
40LNIOdIAT

JadIdITITIVEVMATA

so

Science and Engineering Mathematics
with the HP 49 G

VOLUME I

Introduction, Pre-calculus Mathematics, Graphics,

and Linear Algebra

Copyright © 2000 Gilberto E. Urroz, Ph.D., P.E.
All Rights Reserved.

ISBN 1-58898-043-X

Science and Engineering
Mathematics

with the HP 49 G

VOLUME I
Introduction, Pre-calculus Mathematics,

Graphics, and Linear Algebra

Gilberto E. Urroz, Ph.D., P.E.
greatunpublished.com
No. 43

Science and Engineering Mathematics

with the HP 49 G

VOLUME I

Introduction, Pre-calculus Mathematics, Graphics,

and Linear Algebra

To my math High-School teachers at Colegio Calasanz, Managua, Nicaragua (1971-1974):

-
-
-
-

Mr. Lucinio Sanmillan (mathematics),

Mr. Jorge Kruger (mathematics),

Mr. Humberto Bermudez (science, physics, and chemistry) and

Mr. Alejandro Robles (mathematics and physics),

for they awakened in me the love for mathematics and the sciences.

To my math, physics, and engineering mechanics college professors at Universidad Nacional
Auténoma de Nicaragua - Recinto Universitario “Rubén Dario,” Managua, Nicaragua (1975-
1980):

H
H
H

=

. Antonio Rodriguez (mathematics),

. Rafael Sanchez Richardson (mathematics),

. Douglas Lopez (mathematics),

. Anibal Fonseca (physics),

. Max Garcia (statistics),

. Eduardo Gomez (physics),

. Douglas Quinn (physics),

. Roger Argenal (physics), and

Dr. Moisés Hassan (continuum mechanics),

for they taught me the right way to apply mathematics to the hard sciences.

TableContents
Preface ...oviieiiiiiiieeeencescescescesccescescences 1

Preface to VOIUME |eeette e tee ae teeta ee eae ae eennaeeseaenneaasaennnnns 5

Introduction.....cooeeieieeecenceecencennes 7
Notation used in this DOOKeeenereeees 7

The HP 49 G operating system or ROMeiiiniie ieeee ae eieeteeiaieaseeaennaanenens 7

Keeping up to date With the HP 49 G.......oeeiiniie iii iit teeetieeeetaieeeeeeannneseennnnns 8

Programs for the HP 49 Geerieieee eee tte eet aaeteeaneeseennnncnassnnnsasses 9

Some HP 49 G programming CONCEPLESueeeeeete eteeee eee ett aataiareaaeeann 9
Programming LANGUAGEScoiiiiiitittttt eeee et ee etter aaeeeeeeeeaeeseresannnnnnns 9
IDArES «cetteeeeeeteeeeeeeeeetaitaaann 10

Calculator operating MOSuuuunu iiieeeettaeaaaaeeeeeereeeenennennnnnns 10
Changing the calculator Modeccoiiiitetiie atee ee eeeraaaaaaanns 10
Comparing algebraic mode with RPN Modeoiiiiiiiiiiiii iiiiiicieie eee 10

ooLPPP13
Example of flag setting: general solutions vs. principal value............ooiiiiiiiiiiiiiinn.. 13

Other flags Of INEErESt «oiiii iit tiie ite et iia tee eeaa ae seaannnanaanen 14

Objects and their types in the HP 49 G calculatorooeuiuuieeeiiiiineiiiiiineiinnnneanennn. 15

Organizing data in your CAlCULQEON.coeiei iii ieee ieee ateeetaeaereeennnesreennnes 16

i © 2000 - Gilberto E. Urroz

All rights reserved

 The HP 49 G keyboard 18
Primary function Of @ACh KEYoueen nnn iiie iii ttaateeeaaeeeeeeenenenennnnns 18

V:Y{o]plo]oY=38[oleglo]fs [of A=]oJ18

Left-shift and right-shift fUNCLIONScoeeeeeeieiittt reat eteeeeetereeeennennnnnnnnns 18

Secondary functions of the soft menu (F1-F6) KEYSeueeuuuiiieieeiiiieeeiiaeeeeannianennns 19

TRE QITOW KOYS...nenieeeteeta teeta teeta eee etaeeseenaaaeseeannnnns 19

ULILIEY KOYS «eeeeeeeee ete eet ae eset enaaee ee anananaaseeennnaseennnnessennnnensens 19

Mathematical OPEratiONS KEYSuu.eeuuneeeeeenieeeetenaeeeeesanneesennniesesnnseessennnnes 24

THE ALPHA KY«eeetteat tee a ttee tetas atte saaesennessssnsssnnsesnsesnnsessnessnnnens 26

NUMEIIC KOYPAQ.......cunnnniniiiiitiiieterteee eeteteeeinnanaaas 26

Arithmetic OPEration KEYSene eeeetetaeeeeetteeee eee aaaeeeaeaeeeenaaaseeannnns 28

iii © 2000 - Gilberto E. Urroz

All rights reserved

 Basic calculator operation.............. 30
10]To[JYJsaTo 61To[FS30

Deleting VAriQDUesoouunee eeeattiate ee ete ee eeenaaeeenenaeseennaaeennnaaenenans 30

Transferring data between two HP 49 G calculatorsc.coeuiiiiiiiiiiiiiiinninannnnn. 31

Transferring data from the HP48 to the HP 49.........eeeriniie tie ieiereetneeeeeennaaaeenn 31

Transferring data from the HP49 to the HP 48...iiiciaaaeennn. 31

How to type Greek letters and other Characterscooeeiiiiiuiiiiiiiiiieiiunnaieennnn. 32
Keyboard shortcuts for special charactersiiiiiiiiii iii iiiiii iaaaaeens 32

Changing the display fOrMat...........oouiiiiineiiiaeeettaaaaeeeeeeeaeennnnnnaaanns 33
Exercises using different number formats... ..coouuiiii iiiiiiiiiaee ee eeaaaaaanas 33

Entering nUMDbErs As POWEIS Of LON ...uunnie ete ee eet eeeeeetaeeeeannaeseennaeeeennnns 35

Changing the angle mode and coordinate SYSEeMveiiiniieieenieeeeennnereennnseeeennns 35
Important relationships between angle unitscocoons36
Quick conversions from degrees to radians and ViCe Versa........ccuuiiiiiiineneeennnereennnns 37
Important relationships between coordinate Systemsciiiiiiiiiiiiiiiiiiiiiiiiaaaan. 37
Additional examples on angle measure and coordinate system conversions.................. 37

HP 49 G standard mathematical CONSEANESooeeeniieiinniie i iiieeiieeeennneaeennnnnas 38

Physical constants available in the HP49 G calculatorccoveieeeiiiiniiiiiiiiaannnennnnnnn. 39

Utility menus adapted from the HP 48 Geuueuiiiiiieeeananaaans 39

Accessing the EQ LIB MENUSee ieeeeeeeeee eaetnrataaeaaaeeseeeannnnnn 40
Accessing the constants librarycoorcirctiteraan 40
The fUNCEION CONST LL.teiete eee tea aa aa ae ees eeeanannnnnaaaaaaaaaanes 41
Accessing the constant library through the command catalogcooooiiiiiiiiinna.. 41

Using the command CAtQlOG........cooeeeeiniinieeeeee eee eee eee rataaaaaaaaeas 41

Working with units in the HP 49 G calculatoruuuuiiieiineiiiiiiiiiiieeeaaaeeeeeannnnnns 42
UNIVEISAl aS LAW iiiiiiiiiiiaei ee teeta eee aaeeeaannesaasnnasaaannaaasannn 43

iv © 2000 - Gilberto E. Urroz

All rights reserved

 Calculations with real numbers........ 45
What is the CAS in the HP 49 G Calculator?oouuuieeeiuuiiieetieeeetnneesennnnaeeensnnenns 45
FN 001{0345

Checking current CAS Settings ...couuiiiiiiiiiiiiieee eaaeeeteaaaaeaeannnnns 46

Checking the calculator Modecountiiiiiie irr tei e ae raaeeaannnnens 46

Real nuUMDber CAlCULALIONSo.nne eittte e eet taite ee etaneeeanrnseseeannassennnnsesenens 46
Modifying the display to obtain a textbook- like appearancecooviiiiiiiiianinnn.. 48
Changing from complex to real Modeoiiiiiiiiiii iiiiiiaie aeae eens 48
Some functions accessed through the MTH Menuo.oo49
Examples of functions from the REAL Menucoiiiiiiiiiiiiiiiiiiiiiiiiiia 50

Combinatorics, random numbers, and probability functionsceeeeieiieeuiiennnnnnn. 52
Factorials, permutations, and combinationsiiiiiiiiiiiiiiiiiiiiiiiiaiaaeareeeeaaanaans 52
The Gamma fUNCEION Lu.iiiit i tiie tiie e tiie eeeaaaaaeeensnaasennnnaaasanens 53
Generating random NUMDETS «iiiiiiatte ete etetentanaaaaaaeeeeeeennannnnnnnnnn 53
Examples of probability calculations for continuous random variables 54
Normal distribution pdf ...o.ooierrraaa54
Normal distribution Cf.oooiiiiiiiii iiiiittt eee ieee raaaeeaeannnnns 55
The Student-t distributionoiiiiiieeeirae ieee eeaaaaaaens 56

The Chi-squared (x}) AiStriDULION LL.iiieriereer57
LILLe3{010oo57

FFT menu: Fast Fourier Transform - brief introductionoeeeeeeiiieeeeunieeeeennnnnnn. 58

Vv © 2000 - Gilberto E. Urroz

All rights reserved

 Calculations with complex numbers.. 59
Introduction to COMPLEX NUMDEIScooviiiiiiiiitiiiiiiieee eeieananns 59

The CMPLX menus - basic complex number applicationsooeeviuuiiiiiiiiinenennnnnnnn 60
CMPLX menu through MTHoiiiiiiieee aae ee etaaasreenanaaaaannnanann 60

CMPLX menu defined in the keyboardoooiiiiiiiiiiiii iii iiicities 60

Polar representation of a COMPLEX NUMDEI.........uueieeeiie etter etteaieeeeenineeeernneereennnes 61

Examples of basic complex nUMber Operationseuuieeeeuieeteeeuiieeeeennieseensneeeennnns 61
lo]EU =o==)1]-Loo162

Complex NUMDEr CAlCULALIONS eee ieeeee eet ee tae ete e et aeeeaaessaeesnaaennanns 62

Examples of operations with complex numberscooiiiiiiiiiiiiiiii iii iiiiiee anes 63

Functions of @ complex variableeeeiiuiiii ieee ieee tenaieeeeenraersernnseneennnns 64
Example: Expanding In(z) using the HP 49 G calculatoroovveiiiiiiiiiiiiiiiiiiiiiiiaanes 65
Example: Expanding z% using the HP 49 G calculatorccoeuiuiininieiinininieninennnnn. 65

Functions of complex numbers in the HP 49 G calculatorcouveeiiiiiiiiiiinnenenennnnn. 66

vi © 2000 - Gilberto E. Urroz

All rights reserved

 Lists, functions, and programs 67
83J67

Entering a list Of Objects oo iiiiiiireas67
Operations with lists of nUMbersoiiieee67
Composing and decomposing Listsoiiiiiiiiiiiiiiiiiiiiiiiie eee eee rereeaaaaaaaaaaanns 69

0ediToLS69
Defining a function of one variablecocoa,69
Evaluating the fUNCLION «iiiiiieeetite ee iiaeeeeneiaanens 70

When list arguments fail.ooooiiiiiiiiiiiiitrees70

An example Of ProQramMMINGneetniie tte iiee eee tteeeeetaneeeseannseeseennsesessnnneenees 71

Global and local variablescoiiiiiiiii iiiiiitiie tiiee eee eaaaaaaaaas 72
Global Variable SCOPE.oouuiiiiiiiiitie ieee tate eee aa ee eeanaaaaaaanes 73

Functions defined by more than 0Ne eXPreSSiONuuuieeeeeeuiieeeeunieeeseniieerenennenns 74

The IFTE FUNCONiii iii tierrite tei ie eta ae eee aaaeeeaaannaeeeananaaesannnnnn 74
Combined IFTE fUNCLIONS «uttere eee e eee ee ee tee teataaaaaaaaaanns 75

Generating a table of values for @ functionoouuiiiiiiiiiieiiaeiiiiianaaannn 75
LE =O RZ1T=](=76

The TPAR Variableiiiiiiiiii iiitiieieee iat e ee tiaae ee taaeeaansnaaeaanannn 76

Functions of more than one variablec..uiuiuieiiiiiiiieiiiiiieiiiiiieeeeeenannnns 77

Applications of function definitions - probability distributionsccovveiunnnnnn.. 78
Discrete probability distributionsoiiiiiiiiiiiiiirrrraaaa 78
Defining summations in the HP 49 Giiiiiiceria creas 79

Binomial probability distribution fuNCtion..........coiiiiiiiiiii iiiiiiiris 79
Binomial cumulative distribution funCtion......... co iiiiieee80
Other discrete probability distributions and distribution functions 80

Continuous probability fUNCLIONSoiiiiiiiiicirri eaae eee eeeaaans 81
The gamma distribution co.iiiiiieens81

The exponential distributioncoiiiiiiiiiiiiiiiiieiaaaaaaaanns 82
The beta distribution...coiiieeeiia iiee a iaaaaas 82
The Weibull distributionouiiiiiiirireaaaaaaaaanns 82
Defining integrals in the HP 49 G - brief introductionccooiiiiiiiiiiiiiiiiinnnne 82

Manipulating elements Of liSESooeeeeniiniieeeete e eee teat eeeenenenennnnns 85
Determining List SIZE...countiiitiit ite e tr aaa teat iaaeeeraaaaaaaaas 85
Extracting and inserting elements in a list...iiaeas 85

Element position in the List...o.ooiiitiie ieee reaae a aaaens 86
HEAD and TAIL fUNCHIONS «Leiteiitiatirate tiie eee taeeeaaaenaaeanannnaaaanes 86

Applications Of list OPerationseeeeeeuiietiieaaee ee eiaeeeeaenaaaaraennn 86
Mean, variance, and standard deviation of a sample cocoon iiiiii 86

Calculating statistics from grouped dataoooiiiiiiiii iiiiiieee eee 87
Mean and variance of a discrete probability distributionccoiiiiiiiiiiiiii 88

Vii © 2000 - Gilberto E. Urroz

All rights reserved

Programs for generating lists Of NUIMDErSc.ooeeiiiuiuiuuniiiiieee ete eeeennnneneaeareeeseeens 89

Applications of list-generating Programsuuuuuueeeeeeeereeeeenennaseeseseesesssnnnnnnnns 90
Generating tables of mass and cumulative distribution functions for discrete random
VAMTADLESeitieeeeee eee eeeeeeeeeee ea aaaaaaaaaeaaaaa, 90

Binomial distribution «Looiiii iii tie ie eii re eera eee aaa 91

POISSON distribULION «oooiiiirerereteers91

Geometric distriDULIONuiieee eeeeet aaa e eee eeeeaneannnnns 92

Functions and operations applied to lists with DOLIST, DOSUBS, STREAM, and SEQ........... 92
DOLEST.teetaeee eee eee aeaae eee aaaaaaaaan 93
Defining a function instead of using DOLISTSiiiiiieaee ee aeaaes 93
151013PN94
OVINE AVEAGES. iti titi eetttttiiae tee ttaaeeaatnaaeeeaannneeessannsessannssessnsosssnnnessssnnnnes 94
YYPOPUP94
SEtitititeeeeeeeee teeter te teeta aaaaaaeeeaaaan 95

viii © 2000 - Gilberto E. Urroz

All rights reserved

 HP 49 G programming basics........... 96
Examples of sequential programmingceeeeeuuuiieeeeuneaeeeeeiieeesssneeseesnneeeeenes 96

Programs generated by defining a funCtion. iiiiiiaiieaaaaaaaaens 96
Programs that mimic a sequence of calculator operations.........c.ccoviiiiiiiiiiiiiiiiinnnee 98

Interactive input iN PrOQIOIMSoouuuiieteiiee eee eeetettateaeeeettesesenannesessnnaeeennes 100
Prompt with an input Stringooiiiiiiiiiieee iaea aaa, 102
A function with an input String Loo. iiiiiiiiiiiean103
Debugging the Programioiuiiiiui iiiiiiaaaaaa eaae ae eeeeaaaaannns 103
FiXing the Programooiiiiiiiiiiiiiiietaa aaa aaaae ee eeeaaannnnnns 104

Input string for programs requiring two or three input valuesccciviieene... 105
Input string program for two input Values...iiiiircieeeaaeeeeaans 106

Input string program for three input valuescooiiiiiiiiiiiiiiiii iii iiieaaaeeess 108

Identifying OUEPUL iN PrOGrAIMISouuun eet iee eee et ee eet itee ee tetaaeseetntaesesnnnaeeeennns 109
Tagging a numerical resultiiiieeeeee eeeeens109
Decomposing a tagged numerical result into a number and atagcocovviiiiiian... 109

“De-tagging” a tagged QUAaNtILYii iiiiiicirireaaa, 110
Using a message box for OULPUL........oiii iiiiiiii citi ee iri ee iiaeeeaaans 112
Including input and output in a message box - string concatenation 113

Incorporating units Within @ Programeeeeeeieiiiiiiuuiiiiieeeeennnnnnns 114

Relational and logical OPeratorsoouueiuiiiuniteeeiiiieeraaanns 117
[CEEA{oTToTaT=]=do]3117

[IoT=3 Tat= 10001=Tr=doJ118

Program Branchingoii119

WWRat IFiieeeeeeeeeeen119
IFTHENENDLieeteetaeeeeeeeenns 119
IFTHENELSE.END.«eeteeeete eee eee anaes 121
Nested IF...THEN...ELSE...END CONStIrUCES.....uuuuiitiiiiiiiieeeeae122

JUST IN CASELietttereeeeeee124

Program LOOPSuuuuuuuiiiiiiieeeeeeeeeeeeeee 125
E112125

STARTINEXTeetteetaeeeaaaaaan 126
STARTSTEPeeetteeeeens128
0129

LO21PPP129
FORSTEP«iiteeeeeeeae130

D0.iiieeeeeeeee eee eee aaaaaaaeateeeeeeeeeeraaaan 130
KATZPP131

Procedural programming and object-oriented programmingeueuiiiiieeereeeenennns 132

Concluding remarks ON Programminge.eeu eee eeeunee eee ttieeeettnaaeeeeentaeeenenseeesenes 133

ix © 2000 - Gilberto E. Urroz

All rights reserved

 Algebra and related subjects.......... 134
The CAS ANA RPN MOGcciiiiiiiiiteee eee teetaeee tttaereeeeeeeennnns 134

Some transcendental fUNCEIONSeu.eeu ieeeeee tee eeetiaeeetaeeaeeetaeeseesneennns 134

TrigonometriC fUNCHIONSoiiieeeieee areata eeeeteeeeeanaeann 134
REgf=Je] lela gl=]da ell [a [=] a1 4 | 4 [=ISP135
What is @ logarithm?oooiiittere eee eee a eenaaaeeas 136
Logarithms Of Base 10...uu.iiiiit teeter eeeaeaeeraaeaeaeaannaaeaannnns 137
Natural logarithms and the exponential functioncoiiiiiiiiiiiii iii iiiieee 137
Properties of the exponential fuNCLiONcoiiiiiiiiiiiiiiiiiiiiia138
Properties Of logarithms «oiiiiiiiii i tiie ieee te tiaeeeeaaneseeanaaaannnnan 138
Converting logarithms of different basescco,138
Hyperbolic fUNCLIONSiiiietreeeee etaes 139
Euler formula and complex arguments for logarithmic, exponential, and hyperbolic
FUNCIONS Littiti iit tite ieee tt tie eet aeetaaeeanaaesnesanaesnnassanessnsesnsennnesnnnen 140

Operations With algebraiC ODJECESue ieeeieeeeateee ee eeeeanaaaans 142
Entering algebraic ObCES. ...uiiiiiiicreecirrrereaaaa 142
51Talo]01 r=1Lo]1-3PP142
EXPANAING ©XPIESSTONS etter tetas tattaaseeeenaeseeannnesessnnseessnsnsessnnnsesssnsesssnnnns 143

FaCtOring @XPrESSIONS ...unui ttt ee ett iiie tt etaiaeeetaaeereannseeannaseeannnaennnnnns 144
Complex Mode factorizationuuueuiiiiitera a eae tte eeeeeaaenaaaaaeeeaaannnnnnnns 145
Substituting expressions in algebraic objectsco.rire145
Substitution by using HP variables.oooiiiiiiiiiiiiiiiiiiiiecaraea eas 146

Expansion and factorization using transcendental functionscvveiiiiiiiiiinnnnnnns 147
Expansion and factorization in terms of exponential and logarithmic functions............ 147

Expansion and factorization in terms of trigonometric functionscoiiaaill 149

Fraction Manipul@lioneeeeeuieeeeiniiet ieee ieeeettneeesennnessennneresnnsesennnnns 152
SIPeeeeeeeeeeee eee eet aaeaaaaaaaaaiaaaan 152
PROPEAC«eteeeeeeeeee eee teetaaaaaaan153
PARTFRAC.«eetttt teeta eeeeettee ete e eee ee eaeetaetaaaaaaaaaaaaaaaaaaannannn 153
OLPP153

Ll2ITPN154

JiLoTo[V1{eaeIg131111-3 o[A154
Operations in modular arithmetic...o.ooiiiiiii e eee iaeeaaeannans 154

Formal definition of a finite arithmetic ringoiiiiiaens155
Finite arithmetic rings in the HP 49 G LL... iiiiiiiirrieaeeas 155
Modular arithmetic in the HP 49 Goiiiiiiiiiiiiiiii iiii erate eee aiaeaaaaans 156

Setting the modulus (OF MODULO)iiiiiiiii iii iii citrate ee ae a eraeeeannnns 156

Modular arithmetic operations with numbers coiii156
The modular inverse of @a nUMber.....occaeee158
The MOD fUNCHION «ceeieeeteeta tee e ee eeeeeeannnaaaaseeannnns 158
Other modular arithmetic fuNCLioNS«coeurereeee158

X © 2000 - Gilberto E. Urroz

All rights reserved

POLYNOMIALS .covvvvviiiiiiniiiteieae sete eeeannnnnnns 159
Modular arithmetic with polynomialsooiiiiiiiiiiiiii iiiiiii arate aaaaes 159
1121 01UN159
611]21PP160
DIVeeeeeeeeeeeeteee eee eee eee aiaaaaeeaeaaaa, 160
EGCD.iiteeeeeeeeeeaeeae eee eee aaaaaaaaan 160
FACTOReetetettttteeraaaeeee eae, 161

FOFiitiiitit ete tee e tteetaaaaaaaaaee teeta aaaaaaaaaaaaas 161
{010ITPP161
C01PN161
2IIPPP161

HORNER«iterteeterete e tea eeeeeeaeeeeaeeaeens 162
The variable VX, or “Why do you use only X in your examples?”ccoiiiiiiiiiinnnnnnnn. 163
LAGRANGE«cittteeeeeeaaaaaa 163
Entering matrices directly in the stackiiiiiiiiiiiiii iiiiiieae164
LCM Leitettt164
IC5164
Checking the solution to Legendre’s equationcoiiiiiiiiiiiiiiiiiii iii iiiiiaaeens 165

PARTFRAC.«eteeeeeeteeter165
oO165
od20PPP166
Direct access to polynomials numerical solution using NUM.SLV..........ooiiiiin 166
IFN166
QUOTIENT and REMAINDER Lociitteeae aaa eae eeeaannnnnnn 167
EPSX0 and the CAS variableEPSerateeens167
odPPP167
IO1253167

Xi © 2000 - Gilberto E. Urroz

All rights reserved

 \"/=Tei0]JI<3
T=pL Bal0oJ169

Typing a vector directly into the stackcoors169
Using the matrix Writer (MTRW) cooiiiiietterieee ea eeans 169
RTTef 0]JTA 1F=f=170

Moving to the right vs. moving down in the matrix writeroii170

Building a vector With ARRYiiiieee172

Identifying, extracting, and inserting elements of @ VOCtOrcuueeviieiiiiiiiiniennnnnn. 172

Arrays, vectors, and Matrices ...iiiiiiieeetitereaaaanes 174

Simple operations With VECEOISo.eeioniiiiiiieeeanes 174

THE VECTR IMONU «ceva eet teeta eee eee e teeta eee a tetataeaeseteanannnnnannseees 174

Vectors as physical QUANEILIOSenneennii rete teeeeeeteiiietaiee canna 176

Operations WIth VECHOrSiiiiiiii iiiiiiieee eae e tae a etiaeeetnaaaettaaareennanen 176
Vectors in Cartesian Coordinatesciiiiiiuiiiiiii eteeee ttetiiaaeareeetennanaaans 179

Calculating 2x2 and 3X3 determinants... .cuuuiiiiiuiier ieee tiie iiaeettaaaaeetaaaaennaaaaen 180
Cross product as a determinant... ..ou.iiiiiiiii iii ie tie ieeiaeeatnaerenenaeeeneaasecnnnnennn 182

Operations with 2- and 3-dimensional vectors in the HP 49 G calculator 182
Example 1 - POSITION VECHOT Litt iiiiitiiett it eeeaae eee et aaaeeaanaaeeennaaeannnns 182

Example 2 - Center of mass of a system of discrete particlesccciiiiiiiiiiniinnn... 183
Example 3 - Resultant Of fOrCeS ...oiiiiniiiiiiiiieee ee taaeeeeanaaaannnnns 184

Writing the vector that joins two points iN SPACEcoiiiiiiiiiiiiiiiiiiiiiiiaaieiennnn. 186
EIEN To1aTo]d IAVZ= ot(|SP186

Example 4 - Equation of a plane in SPacCeciiiiiiiiiiiiiiiiiiiiiaaaaaeaens 187
Example 5 - Moment of @ force o.ooieeecreaaaa 188
Example 6 - Cartesian and polar representations of vectors in the x-y plane 189
Example 7 - Planar motion of a rigid bodycouuiiiiiiiiiiiiiiiiiiieee191

Angular velocity and acceleration.ooouiiiiii iiiiirire,192

CIETANoTol1d(od) Y=TotdoGP192
VELOCEY iii tiie iii iiiieee ieee teeta teteeeeeeeeeaaeeaeetaeraaranaaaan 192

Solution of equations - one at @ timeiiiiiiiiii iii iii iirc iiiie eae ernaaeeas 193
Yaat=]Ur1[oI194

Solution of a system of linear equations USING MAtrICEeSoiuiuiiiiiirieiiiinniiianeeenns 195

Row vectors, column vectors, ANA LiStSeneueeiee ieee eee eet aareeeneeereeneneennns 196

Transforming a row vector into a ColUMN VECEOriiiiiiiiiiiii iii iiiiiiieeens196

Transforming a column vector iNt0 @ TOW VECIOr «uu. i iiieiii iii titi iiiaeeeeiaaeaannanes 197
Transforming a list iNt0 @ VECHOr «ouiiiitiie ieee ee eeraeaeeaiaaaans 197
Transforming a vector (or matrix) into a list......ooieeiiiiiiiii iiiiiirie eiaaeaans 198

xii © 2000 - Gilberto E. Urroz

All rights reserved

 Matrices and linear algebra...... 199
Definitions.............A200

Matrices as tensors and the Kronecker’s delta functionc.coooiiiiiiiiiiiiiiiiian... 201

MATIX OPEOIALIONS «ovineeeeteeta eee ett teat ee etaaneaeeaans 201
Einstein’s summation convention for tensor algebracccooiiiiiiiiiiiiiiiiiiiii202

Entering matrices in the HP 49 G SACKooviinniiiiiiiiiiiiiiiiiiiiiiiiiiiiaeeees 203
Using the Matrix @ditor ..ooo.iiiiti iiee tie etaaeeatnnaaaaannns 203

Typing in the matrix directly into the stackcooiiiiiiiiiiiiiiiiiiiiiiiii icine204

Examples of Matrix Operationsueuiieeettiteeeeetaaaeeetnteseeennassennnneeeanns 204

Multiplication DY @ SCalaroouuuiiii iiiiiiiiret citer terete eeaaeeaannnaanas 207
LFaD2TUR 0]8at=1[oo207
IVEIS ALTCStiti ietit titi ie tei ete teeta teeta ates enesanesnessessnenessnesneesnenns 208

Verifying properties of inverse Matrices... ..uuiuuiiii iii iiiiiiie i iiiieteeeiiaeeannnaaaans 209

Creating matrices using calculator fUNCLIONSeeenieieieeitteerieeeeeenaaaennns 209

FUNCLIONS GET and PUT ooiii iit ie ttt e ea ereraeenaenaenaeeneennanes 209

Functions GETI and PUT...ieeee tee teeta ee eeaeesnaesanaennnaenns 210

The fURCHION SIZE ...ooiititeeta ete eeaeenaaaannns 211

The fURCEION TRIN LLiitiit it tet ie ieee tae teeta esaesaeenasnessnennasnnns 211

The fUNCHION CONLoiie it tet ttt ee ie it tae eaeeneeseesnennasnesnnananss 212

The fUNCLION [DN LL.iiiiit ite ie ett eeeeaaaeeaaeesnnesnneensaeennaannnnns 212

The fUNCLION RDMLieitie tee iee ieee tae aaeeneenesnaennasnesnaananes 212

The fUNCLION RANM LL.iiiit itt iit ieee eee re eaasaneanessesnteseesneannens 213

The fUNCLION SUB«oeieee te taeesnaeenneeenaaennnnns 213

The fUNCLION REPLLoiiit tt itt tee i eee eaeeanesnesnesneesaannanen 214

The fUNCLION DIAG.iit it itt tt teeta eae eeeneaaaeanesneaneennennenns 214

The fUNCHION DIAGiiiit it tie e ee teeta eeaaee sae snaassaassannaannnns 214

The function VANDERMONDE «o.ooiiiiiit iit tee tieeaee rae eanaeanaaaannnns 215

The function HILBERTLL.iiie iit iie teeta taeeenaaennasannaaannnns 216

Using the matrix CREATE IMENUuueiiieettttiieettteiaaeeseennneeesesnnasseeansesosnnosesanns 216

A program to build a matrix out of a number Of liSts.......cccoeiiiiiiiiiiiiiiiiiiiiiiiinennenns 217

Lists represent columns of the Matrix co.iiiiii i iiiee erie eennnns 217
Lists represent rows of the Matrixcoiiuiiiiiiiiiiiiiiiiiaes218

Manipulating matrices bY COIUMNScooiiiiiiiieeeetree eetiiaieenaaeaeaes 218

BIT=IR £01(et 4ToRrOX©1219

The fUNCEION COL.iiiiii ie ieee ete ie ti ete ttataenasasnssasnsansnnennnns 219

The fUNCEION COL+ootiiitt i teeta teeta a tiataesnesnasnasnaasnasnanens 219

The fUNCEION COLoiiiie tite ti ei eet ae ee eannaeesannnaesanannsesannns 220

The fUNCLION COWPPLeiii tie ie tie ie tiie tae ttaetaesnesnasaasansanasnnnnns 220

xiii © 2000 - Gilberto E. Urroz

All rights reserved

Manipulating MALriCES DY FOWS ... nnn ieeeeetetiteeeeee eet tate eae eeeetataaeaeeeseennnnnaaneeees 220

The fUNCLION ROWLiiitiit ieee teeta eee eannaaasannasasnnnaannnnn 221

The fUNCLION ROWmiiiiteet ieee treet a ee eenaaeaannasennaeeannnns 221
The fUNRCLION ROWiiiteeta eee etter aaa e eee eeetaaaaaeaennen 221
The fUNCLION ROW-iiiiit iret tate et aae tease enaneteannnaeennnaneennns 221
The fUNCHION ROWPLLititieeeeee ae ea eae eae aaeanns 222
The fUNCEION RCI LL.iiiitreeteeta eeaeae ee eaenaeaannaaeennaaeennns 222
The UNCON RCI...ireteeeeeta e eet aaeeeaaeeennaaaeanns 222

Symmetric and anti-SYMmMmELriC MALIICOS.ueuiueeettieteeneneretnreeeenneesennessenneseennnns 223

Matrices and solution of linear equation SYSEEMSueeeneeeenieeeaeereeeaeeennnereennnnns 224
Solution to a system of linear equations using the numerical solver (NUM.SLV) 224
Example 1 - A system with more unknowns than equationsoioiiiiiiiiit. 224
Example 2 - A system with more equations than unknownsc..oiiiiiiiiiie.. 226
Example 3 - A system with equal number of equations and unknowns 227
Direct solution of a linear system in the stack.........coiiiiiiiiiiiiiiiiiiiiain,228
Solution Using the INVerse Matrix.ooo.iiiieee tie rae etanernareenaeaneenanens 228

Characterizing @ MALTIXun neonate eee eee eee eet eee eee e teat eae eetnaaeens 228
The Matrix NORM MENU...iiiieee cree eaee tetas seaanaeeennnaeeeanneeannaaaennns 228

THe fUNCHION ABS LL.tiitiii tet ate e ieee eae ee ae ee taeeeeaaaeeenaaaaannns 229
MatriX deCOMPOSIEION uitiiiieee eee teae ee eae eennaaeaannaaeeannaaaannns 229

Singular value decomposition and rankccooiiiiiiiiiiiiiiiiiiiiiiiiiiiee230
The fUNCLION SN RM.Loiitieeeeeeaetna ee aaeeeannnns 230
Row norm and column norm of @ MatriX ...couiiiiiiiiniiiiiin iii aaaeteaaereenaaaeennnaaaen 230
The functions RNRM and CNRM.Loiiiieeeeee eeeeens230
Eigenvalues and eigenvectors of @ MatriXouiiiiiiiiiiiiiiiii iiicia231
The fUNCHION SRAD«iiiiii ieee ete e tee e tae e eee aaeeeaaaaennareeannnns 231
Determinants, singular matrices, and conditions numbers........c.ooiiiiiiiiiiiiiienennn.. 231

The fUNCEION COND Lo.iiiiit ie eet ee tte eaaeeanseeaasannaenneenasennannns 231
The rank Of a Matrix «oooiiii ii tie tei ttiettee eas enaeeanaeanaannasanaennns 232
The fUNCHION RANK.iiitrte ieee eae eet aaeeeaesaannaaeaennreannnns 232
The determinant Of @ Matrix ..oouiiiiiiiiieeeaaa ee eeeeannnaaaaeeaannns 233
The fUNCEION DET oiiiiretaaa eet eeaeaaaaeeeaaaannnnaaaseeeennen 233
Properties of determinants... .oouueuuiiiiiii tiie iit iia aa eee et aiaaaeaeaaaennnnnnns 233
Cramer’s rule for solving systems of linear equationsc.oiiiiiiiiiiiiiiiiiiiiiiiaannn 235
The fUNCHION TRACE «oiitiie ieee ieee ae teen seannaaaaannaasenneesannnns 236
The fUNCHION TRAN.(iiiiiit i iit ttt ieee eae sete eeraeseaanaaseennsesannnns 237

Additional Matrix OPEratiONSouuiunnue ieee eet eieeeee eer eenttaeereeerennnaeaseeeenennnnns 237
The Matrix OPER MENU «ouiiitteetaeee etaaeeeeeaaesaannaranannans 237
THE fUNCHION AX«iiiiiiiitiit teat ae teeta seanaaeaannnsansnnasessnnsennnnnns 237
The fUNCHION AXMLiiiiiit tt iiie ieee taae sarees erranasasnnasennnesennnns 237
The function HADAMARD ..iiiiii etter teeta ee eenaaeeannaaeennaaeannnns 237

The fUNCEION LQ. titiiitiit titiieee ae eae e tee eaneesseennnaeennsenaeenaannns 238

The FUNCHION MAD«iiirere ee tea aaa eee eaaaennnaaaseeaaannnaaaseeeennen 239
The fUNCHION ROD...iiiitiie tie tate t teeta ttaeeeeaaaeatanaesnnnasannnns 239
The fUNCEION LOXiiiieee tiie tt eee tt eiee ee taaeeeennaasesnnaaaennnaeannnns 240

xiv © 2000 - Gilberto E. Urroz

All rights reserved

Gaussian and Gauss-Jordan eliminGtioN..........o..eueu eeu ieee eee te eaeteeenaenseneans 241

Gaussian elimination using a system of equationsc.ccoiiiiiiiiiiiiiiiiii iii eeann.. 241
Gaussian elimination USING MatriCes c.count iiiiiiiia cai eaeaeeaeaeannns 242

Gauss-Jordan elimination USING MatriCescuuieiiiie iii ii eet i ee iieeiarenaaeanaaannns 243

[od 17708{FPN244

Example of Gauss-Jordan elimination with full pivotingiiiiiiiiiiiiiiiinie. 244

Step-by-step calculator procedure for solving linear systemsccoceeieeeeiennnneeennnn. 248
Solving multiple set of equations with the same coefficient matrix.......................... 249
Calculating the inverse matrix Step-by-Step ..cuentaeeeeeaans 250

Inverse matrices and determinantsooiiiiiiiiii iiii iiiitieae iaaa aaa, 250

Solution to linear systems using calculator fuNCtionS.........cceeeeeeeeiiiiniiiiieieeenenennnnns 251
The function LINSOLVE«iiiteet tiie eat aae ee eaneeaannnnaaenn 251
Functions REF, rref, RREFoiiiiiiiiii tie iii ete teeeeaaestaaesnaeannaaens 251

Eigenvalues and @IgENVECEOIS... cou. eee ieee aii e eee ie eee eatiaeeeatanaeseesnseesssnnneeeens 253
The fuNCLION PARLL.iiieeeeee aia ea ea eee eeaanannnannnnns 253
The fUNCHION EGVL Lotiiiiiititeieee tetas et aannaaaeasnnaeasnannnnns 253
The fUNCLION EGYoeiititetite tees eee taeeannseasnnnnnens 254
The function JORDANLiiiiiit tie ieee tte eaiesaraeaanasanaaannnns 254

The fUNCHION MADLiiiiiit ieee ieee ie ete a eaeeanaesnnaereaesananennnns 255

Matrix faCtOriZationoo..iiiiiiieeeeae e et aae ee etaaaeseeannaaeannnnannns 255

The fUNCEION LULL.iitieee ea ee teeta ee eaanneseannnaaasnnnnnanens 256
Orthogonal matrices and singular value decomposition (SVD)uiiiiiiiiiiiiiiiiinnnnnnn. 256
The fUNCHION SVDLeiiettite tea ae eee aaiaeeeannnesseannasasennnanens 256
JI(= 181Loto4TS257

The UNCON SCHUR Lo.iiii it tiie tie tee ieesaaeeataaeanaeanaaeannns 257

BITSI 28 La nfTe1TX257

The fUNCEION QReeeiteit it ett ttt ete a ae ta seen eneensnsnasnennsneens 257

Matrix QUAArAtiC FOIMS oo.etee eee iae eee tete te etnneeesannnasesnnnneeesnnns 258

The QUADMIeNUiiiie ieee tie e eee eet aeetaeaaesneeaesanesnesnesanssnssneennens 258

The fUNCEION AX out iiiii iit ieee ieee ee teat teeta aera eesenesnsnesnasnasnenanns 258

The FUNCEION QXA iiiittite e ite i eee ieeteesaeaneenasanesnessnesnssssesnesnannn 258

Diagonal representation of a quadratic formuuuiiiiiiiiii iiiieee eeennaens 259

The function SYLVESTER«itiieeeeaaeaaanaaaans 259
The fuNCtIoN GAUSS«iiiiieee tate eeetaaeeeeannesaaannnasannns 259

J."To Lab"@sTo]0[al 1[o£F-Pt 260
Electric circuitseeeeeieaaaaaas260
SErUCEUral MECHANICS «iiiiiiii tiie ie ieee ete te eaaraeeseannaaasannnnnns 261
Dimensionless numbers in fluid mechanics... ...cooiiiiiiiiiiiiiii iiiiciiiieecas263
Stress at a point in a solid in equilibriumiiiiiia266
Principal stresses at @ Point...iiiiiiiiiae eee aeaeeennaaaenannnnas 270

Multiple linear fittinguiiiiiiiiiiiiiiiiieee271
Polynomial fitting«octiitrite tare tee aae ee anee area raanaaaaan 273
Selecting the best fitting ... oo.iiiiteraceaaeaeaanaaaes 277
Keystroke combinations for writing the programs POLY and POLYRoiinett 279

Xv © 2000 - Gilberto E. Urroz

All rights reserved

1 1 Graphics and character

SEriNGSconven.281

Graphs options iN the HP 49 Gi.eeenii iii iiee ieee tie e tt eeitetetnaeesnneeennnneaannans 281

Plotting an expression Of the form y = f(X) oun ueeeeiiteiirieeeeee aaaaaaeaeaens 282
Some useful PLOT operations for FUNCTION plotscoiiiiiiiiiiiii iiiiiiieaeennnn. 284

Saving @ Graph fOr fULUIE USE.........cooeeeeuniieeeaiea ae eeeennaaaaeeeeannnn 286

Graphics of transcendental fUNCLIONSueeuueeeeuueeteneieeettaeeeeaeeeanneessnneesennnnns 286

(CT =o]a ToT Us 1IPN286

Graph of the exponential fuNCLIONoiiiiiieeeeens288
The PPAR Variableoiiieeteteetaaaa eae eaaaaeaeaaaen 288
Inverse functions and their graphscc.iiiiiiaes289

Summary of FUNCTION plot OPEerationoeeueeeie eee ieee eeieteanaeeeeannaeannnanes 290

Plots of trigonometric and hyperbolic functions and their inversesccceveveeaenn.. 293

Plots in polar COOrdiNGIRSuueeeientiiee teetaeee aeaaeeeeannnaaaneseeaennnnnn 294

PLOEEING CONIC CUIVES «eevee eee teeta eee teeta eee eee ae ett aeaaaeeennanaaaasesenennnnns 295

[201g12T= fg[oll 0] Lo]£3PPP296
Creating a table Of results... uuiiiiiiiiii tree eee ii ee eaieeeaananaannns 299

Plotting the solution to simple differential equationsoeeieeeiiiiiieeereeeennnnnnn. 299

FTL11 2]Le]PPP301

Plotting histograms, bar plots, and scatter plots..........coeeeeiuiniiiiniiiiiiieieaeereennnnnnns 302
SFTl oo)J302

SCALE POLS «ue iiiiie titii i i i teeieee ete ieee tee e eter raaae tate aaaaee eee303

NY {o)oT i=]LoFPP305

oCDoLoJ306

Wireframe POLSounnnnneeeeeee e eee tetaaaeeeeaeennnnnaaens 307

PS-CONEOUN PLOES «eeeeeeeeeeee eee eee teeta ete teeesaaeeesnaeesennneesnnns 309

ERY[el=3 »Lo}JPPP310

©[oooToo]Lo3311

Pr-SUrface POLSeeeeeeeeeeetaaae se eanennasasaeenennnnns 312
The VPAR Variableoouuiiiiiiiiiiiieeeeeeae eae tere aaaaeeeaannnnns 313

Programming With Graphicseuuueiiiiiiiiieee teat eee eeraaeennaeseannnnanen 313
Example: Residual plots for polynomial fittingc.countiiiiiiiiiaeeens 313

XVi © 2000 - Gilberto E. Urroz

All rights reserved

Plotting commands fOr Programmingeeeeeuuiieeeeenueeeesnnneseessneeesssnesessnseeees 315
User-defined key for the PLOT MENUcuentaeee eeei ieaaaaaaaaas 315
JILL odTOI 3T=oT316
The function LABEL (10) coeuriiiiitei e teeta eee rae eraaennaaennn 316

The fUNCHION AUTO (11) ceiiiiiiieet tt iiee tee ttaaeesaannaaseasnaessnnasessnnns 316

The fUNCLION INFO (12) citiiiit ie iit te ett e eterna eae enastaernennenaesneneens 317

The Variable EQ (3) «veurenrintit ittaeeeete ee e ee eeeeeaeeaeea tanta ae eae e ae eaneannans 317
The fUNCEION ERASE (4). unuitiietiti e et citi eet ateeeeetaaaeeaannesssnnaeesnnnns 317

The fUNCEION DRAX (5)iiiiiiiit i et teeta a aaaaaataeeeaannnnaaaaaaananes 317
The fUNCEION DRAW (6)...iiiieieeeeee ieee i eee eataeesnaeanaeenaessneennns 317

The PTYPE menu under PLOT (1) cuuuuuiiiiiii iii ttttttiiaaaaaaaaaaaeeeaeanennaaaaaasaaanes 318

THE PPAR MENU (2) tiiiiiiiiit tiie tiie eet iae atta aae ee eananetesanenaessnsnnasssnnansssnnnns 318

INFO (N) @nd PPAR (IM) citi iii iii iit tee i ee tet ae settee ttaeasneesnaesnaeannaennns 318

11J319
8]aND{IPOPP319
XRNG (C) @Nd YRNG (A) ce etuiniitiiiiiiittitiieettteneieeeeeanneeeeannneseerensesessensessnnassennnns 319
RES (8)tit ii titi ee teat tate e ett aaa ae aaaaae ee aeaaaa ean a aaaaaataeeanraaaaaaaaaas 320
CENTR (8) «ett e teat eet eee eeeee eae e ee ee eee eee tae ennnnaaaaaaaseeaaeannnnaaneseeaaan 320
SCALE (Neierettereeaeeeee,320
SCALEW (1) ieee ieee iii t ttt e eet eee tae e eee a tae ee taanaaereaanaareaaaaereaaaaeeaannns 320
NYOF2IIP320
ATCK (1) iii tiertttietait eee eee e teeta a ena aaaaaeeeeeeeanennnnnnnaeeesensannnns 320
1IJ321
RESET (fee tttttieeeeeeeee e teeta eet e ett aaa eaae eee etaaannaaaaaaaaan 321
The 3D menu Within PLOT (7) couti iii iit tie tie ete e eee e tate eanaaanaasnaaannnaaanns 321

The PTYPE menu Within 3D (IV) oiiiiietiie teeta aia e aa eaa aaa aaans 322

The VPAR menu Within 3D (V) «cueiiiieeieeecieeeeeeeaaees 322
INFO (S) @Nd VPAR (W) citieteerate eee teeta ete aaa eae eaennnnnaaaeens 322
XVOL (N), YVOL (0), @nd ZVOL (P) «eeuaaaeeeaeeeennens323
XXRNG (Q) and YYRNG (R) cuitttreeeeteeta eee eeeeenenn 323
EYEPT (I) tiiiiiiiiiit tite ete e eet e eee e teeta aaa aaae tae eeeaaeannannnnnaasaseeaaannnnassaneens 323
NUMX(U) @nd NUMY (VF) oiieter eee eee ete teeta eae eee eenaaaaaaaaans 324
VPAR (WW)eteetttee eee teeta ete area a eee eee aaaaeeeaaeanaaan 324
RESET (Xe ee etttittttttttt tate e eee e et ee eee e ta eannnaaaaaeaasesesasennennnnnnnaesseseesennnnasaseesanes 324
The STAT menu Within PLOT LL.iiiii iit iit ti ee tiie aie eae eaaaaanaannnnan 324
The PTYPE menu Within STAT (1). ..oeiniiiiiiicri ties cieeee eiaaanans 325

The DATA menu Within STAT (11)...eeeeee eaaannann 325

The ZPAR menu Within STAT (I). .ceerniiiiiiieiret iie ee ieaeeniaaaas 325

INFO (M) @Nd ZPAR (K) otiiiiiiiiiit ittaie a eae aaa tere eeetaaeannnnaaaeseseeeannnnaaseaseaens 325
KOOL (H) entititeteetaete e eae ete e eeeaaa326
YO (1) nei eeeeeeteetereteeters326
ODL (J)teins326
IPAR(Kettereeeeee eeaee eee e eee tetraaaaaas 326
RESET (Lettetttteetaeee e eee e teeta aaa aa aae a eee eeteeanaaareeaeaaeannn 326
The FLAG menu Within PLOT ouiiiitiie cite tee ieee i eeaaaeeranaaaaannnaans 326

So, how are plots generated in @ Program.eeuueeeeenseeeruunereeenneneernneseenneeseees 327
TWO-dimensional Graphics .. countttiiiiiiia e eee ae eee taaaeenneeeennaaaaees 327
Three-dimensional Graphicsiiiiiiiiiaiaeeee tananaaanns 327
The Variable EQ ue iiiiii iiitet tee tet teeta eet eee ereenenesneneneensnasnenes 328

Examples of interactive plots using the PLOT menu .cocooniii iiiie iain328

Examples of program-generated Plotsocuuuuiiiiiiiiiit iii iiicians329

XVii © 2000 - Gilberto E. Urroz

All rights reserved

Interactive drawing with the HP 49 G calculatorcc.iiiiiiiiiiiiiiiiiiiiiiiinnnnnnn. 331
010IVVe10332
ARKLeiteieeee eet e tee aaeae eee e te aaae teeter tae etataaaaaaas 332
LINEeeeiiititeteeta eee eee e eee eee e ee aaaeeeeaeaaaaaaeaaaeaan 332
JLEN332
510CE332
CRCLetttateeee teeta tae e teeta atte aaa ee eee aaa eee tae eeaeaaaaan 333
2333
DEL.iiiiiiteetree eeeeee eee e eee tee eet aaee teeters333
ERASE.iiiiteteeeeeeeeeeeeeeae333
MENU Loirterate eet e ett aaa eee e eta eae eee eat aaa raeeee333
SUB iiieii eeeeeeeeeeeeeeeeeeeaaeeteeters333
REPL Litt iii iiieetit tte eee e eee ee aeae eee e eat aaa eee e eta aaaaee eee aaaaaaaaaan 334
PICT oD iiiieeeeeeeee eieeee eee eee eeeeaaaaaaaaaa, 334
XYoD eeiieeeeeeeeeeee ete aeae eee aaaaeee334

Drawing commands for use in programimingeeee eee eeeneeseuneeeeaeeeennaereenneeeeenns 334
PICTeeeeeeeieter eee eeeeeeeeeeee ee eaaeeee ee eaeaeee teeta aaaereeeeeaaaaas 334

PDIMLeeeeeeeeee teetaeaten335
PICT and the graphics SCreencouiuuiiiiiii iiiiiiaes335
LINEeitittteee retreat eee teeta e eet ee teetereee.335
JLPP336
510)336
ARCLLeeeeeeeeeeeee eeeteeta336
PIX?, PIXON, and PIXOFFiiiieeeeet aaa eee ete aaa eeeeeeannnns 336
TS336
PXCitieeeeeeeeeeeeeee336
LOPPP336

Programming examples using drawing fUNCLIONS.........coueuuunieieeeetiiae eee etiiaaaaaaaans 337
Example 1 - A program that uses drawing commandsc.coiiiiiiiiiiiiiiiiiiiiieennnnes 337
Example 2 - A program to plot a natural river Cross-section...........oooiiiiieiiiiinninnnnn.. 337
Example 3 - A program to visualize a polynomial fittingcoool.341

Binary, octal, and hexadecimal number systems - a brief introduction 342
ITF2 47TP343
Writing non-decimal numbers in the calculatorooiiiiiiiiiiiiiiiii iii iiiiieees 343
Conversion between NUMbEr SyStEMS «iiiiiiiiiiii e ee eae a eeaaaaaaen 343
The LOGIC MENU «etetiie eettte eee eet eee teeta aaa eee eeeanaaaaaaaaes 344
The BIT and BYTE MENUS.tuteetteater ae teeta ae ee eee eanenaaaaaanaans 344
Hexadecimal numbers for pixel referencesc.ooiiiiiiiiiiiii iiiaaanes 344
PIXEL COONANES .iiiiiit i iiiie tt tiii tiie et ttieeeeeanaeeannneeennneeaenasesnnnseeennnseeennnns 345

Zooming in and out in the graphics display.oeeuuieeiuniieeuie ie iiieeeaaneeeaaaaeeennns 345

ZFACT, ZIN, ZOUT, and ZLASTiti iiitie eee eet ta aae eee aeaiaaaaaeeeaeannnnnnanns 345
510PPP346
DFLT, ZAUTOiiiiiiiiie ett teeta eee e eee e eta eet e eta a aaa aaa e eee aaaeen346
HZIN, HZOUT, VZIN @nd VZOUT ..eeeaaaas346

CNTRLeeteete e eee e eee ee aaa aa ae aaa eaaeaaeeaaeeeaaaaaeeaeeeaeaaaannn 346
DEC«eteeeeeeeeeeetait,346
741ICN346
A]0PN347

TRIGesateeeet teeta ete e teeta eeeteeeee teeta eee aaa aaaeaaaan 347

Special function for gas dynamics: ZFACTOR(TI, Pr) c...ouueennieeeiie iii iiae eae.347

xviii © 2000 - Gilberto E. Urroz

All rights reserved

ANIMAING GIAPNICS«ennaiteeteeta tet eeeeeaannennnaaeeseesaeannnnnnnns 347
Animating a collection of graphicscuuuuiiiiiiiiiiiiiiiiiii iii iaaaeaeeeeeaeaennns 348
More information on the ANIMATE functioncoiiiiiiiiiiiiii iii iiiiiiiaae ee eeneannnns 349

Grabbing GROBSiteetaeee tet eaeaaa see eennnnnaaanneees 350
The GROB MENU...iitteeta eee eee aa ae eae eeennaaraennnnns 351

arC101PPPS351
BLANKiteeeeee etter eae tree eee aaeaae eeeaaa351
C0351
GXOR Littttte eeeteee eeeeet eee ee eee e teeta aaeaaaet eee e eee aaaaaeaeeeaaaa, 351
LCDities352
LCD eit ttttteeeeeeeteeeee eeeeteeeee teeta eeaeeeeeeaaans 352
SIZEteetaieeeeeeeeee tat aaeaaee te eeeeaaaaaaaaaaans 352
An example of a program using GROBoiiiiicreate iieaeeenaans 352

LY1A3 1[of=oHP353
The CHARS MeNU.«oiiieee tite e tae eeetaeaeeeaanaaseenaaaaeennaaaennnnnnnn 353
The functions NUM and CHAR LL...iiiiiaea eeeeens354
The Characters List...iiiieeeteeta eee eee e teeta aaaeeaeeeeannnnnnns 354
Parting thoughts about character strings.coiuiiiiiiiiii iii iiiiee aaa ee eaaaaeennnns 355

A program with plotting and drawing functions - Generating Mohr’s circle for two-
AIMENSTIONAL SEFOSS.eeveeteetaestate tttaeanaaeteeeeeannnnnnnns 355

BaCKGrOUNdceeterere355
Modular Programmingcooiiiiiiiiimtiiiiiiit tee tttaiiaetetteeetttennareeeseeeeenranenns 356
RUNNING the Programiiiiiietre aa ee eee e ee aenannaaaaaaseeeenennnaaaaaaaaes 361
A program to calculate principal Stressesiiiiiiiiiiiiiiiiiiiiiiiiii 362
Ordering the variables in the sub-directory...cco363
FEY=oaTa I=:10]UR363

XiX © 2000 - Gilberto E. Urroz

All rights reserved

 Solution to equations............. 365
Symbolic solution of algebraic eqUALioNscoiiiiunuiiiiii iii iiiiiiiiiiiiiiieieiinnnnnn. 365

The functions ISOL and SOLVEiiieerieeee eee eeeaaaaaanns 365
The S. SLY MENULiiiitieee tee e eee e eta e eee tae a eeaaaae eens366
The fUNCHION SOLVEYXiiiieeeetter eee aaa teeta ee eaanaaeens 366
The fuNCLioN ZEROS LL...ieeeetaita eae eeeeeennnnes 366

NUMEriCal SOIVOIr MENUcovenniiiiiee teetaetea e eee e a aaeeeeeeaneaeennaaeeennns 367

Polynomial @qQUALIONScoeeene ieeeeee eee teeta ee eee eet ee eee ee eeeeeaenns 367
Finding the solutions to a polynomial equationcooiiiiiiiiiiiiiiiiiiiiiiiiininnn, 368
Generating polynomial coefficients given the polynomial's rootsccooiieeen. 368
Generating an algebraic expression for the polynomialcooiiiiiiiiiiiiiiiaa.n. 369
Evaluating a polynomial (Or any) @Xpressione..eieeeiieetiieeteiiiiereeeaaaeeeenaaaaenn 369

Replacing the variable in the polynomial's algebraic expressionott 370

Financial calCUIQUONS«cc.eee eae se eaieeeetnaeesanennesennnnaanees 370
107=AT)03EO370
Payment at beginning or end of @ Period.ccoiiiiiiiiiiiiiiiia,370
EXAMPLES «eetitiiieeieeeeee eee eater eee eee raeeeaaaeaeannans 371

Solving equations with one unknown through NUM.SLVccoiuiiiiminiiiiiiiiiiiiiiiinnnnn. 373
How does the numerical solver for single-unknown equations work?................cooee... 373
Example 1 - Hooke’s law for stress and strain.oooiiiiiiiii iii iii iiiiiaaeens 374
Example? - Specific energy in an open channel flow.........ccooiiiiiiiiiiiiiiiiiiiiiinaen, 375

Special function for pipe flow: DARCY(€/D, RE) ...eurnneiiniieiiiiieitieeteeeieaneennnnennns 377
The function FANNING(€/D, Re)iiieerieceaaaaaaae enn 377
EXamPLle 3 - FLOW IN @ PIP citi tiie ieee iit e eee eee aaeeeaaeaaeeaneneseannnaseannnns 377

Functions UTPN, UTPT, UTPC, aNd UTPFceunn ieee etieeeetteeetetnnaeeeennaseseanneaeaennnns 379

Example 3 - Upper tail probabilities for Normal, Student-t, v2, and F distributions....... 380
Example 4 - Universal gravitationooouiiiiiiiiiiiiiii iii i iiiiie i iiiiaa te eiaaaananaes 382
Example 5 - Energy losses in three pipelines in series...........cooiiiiiiiiiiiiiiiiiiiiiiin.. 383
Changing the order of the variablesooiiiiiiiiiiii iiiiiicries384

Graphical solution of single-unknown eqUALtiONS..........u.iiuieiuiireuieenieneiereneeennanenneen 385

Example 1 - Solution of a cubic equation.oiiiiiiiiiiiiiiiiiiiieens385
Example 2- Clausius-Clapeyron equationoiiiiiiiiiiiiiiiiiiiiiiiieeeneeenes 386

SOLVING MUILIPLE @QUALIONSeeeieee ieeeett e eee eee ateeaaaaeeeannnnnnnnnnns 387
Linear @QUAtION SYStOMIS Lo... iii iii it ttt t tia e eee e tite a ae eeeeeeeeeeennnnnaaaeeeeennennnn 387
Rational equation SYSTEMS «uuiiiiitieee ater e eee eeaaeeaaanaaaeannnns 387
Example 1 - Projectile Motion...o.ooieeeitera ee teaeeeeannaaaaannnnns 387
Example 2 - Stresses in a thick wall cylinder...oii388

Using the Multiple EQUAtion SOIver (MES)eeeeeeiiiiiiii eee etiiaeeaeeeeeeaanennnns 389

XX © 2000 - Gilberto E. Urroz

All rights reserved

Solution of triangles using the MES......... oo.iiiitetee eee iaanaaanns 389
Trigonometric functions in a right trianglecoiiiiiii iiiiiieee eeannnns 390
SOLULION Of trANGLESeitetieee ete eattaaaaaaeeaeannnnaaaaaaaaanes 391
Calculating the triangle’s area with Heron's formulaccoiiiiiiiiiannn.. 392
Triangle solution using the HP 49 G’s Multiple Equation Solvercccoeiiiiiiinnnna... 392

Creating a WOrKing dir@ClOryciiiiiii iii iii i tie ieee teat taaeeeaiaaeeannnnns 393
Entering the list Of equations.ouuuiiiiiiiiiiiii iiiiiee erciaiieaaa a eeaaas 393
Entering a Window Titlecooiiiiiiiiiiiiiiiiret,393
Creating a list of variables...iiiitrite irireciee aan 394

Preparing to run the MES...ieee394
Running the MES interactivelyoooiiiiiiiiii iii iitiie tiie te ee aneeaeannns 395

Organizing the variables in the sub directorycoin,396
Programming the MES triangle solution using User RPL...........ccoiiiiiiiiiiiiiiiiiiiiiinnnn, 397
Running the program - solution examplesooiiiiiiiiiiiiii iii iiiiiieaaaeeaans 397
Adding an INFO button to your dir@Ctoryc.ouuuuiiiiiiiiiiiiaaeee ee eenannnnnns 399

Velocity and acceleration in polar coordinates - solution using the calculator’s MES........ 399

Using the SOLVESYS library for simultaneous equations............ceeeeeeiuuiieeeereennnnnnnnnn. 402
Example 1 - two CONIC €qUAtIONSouuuiiiii iitaeet ttaaaeaeeeeneennaaeaeeasennes402

Example 2 - Manning's equation for circular cross-sectionccoeeiiiiiiiiiiiiiennnnnn. 403

Graphical solutions of two simultaneous eqUALIONSoeeuueeeeuuieeeenieeeriieeeenneanenss 405

REFERENCES - Vol. lonlyc.ccae............ 406

REFERENCES - Vol. ll only 406

REFERENCES- For both Vols. l and Il....... 406

INDEX... iiiiiiiiiiniiiieeeiiirennncsscensnnnes. 407

xxi © 2000 - Gilberto E. Urroz

All rights reserved

Preface

This book covers a variety of Analysis-based mathematics utilizing the amazing algebraic,
numerical, and graphical capabilities of the HP 49 G calculator. The book emphasizes the
practical applications of mathematics to engineering and the physical sciences. Each chapter
includes a review of the mathematical concepts used, a description of the appropriate
calculator features, and examples showing their application.

This book is the result of many years of experience in teaching courses on:

E Engineering Mechanics Il (Dynamics),

Uncertainty in Engineering Analysis (i.e., probability and statistics applied to
engineering),

* Hydraulics,

= Fluid Mechanics, and

% Numerical Methods in Engineering

in which the use of the programmable calculators HP 48 G/G+/GX and HP 49 G has been
emphasized. Many of the examples presented throughout the book had been published
previously as class handouts and class notes. In the preparation of my courses, and even in
some research activities, | have developed many User RPL programs for the HP 48 G/G+/GX and
the HP 49 G, a good number of which are also included in this book.

The book, in its present form, developed from a set of class notes | prepared in the Spring
Semester of the year 2000 for a colleague’s Engineering Freshmen Seminar class. The HP 48
series calculator has been required from our engineering students since the HP 48 SX was

introduced back in the early 1990's. This year, the HP 49 G made its debut among the
freshmen class, therefore, there was a need to produce some training material using this

calculator. The task fell on me, given my extensive experience with the HP 48 G series
calculator, and my familiarity with the HP 49 G calculator since it first came out in August of
1999. The 23-page-long handout | produced for my colleague’s class, together with the class
notes | have prepared for the HP 48 G series calculator through the last six years, plus long
hours of typing away in my computer, have developed into the book you now have in your
hands.

The reader should think of this book as a mathematics handbook that emphasizes the
extraordinary capabilities of the HP 49 G calculator in demonstrating different mathematical
concepts. While | have made the effort of introducing those concepts before using them in
each chapter, detailed explanation of mathematical concepts and proofs of theorems used in

this book is to be found in more traditional mathematical textbooks. A list of references is
provided in the book for that purpose.

Although the calculator includes features useful in number theory and in operations with
number bases other than decimal, the book does not expand on these subjects beyond some

basic description of the appropriate functions. The reason for this omission is the lack of
experience of the author in those subjects. Please keep in mind that the author’s training is in
Civil and Environmental Engineering, where the emphasis is in Analysis-based mathematics.

Get yourself a notebook: | recommend that you go through the book armed with your
calculator and a notebook. You want to have a notebook handy because sometimes the
calculator display is not large enough to hold all the information you want to see when solving

1 © 2000 - Gilberto E. Urroz

All rights reserved

a given problem. Also, you may want to keep your own notes on particular types of operations

with the calculator that are of interest to you.

A note about RPN: While the calculator uses the algebraic mode by default, | make it clear
from the start that the book emphasizes the Reverse Polish Notation (RPN) mode. The

emphasis on RPN mode is not only because it is the mode that most HP 48 G series users are
familiar with, but also because it is more efficient than the algebraic mode in using the
calculator display. I should also point out that the HP 49 G converts function calls and
programs into RPN mode when performing operations. Therefore, it is useful that the user
learn the RPN mode to better understand the workings of the calculator, and to be able to

communicate with the wide community of HP 48/49 calculator users around the world.

Preferred calculator settings: When you take the calculator out of the box, or when it
recovers after a system crash, the original calculator settings are such that the calculator’s

Operating Mode is set to Algebraic, the beep option is selected, the calculator’s display is

set to Textbook mode, and system flag 117 is cleared (i.e., CHOOSE boxes, rather than soft

MENU keys are selected), among other default settings. For the applications in this book I
prefer that you change your settings as follows:

Press [MODE][+/-] to change to RPN mode. Change other settings so that the
CALCULATOR MODESscreen should looks like this:

neeCALCULATOR MODES Sg
operating Hed.[JIE
MuHber ForHat.... Std FH,
Angle Heazure....Radians
Coard Syston... Rectangular
_Eeep _ Hey Click Last Ztack

Chooze calculator operating Hod
INIT

Press [CAS] (i.e., the F3 key). [CAS stands for Computer Algebraic System, a generic
name given to programs that lets you produce algebraic and calculus operations in a
computer or, in this case, a calculator]. Change settings, if needed, so that the CAS MODES
screen looks like this:

Indep var:'s’

Hodule: ENE
_NuHeric _ Approx _CoHplex
_Yerboze _ Stepsitep _InCr FoH
¥ Ridoerous of ZaHp Noen-Ratienal

Enter Hodulo uglug

EDIT] ||JCANCL]OK

2 ©2000 - Gilberto E. Urroz

All rights reserved

= Press [OK] to return to the CALCULATOR MODES screen. Within that screen press [
FLAGS] (i.e., the F1 key). Next, press [A] to access the last flags in the list. Press [A][A]
to highlight system flag 117, then press [vCHK] (i.e., the F3 key) to change the setting to
Soft MENU. The SYSTEM FLAGS screen should look like this:

 111 SiHp non rat.
11 Lingar =iHp <n
114 Daizp 1+x + x+1
116 Prefer Cox()

113 Rigorous on
120 Silent Hede o

I21(0CT

= Press [OK][OK] to return to normal (that is, RPN mode) calculator display.

A note on CAS modes: One of the greatest features of the HP 49 G calculator is its CAS

(Computer Algebraic System). The CAS is used in almost every operation in the calculator that

involves algebraic or calculus manipulations. The CAS prefers that you use the Exact mode for
most operations in order to provide the most accurate result. You will know that the Exact

mode is selected if you see that the approx mode is not selected in the CAS MODES screen (see
above). Make sure that your calculator is set to Exact mode all the time. While in the stack,
in RPN mode, this can be quickly accomplished by clearing system flag 105:

[11[0]1[5][+/-1[ALPHA][ALPHA][C][F][ENTER].

Many errors produced when operating the calculator can be traced to not having it set to
Exact mode. On the other hand, whenever the calculator, set to Exact mode, tries to

evaluate expressions involving floating point numbers (i.e., numbers with decimals), it will
request that the CAS mode be changed to Approx. Accept the request for changing the CAS
mode, but, when done, make sure that you return the calculator to Exact mode.

Many other operations will request you to change the mode to complex. Accept the changes
when requested to obtain complex results. Within the stack, in RPN mode, if you want to
return to Real (i.e., not Complex) mode, clear system flag 103:

[11[0]1[31[+/-1[ALPHA][ALPHA][C][F][ENTER].

In normal calculator display you can check what the current CAS settings, and other calculator

settings, are by checking the characters in the upper left corner of the display. The settings |
prefer, unless otherwise noticed, will look like this:

3 ©2000 - Gilberto E. Urroz

All rights reserved

r
r
=
X
a x

=
r
a
p
h
n

[EDIT[WIEN[STACK]RCL[FURGE|CLEAR

The items in the upper left corner are interpreted as follows:

“& RAD stands for radians for angular measure

#% XYZ stands for rectangular (i.e., Cartesian) coordinates

+ HEX stands for hexadecimal numbers as the default for binary operations

% R means Real, as opposite to Complex, CAS mode

& The equal sign (=) stands for CAS Exact mode, as opposite to ~, which means Approx
mode

‘X’ means that the default CAS independent variable (stored in VX, is the upper case X)

Thus, before starting any operation involving algebraic or calculus manipulations (i.e., most
operations in the calculator) make sure that the icon R= is present in the upper part of the
display.

4 ©2000 - Gilberto E. Urroz

All rights reserved

Preface to Volume |

The first three chapters of Volume | will help you become familiar with the general operation
of the calculator. The volume contains 12 chapters that include the following subjects:

Introduction. The first chapter describes the calculator’s features, how to update the ROM,
Web sites that provide additional information, calculator operating modes, setting of flags,

basic memory operations, etc.

The HP 49 G keyboard. The second chapter describes the calculator’s keyboard in detail and
can be used as a quick reference resource when using the calculator.

Basic calculator operation. The third chapter describes the general calculator operation,
communication between calculators, special characters, powers of ten, angle modes and

coordinate systems, mathematical constants included in the calculator ROM, use of the

command catalog, and using units in arithmetic operations.

Calculations with real numbers. The fourth chapter describes the CAS and provides examples

of calculations with real numbers using standard functions (exponential, logarithmic, powers,
trigonometric functions), display options, hyperbolic functions, operations with non-decimal
numbers, probability functions, etc.

Calculation with complex numbers. The fifth chapter describes complex numbers and their
operation in the calculator, as well as functions of complex variables.

Introduction to lists, functions, and programs. Lists are important mathematical objects used
by the HP 49 G calculator, and it dedicates a number of functions and menus to their
operation. This chapter describes how to handle lists and how to related them to functions
defined in the calculator. It also provides a brief introduction to the use of User RPL programs.

HP 49 G programming basics. This chapter provides a more detailed introduction to
programming the HP 49 G using User RPL. Examples d programming and debugging are
provided that introduce the user to simple input-output operations, branching, loops, logical
expressions, and related subjects.

Algebra and related subjects. This chapter presents detailed explanations on the use of the
Computer Algebraic System (CAS) functions for algebraic manipulation of expressions including

polynomials, fractions, exponential and logarithmic terms, trigonometric identities, expansion
and factorization. A brief presentation of modular arithmetic is presented to introduce the

MOD operation.

Vectors. This chapter presents exercises in the use of the matrix writer, creation of one-
dimensional arrays (or vectors), manipulation of vectors, operations with vectors, vectors in
Cartesian and other coordinate systems, and a plethora of application examples taken from the
physical sciences.

Matrices and linear algebra. This chapter covers an extensive amount of material on matrix
theory, matrix creation, matrix manipulation, matrix operations, row and olumn operations,

and matrix characterization. It also includes theory and exercises on linear algebra

applications such as different methods for the solution of linear systems of equations,
calculation of eigenvalues and eigenvectors, matrix factorization, and matrix quadratic forms.

The chapter concludes with a number of applications of matrices and linear algebra to
practical problems in science and engineering.

5 ©2000 - Gilberto E. Urroz

All rights reserved

Graphics and character strings. This chapter includes a number of exercises that teach the
user how to effectively use the graphics capabilities of the HP 49 G calculator. Examples are
included of all possible types of graphs in the calculator: functions, polar coordinates,
parametric plots, conics, differential equations, truth plots, bar plots, scatter plots, slope
fields, wireframe and Fast3D plots, contour plots, y-slice animations, grid maps, and
parametric surface plots. The chapter also introduces the multiple functions that the
calculator provides for interactive and programmable use of graphics. Examples of
interactive graphics functions and their equivalent programs are presented. This chapter
briefly covers. concepts related to binary number operations because they are commonly used
in programming graphics. The chapter concludes with the incorporation of character strings

into graphics.

Solution to equations. Chapter 12, the last in this volume, presents an exhaustive set of
examples for the solution of single and multiple equations using symbolic and numerical

functions in the calculator. The Chapter includes a review of solution of polynomial equations
and introduces financial calculations typical of engineering economics. The chapter describes
the use of the calculator’s numerical solver for single equations, and of graphical and

numerical methods for solving systems of non-linear equations. The use of the calculator
Multiple Equation Solver (MES) is included for the solution of triangles (a typical trigonometric

application) and motion in polar coordinates (engineering mechanics).

In summary, the contents of this volume cover all the calculator features involving pre-calculus
mathematics, graphics, programming, and linear algebra. Chapters 1 through 4 cover the
basics for simple calculator operations, i.e., the basic type of operations that calculator users
at all levels should be able to master. Complex numbers, lists, and programming constitute

the next level of mastery of the calculator that all users should be familiar with. These
subjects are covered in Chapters 5 through 7. Algebraic operations, covered in Chapter 8, and
graphics, covered in Chapter 11, are useful for users taking pre-calculus mathematics in High-
School or College levels. Chapters 9 and 10 cover the fundamental operations necessary for a
linear algebra course at the College level. Elementary concepts from these chapters can be
used in a High-School-level linear algebra course.

6 ©2000 - Gilberto E. Urroz

All rights reserved

Introduction
This book is intended to be a survey of applications of the HP 49 G programmable/graphics
calculator in science and engineering mathematics. The presentation of the calculator
features and the exercises presented herein emphasize engineering applications in RPN mode.
However, a few exercises in algebraic mode are also presented.

Notation used in this book

Keystrokes for the HP49 G keys are shown between brackets. For example, [ENTER] indicates
the use of the ENTER key located at the lower right corner of the keyboard. Keystrokes that
require either [1], [—], or [ALPHA], are followed by the appropriate instruction, which may
not necessarily be the main key label. For example, the sequence [+][UPDIR] indicates
pressing the [<1] key, followed by the [VAR] key, which has the instruction UPDIR as a

secondary label.

The keys at the top row of the keyboard, labeled F1 through F6, are referred to as soft menu
keys. The operation of these keys will depend on the current content of the keys shown at the
bottom of the display. Also, when using the soft menu keys, we will indicate the appropriate
instruction between brackets. For example, to get to a specific subdirectory from the HOME
directory, say E202, we will indicate that the key [E202] must be pressed. To find out which
one of the white keys is the appropriate one, look at the labels associated with those keys at
the bottom of the display.

For entering numbers or variable names, we could, for example, indicate the keystroke

sequence, as in the instruction: [']J[ALPHA][ALPHA][E][2][0][2][ALPHA], the keystroke
sequence to enter in the display the variable name ‘C303. Or, we could simply indicate: press [
"], and type C303.

The HP 49 G operating system or ROM

The HP 49 G is not like any other calculator. Think of it as a pocketsize computer. As with any
computer, there is a Central Processing Unit (CPU) that is managed by an operating system.

Unlike the HP 48 G, whose operating system is permanently stored in conventional ROM (read
only memory), and cannot be changed by the user, the operating system of your HP 49G can be
upgraded by downloading new versions from the internet, or copying it from another HP 49 G.
To obtain improved versions of the operating system check out the HP website:

http: //www.hp.com/calculators/graphing/rom/

7 ©2000 - Gilberto E. Urroz

All rights reserved

In that website, you will find instructions such as:

Update your HP 49G
Download a new ROM version to your calculator using the new
PC Connectivity Kit. Or if you already have it get the ROM update (version
1.16). To view your ROM version type VERSION on the HP 49G.

Beta ROM:

Version 1.17-5

By clicking in the corresponding highlighted text, you can download the software required for
your HP 49 G to communicate with your computer, or the most current version of the operating
system (ROM). The information above corresponds to version 1.17-5 beta of the HP 49 G ROM.
Beta means simply that the version is still under development, and that should be used with
caution. If you want to use a tested version of the ROM, click on the PC Connectivity Kit text
to get the current version. To communicate with a PC or Macintosh computer you need to have
an appropriate cable, which can be purchased at many electronic stores directly or through the
Internet, or constructed yourself using instructions available from many Internet Websites. The
software help feature has instructions for upgrading your ROM. Be warned, however, that
upgrading the ROM requires about 30 minutes, so reserve plenty of time for such operation.

The ROM can also be loaded into a calculator from another calculator by using the command
ROMUPLOAD in the receiving calculator. Instructions for ROM transfers between calculators are
also available when you download the PC Connectivity Kit software. ROM transfer between

calculators also takes about 30 minutes. Also, fresh batteries should be installed before

beginning transfer since the Flashing process requires more than the usual operating current.

Keeping up to date with the HP 49 G

To keep up to date with the HP 49 G visit the following website regularly:

http: //www.hp.com/calculators/graphing/49ginfo.html

In that website you will find technical information about the calculator and other items of
interest. Technical manuals for the calculator are available at the following website:

http: //www.hp.com/calculators/graphing/49g tech.html

Another way to keep up to date with new developments with the HP 49 G calculator, is to
subscribe to, and check regularly, the discussion group comp.sys.hp48. Although it is called
hp48, it is the forum for discussion, report of bugs, questions and answers about both the HP 48

G and the HP 49 G calculators. It may occur that, in the future, a new group (perhaps called

comp.sys.hp49) will be created, but comp.sys.hp48 is the group to visit at this time.

8 ©2000 - Gilberto E. Urroz

All rights reserved

Programs for the HP 49 G

As you know, your calculator is not only a traditional scientific/graphic calculator, it is also
programmable. That means that you can develop your own routines that perform certain
numerical and logical operations of your choice. Many people around the world develop
programs for the HP 49 G and make them available, most of them for free, to users with access
to the Internet. There is a number of websites were such programs are available. You can find
them by doing an Internet search with your web browser. One of the best collection of
programs for the HP 48 G and HP 49 G is, however, found under the URL:

http: //www.hpcalc.org

(If that URL doesn't work, try the alternative address: http://165.234.32.14)

This website was developed for the HP 48 G and earlier HP calculators. Therefore, many of the
links you will find are related to the HP 48 G. There are a number of them related to the HP
49 G that permits you to download programs in a variety of categories such as math, statistics,
engineering, etc.

There are two programs that | have found to be very useful for my applications (mainly civil
and environmental engineering, mathematics, and statistics): Solvesys, a library that allows

you to solve a number of non-linear equations simultaneously (also available at:
http://solvesys.cijb.net/); and, LibMaker, a program that allows you to create libraries out of

your own directories in the calculator.

Some HP 49 G programming concepts

This section is intended to clarify some concepts about programs in the HP 49 G calculators. A
program in the HP 49 G calculator, is simply a collection of commands stored in a variable
name that are performed whenever that variable name is invoked. A programmed command
can be invoked directly from the keyboard, or by listing it in another program.

Programming Languages

There are several ways that a program can be created. The simplest is to use the calculator
keyboard to create the program in User RPL language. RPL is the name of the programming
language native to the HP 48/49 G calculators. The User RPL language is a subset of the RPL

language which is relatively easy to access from the keyboard, and, with some experience,
relatively easy to program. There exists another subset of RPL, called System RPL, which is

more cryptic and requires a longer learning curve to master. System RPL produces programs
that optimize use of memory and time resources in the calculator. Programs can also be
created for the HP 49 G calculator by using Assembler languages. Assembler language is just
one level above the binary language (machine language) used by computers. Programming in
Assembler language requires developing the program in a computer and then downloading it
into the calculator. Software exists that lets the user program an HP 48 G or HP 49 G
calculator in User RPL or System RPL in a computer. In algebraic mode it is possible to program
the HP 49 G using a language called HP Basic.

9 ©2000 - Gilberto E. Urroz

All rights reserved

Hewlett Packard provides an emulator program for the HP 49 G that you can use on a PC with a
UserRPL editor to debug programs prior to downloading to the HP 49 G as an alternative to

keying them all on in on keypad.

Libraries

There is a type of program called a library that can be loaded and installed in your calculator
and is accessible by using the [][LIB] keystroke sequence. Libraries reside in memory ports,
of which your HP 49 G calculator has three: ports 0, 1, and 2. Ports are visible by using the
same keystroke sequence used to access libraries (You may need to press [NXT] to get to the
listing of ports if you have three or more libraries active in your calculator). Programs defined
in libraries are available to the user regardless of the current working directory. That makes
library programs very accessible and convenient. Also, library programs cannot be modified, so

there is very little risk that you will accidentally erase or modify a library. The program
LibMaker, mentioned above, allows you to create your own libraries after you have created
User RPL programs in a given sub-directory within your calculator. More details about creating
and using libraries will be provided later.

Calculator operating modes

Most HP calculators, particularly those for engineering applications, use what is referred to as

the Reverse Polish Notation (RPN) mode. Most other calculators use an algebraic entry mode,
which mimics the way that we write arithmetic or algebraic expressions in paper. The RPN
mode is more efficient in the use of calculator memory and processing time, and became very
well known and widely used in the engineering community when adopted by HP back in the
1970's. The HP 49 G allows you to choose between both RPN and algebraic entry modes. |

prefer to use the RPN mode not only because | am more familiar with it from my experience
with the HP 48 G, but also because, by using the RPN mode, one can use much of the existing

expertise from the HP 48 G.

Changing the calculator mode

To change the calculator mode, press the [MODE] key in the calculator. If you haven't changed
your default, you will have in the calculator an input screen, labeled CALCULATOR MODES,
with the first line indicating the Operating Mode as Algebraic. To change mode to RPN, toggle
the [+/-] button until RPN is shown, or use the [CHOOS] soft key and select RPN. Press [OK] to
return to normal calculator operation. A similar process is used to change the operating mode
to algebraic. For the time being, keep the operating mode in the algebraic option.

Comparing algebraic mode with RPN mode

The following program illustrates a calculation performed using both the algebraic and RPN
modes. The arithmetic expression to calculate is:

1
35-7)
3 + exp(2.5)

10 ©2000 - Gilberto E. Urroz

All rights reserved

To enter this expression in the calculator we can use the equation writer as follows:

[EQW] [Vx] [31 [x] [21101 [51-1011 [+] [31 [X1(3] [Al[A][A][A][A][A][A]

[+] [21 [31 [v1 [3] [®1(»] [+] [+] [€*] [2] [.] [5] [ENTER]

After pressing [ENTER] the calculator displays the expression:

V (3% (5-1/(3*%3))/(2373+EXP(2.5))

Pressing [ENTER] again will provide the following value (accept Approx. mode on, if asked, by

pressing [OK]):

3.49051563628

You could also type the expression directly into the display without using the equation writer
as follows:

[Nx] [1001 [31 [x] [21001 [510-1011 [+] [31 [103] [» 10+] [2] [3] [v*] [+] [+] [€*] [2] [.] [5]
[ENTER]

to obtain the same result.

Let's try now the same operation in reverse polish notation (RPN). First, clear the screen by
using

[~] [CLEAR].

Then, change the operating mode to RPN by following the procedure indicated above. Notice

that in RPN operating mode, the display shows several levels of output labeled, from bottom to
top, as 1, 2, 3, etc. This is referred to as the stack of the calculator. The different levels are

referred to as the stack levels, i.e., stack level 1, stack level 2, etc.

Note: Years ago when memory was expensive and therefore very limited, there were only

three or four stack levels or registers. These were referred to as register x (for stack level 1),
register y (for stack level 2), register z (for stack level 3), and register t (for stack level 4).
This notation is still used particularly when describing calculator functions that use only four
levels of the stack. Informally, these four registers are referred to simply as x, y, z, and t.

Today we have an stack size limited only by available memory, with far many more levels than
there are letters in the alphabet.

Basically, what RPN means is that, instead of writing an operation such as

3+2,

as

[31[+][2][ENTER],

we write first the operands, in the proper order, and then the operator, i.e.,

[3] [ENTER] [2] [ENTER] [+].

11 ©2000 - Gilberto E. Urroz

All rights reserved

As you enter the operands, they occupy different stack levels. Entering [3][ENTER] puts the
number 3 in stack level 1 (register x). Next, entering [2][ENTER] pushes the 3 upwards to
occupy stack level 2 (register y). Finally, by pressing [+], we are telling the calculator to apply
the operator, or program, [+] to the objects occupying registers y and x. The result, 5, is then
placed in register x.

Let's try some other simple operations before trying the more complicated expression used
earlier for the algebraic operating mode:

35 x2 [3][5] [ENTER] [2] [¥]

123/32 [11[2](3] [ENTER] [3][2] [+]
4? [2] [ENTER] [2] [v]
27 [2](7] [ENTER] [3] [~1[*Vy]

Notice the position of the y and the x in the last two operations. The base in the exponential
operation is y (stack level 2) while the exponent is x (stack level 1) before the key [V] is
pressed. Similarly, in the cubic root operation, y (stack level 2) is the quantity under the root
sign, and x (stack level 1) is the root.

Try the following exercises:

(5+3)x2 [S][ENTER] [3][ENTER] Calculates (5 +3) first.

[2] [x] Completes the calculation.

Let's try now,

1
3.(5-—)
334 exp(2.5)

23"

[3][ENTER] Enter 3 in x
[SI[ENTER] Enter 5 in x, 3 moves to y
[3][ENTER] Enter 3 in x, 5 moves to y, 3 moves to z

[31x] Place 3 and multiply, 9 appears in x

[1/X] Calculate 1/(3x3) = 1/9 = .111111, last value placed in x; Siny; 3in z

[-] Calculate 5 - 1/(3x3) = 4.888888, which occupies x now; 3 iny

[x] Calculate 3x (5 - 1/(3x3)) = 14.66666, this value appears in x now.
[21[3][ENTER] Enter 23 in x, 14.66666 moves to vy.

[31 v1 Enter 3, calculate 233 = 12167, this value appears in x now. 14.66666 in vy.

+ Calculate (3x (5 - 1/(3x3)))/233 = 1.205x10°3, this value now appears in x (*).
[210 - 1051 [+] [e Calculate e*® = 12.18249, this value appears in x, y shows previous value.
[+] Calculate (3x (5 - 1/(3x3)))/233, e?® = 12.18369, this value appearsin x.
[Vx] Calculate V ((3x (5 - 1/(3x3)))/23%, €23) = 3.4905156, this value appears in x.

Obviously, the algebraic mode is easier to use for completing this calculation. However, even
when in the RPN mode you can still use the Equation Writer to write algebraic expressions.
Thus, the same steps used earlier to write the expression with the Equation Writer in algebraic
mode, can be used in the RPN mode as follows:

[EQWI [Nx] [31 [x] [<1[O] [511-1011 [=] [31 [X][3] [A][A][A][A][A][A][A]
[+1 [2] 3] [y'] [3] [(»1[»] [+] [+] [€] [2] [.] [5] [ENTER]

12 ©2000 - Gilberto E. Urroz

All rights reserved

The resulting expression is shown in stack level 1 (register x). Pressing [ENTER] again,
however, will not calculate the numerical result of the expression. It will simply enter a copy
of the expression in register x, pushing the original expression to register y. This operation is
useful if you want to preserve an intact copy of any expression for future use. To obtain a
numeric value press [~][EVAL] ([SYMB] key) or [~][> NUM] ([ENTER] key).

Note: My personal bias towards the RPN mode will require you to use that calculator mode in
most of the applications that follow. Therefore, make sure that your calculator is set to RPN
mode by pressing [MODE] and toggling the [+/-] key until RPN shows in the Operating Mode..
field. Press [OK] to return to normal calculator display.

Flags

A flag is a variable or object that specifies a given setting of the calculator or an option in a
program. Flags in the HP 49 G calculator are labeled with numbers. Flags that are used to
control the process in a user-defined program are called user flags, and referred to by using
positive integer numbers. Flags used to control calculator settings, i.e., system flags, are
labeled with negative integer numbers.

To see the current flag setting press the [MODE] button, and then the [FLAGS] soft key (i.e.,
F1). You will get a screen labeled SYSTEM FLAGS listing flag numbers and the corresponding
setting. (Note: in this screen the system flag labels use positive integer numbers. Negative
integer numbers are used in the stack or in programs to set or clear system flags). A flag is
said to be set if you see a check mark (v') in front of the flag number. Otherwise, the flag is

not set or cleared. To change the status of a system flag press the soft key [v'CHECK] while

the flag you want to change is highlighted. You can use the vertical arrow keys to move about
the list of system flags.

Example of flag setting: general solutions vs. principal value

For example, the default value for system flag 01 is General solutions. What this means is that

if an equation has multiple solutions, all the solutions will be returned by the calculator, most

likely in a list. By pressing the [v'CHECK] soft key you can change system flag 01 to Principal
value. This setting will force the calculator to provide a single value known as the principal
value of the solution.

To see this at work, first clear system flag 01 (i.e., set it to General solutions). Press [OK]
twice to return to normal calculator display. We will try a quadratic equation solution. Say,

solve
£-3t+5 = 0.

Use the following keystrokes:

[EQW] [ALPHA][<](T] [y*1(2] [®] [-]1 [3] [x] [ALPHA][«][T] [+] [5] [A][A] [~][=] [0]
[ENTER] [ENTER] (To keep a second copy of the equation)

[1°] [ALPHA][<][T] [ENTER]
[ALPHA][ALPHA] [Q][U][A][D] [ENTER]

The solution is given as a list:

{t=(1.5,1.65831239p

To see the two solutions press [¥]. The complete list of solutionsis:

13 ©2000 - Gilberto E. Urroz

All rights reserved

{‘t = (1.5,-1.65831239518)" 't = (1.5,1.65831239518)"}

Press [ENTER] to return to normal calculator display. Press [<] to clear the stack.

Now, let’s change the setting of system flag 01 to Principal value by using:

[O1[1]1[+/-] [ENTER] [alpha][alpha] [S][F] [ENTER] (This produces no output)

Solve for the equation once more using:

[~]1“] [ALPHA][<][T] [ENTER]
[ALPHA][ALPHA] [Q][U][A][D] [ENTER]

The solution is now:
{t=(1.5,1.65831239p

Press [¥] to see a unique solution (the principal value):

t = (1.5,1.65831239518)

Press [ENTER] to return to normal calculator display. Press [¢] to clear the stack.

Notes:

[1] For a quadratic equation of the form ax’+bx+c = 0, the two general solutions are given by

x = (-b/2a)+ [(b/2a)*+c] "2.

while the principal value would use only the positive sign in front of the square root.

[2] A result which include an ordered or the form @,b), such as those shown above for ¢t,
represents a complex number. Typically, complex numbers are represented as a+bi, where i is
the unit imaginary number defined as i’ = -1.

Other flags of interest

Bring up once more the current flag setting by pressing the [MODE] button, and then the
[FLAGS] soft key. Make sure to clear system flag 01 if it was left set from the previous
exercise. Use the up and down arrow keys to move about the system flag list.

Some flags of interest and their preferred value for the purpose of the exercises that follow in
this manual are:

02 Constant — symb: Constant values are kept as symbols

03 Function — symb: Functions are not automatically evaluated, instead they are loaded as
symbolic

expressions.

27 ‘X+Y*i’ > (X,Y): Complex numbers are represented as ordered pairs

60 [a][a] locks: The sequence [alpha][alpha] locks the alphabetic keyboard
91 MTRW: Matrix: The matrix writer produces a matrix, i.e., [[a;; aj; aj3]...], rather than

a list of

lists, {{as1, az, ai3},..}.

Press [OK] twice to return to normal calculator display.

14 ©2000 - Gilberto E. Urroz

All rights reserved

Objects and their types in the HP 49 G calculator

Your calculator is accompanied by a small booklet called The HP 49 G Pocket Guide. It can be
used as a quick reference for figuring out the operation of calculator commands. It will be
very handy once you have enough experience to understand the operation of the most
commonly used commands. At this point | want to use it to show you all the types of objects
that you can operate with in your calculator. Open your Pocket Guide to the very last page,

page 80, to see a list of object types. The table shows 31 different types of objects, with their
corresponding type number, name, and an example to illustrate the concept. Some of the
most useful type of objects are listed below.

= For most real-number arithmetic operations you need only object type 0, real
numbers.

+ Complex numbers, object type 1, are an extension of real numbers that include the

unit imaginary number, i = V (-1). A complex number, e.g., 3 + 2i, is written as (3, 2) in

the HP 49 G calculator.

“Vector and matrix operations utilize objects of type 3, real arrays, and, if needed,

type 4, complex arrays. Objects type 2, strings, are simply lines of text (enclosed between

quotes) produced with the alphanumeric keyboard.

A list is just a collection of objects enclosed between curly brackets and separated by
spaces in RPN mode (the space key is labeled [SPC]), or by commas in algebraic mode.

Lists, objects of type 5, can be very useful when processing collections of numbers. For

example, the columns of a table can be entered as lists. If preferred, a table can be
entered as a matrix or array.

- Objects type 8 are programs in User RPL language. These are simply sets of
instructions enclosed between the symbols << >>.

= Associated with programs are objects types 6 and 7, Global and Local Names,
respectively. These names, or variables, are used to store any type of objects. The
concept of global or local names is related to the scope or reach of the variable in a given
program.

= An algebraic object, or simply, an algebraic (object o type 9), is a valid algebraic

expression enclosed between apostrophes.

* Binary integers, objects of type 10, are used in some computer science applications.

* Graphics objects, objects of type 11, store graphics produced by the calculator.

+ Tagged objects, objects of type 12, are used in the output of many programs to
identify results. For example, in the tagged object: Mean: 23.2, the word Mean: is the tag
used to identify the number 23.2 as the mean of a sample, for example.

+ Unit objects, objects of type 13, are numerical values with a physical unit attached to
them.

- Directories, objects of type 15, are memory locations used to organize your variables in
a similar fashion as folders are used in a personal computer.

* Libraries, objects of type 16, as mentioned earlier, are programs residing in memory
ports that are accessible within any directory (or sub-directory) in your calculator. They
resemble built-in functions, objects of type 18, and built-in commands, objects of type 19,
in the way they are used.

15 ©2000 - Gilberto E. Urroz

All rights reserved

Organizing data in your calculator

Data can be organized in directories and sub-directories in a similar fashion as folders are used
to organize data in a computer. When you turn on your calculator, you will see the characters
{HOME} listed above the horizontal line at the top of the display. The name between curly
brackets is the path of the working directory. When you use your calculator for the very first
time there will be no sub-directories in the HOME directory. The labels above the soft menu
keys will most likely list some variables corresponding to the Calculator Algebraic System or
CAS, such as the default unknown variable VX, and others called REALA, PERIO, etc., if

anything at all. To see the contents of any variable listed in the soft menu keys, press the key,
or press the red [—] key followed by the corresponding soft menu key.

To create directories, you will need to type the directory name in stack level 1, and use the
command CRDIR. For example, suppose you want to create a directory named DIR1 under your
HOME directory. Use the following:

[ALPHA][ALPHA] This locks the alphabetic keyboard
[DI[N[R][1] [ENTER] Enter name. The [ENTER] key disengages the

alphabetic keyboard in this instance.
[<][PRG][MEM][DIR][CRDIR] Navigates through menus to activate the CRDIR

(Create DIRectory) command

[VAR] Recovers the variables menu.

You should have at this point the label [DIR1] associated with the first of your soft menu keys.
Notice that the hbel has the form of a folder, indicating that DIR1 is a directory within the
HOME directory.

To get inside the DIR1 directory, press the corresponding soft menu key. The path
specification at the top of the display will now show the path {HOME DIR1}. (This is similar to

having the path C:\HOME\DIR1 in a PC computer.) Of course, there will be no variables stored
within this directory and all the soft menu keys will be empty.

You can store any kind of objects in variables within the HOME directory or any subdirectory
you create. For example, within the directory DIR1 you can create a couple of variables as
follows:

1) Store the value of 324.5 into a variable that we will call A:

[31[2][4]1[- 1[S][ENTER] [ALPHA][A] [STO>]

2) Store the string "MY DIRECTORY" in variable TITLE:

[= 1"1[ALPHA][ALPHA] [M][Y][SPC][D][1][RI[E][CI[T]I[O][RI[Y][ENTER]
[ALPHA][ALPHA] [TI[II[TI[LI[E][ENTER] [STO>]

The soft menu keys will show the labels [TITLE] and [A] corresponding to the variables of the
same name.

By creating directories and sub-directories within the HOME directory, you can develop your
own directory tree to store any number of variables, algebraic objects, programs, etc. To
move down the directory tree just press the soft menu key corresponding to the directory you
want to access. To move up the directory tree use the command UPDIR, accessible through
[<][UPDIR].

You can visualize this tree structure by using: [«][FILES]. This will show a window titled FILE
MANAGER showing the following information:

16 ©2000 - Gilberto E. Urroz

All rights reserved

0: IRAM 234KB

1: ERAM 254KB

2: FLASH 1080KB

Home 234KB

Etc.

The first three lines represent the memory ports where program libraries are stored. Line 4
and subsequent is the picture of your directory tree, with the HOME directory as the trunk of
the tree. You can move through the directory tree by using the arrow keys. To access any
particular directory or sub-directory, just highlight its name and press [OK]. The resulting
screen will list all the variables in your directory or sub-directory indicating their type and size
in KB. To access the normal calculator display within the selected directory or sub-directory,
press [NXT][NXT][HALT]. To recover the soft menu keys, press [VAR].

More details on the use of variables and the FILES command can be found in the calculator's

manual.

Note: Use the [VAR] key anytime to recover the listing of your variables in the soft key menu at
the bottom of the calculator display.

17 ©2000 - Gilberto E. Urroz

All rights reserved

The HP 49 G keyboard
In the previous examples we have already used many of the keys in the calculator's keyboard.
In this chapter we explore the keyboard in more detail.

The HP 49 G keyboard consists of 51keys, most of them organized in five columns, except for
the four arrow keys near the upper right corner of the keyboard, and the six soft menu keys (or
soft keys) at the top of the keyboard. Each key in the keyboard can access more than one
object or operation by combining it with the alphabetic key [ALPHA], the blue left-shift key
[<], and the red right-shift key [r]. Additional characters are accessible by combining
[ALPHA][+] and [ALPHA][+=] with some of the keys.

Primary function of each key

The primary, or main, function of each key is shown as a white label on the key. For example,
the main function of the green [ALPHA] key is to access the alphabetical keyboard. Similarly,

the main function of the [Vx] key is to extract the square root of the value in register x.

Alphabetic characters

The gray keys also show a white, uppercase letter in green background, indicating the upper-
case alphabetic character that can be placed in the display by pressing that key after the
[ALPHA] key. Alphabetic characters are also available in the six soft menu keys at the top of

the keyboard.

Notice that the key corresponding to the letter X, also has a main function to enter the letter
X. The letter X occupies a special place in the algebraic, calculus, and graphical operations of

the calculator, being the default name of the variable used for those operations. In other
words, as in mathematical textbooks x is the default unknown variable, X is the default

unknown variable in the HP 49 G calculator. To verify this, check that there is a variable in

your calculator called VX in your HOME directory. Press the corresponding soft menu key to
verify that it contains the value 'X'.

Left-shift and right-shift functions

Most keys have a third function associated with them and activated by pressing the blue left-
shift key [<1]. The left-shift function associated with each key is shown above the key towards
the left in blue color. For example, the left-shift function associated with the [SIN] key is the
ASIN function (arcsine). The fourth function of a key is associated with the red right-shift key

[]. This function is shown above and to the right of each key in red color. The right-shift
function associated with the [SIN] key, for example, is summation symbol X.

18 ©2000 - Gilberto E. Urroz

All rights reserved

Secondary functions of the soft menu (F1-F6) keys

As indicated earlier, the soft menu keys are used to access the objects corresponding to the
current menu as displayed below stack level 1 in RPN mode. They also have the alphabetic
characters A, B, C, D, E, and F, associated with them. Notice that right above the soft menu

keys there are blue labels corresponding to the graphic functions Y=, WIN, GRAPH, 2D/3D,
TBLSET, and TABLE. Warning: These functions are only accessible, by pressing [<] followed
by the corresponding soft menu key, when the calculator is operating in algebraic mode. In
RPN mode, pressing [~] followed by any particular soft menu key, will store the contents of
register x into the variable corresponding to the soft menu key. Therefore, make sure not to
use the left-shift (blue label) functions associated with the soft menu keys (F1-F6) when in RPN

mode. You can still access the graphic commands in the soft keys in RPN mode by holding

down the left-shift key [+1] while pressing the desired soft menu key.

The arrow keys

The arrow keys allow the user to move the cursor within the display in the four main
directions: up, down, left, and right. Combining these keys with the blue left-shift key will
move the cursor to the first or last line (up or down) in a list, or to the first or last character in
a line (left or right) within the visible window of the display. Using the red right-shift key
before pressing any of the arrow keys will move the cursor to the absolute first or absolute last
line in a list, or to the absolute first or absolute last character of a line, even if those positions
are not visible in the display.

Utility keys

The six keys located in two rows to the left of the oddly shaped arrow keys, and the row

immediately below, can be referred to as utility keys. They allow the user access to many
basic utilities of the calculator. Let's discuss them in detail:

ZS Produces a CHOOSE box listing a number of function menus including plot,
input/output, library of constants, numeric solver, time & date, equation

writer, and file manager. Many of these menus were accessible through keys in

the HP 48 G calculator.

(GR [FILES] Provides access to the file manager (see above for some more information).

[lm] [BEGIN] This right-shift function is used to mark the beginning character of a segment
of an object

that will be highlighted or selected for copying or replacing. This is therefore,
an editing function.

IMODE] Used to modify different settings in the calculator. We have used this key to
change the operating mode from algebraic to RPN, and vice versa. Other
options that can be changed include: number format, angle measure, and
coordinate system. Using the [CHOOS] soft menu key when the appropriate
option is highlighted, will show the different settings available for that option

(e.g., Degrees, Radians, Grads, for the angle measure). Other options, which

19 ©2000 - Gilberto E. Urroz

All rights reserved

can be changed by using the [CHK] soft menu key, are: sound a beep when
mistakes are made, provide a ‘key click’ sound, and recoverlast stack.

Within this screen you can also access other options for which different
settings can be selected. These options are accessed by pressing the
soft menu keys [FLAGS], [CAS], or [DISP]. The [CANCL] soft menu key
cancels the last selection and returns you to normal calculator display.
The [OK] key, saves any change made to the MODE options, and returns
you to normal calculator display.

+ The [FLAGS] command permits the user access to a list of 120 System Flags. These
"flags" are system variables that determine options such as whether an underflow

calculation should be force to become zero, or should show an error message. Use the up
and down arrow keys to navigate through the list of system flags. Any system flag showing
a check mark to the left of its ID number has had its default changed to the alternative
setting. You can change a system flag setting by using the [CHK] soft menu key. Press
[OK] to leave the FLAGS environment.

4 The [CAS] command accesses the Calculator Algebraic System settings. Some of these
settings include the default independent variable (X' is the original setting), a modulo
parameter (see manual), and options for numeric values versus constant names (e.g., e, i,

nm) , approximated (e.g., 0.5) versus exact (e.g. 1/2) values, complex results allowed in

some functions, verbose messages for calculus information, step-by-step algebraic and
calculus manipulation of some expressions, increasing versus decreasing power for
polynomial ordering, rigorous results (whether to simplify |x| to x), simplify or not non-

rational expressions. Use the [CHK] key to change any of these settings, [CANCL] to cancel
any changes in settings and return to the MODE environment, [OK] to save changes and
return to the MODE environment.

4 The [DISP] command access a screen where you can make changes to settings
controlling the calculator display. You can change the system font, change options for
editing, for the display of expressions in the stack, and for the equation writer (EQW). You
can change the number of lines in the header in the display, select whether to show the
current time in the display, and whether you want a digital or analog clock for the latter.
[CANCL] and [OK] soft menu keys are available in this screen to cancel or accept any
change in the display settings.

[EI [CUSTOM] Provides access to a customized keyboard. In other words, you can re-define

the keyboard operation and access the customized keyboard through this
operation. For more details consult the calculator manual.

[fg] [END] This right-shift function is used to mark the ending character of a segment of
an object

that will be highlighted or selected for copying or replacing. This is also an
editing function.

Provides a soft menu with a number of editing operations and operations on

variables. The commands available are:

+ [EDIT] Used to edit the contents of register x.

+* [VIEW] Displays contents of register x in full screen.

+ [RCL] Recalls contents of variable the variable whose nameis in register x.

20 ©2000 - Gilberto E. Urroz

All rights reserved

-* [PURGE] Deletes the variable whose name is listed in register x. If a list of variables is
placed in register x, the entire list of variables is purged with this command. The [PURGE]
command does not work with directory names.

-. [CLEAR] Clears the stack.

+ [STACK] Provides a menu of stack operations:

[DUP][SWAP][OVER][ROT]J[UNROT].

Pressing [NXT] access the following operations within the STACK menu:

[ROLL][ROLLD][PICK][UNPIC][PICK3][DEPTH].

Pressing [NXT] once more produces:

[DUP2][DUPN][DROP2][DROPN][DUPDU][NIP].

Pressing [NXT] once more produces the menu:

(NDUPNI[Il II Il [PRG].

Of all the STACK operations listed, you most likely be using regularly

the operations [DUP] and [SWAP]:

+ [DUP]: Duplicates the content of register x into register y.

+ [SWAP]: Swaps the contents of registers x and vy.

mo]
this function

The [PRG] command is the same as the keystroke combination
[<]1[PRG].

Places the complex unit, i, in the display. [If the complex mode is not

activated, you will be asked if you want it activated. If you say NO, then no

action takes place. If you say YES, either the symbol i or the value (0., 1.) is
placed in register x.

The vertical bar | is used to indicate an evaluation, as in (x? + 1)|x-2. Touse

you need to have an algebraic expression in register y, and a list of variables

and values in register x. Try this example:

[EQWILXI[V*I[2][»1[+][1][ENTER] [<][BI[X] [SPC] [2] [ENTER] [~][
J[ENTER]

The result is 2.241.

ZR

[EI [UPDIR]

[R[COPY]

Shows the names of variables in your working directory as labels associated

with the soft menu keys.

Moves to the directory immediately above the working directory. Repeated
applications this command will eventually land you in the HOME directory.

Copies highlighted characters within an object into a temporary storage (he
clipboard). This is another editing command.

21 ©2000 - Gilberto E. Urroz

All rights reserved

(SE
[@NIRCL]

(icuT]

Stores object in register y into variable whose name is listed in register x.

Recalls contents of variable whose name is listed in register x.

Cuts highlighted characters within an object. This is yet another editing

command.

INXT)|

(ll [PRY]

[Rl [PASTE]

Because there are only six soft menu keys, only six commands or variable

names can be seen at a time. The [NXT] command allows the user to move to
the next set of six commands or variable names, and so on, until all commands

or variable names have been shown.

Shows the previous set of six commands or variable names, if any, in the
current menu or directory.

Pastes characters in the clipboard into the location in an object indicated by
the cursor's position. This is yet another editing command.

HIST

[I [CMD]

[lI [UNDO]

Provides a list of the most recent commands, i.e., a history of calculator usage.

Shows a list of the last four commands used in the calculator. You can re-use

any of those four commands by highlighting it and pressing [OK].

Cancels last stack operation.

[EI [PRG]

[I [CHARS]

Provides a list, or catalog, of all commands available in the calculator.
Command names shown in italics corresponds to user-loaded libraries. To
access a particular command, press [ALPHA] followed by the first letter of the

command. Then, use the up and down arrow keys to highlight the desired
command. Press [OK] to activate the command. You can also enter more than
the first letter in a command by using [ALPHA][ALPHA] followed by the few
first letters of the command. Press [ALPHA] when you're done, before pressing
[OK] to activate the command.

Use it to access programming menus.

Provides access to all the alphanumeric characters available in the HP 49 G.
Use the arrow keys to navigate across and down the list of characters. As you
highlight any particular character, the keystroke sequence that you can use to
generate such character directly from the keyboard will be shown in the lower

left corner of the display. If no keystroke sequence is available, the lower left
corner of the display will be blank. To copy a given character directly from the
list, highlight the desired character and press the soft menu key labeled
[ECHO1]. To copy more than one character at a time, select the characters
desired one by one, pressing [ECHO] for each one of them. When finished
selecting characters, press [ENTER]. The character or set of characters
"echoed" to the display will show up at the bottom of the display as a character

22 ©2000 - Gilberto E. Urroz

All rights reserved

string. Pressing [ENTER] will convert the characters to an algebraic expression
that will be placed in register x.

(Eo

[3 [MTWR]

1

Starts the equation writer.

Starts the matrix writer.

Places a set of apostrophes in the display leaving the cursor ready for typing an
algebraic expression between them.

[SYMB]

[) (MTH]

(I= [EVAL]

Lets the user access a number of menus for symbolic operations:

[ALG] for algebraic manipulation.
[ARITH] for arithmetic manipulation.

[CALC] for calculus operations.
[GRAPH] for graphical operations.
[SOLVE] for solution of equations and differential equations.
[TRIG] for manipulating trigonometric expressions.
[NXT][EXPLN] for manipulating expressions involving natural logarithms and

exponential functions.

These menus and the operations they contain are discussed elsewhere.

Lets the user access a number of menus for mathematics operations (same as
the [MTH] key in the HP 48 G):

[VECTR] for vector operations.
[MATRX] for matrix operations.
[LIST] for operations with lists.
[HYP] for hyperbolic functions.
[REAL] standard functions that apply to real numbers (e.g., absolute
value).

[BASE] for conversions between decimal, binary, octal, and

hexadecimal number bases.

[NXT][PROB] for functions involving probability calculations.
[FFT] for Fast Fourier Transform and inverse applications.
[CMPLX] standard functions that apply to complex numbers (e.g.,

conjugate).

[CONST] access to the list of constants, such as =, i, e, available in the

calculator.

Evaluates expression in register x. The result of the evaluation depends on the
type of expression in stack level 1. For example, pressing [EVAL] when a list of

objects is in register x will decompose the list showing the objects in the
different levels of the display, with the first object in the topmost level of
display necessary. Most algebraic expressions will be simplified, and numerical

results provided when pressing [EVAL].

Drops contents of register x, letting every display level move one level

downwards.

23 ©2000 - Gilberto E. Urroz

All rights reserved

[GRY [DEL]

[EI[CLEAR]

Deletes contents from all levels of the display (practically the same as
[~][CLEAR]).

Clears display (practically the same as [«][DEL]).

Mathematical operations keys

The operation of the next two rows of keys should be obvious from the labeling of the keys.
These could qualified as mathematical operations keys. Here is a quick run down of their
operation:

[%]

[Kile]

[I [LN]

Calculates the x power (stack level 1) of the value in register y.

Calculates the exponential function of the value in register x.

Calculates the natural logarithm (logarithm base e) of the value in register x.

Vx]

[Ex]

(=rvx]

Calculates the square root of the value in register x.

Calculates the square of the value in register x.

Calculates the y-th root of the value in register x.

51M

(RASIN]

mel

Calculates the sine of the value in register x.

Calculates the sine inverse function of the value in register x.

In the Equation Writer or in an algebraic expression in stack level 1, this
keystroke combination provides the summation symbol.

[Ee]

[@I[ACOS]

Io]

Calculates the cosine of the value in register x.

Calculates the cosine inverse function of the value in register x.

In the Equation Writer or in an algebraic expression in stack level 1, this
keystroke combination provides the derivative symbol. If an algebraic
expression is provided in register y, and a variable in register x, this keystroke
combination will calculate the derivative of the expression in y with respect to
the variable in x.

[EN

(GI [ATAN]

=I]

Calculates the tangent of the value in register x.

Calculates the tangent inverse function of the value in register x.

In the Equation Writer or in an algebraic expression in stack level 1, this
keystroke combination provides the integration symbol. You can calculate an

24 ©2000 - Gilberto E. Urroz

All rights reserved

integral by using this keystroke sequence provided you have the variable of
integration in register x, the expression to be integrated in register y, the
upper limit of integration in register z, and the lower limit of integration in
register t.

[E32 this key is used to enter powers of ten in the calculator. A number such as -
32.345%x10°%, is entered into the HP 49 G calculator as

(310210. 1031[41(5](+/-1[EEX][2](3][+/-] [ENTER],

and displayed as -3.2345E-22

(I107] Calculates the antilogarithm of the value in register x.

[[M1[LOG] Calculates the base-10 logarithm of the value in register x.

[+/-] Entered after a number will change the sign of that number. Used while in a

=]

[==]

choose box, will toggle through the different options.

Enters the "not equal” sign.

Enters the "equal" sign.

IX

[=]

[&(<]

Enters the letter X.

Enters the "less than or equal” sign.

Enters the "less than” sign.

[EE

]

[i>]

Calculates the inverse of the value in register x.

Enters the "greater than or equal” sign.

Enters the "greater than" sign.

[Bl

[GaN [4B]

[RI[ARG]

Divides the contents of the y register by those of the x register. Enters the
fraction symbol (/) in programs and algebraic expressions.

Calculates the absolute value of vectors or the modulus of a complex number.

Calculates the argument, or angle, formed by the vector representing a
complex number and the x (or real) axis.

25 ©2000 - Gilberto E. Urroz

All rights reserved

The ALPHA key

IALPHA Press it once followed by any alphabetic key to enter that
letter in upper

case.

HALPHAJJI ALPHAJ| Locks the alphabetic keyboard in upper case (default flag
setting). Pressing [+] before typing any letter when the
alphabetic keyboard is locked, will enter that letter in lower
case.

ALPHA] kh Press this keystroke combination followed by any alphabetic
key to enter that letter in lower case.

(CEA(EEG(ELI This keystroke sequence will lock the alphabetic keyboard in
lower case for the default flag setting. Pressing [+] before
typing any letter when the alphabetic keyboard is locked in
lower case, will enter that letter in upper case.

Numeric keypad

The next four rows of keys include the [ALPHA], [<1], and [~], in the first column, the numeric
pad in columns two through four, and basic arithmetic operations in the last column. A
description of the keys follows:

The numeric keypad consists of the keys [7]1[8][91[4]1(5]1[6]1[11[2][3][0], listed by rows first, then
by columns. Their main function is to enter the corresponding digit. The numeric keypad is
completed with the keys for the decimal point [.] and the space [SPC]. All of the numeric
keypad keys have left-shift and right-shift functions as listed here:

(Ls. sLv] Symbolic SolLVer: access menu for symbolic solver operations.

[dl [NUM.SLV] NUMeric SolLVer: access menu for numeric solver operations

([][SOLVE] in HP 48 G).

(EI [EXP&LN] access menu for algebraic manipulations using exponential functions

and natural logarithms.

(TRIG] access menu for algebraic manipulations using trigonometric functions.

[BRI [FINANCE] access menu for financial calculations.

(WI[TIME] access menu for time and alarm setting and operations.

26 ©2000 - Gilberto E. Urroz

All rights reserved

[CALC]

[RIALG]

access menu for calculus operations.

access menu for algebraic operations.

[EI[MATRICES] access menu for matrix operations (new for the HP 49 G, [MTH][MATR]
used in the HP 48 G).

[I[STAT] access choose list for statistical data analysis.

(Bell [CONVERT] access menu for unit conversion tools.

(I [UNITS] access unit menus.

[GI [ARITH] access menus for arithmetic operations.

[I[CMPLX] access menu for complex number operations.

[Gell [DEF] used to define a function given an expression of the form 'F(X) = ..." in
register x. For example, to define the function

F(X) =X,

type:

(EQWI[ALPHA][FI[<][OIXI™] [~1[=] [XI[y*1(2] [ENTER] [«][DEF]
[VAR]

A variable F is available in your soft key menu. Enter [~][F] to see
the contents of that variable. The result is a program:

<< DX ‘X20 >>

This is interpreted in the following way:

> X means "enter the value in stack level 1 as the local variable X

in this program’,
'X*2." means "take the value in local variable X and raised to the

second power. The result shows up in register x".

Basically, the program evaluates the function F(X) for the current value
of the x register, when you press the soft menu key [F]. As an

example, try

(210 F]

The result is, of course, 4.

(LIB] access libraries and memory ports.

27 ©2000 - Gilberto E. Urroz

All rights reserved

[#1]

[RI [BASE]

use it to enter numbers in binary, octal, or hexadecimal bases.

access menu for conversions between different numerical bases.

[Ee]

(i>]

enters the symbol for infinity.

enters the slender arrow character. This character is used to indicate entering

local variables in a program (see example for F(X) above). It can also be used

as a letter in labeling variables.

RR:

(=

the double colon is used to specify location of objects stored in port memory.

enters the feed line character for text output.

((]

=, 1

enters the constant

enters a comma.

Arithmetic operation keys

The following three keys correspond to the arithmetic operations of multiplication,
subtraction, and addition, as well as to the ON and ENTER keys.

(51

in

ail

multiplies contents of registers x and y. In programs and algebraic expressions
it enters the multiplication symbol *

enters a set of square brackets leaving the cursor ready to fill up its interior.
Square brackets are used to create vectors and arrays.

enters a set of double quotes leaving the cursor ready to fill up the space in
between with characters. Double quotes are used to enter text strings.

Hl

[io]

(il - 1]

subtract contents of register x from those of register y. In programs and

algebraic expressions, it enters the subtraction symbol -

enters a set of parentheses leaving the cursor ready to fill up its interior.
Parentheses are used to group terms in algebraic expressions, and to write
complex numbers.

enters the an underline character. The underline character is used mainly with
unit objects.

28 ©2000 - Gilberto E. Urroz

All rights reserved

+1]

eo

=r

adds contents of registers x and y. In programs and algebraic expressions, it
enters the addition symbol +

enters a set of curly brackets leaving the cursor ready to fill up its interior.
Curly brackets are used to create lists of objects.

enters a set of double quotes leaving the cursor ready to fill up the space in
between with characters. Double quotes are used to enter text strings.

[eX]

(ERI [CONT]

(ml [OFF]

used to turn the calculator on, or to cancel any operation when pressed by

itself while the calculator is already on. (Notice the white label CANCEL below
the key).

CONTinue. Use to continue certain type of calculator operations.

turns the calculator off.

[ENTER]

[IANS]

[R1[-> NUM]

used to enter input into stack level 1 (register x).

ANSWER. Recalls the last answer obtained.

obtains the numerical value of the expression in register x.

29 ©2000 - Gilberto E. Urroz

All rights reserved

Basic calculator operation
The previous two chapters were aimed at getting you acquainted with your calculator
keyboard, as well as introducing some basic concepts related to its operation. In this section
we present several basic calculator functions useful in numerical computations.

Undo, Arg, and Cmd

a If you make a mistake in your calculations you may be able to recover your stack by

pressing [—][UNDO] ([HIST] key).

If you want to re-use the arguments in the latest calculation, try [—][ARG] ([+] key).

“To re-use a previous command you can use the keystroke sequence [<1][CMD]. This will
show a list of the last four commands used in the calculator. Highlight the command you
want to re-use, and press [OK].

Deleting variables

Sometimes you will need to delete variables in the directories and subdirectories to free up

memory space. Here are some hints on how to perform such operations:

Press [VAR] to show all variables in the current directory. The variables will be shown
at the bottom of the display, corresponding to the white buttons in the top row of the
calculator. If there are more than six variables in any given directory, use the [NXT] or
[+][PREV] keys to view all of them.

#% To delete a single variable or subdirectory in the current directory: place the name of
the variable in displays level 1 by pressing [ALPHA][ALPHA] and typing the variable name,
followed by [ENTER], or, simply, by entering [»#] ['] and pressing the soft menu key
corresponding to the variable of interest. Then, press [TOOL][PURG]. Press [VAR] to
recover the variables menu. The variable name corresponding to the variable that you just

purged will no longer be available.

4% To delete several variables at once, create a list of the variables to be purged, by using

[<1[{3]; then, press the soft menu keys corresponding to each of the variables to be

purged. When the list is complete, press [ENTER]. To purge the list, press [TOOL][PURG].
The names of the purged variables will disappear from the labels of the soft menu keys.

30 ©2000 - Gilberto E. Urroz

All rights reserved

Transferring data between two HP 49 G calculators

Suppose you want to use the HP 49 G cable to transfer a variable called MYDAT to another
calculator. The procedure for transferring directories or variables is as follows:

- Receiver calculator:

1. Press [APPS][V][OK] to select the Input/Output (1/0) functions.
2. Press [V][OK] to select the option Get from HP 49 from the choose box.

* Sender calculator:

Press [APPS][V][OK] to select the Input/Output (1/0) functions.
Press [OK] to select the option Send to HP 49 from the choose box.
Press [CHOOS] and select the name of the object to be transferred (MYDAT, in this case).
Press [SEND]H

A
W
N
=

Note: in step 3 for the sender calculator you can choose a list of variables by pressing [«][{]
while the Name: field is selected. Then, press [VAR], and press the soft menu keys
corresponding to all the variables you want to transfer at once. Each variable name will be
placed in the list, separated by spaces. Press [ENTER] when done selecting variables. To send
the list of variables, press [SEND].

Transferring data from the HP48 to the HP 49

The HP 49 G can be operated as a receiver calculator according to the instructions presented
immediately above. For the HP 48 G/G+/GX calculator on the other end of the wire use the
following commands:

* HP 48 G/G+/GX as sender calculator:

-
— Press [~][1/0] to select the Input/Output (1/0) functions.

2. Press [¥] four times to highlight the option Transfer... This will produce a screen called
TRANSFER, which will show the current I/O parameters for the HP 48 G/G+/GX calculator.
Modify them, if needed, so that the following values are set:

PORT: Wire TYPE: Kermit

NAME :

FMT: ASC XLAT: Newl CHK:3

BAUD: 9600 PARITY :None _OVRW

3. Select the name or list of names to be sent to the HP 49 G calculator. These will show in

front of the NAME: field in the TRANSFER screen.

4. Press [SEND] when ready to send the variable(s) to the HP 49 G calculator.

Transferring data from the HP49 to the HP 48

w& HP 48 G/G+/GX as receivercalculator:

1. Press [][1/0] to select the Input/Output (1/0) functions.

31 ©2000 - Gilberto E. Urroz

All rights reserved

2. Press [A] to highlight the option Start Server. This will produce a blank screen with the
message Awaiting Server Cmd.

- HP 49 as sender calculator:

1. Press [APPS][V][OK] to select the Input/Output (1/0) functions.
2. Press [Vv] four times to select the option highlight the option Transfer... This will produce a

screen called TRANSFER, which will show the current 1/0 parameters for the HP 49 G
calculator. Modify them, if needed, so that the following values are set:

PORT: Wire TYPE: Kermit

NAME :

FMT: ASC XLAT: Newl CHK:3

BAUD: 9600 PARITY :None _OVRW

3. Select the name or list of names to be sent to the HP 49 G calculator. These will show in

front of the NAME: field in the TRANSFER screen.

4. Press [SEND] when ready to send the variable(s) to the HP 49 G calculator.

Note: not all variables can be transferred between the HP 48 G/G+/GX and the HP 49 G

calculators. In such cases you will get a Syntax Error message and the transfer will be aborted.

How to type Greek letters and other characters

To type characters now shown in the keyboard, the general procedure is to use [~][CHARS] to

access the table of text characters, as indicated in the keyboard description above. You can
use the arrow keys ([«],[»],[A], and [¥]) to move to any desired character. If the character is
not available in the current screen, you can scroll the character list up or down using the

appropriate key until the desired character appears in the display.

Once the desired character is highlighted, press [ECHO1] to copy it to the stack and return to
normal calculator display. Press [ENTER] to enter the character, as an algebraic expression, in
register x.

To copy more than one character, select the characters, one by one, and press [ECHO] after
selecting each of them. When done, press [ENTER]. Press [ENTER] again to enter the string of
characters, as an algebraic expression, in register x.

Keyboard shortcuts for special characters

Many of the Greek letters and mathematical characters can be typed directly from the
keyboard by preceding the letter keys with the keystroke combination [ALPHA][—]. The
characters corresponding to each of the letters of the alphabet combined with [ALPHA][—] are
as follows:

A: o B: B C: A D: d E: € F:
G: (none) H: (none) I: | J: (none) K: (none) L: (none)

M: 1 N: A o: P: I Q: A R: v
S: o T: 0 u: 1 V: (0) W: = X: <

Y: > Z: /

32 ©2000 - Gilberto E. Urroz

All rights reserved

Some special characters are also available by combining the keystroke sequence [ALPHA][r]
with the numeric pad, as follows:

1: ~ 2: ! 3: ? 4: (see calculator) 5:

~
~

6: ZL 7: (none) 8: (none) 9: (none) 0: >

Changing the display format

Typically, the display format used is the standard format (STD), which adjust the number of
decimals shown according to whether or not the number displayed is an integer. For example,
if you enter the number 2.5 ([2][.][5]) when the standard format is active, the display will
show just 2.5. Press now, [~][LN], and you get .916290731874. The standard format uses up
to 12 decimal places for non-integer results.

= Use the following keystroke sequence to access the format change environment:

[<][PRG][NXT][MODES][FMT].

4 To fix the number of decimals places used, say to three decimal places, use the
following keystroke sequence: [3][FIX]. The displayed result will now be 0.916.

4 To return to the standard display format you may press [STD]. The current display
format will be marked by a dot in the corresponding white key at the top of the keyboard.

Note that in the format change environment there are also soft menu keys labeled
[SCIJ[ENG][FM,][ML]. The [SCI] and [ENG] keys refer to what calculator manufacturers call

Scientific and Engineering notations, respectively, which provides results using powers of ten.

The [FM,] button, when marked by a dot, changes the decimal point to a coma. Press [FM,]
and the displayed number will read 0,916. Press [FM,] again to select the decimal point.

Press [VAR] to return to your variable menu.

Note: An alternative way to change the format is to press the [MODE] key, then press [¥] to

access the Number Format... field. Use the CHOOSE box to change the number format, or
toggle the [+/-] button until the proper selection is displayed in the number format field. If
setting the number format to fix, make sure to indicate the number of significative figures in

your result in the appropriate field.

Exercises using different number formats

Try the following exercises:

Using the standard format, enter the number 2.5689, press [ENTER] four times:

[211 - 1[51[61[8]1[9] [ENTER][ENTER][ENTER][ENTER]

Calculate:

33 ©2000 - Gilberto E. Urroz

All rights reserved

[x] Result: 6.59924721
[x] Result: 16.9528061578

[x] Result: 43.5500637388
[—][x%] Result: 1896.60805165
[<]1[x4] Result: 3597122.10158
[—]10x%] Result: 1.29392874137E13 (power-of-ten notation)

i.e., 1.2939..x10".

Notice that all the results show 12 significative figures when using the standard number format.

Change the mode to FIX with 3 decimals:

[MODE][¥][CHOOS][Y]I[OKI[»1[3][OK]

and repeat the same calculations as before:

[211 . 1(51[6][8][9] [ENTER][ENTER][ENTER][ENTER]

Calculate:

[x] Result: 6.599
[x] Result: 16.952

[x] Result: 43.550
[10x] Result: 1896.608
[<][x%] Result: 3597122.101
[<][x%] Result: 1.293E13

Change the mode to SCIENTIFIC with 5 significative figures:

[MODE][¥][CHOOS][¥] [¥] [OK][»][5][OK]

and repeat the same calculations as before:

[211 . 1[51[6][8][9] [ENTER][ENTER][ENTER][ENTER]

Calculate:

[x] Result: 6.59925E0

[x] Result: 1.69528E1
[x] Result: 4.35501E1
[~]0x%] Result: 1.89661E3
[<1[x4] Result: 3.59712E6
[—][x?] Result: 1.29393E13

Note: the main characteristic of the scientific number format is that there is always one
integer digit.

Change the mode to ENGINEERING with 5 significative figures:

[MODE][¥][CHOOS][¥][OK] [OK][»]1[5]1[OK]

and repeat the same calculations as before:

34 ©2000 - Gilberto E. Urroz

All rights reserved

[21[. 1(51[6][81[9] [ENTER][ENTER][ENTER][ENTER]

Calculate:

[x] Result: 6.59925E0
[x] Result: 16.9528E0

[x] Result: 43.5501E0
[<][x?] Result: 1.89661E3
[10%] Result: 3.59712E6
[~][x%] Result: 12.9393E12

Note: the main characteristic of the engineering number format is that the power of ten is a

multiple of 3.

Entering numbers as powers of ten

Typically, powers of ten are used to write numbers whose absolute values are relatively large

(e.g., 1.2x10"3) or very small (e.g. 2.3 x107'®). The HP 49 G, as most calculators and computer

software, uses the notation E#n , where n stands for an integer number (n <499), to indicate a

power of ten. The character sequence E+n is used to replace the x10" component of a
number, if needed, when entering the numberinto the calculator display.

For example, the number 1.2x10"® is entered by using [1][.][2]1[EEX][1][3][ENTER]. This number
is displayed as 1.2E13 if using the standard calculator display. A number with a negative

power of ten, e.g., 2.3 x10", is entered as [2][.][3][EEX][1][6][+/-][ENTER]. This number will
be displayed as 2.3E-16.

Changing the angle mode and coordinate system

Using the [MODE] key also provides access to the Angle Measure... option, whose setting can be

changed to Degrees, Radians, or Grads (t radians = 180 degrees = 200 grads). As with the
number format, angle units can be changed by pressing [CHOOS] and selecting the appropriate
units, or by toggling the [+/-] sign until the desired units appear in the proper field.

You can access the angle/coordinate change environment directly from the keyboard by
pressing:

[<][PRG][NXT][MODES][ANGLE].

In this environment, you will see the following soft menu key labels:

[DEG][RAD][GRAD][RECT][CYLIN][SPHER],

referring to the angle mode as in (sexagesimal) DEGrees, RADians, or (decimal) GRADes; and to

the RECTangular, CYLINdrical (polar), and SPHERical coordinate systems. For most applications
we use the rectangular coordinate system, and the angles in degrees or radians.

As an example, press the keys labeled [RECT] and [DEG] to set rectangular coordinates and
angle in degrees. Then, enter a vector of three components, say [2 3 5]. Use the following
keystroke sequence:

[—1I0[2][SPCI[3][SPCI[5][SPC][ENTER]

35 ©2000 - Gilberto E. Urroz

All rights reserved

The calculator assumes that the three components of the vector correspond to the x,y,z,
components of Cartesian or rectangular coordinates. The current selection of angle and

coordinates is shown in the top line of the display as DEG XYZ.

If you now press [CYLIN], the three-dimensional vector gets transformed to

[3.606 £56.310 5.00],

where the symbol Z indicates an angle. (The character can be typed in by using the sequence
[ALPHA][~][6]). Notice that the characters R£ZZ appearinstead of XYZ in the upper left corner
of the display. This change indicates that the components of the vector are now the polar

cylindrical coordinates r = 3.606, 6 = 56.310°, and, z = 5.00.

Pressing the key [SPHER] will produce the following vector:

(6.165 £56.310 £35.796],

which correspond to the spherical coordinates, p = 6.165, 8 = 56.310 °, ¢ = 35.796 °. The upper
left corner of the display will show the characters: RZ/ instead of R/Z.

We could change our angle units to radians by pressing [RAD]. Notice that the vector in the
display now reads:

[6.164 £0.983 Z0.625]1,

and the upper left corner of the display shows the characters RAD in front of the cylindrical
coordinate descriptor R£ZZ. If you press the key [GRAD], the vector will be displayed as

[6.164 £62.567 Z£39.7731,

while the upper left corner of the display shows the characters GRAD in front of the cylindrical
coordinates descriptor RZZ. The decimal GRADes are not commonly used in practice.

Try the following exercise:

[MTH][VECTR][NXT][RECT] [«]1[[11[2][SPC][3][SPC][ENTER] [CYLIN]

If the RAD indicator is shown, you will get

[3.606 Z£0.983].

Press [DEG], to get

[3.606 £56.310].

Important relationships between angle units

As a reminder, recall that the basic transformation between angle units is as follows:

0" /0° = 1/180,

0" /09 = 1/200,

0°/0%=90/100=9/10.

36 ©2000 - Gilberto E. Urroz

All rights reserved

Quick conversions from degrees to radians and vice versa

Quick conversions from degrees to radians, and vice versa, can be accomplished by using the
sequence:

[<1] [MTH][REAL][NXT][NXT][D->R], and [R->D], respectively.

For example, try:

[31[7] [<2] [MTH][REAL][NXT][NXT][D->R] to convert 37° to 0.646 rad.

Also, try

[310-1[11[4] [<] [MTH][REAL][NXT][NXT][R->D] to convert 3.14 rad to 179.909°.

Important relationships between coordinate systems

Coordinate transformations are given by the following expressions:

% Rectangular & cylindrical coordinates:

r=(x*+y4)"? tanf=y/x,

X =r COos0, y=rsin@

- Rectangular & spherical coordinates:

p= (x2 + y+ 4)" tano=y/x, tang = z/ (x2 + yA?

X =p sin $cos 0, y =p sin ¢sin 6, Z=p Cos ¢.

Make sure that you reset your coordinate system to rectangular before continuing with this
tutorial.

Additional examples on angle measure and coordinate system
conversions

Assuming that the coordinate system is set to Cartesian, the angle measure to degrees, and the

number format to standard. Enter a vector [1 2 5], i.e., the Cartesian components of the
vector are

x=1,y=2,z2=5:

[<]1001] [11[SPCI[2][SPC][5][ENTER] Result: [1.2.5.]

Change to cylindrical coordinates:

[+][MTH][VECTR][NXT][CYLIN] Result: [2.236 £63.43....]

37 ©2000 - Gilberto E. Urroz

All rights reserved

Change number format:

[MODE][¥][CHOOS][¥Y][OK][»][2][OK] Result: [2.236 £63.43 5.00]

In cylindrical coordinates, therefore, the components of the vector are r = 2.24, 6 = 64.43°, and

z = 5.00. Now, let's change coordinates to spherical:

[SPHER] Result: [5.48 £63.43 £24.09].

The components of this vector in spherical coordinates are p = 5.48, 6 = 64.43°, and ¢ = 24.09 °.

Keeping the vector currently in register x, enter the following vector in spherical coordinates:

[3.2 £27.5 £16]:

[1001] [310 - 1(21(SPC] [ALPHA][~][6] [2][7][- 1[5][SPC] [ALPHA][~][6] [1][6][ENTER]

Resulting in: [3.20 £27.50 £16.00]:

Add the two vectors:

[+] Result: [8.61 £53.48 £20.35].

Convert to different coordinate systems:

[RECT] Result: [1.78 2.41 8.08].

[CYLIN] Result: [3.00 £53.48 8.08]:

HP 49 G standard mathematical constants

The following are the mathematical constants used by your calculator:

* e: the base of natural logarithms.

+ i: the imaginary unit, i* = -1.

* the ratio of the length of the circle to its diameter.

*® MINR: the minimum real number available to the calculator.

* MAXR: the maximum real number available to the calculator.

To have access to these constants, use the combination:

[~][MTH][NXT][CONST].

The calculator display will show buttons corresponding to the following variables:

[E 1{2.718][| 1[(0.00][=][3.142].

Press [NXT] to get

38 ©2000 - Gilberto E. Urroz

All rights reserved

[MINR][1.000][MAXR][1.000].

Press [2.718] to get the value of e, 2.718 in the display. If you press[E], you will get the
variable name in the display, namely, 'e'. To get the numerical value, press [<][>NUM].

Similar results are obtained by using the other built-in constants or their values from the soft
menu keys.

Physical constants available in the HP49 G calculator

There is a library of physical constants built in into the calculator. This library of physical
constants is associated with the HP 48 G menu for the equation library (EQ LIB). The equation
library is a set of equation sets commonly used in physics and engineering that is built in into
the HP 48 G. The developers of the HP 49 G decided not to include the equation library in the
new calculator. However, the other menus associated with the equation library are still
available in the HP 49 G calculator, although the way to access them is partially hidden.

Utility menus adapted from the HP 48 G

After many years of experience with the HP 48 G | have grown attached to certain utility
menus that | have found to be very useful in calculator operations. | have created a directory,
called UTL48 (for UTilities 48), that contains the following menus:

[STATm] to access the soft menu for statistical applications.
[PLOtm] to access the soft menu for plotting.
[SYMBm] to access the old soft menu for symbolic operations.
[EQLIBm] to access the equation library menu. Although there is not an equation library

in the HP 49 G, as there is in the HP 48 G, the utilities listed under this menu

are available in the HP 49 G for ROM version 1.16 on.
[LIBm] to access the old soft menu for library operations.
[SOLVEmM] to access the old SOLVER menu. This is actually a left over from the HP 48 S

series, but | still find it very useful for some applications.
You can create this directory in your calculator too within the HOME directory by following

these instructions:

[ALPHA][ALPHA][U][T][L][4]1[8][ENTER] Enter the name 'UTL48' in register x
[<][PRG][MEM][DIR][CRDIR] Create directory UTL48
[VAR][UTLA48] Enter directory UTL48

The keystrokes shown below will create the programs corresponding to the different menus
listed above:

[~1[<<>>]1 [71[4]1[. 1[0][1] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]
[ALPHA][ALPHA] [SI[O][LI[VI[EI[<][M] [STOMP]

[~1[<< >>] [11[11[0][. 1[01[1] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]
[ALPHA][ALPHA] [L1[1][B][+][M] [STON]

[~10<< >>] [11011031] - 1[0][1] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]

39 ©2000 - Gilberto E. Urroz

All rights reserved

[ALPHA][ALPHA] [E][Q][LI[I1[BI[<~]1[M] [STOM»]

[~1[<< >>] [91[3][. 1[0][1] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]
[ALPHA][ALPHA] [SI[Y][M][B][<1][M] [STOW]

[~1[<<>>] [8][1][. 1[0][2] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]
[ALPHA][ALPHA] [P][L][O][T][+][M] [STON]

[~1[<<>>] [91[6][- 1[0]1[1] [SPC] [ALPHA][ALPHA] [M][E][N][U] [ENTER]
[ALPHA][ALPHA] [SI[TI[AI[T]I[<][M] [STO»]

Using the LibMakr library, you can create a library out of this directory, that you can then load
onto your port memory, and have these soft key menus readily accessible in any of your
directories.

Accessing the EQ LIB menus

One way to access the EQ LIB menus is to use the program [EQLIBm] proposed above. If you
have that one ready, go ahead and press [EQLIBm]. If you don't have it ready, or do not want
to move to that directory at this point, simply enter the following in your stack to activate that
menu:

[110110310 - 1[O][1] [ENTER]
[ALPHA][ALPHA] [M][E][N][U] [ENTER]

As a result, you get the following soft menu keys:

[EQLIB][COLIB][MES]J[UTILS]

The [EQLIB] key has no definition in the HP 49 G, as mentioned before. [MES] provides access
to the Multiple Equation Solver (MES), which will be discussed later. [UTILS] provides some
utility functions used in selected engineering disciplines such as fluid mechanics. At this point,
however, we are interested only in using the [COLIB] (COnstants LIBrary) command.

Accessing the constants library

Press [COLIB] to access the soft menu keys:

[CONLIJ[CONST][10 II J[EQLIB]

Pressing [CONLI] will generate a table of physical constants. The window is labeled
CONSTANTS LIBRARY, and it lists the symbol and meaning of several physical constants starting
with Avogadro's number. By using the up and down arrow keys you can navigate through the
list of constants.

The soft menu keys available for this option include:

[SI JIENGL][UNIT][VALUE][>STK][QUIT]

By pressing [SI] or [ENGL] you select the system of units for the constants, SI = Systeme
International (the International system of units), and ENGL = English, British, or Imperial

system of units (ES).

40 ©2000 - Gilberto E. Urroz

All rights reserved

Press the [VALUE] key to see the values of the constants listed in the list. If the [UNIT] key is
activated (a dark square is shown), the units in the selected system are shown. Toggle the
[UNIT] key to deselect unit display. The values of the constants are shown without units. Press
[UNIT] once more to recover the units display.

If you want to copy the value of a particular constant to the stack, select the constant and
press [STK].
Press [QUIT] to leave the Constant Library environment.

The function CONST

The soft menu that is now available includes a function, [CONST], and a the [EQ LIB] folder.
The CONST function is used to recover the value of a constant if the name of the constant is
shown as an algebraic expression in register x. The value reported will correspond to the

system of units selected last within the library constant environment. Try the following
exercise: g is the name of the constant corresponding to the acceleration of gravity. Type:.

[ALPHA][+][G][ENTER] [CONST]

The value of g will be shown in the display in the selected system of units.

Accessing the constant library through the command catalog

The constant library can be accessed directly from the keyboard by using the [CAT] key. The
command to access the library is [CONLI] (actually, the full name is CONLIB), therefore, you
should search for that command in the catalog. Use the following keystrokes:

[CAT]
[ALPHA][ALPHA][C][O][ALPHA],

then, use the down arrow key to scroll down the command catalog until the CONLIB command

is highlighted. When ready, press [OK]. The list of physical constants will be available for you

Using the command catalog

The command catalog is accessible by pressing the [CAT] key. It produces an ordered list of all
of the calculator’s ROM commands as well as library functions loaded by the user. Library
function names are shown in italics. The catalog lists commands starting with a few names

that use non-alphabetical characters (i.e., !, %, %CH, etc.), then listing in alphabetical order

those commands whose names start with upper-case letters of the English alphabet. After
exhausting the letters of the alphabet, the catalog lists commands that start with other non-
alphabetical characters, lower-case letters of the English alphabet, and some that start with
Greek letters and arrows.

To see the start of the catalog use [~][A]. Then use the down arrow key, [¥], to see the few

commands that start with non-alphabetical characters before the command ABCUV (which
starts the alphabetical listing of command names) shows up in the catalog. To see the end of
the catalog use [~][¥]. The very last command is the symbol >> (which signals the end of a

41 ©2000 - Gilberto E. Urroz

All rights reserved

program). Use the upper arrow key, [A], to see the commands at the bottom of the catalog.
There are quite a few commands that start with non-alphabetic characters before reaching the
last command whose name uses an upper-case letter (ZVOL).

To access a particular command, press [ALPHA] followed by the first letter of the command.
Then, use the up and down arrow keys to highlight the desired command. Press [OK] to

activate the command. You can also enter more than the first letter in a command name by
using [ALPHA][ALPHA] followed by two or more of the first letters of the command. Press
[ALPHA] when you're done, before pressing [OK] to activate the command.

Working with units in the HP 49 G calculator

Working with units entails searching through a number of menus in the calculator where the
units are defined. Due to the lengthy process involved in assigning units when using the HP4G
or GX calculator, my personal preference is to work without units as much as | can. When you
do that, however, make sure you are using a consistent system of units (i.e., all standard base
unit in the SI, or all in the English system).

To illustrate the use of units, let's calculate a force, F, given the mass,

m = 3.5 kg,
and the acceleration,

a=2.3cm/s.
From Newton's second law,

F=ma,

we have,

F=(3.5kg)(2.3cm/s?).

To perform this calculation use the following:

[310.105] Enter the numeric value of m
[J[UNITS][NXT][MASS][KG] Select kg units in the "mass" menu.
[21-103] [~ J[UNITS][SPEED][CM/S] Select units of velocity since units of

acceleration are

not available.

[11][UNITS][TIME][S 1] Select units of time (s), to calculate a = v/t.
[+] Gives units of acceleration (cm/s?)

[x] To calculate F = m-a (8.050_Kg*cm/s"2)
[ENTER][ENTER] Make 2 more copies of the result for future use.

Next, we demonstrate some operations that can be performed using the UNITS menu:

[~][UNITS][TOOLS][UBASE] Converts to basic units of the SI system.
[<] Drop contents of level 1.

[UVAL] Eliminates units, retains numeric value.
[<] Drop contentsof level 1.

[11[~ J[UNITS][NXT][FORCE][LBF] Enters 1 bf in level 1. We'll convert the value
in

42 ©2000 - Gilberto E. Urroz

All rights reserved

level 2, which is in Kg cm/s2, into bf (pound

force), a unit in the English System.

[~][UNITS][TOOLS][UBASE][CONVE] Converts value in level 2 to units in level 1.

The latest operation, i.e., unit conversions, is about the most useful | can think of in the UNITS

menu.

This operation can also be accessed by pressing [<][CONVERT] (the key for [6]), followed by
soft menu keys [UNITS][TOOL][CONVE].
A complete list of units is presented in pages 12 and 13 of the HP 49 POCKET GUIDE.

A household practical problem using units

Here is a practical problem from a household kitchen:

= How many pints in a gallon?

[~][UNITS][VOL J[1][NXT][GAL][1][PT]
[+][CONVERT][UNITS][TOOLS][CONV] (Result: 1 gallon = 8 pints);

4 How many cups in a pint?:

[~][UNITS][VOL] [1]J[NXT][PT] [1][NXT][CU]
[<1][CONVERT][UNITS][TOOLS][CONV] (Result: 1 pint = 2 cups).

Universal gas law

The ideal gas law is written as

pV = nRT,

where:

* p = gas pressure,

we V= gas volume,

n= number of moles (gmol),

« R = universal gas constant, and

4 T = absolute temperature.

We indicated earlier in this chapter that the value of R is readily available from your calculator
by using the function CONST(R). To see what is the value of R use:

[1[“© IIALPHAJ[ALPHA][C][O][N][SI[T][«] [O)] [RI[ALPHA]J[~][EVAL]

The value provided is 8.31451_J/(gmol*K). Suppose that for n = 0.5 mol (or gmol), we let T =
280_K, and V = 0.1_m3, let’s calculate the value of p provided with these values of T and V,
use:

[. 1[5][~ JIUNITS][NXT][MASS][NXT][NXT][mol] Enter 0.5_mol
[v1[»1»1»1»1[ALPHA][<][G][ENTER] Modify it to read 40_gmol
[21[81[0]1[1[_ J[ALPHA][K][ENTER] Enter value of T

[x][x] Calculate nRT

[. 1001[1] 1[J[UNITS][VOL][m"3] [+] Enter V, and calculate nRT/V

43 ©2000 - Gilberto E. Urroz

All rights reserved

The result is 116403.14_J/m"3. This result does not look like units of pressure. Let’s do some
conversion of units as follows:

[ENTER] Copy the value in the stack
[2][CONVERT][UNITS][TOOLS][UBASE] Converts to basic S.I. units, 116403.14_kg/(m*s"2)

This result still does not look like units of pressure. So, let’s try converting to Pascals, the
preferred unit of pressure in the S.1. system, by using:

[1][~ J[UNITS][NXT][PRESS][Pa] Enter 1_Pa
[JICONVERT][UNITS][TOOLS][CONVE] Converts quantity in level 2 to units in level 1

The result is 116403.14_Pa, or 116.40kPa.

44 ©2000 - Gilberto E. Urroz

All rights reserved

Calculations with real numbers
In this chapter we introduce the Calculator Algebraic System and show simple operations with
real and complex numbers.

What is the CAS in the HP 49 G calculator?

CAS stands for Calculator Algebraic System. This is the ROM-based software that controls the
algebraic (symbolic) operations within the calculator. The CAS presents a variety of options that
can be set by the user by pressing the [MODE] key, and then pressing the [CAS] soft key. This
generates a screen called CAS MODES, which lets you set the CAS options. To see an explanation
for the different options use the arrow keys to move to the different fields in the CAS MODES
screen. The description of a given field is shown at the bottom of the calculator display.

CAS options

The different options available in the CAS MODES screen are:

* Indep var. ‘X’ — Enter independent variable name. By default ‘X’ is the preferred
independent variable. This value is stored in a variable called VX, which appears in the
HOME directory of the calculator. Many of the algebraic operations in the HP 49 G use this
default independent variable.

% Modulo: 3 — Enter modulo value. The modulo value is used in operations with

polynomials. The default value is 3.

Numeric — replace constants by values? When this option is selected, the results will be
evaluated to numerical, rather than symbolic, expressions.

+. Approx — Perform approx calculations? Selecting this option will produce numerical results
in decimal format rather than as fractions for rational numbers or algebraic expressions for
other type of results.

Complex — Allow complex numbers? This option allows for complex numbers to result
from certain operations.

Verbose — Display calculus information? This option allows the calculator to provide
information relevant to some calculus operations (derivatives, integrals, etc.).

LS Step/Step — Perform operations step by step? Selecting this option allows the calculator

to show intermediate steps in operations such as integration, matrix inversion, solution of
linear equations, etc.

% Incr Pow — Increasing polynomial ordering? Selecting this option will show polynomial

terms in order of increasing power rather than the default setting of decreasing power order.

we Rigurous — Don’t simplify |X| to X If selected, will keep absolute value expressions from
defaulting to the positive value (the principal value).

- Simp — Simplify non rational expr? Needs no explanation.

45 ©2000 - Gilberto E. Urroz

All rights reserved

Many of these settings are requested by the calculator when a particular result requires it. For
example, if you try to get the square root of a negative number while in REAL (rather than
COMPLEX) mode, the calculator will request that you change the mode to COMPLEX. If you
refuse, the calculator aborts the operation and provides a square root error: <!> v Error: Mode

switch cancelled

Checking current CAS settings

To check the current CAS settings you need to just look at the top line in the calculator display in

normal operation. For example, you may see the following setting:

RAD XYZ DECR = ‘X’

This stands for RADians for angular measurements, XYZ for Rectangular (Cartesian) coordinates,
DECimal number base, Real numbers preferred, = means “exact” results, and ‘X’ is the value of

the default independent variable.

Another possible listing of options could be

DEG R«Z HEXC - ‘t’

This stands for DEGrees as angular measurements, RZZ for Polar coordinates, HEXagesimal
number base, Complex numbers allowed, - stands for “approximate” results, and ‘t’ as the
default independent variable.

Checking the calculator mode

When in RPN mode the different levels of the stack are listed in the left-hand side of the screen.

When the ALGEBRAIC mode is selected there are no numbered stack levels, and the word ALG is

listed in the top line of the display towards the right-hand side.

Real number calculations

This section shows some examples of calculations with real numbers. Some of these calculations
may, under the right conditions, produce a complex result. We will show you how to deal with

such situations, but a complete coverage of complex numbers is not presented until later in this
book. Set number format to standard. Also, within CAS select exact, as opposite to approximate,

and real as opposite to complex.

[MODE] [Vv] (toggle [+/-] key until Std shows in the field)

[CAS] [¥][V] (toggle [+/-] key, or press the [vCHK] key, until the option Approx is unchecked.)

[»] (toggle [+/-] key, or press the [v'CHK] key, until the option Complex is unchecked.)

Press [OK][OK] to return to normal calculator display.

46 ©2000 - Gilberto E. Urroz

All rights reserved

The calculations with real numbers will be presented as exercises for you to try, as follows:

+ Exponential, €*, e.g., [1][«][e*] results in EXP(1). The reason for this result is that we
selected the exact option, which results in algebraic formulae for the results. To obtain a
numeric result, we can use [r*]J[>NUM]. The result is 2.7182... When the approximate
setting is selected, the numerical result is automatic.

«Natural logarithm, LN, e.g., [5][~][LN] results in LN(5). Press [~][>NUM]., to obtain
the numerical value: 1.60943...

Note: the exponential and natural logarithm functions are inverse functions of each other, i.e.,

if y=1Inx, then, x = ¢,

and vice versa.

we Power, V*, e.g., 52, [S][ENTER][2][+/-] [y*] results in an error message: * Error: Negative
integer. The reason is that, with the exact mode selected for results, all numbers entered

without a decimal part are considered integers. When raising a number to a integer power,
the calculator will try to multiply the base an integer number of times to calculate the
power. This works fine for positive integers, but not for negative integers. To work with
negative integer powers, we need to select the approximate mode:

[MODE] [CAS J [V][V][V][+/-][OK][OK]

Try the operation again: [5][ENTER][2][+/-] [y*], resulting in .04.

An alternative sequence for this operation is: [S][SPC][2][+/-][Y"]-

The calculation of a power in the approximate method uses logarithms and anti-logarithms to

calculate the power,i.e., a* = exp(x-n a).

* Square power, x, e.g. [51[<][x? results in 25.

we Square root, Vx, e.g., [8] [Vx] results in 22, in the exact mode. The numerical value,
obtained with [—][>NUM], is 2.828427...

“ x-th root of y, “Vy, e.g., [21[71[+/-1[SPCI[3] [~][*V y] results in the value -3.

Let's check out what happened if the exact mode is selected:

[MODE] [CAS J [v][V][+/-][OK][OK]
[21[71(+/-1[SPC](3] [~]1*V y]

In this case, you are asked to select the complex mode before the calculator provides a
result. This is so because we now are using the exact mode. In the approximate mode
condition, the calculator selects, by default, the principal root. At this point, if you were to
select the option NO for the complex mode, then an error will be reported. Try it: [W][OK].

The result is the message: XROOT Error: Mode switch cancelled.

Repeat the exercise, but this time accept the change of mode to complex:

[21[71(+/-1[SPCI[3] [~]1[* y] [OK]

47 ©2000 - Gilberto E. Urroz

All rights reserved

Now, since the angle measure was set to degrees, you get asked if you want to change that
mode to radians. If you refuse the change, you will get the same error obtained above when
refusing to change to complex. Thus, press [OK], to obtain the result:

"3*EXP(i*1/3)',
which is a complex number. (More about complex numbers later).

= Powers of 10, 10%, e.g., [3][.1[11[+][10*] will produce the value 1258.92541179.

w Base-10 logarithm, LOG, e.g., [5][—][LOG] produces the value LOG(5) if the CAS is set to
EXACT mode. Press [~]J[>NUM]., to obtain the numerical value: 0.69897...

[These two operations are inverse of each other, i.e., 10 ™" = x, and log 10” = x.|

Modifying the display to obtain a textbook-like appearance

This frame refers to modifications that you can make to the display to change from the one-line
algebraic expression, such as the result, '3*EXP(i*w/3)", to a more textbook-like format, such as:

3. exp LZ
3

To change to a textbook-like appearance, use:

[MODE][DISP] [¥] [v]1[»], toggle the [+/-] key until the Textbook option is checked. Then, press

[OK][OK] to return to normal calculator display.

Changing from complex to real mode

Before continuing, | suggest we abandon the complex mode by using:

[MODE][CAS] [Vv] [Vv] [»], toggle the [+/-] key until the complex option is unchecked.

te Trigonometric functions, SIN, COS, TAN, can have their arguments in any of the valid

angle units: degrees, radians, grads. Inverse trigonometric functions, ASIN, ACOS, ATAN, will

return the resulting angular measure in the units indicated in the upper left corner of the
display. Try the following examples:

First, change mode to degrees: [MODE][VY][V¥] , toggle the [+/-] key until Degrees is selected.

Then, press [OK]. The characters DEG are shown in the upper left corner of the display. Try
these exercises:

* [4]1[5] [SIN] results in SIN(45), a symbolic result. To get the numerical result, use
[~1[->NUM].

+ [2][6][5] [COS], results in COS(265). Numerical result, [~][—>NUM] results in -8.7155..E-2

+ [2][5][+/-1[TAN], results in -TAN(25). Numerical result is -0.466307

48 ©2000 - Gilberto E. Urroz

All rights reserved

More complicated expressions involving trigonometric functions can be built by using the
Equation Writer, for example:

n1+ anf 2]

0
The angles in this expressions are given in radians. To change the angle mode to radians we can
access the CALCULATOR MODES screen and change the Angle Measure feature, or we can just

simply type RAD into register x and press [ENTER],i.e., [ALPHA][ALPHA][R][A][D][ENTER]. Then,
enter the expression to be evaluated:

(EQW] [1][+][TAN] [<][x] [=] [3] [»1[»1(»] [=] [1I[-]CTAN] [<](n][>] [+] [4] [ENTER]

Using [~][EVAL] you get (1+V3)/2. If you have used instead [~][-NUM], the result would have
been 1.36602...

Some functions accessed through the MTH menu

The MTH (MaTH) menu permits access to a number of functions as described below. Press

[<][MTH] to activate this menu. The following folders (function menus) are available:

[VECTR][MATRX][LIST][HYP][REAL][BASE]

Pressing next reveals the menus:
[PROB][FFT J[CMPLX][CONST]

Obviously, the folders [VECTR] and [MATRX] correspond to operations with vectors and matrices.
These two topics will be discussed separately in later chapters. The folder [LIST] deals with lists
of objects. The functions contained in the LIST folder are discussed in a later chapter in relation
to some simple programming with User RPL. The [CMPLX] menu relates to complex number

calculations which is the subject of the next chapter. The remaining MTH folders (i.e., HYP,
REAL, BASE, PROB, FFT, and CONST) are described below.

HYP menu: hyperbolic functions, including SINH, COSH, TANH, and the inverse hyperbolic
functions, namely, ASINH, ACOSH, ATANH. The [NXT] menu includes the functions EXPM and

LNP1, with

EXPM(x) = exp(x) - 1,

and
LNP1(x) = In(x+1).

Press [MTH] to return to the MTH menu.

Examples of the hyperbolic functions menu

[2][-1[5][SINH] : sinh 2.5 = 6.05020.. [2][ASINH][~][-NUM] : sinh™(2) = 1.4436...
[2][-1[5][COSH] : cosh 2.5 = 6.13228.. [2][ACOSH][~][»NUM] : acos (2) = 1.3169...
[2][-1[5][TANH] : tanh 2.5 = 0.98661.. [.1[2][ATANH] : tanh(0.2) = 0.2027...
[NXT] provides the second menu:
[2]1[EXPM] [—~][NUM] => 6.38905... [1][LNP1][—][=NUM] => 0.69314...

49 ©2000 - Gilberto E. Urroz

All rights reserved

REAL menu: functions applicable to real numbers mainly (some functions also applicable to
complex numbers), such as:

+ [% 1] : calculates the x percentage of y

+ [CH] : calculates 100(y-x)/x, i.e., the percentage change

& [%T]: calculates 100 x/y

* [MIN] : minimum value of x and y

we [MAX] : maximum value of x and y

* [MOD]: y mod x = residual of y/x

Press [NXT] to get to the next menu set:

+ [ABS] : calculates the absolute value, |x|

* [SIGN]: determines the sign of x, i.e., -1, 0, or 1.

+ [MANT] : determines the mantissa of a number based on log;g.

+ [XPON] : determines the power of 10 in the number

*® [IP] : determines the integer part of a real number

+ [FP] : determines the fractional part of a real number

Press [NXT] once more to get the final menu set:

* [RND] : rounds up y to x decimal places

* [TRNC] : truncate y to x decimal places

* [FLOOR] : closest integer that is less than or equal to x

a+ [CEIL] : closest integer that is greater than or equal to x

+ [DR] : converts degrees to radians

+ [R»D] : converts radians to degrees.

Press [NXT] [MTH] to recover the MTH menu.

Examples of functions from the REAL menu

[2][O]J[ENTER][5][-112][% 1 25.2% of 20 is 1.04
[2][2][ENTER][2][5][%CH] : percentage change from 22 to 25 is 13.6363...
[S][O][O][ENTER][2][O][%T 1 : 20 is the 4% of 500
[2][+/-1[ENTER][2][MIN] :min(-2,2) = -2
[2][+/-][ENTER][2][MAX] : max(-2,2) = 2
[11[5][MOD][4] : 15 mod 4 = residual of 15/4 =3

Press [NXT] to get to the next menu set:

[31[+/-1[ABS] D1-31=3
[51[+/-][SIGN] : sign(-5) = -1
[2]1[51[4][0][MANT] : mantissa of 2540 = 2.540
[2](5][4][0][XPON] : exponent of 2540 = 3
(210. 1031051 'P] : integer part of 2.35 is 2
[21-1031[51] FP] : fractional part of 2.35 is 0.35

Press [NXT] once more to get the final menu set:

50 ©2000 - Gilberto E. Urroz

All rights reserved

[11[.1[41(51[6][7][ENTER][2][RND] : rounds up 1.4567 to 1.46
[11[.1[41[5][6][7][ENTER][2][TRNC] : truncates 1.4567 to 1.45
[21[.1(3][FLOOR] : floor(2.3) = 2
[2](-103][CEIL] : ceil(2.3) = 3
[4][5][D—R] : 45° = 0.78539 rad
[11[.1[5][R-D] 1.5 rad = 85.943669... °.

Press [NXT] [MTH] to recover the MTH menu.

BASE menu: conversion between various numerical base representations, i.e., hexadecimal,

binary, decimal, as well as bit, byte, and logical functions. These functions are mainly of
interest to computer scientists. Please consult the calculator documentation for further

instructions on how to use these functions. A brief introduction to these operations is presented

in Chapter 11.

PROB menu: (Press [NXT] to reach this and other menus). Probability and statistic functions,
including:

oe [COMB] : combinations of y objects taken x at a time (in a combination the order of

selection is irrelevant).

- [PERM] : permutations of y objects taken x at a time (in a combination the order of

selection is important to consider).

w* [Lt 1 : for an integer number n, this is the factorial of the number, namely

n(n-1)(n-2)...3 21 =n! For a real number x, this is the Gamma function, I'(x-1).

-* [RAND] : random number generator. It generates a random number uniformly distributed

in [0,1].

* [RDZ]: sets the seed for the random number generator.

Press [NXT] to obtain the following menu:

* [UTPC] : Upper-tail probability for the Chi-squared x4) probability distribution.

LS [UTPF] : Upper-tail probability for the F probability distribution.

we [UTPN] : Upper-tail probability for the Normal probability distribution.

- [UTPT] : Upper-tail probability for the Student-t probability distribution.

* [NDIST] : Probability density function for the Normal distribution.

Press [MTH] to recover the MTH menu.

51 ©2000 - Gilberto E. Urroz

All rights reserved

Combinatorics, random numbers, and probability

functions

Factorials, permutations, and combinations

The factorial of an integer n is defined as: n! = n- (n-1) - (n-2)...3-2-1. By definition, 0! = 1.

Factorials are used in the calculation of the number of permutations and combinations of
objects. For example, the number of permutations of r objects from a set of n distinct objects is

P =nin-D(n=-1.(n=r+1)=nl(n-r)
n }

Also, the number of combinations of n objects taken r at a time is

[1] neta =Belaoreh n!
r r! rl(n—r)!

To simplify notation, I'll use P(n,r) for permutations, and C(n,r) for combinations.

The HP48 series calculators provide functions to calculate factorials, permutations and
combinations by entering [MTH][NXT][PROB]. The soft key displays now the functions:

[COMBI[PERM][! 1[RAND][RDZ]

The operation of the first three functions is described below:

[COMB]: Calculates the number of combinations of n (in level 2) items taken r (in level 1) at a

[PERM]: Calculates the number of permutations of n (in level 2) items taken r (in level 1) at a

oe !]: Factorial of a positive integer (in level 1). For a non-integer, x [I], returns
I'(x+1), where I'(x) is known as the Gamma function.

For example, to calculate 8!, enter: [8][MTH][NXT][PROB][! 1].

The display shows a value of 40320.

To calculate P(15,3), enter

[11[S]1[ENTER][3][ENTER][<][MTH][NXT][PROB][PERM],

or, if you are already in the MTH\PROB subdirectory, enter

[11[5][ENTER][3][ENTER][PERM].

The result is 2730.

To calculate C(15,3) enter

[11[5][ENTER][3][ENTER][~][MTH][NXT][PROB][COMB],

52 ©2000 - Gilberto E. Urroz

All rights reserved

or, if you are already in the MTH\PROB subdirectory, enter

[11[5]1[ENTER][3][ENTER][COMB].

The result is 455.

The Gamma function

The Gamma function is defined by

Na) = J;xedx

This function has the property that ,

Ia) = (0-1) I'(o—1), fora > 1,

therefore, it can be related to the factorial of a number, i.e.,

Io) = (a-1)1,

when «1 is a positive integer.

In the HP 49 G, the factorial function [!] is extended to any real number to define the Gamma

function as

I(x) = (x-1)!

Therefore, to obtain I'(2.5), for example, use

[21J[S1ENTER][1][-1[~][MTH][NXT][PROB][! 1.

The result is I'(2.5) = 3.32335097045.

Generating random numbers

The HP48G series calculator has a random number generator that returns a real number between
0 and 1. The generator is able to produce sequences of random numbers. However, after a
certain number of times (a very large number indeed), the sequence tends to repeat itself. For

that reason, the HP48G generator is referred to as a pseudo-random number generator. To

generate a random number with your calculator, press:

[<][MTH][NXT][PROB][RAND].

To generate a sequence of numbers just keep pressing the [RAND] soft key.

If you want to generate a sequence of number and be able to repeat the same sequence later,
you can change the "seed" of the generator by entering a given number in level 1 and pressing [
RDZ] before generating the sequence. Random number generators operate by starting with a

53 ©2000 - Gilberto E. Urroz

All rights reserved

"seed" number that is transformed into the first random number of the series. The current

number then serves as the "seed" for the next number and so on. By "re-seeding” the sequence

with the same number you can reproduce the same sequence more than once. For example, try
the following:

[. 1[2]1[5][RDZ] Use 0.25 as the "seed.”
[RAND] First random number = 0.75285...
[RAND] Second random number = 0.51109...

[RAND] Third random number = 8.5429...E-2 = 0.085429....

Re-start the sequence:

[. 1{2][5][RDZ] Use 0.25 once more as the "seed."
[RAND] First random number = 0.75285...

[RAND] Second random number = 0.51109...
[RAND] Third random number = 8.5429...E-2 = 0.085429........

If you press [RDZ] with no value in the display, the generator will take a number based on the
calculators clock time and use it as the seed.

The pseudo-random number generator provided in your calculator produces random numbers with
a uniform distribution in the interval [0,1]. To learn more about uniform distributions check out
section 5.5 in your textbook.

Examples of probability calculations for continuous random variables

The probability distribution for a continuous random variable, X, is characterized by a function
f(x) known as the probability density function (pdf). The pdf has the following properties: f(x) >

[7rd = 1

0, for all x, and

Probabilities area calculated using the Cumulative Distribution Function (cdf), F(x), defined by

PIX <x]= F(x)= |[EE

Where P[X<x] stands for “the probability that the random variable X is less than the value x”.

Normal distribution pdf

The expression for the normal distribution pdfis:

Gowpyord 202 1,fx) =

where 11 is the mean, and o” the variance of the distribution.

54 ©2000 - Gilberto E. Urroz

All rights reserved

To calculate the value of f(u,0%,x) for the normal distribution, enter the following values: the

mean, p, in level 3; the variance, o, in level 2; and, the value x in level 1, then enter

[MTH][NXT][PROB][NXT][NDIST].

For example, check that for a normal distribution, f(1.0,0.5,2.0) = 0.20755374. Use the following

sequence:

[1]J[ENTER][. 1[5][ENTER][2][ENTER][MTH][NXT][PROB][NXT][NDIST]

Normal distribution cdf

The HP48G series calculator has a function UTPN that calculates the upper-tail normal
distribution, i.e.,

UTPN(x) = P(X>x) = 1 - P(X<x).

To obtain the value of the upper-tail normal distribution UTPN we need to enter the following
values: the mean, , in level 3; the variance, o’, in level 2; and, the value x in level 1, then

enter

[MTH][NXT][PROB][NXT][UTPN].

For example, check that for a normal distribution, with p = 1.0, o* = 0.5, UTPN(0.75) =
0.638163. Use the following sequence:

[1]JENTER][. J[S][ENTER][. J[7][S][ENTER][MTH][NXT][PROB][NXT][UTPN]

Different probability calculations for normal distributions [X is N(u,0%)] can be defined using the
function UTPN, as follows:

P(X<a) = 1 - UTPN(p, o%,a)

P(a<X<b) = P(X<b) - P(X<a) = 1 - UTPN(i, *,b) - (1 - UTPN(, &*,a))
= UTPN(p, ?,a) - UTPN(, ob)

P(X>c) = UTPN(y, o%,c)

Example: Using it = 1.5, and o” = 0.5, find (a) P(X<1.0); (b) P(X>2.0); (c) P(1.0<X<2.0).

(a) P(X<1.0) = 1 - P(X>1.0) = 1 - UTPN(1.5, 0.5, 1.0). Enter:

[1]ENTERI[1][.1[51[SPCI[.1[5][SPC][1][MTH][NXT][PROB][NXT][UTPN][-].

The result is P(X<1.0) = 0.239750.

(b) P(X>2.0) = UTPN(1.5, 0.5, 2.0). Enter:

[110.1(51[SPCI[.1[5][SPC][2] (IMTH][NXT][PROB][NXT]) [UTPN].

The result is P(X<2.0) = 0.239750.

(€) P(1.0<X<2.0) = F(1.0) - F(2.0) = UTPN(1.5,0.5,1.0) - UTPN(1.5,0.5,2.0). Enter

55 ©2000 - Gilberto E. Urroz

All rights reserved

(IC-10510SPCIL- IE51ISPCI MI UTPN] [1]. 1[51(SPCI[-1[51[SPCI[2][UTPN] [-]

The result is P(1.0<X<2.0) = 0.7602499 - 0.2397500 = 0.524998.

The Student-t distribution

The Student-t, or simply, the t, distribution has one parameter v, known as the degrees of

freedom. The probability distribution function (pdf) is given by

rt a

f)=—2(1+) 7 co<t<w
re) Jv

where I'(a) = (a-1)! is the gamma function defined above.

The HP48G/GX provides for values of the upper-tail (cumulative) distribution function for the t-
distribution using [UTPT] given the value of t and the parameter v. The definition of this
function is, therefore,

UTPT(v,1) = | fOde=1-[fdt=1-P(T <1)

To use this function, enter v in level 2 and t in level 1, then press [UTPT]. Recall that to get to
the probability functions you need to use the keystroke sequence:

[MTH][NXT][PROB][NXT].

For example, to calculate UTPT(5, 2.5), use the following:

[S]IENTER][2][.][5][ENTER][UTPT]

The result is: UTPT(5,2.5) = 2.7245...E-2

Alternatively, you can use:

[SI[SPCI[2][.1[5][UTPT].

Different probability calculations for the tdistribution can be defined using the function UTPT,
as follows:

P(T<a) = 1 - UTPT(v,a)

P(a<T<b) = P(T<b) - P(T<a) = 1 - UTPT(v,b) - (1 - UTPT(v,a)) = UTPT(v,a) - UTPT(v,b)

P(T>c) = UTPT(v,c)

56 ©2000 - Gilberto E. Urroz

All rights reserved

The Chi-squared (¥?%) distribution

The Chi-squared 0%) distribution has one parameter v, known as the degrees of freedom. The
probability distribution function (pdf)-is given by

1 yy, 2
SO)=x? Le 2v>0,x>0

= LV22 .I(%)

2

The HP48G/GX providesfor values of the upper-tail (cumulative) distribution function for the x2-

distribution using [UTPC] given the value of t and the parameter v. The definition of this
function is, therefore,

oo t

UTPC (v,x) = | f(x)dx =1 -| f(x)dx =1- P(X <x)
t — O00

To use this function, enter v in level 2 and x in level 1, then press [UTPC]. For example, to
calculate UTPC(5, 2.5), use the following:

[S][ENTER][2][-]1[5][ENTER][UTPC]

The result is: UTPC(5,2.5) = 0.776495...

Alternatively, you can use:
[S][SPCI[2][.1[5][UTPC].

Different probability calculations for the Chi-squared distribution can be defined using the
function UTPC, as follows:

P(X<a) = 1 - UTPC(v,a)

P(a<X<b) = P(X<b) - P(X<a) = 1 - UTPC(v,b) - (1 - UTPC(v,a)) = UTPC(v,a) - UTPC(v,b)

P(X>c) = UTPC(v,c)

The F distribution

The F distribution has two parameters vN = numerator degrees of freedom, and vD = denominator
degrees of freedom. The probability distribution function (pdf) is given by

vN vN
MA TE

Sx) = vN vD - VN FF (Arvp,
r(—). rT (== 2(5) (3) (=)

The HP48G/GX provides for values of the upper-tail (cumulative) distribution function for the F
distribution using [UTPF] given the value of F and the parameters vN and vD. The definition of

this function is, therefore,

57 © 2000 - Gilberto E. Urroz

All rights reserved

UTPF(VN,vD,F) = | T f(F)dF =1-| " f(F)dF=1-P(3<F)
t es)

To use this function, enter vN in level 3, vD in leve2, and F in level 1, then press [UTPF]. For

example, to calculate UTPF(10,5, 2.5), use the following:

[T1[O][ENTER][S][ENTER][2][.]1[5] [ENTER] [UTPF]

The result is: UTPF(5,2.5) = 0.776495...
Alternatively, you can use:

(11[O][SPC][SI[SPCI[2][.1[S][UTPF].

Different probability calculations for the F distribution can be defined using the function UTPF,
as follows:

P(F<a) = 1 - UTPF(VN, vD,a)

P(a<F<b) = P(F<b) - P(F<a) = 1 -UTPF(vN, vD,b)- (1 - UTPF(vN, vD,a))
= UTPF(vN, vD,a) - UTPF(VN, vD,b)

P(F>c) = UTPF(vN, vD,a)

FFT menu: Fast Fourier Transform - brief introduction

This menu is useful in transforming a signal (time domain) into the frequency domain, through

the function [FFT] (Fast Fourier Transform), or a spectrum in the frequency domain into a signal
in the time domain through the function [IFFT] (Inverse Fast Fourier Transform). The signal or

spectrum used as input for these functions is provided as a vector with an even number of

elements.

Use [MTH][NXT][FFT] to access the FFT menu.

Examples:

[=I ISPCI[2][SPCI[3][SPCI[4] [ENTER] [FFT]

Gives the following spectrum:

[(10,0), (-2,2),(-2,0).(-2,-2)]

To see the full result, press [VY], which starts the matrix editor. Use the arrow keys to move

from element to element. Press [ENTER] to return to normal calculator display.

With the spectrum in level 1 of the display, press [IFFT], to recover the signal [1 2 3 4].
Press [MTH] to recover the MTH menu.

More details on the calculation of FFTs and IFFTs is presented in Volume 2 of this book.

58 © 2000 - Gilberto E. Urroz

All rights reserved

Calculations with complex numbers
Introduction to complex numbers

A complex number z is a number written as

zZ=X+1iy,

where x and y are real numbers, and i is the imaginary unit defined by i? =-1.

The complex number x+iy has a real part,

x = Re(z),

and an imaginary part,

y =1Im(z).

We can think of a complex number as a point P(x,y) in the x-y plane, with the x-axis referred to

as the real axis, and the yaxis referred to as the imaginary axis. Thus, a complex number

represented in the form x+iy is said to be in its Cartesian representation.

A complex number can also be represented in polar coordinates (polar representation) as

z=re= rcos6 + i rsinb

where
2, 21/2r=[z]= (x+y)

is the magnitude of the complex number z, and

0 = Arg(z) = arctan(y/x)

is the argument of the complex number z.

The relationship between the Cartesian and polar representation of complex numbers is given by

the Euler formula:

re’ = cos + i sin

The complex conjugate of a complex number z = x + iy = re’’,, is

z=x-iy=re".

The complex conjugate of z can be thought of as the reflection of z about the real (x-) axis.

Similarly, the negative of z,

-z = -x-iy = - re'’,

can be thought of as the reflection of z about the origin.

59 © 2000 - Gilberto E. Urroz

All rights reserved

The CMPLX menus - basic complex number
applications

There are two CMPLX (complex numbers) menu available in the calculator.

CMPLX menu through MTH

The first CoMPLeX menu presented herein is accessed by using [<][MTH][NXT][CMPLX]. The first

menu shows the following functions:

[RE I: Real part of a complex number

[IM]: Imaginary part of a complex number
[CHR]: Takes a complex number (x,y) and separates it into its real and imaginary parts.
[R-C]: Takes the numbersin registers x and y and forms the complex number (y, x)
[ABS]: Calculates the magnitude of a complex number or the absolute value of a real

number.

[ARG]: Calculates the argument of a complex number.

Press [NXT] to see the second menu:

[SIGN]: Calculates a complex number of unit magnitude as z/|z|.
[NEG]: Changes the sign of the complex number in register x of the display.
[CONJ]: Produces the complex conjugate of the complex number in register x.

CMPLX menu defined in the keyboard

A second CMPLX menu is accessible by using the right-shift option associated with the [1] key,
e., ["][CMPLX]. The resulting menu include the following functions:

[ARG J: Calculates the argument of a complex number.

[ABS]: Calculates the magnitude of a complex number or the absolute value of a real
number.

[CONJ]: Produces the complex conjugate ofthe complex number in register x.
[i I Enters the imaginary unit, i = (-1)""
[IM]: Imaginary part of a complex number
[NEG]: Changes the sign of the complex number in register x of the display.

Press [NXT] to see the second menu:

[RE I: Real part of a complex number
[SIGN]: Calculates a complex number of unit magnitude as z/|z|.

60 © 2000 - Gilberto E. Urroz

All rights reserved

Polar representation of a complex number

To obtain the polar representation of a complex number change the coordinate system to

cylindrical. You can perform that change by using: [-][PRG][MXT][MODES][ANGLE]. This menu

will show the current settings for angular measurement and coordinate system highlighted by a

rectangle in the corresponding labels. Press [CYLIN] to change to cylindrical (or polar)
coordinates.

Examples of basic complex number operations

Make sure your calculator is in RPN mode, angle units set to radians, coordinates set to

rectangular, and the CAS is set to Complex. Enter the complex number

z = -3+5i,

as

[<1LOIBI+/-1[~]1[. 1[5][ENTER].

Press [ENTER] eight times to place eight copies of the number z in the stack. Then, activate the

CMPLX menu from the keyboard, i.e., [][CMPLX]. Try the following exercises:

Find the argument: [ARG], returns 6 = 2.171..rad. Use [<] to drop this result from the

stack.

Find the magnitude: [ABS], returns r = 5.83095... Use [<] to drop this result from the

stack.

% Find the conjugate: [CONJ], returns z = (-3.,-5.). Use [©] to drop this result from the

stack.

Find imaginary part: [IM], returns Im(z) = 5. Use [¢] to drop this result from the

stack.

“& Find the negative of z: [NEG], returns -z = (3., -5.).

% Find real part: [NXT][RE], returns Re(z) = -3. Use [¢] to drop this result from the

stack.

w Find a unit normal vector corresponding to z: [SIGN], returns u = (-0.574495..., 0.8574...).

Press [ENTER] to return to normal calculator display.

= To check that the last result is indeed of length 1, use [NXT][ABS]. Use [¢] to drop result

from stack.

Note: the functions ABS and ARG can be accessed directly by combining the left- and right-shifts,
respectively, with the [+ 7] key.

61 © 2000 - Gilberto E. Urroz

All rights reserved

Activate the alternate CMPLX menu by using [<1] [MTH][NXT][CMPLX]

* Separate the complex number into is real and imaginary parts: [CR], resulting in
register y = -3., and register x = 5.

+ To put the complex number back together use [R—C].

Polar representation

% To see the polar representation of the number use: [CAT][ALPHA][C], use the down

arrow key to highlight CYLIN, then pess [OK]. This changes the coordinate system to
cylindrical (or polar) coordinates, and results in the number being displayed as (5.8309, £

2.11), or z = 5.83095. >".

* Notice that if the coordinates are set to cylindrical any complex number will

automatically be represented in its polar form even if you enter its Cartesian representation.

For example, try entering:

(IOI10. 1ISTENTER].

The result returned by the calculator is (5.09901, £ 1.373).

+ To return to the Cartesian representation change the coordinates back to rectangular by

using [CAT][ALPHA][R], highlighting RECT, and pressing [OK]. The number will be displayed

now as (7.,5.).

Complex number calculations

Complex numbers can be added, subtracted, multiplied, and divided. The rules for these
operations are shown below:

Let

and

be complex numbers.

Addition:

Subtraction:

Multiplication:

. i-0
z=x+iy=re'’,

Z1 = X71 + iy =r;-e o

0
Zp =x; + iyy=rre'",,

In these definitions the numbers x, y, x1, x2, y;. and y, are real numbers.

Z1 + 2p) = (x1 + Xo) + i (v1 + yo)

21-22 = (x3 -x2)+ i (yr - y2)

: i +6
2122 = (X1X2 - y1y2) + i-(X1y2 + X2'y1) = rrp € (1 J.

62 © 2000 - Gilberto E. Urroz

All rights reserved

Multiplication of a number by its conjugate results in the square of the number's magnitude,

i.e.

z z=(x+iy)(x-iy) = +y=7 =z]?
Division:

Z| A | _ ZZ XX AVY, Vi X% XV, Bee,
—_—== +1 = —-e
Z, z, Z,

= 2 = 2 2 2 2
| 2, xX; +; xX; + 5

Powers: 2 =(re'®) =.

Roots: because the argument 6 of a complex number z has a periodicity of 2x, we can writeg P p y

z=re 02 fork=01,2, ..

There are n n-th roots of z calculated as

(6+2km)
1

z=z"=¢".e nn | k=0,1,2,A (n-1).

Examples of operations with complex numbers

To enter complex numbers simply enter them as ordered pairs, as shown earlier. Try the

following exercises. Remember to press [ENTER] after entering a complex number:

(-2..3.)+5=(3.,3.) (4.,2.)+(0,-1.) = (4.,1.) (-3.2, -5.2) - (6.6, -2.) = (-9.8,-
3.2)

(2.,3.)(-1.,4.) = (-14.,5.) (2.,3.)/(5.,-2.) = (0.137,0.655) (2.,3.)% = (-46., 9.)

V(-1.,5.) = (1.431,1.746) (2.,2.)2=(0.,-0.125)

Note: roots, other than the square, can not be calculated directly in the HP 49 G. You will have
to find the magnitude, r, and argument, 6, of the number, and then use the expression shown

above for 2". For example, to find the three cubic roots of 1 = (1.,0.). First find r = [(1.,0.)] =

1.0, 6 = Arg(1.,0.) = 0., thus,

2knm

vy 3!Yz=2"=1"e3", k=0,12.

To find the roots use the following:

(EQW][][e*1[2][X][ALPHA] [a] [KI [x] [2][m] [x] [<][i] [A][A] [+][3][ENTER][ENTER][ENTER]

63 © 2000 - Gilberto E. Urroz

All rights reserved

This will keep three copies of the expression EXP(2kin/3). To evaluate the three roots you need
to replace values of k = 0, 1, and 2. You can do that replacement by using the evaluation symbol
(|) available in the [TOOL] key when combined with the right-shift key, i.e., [~][|]. The

replacementis defined by using lists of the form {k 0}, {k 1}, and {k 2}.

For k = 0, use:

[<1[0] [ALPHA][<][K] [SPC] [0] [ENTER] [~][| 1 [ENTER] [—][EVAL]

resulting in the value of 1.0. Use [<=] to drop this result from the stack.

Try the replacement {k 1}, to get -(7-iV3)/2. With [~][-NUM], the result is (-0.5,0.8660). Use

[<1] to drop this result from the stack.

Finally, try the replacement {k 2}, to get -(1+iV3)/2. With [][->NUM], the result is (-0.5,-

0.8660). Use [<] to drop this result from the stack.

Functions of a complex variable

We defined a complex variable z as z = x + iy, where x and y are real variables, and i = (- 1)2

We can also define another complex variable

w=F(z)=d+iY,

where, in general,

@®=P(x,y), and ¥ = ¥(x,y).

are two real functions of (x, y). These real functions can also be given in terms of the polar

coordinates (r, 0) if we use the polar representation for z, i.e.,

z=re' =r (cosh + i-sind).

In such case,

dD =P(r,0), and ¥ = ¥(r,0).

Recall that the coordinate transformations between Cartesian and polar coordinates are:

r= (x? + 2)? tanf=y/x,

Xx =r cosf, y=rsinf

The complex variable w is also known as a complex function. Another name for a complex

function is "mapping." Thus, we say F(z) is a mapping of z. In geometric terms, this means that

any figure in the x-y plane gets "mapped" onto a different figure on the ®-¥ plane by the
complex function F(z).

As an example, take the function

w=F(z) = In (z) = In (re) = In(r) + i6.

We can identify the functions

64 © 2000 - Gilberto E. Urroz

All rights reserved

@=dr,0) =In(r), and ¥=Y¥(,0) =0,

as the real and imaginary components, respectively, of the function In(z). Using the
transformations indicated above we can also write,

@ = D(x,y) = In[(x*+y})"?] = (1/2) In(x*+yf), and ¥ = ¥(x,y) = tan’ (y/x).

Example: Expanding In(z) using the HP 49 G calculator

The following keystrokes can be used to obtain the real and imaginary parts of the complex

function w = In(z). We will take advantage of this exercise to show you a few of the algebraic

functions of the HP 49 G calculator, although we will not discuss such functions in depth until
later.

First, type in the function LN(z), then create the equality z = r-EXP(i-0), as follows:

[10 1[][LN][ALPHA][<][Z][ENTER]

[10 ALPHA] [<][Z][~][=] [ALPHA][«][R] [x][][e] [«][i] [x] [ALPHA][~][T] [ENTER]

Then, use the SUBSTitute command in the [][ALG] menu to replace z with its polar

representation:

[~][ALG] [SUBST]

This results in LN(r-EXP(i-8)). To expand this logarithmic expression, we use the command TEXPA

in the [<][EXP&LN] menu:

[][EXP&LN] [TEXPA]

which results in LN(r) + LN(EXP(i-6)). We know that LN and EXP are inverse functions, but

apparently the HP 8 G doesn’t, therefore, we help a little by simplifying the result to LN(r) +

i6. This can be performed by editing the latter result by pressing [W][EDIT]. Press the right-
arrow key [»] until the cursor is on top of the i in the expression. Use the backspace key [<] to
clear up the characters LN(EXP(. Then, use the right-arrow key, PB], and the backspace key,

[<2], to clear up the two parentheses left out to the right of 6 in the expression. Press [ENTER]
twice to return to normal calculator display. We have thus separated the function LN(z) into

LN(r) + 8. (The moral of this story is: do not expect the calculator to do everything algebraic
for you. You need to understand the operation you are performing in the calculator to be able

to interpret, and, perhaps, modify, the results given by the machine.)

Example: Expanding z° using the HP 49 G calculator

Let's try another example by expanding the function Z, with z = x + iy. Use the equation writer

to enter the following expression:

[EQW] [<1[O] [ALPHAT[<]IX] [+] [10 i 1 [x] [<][ALPHAX][Y] [»]1[»]1[»] [y*1[2] [ENTER]

This produces the result (x + ivy)? . To expand the expression use: [—][EVAL].

The result is: X2+2iyx-yf = (X°-yf)+i(2xy).

65 © 2000 - Gilberto E. Urroz

All rights reserved

Functions of complex numbers in the HP 49 G
calculator

Exponential, logarithmic, trigonometric, hyperbolic, and other functions can be applied directly

to complex numbers by entering the numbers as ordered pairs, and then entering the appropriate

function name. In the following exercises the complex numbers are shown as they will look like

when entered in the screen. For example, we would show the value (3., -2.), which is entered

as: [<][OHIB1[~]l . 1[2][+/-][ENTER], followed by, say, [+][e*], to indicate the operation

exp((3.,-2.)) = (-8.35...,-18.26...). In traditional Cartesian representation of complex numbers this

operation would be written as exp(3-2i) = -8.35-18.26i.

Try the following exercises:

(5.,2.) [«]le'] : exp(5+2i) = -61.76+134.95i. (-1.,2.)[~][LN]: In(-1+2i) = 0.80+2.03i

(3.,4.) [IX]: (3+4i)? = -7+24i (5.,5.) [Nx]: V(5+5i) = 2.46+1.02i

(-2.,-2) [SIN]: sin(-2-2i) = -3.42+1.51i (0.,-3.) [COS]: cos(-3i) = 10.07

(7.5,2.2)[TAN]: tan(7.5+2.2i) = 0.02+1.02i 3.5 [ASIN]: sin-1(3.5) = 1.57-1.92i

66 © 2000 - Gilberto E. Urroz

All rights reserved

Lists, functions, and programs
In this chapter we show how to define functions of one or more variables in the HP 49 G
calculator. Functions are converted into User RPL programs, therefore, some basic concepts

about programs are also introduced. Functions can be applied to lists of numbers, therefore, we

introduce in this chapter basic notions of lists and their operations.

Lists

A list is just a collection of objects enclosed between curly brackets and separated by spaces in

RPN mode (the space key is labeled [SPC]), or by commas in algebraic mode. Objects that can be
included in a list are numbers, letters, character strings, variable names, and/or operators

contained between curly brackets. Lists are useful for manipulating data sets and in some

programming applications.

Some examples of lists are: {t 1}, {"BETA"h2 4}, {11.52.0}, {aaaa}, {{123}{321}{123}},

etc. In the examples shown below we will limit ourselves to numerical lists.

Entering a list of objects

To enter a list of numbers in RPN mode, simply activate the curly brackets by pressing [<][{}].
then enter the list elements pressing [SPC] to include a space between them. For example, to
enter the list {0-1 3 5} use:

[+100] [0] [SPC] [1][+/-] [SPC] [3] [SPC] [5] [ENTER].

When entering a list that includes algebraic objects make sure that the algebraic objects are

enclosed between single quotes. An algebraic object consisting of a single character can be

entered without the single quotes. For example, to enter the list {t -1 t2+1 5}, which
combines numbers with algebraic objects, use:

[<100] [ALPHA][][T] [SPC] [1][+/-] BPC JIALPRATLIT] [y‘] [2] [+] [1] [»] [SPC] [5]
ENTER].

Operations with lists of numbers

Simple operations with lists are accessible by using the keystroke sequence: [+][MTH][LIST].

The operations thus available are:

[ALIST][ZLIST][TILIST][SORT][REVLI][ADD]

67 © 2000 - Gilberto E. Urroz

All rights reserved

The other operations in this menu are defined as follows:

[ALIST]: produces a list of increments between consecutive elements in the original list, e.g.,

{12.13.54.23.8} [ALIST] produces {1.1 1.4 0.7 -0.4}.

[ZLIST]: calculates the sum of the elements in the list. E.g., {1 2.1 3.5 4.2 3.8} [ELIST] produces

14.6.

[TILIST]: calculates the product of the elements in the list. E.g., {12.1 3.54.2 3.8} [TILIST]

produces 117.306.

[SORT]: sorts elements in increasing order. E.g., {1 2.1 3.5 4.2 3.8} [SORT] produces {1 2.1 3.5

3.8 4.2}.

[REVLI]: reverses order of elements in list. E.g., {12.1 3.54.2 3.8} [REVLI] produces {3.8 4.2 3.5

2.11}

[ADD]: this function is used to add a constant to all elements of a list, as in:

{1 2} [ENTER] 2 [ENTER][ADD], which produces {3 4},

or to add two lists of the same size, as in:

{1 2} [ENTER] {3 4} [ENTER][ADD], which produces the list {4 6}.

Note: the [+] key is used to concatenate two lists or a list and a single object. For example, the

concatenation of the lists {1 2} and {3 4} is accomplished by using:

{1 2} [ENTER] {3 4} [ENTER][+]

which produces the list {1 2 3 4}.

The following operation adds the number 5 to this list: [5][+], producing the list {1 2 3 4 5}.

The remaining arithmetic operations, namely [-],[x], and [+], can be used with lists of the same

size to operate on them term by term. You can also use them with a list and a constant to

perform the required operation on each term of the list and the constant. Try the following

examples:

{5 2 3}[ENTER]{4 2 -1}[ENTER] [-], you will get the list {1 0 4} (term-by-term operation)

{5 2}[ENTER]{2}[ENTER][-] produces an error message because the two lists are not of the same

size.

{5 2}[ENTER] 2 [ENTER][-]. subtracts 2 from each element in the list producing the list {3 0}.

{-1 0 1}[ENTER]{2 3 4}[x] produces the list {-2 0 4} (term-by-term operation)

{3 4 5}[ENTER] 4 [x] produces the list {12 16 20}

{25 35 12}[ENTER]{5 7 3}[+] produces the list {5 5 4} (term-by-term operation)

{20 40 15} [ENTER] 5 [+] produces the list {4 8 3}

68 © 2000 - Gilberto E. Urroz

All rights reserved

Composing and decomposing lists

Additional operations with lists are available by pressing [<][PRG][LIST]. In particular, we will
describe the use of the operations [OBJ->], [->LIST].

[OBJ->] is used to decompose a list into its elements. By using this operation the elements of the

list are placed in different levels of the display, with level 1 displaying the number of elements,

level 2 displaying the last element on the list, level 3 displaying the second-to-last element on

the list, and so on. For example, {0.5 3.2 6.5} [<][PRG][LIST][OBJ->] produces the following
display:

o
N

W
b
s

o
w

o
O

(€ number of elements)

[LIST] is used to create a list using the values available in the different display levels. The
number of elements in the list must be placed in level 1. The value in level 2 will become the

last element in the list, the value in level 3 will become the second-to-last element in the list,

and so on. For example, the following display:

=
D
W
s

0.5

4.2

8.5

2 (€ number of elements)

will produce this list: {4.2 8.5} when the keystroke sequence [+] [PRG][LIST][->LIST] is used.

Please notice that [OBJ->] and [>LIST] are inverse operations.

Functions

Defining a function of one variable

Defining a function consists in creating a variable that contains the definition of the function. For

example, suppose we want to define the function

f()=x
There are two ways to enter the expression that defines the function:

- Using the equation editor:

[EQW] [ALPHA] [<][F] [<][O] [ALPHA]I[<][X] [»] [=][=] [ALPHA][][X] [y‘][3] [ENTER]

% Entering the expression directly into level 1 of the display:

["1 [ALPHA][][F] [110] [ALPHAT[<]IX] [>] [~][=] [ALPHA][<][X] [y*]1[3] [ENTER]

69 © 2000 - Gilberto E. Urroz

All rights reserved

To define the function, use the keystroke sequence: [+][DEF] (use the key for [2]).

Press [VAR] if needed. There will be a new soft key named f, i.e., [f]. To see how the

function is stored into the variable f, press [][f |]. Level 1 of the display now shows the

following:

<< 2 x 'xX"3' >>

This expression represents a program written in User RPL language that can be interpreted as

follows: take the value in level 1 and assign it to x © x), then, calculate the expression

between quotes ('x"3"'). The result is then placed in level 1 of the display (register x).

Notice that the function definition procedure used above (through [«][DEF]), translates the

function definition (in general, f(x) = expression containing x) into a program of the form

<< => x 'expression containing x'>>.

Note: RPL programs are always enclosed within the double quotes << >>.

Evaluating the function

Let's now evaluate our function f(x) for a given value of x, say, x = 5. First, you need to enter
the value of x in level 1 of the display by pressing [5][ENTER]. Next, press the soft key for f, i.e.,
[f]. The result is 125, or f(5) = 125.

We ould evaluate the function using a list as the argument. For example, let's find the value of

f({1 2 3}). First, enter the list in level 1 of the display:

[<100] [1] [SPC] [2] [SPC] [3] [ENTER]

Then, press the button [f]. The result is {1 8 27}, i.e., f[{1 2 3}] = {1 8 27}. Notice that the

program defining f(x) applied the function definition (namely, x’) to each element of the
argument list and produced a new list with the same number of elements.

When list arguments fail

1

Let's now try defining a different function,

_sinh(x)

1+x?
g(x)

Use the following keystroke sequence to create the variable g:

[10] [ALPHA][<][G] [<][O)] [ALPHAT[<][X] [>] [][=] [<][MTH][HYP][SINH] [ALPHA] [<1] [X]
[>] [=1[<1[O] [1] [+][ALPHA][«][X] [y‘][2] [ENTER] [<][DEF].

70 © 2000 - Gilberto E. Urroz

All rights reserved

Press [VAR] to recover your variable menu. Now, evaluate g(3.5), by entering the value of the
argument in level 1 ([3][.][S][ENTER]) and then pressing [g]. The result is 1.2485... i.e.,

g(3.5) = 1.2485... Try also obtaining g[{1 2 3}], by entering the list in level 1 of the display
([<100]1 [1] [SPC] [2] [SPC] [3] [ENTER]), and pressing [G]. In this case we get a division error

message. The calculator display looks as follows:

<!>/ Error:

Invalid Dimension

Press [ON] to recover the normal calculator display. You will see the following output:

{ SINH(1) SINH(2) SIN

{1 14 9}P
N
D
W
a
s

Notice that the list in level 1 has four elements. Now, drop that list by pressing [<=]. The list
now in level 1 has only three elements. Apparently, the program defined by [g |] tried to

perform a division between two lists that have different number of elements, and that is what

causes the division error reported. (Most arithmetic operations between lists require lists with

the same number of elements).

How did we end up with lists of different sizes if we started with a single list of size 37 The
explanation lies in the way that the operator [+] applies to lists. The operator [+], when applied

to lists, does not act as a simple addition, instead it is known as the concatenation operator and

its function is to attach (or concatenate) the two lists. For our particular situation, the list x = {1

2 3} is squared in the denominator (1+x°) of the expression that defines g(x) producing the list {1
4 9}. Then, this list is concatenated to the number 1 by way of the operator [+] in the
denominator (1+x%). This result in the list {1 14 9} =1 + {1 4 9} shown in level 1 of the display

(see above). The list in level 2 of the display represents SINH(x). In order to calculate the
function g(x), the calculator tries to divide SINH(x), which is a list of three elements, by (1+x?),
which is a list of four elements, thus producing a division error.

The moral of this exercise is the following: when trying to evaluate a function whose definition

includes the plus (+) sign, if the function argument is a list the result most likely will produce an

algebraic error. For example, when we evaluated f[{1 2 3}], we obtained a reasonable result

(namely, {1 8 27}), because the definition of the function (f(x) = xX) did not include any plus
signs.

An example of programming

To get around using the [+] sign, the HP48G/GX calculator offers the function ADD that applies
particularly to lists, but that can be used to represent addition of other numbers. Instead of

using the definition currently stored for the variable [G], namely, << > x

‘SINH (x) /(1+x~2) >>, we'll replace it with the following program: << 'x' STO x SINH 1 x SQ

ADD / 'x' PURGE >>. To key in the program follow these instructions:

Keystroke sequence: Produces: Interpreted as:

[] [<< >>] << Start an RPL program

[(P]['][ALPHA] [v1] [X] [PD] [STO] 'xX' STO Store the contents of

level 1 into variable x

[ALPHA] [+1] [X] x Place x in level 1

[1] [MTH][HYP][SINH] SINH Calculate sin of level 1

71 © 2000 - Gilberto E. Urroz

All rights reserved

[1] [SPC] [ALPHA] [<1] [X] [©] [x2] 1 x SO Enter 1 and calculate x
[<1] [MTH] [LIST] [ADD] ADD Calculate (1+x2),
[+] / then divide

[m1 0'] [ALPHA] [1] [X] [P] x!
[ALPHA] [ALPHA] [P] [U] [R] [G] [E] [ALPHA] PURGE Purge variable x

[ENTER] Program displayed in

level 1

To save the program use:

[(m1['] [ALPHA] [+] [G] [STO]

Press [VAR] to recover your variable menu, and evaluate g(3.5) by entering the value of the
argument in level 1 ([3][.]1[5][ENTER]) and then pressing [g]. The result is 1.2485... i.e,

g(3.5) = 1.2485..Same as before. Try also obtaining g[{1 2 3}], by entering the list in level 1 of
the display ([<][{] [1] [SPC] [2] [SPC] [3] [ENTER]), and pressing [g]. The result now is

{SINH(1)/2 SINH(2)/5 SINH(3)/10}, if your CAS is set to EXACT mode. If your CAS is set to

APPROXIMATE mode, the result will be {0.5876.. 0.7253... 1.0017...}.

Global and local variables

The program [g |], defined above, can be displayed as

<< 'x' STO x SINH 1 x SQ ADD / ‘x' PURGE >>

by using [][g 1].

Note: [][g] is equivalent to recalling the contents of variable g by using: [~]['][g¢

1[+][RCL].

Notice that the program uses the variable name x to store the value placed in register x (level 1

of stack) through the programming steps 'x' STO. The variable x, while the program is

executing, is stored in your variable menu as any other variable you had previously stored. After

calculating the function, the program purges (erases) the variable x so it will not show in your

variable menu after finishing evaluating the program. If we were not to purge the variable x

within the program its value would be available to us after program execution. For that reason,

the variable x, as used in this program, is referred to as a global variable. One implication of the

use of x as a global variable is that, if we had a previously defined a variable with the name x, its

value would be replaced by the value that the program uses and then completely removed from

your variable menu after program execution.

From the point of view of programming, therefore, a global variable is a variable that is

accessible to the user after program execution. It is possible to use a local variable within the

program that is only defined for that program and will not be available for use after program

execution. The previous program could be modified to read:

<< — X << x SINH 1 x SQ ADD / >> >>

The arrow symbol (—) is obtained by combining the right-shift key with the [0] key, i.e., [~][-].
Also, notice that there is an additional set of programming symbols (<< >>) indicating the

existence of a sub-program, namely << x SINH 1 x SQ ADD / >>, within the main program.

The main program starts with the combination — x, which represents assigning the value in

register x (level 1 of stack) to a local variable x. Then, programming flow continues within the

sub-program by placing x in the stack, evaluating SINH(x), placing 1 in the stack, placing x in the

12 © 2000 - Gilberto E. Urroz

All rights reserved

stack, squaring x, adding 7 to x, and dividing stack level 2 (SINH(x)) by stack level 1 (1+x%). The
program control is then passed back to the main program, but there are no more commands

between the first set of closing programming symbols (>>) and the second one, therefore, the

program terminates. The last value in the stack, i.e., SINH(x)/ (1+x°), is returned as the program
output.

The variable x in the last version of the program never occupies a place among the variables in

your variable menu. It is operated yon within the calculator memory without affecting any

similarly named variable in your variable menu. For that reason, the variable x in this case is

referred to as a variable local to the program, i.e., a local variable.

Note: to modify program [g |], place its contents in the stack by using [#][g 1]. Then

activate the stack editor by pressing [¥]. Use the arrow keys ([4] [»] [A] [¥]) to move about
the program. Use the backspace/delete key, [=], to erase any unwanted characters. To add

program symbols (i.e., << >>), use [<][<< >>], since these symbols come in pairs you will have

to enter them at the start and end of the sub-program and erase one of its components with the

delete key to produce the required program, namely:

<< — X << x SINH 1 x SQ ADD / >> >>.

When done editing the program press [ENTER] and store the result in variable [g |] by using

[<]l g 1.

Global Variable Scope

Any variable that you define in the HOME directory or any other directory or sub-directory will be
considered a global variable from the point of view of program development. However, the

scope of such variable, i.e., the location in the directory tree where the variable is accessible,

will depend on the location of the variable within the tree. The directory tree is basically the

schematic representation of the memory locations within the HOME directory. To see your

current directory tree, move to the HOME directory, if you are not already there
([CAT][ALPHA][ALPHA][H][O][ALPHA][OK]), then activate the FILES command: [+][FILES] (the

APPS key). The resulting screen shows your directory tree with the root in the HOME directory
and branching out into your other directories and sub-directories. You can use the arrow keys

to move about the directory tree. Press [OK][ON] to return to normal calculator display.

The rule to determine a variable's scope is the following: a global variable is accessible to the

directory where it is defined and to any sub-directory attached to that directory, unless a

variable with the same name exists in the sub-directory under consideration. Consequences of

this rule are the following:

+ A global variable defined in the HOME directory will be accessible from any directory
within HOME, unless redefined within a directory or sub-directory.

If you re-define the variable within a directory or sub-directory this definition takes

precedence over any other definition in directories above the current one.

% When running a program that references a given global variable, the program will use the

value of the global variable in the directory from which the program is invoked. If no

variable with that name exist in the invoking directory, the program will search the

73 © 2000 - Gilberto E. Urroz

All rights reserved

directories above the current one, up to the HOME directory, and use the value
corresponding to the variable name under consideration in the closest directory above the

current one.

+ A program defined in a given directory can be accessed from that directory or any of its

sub-directories.

All these rule may sound confusing for a new calculator user. They all can be simplified to the

following suggestion: Create directories and sub-directories with meaningful names to organize

your data, and make sure you have all the global variables you need within the proper sub-

directory.

Functions defined by more than one expression

In this section we discuss the treatment of functions that are defined by two or more

expressions. An example of such functions would be

10x) 2-x—-1, x<0
xX) =

x2 -1, x>0

The HP 49 G provides the function IFTE (IF-Then-Else) to describe such functions.

The IFTE function

The IFT function is written as ‘IFT (condition, operation_if_true, operationiffalse)’.

If condition is true then operation_iftrue is performed, else operation_if_false is performed.

For example, we can write 'IFTE(x>0, x"2-1, 2*x-1)’, to describe the function listed above. One
way to define the function is to use 'f(x) = IFTE(x>0,x"2-1, 2*x-1)" and then entering [«1][DEF].
For this case use:

(EQW] [ALPHAT[][F] [=][0)] [ALPHA][«][X] [»] [~][=] [<][PRG][BRCH][NXT][IFTE]
[ALPHA][<][X] [~][>] [0] [>] [ALPHA][<][X] [y*] [2] [al[A] [-] [1]

[>] [21x] [ALPHA][<][X] [-] [1] [ENTER]

To define the function, use [<][DEF]. Press [VAR] to recover your variable menu. The function [

f] should be available in your soft key menu. Press [*][f] to see the resulting program:

<< — x ‘IFTE(x>0, x"2-1, 2*x-1)'>>

To evaluate the function enter a number and press [f], for example:[2][f] produces

f(2) = 3, while [2][+/-]1 [f 1] produces f(-2) = -5.

74 © 2000 - Gilberto E. Urroz

All rights reserved

Combined IFTE functions

To program a more complicated function such as

g(x) =

you can combine several levels of the IFTE function, for example, type the function

\ g(x) = IFTE(x<-2, -x, IFTE(x<0, x+1, IFTE(x<2, x-1, x°2)))’',

then press [<1][DEF]. Check that g(-3) = 3, g(-1) = 0, g(1) = 0, g(3) = 9.

Generating a table of values for a function

The soft key functions (F1 through F6) can be combined with the left-shift key, [~], to access

the calculator’s graphing functions. While detailed instructions for using graphs are presented in

a later chapter, in this section we will introduce their use with the purpose of generating tables

of values for a function.

Note: to access the graphing functions in RPN mode hold the left-shift key and the selected soft

key simultaneously. In algebraic mode you can press the left-shift key first and then the desired

soft key.

- We will generate values of the function f(x), defined above, for values of x from -5 to 5,

in increments of 0.5. First, we need to ensure that the graph type is set to FUNCTION. To

achieve this press [][2D/3D] (simultaneously, if in RPN mode). The field in front of the

Type option will be highlighted. If this field is not already set to FUNCTION, press the soft

key [CHOOS] and use the up and down keys, [A][V¥], to select the FUNCTION option, then
press [OK].

* Next, press [¥] to highlight the field in front of the option EQ. Press [VAR] to show your

variable menu. Find the soft key corresponding to the function f, and press [~][f 1], then

press [OK]. This will place a copy of the program that generates values of the function f(x)
in the field corresponding to the option EQ. However, in order to evaluate the desired
function table we need to edit this program so that only the function expression, namely,

‘IFTE (x>0, x"2-1, 2*x-1) ‘remains.

= To edit the contents of EQ, first press [A] to highlight the corresponding input field, then
press [EDIT]. Use the right-arrow key [>] to move to the position immediately to the left of
the first single quote (press [>] five times), then use the backspace/delete key, [<], 5 times

to delete the characters << —x . Next, press the combination [»][»] and press Pp], if

needed, to reach the space past the program closing character, >>. Finally, use the

backspace/delete key, [<], to delete the character >>. When done, press [ENTER].

75 © 2000 - Gilberto E. Urroz

All rights reserved

4 The field in front of the option Indep (for independent variable) will be highlighted now.
Since the independent variable we are using is x (lowercase), while the calculator’s default
independent variable is X (uppercase), you may need to edit this field by pressing [EDIT].

Using the left-arrow key, [4], move to the left of the closing quote, then use the

backspace/delete key, [¢], to erase the X, and enter [-][ALPHA][X]. When done, press

[OK].

To accept the changes made to the PLOT SETUP screen press [NXT][OK]. You will be

returned to normal calculator display.

The EQ variable

If the EQ field in the PLOT SETUP was empty before you chose the function f above, then you did
not have a variable EQ in your directory previous to the exercise above. After you return to

normal calculator display, you will notice that there is a new variable called EQ. This variable is

generated automatically ty the calculator when doing a plot setup (if no EQ variable exists,

otherwise the calculator replaces its value with that provided in the PLOT SETUP screen). The
EQ variable is used in many other calculator functions always to store an algebraic expression or

a program to be plotted or solved for.

The next step is to access the Table Set-up screen by using the keystroke combination
[<][TBLSET] (i.e., soft key F5) - simultaneously if in RPN mode. This will produce a screen

where you can select the starting value (Start) and the increment (Step). Enter the
following: [5][+/-][OK] [O][.1[5][OK] [O][.1[5][OK] (i.e., Zoom factor = 0.5). Toggle the
[v'CHK] soft key until a check mark appears in front of the option Small Font if you so desire.
Then press [OK]. This will return you to normal calculator display.

The TPAR variable

After finishing the table set up, your calculator will create a variable called TPAR (Table
PARameters) that store information relevant to the table that is to be generated. To see the

contents ofthis variable, press [~][TPAR].

4 To see the table, press [][TABLE] (i.e., soft key F6) - simultaneously if in RPN mode.

This will produce a table of values of x = -5, -4.5, ..., and the corresponding values of f(x),

listed as Y1 by default. You can use the up and down arrow keys, [A][V¥], to move about in

the table. You will notice that we did not have to indicate an ending value for the

independent variable x. Thus, the table continues beyond the maximum value for x

suggested early, namely x = 5.

Some options available while the table is visible are [ZOOM][BIG] and [DEFN]:

* The [BIG] key simply changes the font in the table from small to big, and vice versa.
Try it.

* The [ZOOM] key, when pressed, produces a menu with the options: In, Out, Decimal,
Integer, and Trig. Try the following exercises:

16 © 2000 - Gilberto E. Urroz

All rights reserved

= With the option In highlighted, press [OK]. The table is expanded so that the x-
increment is now 0.25 rather than 0.5. Simply, what the calculator does is to multiply the
original increment, 0.5, by the zoom factor, 0.5, to produce the new increment of 0.25.
Thus, the zoom in option is useful when you want more resolution for the values of x in your

table.

= To increase the resolution by an additional factor of 0.5 press [ZOOM], select In once
more, and press [OK]. The x-increment is now 0.0125.

= To recover the previous x-increment, press [ZOOM][A] to select the option Un-zoom.

The x-increment is increased to 0.25.

= To recover the original x-increment of 0.5 you can do an un-zoom again, or use the

option zoom out by pressing [ZOOM][¥][OK].

w= The option Decimal in [ZOOM] produces x-increments of 0.10.

= The option Integer in [ZOOM] produces x-increments of 1.

“% The option Trig in [ZOOM] produces increments related to fractions of 7 thus being
useful when plotting trigonometric functions.

= To return to normal calculator display press [ENTER] or [ON].

As an exercise, try generating a table of values for g(x) for x starting at -3 with increments of

0.5, then try the different zoom options.

Functions of more than one variable

Functions of more than one variable can be defined in a similar manner as functions of one

variable, i.e., enter the function expression of the form 'function_name (x;,X;,.., Xn)

expression containing x ,%;,..,X%,in level 1 of the stack. Then, use the command [<][DEF].
Press [VAR], if needed. A program that evaluates the function will be store in a variable called

function_name. To evaluate the function for a set of values of x;,x,,..,x,, enter the values of

the independent variables in the stack in the order x;,x,,..,x,, then press the soft key button

corresponding to the function name.

For example, let's define a simple function, say h(x,y,z) = x+y+z, by using:

[EQW] [ALPHA][«][H] [110] [ALPHA][+][X] [SPC] [ALPHA]J[][Y] [SPC] [ALPHA][+][Z]
[>] [~][=] [ALPHA][<][X] [+] [ALPHA][<][Y] [+] [ALPHA][«][Z] [ENTER]

Note: it is not necessary to type the commas between the independent variables x, y, z in the

function call h(x,y,z). It is only necessary to use the space key. The commas are generated

automatically.

To create the program that defines the function use: [<][DEF]. This creates a variable [h] in

the variable menu. To see the contents of this variable, press ["][h]. The program stored in

his:

<< 9X Yy z ‘Xtyt+tz' >>

717 © 2000 - Gilberto E. Urroz

All rights reserved

The ordering of the variables to the right of the input arrow in the program indicates the order in

which the corresponding input values must be entered into the calculator display, namely, x in

level 3, yin level 2, and z in level 1, before pressing[h]. For example, to evaluate h(-3, 5,
0.5) use:

[3][+/-][ENTER] [5][ENTER] [O][.][5] [ENTER] [h 1].

which results in h(-3, 5, 0.5) = 2.5. Alternatively, you can enter the values of x,y,z separated by

spaces, i.e.,

(31[+/-] [SPC] [5] [SPC] [O][.1[5] [ENTER] [h 1].
or,

[31[+/-1 [SPC] [5] [SPC] [O][.J[S] [h 1.

Applications of function definitions - probability

distributions

We indicated in an earlier chapter that the HP 49 G calculator includes pre-defined functions
that allow the user to calculate the upper-tail probability distribution (or cumulative distribution

function, cdf) for the normal, Student-t, Chi-square (), and F distributions. In this section, we

use what we have learnt about function definitions to create other probability distribution

functions.

Discrete probability distributions

A random variable is said to be discrete when it can only take a finite number of values. For

example, the number of rainy days in a given location can be considered a discrete random

variable because we count them as integer numbers only. Let X represent a discrete random

variable, its mass distribution function (mdf) is represented by

f(x) = P[X=x],

and

i.e., the probability that the random variable X takes the value x.

The mass distribution function must satisfy the conditions that

f(x) >0, for all x,

and

d f(x)=1.0
all x

A cumulative distribution function (cdf) is defined as

F(x)=P[X <x]=) f(k).
k<x

18 © 2000 - Gilberto E. Urroz

All rights reserved

Defining summations in the HP 49 G

To define a summation in the HP 49 G use the combination [~][Z] (SIN key). When used in the
equation editor, spaces will be provided for the summation parameters. For example, the sum

Can be typed using the equation writer as follows:

(EQW] [~][Z] [ALPHA][<][N] [>] [1] [>] [elle] [>] [1] [+] [ALPHA][<][N] [y*] [2] [ENTER]

If you have your display set to textbook, you will get the exact expression shown above. If you

change yourdisplay to the default one-line display, you will get the expression:

‘2 (n=1,0,1/n"2)"

which suggest the general form of the summation expression for line input, namely:

‘Z(control_variable=starting_value,ending_value, expression)’

To evaluate the current expression, if it is a convergent series, first make sure that the CASis set

to ExacT. Then, use [~][EVAL]. The calculator's CAS, when set to the ExacT mode, will seek a

symbolic result, which in this case is given as 'n*2/6".

To enter a summation expression directly into display level 1, without using the equation writer,

you need to open a set of single quotes and then type the expression as indicated in the example

below. Here we are typing again the summation used above:

[=] 1 [~][Z] [ALPHA] [«][N] [1(=] [0] [10] [9]le] [=10, 1 [7] [+] [ALPHAT[<]IN] [y*] [2]
[ENTER]

Binomial probability distribution function

Create a directory HOME\STATS\DFUN (Discrete FUNctions). We will define some probability
distributions and distributions functions in that directory.

To define the binomial distribution function, enter the following keystrokes:

[Hod [od [=1[BI[A]IPI[<]ID] [<=] [()] [<2] (XI [=] [1 [<a] IN) [<2] [.] [<] [PIla][P][][=]
[MTH][NXT][PROBI [COMB] [a] [a] [~]IN][]L . 1[][X] [a] [>]

[x] [e][<] [PIly] [od[] [X]
[x1 [al [OI- Med [<1 [PTI] [y*] [+] [O)] [od] [NIL - 1 [al [«] [X]

[ENTER]

The calculator display will show:

1: "bpd (x,n,p) =COMB (n,

X) *p*x*(1-p)*(n-x)

79 © 2000 - Gilberto E. Urroz

All rights reserved

This statement defines a function bpd (binomial probability distribution) of a discrete random

variable x = 0, 1, ..., n, with parameters n and p. We'll now define the function into a variable
‘bpd’. Enter:

[<][DEF].

Press [VAR], if needed. To see the contents of the variable 'bdp’, enter:

[~]1[BPD].

The display will show a program:

1: << 2 Xx n p 'COMB(n,x

)*p” (1-p) ~ (n-x)
>>

The sequence [+1][DEF] converts the function definition, 'bpd(x,n,p)=COMB(n,x)*p"x*(1-p)"(n-x)’,
into the program listed above.

To use the function we just defined, we need to enter three arguments, namely, x, n, and p, into

display levels 3, 2, and 1, respectively. To do that, simply use the keystroke sequence:

x [ENTER] n [ENTER] p [ENTER].

To determine the value of bpd(x,n,p), press the soft key corresponding to the label [BPD].
For example, to calculate bpd(2,5,0.5), enter:

[2][ENTER][S][ENTER][O][. J[S][ENTER][BPD] The display shows a value of 0.3125.

Binomial cumulative distribution function

To define the binomial distribution function, type in the following function definition:

"BDF (x,n,p) = Z(k=0,x%x,bdp(k,n,p))"

Then, press [«][DEF]. The variable BDF is now defined. If you press [~][BDF], you'll get the
following program:

<< 2 x n p ' X(k=0,x,bdp(k,n,p))"' >>

Calculate the value of BDF(3,5,0.5), by pressing:

[3I[ENTER][S][ENTER][O][.][5][ENTER][BDF] The display shows a value of 0.8125.

Other discrete probability distributions and distribution functions

The following function definitions will provide you with other probability distributions and

distribution functions for discrete random variables:

Poisson Probability Distribution: "POPD(X,A) = AX*EXP(-A)/x!

Poisson Distribution Function: "PoDF (x, A) =2X(k=0,x, 'PoPD(k,A))"'

Hypergeometric Prob. Distr.: ‘hpd (x,n, a, N)=COMB (a, x) *COMB (N-a,n-x) /COMB (N,n)

Geometric Distribution Function: ‘gpd (x,p) = p*(l-p)~(x-1)'

80 © 2000 - Gilberto E. Urroz

All rights reserved

Remember to press [-][DEF] after entering the function definition in level 1 of the display. To

facilitate locating the functions, keep them all under the same directory DFUN. If you define all
the functions suggested in this section, your white keys should have the following labels (they

may be in different order):

[BPD] [BDF][POPD][PODF][HPD][GPD]

Also, BDF uses bpd, and PoDF uses PoPD, therefore, you must define bpd and PoDF before using

BDF or PoDF.

Note: If the functions in your directory are not in the order shown above and you want to place

them in that order, try the following:

(1) Create a list that looks like this: { bpd BDF PoPD PoDF hpd gpd} and place it in level 1. To
create the list use these keystrokes:

[«][(] [BPD][BDF][POPD][PODF][HPD][GPD][ENTER]

(2) Use the following keystroke sequence to re-order the variables:

[+] [MEMORY] [DIR] [ORDER].

Examples:

Calculate the following: Keystrokes: Result:

PoPD(x=3, A=2.2) [31[SPC][2][.]1[2][POPD] 0.19663867...
PoPF(x=5, A= 1.5) [51[SPC]I[1][.1[5][POPF] 0.99554401...

hpd(x=2,n=10,a=20,N=100) [2][SPC][1][O][SPC][2][0][SPC]
(1101 [0] [HPD] 0.31817062...

gpd(x=5,p=0.25) [S1[SPC][.1[2][5][GPD] 0.07910156...

Continuous probability functions

In this section we describe several continuous probability distributions including the gamma,

exponential, beta, and Weibull distributions. These distributions are described in any statistics

textbook. Some of these distributions make use of a the Gamma function defined earlier, which

is calculated in the HP 49 G calculator by using the factorial function as I'(x) = (x-1)!, for any real
number x.

The gamma distribution

The probability distribution function (pdf) for the gamma distribution is given by

1 x&! . exp(EA for xX > 0,a > 0, B > 0;TOT 5
The corresponding (cumulative) distribution function (cdf) would be given by an integral that has

no closed-form solution.

81 © 2000 - Gilberto E. Urroz

All rights reserved

The exponential distribution

The exponential distribution is the gamma distribution with a = 1. Its pdfis given by

f(x) = = exp(- 2, for x >0,8 > 0;1
p p

While its cdf is given by

F(x) = 1 - exp(-x/B), for x>0, B >0.

The beta distribution

The pdf for the gamma distribution is given by

[otP)

As in the case of the gamma distribution, the corresponding cdf for the beta distribution is also

given by an integral with no closed-form solution.

fx)= X10"for 0<x<lo>0B>0;

The Weibull distribution

The pdf for the Weibull distribution is given by

f(x)=oa-B-x""exp(—ax-x"), for x>0,a>0,8>0

While the corresponding cdf is given by

F(x)=1-exp(—a-x"), forx>0,00>0,8>0

Defining integrals in the HP 49 G - brief introduction

A more detailed presentation of integral calculus is presented in a subsequent chapter. This is

just a brief introduction to defining integrals using the equation writer. The integral symbolis

obtained by using the right-shift key combined with the TAN key:[~][[]. For example, to
evaluate the integral

[x + 1 dx,

use:

[EQW] [~1[]] [0] [»] [ALPHAI[<][T] [Nx] [ALPHAI[<]IX] [y] [2] [al[A] [+] [1] [»]
[ALPHA] [](X] [ENTER]

To evaluate this integral, with the CAS in EXACT mode, use:

82 © 2000 - Gilberto E. Urroz

All rights reserved

[~][EVAL]

which results in *— ((LN (-t+V(£~2+1))-t* V(£~2+1))/2)", or

LN (m+ NP +) — AE +]

2

if the calculator is in the textbook display mode.

To define a collection of functions corresponding to the gamma, exponential, beta, and Weibull

distributions, first create a sub-directory called CFUN (Continuous FUNctions) and define the
following functions:

Gamma function: ‘fgamma (x) = (x-1)!"

Gamma pdf: ‘gapd (x) = x” (0-1) *EXP(-x/B)/ (B~a*fgamma (a))'

Gamma cdf: ‘gadf (x) = J(0,x,gapd(t),t)"
Beta pdf: 'Bpd (x)= fgamma (0+f) *x™ (0-1) * (1-x) ~(B-1) / (fgamma (a) * fgamma (B))

Beta cdf: "Bat (x) =[(0,x, Ppd(t), t)"
Exponential pdf: 'expd (x) = EXP(-x/B)/B"

Exponential cdf: ‘exdf (x) = 1 - EXP(-x/B)"'
Weibull pdf: ‘Wepd (x) = o*B*x™(B-1)*EXP(-a*x"B)"

Weibull cdf: ‘Wedf (x) = 1 - EXP(-0*x"B)"

Remember to press [1][DEF] after entering each function definition in level 1. You also need to

create a couple of variables, oe and 3, and load them with some values, say a= 1.0, =2.0. To

do this use the following keystrokes:

(10 10 ALPHA][~] [A][STO] [2]['][ALPHA][r] [B][STO]

Finally, for the cdf for Gamma and Beta cdf’s, you need to edit the program definitions to add
->NUM to the programs produced by [DEF]. For example, for the Gamma cdf, use the following

keystroke sequence:

[~][GADF][V][VI][V][<][>NUM][ENTER].

The program should look like this: << > x'[(0,x,gapd(t),t)' >NUM >>

Store the new program into gadf, using:

[<1][GADF].

Repeat the procedure for df. If you want to order the variables in your directory, use the
procedure shown in section 7.2, to get your white buttons to look like this:

[« 1 B 1[FGAM][GAPD][GADF][BPD]1[BDF 1[EXPD][EXDF][WEPD][WEPF]

Examples:

Unlike the discrete functions defined earlier, the continuous functions defined in this section do

not include their parameters (oc and/or PB) in their definitions. Therefore, you don't need to enter

them in the display to calculate the functions. However, those parameters must be previously

83 © 2000 - Gilberto E. Urroz

All rights reserved

defined by entering the corresponding values in the variables a and B. To enter these values use

a procedure similar to that suggested above when the variables a. and were first defined.

Practice the following exercises:

% Foro =3, B = 2, use the Gamma distribution to obtain f(12), and P(X>12).

First, store a. and B:

Bill [o J2][«Il B 1

Then, for f(12), enter

[11{2][GAPD],

thus f(12) = 0.02230. Also, P(X>12) = 1 - P(X<12) = 1 - F(12), enter

[TTENTER][1][2][GADFI[-],

thus P(X>12) = 0.05196. (The evaluation of the integral for GADF takes about twenty seconds)

4 For a= 2, B = 9, use the Beta distribution to obtain f(0.10) and P(X<0.10).

First, store a and B:

2] [a TOI[<I B 1.

Then, for (0.10), enter

NXTI[107][BPD].

thus (0.10) = 3.87420. Also, P(X<0.10) = F(0.10), enter

[.J01L BDF1,

thus P(X>12) = 0.2639010. (The evaluation of the integral for GADF takes from 5 to 10

seconds).

4 Foro = 0.2, B = 0.333, use the Weibull distribution to obtain f(5) and P(X<5).

First, store a and B:

[VAR][.][2][] [a] [13131[31[<1[B 1.

Then, for f(5), enter

[NXT][5][WEPD],

thus f(5) = 0.0161738. Also, P(X<5) = F(5), enter

[5] [WEDF],

thus P(X<5) = 0.289518.

For B = 0.2, use the Exponential distribution to obtain (2.5) and P(X>2.5).

First, store only 3=0.2:

84 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR] [2][<][B 1.

Then, for f(2.5), enter

[NXT]{2][.1[5][EXPD],

thus f(2.5) = 1.8633x10°. Also, P(X>2.5) = 1- P(X<2.5) = 1 - F(2.5), enter

(TI[ENTER][2][.][ST[EXDF][-],

thus P(X>12) = 0.00000372.

Manipulating elements of lists

Elements of a list can be manipulated by using the functions available in the menu the results

from [<][PRG][LIST][ELEM]. The functions thus available are:

[GET J[GETI][PUT J[PUTI][SIZE][POS]

in the first menu, and, (press [NXT])

[HEAD][TAIL][Il I I]

Press [NXT] again, to recover the first set of functions.

To show examples of these functions, let's prepare a simple list, say, {23571290 1}, place it

in level 1 of the display and press eight times to make eight copies of the list available in the

stack. We'll use this list to illustrate the use of the functions listed above.

Determining list size

With the list of interest in level 1, press the soft key [SIZE] to obtain the size of the list. This

operation wipes out the list, therefore, if you want to operate more on a given list that is not

saved to a variable, make sure to make at least one more copy available in the stack (by pressing

[ENTER]). For the list under consideration the size is 9. Use [¢] to drop this result from

the stack.

Extracting and inserting elements in a list

To extract an element of the list, simply enter its position in stack level 1 and press [GET]. For
example, to get the third element of the list use [3][GET]. The result is 5. This operation will

also wipe out the list in level 2. Use [¢] to drop this result from the stack.

The function [GETI] also will extract the element indicated (position = I) and place it in level 1 of

the stack, but it will also calculate (+1) and place it in level 2 of the stack, while preserving the

original list in level 3 of the stack. Thus, using [3][GETI] in the list above will produce:

3: (235712901)

85 © 2000 - Gilberto E. Urroz

All rights reserved

2: 4

1: 5

The function GETI can be used in programs when extracting elements in sequence. You will
operate on the element extracted (level 1) while increasing by one the index controlling your

program. At the same time, the list is still available for extracting more elements if needed. Use

[<] twice to drop the latter results from the stack.

Suppose that we want to insert the value 1.2 in position 6 of the list. With the list in level 1,
type [6][ENTER] [1][.][2] [ENTER] [PUT]. Thus, the position is entered first and the element to

be inserted next, before pressing [PUT]. The list will now look like {2357 11.2290 1}. Use

[<1] to drop this result from the stack.

The function [PUTI] will perform the same operation, while increasing the position value by 1
and leaving the list available in level 2. Try the following: [6][ENTER] [1][.]1[2] [ENTER] [PUTI].

The result is:

2: {2 35711.22 9 0 1}
1: 7

Again, the [PUTI] function is more appropriate for programming purposes. Use [=], twice, to

drop this result from the stack.

Element position in the list

The position of an element in the list can be determined by entering the element value in level 1

while the list is in level 2, then pressing [POS]. Try this exercise, using the list previously
defined: [9][POS]. The result is 7. Use [¢], twice, to drop this result from the stack.

Note: If you list an element that is not contained in the list, [POS] will return a value of zero.

HEAD and TAIL functions

Press [NXT] to reach the functions HEAD and TAIL. The [HEAD] function extracts the very first

element in the list in level 1. For the case under consideration, pressing [HEAD] will produce the
value 2. Use [<] to drop this result from the stack.

The function [TAIL] returns the list in level 1 without the first element. With the same list in

level 1, press [TAIL] toget {3571290 1}.

Applications of list operations

The following exercises are applications of lists to data processing. The data is assumed to be

entered as a list of numbers and available in level 1 of the stack.

Mean, variance, and standard deviation of a sample

In this exercise we calculate the mean value of a small list of numbers. Enter the following list:

{1.01.52.02.01.10.51.2},

86 © 2000 - Gilberto E. Urroz

All rights reserved

and press [ENTER] three times to keep extra copies of the list available in the stack.

The mean value is defined as the sum of elements divided by the number of elements, i.e.,

x = Xx; /n,

thus, to calculate this value use:

[<][MTH][LIST][ZLIST] Calculates Tx; = 9.3
>] Swaps levels 1 and 2

[<][PRG][LIST][ELEM][SIZE] Produces n = 7

[+] Calculates x = Ix; /n = 1.32857...

The variance of the list is calculated as

sy 2=3(x- x)2/(n-1).

Thus, for the list under consideration, with the list in level 2 and x in level 1, calculate the

variance as follows.:

[-] Subtract x from every element in the list

[<][x?] Squares every element in the resulting list

[<2] [MTH][LIST][ZLIST] Calculates E(x; - x)° = 1.79428...
[6][+] Divide by (n-1), to calculate

[Vx] This is the standard deviation,

Calculating statistics from grouped data

Grouped data refers to data grouped into classes and presented as a group of class marks (x;) and
their corresponding frequency distribution (f;). Assuming the we have a total of n data points

grouped into k classes, the calculation of the mean and variance proceeds according to the

formulas used below.

The HP48 series calculators can be used to calculate the summations in those formulas if the

vectors x and f, containing class marks and frequencies, respectively, are entered as lists. To

illustrate the calculations, we'll use the following data:

x={253545556.5} f={351172}.

Separate the two lists and store them in variables x and f, respectively, by using:

{2.53.545556.5} [ENTER]['][ALPHA][<][X][STO] Store list into variable x.

{351172} [ENTER][' J[ALPHA][<][F][STO] Store list into variable f.

To calculate X x; f;, follow these steps:

[VARI] x 1[f 1[x] Places the x and lists in display levels 2 and 1, respectively, and

multiply their corresponding elements creating a new list.

[<][MTH][LIST][ZLIST] Calculates the sum of all the elements in the list in display level

1. The

display shows now that Xx; f; = 126.

To calculate the number of elements in the unordered sample, we use the following keystrokes:

[VAR][F][<][MTH][LIST][ZLIST] The display shows that n = 28.

87 © 2000 - Gilberto E. Urroz

All rights reserved

Since Z x; fi is in display level 2 and n is in display level 1, we can calculate the mean value as

x = ZX; fi /n,

by pressing [+], giving as a result =479

Using the same data vectors x and f, we can calculate X x; fi; as follows:

[VAR][x 1[<][x%] Places the x list in display levels 1, and takes the square of each

element in list x.

[f 1X] Places the f list in display level 1, while the x list is moved to

level 2. We, then, multiply the two lists, element by element.

[<][MTH][LIST][ZLIST] Calculates the sum of all the elements in the list in display level
1. The

display shows now that xi f; = 599.

We can use the information obtained so far to calculate the variance, 5.2, according to the

formula shown below. We know that n= 28, £ x; fi = 126, and X xi f; = 599, then,

fsx = [nZxi° fi - (Ex; £;)° 1/[n-(n -1)] = [28x599-126°]/[28x27] = 1.185185... |

The standard deviation is obtained by pressing [Vx], the result is:

Ss, = 1.088662...

Mean and variance of a discrete probability distribution

Suppose that we want to calculate the mean, variance and standard deviation for a discrete

random variable. We will use the calculator to compute those parameters when the probability

distribution is given as a table.

For example, using the data,

x={01234}, f(x) ={0.050.20 0.45 0.20 0.10}.

We begin by creating a subdirectory HOME\STATS\DDIST (for Discrete DISTributions), and moving
into that subdirectory for the calculations. Next, enter and store the values of x and f as lists.

Recall that to store those any list into a variable you need to type in the list in level 1 of the

display, then type the variable name between quotes, and press [STO]. Once both lists have
been stored, you will have two soft keys at the top of the keyboard showing the variable names [

x Jand [f].

First, it is convenient to check if the probability distribution is valid by checking that every

element in f is larger than or equal to zero, and by checking that they add up to 1.0. To check

that they add up to one use:

[£ J[<][MTH][LIST][ZLIST] If display level 1 shows a 1.0, you can continue

with the analysis. If not, the distribution is not
valid.

To calculate the mean, [, we need to multiply the lists x and f and sum the elements of the

result, as follows:

88 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR][x][f 1[x] [~][MTH][LIST][ELIST] Display level 1 should show 2.1, i.e., 2.1].

To calculate the second moment with respect to the origin, yu 2, we use:

[VAR][X 1[<1[X°1[F 1[x Calculates the list x’.
[<][MTH][LIST][ZLIST] Calculates {1 = 5.4.

To calculate the variance, with pin level 2 and pu 2 in level 1 of the display, try the following:

101 X10 -] Calculates fo” =u , - u°=0.99

Of course, the standard deviation is calculated using [Vx], to get jo = 0.994987...

Note: The key [P], when the edit line (bottom line of the display with no stack number showing)
is not active, swaps the contents of lines 1 and 2. This operation has the same effect of the

command SWAP, which can be accessed through the command catalog:
[CAT][ALPHA][ALPHA][S][W][ALPHA][OK].

Programs for generating lists of numbers

Following we present three programs developed for creating or manipulating lists. These

programs are useful in handling numerical lists for some a variety of applications. The program

listings are as follows:

LISC:

<< > n x << 1 n FOR j x NEXT n LIST >> >>

CRLST:

<< — st en df << st en FOR Jj j df STEP en st - df / FLOOR 1 + LIST >> >>

CLIST:

<< REVLIST DUP DUP SIZE ‘n' STO ZXLIST SWAP TAIL DUP SIZE 1 - 1 SWAP FOR j DUP
LLIST SWAP TAIL NEXT 1 GET n LIST REVLIST 'n' PURGE >>

The following are keystroke sequences to get some of the commands in the programs:

SWAP [ALPHA][ALPHA][S][W][A][P] STO [STO]
FOR [<][PRG][BRCH][FOR][FOR] NEXT [<][PRG][BRCH][FOR][FOR]
STEP [<][PRG][BRCH][FOR][FOR] 2 LIST [<][PRG][LIST][>LIST]
REVLIST [«][MTH][LIST][REVLI] DUP [ALPHA][ALPHA][D][U][P]

SIZE [<][PRG][LISTI[ELEM][SIZE] ZLIST [<][MTH][LIST][ZLIST]
TAIL [<2][PRG][LISTI[ELEM][NXT][TAIL]
GET [<][PRG][LIST][ELEM][GET] FLOOR [J IMTHI[REALI[NXT][NXT][FLOOR]

The operation of these programs is as follows:

89 © 2000 - Gilberto E. Urroz

All rights reserved

(1) LISC: creates a list of n elements all equals to a constant c.

Operation: enter n, enter c, press [LISC]

Example: [S][ENTER][6][.][5][ENTER][LISC] creates the list: {6.56.5 6.56.5 6.5}

(2) CRLST: creates a list of numbers from n; to n, with increment An, i.e.,

{n{, ny1+An, n1+2-An, ... n1+N-An }, where

N = floor (La +1
An

Operation: enter ny, enter ny, enter An, press [CRLST]

Example: [.J[5][ENTER][3][.]1[S][ENTER][.J[5][ENTER][CRLST] creates the list:

{0.511.522.533.5}

(3) CLIST: creates a list with cumulative sums of the elements, i.e., if the original list is {x1 x2 x3

... xn}, then CLIST creates the list:

N

{x,,x, +x,,x, +x, + x5,., Y x}
i=l

This type of procedure is useful when determining cumulative frequency or probability

distributions.

Operation: place the original list in level 1, press [CLIST]

Example: {1 2 3 4 5}[ENTER][CLIST] produces {1 3 6 10 15}.

Applications of list-generating programs

Next, the programs CRLIST, and CLIST are used to generate complete probability distributions for
the binomial variate, and cumulative distribution functions for the binomial, Poisson, and

geometric distributions.

Generating tables of mass and cumulative distribution functions for

discrete random variables

Discrete random variables can take only a gecific number of values. Many discrete random

variables take only integer numbers. For example, in a binomial distribution with parameters

(n,p), the random variable X can only takes values of 0,71,2,..,n. A complete binomial

distribution is obtained then by evaluating the probability mass function, pmf, for each value of

the variable. Using lists and the programs defined above for discrete pmf’s, we can generate

complete probability distributions. Some examples are shown below. To facilitate calculations it

is convenient that you have copies of the programs CRLIST and CLIST in the same sub-directory
where you defined the discrete probability functions: bpd, BDF, Popd, PoDF, hpd, and gpd.

90 © 2000 - Gilberto E. Urroz

All rights reserved

Binomial distribution

Suppose that you want to describe the complete probability distribution for a random variable X

that follows the binomial distribution with parameters n =70 and p = 0.35. First, create the list

for X ={0,1,2,...,10} by using:

[OJ[ENTER][1][O]J[ENTER][1][CRLST] Result: {012345678910}.
[ENTER] Makes an extra copy of the list.
[1][O][ENTER][. J[3][5][ENTER] Enter values of n and p.

[bpd] Calculates the list of values of the mdf for X.

[ENTER] Makes an extra copy of the mdf’s values.

[CLIST] Calculates the cumulative distribution function CDF as a

list.

The results obtained through this exercise can be listed as a table as follows:

-mdf(x) ~~ CDF(x)X

0 © 0.0135 0.0135
1 0.0725 0.0860
2 0.1757 0.2616
3 0.2522 0.5138
4 0.2377 0.7515
5 0.1536 0.9051
6 0.0689 0.9740
7 0.0212 0.9951
8 0.0043 0.9995
9 0.0005 0.9999
10 0.0000 1.0000

Poisson distribution

The Poisson distribution is defined for any nonnegative integer, i.e., x = 0,1,2,...,.. Therefore,it
is not possible to completely describe this distribution as we did with the binomial distribution.

We will still provide a table of values by limiting our output to a finite number of values of the

discrete random variable X. Suppose that you want to describe the probability distribution for a

random variable X that follows the Poisson distribution with parameter A =1.2, for X =

{0,1,2,...,10}. Use:

[OJ[ENTER][T][OJ[ENTER][1][CRLST] Result: {0123456789 10}.
[ENTER] Makes an extra copy of the list.
[11] . J[2][ENTER] Enter value of A.

[Popd] Calculates the list of values of the mdf for X.

[ENTER] Makes an extra copy of the mdf’s values.

[CLIST] Calculates the cumulative distribution function CDF as a

list.

The results obtained through this exercise can be listed as a table as follows:

91 © 2000 - Gilberto E. Urroz

All rights reserved

i i

x mdf(x) CDF(x)
0 0.30120.3012

1 0.3614 0.6626
2 0.2169 0.8795
3 0.0867 0.9662
4 0.0260 0.9923
5 0.0062 0.9985
6 0.0012 0.9997
7 0.0001 0.9999
8 0.0000 0.9999
9 0.0000 0.9999
10 0.0000 0.9999

Geometric distribution

The geometric distribution is valid for x = 1,2,...,.c. The following exercise produces a list of

values for the geometric distribution with parameter p = 0.3 corresponding to x = {1, 2, 3, 4, 5}:

[11[SPC][5][SPC][1][CRLST] ([SPC] is an alternative to [ENTER] in this context).

[ENTER] Makes an extra copy of the list.

[. 1[3][ENTER] Enter value of p = 0.3.

[gpd] Calculates the list of values of the mdf for X.
[ENTER] Makes an extra copy of the mdf’s values.

[CLIST] Calculates the cumulative distribution function CDF as a

list.

The results obtained through this exercise can be listed as a table as follows:

mdf(x)~~ CDF(x)
0.3000 0.3000
0.2100 0.5100
0.1470 0.6570
0.1029 0.7599
0.0720 0.8319

f
o
n
A
w

a
X

Functions and operations applied to lists with DOLIST,

DOSUBS, STREAM, and SEQ

The keystroke sequence [<1][PRG][LIST][PROC] lets you access a menu of functions for applying

procedures to lists. Herein we describe the operation of the functions [DOLIS], [DOSUB],

[STREA], and [SEQ].

92 © 2000 - Gilberto E. Urroz

All rights reserved

DOLIST

This function applies a procedure term by term to a number of lists. For example, given the lists

x={123}, y={345} and z = {2 4 5}, calculate z + 1/(ye™) as a list.

If we were to apply this operation to numbers z, y, x, present in stack levels 3, 2, and 1,

respectively, we will use the keystroke sequence [+/-][e*][x][1/x][+]. Try this procedure using

the valuesz=2,y=3, x=1. Use:

[2][ENTER][3][ENTER][T][ENTER] [+/-] [«][e*] [x] [1/x] [+]

to get 2.90609... Thus, we could build the procedure << NEG EXP * INV + >> to perform the
calculation. Try it again with the values z=2, y=3, x =1. Use:

[2][ENTER][3][ENTER][1][ENTER] Enters 2, 3, 1 in stack levels 3, 2, 1, respectively.

[P][<<>>] [+/-] [«][e*] [x] [1/x] [+] [ENTER] Enter program.
[~][EVAL] Evaluate program with available input.

The result is again 2.90609...

To apply this procedure to the three lists given above, we enter the lists as follows:

{2 4 S}ENTER]{3 4 S}ENTER]{1 2 3}[ENTER] Enter the lists.

[P1[<<>>] [+/-] [ele] [x] [1/x] [+] [ENTER] Enter program.
[3]1[ENTER] Enter number of lists involved in the operation.

[<][PRG][LIST][PROC][DOLIS] Apply procedure to the list.

Resulting in { 2.90609... 5.84726... 9.01710...}.

Defining a function instead of using DOLISTS

Alternatively, you may want to type in the function ‘f(x,y,z) = z + 1/(y*EXP(-x))‘, and use

the keystroke combination [<][DEF] to generate the program << — x y z ‘z + 1/(y*EXP(-

x)) ‘>>. The program requires that the values of x, y, and z, be entered into levels 3, 2, and 1

of the stack before invoking the function soft key. To operate the program with the lists

indicated above we will use, therefore:

{1 2 3}[ENTER]{3 4 5}[ENTER] {2 4 5} [ENTER] Enter the lists

[fF 1] Calculate the function.

The result now is {2 4 5 0.9060... 1.8472... 4.0171...}, which is completely different from what we
obtained earlier. The reason again, as in the early discussion about lists and programs, has to do

with the use of the operator + with lists. The operator + represents concatenation of lists rather

than addition. Instead we should use the function ADD. We need to re-write our program to
read as follows:

<< 5 XVy z <<z ‘1/(y*EXP(-x))’ -HNUM ADD>> >>.

This modification reproduces the result obtained earlier, namely, { 2.90609.. 5.84726..
9.01710...}.

Note: be careful with the order in which you enter your input to a function or when using

DOLISTS.

93 © 2000 - Gilberto E. Urroz

All rights reserved

DOSUBS

This function is used to apply a given procedure to n consecutive elements of the list, generating

a new list with the results of the procedure. The number of elements of the resulting list will

depend on the type of procedure use as well as on the number of consecutive elements in the

original list used in the procedure. For example, the procedure << + + 3 / >> applied to three

consecutive elements in a Ist will provide the average of those three elements. To apply the

procedure shown above to the list {12 3 456 7} use:

{1234567} [ENTER] Enter the list to be operated upon.

[3][ENTER] Enter the number of consecutive elements in the list that

will participate in the operation.

[<][<<>>] [+] [+] [3] [+] [ENTER] Enter the procedure to be applied.

[<][PRG][LIST][PROC][DOSUB] Apply procedure to the list.

The result is the list {2 3 4 5 6}, which you can prove represents a list of the averages of three
consecutive elements of the original list, namely, {(1+2+3)/3 (2+3+4)/3 (3+4+5)/3 (4+5+6)/3
(5+6+7)/3}. While there were 7 elements to the original list {1 2 3 4 5 6 7}, there are only five
possible combinations of three consecutive elements, namely [1,2,3], [2,3,4], [3,4,5], [4.5.6],

and [5,6,7]. Therefore, the resulting list contains only five elements {2 3 4 5 6}.

Moving averages

An operation as the one demonstrated above is referred to as a moving average. With moving

averages data taken sequentially can be smoothed out by taking averages of n consecutive

elements in the data list. The example shown above represents a three-element moving

average.

STREAM

Depending on the procedure or operator used, the function STREAM can be used to apply a
procedure to each element of a list, which results in decomposing the list into its elements, or to

apply a procedure repeatedly to the list elements. In the latter case, the procedure is first

applied to the first two elements of the list, then this result is combined with element number 3,

the next result is again combined with element number 4, and so on, until the list is exhausted,

and a single result is produced.

Examples of applying the STREAM function to lists are shown below:

{1234} [ENTER] Enter list

[~]1[<<>>] [VX] [ENTER] Enter procedure to apply to the list elements

[+][PRG][LIST][PROC][STREAM]Use STREAM to apply procedure - decomposes list.

{123 4} [ENTER] Enter list

[~]1[<<>>][<][x°] [ENTER] Enter procedure to apply to the list elements

[<2][PRG][LIST][PROC][STREAM]Use STREAM to apply procedure -- decomposes list.

{1 234} [ENTER] Enter list

[P1[<<>>1[+] Enter procedure to apply to the list elements

[<][PRG][LIST][PROC][STREAM]Use STREAM to apply procedure.

Notice that this procedure, << + >>, adds all list elements. Same as using [<1][MTH][LIST][ZLIST].

{123 4} [ENTER] Enter list

94 © 2000 - Gilberto E. Urroz

All rights reserved

[~]1[<<>>]1[2][+] Enter procedure to apply to the list elements
[<][PRG][LIST][PROC][STREAM]Use STREAM to apply procedure.

Notice that this procedure, << + >>, adds all list elements. Same as using [<][MTH][LIST][ZLIST]

SEQ

The function SEQ (sequence) is used to generate a list of values by applying a procedure to an

index. The user provides the procedure to be applied, the name, starting and ending values, and

increment for the index.

As an example, suppose you want to generate the squares of the list of numbers {0.5 1.0 1.5 2.0

2.5}, you could use the following keystroke sequence to obtain the list of squares:

[~1[<<>>] [ALPHA] [«1[J] [<][x°][ENTER] Enter procedure to apply to the list elements
[1] *] [ALPHA][<][J] [ENTER] Enter index name

[. JIG]J[ENTER][2][. J[S5][ENTER][. J[5][ENTER] Enter initial and final values and increment for

index

[<2][PRG][LIST][PROC][NXT][SEQ] Generate sequence as a list

The result is {0.25 1.00 2.25 4.00 6.25}.

A second example aims at applying a linear function to the list {0.25 0.50 0.75 1.00}, as follows.
The procedure to use now is entered as:

[~]1[<<>>] [2] [SPC] [ALPHA][<][X] [x] [5] [+] [ENTER]

Next enter:

[~]1["1 [ALPHA][<][X] [ENTER] Enter index name
[. 1215] [ENTER] [1] [ENTER] . JI[2][5][ENTER] Enter initial and final values and increment for

PRGIILISTI(PROCINXTI SEQ] Generate sequence as a list

Theresult is {5.5 6.0 6.5 7.0}.

Notes:

[1] The functions DOLIST, DOSUBS, STREAM, and SEQ are very useful when writing your own
programs in User RPL language.

[2] Other functions available using the keystroke sequence [-1][PRG][LIST][PROC] are [NSUB]

and [ENDSUB], which are related to DOSUBS (see the HP 49 G Advanced User's Manual), as well
as [REVLI] and [SORT], which are the same functions available under the menu [<][MTH][LIST].

95 © 2000 - Gilberto E. Urroz

All rights reserved

HP 49 G programming basics
In this chapter we present the basics of programming the HP 49 G in User RPL language through a
variety of examples. | recommend that you try the programming examples presented in chapter

6 before reading this chapter. It is not the intention of this chapter to teach everything about

programming the calculator. It is instead aimed to providing programming tools and examples

that can be used later in the development of simple programming for evaluating functions, data

processing, and even graphs.

Examples of sequential programming

Some very simple programming examples in User RPL language were presented in Chapter 6. In

general, a program is any sequence of calculator instructions enclosed between the program

symbols << and >>. The examples presented in chapter 6 were can be classified basically into

two types:

Programs generated by defining a function.

These are programs generated by entering a function definition of the form:

'function_name(x;, X;, ..) = expression containing variables x;, x;, ..)'

and using the keystroke sequence

[<][DEF].

The program is stored in a variable called function_name. When the program is recalled
to the

stack, by using

[P][function_name]

the program shows up as follows:

<< 2? X;, X,, .. 'expression containing variables x;, X,, ..'>>.

To evaluate the function for a set of input variables x,, x,, .. enter the variables into the

stack in the appropriate order (i.e., x; first, followed by x,, then x,, etc.), and press the

soft key labeled [function_name]. The calculator will return the value of the function

function_name(x;, X;, ..).

96 © 2000 - Gilberto E. Urroz

All rights reserved

Example: Manning's equation for wide rectangular channel.

As an example, consider the following equation that calculates the unit discharge (discharge

per unit width), q, in a wide rectangular open channel using Manning's equation:

C,

q =vWS :

where G, is a constant that depends on the system of units used [C, = 1.0 for units of the

International System (S.1.), and G, = 1.486 for units of the English System (E.S.)], n is the

Manning's resistance coefficient, which depends on the type of channel lining and other

factors, y is the flow depth, and § is the channel bed spe given as a dimensionless

fraction.

Note: Values of the Manning's coefficient, n, are available in tables as dimensionless

numbers, typically between 0.001 to 0.5. The value of Cu is also used without dimensions.
However, care should be taken to ensure that the value of y0 has the proper units, i.e., min

S.l. and ft in E.S. The result for q is returned in the proper units of the corresponding system
in use, i.e., m/s in S.I. and ft/s in E.S. Manning's equation is, therefore, not dimensionally
consistent.

Suppose that we want to create a function q(Cu, n, yO, SO) to calculate the unit discharge q
for this case. We will proceed as follows:

[EQW] [ALPHA][][Q] [][O] [ALPHA][C] [ALPHA][<][U] [SPC] [ALPHA][+][N] [SPC]
[ALPHA] [<][Y][0] [SPC] [ALPHA][S][O] [a][a] [~][=] [ALPHA][C] [ALPHA][<][U] [+]
rieIN [>] IXI[ALPHA][<][Y1[0] [y] [5] [<] [3] [»1[»] [x] [Vx] [ALPHA][S][O]
ENTER

The expression entered may look like this:

'q(Cu,n,y0,S0)=Cu/n*y0" (5/3) *Vs0",

if you have not selected the textbook display option. Otherwise, it will look like the

equation shown earlier.

To define the function use:

[<][DEF]

Press [VAR], if needed, to recover the variable list. At this point there will be a variable

called [q] in your soft key menu. To see the contents of q, use

[=I q 1]

The program generated by defining the function q(Cu, n,y0, S0)shows up as:

<< Cu n y0 SO ‘Cu/n*y0”(5/3)*VsS0’ >>.

This is to be interpreted as

97 © 2000 - Gilberto E. Urroz

All rights reserved

“enter Cu, n, y0, SO, in that order, then calculate the expression between
quotes.”

For example, to calculate q for Cu = 1.0, n = 0.012, yO = 2 m, and SO = 0.0001,
use:

[TJENTER] [. J[OJ[1][2][ENTER] [2][ENTER] [.][O]J[O][O][1][ENTER] [q |]

The result is 2.6456684 (or, q = 2.6456684 m?/s).

You can also separate the input data with spaces in a single stack line rather than using

[ENTER]. For example, to calculate q given Cu = 1.486, n = 0.022, yO = 3.2 m, and SO = 1x10’
3 , use:

(110. 104118116] [SPC] [.1[01[2][2] [SPC] [31[.1[2] [SPC] [MI[EEX][3][+/-] [q |]

The result now is 14.8426948578 (or, q = 14.8426948578 ft?/s).

Programs that mimic a sequence of calculator operations.
In this case, the terms to be involved in the sequence of operations are assumed to be present in

the stack. The program is typed in by first opening the program symbols with [][<<>>]. Next,
the sequence of operations to be performed is entered. When all the operations have been

typed in, press [ENTER] to complete the program. If this is to be a once-only program, you can

at this point, press [][EVAL] to execute the program using the input data available. If it is to

be a permanent program, it needs to be stored in a variable name.

The best way to describe this type of programs is with an example:

Example: Velocity head for a rectangular channel.

Suppose that we want to calculate the velocity head, h,, in a rectangular channel of width b,

with a flow depth y, that carries a discharge Q. The specific energy is calculated as

2hoo
2g(by)

Where g is the acceleration of gravity (g = 9.806 m/s’ in S.1. units or g = 32.2 ft/s® in E.S.
units). If we were to calculate h, for Q = 23 cfs (cubic feet per second = ft/s), b = 3 ft, and
y = 2 ft, we would use:

L - 23?

Y2.322-(3-2)%

Using the RPN system in the HP 49 G, interactively, we can calculate this quantity as:

[2] [ENTER] [3] [x] [=10x°] [310210 - 1[2] [x] [2] [x] [21[31[<1%°] [>] [+]

Resulting in 0.228174, or h, = 0.228174... ft. (Since we didn’t use units in the input, the

result will have no units either).

98 © 2000 - Gilberto E. Urroz

All rights reserved

Notice that we start by calculating the last term in the denominator, then entering the next

term to the left. Next, we multiply those two terms. Next we enter 2 and multiply it with
register x. Finally, we enter the numerator, swap the order, and divide the two terms.

Although this is not the only way to obtain this result, this approach is the most efficient in

order to translate the procedure into a program because it uses mainly register x in the

calculations.

To put this calculation together as a program we need to have the input data (Q, g, b, y) in

the stack in the order in which they will be used in the calculation. In terms of the variables

Q, g, b, and y, the calculationjust performed is written as (do not type the following):

y [ENTER] b [x] [<][X°] g [x] [2] [x] Q[<][x*] [»] [+]

As you can see, y is used first, then we use b, g, and Q, in that order. Therefore,

for the purpose of this calculation we need to enter the variables in the inverse

order, i.e., (do not type the following):

Q [ENTER] g [ENTER] b [ENTER] y [ENTER]

For the specific values under consideration use:

[2][3][ENTER] [3][2][. J[2][ENTER] [3][ENTER] [2][ENTER]

The program itself will contain only those keystrokes (or commands) that result
from removing the input values from the interactive calculation shown earlier,

i.e., removing Q, g, b, and y from (do not type the following):

y [ENTER] b [x] [<1][x] g [x] [2] [x] Q[<]0x°] [>] [+]

and keeping only the operations shown below (do not type the following):

[x] [<10¥°] [x] [2] [x] Q[=]0x°] [>] [+]

Note: When entering the program do not use the keystroke [P], instead use the keystroke
sequence: [<1] [PRG][STACK][SWAP].

However, unlike the interactive use of the calculator performed earlier, we need to do some

swapping of registers x and y within the program. To write the program, we use, therefore:

[][<<>>] Opens program symbols

[x] Multiply (register x) with b (register y)Ply y (reg g y

[<]0x] Square (b-y)
[x] Multiply (b-y)® [register x] times g [register y]
[2] [x] Enter a 2 [now in regx x] and multiply it with g- (b-y)? [now in reg. y]

[<][PRG][STACK][SWAP] Swap Q [reg. y] with 2.g: (by)? [now in reg. yl]

[10x] Square Q

[~][PRG][STACK][SWAP] Swap 2-g- (b-y)? [reg. y] with Q? [reg. x]
[+] Divide Q° [reg. y] by 2-g- (b-y)® [reg. x]
[ENTER] Enter the program

The resulting program looks like this:

99 © 2000 - Gilberto E. Urroz

All rights reserved

<< * SQ * 2 * SWAP SQ SWAP / >>

[Note: SQ is the function that results from the keystroke sequence [<1][x‘]. |

Let's make an extra copy of the program and save it into a variable called hv:

[ENTER] [~]1[* 1 [ALPHA][<][H] [ALPHA][<][V] [STOM]

A new variable [hv] should be available in your soft key menu. (Press [VAR] to see your

variable list.) Also, check that your stack looks like this:

23.

32.2

3.

2.

l: << * SQ * 2 * SWAP SQ SWAP / >>

N
N
W
s

WU
,

To evaluate the program use [—][EVAL]. The result should be 0.228174..., as before.

The program is available for future use in variable [hv]. For example, for Q = 0.5 m*/s, g
=9.806 m/s’, b=1.5m, andy = 0.5 m, use:

[. 1[51[SPC] [9][. 1[8]1[0][6][SPC] [1] . J[S][SPCI [. 1[5] [hv]

[Note: [SPC] is used here as an alternative to [ENTER] for input data entry |

The result now is 2.26618623518E-2, i.e., hv = 2.26618623518x107° m.

Since the equation programmed in [hv] is dimensionally consistent, we can use units in the

input. Try the following:

[. 105] [~][UNITS] [VOL][m*3] [1][~][UNITS] [TIME][s 1] [+]
[9][. 1[8][O[6] [~][UNITSIILENG][m 1 [1][~][UNITS] [TIMEIL s [1x] [+]
(110. 15] [~][UNITS][LENG][m]
[.1[5] [~][UNITS][LENG][m]
[VAR][hv]

The result, now with units attached, is 2.26618623518E-2_m.

The two types of programs presented in this section are sequential programs, in the sense that

the program flow follows a single path, i.e., INPUT-> OPERATION OUTPUT. Branching of the
program flow is possible by using the commands in the menu [-][PRG][BRCH], i.e., IF, CASE,

START, FOR, DO, WHILE, and the functions IFT and IFTE (examples of the latter were also
presented in chapter 6). More detail on program branching is presented below.

Interactive input in programs

In the sequential program examples shown in the previous section it is not always clear to the

user the order in which the variables must be placed in the stack before program execution. For

the case of the program gq, written as

<< =» Cu n y0 SO ‘Cu/n*y0~ (5/3) *Vs0" >>,

100 © 2000 - Gilberto E. Urroz

All rights reserved

it is always possible to recall the program definition into the stack ([~][gq]) to see the order in

which the variables must be entered, namely,

— Cu n y0 SO.

However, for the case of the program [hv], its definition

<< * SQ * 2 * SWAP SQ SWAP / >>,

does not provide a clue of the order in which the data must be entered, unless, of course, you

are extremely experienced with RPN and the User RPL language.

One way to check the result of the program as a formula is to enter symbolic variables, instead of

numeric results, in the stack, and let the program operate on those variables. For this approach

to be effective the calculator’'s CAS (Calculator Algebraic System) must be set to symbolic and

exact modes. This is accomplished by typing

[MODE] [CAS],

and ensuring that the check marks in the options

_Numeric and _Approx

are removed. Press [OK][OK] to return to normal calculator display. Press [VAR] to display

your variables menu.

We will use this latter approach to check what formula results from using the program [hv] as
follows: We know that there are four inputs to the program, thus, we use the symbolic variables

S4, S3, S2, and S1 to indicate the stack levels at input:

[ALPHA][SI[4][ENTER] [ALPHA][SI[3][ENTER] [ALPHA][SI[2][ENTER] [ALPHA][S]I[T1][ENTER]

Next, press [hv]. The resulting formula may look like this

‘SQ(S4)/(S3*SQ(S2*S1)*2) ',

if your display is not set to textbook style, or like this,

SO(S4)

S3-S0(S2-S1)-2’

if textbook style is selected. Since we know that the function SQ() stands for x’, we interpret
the latter result as

sa
2-83-(S2-S1)*°

which indicates the position of the different stack input levels in the formula. By comparing this

result with the original formula that we programmed, i.e.,

0’

Yo 2g(by)?

101 © 2000 - Gilberto E. Urroz

All rights reserved

we find that we must enter y in stack level 1 (S1), b in stack level 2 (S2), g in stack level 3 (S3),
and Q in stack level 4 (54).

Prompt with an input string

These two approaches for identifying the order of the input data are not very efficient. You can,

however, help the user identify the variables to be used by prompting him or her with the name

of the variables. From the various methods provided by the User RPL language, the simplest is to
use an input string and the function INPUT ([<][PRG][NXT][IN][INPUT]) to load your input

data.

The following program prompts the user for the value of a variable a and places the input in

stack level 1:

<< “Enter a:"“ {“+':a:" {2 0} V } INPUT OBJ— >>

To type this program use the following:

[P]<<>>1[1" 7] Open program symbol, open double quotes (string).
[ALPHA][«][ALPHA] Lock alpha keyboard in lower case

[ALPHA][ALPHA] Lock keyboard in alphabetic mode
[<IETIN][TI[EI[R][SPCI[Al[][::] Type in Enter a:”
[ALPHA] Unlock alphabetic keyboard

1101-10] Type in {*
[1[< 1[<]1[::1[ALPHA][A] [»][»] Type in “:a:” (*)

[=1[01[2](SPC]IO] [»] Type in {2 0}
[ALPHA][<][V] [>] Type inv }
[<][PRG][NXTI[IN][INPUT] Enter INPUT
[NXT][PRG][TYPE][OBJ-] Enter OBJ
[ENTER] Enter program in stack level 1

(*) The symbol «' indicates a line feed. This symbol is obtained by using [~] with the [. | key]

]
Save the program in a variable called INPTa (for INPUT a) as follows:

[~][' 1 [ALPHA][ALPHA] [I][N][P][T][<] [A] [ENTER] [STOW]

Press [VAR]. The variable [INPTa] should be available in your soft key menu.

Try running the program by pressing the soft key labeled [INTPa]. The result is a stack prompting
the user for the value of a and placing the cursor right in front of the prompt :a: Enter a value

for a, say 35, then press [ENTER]. The result is the input string

:a:35

in stack level 1.

102 © 2000 - Gilberto E. Urroz

All rights reserved

A function with an input string

If you were to use this piece of code to calculate the function, f(a) = 2*a”2+3, you could modify
the program to read as follows:

<< “Enter a:"“ (“~':a:" {2 0} V } INPUT OBJ— — a<< ‘2*a”2+3'>> >>

To modify the program use:

[~][INTPa] [V] Copies contents of INTPa to register x and launches

editor

[m1lVv][«] Sends cursor to end of program
[~1[-]1[ALPHA][+][A] Type in - a
[P1l<<>>1[1] Creates sub-program symbol and starts algebraic symbol

*)
[2] [x] [ALPHA] [<][A]lY*1[2][+][3] Type in algebraic expression 2*a~2+3

[ENTER]

Save this new program under the name 'FUNCa’ (FUNCtion of a):

[m1 '] [ALPHA][ALPHA] [F][U]IN][C][<] [A] [ENTER] [STOW]

Run the program by pressing [FUNCa]. When prompted to enter the value of a enter, for

example, 2, and press [ENTER]. The result is simply the algebraic 2a?+3, which is an incorrect
result. The HP 49 G provides functions for debugging programs to identify logical errors during
program execution as shown below.

Debugging the program

To figure out why it did not work we use the DBUG program in the HP 49 G as follows:

[1]] [FUNCa] [ENTER] Copies program name to stack level 1

[<][PRG][NXT][NXT][RUN][DBUG] Starts debugger
[SST] Step-by-step debugging, result: “Enter a:”

[SST!] Result: {" «+ a:” {2 0} V}
[SST!] Result: user is prompted to enter value of a
[2][ENTER] Enter a value of 2 for a. Result: “"+«':a:2"
[SST!] Result: a:2
[SST] Result: empty stack, executing —a
[SST] Result: empty stack, entering subprogram <<
[SST] Result: '2*a”2+3’
[SST!] Result: ‘2*a”2+3’, leaving subprogram >>
[SST!] Result: '2*a”2+3’, leaving main program>>

Further pressing [SST!] produces no more output since we have gone through the entire program,
step by step. This run through the debugger did not provide any information on why the

program is not calculating the value of 2a”+3 for a = 2. To see what is the value of a in the sub-

program, we need to run the debugger again and evaluate a within the sub-program. Try the

following:

103 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR] Recovers variables menu

[~]['] [FUNCa] [ENTER] Copies program name to stack level 1

[<][PRG][NXT][NXT][RUN][DBUG] Starts debugger

[SST!] Step-by-step debugging, result: “Enter a:”
[SST!] Result: {" <a:"” {2 0} V}

[SST!] Result: user is prompted to enter value of a
[2] [ENTER] Enter a value of 2 for a. Result: "«:a:2"

[SST!] Result: a:2

[SST!] Result: empty stack, executing —a
[SST!] Result: empty stack, entering subprogram <<

At this point we are within the subprogram << ‘2*a”2+3’'>> which uses the local variable a. To

see the value of a use:

[ALPHA][<][A] [~][EVAL] This indeed shows that the local variable a = 2

Let's kill the debugger at this point since we already know the result we will get. To kill the

debugger press [KILL]. You receive an <!> Interrupted message acknowledging killing the

debugger. Press [ON] to recover normal calculator display.

Note: In debugging mode, every time we press [SST] the top left corner of the display shows the
program step being executed. A soft key function called [SST] is also available under the [RUN]
menu. This can be used to execute at once any sub-program called from within a main program.

Examples of the application of [SST] will be shown later.

Fixing the program

Let's list the program in the stack once more:

[VAR] Recovers variables menu

[~][FUNCa] Copies program to stack level 1

The only possible explanation for the failure of the program to produce a numerical result seems

to be the lack of an EVAL function dter the algebraic expression '2*a”2+3’'. Let's edit the
program by adding the missing EVAL function as follows:

[v] Launch editor

[Pllv][«][«][«] Sends cursor to end of algebraic expression

[~][EVAL] Evaluate algebraic

[ENTER] Enter edited program back into stack level 1

[<][FUNCa] Shortcut to store level 1 into variable FUNCa

Run the program again by pressing [FUNCa]. When prompted for the value of a enter 2, and
press [ENTER]. The result is now 11, the correct result.

The modified function program will look like this (use [~][FUNCa] to recall its contents to the
stack):

“
<< “Enter a:"“ {““:a:“ {2 0} V } INPUT OBJ— — a<< ‘2*a”2+3'EVAL >> >>

104 © 2000 - Gilberto E. Urroz

All rights reserved

Input string for programs requiring two or three input

values

In this section we will create a sub-directory, within the directory HOME, to hold examples of
input strings for one, two, and three input data values. These will be generic input strings that

can be incorporated in any future program, taking care of changing the variable names according

to the needs of each program.

Let's get started by creating a sub-directory called PTRICKS (Programming TRICKS) to hold
programming tidbits that we can later borrow from to use in more complex programming

exercises. To create the sub-directory, first make sure that you move to the HOME directory, by
using [UPDIR] as many times as needed. Within the HOME directory, use the following keystrokes
to create the sub-directory PTRICKS:

[~]1[* HTALPHA][ALPHA][PI[TIIRIINICIIK][S] [ENTER] Enter directory name PTRICKS

[<]1[PRG][MEM][DIR][CRDIR] Create directory

[VAR] Recover variables listing in soft keys

Before we develop the programs for 2 and 3 variables, let's copy the program INPTa into PTRICKS

as follows:

we Move to the directory where you defined INPTa (skip this step if INTPa is defined in the
HOME directory)

Copy contents of INPTa into stack level 1 by using [~][INPTa].

he Copy the name of the program to stack level 1 by using [~][‘][INPTa][ENTER]

= Edit the text in level 1 to read INPT1 by using [V][<][»>][«€][<][1][ENTER]

= Move within directory PTRICKS by pressing [PTRICKS] in the HOME directory (move back
to the HOME directory before performing this step if needed)

= You should have the program in stack level 2 and the program name, INPT1, in stack level

1. Press [STOP] to store the program into the appropriate variable name.

- Press [VAR] to recover the list of variables within PTRICKS. There should be only one

variable listed, namely, INPT1.

Note: A procedure similar to this can be used to easily copy a variable from one sub-directory to

another. You can even copy the contents of a full directory to stack level 1 by using I]

followed by the soft key corresponding to the directory name. For example, moving back to the

HOME directory you could copy the contents of PTRICKS onto stack level 1 by using
[~][PTRICKS]. At this moment, you should get the following in stack level 1:

DIR

INPT1 << “Enter a: “

(““:a:"“ {2 0} V

} INPUT OBJ— >>

END

This is the format in which a directory is listed in the stack. The listing starts with the word DIR

to identify the contents of the stack as a directory, followed by the names and contents of all the

variables available in the directory, and finishing with the word END.

A program may have more than 3 input data values, however, when using input strings we want

to limit the number of input data values to 3 at a time for the simple reason that, in general, we

105 © 2000 - Gilberto E. Urroz

All rights reserved

have visible only 5 stack levels. If we use stack level 5 to give a title to the input string, and
leave stack level 4 empty to facilitate reading the display, we have only stack levels 1 through 3

to define input variables. [Note: With the use of a smaller font we can get more than 5 levels in

the stack, thus allowing form more than 3 variables to be input at a time, but with the standard

HP 49 G display format the default is 5 stack levels.] If we have more than 3 variables to input,
we can use a second, third, etc., input string to enter the remaining input values. Having

available programs for entering 1, 2, and 3 input values per input string we can handle most

inputs to our programs.

Input string program for two input values

The input string program for two input values, say a and b, looks as follows:

<< “Enter a and b:“ {(““:a:<':b:“ {2 0} V } INPUT OBJ—> >>

This program can be easily created by modifying the contents of INPT1 as follows:

[~][INPT1] Copy contents of INPT1 to stack level 1

[Vv] Start editor

[»]1(10 times) Move cursor to the right of the letter a

[ALPHA][<][ALPHA] Lock alpha keyboard in lower case

[ALPHA] [ALPHA] Lock keyboard in alphabetic mode

[SPC][A][N][D][SPC]IB] Type in and b
[ALPHA] Unlock alphabetic keyboard
[»](10 times) Move cursor to the right of the character:

[~1[< 1[<]1[::1[ALPHA][B] Type in « :b:”

[ENTER] Enter program in stack

[1] * J[INPT1] Enter variable name INPT1 in stack

[4][<][2] [ENTER] Edit variable name to read INPT2

[STOMP] Store new program in variable INPT2
[VAR] To recover variables list

To check the operation of the new program, press [INTP2]. Enter a value for a, say 2, (careful

here), then press [¥], not [ENTER], to move the cursor in front of the b prompt, and enter the

value of b, say 3. Now, press [ENTER]. The result is the tagged values a:2 and b:3 in stack
levels 2 and 1, respectively.

Application: evaluating a function of two variables

The ideal gas law was introduced in Chapter 3:

pV = nRT,

where:

a p = gas pressure (Pa),

V = gas volume(m?),

n = number of moles (gmol),

R= universal gas constant = 8.31451_J/(gmol*K), and

4 T = absolute temperature (K).

106 © 2000 - Gilberto E. Urroz

All rights reserved

We can define the pressure p as a function of two variables, V and T, as p(V,T) = nRT/V for a
given mass of gas since n will also remain constant. Assume that n = 0.2 gmol, then the function
to program is

pV.T) =831451:0.2:= (1.662902 _ 2).

<
|
S

We can define the function by typing the function definition as:

[EQW][ALPHA][<][P1[~][OI[ALPHAT[V][SPCI[ALPHA][T] [A][A] [~]1[=][<][0)]

(110.106]6](21 [S101 [2] [~][_ I[ALPHA] [J] [=] [ALPHA [K][»][»][»]

[x] [ALPHA][T][+][ALPHA][V] [ENTER]

The function is defined by using [<][DEF] which creates the variable [p]. The contents of

this variable, which can be recalled by using [VAR][~][P], are shown as

<< => V T ‘1.662902* (J/K)*(T/V)' >>

*Note: the keystroke sequence [][_] did not have an effect in the equation writer, instead, a
(times) sign was included. This, however, does not produce the desire effect of defining J/K as
units. Edit the program to read:

<< > V T ‘(1.662902_J/K) *(T/V)' >>

and store it back into variable [p]. The next step is to add the input string that will prompt
the user for the values of V and T. To create this input stream we place the contents of variable

INPT2 into the stack: [~][INPT2], producing:

<< “Enter a and b:* {*+:a:+:b:” {2 0} V } INPUT OBJ— >>

Modify it to read:

<< “Enter V and T:“ {(“+:v:«:T:” (2 0} V } INPUT OBJ— >>

Press [ENTER] to create an additional copy of the program, and press [~][EVAL] to run this
modified version of INPT2. Enter values of V = 0.01_m”"3 and T = 300_K. Before pressing
[ENTER], the stack will look like this:

Enter V and T:

:V:0.01_m"3

:T:300_K

Press [ENTER] to get the result

3: <<Enter V and T: “..

2: V:0.01_m"3

1: T:300_K

107 © 2000 - Gilberto E. Urroz

All rights reserved

This shows that the INPT2 program places the values of V and T in stack levels 2 and 1,
respectively. This is the correct order for data input into the program [p |], i.e, in 5V T.

To drop the contents of level 1 and 2, press the backspace key, [€], twice.

The next step is to copy the corresponding piece of code from the program listed in the stack to

the function definition. This can be accomplished by using the following:

[v] Start the program editor
[»][~][BEGIN] (press the APPS key) Position cursor at beginning of code to copy

[~1lv]i«] Position cursor at end of code to copy
[~][END] (press the MODEkey) Highlight code to copy

[~]1[COPY] (press the VAR key) Copy highlighted code

[ENTER] End editing of this program

[Il p 10VvIlr] Copy contents of p, start the editor, position
cursor
[][PASTE] (in the NXT key) Paste code copied earlier

[ENTER] Enter new program in stack

The combined program will look like this:

<< “Enter V and T: “ (“4 :.v:e oT: “ {2 0} V } INPUT OBJ» —V T

‘(1.662902_J/K) *(T/V)' >>

Store the new program into variable p by using [<][p].

To test the program, press [p |]. Enter values of V = 0.01_m”"3 and T = 300_K in the input

string, then press [ENTER]. The result is 49887.06_J/m”"3. The units of J/m"3 were proven
earlier to be equivalent to Pascals (Pa), the preferred pressure unit in the S.1. system.

Note: because we deliberately included units in the function definition, the input values must

have units attach to them in input to produce the proper result.

Input string program for three input values

The input string program for three input values, say a ,b, and c, looks as follows:

<< “Enter a, b and c:“ {+ :a:¢¥ :b:¢¥ :c:" {2 0} V } INPUT OBJ— >>

This program can be easily created by modifying the contents of INPT2 to make it look like shown

immediately above. The resulting program can then be stored in a variable called INPT3. With
this program we complete the collection of input string programs that will allow us to enter one,

two, or three data values. Keep these programs as a reference and copy and modify them to

fulfill the requirements of new programs you write.

Application: evaluating a function of three variables

Suppose that we want to program the ideal gas law including the number of moles, n, as an

additional variable, i.e., we want to define the function

J nT
V,T,n)=(8.31451 _—)——,p() =(Pa

108 © 2000 - Gilberto E. Urroz

All rights reserved

and modify it to include the three-variable input string. The procedure to put together this

function is very similar to that used earlier in defining the function p(V,T). The resulting
program will look like this:

<< “Enter V, T, and n:* {* «+ :v:« :T:+ :n:“ {2 0} Vv } INPUT OBJ—> —V T n

‘(8.34451_J/ (K*mol))* (n*T/V) ‘' >>

Store this result back into the variable [p]. To run the program, press[p |].

Enter values of V = 0.01_m"3, T = 300_K, and n = 0.8_mol. Before pressing [ENTER], the stack
will look like this:

Enter V, T and n:

:V:0.01_m"3

:T:300_K

:n:0.8_mol
Press [ENTER] to get the result 200268.24_J/m"3, or 200268.24_Pa = 200.27 kPa.

|ldentifying output in programs

The simplest way to identify numerical program output is to “tag” the program results. A tag in
the HP 49 G calculator is simply a string attached to a number. The string will be the name

associated with the numeric result. For example, earlier on, when checking the operation of the

input string programs INTPa (or INPT1) and INPT2, we obtained as results tagged numerical
output such as :a:35.

Tagging a numerical result

To tag a numerical result you need to place the number in stack level 2 and the tagging string in

stack level 2, then use the —TAG function ([<][PRG][TYPE][-TAG]). For example, to produce

the tagged result B: 5., use:

[S][ENTER] Enter the numerical result

[=]1["][ALPHA][B] Enter the tagging string
[<][PRG][TYPE][-»TAG] Tag numerical result

Decomposing a tagged numerical result into a number and a tag

To decompose a tagged result into its numerical value and its tag, simply use the —»OBJ function,
available at [«][PRG][TYPE][-OBJ]. The result of decomposing a tagged number with —OBJ is

to place the numerical value in stack level 2 and the tag in stack level 1. If you are interested in

using the numerical value only, then you will drop the tag by using the backspace key [¢].

109 © 2000 - Gilberto E. Urroz

All rights reserved

"De-tagging” a tagged quantity

"De-tagging” means to extract the numerical quantity out of a tagged quantity. This function is
accessed through the keystroke combination: [<][PRG][TYPE][NXT][DTAG]. For example, given

the tagged quantity a:2, DTAG returns the numerical value 2.

Examples: tagging output from function

Example 1 - tagging output from function FUNCa

Let's modify the function FUNCa, defined earlier, to produce a tagged output. Use [~][FUNCa]

to recall the contents of FUNCa to the stack. The original function program reads

<< “Enter a:" {“+':a:“ {2 0} V } INPUT OBJ— — a<< ‘2*a”2+3' EVAL >> >>

Modify it to read:

“
<< “Enter a:"“ {““:a:“ {2 0} V } INPUT OBJ— — a<< ‘2*a”2+3' EVAL "F’ STAG >> >>

Store the program back into FUNCa by using [-][FUNCa]. Next, run the program by pressing
[FUNCa]. Enter a value of 2 when prompted, and press [ENTER]. The result is now the tagged

result F:11.

Example 2 - tagging input and output from function FUNCa

In this example we modify the program FUNCa so that the output includes not only the

evaluated function, but also a copy of the input with a tag.

Use [][FUNCa] to recall the contents of FUNCa to the stack:

<< “Enter a:{““':a:“ {2 0} V } INPUT OBJ— — a<< ‘2*a"2+3' EVAL >> >>

Modify it to read:

<< “Enter a:"“ {(““~:a:“ {2 0) V } INPUT OBJ— — a << ‘2*a”2+3' EVAL "F" TAG a SWAP>>

>>

(Recall that the function SWAP is available by using [«<1][PRG][STACK][SWAP].) Store the program

back into FUNCa by using [—][FUNCa]. Next, run the program by pressing [FUNCa]. Enter a

value of 2 when prompted, and press [ENTER]. The result is now two tagged numbers a:2. in

stack level 2, and F:11. in stack level 1.

Note: Because we use an input string to get the input data value, the local variable a actually

stores a tagged value (:a:2, in the example above). Therefore, we do not need to tag it in the

output. All what we need to do is place an a before the SWAP function in the subprogram above,
and the tagged input is placed in the stack. It should be pointed out that, in performing the

calculation of the function, the tag of the tagged input a is dropped automatically, and only its

numerical value is used in the calculation.

To see the operation of the function FUNCa, step by step, you could use the DBUG function as
follows:

110 © 2000 - Gilberto E. Urroz

All rights reserved

[~][*] [FUNCa] [ENTER] Copies program name to stack level 1
[<1][PRG][NXT][NXT][RUN][DBUG] Starts debugger

[SST!] Step-by-step debugging, result: “Enter a:”
[SST!] Result: {" +'a:” {2 0} V}
[SST!] Result: user is prompted to enter value of a

[2]1[ENTER] Enter a value of 2 for a. Result: “«':a:2"

[SST!] Result: a:2

[SST!] Result: empty stack, executing —a
[SST!] Result: empty stack, entering subprogram <<
[SST!] Result: '2*a”2+3’

[SST!] Result: 11.,
[SST!] Result: “F"
[SST!] Result: F: 11.

[SST!] Result: a:2.

[SST] Result: swap levels 1 and 2

[SST!] leaving subprogram >>
[SST!] leaving main program>>

Example 3 - tagging input and output from function p(V,T)

In this example we modify the program [p] so that the output tagged input values and tagged

result.

Use [][p] to recall the contents of the program to the stack:

<< “Enter V, T, and n:“ (“+ :v:« :T:< :n:“ {2 0} V } INPUT OBJ» —»V T n

‘(8.34451_J/ (K*mol)) * (n*T/V)‘ >>

Modify it to read:

<< “Enter V, T and n:“ {“¢ :v:+ :T:“ {2 0} V } INPUT OBJ —V Tn <<V T n
“«_n

‘(8.34451_J/(K*mol)) *(n*T/V)' EVAL “p” »TAG >> >>

Note: Notice that we have placed the calculation and tagging of the function p(V,T,n), preceded
by a recall of the input variables V T n, into a sub-program [the sequence of instructions

contained within the inner set of program symbols << >>]. This is necessary because without

the program symbol separating the two listings of input variables, namely v T N << V T n, the

program will assume that the input command

—-»VTNVTRn

requires six input values while only three are available. The result would have been the

generation of an error message and the interruption of the program execution.

To include the subprogram mentioned above in the modified definition of program [p 1, will
require you to use [~][<< >>] at the beginning and end of the sub-program. Because the program
symbols occur in pairs whenever [][<< >>] is invoked, you will need to erase the closing program

symbol (>>) at the beginning, and the opening program symbol (<<) at the end, of the sub-

program.

To erase any character while editing the program, place the cursor to the right of the character

to be erased and use the backspace key [<].

111 © 2000 - Gilberto E. Urroz

All rights reserved

Store the program back into variable p by using [<][p]. Next, run the program by pressing [
p 1. Enter values of V = 0.01_m"3, T = 300_K, and n = 0.8_mol, when prompted. Before pressing

[ENTER] for input, the stack will look like this:

Enter V, T and n:

:V:0.01_m"3

:T:300_K

:n:0.8_mol
After execution of the program, the stack will look like this:

5:

4: V:0.01_m"3

3: T:300_K

2: n:0.8_mol

1: p: 200268.24_J/m"3

In summary: The common thread in the three examples shown here is the use of tags to identify

input and output variables. If we use an input string to get our input values, those values are

already pre-tagged and can be easily recall into the stack for output. Use of the -»TAG command
allows us to identify the output from a program.

Using a message box for output

A message box is a fancier way to present output from a program. The message box command in
the HP 49 G is obtained by using [<][PRG][NXT][OUT J[MSGBO]. The message box command

requires that the output string to be placed in the box be available in stack level 1. To see the

operation of the MSGBOX command try the following exercise:

[PIHALPHAL [= IITIALPHAL [<DIV 121d] Starts string "0:1.2_

[ALPHA][«2][ALPHA] [ALPHA][ALPHA][R][A][D][ENTER] Completes string "6:1.2_rad"
[<][PRG][NXT][OUT][MSGBO] Places string in a message box

[OK] To cancel message box output

You could use a message box for output from a program by using a tagged output, converted to a

string, as the output string for MSGBOX. To convert any tagged result, or any algebraic or non-
tagged value, to a string, use the function —STR available at [<][PRG][TYPE][—»STR].

Example - using a message box for program output

The function [p], from the last example, can be modified to read:

<< “Enter V, T and n: *“ (“+ :v:« :T:« :n:“ {2 0} V } INPUT OBJ» —»V T n <<V T n

‘(8.34451_J/(K*mol)) * (n*T/V)' EVAL “p" —»TAG —STR MSGBOX>> >>

You know the drill:

112 © 2000 - Gilberto E. Urroz

All rights reserved

“Store the program back into variable p by using [<][p].

w% Run the program by pressing [p |.

+ Enter values of V = 0.01_m"3, T = 300_K, and n = 0.8_mol, when prompted.

As in the earlier version of [p], before pressing [ENTER] for input, the stack will look like this:

Enter V, T and n:

:V:0.01_m"3

:T:300_K

:n:0.8_mol
The first program output is a message box containing the string:

1p:

‘200268.24_J/m"3’

Press [OK] to cancel message box output. The stack will now look like this:

5:

4:

3: V:0.01_m"3

2: T:300_K

1: n:0.8_mol

Including input and output in a message box - string concatenation

We could modify the program so that not only the output, but also the input, is included in a

message box. For the case of program [p]. the modified program will look like:

“
<< “Enter V, T and n: “ {(“¢ :v:+ :T:«< :n: (2 0) V } INPUT OBJ— —V T n <<V

—STR ““! "+ T STR “4 "+ n —5STR ““! "+°(8.34451_J/(K*mol))* (n*T/V)' EVAL “p" —TAG

—STR + + + MSGBOX>> >>

Notice that you need to add the following piece of code after each of the variable names V, T,

and n, within the sub-program:

—STR “+ "+

To get this piece of code typed in the first time use:

[<][PRG][TYPE] [STR] [I[""] [m][< 1 [>] [+]

Because the functions for the TYPE menu remain available in the soft menu keys, for the second

and third occurrences of the piece of code (STR ““! "+) within the sub-program (i.e., after
variables T and n, respectively), all you need to use is:

[STR] [I["T [ell 1 D>] [+]

You will notice that after typing the keystroke sequence [~][«] the result is that a new line is
generated in the stack.

113 © 2000 - Gilberto E. Urroz

All rights reserved

The last modification that needs to be included is to type in the plus sign three times after the

call to the function at the very end of the sub-program.

Note: The plus sign (+) in this program is used to concatenate strings. Concatenation is simply
the operation ofjoining individual character strings.

To see the program operating:

Store the program back into variable p by using [<][p 1].

Run the program by pressing [p 1].

= Enter values of V = 0.01_m"3, T = 300_K, and n = 0.8_mol, when prompted.

As in the earlier version of [p], before pressing [ENTER] for input, the stack will look like this:

Enter V, T and n:

:V:0.01_m"3

:T:300_K

:n:0.8_mol
The first program output is a message box containing the string:

:V .01_m"3

:T: ‘300_K'

n ‘.8_mol’

1p:

‘200268.24_J/m"3’

Press [OK] to cancel message box output.

Incorporating units within a program

As you have been able to observe from all the examples for the different versions of program [

p] presented in this chapter, attaching units to input values may be a tedious process. You

could have the program itself attach those units to the input and output values. We will

illustrate these options by modifying yet once more the program [p 1], as follows.

Recall the contents of program [p] to the stack by using [~][p]. and modify them to look
like this:

Note: I've separated the program arbitrarily into several lines for easy reading. This is not
necessarily the way that the program shows up in the calculator’'s stack. The sequence of

commands is correct, however. Also, recall that the character « does not show in the stack,

instead it produces a new line.

<< “Enter V,T,n [S.I.]:" {*« :v:« :T:< :n: * (2 0} V } INPUT OBJ» —»V Tn

<<V 1_m*3'* {}+ T ‘1K * +n ‘1l_mol *+ EVAL ->V Tn

<<V “V" STAG —STR “¢Y "+ T “T" STAG —STR ““Y "+ n “n” TAG —-STR “~ "+

‘(8.34451_J/ (K*mol)) *(n*T/V)' EVAL “p” —»TAG —STR + + + MSGBOX>> >> >>

114 © 2000 - Gilberto E. Urroz

All rights reserved

This new version of the program includes an additional level of sub-programming (i.e., a third

level of program symbols << >>, and some steps using lists, i.e.,

V'lm3*{}+T1K *+n‘lmol *+ EVAL -V T n

The interpretation of this piece of code is as follows. (We use input string values of :v:0.01,

:T:300, and :n:0.8):

1. Vv : The value of V, as a tagged input (e.g., V:0.01) is placed in the stack.

2. ‘1_m3 : The S.I. units corresponding to V are then placed in stack level 1, the tagged
input for V is moved to stack level 2.

3. : By multiplying the contents of stack levels 1 and 2, we generate a number with
units (e.g., 0.01_m"3), but the tag is lost.

4, {} : An empty list is place on stack level 1, and the previous result is moved to
stack level 2.

5 + : The contents of stack level 2 are ‘added’ to the empty list resulting in the list
{0.01_m"3}.

6. T 1K * +: : These operations result in the value of T, with its proper units, being ‘added’ to
the list under consideration, resulting in the list being expanded to

{0.01_m"3 300_K }

7. n ‘1_mol" *+ : These operations result in the value of n, with its proper units, being ‘added’

the list under consideration, resulting in the list being expanded to
{0.01_m"3 300_K 0.8_mol}

8. EVAL : This command has the effect of decomposing the list and placing its elements
in order in the stack.

9. ->V Tn : The values of V, T, and n, located respectively in stack levels 3, 2, and 1, are
passed on to the next level of sub-programming.

To see this version of the program in action do the following:

= Store the program back into variable p by using [<][p 1.

Run the program by pressing [p 1].

= Enter values of V = 0.01, T = 300, and n = 0.8, when prompted (no units required now).

Before pressing [ENTER] for input, the stack will look like this:

Enter V,T,n [S.I.]:

Press [ENTER] to run the program. The output is a message box containing the string:

:V ‘.01_m~3'

:T: ‘300_K'

n ‘.8_mol*

P ‘200268.24_J/m"3’

115 © 2000 - Gilberto E. Urroz

All rights reserved

Press [OK] to cancel message box output.

Note: The actual way that the program shows up in the stack when editing it is the following:

<<

“Enter V,T,n [S.I.]:°
«

:V:

:T:

in: “ (2.

0.} V } INPUT OBJ— —

VTn

<<V ‘1_m"3"* {}

+ T ‘1.K * +n ‘1_

mol’ *+ EVAL -»V T n

<<V “V' TAG —STR

+T “T" STAG —STR

+ n ‘n"” TAG —STR

"+ ‘(8.34451_J/ (K*

mol) * (n*T/V)‘ EVAL

“‘©" STAG —-STR + + +

MSGBOX

>>

>>

>>

Styling note: You may have noted in all these exercises that unit objects, such as the four

objects listed in the message box shown above, keep the quotation marks when transformed into

strings. Thus, when shown in a message box, the output may not be aesthetically pleasant.

Pure numerical results can easily be translated into strings and thus, results without units will

produce better-looking results than those with units. Thus, my recommendation is to use simple

tagged output when attaching units to the results, and use message boxes if the output is

entirely numerically.

Example - Message box output without units

Let's modify the program [p] once more to eliminate the use of units throughout it. The unit-
less program will look like this:

<< “Enter V,T,n [S.I.]:" ("+ :v:« :T:¢ :n:* (2 0} V } INPUT OBJ» —V T n
<<V DTAG{ }+ T DTAG + nDTAG + EVAL -»V T n

<<*V=" V STR + “+! "+ “T=" T STR + ““ "+ “n=" n STR + “«“ "+

‘8.34451*n*T/V' EVAL —STR ‘p=" SWAP + + + + MSGBOX>> >> >>

|And when run with the input data V = 0.01, T = 300, and n = 0.8, produces the message box
output:

v=.01

T=300.

n=.8

p=200268.24

Press [OK] to cancel the message box output.

116 © 2000 - Gilberto E. Urroz

All rights reserved

Relational and logical operators

So far we have worked with sequential programs only. The User RPL language provides
statements that allow branching and looping of the program flow. Many of these make decisions

based on whether a logical statement is true or not. In this section we present some of the

elements used to construct such logical statements, namely, relational and logical operators.

Relational operators

Relational operators are those operators used to compare the relative position of two objects.

For example, dealing with real numbers only, relational operators ae used to make a statement

regarding the relative position of two or more real numbers. Depending on the actual numbers

used, such a statement can be true (represented by the numerical value of 1. in the calculator),

or false (represented by the numerical value of 0. in the calculator).

The relational operators available for the HP 49 G calculator are:

Operator Meaning Example

== “is equal to” 'x==2'

"is not equal to” 32
< “is less than" ‘m<n’
> “is greater than” ‘10>a’

> "is greater than or equal to” ‘Pp2q’

< "is less than or equal to” 712°

All of the operators, except == (which can be created by typing [~][=][~][=]), are available in

the keyboard as secondary functions in the keys [+/-], [X], and [1/X]. They are also available

in the first menu obtained by using:

[<][PRG][TEST].

The examples shown above represent that use relational operators are elementary logical

statements that could be true (1.), false (0.), or could simply not be evaluated. To determine
whether a logical statement is true or not, pace the statement in stack level 1, and press

[~][EVAL]. Examples:
‘2<10" [~][EVAL], result: 1. (true)

'2>10" [~][EVAL], result: 0. (false)

In the next example it is assumed that the variable m is not initialized (it has not been given a

numerical value):

‘2==m’ [~][EVAL], result: ‘2==m’

The fact that the result from evaluating the statement is the same original statement indicates

that the statement can not be evaluated uniquely.

117 © 2000 - Gilberto E. Urroz

All rights reserved

Logical operators

Logical operators are logical particles that are used to join or modify simple logical statements.

The logical operators available in the HP 49 G can be easily accessed through the keystroke
sequence:

[<][PRG][NXT][TEST][NXT].

The available logical operators are: AND, OR, XOR (exclusive or), NOT, and SAME. The operators
will produce results that are true or false, depending on the truth-value of the logical statements

affected. The operator NOT (negation) applies to a single logical statements. All of the others

apply to two logical statements.

Tabulating all possible combinations of one or two statements together with the resulting value

of applying a certain logical operator produces what is called the truth table of the operator.

The following are truth tables of each of the operators shown above. The symbol between

parentheses is the symbol for the particular logical operator used traditionally in mathematical

logic. The (logical) variables p and q represent logical statements that are either true (1.) or
false (0.):

NOT(~ , —): produces the opposite possibility to that of the statement being negated:

Mathematical logic ~~ HP 49'G implementation

p P Po
T F 1
F T 0 1

AND (*): produces a true result only if both logical statements being linked are true:

-
n

Mathematical logic } HP 49Gimplementation

p q pq PP Q PAND Q
oT T T 1 oo 1 1

T F F 1 0 0
F T F 0 1 0

F F 0 0 0

OR (v): produces a true result as long as at least one of the statements being linked is true:

Mathematical logic HP49G implementation
Se 0 Cova ep a POR

CT T CT 1 1 1

T F T 1 0 1

F T T 0 1 1
F F F 0 0 0

XOR (©): produces a true result only if the two statements being linked have different truth
values:

118 © 2000 - Gilberto E. Urroz

All rights reserved

Mathematical logic HP49Gimplementation

i

 : J Pq P QT PXORG
T T F PePARA

SAME : this is a non-standard logical operator used to determine if objects in stack levels 1 and 2
are identical. If they are identical, a value of 1. (true) is returned, if not, a value of 0. (false) is
returned. For example, try the following exercise:

[~1[* 1[][x°][2] [ENTER] Enter 'SQ(2)"
[4][ENTER] Enter 4
[<][PRG][TEST][NXT][SAME] Result: 0 (false).

Please notice that the use of SAME implies a very strict interpretation of the word “identical.”

For that reason, SQ(2) is not identical to 4, although they both evaluate to 4.

Program branching

Branching of a program flow implies that the program makes a decision among two or more

possible flow paths. The User RPL language provides a number of commands that can be used for
program branching. The menus containing these commands are accessed through the keystroke

sequence:

[<][PRG][BRCH]

This menu shows sub-menus for the program constructs

[IF J[CASE][START][FOR][DO][WHILE]

The program constructs |F..THEN..ELSE...END, and CASE..THEN..END will be referred to as
program branching construct. The remaining constructs (START, FOR, DO, WHILE) are
appropriate for controlling repetitive processing within a program and will be referred to as

Program Looping. The latter types of program constructs are presented in more detail in a later

section.

What IF...7

In this section we presents examples using the constructs IF.THEN..END and

IF...THEN...ELSE..END.

IF...THEN...END

The IF..THEN..END is the simplest of the IF program constructs. The general format of this
construct is:

IF logical_statement THEN programstatements END.

119 © 2000 - Gilberto E. Urroz

All rights reserved

The operation of this construct is as follows:

1. Evaluate logical_statement.

If logical_statement is true, perform program _statements and continue program flow after

the END statement.

3. If logical_statement is false, skip program_statements and continue program flow after the

END statement.

To type in the particles IF, THEN, ELSE, and END, use:

[<][PRG][BRCH][IF].

The functions [IF J[THEN][ELSE][END] are available in that menu to be typed selectively by

the user. Alternatively, to produce an IF...THEN...END construct directly on the stack, use:

[<][PRG][BRCH][«][IF].

This will create the following input in the stack:

2:

1:

IF @

THEN

END

With the cursor ein front of the IF statement prompting the user for the logical statement that

will activate the IF construct when the program is executed.

Example: Type in the following program:

<< =» x << IF ‘<3’ THEN ‘x"2' EVAL END "Done" MSGBOX >> >>

and save it under the name ‘f1'.

To type the program in you could use the following:

[P]1l<<>>][r]1[=] [ALPHA][+][X] Start first program level, type in —x
[]1[<<>>][<][PRG][BRCH][«][IF] Start second program level, generate IF. THEN.ELSE
[10] [ALPHA][«][X] [~][<] [3] [¥] Type in logical statement for the IF

[ALPHA][<]1[X] [y] [2] [v]l[~][EVAL] Type in program statements to follow if logical statement

true
[10 "1 [ALPHA][D] [ALPHA][<][O] Type in “Do
[ALPHA][<][N] [ALPHA][<][E] [»] Type in ne”

[<][PRG][NXT][OUT][MSGBO] [+] Type in MSGBOX
[ENTER] Enter program in stack

[1] *] [ALPHA] <][F][1] Type in name of program in stack

[STOW] Store program

Press [VAR] and verify that variable [f1] is indeed available in your variable menu. Try the

operation of the program by using the following input:

[011 1] Results: Message box: [OK] Stack level 1: 0. (i.e., x) [©]
(clear stack)

120 © 2000 - Gilberto E. Urroz

All rights reserved

(10. 1210 f1 1] Results: Message box: [Done][OK] Stack level 1: 1.44 (i.e.

x?) [©]
[311 . 1[5][f1 Results: Message box: [OK] Stack level 1: empty - no action

taken

[11[01[f1] Results: Message box: [OK] Stack level 1: empty - no action
taken

These results confirm the correct operation of the IF..THEN..END construct. The program, as
written, calculates the function f;(x) = x2, if x < 3 (and not output otherwise).

IF..THEN..ELSE..END

The IF...THEN..ELSE...END construct permits two alternative program flow paths based on the
truth value of the logical_statement. The general format of this constructis:

IF logical_statement THEN programstatementsiftrue ELSE

program_statements_iffalse END.

The operation of this construct is as follows:

—
t Evaluate logical_statement.

2. If logical_statement is true, perform program statements_if_true and continue program flow

after the END statement.
3. If logical_statement is false, perform program statementsiffalse and continue program

flow after the END statement.

To produce an IF... THEN...ELSE...END construct directly on the stack, use:

[<][PRG][BRCH][][IF].

This will create the following input in the stack:

1:

IF ¢=

THEN

ELSE

END
Example: Type in the following program:

<< x << IF ‘<3’ THEN ‘x"2' ELSE ‘l1-x END EVAL “Done” MSGBOX >> >>

and save it under the name 'f2°.

Try the operation of the program by using the following input:

[01 f2] Results: Message box: [OK] Stack level 1: 0. (i.e., x°) [©]

(clear stack)
[10.121 f2 1] Results: Message box: [Done [OK] Stack level 1: 1.44 (i.e.,

x?) [©]

[311 . 1[5][f2]Results: Message box: [Done [OK] Stack level 1: -2.5 (i.e., 1-x) [¢]

[11[0][f2] Results: Message box: [Done [OK] Stack level 1: -9 (i.e., 1-x) [€]

121 © 2000 - Gilberto E. Urroz

All rights reserved

These results confirm the correct operation of the IF.THEN..ELSE..END construct. The program,
as written, calculates the function

x2, if x<3

1 — x, otherwise |
f(x) =

Note: For this particular case, a valid alternative would have been to use an IFTE function of the
form: 'f2(x) = IFTE(x<3,x"2,1-x)’

Nested IF... THEN...ELSE...END constructs

In most computer programming language where the IF... THEN...ELSE...END construct is available,
the general format used for program presentation is the following:

IF logical_statement THEN

programstatementsiftrue

ELSE

program_statementsiffalse

END.

In designing a calculator program that includes IF constructs, you could start by writing by hand

the pseudo-code for the IF constructs as shown above. For example, for program [f2], you

could write

IF x<3 THEN
x

ELSE

END.

While this simple construct works fine when your function has only two branches, you may need

to nest IF.THEN. .ELSE...END constructs to deal with function with three or more branches. For
example, consider the function

x? if x<3

l-x, if 3<x<5

f3(x)=1 sin(x), if 5<x <3m
exp(x),if 3m <x <15

— 2, elsewhere

122 © 2000 - Gilberto E. Urroz

All rights reserved

Here is a possible way to evaluate this function:

IF x<3 THEN
2

ELSE

IF x<5 THEN

1-x

ELSE

IF x<3m THEN

sin(x)

ELSE

IF x<15 THEN

exp(x)
ELSE

-2

END

END

END

END

A complex IF construct like this is called a set of nested IF... THEN...ELSE...END constructs. In most
computer programming language such set of nested IF constructs is simplified to read:

IF x<3 THEN
«2

ELSE IF x<5 THEN

1-x

ELSE IF x<3® THEN

sin(x)
ELSE IF x<15 THEN

exp(x)
ELSE

-2

END

This construct is known as an IF... THEN...ELSEIF construct. Such a construct is, however, not

possible in User RPL language. Therefore, you will have to type in the earlier construct with the
four END statements as shown.

A possible way to evaluate f3(x), based on the rested IF construct shown above, is to write the

program:

<< =x << IF ‘x<3' THEN ‘x"2' ELSE IF ‘x<5" THEN ‘1-x' ELSE IF ‘x<3*m' THEN ‘SIN(x)‘' ELSE

IF ‘x<15' THEN ‘EXP(x)‘ ELSE -2 END END END END EVAL >> >>

Store the program in variable [f3] and try the following evaluations:

[£3] Result: 2.25 (i.e., x)

[£3] Result: 6.25 (i.e., x°
[f3] Result: -3.2 (i.e., 1-x)B
A
N
=

N
O
Y

O
n

123 © 2000 - Gilberto E. Urroz

All rights reserved

5.6 [£3] Result: -0.631266... (i.e., sin(x), with x in radians)
12 [£3] Result: 162754.791419 (i.e., exp(x))
23 [f3] Result: -2. (i.e., -2)

Just in CASE ...

The CASE construct can be used to code several possible program flux paths, as in the case of the
nested IF constructs presented earlier. The general format of this construct is as follows:

CASE

Logical_statement; THEN program_statements; END

Logical_statement, THEN programstatements, END

Logical_statement THEN program_statements END

Defaultprogramstatements (optional)

END

When evaluating this construct, the program tests each of the logical_statements until it finds

one that is true. The program executes the corresponding program_statements, and passes

program flow to the statement following the END statement.

The CASE, THEN, and END statements are available for selective typing by using

[<][PRG][BRCH][CASE].

If you are in the BRCH menu, i.e., ([<][PRG][BRCH]) you can use the following shortcuts to type

in your CASE construct (The location of the cursor is indicated by the symbol «):

+ [<][CASE] : Starts the case construct providing the prompts: CASE « THEN END END

[~][CASE] : Completes a CASE line by adding the particles THEN « END

Example - program f3(x) using the CASE statement

The function is defined by the following 5 expressions:

x%,if x<3

l-x, if 3<x<5

fi(x)=9sin(x), if 5<x<3xm

exp(x),if 3m <x <15

— 2, elsewhere

Using the CASE statement in User RPL language we can code this function as:

<< — xX << CASE ‘x<3‘' THEN ‘x"2' END ‘x<5' THEN ‘l-x' END ‘x<3*m’ THEN ‘SIN(x)‘ END ‘x<15'

THEN ‘EXP (x)‘ END -2 END EVAL >> >>

124 © 2000 - Gilberto E. Urroz

All rights reserved

Store the program into a variable called [f3c]. Then, try the following exercises:

1.5 [f3c] Result: 2.25 (i.e., x%)
2.5 [f3c] Result: 6.25 (i.e., x°)

4.2 [f3c] Result: -3.2 (i.e., 1-x)

5.6 [f3c] Result: -0.631266... (i.e., sin(x), with x in radians)
12 [f3c] Result: 162754.791419 (i.e., exp(x))

23 [f3c] Result: -2. (i.e., -2)

As you can see, f3c produces exactly the same results as f3. The only difference in the programs

is the branching constructs used. For the case of function f3(x), which requires five expressions

for its definition, the CASE construct may be easier to code than a number of nested

IF...THEN...ELSE...END constructs.

Program loops

Program loops are constructs that permit the program the execution of a number of statements

repeatedly. For example, suppose that you want to calculate the summation of the square of the

integer numbers from 0 ton, i.e.,

S=Yk*.
k=0

Well, with the HP 49 G calculator, all that you have to do is use the [][Z] key within the

equation editor and load the limits and expression for the summation (examples of summations

were presented in Chapter 6). However, in order to illustrate the use of programming loops, we

will calculate this summation with our own User RPL codes. There are four different commands

that can be used to code a program loop in User RPL, these are START, FOR, DO, and WHILE. The

commands START and FOR use an index or counter to determine how many times the loop is
executed. The commands DO and WHILE rely on a logical statement to decide when to terminate
a loop execution. Operation of the loop commands is described in detail in the following

sections.

START

The START construct uses a couple of values of an index to repeat a number of statements.

There are two versions of the START construct: START..NEXT and START .. STEP. The
START..NEXT version is used when the index increment is equal to 1, and the START..STEP

version is used when the index increment is determined by the user.

Commands involved in the START construct are available through: [<1][PRG][BRCH][START].

Within the BRCH menu ([<][PRG][BRCH]) the following keystrokes are available to generate

START constructs (the symbol indicates cursor position):

* [<][START] : Starts the START..NEXT construct: START « NEXT

a. [~][START] : Starts the START..STEP construct: START « STEP

125 © 2000 - Gilberto E. Urroz

All rights reserved

START..NEXT

The general form of this statementis:

start_value end_value START program_statements NEXT

Because for this case the increment is 1, in order for the loop to end you should ensure that

start_value < endvalue. Otherwise you will produce what is called an infinite (never-

ending) loop.

Example - calculating of the summation S defined above

The START..NEXT construct contains an index whose value is inaccessible to the user. Since for

the calculation of the sum the index itself (k, in this case) is needed, we must create our own

index, k, that we will increment within the loop each time the loop is executed. A possible

implementation for the calculation of S is the program:

<< 0. DUP »n S k << 0. n START k SQ S + 1. k + 'k" STO 'S' STO NEXT S “S” TAG >> >>

Type the program in, and save it in a variable called [S1].

Here is a brief explanation of how the program works:

1. This program needs an integer number as input. Thus, before execution, that number (n) is

in stack level 1. The program is then executed.

2. A zero is entered, moving n to stack level 2.
3. The command DUP, which can be typed in as [ALPHA]J[ALPHA][D][U][P][ALPHA], copies the

contents of stack level 1, moves all the stack levels upwards, and places the copy just made

in stack level 1. Thus, after DUP is executed, n is in stack level 3, and zeroes fill stack levels

1 and 2.

4. The piece of code -»n S k stores the values of n, 0, and 0, respectively into local variables

n, S, k. We say that the variables n, S, and k have been initialized (S and k to zero, n to
whatever value the user chooses).

5. The piece of code 0. n START identifies a START loop whose index will take values of 0, 1,
2,n

The sum S is incremented by k% in the piece of code that reads: k SQ S +
7. The index k is incremented by 1 in the piece of code that reads: 1. k +

8. At this point, the updated values of S and k are available in stack levels 2 and 1,

respectively. The piece of code ‘k' STO stores the value from stack level 1 into local

variable k. The updated value of S now occupies stack level 1.

9. The piece of code ‘s* STO stores the value from stack level 1 into local variable S. The stack

is now empty.

10. The particle NEXT increases the index by one and sends the control to the beginning of the

loop (step 6).
11. The loop is repeated until the loop index reaches the maximum value, n.

12. The last part of the program recalls the last value of S (the summation), tags it, and places it

in stack level 1 to be viewed by the user as the program output.

To see the program in action, step by step, you can use the debugger as follows (use n = 2). Let

SL1 mean stack level 1:

126 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR][2][—][*][ST][ENTER]
1
[+1] [PRG][NXT][NXT][RUN][DBUG]
[SST]
[SST!]
[SST]
[SST]
[SSTY]
[SST]
[SSTY]

--- loop execution number 1 for k = 0

[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST!]
[SST]
[SST!]

--- loop execution number 2 for k = 1

[SST]

[SST!]

[SST!]

[SST]

--- loop execution number 3 for k = 2

[SST!]
[SST!]
[SST!]

[SST!]
[SST!]
[SST!]
[SST!]
[SST]
[SST!]
[SST!]
[SST!]
[SST]

Place a 2 in level 2, and the program name, 'S1’, in level

Start the debugger. SL1 = 2.
SL1=0.,SL2 =2.

SL1=0.,SL2 =0., SL3 = 2. (DUP)
Empty stack (-> nS k)
Empty stack (<< - start subprogram)
SL1 = 0., (start value of loop index)
SLT =2.(n), SL2 = 0. (end value of loop index)
Empty stack (START - beginning of loop)

SLT = 0. (k)
SL1 = 0. (SQ(K) = k?)
SL1 =0.(S), SL2 = 0. (k?)
SLT =0. (S + k?%)
SL1=1.,SL2=0. (S +k?)
SLT =0.(k), SL2=1., SL3 = 0. (S + k?9)
SLT 1.(k+1), SL2 = 0. (S + k?)
SL1="k’,SL2=1.,SL3=0.(S +k)
SL1 = 0. (S + k°) [Stores value of SL2 = 1, into SL1 = 'k’]

SL1="S",SL2 =0. (S + k%
Empty stack [Stores value of SL2 = 0, into SL1 = 'S’]

Empty stack (NEXT - end of loop)

SLT = 1. (k)
SL1 = 1. (SQ(K) = Kk?)
SL1 =0.(S), SL2 = 1. (k9)
SLT =1.(S +k?)
SLT =1.,SL2=1.(S +k?)
SLT =1.(k), SL2=1., SL3 =1. (S + k?)
SLT = 2.(k+1), SL2 = 1. (S + KY)
SLT ="k’, SL2=2.,SL3 =1.(S +k?)
SL1 = 1. (S + k?%) [Stores value of SL2 = 2, into SL1 = 'k’]

SLT ="S",SL2=1. (S +k?
Empty stack [Stores value of SL2 = 1, into SL1 = 'S’]
Empty stack (NEXT - end of loop)

SLT = 2. (k)
SL1 = 4. (SQ(k) = k?)
SLT =1.(S), SL2 = 4. (k?)
SLT =5. (S + Kk?)

SL1=2.(k), SL2=1., SL3 =5. (S + k?)

4

1

5
SL1=1.,SL2=5.(S +k?

2
SLT = 3.(k+1), SL2 = 5. (S + k9)
SL1 ="k’, SL2=3.,SL3 =5. (S +k?
SL1 = 5. (S + k°) [Stores value of SL2 = 3, into SL1 = 'k’]
SLT ="S", SL2 = 5. (S + k?)
Empty stack [Stores value of SL2 = 0, into SL1 = 'S’]

Empty stack (NEXT - end of loop)

--- for n = 2, the loop index is exhausted and control is passed to the statement following NEXT
[SST!] SL1 =5 (Sis recalled to the stack)

127 © 2000 - Gilberto E. Urroz

All rights reserved

[SST!] SL1 ="S", SL2 = 5 ("S" is placed in the stack)
[SST!] SL1 = S:5 (tagging output value)
[SST!] SL1 = S:5 (leaving sub-program >>)
[SST!] SL1 = S:5 (leaving main program >>)

The step-by-step listing is finished. The result of running program [S1] with n = 2, is S:5.

Check also the following results:

[VAR]
[3]1[S11] Result: s:14 [4]1[S71] Result:

S:30

[51] S11] Result: 5:55 [8][S71] Result:
S:204
[1]1[0][S71] Result: s:385 [2][0][ST] Result: s:2870

[31[0][S11] Result: s:9455 [1][0][0][ST] Result: s:338350

START..STEP

The general form of this statementis:

start_value end_value START program_statements increment NEXT

The start_value, end_value, and increment of the loop index can be positive or negative

quantities. For increment > 0, execution occurs as long as the index is less than or equal to

end_value. For increment < 0, execution occurs as long as the index is greater than or equal to

end_value.

Example - generating a list of values

Suppose that you want to generate a list of values of x from x = 0.5 to x = 6.5 in increments of

0.5. You can write the following program:

<< — Xs xe dx << xs DUP xe START DUP dx + dx STEP DROP xe xs - dx / ABS 1. +

—>LIST >> >>

and store it in variable [GLIST].

In this program , xs = starting value of the loop, xe = ending value of the loop, dx = increment

value for loop. The program places values of xs, xs+dx, xs+2:dx, xs+3-dx, ... in the stack. Then, it
calculates the number of elements generated using the piece of code:

xe xs — dx / ABS 1. +

Finally, the program puts together a list with the elements placed in the stack.

& Check out that the program call 0.52.5 0.5 [GLIST] produces the list {0.5 1. 1.5 2. 2.5}.

4 To see step-by-step operation use the program DBUG for a short list, for example:

[VAR][T][SPCI[11[-1[5]ISPCII . 1I5] Enter parameters 1 1.5 0.5

[1] J[GLIST][ENTER] Enter the program name, 'S1’, in level 1

[<]1[PRG][NXT][NXT][RUN][DBUG] Start the debugger.

Use [SST] to step into the program and see the detailed operation of each command.

128 © 2000 - Gilberto E. Urroz

All rights reserved

FOR

As in the case of the START command, the FOR @ommand has two variations: the FOR..NEXT
construct, for loop index increments of 1, and the FOR..STEP construct, for loop index

increments selected by the user. Unlike the START command, however, the FOR command does

require that we provide a name for the bop index (e.g., j, k, n). We need not to worry about

incrementing the index ourselves, as done in the examples using START. The value corresponding
to the index is available for calculations.

Commands involved in the FOR construct are available through: [<][PRG][BRCH][FOR].

Within the BRCH menu ([<][PRG][BRCH]) the following keystrokes are available to generate FOR

constructs (the symbol indicates cursor position):

a [][FOR] : Starts the FOR...NEXT construct: FOR « NEXT

* [~][FOR] : Starts the FOR...STEP construct: FOR « STEP

The general form of this statementis:

start_value end_value FOR loop_index program_statements NEXT

To avoid an infinite loop, make sure that start_value < end_value.

Example - calculate the summation S using a FOR...NEXT construct

The following program calculates the summation

n ,
S=>k’.

k=0

Using a FOR..NEXT loop:

<< 0. »n S << 0. n FOR k k SQ S + 'S' STO NEXT S “S" TAG >> >>

Store this program in a variable [S2]. Verify the following exercises:

[VAR]
[3][S2] Result: s:14 [41[S2] Result: 5:30

[51[S21] Result: s:55 [8][S2] Result: s:204

[1][0][S2] Result: s:385 [2][0][S2] Result: s:2870

[3][0][S2] Result: s:9455 [11[0][0][S21] Result: s:338350

You may have noticed that the program is much simpler than the one stored in [S1]. There is
no need to initialize k, or to increment k within the program. The program itself takes care of

producing such increments.

129 © 2000 - Gilberto E. Urroz

All rights reserved

FOR... STEP

The general form of this statementis:

start_value end_value FOR loop_index program_statements increment STEP

The start_value, end_value, and increment of the loop index can be positive or negative

quantities. For increment > 0, execution occurs as long as the index is less than or equal to

endvalue. For increment < 0, execution occurs as long as the index is greater than or equal to

end_value.

Example - generate a list of numbers using a FOR...STEP construct

Type in the program:

<< — Xs Xe dx << xe Xs —- dx / ABS 1. + —> n << xs xe FOR x x dx STEP n —LIST >>

>> >>

and store it in variable [GLIS2].

4 Check out that the program call 0.52.5 0.5 [GLIS2] produces the list {0.5 1. 1.5 2. 2.5}.

4 To see step-by-step operation use the program DBUG for a short list, for example:

[VAR][T]ISPCI[11[.1[5]ISPCII . 115] Enter parameters 1 1.5 0.5

[~]1[* 1IGLIS2][ENTER] Enter the program name, 'S1’, in level 1

[<1][PRG][NXT][NXT][RUN][DBUG] Start the debugger.

Use [SST!] to step into the program and see the detailed operation of each command.

DO

The general structure of this command is:

DO program_statements UNTIL logical_statement END

The DO particle starts an indefinite loop repeating the program_statements and checking for the

value of logicalstatement at the end of each repetition. The program sends the control to

the statement following END when 1logical_statement becomes 0 (false). The

logical_statement must contain the value of an index whose value is changed in the

program_statements.

Example 1 - calculate the summation S using a DO...UNTIL...END construct

The following program calculates the summation

S=YKk’
k=0

Using a DO...UNTIL...END loop:

130 © 2000 - Gilberto E. Urroz

All rights reserved

<< 0. 5n S << DOnsSQS + ‘SSTOn 1 - 'n" STO UNTIL ‘n<0’ END S “S” TAG >> >>

Store this program in a variable [S3]. Verify the following exercises:

[VAR]
[3]1[S3] Result: s:14 [4][S3] Result:
S:30

[51[S3] Result: s:55 [81[S3] Result:
S5:204

[1][0][S3] Result: s:385 [2][0]] S3] Result: s:2870

[31[0]1[S31] Result: S:9455 [1][0][0][S3] Result: s:338350

Example 2 - generate a list using a DO...UNTIL...END construct

Type in the following program

<< — Xs Xe dx << xe xs - dx / ABS 1. + Xs — n xX << xs DO ‘'‘x+dx’ EVAL DUP ‘x’ STO

UNTIL ‘xXe! END n LIST >> >> >>

and store it in variable [GLIS3].

“Check out that the program call 0.52.5 0.5 [GLIS3] produces the list {0.5 1. 1.5 2. 2.5}.

w% To see step-by-step operation use the program DBUG for a short list, for example:

[VAR][1][SPCI[T][.][51[SPCI[. 1[5] Enter parameters 1 1.5 0.5
[1] * JIGLIS2][ENTER] Enter the program name, 'S1’, in level 1

[<][PRG][NXT][NXT][RUN][DBUG] Start the debugger.

Use [SST!] to step into the program and see the detailed operation of each command.

WHILE

The general structure of this command is:

WHILE logical_statement REPEAT program_statements END

The WHILE particle checks that whether the logical_statement is true and, if so, repeats the

program_statements. [If not, program control is passed to the statement right after END. The

program_statements must include a loop index that gets modified before the

logical_statement is checked at the beginning of the next repetition.

Example - calculate the summation S using a WHILE...REPEAT...END construct

The following program calculates the summation

S=Yk’.
k=0

Using a WHILE...REPEAT...END loop:

131 © 2000 - Gilberto E. Urroz

All rights reserved

<< 0. »n S << WHILE ‘n>0' REPEAT n SQ S + ‘S' STO n 1 - ‘n' STO END S “S” TAG >> >>

Store this program in a variable [S4]. Verify the following exercises:

[VAR]

[3]1[S4] Result: s:14 [4]1[S41] Result:

S:30

[511 S4] Result: s:55 [8][S4] Result:

S:204

[1]110][S4] Result: s:385 [2][0][S4] Result: s:2870

[3][0][S4] Result: S:9455 [1]1[0][0][S41 Result: s:338350

Example 2 - generate a list using a WHILE...REPEAT...END construct

Type in the following program

<< — xs xe dx << xe xs - dx / ABS 1. + Xs — n X << Xs WHILE ‘x<xe' REPEAT ‘x+dx’

EVAL DUP ‘x’ STO END n —LIST >> >> >>

and store it in variable [GLIS3].

#% Check out that the program call 0.52.5 0.5 [GLIS3] produces the list {0.5 1. 1.5 2. 2.5}.

“% To see step-by-step operation use the program DBUG for a short list, for example:

[VAR][TIISPCI[1][.1I51ISPCII . 1I5] Enter parameters 1 1.5 0.5

[1] ' JIGLIS2][ENTER] Enter the program name, 'S1’, in level 1

[<][PRG][NXT][NXT][RUN][DBUG] Start the debugger.

Use [SST!] to step into the program and see the detailed operation of each command.

Procedural programming and object-oriented

programming

In this chapter we have covered a number of relatively simple programming examples that

include the basic ideas of sequential, branching, and looping programs. This type of

programming in which the programmer is controlling the program flow at an elementary level is

called procedural programming.

In the last decade or so, there has been an emphasis in the development and use of object-

oriented programming. In this approach the user takes advantage of pre-programmed functions

(objects) for which he or she provides the appropriate input, and from which he or she receives a

pre-specified type of output.

Most of the functions provided by the HP 49 G calculator emphasize object-oriented programming
(OOP). For example, to solve a quadratic equation in the HP 49 G calculator, you need to enter a
quadratic expression, the variable to solve for, and then use the function QUAD. The user is not
concerned with the details of how the roots of the equation were calculated. All what he or she

cares is that the proper type of input is provided to the function or object, and that the

calculator will return the desired output.

132 © 2000 - Gilberto E. Urroz

All rights reserved

Concluding remarks on programming

We emphasize once again that the examples and techniques shown in this chapter are very

elementary, and that it would be almost impossible to include every aspect of the art of

programming the HP 49 G calculator in this chapter, let alone in the rest of this book. In the

upcoming chapters we will discuss the utilization of the calculator functions in specific

mathematical problems, such as algebra, differential and integral calculus, linear algebra, vector

calculus, etc. Additional programming examples will be provided as we discuss those subjects.

In the meantime, the user is encouraged to explore routine calculations that can be easily

addressed through calculator programs.

133 © 2000 - Gilberto E. Urroz

All rights reserved

Algebra and related subjects
The Calculator Algebraic System or CAS allows the user to manipulate algebraic expressions
including expansion, factorization, operations with fractions, substitutions, polynomial

manipulation, and solution of single and multiple algebraic equations. This chapter introduces

you to the basic of algebraic manipulation with the HP 49 G calculator. Before getting into the
details of algebraic operations, however, we will formally define the logarithmic, exponential,

hyperbolic and trigonometric functions, so as to take advantage of the HP 49 G algebraic menu
commands that use such functions.

The CAS and RPN mode

The CAS allows the symbolic manipulation of algebraic objects (simply referred to as algebraics),
but it does not mean that you need to operate your calculator in algebraic mode. This chapter

will show you how to use algebraic manipulations with your calculator in RPN mode. To get

started, make sure that your calculator CAS is set to exact mode (i.e., uncheck the _Approx

mode indicator in the CAS MODES display. This display is accessed by using [MODES][CAS]).

Some transcendental functions

In Chapter 4 we presented some simple calculations utilizing exponential, logarithmic,

trigonometric, and hyperbolic functions. Sometimes, these are referred to as transcendental

functions, for they transcend the realm of algebraic functions. In this section we will introduce

these formally and explain their relationships in order to take advantage of the many functions

available in the HP 49 G for expanding, factoring, and replacing one type of function with others.

Trigonometric functions

Consider a unit radius circle (referred to as the unit circle) centered at the origin in a two-

dimensional Cartesian coordinate system, as shown in the left-hand side figure below.

Let 6 be the length of an arc of the circle measured from point A(1,0) and reaching to point

P(x,y) on the unit circle. We define the following trigonometric functions: sine (sin), cosine

(cos), tangent (tan), cotangent (cot), secant (sec), cosecant (csc):

sin@=y, cos 0 =x, tan 6 = y/x, cot 6 = x/y, sec 0 = 1/x, csc 0 = 1/y.

Recall, that the coordinates x and y used in the definition above must be on the unit circle, and

that 6, as defined here, is an angle measured in radians. The angle 6 is defined as positive if it is

measured counterclockwise from the point the positive x-axis, and as negative if measured

clockwise from that axis. The figure also shows typical values of the angle 6 corresponding to

the main axes directions.

134 © 2000 - Gilberto E. Urroz

All rights reserved

Extending the definitions to a circle of radius r#1, as shown in the right-hand side figure above,

we define the angle in radians corresponding to an arc of length s as,

0=s/r.

The trigonometric functions, based on the coordinates of point P at the end of the arc, are

defined as:

sin @ = y/r, cos 6 = x/r, tan 6 = y/x, cot 6 = x/y, sec 0 =r/x, csc 0 =r/y.

y y
loz

4 Te 42

/ Px) / “yPOY)/ y x A
/ 0.4 AN / ; \{ : rf 02d 71 8 ;] AI

| ox

_

fl=n \ 10=0
fn ny Yo 1 fT| 05 4, 05 Jad 0) ON Jpeg © Jo Zon

, 0.4 / \ 3 /

AN 06 / " 3 \ J

. 08 7 “ 3 7
~. ~ 3 pt
gd —

16 = 3n
{2

The trigonometric functions sine, cosine, and tangent have their own main-function key in the HP
49 keyboard (fifth row, third, fourth, and fifth columns), i.e., [SIN], [COS], and [TAN]. The left-

hand option ([+]) for those keys represent the inverse trigonometric functions,

asin(x) = sin” (x), acos(x) = cos™' (x), and atan(x) = tan” (x).

The trigonometric functions cotangent, secant, and cosecant, can be calculated using the

trigonometric identities:

cot x = 1/sin x, sec x = 1/cos x, csc x = 1/sin x.

Trigonometric identities

Trigonometric identities are relationships between the trigonometric functions of an angle that

can be used to simplify algebraic expressions involving such functions.

from the definition of the functions themselves, for example,

Some identities follow

tan 0 = sin 0 /cos 6, cot O = cos 0 /sin 0.

Other identities follow from applying the Pythagorean Theorem to the right triangle formed by

points OPQ, i.e., XC+yf=r. Dividing the expression by r# and using the definitions of sin 6 and cos

6 given above, we get

sin’+ cos’0 = 1.

135 © 2000 - Gilberto E. Urroz

All rights reserved

If we divide this identity by cos’0 and use the identities 1/cos 6 = sec 6, and sin 6 /cos 6 = tan 6,

we get

tan’ + 1 = sec’0.

If we divide the identity sin‘6 + cos?0 = 1 by sin’, and use the identities 1/sin 6 = csc 6, and cos

0 /sin 6 = cot 6, we get

T+cot’0 = csc’.

Some identities are related to trigonometric functions of the sum and difference of angles, for

example,

sin(a+P) = sin a -cos B + cos a ‘sin B

sin(a—B) = sina -cos B- cos a sin

cos(o+f) = cos a cos B - sin a sin B

cos(a—f) = cos a cos B + sin a sin

tan(o+f) = (tan a + tan B)/(1 - tan a -tan 3)

tan(a—p) = (tan a- tan B)/(1 + tan a -tan 3)

From the latter set of identities we can obtain some identities related to the double angle, i.e.,

sin 20 = 2 sin 6-cos 0

cos 26 = cos’ 0 -sin0=1-2sin’0=2cos’ 6-1

tan 20 = 2 tan 6 /(1 - tan®6)

And, from these, in turn, we can get some identities related to the half-angle, i.e.,

sin‘(6/2) = (1- cos 6)/2

cos’(6/2) = (1 + cos 6)/2

tan’(6/2) = (1- cos 6)/(1 + cos 6).

What is a logarithm?

Let a, b, and r be three real numbers. If a= b’, then ris said to be the logarithm of base b of a,

and written

r = logp(a).

For example, since 32 = 2°, then logz(32) = 5.

136 © 2000 - Gilberto E. Urroz

All rights reserved

Logarithms of base 10

Because our numerical system is based on powers of 10, logarithms of base 10 were the most

commonly used logarithms before calculators and computers became readily available. Anyone

who was serious about performing complex calculations before, say, the early 1970's, would keep

in his library a reliable table of logarithms. This meant, of course, logarithms of base 10. When
referring to the logarithm of base 10 of a number a, people would simply write ‘log a’ or ‘log(a)’.
For that reason, the HP 49 G provides the function LOG, as the [~] option for the [EEX] key.

The inverse of the LOG function is, of course, the function 70". This function is available as the
[~] option for the [EEX] key.

Natural logarithms and the exponential function

Natural logarithms have for base the irrational number e = 2.718281828.... [An irrational number,
as opposite to a rational number, is a number that cannot be expressed as the ration of two

integers. Examples of other famous irrational numbers are V2, V3, and m.] They are called
natural logarithms because they follow naturally from some properties of the function 7/x. As a

matter of fact, you could define the natural logarithm of a real number r>1, as the area under

the curve f(x) = 1/x, between x = 7 and x = r, as illustrated in the figure below. The natural

logarithm of a number ris written as ‘In r' or ‘In(r)".

y
21 \

1.8 Le fx) = 14x
16 \

1.41 \

1.21 h

0.81 M — Area = In()

0.41 La Te
0.21 CT

X=r

1]

x=1

The inverse of the In(x) function is the exponential function, exp(x) = &. The exponential and

natural logarithm functions are defined as the left-shift [«] and right-shift [~] options,

respectively, corresponding to the [y*] key in your calculator’s keyboard.

137 © 2000 - Gilberto E. Urroz

All rights reserved

Properties of the exponential function

The exponential function, exp(x) = €”, has the following properties:

exp(0) =e” =1 exp(-x) = e* =1/e" = 1/exp(x)

exp(x)+exp(y) = e*¥ = exp(x)-exp(y) = e*-e” exp(x)-exp(y) = e*” = exp(x)/exp(y) = e*/e’
[exp(x)]" = (€M)" = e*" = exp(nx) [exp()]'™ = (e¥)"" = e* = exp(nx)

Properties of logarithms

Let x, y, b, be real numbers, then

logpb = 1, logp1 = 0,

logp(x-y) = logpx+logpy logu(x/y)=I0gpx-10gny

logs(y*)=xlogny logu(y "*) = loguy/x

In terms of natural logarithms, with b = e, these properties are written as:

Ine=1, in1=0,

In(x-y) = logpx+logpy In(x/y)=logyx-logny
In(y*)=xlogpy In(y ''*) = logpy/x

Converting logarithms of different bases

Let x, y, a, b, and r, be real numbers. Let x = log,r and y = logpr. Therefore, r =a", and r = 1,

and a* = bP. Taking, logarithms of base a on both sides of this equation, we get log,(a*) =

loga(P’), or x-log,a = y-log,b, and, log,r = logyr-log,b. From this result it follows that,

log, r

log b
a

 log, r=

For example, let b =e, a = 10, then

yo logr logr
= ——=2.303-log r.

loge 0.4343
and,

log r =0.4343 -In r.

138 © 2000 - Gilberto E. Urroz

All rights reserved

Hyperbolic functions

Hyperbolic functions are defined in terms of exponential functions as follows:

- Hyperbolic sine (sinh):

sinh x— —e).

wh Hyperbolic cosine (cosh):

Loo
coshx=—(e" +e").

2

. Hyperbolic tangent (tanh):

sinh x e' —e™
tanh x = =

coshx ee" +e

The inverse hyperbolic functions are defined as:

* Hyperbolic arcsin (asinh)

asinh(x) = In(x +x? +1)

ke Hyperbolic arccos (acosh)

acosh(x) =In(x +/x* —1)

- Hyperbolic arctan (atanh)

atanh (x) = of17)

These hyperbolic functions are available in the HP 49 G through the keystroke sequence
[<][MTH][HYP].

139 © 2000 - Gilberto E. Urroz

All rights reserved

Other hyperbolic functions not available directly in the calculator are the hyperbolic cotangent

(coth), hyperbolic secant (sech), and hyperbolic cosecant (csch), defined as:

coth x = 1/tanh x, sech x = 1/cosh x, csch x = 1/sinh x.

Euler formula and complex arguments for logarithmic, exponential,

and hyperbolic functions

So far we have defined logarithmic, exponential, and hyperbolic functions for real numbers only.

We can extend the definition of these functions to complex arguments by using Euler's formula:

e'? =cosf +i-sin 6.

So that, if we use as argument for the functions previously defined the complex variable z = x +

iy = re’, we can extend their definitions as follows:

#% natural logarithm: In(z) = In(re®) =r + i0 = (x%+y)"? + i-atan(y/x).

+ exponential: exp(z) =e’ =e*"Y=e*eY=e* (cosy +isiny).

* hyperbolic sine: sinh(z) = (e”-€7)/2 = sinh x cos y + i-cosh x sin y

+ hyperbolic cosine: cosh(z) = (e’+e?)/2 = cosh x -cos y + i-sinh x-sin y

* hyperbolic tangent: tanh(z) = (e’-e”)/(e’+e”)=

(sinh x-cosh x +i-sin y-cos y)/(cosh’x + cos’y -1)
Euler's formula also permits us to find expressions for the trigonometric functions in terms of

complex arguments,

* sine: sin(z) = -i-(e'* - €'?)/2 = sin x -cosh y + i-cos x -sinh y

& cosine: cos(z) = (e'”+e"?)/2 = cos x -cosh y - i-sin x sinh y

+ tangent: tan (z) = -i-(e'* - €"%)/(e'* + e"?) =

(sin x-cos x+i-sinh y -cosh y)/(cos’x +sinh®y)

Inverse trigonometric and hyperbolic functions with complex arguments can be calculated by the

expressions, where z = x + iy:

140 © 2000 - Gilberto E. Urroz

All rights reserved

- arcsine:

- arccosine:

we arctangent:

we hyperbolic arcsine:

- hyperbolic arccosine:

wh. hyperbolic arctangent:

asin(z) = - i-In(V (1-z2"2)+i-z)

acos(z) = -i-in(z+ iV (1-2"2))

atan(z) = i/2-In((1-i-z)/(1+i-z))

asinh(z) = In(z+V (+1)

acosh(z) = In(z+V (7-1))

atanh(z) = In((1+z)/(1-z)).

The advantage of having in your hands a calculator that can calculate standard functions with

complex arguments, is that you don’t have to evaluate the definitions shown above to obtain

values such as trigonometric and hyperbolic functions of complex variables. The following

exercises will let you check the calculator’s ability to compute standard functions using complex

arguments.

¥YComplex. Use your HP 49 G calculator to obtain the values of:

In(-5): (51(+/-][~][LN] [~][->NUM]

In(3-2i) [~IOIBII, 102][+7-] [LN]

exp(in/2): [10 JISPCIIIr [x][2][+][<][e*]

sin(2-3i): [=O]10. 103]0+/-1[SIN]

cos(-5+i): [<1[OI5] [+/-] [11 1[1][COS]

tan((1+i)/2)): [1] [SPCI[<][i J+] [2] [+][TAN][~][->NUM]

cot(-i/2): («100 J[+/-1{2] [+] [TAN] [][->NUM][1/x]

sec(2%i): [2]1[<][i 1[x][COS] [J [->NUM][1/x]

csc(-2+3i): [~1[O12]0+/-1[~10 . 13I[SIN][1/x]

arcsin(5): [5]1[<][ASIN] [~][->NUM]

arcsin(-5-2i): [<][O][8] [+/-] [~][, 1{2][+/- 1[<][ASIN]

[11[0][+/-]1[<][ACOS] [~][->NUM]

[(<1[O1[2] [+/-] [=]. 1[4][][ACOS]

[ILON7] [+/-1 [10 101]][ATAN]

arccos(-10):

arccos(-2+4:i)

arctan(-7+i):

For the next exercises, activate the menu [«1][MTH][HYP]:

sinh(-5+3i): [«][O1[5] [+/-] [=]0. 1[3][SINH]

cosh(7-2i): [—IIOI7] [10 103] [+/-]1[COSH]

tanh(-2+7i): [«][O][2] [+/-] [~][. 1[71[TANH]

arcsinh(-2+0.5i):[<1[O1[2] [+/-]1 [~]1[.][. 1[5][ASINH]

arccosh(-7+6i): [<][O[7] [+/-]1 [~]1[. 1[6][ACOSH]

arctanh(-3-i): [<]1[O1[3] [1]. 1[T][ENTER][+/-]1[ATANH]

141

Result

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Result:

Before attempting thee exercises, check that your calculator CAS is set to

© (1,6094,3.1416)

(1.2825, -0.5880)
»

(9.1544, 4.1689)

(0.4377,-1.269)

(0.4039,0.5641)

(0.,2.1640)

(0.2658,0)

(-9.0473E-02, 4.1200E-02)

(1.5707,-2.2924)

(-1,1842,-2.3705)

(3.1416,-2.9932)

(2.0247,-2.1986)

(-1.4316,1.9617E-2)

(73.46,10.47)

(73.46,10.47)

(-0.9944,3.6094E-2)

(-1.4657,0.2211)

(2.9140,2.4300)

(2.9140,2.4300)

© 2000 - Gilberto E. Urroz

All rights reserved

Note: The menu [<][MTH][HYP][NXT] contains two additional functions related to the

exponential and natural logarithm functions: [EXPM] and [LNP1] defined as

EXPM(x) = EXP(x)-1,

and

LNP1(x) = LN(x+1).

These functions are useful when writing programs to save programming steps.

Operations with algebraic objects

An algebraic object, or simply, algebraic, is any number, variable name or algebraic expression

that can be operated upon, manipulated, and combined according to the rules of algebra. An

algebraic object is an object of type 9 in the calculator. Examples of algebraic objects are the

following:

A number: 12.3, 15.2_m, 'n’, ‘e’, "i’

A variable name: ‘a’, ‘ux’, ‘width’, etc.

= An expression: ‘wD”2/4", ‘f*(L/D)*(V*2/(2*qg))’. 'y+Q"2/(2*g*A(y)"2)’

An equation: 'pV=n*R*T’, '‘Q=(Cu/n)*A(y)*R(y)"*(2/3)*S0"0.5"

Entering algebraic objects

Algebraic objects can be created by typing the object between single quotes directly into stack

level 1 or by using the equation writer [EQW]. For example, to enter the algebraic object

"'n*'D"2/4" directly into stack level 1 use:

[10 * I<] [X][ALPHA][D][y*](2] [+] [4] [ENTER]

Or, if using the equation writer:

(EQW] [<][nl [x][ALPHA][D][y*][2] [A][A][A] [+][4][ENTER]

Basic operations

Algebraic objects can be added, subtracted, multiplied, divided (except by zero), raised to a
power, used as arguments for a variety of standard functions (exponential, logarithmic,

trigonometry, hyperbolic, etc.), as you would any real or complex number. To demonstrate

basic operations with algebraic objects, let's create a couple of objects, say 'm'R"2" and
'g"t"2/4’, and place them in a list so that they are available for algebraic manipulation at any
time. Let's get started:

[10 1] 7] [X][ALPHA][R][y*]1[2] [ENTER] Enter 'n*R"2’

142 © 2000 - Gilberto E. Urroz

All rights reserved

[]1[* HALPHA][«][GI[X][ALPHA][<I[TI[y'1[2][+][4] [ENTER] Enter ‘g*t"2/4’
[21[<][PRG][LIST][-LIST] Create a list with two algebraics

The list will look like this in your calculators display: { ‘m*R~2‘ ‘g*t~2/4'}

Press [ENTER] several times, say 10 times, to make copies of the list of algebraic objects, so that
we can use them for demonstrating operations. To decompose the list into its components,

simply use [~][EVAL].

Now, try the following exercises:

[~][EVAL][+] To add the algebraics, result: ‘n*R"2 + g*t~2/4'

[<] Drop result from display

[~][EVAL][-] To subtract the algebraics, result: ‘m*R"2-g*t~2/4'
[<] Drop result from display

[~][EVAL][X] To multiply the algebraics, result: ‘m*R"2*(g*t"2/4)"

[€] Drop result from display

[~1[EVAL][+] To divide the algebraics, result: ‘m*R~2/(g*t~2/4)°

[<] Drop result from display

[~][EVAL][2]1y*] To square an algebraic, result: ‘(g*t~2/4)"2"

[~]1[ALG] [EXPAN] To ‘expand’ the square, result: ‘.0625"t"4.*g"2’

[<] Drop result from display

[Vx] Square root of second algebraic, result: “V (T*R"2)°

[~][ALG][EXPAN] To ‘expand’ the square root, result: ‘1.77245385091*R’.

(Note: the constant wt was replaced by its numerical value

[<] Drop result from display

[~][EVAL][SIN] Sine function, result: ‘SIN(g*t~2/4)"

>] Swap levels 1 and 2

[<][MTH][HYP]J[TANH] Hyperbolic tangent function, result: ‘TANH(n*r"2)"

[+] Add the two previous results, result: ‘SIN(g*t~2/4)+

TANH (n*r"2)

[<] Drop result from display

[~][EVAL][~][LN] Natural log function, ‘LN(g*t~2/4)"
>] Swap levels 1 and 2

[<]1[e”] Exponential function, result: ‘EXP(n*r~2)"

[+] Divide the two previous results, result: ‘LN(g*t~2/4)/

EXP(n*r"2)"

[€] Drop result from display

As you can see operations with algebraic objects is not different than operations with numbers.

[NOTE: Make sure your calculatoris in the EXACT mode before attempting the following exercises.

Expanding expressions

143 © 2000 - Gilberto E. Urroz

All rights reserved

Who among you does not still remember with great joy those long hours spent expanding

algebraic expressions such as (x+y)® or (a+b+c)? in High School? Well, now you can let the
calculator have all the fun by using the keystroke combination: [*][ALG](the key for number
4)[EXPAN]. Try the following exercises:

[10° 1[<1[0O] [ALPHA][X] [+][ALPHA][Y] [»]1[y*1[2] [ENTER] Enter '(x+Y)"2’

[~][ALG] [EXPAN] Result: ‘X"2+42*X*y+y~2’

Nice, isn't it? No need to remember anymore that "... the square of X + Y is equal to the square of

X plus twice the product of X times Y plus the square of Y."

Now, let's use the calculator to verify the following expansions. At this point | will assume that
you know how to enter algebraic expressions in the stack, therefore, | will skip the detail

keystroke sequences and provide the resulting algebraic only:

"(X+Y)*3' [EXPAN] Result: 'X"3+3°Y*X"2+3"Y"2*X+Y3’

‘a*(X+Y) [EXPAN] Result: ‘a*X+a*Y’

'(2+A)*A~2*(1+A) [EXPAN] Result: 'AM4+3°AR3+2°AN

‘(a+b+c)"2'[EXPAN] Result: ‘a"2+(2*b+2*c)*a+(b"2+2*c*b+c"2)’

‘2*(a+b)*(2+a) [EXPAN] Result: ‘2*a"2+(2*b+4)*a+4’b’

Notice that, in the last two exercises, the EXPAND function does not give you the full expansion
than one expects. This may be a shortfall of the current version of the calculator’s CAS, or a
deliberate attempt by the author(s) of the CAS to let you finish the calculation by hand. (The
exercises in this chapter were developed using ROM version 1.16). The moral of the story is that

in some instances, the calculator will not carry operations to the ultimate expected

expressions. (Even if you press [EXPAN] repeatedly). Keep a paper and pencil handy, and use it,
when necessary, to finish some calculations by hand. For example,

(a+b+c)? = a’+b’+c?+2ab+2ac+2ch,

and

2(a+b)(2+a) = 2a’+4a+2ab+4b.

Factoring expressions

The function FACTOR, available through [][ALG][FACTO], can be used to obtain factorization of

algebraic expressions. As in the case of EXPAN, however, there will be instances when the

calculator will not be able to factor an expression down to its simplest factors, in which case, it

will need some help from you.

Try the following exercises:

‘TA2+5*T+6' [FACTO] Result: '(T+3)*(T+2)’

‘H”2-4" [FACTO] Result: '(H+2)*(H-2)’

'774-8*772+16' [FACTO] Result: ‘(Z+2) "2% (2-2) 2"

| Note: If you work in Approx mode, your result would have been:' (Z+2) * (2-2) * (Z+2) * (2-2) ".

144 © 2000 - Gilberto E. Urroz

All rights reserved

'‘MA3+MA2-6"M' [FACTO] Result: (M+0)*(M-2)*(M+3)" = M(M-2)(M+3)

XA24YA2+Z72+42XY+2*X*Z+2*Y*Z [FACTO] Result: '(X+(Y+2))*(X+(Y+Z)) =(X+Y+Z)?

Complex mode factorization

If your CASis set to ¥Complex mode, FACTOR will try to factor an algebraic expression down to
their simplest factors. For example, working with real numbers only, the expression 'pH2+4’

cannot be factored at all:

‘pH2+4" [FACTO] Result: ‘pH"2+4’

However, in CAS Complex mode you will get:

‘pH"2+4" [FACTO] Result: ‘(pH,2)*(pH-2"i)’

The first factor in this result, '(pH,2)’, is the complex number '‘pH+2%i’ represented as an ordered

pair.

Try a few more examples of Complex mode factorization:

‘xK23+2*xK*2+4*xK+8" [FACTO] Result: (xK+2)*(xK,2)*(xK-2*i)"

YA4+(m+2) YA34(2°m+4)*Y2+ (4*m+8)*Y+8'm’ [FACTO]
Result: '(Y+2)*(Y+m)*(Y,2)*(Y-2%i)’

'pr3-Brpr2+2tap-2*ap’ [FACTO] Result: '(p-b)*(p+i*V (2*a))*(p-i*V2*Va)’

'SIN(q)"2+2" [FACTO] Result: *(SIN(q)+i*V2)*(SIN(q)-i*V2)’

Substituting expressions in algebraic objects

Substitution of algebraic expressions or numerical values in algebraic objects can be

accomplished in two different ways. The first way uses the command [SUBS], available through
the keystroke sequence [r][ALG][SUBS]. Application of this command requires placing the

algebraic object, where the substitution will take place, in stack level 2, and the substitution, in

the form ‘variable = value’ in stack level 1. For example, enter the algebraic object:

'x"2+x+1" [ENTER], and then enter 'x = y+1'[ENTER], and press [SUBS]. The result is:

“(y+1)"2+(y+1)+1'. Press [EXPAN] to expand and simplify the expression. The result is now:

'y*2+3*y+3’'. This mode of substitution allows substituting only one variable at a time. Other
examples follow:

‘h=30+25-16.6"t"2" [ENTER] 't = 4" [ENTER][—][ALG][SUBS][—][EVAL] Results in ‘h=-225.6"
‘h = h0 + vO*t-g*t"2/2' [ENTER] 't = tf" [ENTER] [SUBS] Results in 'h = h0 + vO*tf-g*tf*2/2’

Next, enter ‘tf = 2’ [SUBS] to get ‘h = hO + v0*2-g*2"2/2".
Next, enter 'hO = 10" to get 'h = 10 + v0*2-g*2"2/2’
Next, enter 'h0 = 10" to get 'h = 10 + v0°tf-g*2"2/2’
Next, enter 'vO = 5" to get 'h = 10 + 5*2-g*2"2/2’
Next, enter 'g = 9.806" to get 'h = 10 + 5'2-9.806°2"2/2'
Finally, to evaluate h, use [~][EVAL]. The result is 'h=.388"

'V = Q/A’ [ENTER] 'A = (b+m™y)*y’ [SUBS] Results in 'V=Q/((b+m*y)*y)".

145 © 2000 - Gilberto E. Urroz

All rights reserved

A second form of substitution can be accomplished by using the [~][|] (TOOL) key. This
requires that the algebraic object, where the substitution will take place, be placed n stack

level 2, while stack level 1 contains a list, of the form { variable valuel variable? value? ..}.

For example, enter the algebraic object ‘a+b"2+c'[ENTER], and then enter the list {a -1 b ‘x+1°

c ‘ YENTER]. Press [»][| 1] [ENTER] to obtain '-1+((x+1)*2+m)’. Using [EXPAN] produces

‘m+ (x"2+2*x)". This mode of substitution allows substituting more than one variable at a time.
The function [|] follows from the substitution notation:

2

(a+b +0) amt bes1, com)

Other examples:

‘h = h0 + vO*t-g"t"2/2"' [ENTER] {t2v05hn010g9.806 } [][| 1] [ENTER] Produces:

‘h = (2*10+(2*2%5-2"2*9.806))/2'. Use [—][EVAL] to obtain 'h =.388’

'F = CONST(G)*'m1*m2/r"2" [ENTER] { m1 10_kg m2 20_kgr 12_m} [~][|] [ENTER] Produces:

'F=((6.67259E-11_m"3/(s"2"kg))*(20_kg)*10_kg)/(12_m)*2' Use [~][EVAL] to obtain
'F =.9.26748611111E-11_m*kg/s"2’. The units are m*kg/s"2' = N (newtons).

Substitution by using HP variables

The two substitution approaches presented above require that the original expression (where the

substitution is to take place) and the substitution expressions be available in the stack. A

different approach to substitution consists in defining the substitution expressions in variables

and placing the name of the variables in the original expression. For example, store the

following variables:

‘(b+m*y)*y’ [ENTER] ‘A’ [ENTER] [STOM]
'b+2*y*\ (1+4m~2)’ [ENTER] 'P' [ENTER] [STOW]

‘A/P' [ENTER] 'R" [STOMP]

Then enter the expression:

'Q = Cu*R*(2/3)*A*NS/n’ [ENTER] [ENTER]

(to keep an additional copy of the original expression). Enter [~][EVAL] to evaluate the

expression. The result is:

'Q = (y'b+y2m)*VS*Cu’ ((y*b+y"2°m)/(b+2*y*N(m"2+1)))".666666666667/n’

As you can see, the resulting expression is given in terms of the most primitive variables, i.e., b,

m, y, which come from the definitions of A, P, and R.

Now, drop the last result from the stack by using the backspace key [], and purge the variables

defined:

{AP Q} [TOOL][PURGE]

With the expression 'Q = Cu*R"(2/3)*A*VS/n" in stack level 1, try [~][EVAL]. The result is

'Q = VS*A*Cu*R".666666666667/n’

146 © 2000 - Gilberto E. Urroz

All rights reserved

In the latter case, because there is no definition available for A or R, no substitution occurs. The

only change, after evaluating the expression, is in the order of the terms in the expression, and

the replacement of (2/3) by its approximation .666666666667, if the approximate mode is
selected. In exact mode, the value (2/3) is kept.

Expansion and factorization using transcendental

functions

The HP 49 G calculator offers a number of functions that can be used to replace expressions
containing logarithmic, exponential, trigonometric, and hyperbolic functions in terms of

trigonometric identities or in terms of exponential functions. The menus containing functions to

replace trigonometric functions can be obtained directly from the keyboard by pressing the left-

shift key followed by the [8] key, i.e., [P][TRIG]. The combination of this key with the right-

shift key, i.e., [<][EXP&LN], produces a menu that lets you replace expressions in terms of

exponential or natural logarithm functions. In the next sections we cover those menus in more

detail.

Expansion and factorization in terms of exponential and logarithmic

functions

Here we use the EXP&LN menu obtained from the keystroke combination [—][EXP&LN]. This
produces the following menu:

[EXPLNJ[EXPM][LIN J[LNCOL][LNP1][TEXPA]

And, after pressing [NXT], it shows as the second menu:

[TSIMP][I I I I]

We have described the operation of the functions [EXPM] (=exp(x)+1) and [LNP1] (= In(x+1)) in an

earlier note. Here, we describe the operation of the remaining functions in this menu.

“& The function [EXPLN] transforms trigonometric functions into expressions involving
exponential and natural logarithms, without linearizing the expression. Consider the

following examples:

‘SIN(X)~2+1' [EXPLN] Result: ‘ ((EXP(i*X)-1/EXP(i*X))/(2*1i))"2+1"

‘SIN (X) +TAN (X)’ Result:

"(EXP (i*X)-1/EXP(1i*X)) /(2*1) + (EXP (i* (2*x))1) /(i* (exp (i* (2*x))+1)’

‘SIN (X+Y) *COS (X)'[EXPLN] Result:

"(EXP (I*(X+Y))-1/EXP(I*(X+Y))/(2*I)+(EXP(I*x)+1/EXP(I*X))/2’

‘ASIN (X)' [EXPLN] Result: 'i*LN(EXP(LN(X"2-1)/2)+X)+n/2’

147 © 2000 - Gilberto E. Urroz

All rights reserved

Note: The expression obtained above include the function pair EXP and LN,
which are inverse of each other, therefore, it can be simplified, by hand, to read

i-In((x?-1)"2+x)+/2. Earlier on, we defined the arcsin(z) as -i-n(N (1-2%)+i-z).
Although, the two expressions are different, you can check that they produce the

same result by calculating the two expressions with the same complex argument.

For example, with the expression obtained earlier in stack level 1, enter the

following:

{X(2.,3.)} [ENTER][~][| [ENTER] [~][->NUM], to get (0.57065, 1.98338).

Next, type in:

“iLN(V(1-X72)+i*X)" [ENTER] {X (2.,3.)} [ENTER][~][|][ENTER] [~][-NUM], to get (0.57065, 1.98338).
4 The function [LIN] linearizes expressions containing exponential or logarithmic terms.

For example:

'SIN(X)* [LIN] results in '-(i/2"EXP(i*x))+i/2 EXP(-(i*X))’

‘WEXP(2*X)*EXP(Y)’ [LIN] results in 'T*EXP(2*X+Y)’

'SIN(LN(X"2-1))" [LIN] results in *-(i/2*EXP(i*LN(X"2-1)))+i/2*EXP(- (i*LN(X"2-1)))"

"SIN(X)-COSH(X)" [LIN] results in '-1/2°EXP(X)+ —1/2*EXP(-X)-i/2EXP (i*X)+i/2*EXP(-(i*X))"

4+ The function [LNCOL] (LNCOLLECT) collects logarithmic terms in an expression.
Examples:

'LN(X) + LN(X-1)-LN(X+1)" [LNCOL] results in 'LN(X*(X-1)/(X+1))"

"(1/2)*LN(X"2-1)+LN(X)" using LNCOL] on this expression has no effect. However, if you
press [LIN], the expression gets transformed into '(LN(X"2-1)-2"LN(X))/2". Using [LNCOL] on
this new version of the expression produces 'LN(X"2-1)/X"2)/2'. Since In(a)/n = In(a""), we

can write the latter result as

x -1) (x2-1Y)" _ X21) X21
—-1In — = In — = In 3 = In| ——

2 X X X X

'2+(1/3)*LN(Y)-LN(k)" [LIN] results in ‘(LN(Y)-(3"LN(k)-6)/3". Using [LNCOL] on this result,

produces '(6+LN(Y/k”3))/3’. This result can be simplified even further if we replace 6 with a
LN expression. Since 6 = LN(EXP(6))=LN(403.43), we can write the latter expression as

"(LN(403.43)+LN(Y/k"3))/3". Press [LNCOL] to get ''(LN(403.43*(Y/k"3))/3".

(1/2)"LN(Y)-(1/3)*LN(X+1)" [LIN] results in "-((2°"LN(X+1)-3"LN(Y))/6'. Using [LNCOL] on this

result produces ‘-LN((X+1)*2/Y"3)/6".

'LOG(X)-LOG(3)-(1/2)*LOG(Y)" [LIN] results in "(2*LN(X)-(LN(Y)+2*LN(3)))/(2*LN(10))". Using

[LNCOL] on this result produces '-(LN(Y*9/X"2)/LN(100))".

148 © 2000 - Gilberto E. Urroz

All rights reserved

= The function [TEXPA] (TEXPAND) expands expressions containing transcendental functions

(i.e., exponential, logarithmic, hyperbolic, and trigonometric functions). Some examples

follow:

‘SIN(EXP(X*Y))" [TEXPA] results in 'COS(LN(Y))*SIN(LN(X))+SIN(LN(Y))*COS(LN(X))".

'COS(A-B)’ [TEXPA] results in 'COS(B)*COS(A)+SIN(B)*SIN(A)’

‘LN((2*X-1)/(2*X+1)7(1/3))" [TEXPA] results in ‘LN(2*X-1)-LN(XROOT(3,2*X+1))'. Now, apply
the function [LNCOL] to get '-LN(XROOT(3,2*X+1)/(2*X-1))".

Note: XROOT(x,y) represents “Vy = y'"* |

EXP(X+Y~2-A)’ [TEXPA] results in ‘EXP(X)*EXP(Y~2)/EXP(A).

= The function [TSIMP] (visible if you press [NXT]) simplifies expressions involving natural

logarithms and exponential functions. For example, expressions involving trigonometric or

hyperbolic functions get replaced by their equivalent in exponential functions. On the other

hand, expressions involving inverse trigonometric and hyperbolic functions get replaced by

their equivalent in logarithmic functions. Some examples of the use of [TSIMP] are shown
below:

'SIN(X) [TSIMP] results in ‘EXP(i*X)-1/EXP(i*X))/(2%i)". Press [NXT][LIN] to transform the

latter expression into ‘-(i/2*EXP(I"X)+i/2*EXP(-(I*X))".

"ATAN(X)" [TSIMP] produces
i/2* ((LN(XA241)/2, ATAN(1/X)+ - 2* (1/2) +-1*(LN(X"2+1) /2, ATAN(X) +-1*(/2)))’
If we use the function [LIN] on this expression it gets simplified to

CGNX+1)/(*X-1)))+ (i "LN(-((X+1)/(X-i))) +m) /4".

'SIN(X) + COS(X)' [TSIMP] results in “(EXP(i*X)-1/EXP(i*X))/(2*1)+ (EXP(i*X)+1/EXP(i*X))/2" .
Using the function [LIN] ofthis result produces '(1-i)/2*EXP(i*X)+(1+i)/2*EXP(-(i*X))".

"ASIN(X)+LN(X)" [TSIMP] results in "i*LN(X+ V (X"2-1))+m/2+LN(X)’. Next, use [LIN] to produce

“(2*I"LN(X+EXP(LN(X"2-1)/2))+(2*LN(X)+m))/2"'. Using [LNCOL] produces
(2%LN(X+EXP(LN(X"2-1)/2))+ 1 + LN(X"2))/2".

Expansion and factorization in terms of trigonometric functions

In this section we present functions that let you convert trigonometric functions into other

trigonometric functions. These menus are accessed through the keystroke combination

[~][TRIG], which produces the following:

Menu 1: [HYP J[ACOS2][ASIN2][ASIN2][ATAN2][HALFT].

149 © 2000 - Gilberto E. Urroz

All rights reserved

Use [NXT] to get

Menu 2: [SINCO]J[TAN2S][TAN2S][TCOLL][TEXPA][TLIN]

Use [NXT] once more to get

Menu 3: [TRIG J[TRIGC][TRIGS][TRIGT][TSIMP][]

we The [HYP] menu provides access to the hyperbolic function menu as you would using

[<][MTH][HYP].

% The functions [TEXPA] and [TSIMP] were presented in the previous section.

The function [ACOS2] (ACOS2S) replaces occurrences of ACOS(X) with 'n/2 - ASIN(X)".
Examples:

'ACOS(X"2-1)" [ACOS2] Results in 'm/2 - ASIN(X"2-1)".
"ACOS(SIN(3*n/2))" [ACOS2] Results in 'm/2 + w/2'
'ACOS(1/X)" [ACOS2] Results in 'n/2 - ASIN(1/X)".

ES You will notice that in the first menu there are two keys labeled [ASIN2]. In fact, the

two [ASIN2] labels represent the functions [ASIN2C] and [ASIN2T], in that order. The

function ASIN2C replaces occurrences of ASIN(X) with ‘n/2 - ACOS(X)', while the function
ASIN2T replaces occurrences of ASIN(X) with 'ATAN(X/Y (1-X*2))’. Examples:

‘ASIN(Y/2)" [ASIN2C] Results in ‘n/2 - ACOS(Y/2)".
"ASIN(Y/2)" [ASIN2T] Results in 'ATAN(Y/2/(N -(Y~2-4)/2))
"ASIN(X)+ASIN(Y)" [ASIN2C] Results in 'n/2-ACOS(X)+(n/2-ACOS(Y))’
'ASIN(TAN(X))’ [ASIN2T] Results in 'ATAN(TAN(X) /(V -(TAN(X)"2-1))

“4 The function [ATAN2](ATAN2S) replaces occurrences of ATAN(X) with ASIN(X/V (X"2+1)).
Examples:

"ATAN(SIN(n/2))" [ATAN2S] Results in ‘ASIN(1/¥2)’. With [~][EVAL] we get n/4.
‘ATAN(ABS(X))" [ATAN2S] If in complex mode, results in

'ASIN(Y (RE(X)*2+IM(X)*2)/ N (RE(X)*2+IM(X)*2+1))"
If in real mode, results in ‘ASIN(ABS(X)/ V (X*2+1))’

"ATAN(X+Y)" [ATAN2S] Results in "ASIN((X+Y)/ V (X22+2*Y*X+(Y2-1)))’

The function [HALFT] (HALFTAN) replaces occurrences of SIN(X), COS(X), and TAN(X),

with expressions involving TAN(X/2).

'SIN(X) [HALFT] Results in "2"TAN(X/2)/(SQ(TAN(X/2))+1)’
'COS(X)" [HALFT] Results in "1-SQ(TAN(X/2)))/(SQ(TAN(X/2)+1)’
“TAN(X)" [HALFT] Results in "2°TAN(X/2)/(1-SQ(TAN(X/2)))’
‘SIN(X)+COS(X)" [HALFT] Results in

"2*TAN(X/2)/(SQ(TAN(X/2))+1) + (1-SQ(TAN(X/2))/(SQ(TAN(X/2))+1)"

150 © 2000 - Gilberto E. Urroz

All rights reserved

= The function [SINCO] (SINCOS) converts natural logarithm and exponential expressions
with complex arguments into expressions involving the functions sine and cosine. Set your

calculator to complex mode before trying these exercises:

"EXP((2,3))’ [SINCO] Results in 'EXP(2)*(COS(3)+i*SIN(3))"
"EXP(Z)'[SINCO] Results in "EXP(RE(Z))*(COS(IM(Z))+ i*SIN(IM(2)))"
‘EXP(i*m)" [SINCO] Results in *-1"

'LN(X+1*Y)" [SINCO] Results in '(LN(X*2+Y"2)/2, ATAN(Y/X)+0*(n/2))’

= There are two [TAN2S] functions listed in Menu 2. They represent the functions TAN2SC

and TAN2SC2, in that order. The function TAN2SC replaces occurrences of TAN(X) with

'SIN(X)/COS(X)". Examples:

"TAN(Y/2)" [TAN2S] (TAN2SC) Results in 'SIN(Y/2)/COS(Y/2)’
‘TAN(X)"2'[TAN2S] (TAN2SC) Results in *(SIN(X)/COS(X))"2'

w% The operation of TAN2SC2 depends on whether flag -116 is set [Prefer Sin()]. in which

case TAN(X) gets replaced by '(1-COS(2*X))/SIN(2*X))"'. If flag -116 is clear [Prefer Cos()],

TAN(X) gets replaced by 'SIN(2*X)/(1+COS(2*X))'. Examples:

Set flag -116, as follows: [1][1][6][+/-][ENTER][ALPHA][S][ALPHA][F][ENTER].

'TAN(X)’ [TAN2S](TAN2SC2) Results in '(1-COS(2*X))/SIN(2*X)
"TAN(1/6)' [TAN2S](TAN2SC2) Results in '(1-1/2)/ (N3/2)"
"TAN(X/2)’ [TAN2S](TAN2SC2) Results in '(1-COS(X))/SIN(X)

Clear flag -116, as follows: [1][1][6][+/-][ENTER][ALPHA][C][ALPHA][F][ENTER].

'TAN(X)" [TAN2S](TAN2SC2) Results in 'SIN(2*X)/(1+COS(2*X))".
‘TAN(n/6)' [TAN2S](TAN2SC2) Results in 'V3/2/(1+1/2)"
"TAN(X/2)" [TAN2S](TAN2SC2) Results in 'SIN(X)/(1+COS(X))’

he The function [TCOLL] (TCOLLECT) collects terms involving sine and cosine of the same

arguments. Examples:

'SIN(X)*COS(Y)" [TCOLL] Results in '1/2*SIN(X-Y)+1/2*SIN(X+Y)'
"SIN(X)22+2*SIN(X)*COS(Y)+COS(Y)~2' [TCOLLECT] Results in

'SIN(2*X)+ - 1/2*COS(2*X)+1+1/2*COS(2°Y)"
'SIN(X)*2' [TCOLL] Results in '-1/2°COS(2°X)+1/2"

% The function [TLIN] linearizes trigonometric function expressions without collecting those

with the same argument. Examples:

'SIN(X)*2+2*SIN(X)*COS(Y)+COS(Y)*2" [TLIN] Results in

'SIN(X-Y)+SIN(X+Y) - 1/2*COS(2*X)+1+1/2*COS(2*Y)"

‘SIN(X)"2" [TLIN] Results in *-1/2*COS(2*X)+1/2"' (Same result as with [TCOLL]

'SIN(X)*COS(X)"2" [TLIN] Results in *1/4*SIN(3*X)+1/4*SIN(X)’

“% The function [TRIG] replaces exponential and logarithmic functions with complex
arguments with equivalent trigonometric functions. Examples:

'LN(X+i*Y)" [TRIG] Results in "(LN(X"2+Y"2)+2*I*ATAN(Y/X))/2’

EXP(X+i*Y)" [TRIG] Results in

151 © 2000 - Gilberto E. Urroz

All rights reserved

"EXP(RE(X)-IM(Y)) *COS(RE(Y)+IM(X))+I"EXP(RE(X)-IM(Y)) *SIN(RE(Y)+IM(X))

'EXP(Z)" [TRIG] Results in "EXP(RE(Z))*COS(IM(Z))+I"EXP(RE(Z))*SIN(IM(Z))"

#% The function [TRIGC] (TRIGCOS) uses the identity ‘SIN(X)*2+COS(X)"2=1" to simplify

expressions while returning cosine terms only if possible. Examples:

'SIN(X)"2-COS(X)"2" [TRIGC] Results in '-(2°COS(X)"2-1)"
"(SIN(X)-TAN(X))"2' [TRIGC] Results in '-(COS(X)"2-(TAN(X)"2+1)+2*TAN(X)*SIN(X))’
"(SIN(X)+COS(X))"2" [TRIGC] Results in '1+2*COS(X)*SIN(X)’

4% The function [TRIGS] (TRIGSIN) uses the identity ‘SIN(X)"2+COS(X)"2=1" to simplify
expressions while returning sine terms only if possible.

'SIN(X)~2-COS(X)*2" [TRIGS] Results in ‘2*SIN(X)*2-1'
“(SIN(X)-TAN(X))"2" [TRIGC] Results in 'SIN(X)*2-2*TAN(X)*SIN(X)+TAN(X)"2"
"(SIN(X)-COS(X))*2" [TRIGC] Results in '1-2*COS(X)*SIN(X)

4 The function [TRIGT] (TRIGTAN) replaces terms involving SIN(X) and COS(X) with
expressions involving TAN(X).

'SIN(X)A2-COS(X)"2' [TRIGC] Results in '(TAN(X)*2-1)/(TAN(X)"2+1)"
"(SIN(X)-TAN(X))"2' [TRIGC] Results in

(TAN(X)~4+2*TAN(X)A2-2*TAN(X) 2° (COS(X)* (SQ(TAN(X))+1))) /(TAN(X)2+1)
*(SIN(X)+COS(X))*2’ [TRIGC] Results in '(TAN(X)*2+2*TAN(X)+1)/(TAN(X)"2+1)"

Fraction Manipulation

Fractions can be expanded and factored by using [~][ALG] [EXPAND] and [FACTOR]. For example:

(14X)3/((X-1)(X+3))’ [EXPAN] Results in ‘(XA3+3*X2+3*X+1)/(X"2+2*X-3)"
XA2%(X+Y)/(2°X-XA2)"2" [EXPAN] Results in '(X+Y)/(X"2-4*X+4)’
"X+(X+Y)/(X*2-1)" [EXPAN] Results in ‘(X"3+Y)/(X"2-1)"
442° (X-1)+3/((X-2)*(X+3))-5/X*2" [EXPAN] Results in

(2°XA5+4°XA 4-10"X3-14"X"2-5*X) / (XN 4+ X3-6"XA2)
Y(3*XA3-2°XA2)/(XA2-5"X+6)" [FACTO] Results in 'X"2*(3*X-2)/((X-2)*(X-3))"
'(X13-9%X)/(X"2-5*X+6)" [FACTO] Results in 'X*(X+3)/(X-2)’
“(XA2-1)/(XA3*Y-Y)' [FACTO] Results in '(X+1)/((X"2+X+1)"Y)’

SIMP2

There are a couple of functions in the menu [R][ARITH] (the key for [1]) [NXT] that apply to
fractions: [SIMP2] and [PROPF]. The function [SIMP2] takes as arguments two numbers or

polynomials, in stack levels 2 and 1, representing the numerator and denominator, respectively,

of a rational fraction, and returns the simplified numerator and denominator in stack levels 2 and

1, respectively. For example:

'X"3-1"[ENTER] 'X"2-4*"X+3 [ENTER] [+][ARITH][NXT][SIMP2] Results in:

152 © 2000 - Gilberto E. Urroz

All rights reserved

2: X~2+X+1°

1: ‘x-3°

The operation of [SIMP2] is not different from [FACTO] if you write the full fraction, i.e.,

'(X"3-1)/(X"2-4°X+3)" [FACTO], to get '(X"2+X+1)/(X-3)"

PROPFAC

The function PROPFAC ([«][ARITH][NXT][PROPF]) converts a rational fraction into a “proper”

fraction, i.e., an integer part added to a fractional part, if such decomposition is possible. For

example:

‘5/4" [«][ARITH][NXT][PROPF] Results in ‘1+1/4’

'(x"2+1)/x"2’ [PROPF] Results in ‘1+1/x"2’

PARTFRAC

The function PARTFRAC ([<][ARITH][POLY][NXT][NXT][PARTF]) decomposes a rational fraction

into the partial fractions that produce the original fraction. For example:

"(2*X"6-14"X"5+29*X4-37"X"3+41"X2-16"X+5) /(X"5-7*X4+11*X"3-7T*X*2+10"X)

[<][ARITH][POLY][NXT][NXT][PARTF] Results in ‘2*X+(1/2/(X-2)+5/(X-5)+1/2/X+X/(X"2+1))"

This technique is useful in calculating integrals (see chapter on calculus) of rational fractions.

If you have the Complex mode active, the result will be:
2°X+(1/2/ (X+i)+1/2/(X-2)+5/(X-5)+1/2/X+1/2/(X-i))"

FCOEF

The function FCOEF is used to obtain rational fraction, given the roots and poles of the fraction.
This function is accessible through: [«][ARITH][POLY][FCOEF].

Note: If a rational fraction is given as F(X) = N(X)/D(X), the roots of the fraction result from
solving the equation N(X) = 0, while the poles result from solving the equation D(X) = 0.

The input for the function is a vector listing the roots followed by their multiplicity (i.e., how

many times a given root is repeated), and the poles followed by their multiplicity represented as

a negative number. For example, if we want to create a fraction having roots 2 with multiplicity

1, 0 with multiplicity 3, and -5 with multiplicity 2, and poles 1 with multiplicity 2 and -3 with
multiplicity 5. The inputis:

[2103-521-2-3-5][FCOEF]. The result is: '(X—5)"2*X"3*(X-2)/9X—=3)"5"(X-1)"2’

If you press [~][EVAL], you will get:

"(X"6+8*X"5+5"X"4-50"X"3)/ (XAT+13*X"6+61°X"5+105*X"4-45"X"3-297"X62-81"X+243)’

153 © 2000 - Gilberto E. Urroz

All rights reserved

FROOTS

The function FROOTS ([FROOT]) obtains the roots and poles of a fraction. This function is

accessible through [A][ARITH][POLY][NXT][FROOT]. As an example, if you kept the latest

result in your stack, press [FROOT] to obtain: [1 -2 -3 -50 3 2 1 -5 2]. The result shows poles

followed by their multiplicity as a negative number, and roots followed by their multiplicity as a

positive number. In this case, the poles are (1, -3) with multiplicities (2,5) respectively, and the

roots are (0, 2, -5) with multiplicities (3, 1, 2), respectively. Another example is: ‘(X"2-
5*X+6)/(X"5-X"2)" [FROOT] Results in [0 -2 1-13 121], i.e., poles =0 (2), 1(1), and roots =

3(1), 2(1). If you have had Complex mode selected, then the results would be: [0 -2 1 -1 '-

((1+i*V3)/2" 1].

Modular arithmetic

Modular arithmetic is used in some operations with polynomials. Therefore, we deemed

necessary to present the subject in this chapter.

Consider a counting system of integer numbers that periodically cycles back on itself and starts

again, such as the hours in a clock. Such counting system is called a ring. Because the number

of integers used in a ring is finite, we can refer to arithmetic operations in such system as finite

arithmetic operations or, simply, finite arithmetic. Let our system of finite integer numbers

consists of the numbers 0, 7, 2, 3, ..., n-1, n. We can also refer to the arithmetic of this counting

system as modular arithmetic of modulus n In the case of the hours of a clock, the modulus is

12. (If working with modular arithmetic using the hours in a clock, however, we would have to
use the integer numbers 0, 1, 2, 3, ..., 10, 11, rather than 1, 2, 3,...,11, 12).

Operations in modular arithmetic

Addition in modular arithmetic of modulus n, which is a positive integer, follow the rules that if

J and k are any two nonnegative integer numbers, both smaller than n, if j+k= n, then j+k is

defined as j+k-n. For example, in the case of the clock, i.e., for n = 12, 6+9 "=" 3. To

distinguish this ‘equality’ from infinite arithmetic equalities, the symbol = is used in place of the

equal sign, and the relationship between the numbers is referred to as a congruence rather than

an equality. Thus, for the previous example we would write 6+9 = 3 (mod 12), and read this

expression as “six plus nine is congruent to three, modulus twelve.” If the numbers represent
the hours since midnight, for example, the congruence 6+9 = 3 (mod 12), can be interpreted as

saying that “six hours past the ninth hour after midnight will be three hours past noon.” Other

sums that can be defined in modulus 12 arithmetic are: 2+5 =7 (mod 12); 2+10 = 0 (mod 12);

7+5=0 (mod 12); etcetera.

The rule for subtraction will be such that if j - k < 0, then j-k is defined as_j-k+n. Therefore, 8-10

= 2 (mod 12), is read “eight minus ten is congruent to two, modulus twelve.” Other examples

of subtraction in modulus 12 arithmetic would be 10-5 =5 (mod 12); 6-9=9 (mod 12); 5-8=9
(mod 12); 5-10 =7 (mod 12); etcetera.

Multiplication follows the rule that if j.k > n, so that j.k = mn + r, where m and r are

nonnegative integers, both less than n, then j-k =r (mod n). The result of multiplying j times k

in modulus n arithmetic is, in essence, the integer remainder of j-k/n in infinite arithmetic, if

Jj-k>n. For example, in modulus 12 arithmetic we have 7-3 =21=12 +9, (or, 73/12 =21/12 =1

154 © 2000 - Gilberto E. Urroz

All rights reserved

+ 9/12, i.e., the integer reminder of 21/12 is 9). We can now write 7-3 =9 (mod 12), and read

the latter result as “seven times three is congruent to nine, modulus twelve."

The operation of division can be defined in terms of multiplication as follows, r/k =j (mod n),

if, jk =r (mod n). This means that r must be the remainder of j-k/n. For example, 9/7 =3
(mod 12), because 73 =9 (mod 12). Some divisions are not permitted in modular arithmetic.
For example, in modulus 12 arithmetic you cannot define 5/6 (mod 12) because the
multiplication table of 6 does not show the result 5 in modulus 12 arithmetic. This multiplication
table is shown below:

6°0(mod12) 6'6(mod 12)
6*1 (mod 12) 6*7 (mod 12)

6*2 (mod 12) 68 (mod 12)

6*3 (mod 12)

6*4 (mod 12)
65 (mod 12)

69 (mod 12)

6710 (mod 12)
6*11 (mod 12)

c
o

o
o
o
o
o

‘
o
o
O
o
O
o

o
O

Formal definition of a finite arithmetic ring

The expression

a=>b (mod n)

is interpreted as “a is congruent to b, modulo n,” and holds if (b-a) is a multiple of n. With this
definition the rules of arithmetic simplify to the following:

If
a=b (mod n) and c=d (mod n),

then

a+c = b+d (mod n),

a-c=b-d (mod n),

axc = bxd (mod n).

For division, follow the rules presented earlier.

For example, 17 =5 (mod 6), and 21 = 3 (mod 6). Using these rules, we can write:

17 +21=5+ 3 (mod 6) => 38=8 (mod 6) =>38=2 (mod 6)

17-21=5-3 (mod 6) => -4 =2 (mod 6)
17x 21=5x%x 3 (mod 6) => 357 =15 (mod 6) => 357 =3 (mod 6)

Notice that, whenever a result in the right-hand side of the “congruence” symbol produces a
result that is larger than the modulo (in this case, n = 6), you can always subtract a multiple of

the modulo from that result and simplify it to a number smaller than the modulo. Thus, the

results in the first case 8 (mod 6) simplifies to 2 (mod 6), and the result of the third case, 75

(mod 6) simplifies to 3 (mod 6). Confusing? Well, not if you let the calculator handle those

operations. Thus, read the following section to understand how finite arithmetic rings are

operated upon in your calculator.

Finite arithmetic rings in the HP 49 G

155 © 2000 - Gilberto E. Urroz

All rights reserved

All along we have defined our finite arithmetic operation so that the results are always positive.

The modular arithmetic system in the HP 49 G calculator is set so that the ring of modulus n
includes the numbers -n/2+1, ..,-1, 0, 1,...n/2-1, n/2, if nis even, and -(n-1)/2, -(n-3)/2,...,-
1,0,1,...,(n-3)/2, (n-1)/2, if nis odd. For example, for n = 8 (even), the finite arithmetic ring in

the HP 49 G includes the numbers:

(-3,-2,-1,0,1,3,4),

while for n = 7 (odd), the corresponding HP 49 G finite arithmetic ring is given by

(-3,-2,-1,0,1,2,3).

Modular arithmetic in the HP 49 G

To launch the modular arithmetic menu in the HP 49 G use [«][ARITH][MODUL] (ARITH is the

left-shift key corresponding to the key for number [1]). The available menu includes:

[ADDTM][DIVMO][DIV2M][EXPAN][FACTO][GCDMOQ]

Press [NXT] to get the second modular arithmetic menu, which shows the functions:

[INVMO][MOD]J[MODST][MULTM][POWMO][SUBTM]

The use of this functions is presented next.

Setting the modulus (or MODULO)

The calculator creates a variable called MODULO that is placed in the HOME directory and will
store the magnitude of the modulus to be used in modular arithmetic. To get the calculator to

create this variable, if it does not already exists in the HOME directory, launch the modular

arithmetic menu, by using [<][ARITH][MODUL]. Then, enter a number, say [8], and press the

soft menu key corresponding to [EXPAN]. If the MODULO variable you should get the result -1.
To check out your MODULO variable, press [VAR] and enter [~][MODUL]. The default value of 3

should be placed in the stack indicating that such value currently occupies the variable MODULO.

To change the value of MODULO, you can either store the new value directly in the variable
MODULO by placing the value in the stack and then using [—][MODUL]. If you have already
activated the modular arithmetic menu, move to the second menu by using [NXT], place the new

value in the stack, and press the soft key labeled [MODST] (MODSTOQ) to store the new modulus

value.

For example, to perform arithmetic operations of modulus 12, use:

[T1[2][ENTER] [<][ARITH][MODUL][NXT][MODST]

Modular arithmetic operations with numbers

To add, subtract, multiply, divide, and raise to a power using modular arithmetic you will use the

functions ADDTM, SUBTM, MULTM, DIV3M and DIVMO (these two for division), and POWMO. In

156 © 2000 - Gilberto E. Urroz

All rights reserved

RPN mode you need to enter the two numbers to operate upon, separated by an [ENTER] or an

[SPC] entry, and then press the corresponding modular arithmetic function. For example, having

stored 12 as our modulus, try the following operations:

[6][SPC][5][ADDTM] Result: -1, i.e., 6+5 =-1 (mod 12)
[6][SPC][6][ADDTM] Result: 0, i.e., 6+6 =0 (mod 12)

[6][SPC][7]1[ADDTM] Result: 1, i.e., 6+7 =1 (mod 12)

[11[1]1[SPC][5][ADDTM] Result: 4, i.e., 11+5=4 (mod 12)

[8][SPC][1][0][ADDTM] Result: -6, i.e., 8+10 =-6 (mod 12)

[5][SPC][7][SUBTM] Result: -2,i.e.,5-7=-2 (mod 12)

[8][SPC][4][SUBTM] Result: 4, i.e.,8 -4 =4 (mod 12)
[5][SPC][1][0]][SUBTM] Result: -5, i.e., 5-10 =-5 (mod 12)

[11[1][SPC][8][SUBTM] Result: 3, i.e., 11-8 =3 (mod 12)

[8][SPC][1][2][SUBTM] Result: -4, i.e., =8 - 12 (mod 12)

[6][SPC][8][MULTM] Result: 0, i.e., 6:8 =0 (mod 12)
[9]1[SPC][8][MULTM] Result: 0, i.e., 9-8 =0 (mod 12)
[31[SPC][2][MULTM] Result: 6, i.e., 3-2 =6 (mod 12)

[5][SPC][6][MULTM] Result: 6, i.e., 56 =6 (mod 12)

[11[11[SPC][3][MULTM] Result: -3, i.e., 11:3 =-3 (mod 12)

[11[2][SPC][3][DIVMO] Result: 4, i.e., 12/3 =4 (mod 12)
[1]1[2][SPC][8][DIVMO] Result: No solution in ring, i.e., 12/8 (mod 12) does not exist

[2]1(5][SPC][5][DIVMO] Result: 5, i.e., 25/5 =5 (mod 12)
[6]1[4]1[SPC][1]1[3][DIVMO] Result: 4, i.e., 64/13 =4 (mod 12)
[6]1[6]1[SPC][6][DIVMO] Result: -1, i.e., 66/6 =-1 (mod 12)

[1112] [SPC][5][DIV2M] Result: , 0 and 0, i.e., 2/3(mod 12) = 0 (mod 12) with remainder

=0

[2][6][SPC][1][2][DIV2M] Result: No solution in ring, i.e., 26/12 (mod 12) does not exist

[11[2]1[5][SPC][1][7]1[DIV2M] Result: 1 and 0, i.e., 125/17 (mod 12) = 1 with remainder = 0

[6]1[8][SPC][7][DIV2M] Result: -4 and 0, i.e., 68/7 =0 (mod 12) with remainder = 0

[71[SPC][5][DIV2M] Result: -1 and 0, i.e., 7/5 =-1 (mod 12) with remainder = 0

Note: DIVMO provides the quotient of the modular division j/k (mod n), while DIMV2M provides
no only the quotient but also the remainder of the modular divisionj/k (mod n).

[2]1[SPC][3][POWMO] Result:-4 , i.e., 23= -4 (mod 12)
[3]1[SPC][5][POWMO] Result: 3, i.e., 3°=3 (mod 12)
[5][SPC][1]1[0][POWMO] Result: 1, i.e., 5'°= 1 (mod 12)
[11[1][SPC][8][POWMO] Result: 1, i.e., 118 =1 (mod 12)
[6][SPC][2][POWMO] Result: 0, i.e., 6°=0 (mod 12)
[9][SPC][9][POWMO] Result: -3, i.e., 9°=-3 (mod 12)

In the examples of modular arithmetic operations shown above, we have used numbers that not

necessarily belong to the ring, i.e., numbers such as 66, 125, 17, etc. The calculator will convert

those numbers to ring numbers before operating on them. You can also convert any number into

a ring number by using the function [EXPAND] (full name is EXPANDMOD). For example,

[11[2]1[5][EXPAND] Result: 5, or 125 =5 (mod 12)

[11{71[EXPAND] Result: 5, or 17 =5 (mod 12)

[6][6]1 [EXPAND] Result: 6, or 66 =6 (mod 12)

157 © 2000 - Gilberto E. Urroz

All rights reserved

The modular inverse of a number

Let a number k belong to a finite arithmetic ring of modulus n, then the modular inverse of k,

i.e., 1/k (mod n), is a number j, such that j-k = 1 (mod n). The modular inverse of a number can

be obtained by using the function [INVMOD] in the second menu resulting from
[<][ARITH] [MODUL].

For example, in modulus 12 arithmetic:

[6]1[INVMOD] Result: No solution in ring, i.e., 1/6 (mod 12) does not exist.

[5][INVMOD] Result: 5, i.e, 1/5=5 (mod 12)

[71[INVMOD] Result: -5, i.e., 1/7 =-5 (mod 12)
[3]1[INVMOD] Result: No solution in ring, i.e, 1/3 (mod 12) does not exist.

[11[11[INVMOD] Result: -1, i.e., 1/11 =-1 (mod 12)

The MOD function

The MOD function is used to obtain the ring number of a given modulus corresponding to a given
integer number. To operate this function in RPN mode, enter the integer number to be

converted to a ring number followed by the modulus, and separated by an [ENTER] or a [SPC].

Then press [MOD]. On paper this operation is written as
mmod n=p

and is read as "m modulo n is equal to p".

For example, to calculate 15 mod 8, enter

[1][5][SPC][8][MOD].

The resultis 7, i.e., 15 mod 8 = 7.

Try the following exercises:

[1108][SPCI[1][1][MOD] Result: 7, i.e., 18 mod 11 =7

[2]1[3][SPC][2][MOD] Result: 1, i.e., 23 mod 2 = 1

[4]1[O][SPC][1][3][MOD] Result: 1, i.e., 40 mod 13 = 1

[21[3]1[SPCI[1]1[7][MOD] Result: 6, i.e., 23 mod 17 =6
[31[4]1[SPC][6][MOD] Result: 4, i.e., 34d mod 6 = 4

One practical application of the MOD function for programming purposes is to determine when an

integer number is odd or even, since n mod 2 = 0, if nis even, and n mode 2 = 1, if nis odd. It

can also be used to determine when an integer m is a multiple of another integer n, for if that is

the case m mod n = 0.

Other modular arithmetic functions

Other functions included in the modular arithmetic menu are [GCDMO] (GCDMOD), or greatest

common divisor under modular arithmetic, and [FACTO] (FACTORMOD), or factorization under

modular arithmetic. These functions are used on polynomial expressions to produce the GCM of
two polynomials, or to factor a polynomial. Examples of such applications are presented in the

next section.

158 © 2000 - Gilberto E. Urroz

All rights reserved

Polynomials

Polynomials are algebraic expressions consisting of one or more terms containing decreasing

powers of a given variable. For example, 'X"3+2*X"2-3"X+2' is a third-order polynomial in X,
while 'SIN(X)"2-2' is a second-order polynomial in SIN(X). The HP 49 G calculator includes a
large number of functions for manipulating polynomials, besides the EXPAND and FACTOR
functions, already introduced.

Polynomial manipulation functions are available in the calculator menu: [<1][ARITH][POLY]:

Menu 1: [ABCUV][CHINR][DIV2][EGCD][FACTO][FCOEF]

Press [NXT]

Menu 2: [PROOT][GCD J[HERMI][HORNE][LAGRA][LCM]

Press [NXT]

Menu 3: [LEGEN][PARTF][PCOEF][PROOT][PTAYL][QUOT]

Press [NXT]

Menu 4: [REMAI][11 1 I J[ARITH]

Modular arithmetic with polynomials

The same way that we defined a finite-arithmetic ring for numbers in a previous section, we can

define a finite-arithmetic ring for polynomials with a given polynomial as modulo. For example,

we can write a certain polynomial P(X) as P(X) = X (mod X), or another polynomial Q(X) = X + 1

(mod X-2). Some polynomial functions apply to such algebraic rings, as presented below.

A polynomial, P(X) belongs to a finite arithmetic ring of polynomial modulus M(X), if there exists

a third polynomial Q(X), such that (P(X) - Q(X)) is a multiple of M(X). We then would write:

P(X) = Q(X) (mod M(X)).

The later expression is interpreted as "P(X) is congruent to Q(X), modulo M(X)".

ABCUV

Given polynomials A(X), B(X), and C(X), in stack levels 3, 2, and 1, respectively, [ABCUV] returns

two polynomials, U(X) and V(X), in stack levels 2 and 1, respectively, so that:

C(X) = UX)*A(X) + V(X)*B(X).

For example, with A(X) = X*2-1, B(X) = X*2+1, C(X) = X"3+2*X"2-7, use:

'X"2-1' [ENTER] 'X"2+1' [ENTER] 'X*3+2°X~2-7' [ENTER][ABCUV] gives

159 © 2000 - Gilberto E. Urroz

All rights reserved

2: (X*3+2*X-7)/-2'
1: A(X"3+2%X-7)/-2"

CHINREM

CHINREM stands for CHINese Remainder. The operation coded in this command solves a system
of two congruences using the Chinese Remainder Theorem. This command can be used with

polynomials, as well as with numbers. The input consists of two vectors [expression_]T,

modulo_1] and [expression_2, modulo_2], in stack levels 2 and 1, respectively. The output is a

vector containing [expression_3, modulo_3], where modulo_3 is related to the product
(modulo_1)-(modulo_2). Example:

['X+1', "X*2-1T'][ENTER]['X+1/, 'X~2'][ENTER] [CHINREM] Results in [''X+1',-(X"4-X"2)]

DIV2

Given polynomials P(X) in stack level 2, and Q(x) in stack level 1, the function [DIV2] returns the

quotient and residual of P(X)/Q(X) in stack levels 2 and 1, respectively. For example:

‘X*3-1'[ENTER]'X-5'[ENTER][DIV2] Results in:

2: ‘X"2+45*X+25°

1: 124

EGCD

EGCD stands for Extended Greatest Common Divisor. Given two polynomials, A(X) and B(X), in

stack levels 2 and 1, respectively, it produces the polynomials C(X), U(X), and V(X), in stack

levels 3, 2, and 1, respectively, so that

C(X) = U(X)*A(X) + V(X)*B(X).

For example, for A(X) = X*2+1, B(X) = X*2-1, use:

'X*2+71'[ENTER] 'X"2-1" [ENTER] [EGCD] Results in

3: 2

2: 1

1: -1
iLe., 2=1°(X"2+1")-1*(X"2-1).

Try another example:

'X* [ENTER] 'X"3-2*X+5" [ENTER] [EGCD] Results in

3: 5

2: —(X~2-2)'

1: 1
i,e., 5=-(X"2-2)"X + 1*(X"3-2"X+5)

160 © 2000 - Gilberto E. Urroz

All rights reserved

FACTOR

The function FACTOR [FACTO] has been presented earlier in the chapter.

FCOEF

The function FCOEF was presented in an earlier section.

FROOTS

The function FROOTS was presented in an earlier section.

GCD

The function GCD (Greatest Common Denominator) can be used to obtain the greatest common
denominator of two polynomials or of two lists of polynomials of the same length. The two

polynomials or lists of polynomials will be placed in stack levels 2 and 1 before using GCD. The
results will be a polynomial or a list representing the greatest common denominator of the two

polynomials or of each list of polynomials. Examples follow:

'X*3-1'[ENTER]'X*2-1'[ENTER][GCD] Results in: ‘X-1'
{'X"2+42°X+1",'X*3+X2 }ENTER] {'X"*3+1",'X*2+1'}[ENTER][GCD] Results in {'X+1" 1}

HERMITE

The function HERMITE [HERMI] uses as argument an integer number, k, and returns the Hermite
polynomial of k-th degree. A Hermite polynomial, Hex (x) is defined as

2 d’ 2

He, =1, He, (x)=(-1)"e" 2 —(e YY n=12,..
dx

An alternate definition of the Hermite polynomials is

Hy =1, H, *(x)=(1)e" 2
dx”

 (e™), n=12,..

Where d"/dx" = n-th derivative with respect to x.

Examples: The Hermite polynomials of orders 3 and 5 are given by:

[3][HERMI] which produces '8*X"3-12*X" ,

and

[5][HERMI] which gives '32*x"5-160*X"3+120*X’

161 © 2000 - Gilberto E. Urroz

All rights reserved

Note: To check which of the two definitions of Hermite polynomials given above is the one that
the calculator uses, enter the following:

[EQWI[I[OIN[+/-1[A][AT[A]ly 1[31[A][A][X] [<][e*][ALPHAT[X][y*][2][»] [>] [»][X]
[1[9][ALPHA][X] [»][][0] [ALPHA][X] [»][—][0] [ALPHA][X] [»]
[= 1[e [ALPHA] [X][+/-1[y*][2] [ENTER]

Resulting in '(-1)"3"EXP(x"2)*0x (dx (ox (EXP(-x"2))))'. Press [ENTER] to keep an extra copy of the
expression in the stack. Then, enter [~][EVAL]. The result is '(8*X"3-12*X)*EXP(x"2)*EXP(-x"2)".

Pressing [~][EVAL], once more, we get the result '8*X”"3-12*X’, which is the same produced with
[5][HERMI]. Therefore, we verified, at least for n = 3, that the second definition, i.e., that of

H*n(x), is the one used for the calculator to generate Hermite's polynomials.

From this exercise we learn that the keystroke combination [~][d] generates derivative symbols

in the equation writer. More details on the use of derivatives is presented in Chapter

HORNER

The function HORNER [HORNE] produces the Horner division, or synthetic division, of a

polynomial P(X) by the factor (X-a). The input to the function are the polynomial P(X), in stack
level 2, and the number a, in stack level 1. The function returns the quotient polynomial Q(X)
that results from dividing P(X) by (X-a), the value of a, and the value of P(a), in stack levels 3, 2,
and 1, respectively. In other words, P(X) = Q(X)(X-a)+P(a). For example,

'X"3+42*X"2-3"X+1" [ENTER] 2 [ENTER] [HORNE] produces the result:

3: 'X"2+4*X+5’

2: 2

1: 11
We could, therefore, write X3+2X%-3X+1 = (X?+4X+5)(X-2)+11.

A second example, would be:

‘X*6-1'[ENTER] [5][+/-] [ENTER] [HORNE], which results in :

3:'X"5-5*X"4+25*X"3~

125*X"2+625*X-3125’

2: -5

1: 15624

ice. X81 = (X*-5"X*+25X3-125X%+625X-3125) (X+5) +15624.

162 © 2000 - Gilberto E. Urroz

All rights reserved

The variable VX, or "Why do you use only X in your examples?”

The first time you activate any of the CAS functions, i.e., algebraic, calculus, etc., a variable

called VX is created in your HOME directory that takes, by default, the value of 'X'. This is the
name of the preferred independent variable for algebraic and calculus applications. For that

reason, | have used X as the unknown variable in all the examples in this section. If you use

other independent variable names, for example, with HORNER, the CAS will not work properly.

The variable VX is a permanent inhabitant of the HOME directory. There are other CAS variables
in the HOME directory that you may or may not have currently in your calculator. Some of these
variables are REALASSUME ([REALA]), MODULO ([MODUL]), CASINFO ([CASIN]), etc. You can purge
all of them, except VX. Try it.

You can change the value of VX by storing a new algebraic name in it, e.g., 'x’, 'y’, 'm’, etc. In

the rest of this section, and in the rest of the book, | will assume that 'X’ will be the standard
value of VX and | will continue using X as the preferred independent variable for CAS

applications.

Also, avoid using the variable VX in your programs or equations, so as to not get it confused with

the CAS’ VX. If you need to refer to the x-component of velocity, for example, you can use vx or

Vx.

LAGRANGE

The function LAGRANGE [LAGRA] requires as input a matrix having two rows and n columns. The

matrix stores data points of the form [[x; x; .. x,] [y1 y2 .. yall. Application of the function

LAGRANGE produces the polynomial expanded from

n

, [T=

p(x) =SAEs

n

j=l
(x, —Xx;)

k=l k+j

For example, for n = 2, we will write:

xX—x X—x yy =») x+y, x, —y x,)— 2 1 _\ 2 2 MX
p(X) =——y+—y, = :

xX, —X, xX, =X, xX, —X,

Check this result with your calculator:

[['x1" 'x2']['y1" 'y2']1]1[ENTER][LAGRA]. The result is: ‘((y1-y2)*X+(y2*x1-y1*x2))/(x1-x2)".

Other examples:

163 © 2000 - Gilberto E. Urroz

All rights reserved

[[12 3][2 8 15]][ENTER][LAGRA] produces '(X"2+9*X-6)/2'

[[0.51.52.53.54.5][12.2 13.5 19.2 27.3 32.5]] [ENTER] [LAGRA] produces
-(.1375*X4+ -. 7666666666667 X"3+ - .74375*X"2 = 1.991666666667°X-12.92265625)".

Entering matrices directly in the stack

Matrices are introduced in a letter chapter. They are basically arrays of numbers, or symbols, in

rows and columns. The matrix corresponding to the latter problem's input would be written on

paper as

05 15 25 35 45

122 13.5 19.2 273 32.5

In the calculator stack, you can enter the matrix by opening a pair of square brackets and using

sets of square brackets to represent the rows of the matrix. For the example under

consideration, this is:

[[0.51.52.53.54.5][12.2 13.5 19.2 27.3 32.5]].

LCM

The function LCM (Least Common Multiple) obtains the least common multiple of two
polynomials or of lists of polynomials of the same length. Examples:

'2°X"2+4*X+2" [ENTER] 'X*2-1" [ENTER] [LCM] produces '(2*X"2+4*X+2)*(X-1)".

'X*3-T'[ENTER] 'X*2+2*X" [ENTER] [LCM] produces '(X"3-1)*(X*2+2*X)’

LEGENDRE

A Legendre polynomial of order n is a polynomial function that solves the differential equation

2

(1-3) ZF2xLtn (n41)- y =0,
X xX

To obtain the n-th order Legendre polynomial, enter the order of the polynomial, then press

[LEGEN] (LEGENDRE). Examples:

[3][LEGEN] produces: '(5'X"3-3*X)/2"

164 © 2000 - Gilberto E. Urroz

All rights reserved

[S][LEGEN] produces: '(63*X *5-70*X"*3+15*X)/8’

Checking the solution to Legendre’s equation

To verify that these polynomials indeed satisfy Legendre’'s equation, enter the general expression
of the equation in a variable to be called LEGEQ, as follows:

[EQWI][<][O]-TALPHALIXIY [21 [>1» 1 [>][»] [x][~][0][ALPHA][X] [»] [~][o][ALPHA][X][»]
[ALPHA]LY][<][OJ[ALPHAT[X] [1 [> 1 [> 1 [>] [-1[2] [x] [ALPHA] [X] [x] [~] [0] [ALPHA] [X] [»]
[ALPHA]LY][<][OJ[ALPHATLX] [>] [>][»>1[»>1[» 1 [>] [+][ALPHA][<][N] [x] [<2][O)] [ALPHA] [<2][N]
(+1 [0] [10>10» 10x] [ALPHA]LY] [a][OT[ALPHA]LXI[>] [> 1[»1[»]1[»]1[>][—][=][0] [ENTER]

[* JIALPHA]J[ALPHA][LI[E][G]I[E][Q][ENTER][STOM]

Next, bring the equation back to the stack, by pressing [VAR][LEGEQ]. Replace the value of n

with 3, i.e.,

[1[OI[ALPHA][«][N][SPCI[3][ENTER][~][| 1[ENTER]. The result is:

CX" 2-1)d1dTY(X) + (2°X*d1Y(X)-(372+3)*Y(X)))=0"

Note: d1Y(X) now represents dY/dX, and d1d1Y(X) represents d°Y/dX" |

Use [~][ALG][EXPAN] to get: '-((X"2-1)*d1d1Y(X)+(2*X*d1Y(X)-12*Y)=0"

Next, we generate the third-order Legendre polynomial:

[31[<][ARITH][POLY][NXT][NXT][LEGEN] to get '(5*X"3-3*X)/2’

Next, enter 'Y(X)' by using: [][' J[ALPHA][Y] [<][()][ALPHA][X][ENTER]

Press [P] to exchange stack levels 1 and 2, and then [~][=] to get: 'Y(X) ="(5"X"3-3*X)/2’

Press [][ALG][SUBST] to replace Y(X) with the Lagrange polynomial, and then press [—][EVAL].

The result is: '0=0".

PARTFRAC

The function PARTFRAC was presented in an earlier section.

PCOEF

Given an array containing the roots of a polynomial, the function PCOEF generates an array
containing the coefficients of the corresponding polynomial. The coefficients correspond to

decreasing order of the independent variable. For example:

[-2-1011 2] [PCOEF] produces: [1. -1. -5. 5. 4. -4. 0.], which represents the polynomial

XB-X3-5X*+5X3+4X2-4X.

165 © 2000 - Gilberto E. Urroz

All rights reserved

PROOT

Given and array containing the coefficients of a polynomial, in decreasing order, the function

PROOT provides the roots of the polynomial. As PCOEF, this & a numerical solution originally
developed for the HP 48 G/G+/GX series calculator. Example:

From X2+5X-6 =0, we enter [1-5 6][ENTER][PROOT]. The function provides the result: [2. 3.].

Direct access to polynomials numerical solution using NUM.SLV

“% The function PCOEF corresponds to the numerical solution for polynomial coefficients
given its roots (first developed for the HP 48 G/G+/GX series calculator). This solution is also
accessible using an input form by using the keystroke sequence: [][NUM.SLV] (NUMerical
SolVer). This will generate a dropdown menu. Use the down-arrow key, [V¥], twice to
highlight 3. Solve poly... Press [OK]. The input form will show the field corresponding to

the polynomial coefficients highlighted. Press [¥] to move to the Roots: field. In this field,

enter the array or vector of roots, i.e.,

(oIlo 21 0+/-1ISPCI[1][+/-1[SPCI[O][SPC] [1] [SPC] [1] [SPC] [2] [ENTER] (or [OK])

This will send the cursor back to the Coefficients field. Now, press [SOLVE]. The result is

the vector [1. -1. -5. 5. 4. ... in the Coefficients field. To see the entire array, press

[EDIT]. This triggers the matrix writer (a sort of spreadsheet used to enter array data)

showing a matrix with one column. To see the elements of the array use the right-arrow or

left-arrow keys to move about the array. Verify that the array is [1. -1. -5. 5. 4. -4. 0.].

Press [ENTER] when done. Press [ENTER] to return to normal calculator display. You will

notice that the polynomial coefficient array has been copied to the stack.

& The NUM.SLV menu can be used to produce the polynomial and place it into the stack by
using a procedure similar to that used above, but ending by pressing the key [SYMB] after
using [SOLVE]. Repeat the exercise above an try this option. Press [ENTER], when done, to
return to normal calculator display. You should get the expression: ‘X"6+-1°X"5+-
5*XM4+5*X"3+4*X2+-4*X"

Start the polynomial solution from the NUM.SLV once more. This time we will provide
the polynomial coefficients in the proper field, say [1 -5 6], corresponding to X-5X+6 = 0,

and find the roots by pressing [SOLVE] when the Roots: field is highlighted. The solution
should be [2. 3.].

PTAYL

Given a polynomial P(X) and a number a (stack levels 2 and 1, respectively), the function PTAYL
is used to obtain an expression Q(X-a) = P(X), i.e., to develop a polynomial in powers of (X- a).
This is also known as a Taylor polynomial, from which the name of the function, Polynomial &
TAYLor, follow.

For example, 'X"3-2*X+2'[ENTER] [2] [ENTER] [PTAYL] produces ‘X"3+6*X"2+10*X+6'. In

actuality, you should interpret this result to mean '(X-2) *3+6*(X-2) *2+10%(X-2) +6’. Let's check

by using the substitution: ‘X = x - 2’ [~][ALG][SUBST] [EXPAN]. We recover the original

polynomial, but in terms of lower-case x rather than upper-case x.

166 © 2000 - Gilberto E. Urroz

All rights reserved

QUOTIENT and REMAINDER

The functions QUOTIENT [QUOT] and REMAINDER [REMAI] provide, respectively, the quotient Q(X)
and the remainder R(X), resulting from dividing two polynomials, P;(X) and P,(X). In other
words, , they provide the values of Q(X) and R(X) from P;(X)/P,(X) = Q(X) + R(X)/P,(X). For
example,

'X73-2*X+2'[ENTER] 'X-1" [ENTER] [QUOT] results in ‘X"2+X-1'
'X73-2*X+2 [ENTER] 'X-1" [ENTER] [REMAI] results in 1.

Thus, we can write: (X3-2X+2)/(X-1) = X2+X-1 + 1/(X-1).

Note: you could get the latter result by using PARTFRAC:
"(X*3-2*X+2)/(X-1)" [ENTER] [PARTF] results in ‘X*2+X-1 + 1/(X-1)".

The following functions are not accessible through the POLY menu:

EPSX0 and the CAS variable EPS

The variable & (epsilon) is typically used in mathematical textbooks to represent a very small

number. The HP 49 G CAS will create a variable EPS, with default value 0.0000000001 = 107°,
when you use the EPSXO function. You can change this value, once created, if you prefer a
different value for EPS. The function EPSX0, when applied to a polynomial in stack level 1, will
replace all coefficients whose absolute value is less than EPS with a zero. Examples:

‘X"3-1.2E-12*X"2+1.2E-6"X+6.2E-11'[CAT][ALPHA][E]. Use the up and down arrow keys to find

EPSXO0, then press [OK]. The result is 'X*3-0"X"2+.0000012*X+0". Use [][ALG][EXPAN] to obtain

*X"3+.0000012*X+0".

PEVAL

The functions PEVAL (Polynomial EVALuation) can be used to evaluate a polynomial

p(x) = ap X"+an.1x nly ot arx’+a;x+ agp,

given an array of coefficients [a, an; ... a2 a; ap] and a value of xp, placed in stack levels 2 and 1,

respectively. The result is the evaluation p(xp). Examples:

[1. 5. 6. 1][ENTER][S][ENTER][CAT][ALPHA][P]. Use up and down arrows to find PEVAL,

press [OK]. The result is 281.

TCHEBYCHEFF

Given an integer number, n>0, in stack level 1, the function TCHEBYCHEFF generates the
Tchebycheff (or Chebyshev) polynomial of the first kind, order n, defined as

T.(X) = cos(n-arccos(X)).

167 © 2000 - Gilberto E. Urroz

All rights reserved

If the integer n is negative (n < 0), the function TCHEBYCHEFF generates the Tchebycheff
polynomial of the second kind, order n, defined as

T.(X) = sin(n-arccos(X))/sin(arccos(X)).

This function is not available in the POLY menu. To invoke it you have the use the catalog, i.e.,

[CAT][ALPHA][T], then use the down-arrow key [¥] nine times until the command TCHEBYCHEFF

is highlighted. Press [OK] to activate the command. Examples:

[5][CATI[ALPHA][T] [vI[vI[vI[vi[vI[vI[v][v][V¥] [OK] produces '16*X"5-20*x"3+5*X"

At this point the TCHEBYCHEFF command is readily available in the catalog. So, for the next
example, use:

[5][+/-][CAT][OK] to obtain '16*X"4-12*X"2+1".

168 © 2000 - Gilberto E. Urroz

All rights reserved

Vectors
In the HP 49 G calculator a vector is simply a sequence of numerical or algebraic objects, of any
size, enclosed by square brackets. If using the RPN mode, the objects are separated by spaces.
In algebraic mode, objects are separated by commas. Examples of vectors are:

[15-3], ['a’ 'a”2" 'a”3'], ['x'57321],[01123581321].

HP 49 G vectors of 2 and 3 dimensions can be used to represent Cartesian vectors in 2 and 3
dimensions if the RECT coordinate system is selected.

Entering vectors

Vectors can be entered by typing it directly into the stack, by using the matrix writer, or by

creating a vector with the function [-> ARRY] if the elements are listed in the stack. The details

of the different approaches to entering vectors are presented below.

Typing a vector directly into the stack

Vectors can be entered directly into the stack by activating the square bracket symbol in the

keyboard, [<][[]]. and entering terms separated with spaces [SPC]. If the terms you enter are

algebraic expressions, even a single non-numeric character, these expressions must be typed

between single quotes. In other words, before typing an algebraic expression a element of a

vector, enter [?][']. To separate algebraics, you may want to use [P] to move the cursor

outside of the algebraic before pressing [SPC]. Try the following examples.

[1001] [T1[SPCI[5]1[SPC][3][+/-]1[ENTER] to obtain [1 5-3];

[1001] [10°] [ALPHAI[<][A] [»] [SPC] [~][*] [ALPHAI[<][A] [y*1[2] [>]
[SPC] [~1[* 1IALPHAI[<][A] [y*1[3] [ENTER] to obtain ['a’ ‘a*2’ ‘a"3'];

Using the matrix writer (MTRW)

Vectors can also be entered by using the matrix writer [<][MTRW]. This command generates a
species of spreadsheet corresponding to rows and columns of a matrix (see chapter 10). For a

vector we are interested in filling only elements in the top row. By default, the cell in the top

row and first column is selected. At the bottom of the spreadsheet you will find the following

soft menu keys:

[EDIT][VECH][«WID][WID-][GO—-u][GO!]

169 © 2000 - Gilberto E. Urroz

All rights reserved

% The [EDIT] key is used to edit the contents of a selected cell in the matrix writer.

+ The [VEC] key, when selected, will produce a vector, as opposite to a matrix of one row

and many columns.

Vectors vs. matrices

To see the [VEC] key in action, try the following exercises:

(1) With [VECH] selected, enter [3][SPC][5 J[SPC][2][ENTER][ENTER]. This produces [3. 5. 2.].

(2) With [VEC] deselected, enter [3][SPC][5 1[SPCI[2][ENTER][ENTER]. This produces [[3. 5.

2.11.

Although these two results differ only in the number of brackets used, for the calculator they

represent mathematical animals of different species. The first one is a vector with three

elements, and the second one a matrix with one row and three columns. There are differences

in the way that mathematical operations take place on a vector as opposite to a matrix.

Therefore, for the time being, keep the soft menu key [VECH] selected while using the matrix
writer.

4 The [«WID] key is used to decrease the width of the columns in the spreadsheet. Press

this key a couple of times to see the column width decrease in your matrix writer.

4% The [WID-] key is used to increase the width of the columns in the spreadsheet. Press

this key a couple of times to see the column width increase in your matrix writer.

+ The [GO-] key, when selected, automatically selects the next @ll to the right of the
current cell when you press [ENTER]. This option is selected by default.

4 The [GO!] key, when selected, automatically selects the next cell below the current cell

when you press [ENTER].

Moving to the right vs. moving down in the matrix writer

Activate the matrix writer and enter [3][SPC][5][SPC][2][ENTER][ENTER] with the [GO—m] key

selected (default). Next, enter the same sequence of numbers with the [GOlm] key selected to

see the difference. In the first case you entered a vector of three elements. In the second case

you entered a matrix of three rows and one column.

Activate the matrix writer again by using [<][MTRW], and press [NXT] to check out the second

soft key menu at the bottom of the display. It will show the keys:

[+ROW][-ROW][+COL][-COL][-»STK][GOTO].

170 © 2000 - Gilberto E. Urroz

All rights reserved

w% The [+ROW] key will add a row full of zeros at the location of the selected cell of the
spreadsheet.

w% The [-ROW] key will delete the row corresponding to the selected cell of the

spreadsheet.

we The [+COL] key will add a column full of zeros at the location of the selected cell of the

spreadsheet.

= The [-COL] key will delete the column corresponding to the selected cell of the
spreadsheet.

~The [»STK] key will place the contents of the selected cell on the stack.

we The [GOTO] key, when pressed, will request that the user indicate the number of the row
and column where he or she wants to position the cursor.

Pressing [NXT] once more produces the last menu, which contains only one function [DEL]
(delete).

ok The function [DEL] will delete the contents of the selected cell and replace it with a

zero.

To see these keys in action try the following exercise:

(1)

(2)

(8)

(9)

Activate the matrix writer by using [<][MTRW]. Make sure the [VECm] and [GO—m] keys are

selected.

Enter the following:

[T1[SPCI[2][SPCI[3][ENTER]
[NXT][GOTO][2][SPC][1][OK][OK]

[4]1[SPC][5][SPC][6][ENTER]
[71[SPC][8][SPC][9] [ENTER]

Move the cursor up two positions by using [A][A]. Then press [-ROW]. The second row will

disappear.

Press [+ROW]. A row of three zeroes appears in the second row.

Press [-COL]. The first column will disappear.

Press [+COL]. A row of two zeroes appears in the first row.

Press [GOTO] [3][SPC][3][OK][OK] to move to position (3,3).

Press [STK]. This will place the contents of cell (3,3) on the stack, although you will not be

able to see it yet.

Press [NXT][DEL]. This should place a zero in location (3,3), however, with ROM 1.17b it

does not seem to be working.

17 © 2000 - Gilberto E. Urroz

All rights reserved

In summary, to enter a vector using the matrix writer, simply activate the writer ([<][MTRW]),

and place the elements of the vector, separated by spaces [SPC] on the stack, then press

[ENTER][ENTER]. Make sure that the [VECm] and [GO—m] keys are selected.

Example:
[<1IMTRW] [~][* 1 [ALPHA][<][X] [y*1[2] [>] [SPC] [2] [SPC] [5][+/-]1[ENTER] [ENTER] produces:

['x~2" 2 -5 1]

Building a vector with -ARRY

The function [-ARRY], available in the menu [<][PRG][TYPE], can be used to build an array in

the following way:

(1) Enter the n elements of the array in the order you want them to appear in the array (when
read from left to right) into the stack.

(2) Enter n as the last entry.

(3) Use the keystroke sequence: [«1][PRG][TYPE][-ARRY].

The function [5ARRY] (create an ARRaY - see below) takes the objects from stack levels n+1, n,

n-1, ..., down to stack levels 3 and 2, and converts them into a vector of n elements. The object
originally at stack level n+1 becomes the first element, the object originally at level n becomes

the second element, and so on.

For example:

[SI[ENTER][3][+/-1[ENTER][~][* I[ALPHA][<][M][ENTER][3][ENTER] [<][PRG][TYPE][-ARRY],

produces the array:

[5 -3 ‘m'].

|dentifying, extracting, and inserting elements of a
vector

If you store a vector into a variable name, say A, you can identify elements of the vector by using

A(i), where i is an integer number less than or equal to the vector size. For example, create the

following array and store it in variable A: [-1. -2. -3. -4. -5.]:

[(<][01] [1] [+/-] [SPC](2] [+/-] [SPCI[3] [+/-] [SPC][4] [+/-] [SPC][5] [+/-] [ENTER]
[~][' J[ALPHA][A][ENTER] [STOW]

To recall the third element of A, for example, you could use:

[VAR] [1] "1 A 1 [100] [3] [ENTER] [~][EVAL] to recall the value A(3) to the stack.

Result: -3.

172 © 2000 - Gilberto E. Urroz

All rights reserved

You can operate with elements of the array by writing and evaluating algebraic expressions such

as:

‘A(2)+A(5)" [~][EVAL] Result: -7.
'‘A(1)-A(4)" [][EVAL] Result: 3.
‘A(3)*A(2)’ [~][EVAL] Result: 6.
"A(3)/A(5)" [~][EVAL] Result: .6
‘A(5)" [ENTER] [~][LN] [~][EVAL] Result: (1.6094, 3.1416).
'A(3)’ [ENTER] [«][e*] [~][EVAL] Result: 4.9787E-2
V (A(2)*2+A(4)*2)" [~][EVAL] Result: 4.4721
Etcetera.

More complicated expressions involving elements of A can also be written, for example:]

[EQW][~][Z] [ALPHA][<][J1[»]1[1][»]1[5]1[»][ALPHA][A][~ [ALPHA] [<][J][ENTER]
Result: 'Z(j=1,5,A(j))". [~][EVAL] Result: -15.

Note: On paper, you would write A(j) as A;, and would refer to the latter result as

The vector A can also be referred to as an indexed variable because the name A represents not

one, but many values identified by a sub-index.

You can change the value of an element of A, by storing a new value in that particular element.

For example, if we want to change the contents of A(3) to read 4.5 instead of its current value of
-3., use:

[410 . 1ISI[ENTER][~][* I[ALPHA][A][+] [0] [3][ENTER][STO]

To verify that the change took place use: [~][A]. The resultis now: [-1 -2 4.5 -4 -5].

If you have an array in the stack, you can extract a value from the array by entering an positive

integer number indicating the position of the element you want to extract, and then using the

function GET. This function is available by using [<1][PRG][LIST][ELEM][GET]. For example, place

array A in the stack, by using [r][A]. Then, enter [3][ENTER], and use

[<][PRG][LIST][ELEM][GET]. The result is, of course, 4.5, the element we just stored in A(3).

This operation, however, gets rid of the array in the stack.

To replace an element in an array located in the stack, enter the index of the element to be

replaced and the value that will replace the element. Then, use the function PUT. This function

is available through:

[<][PRG][LIST][ELEM][PUT]. For example, place array A in the stack, by using [VAR][~][A 1.

Then, enter [2][ENTER] [3][.]1[5][ENTER], and use [«][PRG][LIST][ELEM][PUT] to replace A(2) with

3.5. The result is the vector [-1. 3.5 4.5 -4. -5.].

To find the length of a vector you can use the function SIZE, available through [<][PRG][LIST]

[ELEM][SIZE]. For example, for vector A, use: [VAR][][A], and then through [<][PRG][LIST]

[ELEM][SIZE]. The result is { 5. }.

173 © 2000 - Gilberto E. Urroz

All rights reserved

To determine the position of the first occurrence of an element in an array enter the array in the

stack followed by the element of interest, the press through [~][PRG][LIST][ELEM][POS]. For

example, using A, try the following: [VAR][~][A 1[2][+/-][ENTER] [<][PRG][LIST] [ELEM][SIZE].

The result is { 5. }.

Arrays, vectors, and matrices

So far we have used the term vector to refer to a sequence of objects (numbers and algebraics)

enclosed between square brackets, and the terms matrix to refer to a collection of objects

(numbers and algebraics) arranged in rows and columns. Array is a generic term for any

arrangement of objects whose elements that can be identified by one, two, or more indices. The

number of indices necessary to identify elements in an array is known as the dimension of the

array. We can say, for example, that a vector is a one-dimensional array, while a matrix is a

two-dimensional array. Arrays are sometimes known as indexed variables.

Simple operations with vectors

Addition and subtraction operations with vectors require that the vectors involved in the

operation be of the same length. For example:

Example of addition: [-1. 2. 5. ‘a’][ENTER][2. 'B" -5. 1.][ENTER][+] will produce [1. '2.+B" 0.
‘a+1'].

Example of subtraction: Press [~][UNDO] to get back the two arrays listed earlier. Now, press [-

]. Theresultis[-3.'2.-B" 10. ‘a-1'].

Note: If you cannot see all the elements of an array on the stack, you can always launch the

matrix writer (as a matrix editor), by pressing [WV]. Then you can use the left- and right-arrow
keys ([«], [»]) to move about the vector.

To change the sign of a vector, simply use [+/-]. For example, [-1. 2] [+/-] produces [1. -2.].

Multiplication or division of a vector by a scalar (a simple number), is straightforward. For

example:

Multiplication by a scalar. [-2. 3. 5.][ENTER][5][x] Results in [-10 15 25].

Division by a scalar: [12. 6. -24.1[ENTER][6] [+] Resultsin[2. 1. -4.]

The VECTR menu

Multiplication of two vectors, and other vector operations, require us to use the VECTR menu

under MTH. To access this menu use: [<][MTH][VECTR]. The functions available are the

following:

[ABS][DOT J[CROSS][V-]J[-V2][->V3]

174 © 2000 - Gilberto E. Urroz

All rights reserved

Press [NXT] to show the second menu:

[RECTm][CYLIN][SPHER][1 II MTH]

Press [NXT] to return to the first menu. The operation of these functions is described below:

= The function ABS, also available through [-][ABS], applied to a vector A = [a; a; ... apn]

produces the Euclidean magnitude, or absolute value, of the vector, i.e., |A| = (a;? +a)’ +...
+an’) V2 For example:

[2. -3. 5.][ABS] results in 6.1644.

»& The function DOT calculates the dot product (or internal product) of two vectors A = [a;

ay .. ay] , and B = [by by ... by], written as AeB = a;-b; + ab, +... + ay-by. Notice that the dot
product of two vectors produces a scalar. Also, AsA = a;° +a,’ +... +a’ = |A|?. Examples:

[2. 3. -5.][ENTER][-1. 7. 4.][ENTER][DOT] produces -1.

[2. -3. 5.][ENTER][ENTER][DOT] produces 38 = |A|%. Thus, |A| = V38= 6.1644.

= The function CROSS is defined only for vectors with three components and represents the

cross, or external, product of two vectors A = [a; a, a3] , and B = [b; b, bs]. The result can

be written as:

AxB = [bz-a; - by-as asz-bi- bs-a; by-a; - aby].

Example, [-2. 3. 1][ENTER][5. 3. -2.][ENTER][CROSS] results in [-9. 1. -21.].

Note: [+][MATRICES][NXT][VECTR] also provide access to [DOT] and [CROSS] products for

vectors.

- The function [V-] decomposes a vector of size n in stack level 1, placing its elements,

from left to right, in stack levels n, n-1, ..., 1. (This only works with arrays whose elements

are all numbers). For example, [2. 3. -5. 7.][ENTER][V-], produces:

4: 2.

3: 3.

2: -5.

1: 7.

= The function [5V2] takes the terms in stack levels 2 and 1, and creates a two-

dimensional vector. For example: [5][+/-][ENTER][3][ENTER][-V2] produces [-5. 3].

, The function [-V3] takes the terms in stack levels 3, 2 and 1, and creates a three-

dimensional vector. For example: [1][ENTER][7][+/-][ENTER][2][ENTER][-V2] produces [1.

-7. 2.].

Press [NXT] to access the second menu. The functions available in the second menu are:

"- [RECTm]: This is the default coordinate system, the rectangular or Cartesian coordinate
system (x,y. 2).

[CYLIN]: This is the polar coordinate system (r, 6, 2).

- [SPHER]: This is the spherical coordinate system (p, 6, ¢).

175 © 2000 - Gilberto E. Urroz

All rights reserved

The functions RECT, CYLIN, and SPHER, are used to select a coordinate system for two- and
three-dimensional vectors. These functions were introduced in Chapter 3 (Changing the angle

mode and coordinate system). We will have more to say about using these functions in later

sections.

Vectors as physical quantities

A vector in two- or three-dimensions represents a directed segment, i.e., a mathematical object

characterized by a magnitude and a direction in the plane or in space. Vectors in the plane or in

space can be used to represent physical quantities such as the position, displacement, velocity,

and acceleration of a particle, angular velocity and acceleration or a rotating body, forces and

moments.

Operations with vectors

Vectors in two- or three-dimensions are represented by arrows. The length of the arrow

represents the magnitude of the vector, and the arrowhead indicates the direction of the vector.

The figure below shows a vector A, and its negative -A. As you can see, the negative of a vector

is a vector of the same magnitude, but with opposite sense.

A “A

Vectors can be added and subtracted. To illustrate vector addition and subtraction refer to the

figure below. Consider two vectors in the plane or in space, A and B, as shown in the figure

below, item (a). There are two ways that you can construct the vector sum, A+B: (1) By
attaching the origin of the vector B to the tip of vector A, as shown in the figure, item (b). In

this case, the vector sum is the vector extending from the origin of vector A to the tip of vector

B. (2) By showing the vectors A and B with a common origin, and completing the parallelogram
resulting from drawing lines parallel to vectors A and B at the tips of vectors B and A,
respectively, as shown in the figure below, item (c). The vector sum, also known as the

resultant, is the diagonal of the parallelogram that starts at the common origin of vectors A and

B.

Subtraction is accomplished by using the definition:

A-B=A+ (-B).

In other words, subtracting vector B from vector A is equivalent to adding vectors A and (-B),.
This operation is illustrated in the figure below, item (d).

176 © 2000 - Gilberto E. Urroz

All rights reserved

A+B

@) (b)

A

-B

A-B

(d)

A vector A can be multiplied by a scalar c¢, resulting in a vector cA, parallel and oriented in the

same direction as A, and whose magnitude is c times that of A. The figure below illustrates the

case in which c¢ = 2. If the scalar c is negative, then the aientation of the vector cA will be

opposite that of A.

The magnitude of a vector A is represented by |A|. A unit vector in the direction of A is a
vector of magnitude 1 parallel to A. The unit vector corresponding to a vector A is shown in the

figure below, item (a). The unit vector along the direction of A is defined by

A
e, =—.

| A]

By definition, |ea| = 1.0.

The projection of vector B onto vector A, Pg/a, is shown in the figure below, item (b). If 6

represents the angle between the two vectors, we see from the figure that Pg/a= |B|-:cos 8 =

|eal|-|B]|-cos 6, or

_|A]-|B]-cosO
BA —a.

[Al

177 © 2000 - Gilberto E. Urroz

All rights reserved

We will define the dot product, or internal product, of two vectors A and B as the scalar

quantity

AB =| A|-|B|-cos 6,

where 0 is the angle between the vectors when they have a common origin. Notice that AeB =

B.A.

A.B

|Al-B]
From the definition of the dot product it follows that the angle between two vectors can be

found from

0 = arccos

From the same definition it follows that if the angle between the vectors A and B is 6 = 90° = 1/2

rad i e., if Ais perpendicular (or normal) to B (ALB), cos 6 = 0, and AeB = 0. The reverse
statement is also true, i.e., if AeB = 0, then ALB.

The cross product, or vector product, of two vectors in space is defined as the vector C = AxB,

such that |C| = |A|- |B] sin 8, where 8 is the angle between the vectors, and A«C = 0 and B«C =
0 (i.e., Cis perpendicular to both A and B). The cross productis illustrated in the figure below.
Since there could be two orientations for a vector C perpendicular to both A and B, we need to

refine the definition of €C = AxB by indicating its orientation. The so-called right-hand rule
indicates that if we were to curl the fingers of the right hand in the direction shown by the

curved arrow in the figure (i.e., from A to B), the right hand thumb will point towards the

orientation of C. Obviously, the order of the factors in a cross product affects the sign of the

result, for the right-hand rule indicates that BxA = - C.

Three vectors A, B, and C, in space, having a common origin, determine a solid figure called a
parallelepiped, as shown in the figure below. It can be proven that the volume of the

parallelepiped is obtained through the expression Ae (BxC). This expression is known as the

vector triple product.

178 © 2000 - Gilberto E. Urroz

All rights reserved

Vectors in Cartesian coordinates

The mathematical representation of a vector typically requires it to be referred to a specific

coordinate system. Using a Cartesian coordinate system, we introduce the unit vectors i, j, and

k, corresponding to the x-, y-, and zdirections, respectively. The unit vectors i, j, and k, are

shown in the figure below. These unit vectors are such that

iej = iek = jek =0,

and

ixj=k, Jjxk=i, kxi=j, ixk=-, kxj=-i, jxi=-k.

n terms of these unit vectors, any vector A can be written as

A=Aci+Agj+ Ak,

where the values A,, Ay, and A,, are called the Cartesian components of the vector A.

179 © 2000 - Gilberto E. Urroz

All rights reserved

Using Cartesian components, therefore, we can also write B = B,i + Bj + B,k, and define the
following vector operations:

-* negative of vector: “A=- (Aci+ Aj + Ak) =-Aci-Agj- Ak

addition: A+B = (A+ By)i + (Ay+ By);j + (A+ B,) k.

wk subtraction: A-B = (A - By)-i+ (A, - Bj + (A, - B)k.

ES multiplication by a scalar, c: CA=c(Aci+ Ajj +Ak)=chAi+cAyj+ chk

“dot product: AB = (Ai + Aj + A,K)e(Bi + Bj + B,k) = AB, + AyBy + A,B, .

we magnitude: |A|? = AeA =A’ + A’ + A |A| = J(AeA) = (AC + A? + A,%) V2.

“unit vector: en=A/|A| = (Aci + Aj + AK)(AZ + AZ + AZ,

* cross product: AxB = (Aci+ Aj +A,k)x(Bi+Byj+B,k) =

(BA, - By-A,)i + (A,B,- B,-A); + (BA, - Ay-B.)k.

Calculating 2x2 and 3x3 determinants

The calculation of a cross product can be simplified if the cross product is written as a

determinant of a matrix of 3 rows and 3 columns (also referred to as a 3x3 matrix). A

determinant is a number associated with a square matrix, i.e., a matrix with the same number of

rows and columns. While there is a general rule to obtain the determinant of any square matrix,

we concentrate our attention on 2x2 and 3x3 determinants. Next, we present a simple way to

calculate the determinant for 2x2 and 3x3 matrices.

The elements of a matrix are identified with two sub-indices, the first representing the row and

the second the column. Therefore, a 2x2 and a 3x3 matrix will be represented as:

ay dp dp
a, dap

) ay dy, dy
a ay

ay dy, dySZ

The determinants corresponding to these matrices are represented by the same arrangement of

elements enclosed between vertical lines, i.e,

a, dap
5 a, Ud, dy

a, a,
51 dsp dss

180 © 2000 - Gilberto E. Urroz

All rights reserved

A 2x2 determinant is calculated by multiplying the elements in its diagonal and adding those

products accompanied by the positive or negative sign as indicated in the diagram shown below.

\ un’
a; “12

35 22
ty” ~

The 2x2 determinant is, therefore,

no |
=a) dy — a, dy.

21 22

A 3x3 determinant is calculated by augmenting the determinant, an operation that consists on

copying the first two columns of the determinant, and placing them to the right of column 3, as

shown in the diagram below. The diagram also shows the elements to be multiplied with the

corresponding sign to attach to their product, in a similar fashion as done earlier for a 22

determinant. After multiplication the results are added together to obtain the determinant.

~ ~N NO / 7

a; 2 33lag
NX /

a
ay 85; “23d 2
7X N

LEfafa 0

“g “a
Ge 0 0 ®@ @® ®

Therefore, a 3x3 determinant produces the following result:

a, a, 4a;

ay, Ay Ay|=a, Ay A514, Gy a; +a;;-4a,,4a5,

as; dz ds;

—(a;3-ay a; ta), aya; +a, a, -as;).

Determinants can be calculated in the HP 49 G calculator by using the keystroke sequence:

[<][MTH][MATRX][NORM][NXT][DET],

or

181 © 2000 - Gilberto E. Urroz

All rights reserved

[<][MATRICES][OPER][DET].

For example, calculate the following 3x3 determinant:

[<1] Opens external set of brackets to indicate a matrix

[<1001] [31[SPC]I5][SPCII2] Enters first row of a 3x3 matrix

>] [<1] [111+/-1[SPC][6][SPC][1] Enters second row of matrix

[»] [<1001] [4] [SPCI[5][SPC][7][+/-] Enters third row of matrix
[ENTER] Enter matrix into the stack
[<][MATRICES][OPER][DET] Calculate the determinant

The result is -214.

Cross product as a determinant

The cross product AxB in Cartesian coordinates can be expressed as a determinant if the first row

of the determinant consists of the unit vectors i, j, and k. The components of vector A and B

constitute the second and third rows of the determinant, i.e.,

i k
AXB=4, A, A,

B, B, B,
Xx

Co
nt

0

Evaluation of this determinant, as indicated above, will produce the result

AxB = (B,A, - ByA,)i + (A,B- BA) + (BA - AyB,) Kk.

Operations with 2- and 3-dimensional vectors in the
HP 49 G calculator

In this section we present examples of operations with 2- and 3-dimensional vectors using the

features of the HP 49 G calculator. The examples are taken from applications in different

physical sciences.

Example 1 - Position vector

The position vector of a particle is a vector that starts at the origin of a system of coordinates

and ends at the particle's position. If the current position of the particle is P(x,y,z), then the

position vector is

r = xi+yj+zk,

as illustrated in the figure below.

182 © 2000 - Gilberto E. Urroz

All rights reserved

If a particle is located at point P(3, -2, 5), the position vector for this particle is r = 3i -2j+5k. In
the HP 49 G calculator this position vector is written as [3 -2 5]. Press [ENTER] twice to keep two

extra copies of the vector in the stack. To determine the magnitude of the position vector use

[<][ABS]. The result is 'W38', if the calculator is in the Exact mode. To find a numerical result

use [][->NUM]. This will produce a value of 6.164414. You can write |r| = 6.164414. You

should have a copy of the position vector in stack level 2. With the magnitude in stack level 1,

pressing [] will produce a unit vector in the direction of r, i.e., e, = r/|r| = [0.4866 -0.3244
0.81111].

Example 2 - Center of mass of a system of discrete particles

Consider a system of discrete particles of mass m;, located at position P; (x;, yi, z), withi=1, 2,

3, ..., n. We can write position vectors for each particle as r; = x;i+y;:j+zik. The center of mass of

the system of particles will be located at a position ry, defined by

n

Somer,
i=1
—

Sm
i=1

r
cm

183 © 2000 - Gilberto E. Urroz

All rights reserved

A system of four particles is illustrated in the figure below.

center

of

mass

The following table shows the coordinates and masses of 5 particles. Determine their center of

mass.

i Xi yi Z; m;

1 2 3 512
2 -1 6 4 15

3 3 -1 2 25

4 5 4 7 10
5 5 3 2 30

First, enter a list of the masses {12 15 25 19 30} [ENTER]J[ENTER]. You will have two copies in the

stack. Next, enter the five position vectors ina list: { [235] [-164][3-12] [54-7][532]}

[ENTER]. User [x] [<][MTH][LIST][ZLIST] to calculate ¥ m;r;, i.e., the numerator in the formula

for rem. The result is [284 231 160]. Press [»] to swap stack levels 1 and 2. You should now

have the list of masses in stack level 1. User [<][MTH][LIST][ZLIST] to calculate £ m;, i.e., the

denominator in the formula for ry,. Finally, press [+] to get re, = ['71/23" 231/92" '40/23'], in

exact mode. Use [~][-NUM] to get the value, r., = [3.0869 2.5108 1.7391].

Example 3 - Resultant of forces

The figure below shows a vertical pole buried in the ground and supported by four cables EA, EB,
EC, and ED. The magnitude of the tensions in each of those cables, as shown in the figure, are T;
=150N, T, =300N, T3 =200 N, and T4 = 150 N.

To find the vector resultant of all those forces you need to add the four tensions written out as

vectors. The tension in cable i will be given by T; = T;-e;, where e; is a unit vector in the direction

184 © 2000 - Gilberto E. Urroz

All rights reserved

of the cable where the tension acts. (The tension vectors act so that the cables pull away from

point E, where the cables are attached to the pole.)

z

Writing out tension T;

Tension T; acts along cable EA. To determine a unit vector along cable EA, you need to write the
vector rep = rp - rg, where ry is the position vector of point A (the tip of the vector rea), and rp is

the position vector of point A (the origin of the vector rea). The coordinates of these points,

obtained from the figure, are A(-1.0 m, -1.1 m, 0) and E(0, 0, 2.5 m). Therefore, we can write

re = (2.5k) m, and ra = (-i -1.1j) m.

In the HP 49 G calculator we will enter rg and ra in this order: [1 -1.1 0] [ENTER] [0 0 2.5]

[ENTER]. To obtain, rea = ra- rg, just press [-], the result is [-1 -1.1 -2.5], or , rea = -i -1.1j-2.5k.

To find the unit vector along which Ty acts (i.e., along cable EA), press [ENTER] to get a second

copy of the vector rga. Then, use [-][ABS] to obtain the magnitude of this vector. (|rea| =

2.909). Finally, press [] to get the unit vector, ega = rea/ |rea| = [0.344 - 0.378 -0.860] = -

0.344i - 0.378j -0.860k. (To verify that this is indeed a unit vector, press [ENTER] to keep an
additional copy of the vector, then press [<1][ABS]. You should get as a result 1.000. Press [<]

to drop this result from the stack.)

With the unit vector eg = [0.344 0.378 0.860] in stack level 1, enter the magnitude of Ty, i.e.,

T,=150 N. [1][5][O][ENTER], and press [x] to multiply it with the unit vector.

The result is the vector [-51.57 -56.73 -128.93], or T, = (-51.57i -56.73j -128.93k) N.

185 © 2000 - Gilberto E. Urroz

All rights reserved

Writing the vector that joins twopoints in space

The vector thatjoints points A and B, where A(xa, ya. za) is the origin and point B(xg, yg, zs) the

tip of the vector, is written as

rag = rg - ra.= (xg - xp)-i+(yg - yAj+(zs - za) k,

where rp = xai+yaj+zak is the position vector of point A, and rg = xg-i+yg:j+zg-k is the position

vector of point B. This operation is illustrated in the figure below.

Relative position vector

The previous operation can also be interpreted as obtaining the relative position vector of point

B(x, ys. zg) with respect to point A(xa, ya, za), and written as

rg/a=rg- ra.= (xg - xa)i+(ys - ya):j+(zs - za) k.

Writing out tensions T,, T3, and Ty

Having developed a procedure to determine the unit vector along any of the cables, we can

proceed to write out the vectors representing the tensions T;, Tz, and Ts. First, we determine

the coordinates of relevant points from the figure describing the problem. These points are: A(-

1.0m, -1.1m, 0) B(0.8 m, -1.0 m, 0.0), C(-1.5m, 0.0, 0.5m), D(1.2 m, 1.3m, 0.0), and E(O, O,

2.5 m). The tensions, as vectors, will be written as T, = Teg, T3 = T3-egc, and T4 = Tsep.

(Recall that T, = 300 N, T; = 200 N, and T4 = 150 N.). Thus, we need to write out the vectors reg,

rec. and rep, find their magnitudes, |reg|. [rec]. and |rep, and calculate the unit vectors egg =

res/ | res]. eec = rec/ |rec|. and egp = rep/ | rep, in order to obtain T,, Tj, and T4. Calculating each

tension at a time, for T,, along cable EB, we will follow the following steps:

[0.8 -1.0 0.0] [ENTER] Enter coordinates of point B as position vector rg

[0.00.02.5] [ENTER] Enter coordinates of point E as position vector rg

[-] [ENTER] Calculate reg = rg - rg, and keep an extra copy.

[+][ABS] Calculates the magnitude |rgg|.

[+] Calculates the unit vector egg.

186 © 2000 - Gilberto E. Urroz

All rights reserved

[31[O][O][ENTER] [x] Enter the magnitude T, and calculate T,.

The result is the vector [85.44 -106.80 -267.01], or T, = (85.44i -106.80j -267.01k) N. The

reader is invited to follow this procedure to obtain for cable EC, T3 = (-120i -160k) N, and for

cable ED, T4 = (58.77i +63.67j -122.44k) N.

By the time you finish calculating the four tension vectors, your calculator’s stack should look

like this:

-51.57 -56.73 -1..

85.44 -106.80 -2..

-120.00 0.00 -16..

58.77 63.67 -122..R
N
W
b

 —
_
e
—
—

The stack holds tensions Tq, T,, T3, and Ty, in stack levels 4, 3, 2, and 1, respectively. To find

the resultant of these four forces, namely, R= Ty + T, + T3 + T4, wejust need to press the [+] key

three times to get

[-27.36 -99.86 678.38], or R = (-27.36i -99.86j -678.38k) N.

Example 4 - Equation of a plane in space

The equation of a plane in space, in Cartesian coordinates, can be obtained given a point on the

plane A(xaYa.za). and a vector normal to the plane n = n,i+nj+n,k. Let P(x,y,z) be a generic

point on the plane of interest. We can form a relative position vector rpsp = rp - ra = (x-xa)-i+(y-

ya):j+(z-za)-k, which is contained in the plane, as shown in the figure below.

PE laneplant~~

Pia pd
AR YiAY ’

pd P(xy. 2) pd

Because the vectors n and rp,are perpendicular to each other, then, we can write nerp,a = 0, or

(ne i+nyj+n, k)e((x-xa)-i+(y-ya)j+(z-za) k) = 0,

which results in the equation

Ne-(x-xp) + ny-(y-ya) + n,(z-zp) = 0.

This result can be obtained using the HP 49 G calculator as follows:

(<1101] Open square brackets for vector n
[m1] *] [ALPHA][<][N] [ALPHA][<][X] [»] [SPC] Enter 'nx’_
[~]1[1 [ALPHA][<][N] [ALPHA][<][Y] [»] [SPC] Enter 'ny’_

187 © 2000 - Gilberto E. Urroz

All rights reserved

[—1["1 [ALPHA] [«][N] [ALPHA][<][Z]
[ENTER]

[<1]
[10] [ALPHA][«][X] [»] [SPC]
[10] [ALPHA][«<][Y] [»] [SPC]
[10] [ALPHA][]([Z]
[ENTER]

(«1001
[~]10'] [ALPHAI[<][X] [ALPHA][A] [»] [SPC]
[~]1['] [ALPHA][+][Y] [ALPHA][A] [»] [SPC]
[10] [ALPHA][«][Z] [ALPHA][A]
[ENTER]

[-]
[<2] [MTH][VECTR][DOT]

Let's try to find the equation of a plane if the normal vector is n =

Enter 'nz’_

Vector n is shown in stack

Open square brackets for vector rp

Enter 'x'_

Enter 'y'_
Enter 'z’_

Vector rp is shown in stack

Open square brackets for vector ra

Enter 'xA’_

Enter 'yA'_

Enter 'zA'_

Vector rp is shown in stack

Calculates rp/p = rp-rp

Calculates nerp/p

Ji + 2j -k, and the plane

includes the point A(5, 0, -1). Using the HP 49 G calculatorthis is accomplished as follows:

[32-1] [ENTER]
['x" 'y’ 'z'] [ENTER]
[50 ’ [ENTER]
[-
[

]
«1][MTH][VECTR][DOT]

Enter n = 3i + 2j -k
Enter generic point P(x,y,z) as a vector
Enter point A(5, 0, -1) as a vector
Calculate rp/a

Calculate nerp/p

which results in '-1%(z+1)+2%y+3*(x-5)". Use [][ALG][EXPA] to obtain '3*x+(2*y-(z+16))".

[The equation of the plane, of course, can be expanded, by hand, to read: 3x + 2y-z-16=0]

To verify that the point A(5, 0, -1) satisfies the equation, first, press [ENTER] to keep a second
copy of the expression available for future use. Then, enter the list

{'x"5"'y" 0 'z" -1}[ENTER],
and use

[~1[| J[ENTER]

to replace the values in the expression. The result is

0.

Example 5 - Moment of a force

' 3*5+4(2*0-(-1+16))". Press [~][EVAL] to get

The figure below shows a force F acting on a point P in a rigid body. Suppose that the body is
allowed to rotate about point O. Let r be the position vector of point P with respect to the point

of rotation O, which we make coincide with the origin of our Cartesian coordinate system. The

moment of the force F about point O is defined as M = rxF.

188 © 2000 - Gilberto E. Urroz

All rights reserved

Referring to the figure of Example 3, if we want to calculate the moment of tension Tq = (-51 57i

-56.73j -128.93k) N, about point O, we will use as the position vector r of the force's line of

action through the pole, the vector roe = (2.5k) m. The moment M; = roexTq, can be calculated as

follows:

[0. 0. 2.5][ENTER] Enter roe

[-57.51 -56.73 -128.93] [ENTER] Enter T,
[<][MTH][VECTR][CROSS] Calculate My = roexT;

The result is [141.825 -143.775 0], or My = (141.825i-143.775j) mN.

To find the magnitude of the moment, use [<1][ABS], thus, |M;| = M; = 201.954 m-N.

Note: Moments are vector quantities and obey all rules of vectors, i.e., they can be added,

subtracted, multiplied by a scalar, undergo internal and external vector products. As an

exercise, the reader may want to calculate the moments corresponding to the other tensions in

Example 3, as well as the resultant moment from all four tensions.

Example 6 - Cartesian and polar representations of vectors in the x-y

plane

A position vector in the x-y plane can be written simply as r = x-i+yj. Let its magnitude be r =

|r|. A unit vector along the direction of r is given by e, = r/r = (x/r)-i+(y/r);j. If we use polar
coordinates, we recognize

x/r = cos 8, and y/r = sin 6,

thus, we can write the unit vector as

e, =r/r = cos 6-i+ sin 6.

189 © 2000 - Gilberto E. Urroz

All rights reserved

Thus, if we are given the magnitude, r, and the direction, q, of a vector (i.e., its polar

coordinates (r,8)), we can easily put together the vector as

r=re =r (cos i+ sin 0).

This result is illustrated in the figure below.

Polar to Cartesian

In the HP 49 G calculator entering the polar coordinate description of a vector is accomplished
very easily by entering the vector [r £6], where the symbol Z is obtained by using

[ALPHA][—][6]. If the Cartesian (or rectangular) coordinate system is selected, then the

calculator automatically produces the Cartesian representation of the vector. Make sure to

check the top of the display to verify which angular units and coordinate system is currently

selected. For example, for angular units set to degrees ([<1][PROG][NXT][MODES][ANGLE][DEG]),

and coordinate systems set to rectangular ([<1][MTH][VECTR][NXT][RECT]), the top line of the

display will start with DEG XYZ.

For example, given a vector with magnitude r = 6.0, and a direction q = 25°, enter:

[<1] Open square brackets for vector

[6]1[SPC] Enterr, i.e., 6_
[ALPHA][][6] Enter the “angle” symbol, Z

[2][5] Enter angle value. Stack shows [6 £25].
[ENTER] Converts vector to Cartesian components

The result is the vector [5.4378 2.5357], i.e., r = 5.4378-i+ 2.5357;j.

Cartesian to Polar

A quick way to obtain the magnitude and direction of a vector in the plane given its Cartesian

components is to enter the vector as [x y], and use the conversion to polar coordinates:

[<][MTHJ[VECT][NXT] [CYLIN] to obtain the vector as [r £6]. For example, to get the polar

coordinates corresponding to r = 2-i+3:j, use

[2 3][ENTER] [«]J[MTH][VECT][NXT][CYLIN], to get [3.61 £56.31], i.e., r = 3.61 and 6 = 56.31°.

190 © 2000 - Gilberto E. Urroz

All rights reserved

Example 7 - Planar motion of a rigid body

In the study of the planar motion of a rigid body the following equations are used to determine

the velocity and acceleration of a point B (vg, ag) given the velocity and acceleration of a
reference point A (va, aa):

Vg = Vp + MAB X I g/A

2
ag = ap + 0ag X rg/a- Wag “I B/A.

The equations also use the angular velocity of the body connecting A and B, ®ag, whose

magnitude is wap; the angular acceleration of the body connecting A and B, apg, and the relative

position vector do point B with respect to point A, rg/a. The following figure illustrates the

calculation of relative velocity and acceleration in planar motion of a rigid body.

ip
v
B

Vi

B

Fo ’
¥

A y (

th “as 8 Wm,x a Sa AB C4B

velocities accelerations

To present applications of this equation using the HP 49 G calculator, we use the data from the
mechanism shown in the figure below.

C

136°

~~ 1360 0.75 ft

B ————

v v 45°

025 ft &

¥

schematic

191 © 2000 - Gilberto E. Urroz

All rights reserved

In this mechanism there are two bars AB and AC pin-connected at B. Bar AB is pin supported at
A, and bar BC is attached through a pin to piston C. Piston C is allowed to move in the vertical
direction only. At the instant shown the angular velocity and acceleration of bar AB are 10 rad/s
and 20 rad/s’ clockwise. You are asked to determine the angular velocity and acceleration of bar
BC and the linear velocity and acceleration of piston C.

Angular velocity and acceleration

Angular velocities and accelerations in the x-y plane are represented as vectors in the z

direction, i.e., normal to the xy plane. These vectors are positive if the angular velocity or

acceleration is counterclockwise. In general, thus we can write, @ag = Zwagk, and ag = toppk.

For the data in this problem we can write, therefore,

Oa = (-10k) rad/s, ops = (-20k)rad/s’, ag; = (0pc-k) rad/s, and age = (opck).

Relative position vector

The relative position vectors of interest in this problem are rg,a and rcs, which are obtained as

follows:

+ To obtain rg/a , we can use HP 49 G vectors as follows (set coordinates to rectangular,

angles to degrees): [«][[1] [.][2][5]1[SPC][ALPHA][~][6][1][3][5][ENTER]. The result will be

displayed in rectangular coordinates as [0.177 0.177]. Notice that for the xy coordinate
system shown, the angle corresponding to vector r ga is 8g/a = 90° + 45° = 135°. Thus, we
can write

ra/=(-0.177i + 0.177j)ft.

“ For ress , the angle 8c= 90° - 13.6° = 76.4%. Thus, wecan write: [«][(1] [.1[7](5][SPC]
[ALPHA][~]1[6][71[6][. 1[5][ENTER]. This result in the vector [0.175 0.729], or

rcm= (0.175i + 0.729j)ft.

Velocity

Since point A is fixed point, va = 0, and we can write vg = @WppX rg/a = (-10k) rad/s x (-0.177i +

0.177j)ft. Using the HP 49 G calculator we would write:

[0 0 -10][ENTER][-0.177 0.177 O]J[ENTER] [<][MTH][VECTR][CROSS]

to get [-1.77 -1.77 0], or

[Note: Radians are basically dimensionless units, thus rad-ft = ft, rad-m = m.

To find the velocity of point C, we use

ve = vp + ge X res = (-1.77i-1.77)) ft/s + (wack) rad/s x (0.175i + 0.729j)ft.

Using the HP 49 G calculator we follow these step (Recall that to get you use [ALPHA][—][V]):

192 © 2000 - Gilberto E. Urroz

All rights reserved

[-1.77 -1.77 O][ENTER] Enter vg

[00 'wBC'][ENTER] Enter gc

[0.175 0.729 O][ENTER] Enter rcs

[<][MTH][VECTR][CROSS] Calculate @gc X reg =

[+] Calculate vg + @gc X re= VC

The result is ['-1.77-0.729*wBC" '-1.77+wBC*.175' 0], or

ve = ((-1.77-0.729-wgc)-i + (-1.77+0.175-wgc):j) ft/s.

The figure above shows that the piston C is forced to move in the vertical direction, thus, the

velocity of point C can be written as

ve = (vc) ft/s.

Equating the two results presented immediately above for vc we get:

(-1.77-0.729-wpe) i + (-1.77+0.175-03¢) :j = O-i + vcjj.

Since the x and ycomponents of the two vectors in each side of the equal sign must be the

same, we can write the system of equations:

-1.77-0.729-0¢c = 0

-1.77+ 0.175-0¢c = vC

Solution of equations - one at a time

The solution of this system of two linear equations in two unknowns (wgc and w) can be

accomplished with the HP 49 G calculator as follows:

1. Decompose the vector left over from the previous calculation by using

[<][PRG][TYPE][OBJ-].

2. Press [«][<] to drop the contents in the first and second stack levels.

3. Press [»] to swap new contents of levels 1 and 2 in the stack.

4. Enter [0][~][=] to construct the equation: '-1.77-.729*wBC=0".

5. Enter the name of the variable to be solved for:

[10 I[ALPHA][~][V][ALPHA][B][ALPHA][C][ENTER].

6. Use [~][ALG][SOLVE] to obtain '®BC=-2.42798353909".

7. Press [P] to swap new contents of levels 1 and 2 in the stack once more.

8. Enter [~][' J[ALPHA][«][VI[ALPHA][C][ENTER] [][=] to construct the equation

'-1.77+wBC*.175=vC’

9. Press [P] yet once more to swap new contents of levels 1 and 2 in the stack.

10. Use [—][ALG][SUBST] to replace the value of WBC into the equation built in step 8.

11. Press [~][EVAL] to get '-2.198489711934=vC".

193 © 2000 - Gilberto E. Urroz

All rights reserved

Thus, the solution of the system of equationsis:

apc = -2.42 rad/s, and vg = -2.198 ft/s.

The negative sign in ogc means that the angular velocity is clockwise. The negative sign in vc
means that point C is actually moving downwards in the vertical direction.

Acceleration

Again, because A is a fixed point, ap = 0. Thus, the acceleration of point B is given by

ag = Op X I g/a- Og’ * TF g/a = (-20K)rad/s® x (-0.177i + 0.177j)ft - (10 rad/s)’x (-0.177i + 0.177j)ft

To use vectors in the HP 49G calculator we will re-write the known data as follows (no units will

be used, it is understood that system of units is consistent):

opp = [00-20] ; oa =10; and, rg/a=[-0.177 0.177 0].

To calculate ag from: ag = Olas X IF ga - ng’ - r g/a use the following keystroke sequence:

(=1001 1007107] [+/-1ISPC] [1[11[71(71(SPC][O] [ENTER] Enter r g/a
[ENTER] Copy r g/a

[11001] [x4 [+/-] Enter -apg
[x] Calculate - pg’ “Tr B/A

»] Place r g/a in level 1

[<][01] [0J[SPC][O][SPC][2][O][+/-][ENTER] Enter opp
[»] Place r g/a to level 1, app to level 2.
[<][MTH][VECTR][CROSS] Calculate oipg X r g/a

[+] Calculate apg X r g/a - ong’ ‘Tr g/A = ap

The result is [21.240 -14.160 0.000], or

ag = (21.24i -14.16j)ft/s°.

To calculate the acceleration of point C we use:

ac = ag + Oc X ress - aac’ ress =

(21.24i -14.16j)ft/s? +(opck)x (0.175 + 0.729j)ft - (-2.42 rad/s)%-(0.175i + 0.729j)ft

[21.24 -14.16 O][ENTER] Enter ag

[0.175 0.729 O]ENTER] Enter rcp

[ENTER] Copy ress

[21 . 1[41[2][+/-1[1 [x2] [+/-] Enter -axyc
[x] Calculate -pc’re/s
[»] Place rep in level 1

[00 'aBC'][ENTER] Enter ogc
»] Place rcp to level 1, age to level 2.

[<][MTH][VECTR][CROSS] Calculate ogc Xr ¢/B

194 © 2000 - Gilberto E. Urroz

All rights reserved

[+] Calculate Oigc X rca - onc’ “Tr C/A

[+] ag + Olag X I g/a- Ops” * F g/A= ac

The result is ['21.24+(-1.02487-0.729"aBC)" '-14.16+(-4.2693156+0aBC*.175)" 0], or

ac = ((21.24-1.02487-0.7290c) i+(-14.16+(-4.2693156+0.175-0¢))-j) ft/s’.

Also, because the motion of point C is in the vertical direction, we can write

ac = acj.

Equating the two expressions for the vector aC shown above, we get the following equations:

21.24-1.02487-0.729-08¢c = O,

-14.16+(-4.2693156+0.175-05¢ = ac.

Solution ofa system of linear equations using matrices

The solution of this system of two linear equations in two unknowns (wsc and w) can be

accomplished with the HP 49 G calculator as follows:

1. Decompose the vector left over from the previous calculation by using

[<][PRG][TYPE][OBJ-].

2. Press [«][<] to drop the contents in the first and second stack levels.

3. Press [][EVAL] to simplify the equation to '.175*aBC-18.4293156'

4. Press [P] to swap new contents of levels 1 and 2 in the stack.

5. Press [][EVAL] to simplify the equation to '-(.729*aBC-20.21513)"

6. Enter [0][r][=] to construct the equation: '-(.729*aBC-20.21513)=0".

7. Press [»] to swap new contents of levels 1 and 2 in the stack.

8. Enter [~][' I[ALPHA][+][A]I[ALPHA][C][ENTER] [][=] to construct the equation:

-1.77+wBC.175=aC’

9. At this point you'll have two equations in your stack. In order to solve them simultaneously,

you need to re-write them to look like this:

'aC-.175"aBC=18.4293156"
'.729*aBC=20.21513'

Or, as a matrix equation as:

1 0.175] a. [18.4293156
0 0.729 [oe | 2021513

195 © 2000 - Gilberto E. Urroz

All rights reserved

This matrix equation can be solved by first entering the right hand-side vector, then entering

the matrix

of coefficients, and, finally, dividing the two of them. This follows from writing the matrix

equation as

Ax =b, thus, x = Ab (or b/A).

10. Enter the right-hand side vector as [18.4293156 20.21513][ENTER].

11. Enter the matrix of coefficients [[1 -0.175] [0 0.729]][ENTER].

12. Divide the vectorin stack level 2 by stack level 1, [+]. The result is: [23.2821 27.7300], or

ac = 23.2821 ft/s’, age = 27.7300 rad/s’.

We have presented here two methods for solution of equations. These methods, and others, are

presented in more detail in a different chapter.

Row vectors, column vectors, and lists

The vectors we have used so far in this chapter are presented as row vectors, i.e., their elements

are written in a horizontal row enclosed in square brackets. This format is preferred for

operations that are typical of vectors, such as dot and cross products. For other applications,

for example pre-programmed statistical functions in the HP 49 G calculator, you may want to

write your vectors as column vectors. A column vector is basically a matrix with one column and

many rows. Thus, you can enter data for a column vector by enclosing each data value between

square brackets within an external pair of square brackets, for example: [[1.2] [2.5] [3.2] [4.5]

[6.2]][ENTER]. This data entry represents the column vector,

1.2

2.5

3.2

4.5

6.2

You can verify this format in the matrix editor by pressing [¥]. The matrix editor will show the

data occupying only the first row of the spreadsheet. Press [ENTER] to return to normal
calculator display.

Transforming a row vector into a column vector

As an example, enter the vector [1.2 3.2 -4.5 7.2 3.1][ENTER]. Then , decompose the vector

by using [«][PRG][TYPE][OBJ—]. This operation will place the elements of the vector in stack

levels 2 and above, and will also place a list { 5 } in stack level 1. The list indicates the size of

the vector. (Note: You could re-build the vector at this point by pressing [SARRY].) To

generate a column vector using the elements of the original row vector, use the following

keystrokes:

196 © 2000 - Gilberto E. Urroz

All rights reserved

[110+] Creates the list {5 1} meaning 5 rows and 1
column

[+][PRGI[TYPE][— ARRY] Creates the column vector

Transforming a column vector into a row vector

Using the result from the previous exercise, use the following keystrokes:

[<][PRG][TYPE][OBJ—] Decomposes the vector. Matrix size shown in

level 1

[OBJ] [«][-LIST] Creates the list { 5 } in stack level 1
[- ARRY] Creates the row vector

The result is [1.2 3.2 -4.5 7.2 3.1].

An alternative approach using the original column vector: [[1.2] [2.5] [3.2] [4.5] [6.2]][ENTER],

is to use:

[<][PRG][TYPE][OBJ-] Decomposes the vector. Matrix size shown in
level 1

[<][MTH][LIST][REVLI] Creates the list { 1 5} in stack level 1

[<][PRG][TYPE][- ARRY] Creates the row vector

Notice that the result is now shown as [[1.2 3.2 -4.5 7.2 3.1]]. Although this format shows two

sets of square brackets, the vector operations defined earlier apply to this alternate vector

format.

Transforming a list into a vector

Enter the list {1.2 -5.2 3.5 2.7}. To create a row vector use the following keystrokes:

[<][PRG][TYPE][OBJ=] Decomposes the list. List size shown in level 1

[1][-LIST] Creates the list { 4}
[- ARRY] Creates the row vector with a single set of
brackets

Alternatively, enter the list {1.2 -5.2 3.5 2.7}. Then use the following keystrokes:

[<][PRG][TYPE][OBJ-] Decomposes the list. List size shown in level 1

[1] [ENTER] [»] [2][LIST] Creates the list {14}

[— ARRY] Creates the row vector with double set of

brackets

To create a column vector, for the list under consideration, i.e., {1.2 -5.2 3.5 2.7}, use:

[<]1[PRG][TYPE][OBJ-] Decomposes the list. List size shown in level 1

[1] [ENTER][2][-LIST] Creates the list { 4 1}

[— ARRY] Creates the column vector

197 © 2000 - Gilberto E. Urroz

All rights reserved

Transforming a vector (or matrix) into a list

Enter the vector [1T 2 3 4 5], then use [<][MATRICES][OPER][AXL] (AXL stands for Array

transformed to List), toget {1 2 3 4 5}.

198 © 2000 - Gilberto E. Urroz

All rights reserved

Matrices and linear algebra
A matrix is a rectangular arrangement of numbers in rows and columns enclosed in brackets.

Examples of matrices follow:

- A matrix with one row and three columns (a 1x3 matrix) is basically the same as a three-

dimensional row vector, e.g.,

[5.6.-2.]

wk A matrix with one column and five rows (a 5x1 matrix) is the same as a column vector of

five elements, e.g.,

= The following is a matrix of two rows and four columns (a 2x4 matrix):

-5 2 3 0

11 -7 0 -1

= A matrix can have variables and algebraic expressions as their elements, for example:

al, — 2A b

x a, = 24

we A matrix can have complex numbers as elements, for example:

—1+5i 3

2i wT —5i

5_id2 ee"?

199 © 2000 - Gilberto E. Urroz

All rights reserved

Definitions

“The elements of a matrix are referred to by using two sub-indices: the first one

representing the row, and the second one the column where the element is located. A

matrix A with n rows and m columns can be represented by

a, a, AN a,, ay m

a, a, AN a,, a,

A= M M O M M

a, a,» \ a,1m a,1m

a,, a,, A a,mo aym

Thus, a generic element of matrix A belonging in row i and columnj will be written as a;; or

aj. The matrix A, itself, can be written in a simplified form as

Arm = [aj l.

= A matrix having the same number of rows and columns is called a square matrix. The

following is a 3x3 square matrix:

-25 42 20

0.3 1.9 238

2 -0.1 05

% The elements of a square matrix with equal sub-indices, i.e., ai, azz, ..., ann, belong to

the matrix’s main diagonal.

12.5 0 0

0 -92 0

0 0 0.75

+ A diagonal matrix is a square matrix having non-zero elements only in the main diagonal.

An example of a 3x3 diagonal matrix is:

1 00
I,,=|0 1 0

0 0 I

-* A diagonal matrix whose main diagonal elements are all equal to 1.0 is known as an

identity matrix, because multiplying | by any matrix results in the same matrix, i.e.,

Al. The identity matrix is typically given the symbol I. The following is a 3x3 identity
matrix:

200 © 2000 - Gilberto E. Urroz

All rights reserved

Matrices as tensors and the Kronecker's delta function

A sub-indexed variable, such as those used to identify a matrix, is also referred to as a tensor.

The number of sub-indices determines the order of the tensor. Thus, a vector (see Chapter 9) is

a first-order tensor, and a matrix is a second order tensor. A scalar value is referred to as a zero-

th order tensor.

The Kronecker's delta function, 8; is a tensor function defined as ; = 1.0, ifi=j, and §;, = 0, if

i#J.

Using the Kronecker 's delta function, therefore, an nxn identity matrix can be written as

lixn = [6] .

- A tridiagonal matrix is a matrix having non-zero elements in the main diagonal and the

upper and lower diagonals adjacent to the main diagonal. Tridiagonal matrices typically

arise from numerical solution of partial differential equations, and, more often than not, the

terms in the diagonals off the main diagonal are the same. An example of a 5x5 tridiagonal

matrix follows:

-25 4 0 0 0

2 =-35 2 0 O

0 -2 65 =-2 0

0 0 3 -4 3

0 0 0 0 5

Matrix operations

= The transpose of a matrix results from exchanging rows for columns and columns for

rows. Therefore, given the matrix Apm = [aj], of n rows and m columns, its transpose matrix

is Alm = la’; 1, of m rows and n columns, such that a’; =a; (i=12,....,nj=12, ..,m).

w& Consider the matrices Am = [aij], and Bum = [bj], and Crum = [cjj]. The operations of

addition, subtraction, and multiplication by as scalar, are defined as:

- Addition: Cixm = Anxm + Baxm: implies cij = aj; + bjj.

* Subtraction: Coxm = Anxm + Baxm, implies cij = ajj +

bj;.

- Multiplication by a scalar, k: Coxm = k-Anxm, implies cij = k-ajj.

Matrix multiplication requires that the number of rows of the first matrix be equal to the

number of columns of the second matrix. In other words, the only matrix multiplication

allowed is such that,

201 © 2000 - Gilberto E. Urroz

All rights reserved

ArmBmp = Cop '

with the elements of the matrix product given by

m

c, => a, by, (=12..,nj=12,.,p).
k=1

Schematically, the calculation of element cij of a matrix product, Cn.p = AnxmBmxp. is shown

below:

an Gy tt By tt Qu Qe yy by by; bn by,

an Ay ttt Gg tt Qo Gon by by Ey; byya bry

5 &1 Ga @; x Sima Fw (P| Pra bia by,5 bya bg,

Bull B12 00 pas 7 Fpamal Pom bp bp12 Dory bry Opry

Zyl ya tt Qk or Qem-1 Lym bya by by; bry -1 bry
v

j-th column

Thus, element c;; of the product results from the summation:

Cij = arbi; + aizby; +...t aik-by; +... + dim bm-1, + ai,mbm,

which is the term-by-term multiplication of the elements of row i from A and column j from

B which then are added together.

Note: Matrix multiplication is, in general, non-commutative, i.e., AB # B-A. In fact, if one

of these products exist, the other may not even be defined. The only case in which both A-B

and B-A are defined is when both A and B are square matrices of the same order.

Einstein's summation convention for tensor algebra

When developing his general theory of relativity, Albert Einstein was faced with the daunting
task of writing huge amounts of tensor summations. He figured out that he did not need to write

the summation symbol, X, with its associated indices, if he used the convention that, whenever

two indices were repeated in an expression, the summation over all possible values of the

repeating index was implicitly expressed.

Thus, the equation for the generic term of a matrix multiplication, expressed above as a

summation, can be simplified to read

Cij = aik-byj, (i =1,2, .., nj =1,2, .., p).

Because the index k is repeated in the expression, the summation of all the products indicated by

the expression is implicit over the repeating index, k= 1, 2, ..., m.

202 © 2000 - Gilberto E. Urroz

All rights reserved

The dot or internal product of two vectors of the same dimension (see Chapter 9), a = [a7 a, ... a,]

and b = [by b; ... by], can be expressed, using Einstein's summation convention, as

aeb = a;-b;, or aeb = a, by, or even aeb = a,b,

The repeating index in this, or in the previous, expression is referred to as a dummy index and

can be replaced by any letter, as long as we are aware of the range of values over which the

summation is implicit.

- The inverse of a square matrix A,x,, referred to as A, is defined in terms of matrix

multiplication and the nxn identity matrix, 1, as

AA'=ATA=1.

Entering matrices in the HP 49 G stack

Using the matrix editor

As with the case of vectors, discussed in Chapter 9, matrices can be entered into the stack by

using the matrix editor. For example, to enter the matrix:

-25 42 20

03 1.9 28],

2 -=0.1 05

first, start the matrix writer by using [<][MTRW]. Make sure that the option [GO—m] is selected.

Then use the following keystrokes:

[210 . 1[5][+/-1[SPCI[4][. 1[2][SPC][2] [ENTER] Enter first row.

(v][«][«][«] Move cursor to first element of second
row.
[. JIBIISPCI[1][. 1[91[SPC][2][. 1[8][ENTER] Enter second row. Cursor moves to 3"

row.
[21[SPCI[. 1[11[+/-1[SPCI[. 1[5][ENTER] Enter third row. Cursor moves to 4'" row.

[ENTER] Enters matrix into stack, quits matrix

writer.

If you have selected the textbook display option (using [MODE][DISPLAY] and checking off
¥Textbook), the matrix will look like the one shown above. Otherwise, the display will show:

3:

2:

1: [[-2.5 4.2 2]

[.3 1.9 2.8 1]

[2 -.1 .5 11

[Note: Details on the use of the matrix writer were presented in Chapter 9 |

203 © 2000 - Gilberto E. Urroz

All rights reserved

Typing in the matrix directly into the stack

The same result can be achieved by entering the following directly into the stack:

[<1]
(1001 (210. 108)[+/-1[SPC][4][. 1[2][SPC][2][»]
(«1001 [- 1(31(SPCI[1][. 1[S][SPCI[2][.][8][»]
(«1001 [21(SPCI[. 1[7][+/-1[SPCI[. 1(5]
[ENTER]

Opens outer set of square brackets.

Type in first row of matrix as a vector.

Type in second row of matrix as a vector.

Type in third row of matrix as a vector.

Enter matrix into the stack.

Examples of matrix operations

In this section we will define a number of variables in which matrices of different dimensions will

be stored. Then, we will utilize those matrices to check the results of simple matrix operations.

To get started, therefore, enter the following matrices and store them in the names suggested.

Notice that the names of the variables correspond to an upper case letter of the alphabet

followed by two numbers. The numbers represent the number of rows and columns that the

matrix has. This way we can purposely select some particular matrices to illustrate matrix

operations that are and that are not allowed. Thus, proceed to store the following variables:

AlT=[[3]], Bll =[[-2]], C11=([[5]]

Al2=[[-5 6]],B12=][[3

Al3=[[1 —=2 6], BI3=[[0 3

~2]], C12 =[[-10 20]].

-4]],C13=[[5 3 -10]].

[— 7 3 -2
A2l = CB21=| "| C21=

| 3 5 2

-3] SE) -1 4
A22 = B22 = ,C22 =

4 -6 5 4 8 2

8 —1] 1 1 2 -3 -5
A23 = B23 = ,C23 =

5 -2 3] 0 ~1 6 4 -2

-10 3 0

A3l=| 2 |\B31=|-7|C31=|2|

5 -2 6

1 0 9 2 5 8

A32=|1 2|B32=|3 0[C32=|6 -7|

5 2 6 —5 -3 -2

204 © 2000 - Gilberto E. Urroz

All rights reserved

2

A33=]| 0

-7

-1 5 3 1 2 2 1 2

2 1 ,B33=| 0 5 2C33=|3 -7 0}

2 =5 -4 2 1 2 1 4

Once these variables have been entered, try the following exercises [fill the missing solutions by

hand]:

Addition and subtraction of 1x1

[A171][B11 [+], i.
[A171][C11 J[+], i
[ATT][B11][C11 J[+][+] i
[ATT][B1T][-] i.
[AMT][CIT][-] i
[B11][C11][-] i
[A] B11] C11 I[-]I-] i

Addition and subtraction of 1x2

[A12][B12]1[+]. i

[A12][C12][+]. i

[A12][B12][C12 J[+][+] i

[A12][B12][-] i

[A12][C12][-] i
[B12][C121]1[-] i

[A12]1[B12][C12 1[-][-] i

Addition and subtraction of 2x1

[A211] B21 1[+], i
[A271][C21 [+]. [
[A211] B21][C21 1[+][+] i
[A21][B21][-] i.
[A21][C21][-] [
[B211[C211[-] i
[A21][B21][C21 1[-][-] i

Addition and subtraction of 2x2

[A22 1[B22 1[+]. i
[A22][C22 1[+], i
[A22 1[B22][C22 1[+1[+] i
[A221[B22][-] i
[A22][C221[-] i
[B22][C22 1 -] i
[A22 1[B22 1[C22 1[-1[-] i

s
o
p

on
ao

s
o
n
o
a
b
o

s
o
o
n

on
a

©
o
0
0
0
0
0

matrices (i.e., scalars)

LAT + B11 =[1].
,A11 + C11 =[8].

,ATT+B11+C11=[61].

,A11-B11=[5].
LAT -C11=[-21].

,B11-C11=[-7].

,A11-(B11-C11)=[10].

matrices (i.e., two-dimensional row vectors)

, A12 + B12 =
,A12 + C12 =
,A12 + B12 + C12 =
, A12 -B12 =
, A12-C12 =
,B12-C12 =
, A12 - (B12-C12) =

matrices (i.e., two dimensional column vectors)

, A21 + B21 =
, A21 + C21 =
, A21 + B21 + C21 =
, A21- B21 =
, A21-C21 =
, B21 - C21 =
, A21 - (B21 - C21) =

matrices (i.e., two dimensional column vectors)

, A22 + B22 =

, A22 + C22 =
. A22 + B22 + C22 =

, A22 - B22 =
, A22 - C22 =

., B22 - C22 =

., A22 - (B22 - C22) =

205 © 2000 - Gilberto E. Urroz

All rights reserved

Addition and subtraction of 1x3

[A13][B13][+]. i
[A13][C13 [+], i
[A13 1[B13 J[C13][+][+] i
[A13][B13][-] i.

[A13][C13][-] i
[BI3][CI3][-] i
[A131 B13][C13 1[-]I-] i

Addition and subtraction of 2x3

[A231] B23 1[+], i
[A231] C23][+], i
[A231 B23 1[C23 1[+1[+] i
[A23108B23][-] i
[A23][C23][-] i
[B23][C231[-] i
[A23][B23][C23][-][-] i

Addition and subtraction of 3x1

[A371][B31][+]. i
[A371][C31][+]. i
[A371][B31 J[C31 J[+][+] i.
[A371][B31][-] i
[A3T][C31][-1] i
[B31][C31][-] i.
[A311 B31][C31][-][-]i.e., A31

Addition and subtraction of 3x2

[A32 1] B32][+], i
[A32][C32][+]. i.
[A32][B32][C32][+][+] i
[A32][B32][-] i
[A32][C32][-] i
[B32][C32][-] i
[A32][B32][C32][-][-] i

Addition and subtraction of 3x3

[A33][B33][+], i.
[A33][C33 [+], i.
[A33][B33][C33][+][+] i.
[A33][B33][-] i
[A33][C33][-] i.

[B33][C33][-] i
[C3 i.[A33][B33 310-11]

E
E
R
E

E.
©
o
o
0
0
0
0

,
©
0
0
0
0

matrices (i.e., three dimensional column vectors)

, A13 + B13 =

, A13 + C13 =

,A13 + B13 + C13 =

, A13 -B13 =

, A13-C13 =

, B13 -C13 =

,A13 - (B13 -C13) =

matrices (i.e., two dimensional column vectors)

, A23 + B23 =
, A23 + C23 =
, A23 + B23 + C23 =
, A23 - B23 =
, A23 - C23 =
, B23 - C23 =
, A23 - (B23 - C23) =

matrices (i.e., two dimensional column vectors)

, A31 + B31
, A31 + C31
, A31 + B31
, A31-B31 =
, A31-C31 =
, B31-C31=
(B31 - C31) =

C31 =+
n
n

matrices (i.e., two dimensional column vectors)

, A32 + B32 =

, A32 + C32 =
, A32 + B32 + C32 =
, A32 - B32 =
, A32 - C32 =
, B32 -C32 =
, A32 - (B32 - C32) =o

o
0
0
0
0
0

matrices (i.e., two dimensional column vectors)

, A33 + B33 =

, A33 + C33 =

, A33 + B33 + C33 =

, A33 -B33 =

, A33-C33 =

, B33 -C33 =

, A33 - (B33 -C33) =©
0
0
0
2
0
0
0

206 © 2000 - Gilberto E. Urroz

All rights reserved

Notes:

1. The subtraction A - B can be interpreted as A + (-B).

2. Addition is commutative, i.e., A+ B=B + A, and associative, i.e., A+B+C = A+(B+C) =

(A+B)+C.

3. Addition and subtraction can only be performed between matrices of the same dimensions.

Verify this by trying [A23][A21][+]. You will get an error message: <!> + Error: Invalid

Dimension

Multiplication by a scalar

[2] [ENTER][AT1][X]
[3][+/-1[ENTER][A12][x]
[11[+/-1[ENTER][A21][X]
[5][ENTER][A22][x]
[2][+/-][ENTER][A13][x]
[1][O][ENTER][A31][x]
[5][+/-][ENTER][A23][x]
[2] [ENTER][A32][x]
[110 . 1[5][ENTER][A33][x]

Matrix multiplication

[A11]1[B11][x]
[A11][B11][x]

[A12][B21][x]

[B21][A12][x]

[A12][B22][x]
[A21][B12][x]

[B12][A21][x]
[A22][B21][x]
[A22][B22][x]

[B22][A22][x]
[A13][B31][x]

[B31][A13][x]

[A13][B32][x]
[A13][B33][x]

[A23][B31][x]
[A23][B32][x]
[A32][B23][x]

[A23][B33][x]
[A33][B31][x]
[A33](B32][x]

[A33][B33][x]
[B33][A33][x]

sc
ho
n
nh

o
b
o

s
h
o
o
h
m
o
b
a
p
b
o
b
o
P
D
R
A
6
D

, A111
, B11.A11 =
, A12.821
, B21.A12
, A12:B22 =
, A21-B12 =
, B12:A21 =
, A22.B21 =
, A22.B22 =
, B22.A22
, A13-B31 =
, B31:A13 =
, A13-B32 =
, A11:B11 =
, A23.B31
, A23B32
, A32:B23 =
, A23-B33 =
, A33.831
, A23.B31
, A23.B31
, B33-A33

, 2-A11 =

,-3-A12 =

,-1-A21 =

. 9-A22 =

, -2-A13 =

, 10-A31 =

, -5-A23 =

, 2:A32 =

. 1.5-A33 =

In
In

207 © 2000 - Gilberto E. Urroz

All rights reserved

Note: Some of the examples above illustrate the fact that Aqsn'B nxm # B nxm® Amxn. That is,

multiplication, in general, is not commutative.

[A12][B21][C12] [xX] [x]
[A12][B21][x][C12][X]
[A22][B23][C32][x][x]
[A22][B23][x][C32][X]
[A32][B23][C32] [x] [x]
[A32][B23][x][C32][x]

, A12. (B21-C12) = [[-150 300]]
, (A12- B21)-C12 = [[-150 300]]
, A22- (B21-C12) = [[-6 -18] [-46 54 1]
, (A22- B21)-C12 = [[-6 -18] [-46 54 1]
, A32- (B23-C3) = [[26][20-4][28 20]]
, (A32-B23)-C3=[[26][20-4][2820]]©

0
0
0
0
0

Note: The examples above illustrate the fact that multiplication is associative:

Ayxn'B nxm"Cmxp = A... (B xmCmxp) = (AmxnB xm) Crnxp-

Inverse matrices

Inverse matrices exists only for square matrices. In the HP 49 G calculator, inverse matrices are
calculated by using the [1/x] key. Notice that the standard notation for the inverse matrix of A
is A", and not 1/A, even though we will be using the [1/x] key to calculate inverses. Try the
following exercises:

[A11][1/x]

[B11][1/x]

[C11][1/x]

[A22][1/x]
[B22][1/x]

[C22][1/x]

[A33][1/x]
*-21/164']]

[B33][1/x]
13/248" 1]

[C33][1/x]
'14/317']]

©
0
0
0
0

0
0

©

CAT =01/3']]
B11)= -1/2"1]]
Ct =q/s]]
,(A22)= [[-1/3°0][-2/9" *-1/6" 1]
, (B22) =[[2/15 "1/15" 1 [-1/6" "1/6"]]
(C22)= [1/177 2/1771 [4/177 *1/34°]]
, (A33)” =[['-37/164" *-1/164" '-11/164"]['-1/164" 31/164" *13/164'] [*-11/164" '13/164’

, (B33)™ =[['-67/248" 15/124" '29/248" | ["23/124" *-7/62' "3/1241 ["107/248" -11/124" *-

, (C33) =[[20/317" *-6/317" "45/317" | [-8/317" -61/317' 18/317] ['29/317" "23/317"

Note: Some matrices has no inverse, for example, matrices with one row or column whose

elements are all zeroes, or a matrix with a row or column being proportional to another row or

column, respectively.

Try the following examples:

[[123][000][-252]][ENTER][1/x]
[[123][246][52-1]][ENTER][1/x]

208 © 2000 - Gilberto E. Urroz

All rights reserved

Verifying properties of inverse matrices

. (A22)VA22 = ly,[A22][1/x][A22][x] i.e
[A22][A22][1/x][X] i.e., A22:(A22)7 = ly
[B22][1/x][B22][x] i.e., (B22)"B22 = l,y,
[B22][B22][1/x][X] i.e., B22:(B22)" = ly
[C22][1/x][C22][x] i.e., (C22)7-C22 = py,
[C22][C22][1/x][x] i.e., C22:(C22)" = ly

[A33][1/x][A33][x] i.e., (A33)1A33 = lg
[A33][A33][1/x][x] i.e., A33:(A33)7 = ly
[B33][1/x][B33][x] i.e., (B33)"'B33 = I3,3
[B33][B331[1/x][x] i.e., B33:(B33)" = 13,
[C33][1/x][C33][x] i.e., (C33)7C33 = l3y
[C33][C33][1/x][x] i.e., C33:(C33)7 = ls

Creating matrices using calculator functions

Some matrices can be created by using the calculator functions available in either

[<1][IMTH][MATRX][MAKE] (Let's call it the MAKE menu)

or in
[<][MATRICES][CREAT] (Let's call the CREATE menu).

Examine these two menus by pressing [NXT] to get acquainted with the functions they contain.

As you can see from exploring these menus, they both have the same functions GET, GETI, PUT,
PUTI, SUB, REPL, RDM, RANM, HILBE, VANDE, IDN, CON, -DIAG, and DIAG—. The CREATE menu
includes the ROW and COL menus, that are also available under [<][MTH][MATRX]. The MAKE

menu includes the functions SIZE, that the CREATE menu does not include. Basically, however,
both menus, MAKE and CREATE, provide the user with the same set of functions. In the examples
that follow, we will show how to access functions through use of the matrix MAKE menu. At the

end of this section we present a table with the keystroke required to obtain the same functions

with the CREATE menu.

Functions GET and PUT

The functions GET, GETI, PUT, and PUTI, operate with matrices in a similar manner as with lists
or vectors, i.e., you need to provide the location of the element that you want to GET or PUT.
However, while in lists and vectors we only needed one index to identify an element, in matrices

we need a list of two indices { row column } to identify matrix elements. Examples of the use of

GET and PUT follow.

Let's use the matrix we just entered to use the GET and PUT functions. Use the following
keystrokes to extract element ap3 from the matrix:

209 © 2000 - Gilberto E. Urroz

All rights reserved

[ENTER] Keeps an additional copy of the matrix available.
[112] [SPCI[3][ENTER] List showing location of an element to get, i.e.,{2

3}.
[<]IMTH][MATRX][MAKE][NXT][GET] Copies element in row 2, column 3, into stack.

([-]IMATRICES][CREAT][NXT][GET])

Notice that the matrix, from which the element is extracted, disappears. (The copy we made

earlier is maintained).

Suppose that we want to place the value Tm’ into element az; of the matrix. Use the following

keystrokes:

[“][ENTER] Drop value from level 1, make a copy of the
matrix.

[<1[{[3][SPCI[1][ENTER] List showing location of element to replace, {3
1}.

[1] 1[<]n] [ENTER] Place 'n’ in stack level 1.

[<1 [MTH][MATRX][MAKE][NXT][PUT] Places value ‘rn’ in location {3 1} of the matrix at 3:

The result is:

3:

2:

1: [[-2.5 4.2 2]

[.3 1.9 2.8]

(‘rf -.1 .5 11]

Functions GETI and PUTI

The functions PUTI and GETI are used in programs since they keep track of an index for repeated

application of the PUT and GET functions. The index list in matrices varies by columns first.

For example, using the matrix currently in the stack, enter:

[112] [SPCI[2][ENTER] List showing location of an element to get, i.e. {2
2}.
[<][MTH][MATRX][MAKE][NXT][GETI] Copies element in row 2, column 3, into stack.

The result is now:

3: [[-2.5 4.2 2]

[.31.9 2.8]

(‘rr -.1 .5 1]

2: {2. 3.}
1: 1.9

Thus, we have in level 1 the element extracted from the matrix. Level 2 contains a list of indices

with the index list used {2 2} with the column index increased by one, i.e., {2 3}. The original

matrix is still available in level 3.

Now, suppose that you want to insert the value [2] in element {3 1}, use:

210 © 2000 - Gilberto E. Urroz

All rights reserved

[“][<][ENTER] Drop value from level 1, make a copy of the matrix.
[<11{[3][SPC][1][ENTER] List showing location of element to replace, {3 1}.

[2][ENTER] Place a 2 in stack level 1.

[<][MTH][MATRX][MAKE][NXT][PUTI] Places a 2 in location {3 1} of the matrix at 3:

The result is :

3:

2: [[-2.5 4.2 2]

[.3 1.9 2.8]

[2 -.1 .5 1]

1: {3. 2.}
Thus, the 2 was replaced in position {3 1}, and the index list was increased by 1 (by column first).
The matrix is in level 2, and the incremented index list is in level 1.

The function SIZE

The function SIZE provides a list showing the number of rows and columns of the matrix in stack

level 1. The matrix is deleted when applying this function. To try this function, use the matrix

currently in the stack. Press [<][ENTER] to delete the list {3 2} and make an additional

copy of the matrix. Then, press:

[<2] [MTH][MATRX] [MAKE] [SIZE]

The result is {3. 3.}, as expected. Of course, for small matrices, we can determine their size by

eye. This function is useful for larger matrices, and for programming purposes.

The function TRN

The function TRN produces the transpose of a real matrix or the conjugate transpose of a
complex matrix. Let's use the matrix still in the stack to try this function. Press [<][ENTER] to

delete the list {3 2} and make an additional copy of the matrix. Then, press:

[<][MTH][MATRX][MAKE][TRN]

The result is

Note: The calculator also includes the function TRAN ([<][MATRICES][OPER][NXT][NXT][TRAN])
to calculate the transpose.

211 © 2000 - Gilberto E. Urroz

All rights reserved

The function CON

The function generates a matrix with constant elements. A list of two elements, corresponding

to the number of row and columns of the matrix to be generated, should be placed first in the

stack. Next, enter the constant value to fill the matrix. For example, use:

[<1IO[3][SPC][2] [ENTER] List showing number of rows and columns.

[511 . H[2][ENTER] Enter constant value to load in matrix.

[<2] [MTH][MATRX][MAKE][CON] Create the constant matrix.

The result is:

=
N
W

w
u
n

u
n

u
r
»

The function IDN

The function IDN (IDeNtity matrix) creates an identity matrix given its order. Recall that an
identity matrix has to be a square matrix, therefore, only one value is required to describe it

completely. For example, to create a 4x4 identity matrix enter:

[4]1[ENTER] Order or size of identity matrix to be generated.

[<][MTH][MATRX][MAKE][IDN]. Generate identity matrix.

The result is:

—
_
—
—
—

o
O
o
O

o
O
O
F

O

o
O
O
O

R
O

O
o

O
o

e
e
e
e

The function RDM

The function RDM (Re-DiMensioning) is used to re-write vectors and matrices as matrices and

vectors. The input to the function consists of the original vector or matrix followed by a list of a

single number, if converting to a vector, or two numbers, if converting to a matrix. In the

former case the number represents the vector’'s dimension, in the latter the number of rows and

columns of the matrix. There is nothing better than examples to understand the operation of

this function. Here they are:

212 © 2000 - Gilberto E. Urroz

All rights reserved

Re-dimensioning a vector into a matrix

Enter the vector [1 2 3 4 5 6][ENTER], and the re-dimensioning list, {2 3}[ENTER]. Then press

[<]1[MTH][MATRX][MAKE][RDN]. to get the matrix:

Re-dimensioning a matrix into another matrix

Now, enter {3 2}[ENTER] and [«][MTH][MATRX][MAKE][IDN] to get the re-dimensioned matrix:

1:[([1 2]

[3 4]
[561]

Re-dimensioning a matrix into a vector

Enter { 6 }[ENTER] and [<][MTH][MATRX][MAKE][IDN] to get the re-dimensioned vector:

[1: [123456] |

Note: the function RDM provides a more direct and efficient way to transform lists to arrays and

vice versa, than that provided at the end of chapter 9.

The function RANM

The function RANM (RANdom Matrix) will generate a matrix with random integer elements given a
list with the number of rows and columns (i.e., the dimensions of the matrix). For example,

enter
{ 2 3 }[ENTER], followed by [<][MTH][MATRX][MAKE][RANM] to generate a random matrix. Of

course, the results you will get in your calculator, very likely, will be different than what | got in

mine, which were:

The function SUB

The function SUB extracts a sub-matrix from an existing matrix, provided you indicate the initial
and final position of the sub-matrix. For example, if we want to extract elements ajz, a3, az,

and ap; from the last result, as a 2x2 sub-matrix, enter {1 2}[ENTER] { 2 3 } [ENTER]. Then, enter

213 © 2000 - Gilberto E. Urroz

All rights reserved

[<1][MTH][MATRX][MAKE][NXT][SUB]

The result is
1: [[-2 2]

[13 1]

The function REPL

The function REPL replaces or inserts a sub-matrix into a larger one. The input for this function
is the matrix where the replacement will take place, the location where the replacement begins,

and the matrix to be inserted. For example, keeping the matrix that we inherited from the

previous example, enter the matrix: [[12 3] [4 56] [7 89]] [ENTER]. Next, press [>], to

exchange stack levels 1 and 2. Next, enter { 2 2 }[ENTER] to indicate that the sub-matrix

insertion starts at position (2,2). Press [»] once more to exchange stack levels 1 and 2. Now,

press [<1] [MTH][MATRX][MAKE][NXT][REPL], to obtain:

The function —=DIAG

The function —»DIAG takes the main diagonal of a square matrix of dimensions nxn, and creates a
vector of dimension n containing the elements of the main diagonal. For example, for the matrix

remaining from the previous exercise, when you press

[<][MTH][MATRX][MAKE][NXT][NXT][-DIAG], you obtain:

[1: [1-231 |

The function DIAG—

The function DIAG— takes a vector and a list of matrix dimensions { rows columns }, and creates

a diagonal matrix with the main diagonal replaced with the proper vector elements. For

example, enter

[1-123][ENTER], {33}, and then [«][MTH][MATRX][MAKE][NXT][NXT][DIAG], you obtain:

Notice that although the vector has dimension 4, the dimensions of the matrix to be created

were only {3 3}, therefore, the calculator took only the first three elements in the vector to

create the main diagonal of the 3x3 matrix requested.

214 © 2000 - Gilberto E. Urroz

All rights reserved

Another example of application of the DIAG— function follows:

Enter [123 4 5]J[ENTER] {3 2 } [ENTER] [<][MTH][MATRX][MAKE][NXT][NXT][DIAG-] to get:

In this case a 3 2 matrix was to be created using as main diagonal elements as many elements as

possible form the vector [1 2 3 4 5]. The main diagonal, for a rectangular matrix, starts at

position (1,1) and moves on to position (2,2), (3,3), etc. until either the number of rows or

columns is exhausted. In this case, the number of columns (2) was exhausted before the number

of rows (3), so the main diagonal included only the elements in positions (1,1) and (2,2). Thus,

only the first two elements of the vector were required to form the main diagonal.

The function VANDERMONDE

The function VANDERMONDE generates the Vandermonde matrix of dimension n based on a given
list of input data. The dimension n is, of course, the length of the list. If the input list consists

of objects

{x1 x2... xn},

then, a Vandermonde matrix in the HP 49 G is a matrix made of the following elements:

—)]

1 X1 X1 x13 “ x"!

2 -1
1 X2 X2 Xp° ce X2 n

2 -1
| 1 X3 X3 x3 ce X3 n

2 -1| 1 Xn X n Xn’ Xn"

For example, enter { 1 2 3 4}[ENTER], and then [<][MTH][MATRX][MAKE][NXT][NXT][VANDE] ,to
get

1: [

e
l

 S
W
N
E

So, you wonder, what is the utility of the Vandermonde matrix? One practical application, which
we will be utilizing in a future chapter, is the fact that the Vandermonde matrix corresponding to

a list {x; x2 ... x, }, which is in turn associated to a list {y; y .. yo}, can be used to determine a

polynomial fitting of the form

y = bg + byx + bx? +.+ bygx"",
to the data sets (x,y).

215 © 2000 - Gilberto E. Urroz

All rights reserved

The function HILBERT

The function HILBERT creates the Hilbert matrix corresponding to a dimension n. By definition,

the nxn Hilbert matrix is H, = [hi], so that

1

J+k-1

Jk

The Hilbert matrix has application in numerical curve fitting by the method of linear squares.

As an example, try [3] [<][MTH][MATRX][MAKE][NXT][NXT][HILBE] to get:

1: [[1 ‘12/2°'1/3°]

[‘1/21/3'1/..11

(‘1/3 ‘1/4 ‘1/..1]

Using the matrix CREATE menu

As indicated earlier, all the calls to the functions in this section have been through the matrix

MAKE menu, i.e., through [<][MTH][MATRX][MAKE]. The following table shows the keystrokes to

access the same functions, but using the matrix CREATE menu instead of the matrix MAKE menu.

[Function [MatrixCREATEmenu

IDN ©[+][MATRICES][CREAT][IDN]
ICON [+] [MATRICES][CREAT][CON] ”
>DIAG [[<][MATRICES][CREAT][>DIAG]
DIAG [<2][MATRICES] [CREAT] [DIAG]
GET "[~][MATRICES][CREAT][NXT]
GETI |[<][MATRICES][CREAT][NXT][GET]
HILBERT [<][MATRICES][CREAT][NXT][GETI]
PUT '[<][MATRICES][CREAT][NXT][PUTT
PUT | [<][MATRICES] [CREAT] [NXT] [PUTI]
RANM | [<1] [MATRICES] [CREAT] [NXT] [RANM]
RDM [<][MATRICES][CREAT][NXT][NXT][RDM]
REPL [<][MATRICES][CREAT][NXT][NXT][REPL]
'SUB [~][MATRICES][CREAT][NXT][NXT][SUB]
VANDERMONDE ~~ [«1][MATRICES][CREAT][NXT][NXT][VANDE]

216 © 2000 - Gilberto E. Urroz

All rights reserved

A program to build a matrix out of a numberof lists

Lists represent columns of the matrix

The program [CRMTC] allows you to put together a pxn matrix (i.e., p rows, n columns) out of n
lists of p elements each. To use this program, enter the n lists in the order that you want them

as columns of the matrix, enter the value of n, and press [CRMT].

To create the program enter the following keystrokes:

Keystroke sequence:

[] [<< >>]

[1 [>] [SPC] [ALPHA] [+] [N]

[] [<< >>]

[+] [PRG] [BRCH] [FOR] [FOR]

[ALPHA] [1] [J]
{+1] [PRG] [TYPE] [OBJ->]

[->ARR]
[+] [PRG] [BRCH] [IF] [IF]

[ALPHA] [v1] [J] [SPC]

[ALPHA] [+] [N]
[+] [PRG] [TEST] [<]

[+1] [PRG] [BRCH] [IF] [THEN]

[ALPHA] [<1] [J] [SPC] [1] [+]

[<1] [PRG] [STACK] [NXT] [ROLL]

[+1] [PRG] [BRCH] [IF] [END]

[<1] [PRG] [BRCH] [FOR] [NEXT]

[<1] [PRG] [BRCH] [IF] [IF]

[ALPHA] [+7] [N] [SPC] [1]
[+1] [PRG] [TEST] [>]

[4] [PRG] [BRCH] [IF] [THEN]

[1] [SPC]

[ALPHA] [<1] [N] [SPC] [1] [-]
[+1] [PRG] [BRCH] [FOR] [FOR]

[ALPHA] [+] [J] [SPC]

[ALPHA] [<2] [J] [SPC] [1] [+]
[+1] [PRG] [STACK] [NXT] [ROLL]

[<1] [PRG] [BRCH] [FOR] [NEXT]

[+] [PRG] [BRCH] [IF] [END]

[ALPHA] [+] [N] [SPC]

[<1] [MTH] [MATRX] [COL] [COL~>]

[ENTER]

To save the program:

Produces:

<<

> n

<<

FOR

J
OBJ

—>ARRY

IF

J
n

<

THEN

31 +

ROLL

END

NEXT

IF

n 1

THEN

1

nl -

FOR

J
jl +

ROLL

NEXT

END

n

COL->
Program is displayed in level 1

[~]['] [ALPHA] [ALPHA] [C] [R] [M] [T] [C] [ALPHA] [STOP]

Note: if you save this program in your HOME directory it will be available from any other sub-
directory you use.

217 © 2000 - Gilberto E. Urroz

All rights reserved

To see the contents of the program use [~][CRMTC]. The program listing is the following:

<< — n << DUP ‘n’ STO 1 SWAP FOR j OBJ— —ARRY IF j n < THEN j 1 + ROLL
END NEXT IF n 1 > THEN 1 n 1 - FOR j j 1 + ROLL NEXT END n COL— >> >>

As an example, try the following exercise:

{1234} [ENTER] {14916} [ENTER] {1 8 27 64 }[ENTER] 3 [ENTER] [CRMTC]

The result is:

—
_
—
—

Lists represent rows of the matrix

The previous program can be easily modified to create a matrix when the input lists will become

the rows of the resulting matrix. The only change to be performed is to change COL— for ROW—
in the program listing. To perform this change use:

[~][CRMTC] List program CRMTC in stack

[V1]V][A]l[d[€][d[<][C]<] Moves to end of program, delete COL

[ALPHA] [ALPHA][R][O][W][ALPHA][ENTER] Type in ROW, enter program

To store the program use

[~]["' JIALPHA][ALPHA][CI[RIIM][T][R] [ALPHA] [STOM)

As an example, try the following exercise:

{1234} [ENTER] { 149 16} [ENTER] {1 8 27 64 }[ENTER] 3 [ENTER] [CRMTR]

The result is:

1: [[1 2 3 4]

[1 4 9 16]

[1 8 27 64 1]

| developed these programs in a HP 48 GX calculator for statistical applications, specifically to

create the statistical matrix DAT. Examples of the use of these program are shown in a latter

chapters.

Manipulating matrices by columns

The HP 49 G provides a menu with functions for manipulating matrices by operating in their

columns. This menu is accessed by either [«][MTH]J[MATRX][COL], or by

[<2][MATRICES][CREAT][COL]. The functions provided by the COL menu are:

218 © 2000 - Gilberto E. Urroz

All rights reserved

[>COL][COL—][COL+][COL-][CSWP][MATRX or CREAT]

The operation of these functions is presented below.

The function —-COL

The function -»COL takes a matrix in stack level 1, and decomposes it into vectors corresponding

to its columns. The first column occupies the highest stack level after decomposition, and stack

level 1 is occupied by the number of columns of the original matrix. The matrix does not survive

decomposition, i.e., it is no longer available in the stack. For example, enter the matrix: [[2 -1
3] [354] [42-7]]
[ENTER] , and press [<][MTH][MATRX][COL][-»COL] to produce:

[2 3 4]

[-1 5 2]

[34-7]
3.N

N
W
b

The function COL—

The function COL— has the opposite effect of the function —COL, i.e., given n vectors of the
same length in stack levels n+7, n, n1,..,2, and the number n in stack level 1, the function
COL- puts together the matrix by placing the vectors as columns in the resulting matrix. Since

we already have the right set up in the stack from the previous exercise, just press

[<][MTH][MATRX][COL][COL] to produce:

The function COL+

The function COL+ adds a vector, placed in stack level 2, at column n, where n is placed in stack
level 1, of the matrix placed in stack level 3. For example, if we wanted to add the column [-10

1], after column 2, to the matrix we inherited from the previous exercise, use the following: [-1

0 1][ENTER][2][ENTER], then press [«<][MTH][MATRX][COL][COL+] to obtain:

1: [1 -1 3]

4]

[2
[3 5

[4 2-7 1]=
o
O

|

219 © 2000 - Gilberto E. Urroz

All rights reserved

The function COL-

The function COL- extracts the column whose index is placed in stack level 1 from the matrix
occupying stack level 2. The extracted column is then shown in stack level 1, as a vector, and

the reduced matrix occupies stack level 2. For example, using the expression currently in the

stack, enter [3], and [<][MTH][MATRX][COL][COL-] to obtain:

The function CSWP

The function CSWP (Column SWaP) kts you swap the columns whose indices are listed in stack
levels 1 and 2. For example, using the result from the previous exercise, first press [<] to drop

the vector in stack level 1. Next, enter the values [1][ENTER][2][ENTER], and [<][MTH][MATRX][

COL][CSWP] to obtain:

1: [[-1 2 3 1]

[0 3 4)

[1 4 -7 1]

As you can see, the columns that originally occupied positions 1 and 2 have been swapped.

Swapping of columns, and of rows, is commonly used when solving systems of linear equations

with matrices. Details of these operations will be given in a later section.

Manipulating matrices by rows

The HP 49 G provides a menu with functions for manipulating matrices by operating in their rows.

This menu is accessed by either [<][MTH][MATRX][ROW], or by [<][MATRICES][CREAT][ROW].

The functions provided by the ROW menu are:

[-ROW][ROW—][ROW+]J[ROW-]J[RCI][RCIJ]

Pressing [NXT]:

[RSWP][1M 1 1 J[MATRX or CREAT]

The operation of these functions is presented below.

220 © 2000 - Gilberto E. Urroz

All rights reserved

The function —-ROW

The function -ROW takes a matrix in stack level 1, and decomposes it into vectors corresponding
to its rows. The first row occupies the highest stack level after decomposition, and stack level 1

is occupied by the number of rows of the original matrix. The matrix does not survive

decomposition, i.e., it is no longer available in the stack. For example, enter the matrix: [[2 -1

3][354][42-7]]

[ENTER] , and press [<][MTH][MATRX][ROW][-ROW] to produce:

 —
_

N
N
W
D

S
w

N
D

The function ROW—

The function ROWhas the opposite effect of the function -ROW, i.e., given n vectors of the

same length in stack levels n+7, n, n1,..,2, and the number n in stack level 1, the function

ROW- puts together the matrix by placing the vectors as rows in the resulting matrix. Since we

already have the right set up in the stack from the previous exercise, just press

[<1 [MTH][MATRX][ROW][ROW] to produce:

1: [[

(
(

1

4

 S
w

N
D

~
~
—

W
w

 N
D
U
d

The function ROW+

The function ROW+ adds a vector, placed in stack level 2, at row n, where n is placed in stack
level 1, of the matrix placed in stack level 3. For example, if we wanted to add the row [-1 0 1],

after row 2, to the matrix we inherited from the previous exercise, use the following: [-10

1][ENTER][2][ENTER], then press [<][MTH][MATRX][ROW][ROW+] to obtain:

The function ROW-

The function ROW- extracts the row whose index is placed in stack level 1 from the matrix

occupying stack level 2. The extracted row is then shown in stack level 1, as a vector, and the

reduced matrix occupies stack level 2. For example, using the expression currently in the stack,

enter [3], and [<][MTH][MATRX]{ ROW][ROW-] to obtain:

221 © 2000 - Gilberto E. Urroz

All rights reserved

2: [[2 -1 3]

[-1 0 1]

[4 2 -7 1]
1: [3 5 4]

The function RSWP

The function RSWP (Row SWaP) lets you swap the rows whose indices are listed in stack levels 1
and 2. For example, using the result from the previous exercise, first press [=] to drop the

vector in stack level 1. Next, enter the values [1][ENTER][2][ENTER], and [<][MTH][MATRX][

ROW][NXT][RSWP] to obtain:

1: [[-1 0 1]

[2 -1 3]

[4 2 -7 1]
As you can see, the rows that originally occupied positions 1 and 2 have been swapped.

Swapping of rows, and of rows, is commonly used when solving systems of linear equations with

matrices. Details of these operations will be given in a later section.

The function RCI

The function RCI stands for multiplying Row | by a Constant value and replace the resulting row
at location I. For example, with the matrix left over from the previous exercise, enter

[2][ENTER][1][ENTER] (or, you can enter [2][SPC][1][ENTER]). The number 2 is the constant that

will multiply row 1. Then, the resulting row is replaced instead of the current value of row 1.

Press [<1][MTH][MATRX][ROW]J[RCI] to get:

The function RCIJ

The function RClJ stands for taking Row | and multiplying it by a constant C and then add that
multiplied row to row J, replacing row J with the resulting sum. For example, with the result

from the previous example readily available, enter [2][+/-][ENTER][2][ENTER][3] (or, use [2][+/-

1[SPC][2][SPC][3]).
Then, press [<1][MTH][MATRX][ROW][RCI] to get:

1: [[-2 0 2]

[2 -1 3]

[42 -7 1]
In this operation we first multiplied row 2 by -2, then added this result (-2 2 -6) to row 3 (0 4 -
13), and replaced the sum for row 3.

222 © 2000 - Gilberto E. Urroz

All rights reserved

The operation used by RCIlJ is common in row operations in the solution of linear systems using
matrices. More detailed in their use in linear solutions is presented later in this chapter.

Symmetric and anti-symmetric matrices

A square matrix, An = [aj]. is said to be symmetric if a; = aj, for i #j, i.e., A= A. Also, a

square matrix, Ann = [aj], is said to be anti-symmetric if a;; = -aj;, for i#j, i.e., A= A.

The matrix A below is symmetric, while the matrix C below is anti-symmetric:

-2 3 ~-5 12 13 15

A=[{3 6 4 | C=|-13 -2 -24

-5 4 2 -15 24 5

Any square matrix, Bn = [bj] can be written as the sum of a symmetric B', = [b’;] and an

anti-symmetric B”., = [b”;;] matrices. Because

bj; = Ys. (bj; + bj;) + Y-(bjj - bji),

we can write

bj; = Vo (by; + bji). and b”i = Y2-(bj; - bj).

Therefore,

Bun = Vor (Brn + Bn). and B"., = V2 (Bon - B'n).

where B', = [b") = [bj] is the transpose of matrix B.

For example, take the matrix B33 defined earlier, and use the following keystrokes to find its
symmetric and anti-symmetric components:

[VAR][B33][ENTER] Enter matrix B33 and create a copy

[<][MATRICES][OPER][NXT][NXT][TRAN] Calculate transpose of B33

[+112] [+] Add B33 and its transpose and divide by 2

The result is a symmetric matrix.

[VAR][B33][ENTER] Enter matrix B33 and create a copy

[<1][MATRICES][OPER][NXT][NXT][TRAN] Calculate transpose of B33

[+112] [+] Subtract the transpose from B33, divide

by 2

The result is an anti-symmetric matrix.

[+] Recovers original matrix B33.

223 © 2000 - Gilberto E. Urroz

All rights reserved

Matrices and solution of linear equation systems

A system of n linear equations in m variables can be written as

ariX; +aippxz +ap3xz +..+ dimi1Xm1 taimXm = bq,

azyX7 +aprXp +ap3X3 + .+ Ami1Xma +armXm =Dby

azi:X7 +4azr»Xp +4a33X3 + ..+ a83m-1Xm-1 +Aa8imXm =Db3

an.1,1°X7 + @n.1,2°X2 + @n.1,3X3 + ...t @n-1,m-1X m-1 + @n-1,mX m = bn.1,

an1'X7 + ap2Xp + an3X3 +*..+ anm1Xmi1+ drmXm = bn.

This system of linear equations can be written as a matrix equation,

Anim Xmx1 = bs,

if we define the following matrices:

Solution to a system of linear equations using the numerical solver

(NUM.SLV)

There are many ways to solve a system of linear equations. The calculator provides an input

screen for solving linear equations through the keystroke sequence [~][NUM.SLV][V¥][V¥][V¥][OK].

The linear system solver screen looks as:

#i#### SOLVE SYSTEM A-X=B ####i##
A:

B:

X:

To solve the linear system Ax = b, enter the matrix A, as [[...][....]] in the A: field. Enter the

vector b in the B: field. When the X: field is highlighted, press [SOLVE]. If a solution is
available, the solution vector x will be shown in the X: field. The solution is also copied to stack

level 1. Some examples follow.

Example 1 - A system with more unknowns than equations

The system of linear equations

2x1 + 3x72 -5x3 = -10,

X71 - 3x2 + 8x3 = 85,

can be written as the matrix equation Ax = b, if

> I
—

r
o

W
o

W
n

p
d » I =

r
N Q S a. = I [ws]

224 © 2000 - Gilberto E. Urroz

All rights reserved

This system has more unknowns than equations, therefore, it is not uniquely determined. We

can visualize the meaning of this statement by realizing that each of the linear equations

represents a plane in the three-dimensional Cartesian coordinate system (x1, x2, x3). The solution

to the system of equations shown above will be the intersection of two planes in space. We

know, however, that the intersection of two (non-parallel) planes is a straight line, and not a

single point. Therefore, there is more than one point that satisfy the system. In that sense, the

system is not uniquely determined.

Let's use the numerical solver to attempt a solution to this system of equations:

[~]INUM.SLV][VY][VY][V¥][OK] Launch numerical solver for linear system

[<0] [<1 [21[SPCI3]ISPCII5I+/-11™] Enter the first row of matrix A

[<100 1] [MISPCI[3][+/-]1[SPC][8][OK] Finish entering matrix A
[<1] [11001[+/-]1[SPC][8][5][OK] Enter the vector b
[SOLVE] Obtain a solution

The result is

SOLVE SYSTEM A-X=B
A [2.3.-5. 111...
B: [-10. 85.]
X: [15.3731343284 2. ...

To see the solution in the stack press [ON] or [ENTER]. The solution is

x = [15.3731343284 2.46268656716 9.6268657164].

To check that the solution is correct, try the following:

[—][EVAL] Remove the tag from the result
[1001] [<1 [21ISPCI3]ISPCI5]I+/-11m] Enter the first row of matrix A

[1001] [11[SPCI[3][+/-]1[SPC][8][ENTER] Finish entering matrix A

[»]1[x] Exchange stack levels 1 and 2, multiply A-x

The result is [-9.99999999999 85. |, close enough to [-10 85], the original vector b.

Try also this:

[<][CMD][OK][ENTER] To recover the matrix A

[<1 [51SPCI[IL * 11I[O0] [+113] [»][1]1[O][ENTER] Enter a new x = [15 "10/3" 10]

[x] Calculate Ax

The result is [-10 85]. Therefore, x = [15 "10/3" 10] is also a solution to the system, confirming

our observation that a system with more unknowns than equations is not uniquely determined.

So, how does the calculator came up with the solution x = [15.37... 2.46... 9.62...] shown earlier?
Actually, the calculator minimizes the distance from a point, which will constitute the solution,

to each of the planes represented by the equations in the linear system. The calculator uses a

least-square method, i.e., minimizes the sum of the squares of those distances or errors.

225 © 2000 - Gilberto E. Urroz

All rights reserved

Example 2 - A system with more equations than unknowns

The system of linear equations

x1 + 3x, =15,

2x1 - 5x, = 5,

“X71 + Xp = 22,

can be written as the matrix equation Ax = b, if

1 3 15
xX

A=|2 -5| | | and b=|5
x2“1 1 22

This system has more equations than unknowns. The system does not have a single solution.

Each of the linear equations in the system presented above represents a straight line in a two-

dimensional Cartesian coordinate system (xi, x2). Unless two of the three equations in the

system represent the same equation, the three lines will have two different intersection points.

For that reason, the solution is not unique. Some numerical algorithms can be used to force a

solution to the system by minimizing the distance from the presumptive solution point to each of

the lines in the system. Such is the approach followed by the HP 49 G numerical solver.

Let's use the numerical solver to attempt a solution to this system of equations:

[~]INUM.SLV][VY][¥Y]I[V][OK] Launch numerical solver for linear system

[100 [100[1SPCI31™] Enter the first row of matrix A

[1001] [2][SPCI[5][+/-1[»] Enter the first row of matrix A

[1001 [11[+/-1[SPC][1][OK] Finish entering matrix A
[<1 [T115]1[SPCI[51[SPC1[2][2][OK] Enter the vector b

[SOLVE] Obtain a solution

The result is

SOLVE SYSTEM A-X=B
A[[1.3][2 5...

B: [15. 5.22.]
X: [3.02054794521 1. ...

To see the solution in the stack press [ON] or [ENTER]. The solution is

x = [15.3731343284 2.46268656716 9.6268657164].

To check that the solution is correct, try the following:

[][EVAL] Remove the tag from the result

[1001] [<0 [11ISPCII3][»] Enter the first row of matrix A
[<100 1 [21[SPC]I5]11+/-11™] Enter the first row of matrix A
(«1001 [1][+/-1[SPC][1][ENTER] Finish entering matrix A

[»1[x] Exchange stack levels 1 and 2, multiply A-x

226 © 2000 - Gilberto E. Urroz

All rights reserved

The result is [8.6917... -3.4109... -1.1301...], which is not equal to [15 5 22], the original vector b.

The “solution” is simply the point that is closest to the three lines represented by the three

equations in the system.

Example 3 - A system with equal number of equations and unknowns

The system of linear equations

2x7 + 3x, -5x3 = 13,

X11 = 3x7 + 8x3 = -13,

2X1 - 2x; + 4x3 = -6,

can be written as the matrix equation Ax = b, if

2 3 -=5 X, 13

A=|1 -3 8 | x=|x,| and b=|-13|

2 -2 4 x; -6

This system has the same number of equations as of unknowns. In general, there should be a

unique solution to the system. The solution will be the point of intersection of the three planes

in the coordinate system (xq, Xz, X3).

Let's use the numerical solver to attempt a solution to this system of equations:

[1 INUM.SLV][V¥][¥Y][V][OK] Launch numerical solver for linear system
[<M [<I] [21[SPCI[3]ISPCI[5I[+/-11m] Enter the first row of matrix A

[<]10 1] [THSPCI[3][+/-1[SPC][8][»] Enter the second row of matrix A

[<1 1] [2][SPC][2][+/-]1[SPC][4][OK] Finish entering matrix A

[<0] [I3MSPCI1][31[+/-1[SPC][6][+/-]1[OK] Enter the vector b

[SOLVE] Obtain a solution

The result is

SOLVE SYSTEM A-X=B
A: [[2.3.-5.][1..

B: [13. -13. -6.]

X: [1.2 -1]

To see the solution in the stack press [ON] or [ENTER]. The solutionis x =[1.2.-=1.].

To check that the solution is correct, try the following:

[~][EVAL] Remove the tag from the result
[<1] [<1 [21[SPCII3]IISPCI5I[+/-1[™] Enter the first row of matrix A

[«]00 0] [M1[SPCI3][+/-]1[SPC][8][»] Enter the second row of matrix A

[<1 1] [2]1[SPCI[2][+/-][SPC][4][OK] Finish entering matrix A

[»]10x] Exchange stack levels 1 and 2, multiply A-x

The result is [13. -13. -6.], the original vector b.

2217 © 2000 - Gilberto E. Urroz

All rights reserved

Direct solution of a linear system in the stack

If you have a linear system of equations such that its coefficient matrix, A, is square, you can

solve the system directly in the stack by dividing the vector b by the coefficient matrix A. In

other words, you are calculating x = b/A. This last equation will make any mathematician’s back
hairs stand up on end, for it is the most improper equation you can write in matrix algebra since

matrix division is an operation that is not defined. Still, that is what the calculator produces,

b/A. Try this approach using the linear system from the last example:

[<1] [II31ISPCI[1[3][+/-]1[SPC][6][+/-]1[ENTER] Enter the vector b
[1001] [100[2)[SPCI3IISPCIIS+/-11w] Enter the first row of matrix A
(«10010 [T1ISPCI[3]1[+/-1[SPCI1[8]1[»] Enter the second row of matrix A

[1001] [2]1[SPCI[2]1[+/-]1[SPCI[4][ENTER] Finish entering matrix A

[+] Calculate x = b/A.

The solution is again [12 -1].

Solution using the inverse matrix

The proper way to write the solution to the system Ax = b is x = A'- b. This results from

multiplying the first equation by A”, i.e., A"-Ax = Ab. By definition, A"-A = I, thus we write I-x

=A'b. Also, Ix = x, thus, we have,

x=A"b.

For the example used earlier we have:

[1000] [<1 [21[SPCI[31ISPCII5I[+/-11m] Enter the first row of matrix A

(«10011 [T1ISPCII3][+/-1[SPCI1[8][»™] Enter the second row of matrix A

[<]100 1 [21[SPCI[2][+/-]1[SPC][4][ENTER] Finish entering matrix A

[1/x] Calculate the inverse A”.
[<1 [TI3IISPCI[][3][+/-]1[SPC][6][+/-][ENTER] Enter the vector b

[x] Calculate x = A" b.

The result is, once more, [1. 2. -1].

Characterizing a matrix

In the previous section we mentioned that, under certain conditions, a system of n linear

equations with n unknowns may not have a unique solution. In order to determine when such

situations occur, we can use certain measures or norms that characterize a matrix. Some of

those measures are the determinant and the rank of the matrix. These and other ways of

characterizing a matrix are presented in this section.

The matrix NORM menu

The matrix NORM menu is accessed through the keystroke sequence [-][MTH][MATRX][NORM].

This menu contains the following functions:

[ABS][SNRM][RNRM][CNRM][SRAD][COND]

228 © 2000 - Gilberto E. Urroz

All rights reserved

Pressing [NXT]:
[RANK][DET J[TRACE][TRAN][J[MATRX].

These functions are described following. Because many of these functions use concepts of matrix

theory, such as singular values, rank, etc., we will include short descriptions of these concepts

intermingled with the description of functions.

The function ABS

The function ABS calculates what is known as the Frobenius norm of a matrix. For a matrix Amnxn

= [aj]. the Frobenius norm of the matrix is defined as

 n m

2.2la, >.
i=l j=I

I All=

If the matrix under consideration in a row vector or a column vector, then the Frobenius norm ,

| |A||F , is simply the vector's magnitude. The function ABS is accessible directly in the
keyboard as [<1][ABS] ([+] key).

Try the following exercises (using the matrices stored earlier for matrix operations):

[A11] [«][ABS] The result is 3.

[A12] [<][ABS] The result is 'V61".

[A13] [<][ABS] The result is ‘V41'.

[A22] [+][ABS] The result is 'V61".
[A23] [<][ABS] The result is 'V103".
[A33] [<][ABS] The result is '"V118".

Matrix decomposition

To understand the operation of the function SNRM, presented below, we need to introduce the

concept of matrix decomposition. Basically, matrix decomposition involves the determination of

two or more matrices that, when multiplied in a certain order (and, perhaps, with some matrix

inversion or transposition thrown in), produce the original matrix. So, you will see later

examples of what is called LU decomposition, where a square matrix A is written as A = L-U,
where L is a lower-triangular matrix, and U is an upper-triangular matrix. (A lower-triangular

matrix is such that elements above and to the right of the main diagonal are zero, while an

upper-trianqular matrix is such that elements below and to the left of the main diagonal are

zero.) An example of LU decomposition is shown below:

2 4 2 1 0 Of2 4 -2

A=| 4 9 -3(=[{2 1 010 1 1 [=L-U

-2 =-3 7 -1 1 1]{0 0 4

229 © 2000 - Gilberto E. Urroz

All rights reserved

Singular value decomposition and rank

The Singular Value Decomposition (SVD) is such that a rectangular matrix Aq, is written as

T
Anxn =U mix*S msn *V ns

Where U and V are orthogonal matrices, and S is a diagonal matrix. The diagonal elements of S$

are called the singular values of A and are usually ordered so that s; > s;,;, for i = 1, 2, ..., n-1.

The columns [u;] of U and [vj] of V are the corresponding singular vectors. (Orthogonal matrices

are such that U- UT = 11).

The rank of a matrix can be determined from its SVD by counting the number of non-singular
values. Examples of SVD will be presented in a subsequent section.

The function SNRM

The function SNRM calculates the Spectral NoRM of a matrix, which is defined as the matrix’s

largest singular value. This value corresponds also to the Euclidean norm of the matrix. For

example,

[A23] [<2][IMTH][MATRX][NORM][SNRM] produces the value 9.53341026006.

Row norm and column norm of a matrix

The row norm of a matrix is calculated by taking the sums of the absolute values of all elements

in each row, and then, selecting the maximum of these sums. The column norm of a matrix is

calculated by taking the sums of the absolute values of all elements in each column, and then,

selecting the maximum of these sums.

The functions RNRM and CNRM

The function RNRM returns the Row NoRM of a matrix, while the function CNRM returns the

Column NoRM of a matrix. Examples,

[A23] [<][MTH][MATRX][NORM][RNRM] produces the value 10.

[A23] [<][MTH][MATRX][NORM][CNRM] produces the value 13.

230 © 2000 - Gilberto E. Urroz

All rights reserved

Eigenvalues and eigenvectors of a matrix

The eigenvalues of a square matrix result from the matrix equation A-x = Ax. The values of A
that satisfy the equation are known as the eigenvalues of the matrix A. The values of x that

result from the equation for each value of A are known as the eigenvectors of the matrix.

Further details on calculating eigenvalues and eigenvectors are presented later in the chapter.

The function SRAD

The function SRAD determines the Spectral RADius of a matrix, defined as the hrgest of the
absolute values of its eigenvalues. For example,

[A33] [<][MTH][MATRX][NORM][SRAD] produces the value 8.97201587219.

Determinants, singular matrices, and conditions numbers

In Chapter 9 we introduce the concept of determinants for square matrices of dimensions 2x2

and 3x3. Calculation of determinants for matrices of higher order is described later in this

section. It will be enough at this point to indicate that it is possible to calculate the determinant

of any square matrix. If the determinant of matrix A, written det A, is zero, then the matrix A is
said to be singular. Otherwise, it is non-singular. Singular matrices do not have an inverse.

The condition number of a square non-singular matrix is defined as the product of the matrix

norm times the norm of its inverse, i.e.,
1

cond(A) = [|A||-[[AT]].

We will choose as the matrix norm, ||A||, the maximum of its row norm (RNRM) and olumn
norm (CNRM). The condition number of a singular matrix is infinity. The condition number of a
non-singular matrix is a measure of how close the matrix is to being singular. The larger the

value of the condition number, the closerit is to singularity.

The function COND

The function COND determines the condition number of a matrix. Try the following exercise:

[A33][ENTER][ENTER][ENTER][ENTER] Place matrix A33 in stack and make 4 copies of it.

[<][MTH][MATRX][NORM] [COND] Produces the value cond(A33) = 3.58536585366.

[<][RNRM] Produces the value RNRM(A33) = 12
[»][CNRM] Produces the value CNRM(A33) = 12

Since RNRM(A33) = CNRM(A33) = 12, then we take | |A33|]| = 12.

[©]1[«]1[»][1/x][RNRM] Swap levels 1 & 2, obtain RNRM(A337) = 49/164"

[»1[1/x][CNRM] Produces the value CNRM(A33™) = '49/164"

231 © 2000 - Gilberto E. Urroz

All rights reserved

As before, since RNRM(A33™") = CNRM(A33™) = 49/164", then we take | |A33"|| = 49/164".

[1102][x] [~][->NUM] Multiply | |A33|| and | |A33]].

The result of the latter multiplication is 3. 58536585366. Thus, we have ||A337'|| - ||A33]] =

cond(A33).

The rank of a matrix

The rank of a square matrix is the maximum number of linearly independent rows or columns

that the matrix contains. Suppose that you write a square matrix Ax, as A = [cy ¢; ... ¢,], where

ci (i = 1, 2 .., n) are vectors representing the columns of the matrix A, then, if any of those

columns, say ck, can be written as

c, = Yd, Cc
J J?

J#k.je{l.2...n}

where the values dj are constant, we say that cy is linearly dependent on the columns included in

the summation. (Notice that the values of j include any value in the set {I, 2, .., ri}, in any

combination, as long as j#k.) If the expression shown above cannot be written for any of the

column vectors then we say that all the columns are linearly independent. A similar definition

for the linear independence of rows can be developed by writing the matrix as a column of row

vectors.

Thus, if we find that rank(A) = n, then the matrix has an inverse and it is a non-singular matrix.

If, on the other hand, rank(A) < n, then the matrix is singular and no inverse exist.

The function RANK

The function RANK determines the rank of a square matrix. Try the following examples:

[A33][<][MTH][MATRX][NORM][NXT][RANK] Produces the value rank(A33) = 3.

Try finding the rank for the matrix:

[[123][246][5-2 1]][ENTER]
[—][MTH][MATRX] [NORM] [NXT][RANK]

You will find that the rank is 2. That is because the second row [2 4 6] is equal to the first row [1

2 3] multiplied by 2, thus, row two is linearly dependent of row 1 and the maximum number of

linearly independent rows is 2. You can check that the maximum number of linearly independent

columns is 3. The rank being the maximum number of linearly independent rows or columns

becomes 2 for this case.

232 © 2000 - Gilberto E. Urroz

All rights reserved

The determinant of a matrix

In chapter 9 we presented a way to calculate the determinant of 22 and 3x3 matrices. For

square matrices of higher order determinants can be calculated by using smaller order

determinant called cofactors. The general idea is to “expand” a determinant of a nxn matrix

(also referred to as a nxn determinant) into a sum of the cofactors, which are (-7)x(n-1)
determinants, multiplied by the elements of a single row or column, with alternating positive and

negative signs. This “expansion” is then carried to the next (lower) level, with cofactors of order

(n-2)x(n-2), and so on, until we are left only with a long sum of 2x2 determinants. The 2x2
determinants are then calculated through the method presented in chapter 9.

The method of calculating a determinant by cofactor expansion is very inefficient in the sense

that it involves a number of operations that grows very fast as the size of the determinant

increases. A more efficient method, and the one preferred in numerical applications, is to use a

result from Gaussian elimination. The method of Gaussian elimination is used to solve systems

of linear equations. Details of this method are presented in a later part of this chapter.

To refer to the determinant of a matrix A, we write det(A). As mentioned in chapter 9, the

determinant of a matrix can also be written as the elements of the matrix enclosed between

1 2-1
A= , then det(A)= =2.7-(-1)-5=19.

7 5 7
vertical bars, for example, given

Note: A singular matrix has a determinant equal to zero.|

The function DET

The function DET calculates the determinant of a square matrix. For example,

[A33] [<2][MTH][MATRX][NORM][NXT][DET] produces the value det(A33) = 164.

Properties of determinants

The calculation of determinants by hand typically requires simplifying the determinant to reduce

the number of operations in its calculation. Manipulation of the determinant includes operations

such as multiplying or dividing a row or column by a constant, exchanging rows or columns, or

replacing a row or column by a linear combination of other rows or columns. Whenever one of

these operations take place, it is necessary to modify the expression for the determinant to

ensure that its value does not change. Some of the rules of determinant manipulation are the

following:

(1) Multiplying or dividing a row or column in a determinant by a constant is equivalent to

multiplying or dividing the determinant by that constant. For example, consider the

determinant used in the previous example

233 © 2000 - Gilberto E. Urroz

All rights reserved

det(A) 2 1e = =19.
5 7

If we multiply any row by 2, the determinant gets multiplied by 2. For example (check these

with your

calculator):

4 —2 2 - 4 1 2 =2 4 -2
=2-19=138, = 38, = 38, =38, =2-2-19=76.

5 10 14 10 7 5 14 10 14

(2) Switching any two rows or columns produces a change of sign in the determinant. For

example, for the same case presented earlier we have:

-19.

(3) A row (or column) in a determinant can be replaced by a linear combination of rows (or
columns) without changing the value of the determinant. For example, referring to det(A)

above, we will replace the second row by the linear combination resulting from multiplying

the first row by 2 and adding the second row multiplied by -1, i.e., 2:[5 7] +(-1)- [2 -1] = [8

15], i.e.,

5 7
=5-15-7-8=19.

8 15

Of course, with the HP 49 G calculator you no longer need to calculate determinants by hand.

Still, to understand their calculation and some of the matrix elimination methods to be presented

later, you need to keep in mind these rules.

Example: In the following example, we use determinant operations to simplify its calculation.

First, we divide the first row by 5, the second by 3, and the third by 2.

5 10 -=20 1 2 -4

3 —-12 9 |=5-3-2:)l -4 3

8 6 -2 4 3 -1

Next, we replace row 2 with (row 1 - row 2), and row 3 with (4-row1-row3):

1 2 -4 1 2 -4

5-3-2 -4 31|=5-3-2-10 -6 -=-7

4 3 1 0 5 -1

234 © 2000 - Gilberto E. Urroz

All rights reserved

 The next step in the simplification is to divide the second row by -6 and the third row by 5, to
get

1 2 -4 1 2 -4

5-3-2:10 6 -7[=5-3-2-(-6)-5-{0 1 -7/6

0 5 -15 0 1 -3

Finally, we replace the third row with (row 2 - row 3), i.e.,

1 2 -4 1 2 -4

5-3:2-(=6)-5-/0 1 =-7/6/=5-3-2-(=6)-5-10 1 =7/

0 1 -3 0 0 11/6

Now we use the method for calculating 3x3 determinants presented in chapter 9, i.e.,

1 2 -4 1 2 —-411 2

5:3:2:(=6)-5-0 1 =7/6/=5-3-2-(=6)-5-10 1 =7/0 I=

0 0 11/6 0 0 11/6{0 O

=5-3-2:(=6)-5-(1-1-11/6 + 0+ 0— (0+ 0 + 0)) = -1650.

You can check, using the calculator’s function DET, that indeed, det(A) = -1650.

Cramer's rule for solving systems of linear equations

Cramer's rule for solving systems of n linear equations with n unknowns, consists in forming the

matrix equation, A-x=b, as presented earlier in the chapter, and calculating the determinant A =

det(A). After that, for each unknown x;, the matrix A; is formed consisting of the matrix A with

column i replaced by the components of vector b. The determinant corresponding to A;is called

A; = det(A;). The unknown x; is then calculated as x; = Aj/A.

For example, we will use Cramer's rule to determine the solution to the following system of

linear equations:

235 © 2000 - Gilberto E. Urroz

All rights reserved

X + 2Y+3Z+4R = 4,

-X+5Y+2Z+7R = 11,

4X+2Y-Z+6R=2,

2X+Y-4Z+7R = 9.

To write the system as a matrix equation we use:

1 2 3 4 X 4

-15 2 7 Y 11
A= , X= , and b= i

4 2 -1 6 Zz

2 1 -4 7 R

Next, we form the matrix Ay, calculate the determinants A, Ay, and solve fore X as follows:

1 2 3 4

-15 2 7
A =det(A) = =-258,

4 2 -1 6

2 1 —4 7

4 2 3 4

115 2 7
y= , A, =det(4,)=516, yA _ 516

2 2 —-1 6 A =258

9 1 -4 7

You can use your calculator to form the matrices Ay, Az, and Ag, and calculate the

determinants Ay, Az, and Ag, previous to calculating the other unknowns Y, Z, and R. The
solutionis: Y=,7Z=, R=.

The function TRACE

The function TRACE calculates the trace of square matrix, defined as the sum of the elements in

its main diagonal, or

n

tr(Aum) = Ya,

i=l

Using Einstein's repeated index convention we can write simply, tr(Anxn) = aii.

For example, [A33] [<2][MTH][MATRX][NORM][NXT][DET] produces tr(A33) = -8.

236 © 2000 - Gilberto E. Urroz

All rights reserved

The function TRAN

The function TRAN returns the transpose of a real or the conjugate transpose of a complex
matrix. TRAN is equivalent to TRN.

Additional matrix operations

The matrix OPER menu

the functions in the [<][MTH][MATRX][NORM] menu are accessible through [«][MATRICES][OPER]

menu , which also includes the functions AXL, AXM, HADAMARD, LSQ, MAD, RSD, and SIZE. The

function SIZE was presented earlier when we discussed the matrix MAKE menu. We discussed the

functions AXL, AXM, HADAMARD, LSQ, MAD, and RSD, below.

The function AXL

The function AXL converts an array (matrix) into a list, and vice versa. For example,

[[345][2-10]] [<][MATRICES][OPER][AXL] produces {{ 3 4 5} {2 -1 0}}
{{ 154} {231}} [«][MATRICES][OPER][AXL] produces [[3 4 5] [2-1 0]]

Note: the latter operation is similar to that of the program CRMTR presented earlier in this
chapter.

The function AXM

The function AXM converts an array containing integer or fraction elements into its corresponding

decimal, or approximate, form. For example,

[[1/72" 2/3" 1[1 '-3/4']] [«][MATRICES][OPER][AXM] produces [[.5 .66666666666][1. -.75]].

The function HADAMARD

The function HADAMARD perform a term by term multiplication of two matrices of the same

order. This is called the Hadamard product of two matrices. For example, calculate the

Hadamard product of the following two matrices:

[[12][2-1]] [ENTER] [[0-1][5 8]] [ENTER] [<][MATRICES][OPER][NXT][HADAM]

The result is the matrix [[0-2] [10 -8]].

237 © 2000 - Gilberto E. Urroz

All rights reserved

The function LSQ

The LSQ function returns the minimum-norm least-square solution of a linear system Ax = b.

* IfAisa square matrix and A is non-singular, LSQ returns the exact solution to the linear
system.

If A has less than full row rank (underdetermined system of equations), LSQ returns the

solution with the minimum Euclidean length out of an infinity number of solutions.

If A has less than full column rank (over-determined system of equations), LSQ returns

the "solution" with the minimum residual value € = Ax - b. The system of equations may not

have a solution, therefore, the value returned is not a real solution to the system, just the

one with the smallest residual.

“The function LSQ takesas input the vector b in stack level 2, and the matrix A in stack
level 1.

Try the following examples:

Example 1 - Square matrix:

[14 18 15][ENTER][[1 2 3][4 -5 8][7 1 2]][ENTER] [<][MATRICES][OPER][NXT][LSQ] results in
[1. 2. 3.]. You can check that this is the exact solution by multiplying:

[[123][4-58][7 1 2]][ENTER][1 2 3][x] to recover [14 18 15].

Example 2 - Underdetermined equation system:

[14 18 J[ENTER][[1T 2 3][7 1 2]J[ENTER] [+][MATRICES][OPER][NXT][LSQ] results in

[1.46892655367 1.90960451977 2.90395480226], which is a solution to the system of equations [[1

2 317 1 2)1{Ix] yl [=] = [14 18].

To verify that it is a solution, type [[12 3] [7 1 2]][ENTER][»][x] to get [14. 18.].

The solution returned earlier is the one with the smallest Euclidean length, i.e., the smallest

distance to the two planes represented by the equations in the system.

Example 3 - Over-determined equation system:

[14 18 15] [ENTER][[1 2][4 -5][7 1]]1[ENTER] [«][MATRICES][OPER][NXT][LSQ] results in
[2.8041958042 -0.538461538462].

Let's check what results from multiplying the A matrix times the “solution” found above. Type
[[12]1[4-5][7 1]][ENTER][»][x] to get [1.72727272728 13.9090909091 19.0909090909].

The error € = Ax - b, can be calculated by entering [14 18 15][-]. The result is [-

12.272727272727 -4.090909090909 4.090909090909]. The “solution” found above represents a

238 © 2000 - Gilberto E. Urroz

All rights reserved

point which is close to two of the three straight lines represented by the equation system, as

illustrated in the figure below.

01 2A°4 6 8 10 12 1474618 201 4 y ~

The function MAD

The function MAD is used to generate a number of properties of a square matrix, such as the

determinant, the formal inverse (i.e., in exact mode), and other information related to what is

known as the characteristic polynomial or characteristic equation of the matrix. The idea of

characteristic polynomial of a matrix is presented in more detail in the section on eigenvalues

and eigenvectors, therefore, we postpone discussion of this function until then.

The function RSD

The function RSD calculates the ReSiDuals or errors in the solution of the matrix equation A-x=b,
representing a system of n linear equations in n unknowns. We can think of solving this system

as solving the matrix equation:

f(x) =b -Ax =0.

239 © 2000 - Gilberto E. Urroz

All rights reserved

Suppose that, through a numerical method, we produce as a first approximation the solution x(q).

Evaluating f(x) = b - Ax= € #0. Thus, € is a vector of residuals of the function for the vector

X = X (0)

To use the function RSD you need to have the terms b, A, and x(q), in stack levels 3, 2, and 1,
respectively. The vector returned is

€E=Db- Ax) .

For example, using A = [[2 -1][0 2]], x= [1.8 2.7], and b = [1 6], we can find the vector of

residuals as follows:

[1 6] [ENTER] [[2 -1][0 2]] [ENTER] [1.8 2.7] [ENTER] [<][MATRICES][OPER][RSD]

The result ise= b - Axi =[0.10.6].

Note: If we let the vector Ax = x - x (g), represent the correction in the values of x (g), we can

write a new matrix equation for Ax, namely A-Ax = €. Solving for Ax we can find the actual
solution of the original system as x = x (g) + Ax.

The function LCXM

The function LCXM can be used to generate matrices such that the element a; is a function of i

and j. The input to this function consists of two integers, n and m, representing the number of

rows and columns of the matrix to be generated, and a program that takes i and j as input. The

numbers n, m, and the program occupy stack levels 3, 2, and 1, respectively. The function LCXM
is accessible through the command catalog [CAT].

For example, to generate a 2x3 matrix whose elements are given by a,j = (i+)? use:

[2][ENTER][3][ENTER] << > i j << '(i+j)*2' EVAL >> [ENTER]
[CAT][ALPHA][ALPHA][L][C][X][ALPHA][OK]

To generate: [[4916][9 16 251].

240 © 2000 - Gilberto E. Urroz

All rights reserved

Gaussian and Gauss-Jordan elimination

Gaussian elimination is a procedure by which the square matrix of coefficients belonging to a

system of n linear equations in n unknowns is reduced to an upper-triangular matrix (echelon

form) through a series of row operations. This procedure is known as forward elimination. The

reduction of the coefficient matrix to an upper-triangular form allows for the solution of all n

unknowns, utilizing only one equation at a time, in a procedure known as backward substitution.

Gaussian elimination using a system of equations

To illustrate the Gaussian elimination procedure we will use the following system of 3 equations

in 3 unknowns:

2X +4Y+6Z = 14,
3X -2Y+ Z=-3,
4X +2Y -7=-4.

Forward elimination

First, we divide the first equation by 2, to get

X +2Y+3Z = 17,
3X-2Y+Z = -3,
4X+2Y-7 = -4.

Next, we replace the second equation by (equation 1 - 3* equation 2), and the third by (equation
1 - 4*equation 1), to get

X +2Y+3Z = 1,

-8Y-87 = -24,

-6Y-137Z = -32.

Next, divide the second equation by -8, to get

X +2Y+3Z =1,

Y+ Z=3,

-6Y-13Z = -32.

Next, replace the third equation with (equation 2 + 6*equation 3), to get

X+2Y+3Z =1,

Y+ Z=3,

-172 = -14.

Backward substitution

The system of equations is now in an upper-triangular form, allowing us to solve for Z first, as

Z=-14/-7=2.

We then replace this value into equation 2 to solve for Y, as

241 © 2000 - Gilberto E. Urroz

All rights reserved

Y=3-2=3-2=1.

Finally, we replace the values of Y and Z into equation 1 to solve for X as

X =7-2Y-3Z =7-2(1)-3(2) = 7-2-6=-1.

The solution is, therefore, X=-1,Y=1,172=2.

Gaussian elimination using matrices

The system of equations used in the example above, i.e.,

2X +4Y+6Z = 14,

3X -2Y+ Z=-3,

4X +2Y -Z=-4.

Can be written as a matrix equation Ax = b, if we use:

2 4 6 Xx 14

A=[3 -2 1 x=|r| b=|-3
2 1 Z —4

To obtain a solution to the system matrix equation using Gaussian elimination, we first create

what is known as the augmented matrix corresponding to A, i.e.,

2 4 6] 14
we=|3 —2 1]-3

4 2 -1|-4

The matrix A,,q is nothing more than the original matrix A with a new row, corresponding to the

elements of the vector b, added (i.e., augmented) to the right of the rightmost column of A.

Once the augmented matrix is put together, we can proceed to perform row operations on it that

will reduce the original A matrix into an upper-triangular matrix. In your calculator, use the

following keystrokes:

[[24614]1[3-21-3][4 2-1 -4]][ENTER][ENTER] Enter augmented matrix, make extra

copy
[1] * 1[ALPHA][ALPHA][A][A][U][G][ALPHA][STOM»] Save augmented matrix in variable AAUG

This step is not necessary, except as an insurance that you have an extra copy of the augmented

matrix saved in case you make a mistake in the forward elimination procedure that we are about

to undertake.

With a copy of the augmented matrix in the stack, press [<1][MTH][MATRX][ROW] to activate the

ROW operation menu. Next, perform the following row operations on your augmented matrix.

242 © 2000 - Gilberto E. Urroz

All rights reserved

[2]1[1/x][1]1[RCI] Multiply row 1 by %2

[31[+/-1[SPC][1][SPC][2][RCIJ] Multiply row 1 by -3 add it to row 2, replacing it.

[4][+/-1[SPC][1][SPC][3][RCIJ] Multiply row 1 by -4 add it to row 3, replacing it.

[81[+/-1[1/x][2][RCI] Multiply row 2 by -1/8.
[6][SPC][2][SPC][3][RCIJ] Multiply row 2 by 6 add it to row 3, replacing it.

If you were performing these operations by hand, you would write the following:

2 4 614 1 2 317 1 2 3 7

A,=|3 -2 1[-3 0 -8 -8|-24

4 2 -1|-4 4 2 -1|-4 0 -6 -13|-32
In w | No wo In

1 2 3] 7 I)
Awe=l0 1 1] 3 |zl0o1 1] 3

0 -6 —13/-32] lo 0

The symbol = (" is equivalent to”) indicates that what follows is equivalent to the previous
matrix with some row (or column) operations involved.

The resulting matrix is upper-triangular, and equivalent to the set of equations

X+2Y+3Z =17,

Y+ Z=3,

-717 = -14,

which can now be solved, one equation at a time, by backward substitution, as in the previous

example.

Gauss-Jordan elimination using matrices

Gauss-Jordan elimination consists in continuing the row operations in the upper-triangular matrix

resulting from the forward elimination process until an identity matrix results in place of the

original A matrix. For example, for the case we just presented, we can continue the row

operations as follows:

[71[+/-111/x][3][RCI] Multiply row 3 by -1/7.

[11[+/-1[SPCI[3][SPC][2][RCIJ] Multiply row 3 by -1, add it to row 2, replacing it.

[31[+/-1[SPCI[3][SPCI[1][RCIJ] Multiply row 3 by -3, add it to row 1, replacing it.

[2]1[+/-1[SPC][2]1[SPC][1][RCUIJ] Multiply row 2 by -2, add it to row 1, replacing it.

243 © 2000 - Gilberto E. Urroz

All rights reserved

Writing the result by hand will result in

12 3] 7 12 37) (1 2 317) (1 2 of1) (1 0 o]-1
An, =|0 1 1] 3 |zlo 1 1|3|zfo 1 1f1|=z]o 1 of1]|=|0o 1 of I

0 0-71-14) loo 1{2) lo o 1]2) {0 0 1{2] lo 0 12

The final result is equivalent to the equations: X = -1, Y = 1, Z= 2, which is the solution to the

original system of equations.

Pivoting

If you look carefully at the row operations in the examples shown above, you will notice that

many of those operations divide a row by its corresponding element in the main diagonal. This

element is called a pivot element, or simply, a pivot. In many situations it is possible that the

pivot element become zero, in which case we can not divide the row by its pivot. Also, to

improve the numerical solution of a system of equations using Gaussian or Gauss-Jordan

elimination, it is recommended that the pivot be the element with the largest absolute value in a

given column. This operation is called partial pivoting. To follow this recommendation is it

often necessary to exchange rows in the augmented matrix while performing a Gaussian or Gauss-

Jordan elimination.

While performing pivoting in a matrix elimination procedure, you can improve the numerical

solution even more by selecting as the pivot the element with the largest absolute value in the

column and row of interest. This operation may require exchanging not only rows, but also

columns, in some pivoting operations. When row and column exchanges are allowed in pivoting,

the procedure is known as full pivoting.

When exchanging rows and columns in partial or full pivoting, it is necessary to keep track of the

exchanges because the order of the unknowns in the solution is altered by those exchanges. One

way to keep track of column exchanges in partial or full pivoting mode, is to create a

permutation matrix P = l..,, at the beginning of the procedure. Any row or column exchange

required in the augmented matrix A, is also registered as a row or column exchange,

respectively, in the permutation matrix. When the solution is achieved, then, we multiply the

permutation matrix by the unknown vector x to obtain the order of the unknowns in the solution.

In other words, the final solution is given by Px = b’, where b' is the last column of the
augmented matrix after the solution has been found.

Example of Gauss-Jordan elimination with full pivoting

Let's illustrate full pivoting with an example. Solve the following system of equations using full

pivoting and the Gauss-Jordan elimination procedure:

X+2Y+32=2,

2X + 3 =-1,

8X +16Y- Z = 41.

244 © 2000 - Gilberto E. Urroz

All rights reserved

The augmented matrix and the permutation matrix are as follows:

1 2 3 2 1 00
Awe =|2 0 3 -1| P=|0 1 of

8 16 —1 41 0 0 1

Enter the augmented matrix in variable AAUG, then press [~][AAUG] to get a copy in the stack.

First, | recommend you change the display font option to small by using:

[MODE][DISP][¥][¥][vCHK] (make sure a check is placed in the Stack: _ small option)
[OK][OK].

We want to keep the CSWP (Column Swap) command readily available, for which we use:

[CAT][ALPHA][ALPHA][CI[SI[ALPHA] (find CSWP), [OK]

You'll get an error message, press [ON], and ignore the message.

Next, get the ROW menu available by pressing: [<1][MATRICES][CREAT][ROW].

Now we are ready to start the Gauss-Jordan elimination with full pivoting. We will need to keep

track of the permutation matrix by hand, so take your notebook and write the P matrix shown

above.

First, we check the pivot a;;. We notice that the element with the largest absolute value in the

first row and first column is the value of az; = 8. Since we want this number to be the pivot, then

we exchange rows 1 and 3, by using: [1][SPC][3][NXT][RSWP]. The augmented matrix and the

permutation matrix now are:

Cd 3 | NXT |RSWP | NXT |

. 8 16 -1 41 | 0 0 1 |
| 2 0 3 1 oOo 1 0
Co 2 3 2 oo 1 |
le wd -

Checking the pivot at position (1,1) we now find that 16 is a better pivot than 8, thus, we

perform a column swap as follows:

TT] 2 [CAT | OK|

[16 8 -1 41] 0 0 17]

| 0 2 1 1 0 0

2 1 3 2 Oo 1 0

Now we have the largest possible value in position (1,1), i.e., we performed full pivoting at (1,1).
Next, we proceed to divide by the pivot:

16| 1/x | 1|RCI
bevrreenimetcensmn : i]

245 © 2000 - Gilberto E. Urroz

All rights reserved

Co 1/2 -1/16 41/16 | 0 0 To]
0 2 3 1 Lo 0 0 |
C2 1 3 2 0 1 0 |
L. i t i"

The next step is to eliminate the 2 from position (3,2) by using:

2 [+/- [SPC | 1 |] SPC [| 3 |RCU]

I. 1/2 -1/16 41/16 | 0 0 1 |
0 2 3 1 1 0 0 |
0 0 25/8 -25/8 0 1 0 |

Having filled up with zeros the elements of column 1 below the pivot, now we proceed to check

the pivot at position (2,2). We find that the number 3 in position (2,3) will be a better pivot,

thus, we exchange columns 2 and 3 by using:

L Tear| ok
CT 1/16 1/2 41/16 0 1 0 |
0 3 2 -1 1 0 0 |

0 25/8 0 -25/8 0 0 1 |

Checking the pivot at position (2,2), we now find that the value of 25/8, at position (3,2), is
larger than 3. Thus, we exchange rows 2 and 3 by using:

2|3 |NXT [RSWP NXT

Co 1/16 1/2 41/16 0 1 0 |
0 25/8 0 -25/8 00 1
0 3 2 -1 Co 0 0 !

Now, we are ready to divide row 2 by the pivot 25/8, by using (make sure that you enter

[10 * 1[2][5][+]1[8] [»] to produce the value ‘25/8 in the stack):

8/257]SPC |2 |RCILecscsvarsosmamriesont—————————— o> or p——— ve ———5

Po 1/16 1/2 41/16 C0 1 0
0 1 0 -1 0 0 1
| 0 3 2 -1 C1 0 0

Next, we eliminate the 3 from position (3,2) by using:

3 | +/- [SPC | 2 | SPC || 3 RC

1 1/16 1/2 41/16 fo 1 0
0 1 0 -1 0 0 1
0 0 2 2 1 0 0 |

246 © 2000 - Gilberto E. Urroz

All rights reserved

Having filled with zeroes the position below the pivot, we proceed to check the pivot at position

(3.3). The current value of 2 is larger than 2 or 0, thus, we keep it unchanged. We do divide
the whole third row by 2 to convert the pivot to 1, by using:

2 | Vx | 3 | RC |

[1 1/16 1/2 41/16 | [0 1 0

0 1 0 -1 | 0 0 1
0 0 1 1 | 1 0 0

Next, we proceed to eliminate the 2 in position (1,3) by using:

| 1/221 spC | 3 [SPC || 1][RCU]

1 -1/16 0 33/16 | [0 1 0 |
0 1 0 SE | oo 1 |

i0 0 1 1 | 0 0 |

Finally, we eliminate the -1/16 from position (1,2) by using:

 1/16 SPC | 2 [SPC || 1 - 1 [RCI]

Fo 0 0 2 Ff 0 1 0 |
0 1 0 -1 | | 0 0 1
0 0 1 1 | 1 0 0 |

We now have an identity matrix in the portion of the augmented matrix corresponding to the

original coefficient matrix A, thus we can proceed to obtain the solution while accounting for the

row and column exchanges coded in the permutation matrix P. We identify the unknown vector

x, the modified independent vector b’ and the permutation matrix P as:

X 2 010

x=|Y| b'=|-1|, P={0 0 1}

Zz 1 1 0 0

The solution is given by P-x=b’, or

0 1 OX 2

0 0 1||Y|=]|-1

1 0 0 |Z 1

247 © 2000 - Gilberto E. Urroz

All rights reserved

Which results in

Step-by-step calculator procedure for solving linear

systems

The example we just worked is, of course, the step-by-step, user-driven procedure to use full

pivoting for Gauss-Jordan elimination solution of linear equation systems. You can see the step-
by-step procedure used by the calculator to solve a system of equations, without user

intervention, by setting the step-by-step option in the calculator’s CAS, as follows:

[MODE][CAS] [¥][¥][¥][vCHK] [OK][OK].

Then, for this particular example, use:

[2-1 47][ENTER][[1 2 3][2 0 3][8 16 -1]] [ENTER] [+]

The calculator shows an augmented matrix consisting of the coefficients matrix A and the

identity matrix I, while, at the same time, showing the next procedure to calculate:

L2 = L2-2:L1
lf 1. 2 3 1 0 0
| 2 0 3 0 1 0
| 8 16 -1 0 0 1

L2 = L2-2.L1 stands for “replace row 2 (L2) with the operation L2 - 2:.L1. If we had done this
operation by hand, it would have corresponded to: [2][+/-][SPC][1][SPC][2][RCIJ]. Press [OK],

and follow the operations in your calculator’s screen. You will see the following operations

performed:

L3=L3-8-L1, L1 =2:.L1--1L2, L1=25-L--3-L3, L2 = 25-0.2-3.L3,

and finally a message indicating "Reduction result” showing:

Reduction result

50 0 0 -24 25 3 |
0 -100 0 -26 25 -3
0 0 -25 -8 0 1

—

When you press [OK], the calculator returns the final result [1 2 -1].

What the calculator showed was not exactly a Gauss-Jordan elimination with full pivoting, but a

way to calculate the inverse of a matrix by performing a Gauss-Jordan elimination, without

pivoting. This procedure for calculating the inverse is based on the augmented matrix (Aaug) nxn =

248 © 2000 - Gilberto E. Urroz

All rights reserved

[A xn |lnxn]. The calculator showed you the steps up to the point in which the keft-hand half of

the augmented matrix has been converted to a diagonal matrix. From there, the next step is to

divide each row by the corresponding main diagonal pivot, which, for the result shown above

would have looked as:

| 1 0 0 -24/50 1/2 3/50 |
0 1 0 26/100 -1/4 3/100

| 0 0 1 825 0 1/25 |

In other words, the calculator has transformed (Ayg)nxn = [A nxn |lnxn]. into [I IAT]. To calculate

the solution to the linear system, the calculator then multiplies the inverse matrix times the

independent vector b, i.e., x= Ab.

Of course, if you uncheck the step-by-step option in the calculator's CAS, and you try this
example again, you will just get the solution as a result.

Solving multiple set of equations with the same coefficient matrix

Suppose that you want to solve the following three sets of equations:

X +2Y+3Z = 14, 2X +4Y+6Z = 9, 2X +4Y+6Z = -2,

3X -2Y+ Z= 2, 3X -2Y+ Z=-5, 3X -2Y+ Z= 2,

4X +2Y -71 = 5, 4X +2Y -72=19, 4X +2Y -7Z=12.

We can write the three systems of equations as a single matrix equation: A-X = B, where

1 2 3 Xo Xo Xa 14 9 -2
A=|3 -2 1| X=|y, VY, Y,| B=|2 -5 2

4 2 -1 Zo Zo Z 5 19 12
(1 (2)

The sub-indices in the variable names X, Y, and Z, determine to which equation system they

refer to. To solve this expanded system we use the following procedure:

[[14 9 -2][2-5 2][5 19 12]][ENTER] [[1 2 3][3 -2 1][4 2 -1]][ENTER][+]

The result of this operation, after showing the various intermediate steps, is:

1 2 2

X=|2 5 1

3 -1 =-2

249 © 2000 - Gilberto E. Urroz

All rights reserved

Calculating the inverse matrix step-by-step

As mentioned before, the calculation of an inverse matrix can be considered as calculating the

solution to the augmented system [A | 1]. For example, for the matrix A used in the previous
example, we would write this augmented matrix as

1 2 3]1 00
Awa =|3 =2 110 1 0}

4 2 -1/0 0 1

To see the intermediate steps in calculating and inverse, just enter the matrix A from above, and

press [1/x], while keeping the step-by-step option active in the calculator’'s CAS. Use the
following:

[[123][3-21][42-1]] [ENTER][1/x].

After going through the different steps, the solution returned is:

9/29 -2/29 8/29

A? =|-7/29 8/29 -3/29]

17/29 -7/29 -1/29

Inverse matrices and determinants

Notice that all the elements in the nverse matrix calculated above are divided by the value 29.

If you calculate the determinant of the matrix A, by using:

[1123] [3-21] [42-1]] [~][MTH][MATRIX][NORM][NXT][DET],

you get det(A) = 56 = 2-29.

We could write, A = C/det(A), where C is the matrix

18 —-4 16
c=|-14 16 -6|

34 —14 -2

The result (A) en = C nxn /det(A nxn), is a general result that applies to any non-singular matrix A.

A general form for the elements of C can be written based on the Gauss-Jordan algorithm.

The fact that | want to point out, however,is that, based on the equation A" = C/det(A), the
inverse matrix, A”, is not defined if det(A) = 0.

[Thus, the condition det(A) = 0 defines also a singular matrix |

250 © 2000 - Gilberto E. Urroz

All rights reserved

Solution to linear systems using calculator functions

The simplest way to solve a system of linear equations, Ax = b, in the calculatoris to enter b,

enter A, and then use the division function [+]. If the system of linear equations is over-

determined or under-determined, a “solution” can be produced by using the function LSQ (Least-
SQuares). The calculator, however, offers other possibilities for solving linear systems of
equations by using the functions included in the matrices’ LIN S (LINear Solutions) menu
accessible through [<1][MATRICES][LIN S]. The functions included are:

[LINSO][REF][rref J[RREF].

The function LINSOLVE

The function LINSOLVE takes an array of equations from stack level 2 and a vector containing the
names of the unknowns and produces the solution to the linear system. For example, enter the

following:

'X-2*Y+Z=-8' [ENTER] '2*X+Y-2°Z=6" [ENTER] '5*X-2'Y+Z=-12" [ENTER] [3] [ENTER]
[<][PRG][TYPEI[ARRY]['X’ 'Y' ‘Z'][ENTER] [<][MATRICES][LIN S][LINSO]

to produce the solution: [‘X=-1" 'Y=2"'Z=-3"].

Thus, the function LINSOLVE works with symbolic expressions. The other functions in this menu,
REF, rref, and RREF, work with the augmented matrix.

Functions REF, rref, RREF

The upper triangular form to which the augmented matrix is reduced during the forward

elimination part of a Gaussian elimination procedure is known as an “echelon” form. The function

REF (Reduce to Echelon Form) produces such a matrix given the augmented matrix in stack level

1.

Consider the augmented matrix,

1-2 1]o0
Awe=]2 1 =2]-3]

5 —2 1|12

Representing a linear system of equations, A-x = b, where

A=[[1-21][21-2][5-21]],

and

b = [[0][-3]["2]].

Enter the augmented matrix, and save it into variable AAUG:

251 © 2000 - Gilberto E. Urroz

All rights reserved

[[1-210][21-2-3][5-2 1 12]][ENTER] [~][* [ALPHA][ALPHA][A][A][U][G][ALPHA][STOM].

Press [AAUG] to bring the augmented matrix back to stack level 1, then press:

[<][MATRICES][LIN S][REF].

The result is the upper triangular (echelon form) matrix of coefficients resulting from the

forward elimination step in a Gaussian elimination procedure:

1 2 3 2

0 1 3/4'('5/4')

0 0 1 -1

The diagonal matrix that results from a Gauss-Jordan elimination is called a row-reduced echelon

form. The function RREF (Row-Reduced Echelon Form) produces a list of the pivots and an

equivalent matrix in row-reduced echelon form so that the matrix of coefficients is reduced to a

diagonal matrix.

As an example, press [AAUG] to bring the augmented matrix back to stack level 1, then press:

[][MATRICES][LIN S][RREF].

The result is the list of pivots and the diagonal matrix of coefficients resulting from the a Gauss-

Jordan elimination without pivoting:

Pivots: {252.2 1.}

50 0 0 50

0 -100 0 |-=200}|

0 0 -25| 25

A row-reduced echelon form for an augmented matrix can be obtained by using the function rref.

The results of this function call is to produce the row-reduced echelon form so that the matrix of

coefficients is reduced to an identity matrix. The extra column in the augmented matrix will

contain the solution to the system of equations.

For example, press [AAUG] to bring the augmented matrix back to stack level 1, then press:

[<]1[MATRICES][LIN S][RREF].

The result is the diagonal matrix of coefficients resulting from the a Gauss-Jordan elimination

with full pivot:

1 0 0] 1

0 1 0f 2

0 0 1-1

252 © 2000 - Gilberto E. Urroz

All rights reserved

Eigenvalues and eigenvectors

Given a square matrix A, we can write the eigenvalue equation

Ax = Ax,

where the values of A that satisfy the equation are known as the eigenvalues of matrix A. For

each value of A, we can find, from the same equation, values of x that satisfy the eigenvalue

equation. These values of x are known as the eigenvectors of matrix A.

The eigenvalues equation can be written also as

(A-XADx =0.

This equation will have a non-trivial solution only if the matrix (A - Al) is singular, i.e., if

det(A- Al) = 0.

The last equation generates an algebraic equation involving a polynomial of order n for a square

matrix Ann. The resulting equation is known as the characteristic polynomial of matrix A.

Solving the characteristic polynomial produces the eigenvalues of the matrix.

The HP 49 G calculator provides a number of functions to produce information regarding the

eigenvalues and eigenvectors of a square matrix. Some of these functions are located under the

menu [+][MATRICES] [EIGEN].

The function PCAR

The function PCAR generates the characteristic polynomial of a square matrix using the contents
of variable VX (a CAS reserved variable) as the unknown in the polynomial. For example,

[[15-3][2 -1 4][3 5 2]] [«][MATRICES][EIGEN][PCAR] produces 'X"3+-2"X"2+-22"X+21".

Using the variable A to represent eigenvalues, this characteristic polynomial is to be interpreted

as

23202-2200 +21=0.

The function EGVL

The function EGVL (EiGenValues) produces the eigenvalues of a square matrix. For example,

enter:

[[23][2-21]] [ENTER] [«][MATRICES][EIGEN][EGVL]

to produce the eigenvalues A = ['-V10' 'V10'].

253 © 2000 - Gilberto E. Urroz

All rights reserved

Note: In some cases, you may not be able to find an ‘exact’ solution to the characteristic

polynomial, and you will get an empty list as a result when using the function EGVL. If that were
to happen to you, change the calculation mode to Approx in the CAS, i.e., [MODE][CAS]
[w1[v][vCHK][OK][OK], and repeat the calculation.

For example, in exact mode, [[1-2 1][2 -1 2][5 -2 1]] [ENTER] [«2][MATRICES][EIGEN][EGVL]

produces { }. Change mode to Approx and repeat the entry, to get [(-0.5849, 1.5923), (-0.5849, -
1.5923), (4.1698,0.)].

The function EGV

The function EGV (EiGenValues and eigenvectors) produces the eigenvalues and eigenvectors of a
square matrix. The eigenvectors are returned as the columns of a matrix in stack level 2, while

the corresponding eigenvalues are the components of a vector returned in stack level 1.

For example, enter:

[[2-11][-153][134]][ENTER] [«][MATRICES][EIGEN][EGV]

The result is

2: [[1.00 1.00 -0.03..

[0.79 -0.51 1.00...

[-0.91 0.65 0.84..

1: [0.29 3.26 7.54]

Or, AM =0.29, x; = [0.79 -0.91 0.29],
A = 3.26, x, = [-0.51, 0.65, 3.26] |, and
As = 7.54, x; = [-0.03, 1.00, 0.84] ".

Note: A symmetric matrix produces all real eigenvalues, and its eigenvectors are mutually

perpendicular. For the example just worked out, you can check that x; ex; = 0, x; ex3 = 0, and x;

oX3 = 0.

The function JORDAN

The function JORDAN produces four outputs given a square matrix, namely:

The minimum polynomial of matrix A (stack level 4)

The characteristic polynomial of matrix A (stack level 3)
A list with the eigenvectors corresponding to each eigenvalue of matrix A (stack level 2)
A vector with the eigenvectors of matrix A (stack level 4)

For example, try the exercise:

[[471-2][12-1][-2-10]] [«~][MATRICES][EIGEN][JORDAN].

The output is the following:

254 © 2000 - Gilberto E. Urroz

All rights reserved

4 ‘X"34-6*x"2+42*X+8"

3 ‘XM34-6*X"242*X+8

2: {-0.94: [4.88 2.94 13.52] 1.59: [-0.19 0.41 -0.02] 5.35: [-7.69 -3.35 3.50]}

1: [-0.94 1.59 5.35]

The function MAD

This function, although not available in the EIGEN menu, also provides information somewhat
related to the eigenvalues of a matrix. The function MAD is available through

[<][MATRICES][OPER][NXT][MAD].

This function generate a number of properties of a square matrix, namely:

the determinant (stack level 4)

the formal inverse (stack level 3),

in stack level 2, the matrix coefficients of the polynomial p(x) defined by

(x1-A) -p(x)=m (x),

the characteristic polynomial of the matrix (stack level 1)

Notice that the equation (x-1-A)-p(x)=m(x)-l is similar, in form, to the eigenvalue equation Ax =

AX.

As an example, try:

[[41-2][12-1][-2-10]] [ENTER] [«][MATRICES][OPER][NXT][MAD].

The result is:

4: -8.

3: [[0.13 -0.25 -0.38][-0.25 0.50 -0.25][-0.38 -0.25 -0.881]]

2: {[[1 0 0][0O 1 0]J[0OO1)) [[-21 -21[12 -4 -11([-2 -1 -6] [[-1 2 31(2 -4 21[3 2711)

1: '"X73+-6*x"2+2*X+8"

Matrix factorization

Matrix factorization or decomposition, introduced earlier, consists of obtaining matrices that

when multiplied result in a given matrix. We presented earlier on, the basic idea of LU
decomposition, as well as of SVD decomposition. We present these and other types of matrix

decomposition through the use of the functions contained in the matrix FACT menu. This menu
is accessed through [<1][MATRICES][FACT]. The functions contained in this menu are:

[LQ][LU][QR][SCHUR][SVD][SVL 1].

255 © 2000 - Gilberto E. Urroz

All rights reserved

The function LU

The function LU takes as input a square matrix A, and returns a lower-triangular matrix L, an
upper triangular matrix U, and a permutation matrix P, in stack levels 3, 2, and 1, respectively.

The results L, U, and P, satisfy the equation P-A = LU. When you call the LU function, the
calculator performs a Crout LU decomposition of A using partial pivoting.
For example:

[[-1 2 5][3 1-2][7 6 5]] [ENTER][+2][MATRICES][FACT][LU]

produces:

3:[[7 0 0J[-1 2.86 0]([3 -1.57 -1]
2: [[1 0.86 0.711[0 1 2]1(0 0 1]]
1: [[00 1][100][010]]

Orthogonal matrices and singular value decomposition (SVD)

A square matrix is said to be orthogonal if its columns represent unit vectors that are mutually

orthogonal. Thus, if we let matrix U = [vq v; ... vp] where the v;, i = 1, 2, ..., n, are column

vectors, and if viev; = §;, where §; is the Kronecker’s delta function, then U will be an orthogonal

matrix. This conditions also imply that U- U" = I.

The Singular Value Decomposition (SVD) of a rectangular matrix Ap, consists in determining the
matrices U, S, and V, such that

T

Ann =U mxm -S mxn ‘V nxn:

Where U and V are orthogonal matrices, and S is a diagonal matrix. The diagonal elements of $
are called the singular values of A and are usually ordered so that s; >s;,¢, fori =1, 2, ..., n-1.

The columns [uj] of U and [v;] of V are the corresponding singular vectors.

The function SVD

The function SVD (Singular Value Decomposition) takes as input a matrix A,.m. and returns the

matrices Unxn, Vmxm. and a vector s in stack levels 3, 2, and 1, respectively. The dimension of

vector s is equal to the minimum of the values n and m. The matrices U and V are as defined

earlier for singular value decomposition, while the vector s represents the main diagonal of the

matrix S used earlier.

For example, try:

[[54-1][2-35][7 2 8]] [ENTER][<][MATRICES][FACT][LU] produces:

3: [[-0.27 0.81 -0.53][-0.37 -0.59 -0.72]1[-0.89 3.09E-3 0.461]

2: [[-0.68 -0.14 -0.72][0.42 0.73 -0.54]1[-0.60 0.67 0.441]

1: [12.15 6.88 1.42]

256 © 2000 - Gilberto E. Urroz

All rights reserved

The function SVL

The function SVL (Singular Values) returns the singular values of a matrix Ann, as a vector s

whose dimension is equal to the minimum of the values n and m. For example,

[[54-1][2-3 5][7 2 8]] [ENTER][«][MATRICES][FACT][SVL] produces [12.15 6.88 1.42].

The function SCHUR

The function SCHUR produces the Schur decomposition of a square matrix A returning matrices Q

and T, in stack levels 2 and 1, respectively, such that A = QT-Q', where Q is an orthogonal
matrix, and T is a triangular matrix. For example,

([23-1]1[54 -2][7 5 4]][ENTER] [<2][MATRICES][FACT][SCHUR] results in:

2: [[0.66 -0.29 -0.70]([-0.73 -0.01 -0.68][-0.19 -0.96 0.21]]

1: [[-1.03 1.02 3.86]J[0 5.52 8.23][0 -1.82 5.52]]

The function LQ

The LQ function produces the LQ factorization of a matrix Asm returning a lower Ln. trapezoidal

matrix, a Qmxm orthogonal matrix, and a P,,, permutation matrix, in stack levels 3, 2, and 1.

The matrices A, L, Q and P are related by P-A = L-Q. (A trapezoidal matrix out of an nxm matrix
is the equivalent of a triangular matrix out of an nxn matrix).

For example,

[[1-21][21-2][5-2 1]][ENTER] [«][MATRICES][FACT][LQ] produces

3: [[-5.48 0 0][-1.10 -2.79 0][-1.83 1.43 0.78]]

2: [[-0.27 0.81 -0.18][-0.36 -0.50 -0.79]([-0.20 -0.78 -0.59]]

1: [[(0 0 1]7[{0 1 0][1 0 01]

The function QR

The function QR produces the QR factorization of a matrix Anxm returning a Q,«, orthogonal

matrix, a R.xm upper trapezoidal matrix, and a Pm permutation matrix, in stack levels 3, 2, and

1. The matrices A, P, Q and R are related by A-P = QR.

For example,

[[1-21][21-2][5-2 1]][ENTER] [+][MATRICES][FACT][QR] produces

3: [[-0.18 0.39 0.90]([-0.37 -0.88 0.30] [-

2: [[-5.48 -0.37 1.83][0 2.42 -2.20](0

1: [[1 0 0][0 O 11[0 1 01]

0.91 0.28 -0.30]]

0 -0.901]

257 © 2000 - Gilberto E. Urroz

All rights reserved

Matrix Quadratic Forms

A quadratic form from a square matrix A is a polynomial expression originated from x-Ax'. For

example, if we use A= [[21-1][542][35-1]], and x= [XY 71", the corresponding quadratic

form is calculated as

2 1 -1] [x 2X+Y-2Z

x-Ax' =x v z]|5 4 2||v|=[x v Z]|5x+4v+2Z

35 —-1||z 3X+5Y-Z

Finally,

X-AX' = 2X2+4Y2-7246XY+2XZ+TZY

The QUADF menu

The HP 49 G calculator provides the QUADF menu for operations related to QUADratic Forms.

The QUADF menu is accessed through [<1][MATRICES][QUADF], and includes the functions

[AXQ J[GAUSS][QXA J[SYLVE].

The function AXQ

The function AXQ produces the quadratic form corresponding to a matrix Anx, in stack level 2
using the n variables in a vector placed in stack level 1. The function returns the quadratic form

in stack level 1 and the vector of variables in stack level 1. For example,

[[21-1]1[54 2][35-1]] [ENTER] ['X" 'Y" 'Z'] [ENTER] [<][MATRICES][QUADF] [AXQ]

returns

2: "2*XN2+(6FYH2*Z) *XK+ (AFyn 2+T*Lxy-272)
1: [*X’ ‘Y!’ ‘Z']

The function QXA

The function QXA takes as arguments a quadratic form in stack level 2 and a vector of variables
in stack level 1, returning the square matrix A from which the quadratic form is derived in stack

level 2, and the list of variables in stack level 1. For example,

XA24YA2-ZA2+44°X*Y-16"X*Z' [ENTER] ['X' 'Y’ 'Z'] [ENTER] [«][MATRICES][QUADF] [AXQ]

258 © 2000 - Gilberto E. Urroz

All rights reserved

returns

2: ([12-8][210][-80 -1]]
1: ['X' 'Y' 2)

Diagonal representation of a quadratic form

Given a symmetric square matrix A, it is possible to “"diagonalize” the matrix A by finding an

orthogonal matrix P such that PAP =D, where Dis a diagonal matrix. If Q = x-Axisa
quadratic form based on A, it is possible to write the quadratic form Q so that it only contains

square terms from a variable y, such that x = P-y, by using
Q = x-Ax' = (P-y)-A(Py) = y(P"AP)y = yDy"

The function SYLVESTER

The function SYLVESTER takes as argument a symmetric square matrix A and returns a vector
containing the diagonal terms of a diagonal matrix D, and the orthogonal matrix P, so that P'AP
=D. For example,

[[2 1-1][1 4 2][-1 2 -1]] [ENTER] [<][MATRICES][QUADF] [SYLVE] produces

2: [1/2" 2/7" *=23/7"]

1: ((2 1 -11(0 7/2" *5/2']1[0 0 117]

The function GAUSS

The function GAUSS returns the diagonal representation of a quadratic form Q = x-Ax' taking as
arguments the quadratic form in stack level 2 and the vector of variables in stack level 1. The

result of this function call is the following:

An array of coefficients representing the diagonal terms of D (stack level 4)

A matrix P such that A = P"-D-P (stack level 3)

The diagonalized quadratic form (stack level 2)

The list of variables (stack level 1)

For example,

X"2+Y72-272+4*X*Y-16*X*Z" [ENTER] ['X" 'Y" 'Z'] [ENTER] [«][MATRICES][QUADF] [GAUSS]

returns

[1 -0.333 20.333]

[([1 2 -8][0 -3 16]([0 0 11]

4
3
2: 20.333%2°2+-.333% (16% 2+-3%Y) "2+ (-8+8*Z+2*Y+X) "2"
1: ['X' 'Y' 2]

259 © 2000 - Gilberto E. Urroz

All rights reserved

Matrix applications

In this section we explore some applications of matrices in the physical sciences.

Electric circuits

Consider the simple electrical circuit shown in the figure below.

Given the values of the electric resistance, Ry = R3 = Rs =R; = 1.5 kQ, R; = R; = Rg = Rg = 800 Q,

and the known steady voltages V; = 12 V, V; = 24 VV. We are asked to determine the electrical

currents lq, 1, and 13, associated with the circulation loops shown in the figure.

The circulation loops shown pre-determine for us a preferred direction in each loop to write

Kirchoff law of voltage in a closed loop. Basically, we start at a node in the circuit and move

around a given loop subtracting voltages R:l if the current is in the same direction as the loop

direction, or adding voltagesif the current and the loop directions are opposite. When

encountering a voltage source, the voltage from the source is added or subtracted according to

the orientation of the voltage source with respect to the loop circulation direction. We stop

back at the same node were we started to complete the voltage equation for a given loop.

For the case shown in the figure we can write:

ly: ‘Ril -Rpli- Ry: (ly = 12) - V4 = 0
I>: -Ral2 -Rs:l2 -Re- (12 - 13) -R3- (I-11)=0
I3: -V, -Rg-l3 - R15 = Re:l3 =0

Replacing the values of the resistances and voltage sources:

lq: -1500-14 - 800-14- 1500: (11-13) -12=0

I: -800-1; 1500-1; - 800: (I, - 13) -1500- (I,-11)=0

13: -24 -800-13 - 1500-15 - 800-(I3-1;) =0

We can solve this system of equations by using the following keystrokes:

'-1500%11-800*11-1500%(11-12)-12=0" [ENTER] Enter equation I1

'-800*12-1500%12-800*(12-13)-1500*(12-11)=0" [ENTER] Enter equation 12
'-24-800%13-1500713-800*(13-12)=0" [ENTER] Enter equation 13

260 © 2000 - Gilberto E. Urroz

All rights reserved

[3]1[<]1[PRGI[TYPE][->ARRY] Create an array to hold the equations

['17" "127 "13'][ENTER] Create an array of variables to solve for

[<][MATRICES][LIN S][LINSO] Solves for 11, 12, 13.

To see the solution press [¥], then use [4] [>] to move about the solution vector. You should

get ['11=-1602/373175" '12=-1073/373175" "13 = -3166/373175']

Press [ENTER] to return to normal calculator display.

To see the results in decimal form, use:

[<][PRG][TYPE][OBJ>][<] Separates elements of vector, drop level

1

[OBJ][<][«][~]1[=>NUM] -8.4839E-3, or I; = - 8.4839 mA.

[€]l[<e][0BI>][«][<][P[=NUM] -2.8753E-3, or lI, = - 2.8753 mA.

[€]l[<][0BI2][«][«][2NUM] -4.2928E-3, or |; = - 4.2928 mA.

Structural mechanics

Consider the truss structure shown in the figure below. Horizontal and vertical bars are of length

1.0 m, and diagonal bars 1.4142 m. All acute angles in the truss are 45°.

20 kN 15 kN

@

@ 1 1 ©)

R, 5kN 10KN R,

By isolating each node, as shown in the figure below, we can write the following equations for

node equilibrium (i.e., ZFx = 0, ZFy = 0):

20 EN 15 kN

AN,
fl E, F, B E

Lool pE¢ I PDAN

Ry=25kN 5EN 10 kN Rp =25kN

261 © 2000 - Gilberto E. Urroz
All rights reserved

Fs + Fq COS 45° =0,

25 + Fy sin 45° = 0,
-F, + Fe = 0,

-5 + Fs = 0,

F4 - F; cos 45% Fs cos 45° = 0,
-20 - F3 - F1 cos 45° - F5 cos 45° =0,

-F4 + F; cos 45° = 0,
-15 - Fg - Fs COS 45° = 0,

-Fg + Fq - Fg COS 45° = 0,

-10 + Fg + F5 cos 45° = 0,
-Fg- F; cos 45° = 0,
25 + F7 cos 45° = 0.

With sin 45° = cos 45° = 0.866, then we have:

0.866 F,
0.866 F,

-0.866F
-0.866F,

+F,

-F, + Fe

Fs
+F4 +0.866F

-F3 -0.866F5

-F4 + 0.866F;

-0.866F; - Fg

-0.866F = Fg + Fg

0.866F5 +Fg

-0.866F; - Fg

0.866 F;

We have a total of 12 equations with 9 unknowns. The system is over-determined, so we choose,
arbitrarily, the first 9 equations:

0.866 F;
0.866 F,

-0.866F
-0.866F,

+F;

-F,

=0

=-25
+ Fg =

Fs =5

+F4 +0.866F5 =0

-F5 -0.866F =20

-F4 + 0.866F; =0

-0.866F; - Fg =15

-0.866F5 - Fg + F9 =0

262 © 2000 - Gilberto E. Urroz

All rights reserved

Writing the system as a matrix equation:

J 1 J 1 J

[086 1 0 0 0 0 0 0 0][F 0

0866 0 0 0 0 0 0 0 O||F [-25

0 -1 0 0 0 1 0 0 0||F 0

0 0 1 0 0 0 0 0 0f|F 5

-086 0 0 1 0866 0 0 0 O|-|F |=] ©

-086 0 —-1 0 -0.866 0 0 0 0||F, 20

0 0 0 -1 0 0 086 0 Of]|F, 0

0 0 0 0 0 0 -0866 —1 0f|F, 15

0 0 0 0 -0.866 -1 0 0 IF] | O]
The coefficient matrix for this problem, where most of the elements are zero, is known as a

sparse matrix. To solve this problem we can simply enter the vector:

[0-25050200 15 0][ENTER]

Then the matrix:

[[0.866 100 00000][0.866 000000 0]..etc.. Make sure that the elements of the matrix are

entered properly, then press [+]. The result is: [-28.87 25. 5. -25. 0. 25. -28.87 -40. 25], i.e.,

F1=-28.87 kN, F, = 25 kN, F3 = 5 kN,

Fq =-25kN, Fs = 0 kN, Fg=25 kN,

F; =-28.87 kN, Fg = -40 kN, Fg = 25 kN.

Dimensionless numbers in fluid mechanics

Dimensional analysis is a technique used in fluid mechanics, and other sciences, to reduce the

number of variables involved in an experiment by creating dimensionless numbers that combine

the original set of variables. In order to obtain these dimensionless numbers, we make use of

the principle of dimensional homogeneity, which basically states that an equation derived from

conservation laws and material properties should have the same dimensions on both sides of the

equation. For example, the equation for the distance traveled by a projectile dropped from rest

at a certain elevation above the ground is given by d = 2 gt? where g = 9.806 m/s’, is the

acceleration of gravity, and t is the time in seconds. The distance d is given in meters. Instead

263 © 2000 - Gilberto E. Urroz

All rights reserved

of dealing with units, we refer to three (sometimes more) fundamental dimensions: length (L),
time (T), and mass (M). We use brackets to refer to the dimensions of a quantity, thus, [d] = L,
g= [LT?], and t = [T]. Replacing dimensions in the formula for d we have:

[d] = [1/2][g][t]* = 1LT?T? = L,

as expected. Thus, we say that the equation d = 72 gt’ is dimensionally homogeneous.

Suppose that we have an experiment that involves the following variables (showed with their

dimensions attached):

D = a diameter (L)

V = a flow velocity (LT)
v = kinematic viscosity of the fluid (LT

p = density of the fluid (ML?)
E = bulk density of the fluid (ML'T?)
0 = surface tension of the fluid (MT?)

Ap = a characteristic pressure drop in the flow (ML'T?)
g = acceleration of gravity (LT?)

There are m = 8 variables which need n = 3 dimensions to be expressed (i.e., L, T, and M).

Buckingham 's I1 theorem indicates that you can formr =m -n = 8 - 3 = 5 dimensionless

parameters. The technique consists in selecting one geometric variable, in this case we have no

choice but to select D, the only variable that represents geometry alone; a kinematic variable, V

(you can also choose Vv), i.e., a variable involving length and time; and, finally, a dynamic

variable, say p, i.e., a variable involving length, time, and mass. These three variables, D, V and

p, become repeating variables, i.e., variables that will participate in each of the dimensionless

parameters to be formed. Each dimensionless parameter ,or Il number, is formed by multiplying

the repeating variables raised to a certain unknown power and multiplying one of the remaining

variables. For example, we can form for this case the following I1 parameters:

Mm= p*-D¥Vv,

IM, = p*-DY-V'E,

I; = p*-D¥-V2.o,

My = p*-DY-V" Ap,

Ms = p*-DY-Vg.

Since the IT numbers are dimensionless, we can write [ITi] = L%T°M°, fori =1,2, 3, 4, 5.

Replacing the dimensions of the variables involved in each dimensionless parameters we can

write, for example, for Ily:

LOTOMO = (MLZ) (L)Y-(LT)? (LATT) = (Uy2(m) 271 (Mm) %,

From which we get the following equations:

-3x+y+z+2 =0

-z-1=0

X =0

Or,

264 © 2000 - Gilberto E. Urroz

All rights reserved

If we replace the dimensions of the non-repeating variables in the remaining I parameters, we

can expand the matrix equation shown above to read:

-3 1 1

So, the independent vector b has become a matrix B, and we can write the matrix equation A-X =
B. The columns of B are the negatives of the exponents of the dimensions, L, T, and M, in that

order, of each of the non-repeating variables as shown in the Il parameters that we set up.

To solve for the variables x,y,z for each parameter use:

[[-2101-11[12222][0-1-1-10]][ENTER] Enter matrix B

[[-311][00-1][1 0 0]][ENTER] Enter matrix A

[+] Solve for X

The result is the matrix

oO -1 —-1 —-1 0

X={-1 0 -1 0 1

-1 -2 -2 -2 =2

each column representing the values of x,y,z, for the repeating variables in each of the

dimensionless parameters, thus we have:

Mm= p®D"vy = v/DV,

MM, =p-D°V2E = E/pV?,

=p'D"Vic = 6/pDV?

My =p-DOV2Ap = Ap/pV2,

Is = p°D'-V2g = gD/V2

265 © 2000 - Gilberto E. Urroz

All rights reserved

Stress at a point in a solid in equilibrium

Consider a solid body in equilibrium under the action of a system of forces and moments, as

illustrated in the figure below. If we were to make an imaginary cut through the solid body, so

that we can separate it into two parts at section S.

The effect of the part that we remove to the right of the cut surface S is replaced by the force F,

which in turn can be decomposed into a normal component, Fy, and a shear or tangential

component Fs.

Suppose now that we isolate a small particle off this solid body, and we do it by cutting the body

with four planes so that we can draw the particle as shown in the left-hand side of the figure

below.

Three of the planes are chose to be perpendicular to each other so that they help us identify a

Cartesian coordinate system (xy, Xx, x3) as shown above. The surface S, limiting the particle

from above, has a normal unit vector n = [cos o, cos 0, cos 03], where cos o;, cos 0p, and cos 03

are the direction cosines of n. The other three surfaces limiting the particle are Sq, S;, and Ss,
where the sub-index indicates the axis that is normal to the surface. The effect of the solid body

on this particle is represented by the forces F, Fy, F,, and F3;, acting, respectively, upon surfaces

266 © 2000 - Gilberto E. Urroz

All rights reserved

S. $1, Sz, and S3. Let the areas corresponding to each surface S, Sq, Sz, and S3 be given by A, Aq,

Az, and Az. It is possible to show, from the geometry of the figure, that

Aq = Acos a, A, = A-cos a,, and A; = A-cos 03.

The force F on surface S can be decomposed into a normal component,

Fn = Fyn = Fy-[cos a, cos 0p, cos a3] = Fy:-(cos oy- e; + cos 0,-e; + cos az-e3) = Fy-cos aye), (*)

(*) using Einstein's repeated index convention.

and a shear component,

Fs=F - Fy,

as shown in the figure above. The vectors are the unit vectors corresponding to the three

coordinate directions.

The forces on surfaces Sq, Sz, and S3 can be written in terms of the stress components, gj, shown

in the figure below, as

Fi = [-0i1, -0i2, -Oi3] ‘Ai = (-Cire; - Oi2'€; - Gi3e3) A; = (-Gi1eq - Gipe; - Gizey)-Acos a(i=1,2,3).

Using Einstein's repeated index convention we can write

Fi = [-0n, -0i2, -0i3] ‘Ai = -0j€j ‘A; = -G je; Acoso; (i =1,2,3).

The sub-indices identifying each stress components are chosen so that the first sub-index

represents the sub-index of the axis normal to the surface of interest, and the second represents

the direction along which the stress acts.

Stresses with the same sub-index, oj; (i = 1,2,3) act normal to the appropriate surface and are

known as normal stresses. The other two components on each of the surfaces Sq, S;, and Ss, are

known as shear stresses, i.e., 0j;, i#j. The direction of action as shown in the figure below is the

conventional way to represent the stresses, namely, the stresses are positive when acting in the

negative coordinate directions, so that the resulting forces have a negative sign, as shown in the

equation above.

267 © 2000 - Gilberto E. Urroz

All rights reserved

The stress components illustrated in the figure above can be written as a matrix known as the

stress tensor,

0, 0), Oy;

T=|o, 0,, Oy

0; O03 Oy

The set up of the Cartesian coordinate system and the stresses in the particle under

consideration can be used to define the stress condition at a point in the limit when the

dimensions of the particle tend to zero. Under such conditions you can prove that the stress

tensor is symmetric, i.e., oj; = 0;. Therefore, to define completely the state of stress at a point

we need only to know the three normal stresses and three of the shear stresses.

For the equilibrium of force on the particle we can write

F+2XZF=F + Z(-0;e7 Acoso) = 0, or F = 5;€A-cos 0,

[using Einstein's convention, with both i and j repeated]

If we let

F = oA,

where s is the stress vector on surface S, and replace this value in the previous equation we get

G=0; COs0;€e=cCos0; €e 0;=nT

To find the magnitude of the normal component of the stress vector, i.e., the projection of the

stress 0 along the unit normal vector n, we use

268 © 2000 - Gilberto E. Urroz

All rights reserved

On=06en/ |n| =0en =(cCos 0;-€)e (COS 0-€) =0 j;COS 0;-COS O4-(€j® €).

We can prove that for the unit vectors in the Cartesian coordinate system,

ee ex = i.
where Sk is Dirac’s delta function. Thus, the normal component of the stress on surface S is

On =0 j:COS 0-COS Ol-dk

Since the product indicated in this expression is zero ifj#k, then the only terms surviving are

those for whichj =k, i.e.,

Gn =0 "COS 0,;-COS Oj = COS (jC {jCOS 0.

You can prove that this latter result can be written in vector and matrix notation as

Cy = nTn',

where

n = Cos oye.

Thus, the normal stress magnitude can be written as a quadratic form for any normal unit vector

n = nj-e;, written as a row vectors, with n; = cos oy, j = 1, 2, 3. Also, the normal stress as a

vector will be written as

G,=0,n=(nTn") n

The normal force is given by

Fn = o.A = (on-A)n.

The shear force can be written in terms of shear stress on surface S, Fs = F - Fy = 0A, so that

Os = 0 - Op.

Example:

Let the stress at a point be given by

25 —-10 20

T=|-10 30 15 Pa

20 15 -40

Determine the total stress ¢, the normal stress 6,,, and shear stress Os, if the surface S has a

normal unit vector n = [0.5 0.25 0.8292]. What are the total force F, the normal force F,,, and

the shear force Fs, if the surface S has an area of 0.00001 m?

Solution:

To calculate the total stress we use

269 © 2000 - Gilberto E. Urroz

All rights reserved

25 —10 20 0.5
=n. P=l-10 30 15 |] 025

20 15 -40]| 0.8292

This result can be obtained from the calculator by using:

25-10 20][-10 30 15][20 15 -40]] [ENTER] [0.5 0.25 0.8292][ENTER] [x]

The result is [0 =1[26.548 14.938 -19.418] Pa. |

To calculate the normal stress, use:

25 —-10 20 0.5

o,=n-T-n" =[0.5 025 0.8292]-[-10 30 15 || 0.25

20 15 —40| {0.8292
In the calculator, use

[0.50.25 0.8292] [ENTER][ENTER] [[25 -10 20][-10 30 15][20 15 -40]] [ENTER] [»] [Xx]
[<][MTH][VECTR][DOT] [r][ALG][EXPAN]

The result is o, = 0.9251 Pa. .

The shear stress is given by

Os=0-0, = [26.548 14.938 -19.418] - 0.9251-[0.5 0.25 0.8292] = [26.085 14.707 -20.185] Pa.

The forces can be calculated by multiplying the stresses times the area of the surface S, i.e., F =

oA, F,=0,A and F = GA.

Principal stresses at a point

Given the stress tensor T representing the state of stress at a point P in a Cartesian coordinate

system (xq, Xz, X3), suppose that you want to find the normal vector, or vectors, n for which the

stress is only in the normal direction. In other words, we are trying to find n and o, such that

Tn =o,n.

This equation is the eigenvalue equation for the matrix T with eigenvalues G6, and eigenvectors n.

Recall that this equation can be written also as

(T-o,1) n=0,

270 © 2000 - Gilberto E. Urroz

All rights reserved

which has non-trivial solution if

det(T - o,1) = 0.

For the previous example, we can write

25-0, —10 20
det(T-0,-)=| -10 30-0, 15 |=0-

20 15 —40-o0,

To obtain the characteristic polynomial, eigenvalues and eigenvectors of T with the HP 49 G

calculator use:

[[25 -10 20][-10 30 15][20 15 -40]] [ENTER] [ENTER] [ENTER]

[<][MATRICES] [EIGEN] [PCAR] provides 'X"3+-15°X"2+-2175"X+49625, or

0.3-150,2-21750,, +49625 = 0.
[<][EGV] results in

: [[-0.30 1. -0.80][-0.23 0.81 1.][1. 0.43 -1.31E-2]]
: [-49.39 26.57 37.81]

i.e.,

2
1

ni = [-0.30 -0.23 1], (cu): = -49.39,
ny = [1.0.81 0.43], (c.); = 26.57,

ny = [-0.80 1.-1.31E-2], (c.); = 37.81.

The three normal stresses found are known as the principal stresses at the point. The

eigenvalues represent the normal vectors to the surfaces where those principal stresses act.

These directions are known as the principal axes.

Multiple linear fitting

Consider a data set of the form

XnXx0X Xn y
X11 X21 X31 Xn1 Yi

X12 X22 X32 Xn2 Y2

X13 X32 X33 Xn3 Y3

X1,m-1 X 2.m-1 X3m-1 Xnm-1 Ym-

X1,m X 2m X 3m =. X nm Ym

Suppose that we search for a data fitting of the form

271 © 2000 - Gilberto E. Urroz

All rights reserved

y= bg + bq-xq + b,x» + b3-x3 +... + bpxn.

You can obtain the least-square approximation to the values of the coefficients

by putting together the matrix X

1 X11

1 X12

| 1 X13

i .

| 1 X1,m

b=

X21

X22

X32

[bo b; by; bs... by],

X31 Xn |

X32 Xn2 |

X33 Xn3

X 3m X nm

Then, the vector of coefficients is obtained from

where y is the vector

b=(X"X)"X"y,

y= [ys y2 . Yul".

For example, use the following data to obtain the multiple linear fitting

y = bg + by-xq + by-xy + byx3,

X1 X2 X3 y

1.20 3.10 2.00 5.70
2.50 3.10 2.50 8.20
3.50 4.50 2.50 5.00
4.00 4.50 3.00 8.20
6.00 3.50 9.505.00

With the calculator you can proceed as follows:

First, within your HOME directory, create a sub-directory to be called MPFIT (Multiple linear and

Polynomial data FITting) by using:

[~]1[* ITALPHA][ALPHA][M][P][FI[II[T][ALPHA] [«][PRG][MEM][DIR][CRDIR]

Then, press [VAR][MPFIT] to get into the MPFIT sub-directory.

Within the sub-directory, type this program:

<< 2 X y << X TRAN X * INV X TRAN * y * >> >>

by using:

272 © 2000 - Gilberto E. Urroz

All rights reserved

[~]1[<<>>] [~][=>] [ALPHA][X] [SPC] [ALPHA][<][Y] [~][<<>>] [ALPHA][X]
[<][MATRICES] [OPER] [NXT][NXT][TRAN] [ALPHA][X] [x] [1/x] [ALPHA][X]

[<][MATRICES][OPER][NXT][NXT][TRAN] [x][ALPHA][«][Y] [x] [ENTER]

and store it in a variable called MTREG (MulTiple REGression)

[~][" I[ALPHA][ALPHA][MI[TI[RI[E][G][ALPHA][STOM]

Next, enter the matrices X and b into the stack:

[[11.23.12][12.53.12.5][13.54.52.5][144.53][1653.5]][ENTER][ENTER] (keep extra

copy)
[5.78.25.08.2 9.5][ENTER]

Press [VAR][MTREG]. The result is: [-4.1721-1.09 -3.37E-2 5.7976], i.e.,

y=-4.1721-1.09 x, -3.37x10%x, + 5.79763 .

You should have in your calculators stack the value of the matrix X and the vector b, the fitted

values of y are obtained from y = X'b, thus, just press [Xx] to obtain:

[6.01 7.494.998.719.41].

Compare these fitted values with the original data as shown in the table below:

X1 X2 x3y y-fitted

1.20 3.10 2.00570 6.01
2.50 3.10 2.50 8.20 7.49
3.50 4.50 2.50 5.00 4.99

4.00 4.50 3.00 8.20 8.71

6.00 5.00 3.50 9.50 9.41

Polynomial fitting

Consider the x-y data set

X1 Y1

X2 y2

X3 y3

Xn-1 Yn-1

273 © 2000 - Gilberto E. Urroz

All rights reserved

Suppose that we want to fit a polynomial or order p to this data set. In other words, we seek a

fitting of the form

_ 2 3 py =bg + by'x + bax” + b3-x” +... + bx".

You can obtain the least-square approximation to the values of the coefficients

b=[by by by bs..byl

by putting together the matrix X

| 2 3 -1 i
! 1 X1 X1 X1 “ee xP Yi p !
| - i
[1 X27 x; x . x; P7 yo P |

a :
| 1 X3 X37 x3 ‘es X3 p Y3 P |

|

| |
2 3 1| Xn Xn Xn i» XP Yn P |

Then,the vector of coefficients is obtained from b = (X"-X)"-X"y, where y is the vector y = [yy;
we Yn]

Earlier on, in this chapter, we defined the Vandermonde matrix corresponding to a vector x = [x;

X72 ... Xm] as

n-1| 1 X1 xy x X1

| 1 X72 X2 X72 “ x,"

2 3 -| 1 X3 X3 X3 i" x3"

i

|
| Xn X 2 Xn i» x,"

is similar to the matrix X of interest to the polynomial fitting, but having only n, rather than

(p+1) columns.

We can take advantage of the VANDERMONDE function to create the matrix X if we observe the
following rules:

If p=n-1, X =V,.

If p <n-1, then we need to remove columns p+2, ..., n-1, n from matrix V,, to form matrix X.

If p> n-71, then we need to add columns n+1, ..., p-1, p+1, to matrix V, to form matrix X.

In step 3 from this list, we have to be aware that column i (i= n+1, n+2, ..., p+1) is the vector [x;'
x2' ... xa']. If we were to use a list of data values for x rather than a vector, i.e., x = { x; X2 ... Xn }

274 © 2000 - Gilberto E. Urroz

All rights reserved

we can easily calculate the sequence { x’ Xp ce Xn }. Then, we can transform this list into a

vector and use the COL menu to add those columns to the matrix V, until X is completed.

After X is ready, and having the vector y available, the calculation of the coefficient vector b is

the same as in multiple linearfitting (the previous matrix application). Thus, we can write a

program to calculate the polynomial fitting that can take advantage of the program already

developed for multiple linear fitting. We need to add to this program the steps 1 through 3 listed
above.

The algorithm for the program, therefore, can be written as follows:

Enter vectors x and y, of the same dimension, as lists. (Note: since the function VANDERMONDE
uses a list as input, it is more convenient to enter the (x,y) data as a list.) Also, enter the value

of p.

Determine n = size of vector x.

Use the function VANDERMONDE to generate the Vandermonde matrix V,, for the list x entered.

If p=n-1, then

X=V,

Else If p <n-1

Remove columns p+2, ..., n from V, to form X (Use a FOR loop and COL-)
Else

Add columns n+1, ..., p+1 to V, to form X (FOR loop, calculate x', convert to vector, use

COL+)

Convert y to vector

Calculate b using program MTREG (see example on multiple linear fitting)

Here is the translation of the algorithm to a program in User RPL language. (The commands can

be entered using the keystroke sequences listed in the last page of this chapter):

<< Open program
2>Xyp Enter lists x and y, and number p (levels 3,2,1,

respectively)
<< Open subprogram

x SIZE > n
<<

x VANDERMONDE Place x in stack, obtain V,

IF ‘p<n-1" THEN This IF implements step 3 in the algorithm

n Place n in stack
p2+ Calculate p+1
FOR j Start a FOR-STEP loop with j =n-1, n-2, ..., p+1, step = -1

j COL-DROP Remove column and drop it from stack
-1 STEP Close FOR-STEP loop

ELSE
IF ‘p>n-1" THEN
nl+ Calculate n+1

p+ Calculate p+1

275 © 2000 - Gilberto E. Urroz

All rights reserved

FORj Start a FOR-NEXT loop with j =n, n+1, ..., p+1.
xj" Calculate x, as a list
OBJ-> >ARRY Convert list to array
j COL+ Add column to matrix

NEXT Close FOR-NEXT loop
END Ends second IF clause.

END Ends first IF clause. Its result is matrix X
y OBJ-> >ARRY Convert list y to an array
MTREG X and y used by program MTREG (from previous example)
>NUM Convert to decimal format
>> Close sub-program
>> Close sub-program
>> Close main program

Save it into a variable called POLY (POLYnomial fitting).

As an example, use the following data to obtain a polynomial fitting with p = 2, 3, 4, 5, 6.

Cy

2.30 179.72
3.20 562.30
4.50 1969.11
1.65 65.87
9.32 31220.89
1.18 32.81
6.24 6731.48
3.45 737.41
9.89 39248.46
1.22 33.45

Because we will be using the same x-y data for fitting polynomials of different orders, it is

advisable to save the lists of data values x and y into variables xx and yy, respectively. This way,

we will not have to type them all over again in each application of the program POLY. Thus,
proceed as follows:

{2.33.24.51.659.321.186.24 3.459.89 1.22 } [ENTER] "xx" [STOW]
{179.72 562.30 1969.11 65.87 31220.89 32.81 6731.48 737.41 39248.46 33.45} [ENTER] 'yy’
[STOW]

To fit the data to polynomials use the following:

[xx J[yy I[2][POLY], Result: [4527.73 -3958.52 742.23]

ie. y = 4527.73-39.58x+742.23x°

[xx J[yy 1[3][POLY], Result: [-998.05 1303.21 -505.27 79.23]

ie. y = -998.05+1303.21x-505.27x°+79.23x*

[xx J[yy 1[4][POLY], Result: [20.92 -2.61 -1.52 6.05 3.51]

ie. y = 20.97-2.61x-1.52x°+6.05x°+3.51x*

[xx 1[yy I[5][POLY], Result: [19.08 0.18 -2.94 6.36 3.48 0.00]

276 © 2000 - Gilberto E. Urroz

All rights reserved

ie. y = 19.08+0.18x-2.94x°+6.36x7+3.48x*+0.00x°

[xx 1[yy 1[6][POLY], Result: [-16.73 67.17 -48.69 21.11 1.07 0.19 0.00]

ie. y =-16.73+67.17x-48.69x°+21.11x°+1.07x*+0.19x°+0.00x°

Selecting the best fitting

As you can see from the results above, you can fit any polynomial to a set of data. The question

arises, which is the best fitting for the data? To help one decide on the best fitting we can use

several criteria:

The correlation coefficient, r. This value is constrained to the range -1 < r< 1. The closer ris to

+1 or -1, the better the data fitting.

The sum of squared errors, SSE. This is the quantity that is to be minimized by least-square

approach.

A plot of residuals. This is a plot of the error corresponding to each of the original data points.

If these errors are completely random, the residuals plot should show no particular trend.

Before attempting to program these criteria, we present some definitions:

Given the vectors x and y of data to be fit to the polynomial equation, we form the matrix X and

use it to calculate a vector of polynomial coefficients b. We can calculate a vector of fitted

data, y’, by using

An error vectoris calculated by

The sum of square errors is equal to the square of the magnitude of the error vector, i.e.,

SSE = le]? = eee = y e;’ = y (yi-y')%.

To calculate the correlation coefficient we need to calculate first what is known as the sum of

squared totals, SST, defined as
2

SST =X (yi- vy),

where y is the mean value of the original y values, i.e.,

y = (Zy))/n.

In terms of SSE and SST, the correlation coefficient is defined by

r=[1-(SSE/SST)] 2.

Here is the new program including calculation of SSE and r (Once more, consult the last page of

this chapter to see how to produce the variable and command names in the program):

2717 © 2000 - Gilberto E. Urroz

All rights reserved

<<

2xyp
respectively)
<<

x SIZE 2 n
<<

x VANDERMONDE
IF '‘p<n-1" THEN
n
p2+

FORj
Jj COL-DROP

-1 STEP
ELSE

IF ‘p>n-1" THEN
nl+

p+

FORj

x j
OBJ-> >ARRY
j COL+

NEXT
END

END
y OBJ> ->ARRY
2 X yv
<<

X yv MTREG
->NUM
2b
<<

b yv

Xb*

A

ABS SQ DUP
y LIST n /
n 1 ->LIST SWAP CON
yV — ABS SQ

NEG 1 + V
“rr STAG
SWAP
“SSE” STAG
>>

>>

>>

>>

>>

Open program
Enterlists x and y, and number p (levels 3,2,1,

Open subprogram

Place x in stack, obtain V,

This IF implements step 3 in the algorithm

Place n in stack

Calculate p+1
Start a FOR-STEP loop with j =n-1, n-2, ..., p+1, step = -1
Remove column and drop it from stack

Close FOR-STEP loop

Calculate n+1
Calculate p+1

Start a FOR-NEXT loop with j =n, n+1, ..., p+1.
Calculate x’, as a list
Convert list to array
Add column to matrix

Close FOR-NEXT loop

Ends second IF clause.
Ends first IF clause. Its result is matrix X
Convert list y to an array
Enter matrix and array as X and y
Open sub-program
X and y used by program MTREG

If needed, converts result to decimal format

Resulting vector is passed as b into sub-program

Open sub-program

Place b and yv (y as a vector) in stack
Calculate X-b

Calculate e =y - X-b
Calculate SSE, place two copies in stack

Calculate y
Create vector of n values of y

Calculate SST
Calculate SSE/SST
Calculate r = [1-SSE/SST]'/2
Tag result as "r”
Exchange stack levels 1 and 2
Tag result as SSE

Close sub-program
Close sub-program
Close sub-program
Close sub-program
Close main program

Save this program under the name POLYR, to emphasize calculation of the correlation coefficient

r.

Using the POLYR program for values of p between 2 and 6 produce the following table of values
of the correlation coefficient, r, and the sum of square errors, SSE:

2178 © 2000 - Gilberto E. Urroz

All rights reserved

r SSE

0.9971908 10731140.01

0.9999768 88619.36
0.9999999 7.48

0.9999999 8.92

0.9999998 432.61

O
O

W
N
T

While the correlation coefficient is very close to 1.0 for all values of p, the values of SSE vary

widely. The smallest value of SSE corresponds to p = 4. Thus, the preferred data fitting for the
original x-y data would be:

y =20.97-2.61x-1.52x°+6.05x>+3.51x".

Keystroke combinations for writing the programs POLY and POLYR

The following list of keystroke combinations will let you access all the variables and functions

used in the programs that follow. The keystroke combinations are grouped by type:

Letters and words:

X [ALPHA][][X] y [ALPHA][][Y]
p [ALPHA][+][P] n [ALPHA][<][N]
X [ALPHA][X] j [ALPHA] [][J]
yw [ALPHA] [+] [Y][ALPHA][«][V] tr” [1 "I[ALPHA][<][R][»]
“SSE” [~][“][ALPHA][S][S][E][»]

Characters and functions directly accessible in keyboard:

<< [m1] << >>] -> [m1 ->]

ABS [+][ABS] SQ [<][x%]
NEG [+/-] + [+]

- [-] : [x]
/ [+] SNUM [~][>NUM]

Matrix related commands:

SIZE [<][MTH][MATRX][MAKE][SIZE]

COL- [<][MTH][MATRX][COL][COL-]

COL+ [<]IMTH][MATRX][COL][COL+]

CON [<1] [MTH][MATRX][MAKE][CON]

VANDERMONDE [<][MATRICES][CREAT][NXT][NXT][VANDE]

279 © 2000 - Gilberto E. Urroz

All rights reserved

Program branching commands:

IF [«][PRG][BRCH][IF 1[IF] THEN [«][PRG][BRCH][IF][THEN]
ELSE [<][PRG][BRCH][IF][ELSE] END [«<][PRG][BRCHI[IF][END]
FOR [+][PRG][BRCH][FOR][FOR] STEP [«1][PRG][BRCH][FOR][STEP]
NEXT [«<][PRG][BRCH][FOR][NEXT]

Stack programming commands:

DROP [«][PRG][STACK][DROP] DUP [<][PRG][STACK][DUP]
SWAP [«][PRG][STACK][SWAP]

Type programming commands:

0BJ-> [<][PRG][TYPE][OBJ->] >ARRY [<][PRG][TYPE][->ARRY]
> LIST [<][PRG][TYPE][->LIST] 2>TAG [<][PRG][TYPE][>TAG]

User-defined commands:

MTREG [MTREG] (user defined soft key)

280 © 2000 - Gilberto E. Urroz

All rights reserved

 Graphics and character strings
In this chapter we introduce some of the graphics capabilities of the HP 49 G calculator

particularly regarding graphics in the x-y plane. We will present graphics of functions in

Cartesian coordinates and polar coordinates, parametric plots, graphics of conics, bar plots,

scatterplots, and a variety of three-dimensional graphs. We also discuss programming using

graphics, and applications of character strings.

Graphs options in the HP 49 G

To provide an overall view of all the graphic capabilities of the HP 49 G, we will first let you see
a list of all the options for graphics that the calculator provides. To access this list press in RPN
mode, press, simultaneously, the keys [<1] and [2D/3D] (the F4 soft menu key). The calculator

will produce the PLOT SETUP window, which includes the TYPE field. Right in front of the TYPE

field you will, most likely, see the option Function highlighted.

graph for the calculator.

[CHOOS].

This is the default type of
To see the list of graph types, press the soft menu key labeled

This will produce a drop down menu with the following options (use the up- and

down-arrow keys to see all the options):

Function:

Polar:

Parametric:

Diff Eq:
Conic:

Truth:

Histogram:
Bar:

Scatter:

Slopefield:
Fast3D:

Wireframe:

Ps-Contour:

Y- Slice:

Gridmap:

Pr-Surface:

for plotting equations of the form y = f(x) in Cartesian coordinates in the plane

for plotting equations of the from r = f(0) in polar coordinates in the plane

for plotting equations of the form x = x(t), y = y(t) in the plane
for plotting the numerical solution of a linear differential equation

for plotting conic equations (circles, ellipses, hyperbolas, and parabolas)

for plotting inequalities in the plane

for plotting frequency histograms (associated with statistical applications)

for plotting simple bar charts

for plotting scatter plots of discrete data sets (also associated with statistics)

for plotting traces of the slopes of a function of the form f(x,y) = 0.

for plotting curved surfaces and solid bodies in space

for plotting curved surfaces in space showing wireframe grids

for plotting contour plots of surfaces

for plotting a slicing view of a function f(x,y).
for plotting real and imaginary part traces of a function of a complex variable

for plotting parametric surfaces given by x = x(u,v), y = y(u,v), z = z(u,v).

281 © 2000 - Gilberto E. Urroz

All rights reserved

Plotting an expression of the form y = f(x)

In this section we present an example of a plot of a function of the form y = f(x). In order to

proceed with the plot, first, purge the variable x, if it is defined in the current directory (x will

be the independent variable in the calculator's PLOT feature, therefore, you don't want to have it

pre-defined). Create a sub-directory called TPLOT' (for test plot), or other meaningful name, to
perform the following exercise.

Let's plot the function,

+ First, enter the PLOT SETUP environment by pressing, simultaneously, [<][2D/3D]. Make

sure that the option Function is selected as the TYPE, and that 'X' is selected as the

independent variable (INDEP). Press [NXT][OK] to return to normal calculator display. The

PLOT SET UP window should look similar to this:

% PLOT SETUP 3
Type :TEFEN
EQ: V1C0)

Indep:'d’ _Sinult Connect
H-Tick:10. V-Tick:10. ¢ Pixels
Choose type of plot

|____[choos][RHESs[ERAZE]DRAM

Note: You will notice that a new variable, called PPAR, shows up in your soft menu key
labels. This stands for Plot PARameters. To see its contents, press [~][PPAR]. A detailed

explanation of the contents of PPAR is provided later in this chapter. Press [<] to drop the
contents of the stack.
Enter the PLOT environment by pressing, simultaneously, [<][Y =]. Press [ADD] to get

you into the equation writer. You will be prompted to fill the right-hand side of an equation

Y1(x) = =. Type the function using the following keystrokes:

[leALPHAXTly“1 [21> 1[+/-1[=1121 [®1[»] [+][V 1[2] [x] [~][n][ENTER]

The expression 'Y1(X) = EXP(-X*2/2)/)/N (2*m)' will be highlighted. Press [NXT][OK] to
return to normal calculator display. The PLOT screen for a FUNCTION type of graph looks
like this:

es PLOT ~ FUNCTI
ArsESSIRC

[EDIT]AOD |DELJCHOOSIERASE]DRAM |

282 © 2000 - Gilberto E. Urroz

All rights reserved

Note: Two new variables show up in your soft menu key labels, namely EQ and Y1. To see
the contents of EQ, use [*][EQ]. The content of EQ is simply the function name 'Y1(X)'.

The variable EQ is used by the calculator to store the equation, or equations, to plot. (EQ is
also to store the equation to solve, as we will see in a subsequent chapter).

To see the contents of Y1 press [~][Y1]. You will get the function Y1(X) defined as the

program:

<< 5X ‘EXP (-X72/2)/N(2*m)" >>.

Press [«], twice, to drop the contents of the stack.

we Enter the PLOT WINDOW environment by pressing, simultaneously, [-][WIN]. Use a

range of -4 to 4 for H-VIEW by using [4][+/-][OK][4][OK], then press [AUTO] to generate the

V-VIEW automatically. The PLOT WINDOW screen looks as follows:

FEES PLOT HINDON - FUNCTION SESE

H-Vieu:-Y. y.
v-vien :EETREL] 3999422
Indep LoH: Default Haigh:DefFault

Step: Default _Fixels

Enter HiniHuH vertical walue E34IEETEETEEET

= Plot the graph: [ERASE] [DRAW].

#% To see labels: [EDIT][NXT][LABEL][MENU]

w& To recoverthe first graphics menu: [NXT][NXT][PICT]

= To trace the curve: [TRACE][(X.Y)]

Here is the way this graph looks without soft menu keys:

.3szsuzazoundfy
/ \

J Sef
-y. q.

Use [P] and [4] to move along the curve. Check that for x = 1.05, y = 0.231. Also, check
that for x = -1.48 , y = 0.134.

283 © 2000 - Gilberto E. Urroz

All rights reserved

4 To recover the menu, and return to the PLOT WINDOW environment, press [NXT][CANCL],

then [NXT][OK].

Some useful PLOT operations for FUNCTION plots

In order to discuss these PLOT options, we'll modify the function to force it to have some real
roots (Since the current curve is totally contained above the x axis, it has no real roots.) Press

[=] Y1] to list the contents of the function Y1 on the stack: << —X ‘EXP (-X~2/2)/V(2*n) *

>>. To edit this expression use:

[Vv] Launches the line editor

[~]1lVv] Moves cursor to the end of the line

[A[<AO[<«Ol-1[.1[1] Modifies the expression

[ENTER] Returns to normal calculator display

Next, store the modified expression into variable y by using [«][Y1 |.

The function to be plotted is now,

1 x?
[x)= =exp(-=) = 0.1

Enter the PLOT WINDOW environment by pressing, simultaneously, [<][WIN]. Keep the range of

-4 to 4 for H-VIEW, press [V][AUTO] to generate the V-VIEW. To plot the graph, press

[ERASE] [DRAW].

4% Once the graph is plotted, press [FCN] to access the function menu. With this menu you
can obtain additional information about the plot such as intersects with the x-axis, roots,

slopes of the tangent line, area under the curve, etc.

* For example, to find the root on the left side of the curve, move the cursor near that

point, and press [ROOT]. You will get the result: ROOT: -1.6635.... Press [NXT] to recover

the menu. Here is the result of ROOT in the current plot:

 Root: -1.66351823553

* If you move the cursor towards the right-hand side of the curve and press [ROOT], the
result now is ROOT: 1.6635... The calculator indicated, before showing the root, that it was
found through SIGN REVERSAL. Press [NXT] to recover the menu.

* Pressing [ISECT] will give you the intersection of the curve with the xaxis, which is
essentially the root. Press [ISECT]. You will get the same message as before, namely SIGN
REVERSAL, before getting the result FSECT: 1.6635... The [ISECT] function is intended to

284 © 2000 - Gilberto E. Urroz

All rights reserved

determine the intersection of any two curves closest to the location of the cursor. In this

case, where only one curve, namely, Y1(X) as defined above, is involved, the intersection

sought is that of f(x) with the x-axis. Press [NXT] to recover the menu.

= Place the cursor on the curve at any point and press [SLOPE] to get the value of the slope
at that point. For example, at the negative root, SLOPE: 0.16670... Press [NXT] to recover
the menu.

ay To determine the highest point in the curve, place the cursor near the vertex and press

[EXTR]. The result is EXTRM: 0.. Press [NXT] to recover the menu.

wk Other buttons available in the first menu are [AREA] to calculate the area under the

curve, and [SHADE] to shade an area under the curve. Press [NXT] to see more options. The

second menu includes one button called [VIEW] that flashes for a few seconds the equation

plotted. Press [VIEW]. Alternatively, you can press the button [NXEQ] to see the name of

the function Y1(x). Press [NXT] to recover the menu.

we The button [F(X)] gives the value of f(x) corresponding to the cursor position. Place the
cursor anywhere in the curve and press [F(X)]. The value will be shown in the lower left
corner of the display. Press [NXT] to recover the menu.

wk Place the cursor in any given point of the trajectory and press [TANL] to obtain the
equation of the tangent line to the curve at that point. The equation will be displayed on

the lower left corner of the display. Press [NXT] to recover the menu.

wf you press [F'] the calculator will plot the derivative function, f(x) = df/dx, as well as
the original function, f(x). Notice that the two curves intercept at two points. Move the
cursor near the left intercept point and press [FCN][ISECT], to get I-SECT: (-

0.6834...,0.21585). Press [NXT] to recover the menu.

= To leave the FCN environment, press [PICT] (or [NXT][PICT]).

“Press [CANCL] to return to the PLOT WINDOW environment. Then, press [NXT][OK] to
return to normal calculator display.

[Note: the stack will show all the graph operations performed properly identified |

= Enter the PLOT environment by pressing, simultaneously, [<][Y =]. Notice that the

highlighted field in the PLOT environment now contains the derivative of Y1(X). Press
[NXT][OK] to return to return to normal calculator display.

wk Press [1 EQ] to check the contents of EQ. You will notice that it contains a list

instead of a single expression. The list has as elements an expression for the derivative of

Y1(X) and Y1(X) itself. Originally, EQ contained only Y1(x). After we pressed the button [
F' 1 in the [FCN] environment, the calculator automatically added the derivative of Y1(x) to

the list of equations in EQ.

285 © 2000 - Gilberto E. Urroz

All rights reserved

Saving a graph for future use

If you want to save your graph to a variable, get into the PICTURE environment by pressing [«].
Then, press [EDIT][NXT][NXT][PICT->]. This captures the current picture into a graphics object.

To return to the stack, press [PICT][CANCL].

In level 1 of the stack you will see a graphics object described as Graphic 131 x 64. To store

it into a variable, say FIG, type ['[ALPHA][ALPHA][F][I1[G][ALPHA][STO]. Your figure is now

stored in variable FIG.

To display your figure again, recall it to level 1 of the stack, by pressing [FIG]. Level 1 now reads

Graphic 131 Xx 64. Enter the PICTURE environment, press [4].

Clear the current picture, [EDIT][NXT][ERASE].

Move the cursor to the upper left corner of the display, by using the [4] and [A] keys.

To display the figure currently in level 1 of the stack press [NXT][REPL].

To return to normal calculator function, press [PICT][CANCL].

Graphics of transcendental functions

In this section we use some of the graphics features of the calculator to show the typical

behavior of the natural log, exponential, trigonometric and hyperbolic functions. You will not

see any graphs in this chapter, for | want you to see them in your calculator.

Graph of In(X)

Using the calculator in RPN mode, press, simultaneously, the left-shift key [<1] and the [2D/3D]

(F4) key to produce the PLOT SETUP window. The field labeled Type will be highlighted. If the
option Function is not already selected press the soft key labeled [CHOOS], use the up and

down keys ([A] [V¥]) to select Function, and press [OK] to complete the selection. Check that

the field labeled Indep: contains the variable ‘X'. If that is not so, press the down arrow key [V¥]

twice until the Indep field is highlighted, press the soft key labeled [EDIT] and modify the value
of the independent variable to read 'X’'. Press [OK] when done. Press [NXT][OK] to return to

normal calculator display.

Next, press, simultaneously, the left-shift key [+] and the [Y=] (F1) key to produce the PLOT-
FUNCTION window. If there is any equation highlighted in this window, press [DEL] as needed to
clear the window completely. When the PLOT-FUNCTION window is empty you will get a prompt
message that reads: No Equ., Press ADD. Press the soft key labeled [ADD]. This will trigger
the equation writer with the expression Y1(X)=« . Type LN(X) by using [][LN][X]. Press

[ENTER] to return to the PLOT-FUNCTION window. Press [NXT][OK] to return to normal

calculator display.

The next step is to press, simultaneously, the left-shift key [«] and the [WIN] (F2) key to
produce the PLOT WINDOW - FUNCTION window. Most likely, the display will show the horizontal
(H-View) and vertical (V-view) ranges as:

286 © 2000 - Gilberto E. Urroz

All rights reserved

H-View: -6.5 6.5

V-View: -3.1 3.2

These are the default values for the x and y-range, respectively, of the current graphics display

window. Change the H-View values to read:

H-View: -1 10

by using [1][+/-][OK][1][0][OK]. Next, press the soft key labeled [AUTO] to let the calculator

determine the corresponding vertical range. After a couple of seconds this range will be shown

in the PLOT WINDOW-FUNCTION window. At this point we are ready to produce the graph of
In(X). Press [ERASE][DRAW] to plot the natural logarithm function.

To add labels to the graph press [EDIT][NXT][LABEL]. Press [MENU] to remove the menu labels,

and get a full view of the graph. Press [NXT] to recover the current graphic menu. Press

[NXT][PICT] to recover the original graphical menu.

To determine the coordinates of points on the curve press [TRACE] (the cursor moves on top of

the curve at a point located near the center of the horizontal range). Next, press [(X.Y)] to see
the coordinates of the current cursor location. These coordinates will be shown at the bottom of

the screen. Use the right- and left-arrow keys to move the cursor along the curve. As you move

the cursor along the curve the coordinates of the curve are displayed at the bottom of the

screen. Check that when Y:1.00E0, X:2.72E0. This is the point (e, 7), since In(e) = 1. Press [NXT]
to recover the graphics menu.

Next, we will find the intersection of the curve with the x-axis by pressing [FCN][ROOT]. The

calculator returns the value Root: 1, confirming that In(7) = 0. Press [NXT][NXT][PICT][CANCL]

to return to the PLOT WINDOW - FUNCTION. Press [ENTER] to return to normal calculator

display. You will notice that the root found in the graphics environment was copied to the

calculator stack.

Note: When you press [VAR], your variables list will show new variables called [X] and [Y1
]. Press [~][Y1] to see the contents of this variable. You will get the program

<< 5X 'LN(X)' >>,

which you will recognize as the program that may result from defining the function

‘Y1(X) = LN(X)

by using [<][DEF]. This is basically what happens when you [ADD] a function in the PLOT -

FUNCTION window (the window that results from pressing [<][Y=], simultaneously), i.e., the

function gets defined and added to your variable list.

Next, press [~][X] to see the contents of this variable. A value of 10.275 is placed in the
stack. This value is determined by our selection for the horizontal display range. We selected a

range between -1 and 10 for X. To produce the graph, the calculator generates values between

the range limits using a constant increment, and storing the values generated, one at a time, in

the variable [X] as the graph is drawn. For the horizontal range (-1,10), the increment used

seems to be 0.275. When the value of X becomes larger than the maximum value in the range (in

this case, when X = 10.275), the drawing of the graph stops. The last value of X for the graphic

under consideration is kept in variable X.

287 © 2000 - Gilberto E. Urroz

All rights reserved

If you want to purge X and Y1 when finished working with the graphics, create the list { X Y1} in

stack level 1 by using [«<][¢1[~][X 1[—][Y1]J[ENTER], and then use [TOOL][PURGE].

Graph of the exponential function

First, load the function exp(X), by pressing, simultaneously, the left-shift key [<1] and the [Y=]
(F1) key to access the PLOT-FUNCTION window. Press [DEL] to remove the function LN(X), if you

didn’t delete Y1 as suggested in the previous note. Press [ADD] and type [<][e*][X][ENTER] to

enter EXP(X) and return to the PLOT-FUNCTION window. Press [NXT][OK] to return to normal

calculator display.

Next, press, simultaneously, the left-shift key [+1] and the [WIN] (F2) key to produce the PLOT

WINDOW - FUNCTION window. Change the H-View values to read:

H-View: -8 2

by using [8][+/-][OK][2][OK]. Next, press [AUTO]. After the vertical range is calculated, press

[ERASE][DRAW] to plot the exponential function.

To add labels to the graph press [EDIT][NXT][LABEL]. Press [MENU] to remove the menu labels,

and get a full view of the graph. Press [NXT] to recover the current graphic menu. Press [NXT]
to recover the graphics menu. Press [CANCL] to return to the PLOT WINDOW - FUNCTION. Press
[ENTER] to return to normal calculator display.

The PPAR variable

Press [VAR] to recover your variables menu, if needed. In your variables menu you should have a
variable labeled [PPAR]. Press [~][PPAR] to get the contents of this variable in the stack. Press

the down-arrow key, , to launch the stack editor, and use the up- and down-arrow keys to view

the full contents of PPAR. The screen will show the following values:

{
(-8.,-1.10797263281)

(2.,7.38905609893) X

0. { (0.,0.) {# 10d

10d }} FUNCTION Y

}
PPAR stands for Plot PARameters, and its contents include two ordered pairs of real numbers,

(-8.,-1.10797263281) and (2.,7.38905609893),

which represent the coordinates of the lower left corner and the upper right corner of the plot,

respectively. Next, PPAR lists the name of the independent variable, X, followed by a number
that specifies the increment of the independent variable in the generation of the plot. The

value shown here is the default value, zero (0.), which specifies increments in X corresponding to

1 pixel in the graphics display. The next element in PPAR is a list containing first the

288 © 2000 - Gilberto E. Urroz

All rights reserved

coordinates of the point of intersection of the plot axes, i.e., (0.,0.), followed by a list that

specifies the tick mark annotation on the x- and y-axes, respectively {# 10d # 10d}. Next, PPAR
lists the type of plot that is to be generated, i.e., FUNCTION, and, finally, the y-axis label, i.e.,
Y.

The variable PPAR, if non-existent, is generated every time you create a plot. The contents of

the function will change depending on the type of plot and on the options that you select in the

PLOT window (the window generated by the simultaneous activation of the [+] and [WIN](F2)

keys.

Inverse functions and their graphs

Let y = f(x), if we can find a function y = g(x), such that, g(f(x)) = x, then we say that g(x) is the

inverse function of f(x). Typically, the notation g(x) = f T(x) is used to denote an inverse

function. Using this notation we can write: if y = f(x), then x = f(y). Also, f(f '(x)) = x, and

"(f(x)) = x.

As indicated earlier, the In(x) and exp(x) functions are inverse of each other, i.e., In(exp(x)) = x,

and exp(In(x)) = x. This can be verified in the calculator by using:

[EQW][r][LN][<][e[ALPHA] [«][X][ENTER] Result: '‘LN(EXP(x))’
[~][EVAL] Result: ‘x’, i.e., In(exp(x)) = x.

[EQW][+][e*] [][LN][ALPHA][<][X][ENTER] Result: "EXP(LN(x))’
[][EVAL] Result: ‘x’, i.e., exp(in(x)) = x.

When a function f(x) and its inverse f (x) are plotted simultaneously in the same set of axes,

their graphs are reflections of each other about the line y = x. Let's check this fact with the

calculator for the functions LN(X) and EXP(X) by following this procedure:

Press, simultaneously, [<][Y=]. The function Y2(X) = EXP(X) should be available in the PLOT -

FUNCTION window from the previous exercise. Press [ADD], and type [~][LN][X][ENTER], to load
the function Y3(X) = LN(X). Also, press [ADD][X][ENTER], to load the function Y4(X) = X. Press

[NXT][OK] to return to normal calculator display.

Press, simultaneously, [<][WIN], and change the H-View range to read:

H-View: -8 8

Press [AUTO] to generate the vertical range. Press [ERASE][DRAW] to produce the graph of y =
In(x), y = exp(x), and y =x, simultaneously.

You will notice that only the graph of y = exp(x) is clearly visible. Something went wrong with

the [AUTO] selection of the vertical range. What happens is that, when you press [AUTO] in the
PLOT FUNCTION - WINDOW screen, the calculator produces the vertical range corresponding to
the first function in the list of functions to be plotted. Which, in this case, happens to be Y2(X) =

EXP(X). We will have to enter the vertical range ourselves in order to display the other two
functions in the same plot.

Press [CANCL] to return to the PLOT FUNCTION - WINDOW screen. Modify the vertical and

horizontal ranges to read:

289 © 2000 - Gilberto E. Urroz

All rights reserved

H-View: -8 8

V-View: -4 4

By selecting these ranges we ensure that the scale of the graph is kept 1 vertical to 1 horizontal.

Press [ERASE][DRAW] and you will get the plots of the natural logarithm, exponential, and y = x
functions. It will be evident from the graph that LN(X) and EXP(X) are reflections of each other
about the line y = X. Press [CANCL] to return to the PLOT WINDOW - FUNCTION. Press [ENTER]

to return to normal calculator display.

Summary of FUNCTION plot operation

In this section we present information regarding the PLOT SETUP, PLOT-FUNCTION, and PLOT
WINDOW screens accessible through the left-shift key combined with the soft-menu keys F1
through F4. Based on the graphing examples presented above, the procedure to follow to

produce a FUNCTION plot (i.e., one that plots one or more functions of the form Y = F(X)), is the

following:

a [<][2D/3D], simultaneously: Access to the PLOT SETUP window. If needed, change TYPE

to FUNCTION, and enter the name of the independent variable.

Settings:

w* A check on _Simult means that if you have two or more plots in the same graph, they

will be plotted simultaneously when producing the graph.

A check on _Connect means that the curve will be a continuous curve rather than a set

of individual points.

A check on _Pixels means that the marks indicated by H-Tick and V-Tick will be

separated by that many pixels.

The default value for both by H-Tick and v-Tick is 10.

Soft key menu options:

& Use [EDIT] to edit functions of values in the selected field.

w*% Use [CHOOS] to select the type of plot to use when the Type: field is highlighted. For

the current exercises, we want this field set to FUNCTION.

Note: the soft menu keys [EDIT] and [CHOOS] are not available at the same time. One or

the other will be selected depending on which input field is highlighted.

#% Press the [AXES] soft menu key to select or deselect the plotting of axes in the graph. If
the option ‘plot axes’ is selected, a square dot will appear in the key label: [AXESm].
Absence of the square dot indicates that axes will not be plotted in the graph.

“Use [ERASE] to erase any graph currently existing in the graphics display window.

Use [DRAW] to produce the graph according to the current contents of PPAR for the

equations listed in the PLOT-FUNCTION window.

290 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [NXT] to access the second set of soft menu keys in this screen.

- Use [RESET] to reset any selected field to its default value.

*% Use [CANCL] to cancel any changes to the PLOT SETUP window and return to normal
calculator display.

* Press [OK] to save changes to the options in the PLOT SETUP window and return to

normal calculator display.

* [<][Y=], simultaneously: Access to the PLOT window (in this case it will be called PLOT

-FUNCTION window).

Soft menu key options:

* Use [EDIT] to edit the highlighted equation.

w Use [ADD] to add new equations to the plot.

Note: [ADD] and [EDIT] will trigger the equation writer EQW that you can use to write new
equations or edit old equations.

“+ Use [DEL] to remove the highlighted equation.

+ Use [CHOOS] to add an equation that is already defined in your variables menu, but not
listed in the PLOT - FUNCTION window.

+ Use [ERASE] to erase any graph currently existing in the graphics display window.

+ Use [DRAW] to produce the graph according to the current contents of PPAR for the

equations listed in the PLOT-FUNCTION window.

* Press [NXT] to activate the second menu list.

* Use [MOVE] and [MOVE] to move the selected equation one location up or down,

respectively.

= Use [CLEAR] if you want to clear all the equations currently active in the PLOT -
FUNCTION window. The calculator will verify whether or not you want to clear all the
functions before erasing all of them. Select YES, and press [OK] to proceed with clearing all

functions. Select NO, and press [OK] to de-activate the option CLEAR.

% Press [OK] when done to return to normal calculator display.

* [<][WIN], simultaneously: Access to the PLOT WINDOW screen.

291 © 2000 - Gilberto E. Urroz

All rights reserved

Settings:

& Enter lower and upper limits for horizontal view (H-View) and vertical view (V-View)
ranges in the plot window. Or,

we Enter lower and upper limits for horizontal view (H-View), and press [AUTO], while the
cursor is in one of the V-View fields, to generate the vertical view (V-View) range

automatically. Or,

“& Enter lower and upper limits for vertical view (V-View), and press [AUTO]], while the

cursor is in one of the H-View fields, to generate the horizontal view (H-View) range

automatically.

EY The calculator will use the horizontal view (H-View) range to generate data values for

the graph, unless you change the options Indep Low, (Indep) High, and (Indep) Step. These

values determine, respectively, the minimum, maximum, and increment values of the

independent variable to be used in the plot. If the option Default is listed in the fields Indep

Low, (Indep) High, and (Indep) Step, the calculator will use the minimum and maximum

values determined by H-View.

+* A check on _Pixels means that the value of the independent variable increment

(step:) are given in pixels rather than in plot coordinates.

Soft menu key options:

a Use [EDIT] to edit any entry in the window.

4 Use [AUTO] as explained in Settings, above.

Use [ERASE] to erase any graph currently existing in the graphics display window.

“% Use [DRAW] to produce the graph according to the current contents of PPAR for the
equations listed in the PLOT-FUNCTION window.

& Press [NXT] to activate the second menu list.

* Use [RESET] to reset the field selected (i.e., where the cursor is positioned) to its default
value.

4 Use [CALC] to access calculator stack to perform calculations that may be necessary to
obtain a value for one of the options in this window. When the calculator stack is made

available to you, you will also have the soft menu key options [CANCL] and [OK 1].

+ Use [CANCL] in case you want to cancel the current calculation and return to the PLOT

WINDOW screen. Or,

a Use [OK] to accept the results of your alculation and return to the PLOT WINDOW

screen.

#% Use TYPES to get information on the type of objects that can be used in the selected
option field.

292 © 2000 - Gilberto E. Urroz

All rights reserved

= Use [CANCL] to cancel any changes to the PLOT WINDOW screen and return to normal
calculator display.

- Press [OK] to accept changes to the PLOT WINDOW screen and return to normal

calculator display.

- [<][GRAPH], simultaneously: Plots the graph based on the settings stored in variable

PPAR and the current functions defined in the PLOT - FUNCTION screen. If a graph, different
from the one you are plotting, already exists in the graphic display screen, the new plot will

be superimposed on the existing plot. This may not be the result you desire, therefore, |

recommend to use the [ERASE][DRAW] soft menu keys available in the PLOT SETUP, PLOT-

FUNCTION or PLOT WINDOW screens.

Plots of trigonometric and hyperbolic functions and

their inverses

The procedures used above to plot LN(X) and EXP(X), separately or simultaneously, can be used
to plot any function of the form y = f(x). It is left as an exercise to the reader to produce the

plots of trigonometric and hyperbolic functions and their inverses. The table below suggests the

values to use for the vertical and horizontal ranges in each case. You can include the function

Y=X when plotting simultaneously a function and its inverse to verify their ‘reflection’ about the

lineY =X.

H-View range V-View range

Function to Minimum Maximum Minimum Maximum

plot

SIN (X) 23.15 3.15 AUTO
ASIN (X) “1.2 1.2 AUTO
SIN&ASIN|-3.2| 3.2 -1.6
COS (X) -3.15 3.15 AUTO
ACOS (X) -1.2 1.2 AUTO
COS & ACOS -3.2 | 3.2 -1.6
TAN (X) -3.15 3.15 -10
ATAN (X) -10 10 -1.8 1.8
TAN & ATAN -2 -2 -2
SINH(X)| -2| 2 AUTO
ASINH (X) -5 5 AUTO
SINH & ASINH -5 5 -5 5
COSH (X) -22 AUTO
ACOSH (X) -15 AUTO
COS & ACOS -5 5 -1 5
TANH (X) -5 5 AUTO
ATANH (X) 1.2 1.2 AUTO
TAN & ATAN -5 5 -2.5

293 © 2000 - Gilberto E. Urroz

All rights reserved

Plots in polar coordinates

First of all, let's delete the following variables in the sub-directory where we are practicing

these graphics exercises: X, EQ, Y1, PPAR, by using:

[<1] X 10 EQ][Y1]J[PPARJ[ENTER] [TOOL][PURGE].

By doing this, all parameters related to graphics will be cleared. Press [VAR] to check that the

variables were indeed purged.

We will try to plot the function f(6) = 2(71-sin(6)), as follows:

* First, make sure that your calculator's angle measure is set to radians, by using

[MODE][¥][¥], and toggling [+/-] until the option Radians is highlighted in front of the Angle

Measure... field. Press [OK] when done.

% Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

+ Change TYPE to POLAR, by pressing [CHOOS][¥][OK].

#% Press [¥] and type [~]1[* 1[21[x][<][O1[1][-][SIN] [ALPHA] [~][T] [OK].

4 The cursor is now in the Indep field. Press [~][']J[ALPHA][~][T][OK] to change the

independent variable to 0.

Press [NXT][OK] to return to normal calculator display.

4 Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be called

PLOT -POLAR window).

+ Change the HVIEW range to -8 to 8, by using [8][+/-][OK][8][OK], and the V-VIEW range

to -6 to 2 by using [6][+/-][OK][2][OK].

Note: the H-VIEW and V-VIEW determine the scales of the display window only, and their
ranges are not related to the range of values of the independent variable in this case.

* Change the Indep Low value to 0, and the High value to 6.28 (= 2m), by using:

[OI[OK] [6][. 1[2][8][OK].

% Press [ERASE][DRAW] to plot the function in polar coordinates. The result is a curve

shaped like a hearth. This curve is known as a cardiod (cardios, Greek for heart).

4 Press [EDIT][NXT][LABEL][MENU] to see the graph with labels. Press [NXT] to recover the

menu. Press [NXT][PICT] to recover the original graphics menu.

4 Press [TRACE][(x,y)] to trace the curve. The data shown at the bottom of the display is

the angle 6 and the radius r, although the latter is labeled Y (default name of dependent

variable).

a Press [NXT][CANCL] to return to the PLOT WINDOW screen. Press [NXT][OK] to return to

normal calculator display.

294 © 2000 - Gilberto E. Urroz

All rights reserved

In this exercise we entered the equation to be plotted directly in the PLOT SETUP window. We
can also enter equations for plotting using the PLOT window, i.e., simultaneously pressing [<][Y
=]. For example, when you press [<][Y =] after finishing the previous exercise, you will get

the equation ‘2*(1-SIN(6))" highlighted. Let's say, we want to plot also the function ‘2*(1-
COS(8))" along with the previous equation.

“Press [ADD], and type [2][x][<][()I[1][-]1[COS][ALPHA][~][T][ENTER], to enter the new

equation.

w% Press [ERASE][DRAW] to see the two equations plotted in the same figure. The result is

two intersecting cardioids. Press [CANCL][ON] to return to normal calculator display.

Plotting conic curves

The most general form of a conic curve in the x-y plane is:

Ax?+By?+Cxy+Dx+Ey+F = 0

We also recognize as conic equations those given in the canonical form for the following figures:

#* circle: (x-Xo0)*+(y-yo)’ =r

+ ellipse: (x-x,) 2/8’ + (y-¥o) 2/p2 = 1

* parabola: (y-b)? = K(x-a) or (x-a)° = K(y-b)

a hyperbola: (x-x,) 2/a% + (y-¥o) 2/6 =1 or xy = K,

where x,, Yo, a, b, and K are constant.

The name conic curves follows because these figures (circles, ellipses, parabolas or hyperbolas)

result from the intersection of a plane with a cone. For example, a circle is the intersection of a

cone with a plane perpendicular to the cone's main axis.

The HP49 G calculator has the ability of plotting one or more conic curves by selecting Conic as
the function TYPE in the PLOT environment. Make sure to delete the variables PPAR and EQ

before continuing. For example, let's store the list of equations

{"(X-1)"2+(Y-2)"2=3" 'X"2/4+Y"2/3=1"},

into the variable EQ, by using:

[EQW] Launch equation writer

[=ILOIALPHATIXT[-1011»1 [>] [y [2] [1+] Type (x-1)~2+
[=ILOIALPHATIYIL-1021 [01»TI 1 Ty 12] [1 [>] Type (v-2)72
[~1[=]1[3][ENTER] Type =3, and enter the equation to stack.

[EQW] Launch equation writer once more

[ALPHAT[X] Ly 1[2] [>] [=1[41[»](+] Type Xx*2/4 +

[ALPHAILYILY* 1 [21>] [=][3]1 [>] [>] Type v~2/3
[~1[=][1]{ENTER] Type =1, and enter the equation to stack.

[2]1[<][PRG][LIST][-LIST] Create the list.

295 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR] [~][*][ALPHA][ALPHA][E][Q][STOMD] Store list of equations into variable EQ.

These equations we recognize as those of a circle centered at (1,2) with radius V3, and of an

ellipse centered at (0,0) with semi-axis lengths a = 2 and b = 3.

#% Enter the PLOT environment, by pressing, simultaneously, [+1][2D/3D], and select Conic

as the TYPE ([CHOOS][V][V][V][V][OK]). The list of equations will be listed in the

EQ field.

w Make sure that the independent variable (Indep) is set to 'X' and the dependent

variable (Depnd) to 'Y'.

2% Press [NXT][OK] to return to normal calculator display.

% Enter the PLOT WINDOW environment, by pressing, simultaneously, [«<][WIN].

+ Change the range for H-VIEW to -3 to 3, by using [3][+/-][OK][3][OK]. Also, change the V-

VIEW range to -1.5 to 2 by using [1][.][5][+/-]1[OK][2] [OK].

* Plot the graph (be patient here): [ERASE][DRAW].

Note: | selected the H-View and V-View ranges to show the intersection of the two curves.

There is no general rule to select those ranges, except based on what we know about the curves.

For example, for the equations shown above, we know that the circle will extend from -3+1 = -2

to 3+1 = 4 in x, and from

-3+42=-1 to 3+2=5 in y. In addition, the ellipse, which is centered at the origin (0,0), will extend

from -2 to 2 in x, and from -V3 to V3 in y.

Notice that for the circle and the ellipse the region corresponding to the left and right extremes

of the curves are not plotted. This is the case with all circles or ellipses plotted using Conic as

the TYPE.

To see labels: [EDIT][NXT][LABEL] [MENU]

To recover the menu: [NXT][NXT][PICT]

To estimate the coordinates of the point of intersection, press the [(X,Y)] button and

move the cursor as close as possible to those points using the arrow keys. The coordinates of

the cursor are shown in the display. For example, the left point of intersection is close to (-

0.692, 1.67), while the right intersection is near (1.89,0.5).

& To recover the menu and return to the PLOT environment, press [NXT][CANCL].

+ To return to normal calculator display, press [NXT][OK].

Parametric plots

Parametric plots in the plane are those plots whose coordinates are generated through the

system of equations x = x(t) and y = y(t), where t is know as the parameter. An example of such

graph is the trajectory of a projectile, x(t) = x + vo-COS 6¢-t, y(t) = yo + vo'sin Opt - Vo-gt? To

plot equations like these, which involve constant values x, Yo. Vo, and 0p, we need to store the

296 © 2000 - Gilberto E. Urroz

All rights reserved

values of those parameters in variables. To develop this example, create a sub-directory called

'PROJM’ for PROJectile Motion, and within that sub-directory enter the following variables:

[01{~][* I[ALPHA][X][0][STOM] Stores X0 = 0
(1]{0][~][* IIALPHA]LY][O][STOM] Stores YO = 10
(1{0][~]1[* I[ALPHA][V][O][STOM] Stores VO = 10
[21[01[~1[* 1[ALPHA][~][T][0][STOM] Stores 60 = 30
[91[.1[8][01[6][][* J[ALPHA][~][G][STOM] Stores g = 9.806

To ensure that we work in degrees for the angle, use [<1][PRG][NXT][MODES][ANGLE][DEG]. Press

[VAR] to recover the variable list. You should have in your soft menu keys the following labels:

[g I[60 J[vo I[Yo J[XO 1.

Next, define the functions:

X(t) = XO + VO*COS(80)°t’ [ENTER] [+] [DEF]

Y(t) = YO + VO*SIN(60)*t - 0.5*g"t"2’ [ENTER] [<][DEF]

which will add the variables [Y Jand[X] to the soft menu key labels.

To produce the graph itself, follow these steps:

= Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to Parametric, by pressing [CHOOS][V][¥][OK].

we Press [wv] and type 'X(t)+i*Y(t)'[OK] to define the parametric plot as that of a complex

variable. (The real and imaginary parts of the complex variable correspond to the x- and y-

coordinates of the curve.)

= The cursor is now in the Indep field. Press [~]['][ALPHA][<][T][OK] to dange the

independent variable to t.

“Press [NXT][OK] to return to normal calculator display.

= Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be called

PLOT -PARAMETRIC window). Instead of modifying the horizontal and vertical views first, as

done for other types of plot, we will set the lower and upper values of the independent

variable first as follows:

= Select the Indep Low field by pressing [W][V¥]. Change this value to [0][OK]. Then,

change the value of High to [2][OK]. Enter [0][.][1][OK] for the Step value.

Note: Through these settings we are indicating that the parameter t will take values of t

=0, 0.1, 0.2, ..., etc., until reaching the value of 2.0.

= Press [A][A] to highlight one of the fields corresponding to V-View. Then, press [AUTO].
This will generate automatic values of the HView and \VView ranges based on the values of
the independent variable t and the definitions of X(t) and Y(t) used. The result will be:

H-View: 0 1.732050

2917 © 2000 - Gilberto E. Urroz

All rights reserved

V-View: -1.24493 11.27425

% Press [ERASE][DRAW] to draw the parametric plot.

= Press [EDIT][NXT][LABEL][MENU] to see the graph with labels. The window parameters

are such that you only see half of the labels in the x-axis. Press [NXT] to recover the menu.

Press [NXT][PICT] to recover the original graphics menu.

% Press [TRACE][(X,Y)] to determine coordinates of any point on the graph. Use [P] and

[4] to move the cursor about the curve. At the bottom of the screen you will see the value
of the parameter t and coordinates of the cursor as (X,Y).

we Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

A review of your soft menu key labels shows that you now have the following variables:

[© JL EQ JIPPARIL Y][X J[g |]

Pressing [NXT] shows

[60 I vO]J[YO][XO]

The variables t, EQ, and PPAR are generated by the calculator to store the current values of the
parameter, t, of the equation to be plotted EQ (which contains ‘X(t) + I'Y(t)’), and the plot
parameters. The other variables contain the values of constants used in the definitions of X(t)

and Y(t). Because these value may change from plot to plot for projectile trajectories, | suggest
we reorder the variables by using:

[<1[0]l XO J[YO]J[VO]J[60][NXT][g][ENTER] Creates list {X0 YO VO 60 g}

[<][PRG][MEM][DIR J[NXT][ORDER] Re-orders variable list

[VAR] Recovers soft key menu

The ordering of the variables is now:

(Xo JL vo J{ vo J[60 Il g I t I

The variable t is under calculator control when plotting. To define a new projectile trajectory,

we need to manipulate the values X0, YO, VO, and 60, only.

For example, if we were to change the angle of the trajectory to, say, 6p = 20°, we can use:

(2][0][«~][60 |]

We can generate the new plot, together with the existing plot, by pressing, simultaneously,

[<][GRAPH]. What this command does is to plot the graph with the existing plot parameters, but

without first erasing the contents of the current graphics window. Thus, for the current

example, you will see two projectile trajectories plotted, the one generated earlier, and a lower

trajectory corresponding to the new value of the initial angle.

If you want to erase the current picture contents before poducing a new plot, you need to

access either the PLOT, PLOT WINDOW, or PLOT SETUP screens, by pressing, [«][Y =],

[<][WIN], or [<][2D/3D] (the two keys must be pressed simultaneously). Then, press

298 © 2000 - Gilberto E. Urroz

All rights reserved

[ERASE][DRAW]. Press [CANCL] to return to the PLOT, PLOT WINDOW, or PLOT SETUP screen.

Press [ON], or [NXT][OK], to return to normal calculator display.

Creating a table of results

In chapter 6 we presented an example in which we generated a table of values (X,Y) for an
expression of the form Y=f(X), i.e., a Function type of graph. In this section, we present the
procedure for generating a table corresponding to a parametric plot.

- First, let's access the TABLE SETUP window by pressing, simultaneously, [~][TBLSET].

This window shows a Starting value of 0.0, and a Step value of 0.1 for the independent
variable. Let's keep those values active, and leave the TABLE SETUP environment by
pressing [OK].

wk Generate the table by pressing, simultaneously, [<1][TABLE]. The resulting table has

three columns representing the parameter t, and the coordinates of the corresponding

points. For this table the coordinates are labeled X1 and Y1.

“Use the arrow keys, [A][V][«][»]. to move about the table.

+ Press [ON] to return to normal calculator display.

This procedure for creating a table corresponding to the current type of plot can be applied to

other plot types.

Plotting the solution to simple differential equations

The plot of a simple differential equation can be obtained by selecting Diff Eq in the TYPE

field of the PLOT SETUP environment as follows: suppose that we want to plot x(t) from the

differential equation

dx/dt = exp(-t), with initial conditions: x = 0 at t = 0.

The HP 49 G series calculator allows for the plotting of the solution of differential equations of

the form

Y'(T) = F(T.Y).

For our case, we let Y->x and T->t, therefore, F(T,Y)>f(t,x) = exp(-t?).

Before plotting the solution, x(t), for t = 0 to 5, delete the variables EQ and PPAR.

we Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

= Change TYPE to Diff Eq, by pressing [CHOOS][V][V][¥][OK].

wk Press [¥] and type [~][* 1[+][e*][-][ALPHA][~][T][y*][2] [OK].

“The cursor is now in the H-var field. It should show H-vVar:0 and also V-var:1. This is

the code used by the HP 49 G to identify the variables to be plotted. H-vVar:0 means the

299 © 2000 - Gilberto E. Urroz

All rights reserved

independent variable (to be selected later) will be plotted in the horizontal axis. Also, V-

var:1 means the dependent variable (default name 'Y') will be plotted in the vertical axis.

= Press [W]. The cursor is now in the Indep field. Press [][' J[ALPHA][<][T][OK] to

change the independent variable to t.

w% Press [NXT][OK] to return to normal calculator display.

w% Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be called

PLOT -POLAR window).

* Change the H-VIEW and V-VIEW parameters to read:

H-VIEW: -1 5

V-VIEW: -1 1.5

+ Change the Init value to 0, and the Final value to 5 by using: [0][OK] [5][OK].

% The values Step and Tol represent the step in the independent variable and the tolerance

for convergence to be used by the numerical solution. Let's leave those values with their

current settings. Press [V].

4 The Init-Soln value represents the initial value of the solution to start the numerical

result. For the present case, we have for initial conditions x(0) = 0, thus, we need to change

this value to 0.0, by using [0][OK].

% Press [ERASE] [DRAW] to plot the solution to the differential equation.

4 Press [EDIT][NXT][LABEL][MENU] to see the graph with labels. Press [NXT] to recover the

menu. Press [NXT][PICT] to recover the original graphics menu.

4 When we observed the graph being plotted, you'll mtice that the graph is not very

smooth. That is because the plotter is using a time step that is too large. To refine the

graph and make it smoother, use a step of 0.1. Try the following keystrokes:

[CANCL] [w][vI[V¥][. I[1][OK][ERASE][DRAW]

The plot will take longer to be completed, but the shape is definitely smoother than

before.

% Press [EDIT][NXT][LABEL][MENU], to see axes labels and range. Notice that the labels

for the axes are shown as 0 (horizontal) and 1 (vertical). These are the definitions for the

axes as given in the PLOT WINDOW screen (see above), i.e., H-VAR (t): 0, and V-VAR (x) :

1.

* Press [NXT][NXT][PICT] to recover menu and return to PICT environment.

w% Press [(X,Y)] to determine coordinates of any point on the graph. Use [] and [4] to

move the cursor in the plot area. At the bottom of the screen you will see the coordinates of

the cursor as (X,Y). The HP48G is using X and Y as the default names for the horizontal and

vertical axes, respectively.

300 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON] to

return to normal calculator display.

More details on using graphical solutions of differential equations are presented in Chapter

Truth plots

Truth plots are used to produce two-dimensional plots of regions that satisfy a certain

mathematical condition that can be either true or false. For example, suppose that you want to

plot the region for which

X2/36 + Y2/9 < 1, proceed as follows:

- Press [<1][2D/3D], simultaneously to access to the PLOT SETUP window.

= Change TYPE to Truth, by pressing [CHOOS][V][V][¥][V][V¥] [OK].

we Press [¥] and type 'X"2/36+Y"2/9 < 1'[OK] to define the conditions to be plotted.

we The cursor is now in the Indep field. Leave that as 'X' if already set to that variable, or
change it to 'X' if needed.

we Press [NXT][OK] to return to normal calculator display.

w& Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be called

PLOT -PARAMETRIC window). Let's keep the default value for the window's ranges:

H-View: -6.5 6.5
V-View: -3.1 3.1

% Press [ERASE][DRAW] to draw the truth plot. Because the calculator samples the entire

plotting domain, point by point, plot, it takes a few minutes to produce a truth plot. The

present plot should produce a shaded ellipse of semi-axes 6 and 3 (in x and y, respectively),

centered at the origin.

we Press [EDIT][NXT][LABEL][MENU] to see the graph with labels. The window parameters

are such that you only see half of the labels in the x-axis. Press [NXT] to recover the menu.
Press [NXT][PICT] to recover the original graphics menu.

we Press [(X.Y)] to determine coordinates of any point on the graph. Use the arrow keys to

move the cursor about the region plotted. At the bottom of the screen you will see the value

of the coordinates of the cursor as (X,Y).

wk Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

You can have more than one condition plotted at the same time if you multiply the conditions.

For example, to plot the graph of the points for which X2/36 + Y2/9 < 1, and X°/16 + Y?/9 > 1, use
the following:

=e Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

301 © 2000 - Gilberto E. Urroz

All rights reserved

* Press [¥] and type '(X"2/36+Y"2/9 < 1): (X*2/16+Y"2/9 > 1)'[OK] to define the conditions

to be plotted.

% Press [ERASE][DRAW] to draw the truth plot. Again, you have to be patient while the

calculator produces the graph. If you want to interrupt the plot, press [ON], once. Then
press [CANCEL].

Plotting histograms, bar plots, and scatter plots

Histograms, bar plots and scatter plots are used to plot discrete data stored in the reserved

variable DAT. This variable is used not only for these types of plots, but also for all kind of
statistical applications as shown in Chapter As a matter of fact, the use of histogram plots is

postponed until we get to that chapter, for the plotting of a histogram requires to perform a

grouping of data and a frequency analysis before the actual plot. In this section we will show

how to load data in the variable ZDAT and how to plot bar plots and scatter plots.

We will use the following data for plotting bar plots and scatter plots:

X y z

3.1 2.1 1.1
36 3.2 2.2

42 45 3.3

45 56 4.4

49 38 55

Bar plots

First, make sure your calculator’s CAS is in Exact mode:

[MODES][CAS] [v¥][V]

Uncheck Approx option if checked, then press [OK][OK].

Next, enter the data shown above as a matrix, i.e.,

[[3.12.11.1][3.63.22.2][4.24.53.3][4.55.6 4.4][4.9 3.8 5.5][5.2 2.2 6.6]] [ENTER]

to store it in ZDAT, use:

[m1] [PILZ] [][<=][<] [ALPHAT[ALPHA][D][A][T] [ALPHA] [STOP]

Press [VAR] to recover your variables menu. A soft menu key labeled [EDAT] should be available

in the stack.

To produce the graph:

302 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

“= Change TYPE to Bar, by pressing [CHOOS][¥][V][¥1[V][¥] [V][¥][OK].

ww A matrix will be shown at the DAT field. This is the matrix we stored earlier into DAT.

= Press [v1[¥] to highlight the Col: field. This field lets you choose the column of ZDAT

that is to be plotted. The default value is 1. Keep it to plot column 1 in ZDAT.

Press [NXT][OK] to return to normal calculator display.

Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

- Change the V-View to read, v-vView: 0 5.

“Press [ERASE][DRAW] to draw the bar plot.

= Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

The number of bars to be plotted determines the width of the bar. The H- and V-VIEW are set to

10, by default. We changed the V-VIEW to better accommodate the maximum value in column 1
of ZDAT. Barplots are useful when plotting categorical (i.e., non-numerical) data.

Suppose that you want to plot the data in column 2 of the ZDAT matrix:

we Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

Press [V][¥] to highlight the col: field and type 2 [OK].

Press [«+1][WIN], simultaneously to access to the PLOT SETUP window.

Change V-View to read v-View: 0 6

Press [ERASE][DRAW].

+
+

+
+

+

Press [CANCL] to return to the PLOT WINDOW screen, then [ON] to return to normal

calculator display.

Scatter plots

We will use the same SDAT matrix to produce scatter plots. First, we will plot the values of y vs

x, then those of y vs z, as follows:

sw Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

-. Change TYPE to Scatter, by pressing [CHOOS][¥][OK].

303 © 2000 - Gilberto E. Urroz

All rights reserved

4 Press [V][¥] to highlight the cols: field. Enter [1][OK] [2][OK] to select column 1 as X

and column 2 as Y in the Y-vs-X scatter plot.

4% Press [NXT][OK] to return to normal calculator display.

w% Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

- Change the plot window ranges to read:

H-View: 0 6.

V-View: 0 6.

% Press [ERASE][DRAW] to draw the bar plot. Press [EDIT][NXT][LABEL][MENU] to see the

plot unencumbered by the menu and with identifying labels.

% Press [NXT][NXT][PICT] to leave the EDIT environment.

% Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

To plot y vs z, use:

Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

Press [v][V¥] to highlight the cols: field. Enter [3][OK] [2][OK] to select column 3 as X

and column 2 as Y in the Y-vs-X scatter plot.

#% Press [NXT][OK] to return to normal calculator display.

* Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

+ Change the plot window ranges to read:

H-View: 0 7.

V-View: 0 7.

Press [ERASE][DRAW] to draw the bar plot. Press [EDIT][NXT][LABEL][MENU] to see the

plot unencumbered by the menu and with identifying labels.

Press [NXT][NXT][PICT] to leave the EDIT environment.

304 © 2000 - Gilberto E. Urroz

All rights reserved

Slope fields

Slope fields are used to visualize the solutions to a differential equation of the form y’ = f(x,y).
Basically, what is presented in the plot are segments tangential to the solution curves, since y' =

dy/dx, evaluated at any point (x,y), represents the slope of the tangent line at point (x,y).

For example, to visualize the solution to the differential equation y’ = f(x,y) = x+y, use the
following:

= Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to Slopefield.

Press [¥] and type 'X+Y' [OK].

Make sure that 'X' is selected as the Indep: and 'Y' as the Depnd: variables.

Press [NXT][OK] to return to normal calculator display.F
F
F
F

Press [+2][WIN], simultaneously, to access the PLOT WINDOW screen.

he Change the plot window ranges to read:

X-Left:-5 X-Right:5

Y-Near:-5 Y-Far: 5

“Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to
see the plot unencumbered by the menu and with identifying labels.

= Press [NXT][NXT][PICT] to leave the EDIT environment.

% Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

If you could reproduce the slope field plot in paper, you can trace by hand lines that are tangent

to the line segments shown in the plot. This lines constitute lines of y(x,y) = constant, for the

solution of y' = f(x,y). Thus, slope fields are useful tools for visualizing particularly difficult
equations to solve.

Try also a slope field plot for the function y’ = f(x,y) = - (y/x)?%, by using:

= Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to Slopefield.

% Press [Vv] and type '— (Y/X)"2' [OK].

= Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to

see the plot unencumbered by the menu and with identifying labels.

& Press [NXT][NXT][PICT] to leave the EDIT environment.

305 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

Fast 3D plots

Fast 3D plots are used to visualize three-dimensional surfaces represented by equations of the

form z = f(x,y). For example, if you wantto visualize z = f(x,y) = x’+y’, we can use the following:

- Press [<1][2D/3D], simultaneously to access to the PLOT SETUP window.

+ Change TYPE to Fast3D.

Press [Vv] and type 'X"2+Y"2" [OK].

we Make sure that 'X’ is selected as the Indep: and 'Y' as the Depnd: variables.

#% Press [NXT][OK] to return to normal calculator display.

= Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

* Keep the default plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Z-Low: -1 Z-High: 1

Step Indep: 10 Depnd: 8

Note: The Step Indep: and Depnd: values represent the number of gridlines to be
used in the plot. The larger these number, the slower it is to produce the graph,

although, the times utilized for graphic generation are relatively fast. For the

time being we'll keep the default values of 10 and 8 for the Step data.

& Press [ERASE][DRAW] to draw the three-dimensional surface. The result is a wireframe

picture of the surface with the reference coordinate system shown at the lower left corner of

the screen. By using the arrow keys ([«4][»][A][V¥]) you can move the surface around. The

orientation of the reference coordinate system will change accordingly. Go ahead and try

using the arrow keys to move the surface around. When done, press [EXIT].

This is one view of the FAST3D plot for this example:

306 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [CANCL] to return to the PLOT WINDOW environment.

Change the Step data to read: Step Indep: 20 Depnd: 16

- Press [ERASE][DRAW] to see the surface plot. When done, press [EXIT].

“Press [CANCL] to return to PLOT WINDOW.

= Press [ON], or [NXT][OK], to return to normal calculator display.

Try also a Fast 3D plot for the surface z = f(x,y) = sin (x*+y?)

“% Press [<][2D/3D], simultaneously to access the PLOT SETUP window.

wk Press [¥] and type 'SIN(X"2+Y~2)’ [OK].

we Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT]{LABEL][MENU] to

see the plot unencumbered by the menu and with identifying labels.

+ Press [NXT][NXT][PICT] to leave the EDIT environment.

w% Press [CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

Wireframe plots

Wireframe plots are plots of three-dimensional surfaces described by z = f(x,y). Unlike Fast 3D
plots, wireframe plots are static plots. The user can choose the viewpoint for the plot, i.e., the

point from which the surface is seen.

For example, to produce a wireframe plot for the surface z = x + 2y -3, use the following:

= Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to Wireframe.

Press [¥] and type 'X+2*Y-3" [OK].

Make sure that 'X’ is selected as the Indep: and 'Y' as the Depnd: variables.

Press [NXT][OK] to return to normal calculator display.

Press [<1][WIN], simultaneously, to access the PLOT WINDOW screen.

+
+
+

Keep the default plot window ranges to read:

307 © 2000 - Gilberto E. Urroz

All rights reserved

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Z-Low: -1 Z-High: 1

XE: 0 YE: -3 ZE:0

Step Indep: 10 Depnd: 8

The coordinates XE, YE, ZE, stand for “eye coordinates,” i.e., the coordinates
from which an observer sees the plot. The values shown are the default values.

The Step Indep: and Depnd: values represent the number of gridlines to be used

in the plot. The larger these number, the slower it is to produce the graph. For

the time being we'll keep the default values of 10 and 8 for the Step data.

% Press [ERASE][DRAW] to draw the three-dimensional surface. The result is a wireframe

picture of the surface.

= Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges. This particular

version of the graph is limited to the lower part of the display. We can change the viewpoint

to see a different version of the graph.

Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

we Change the eye coordinate data to read : XE:0 YE: -3 ZE:3

we Press [ERASE][DRAW] to see the surface plot.

Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges. This version of

the graph occupies more area in the display than the previous one. We can change the

viewpoint, once more, to see another version of the graph.

% Press [NXT]INXT][PICT][CANCL] to return to the PLOT WINDOW environment.

£1 Change the eye coordinate data to read : XE:3 YE: 3 ZE:3

= Press [ERASE][DRAW] to see the surface plot. This time the bulk of the plot is located

towards the right -hand side of the display.

w% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

= Press [ON], or [NXT][OK], to return to normal calculator display.

Try also a Wireframe plot for the surface z = f(x,y) = sin (x°+y°)

Press [<][2D/3D], simultaneously to access the PLOT SETUP window.

#4 Press [¥] and type 'X*2+Y"2' [OK].

4 Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to

see the plot unencumbered by the menu and with identifying labels.

308 © 2000 - Gilberto E. Urroz

All rights reserved

we Press [NXT][NXT][PICT] to leave the EDIT environment.

we Press [CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK]. to return to normal calculator display.

Ps-Contour plots

Ps-Contour plots are contour plots of three-dimensional surfaces described by z = f(x,y). The

contours produced are projections of level surfaces z = constant on the x-y plane.

For example, to produce a Ps-Contour plot for the surface z = x+y? use the following:

Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to Ps-Contour.

= Press [Vv] and type 'X*2+Y"2' [OK].

- Make sure that ‘X' is selected as the Indep: and 'Y' as the Depnd: variables.

- Press [NXT][OK] to return to normal calculator display.

wb Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

- Keep the default plot window ranges to read:

X-Left:-2 X-Right:2

Y-Near:-1 Y-Far: 1

Step Indep: 10 Depnd: 8

= Press [ERASE][DRAW] to draw the contour plot. This operation will take some time, so,

be patient. The result is a contour plot of the surface. Notice that the contour are not

necessarily continuous, however, they do provide a good picture of the level surfaces of the

function.

we Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges.

= Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

we Press [ON], or [NXT][OK], to return to normal calculator display.

Try also a Ps-Contour plot for the surface z = f(x,y) = sin x cos y.

“Press [<][2D/3D], simultaneously to access the PLOT SETUP window.

= Press [¥] and type 'SIN(X)*COS(Y)’ [OK].

309 © 2000 - Gilberto E. Urroz

All rights reserved

Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to

see the plot unencumbered by the menu and with identifying labels.

Press [NXT][NXT][PICT] to leave the EDIT environment.

% Press [CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

Y-Slice plots

Y-Slice plots are animated plots of z-vs-y for different values of x from the function z = f(x,y).

For example, to produce a Y-Slice plot for the surface z = x3-xy?, use the following:

Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to Y-Slice.

+ Press [¥] and type 'X"3+X*Y"3" [OK].

Make sure that 'X’' is selected as the Indep: and 'Y' as the Depnd: variables.

+
+

Press [NXT][OK] to return to normal calculator display.

+ Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

-* Keep the default plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Z-Low:-1 Z-High:1

Step Indep: 10 Depnd: 8

4 Press [ERASE][DRAW] to draw the three-dimensional surface. You will see the calculator

produce a series of curves on the screen, that will immediately disappear. When the

calculator finishes producing all the y-slice curves, then it will automatically go into

animating the different curves.

& Press [ON] to stop the animation. Press [CANCL] to return to the PLOT WINDOW

environment.

“Press [ON], or [NXT][OK], to return to normal calculator display.

Try also a Ps-Contour plot for the surface z = f(x,y) = (x+y) sin y.

Press [<][2D/3D], simultaneously to access the PLOT SETUP window.

4 Press [Vv] and type '(X+Y)*SIN(Y)" [OK].

310 © 2000 - Gilberto E. Urroz

All rights reserved

ab Press [ERASE][DRAW] to produce the Y-Slice animation.

% Press [ON] to stop the animation.

Press [CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or
[NXT][OK], to return to normal calculator display.

Gridmap plots

Gridmap plots produce a grid of orthogonal curves describing a function of a complex variable of

the form w =f(z) = f(x+iy), where z = x+iy is a complex variable. The functions plotted

correspond to the real and imaginary part of w = ®(x,y) + ¥(x,y), i.e., they represent curves

®(x,y) =constant, and ¥ (x,y) = constant.

For example, to produce a Gridmap plot for the function w = sin(z), use the following:

w% Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to Gridmap.

Press [¥] and type 'SIN(X+i*Y)" [OK].

Make sure that ‘X' is selected as the Indep: and 'Y' as the Depnd: variables.

F
F
F
F

Press [NXT][OK] to return to normal calculator display.

F
a

Press [«1][WIN], simultaneously, to access the PLOT WINDOW screen.

* Keep the default plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

XXLeft:-1 XXRight:1

YYNear:-1 yyFar: 1

Step Indep: 10 Depnd: 8

we Press [ERASE][DRAW] to draw the gridmap plot. The result is a grid of functions
corresponding to the real and imaginary parts of the complex function.

"Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges.

“& Press [NXT][NXT][PICT]{CANCL] to return to the PLOT WINDOW environment.

= Press [ON], or [NXT][OK], to return to normal calculator display.

Other functions of a complex variable worth trying for Gridmap plots are:

(1) SIN((X,Y)) i.e., F(z) = sin(2) (2)(X,Y)"2 i.e., F(z) = 2°

(3) EXP((X,Y)) i,e., F(z) = ¢° (4) SINH((X,Y)) i.e., F(z) = sinh(z)

311 © 2000 - Gilberto E. Urroz

All rights reserved

(5) TAN((X,Y)) i.e., F(z) = tan(z) (6) ATAN((X,Y)) i.e., F(z) = tan” (2)
(7) (X,Y)"3 ie. Fz) =2° (8) 1/(X.Y) ie. F(z) =1/z
(9) V (X.Y) ie. F(z) =2"2

Pr-Surface plots

Pr-Surface (parametric surface) plots are used to plot a three-dimensional surface whose

coordinates (x,y,z) are described by x = x(X,Y), y = y(X,Y), z=z(X,Y), where X and Y are

independent parameters.

Note: The equations x = x(X,Y), y = y(X,Y), z=z(X,Y) represent a parametric description of a
surface. X and Y are the independent parameters. Most textbooks will use (u,v) as the

parameters, rather than (X,Y). Thus, the parametric description of a surface is given as x =

x(u,v), y = y(u,v), z=z(u,v).

For example, to produce a Pr-Surface plot for the surface x = x(X,Y) = XsinY, y = y(X,Y) = x cos

Y, z=z(X,Y)=X, use the following:

Press [<1][2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to Pr-Surface.

Press [¥] and type '{X*SIN(Y) X*COS(Y) X}' [OK].

-
+
+

Make sure that 'X’ is selected as the Indep: and 'Y' as the Depnd: variables.

- Press [NXT][OK] to return to normal calculator display.

% Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

+ Keep the default plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Z-Low: -1 Z-High:1

XE: 0 YE:-3 zE: 0

Step Indep: 10 Depnd: 8

% Press [ERASE][DRAW] to draw the three-dimensional surface. The result is a contour plot

of the surface. Notice that the contour are not necessarily continuous, however, they do

provide a good picture of the level surfaces of the function.

% Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges.grap 9

% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

& Press [ON], or [NXT][OK], to return to normal calculator display.

312 © 2000 - Gilberto E. Urroz

All rights reserved

The VPAR variable

The VPAR (Volume Parameter) variable contains information regarding the “volume” used to

produce a three dimensional graph. Therefore, you will see it produced whenever you create a

three dimensional plot such as Fast3D, Wireframe, or Pr-Surface.

Programming with graphics

While the examples presented above have been operated interactively, it is possible to use

graphs in your programs to complement numerical results with graphics. For example, in Chapter

10, in the section entitled "Matrix applications,” we indicated that it is possible to check how

well a polynomial expression fits a set of data by looking at the plot of residuals. This plot is

simply the difference between the fitted and original values of y plotted against the values of x

as a scatter plot. In that section we created a program called POLYR that obtains the
coefficients of the polynomial, the correlation coefficient, and the sum of squared errors. In this

section we present a program, that follows the general lines of POLYR, but also produces a plot
of residuals.

Example: Residual plots for polynomial fitting

The program to use is written as:

<< Open program

2 Xyp Enter lists x and y, and number p (levels 3,2,1,
respectively)
<< Open subprogram
x SIZE 2 n
<<

x VANDERMONDE Place x in stack, obtain V,

IF '‘p<n-1" THEN This IF implements step 3 in the algorithm
n Place n in stack
p2+ Calculate p+1
FOR Start a FOR-STEP loop with j =n-1, n-2, ..., p+1, step = -1

j COL-DROP Remove column and drop it from stack
-1 STEP Close FOR-STEP loop

ELSE
IF '‘p>n-1" THEN
nl+ Calculate n+1
pl+ Calculate p+1
FORj Start a FOR-NEXT loop with j =n, n+1, ..., p+1.
xj" Calculate x, as a list
OBJ-> >ARRY Convert list to array

j COL+ Add column to matrix
NEXT Close FOR-NEXT loop

END Ends second IF clause.
END Ends first IF clause. Its result is matrix X

y OBJ> ->ARRY Convert list y to an array
> X yv Enter matrix and array as X and y

<< Open sub-program

313 © 2000 - Gilberto E. Urroz

All rights reserved

X yv MTREG X and y used by program MTREG
->NUM If needed, converts result to decimal format
2b Resulting vector is passed as b into sub-program

<< Open sub-program

b yv Place b and yv (y as a vector) in stack

Xb* Calculate X-b

Calculate e = y - X-b
x OBJ> 2>ARRY Convert list x into a vector x
SWAP 2 COL-> Swap vector x with vector e and create a matrix [x e]

‘2DAT’ STO Store matrix into statistical matrix ZDAT
SCATRPLOT Produce a scatterplot, plotting col.2 vs. col.1 in ZDAT
DRAX LABEL Draw axes and place labels in the plot

PICTURE Activate picture screen to show graph

>> Close sub-program
>> Close sub-program

>> Close sub-program

>> Close sub-program
>> Close

Notice that this program is basically the same as POLYR, with modifications in the innermost sub-
program. The commands used for the plot, such as SCATRPLOT, DRAX (DRAw aXes), LABEL, and
PICTURE, are accessible only through the command catalog. Thus, to enter DRAX, for example,
you want to use [CAT][ALPHA][D], then use the down arrow key ([¥]) to find DRAX. When the

command is highlighted, press [OK]. To type ‘SDAT’ use: [m1

[TEI] [<1 [<][ALPHA] [ALPHA] [D][A][T][»].

To run the program with the data stored in variables xx and yy, as indicated in the example of

Chapter 10, use:

[xx 1[yy][2][POLYG]

The calculator will produce the scatterplot of the residuals. To remove the menu labels press

[NXT][MENU].

Note: For an acceptable residual plot the points should be distributed randomly about the

graph. If a trend (e.g., linear trend, quadratic trend) is appreciable, the fitting may not be a

good one. The graph for p = 2 shows a clear “sinusoidal” distribution of points, therefore, a

second-order polynomial is not a good fitting to the data. (This confirms the observations

presented in the example in Chapter 10 based on the values of the sum of squared errors).

To recover the menu labels press [NXT]. Press [NXT][PICT][CANCEL] to return to normal

calculator display. The vector with values of the coefficients, b, from the polynomial fitting will

be available in the stack.

To try other values of p, use:

xx][yy][3][POLYG]
xx][yy][4][POLYG]
xx |[yy 1[5][POLYG]
xx][yy 1[5][POLYG]

The corresponding graphs are shown below. Notice that....

314 © 2000 - Gilberto E. Urroz

All rights reserved

Plotting commands for programming

Commands for setting up and producing plots are available through the PLOTm menu adapted
from the HP 48 G/G+/GX series calculator. If you did not program this menu in your calculator,
you can access it also by using:

[81[11[. 1[0][1] [SPC] [ALPHA][ALPHA]
[+][PRG][NXT][MODES] [MENU] [MENU]

The menu thus produced provides the user access to a variety of graphics functions. Since it is

very useful, | suggest we user-define the F3 (GRAPH) key to provide access to this menu. This

way, regardless of which is your working sub-directory, you will have access to the PLOT menu.

User-defined key for the PLOT menu

Enter the following keystrokes to determine whether you have any user-defined keys already

stored in your calculator:

[<][PRG][NXT][MODES][KEYS][RCLK]

Unless you have user-defined some keys, you should get in return a list containing an S, i.e., {S}.
This indicates that the Standard keyboard is the only key definition stored in your calculator.

To user-define a key you need to add to this list a command or program followed by a reference

to the key. The keys in the HP 49 G calculator are referred two by a number consisting of two

digits, e.g., 23, 31, 52, etc., where the first digit represents the number of the row and the
second the number of the column where the key is located. Thus, the key for SIN will be

referred to as key 53. Row 1 is the soft menu key row, while column 1 is the leftmost column.

Since there could be up to 6 different functions associated with a key, through combinations with

[<].[~], and [ALPHA], the function that we want to user-define is referred to by an additional

number:

0 or 1, If the key is unshifted
, If the key is combined with [1]

, If the key is combined with []

, If the key is combined with [ALPHA]
, If the key is combined with [ALPHA][+]

, If the key is combined with [ALPHA][r]D
O
W
N

This last number is attached as the decimal part of the two-number reference mentioned before.

Thus, if we want to user-define the F3 key (key number 13), so that the unshifted key (function

13.0) produces the PLOT menu (menu 81.01), we need to type the following:

[<1[01[ALPHA][SIISPCI[] [<<>>] [81[1]1[. 1[01[1] Type in { S << 81.01
[<][PRG][NXT][MODES][MENU][MENU] [»][»] Type in MENU >>_
[11131] . 1[0] [ENTER] Type in 13.0 }, enter result in stack

[<2][PRG][NXT][MODES][KEYS][STOKE] Stores key definition by user

To verify that the list { S << 81.01 MENU >> 13.0 } was stored in the user-defined keys, press

[RCLKE]. Press [VAR] to return to your list of variables.

315 © 2000 - Gilberto E. Urroz

All rights reserved

The PLOT menu

Note: We will not work any exercise while presenting the PLOT menu, its functions or sub-menus.

It will be more like a tour of the contents of PLOT as they relate to the different type of graphs
available in the HP 49 G calculator.

To activate a user defined key you need to press [R][USER] (same as the ALPHA key) before

pressing the key or keystroke combination of interest. To activate the PLOT menu, with the key

definition used above, press:

[<][USER][F3 C].

You will get the following menu:

[PTYPE][PPARI[EQ][ERASE][DRAX][DRAW]

Pressing [NXT] you obtain:

[3D][STAT][FLAG][LABEL][AUTO][INFO]

The following diagram shows the menus in PLOT. The number accompanying the different menus
and functions in the diagram are used as reference in the subsequent description of those

objects.

2 3 4 5 c

| pag|| EQ |ERasE|DRax |[pRAW]

9 10 11 12

i FLAG |[LABEL|[aUTO |[INFO |

The soft menu key labeled 3D, STAT, FLAG, PTYPE, and PPAR, produce additional menus, which

will be presented in more detail later. At this point we describe the functions directly accessible

through soft menu keys for menu number 81.02. These are:

The function LABEL (10)

The function LABEL is used to label the axes in a plot including the variable names and minimum

and maximum values of the axes. The variable names are selected from information contained in

the variable PPAR.

The function AUTO (11)

The function AUTO (AUTOscale) calculates a display range for the y-axis or for both the x- and y-

axes in two-dimensional plots according to the type of plot defined in PPAR. For any of the three-

316 © 2000 - Gilberto E. Urroz

All rights reserved

dimensional graphs the function AUTO produces no action. For two-dimensional plots, the
following actions are performed by AUTO:

=e FUNCTION: based on the plotting range of x, it samples the function in EQ and
determines the minimum and maximum values of y.

= CONIC: sets the y-axis scale equal to the x-axis scale

we POLAR: based on the values of the independent variable (typically 8), it samples the

function in EQ and determines minimum and maximum values of both x and vy.

w= PARAMETRIC: produces a similar result as POLAR based on the values of the parameter
defining the equations for x and y.

we TRUTH: produces no action.

= BAR: the x-axis range is set from 0 to n+7 where n is the number of elements in ZDAT.

The range of values of y is based on the contents of IDAT. The minimum and maximum
values of y are determined so that the x-axis is always included in the graph.

= HISTOGRAM: similar to BAR.
we SCATTER: sets x- and y-axis range based on the contents of the independent and

dependent variables from XDAT.

The function INFO (12)

The function INFO is interactive only (i.e., it cannot be programmed). When the corresponding

soft menu key is pressed it provides information about the current plot parameters.

The variable EQ (3)

The variable name EQ is reserved by the calculator to store the current equation in plots or

solution to equations (see chapter ...). The soft menu key labeled EQ in this menu can be used as
it would be if you have your variable menu available, e.g., if you press [EQ] it will list the
current contents of that variable.

The function ERASE (4)

The function ERASE erases the current contents of the graphics window. In programming, it can
be used to ensure that the graphics window is cleared before plotting a new graph.

The function DRAX (5)

The function DRAX draws the axes in the current plot, if any is visible.

The function DRAW (6)

The function DRAW draws the plot defined in PPAR.

317 © 2000 - Gilberto E. Urroz

All rights reserved

The PTYPE menu under PLOT (1)

The PTYPE menu lists the name of all two-dimensional plot types pre-programmed in the

calculator. The menu contains the following menu keys:

[FUNCT][CONIC][POLAR][PARAM][TRUTH][DIFFE]

These keys correspond to the plot types Function, Conic, Polar, Parametric, Truth, and Diff Eq,
presented earlier. Pressing one of these soft menu keys, while typing a program, will place the

corresponding function call in the program.

Press [NXT] [PLOT] to get back to the main PLOT menu.

The PPAR menu (2)

The PPAR menu lists the different options for the PPAR variable as given by the following soft
menu key labels:

[INDEP][DEPND][XRNG][YRNG][RES]J[RESET]

Pressing [NXT] you get:

[CENTR][SCALE][SCALE][SCALE][AXES][ATICK]

Note: the SCALE commands shown here actually represent SCALE, SCALEW, SCALEH, in that

order.

Pressing [NXT] you get:

[PPAR][INFO][11 11][PLOT]

The following diagram illustrates the functions available in the PPAR menu. The letters attached
to each function in the diagram are used for reference purposes in the description of the

functions shown below.

a b c d e f

INDEP|DEPND|| XRNG|[YRNG || RES |[RESET]

9 h i 1 k 1
CENTR|[SCALE||SCALEW|| SCALEH|[AXES |[ATICK]
m n

INFO (n) and PPAR (m)

318 © 2000 - Gilberto E. Urroz

All rights reserved

If you press [INFO], or enter [~][PPAR], while in this menu, you will get a listing of the current
PPAR settings. For example, having just completed the example for the program POLYG for p =
2, this is the display | got in my calculator when pressing [INFO]:

Indep: X

Depnd: Y

Xrng: 1.18 9.89

Yrng: -2485.89 1271.181

Res: 0.
This information indicates that X is the independent variable (Indep), Y is the dependent variable
(Depnd), the x-axis range goes from 1.18 to 9.89 (Xrng), the y-axis range goes from -2485.89 to
1271.181 (Yrng). The last piece of information in the screen, the value of Res (resolution)
determines the interval of the independent variable used for generating the plot.

The soft menu key labels included in the PPAR menu represent commands that can be used in
programs. These commands include:

INDEP (a)

The command INDEP specifies the independent variable and its plotting range. These

specifications are stored as the third parameter in the variable PPAR. The default value is 'X.

The values that can be assigned to the independent variable specification are:

w A variable name, e.g., Vel

“A variable name in a list, e.g., {vel}

= A variable name and a range in a list, e.g., {vel 0 20}

® A range without a variable name, e.g., { 0 20 }

“Two values representing a range, e.g., 0 20

In a program, any of these specifications will be followed by the command INDEP.

DEPND (b)

The command DEPND specifies the name of the dependent variable. For the case of TRUTH plots

it also specifies the plotting range. The default value is Y. The type of specifications for the
DEPND variable are the same as those for the INDEP variable.

XRNG (c) and YRNG (d)

The command XRNG specifies the plotting range for the x-axis, while the command YRNG
specifies the plotting range for the y-axis. The input for any of these commands is two numbers

representing the minimum and maximum values of x or y. The values of the x- and y-axis ranges

are stored as the ordered pairs (Xmin, Ymin) and (Xmax. Ymax) iN the two first elements of the

variable PPAR. Default values for xmin and xmax are -6.5 and 6.5, respectively. Default values for

Xmin and Xmax are -3.1 and 3.2, respectively.

319 © 2000 - Gilberto E. Urroz

All rights reserved

RES (e)

The RES (RESolution) command specifies the interval between values of the independent variable

when producing a specific plot. The resolution can be expressed in terms of user units as a real

number, or in terms of pixels as a binary integer (numbers starting with #, e.g., #10). The

resolution is stored as the fourth item in the PPAR variable.

CENTR (g)

The command CENTR takes as argument an ordered pair (x,y) or a value x, and adjusts the first
two elements in the variable PPAR, i.e., (Xmin. Ymin) and (Xmax. Ymax). SO that the center of the plot

is (x,y) or (x,0), respectively.

SCALE (h)

The SCALE command determines the plotting scale represented by the number of user units per
tick mark. The default scale is 1 user-unit per tick mark. When the command SCALE is used, it

takes as arguments two numbers, Xe and Vee, representing the new horizontal and vertical

scales. The effect of the SCALE command is to adjust the parameters (Xmin. Ymin) and (Xmax: Ymax)

in PPAR to accommodate the desired scale. The center of the plot is preserved.

SCALEW (i)

Given a factor Xactor, the command SCALEW multiplies the horizontal scale by that factor. The W

in SCALEW stands for 'width." The execution of SCALEW changes the values of Xpin and Xmax in

PPAR.

SCALEH (j)

Given a factor yacor, the command SCALEH multiplies the vertical scale by that factor. The H in

SCALEH stands for 'height." The execution of SCALEW changes the values of ymin and ymax in PPAR.

Note: Changes introduced by using SCALE, SCALEW, or SCALEH, can be used to zoom in or zoom
out in a plot.

ATICK (1)

The command ATICK (Axes TICK mark) is used to set the tick-mark annotations for the axes. The

input value for the ATICK command can be one of the following:

320 © 2000 - Gilberto E. Urroz

All rights reserved

w= A real value x : sets both the x- and y-axis tick annotations to x units

-_* A list of two real values { x y }: sets the tick annotations in the x- and y-axes to x and y

units, respectively.

A binary integer #n: sets both the x- and y-axis tick annotations to #n pixels

= A list of two binary integers {#n #m}: sets the tick annotations in the x- and y-axes to #n
and #m pixels, respectively.

AXES (k)

The input value for the axes command consists of either an ordered pair (x,y) or a list {(x,y) atick
"x-axis label" "y-axis label"}. The parameter atick stands for the specification of the tick marking

annotations as described above for the command ATICK. The ordered pair represents the center
of the plot. If only an ordered pair is given as input to AXES, only the axes origin is altered. The
argument to the command AXES, whether an ordered pair or a list of values, is stored as the fifth
parameter in PPAR.

To return to the PLOT menu, press [PLOT].

Press [NXT] to reach the second menu of the PLOT menu set.

RESET (f)

This button will reset the plot parameters to default values.

The 3D menu within PLOT (7)

The 3D menu contains two sub-menus, PTYPE and VPAR, and one variable, EQ. We are familiar
already with the meaning of EQ, therefore, we will concentrate on the contents of the PTYPE and
VPAR menus. The diagram below shows the branching of the 3D menu.

Iv v VI

PTYFE [vear EQ I

N 0 P Q R S

—2XVOL||¥VOL) |ZVOL| |XXRNG||YYRNG|{INFO |
T u Vv Ww xX Y

—{EYEPT|[NuMz|[NUMY|[vPAR][RESET|[18¥FO |

321 © 2000 - Gilberto E. Urroz

All rights reserved

The PTYPE menu within 3D (IV)

The PTYPE menu under 3D contains the following functions:

[SLOPE][WIREF][YSLIC][PCONT][GRIDM][PARSU]

These functions correspond to the graphics options Slopefield, Wireframe, Y-Slice, Ps-Contour,
Gridmap and Pr-Surface presented earlier in this chapter. Pressing one of these soft menu keys,

while typing a program, will place the corresponding function call in the program.

Press [NXT] [3D] to get back to the main 3D menu.

The VPAR menu within 3D (V)

The variable VPAR stands for Volume PARameters, referring to a parallelepiped in space within

which the three-dimensional graph of interest is constructed. When press [VPAR] in the 3D
menu, you will get the following functions:

[XVOL][YVOL][ZVOL][XXRNG][YYRNG][INFO]

Press [NXT] to get:

[EYEPT][NUMX][NUMY][VPAR][RESET][INFO]

Here we describe the meaning of these functions:

INFO (S) and VPAR (W)

When you press [INFO] (S) you get the following information in your screen:

Xvol: -1. 1.

Yvol: -1. 1.

Xvol: -1. 1.

Xrng: -1. 1.

Yrng: -1. 1.

The ranges in Xvol, Yvol, and Zvol describe the extent of the parallelepiped in space where the

graph will be generated. Xrng and Yrng describe the range of values of x and y, respectively, as

independent variables in the xy plane that will be used to generate functions of the form z =

f(x,y).

Press [NXT] and [INFO] (Y) (a second INFO key) to obtain this additional information:

Xeye: 0.

Yeye: -3.

Zeye: 0.

Xstep: 10.

Ystep: 8.

These are the value of the location of the viewpoint for the three-dimensional graph (Xeye,

Yeye, Zeye), and of the number of steps in x and y to generate a grid for surface plots.

322 © 2000 - Gilberto E. Urroz

All rights reserved

XVOL (N), YVOL (0), and ZVOL (P)

These functions take as input a minimum and maximum value and are used to specify the extent

of the parallelepiped where the graph will be generated (the viewing parallelepiped). These

values are stored in the variable VPAR. The default values for the ranges XVOL, YVOL, and ZVOL
are-1to1.

XXRNG (Q) and YYRNG (R)

These functions take as input a minimum and maximum value and are used to specify the ranges

of the variables x and y to generate functions z = f(x,y). The default value of the ranges XXRNG
and YYRNG will be the same as those of XVOL and YVOL.

EYEPT (T)

The function EYEPT takes as input real values x, y, and z representing the location of the
viewpoint for a three-dimensional graph. The viewpoint is a point in space from which the three-

dimensional graph is observed. Changing the viewpoint will produce different views of the

graph. The figure below illustrates the idea of the viewpoint with respect to the actual graphic

space and its projection in the plane of the screen.

VIEW PARALLELEPIPED

EYE POINT OF.

VIEWPOINT

y
a]

323 © 2000 - Gilberto E. Urroz

All rights reserved

NUMX(U) and NUMY (V)

The functions NUMX and NUMY are used to specify the number of points or steps along each
direction to be used in the generation of the base grid from which to obtain values of z = f(x,y).

VPAR (W)

This is _just a reference to the variable VPAR.

RESET (X)

Resets parameters in screen to their default values.

Press [NXT][3D] to return to the 3D menu.

Press [PLOT] to return to the PLOT menu.

The STAT menu within PLOT

The STAT menu provides access to plots related to statistical analysis. Within this menu we find

the following menus:

[PTYPE][DATA][ZPAR][Il 1[PLOT]

The diagram below shows the branching of the STAT menu within PLOT. The numbers and letters
accompanying each function or menu are used for reference in the descriptions that follow the

figure.

|LINFIHLOGFIHEXPFI{PWRFIBESTF|

324 © 2000 - Gilberto E. Urroz

All rights reserved

The PTYPE menu within STAT (I)

The PTYPE menu provides the following functions:

[BAR]J[HISTO][SCATT][Il J[STAT]

These keys correspond to the plot types Bar (A), Histogram (B), and Scatter(C), presented
earlier. Pressing one of these soft menu keys, while typing a program, will place the

corresponding function call in the program.

Press [STAT] to get back to the STAT menu.

The DATA menu within STAT (lI)

The DATA menu provides the following functions:

[2+ JI Z-][CLXZ]J[ZDAT][1[STAT]

The functions listed in this menu are sed to manipulate the XDAT statistical matrix. The

functions + (D) and Z- (E), add or remove data rows from the matrix DAT. CLX (F) clears the

YDAT (G) matrix, and the soft menu key labeled XDAT is just used as a reference for interactive
applications. More details on the use of these functions are presented in a later chapter on

statistical applications.

Press [STAT] to return to the STAT menu.

The PAR menu within STAT (ll)

The PAR menu provides the following functions:

[XCOL][YCOL][MODL][SPAR][RESET][INFO]

INFO (M) and PAR (K)

The key INFO in ZPAR provides the following information:

Xcol: 1.

Ycol: 2.

Intercept: O.

Slope: 0.

Model: LINFIT

325 © 2000 - Gilberto E. Urroz

All rights reserved

The information listed in the screen is contained in the variable ZPAR. The values shown are the

default values for the x-column, y-column, intercept and slope of a data fitting model, and the

type of model to be fit to the data in ZDAT.

XCOL (H)

The command XCOL is used to indicate which of the columns of ZDAT, if more than one, will be

the x- column or independent variable column.

YCOL (1)

The command YCOL is used to indicate which of the columns of XDAT, if more than one, will be

the y- column or dependent variable column.

MODL (J)

The command MODL refers to the model to be selected to fit the data in SDAT, if a data fitting is
implemented. To see which options are available, press [MODL]. You will get the following
menu:

[LINFI][LOGFI][EXPFI][PWRFI][BESTFI][ZPAR]

These functions correspond to Linear Fit, Logarithmic Fit, Exponential Fit, Power Fit, or Best Fit.
Data fitting is described in more detail in a later chapter.

Press [PAR] to return to the PAR menu.

2PAR (K)

YPAR is just a reference to the variable SPAR for interactive use.

RESET (1)

This function resets the contents of PAR to its default values.

Press [NXT][STAT] to return to the STAT menu. Press [PLOT] to return to the main PLOT menu.

The FLAG menu within PLOT

The FLAG menu is actually interactive, so that you can select any of the following options:

4 AXES: when selected, axes are shown if visible within the plot area or volume.

326 © 2000 - Gilberto E. Urroz

All rights reserved

=. CNCT: when selected the plot is produced so that individual points are connected.

= SIMU: when selected, and if more than one graph is to be plotted in the same set of
axes, plots

all the graphs simultaneously.

Press [PLOT] to return to the PLOT menu.

So, how are plots generated in a program?

Depending on whether we are dealing with a two-dimensional graph defined by a function, by

data from ZXDAT, or by a three-dimensional function, you need to set up the variables PPAR,
YPAR, and /or VPAR before generating a plot in a program. The commands shown in the
previous section help you in setting up such variables.

Following we describe the general format for the variables necessary to produce the different

types of plots available in the HP 49 G calculator.

Two-dimensional graphics

The two-dimensional graphics generated by functions, namely, Function, Conic, Parametric,

Polar, Truth and Differential Equation, use PPAR with the format:

{ (Xin: Yamin) (Xmax: Ymax) indep res axes ptype depend }

The two-dimensional graphics generated from data in the statistical matrix XDAT, namely, Bar,
Histogram, and Scatter, use the PAR variable with the following format:

{ x-column y-column slope intercept model }

while at the same time using PPAR with the format shown above.

The meaning of the different parameters in PPAR and ZXPAR were presented in the previous
section.

Three-dimensional graphics

The three-dimensional graphics available, namely, options Slopefield, Wireframe, ¥Slice, Ps-
Contour, Gridmap and Pr-Surface, use the VPAR variable with the following format:

{x1e£c. Xright« Ynear: Yfar: Zlow: Znigh Xmins Xmaxs Ymins Ymax-s Xeyer Yeye: Zeyer Xstep Ystep}

These pairs of values of x, y, and z, represent the following:

327 © 2000 - Gilberto E. Urroz

All rights reserved

+ Dimensions of the view parallelepiped (Xie, Xright: Ynear: Ytar: Ziows Zhigh)

* Range of x and y independent variables (Xin, Xmax: Ymin: Ymax)

#% Location of Viewpoint (Xeye: Yeye: Zeye)

* Number of steps in the x- and y-directions (Xstep, Ystep)

Three-dimensional graphics also require the PPAR variable with the parameters shown above.

The variable EQ

All plots, except those based on XDAT, also require that you define the function or functions to

be plotted by storing the expressions or references to those functions in the variable EQ.

In summary, to produce a plot in a program you need to load EQ, if required. Then load PPAR,

PPAR and SPAR, or PPAR and VPAR. Finally, use the name of the proper plot type: FUNCTION,
CONIC, POLAR, PARAMETRIC, TRUTH, DIFFEQ, BAR, HISTOGRAM, SCATTER, SLOPE, WIREFRAME,
YSLICE, PCONTOUR, GRIDMAP, or PARSURFACE, to produce your plot.

Examples of interactive plots using the PLOT menu

To better understand the way a program works with the PLOT commands and variables, try the
following examples of interactive plots using the PLOT menu.

Example 1 - A function plot:

[<][USER][F3 C]
[PTYPE][FUNCT]
Vr’ [ENTER][«][EQ]
[PPAR]
[ALPHA][<][R][ENTER][INDEP]
[ALPHA][<][S][DEPND]
[11[+/-1[SPC][1][0][XRNG]
[11[+/-1[SPC][5][YRNG]
{ (0,0) {.4 .2} "Rs" “Sr"}[NXT][AXES]
[NXT][PLOT]
[ERASE][DRAX][NXT][LABEL]
[NXT][DRAW]
[EDIT][NXT][MENU]
[NXT][NXT][PICT][CANCL]

Example 2 - A parametric plot:

[«][USER][F3 C]
[PTYPE] [PARAM]
{'SIN(t) +i*SIN(2*t) [ENTER] [~][EQ]
[PPAR]
{t 0 6.29}[ENTER][INDEP]

Get PLOT menu

Select FUNCTION as the plot type
Store function ‘Vr’ into EQ

Show plot parameters
Define 'r’ as the independent variable
Define 's’ as the dependent variable

Define (-1, 10) as the x-range
Define (-1, 5) as the y-range
Define axes center, tick marks, labels

Return to PLOT menu

Erase picture screen, draw axes, place labels

Draw function and show picture

Removes menu labels

Returns to normal calculator display

Get PLOT menu
Select PARAMETRIC as the plot type
Store complex function X+iY into EQ
Show plot parameters

Define 't’ as the independent variable

328 © 2000 - Gilberto E. Urroz

All rights reserved

[ALPHA] [Y][DEPND]
(210 . 1[2][+/-1[SPC][2][. 1[2][XRNG]
(0. 1000+/-1SPCI[1][- 1[1][YRNG]
{ (0,0) {.4 .2} "X(t)" “Y(t)"}INXT][AXES]
[NXT][PLOT]
[ERASE] [DRAX][NXT][LABEL]
[NXT] [DRAW]
[EDIT][NXT][MENU]
[NXT][NXT][PICT][CANCL]

Example 3 - A polar plot:

[+] [USER][F3 C]
[PTYPE] [POLAR]
"1+SIN(8) [ENTER] [«][EQ]
[PPAR]
{6 0 6.29} [ENTER] [INDEP]
[ALPHA] [Y][DEPND]
[31[+/-1[SPC][3][XRNG]
[OI . 1(5]1[+/-1[SPC][2][.][5][YRNG]
{ (0,0) {.5 .5} "x" “y"}NXT][AXES]
[NXT][PLOT]
[ERASE] [DRAX] [NXT] [LABEL]
[NXT][DRAW]
[EDIT][NXT][MENU]
[NXT][NXT][PICT][CANCL]

Define 'Y' as the dependent variable

Define (-2.2,2.2) as the x-range
Define (-1.1,1.1) as the y-range
Define axes center, tick marks, labels

Return to PLOT menu
Erase picture screen, draw axes, place labels

Draw function and show picture

Removes menu labels

Returns to normal calculator display

Get PLOT menu

Select POLAR as the plot type

Store complex function r = f(8) into EQ
Show plot parameters

Define ‘8’ as the independent variable

Define 'Y' as the dependent variable

Define (-3,3) as the x-range
Define (-0.5,2.5) as the y-range
Define axes center, tick marks, labels

Return to PLOT menu

Erase picture screen, draw axes, place labels

Draw function and show picture

Removes menu labels

Returns to normal calculator display

From these examples we see a pattern for the interactive generation of a two-dimensional graph

through the PLOT menu:

1 - Select PTYPE.

2 - Store function to plot in variable EQ (using the proper format, e.g., 'X(t)+iY(t)' for

PARAMETRIC).
3 - Enter name (and range, if necessary) of independent and dependent variables

4 - Enter axes specifications as a list { center atick x-label y-label}

5 - Use ERASE, DRAX, LABEL, DRAW to produce a fully labeled graph with axes

This same approach can be used to produce plots with a program, except that in a program you

need to add the command PICTURE after the DRAW function is called to recall the graphics
screen to the stack.

Examples of program-generated plots

In this section we show how to implement with programs the generation of the last three

examples.

Example 1 - A function plot

Enter the following program:

<<

{PPAR EQ} PURGE
Start program
Purge current values of PPAR and EQ

329 © 2000 - Gilberto E. Urroz

All rights reserved

‘Vr’ ‘EQ’ STO
‘r’ INDEP

‘s’ DEPND
FUNCTION
{ (0.,0.) {.4 .2} “Rs” “Sr” } AXES

-1. 5. XRNG
-1. 5. YRNG
ERASE DRAW DRAX LABEL
PICTURE
>>

Store ‘Nr’ into EQ
Set independent variable to 'r’

Set dependent variable to 's’
Select FUNCTION as the plot type
Set axes information

Set x range
Set y range
Erase and draw plot, axes, and labels

Recall graphics screen to stack
End program

Store the program in variable PLOT1. To run it, press [VAR], if needed, then press [PLOT1].

Example 2 - A parametric plot

Enter the following program:

<<

{PPAR EQ} PURGE

‘SIN(t)+i*SIN(2*t)’ ‘EQ’ STO

{ £t 0. 6.29} INDEP

‘Y’ DEPND

PARAMETRIC

{ (0.,0.) {.5 .5}) “X(t)” “¥Y(t)" } AXES

-2.2 2.2 XRNG

-1.1 1.1 YRNG

ERASE DRAW DRAX LABEL

PICTURE

>>

Start program
Purge current values of PPAR and EQ
Store 'X(t)+iY(t)" into EQ

Set independent variable to 'r’, range is included

Set dependent variable to 'Y’
Select PARAMETRIC as the plot type

Set axes information

Set x range
Set y range
Erase and draw plot, axes, and labels
Recall graphics screen to stack

End program

Store the program in variable PLOT2. To run it, press [VAR], if needed, then press [PLOT2].

Example 3 - A polar plot

Enter the following program:

<<

{PPAR EQ} PURGE

*1+SIN(6) © ‘EQ’ STO

{ 8 0. 6.29} INDEP
‘Y’ DEPND
POLAR
{ (0.,0.) {.5 .5} "x" “y”"} AXES

-3. 3. XRNG
-.5 2.5 YRNG

ERASE DRAW DRAX LABEL
PICTURE
>>

Start program
Purge current values of PPAR and EQ

Store ‘f(8)' into EQ
Set independent variable to "8°, range is included
Set dependent variable to 'Y’

Select POLAR as the plot type
Set axes information

Set x range
Set y range
Erase and draw plot, axes, and labels

Recall graphics screen to stack
End program

Store the program in variable PLOT3. To run it, press [VAR], if needed, then press [PLOT3].

330 © 2000 - Gilberto E. Urroz

All rights reserved

These exercises illustrate the use of PLOT commands in programs. They just scratch the surface
of programming applications of plots. | invite the reader to try their own exercises on

programming plots.

Interactive drawing with the HP 49 G calculator

Whenever we produce a two-dimensional graph, we find in the graphics screen a soft menu key

labeled EDIT. Pressing [EDIT] produces a menu that include the following options:

[DOT+][DOT-][LINE][TLINE][BOX][CIRCL]

Pressing [NXT] results in:

[MARK][+/-][LABEL][DEL]J[ERASE][MENU]

Pressing [NXT] once more you get:

[SUB J[REPL][PICT>][X.Y=>][1L PICT].

Through the examples in this, and previous, chapters we have had the opportunity to use the

functions LABEL, MENU, PICT->, and REPL. The function ERASE is the same as provided in the
PLOT menu, presented earlier. Many of the remaining functions, such as DOT+, DOT-, LINE, BOX,
CIRCL, MARK, DEL, etc., can be used to draw points, lines, circles, etc. on the graphics screen,

as described below.

To see how to use these functions we will try the following exercise:

Fist, we get the graphics screen corresponding to the Function plot in the previous examples,

with a few modifications:

[<][USER][F3 C] Get PLOT menu
[PTYPE][FUNCT] Select FUNCTION as the plot type

'X' [ENTER][<][EQ] Store function 'r’ into EQ

[PPAR] Show plot parameters
[RESET] Reset parameters to their default values

[11[01[+/-1[SPC][1][0][XRNG] Define (-10, 10) as the x-range

[5]1[+/-1[SPC][5][YRNG] Define (-5, 5) as the y-range
{ (0,0) {.5.5} "X" “"Y"}NXT][AXES] Define axes center, tick marks, labels

[NXT][PLOT] Return to PLOT menu

[ERASE][DRAX][NXT] [LABEL] Erase picture screen, draw axes, place labels

[NXT][DRAW] Draw function and show picture

[EDIT] Activate the EDIT menu

Next, we illustrate the use of the different drawing functions on the resulting graphics screen.

They require use of the cursor and the arrow keys ([«][»][A][¥]) to move the cursor about the

graphics screen.

331 © 2000 - Gilberto E. Urroz

All rights reserved

DOT+ and DOT-
When DOT+ is selected, pixels will be activated wherever the cursor moves leaving behind a
trace of the cursor position. When DOT- is selected, the opposite effect occurs, i.e., as you

move the cursor, pixels will be deleted.

For example, use the [P][A] keys to move the cursor somewhere in the middle of the first

quadrant of the xy plane, then press [DOT+]. The label will be selected ([DOT+m]). Press and
hold the [>] key to see a horizontal line being traced. Now, press [DOT-], to select this option

([DOT-m]). Press and hold the [4] key to see the line you just traced being erased. Press [DOT-

] when done to deselect this option.

MARK
This command allows the user to set a mark point which can be used for a number of purposes,

such as:

“# Start of line with the LINE or TLINE command

Corner for a BOX command

Center for a CIRCLE command
Using the MARK command by itself simply leaves an x in the location of the mark.

LINE
This command is used to draw a line between two points in the graph. To see it in action,

position the cursor somewhere in the first quadrant, and press [LINE]. A MARK is placed over
the cursor indicating the origin of the line. Use the [»] key to move the cursor to the right of

the current position, say about 1 cm to the right, and press [LINE]. A line is draw between the
first and the last points.

Notice that the cursor at the end of this line is still activated indicating that the calculator is

ready to plot a line starting at that point. Press [¥] to move the cursor downwards, say about %2

inch, and press [LINE] again. Now you should have a straight angle traced by a horizontal and a

vertical segments. The cursor is still active. To deactivate it, without moving it at all, press

[LINE]. The cursor returns to its normal shape (a cross) and the LINE function is no longer active.

TLINE

(Toggle LINE) Move the cursor to the second quadrant to see this function in action. Press

[TLINE]. A MARK is placed at the start of the toggle line. Move the cursor with the arrow keys

away from this point, and press [TLINE]. A line is drawn from the current cursor position to the

reference point selected earlier. Pixels that are on in the line path will be turned off, and vice

versa. To remove the most recent line traced, press [TLINE] again. To deactivate TLINE, move

the cursor to the original MARK, and press [LINE]J[LINE].

BOX

This command is used to draw a box in the graph. Move the cursor to a clear area of the graph,

and press [BOX]. This highlights the cursor. Move the cursor with the arrow keys to a point
away, and in a diagonal direction, from the current cursor position. Press [BOX] again. A

332 © 2000 - Gilberto E. Urroz

All rights reserved

rectangle is drawn whose diagonal joins the initial and ending cursor positions. The initial

position of the box is still marked with and x. Moving the cursor to another position and pressing

[BOX] will generate a new box containing the initial point. To deselect BOX, move the cursor to
the original point where BOX was activated, then press [LINE][LINE].

CIRCL

This command produces a circle. Mark the center of the circle with a MARK ommand, then

move the cursor to a point that will be part of the periphery of the circle, and press [CIRCL]. To
deactivate CIRCL, return the cursor to the MARK position and press [LINE].

Try this command by moving the cursor to a clear part of the graph, press [MARK]. Move the
cursor to another point, then press [CIRCL]. A circle centered at the MARK, and passing through

the last point will be drawn.

LABEL

Pressing [LABEL] places the labels in the x- and y-axes of the current plot. This feature has been
used extensively through this chapter.

DEL

This command is used to remove parts of the graph between two MARK positions. Move the

cursor to a point in the graph, and press [MARK]. Move the cursor to a different point, press
[MARK] again. Then, press [DEL]. The section of the graph boxed between the two marks will be

deleted.

ERASE

The function ERASE clears the entire graphics window. This command is available in the PLOT
menu, as well as in the plotting windows accessible through the soft menu keys.

MENU

Pressing [MENU] will remove the soft key menu labels to show the graphic unencumbered by

those labels. To recover the labels, press [NXT].

SUB

Use this command to extract a subset of a graphics object. The extracted object is automatically

placed in the stack. Select the subset you want to extract by placing a MARK at a point in the
graph, moving the cursor to the diagonal corner of the rectangle enclosing the graphics subset,

and press [SUB]. This feature can be used to move parts of a graphics object around the graph.

333 © 2000 - Gilberto E. Urroz

All rights reserved

REPL

This command places the contents of a graphic object currently in stack level 1 at the cursor

location in the graphics window. The upper left corner of the graphic object being inserted in

the graph will be placed at the cursor position. Thus, if you want a graph from the stack to

completely fill the graphic window, make sure that the cursor is placed at the upper left corner

of the display.

PICT->

This command places a copy of the graph currently in the graphics window on to the stack as a

graphic object. The graphic object placed in the stack can be saved into a variable name for

storage or other type of manipulation.

X,Y

This command copies the coordinates of the current cursor position, in user coordinates, in the

stack.

Drawing commands for use in programming

You can draw figures in the graphics window directly from a program by using commands such as

those contained in the PICT menu, accessible by [«<1][PRG][PICT]. The functions available in this

menu are the following:

[PICT][PDIM][LINE][TLINE][BOX][ARC]

Pressing [NXT]:

[PIXON] [PIXOF][PIX?][PVIEW][PX->C][C>PX]

Obviously, the commands LINE, TLINE, and BOX, perform the same operation as their interactive
counterpart, given the appropriate input. These and the other functions in the PICT menu refer
to the graphics windows whose x- and y-ranges are determined in the variable PPAR, as

demonstrated above for different graph types. The functions in the PICT command are described
next:

PICT

This soft key refers to a variable called PICT that stores the current contents of the graphics
window. This variable name, however, cannot be placed within quotes, and can only store

graphics objects. In that sense, PICT is not like any other HP 49 G variables.

334 © 2000 - Gilberto E. Urroz

All rights reserved

PDIM

The function PDIM takes as input either two ordered pairs (Xmin.Ymin) (Xmax Ymax) OF two binary

integers #w and #h. The effect of PDIM is to replace the current contents of PICT with an empty
screen. When the argument is (Xmin, Ymin) (Xmax Ymax). these values become the range of the user-

defined coordinates in PPAR. When the argument is #w and #h, the ranges of the user-defined
coordinates in PPAR remain unchanged, but the size of the graph changes to #h x #v pixels.

PICT and the graphics screen

PICT, the storage area for the current graph, can be thought of as a two dimensional graph with
a minimum size of 131 pixels wide by 64 pixels high. The maximum width of PICT is 2048 pixels,
with no restriction on the maximum height. A pixel is each one of the dots in the calculator’s

screen that can be turned on (dark) or off (clear) to produce text or graphs. The calculator

screen has 131 pixels by 64 pixels, i.e., the minimum size for PICT. If your PICT is larger than

the screen, then the PICT graph can be thought of as a two dimensional domain that can be

scrolled through the calculator's screen, as illustrated in the diagram shown next.

PICT

 max en

fim

SCREEN nin H = 64 pix

max H = unlimited

CALCULATOR

Ymin)

#0 |
. Xnax

#0 #in

LINE

This command takes as input two ordered pairs (x1,y1) (x2, yz). or two pairs of pixel coordinates
{#n, #m1} {#n, #m,}. It draws the line between those coordinates.

335 © 2000 - Gilberto E. Urroz

All rights reserved

TLINE

This command (Toggle LINE) takes as input two ordered pairs (x1,y1) (x2, y2). or two pairs of pixel
coordinates {#n; #m} {#n, #m,}. It draws the line between those coordinates, turning off pixels

that are on in the line path and vice versa.

BOX

This command takes as input two ordered pairs (x1,y1) (x2, y2), or two pairs of pixel coordinates
{#n, #m,} {#n, #m,}. It draws the box whose diagonals are represented by the two pairs of

coordinates in the input.

ARC

This command is used to draw an arc. ARC takes as input the following objects:

+ Coordinates of the center of the arc as (x,y) in user coordinates or {#n, #m} in pixels.

4 Radius of arc as r (user coordinates) or #k (pixels).

+ Initial angle 6; and final angle 6,.

PIX?, PIXON, and PIXOFF

These functions take as input the coordinates of point in user coordinates, (x,y), or in pixels {#n,

#m}.

4 PIX? Checksif pixel at location (x,y) or {#n, #m} is on.

4 PIXOFF turns off pixel at location (x,y) or {#n, #m}.

4 PIXON turns on pixel at location (x,y) or {#n, #m}.

PVIEW

This command takes as input the coordinates of a point as user coordinates (x,y) or pixels {#n,
#m}, and places the contents of PICT wth the upper left corner at the location of the point

specified. You can also use an empty list as argument, in which case the picture is centered in

the screen. PVIEW does not activate the graphics cursor or the picture menu. To activate any of
those features use PICTURE.

PX->C

The function PX->C converts pixel coordinates {#n #m} to user-unit coordinates (x,y).

C->PX

The function C->PX converts user-unit coordinates (x,y) to pixel coordinates {#n #m}.

336 © 2000 - Gilberto E. Urroz

All rights reserved

Programming examples using drawing functions

Example 1 - A program that uses drawing commands

The following program produces a drawing in the graphics screen. (This program has no other

purpose than to show how to use HP 49 G calculator commands to produce drawings in the
display.)

<<

DEG
0. 100. XRNG
0. 50. YRNG
ERASE
(5., 2.5) (95., 47.5) BOX
(50., 50.) 10. 0. 360. ARC
(50., 50.) 12. -180. 180. ARC
18 FORj

(50., 50.) DUP
*12*COS(45°(j-1))’ >NUM
*12*SIN(45*(j-1))" >NUM
R>C
+

LINE
NEXT
{ JPVIEW
>>

Start program

Select degrees for angular measures
Set x range

Set y range
Erase picture

Draw a box between points (5,5) and (95,95)
Draw a circle center (50,50), radius 10.
Draw a circle center (50,50), radius 12.
Draw 8 lines within the circle
Lines are centered as (50,50)
Calculates x, The other end of line located at 50 + x
Calculates y, The other end of line located at 50 + y
Converts x y to (x,y), a complex number

Add (50,50) to (x.y)
Draws the line

End of FOR loop
Show picture

Example 2 - A program to plot a natural river cross-section

This application may be useful for determining area and wetted perimeters of natural river cross-

sections. Typically, a natural river cross section is surveyed and a series of points, representing

coordinates x and y with respect to an arbitrary set of coordinates axes. These points can be

plotted and a sketch of the cross section produced for a given water surface elevation. The

figure below illustrate the terms presented in this paragraph.

Y=WS3s.

elevation

337 © 2000 - Gilberto E. Urroz

All rights reserved

The program, listed below, utilizes four sub-programs FRAME, DXBED, GTIFS, and INTRP. The
main program, called XSECT, takes as input a matrix of values of x and y, and the elevation of

the water surface Y (see figure above), in that order. The program produces a graph of the cross

section indicating the input data with points in the graph, and shows the free surface in the

cross-section.

It is suggested that you create a separate sub-directory to store the programs listed below. You

could call the sub-directory RIVER, since we are dealing with irregular open channel cross-
sections, typical of rivers. Type the following programs and store them in the corresponding

variables as listed:

Program XSECT (Meaning of program name: X SECTion, i.e., cross-section)

<<

SWAP DUP
FRAME
->COL DROP
DUP SIZE EVAL
> yFSxyn
<<

x y n DXBED
x y yFS GTIFS
OBJ-> 2. / FLOOR
1 SWAP FOR j

yFS xy INTRP
SWAP
yFS x y INTRP
LINE

NEXT
{} PVIEW

>>

>>

Open main program
Swap levels 1 and 2, yFS goes to level 2
Call subprogram FRAME
Matrix with x-y data split into columns, no. of columns dropped

y-column duplicated to find size (n)
Values in stack include yFS, x-col, y-col, and size of columns
Open sub-program
Place x, y, and n in stack as input for program DXBED
Place x, y, and yFS in stack as input for program GTIFS
GTIFS returns list of indices, which is decomposed and truncated
Start FOR-NEXT loop to interpolate free surface points
Interpolate free-surface starting point

Exchange levels 1 and 2
Interpolate free-surface ending point
Draw a line indicating the free surface
End FOR-NEXT loop
Show graphic
Close sub-program
Close program

Program FRAME (Meaning of program name: FRAME, for it establishes the frame where the cross-section
will be plotted)

<<

STOX
MINE MAXE
2 COL> DUP
COL DROP -
AXL ABS AXL
20. /
DUP NEG
SWAP
2 COL>
+

>ROW DROP
OBJ-> DROP YRNG
OBJ-> DROP XRNG
ERASE
>>

Start program

Store in ZDAT the matrix with cross-sectional geometry

Obtain minimum and maximum values of x and y

Form a matrix with max. and min. values, make a copy

Decompose the second copy and subtract min from max values
Convert result to a list, obtain absolute value, convert back to vector

Divide ranges in x and y by 20
Copy vector with ranges and change sign

Exchange levels 1 and 2
Create matrix with ranges
Add and subtract original ranges to ranges/20
Separate result in row
Define range of x axis
Define range of y axis
Clear PICT
Close program

338 © 2000 - Gilberto E. Urroz

All rights reserved

Program DXBED (Draw X-section BED, i.e., the program draws the x-section of the channel bed.)

<<

2 xyn
<< '(x(1),y(1))" EVAL DUP

C->PX DUP
{1.1.}-
SWAP
{1.1. } ADD
BOX
2n FOR}

‘(x(j).y(j))" EVAL DUP
C->PX DUP
{1.1.}-
SWAP
{1.1. } ADD
BOX
DUP
3 ROLLD
LINE

NEXT
DROP

>>

>>

Start program
Accept as input vectors x and y, and size n

Sub-program. Place point (xq, y;) and copyit
Convert point coordinates to pixel references

Subtract one pixel to pixel reference for point (xq, ys)
Exchange levels 1 and 2
Add one pixel to pixel reference for point (x, yi)

Create a box around point (x1, y;)
Start FOR-NEXT loop, j = 2,3,....n
Place point (x;, y;) and copyit

Convert point coordinates to pixel references

Subtract one pixel to pixel reference for point (x;, yj)
Exchange levels 1 and 2
Add one pixel to pixel reference for point (x;, yj)
Create a box around point (x;, y;)
Copy point (x;, y;)
Roll the bottom 3 levels of stack
Create a line between points (x, y;) and (x;.1, ¥j.1)
End FOR-NEXT loop

Delete extra copy of last point

Close sub-program

Close program

Program GTIFS (GeT Indices for Free Surface: the program determines the index of the intervals
[y(j).y(j+1)] of the cross-sectional profile where the free surface elevation yFS intersects
the profile)

<<

{} > xyyFIFS
<<

1

x SIZE EVAL 1 -

FOR j
IF

'yF<y(j) AND yF>j(j+1)
OR

yF2y(j) AND yF<y(j+1)’

THEN
IFS j + ‘IFS’ STO

END
NEXT
IFS REVLIST
>>

>>

Start program
Accept as input vectors x and y, water surface level yFS, {} for IFS
Start sub-program
Place a 1 in the stack (to be used with the FOR-NEXT loop)
Obtain n = size of vector x, and calculate n-1

Start FOR-NEXT loop for j = 1, 2, ..., n-1
Determine the index for the interval (y(j),y(j+1)) that contains yFS

This is a single logical statement

(Same statement)

(Same statement)

If the logical statement is true, index j is added to list IFS

End of IF statement
End of FOR-NEXT loop
Place IFS in stack and revert its order
Close sub-program

Close program

339 © 2000 - Gilberto E. Urroz

All rights reserved

Program INTRP (INTeRPolation: given the index j and water surface elevation yFS, this program
interpolates the value of x in the interval [x(j). x(j+1)].)

<< Start program

2>jyFxy Take an index j, water surface elevation yFS, and vectors x,y as input

<< Start sub-program

x(§)+(yF-y(j))* Statement between single quotes interpolates value of x in interval

(x(j+1)-x(j))/ (x(). x(j+1))
y(+1)-y())'
->NUM
yF R>C Creates (x,yFS) showing intersection of free surface with x-section

>> Close sub-program
>> Close program

To see the program XSECT in action, use the following data sets. Enter them as matrices of two
columns, the first column being x and the second one y. Store the matrices in variables with

names such as XYD1 (X-Y Data set 1) and XYD2 (X-Y Data set 2). To run the program place one of
the data sets in the stack, e.g., [VAR][XYD1], then type in a water surface elevation, say 4.0, and

press [XSECT]. The calculator will show an sketch of the cross-section with the corresponding
water surface. To exit the graph display, press [ON].

Data set 1 Data set 2

0463 | 0748
1.0 4.9 L110 3.0
2.0 4.3 15 2.0
3.4 30 | 22 0.9
4.0 12 35 0.4
5.8 20 | | 45 1.0
7.2 3.8 1 50 2.0
7.8 5.3 6.0 2.5
9.0 7.2 Ta 2.0

| 80 0.7
© 9.0 0.0

10.0 1.5 |
10.5 3.4
11.0 5.0

Try the following examples:

[XYD1][4][XSECT]
[XYD1][6][XSECT]
[XYD2][4][XSECT]
[XYD2][2][XSECT]

Please be patient when running program XSECT. Due to the relatively large number of graphics

functions used, not counting the numerical iterations, it may take about 1 minute to produce a

result.

340 © 2000 - Gilberto E. Urroz

All rights reserved

This is the result produced by the input: [XYD2][3][.][5][XSECT]:

While, the input [XYD2][2][XSECT] produces the following plot:

Note: The program FRAME, as presented above, does not maintain the proper scaling of the
graph. If you want to maintain proper scaling, replace FRAME with the following program:

<< STOX MINX MAXX 2 COL-> DUP COL DROP - AXL ABS AXL 20 / DUP NEG SWAP 2 COL=> +

ROW DROP SWAP =» yR xR << 131 DUP R>B SWAP yR OBJ» DROP - xR OBJ» DROP - / *

FLOOR RB PDIM yR OBJ» DROP YRNG xR OBJ-> DROP XRNG ERASE >> >>

This program keeps the width of the PICT variable at 131 pixels - the minimum pixel size for the
horizontal axis - and adjusts the number of pixels in the vertical axes so that a 1:1 scale is

maintained between the vertical and horizontal axes.

Example 3 - A program to visualize a polynomial fitting

In Chapter 10 we developed a program called POLY that generates a vector b with the

coefficients

[bg by by ... by] of a polynomial fitting of the form

y =bg + bx + box? +... + bpxP.

Here we present a program that takes the process a step further showing the polynomial fitting

altogether with the original data points. This visual display helps you check how well the

polynomial fits the data.

Note: You should be aware that this is only a gross indication of goodness of fit. Other criteria

to evaluate goodness of fit were presented in Chapter 10 and in an earlier example in this

Chapter.

341 © 2000 - Gilberto E. Urroz

All rights reserved

The following program assumes that you have program POLY available in your calculator (and in
the same sub-directory). The program, to be called PPOLY,is listed following:

<< D> xy p <<x AXL y AXL 2 COL > XX << x y p POLY DUP p PLFIT EQ PLTSU ERASE
DRAX LABEL DRAW ‘'X‘’ PURGE XX POINTS PICTURE >> >> >>

Program PPOLY uses the following sub-programs:

Program PLTSU (PLoT Set-Up):

<< MINS OBJ-> DROP DROP MAXS OBJ-> DROP DROP XRNG AUTO >>

Program PLFIT (PLot for polynomial FITting):

<< 2 p<<1 1p FOR J 'X' j ~ NEXT p 1 + 2ARRY DOT STEQ FUNCTION >> >>

Program POINTS (Plots pOINTS):

<< > XX << XX SIZE OBJ-> DROP DROP 1 SWAP FOR j ‘'(XX(j,1),XX(j,2))’ EVAL C>PX
DUP {1 1 } - SWAP {1 1} ADD BOX NEXT >> >>

To tests the program we use as input the same lists xx and yy used in Chapter 10, followed by the

degree of the polynomial. Try the following exercises:

xx 1[yy 1[2][PPOLY]
xx][yy 1[3][PPOLY]
xx]J[yy 1[4][PPOLY]
xx J[yy 1[5][PPOLY]
xx][yy 1[6][PPOLY]f

r
p
—
p
—
p
—

Because of the number of plotting and drawing functions used, the program may take a minute or

more to finish. Be patient and wait for the entire graph to be rendered.

To return to normal calculator display use [CANCL]. The stack will show two additional lines of

output, the vector b in level 2, and the polynomial equation fitted in level 1.

Binary, octal, and hexadecimal number systems - a

brief introduction

Note: This section is presented here because graphical operations with pixel coordinates require

some knowledge of number systems.

The number system used for everyday arithmetic is known as the decimal system for it uses 10

(Latin, deci) digits, namely 0-9, to write out any real number. Most likely the reason why we use

the decimal system is because, in early human development, integer numbers were associated

with the ten fingers in our hands. Computers, on the other hand, use a system that is based on

two possible states, or binary system. These two states are represented by 0 and 1, ON and

342 © 2000 - Gilberto E. Urroz

All rights reserved

OFF, or high-voltage and low-voltage. Computers also use number systems based on eight digits
(0-7) or octal system, and sixteen digits (0-9, A-F) or hexadecimal.

The BASE menu

While the HP 49 G calculator would typically be operated using the decimal system, you can
produce calculations using the binary, octal, or hexadecimal system. Many of the functions for

manipulating number systems other than the decimal system are available in the BASE menu,

accessible through [~][BASE] (the [3] key). The BASE menu includes the functions:

[HEX][DEC][OCT][BIN]J[R>B][B>R]

Pressing [NXT] you get the following menus (italics) and functions:

[LOGIC][BIT][BYTE] J[STWS][RCWS].

Writing non-decimal numbers in the calculator

Numbers in non-decimal systems are written preceded by the # symbol in the HP 49 G calculator.

The symbol # is readily available as [«][#] (the [3] KEY). To select which number system will

be used for numbers preceded by #, press one of the first four keys in the first BASE menu, i.e.,

HEX (adecimal), DEC(imal), OCT(al), or BIN(ary). For example, if [HEX®] is selected, any number

written in the HP 49 G calculator that starts with # will be a hexadecimal number. Thus, you can
write numbers such as #53, #A5B, etc.

Conversion between number systems

Whatever the number system selected, we will refer to it as the binary system for the purpose of

using the functions R>B and B->R. For example, if [HEX®m] is selected, the function B>R will
convert any hexadecimal number (preceded by #) into a decimal number, while the function

R->B works in the opposite direction. Try the following exercise:

[~][BASE][HEX] Select the hexadecimal system
[<][#]1[2][3][ENTER] Enter the hexadecimal number #23h

[(B>R] Convert #23h to floating point (decimal) format

The result is the number 35. Try another exercise:

[<1]1[#][ALPHA][5][ENTER] Enter the hexadecimal number #A5h

[B=>R] Convert #A5h to floating point (decimal) format

The result is 165. Now, try converting decimal numbers to hexadecimal. For example,

[11[2][3][4][ENTER][R—>B] Convert 1234 to hexadecimal, result: # 4D2h

Let's try some conversion in the octal system:

[OCT] Select the octal system

[<][#1[1][7][ENTER][B->R] Convert # 170 to 15.
[11[2][O][O][ENTER][R—>B] Convert 1200 to octal, result: # 22600

343 © 2000 - Gilberto E. Urroz

All rights reserved

Or, using the binary system:

[BIN] Select the octal system

[<11#]1[11[0]1[O][1][ENTER][B>R] Convert # 1001b to 9.
[M1121[1]1[7] [ENTER] [R->B] Convert 1217 to octal, result: # 10011000001b

Notice that every time you enter a number starting with #, you get as the entry the number you

entered preceded by # and followed by the letter h, o, or b (hexadecimal, octal, or binary). The
type of letter used as suffix depends on which non-decimal number system has been selected,

i.e., HEX, OCT, or BIN.

So, what happens if you select the decimal system, by pressing [DEC]? To see what happens in
this case, try the following conversions:

[DEC] Select the octal system

[<1[#]1[11[2][6][ENTER][B>R] Convert # 126d to 126.
[21[3][7][ENTER][R->B] Convert 237 to decimal, results in # 237d

The only effect of selecting the DECimal system is that decimal numbers, when started with the

symbol #, are written with the suffix d.

The LOGIC menu

The LOGIC menu, obtained through [][BASE][NXT][LOGIC], contains the functions:

[AND]J[OR][XOR][NOT]

These are exactly the same functions AND, OR, XOR (exclusive OR), and NOT presented in more

detail in Chapter 7. The input to these functions are two values or expressions . (one in the case

of NOT) that can be expressed as binary logical results, i.e., 0 or 1. The rules for the results of
these functions are presented as truth tables in Chapter 7.

The BIT and BYTE menus

The BIT and BYTE menus contain functions used by computer scientists to manipulate bit and

byte operations. For more details on these two menus, please refer to the HP 49 G calculator’s
Advanced User's Manual, available as a pdffile from http://www hp.com

Hexadecimal numbers for pixel references

As indicated in this chapter, many plot option specifications use pixel references as input, e.g., {

#332h #A23h } #Ah 0. 360. ARC, to draw an arc of a circle. Luckily, we can count on the
functions C>PX and PX->C to convert quickly between user-unit coordinates and pixel
references.

344 © 2000 - Gilberto E. Urroz

All rights reserved

Pixel coordinates

The figure below shows the graphic coordinates for the typical (minimum) screen of 131x64
pixels. Pixels coordinates are measured from the top left corner of the screen {# Oh # Oh}, which

corresponds to user-defined coordinates (Xmin, Ymax)- The maximum coordinates in terms of

pixels correspond to the lower right corner of the screen {# 82h #3Fh}, which in user-coordinates

is the point (Xmax. Ymin). The coordinates of the two other corners both in pixel as well as in user-

defined coordinates are shown in the figure.

‘(§ Oh $0 h) ($ 82h § Oh)

{ Xpin *¥Ymax J (Xmax , Ymax)

131 X64 pixels

{# Oh # 3Fh} {# 82h #3Fh}

A Xmin + Yin) (Xmax + Yin .
Zooming in and out in the graphics display

Whenever you produce a two-dimensional FUNCTION graphic interactively, the first soft-menu
key, labeled ZOOM, lets you access functions that can be used to zoom in and out in the current
graphics display. The ZOOM menu includes the following functions:

[ZFACT][BOXZ][ZIN][ZOUT][ZSQR][ZDFLT]

Press [NXT] to get the following menu:

[HZIN]J[HZOUT][VZIN J[VZOUT][CNTR][ZAUTO]

Pressing [NXT] once more produces this menu:

[ZDECI][ZINTG][ZTRIG][ZLAST][1[PICT].

We present each of these functions following as applied to one of the graphics resulting from the

last exercise on polynomial fitting.

ZFACT, ZIN, ZOUT, and ZLAST

Pressing [ZFACT] produces an input screen that allows you to change the current X and Y-
Factors. The X% and Y-Factors relate the horizontal and vertical user-defined unit ranges to
their corresponding pixel ranges. Change the H-Factor to read 8., and press [OK], then change
the \LFactor to read 2., and press [OK]. Check off the option YRecenter on cursor, and press

[OK].

Back in the graphics display, press [ZIN]. The graphic is re-drawn with the new vertical and

horizontal scale factors, centered at the position where the cursor was located, while

345 © 2000 - Gilberto E. Urroz

All rights reserved

maintaining the original PICT size (i.e., the original number of pixels in both directions). Scroll
horizontally ([4] [»]) or vertically ([A] [V¥]) to as much as you can of the zoomed-in graph.

To zoom out, subjected to the H and \tFactors set with ZFACT, press [ZOOM][ZOUT]. The

resulting graph will provide more detail than the zoomed-in graph.

You can always return to the very last zoom window by using ZLAST.

BOXZ

Zooming in and out of a given graph can be performed by using the soft-menu key BOXZ. With

BOXZ you select the rectangular sector (the "box") that you want to zoom in into. Move the
cursor to one of the corners of the box (using the arrow keys), and press [ZOOM][BOXZ]. Using
the arrow keys once more, move the cursor to the opposite corner of the desired zoom box. The

cursor will trace the zoom box in the screen. When desired zoom box is selected, press [ZOOM].

The calculator will zoom in the contents of the zoom box that you selected to fill the entire

screen.

If you now press [ZOUT], the calculator will zoom out of the current box using the H and *

Factors, which may not recover the graph view from which you started the zoom box operation.

/DFLT, ZAUTO

Pressing ZDFLT re-draws the current plot using the default x- and y-ranges, i.e., -6.5 to 6.5 in x,
and -3.1 to 3.1 in y. ZAUTO, on the other hand, uses a zoom window using the current
independent variable (x) range, but adjusting the dependent variable (y) range to fit the curve

(as when you use the function AUTO in the PLOT WINDOW ([+][WIN] - simultaneously)).

HZIN, HZOUT, VZIN and VZOUT

These functions zoom in and out the graphics screen in the horizontal or vertical direction

according to the current H- and V-Factors.

CNTR

Zooms in with the center of the zoom window in the current cursor location. The zooming

factors used are the current H- and V-Factors.

/DECI

Zooms the graph so as to round off the limits of the x-interval to a decimal value.

ZINTG

Zooms the graph so that the pixel units become user-define units. For example, the minimum

PICT window has 131 pixels. When you use ZINTG, with the cursor at the center of the screen,
the window gets zoomed so that the x-axis extends from -64.5 to 65.5.

346 © 2000 - Gilberto E. Urroz

All rights reserved

ZSQR

Zooms the graph so that the plotting scale is maintained at 1:1 by adjusting the x scale, keeping

the y scale fixed, if the window is wider than taller. This forces a proportional zooming.

LTRIG

Zooms the graph so that the x scale incorporates a range from about -3p to +3p, the preferred

range for trigonometric functions.

Note: None of these functions are programmable. They are only useful in an interactive way
only. Do not confuse the command [ZFACT] in the ZOOM menu with the function ZFACTOR,

which is used for gas dynamic and chemistry applications as described below. The only reason

why we present this function at this point is because of its name.

Special function for gas dynamics: ZFACTOR(Tr, Pr)

The function ZFACTOR(Tr, Pr) where Tr = reduced temperature ratio, and Pr = reduced pressure

ratio. The function ZFACTOR returns the gas compressibility correction factor for non-ideal

behavior of a hydrocarbon gas. In the formula, Tr = T/Tc, and Pr = P/Pc, Tc and Pc are known

as the pseudocritical temperature and pressure, respectively. The function is valid for 1.05 < Tr

< 3.0, and 0 < Pr < 30. For example, if Tr = 1.85 and Pr = 10, then the gas compressibility factor
is calculated as follows:

[110 . 1[8][5][ENTER] [1][O][ENTER] [CAT][ALPHA][Z] (find ZFACTOR using [a] [V¥]).

When highlighted, press [OK]. The result is 1.13904784599.

Animating graphics

We have already presented a way to produce animation by using the Y-Slice plot. Let's look at a

different example. Suppose that you want to animate the traveling wave, f(X,Y) = 2.5 sin(X-Y).
We can treat the X as time in the animation producing plots of f(X,Y) vs. Y for different values of

X. To produce this graph use the following:

+. [<]1[2D/3D] simultaneously. Select ¥Slice for TYPE. '2.5°SIN(X-Y)" for EQ. 't' for
INDEP. Press [NXT][OK].

* [<][WIN] simultaneously. Select:

X-Left: -5. Y-Right: 5.
Y-Near: -5. Y-Far: 5.

Z-Low: -2.5 Z-High: 2.5

STEP: Indep: 20 Depnd: 20

= Press [ERASE][DRAW]. Allow some time for the calculator to generate all the needed

graphics. When ready, it will show a traveling sinusoidal wave in your screen.

347 © 2000 - Gilberto E. Urroz

All rights reserved

Animating a collection of graphics

The HP 49 G calculator provides the function ANIMATE to animate a number of graphics that have
been placed in the stack. You can generate a graph in the graphics screen by using the

commands in the PLOT and PICT menus. To place the generated graph in the stack, use PICT

RCL. When you have n graphs in levels n through 7 of the stack, you can simply use the command

n ANIMATE to produce an animation made of the graphs you placed in the stack.

Example 1 - Animating a ripple in a water surface

As an example, type in the following program that generates 11 graphics showing a circle

centered in the middle of the graphics screen and whose radius increase by a constant value in

each subsequent graph.

<< Begin program

RAD Set angle units to radians

131 R>B 64 R>B PDIM Set PICT screen to 131x64 pixels
0 100 XRNG 0 100 YRNG Set x- and y-ranges to 0-100
111 FOR Start FOR-NEXT loop withj = 1,2, ..., 11
ERASE Erase current PICT

(50., 50.) '5*(j-1)" >NUM 0 '2*p' >NUM ARC Draw a circle center (50,50), radius
=5(j-1)
PICT RCL Place current PICT on stack

NEXT End FOR-NEXT loop
11 ANIMATE When 11 pictures are in the stack,

animate

>>

Store this program in a variable called PANIM (Plot ANIMation). To run the program press [VAR]

(if needed) [PANIM]. It takes the calculator more than one minute to generate the graphs and

get the animation going. Therefore, be really patient here. You will see the hourglass symbol

up in the screen for what seems a long time before the animation, resembling the ripples

produced by a pebble dropped on the surface of a body of quiescent water, appears in the

screen. To stop the animation, press [ON].

The 11 graphics generated by the program are still available in the stack. If you want to re-start

the animation, simply use: [1][1][CAT][ALPHA][A], then use the up- and down-arrow keys

([a][¥]) to highlight ANIMATE, then press [OK]. The animation will be re-started. Press [ON] to

stop the animation once more. Notice that the number 11 will still be listed in stack level 1.

Press [<] to drop it from the stack.

Suppose that you want to keep the figures that compose this animation in a variable. You can

create a list of these figures, let's call it WLIST, by using:

[11011 [<][PRGIITYPE][->LIST] [~][* I[ALPHA][ALPHA] [WI[LI[II[SI[T] [ALPHA][STOM]

Press [VAR] to recover your list of variables. The variable [WLIST] should now be listed in your

soft-menu keys. To re-animate this list of variables you could use the following program:

<< Start program
WLIST Place list WLIST in stack

OBJ~> Decompose list in elements, stack level 1 = 11

ANIMATE Start animation

>> End program

348 © 2000 - Gilberto E. Urroz

All rights reserved

Save this program in a variable called RANIM (Re-ANIMate). To run it, press [RANIM].

The following program will animate the graphics in WLIST forward and backwards:

<< Start program
WLIST DUP Place list WLIST in stack, make extra copy

REVLIST + Reverse second copy's order, concatenate 2 lists
OBJ> Decompose list in elements, stack level 1 = 22
ANIMATE Start animation
>> End program

Save this program in a variable called RANI2 (Re-ANImate version 2). To run it, press [RANI2].

The animation now simulates a ripple in the surface of otherwise quiescent water that gets

reflected from the walls of a circular tank back wards the center. Press [OK] to stop the

animation.

Example 2 - Animating the plotting of different power functions

Suppose that you want to animate the plotting of the functions f(x) = x", n=0, 1, 2, 3, 4, in the
same set of axes. You could use the following program:

<< Begin program

RAD Set angle units to radians
131 R>B 64 R>B PDIM Set PICT screen to 131x64 pixels

0 2 XRNG 0 20 YRNG Set x- and y-ranges
04 FOR Start FOR-NEXT loop with j =0,1,...,4

'X*j© STEQ Store ‘Xj’ in variable EQ
ERASE Erase current PICT
DRAX LABEL DRAW Draw axes, labels, and draw function

PICT RCL Place current PICT on stack
NEXT End FOR-NEXT loop
5 ANIMATE When 5 pictures are in the stack, animate

>>

Store this program in a variable called PWAN (PoWer function ANimation). To run the program
press [VAR] (if needed) [PWAN]. You will see the calculator drawing each individual power

function before starting the animation in which the five functions will be plotted quickly one

after the other. To stop the animation, press [ON].

More information on the ANIMATE function

The ANIMATE function as used in the two previous examples utilized as input the graphics to be

animated and their number. You can use additional information to produce the animation, such

as the time interval between graphics and the number of repetitions of the graphics. The

general format of the ANIMATE function in such cases is the following:

n-graphs { n {#X #Y} delay rep } ANIMATE

n represents the number of graphics, {#X #Y)} stand for the pixel coordinates of the lower right

corner of the area to be plotted (see figure below), delay is the number of seconds allowed

between consecutive graphics in the animation, and rep is the number of repetitions of the

animation.

349 © 2000 - Gilberto E. Urroz

All rights reserved

Grabbing GROBs

The word GROB stands for GRaphics OBjects and is used in the HP 49 G environment to represent
a pixel-by-pixel description of an image that has been produced in the calculator’s screen.

Therefore, when an image is converted into a GROB, it becomes a sequence of binary digits

(binary digits = bits), i.e., 0's and 1's. To illustrate GROBs and conversion of images to GROBS
consider the following exercise.

When we produce a graph in the calculator, the graph become the contents of a special variable

called PICT. Thus, to see the last contents of PICT, you could type:

[ALPHA][ALPHA][PI[I][C]I[T] [ENTER] [<][RCL].

The display shows in stack level 1 the line Graphic 131x64 (if using the standard screen size)

followed by a sketch of the top part of the graph. If you press [¥] then the graph contained in

level 1 is shown in the calculator’s graphics display. Press [CANCL] to return to normal calculator
display.

The graph in level 1 is still not in GROB format, although it is, by definition, a graphics object.
To convert a graph in the stack into a GROB, use:

[3][ENTER] [«2][PRG][NXT][GROB][->GROB]

Now we have the following information in level 1:

1: Graphic 13128 xX 8

GROB 131 64 100000000
The first part of the description is similar to what we had originally, namely, Graphic 131x64,

but now it is expressed as Graphic 13128 x 8. However, the graphic display is now replaced by

a sequence of zeroes and ones representing the pixels of the original graph. Thus, the original

graph as now been converted to its equivalent representation in bits.

You can also convert equations into GROBs. For example, using the equation writer type in the
equation:

'X”2+3" into stack level 1, and then press

[TI[ENTER] [«2][PRG][NXT][GROB][->GROB].

You will now have in level 1 the GROB described as: Graphic 28x6 ‘'X"2-6'. As a graphic
object this equation can now be placed in the graphics display. To recover the graphics display

press [«]. Then, move the cursor to an empty sector in the graph, and press

[EDIT][NXT][NXT][REPL]. The equation ‘X*2-5' is placed in the graph. Thus, GROBs can be used

to document graphics by placing equations, or text, in the graphics display.

350 © 2000 - Gilberto E. Urroz

All rights reserved

The GROB menu

The GROB menu, accessible through [+][PRG][NXT][GROB][->GROB], contains the following

functions:

[>GROB][BLANK][GOR][GXOR][SUB][REPL]

Pressing [NXT] produces the second menu in GROB:

[->LCDI[LCD->][SIZE [ANIMA] Il PRG |

->GROB

Of these functions we have already used SUB, REPL, (from the graphics EDIT menu), ANIMATE

[ANIMA], and >GROB. ([PRG] is simply a way to return to the programming menu.) While

using 2GROB in the two previous examples you may have noticed that | used a 3 while
converting the graph into a GROB, while | used a 1 when | converted the equation into a GROB.
This parameter of the function >GROB indicates the size of the object that is being converted

into a GROB as 0 or 1 - for a small object, 2 - medium, and 3 - large. The other functions in the
GROB menu are described following.

BLANK

The function BLANK, with arguments #n and #m, creates a blank graphics object of width and
height specified by the values #n and #m, respectively. This is similar to the function PDIM in the
GRAPH menu.

GOR

The function GOR (Graphics OR) takes as input grob, (a target GROB), a set of coordinates, and
grob;, and produces the superposition of grob; onto grob, (or PICT) starting at the specified

coordinates. The coordinates can be specified as user-defined coordinates (x,y), or pixels {#n

#m}. GOR uses the OR function to determine the status of each pixel (i.e., on or off) in the

overlapping region between grob; and grob;.

GXOR

The function GXOR (Graphics XOR) performs the same operation as GOR, but using XOR to
determine the final status of pixels in the overlapping area between graphic objects grob; and

grob;.

Note: In both GOR and GXOR, when grob2 is replaced by PICT, these functions produce no
output. To see the output you need to recall PICT to the stack by using either PICT RCL or
PICTURE.

351 © 2000 - Gilberto E. Urroz

All rights reserved

—->LCD
Takes a specified GROB and displays it in the calculator's display starting at the upper left
corner.

LCD->
Copies the contents of the stack and menu display into a 131 x 64 pixels GROB.

SIZE

The function SIZE, when applied to a GROB, shows the GROB's size in the form of two numbers.
The first number, shown in stack level 2, represents the width of the graphics object, and the

second one, in stack level 1, shows its height.

An example of a program using GROB

The following program produces the graph of the sine function including a frame - drawn with

the function BOX - and a GROB to label the graph. Here is the listing of the program:

<< Begin program

RAD Set angle units to radians

131 R>B 64 R>B PDIM Set PICT screen to 131x64 pixels

-6.28 6.28 XRNG -2. 2. YRNG Set x- and y-ranges
FUNCTION Select the FUNCTION type for graphs
'SIN(X)" STEQ Store the function sine into EQ
ERASE DRAX LABEL DRAW Clear screen, draw axes, place labels, draw graph

(-6.28,-2.) (6.28,2.) BOX Draw a frame around the graph

PICT RCL Place contents of PICT on stack
"SINE FUNCTION" Place graph label string in stack
1 >GROB Convert string into a small GROB
(-6., 1.5) SWAP Coordinates where to place the label GROB
GOR Combine PICT with the label GROB
PICT STO Save the combined GROB back into PICT

{} PVIEW Bring the PICT to the stack

>> End program

Save the program under the name GRPR (GROB PRogram). Press [GRPR] to run the program.
The output will look like this

a. ly
SINE FUNCTION

NEE A
-€.22 AND <.

352 © 2000 - Gilberto E. Urroz

All rights reserved

Strings attached

Strings are HP 49 G objects enclosed between double quotes. They are treated as text by the
calculator. For example, the previous exercise used the string “SINE FUNCTION”, transformed
into a GROB, to label a graph. In the chapter on programming (Chapter 7) we learnt how to
convert a number or algebraic expression into a string by using the function STR, available in

the TYPE menu: [R][PRG][TYPE][->STR]. We also learnt how to use a string to tag a result

through the function [>TAG], available in the TYPE menu. The function ->0OBJ, when applied to
a string, separates the string into numbers and algebraic expressions. The function >0BJ is also

available in the TYPE menu. Study the following examples:

[1112] [<][PRG][TYPE][>STR] Produces the string "12"

“25.2” [«][PRG][TYPE][->0BJ] Produces the number 25.2

‘x"2+y"2" [<][PRG][TYPE][>STR] Produces the string “'x"2+y"2’"

“23 ABD” [«][PRG][TYPE][->0BJ] Produces the number 23 and the algebraic ‘ABD’

32.2 "g" [«][PRG][TYPE][>TAG] Produces the tagged quantity g: 32.2

Strings can be concatenated by using the function [+], for example:

‘My “ [ENTER] “dog ate “ [ENTER] “the bone. “ [+][+] results in the string “My dog ate the bone. *

In Chapter 7 we also learnt to use strings for input, using the function INPUT, and for output
using MSGBOX. See Chapter 7 to review some of those examples.

The CHARS menu

The HP 49 G calculator provides the user with a number of additional functions for string
manipulation under the CHARS menu. This menu is accessible through [<][PRG][NXT][CHARS].

The functions available are:

[SUB][REPL]J[POS]J[SIZE][NUM]J[CHR]

Pressing [NXT] you get:

[OBJ>][>STR][HEAD][TAIL].

We are already familiar with the operation of OBJ-> and ->STRING. We have also seen the
functions SUB and REPL in relation to graphics earlier in this chapter. We have experience with
the functions POS, SIZE, HEAD, and TAIL in relation with lists. These functions, SUB, REPL, POS,
SIZE, HEAD, and TAIL have similar effects as in their graphics or lists counterparts. To see those

effects on action try the following exercises:

Enter the string "My NAME IS JOHN." In stack level 1. Then, press [ENTER] six times to make six

copies of the string.

* [<][PRG][NXT][CHARS][SIZE] returns the number 16, indicating that the string consists

of 16 characters.

353 © 2000 - Gilberto E. Urroz

All rights reserved

+ [4] [ENTER] [7] [ENTER] [<][PRG][NXT][CHARS][SUB], produces the subset "NAME", i.e.,

SUB extracts characters 4 through 7 from the original string. Press [<] to drop the result
from the stack.

* “15” [<][PRG][NXT][CHARS][POS] returns the number 9, indicating that the sub-string

“1s” within the original string starts at position 9. Press [¢] to drop the result from the

stack.

+ [<][PRG][NXT][CHARS][NXT][HEAD] returns the first character in the string "™M". Press

[<] to drop the result from the stack.

w* [<][PRG][NXT][CHARS][NXT][TAIL] returns the string with its first character removed. “Y

NAME IS JOHN”. Press [<] to drop the result from the stack.

+ [11[2] [ENTER] “Peter” [ENTER] [~][PRG][NXT][CHARS][REPL], results in “MY NAME IS
PETER.” In other words, the sub-string "PETER" replaces the characters starting at position

12.

The functions NUM and CHAR

The function NUM returns the numerical code corresponding to a single character or to the first
character of a string. For example, "R” [NUM] produces the value 82, while “r" [NUM] results in

the value 114. The function CHAR is the inverse function of NUM, i.e., it returns the character

corresponding to the integer value in the stack. If you use a fractional value as input for CHAR,

the number will be truncated to the lower integer, and then evaluated.

The characters list

The entire collection of characters available in the HP 49 G is accessible through the keystroke
sequence [~][CHARS]. When you highlight any character, say they feed line character + , you
will see at the left side of the bottom of the screen the keystroke sequence to get such character

(rm. for this case) and the numerical code corresponding to the character (10 in this case).

Characters that are not define appear as a dark square in the characters list (+) and show (None)
at the bottom of the display, even though a numerical code exists for all of them. Numerical

characters show the corresponding number at the bottom of the display.

Letters show the code o(i.e., ALPHA) followed by the corresponding letter, for example, when

you highlight M, you will see oM displayed at the lower left side of the screen, indicating the use

of [ALPHA][M]. On the other hand, m shows the keystroke combination oveM, or [ALPHA][+][M].

Greek characters, such as ©, will show the code aS, or [ALPHA][~][S]. Some characters, like

p. do not have a keystroke sequence associated with them. Therefore, the only way to obtain

such characters is through the character list by highlighting the desired character and pressing

[ECHO] or [ECHO].

Use [ECHO1] to copy one character to the stack and return immediately to normal calculator

display. Use [ECHO] to copy a series of characters to the stack. To return to normal calculator
display use

354 © 2000 - Gilberto E. Urroz

All rights reserved

Parting thoughts about character strings

Unless you enjoy dealing with string characters to produce fancy input and output, all you really

need to know about characters is how to enter them, concatenate them, and use them for

tagging, and simple input and output. The emphasis of this book being on mathematical

applications, we will use character strings sparingly through the remainder of this book.

A program with plotting and drawing functions -

Generating Mohr's circle for two-dimensional stress

Background

In this section we develop a program to produce, draw and label Mohr’'s circle for a given
condition of two-dimensional stress. The left-hand side figure below shows the given state of

stress in two-dimensions, with GC, and oy, being normal stresses, and T,y = Tx being shear

stresses. The right-hand side figure shows the state of stresses when the element is rotated by

an angle ¢. In this case, the normal stresses are 0’, and G'yy, while the shear stresses are T'yy

and T'yy.

E 0 : ¥

Opn 4 A > (LA

Tey

The relationship between the original state of stresses (Oxx. Oyy. Txy: Tyx) and the state of stress

when the axes are rotated counterclockwise by f (0'xx, O'yy, T'xy. T'yx), can be represented

graphically by the construct shown in the figure below.

To construct Mohr's circle we use a Cartesian coordinate system with the x-axis corresponding to
the normal stresses (0), and the y-axis corresponding to the shear stresses (1). Locate the points

A(oxx.Txy) and B(oyy, T«y). and draw the segment AB. The point C where the segment AB crosses

the ©, axis will be the center of the circle. Notice that the coordinates of point C are (V2:(cyy +
Oxy). 0). When constructing the circle by hand, you can use a compass to trace the circle since

you know the location of the center C and of two points, A and B.

355 © 2000 - Gilberto E. Urroz

All rights reserved

Let the segment AC represent the x-axis in the original state of stress. If you want to determine
the state of stress for a set of axes x'-y’, rotated counterclockwise by an angle ¢ with respect to

the original set of axes x-y, draw segment A'B’, centered at C and rotated clockwise by and angle
2¢ with respect to segment AB. The coordinates of point A" will give the values (6'xx.T xy), While

those of B' will give the values (0'yy,T'xy).

The stress condition for which the shear stress, T'yy, is zero, indicated by segment DE’, produces
the so-called principal stresses, xx (at point D’) and Sy (at point E'). To obtain the principal
stresses you need to rotate the coordinate system x'-y’ by an angle ¢,, counterclockwise, with

respect to the system xy. In Mohr's circle, the angle between segments AC and D'C measures
2.

The stress condition for which the shear stress, Ty, is a maximum, is given by segment F'G".
Under such conditions both normal stresses, G'yx = O'yy , are equal. The angle corresponding to

this rotation is ¢. The angle between segment AC and segment F'C in the figure represents 2¢,.

Moht's

circle G' A(Ogy » Txy)

 E'

B'(Oyy, Tay) B(Oyy, Tzy)

Modular programming

To develop the program that will plot Mohr's circle given a state of stress, we will use modular

programming. Basically, this approach consists in decomposing the program into a number of

sub-programs that are created as separate variables in the HP 49 G alculator. These sub-
programs are then linked by a main program, that we will call MOHRCIRCL. We will first create a
sub-directory called MOHRC within the HOME directory, and access it, as follows:

[10 1IALPHA][ALPHA][M][O][HIIR]ICI[ENTER] Enter sub-directory name '‘MOHRC'

[<][PRG][MEM][DIR]J[CRDIR] Create sub-directory MOHRC

356 © 2000 - Gilberto E. Urroz

All rights reserved

[VAR] [MOHRC] Access sub-directory

The next step is to create the main program and sub-programs within the sub-directory.

The main program MOHRCIRCL uses the following sub-programs:

= INDAT: Requests input of ox, oy, t™xy from user, produces a list oL = {ox, oy, Txy} as
output.

CC&r: Uses ol as input, produces oc = Y2(ox+0oy), r = radius of Mohr's circle, ¢n = angle
for principal stresses, as output.

we DAXES: Uses oc and r as input, determines axes ranges and draws axes for the Mohr's
circle construct

= PCIRC: Uses oc, r, and ¢n as input, draw’s Mohr 's circle by producing a PARAMETRIC plot

= DDIAM: Uses ol as input, draws the segment AB (see Mohr's circle figure above), joining

the input data points in the Mohr's circle

» olBL: Uses ol as input, places labels to identify points A and B with labels "ox" and
“w "”
oy".

“% GAXS: Places the labels "G6" and “tT” in the x- and y-axes, respectively.

w= PTTL: Placesthetitle "Mohr's circle” in the figure.

Listings of the main program and sub-programs follow:

Main program MOHRCIRCL :

<< Start main program

DEG Set angular measures to degrees
INDAT Call sub-program INDAT (input data)

> ol INDAT produces a list that is passed on to ol
<< Start first sub-program within MOHRCIRCL

oL CC&r With ol as input, call sub-program CC&r
2rd Results of CC&r passed on as cc r ¢n
<< Start second sub-program within MOHRCIRCL

oc r DAXES With oc and r as input, call sub-program DAXES

oc r ¢n PCIRC With oc, r, ¢n as input, call sub-program PCIRC

oL DDIAM With ol as input, call sub-program DDIAM
oL DDIAM With ol as input, call sub-program DDIAM

ol olBL With ol as input, call sub-program oLBL

OAXS Call sub-program cAXS
PTTL Call sub-program PTTL
{} PVIEW Recall contents of PICT to stack
>> Close second sub-program in MOHRCIRCL

>> Close first sub-program in MOHRCIRCL

>> Close main program

Sub-program INDAT: gets input data, uses an input string with the INPUT function

<< Start sub-program INDAT (Input DATa)

“Enter ox, oy, txy:” Prompt title for inputting data

{" rox: ed oy xy" {20} V} Input string
INPUT INPUT function using two previous lines

OBJ-> Decomposes input string into three tagged values
13 FOR Start FOR loop to de-tag values, j = 1,2,3

DTAG De-tag last value in stack
3 ROLLD Roll-down three elementsin stack

NEXT End of FOR loop

3 LIST Create list with the three de-tagged values

357 © 2000 - Gilberto E. Urroz

All rights reserved

>>

Sub-program CC&r:

<<

EVAL
>

Xyxy
<<

‘(x+y)/2" >NUM

DUP x SWAP -

xy R>C ATN2 2. /

N(xy2+((x-y)/2)"2)’ >NUM
SWAP
>>

>>

End of sub-program INDAT

Start sub-program CC&r (Circle Center & radius)

Decomposeslist into values ox, oy, Txy
Passes values ox, oy, ©xy as x, y, xy
Start first sub-program within CC&r
Calculates x-coordinate of Mohr's circle’s center

Calculates (ox-oc)

Calculates ¢n = ¥2-tan™"(xy/(ox-oc))
Calculates Mohr's circles radius
Swap radius with angle

End first sub-program within CC&r

End sub-program CC&r

Sub-program CC&r uses the sub-program ATN2 which determines the angle ¢n given as input the
point (x,y) = x+y"i. The sub-program ATN2 was used instead of the function ATAN because the
function ATAN(y/x) cannot handle very well situations such as when x =0, or when both y and x
are negative. The listing of the sub-program ATN2 follows:

Sub-program ATNZ:

<<

CR
1.E-10
> XYe

<<

CASE

'X>0. AND ABS(Y)< ¢
THEN ASIN(0.)’ >NUM END

'X>0. AND Y>0.
THEN "ATAN(Y/X)" =>NUM END

'ABS(X)< £ AND Y>0
THEN 'ACOS(0.)’ NUM END

‘X<0. AND Y>0.

THEN "ACOS(0.) + ATAN(ABS(Y/X))’

->NUM END

'X<0. AND ABS(Y)< ¢

THEN '2*ACOS(0.)" NUM END
‘X<0. AND Y<O0.
THEN '2*ACOS(0.) + ATAN(ABS(Y/X))’

->NUM END

*ABS(X)< € AND Y<0

THEN '3*ACOS(0.)" => NUM END
‘X>0. AND Y<O0.
THEN *3*ACOS(0.) + ATAN(ABS(Y/X))’

—>NUM END
“ATN2(0,0) not defined.” MSGBOX

END
>>

>>

Start sub-program ATN2 (ATaN No. 2)
Converts input x+i*y (complex) into x and y (real)
Places the value 0.0000000001 in stack

Passes values in stack as X, Y, and € (a tolerance)
Start first sub-program wihtin ATN2

Start a CASE construct

Corresponds to the case (X,Y) = (positive, 0),
for which, ATN2 = ASIN(0.) =0., i.e., ¢n =0.
Corresponds to the case (X,Y) = (positive, positive),

for which, ATN2 = ATAN(Y/X), i.e., 0 < ¢n <90°.

Corresponds to the case (X,Y) = (0, positive),
for which, ATN2 = ACOS(0.) = 90°, i.e., ¢n = 90°.

Corresponds to the case (X,Y) = (negative, positive),

for which, ATN2 = 90°+ATAN(|Y/X]),
i.e., 90° < ¢n <180°.

Corresponds to the case (X.Y) = (negative, 0),
for which, ATN2 = 2*ACOS(0.) , i.e., ¢n = 180°.
Corresponds to the case (X,Y) = (negative, negative),

for which, ATN2 = 180°+ATAN(|Y/X]).

i.e., 180° < gn <270°.
Corresponds to the case (X,Y) = (0, negative),

for which, ATN2 = 3*ACOS(0.) , i.e., ¢n = 270°.
Corresponds to the case (X,Y) = (positive, negative),
for which, ATN2 = 270°+ATAN(|Y/X]),

i.e., 270° < ¢n <360°.
Default result for the CASE structure, corresponds to

the case (X,Y) = (0,0), which is not defined.
End CASE construct
End first sub-program within ATN2
End sub-program ATN2

358 © 2000 - Gilberto E. Urroz

All rights reserved

Note 1: Sub-program ATNZ2, a generalization of the HP 49 G function ATAN, can be used to

determine the angle ¢ = tan” (y/x), given the point (x,y) in the plane. The result is such that 0 <

¢ < 360° when the angular measure is set to degrees (DEG). If the angular measure is set to

radians (RAD), the result is such that 0 < ¢< 2m.

Note 2: In general, to plot the Mohr’s circle you will be working in Approximate mode. In such
mode, the statement 'X == 0.’ has no meaning. For that reason, such expression is replaced by

‘ABS (X) <€’, where ¢ is a small number (€ = 1.0x107°, in this example). Thus, whenever |X] <e,
the number X is, for all practical purposes, equal to zero.

Sub-program DAXES:

<< Start sub-program DAXES (Draw AXES)

cr Take as input the values or c (oc) and r
<< Start first sub-program within DAXES
‘c-2.4°r" NUM ‘c+2.4*r" > NUM Calculate min. & max. values of x for plot
*-1.2*r" >NUM DUP NEG Calculate min. & max. values of y for plot
YRNG XRNG Set x- and y-ranges for plot
ERASE DRAX Erase current PICT and draw axes
>> End first sub-program within DAXES

>> End sub-program DAXES

Sub-program PCIRC:
<< Start sub-program PCIRC (Plot CIRCle)

2 ocr dn Take as input the value oc, r, and ¢n
<< Start first sub-program within PCIRC

PARAMETRIC Select a parametric plot to produce the circle
{ 00.180. } INDEP Select ¢as indep. variable in range 0 < ¢< 180°
1. RES Select increment in ¢to be equal to 1°

'oc+r*COS(2.%(n- @)+i*r*SIN(2.*(¢n- @)) Equation that define the circle in parametric
coords.

‘oc’ oc 'r'r ‘gn’ ¢n 6. SLIST Create { ‘oc’ oc 'r' r '¢n’ @& to replace in eqn.
| STEQ Replace list in eqn. with |, store eqn. in EQ.
DRAW Draw EQ in plot, i.e., draw Mohr's circle
>> End first sub-program within PCIRC

>> End sub-program PCIRC

Sub-program DDIAM:
<< Start sub-program DDIAM (Draw DIAMeter)

EVAL Decompose input list
2 XY Xy Enter values from list as x, y, and xy

<< Start first sub-program within DDIAM

x xy R>C DUP PPTS Create A(ox, ty), duplicate, plot point in PICT
y xy NEG R->C DUP PPTS Create point B(oy, -txy), duplicate, plot point
LINE Draw a line between A and B
>> End first sub-program within DDIAM

>> End sub-program DDIAM

Sub-program DDIAM uses the sub-program PPTS which plots a point at a given location (x,y) in
PICT, here is the listing of PPTS:

359 © 2000 - Gilberto E. Urroz

All rights reserved

Sub-program PPTS:

<<

C>PX DUP
{11} ADD
SWAP {11} -
BOX
>>

Sub-program olBL:

<<

EVAL

2 XY Xy

<<

PICT DUP

“ox” 1 >GROB

x xy R>C PLPNT

SWAP GOR

“oy” 1 >GROB

x xy R=>C PLPNT
SWAP GOR

>>

>>

Start sub-program PPTS (Plot PoinTS)
Convert point (x,y) to pixels (hexadecimal)
Add 1 pixel to x and y
Subtract 1 pixel from x and y
Create a box from (x+1,y+1) to (x-1,y-1) (pixels)
End subprogram PPTS

Start sub-program olLBL (oc LaBels)
Decompose input list

Enter values from list as x, y, and xy

Start first sub-program within cLBL
Place PICT in stack and duplicate it

Convert "ox" into a small graphics object

Create point (x,xy) and locate place for label
Swap place with GOR, combine PICT with GOR

Convert "oy" into a small graphics object
Create point (x,xy) and locate place for label
Swap place with GOR, combine PICT with GOR

End first sub-program within oLBL
End sub-program olLBL

Sub-program olLBL uses sub-program PLPNT, which locates the place where to put the label given
the coordinates of a point (x,y). The point where the label is placed is a few pixels (6 pixels) off
the location of the point of interest. Here is a listing of sub-program PLPNT:

Sub-program PLPNT:

<<

DUP ATN2
DUP COS

SWAP SIN
2 2LIST6*
SWAP C->PX ADD
>>

Sub-program cAXS:

<<

PICT

{#0nh #0nh}

"1" 1 >GROB

object

GOR

{#78nh #19n }

"c" 1 >GROB

object

GOR

>>

Start sub-program PLPNT (Place Label in a PoiNT)
Duplicate point and find angle (0) with ATN2
Get cosine of angle a

Swap levels 1 and 2, calculate sine of angle o
Create list { cos a sin a }, and multiply by 6
Convert list to pixels and add to original point

End sub-program PLPNT

Start sub-program cAXS (s AXes labelS)
Recall contents of PICT to stack
At the origin of pixel coordinates,

take "1" and convert it to a small graphics

and combine it with PICT creating new PICT

At the end of the c-axis,

take “o” and convert it to a small graphics

and combine it with PICT creating new PICT

End sub-program cAXS.

360 © 2000 - Gilberto E. Urroz

All rights reserved

Sub-program PTTL:

<< Start sub-program PTTL (PloT TitLe)

{#64n # 3h } { # A1h # 10h} BOX Create box near upper right corner of plot

PICT "Mohr’'s” 1 >GROB Create a small GROB for “Mohr's"”

{ # 69h # 5n } SWAP REPL Place GROB for “Mohr 's at this location

PICT “circle” 1 GROG Create a small GROB for “circle”

{ # 69h # Ah } SWAP REPL Place the GROB for “circle” at this location

>> End sub-program PTTL

Running the program

If you typed the programs in the order shown above, you will have in your sub-directory MOHRC
the following variables:

[PTTL][cAXS][PLPNT][cLBL][PPTS][DDIAM]

Pressing [NXT] you find also:

[PCIRC][DAXES][ATN2][CC&r][INDAT][MOHRC]

Before re-ordering the variables, run the program once by pressing the soft-key labeled [MOHRC].
Use the following:

[MOHRC] Launches the main program MOHRCIRCL

[21[51[V] Enter ox = 25

[71151]V] Enter oy = 75
[5][0][ENTER] Enter xy = 50, and finish data entry

At this point the program MOHRCIRCL starts calling the sub-programs to produce the figure. Be
patient. The resulting Mohr's circle will look like this:

Hohe's
aarcid

a

Because this view of PICT is invoked through the function PVIEW, we can not get any other
information out of the plot besides the figure itself. To obtain additional information out of the

Mohr's circle, end the program by pressing [ON]. Then, press [4] to recover the contents of PICT

in the graphics environment. The Mohr's circle now looks like this:

[he's
ard

a

ThAcE] [EDIT

Press the soft-menu keys [TRACE] and [(x,y)]. At the bottom of the screen you will find the value

of ¢corresponding to the point A(ox, xy), i.e.,

361 © 2000 - Gilberto E. Urroz

All rights reserved

$=0 (2.50E1, 5.00E1l)

Press the right-arrow key ([»]) to increment the value of ¢ and see the corresponding value of
(0'xx, T'xy). For example, for ¢ = 45°, we have the values (G'xx. T'xy) = (1.00E2, 3.50E1) = (100,

35). The value of c¢'y, will be found at an angle 90° ahead, i.e., where ¢= 45 + 90 = 135°. Press

the [>] key until reaching that value of ¢, we find (¢'yy, T'xy) = (-1.00E-10,-2.5E1) = (0, 25).

To find the principal normal values press [4] until the cursor returns to the intersection of the

circle with the positive section of the c-axis. The values found at that point are ¢ = 59°, and

(0'xx. T'xy) = (1.06E2,-1.40E0) = (106, -1.40). Now, we expected the value of T'yy = 0 at the

location of the principal axes. What happens is that, because we have limited the resolution on

the independent variable to be A¢ = 1°, we miss the actual point where the shear stresses

become zero. If you press [4] once more, you find values of are ¢ = 58°, and (O'xx, T'xy) =

(1.06E2,5.51E0) = (106, 5.51). What this information tell us is that somewhere between ¢ = 58°

and ¢ = 59°, the shear stress, T'xy, becomes zero.

To find the actual value of ¢n, press [ON]. Then type the list corresponding to the values {ox oy
t™y}, for this case, it will be

{ 25 75 50 } [ENTER]

Then, press [CC&r]. The last result in the output, 58.2825255885°, is the actual value of ¢n.

A program to calculate principal stresses

The procedure followed above to calculate ¢n, can be programmed as follows:

Program PRNST:

<< Start program PRNST (PRiNcipal STresses)

INDAT Enter data as in program MOHRCIRC
CC&r Calculate oc, r, and fn, as in MOHRCIRC
"in" TAG Tag angle corresponding to principal stresses

3 ROLLD Move tagged angle to level 3
R->C DUP Convert oc and r to a complex number (oc, r), duplicate

C>R + "oPx" TAG Calculate principal stress oPx, tag it
SWAP CR - "oPy" >TAG Swap levels 1 and 2, and calculate principal stress oPy, tag it.
>> End program PRNST

To run the program use:

[VAR][PRNST] Start program PRNST

[2]1[5][¥] Enter ox = 25

[71[51[v] Enter oy = 75
[5][O][ENTER] Enter xy = 50, and finish data entry

The result is:

3: ¢n: 58.2825255885

2: oPx: 105.901699438

1: oPy: -5.9016994375

362 © 2000 - Gilberto E. Urroz

All rights reserved

Ordering the variables in the sub-directory

Running the program MOHRCIRCL for the first time produced a couple of new variables, PPAR and
EQ. These are the Plot PARameter and EQuation variables necessary to plot the circle. | suggest
that we re-order the variables in the sub-directory, so that the programs [MOHRC] and [PRNST]

are the two first variables in the soft-menu key labels. This can be accomplished by creating the

list { MOHRCIRCL PRNST } using:

[VAR][«][(}][MOHRC][PRNST][ENTER].

And then, ordering the list by using:

[<][PRG][MEM][DIR J[NXT][ORDER].

After this call to the function ORDER is performed, press [VAR]. You will now see that we have

the programs MOHRCIRCL and PRNST being the first two variables in the menu, as we expected.

A second example

Determine the principal stresses for the stress state defined by ox, = 12.5 kPa, oyy = -6.25 kPa,

and Ty = - 5.0 kPa. Draw Mohr’s circle, and determine from the figure the values of G'y, G'yy,

and T',y if the angle ¢= 35°.

To determine the principal stresses use the program [PRNST], as follows:

[VAR][PRNST] Start program PRNST

[110210 . 10510v1] Enter ox = 12.5
[610 . 1021[51[+/-1[v] Enter oy = -6.25
[51[+/-1[ENTER] Enter xy = -5, and finish data entry.

The result is:

3: ¢n: 165.963756532

2: oPx: 13.75

1: oPy: -7.5

To draw Mohr's circle, use the program [MOHRC], as follows:

[VAR] [MOHRC] Start program MOHRC

[110210 - 1510v] Enter ox = 12.5
[610 . 1{21[51[+/-1[¥] Enter oy = -6.25
[5]1[+/-][ENTER] Enter txy = -5, and finish data entry.

The result is:

hed

T

363 © 2000 - Gilberto E. Urroz

All rights reserved

To find the values of the stresses corresponding to a rotation of 35° in the angle of the stressed

particle, we use:

[ON][«] Clear screen, show PICT in graphics screen

[TRACE][(x.y)] To move cursor over the circle showing values of ¢ and

(x.y)

Next, press [P] until you read ¢ = 35. The corresponding coordinates are (1.63E0, -1.05E1), i.e.,
at

¢= 35° 0'xx = 1.63 kPa, and ¢'y, = -10.5kPa.

364 © 2000 - Gilberto E. Urroz

All rights reserved

Solution to equations
In this chapter we presents a diversity of methods for solving single equations of the form f(x) =

0, and a few for solving multiple equations of the form f(x,y,z,..) = 0, g(x.y.z,...) = 0,
h(x,y,z,...) = 0.

Symbolic solution of algebraic equations

The solution of algebraic equations in the HP 49 G calculator can be accomplished by a variety

of methods. To begin with, we can simply isolate the variable we want to solve for from the

algebraic equations. For example, to solve for m from the equation A-x+B:-m = C, using the ISOL
function, try:

[EQW][ALPHA][A][x][ALPHA][<][X][+] Type in Ax+

[ALPHA] [B][X][ALPHA][+][M] Type in Bm
[~] [=] [ALPHA][C][ENTER] Type in = C, place equation in stack

[ENTER] Make additional copy of the equation
[1] * TIALPHA][<][M][ENTER] Type in ‘m’, the variable to isolate

[<][S.SLV][ISOL] Isolate variable

The result is: ‘m= (C-x*A) /B’

The same solution can be obtained by using the function SOLVE, as follows. Press [¢] to drop

the later result, then type in ‘m’ once more, and press [SOLVE] (the second SOLVE key in the
menu).

The functions ISOL and SOLVE

These two functions use as input an algebraic expression containing the variable to be solved

for, and the name of the variable to be solved for, and provide the best expression possible

that isolates or solves for the desired variable. To see another example of the application of

these functions try solving the generic quadratic equation, a-x’+b-x+c = 0, for x, as follows:

[EQW] Enter the equation writer
[ALPHA] [+][ALPHA] Locks alphanumeric keyboard in lower case

[ALPHA][ALPHA] Engage the alphanumeric keyboard

[AIX] XI[ALPHA][y*1[2][»]1[»] Type in ax"2
[ALPHA][ALPHA] Engage alphanumeric keyboard once more

(+1(BIIxIIXI[»1[» 1 [+1[C1[» 1 [>] [—][=](0] Type in +bx+c=0
[ENTER][ENTER] Enter two copies equation in stack

[ALPHA][<][X][ENTER] Enter variable ‘x’ in stack

[<][S.SLV][ISOL] Use the function ISOL to solve for x

365 © 2000 - Gilberto E. Urroz

All rights reserved

The result is the list: { ‘x=-((b+\ (b~2-4*a*c))/(2*a)) ‘x= (b-V(b~2-4*a*c) y/(2*a)) '}

[<] Drop the last result from the stack

[ALPHA][<][X][ENTER] Enter variable ‘x’ in stack once more

[<2][S.SLV][SOLVE] (second SOLVE key) Use the function SOLVE to solve for x

The result is exactly the same as above.

The S.SLV menu

Since we accessed this menu (S.SLV, Symbolic SolVer), we want to present some of its

functions that can be used for solving algebraic equations. The S.SLV menu, accessible through

[<][S.SLV], presents the following functions:

[DSOL][ISOL J[LDEC][LINSO][SOLVE][SOLVE]

[Note: The first SOLVE function is SOLVEVX, the second one is SOLVE |

Press [NXT] to see the following menu:

[ZEROS][Il I I Il]

The operation of functions ISOL and SOLVE was already introduced. The function LINSO was
introduced in relation with solving systems of linear equations in Chapter 10. The functions
DSOL and LDEC are used for symbolic solution of differential equations, therefore, their
introduction will be postponed for a later chapter on that subject. We are left to discuss the

functions SOLVEVX and ZEROS.

The function SOLVEVX

The function SOLVEX solves for the default CAS variable contained in the reserved variable
name VX. By default, this variable is set to be X. So, if you have that default value in VX, and
your equation is written in terms of X, pressing the first [SOLVE] key in the S.SLV menu will
produce the solution of the equation in terms of X. For example:

[EQW][ALPHA][A][X][ALPHA][X][+] Type in Ax+

[ALPHA][B][X][ALPHA][<][M] Type in Bm

[1] [=] [ALPHA][C][ENTER] Type in = C, place equation in stack

[<2][S.SLV][SOLVE](VX) (first [SOLVE] key) Solve for default CAS variable VX = ‘X’

The result is: *X=-((m*B-C) /A) ’

The function ZEROS

The function ZEROS finds the solutions of an equation of the form f(x) = 0 without showing

their multiplicity. The function requires having as input the expression for the equation and

the name of the variable to solve for. If the CAS is set to Exact, the ZEROS function will
provide symbolic results, if possible. Otherwise, it will find numerical solutions. If the CAS is

366 © 2000 - Gilberto E. Urroz

All rights reserved

set to complex, ZEROS will find real and complex variables of the equation. Try the following
example:

[EQW] Enter the equation writer
[ALPHA][+<][ALPHA] Locks alphanumeric keyboard in lower case

[ALPHA][ALPHA] Engage the alphanumeric keyboard

[AIX] [X][ALPHA][y*1[2][»]1[»] Type in ax~2
[ALPHA][ALPHA] Engage alphanumeric keyboard once more

[(+1[BID<IIXT[™1» 1 +1[CI[™1»1[~][=][O] Type in +bx+c=0
[ENTER] Enter equation in the stack

[ALPHA][+][X][ENTER] Enter variable ‘x’ in stack

[<][S.SLV][NXT][ZEROS] Use the function ISOL to solve for x

You will get the same result obtained earlier with ISOL and SOLVE, except that with ZEROS the
results are not labeled as with SOLVE or ISOL.

The HP 49 G CAS (Calculator Algebraic System) is set up so that it provides symbolic solutions
for equations that can be converted to a rational expression (i.e., the ratio of two

polynomials). Expressions that cannot be converted to rational expressions need to be solved

with the numerical solver, as shown below.

Numerical solver menu

The HP 49 G calculator provides a very powerful environment for the solution of single

algebraic or transcendental equations. To access this environment we use the numerical

solver (NUM.SLV) by using [~][NUM.SLV]. This produces a drop-down menu that includes the
following options:

Solve equation...

Solve diff eq..

Solve poly..

Solve lin sys..

 ad
W
N

 Solve finance..

Item 2. Solve diff egq.. is to be discussed in a later chapter on differential equations. Item

4. Solve lin sys.. was discussed in Chapter 10 (Matrices). Next, we present applications of

items 3, 5, and 1, in that order.

Polynomial equations

We described briefly the use of item 3. Solve poly... in Chapter 8 (Algebra and related

subjects). In this section we discuss the use of this solving environment in more detail.

Using the Solve poly... option in the HP48G/GX SOLVE environment you can:

(1) find the solutions to a polynomial equation;
(2) obtain the coefficients of the polynomial having a number of given roots; and,
(3) obtain an algebraic expression for the polynomial as a function of X.

367 © 2000 - Gilberto E. Urroz

All rights reserved

Finding the solutions to a polynomial equation

A polynomial equation is an equation of the form:

anx" + anx" + ..+ ax +ag=0.

The fundamental theorem of algebra indicates that there are n solutions to any polynomial

equation of order n. Some of the solutions could be complex numbers, nevertheless. As an

example, solve the equation:

3st +2s3-5+1=0.

We want to place the coefficients of the equation in a vector [a, ap1.. a ap]. For this

example, let's use the vector [3 2 0 -1 1]. To solve for this polynomial equation using the

calculator, try the following:

[~]1INUM.SLV][V][V¥][OK] Select Solve poly..

[<1 I3]ISPCI[2][SPC][O] I[SPCI[1][+/- 1[SPCI[1][OK] Enter the vector of coefficients

[SOLVE] Solve for s

[ENTER] Returns to stack.

[<][PRG][TYPE][OBJ->][<][0OBJ=>] [«] All solutions will be listed in the stack.

All the solutions are complex numbers: (0.432,-0.389), (0.432,0.389), (-0.766, 0.632), (-0.766,
-0.632).

Note: Recall that complex numbers in the HP 49 G calculator are represented as ordered pairs,

with the first number in the pair being the real part, and the second number, the imaginary

part. For example, the number (0.432,-0.389), a complex number, will be written normally as
0.432 - 0.389i, where i is the imaginary unit, i.e., i’ = -1.
Note: The fundamental theorem of algebra indicates that there are n solutions for any

polynomial equation of order n. There is another theorem of algebra that indicates that if one

of the solutions to a polynomial equation with real coefficients is a complex number, then the

conjugate of that number is also a solution. In other words, complex solutions to a polynomial

equation with real coefficients come in pairs. That means that polynomial equations with real

coefficients of odd order will have at least one real solution.

Generating polynomial coefficients given the polynomial's roots

Suppose you want to generate the polynomial whose roots are the numbers [1 5 -2 4]. To use

the HP 49 G calculator for this purpose, . follow the following steps:

[~1INUM.SLV][V][Y][OK] Select Solve poly..

[WIIISPCI[5]ISPCI[2]1[+/-]1[SPC][4][OK] Enter the vector of roots

[SOLVE] Solve for the coefficients

[ENTER] Returns to stack. Coefficients are listed in

stack.

Note: If you want to get a polynomial with real coefficients, but having complex roots, you

must include the complex roots in pairs of conjugate numbers. To illustrate the point,

generate a polynomial having the roots [1 (1,2) (1,-2)]. Verify that the resulting polynomial
has only real coefficients. Also, try generating a polynomial with roots [1 (1,2) (-1,2)], and
verify that the resulting polynomial will have complex coefficients.

368 © 2000 - Gilberto E. Urroz

All rights reserved

Generating an algebraic expression for the polynomial

You can use the calculator to generate an algebraic expression for a polynomial given the

coefficients or the roots of the polynomial. The resulting expression will be given in terms of

the default CAS variable X. (The examples below shows how you can replace X with any other
variable by using the function [|].)

To generate the algebraic expression using the coefficients, try the following example. Assume

that the polynomial coefficients are [15 -2 4]. Use the following keystrokes:

[~]1INUM.SLV][¥][V¥][OK] Select Solve poly..
[<1 IISPCI5]ISPCI2][+/-1[SPC][4][OK] Enter the vector of roots
[A][SYMB] Highlight coefficients; generate symbolic

expression

[ENTER] Returns to stack. Expression shown in stack.

The resulting expression is given as 'X"3+5*X"2-2*X+4"' .

To generate the algebraic expression using the roots, try the following example. Assume that

the polynomial roots are [1 3 -2 1]. Use the following keystrokes:

[~]INUM.SLV][Y][VY][OK] Select Solve poly..
[YI[=1I[T][SPCI[3][SPCI[2][+/-]1[SPC][1][OK] Enter the vector of roots

[v] Highlight roots
[SYMB] Generate algebraic expression.

[ENTER] Returns to stack. Expression listed in stack.

The resulting expression is listed as '(X-1)* (X-3) * (X+2) * (X-1)".

can use:
[~][ALG][EXPA].

To expand the products, you

The resulting expression is: 'X"4+-3*X"3+-3*X"2+11*X-6".

A different approach to obtaining an expression for the polynomial is to generate the

coefficients first, then generate the algebraic expression with the coefficients highlighted. For

example, for this case try:

[~]1[NUM.SLV][V][V][OK] Select Solve poly..

[YI] 1011 [SPCI[3]1[SPC][2][+/-][SPC][1][OK] Enter the vector of roots

[SOLVE] Solve for the coefficients
[SYMB] Highlight roots, generate algebraic expression.
[ENTER] Returns to stack. Expression listed in stack.

The resulting expression is: 'X"4+-3*X"3+-3*X"2+11*X+-6*X"0".
The coefficients are listed in stack level 2.

Evaluating a polynomial (or any) expression

Suppose that you want to evaluate the expression obtained above for X = 5. Keeping the

expression in stack level 1, enter the following:

[10ITALPHA][X][SPCI[5] [ENTER] Enter the list {X 5}
(ad |EE Use the "evaluate at" expression

369 © 2000 - Gilberto E. Urroz

All rights reserved

The result is 224. This procedure can be used to evaluate any HP48G/GX algebraic in level 2

using the values in the list in level 1.

Replacing the variable in the polynomial's algebraic expression

Press [~][UNDO] to recover the last operands. If instead of using {X 5} we use {X x}, the

variable X will be replaced by x in the polynomial. Try the following:

[1BIALPHA]X][SPCI[<][ALPHA J[+][X][ENTER] Enter the list {X x}

[Il |] Use the "evaluate at’
expression

The result is the polynomial: : x*4_3*x"3-3*x"2+11*x-6".

Financial calculations

The calculations in item 5. Solve finance.. in the Numerical Solver (NUM.SLV) are used for

calculations of time value of money of interest in the discipline of engineering economics and

other financial applications. Before discussing in detail the operation of this solving

environment, we present some definitions needed to understand financial operations in the HP

49 G.

Definitions

In the development of engineering projects or projects of other type it is necessary to borrow

money from a financial institution or from public funds. The amount of money borrowed is

referred to as the Present Value (PV). This money is to be repaid through n periods (typically
multiples or sub-multiples of a month) subject to an annual interest rate of I%YR. The number

of periods per year (P/YR) is an integer number of periods in which the year will be divided for

the purpose of repaying the loan money. Typical values of P/YR are 12 (one payment per
month), 24 (payment twice a month), or 52 (weekly payments). The payment(PMT) is the

amount that the borrower must pay to the lender at the beginning or end of each of the n

periods of the loan. The future value of the money (FV) is the value that the borrowed

amount of money will be worth at the end of n periods.

Payment at beginning or end of a period

Typically payment occurs at the end of each period, so that the borrower starts paying at the

end of the first period, and pays the same fixed amount at the end of the second, third, etc.,

up to the end of the n-th period. Flag -14 in the HP 49 G calculator when not set uses the
option payment at the end of each period. When Flat -14 is set, either by using

[11[4]1[+/-1[<][PRG][NXT][MODES][FLAG][SF 1.

or by using

[MODE] [FLAGS] [¥][¥][V¥][vCHK][OK][OK],

370 © 2000 - Gilberto E. Urroz

All rights reserved

then the option Payment at begin is set.

In the following exercises, let's keep FLAG -14 so that the option payment at the end is

active.

Note: Access to the financial calculation environment is also available directly from the

keyboard by using [<1][FINANCE] (the [9] key).

Examples

Example 1

If $2 million are borrowed at an annual interest rate of 6.5% to be repaid in 60 monthly
payments, what should be the monthly payment? For the debt to be totally repaid in 60
months, the future values of the loan should be zero. So, for the purpose of using the financial

calculation feature of the HP 49 G we will use the following values: n = 60, I1%YR = 6.5, PV =
2000000, FV = 0, P/YR = 12. To enter the data and solve for the payment, PMT, use:

[<][FINANCE] Start the financial calculation input form
[6][0] [OK] Enter n = 60
[6]1[. 1[5][OK] Enter 1%YR = 6.5%
[2][0]1[0][0][0][0][0][OK] Enter PV = 2,000,000 US$
[v] Skip PMT, since we will be solving forit

[0] [OK] Enter FV = 0, the option End is highlighted
[a][<€][SOLVE] Highlight PMT and solve forit

The screen now shows the value of PMT as -39,132..., i.e., the borrower must pay the lender US
$ 39,132.30 at the end of each month for the next 60 months to repay the entire amount. The
reason why the value of PMT turned out to be negative is because the calculator is looking at

the money amounts from the point of view of the borrower. The borrower has + US $
2,000,000.00 at time period t = 0, then he starts paying, i.e., adding -US $ 39132.30 at times t
=1, 2, .., 60. Att = 60, the net value in the hands of the borrower is zero. Now, if you take
the value US $ 39,132.30 and multiply it by the 60 payments, the total paid back by the
borrower is US $ 2,347,937.79. Thus, the lender makes a net profit of $ 347,937.79 in the 5
years that his money is used to finance the borrower's project.

Example 2

The same solution to the problem in Example 1 can be found by pressing [AMOR], which is
stands for AMORTIZATION (and not for the Spanish word for “love”). This option is used to
calculate how much of the loan has been amortized at the end of a certain number of

payments. Suppose that we use 24 periods in the first line of the amortization screen, i.e.,

[2][4][OK]. Then, press [AMOR]. You will get the following result:

HH##444444 AMORTIZE ########

Payments: 24

Principal: -723,211.43

Interest: -215,963.68

Balance: 1,276,788.57
3 © 2000 - Gilberto E. Urroz

All rights reserved

This screen is interpreted as indicating that after 24 months of paying back the debt, the

borrower has paid up US $ 723,211.43 into the principal amount borrowed, and US $ 215,963.68
of interest. The borrowerstill has to pay a balance of $1,276,788.57 in the next 36 months.

Check what happens if you replace 60 in the Payments: entry in the amortization screen, then

press [OK
[AMOR]. The screen now looks like this:

H###4#4H## AMORTIZE #######4#

Payments: 60

Principal: -2,000,000,00

Interest: -347,937.79

Balance: -3.16E-6

This means that at the end of 60 months the US $ 2,000,000.00 principal amount has been paid,

together with US $ 347,937.79 of interest, with the balance being that the lender owes the

borrower US $ 0.000316. Of course, the balance should be zero. The value shown in the
screen above is simply round-off error resulting from the numerical solution.

Press [ON] or [ENTER], twice, to return to normal calculator display.

Example 3

Let's solve the same problem as in Examples 1 and 2, but using the option that payment occurs

at the beginning of the payment period. Use:

[<][FINANCE] Start the financial calculation input form

[6][0][OK] Enter n = 60

[6]1[. 1[5][OK] Enter I%YR=6.5%
[2][0][0][0][0][O]1[0][OK] Enter PV = 2,000,000 US$
[wv] Skip PMT, since we will be solving for it
[0] [OK] Enter FV =0

[CHOOSE] [A][OK] Change this option to Begin
[A][<€][SOLVE] Highlight PMT and solve for it

The screen now shows the value of PMT as -38,921..., i.e., the borrower must pay the lender US
$ 38,921.48 at the beginning of each month for the next 60 months to repay the entire amount.
Notice that the amount the borrower pays monthly, if paying at the beginning of each payment

period, is slightly smaller than that paid at the end of each payment period. The reason for

that difference is that the lender gets interest earnings from the payments from the beginning

of the period, thus alleviating the burden on the lender.

Notes:

1. The financial calculator environment allows you to solve for any of the terms involved, i.e.,

n, 1%YR, PV, FV, P/Y, given the remaining terms in the loan calculation. Just highlight the
value you want to solve for, and press [SOLVE]. The result will be shown in the highlighted

field.

372 © 2000 - Gilberto E. Urroz

All rights reserved

2. The values calculated in the financial calculator environment are copied to the stack with

their corresponding tag.

3. When you use the financial calculator environment for the first time within the HOME
directory, or any sub-directory, it will generate the variables [n][I1%YR][PV][PMT][

PYR][FV] to store the corresponding terms in the calculations.

Solving equations with one unknown through

NUM.SLV

The HP48G/GX calculator's NUM.SLV menu provides the item 1. Solve equation... that can

be used to solve different types of equations in a single variable, including non-linear algebraic

and transcendental equations. For example, let's solve the equation:

e*-sin(mx/3) = 0.

Simply enter the expression as an HP48G/GX algebraic, i.e.,

[10+]1le*] [ALPHAI[<]IX] [>] [- 1 [SIN] [«][n] [x] [ALPHA][<][X] [+] [3] [>] [<2] [=][O] [ENTER]]

and store it into variable EQ, i.e.,

["1 [ALPHA][ALPHA][E][Q][ALPHA][STO]

Then, enter the SOLVE environment and select Solve equation..., by using:

[]INUM.SLV][OK]

The equation is already loaded, all you need to do is highlight the field in front of X: by using

[¥], and press [SOLVE]. The solution shown is X: 4.5006... To obtain a negative solution, try
entering a negative number in the X: field, for example, [3][+/-][OK] [¥] [SOLVE]. The solution
is now X: -3.045.

How does the numerical solver for single-unknown equations work?

The numerical solver for single-unknown equations works as follows:

It lets the user type in or CHOOSe an equation to solve.

#% It creates an input form with input fields corresponding to all variables involved in

equation EQ.

4 The user needs to enter values for all variables involved, except one.

“ The user then highlights the field corresponding to the unknown for which to solve the

equation, and presses [SOLVE].

“%& The calculator uses a search algorithm to pinpoint an interval for which the function

changes sign, which indicates the existence of a oot or solution. It then utilizes a

numerical method to converge into the solution.

The solution the calculator seeks is determined by the initial value present in the unknown

input field. If no value is present, the calculator uses a default value of zero. Thus, you can

373 © 2000 - Gilberto E. Urroz

All rights reserved

search for more than one solution to an equation by changing the initial value in the unknown

input field. Examples of the equations solutions are shown following.

Example 1 - Hooke's law for stress and strain.

The equation to use is Hooke's law for the normal strain in the x-direction for a solid particle
subjected to a state of stress given by

The equation is

AX

1

Cu =Zl —hn- (0, + O..)] ta AT,

where e,, is the unit strain in the x-direction, Oyx, Oy, and 0, are the normal stresses on the

particle in the directions of the x-, y-, and z-axes, E is Young's modulus or modulus of elasticity
of the material, n is the Poisson ratio of the material, a is the thermal expansion coefficient of

the material, and AT is a temperature increase.

Suppose that you are given the following data: oy,= 2500 psi, 0, =1200 psi , and o,, = 500 psi, E
= 1200000 psi, n = 0.15, a = 0.00001/°F, AT = 60 °F. To calculate the strain gy use the
following:

[~]1INUM.SLV][OK] Access numerical solver to solve equations

[EQW] Access the equation writer to enter equation

To enter the equation use:

[ALPHA]][E][ALPHA][][X] [][=][<]1[O] [ALPHA] [~][S][ALPHA][][X][-]
[ALPHA] [a] IN] X] [ILOTALPHA] [=] [ST[ALPHAT[][Y] [+]

[ALPHA] [=][SI[ALPHAT[<][Z] [> 1[»1[>1[>1[>]1[>]1[+] [ALPHA][E] [A][A]
[+][ALPHA][][A] [X][ALPHA][~][C][ALPHA][T]

[»1[2]1[5][0][0][OK] Enter o.,= 2500

[OI[. 1[11[5] [OK] Enter n=0.15

[1112][0][0][OK] Enter 6,,=1200

[5][0][0] [OK] Enter o,, =500
[11[2][0][0](0] [0][O] [OK] Enter E = 1200000
[01] . J[0][O][O][O][1][OK] Enter oo = 0.00001

[6][0][OK] Enter AT = 60
[v][SOLVE] To solve for ex

The solution can be seen from within the SOLVE EQUATION input form by pressing [EDIT]. The
resulting value is 2.470833333333E-3. Press [OK] to exit the EDIT feature.

374 © 2000 - Gilberto E. Urroz

All rights reserved

Suppose that you want to determine the Young's modulus that will produce a strain of ey =

0.005 under the same state of stress neglecting thermal expansion. Use the following:

[«][0][. 1[0]1[0][5][OK] Enter ex = 0.005

[v]1[V¥][O][OK] Enter AT = 0 to neglect thermal expansion

[vi[v][»][»][SOLVE] Select input field for E and solve for E
[EDIT] To see resulting value

The solution is E = 449000 psi. Press [OK] [ON] to return to normal display.

Notice that the results of the calculations performed within the numerical solver environment

have been copied to the stack. Also, you will see in your soft-menu key labels variables

corresponding to those in EQ, i.e.,

Lex J[ATJ[o I[E][oz Il oy |]

Pressing [NXT] you will see:

[n][ox][other variables]

If you decide that you do not need to keep this equation and its variables, you can PURGE them
by placing the variable names, and EQ, in a list, and using [TOOL][PURGE]. On the other hand,

if you think this equation is to be used regularly, you may want to create a separate sub-

directory to keep it on a permanent basis.

Example? - Specific energy in an open channel flow

Specific energy in an open channel is defined as the energy per unit weight measured with

respect to the channel bottom. Let E = specific energy, y = channel depth, V = flow velocity, g

= acceleration of gravity, then we write

p

E=y+—.
2g

The flow velocity, in turn, is given by

V=Q/A,

where Q = water discharge, A = cross-sectional area. The area depends on the cross-section

used, for example, for a trapezoidal cross-section, as shown in the figure below,

A = (b+m-y) vy,

where b = bottom width, and m = side slope of cross section.

375 © 2000 - Gilberto E. Urroz

All rights reserved

_
1 NT
4

k— bn —
We can type in the equation for E as shown above and use auxiliary variables for A and V, so

that the resulting input form will have fields for the fundamental variables y, Q, g. m, and b,

as follows:

4 First, create a sub-directory called SPEN (SPecific ENergy) and work within that sub-
directory.

+ Next, define the following variables:

[~]1[' J[ALPHA][Q][+][ALPHA][A][ENTER] [~][* I[ALPHA][V] [ENTER] [STOW]

(EQW][<][OIALPHA] [+] [B] [+] [ALPHA] [][M] [x] [ALPHA] [~][Y][»][»][»]
[X][ALPHA][«<][Y][ENTER] [~][' I[ALPHA][A] [ENTER] [STOM]

[10 * JIALPHAJ[E][~][=] [ALPHA] [][Y][+]
[ALPHA] [VI[Y* 1 [2] [+] [<1] [O] [2] [X] [ALPHA] [2] [GI [ENTER] [r]
[* J[ALPHA][ALPHA][E][Q] [ENTER] [STON]

w% Launch the numerical solver for solving equations: [~][NUM.SLV][OK]. Notice that the

input form contains entries for the variables y, Q, b, m, and g.

4 Try the followin input data: E = 10 ft, Q = 10 cfs (cubic feet per second), b = 2.5 ft, my g
=1.0, g = 32.2 ft/s:

[vI[1][OI[OK] [»] [1][0]J[OK] [2][. 1[5]1[OK] [1][OK] [3]{2][. 1[2][OK]

Solve for y: [W][»] [SOLVE]. The result is 0.149836. ., i.e., y = 0.149836.

+ It is known, however, that there are actually two solutions available for y in the

specific energy equation. The solution we just found corresponds to a numerical solution

with an initial value of 0. To find the other solution, we need to enter a larger value of y,

say [1][0][OK], return to the y input field with [4], and press [SOLVE] again. The result is

now 9.99990, i.e., y = 9.99990 ft.

This example illustrates the use of auxiliary variables to write complicated equations. When

NUM.SLV is activated, the substitutions implied by the auxiliary variables are implemented, and
the input screen for the equation provides input field for the primitive or fundamental

variables resulting from the substitutions. The example also illustrates an equation that has

more than one solution, and how choosing the initial guess for the solution may produce those

different solutions.

376 © 2000 - Gilberto E. Urroz

All rights reserved

In the next example we will use the DARCY function for finding friction factors in pipelines.
Thus, we define the function in the following frame.

Special function for pipe flow: DARCY(e/D, Re)

The Darcy-Weisbach equation is used to calculate the energy loss (per unit weight), h, in a

pipe flow through a pipe of diameter D, absolute roughness €, and length L, when the flow

velocity in the pipe is V. The equation is written as

LV?
h, =f=.
r=7 D 2g

The quantity fis known as the friction factor of the flow and it has been found to be a function

of the relative roughness of the pipe, €/D, and a (dimensionless) Reynolds number, Re. The

Reynolds numberis defined as

Re = pVD/u =VD/v,

where p and W are the density and dynamic viscosity of the fluid, respectively, and v=u/p is

the kinematic viscosity of the fluid.

The HP 49 G calculator provides a function called DARCY that uses as input the relative
roughness e/D and the Reynolds number, in that order, to calculate the friction factor f. For

example, for e/D = 0.0001, Re = 1000000, you can find the friction factor by using:

[. 1{O][O][O]["] [ENTER] [1][0][0][O][O][O][O] [ENTER] [CAT][ALPHA][D],

if needed use [A][V¥] to highlight DARCY, then press [OK]. The result is 1.3414320724E-2,

i.,e., f=0.01341..

The function FANNING(e/D, Re)

In aerodynamics applications a different friction factor, the Fanning friction factor, is used.

The Fanning friction factor, fr, is defined as 4 times the Darcy-Weisbach friction factor, f. The

HP 49 G calculator also provides a function called FANNING that uses the same input as DARCY,

i.e., ¢/D and Re, and provides the FANNING friction factor.

Example 3 - Flow in a pipe

You may want to create a separate sub-directory to try this example.

The main equation governing flow in a pipe is, of course, the Darcy-Weisbach equation. Thus,

type in the following equation into EQ:

(10 IALPHA][][H][ALPHA][<][F][~][=][ALPHA][<][F][x]
[—][OT[ALPHA][L][=][ALPHA][D] [>] [x]

[=ILONALPHATIVITY 12] [+] [<1 [O1[2] IX] [ALPHA] [=] [G] [ENTER]

377 © 2000 - Gilberto E. Urroz

All rights reserved

[* JIALPHA]J[ALPHA][E][Q] [ENTER] [STOMP]

Also, store the following variables:

[~]1[* J[CAT][ALPHA][D] (select DARCY) [ALPHA][~][E]

[+][ALPHA][D][]1[. 1 [ALPHA][R][ALPHA][<][E][ENTER]

[* J[ALPHA][«][F][ENTER] [STOM]

(10 1{=1[m [x] [ALPHA] [D][y*][2] [+] [4] [ENTER]

[][* J[ALPHA][A][ENTER] [STOM]

[10 1[ALPHA][Q][][ALPHA][A] [ENTER]

[~][* J[ALPHA][V] [ENTER] [STOW]

[10 * [ALPHA] [V][x][ALPHA][D] [+] [ALPHA] [N][ALPHA][~][U] [ENTER]

[~][* JIALPHA][R][ALPHA][][E]J[ENTER] [STO»]

Now, launch the numerical solver, by using:

[~][NUM.SLV][OK].

You will see the input screen for this equation containing input fields for the primitive

variables hf, g, Q, D, Nu, L, and g. Suppose that we use the values hf = 2 m, € = 0.00001 m, Q =
0.05 m3/s, Nu = 0.000001 m?/s, L = 20 m, and g = 9.806 m/s?, find the diameter D. Enter the

input values as follows:

[v][2][OK] Enter hf
[EEX] [5][+/-][OK] Enter ¢
Lg Skip D
[. 1[0][5][OK] Enter Q
[T1[EEX][6][+/-][OK] Enter Nu (i.e., v = kinematic viscosity)

[2] [0] [OK] Enter L

[911 . 1[8][0][6][OK] Enter g

To solve for D, use: [V][»][»] (highlight D)[SOLVE]. The solution is: 0.12, i.e., D = 0.12 m.

Press [ENTER] or [ON] to return to normal calculator display. The solution for D will be listed

in the stack.

To see the equation we are actually solving, try the following (set the CAS to Exact):

[=]1[{}] Open list
[DI LI Nulle Il hf Il g Il Q] Place variable namesD, L, Nu, € hf, g, and Q in list

[ENTER][TOOL][PURGE] Purge variables D, L, Nu, €, hf, g, and Q

[VAR][EQ] Lists Darcy-Weisbach equation in stack

[IL] f JTIENTER][f] Places the name 'f' and the contents of f in stack

[4]1[<][PRG][TYPE][> LIST] Create a list with four elements

[1 | 1[ENTER] Replace variables in list (level 1) in equation (lev. 2)

If asked whether you want approximate mode, say NO, as many times as needed.

378 © 2000 - Gilberto E. Urroz

All rights reserved

The resulting equation is

‘hf = DARCY (gRe) *(L/D)*((Q/A)"2/(2.%*g))’

We now will replace the corresponding expressions for Re and Q, as follows:

[VAR][~]I['][Re]I[ENTER][Re] Places the name ‘Re’ and the contents

of Re in stack

[PII] A JI[ENTER][A] Places the name ‘A’ and the contents

of A in stack

[4]1[<][PRG][TYPE][>LIST] Create a list with four elements

[~][| JIENTER] Replace variables in list (level 1) in equation
(level 2)

If asked whether you want approximate mode, say NO, as many times as needed.

The resulting equation is:

'hf= DARCY (¢/D, V*D/Nu)*(L/D)* ((Q/(m*D~2/4))"2/(2*g))"

We need two more substitutions:

[VAR] [~1['][V 1IENTER][V] Places the name 'V' and the contents of V in

stack

[2][<][PRG][TYPE][>LIST] Create a list with four elements

[~][| 1IENTER] Replace variables in list (level 1) in equation
(level 2)
[VAR] [~1["1 A JI[ENTER][A] Places the name 'V' and the contents of V in

stack

[2][<][PRG][TYPE] [> LIST] Create a list with four elements
[1 | JIENTER] Replace variables in list (level 1) in equation
(level 2)

The resulting equationis:

'hf= DARCY(€/D, Q/(m*D*2/4)*D/Nu)*(L/D)*((Q/(m*D~2/4))"2/(2*g))"

which is the equation that is actually solved in NUM.SLV.

Functions UTPN, UTPT, UTPC, and UTPF
In Chapter 4 we introduced the functions UTPN (Upper-tail probability normal), UTPT (Upper-

tail probability Student's 9, UTPC(Upper-tail probability Chi square), and UTPF(Upper-tail
probability F distribution). These functions provide values of the probability that a variable X,

following a specified distribution, is larger than a particular value x. Utilizing the notation

and definitions from Chapter 3, we have:

a f(x) = probability density function or pdf

*- F(x) = P(X<x) = cumulative distribution function or CDF, where P() stands for

“probability of.”

379 © 2000 - Gilberto E. Urroz

All rights reserved

An upper-tail probability is typically referred to as o = P(X>x). By the definition of probability,

a =1-F(x).

Graphically, the CDF F(x) is the area under the pdf curve for X<x, and a is the area under the

same curve for X>x, as illustrated in the figure below.

fx) Shaded area = F(x) = P(X<x) f(x) Shaded area = & = P(X>x)

The upper-tail probability functions UTPN, UTPT, UTPC, and UTPF are available through the

menu:

[<][MTH][NXT][PROB] [NXT].

The parameters associated with each of those probability distributions are:

With UTPN (normal), 4 = mean value, o° = variance

& With UTPT (Student's t) and UTPC (Chi-square), v = degrees of freedom

+ With UTPF (F distribution), vn = degrees of freedom in the numerator, vp = degrees of

freedom in denominator.

The corresponding parameters must be given as part of the input for the upper-tail probability

functions as illustrated in the exercises in Chapter 4. In the following example we illustrate

the use of the numerical solver to solve the equation defining inverse CDFs and upper tail
probability distributions.

Example 3 - Upper tail probabilities for Normal, Student-t, x, and
F distributions

The expression defining the upper-tail probability function for the Normal variate is written as

o = UTPN(p,&%, x),

or

UTPN(p,o%, x) - a = 0.

380 © 2000 - Gilberto E. Urroz

All rights reserved

The latter equation can be typed as a program:

<< MU 062 x UTPN a - >>

and stored in the EQ variable: ['][ALPHA][ALPHA][E][Q] [ENTER] [STOMP].

Note: The program showed above interpreted in RPN mode will produce the quantity

UTPN(x,u,02)-a.. When this quantity is stored in EQ and used for an equation solution through
NUM.SLV it is interpreted as UTPN(x,u,62)-0= 0. As a general rule, if an equal sign is missing in
the expression stored in EQ, then the expression is assumed to be equal to zero.

If we now launch the numerical solver, we obtain an input form involving the variables pu, o2

(stands for o?), x , and a. For example, to find the value of x for which o = 0.05, when u=
3.2, and ¢* = 1.5, use:

[~]INUM.SLV][OK] Access numerical solver to solve equations

[vI[3][. 1[2][OK] Enter pu
[111 . 1[5]1[OK] Enter 62
[>] Skip x

[. 1[0][5][OK] Enter a
[vw] [W][SOLVE] Solve for x

The result is x = 5.21452.

If you want to find the value of a corresponding to x = 6, use:

[6][OK][SOLVE]

The result is (press [EDIT]) 1.112E-2, i.e., a= 0.01112.

You can create a sub-directory, call it UTPs, for Upper Tail probability functions, where you
can store the program used above for the normal distribution (store it into the variable EQN),
and programs corresponding to the other three distributions under consideration: t, x2, and F.

The programs corresponding to the other distributions are shown below:

Program name Program

EQT <<yx UTPT a - >> |

EQC <<yx UTPC a - >> {

EQF << xUTPF a->> |

Notice that | use the variable name y (gamma) for v (nu), because the HP 49 G calculator does

not include the character v.

Within the sub-directory you should create a variable named EQ, for example, using:

[O]['][ALPHA][ALPHA][E][Q][ENTER][STO]

Next, order the variables in your sub-directory using:

{ EQ EQN EQT EQC EQF } [«2][PRG][MEM][DIR][NEXT][ORDER].

At this point the sub-directory should have the following variables in its soft-menu key labels:

381 © 2000 - Gilberto E. Urroz

All rights reserved

[EQ I[EQN J EQT J[EQC J[EQF].

Whenever you want to use a particular equation you need to load it in EQ, and then launch the

numerical solver. For example, if you want to use the Chi-square equation, use the following:

[IL EQC I[<][EQ J{r][NuM.SLV][OK],

and you will be ready to solve for any term in the equation

UTPC(y,x) - a= 0.

A similar procedure can be used to solve for any term in the equations involving the UTPT and

UTPF functions.

Example 4 - Universal gravitation

Newton's law of universal gravitation indicates that the magnitude of the attractive force

between two bodies of masses m; and m;, separated by a distance r is given by the equation

m,
r

Here, G is the universal gravitational constant, whose value can be obtained through the use of

the function CONST in the calculator by using:

[~][' I[ALPHA][G][ENTER][CAT][ALPHA][C] (highlight CONST) [OK].

G = 6.67259x10™"" m*/(s%kg).

We can solve for any term in the equation (except G) by entering the equation as:

[EQW][ALPHA][F][~][=] [ALPHA][G] [x] [ALPHA][<][M][1][X]
[ALPHA] [<1] [M][2] [>] [+][ALPHA] [<2] [R][y*][2] [ENTER]

This equation is then stored in EQ: [* J[ALPHA][ALPHA][E][Q] [ENTER] [STOMP].

Launching the numerical solver for this equation, i.e.,. [~][NUM.SLV][OK], results in an input

form containing input fields for F, G, m1, m2, and r. Let's solve this problem using units with

the following values for the known variables m1 = 1.0108 kg, m2 = 1.0x10" kg, r = 1.0x10"" m.

First, enter a value of O_N in field F, by using:

[Y1[O] [1] _ J][UNITS][NXT][FORCE][N][ENTER] to load the value of m1.

Next, use the following keystrokes to skip the field for F and enter the value of G from the
stack:

[»][NXT][CALC][~][* I[ALPHA][ALPHA][CI[O][N][SI[T][+] [()] [GI[ENTER][~][EVAL][OK]

Press [»][T]I[EEX][6][—][_ 1[~ J[UNITS][NXT][MASS][kg J[ENTER] to load the value of m1.

Press [TJ[EEX][1][2][][_ J[~][UNITS][NXT][MASS][kg][ENTER] to load the value of m1.

382 © 2000 - Gilberto E. Urroz

All rights reserved

Press [T][EEXI[1][11[~][_ J[~][UNITS][LENG][m][ENTER] to load the value of r.

Finally, to solver for F use: [V][SOLVE]

Press [ENTER] to return to normal calculator display.

The solution is F : 6.67259E-15_N, or F = 6.67259x10"° N.

Note: When using units in the numerical solver make sure that all the variables have the proper

units, that the units are compatible, and that the equation is dimensionally homogeneous.

Example 5 - Energy losses in three pipelines in series

Take the last version of the Darcy-Weisbach equation obtained at the end of example 1, above.

Namely,

'hf= DARCY (¢/D, Q/(m*D*2/4)*D/Nu)*(L/D)*((Q/(m*D"2/4))"2/(2*g))’

Remove the terms hf= from this equation, so that all what is left is the right-hand side, i.e.,

‘DARCY (¢/D, Q/(m*D"2/4)*D/Nu)* (L/D) * ((Q/(Rn*D"2/4))"2/(2*g))’

To accomplish this use:

(VI[EDIT] [»1[»]1[»1[»[<1] [<][ENTER][ENTER]

Store this expression in a variable called RHDW (Right-Hand side of Darcy-Weisbach equation),
use:

[~]1[* JIALPHA][ALPHA][R][H][D][W][ENTER][STOM].

We are going to use this expression to create the equation relating the head loss (energy loss

per unit weight) through three pipes in parallel. Basically, the total head loss hf is equal to the

sum of head losses in pipes 1, 2, and 3, i.e., hf = hf; + hf, + hf, where the individual head

losses can be calculated using the right-hand side of the Darcy-Weisbach equation, i.e., the

expression you just stored in RHDW. Care should be taken to identify the variables L, D, and €
with an appropriate sub-index for each pipe. Let's proceed to obtain an expression for head

loss in pipe 1, as follows:

[VAR][RHDW] will copy the expression in the stack. Enter the list {'D’ 'D(1)" 'L" 'L(1)" ‘e" "e(1)’
} [ENTER][ENTER]. Save a copy into a variable called VL. Then, press enter [~][| J[ENTER],

to replace D with D(1), L with L(1), and & with € (1). When asked if you want Approximate

mode, say NO. Next, save this expression in a variable called 'EQT1".

Now, press [VAR]J[RHDW][VL]. Edit the list so that all the 1's are replaced by 2's. To edit,

press [WV]. Once you have the list {D 'D(2)' L 'L(2)" € 'e(2)" } in the stack, press [][|

J[ENTER], to replace D with D(2), L with L(2), and € with € (2). When asked if you want

Approximate mode, say NO. Next, save this expression in a variable called 'EQT2".

Next, press [VAR][RHDW][VL]. Edit the list so that all the 1's are replaced by 3's. To edit,

press [¥]. Once you have the list {D 'D(3)' L 'L(3)' € 'e(3)' } in the stack, press [~][|

383 © 2000 - Gilberto E. Urroz

All rights reserved

J[ENTER], to replace D with D(3), L with L(3), and € with € (3). When asked if you want
Approximate mode, say NO. Next, save this expression in a variable called 'EQT3".

Now, we will put together the equation as follows:

[(EQT1IEQT2][+][EQT3][+] [~] [1] [ALPHA][<][HI[ALPHA][«][F][ENTER] [~][=]

Now, solve this long expression into EQ: [* J[ALPHA][ALPHA][E][Q] [ENTER] [STO»].

We are not quite ready yet to solve a problem for we need to provide the data corresponding

to diameters, lengths, and absolute roughnesses as vectors. For example, suppose that the

pipes of interest have the following properties:

Pipe No. L (ft) D(ft) (ft)

1 500 0.5 0.0001

2 700 0.25 0.00001

3 1000 0.75 0.001

We will need to load the following vectors in the variables L, D, and g, i.e.,

[500 700 1000] [ENTER][~][* JI[ALPHA][L][STOM]
[0.50.25 0.75][ENTER][][*]I[ALPHA][D][STOM]

[0.0001 0.00001 0.00T][ENTER][~][*][ALPHA][~][E][STOM»]

Now, launch the numerical solver: [~][NUM.SLV][OK]. The resulting input form has entries for

e, D, Q, Nu, L, g, and hf. Due to the nature of the data, we would not be able to solve for D,
L, or e, which are vectors. But we can solve for any of the other variables, i.e., Q, Nu, and hf.

(gis a constant). Let's use Q = 0.1 cfs, and Nu = 1.0x10® ft?/s, and solve for hf, as follows:

[vip]1i»] Skip € and D (already loaded)

[. 1[11[OK] [T1[EEX][6][+/-][OK] Enter Q and Nu

[1131121] . 1[2][OK] Skip L, enter g

[SOLVE] Solve for hf

Press [ON] to return to normal calculator display. The solution is: hf: 2.557612..., i.e., h¢= 2.56

ft.

Changing the order of the variables

Try using the numerical solver again with the case of three pipes in series. Press

[]INUM.SLV][OK]. You will see associated with soft-menu key F4 the menu [VARS]. Press that

key and you get a list of variables { e D Q NU L g hf }, which reflects the way that the variables
are listed in the input screen. You can manipulate this list to reorder the variables or remove

variables (if you don't want to change its current value in future applications). After making

any changes in the list, press [OK] to return to the input screen for the current equation.

Through these example we have shown you several applications of the numerical solver to

obtain solutions of single-unknown equations. The following section is dedicated to the

solution of simultaneous equations.

384 © 2000 - Gilberto E. Urroz

All rights reserved

Graphical solution of single-unknown equations

Solution of single-unknown equations can be obtained graphically if other methods fail to

provide a solution. The examples we show below can be solved by other methods, but are

shown in here to illustrate the use of graphs for the solution of equations.

Example 1 - Solution of a cubic equation

Suppose that we want to find some of the solutions of the equation x°-7x%+36 = 0. We can plot
the function f(x) = x>-7x%+36, and check where the graph intersects the x-axis. As presented in
Chapter 10, to prepare this graph follow this procedure:

w% Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to FUNCTION, if needed, by using [CHOOS].

: ress and type in the equation - +36".“* P [¥] and type in the equation 'X"3-7*X"2+36'

ake sure the independent variable is set to 'X’.Mak he independ iable | x’

ress to return to normal calculator display.“% Press [NXT][OK] I calculator display

% Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be

called PLOT -POLAR window).

ak Change the H-VIEW range to -4 to 8, by using [4][+/-]1[OK][8][OK], then press [AUTO] to

generate the vertical range.

“% Press [ERASE][DRAW] to plot the function in polar coordinates. The result is the curve

shown in the diagram below:

erp

/ +

Fam PAREIEE RTE

-* Obviously, there are three points where the curve crosses the x-axis in the graph. To

find those roots, we will use the functions in the [FCN] menu. Move the cursor near the

leftmost root, and press [FCN][ROOT]. The first root is found to be Root: -2. Press [NXT].

Move the cursor near the second root, and press [ROOT]. The second root is found to be

Root: 3. Press [NXT]. Finally, placing the cursor near the third root, and pressing
[ROOT], produces the result Root: 6.

we Press [NXT]INXT][PICT][CANCL][ON] to return to normal calculator display.

385 © 2000 - Gilberto E. Urroz

All rights reserved

Example 2- Clausius-Clapeyron equation

The Clausius-Clapeyron equation related the vapor pressures of a liquid, B and B, at two

temperatures Ty and T;, to the heat of vaporization AH,,, through

Pp) AH, (1 1

Rh R \T, T,

where R is the universal gas constant. To find the value of this constant in the calculator use:

[~]1[* JIALPHA][R][ENTER][CAT][ALPHA][C] (highlight CONST) [OK].

The calculator produces the result R = 8.31451_J/(gmol*K). This value can also be written as R
= 8.31451_J/(mol*K).

The calculator recognizes the equivalence between gmol and mol, as shown here: enter gmol

by using:

[ALPHA][«2][ALPHA] [ALPHA][ALPHA] [G][M][O][L] [ENTER]

The result is 1._mol.

Given P; = 33.86 kPa, and T; = 318 K, find the value of P, for T, = 298 K, if AH, = 36.9 kJ/mol.

To make all units consistent, we will write P; = 33860 Pa, and AH,,, = 36900 J/mol. To obtain a

graphical solution, we will have to plot the function f(X) = In(X/33860) -
(36900/8.31451)*(1/298-1/318), where X replaces B. The function to plot is, thus, f(X) =

In(X/33860) - 0.9366. To produce the graphical solution use the following:

‘% Press [«<][2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to FUNCTION, if needed, by using [CHOOS].

Press [¥] and type in the equation 'LN(X/33860)-0.9366".

Make sure the independent variable is set to 'X'.

-
+

+
+

Press [NXT][OK] to return to normal calculator display.

% Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be

called PLOT -POLAR window).

+ Change the H-VIEW range to 80000 to 100000, by using [8][0][0][0][0][OK]y g
[11[0][0][0][O][O][OK], then press [AUTO] to generate the vertical range.

% Press [ERASE][DRAW] to plot the function in polar coordinates. The resulting curve
looks almost like a straight line crossing the X-axis at one point.

386 © 2000 - Gilberto E. Urroz

All rights reserved

= Move the cursor near the root, and press [FCN]J[ROOT]. The root is found to be Root:

86386.76, i.e., P, = 86.386 kPa.

we Press [NXT][NXT][PICT][CANCL][ON] to return to normal calculator display.

Solving multiple equations

Many problems of science and engineering require the simultaneous solutions of more than one

equation. The HP 49 G calculator provides several procedures for solving multiple equations as

presented below.

Linear equation systems

Systems of linear equations were discussed in great detail in Chapter 10 (Matrices), therefore,

we will not discuss them any further in this chapter.

Rational equation systems

Equations that can be re-written as polynomials or rational algebraic expressions can be solved

directly by the calculator by using the function SOLVE. You need to provide the list of
equations as elements of a vector. The list of variables to solve for also are provided as a

vector. Make sure that the CAS is set to mode Exact before attempting a solution using this
procedure. Also, the more complicated the expressions, the longer the CAS takes in solving a

particular system of equations. Examples of this application follow:

Example 1 - Projectile motion

Enter the equations for two-dimensional projectile motion into a vector, i.e.,

['x = x0 + vO*COS(60)*t" 'y =y0+vO*SIN(80)*t - g*t"2/2'][ENTER]

Then enter the variables to solve for, say tandy, i.e.,

['t" 'yO'][ENTER]

To solve, first change CAS mode to Exact, then use: [<1][S.SLV][SOLVE] (second SOLVE key).

After about 40 seconds, maybe more, you get as result a list:

{ 't = (x-x0)/(COS(60)*v0)

‘yO = (2*COS (00) "2*v0"2*y+ (g*x"2 (2*x0*g+2*SIN (60)) *COS (60) *v0"2) *x+
(x0"2*g+2*SIN(00) *COS (00) *v0~2*x0))) / (2*COS (60) ~2*v0°2) ' 1}

Press [~][EVAL] to remove the vector from the list, then [<1][PRG][TYPE][OBJ->][<] to get the

equations listed separately in the stack.

Suppose that you were given the values: x0 = 0, vO = 10 ft/s, 60 = 30°, g = 32.2 ft/s? x = 50 ft,
and y = 20 ft. (Press [ALPHA][ALPHA][D][E][G][ALPHA][ENTER] to change angular measure to

degrees, if needed). You can obtain values for t and yO from the equations in the stack, by

replacing the values of the known variables using a list, as follows. Type the list, make a copy,

and store the list into variable VL:

387 © 2000 - Gilberto E. Urroz

All rights reserved

{*x0" 0 ‘v0’ 10 '60" 30 'g" 32.2 'x' 50 'y’ 20 }[ENTER]J[ENTER]
[~][* I[ALPHA][ALPHA][V][L][ALPHA][STO»]

Then, use [][|]IENTER] to replace values in the yO equation. (Approximate mode OK).

Press [~][EVAL] to obtain a floating-point result. The result is 'y0 = 527.80".

Press [<][VAR][VL] [~][| 1IENTER] ([~][EVAL], if needed). The resultis 't=5.77."

Note: This method worked fine in this example because the unknowns t and y0 were algebraic

terms in the equations. This method would not work for solving for 60, since 60 belongs to a
transcendental term.

Example 2 - Stresses in a thick wall cylinder

Consider a thick-wall cylinder for inner and outer radius a and b, respectively, subject to an

inner pressure P; and outer pressure P,. At any radial distance r from the cylinder’s axis the

normal stresses in the radial and transverse directions, G,, and Ogg, respectively, are given by

a’-P-b*-P L&C b* -(P. =P)

Cog = bh: _ 4? rib=a?)

a’ P-b*P, ab (PP)
0,= = :b? —a? rt (b* =a?)

Notice that the right-hand sides of the two equations differ only in the sign between the two

terms. Therefore, to write these equations in the HP 49 G calculator, | suggest you type the
first term and store in a variable T1, then the second term, and store it in T2. Writing the

equations afterwards will be matter of recalling the contents of T1 and T2 to the stack and

adding and subtracting them. Here is how to do it with the equation writer:

Enter and store term T1:

[EQW] [<][O] [ALPHAT[<][A] [y“1[2] [»] [x] [ALPHAJ[PI[ALPHA][<][I] [-]
[ALPHA][][B] [y‘1[2] [>] [x] [ALPHA][P][ALPHA][<1[O] [»1[»1[»]1[»]
[+] [=1[0] [ALPHA][<][A] [y'][2] [>] [-1[ALPHA][<][B] [y*][2] [>] [ENTER]

[10 * ITIALPHA][T][1][STOM]

Enter and store term T2:

(EQW] [ALPHA][][A] [y1[2] [»] [x] [ALPHA][<][B] [y][2] [>] [x]
[100] [ALPHA][PI[ALPHA][][1] [-] [ALPHA][PI[ALPHA][<][O] [>] [»]1[»>1[»][»]
LHALPRAIEIIR] 102] I] [x] [<][O] [ALPHAT[<I][AT [y'1(2] [>] [-J[ALPHA][<](B] [y'][2]
>
[ENTER]

[1[* IIALPHA][T][2][STOM]

388 © 2000 - Gilberto E. Urroz

All rights reserved

Create the equation for ogg:

(VAR][T1 J[T2 1[+] [~][" I[ALPHA][~][SI[ALPHA][~][T] [ENTER] [»] [~][=]

Create the equation for oj:

[VARI T1 J[T2 1[-] [~][" J[ALPHA][~][SI[ALPHA][<][R] [ENTER] [»] [~][=]

Put together a vector with the two equations:

[2] [<][PRG][TYPE][->ARRY]

Now, suppose that we want to solve for P; and P,, given a, b, r, o;-, and 0g. Thus, we enter a

vector with the unknowns:

(<=) [01] [10 "1 [ALPHA][PI[ALPHA][<][I] [»][SPC] [~][*] [ALPHA][P][ALPHA][<][O] [ENTER]

To solve for P, and P,, use:

[+][S.SLV] [SOLVE] (second SOLVE key)

It may take the calculator a minute to produce the result:

{['Pi=-(((0B-0Or)*r"2-(0B+or) *a~2)/(2*a~2))"’

‘Po=-(((00-0r)*r"2-(00+0r) *b"2)/(2*b"2))" 1 }.

Using the Multiple Equation Solver (MES)

The multiple equation solver is an environment where you can solve a system of multiple

equations by solving for one unknown from one equation at a time. It is not really a solver to

simultaneous solutions, rather, it is a one-by-one solver of a number of related equations. To

illustrate the use of the MES for solving multiple equations we present an application related to
trigonometry in the next section.

Solution of triangles using the MES

In this section we use one important application of trigonometric functions: calculating the

dimensions of a triangle. As a matter of fact, the word ‘trigonometric’ implies solution of
triangles for it is composed of the Greek roots: ‘Tri’ (three), 'gonos' (sides), and ‘metron’
(measurement). Unlike the presentation in this book, trigonometric functions were first

defined in terms of the dimensions of a right triangle as presented below. Solution of triangles

using trigonometric functions can be extended to any type of triangle through the so-called

sine and cosine laws. The solution is implemented in the calculator using the Multiple

Equation Solver, or MES.

389 © 2000 - Gilberto E. Urroz

All rights reserved

Trigonometric functions in a right triangle

Consider the right triangle ABC shown in the figure below.

A

hb

90° B I~ 5

C a

The triangle has sides of lengths a, b, c, opposite, respectively, to the angles a, 8, and y = 90°.

The side opposite to the 900 angle is known as the hypotenuse of the triangle. For all
trianglesis it known that the sum of the interior angles is always equal to 780°. For the

triangle above, then, a + f+ 90° = 180°, or

o+f=90°.

Also, from the Pythagorean theorem, we know that

7 7

a‘ +b’ = c.

In terms of the lengths of the sides of this right triangle, the trigonometric functions of the

: a opposite side b adjacent side
8iN (I = = =Lh © COS = = Innn. +

¢ hypothenuse c hypothenuse

angle a are defined as follows:

¢ _ hypothenuse
csc =— eco = —

¢ _ hypothenuse

a oppositeside ’ b adjacent side’

ano =

coto

a _ oppositeside

b adjacent side’

b adjacent side

a oppositeside

Using the general definitions in terms of opposite side, adjacent side, and hypotenuse, we can

also write, for the angle 3:

: b b
sin B=—; cos f=2; tan f = —; cotf=2<; sec f=; cscf==.

c c a b a b

It follows from these definitions that

sin oo = cos 3, cos a = sin , tan a = cot 3, cot a = tan 3, sec a = csc 3, csc o = sec PB.

Or, since, B=90°-0=(/2- a)

390 © 2000 - Gilberto E. Urroz

All rights reserved

sin o = cos (/2 - a0), cos a = sin (W/2 - a), tan a = cot (7/2 - 0),

cot a = tan (m/2 - a), sec a = csc (/2 - a), csc a = sec (W/2 - ov).

Solution of triangles

Consider the triangle ABC shown in the figure below.

C

¥

8 XY,

The sum of the interior angles of any triangle is always 180°, i.e.,

o+B+7v=180°

The sine law indicates that:

sine sin 8 siny

a b c

The cosine law indicates that:

a’ =b’ +c? - 2-bccos a,

2b? = a + ¢? - 2-a-ccos J,

¢Z =a’ + b? - 2.a-bcos Y.

In order to solve any triangle, you need to know at least three of the following six variables: a,

b, c. a, B,7. Then, you can use the equations of the sine law, cosine law, and sum of interior

angles of a triangle, to solve for the other three variables. In the solution of triangles,

therefore, we distinguish the following cases:

391 © 2000 - Gilberto E. Urroz

All rights reserved

Case | Given three sides, find the three angles. In this case, you can find the three angles
using the cosine law:

a = cos[(bP+P-a%)/(2-b-c)], B = cos'[(a’+c?-bP)/(2-ac)], and y = cos” [(a’+b®-a®)/(2-a-b)].

Case Il: Given two sides and the angle in between, find the other side and the two remaining

angles. Say that we know a, b, and y. Using the cosine law, we can find c¢ from

=a’ +b%-2abcosy.

Then, using the sine law, we can get

a = sin’ (a- siny/ c), and B = sin” (b- sin / a), or B = 180°-(a+y).

Case lll: Given two sides and an angle opposite to one of the sides. Say that we know a, b, and

a. From the sine law we can get,

B = sin’ (b-sin a/a); and y= 180°-(o+p).

Finally, we can find c from the cosine law

¢? = a® +b? - 2-a-bcos ¥.

Calculating the triangle’s area with Heron's formula

Once the three sides are known, then the area of the triangle can be calculated with Heron's

formula

A=1ls-(s—a)-(s—b)-(s—c),

where s is known as the semi-perimeter of the triangle, i.e,

at+b+c
5 ee,

2

Triangle solution using the HP 49 G's Multiple Equation Solver

The Multiple Equation Solver (MES) is a feature that can be used to solve two or more coupled
equations. It must be pointed out, however, that the MES does not solve the equations

392 © 2000 - Gilberto E. Urroz

All rights reserved

simultaneously. Rather, it takes the known variables, and then searches in a list of equations

until it finds one that can be solved for one of the unknown variables. Then, it searches for

another equation that can be solved for the next unknowns, and so on, until all unknowns have

been solved for.

Creating a working directory

We will use the MES to solve for triangles by creating a list of equations corresponding to the

sine and cosine laws, the law of the sum of interior angles, and Heron's formula for the area.

First, create a sub-directory within HOME that we will call TRIANG, and move into that
directory:

[1] * TIALPHA][ALPHA]I[TI[RI[II[AI[N][G][ENTER] Enter name of directory in the stack]

[<][PRG][MEM][DIR][CRDIR] Create directory TRIANG

[VAR][TRIAN] Move into directory TRIANG

Entering the list of equations

Within TRIANG, enter the following list of equations either by typing them directly on the stack

or by using the equation writer. (Recall that [ALPHA][—][A] produces the character a, and

[ALPHA][~][B] produces the character B. The character yneeds to be [ECHO]ed from

[~][CHARS].):

SIN(a)/a = SIN(B)/b’
'SIN(0)/a = SIN(})/c’
SIN(B)/b = SIN(y)/c’
'cA2 = at2+b"2-2°a"b*COSY)’
‘b"2 = a”2+c"2-2*a*b*COS(B)’

‘a2 = b"2+c"2-2*b*c*COS(0)

‘o+p+y = 180°
‘s = (a+b+c)/2’

‘A =v (s*(s-a)*(s-b)*(s-c))’

Then, enter the number [9], and create a list of equations by using: [<][PRG][LIST][—»LIST].

Store this list in the variable EQ:

[VAR][~][*][ALPHA][ALPHA][E]J[Q][ENTER] [STO»].

The variable EQ contains the list of equations that will be scanned by the MES when trying to

solve for the unknowns.

Entering a window title

Next, we will create a string variable to be called TITLE to contain the string "Triangle

Solution”, as follows:

[nd| Open double quotes in stack
[ALPHA] [<][ALPHA] [ALPHA][ALPHA] Locks keyboard into lower-case alpha.

[<TIRIMNIATINI[G]IILI[EI[SPC] Enter text: Triangle_

[<]ISIOILIUILTIIN[O]IN] Enter text: Solution

[ENTER] Enter string “Triangle Solution” in stack

393 © 2000 - Gilberto E. Urroz

All rights reserved

[1°] Open single quotes in stack

[ALPHAJ[ALPHA]I[TI[IIITIILI[E][ENTER] Enter variable name ‘TITLE’

[STOMP] Store string into ‘TITLE’

Creating a list of variables

Next, create a list of variable names in the stack that will look like this:

{abcoafByars }

and store it in variable LVARI (List of VARIables). The list of variables represents the order in

which the variables will be listed when the MES gets started. It must include all the variables
in the equations, or it will not work with [MITM] (see below). Here is the sequence of

keystrokes to use to prepare and store this list:

[<1 Open list brackets
[ALPHA][<][ALPHA] [ALPHA][ALPHA] Locks keyboard into lower-case alpha

[A][SPC][B][SPCIIC][SPC] Entera b c

[~]1[A][SPC][][B][SPC][ALPHA] Enter a and
[~][CHARS] Open the characterlist

(find y) [ECHO][ENTER] [ENTER] Enter y, and enter list in stack
[1°] Open single quotes in stack

[ALPHA][ALPHA][L][VI[AI[RI[I][ENTER] Enter variable name ‘TITLE’

[STOW] Store string into TITLE’

Press [VAR], if needed, to get your variables menu. Your menu should show the variables

[LVARIJ[TITLE][EQ].

Preparing to run the MES

The next step is to activate the MES and try one sample solution. Before we do that, however,
we want to set the angular units to DEGrees, if they are not already set to that, by typing:

[ALPHA][ALPHA][D][E][G] [ENTER].

Next, we want to keep in the stack the contents of TITLE and LVARI, by using:

[TITLE][LVARI].

To access the MES functions, you need to access menu 113.01. This menu was accessible in the
HP 48 G/G+/GX calculators through a direct keystroke sequence, but in the HP 49 G, it needs
to be accessed through:

(OEIC. 1{01[1] [SPC] [ALPHAJ[ALPHA] [M][E][N][U] [ENTER]

You will get the soft menu keys:

[EQLIB][COLIB][MES J[UTILS][Il]

Press the [MES] key. The MES menu includes the following functions:

[MSOLV][MINIT][MITM][MUSER][MCALC][MROOT].

394 © 2000 - Gilberto E. Urroz

All rights reserved

We will use only the functions MINIT, MITM, and MSOLV. These stand for:

= MINIT: MES INITialization: initializes the variables in the equations stored in EQ.

= MITM: MES’ Menu Item: Takes a title from stack level 2 and the list of variables from

stack level 1 and places the title atop of the MES window, and the list of variables as soft

menu keys in the order indicated by the list. In the present exercise, we already have a

title ("Triangle Solution”) and a list of variables ({ a b c¢c a By A s }) instack levels 2
and 1, respectively, ready to activate [MITM].

= MSOLV: MES SOLVEr; activates the Multiple Equation Solver (MES) and awaits for input
by the user.

Running the MES interactively

To get the MESstarted, press:

[MINIT] Initialize MES variables

[MITM] Load title and list of equations.
[MSOLV] Starts MES solution

The MES is launched with the following list of variables available:

(all b Jl cl oll BI v]

Press [NXT] to see the next list of variables. You should have:

[A Ils IT 10 1 ALL)

Press [NXT] to see the third list of variables. You should see:

[MUSER][MCALC][Il Il I 1.

Press [NXT] once more to recover the first variable menu.

Let's try a simple solution of Case |, usinga = 5, b = 3, c = 5. Use the following entries:

[6] a] a:5 is listed in the top left corner of the display. Soft key label [a] changes.
Bll b 1] b:3 is listed in the top left corner of the display. Soft key label [b] changes.

[511 c 1 c:5 is listed in the top left corner of the display. Soft key label [¢] changes.

To solve for the angles use:

[«]] o] Calculator reports Solving for a, and shows the result a: 432.542396876.

This value is, however, unreasonable, since the sum of the interior angles of a triangle must be

180°. Because the solution is obtained numerically, it will depend on the initial value of the
variable that we are solving for. This value is somewhat arbitrarily set by the calculator, and,

in this case, produced too large a solution. Let's try changing the initial value to obtain a more

reasonable solution as follows:

395 © 2000 - Gilberto E. Urroz

All rights reserved

[1][0][o] Re-initialize a to a smaller value.

[<1] ao] Calculator reports Solving for o, and shows the result oo: 72.5423968763.

Next, we calculate the other two values:

[<1 B 1 The result is: 34.9152062474.

[<1] v 1 The result isy: 72.5423968763.

You should have the values of the three angles listed in stack levels 3 through 1. Press [+]
twice to check that they add indeed to 180°.

Press [NXT] to move to the next variables menu. To calculate the area use: [«][2A].

The calculator first solves for all the other variables, and then finds the area as A:

7.15454401063.

Note: When a solution is found, the calculator reports the conditions for the solution as either

Zero, or Sign Reversal. Other messages may occur if the calculator has difficulties finding a

solution.

Press [VAR] to exit the MES environment.

Organizing the variables in the sub directory

Your variable menu will now contain the variables:

AJ s Il gll blll allc]

Press [NXT] to see the second variables menu:

[b]J[a][Mpar][LVARI][TITLE][EQ].

Variables corresponding to all the variables in the equations in EQ have been created. There is
also a new variable called Mpar (MES parameters), which contains information regarding the
setting up of the MES for tis particular set of equations. If you use [~][Mpar] to see the
contents of the variable Mpar, you will get the cryptic message: Library Data. The meaning

of this is that the MES parameters are coded in a binary file, which cannot be accessed by the

editor.

Next, we want to place them in the menu labels in a different order than the one listed above,

by following these steps:

1. Create a list containing { EQ Mpar LVARI TITLE }, by using:

[<1 NI EQ J[Mpar][LVARI][TITLE] [ENTER].

2. Place contents of LVARI in the stack, by using: [LVARI].

3. Join the two lists by pressing [+].

4. Use the following keystroke sequence to order the variables as shown in the list in stack

level 1:

[<][PRG][MEM][DIR][NXT] [ORDER]

396 © 2000 - Gilberto E. Urroz

All rights reserved

5. Press [VAR] to recover your variables list. It should now look like this:

[EQ][Mpar][LVARI][TITLE][a][b]

6. Press [NXT], to see:

[lc Ml ao lB Illy Il A Ils I

7. Press [NXT] to recover the first variable menu.

Programming the MES triangle solution using User RPL

To facilitate activating the MES for future solutions, we will create a program that will load the

MES with a single keystroke. The program should look like this:

<< DEG MINIT TITLE LVARI MITM MSOLVR >>

and can be typed in by using:

[P][<<>>] Opens the program symbol
[ALPHA][ALPHA] Locks alphanumeric keyboard

[DIIE][GIISPC] Type in DEG (to ensure that angular units are set to DEGrees)
[MI[OINIOIITI[SPC] Type in MINIT_
[ALPHA] Unlocks alphanumeric keyboard
[TITLE][SPC] List the name of variable TITLE in the program

[LVARI] List the name of variable LVARI in the program
[ALPHA][ALPHA] Locks alphanumeric keyboard

[(MI[IIT]IMI[SPC] Type in MITM_

[M][SI[O][LILVIIR] Type in MSOLVR
[ENTER] Enter program in stack

Store the program in a variable called TRISOL, for TRlangle SOLution, by using:

[10 ‘1 [ALPHA][ALPHA] [TI[RI[II[SI[O][LI[ENTER] [STOM].

Press [VAR], if needed, to recover your list of variables. A soft key label [TRISO] should be

available in your menu.

Running the program - solution examples

To run the program, press the [TRISO] soft menu key. You will now have the MES menu
corresponding to the triangle solution. Let's try examples of the three cases listed earlier for

triangle solution.

Example 1 - Case | - Right triangle: Use a =3, b=4, c =5. Here is the solution sequence:

[41] a 1[4]1[b 1I51[c¢ 1] To enter data

[<]] ao] The result is o: 36.8698976458

[«]l B 1 The result is: 53.1301023541.

397 © 2000 - Gilberto E. Urroz

All rights reserved

[<1 vy 1 The result isy: 90.
[NXT] To move to the next variables menu.

[<1 a] The result isA: 6.

[NXT]INXT] To move to the next variables menu.

Example 2 - Case | - Any type of triangle: Use a = 3, b = 4, c = 6. The solution procedure used

here consists of solving for all variables at once, and then recalling the solutions to the stack:

[VAR][TRISO] To clear up data and re-start MES

[311 a 141 b 15] c¢] To enter data

[NXT] To move to the next variables menu.

[<][ALL] The calculator takes its time to solve for all the unknowns.

[1] ALL] The calculator shows the solution in the following screen:

Triangle Solution

Y: 117.279612736

B: 36.3360575147

ou: 26.3843297495

s: 6.5

A: 5.33268225193

[VALU®] [EQNS] [PRINT]..[EXIT]

At the bottom of the screen, you will have the soft menu keys:

[VALU=][EQNS][PRINT][Il J[EXIT]

The square dot in [VALU®] indicates that the values of the variables, rather than the equations

from which they were solved, are shown in the display. To see the equations used in the

solution of each variable, press the [EQNS] soft menu key. The display will now look like this:

Triangle Solution

: ‘cn2=a"2+b"2-2*a*..

: ‘br2=ar2+ct2-2*ax*..

: ‘a”2=b"2+c"2-2*b*..

‘s=(a+b+c) /2'

‘A=V(s* (s-a) * (s-b...>
o
n
R

=
<

 [VALU] [EQNS®] [PRINT]..[EXIT]

The soft menu key [PRINT] is used to print the screen in a printer, if available. And [EXIT]
returns you to the MES environment for a new solution, if needed. To return to normal
calculator display, press [VAR].

The following table of triangle solutions shows the data input in bold face and the solution in

italics. Try running the program with these inputs to verify the solutions. Please remember to

press [VAR][TRISO] at the end of each solution to clear up variables and start the MES solution

398 © 2000 - Gilberto E. Urroz

All rights reserved

again.

havoc with your current calculations.

Otherwise, you may carry over information from the previous solution that may wreck

a b c a’) B(°) 7°) A
2.5 6.9837 7.2 20.299 75 84.7707 8.6933
7.2 8.5 14.26 22.6162 27 130.3837 23.3086
21.92 17.5 13.2 90 52.97 37.03 115.5

41.92 23 29.6 75 32 73 328.81
10.27 3.26 10.5 |77| 18 85 16.66
17 25 32 31.79 50.78 97.44 210.71

Adding an INFO button to your directory

An information button can be useful for your directory to help you remember the operation of

the functions in the directory. In this directory, all we need to rememberis to press [TRISO] to

get a triangle solution tarted. You may want to type in the following program: <<“Press

[TRISO] to start.“ MSGBOX >>, and store it in a variable called INFO. As a result, the first
variable in your directory will be the INFO button.

Velocity and acceleration in polar coordinates -

solution using the calculator’'s MES

Two-dimensional particle motion in polar coordinates often involves determining the radial and

transverse components of the velocity and acceleration of the particle given r, r’ = dr/dt, r” =

d’r/dt?, ©, 8’ =d 6 /dt, and, 8" = d°0/dt’. The following equations are used:

v, =8 v, = réb a, = & ré a, = ré& 288

Create a subdirectory called POLC (POLar Coordinates), which we will use to calculate
velocities and accelerations in polar coordinates. Within that subdirectory, enter the following

variables:

Program or value store into

variable:

<< PEQ STEQ MINIT NAME LIST MITM MSOLVR >> SOLVEP

"vel. & acc. polar coord." NAME

{ r rD rDD OD ODD vr vB v ar ab a } LIST

{ 'vr = rD' 'vO = r*0D’ 'v = V(vrr2 + vor2)

‘ar = rDD - r*0D"2" 'ab = r*0DD + 2*rD*6D'

ra = V(ar~2 + a6”2)' } PEQ

An explanation of the variables follows:

399 © 2000 - Gilberto E. Urroz

All rights reserved

SOLVEP =

NAME =

LIST =

PEQ =

a program that triggers the HP48G or GX multiple equation solver for the particular
set of equations stored in variable PEQ;

a variable storing the name of the multiple equation solver, namely, "vel. & acc.

polar coord.”

a list of the variable used in the calculations, placed in the order we want them to

show up in the multiple equation solver environment;

list of equations to be solved, corresponding to the radial and transverse

components of velocity Wr, vB) and acceleration @r, a@) in polar coordinates, as

well as equations to calculate the magnitude of the velocity (v) and the acceleration

(a) when the polar components are known.

r, rD, rDD = r (radial coordinate), r-dot (first derivative of r), r-double dot (second derivative

6D, 6DD =

of r).

0-dot (first derivative of 0), 8-double dot (second derivative of 8).

Suppose you are given the following information:

r=2.51rD=0.5 rDD=-1.56D=2.3, 6DD =-6.5.

and you are asked to find vr, v0, ar, af, v, and a.

Start the multiple equation solver by pressing [VAR][SOLVE]. The calculator produces a

screen labeled , "vel. & acc. polar coord.", that looks as follows:

Hegel, & acc. polar coord. FEE

 r
a
d

C
n

c ch cpp Il 6p IaDDil we |

w* To enter the values of the known variables, just type the value and press the button

corresponding to the variable to be entered. Use the following keystrokes:

(2101081 Or 1 LIESIC oD J [OODC10510+/-]0 ¢DD | [2][.][3][6D 1[6][.1[5][+/-]1[6DD].

Notice that after you enter a particular value, the calculator displays the variable and its

value in the upper left corner of the display.

400 © 2000 - Gilberto E. Urroz

All rights reserved

a We have now entered the known variables. To calculate the unknowns we can proceed

in two ways:

a). Solve for individual variables, for example, [<][vr] gives vr: 0.500. Press [NXT] [«][

vB] to get v@ : 5.750 , and so on. The remaining results are v: 5.77169819031; ar: -

14.725; ab: -13.95; and a: 20.2836911089.;

or,

b). Solve for all variables at once, by pressing [<][ALL]. The calculator will flash the

solutions as it finds them. When the calculator stops, you can press [~][ALL] to list all

results. For this case we have:

. polar coord.

 UH: 9h

ut 5.77169819031
ar: —-14.725
ad: -13.95
a: 20.2836911689
MALusfEen:[PEINT]| JEWIT

Pressing the soft-menu key [EQNS] will let you know the equations used to solve for each of

the values in the screen:

y
yi 'usddurtza rut. a!
ar: ‘'ar=rDDh-rxgD"2’
af: 'af=r¥aDD+2. ¥rD*..
at 'a={Car~z2+af"zy’
[TE EE GAa5

To use a new set of values press, either [EXIT][ALL][NEXT][NEXT], or [VAR][SOLVE].

Let's try another example using r = 2.5, vr =rD = -0.5, rDD = 1.5, v = 3.0, a=25.0. Find, 6D,
oDD, vO, ar, and af. Enter the following values: [2][.][5][r][.1[5][+/-][ENTER]J[ENTER][rD

IL ovr]
[110 . 151] DD J[3]INXT]I[v]I[2][5][a 1 To solve and show results, press [<][ALL]

(wait) [m][ALL]. The results are given in the following screen shot:

987153831
44123568182

 [TD PRINT]| [EXIT

401 © 2000 - Gilberto E. Urroz

All rights reserved

Using the SOLVESYS library for simultaneous
equations

Systems of non-linear equations can be solved using the library SOLVESYS, developed by Sune Bredahl, a

computer scientist from Denmark, and available in the Internet at: http://www.hp.org

Installing the SOLVESYS library

1. Make sure you are in the HOME directory. Download the variable that contains the
library SOLVESYS from the INTERNET, and place it in your calculator in a variable that
you could call SOLVES. To install SOLVESYS use these keystrokes:

Keystrokes Display shows

[~][SOLVES] Library 1550: SOL.... (*)

[0][STO] (blank display)

(*) 1550 is an ID number for your library selected by the library's author.

2. To check if installation was successful, enter: [R][LIB][:0:]. There should be a

variable labeled [1550] in port O.

3. The next step is to load the library and attach it to the HOME directory, by pressing,

simultaneously, [ON][F4 D]. A menu will be provided. Press [Q] to reboot the

calculator.

Example 1 - two conic equations

Let's use SOLVESYSto solve the following system of non-linear equations given as a list:

{"(X-1)"2+(Y-2)"2=3"' 'X"2/4+Y"2/3=1"}.

Now, store this list into variable [EQ] by using:

[<1 EQ]

Next, start the SOLVESYS library by using:

[~][LIBRARY][SOLVE][SOLVE]

The system is already loaded, as shown in the display.

4 Press [OK] to initialize values. The next screen (CURRENT VALUES) is used to enter
initial values of X and Y, with default values of 1.0. Let's use those values to solve the

system.

Press [SOLVE]. The bottom of the screen shows a value eq: that keeps changing
(hopefully becoming smaller). This value is the error in the solution. After a while, you

get a <!>Zero message.

Press [OK] to see the values of X and Y shown that form the solution. X = 1.906, Y =

0.524. You need to press [EDIT] to see any of the highlighted values in the solution.

402 © 2000 - Gilberto E. Urroz

All rights reserved

= Press [INFO] to obtain information about the solution process. You may get a message
box similar to this:

m/n: 2/2

Ax: 5.62E-4

eq: 1.28E-6

1sq:
m/n stands for the number of equations (m) and the number of unknowns (n). For exact

solutions m = n. Ax represents the increment in the x, y values obtained in the last step of the

solution. Eq represents the error in the solution. And /sq is used when finding a least-square

solution (also included with SOLVESYS).

we Press [OK][ON] to quit the SOLVESYS library. The most current solution will be shown

in the stack.

To get a different solution yu may want to start by entering different values in the START
VALUES screen. For example, try using X =-1, Y = -1.

wk Start the SOLVESYS library by using: [][LIBRARY][SOLVE][SOLVE][OK]

= Enter [1][+/-]1[0K] [1][+/-][OK].
Press [SOLVE]. Press [OK] when advised that a solution has been found. This solution

converged to X = -0.6910, Y = 1.6253, with an error € = 5.62E-8.

we Press [OK] to leave the SOLVE screen.

wk Press [ON] to quit the SOLVESYS library.

Press [VAR] to recover your variable menu.

Example 2 - Manning's equation for circular cross-section

Manning's equation is used to solve for uniform flow (constant-depth flow) in an open channel.

The equation is written as,

Q - (C/n) (A 5/3 /p 2/3) S 2

where Q = flow rate or volumetric discharge [m3/s, ft3/s = cfs], A = cross-sectional area [m?,

ft], P = wetted perimeter [m, ft], S = channel bed slope [m/m, ft/ft, i.e., dimensionless], C =

units coefficient [dimensionless, C = 1.0 for the S.l. system, C = 1.489 for the English system], n
= Manning's resistance coefficient [dimensionless, a function of the channel surface roughness].

For a circular cross-section, if Y = flow depth [m, ft], D = diameter of the circular cross-section

[m, ft], and B = central half-angle [radians], then

Y =(D/2)(1-cos B),

A = (D?/4)(B -cos B sin B),
and,

403 © 2000 - Gilberto E. Urroz

All rights reserved

P=8D.

Replacing the expressions for A and P into Manning's equation and raising both sides to the third

power results in:

((D?/4)(B -cos B sin B))>/(B D)? = (Q:n/CS)3.

To solve for values of Y and B, given Q = 1 cfs, C = 1.489, n= 0.012, D = 3 ft, and S = 0.00001,
enter the following equations:

'Y=(D/2)*(1l-cos(R))"'
and

'(D"2/4* (R-cos (3) *sin (BR))"5/ (*D) ~2= (Q*n/C*\S) ~3

in levels 1 and 2 of the stack. Then enter:

[2][PRG][TYPE][> LIST]

to create the list:

{ 'Y=(D/2)*(1-cos(R))' '(D"2/4* (B-cos(R)*sin(R))~5/(8*D) 2=(Q*n/C*VS)"3"'}.

Store the list in variable EQ:

['I[o][E][a][Q] [STO].

To use SOLVESYS, use the following keystrokes: [~][LIBRARY][SOLVE][SOLVE][OK].

Enter the values of the constants in the problem within square brackets:

(=100 00. 1[41[8][9][OK] [=100 N[3][OK] [100 11][OK] [IC 1001T
1{0]{0]{0] [0] [1] [OK]

Leave the value of 1 for Y and skip to the N: field to enter

[=IM011[0]L . TIO] [1] [2] [OK].

Leaving the value of 1 for %, also, press [SOLVE]. The first screen shows that there are two equations,
with two unknowns and 5 constants. Next, you get a screen showing the values of the variables as they

change, as well as the current value of the error, £ The iterations stop whene=1.9200x10°. Press [OK]

to see the solution as:

Y =1.3869, 8 = 1.4953.

Press [QUIT] to end the library operation. The solution will be listed in the stack. Also, the
library would have created variables corresponding to the constant values used in the solution,

namely, N, S, D, Q, and C. These variables are always created in the HOME directory,
regardless of which directory was used to launch the library. Press [<=] [HOME] [VAR] to see

these variables. To delete the variables, use:

[=I00I0 N JOS I D 10 Q J C J[ENTER].

The following list will be shown in stack level 1:{ n S D Q C}. To purge the variables
enter: [TOOL][PURGE].

404 © 2000 - Gilberto E. Urroz

All rights reserved

Graphical solutions of two simultaneous equations

You can use the graphics environment to find the solution of two simultaneous equations. The

solution will be simple the coordinates of the point of intersection of two curves. For example,

to solve

tan(x) = x,

you ould plot the functions f;(X) = TAN(X), and f>(X) = X, and find their intersections. Here is

how:

we Press [<1][2D/3D], simultaneously to access to the PLOT SETUP window.

“ Change TYPE to FUNCTION, if needed, by using [CHOOS].

Press [¥] and type in the equation list { ‘TAN(X)" 'X" }.

Make sure the independent variable is set to 'X".

+
+

+

Press [NXT][OK] to return to normal calculator display.

= Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be

called PLOT -POLAR window).

- Change both the H-VIEW and V-VIEW ranges to -5 to 5.

we Press [ERASE][DRAW] to plot the function in polar coordinates. The resulting plot looks

as follows:

lr _-

J
1

EITrr

- Notice that there are vertical lines that represent asymptotes. These are not part of

the graph, but show up because TAN(X) goes to at certain values of X. There are at least
three roots in this interval, however. The one in the center is X = 0. To find the one to the

right, move the cursor near the intersection of the two lines, and press [FCN][ISECT]. The
result is ksect: (4.4934, 4.4934). Thus, the first positive solution of tan(x) =x is x =

4.4934.

“Press [NXT][NXT][PICT][CANCL][ON] to return to normal calculator display.

405 © 2000 - Gilberto E. Urroz

All rights reserved

REFERENCES - Vol. | only

Devlin, Keith, 1998, "The Language of Mathematics,” W.H. Freeman and Company, New York.

Heath, M. T., 1997, “Scientific Computing: An Introductory Survey,” WCB McGraw-Hill, Boston,
Mass.

Newland, D.E., 1993, "An Introduction to Random Vibrations, Spectral & Wavelet Analysis -
Third Edition,” Longman Scientific and Technical, New York.

Tinker, M. and R. Lambourne, 2000, "Further Mathematics for the Physical Sciences,” John

Wiley & Sons, LTD., Chichester, U.K.

REFERENCES - Vol. Il only

Farlow, Stanley J., 1982, "Partial Differential Equations for Scientists and Engineers,” Dover
Publications Inc., New York.

Friedman, B., 1956, “Principles and Techniques of Applied Mathematics,” (reissued 1990),
Dover Publications Inc., New York.

Kottegoda, N. T., and R. Rosso, 1997, "Probability, Statistics, and Reliability for Civil and
Environmental Engineers,” The Mc-Graw Hill Companies, Inc., New York.

Kreysig, E., 1983, “Advanced Engineering Mathematics - Fifth Edition,” John Wiley & Sons, New
York.

REFERENCES - For both Vols. | and Il

Gullberg, J., 1997, “Mathematics - From the Birth of Numbers,” W. W. Norton & Company, New

York.

Harris, J.W., and H. Stocker, 1998, "Handbook of Mathematics and Computational Science,”

Springer, New York.

Hewlett Packard Co., 1999, HP 49 G GRAPHING CALCULATOR USER'S GUIDE.

Hewlett Packard Co., 2000, HP 49 G GRAPHING CALCULATOR ADVANCED USER'S GUIDE

406 © 2000 - Gilberto E. Urroz

All rights reserved

1

1,51 3D menu, 321

1A

0, 24,28 ABCUV, 159
—ARRY, 172 ABS,25, 50, 60, 175, 229
—COL, 219 ACOS, 24
-DIAG, 214 ACOS2S, 150
->GROB, 350, 351 ACOSH, 49
LCD, 352 ADD, 68
>NUM, 29 ADDTM, 156

->0BlJ, 353 adjacentside, 390

-ROW,221 ALG, 27, 144
->STR, 353 Algebra, 134

-TAG, 109 algebraic, 142
-V2, 175 Algebraic, 10, 16

—-V3, 175 algebraic equations, 365

«WID, 170 algebraic expressions for polynomials, 369

algebraic mode, 7, 9, 10, 12, 15

% algebraic object, 15, 142

algorithm, 2775

%, 50 ALPHARH
%CH. 50 Alphabetic characters, 18

%T. 50 alphabetic key, 18

oT amortization, 372
AND, 118

l i I angle mode, 35

ANIMATE, 348, 349
i, 28 annual interest rate, 370

ANS,29

: I anti-symmetric matrix, 223

ARC, 336
|, 21, 146 ARG, 25, 60

ARITH, 27
+ arrays, 15

—_ ASIN,24
+COL, 171 ASIN2C, 150
+ROW. 171 ASIN2T, 150

’ ASINH, 49
Assembler language, 9

I 1 I ATAN,24
ATAN2S, 150

ME. 2s ATANH,49
10%, 25

407

ATICK,320, 321

augmented matrix, 242

AUTO, 316

© 2000 - Gilberto E. Urroz

All rights reserved

auxiliary variables, 376

AXES, 321, 326

AXL, 198, 237

AXM, 237

AXQ, 258

8

backward substitution, 241

bar plots, 302

BASE, 28

BASE menu, 51, 343

Base-10 logarithm, 48

BEGIN, 19

BESTFI, 326

beta distribution, 82

BIN, 343

binary digits, 350

Binaryintegers, 15

binary system, 342

Binomial distribution, 79

BIT and BYTE menus, 344

bits, 350

BLANK, 351

BOX, 332, 336

BOXZ, 346

Branching, 119

Bredahl, Sune, 402

cc

C->PX, 336

CALC, 27

Calculator Algebraic System, 45

Cartesian representation ofcomplex numbers,

59

CAS,20

CASsettings, 46

CASE, 124

CASINFO,163

CATO)
cdf, 54,78

CDF, 379

CELL 50

center of mass, 183

CENTR, 320

Central Processing Unit, 7

CHAR, 354

characteristic polynomial of a matrix, 253

characters list, 354

CHARS, 22,354

CHARS menu, 353

Chinese Remainder Theorem, 160

CHINREM, 160

Chi-squared (x?) distribution, 57

408

CIRCL, 333

Clausius-Clapeyron equation, 386

CLEAR, 21,24

CMD, 22

CMPLX, 27

CMPLX menus, 60

CNCT,327

CNRM,230

CNTR, 346

COL, 218

-COL, 171

COL-, 220

COL-, 219

COL+, 219

column norm of a matrix, 230

column vectors, 196

COMB, 51

combinations, 52

Combinatorics, 52

command catalog, 41

complex number, 14, 15

complex numberss
Complex numbers, 15

CON,212

concatenate two lists, 68

COND,231

condition number ofa matrix, 231

congruence, 154

conic curve plots, 295

CON], 60

CONST,41

CONT, 29
continuous random variables, 54

CONVERT, 27

coordinate system, 35

Cory, 21

correlation coefficient, 277

COS
COSH, 49

cosine law, 391

Cramer’s rule, 235

CROSS,175

cross product, 178

CSWP, 220

cubic equation, 385

cumulative distribution function, 78,379

Cumulative Distribution Function, 54

CUSTOM,20

CUT, 22

CYLIN, 176

rr
D-R, 50

© 2000 - Gilberto E. Urroz

All rights reserved

DARCY(¢/D, Re), 377

Darcy-Weisbach equation, 377

DATA menu, 325

DBUG, 103

Debugging a program, 103

DEC, 343

decimal system, 342

DEF, 27

DEL, 24, 171, 333

Deleting variables, 30

DET, 233

De-tagging, 110

determinant of a matrix, 180, 233

DIAG-, 214

diagonal matrix, 200

differential equation plots, 299

Dimensional analysis, 263

dimensional homogeneity, 263

Dirac’s delta function, 269

directed segment, 176

direction cosines, 266

directories, 9, 16

Directories, 15

Discrete probability distributions, 78
discussion group, 8

DISP, 20

DIV2, 160

DIV2M,156

DIVMO,156

DO, 130

DOLIST, 93

DOSUBS, 94

DOT, 175

DOT-, 332

dot vector product, 178

DOT+, 332

DRAW, 317

Drawing commands, 334

DRAX, 317

DROP, 23

DUP,21

—

ECHO, 354
ECHO, 354

EDIT, 20

[EBX, 25
EGCD,160
EGV, 254
EGVL, 253
eigenvalue equation, 253

eigenvalues, 231, 253

eigenvectors, 231,253

Einstein’s summation convention, 202

409

electrical circuit, 260

elements of a matrix, 200

END, 20

engineering economics, 370

Engineering numberformat, 33

[ENTER29
EPS, 167

EPSXO0, 167

EQ, 76,317,328

equation writer, 11, 142

Equation Writer, 12

B54, 23, 142
ERASE, 317, 333

Euclidean norm ofa matrix, 230

Euler formula, 59

EVAL 23

Evaluating a polynomial or algebraic, 369

e', 24
EXP&LN, 26

EXPAN, 144

EXPFI, 326

EXPLN,147

EXPM,49, 147

Exponential, 47

exponential distribution, 82

EYEPT, 323

 ——
FACTOR, 144

Factorials, 52

FACTORMOD, 158

FANNING(€e/D, Re), 377

Fast 3D plots, 306

FCOEF, 153

FILES, 19

FINANCE, 26, 372

Financial calculations, 370

finite arithmetic, 154

flag, 13, 14

FLAG menu, 326

FLAGS, 20

FLOOR, 50

flow in a pipe, 377

FOR...NEXT, 129

FOR...STEP, 130

forward elimination, 241

FP, 50

Frobenius norm, 229

FROOTS,154

fullpivoting, 244
function for pipe flow, 377

function of one variable, 69

FUNCTION plots, 284

functions, 67

© 2000 - Gilberto E. Urroz

All rights reserved

fundamental theorem ofalgebra, 368

FV, 373

eccccccc
gamma distribution, 81

Gamma function, 53

GAUSS, 259

Gaussian elimination, 241

Gauss-Jordan elimination, 243

GCD, 161

GCDMO, 156

General solutions, 13

Geometric Distribution, 80

GET,85

GETI,85

Global, 15

global variable, 72

GO-, 170

GOR,351

GOTO, 171

Graphical solution of equations, 385

graphics animation, 347

Graphics objects, 15

Graphics OR, 351

Graphics XOR,351

Greek letters, 32

Gridmap plots, 311

GROB, 350

GROB menu, 351

GXOR, 351

—_—

HADAMARD, 237

HALFTAN, 150

HEAD, 85

HERMITE, 161

Heron’s formula, 392

HEX, 343

hexadecimal, 343

HILBERT, 216

ISTRY], 22
histogram plots, 302

HOME directory, 7, 16, 17

Hooke’s law for stress and strain, 374

HORNER, 162

HP Basic, 9

HYP menu, 49

hyperbolic functions, 49

Hypergeometric Distribution, 80

hypotenuse, 390

HZIN,346

HZOUT,346

410

| | I

i,21

1%YR, 370

ideal gas law, 43, 106

identitymatrix, 200
IDN,212

IF...THEN...ELSE.. END, 121

IF...THEN...END, 119

IFTE, 74

IM, 60

imaginarypart, 59

imaginary unit, 59

INDEP, 319

INFO, 317, 322, 325

input string, 102

integrals, 82

Interactive drawing, 331

Interactive input, 100

interactive plots, 328

internal vector product, 178

inverse function, 289

inverse matrix, 208

inverse trigonometric functions, 135

INVMO, 156

IP, 50

ISOL, 365

—_—
JORDAN,254

—_—
Kronecker’s delta function, 201

| L |

LABEL,316, 333
LAGRANGE, 163
LCD->, 352
LCM, 164

LCXM, 240
least-square method, 225

LEGENDRE, 164

LIB, 27
LibMaker, 9, 10

library, 9, 10
LIN, 147
LINE, 332, 335
linear equation systems, 224

LINFI, 326
LINSOLVE,251
list, 13, 14, 15, 16, 17

Lists, 67

© 2000 - Gilberto E. Urroz

All rights reserved

IN, 24
LNCOL, 147
LNP1, 49, 147
Local, 15

local variable, 72

LOG, 25
logarithm, 136

LOGF], 326
LOGIC menu, 344

Logical operators, 118

LQ, 257

LQfactorization of a matrix, 257

LSQ, 238, 251
LU, 256
LU matrix decomposition, 229

I

MAD, 239, 255

main diagonal of a matrix, 200

Manning's equation, 97

MANT,50

manuals, 8

MARK, 332

mass distribution function, 78

mathematical constants, 38

MATRICES, 27

matrix, 14, 15

matrix CREATE menu, 216

matrix decomposition, 229

matrix MAKE menu, 209

matrix writer, 169

MAX, 50

mdf, 78

mean of a sample, 86

MENU, 333

MES, 389

message box, 112

MIN, 50

MOD, 50, 156

MODERE
MODL, 326

MODST, 156

modular inverse, 158

modular programming, 356

MODULO,156, 163

modulus, 156

Mohr’s circle, 355

moment of a force, 188

motion in polar coordinates, 399

moving average, 94

MTH, 23

MTH menu, 49

MTRW, 169

MTWR, 23

multiple linearfitting, 272

411

MULTM,156

Nn1
Natural logarithm, 47

natural river cross section, 337

NEG, 60

Nested IF, 122

non-singular matrix, 231

NORM, 228

Normal distribution, 54

normalstress, 267

normal unit vector, 266

NOT, 118
Notation, 7, 10

NUM, 354

NUMSLYV,26, 224

NUM.SLV menu, 367

Number Format, 33

number ofperiods per year, 370

numerical solver, 224

numerical solver menu, 367

NUMX, 324

NUMY,324

NEE, 22

oo

OBJ], 69

object-oriented programming, 132

Objects, 15

OCT, 343

OFF, 29

OOP, 132

OPER, 237

operands, 11, 12

Operating Mode, 10, 13

operating system, 7, 8

operator, 11, 12

opposite side, 390

OR, 118

Orthogonal matrices, 230

Peed
Parametric plots in the plane, 296

PARTFRAC, 153

partial pivoting, 244

PASTIL, 22

Payment at begin, 371

Payment at beginning, 371

payment at the end, 370

PCAR, 253

PCOEF, 165

pdf, 54, 379

© 2000 - Gilberto E. Urroz

All rights reserved

PDIM,335

periodsfor PVM, 370

PERM,51

permutationmatrix, 244
permutations, 52

PEVAL, 167

Physical constants, 39

PICT, 334, 335, 350

PICT, 334

PICTURE,336

pivot, 244
PIX?, 336

Pixels coordinates, 345

PIXOFF, 336

PIXON, 336

planar motion, 191

PLOT, 282

PLOT menu, 315

PLOT SETUP, 282

PLOT WINDOW,283

Poisson Distribution, 80

POLARplots, 294

polar representation ofcomplex numbers, 59

polynomial coefficients, 368

Polynomial fitting, 273

Ports, 10

POS, 85

position vector, 182

Power, 47

Powers of 10, 48

powers of ten, 35

POWMO, 156

PPAR, 288

Present Value, 370

PRG, 22

principal stresses, 356

Principalstresses, 270

Principal value, 13, 14

PROB menu, 51

probability densityfunction, 54,379

probability functions, 52

program, 9, 10, 12, 13, 15, 17

Program loops, 125

program-generated plots, 329

programs, 67

Projectile motion, 387

projection of a vector, 177

PROOT, 166

PROPFAC, 153

Pr-Surfaceplots, 312

PRYV,22

Ps-Contourplots, 309

pseudo-random number generator, 53

PTAYL, 166

PTYPE, 318

PTYPE m, 322

PTYPE menu, 325

PURGE, 21

PUT,85

PUTI, 85

PV, 370

PVIEW,336

PWREFI, 326

PX->C, 336

Pythagorean theorem, 390

0

QR, 257

ORfactorization of a matrix, 257

QUADF, 258

quadratic equation, 13, 14

quadratic form, 258

QUOTIENT, 167

QXA, 258

Rk

R-D, 50

RAND, 51

random numbers, 52, 53

RANK, 232

rank of a matrix, 232

RANM,213

Rational equation systems, 387

RCI, 222

RClJ, 222

RCL, 20, 22

RDM, 212

RE, 60

REAL menu, 50

real numbers, 15, 45

real part, 59

REALASSUME, 163

RECT, 176

Re-dimensioning, 213
register, 11,12, 13

Relational operators, 117

relative acceleration, 191

relative position vector, 186

relative velocity, 191

REMAINDER, 167

REPL, 214, 334

RES, 320

RESET, 321, 324, 326

resultant, 184

REVLI, 68

right-hand rule for vector product, 178

rigid body, 191

RND, 50

RNRM, 230

© 2000 - Gilberto E. Urroz

All rights reserved

ROM, 7, 8

ROW, 220

-ROW,171

ROW-, 221

row norm of a matrix, 230

row vector, 199

row vectors, 196

ROW| 221

ROW, 221

Row-Reduced Echelon Form of a matrix, 252

RPN, 7,10, 11, 12, 13, 15

RREF, 252

RSD, 239

RSWP, 222

RUN, 103

—_

SSLV, 26

S.SLV menu, 366

SAME, 119

Saving a graph, 286

SCALE, 320

SCALEH,320

SCALEW,320

scatter plots, 302

SCHUR, 257

Schurdecomposition of a matrix, 257

Scientific numberformat, 33

SEQ, 95

sequential programming, 96

shearstress, 267

SIGN, 50, 60

significative figures, 34

SIMP2, 152

SIMU, 327

SiN, 24
SINCOS, 151

sine law, 391

singular matrix, 231

Singular Value Decomposition, 230, 256

singular values, 230

singular vectors, 230

SINH,49

SIZE,85, 352

slope field plots, 305

SNRM, 230

soft menu keys, 7,16, 17

solutions to a polynomial equation, 368

SOLVE, 365

Solve finance.., 370

Solve poly... , 367

Solvesys, 9

SOLVESYSlibrary, 402

SOLVEX, 366

solving multiple equations, 387

413

SORT, 68

Specific energy in open channel flow, 375

spectral norm of a matrix, 230

spectral radius of a matrix, 231

SPHER, 176

square matrix, 200

Square power, 47

Square root, 47

SRAD,231

SST!, 104

STACK,21

stack levels, 11, 12

standard deviation of a sample, 86

standardformat, 33

START...NEXT, 126

START...STEP, 128

STAT, 27

STAT menu, 324

statistics from grouped data, 87

SIE). 22
STREAM,94

Stress at a point in a solid, 266

stresstensor, 268

Stresses in a thick wall cylinder, 388

string concatenation, 113, 353

Strings, 353

Structural mechanics, 261

Student-t distribution, 56

SUB,213,333

sub-directories, 16

SUBS, 145

Substitution of algebraic expressions, 145

SUBTM,156

sum ofsquare errors, 277

sum ofsquared totals, 277

summations, 79

SVD,230, 256

SVL, 257

SWAP, 21

SYLVESTER, 259

SYMBRA]
Symbolic Solver menu, 366

symmetric matrix, 223

system flag, 13, 14

System RPL, 9

Systems oflinear equations, 387

Tr1
table of values, 299

TAIL, 85

TANGY
TAN2SC, 151

TAN2SC2, 151

TANH, 49

TCHEBYCHEEFF, 167

© 2000 - Gilberto E. Urroz

All rights reserved

TCOLLECT, 151

tensor, 201

TEXPA,147

textbook-like appearance, 48

The arrow keys, 19

The F distribution, 57

The multiple equation solver, 389

three-dimensional graphics, 327

TIME, 26

time value of money, 370

titled FILE MANAGER, 16

TLIN, 151

TLINE, 332, 336

g gale] i, 20

TPAR, 76

TRACE,236

trace of matrix, 236

TRAN, 237

transcendental functions, 134

transpose ofa matrix, 201

Triangle solution, 392

triangles, 391

tridiagonal matrix, 201

TRIG, 26, 151

TRIGCOS, 152

trigonometric functions, 134

Trigonometric functions, 48

Trigonometric identities, 135

TRIGSIN,152

TRIGTAN, 152

TRN,211

TRNC, 50

Truth plots, 301

truth table, 118

TSIMP, 147

two-dimensional graphics, 327

TYPE, 109

TYPE menu, 353

———————————————
UNDO, 22

unit imaginary number, 14, 15

Unit objects, 15

unit vector, 177

units, 42

UNITS, 27

universal gravitation, 382

UPDIR,21

upper-tail probability, 380

Upper-tail probability Chi square, 379

Upper-tail probability F distribution, 379

Upper-tail probability normal, 379

Upper-tail probability Student’s t, 379

User RPL, 9, 10, 15

Utility keys, 19

UTPC,51, 379

UTPF, 51, 379

UTPN,51, 379

UTPT, 51, 379

| Vv |

V—, 175

VANDERMONDE, 215

HX21
Variable Scope, 73

variance of a sample, 86

Vector, 15

product, 178
vector triple product, 178

vectors, 169

VECTR, 174

VERSION, 8

VIEW, 20

visualize a polynomialfitting, 341

VPAR, 313, 324

VPAR menu, 322

VX, 18, 163

VZIN,346

VZOUT, 346

vw

Weibull distribution, 82

WHILE... REPEAT... END, 131

WID—, 170

wide rectangular channel, 97

Wireframe plots, 307

SE

Be,25
X,Y, 334
xX, 24
XCOL,326
XOR,118
XPON,50
XRNG, 319
XROOT], 149
XVOL,323
XXRNG, 323

—
YCOL,326
YRNG,319
Y-Slice plots, 310

YVOL, 323
v8, 24

© 2000 - Gilberto E. Urroz

All rights reserved

YYRNG, 323

Nx, 24

—zz

ZAUTO, 346

ZDECI, 346

ZDFLT, 346

ZEROS, 366

ZFACT, 345, 346

ZFACTOR(Tr, Pr), 347

ZIN, 345

ZINTG,346

ZLAST,346

ZOOM menu, 345

ZTRIG, 347

ZVOL, 323

—_— |

—-STK, 171

a
ALIST, 68

415

—_
T1LIST, 68

—

x, 24

LIST, 68

PAR, 326

YPAR menu, 325

iB24

© 2000 - Gilberto E. Urroz

All rights reserved

ABOUTTHE AUTHOR

Gilberto E. Urroz is an Associate Professor of Civil and Environmental Engineering
and a researcher at the Utah Water Research Laboratory, both at Utah State

University, in Logan, Utah. He has been a teacher of engineering disciplines for more
than 15 years both in his native Nicaragua and in the United States.

His teaching experience includes courses on introductory physics, engineering
mechanics, probability and statistics for engineers, computer programming, fluid
mechanics, hydraulics, and numerical methods. His research interests include

mathematical and numerical modeling of fluid systems, hydraulic structures, and
erosion control applications.

Dr. Urroz is an expert on the HP 48 G and HP 49 G series calculator and has written

several books on applications of these computing devices to disciplines such as
engineering mechanics, hydraulics, and science and engineering mathematics. His

personal interests include reading, music, opera, theater, and taijiquan.

ABOUT GREATUNPUBLISHED.COM

greatunpublished.com is a website that exists to serve writers and readers, and remove
some of the commercial barriers between them. When you purchase a

greatunpublished.com title, whether you receive it in electronic form or in a
paperback volume or as a signed copy of the author’s manuscript, you can be assured
that the authoris receiving a majority of the post-production revenue. Writers who
join greatunpublished.com support the site and its marketing efforts with a per-title

fee, and a portion ofthe site’s share of profits are
channeled into literacy programs.

So by purchasing thistitle from greatunpublished.com, you are helping to
revolutionize the publishing industry for the benefit ofwriters and readers.

Andfor this we thank you.

This is the book you need to master science
and engineering mathematics with the HP 49 G

calculator includes:

Basic calculator operation
Real and complex numbers
Lists
Functions and programs
Vectors
Matrices and linear algebra
Graphics
Solution to equations

Each chapter concludeswith applications to science
and engineering problems.

ISBN 1-58898-043-X

HEHE

HH

RIHE!
IRE]

Hil
HA

RIE]
HEHE

HH

9 15881&

WWW.greatunpublished.com

	Cover
	Table of Contents
	Preface
	Preface to Volume I

	1. Introduction
	Notation used in this book
	The HP 49 G operating system or ROM
	Keeping up to date with the HP 49 G
	Programs for the HP 49 G
	Some HP 49 G programming Concepts
	Programming Languages
	Libraries

	Calculator operating modes
	Changing the calculator mode
	Comparing algebraic mode with RPN mode

	Flags
	Example of flag setting: general solutions vs. principal value
	Other flags Of interest

	Objects and their types in the HP 49 G calculator
	Organizing data in your calculator

	2. The HP 49 G keyboard
	Primary function of each key
	Alphabetic characters
	Left-shift and right-shift functions
	Secondary functions of the soft menu (F1-F6) KEYS
	The arrow keys
	Utility keys
	Mathematical operations keys
	THE ALPHA key
	Numeric keypad
	Arithmetic operation keys

	3. Basic calculator operation
	Undo, Arg, and Cmd
	Deleting variables
	Transferring data between two HP 49 G calculators
	Transferring data from the HP48 to the HP 49
	Transferring data from the HP49 to the HP 48
	How to type Greek letters and other Characters
	Keyboard shortcuts for special characters

	Changing the display format
	Exercises using different number formats

	Entering numbers as powers of ten
	Changing the angle mode and coordinate system
	Important relationships between angle units
	Quick conversions from degrees to radians and vice versa
	Important relationships between coordinate Systems
	Additional examples on angle measure and coordinate system conversions

	HP 49 G standard mathematical constants
	Physical constants available in the HP49 G calculator
	Utility menus adapted from the HP 48 G
	Accessing the EQ LIB menus
	Accessing the constants library
	The function CONST
	Accessing the constant library through the command catalog

	Using the command catalog
	Working with units in the HP 49 G calculator
	Universal gas law

	4. Calculations with real numbers
	What is the CAS in the HP 49 G Calculator?
	CAS options
	Checking current CAS Settings
	Checking the calculator mode

	Real number calculations
	Modifying the display to obtain a textbook-like appearance
	Changing from complex to real mode
	Some functions accessed through the MTH menu
	Examples of functions from the REAL menu

	Combinatorics, random numbers, and probability functions
	Factorials, permutations, and combinations
	The Gamma function
	Generating random numbers
	Examples of probability calculations for continuous random variables
	Normal distribution pdf
	Normal distribution cdf
	The Student-t distribution
	The Chi-squared (χ²) distribution
	The F distribution

	FFT menu: Fast Fourier Transform - brief introduction

	5. Calculations with complex numbers
	Introduction to complex numbers
	The CMPLX menus - basic complex number applications
	CMPLX menu through MTH
	CMPLX menu defined in the keyboard

	Polar representation of a complex number
	Examples of basic complex number Operations
	Polar representation

	Complex number calculations
	Examples of operations with complex numbers

	Functions of a complex variable
	Example: Expanding ln(z) using the HP 49 G calculator
	Example: Expanding z² using the HP 49 G calculator

	Functions of complex numbers in the HP 49 G calculator

	6. Lists, functions, and programs
	Lists
	Entering a list of objects
	Operations with lists of numbers
	Composing and decomposing Lists

	Functions
	Defining a function of one variable
	Evaluating the function
	When list arguments fail

	An example of programming
	Global and local variables
	Global Variable Scope

	Functions defined by more than one expression
	The IFTE function
	Combined IFTE functions

	Generating a table of values for a function
	The EQ variable
	The TPAR Variable

	Functions of more than one variable
	Applications of function definitions - probability distributions
	Discrete probability distributions
	Defining summations in the HP 49 G
	Binomial probability distribution function
	Binomial cumulative distribution function
	Other discrete probability distributions and distribution functions

	Continuous probability functions
	The gamma distribution
	The exponential distribution
	The beta distribution
	The Weibull distribution
	Defining integrals in the HP 49 G - brief introduction

	Manipulating elements of lists
	Determining list size
	Extracting and inserting elements in a list
	Element position in the list
	HEAD and TAIL functions

	Applications of list operations
	Mean, variance, and standard deviation of a sample
	Calculating statistics from grouped data
	Mean and variance of a discrete probability distribution

	Programs for generating lists of numbers
	Applications of list-generating programs
	Generating tables of mass and cumulative distribution functions for discrete random variables
	Binomial distribution
	Poisson distribution
	Geometric distribution

	Functions and operations applied to lists with DOLIST, DOSUBS, STREAM, and SEQ
	DOLIST
	Defining a function instead of using DOLISTS
	DOSUBS
	Moving averages
	STREAM
	SEQ

	7. HP 49 G programming basics
	Examples of sequential programming
	Programs generated by defining a function
	Programs that mimic a sequence of calculator operations

	Interactive input in programs
	Prompt with an input String
	A function with an input string
	Debugging the program
	Fixing the program

	Input string for programs requiring two or three input values
	Input string program for two input values
	Input string program for three input values

	Identifying output in programs
	Tagging a numerical result
	Decomposing a tagged numerical result into a number and a tag
	“De-tagging” a tagged quantity
	Using a message box for output
	Including input and output in a message box - string concatenation

	Incorporating units within a program
	Relational and logical operators
	Relational operators
	Logical operators

	Program branching
	What IF...?
	IF...THEN...END
	IF...THEN...ELSE...END
	Nested IF...THEN...ELSE...END constructs

	Just in CASE

	Program loops
	START
	START...INEXT
	START...STEP

	FOR
	FOR...NEXT
	FOR...STEP

	DO
	WHILE

	Procedural programming and object-oriented programming
	Concluding remarks on Programming

	8. Algebra and related subjects
	The CAS and RPN mode
	Some transcendental functions
	Trigonometric functions
	Trigonometric identities
	What is a logarithm?
	Logarithms of base 10
	Natural logarithms and the exponential function
	Properties of the exponential function
	Properties Of logarithms
	Converting logarithms of different bases
	Hyperbolic functions
	Euler formula and complex arguments for logarithmic, exponential, and hyperbolic FUNCIONS

	Operations with algebraic objects
	Entering algebraic objects
	Basic operations
	Expanding expressions
	Factoring expressions
	Complex mode factorization
	Substituting expressions in algebraic objects
	Substitution by using HP variables

	Expansion and factorization using transcendental functions
	Expansion and factorization in terms of exponential and logarithmic functions
	Expansion and factorization in terms of trigonometric functions

	Fraction Manipulation
	SIMP2
	PROPFAC
	PARTFRAC
	FCOEF
	FROOTS

	Modular arithmetic
	Operations in modular arithmetic
	Formal definition of a finite arithmetic ring
	Finite arithmetic rings in the HP 49 G
	Modular arithmetic in the HP 49 G
	Setting the modulus (or MODULO)

	Modular arithmetic operations with numbers
	The modular inverse of a number
	The MOD function
	Other modular arithmetic functions

	Polynomials
	Modular arithmetic with polynomials
	ABCUV
	CHINREM
	DIV2
	EGCD
	FACTOR
	FCOEF
	FROOTS
	GCD
	HERMITE
	HORNER
	The variable VX, or “Why do you use only X in your examples?”
	LAGRANGE
	Entering matrices directly in the stack
	LCM
	LEGENDRE
	Checking the solution to Legendre’s equation

	PARTFRAC
	PCOEF
	PROOT
	Direct access to polynomials numerical solution using NUM.SLV
	PTAYL
	QUOTIENT and REMAINDER
	EPSX0 and the CAS variable
	PEVAL
	TCHEBYCHEFF

	9. Vectors
	Entering vectors
	Typing a vector directly into the stack
	Using the matrix writer (MTRW)
	Vectors vs. matrices
	Moving to the right vs. moving down in the matrix writer
	Building a vector with →ARRY

	Identifying, extracting, and inserting elements of a vector
	Arrays, vectors, and matrices

	Simple operations with vectors
	THE VECTR menu
	Vectors as physical quantities
	Operations with vectors
	Vectors in Cartesian coordinates
	Calculating 2x2 and 3X3 determinants
	Cross product as a determinant

	Operations with 2- and 3-dimensional vectors in the HP 49 G calculator
	Example 1 - Position vector
	Example 2 - Center of mass of a system of discrete particles
	Example 3 - Resultant of forces
	Writing the vector that joins two points in space
	Relative position vector

	Example 4 - Equation of a plane in space
	Example 5 - Moment of a force
	Example 6 - Cartesian and polar representations of vectors in the x-y plane
	Example 7 - Planar motion of a rigid body
	Angular velocity and acceleration
	Relative position vector
	Velocity
	Solution of equations - one at a time
	Acceleration
	Solution of a system of linear equations using matrices

	Row vectors, column vectors, and lists
	Transforming a row vector into a column vector
	Transforming a column vector into a row vector
	Transforming a list into a vector
	Transforming a vector (or matrix) into a list

	10. Matrices and linear algebra
	Definitions
	Matrices as tensors and the Kronecker’s delta function

	Matrix operation
	Einstein’s summation convention for tensor algebra

	Entering matrices in the HP 49 G stack
	Using the matrix editor
	Typing in the matrix directly into the stack

	Examples of matrix operations
	Multiplication by a scalar
	Matrix multiplication
	Inverse matrices
	Verifying properties of inverse matrices

	Creating matrices using calculator functions
	Functions GET and PUT
	Functions GETI and PUTI
	The function SIZE
	The function TRN
	The function CON
	The function IDN
	The function RDM
	The function RANM
	The function SUB
	The function REPL
	The function →DIAG
	The function DIAG→
	The function VANDERMONDE
	The function HILBERT

	Using the matrix CREATE menu
	A program to build a matrix out of a number of lists
	Lists represent columns of the matrix
	Lists represent rows of the matrix

	Manipulating matrices by columns
	The function →COL
	The function COL→
	The function COL+
	The function COL-
	The function CSWP

	Manipulating matrices by rows
	The function →ROW
	The function ROW→
	The function ROW+
	The function ROW-
	The function RSWP
	The function RCI
	The function RCIJ

	Symmetric and anti-symmetric matrices
	Matrices and solution of linear equation systems
	Solution to a system of linear equations using the numerical solver (NUM.SLV)
	Example 1 - A system with more unknowns than equations
	Example 2 - A system with more equations than unknowns
	Example 3 - A system with equal number of equations and unknowns
	Direct solution of a linear system in the stack
	Solution using the inverse matrix

	Characterizing a matrix
	The matrix NORM menu
	The function ABS
	matrix decomposition
	Singular value decomposition and rank
	The function SNRM
	Row norm and column norm of a matrix
	The functions RNRM and CNRM
	Eigenvalues and eigenvectors of a matrix
	The function SRAD
	Determinants, singular matrices, and conditions numbers
	The function COND
	The rank of a matrix
	The function RANK
	The determinant of a matrix
	The function DET
	Properties of determinants
	Cramer’s rule for solving systems of linear equations
	The function TRACE
	The function TRAN

	Additional matrix operations
	The Matrix OPER menu
	THE function AXL
	The function AXM
	The function HADAMARD
	The function LSQ
	The function MAD
	The function RSD
	The function LCXM

	Gaussian and Gauss-Jordan elimination
	Gaussian elimination using a system of equations
	Gaussian elimination using matrices
	Gauss-Jordan elimination using matrices
	Pivoting
	Example of Gauss-Jordan elimination with full pivoting

	Step-by-step calculator procedure for solving linear systems
	Solving multiple set of equations with the same coefficient matrix
	Calculating the inverse matrix step-by-step
	Inverse matrices and determinants

	Solution to linear systems using calculator functions
	The function LINSOLVE
	Functions REF, rref, RREF

	Eigenvalues and eigenvectors
	The function PAR
	The function EGVL
	The function EGY
	The function JORDAN
	The function MAD
	Matrix factorization
	The function LU
	Orthogonal matrices and singular value decomposition (SVD)
	The function SVD
	The function SVL
	The function SCHUR
	The function LQ
	The function QR

	Matrix Quadratic Forms
	The QUADF menu
	The function AXQ
	The function QXA
	Diagonal representation of a quadratic form
	The function SYLVESTER
	The function GAUSS

	Matrix applications
	Electric circuits
	Structural mechanics
	Dimensionless numbers in fluid mechanics
	Stress at a point in a solid in equilibrium
	Principal stresses at a point
	Multiple linear fitting
	Polynomial fitting
	Selecting the best fitting
	Keystroke combinations for writing the programs POLY and POLYR

	11. Graphics and character strings
	Graphs options in the HP 49 G
	Plotting an expression of the form y = f(X)
	Some useful PLOT operations for function plots

	Saving a graph for future use
	Graphics of transcendental functions
	Graph of ln(X)
	Graph of the exponential function
	The PPAR Variable
	Inverse functions and their graphs

	Summary of FUNCTION plot operation
	Plots of trigonometric and hyperbolic functions and their inverses
	Plots in polar coordinates
	Plotting conic curves
	Parametric plots
	Creating a table of results

	Plotting the solution to simple differential equations
	Truth plots
	Plotting histograms, bar plots, and scatter plots
	Bar plots
	Scatter plots

	Slope fields
	Fast 3D plots
	Wireframe plots
	Ps-Contour plots
	Y-Slide plots
	Gridmap plots
	Pr-Surface plots
	The VPAR Variable

	Programming with graphics
	Example: Residual plots for polynomial fitting

	Plotting commands for programming
	User-defined key for the PLOT menu
	The PLOT menu
	The function LABEL (10)
	The function AUTO (11)
	The function INFO (12)
	The Variable EQ (3)
	The function ERASE (4)
	The function DRAX (5)
	The function DRAW (6)
	The PTYPE menu under PLOT (1)
	THE PPAR menu (2)
	INFO (n) and PPAR (m)
	INDEP (a)
	DEPND (b)
	XRNG (c) and YRNG (d)
	RES (e)
	CENTR (g)
	SCALE (h)
	SCALEW (i)
	SCALEH (j)
	ATICK (l)
	AXES (k)
	RESET (f)
	The 3D menu within PLOT (7)
	The PTYPE menu within 3D (IV)
	The VPAR menu within 3D (V)
	INFO (S) and VPAR (W)
	XVOL (N), YVOL (O), and ZVOL (P)
	XXRNG (Q) and YYRNG (R)
	EYEPT (T)
	NUMX (U) and NUMY (V)
	VPAR (W)
	RESET (L)
	The STAT menu within PLOT
	The PTYPE menu within STAT (I)
	The DATA menu within STAT (II)
	The ΣPAR menu within STAT (III)
	INFO (M) and ΣPAR (K)
	XCOL (H)
	YCOL (I)
	MODL (J)
	ΣPAR (K)
	RESET (L)
	The FLAG menu within PLOT

	So, how are plots generated in a program?
	Two-dimensional graphics
	Three-dimensional graphics
	The variable EQ
	Examples of interactive plots using the PLOT menu
	Examples of program-generated plots

	Interactive drawing with the HP 49 G calculator
	DOT+ and DOT-
	MARK
	LINE
	TLINE
	BOX
	CIRCL
	LABEL
	DEL
	ERASE
	MENU
	SUB
	REPL
	PICT→
	X,Y→

	Drawing commands for use in programming
	PICT
	PDIM
	PICT and the graphics screen
	LINE
	TLINE
	BOX
	ARC
	PIX?, PIXON, and PIXOFF
	PVIEW
	PX→C
	C→PX

	Programming examples using drawing functions
	Example 1 - A program that uses drawing commands
	Example 2 - A program to plot a natural river cross-section
	Example 3 - A program to visualize a polynomial fitting

	Binary, octal, and hexadecimal number systems - a brief introduction
	The BASE menu
	Writing non-decimal numbers in the calculator
	Conversion between number systems
	The LOGIC menu
	The BIT and BYTE menus
	Hexadecimal numbers for pixel references
	Pixel coordinates

	Zooming in and out in the graphics display
	ZFACT, ZIN, ZOUT, and ZLAST
	BOXZ
	ZDFLT, ZAUTO
	HZIN, HZOUT, VZIN and VZOUT
	CNTR
	ZDECI
	ZINTG
	ZSQR
	ZTRIG

	Special function for gas dynamics: ZFACTOR(Tr, Pr)
	Animating graphics
	Animating a collection of graphics
	More information on the ANIMATE function

	Grabbing GROBs
	The GROB menu
	→GROB
	BLANK
	GOR
	GXOR
	→LCD
	LCD→
	SIZE
	An example of a program using GROB

	Strings attached
	The CHARS menu
	The functions NUM and CHAR
	The characters list
	Parting thoughts about character strings

	A program with plotting and drawing functions - Generating Mohr’s circle for two-dimensional stress
	Background
	Modular Programming
	Running the program
	A program to calculate principal stresses
	Ordering the variables in the sub-directory
	A second example

	12. Solution to equations
	Symbolic solution of algebraic equations
	The functions ISOL and SOLVE
	The S.SLV menu
	The function SOLVEYX
	The function ZEROS

	Numerical solver menu
	Polynomial equations
	Finding the solutions to a polynomial equation
	Generating polynomial coefficients given the polynomial's roots
	Generating an algebraic expression for the polynomial
	Evaluating a polynomial (or any) expression
	Replacing the variable in the polynomial's algebraic expression

	Financial calculations
	Definitions
	Payment at beginning or end of a period
	Examples

	Solving equations with one unknown through NUM.SLV
	How does the numerical solver for single-unknown equations work?
	Example 1 - Hooke’s law for stress and strain
	Example 2 - Specific energy in an open channel flow

	Special function for pipe flow: DARCY(ε/D, Re)
	The function FANNING(ε/D, Re)
	Example 3 - Flow in a pipe

	Functions UTPN, UTPT, UTPC, and UTPF
	Example 3 - Upper tail probabilities for Normal, Student-t, χ², and F distributions
	Example 4 - Universal gravitation
	Example 5 - Energy losses in three pipelines in series
	Changing the order of the variables

	Graphical solution of single-unknown equations
	Example 1 - Solution of a cubic equation
	Example 2- Clausius-Clapeyron equation

	Solving multiple equations
	Linear equation systems
	Rational equation systems
	Example 1 - Projectile notion
	Example 2 - Stresses in a thick wall cylinder

	Using the Multiple Equation Solver (MES)
	Solution of triangles using the MES
	Trigonometric functions in a right triangle
	Solution of triangles
	Calculating the triangle’s area with Heron's formula
	Triangle solution using the HP 49 G’s Multiple Equation Solver
	Creating a working directory
	Entering the list of equations
	Entering a window title
	Creating a list of variables
	Preparing to run the MES
	Running the MES interactively
	Organizing the variables in the sub directory

	Programming the MES triangle solution using User RPL
	Running the program - solution examples
	Adding an INFO button to your directory

	Velocity and acceleration in polar coordinates - solution using the calculator’s MES
	Using the SOLVESYS library for simultaneous equations
	Example 1 - two conic equations
	Example 2 - Manning's equation for circular cross-section

	Graphical solutions of two simultaneous equations

	References - Vol. I only
	References - Vol. II only
	References - For both Vols. I and II
	Index

