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Preface

This book covers a variety of Analysis-based mathematics utilizing the amazing algebraic,
numerical, and graphical capabilities of the HP 49 G calculator. The book emphasizes the
practical applications of mathematics to engineering and the physical sciences.  Each chapter
includes a review of the mathematical concepts used, a description of the appropriate
calculator features, and examples showing their application.

This book is the result of many years of experience in teaching courses on:

* Engineering Mechanics Il (Dynamics),
- Uncertainty in Engineering Analysis (i.e., probability and statistics applied to
engineering),
Hydraulics,
& Fluid Mechanics, and
= Numerical Methods in Engineering

in which the use of the programmable calculators HP 48 G/G+/GX and HP 49 G has been
emphasized. Many of the examples presented throughout the book had been published
previously as class handouts and class notes. In the preparation of my courses, and even in
some research activities, | have developed many User RPL programs for the HP 48 G/G+/GX and
the HP 49 G, a good number of which are also included in this book.

The book, in its present form, developed from a set of class notes | prepared in the Spring of
the year 2000 for a colleague’s Engineering Freshmen Seminar class. The HP 48 series
calculator has been required from our engineering students since the HP 48 SX was introduced
back in the early 1990’s. This year, the HP 49 G made its debut among the Freshmen class,
therefore, there was a need to produce some training material using this calculator. The task
fell on me, given my extensive experience with the HP 48 G series calculator, and my
familiarity with the HP 49 G calculator since it first came out in August of 1999. The 23-page-
long handout | produced for my colleague’s class, together with the class notes | have prepared
for the HP 48 G series calculator through the last six years, plus long hours of typing away in
my computer, have developed into the book you now have in your hands.

The reader should think of this book as a mathematics handbook that emphasizes the
extraordinary capabilities of the HP 49 G calculator in demonstrating different mathematical
concepts. While | have made the effort of introducing those concepts before using them in
each chapter, detailed explanation of mathematical concepts and proofs of theorems used in
this book is to be found in more traditional mathematical textbooks. A list of references is
provided in the book for that purpose.

Although the calculator includes features useful in number theory and in operations with
number bases other than decimal, the book does not expand on these subjects beyond some
basic description of the appropriate functions. The reason for this omission is the bck of
experience of the author in those subjects. Please keep in mind that the author’s training is in
Civil and Environmental Engineering, where the emphasis is in Analysis-based mathematics.

Get yourself a notebook: | recommend that you go through the book armed with your
calculator and a notebook. You want to have a notebook handy because sometimes the
calculator display is not large enough to hold all the information you want to see when solving
a given problem. Also, you may want to keep your own notes on particular types of operations
with the calculator that are of interest to you.

1 © 2000 Gilberto E. Urroz
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A note about RPN: While the calculator uses the algebraic mode by default, | make it clear
from the start that the book emphasizes the Reverse Polish Notation (RPN) mode. The
emphasis on RPN mode is not only because it is the mode that most HP 48 G series users are
familiar with, but because it is more efficient than the algebraic mode in using the calculator
display. | should also point out that the HP 49 G converts function calls and programs into RPN
mode when performing operations. Therefore, it is useful that the user learn the RPN mode to
better understand the workings of the calculator, and to be able to communicate with the wide
community of HP 48/49 calculator users around the world.

Preferred calculator settings: When you take the calculator out of the box, or when it
recovers after a system crash, the original calculator settings are such that the calculator’s
Operating Mode is set to Algebraic, the beep option is selected, the calculator’s display
is set to Textbook mode, and system flag 117 is cleared (i.e., CHOOSE boxes, rather than

Soft MENU keys are selected), among other default settings. For the applications in this
book | prefer that you change your settings as follows:

" Press [MODE][+/-] to change to RPN mode. Change other settings so that the
CALCULATOR MODES screen should looks like this:

EENENEE CALCULATOR MODES S50

operating Hoede.. [T
luHber ForHat.... 5td _FH,

Angle Meazure.... Radianz
Coord Sy=steH..... Rectangular
_E@ep _HKey Click ' Lazxt Stack

Chooze calcylater operating Hode

FLias|cHoos] CAs | DISFICARCL] ok ]

4 Press [ CAS ] (i.e, the F3 key). [CAS stands for Computer Algebraic System, a generic
name given to programs that lets you produce algebraic and calculus operations in a

computer or, in this case, a calculator]. Change settings, if needed, so that the CAS MODES
screen looks like this:

$CAS NODES SEEEms
Indep var:'y’
Hodule: X
_NMuHeric _ Approx _CoHp Lex
_Merboze __Ftepsitep _Incr FoM
Y Ridoerous y Zip Non-Rational
Enter Hodulo upaluyg

E0RIT] | CAOCL] Ok ]
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= Press [OK] to return to the CALCULATOR MODES screen. Within that screen press [
FLAGS ] (i.e., the F1 key). Next, press [A] to access the last flags in the list. Press
[A][A] to highlight system flag 117, then press [v'CHK ] (i.e., the F3 key) to change the
setting to Soft MENU. The SYSTEM FLAGS screen should look like this:

5 5 SYSTEN FLAGS 3
111 ZiHp non rat.

113 LinQdar =iHp ©On

114 Disp 1+x + x+1

116 Frefer cox()

7 foFt MENU

113 Rigorous on
120 Filent Hede ofF

[ [VCHE]  JCARCL] 0B |

= Press [OK][OK] to return to normal (that is, RPN mode) calculator display.

A note on CAS modes: One of the greatest features of the HP 49 G calculator is its CAS
(Computer Algebraic System). The CAS is used in almost every operation in the calculator that
involves algebraic or calculus manipulations. The CAS prefers that you use the Exact mode for
most operations in order to provide the most accurate result. You will know that the Exact
mode is selected if you see that the Approx mode is not selected in the CAS MODES screen
(see above). Make sure that your calculator is set to Exact mode all the time. While in the
stack, in RPN mode, this can be quickly accomplished by clearing system flag 105:

[11[01[5][+/-][ALPHA][ALPHA][C][F][ENTER].

Many errors produced when operating the calculator can be traced to not having it set to
Exact mode. On the other hand, whenever the calculator, set to Exact mode, tries to
evaluate expressions involving floating point numbers (i.e., numbers with decimals), it will
request that the CAS mode be changed to Approx. Accept the request for changing the CAS
mode, but, when done, make sure that you return the calculator to Exact mode.

Many other operations will request you to change the mode to Complex. Accept the changes
when requested to obtain complex results.  Within the stack, in RPN mode, if you want to
return to Real (i.e., not Complex) mode, clear system flag 103:

[11[01(31[+/-1[ALPHA][ALPHA][C][F][ENTER].
In normal calculator display you can check what the current CAS settings, and other calculator

settings, are by checking the characters in the upper left corner of the display. The settings |
prefer, unless otherwise noticed, will look like this:

AD WYZ HEX K= "'
HOMEZ

=M pCn

[EDIT | VIEM [STACK] RCL IFURGECLERF:

(=]
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The items in the upper left corner are interpreted as follows:

& RAD stands for radians for angular measure

% XYZ stands for rectangular (i.e., Cartesian) coordinates

% HEX stands for hexadecimal numbers as the default for binary operations

“ R means Real, as opposite to Complex, CAS mode

4 The equal sign (=) stands for CAS Exact mode, as opposite to -, which means Approx

mode
4 ‘X’ means that the default CAS independent variable (stored in VX, is the upper case X)

Thus, before starting any operation involving algebraic or calculus manipulations (i.e., most
operations in the calculator) make sure that the icon R= is present in the upper part of the

display.
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Preface to Volume I

Volume | (Introduction, programming, pre-calculus mathematics, graphics, linear algebra) of
this series includes subjects corresponding to mathematics at the pre-calculus level. This
second volume includes subjects on differential and integral calculus, multi-variate and vector
calculus, some differential geometry, ordinary differential equations (analytical and numerical
solutions), Fourier analysis and its applications to partial differential equations, and statistical
applications.  This volume starts with Chapter 13, to continue the chapter numbering of
Volume I.

Calculus. Chapter 13, the first chapter in this volume, includes HP 49 G operations related to
limits of functions, derivatives, the Chain Rule, applications of derivatives, and other
important subjects of differential calculus. The chapter includes applications of integration
through limits of summations, anti-derivatives, integration techniques, improper integrals, and
other relevant subjects of integral calculus of one variable. A third subject covered in this
Chapter is the issue of infinite series, and approximation of functions through Taylor and
Maclaurin’s series.  Applications of differential and integral calculus, taken from science and
engineering disciplines, conclude this chapter.

Multivariate and vector calculus. This Chapter starts with the concepts of partial derivatives
and total differentials and their applications to functions of two or more variables, as well as
to functions of a complex variable.  Applications of multi-variate calculus to potential flow
concludes this first part of the Chapter. The subject of multiple integrals is presented next
including practical applications in the physical sciences. The Chapter continues with coverage
of vector calculus concepts and their application to differential geometry.  The subject of
vector analysis is covered extensively with applications of the del operator to scalar and vector
fields. Vector differential operations in generalized orthogonal coordinates and the calculus
of surfaces concludes this chapter.

Ordinary differential equations. This Chapter includes an extensive catalog of solution
techniques for first-order ODEs, the use of Laplace transform in the solution of linear ODEs,
Fourier series and their applications, solution to classical second-order equations, and
numerical and graphical solutions to linear ODEs.

Fourier transforms and parabolic PDEs. This Chapter includes a number or analytical
solutions to parabolic PDEs using separation of variable techniques and Fourier analysis
applications.  The chapter covers concepts and applications o Fourier transforms and their
application to discrete signals through the Fast Fourier Transform (FFT) algorithm.

Statistical applications. This chapter covers a variety of applications of the HP 49 G
calculator to the analysis and reduction of data: e.g., analysis of single data sets to obtain
sample statistics, analysis of frequency distribution and plotting of histograms, and fitting of
data through a number of pre-programmed functions. The Chapter includes practical
applications of statistical inference such as the generation of confidence intervals, and the test
of hypotheses. The Chapter concludes with a presentation of the method of least-squares for
linear regression and inference procedures applied to such data fitting.

The subjects covered in Chapter 13 (Calculus) include subjects that are typically covered in
two to three Calculus courses at the Freshmen and Sophomore level in College. The
elementary subjects of Chapter 13 can be easily covered in an AP preparation class at the High-
School level. The material covered in Chapter 14 (Multivariate and vector calculus) is typically
included in two courses in Advanced Calculus at the junior to senior levels. The subject of
Chapter 15 (Ordinary differential equations) can be covered in one course on general ODEs and

1 © 2000 Gilberto E. Urroz
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part of one course on advanced engineering mathematics or mathematical physics, typically at
the junior and senior level. Chapter 16 (Fourier transforms and parabolic PDEs) includes
subjects that are taught in specialized courses in physics and engineering, typically at the
senior undergraduate or elementary graduate level. The subjects presented in Chapter 17
(Statistical applications) can be presented in any statistics course. It should be pointed out
that some of the subjects covered throughout the first two volumes of this book include
probability applications (e.g., see Chapters 4, 5, 10, 11 and 12 in Volume |, and Chapter 13 in
Volume 2) can be included in a calculus-based probability and statistics course. This course
will typically be taught at the junior or senior level, or even as an introductory graduate level
class for students that have not taken statistics in their undergraduate studies (if there still are
some of them around).
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Calculus

In this chapter we discuss applications of the HP 49 G calculator to differential and integral
calculus, multi-variate calculus, power series, and vector calculus.
Limits and derivatives
Differential calculus deals with derivatives, or rates of change, of functions. The derivative of
a function is defined as a limit of the difference of a function as the increment in the
independent variable tends to zero. Limits are used also to check the continuity of functions.
The function LIMIT

The HP 49 G calculator provides the function LIMIT to calculate limits of functions. This
function uses as input an expression representing a function and the value where the limit is to
be calculated. The function LIMIT is available through the keystroke sequence

[<][CALC][LIMIT][LIMIT]. (Change CAS setting to Exact.) Some examples are shown below:

‘X"2+2*X-1’ [ENTER] ‘X = 3’ [ENTER] [<1][CALC][LIMIT][LIMIT], Result: ’14’, i.e.,

y:_nz(xz+2~)(—1)=14.

‘(t"2-1)/(t+1)’[ENTER] ‘t = -1’ [ENTER] [« ][CALC][LIMIT][LIMIT], Result: ’-2’, i.e.,

lim
|
‘SIN(8)/6’ [ENTER] ‘0=0" [ENTER] [<1][CALC][LIMIT][LIMIT], Result: ’1’, i.e.,

im sin 6 -1
6->0 @

“(m+1)/(m"2+1)’ [ENTER] ‘m=+cc’ [ENTER] [<][CALC][LIMIT][LIMIT], Result: ’0’, i.e.,

m+1

0.

m=>0 n12 +1
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“((x+h)*2-x*2)/h’ [ENTER] “h = 0’ [ENTER] [~][CALC][LIMIT][LIMIT], Result: '2*x’, i.e.,
lim M: 2.x
h->0 h ’

‘m*v/ N (1 - (v/c)"2)’[ENTER] ‘v = ¢’ [ENTER] [+1][CALC][LIMIT][LIMIT], Result: ’e’, i.e.,

fim —t = oo,

Derivatives

The derivative of a function f(x) at x = a is defined as

& )= LEED S

dx h->0 h

One of the examples on limits in the previous section shows how to calculate the derivative of
f(x) = x* using this definition. Other examples follow:

“(EXP(x+h)-EXP(x))/h’ [ENTER] ‘h = 0’ [ENTER] [+][CALC][LIMIT][LIMIT], Result: ‘EXP(x)’, i.e.,
d ) . e.\*h X ,
E(e )‘II,ITOT =

“(SIN(x+h)-SIN(x))/h’ [ENTER] ‘h = 0’ [ENTER] [+1][CALC][LIMIT][LIMIT], Result: *COS(x)’, i.e.,

d . . sin( x+ A)—sin x
—sin x = lm —————— =
dX h—>0 h

COS x.

“(1/(x+h)-1/x)/h’ [ENTER] *h = 0’ [ENTER] [«][CALC][LIMIT][LIMIT], Result: ’-1/x"2’, i.e.,

i(l):“m I(x+h)—1/x __

dx x>0 h x?

‘(ABS(x+h)-ABS(x))/h’ [ENTER] ‘h = 0’ [ENTER] [~][CALC][LIMIT][LIMIT], Result: ’'x/ABS(x)’,
i.e.,

fim |x+h|—|x|:i

h=>0 h | X ! ’
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The functions DERIV and DERVX

Of course, calculating derivatives using the formal definition given above turns into a pretty
tedious endeavor. Instead, we use formulas for derivatives, which in the HP 49 G calculator
are available through the functions DERIV or DERVX. The function DERIV is used to take
derivatives in terms of any independent variable, while the function DERVX takes derivatives
with respect to the CAS default variable VX (typically X). These functions are available in the
DERIV menu: [<][CALC][DERIV]. Some examples follow:

x*2 - 5*x + 2’ [ENTER] ‘x’ [ENTER] [+][CALC][DERIV][DERIV], result = ‘x*2-5’, i.e.,
d
—(x*=5-x+2)=2-x-5.
dx

‘SIN(R) + ATAN(R)’ [ENTER] ‘R’ [ENTER] [+1][CALC][DERIV] [DERIV],
result = ‘COS(R)+1/(SQ(R)+1)’, i.e.,

i(sin R+tan™ R) =cos R+ !
dx 1+

Check that your VX wariable in the HOME directory contains the variable ‘X’, then try the
following:

‘(X"2+COS(X))/EXP(X)’ [ENTER] [+][CALC][DERIV][DERVX],
result = ¢(EXP(X)*(X*2-SIN(X))-(X"2+COS(X))*EXP(X))/SQ(EXP(X))’,
i.e.,

d X*+cosX
—( - )=

e’ -(2X —sin X)—(X? +cos X)-e*
dx e’ e '

2X

Calculating derivatives with o

The symbol is available as [~][d] (the COS key). It implements the DERIV function directly in
the keyboard. For example,

‘SIN(t) -LN(t)’ [ENTER] ‘t’ [~][d], result: ‘COS(t) - 1/t’, i.e.,

i(sin t+Int)y=cost—1/t.
dx

Note: The symbol dis used formally in mathematics to indicate a partial derivative, i.e., the
derivative of a function with more than one variable. However, the HP 49 G calculator does
not distinguish between ordinary and partial derivatives, utilizing the same symbol for both.
The user must keep this distinction in mind when translating results from the calculator to
paper.
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Formulas for derivatives

You can use the function DERIV or the symbol o to recall formulas for derivatives by using as
argument a generic function f(x). For example,

‘x"n’ [ENTER] ‘x’ [~][d], result: ‘x*(n-1)*n’, i.e., d(x")/dx = nx"".

“(f(x))"n’[ENTER] ‘X’ [~][d], result: ‘f(x)"(n-1)*n*d1f(x)’, i.e., d[f(x)]"/dx = n{f(x)]"" df/dx.
Here, the symbol d1f(x) stands for “the first derivative of f(x) with respect to x”.

‘u(x)*v(x)’ [ENTER] ‘x’ [~][d], result: ‘d1u(x)*v(x)+u(x)*d1v(x)’, i.e.,

u(x)

£ ) v = daxy

~v(x)+u(x)-?

The chain-rule

The chain rule for derivatives applies to derivatives of composite functions. A general
expression for the chain-rule is

dff{e(x)]}/dx = (df/dg)- (dg/dx).

Using the calculator, this formula results in:

‘f(g(x))’ [ENTER] ‘x’ [~][d], result: ‘d1g(x)*d1f(g(x))’.
Other examples would be:

‘LN(f(x))’ [ENTER] ‘x’ [~][d], result: ‘f(x)/d1f(x)’, i.e., d/dx[ln(f(x))] = f(x)/[df(x)/dx] =
f(x)/f’(x).

“JSIN(X"2)’ [ENTER] [+][CALC][DERVX], result = ‘COS(X*2)*(X*2)/(2*VSIN(X"2))’, i.e.,

2xcosx’ _ xcosx’

24/sin x? - sin x2

i~ 2N1172 _
dx[Sm(X)] =

Derivatives in formulas

Derivatives can be written explicitly in the equation writer or between quotes by using the
symbol 9. For example, the derivative d/dx[exp(-x?)] can be written as:

[EQW][]1[d] [ALPHAI[<][X] [™1[<]1[e*] [ALPHA][<][X] [V'] [™] [+/-] [ENTER], and will be
entered in the stack as: ‘0x (EXP (-x"2)) ’, Or as
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9 (xp(-x))
ox
if using textbook display format.

To evaluate this expression use: [~][EVAL]. The result is *‘EXP (-x"2) *- (x*2) ', i.e., -
2-x-exp(-x?).

To type a derivative in stack level 1 use:

[~10 1 [100] [ALPHAI[<]1[X] [<][( )] [SIN] [ALPHA][<][X] [ENTER], produces *9dx (SIN(x)) ’ .
Press [~][EVAL] to get ‘coS (x) .
Higher-order derivatives

You can calculate second order derivatives by applying the function [—][d] twice to an
expression. For example,

‘SIN(x)’[ENTER] ‘x’ [ENTER] [~][3] ‘x’ [ENTER] [~][d], result: ‘~SIN(x)’

You can write a second-order derivative by using the symbol [—][d] twice in the equation
writer. For example:

[EQW] [~]1[0] [ALPHA][<][X] [>][~][0] [ALPHA][<][X] [»] [+][€"] [ALPHA][<](X] [y*] [»] [+/-]
[ENTER], and will be entered in the stack as: ‘0x (dx (EXP (-x"~2))) ’, or as

d(ad
=| = (ExA-x"))
ox | ox
if using textbook display format.
To evaluate this expression use: [~][EVAL]. The result is
VEXP (-X72) *- (X*2) ¥~ (X*2) +EXP (-X"2) *-2",

Press [~][ALG][EXPAN], resulting in * (4*x~2-2) /EXP (x"2) ', i.e., (4x*-2)/exp(x%).

Derivatives of equations
You can use the HP49G calculator to take derivatives of equation, i.e., derivatives will exist in

both sides of the equal sign. For example, to take the derivative of the equation: x(t) =2 r
cos 0(t), use:

(=10 "1 [ALPHAI[<][X] [][( )] [ALPHAI[<][T] ] [~][=] [2][x ] [ALPHA][<][R] [x ][COS]
[ALPHA][~1[T] [<][( )] [ALPHA][][T] [ENTER]

[ "1 [ALPHA][<][T] [ENTER] [r][0]
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The result is 'dlx(t) = 2*r*-(SIN(O(t))* d16(t))’, i.e., x'(t) =- 2 ro'(t) sin 6(t).

Take a second derivative, as follows: [~][ '] [ALPHA][«][T] [ENTER] [~][0 ][~ ][ALG][EXPAN]
The result is now:

'd1dl (t)=-(2*r*SIN(8(t))*dldll(t)+2*r*d18(t)~2*CosS(B(t)))’, or
x“(t) =-(2r[6(t)]2 cos O (t) + 2B "(t) sin 6 (t)) .
Implicit derivatives

Try taking the derivative with respect to t of the equation: [r(t)]z = 2[6@®)F. Use the following
keystrokes:

[~10" 10<1[0)] [ALPHAI[][R] [][( )] [ALPHAT[<][T] [»] [>] [y*] [2]
[~10=1 [210x 1 [100)] [ALPHA][~][T] [<][()] [ALPHA][<][T] [»] [»] [y*] [3] [ENTER]
[~1["] [ALPHA][][T] [ENTER] [~][0]

The result is: *dlr(t)=2* (0 (t)~2*3*d16(t)) ", i.e., r'(t) =2 6(t) [0 (t)].

Application of derivatives

Analyzing graphics of functions

In Chapter 11 we presented some functions that are available in the graphics screen for
analyzing graphics of functions of the form y = f(x). These functions include [(X,Y)] and
[TRACE] for determining points on the graph, as well as functions in the ZOOM and FCN menu.
The functions in the ZOOM menu allow the user to zoom in into a graph to analyze it in more
detail. These functions are described in detail in Chapter 11. Within the functions of the FCN
menu, we can use the functions SLOPE, EXTR, F’, and TANL to determine the slope of a
tangent to the graph, the extrema (minima and maxima) of the function, to plot the
derivative, and to find the equation of the tangent line.

Try the following example for the function y = tan(x).
% Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.
* Change TYPE to FUNCTION, if needed, by using [CHOOS].
% Press [¥] and type in the equation ‘TAN(X)’.
% Make sure the independent variable is set to ‘X’.
e Press [NXT][OK] to return to normal calculator display.

% Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be
called PLOT -POLAR window).

* Change the H-VIEW range to -2 to 2, and the V-VIEW range to -5 to 5.
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=+ Press [ERASE][DRAW] to plot the function in polar coordinates.

The resulting plot looks as follows:

[ 20on [ix, va[ThACE] Fh TEDIT

= Notice that there are vertical lines that represent asymptotes. These are not part of
the graph, but show points where TAN(X) goes to + « at certain values of X.

% Press [TRACE] [(X,Y)], and move the cursor to the point X: 1.08E0, Y: 1.86E0. Next,
press [NXT][FCN][SLOPE]. The result is Slope: 4.45010547846.

= Press [NXT][NXT][TANL]. This operation produces the equation of the tangent line,
and plots its graph in the same figure. The result is shown in the figure below:

/ /

L

TanLine: ‘Y=4.4504054734€xK-2.924

wk Press [NXT][PICT][CANCL][ON] to return to normal calculator display. Notice that the
slope and tangent line that you requested are listed in the stack.

The function TABVAR

This function is accessed through the catalog only. It uses as input the function f(VX), where
VX is the default CAS variable. The function returns the following:

% Level 3: the function f(VX)

* Two lists, the first one indicates the variation of the function (i.e., where it increases
or decreases) in terms of the independent variable VX, the second one indicates the
variation of the function in terms of the dependent variable.

* A graphic object showing how the variation table was computed.

Example: Analyze the function Y = X3-4X2-11X+30, using the function TABVAR. Use the
following keystrokes:

‘X"3-4*X"2-11*X+30’ [ENTER][CAT][ALPHA][T](select TABVAR)[OK].
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This is what the calculator shows in stack level 1:

RAD RYZ HEX K= 'R‘
{HONEZ 02:55, HAY:20
1: Graphic 161 X 95
3 2 )
F=1(%"-4%"-11X+30

‘=1 X2'3—4~X-2—1 1
ez an[FRCTalLRCOL] LIN 5oL VESUEST]

This is a graphic object. To be able to see it in its entirety, press [W]. The top of the GROB

shows the following:

F=: (X?-4:X°-

11-X+30)
F'=: (X%3-4X2 -
11)

> ((3X-11)-(X+1))
Variation table:

Use the down-arrow key, [V¥], and the right-arrow key, [P], to see the rest of the screen.

bottom of the screen shows the variation table of the function as follows:

Variation table
-00 + -1 - 11/3 + +00 X

o 736 417 -400/2 “1” 4o F

Press [ON] to recover normal calculator display. Press [<] to drop this last result from the
stack.

The

Two lists, corresponding to the top and bottom rows of the graphics matrix shown earlier, now

occupy level 1. These lists are useful for programming purposes. Press [¢] to drop this last

result from the stack.

Level 1 is now occupied by the original function.

The interpretation of the variation table shown above is as follows: the function F(X) increases
for X in the interval (-, -1), reaching a maximum equal to 36 at X = -1. Then, F(X) decreases

until X = 11/3, reaching a minimum of -400/27. After that F(X) increases until reaching
+00, Also, at X = oo, F(X) = too.
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Using derivatives to calculate extreme points

“Extreme points,” or extrema, is the general designation for maximum and minimum values of
a function in a given interval. Since the derivative of a function at a given point represents the
slope of a line tangent to the curve at that point, then values of x for which f’(x) =0 represent
points where the graph of the function reaches a maximum or minimum. Furthermore, the
value of the second derivative of the function, f”(x), at those points determines whether the
point is a relative or local maximum [f”(x)<0] or minimum [f”(x)>0]. These ideas are
illustrated in the figure below.

f'(x)=0
£ () >0

£'(x,) =0
£" (%) <0 l

y=f=»
e

fb)
i

b

In this figure we limit ourselves to determining extreme points of the function y = f(x) in the x-
interval [a,b]. Within this interval we find two points, x = x, and x = xy, where f’(x)=0. The
point x = xm, where f”(x)>0, represents a local minimum, while the point x = xu, where f”(x)<0,
represents a local maximum. From the graph of y = f(x) it follows that the absolute maximum
(maximum maximorum) in the interval [a,b] occurs at x = a, while the absolute minimum
(minimum minimorum) occurs at x = b.
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Suppose that you want to determine the radius of a cylinder so that the volume of the cylinder

is optimized while keeping the total area of the cylinder constant. This could be a problem to

be tackled by an industrial engineer in charge of designing a cylindrical container for a liquid or
granular material.

The external area of the cylinder is given by A = mr®+2nrh = constant, while the volume is V=
m*h. By isolating h from the equation for the area and replacing the resulting expression into
the volume equation we will get at function or the radius, V(r), which we can optimize. To use
the calculator to help us in the solution follow these steps:

e . Type in the equation ‘m*r"2*h’[ENTER][ENTER] (2 copies), followed by ‘A =
mrh2+2*n'r*h’ [ENTER].

- Then, isolate h by using: ‘h’[ENTER][+][S.SLV][ISOL]. The result is: ‘h = (A-
r"2*m)/(2*r* m)’.

. Now, replace this expression for h into the expression for V by using: [—][ALG][SUBST],
resulting in ‘m*r*2*((A-r*2* n)/ (2*r*n)’.

% To simplify the expression use [~ ][ALG][EXPAN]. This results in ‘-((r"3*m-r*A)/2)’. ]

k& To convert it into a function use: ‘V(r)’ [ENTER][™][r1[=], which produces ‘V(r)= -
((r"3*m-r*A)/2)’.

<+ Use [<][DEF] to create the function V(r).

= Press [VAR] [~][ V ] to see the contents of the function, i.e., << >r “-((r"3*n-
r*A)/2)’>>. Press [<] to drop this result from the stack.

= To obtain the derivatives of the function V(r), use:
[EQWI[~1[][ALPHA][<][R][™[ALPHA][V][ ] [( )] [ALPHA][][R] [A][A][A] [EVAL]
The result is ‘-2*(1:*3*r2-A)/4’, i.e., V'(r) = »24(3an—A)/4.

% Press [ENTER][ENTER] to keep an additional copy of the derivative in the stack.

w Press [¥] to activate the equation writer again. The expression for V’(r) must be
selected now. Enter:

[~1[9][ALPHA][<][R] [A][A] [EVAL] [~][ALG][EXPAN].
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The result is ‘-(3*r*n)’, which corresponds to V”(r) = -3-wr.
" Press [ENTER] to get back to stack, and [P] to swap levels 1 and 2.

=& Turn the expression for V’(x) into the equation V’(r) = 0, by entering [0][ENTER] [—][=],
and use

[~]1[ ¢ JIALPHA][<][R][ENTER] [+][S.SLV][ISOL] to solve for r. The result is the list
{r=-(V 3 (rA)/(3* W) ‘T = (N 3*(wA))/(3*m)’ }.
= Out of this list we want to keep only the positive result by using: [—][EVAL] [»] [<].

% Press [ENTER] to get a new copy of the expression for r, and save it into variable rc,
i.e.,

[~]1[ ¢ 1[ALPHA][+][R][ALPHA][<][C][STOM].

- Now, use [~][ALG][SUBST] to replace the value of r into the expression for V”(r), to
get “-(3*(V (3*(A*m)/(3*m))*m)’. Press [—][ALG][EXPAN] to simplify the expression. The
result is now -V (3*(A* m)’, i.e., V"(rc) < 0.

= Because V”(r)<0 at r = rc, the value of V(r) at rc = V (3*(*A))/(3*n) is a maximum.
This maximum can be calculated by using:

[VAR] Recover variables menu

[ re] Places contents of [ rc ] on stack

[<][PRG][TYPE][OBJ->] Decompose equation

[ell<]P]<] Drop eq. elements so that only value of r
remains

[VAR][ V ] Evaluate V(r) with the value of rc

[~ ][ALG][EXPAN] Simplify result

The result is “V3*A*V (A*1)/(9* 1)’, OF Vmax = A- (3wA)2/(9-m), at rc = (3-wA)"2/(3-7).

Note: The keystroke sequence used above to solve this problem shows a very efficient use of
the calculator’s stack. In most problems, such efficient use follows only after you have
outlined the steps of the solution in paper. Since | expect that you will have a notebook handy
to keep track of the calculations, you don’t need to worry about optimizing stack operations.
Keep track of your results by hand, and re-enter any result you may need. Alternatively, you
can store intermediate results from your calculations in global variables, which you can easily
recall to the stack when needed.
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Integrals calculated through summations

The integral of a function f(x) in an interval (a,b), is defined as the limit of the sum

s, =3 f(&)Ax,

as Ax; > 0, orn 2 ~ . The values Ax; represent the length of n sub-intervals in (a,b), so that
the values & are contained within the i-th sub-interval. The sub-intervals are limited by the
values X1, X2, ..., Xn, Xn+1, therefore,
AXj = Xju1 - Xiy
and

Xi < & < Xjug.

The figure below illustrates the meaning of the terms in the summation. The terms f(§)Ax;
represent increments of area, AA;, under the curve y = f(x) in the interval (a,b).

y

While there are no restrictions in the way we may divide the interval (a,b) to generate n sub-
intervals, or where to select & within a sub-interval, dividing it into n equally-spaced sub-
intervals, and selecting the values of & in a regular fashion, facilitates the calculation of the

summation, as well as of its limit when n grows unbounded.

To divide the interval (a,b) into n sub-intervals we take,

Ax = (b-a)/n,
therefore,

X1 =Q, X2 = X1 + AX, X3 = X1 + 2:AX, ..., Xj = X + (i-1)-AX, ..., X, = X1 + (n-1)-Ax = b.
The value of can be selected to be the leftmost value in the sub-interval (x;, xi.¢), i.e., & = X;,

the center of the sub-interval, i.e., § = (x; + Xi.1)/2, or the right-most value of the sub-interval,
i.e., = Xj.1. Suppose that we call SL, the summation when & = x, then we can write:
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SL, :(b;“ ) 3 f(x).

If we call SM, the summation when & = (x; + x.1)/2, then we have

b—a) ¢ X, + X,
SM = . Zi DT
(R

Finally, for the summation when , we have

i=l

b —a n
SU/: :( n ] Zf(x:ﬂ )
A program for summations approximating integrals for finite values of n
Using lists it would be really easy to program the calculation of SL,, SM,, and Su,, in User RPL.
In this section we develop programs for calculating the sums SL,, SM,, and SU,, given an

expression of X to integrate between values a and b using n equally-spaced sub-intervals.

First of all, let’s create a sub-directory called SUMINT (SUMmation approximating INTegrals)
within the HOME directory, using:

[~1[ ¢ JIALPHA][ALPHA][S][UI[M][I][N][T][ENTER] Enter sub-directory name ‘SUMINT’
[<]1[PRG][ MEM ][ DIR ][CRDIR] Create sub-directory SUMINT
[VAR][SUMIN] Access sub-directory

The next step is to create three main programs (SLn, SMn, and SUn) and the required sub-
programs within the sub-directory. Here is the listing of the main programs:

Main program SLn:

<< Start main program SLn
INDAT DUP Call program INDAT, duplicate output (a list)
1+ MKLST Add a 1 to the list, invoke sub-program MKLST
1 GTLIST Use 1 as input, invoke sub-program GTLIST
“SLn” >TAG Tag result of summation as “SLn”
>R Pass tagged result as R

<< Start first sub-program within SLn

DRAWRECT Call sub-program DRAWRECT

{} PVIEW Bring contents of PICT to screen

R Place tagged result for summation in stack

>> End first sub-program within SLn
>> End main program SLn
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The main programs corresponding to SMn and SUn are exactly the same as SLn , but using 2 and

3 for SMn and SUn, respectively, instead of 1

, and changing the tagging string to “SMn” and

“SUn,” respectively. The listings of the programs SMn and SUn are as follows:

Main program SMn:

<< INDAT DUP 2 + MKLST 2 GTLIST “SMn” ->TAG >R << DRAWRECT {} PVIEW R >> >>

Main program SUn:

<< INDAT DUP 3 + MKLST 3 GTLIST “SUn” >TAG >R << DRAWRECT {} PVIEW R >> >>

The listing of the sub-programs used by SLn, SMn, and SUn, follows:

Sub-program INDAT: gets input data, uses an input string with the INPUT function

<<
“Enter a, b, n, EQ(X):”
{““:EQ <« :a:+« :b:
INPUT
OBJ~>
values
14 FORj
DTAG
4 ROLLD
NEXT
4 >LIST

>>

< n:"{103V}

Sub-program MKLIST:

<<
EVAL
- EXPRabnliS
<<
‘(b-a)/n’ >NUM {}
2> AxL
<<
1n1+FORj
‘a+(j-1)*A’ >NUM DUP
xL SWAP + ‘xL’ STO
‘X SWAP 2 >LIST
EXPR SWAP | ->NUM
NEXT
nt+
A xL 3 ROLLD

>>

SLIST

>>

>>

15

Start sub-program INDAT (Input DATa)
Prompt title for inputting data

Input string
INPUT function using two previous lines
Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4

De-tag last value in stack

Roll-down three elements in stack

End of FOR loop

Create list with the three de-tagged values
End of sub-program INDAT

Start sub-program MKLST (MaKe a LiST)
Decomposes input list

Input values EXPR, a, b, n, IS

Start first sub-program within MKLST
Calculate x-increment and place an empty list
Pass increment and empty list as A and xL
Start second sub-program within MKLST
Start FOR loop with j =1, 2, ..., n+1
Calculate x; = a+(j-1)*A, duplicate result
Add x; to xL and save the new list

Create list {X x;}

Evaluate EXPR at X = xj, i.e., f(x;)

End FOR loop

Create list of values {f(x;)...}

Place A and xL in stack, roll list {f(xj)...} to level 1

End second sub-program within MKLST
End first sub-program within MKLST
End sub-program MKLST

© 2000 Gilberto E. Urroz
All rights reserved



Sub-program GTLIST:

<<
>xLAIS
<<
xL TAIL DUP
duplicate
xL REVLIST TAIL REVLIST DUP
3 ROLLD ADD 2 /
3 ROLL
3 >LIST
IS GET DUP
SLISTA*
A SWAP

>>

>>

Sub-program DRAWRECT (DRAW RECTangles):

<<

2> xLyLA
<<
EVAL
> EXPRabn
<<
ab EXPR PPLT
PPLT
xL yL n DRBOXS
>>
>>

>>

Sub-program DRAWRECT uses sub-programs
following:

Sub-program PPLT:

<<

- ab EXPR
<<
FUNCTION
EXPR STEQ
a b XRNG
AUTO
ERASE DRAX DRAW
‘X" PURGE
>>
>>

16

Start sub-program GTLIST (GeT LIST)

Get input values

Start first sub-program within GTLIST

Place list xL, remove element 1 with TAIL,

Place list xL, reverse, get TAIL, reverse, duplicate

Calculate a list averaging the last two lists
Roll three levels of stack

Create list of lists

Get list number IS, duplicate it

Sum list, multiply by A

Place A in stack, swap with early summation
End first sub-program within GTLIST

End sub-program GTLIST

Start sub-program DRAWRECT

Input data: lists xL, yL, and A

Start first sub-program within DRAWRECT
Decompose third of input lists

Pass values as EXPR, a, b, and n

Start second sub-program within DRAWRECT
Using input: a, b, and EXPR, call sub-program

Using input xL, yL, n, call sub-program DRBOXS
Close second sub-program within DRAWRECT
Close first sub-program within DRAWRECT
Close sub-program DRAWRECT

PPLT and DRBOXS. Their listings are shown

Start sub-program PPLT (Prepare PLoT)
Input data: a, b, EXPR

Start first sub-program within PPLT
Select FUNCTION type of graph

Store contents of EXPR in EQ to be plotted
Set up x-axis range

Let y-axis range be selected automatically
Erase PICT, draw axes, draw graph

Purge variable X, which was used for the plot
End first sub-program within PPLT

End sub-program PPLT
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Sub-program DRBOXS:

<< Start sub-program DRBOXS (Draw BOXeS)
2> xLyLn Input data: lists xL, yL, and value n
<< Start first sub-program within DRBOXS
1nFORj Start FOR loop with j =1,2, ..., n
xL j GET yL j GET Get element j out of lists xL and yL
R->C Create point (xLj, yL;)
XLj1+GETOR>C Create point (xLj.1, 0)
BOX Draw a box between points (xL;, yL;) and (xLj.q,
0)
NEXT End FOR loop
>> End first sub-program within DRBOXS
>> End sub-program DRBOXS

Using the program

Find the soft menu key [SLn] in your variables menu. Use [VAR] to recover that menu if
necessary. To run a first example use this:

[SLn] Starts program SLn
[~1[ ‘ JIALPHA][X][V] Enter ‘X’ as the function to integrate
[0][W] [11[¥] [1][0] [ENTER] Usea=0,b=1,n=10

Wait for the program to produce the graph. The result will be the following graph:

To recover normal calculator display, press [ON]. You will get the result of the summation,
SLn: .45. There will be new variables PPAR and EQ in your menu.

Before continuing, it will be a good idea to order the variables in the sub-directory so that the
programs SLn, SMn, and SUn are the first three variables in your menu. You can re-order the
variables by using:

[1[{31[VAR] [ SLn ][ SMn ][ SUn ][ENTER] Creates list {SLn SMn SUn}
[<][PRG][ MEM ][ DIR J[NXT][ORDER] Order the variables placing those in the list
first

Now, let’s try calculating the values of SMn and SUn for the conditions used earlier:

[ SMn ] Starts program SLn
[~1[ ¢ JIALPHA][X][ V] Enter ‘X’ as the function to integrate
[01[¥] [11['¥Y] [1][(0] [ENTER] Usea=0,b=1,n=10
17 © 2000 Gilberto E. Urroz
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Wait for the program to produce the graph. The result will be the following graph:

Press [ON] to obtain the summation value, SMn = 0.5. Next, try using the function SUn as
follows:

[SUn] Starts program SLn
[~1[ “ TIALPHA][X][ V] Enter ‘X’ as the function to integrate
[0][VW] [11[¥] [1][0] [ENTER] Usea=0,b=1,n=10

Wait for the program to produce the graph. The result will be the following graph:

=
Press [ON] to produce the following result: SUn: .55.
Here is another example:
[SLn] Starts program SLn
(10 -1+ - XY 121 (= 11210 Y ] Enter ‘EXP(-X"2/2)’ as the function to integrate
[41[+/-1[¥Y]1 [41['Y] [4][0] [ENTER] Usea=0,b=1,n=40

Be patient with the result. Since we are using 40 rectangles, it takes the calculator about a
minute to finish the plot:

Press [ON] to obtain, SLn: 2.5064606298.

Now try:

[ SMn ] Starts program SLn

[P10 ¢ =1 1+/-1DXY 12101121 Y] Enter ‘EXP(-X"2/2)’ as the function to integrate
[41[+/-1[¥] [41[Y] [4]1[0] [ENTER] Usea=0,b=1,n=40
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After about a minute, the calculator produces the graph:

Press [ON] to obtain, SMn: 2.50646062976.

Next try:

[SUn] Starts program SLn

P10 ¢ -1 +/-1IXY 121 (11210 Y ] Enter ‘EXP(-X"2/2)’ as the function to integrate
[410+/-1[V]1 [41[¥] [4](0] [ENTER] Usea=0,b=1,n=40

The new graph is:

Press [ON] to obtain, SUn: .

You can use any expression involving X in EQ for input to the programs SLn, SMn, and SUn.

Summations in the HP 49 G calculator

Although the definitions of SLn, SMn, and SUn, in the previous section involve summations, we
avoided using the summation function by operating with lists. In the next section we will use
the summation function to evaluate some integrals. We introduced summations and integrals
back in Chapter 6. (Review the section entitled “Applications of function definitions -
probability distributions” in Chapter 6 to get the basic idea on the use of the summation
function.) Use of integrals will be presented in more detail in a later section.

To calculate a summation directly in the stack you need to enter the following elements, in the
order indicated: (1) Name of the index; (2) Initial value of the index; (3) Final value of the
index; and, (4) Expression to be summed that involves the index name. For example, to
calculate

10

U,

directly in the stack, use the following:
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[~]1[ ‘ IALPHA][+<2][J] [ENTER] Enter index name, j

[3] [ENTER] Enter initial value of j
[1]1[0] [ENTER] Enter final value of j
[~10 ¢ 1 [<100)] [ALPHAI[<][J] [Y*1[2][+][1][ENTER] Enter expression (j*+1)
[~1[Z] Calculate the summation

The result is 388, i.e.,

10

N (jF+1)=388.

j=3

Calculating summations in which n goes to infinity
Given a function y = f(x) to be integrated between x = a and x = b, we indicated earlier that

the integral can be approximated by the summations SLn, SMn, and SUn, using equally spaced
sub-intervals in the interval (a,b). Suppose that we estimate the integral using SMn, i.e.,

b—a ) X, + X,
O D ey

Since x; = a + (i-1)«(b-a)/n, and x;.; = a+i-(b-a)/n, then n; = (x; + xj.1)/2 = a + (i-1/2)-(b-a)/n, and

SMn can be written as
b— < b— 2 i —1/2)-(b—
s, Z( )‘zf(,,‘),:( n").zf(a+(_’___’)1_(___‘2)

a
n
Given values of a and b and the function f(x), it is possible to find an expression SMn = F(n),

using the formula shown above, for which we can take the limit when n> . The result will be
the value of the integral

I= L”f(x)dx.

This approach works well when the function f(x) is an algebraic function of x, because the
summation can be expressed as a polynomial in n. For example, if f(x) = X,a=1,b=2, we
can write

ni=a+ (i-1/2)(b-a)/n = 1+(i-1/2)-(2-1)/n= (i+n-0.5)/n,

and
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To evaluate the summation in this equation in the HP 49 G calculator use (using j instead of i):

[EQW] [~][Z] [ALPHAJ[<][J] [»>] [1] [>] [ALPHA][<][N] [P]
[=100)] [ALPHA][<][J] [+] [ALPHAi]E[r;}]é:]] (=10 1051 (110101 [y°1[2]

Resulting in & (j=1,n,(j+n-.5)"2)*. Before evaluating this expression we need to make sure
that the calculator’s CAS is in the Exact mode, using:

[MODEJ[CASI[ V][V J[v CHK].

Make sure that the check is off the _Approx option in the CAS MODES screen. Press [OK][OK]
to return to normal calculator display. Now, press

[~][EVAL].

Interestingly enough, the calculator will ask if you want to use Approximate mode. Select YES,
and press [OK]. The calculator will try to expand the expression in the summation, giving as a
result:
¥2.33333333333*n"3+-.0000000000001*n"2+-0.08333333333*n+0."

Press [~] [EVAL] once more to see if you can simplify the expression further. The only
simplification in this case is to eliminate the last zero in the expression. Producing:

2.33333333333*n"3+-.0000000000001*n"2+-0.08333333333*n’
On the other hand, the coefficient of the term in n® is practically zero. To eliminate this term
you can use the function [EPSX0] (Find it through the catalog: [CAT][ALPHA][E], then use arrow
keys to select EPSXO0, then press [OK].) The result is now:

2.33333333333*n"3+0"n"2+-0.08333333333*n+0.’

Press [?][EVAL] once more to calculate the product . The final result is

2.33333333333*n"3+-0.08333333333*n+0.’

In other words,

n

(i+n-0.5) =2.33333333333- n° —0.08333333333- 1.

i=1

From which it follows that,

l

1 < : 0.08333333333
SM, =— 3 (i+n-0.5)" =2.33333333333 - ———————
n’ g n
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The latter result can be obtained in the calculator by using:

(P10 * JALPHATLAIINILY I3IENTER][-].

To calculate the limit when n grows without bound, use:

[~ * MALPHAY - ][N] [~ )(=] [~ )[=~J[ENTER]
[~JCALCHLIMITIILIMIT]

At this point you get asked if you want the Approximate mode off, select YES and press [OK].
Then, you get asked if you want the Approximate mode on. Again, select YES and press [OK].
The result is ‘2.33333333333", This result represents

n

2 1 2
[ x7dx = oy SM, = jiy [ X+ n—0.5)] =

n->c0 n->c0 i=l

008333333333
fim [2:33333333333 - —————""°-

n—>00

1=2.333333333.

Notes:

(1) Because the final result of the summation expansion is given in terms of n (a symbolic
result), you need to set your CAS to Exact before attempting to expand the summation - as
shown in the example above. If the Approximate mode is selected when attempting to
expand a summation in terms of a symbolic variable (e.g., n in this case), the calculator
simply responds by reproducing the original summation expression, or, perhaps, re-
arranging some of the terms.

{2) In the evaluation of the limit to infinity the calculator seems indecisive to whether use
Exact mode or not, just humor it, and it’ll give you back the right result.

A program to calculate integrals through infinite summations

The program described below makes the process shown above automatic. To type it in, |
suggest you first create a sub-directory, say SMnLIM (SMn calculated through a LIMit as n 2> ),
within which you will create the program and its associated sub-programs. The listing of the
main program, called ‘INTGRL’, is shown below:
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Main program INTGRL:

<<
INDAT
EVAL > EXPRa b
program
<<
EXPR
‘a+(j-1/2)*((b-a)/n)’ EVAL
‘X’ SWAP 2 > LIST |
{j1n}SWAP +
list
EVAL =
z.
‘(b-a)/n’ EVAL *
EXPAND DUP
-105 CF
EVAL > R
<<
R
IF SAME THEN
indicate that

“Cannot evaluate limit “ R >STR MSGBOX

ELSE
R ‘n=oo’ LIMIT
N> oo
END
>>
>>

>>

Start main program INTGRL
Call sub-program INDAT, result {EXPR a b}
Decompose list, pass values as input to sub-

Start first sub-program within INTGRL

Place EXPR (a function of X) in stack

Evaluate n;=a + (j-1/2)-(b-a)/n

Create list {X n; } and evaluate EXPR for X = 7;
Create a list {j 1 n}, then add previous result to

to obtain {j 1 n EXPR|x}.Decompose list, set up

Multiply summation by Ax = (b-a)/n.

Expand result and duplicate it

Change mode to Exact

Evaluate second copy of SMn, pass it as R

Start second sub-program within INTGRL

Place value of R

If stack levels 1 and 2 are the same, then

the limit cannot be evaluated directly

If stack levels 1 and 2 are different, then obtain limit

by placing result R in stack & taking limit as

End IF statement

End second sub-program within INTGRL
End first sub-program within INTGRL
End main program INTGRL

The only sub-program used is INDAT, which is the same used in the calculations of SLn, SMn,
and SUn in the previous section, but not using the input for n. The listing for sub-program

INDAT follows:

Sub-program INDAT:

<<

“Enter EQ(X),a, b:”

{“EQ+~ :ar+~ :b:"{10}V}

INPUT

0OBJ>

values

13 FORj
DTAG
3 ROLLD

NEXT

3 SLIST

>>

Start sub-program INDAT (Input DATa)
Prompt title for inputting data

string

INPUT function using two previous lines
Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4

De-tag last value in stack

Roll-down three elements in stack

End of FOR loop

Create list with the three de-tagged values
End of sub-program INDAT

This program takes as input and expression in terms of X, and values of a and b. It returns a

list consisting of { EXPR a b}.
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Running the program INTGRL

As an example, run the program using the data from the previous example, as follows:

[INTGR] Start program
[~10 IXIY 1210 Y] Enter ‘X"2’ as the function to integrate
[11[V] [2][V] [ENTER] Usea=1,b=2

Because we placed the command -105 CF (Clear system flag 105 to produce Exact mode), you
will be asked whether you want Approx mode on. Select YES and press [OK]. Then, when
trying to calculate the limit, if possible, you will be asked to select Exact mode first (Approx
mode off), then Approx mode. Just press [OK] to answer YES to both questions. (These are
the same questions we faced when doing the example step by step in the last section). As in
the example above, the result is ‘2.33333333333".

A second example of INTGRL ]

Let’s use the program INTGRL again to calculate the limit as n> for f(x) = 1/x, a=1, b = 5.
Use the following keystrokes:

[INTGR] Start program

10 100X Enter ‘X"2’ as the function to integrate
(1][V] [2][V] [ENTER] Usea=1,b=2

[OK] Turn Approx mode on when asked

You get as a result the message:

ICannot evaluate Limit ‘Z(j=1.,n,1./((j+(n-.5))/ n))/n']

Press [OK] to return to normal calculator display.

A different version of the program J

The result of the second example of the program INTGRL is an expression whose limit, &
indicated in the message box, cannot be evaluated. However, you may be able to evaluate this
limit if you manipulate the expression around. A different version of INTGRL, call it GETZn, is
shown below. The program generates the expression for the summation in SMn, but does not
calculate the limit, leaving it up to the user whether to proceed with the limit calculation, or
manipulate the expression further. The program GETZn can be obtained from INTGRL by
eliminating the entire ELSE option of the IF statement contained in INTGRL. The listing of the
program GETZn follows:
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Main program GETZXn:
<<
INDAT
EVAL > EXPR a b
program
<<
EXPR
‘a+(j-1/2)*((b-a)/n)’ EVAL
‘X" SWAP 2 > LIST |
{j1n}SWAP +
list
EVAL X
z.
‘(b-a)/n’ EVAL *
EXPAND DUP
-105 CF
EVAL > R
<<
R
IF SAME THEN
indicate that

“Cannot evaluate limit “ R >STR MSGBOX

END

R

>>
>>

>>

Start main program GETZn

Call sub-program INDAT, result {EXPR a b}
Decompose list, pass values as input to sub-

Start first sub-program within GETZn

Place EXPR (a function of X) in stack

Evaluate n;=a + (j-1/2)-(b-a)/n

Create list {X n; } and evaluate EXPR for X = n;
Create a list {j 1 n}, then add previous result to

to obtain {j 1 n EXPR|x}.Decompose list, set up

Multiply summation by Ax = (b-a)/n.

Expand result and duplicate it
Change mode to Exact
Evaluate second copy of SMn,

passitasR

Start second sub-program within GETZn

Place value of R

If stack levels 1 and 2 are the same, then

the limit cannot be evaluated directly

End IF statement
Place R in stack

End second sub-program within GETZn
End first sub-program within GETZn

End main program GETZn

The result from this program is, therefore, the expression for SMn after replacing the value n;

in it.

Running the program GETZn

As an example, try:

[GET=n]

{10 1010 10X10V ]
[110¥] [2]1[V] [ENTER]
[OK]

You get as a result the message:

Start program
Enter ‘X2’ as the function to
Usea=1,b=2

integrate

Turn Approx mode on when asked

lCarmot evaluate Limit ‘2(jz1.,n,l./((j+(n~.5))/n))/n’l

Press [OK] to return to normal calculator display. Unlike the previous example, now the
expression whose limit the calculator couldn’t evaluate, is available to the user for
manipulation.

25
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Manipulating an expression within the equation writer

We will perform some editing or manipulating of the expression in the stack using the
summation obtained in the previous example. First, press [ENTER], to make sure that you
have an extra copy of the expression. Then, press [¥] to invoke the equation editor. The

screen will look like this:

EpIT]Cuks | BTG EVAL IPRCTOITERFA]

Then, use the following to highlight only the expression affected by the summation:
[YIVYI»I»I[»]. Once the screen looks like the following, press [~ ][ALGJ[EXPAN].

b=
951

n

EDIT

After the expansion, the expression will look like this:

n
%
j=1.
n

[ExPanlFACTOlLNCOLL LIN TsoLVEISUEST]

The n in the numerator of the summation expression is a constant value (i.e., it does not
depend on the value of j) and can be taken out of the summation, thus canceling n out of the
expression. To help eliminate the n’s from the expression, use [¥] to highlight the n in the
numerator. Then, use [<][<] to erase the n, and [1] to replace it with a 1.  Press [V¥] to
highlight the 1 in the numerator, then press [P], four times, to highlight the n in the
denominator of the entire expression. Use [<][<][1] to replace the n in the denominator with
a 1. Then press [P], to highlight the entire expression, and press [EXPAN] to expand and
simplify terms. The result is the following screen:

[ExPAnIFACTOlLRCOLL LIN [SOLVE]

Now, press [ENTER] to make this expression available in the stack. Press [ENTER] once more to
keep an additional copy of the expression available.
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Obtaining the limit of the summation as n = o
Type [~][ ¢ ITALPHA][«]1[N][~1[=]1[+][ =] to place the expression ‘n=c’ in stack level 1.
Then, use [« ][CALC][LIMIT][LIMIT] to try to evaluate the limit of the summation.

Press [OK] when asked for Approx mode off, and [OK] again when asked for Approx mode on.
The limit of the expression, as given by the calculator, is ‘0.” This is, however, wrong. The
way that this value is obtained is by evaluating every term in the summation as zero, since
1/(j+n-.5) > 0 as n> . However, the correct approach is to first evaluate the summation, as
function of n, and then try to obtain the limit.

Since we kept an additional copy of the simplified expression for the summation, let’s try to
evaluate the summation before attempting the limit. Press [¢<] to drop the result ‘0.’ from the
stack. Press [ENTER] to keep an additional copy of the summation expression, just in case.
Next, type:

[11[01[5]1[+/-][ALPHA][ALPHA][C][F]

to ensure that system flag 105 is cleared (Exact mode), and press [][EVAL]. Press [OK] when
asked if you want Approx mode on. The result is exactly the same as the original expression,
meaning that the calculator cannot find a closed-form expression to replace the summation.
(An attempt to use [~][ALG][EXPAN], after clearing system flag 105, also fails to produce a
closed-form expression).

Let’s try some numerical evaluation of the expression by using a relatively large value for n,
say n = 1000. Type [~][ ‘ J[ALPHA][«][N][~1[=]1[+]1[1][O0][O][O][ENTER] to place the expression
‘n=1000" in stack level 1. Then, enter [~][ALG][SUBST]. This command will not only
substitute the value n = 1000 in the expression, but also will evaluate the expression, producing
as a result the value ‘.694147149309’.

Let’s drop this result by pressing [<], and evaluate at n = 2000, by using:
(=101 [ALPHA][<]IN] [~][=] [<][2](01[0][0][0] [ENTER] [~][ALG][SUBST]

The calculator will take longer to produce this result, as we are asking it to evaluate a series
twice as long as the previous one, so you have to be a bit patient here. After about one minute
or two, the calculator returns the value ‘.6931471727521°.

These two values, ‘.694147149309’ and ‘.6931471727521’, indicate that there is some finite
value for the summation as n> «. Whatever that value is, these results indicate the number’s
two first decimals are 0.69. The rest of the decimals will change as n increases. Of course,
the larger the value of n, the better the approximation to the actual limit. However, as we
increase n in the calculator, the time required for the series to converge to a value increases
too. Thus, for an example like this, using the series to approximate the integral, even after
simplifying it with the equation editor, is not the most efficient way to evaluate an integral.
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Anti-derivatives and integrals

The anti-derivative of a function f(x) is a function F(x) such that f(x) = dF/dx. For example, we
know that d(x")/dx = nx™", thus, an anti-derivative of f(x) = nx"" is F(x) = x". The functions
F(x) = X" + 5, or F(x) = X" -10, or, in general, F(x) = x" + C, where C is any constant, are anti-
derivatives of f(x) = nx"'. One way to represent anti-derivatives is through an indefinite
integral, i.e.,

j f(x)dx=F(x)+C,

where C is a constant, if and only if, dF/dx = f(x).

Indefinite integrals in the HP 49 G

There are three functions that can be used to obtain indefinite integrals in the HP 49 G, these
are the functions INTVX, RISCH, and INT. They are described following.

The function INT VX

Indefinite integrals in the HP 49 G can be obtained through the function INTVX if the function
to be integrated, f(x) in the formula above, is given in terms of the current CAS default
variable (typically X). For example, with VX = ‘X’ (default value), you can obtain the following
indefinite integral K2dx, as follows

LT,
The result returned by the calculator is
€.333333333333*X"3".
This corresponds to fx%dx = x*/3.

What would INTVX return for ‘n*X*(n-1)’? Try it:

[~1[ ¢ TALPHA][<][N] [x] [X] [y*] [<10( )] [ALPHA][<2][N][-][1] [ENTER]
[+][CALC][DERIV][NXT][INTVX]

The result returned by the calculator is
‘EXP(n*LN(X))’.

Using the properties of logarithms and the fact that LN and EXP are inverse functions, by hand,
we can prove that exp(n [n x) = exp (In x") = x", which is the result we prefer. The moral of
this example is: do not expect the calculator to simplify every result for you - you need to
know your mathematics to be able to manipulate your solutions to your taste. The calculator,
of course, can help you simplify the solution as much as possible, but, remember, unlike you,
the calculator does not have a fully functional, 3-b brain.
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Other examples of indefinite integrals are:

‘EXP(X)’ [+][CALC][DERIV][NXT][INTVX] Result: “EXP(X)’
“qIX [+][CALC][DERIV][NXT][INTVX] Result: ‘LN(X)’
“1/(1+X*2)’  [+][CALC][DERIV][NXT][INTVX] Result: ‘ATAN(X)’
LN(X)’ [+][CALC][DERIV][NXT][INTVX] Result: X*LN(X)-X’
X+1/X’ [+][CALC][DERIV][NXT][INTVX] Result: SQ(X)+LN(X)’

Some results depend on the CAS mode settings. For example, with Complex mode selected, if
you try

‘SIN(X)” [<][CALC][DERIV][NXT][INTVX]
The result is -1/2*EXP(i*X)+-1/2*EXP(-(i*X))’
Try the same integration, but setting the CAS mode to Real:

[MODE][ CAS ][ V][ V¥]1[»] (remove check from _ Ccomplex ) [OK][OK]
[10 ¢ IISIN]J[X][ENTER] [~ ][CALC][DERIV][NXT][INTVX]

The result is now: “-COS(X)’.
The integral can include complex variables, for example (CAS mode changed to Complex):
‘EXP(I*X)’ [<][CALC][DERIV][NXT][INTVX] Result: ‘-(i*EXP(i*X))’

“4/(i*X)’ [+][CALC][DERIV][NXT][INTVX] Result: ‘- (i*(LN(i)+LN(X))’
“1/(1-X*2)’  [][CALC][DERIV][NXT][INTVX] Result: ‘1/2*LN(X+1)+-1/2*LN(X-1)’

The function RISCH

Using the function INTVX we are restricted to use as independent variable that contained in VX.
If you want to obtain an indefinite integral using any integration variable, use the function
RISCH. For example,
‘SIN(s) + EXP(-s)’ [ENTER] ‘s’[ENTER] [« ][CALC][DERIV][NXT][RISCH]
The result is ¢-COS(s)+-1*EXP(-s)’
Other examples are:
‘ABS(K)’ [ENTER] ‘k’ [ENTER] [+1][CALC][DERIV][NXT][RISCH]
Result: ‘SIGN(k)/2*k"2’
‘SINH(u)’ [ENTER] ‘u’ [ENTER] [<][CALC][DERIV][NXT][RISCH]
Result: “1/2*EXP(u) — 1/2/EXP(u)’

There are, of course, expressions for which a closed-form anti-derivative does not exist, such
as exp(-tZ/Z). Try using the function RISCH with this expression:

‘EXP(-t*2/2)’[ENTER] ‘t’ [ENTER] [+][CALC][DERIV][NXT][RISCH]

29 © 2000 Gilberto E. Urroz
All rights reserved



The result is the symbolic formula ‘INT(1/EXP(tt"2/2), tt, t)’, which uses the function INT (see

next sub-section). The variable tt in the previous expression is a dummy variable selected by
the calculator.

The function INT

Indefinite integrals can also be obtained by using the function INT. This function requires you
to specify no only the integration variable, but also a value or expressing where the integral
will be evaluated. The function INT is only accessible through the catalog. For example:

‘t72-3*t” [ENTER] ‘t’ [ENTER] ‘t’ [CAT] [ALPHA][!] (find INT with arrow keys) [OK]
The result is ‘“1/3*t%3-3/2*t"2’
If you want to evaluate this integral at a given value, say t =10, you can use:
[~][UNDO] [<] [1][0] [ENTER] [CAT] (INT should be selected ) [OK]
The result is ‘550/3’. Or, using [~][->NUM], 183.333333333.

When using INT, the second input parameter (stack level 2) is a dummy integration variable.
The expression to be integrated (the integrand) should be a function of the dummy variable.

The integrand belongs in stack level 3. The last parameter (stack level 3) is the value or
expression at which the anti-derivative, of indefinite integral, will be evaluated. @ Some
possible applications follow (assuming INT is readily available through [CAT]):
‘m"2’[ENTER] ‘m’ [ENTER] ‘a+1’ [ENTER] [CAT] (find INT) [OK] Result: ‘(a"3+3*a"2+3*a+1)/3’.
This can be interpreted as
3 2
5 a’+3a” +3a+1
Jm dm| =
m=a+l 3
Other examples using INT are:

“1/r’ [ENTER] ‘r’ [ENTER] “1/X’ [ENTER] [CAT] (find INT) [OK] Result: ‘LN(1/ABS(X))’

‘(y"2+2)/y’ [ENTER] ‘y’ [ENTER] ‘x’ [ENTER] [CAT] (find INT) [OK] Result:
“(4*LN(ABS (x))+x"2)/2’

Note: The indefinite integrals produced by the calculator ignore the integration constant. In
your solutions, however, do not forget that an integration constant must be included.
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Definite integrals and the fundamental theorem of calculus

Definite integrals are those that contain limits of integration. Such were the integrals we were

trying to approximate using summations in an earlier section.

The fundamental theorem of

calculus link definite integrals to anti-derivatives by stipulating that

[ fodx =F)i=Fb)-F(a),

where F(x) is an anti-derivative of f(x), i.e., f(x) = dF/dx.

The HP 49 G calculator offers at least two ways to calculate definite integrals, by using the
function PREVAL, or by using the integral sign ([~][ /] - the right-shift function corresponding

to the [TAN] key).

The function PREVAL

The function takes three inputs: an expression in terms of the current CAS variable VX
(typically X), the lower limit and the upper limit of integration (stack levels 3, 2, and 1,
respectively). It returns the definite integral of the expression with respect to VX. In the

following examples we assume that VX = ‘X’.

‘X*3’ [ENTER] 1 [ENTER] O [ENTER] [+1][CALC][DERIV][NXT][PREVA]

Using the integral sign in the equation writer

Using the integral sign in the equation writer one can write definite integrals the same way you

would do in paper. For example, try this exercise

(EQWI[]L/] [11(™] [(51(™] [1][-]{ALPHA][-](X] [P][ALPHA][<](X]

The result, as shown in the equation writer is:

)

EDIT]CURS BTG o] EVAL [FACTOITEPH]

1.
de

You could evaluate this result directly in the equation writer by selecting the integral (press
[A][A]) and pressing the soft-menu key [EVAL]. The result is LN(5). Press [ENTER] to return

to normal calculator display.

Try another example, using the equation writer:

[EQWI[][]T [01(™] [~ 1(m[™] [SINI[ALPHA][~][T] [P][ALPHA][~][T]
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The definite integral will be written as follows in the equation writer:

w
J SIN(8)de
a

EDIT

This time, however, we will evaluate the integral in the stack. Press [ENTER] to return to
normal calculator display. Stack level 1 will show the algebraic expression

(0,m, SIN(O),0)’. To evaluate the integral, simple use [~][EVAL]. The result is the number
2,i.e.,

L sin@ do =2.

You can type an integral directly into the stack by creating an algebraic expression that uses
the integral sign. The general form of the algebraic expression is

' f (lower limit, upper limits, integrand expression, variable of
integration) ’

For example, type the following integral directly into the stack:

(101 (101 [ALPHA][<][A] [~10, 1 (5] [~1[, ] [Nx] [ALPHA][<][T] [~1[ , ] [ALPHA][1][T]
[ENTER]

The result is the algebraic expression ' | (a,5, Vt, t)’. If you have selected the Textbook

display option ([MODE][ DISP ] [W][V][»][v CHK][OK][OK]), the integral will look like this in
your display:

RAD RYZ HEX k= 'R°
LHONED

=
2:
1:

5
{tdt

a
[ I6P [TNTvi] LAFL |PREVAIRISCH] CALC |

To evaluate press [~][EVAL]. The result, with textbook mode off is: “-((-(10*V5)+2*a*Va)/3)’.
In textbook mode the result is:

RAD HYZ HEX R= 'R’
{HOMEY
v

_-lieBl+2ala
3

| 16f JInTvil LApL [FREVAIRISCH] ChLc]
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This example illustrates the fact that you can have one, or both, of the integral limits be an
algebraic expression. The following example shows a case in which both limits of integration
are algebraic expressions. The integrand also contains an unevaluated variable (g):

[EQWI[~][ /] [ALPHA][<][TI[0][™] [ALPHA][~][TI[ALPHA][~][F][P]
[ALPHA][+][G] [x] [ALPHA][][T] [P][ALPHA][<][T]
[ENTER]

The resulting expression in the stack is ' [ (t0,tf, g*t, t)’. Press [~][EVAL] to obtain the
following result: ‘- ( (g*t0~2-g*t£~2)/2) ‘. This can be written as

11)g 2 ’

Another way to calculate an integral will be to list the different elements of the algebraic
expression for the integral in stack levels 4 through 1 in the order they appear in the
expression, i.e.,

~ Stack level 4:  Lower limit of integration
% Stack level 3: Upper limit of integration
% Stack level 2: Integrand expression

= Stack level 1: Variable of integration

Once these four values are entered, to calculate the definite integral, simply press [~][ J].
For example:

[1][ENTER] Enter lower limit of integration
[2][ - J[S][ENTER] Enter upper limit of integration
[~10 * HALPHAT[<10Y] [Y*] [=100)I[11[+]1[3][ENTER] Enter integrand expression
[ALPHA][<][Y][ENTER] Enter variable of integration

[~ Calculate integral

If your CAS is set to Exact mode you will be asked to change to Approx mode, press [OK] to
accept the change. The result is 1.79476651555, i.e.,

[y dy=1.79476651555.

In the sub-section on indefinite integrals (see above) we indicated that some integrals do not
have a closed-form solution. In this case, the fundamental theorem of calculus can not be used
to directly evaluate the definite integral. For example, to evaluate

15 2
L exp(——z-)dt,

use:

[OJ(ENTER] [1][ . 1[5](ENTER] [~][ “ 1[<][€*] [+/-][ALPHA][<][T1[y*1[2][+][2][ENTER]
[ALPHA][~][T][ENTER] [~]1[ /]

If you start from your CAS in Exact mode, you will be asked whether to change to Approx mode,
press [OK] to accept the option YES. The result is the expression:
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‘f(0., 1.5, EXP(tt~2)/EXP(tt"~2), tt)-’

’

which is the expression for the integral put together into a single algebraic expression. The
dummy integration variable selected by the calculator is tt. To evaluate this integral
numerically, you can use [~][EVAL] or [~][->NUM]. The result is the value 1.08585331767.

Integrating an equation

Suppose that you want to evaluate the following equation involving integrals

‘[‘0%= ﬂ(a+ Bt)dr.

You can type the equation in the equation writer by using:

(EQW][~][ /] [ALPHA][1][V] [0][™] [ALPHA][<a][V] [P][1][+] [Nx] [ALPHA][1][V]
[»] [ALPHA][<][V] [»] [r](=]
(EQWI[~][ /] [01[»] [ALPHA][=][T] [™] [<](()I[ALPHA][~][A][+]
[ALPHA][~]1[B][x][ALPHA][<][t][™] [ALPHA][<][T]

The result is

v 1 t
a]—v—dl} =Jaa+ﬁ-t e t |

u

E0IT [ CURS [ETG o[ EVAL [FACTA[TERFA]

Press [A][A][EVAL] to evaluate the integrals. The result is now:

2
_(_2.]U+2-W)=L‘52‘°‘§]

EDIT | CUKZ [BIG a] EVAL [FRCTO[TERFH]
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Techniques of integration

While the calculator will provide integrals for many functions, some quite complicated, it is
still useful to review some of the integration techniques traditionally used to calculate some
types of integrals. The techniques presented here include:

% Integration by substitution or change of variable
. Integration by parts
+ Integration by partial fractions

Integration by substitution or change of variable

Suppose that you want to calculate the integral

[
1— 2

Ji-xt

Let’s type the integral in the equation writer:

[EQWIL~1L [T [01[™] [2][P][ALPHAI[<][X] [+] [Nx] [1](-1[ALPHA][~][X][y*][2]
[P 1[ALPHA][~][X][ENTER]

We suggest using the change of variable u = 1-x2. We need find out how to replace x in terms
of u, so enter the expression ‘u =1-x"2’ in the stack:

[10 * HALPHAJ[<][U] [][=] [1][-1[ALPHA][~][X][yx][2][ENTER],

and isolate x by using:
[~1[  JTALPHA][<][U] [~ ][ALG][SOLVE].

The result is the list {'x=-V-(u-1)" x=\-(u-1)" }.

Press [~][EVAL] [P][<] to keep only the result ‘x=Y - (u-1)*. Next, press [~][ALG][SUBST] to
replace the latter result in the integral. The resulting integral is:

J-(072-1),-(272-1), - (Vu/(2*u) ), u)’

The best way to simplify this expression is to simplify term by term in the equation writer. To
access the equation writer press [ V],

The screen will look like this:

EOIT ] CURS | EZG [ EVAL [FACTO|TE!PA]
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To simplify the limits and integrand use the following:

[WI[EVAL] Simplifies the lower limit to 1
[»][EVAL] Simplifies the upper limit to -3
[»][EVAL] Provides no simplification of the integrand

At this point the screen will look like this:

S
=Jy
&
1

EDIT | cuks [ €16 [EVAL [FACTO[TERFA

The integrand cannot be simplified by using [EVAL] (or [FACTO]), however, we can edit this
expression by pressing [EDIT]. This triggers the stack editor which provides for us the line ‘-
Vu/ (2*u)’. To edit this line to read ‘-1/(2<Vu)’, use: [P][P][P]1[P1[<1[<]1]
[>1[»]1[»1[»]1[Vx]. When done, press [ENTER]. Now, we’'re ready to integrate the simplified
expression. Press [A][EVAL]. The result is:

EDIT EVAL

2 3 d
.[)_lj_—z—dx:f ~= ﬁ

Ji-x 7

Note: if your calculator’s CAS is set to Real before evaluating the integral, you will be asked to
switch to the Complex mode. Press [OK] to accept the option YES.

The integral we just calculated can also be solved by using the substitution x = sin 6, or 6 = sin’
'x. Let’s try this exercise with this new substitution, as follows:

First, enter the integral as you did earlier:
[EQWIL 1L [1 [01[™] [2][™][ALPHA][][X] [+] [Nx] [1]1[-][ALPHA][+][X][y*](2]
[P 1[ALPHA][<][X][ENTER]
Next, type: [1[ ¢ 1 [ALPHA][<][X] [r1[=] [SIN] [ALPHA][~][T][ENTER]

Next, press [~][ALG][SUBST] to replace the latter result in the integral. The resulting integral
is:

‘f (ASIN(0) ,ASIN(2), - (COS(0) *SIN(0) *V- (SIN(0)~2-1) / (SIN(8)~2-1)),0) '.

Let’s simplify the different terms using the equation writer:
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[V¥] Launch equation writer
[WI[EVAL] Simplify lower limit to 0
[»][EVAL] Attempt to simplify upper limit fails

Here you could try to force a numerical value by using [~][->NUM] while the upper integration
limit is highlighted. The result is a complex number (1.507079632679,-1.31695789692).

[P 1[~][TRIG][NXT][TRIG] Simplify integrand to SIN(6)

Thus, the integral has become now:

151,-1.32) |
f sin 6 d6.

To evaluate the integral, press [P][»] [~][EVAL]. You will be asked if you want the Approx
mode on, select YES, and press [OK]. The result is (0.9999999999,-1.73205080756), which is
basically the same as the result 1-i-v3 found earlier.
Differentials

A differential is a representation of an infinitely small increment in a variable or function.
Using the notation, y’(x) = dy/dx, for the derivative, we can write a differential of y as dy =
y’(x)-dx, where dx is a differential of x. Differentials of variables and functions can be
operated upon as with any number.
Differentiation formulas can be written in terms of differentials, for example,

d(u(x)-v(x)) = u(x)-dv(x)+du(x)-v(x).
This generic formula for differentials can be converted into a formula for derivatives if we
divide by dx, thus:

d(u-v)/dx = u-(dv/dx)+(du/dx)-v(x).

From the definition of anti-derivatives, it follows that

| (dF/dx)-dx = | dF = F(x).

Integration by parts

Integration by parts is a technique that can be used if the integrand can be expressed as
u(x)dv(x). From the definition of the differential of a product shown above, we can write:

d(u(x)-v(x))—du(x)-v(x). = u(x)-dv(x)
and,

[ Td(u(x)-v(x))=du(x)-v(x)] = [ u(x)-dv(x)
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or
Jd(u(x)v(x))- Jdu(x)v(x) = [u(x)-dv(x).
Thus, we can write

Judv = uv — [ v-du.

The function IBP

The function IBP takes as input the integrand of interest expressed as the product of two
functions u(X)-v'(X), and the anti-derivative of v'(X). These two input items must occupy levels
2 and 1, respectively. The function is available through [<][CALC][DERIV][NXT][ IBP ]. The
output consists of the terms u(X)-v(X) in stack level 2, and -u'(X)-v(X) in stack level 1. As an
example, to obtain the components of integration by parts of the integral

jX cexp(X)-dX,

we first identify u(X) = X, v'(X) = exp(X), with v(X) = exp(X), and enter the following
expressions in the calculator:

(10 1 [X] [x] [+2][e*] [X] [ENTER]
(10 1 [+1[e*] [X] [ENTER]

To calculate the elements of the integration by parts use:

[+][CALC][DERIV][NXT][ IBP ]

The result is:

RAD #Y2 HEX €~ 'R*
LHONED

3:

2: 'EXP (XY #(R¥EXP (KD S
PCX))!

1: Lé(Eﬁ%P(X)"&/EXP(X)

[ 16p JrnTvs[LapL [FREVA[RISCH] CALC ]

This relationships are interpreted as follows:

4 The expression in stack level 2 & u(x)-v(x) =‘EXP(X)*(X*EXP(X)/EXP(X)’ which simplifies
to ‘X*EXP(X)’.

+ The expression in stack level 1 is -v(x) -u’(x) = ‘-(EXP(X)"3./EXP(X)"2.)’ which simplifies
to ‘-EXP(X)’.

Translating this to paper we can write:

Jxe’dx =xe" +J‘~e"dx =xe"—e" =" (x—1).
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Let’s try another example: u(X) = ln X, v’(X) = X, with v(X) = X2/2. Use:

(10 “1IX] [x] []ILN] [X] [ENTER]
(=10 1 X1y 10210 +1(2] [ENTER]

To calculate the elements of the integration by parts use:

[+1][CALC][DERIV][NXT][ IBP ]

The result is:

RAD ¥YZ HEX C~ 'R'
{HOHEY

NS

;)5"2./2.*(X*LN(X)/X

1: ‘(. 3¥RM, /K3, )"
| 1ep frnvsliarL [PREVA[RISCH] ChLC ]

This result is interpreted as:

& The expression in stack level 2 is u(x)-v(x) =‘X"2/2*(X*LN(X)/X)’ which simplifies to
XA2KLN(X) /2.

& The expression in stack level 1 is -v(x) -u’(x) = ‘-(.5*X"4./X"3.)’ which simplifies to ‘-
5*X.

Translating this to paper we can write:

2 . 2 2 2
J-x‘lnxdx:f—-ln x+j—idx=§—~lnx—x—:—)i~(ln x—l).
2 2 4 2 2

Integration by partial fractions

Integrands that mntain fractions can be simplified by re-writing the fraction as a sum of partial
fractions. The function PARTFRAC, introduced in Chapter 8, decomposes a fractional
expression in terms of the CAS default variable, VX (typically X), into a sum of partial fractions.
After decomposing the expression into partial fractions integration can be performed in each of
the partial fractions. For example, to obtain the integral

j X5+5
Xt+2xXP+x2 7

Type in the integrand as follows:

[EQW] [X] [y1(51(™] [+1(51(»] [+] [X] DV'I410™] [+] [210<10X] [V°1031 (»1(»1(»] [+10X]
[V][2][ENTER]

First of all, because the order of the polynomial in the numerator is larger than that in the
denominator, we need to convert this into a proper fraction by using the function PROPFRACT.
Find this function using the catalog: [CAT][ALPHA][P], then use the up- and down-arrow keys to
find PROPFACT. Press [OK]. This decomposes the fraction into:
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X-24(3*X"3+2*X"2+5) /(X" 4+2*X" 3+X"*2)’

To form the partial fractions of this result, use the catalog again [CAT], and find the function
PARTFRAC. Press [OK] to obtain the following:

X-2+(5/X*2-10/X+(4/ (X+1)"2+13/ (X+1)))",

5
X +5 X 5 10 4 + 13

= -2+ ——

X 42X+ X2 X X (X+DP (X+D)

To proceed with the integration use:
[ ][CALC][DERIV][NXT][INTVX]
The result is:

‘SQ(X)/2-2*X+(-5/X)-10*"LN(X)+(-(4/ (X+1))+13*LN(X+1)))’, i.e.,

J‘ X*+5 X?

4
X =—-2X—-10ln X - +13In( X +1).
XY+2XP + X2 2 1 B )

You may want to try checking what result you get by directly integrating the original
expression, i.e.,

[EQW] [X] [y“1(51[™] [+1(51[P] [+] [X] [y*1[41[™] [+] [210x10X] [y“1031 [ 10 10P] [+](X]
[VI[2][ENTER]

[][CALC][DERIV][NXT][INTVX].

Improper integrals

Improper integrals are those with infinite limits of integration. The general approach for
evaluating these integrals is to replace the infinite limit with a variable, say €, and then take
the limit when € > . This can be written, for one particular case, as

[ rydx =tim [ (x)dx = lim [F(e) - F(-e))],
where f(x) = dF/dx.

As an example, to evaluate the integral
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use

[EQWIL~1L 1 [11[™] [ALPHA][~][E] [P][1][+] [ALPHA][<][X] [y*][2] [™] [ALPHA][<](X]
[A] [A][EVAL][ENTER]

The result is ‘(e-1)/€¢’. To evaluate the limit when £ > o, use:

[~1[ * ITALPHA][~][E] [~ ][=][“][][ENTER]
[~][CALCI[LIMIT][LIMIT]

The result is ‘1.’
The HP 49 G calculator allows you to enter the integral with one or two infinite limits. When

you request evaluation of the integral, the limit, if it exist, will be calculated. Thus, for the
present example you could write:

(EQWIL—1L [T [110»] (][] [®1[1](=] [ALPHA][<][X] [y*](2] [P] [ALPHA][1][X]
[A] [A][EVAL]

The result is 1, as expected.

Series

A sequence or progression of numbers consists of numbers ordered so that knowing a given
number in the sequence the preceding and subsequent numbers are completely specified.
Typically, a general term of the sequence defines the rule by which the sequence is created.
For example, the following is the sequence of even positive numbers: 2, 4, 6, ...., 2k, 2(k+1),

A series is the sum of the terms of a sequence. For example, S, =2 + 4 + 6 + .. + 2k +..+ 2n,
defines the series consisting of the sum of the first n positive even integers. S, represents a
finite series, i.e., one that has initial and ending terms. If n> «, the resulting series, S.,
becomes an infinite series.

Series can be represented by summations, for example, the following is a finite series:

10
Sw=2, LI N O S

2

‘Fit+1 2 510 JjE+1 101

This is an infinite series:

S.=Yle" e [+ [+tle” |+

r=l

The last two series are series of positive terms. The following is an alternating series (signs
alternate from term to term)

(=D 1 (=1"
S.=)y~—=—- ot —+...
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A convergent series is an infinite series whose sum converges to a finite value. If the sum of an
infinite series does not converge to a finite value, we have a divergent series.

Using the summation sign in the equation writer makes handling finite and infinite series very

easy in the HP 49 G calculator. Try the following exercises (assuming Exact mode is
selected):

Examples of series obtained in the calculator
% A finite series

To calculate the series

Use:

[EQWI[—][ =] [ALPHAJ[<][K] [>] [1][>] [1][0][0] [>][ALPHA][][K] [y]1[2] [A][A][A] [EVAL]

The result is 338350.

A convergent infinite series

To calculate the series

Use:

[(EQW][~][ Z] [ALPHA][<][N] [>] [1][>] [+][=]
[(>1[110+][ALPHA][<][N] [y*1(2] [A][A][A][A] [EVAL]

The result is /6. Using [~][>NUM], the result is 1.64498406685.

A divergent infinite series

To calculate the series

Use:
[EQWIL I =] [ALPHA][<][J] [»] [11(»] [<21le] (P11 <][ALPHA][<][J] [A][A][A][EVAL]

The result is +oo.
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An alternating infinite series

To calculate the series

i (= 1yt g 2!

(2m —1)!

l

m=1

Use:

[EQWI[][ Z] [ALPHAT[][M] [»] [1][»] [<][e] [®] [<I[0)] [110+/-] [>][P] Y]
[ALPHA][<][M] [+][1] [>1[P] [x] [=](m[<102] (@] [y"] [2][x][ALPHA][<][M][-][1]
110101 121D T[ALPHAT L] [MI[-1(1] [P](™] [~][MTH][NXT][PROB][ ! ]

The series will look as follows in the equation writer:

(—1)('“”)'[%](%—1)
m=1 (201

[cone TPERnT ! TRano] ko2 ] ]

[e

Press [P][P] to select the entire expression in the equation writer, then press [~][EVAL].
After about 10 seconds you get as a result a question mark ‘?’. This indicates that the exact
result that the calculator is trying to find for the series is inconclusive.

Press [~][UNDO] to recover the series in the equation writer. As an approximation, let’s
replace the value of infinity by a relatively large number, say 100, using:
[YI[»1[»]1[<]1[<][1]1[0][0]. Press [A][A] to highlight the series again, and press [—][EVAL].
The result, obtained after about 10 seconds, is 1.00000000001.

Press [~][UNDQ] to recover the series in the equation writer. Now, change the value of 100 to
200, to see if there is any major change in the value of the series, use:

[V <ell<l<][<] [2]1[0][0]. Press [A][A] once more to highlight the series, followed
by [~][EVAL]. Wait another 10 or 15 seconds to get as a result the same value:
1.00000000001.

These results tell us that the series converges to 1.0 with 100 elements or less, with an error of
1x10™"". Because the series is an alternating series, the calculator has difficulties figuring out
what the value of the sum is. However, we trick it by replacing the upper limit of the index

(e=) with a relatively large number (100). The second attempt to obtain a numerical value,
using 200 as the upper limit, was used to verify any major changes in the value of the series by
duplicating the upper limit. Since no changes were observed by doubling the upper limit of the
summation index, we have the feeling that the series does converge to the value of 1.0.
“Having the feeling” that the series converge is as accurate as we can get here unless we use
some of the convergence criteria listed below.
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Convergence criteria for infinite series

There are a number of tests that you can perform to determine whether an infinite series
converges to a finite value or not. For series of positive terms you can use the comparison test
of the d’Alembert’s ratio test. These tests are described following.

Comparison test for positive-term series

Suppose that we know that the infinite series
Z ak s
k=1

where ay is the general term of the series, and ax >0 for all values of k, converges.
Convergence of a series can be expressed by writing

S a, <o
k=1

Let by be the general term of another infinite positive-term series,

> by

k=1
If for all values of k you can prove that by < ai, then the second series also converges.

For example, we found earlier that the series

converges to the value /6. Because for n > 1, n°>n?, then 1/n?>1/n%, or 1/n°<1/n?, then the
series

=1
25

also converges.
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The d’Alembert’s ratio test for positive-term series

The infinite series

24

k=1

where a; is the general term of the series, and a, >0 for all values of k, is convergent if
.a
lim = < 1.
k—o0 ak

Otherwise, the series diverge.

For example, to check whether the series

= 1

n=l n!

converges, we can take a, = 1/n!, and a 5.7 = 1/(n+1)!, and calculate the limit

1 -nl
lim—altl-::lim (/’H—l).:]im (n+1') n_

n—eo a" n—oo n' n—oo n!

fim (n+1) =oo

n—oo

The series diverges.

Convergence criteria for alternating series

The alternating series
2.D""a,
k=1

converges if
a y.1<ay for all k,

and

lim a, =0.

k—roo

For example, consider the series

oo _ 1)n+l
SEr

k=1 N
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with a, = 1/n. Obviously, a,.;<a,, since 1/(n+1) < 1/n, for n > 1. Also,

fim a, = im ~ = 0.

n—oo n—e p

Therefore, the series converges.

To determine the value of this series using the calculator, try the following (use Exact mode):

(EQWI][][ Z] [ALPHAT[<][N] [»] [1][>] [][e] [>] [<10C)] [110+/-1 [P1[™]
[y*] [ALPHA][][N] [+][1] [P][™] [+] [ALPHA][][N]
[A] [A][A][EVAL]

As in the previous example with an alternating series, the calculator is at a lost on the value of
this series (The result is ‘?’). Let’s calculate the series using the first 100 and 200 elements,
as follows:

Press [—][UNDO] to recover the series.
Use [V][»][»]1[<]1[<][1]1(0][0] to replace the upper limit with the value 100.
Press [A][A] to highlight the series again, and press [~][EVAL].

The result, obtained after about 5 seconds, is 0.688172179304.

Press [~ ][UNDO] again to recover the series.
Use [V][»]1[P]1[<][<1[<]1[<] [2]1[0][0] to replace the upper limit with the value 200.
Press [A][A] to highlight the series again, and press [~][EVAL].

The new result is 0.690653430437.

Although the result seems to converge to a number close to 0.69, increasing the upper limit
from 100 to 200 still produces an error of the order of 0.01. So, let’s try re-calculating the
series with an upper limit of 500, to see what it does to its value.

Press [~][UNDO] again to recover the series.
Use [V][»]1[»1[<]1[<][<]<] [5][0][0] to replace the upper limit with the value 500.

Press [A][A] to highlight the series again, and press [~][EVAL]. (Give the calculator some time
here).

The updated result is 0.692148180548.

Still, the last two result differ in the third decimal. We will have to try an upper limit larger

than 500 to see if we are getting closer to the value of the series. For example, for an upper
limit of 600:

Press [~][UNDO] again to recover the series.

Use [V][P1[P][<][<][<][<] [6][0][0] to replace the upper limit with the value 600.

Press [A][A] to highlight the series again, and press [~][EVAL]. (Be patient here while the
calculator calculates the series).

The updated result is 0.69231454166.
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The difference is now in the fourth decimal, so we can say, that the series converges to 0.692
with an error of 0.0001. If you feel adventuresome, and have lots of time, try using an upper
limit of 1000. The result is 0.692647430554.

Absolute and conditional convergence

An alternating series, Xa,, is said to be absolutely convergent if the series ZX|a,| converges. If
the original series, Xa,, converges but the absolute-value series, X|a,|, diverges, then the
series is said to be conditionally convergent.

The criteria used for positive-term series can be used to check absolute-value series for
convergence. If a series is absolutely convergent then it is convergent.

Power Series

A power series is a series that involves a power of a certain (independent) variable in its
general term. Power series can be used to represent functions of that independent variable,
for example:

2)"
x) = n+l (x
S(x)= ;( D
In general, when the function f(x) can be written as
f)=Ya(x=c),
k=1

we say that this expression represents an expansion of the function into a power series about
the point x = c.

Taylor’s and Maclaurin’s series expansions
Let f “"(x) represent the k-th order derivative of a function f(x) with respect to x, i.e., f ®x) =

d‘f/dx with fm)(x) = f(x), then the Taylor series expansion of the function f(x) about the point
X = Xp can be written as

(n)
fn)= Zf o) ().

n=0
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If the expansion is calculated about the point x = 0, then the resulting series is called a
Maclaurin’s series expansion, i.e.,

(n)
F(x) = Zf ) o

n=0

Taylor polynomial and remainder

The purpose of expanding a function into its Taylor’s or Maclaurin’s series is to be able to
evaluate certain transcendental functions, e.g., sine, cosine, exponential, etc., numerically.
These series are then implemented in calculators or computers to produce values for those
functions. The numerical results tus obtained necessarily involve only a finite number of
terms in the series, thus we could write a function f(x) as

(n)
1= PG+ R () = ¥ LU e R

n=)

The function Py(x), representing a finite polynomial of order k, is known as the Taylor’s
polynomial of the function f(x). The function R(x) is known as the remainder of the series.
The remainder can be written as

R (x) = f(x)=P(x) =

'()C —")C(,)”H,

JA(S)
n'

where | &x|<|xp-x1, i.e., and the number x lies between x, and x!.

If we let x = xp+h, where h is a small quantity, we can re-write the Taylor’s series expansion of
the function f(x) as follows:

(n)
JICES ALY )

n=0
with

Rk(x) = f("+1)(€) . hﬂ+l.
n!

Typically, the value of & is not known, however, we can give an estimate of the order of the
error involved in using the Taylor polynomial, as opposite to using the full series, by writing

Rk(x) :K hn+l — O(h"+1).

Here K is a constant (typically unknown) and the symbol O(r) is interpreted as “is of the order
of r.” Thus, the last equation indicates that the error (remainder) in estimating a function by
using its Taylor polynomial is of the order h™*'.
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While, in most cases, this result will not let us estimate the error exactly, it does provide
information on the relative magnitude of the error. For example, knowing that the error is of
the order ™', and letting h<1.0, means that the more terms we add to the polynomial (i.e.,
the larger the value of n) the smaller the error involved in the estimate using the Taylor
polynomial. Also, when using the Taylor polynomial for numerical estimation, the smaller the
value of h, the better the approximation.

The HP 49 G calculator provides the functions TAYLORO, TAYLR, and SERIES to automatically
calculate Taylor’s (or Maclaurin’s) series expansions.

The function TAYLORO

The function TAYLORO performs a fourth-order Taylor's series expansion (Taylor polynomial) of
an expression given in terms of the CAS default variable VX (typically X) about the point X = 0.
In other words, the function TAYLORO performs a Maclaurin's series expansion. The only input
this function needs is the expression that you want to expand as a Maclaurin's series. This
function is useful to obtain the first few terms in a Maclaurin's series.

For example, to obtain the fourth-order Taylor polynomial the function f(X) = sin X, about X =
0, use:

[~][ “ 1[SINI[X][ENTER] Enter ‘SIN(X)’
[<][CALC][LIMIT][TAYLO] Invoke function TAYLORO

The result is: ‘1/120*X"5+ -1/6*X"3+X’.

Other examples:

‘EXP(X)’ [ENTER] [<][CALC][LIMIT][TAYLO] Result:
“1/24*X"4+1/6*X*3+1/2(X"2+X+1’

‘LN(X+1)’[ENTER] [+][CALC][LIMIT][TAYLO] Result:
174X 4+1/3*X 341/ 2*X"2+X’

“1/(X+2)’[ENTER] [+][CALC][LIMIT][TAYLO] Result:

“1/32*°X"4+-1/16"X"3+1/8* X" 2+-1/4*X+1/2’

The function TAYLR

The function TAYLR takes as input three elements:
- A symbolic expression in terms of a certain global variable (stack level 3).
% The global variable (stack level 2), and

= The relative order, i.e., the difference in order between the largest and smallest
powers desired in the resulting polynomial (stack level 1),

The function returns the Maclaurin's series expansion of the expression based on the global
variable.

For example:
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‘SIN(y-n/2)’ [ENTER] ‘y’ [ENTER] 6 [ENTER] [+ ][CALC][LIMIT][TAYLO]
Result: “1/720%y"6+-1. 24*yA4+1/2*y“2-1'

“COSH(S)’ [ENTER] S’ [ENTER] 8 [ENTER] [~][CALC][LIMIT][TAYLO]
Result: “1/40320%S"8+1/720*S"6+1/24*S*4+1/2*s"2+1’

‘ATAN(R)’ [ENTER] ‘R’ [ENTER] 6 [ENTER] [+][CALC][LIMIT][TAYLO]
Result: “-1/7*R*7+1/5*R"5+-1/3*R"3+R’

The function SERIES

The function SERIES calculates a Taylor's or Maclaurin's series expansion of a function f(x). The
input of the function requires the following three elements:

= The function f(x), in stack level 3

% The variable name alone for a Maclaurin's series, or the variable name and the point
about which the Taylor's series is expanded in the form 'x=a’, and
The order of the series to be obtained.

The function returns as a result two output items:
A list containing the bi-directional limit of the function at the point where the series is
developed, an equivalent value of the function near the point of expansion of the series,
an expression approximating the function near the limit point, and the order of the
remainder. All the terms in the list are expressed in terms of a small parameter h
representing (x-a).
% An expression for the small parameter h in terms of the original variable.

For example:

‘SIN(X)’ [ENTER] ‘X=n/2’ [ENTER] 6 [ENTER] [~][CALC][LIMIT][SERIE]

Result:

EAD RYZ HEX K= 'R’

ZHOME SUNIRTY

2 ¢ lelt 1 Equiv:
Expans: '-1/ 28*h"6
+1/24*h"4+ 1/72¥h"2+
1' Remain: 'h*7' %

: h—x— /2!

The result is interpreted as follows:

= Stack level 1: h=X-mn/2, is the increment in the independent variable used in the
Taylor series expansion.

Stack level 2: a list containing the following information:

Limit: 1, i.e., the limit of the function when X-> n/2 is 1.0.

Equiv: 1, i.e., the function is equivalent to 1.0 near the point X = /2.

Expans: ‘-1/720*h"6+1/24*h"4+-1/2*h"2+1’, i.e., the Taylor polynomial of order 6 is:
17720 (X-11/2)8+1/24*(X-1t/2)*+-1/2*(x-1/ 2) 241’
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Remain: ‘h"7’, i.e., the remainder of the polynomial expansion in Expans is

Rs(x) = O(h”) = O[(X-n/2)"]

A second example:

‘LN(t)’ [ENTER] ‘t =e’ [ENTER] 6 [ENTER] [+1][CALC][LIMIT][SERIE]

Result:

RAD #YZ HER K= 't

LHONE SUNIRTY

2t { Limit: 1 Equivi 1
Expans: '-1/(6%e"6)
*h"6+1/(S%e~5)*h" 5+
-17{4%e”4)¥h"4+1/(3

1: 'h=t-e'

DIVFC[LINITSERTE[TAYLO[THYLE[ CALC ]

The result is interpreted as follows:

w Stack level 1: h=t-e, is the increment in the independent variable used in the Taylor
series expansion.

= Stack level 2: a list containing the following information:
=% Limit: 1, i.e., the limit of the function when t-> e is 1.0.

- Equiv: 1, i.e., the function is equivalent to 1.0 near the point t=e.

- Expans:‘-1/(6*€"6)*h"6+1/(5*e¢"5)*h"5+-1/(4*e"4)*h"4+1/(3*€"3)*h"3+-
1/(2*e"2)*h"2+1/e*h+1’

i.e., the Taylor polynomial of order 6 is: ‘(t-e)®/(6e®)+(t-e)>/(5e°) +(t-
e)?/ (4e') + (t-e)?/ (3e’) +(t-e)?/(2e%) + (t-e) /e+1’

& Remain: ‘h"7’, i.e., the remainder of the polynomial expansion in Expans is
Re(x) = O(h")=0[(t-e)'].
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Univariate calculus applications

In this section we present some examples of applications of derivatives and integrals of one
variable in selected physical and engineering sciences.

Dynamics: rectilinear motion applications
Let s(t) represent the position along a straight-line path of a particle as a function of time t.
B}/ definition the velocity of the particle is v(t) = ds/dt, and its acceleration is a(t) = dv/dt =

d’s/dt?. Another relationship that is commonly used results from eliminating dt from the

equations for v(t) and a(t), which results in dv/a = ds/v or v-dv = a-ds. The latter result is
useful when you are given a = a(s).

Example 1 - Given s(t) = t-sin t, plot the displacement, velocity, and acceleration of the
particle as a function of t in the interval [0, 5].
Y First, enter the expression for s(t):

[EQW] [ALPHA][<][S] [<][( )] [ALPHA][<][T] [»] [~1[=] [ALPHA][<][T] [»] [-]
[SIN][ALPHA][+][T] [ENTER] [+][DEF]

This creates variable [ s ].
-+ Next, calculate the velocity v(t):

(EQW] [ALPHA][1][V] [][()] [ALPHA]I[][T] [®] [][=] [~][0][ALPHA][2][T]
[P I[ALPHA][][S] [][( )] [ALPHA][«][T] [ENTER] [~][EVAL] [«][DEF]

This creates variable [ v ].
% The next step is to calculate the acceleration a(t):

[EQW] [ALPHAT[][A] [<1][()] [ALPHA][][T] [»] [~][=] [~][9][ALPHA][<][T]
[P I[ALPHA][<][V] [][( )] [ALPHA][~][T] [ENTER] [~][EVAL] [~ ][DEF]

This creates variable [ a ].

% To plot these functions you need to load the list {'s(t)‘ ‘v(t)' ‘a(t)'} into EQ, change the
independent variable to t, change the range of values of t from 0 to 5, use AUTO to
generate the range of values for the y-axis, and proceed to create the plot. For details in
creating FUNCTION type plots see the examples in Chapter 11. The result is the following
plot:

v sl
/ ~
s Ty
0 —~___ §
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Example 2 - Given the speed of a particle as function of time t, v(t) = exp(-t/5), obtain an
expression for the position of the particle s(t) if the particle started at s = -5 when t = 2. Also,
find the acceleration of the particle at t = 1.

% First, we define the velocity function:

[EQW] [ALPHAJ[<][V] [<][( )] [ALPHA][<][T] [P] [~]1(=] [+][e"] [+/-] [ALPHA][«][T] [+](5]
[ENTER] [~][DEF]

This creates the variable [ v ]

& From the definition of velocity, v(t) = ds/dt, we can write ds = v(t)dt, and integrate

L ds = L w(t)dt
by using:
[EQW] [~1[J] [510+/-1[»] [ALPHAT[~][S] [+][( )] [ALPHA][~][TI[»] [1][»]
[ALPHA][«][SI[™] [~1[=] [~][ ] [2][™] [ALPHA][<][T]1[>] [ALPHA][<][V] [~][( )]
[ALPHAJ[«][TI[>] [ALPHA][<][T] [A][A][A] [EVAL]

This is the result shown in the equation writer screen (small font):

[eoxT [ cuks ] BIG TEVAL IFACTOTERPA]

& Press [ENTER] [~ ][  1[5] [~ 1[=]1[S][ENTER][-] [~][ALG][EXPAN] to eliminate the 5 from
the left-hand side of the equation (using ISOL does not work here). The result is:

‘s(t)=((5*EXP(-2/5)-5)*EXP(t/5)-5)/EXP(t/5)’.
% To find the acceleration of the particle can be found by using:

[EQW] [ALPHAJ[~][A] [+][()] [ALPHAT[](T] [®] [~]1[=] [~ ][O][ALPHA][~][T]
[»I[ALPHA][<][V] [<1][( )] [ALPHA][«][T] [ENTER] [~][EVAL] [<][DEF]

The result is ‘a(t)=-1/(5*EXP(t/5))’.
+ To find the value of the acceleration at t = 1, use:

[]1[ © HALPHA][<][T] [~]1[=] [1] [ENTER] [~][ALG][SUBST]
The result is: ‘a(1) = -1/(5*EXP(1/5))’.

+ To get a numerical value out of this expression, we need to separate the expression as
follows:
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[<]1[PRG][TYPE][OBJ>][<][<] [~ ][> NUM]

The result is -0.163746150616.

Example 3 - A particle is moving with an acceleration a = -1.5 v'’2, with v = 4, when ¢t = 0.
Determine and expression for the velocity, v(t), and evaluate the velocity at t = 2.

4 From the definition of acceleration, a = dv/dt, and using the initial conditions
indicated above, we can write the following integral equation:

J-v av
4 \/;
% Enter the integral in a similar fashion as done in Example 2. The equation should look
like this in the equation writer:

=-1.5j(:dr

Y
Lau =r—1 Sdte
41(? 8

EDIT B16G a] EVAL [FRCTO[TE P A]

% Make sure your CAS mode is set to Exact (-105 CF). Press [ENTER][ r~][EVAL] to
calculate the integrals in the equation. When asked for Approx mode on, choose YES,
and press [OK]. The result is ‘-4.+2.* Yv=-(1.5%t)’

+ Then, use [~][ ¢ ][ALPHA][<][V] [<][S-SLV][ISOL] to obtain: ‘v=.5625*t"2+ -3*t+4.’

% To evaluate this expression at t = 2, use:

[~1[ 1 [ALPHA][<][T] [~]1[=] [2][ENTER] [~ ][ALG][SUBST] [—][EVAL]

The result is ‘v=0.25".

Dynamics: motion in polar coordinates
Example 1 - Finding velocity and acceleration in the radial direction given r = f(8(t)).
When describing the trajectory of a particle in polar coordinates, r = f(8), we are usually
required to find the derivatives,

v, = r =dr/dt, and a, = r" = dv,/dt = d’r/dt?.

If 6(t) is given, then, we can just replace it into f(0), to get r = g(t) = f(8(t)). For example, if r
= 2.5 sin6, and, 6 = 3.5t2 - 2t, we can simply write r = 2.5 sin(3.5t% - 2t ).

To obtain the derivatives using the HP48G or GX calculator, we enter the expression for r(t) in
the display and use the [—][d] keystroke sequence. For example, enter the expression,

'2.5*SIN(3.5*t"2 - 2*t)’

in stack level 1 of the calculator, and store it into the variable r by using
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[~1[ " I{ALPHA][<][R][STOM].
Then, calculate the derivative by using:
[VAR][ r ] [~]["] [ALPHA][<][T][ENTER] [~][d]
Simplify the expression by using the function COLCT (COLleCT), available through the command
catalog: [CAT][ALPHA][C] (find COLCT)[OK], to get an expression for r’(t) as
' (17.5*%t-5.)*COS(3.5*t"2 - 2*t)’
Save this expression into variable rt, by using:
[~]1[ ' JIALPHA][«][R] [ALPHA][«][T] [STOM].
To obtain the second derivative of r with respect to t, use:

[VAR][ rt ][r]['][ALPHA][<][T][ENTER] [~][0][CAT][OK]
(Note: the function COLCT should be readily available)

The result is:

- ((122.5*t"2.+-70.*t+10.) *SIN(3.5*t"2.-2.*t)-17.5*C0OS(3.5*t"2-2.*t))’
or,

r" = -((122.5t2-70t+10)sin(3.5t2-2t)-17.5 cos(3.5t2-2t)).

Example 2 -- Finding velocity and acceleration in the radial direction given r = f(0).
If you want to find the derivatives r' and r" for r = f(8), where 6 is not given explicitly as a
function of time, you can still use the HP 49 G calculator to obtain expressions in terms of 6
=de/dt, and 0" = do/dt’>. We will need to write the expression for r as f(6(t)) and take
derivatives with respect to t.
For example, given r = 2.5 sin6, evaluate r' and r" when 6 = 0.5 rad, 6' = -3.5 rad/s, and 6" = 2

rad/s?.
We will write in the calculator the following expression:

'2.5*SIN(0(t))'
and save it into r:
[VAR][«][ r 1.
Then, calculate the derivative dr/dt by using:

[VAR]L r 1[r]0"] [ALPHA][<][T][ENTER] [~][d]

We get the result:
2.5%(COS(8(t)))* d16(t)),

where d10(t) represents 6' = d6/dt. In other words, our result is
r=2.5-cos06-96.
Save the expression in stack level 1 into variable rt, by using:
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[VAR][«][ rt 1.
To obtain the second derivative of r with respect to t, use:
[VARI[ rt 1[r]1['][ALPHA][<][TI[ENTER] [~][0][CAT][OK]
(Note: the function COLCT should be readily available)
The resulting expression is '2.5%COS(0(t))*d1d10(t)-2.5*d10(t)~2.*sin(O(t))".

With the understanding that 31410 represents the second derivative of 6 with respect to t,
i.e., 0", we can write:

r=-2.5[6]%-sin 0+ 2.5.cos 6-0".

At this point we can replace the values given earlier for 6’and 8”. Keeping the last expression
in stack level 1 create the following list:

{ *6(t)=.5" *d16(t)=-3.5" 'd1d1O(t)=2'} [ENTER]

and use the keystroke sequence:

[]IDEF]

to define the three “functions” (actually constant values) to be able to evaluate the
expressions for the derivatives. Now, enter

[~I[EVAL]
to get the value -10.2944943103.

To evaluate the first derivative r’(t) and the position r(t) use:

| [VAR] [ rt J[~NEVAL]  Result: -7.67884741655

| [ r J[~IEVAL] Result: 1.19856384651

When done, you may want to purge all the variables defined here by creating the list:

{*6 a1’ *didie’ ‘rt’ ‘r’} [ENTER]

and using
[TOOL][PURGE].
The function COLCT

The function COLCT belongs in the old HP 48 G/G+/GX SYMBOLIC menu, but it is still available
in the HP 49 G calculator through the command catalog as shown in the examples above.
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Probability: Calculations with continuous random variables

For probability distributions of continuous random variables, probabilities are calculated using
the cumulative distribution function (CDF), F(x) = P(X<x). The definition of the CDF for
continuous variables utilizes definite integrals. We can use the HP48G series calculator to
evaluate such integrals either symbolically or numerically. Following we present some
examples within a new subdirectory HOME\STATS\INTS :

1) Suppose that the pdf of a continuous random variable is given by f(x) = K/(1+x?), for - c < X
< . We are asked to find the value of K. By definition,

[ redx=1

K'j:lj;:l‘

for this particular case, we can write

It should be straightforward to type this equation in the equation writer to produce:

¢ 1
K-l 5 dx =1

14x
-

[E0TT [ CURs [ BTG ] EYAL [FACTOTERFA

Press [ENTER][—][EVAL], to get the result: ‘K*m=1’. Of course, you can easily figure out
that K = 1/m, and find this value by using: [«][r][1/x][~][2>NUM], ie., K =
0.318309886184.

2) Consider the expression for the Standardized Normal distribution,

1) = le._ﬂexp(_i‘i;).

Prove that, for this distribution, _. /"~ f(x)dx=1. First, type in the expression

S| x?
exp(——)dx
[~ F=oxp(-)

in the equation writer, to produce:
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©
1 [ x2]
== ExP[-%-|d
2w z )%
-

ECIT [ CURs TEIG o] EVAL JFACTO[TERPH

A direct evaluation, by using [ENTER][~][EVAL] produces no numerical result. One
possibility is to use the substitution x = tan y. Thus, having the integral listed in stack
level 1, enter:

‘x=TAN(y)’ [ENTER][~][ALG][SUBST].

Next, press [V¥] to activate the equation writer, and enter [V][P][P][»]1[<]. Your
equation writer screen should now look like the figure below:

ATANCS)
Faang)’ e @

2
2 on|

ATARC-w)
[EDIT [ CURS | BIG [EVAL [FACTO[TERFA]

dyd

Let’s evaluate the limits of integration by using: [P][VI][EVAL] [P][EVAL]. The limits of
integration now become -n/2 and n /2. Press [ENTER] to exit the equation writer, change
CAS mode to Approx, by using [1][0][5][+/-][ALPHA][ALPHA][S][F][ENTER], and use
[~]1[>NUM] to obtain a numerical value. Be aware that it takes the calculator up to five
minutes to obtain the numerical result: 0.999999999996, which is as close to 1.0 as we can
get.

Note: The integral calculated above is an improper integral (i.e., one or both limits are o).
You can use the transformation x= tan(y) to convert the improper integral into a proper
integral . The transformation is expressed by the following formula:

arctan(b)

| “hf(x)dx =["" f(tan p)(1 +tan® y)dy

arctan(a)

If a = -, then arctan(a) = -n/2. Also, if b = «, then arctan(b) = n/2. Also, arctan (0) = 0.

Note: Some integrals, for example,

J-ﬂ 2(1+tan? y) (r@n’y) g,
tan y
do not converge to a value. And, in most cases, there is no way to tell from just looking at the
integral that such is the case. (The case above is simple, since we know that ; /* dx/x=Iln(x),
therefore, 1/“dx/x=In(oc)=co. )
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3)

5)

On to asimpler example: If f(x) = cos x, for 0 < x < n/2, and f(x) = 0, elsewhere, find
P(0<X< m/4). We need to calculate the following integral:

T n/4
PO<X<)= [ cos(x)dx

0

Use the following:

(P10 1 ICJT 101 (P10, 1 [=10m0=1[4] =10, 1[COS] [X] [™] [~1[, 1 [X] [ENTER]
[~ 1[EVAL].
The result is ‘V2/2’. If you use [~][>NUM], this result is shown as 0.707106781185.

To calculate the mean [ u = [x-f(x)dx] of the pdf in case 3, enter the following integral:

n
2
u=L *xCOS(x)dx¢

[ E0IT [ Curs [ BIG 8] EVAL [FACTOJTERPH

Press [A][A][EVAL] to get the result p = (n-2)/2.
Store this value in a variable called p by using:

[ENTER][<][PRG][TYPE][OBJ->][<][<] [»] [STOP]

To calculate the variance [ = f(x-u)2 f(x)dx] of the pdf defined in 2, whose mean was
calculated in 4, type in the following integral:

I
z 2
o (x=p) COS(x)dx

The display now shows: 0.141592....(i.e., o = 0.141592...).
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Statics: properties of areas

Consider the region R in the x-y plane limited by the x-axis (y = 0), the curve y = f(x), and the
vertical lines x = a and x = b as sketched in the figure below.

¥ =)
— y=f{x)

X=a }?}z{ X:b

The small rectangle of width dx and height f(x) is a representative differential of area dA =
f(x) dx for the region of interest. The area of the region will be calculated by adding the
infinitesimal area elements between the values of x = a and x = b, i.e., by calculating the
integral

A= as :ff(x)dx

The product x-dA = dM, is the infinitesimal first moment of the differential of area dA with
respect to the y-axis. Here, x represents the location of the centroid (center of mass, center
of gravity) of the infinitesimal rectangle dA. Integrating dM, over the values of x =a and x = b,
we obtain the first moment of the area with respect to the y-axis, i.e.,

M, = '[RdM . :J-:x - f(x)dx

Using the element of area shown above, it is possible to define a differential first moment of
dA with respect to the x-axis as dMy = (y/2)-dA, since y/2 represents the location of the

centroid of dA with respect to the x-axis. Thus, the first moment of the region R with respect
to the x-axis is given by

M, =] am, :%-Lh[f(x)]zdx

The first moments of the area, My and Mx, are used to calculate the coordinates of the
centroid,

X = My/A, and y = Mx/A.
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The quantity dl, = x%.dA is referred to as the moment of inertia of the infinitesimal area dA with
respect to the y-axis. The moment of inertia of the region R with respect to the y-axis is given

by

b
u

I,=]dl, =[x fx)dx

The moment of inertia of the differential of area dA with respect to the x-axis, dly, is not as
simple to write as that with respect to the y-axis, dl,. The expression for dix follows from the
expression for the moment of inertia of a rectangle. Consider the rectangle shown in the
figure below.

H Tdy

— 1 —

—13 —

If we use the horizontal strip of the rectangle as a differential of area, dAy = B dy, we can
write (dl)r = y?dA" = By?dy, where the sub-index R stands for “rectangle.” The moment of
inertia of the rectangle with respect to the x axis can be calculated as the integral [z Byzdy,
between y = 0 and y = H. Using the HP 49 G calculator, the integral should look like this:

By~ du¢
a

EDIT | CURS [ BIG o] EVAL [FACTO[TERFA

Press [ENTER][~][EVAL] to get the result (I,)g = B-H*/3. Thus, the moment of inertia of dA, the
vertical infinitesimal rectangle of width dx and height f(x), is given by dl, = (1 /3)(dx)[f(x)]3 =

(1 /3)[f(x)]3dx, and the moment of inertia of the region R with respect to the x-axis is
calculated as

I, :L dl :éji'[_/‘(,r)]3dx.
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The moment of inertia of the region R with respect to the origin (or, more properly, with
respect to the z-axis, perpendicular to the x-y plane) is defined as

1,=1,+1, :J‘:xzf(x)-dx+%f[f(x)]3dx

Associated with the concept of moment of inertia is the idea of a radius of gyration. The
radius of gyrauon about the y-axis is given by k, = (ly /A)”Z the radius of gyratlon about the x-
axis is ke = (Ix/A)""2, and that about the origin (or z-axis) is ko = (Io,/A)""?

Example: The figure below shows the region R defined by 0 < y < In(x+1), 2<x<4. Use your HP
49 G calculator to obtain the area of the region , the coordinates of the centroid, the moments
of inertia and radii of gyration about the x- and y-axis, and about the origin.

21
1.5] e
1 -

0.5

The solution requires you to use a = 2, b = 4, and f(x) = In(x+1). Thus, the area would be
calculated by

4
IZLN(x+ 1)dx

EDIT]CURSTBIG [ EVAL [FACTO[TERPA

which produces the value ‘ -(3*LN(3)-(5*LN(5)-2))’, or A = 2.75135269614. Store this value in a
variable called A.
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The following screens shown the integrals corresponding to the first moments My, Mx, and the
moments of inertia ly, and Ix:

. 4. »
NG e Lo NG 107 dxe
, 2

[EvrT [cuRs TEIG [ EVAL [FACTO[TERF 4] EOIT ] CURS [ BTG a[ EVAL [PACTO[TERF ]

4 4
[ <PLN(x+ 1 dx L { (LM 1) e
2 2

[evITlcurs TETG alEvAL JPRCTOITERFH] [E0IT [ CURSTETG ol EVAL JFRCTOITERFA]

Once evaluated, the following results are obtained: My = 8.42286591025, Mx = 1.91394984757,
ly = 26.6864290145, and Ix = 1.7943172852. From these values we get, x = My/A =
3.06135448282, y = Mx/A = 0.695639584934, k, = (I,/A)"/2 = 3.11438356332, and k, = (Ic/A)"* =
0.807563138712.  Also, lo = Ix + ly = 28.4807462997, and ko = (lo/A)"/% = 3.21738142011.

Dynamics: properties of solids of revolution - disk method

Consider the solid of revolution resulting from the rotation of the region R = {0 <y < f(x),
a<x<b} about the x-axis, as illustrated in the figure below.

As the region rotates about the x-axis, the element of area - the shaded rectangle of width dx
and height f(x) - generates a cylinder, or disk, of radius f(x) and height dx. The volume of this
elementary cylinder (differential of volume) is

dv = & [f(x)]>dx.

The volume of the entire solid of revolution, contained in a<x<b, is, therefore,
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V=fav=[r [/ dx.

The external area of this elementary cylinder (differential of external area) is
dAs = 2-f(x)-dx.

The total external area of the solid of revolution is, therefore,

b
A =[da, =27 f(x)-dx.
R
Let p represent the density (mass/volume) of the material composing the solid of revolution.
By definition, p = dm/dV, where m represents mass. Therefore, the mass of the element of
volume (differential of mass) is
dm = p-dV = & p- [f(x)]>dx.
This expression for dm applies if p is a constant. We can let the density vary with x, r(x), in
which case the differential of mass is given by
dm = p-dV = 1 p(x)- [f(x)]*dx.

For constant p, the mass of the solid of revolution is simply

m=p-V,
with V as calculated earlier.

For p = p (x), the mass of the solid of revolution is to be calculated with the integral

b
m= [ p(x) [/ -dx.
The x-axis is an axis«of symmetry for the solid of revolution, therefore, the y-coordinate of its
center of mass is y = 0. Assuming, in general, that p = p (x), the first moment of the
differential of mass with respect to the y-axis is given by

dM, = x-dm = x-p-dV= mex-p (x)-[f(x)]>dx.

The first moment of the solid of revolution with respect to the y-axis is, therefore,

M, =[7xp() [f ) - dx
The x-coordinate of the solid body’s center of mass is given by
x = My/m.
The moment of inertia of the differential of mass with respect to the y-axis is given by

dly = x2dm = x2p-dV = 7 x2p(x)- [f(x)]%dx.

This expression results from the conditions of symmetry of the differential of mass about the y-
axis that allows us to consider the inertial effect of the mass differential as that of a particle
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of mass dm located at a distance x from the y-axis. The moment of inertia with respect to the
y-axis is calculated using the following integral

I, =J.Ra'1“_ =IRx2 -dm :J-sz -p-dV =J.:7r xp(x) [f ()] -dx

To calculate the moment of inertia of the cylindrical differential of mass from the solid of
revolution we need to use the expression for the moment of inertia of a cylinder of radius R
and height H about its axis. This result, which is proved later in the book by using double
integrals in polar coordinates, is given by

(I)e=57p H R

Using this result with the elementary disk in the solid of revolution provides an expression for
the differential of moment of inertia with respect to the x-axis:

il =57 p() L (0]

Thus, the moment of inertia of the solid of revolution with respect to the x-axis will be given
by the integral

b 1 4
I, :-[’E~7r~p(x)~[f(x)] - dXx.

Radii of gyration of the solid of revolution with respect to the y- and x-axes, respectively, are
given by

ky = (I,/m)"%, and k, = (L/m)""2.

Example - Consider the region R = { 0 < y < In(x+1), 2<x<4} shown in the figure below. The
region rotates about the x-axis generating the solid of revolution sketched in the figure below.
Assuming that the density of the solid is given by p(x) = exp(-x/4), calculate the solid’s volume,
exterior area, mass, x-coordinate of its center of mass, moments of inertia and radii of
gyration with respect to the y- and x-axes.

The approach | suggest for calculating the required properties for the solid of revolution is to
define the functions f(x) = In(x+1) and p(x) = exp(-x/4) in the HP 49 G calculator. You can also
store the values of a=2 and b=4 in the calculator, and then simply type in the formulas shown
earlier to obtain the different properties. Here is how to define the functions:

[EQW] [ALPHA][][F] [<]0( )] [ALPHA][<][X] [»] [~][=] [~ ][LN] [ALPHA][<][X] [+][1]
[ENTER] [+][DEF]

This operation creates the variable [ f ].

To create the density function use:
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[EQW] [~][CHARS] (find the character p) [ECHO1] [«][()] [ALPHA][][X] [™] [~1[=] [~ ][€*]
[ALPHA][~][X] [+/-] [<][4] [ENTER] [~][DEF]

This operation creates the variable [ p ].

27y

f(x) = In(x+1)
Ny

The next step is to store the values of a and b:
(2] [~][ * IIALPHA][~][A][STOP] [4] [~][ * JIALPHA][<][B][STOM]

To calculate the mass, for example, type the integral

b
I mPOO(f (x)]2 dxe
a

EDIT|CURS [EBIG 8] EVAL IFHCTOITERP ]

Then, press [ENTER][—][->NUM] to obtain a numerical value for the integral. The mass is m =
5.56740083556.

The following screens show the integrals you need to type to produce the first moment My, and
moments of inertia |, and |, respectively:

b b b

4
J n-x-P(X)-f(x)zdx J me'P(x)f(x)edx# [ %-H-P(x)'f(x) dx¢
a a a

EDIT EDIT ] CURS [ BIG w[ EVAL FACTO[TENF A Y EDTT
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The corresponding values are My = 16.9252199715, |, = 53.2640598494, and | = . Also, X =
My/m = 3.04005773455, k, = (I,/m)"'? = 3.09307811219, and k. = (Ix/m)"’? = 0.985351404481.

The volume and exterior area of the solid of revolution are calculated using the following

b . b
J m(f(x)) dx LZ'ﬂ'f(x)dx
a

evxtfcursera sl evaL [FncTofTexr ) M ECITTCURS TETG sl EVAL [FACTOITE FA]

integrals:

The results are V = 12.0257015609, and A; = 17.2872588354.

Hydrostatics: force over a flat surface submerged in a liquid

Consider the flat surface R located along the plane OP inclined by an angle 6 with respect to
the horizontal free surface OS of a liquid at rest.

The pressure in a liquid at rest is given by
P=po+vh,

where po is the pressure at the free surface vy is the specific weight of the liquid
(weight/volume), and h is the depth measured from the free surface. If the free surface OS is
open to the atmosphere, and we use gage pressures, po = 0, and

p =vh.
Since pressure depends on depth only, a differential of force dF acting on the differential of

area
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dA = b(y)dy
of the surface R will be given by

dF = pdA = vh-dA = yh-b(y) -dy = yy-sin 8 -b(y)-dy,
where the relationship
h =ysin 6

has been used. The force on the surface will be calculated through the integral

F=[dF=[p-da=[y-h-da=y-sin6 [ y-da=y-sin0-[ y-b(y)-d.
R R R

To find the point of application of the force we can take the moment of the differential of
force dF with respect to the x and y axes as

dM, = y-dF = y-p-dA = yhy-dA = vhy-b(y)-dy = yy>sin 6 b(y)-dy,

and

dMy = [Xo(y)+b(y)/2]-dF = [Xo(y)+b(y)/2]- p-dA = [Xo(y)+b(y)/2]- vh-dA = [Xo(y)+b(y)/2] ¥ y-sin
6-dA

dMy = [Xo(y)+b(y)/2] ¥ ysin 6-b(y)-dy
where x,(y) is the distance from the y-axis to the left edge of the differential of area, and b(y)

is the width of the differential of area. The moments with respect to the x- and y-axes are
given, respectively, by the following integrals

M, :J.y'sz_[y~p-dA=jy-y-h~dA :)/-sinB'I:y2 -dA =7 -sin 6--":}/2 -b(y)-dy.
R R R
and

M, =y-sin0[x, (y)+’;b(y>]~y-dA =y -sin6- jf[x,,(v)+%-b<y>]-y-b(y>-dy.

The point of application of the total force F is known as the center of pressure of the surface
(point CP in figure above). Its coordinates are given as the arm of the force with respect to
each axes that produce the same moments Mx and My. So, if the coordinates of CP are (xcp,
Ycp) We can write:

Xcp = My/F, and ycp = M /F.
Example 1 - Hydrostatic force on a triangular shape

Consider the triangular-shaped region located along the plane OP inclined by an angle 6 from
the free surface OS of a liquid at rest. The dimensions of the triangular surface and its
location with respect to the x- and y-axes are indicated in the sketch. Find expressions for the
force F, and the moments M, and M, produced by the hydrostatic pressure distribution on the
triangular surface. Also find the coordinates of the center of pressure xcp and ycp.
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= To find an expression for x,(y) we use the coordinates of points A and B. The slope of
the line AB can be found from

Mag = (Ys-Ya)/ (Xg-Xa) = (a+H-a)/(d-d-by) = -H/b.
The equation of a straight line going through point A with slope mpg is y - ya = mag(X-Xa), Or

y = ya+ Mpg(X-Xa) = a—(H/by)(x-d-by).

Using the calculator you can isolate x as follows:

‘y=a-(H/b1)*(x-d-b1) [ENTER] ‘x’ [ENTER] [—][5.SLV][ISOL]

The result is: ‘X = ((d+b1)*H+(b1*a-y*b1))/H’

To define this result as the function ‘xo(y) = ((d+b1)*H+(b1*a-y*b1))/H’, use the equation writer
as follows:

[VI[VI[<][ALPHA][<][O] [<][( )] [ALPHA][][Y] [ENTER] [+2][DEF]

This operation creates the variable [ xo ].

S
F
vertices at
A(d+bl H a)
B(d, a+H)
C(d+b1+b2,a+H)

s Similarly, the slope of line AC can be found from

Mac = (Yc-Ya)/ (Xc-xa) = (a+H-a)/(d+by+by-d-by) = H/by,

and the equation of the line AC is

Y = ya+ Mac(X-Xa) = a+(H/bz)(x-d-by).
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Let’s isolate x = x(y) by using the HP 49 G calculator:
‘y=a+(H/b2)*(x-d-b1)’[ENTER] ‘x’ [ENTER] [«][S.SLV][ISOL]
The result is: ‘X = -(((a-y)*b2-(d+bl)*H)/H".

This result represents an outer value of x that we can define as xf(y). To define this function
use:

[VI[YI[IALPHAI[<](F] [+][()] [ALPHA][<][Y] [ENTER] [<][DEF]
This operation creates the variable [ xf ].

% The width of the element of area b(y) is by definition b(y) = xf(y) - xo(y), thus, we can
define b(y) with the HP 49 G calculator by using:

‘xf(y) - xo(y)” [ENTER][EVAL] [~][ * ] [ALPHA][][B] [][( )] [ALPHA][2][Y] [ENTER] [>][~][=]

This results in ‘b(y) -(((a-y) *bl+(a-y) *b2) /H) ’.

Use [+][DEF] to define the function b(y).

Having defined xo(y) and b(y) we can proceed to calculate the force F, moments My and M,,
and coordinates of the center of pressure xcp, ycp, as follows:

Note: The Greek letter vy is available in the HP 49 G calculator’s character set by using
[][CHARY], selecting vy, and pressing [ECHO1].

% Force:

a+H
+SIN(B) yb(y)dy
a

EDIT | CURS TG l EVAL IFRCTOTERF ]

Press [ENTER] [ ][EVAL]. After about 20 seconds you get the following result:
Y ((2*Y*HA2+43*y*a*H) *bl+ (2*Y*H 2+3* y*a*H) *b2) *SIN(0) /6’

Use [~][ALG][FACTO] to get
‘SIN(O) *H*y* ((2*H+3*a) *bl+ (2*H+3*a) *b2) / (3*2) ’.

In the latter expression you can recognize another common factor (2*H+3*a) that has not
yet been factored out. You can factor it out by using the equation writer as follows:

[(VIIVILVILVILY] [P]1>][>] [A][A][A][A][A] [FACTO] [ENTER]

The result is now ‘SIN(B) *H*y* ( (b1+b2) * (2*H+3*a)) /(3*2) ', i.e..
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F=l6'y-H-sin9 (b, +b,)-(2-H+3a).

Save this result into variable F by using [~][ ¢ J[ALPHA][F][STOM]

=& Moment about the x axis:

a+H 2
~+SIN(8) u blu)dut

a

ECIT ] CURS [BIG ] EVHL JFACTOITERFA

Press [ENTER] [ ][EVAL]. After about 40 seconds you get the following result:

RAD #YZ HEX R= 'R'
LHOMEZ

18 ' ((3¥v#¥H 3+G¥v¥axH"™
2+6¥4¥3"2¥H) #b1+(3%
N¥HAS4+8% vk axH N 2+6%y
TSTZ*H)*bZ)*SIN(B pYs

|_F_[PRINT[CASIN[REALA] VR | wF |

To factorize this expression use [~][ALG][FACTO] . Press [V¥] to activate the equation
writer. If the option [BIGH] is selected, press the corresponding button to de-select it.
This will let you see the current expression in a smaller font. There is a common factor
that has not been factored out. To move about the equation writer screen, use the
following: [W][Y1[V1[V¥]. This will change the cursor to a rectangular shape that you can
move from term to term. Press [P] twelve times to place the rectangular cursor over the
term b1. The screen should look like this:

(Grezameea)pts(zh2esansca®,

3-22

EDIT]CURS] BIG | EVAL

This screen lets you see the common factor that is still distributed in the expression. This
common factor is (3-H*+8aH+6-a?). To factor it out, use: [A][A][A][FACTO]. Press
[ENTER]. The resulting expression can be translated in paper as

M, =IIE-}/-H-sinB-(bl +b) (3 H>+8-a-H+6-a%).
Save this result in variable Mx using: [~][ ¢ ][ALPHA][M] [ALPHA][«][X] [STOM].
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& Moment about the y axis:

a+H
1«:»)'] (rotaredncsd}pcray

a

EvITcuRs] BTa [EVAL IPACTO[TERFA]

Press [ENTER] [~][EVAL]. This calculation will take more than a minute since it involves
multiplying out and integrating a more complicated expression. The beginning of the
resulting expression is presented in the following screen:

RAD R'YZ HER K= 'R’
LHOMEY

13 ' ((S¥v*¥H"2+8%v¥a*H)
*b17°2+((B*¥v¥H "2+12%
~v¥a¥H)*¥b2+(8¥v¥d¥H"
2+12%~vxd*a*H) y*¥b1+(
(3#vEH 2+4%v%a%H) *

[expanfFacTolLncoL] LIN JeoLvVESUBST]

To factorize this expression use [~][ALG][FACTO]. The result is now:

RAD HYZ HEX R= '®*
{HONEZ

1: 'STHCB)*¥H*y*¥((5*¥H+8
#a)*¥b1"2+((8¥H+12%a
) xb2+8xdxH+12%d¥a)x
b1+(3¥H+4*a)*b2"2+¢
S¥d¥H+12%d*a)*b2)/(
JexpRnlFRCTalLnCoL] LIn JSoLvE[SUEST]

In this last result we can see some common factors still not factored out, e.g., (8*H+12*a)
and (8*d*H+12*d*a). Press [V¥] to activate the equation writer. (If the option [BIGH] is
selected, press the corresponding button to de-select it. This will let you see the current
expression in a smaller font. To move about the equation writer screen, use the following:
[VI[VYI[VYI[¥Y]. This will change the cursor to a rectangular shape that you can move from
term to term. Press [P] fourteen times to place the rectangular cursor over the term 8. The

2o((BHe12a)bBo2d Mo 12 b0 )ibid 0 (3

2.2?
[ECIT ] CURS [ EIG EVAL [FRCTO[TERPH]

screen should look like this:

Now, press [A][A][A] to select the expression (8-H+12-a)-b2+8-d-H+12.d-a. Press [FACTO]
to factor this expression to (b2+d)- (8:H+12-a). Now, press [V][P] to highlight the term
(8:H+12-a). Press [FACTO] to convert this expression to (2-H+3-a)-4. Next, press [P][P] to
highlight the last term in the numerator: (8-d-H+12.d-a)-b2. Press [FACTO] to obtain for this
last term b2.d (8H+12-a). We can factor this term even further by using
[V1[»]1[™][FACTO] to highlight the term (8-H+12.a) and factor it out to (2-H+3-a)-4. Press
[¥] until you obtain the rectangular cursor. Then, use the left- and right-arrow keys to
move about the expression. The expression can be translated into paper as follows:
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SIN®)-H-7-(5-H+8-a)-bl> +(b2+d)-(2-H+3-a)-b2* +b2-d-(2-H+3-a)-4)
3.2?

There is still the factor (2H+3a) that can be factored out of the &st two terms in the
numerator. Press [¥] until the rectangular cursor is available. Then move the cursor on
top of the term b2 contained in (b2+d). Next, press [A][A][A][A][FACTO]. This result in
the expression:

SIN@O)-H -y-(b1+b2)-(5-H+8 a)-bl+(3-H+4-a)-b2+8-d-H+12-d -a)
3.22

This is an improvement as we were able to identify the factor (b1+b2), however, within the
second set of parentheses in the numerator we still have some factoring to do, particularly,
in the last two terms. Press [W] until the rectangular cursor is available. Then move the
cursor on top of the term 8 contained in 8d-H Press [A][A][A] until the term 8dH is
highlighted. Next, press [~][P] to highlight the last two terms, and press [FACTO]. The
highlighted term is converted to d- (2--H+3a)4. The entire expression now looks like this:

SIN@O)-H-y-(b1+b2)-(5-H+8-a)-b1+(3-H+4-a) - b2+d-(2-H+3-a)-4)
3.2°

Press [ENTER] and save the result into variable M, by using:
[~]1[ ¢ ITALPHA][M] [ALPHA][<][Y] [STOP].
Press [VAR]. You should have in your soft-menu key labels the following keys:
[ My Il mx 1[ F 1
& Coordinates of the center of pressure:
To calculate the coordinate xcp = My /F use:
[ My 1II F J[=][~][ALG][FACTO]

After about 30 seconds the calculator returns the result:

‘((5*H+8*a)*b1+((3*H+4*a)*b2+(8*d*H+12*d*a)))/ (8*H+12*a)’.
This result can be factored even more using the equation writer to make it look like this:

(5-H+8-a)-bl+(3-H+4 -a)-b2+d-(2-H+3-a)-4
(2-H+3-a)-4
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This latter result suggest that we can write:

(5-H+8-a)bl+3-H+4-a) b2

Xqp=d+
& 4-(2-H+3-a)

To calculate the coordinate ycp = My /F use:
[ Mx I[ F ][] [~][ALG][FACTO]
After about 20 seconds the calculator returns the result:
‘(3*H"2+8*a*H+6%*a"2) / (4*H+6%a) '.

The denominator has a common factor of 2, but no other simplification is possible, so the
result is:

3-H'+8-a-H+6-a’
er 2.2-H+3-a)

Now, check these results by hand.

Note: Just kidding!
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Mathematics: area in polar coordinates

The figure below illustrates a region R described by { 0 < r < f(6), a < 8 < b}. The quasi-
triangular infinitesimal element of area limited by the angle d8 and the curve has an area

dA =% (base) - (height) = V2 (r-d@)- (r) = 2 r2.do = 1 [f(O)]Z»de.

Therefore, the area of the region is given by

A=£dA=i2~J:"[f(9)]2 -d6.

Example 1 - Calculate the area of the regionR={0<r<a, 0<6<2 n}, i.e., the area of the
circle of radius r = a centered at the origin. Type in the integral:

12-112
2l a do+¢

EDITICURS TELG slEVAL IPACTOITERF ]

Press [A][A][A][EVAL] to get the result a’m

Fluid dynamics: calculating discharge in pipe for laminar flow

The figure below shows the profile of laminar flow velocity as a function of the radial distance
rin a pipe.

The velocity distribution is given by the expression,
v(r) = ve[1-(r/ro)’],
where v is the centerline velocity and r, is the radius of the pipe.

We can use this expression to obtain the discharge (volumetric flow) in the pipe by using the
definition

75 © 2000 Gilberto E. Urroz
All rights reserved



Q:jv-dA.

R

Because the velocity distribution in a pipe depends on the radial distance only, we can use an
element of area consisting of a ring of thickness dr and length 2mr, thus, the area is

dA = 2mrdr.

g
(;

With this element of area, the discharge is calculated, in general, as

Q:fo"‘v(r)-z-nq«dr.

For the specific case of a laminar flow velocity distribution, you will need to set up the
integral:

re
2
ve: l—[:—a] 2w dr
a

[E0IT | CURS [ BTG a] EVAL [PHCTO[TERFH]

Then, press [ENTER][—][EVAL]. The result is ‘vc*r0"2*n/2’.

The mean velocity is defined as V = Q/A, with A = ro?, then V = v/2 for laminar flow.
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Multivariate and vector calculus

Multivariate calculus involve differentiation and integration using functions with more than one
independent variables. The following definitions will be provided for functions of two
variables. However, generalizing them to functions of more than two variables should be a
straightforward. Set Exact mode before attempting any symbolic calculation.

Partial derivatives

Consider the function z = f(x,y), we define the partial derivative of z with respect to x as

9_‘3 :limf(x+Ax’y)_f(x’y).

=z

ox A Ax

Similarly, the partial derivative of z with respect to y is defined as

92 _ i LA Sy

ay ) Ay—0 Ay

For practical purposes, a partial derivative with respect to any given independent variable is
calculated the same way that you would calculate a total derivative with respect to hat
variable while treating all other variables in the function as you would constant values. Thus,

9 (2xy - =9 -2 9 (in( ) =
—-(2007 = exp(x) I 1)) = 2= (2x7") ===(exp(0) + =—(n( )

2y —exp(x)+0=2y* —exp(x)

The HP 49 G calculator uses the same functions DERIV and [r][d] to calculate partial
derivatives, as we did with total derivatives. Examples:

2*X*Y~2-SIN(Y)’ [ENTER] ‘Y’ [ENTER] [+1][CALC][DERIV][DERIV],

result = ‘2*X*(2*Y)-COS(Y)’, i.e.,

) .
5—(2xy2 —sin y) = 4xy—cos y.
x
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“2*EXP(-x*y*z)’ [ENTER] ‘2’ [ENTER] [~][3] Result: ‘2*(EXP(-x*y*X)*(-x*y))’, i.e.,

%(2@“’) =2xye ™.

Second order partial derivatives

Second order partial derivatives are defined by:

S3fs e 22

ox?  ox|ox ox® x| ox
) (A NP YL AR
ady oxlay ) 7 oylox ) ayax TV

Notice the order of the variables in the two notations (using the partial derivative symbol or
sub-indices) in the cross-derivative with respect b x and y.  Using the partial derivative
symbol, the first derivative taken is the one located more to the right in the denominator,
thus, Bzf/axay means of/dy is taken before d/ox. Using the sub-index notation, the first
derivative taken is indicated by the sub-index closest to the function name f, thus, f,, means
the first derivative taken is the with respect to x and then with respect to y.

Here are some examples of second-order partial derivatives:

‘SIN(X*Y)’ [ENTER] ‘X’ [ENTER] [~][d] ‘X’ [ENTER] [~][d] Result: “Y*-(Y*SIN(X*Y))’, i.e.,

2
——(sin xy) = —y? sin xy.
ox*

‘X*2*LN(Y)’ [ENTER] ‘X’ [ENTER] [~][3] ‘Y’ [ENTER] [~][d] Result: ‘2*X*(1/Y)’

2

dydx

(x*In y) :2_x‘

‘X"2*LN(Y)’ [ENTER] ‘Y’ [ENTER] [~][3] ‘X’ [ENTER] [~][0] Result: ‘2*X*(1/Y)’

2

axdy

&y =2
y

“Y+X*EXP(Y)’ [ENTER] Y’ [ENTER] [~][0] ‘Y’ [ENTER] [~][d] Result: ‘X*EXP(Y)’
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2

dyox

Generalization of the definitions given above for third- or higher-order partial derivatives is
straightforward.

(y+xe') =xe".

The chain rule for partial derivatives

Consider the function z = f(x,y), such that x = x(t), y = y(t). The function z actually represents
a composite function of t if we write it as z = f[x(t),y(t)]. The chain rule for the derivative
dz/dt for this case is written as

d_% e o b
dt  ox dr dy dr

To see the expression that the HP 49 G calculator produces for this version of the chain rule
use:

[EQW] [~][d] [ALPHA][<][T] [»] [ALPHA][<][Z] [<][O)] [ALPHAJ[<](X] [<][()] [ALPHA][<][T]
[»] [SPC] [ALPHA][][Y] [<][0)] [ALPHA][<][T]

The derivative to be evaluated is

3%[Z(X(t).u®]]

[EDIT{CURs TRTG alEVAL JFACTOITERPA)

To expand this derivative use: [A][A][A][A] [EVAL]. The result provided by the calculator is
dly(t)-d2z(x(t),y(t))+dlx(t)-dlz(x(y),y(t))

The term d1y(t) is to be interpreted as “the derivative of y(t) with respect to the 1%
independent variable, i.e., t”, or d1y(t) = dy/dt. Similarly, d1x(t) = dx/dt. On the other hand,
d1z(x(t),y(t)) means “the first derivative of z(x,y) with respect to the first independent
variable, i.e, x”, or di1z(x(t),y(t)) = dz/ox. Similarly, d2z(x(t),y(t)) = dz/dy. Thus, the
expression above is to be interpreted as:

dz/dt = (dy/dt)-(3z/3y) + (dx/dt)- (3z/x).

Total differential of a function z = z(x,y)

From the last equation, if we multiply by dt, we get the total differential of the function z =
z(xy), i.e.,

dz = (0z/0x)-dx + (9z/9dy)-dy.
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Example: let's use z = sin(xy), x = £, and y =V t to verify the chain rule for the case z
=f[x(t),y(t)] in the calculator.

% First, define the functions:

[EQW] [ALPHA][<][Z] [<][( )] [ALPHA][<][X] [SPC] [ALPHA][<][Y] [»][~1[=] [SIN]
[ALPHA][<1[X] [x] [ALPHA][][Y][ENTER] [~][DEF]

(EQW] [ALPHA][][X] [+][()] [ALPHA][<][T] [»][~][=] [ALPHA][<][T] [y] [2] [ENTER]
[<][DEF]

[EQW] [ALPHA][][Y] [~][()] [ALPHA][<2][T] [»][~][=][¥x] [ALPHA][<][T] [ENTER]
[<][DEF]

You should have in your soft-menu key labels the functions[ y ],[ x Jand[ z ].
. Now, let’s calculate the derivatives separately:

[EQW] [~][JI[ALPHAT[][T] [» J[ALPHAJ[2][X] [][( )] [ALPHA][][T] [a][a][A] [EVAL]
[ENTER] [~1[ * 1[ALPHA][][X][ALPHA][<][T][STOM]

[EQW] [r"][a][ALPHA]["'][T] [>I[ALPHA][<][Y] [<1[( )] [ALPHA][<][T] [a][a][A] [EVAL]
[ENTER] [~ ][ * J[ALPHA][][Y][ALPHA][~][T][STOM]

[EQW] [ ][JI[ALPHA][2][X] [>][ALPHA][](Z] [][()] [ALPHA][2][X] [SPC] [ALPHA][][Y]
[a][a][a] [EVAL]

[ENTER] [~][ * ][ALPHA][][Z][ALPHA][<][X][STOM]

[EQW] [~ ][][ALPHA][][Y] [» J[ALPHA][~][Z] [][( )] [ALPHA][2][X] [SPC] [ALPHAJ[][Y]
[a][A][a] [EVAL]

[ENTER] [~1[ * J[ALPHA][][Z][ALPHA][<][Y][STOM]

You should now have the soft-menukeys [ zy ][ zx ][ xt ][ yt ] corresponding to
the derivatives dz/dy, dz/dx, dx/dt, and dy/dt, respectively.

- Using the notation of the variables we just stored, the chain rule for the derivative
dz/dt will be written as dz/dt = zx*xt + zy*yt. Therefore, in the calculator we will use:

[ zx J[ xt 1[xI[ zy ][ yt 1[x][+]. The resultis:
‘y*COS(X*y)*(2*t)+x*COS(x*y)*(1/2*Vt)’

w4 Use [~][ALG][FACTO] to simplify the expression to ‘COS(x*y)*(4*y*t"2+x*Vt)/(2*t)’
= To calculate the derivative directly, use:

[EQW] [ ][OI[ALPHAT[<][T] [»] [ALPHAJ[«]{Z] [<][( )] [ALPHAJ[«][X] [<][( )]
[ALPHA][][T] [»] [SPC] )] [ALPHA][][Y] [=]1[( )] [ALPHA][<][T] [a][a][Aa][A] [EVAL]
[ENTER]

The result in this case is ‘COS(x(t)*y(t))*(2*t*y(t))+x(t)*(1/2*t)))".

* Use [~1[ALG][FACTO] to simplify the expression to ‘COS(x(t)*y(t))*(Vt*x(t)+

417 2*y(t))/ (2*t)’
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The two results in your stack are basically the same except that the latest uses x(t) and
y(t) instead of simply x and y.

A different version of the chain mle applies to the case in which z = f(x,y), x = x(u,v), y =
y(u,v), so that

z = f[x(u,v), y(u,v)].

The following formulas represent the chain rule for this situation:

9z 0z dv 0z dy G _0z ox 9z dy
ou ox du Oy ou v ox ov dy ov

Determining extrema in functions of two variables
In order for the function z = f(x,y) to have an extreme point (extrema) at (x,,Y,), its derivatives

of/dx and of/dy must vanish at that point. These are necessary conditions. The sufficient
conditions for the function to have an extreme at point (x,,Y,) are

of/ox = 0, of /oy = 0, and A = (9*f/0x?)- (9*f/dy?)-[°f/ox*]* > 0.

The point (Xo,Yo) is @ maximum if *f/dx*< 0, or a minimum if 3*f/9x?>> 0. The value D is
referred to as the discriminant.

If

A = (P/0x?)- (*F/3y?)-[*F/9x]* < 0,
we have a condition known as a saddle point, where the function would attain a maximum in x
if we were to hold y constant, while, at the same time, attaining a minimum if we were to hold
X constant, or vice versa.

Example 1 - Determine the extreme points (if any) of the function f(x,y) = x3-3x-yz+5.

- First, define the function into the calculator: FXY) = X 3-3*X-Y"2+5’
[ENTER][+][DEF]. This operation will create the variable[ F ].

= Determine the first and second derivatives:

To evaluate and store of /dx use: ‘FX(X,Y)=0X(F(X,Y))’ [ENTER][~][EVAL][+][DEF]
To evaluate and store df /dy use: ‘FX(X,Y)=aY(F(X,Y))’ [ENTER][][EVAL][][DEF]
To evaluate and store 3*f/dx* use:  ‘FXX(X,Y)=aX(FX(X,Y))’ [ENTER][r][EVAL][+][DEF]
To evaluate and store #f/dy* use:  ‘FYY(X,Y)=aY(FY(X,Y))’ [ENTER][~][EVAL][<][DEF]
To evaluate and store o°f/dyox use: ‘FXY(X,Y)=0Y(FX(X,Y))’' [ENTER] [~][EVAL][«][DEF]

& To find the possible extrema, use [#][ FX ] [¥], and edit it out so that only the
expression, ‘3*X*2-3’ remains. Then, enter [0][~][=]. Next, do the same with [ FY ],
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namely, [~][ FX ] [v], and edit out the program until only the expression *-(2*Y)’
remains. Then, use [0][—~][=]. You now have the two equations of/dx = 0, of/dy = 0.

% To solve the equations use: [2] [-][PRG][TYPE][->ARRY]. Then, type the array [‘X’
‘Y’], and press [ENTER], and, finally, use [<][S.SLV][SOLVE] (second SOLVE key), to obtain
the solution set:

([ 'X=1" ‘v=0' ] [ 'X=-1" 'Y=0']}.
“ Let’s define the discriminant function:
‘D(X,Y) = FXX(X,Y)*FYY(X,Y)-FXY(X,Y)"2’ [ENTER] [~][EVAL] [«][DEF]
= Check the value of D(X,Y) at point (X,Y) = (1,0), by using: [1][SPC][O][VAR][ D 1], it

turns out that D(1,0) = -12 < 0, therefore, this point is a saddle point. No maximum or
minimum occurs at this point.

% Check the value of D(X,Y) at point (X,Y) = (-1,0), by using: [1][+/-][SPC][O][VAR][ D 1,
it turns out that D(-1,0) = 12 > 0, thus a maximum or minimum may exist at this point.

= Check the value of FXX(X,Y) at point (X,Y) = (-1,0), by using: [1][+/-][SPC][O][VAR][ FXX
], it turns out that FXX(-1,0) = -6 < 0, thus the point (-1,0) corresponds to a maximum of
the function.

w To determine the value of the function at point (-1,0), use [1][+/-][SPC][O][VAR][ F
]. The resultis F(-1,0) = 7.

% To visualize the function use the option FAST3D in the plot types with view limits of X

in (-2, 2), Yin (-2, 2), and Z in (-2,8). The figure below interprets the two points found
earlier.

Derivative of a complex function

An interesting application of multi-variate calculus is to determine the derivative of a complex
function. Complex variables were introduced in Chapter 5. Recall that a complex variable z =
x +iy can be mapped into another complex variable w = ®(x,y)+i¥(x,y), through the complex
function w = f(z). The derivative of the complex variable f(z), to be referred to as f’(z) =
df/dz, is, by definition,
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L @A) - f(2)
[ =2 = lm ST

The definition of a complex derivative requires us to evaluate the function f(z) at a point P(x,y)
corresponding to z = x + iy, and at point Q(x+AXx, y+Ay), as illustrated in the figure below.

The figure also illustrates the fact that to get from point z to point z+Az in the complex xy
plane you can follow a multitude of paths. In general, the value of the derivative will depend
on the path we follow to define Az. Because we want the derivative df/dz to be uniquely
defined, we need to find some criteria such that, regardless of the path selected to define z,
the value of df/dz remains the same. In general, we will write Az = Ax+iAy. Let’s calculate
the derivative df/dz utilizing paths for Az along the x-axis alone, i.e, Az = Ax, and along the y-
axis alone, i.e., Az = iAy. Thus, for Az = Ax, we can write

a _ fim [D(x+ Ax,p)+iP(x+ Ax, )] - [D(x, y)+i¥(x, y)]
dz A0 Ax

A (PG A ) -0 y)] | [t Axy) - W)
dz 0 Ax Ax

i = @ +1 ai
dz ox ox
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You can prove, by expressing the derivative in terms of Az = iAy, that

& _o¥ 02
dz dy I

In order for the last two expressions for df/dz to be the same, then we require that
od _ ¥ od _ v
ox dy dy ox

These two equations are known as the Cauchy-Riemann differentiability conditions for complex
functions (or, simply, the Cauchy-Riemann conditions). Thus, if the functions ®(x,y) = Re[f(z)]
and Y¥(x,y) = Re[f(z)], satisfy the Cauchy-Riemann conditions, the derivative f’(z)=df/dz is
uniquely defined. In such case, the function f(z) is said to be an analytical complex function,
and the functions ®(x,y) and ¥(x,y) are said to be harmonic functions.

More importantly, if a complex function f(z) is analytical, the rules used for univariate
derivatives can be applied to f(z). For example, in Chapter 5 we indicated that the function

w =f(z) = In (z) = n (r-€®) = In(r) + i6.
can be written in terms of (x,y) as
@ = d(x,y) = IN[(x2+y?)""?] = (1/2) In(x*+y?), and ¥ = ¥ (x,y) = tan"'(y/x).

Using the HP 49 G calculator, let’s check if the functions ®(x,y) and ¥ (x,y) satisfy the Cauchy-
Riemann conditions:

+ First, define the functions:

[EQW][ALPHA][ALPHA][PT[H](] [=][OI[<]IXISPCI[]IYI[A][A][ALPHA][~][=] [~][LN]

[ALPHA][<][X][y1(2][»] [+] [ALPHA][<][Y][y1(2] [A][A][A][A] [+][2] [ENTER]
[—][DEF]

(EQW] [ALPHAJ[ALPHA][T](SI[N[ ][ )I[~][X][SPCI[][Y][A][A][ALPHA]
[~1[=] [~][ATAN] [ALPHA][<][Y][>] [+] [ALPHA][~][X] [ENTER]
[+][DEF]

Soft-menu key labels [ TSI ] and [ PHI ] will now be available in your screen.

* Next, calculate and store the four derivatives involved in the Cauchy-Riemann
conditions:

[EQW] [1[a] [ALPHA]J[<][X] [»] [VAR][ PHI ] [<] [+ ][( )I[ALPHA][+][X]
[SPCI[~][ALPHA][Y][a][a][A] [~ ][EVAL] [~ ][ALG][EXPAN][ENTER]
[VAR][~][ * ][ PHI J[ALPHA][<][X][STO®]
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[EQW] [][d] [ALPHA][][Y] [»] [VAR][ PHI ] [<] [<][( )][ALPHA][<][X]
[SPCI[~][ALPHA][Y][A][A][A] [~][EVAL] [~ ][ALG][EXPAN][ENTER]
[VAR][~][ “ 1[ PHI J[ALPHA][<][Y][STO»]

[EQW] [—][d] [ALPHA][«<][X] [»] [VAR][ TSI ] [<] [<][( )I[ALPHA][<][X]
[SPCI[~][ALPHA][Y][A][A][A] [~][EVAL] [~ ][ALG][EXPAN][ENTER]
[VAR][~1[ * ][ TSI J[ALPHA][«][X][STO»]

[EQW] []1[0] [ALPHA][~][Y] [»] [VAR][ PHI ] [<=] [<][( )][ALPHA][<][X]
[SPC][][ALPHA][Y][A][A][A] [~][EVAL] [ ][ALG][EXPAN][ENTER]
[VAR][~][ * 1[ TSI J[ALPHA][~][Y][STOM]

At this point you will also have variables [TSly], [TSly], [PHIy], and [PHIx], representing ¥y,
¥Y,, &y, and @,, respectively.

& Let’s now check the Cauchy-Riemann conditions:

[VAR][PHIX][TSly], i.e., o®/dx = J¥/dy, checks out ok.

[PHIY][TSIx], also, o®/dy = - 9¥/dx, checks out ok.
The function f(z) = In(z) is, therefore, analytical, and its derivative can be calculated by
using:

d d

L L=<

dz dz

=% Use the calculator to obtain this derivative and express it in terms of (x,y) as follows:
(EQW] [~]1[d] [ALPHA][«][Z] [»] [~][LN][ALPHA][<][Z] [A][a][a] [EVAL] [ENTER]
(=10 “ 1 [ALPHA[][Z] [~ ][=][ALPHA][][X] [+] [+ ][i] [x] [ALPHA][~][Y][ENTER]

[~ 1[ALG][SUBST]

The result is ‘1/(x+i*y)’.

=& To find the real and imaginary parts of this function use:

<% Real part: [ENTER][<][MTH][NXT][CMPLX][ RE 1], Result: ‘x/(x"2+y"2)’
N Imaginary part: [»1[ IM ][~][ALG][EXPAN] Result:
‘y/(x"2+y"2)’.

- Finally, check that Re[f’(z)] = o®/dx = Jd¥/dy, and Im[f’(z)] = ad/dy = - d¥/Jx, by
recalling the contents of variables [PHIx], [TSly], [PHIy], and [TSly][+/-]. This last check
verifies the equations obtained earlier for f’(z) using Az = Ax and Az = iAy.

Note: Most of the functions that we commonly use with real variables, e.g., exp, In, sin, cos,
tan, asin, acos, atan, hyperbolic functions, polynomials, inverse, square root, etc., are
analytical functions when used with the complex variable z = x +iy. Thus, the rules of
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derivatives for these functions are the same as in real variables, e.g., d(sin(z))/dz = cos(z),
d(z"2+z)/dz = 2z+1, etc.

Multivariate calculus applications in
potential flow

The concepts of partial derivatives and derivative of a complex variable have practical
applications in the analysis of potential or ideal flow in two-dimensions. Ideal flow refers to
the flow of a fluid that has no viscosity (inviscid fluid), while potential flow stands for a flow

whose velocity components are obtained as partial derivatives of a function ¢x,y), called the
flow potential function. ldeal flow and potential flow are synonyms.

Continuity equation
The equation of continuity is the mathematical expression of the law of conservation of mass
for fluid flow. Considering an inviscid, incompressible (constant density) fluid flow in two
dimensions. The equation of continuity for these flows is given by

du/ox + ov/ay = 0,

Where u = u(x,y), v = v(x,y) are the x- and y-components of flow velocity in the plane.

Stream function

Let us define a function y(x,y) such that the velocity components u and v are
u=dy/dy and v = -dy/ox.
If we replace this function into the continuity equation we have
d(dy/ay)/ox + d(-0y/ox)/dy = 0,
or
ohy/dydx - dPy/dxdy = 0,

which is satisfied by any continuous function y(x,y). The function w(x,y) is known as the
stream function of the flow.

Curves defined by w(x,y) = constant are known as the streamlines of the flow. The velocity
vector

q(x,y) = u(x,y)-i+v(x,y) j
at any point (x,y) on a streamline is tangent to the streamline.

The total differential for the stream function along a streamline y(x,y) = constant is
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dy = (dy/0x)-dx + (dy/dy)-dy = 0.

Therefore, the slope of the streamline at a point (x,y) is given by

my = dy/dx = -(dy/dx)/(dy/dy) = -(-v)/u=v/u.

Potential flow

A flow whose velocity components are obtained from

u = d¢/dx, and v = a¢/dy,

where ¢(x,y) is a scalar (i.e., non-vector) function, is referred to as a potential flow, and the
function ¢ (x,y) is known as the velocity potential.

If we replace the definitions of u and v into the continuity equation, what results is the
following partial differential equation known as Laplace’s equation:

%0/ 9x? + 3%/ ay? = 0.
Curves defined by ¢(x,y) = constant are known as the iso-potential or equipotential lines of the

flow. The total differential for the velocity potential along a equipotential line ¢x,y) =
constant is

do = (d¢/0x)-dx + (d¢/dy)-dy = 0.
Therefore, the slope of the equipotential line at a point (x,y) is given by

m = dy/dx = -(9¢/0x)/ (od/dy) = -u/v.

The flow net

The fact that the slope of a streamline is given by my=v/u, and that of an equipotential line is
given by my=-u/v, indicates that at the point of intersection of any two of these lines the lines
are normal to each other. This follows from the fact that

my-My=(v/u)-(-u/v)=-1,
which is the condition for two straight lines to be perpendicular to each other. In this case the
straight lines of interest are the tangential lines to the streamline and to the equipotential line
at the point of intersection.

A picture of a collection of equipotential lines and streamlines is known as a flow net.

Irrotational flow
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When a fluid particle is subjected to motion it undergoes not only translation, but also suffers
elongation (normal strains), shear strains, and rotation. In two dimensions, you can prove that
the magnitude of the angular velocity of a fluid particle in a flow is given by

o = (av/ox - ou/ay).

A fluid flow where the fluid particles undergo no rotation is called an irrotational flow. For
such a flow we have w =0, or

dv/ox - du/dy = 0.

Replacing the velocity components in terms of the stream function (u = Jdy/dy, v = -dy/dx)
reveals the fact that y (x,y) also satisfies Laplace’s equation, i.e.,

Py/axt + Fylay? = 0.
Example 1 - Verify that a fluid flow whose velocity components are given by u = x/(x*+y?), v = -
y/(xz+;7), satisfies the continuity equation and the condition of irrotationality. Also,

determine expressions for the potential function ¢(x,y) and the stream function y(x,y).

Define the functions:

Ux,y) =x/ (x"24y"2) [ENTER][+][DEF]
VX, y) =yl (x"2+y°2) ¢ [ENTER][+][DEF]

These two operations create the variables[ u Jand[ v ].

Next, type in the continuity equation using the equation writer:

(EQW]

[~1[0] [ALPHA][<][X] [»] [ALPHA][2][U] [<][( )] [ALPHA][«2][X] [SPC] [ALPHA][<][Y] [>1[»]
[+1[~100] [ALPHA][2][Y] [>] [ALPHA][<][V] [<1][()] [ALPHA][<][X] [SPC] [ALPHA][«][Y]

To evaluate the expression
du/ox + ov/dy = 0,

enter [A][A][A][A][EVAL]. The result is indeed zero, thus proving that u(x,y) and v(x,y)
satisfy the continuity equation.

The condition of irrotationality is given by the expression,
ov/dx - du/dy = 0.

which, in the equation writer can be set up as

To find the velocity potential we start from u(x,y) = d¢/dx = x/(x2+y2), which we can integrate
with respect to x to obtain

9(x,y) = [u(x, ) dx + F(y) = J#-dx+F(y)

By using
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‘u(x,y)’ [ENTER] Type in ‘u(x,y)’

[~ ][EVAL] Obtain the expression defining u(x,y), i.e.,
X/ (xX"2+4y"2)
‘x’ [ENTER] Type in ‘x’

[<][CALC][DERIV][NXT][RISCH] Integrate with respect to x (indefinite integral)

The result is ‘1/2*LN(x"2+y"2)’. In paper, this will be interpreted as &(x,y) = ¥a-In(x?+y?) + F(y),
although we do not include F(y) in the expression in the stack.

Next, we use the fact that v(x,y) = d¢/dy. Therefore, let’s take the derivative of the
expression in stack level 1 with respect to y by using:

‘y’ [ENTER] [][0] Derivative of ‘1/2*LN(x"2+y"2)’ with respect toy
[~ ]1[EVAL] To simplify the expression

In paper this means o¢/dy = y/( ¥+y*) + F'(y). We can now modify this expression in the
calculator as follows:

[v] [+] [ALPHA]J[2][D] [ALPHA][F] [>][»>] [~][=] [ALPHA][<][V] [<][()]
[ALPHA][<][X] [SPC] [ALPHA][«][Y] [ENTER]

[~1[ ] [ALPHA][~][D] [ALPHA][F] [ENTER]

[+][S.SLV][ISOL]

Here, dF represents F’(y). Press [~][EVAL] to simplify the expression in the stack, which
results in ‘dF=0’, or, in paper, F’(y) = 0. This implies F(y) = K, where K is a constant. Thus, we
can write

AX,Y) = Valn(x*+y?) + K.

To find the stream function we start from u(x,y) = dy/dy = x/ (x*+y*), which we can integrate
with respect to x to obtain

y(x,y)= Ju(x, y)-dy+G(x) = J‘va'dy + G(x).

X+
By using
‘u(x,y)’ [ENTER] Type in ‘v(x,y)’
[~][EVAL] Obtain the expression defining v(x,y), i.e.,
X/ (xX"2+y"2)
‘y’ [ENTER] Type in ‘y’

[<][CALC][DERIV][NXT][RISCH] Integrate with respect to x (indefinite integral)

The result is ‘ATAN(y/x)’. In paper, this will be interpreted as wy(x,y) = tan™'(y/x) + G(x),
although we do not include G(x) in the expression in the stack.

Next, we use the fact that v(x,y) = -du/dx. Therefore, let’s take the derivative of the
expression in stack level 1 with respect to y by using:

‘x’ [ENTER] [~][0] Derivative of ‘ATAN(y/x)’ with respect toy
[~ ][EVAL] To simplify the expression

In paper this means dy/dx = -y/(x*+y’) + G’(x). We can now modify this expression in the
calculator as follows (we need to change the sign of the expression first):
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[v1[+/-] [+] [ALPHA][<][D] [ALPHA][G] [»][»] [~1(=] [ALPHA][<][V] [<][()]
[ALPHA][<]1[X] [SPC] [ALPHA][<][Y] [ENTER]
[~1[ ] [ALPHA][+][D] [ALPHA][G] [ENTER]
[<][S.SLV][ISOL]
Here, dG represents G’(x). Press [~][EVAL] to simplify the expression in the stack, which
results in ‘dG=0’, or, in paper, G’(y) = 0. This implies G(y) = C, where C is a constant. Thus,
we can write
y(x,y) = tan"(y/x) + C.

To visualize the flow net for this case, first we need to select values of the constants K and C.
We can stipulate that the point (x,y) = (0,0) belongs to the streamline y = 0, to make C = 0.
Similarly, we can force point (0,0) into the equipotential line ¢ = 0, to make K = 0. The result
for the velocity potential and stream function for these conditions are

ox,y) = 1/z~ln(x2~|»y2) , and wy(x,y) = tan'1(y/x).
The flow net can be drawn by using a Ps-Contour plot as follows:
% Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.
+ Change TYPE to Ps-Contour.
4 Press [v] and type ‘(1/2)*LN(X"2+Y"2)’ [OK]. This will plot ¢(x,y).
+ Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.
4 Press [NXT][OK] to return to normal calculator display.
& Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

* Keep the default plot window ranges to read:

X-Left:-1 X-Right:1
Y-Near:-1 Y-Far: 1
Step Indep: 10 Depnd: 8

4 Press [ERASE][DRAW] to draw the contour plot. It is going to be slow and take some
time, so be really patient here.

4+ When the graph is finished, press [CANCL][ON], and then, press [+][2D/3D],
simultaneously, to access to the PLOT SETUP window.

4 Press [¥v] and type ‘ATAN(Y/X)’ [OK]. This will plot ¢(x,y).

4 Press [DRAW] (no ERASE here) to complete the flow net picture. Again, this is going to
take some time.

4 Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:
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% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

% Press [ON], or [NXT][OK], to return to normal calculator display.

Complex potential and complex velocity

The complex function
F(z) = ox,y) + iw(x,y)

is referred to as the complex potential of the flow.

Recalling that the derivative of this complex function can be written as
dF/dz = d¢/ ox+i-dy/ dx=0y/ dy-i-od/ dy,

and from the definition of the velocity components u and v, it follows that dF/dz, referred to
as the complex velocity, w(z), contains the velocity components in its real and imaginary parts.
The complex velocity is written as

w(z) =dF/dz=u—iwv.

Thus, u = Re(w), and v = -Im(w).

Elementary two-dimensional potential flows

Because the equations governing the potential flow phenomena are linear equations (Laplace’s
equation), you can obtain the complex potential of a flow by adding the complex potentials of
elementary flows. In this section we present the complex potentials of some elementary flows
such as uniform flow, source and sink, vortex, and doublet. = The last three are known as
singularity flows since the velocities go to infinity at the location of the singularity generating
the flow. A doublet is simply the combination of a source and a sink of the same strength that
are infinitesimally close to each other. The strength of a singularity is a measure related to
the flow discharge into a source or out of a sink, or to the angular velocity of a vortex.

The following are the complex potentials for these elementary flows:

Uniform flow with streamlines parallel to the x-axis: F(z) =
Uz

Source (m>0) or sink (m<0) of strength m located at (0,0): F(z) =
m-ln z

Vortex of strength G (G>0, counterclockwise) at (0,0): F(z) =iGlnz
Doublet of strength p (u >0, if sink is located to the left of source in the doublet): F(z) =
w/'z

We can obtain the velocity potential and stream function of any of these flows by using

0= Re[F(z)] and y = Re[F(z)].
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Note: The following example illustrates a conflict in working with symbolic expression that
involves complex numbers. Follow it carefully to understand how to trick the calculator in
giving us the right result.

Example 1 -- To find the real and imaginary part of F(z) = ln z, a source flow with strength m =
1, you could try entering the expression ‘LN(x+i*y)’, however, the RE and IM functions will not
produce any meaningful result. Using the polar representation of the complex variable z = re'®
proves more successful. Thus, enter:

‘LN(r*EXP(i*0))’ [ENTER] Enter the expression to be decomposed
[~1[TRIG][NXT][TEXPA] Expand the expression to ‘LN(r)+LN(EXP(i*6))’
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

The result produced is simply the expression RE(LN(r))+RE(LN(EXP(i*8)))’, and no further

simplification is possible. You may wonder why that is so, particularly, when it is known that
the functions LN and EXP are inverse functions. The reason is the following:

= In order to use the term i* in the expression, somewhere along the line, you had to
select the complex mode for your calculator’s CAS. (This is unavoidable, since you are
using the unit imaginary number i in the expression.) Once you are in Complex mode,
however, if you try to evaluate a symbolic expression, the calculator assumes that any
variable involved (such as r or 6 in this case) may be a complex variable. Since the
functions LN or EXP when applied to a complex variable do not operate the same way as
when applied to a real variable, the calculator simply refuses to simplify further any
symbolic expression when the CAS is set to Complex mode.

How do we solve this problem? You trick the calculator by replacing the term i*6 with i0 while
clearing the complex mode as follows:

[11[01[3][+/-][SPCI[ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
‘LN(r*EXP(i6))’ [ENTER] Enter the expression to be decomposed
[ 1[TRIG][NXT][TEXPA] Expand and simplify the expression

The result is, as expected, ‘LN(r) + ®’. To continue the calculation, we need to introduce a *
sign between the i and the 6 in the expression, by using:

[VI[EDIT][~][» ][ «][«][X][ENTER][ENTER] Insert * sign

[ENTER] Make an extra copy of the expression
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

Select complex mode when asked. The result is ‘RE(LN(r))’. Again, we have the same

situation as above, the complex mode is required because the original expression included the
unit imaginary number i. However, once the complex mode is selected, the calculator assumes
that r could be a complex variable and cannot simplify the expression RE(LN(r)) any further.
Clear up system flag 103 once more and evaluate the expression currently in stack level 1:

[11[0][3][+/-]1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~][EVAL] Evaluate ‘RE(LN(r))’ > ‘LN(r)’

Now, let’s find the imaginary component of ‘LN(r)+i*6’ by using:

[C1[<][MTH]INXT][CMPLX][ IM ] Drop level 1, find imaginary part
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You are required again to change the mode to complex, resulting in ‘IM(LN(r))+6’. We are
faced again with the same conflict resulting from selecting complex mode. To fix it, clear
system flag 103 again and evaluate the expression:

[11[0][3][+/-][SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~][EVAL] Evaluate ‘RE(LN(r))’ > ‘LN(r)’

The result is ‘6’. Thus, we have ¢ = Re[F(z)] = In(r), and y = Im[F(z)] = 6.

Note: This example is relatively simple, however, it served the purpose of illustrating a
possible conflict when using Complex mode and symbolic expressions.

Example 2 - Find the velocity potential and stream function for the complex potential F(z) =
Uz+m/z.

Use:

‘U*LN(z)+m*z’ [ENTER] ‘z =r*EXP(i8)’ [ENTER] Enter F(z) and z = re'®

[~ ][ALG][SUBST] [NXT][TEXPA] Substitute z and expand expression
‘i0 = i*0’ [ENTER] [~][ALG][SUBST] Replace i § with i* 6

[EXPAN] Expand products in expression
[NXT][TEXPA] Try to expand term EXP(i*6)

TEXPA fails to expand the term EXP(i*0) as part of the overall expression. We will have to
replace it on our own by using Euler’s formula EXP(i*8) = COS(8) + i*SIN(0) as follows:

[v] Trigger the equation writer
(YI[VI[VI[>I[>1(al[a][A] Select term EXP(i*0)
[EDIT] Trigger line editor

Edit the term ‘EXP(i*0)’ by using the right- left-arrows [4] [»], as well as the backspace arrow
[<], until it has been replaced by the expression ‘COS(0) + i*SIN(6)’. When done press

[ENTER][ENTER] Enter expression and return to stack
[ENTER] Make extra copy of the expression
[11[0]1[3]1(+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)

[ ][MTH][NXT][CMPLX][ RE ] Find real part of expression

The Complex mode is forced again upon us, so try the following:

[11[0]1[3]1[+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~ ][EVAL] Evaluate expression

The result is ‘r*m*Cos (0) +U*LN(r)’, i.e., the velocity potential, ¢ = Re[F(z)], is
®r,0) =mrcos® +Ulnr, or, ox,y)=mx+ Uln (x2+y2)”2.

To find the stream function, y = Im[F(z)], use:

[ ][MTH][NXT][CMPLX][ M ] Find imaginary part of expression

Complex mode warning again! Don’t loose your temper, here is how to handle it:
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[11[0][31[+/-][SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~ ][EVAL] Evaluate expression

The result is ‘r*m*sIN(0) +6+U’, i.e, the velocity potential, y = Re[F(z)], is

y(r,0) =mrsin® +U- 6, or, wy(x,y)=my+ U-tan“(y/x).
Example 3 - For the complex potential used in Example 2 obtain expressions for the
components of velocity u and v.

Enter:

‘U*LN(z)+m*z’ [ENTER] ‘z’ [ENTER] [~][0] Enter F(z) and z , obtain w = dF/dz =
U/z+m

‘z=x+i*y’ [ENTER][][ALG][SUBST][ENTER] Substitute z = x + iy, make extra copy
[ ][MTH][NXT][CMPLX][ RE ] Find real part of expression
[11[01[3][+/-][SPCI[ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~][EVAL] Evaluate expression

The result is ‘(x*U+(x"2+y"2)*m)/(x"2+y"2)’. This expression can be simplified further by using
the command PARTFRAC:

[CAT][ALPHA][P] (find PARTFRAC) [OK] Expand into partial fractions
The final result is ‘x/(x"2+y"2)*U+m’, i.e.,

u(x,y) = x-U/7(x2+y*)+ m.
To obtain an expression for v(x,y) = - Im(w), use:

[CI[]1[MTH][NXT][CMPLX][ IM ] Drop level 1, find imaginary part
This requires us to select the Complex mode. To clear up the result use:

[11{01[3]1[+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~ ][EVAL][+/-] Evaluate expression, change sign

The result is ‘y*U/(x"2+y"2)’, i.e.,

v(x,y) = y:U/ (< +y?)+ m.

Plotting the complex potential

To plot the real and imaginary parts of the complex potential you can use the Gridmap type of
plots, which require as input a complex function.

For example, to produce a Gridmap plot for the function F(z) = 1/z, use the following:

4 Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

- Change TYPE to Gridmap.

4 Press [¥v] and type ‘1/(X+i*Y)’ [OK].

4 Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.
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% Press [NXT][OK] to return to normal calculator display.

% Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

- Change the plot window ranges to read:

X-Left:-2 X-Right:2
Y-Near:-1 Y-Far: 1
XXLeft:-2 XXRight:2
YYNear:-1 yyFar: 1
Step Indep: 10 Depnd: 8

& Press [ERASE][DRAW] to draw the gridmap plot.  The result is a grid of functions
corresponding to the real and imaginary parts of the complex function.

=% Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:

The graph shows the equipotential lines and streamlines of the doublet flow F(z) = 1/z.
Because there is a singularity at z = 0 (i.e., 1/z is not defined at z = 0), the calculator avoids
plotting lines near the origin.

% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

“ Press [ON], or [NXT][OK], to return to normal calculator display.

Complex potential for combinations of elementary flows
When we add complex potentials of elementary flows we can obtain the picture of more

complicated flows. Some of those combined flows are presented here.

Example 1 - Find the velocity components for the combination of two sources both of strength
m = 1, one located at x = -1 (source s1), the other at x = +1 (source s;). The complex potentials
corresponding to the two sources are
F1(z) = In (z +1), F2(2) = In(z-1).
The combined complex potential is
F(z) = F1(z) + F2(z) = In (z +1) + In(z-1).

Use:
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‘LN(z+1)+LN(z-1)’[ENTER] ‘z’ [ENTER] [~][0] Calculate w = dF/dz

‘z = x+i*y’ [ENTER] [~ ][ALG][SUBST][ENTER] Substitute z = x + iy, make extra copy
[ ][MTH]I[NXT][CMPLX][ RE ] Find u = Re(w)
[¥] (using small font) Show expression in equation writer

EDIT | CURS| ETG | EVAL FRCTOJTERFH

To obtain the component v(x,y), use:

[ENTER][<][ IM ] Obtain imaginary part
[¥] (using small font) Show expression in equation writer

EDIT | CURS | BTG | EVAL FRCTO[TERFH

Press [ENTER] to return to normal calculator display.

Example 2 - Sketch the flow given by the combination of a uniform flow with U = 1, and a
doublet with strengthu =1, i.e, F(z) =z - 1/z.

Press [+][2D/3D], simultaneously to access to the PLOT SETUP window.

Change TYPE to Gridmap.

Press [¥] and type ‘(X+i*Y)+1/(X+i*Y)’ [OK].

Press [A][NXT][CALC][—][EVAL][OK]

Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.

-~ = & & ¥

Press [NXT][OK] to return to normal calculator display.

L =

Press [+1][WIN], simultaneously, to access the PLOT WINDOW screen.

“

Change the plot window ranges to read:
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X-Left:-4 X-Right:4
Y-Near:-2 Y-Far: 2
XXLeft:-4 XXRight:4
YYNear:-2 yyFar: 2
Step Indep: 20 Depnd: 16

% Press [ERASE][DRAW] to draw the gridmap plot. The result is a grid of functions
corresponding to the real and imaginary parts of the complex function.

w Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:

18RV

TR 1 ﬁf;

17

!

|
RS

The graph shows the equipotential lines and streamlines of the combination of a uniform flow
(U=1) and a negative doublet of strength p =1 (i.e., the source is located to the left of the sink
in the doublet on the x-axis). The graph on the right-hand side has been modified by
shadowing the region within a circle of radius 1, which happens to constitute a closed
streamline. (Note: this was not done in the calculator). For all practical purposes you can
replace the flow within the closed streamline with a solid body, in this case a cylinder. Thus,
the combination of this uniform flow and negative doublet produces the flow net corresponding
to a uniform flow U = 1past a cylinder of radius 1.

=% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

Press [ON], or [NXT][OK], to return to normal calculator display.

A word of warning on plotting combined flows in the
calculator

While the calculator can be used to produce flow net graphics, the user should be warned that
the more complicated the complex potential, the longer it will take for the calculator to
produce a graph. Also, functions such as ‘LN(X+i*Y)’ seem to behave strangely when producing
graphs. My advice is to use these graphs as guidelines only, and only for simple flows. A
different approach will be to obtain the velocity potential and stream functions separately, and
to plot them, separately, as contour plots. Such approach is left as an exercise to the reader.
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Multiple integrals

Integrals of one variable were interpreted earlier as representing the area under the curve y =
f(x), a<x<b. A double integral can be interpreted as representing the volume under the surface
Z = f(x,y) over a region R in the x-y plane. The figure below shows an element of that volume
in the shape of a parallelepiped of base, dA = dx-dy, and height, f(x,y). The differential of
volume is dV = f(x,y)-dA = f(x,y)-dy-dx.

The total volume is given by the double integral,

j j dv = ”f(x, y)dA = j j £ (x, y)dydx,

The region R over which a double integral is calculated can be described, in general, by the
following inequalities: R = {a<x<b, g(x)<y<h(x)}, or R = {c<y<d, p(y)<x<q(y)}, as illustrated in
the figures shown two pages ahead.

~y

Having identified the limits for x and y that describe the region, the double integral

[[ £ ey,

R

can be calculated using an iterated integral of the form

b .h(x)
fix,y)dy dx
a g(x)

or of the form
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d .q(y)
fix, y)dx dy.
c p(y)

The last two integrals are known as iterated integrals because you integrate one level at a
time. For example, the iterated integral

b h(x)
fx,y)dydx
a g(x)

Is typically calculated by integrating f(x,y) with respect to vy, first. Which results in a function
of x, only, i.e.,

[ ey =Foo.

Then, this function of x is integrated with respect to x within the limits a and b:

[ o= [ i
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Calculating a double integral in the HP 49 G
calculator

To calculate a double integral in the HP 49 G calculator, we can proceed by integrating one
level at a time, as in the following example:
Let’s calculate

1 .\"1
J; Ixydydx
Use the following: V

[EQW] [~][ 1 [ALPHA][<][X] [>][ALPHAI[<][X][y*](2] [»]
[ALPHAI[ < ]1[X1[X][ALPHA][<1[Y] [»] [ALPHA][<][Y]
[»][EVAL]

The result is

To proceed to the next level of integration try this:

(1071 (010> ] [11 [ 1> 101> 1[>1[»] [ALPHA][<][X]
[A][A][EVAL]

The result is -1/24.
You could also type the double integral directly in the equation writer as:

(EQW] [~]0 /] [01[»] [1] [»] [~1[ J] [ALPHA][][X] [»][ALPHA][][X][y*](2] [>]
[ALPHA][<][X][x][ALPHA][ < ][Y] [»] [ALPHA][<][Y] [»] [ALPHA][<][X]

The equation writer will now look like this:

1
2
%
[ xydy dx+4
b

a
(01T [ CURS [ TG o] EVAL [FHCTO[TERPH]

To evaluate the double integral use: [A][A][EVAL]

The result is -1/24.
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Note: If the region of integration is a rectangle in the x-y plane defined by a<x<b, c<y<d, and if
the function to be integrated is such that f(x,y) = g(x)h(y), then

['[' £ eyydyas =[ [ gCom(y)dyx =( [ g(x)dx)-( [/ h(y)dy)

Check the result shown in the note above by calculating:

_[2 I—l' exp(x) In( y)dxdy :(f In( y)dy ) (fl eXp(x)dx)

The left-hand side of this equation is calculated by using:

(EQW] [~10 1] [110>] [2] [»] =100 [110+/-10>] [1][»]
[][e*][ALPHA] [ ][X] [a][A] [X][~][LN][ALPHA][<][Y]
[»] [ALPHA][<][Y] [>] [ALPHA][][X]

The double integral to be calculated looks like this in the equation writer screen:

2
1
‘ J 1E><P(><)-LN(L4)d>< dy
1

Lozt [cuRs TETG el EVAL FACTOITERPA]

To evaluate this double integral use: [A][A][EVAL]. The result is

(2In2-1Dexp(l)> =(2In2-1)
exp(1) ’

To simplify the result use [~ ][>NUM]. The final result is 0.907947188573.

The right-hand side of the equation above can be calculated as follows:

(EQW] [~10 /1 [110»] [2] [»] [~][LNI[ALPHA][<][Y] [»] [ALPHA][<][Y] [A][A][x]
(1011 (0+/-100] (11101 [€*1IALPHA][ <] [X] [»] [ALPHA][<][X]

The product of the two integrals will look as follows in the equation writer screen:

2 1
LLN(\J)dg '[—IEXP(X) dx

EOIT]CURZTEIG ol EVAL IFACTOITERFA]
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To evaluate this product of integrals: [A][A][A][EVAL]. The result is now

2In2-1)exp(l)exp(l) —(2In2-1)
exp(1) '

To simplify the result use [~][>NUM]. The final result is, again, 0.907947188573.

Area properties in Cartesian coordinates using double integration

Double integration somewhat simplifies the calculation of area properties in two dimensions by
identifying a generic element of area corresponding to a particular coordinate system. For
example, the figure below identifies the typical element of area in Cartesian coordinates that
is used for calculating double integrals. The area of this infinitesimal area is dA = dx-dy.

¥

(_X_4¢&=@dy

dy%——]XT
¥
l

Having identified this differential of area we can re-write any generic double integral over a
region R as an iterated integral once the limits of integration are determined. Typically, in
Cartesian coordinates, the region of integration R will be described as

R={a<x<b,gi(x)<y<g(x}
or as
R={c<y<d, hi{y) < x<2(x)}.

Thus, the double integral [[; f(x,y) dA can be written in any of these two forms:

Jjjwn f(x,y)dydx , or, fl J;hzm f(x,y)dxdy .

g1(x) hy (x)

Area properties can be calculated by replacing the function f(x,y) with different expressions as
indicated below:

% Area A= [lr dA, i.e., f(x,y) = 1.0.
“ First moment with respect to the y-axis M, = [l x-dA, i.e., f(x,y) = x.
& First moment with respect to the x-axis My = [l y-dA, i.e., f(x,y) = y.
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& Coordinates of the centroid X = My /A, )7= M /A

& Moment of inertia with respect to the y-axis Iy = flr x*-dA i.e., f(x,y) = x%.
%% Moment of inertia with respect to the x-axis I = [l y*-dA, i.e., f(x,y) = y2.
= Moment of inertia with respect to the origin I =ik (x2+ yz) -dA i.e., f(x,y) = x2+

= Radii of gyration of the area with respect to the x-axis, y-axis, and origin:

ky = (Iy/A)"2, ke = (I /A)"%, and k, = (Io/A)"2.

Example 1 -- Consider the area defined by the semi-circle R={ -R < x <R, 0 <y < (R%-x?)""2 }.
Determine the area, first moments, and moments of inertia of the area by using integration.
Also, determine the coordinates of the centroid and the radii of gyration.

The way that the region R is described is such that in the generic formulas developed above we
can identify a = 0, b = R, g1(x) = 0, and g2(x) = (R%-x?)"2. To simplify typing the formulas in
the calculator define the following variables:

[~10° T [ALPHAJ[R][+/-] [~][ * ] [ALPHA][<][A] [STO»]

[~]1[ < ] [ALPHA][R] [ENTER] ] [~][ ‘ ] [ALPHA][<][B] [STOM]

[0] [~1[ * ] [ALPHA][][G][1]

EE%\)N] ][\fx} [ALPHA][R] [y*][2] [»][-] [ALPHA][<:][X][y*][2] [ENTER] [~][ * ][ALPHA][1][G][2]
>

Next, we will show you how to evaluate, step-by-step, the generic equations that you will be
entering in your calculator using as example the evaluation of the area. Type the following
double integral:

b 2
A= Ig 1dy dx
al
a

EDITICURSTEIG wl EVHL [FACTOITERPA]

The screen above shows the way the double integral looks after you typed the x in dx. First,
let’s replace the generic integration limits a, b, g1, and g2, with their current definitions,
using the following:

[»]1[Y][EVAL] Replaces a with -R
[»][EVAL] Replaces b with R
[»]1[V][EVAL] Replaces g1 with 0
[»1[EVAL] Replaces g2 with v (R%-x?)

Next, we will evaluate the innermost integral by using:

[»]1[A][EVAL] Select innermost integral and evaluate it, resulting in v (R2-x?)
[A][EVAL] Select innermost integral and evaluate it, resulting in the
expression:
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[E0IT{CURs | ETG o[ EVAL JFACTO[TERFA)

Because this is a symbolic expression, the calculator returns a generic result including the term
ASIN(R/|R]), which allows for R to be a positive or negative real number, or even a complex
number. We are interested, however, in the specific case in which R is real and R >0, which
makes |R| = R. Thus, we will replace |R| by R, in the current expression, and re-evaluate it as
follows:

IAAILIINAINZILG] Move cursor about expression to select term
IR|

[EDIT] Trigger the line editor

[Pl ][dAelldellell«]l«] Edit ‘ABS(R)’ to read ‘R’

[ENTER] Return to equation writer screen

[A][A][EVAL] Select the term ASIN(R/R) and evaluate it

The final result is A = R%(11/2), as expected for a semicircle. Press [ENTER] and keep this
result in the stack for future use.

The next integral to be calculated is

b
a2
My= xdy dx+¢
al
a

EVIT]CURS TETG o] EVAL IFHCTOITERPA)

You can proceed step-by-step as in the previous integral, or simply select and evaluate the
entire double integral, by using [A][A][EVAL]. While the calculator is evaluating the
expression selected you will see the small hourglass icon active at the top of the screen. It
takes the calculator about 20 seconds to produce the result: My = 0. Press [ENTER] and keep
this result in the stack for future use.

b
a2
Mx= ydy dx
al
a

EIT]cURS 1 BTG sl EVAL JFRCTOITERPA]

Let’s evaluate the next integral, i.e.,

Press [A][A][EVAL] to evaluate the double-integral at once. The result is Mx = 2.R3/3. Press
[ENTER] and keep this result in the stack for future use.
The next integral to be calculated is the moment of inertia with respect to the y axis:

a2 2
Iy= x - dy dx+4
Jal

ELIT]CURS ] BTG o EVAL [FRCTO[TERF#]
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Let’s evaluate this integral step-by-step by using:

[»][Y][EVAL]
[»][EVAL]
[>1[V][EVAL]
[»][EVAL]
[»][a][EVAL]
xz)

[A][EVAL]
expression:

which includes the term ASIN(R/ |R]).

using a substitution:

[vilvi»]

[~1[ | 1[ALPHA][R][»]{1]
[A][A][EVAL][EVAL]
[a][A][EVAL]

[ENTER]

The last integral to evaluate is

Replaces a with -R
Replaces b with R
Replaces g1 with 0
Replaces g2 with V (R%-x?)

Select innermost integral and evaluate it, resulting in x>V (R?-

Select innermost integral and evaluate it, resulting in the

[EOTT | CURS [ EXG ] EvaL [FRCTO[TENRF A]

Select the term ASIN(R/|R]).

Here is another way to replace this term with w/2, by

Insert evaluation at R = 1 in the term ASIN(R/|R]).
Replaces ASIN(R/ |R|)|gr-1 with n/2.

Re-arrange result to ly = R*n/8.

Keep this result in the stack for future use.

92 »
Ix= y dy dx+¢
a1
a
[EDIT | Cuks [KIG s] EVAL [FRCTA[TERF ]

Evaluate the double integral at once by using [A][A][EVAL]. The result is

EDITICURS | BIG [ EVAL [FRCTOITERFA]

Use any of the methods shown above to replace ASIN(R/ [R|) with n/2, and simplify the result

to ly = R*n/8. Press [ENTER] to keep this result in the stack.

Your stack should now look like this:
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RAD ¥YZ HEX R= ‘X'
{HOMEY

St AR 2 (1/2) "
4: ‘ry=0"
3t ‘Mx=2%R"3/3!
2 'Ty=R d*n 8!
1: | [x=RAd¥T/8!
Frinlcusifienil_a | b | i |

To calculate centroidal coordinates and radii of gyration you can use the following:

[51[<]1[PRG][LIST][>LIST][ENTER] Place all results in a list, making extra copy

[ELEM][NXT][TAIL] Reduce list to My, Mx, ly, Ix only

[»][HEAD] Swap lists, and isolate value of A from list in stack level
1

[+] Divide list in stack level 2 by value of A in stack level 1
[~][EVAL] Separate elements of list

The result in stack level 1 is Ix/A, press [~][EVAL] to simplify the right-hand side of the
current equation, resulting in ‘Ix/A = R"2/4’. Press [Vx] to obtain the radius of gyration, ky, in
the right-hand side of the equation, and press [~][EVAL] to simplify the expression further.
Because we are working with a symbolic result, you will see a couple of ABS functions inserted
in the result. Since we restrict ourselves to real positive values of A and R, the actual result
should be ky = R/2. Press [<] to drop this result from the stack.

To obtain the radius of gyration k;, use [~][EVAL] [x] [~1[EVAL]. The result, after ignoring
the absolute values, is k, = R/2. Press [¢] to drop this result from the stack.

The result currently in stack level 1 is the y-coordinate of the centroid, y. To evaluate it,
simply use [~][EVAL]. The resultis y = ‘4*R/(3*n)’. Press [<] to drop this result from the
stack.

The final result left in the stack is ‘My/A=0’, which produces x=‘0".

Mass properties of thin plates using double integration
If we think of a region R in the xy plane as representing a plate of uniform thickness Ah, we
can take f(x,y) = p(x,y)-Ah, where r(x,y) is the density (mass/volume) of the material in the
plate. The function f(x,y) represents an areal density of the plate’s material (mass/area).
Thus, the mass of the plate can be calculated as
m = [lr f(x,y) dA = [l p (x,y)-Ah dA.
To simplify the notation we can take Ah =1.0, and simple replace f(x,y) = p(x,y), specifying an
areal rather than volume density for p(x,y). Using such notation, we can work in terms of mass,
rather than area, properties of a plate. A differential of mass will be defined as
dm = p(x,y) -dA,

Thus, we can define the following quantities:

< Mass m = [lrdm = flr p(x,y) -dA,

= First moment with respect to the y-axis M, = [k x-dm = [lr x- p(x,y) -dA,

« First moment with respect to the x-axis My = Jlr y-dm= [l y- p(x,y) -dA,
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=& Coordinates of the center of mass x=M,/m, y=M,/m
% Moment of inertia with respect to the y-axis I, = [l x2dm = [l X’ p(x,y) -dA
= Moment of inertia with respect to the x-axis Iy = [lx y>-dm = [k y* p(x,y) -dA,

= Moment of inertia with respect to the origin lo = [lr (x*+ y2) -dm = [lr (x*+ y?)- p(x,y)
-dA

w Radii of gyration of the plate with respect to the x-axis, y-axis, and origin:
ky = (I,/m)"2, ke = (I,/m)"2, and k, = (l,/m)"'2.

Example 2 -- Consider the triangle defined by R={ 0 <x <B, 0 <y < (H/B)x }. Assume that the
triangle represents the face of a plate of constant thickness so that the areal density
(mass/area) of the material is given by p(x,y) = x + y.  Determine the mass of the plate, the
first moments, and moments of inertia with respect to the two axes. Also, determine the
coordinates of the plate’s center of mass and the radii of gyration of the plate with respect to
the x- and y-axes.

Following the generic definition of the region R, given earlier, we identify a=0, b =8, g, =0,
g, = H*x/B, and are given the value p(x,y) = x + y for the material’s areal density. We can
store all these values and functions in memory as follows:

(0] [1[ * ] [ALPHA][][A] [STOP]
[~1[ < 1 [ALPHA][B] [ENTER] ] [~][ * ] [ALPHA][<][B] [STOM]
(0] [][ * 1 [ALPHA][2][G][1] [STO»]

[EQW] [ALPHA][H] [x] [ALPHA][<][X] [»] [+][ALPHA][B] [ENTER] [~][ ‘ ]J[ALPHA][<][G][2]
[sTO»]

[EQW] [][CHARS] (select p) [ECHO1] [«][( )] [ALPHAI[<][X] [SPC] [ALPHA][][Y]
[>1[~1[=][ALPHA][~][X] [+][ALPHA][~][Y] [ENTER] [+][DEF]

Then, enter each of the following integrals in your calculator, and evaluate and simplify them
using techniques similar to those presented in the previous exercise:

92 [92 92
m= J P(x,9)dy dx+4 My= l xp(x,4)dy dxe Mx= wp(x,u)dy dxe
ol al a al
a

0T [cuks [e16 a[EvaL [FRCTo[TERPHRILECIT | CURS TETG o] EVAL [FACTOITE:PA] EUIT]CURS BTG o] EVAL PRCTOITERFA]

b b
a2 2 = 2
| 1y= xTP(x,u)dy dx Ix= y T p(x,y)dy dx
gl gl
a

: a
E0IT | CURS (BTG o[ EVAL [FRCTO[TERFAEIFEOTT] CURS | E1G o] EVAL JFRCTO[TERFA]
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After evaluating each of the integrals, press [ENTER]. When finished, you should have the
following (factorized) expressions in your stack, shown here in small font:

EAD #YZ HEX F= 'H'

{HOME>

oy

H 'H=ExH» (3=<E+H) - (Ix3)*
Yy: 'Hy=E"3xH= (3=xE+H) ~2"3"
2: 'Hi=ExH" 3= (2xE+3=H) # (3x2*3) "
a: 'TyYy=E"3xH= (=xE+H) ~ (Gx2) "
1: "Ix=EBxH*2x (YxB+2xH)~(5x3x2"~a2)"’
| ¢ |FRINI|CAZINIREALA] a [ b |

To calculate center-of-mass coordinates and radii of gyration you can use the following:

[S1[<][PRG][LIST][>LIST][ENTER] Place all results in a list, making extra copy

[ELEM][NXT][TAIL] Reduce list to My, Mx, ly, Ix only

[»][HEAD] Swap lists, and isolate value of A from list in stack level
1

[+] Divide list in stack level 2 by value of A in stack level 1
[~][EVAL] Separate elements of list

[~][EVAL] Right-hand side = k.2 = “(4*H"2+3*H"3)/(20*B+10*H)’
[©]1[~][EVAL] Right-hand side = ky_? = ‘3*B"2/5’

[<1[~]1[EVAL] Right-hand side = x = *(3*H*B+H"2)/(8"B+4*H)’
[<][~][EVAL] Right-hand side = x = ‘3*B/4’

Double integrals in polar coordinates

In general, the double integral [[; f(x,y) dA can be visualized as the volume of the solid
contained between the x-y axis and the curve z = f(x,y) and whose base is the region R in the x-
y plane. To emphasize that we are dealing with the Cartesian coordinates system (x,y,z), we
replace R with R(x,y) in the double integral, and write it as ﬂmx,y) f(x,y) dA. Since any region
R(x,y) in the xy plane in Cartesian coordinates can be transformed into a region R*(r,0) in
polar coordinates through the transformations

X=rcosf,y=rsin9,
we should be able to write the double integral in polar (cylindrical) coordinates as
IRe(e 0y £5(r,0) dA .

In this expression, the function f*(r,0) is the function that results from replacing the proper
coordinate transformations in f(x,y), and dA is a differential of area in polar coordinates as
shown below.

The polar differential of area incorporates an increment in the radial direction, dr, as well as
the corresponding increment, rd6, in the transversal direction. This element being nearly
rectangular, its area is approximated by

dA =(r-do)-(dr)=r-dr-de.
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Thus, the double integral can be written as
HR'(r,e) f“(r,e) dA = ‘UR'(UG) f"(r,e) -r-dr-de.

If the region of integration in the r- 6 plane is described as R*(r, 8) ={a <8 <b, r{(8) <r < ry(8)
} , then the double integral in polar coordinates can be written as the following iterated
integral

[[ r*.6)a4 :fﬂif))f*(rﬁ)r-dr-d@.

R*(rB)

Thus, double integrals in polar coordinates need to include the term r n their integrand in
addition to the function f*(r,0) that is being integrated.

Example 1 - Calculate the integral of f(r,0) = r-e® on the region R*(r,0) = {0< 6 < © /4, 0<r < 1-
sin@}.

Start by typing in the integral shown below in the equation writer (small font):

1-5InCa)

(reERFCED ) dr ded
0

EDIT

As you can see, the function to integrate r EXP(0) is multiplied by r, as required by the
definition of dA;y. To see the integration step-by-step, use:

[A][A][»]1[»][EVAL] Highlight and evaluate innermost integral
[FACTO] Factorize the resulting expression
[A][EVAL] Highlight and evaluate the remaining integral

Give the calculator some time to obtain the following result:
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EUIT [ CURsS TEIG 8l EVAL IFRCTOITERF A

The Jacobian of a coordinate transformation

When expressing a double integral in Cartesian coordinates we used dA = dx-dy. Notice that in
this case the area of the infinitesimal element is the product of the increments in the
independent variables, dx and dy. Suppose that we want to emphasize the use of the xy
coordinates by writing dA,, = dx-dy. Similarly, in polar coordinates we may want to write a
polar differential of area consisting of the product of the increments of the independent
variables as dA;g = dr-d8. If we use this notation, then the double integrals in Cartesian and
polar coordinates are related by

llrpey) FOGY)-dx-dy = flrpy) FOGY) dAxy = flree ) £(r,0) -r-dr-dd = [lg(cp) £(r,0) -r-dAe.
Thus, the relationship between the differentials of area in x-y and r-6 is
dAyy =r-dAc.
This latter relationship is used to convert the differential of area in Cartesian coordinates to an

equivalent expression in polar coordinates.

Suppose that you use other system of coordinates, say ¢y, where ¢ = ¢ (x,y) and v = vy (X,y),
whose differential of area is defined as dA,, = dody. The relationship between the differential
of area in Cartesian coordinates, dA,y, and dA,, will be given by

dA Xy =

>

X,y
J(W -dA,,.

where the quantity between the absolute value sign is referred to as the Jacobian of the
coordinate transformation (x,y) > (¢,y). The Jacobian is defined by the following
determinant:

a_x ox
J:J(ﬂ)z 09y =(3_X}[a_yj_(£).(a_y)
ow ) |9 9| (3¢ )(dy ) (9w ) |0¢

o9 oy

Using the Jacobian, the following relationship exists between the double integral in Cartesian
x-y coordinates and in the transformed coordinate system ¢—y:
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[ rey-da, = [[1*@.wy|/]|-d4,

R(x.y) R'(9 W)

In this equation, f*(¢,y) represents the function f(x,y) with the transformation x = x(¢,y), y =
y(¢,y) incorporated. Also, R*( ¢,y) is the region in the ¢—y plane corresponding to region R(x,y)
in the x-y plane.

To illustrate the use of the Jacobian, let’s select ¢ =r and y = 8 , i.e., we want to calculate
the Jacobian corresponding to the transformation of coordinates from Cartesian to polar. We
know that the two systems of coordinates are related by x(r, 8) = r-cos 0, y(r, 6) = r-sin 0.

ox Ox
~ 2] |os0 —r-sind i _
J=J/ 22 |=|9r 90 2095 rosn .=r-cos’O+r-sin‘@=r-(cos’@+sin’0)=r.
r,0 _al _a_)i snf@ r-cosf
Jdr 00

Therefore, the Jacobian is calculated as
Thus, |J|=r, and

[[ £y dd, = [[1*.0)-r-dd,.

R(x.y) R'(r.0)

Jacobian functions can be obtained for any coordinate transformations in systems of three or
more coordinates. Thus, a generalized definition of the Jacobian corresponding to the
transformation

(X1: X2, <y Xn) > (¢1? 02, «r) ¢n)v is

ox, Ox ox,

99, 99, 99,

ox, ox, ox,

J=J X5 Xyseens X, :a_(p- a_(Z)_:_ ..a_(p_

¢l’¢2a“' ¢nl Zl 22 . I"

ox, Ox, ox,

a¢] aq)n a¢n
The n-multiple integral of a function f(xq, Xz, ..., X5) over a “region” R(xy, X, ..., Xy) that gets
transformed into a function f*(¢, ¢ 2, ..., ¢ n) over the transformed “region” R*(¢, ¢2, ..., $n)

will be written as

[[ ] f sy, iy, = [ ] £ *©0.05000,) | /|40, - dg, -+-d9,

R(x) g X ) R*($h.¢1....0,)
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A program for calculating the Jacobian of a
transformation

The following program can be used to calculate the Jacobian of the transformation

(X1, X2, «es Xa) 2 (B, $2, -, Pn),

given the vectors f and x

[‘X1(¢|r ¢Zr ey ¢n)' ‘XZ(Q)h ¢2) w0y ¢n), e ‘Xn(¢’l» ¢Z; w0y ¢n)’]

[‘X]’, ‘XZ)’ [I3) ‘Xn']
The listing of the program is the following:

Program JACOBIAN:

<< Start main program JACOBIAN
DUP SIZE EVAL Obtain value of n (size of vector [‘x;" ‘X3’ ...X,"])
>fxn Pass vectors f and x, and value n
<< Start first sub-program within JACOBIAN
nn2->LISTOCON > J Create nxn matrix filled with zeroes, pass it on
as J
<< Start second sub-program within JACOBIAN
1n FORi Start first FOR loop withi=1,2, .., n
1n FORj Start second (interior) FOR loop with j = 1,2, ...,
n
ij2DLIST Create list { i j} for future use
F i GET x j 0 GET EVAL EVAL Calculate of;/x;
2 >LIST J SWAP EVAL PUT ‘J’ STO Place df;/0x; in element (1,j) of J, store new J
NEXT End inner FOR loop (j)
NEXT End outer FOR loop (I)
J DET EVAL EVAL Evaluate determinant of matrix J
>> End second sub-program within JACOBIAN
>> End first sub-program within JACOBIAN
>> End program JACOBIAN

Notes: (1) J and j are not the same within the program. The HP 49 G is case sensitive.
(2) i is used here as an index and not as the unit imaginary number.

Save the program in a variable called JACOBIAN. Press [VAR] to check that a soft-menu key
labeled [JACOB] is present.

Example 1 - Recalculate the Jacobian for the (x,y) = (r,q) using the calculator:

Enter the vectors:

[‘r*COS(0)“r*SIN(0)‘] [ENTER]
I'r ‘0 ] [ENTER]

Then, press [JACOB]. The result is ‘r*sIN(8) ~2+r*Cos (0) ~2‘. To simplify this result use:

[P I[TRIG][NXT][NXT][TRIG].
The final result is 'r'.
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Example 2 - Calculate the Jacobian of the transformation (x,y,z) 2 (p,9,0), i.e., the
transformation between Cartesian to spherical coordinates in three-dimensions, if it is known
that

X = p sin ¢ cos 8, y = p sin ¢sin 6, Z=p Cos ¢
Enter the vectors:
['p*SIN () *COS(8)‘ ‘p*SIN () *SIN(0)‘ ‘p*COS (¢)'] [ENTER]
['p¢ ‘61 [ENTER]

Then, press [JACOB]. Finally, to simplify this result, use: [~][TRIG][NXT][NXT][TRIG]. The
final result is 'p~2*SIN(¢) .

Area properties in polar coordinates
Area properties in polar coordinates can be calculated by using the following integrals:

& Area
A= ,UR dAxy =.UR‘ r'dAre = HR‘ r-dr-de,

= First moment with respect to the y-axis
M, = flk x- r-dA = [l (r-cos 8)- (r-dA,g) = Jls- r*-cos 6-dr-de,
% First moment with respect to the x-axis

My = [l v r-dA = [l (rsin 0)- (r-dArg) = [l r¥-sin 0-dr-d,

#

Coordinates of the centroid x=My/A, y=M/A

#

Moment of inertia with respect to the y-axis
Iy = [k x2-dA = [f: (r-cos 8)>r-dA¢= Jl- r*-cos? 8-dr-de,
= Moment of inertia with respect to the x-axis
I« = [l y2-dA = [l (r-sin 0)2.r-dA¢= [l r*-sin? 6-dr-de,
=% Moment of inertia with respect to the origin
lo = [lr (X*+ y?) dA = [l (r%)-(rdAcg) = [lr: r*- dr-db.
= Radii of gyration of the area with respect to the x-axis, y-axis, and origin:

ky = (1,/A)"%, ke = (1,/A)"2, and ko = (I,/A)""2.
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Example 1 -- Calculate the area, first moments, and moments of inertia of the region in polar
coordinates described by R* = {0<6<2mw, 0<r<1-cos 6}.

First, let’s plot the region by using the following settings for the plot setup and plot window:

E¢:1-5INCad

Indep:'s’
H-Tick:10.

FLOT SETUF§
Typ< :(EIETE

g:Fkad ||H-Yigu:-3. 2.
U-Yiguq:-2.5 .5
Indep Lou: 0. High:&.3832
] Step: (OG2EZ2 Fixels
_%iHult ¢ Connect
Y-Taick:1d. ' Fixels

Choose type of plot
| [cHoos]  [HHESs[ERASE] DRAN |

Indep step units are pixels?

EDIT] [« CHK] AUTO [ERASE] DRAM |

When ready, press [ERASE][DRAW].

The result is the following cardiod:

P

AP

LD

200 i v [TRACE]  TEDIT

The area properties are calculated with the following integrals:

2w
1-C0S(8)
A= d
a
a

EbIT

rdr dé+¢

2
1-€05¢
[TH
Jo
0

ELIT]CURs T EIG T EVAL IFRCTOITERPA]

o)

2a
1-C0SCR)
2.cosCedr do Wxz 25INCe) dr ded
0
0

20
1-C05Ca)
13=J J & ocos¢er’ ar o
o
]

ELITICURST BIG TEVAL IFRCTOITERPA]

2a
1-C05(6)
3 2
Ix= c7sINCe)" dr e
[
0

EDIT]CURs | BIG | EVAL [FACTOITEFA]

[EpIT cuRs | BIG JEVAL IFACTOITERPA

Evaluate them in the order shown above to get the following results:

RAD #YZ HEX R= 'H°

{HONEY

St 'A=3%m/2"
4: '‘My=-(S*n/4)"'
< 'Mx=@'
23 ' Ty=49%1.-32"
1: ' Ix=21#w/32"
Jincoe]_vx_[PRINT[CASIRTREALA] FOLC]

To obtain centroidal coordinates and radii of gyration use the following:
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[5][+][PRG][LIST][->LIST][ENTER]
[ELEM][NXT][TAIL]

[»][HEAD]

1

[+]

[~][EVAL]
[~][EVAL]
[<][~](EVAL]
[<=][~][EVAL]
[©][~][EVAL]

Place all results in a list, making extra copy
Reduce list to My, Mx, ly, Ix only
Swap lists, and isolate value of A from list in stack level

Divide list in stack level 2 by value of A in stack level 1
Separate elements of list

Right-hand side = k.2 = 7/16’

Right-hand side = kLZ = ‘49/48’

Right-hand side = x = 0 (symmetry about y-axis)
Right-hand side = x = *-5/6’
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Vector differentiation and integration

In this section we present differentiation and integration using functions that can be expressed
as vectors. Functions, in general, are also referred to as fields. A function, or field, that
evaluates to a number is referred to as a scalar field. Examples of scalar fields are the
temperature of a point in the plane or in space, the density or pressure in a fluid flow at a
given point, etc. Some physical quantities, such as velocity, acceleration, and forces require
for their description not only their magnitude, but also a direction. These quantities, when
they depend on the coordinates of a point in space or on time, or both, would be referred to as
vector fields. There are some quantities, such as the stresses at a particle presented in
Chapter 9, that require for their full description their magnitude and two directions.

Quantities such as this are referred to as second order tensors or second-order tensor fields. In
general, if n directions are associated with a magnitude, the magnitude can be thought of as a
n-th order tensor. In that sense a vector is a first-order tensor, and a scalar a zeroth-order
tensor.

Derivatives of vector fields
Some of the simplest vector fields to differentiate or integrate are those representing position,
velocity, and acceleration of a particle in three-dimensional space. In general, the position
vector of a particle r is a function of time t, and can be written as

r(t) = x(t)i+y(t)j+z(t)k.
The velocity of the particle is defined as
V(t) = vyi+vyj+v,k

and

v(t) = dr/dt = dx/dt-i+dy/dt-j+dz/dt-k.
The acceleration of the particle is given by

a(t) = dv/dt = aci+ayj+ak,
a(t) = dv/dt = dv,/dt-i+dv,/dtj+dv,/dtk ,
and
a(t) = d’r/dt? = d’x/dt2i+d%y/dt?j+d*z/dt? k.
From these definitions it follows that you can deal separately with the x-, y-, and z-
components of the motion by writing:
vy=dx/dt, vy = dy/dt, v, = dz/dt,

and

ax = dvy/dt = d’x/dt?, a, = dv,/dt = d’y/dt%.
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In the HP 49 G calculator you can write a vector field by simply writing its components as
components of an array. For example, if the position vector of a particle is given by

r(t) = (sin t)-i+ (In t)-j+ (e')k,

you can write this vector in the calculator as

['SIN(t)" 'LN(t)’

'EXP(t)'] [ENTER]

However, you cannot simply take the derivative with respect to t. Tryit: ‘t’ [ENTER] [~][0]

You will get an error labeled: [<!> 0 Error: Bad Argument Typd]

You will need to convert the vector into a list. Try:

[+][MATRICES][OPER][AXL] ‘t’ [ENTER] [~][9][AXL]

The result is
v(t) = (cos t)i+ (1/t)j+ (e') k.
To get the acceleration use:

[ 'coS(t) ‘“‘1/t"‘EXP(t)‘ ], i.e.,

[ ‘coS(t) ‘‘1/t"‘EXP(t)‘ ], i.e.,

[AXL] “t’ [ENTER] [~][0][AXL] to get

a(t) = (-sin t)i+ (-1/t%)-j+ (et)k.

Next, we develop a program for vector function derivatives. Create a sub-directory to be
called VCALC (Vector CALCulus), and, within that sub-directory, enter the following program:

Program VDeriv:
<< INDER DCALC >>

The program consists of the two sub-programs listed below:

Sub-program INDER:

<<
DERivative)
“Enter deriv. info.:”
{“ :func: < : var: <" {203V}
INPUT
OBJ~>
values
12 FORj
DTAG
2 ROLLD
NEXT
2 >LIST

>>
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Start sub-prog. INDER (INput data for

Prompt title for inputting data

Input string

INPUT function using two previous lines
Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4
De-tag last value in stack

Roll-down two elements in stack

End of FOR loop

Create list with the two de-tagged values
End of sub-program INDAT
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Sub-program DCALC:

<<
EVAL SWAP AXL SWAP 9 AXL
VSIMP

>>

Sub-program VSIMP

<<
DUP SIZE EVAL > L n
<<
L
1n FOR j
L j GET EVAL FACTOR
j SWAP PUT
NEXT

>>

>>

Start program DCALC (Derivative CALCulation)
Swap, convert to list, take derivative, convert back
Call sub-program VSIMP

End program DCALC

Start program VSIMP(Vector SIMPlification)
Duplicate vector, find size, pass vector and size
Start first sub-program within VSIMP

Place array in stack

Start FOR loop with j =1,2, ..., n

Get element j, evaluate and simplify

Place evaluated value back in array at pos. j
End FOR loop (j)

End first sub-program within IINTCALC

End program IINTCALC

Sub-program VSIMP simplifies each element of the vector and puts the simplified vector

together.

Test the program on the vector

r(t) = (at?)-i+ (Vt)j+ (sin"t)k,

[‘a*t"2’ V&’ ‘ASIN(t)’][ENTER] *t’ [ENTER][VDeri].

The result is

[ ‘2*t*a’ ‘Nt /(2*t) ‘(-N-(t"2-1)/(t%-1))'], i.e.,

v(t) = (2at)i+ (Vt /(21))-j+ (-V-(t2-1)/ (t2-1)) k.

To get the acceleration you would use: ‘t’ [VDeri]. The result is

[2*a’ “-Vt/(4*t"2)" ‘N-(£°2-1)*t/ ((t+1)"2*(t-1)"2)’], i.e.,

a(t) = (2a)i+ (Vt /(4t})-j+ (N-(E- Dt/ ((t+1)2(t+1)) k.

Integrals of vector functions

Integration of the acceleration or velocity functions is straightforward, e.g., from

dv = a(t) dt,

you can write

f dv = j at)dt =jl’ la,(1)-i+a, () j+a.(t)-kldt

= U’I a (f)dt ) i +U; a (t)dt J j+ U: a.(f)dt J k
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Or, you can integrate the three components separately, i.e.,

:“dvxz J:)ax(t)dt, j dvyz'[ia}.(r)dt, j a’vzz.f: a.(t)dt,

where

Vo = on‘i+vyo'j+vzo'k =v(t),

is the initial velocity of the particle.

To integrate, you need to convert the vector into a list before performing the integration.

Example 1 - Indefinite integral

Given v(t) = (e')i + (-t3)j+(1 /t)k, obtain a general expression for the position vector r(t). No

initial conditions are given.
Try this:

[‘EXP(t)’ “-t*3’ “1/t’][ENTER]
[+][MATRICES][OPER][AXL]

‘t’ [ENTER] [+][CALC][DERIV][NXT][RISCH]

[+][MATRICES][OPER][AXL]

Enter vector to be integrated
Convert vector to list

Enter integration variable, integrate
Convert vector to list

The result is [‘EXP(t)’ *-(1/4*t*4)’ ‘LN(t)’], i.e.,

r(t) = (')i + (-t*/4)j+(In t)k+C,

where C is a constant vector.

The following program will take care of calculating an indefinite integral:

Program Vintl (Vector calculus Integration Indefinite - wow! That was a mouthful):

<< [INDAT IINTCALC >>

The two sub-programs involved are listed below:

Sub-program IINDAT (Indefinite integral INput DATa):

<<
“Enter integr. info.:”
{““:func: < : var: <" {20}V}
INPUT
OBJ>
12 FORj
DTAG
2 ROLLD
NEXT
2 SLIST

>>
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Start sub-prog. [INDAT

Prompt title for inputting data

Input string

INPUT function using two previous lines
Decomposes input string into 3 tagged values
Start FOR loop to de-tag values, j = 1,2,3,4
De-tag last value in stack

Roll-down two elements in stack

End of FOR loop

Create list with the two de-tagged values
End of sub-program IINDAT
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Sub-program /INTCALC (Indefinite INTegral CALCulation):

<< Start program IINTCALC

EVAL SWAP AXL SWAP RISCH AXL Swap, convert to list, integrate, convert back
VSIMP Call sub-program VSIMP (defined earlier)

>> End program IINTCALC

Try the following exercise using the indefinite integral program: integrate v(s) = s-i+s? jesik as
an indefinite integral. In the calculator, use the following:

[Vintl] [<][(1] [~][ ° ] [ALPHA][<][S] [»] [~ ] [ALPHA][‘ﬂ][Sl y102] [»]
(10 1 [ALPHA][][S] [y*1[3] [¥] [~1[ * ] [ALPHA][<][S] [ENTER

The result is [ s"2/2’ ‘s"3/3’ ‘s"4/2"2’ ], i.e.,
Iv(s)ds = (s2/2)-i+(s3/3)-j+(s*/4)-k+C,

where C (a constant vector) is a constant of integration.

Example 2 - Definite integral

Given a(t) = (e''Y)i

the velocity v(t).

i+ (tan t)j+(t*2)k, and the initial velocity v, = 2i- 5j+3k at t = 0, determine

We are to evaluate the integral:
j dv = .[:a(t)dt.

In this case, it is better to work only with lists. To integrate the right-hand side of the
equation use:

{‘EXP(1/t)’ ‘ATAN(t)’ ‘t"2’}[ENTER] Enter list to be integrated

{000} [ENTER][»] Enter list of initial values (*), swap order
{t t t}[ENTER] [»] Enter list of upper limit of integration(*)
{t t t}[ENTER] Enter list of variables of integration (*)
[~ 11 Calculate the integrals

The result is the list: { ‘J (0,t,EXP(1/tt),tt)’ -((LN(t"2+1)-2*t*ATAN(t))/2’’t"3/3’ }. The first
element in the list has no closed-form expression.

The left-hand side of the equation is obviously v-v,, thus, the value of v(t) is
!
V() =v, +j a(t)dt,
0

With the right-hand side given by the list we found earlier. To obtain a list representing v(t),
therefore, type in the list of the constant value and added to the existing list as follows:

{ 2 -5 3} [ENTER] [+][MTH][LIST][ADD]
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the result is {1 (0,t,EXP(1/tt),tt)+2” “-((LN(t"2+1)-2*t*ATAN(t))/2+-5""t"3/3+3" },

Which can be interpreted as:

V(f)=(_L:exp(l/r)dr +2)+(_ ln(t2+1)—22t-tan"t~5}+[§+3}.

We can let the calculator take care of the details of the integration by putting together the
following program:

Program VIntD (Vector calculus Integration Definite - Another mouthful):
<< DINDAT DINTCALC >>

Sub-program DINDAT (Definite integral INput DATa):

<< Start sub-prog. DINDAT
“Enter integr. info.:” Prompt title for inputting data
{““: low: « :thigh: « :func: <« : var: «” {203}V }Input string
INPUT INPUT function using two previous lines
OBJ~> Decomposes input string
14 FORj Start FOR loop to detag values, j=1..4
DTAG De-tag last value in stack
4 ROLLD Roll-down four elements in stack
NEXT End of FOR loop
4 SLIST Create list with the 4 detagged values
>> End of sub-program DINDAT

Sub-program DINTCALC (Indefinite INTegral CALCulation):

<< Start program DINTCALC
EVAL SWAP DUP SIZEEVAL > abvfn Determine vector size, pass values
<< Start first sub-program within DINTCALC
n 1 >LIST a CON AXL Create list with lower limit repeated
n 1 >LIST b CON AXL Create list with upper limit repeated
F AXL Convert vector function to a list
n1 ->LIST v CON AXL Create list with integration variable repeated
| AXL Integrate list, convert to vector
VSIMP Call sub-program VSIMP
>> End first sub-program within DINTCALC
>> End program DINTCALC

Try the following exercise using the definite integral program: integrate the right-hand side of
a(0) = sin 0 -i+ 6% j+(1/ 6)k
between the limits 6 = n/4 and 6 = n/2. In the calculator, use the following:

(VIintD] [~][ “ 1[<][n] [<] [4] [¥] [~][ “1(<]n] [<] (2] (V]

(210000 [0 ° T [SINIALPHA][=](T] [»][»] [~][“ ] [ALPHA][~][T] [y*](2] [»]
(][ “ 1 (1[=][ALPHA][~][T] [V¥]

[~1[ “ 1 [ALPHA][~][T] [ENTER]
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The result is [‘N2/2" “7*m"3/192’ ‘LN(n/2)-LN(n/4))’], i.e.,

Jera™? a(0)d 0 = (N2/2)-i+(77°/192)-j+In(2) k .

Curves

A curve in the Cartesian space can be represented by a vector function in its parametric
representation, for example, x =5sint, y =3 cos t, z=2t. Alternatively, you can have a
curve in space by specifying y = f(x) and z = g(x), for example, y = 0.02x2, z = exp(0.05x).
Another way to represent a curve is as the intersection of the three-dimensional surfaces,
F(x,y,z) =0, G(x,y,z) = 0. For example, F(x,y,z) =x2+yz+zz—25, G(x,y,z) = x-5*y+3*z-1=0.

Arc Length

Let r = r(t) = x(t)i+y(t)j+z(t)k be a vector in parametric representation describing a curve C in
space, the length of the curve corresponding to values of a<t<b is given by:

dr
2l
We can define an arc length function s(t) by replacing the upper limit of the integration with t:

2 2 2
sty =[rerd=] L I 0 IR
a a [\ dt dt dt

From the definition of the arc length function it follows that
2 2 2 2
ds — ds) (dxY (d dz
— =+/Fer s — =l —| + __;‘i +=1.
dt dt dt dt dt

dr = dx-i+dy-j+dzk,

d
1= [Vrerdr, wherei‘zd—:, Pei=

We can also write,

and

ds? = dx? + dy? + dz?,

where ds is called the linear element of the curve C.
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For a plane curve represented by y = f(x), the arc length function can be written as

s(x) =J: l+(%)~ :

Example1 - Circular helix in space. This curve can be represented in parametric form as x(t) =
a-cos(t), y(t) = asin(t), and z(t)= ct. The plot of the curve for values a = 2, c = 1, is shown
below. This graph was produced in Maple V because the calculator does not provide for three-
dimensional curve plots.

To obtain an expression of the arc length of this curve using the calculator, we use:
‘x(t) = a*CoOS(t)’ [«][DEF]
‘y(t) = a*SIN(t)’ [~][DEF]
‘z(t) = c*t’ [«][DEF]

Then, using the equation writer put together the following function:

2

t
2 . 2 2
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