MECHANICS OF MATERIALS

TO FIND	SUB DIR.	SYMB	NAME
Columns/Beams: (33) Euler's critical load, equation 1 (34) Euler's critical load, equation 2	CLMN	Pcr Pcr	PCR1 PCR2
Elastic Strain Energy: (35) Energy stored in beam (36) Strain energy/unit vol.(2 equations)	ENRG	U u	U <i>Ծ</i> →

DIRECTORY (MM)

THERMODYNAMICS

DIRECTORY (TH)

F

TO FIND	SUB DIR.	SYMB	NAME
Properties of Single component systems:			
(01) Quality of vapor		x	x
(02) Specific volume (2 equations)		v	V→
(03) Internal energy		u	U
(04) Enthalpy	PROP	h	Н
(05) Entropy		s	S
Ideal gas:			
(06) P, V equations	PROP/IDEAL	any	PV
(07) P, V, T equations		any	PVT
(08) Gas constant	PROP	R	R
For cold air standard, constant heat capacity:			
(09) Change in internal energy	AIR	Δu	Δσ
(10) Change in enthalpy		Δh	ΔH
(11) Change in entropy (T & P) (2 equations)		Δs	∆s→
For constant entropy process:			
(12) P1, v1, P2, v2 equation		any	P/V
(13) T1, P1, T2, P2 equation	Δ <i>S</i> =0	any	T/P
(14) T1, v1, T2, v2 equation		any	T/V
(15) Ratio of Specific Heat		k	К
Closed Thermodynamic Systems:			
Work performed, ideal gas:			
(16) Constant Pressure	CLOSE	w	ΔP =0
(17) Constant Volume, w=0		-	
(18) Constant Temperature (2 equations)		w	Δ <i>T</i> =0

THERMODYNAMICS

TO FIND	SUB DIR.	SYMB	NAME
Closed Thermodynamic Systems:			
Work performed, ideal gas:	CLOSE		
(19) Isentropic (2 equations)		w	ISEN→
(20) Polytropic		w	POLY
Open Thermodynamic Systems:			
Work performed, ideal gas:			
(21) Constant Pressure, $w=0$		-	-
(22) Constant Volume	OPEN	w	Δ <i>V</i> =0
(23) Constant Temperature (2 equations)		w	Δ <i>T</i> =0→
(24) Isentropic (2 equations)		w	ISEN→
(25) Isentropic, steady flow		Wis	WIS
(26) Polytropic		w	POLY
Nozzles, Diffusors:			
(27) Velocity term	NOZL	any	ні
(28) Efficiency of nozzle		η	EFFI
Turbines:	TURB		
(29) Efficiency		η	EFFI
Dumm			
Pump:	PUMP		
(30) Efficiency		η	EFFI
Compressor:	СОМР		
(31) Efficiency		η	EFFI
<u>Heat Exchanegrs:</u>	HTEX		
(32) m1,h1,m2,h2 equation		any	HTEX
Heat Engines:			
(33) Efficiency	H.ENG	η	ฦ→
(34) Efficiency of Carnot Cycle.		η _c	η <i>α</i>

THERMODYNAMICS

DIRECTORY (TH)

TO FIND	SUB DIR.	SYMB	NAME
Coefficient Of Performance:			
(35) Heat Pump	СОР	COPc	HPMP
(36) Refrigerator		COPc	REFR
Ideal Gas Mixture:			
(37) Partial Pressure	MIXT	Pi	PRES
(38) Partial Volume		Vi	VOLM
Psychometric:			
(39) Total air pressure		Р	Р
(40) Specific Humidity, mv, ma	PSYC	ω	ω
(41) Specific Humidity, Pv, Pa(2 equations)		ω	ω→
(42) Relative Humidity, Pv, Pg		φ	ф⊸
(43) Enthalpy		h	Н

CHEMICAL ENGINEERING

DIRECTORY (CHEM)

TO FIND	SUB DIR.	NAME
Chemical Thermodynamics: (01) Activity Coefficients	THER THER/ACTIV	γIV
Ideal solutions, Fugacities Coefficients: (02) In term of pressure (03) mixture	THER/IDEAL	FI VIV
<u>Chemical Equilibrium:</u> <u>For Reaction:</u> (04) (05)	THER/EQUIL THER/EQUIL/REACT	∆ <i>g</i> Ka
<u>For mixtures:</u> (06) (07)	THER/EQUIL/MIXTR	KA KP
Chemical Reaction Engineering: Rate of Reaction: (08) Rate (2 equations) (09) Rate Constant (10) Moles of A, reacted/fed	REACT REACT/RATE	RA → K XA
Reaction Order: Zero Order Reaction: (11) Rate (12) Concentration of Component A (13) Moles of A, reacted/fed	REACT/ORDER REACT/ORDER/ZERO	RA CA XA
First Order Reaction: (14) Rate (15) Concentration of Component A (16) Moles of A, reacted/fed	REACT/ORDER/FIRST	RA CA XA
Second Order Reaction: (17) Rate (18) Concentration of Component A (19) Moles of A, reacted/fed	REACT/ORDER/SCND	RA CA XA

CHEMICAL ENGINEERING

DIRECTORY (CHEM)

TO FIND	SUB DIR.	NAME
Reactors: Batch: (20) Rate (21) Volume	RACTR RACTR/BATCH	RA V
Flow: (22) Plug-Flow Reactor	RACTR/FLOW	PLUG
Continuous: (23) Continuous Stirred Tank Reactor (CSTR) (24) Stirred Tank Reactors in series (2 equations)	RACTR/FLOW/CONTI	CSTR <i>SE</i> R→
Distillation: Flash (or equilibrium) Distillation: (25) Component material balance (26) Overall material Balance	DISTIL DISTIL/FLASH	FZF F
Differential (simple or Rayleigh) Distillation: (27) y, when relative volatility is constant (28) Differential Distillation equation	DISTIL/DIFER	Y W/Wo
Continuous (binary system) Distillation: <u>Total Material Balance:</u> (29) (30)	DISTIL/CONTI DISTIL/CONTI/T.MAT	F FZF
<u>Operating Lines:</u> <u>Rectifying Section:</u> (31) Total Material (32) Component A (2 equations)	DISTIL/CONTI/OPER DISTIL/CONTI/OPER/RECTI	T.MAT СМР . А →
<u>Stripping Section:</u> (33) Total Material (34) Component A (2 equations)	DISTIL/CONTI/OPER/STRIP	T.MAT СМР. А →
Reflux Ratio: (35) Ratio of Reflux to overhead product (36) Feed condition line (37) Murphree Plate Efficiency	DISTIL/CONTI/OPER/RFLUX	<i>RD</i> → SLOPE EME

CHEMICAL ENGINEERING

DIRECTORY (CHEM)

TO FIND	SUB DIR.	NAME
Diffusors: <u>Molecular Diffusion:</u> (38) Gas (39) Liquid	DIFFU DIFFU/MOLEC	GAS LIQID
(40) Unidirectional of a Gas:(41) Equimolar Counter Diffusion	DIFFU	UNIDI EQUI
Convection: Two Film Theory (for equimolar Counter-Diffusion): (42) First Equation (43) Second Equation (44) Third Equation (45) Fourth Equation Overall Coefficient: (46)	CONV CONV/2FILM CONV/COEF	EQ1 EQ2 EQ3 EQ4 K'G
 (47) <u>Transfer Unit:</u> (48) Height of Transfer Unit (49) Height of Transfer Unit (50) Height of Tower (2 equations) 	CONV/TRNS	K'L HOG HOL Z→
(51) Dimension-less Group Equation	CONV	КМ

DIRECTORY (CIVIL)

TO FIND	SUB DIR.	NAME
GEOTECHNICAL DEFINITIONS:	GEOT/DEFIN	
(01) Coefficient of Curvature or Gradation		СС
(02) Uniformity Coefficient		CU
(03) Void Ratio		E
(04) Water Content (%)		w
(05) Compression Index		сс
(06) Relative Density (%) (2 equations)		DD→
(07) Specific Gravity		G
(08) Settlement		ΔH
(09) Plasticity Index		PI
(10) Degree of Saturation (%)		s
(11) Shrinkage Index		SI
(12) For flow nets		Q
(13) Total Unit Weight of Soil		Y
(14) Dry Unit Weight of Soil (2 equations)		γ <i>D</i> →
(15) Unit Weight of Solids		γ <i>S</i>
(16) Prosperity (2 equations)		η →
(17) Normal Stress		σ
(18) General Shear Stress		τ
(19) Coefficient of Active Earth Pressure		KA
(20) Coefficient of Passive Earth Pressure		КР
(21) Active Resultant Force		PA
(22) Bearing Capacity Equation		QULT
(23) Factor of Safety (Slope Stability)		FS
(24) Coefficient of Consolidation		cv
(25) Effective Stress		σ′
STRUCTURAL ANALYSIS:	STRUC	
Deflection of Trusses and Frames:	STRUC/DFLEC	
Deflection of Trusses:	STRUC/DFLEC/TRUS	GNRL
(26) General Equation		TEMP
(27) For temperature		LOAD
(28) For Load		

TO FIND	SUB DIR.	NAME
TRANSPORTATION: Distance:	TRANS TRANS/DIST	
(29) Braking Distance:		BRAKE
Sight Distance:	TRANS/DIST/SIGHT	
<u>Crest, Vertical Curve:</u>	TRANS/DIST/SIGHT/CREST	
(30) $S < L$		S <l< td=""></l<>
(31) $S > L$		S>L
Sag, Vertical Curve:	TRANS/DIST/SIGHT/SAG	
(32) $S < L$		S <l< td=""></l<>
(33) S>L		S>L
(34) Riding Comfort on sag vertical curve	TRANS/DIST	COMF
Adequate Sight Distance:	TRANS/DIST/ADEQ	
(35) S <l< td=""><td></td><td>S<l< td=""></l<></td></l<>		S <l< td=""></l<>
(36) S>L		S>L
(37) Horizontal Curve	TRANS/DIST	HORIZ
Super elevation:		
(38) Highways (General and SI system)	TRANS/SUPER/H.WAY	GEN,SI
(39) Railroads	TRANS/SUPER	RAIL
<u>Spirals:</u>		
(40) Highways	TRANS/SPIRA/H.WAY	ENG,SI
(41) Railroads (2 equations)	TRANS/SPIRA	RAIL→
Modified Davis Equation:		
(42) Level tangent Resistance		R
(43) Tractive Effort	TRANS/DAVIS	TE

SUB DIR.	NAME
CONC	
CONC/DESIN	
CONC/DESIN/MMNT	
	φ <i>M</i> IN⊣
	Α
	MU
CONC/DESIN/SHEAR	
	VU
	VC
	vs
	VSMX
	AV
CONC/T.BIM	фМИ
CONC/CLMN	
	TIED
	SPIRA
	РО
	ACON
	ρG
	CONC/DESIN/MMNT CONC/DESIN/SHEAR CONC/T.BIM

TO FIND	SUB DIR.	NAME
STRUCTURAL STEEL DESIGN: <u>Tension Members:</u> <u>Allowable Stress Design (ASD):</u> (58) For yielding	STEEL STEEL/TENS STEEL/TENS/ASD	YIELD
 (50) For fracture (59) For fracture (60) For yielding (61) For fracture 	STEEL/TENS/LRFD	FRACT YIELD FRACT
Member Connections: Allowable Stress Design (ASD): (62) Shear Stress	STEEL/CONEC STEEL/CONEC/ASD	FV
 (63) Allowable Stress <u>Load Resistance Factor Design (LRFD):</u> (64) Nominal Strength 	STEEL/CONEC/LRFD	ΓΤ φ<i>RN</i>→
Compression Members: (65) Maximum stress (65a) Minimum stress (65b) Euler formula (1) (65c) Euler formula (2) (65d) Slenderness Ratio (66) Cc value	STEEL/COMP	σ MAX σ MIN PCR1 PCR2 SR CC
Allowable Stress Design (ASD): Allowable Axial Compressive Stress (Fa): (67) If SR > Cc (68) If SR < = Cc	STEEL/COMP/ASD	SR≻CC SR≤CC
Load Resistance Factor Design (LRFD): <u>Critical Stress (Fcr):</u> (69) If $0 \le \lambda_c \le 1.5$ (70) If $\lambda_c > 1.5$	STEEL/COMP/LRFD	λ≤1.5 λ≻1.5
(71) Column Slenderness parameter(72) Required Axial Strength		λ <i>C</i> PU

TO FIND	SUB DIR.	NAME
CURVE FORMULAS: Vertical Curves: (73) Horiz. Distance to min/max Elev. on Curve (3 eq.) Elevation: (74) Tangent Elevation (2 equations) (75) Curve Elevation (2 equations)	CURVE CURVE/VERTI CURVE/VERTI/ELEV	XM→ TANG CURV
 (75) Curve Elevation (2 equations) (76) Tangent offset (77) Parabola Constant (78) Tangent offset at PVI (79) Rate of change of grade 	CURVE/VERTI	Y A E R
Horizontal Curves:(80) Radius(81) Length of curve from P.C. to P.T. (2 equations)(82) Radius (2 equations)(83) Length of curve from P.C. to P.T.(84) Length of Middle Ordinate(85) Angle between two Tangents (2 equations)(86) Length of curve from P.C. to P.T. (2 equations)(87) Length of Sub-Chord(88) Angle of Sub-Chord(89) External Distance	CURVE/HORIZ	R $T \rightarrow$ $R \rightarrow$ L M $I/2 \rightarrow$ $L \rightarrow$ C D E
BEAM FIXED-END MOMENT: Situation 1: (90) AB moment (91) BA moment Situation 2: (92) AB moment	BEAM BEAM/SITU1 BEAM/SITU2	MAB MBA MAB
 (93) BA moment <u>Situation 3:</u> (94) AB moment (95) BA moment 	BEAM/SITU3	MBA MAB MBA

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
REFRIGERATION:	REFRI	
Two-Stage Cycle:	REFRI/CYCLE/TWO	
(01) Coefficient of Performance, Refrigeration (2 equations)		COPR→
(02) Coefficient of Performance, Heat Pump (2 equations)		СОРН→
Air Refrigeration Cycle:	REFRI/CYCLE/AIR	
(03) Coefficient of Performance, Refrigeration		COPR
(04) Coefficient of Performance, Heat Pump		СОРН
HVAC:	HVAC	
Pure Heating and Cooling:	HVAC/H&C	
(05) Heat in/out		Q
Cooling and Dehumidification:	HVAC/C&DH	
(06) Heat out		QOUT
(07) Mass of water out		MW
Heating and Humidification:	HVAC/H&HU	
(08) Heat in	in the name	QIN
(09) Mass of water in		MW
Adiabatic Humidification:	HVAC/ADIAB/HUMI	
(10) Exit enthalpy		H2
(11) Mass of water in		MW
		141 44
Adiabatic Mixing:	HVAC/ADIAB/MIX	
(12) Mass of mixture		MA3
(13) Enthalpy of mixture		H3
(14) Specific Humidity (Humidity Ratio) of mixture		ω3

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
HVAC	HVAC	
Heating Load:	HVAC/LOAD/HEAT	
(15) Heat loss (R is given)		Q
(16) Thermal Resistance		R "
(17) Heat loss (U is given)		Q
Cooling Load:	HVAC/LOAD/COOL	
(18) Heat gain		Q
Infiltration:		
(19) Heat loss, Air Change Method	HVAC/INFIL	CHNG
(20) Heat loss, Crack Method		CRAK
FANS:	FAN	
(21) Power		POWR
PUMPS:	PUMP	
(22) Net Positive Suction Head		NPSH
(23) Power		POWR
COMPRESSORS:	СОМР	
(24) Input Power (2 equations)	COMIT	₩-→
(25) Exit enthalpy		HE
(26) Exit temperature		TE
ENERGY CONSERVATION:		
Internal Combustion Engines:	INTER	
DIESEL cycle:	INTER/DISEL	
(27) Compression Ratio		R
(28) Cut-Off Ratio		RC
(29) Efficiency		η
(30) Ratio of Specific Heat		K

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
ENERGY CONSERVATION: Internal Combustion Engines: Brake, Power:	INTER INTER/BRAKE/POWR	
(31) General		₩B→
(32) Indicated		WI
Brake, Efficiency: (33) Thermal (34) Indicated (35) Mechanical	INTER/BRAKE/EFFI	η <i>Β</i> η <i>Ι</i> η <i>Μ</i> →
 (36) Displacement Volume (37) Compression Ratio (38) Mean Effective Pressure (39) Volumetric Efficiency (40) Specific Efficiency 	INTER	VD RC ΜΕΡ η <i>V</i> SFC→
GAS TURBINE, Brayton Cycle: Steady Flow Cycle:	TURB TURB/STIDY	
(41) w12 (2 equations)		W12→
(42) w34 (2 equations)		₩34 <i>→</i>
(43) wnet		WNET
(44) q23 (2 equations)		Q23→
(45) q41 (2 equations)		Q41 →
(46) qnet		QNET
(47) Efficiency		η

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
GAS TURBINE, Brayton Cycle:	TURB	
With Regenerator:	TURB/RGEN	
(48) h3		НЗ
(49) T3		Т3
(50) q34		<i>Q</i> 34→
(51) q56		Q 56→
(52) Efficiency		η
(53) Regenerated efficiency		<i>¶.RG</i> →
STEAM POWER PLANTS:	STIM	
Feed Water Heater:	STIM/HETER	
(54) Open system		OPEN
(55) Closed system		CLOSE
(56) Junction	STIM	JUNC
Pump:	STIM/PUMP	
(57) Work		w
(58) h2s		H2S
(59) Work		w
SHAFT AND AXLES:	SHAFT	
Static Loading:	SHAFT/STAT	
(60) Maximum Shear stress		τ <i>MX</i>
(61) Von Mises stress		σ′
Fatigue Loading:	SHAFT/FATIG	
(62) Shaft diameter		D

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
SCREWS:	SCRW	
(63) Torque required to raise		TR
(64) Torque required to lower		TL
(65) Efficiency of power screw		η
(66) Total bolt load		FB
(67) Total material load		FM
(68) Bolt stiffness		KB
(69) Member stiffness		КМ
FASTENERS:	FASTE	
(70) Bolt load factor		NB
(71) Factor of safety		NS
(72) Alternating stress		σλ
(73) Mean stress		σΜ
SPRINGS:	SPRIN	
Helical Linear Springs:	SPRIN/LINER	
(74) Shear stress		τ
(75) Correction factor		KS
(76) Spring rate (spring factor)		К
Helical Torsion Springs:	SPRIN/TORS	
(77) Bending stress		σ
(78) Correction factor		КІ
(79) Deflection, Moment equation		FR
(80) Spring rate (spring factor)		K
(81) Endurance limit	SPRIN	SE

DIRECTORY (MECH)

TO FIND	SUB DIR.	NAME
PRESS/SHRINK FITS: (82) Interface induced pressure (83) Torque, maximum by press/shrink fits	FITS	PRESS TORQ
COLUMNS: Intermediate columns: (84) Slenderness ratio (85) Critical Load Long columns: (86) Critical Load	CLMN CLMN/INTER CLMN/LONG	SRD PCR PCR
GEARS, STRAIGHT SPUR: (87) Radial Force <u>Transmitted Load (Tangential Force):</u> (88) With the given torque (2 equations) (89) With the given power (2 equations)	GEAR GEAR/WT	WR <i>TRQ</i> → PWR→
(90) Bending stress(91) Surface stress	GEAR	σ <i>Β</i> σ <i>C</i>