The HP 49G Quick Start Guide

Contents

Introduction． 4
How to Use This Guide ．
Basic Information． 5
Physical Features ． 5
Keys and the Keyboard
Menus． 7
The History Screen． 9
The Status Area ． 9
The Information Flow 10
MODES． 13
The chlculatof hones Screen 13
The 固说国 Menu 15
The das hodes Screen 16
The arsflat hones Screen 16
Resetting the MODES 16
Computational Examples 17
Arithmetic Operations 17
Transcendental Functions 20
Some Special Numbers ． 21
Implied Multiplication 21
Using Units 22
Variables ． 23
Symbolic Algebra 24
The Equation Writer 25
Defining Your Own Functions 26
Working with Functions 27
Two－Dimensional Plot Types ． 27
Working with Graphs 31
Setting Up a Graph 31
Function Graphing Examples 32
More on Graphing Functions 35
Other Graph Types 39
Polar Plotting 39
Parametric Plotting 40
Conic Sections 40
Inequality Plotting 41
Cleaning Up 41
Working with Tables 43
The TABLE ZOOM Menu 44
The Equation Writer 45
Quick Overview 45
Operating Modes in the Equation Writer 47
Editing Operations 50
How Do I Do Calculus in the Equation Writer? 52
Numerical Solving 57
Solve Equation 57
Solve Diff EQ 58
Solve Poly 59
Solve Lin Sys 60
Finance. 61
Symbolic Solving 63
Algebraic Mode 63
RPN Mode 7
The \leftrightarrows EXP\&LN Key 75
The \rightarrow ALG Key 7
The G CALC Key 79
Derivatives and Integrals 79
Limits and Series 81
Differential Equations 82
Time and Alarms 83
Time and Date 83
Alarms 84
Lists. 85
Lists in RPN Mode 85
Computational Examples with Lists in RPN Mode 86
Commands Applied to Lists in RPN Mode 87
Special List Operations in RPN Mode 87
Lists in Algebraic Mode 88
Computational Examples with Lists in Algebraic Mode 89
Commands Applied to Lists in Algebraic Mode 90
Special List Operations in Algebraic Mode 90
Vectors and Matrices. 91
Vectors and Matrices in RPN Mode 92
Computational Examples with Vectors and Matrices in RPN Mode 93
Special Vector and Matrix Commands in RPN Mode 94
Vectors and Matrices in Algebraic Mode 95
Computational Examples with Vectors and Matrices in Algebraic Mode 96
Special Vector and Matrix Commands in Algebraic Mode 97
Statistics. 99
Single-Variable Statistics 99
Two-Variable Statistics 101
Inferential Statistics 103

Introduction

The HP 49G is the first calculator that features both an algebraic-entry interface and the RPN (Reverse Polish Notation) interface so familiar to users of other HP calculators. With its powerful computer algebra system, the HP 49G is the most advanced scientific calculator to-date. It does all of the following (and more):

- Allows easy retrieval of previous answers and entries;
- Displays algebraic expressions in textbook format;
- Generates tables (including a ZOOM feature);
- Does dimensional analysis with units;
- Works with functions, parametric and polar equations, conic sections and inequalities;
- Solves equations;
- Does financial calculations;
- Computes and organizes statistical data;
- Does symbolic algebra and calculus;
- Operates with vectors, matrices, lists and complex numbers.

How to Use This Guide

This guide offers a quick beginning overview of the basic features of the HP 49G. It can also serve as a quick reference guide in the future, after you're already comfortable with the basics.

Presentation

Unlike a reference manual, the contents here are ordered in a sequence most useful for getting acquainted with the HP 49G; you'll learn the most basic (and most used) features of the calculator first. The first half of the guide is designed to get you quickly up-to-speed on performing computations, entering formulas, graphing functions and making tables. The second half introduces you to a variety of additional features: parametric and polar equations, equation solving, complex numbers, lists, vectors, matrices and statistics.

Conventions

In this guide, many keystrokes are indicated by labelled keys: 5, SIN, ENTER, etc. For shifted key func-tions-those appearing on the keyboard in blue or red - the notation here will include those shift keys: \square MTH, \rightarrow CLEAR, \rightarrow EVAL, etc. For alphabetic characters, keystrokes will usually show the necessary ALPHA keystroke, too. Keystrokes corresponding to menu items are indicated as such (e.g. EIITT, EFHESE, [GFinI, etc.). To select a menu item, simply press the key directly beneath it (i.e. one of the keys F1 - F6).

Basic Information

Physical Features

Cover

When you're ready to use the HP 49G, its translucent cover slides down off the front of the calculator. The easiest way to do this is to press with your thumbs gently on the center of the cover just under the HP logo, sliding the cover downward as you press. Then slide the cover onto the back of the machine during use. When you're done, replace the cover over the front of the keyboard for protection.

Batteries

The HP 49G uses three AAA batteries, located in the lower compartment in the back of the calculator. You should get several months of service from a set of batteries. Even when you take the batteries out, the calculator's memory will be maintained for a few minutes, allowing you to change the batteries without a loss of stored information.

Ports

The upper end of the HP 49G contains its door to the outside world. It's a 10-prong serial port for connecting your calculator to a computer, another calculator, or to an overhead device.

Contrast control

To lighten or darken the screen contrast, just hold down $O N$ while pressing Θ or \oplus, respectively.

Keys and the Keyboard

The ON Key

The ON key (lower left corner of the keyboard) not only powers up your HP 49G but also serves as a general purpose CANCEL key (note the label underneath). If you leave your calculator on for a few minutes without pressing any keys, it will automatically shut off to save battery power (or you can turn it off yourself via \rightarrow OFF). When you press $O N$ again, the screen should look just as it did when you left it; the memory of the calculator is continuously maintained, even when the calculator is off.

The shift keys

Right above $\triangle \mathbb{O N}$ are three shift keys. The blue left-shift key, $\boxed{\square}$, and the red right-shift key, \rightarrow, activate the operations or menus indicated by the correspondingly colored labels directly above each key. Notice that when a shift key has been pressed so that the shift is in effect, the corresponding shift symbol appears at the top of the screen. Notice, too, that these shift keys are simple toggle switches: if you accidentally press one, just press it again to turn it off.

The third shift key is ALPHA, which gives you access to the letters of the alphabet that appear on the lower right of most keys. When ALPHA has been pressed, an α appears at the top of the screen, indicating that all keys will now give their alphabetic charcaters, if any. This α mode will turn off again after one character, unless you press ALPHA ALPHA to lock it on so you can type several characters in a row. Then a third press unlocks it. (Alternatively, when typing several letters in a row, you can just simply hold ALPHA down as you type.)

Use ALPHA and then \measuredangle to get lower-case letters. To type a b rather than B, for example, you would press A ALPHA \leftrightarrows. For Greek letters and other special symbols not on the keyboard, use the \rightarrow CHARS menu.

Menus

There are far more functions and operations on the HP 49G than one could ever hope to fit on the keyboard, even with multiple shift keys. The HP 49G arranges many of these additional items into menus, accessed by the six function keys (F1) - F6 on the top row, just below the screen. These function keys refer to whatever menu labels you have displayed across the bottom of the screen at the time. *

Some menus contain submenus. For example, if you press MODE, you'll see that some of the menu labels have little folder tabs, each indicating another menu or screen, such as the FLirgs submenu. (To get back out of the MODE menu, just press CANCEL.)

When a menu has more than six labels-more than one "page"-you can get to the other pages via NXT and \leftrightarrows PREV. Pressing NXT (or \leftrightarrows PREV) repeatedly will eventually bring you back to the first page of the menu.

Scroll-down menus

Menus may also appear on screen in a scroll-down format. To select an item from such a menu, you must first highlight it by using Δ or ∇, or by typing in the number of the item. (A partially shaded vertical bar means that there are additional items in the menu that couldn't fit on the current "page.") Once you have selected an item, press ENTER or DH menu, simply press CANCEL or CEIICL.

Note that for long scroll-down menus, $4 \rightarrow$ or \rightarrow will move you an entire "page" at a time; $\boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$ or \mapsto will jump immediately to the top or bottom pages of the menu.

Other menus

The CAT key brings up a catalog of all the commands (over 700 of them) on the HP 49G. Such a menu might seem unmanageable, but it's arranged alphabetically and is ALPHA-sensitive. For example, if you press \triangle ALPHA R, the highlight bar will jump to the commands beginning with the letter R.

APPS brings up a menu of all the application environments on the HP 49G. APPS is organized by topic areas. (If you already know the name of the command you are looking for, then CAT may be the quickest access route to it. Otherwise, APPS may work best.)

[^0]Two other big "menus of menus" on the HP 49G are SYMB and $\boxed{\square M T H}$. SYMB offers menus of operations for working with symbolic expressions, including algebraic, arithmetic, calculus, trigonometric, and exponential and logarithmic expressions. \square MTH offers menus for working with a variety of mathematical objects-vectors, matrices, and lists-as well as special functions for real and complex numbers, different number bases, probability, fast Fourier transforms (FFT), and a directory of special mathematical constants.

Notice that, for convenience, some of the menus found in APPS, SYMB and $\boxed{\square}$ MTH have their own keys for more direct access. For example, the ARITH and CMPLX menus can be accessed directly as the \square shifted and \rightarrow-shifted versions of the 1 key.

The History Screen

The history screen is the primary work area for the HP 49G. Think of it as your home base of operations. If you're not already there, pressing CANCEL once or twice will usually bring you to the history screen.

The Status Area

At the top of your history screen (above the horizontal line) is the status area, where indicators of the calculator's states and modes are displayed.*

Ran or deg indicates that the calculator will assume Radians or Degrees for angular measure.
WIz indicates that rectangular coordinates will be displayed for points in the Cartesian plane or space.
DEC indicates the format in which binary integers will be displayed.
Fi indicates that the calculator is in Real mode (for computations that may give a complex number result).
= indicates that the calculator is in Exact mode, for computations dealing with integers, as opposed to Approximate mode, indicated by $थ$, for computations dealing with non-integers.
' \sim ' indicates that the current independent variable is \mathcal{X} (instead of T or θ).
ALG indicates that the HP 49G is in Algebraic mode for computations.
HOHE indicates that you are in the HOME directory of the calculator.
Whenever a little hourglass annunciator, $\boxed{8}$, appears at the top of the screen, it means the HP 49G is busy with a calculation. Pressing CANCEL will stop the computation in progress.

Another annunciator, ${ }^{(\cdot \cdot)}$, appears when an appointment alarm comes due or when your batteries are low (in which case the calculator will also give you a Low Bat. ter-y message so that you know it's not an appointment alarm.). When the battery message appears, you should change the batteries within a few days.

Above all, just bear in mind that whenever you find yourself in an unfamiliar situation or are unsure how to quit or exit, pressing CANCEL (more than once, if necessary) will bring you back to this history screen, the main calculation area for the HP 49G.

[^1]
The Information Flow

Entering information

When you type, the characters appear on the Editline until you press ENTER.
For example, to enter the number 2 you would type 2
RAD HYZ DEC C= 'X' ALG दHOHE ENTER. The display will show the command on the left, then its result on the right, like this:*

To enter 2.5×10^{38}, press 2(5 EEX 3 (ENTER.

Deleting and clearing

As you type, you'll see a flashing cursor arrow. (This is an insertion arrow on the history screen; it points to where the next character you type will be inserted.) If you make a mistake, will erase the most recent character typed. Or, if you use \square and \square to put the flashing cursor on top of a character, then pressing \rightarrow DEL will erase that character. To delete the current Editline entirely, just press CANCEL.
\rightarrow CLEAR clears the history screen of all previous entries and answers.

Retrieving and editing

The $\boxed{A N S}$ key echoes a special variable, $\overline{\mathrm{A}} \mathrm{HS}(1)$, to the Editline. The value of this variable is the most recent answer you obtained for an operation on the history screen. This lets you use a previous result in a new computation without having to type it in again.

In fact, until you press \rightarrow CLEAR, a history of all your previous entries and answers is maintained on the history screen. At any time you can copy a previous entry or answer onto the Editline. Simply use the directional arrow \triangle until you've highlighted the desired item, then press ECHO. Then, to make any necessary changes, use \square and \square to move the cursor where you want it.
*Again, a reminder. Throughout this Guide, in these illustrative displays, you may see irrelevant differences in the menu line and/or status area. Don't worry about them.

Any characters you type will be inserted where the cursor is pointing. (Or, pressing $\triangle D E L$ will delete the character underneath the flashing cursor.) After you have made the changes you want, press ENTER.

Clear your history stack now (press \rightarrow CLEAR), and try these examples:
$5 \pm(1)$ ENTER should give you this resulting screen:

Try some multiplication: 3 $\times 4$ ENTER

To negate the last answer: $+\square \boxed{4}$ ANS ENTER

Notice that this result is displayed in reduced fraction form. To see the last answer as a decimal, press $\rightarrow \rightarrow+$ NOM ENTER:

Many of the computations you have entered are now out of view, but they are still on the history screen. To move up the screen to see them, press to activate the highlight bar. Then you can move up and down the home screen, using Δ and ∇.

For example, to add two of the previous entries, use
 move up and highlight $5+1$, then press (ENTER to send this to the Editline. Next, press \oplus to build the sum. Now press HIST to go back to the previous entries on the history screen, and again use Δ, this time to move up and highlight 3-4. Press ENTER again to echo that onto the Editline. Now, if you press ENTER once more to do the addition, you'll see this:

Viewing an expression

Whenever you use \square and to highlight a previous entry or answer on the History screen, there is another active menu key you may find useful: WIEM displays the selected item fully-and always in textbook format.

For example, suppose you do this calculation: $1 \div \sqrt{x} \boxed{(1)} 3 y^{x} 2 \oplus 4 y^{x} 2 \square \square(5)$ ENTER

You get a result all right, but the original expression isn't endirely within view, and you'd like to see it.

Just press $\Delta \Delta$ to highlight the expression, then WIEM to see it displayed fully, in textbook format.

When finished viewing, simply press 0 din

$\frac{1}{\sqrt{3}^{2}+4^{2}}-5$	
TEXT	

Storing objects into variables

To store a number (or any other object) into a variable name, you type in the number or object on the Editline of the history screen, press STO , then type the name of the variable and press ENTER.

For example, to store the value 3 into the variable W, type (3)STO ALPHA W ENTER.

That's all there is to it -the value is now stored.

Now, to recall the value, you can simply enter the variable name: ALPHAW ENTER

You can also use the name in a symbolic expression, and the stored value will be substituted: ALPHA $\overline{y^{x}}$ (4)ENTER

MODES

Press the MODE key and you'll see a screen with a title bar, CALCuLATOE Holes. These are the settings that control how the HP 49G interprets information and interacts with you-including how numbers and expressions are displayed on the history screen. You can move about this screen using the arrow keys. When an item is highlighted, the button will show you the choices you have to fill in the blank. Take a quick tour of the MODE area.

The calculatof hodes Screen

Operating mode

The operating mode is by far the most important setting on the HP 49G. Unless it states otherwise, this guide will assume that the HP 49G is always in Algebraic operating mode-where you enter numbers and expressions in algebraic format-since most users find this an easier format to work with. However, if you're an experienced HP 48G user and value the efficiency of stack arithmetic, you may prefer the RPN operating mode. (To set it, you'd press [HDEs, highlight FFH and press DH ; or-a handy shortcut to toggle among the choices-just press $+/-$.) In RPN mode, the HP 49G behaves quite similarly to the HP 48G.

Number format

The HP 49G can display up to 12 significant digits in each number (and it carries 15 digits internally for computation), but there are four formats you can from that may alter your view of the actual value:

Standard format ($s, \mathrm{~d}$) shows up to 12 digits (but no trailing zeroes), with a floating decimal point. For example, set sta mode (press MODE, ∇ to the number Formot field, then CHOMS and highlight standard and
 (This display mode is probably the most useful here in this Guide.)

Fixed format (Fix) provides a fixed number of decimal places-you specify-from 0 to 11 . For example, to specify 2 decimal places, press MODE, then HHOES fixed for the number format and $\square \mathrm{Next}, \square$ and

Scientifis format (s_{ci}) uses exponential notation with one digit to the left of the decimal point and a specified number of places ($0-11$) to the right. For example, to specify scientific format with 2 decimal places now, press MODE, CHMEs si for the number format and OH OH The result: 1.23E4

Enginesring format (Eng) is like scientific notation: the same number of significant digits, but the exponent is always a multiple of 3 , so more than one digit may be to the left of the decimal point. For example, to specify engineering format with 2 decimal places now, press MODE, CHDME Ens for the number format and 0f Of The result: 12.3E3

FM (fraction mark)

Continuing the tour of the MODES screen, off to the right of the funter Format field(s) you'll notice a field called _FH, which offers you the option of using a comma for the decimal point-European notation. Just use FCH H to check or uncheck this field as desired.

Angle measure

Next field down the screen: Angle hassure. What units do you wish to use for specifying angles in, say, trig calculations? There are three angle measure modes to choose from:

$$
\begin{array}{ll}
\text { Degreses } & \text { There are } 360 \text { degrees in a full circle. } \\
\text { fiodions } & \text { There are } 2 \pi \text { radians in a full circle. } \\
\text { Girds } & \text { There are } 400 \text { grads in a full circle. }
\end{array}
$$

To make a selection, highlight the Angle Measure field and use either orms to select the desired units. Now, when you press 08 to confirm all your mode changes and then exit the MODES screen, you'll see the appropriate annunciator (DEG, Find or GRD) up in the status area.

Coordinate system

Similarly, use the cord systen field to set the machine to rectangular, polar, or spherical coordinates for complex numbers and other vectors. This mode, too, is displayed in the status area of the history screen: nuz, ficz or $\mathrm{k} \alpha 厶$, respectively. (Use polar mode, ficz, for 3-D cylindrical mode.)

To see the effect of this mode, try this: With the ingle hedsure set to fidions and the coord systan set to
 get this result: (0., 1.).
 see the polar form of the value, in radians: (1., 11.57679632679) Note the status area: kan fiaz

Use MODE again and change the ingle heosure to negress. Press 0 Di to go to the history screen and see the polar form of the value, this time in degrees: (1., 490.) Again, note the status area: DEG fisz
(When you're finished, use MODE to change back to Radians and Rectangular coordinates: find yuz)

Making noise

Moving down the calculatof houes screen, you'll find two check fields that control the calculator's audio properties. Putting a check (via FICHP) into the _Eesp field tells the HP 49G to beep when you make a syntax mistake or attempt an illegal operation. Recommendation: Though at first this may seem like a good idea-indeed, the default setting for _Eesp is checked (on)—do yourself and the rest of the human race an enormous favor and uncheckit (turn it OFF). You'll still get plenty of visual feedback when you make errors.

Similarly, there's a check field called _hey ctick that tells your HP 49G to click at every keystroke. The default setting is off-for good reason. (Doubtfut? Go ahead-turn it on and press odr to exit MODES. Now try to use your calculator without sounding like a grocery clerk....)

Error recovery

The _Lest stack check field activates the \rightarrow UNDO key, which allows you to undo the most recently performed operation, restoring the history screen to its state immediately before that operation. This can sometimes be a handy feature for recovering from keyboard goofs or fumbles, but it does take up a little memory. If you're running very low on memory, you might want to turn this mode off.

The Flitid Menu

That about covers the cilculatof hores screen itself. But notice the further resources you have for controlling other modes and settings-on the menu line. For example, press FLitIS to bring up a menu of over 70 flags that you can set or clear (i.e. check "on" or un-check "off").

To see how this works, scroll down to flag 27, which is system flag -27. (Remember that you can use \square to move through a menu by pages.) Note how the description of the flag reflects its current status. If flag
 trols how symbolic complex expressions are displayed.) As usual, you use \boldsymbol{F} CH to toggle the setting.

A descriptive list of all the system flags and what they control are included in the pocket guide that comes with the HP 49G. Some of these flags reflect mode settings that you make in other ways. For the most part you will probably not want to fool around much with this menu.

Press CANCEL to return to the main MODES screen without disturbing the flag settings.

The cas hodes Screen

The Cis key leads to the all-important Ciss hores screen, where the main items of interest are the check fields. (Don't worry about the Indsp war or hodute fields.) When performing a calculation where one of these modes is currently inactive but must be active for the HP 49G to complete its work, it will prompt you to change the mode, so it pays to understand these:
nuneric will substitute numerical values for special constants such as π or e in an algebraic expression.
Approx will treat all numeric values as real numbers, regardless whether they have any fractional portionsindicated by a little ω in the status area. When Aprox is not checked, the status area shows a little $=$, indicating Exact mode, and all values will be treated as integers; operations that would introduce non-integer values will not proceed without a change to this mode.

Conf lex allows computations to produce, use and carry complex numbers in their results. When this mode is checked, a little \subset appears in the status area; when this mode is unchecked, the little F indicates that only Real results are allowed.

Step-stap allows you to do differentiation step by step, via the \rightarrow EVAL key.
Inter for controls whether the terms of a polynomial are shown in order of increasing or decreasing powers.
Fiigorous controls how rigorously the calculator will demand absolute values (i.e. not assume positive values) for variables which may not have negative values.

The aisflat hones Screen

Back at the main MODES screen, pressing DISFI brings up the DISFLAy hodes screen. These settings let you choose the size and/or appearance of various tools and areas in the calculator. For example, you can select a certain font size (6,7 or 8 pixels high), and then specify whether, say, the stack or Equation Writer use that size or a small (5-pixel) size. You can also specify that expressions appear in textbook format rather than as a line of characters. And you can specify the size of the header (status area), whether a clock appears there, and in what form. Play around with these settings as you wish, using of or to exit MODES and observe the resulting displays.

Restoring All Modes to Default Settings

Press MODE \rightarrow CLEAR to restore all the modes to default settings.

Computational Examples

Here are some examples to demonstrate basic arithmetic and function operations of the HP 49G in Al.getraic notation and standord number format. Keystrokes are followed by a screen showing the results. (For the sake of clarity, unless otherwise noted, the history screen has been cleared via \rightarrow CLEAR after each example.)

Arithmetic Operations

These examples assume that the CAS modes numeric, Approx, and conplex are all off-unchecked. (So, among the other items, your status area should show $\mathrm{k}=$.)

Addition

(2) $6 \oplus 8$ ENTER

RAD MYZ DEC R= ' X ' \{HOHE\}	HLG
: $26+82$	
EEMED fintin Elit	1

Subtraction
(8) $6-3$ ENTER

Negation

+ (2) ENTER
(Either Θ or $+/-$ can be used to obtain a negative sign in an expression.)

Multiplication

Division

$850(2)$ ENTER
$\rightarrow \rightarrow$ NUM ENTER Result: $\rightarrow \mathrm{HUM}$ (AHS (1))
4.25

Exponentiation

Square roots

(x) 2 Onter
$\rightarrow \cap$ NUM ENTER Result : \rightarrow FHMM $\langle\mathrm{PNS}(1)$)
4.472135955
Squares
(6) $x^{2} \sqrt{2}$ (ENTER
$4 S(1)\rangle$
4.472135955

	Alf
: SQ(25)	

Reciprocals
$1 / x) 85$ ENTER
$\rightarrow \rightarrow$ NUM ENTER Result : \rightarrow HUM (RNS (1))

Powers of 10
(610x (3) ENTER

	alg
: INV(85)	
	$\frac{1}{85}$

	ALG
: $\mathrm{ALOG}(3)$	

Absolute value

$\text { RAC YYZ DEC E= ' } \mathrm{X} \text { ' }$	ALG
: 1-5\|	

Complex Results

nth roots

For example, to take the fifth root of -32:
$\rightarrow x_{\sqrt{y}} 5 \rightarrow(3)$ ENTER
"What on earth is that?" It is an exponential form involving a primitive complex fifth root of unity. ("Ah, of course.")

Instead, go to MODE CiEl and check funeric. Then press 01 If to return to the history screen.

Now try it again: $\rightarrow x^{x} \sqrt{8} \rightarrow(-3) 2$ ENTER

Transcendental Functions

Trigonometric functions
With the angle measure set to desress:
$\cos 60$ ENTER
$\rightarrow \rightarrow$ NUM ENTER Result : FNUM (RHS(1))

4 ACOS 0 ENTER
$\rightarrow \rightarrow$ NUM ENTER Result : + FVUM(ANS(1)
90.

With the angle measure set to Rodidns:

$\cos 4 \pi \div 3$ ENTER

GATAN 1 ENTER

	flg
$=\cos \left[\frac{\pi}{3}\right]$	
	$\frac{1}{2}$
	4 TIE

	ALG
: ATPl* 1]	
	$\frac{\pi}{4}$

Natural exponentials

G e^{x} (10 ENTER

22026.4657948

Note how function keys supply both parentheses for you.

Common (base 10) logarithms

(1)LOG 2 ENTER Result : LOG (2)

Natural (base e) logarithms

$\rightarrow \operatorname{LN}(3$ ENTER Result : LH(3)

Some Special Numbers

Certain names in the HP 49G are reserved for special mathematical constants:
$\rightarrow \pi \rightarrow \rightarrow$ NUM ENTER Result : π
3.14159265359

ALPHA $G \in \rightarrow \rightarrow$ NUM ENTER Result:e
2.71828182846

ALPHA $4 \rightarrow \rightarrow$ NUM ENTER Result: i
(0.,1.)
(The machine will remind you to set complex mode here.)
Practice with these: What is $e^{i \pi}+1$? Which is larger: e^{π} or π^{e} ? What is $\ln (-1)$?

Implied Multiplication

In Algebraic mode on the HP 49G, the juxtaposition of two numerical quantities (including single-character variable names) usually implies multiplication. Watch how the machine inserts the multiplication symbols:
(4) (1) $1+2$ D y^{x} ENTER Result : 4: $(1+2)^{3}$

4.c+2.d

Using Units

One of the truly unique capabilities of theHP 49G is its management of units. You can attach units of measurement to numerical quantities by selecting the desired unit from the \rightarrow UNITS menu, using the underscore symbol (\rightarrow) as the syntax. Those units will then be automatically taken care of by the HP 49G in subsequent calculations.

Press \rightarrow UNITS now to see how the menu is organized into different submenus: Length, fres, Yo lune, etc. Use ∇ to scroll down through the different categories. Highlight fres.. and press $\quad \mathrm{DP}$ and another menu box will appear with various units of area. Then press CANCEL and try a calculation example.

Add 2 feet +3 inches: Press 2 \rightarrow COUNTS, highlight RAD YYZ DEC F= ' K ' ALG Length.. and press 08 , highlight ft and press 0 ; then \oplus. Now $3 \rightarrow \square$ UNITS, highlight Length. . and press 08, highlight in and press 08; then ENTER.

Notice that the result is expressed in the same units as the second argument.

Of course, you can simply convert from one unit to another, too-use the COHVERT command.
For example, to convert the above answer to yards, you'd press \rightarrow UNITS, highlight Toots.. and press OP , highlight convert and press OR Wow fill in the two arguments (the units to be converted and an example of the desired new units-any value): 4 ANS $\rightarrow O \rightarrow \square$ UNITS, then highlight Length. ., DJ

	ALG
$\left(\begin{array}{l} 2 \cdot 1 \cdot-f t+3 \cdot 1 \cdot-i n \\ : \text { CONVERT(ANS }(1), 1 \cdot 1.27 .-i n) \end{array}\right.$	

Now convert this last result to miles per hour:
\rightarrow UNITS, highlight Toots.. and press \square DR highlight
 \rightarrow UNITS, then highlight spesd.., DPI, highlight nph, DR ; then ENTER.

Variables

Use the STOD key to store values into variable names. Try a few examples:
(3) STO ALPHA A ENTER
(4)STOD ALPHA B ENTER

Simple commands, simple results.
(2) ALPHA A ENTER

5 ALPHA A y^{x} (ENTER
Notice the use of implied multiplication between a constant and a single-character variable name.

ALPHA A ALPHA B ENTER

As you can see, you can't use implied multiplication between two single-character variable names; the HP 49G interprets AB as a two-character variable name rather than $\mathrm{A} \cdot \mathrm{B}$.

					ALG		
: 3FA : 4PB							
SEC	E	H		+	Wi		34

Notice, too, that since there is no value stored in the variable FB, its name is simply echoed back to you. It won't simplify any further toward a numerical value; $\rightarrow \rightarrow+$ NUM would have no effect.

With the angle measure set to lesress, press ALPHA $A \subset C O S$

: $\mathrm{A} \cdot \cos (0)$

SEC	E	H	H	TI	EG-

Try the above keystrokes again and watch for the space that appears on the Editline when you press COS immediately after typing (A). If you delete this space before pressing ENTER you'll get ACOS (0), which is 90 . The fact that you left the space there told the machine that you meant to multiply the variable A by $\cos (0)$.

The VAR Menu

All items that you name and store in the HP 49G will appear by name under the VAR menu. Press VAR now and you'll see some menu keys labeled En, mind etc. Pressing E will type its name on the Editline; then ENTER will show its contents.

Purging stored information from memory

Press TOOL to bring up the usual menu for the history screen. You'll see a menu key labeled FIFISI, which is the command you use to erase variables you've stored. For example, store the value 12 into the name D: 12 STOD ALPHA W ENTER. Notice how [1 appears on the far left of your VAR menu. Now erase the variable D from your memory: Press FINTR VAR 1 II ENTER, (Note how a menu item can act as a typing aid. You could instead have typed ALPHAD, but this way you saved a keystroke.) The \square should now be gone from the VAR menu, and you get a HOW'RL message to indicate that the name D now has no value stored in it.

Symbolic Algebra

You can build symbolic expressions involving variables and then perform arithmetic with these expressions just as you do with numbers.

When typing expressions involving variable names on the Editline, one very important key to remember is the apostrophe key, \rightarrow ", (a.k.a the "tick" key). You saw it used above when you were specifying the name 'D' for purging. To see its effect in general, try an example.

Enter the expression $\mathrm{A}+\mathrm{B}: \operatorname{ALPHA} \mathrm{A} \oplus A$ ALPHA B BNTER... Since A and B both have values $(3$ and 4 , respectively), you get a numerical result immediately: 7

But now try it again, this time with "tick" marks around the expression: $\rightarrow \square$ ALPHA A \oplus ALPHA B ENTER.... See? The tick marks suppresses evaluation of the expression. Now, square the expression: 4 ANS y^{x} ENTER

Want to expand this symbolic expression? OK-the HP 49G has tools for symbolic algebra in the SYMB menu-but first
 the TOOL menu.)

EXFFH H also collects like terms, cancels like factors in rational expressions, and does other simplifications.

The Equation Writer

Now that you know how to key in symbolic expressions on the Editline-good for short and simple expres-sions-here's how to save yourself the trouble for bigger jobs: The Equation Writer uses the screen as a blackboard to write expressions in textbook format.

The important key to remember in the Equation Writer is \square Use it whenever you want to proceed to the next component of an expression. For example, you press \square whenever you wish to leave an exponent, a denominator or get outside a radical sign or an expression enclosed in parentheses.

Use the Equation Writer to enter this expression (and watch your screen as you do the keystrokes):

EUIT

Now press ENTER to send the expression to the Editline. Why use the tick marks? Because you wanted a symbolic result-suppressing any evaluation in the event that X contained a value.

You'll get lots more detail and practice on the Equation Writer in a later section. This was just an introduction to let you do basic symbolic calculations.

Defining Your Own Functions

Of course, you can store any sort of object into a name-and it will appear on your VAR menu just like any other name. Expressions are often very handy to store. For example, suppose you want to store the for-
 would store $1 / \operatorname{CoS}(\%)$ under the variable name SEC . Then pressing VAR SEC would return the expression $1 / \cos (X)$ to the Editline.

Or, you can actually define a secant function that will operate just like the other trigonometric function keys -accept an argument and evaluate immediately.

To do this, you define the formula as an equation, using the GDEF key, as follows:

GIDEFG(D)ALPHAALPHASIECAALPHAG(1)区 $\rightarrow \rightarrow(1) \cos \boldsymbol{x}$ ENTER

$\text { : DEF INE } \left.\left[\sec (X)=\frac{1}{\cos (X)}\right]^{\prime}\right]$					
8 EC	E	H	T	T1	E

There's still a

Set fidians mode, then VAR SEC: (1) (0)ENTER

 pressing EEC executes a program that takes a value off the stack and return a function of that value -in this case, the secant. To see what the program looks like, recall its contents: TOOL FALL \rightarrow VAR ESC ENTER. The $* *$ denote a program on the HP 49G. In this case, the program takes a value off the stack (indicated by the arrow), calls it X, then evaluates and returns $1 / \operatorname{COS}(\mathrm{K})$.

 LHOHE\}: RCL $\left(\operatorname{SEC} C^{\prime}\right)$
SET E

RAD XVZ DEC Fi= 'X' \{HOHE\}	ALG
- StL $\left[\frac{\ddot{3}}{3}\right]$	

VAR ESC $6(1) G \pi(3) \div$ ENTER

You can define the other two trig functions similarly:

Now you have all six trigonometric function keys for your HP 49G.

Working with Functions

The $\boxed{\square}$-shifted versions of the top six keys give you access to environments that work with formulas, graphs, and tables on the HP 49G. You'll probably use these keys mostly for functions of a single variable.
$4 Y=$ is for entering formulas, such as functions of the form $y=f(x)$.
$\boxed{W} \mathbb{W}$ is for defining a window for graphing purposes.
GGRAPH creates a graph.
$\checkmark \sqrt{2 D / 3 D}$ allows you to set up the type of environment for plotting.
$\boxed{4}$ TBLSET is for setting up a table.
(TABLE creates a table of values.
(NOTE: If you're experienced with other graphing calculators, you will observe that many of these correspond to similarly labeled keys on other machines. But be aware that it is not an exact correspondence. For example, on the HP 49G, you set some graphing modes via $\leftrightarrows(2 \mathrm{D} / 3 \mathrm{D}$, whereas those modes are often set in the modes menu on other calculators.)

To get to most of the basic tools for working with functions, equations, and data, use $42 \mathrm{~L} / 3 \mathrm{D}$ (so called since it deals with two- and three-dimensional plotting environments). You'll see the flot seruf screen.

Two-Dimensional Plot Types

Built into the HP 49G are 16 different plot types. The main two-dimensional plotting types are:
Function: For working with functions of the form $y=f(x)$.
Firdetric: For working with parametric equations $x(t), y(t)$.
Foldar: For working with polar functions $r(\theta)$.
Gorie: For working with quadratic equations in two variables (so the graphs are conic sections).
Truth: For working with inequalities in two variables (so the graphs show shaded regions of the plane).

Setting up a plot type

One of the plot types is always active, but it may not be the one you want. The default plot type is Function. To select that type, highlight the tyre field and press CH0日2. This will give a complete scrolling list of all the possible plot types. Highlight function and press $\mathbf{0 R}$

Now press $G Y=$, where you should see the FLOT - Function screen with a list of your function formulas. If there are no current functions activated, you'll see the message: to Equ. Press ADD. Indeed, filli is what to press when you want to add a function to the list of active formulas for graphing or tabulating. Press it now....

You'll see $Y 1(X)=$ appear in the Equation Writer. To enter, say, a sine function, press SINX XNTER. That will send you back to the $Y=$ menu, where you'll see the function you've just added to the list.

The $Y=$ menu

EIITI sends the highlighted function back to the Equation Writer where you can edit it. Press 0f or ENTER to enter the edited version; press CANCEL to restore the original.

Fillin, as you've already seen, will send you to the Equation Writer and begin an entry using the next available numbered Y function.

DEL deletes the highlighted function from the $Y=$ list. Go ahead and delete $Y 2(X)$ and $Y S(X)$ now.... NOTE: [EL does NOT purge the function from your calculator's memory! It merely clears it from the $Y=$ list. The variable name and value T1 , TI , or whatever) will still be in your VAR menu. To purge a function, you must use FURGE (' $Y 1^{\prime}$) or FURGE (' $Y Z^{\prime}$), etc. (FIVRI is on your TOOL menu.)

Pressing \rightarrow CLEAR at the $Y=$ menu is the same as using DEL to erase all the functions. The HP 49G will

EFiESE and CIFill are what to press (one after the other) to see the graphs of the functions. (Press CANCEL) to return to the $Y=$ screen when you've finished viewing the graph.)

Plotting graphs

$\square 2 \mathrm{LD} / 3 \mathrm{D}$ brings you to the Function FLot seruf screen. To reset all the plot settings, press \rightarrow CLEAR . This resets the plot so that the center of the screen is at the origin, the coordinate axes are shown, each axis tick represents one unit, and each pixel is 0.1 unit.

Now press EFitis? [ifill to see the graph of $Y 1(X)=S I N(X)$ in the default viewing window:

Making tables for functions

4 TBLSET brings you to the TAELE SETUF screen. This is where you set up parameters for building a table of values for a function:

Start is the starting value for X.
Step is the step value (increment) for X.
$\sum_{0 \% н}$ is the zoom factor for your table, to help you interpolate more finely between generated values.
Shall. Font lets you choose either a small or big font for the table display.
Type lets you chime either futhutic generation of values based on regular increments of K , or Euitu yur onf, in which case you have to enter all the X -values.

For this first example, reset all the table settings by pressing \rightarrow CLEAR. This resets the table so that the starting value is 0 and values are automatically incremented in steps of 0.1.

Pressing \leftrightarrows TABLE will then display this table of values for X and $Y 1$:

x	$Y 1$		
$\begin{aligned} & 0 \\ & : \frac{1}{2} \\ & : 3 \\ & : 4 \\ & -5 \\ & \hline \end{aligned}$			
0.			
Emin		EII	CEFII

Working with Graphs

Setting Up a Graph

To set up the HP 49G for graphing, you first need to determine a window size-the viewing "domain" and "range." To do this, press $\measuredangle \boxed{W I N}$ to see the flot hindon - Function screen.

As usual with such screens, you use \triangle and ∇ to highlight fields. To change a highlighted field, you either FICHIX the value on or off, or (if it's not a check-type field) type in the desired value, EIIITI the current contents of a field, or, when a choice of options is available, $5 H 0$ from the menu box of available choices. Pressing DEL resets the field to its default value. \rightarrow CLEAR resets all the fields on that screen.

Indep Leh and Hish These fields specify the graphing "domain," which may extend beyond your specified viewing "domain;" you can move your viewing window around on the larger graph if necessary. (Usually, though, you'll leave the default setting here, which simply matches your H-YIEH setting.)
ster This field specifies the increment or step value for the independent variable, \boldsymbol{n}. The default setting is determined simply by dividing the H-чIEH length by the 131 pixels available horizontally on the screen.

Fixets If this is checked, the step size is expressed in pixels no matter what your H -чren happens to be.
For example, if the stap is set at a and Fixet es checked, then every second pixel will be plotted.

The other settings for your graph are all found under the G 2D/3D (FLOT sETUF) screen.

- You can set the angle mode here, as well as on the main calculator hodes screen. (Be sure it's set for radians for the trigonometric function examples.)

Indep This field specifies the independent (horizontal axis) variable. For functions, this is usually x .

H-Tick This field specifies the spacing of the tick marks on the horizontal axis.
\boldsymbol{Y}-Tick This field specifies the spacing of the marks on the vertical axis.

Fixets If this field is checked, then the tick spacing is expressed in pixels rather than in units.
For example, if the H -tick spacing is set at 10 and fixes is checked, then a tick mark will appear every ten pixels along the horizontal axis. (If $\mathrm{Fixel}_{\mathrm{s}}$ is not checked, then a tick mark will appear every 10 units, which may be represented by an entirely different number of pixels, depending on your settings in $\leftrightarrows(\mathbb{W I N}$.)

SInULT If this field is checked, the machine will plot multiple functions simultaneously.
(If it's not checked, multiple functions are plotted sequentially, each on their own graph.)
connect If this field is checked, individual plotted points will be connected on the graph.

Function Graphing Examples

These examples will illustrate some of the tools available in G GRAPH. All the examples are for functions, but many of the features are similar for other plot types, such as parametric, polar, and conic sections.

Press $\leftrightarrows \longdiv { 2 D / 3 D } \rightarrow (\text { CLEAR } \text { and make sure that the Type field is set to Function. Now go to } \leftrightarrows Y \text { and }$ check that it contains $\mathrm{Y} 1(\mathrm{X})=\mathrm{SIN}(\mathrm{X})$.

To set the default viewing window, press \leftrightarrows WIN \rightarrow CLEAR. Then press [FFilez, to clear the graphics screen. (Otherwise, the new graph will be plotted on top of the previous graph.)

Now press DFill to see the graph of $\mathrm{Y} 1(\mathrm{X})=\mathrm{SIH}(\mathrm{X})$.

The GRAPH menu

TFifill toggles the trace mode on and off. (This feature is on when a small square appears: TFita). When trace mode is on, \square and will move a small crosshairs to trace the graph of the function. When trace mode is off (Tifitel), the crosshairs move freely off the function graph.
[W. T displays the coordinates of the crosshairs at the bottom of the screen. If your graph leaves the top or bottom of the screen, the crosshairs will move along the edge of the screen, but the correct coordinates of points on the graph will continue to be read out. Press - to remove both the coordinates and the menu labels. Press \oplus to re-activate the trace and coordinates. Press Θ (or any of the function keys) to get the menu back again.

Using the same function example as before $(Y 1(X)=S I N(X)$ with default window settings), here are several ways to rescale a function graph, both from inside and outside the graphics screen environment:

Press CANCEL CANCEL \leftrightarrows WIN. Set this viewing window:

Now press Efing [ifill to see the graph shown here (left).

Interactive zooming features

Press CANCEL to return to the FLOT HIntou screen and NXT

Press NXT to return to the first page of the screen, and redraw the graph: Eifies [ifil.

Then use the Endill folder key to get the ZOOM submenu:
The Endil key allows you to draw a box representing your new viewing window. Move the crosshairs to the point 0,13 and press EDMII. Look familiar? You effectively reset the viewing window to $[0,3] \times[0,1]$-without leaving the graph.

EFFITT lets you to set your horizontal and vertical zoom factors (default factor is 4), and you can also check an option to automatically recenter the screen at the location of the crosshairs.

EITII will zoom in by the designated zoom factors.
EOITI will zoom out by the designated zoom factors.
Exifl will "square up" the viewing window-so that 1 pixel represents the same distance horizontally and vertically-by adjusting the vertical viewing range.

EIFLT sets the viewing window back to its default ranges: $[-6.5,6.5] \times[-3.1,3.2]$

Press NXT for the second page of the ZOOM menu.

HETIII will horizontally zoom in by the current zoom factor.

EENITT will horizontally zoom out by the current zoom factor.
Werifil will vertically zoom in by the current zoom factor.

HEIT HENUT MEIT WENUT GITF EHITO

TEDIT will vertically zoom out by the current zoom factor.
CIITR will center the screen on the crosshairs. (The relative dimensions of the screen remain unchanged.)

Eillil will autoscale the vertical range by computing a sample of the values of the expression for the horizontal range, then setting the vertical range to include the extreme function values. Press Eillion now.

Press NXT for the third page of the ZOOM menu.

E[IECTI sets the tick marks along the x-axis to be one unit apart. (Each pixel has a width of 1 units.)

ETIITi sets the tick marks along the x-axis to be ten units apart. (Each pixel has a width of 1 unit.)

ETFITI sets the tick marks along the x-axis to be π units apart.

ELiETI is the UNDO key for zooming. It will reset the viewing window to its most recent settings.
FITCT will return you to the top level of the interactive graphics menu.

Try a few of the zoom features.
Press EDMI ETFLIT to get your original sine graph back.

Now move the crosshairs to the point $(3,1)$ and press EOMA NXT CITRI.

Again, press EMTH EDFLT to restore the original sine graph.
Then press EDMA NXT Eallo

Try the other zoom features for yourself.

More on Graphing Functions

Plotting two or more functions

To add a second function for plotting, press $G Y=Y$ fin to see $Y \subset(X)=$ appear in the Equation Writer. Type $\cos \times$ ENTER.

To add a third function, press FDO to see $\mathrm{Y} S(\mathrm{X})=$ appear in the Equation Writer.

Now Find one more function:
ALPHA Y 3 (4 (\mathbb{X} ENTER

You should now see this:

Before you move on, check out the following.
Highlight $Y 4(\%)$ and press EIIT to send this expression back to the Equation Writer for editing. Press $\nabla \square$ to highlight just the $\mathrm{Y}(\mathrm{X})$ on the right side of the equation. Now press EDFil to see this:

$$
Y 4(X)=\frac{\operatorname{sIN}(X)}{\operatorname{ETE} \pi}
$$

Press ENTER. There is now an important distinction between $Y 3$ and $Y 4$. The formula for $Y 3(X)$ is still in terms of $Y 1(X)$ and $Y 2(X)$; if you were to edit the formula of either or both $Y 1$ and $Y 2$, the definition of Y 3 would be changed also. However, the formula for Y 4 no longer refers to any other named function in your list, so any changes to the other functions will NOT affect $Y 4$.

With that said, highlight $\mathrm{Y} 3(X)$ now and delete it, using DSE (Reminder: This does not erase Y 3 from the memory-only PURGE can do that.)

Press $\leftrightarrows 2 \mathrm{D} / 3 \mathrm{D}$ and you'll see that your three functions are listed in the EQ field. EQ is a reserved variable name on the HP 49G. This variable contains the currently active function(s) or equation(s) for graphing, tabulating, solving, etc. If sinutt is not checked, these three functions will be plotted sequentially in the order they're listed in Ee.

So now you're ready to plot the sine, cosine, and tangent functions together in the default viewing window.
 on TFira and W. Wh. Use \triangle and ∇ to switch the crosshairs from graph to graph.

 but this time simultaneously. When you're done, go back to $\quad \square_{2 \mathrm{D} / 3 \mathrm{D}}$ and uncheck sinut.
 pulate the order of the functions for graphing.

Connected versus dot modes for graphing

Go back to $\leftrightarrows \boxed{2 D / 3 D}$. When conmest is unchecked, at most one pixel per column will be lit on a function plot. When coninet is checked, then additional pixels are lit to give the graph a continuous appearance.

To contrast the two modes, try the following example. Start with the coninet field unchecked.
Go to $G Y=$ and delete all functions except for $Y 4(X)=5 \mathrm{IH}(\mathrm{K}) \cos (\mathrm{K})$.

Press Efiles [ifill to see the graph in dot mode:

To fill in the gaps, return to $62 \mathrm{D} / 3 \mathrm{D}$ and check the cominet field.

Now graph the function again: Efile difill

Notice how it appears that vertical asymptotes have been drawn in. This is not really the case-the HP 49G has simply connected the graph across the asymptotes. (NOTE: If a vertical asymptote or other discontinuity where the function is undefined falls exactly on the coordinate of a column of pixels, then the graph will not connect over the discontinuity, even when the HP 49G is in connected mode.)

The FCN menu for function graph analysis

 for working with functions directly in the graphics environment. Explore those tools with this example:

Now, press FFCI to obtain the Function Menu (use NXT FFITT to leave the function folder and return to the main interactive graphics menu), and look at each of the options available under the Function Menu, using the above example.

Place the crosshairs at $\mathbb{A}=3$. Rolitl snaps the crosshairs to the nearest root, displays its value, and records it on the history screen with the label fiost. You should see foot: 3.446410161514 at the bottom of the graphics screen. (Press - or any menu key to get the menu labels back on screen.)

If you've plotted two functions together, TiIIEA snaps the crosshairs to the nearest intersection point, displays its coordinates and records it on the stack, labelled IEect. : (IIITEA doesn't apply in this example.)

Move the crosshairs back to the origin. RLDIE calculates the derivative of the function at the $\%$-coordinate of the crosshairs location, displays it, and records it on the stack with the label Slope: . Press ELDFE now and the calculator will compute the slope at $x=0$. You should see stope: -2 at the bottom of the screen. Press \square or any menu key to get the menu labels back on screen.

Pressing Wifili marks the lower limit of integration. Press it now and you'll see a small mark at the origin. The second time you press it, it will compute the definite integral (numerically) of the function from the first mark to the current crosshairs position, then display the value and record it on the stack with the label Aree: . Move the crosshairs back to $\%=3$ and press fifilill a second time. You should see frea: $\mathbf{- 5 . 6 2 5}$ at the bottom of the screen. Press \square or any menu key to get the menu labels back on screen. (NOTE: Fifinil computes a definite integral, so integrating from right to left between two points will yield the opposite result from integrating from left to right.) To move the mark to a new lower limit of integration, press \triangle.

EXIII snaps the crosshairs to the nearest extremum, displays its coordinates, and records it on the stack with the label Ext.rm: (The HP 49G uses its built-in root finder on the derivative of your function.) Move
 bottom of the screen. Press Θ or any menu key to get the menu labels back on screen.

Pressing NXT shows FI县 , which computes the function's value at the crosshairs location, displays it, and records it on the stack with the label $F(x):$. Move the crosshairs to $x=-3$ and press $F(H)$ You should see F (\%) : 1.5 at the bottom of the screen. Press - or any menu key to get the menu labels back on screen. (NOTE: If you press ENTER while in the graphics environment, the coordinates of your crosshairs will be recorded on the stack.)

FI computes the function's derivative symbolically, then graphs it, followed by the graph of the original function.

If you press $\boldsymbol{F}^{\text { }}$ again, the second derivativeis plotted, followed by the first derivative and the original function graph.

 repeatedly now and you should see that your list of functions includes the original function and its first and second derivatives. (The function displayed at the bottom of the screen is the currently active one for the purposes of the function folder.)

Plotting split-defined functions

A split-defined function is one whose formula depends on the value of the input. Look at this example: $\quad f(x)= \begin{cases}x^{2} & \text { if } x \leq 1, \\ 1-x & \text { if } x>1\end{cases}$

You can specify such a function on the HP 49G in two different ways.
A. $Y 6(X)=(X \wedge 2) \cdot(X \leq 1)+(1-X) \cdot(X>1)$

In this expression, the inequality operators take on values of either 1 or 0 (for true or false), depending on the value of X. Since each part of the definition is multiplied by its respective inequality -and then the two parts are added—this effectively eliminates ("zeroes out") the nonapplicable portion. Very elegant.
(Try plotting this using the default viewing window. If the HP 49G is in connected mode, then the graph will connect across the jump discontinuity.
B. $Y 7(X)=I F T E(X \leq 1, X \wedge 2,1-X)$

This expression uses the IFTE ("IF-THEN-ELSE") command, which interprets its arguments as follows: "IF $X \leq 1$, THE \mathcal{A} evaluate $X \wedge 2$, otherwise (ELSE) evaluate $1-X$."

Other Graph Types

Just to give you an idea of some of the other two-dimensional plot types available on the HP 49G, here are some simple examples. You select any of these other plot types are via $\leftrightarrows 2 \mathrm{D} / 3 \mathrm{D}$, using $5 H 0 \mathrm{Sa}$ at the rype field. The FCII folder is inactive for these plot types, but the other interactive re-scaling and zoom features all work.

Coric plots the solution to any quadratic relation in two variables.
Fotar plots polar functions of the form $r=f(\theta)$, where θ measures the angle counterclockwise from the positive x-axis, and r is the distance from the origin.

Farahetric plots parametrically defined curves, where the coordinates $x(t)$ and $y(t)$ are each functions of a parameter t.

Truth plots the solution set to any inequality in two variables.
(In all of the following examples, the screens assume that connect mode is on.)

Polar Plotting

Press $\leftrightarrows 22 \mathrm{D} / 3 \mathrm{D}$ and set the typa field to Fobsr. Change the independent variable to by highlighting Indep and typing ALPHA \rightarrow TENTER. (If you didn't know where to find the character, you could instead press \rightarrow CHARS and scroll through the list of characters until you find and press ECHO ENTER).) Make sure that the angle mode is set to fiod.

Now press $\leftrightarrows \mathscr{Y}=$ and clear all current equations $(\rightarrow$ CLEAR $)$.

Set the step size to .1.
To plot this polar flower, press EFise mivil. With the menu labels removed (press -), this graph should appear:

(Keep in mind, too that you can press 4 TBLSET \rightarrow CLEAR \leftrightarrows TABLE to see a table of values generated by this polar relation-see pages 43-44 for more about Tables.)

Parametric Plotting

For parametric plotting, there is a system flag you need to uncheck (turn OFF). Press MODE, then FLifis
 प

Now begin the plot by pressing $\leftrightarrows \sqrt{2 D / 3 D}$ and setting the type field to Faranstric.

You want to plot x vs. y, where $x(t)=t \cos (t)$ and $y(t)=t \sin (t)$, for $0 \leq t \leq 2 \pi$, so you need to change the independent variable by highlighting the Indsp field and typing ALPHAT ENTER. Also, make sure that the angle mode is set for kid.

Next, press $\boxed{Y}=$ and clear all the current equations $(\square$ CLEAR $)$. Press $\square[i m$ and complete $\mathrm{XY} 1(\mathrm{~T})=$ by typing ALPHAT COS ALPHAT $D \rightarrow G$ ALPHAT SIN ALPHAT ENTER.

Now press $\boxed{G T I N}$ to enter the starting and ending values for the parameter t . Enter \mathfrak{a} for Indep Len; for Indep High, type $2 \square \pi \rightarrow \rightarrow$ NUM . Enter .1 for the 5 step size.

Erase the graphics screen (EABEE) and draw this spiral curve (IFili). With the menu labels removed (press -), the graph should look like this:

(Keep in mind, too, that you can press $\boxed{G T B L S E T} \rightarrow$ CLEAR \leftrightarrows TABLE to see a table of values generated by this parametric relation-see pages 43-44 for more about Tables.)

Conic Sections

 Equation Writer. Now type $4 \mathrm{X}^{\wedge} 2-3 \mathrm{X} \cdot \mathrm{Y}+\mathrm{Y}^{\wedge} 2-4$. (Note: You must type a multiplication sign between X and Y to distinguish this product from a single variable named XY .)

Now plot the ellipse at the default plot parameter settings: \square WIN \rightarrow CLEAR EFFBE DFilin.... With the menu labels removed (press -), the graph should look like this:

Notice that the two branches are not connected to each other, so that at the extremes of the ellipse there appear to be breaks.

Inequality Plotting

Try using the Truth plot type to graph the inequality $\sin (x y)<0.5$.
Press $\leftrightarrows \sqrt{2 D / 3 D}$ and set type to Truth. Set the Indep and Desprd fields to $: 3$ and y, respectively.
Press $G Y$ and \rightarrow CLEAR all the equations. Press sinin, which will take you to the Equation Writer and offer $\mathrm{T} 1(\mathrm{X}, \mathrm{Y})=$. Type the following:
(You must type a multiplication sign between X and Y to distinguish this product from a single variable named $\mathrm{K}^{\prime} \mathrm{Y}$.)

Next, set the plotting parameters at their default values, by pressing $G W$ WIN CLEAR . Enter 1 for stes and $\mathbf{F C H}$ the Fixets field on.

Now press EFiese [ifill to see the shaded region. (This takes several minutes to finish.) With the menu labels removed, it should look like this:

Note that this tool offers you some interesting options for studying various functions or relations. For example, if you have a complicated equation in two variables to plot, you might consider replacing the equals sign ($=$) with an inequality sign (such as $<$) and then using the truth plot type. The boundary of the resulting shaded region will give you some idea of the solution set to your original equation.

Cleaning Up

 Then press $G Y$ and \rightarrow CLEAR, \leftrightarrows WIN \rightarrow CLEAR, ENTER

Working with Tables

These examples will briefly illustrate some of the tools available to help you tabulate and analyze data via \leftrightarrows TABLE. All the examples are for relations of type function, but many of the features are similar for Fordertric and foldr types, too.

To begin, press $\boxed{G} \rightarrow(\rightarrow$ CLEAR , and then enter these four functions:

$$
\begin{aligned}
& Y 1(X)=5 \operatorname{IN}(X) \\
& Y 2(X)=\cos (X) \\
& Y 3(X)=5 \operatorname{IN}(X) / \cos (X) \\
& Y 4(X)=\cos (X) / \sin (X)
\end{aligned}
$$

Press \leftrightarrows TBLSET to go to the TAELE sETuF screen. To reset all the numeric table settings, press \rightarrow CLEAR. The starting value will now be 0 , and values will be incremented in steps of 0.1. Press \leftrightarrows TABLE now to see a table of values for $\$$ and all four functions.

Looking at the table, notice these things:

- The arrow keys, Δ, ∇, \square and \square, let you move from entry to entry of the table.
- When you are looking at a particular table entry (i.e. when it's highlighted), the full precision of that entry is displayed at the bottom of the screen.
- Not all of the columns fit on one screen, but the display scrolls when you use to move to the Y^{4} column.
- New table values are generated as you scroll either up or down with Δ and
- ETTI眰 is a toggle key that lets you switch between a larger and smaller font size.
- DFFIII is a toggle key that offers you a reminder of the definition of the currently highlighted column. For example, when DEFill is on, you'll see the message Independent. Variable X appear at the bottom of the screen whenever you highlight the X column.

The TABLE ZOOM Menu

When you're viewing a table via \leftrightarrows TABLE, the EDMA menu key offers you some zoom options. For example, In will zoom in by the designated zoom factor; and out will zoom out by the designated zoom factor. You can change the designated zoom factor by pressing 4 TBLSET and changing the value in the 200 H field. (The default zoom factor is 4.)

Try an example: Scroll down in the X column, highlight the value .3 , and press Emin. Select oust and press of

X	Y'1	Y2	Y'3
--7			
i. 1			
3			
EDOH		8 IT	EFII

See what happens? The table is recomputed. . 3 is still highlighted, but now the step size is .4 instead of .1.

Notice, too, these other options you have when you Emin:
uscinat sets the start value to $\mathfrak{0}$ and the stap size to .1 units. (These are the default settings.)

Integer sets the start value to 0 and the step size to 1 unit.

Trig sets the start value to \mathfrak{d} and the $\mathbf{S t s p}$ size to (approximately) $\pi / 24$ units. (If the angle measure mode is degrees, then this stap size is 7.5 degrees.)

Un-zosh is an UNDO key for zooming. It will reset the table to its most recent settings.

The Equation Writer

The Equation Writer is a powerful screen oriented mathematical expression editor. Expressions can be entered and/or edited while typeset as they typically appear in a textbook. Operations can be performed on expressions or sub expressions while in the Equation Writer. At any time while an expression is being edited in the Equation Writer, it must be syntactically valid. At times, the calculator will insert an empty square (I) as a place holder where an operand is expected. This can give hints about the proper form to use for various calculator commands.

Quick Overview

Follow the keystrokes in this quick example to get an idea of what the Equation Writer can do. From the stack screen, with the calculator in its default modes,* press EQW to start the Equation Writer with a blank screen. You'll enter the expression $\sqrt{x^{2}+12 x+36}$, simplify it, then recover your original expression.
 see this screen:

$$
x^{2}+12 x+36
$$

EIIT
Press D to highlight the entire expression, then \sqrt{x} to take its square root.

Now use ∇ to highlight the expression under the radical. You should see this screen:

\square

Last, press \rightarrow UNDO to recover the radical expression, press to highlight the expression under the radical, then \rightarrow ALG 1 ENTER to expand it.
*As with most areas of the HP 49G, the modes affect results significantly. This example won't work if the machine is set to approximate mode; it must be in exact mode.

Starting the Equation Writer

The Equation Writer can be launched in several ways:

1. From either the default screen, or from within an edit line on the default screen by pressing EQW. This opens up a blank slate where a new expression can be entered. If the Equation Writer is started from within an edit line, the expression created during the Equation Writer session is pasted into the cursor position when the Equation Writer was started.
2. From the home screen by pressing either ∇ or TOOL EIIT with an expression or result in level 1 , or by pressing EIIT with an expression or result highlighted during a visit to the history stack.
3. After selecting any item listed at the $\psi=$ screen, by pressing
4. From the home screen, by pressing APPS 6 ENTER.
5. From applications where a symbolic expression is allowed to fill in the field on an input form or a cell in a matrix. Press EQW with the desired field highlighted.
6. From any edit line in an application-just press EQW. The expression entered in the Equation Writer will be patched into the position on the edit line at which the Equation Writer was launched.

Exiting the Equation Writer

The session in the Equation Writer can be terminated in either of two ways:

1. Pressing ENTER, which takes the expression to an edit line on the home screen. Pressing ENTER again will cause the expression to be evaluated. If $\rightarrow \rightarrow+N U M$ is pressed the second time instead of ENTER, the expression will be evaluated numerically (in approximate mode).
2. Pressing $O \mathbb{O N}$ (or CANCEL) will abort the session, returning you to whatever state you were in when the session began.

Operating Modes in the Equation Writer

While in the Equation Writer, there are several modes. The cursor's appearance indicates the current mode.

Entry mode

This is the default mode, which you use while entering a part of an expression. It's denoted by a cursor that is a backwards facing arrow: \#f you are in another mode, simply pressing a binary operator key, such as $\oplus, \Theta, \boxtimes$, or Θ, or the backspace key (\oplus) puts you back into entry mode, where you will remain until you either enter another mode (see below) or end the Equation Writer session.

In entry mode, as new terms are typed, they are added to the end of the expression. You can use () to group terms and to delete the previously entered character or function. Note that the Equation Writer supplies the needed parentheses when a function is applied. Note also that the 49 G understands implied multiplication. It will insert a multiplication sign (small dot) for you whenever:

$$
\begin{array}{ll}
\text { a variable follows a number; } & \text { Example: } 5 X \\
\text { a prefix function follows a number or variable; } & \text { Examples: } 2 S I N(X) \text { or } Y / X, \\
\text { a left parenthesis follows a number or right parenthesis; } & \text { Examples: } 2(X) \text { or }(S+7)(X+Y) .
\end{array}
$$

If you press while in entry mode, you'll go to selection mode with the current term highlighted. If you press \square, you'll go to selection mode with the previous two terms (or term and function) highlighted.

Selection Mode

Selection mode lets you operate on an expression or subexpression. In this mode, the expression appears in reverse video (white text, black background). To go into selection mode, press Δ or \square from entry mode, or ENTER from term selection mode. To exit to entry mode, press a binary operator (or at the end of the highlighted expression). To enter term selection mode, highlight a single term and press ∇.

One use for selection mode is to delete portions of an expression. To delete only the highlighted text (and go to entry mode), press \rightarrow CLEAR . Or, $\leftrightarrows(D E L$ will delete the highlighted expression and the preceding binary operator; \oplus deletes the preceding unary function. (You can also use selection mode to Cut, Copy, and Paste text, just as in word processor programs. See the examples in the section on Editing Operations.)

Another use for selection mode is to alter portions of an expression. For example, pressing a function key (SIN), \rightarrow EVAL, etc.) applies that function to the highlighted expression. Or, pressing a binary operator key $(\oplus, \Theta, \boxtimes, \odot)$ makes the highlighted expression the left operand, supplies parentheses if needed, inserts the operator, and then allows you to enter the other operand.

Moving around among terms within selection mode requires that you think about the various "levels" of an expression. (In fact, selection mode might also be called "level selection mode.") For example, consider the expression shown here:

The lowest level terms (those that will be evaluated first) are A and B. At the same level as these are X and 1 . The next

EIIT CURE ESTG EMFL FHCTOTEXFH higher level (the terms that will be evaluated next) are ($\mathrm{A}+\mathrm{B}$) and its exponent, 2 . After that, $(\mathrm{A}+\mathrm{B})^{2}$ and $S I H(X+1)$ are evaluated. At the next level are Y and $(A+B)^{2}+S I H(X+1)$. Then comes $3, W$, and Y to its power. The last operation performed is, of course, the square root.

Within selection mode, pressing Δ highlights more and more of the expression by moving you up to the next higher level of the expression, until the entire expression is highlighted. Pressing ∇ highlights less and less of the expression, by moving you down to the next lower level, until only a single term is highlighted. Pressing ∇ at that point takes you to term selection mode. \square and move you among terms at the same level (or, if you're already all the way at the rightmost term at that level, \square moves you up to the next level. Note also a couple of handy shortcuts in selection mode: Pressing \rightarrow Selects the entire expression. And pressing \rightarrow takes you all the way down to a single term.

Practice by navigating in selection mode. First, enter the expression above: EQW \sqrt{x} ALPHA Y yx
 Δ to highlight the W, then \triangle and D move among the three lowest level addends. Next, highlight just the 3 and press Δ to select the radicand. Use Δ once more to highlight the entire expression. Press \rightarrow to go to term selection mode, then press \square and \square to move among all the terms.

In Selection Mode, with one or more terms in a sum (or factors in a product) highlighted, pressing or \leftrightarrows applies the commutative property of addition (or multiplication) with the term (factor) to the right or left, respectively. This is useful for rearranging terms (or factors) in a sum (or product). \rightarrow or \rightarrow (4ighlights one more term (or factor) to the right or one term (or factor) fewer, respectively.

Try an example. Enter $\mathrm{Y}^{\wedge} \mathrm{Z}-\mathrm{Z}^{\wedge} 2+\mathrm{X}^{\wedge} \mathrm{Z}+2 \cdot \mathrm{X} \cdot \mathrm{Y}$
Press EQW ALPHA Y Y^{x} 2 $D Q$ ALPHA $Z Y^{x}$ 2
$D \square \pm \boxed{Y^{x}} 2 \square \pm 2 \times X$ ALPHA Y
$\Delta \Delta$. You should see this screen:

Press $\rightarrow 4$ to additionally highlight the $X^{\wedge} 2$ term:

$$
y^{2}-z^{2}+x^{2}+z+1
$$

Then press $4 \backslash 4 \pi$ to move the highlighted term to the left, shifting the other terms to the right.
 Now press \rightarrow to additionally highlight the $\mathrm{Y}^{\wedge} 2$ term.

Finally, press FinTil to factor the first three terms, then Δ Fhatid to factor the entire expression:

EIIT CUES EITG EMAL FHLTMTEXFH

Term Selection Mode

In this mode, where the cursor appears as an outline box, you use \downarrow and to navigate among terms (as opposed to among levels) in an expression; any term can be selected and either replaced or operated on. You can also cut, copy, and paste from this mode. To enter term selection mode from entry mode, press ∇ and the last term entered is boxed in. From selection mode, press ∇ with a variable or number highlighted, or press $\rightarrow \geqslant$. To exit term selection mode, you either: apply a function to the selected term (which will then take you to selection mode with the new term selected); replace the selected term by typing a new term (which takes you to entry mode); or press a binary operator, which makes the selected term the left operand, inserts the operator, and leaves you in entry mode to enter the right operand.

Cursor Mode

Screen Appearance: the cursor appears as a crosshairs; expressions are boxed.
How to Start: Press CDIEI or \rightarrow (
How to Stop: Press ENTER to select the boxed expression, or press CANCEL (ON) to cancel.
What it Does: Cursor mode can be used to highlight subexpressions by moving a crosshairs around within parts of the expression. Each term defines a rectangle in the expression. When the cursor is within the rectangle defined by a term, that term is included in the selection.

Press (and optionally hold down) the arrow keys to move the crosshairs to a term or subexpression you're interested in. You can press and hold down an arrow key to move just the crosshairs without redrawing the box it determines, which allows you to move around very quickly to a term or subexpression you want.

Editing Operations

Deleting

In entry mode, erases the character or function to the left of the cursor. In selection mode, \rightarrow CLEAR permanently deletes the highlighted subexpression; \rightarrow CUT deletes but saves the selected subexpression for later retrieval via Θ PASTE. No deletion is allowed at all in cursor mode.

In selection mode, $\leftrightarrows \subseteq$ DEL deletes the current term and the binary operator, if any, to its immediate left. To delete a function, you have a couple of choices. First, highlight the function and its argument. Then you can press $G D E L$, which will delete the function, but leave the argument. Or, you can press EDITI, to bring the highlighted expression to an edit line. Then use the arrow keys to position the edit cursor appropriately, then or or \leftrightarrows to delete the function.

Try this. Enter and highlight the following expression in the Equation Writer:

EDIT CUFE ERIN ENHL FHCTOTEMFH

Now, suppose you want to delete the sine function. Press ∇D, which will highlight $\operatorname{SIN}(X)$. Then press $\rightarrow D E L$ A. You should see this expression:

Inserting

To insert an operation and operand into an expression, just highlight the other operand and type the operation and operand you wish to insert. Similarly, if you want to apply a function to an expression, just highlight the expression and press the function. (Note that if you inadvertently apply a function to an expression, Θ UNDO can come to your rescue-if the Last stack option is selected (checked) in the calculator modes screen under the MODE key.)

Copying and Pasting

Expressions can be cut, copied, and pasted from within the Equation Writer, from an edit line, or from the history stack. In selection mode or term selection mode, you simply highlight the term or expression to be copied and press \rightarrow COPY. With a target expression or term selected, pressing \rightarrow PASTE replaces the highlighted expression or term with whatever was previously copied.

Undoing

You can recover the contents of the Equation Writer application before the last function was applied by pressing the \rightarrow UNDO. Note that \rightarrow COPY can be used to save the current contents of the Equation Writer application. First press \rightarrow 会 to highlight the entire expression (if it isn't highlighted already). Then press \rightarrow COPY. You can now go on to do any number of operations within the Equation Writer, and go back to screen that was copied by using \rightarrow PASTE.

Step-by-Step Mode

If "step-by-step" mode ($\$$ tepestep) is selected (checked) on the cas hooes screen, then whenever you evaluate any command that can show step-by-step calculations, that evaluation step is copied to the stack automatically. The commands that can show step-by-step evaluation are:

* Derivative
* Linear algebra problems involving row reduction, such as LIHSOLVE, RREF, rr-ef , FEF and IHV' (of a matrix)
* Euclidean division (IDIVZ for integers and DIVZ for univariate polynomials)
* Symbolic integration with boundaries (in 2 steps)

Note that there are other commands that you can also use to show a step-by-step solving strategy, but these require your explicit intervention:

* Apply commutativity law inside the Equation Writer
* Apply a command to a subexpression inside the Equation Writer, or converting to a form that can be "solved" (e.g. by SOLYE or IHTVX)
* IBP (integration by part)
* User change of variable inside an integral

How Do I Do Calculus in the Equation Writer?

In this section, we'll cover the most common operations performed in a first year calculus course. In each example, we'll assume that we're starting from a blank screen in the Equation Writer, with default modes set. All the commands can be found in the CALC menu, or on the keyboard itself.

How Do I Take a Limit?

The limit command is found in the CALC menu:
EQW $\boxed{\text { CALC }} 2$ (ENTER 2 ENTER SINX $\triangle \Delta$
 here. Then EMFIL will evaluate it.

EIIT CUES ESIT ENHL FHLTOTTEXFH
You can also take limits at infinity and apply the limit command to an existing expression. Clear the Equation Writer first by pressing \rightarrow CLEAR , then: $3 \times y^{y^{x}} 2 \rightarrow \square$ (1) $-5 \times y^{x} 2 \rightarrow$ 会 4 CALC 2 ENTER 2 ENTER $\triangle \rightarrow \equiv \Delta \rightarrow$ (\rightarrow. You'll get the screen shown here. Then EPTII will evaluate it.

Note: If the independent variable is the same in the limit expression as defined on the Chs hods screen, you need not enter an equation as the second argument to the limit command. Instead, you can just enter the value. For example, if InDEF is defined as X, the command LIMIT $(S I H(X) / X, 0)$ will work.

How Do I Take a Derivative?

The command \rightarrow on the keyboard can be used to take a derivative. If you select steprstep on the cas hodes screen, you'll see the derivative computed step-by-step. To differentiate $\mathrm{X} \times 2 \times \mathrm{LH}(1-2 \mathrm{X})$, for

Note: The DERYX command in the first menu under $\boxed{4 C A L C}$ can also be used to differentiate. It always differentiates with respect to the current independent variable. To specify a different variable of differentiation, use the DER IV command and specify that variable as the second argument.

How Do I Evaluate a Definite Integral?

The $\rightarrow S$ command on the keyboard can be used to evaluate an integral. Its result will be accurate to whatever number of digits is specified in Number Format on the calculatof hones screen. For example, to evaluate this integral...

Note: $+*$ and $-*$ can be used as a limit or integration. For example, try EQW \rightarrow S $\square \square \square \square$ (1)

How Do I Find an Antiderivative?

There are three commands available to compute an antiderivative: IHTVQ, for an antiderivative with respect to the independent variable, IHTT, which allows you to specify the independent variable (but which you must type from the keyboard; it's not on a menu), and RISCH, which uses the Risch algorithm to compute an antiderivative.

For example, to find an antiderivative for $\mathrm{X}=\operatorname{COS}(3 \times)$, with X the independent variable: EQW $\triangle \triangle$ $\cos (3) \rightarrow \Delta \in \operatorname{CALC}$ ENTER 8 ENTER...

To find an antiderivative using the IHT command, you need to type INTT first. For example, here's how to
 ALPHA $T y^{x} 2 \rightarrow$ ALPHA T ALPHA $T \rightarrow$. (The third argument to IHT is the variable or expression to substitute for the independent variable after the antidifferentiation.) Then EWiLI to calculate.

Note: Instead of pressing ALPHA ALPHA to lock alpha mode on (then ALPHA once more when you finish typing multiple characters), you could instead press and hold down ALPHA.

How Do I Solve a Differential Equation?

The HP 49G can find general and specific solutions to differential equations but not from within the Equation Writer. Use the home screen for this. (For more on this, see the section on the \square CALC menus.)

How Do I Find A Taylor Polynomial?

Within the Equation Writer, you can compute the 4th degree Taylor polynomial at $x=0$ for a function. (To compute other Taylor polynomials or series, you need to work from the home screen. For more on this, see the section on the \leftrightarrows (CALC menus.)

For example, here's how to find the Taylor polynomial for $\sin (x)$:

How do I do Implicit Differentiation?

The HP 49G is fully capable of performing implicit differentiation and, by using the SUBSTitute command, even isolating the derivative term. Here are two examples, one easy, one more involved.

 $\theta=4 \Omega \Omega$ Note that it is necessary to enter $Y(X)$
rather than simply Y so that the calculator will know that Y is a function of X when you differentiate. You should see this:

Now apply the derivative command to the equation:

Note that the calculator names the derivative term $d 1 Y(X)$. Replace that expression with the variable D , using the substitute command. (This is necessary because you need to isolate D in the result; the calculator can't isolate $\mathrm{d} 1 \mathrm{Y}(\mathrm{O})$.) \rightarrow ALG 6 ENTER ALPHA $G D(1) A L P H A Y(1) X$ $\rightarrow G=A L P H A D G$ E EDHLL.

To isolate D in this equation, first make a copy: \rightarrow COPY Then use CANCEL (ON) to return to the stack, and G S.SLV (2) ENTER \rightarrow PASTE \rightarrow ALPHAD ENTER. Then will take the result back to the Equation Writer.

Here's what it looks like:

Now, you could leave this equation as it is, but you might want to change the $Y(X)$ term to a usable variable so that you can use the derivative in other calculator environments. To do this, just use the substitute command to change $Y(X)$ to $Y: \rightarrow$ ALG 6 ENTER ALPHA Y $\rightarrow(1) X D B=$ ALPHAYG \rightarrow EMHLI.

EUIT CUES ESTM ENHL FHNTOTEXFH

One common calculator environment you may want to use, of course, is graphing. Now that you've made the equation entirely usable, you can copy its right hand side and use the Fast-3D graphing utility to take a look at it: $\nabla \rightarrow \rightarrow$ COPY CANCEL $42 \mathrm{D} / 3 \mathrm{D}$ CHODS.

Use ∇ as necessary to scroll down and find the Fast. 3D selection. DP^{I} to select it for the plot typs, then ∇ to highlight the Eq field, and \rightarrow PASTE ENTER.

Make sure the independent variable is \mathcal{X} and the dependent variable is Y . Then press Efirse [ifill.

In the Fast3D plot, the arrow keys can be used to move the eye point around the figure.

Notice how the axes in the lower left hand corner of the screen rotate with the image to give an idea of the orientation.

Numerical Solving

In either FLGi or FFFH mode, pressing \rightarrow NUM.SLV will bring up a menu of 5 separate numerical solving features:

Any of these can be accessed by highlighting it and pressing ENTER.

Solve Equation

First, note that if you choose to type equations without using the Equation Writer, only ALG mode understands implied multiplication between numbers and variables (but not between two variables); RPN mode does not. Of course, a good way to enter any equation is the Equation Writer, which understands implied multiplication in either mode-and the Equation Writer is accessible from within the solue equation tool.

First, select the solue equation tool (via \rightarrow NUM.SLV's menu, as shown above), and make sure the cursor is on the Eq field. Then press EQW and enter your equation.
(When finished, highlight the entire equation and copy it (press \rightarrow COPY) for easier editing later.)

Now press ENTER and the equation will appear in the proper form in the E_{4} field. Notice how the solver creates fields for each of the variables in the equation. (If these don't yet ap-
 Now, you simply move to each known variable and enter its EDIT Ding

EROLTE value. For the variable you want to solve for when all the others have known values, highlight it and press EOLTIS. The correct value will be returned into that variable slot-and will also be placed on the stack.

To get the other quadratic solution, highlight Eq, then go back to the Equation Writer (EQW), paste in your equation (press \rightarrow PASTE), change the sign in the formula, then ENTER and repeat the solving process.

Solve Diff EQ:

The solue diff eq tool will take you to the screen called solve ${ }^{\prime}(\mathrm{T})=\mathrm{F}(\mathrm{T}, \mathrm{W}$, where you can calculate the solution to a differential equation between initial and final values of the independent variable.

Example: Find the solution to $\frac{\partial y}{\partial x}=x^{2}$ from $x=1$ to $x=3$

The fields on the screen are as follows:
f: \quad The expression to be solved.
Indep: \quad The name of the independent variable.
Init (indep): The initial value of the independent variable.
Find (indep): The final value of the independent variable.
soln: \quad The name of the variable to be solved for.
Init $\left(s o t_{n}\right)$: The initial value of the solution variable.
Find (so (n): The final value of the solution variable.

For the above problem, therefore, the screen looks like this:
Note: You can't enter the expression if the variable(s) used in it contain values; purge all such variables beforehand. For example, you need to purge X in this case.

Now, with the highlight on the Fint ($50(\mathrm{~m})$ field, press SOLDE and you get this:

Solve Poly

 quick fashion, via a simple vector containing the coefficients of the terms, in descending order of degree.

For example, to solve $X^{\wedge} \Sigma-X-12=0$, you would enter the polynomial in the coefficients field as follows: G[1] (1) $\rightarrow+\pi \rightarrow(1)+\pi$ ENTER

The cursor will move to the fosts field.

Press ETOLDE and the roots will appear there.

Note that EXIE will send the results to the stack, with the roots in factored form (or-if you've solved for a polynomial rather than roots-the solution polynomial in conventional decreasing-degree order).

Try another. Find the roots of $\mathrm{X} \wedge 2+4=0$, by filling in the cosfrieisnts field as shown here. (Notice how the missing degree in the polynomial must nevertheless be represented with a zero coefficient.) With the foots field highlighted, press EOITI... voila. (Complex roots appear as ordered pairs.)

Try one more. Suppose that you know the roots, say $-2,3$ and 5, and you want to find the corresponding polynomial. You just enter the roots...
... and EOLTIE for the polynomial.

And the stack version looks pretty good when you send the results there via ETHI\$ (then ENTER):

Solve lin sys

In the linear systems solver (i.e. at the screen called SOLYE STSTEA A• $\mathrm{B}=\mathrm{E}$), you key in two matrices:
A: A square matrix whose rows contain the coefficients of the respective equations in the system
E: A column matrix containing the constants of respective equations in the system.
The solver will return the solution (column) matrix, n .
For example, solve this system: $2 a+3 b+c=2$

$$
-a+4 b+2 c=1
$$

$$
3 a-2 b+2 c=-5
$$

With the cursor on the f field, press EIITI. This will take you to the Matrix Writer tool for easy data entry. Make sure that $[\mathbf{C i n +}$ appears on the menu line. (If not, press $\sqrt{[0]}+$ to change it.) Then enter the values: (2)ENTER (3) ENTER (1]ENTER \rightarrow (4). This establishes it as a 3 -column matrix and take you back to the first column; from now on, you won't need to repeat those keystrokes at the end of each row: (1) $+/-$ ENTER (4)ENTER 2 ENTER (3)ENTER 2) + - ENTER 2 ENTER ENTER. The matrix will now appear in f :

Use ∇ to move to the E : entry, then EIITI. This time you want rof \square to appear. (If necessary, press rint .) Then enter the matrix values: 2 ENTER 1 ENTER (5)+/-ENTER
 (ENTER This matrix will now appear in E:

Press
EOILID and the solutions will appear in decimal form. To view the full values, press EDITI and move through the matrix. Pressing ENTER while the $\%$: is highlighted will return the solutions to the stack, as well.

Solve Finance

(The solue findres tool under \rightarrow NUM.SLV is exactly the same as pressing G FINANCE. That section is found elsewhere in this Guide.)

Finance

The HP 49G allows you quickly to do calculations involving compound interest-also known as the Time Value of Money. Just press \leftrightarrows FINANCE to go to the TIme value of honey screen:

n: \quad The number of periods (and payments to be made) in the term of the loan.
IZMF: \quad The annualized interest rate, as a percent.
FV: \quad The Present Value (total amount to be financed).
FHT: \quad The periodic payment amount.
Fu: \quad The Future Value (total amount still owing at the end of the loan).
FWF: The number of periods (also payments) in a year.
End/Begin The point in each period when the payment is made—either at the beginning or end.
You enter all necessary data, then highlight the item you want to solve for and press EOLTI.
Try an example. How much per month would it cost to take out a 3 year loan of $\$ 12,500$ at 9.25% ? To find out, press \leftrightarrows FINANCE (if you're not already there), then move the highlight to the n field and press:

(3) 6 ENTER,	
	(9) (2) 5 (ENTER),
	(1)250 ENTER.
D past the Fht field for now (since that's your unknown)$\text { (1) } 2 \text { ENTER }$	
	0 ENTER.

The payment mode should be EFHD. Adjust it if necessary (via CHOLE), then use the arrow keys to return to the PMT field. Press EOLTE and you should get -398.95 . This will be the monthly payment amount.

Note: If you press CANCEL (ON), you will find that this payment value was also returned to the first line of the stack. (If you exit the TVM screen to see the stack, just press 6 FINANCE again to get back; the values you have entered will still be there.)

Of course, the beauty of the TVM screen-like the other solver screens-is that you can easily change one value and solve again. (And each time you solve for something, it will be left on the stack). Try another example....

Suppose you can afford to pay $\$ 975 /$ month (principal and interest) for a mortgage payment. How much money can you borrow? It depends on the mortgage interest rate. Use the Finance solver to test scenarios.

If you can get a 30 year (i.e. 360-month) mortgage at 8.5% APR, how large a mortgage can you afford?
At the TVM screen, key in the values as shown here. (The negative sign for the payment, FHT , indicates the direction cash is flowing from your point of view: You received the loan, $F v$, to buy a house, so the FY amount is positive; you pay the payment amount, so it's negative.)

Now, highlight PV and press EOLTE
Under these loan terms, you can afford a mortgage in the range of $\$ 126,000$ range.

Now that you've solved for the payment, you can also use another tool, Aidili, to itemize your payments into principal and interest. Press Fiblifl now, and it will bring you to this screen:

You can specify any number of payments made during the life of the loan. For the first year, for example, you can just
 leave the 12 in the Foynents field. Now ∇ down to highlight the Principal field and Filliki....

In the first year of your mortgage, you'd be paying a total of 12 * $\$ 975$ in payments, but only $\$ 958.58$ of that would reduceyour balance (and so you'd still owe $\$ 125,843.72$). The other $\$ 10,742.42$ you paid would be interest.

So, how much would the house cost you out of pocket over the full 30 years (360 months) of the mortgage? Find out: Just enter 360 in the foyments field and Bildid again.... That $\$ 126,800$ loan will cost about $\$ 351,000$ in total payments.

(Note: the balance of $5.15 \mathrm{E}-6$ or: .00000515 , is the calculator's way of telling you that you owe nothing. The payments and amounts are, due to rounding, off by a few hundred thousandths from zero.)

Symbolic Solving

Pressing $\leftrightarrows \sqrt{S . S L V}$ in either ALG or RPN mode will bring up a symbolic solver menu with seven tools on it. (The seventh item, not shown here, is zeros.)

The mode you're using (ALG or RPN) affects the rules for use and entry, so what follows are examples of each.

Algebraic Mode

DESOLVE

The besolve tool will solve certain first-order differential equations with respect to the current variable. In ALG mode, besolve needs a list of two arguments: the differential equation and the variable to solve for. (Be sure to purge all variables used in the equation first. For example here you might want to press TOOL

Example: Find $y(x)$ if $y^{\prime}(x)=x^{2}$.

\rightarrow ALPHA Y $\boxed{\square}(1)$ 区.

Press ENTER and you should get this result, which is the correct symbolic solution (including the constant, denoted here as C.6):

EFRF II IEPF FIV FHT FTF

ISOL

The Isol tool will symbolically isolate a variable in a given expression. In ALG mode, you supply a list with two arguments-the expression and the variable to be isolated.

Example: Isolate the variable C in the temperature conversion formula $F=\frac{9}{5} C+32$.

To get ISOL $(\mathrm{F}=(9 / 5) * \mathrm{C}+32, \mathrm{C})$ on the stack, press:
4 SSLV 2 ENTER ALPHAF $\rightarrow=4(1) 95 \square$ \triangle ALPHAC \oplus 3 $2 \rightarrow$ ALPHAC.

Your screen should look like this:

Try another example that yields a familiar result::
Isolate X in the quadratic equation $Y=\mathrm{A} \times \mathrm{X}^{\wedge} \mathrm{Z}+\mathrm{B} \times \mathrm{X}+\mathrm{C}$
To do so, press: G S.SLV 2 ENTER ALPHA Y \rightarrow ALPHA $A X X Y^{x}(\square$ ALPHA $B X X \oplus A L P H A C$ \rightarrow ©

Your screen should look like this:

LDEC

The LDEC tool will solve a linear differential equation with constant coefficients or a first order differential equation with variable coefficients. In ALG mode, you must supply it with a list of two arguments.

The first argument is the function forming the right hand side of the equation, if you're dealing with a single equation. (For a system of equations, this argument would be an array of the terms not containing the dependent variables.)

The second argument is the auxiliary polynomial for the single equation. (For a system of equations, it's the matrix of coefficients of the dependent variables.)

Example: Solve the differential equation $y^{\prime \prime}(x)=x+3$

You need to put $\operatorname{LDEC}\left(X+3, X^{\wedge} 2\right)$ onto the stack.
To do so, press $\boxed{4}$ S.SLV (3) ENTER X $\rightarrow 3 \rightarrow$ $x y^{x} 2^{2}$. The screen should now look like this:

	ALG	
LDEC $\left(x+3, x^{\wedge} 2+\right.$		
ITME FM FHT	Fir	F

	HL
$\begin{array}{r} \operatorname{LDEC}\left[x+3, x^{2}\right] \\ \frac{1}{6} \cdot x^{3}+\frac{3}{2} \cdot x^{2}+C 1 x+C 6 \end{array}$	
EIIT WIEH KKL	

LINSOLVE

The Linsolve tool solves a system of linear equations. In ALG mode, you must supply it with a list containing two vectors-the equations to be solved and the variables being used.

For example, suppose you want to solve this system of equations:

$$
\begin{aligned}
& x+y=2 \\
& x-y=8
\end{aligned}
$$

You need to put LIVSOLVE $([X+Y=2, X-Y=8],[X, Y])$ onto the stack.

To do so, press 6 S.SLV 4 ENTER
$\rightarrow[1]$ ALPHA $Y \rightarrow 2 \rightarrow \square$
$\triangle \Theta$ ALPHA Y $\rightarrow 8 \rightarrow \square \rightarrow$
G[1)

Your screen should look like this:

The result comes in three separate pieces-in a list that is usually too wide for the display. To view all of this list, use WIEI (and \square and to scroll your view as needed.)

First you'll see the original system echoed back to you.
$\left\{\{[X+Y=2 X-Y=8][X Y]\} S_{P}\right.$

Then comes a list of the "specific" pivots.

$$
\left.A:\left\{\begin{array}{ll}
2 & -2
\end{array} 21 .\right\}[\mathrm{X}=5 \mathrm{Y}=-3]\right\}
$$

Last comes the solution vector.

SOLVEX

The solven tool solves a given equation specifically for the variable \bar{X}. (If given an expression rather than an equation, it will equate the expression to zero and solve accordingly.) In ALG mode you simply enter the equation (or expression) and invoke this solver.

Example: Solve $x^{2}+2 x-3=5$ for x.
First, enter $\operatorname{SOL} \mathrm{YEX}\left(\mathrm{X}^{\wedge} 2+2 \times \mathrm{X}-3=5\right)$ onto the stack: 4 S.SLV 5 ENTER $X Y^{x} 2 \oplus 2 \times(3)=5$
The screen should look like this:

Example: Solve $A x+2 B=3 C-5$ for x.
Enter SOLYEX ($\mathrm{A} * \mathrm{X}+2 \times \mathrm{B}=3 \times \mathrm{C}-5$) onto the stack: 4 S.SLV 5 ENTER ALPHA A $X \triangle 2$ ALPHAB $\rightarrow=$ (3) ALPHACC5. The screen should look like this:

Now press ENTER and you'll see the solutions displayed as a list, like this, with the input on the left and the solution on the right:

Example: Solve $x^{2}+4=0$ for x.
In this case, the solutions are complex numbers. The machine can produce these solutions correctly, provided that complex mode is active. If not, you will get null results.

To check on the status of complex mode, press MODE, then CiE , to see this screen:

Indep war: $\mathrm{K}^{\text {a }}$				
Hoduto: 3				
_ numeric _ ip				
Verbose _ Stepstep _ Incr Foh				
\underline{Y} Rigorousysimp non-kitiond.				
	ind	ndent		
EIIT			Cima	0 O

Press ENTER ENTER to return to the stack, then: 6 S.SLV 5 ENTER $X y^{x} \times 4$. (No need to enter $=$ 0 because the HP 49G will assume it if not told otherwise.)

Now pressing ENTER should give this result-an empty list, indicating no solutions (i.e. no real solutions):

: SOLYEVX $\left(x^{2}+4\right]$

But now go back to the CAs hoors screen (MODE), then CiEI) and activate Complex mode (i.e. check the _conp lex field). Also, un-check the _Approx field, if it's checked:

Note: If Approximate mode is on, a little tilde, w, will have replaced the $=$ in the Annunciator area, and the results will instead look like this:

SOLVE

The solve tool solves a given equation for the specified variable. (If given an expression rather than an equation, it will equate the expression to zero and solve accordingly.) In ALG mode you enter a list of two arguments-the equation or expression and the variable to be solved for.

Try an example. Solve for B in this equation: $A x+2 B=3 C-5$
To do this, type \square S.SLV 6 ENTER ALPHA $A \times X \oplus$ (2)ALPHAB $\rightarrow=(3)$ ALPHACC $-5 \rightarrow \square$ ALPHAB.

Your screen should now look like this:

ZEROS

The zER0S tool will solve for the zeros of a single-variable function. That is, it will set to zero the given expression and solve that equation for the variable specified. In ALG mode, you must supply a list with two arguments-the expression and the variable to be solved for.

Example: Find the zeros of $x^{2}+2 x-3$.

$\rightarrow 0 \times$.

2EROS $x^{\wedge} 2+2 x-3, x+$					
H1	Ea	This	[4]	F	SFint

Press ENTER to get this:
$=\operatorname{ZEROS}\left(x^{2}+2 x-3, x\right]$
(1-3)
EUIT WIEH FRL ETOF FURTEGLEAR

If Complex mode is active (check the conflex field on the cas hodes screen), zemos can return complex roots too. For example, find the zeros of $x^{2}+2 x+3$.
 \rightarrow ®ENTER

Note: If Approximate mode is active (check the Cas hones screen or look for a tilde, ω, rather than $a=$, in the status area), the results will instead look like this:

$10: 45^{\text {ALGOU }} \text { ก23 }$	
: $2 E R 0 S\left[x^{2}+2 \cdot x+3, x\right]$	
21	
	+

S.Slv in RPN Mode:

The main difference between ALG and RPN modes is in the formatting and "timing" of the arguments you provide: ALG mode looks for multiple arguments in a list that follows (and is a part of the desired command; RPN mode expects to find its arguments already on the stack (one argument per level) when you enter the command. The order in which you enter the arguments is the same in either mode.

Other noticeable differences:

- In RPN, a command is not echoed on the stack. It is executed (assuming the stack is arranged correct(l) as soon as it is pressed. The arguments and commands then disappear; only the output remains.
- RPN does not understand implied multiplication between numbers and variables. You must provide every operator explicitly.
- In RPN, you must enter variables and expressions between apostrophes, like this: ' K ' . (The J key is the \rightarrow-shifted version of EQW.)

Here are examples of the use of each of the \leftrightarrows S.SLV tools in RPN mode. For the sake of comparison these are the same examples as given for ALG mode.

DESOLVE

Example: Find $y(x)$ if $y^{\prime}(x)=x^{2}$.

That's the first argument. Now enter the second one: \rightarrow (ALPHAY 4 ($) \times$ ENTER.

Your screen should look like this:

Now just execute the DESOLVE command:
\square S.SLV (1)ENTER
(If you don't get the results shown, it's most likely a modes problem. Be sure that the machine is set to exact mode, not approximate mode.)

ISOL

Example: Isolate the variable C in the temperature conversion formula $F=\frac{9}{5} C+32$.

LDEC

Example: Solve the differential equation $y^{\prime \prime}(x)=x+3$
Keystrokes: $\rightarrow \times \pm$ ENTER
$\rightarrow 1 \times y^{x} 2$ ENTER
Here's what you should see:

Now execute the LDEC command, 4 S.SLV 3 ENTER, and see this:

```
RG0,YMZ HEX E= 'X'
{HOHE}
4:
1: '1/6***3+3/2* (%^2+C1
```


LINSOLVE:

Solve this system of equations: $\quad x+y=2$
$x-y=8$
 And: $G\square \square(A L P H A)$ ENTER

You should see this screen:
(Note: You may see different notation-i.e. without the "tick marks"-if the Stack display is set to Textbosk notation in MODE DIIS.)

Now execute LINSOLVE, \leftrightarrows S.SLV (4) ENTER, to get this screen:

SOLVEX

Example: Solve $x^{2}+2 x-3=5$ for x.
Keystrokes: $\rightarrow\left(\times y^{x}\right]^{2} \oplus(x \times(\rightarrow)=5$

Fif Muz HEX Fi= 'y'	ALG
$4:$	
$3:$	
$2:$	
${ }^{\prime} \times 2+2 \times 8-3=51$	
$5:$	
$4:$	
$3:$	
2:	
1: 'Xへ	-3=
	UL[

SOLVE

Solve for B in this equation: $A x+2 B=3 C-5$
Keystrokes: \rightarrow (ALPHA $A \times X \oplus(2 \times$ ALPHA B $\rightarrow \equiv 3 \times$ ALPHA C (5 ENTER).
Then: \rightarrow ALPHA B ENTER.

Now execute the SOLVE command: 6 S.SLV (6) ENTER. You should see this screen:

Now execute the ZEROS command, \leftrightarrows S.SLV 7 ENTER, and you should see this screen:

The GEXP\&LN Key

Just as the name implies, most of the commands contained in the $\boxed{G E P \& L N}$ menu deal with logarithmic, exponential, or transcendental operations. Each of these commands takes a single expression as an argument and then returns the transformation of that expression.

1. EXPLH transforms an expression of trig functions to an equivalent expression containing exponential and logarithmic terms, using the Euler identities:

$$
\sin x=\frac{e^{i x}-e^{-i x}}{2 i} \quad \cos x=\frac{e^{i x}+e^{-i x}}{2}
$$

EXFLH requres that Complex mode be active. (Use the cas hodes screen to activate it.)
2. EXPM returns $\boldsymbol{e}^{x}-1$.
3. LIN linearizes expressions of exponential terms. For example, applying LIH to EXP (X) ※EXP (Y) gives $E X P(X+Y)$. LIN also linearizes trig functions, after converting them to complex exponentials.
4. LHCOLLECT simplifies an expression by collecting logarithmic terms, using properties of logarithm functions: $\log (a)+\log (b)=\log (a b)$ and $\log (a)-\log (b)=\log (a / b)$. For example, if you apply LHCOLLECT to $L H(X)-L H\left(X^{\wedge} 2\right)+L H\left(1 / \alpha^{\wedge} 3\right)$, you'll get $L H\left(K / \alpha^{\wedge} 2 * 1 / X^{\wedge} 3\right)$. If you then use $\left(\rightarrow\right.$ EVAL , the result is $\mathrm{LH}\left(1 / X^{\wedge} 4\right)$.
5. TEXF'H $H \mathrm{D}$ expands expressions involving transcendental functions. When applied to $\mathrm{EXP}(\mathrm{X}+\mathrm{Y})$,
 +SIN (Y)COS (X).
6. TSIMP tries to reduce the set of variables and/or expressions in an expression to a set of rationally independent variables. (You'll seldom need to use this-try other commands first.)

Note that some of the above commands also appear on other menus. For example, TSIMP and TEXPAHID appear on the \rightarrow TRIG menu.

Note, too, that other commands not found in the \leftrightarrows EXP\&LN menu nevertheless perform transformations that are closely related. For example, TL IN will linearize expressions with trigonometric terms. Applying TLIN to $S I N(X) * \operatorname{CoS}(Y)+\operatorname{CoS}(X) * S I N(Y)$ gives $S I N(X+Y)$.

The \triangle ALG Key

The commands contained in the \rightarrow ALG menu offer various ways to evaluate, manipulate or recombine algebraic expression or equations.

1. EXFAHD expands algebraic expressions. For example, EXPFHD applied to $(\mathrm{A}+\mathrm{B})^{\wedge} 2$ will give

2. FACTOR factors the argument. When FACTOR is applied to 24 , it gives $2^{\wedge} 3 * 3$. When applied to $60 X^{\wedge} 2+71 X-12$, it gives $(20 X-3) *(3 X+4)$. Applied to $X * S I H(X)+A * B * S I H(X) \wedge 2$, it gives $S I N(X) *(X+B * A * S I N(X))$.

Note that FACTOR's behavior is dependent on whether Complex mode is active (adjusted via the Cas hodes screen). For example, in Real mode, FACTOR ($\mathrm{X}^{\wedge}(2+4$) does nothing; in Complex mode, it returns $(\mathrm{K}+2 \mathrm{i}) *(\mathrm{X}-2 \mathrm{i})$.
3. (LHCOLLECT is also on the $G \mathbb{E X P \& L N}$ menu and is explained there.)
4. (LIN is also on the $G E X P \& L N$ menu and is explained there.)
5. $\operatorname{SOL} \mathcal{W} E$ computes the value of a given argument that satisfies a given equation. If given two expressions, it creates an equation by setting the first expression to zero, then returns the value(s) of the second expression that satisfies that equation. For example, $\operatorname{SOL} \mathcal{V}(\mathbb{X}-5, \%)$ returns $\mathcal{K}=5$. If the first argument is already an equation, SOLVE simply returns the value(s) of the second argument that satisfies that equation. For example, $\operatorname{SOLVE}(\mathbb{Y} 2-\mathcal{X}=2, \gamma)$ returns $\langle X=2 \quad X=-13$.

Note that SOLVE 's behavior is dependent on whether Complex mode is active (adjusted via the CA_{A} HODES screen). For example, SOLVE $\mathbb{N}+4, X)$ returns S in Real mode; in Complex mode it gives $\langle X=-(2 i) \quad X=2 i\rangle$.

Note also that SOLVE cannot be applied to an expression or equation in the Equation Writer, because it might return a list of solutions. (The Equation Writer cannot handle lists.)
6. SUEST replaces a variable with the specified expression. SUBST $(X \times 2-5 X-14=0, ~ X=L H(X))$ returns $L H(X) \wedge$ - $5 L H(X)-14=0$. You can also replace an expression ${ }_{1}$ with another expression $_{2}$ if the equation expression $=$ expression $_{2}$ has a trivial solution that could be found via the ISOL (iso-
 will return $\mathrm{SIN}(\mathrm{A})+\operatorname{Cos}(\mathrm{A})$.

The \leftrightarrows CALC Key

The \leftrightarrows CALC menu is divided into three major groups: 1. Commands involving derivatives and integrals; 2. Commands involving limits and series; and 3 . Commands involving differential equations. Note that, as usual, the correct syntax to enter the argument(s) for a command depends on whether you're working in ALG or RPN mode: In ALG mode, you invoke the command name and then list the arguments after it, separating multiple arguments with commas. In RPN mode, you enter the arguments onto the stack and then invoke the command name. In either mode, the order in which you type the arguments is the same.

Derivatives and Integrals

1.1 CURL computes the Curl of a 3-dimensional vector function, given two arguments: a 3-dimensional vector function; and a vector listing those three variables. For example, $\operatorname{CURL}\left(\left[X^{\wedge} 2 * Y, X^{\wedge} 2 * Y, Y \wedge 2 * Z\right],[X, Y, Z]\right)$ returns $\left[Z *(2 * Y), 0, Y *(2 * X)-X^{\wedge} 2\right]$.
1.2 DERIV computes the derivative of a specified function (the first argument) with respect to a specified variable (the second argument). Note that you can also use the keyboard's \rightarrow D for differentiation.
1.3 DERUX computes the derivative of a given function (the only argument) with respect to the variable currently indicated by 'VX. The content of $V \mathbb{X}$ (by default, ' X^{\prime} ') can be changed at the Indep war field on the cas hores screen-or by storing the desired name into VK . (Notice that this status is indicated

1.4 DIV returns the divergence of a 3-dimensional vector function, given two arguments. a 3-dimensional vector function; and a vector listing those three variables. For example,

1.5 FOURIER evaluates the nth fourier coefficient of the specified function. It needs two arguments: an expression representing a function, $f(x)$; and n, a natural number.

The result: $\int_{0}^{2 \pi} f(x) e^{i n x} d x$
1.6 HESS finds the Hessian matrix and gradient of an expression (the first argument) with respect to the given variables (the second argument, a vector). The vector of variables is echoed as well. Example: $\operatorname{HESS}\left(\mathrm{K} * Y^{\prime}+Y * Z+X * Z^{\wedge} \mathcal{Z},[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]\right)$ produces $\quad[[[0,1,2 * Z]$
$[1,0,1]$
[2*2,1,2*X]],
$\left[\mathrm{Y}+\mathrm{Z}^{\wedge} 2, \mathrm{X}+\mathrm{Z}, \mathrm{Y}+\mathrm{X} *(2 \times Z)\right]$,
$[X, Y, Z])$
1.7 IBF performs antidifferentiation by parts-but in RPN mode only. (Note that IHTVX and IHT will also antidifferentiate by parts.) IEF lets you choose u and $d v$.
In other words, to evaluate $\int_{u d v}$, you supply the following
$\begin{array}{lcl}\text { stack arguments: } & 2: & u(x) v^{\prime}(x)\end{array} \quad$ and get these stack results: $\quad 2: \quad u(x) v(x)$
You then apply INTVK to the level-1 result, then \oplus to get the final answer.
Example: Calculate $\int_{x} \cos (x) d x$.

Apply IHTVX: $2: \quad \operatorname{SIN}(X) * X \quad$ Now apply \oplus to get $\operatorname{SIN}(X) * X+\operatorname{CoS}(X)$.
1: $\cos (x)$
1.8 I AT VK antidifferentiates the argument with respect to the current independent variable (which is indicated in the Annunicator area and specified on the cas hones screen). For example:
IHTVX $(X \times \operatorname{COS}(X)$ returns $\operatorname{CoS}(X)+X=S I H(X)$.
Note that the IHT command (which does not appear on a menu) allows you to specify the independent variable directly: IHT ($\mathrm{I} \mathrm{IH}(\mathrm{T}), \mathrm{T}$, expression) gives - COS (expression).
1.9 LAFL returns the Laplacian of a function (the first argument) with respect to a list of variables (the second argument). Example: LAFL $(\mathbb{K} 2+S I H(Y)+Z,[\mathcal{K}, \mathrm{Y}, Z])$ returns $2-S I H(Y)$.
1.10 PREVAL evaluates an antiderivative (which you first compute via INT or INTVX) between two limits of integration. It takes three arguments: the antiderivative expression, then the two limits of integration. Example: PREYRL $(\mathbb{N} 2,1,5)$ gives 24 .
1.11 RISCH applies the Risch algorithm to evaluate the antiderivative of a given expression (the first argument) with respect to the specified variable (the second argument).
Example: $\mathrm{RISCH}(\alpha /(1+X) 2), X)$ returns $1 / 2 \times \mathrm{LH}\left(\mathrm{X}^{\wedge} 2+1\right)$.

Limits and Series

2.1. DIUFT. divides two polynomials. As arguments it requres (in this order): the dividend polynomial; the divisor polynomial; and the desired degree of the resulting polynomial. It then returns the quotient polynomial (in ascending powers), up to the degree specified.

Example: DIVFC ($\times 2-1, \mathrm{X}+1,1)$ returns $1+\mathrm{X}$.
Example: DIVFC ($1+X, 1-X, 4)$ returns $1+2 * X+2 * X^{\wedge} 2+2 * X^{\wedge} 3+2 * X^{\wedge} 4$.
(This is the Taylor Polynomial for $(1+\mathrm{X}) /(1-\mathrm{X})$ of order 4.)
2.2. LIMIT finds the limit of a given expression (the first argument) as the variable approaches a given value (the second argument, an equation-or just a value if the variable is the default). Some examples:

2.3. SERIES calculates a Taylor Series expansion for the given expression (the first argument) about a given point (the second argument, an equation-or just the variable if the point is 0). The expansion can be done at $x==$. The third argument is the desired order of the expansion, a value between -2 and 20. If you use a positive real value here, the expansion is done from the right; if negative, from the left; if a binary integer (e.g. \#5d), the expansion is bidirectional.

SERIES returns diagnostic information along with the expansion. First comes the bidirectional limit. Then comes a list with the series expansion and the order of the remainder. Then you get h, in terms of the original variable, so you can use SUEST to recover the expansion in terms of the original variable.

Example: The command SERIES (EXF $(2 X), X=1,5)$ returns

You can now press $\Delta \rightarrow$ COPY CANCEL \rightarrow ALG 6 ENTER \rightarrow PASTE \rightarrow 元. Then press \square seven times to move over to the right of the first curly brace, then to delete it. Now press ENTER to do the substitution, then 6 ANS $4[5]$ (ENTER to extract the series from the list.
2.4. THYLORU returns the Taylor Polynomial about 0 for the specified expression (the only argument), expanded to the 4th degree term. (This can be applied in the Equation Writer, as well as from the stack.)

Example: TAYLORE (SIH(x)) returns $1 / 120 \times \mathrm{K}^{\wedge} 5+-1 / 6 * \mathrm{~K}^{\wedge} 3+\mathrm{X}$.
2.5. TAYLR returns a Taylor Polynomial for the specified expression (the first argument) expanded in a specified variable (the second argument) about 0 , to a given degree (the third argument). Example:
 (Note: You will probably want to activate the _Incr for option on the cas hodes screen, so that the polynomial is displayed with increasing powers.)

Differential Equations

3.1 DESOLVE can compute the general solution to a differential equation or find a specific solution, given initial conditions. It requires two arguments. The first argument is either: an equation of the form $d 1 \mathrm{~F}(\mathrm{~K})=$ expression, where expression is in terms of X and $\mathrm{F}(X)$ and specifies the slope; or a vector whose first element is the slope equation and whose second element is an initial condition, specified in the form $F(A)=B$. The second argument for DESOL $V E$ is simply the name of the function to be solved for, such as $F(X)$.

Example: DESOLVE $(d 1 F(X)=\operatorname{COS}(X), F(X))$ returns $\{F(X)=S I N(X)+C 03)$.
Example: $D E S 0 L V E([d 1 F(X)=(X+1) * F(X), F(0)=1], F(X))$ returns $\left\{\mathrm{F}(\mathrm{X})=1 *\left(\mathrm{EXP}(X)\right.\right.$ ※EXP $\left.\left(\mathrm{K}^{\wedge} 2 / 2\right)\right)$.
3.2 ILAF takes an expression in the current independent variable and returns the inverse Laplace Transform of the expression. Example: ILAF $\left(1 /(x-1)^{\wedge} 3\right)$ returns $1 / 2 * X^{\wedge} 2 * E X F(X)$.
3.3 LAP takes an expression in the current independent variable and returns its Laplace Transform:

$$
F(s)=\int_{0}^{\infty} f(x) e^{-s x} d x
$$

Example: LAF $(S I N(X))$ returns $1 /(1+X 2)$.
3.4 LDEC can solve either a system of linear differential equation with constant coefficients, or a first order differential equation with variable coefficients.

LDEC: takes two arguments. For a single equation, the first argument is the function on the right hand side of the equation; for a system of equations, the first argument is a vector of the terms not containing dependent variables. The second argument is the auxiliary polynomial, in the case of a single equation; for a system of equations, it's a matrix of the coefficients of the dependent variables.

Example: $\operatorname{LDEC}(X, 2,2 X+1)$ returns $8-4 * X+X^{\wedge} 2-(8-C 0) * E X P(-1 / 2 * X)$.
 (This describes the velocity of a free falling body with air resistance taken into account.)

Time and Alarms

The HP 49G has an internal calendar and clock, which it can display if you wish. It also allows you to set alarms. These time features are independent of mode (RPN or ALG).

Time and Date

To display the time and date:

Press MODE DIETi and ∇ down to the Heoder field and make sure it's set to 2 Then press D to check (FHIT) the -ctuck field.

Press ENTER ENTER to return to the home screen.

To set the time and date:

Press \rightarrow TIME (3)ENTER.

This brings up the set tine andi date screen:

SET TIHE ARID DATE:

```
Tiнe: % :25:44 PM
```

oute: $11 / 10 / 99 \mathrm{M} / \mathrm{D} / \mathrm{Y}$

Enter hour
EDIT GHOME (GATML OH

The cursor will start on the hour setting. Just type the correct hour of the day, then ENTER. Next, type in the minute, then ENTER, then the seconds and ENTER, etc. Notice that for the AM/PM setting, you can CHOUS a 24-hour (or military) time format, as well as AM or PM.

Do likewise for the date settings (pressing D or ∇ to get to those fields): Enter the numbers of the month, day and year at the appropriate fields. (Just the last two digits of the year are sufficient-yes the HP 49G is Y2K compliant!)

The last field on the note line lets you Chins how the date is formatted for display -either honth-buy/vear or bay, herith, "ear.

Press ENTER ENTER to return to the home screen.

Abstract

Alarms

\section*{To set an alarm:}

Press \rightarrow TIME 2 ENTER to get the SET ALAFM screen:

This is where you enter all the various alarm parameters.

In the first field, you can enter a text message that will appear onscreen when the alarm is triggered. Then enter the exact time and date of the alarm.

Notice the final two fields (bottom line): You can opt to let the alarm Revest (from 0 to 10 times) at a regular interval. You specify that interval (if the kepsut field is non-zero) in the alare repost unit field, to the right.

When you are done, hit ENTER to return to the stack.

\section*{To acknowledge an alarm:}

While an alarm is sounding-it will beep for about 15 seconds-the message (if any) will display. If you acknowledge the alarm by pressing any key during this time, the beep will stop, the alarm annunciator, ${ }^{(\cdot \cdot)}$, will turn off, and the message will be deleted.

If you don't acknowledge the alarm during this time, the message will disappear but not be deleted. And if the alarm is non-repeating, the annunciator will stay on to indicate that you have an alarm that is now past due. To view past due alarms, press (TIME and select Erohse flarts... (You'll need to delete a past due alarm using Filline before the ${ }^{(\cdot n)}$ will turn off.)

Lists

Lists operate differently depending on the operating mode (RPN or Algebraic). This chapter is split into two sections, one for RPN mode, one for Algebraic mode, with identical examples in each, for comparison. A quick reminder on modes (press MODE): The first field on the screen is the operating hode. For the next 3 pages, this mode must be pifi; for the section following that, it should be flastraic. To adjust this mode, highlight that field with the cursor, press [HNDE, select the desired mode, and ENTER or DE There's one other mode to check at this point, too (good for either section below). At the calculator hodes screen, press [iEE The nunaric field on this Cas hodes screen should be checked. If it isn't, use the arrow keys to highlight the blank and press FICHB. Then ENTER and ENTER again, and you're ready.

Lists in RPN Mode

Entering and Storing Lists

In RPN, lists are enclosed by braces, $\{3$, and the elements are separated by spaces or commas. For example, suppose you wanted to put the list $\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 3\end{array}\right.$ onto the stack. You would press $6[3]$ to get a set of braces, then type the elements in order, separating them with spaces or commas-say, spaces here: (1)SPC 2)SPC 3)SPC 4 SPC (5). Then you'd just press ENTER.

With the list now at level 1 of the stack, you can now store this list, if you wish. Suppose you want to store it in a variable named L1. Type: ALPHA LD (1)STOD. Both list and name will disappear from the stack, but they're not lost: Press VAR to see a menu of all your stored variables. There, on the left side, you should now see a menu item, 互雷. If you "press" this 토푸 "key" (i.e. press the F1 key directly beneath it), this

You can also use the interactive stack to enter a list. Try it: Press 2)ENTER 4 ENTER 6 ENTER 8 ENTER 9 ENTER. Now press $\Delta \Delta \Delta \Delta \Delta$ so that you're pointing to the line containing 2 , the first element in your soon-to-be list. Now press NXT, then FLIST and finally ENTER. You'll now have a freshlymade five-element list on level 1 . Now store this list in a variable named L2: ALPHA L 2 (STOD.

Editing a List

You can also edit a list in the interactive stack. For example, to edit your $L 2$ list so that the final element is 10 rather than 9: Press LEI to put a copy of the list back on the stack. Now use the Δ key to start the interactive stack, then press EIITI. $\begin{array}{llllll}2 & 4 & 6 & 8 & 3\end{array}$ will appear on the command line. Now you can use \square and D to move around and the key to delete. Change the 9 to a 10 , then ENTER to end the edit. Don't forget to store this new version back into L2—at this point, it's only on the stack!

Computational Examples with Lists in RPN Mode

To perform an arithmetic operation on two lists，they must be of the same length，because the operation is performed between each pair of corresponding elements in the two lists，with a new list of the same length as a result．If you do an arithmetic operation on a list and a number，the result is a list obtained by distrib－ uting the operation of the number with each element of the list．These examples use the lists L 1 and Lz $\left(\begin{array}{lllllll}6 & 1 & 2 & 3 & 4 & 5\end{array}\right)$ and $\left[\begin{array}{llllll}2 & 4 & 6 & 8 & 10 & 7\end{array}\right)$ from the previous page．

Subtraction

L2－L1

$\{12345\}$
L2－1
LIE（1）-
＜1．3．5．7．9．$\}$

Multiplication

（L1）（L2）	LT LTE X	$\left\{\begin{array}{llll}28183250\end{array}\right.$
（L2）（．5）	LIE $\underbrace{5}$（	＜1．2．3．4．5．）

Division

$\mathrm{L} 2 \div \mathrm{L} 1$

〔2．2．2．2．2．2
$\mathrm{L} 2 \div 2$
포 붐
〔 1．2．3．4．5．\}

Exponentiation

$(\mathrm{L} 1)^{2}$
（3）${ }^{L 1}$
L1 $2 y^{x}$
＜1．4．9．16．25． 3
$(\mathrm{L} 1)^{\mathrm{L} 1}$
（3）ENTER LIT y^{x}
＜3．9．27．81．243．3

〔 1．4．27．256．3125．）

Addition

The \oplus key works differently than you＇d expect．It concatenates（joins）two lists into one longer list．To add the respective elements of two lists，use the ADD command（under LIST in the \square MTH menu，or simply typed）．Thus，either LI LE G GMTH 3 ENTER 6 ENTER or Li LE ALPHA ALPHA A D（D） ENTER will result in 4369912159 ．

Commands Applied to Lists in RPN Mode

Lists can be used as inputs for single-argument commands. The output of such a command will be a list (with the same length as the input list) containing the outputs of the command as it is applied componentwise to the input list. For instance, pressing 도 then SIN will result in a list containing the sine of each of the elements of L1.

Lists can also be used as inputs for multiple-argument commands. For instance, the command ADD is a command requiring two arguments, and one or both of those arguments may be lists. For example, Li (4)ENTER ALPHA ALPHA ADD ENTER will give you $\& 56789 \%$.

Of course, you can also define your own functions and commands that use lists as arguments (and results)—they're very handy for many purposes. But be very careful with list arithmetic! Remember that such arithmetic demands lists of matching sizes. And if you forget and use a + rather than ADD , you will get concatenation (or an error) instead of the addition you intended.

Special List Operations in RPN Mode

Some built-in commands are specifically made to work on lists. You'll find these collected as the third submenu in the menu under the G MTH key. (In other words, press 4 MTH 3 (ENTER).) This sub-menu offers the following commands (and willi appears here, too):
$\Delta L I S T$ gives the list of first differences. That is, it subtracts the first element from the second, the second from the third, and so on-resulting in a list one element shorter than the original:

ZLIST sums all list elements: $<\begin{array}{lllll}12 & 20 & 28 & 36 & 2 \text { E[ITTT gives } 96 .\end{array}$

Lists in Algebraic Mode

(A reminder here to revisit the calculatof hones screen, via MODE, and make sure that the oparating hede field is set to f tyatrais for the next 3 pages.)

Storing Lists

In Algebraic mode, lists are enclosed by braces, $\}$, and elements are separated by commas. (You can't use spaces to separate list elements in Algebraic mode because this will be taken as implied multiplication instead.)

For example, to enter $(1,2,3,4,5)$ at the stack, you would press $4(7)$ to get a set of braces, then type the elements, in order, separated by commas (\rightarrow), then press ENTER).

To store this list in a variable named L1, press the STOD key then ALPHA LD (1) The calculator will display: AHS(1) LL1. Now press ENTER.

If you look at your variable menu (press VAR), which shows you all the variables you have created, you should see a new item, ㄴㅍ, on the far left. Press this menu "key," 도 (i.e. press the F2 key directly beneath it), then ENTER. Your L1 list will be put onto the stack.

Now use the above procedure again to store the list $\{2,4,6,8,9)$ into a variable named L 2 :

Editing a List

To edit a list in Algebraic mode, use the Δ key to point to a list on the stack, then press ECHOI The list will be copied to the command line. At this point, any keystrokes you make will be inserted on this line (except that you may use \square and \square to maneuver through the list, and \square to delete characters).

Example: Change the final element in list $L 2$ from 9 to 10. Press LIA, \triangle and ECHOI Now \square over to the right of the 9 and 100 ENTER. Now you have the corrected version on the stack, but it's not yet stored into the variable name, L2-don't forget this important final step! STO ALPHALL 2 ENTER.

Computational Examples with Lists in Algebraic Mode

When you perform an arithmetic operation on two lists, they must be of the same length. The result is a list of the component-wise results of the operation. An arithmetic operation on a list and a number results in a list obtained by distributing the operation of the number to each element of the given list. You cannot perform these operations using only names; at least one list must be given on the command line or by ANS . These examples use lists $L 1$ and $L 2(\{1,2,3,4,5)$ and $\{2,4,6,8,103)$, stored previously:

Subtraction

L2-L1
LE ENTER LI ENTER
$\{1,2,3,4,5\}$
L2-1
LE ENTER 1 (ENTER
(1.,3.,5.,7.,9.)

Multiplication

(L1)(L2)	1	ENTER	L2	ENTER	$(2,8,18,32,50)$
(L2)(.5)	L2	ENTER 区	5	ENTER	(1.,2.,3.,4.,5.3

Division

Exponentiation

$(\mathrm{L} 1)^{2}$
LI ENTER y^{x} 2 ENTER
\{1.,4.,9.,16.,25.\}
(3) ${ }^{\mathrm{L} 1}$
Li ENTER 3 Yx $\boxed{4}$ ENS ER
63.,9.,27.,81.,243.)
$(\mathrm{L} 1)^{\mathrm{L} 1}$
Li ENTER Yx Li ENTER
(1.,4.,27.,256.,3125.)

Addition

The \oplus key works differently than you may expect. It concatenates (joins) two lists into one longer list. To add two lists together component-wise, use the ADD command (found under LIST via the \checkmark MTH key, or simply typed). Thus Li ENTER ALPHA ALPHA ADD ALPHA $G(1)$ ANS \rightarrow LE ENTER will result in $63 ., 6.99 .912 .15 .3$. ADD will not work on two list variable names.

Commands Applied to Lists in Algebraic Mode

Explicitly stated lists (i.e. not just their names) can be used as inputs for single-argument commands in Algebraic mode. The output of such a command will be a list (with the same length as the input list) containing the outputs of the command applied component-wise to the input list.

For instance, pressing Li ENTER SIN ANS ENTER will result in a list containing the sine of each of the elements of L1.

Lists can also serve as inputs for multiple-argument commands. For instance, the ADD command requires two arguments, one or both of which can be lists: LI ENTER ALPHA ALPHA A D ALPHA $4(1)$

Lists are handy, but be careful when building and applying your own user-defined functions to lists. For example, if the function contains $a+$, you may get concatenation (or an error) instead of addition.

Special List Operations in Algebraic Mode

Some built-in commands are specifically made to work on lists. These are found as the third sub-menu in the G MTH menu. (Press \square MTH 3 [ENTER).) This offers the following commands (and ADD also appears in this menu):
$\Delta L I S T$ gives the list of first differences. That is, it subtracts the first element from the second, the second from the third, and so on-resulting in a list one element shorter than the original:
$\Delta \operatorname{LIST}(64,16,36,64,106)$ (ENTER gives $\{12,20,28,363$.
$\Sigma L I S T$ sums all list elements: $\Sigma \operatorname{LLST}(\Omega 12 ., 20 ., 28.36 .3)$ ENTER gives 96 .

TLIST multiplies all list elements: $\operatorname{TLIST}(\{1,2,3,4,5)$ ENTER gives 120 .

SORT arranges list elements in increasing order: $\operatorname{SORT}(62,7,8,13)$ ENTER gives $(1,2,7,8)$.

REVLIST reverses list elements: REVLIST $(61,2,7,83)$ ENTER gives $68,7,2,1)$.

Vectors and Matrices

You can enter vectors and matrices right at the stack in either RPN and Algebraic mode, but there's also a special application called the Matrix Writer that simplifies your data entry.

Entering Matrices using the Matrix Writer

To begin using the Matrix Writer, press G MTRW. You'll see a screen that looks something like a spreadsheet. Press WECI. Notice that this menu item is a toggle: one press will put you into vector mode (i.e. UECI becomes TECI); another press will take you out of it-back to matrix mode (i.e. WEC D becomes DECII). For this example, you'll need to have the Matrix Writer in vector mode (so WEC should show).

Next, you need to decide whether you want a row vector or a column vector. The two softkeys $\pi \mathbf{0}+$ and riot determine the direction the cursor will move after you enter each element. Press $\boldsymbol{\Gamma} \boldsymbol{0}+\boldsymbol{1}$, if necessary to activate it (i.e. to change it to $\left[\begin{array}{l}0+\square\end{array}\right)$.

Now you're ready to enter data. At this point, your screen should look like this:

Nothing to it, right? Notice that you can change the calculator display via +IIII and HITI. To make each column wider (but see fewer of them), press ITIIt; to see more (narrower) columns, press +HITI. The width of the columns has no effect on the stored accuracy of the elements; it just allows more comfortable viewing for you.

What if you want to edit an existing vector or matrix? In the Matrix Writer, you just select an element by moving the highlight (using the arrow keys). For example, highlight row 1 , column 2 (which should have a 3) and press EIITI. The command line appears, with the current value that you can now edit. And your editing options aren't limited to just deleting and replacing individual values. Press NXT to see the rest of the editing menu, with items that allow you to add or cut a row or column, or place a single element onto the stack.

When you finish entering or editing with the Matrix Writer, just press ENTER to put the vector or matrix on the stack.

RPN and Algebraic Modes

Although they're entered similarly in either mode, vectors and matrices are manipulated quite differently in RPN mode than in Algebraic mode. From here on, therefore, this chapter is split into two corresponding sections, with identical examples in each section.

Vectors and Matrices in RPN Mode

First, you need to visit the modes screens to make sure that the machine's operating mode is RPN and the CAS mode is set to Numeric. Press MODE. If necessary, CHDES mifn for the opsioting hode field. DP that, then press ChE and be sure that the _nunsric field on this screen is checked. (If not, highlight that field and press FICHI.) Press DH Wh and you're ready to go.

Entering and Storing Vectors and Matrices

A vector on the HP 49G is indicated by brackets (the left shifted version of the \boxtimes key), with individual elements separated by commas or spaces.

For example, enter the vector $\left[\begin{array}{llllll}1 & 2 & 3 &]\end{array}\right]1 S P C$ 2SPC 3 ENTER. Now store this vector into a variable named $V 1$ by pressing \rightarrow (IALPHA)V 1 STOD. Press VAR and you'll have a menu item called [[1 If you press that menu key, your vector, $\left[\begin{array}{llll}1 & 1 & 2 & 3\end{array}\right]$, will be put onto level 1 of the stack.

Try another. (You'll need these two vectors in later examples.) Use the same procedure to enter the vector $\left[\begin{array}{lll}-1 & 2 &]\end{array}\right.$ and store it into a variable named $V 2$. (Reminder: In RPN, you type 1$]+/$ to get -1 .)

V1 and $V 2$ are examples of row vectors. A matrix on the HP 49G is a row vector made up of row vectors. For example, the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is denoted as $\left[\begin{array}{lll}1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 4\end{array}\right]$.
Try entering this matrix by pressing $G[0][1]$ SPC $2 \rightarrow G[5]$ (SPC (4) ENTER). Now store this matrix into a variable named lill by pressing \rightarrow ALPHAM (STOD.

Of course, you can also enter a matrix using the MatrixWriter. Press \leftrightarrows MTRW and be sure that the vector toggle is unchecked (TECI). Then enter the matrix $\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$. Store this into a variable named M 2 . (You will use both M1 and M 2 later.)

Editing a Vector or Matrix

Editing a vector or matrix on the interactive stack is easy. Simply press until you are pointing to the entry you wish to edit, press EIITI, use the arrow keys to navigate through the object. Any keystrokes will be inserted at the cursor, and you can use the \oplus key to delete characters.

Use this procedure now to change the matrix $M 2$ to $\left[\begin{array}{cc}2 & -1 \\ -2 & 1\end{array}\right]$. (Don't forget to store it back into $M 2$!)

Computational Examples with Vectors and Matrices in RPN Mode

These examples use the vectors $\Psi 1$ and $\sqrt{ } 2$ and matrices $\mathbb{M 1}$ and $\mathbb{M} 2$ that you just stored.

Multiplication of a vector by a scalar

Addition of two vectors or matrices (with same dimensions)
[$\left.\begin{array}{lll}3 & 6 & 9\end{array}\right]+\mathrm{V} 1$
NI +
$\left[\begin{array}{llll}4 & 8 & 12 & \end{array}\right]$
$\mathrm{M} 1+\mathrm{M} 2$
F1
$\left[\begin{array}{llll}1 & 3 & 1 &]\end{array}\right]$
$\left[\begin{array}{lll}1 & 5 &]\end{array}\right]$

Matrix multiplication (with compatible dimensions)
(M1)(M2)

$\left[\begin{array}{llll}{\left[\begin{array}{lll} & -2 & 1\end{array}\right]} \\ & -2 & 1 &]\end{array}\right]$
$\left[\begin{array}{lll}-2 & 1 &]\end{array}\right]$
(M2)(M1)
H2 [in
$\left[\begin{array}{cccc}{\left[\begin{array}{cccc} & -1 & 0 &] \\ & 1 & 0 &]\end{array}\right]}\end{array}\right.$

Multiplication of a matrix and a vector (so long as the dimensions make it possible).
(M2)(V2)

$\left[\begin{array}{lll}-4 & 4 &]\end{array}\right.$

Matrix inversion
$(\mathrm{M} 1)^{-1}$
Fi. $1 / x$
$\left[\begin{array}{llll}{[} & -2 & 1 &]\end{array}\right.$
$\left[\begin{array}{lll}{[1.5} & -.5\end{array}\right]$

Special Vector and Matrix Commands in RPN Mode

The HP 49G offers a wide variety of commands for vectors and matrices-only a small sample are discussed here - which you can find by pressing $\leftrightarrows \sqrt{M T H}$, or by simply typing the command names from the keyboard. (In general, typing a command name on the command line followed by ENTER will result in that command being performed on object(s) on the stack.)

For example, to find the magnitude of V1 (using the FBS command) you could press \quad II $\boxed{4}$ MTH ENTER ENTER; or you could type II ALPHA ALPHA A B S ENTER.

Dot product of two vectors

Cross product of two vectors

The transpose of a matrix

[2. 4.]]

The determinant of a matrix
IM21 EIE G MTH 2 ENTER 2 ENTER 8 ENTER 0.

Vectors and Matrices in Algebraic Mode

For this section (the next 3 pages), re-visit the calculator nores screen now (press MODE) and set the

Entering and Storing Vectors and Matrices

A vector on the HP 49G is indicated by brackets ($\checkmark[])$ with individual elements separated by commas. Although the finished result will appear with spaces, you can't type spaces to separate vector or matrix elements in Algebraic mode, because they will be taken to mean implied multiplication instead.

For example, to enter the vector $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, press $\left.41 \rightarrow 2\right)(3)$ ENTER. Now store this vector in a variable named $V 1$ by pressing STOD ALPHAV (1) ENTER. You should now have a menu item labeled WI (press VAR, if necessary, to see your variables menu). If you press that menu key, then ENTER, you'll see the vector $[1,2,3$.$] appear on level 1$ of the stack.

Repeat this procedure in order to store the vector $[-1,2]$ into a variable named $\vee 2$. You will use both of these vectors later.

Y 1 and V 2 are examples of row vectors. A matrix on the HP 49 G is a row vector made up of row vectors.

For example, the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is indicated on the HP 49G as $[[1,2][3,4]]$.
 able named 1 1: STODALPHAM(1)ENTER.

Of course, you can also enter a matrix using the MatrixWriter. To do so, press $\boxed{4}$ MTRW and first make sure that the DEC toggle is off (i.e. that it's not DECT)
Now enter the matrix $\left[\begin{array}{cc}2 & -1 \\ 3 & 1\end{array}\right]$. Store this into a variable named M 2 -you'll use it later.

Editing a Vector or Matrix

Editing a vector or matrix on the interactive stack is easy. Simply press Δ until you're pointing to the entry you wish to edit, and press ECHDI. Then use the arrow keys to position the cursor; any keystrokes will be inserted at the cursor (except which deletes characters). Use this procedure now to change the matrix stored in M 2 to $\left[\begin{array}{rr}2 & -1 \\ -2 & 1\end{array}\right]$. Then don't forget to store it back into $\mathrm{M} \boldsymbol{Z}$!

Computational Examples with Vectors/Matrices in Algebraic Mode

These examples use the vectors $V 1$ and $\sqrt{ } 2$ and the matrices $\mathbb{M 1}$ and $\mathbb{M} 2$ that you just stored. Note that you can't perform operations on two list names; at least one of the lists must be explicitly given on the command line-or implicitly stated by the $\mathrm{A} H S$ variable.

Multiplication of a vector by a scalar
3(V1) [3.,6.,9.]

Addition of two vectors or matrices (with the same dimensions)

[3,6,9]+V1	$[3,6,9] \oplus$ H1] ENTER	[4.,8., 12.]
M1+M2	FII ENTER \triangle HET ENTER	[[3.,1.]
		[1.,5.]]

Matrix multiplication (with compatible dimensions)
(M1)(M2) -HE ENTER \triangle ETR ENTER

$$
\begin{gathered}
{[[-2 ., 1 .]} \\
[-2 ., 1 .]]
\end{gathered}
$$

(M2)(M1)
IR ENTER X II ENTER
[[-1., 0.]
[1., 6.]]

Multiplication of a matrix and a vector (with compatible dimensions)
(M2)(V2) EIE ENTER X UE ENTER
[-4., 4.]

Matrix inversion
$(\mathrm{M} 1)^{-1}$ IF ENTER $1 / x$ ANS ENTER
[[-2., 1.]
[1.5,-.5]]

Special Vector and Matrix Commands in Algebraic Mode

The HP 49G offers a wide variety of commands for vectors and matrices, only a small sample of which are discussed here. You'll find these commands via the G MTH key, or you can type them from the keyboard. In general, a command name on the command line, followed by an explicit reference-or a reference via the $\mathrm{Al}+\mathrm{S}$ variable-to a vector or matrix as the argument in parentheses, will produce the result of the command being performed on the given vector or matrix.)

For example, to find the magnitude of V 1 (using the ABS command) you either do this: WI ENTERGMTH ENTER ENTERGANS ENTER;
or this: \quad II ENTER ALPHA ALPHA A B $S(1) G A N S$ ENTER).

Dot product of 2 vectors

$\operatorname{DOT}([45], V 2) \quad$ EPE ENTER 4 MTH ENTER 2 ENTER
(4) (1) \rightarrow (5) \rightarrow (ANS ENTER 6.

Cross product of 2 vectors

Transpose of a matrix

TRH(M1) EII ENTER GMTH 2 ENTER ENTER
[[1, 3. 3.]
(3) ENTER GANS ENTER
[2.:4.]]

Determinant of a matrix

DET (M2)
H2 ENTER G MTH 2 ENTER 2 ENTER
(8) ENTER G ANS ENTER
0.

Statistics

The HP 49G offers you three different groups of powerful statistical features: single-variable, two-variable, and inferential.

Single-Variable Statistics

Press \rightarrow STAT to bring up the statistics choose box. Select the single-uar.. option and press ENTER to go to the single-ybilable statistics input screen. The first field on this screen, labeled edat, is where you enter the matrix of data to be analyzed. (All of the statistical routines work with the matrix named EDRT.) Highlight this field and press EIITI. This takes you to the Matrix Writer environment

As a first exercise, enter the planetary data from the table here. The first data column contains the period of revolution of each of the nine planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Neptune, Uranus, and Pluto), measured in Earth years. The second column contains the mean distance from each of the planets to the Sun, measured in astronomical units. (1 au = the Earth's mean distance from the Sun)

For convenient entry, note that you can set either $\boldsymbol{\Gamma} \boldsymbol{x}+\boldsymbol{\square}$ mode (to enter the data by row) or $\boldsymbol{\Pi} \boldsymbol{\square}+\mathrm{a}$ mode (to enter by column).

Period (yrs)	Mean solar distance (au)
.241	.381
.615	.723
1	1
1.881	1.574
11.862	5.203
29.458	9.539
84.013	19.183
164.794	30.058
248.430	39.519

After entering the last element, press ENTER once more to return to the sIngle-vakinele statistics input screen. Now set the col field to 1 , so that the statistics will be computed for the first column of your datathe periods of revolution. Next, set the typr field to Sample. (After all, your data are not complete; there are other objects, such as asteroids and comets, that also orbit the sun.)

Now check (FHB) all of the blanks for these statistics:

-heon	the arithmetic average of the data
-std bes	the standard deviation of the sample or population
-Wariance	the variance of the sample or population
-Total	the sum of the data
- Haxinum	the largest data value
-Hinihun	the smallest data value

Press 18 to compute the statistics. On the stack, you'll find the values of all the statistics you requested. (You may have to use \triangle to see them.) Now go back to the sImble-Yhiminele statistics input screen once more (\rightarrow STAT ENTER), change the $c!$ field to \bar{Z} and compute likewise all the same statistics for the second column, the planets' mean distances from the Sun.

About EDAT

Press VAR and notice the menu item EDTiTi. EDAT is now stored in the current directory. ZDAT is a matrix that you can manipulate just like any other (or store a copy of it, by putting its contents onto the stack and storing them into another variable name). But the name $\overline{\mathrm{ZDHT}}$ is reserved - don't use it to store other types of objects—as the HP 49G's statistical features always use the contents of EDAT for statistical data.

One other note: You don't need the \rightarrow STAT environment to enter data into EDAT. You can also start the Matrix Writer right from the stack, enter data, then store it into ZDRT yourself (i.e. STO EDAT ENTER).

Frequencies

Sorting data into bins is another single-variable procedure. Press \rightarrow STAT, then select the Fraquencias. . option (or press (2), then ENTER. This will take you to the FREQuEncIEs input screen.

Notice that the enat field is again the first item, and it should still contain whatever data were there previously (in this case, the planet data)-no need to mess with it. Select the col field to \bar{Z}, if it's not already. Then set the $\%$ - Hin field to 1 , the Ein count field to 3 , and the Ein Hidth field to 10 . These settings instruct the calculator to sort the data in column 2 of ZDAT (the planets' mean solar distances) into 3 bins with a width of 10 , starting with a value of 1 . In other words, the bin intervals are $[1,11),[11,21)$, and $[21,31)$.

Now press 0 国 to do the actual sorting. You'll find the results displayed on the stack in the form of a matrix (on level two) and a vector (on level one). In this case, the matrix is [[4.] [1.] [1.]], indicating the frequencies of data in each of the bin intervals: 4 entries are in the interval $[1,11), 1$ entry in the interval $[11,21)$, and 1 entry in the interval $[21,31)$. The vector $[2 ., 1$.$] means that 2$ of the entries are less than the x -Hini (1); and 1 entry is greater than or equal to the upper bound of the last interval (31).

Histograms

A graphical way to display single-variable data is by a histogram. Press $\square 2 \mathrm{D} / 3 \mathrm{D}$ to go to the PLOT SETUP
 iar planet data. Set the \cos field to 2 , and you're finished with this screen. Press ENTER, which will store these settings and send you back to the stack.

Now press \leftrightarrows WIN. This brings up the flot hindoh - histogian screen, where you can now input the following horizontal and vertical view intervals and the bar width: \quad H-Yien: $\quad 40$
V-View: $\quad-1 \quad 7$

Ear Hidth: 10
Once you've done that, just press EFitise Mifill to generate the histogram. Notice that you can then press 토T: and move the cursor around with the arrow keys to investigate this plot.

Two-Variable Statistics

Statistics relating to one or both columns of data can be computed using summary statistics. Press \rightarrow STAT and select the surnary stats. . option.

At the sumaby statistics input screen, you'll see the somt field, as usual (still containing your planetary data). You'll also see fields for $\boldsymbol{n}-\sigma \mathrm{t}$ and $\eta-\sigma \mathrm{c}$. Set these to 1 and 2 , respectively.

You can select (by checking, $\boldsymbol{F} \boldsymbol{C H B}$) any combination of these six summary statistics:

- 5%	The sum of the data in the x-column
- ${ }^{1}$	The sum of the data in the y-column
-542	The sum of the squares of each of the values in the x-column
- E\%	The sum of the squares of each of the values in the y-column
- 50	The sum of the products of each $x-y$ data pair
-nis	The number of data pairs

After you select the statistics you want, you just press 01 . and those statistics will be computed and displayed on the stack.

Fitting a Model to Data

Two-variable statistics allow for the investigation of relationships between variables. For example, with your planetary data, you might ask: Is there any relationship between the period of revolution of each of the planets, and its mean distance from the Sun?

Press \rightarrow STAT and select the Fit dota. . option. At the fit bitt input screen, you'll find the usual fields: EDATh, $n-\operatorname{col}$ and $\eta-c o l$. These latter two field values specify the column numbers of EDATA that will serve
 respectively.

The last field on this screen is hode 4 , which selects the mathematical model, to use as a fit for the data:

Linesr Fit.	Returns the best-fitting expression of the form $b+m x$.
Logarithmic Fit.	Returns the best-fitting expression of the form $b+a \ln (x)$.
Exponeriti.al Fit.	Returns the best-fitting expression of the form $c e^{(b+a x) .}$
Fower Fit.	Returns the best-fitting expression of the form $a x^{b}$.
Eest Fit	Chooses the above option that fits the data the best.

After you choose a model, there are two things you can do. If you press FBEII, x and y fields will appear. You can enter a value into one of these fields, highlight the other, then press FFEIC The calculator will then compute the value of the highlighted field that is computed (by the selected model) using the value in the other field. If you press 0 四 the HP 49G will display the best fitting expression of the model selected, along with the Correl at ion and the Cousriance with respect to that model.

A word about the Correl at ion value. With the Linear Fit model selected, the Correl at ion value is the linear correlation coefficient, a measure of how linear the data is, which is a real number ranging from -1 to 1 . A value of -1 indicates a perfect linear relationship with negative slope; 1 indicates a perfect linear relationship with positive slope; and 0 indicates a complete lack of any linear relationship. If the model selected is not linear, the calculator then computes a correlation on the linear transformation of the data, so that, again, the value of the Correl at. ion reported by the calculator indicates how well the selected model type fits the data.

Try applying a Fower- Fit model to the planetary data.... Notice how close the correlation is to 1 , and look at the power fit expression itself. (You may have to Δ up to it and press WIEP to see the whole thing.) Notice that the exponent is very close to $2 / 3$. This is an illustration of Kepler's third law, which states that the cube of the mean radius divided by the square of the period of revolution is a constant for all objects in the solar system. This law was discovered around 1600 !

Scatterplots

A scatterplot is a useful graph for analyzing two-variable data. Press $\leftrightarrows 2 \mathrm{D} / 3 \mathrm{D}$ to go to the FL0T sETuF screen, highlight the type field, press [HDOE, and select sotter. (The contents of the EDATe field should contain your planet data.)

You specify the independent and dependent variables in the fold. The first number identifies the column to plotted by the horizontal axis-the independent variable-set this to 1 . Set the second number to Z, which will plot the second column of $\overline{\mathrm{DHF}}$ by the vertical axis—the dependent variable. Make sure that $H-T_{i c k}$ and $\boldsymbol{\psi}-\mathrm{T}_{\mathrm{i}} \mathrm{ck}$ are set to 10 pixels, then press ENTER to save all these settings.

Now press $\boxed{G T I N}$ and enter the following values to match the data: $\quad \mathrm{H}-\mathrm{Yish}^{2}: 0 \quad 250$
u-ษish: -5 40
Press EFits [DFill to generate the scatterplot.... Notice that one of the menu items beneath the scatterplot is ETATLL Pressing this will superimpose a "perfect-fit" curve for the current model. All of the options available in a function plot, such as tracing, root finding etc. can now be applied to this curve. (Bear in mind that if you use any of these options, the plot type is actually changed to Funiot ion, and the current model expression is placed in EQ.)

Press CANCEL to return to the FLOT HInWor screen, then CANCEL again to get back to the stack.

Inferential Statistics

The HP 49G offers two types of inferential statistics: confidence intervals and hypothesis testing. In either case, you have the following six options:

Z-statistic, $1 \mu \quad$ For inference about the mean of a population of known standard deviation ($\sigma_{\text {pop }}$).
Z-statistic, $\mu_{1}-\mu_{2} \quad$ For inference comparing the means of two populations with known $\sigma_{\text {pop }}$'s.
Z-statistic, $1 P \quad$ For inference about a single population proportion.
Z-statistic, $1 P_{1}-P_{2} \quad$ For inference comparing two population proportions.
T-statistic, $1 \mu \quad$ For inference about the mean of a population of unknown $\sigma_{p o p}$.
T-statistic, $\mu_{1}-\mu_{2} \quad$ For inference comparing the means of two populations with unknown $\sigma_{\text {pop }}$'s.

Hypothesis Testing

Suppose that you toss a coin 10,000 times and it comes up heads 5072 times. You suspect that the coin may be biased toward landing on heads. Test this hypothesis at the $\alpha=0.05$ level. Press \rightarrow STAT and choose the hypth. teste. . option.

Then, since you're testing a single proportion, select $\boldsymbol{z - t e s t} 1 \mathrm{~F}$. Input these settings: $\quad H_{0}=.5$
$x=5072$
$n=10000$
$\alpha=0.05$

Press 01 , this brings up the Alternative Hypothesis choose box. Select the $n>.5$ option and press Dr . The calculator will display the results of this test: Accept H_{0}, along with some details such as the z score associated with this proportion, the P-value of the test, the critical z-score, and the critical x-value that marks the boundary of the reject region.

Press rifirll to see a graphical display of this test result with the reject region identified.
Press HELF for a general description of this hypothesis testing procedure.

Confidence Intervals

A manufacturer of laundry detergent packages the detergent in 5-pound boxes. To check the filling machine, they took a sample of 1219 boxes and weighed them. The average weight of this sample was 5.05 pounds, and the sample standard deviation was 0.02 pounds. What is the 99% confidence interval for the population mean weight of the boxes?

Press \rightarrow STAT and choose conf. Interval. Then, since you want a confidence interval for a single population mean, and you have only a sample standard deviation to work with, select the T-Int, 1μ option.

Now input these settings: $\quad \bar{x}=5.02$
$s_{x}=.02$
$n=1219$
$C=.99$

Press The The 99% confidence interval for the population mean will be displayed.
Press [Fifif to see a graphical display of this confidence interval.
Press HELFI for a general description of this confidence interval procedure.

[^0]: *Often the menu line will remain visible even when you're not directly concerned with it- and it will continue to show the menu you most recently requested, regardless whether you're still using that menu. This is normal-just ignore the menu line. (And when such irrelevant menus appear on display screens in this Guide they may therefore show different contents from those your calculator.)

[^1]: "Don't worry if your status area shows settings different than those mentioned here. Only a few are relevant for any given part in this Guide, and you'll be advised which ones to adjust for each section or exercise.

