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Preface

This book covers a variety of Analysis-based mathematics utilizing the amazing algebraic,
numerical, and graphical capabilities of the HP 49 G calculator. The book emphasizes the
practical applications of mathematics to engineering and the physical sciences. Each chapter
includes a review of the mathematical concepts used, a description of the appropriate
calculator features, and examples showing their application.

This book is the result of many years of experience in teaching courses on:

a Engineering Mechanics Il (Dynamics),

+ Uncertainty in Engineering Analysis (i.e., probability and statistics applied to
engineering),

Hydraulics,

«Fluid Mechanics, and

= Numerical Methods in Engineering

in which the use of the programmable calculators HP 48 G/G+/GX and HP 49 G has been
emphasized. Many of the examples presented throughout the book had been published
previously as class handouts and class notes. In the preparation of my courses, and even in
some research activities, | have developed many User RPL programs for the HP 48 G/G+/GX and
the HP 49 G, a good number of which are also included in this book.

The book, in its present form, developed from a set of class notes | prepared in the Spring of
the year 2000 for a colleague’s Engineering Freshmen Seminar class. The HP 48 series
calculator has been required from our engineering students since the HP 48 SX was introduced
back in the early 1990's. This year, the HP 49 G made its debut among the Freshmen class,

therefore, there was a need to produce some training material using this calculator. The task
fell on me, given my extensive experience with the HP 48 G series calculator, and my

familiarity with the HP 49 G calculator since it first came out in August of 1999. The 23-page-
long handout | produced for my colleague’s class, together with the class notes | have prepared
for the HP 48 G series calculator through the last six years, plus long hours of typing away in
my computer, have developed into the book you now have in your hands.

The reader should think of this book as a mathematics handbook that emphasizes the
extraordinary capabilities of the HP 49 G calculator in demonstrating different mathematical
concepts. While | have made the effort of introducing those concepts before using them in
each chapter, detailed explanation of mathematical concepts and proofs of theorems used in
this book is to be found in more traditional mathematical textbooks. A list of references is

provided in the book for that purpose.

Although the calculator includes features useful in number theory and in operations with
number bases other than decimal, the book does not expand on these subjects beyond some

basic description of the appropriate functions. The reason for this omission is the ack of
experience of the author in those subjects. Please keep in mind that the author’s training is in
Civil and Environmental Engineering, where the emphasis is in Analysis-based mathematics.

Get yourself a notebook: | recommend that you go through the book armed with your
calculator and a notebook. You want to have a notebook handy because sometimes the
calculator display is not large enough to hold all the information you want to see when solving
a given problem. Also, you may want to keep your own notes on particular types of operations
with the calculator that are of interest to you.

1 © 2000 Gilberto E. Urroz
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A note about RPN: While the calculator uses the algebraic mode by default, | make it clear
from the start that the book emphasizes the Reverse Polish Notation (RPN) mode. The

emphasis on RPN mode is not only because it is the mode that most HP 48 G series users are
familiar with, but because it is more efficient than the algebraic mode in using the calculator
display. | should also point out that the HP 49 G converts function calls and programs into RPN
mode when performing operations. Therefore, it is useful that the user learn the RPN mode to

better understand the workings of the calculator, and to be able to communicate with the wide
community of HP 48/49 calculator users around the world.

Preferred calculator settings: When you take the calculator out of the box, or when it
recovers after a system crash, the original calculator settings are such that the calculator’s

Operating Mode is set to Algebraic, the beep option is selected, the calculator’s display

is set to Textbook mode, and system flag 117 is cleared (i.e., CHOOSE boxes, rather than

Soft MENU keys are selected), among other default settings. For the applications in this
book | prefer that you change your settings as follows:

“Press [MODE][+/-] to change to RPN mode. Change other settings so that the
CALCULATOR MODESscreen should looks like this:

HeCALCULATOR MODES Sasi
gperating Hoda.
liunber Fornat.... Std _FH,
Angle Heazure....Radaians
Coord Fy=z=teH...... Fectanjular

_Eeap _ Key Clack Lazt Stack

Choozs¢ Calculator operating Hoedg

CANCL]OK

4 Press [ CAS] (i.e, the F3 key). [CAS stands for Computer Algebraic System, a generic
name given to programs that lets you produce algebraic and calculus operations in a
computer or, in this case, a calculator]. Change settings, if needed, so that the CAS MODES
screen looks like this:

SHEECRE NODESHEE
Indep var: '4"

 

 

Hedulo: EXE
_NuHeric _ Approx _CoHp lex

_VYarbozg _ Ftepsitep _ Incr FoOM
y Riqereus of Zap Non-REational

Enter Hodulo uglug

EDIT ||JCANCL]OK
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= Press [OK] to return to the CALCULATOR MODES screen. Within that screen press |[
FLAGS ] (i.e., the F1 key). Next, press [A] to access the last flags in the list. Press
[A][A] to highlight system flag 117, then press [v'CHK ] (i.e., the F3 key) to change the

setting to Soft MENU. The SYSTEM FLAGS screen should look like this:

nen Cane ne.

ee2: SYSTER FLAGS
nen rat.

117 LinQdar ZXiHp on
114 Disp 14x + x+1
11€ Prefer Cox)

119 Rigorous an
120 Silent Hode oFF
[||vCHK] CROCL]OK

  

= Press [OK][OK] to return to normal (that is, RPN mode) calculator display.

A note on CAS modes: One of the greatest features of the HP 49 G calculator is its CAS
(Computer Algebraic System). The CAS is used in almost every operation in the calculator that
involves algebraic or calculus manipulations. The CAS prefers that you use the Exact mode for
most operations in order to provide the most accurate result. You will know that the Exact
mode is selected if you see that the Approx mode is not selected in the CAS MODES screen

(see above). Make sure that your calculator is set to Exact mode all the time. While in the
stack, in RPN mode, this can be quickly accomplished by clearing system flag 105:

[1]1[01[5][+/-]1[ALPHA][ALPHA][C][F][ENTER].

Many errors produced when operating the calculator can be traced to not having it set to

Exact mode. On the other hand, whenever the calculator, set to Exact mode, tries to

evaluate expressions involving floating point numbers (i.e., numbers with decimals), it will

request that the CAS mode be changed to Approx. Accept the request for changing the CAS
mode, but, when done, make sure that you return the calculator to Exact mode.

Many other operations will request you to change the mode to Complex. Accept the changes
when requested to obtain complex results. Within the stack, in RPN mode, if you want to
return to Real (i.e., not Complex) mode, clear system flag 103:

[11[0]1[3][+/-]1[ALPHA][ALPHA][C][F][ENTER].

In normal calculator display you can check what the current CAS settings, and other calculator
settings, are by checking the characters in the upper left corner of the display. The settings |
prefer, unless otherwise noticed, will look like this:

avZ HEX R= 'W°

 

5
4
3
2
1
EDIT [VIEW[STACK]RCL[PURGE[CLERFE
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The items in the upper left corner are interpreted as follows:

+ RAD stands for radians for angular measure

# XYZ stands for rectangular (i.e., Cartesian) coordinates

# HEX stands for hexadecimal numbers as the default for binary operations

“*% R means Real, as opposite to Complex, CAS mode

+ The equal sign (=) stands for CAS Exact mode, as opposite to -, which means Approx

mode

4 ‘X’ means that the default CAS independent variable (stored in VX, is the upper case X)

Thus, before starting any operation involving algebraic or calculus manipulations (i.e., most

operations in the calculator) make sure that the icon R= is present in the upper part of the
display.
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Preface to Volume II

Volume | (Introduction, programming, pre-calculus mathematics, graphics, linear algebra) of

this series includes subjects corresponding to mathematics at the pre-calculus level. This
second volume includes subjects on differential and integral calculus, multi-variate and vector
calculus, some differential geometry, ordinary differential equations (analytical and numerical

solutions), Fourier analysis and its applications to partial differential equations, and statistical
applications. This volume starts with Chapter 13, to continue the chapter numbering of
Volume |.

Calculus. Chapter 13, the first chapter in this volume, includes HP 49 G operations related to
limits of functions, derivatives, the Chain Rule, applications of derivatives, and other

important subjects of differential calculus. The chapter includes applications of integration

through limits of summations, anti-derivatives, integration techniques, improper integrals, and
other relevant subjects of integral calculus of one variable. A third subject covered in this

Chapter is the issue of infinite series, and approximation of functions through Taylor and
Maclaurin’s series. Applications of differential and integral calculus, taken from science and

engineering disciplines, conclude this chapter.

Multivariate and vector calculus. This Chapter starts with the concepts of partial derivatives
and total differentials and their applications to functions of two or more variables, as well as
to functions of a complex variable. Applications of multi-variate calculus to potential flow
concludes this first part of the Chapter. The subject of multiple integrals is presented next
including practical applications in the physical sciences. The Chapter continues with coverage
of vector calculus concepts and their application to differential geometry. The subject of
vector analysis is covered extensively with applications of the del operator to scalar and vector
fields. Vector differential operations in generalized orthogonal coordinates and the calculus
of surfaces concludes this chapter.

Ordinary differential equations. This Chapter includes an extensive catalog of solution
techniques for first-order ODEs, the use of Laplace transform in the solution of linear ODEs,
Fourier series and their applications, solution to classical second-order equations, and
numerical and graphical solutions to linear ODEs.

Fourier transforms and parabolic PDEs. This Chapter includes a number or analytical

solutions to parabolic PDEs using separation of variable techniques and Fourier analysis
applications. The chapter covers concepts and applications d Fourier transforms and their
application to discrete signals through the Fast Fourier Transform (FFT) algorithm.

Statistical applications. This chapter covers a variety of applications of the HP 49 G
calculator to the analysis and reduction of data: e.g., analysis of single data sets to obtain
sample statistics, analysis of frequency distribution and plotting of histograms, and fitting of

data through a number of pre-programmed functions. The Chapter includes practical
applications of statistical inference such as the generation of confidence intervals, and the test
of hypotheses. The Chapter concludes with a presentation of the method of least-squares for
linear regression and inference procedures applied to such data fitting.

The subjects covered in Chapter 13 (Calculus) include subjects that are typically covered in
two to three Calculus courses at the Freshmen and Sophomore level in College. The
elementary subjects of Chapter 13 can be easily covered in an AP preparation class at the High-
School level. The material covered in Chapter 14 (Multivariate and vector calculus) is typically
included in two courses in Advanced Calculus at the junior to senior levels. The subject of
Chapter 15 (Ordinary differential equations) can be covered in one course on general ODEs and

1 © 2000 Gilberto E. Urroz
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part of one course on advanced engineering mathematics or mathematical physics, typically at
the junior and senior level. Chapter 16 (Fourier transforms and parabolic PDEs) includes
subjects that are taught in specialized courses in physics and engineering, typically at the
senior undergraduate or elementary graduate level. The subjects presented in Chapter 17

(Statistical applications) can be presented in any statistics course. It should be pointed out
that some of the subjects covered throughout the first two volumes of this book include

probability applications (e.g., see Chapters 4, 5, 10, 11 and 12 in Volume |, and Chapter 13 in
Volume 2) can be included in a calculus-based probability and statistics course. This course
will typically be taught at the junior or senior level, or even as an introductory graduate level
class for students that have not taken statistics in their undergraduate studies (if there still are
some of them around).
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Calculus  
 

In this chapter we discuss applications of the HP 49 G calculator to differential and integral
calculus, multi-variate calculus, power series, and vector calculus.

Limits and derivatives

Differential calculus deals with derivatives, or rates of change, of functions. The derivative of

a function is defined as a limit of the difference of a function as the increment in the
independent variable tends to zero. Limits are used also to check the continuity of functions.

The function LIMIT

The HP 49 G calculator provides the function LIMIT to calculate limits of functions. This
function uses as input an expression representing a function and the value where the limit is to
be calculated. The function LIMIT is available through the keystroke sequence
[<][CALC][LIMIT][LIMIT]. (Change CAS setting to Exact.) Some examples are shown below:

‘X"2+2*X-1’ [ENTER] ‘X = 3’ [ENTER] [«~][CALC][LIMIT][LIMIT], Result: ’14’, i.e.,

lim(X* +2-X-1)=14.

“(t"2-1)/(t+1)’ [ENTER] “t = -1’ [ENTER] [«][CALC][LIMIT][LIMIT], Result: ’-2’, i.e.,

 lim
=>t+]

‘SIN()/6’ [ENTER] ‘0=0’ [ENTER] [+1][CALC][LIMIT][LIMIT], Result: ’1’, i.e.,

 im sin 6 ~1

6->0 0

‘(m+1)/(m*2+1)’ [ENTER] ‘m=+c’ [ENTER] [«=][CALC][LIMIT][LIMIT], Result: ’0’, i.e.,

m+ 1to.
m=>0 p= 4 1
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“((x+h)*2-x"2)/h’ [ENTER] ‘h = 0’ [ENTER] [«][CALC][LIMIT][LIMIT], Result: ’2*x’, i.e.,

22
fm SED=X,
h->0 h

‘m*v/ N (1 - (v/c)"2)’[ENTER] “v = ¢’ [ENTER] [~][CALC][LIMIT][LIMIT], Result: ’«’, i.e.,

Im ——=—==1o.

Derivatives

The derivative of a function f(x) at x = a is defined as

afon Seth) = f(x)
rtd (x) = fim,—————— :

One of the examples on limits in the previous section shows how to calculate the derivative of

f(x) = x? using this definition. Other examples follow:

“(EXP(x+h)-EXP(x))/h’ [ENTER] ‘h = 0’ [ENTER] [<][CALC][LIMIT][LIMIT], Result: ‘EXP(x)’, i.e.,

x+h _ x

en “fim &£——¢ —¢*,
dx h=>0 h

“(SIN(x+h)-SIN(x))/h’ [ENTER] ‘h = 0’ [ENTER] [+][CALC][LIMIT][LIMIT], Result: ’COS(x)’, i.e.,

sin( x+ h)—sin x _ cd . i
—sin x = lim 0S X.

Ix h—>0 h

“(1/(x+h)-1/x)/h’ [ENTER] “h = 0’ [ENTER] [«][CALC][LIMIT][LIMIT], Result: ’-1/x"2’, i.e.,

=1
d 1 . M(x+h)—-1/x 1Ly mlmAEE
dx x h>0 h x

‘(ABS(x+h)-ABS(x))/h’ [ENTER] ‘h = 0’ [ENTER] [<][CALC][LIMIT][LIMIT], Result: ’x/ABS(x)’,
i.e.,

fi XA]x
h=>0 h | x |
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The functions DERIV and DERVX

Of course, calculating derivatives using the formal definition given above turns into a pretty
tedious endeavor. Instead, we use formulas for derivatives, which in the HP 49 G calculator

are available through the functions DERIV or DERVX. The function DERIV is used to take

derivatives in terms of any independent variable, while the function DERVX takes derivatives
with respect to the CAS default variable VX (typically X). These functions are available in the
DERIV menu: [<][CALC][DERIV]. Some examples follow:

‘X*2 - 5%x + 2’[ENTER] ‘x’ [ENTER] [+][CALC][DERIV][DERIV], result = ‘x*2-5’, i.e.,

Ca -5-x+2)=2-x-5.
dx

‘SIN(R) + ATAN(R)’ [ENTER] ‘R’ [ENTER] [+1][CALC][DERIV] [DERIV],
result = ‘COS(R)+1/(SQ(R)+1)’, i.e.,

 4(sin R+tan” R)=cosR + : 7
dx 1+R

Check that your VX variable in the HOME directory contains the variable ‘X’, then try the
following:

“(X*2+COS(X))/EXP(X)’ [ENTER] [+][CALC][DERIV][DERVX],
result = (EXP(X)*(X*2-SIN(X))-(X"2+COS(X))*EXP(X))/SQ(EXP(X))’,

i.e.,

4.x tes X, of (2X —sin X)—(X* +cos X)-e”*
7 - 2X .

dx e? e”
 

Calculating derivatives with 0

The symbol is available as [~][d] (the COS key). It implements the DERIV function directly in
the keyboard. For example,

‘SIN(t) -LN(t)’ [ENTER] ‘t’ [~][0], result: ‘COS(t) - 1/t’, i.e.,

4(sin t+Int)=cost—1/t.
dx

 

 

Note: The symbol dis used formally in mathematics to indicate a partial derivative, i.e., the
derivative of a function with more than one variable. However, the HP 49 G calculator does

not distinguish between ordinary and partial derivatives, utilizing the same symbol for both.
The user must keep this distinction in mind when translating results from the calculator to
paper.
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Formulas for derivatives

You can use the function DERIV or the symbol J to recall formulas for derivatives by using as
argument a generic function f(x). For example,

x*n’ [ENTER] ‘x’ [~][d], result: ‘x*(n-1)*n’, i.e., d(x")/dx = nx".

‘(f(x))"n’ [ENTER] ‘x’ [~][d], result: ‘f(x)"(n-1)*n*d1f(x)’, i.e., d[f(x)]"/dx = n{f(x)]"" -df/dx.
Here, the symbol d1f(x) stands for “the first derivative of f(x) with respect to x”.

‘U(x)*v(x)’ [ENTER] ‘x’ [~][d], result: ‘d1u(x)*v(x)+u(x)*d1v(x)’, i.e.,

av(x0)ve)=)ue)EE,

The chain-rule

The chain rule for derivatives applies to derivatives of composite functions. A general
expression for the chain-rule is

d{f[e(x)]}/ dx = (df/dg)- (dg/dx).

Using the calculator, this formula results in:

‘f(g(x))’ [ENTER] ‘x’ [][0], result: ‘d1g(x)*d1f(g(x))’.

Other examples would be:

‘LN(f(x))’ [ENTER] ‘x’ [~][d], result: ‘f(x)/d1f(x)’, i.e., d/dx[In(f(x))] = f(x)/[df(x)/dx] =
f(x) /f (x).

“VSIN(X*2)’ [ENTER] [+1][CALC][DERVX], result = ‘COS(X*2)*(X*2)/(2*VSIN(X"2))’, i.e*

d _ 2xcosx’ _ xcosx’
—[sin( x*)]""?
dx  24sin £2x - +/sin x?

Derivatives in formulas

Derivatives can be written explicitly in the equation writer or between quotes by using the
symbol 0. For example, the derivative d/dx[exp(-x?)] can be written as:

[EQW][]1[0] [ALPHA][<]1[X] [™1[<1[e*] [ALPHA][<][X] [Vv] [™] [+/-] [ENTER], and will be

entered in the stack as: ‘0x (EXP (-x"2)) , Or as
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9(ExP(- x?)
ox

if using textbook display format.

To evaluate this expression use: [~][EVAL]. The result is ‘EXP (-x"2) *- (x*2) ’, i.e., -
2-x-exp(-x2).

To type a derivative in stack level 1 use:

[m1 “1 [100] [ALPHA][<1[X] [<1[( )] [SIN] [ALPHA][<][X] [ENTER], produces ‘ox (SIN (x)) ’.

Press [—][EVAL] to get ‘COS (x) ’.

Higher-order derivatives

You can calculate second order derivatives by applying the function [—][d] twice to an
expression. For example,

‘SIN(x)’ [ENTER] ‘x’ [ENTER] [~][0] ‘x’ [ENTER] [~][d], result: ‘~SIN(x)’

You can write a second-order derivative by using the symbol [—][d] twice in the equation
writer. For example:

[EQW] [~][0] [ALPHA][<][X] [™]1[~1[3] [ALPHA][][X] [™] [<][e*] [ALPHA][<][X] [vy] [™] [+/-]
[ENTER], and will be entered in the stack as: ‘0x (dx (EXP (-x"2)))', or as

d (ad
—| = (ExA-x7))
ox |ox

if using textbook display format.

To evaluate this expression use: [~][EVAL]. The result is

‘EXP (-x72) *- (x*2) *= (X*2) +EXP (-X"2) *-2",

Press [—][ALG][EXPAN], resulting in * (4*x~2-2) /EXP (x"2) ’, i.e., (4x*-2)/exp(x®).

Derivatives of equations

You can use the HP49G calculator to take derivatives of equation, i.e., derivatives will exist in

both sides of the equal sign. For example, to take the derivative of the equation: x(t) =2r
cos 6(t), use:

(IL * 1 [ALPHAJ[][X] [<][( )] [ALPHA][<][T] >] [~][=] [2][x ] [ALPHA][<][R] [x ][COS]
[ALPHA][~][T] [<]1[( )] [ALPHA][«=][T] [ENTER]

[1 [ALPHA][«][T] [ENTER] [r][0]
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The result is 'dlx(t) = 2*r*-(SIN(O(t))* d10(t))’, i.e., x(t) =- 2 rO'(t) sin 6(t).

Take a second derivative, as follows: [~][ '] [ALPHA][<][T] [ENTER] [~][0 ]1[][ALG][EXPAN]
The result is now:

'dldl (t)=-(2*r*SIN(O(t)) *d1d16(t)+2*r*d1O(t)~2*COoS(B(t)))"’, or

x"(t) =-(2r[6(t)]2 cos 6 (t) + 2r6"(t)sin 0 (t)).

Implicit derivatives

Try taking the derivative with respect to t of the equation: [r(t)F = 2-[6¢t)F. Use the following
keystrokes:

[10 10410()] [ALPHAJ[<][R] [<]0()] [ALPHA][<](T] [>] [»] [y'] [2]
[m10=]1 [21x 1 [<][()] [ALPHA][~][T] [<][()] [ALPHA][<][T] [>] [™] [y*] [3] [ENTER]
(m1 ["] [ALPHAJ[<][T] [ENTER] [r][0]

The result is: *dlr (t)=2*(0(t)~2*3*d16(t)) , i.e., r(t) =2 6(t) [6 (t)]>.

Application of derivatives

Analyzing graphics of functions

 

 

In Chapter 11 we presented some functions that are available in the graphics screen for
analyzing graphics of functions of the form y = f(x). These functions include [(X,Y)] and

[TRACE] for determining points on the graph, as well as functions in the ZOOM and FCN menu.
The functions in the ZOOM menu allow the user to zoom in into a graph to analyze it in more

detail. These functions are described in detail in Chapter 11. Within the functions of the FCN
menu, we can use the functions SLOPE, EXTR, F’, and TANL to determine the slope of a

tangent to the graph, the extrema (minima and maxima) of the function, to plot the
derivative, and to find the equation of the tangent line.

 

Try the following example for the function y = tan(x).

#% Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

w* Change TYPE to FUNCTION, if needed, by using [CHOOS].

= Press [¥] and type in the equation ‘TAN(X)’.

w% Make sure the independent variable is set to ‘X’.

4 Press [NXT][OK] to return to normal calculator display.

% Press [<][WIN], simultaneously, to access the PLOT window (in this case it will be
called PLOT -POLAR window).

* Change the H-VIEW range to -2 to 2, and the V-VIEW range to -5 to 5.
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Press [ERASE][DRAW] to plot the function in polar coordinates.

The resulting plot looks as follows:

 

 

   

 

[200[ck[TRACE]FhJEDIT [CARCL]

= Notice that there are vertical lines that represent asymptotes. These are not part of

the graph, but show points where TAN(X) goes to + « at certain values of X.

% Press [TRACE] [(X,Y)], and move the cursor to the point X: 1.08E0, Y: 1.86E0. Next,

press [NXT][FCN][SLOPE]. The result is Slope: 4.45010547846.

= Press [NXT][NXT][TANL]. This operation produces the equation of the tangent line,
and plots its graph in the same figure. The result is shown in the figure below:

/ A

A
Tanling: 'Y=Y4.4S01054784ExX-2.924

 

 

      

we Press [NXT][PICT][CANCL][ON] to return to normal calculator display. Notice that the

slope and tangent line that you requested are listed in the stack.

The function TABVAR

This function is accessed through the catalog only. It uses as input the function f(VX), where
VX is the default CAS variable. The function returns the following:

+ Level 3: the function f(VX)

+ Two lists, the first one indicates the variation of the function (i.e., where it increases

or decreases) in terms of the independent variable VX, the second one indicates the

variation of the function in terms of the dependent variable.

+ A graphic object showing how the variation table was computed.

Example: Analyze the function Y = X3-4X?-11X+30, using the function TABVAR. Use the
following keystrokes:

‘X"3-4*X"2-11*X+30’ [ENTER][CAT][ALPHA][T](select TABVAR)[OK].
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This is what the calculator shows in stack level 1:

 

RAD KYZ HEX R= 'X°
{HOME> 02:55, HAY: 20

1: Graphic 161 X 95
5 2 ]F=:(X"-4%°-11%+30

Fr=:(x®a-ax2-11   
This is a graphic object. To be able to see it in its entirety, press [WV]. The top of the GROB
shows the following:

 

F=: (X’-4X’-
11-X+30)

F'=: (X%3-4-X2 -
11)

2 ((3X-11)-(X+1))

Variation table:   
Use the down-arrow key, [¥], and the right-arrow key, [P], to see the rest of the screen. The

bottom of the screen shows the variation table of the function as follows:

Variation table

-00 + -1 - 1 1 /3 + +00 X

—00 “lr 36 “lr -400/2 «ln +00 F

ns

Press [ON] to recover normal calculator display. Press [<] to drop this last result from the

stack.

Two lists, corresponding to the top and bottom rows of the graphics matrix shown earlier, now
occupy level 1. These lists are useful for programming purposes. Press [<] to drop this last
result from the stack.

Level 1 is now occupied by the original function.

The interpretation of the variation table shown aboveis as follows: the function F(X) increases

for X in the interval (-, -1), reaching a maximum equal to 36 at X = -1. Then, F(X) decreases

until X = 11/3, reaching a minimum of -400/27. After that F(X) increases until reaching

+00, Also, at X = too, F(X) = too.
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Using derivatives to calculate extreme points

“Extreme points,” or extrema, is the general designation for maximum and minimum values of
a function in a given interval. Since the derivative of a function at a given point represents the
slope of a line tangent to the curve at that point, then values of x for which f’(x) =0 represent
points where the graph of the function reaches a maximum or minimum. Furthermore, the
value of the second derivative of the function, f”(x), at those points determines whether the

point is a relative or local maximum [f”(x)<0] or minimum [f”(x)>0]. These ideas are

illustrated in the figure below.

 

  
 f(x) = 0
f(x) =0
ry< |e (Zp) > 0         

—
—
—
—
—
—

fa)

 £-   

 

 

In this figure we limit ourselves to determining extreme points of the function y = f(x) in the x-

interval [a,b]. Within this interval we find two points, x = x, and x = xy, where f’(x)=0. The
point x = Xx, where f”’(x)>0, represents a local minimum, while the point x = xu, where f”(x)<0,

represents a local maximum. From the graph of y = f(x) it follows that the absolute maximum
(maximum maximorum) in the interval [a,b] occurs at x = a, while the absolute minimum
(minimum minimorum) occurs at x = b.
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Suppose that you want to determine the radius of a cylinder so that the volume of the cylinder
is optimized while keeping the total area of the cylinder constant. This could be a problem to
be tackled by an industrial engineer in charge of designing a cylindrical container for a liquid or

granular material.

 

 

TN

      
The external area of the cylinderis given by A = mr? +2mrh = constant, while the volume is V=

nr’h. By isolating h from the equation for the area and replacing the resulting expression into
the volume equation we will get at function or the radius, V(r), which we can optimize. To use

the calculator to help us in the solution follow these steps:

_ Type in the equation ‘*r"2*h’[ENTER][ENTER] (2 copies), followed by ‘A =

wr2+2**r*h’ [ENTER].

a. Then, isolate h by using: ‘h’[ENTER][<][S.SLV][ISOL]. The result is: ‘h = (A-

r"2*n)/(2*r* m)’.

wk Now, replace this expression for h into the expression for V by using: [—][ALG][SUBST],

resulting in ‘m*r"2*((A-r*2* m)/(2*r*n)’.

+ To simplify the expression use [~][ALG][EXPAN]. This results in ‘-((r"3*n-r*A)/2)’. |]

= To convertit into a function use: V(r)’ [ENTER][®™][~][=], which produces ‘V(r)= -

((r*3*m-r*A)/2)’.

% Use [<][DEF] to create the function V(r).

wk Press [VAR] [~][ V ] to see the contents of the function, i.e., << >r ‘-((r*3*n-

r*A)/2)’>>. Press [<] to drop this result from the stack.

= To obtain the derivatives of the function V(r), use:

[EQWI[—1[JI[ALPHA][<][R][™][ALPHA][VI[] [()] [ALPHA][<2][R] [A][A][A] [EVAL]

The result is ‘-2*(n*3*r2-A)/4’, i.e., V(r) = -2-(3mr*-A)/ 4.

= Press [ENTER][ENTER] to keep an additional copy of the derivative in the stack.

Press [¥] to activate the equation writer again. The expression for V’(r) must be
selected now. Enter:

[~]1[9][ALPHA][<][R] [A][A] [EVAL] [~][ALG][EXPAN].

11 © 2000 Gilberto E. Urroz

All rights reserved

 



The result is ‘-(3*r*m)’, which corresponds to V”(r) = -3-wr.

“Press [ENTER] to get back to stack, and [I] to swap levels 1 and 2.

= Turn the expression for V’(x) into the equation V’(r) = 0, by entering [0][ENTER] [—~][=],

and use

[m1  TALPHA][<][R][ENTER] [<][S.SLV][ISOL] to solve for r. The result is the list

{‘r=-(V(3*(mA))/(3*m)’ ‘r = (N (3*(*A))/ (3*m))’ }.

= Out of this list we wantto keep only the positive result by using: [~][EVAL] [>] [<].

% Press [ENTER] to get a new copy of the expression for r, and save it into variable rc,

i.e.,

[~1[ © IALPHA][<][R][ALPHA][«~][C][STOM].

we Now, use [—][ALG][SUBST] to replace the value of r into the expression for V”(r), to

get “-(3*(V (3*(A*m))/(3*m))*n)’. Press [~][ALG][EXPAN] to simplify the expression. The
result is now ‘-V (3*(A* m))’, i.e., V”(rc) <0.

w Because V”(r)<0 at r = rc, the value of V(r) at rc = V (3*(r*A))/(3*n) is a maximum.

This maximum can be calculated by using:

[VAR] Recover variables menu
[ rc] Places contents of [ rc ] on stack

[<][PRG][TYPE][OBJ->] Decompose equation
[Cl[e]P]<] Drop eq. elements so that only value of r

remains

[VAR][ V 1] Evaluate V(r) with the value of rc
[~][ALG][EXPAN] Simplify result

The result is ‘V3*A*V (A*1)/(9* 1)’, Of Vmax = A- (3-wA)"2/(9-m), at rc = (3-wA)"2/ (3-1).

 

 

Note: The keystroke sequence used above to solve this problem shows a very efficient use of
the calculator’s stack. In most problems, such efficient use follows only after you have
outlined the steps of the solution in paper. Since | expect that you will have a notebook handy
to keep track of the calculations, you don’t need to worry about optimizing stack operations.
Keep track of your results by hand, and re-enter any result you may need. Alternatively, you
can store intermediate results from your calculations in global variables, which you can easily

recall to the stack when needed.
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Integrals calculated through summations

The integral of a function f(x) in an interval (a,b), is defined as the limit of the sum

5, = FEA,

as Ax; > 0, or n > « . The values Ax; represent the length of n sub-intervals in (a,b), so that
the values § are contained within the i-th sub-interval. The sub-intervals are limited by the
values x4, Xz, ..., Xn, Xn+1, therefore,

AX; = Xje1 = Xi,

and

Xj < & < Xje1.

The figure below illustrates the meaning of the terms in the summation. The terms f(§)AXx;

represent increments of area, AA;, under the curve y = f(x) in the interval (a,b).

 

 

|

 
X13 Xy     

 

 

 

While there are no restrictions in the way we may divide the interval (a,b) to generate n sub-

intervals, or where to select & within a sub-interval, dividing it into n equally-spaced sub-

intervals, and selecting the values of & in a regular fashion, facilitates the calculation of the
summation, as well as of its limit when n grows unbounded.

To divide the interval (a,b) into n sub-intervals we take,

Ax = (b-a)/n,

therefore,

X1 =a, X2 = X1 + AX, X3 = X1 + 2:AX, ..., Xj = X1 + (i-1)-AX, ..., Xp = X1 + (n-1)-Ax = b.

The value of can be selected to be the leftmost value in the sub-interval (xi, xi.1), i.e., § = xj,

the center of the sub-interval, i.e., § = (x; + Xi+1)/2, or the right-most value of the sub-interval,

i.e., = Xj.1. Suppose that we call SL, the summation when & = x, then we can write:

13 © 2000 Gilberto E. Urroz

All rights reserved



 SL, -(° —< J >7x).

If we call SM, the summation when &§ = (x; + x.1)/2, then we have

b—a a
Finally, for the summation when , we have

 SU, =7|3f(x).
i=l

A program for summations approximating integrals for finite values of n

Using lists it would be really easy to program the calculation of SL,, SM, and Su,, in User RPL.

In this section we develop programs for calculating the sums SL,, SM,, and SU,, given an

expression of X to integrate between values a and b using n equally-spaced sub-intervals.

First of all, let’s create a sub-directory called SUMINT (SUMmation approximating INTegrals)
within the HOME directory, using:

[P10 © JIALPHA][ALPHA][ST[UI[MI[I[NI[T][ENTER] Enter sub-directory name ‘SUMINT’
[<]1[PRG][ MEM ][ DIR ]J[CRDIR] Create sub-directory SUMINT
[VAR][SUMIN] Access sub-directory

The next step is to create three main programs (SLn, SMn, and SUn) and the required sub-
programs within the sub-directory. Here is the listing of the main programs:

Main program SLn:

<< Start main program SLn

INDAT DUP Call program INDAT, duplicate output (a list)
1 + MKLST Add a 1 to the list, invoke sub-program MKLST
1 GTLIST Use 1 as input, invoke sub-program GTLIST
“SLn” TAG Tag result of summation as “SLn”

->R Pass tagged result as R
<< Start first sub-program within SLn
DRAWRECT Call sub-program DRAWRECT
{ } PVIEW Bring contents of PICT to screen
R Place tagged result for summation in stack
>>

>>

End first sub-program within SLn
End main program SLn
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The main programs corresponding to SMn and SUn are exactly the same as SLn , but using 2 and
3 for SMn and SUn, respectively, instead of 1, and changing the tagging string to “SMn” and
“SUn,” respectively. The listings of the programs SMn and SUn are as follows:

Main program SMn:

<< INDAT DUP 2 + MKLST 2 GTLIST “SMn” >TAG >R << DRAWRECT {} PVIEW R >> >>

Main program SUn:

<< INDAT DUP 3 + MKLST 3 GTLIST “SUn” TAG >R << DRAWRECT {} PVIEW R >> >>

The listing of the sub-programs used by SLn, SMn, and SUn, follows:

Sub-program INDAT: gets input data, uses an input string with the INPUT function

<<

“Enter a, b, n, EQ(X):”

{““:EQ « : a+ :b:

INPUT

OBJ~>

values

14 FOR

DTAG

4 ROLLD

NEXT

4 LIST

>>

Sub-program MKLIST:

<<

EVAL

-> EXPRabnlS
<<

‘(b-a)/n’ >NUM {}

2 AxL

<<

1n1+FORj

‘a+(j-1)*A’ >NUM DUP

xL SWAP + ‘xL’ STO

‘X’ SWAP 2 LIST

EXPR SWAP | =>NUM

NEXT

nt+ LIST

A xL 3 ROLLD

>>

>>

>>

‘n:"{103}V}

Start sub-program INDAT (Input DATa)

Prompt title for inputting data

Input string

INPUT function using two previous lines

Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4

De-tag last value in stack
Roll-down three elements in stack

End of FOR loop
Create list with the three de-tagged values

End of sub-program INDAT

Start sub-program MKLST (MaKe a LiST)
Decomposes input list

Input values EXPR,a, b, n, IS

Start first sub-program within MKLST
Calculate x-increment and place an empty list

Pass increment and empty list as A and xL
Start second sub-program within MKLST
Start FOR loop with j =1, 2, ..., n+1

Calculate x; = a+(j-1)*A, duplicate result
Add x; to xL and save the new list
Create list {X x}
Evaluate EXPR at X = xj, i.e., f(x;)

End FOR loop
Create list of values {f(x;)...}

Place A and xL in stack, roll list {f(xj)...} to level 1

End second sub-program within MKLST
End first sub-program within MKLST
End sub-program MKLST
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Sub-program GTLIST:

<<

> xL AIS
<<

xL TAIL DUP

duplicate
xL REVLIST TAIL REVLIST DUP
3 ROLLD ADD 2 /
3 ROLL
3 LIST
IS GET DUP

SLISTA™
A SWAP
>>

>>

Sub-program DRAWRECT (DRAW RECTangles):

<<

> xLyLA
<<

EVAL
> EXPRabn
<<

ab EXPR PPLT
PPLT

xL yL n DRBOXS
>>

>>

>>

Sub-program DRAWRECT uses sub-programs
following:

Sub-program PPLT:

<<

=> ab EXPR
<<

FUNCTION
EXPR STEQ

a b XRNG
AUTO
ERASE DRAX DRAW
‘X’” PURGE
>>

>>

Start sub-program GTLIST (GeT LIST)
Get input values
Start first sub-program within GTLIST
Place list xL, remove element 1 with TAIL,

Place list xL, reverse, get TAIL, reverse, duplicate

16

Calculate a list averaging the last two lists
Roll three levels of stack

Create list of lists
Get list number IS, duplicate it

Sum list, multiply by A
Place A in stack, swap with early summation
End first sub-program within GTLIST
End sub-program GTLIST

Start sub-program DRAWRECT

Input data: lists xL, yL, and A
Start first sub-program within DRAWRECT
Decompose third of input lists
Pass values as EXPR, a, b, and n

Start second sub-program within DRAWRECT
Using input: a, b, and EXPR, call sub-program

Using input xL, yL, n, call sub-program DRBOXS

Close second sub-program within DRAWRECT
Close first sub-program within DRAWRECT
Close sub-program DRAWRECT

PPLT and DRBOXS. Their listings are shown

Start sub-program PPLT (Prepare PLoT)

Input data: a, b, EXPR

Start first sub-program within PPLT

Select FUNCTION type of graph

Store contents of EXPR in EQ to be plotted

Set up x-axis range

Let y-axis range be selected automatically

Erase PICT, draw axes, draw graph
Purge variable X, which was used for the plot

End first sub-program within PPLT
End sub-program PPLT
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Sub-program DRBOXS:

<<

> xLyLn

<<

1nFORj
xL j GET yL j GET
R->C
XLj1+GETOR>C
BOX

0)
NEXT
>>

>>

Start sub-program DRBOXS (Draw BOXeS)

Input data: lists xL, yL, and value n

Start first sub-program within DRBOXS
Start FOR loop with j =1,2, ..., n

Get element j out of lists xL and yL
Create point (xL;, yL;)

Create point (xLj.1, 0)
Draw a box between points (xL;, yL;) and (xLj.1,

End FOR loop
End first sub-program within DRBOXS
End sub-program DRBOXS

 

Find the soft menu key [SLn] in your variables menu.
necessary. To run a first example use this:

[SLn]
[m1] * IALPHA][X][V]
[010¥] [11['V] [1][0] [ENTER]

Using the program

Starts program SLn

Use [VAR] to recover that menu if

Enter ‘X’ as the function to integrate

Usea=0,b=1,n=10

Wait for the program to produce the graph. The result will be the following graph:

To recover normal calculator display, press [ON].

 

    

SLn: .45. There will be new variables PPAR and EQ in your menu.

You will get the result of the summation,

Before continuing, it will be a good idea to order the variables in the sub-directory so that the
programs SLn, SMn, and SUn are the first three variables in your menu. You can re-order the
variables by using:

[][{}[VAR] [ SLn ][ SMn ][ SUn J[ENTER]
[+][PRG][ MEM ][ DIR J[NXT][ORDER]
first

Creates list {SLn SMn SUn}
Order the variables placing those in the list

Now, let’s try calculating the values of SMn and SUn for the conditions used earlier:

[ SMn ]
[~1[ “ JIALPHA][X][V¥]
(010v] [110¥] [1][0] [ENTER]

17

Starts program SLn

Enter ‘X’ as the function to integrate

Usea=0,b=1,n=10
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Wait for the program to produce the graph. The result will be the following graph:

 

          
Press [ON] to obtain the summation value, SMn = 0.5. Next, try using the function SUn as
follows:

[SUn] Starts program SLn

[1 © TALPHA][X][V] Enter ‘X’ as the function to integrate
[0][¥] [11[¥] [1][0] [ENTER] Usea=0,b=1,n=10

Wait for the program to produce the graph. The result will be the following graph:

 

       

—]

Press [ON] to produce the following result: SUn: .55.

Here is another example:

[SLn] Starts program SLn
[P10 oe1+/-1021=1121Y] Enter ‘EXP(-X"2/2)’ as the function to integrate
[4]1[+/-1[¥] [4]1[¥] [4][0] [ENTER] Usea=0,b=1,n=40

Be patient with the result. Since we are using 40 rectangles, it takes the calculator about a
minute to finish the plot:

 

       
Press [ON] to obtain, SLn: 2.5064606298.

Now try:

[ SMn ] Starts program SLn
[P10 Mee1+ -1XY121=1[21[ Enter ‘EXP(-X"2/2)’ as the function to integrate
[41[+/-1[¥] [4][¥] [4][0] [ENTER] Usea=0,b=1,n=40
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After about a minute, the calculator produces the graph:

 

    
Press [ON] to obtain, SMn: 2.50646062976.

Next try:

[SUn] Starts program SLn
[P10 oe1+-1X121 [<112][1 Enter ‘EXP(-X"2/2)’ as the function to integrate
[4]1[+/-1[¥Y] [41[¥Y] [4][0] [ENTER] Usea=0,b=1,n=40

The new graph is:

 

      
Press [ON] to obtain, SUn: .

You can use any expression involving X in EQ for input to the programs SLn, SMn, and SUn.

 

Summations in the HP 49 G calculator

Although the definitions of SLn, SMn, and SUn, in the previous section involve summations, we

avoided using the summation function by operating with lists. In the next section we will use

the summation function to evaluate some integrals. We introduced summations and integrals
back in Chapter 6. (Review the section entitled “Applications of function definitions -
probability distributions” in Chapter 6 to get the basic idea on the use of the summation
function.) Use of integrals will be presented in more detail in a later section.

To calculate a summation directly in the stack you need to enter the following elements, in the

order indicated: (1) Name of the index; (2) Initial value of the index; (3) Final value of the

index; and, (4) Expression to be summed that involves the index name. For example, to
calculate

10

2.+D,

directly in the stack, use the following:
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[~1[ * J[ALPHA][<][J] [ENTER] Enter index name,j
[3] [ENTER] Enter initial value of j
[1]1[0] [ENTER] Enter final value of j
[m1 “1 [9100)] [ALPHAL[<][J] IY 1[21[+][1][ENTER] Enter expression (j2+1)
[m1[Z] Calculate the summation

The result is 388, i.e.,

10

D> (J +1)=388.
Jj=3

 

Calculating summations in which n goes to infinity

Given a function y = f(x) to be integrated between x = a and x = b, we indicated earlier that

the integral can be approximated by the summations SLn, SMn, and SUn, using equally spaced
sub-intervals in the interval (a,b). Suppose that we estimate the integral using SMn, i.e.,

SM, (=DRESSa |

Since x; = a + (i-1)(b-a)/n, and x;.; = a+i-(b-a)/n, then n; = (x; + xj+1)/2 = a + (i-1/2)-(b-a)/n, and

SMn can be written as

RX _(b-a ne (i—-1/2)-(b—a)| Srtm-( a
b—

SM, -( a
n n

 

  

Given values of a and b and the function f(x), it is possible to find an expression SMn = F(n),

using the formula shown above, for which we can take the limit when n> «. The result will be

the value of the integral

I=]f(xax.

This approach works well when the function f(x) is an algebraic function of x, because the
summation can be expressed as a polynomial in n. For example, if f(x) = X,a=1,b=2, we

can write

ni =a+ (i-1/2)(b-a)/n = 1+(i-1/2)(2-1)/n= (i+n-0.5)/n,

and

 
n : _ 2 n

SM, (2) (=) = LS (i+n-05).
i=ln n
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To evaluate the summation in this equation in the HP 49 G calculator use (using j instead of i):

[EQW] [~][Z] [ALPHA][<][J] [>] [1] [>] [ALPHA][<](N] [»]
[=100)] [ALPHA][<][J] [+] AR] (10. 1051 [101010] [y°112]

 

Resulting in "& (j=1,n,(j+n-.5)"2)*. Before evaluating this expression we need to make sure

that the calculator’s CAS is in the Exact mode, using:

[MODEJ[CASI[VJ[¥ ][vCHK].

Make sure that the check is off the _Approx option in the CAS MODES screen. Press [OK][OK]
to return to normal calculator display. Now, press

[~][EVAL].

Interestingly enough, the calculator will ask if you want to use Approximate mode. Select YES,
and press [OK]. The calculator will try to expand the expression in the summation, giving as a

result:

¥2.33333333333*n"3+-.0000000000001*n"2+-0.08333333333*n+0."

Press [] [EVAL] once more to see if you can simplify the expression further. The only
simplification in this case is to eliminate the last zero in the expression. Producing:

2.33333333333*n"3+-.0000000000001*n"2+-0.08333333333*n’

On the other hand, the coefficient of the term in n? is practically zero. To eliminate this term
you can use the function [EPSX0] (Find it through the catalog: [CAT][ALPHA][E], then use arrow

keys to select EPSXO0, then press [OK].) The result is now:

2.33333333333*n"3+0*n"2+-0.08333333333*n+0.’

 

Press [?][EVAL] once more to calculate the product . The final result is 

2.33333333333*n"3+-0.08333333333*n+0.’   
In other words,

n

(i+n—0.5)" =2.33333333333- n° —0.08333333333- n.
i=1 

 
From which it follows that, 

I 3 0.08333333333
SM, =—-Y (i+n-0.5)" =2.33333333333 -———————

ng n
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The latter result can be obtained in the calculator by using:

[PI * HALPHAJLAIINIYJ3IENTER][+].

To calculate the limit when n grows without bound, use:

[1 * NALPHAIL<]IN] [~[=] [~][=J[ENTER]
[—~MCALCILIMITI[LIMIT]

At this point you get asked if you want the Approximate mode off, select YES and press [OK].
Then, you get asked if you want the Approximate mode on. Again, select YES and press [OK].

The result is ‘2.33333333333’, This result represents

n
> 1 } 2

| xdx = jm SM, = tim [—D(i+1n-0.5) ]1=
n—>o0 n—>o0 i=l

0.08333333333
fim [2.33333333333 - —————_=
n—>o0

]=2.333333333.

Notes:

(1) Because the final result of the summation expansion is given in terms of n (a symbolic
result), you need to set your CAS to Exact before attempting to expand the summation - as

shown in the example above. If the Approximate mode is selected when attempting to
expand a summation in terms of a symbolic variable (e.g., nin this case), the calculator

simply responds by reproducing the original summation expression, or, perhaps, re-
arranging some of the terms.

{2) In the evaluation of the limit to infinity the calculator seems indecisive to whether use
Exact mode or not, just humorit, and it’ll give you back the right result.

 

 
 

A program to calculate integrals through infinite summations

The program described below makes the process shown above automatic. To type it in, |

suggest you first create a sub-directory, say SMnLIM (SMn calculated through a LIMit as n > oo),

within which you will create the program and its associated sub-programs. The listing of the
main program, called ‘INTGRL’, is shown below:
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Main program INTGRL:

<<

INDAT

EVAL > EXPRab

program
<<

EXPR

‘a+(j-1/2)*((b-a)/n)’ EVAL

‘X’ SWAP 2 LIST |

{j1n}SWAP +

list

EVAL

2.

‘(b-a)/n’ EVAL *

EXPAND DUP

-105 CF

EVAL > R

<<

R

IF SAME THEN

indicate that

“Cannot evaluate limit “ R STR MSGBOX

ELSE

R ‘n=’ LIMIT

n> oo

END

>>

>>

>>

Start main program INTGRL
Call sub-program INDAT, result {EXPR a b}
Decompose list, pass values as input to sub-

Start first sub-program within INTGRL
Place EXPR (a function of X) in stack
Evaluate nj =a + (j-1/2)-(b-a)/n

Create list {X n; } and evaluate EXPR for X = n;
Create a list {j 1 n}, then add previous result to

to obtain {j 1 n EXPR|x}.Decompose list, set up

Multiply summation by Ax = (b-a)/n.
Expand result and duplicate it

Change mode to Exact
Evaluate second copy of SMn, pass it as R
Start second sub-program within INTGRL
Place value of R

If stack levels 1 and 2 are the same, then

the limit cannot be evaluated directly
If stack levels 1 and 2 are different, then obtain limit

by placing result R in stack & taking limit as

End IF statement

End second sub-program within INTGRL
End first sub-program within INTGRL
End main program INTGRL

The only sub-program used is INDAT, which is the same used in the calculations of SLn, SMn,
and SUn in the previous section, but not using the input for n. The listing for sub-program
INDATfollows:

Sub-program INDAT:

<<

“Enter EQ(X),a, b:”
{“ EQ: + care tb: ”{10}V}

INPUT

OoBJ->

values

13 FORj

DTAG

3 ROLLD

NEXT

3 LIST
>>

Start sub-program INDAT (Input DATa)
Prompttitle for inputting data

string

INPUT function using two previous lines
Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4
De-tag last value in stack

Roll-down three elements in stack

End of FOR loop
Create list with the three de-tagged values

End of sub-program INDAT

This program takes as input and expression in terms of X, and values of a and b. It returns a

list consisting of { EXPR a b}.
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Running the program INTGRL
 

As an example, run the program using the data from the previous example, as follows:

[INTGR] Start program

[10 1X1Y10211] Enter ‘X*2’ as the function to integrate
[110¥Y] [2][¥] [ENTER] Usea=1,b=2
Because we placed the command -105 CF (Clear system flag 105 to produce Exact mode), you

will be asked whether you want Approx mode on. Select YES and press [OK]. Then, when
trying to calculate the limit, if possible, you will be asked to select Exact mode first (Approx
mode off), then Approx mode. Just press [OK] to answer YES to both questions. (These are
the same questions we faced when doing the example step by step in the last section). As in
the example above, the result is ‘2.33333333333".

 

A second example of INTGRL
 

Let’s use the program INTGRL again to calculate the limit as n> for f(x) = 1/x, a =1, b = 5.
Use the following keystrokes:

[INTGR] Start program

[10 10 =10X1Y] Enter ‘X"2’ as the function to integrate
(110V¥] [2](V] [ENTER] Usea=1,b=2
[OK] Turn Approx mode on when asked

You get as a result the message:

 

[cannot evaluate Limit ‘X(j=1.,n,1./((j+(n-.5))/ n)) /n]
 

Press [OK] to return to normal calculator display.

 

A different version of the program
 

The result of the second example of the program INTGRL is an expression whose limit, &

indicated in the message box, cannot be evaluated. However, you may be able to evaluate this
limit if you manipulate the expression around. A different version of INTGRL, call it GETZn, is
shown below. The program generates the expression for the summation in SMn, but does not
calculate the limit, leaving it up to the user whether to proceed with the limit calculation, or
manipulate the expression further. The program GETZIn can be obtained from INTGRL by
eliminating the entire ELSE option of the IF statement contained in INTGRL. The listing of the
program GETZn follows:
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Main program GETXn:

<< Start main program GETZn

INDAT Call sub-program INDAT,result {EXPR a b}
EVAL > EXPR ab Decompose list, pass values as input to sub-
program

<< Start first sub-program within GETZn
EXPR Place EXPR (a function of X) in stack
‘a+(j-1/2)*((b-a)/n)’ EVAL Evaluate nj=a + (j-1/2)(b-a)/n

‘X" SWAP 2 SLIST | Create list {X n; } and evaluate EXPR for X = n;
{j1n} SWAP + Create a list {j 1 n}, then add previous result to

list

EVAL X to obtain {j 1 n EXPR|x}.Decompose list, set up

3.
‘(b-a)/n’ EVAL * Multiply summation by Ax = (b-a)/n.

EXPAND DUP Expand result and duplicate it
-105 CF Change mode to Exact
EVAL > R Evaluate second copy of SMn, pass it as R

<< Start second sub-program within GETZn
R Place value of R

IF SAME THEN If stack levels 1 and 2 are the same, then

indicate that

“Cannot evaluate limit “ R STR MSGBOX the limit cannot be evaluated directly
END End IF statement
R Place R in stack

>> End second sub-program within GETZn
>> End first sub-program within GETZn

>> End main program GETZn

The result from this program is, therefore, the expression for SMn after replacing the value 1;
in it.

 

Running the program GETZn
 

As an example, try:

[GETZn] Start program

[10 100 =1IXI[ VY] Enter ‘X*2’ as the function to integrate
(110V] [2][V] [ENTER] Usea=1,b=2
[OK] Turn Approx mode on when asked

You get as a result the message:

 

[Cannot evaluate Limit ‘®(j=1.,n,1./((3+(n-.5))/n)) /n]
 

 

 

Press [OK] to return to normal calculator display. Unlike the previous example, now the

expression whose limit the calculator couldn’t evaluate, is available to the user for
manipulation.
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Manipulating an expression within the equation writer

 

We will perform some editing or manipulating of the expression in the stack using the
summation obtained in the previous example. First, press [ENTER], to make sure that you
have an extra copy of the expression. Then, press [¥] to invoke the equation editor. The

screen will look like this:

 

 

AS ETHIRIECERWET  
 

Then, use the following to highlight only the expression affected by the summation:

[YIVYIP»I»I[™]. Once the screen looks like the following, press [—]J[ALG][EXPAN].

n

n

 

 EDIT [CURS BIG[EVAL [FRCTO[TERFA  
 

 

After the expansion, the expression will look like this:

 

Nn

>=i.
n

 exp aniFACTOILACOLLLIN[SOLVEISUEST]  
 

The n in the numerator of the summation expression is a constant value (i.e., it does not

depend on the value of j) and can be taken out of the summation, thus canceling n out of the
expression. To help eliminate the n’s from the expression, use [V¥] to highlight the n in the
numerator. Then, use [¢<][<] to erase the n, and [1] to replace it with a 1. Press [¥] to
highlight the 1 in the numerator, then press [P], four times, to highlight the n in the
denominator of the entire expression. Use [<][<][1] to replace the n in the denominator with
a 1. Then press [Pp], to highlight the entire expression, and press [EXPAN] to expand and
simplify terms. The result is the following screen:

 

 

v
e

CHIN (ETS(NET  
 

Now, press [ENTER] to make this expression available in the stack. Press [ENTER] once more to
keep an additional copy of the expression available.
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Obtaining the limit of the summation as n =>

Type [m1] © IIALPHA][«<][N][~1[=][+][ =] to place the expression ‘n=’ in stack level 1.

Then, use [«][CALC][LIMIT][LIMIT] to try to evaluate the limit of the summation.

Press [OK] when asked for Approx mode off, and [OK] again when asked for Approx mode on.
The limit of the expression, as given by the calculator, is ‘0. This is, however, wrong. The
way that this value is obtained is by evaluating every term in the summation as zero, since
1/(j+n-.5) > 0 as n> -. However, the correct approach is to first evaluate the summation, as
function of n, and then try to obtain the limit.

Since we kept an additional copy of the simplified expression for the summation, let’s try to
evaluate the summation before attempting the limit. Press [<] to drop the result ‘0.’ from the
stack. Press [ENTER] to keep an additional copy of the summation expression, just in case.
Next, type:

[11[01[5][+/-]1[ALPHA][ALPHA][C][F]

to ensure that system flag 105 is cleared (Exact mode), and press [~][EVAL]. Press [OK] when
asked if you want Approx mode on. The result is exactly the same as the original expression,

meaning that the calculator cannot find a closed-form expression to replace the summation.
(An attempt to use [~][ALG][EXPAN], after clearing system flag 105, also fails to produce a
closed-form expression).

Let’s try some numerical evaluation of the expression by using a relatively large value for n,

say n = 1000. Type [~][ ‘ J[ALPHA][<][N][~1[=1[<]1[1]1[0][O0][O][ENTER] to place the expression

‘n=1000" in stack level 1. Then, enter [~][ALG][SUBST]. This command will not only
substitute the value n = 1000 in the expression, but also will evaluate the expression, producing
as a result the value ‘.694147149309’.

Let’s drop this result by pressing [<], and evaluate at n = 2000, by using:

[=] “1 [ALPHAJ[«][N] [~][=] [<][2][O1[0][O][0] [ENTER] [~][ALG][SUBST]

The calculator will take longer to produce this result, as we are asking it to evaluate a series
twice as long as the previous one, so you have to be a bit patient here. After about one minute
or two, the calculator returns the value ‘.6931471727521’.

These two values, ‘.694147149309’ and ‘.6931471727521’, indicate that there is some finite

value for the summation as n> «. Whatever that value is, these results indicate the number’s

two first decimals are 0.69. The rest of the decimals will change as n increases. Of course,
the larger the value of n, the better the approximation to the actual limit. However, as we
increase n in the calculator, the time required for the series to converge to a value increases
too. Thus, for an example like this, using the series to approximate the integral, even after
simplifying it with the equation editor, is not the most efficient way to evaluate an integral.
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Anti-derivatives and integrals

The anti-derivative of a function f(x) is a function F(x) such that f(x) = dF/dx. For example, we

know that d(x")/dx = nx™", thus, an anti-derivative of f(x) = nx"is F(x) = x". The functions
F(x) = x" + 5, or F(x) = X" -10, or, in general, F(x) = x" + C, where C is any constant, are anti-
derivatives of f(x) = nx"'. One way to represent anti-derivatives is through an indefinite

integral, i.e.,

| f(x)dx = F(x) +C,

 

 

where C is a constant, if and only if, dF/dx = f(x).

 

Indefinite integrals in the HP 49 G

There are three functions that can be used to obtain indefinite integrals in the HP 49 G, these
are the functions INTVX, RISCH, and INT. They are described following.

 

The function INT VX

Indefinite integrals in the HP 49 G can be obtained through the function INTVX if the function

to be integrated, f(x) in the formula above, is given in terms of the current CAS default

variable (typically X). For example, with VX = ‘X’ (default value), you can obtain the following

indefinite integral dx, as follows

[10 “ 1IX][y*1[2] [ENTER]
[<][CALC][DERIV][NXT][INTVX]

The result returned by the calculator is

£.333333333333*X"3".

This corresponds to idx = x*/3.

What would INTVX return for ‘n*X*(n-1)’? Try it:

[1 * ITALPHA][<]N] [x] [X] [y*] [<1[()] [ALPHA][<2][N][-][1] [ENTER]
[+][CALC][DERIV][NXT][INTVX]

The result returned by the calculatoris

‘EXP(n*LN(X))’.

Using the properties of logarithms and the fact that LN and EXP are inverse functions, by hand,
we can prove that exp(n In x) = exp (In x") = x", which is the result we prefer. The moral of
this example is: do not expect the calculator to simplify every result for you - you need to
know your mathematics to be able to manipulate your solutions to your taste. The calculator,
of course, can help you simplify the solution as much as possible, but, remember, unlike you,
the calculator does not have a fully functional, 3-Ilb brain.
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Other examples of indefinite integrals are:

‘EXP(X)’ [+][CALC][DERIV][NXT][INTVX] Result: ‘EXP(X)’
“A/X’ [+1][CALC][DERIV][NXT][INTVX] Result: ‘LN(X)’
“1/(1+X*2)’  [=][CALC][DERIV][NXT][INTVX] Result: ‘ATAN(X)’
“LN(X)’ [+2][CALC][DERIV][NXT][INTVX] Result: X*LN(X)-X’
X+1/X’ [+1] [CALC][DERIV][NXT][INTVX] Result: SQ(X)+LN(X)’

Some results depend on the CAS mode settings. For example, with Complex mode selected, if

you try

‘SIN(X)’ [<][CALC][DERIV][NXT][INTVX]

The result is “-1/2*EXP(i*X)+-1/2*EXP(-(i*X))’

Try the same integration, but setting the CAS mode to Real:

[MODE][ CAS ][V][¥Y]1[™] (remove check from _ Complex) [OK][OK]
[10 © J[SINI[X][ENTER] [«][CALC][DERIV][NXT][INTVX]

The result is now: “-COS(X)’.

The integral can include complex variables, for example (CAS mode changed to Complex):

‘EXP(I*X)’ [<1 ][CALC][DERIV][NXT][INTVX] Result: ‘-(i*EXP(i*X))’
“1/(i*X)’ [+1][CALC][DERIV][NXT][INTVX] Result: ‘-(i*(LN(i)+LN(X))’
“1/(1-X*2)’  [<][CALC][DERIV][NXT][INTVX] Result: ‘1/2*LN(X+1)+-1/2*LN(X-1)’

 

The function RISCH
 

Using the function INTVX we are restricted to use as independent variable that contained in VX.
If you want to obtain an indefinite integral using any integration variable, use the function

RISCH. For example,

‘SIN(s) + EXP(-s)’ [ENTER] ‘s’[ENTER] [«2][CALC][DERIV][NXT][RISCH]

The result is “-COS(s)+-1*EXP(-s)’

Other examples are:

‘ABS(k)’ [ENTER] ‘k’ [ENTER] [<][CALC][DERIV][NXT][RISCH]

Result: ‘SIGN(k)/2*k"2’

‘SINH(u)’ [ENTER] ‘u’ [ENTER] [<][CALC][DERIV][NXT][RISCH]

Result: ‘1/2*EXP(u) — 1/2/EXP(u)’

There are, of course, expressions for which a closed-form anti-derivative does not exist, such

as exp(-t2/2). Try using the function RISCH with this expression:

‘EXP(-t*2/2)’[ENTER] ‘t’ [ENTER] [+][CALC][DERIV][NXT][RISCH]
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The result is the symbolic formula ‘INT(1/EXP(tt"2/2), tt, t)’, which uses the function INT (see

next sub-section). The variable tt in the previous expression is a dummy variable selected by
the calculator.

 

The function INT

 

 

Indefinite integrals can also be obtained by using the function INT. This function requires you

to specify no only the integration variable, but also a value or expressing where the integral

will be evaluated. The function INT is only accessible through the catalog. For example:
 

‘t"2-3*t’ [ENTER] ‘t’ [ENTER] ‘t’ [CAT] [ALPHA][I] (find INT with arrow keys) [OK]

The result is ‘“1/3*t"3-3/2*t"2’

If you want to evaluate this integral at a given value, say t =10, you can use:

[~][UNDO] [<1] [1]1[0] [ENTER] [CAT] (INT should be selected ) [OK]

The result is ‘550/3’. Or, using [—][2>NUM], 183.333333333.

When using INT, the second input parameter (stack level 2) is a dummy integration variable.

The expression to be integrated (the integrand) should be a function of the dummy variable.
The integrand belongs in stack level 3. The last parameter (stack level 3) is the value or
expression at which the anti-derivative, of indefinite integral, will be evaluated. Some
possible applications follow (assuming INT is readily available through [CAT]):

‘m"2’[ENTER] ‘m’ [ENTER] ‘a+1’ [ENTER] [CAT] (find INT) [OK] Result: ‘(a”3+3*a"2+3*a+1)/3’.

This can be interpreted as

R a’+3a’ +3a+1
fm dn =

m=a+] 3

Other examples using INT are:

‘“1/r’ [ENTER] ‘r’ [ENTER] ‘1/X’ [ENTER] [CAT] (find INT) [OK] Result: ‘LN(1/ABS(X))’

‘(y"2+2)/y’ [ENTER] ‘y’ [ENTER] ‘x’ [ENTER] [CAT] (find INT) [OK] Result:
“(4*LN(ABS(x))+x2)/2’

 

 
Note: The indefinite integrals produced by the calculator ignore the integration constant. In

your solutions, however, do not forget that an integration constant must be included.
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Definite integrals and the fundamental theorem of calculus

Definite integrals are those that contain limits of integration. Such were the integrals we were
trying to approximate using summations in an earlier section. The fundamental theorem of

calculus link definite integrals to anti-derivatives by stipulating that

[[fd =F) |= Fb) - F(a),

where F(x) is an anti-derivative of f(x), i.e., f(x) = dF/dx.

The HP 49 G calculator offers at least two ways to calculate definite integrals, by using the
function PREVAL, or by using the integral sign ([~][ /] - the right-shift function corresponding
to the [TAN] key).

 

The function PREVAL
 

The function takes three inputs: an expression in terms of the current CAS variable VX
(typically X), the lower limit and the upper limit of integration (stack levels 3, 2, and 1,
respectively). It returns the definite integral of the expression with respect to VX. In the
following examples we assume that VX = ‘X’.

‘X*3’ [ENTER] 1 [ENTER] O [ENTER] [+][CALC][DERIV][NXT][PREVA]

 

Using the integral sign in the equation writer
 

Using the integral sign in the equation writer one can write definite integrals the same way you
would do in paper. For example, try this exercise:

[EQWI[~1[/] [11™] [510™] [11[+][ALPHA][<][X] [P][ALPHA][<][X]

The result, as shown in the equation writeris:

 

prisid

1

EDIT] CURSBIGEVAL[FACTO[TERPH]   
You could evaluate this result directly in the equation writer by selecting the integral (press
[A][A]) and pressing the soft-menu key [EVAL]. The result is LN(5). Press [ENTER] to return
to normal calculator display.

Try another example, using the equation writer:

[EQWI[~1[ J] [01[™] [~1[m[™] [SINI[ALPHAI[~][T] [P][ALPHA][~][T]
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 The definite integral will be written as follows in the equation writer:

 

™
| SIN(8)de
a

[0d HTHBOEINEEO  
 

This time, however, we will evaluate the integral in the stack. Press [ENTER] to return to
normal calculator display. Stack level 1 will show the algebraic expression

(0,m, SIN(O),0)’. To evaluate the integral, simple use [~][EVAL]. The result is the number
2,i.e.,

[ sinf df =2.

You can type an integral directly into the stack by creating an algebraic expression that uses
the integral sign. The general form of the algebraic expression is

"| (lower limit, upper limits, integrand expression, variable of

integration) ’

 For example, type the following integral directly into the stack:

[10 “1 [= 10/1 [ALPHAJ[«][A] [~][, 1 [5] [~1[, 1 [Vx] [ALPHA][<][T] [=] , ] [ALPHA][«][T]
[ENTER]

The result is the algebraic expression ’ | (a,5, Vt, t)’. If you have selected the Textbook
display option ([MODE][ DISP ] [W][VY]1[™][vCHK][OK][OK]), the integral will look like this in

your display:

 

KAD XYZ HEX R= 'R°
{HOMEY
Sa

2:
i: S

{t dt
a

SEFECECEFEATE  
 

To evaluate press [~][EVAL]. The result, with textbook mode off is: ‘-((-(10*V5)+2*a*Va)/3)’.
In textbook mode the result is:

 

RAD HYZ HEX R= 'R'
{HOMES

_-1a5)+2ala

 

3
FEE NN ED EEOETE
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This example illustrates the fact that you can have one, or both, of the integral limits be an

algebraic expression. The following example shows a case in which both limits of integration

are algebraic expressions. The integrand also contains an unevaluated variable (g):

[EQWI[~][ J] [ALPHAJ[<][TI[0][™] [ALPHA][][T][ALPHA][~][F][P]
[ALPHA][][G] [x] [ALPHA][<][T] [P][ALPHA][<][T]

[ENTER]

The resulting expression in the stack is ' | (t0, tf, g*t, t)’. Press [~][EVAL] to obtain the

following result: ‘- ( (g*t0~2-g*tf~2)/2) ‘. This can be written as

ho 2 ’

Another way to calculate an integral will be to list the different elements of the algebraic
expression for the integral in stack levels 4 through 1 in the order they appear in the
expression, i.e.,

“Stack level 4: Lower limit of integration

wk Stack level 3: Upper limit of integration

Stack level 2: Integrand expression

= Stack level 1: Variable of integration

Once these four values are entered, to calculate the definite integral, simply press [~][ /].

For example:

[1]1[ENTER] Enter lower limit of integration

[2][ - JI5][ENTER] Enter upper limit of integration
[~1[ ¢ HALPHAI[<]LY] [YD [=O1[=]1(3][ENTER] Enter integrand expression
[ALPHA][<][Y][ENTER] Enter variable of integration
[1] Calculate integral

If your CAS is set to Exact mode you will be asked to change to Approx mode, press [OK] to

accept the change. The result is 1.79476651555, i.e.,

[v3dy =1.79476651555.

In the sub-section on indefinite integrals (see above) we indicated that some integrals do not
have a closed-form solution. In this case, the fundamental theorem of calculus can not be used

to directly evaluate the definite integral. For example, to evaluate

15 t?
[ exp( —5)d,

 

use:
 

[O][ENTER] [1][ . J[SI[ENTER] [~][ “ 1[<](e] [+/-1[ALPHA][<][TI1[y*1[2][+][2] [ENTER]
[ALPHA][<][T][ENTER] [~][ |]

If you start from your CAS in Exact mode, you will be asked whether to change to Approx mode,
press [OK] to accept the option YES. The result is the expression:
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‘f(0., 1.5, EXP(tt~2)/EXP(tt~2), tt)’,

which is the expression for the integral put together into a single algebraic expression. The

dummy integration variable selected by the calculator is tt. To evaluate this integral
numerically, you can use [~][EVAL] or [~][->NUM]. The result is the value 1.08585331767.

Integrating an equation

Suppose that you want to evaluate the following equation involving integrals

v dv {
[ Ae [+ Bt)dt.
v0 Jv

You can type the equation in the equation writer by using:

[EQWI[—1[ J] [ALPHA][<][V] [0][»] [ALPHA][<][V] [>][1][+] [Vx] [ALPHA][<][V]
[>] [ALPHA][<][V] [>] [~][=]

[EQWI—1L J] [01[™] [ALPHA][<][T] [>] [<][( )I[ALPHA][~][A][+]
[ALPHA][~ 1[BI[X][ALPHA][<][t]1[™] [ALPHA][<][T]

The result is
 

y 1 t

| FY -[Larpe 41

Vv

  {4
 

Press [A][A][EVAL] to evaluate the integrals. The result is now:

 

2
(27+oF)teed]

   
2

EEERDEENEERET
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Techniques of integration

While the calculator will provide integrals for many functions, some quite complicated, it is
still useful to review some of the integration techniques traditionally used to calculate some
types of integrals. The techniques presented here include:

% Integration by substitution or change of variable

* Integration by parts

* Integration by partial fractions

Integration by substitution or change of variable

Suppose that you want to calculate the integral

[ XxX
——dx

) 1 —x 2

Let’s type the integral in the equation writer:

[EQWIL~][ J] [01[™] [2][™1[ALPHA][<][X] [+] [Vx] [11[-][ALPHA][<][X][y*1[2]
[»][ALPHA][<][X][ENTER]

We suggest using the change of variable u = 1-x*. We need find out how to replace x in terms
of u, so enter the expression ‘u =1-x"2’ in the stack:

(10° ALPHA][][U] [~](=] [1][-][ALPHA][<][X][yx][2] [ENTER],

and isolate x by using:
[10 © IIALPHA][<][U] [~][ALG][SOLVE].

The result is the list {'x=-V-(u-1)" x= -(u-1)" }.

Press [~][EVAL] [»][<] to keep only the result ‘x=\ - (u-1)‘. Next, press [][ALG][SUBST] to
replace the latter result in the integral. The resulting integralis:

“J(-(072-1),-(272-1),-(Nu/(2*u)), u)’.

 

The best way to simplify this expression is to simplify term by term in the equation writer. To
access the equation writer press [VV].

The screen will look like this:

 

 

EDIT CURS BIG [EVAL [FACTOITERPA   
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To simplify the limits and integrand use the following:

[WI[EVAL] Simplifies the lower limit to 1
[™]1[EVAL] Simplifies the upper limit to -3
[>]1[EVAL] Provides no simplification of the integrand

At this point the screen will look like this:

 

-3 Iw

hlBE
i

EDIT CUR]EIG[EVAL[FRCTOITERFA  
 

The integrand cannot be simplified by using [EVAL] (or [FACTO]), however, we can edit this
expression by pressing [EDIT]. This triggers the stack editor which provides for us the line ‘-

Vu/ (2*u)’. To edit this line to read *1/(2*Vu)’, use: [P][P>I[PIPI[<]<]1[1]
[>1[™1[»]1[»][Vx]. When done, press [ENTER]. Now, we’re ready to integrate the simplified
expression. Press [A][EVAL]. The result is:

 

  HT ETEG0ETTETATEE
 

[a=]=i
Ji-x Ju
 

 
Note: if your calculator’s CAS is set to Real before evaluating the integral, you will be asked to
switch to the Complex mode. Press [OK] to accept the option YES.
 

The integral we just calculated can also be solved by using the substitution x = sin 6, or 6 = sin’
x. Let’s try this exercise with this new substitution, as follows:

First, enter the integral as you did earlier:

[EQWI[~][ J] [01[™] [2][™][ALPHA][~][X] [+] [Nx] [1][-][ALPHA][~][X][y*][2]
[P][ALPHA][<][X][ENTER]

Next, type: [m1 “ 1 [ALPHA][<][X] [1[=] [SIN] [ALPHA][~][T][ENTER]

Next, press [~][ALG][SUBST] to replace the latter result in the integral. The resulting integral
is:

“J (ASIN(0),ASIN(2),- (COS (0) *SIN (0) *V- (SIN (0) ~2-1) / (SIN(0)~2-1)),0) ".

Let’s simplify the different terms using the equation writer:
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[V1] Launch equation writer
[W][EVAL] Simplify lower limit to 0

[™][EVAL] Attempt to simplify upper limit fails

Here you could try to force a numerical value by using [~][-> NUM] while the upper integration
limit is highlighted. The result is a complex number (1.507079632679,-1.31695789692).

[P11][TRIG][NXT][TRIG] Simplify integrand to SIN(0)

 

Thus, the integral has become now:
 

151-132)
[ sin 6 dO.

)

To evaluate the integral, press [P][™] [~][EVAL]. You will be asked if you want the Approx
mode on, select YES, and press [OK]. The result is (0.9999999999,-1.73205080756), which is
basically the same as the result 1-i-V3 found earlier.

Differentials

A differential is a representation of an infinitely small increment in a variable or function.

Using the notation, y’(x) = dy/dx, for the derivative, we can write a differential of y as dy =

y’(x)-dx, where dx is a differential of x. Differentials of variables and functions can be
operated upon as with any number.

Differentiation formulas can be written in terms of differentials, for example,

d(u(x)-v(x)) = u(x)-dv(x)+du(x)-v(x).

This generic formula for differentials can be converted into a formula for derivatives if we
divide by dx, thus:

d(u-v)/dx = u-(dv/dx)+(du/dx)-v(x).

From the definition of anti-derivatives, it follows that

| (dF/dx)-dx = | dF = F(x).

Integration by parts

Integration by parts is a technique that can be used if the integrand can be expressed as
u(x)dv(x). From the definition of the differential of a product shown above, we can write:

d(u(x)-v(x))=du(x)-v(x). = u(x)-dv(x)

and,

J [d(u(x)-v(x))=du(x)-v(x)] = J u(x)-dv(x)
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or

Jd(u(x)-v(x))- J du(x)v(x) = [u(x)-dv(x).

Thus, we can write

Judv = uv -[vdu.

 

The function IBP
 

The function IBP takes as input the integrand of interest expressed as the product of two

functions u(X)-v'(X), and the anti-derivative of v'(X). These two input items must occupy levels

2 and 1, respectively. The function is available through [<][CALC][DERIV][NXT][ IBP ]. The

output consists of the terms u(X)-v(X) in stack level 2, and -u'(X)-v(X) in stack level 1. As an

example, to obtain the components of integration by parts of the integral

jx cexp(X)-dX,

we first identify u(X) = X, v'(X) = exp(X), with v(X) = exp(X), and enter the following
expressions in the calculator:

[10°] IX] [x] [<](e*] [X] [ENTER]
[10 “1 [<](e*] [X] [ENTER]

To calculate the elements of the integration by parts use:

[~][CALC][DERIV][NXT][ IBP ]

 

The result is:
 

 

RAD HYZ HER C€~ 'R'
{HOMES

3:
2 ENP(RI*CKHERP(HN)

FX)!
1: [SCERPUROAS. ERP)
IEF [InTUS] LAFL [FREVA[RISCH] CALC    

This relationships are interpreted as follows:

4 The expression in stack level 2 & u(x)-v(x) =‘EXP(X)*(X*EXP(X)/EXP(X)’ which simplifies

to ‘X*EXP(X)’.

# The expression in stack level 1 is -v(x) -u’(x) = ‘-(EXP(X)"3./EXP(X)"2.)’ which simplifies

to ‘-EXP(X)’.

Translating this to paper we can write:

[xetax = xe" + [-evax =xe' —e" =e" (x —1).
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Let’s try another example: u(X) = In X, v’(X) = X, with v(X) = X?/2. Use:

(10° 1 IX] [x] [~][LN] [X] [ENTER]
[10 1 IXIly*1(2][ +1(2] [ENTER]

To calculate the elements of the integration by parts use:

[][CALC][DERIV][NXT][ IBP ]

 
The result is:

 

RAD XYZ HEX C~ ‘XR’
{HOMES

g
2: FRR T2aRORENek

1: '=(.5¥X"4. /X*3.0!
IEEEEICTCErE(RTE  
 

This result is interpreted as:

4% The expression in stack level 2 is u(x)-v(x) =‘X"2/2*(X*LN(X)/X)’ which simplifies to

XA2*LN(X)/2°.

“ The expression in stack level 1 is -v(x) -u’(x) = -(.5*X"4./X"3.)’ which simplifies to

5X.

Translating this to paper we can write:

2 2 2 2

[x Inxax= 2in x+ [-Zdv="—'In x==Z (In x-d.
2 2 4

Integration by partial fractions

Integrands that contain fractions can be simplified by re-writing the fraction as a sum of partial
fractions. The function PARTFRAC, introduced in Chapter 8, decomposes a fractional
expression in terms of the CAS default variable, VX (typically X), into a sum of partial fractions.
After decomposing the expression into partial fractions integration can be performed in each of
the partial fractions. For example, to obtain the integral

| X +5

Xtr2xP+xt

Type in the integrand as follows:

[EQW] [X] [y1(51(™] [+1(51(™] [+] [XI [v[410»] [+] [210x10XT [v1031 [1010] [+](X]
[v1[2][ENTER]

First of all, because the order of the polynomial in the numerator is larger than that in the
denominator, we need to convert this into a proper fraction by using the function PROPFRACT.
Find this function using the catalog: [CAT][ALPHA][P], then use the up- and down-arrow keys to
find PROPFACT. Press [OK]. This decomposes the fraction into:
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X-2+(3*X"3+42*X"2+5)/ (X"4+2*X"3+X"2)’

To form the partial fractions of this result, use the catalog again [CAT], and find the function
PARTFRAC. Press [OK] to obtain the following:

X-2+(5/X"2-10/X+(4/ (X+1)"2+13/(X+1)))’,

X° +5 x 5 10 4 13
 

XP+2X3 + XP Xx? X Xr) (xe)

To proceed with the integration use:

[<][CALC][DERIV][NXT][INTVX]

The result is:

‘SQ(X)/2-2*X+(-5/X)-10*"LN(X)+(- (4/ (X+1))+13*LN(X+1)))’, i.e.,

 [ X°+5 xX? 4
IX =—=2X —-10In X — +13In( X +1).

XP+2X +X? 2 1 a )

You may wantto try checking what result you get by directly integrating the original

expression, i.e.,

[EQW] [X] [y1(51[™] [+1[51[P] [+] [X] [y'T0410] [+] [210<10XT [y*1031 [1010] [+10X]
[VI[2][ENTER]

[—][CALC][DERIV][NXT][INTVX].

Improperintegrals

Improper integrals are those with infinite limits of integration. The general approach for

evaluating these integrals is to replace the infinite limit with a variable, say ¢, and then take
the limit when € > «. This can be written, for one particular case, as

°° . £ .[rode =1im | f@ydx = lim [F(e) - F(-e)],
—oo £ ood — £ —oo

where f(x) = dF/dx.

As an example, to evaluate the integral

dx . edx= — lim
2

1 x2 £0 dl X
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use

[EQWI[~]10 1 [11[™] [ALPHA][~][E] [»1[1][+] [ALPHA][«][X] [y*1[2] [>] [ALPHA][<][X]
[A] [A][EVAL][ENTER]

The result is ‘(e-1)/¢’. To evaluate the limit when £ > «, use:

[10 * IIALPHA][~][E] [~][=]1[<][=] [ENTER]
[~][CALC][LIMIT][LIMIT]

The result is ‘1.’

The HP 49 G calculator allows you to enter the integral with one or two infinite limits. When
you request evaluation of the integral, the limit, if it exist, will be calculated. Thus, for the

present example you could write:

(EQWI[—1 1] [11(™] [=][=] [>1[11(+] [ALPHA][<][X] [y*][2] [>] [ALPHA][<][X]
[A] [A][EVAL]
 

 

The result is 1, as expected.

 

Series

A sequence or progression of numbers consists of numbers ordered so that knowing a given
number in the sequence the preceding and subsequent numbers are completely specified.
Typically, a general term of the sequence defines the rule by which the sequence is created.
For example, the following is the sequence of even positive numbers: 2, 4, 6, ...., 2k, 2(k+1),

A series is the sum of the terms of a sequence. For example, S,=2 +4 + 6 + ... + 2k +..+ 2n,
defines the series consisting of the sum of the first n positive even integers. SS, represents a

finite series, i.e., one that has initial and ending terms. If n> oo, the resulting series, S.,

becomes an infinite series.

Series can be represented by summations, for example, the following is a finite series:

 

  
10

S0= 5 JLrr ! orl
mj +1 2 5 10 Jo +1 101

This is an infinite series:

S.=Y|e[de[+]e? [utle” | +o
r=1

The last two series are series of positive terms. The following is an alternating series (signs

alternate from term to term)

 
= (=1)" 1 1 -1)"

S. _3 4 r LoLaED
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A convergent series is an infinite series whose sum converges to a finite value. If the sum of an
infinite series does not converge to a finite value, we have a divergent series.

Using the summation sign in the equation writer makes handling finite and infinite series very
easy in the HP 49 G calculator. Try the following exercises (assuming Exact mode is
selected):

Examples of series obtained in the calculator

+ A finite series

To calculate the series

Use:

[EQWI[~1[ =] [ALPHA][<][K] [>] [11[»] [11[0][O] [™][ALPHA][<][K] [y*1[2] [A][A][A] [EVAL]

The result is 338350.

A convergent infinite series

To calculate the series

— 1

Use:

[(EQWI[][ Z] [ALPHAJ[][N] [>] [1][»] [<][=]
[10110 +1[ALPHA][<][N] [y'][2] [A][A][A][A] [EVAL]

The result is /6. Using [~][> NUM], the result is 1.64498406685.

A divergent infinite series

To calculate the series

Use:

[EQW][—][ Z] [ALPHA][<][J] [»] [11[™] [<]1[e] [10110 <1[ALPHA][<][J] [A][A][A][EVAL]

The result is +oo.
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An alternating infinite series
 

To calculate the series

3=n or 2m

Cm-1!m=1

Use:

[EQWI[][ Z] [ALPHA][IM] [P] [11[P] [<]le] [>] [<][0)] [110+/-] (P][™] [y']
[ALPHA][][M] [+](1] [P1[P] [x] [<]1[n0<102] (P] [y*] [2][x][ALPHA][<][M][-][1]
(11>11>] [1121 X]ALPHAL[][MIL-101] [P1[»] [~][MTH][NXT][PROB][ ! ]

The series will look as follows in the equation writer:

 

hE
m=1 [EY]

STEENEECTTGE

[M
e

   
Press [P][P] to select the entire expression in the equation writer, then press [—][EVAL].
After about 10 seconds you get as a result a question mark ‘?’. This indicates that the exact

result that the calculator is trying to find for the series is inconclusive.

Press [~][UNDO] to recover the series in the equation writer. As an approximation, let’s
replace the value of infinity by a relatively large number, say 100, using:
[YI1[>1[»1[<1[<][1]1[0][0]. Press [A][A] to highlight the series again, and press [~][EVAL].

The result, obtained after about 10 seconds, is 1.00000000001.

Press [~][UNDO] to recover the series in the equation writer. Now, change the value of 100 to
200, to see if there is any major change in the value of the series, use:
[YIP<ll<el[<]i<] [2]1[0][0]. Press [A][A] once more to highlight the series, followed
by [~][EVAL]. Wait another 10 or 15 seconds to get as a result the same value:
1.00000000001.

These results tell us that the series converges to 1.0 with 100 elements or less, with an error of
1x10"!. Because the series is an alternating series, the calculator has difficulties figuring out
what the value of the sum is. However, we trick it by replacing the upper limit of the index
(=) with a relatively large number (100). The second attempt to obtain a numerical value,
using 200 as the upper limit, was used to verify any major changes in the value of the series by
duplicating the upper limit. Since no changes were observed by doubling the upper limit of the
summation index, we have the feeling that the series does converge to the value of 1.0.
“Having the feeling” that the series converge is as accurate as we can get here unless we use
some of the convergence criteria listed below.
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Convergence criteria for infinite series

There are a number of tests that you can perform to determine whether an infinite series
converges to a finite value or not. For series of positive terms you can use the comparison test
of the d’Alembert’s ratio test. These tests are described following.

 

Comparison test for positive-term series
 

Suppose that we know that the infinite series

Sa.
k=1

where a; is the general term of the series, and ai >0 for all values of k, converges.

Convergence of a series can be expressed by writing

Ya, <o.
k=1

Let bk be the general term of another infinite positive-term series,

If for all values of k you can prove that by < ay, then the second series also converges.

For example, we found earlier that the series

|
BEEn’

n=1

converges to the value @/6. Because for n > 1, n°>n?, then 1/n?>1/n°, or 1/n’<1/n?%, then the
series

> —_—

n=l n

also converges.
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The d’Alembert’s ratio test for positive-term series

The infinite series

2a
k=1

where a; is the general term of the series, and a, >0 for all values of k, is convergent if

. a

lim = <1.
k—oo0 a,

Otherwise, the series diverge.

For example, to check whether the series

= |

my hn!

converges, we can take a, = 1/n!, and a p.1 = 1/(n+1)!, and calculate the limit

= lim (n +1) = co
n—oo

! afim 224 — pn (nD! (n+l) n!

n—roo a, n—oo n! n—o0 n!

The series diverges.

 

Convergence criteria for alternating series

The alternating series

C -12.D"a,
k=1

converges if

a y.1=ay for all k,

and

Im a, =
k—o0

For example, consider the series

oo —1 n+l

3! )
k=1 nN
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with a, = 17/n. Obviously, a,.<a,, since 1/(n+1) < 1/n, for n > 1. Also,

lim a, = lim ~=0.
n—oo n—e pn

Therefore, the series converges.

 

To determine the value of this series using the calculator, try the following (use Exact mode):

(EQW][~][ Z] [ALPHA][<][N] [>] [11] [<][e] [>] [100] [110+/-] [P1[P]
[vy] [ALPHAJ[<][N] [+][1] [P][P] [+] [ALPHA][][N]
[A] [A][A][EVAL]

As in the previous example with an alternating series, the calculator is at a lost on the value of
this series (The result is ‘?’). Let’s calculate the series using the first 100 and 200 elements,

as follows:

Press [~][UNDO] to recover the series.
Use [V][»1[P»]1[<]1[<]1[1][0][0] to replace the upper limit with the value 100.
Press [A][A] to highlight the series again, and press [—][EVAL].

The result, obtained after about 5 seconds, is 0.688172179304.

Press [][UNDO] again to recover the series.

Use [V][>]1[P1[<l[<1[<]1[<] [2]1[0][0] to replace the upper limit with the value 200.
Press [A][A] to highlight the series again, and press [—][EVAL].

The new result is 0.690653430437.

Although the result seems to converge to a number close to 0.69, increasing the upper limit
from 100 to 200 still produces an error of the order of 0.01. So, let’s try re-calculating the
series with an upper limit of 500, to see what it does to its value.

Press [~][UNDO] again to recover the series.
Use [V][P1[P]1[<l[<]l<][<] [5][0][0] to replace the upper limit with the value 500.
Press [A][A] to highlight the series again, and press [~][EVAL]. (Give the calculator some time
here).

The updated result is 0.692148180548.

Still, the last two result differ in the third decimal. We will have to try an upper limit larger

than 500 to see if we are getting closer to the value of the series. For example, for an upper
limit of 600:

Press [~][UNDO] again to recover the series.
Use [V][P]1[P][<]l<][<][<] [6][0][0] to replace the upper limit with the value 600.
Press [A][A] to highlight the series again, and press [~][EVAL]. (Be patient here while the
calculator calculates the series).

The updated result is 0.69231454166.
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The difference is now in the fourth decimal, so we can say, that the series converges to 0.692
with an error of 0.0001. If you feel adventuresome, and have lots of time, try using an upper
limit of 1000. The result is 0.692647430554.

 

 

Absolute and conditional convergence
 

An alternating series, Xa, is said to be absolutely convergent if the series X|a,| converges. If
the original series, Xa, converges but the absolute-value series, X|a,|, diverges, then the

series is said to be conditionally convergent.

The criteria used for positive-term series can be used to check absolute-value series for
convergence. If a series is absolutely convergent then it is convergent.

Power Series

A power series is a series that involves a power of a certain (independent) variable in its
general term. Power series can be used to represent functions of that independent variable,
for example:

wn (X—2)"
(x :f=>Dtair

In general, when the function f(x) can be written as

f=a(x=0),
k=1

we say that this expression represents an expansion of the function into a power series about
the point x = c.

Taylor’s and Maclaurin’s series expansions

Let f Vx) represent the k-th order derivative of a function f(x) with respect to x, i.e., f ®(x) =
d*f/dx*, with fx) == f(x), then the Taylor series expansion of the function f(x) about ‘the point

X = Xp can be written as

(n)
f(x)= pIEAE)et (x — x,)" }

n=0
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If the expansion is calculated about the point x = 0, then the resulting series is called a
Maclaurin’s series expansion, i.e.,

oo (n)

f(x)= 3/02 x".
n=0

Taylor polynomial and remainder

The purpose of expanding a function into its Taylor’s or Maclaurin’s series is to be able to
evaluate certain transcendental functions, e.g., sine, cosine, exponential, etc., numerically.

These series are then implemented in calculators or computers to produce values for those
functions. The numerical results tus obtained necessarily involve only a finite number of

terms in the series, thus we could write a function f(x) as

ko gO)
f(x)=P.(x)+R, (x)= Lt)(x xy)" + R(X).

n=0

The function P(x), representing a finite polynomial of order k, is known as the Taylor’s

polynomial of the function f(x). The function R(x) is known as the remainder of the series.

The remainder can be written as

n+l
(x —Xx,) ’

(n+l)

R. (x)= f(x)- P(x)Sh

where | &x| <|xo-x1, i.e., and the number x lies between xo and x!.

If we let x = xp+h, where h is a small quantity, we can re-write the Taylor's series expansion of
the function f(x) as follows:

k (n)

=Iesrn,
with "=e

R, (x) _[E) htt

n!

Typically, the value of & is not known, however, we can give an estimate of the order of the

error involved in using the Taylor polynomial, as opposite to using the full series, by writing

R, (x) =K- hm — on™").

Here K is a constant (typically unknown) and the symbol O(r) is interpreted as “is of the order

of r.” Thus, the last equation indicates that the error (remainder) in estimating a function by

using its Taylor polynomialis of the order h"*'.
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While, in most cases, this result will not let us estimate the error exactly, it does provide

information on the relative magnitude of the error. For example, knowing that the error is of
the order h™', and letting h<1.0, means that the more terms we add to the polynomial (i.e.,
the larger the value of n) the smaller the error involved in the estimate using the Taylor
polynomial. Also, when using the Taylor polynomial for numerical estimation, the smaller the
value of h, the better the approximation.

The HP 49 G calculator provides the functions TAYLORO, TAYLR, and SERIES to automatically

calculate Taylor’s (or Maclaurin’s) series expansions.

 

The function TAYLORO

The function TAYLORO performs a fourth-order Taylor's series expansion (Taylor polynomial) of
an expression given in terms of the CAS default variable VX (typically X) about the point X = 0.
In other words, the function TAYLORO performs a Maclaurin's series expansion. The only input
this function needs is the expression that you want to expand as a Maclaurin's series. This
function is useful to obtain the first few terms in a Maclaurin’s series.

For example, to obtain the fourth-order Taylor polynomial the function f(X) = sin X, about X =
0, use:

[~1[ ¢ JISIN]IX][ENTER] Enter “‘SIN(X)’
[][CALC][LIMIT][TAYLO] Invoke function TAYLORO

The result is: “1/120*X"5+ -1/6*X"3+X’.

Other examples:

‘EXP(X)’ [ENTER] [+][CALC][LIMIT][TAYLO] Result:
1/24*X"4+1/6*X"3+1/2(X2+X+1"
‘LN(X+1)’[ENTER] [+][CALC][LIMIT][TAYLO] Result:
C1)4XM441 3K34=1/ 22X24X
“1/(X+2)’ [ENTER] [+][CALC][LIMIT][TAYLO] Result:
‘“1/32*X"4+-1/16"X"3+1/8*X"2+-1/4*X+1/2’

 

The function TAYLR
 

The function TAYLR takes as input three elements:

w* A symbolic expression in terms of a certain global variable (stack level 3).

w% The global variable (stack level 2), and

w= The relative order, i.e., the difference in order between the largest and smallest

powers desired in the resulting polynomial (stack level 1),

The function returns the Maclaurin's series expansion of the expression based on the global

variable.

For example:
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‘SIN(y-n/2)’ [ENTER] * y’ [ENTER] 6 [ENTER]
Result: ‘“1/720*y"6+-1.24*y"4+1/2*y"2-1’

‘COSH(S)’ [ENTER] *S’ [ENTER] 8 [ENTER]
Result: ‘1/40320*S"8+1/720*S"6+1/24*S"4+1/2*s"2+1’

‘ATAN(R)’ [ENTER] ‘R’ [ENTER] 6 [ENTER]
Result: *-1/7*R*7+1/5*R"5+-1/3*R"3+R’

[+][CALC][LIMIT][TAYLO]

[+][CALC][LIMIT][TAYLO]

[+][CALC][LIMIT][TAYLO]

 

The function SERIES
 

The function SERIES calculates a Taylor's or Maclaurin's series expansion of a function f(x). The
input of the function requires the following three elements:

= The function f(x), in stack level 3

= The variable name alone for a Maclaurin's series, or the variable name and the point
about which the Taylor's series is expanded in the form 'x=a’, and

The order of the series to be obtained.

The function returns as a result two output items:

a A list containing the bi-directional limit of the function at the point where the series is

developed, an equivalent value of the function near the point of expansion of the series,
an expression approximating the function near the limit point, and the order of the
remainder.

representing (x-a).

All the terms in the list are expressed in terms of a small parameter h

“An expression for the small parameter h in terms of the original variable.

For example:

‘SIN(X)’ [ENTER] ‘X=n/2’ [ENTER] 6 [ENTER] [+][CALC][LIMIT][SERIE]

Result:

The result is interpreted as follows:

= Stack level 1:
Taylor series expansion.

Stack level 2: a list containing the following information:

Limit: 1, i.e., the limit of the function when X-> n/2 is 1.0.

h=X-7/2,

 

EAD YZ HEX E= ‘8°
A
2: £ Limit: 1 Equi 1

Expa '217728%006
TI2qxhde1/2¥h"2+
1' Remain: hor! >

: Eras
DIVPCILINIT[SERTE[THYLO[TAYLE]CALC]   

is the increment in the independent variable used in the

Equiv: 1, i.e., the function is equivalent to 1.0 near the point X = 7/2.
Expans: ‘-1/720*h"6+1/24*h"4+-1/2*h"2+1’ i e., the Taylor polynomial of order 6 is:

“1/720 (x-11/2)8+1/24*(x-1t/ 2)*+-1/2*(X-1t/ 2) 2+1"
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Remain: ‘h"7’, i.e., the remainder of the polynomial expansion in Expans is

Rs(x) = O(h’) = O[(X-n/2)"]

 
A second example:

‘LN(t)’ [ENTER] ‘t =e’ [ENTER] 6 [ENTER] [«~][CALC][LIMIT][SERIE]

Result:

 

RAD #YZ HEX = 't'
{HONE SUNINTY
2: { Limit: 1 Equiv: 1

Expans: '-1-/¢(6xe"6)
*h"6+1/(S*e"D)*¥h"D+
-1/{4xe”4)*¥h"4+1-/(3

1: 'h=t-e'
DIVFCILINITISERTE[TAYLO[THYLK]CALC]  
 

The result is interpreted as follows:

we Stack level 1: h=t-e, is the increment in the independent variable used in the Taylor
series expansion.

we Stack level 2: a list containing the following information:

= Limit: 1, i.e., the limit of the function when t-> e is 1.0.

= Equiv: 1, i.e., the function is equivalent to 1.0 near the point t=e.

we Expans:‘-1/(6*€"6)*h"6+1/(5*€*5)*h"5+-1/(4*€"4)*h"4+1/(3*e"3)*h"3+-
1/(2*e"2)*h*2+1/e*h+1’

i.e., the Taylor polynomial of order 6 is: ‘(t-e)®/(6ef) +(t-e)°/(5e°) +(t-

e)?/ (de) + (t-e)’/(3e’) +(t-e)?/ (2e%) + (t-e) /e+1’

«& Remain: ‘h"7’, i.e., the remainder of the polynomial expansion in Expans is

R(x) = O(h")=0[(t-€)’].
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Univariate calculus applications

In this section we present some examples of applications of derivatives and integrals of one

variable in selected physical and engineering sciences.

Dynamics: rectilinear motion applications

Let s(t) represent the position along a straight-line path of a particle as a function of time t.
By definition the velocity of the particle is v(t) = ds/dt, and its acceleration is a(t) = dv/dt =

ds/dt?. Anotherrelationship that is commonly used results from eliminating dt from the

equations for v(t) and a(t), which results in dv/a = ds/v or v-dv = a-ds. The latter result is
useful when you are given a = a(s).

Example 1 - Given s(t) = t-sin t, plot the displacement, velocity, and acceleration of the
particle as a function of t in the interval [0, 5].

* First, enter the expression for s(t):

[EQW] [ALPHA][<][S] [<][()] [ALPHA][<][T] [™] [~1[=] [ALPHA][<][T] [»] [-]
[SIN][ALPHA][<][T] [ENTER] [<][DEF]

This creates variable [ s 1].

-* Next, calculate the velocity v(t):

[EQW] [ALPHA][<][V] [<][()] [ALPHAI[][T] [P] [~][=] [~][][ALPHA][<][T]
[>I[ALPHA][]1[S] [<]1[()] [ALPHA][«][T] [ENTER] [~][EVAL] [+][DEF]

This creates variable [ v ].

+ The next step is to calculate the acceleration a(t):

[EQW] [ALPHA][][A] [<][()] [ALPHA][~][T] [>] [][=] [~][0][ALPHA][~][T]
[»1[ALPHA][<][V] [<][( )] [ALPHA][«][T] [ENTER] [~][EVAL] [~][DEF]

This creates variable [ a ].

+ To plot these functions you need to load the list {'s(t)’ ‘v(t)‘ ‘a(t)’} into EQ, change the

independent variable to t, change the range of values of t from 0 to 5, use AUTO to
generate the range of values for the y-axis, and proceed to create the plot. For details in
creating FUNCTION type plots see the examples in Chapter 11. The result is the following
plot:

 

    

\ a

pd
~~
TT

om— 4

lo. =___ =&.
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Example 2 - Given the speed of a particle as function of time t, v(t) = exp(-t/5), obtain an
expression for the position of the particle s(t) if the particle started at s = -5 when t = 2. Also,

find the acceleration of the particle at t = 1.

% First, we define the velocity function:

[EQW] [ALPHA][<2][V] [<][()] [ALPHA][<][T] [»] [~1[=] [+](e*] [+/-] [ALPHA][<][T] [+][5]
[ENTER] [+][DEF]

This creates the variable [ v ]

“& From the definition of velocity, v(t) = ds/dt, we can write ds = v(t)dt, and integrate

[. ds = [. v(t)dt

by using:

[EQW] [10S] [51[+/-1[™] [ALPHA][][S] [=][()] [ALPHAI[~][TI[™] [11[»]
[ALPHA][<][S1[™] [~1(=] [~1[ J] [2][»] [ALPHA][][T1[»] [ALPHA][][V] [<]1[( )]
[ALPHA][<][T][™] [ALPHA][<][T] [A][A][A] [EVAL]

This is the result shown in the equation writer screen (small font):

 

 

548 THEICAETIED0T   
“& Press [ENTER] [1 ‘ 15] [1[=1[5][ENTER][-] [~ ][ALG][EXPAN] to eliminate the 5 from

the left-hand side of the equation (using ISOL does not work here). The resultis:

‘s(t)=((5*EXP(-2/5)-5)*EXP(t/5)-5)/EXP(t/5)’.

% To find the acceleration of the particle can be found by using:

[EQW] [ALPHA][][A] [~][( )] [ALPHA][][T] [®] []1[=] [~][J][ALPHA][<][T]
[»1[ALPHA][<][V] [<][( )] [ALPHA][«][T] [ENTER] [~][EVAL] [+][DEF]

The result is ‘a(t)=-1/(5*EXP(t/5))’.

=k To find the value of the acceleration at t = 1, use:

(10° HALPHA][<][T] [~][=] [1] [ENTER] [~][ALG][SUBST]

The result is: ‘a(1) = -1/(5*EXP(1/5))’.

+ To get a numerical value out of this expression, we need to separate the expression as
follows:
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[<][PRG][TYPE][OBJ>][<][<] [~]1[> NUM]

The result is -0.163746150616.

Example 3 - A particle is moving with an acceleration a = -1.5 v'’2, with v = 4, when t = 0.

Determine and expression for the velocity, v(t), and evaluate the velocity at t = 2.

4 From the definition of acceleration, a = dv/dt, and using the initial conditions

indicated above, we can write the following integral equation:

 
vdv t
[—==-15] dr
a fv 0

4 Enter the integral in a similar fashion as done in Example 2. The equation should look
like this in the equation writer:

 

Vv

Lodu Je Sdt 4
Ro a

[EDIT]CURS[BIGEVAL JFRCTO[TERPH   
4 Make sure your CAS mode is set to Exact (-105 CF). Press [ENTER][ ~][EVAL] to
calculate the integrals in the equation. When asked for Approx mode on, choose YES,

and press [OK]. The result is ‘-4.+2.* Jv=-(1.5%t)’

* Then, use [~][ ‘ ][ALPHA][<][V] [<][S.SLV][ISOL] to obtain: ‘v=.5625*t"2+ —3*t+4.’

4 To evaluate this expression at t = 2, use:

[~1[ © 1 [ALPHA][<][T] [~1[=] [2][ENTER] [~][ALG][SUBST] [r ][EVAL]

The result is ‘v=0.25".

Dynamics: motion in polar coordinates

Example 1 - Finding velocity and acceleration in the radial direction given r = f(8(t)).

When describing the trajectory of a particle in polar coordinates, r = f(0), we are usually
required to find the derivatives,

v, =r =dr/dt, and a, = r" = dv, /dt = d’r/dt?.

If 8(t) is given, then, we can just replace it into (0), to get r = g(t) = f(6(t)). For example, if r

= 2.5sin6, and, 6 = 3.5t% - 2t, we can simply write r = 2.5 sin(3.5t? - 2t ).

To obtain the derivatives using the HP48G or GX calculator, we enter the expression for r(t) in

the display and use the [~][d] keystroke sequence. For example, enter the expression,

"2.5*SIN(3.5*t"2 - 2*t)’

in stack level 1 of the calculator, and store it into the variable r by using
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[m1] I[ALPHA][<][R][STOM].

Then, calculate the derivative by using:

(VARIL r ][~]I["] [ALPHAJ[][T][ENTER] [~][d]

Simplify the expression by using the function COLCT (COLleCT), available through the command
catalog: [CAT][ALPHA][C] (find COLCT)[OK], to get an expression for r’(t) as

"(17.5*t-5.)*COS(3.5*t"2 - 2*t)’

Save this expression into variable rt, by using:

[10 I[ALPHA][<][R] [ALPHA][«][T] [STOMP].

To obtain the second derivative of r with respect to t, use:

[VAR][ rt ][r]['][ALPHA][<][T][ENTER] [~][d][CAT][OK]
(Note: the function COLCT should be readily available)

The result is:

= ((122.5*t"2.+-70.*t+10.) *SIN(3.5*t"2.-2.*t)-17.5*C0OS(3.5*t"2-2.*t))’

or,
r= -((122.5t%-70t+10)sin(3.5t2-2t)-17.5 cos(3.5t2-2t)).

Example 2 -- Finding velocity and acceleration in the radial direction given r = f(8).

If you want to find the derivatives r' and r" for r = f(8), where 0 is not given explicitly as a

function of time, you can still use the HP 49 G calculator to obtain expressions in terms of 6
=do/dt, and 6" = d'6/dt’. We will need to write the expression for r as f(8(t)) and take

derivatives with respect to t.

For example, given r = 2.5 sin@, evaluate r' and r" when 6 = 0.5 rad, 6' = -3.5 rad/s, and 6" = 2

rad/s’.
We will write in the calculator the following expression:

"2.5*SIN(6(t))’
and save it into r:

[VAR][<][ r 1.

Then, calculate the derivative dr/dt by using:

[VAR][  r T[~]["] [ALPHA][~][T][ENTER] [][0]

We get the result:

'2.5*(COS(8(t)))* d16(t)),

where d16(t) represents 68' = d6/dt. In other words, our result is

r=2.5-cos6-0.

Save the expression in stack level 1 into variable rt, by using:
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[VAR][«<][ rt 1].

To obtain the second derivative of r with respect to t, use:

[VAR][ rt 1[r]1['][ALPHA][<][T][ENTER] [~][d][CAT][OK]

(Note: the function COLCT should be readily available)

The resulting expression is '2.5*C0S(0(t))*d1d16(t)-2.5*d10(t)"~2.*sin(OB(t))".

With the understanding that d1d16 represents the second derivative of 6 with respect to t,

i.e., 0", we can write:

r'=-2.5-[07% sin 6 + 2.5-cos 6 - 6".

At this point we can replace the values given earlier for 6’and 6”. Keeping the last expression
in stack level 1 create the following list:

{ '6(t)=.5" +dle(t)=-3.5" 'dldile(t)=2'} [ENTER]

 

 

and use the keystroke sequence:

[~][DEF]

to define the three “functions” (actually constant values) to be able to evaluate the

expressions for the derivatives. Now, enter

[~JEVAL]

to get the value -10.2944943103.

To evaluate the first derivative r’(t) and the position r(t) use:

 

[VAR] [ rt ][r~][EVAL] Result: -7.67884741655

[ r 1[~IEVAL] Result: 1.19856384651

When done, you may want to purge all the variables defined here by creating the list:

{*6’ +416’ *di1di16’ ‘rt’ ‘r’} [ENTER]

and using

[TOOL][PURGE].

The function COLCT

The function COLCT belongs in the old HP 48 G/G+/GX SYMBOLIC menu, but it is still available
in the HP 49 G calculator through the command catalog as shown in the examples above.
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Probability: Calculations with continuous random variables

For probability distributions of continuous random variables, probabilities are calculated using
the cumulative distribution function (CDF), F(x) = P(X<x). The definition of the CDF for

continuous variables utilizes definite integrals. We can use the HP48G series calculator to

evaluate such integrals either symbolically or numerically. Following we present some

examples within a new subdirectory HOME\STATS\INTS :

1) Suppose that the pdf of a continuous random variable is given by f(x) = K/(1+x%), for - « < x

< =. We are asked to find the value of K. By definition,

[“reax=1

 

Ke=
for this particular case, we can write

It should be straightforward to type this equation in the equation writer to produce:

 

  {54 ATID
 

Press [ENTER][—][EVAL], to get the result: ‘K*m=1’. Of course, you can easily figure out
that K = 1/n, and find this value by using: [<][r][1/x][~][2NUM], i.e., K =
0.318309886184.

2) Consider the expression for the Standardized Normal distribution,

f(x) = oon) 

Prove that, for this distribution, _. /*~ f(x)dx=1. First, type in the expression

 
=] x?

exp(——)dx
= P 2

in the equation writer, to produce:
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©

1 | Z]==ExP|-%-|d
2 2)

—a0

EHETHCHADETFEEE    
A direct evaluation, by using [ENTER][—][EVAL] produces no numerical result. One
possibility is to use the substitution x = tan y. Thus, having the integral listed in stack
level 1, enter:

‘x=TAN(y)’ [ENTER][~][ALG][SUBST].

Next, press [VY] to activate the equation writer, and enter [V][P][P][»][<]. Your
equation writer screen should now look like the figure below:

        

    

 
ATRACW)

Fran)’oF
2

2Few100°

ATARC-v)

EDIT[CURSBIG[EVAL[FACTO[TERFH]

dyd

Let’s evaluate the limits of integration by using: [P][V][EVAL] [»][EVAL]. The limits of
integration now become -n/2 and © /2. Press [ENTER] to exit the equation writer, change

CAS mode to Approx, by using [1][0][5][+/-][ALPHA][ALPHA][S][F][ENTER], and use
[~]1[=>NUM] to obtain a numerical value. Be aware that it takes the calculator up to five
minutes to obtain the numerical result: 0.999999999996, which is as close to 1.0 as we can

get.

 

Note: The integral calculated above is an improper integral (i.e., one or both limits are +).
You can use the transformation x= tan(y) to convert the improper integral into a proper

integral . The transformation is expressed by the following formula:

arctan(b)

["f(x) =| f(tan y)(1+tan’ y)dy
arctan(a)

If a = -o, then arctan(a) = -n/2. Also, if b = «, then arctan(b) = n/2. Also, arctan (0) = 0.

 

Note: Some integrals, for example,

dx=2 (1+ tan’(I+tan”y) ,

tan y

do not converge to a value. and, inmost cases, there is no way to tell from just looking at the
integral that such is the case. (The case above is simple, since we know that ; /* dx/x=(n(x),

therefore, {/“dx/x=[n(cc)=co. )
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3)

4)

3)

On to a simpler example: If f(x) = cos x, for 0 < x < 7/2, and f(x) = 0, elsewhere, find

P(0<X< m/4). We need to calculate the following integral:

n/4
hia

P(O< X < 7) = [ cos(x)dx

0

Use the following:

[P10 11001 101 (10 5 1 [=1[m](+1[4] [10 , 1 [COS] [X] [™] [~1[, 1 [X] [ENTER]
[~][EVAL].

The result is ‘V2/2’. If you use [~][>NUM], this result is shown as 0.707106781185.

To calculate the mean [ 1 = /x-f(x)dx] of the pdf in case 3, enter the following integral:

 

n

2
n= a »xCOS(x)dx

EDITCURBIG EVAL [FACTO[TERFA   
Press [A][A][EVAL] to get the result p = (n-2)/2.

Store this value in a variable called pu by using:

[ENTER][<][PRG][TYPE][OBJ->][<][«] [»] [STOP]

To calculate the variance [0° = Jxp)? f(x)dx] of the pdf defined in 2, whose mean was

calculated in 4, type in the following integral:

 

ro
l=

a (x—p)"COS(x) dx

   

The display now shows: 0.141592....(i.e., o* = 0.141592...).
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Statics: properties of areas

Consider the region R in the x-y plane limited by the x-axis (y = 0), the curve y = f(x), and the
vertical lines x = a and x = b as sketched in the figure below.

 

y fx)

 

 

  
 

The small rectangle of width dx and height f(x) is a representative differential of area dA =
f(x) dx for the region of interest. The area of the region will be calculated by adding the

infinitesimal area elements between the values of x = a and x = b, i.e., by calculating the

integral

A= dd =[f(xy

The product x-dA = dM,is the infinitesimal first moment of the differential of area dA with
respect to the y-axis. Here, x represents the location of the centroid (center of mass, center
of gravity) of the infinitesimal rectangle dA. Integrating dM, over the values of x =a and x = b,
we obtain the first moment of the area with respect to the y-axis, i.e.,

M, =[am, =[x f(x

Using the element of area shown above,it is possible to define a differential first moment of
dA with respect to the x-axis as dM, = (y/2)-dA, since y/2 represents the location of the

centroid of dA with respect to the x-axis. Thus, the first moment of the region R with respect
to the x-axis is given by

M, = dM, -1- [1FOOdx

The first moments of the area, My and Mx, are used to calculate the coordinates of the

centroid,

X = My/A, and y = Mx/A.

60 © 2000 Gilberto E. Urroz

All rights reserved



The quantity dl, = x“-dA is referred to as the moment of inertia of the infinitesimal area dA with
respect to the y-axis. The moment of inertia of the region R with respect to the y-axis is given

by

b

a
I, = [dr, =[ x? f(x)dx

The moment of inertia of the differential of area dA with respect to the x-axis, dl, is not as

simple to write as that with respect to the y-axis, dl,. The expression for dix follows from the
expression for the moment of inertia of a rectangle. Consider the rectangle shown in the
figure below.

 

 

 
H Tdy 

   —
at
—
H

    
If we use the horizontal strip of the rectangle as a differential of area, dAy = B dy, we can
write (dly)r = y2dAH = By’dy, where the sub-index R stands for “rectangle.” The moment of

inertia of the rectangle with respect to the x axis can be calculated as the integral Js By’dy,

between y = 0 and y = H. Using the HP 49 G calculator, the integral should look like this:

 

By du
a

E3ETHEOETSEEOWE   
Press [ENTER][~][EVAL] to get the result (I,)r = B-H?/3. Thus, the moment of inertia of dA, the
vertical infinitesimal rectangle of width dx and height f(x), is given by dl, = (1 /3)(dx)[f(x)]? =

(1 13)[f(x)]}dx, and the moment of inertia of the region R with respect to the x-axis is

calculated as

I= J. dl| =[fax
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The moment of inertia of the region R with respect to the origin (or, more properly, with
respect to the z-axis, perpendicular to the x-y plane) is defined as

I,=1,+1, = [x00 -dx +5[LOTdx

Associated with the concept of moment of inertia is the idea of a radius of gyration. The

radius of gyration about the y-axis is given by ky = (I, /A)'2, the radius ofgyration about the x-
axis is ky = (Ix/A)"%, and that about the origin "(or z-axis) is ko = (Io/A)""?

Example: The figure below shows the region R defined by 0 < y < In(x+1), 2<x<4. Use your HP

49 G calculator to obtain the area of the region , the coordinates of the centroid, the moments

of inertia and radii of gyration about the x- and y-axis, and about the origin.

 

4 o
D

The solution requires you to use a = 2, b = 4, and f(x) = In(x+1). Thus, the area would be
calculated by

 

4
[he1)dx

  EAETEEDEENFSOWED
 

which produces the value  -(3*LN(3)-(5*LN(5)-2))’, or A = 2.75135269614. Store this value in a

variable called A.
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The following screens shown the integrals corresponding to the first moments My, Mx, and the
moments of inertia ly, and Ix:

 
 

a 4. »
JXLNGe dx LLNCH7 dxe,2

[EDITCURSE1GEVAL [FACTO[TERFA EDIT CURSETGEVAL [FACTOTERFH]
 
 

 

4 4
KELN(x+ 1) dx i] (LHGxe 13)dle

2 2    AEA EEG0ETTGSET ETAETE0TNEEE
 

Once evaluated, the following results are obtained: My = 8.42286591025, Mx = 1.91394984757,

ly = 26.6864290145, and Ix = 1.7943172852. From these values we get, x = My/A =

3.06135448282, y = Mx/A = 0.695639584934, k, = (I,/A)"/? =3.11438356332, and ky = (I,/A)"/? =
0.807563138712. Also, lo = Ix + ly = 28.4807462997, and ko = (lo/A)"'% = 3.21738142011.

Dynamics: properties of solids of revolution - disk method

Consider the solid of revolution resulting from the rotation of the region R = {0 < y < f(x),
a<x<b} about the x-axis, as illustrated in the figure below.

 

 
  

 

  
 

As the region rotates about the x-axis, the element of area - the shaded rectangle of width dx

and height f(x) - generates a cylinder, or disk, of radius f(x) and height dx. The volume of this

elementary cylinder (differential of volume) is

dv = © [f(x)]*dx.

The volume of the entire solid of revolution, contained in a<x<b, is, therefore,
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y= [av =[zr dx.

The external area of this elementary cylinder (differential of external area) is

dA = 2-f(x)-dx.

The total external area of the solid of revolution is, therefore,

b

A = [d4, =| 2-7 f(x) dx.
R a

Let p represent the density (mass/volume) of the material composing the solid of revolution.

By definition, p = dm/dV, where m represents mass. Therefore, the mass of the element of

volume (differential of mass) is
dm = p-dV = 1p- [f(x)]*-dx.

This expression for dm applies if p is a constant. We can let the density vary with x, r(x), in
which case the differential of mass is given by

dm = p-dV = © p(x): [f(x)]*-dx.

For constant p, the mass of the solid of revolution is simply

m=p-V,
with V as calculated earlier.

For p = p (x), the mass of the solid of revolution is to be calculated with the integral

bh

m=mp0)[f(x

The x-axis is an axisof symmetry for the solid of revolution, therefore, the y-coordinate of its

center of mass is y = 0. Assuming, in general, that p = p (x), the first moment of the
differential of mass with respect to the y-axis is given by

dM, = x-dm = x-p-dV= x-p (x)-[f(x)]*dx.

The first moment of the solid of revolution with respect to the y-axis is, therefore,

M, = [mx pO) [fF dx
The x-coordinate of the solid body’s center of mass is given by

x =M,/m.

The moment of inertia of the differential of mass with respect to the y-axis is given by

dl, = x2.dm = x%p-dV = x2-p(x)- [f(x)]*dx.

 

This expression results from the conditions of symmetry of the differential of mass about the y-
axis that allows us to consider the inertial effect of the mass differential as that of a particle
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of mass dm located at a distance x from the y-axis. The moment of inertia with respect to the
y-axis is calculated using the following integral
 

1,={dl, =[ x*dm=]x p-av =[' x? p(x)[fF - dx.

To calculate the moment of inertia of the cylindrical differential of mass from the solid of

revolution we need to use the expression for the moment of inertia of a cylinder of radius R
and height H about its axis. This result, which is proved later in the book by using double
integrals in polar coordinates, is given by

(I)e=57p HR

Using this result with the elementary disk in the solid of revolution provides an expression for
the differential of moment of inertia with respect to the x-axis:

dl, =pC)Lf].

Thus, the moment of inertia of the solid of revolution with respect to the x-axis will be given
by the integral

bh] 4

I=] 57pO)dx

Radii of gyration of the solid of revolution with respect to the y- and x-axes, respectively, are

given by

ky = (I,/m)""?, and k, = (I,/m)"’2.

Example - Consider the region R = { 0 < y < In(x+1), 2<x<4} shown in the figure below. The
region rotates about the x-axis generating the solid of revolution sketched in the figure below.

Assuming that the density of the solid is given by p(x) = exp(-x/4), calculate the solid’s volume,
exterior area, mass, x-coordinate of its center of mass, moments of inertia and radii of

gyration with respect to the y- and x-axes.

The approach | suggest for calculating the required properties for the solid of revolution is to

define the functions f(x) = In(x+1) and p(x) = exp(-x/4) in the HP 49 G calculator. You can also

store the values of a=2 and b=4 in the calculator, and then simply type in the formulas shown
earlier to obtain the different properties. Here is how to define the functions:

[EQW] [ALPHA][<][F] [<][()] [ALPHA][<][X] [®] [~]1[=] [~][LN] [ALPHA][<][X] [+][1]
[ENTER] [«][DEF]

This operation creates the variable [ f 1].

To create the density function use:
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[EQW] [~][CHARS] (find the character p) [ECHO1] [«][()] [ALPHA][«1X] [®] [~1L=] [+]e”]
[ALPHAI[<][X] [+/-] [+][4] [ENTER] [+][DEF]

This operation creates the variable [ p ].

 

    fx) = In(x+1)
Ny

 

        
 

The next step is to store the values of a and b:

[2] [1 © JIALPHA][<][A][STOM] [4] [~][ * I[ALPHA][<][B][STOM]

To calculate the mass, for example, type the integral

 

b

| mpGO(fcardx4
a

IEHTHEADETETEWE   
Then, press [ENTER][—][->NUM] to obtain a numerical value for the integral. The mass is m =
5.56740083556.

The following screens show the integrals you need to type to produce the first moment My, and
moments of inertia |, and |, respectively:

 

b b b
2 4TPOG0)dx Tap(0dd | Lp(a0” dd

a a -
a

      EDIT LH [A EER IEDETTES [174]
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The corresponding values are M, = 16.9252199715, |, = 53.2640598494, and | = . Also, X =

M,/m= 3.04005773455, k, = (I,/m)"? = 3.09307811219, and k, = (I,/m)"’? = 0.985351404481.

The volume and exterior area of the solid of revolution are calculated using the following

 

b 2 b

| wf) dx [Famecoa

a

    [41 EDIT] CURS[ETGEVAL[FACTOITELF
 

integrals:

The results are V = 12.0257015609, and A; = 17.2872588354.

Hydrostatics: force over a flat surface submerged in a liquid

Consider the flat surface R located along the plane OP inclined by an angle 6 with respect to
the horizontal free surface OS of a liquid at rest.

 

 

       
 

The pressure in a liquid at rest is given by

p= po + vh,

where py is the pressure at the free surface vy is the specific weight of the liquid
(weight/volume), and h is the depth measured from the free surface. If the free surface OS is
open to the atmosphere, and we use gage pressures, po = 0, and

p = yh.

Since pressure depends on depth only, a differential of force dF acting on the differential of
area
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dA = b(y)dy
of the surface R will be given by

dF = pdA = yh-dA = yh-b(y) -dy = yy-sin 0 -b(y)-dy,
where the relationship

h=ysin 6

has been used. The force on the surface will be calculated through the integral

F=[dF={p-di=[y-h-da=y-sn6-[ y-da=y-sn0-[y-b(y)-dy.
R R R

 

 
To find the point of application of the force we can take the moment of the differential of

force dF with respect to the x and y axes as
 

dM= y-dF = ypdA = yhydA = yhyb(y)-dy = yy*sin 6 b(y)-dy,

and

dMy = [xo(y)+b(y)/2]-dF = [Xo(y)+b(y)/2]- p-dA = [Xo(y)+b(y)/2]- vh-dA = [Xo(y)+b(y)/2]yy-sin
6-dA

dM, = [xo(y)+b(y)/2] y y-sin 6:b(y)-dy

where x,(y) is the distance from the y-axis to the left edge of the differential of area, and b(y)
is the width of the differential of area. The moments with respect to the x- and y-axes are
given, respectively, by the following integrals

M,=[y-dF={y-p-da=[y-y-h-da sing. [v7 dA =p -sin 0)’ b(y)- dy.
R R R

and

. b 1 : b
M, =y-sin6[[x,(r)+ bOI] y-dd = sin | Lx, (7) +BOT»-b) dy:

The point of application of the total force F is known as the center of pressure of the surface
(point CP in figure above). Its coordinates are given as the arm of the force with respect to
each axes that produce the same moments Mx and My. So, if the coordinates of CP are (xcp,

Ycp) We can write:

Xcp = My/F, and ycp = M/F.

Example 1 - Hydrostatic force on a triangular shape

Consider the triangular-shaped region located along the plane OP inclined by an angle 6 from
the free surface OS of a liquid at rest. The dimensions of the triangular surface and its
location with respect to the x- and y-axes are indicated in the sketch. Find expressions for the
force F, and the moments M, and M, produced by the hydrostatic pressure distribution on the
triangular surface. Also find the coordinates of the center of pressure xcp and ycp.
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 = To find an expression for x,(y) we use the coordinates of points A and B. The slope of
the line AB can be found from 
  
 mag = (Ye-Ya)/ (Xg-Xa) = (a+H-a)/(d-d-by) = -H/b;.

The equation of a straight line going through point A with slope mug is y - ya = Mag(X-Xa), OF

y = Yat Mpg(X-Xa) = a—(H/b¢)(x-d-by).

 Using the calculator you can isolate x as follows:

  
 ‘y=a-(H/b1)*(x-d-b1)’ [ENTER] ‘x’ [ENTER] [<][S.SLV][ISOL]

The result is: ‘x = ((d+b1)*H+(b1*a-y*b1))/H’

 To define this result as the function ‘xo(y) = ((d+b1)*H+(b1*a-y*b1))/H’, use the equation writer

as follows:

[VI[VI[<][ALPHA][<][O] [«][()] [ALPHA][<][Y] [ENTER] [1][DEF]

This operation creates the variable [ xo ].

 

 

   

 

  

0 - 5
XS =

A
F

0 by)
] A FN

Z¥)

No
y=a’
7 NL

£ vertices at

~ H ] 2 Ald+by, 3)
. at+H ™N B(d, a+H)

7Ny y C(d+b, +b, a+H)  
  
 

we Similarly, the slope of line AC can be found from

Mac = (Yc-Ya)/ (Xc-xa) = (a+H-a)/(d+by+b;-d-by) = H/b,,

and the equation of the line AC is

Y = Yat Mac(X-Xa) = a+(H/bz)(x-d-by).
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Let’s isolate x = x(y) by using the HP 49 G calculator:

‘y=a+(H/b2)*(x-d-b1)’[ENTER] ‘x’ [ENTER] [«][S.SLV][ISOL]

The result is: ‘x = -(((a-y)*b2-(d+bl) *H) /H".

This result represents an outer value of x that we can define as xf(y). To define this function

use:

[VI[VI[<I[ALPHA][<][F] [<][()] [ALPHA][<][Y] [ENTER] [<][DEF]

This operation creates the variable [ xf 1].

#% The width of the elementof area b(y) is by definition b(y) = xf(y) - xo(y), thus, we can

define b(y) with the HP 49 G calculator by using:

‘xf(y) - xo(y)’ [ENTER][EVAL] [~][ ‘ ] [ALPHA][][B] [<][()] [ALPHA][2][Y] [ENTER] [>][~][=]

This results in ‘b(y) = -(((a-y) *bl+(a-y)*b2) /H)".

Use [1][DEF] to define the function b(y).

Having defined xo(y) and b(y) we can proceed to calculate the force F, moments My, and M,,
and coordinates of the center of pressure xcp, ycp, as follows:

 

 
Note: The Greek letter vy is available in the HP 49 G calculator’s character set by using
[~][CHAR], selecting vy, and pressing [ECHO1].

 

we Force:

 

a+H
SIN)| ybly)dy

a

EAETHEDENERD    
Press [ENTER] [—][EVAL]. After about 20 seconds you get the following result:

Y((2*Y*H243 *y*a*H) *bl+ (2*y*H"2+3* y*a*H) *b2) *SIN(0) / 6"

Use [~][ALG][FACTO] to get

‘SIN(O) *H*y* ((2*H+3*a) *bl+ (2*H+3*a) *b2) / (3*2) '.

In the latter expression you can recognize another common factor (2*H+3*a) that has not
yet been factored out. You can factor it out by using the equation writer as follows:

(VIVILVILYILY] [>1[>1[>] [Al[A][A][A][A] [FACTO] [ENTER]

The result is now ‘SIN(6) *H*y* ( (b1l+b2) * (2*H+3*a))/(3*2)', i.e..
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1 .
k=vH-smb (bh+b,)-(2-H+3-a).

 

Save this result into variable F by using [~][ ¢ ]J[ALPHA][F][STOM]

~ Moment about the x axis:

 

a+H 2

SINE) yu blu)dut
a

  [0 ETEIEIETS(ETS
 

Press [ENTER] [—][EVAL]. After about 40 seconds you get the following result:

 

RAD HY2 HEX R= 'H'
{HOMES

1: '((3¥v*¥H3+8%~v¥a%¥H"
2+6¥v%¥a"2¥H)*b1+(3*
NH3425vxa¥H2+6%
$ETERIEORIEGLE )/

|_F_[PRINI[CASIN[REALAUR |wf |

 

To factorize this expression use [~][ALG][FACTO] . Press [¥] to activate the equation
writer. If the option [BIGH] is selected, press the corresponding button to de-selectit.
This will let you see the current expression in a smaller font. There is a common factor
that has not been factored out. To move about the equation writer screen, use the
following: [W][VY1[VY1[V¥Y]. This will change the cursor to a rectangular shape that you can
move from term to term. Press [>] twelve times to place the rectangular cursor over the
term b1. The screen should look like this:

 

(34+zamecad)bse(z02eg.ame6ua®.

7.2%

  EDIT CURS]BIG EVAL
 

This screen lets you see the common factor that is still distributed in the expression. This

common factor is (3-H*+8-a-H+6-a®). To factor it out, use: [A][A][A][FACTO]. Press
[ENTER]. The resulting expression can be translated in paper as

M, =y Hsin 0 (by +b) (3H +8-a-H+6-a°).

Save this result in variable Mx using: [~][ ‘ ][ALPHA][M] [ALPHA][«<][X] [STOMP].
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4 Moment about the y axis:

 

a+H

| (xocsdedbcsduwcray

  ETA EEIEEEEEOWET
 

Press [ENTER] [~][EVAL]. This calculation will take more than a minute since it involves
multiplying out and integrating a more complicated expression. The beginning of the

resulting expression is presented in the following screen:

 

RAD HYZ HEX R= ‘'X'
{HOME

1: '((Sx~v¥H2+8%vxa*xH)
*b172+((S¥vxH2+12%
~y¥a¥H)¥b2+ (8¥vxd%xH"
2+12%~*d*axH) »¥bl+(
C3eqEH2+4¥v¥a%H) *

CPITRGES)(TTIESTEEE    

To factorize this expression use [—][ALG][FACTO]. The result is now:

 

RAD ¥Y2Z HEX R= 'R'
{HONEZ

1: "SINCE )*H%v£((5%¥H+8
*a)*¥bl172+((GxH+12%a
)¥b2+8*d¥H+12%d*ad*
bl+(3¥H+4%3) ¥b272+(
Sxd*H+12%d*ar*b2)/(

EPARIFRCTOfLNCOL]LIN[SoLVE[SUBST]    
In this last result we can see some common factors still not factored out, e.g., (8*H+12*a)

and (8*d*H+12*d*a). Press [V¥] to activate the equation writer. (If the option [BIGH] is
selected, press the corresponding button to de-select it. This will let you see the current
expression in a smaller font. To move about the equation writer screen, use the following:
[VYI[VYI[YI[¥Y]. This will change the cursor to a rectangular shape that you can move from

term to term. Press [P] fourteen times to place the rectangular cursor over the term 8. The

 

Zo((aHe1ziadbaetidHe1dgiaible(3

22°

EOIT[CURSEIGEVAL[FRCTOITERFA]    
screen should look like this:

Now, press [A][A][A] to select the expression (8:H+12-a)-b2+8-dH+12-d-a. Press [FACTO]

to factor this expression to (b2+d)- (8-H+12-a). Now, press [V][P] to highlight the term
(8:H+12:a). Press [FACTO] to convert this expression to (2-H+3-a)-4. Next, press [P][P] to

highlight the last term in the numerator: (8-d-H+12-d-a)-b2. Press [FACTO] to obtain for this
last term b2.d (8H+12-a). We can factor this term even further by using
[V]1[»][»][FACTO] to highlight the term (8:H+12-a) and factor it out to (2-H+3-a)-4. Press

[¥] until you obtain the rectangular cursor. Then, use the left- and right-arrow keys to
move about the expression. The expression can be translated into paper as follows:
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SIN) H-y-(5-H+8-a)-bl> +(b2+d) (2-H +3-a) b2* +b2-d-2-H+3 a)-4)
3.2?
 

There is still the factor (2H+3a) that can be factored out of the hst two terms in the

numerator. Press [¥] until the rectangular cursor is available. Then move the cursor on

top of the term b2 contained in (b2+d). Next, press [A][A][A][A][FACTO]. This result in
the expression:

SIN@O)-H -y-(bl+b2) (5-H+8a)-bl+(3-H+4-a)-b2+8-d-H+12-d -a)
3.22
 

This is an improvement as we were able to identify the factor (b1+b2), however, within the

second set of parentheses in the numerator we still have some factoring to do, particularly,
in the last two terms. Press [¥] until the rectangular cursor is available. Then move the
cursor on top of the term 8 contained in 8d-H Press [A][A][A] until the term 8dH is
highlighted. Next, press [~][P] to highlight the last two terms, and press [FACTO]. The

highlighted term is converted to d- (2--H+3a)4. The entire expression now looks like this:

SIN@)-H-y-(b1+b2)-(5-H+8-a)-b1+(3-H+4-a)-b2+d-(2-H+3-a)-4)

3.27
 

Press [ENTER] and save the result into variable M,, by using:

[~]1[ ¢ JIALPHA][M] [ALPHA][<][Y] [STOMP].

Press [VAR]. You should have in your soft-menu key labels the following keys:

[ My Il mx J[ F 1

“Coordinates of the center of pressure:

To calculate the coordinate xcp = My/F use:

[ My I[ F ][<][~][ALG][FACTO]

After about 30 seconds the calculator returns the result:

‘((5*H+8*a)*b1+((3*H+4*a)*b2+(8*d*H+12*d*a)))/(8*H+12*a)’.

This result can be factored even more using the equation writer to make it look like this:

(5-H+8-a)-bl+(3-H+4-a)-b2+d -(2-H+3-a)-4
(2-H+3 a)4
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This latter result suggest that we can write:

 

 (5-H+8-a)bl+3 -H+4- a) b2
Xep=d+
« 4.-(2-H+3-a)
 

To calculate the coordinate ycp = M/F use:

[ Mx I[ F ][+] [~][ALG][FACTO]

After about 20 seconds the calculator returns the result:

‘(3*H"2+8*a*H+6*a"2) / (4*H+6*a) '.

The denominator has a common factor of 2, but no other simplification is possible, so the
result is:

 

3-H+8-a-H+6-a’

id 2-(2-H+3a)
 

 

Now, check these results by hand.

Note: Just kidding!
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Mathematics: area in polar coordinates

The figure below illustrates a region R described by { 0 <r < f(6), a < 6 < b}. The quasi-
triangular infinitesimal element of area limited by the angle do and the curve has an area

dA = 2 (base) - (height) = 4 (r-d6)- (r) = 4 r>-d® = %[f(6)]*de.

 

 

 

    
Therefore, the area of the region is given by

a=[aa=5[er do.

Example 1 - Calculate the area of the regionR={0<r <a, 0<6< 2 rt}, i.e., the area of the

circle of radius r = a centered at the origin. Type in the integral:

 

[FT 2

2a a do<¢

{0d TAT0ETETS   
Press [A][A][A][EVAL] to get the result am.

Fluid dynamics: calculating discharge in pipe for laminar flow

The figure below shows the profile of laminar flow velocity as a function of the radial distance
rin a pipe.

The velocity distribution is given by the expression,

V(r) = v1-(r/ro)*],

where v. is the centerline velocity and r, is the radius of the pipe.

We can use this expression to obtain the discharge (volumetric flow) in the pipe by using the

definition
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Q=|v-da
R

Because the velocity distribution in a pipe depends on the radial distance only, we can use an
element of area consisting of a ring of thickness dr and length 2mr, thus, the area is

dA = 2mrdr.

 

 

   
  Velocity  
 

With this element of area, the discharge is calculated, in general, as

0=["vir) 2m rar

For the specific case of a laminar flow velocity distribution, you will need to set up the
integral:

 
ra

2

uC: t-(5) 2amdr

a

34d INTHE0ETNEISWEE   
Then, press [ENTER][—][EVAL]. The result is ‘vc*r0"2*n/2’.

The mean velocity is defined as V = Q/A, with A = Tre?, then V = v./2 for laminarflow.
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Multivariate and vector calculus   
Multivariate calculus involve differentiation and integration using functions with more than one
independent variables. The following definitions will be provided for functions of two
variables. However, generalizing them to functions of more than two variables should be a

straightforward. Set Exact mode before attempting any symbolic calculation.

Partial derivatives

Consider the function z = f(x,y), we define the partial derivative of z with respect to x as

Jz gi LEARY)FY)
=z<

ax A Ax

Similarly, the partial derivative of z with respect to y is defined as

92 pm SYA)f(y)
dy Y Ay—0 Ay

For practical purposes, a partial derivative with respect to any given independent variable is
calculated the same way that you would calculate a total derivative with respect to that

variable while treating all other variables in the function as you would constant values. Thus,

9 (2x? — _9 an) -2 9 =(2x7 —exp(x) + Inv)= ==(200") ===(exp()) + == (In( »)) =

2p —exp(x)+0=2y" —exp(x)

The HP 49 G calculator uses the same functions DERIV and [r—][d] to calculate partial
derivatives, as we did with total derivatives. Examples:

2*X*Y~2-SIN(Y)’ [ENTER] “Y’ [ENTER] [~][CALC][DERIV][DERIV],

result = ‘2*X*(2*Y)-COS(Y)’, i.e.,

0
—(2xy* —sin y) = 4xy— cos y.
ox
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“2*EXP(-x*y*z)’ [ENTER] ‘z’ [ENTER] [~][3] Result: ‘2*(EXP(-x*y*X)*(-x*y))’, i.e.,

22)=—2xye".

Second order partial derivatives

Second order partial derivatives are defined by:

  EETCAN Ta]
ox? ox| ox ww? 0

Of(UN, (FV DL,
axdy ox|ay)7 aylox) odyx TV

/

  

 
Notice the order of the variables in the two notations (using the partial derivative symbol or
sub-indices) in the cross-derivative with respect b x and y. Using the partial derivative

symbol, the first derivative taken is the one located more to the right in the denominator,

thus, 9*f/oxdy means of/dy is taken before 9/0x. Using the sub-index notation, the first

derivative taken is indicated by the sub-index closest to the function name f, thus, f,, means

the first derivative taken is the with respect to x and then with respect to y.
 

Here are some examples of second-order partial derivatives:

‘SIN(X*Y)’ [ENTER] ‘X’ [ENTER] [~][d] ‘X’ [ENTER] [~][0] Result: ‘Y*-(Y*SIN(X*Y))’, i.e.,

2

5(sin xy) =—y° sin xy.

‘X*2*LN(Y)’ [ENTER] ‘X’ [ENTER] [~][3] ‘Y’ [ENTER] [~][3] Result: ‘2*X*(1/Y)’

2

dydx
 (x’Iny) = 2x

‘X"2*LN(Y)’ [ENTER] ‘Y’ [ENTER] [~][] ‘X’ [ENTER] [~][9] Result: ‘2*X*(1/Y)’

2

2x
*Iny)="—"—.

axdy (rin y)

 

“Y+X*EXP(Y)’ [ENTER] ‘Y’ [ENTER] [~][9] ‘Y’ [ENTER] [~][0] Result: ‘X*EXP(Y)’
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5

dydx

Generalization of the definitions given above for third- or higher-order partial derivatives is
straightforward.

 (y +xe') =xe".

The chain rule for partial derivatives

Consider the function z = f(x,y), such that x = x(t), y = y(t). The function z actually represents

a composite function of t if we write it as z = f[x(t),y(t)]. The chain rule for the derivative
dz/dt for this case is written as

dz _0z dx Jz dy

dt ox dt dy dr

To see the expression that the HP 49 G calculator produces for this version of the chain rule
use:

[(EQW] [~][d] [ALPHA][][T] [>] [ALPHA][<](Z] [<][()] [ALPHA][<][X] [<][()] [ALPHA][<][T]
[>] [SPC] [ALPHA][<][Y] [<][O)] [ALPHA][<][T]

The derivative to be evaluated is
 

2(zx).@))

  LET
 

To expand this derivative use: [A][A][A][A] [EVAL]. The result provided by the calculatoris

dly(t)-d2z (x(t),y(t))+dlx(t)-dlz(x(y).y(t))

The term d1y(t) is to be interpreted as “the derivative of y(t) with respect to the 1°
independent variable, i.e., t”, or d1y(t) = dy/dt. Similarly, d1x(t) = dx/dt. On the other hand,
d1z(x(t),y(t)) means “the first derivative of z(x,y) with respect to the first independent

variable, i.e, x”, or d1z(x(t),y(t)) = Jdz/dx. Similarly, d2z(x(t),y(t)) = dz/dy. Thus, the
expression above is to be interpreted as:

dz/dt = (dy/dt)-(9z/dy) + (dx/dt). (3z/dx).

 

 

Total differential of a function z = z(x,y)

From the last equation, if we multiply by dt, we get the total differential of the function z =

z(x,y), i.e.,

dz = (0z/0dx)-dx + (dz/9y)-dy.
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Example: let’s use z = sin(xy), x = ?, and y =V t to verify the chain rule for the case z
=f[x(t),y(t)] in the calculator.

* First, define the functions:

[EQW] [ALPHA][<][Z] [<][()] [ALPHAI[][X] [SPC] [ALPHA][<][Y] [»][~][=] [SIN]
[ALPHA][1[X] [x] [ALPHA][<][Y][ENTER] [~][DEF]

[EQW] [ALPHA][<][X] [+][()] [ALPHAJ[<][T] [»][~]1[=] [ALPHA][<][T] [y"] [2] [ENTER]
[~][DEF]

faerally] [<10()] [ALPHA][<][T] [»][~1[=][Vx] [ALPHA][<][T] [ENTER]
“a

You should have in your soft-menu key labels the functions[ y 1],[ x Jand[ 2z 1].

* Now, let’s calculate the derivatives separately:

[EQW] [~][][ALPHA][][T] [»][ALPHA][<][X] [<][()] [ALPHA][<][T] [a][A][A] [EVAL]
[ENTER] [~]1[ * J[ALPHA][«][X][ALPHA][<][T][STOM]

[EQW] [][O][ALPHA][<2][T] [»][ALPHA][][Y] [~][( )] [ALPHA][<][T] [a][A][a] [EVAL]
[ENTER] [~][ * I[ALPHA][<][Y][ALPHA][<][T][STOM]

[EQW] [][0][ALPHA][<][X] [»][ALPHA][<][Z] [«][( )] [ALPHA][<2][X] [SPC] [ALPHA][<][Y]
[a][a][Aa] [EVAL]
[ENTER] [~][ * J[ALPHA][][Z][ALPHA][-][X][STOM]

[EQW] [][O][ALPHA][<][Y] [»][ALPHA][<][Z] [<][( )] [ALPHA][<][X] [SPC] [ALPHA][<][Y]
[a][a][a] [EVAL]
[ENTER] [~][ * I[ALPHA][][Z][ALPHA][<][Y][STOM]

You should now have the soft-menu keys [ zy ][ zx ][ xt ][ yt ] corresponding to
the derivatives dz/dy, dz/dx, dx/dt, and dy/dt, respectively.

we Using the notation of the variables we just stored, the chain rule for the derivative
dz/dt will be written as dz/dt = zx*xt + zy*yt. Therefore, in the calculator we will use:

[ zx I xt 1[xI[ zy 1 yt ]1[x][+]. The resultis:

‘y*COS(x*y)*(2*t)+x*COS(x*y)*(1/2*Vt)’

w% Use [~][ALG][FACTO] to simplify the expression to ‘COS(x*y)*(4*y*t"2+x*Vt)/(2*t)’

To calculate the derivative directly, use:

[EQW] [~][][ALPHA][<][T] [>] [ALPHA][+][Z] [<2][( )] [ALPHA][<][X] [<][()]
[ALPHA][<][T] [>] [SPC] )] [ALPHAJ[<2][Y] [<]10( )] [ALPHA][<][T] [a]l[a][Aa][A] [EVAL]
[ENTER]

The result in this case is ‘COS(x(t)*y(t))*(2*t*y(t))+x(t)*(1/2*Vt)))".

“Use [~][ALG][FACTO] to simplify the expression to ‘COS(x(t)*y(t))*(Nt*x(t)+
4*t" 2y(t) / (2*t)’
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The two results in your stack are basically the same except that the latest uses x(t) and
y(t) instead of simply x and vy.

 

A different version of the chain mle applies to the case in which z = f(x,y), x = x(u,v), y =
y(u,v), so that

z = f[x(u,v), y(u,v)].

The following formulas represent the chain rule for this situation:

%z_%drdzdy % _0z dxoz op
du Ox ou dy Ju ov ox ov dy ov
 

Determining extrema in functions of two variables

In order for the function z = f(x,y) to have an extreme point (extrema) at (x.,Yo), its derivatives

of/ox and of /dy must vanish at that point. These are necessary conditions. The sufficient
conditions for the function to have an extreme at point (x,,Y,) are

of/ox = 0, of /dy = 0, and A = (3°f/ 9x?) (*f/dy*)-[*f/0x*]* > 0.

The point (Xo,Yo) is @a maximum if *f/9x*< 0, or a minimum if *f/ox*> 0. The value D is
referred to as the discriminant.

If

A = (3°f/9x?)- (PF/0y?)-[0*f/9x*]? < 0,

we have a condition known as a saddle point, where the function would attain a maximum in x
if we were to hold y constant, while, at the same time, attaining a minimum if we were to hold

X constant, or vice versa.

Example 1 - Determine the extreme points (if any) of the function f(x,y) = x3-3x-y?+5.

- First, define the function into the calculator: ‘FXY) = X"3-3*X-Y"2+5’

[ENTER][+][DEF]. This operation will create the variable[ F ].

=e Determine the first and second derivatives:

To evaluate and store of/dx use: ‘FX(X,Y)=0X(F(X,Y))’ [ENTER][—][EVAL][<][DEF]

To evaluate and store of /dy use: ‘FX(X,Y)=aY(F(X,Y))’ [ENTER][][EVAL][+][DEF]

To evaluate and store *f/ox” use: ‘FXX(X,Y)=0X(FX(X,Y))’ [ENTER][~][EVAL][+][DEF]

To evaluate and store o*f/dy” use:  ‘FYY(X,Y)=dY(FY(X,Y))’ [ENTER][~][EVAL][~][DEF]

To evaluate and store 9*f/dyox use: ‘FXY(X,Y)=dY(FX(X,Y))’ [ENTER] [~][EVAL][~][DEF]

= To find the possible extrema, use [~][ FX 1] [¥], and edit it out so that only the
expression, ‘3*X"2-3’ remains. Then, enter [0][—][=]. Next, do the same with [ FY ],
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namely, [~][ FX 1 [Vv], and edit out the program until only the expression *-(2*Y)’
remains. Then, use [0][~][=]. You now have the two equations of /dx = 0, of /dy = 0.

= To solve the equations use: [2] [][PRG][TYPE][->ARRY]. Then, type the array [‘X’

‘Y’], and press [ENTER], and, finally, use [<][S.SLV][SOLVE] (second SOLVE key), to obtain

the solution set:

([ 'X=1" *y=0'] [ ‘X=-1" 'Y=0"]}.

“Let's define the discriminant function:

‘D(X,Y) = FXX(X,Y)*FYY(X,Y)-FXY(X,Y)"2’ [ENTER] [—][EVAL] [“<][DEF]

= Check the value of D(X,Y) at point (X,Y) = (1,0), by using: [1][SPC][O][VAR][ D 1], it
turns out that D(1,0) = -12 < 0, therefore, this point is a saddle point. No maximum or

minimum occurs at this point.

“Check the value of D(X,Y) at point (X,Y) = (-1,0), by using: [1][+/-]1[SPC][O][VAR][ D 1],
it turns out that D(-1,0) = 12 > 0, thus a maximum or minimum may exist at this point.

= Check the value of FXX(X,Y) at point (X,Y) = (-1,0), by using: [1][+/-][SPC][O][VAR][ FXX
], it turns out that FXX(-1,0) = -6 < 0, thus the point (-1,0) corresponds to a maximum of

the function.

we To determine the value of the function at point (-1,0), use [1][+/-]1[SPC][O][VAR][ F
]. The result is F(-1,0) = 7.

«To visualize the function use the option FAST3D in the plot types with view limits of X

in (-2, 2), Yin (-2, 2), and Z in (-2,8). The figure below interprets the two points found
earlier.

 

 

  
 

 

 

  
 

Derivative of a complex function

An interesting application of multi-variate calculus is to determine the derivative of a complex
function. Complex variables were introduced in Chapter 5. Recall that a complex variable z =
x +iy can be mapped into another complex variable w = ®(x,y)+i¥(x,y), through the complex
function w = f(z). The derivative of the complex variable f(z), to be referred to as f’(z) =

df/dz, is, by definition,
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df fer d)-fG)
f= ==, ~

The definition of a complex derivative requires us to evaluate the function f(z) at a point P(x,y)

corresponding to z = x + iy, and at point Q(x+Ax, y+Ay), as illustrated in the figure below.

 

 

 
   
 

The figure also illustrates the fact that to get from point z to point z+Az in the complex xy
plane you can follow a multitude of paths. In general, the value of the derivative will depend

on the path we follow to define Az. Because we want the derivative df/dz to be uniquely
defined, we need to find some criteria such that, regardless of the path selected to define z,

the value of df/dz remains the same. In general, we will write Az = Ax+iAy. Let’s calculate
the derivative df/dz utilizing paths for Az along the x-axis alone, i.e, Az = Ax, and along the y-

axis alone, i.e., Az = iAy. Thus, for Az = AX, we can write

a_ lim [D(x + Ax, y)+iY(x + Ax, y)]-[DP(x, y) + F(x, y)]

dz Ax Ax

af _ [Frea—= lim - +i ye
dz A-o0

df _ ovov
dz Ox ox
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You can prove, by expressing the derivative in terms of Az = iAy, that

o_o
dz dy dy

In orderfor the last two expressions for df/dz to be the same, then we require that

dd IW a
ox dy ay ox

These two equations are known as the Cauchy-Riemann differentiability conditions for complex
functions (or, simply, the Cauchy-Riemann conditions). Thus, if the functions ®(x,y) = Re[f(z)]
and Y(x,y) = Re[f(z)], satisfy the Cauchy-Riemann conditions, the derivative f’(z)=df/dz is

uniquely defined. In such case, the function f(z) is said to be an analytical complex function,

and the functions ®(x,y) and W¥(x,y) are said to be harmonic functions.

More importantly, if a complex function f(z) is analytical, the rules used for univariate
derivatives can be applied to f(z). For example, in Chapter 5 we indicated that the function

w = f(z) = In (2) = In (r-e'®) = In(r) + i6.

can be written in terms of (x,y) as

® = O(x,y) = In[(x+y?)""?] = (1/2) In(x*+y?), and ¥ = (x,y) = tan" (y/x).

Using the HP 49 G calculator, let’s check if the functions ®(x,y) and W¥(x,y) satisfy the Cauchy-
Riemann conditions:

+ First, define the functions:

[EQWI[ALPHAT[ALPHA][P[H][I] [~][()][<][X][SPCI[~][YI[A][A][ALPHA][~][=] [~][LN]
edIILII] [+] [ALPHA] [<][Y][y*][2] [a][A][A][A] [+][2] [ENTER]
“a

[EQWI [ALPHAJ[ALPHA][T][SI[N[~](()I[][XI[SPCI[][YI[A][A][ALPHA]
[~1[=] [~][ATAN] [ALPHA][<][Y][»] [+] [ALPHA][<][X] [ENTER]
[+][DEF]

Soft-menu key labels [ TSI ] and [ PHI ] will now be available in your screen.

* Next, calculate and store the four derivatives involved in the Cauchy-Riemann
conditions:

[EQW] [][d] [ALPHA][<][X] [»] [VAR][ PHI ] [<=] [<][( )I[ALPHA][«][X]
[SPC][<][ALPHA][Y][a][A][A] [~][EVAL] [~][ALG][EXPAN][ENTER]
[VARI[~][ * 1[ PHI J[ALPHA][<][X][STOP]
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[EQW] [—]1[0] [ALPHA][<][Y] [»] [VAR][ PHI ] [<] [<][( )I[ALPHA][<][X]
[SPCI[—][ALPHA][Y][A][A][A] [~][EVAL] [~][ALG][EXPAN][ENTER]
[VAR][~1[ * 1[ PHI J[ALPHA][<][Y][STOM]

[EQW] [][0] [ALPHA][<][X] [»] [VAR][ TSI] [<] [<][( )I[ALPHA][<][X]
[SPCI[~][ALPHA][Y][A][A][A] [~][EVAL] [~][ALG][EXPAN][ENTER]
[VAR][~][ * 1[ TSI J[ALPHA][«][X][STOP]

[EQW] [~1[0] [ALPHA][<][Y] [>] [VAR][ PHI ] [<=] [<][( )I[ALPHA][<][X]
[SPC][~][ALPHA][Y][A][A][A] [~][EVAL] [~][ALG][EXPAN][ENTER]
[VARI[~][ * 1[ TSI J[ALPHA][<][Y][STO»]

At this point you will also have variables [TSly], [TSly], [PHIly], and [PHIx], representing Vy,

¥,, ®y, and O,, respectively.

we Let's now check the Cauchy-Riemann conditions:

[VAR][PHIX][TSly], i.e., o®/dx = 0J¥/dy, checks out ok.
[PHIY][TSIx], also, o®/dy = - d¥/0dx, checks out ok.

The function f(z) = Iln(z) is, therefore, analytical, and its derivative can be calculated by
using:

d d 1
4 =—(nz)=—
dz dz z

Use the calculator to obtain this derivative and express it in terms of (x,y) as follows:

[EQW] [][d] [ALPHA][][Z] [»] [~][LNJ[ALPHA][<][Z] [a][a][A] [EVAL] [ENTER]
[10 © 1 [ALPHAJ[][Z] [~][=1[ALPHA][<][X] [+] [<][i] [x] [ALPHAJ[][Y][ENTER]
[~][ALG][SUBST]

The result is “1/(x+i*y)’.

= To find the real and imaginary parts of this function use:

<% Real part: [ENTER][<][MTH][NXT][CMPLX][ RE ], Result: ‘x/(x"2+y"2)’

- Imaginary part: [»1[ IM ][r][ALG][EXPAN] Result:
‘y/(X"2+y"2)’.

EY Finally, check that Re[f’(z)] = o®/dx = d¥/dy, and Im[f’(z)] = Jd/dy = - d¥/dx, by
recalling the contents of variables [PHIx], [TSly], [PHly], and [TSly][+/-]. This last check
verifies the equations obtained earlier for f’(z) using Az = Ax and Az = iAy.

 

Note: Most of the functions that we commonly use with real variables, e.g., exp, ln, sin, cos,

tan, asin, acos, atan, hyperbolic functions, polynomials, inverse, square root, etc., are

analytical functions when used with the complex variable z = x +iy. Thus, the rules of
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derivatives for these functions are the same as in real variables, e.g., d(sin(z))/dz = cos(z),
d(z"2+z)/dz = 2z+1, etc.

 

Multivariate calculus applications in

potential flow
The concepts of partial derivatives and derivative of a complex variable have practical
applications in the analysis of potential or ideal flow in two-dimensions. Ideal flow refers to
the flow of a fluid that has no viscosity (inviscid fluid), while potential flow stands for a flow

whose velocity components are obtained as partial derivatives of a function ¢x,y), called the

flow potential function. Ideal flow and potential flow are synonyms.

Continuity equation

The equation of continuity is the mathematical expression of the law of conservation of mass
for fluid flow. Considering an inviscid, incompressible (constant density) fluid flow in two
dimensions. The equation of continuity for these flows is given by

ou/ox + av/ay = 0,

Where u = u(x,y), v = v(x,y) are the x- and y-components of flow velocity in the plane.

Stream function

Let us define a function y(x,y) such that the velocity components u and v are

u=dy/dy and v = -dy/ ox.

If we replace this function into the continuity equation we have

d(dy/ay)/ ox + d(-oy/dx)/dy = 0,

or

ory/dyox - o*y/oxay = 0,

which is satisfied by any continuous function y(x,y). The function (x,y) is known as the
stream function of the flow.

Curves defined by wy(x,y) = constant are known as the streamlines of the flow. The velocity

vector

q(x,y) = u(x,y)-i+v(x,y) -j

at any point (x,y) on a streamline is tangent to the streamline.

The total differential for the stream function along a streamline (x,y) = constant is
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dy = (dy/0x)-dx + (dy/ady)-dy = 0.

Therefore, the slope of the streamline at a point (x,y) is given by

my = dy/dx = -(dy/ox)/(dy/ dy) = -(-v)/u=v/u.

Potential flow

A flow whose velocity components are obtained from

u = d¢/ox, and v = d¢/ dy,

where ¢(x,y) is a scalar (i.e., non-vector) function, is referred to as a potential flow, and the

function ¢ (x,y) is known as the velocity potential.

If we replace the definitions of u and v into the continuity equation, what results is the
following partial differential equation known as Laplace’s equation:

9*¢/ ox? + o*p/ oy” = 0.

Curves defined by ¢(x,y) = constant are known as the iso-potential or equipotential lines of the

flow. The total differential for the velocity potential along a equipotential line ®x,y) =
constant is

do = (o¢/0x)-dx + (d¢/dy)-dy = 0.

Therefore, the slope of the equipotential line at a point (x,y) is given by

my = dy/dx = -(9¢/ 9x) /(d¢/ dy) = -u/v.

The flow net

The fact that the slope of a streamline is given by my=v/u, and that of an equipotential line is

given by my=—u/v, indicates that at the point of intersection of any two of these lines the lines
are normal to each other. This follows from the fact that

my-Me=(v/u)-(-u/v)=-1,

which is the condition for two straight lines to be perpendicular to each other. In this case the
straight lines of interest are the tangential lines to the streamline and to the equipotential line
at the point of intersection.

A picture of a collection of equipotential lines and streamlines is known as a flow net.

Irrotational flow
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When a fluid particle is subjected to motion it undergoes not only translation, but also suffers
elongation (normal strains), shear strains, and rotation. In two dimensions, you can prove that

the magnitude of the angular velocity of a fluid particle in a flow is given by

® = (av/ox - du/ay).

A fluid flow where the fluid particles undergo no rotation is called an irrotational flow. For

such a flow we have w = 0, or

av/ox - du/ay = 0.

Replacing the velocity components in terms of the stream function (u = Jdy/dy, v = -dy/0dx)

reveals the fact that y (x,y) also satisfies Laplace’s equation, i.e.,

oy/ox? + dPylay? = 0.

Example 1 - Verify that a fluid flow whose velocity components are given by u = x/ (x*+y?), V=-
S70, satisfies the continuity equation and the condition of irrotationality. Also,

determine expressions for the potential function ¢(x,y) and the stream function y(x,y).

Define the functions:

U(x, y)=x/(x"2+y"2) [ENTER][<][DEF]

Vix, y)=-y/ (x"2+y"2) ° [ENTER][+][DEF]

These two operations create the variables[ u ]Jand[ v 1].

Next, type in the continuity equation using the equation writer:

[EQW]
(~1[0] [ALPHA][<][X] [>] [ALPHA][<][U] [][()] [ALPHA][«2][X] [SPC] [ALPHAJ[«<2][Y] [>][»]
[+11(0] [ALPHA][~][Y] [>] [ALPHA][<][V] [=][()] [ALPHAJ[][X] [SPC] [ALPHA][«][Y]

To evaluate the expression

du/ox + av/ay = 0,

enter [A][A][A][A][EVAL]. The result is indeed zero, thus proving that u(x,y) and v(x,y)
satisfy the continuity equation.

The condition of irrotationality is given by the expression,

dav/ox - du/dy = 0.

which, in the equation writer can be set up as

To find the velocity potential we start from u(x,y) = d¢/0x = x/ (x2+y?), which we can integrate

with respect to x to obtain

0(x,y) = [u(x,) dx + F(y) = JerdeFO)

By using
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‘u(x,y)’ [ENTER] Type in ‘u(x,y)’

[~ [EVAL] Obtain the expression defining u(x,y), i.e.
X/ (X"2+4y"2)

‘x’ [ENTER] Type in ‘x’
[<][CALC][DERIV][NXT][RISCH] Integrate with respect to x (indefinite integral)

The result is ‘“1/2*LN(x*2+y"*2)’. In paper, this will be interpreted as (x,y) = ¥a-In(x*+y?) + F(y),
although we do not include F(y) in the expression in the stack.

Next, we use the fact that v(x,y) = d¢/dy. Therefore, let’s take the derivative of the

expression in stack level 1 with respect to y by using:

‘y’ [ENTER] [~][d] Derivative of ‘1/2*LN(x"2+y"2)’ with respect toy
[~][EVAL] To simplify the expression

In paper this means op/dy = y/( ¥+y*) + F’(y). We can now modify this expression in the
calculator as follows:

[v1] [+] [ALPHA][<2][D] [ALPHA][F] [»][»] [][=] [ALPHA][<][V] [+][()]
[ALPHA][<][X] [SPC] [ALPHA][<][Y] [ENTER]
[~1[ “1 [ALPHA][+][D] [ALPHA][F] [ENTER]
[+][S.SLV][ISOL]

Here, dF represents F’(y). Press |~][EVAL] to simplify the expression in the stack, which
results in ‘dF=0’, or, in paper, F’(y) = 0. This implies F(y) = K, where K is a constant. Thus, we
can write

ox,y) = Valn(x*+y) + K.

To find the stream function we start from u(x,y) = Jy/dy = x/ (x*+y?), which we can integrate

with respect to x to obtain

Xx
yxy) = [u(xy)- dy +G(x) =[dv+ G(x).

xX +y

By using

‘u(x,y)’ [ENTER] Type in ‘v(x,y)’
[~][EVAL] Obtain the expression defining v(x,y), i.e.,
X/(X"2+y"2)

‘y’ [ENTER] Type in ‘y’
[+ ][CALC][DERIV][NXT][RISCH] Integrate with respect to x (indefinite integral)

The result is ‘ATAN(y/x)’. In paper, this will be interpreted as w(x,y) = tan(y/x) + G(x),

although we do not include G(x) in the expression in the stack.

Next, we use the fact that v(x,y) = -dy/dx. Therefore, let’s take the derivative of the

expression in stack level 1 with respect to y by using:

‘x’ [ENTER] [—][0] Derivative of ‘ATAN(y/x)’ with respect toy
[]1[EVAL] To simplify the expression

In paper this means dy/dx = -y/ (x2+yP) + G’(x). We can now modify this expression in the

calculator as follows (we need to change the sign of the expression first):
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(v1 [+/-] [+] [ALPHA][<2][D] [ALPHA][G] [»][»] [~][=] [ALPHA][][V] [<][()]
[ALPHA][<][X] [SPC] [ALPHA][«<][Y] [ENTER]
[m1] ‘ ] [ALPHA][<][D] [ALPHA][G] [ENTER]
[<][S.SLV][ISOL]

Here, dG represents G’(x). Press [~][EVAL] to simplify the expression in the stack, which
results in ‘dG=0’, or, in paper, G’(y) = 0. This implies G(y) = C, where C is a constant. Thus,
we can write

y(x,y) = tan™(y/x) + C.

To visualize the flow net for this case, first we need to select values of the constants K and C.

We can stipulate that the point (x,y) = (0,0) belongs to the streamline y = 0, to make C = 0.

Similarly, we can force point (0,0) into the equipotential line ¢ = 0, to make K = 0. The result
for the velocity potential and stream function for these conditions are

x,y) = Yaln(x*+y?) , and (x,y) = tan" (y/x).

The flow net can be drawn by using a Ps-Contour plot as follows:

& Press [<]1[2D/3D], simultaneously to access to the PLOT SETUP window.

+ Change TYPE to Ps-Contour.

Press [¥] and type ‘(1/2)*LN(X"2+Y"2)’ [OK]. This will plot ¢(x,y).

Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the pepnd: variables.

Press [NXT][OK] to return to normal calculator display.

—-
~
+

Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

* Keep the default plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Step Indep: 10 Depnd: 8

# Press [ERASE][DRAW] to draw the contour plot. It is going to be slow and take some
time, so be really patient here.

+ When the graph is finished, press [CANCL][ON], and then, press [«2][2D/3D],
simultaneously, to access to the PLOT SETUP window.

+ Press [¥] and type ‘ATAN(Y/X)’ [OK]. This will plot ¢(x,y).

# Press [DRAW] (no ERASE here) to complete the flow net picture. Again, this is going to
take some time.

4 Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:
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= Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

“Press [ON], or [NXT][OK], to return to normal calculator display.

Complex potential and complex velocity

The complex function

F(z) = oxy) + iy(x,y)

is referred to as the complex potential of the flow.

Recalling that the derivative of this complex function can be written as

dF/dz = d¢/ dx+i-0y/ dx=0y/ dy-i-d¢/ dy,

and from the definition of the velocity components u and v, it follows that dF/dz, referred to

as the complex velocity, w(z), contains the velocity components in its real and imaginary parts.
The complex velocity is written as

w(z) =dF/dz=u-iwv.

Thus, u = Re(w), and v = -Im(w).

Elementary two-dimensional potential flows

Because the equations governing the potential flow phenomena are linear equations (Laplace’s
equation), you can obtain the complex potential of a flow by adding the complex potentials of
elementary flows. In this section we present the complex potentials of some elementary flows
such as uniform flow, source and sink, vortex, and doublet. The last three are known as

singularity flows since the velocities go to infinity at the location of the singularity generating
the flow. A doublet is simply the combination of a source and a sink of the same strength that
are infinitesimally close to each other. The strength of a singularity is a measure related to
the flow discharge into a source or out of a sink, or to the angular velocity of a vortex.

The following are the complex potentials for these elementary flows:

Uniform flow with streamlines parallel to the x-axis: F(z) =

Uz

Source (m>0) or sink (m<0) of strength m located at (0,0): F(z) =

m-ln z

Vortex of strength G (G>0, counterclockwise) at (0,0): F(z) =iGlnz

Doublet of strength pu (nu >0, if sink is located to the left of source in the doublet): F(z) =

u/'z

We can obtain the velocity potential and stream function of any of these flows by using

¢0 = Re[F(z)] and y = Re[F(z)].
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Note: The following example illustrates a conflict in working with symbolic expression that
involves complex numbers. Follow it carefully to understand how to trick the calculator in

giving us the right result.
 

Example 1 -- To find the real and imaginary part of F(z) = In z, a source flow with strength m =
1, you could try entering the expression ‘LN(x+i*y)’, however, the RE and IM functions will not
produce any meaningful result. Using the polar representation of the complex variable z = re'®
proves more successful. Thus, enter:

‘LN(r*EXP(i*0))’ [ENTER] Enter the expression to be decomposed
[][TRIG][NXT][TEXPA] Expand the expression to ‘LN(r)+LN(EXP(i*8))’
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

The result produced is simply the expression RE(LN(r))+RE(LN(EXP(i*0)))’, and no further
simplification is possible. You may wonder why that is so, particularly, when it is known that
the functions LN and EXP are inverse functions. The reason is the following:

= In order to use the term i*6 in the expression, somewhere along the line, you had to
select the complex mode for your calculator’s CAS. (This is unavoidable, since you are
using the unit imaginary number i in the expression.) Once you are in Complex mode,
however, if you try to evaluate a symbolic expression, the calculator assumes that any

variable involved (such as r or 6 in this case) may be a complex variable. Since the
functions LN or EXP when applied to a complex variable do not operate the same way as
when applied to a real variable, the calculator simply refuses to simplify further any
symbolic expression when the CASis set to Complex mode.

How do we solve this problem? You trick the calculator by replacing the term i*0 with 0 while
clearing the complex mode as follows:

[11[01[31[+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)

‘LN(r*EXP(i6))’ [ENTER] Enter the expression to be decomposed
[][TRIG][NXT][TEXPA] Expand and simplify the expression

The result is, as expected, ‘LN(r) + ©’. To continue the calculation, we need to introduce a *

sign between the i and the 6 in the expression, by using:

[VI[EDIT][~][»][«][«][X][ENTER][ENTER] Insert * sign
[ENTER] Make an extra copy of the expression
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

Select complex mode when asked. The result is ‘RE(LN(r))’. Again, we have the same

situation as above, the complex mode is required because the original expression included the
unit imaginary number i. However, once the complex mode is selected, the calculator assumes

that r could be a complex variable and cannot simplify the expression RE(LN(r)) any further.
Clear up system flag 103 once more and evaluate the expression currently in stack level 1:

[11[0][3][+/-1[SPC] [ALPHA] [ALPHA] [C][F][ENTER] Clearsystem flag 103 (Complex)
[~][EVAL] Evaluate ‘RE(LN(r))’ > ‘LN(r)’

Now, let’s find the imaginary component of ‘LN(r)+i*@’ by using:

[CI[A]MTH]INXTI[CMPLX][ IM 1] Drop level 1, find imaginary part
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You are required again to change the mode to Complex, resulting in ‘IM(LN(r))+8’. We are
faced again with the same conflict resulting from selecting complex mode. To fix it, clear
system flag 103 again and evaluate the expression:

[1][01[3][+/-]1[SPC][ALPHA][ALPHA][C][F][ENTER] Clearsystem flag 103 (Complex)
[~][EVAL] Evaluate ‘RE(LN(r))’ © ‘LN(r)’

The result is ‘0’. Thus, we have ¢ = Re[F(z)] = In(r), and y = Im[F(z)] = 6.

 

 

Note: This example is relatively simple, however, it served the purpose of illustrating a

possible conflict when using Complex mode and symbolic expressions.
 

Example 2 - Find the velocity potential and stream function for the complex potential F(z) =
Uz+m/z.

Use:

‘U*LN(z)+m*z’ [ENTER] ‘z =r*EXP(i6)’ [ENTER] Enter F(z) and z = r-e'®

[~1[ALG][SUBST] [NXT][TEXPA] Substitute z and expand expression

‘i6 = i*0’ [ENTER] [~][ALG][SUBST] Replace i 6 with i*0
[EXPAN] Expand products in expression
[NXT][TEXPA] Try to expand term EXP(i*6)

TEXPA fails to expand the term EXP(i*0) as part of the overall expression. We will have to

replace it on our own by using Euler’s formula EXP(i*0) = COS(0) + i*SIN(0) as follows:

[v] Trigger the equation writer

[YIIYI[VYI[>1»1[Al[A][A] Select term EXP(i*0)
[EDIT] Trigger line editor

Edit the term ‘EXP(i*0)’ by using the right- left-arrows [4] [»], as well as the backspace arrow

[<1], until it has been replaced by the expression ‘COS(0) + i*SIN(6)’. When done press

[ENTER][ENTER] Enter expression and return to stack
[ENTER] Make extra copy of the expression

[11[01[3][+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

The Complex mode is forced again upon us, so try the following:

[11[01[3][+/-]1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[][EVAL] Evaluate expression

The result is ‘r*m*Cos (8) +U*LN(r)’, i.e., the velocity potential, ¢ = Re[F(z)], is

or, 8) =mr-cos 8 +Ulnr, or, &x,y)=mx + Uln (x2+y?)'2.

To find the stream function, y = Im[F(z)], use:

[][MTH][NXT][CMPLX][ IM ] Find imaginary part of expression

Complex mode warning again! Don’t loose your temper, here is how to handle it:
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[1][01[3][+/-][SPCI[ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[m]1[EVAL] Evaluate expression

The result is ‘r*m*sIN (0) +6*U’, i.e, the velocity potential, y = Re[F(z)], is
y(r,0) =mrsin® +U- 0, or, wy(x,y)=my+ Utan™(y/x).

Example 3 - For the complex potential used in Example 2 obtain expressions for the

components of velocity u and v.

Enter:

‘U*LN(z)+m*z’ [ENTER] ‘z ’ [ENTER] [][0] Enter F(z) and z , obtain w = dF/dz =
U/z+m

‘z=x+i*y’ [ENTER][~][ALG][SUBST][ENTER] Substitute z = x + iy, make extra copy
[<][MTH][NXT][CMPLX][ RE ] Find real part of expression

[11[01[3][+/-]1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[~][EVAL] Evaluate expression

The result is ‘(x*U+(x"2+y"2)*m)/(x"2+y"2)’. This expression can be simplified further by using

the command PARTFRAC:

[CAT][ALPHA][P] (find PARTFRAC) [OK] Expand into partial fractions

The final result is ‘x/(x"2+y"2)*U+m’, i.e.,

u(x,y) = x-U/ (x2+y?)+ m.

To obtain an expression for v(x,y) = - Im(w), use:

[C1[][MTH][NXTI[CMPLX][ IM ] Drop level 1, find imaginary part

This requires us to select the Complex mode. To clear up the result use:

[11{01[3][+/-1[SPC][ALPHA][ALPHA][C][F][ENTER] Clear system flag 103 (Complex)
[P][EVAL][+/-] Evaluate expression, change sign

The result is ‘y*U/(x"2+y"2)’, i.e.,

v(x,y) = y-U/ (x+y?) + m.

Plotting the complex potential

To plot the real and imaginary parts of the complex potential you can use the Gridmap type of
plots, which require as input a complex function.

For example, to produce a Gridmap plot for the function F(z) = 1/z, use the following:

4 Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

* Change TYPE to Gridmap.

4 Press [¥] and type “1/(X+i*Y)’ [OK].

4 Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the pepnd: variables.
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= Press [NXT][OK] to return to normal calculator display.

w= Press [<][WIN], simultaneously, to access the PLOT WINDOW screen.

we Change the plot window ranges to read:

X-Left:-2 X-Right:2

Y-Near:-1 Y-Far: 1

XXLeft:-2 XXRight:2

YYNear:-1 yyFar: 1

Step Indep: 10 Depnd: 8

“Press [ERASE][DRAW] to draw the gridmap plot. The result is a grid of functions
corresponding to the real and imaginary parts of the complex function.

= Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:

 

 

 

  
The graph shows the equipotential lines and streamlines of the doublet flow F(z) = 1/z.
Because there is a singularity at z = 0 (i.e., 1/z is not defined at z = 0), the calculator avoids

plotting lines near the origin.

% Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

# Press [ON], or [NXT][OK], to return to normal calculator display.

Complex potential for combinations of elementary flows

When we add complex potentials of elementary flows we can obtain the picture of more
complicated flows. Some of those combined flows are presented here.

Example 1 - Find the velocity components for the combination of two sources both of strength
m = 1, one located at x = -1 (source s;), the other at x = +1 (source s;). The complex potentials

corresponding to the two sources are

Fi(z) = In (z +1), F2(z) = In(z-1).

The combined complex potentialis

F(z) = F1(z) + Fo(z) = In (z +1) + In(z-1).

Use:
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‘LN(z+1)+LN(z-1)’[ENTER] ‘z’ [ENTER] [—][d] Calculate w = dF/dz
‘z = x+i*y’ [ENTER] [~][ALG][SUBST][ENTER] Substitute z = x + iy, make extra copy
[<][MTH][NXT][CMPLX][ RE ] Find u = Re(w)
[¥] (using small font) Show expression in equation writer

 

EDIT] CURSEIGEVAL[FACTOITERFA    
To obtain the component v(x,y), use:

[ENTER][<][ IM ] Obtain imaginary part
[¥] (using small font) Show expression in equation writer

 

EDIT CUR:EIG EVAL [FRCTOJTERFH

Press [ENTER] to return to normal calculator display.
   

Example 2 - Sketch the flow given by the combination of a uniform flow with U = 1, and a
doublet with strength u=1, i.e, F(z)=z-1/z.

4 Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

+ Change TYPE to Gridmap.

Press [¥] and type ‘(X+i*Y)+1/(X+i*Y)’ [OK].

Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.

*

#% Press [A][NXT][CALC][~][EVAL][OK]

*

* Press [NXT][OK] to return to normal calculator display.

~ Press [<1][WIN], simultaneously, to access the PLOT WINDOW screen.

Change the plot window ranges to read:
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X-Left:-4 X-Right:4
Y-Near:-2 Y-Far: 2

XXLeft:-4 XXRight:4

YYNear:-2 yyFar: 2

Step Indep: 20 Depnd: 16

we Press [ERASE][DRAW] to draw the gridmap plot. The result is a grid of functions
corresponding to the real and imaginary parts of the complex function.

“Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges:

 

 
       
               

 

 
 

The graph shows the equipotential lines and streamlines of the combination of a uniform flow

(U=1) and a negative doublet of strength u = 1 (i.e., the source is located to the left of the sink

in the doublet on the x-axis). The graph on the right-hand side has been modified by
shadowing the region within a circle of radius 1, which happens to constitute a closed
streamline. (Note: this was not done in the calculator). For all practical purposes you can
replace the flow within the closed streamline with a solid body, in this case a cylinder. Thus,
the combination of this uniform flow and negative doublet produces the flow net corresponding
to a uniform flow U = 1past a cylinder of radius 1.

Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

Press [ON], or [NXT][OK], to return to normal calculator display.

A word of warning on plotting combined flows in the
calculator

While the calculator can be used to produce flow net graphics, the user should be warned that
the more complicated the complex potential, the longer it will take for the calculator to
produce a graph. Also, functions such as ‘LN(X+i*Y)’ seem to behave strangely when producing

graphs. My advice is to use these graphs as guidelines only, and only for simple flows. A

different approach will be to obtain the velocity potential and stream functions separately, and
to plot them, separately, as contour plots. Such approach is left as an exercise to the reader.
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Multiple integrals

Integrals of one variable were interpreted earlier as representing the area under the curve y =
f(x), a<x<b. A double integral can be interpreted as representing the volume under the surface
Z = f(x,y) over a region R in the x-y plane. The figure below shows an element of that volume

in the shape of a parallelepiped of base, dA = dx-dy, and height, f(x,y). The differential of

volume is dV = f(x,y)-dA = f(x,y) dy-dx.

The total volume is given by the double integral,

[Jav =]rx yda =|]fe ydyax,
R

The region R over which a double integral is calculated can be described, in general, by the

following inequalities: R = {a<x<b, g(x)<y<h(x)}, or R = {c<y<d, p(y)<x<q(y)}, as illustrated in
the figures shown two pages ahead.

 

 

 

  
 

Having identified the limits for x and y that describe the region, the double integral

[Jreyydyax,
R

can be calculated using an iterated integral of the form

b h(x)

flx,y) dy dx

a gx)
or of the form
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d .q(y)
fix, y)dx dy.

c p(y)

The last two integrals are known as iterated integrals because you integrate one level at a
time. For example, the iterated integral

b h(x)

fix, y)dydx

a g(x)

Is typically calculated by integrating f(x,y) with respect toy, first. Which results in a function
of x, only, i.e.,

h(x)

Sey)dy = F(x).
g(x

Then, this function of x is integrated with respect to x within the limits a and b:

[Feds =[[Ifx.y)dya
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Calculating a double integral in the HP 49 G
calculator

To calculate a double integral in the HP 49 G calculator, we can proceed by integrating one

level at a time, as in the following example:
Let's calculate

Ve
[ [ xvdydx

Use the following:

[EQW] [][[] [ALPHAJ[<][X] [»1[ALPHA][<][X][y*1(2] [>]
[ALPHA][<][X][X][ALPHA][<][Y] [»] [ALPHA][<][Y]

[> ][EVAL]

The result is

 

To proceed to the next level of integration try this:

[P1011 [01>] [1] [»1[»1[»1[»1[»]1[»] [ALPHAJ[<][X]
[a][A][EVAL]

The result is -1/24.

You could also type the double integral directly in the equation writer as:

(EQW] [~]0 J] [01[»] [1] [>] [~][ J] [ALPHA][][X] [> ][ALPHA][~][X][y*](2] [>]
[ALPHAJ[—][X][X][ALPHA][ ~][Y] [>] [ALPHA]I[<][Y] [>] [ALPHA][<][X]

The equation writer will now look like this:

 

1
2

x
xydy dx+

x
Ja

[E0ITCURSBIGEVAL[FHCTO[TERPH   
To evaluate the double integral use: [A][A][EVAL]

The result is -1/24.

100 © 2000 Gilberto E. Urroz

All rights reserved



 

Note: If the region of integration is a rectangle in the x-y plane defined by a<x<b, c<y<d, and if
the function to be integrated is such that f(x,y) = g(x)h(y), then

['[ 1Ceyydyas =[* g(ooh(y)dyds <{[(asJ[hay|
 

Check the result shown in the note above by calculating:

[Jeptrmnasiy o{[may)([exoenas
The left-hand side of this equation is calculated by using:

(EQW] [IJ] [11>] [2] [>] [107] [110+/-100] [11]]
[<](e*][ALPHA][<][X] [A][A] [X][~][LNI[ALPHA][][Y]

[>] [ALPHA][][Y] [>] [ALPHA][<][X]

The double integral to be calculated looks like this in the equation writer screen:

 

2
1

|  ERPOOLNCdx du

1

EOITCURS[EIGEVAL[FRCTOITERPA]   
To evaluate this double integral use: [A][A][EVAL]. The result is

(2In2-1exp(1)’ —=(2In 2-1)

exp(1) |
 

To simplify the result use [~][->NUM]. The final result is 0.907947188573.

The right-hand side of the equation above can be calculated as follows:

[EQW] [~1L 11 [1]1[»] [2] [»] [= ][LN][ALPHA][][Y] [>] [ALPHA][<][Y] [A][A][x]
[~10] [110+/-10»] [11> 10 <1[e* [ALPHA] [<][X] [>] [ALPHA][<][X]

The product of the two integrals will look as follows in the equation writer screen:

 

2 1
| LHedy |eredx

   EdETEBDETNEEREE
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To evaluate this product of integrals: [A][A][A][EVAL]. The result is now

212 —1)exp(l)exp(l) —=(2In 2-1)

exp(1)
 

To simplify the result use [~][>NUM]. The final result is, again, 0.907947188573.

Area properties in Cartesian coordinates using double integration

Double integration somewhat simplifies the calculation of area properties in two dimensions by
identifying a generic element of area corresponding to a particular coordinate system. For
example, the figure below identifies the typical element of area in Cartesian coordinates that
is used for calculating double integrals. The area of this infinitesimal area is dA = dx-dy.

 

y

dh = dz dy
Xef

dy [1] —5
dx

g

l .
Having identified this differential of area we can re-write any generic double integral over a
region R as an iterated integral once the limits of integration are determined. Typically, in

Cartesian coordinates, the region of integration R will be described as

   
 

R={a<x<b, g(x) <y<gix)}

or as

R={c<y<d, hi(y) <x <2(x)}.

Thus, the double integral [|z f(x,y) dA can be written in any of these two forms:

PIEfandvae, or [5f(x,y ydady21 (x) 1 (x)

Area properties can be calculated by replacing the function f(x,y) with different expressions as
indicated below:

+ Area A= lr da, i.e., f(x,y) = 1.0.

“First moment with respect to the y-axis M, = [lr x-dA, i.e. f(x,y) = x.

“& First moment with respect to the x-axis My = [lg y-dA, i.e., f(x,y) =.
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Coordinates of the centroid X=My/A, y=M/A

Momentof inertia with respect to the y-axis I, = [lr x*.dA i.e., f(x,y) = x.

“Moment ofinertia with respect to the x-axis Ix = flr y*-dA, i.e. f(x,y) = y%.

= Moment of inertia with respect to the origin lo = [lr (x+y?) -dA i.e., f(x,y) = x%+

= Radii of gyration of the area with respect to the x-axis, y-axis, and origin:

ky = (I,/A)Y2, ke = (I/A)"2, and ko = (l,/A)"2.

Example 1 -- Consider the area defined by the semi-circle R={-R <x <R, 0 <y < (R%-x%)""2 }.
Determine the area, first moments, and moments of inertia of the area by using integration.
Also, determine the coordinates of the centroid and the radii of gyration.

The way that the region R is described is such that in the generic formulas developed above we

can identify a = 0, b = R, g1(x) = 0, and g2(x) = (R*-x*)"/2. To simplify typing the formulas in
the calculator define the following variables:

[~][ * 1 [ALPHAJ[RI[+/-] [~][ * ] [ALPHA][<][A] [STOP]
[~1[ * ] [ALPHA][R] [ENTER] ] [~][ ‘ ] [ALPHA][<][B] [STON]
[0] [~][ * ] [ALPHA][<][G][1]
LeonRe [ALPHA][R] [y*1[2] [»]1[-] [ALPHA][][X][y][2] [ENTER] [~][ * J[ALPHA][<][G][2]

>

Next, we will show you how to evaluate, step-by-step, the generic equations that you will be
entering in your calculator using as example the evaluation of the area. Type the following
double integral:

 

b
az

A= 1dy dx
al

a

EDIT] CURSBIGEVAL[FRCTOITESP  
 

The screen above shows the way the double integral looks after you typed the x in dx. First,
let’s replace the generic integration limits a, b, g1, and g2, with their current definitions,

using the following:

[»1[Y]1[EVAL] Replaces a with -R
[»][EVAL] Replaces b with R
[»1[Y]1[EVAL] Replaces g1 with 0
[»][EVAL] Replaces g2 with V (R%-x?)

Next, we will evaluate the innermost integral by using:

[»][A][EVAL] Select innermost integral and evaluateit, resulting in V (R%-x?)
[A][EVAL] Select innermost integral and evaluate it, resulting in the
expression:
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FU ETHCHADETERED   
Because this is a symbolic expression, the calculator returns a generic result including the term
ASIN(R/|R]), which allows for R to be a positive or negative real number, or even a complex

number. We are interested, however, in the specific case in which R is real and R >0, which

makes |R| = R. Thus, we will replace |R]| by R, in the current expression, and re-evaluate it as

follows:

[vip1iviiviiel Move cursor about expression to select term

IR]
[EDIT] Trigger the line editor

(Pl][d[e][[e][C][<][<] Edit ‘ABS(R)’ to read ‘R’
[ENTER] Return to equation writer screen
[A][A][EVAL] Select the term ASIN(R/R) and evaluateit

The final result is A = R%(1/2), as expected for a semicircle. Press [ENTER] and keep this
result in the stack for future use.

The next integral to be calculated is

 

b
a2

My= xdy dx+
al

a

ETETEEEETNESEET   
You can proceed step-by-step as in the previous integral, or simply select and evaluate the
entire double integral, by using [A][A][EVAL]. While the calculatoris evaluating the
expression selected you will see the small hourglass icon active at the top of the screen. It
takes the calculator about 20 seconds to produce the result: My = 0. Press [ENTER] and keep
this result in the stack for future use.

 

b
az

Mx= ydu dx
al

a

E0ITCURSLEIGEVAL[FACTOITERPA]   
Let’s evaluate the next integral, i.e.,

Press [A][A][EVAL] to evaluate the double-integral at once. The result is Mx = 2-R*/3. Press
[ENTER] and keep this result in the stack for future use.
The next integral to be calculated is the moment of inertia with respect to the y axis:

 

a2 2
Iy= x dy dx

Jat

  EOIT] CURE[BIGEVAL [FACTO[TERFA]
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Let’s evaluate this integral step-by-step by using:

[»]1[Y][EVAL] Replaces a with -R
[»][EVAL] Replaces b with R
[»]1[Y][EVAL] Replaces g1 with 0

[»][EVAL] Replaces g2 with V (R%-x?)
[> 1[A][EVAL] Select innermost integral and evaluate it, resulting in x*V (R?-
x")
[A][EVAL] Select innermost integral and evaluate it, resulting in the
expression:

 

 

EEETECHOETNEROE   
which includes the term ASIN(R/|R|). Here is another way to replace this term with 2, by
using a substitution:

[vivir] Select the term ASIN(R/[R]).

[1 | 1[ALPHA][R][»][1] Insert evaluation at R = 1 in the term ASIN(R/|R]).
[A][A][EVAL][EVAL] Replaces ASIN(R/ |R|)|gr-1 with /2.

[A][A][EVAL] Re-arrange result to ly = R*n/8.
[ENTER] Keep this result in the stack for future use.

The last integral to evaluate is
 

a2

Ix= y dy dx+¢
al

a

[EDITCURSEIGEVAL[FRCTOITERF  
Evaluate the double integral at once by using [A][A][EVAL]. The result is
 

 

  EDIT {HT 

Use any of the methods shown above to replace ASIN(R/|R|) with n/2, and simplify the result

to ly = R*“n/8. Press [ENTER] to keep this result in the stack.

Your stack should now look like this:
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RAD HVZ HEX R= ‘YK’
{HONEY

  

3 Rape

3: 'Mx=2%R~3/3"3: Tg=Rndsn/G!
1: ' Ix=R"4¥n/8'
[FRINI[CASINIRERLAla |b |a1 |
 

To calculate centroidal coordinates and radii of gyration you can use the following:

[5]1[<][PRG][LIST][>LIST][ENTER] Place all results in a list, making extra copy
[ELEM][NXT][TAIL] Reduce list to My, Mx, ly, Ix only
[»][HEAD] Swap lists, and isolate value of A from list in stack level
1

+ Divide list in stack level 2 by value of A in stack level 1
[][EVAL] Separate elements of list

The result in stack level 1 is Ix/A, press [~][EVAL] to simplify the right-hand side of the

current equation, resulting in ‘Ix/A = R*2/4’. Press [Vx] to obtain the radius of gyration, ky, in
the right-hand side of the equation, and press |~][EVAL] to simplify the expression further.
Because we are working with a symbolic result, you will see a couple of ABS functions inserted
in the result. Since we restrict ourselves to real positive values of A and R, the actual result

should be ky = R/2. Press [<] to drop this result from the stack.

To obtain the radius of gyration k, use [~][EVAL] [Wx] [~][EVAL]. The result, after ignoring
the absolute values, is ky = R/2. Press [¢] to drop this result from the stack.

The result currently in stack level 1 is the y-coordinate of the centroid, y. To evaluateit,

simply use [][EVAL]. The result is y = ‘4*R/(3*n)’. Press [<] to drop this result from the
stack.

The final result left in the stack is ‘My/A=0’, which produces x = ‘0’.

Mass properties of thin plates using double integration

If we think of a region R in the xy plane as representing a plate of uniform thickness Ah, we

can take f(x,y) = p(x,y)-Ah, where r(x,y) is the density (mass/volume) of the material n the

plate. The function f(x,y) represents an areal density of the plate’s material (mass/area).

Thus, the mass of the plate can be calculated as

m = flr f(x,y) dA = [lr p (x,y)-Ah dA.

To simplify the notation we can take Ah =1.0, and simple replace f(x,y) = p(x,y), specifying an

areal rather than volume density for p(x,y). Using such notation, we can work in terms of mass,

rather than area, properties of a plate. A differential of mass will be defined as

dm = p (X,Y) dA,

Thus, we can define the following quantities:

2 Mass m = [lx dm = [lg p(x,y) -dA,

= First moment with respectto the y-axis My = [lr x-dm = [lr x- p(x,y) -dA,

+ First moment with respect to the x-axis My = [lr y-dm= [lk y- p(x,y) -dA,

106 © 2000 Gilberto E. Urroz

All rights reserved



= Coordinates of the centerof mass X = My/m, y =M./m

= Moment of inertia with respect to the y-axis |, = fl x2dm = [ly x2 p(x,y) -dA

= Moment of inertia with respect to the x-axis « = Ilr v2 dm = [lg y- p(x,y) dA,

“Moment of inertia with respect to the origin lo = [lk2+ y?) -dm = [lr (<*+ y*)- p(x,Y)
-dA

we Radii of gyration of the plate with respect to the x-axis, y-axis, and origin:

ky = (I,/m)"2 ke = (I/m)"%, and ko = (l,/m)"’2.

Example 2 -- Consider the triangle defined by R={0 <x <B, 0 <y < (H/B)x }. Assume that the
triangle represents the face of a plate of constant thickness so that the areal density

(mass/area) of the material is given by p(x,y) = x + y. Determine the mass of the plate, the

first moments, and moments of inertia with respect to the two axes. Also, determine the

coordinates of the plate’s center of mass and the radii of gyration of the plate with respect to
the x- and y-axes.

Following the generic definition of the region R, given earlier, we identify a=0, b = B, g; = 0,

g, = H*x/B, and are given the value p(x,y) = x + y for the material's areal density. We can
store all these values and functions in memory as follows:

[0] [~1[ “ ] [ALPHAJ[<][A] [STO»]
[~1[ * 1 [ALPHA][B] [ENTER] ] [~1[ “ ] [ALPHA][<][B] [STON]
[0] [10 “ 1 [ALPHA][<][G][1] [STON]

[EQW] [ALPHA][H] [x] [ALPHA][<][X] [>] [+][ALPHA][B] [ENTER] [~1[ * 1[ALPHAI[<][G][2]
[STOP]
[EQW] [][CHARS] (select p) [ECHO1] [«][( )] [ALPHA][+][X] [SPC] [ALPHA][<][Y]
[>1[~1[=][ALPHA][<1[X] [+][ALPHAI[<][Y] [ENTER] [+][DEF]

Then, enter each of the following integrals in your calculator, and evaluate and simplify them

using techniques similar to those presented in the previous exercise:

 

 

92 az a2
m= | POx,4)dy dx My= xP(x,u)dy dxe Mx= p(x,y)dy dx4

gl al a al
a

    
 

Aa HECRDEENTEDEE EE ETE EDENEEEE EUIT]CURSBIGEVALJFRCTOITERFH

| b b
| a2 5 92 2

| Iy= x p(x)dy dx Ix= uy p(x,u)dy dx
al al

a a

| EAETEEO EN EISEET E0IT]CURSEXEVALJFRCTO[TERFH
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After evaluating each of the integrals, press [ENTER]. When finished, you should have the
following (factorized) expressions in your stack, shown here in small font:

 

EAD WYZ HEX F= 'R'
HOME>
 

'H=BxHx (3=<E+H) ~ (I=)
Hus"2xHx (axel) ~273 7

'Hx=ExH"ax (IxE+AxHi ~ (3x32*3])"'
"TYE3IxHx (AxE+H) #1 (5x3) '

1: "Ix=ExH2x (YxE+IxH)~ (5x3I=x2"2)"

IE3©(oF(TTET
R
A
E
N

™
|
r

  
 

To calculate center-of-mass coordinates and radii of gyration you can use the following:

[51[<][PRG][LIST][->LIST][ENTER] Place all results in a list, making extra copy
[ELEM][NXT][TAIL] Reduce list to My, Mx, ly, Ix only
[»][HEAD] Swap lists, and isolate value of A from list in stack level

1

[+] Dividelist in stack level 2 by value of A in stack level 1
[~][EVAL] Separate elements of list

[~]1[EVAL] Right-hand side = ky? = ‘(4*H"2+3*H"3)/(20*B+10*H)’
[<]1[~][EVAL] Right-hand side = ky® = ‘3*B"2/5’

[<1]1[EVAL] Right-hand side = x = ‘(3*H*B+H"2)/(8*B+4*H)’

[<1][EVAL] Right-hand side = x = ‘3*B/4’

Double integrals in polar coordinates

In general, the double integral [lz f(x,y) dA can be visualized as the volume of the solid
contained between the x-y axis and the curve z = f(x,y) and whose base is the region R in the x-
y plane. To emphasize that we are dealing with the Cartesian coordinates system (x,y,z), we

replace R with R(x,y) in the double integral, and write it as [lxx.y) f(x,y) dA. Since any region
R(x,y) in the xy plane in Cartesian coordinates can be transformed into a region R*(r,0) in
polar coordinates through the transformations

X=rcos6,y=rsin6,

we should be able to write the double integral in polar (cylindrical) coordinates as

[Re(ro) f*(r,0) dA .

In this expression, the function f*(r,0) is the function that results from replacing the proper
coordinate transformations in f(x,y), and dA is a differential of area in polar coordinates as
shown below.

The polar differential of area incorporates an increment in the radial direction, dr, as well as

the corresponding increment, rd0, in the transversal direction. This element being nearly

rectangular, its area is approximated by

dA =(r-d0 )-(dr)=r-dr-de.
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Thus, the double integral can be written as

[Re(co) F*(r,8) dA = [[+ (rp) f*(r,8) -r-dr-de.

If the region of integration in the r- 6 plane is described as R*(r, 8) = {a <0 <b, ry(8) <r < ry(8)
} , then the double integral in polar coordinates can be written as the following iterated
integral

[sens [12s00rrar-ao
R*(rB)

Thus, double integrals in polar coordinates need to include the term r n their integrand in

addition to the function f*(r,0) that is being integrated.

 

 

 X  
 

Example 1 - Calculate the integral of f(r,0) = re” on the region R*(r,0) = {0< 6 < n/4, 0<r < 1-

sin6}.

Start by typing in the integral shown below in the equation writer (small font):

 

L
z

1-£INnC8)

(FERFCEDTr dr ded
0

  HH]
 

As you can see, the function to integrate r EXP(0) is multiplied by r, as required by the

definition of dA;g. To see the integration step-by-step, use:

[Al[A][»][»][EVAL] Highlight and evaluate innermost integral
[FACTO] Factorize the resulting expression
[A][EVAL] Highlight and evaluate the remaining integral

Give the calculator some time to obtain the following result:
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  HEE THEEADETNEREE
 

The Jacobian of a coordinate transformation

When expressing a double integral in Cartesian coordinates we used dA = dx-dy. Notice that in
this case the area of the infinitesimal element is the product of the increments in the

independent variables, dx and dy. Suppose that we want to emphasize the use of the xy
coordinates by writing dA,, = dx-dy. Similarly, in polar coordinates we may want to write a
polar differential of area consisting of the product of the increments of the independent
variables as dA,;g = dr-d8. If we use this notation, then the double integrals in Cartesian and

polar coordinates are related by

fro) FOGY)-dx-dy = flrpxy) FOGY) dAxy = lreeg) F5(r,0) -r-drd® = [lge(rp) £*(r,0) -r-dAe.

Thus, the relationship between the differentials of area in x-y and r-0 is

dA, =r-dAce.

This latter relationship is used to convert the differential of area in Cartesian coordinates to an
equivalent expression in polar coordinates.

Suppose that you use other system of coordinates, say ¢—y, where ¢ = ¢ (x,y) and y = vy (X,Y),
whose differential of area is defined as dA,, = d¢dy. The relationship between the differential
of area in Cartesian coordinates, dA,,, and dA, will be given by

dA,=Man
 

x,y
(52 dA,

where the quantity between the absolute value sign is referred to as the Jacobian of the
coordinate transformation (x,y) > (oy). The Jacobian is defined by the following

determinant:

 

ox Ox

s=[22)- 2 dy (=HHe)2)
ow (9 | (99 )\ow |ow 9¢

ap Jy

Using the Jacobian, the following relationship exists between the double integral in Cartesian
x-y coordinates and in the transformed coordinate system ¢—y:
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[[ ray da, = [[fr@.wylJ|d4,
R(x,y) R (9 yw)

In this equation, f*(¢,y) represents the function f(x,y) with the transformation x = x(¢,y), y =

y(¢,y) incorporated. Also, R*( ¢,y) is the region in the ¢—y plane corresponding to region R(x,y)

in the x-y plane.

To illustrate the use of the Jacobian, let’s select ¢ =r and y = 0 , i.e., we want to calculate

the Jacobian corresponding to the transformation of coordinates from Cartesian to polar. We

know that the two systems of coordinates are related by x(r, 0) = r-cos 0, y(r, 8) = r-sin 0.

  

ox Ox
= 3g _|cos6 —r-sino

J=Jg| 2X |=for 00° TEREst4 rsin?0 =r (cos? 0 + sin 6) =r
r,0 dy 9y| sn r-cosf

Jar 26

Therefore, the Jacobian is calculated as

Thus, |J|=r, and

[| reewy-ad, = [[£*00)r-dd,.
R(x.y) R'(r.0)

Jacobian functions can be obtained for any coordinate transformations in systems of three or
more coordinates. Thus, a generalized definition of the Jacobian corresponding to the
transformation

(X1, X2, «ey Xn) 2 ($1, O02, «oy On), iS

 

  

  

dx, Ox ox,

a9, a9, a9,

dx, Ox, ox,
J=J XX,X, _ 30 3. ... 30.

?,0,,....90, a 2 . On

ox, Ox, ox,

a9, 99, 99,

The n-multiple integral of a function f(xy, Xz, ..., X,) over a “region” R(xq, Xz, ..., X,) that gets

transformed into a function f*(¢y, ¢,, ..., $5) over the transformed “region” R*(¢y, ¢2, ..., On)

will be written as

[[femymnxydx, dey de, = [Jf *@0.00000,)] J | 40, - do, dg,.
R(x; X30Xp) R*($y.020)
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A program for calculating the Jacobian of a
transformation

The following program can be used to calculate the Jacobian of the transformation

(x1, X2y weep Xn) > (dn, 02, eee) On),

given the vectors f and x

[“X1(¢n, 02, eee) dn)’ ‘X2(tn, 02, eee) On)’ ee “Xn(dr, 02, eeey on)’

[‘xs’, ‘Xz,’ eeey ‘Xn’]

The listing of the program is the following:

Program JACOBIAN:

<< Start main program JACOBIAN
DUP SIZE EVAL Obtain value of n (size of vector [‘x{’ ‘x3’ ...‘X,'])

2 fxn Pass vectors f and x, and value n

<< Start first sub-program within JACOBIAN
nn2->LISTOCON > J Create nxn matrix filled with zeroes, pass it on

as J

<< Start second sub-program within JACOBIAN

1n FOR Start first FOR loop withi=1,2, ..., n

1n FOR] Start second (interior) FOR loop with j = 1,2, ...,

n
ij2 LIST Create list { i j} for future use
Fi GET x j 0 GET EVAL EVAL Calculate of;/ 0x;

2 LIST J SWAP EVAL PUT ‘J’ STO Place of;/ 0x; in element (l,j) of J, store new J
NEXT End inner FOR loop (j)

NEXT End outer FOR loop (I)
J DET EVAL EVAL Evaluate determinant of matrix J
>> End second sub-program within JACOBIAN

>> End first sub-program within JACOBIAN
>> End program JACOBIAN

 

 
Notes: (1) J and j are not the same within the program. The HP 49 G is case sensitive.

(2) i is used here as an index and not as the unit imaginary number.
 

Save the program in a variable called JACOBIAN. Press [VAR] to check that a soft-menu key
labeled [JACOB] is present.

Example 1 - Recalculate the Jacobian for the (x,y) = (r,q) using the calculator:

Enter the vectors:

[‘r*COS (0) “r*SIN(6)‘] [ENTER]
['r' ‘0 ] [ENTER]

Then, press [JACOB]. The result is ‘r*sIn (0) ~2+r*cos (0) ~2‘. To simplify this result use:

[P1[TRIG][NXT][NXT][TRIG].

The final result is 'r’.
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Example 2 - Calculate the Jacobian of the transformation (x,y,z) 2 (p,9,0), i.e., the

transformation between Cartesian to spherical coordinates in three-dimensions,if it is known
that

X =p sin ¢ cos 6, y =p sin ¢sin 6, Z=p COS

Enter the vectors:

[‘p*SIN(¢) *COS (8) ‘p*SIN(¢) *SIN(0)‘ ‘p*COS ($)’] [ENTER]

[pd ‘61 [ENTER]

Then, press [JACOB]. Finally, to simplify this result, use: [~][TRIG][NXT][NXT][TRIG]. The

final result is 'p~2*SIN (9) .

Area properties in polar coordinates

Area properties in polar coordinates can be calculated by using the following integrals:

we Area

A= dAyy =[l- r-dAce = flr r-dr-de,

First moment with respect to the y-axis

M, = [lr x- r-dA = [fz (r-cos 8) (r-dA,) = [lz r*-cos 6-dr-d,

we First moment with respect to the x-axis

My = [lr y- r-dA = [lz (rsin 8)(r-dA,g) = [I+ r*:sin 6-dr-do,

i Coordinates of the centroid x=M,/A, y=MJ/A

# Moment of inertia with respect to the y-axis

ly = [fg x*-dA = [J (r-cos 8)%r-dA,o= [lg r’-cos? 6-dr-de,

= Momentof inertia with respect to the x-axis

le = [lr Y*-dA = [fg (r-sin 0)%r-dA,o= [lr r*-sin? 6-dr-de,

= Moment of inertia with respect to the origin

lo = flr (X*+ y?) dA = [lr (r?)-(rdAr) = [lr r*- dr-d6.

«= Radii of gyration of the area with respect to the x-axis, y-axis, and origin:

ky = (I,/A)Y%, ke = (1/A)2, and ko = (1/A)"2,
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Example 1 --

coordinates described by R* = {0<6<2m, O<r<1-cos 6}.

Calculate the area, first moments, and moments of inertia of the region in polar

First, let’s plot the region by using the following settings for the plot setup and plot window:

  

  

To
= PLOT SETUP Esse FRE PLOT WINDOW - POLAR

H=-YigH:=-3.
Eg: 1-2Thee) U-UigH:-2.5 i

Indep LOH: a. Hiqh:&.3832
: £_ Sinult # Connect Step: (062833 Fixg ls

U-Taick:10. Fixels
Indegp:'s’
H-Tick:10.

 Choose type of plot

ITTFICHD TEEEAT

  

  Indep =tep units are paxels?

EDIT] |vCHE]AUTO [ERASE] DRAM  
 

When ready, press [ERASE][DRAW].

The result is the following cardiod:

 

 ~~]
[200m[8[TRACE][ELIT[CANCL]

  
 

The area properties are calculated with the following integrals:

  

 

2m
1-

A=

a
a

[STEADETTTSED)

cose)
rdr do+4

  

20
1-C0S(e)

Hu=
Jo

a

EEETHEEETETEEEE   

2a
1-COS(R)

2

2.cosCe)dr do Wx= c2sInCed dr ded
0

0

ELIT] CURS BIG EVAL  
 

 
 

2a
1-C0S (ad

2Iy= cose)” ar do
0

0

EDIT CURSBIG EVAL [FRCTO[TERFA 

2:4
1-C05(8)

2Ix= e2sIn(e) ac ae
0

0

EDIT [CURS BIG[EVAL [FACTO[TERPR   
  
 

Evaluate them in the order shown above to get the following results:

 

iH
9:
4:
3:
2:
1: 

biie HEX R= ‘R°*

'My=—(S%n-4)"'
'Mx=@'

'Ty=49*n-32"
'Ix=21*¥n/32"'

JACOE[WR[PRINI[CASIN[REALA FOL]

'A=3#%n/2"

 
 

To obtain centroidal coordinates and radii of gyration use the following:
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[5][~][PRG][LIST][->LIST][ENTER]
[ELEM][NXT][TAIL]
[»][HEAD]
1

[+]
[~][EVAL]
[~][EVAL]
[<1][EVAL]
[<1[~][EVAL]
[<1[~][EVAL]

Place all results in a list, making extra copy
Reduce list to My, Mx, ly, Ix only
Swap lists, and isolate value of A from list in stack level

Divide list in stack level 2 by value of A in stack level 1

Separate elements of list
Right-hand side = ky’ = ‘7/16’
Right-hand side = k,* = ‘49/48’
Right-hand side = x = 0 (symmetry about y-axis)

Right-hand side = x = *-5/6’
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Vector differentiation and integration

In this section we present differentiation and integration using functions that can be expressed

as vectors. Functions, in general, are also referred to as fields. A function, orfield, that

evaluates to a numberis referred to as a scalar field. Examples of scalar fields are the
temperature of a point in the plane or in space, the density or pressure in a fluid flow at a
given point, etc. Some physical quantities, such as velocity, acceleration, and forces require

for their description not only their magnitude, but also a direction. These quantities, when
they depend on the coordinates of a point in space or on time, or both, would be referred to as
vector fields. There are some quantities, such as the stresses at a particle presented in
Chapter 9, that require for their full description their magnitude and two directions.
Quantities such as this are referred to as second order tensors or second-order tensor fields. In
general, if n directions are associated with a magnitude, the magnitude can be thought of as a
n-th order tensor. In that sense a vectoris a first-order tensor, and a scalar a zeroth-order
tensor.

Derivatives of vector fields

Some of the simplest vector fields to differentiate or integrate are those representing position,
velocity, and acceleration of a particle in three-dimensional space. In general, the position
vector of a particle r is a function of time t, and can be written as

r(t) = x(t)i+y(t)j+z(t)k.

The velocity of the particle is defined as

V(t) = vyi+vyj+vk

and

v(t) = dr/dt = dx/dt-i+dy/dt-j+dz/dtk.

The acceleration of the particle is given by

a(t) = dv/dt = asi+a,j+azk,

a(t) = dv/dt = dv, /dt-i+dv,/dt-j+dv,/dtk ,

and

a(t) = d’r/dt? = d*x/dt?i+d?y/dt?j+d*z/ dt?k.

From these definitions it follows that you can deal separately with the x-, y-, and z-
components of the motion by writing:

v= dx/dt, vy = dy/dt, v, = dz/dt,

and

ax = dvi /dt = d’x/dt?, a, = dv,/dt = d*y/dt?.
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In the HP 49 G calculator you can write a vectorfield by simply writing its components as
components of an array. For example, if the position vector of a particle is given by

r(t) = (sin t)i+ (In t);j+ (e)k,

you can write this vector in the calculator as

However, you cannot simply take the derivative with respect to t. Try it:

['SIN(t)’ 'LN(t)' 'EXP(t)’] [ENTER]

 
You will get an error labeled: |<!> J Error: Bad Argument Typd] 

You will need to convert the vector into a list. Try:

[][MATRICES][OPER][AXL] ‘t’ [ENTER] [r][9][AXL]

The result is

v(t) = (cos t)i+ (1/t)+ (e')k.

To get the acceleration use:

[ '‘cos(t) ““1/t"‘EXP(t)’ 1,

[ ‘cos(t) “‘1/t"'EXP(t)‘ 1, i.e.,

[AXL] “t’ [ENTER] [~][3][AXL] to get

i.e.,

a(t) = (-sin t)-i+ (-1/t2)-j+ (e')k.

‘t’ [ENTER] [][9]

Next, we develop a program for vector function derivatives. Create a sub-directory to be
called VCALC (Vector CALCulus), and, within that sub-directory, enter the following program:

Program VDeriv:

<< INDER DCALC >>

The program consists of the two sub-programs listed below:

Sub-program INDER:

N
DERivative)

“Enter deriv. info.:”

{ “« func: «
INPUT

OBJ->

values

12 FOR j

DTAG

2 ROLLD

NEXT

2 LIST

>>

cvar: <7 {2031 V}

Start sub-prog. INDER (INput data for

Prompttitle for inputting data

Input string
INPUT function using two previous lines

Decomposes input string into three tagged

Start FOR loop to de-tag values, j = 1,2,3,4

De-tag last value in stack
Roll-down two elements in stack

End of FOR loop
Create list with the two de-tagged values

End of sub-program INDAT
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Sub-program DCALC:

<<

EVAL SWAP AXL SWAP 0 AXL

VSIMP
>>

Sub-program VSIMP

<<

DUP SIZE EVAL > L n
<<

L
1n FORj

L j GET EVAL FACTOR
j SWAP PUT

NEXT
>>

>>

Start program DCALC (Derivative CALCulation)
Swap, convert to list, take derivative, convert back

Call sub-program VSIMP
End program DCALC

Start program VSIMP(Vector SIMPlification)
Duplicate vector, find size, pass vector and size

Start first sub-program within VSIMP
Place array in stack

Start FOR loop with j=1,2, ..., n
Get element j, evaluate and simplify
Place evaluated value back in array at pos. j
End FOR loop (j)
End first sub-program within IINTCALC

End program IINTCALC

Sub-program VSIMP simplifies each element of the vector and puts the simplified vector
together.

Test the program on the vector r(t) = (at?)i+ (Vt)-j+ (sin't)k,

[‘a*t*2’ ‘Vt’ ‘ASIN(t)’][ENTER] ’t’ [ENTER][VDeri].

The result is [ 2*t*a’ ‘Vt /(2*t)’ ‘(-N-(t"2-1)/(t*-1))’], i.e.,

v(t) = (2at)-i+ (Vt /(2t))-+ (-N-(t2-1)/ (2-1) k.

To get the acceleration you would use: ‘t’ [VDeri]. The result is

[2*a’ “-Vt/ (4°12) N-(t"2-1)*t/((t+1)"2*(t-1)*2)’], i.e.,

a(t) = (2a)i+ (Vt /(4t2))j+ (V-(t-1)t/ ((t+1)2(t+1)}) k.

Integrals of vector functions

Integration of the acceleration or velocity functions is straightforward, e.g., from

dv = a(t) dt,

you can write

[dv= [ a(t)dt = [a,(t)-i+a,(t)-j+a.(r)-K]dr

= U a(1dr } +] a, (t)dt J i+([ a(t k
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Or, you can integrate the three components separately, i.e.,

[[av.=[a@d, [dv =[ad [d.=[awa

where

Vo = Vxoi+Vyoj+Vzok = V(ty),

is the initial velocity of the particle.

To integrate, you need to convert the vector into a list before performing the integration.

Example 1 - Indefinite integral

Given v(t) = (e')i + (-tHj+(1 /t)k, obtain a general expression for the position vector r(t). No

initial conditions are given.

Try this:

[‘EXP(t)’ “-t"3’ ‘1/t’][ENTER]
[<][MATRICES][OPER][AXL]
‘t’” [ENTER] [«][CALC][DERIV][NXT][RISCH]
[<][MATRICES][OPER][AXL]

The result is

Enter vector to be integrated
Convert vectorto list
Enter integration variable, integrate
Convert vector to list

[‘EXP(t)’ “-(1/4*t*4)’ ‘LN(t)’], i.e.,

r(t) = ("i + (-t*/4)j+(In t)k+C,

where C is a constant vector.

The following program will take care of calculating an indefinite integral:

Program Vintl (Vector calculus Integration Indefinite - wow! That was a mouthful):

<< [INDAT IINTCALC >>

The two sub-programs involved are listed below:

Sub-program /INDAT (Indefinite integral INput DATa):
 

 

<<

“Enter integr. info.:”

{“H func: « =: var: «<”{20}V}
INPUT

0BJ->
12 FOR j

DTAG
2 ROLLD

NEXT
2 LIST
>>

119

Start sub-prog. |INDAT
Prompttitle for inputting data

Input string

INPUT function using two previous lines
Decomposes input string into 3 tagged values

Start FOR loop to de-tag values, j = 1,2,3,4

De-tag last value in stack
Roll-down two elements in stack

End of FOR loop
Create list with the two de-tagged values

End of sub-program IINDAT
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Sub-program /INTCALC (Indefinite INTegral CALCulation):

<< Start program IINTCALC
EVAL SWAP AXL SWAP RISCH AXL Swap, convert to list, integrate, convert back

VSIMP Call sub-program VSIMP (defined earlier)
>> End program IINTCALC

Try the following exercise using the indefinite integral program: integrate v(s) = s-i+s% jesik as

an indefinite integral. In the calculator, use the following:

[Vintl] [<101] [10°] [ALPHA][][S] [»] [I * 1 [ALPHAI[<][S] [y*1(2] [>]
[10 1 [ALPHA][<][S] [y*1(3] [¥] [~1[ * 1 [ALPHA][<][S] [ENTER]

The result is [ s"2/2’ ‘s"3/3’ ‘s"4/2"2’ ], i.e.,

Iv(s)ds = (s2/2)-i+(s3/3)-j+(s*/4)k+C,

where C (a constant vector) is a constant of integration.

Example 2 - Definite integral

Given a(t) = (e''!)i + (tan' t)j+(t"2)k, and the initial velocity v, = 2i-5j+3k at t = 0, determine
the velocity v(t).

We are to evaluate the integral:

[[av= [awa

In this case, it is better to work only with lists. To integrate the right-hand side of the

equation use:

{‘EXP(1/t)’ ‘ATAN(t)’ ‘t"2’}[ENTER] Enter list to be integrated
{000} [ENTER][»] Enter list of initial values (*), swap order
{t t t} [ENTER] [»] Enter list of upper limit of integration(*)
{t t t}[ENTER] Enter list of variables of integration (*)
[m1 |] Calculate the integrals

The result is the list: { ‘J (0,t,EXP(1/tt), tt)’ ‘-((LN(t"2+1)-2*t*ATAN(t))/2’’t"3/3’ }. The first
element in the list has no closed-form expression.

The left-hand side of the equation is obviously v-v,, thus, the value of v(t) is

v(t) = vo + [ a(t,

With the right-hand side given by the list we found earlier. To obtain a list representing v(t),
therefore, type in the list of the constant value and added to the existing list as follows:

{2 -5 3} [ENTER] [<][MTH][LIST][ADD]
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the resultis {1 (0,t,EXP(1/tt),tt)+2” “-((LN(t"2+1)-2*t*ATAN(t))/2+-5""t"3/3+3’ },

Which can be interpreted as:

{fatHEED(0
)

We can let the calculator take care of the details of the integration by putting together the
following program:

Program VIntD (Vector calculus Integration Definite - Another mouthful):

<< DINDAT DINTCALC >>

Sub-program DINDAT (Definite integral INput DATa):

<< Start sub-prog. DINDAT
“Enter integr. info.:” Prompt title for inputting data

{ ““: low: «+ high: « func: «+ : var: <” {201}V } Input string
INPUT INPUT function using two previous lines
0BJ-> Decomposes input string
14 FOR Start FOR loop to detag values, j=1..4

DTAG De-tag last value in stack
4 ROLLD Roll-down four elements in stack

NEXT End of FOR loop
4 LIST Create list with the 4 detagged values
>> End of sub-program DINDAT

Sub-program DINTCALC (Indefinite INTegral CALCulation):

<< Start program DINTCALC

EVAL SWAP DUP SIZE EVAL > abv fn Determine vector size, pass values
<< Start first sub-program within DINTCALC
n 1 >LIST a CON AXL Create list with lower limit repeated
n 1 >LIST b CON AXL Create list with upper limit repeated

F AXL Convert vector function to a list
n 1 LIST v CON AXL Create list with integration variable repeated
| AXL Integrate list, convert to vector

VSIMP Call sub-program VSIMP
>> End first sub-program within DINTCALC

>> End program DINTCALC

Try the following exercise using the definite integral program: integrate the right-hand side of

a(0) = sin 0 -i+ 0% j+(1/ 0)k

between the limits 6 = 1/4 and 6 = n/2. In the calculator, use the following:

(VIntD] [][ “ J[~]1[n] [<] [4] [VY] [10° 1[<][n] [=] [2] [V]
[1000] [10° 1 [SINJALPHAL[=][T] [»1[>] [—][ “1 [ALPHA][~][T] [y*](2] [>]
(10° 1 [11[=][ALPHA][~][T] [V¥]
[m1[ © 1 [ALPHA][~][T] [ENTER]
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The result is [‘V2/2’ “7*n*3/192’ ‘LN(n/2)-LN(n/4))’], i.e.,

Joya ™2 a(0)d 0 = (V2/2)i+(70/192)j+In(2)k

Curves

A curve in the Cartesian space can be represented by a vector function in its parametric
representation, for example, x =5sint,y =3 cost, z= 2t. Alternatively, you can have a
curve in space by specifying y = f(x) and z = g(x), for example, y = 0.02x%, z = exp(0.05x).
Another way to represent a curve is as the intersection of the three-dimensional surfaces,
F(x,y,z) = 0, G(x,y,z) = 0. For example, F(x,y,z) =x2+y?+72-25, G(x,Y,z) = x-5*y+3*z-1=0.

Arc Length

Let r = r(t) = x(t)i+y(t)j+z(t)k be a vector in parametric representation describing a curve C in
space, the length of the curve corresponding to values of a<t<b is given by:

dr
2

We can define an arc length function s(t) by replacing the upper limit of the integration with t:

(dx (dv) (dzY
s(n =[rekdr=[ I= + DN +E a

a a dt dt dt

From the definition of the arc length function it follows that

d dsY (axY (dyY (dzSs — Ss x z
——Jier, —_ =—] + Y + — 1.
dt dt dt dt dt

dr = dx-i+dy-j+dzk,

d
I= [era where f ==. Fei =

 

 

We can also write,

and

ds? = dx? + dy? + dz?,

where ds is called the linear element of the curve C.
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For a plane curve represented by y = f(x), the arc length function can be written as

s(x) = [ +%) :

Example1 - Circular helix in space. This curve can be represented in parametric form as x(t) =
a-cos(t), y(t) = asin(t), and z(t)= ct. The plot of the curve for values a = 2, c = 1, is shown

below. This graph was produced in Maple V because the calculator does not provide for three-
dimensional curve plots.

To obtain an expression of the arc length of this curve using the calculator, we use:

‘x(t) = a*COS(t)’ [+ ][DEF]
‘y(t) = a*SIN(t)’ [+ ][DEF]

‘z(t) = c*t’ [«][DEF]

Then, using the equation writer put together the following function:

 
 

 t
2 2 2 2

| [2ew) +2{ut +53(ut)) +52(z(1)) dt,
g

      EOIT CURSEIGEVAL [FACTOITERPA EDIT CURS[BIGEVAL [FACTOITERFR

 t
AE . 2 2 2

s)=| [S200] +52) +52z)) dt
! a  | CHANTED EEEETE C0ETTE180ED

 

    
(The top two figures show the expression split in two parts, as you would see it in your
calculator. The bottom figure results from combining the top two figures.)
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Using the cursor you can select and evaluate the derivatives step-by-step. For example, you

could select the derivative dx(t)/ dt as shown in the left-hand side figure below, and press

[EVAL] to get the result shown in the right-hand figure below.

 

    
2

EETICR +5-(u

     EDIT CURSETG EVAL [FHCTO[TERFH EDIT CURSEXGEVAL[FRCTO[TERPA
  
 

The evaluation of the other two derivatives contained under the square-root sign, is shown in
the figures shown below.

 

 

 

h(t)+EERE)+522|| 1h)(acoso)oa at

       [53] FENEE EDIT CURSBIG EVAL [FRCTO[TERFA
 

The next step is to select the expression under the square-root sign and press [ EVAL]. The
result is shown below:

 

t
a 2 atz Jose raticnscnne? 48

0

 

s(t)

03 ITEI ETT (TS  
 

Now, the first two terms can be simplified to a by selecting the quantity under the square-root
and using [~][TRIG][NXT][NXT][TRIG]. The next step is to select and evaluate the integral by
using [][EVAL]. The figure below shows the results of the two steps just described.

 
 

t

or] [2 +c? dt S(t)=t-Ja2rce
a

    EEA EEEDENERDET EEE [TH GTS0 if
 
 

Therefore, if we take K = t-(a?+c%)''2, s(t) = Kt, the new parametric representation of the
curve, in terms of the arc length, s, is

x(s) = a-cos(s/K), y(s) = a-sin(s/K), and z(s) = c¢s/K.
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A program to calculate arc length given r=r(t)

The following program can be used to automatically calculate the arc length of a curve
described by x = x(t), y = y(t), z = z(t).

Program ArcLength: << INDARC INICCALC >>

Sub-program INDARC (INput DAta for ARC length calculation):

<< Start sub-prog. INDARC
“Enter x(t)y(t)z(t):” Prompt title for inputting data

{ “et ix(t): « ocy(t): «+ oz(t):{203 VV} Input string

INPUT INPUT function using two previous lines
0OBJ-> Decomposes input string
13 FOR j Start FOR loop to detag values, j= 1..4

DTAG De-tag last value in stack

3 ROLLD Roll-down four elements in stack
NEXT End of FOR loop
3 LIST Create list with the 4 detagged values
{ ‘x(t)’ ‘y(t)’ ‘z(t)’ } SWAP = DEFINE Define functions x(t), y(t), z(t) [*]
>> End of sub-program INDARC

[*] This operation creates variables [ x ]J[ y ][ z ] in your sub-directory

Sub-program INICCALC (INitial Conditions and CALCulation of arc length):

<< Start sub-program INICCALC
“Enter init. cond.:” Prompt title for inputting data
{““: sie att: ”{20}V} Input string
INPUT INPUT function using two previous lines

OBJ-> DTAG SWAP DTAG SWAP Decomposes input, de-tags elements
‘t’ Place ‘t’ in stack

© (ot(x(t))"2+ot(y(t))"2+0t(z(t))"2)’ EVAL TRIG Calculate integrand for s(t)
‘t’ | EVAL TRIG + Place ‘t’ in stack, integrate, init. cond.
‘s(t)’ SWAP = Place ‘s(t) =’ in front of integral result

>> End sub-program INICCALC

Example 1 -- Test the program with the parametric equations of the circular helix:

[ArcLe] Start program ArcLength
[10 ] [ALPHA][«]{A] [x] [COS] [ALPHA][«][T] [¥] Enter ‘a*COS(t)’ for x(t)

[~1[ ¢ 1 [ALPHA][<][A] [x] [SIN] [ALPHA][<][T] [V] Enter ‘a*SIN(t)’ for y(t)

[~]1[ ‘ ] [ALPHA][<][C] [x] [ALPHA][<][T] Enter ‘c*t’ for z(t)
[ENTER] Enter input string
[0] ['v] [0] [ENTER] Enter s = 0 at t = 0, enter input string

After what seems an eternity (about 20 seconds) the calculator returns the value:

‘s(t)=t*V(ar2+c 2)"

Example 2 - Run program ArcLength with x(t) = t, y(t) = t*2, z(t) = zy (a plane parallel to the x-
y axis), using the initial conditions s = sg at t = to. Use:
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[ArcLe] Start program ArcLength

[1 1 [ALPHA][<][T] [V] Enter ‘t’ for x(t)
[10 ¢ 1 [ALPHA][«][T] [Y1[2] [VV] Enter ‘t"2’ for y(t)

[~1[ <1 [NX] [ALPHA] [+ ][Z][0] Enter ‘z0’ for z(t)
[ENTER] Enter input string

[10° ] [ALPHA][+][S][0] Enters = s0
[1 ¢ 1 [ALPHA][<]1[T][ Vv] [0] [ENTER] at t = t0, enter input string

This time the calculator will take some time to produce the following result:

 

RAD ¥Y2 HEX R= 't* HLT
{HOME VCALCY

1: 's(t)=s8+(LNCABS(-(

#241) )+(-(2¥t 2(
4x4"2+100+2xt Bx(4%

AecLelInIcel2yux[INDAE]   
Press [¥] to activate the equation writer and use the cursor to see the resulting equation in its
entirety.

Tangent, normal, and bi-normal vectors, curvature and torsion

Let r = r(t) = x(t)i+y(t)j+z(t)k be a vector in parametric representation describing a curve C in
space. The vector v = dr/dt at a point P on the curve C is a vector tangent to the curve (or
trajectory) C at P. A unit tangent vector at P is given by

T=v/|v].

If r =r(s), then

T = dr/ds.

The curvature of C is given by

k(s) = | dT/ds | = | d*r/ds? |,
where s is the arc length.

The unit normal vector is defined as

N =dT/dt/|dT/dt|,

or, in terms of s, as

N = (1/x)(dT/ds).

The radius of curvature,

p(s) = 1/x(s),

at any point of the curve, is the radius of a circle tangent to the curve at that point. The
center of the curvature circle is located along the normal direction N.

The unit binormal vector is defined as the cross-product of T and N,

B=TxN.
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The triad of vectors N, T, and B are orthogonal to each other and they form whatis called the
trihedron of C at point P. Each pair of vectors define a plane. The three planes defined by the
N, T, and B are called: normal plane (defined by N and B), rectifying plane (defined by T and
B), and osculating plane (defined by T and N). The vector triad and the corresponding planes
are illustrated in the figure below.

 

normal plane   

   
rectifying

plane

 

  
 

 

 The torsion of the curve is defined as

7(s) = —N(s)® B, 

 

 For a curve in the plane given by y = f(x), the curvature is given by

 

K(x) =

JILOF? |

Example 1 -- Earlier we found that a circular helix in space can be described in terms of the

arc-length s as x(s) = a-cos(Ks), y(s) = a-sin(Ks), z(s) = cs/K, where K = (a2+c?)'2. Using such
representation determine the tangent, normal, and bi-normal vectors, the curvature and
torsion of the curve.

Start by defining the functions:

‘x(s) = a*COS(s/K)’ [«][DEF] ‘y(s) = a*SIN(s/K)’ [«][DEF] ‘z(s) = c*s/K’ [+][DEF]

To determine the unit tangent vector, T = dr/ds, we can use the program [VDeriv] defined

earlier, as follows:

[VDeri] [«]((1] [][ © 1 [ALPHA][«2][X] [«2][()] [ALPHA][][S] [»][»]
(10° 1 [ALPHA][<](Y] [«][O)] [ALPHA][<][S] [»][»]
(10° 1 [ALPHA][](Z] [<][0)] [ALPHA][<][S] [¥]
(10° 1 [=1[O] [ALPHA][<][S] [ENTER]
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The result is T = -(a/K)-sin(s/K)-i + (a/K)-cos(s/K)-j + (c/K)-k.

Store this result in a variable T: [m1] © JIALPHA][T][STOM].

The curvature, k(s) = | dT/ds |, can be calculated using the following:

[VAR][VDeri] [IL ‘Il T 10YIl~ll ‘1[91[0O] [ALPHA][<][S] [ENTER] Calculate dT/ds
[ENTER] Keep extra copy

[<]1[ABS] Calculate x=|dT/ds |

The resulting expression is ‘V (SIN(s/K)"2+COS(s/K)"2)*ABS(a)*K"2)/K"4’. To simplify it, use

[~]1[TRIG][NXT][NXT][TRIG]

resulting in ‘ABS(a)/K"2’, i.e., k(s) = la] /K.

This result indicates that the circular helix has constant curvature.

Since we already have dT/ds in stack level 2, simply press [+] to obtain the normal unit vector
N =dT/ds/|dT/ds|. The result of this division does not simplify each component. Therefore,
to produce the simplification we use the following:

[<1 ]1[MATRICES][CREAT][NEXT] Get this menu ready for use

[ENTER] Make extra copy of the vector
[11[ GET ] Get first element of vector
[][EVAL] Simplify element, result = *-
(a*COS(s/K)/ABS(a))’
[1] [ENTER][»] Place a 1 in stack, swap levels 1 and 2
[ PUT] Replace first element of vector

[ENTER] Make extra copy of the vector

[2][ GET ] Get second element of vector
[~]1[EVAL] Simplify element, result = ‘-
(a*SIN(s/K)/ABS(a))’
[2] [ENTER][»] Place a 2 in stack, swap levels 1 and 2
[ PUT] Replace second element of vector

[ENTER] Make extra copy of the vector
[31[ GET] Get third element of vector

The last term is equal to zero, thus, it needs not be modified. The next step is to store the

result in variable N:

[<1] © HTALPHA][N] [STO»][VAR]

To calculate B = T x N, use:

[ T II N ][<][MTH][VECT][CROSS]

The result, as in the case of N, needs to be simplified. This time, however, we will use the

program VSIMP, that was defined earlier as a sub-program of [VDeriv].

Using [VAR][VSIMP] with the result from the calculation of B produces (after about 30 seconds):

[‘c*a*SIN(s/K)/ (K*ABS(a))’ ‘-(c*a*COS(s/K)/(K*ABS(a)))’ ‘a*2/(K*ABS(a))'], i.e.,
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B = a-csin(s/K)/(K|al)i - a-ccos(s/K)/(K- lal)+ a’/(K1al)k.

Store this result in variable B, by using:

[1] © ][ALPHA][B] [STO»][VAR]

 

Note: For a>0, the vector B, in this case, will simplify to B = csin(s/K)/Ki - c.cos(s/K)/Kj +

a/Kk.  
 

 

[ A program to calculate unit vector triad, curvature, radius of curvature, and torsion

| suggest you create a sub-directory called TRIAD (TRIAD of vectors T,N,B) to develop the
program and sub-programs presented in this section. The program GetTNB can be used to
automatically calculate the unit vectors: tangential, normal, and bi-normal, as well as
curvature, radius of curvature, and torsion of a curve described by x = x(s), y = y(s), z=z(s),

where s is the arc length. The program basically repeats the steps used in the example shown
above.

Program GetTNB: << INCURVE GETT GETNk GETBt SHOWALL >>

Sub-program INCURVE :

<< Start sub-prog. INDARC

“Enter x(s)y(s)z(s):” Prompt title for inputting data

{ “+ ix(s): «+ oty(s): + iz(s): " {203 V} Input string

INPUT INPUT function using two previous lines
0BJ-> Decomposes input string
13 FOR Start FOR loop to detag values, j =1..4

DTAG De-tag last value in stack
3 ROLLD Roll-down four elements in stack

NEXT End of FOR loop
3 LIST Create list with the 4 de-tagged values
{ ‘x(s)’ ‘y(s)’ ‘z(s)’ } SWAP = DEFINE Define functions x(s), y(s), z(s) [*]
>> End of sub-program INDARC

[*] This operation creates or replaces variables [ x ]J[ y ][ z |]

Sub-program GETT:

<< Start SUB-program GETT
{ ‘x(s)’ ‘y(s)’ ‘z(s)’ } ‘s’ 0 AXL VSIMP ‘T’ STO Calculate dr/dt, store in variable T

“T done” MSGBOX Calculation of T is complete
>> End of program GETT

Sub-program GETNk:

<< Start sub-program GETNk

T AXL ‘s’ 9 AXL VSIMP Calculate dT/dt
DUP ABS EVAL FACTOR TRIG DUP ‘kappa’ STO Calculate curvature, store in kappa
/ VSIMP ‘N’ STO “N done” MSGBOX Calculate N, indicate ending of process
>> End sub-program GETNk

Sub-program GETBt:
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<< Start sub-program GETBt

T N CROSS VSIMP DUP Calculate B = T x N, duplicate result
AXL ‘s’ 0 AXL VSIMP Calculate dB/dt

N SWAP DOT NEG EVAL FACTOR TRIG ‘tT’ STO Calculate torsion, tT
‘B’ STO “B done” MSGBOX Indicate calculation of B is done

>> End sub-program GETBt

Sub-program SHOWALL:

<< Start sub-program SHOWALL
T“T” TAG N “N” >TAG Tag Tand N
kappa “k” >TAG kappa INV “r” >TAG Tag k, calculate r = 1/k, tag r

B “B” TAG 1 “1” >TAG Tag Band t
>> End sub-program SHOWALL

Sub-program VSIMP is exactly the same as that defined in sub-directory VCALC, therefore, you
can simply copy it from that sub-directory to sub-directory TRIAD.

Example 1 - repeat the calculation of the vector triad and related measures (curvature,

torsion) for the case of the circular helix, x(s) = a-cos(Kss), y(s) = a-sin(K's), z(s) = cs/K, where

K = (@+c)'"2.

[GetTN]
[10° 1 [ALPHA][<][A] [x] [COS] [ALPHA][K] [x] [ALPHA][<][S] [V¥]
[m1 © 1 [ALPHA][<2][A] [x] [SIN] [ALPHA][K] [x] [ALPHA][<][S] [¥]
[mI] APRAILSILET be TALPHAITRIES) [+] TALPRATTK]
[ENTER

Press [OK] after every message. These were included for the user’s sake, to keep him or her
informed of the program’s progress. When the last message B done shows up, the next step is
to present the results in the stack. The result for this case, in small case, shows up like this:

 

RAD BY2 HEX R= 't'

TRIAD)
4: Ni [ '-(a*COS(=¥Ky..
5: ki: ‘K~Z#ABSCa)’

B:
[ 'c*a*SINCs*K)/ (K.

: Ts C

ERAGEENEEEER   
After dropping the first 4 levels of the stack in the screen above, we get:

 

KAD XYZ HEX E= ‘t'
{HONE TRIAD}

3=H
2:
1: T=

[ '—Ca*K*SINCs*K))..
[EOIT]VIEW[STACK]RCLJPURGEICLENF]   

Velocity and acceleration as a function of arc length

In terms of the arc length s, we can write for the velocity:

v =dr/dt = (dr/ds)(ds/dt) = |v|-(dr/ds) = v-(dr/ds) ,

where v = |v] is the magnitude of the velocity (the speed).
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For the acceleration we can write:

a= dv/dt = d/dt[(dr/ds)(ds/dt)] = d/ds[(dr/ds)(ds/dt)]-(ds/dt) =
= (d’r/ds?)-(ds/dt)? + (dr/ds)(d*s/dt?) = v2 (d’r/ds?) +a-(dr/ds),

If we replace the definitions of the unit tangent and normal vectors, T=dr/ds, and

N=(1/x)- (dT/ds) = p- (d*r/ds?),

into the expression for the acceleration we find

a= (vV2/p) N+(d*s/dt?) -T = ay N+ ar -T,

where

ay = vi/p

is the normal component of the acceleration, and

ar = d’s/dt? = dv/dt
is the tangential component.

Line integrals

A line integral is an integral calculated along a curve C, in space or in the plane, with the

integrand defined at each point of C. Suppose that the curve C has the vector representation

r(s) = x(s) i +y(s) j +z(s) k,

in the interval a < s <b, so that r(s) is continuous and has a non-zero, continuous first

derivative dr/ds in the interval. Then C is said to be a smooth curve, i.e., C has a unique

tangent at each point of C, whose direction varies continuously as we travel along the curve.
Let f(x,y,z) be a function defined (at least) at each point of C, and let f be a continuous

function of s, i.e.,

f[x(s),y(s),z(s)] = f*(s).

Then, the line integral of f along C from A to B (where s = a, and s = b, respectively) is

calculated as
 

[LS(p2) ds = [ f(x(5), 909), 2() ds = [f* (5) dbs.

The variable s represents the distance along the curve from an arbitrary point (where s = 0).

The curve C is called the path of integration. In the exercises presented in next sub-section is
it assumed that all the integration paths are piecewise smooth, i.e., it consists of finitely many

smooth curves.
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For a line integral over a closed path C, the symbol

§ rex, y,z)-ds
C

is sometimes used in the literature.

If the curve is given in terms of a parameter t, which is not the distance along the curve (t

could be time, for example), then the line integral over the curve C will be calculated as

= {9s[/Gy.2)-ds=[ FG.) 4 i.

If t represents time, then ds/dt = v; is the speed (magnitude of the velocity) of a particle
whose motion describes the curve C.

Example 1 - Determine the line integral of the function f(x,y,z) = xyz, along the curve

described by x = sin(s), y = cos(s), z = s, between s =0, ands =.

Type:

‘x*y*z' [ENTER] { ‘x’ ‘SIN(s)' ‘vy’ ‘COS(s)’ ‘z’ ‘s’ } [ENTER] [~][ | ][ENTER]
0 [ENTER] [>] ‘w’ [ENTER] [>] *s* [ENTER] [~][/]

The result is ‘-(n/4)’.

Example 2 - Determine the line integral of the function f(x,y,z) = x+y+z, along the curve

described by the motion of a particle: x = 2%, y=t, z=1In(t), between t = 1 and t = 10, where t

is time. The particle moves along the curve as a constant speed ds/dt = 2.5.

Type: ‘x+y+z’ [ENTER] { ‘x ‘2*t~2" yt ‘z'‘LN(t)" } [ENTER] [~][ | ][ENTER] 2.5 [x]

1 [ENTER] [»] 10 [ENTER] [»] ‘t* [ENTER] [~][/]

Accept the change to Approx mode, if asked. The result is 1823.81462732.

In many applications, the integrands of the line integrals are of the form g(x,y,z)-(dx/ds),

g(x,y,z)-(dy/ds), or g(x,y,z)- (dz/ds), where s is a variable representing a length on the
integration path, and x=x(s), y=y(s), z=z(s). Then, the line integrals are written as

dx
[etey.2)= ds=[g(x,y,2) ds,
C ds C

with similar expression for the other two integrals.

For sums of these types of integrals along the same path C we use the following notation:

[r-dx+[g -dy+[n-dz=[(f dx+g-dy+h- dz).
C C C C
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Example 3 -- Evaluate the line integral whose integrand is [x%ydx +(x-z)dy+xyzdz] where C is the
arc of the parabola y = x in the plane z = 2 from A[0,0,2] to B[1,1,2]. Here is a picture of the
path of integration:

 

The solution to this problem consists in turning the differentials dy and dz into functions of x.
First of all, since the curve is located in the plane z = 2, then dz = 0, throughout the

integration path. Also, since the curve is described by y = x?, then dy = 2xdx, thus the
integrand is now:

x2ydx +(x-z)dy+xyzdz = x*(x?)dx +(x-2)(2xdx)+xy(0)dz = (x*+2x%-2x)dx,

which is to be integrated from x = 0 to x = 1. In the calculator this is entered as:

 

|2022dx

[EDITCURSEIGEVAL[FRCTOITERPH   
The integral evaluates to -2/15.

Vector notation

If the functions f(x,y,z), g(X,Y,z), and h(x,y,z), are the components of a vector function

F(x,y,z), i.e,

F(x,y,2) = f(x,y,2) 1 +2 (x,y,2) j + h(x,y,Z) k,

you can prove that if a differential position vector is defined as

dr =dxi+dyj+dzk,
then

JOaxeddny= [Fede = [ (Fe 50ds

C
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Example 4 -- Work performed by a force. Determine the work performed by the force given by

F = asitaexp(-s/K) -j-Ks-k,

while moving a particle on the circular helix path

x(s) = a-cos(Ks), y(s) = asin(Ks), z(s) = cs/K,

from point A, where s = 0, to point B, where s = s,,

To begin with, define the functions

‘x(s) = a*COS(s/K)’ [<][DEF] ‘y(s) = a*SIN(s/K)’ [«][DEF] ‘z(s) = c*s/K’ [<][DEF]

Next, put together the vector r as:

[21001] [10 © 1 [ALPHA][<][X] [2][()] [ALPHA][<][S] [»>][»]
[10 © 1 [ALPHA][<][Y] [<]1[O)] [ALPHA][<][S] [»>][»]

[~1[ “ 1 [ALPHA][«](Z] [<][()] [ALPHA][<][S]
[ENTER]

Evaluate the vector using the program VSIMP within sub-directory VCALC, to obtain:

[ “a*COS(s/K)’ ‘a*SIN(s/K)’ ‘c*s/K’ ].

Now, type the force vector:

[ ‘a*s™2’ ‘a*EXP(-s/K)’ ‘K*s’ ] [ENTER].

Next, take the dot product of these two vectors by using [<][MTH][VECTR][DOT]. Also, use
[~][EVAL] to simplify the expression, if possible.

To proceed with the integral use:

[OI[ENTER][»] [I]* I[ALPHAJ[<][SI[O][ENTER][»] [~][ * I[ALPHA][<][S][ENTER] [~][ /]

Being patient with the calculator, after about 40 seconds it produces a result that occupies the
entire screen. In small font, such result is shown as:

 

KAD WYZ HEX F= 't°
“HOME MCALCZ

a:

1: "((exqa”axkxs0*3-13=xqAK2a =
ERF (z0-R)-3=q3=RI=SIN(=0KI +(
(13xq~axa=0=<ELF (0-H) -F=q"2
RRIXCQE (207K) + (AXCHENT+IRQAX
EIXERF C=0-K1))~ (E<EXF (=0-K1)

EXFANFACTOLACHL  
 

Attempts to use EVAL or FACTOR on this expression did not help in simplifying the expression.
You can see the expression in the equation writer by using [¥]. This is what you will see (after

moving left and right on the screen):
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((6a2s0*-1222bexp{22)aasin52)u{12022sae20)3%cos22Js(2cs0+aaexe22]
K K

s@
6ExP(32J

  
 

Exact differentials

An expression of the form

f(x,y,z) -dx+g(x,y,z) -dy+h(x,y,z) -dz

is known as a first-order differential form. If

f = du/odx, g = ou/ay, and, h = du/oz,

then the differential form shown above is said to be an exact differential of a function
u(x,y,z), i.e.,

du = f(x,y,z) -dx+g(x,y,z) -dy+h(x,y,z) -dz = (du/ox)-dx+(du/dy)-dy +(du/dz)-dz.

To check that the expression is an exact differential, check that

of/dy = dg/ dx, of /dz = dh/dx, and dg/dz = oh/dy.

The following example shows how to obtain the function u(x,y,z) given an exact differential
form.

Example 5 -- Check whether the following first-order differential form is an exact differential.

(y+z+2x)dx+(x+z)dy+(x+y)dz.

We identify

f(X,Y,Zz) = y+z+2X, g(X,Y,Z) = x+Z, h(X,y,z) = x+y.

Define them in the calculator as:

‘f(x,y,2) = y+z+2*x’[<][DEF] ‘g(x,y,z) = x+z’ [<][DEF] *h(x,y,z) =x+y’ [~1][DEF]

Now, check the conditions for an exact differential as follows:

 

 

To(FCen,2))=52(s(xy,2 » (F092)52(hx8,2 y) F(sCue)3a(hx,2 »)

 
  CHARTERENERDEE EE EEEEEINCEDED EEEEOETNESEE
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The results obtained were ‘1=1’, ‘1=1’, and ‘1=1’, checking that the conditions of /dy = dg/oXx,

of/0z = oh/dx, and dg/dz = dh/dy, are indeed satisfied.

Example 6 - Obtain the function u(x,y,z) whose differential du = (y+z+2x)dx+(x+z)dy+(x+y)dz

was verified to be an exact differential in Example 6, above.

Since the differential is exact, then we have

ou/ox = f(x,y,z) = y+z+2x,

du/dy = g(x,y,z) = X+z,
and

ou/dz = h(x,y,z) = x+y.

First, let’s integrate, du/dx = f(x,y,z) = y+z+2x, with respect to x. In the calculator we will
proceed as follows:

‘g(x,y,z)’ [~][EVAL] ‘x’ [ENTER] [~][CALC][DERIV][NXT][RISCH]

This suggest that

u(x,y,z) = yx+zx+x*+K(y,z).

The function K(y,z) acts like an integration “constant” that accounts for the dependency of u

ony and z. The result in the calculator, of course, does not contain K(y,z).

The next step is to take the derivative of this expression with respect to y, using the
calculator, i.e.,

‘y’ [10], which results in ‘x’. This is interpreted in paper as,

ou/ady = x + dK(y,z)/ay.

This result is now made equal to g(x,y,z), i.e.,

du/ay = x + dK(y,z)/dy = x+z = g(X,y,2),
from which

oK(y,z)/oy = z.

Now, integrating this later result with respect to y, by using:

‘Z’[ENTER] ‘y’ [ENTER] [«][CALC][DERIV][NXT][RISCH]

which results in ‘z*y’. Or, in paper,

K(y,z) = zy + C(2).

Here, again, we need to add C(z) because we integrated only with respect to vy. Now,
replacing K(y,z) into u(x,y,z) results in

u(x,y,z) = xy+zx+zy+x*+C(z).

Next, take the derivative of this expression with respect z in the calculator

‘X*y+z*x+z*y+x*2’ [ENTER] ‘z’ [ENTER] [~][0],
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this results in ‘x+y’, which is interpreted, in paper, as

odu/oz = x+y+C’(z).

This result should be equal to h(x,y,z), i.e.,

ou/dz =x+y+C’(z) = x+y = h(x,y,2),
from which,

C'(z)=0,and C(z) =D

where D is a constant of integration.

With C(z) into the expression for u(x,y,z) , we get

u(x,y,z) = xy+zx+zy+x*+C(z).

Line integrals independent of path

In general, a line integral of a differential form, i.e., Jc(fdx+gdy;+hdz), over a path C will
depend not only on the endpoints of the integration (say from point P to point Q), but also on
the path followed to perform that integration, i.e., on the curve C. However, if the integrand
is an exact differential, then the line integral is independent of the path and we can write:

for dx+g-dy+h-dz)= [Cau =u(Q)—u(P).
c

Example 6 - Check that the integral Jc(fdx+gdy;+hdz), using the differential from Examples 4
and 5, above, is independent of the path by calculating the integral on the path x(s) = s, y(s) =
s2, z(s) = Vs, from s = 0 to s = 4, and then evaluate u(Q)-u(P), where Q(x(0),y(0),z(0)) =

Q(0,0,0), and P(x(4),y(4),z(4)) = P(4,16,2).

Define the functions

‘x(s) ='s’ [ENTER][+][DEF] ‘y(s) = s*2’ [ENTER][«][DEF] ‘z(s) = Vs’ [ENTER][+][DEF]

Then, we calculate dx, dy, dz, and put together the differential as follows:

‘x(s)’ [ENTER] ‘s’ [ENTER] [~1[d] ‘f(x(s),y(s),z(s))’ [~][EVAL] [x]

‘y(s)’ [ENTER] ‘s’ [ENTER] [~][d] ‘g(x(s),y(s),z(s))’ [~][EVAL] [x] [+]
‘z(s)’ [ENTER] ‘s’ [ENTER] [~][d] ‘h(x(s),y(s),z(s))" [~][EVAL] [x] [+]

Then, use [~][EVAL] to simplify the differential.

The integral then is calculated as:

0 [ENTER][»] 4 [ENTER][»] [~][ ‘ I[ALPHA][<][S] [~1[/]-

The result is 120.
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On the other hand, we have u(x,y,z) = yz+zx+x2. Let’s define,

‘U(x,y,z) = X*y+y*z+z*x+x"2’ [ENTER][+][DEF]

Then evaluate u(Q)-u(P) by using:

4 [SPC] 16 [SPC] 2 [ENTER] [ u ]O[SPC]O [SPC] O [ENTER][ u ][-]

The result is u(Q)-u(P) = 120, as expected.

 

A program to check and integrate an exact differential
 

We use the vector notation for the first-order differential

f-dx+g-dy+h-dz = Fedr,
with

F(x,y,2) = f(x,y,2) i +g (x,y,2) j + h(X,y,2) k,
and

dr =dxi+dyj+dzk.

To put together a program for automatic check and integration of exact differentials, firs
create a sub-directory to be called ExDiff (Exact Differentials). Within that sub-directory

create a program called Chk&Int (Check & Integrate) that takes as input a vector corresponding
to F(x,y,z), i.e,

[ ‘f(x,y,2)" ‘8(x,y,2)" *h(x,y,z)’],

and a vector with the variables corresponding to

r=xi+yj+zk,

i.e., [xy ‘Z'].

The output of the program consists of two items:

+ A message indicating whether the resulting first-order differential, Fedr, is exact or
not.

# The integrated function u(x,y,z), so that du = Fedr, if the differential is exact.

The value of F is also displayed at program conclusion.
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Here is the listing of the program and sub-programs

Program Chké&int (Check & Integrate):

<<

> fx

<<

f x XCTDIFF

== |F THEN

“Exact” MSGBOX

ffx INTXD

ELSE

“Not Exact” MSGBOX

f

END

f

>>

>>

Sub-program XCTDIFF (eXaCT DIFFerential):

<<

> fx
<<

0
12 f x CHKDER
+

1 3 f x CHKDER
+

2 3 f x CHKDER
+

>>

>>

Start program Chké&lint
Take values of F (as f) and r (as x)

Start first sub-program within Chk&Int
Call XCTDIFF - check exact differential
IF result of XCTDIFF = 3 THEN
Message indicating Exact differential
Place f, call INTXD - integrate diff.

ELSE

Message: Not Exact differential

Place f

END IF
Place value of F in stack

End first sub-program within Chké&lInt
End program within Chk&Iint

Start sub-program XCTDIFF
Take values of F (as f) and r (as x)

Start first sub-program within XCTDIFF
Place a zero in stack

Check of/dy = dg/ ox, if true 1, if false O
Add result from check to value in lev. 1

Check df/0z = dh/dx, if true 1, if false O

Add result from check to value in lev. 1

Check dg/dz = dh/ay,if true 1, false 0

Add result from check to value in lev. 1

End first sub-program within XCTDIFF
End program XCTDIFF

Note: If the first order differential Fedr is exact, the result of XCTDIFF must be 3. Any other
result (0,1, or 2) means Fedr is not an exact differential.

Sub-program CHKDER (ChecK DERivatives)

<<

2ijfx
r (as x)
<<

fi GET xj GET 0
fj GET xi GET 0

— ABS
== IF THEN
1

ELSE
0

END
>>

>>

139

Start sub-program CHKDER

Take values of i, j, F (as f) and

Start first sub-program within CHKDER

Calculate of/0x;.

Calculate ofj/0x;.

Calculate |ofi/ ox; —ofj/ ox; |

IF | ofi/ox; —ofj/ox; | = 0 THEN
place a 1 in stack

ELSE

place a 0 in stack
END IF
End first sub-program within CHKDER
End sub-program CHKDER
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Sub-program INTXD (INTegrate eXact Differential):

<< Start sub-program INTXD
> fx Take values of F (as f) and r (as x)

<< Start first sub-program within INTXD
f 1 GET x 1 GET RISCH SIMP DUP Calculate integral of f(x,y,z)dx

Xx 2 GET oSIMP NEG f 2 GET + SIMP Use du/dy with previous result
x 2 GET RISHC + SIMP DUP Calculate integral with respect to y

x 3 GET 0SIMP NEG f 3 GET + SIMP Use du/dz with previous result
x 3 GET RISHC + SIMP Calculate integral with respect to z
>> End first sub-program within INTXD

>> End sub-program INTXD

Sub-program SIMP (SIMPLlify expression)

<< EVAL FACTOR TRIG >> To simplify expression as much as possible.

Now, to test the program we developed the following program that lets you produce the vector
F out of the function u(x,y,z). The input to the program is the function u(x,y,z) and the vector
r = [‘x’ ‘y’ ‘Z’]:

Program GETDiff (GET exact Differential):

<< Start program GETDiff

DUP SIZE EVAL » fxn Duplicate r, get its size, pass values

<< Start first sub-program within GETDiff
1nFORj Start FOR loop withj=1,2, ..., n

f x j GET 9SIMP Get f/xj, and simplify it
NEXT End FOR loop
3 >ARRY Create array F

f SWAP Place f back in stack, swap levels 1 and
2
>> End first sub-program within GETDiff

>> End program GETDiff

Example 1 -- As an exercise, try the following:

‘LN(z)*SIN(x)/EXP(y)’ [ENTER] [‘x’ ‘y’ “z’] [ENTER] [GETDi]

The result is:

[ ‘LN(z)*COS(x)/EXP(y)’ “-(LN(z)*SIN(x)/EXP(y))’ ‘SIN(x)/(z*EXP(y))’].

This is an exact differential. To check that and integrate it use:

[‘x’ ‘y’ ‘2’] [ENTER] [Chk&l]

The result, after some time (be patient, there are lots of operations involved), and after
reporting “Exact”, is:

‘LN(z)*SIN(x)/EXP(y)’,
as expected.
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Example 2 - Repeat the exercise worked previously by hand, i.e.,

(y+z+2x)dx+(x+z)dy+(x+y)dz.

Use: [‘y+z+2*7’ ‘x+7’ ‘x+y’][ENTER][‘X’ ‘y’ ‘z’][ENTER][Chk&]I].

The result is: XN 2+(y+Z)x+ZY’.

Example 3 - This is a non-exact differential: ydx + ydy + ydz. Checkit out:

[‘y’ ‘y’ ‘y’][ENTER][‘x’ ‘y’ ‘z’][ENTER][Chk&l].

The result is the message “Not exact.”

Transformation of double integrals into line integrals

Let R be a close region in the x-y plane bounded by the curve C. Then,

I[5-5Jer = [facga)

This result is known as Green’s theorem in the plane. One consequence of this theorem is that
you can calculate the area of a region by calculating a line integral around its boundary, as

1
A==(xdy — ydx).

2 C
The latter result is obtained by taking f(x,y) = x, and g(x,y) = -y.

Thus, to determine the area enclosed by the curve x(t) = R cos t, y(t) = Rsint, 0 <t < 2m, using

Green’s theorem, take dx = - Rsin t dt, dy = R cos t dt. The integrand, xdy - ydx, now

becomes =(R cos t)-(-R cos t dt) - (R sin t) - (-R sin t dt) = R? dt, and,

0

1 INe
A=)dy = ya= 2| R°dt =nR".
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Vector Analysis

Vector analysis refers to the analysis of multi-variate vector fields. In this section we study the

use of the operation “del” or “nabla”, V, in defining the operations of gradient of a scalar
function, divergence and curl of a vector function, and the laplacian operator V2.

The del operator

The differential operator del (or nabla) is defined as

VI[] Jd,aljrge
ox dy oz

Thus, the operatoris similar to a vector, where the x-, y-, and z-components of the vector are

the derivatives with respect to x, y, and z, respectively, of the function enclosed between the
square brackets [ ] as shown above.

Directional derivative and gradient

The first partial derivatives of a scalar field, f(x,y,z), in space provide the rate of change of
the function f with respect to each of the coordinate directions. We can think of Jf(x,y,z)/ox

as the rate of change of f(x,y,z) along the x direction. We can define the rate of change of the
function f with respect to an arc length, s, measured along an arbitrary straight line in the

plane as

 

of(x(s),y(s),z(s))/ 0s = [of(x,y,z)/ox]-[dx(s)/dt] + [df(x,y,z)/ox]-[dy(s)/dt] +
[of(x,y,z)/ox]-[dy(s)/dt].

This derivative is referred to as the directional derivative of f along a given trajectory. You

can prove that a straight line in space can be represented as a vector by

r(s) = x(s)i + y(s)j + z(s)k = a + sb,

where a and b are constant vectors, say,

a=Xxgi+ YaJ + zak,

and

b = xpi + ypj + Zk.

Therefore,

X(S) = Xa + X'S, Y(S) = Ya + Yb'S, and z(s) = z, + ZS,
and

dr/ds=xpi+Yypj+2znk =b = constant.

We can think of the derivative df(x,y,z)/ds, defined above, as the dot product of dr/ds and a

vector that we will define as the gradient of the function f(x,y,z) with respect to the

coordinates (x,y,z), i.e.,

df /0s = (grad f)e(dr/ds),

where

grad f = of(x,y,z)/ox-i + of(x,y,z)/dyj + of(x,y,z)/dzk.
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Notice that b = dr/ds is the unit tangent vector, T, defined earlier. Since our curve is a

straight line, b here represents a unit vector along the line. Therefore, the directional
derivative,

of/ds = (grad f)eb,
is the projection of the vector grad f over the unit vector b.

Using the del operator, V, we can define the gradient as:

of . of . of
df=Vf=—"-i+=—-j+—k.

grad / =o oy a

 

Determining the gradient in the HP 49 G calculator - the function HESS

The function HESS can be used to obtain the gradient of a function.. The function takes as
input a function of n independent variables f(x1, Xz, ...,Xp), and a vector of the functions [‘x;’

‘x3’..."xn"]. The function returns the Hessian matrix of the function, defined as the matrix

H = [hij] = [of / 9xi0xi],

the gradient of the function with respect to the n-variables,

grad f = [ of /dxq df/dx; ... of /0x,],

and the list of variables [‘x;” ‘x2’..."x,"].

The function Hess is available through the keystroke sequence: [+][CALC][DERIV][HESS].

Example 1 -- An example of a function of four variables is

‘x"2*t"3*y*z"4’ [ENTER] [‘x’ ‘y’ ‘2’ ‘t’ ] [ENTER] [<][CALC][DERIV][HESS].

The result is

 

BAD HYZ HES R= 'H'
Howey
3: LL 'y*x(2¥t"3)%z74'.,

[ '2¥x#t*3%z"4' 0.
[ 'yx(2¥x*¥t"30%(4.,

2: [ "yx (2Ex¥t"3)%z74,,
1 - C 1 x 1 1 1 1 z 1 t t 1 ]

CURL [RERTU[RERVE]DIV[FOURT[HESS   
To obtain the gradient of a function of three variables, you could create a program GRADIENT
by using:

<< HESS DROP SWAP DROP >>

You can add this variable to your sub-directory VCALC, since it is related to vector calculus.
The program basically eliminates the first and third output lines from the function HESS,
leaving only the gradient in the screen. The program GRADIENT uses the same input as HESS,
i.e., the function f and the vector of variables.

Example 2 - Use the program GRADIENT ([GRADI]) to calculate the gradient of the function

f(x,y,z) = x*sin y + y*cos z + xy.
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Use: ‘x*SIN(y)+y*COS(z)+x*y’ [ENTER] [‘x"’y’’z’][ENTER][GRADI].

The resultis: [‘SIN(y)+y’ ‘x*COS(y)+COS(z)+x’ ‘y*-SIN(z)’ ], i.e.,

grad f= (siny+y)i+(xcosy+cosz+x)j-ysinzk.

 

Direction of maximum increase of a function at a given point
 

Because the directional derivative represents the projection of the gradient vector over a unit
vector, b, in a pre-selected direction, the magnitude of the directional derivative can be

written as:

of/ds = |b|-|grad f|-cos vy,

where vy is the angle between the vectors grad f and b. Since b is a unit vector, |b| = 1,
regardless of the direction selected. Therefore, the maximum value of df/ds is reached when y

= n/2, for which cosy = 1, and

(of /0s)max = lgrad f| = | Vf]

In conclusion, we can state that if at a point P the gradient of a function f is not a zero vector,
it has the direction of maximum increase of f at P. That direction can be defined by the unit

vector,

e; = grad f/|grad f|.

Example - Determine the direction of maximum increase of f(x,y,z) from Example 2 at point

(-1,0,1).

We have the result for grad f in the stack. Use:
[ENTER] Get an additional copy.

[<][ABS] Get magnitude of the gradient.
[+] Calculate grad f/|grad f|.

To evaluate this unit vector at point (-1,0,1), enter the list

{ ‘x’ -1‘y’ 0 ‘2’ 1}[ENTER],
then, use:

‘x=-1"[ENTER][~][ALG][SUBST] ‘y=0’ [SUBST] ‘z=1" [SUBST].

Finally, use the program [VSIMP], defined within the sub-directory VCALC to simplify vectors.
The result is [0 -1 0].
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Gradient as normal vector to surfaces or curves
 

Consider a function f(x,y,z) in three-dimensional space. An equation of the form

f(x,y,z) = ¢ = constant

represents a surface S in space known as a level surface of the function f. Let the curve C

represented by the parametric equations x = x(t), y = y(t), and z = z(t), i.e.,

r(t) = x(t) i + y(t) j + z(t) k.

If the curve C is to be contained in the level surface S, then x(t), y(t), z(t), must satisfy the

equation of the curve, namely, f[x(t),y(t),z(t)] = c. Taking the derivative df/dt and using the

chain rule we have:

df/dt = (of /0x)-(dx/dt) + (of /dx)-(dy/dt) + (of /dx)-(dz/dt) = (grad f) e(dr/dt) = 0.

where the vector

v =dr/dt

is tangent to the curve C. The vector v is contained in a plane that is tangent to the level

surface of the function at a given point of interest. Also, the result

gradf.v=0

indicates that the vectors grad f and v are perpendicular. Therefore, the vector grad f(x,y,z)
is normal to the tangent plane at the point P(x,y,z), and therefore, normal to the curve at that

point. This is illustrated in the figure below.

 

grad f C

fix,y,2) = ¢    
In 2D space, the function f will be defined as f(x,y). The object defined by f(x,y) = c is a curve
in the plane. The grad f now represents a vector normal to the tangent line to the curve f(x,y)

= c at a given point that belongs in the curve.

Example 4 -- Determine the equation of a plane tangent to the surface f(x,y,z) = X'+y*+2>-50 =
0, at the point A(0,-5,5).

The gradient of the function f(x,y,z) produces a vector normalto the surface f(x,y,z) = 0, i.e.,

'x"2+y*2+2"2-50 ' [ENTER] [xy 'z'] [ENTER] [GRADI]
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The result is [ 2*x 2*y' '2*7' ]

To evaluate at point (0,-5,5), use:

‘x=0’[ENTER][~][ALG][SUBST] ‘y=-5’ [SUBST] ‘z=5" [SUBST] [VAR][VSIMP]

The result is [0-100], i.e., n = -10j +10k

To obtain the equation of the tangential plane, we follow the approach presented in Chapter 9:

[‘x* ‘y’ ‘z’] [ENTER] Enter generic point P(x,y,z) as a vector
[0 -5 5] [ENTER] Enter point P(5, 0, -1) as a vector
[-] Calculate rp,,

[<]1[MTH][VECTR][ DOT ] Calculate nerp/a

which results in “10%(z-5)+-10*(y--5)’. Use [~][ALG][EXPA] to obtain ‘-(10-*y-(10*z-100))’.

 

[The equation of the plane, of course, can be expanded, by hand, to read: -y+z-10=0.

To verify that the point A(0,-5,5) satisfies the equation, first, press [ENTER] to keep a second
copy of the expression available for future use. Then, enter the list

{*x’ 0 ‘y’ -5 ‘Zz’ 5}[ENTER],

and use

[~1[ | J[ENTER]

to replace the values in the expression. The result is ‘ 3*5+(2*0-(-1+16))’. Press [~][EVAL] to
get 0.

 

Gradient of a potential
 

In many physical problems it is possible to define a function, x,y,z), known as the potential

function or, simply, the potential, such that the gradient of ¢ represents a vector field. As an
example, take the case of a two-dimensional frictionless flow presented earlier. The potential
of the flow is a function, ¢x,y), such that the velocity field, q = u(x,y)i + v(x,y)j, is obtained

from, q = grad ¢.

Example 5 -- Determine the velocity vector corresponding to the velocity potential f(x,y,z) =
xy

Use: '(x*y*z)*2' [ENTER] [ ‘x'y' 'Z J[ENTER] [VAR][GRADI]J[VSIMP].

The result is: [2*z"2*y"2*x' 2*2" 2*y*x"2' '2*z*y"2*x"2' ], i.e.,

q = (2xy’2Y)i+(2x'yz")j+ (2x%y'2)k.
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 | Formulas for the gradient

The following formulas apply to the calculation of gradients:

(a) grad(cf) = cgrad(f), c = constant
(b) grad(f-g) = f-grad(g) + g-grad(f).

(c) grad(f/g) = (1/g”)[g-grad(f) + f-grad(g)]
(d) grad(f") = nf ™Y .grad(f)

Example 6 -- Check the formula for the gradient of the product of two functions:

f(x,Y,2)*8(x,y,z)' [ENTER] ['x"'y' 'z' ] [ENTER] [VAR][GRADI].

The result is:

[d1f(x,y,z)*g(x,y,z)+f(x,y,z)*d1g(x,y,z)"d2f(x,y,z)*g(X,y,z)+f(x,y,z)*d2g(x,yz)’
'd3f(x,y,z)*g(x,y,z)+f(x,y,z)*d3g(x,yz)" ]

Compare with:

(x,y,z) [ENTER] 'g(x,y,z)' [x 'y' 'z ] [ENTER] [GRADI] [x]
8(x,y,2z)" [ENTER] 'f(x,y,2)" [x 'y" 2" ] [ENTER] [GRADI] [x] [+]

The result is the same as above.

Divergence of a vector field

Consider the vector function v(x,y,z;) = vi(X,y,z)1 + va(X,Y,z)j + v3(X,Y,z)-k. The function

is called the divergence of the vector field v or, simply, the divergence of v.

div =Vey,Ma

x ko

 

The function DIV

The HP 49 G provides the function DIV to calculate the divergence of a vector function. The
function DIV takes as input a vector function [ ‘v¢(Xx,Y,z)’ ‘vi(X,Y,z)’ ‘vi(X,Y,z)’ ] and a vector of
independent variables [‘x’ ‘y’ ‘Z’], and returns the divergence of the vector function, i.e.,

0V1/0x+0dvy/dy+avi/ az.

Example 1 - Determine the divergence of the vector function v = €* sin x i + y’ siny j+ze k.

Use:

[ “EXP(x)*SIN(x)’ ‘y"2*SIN(y)’ ‘z*EXP(z)’ ] [ENTER] [‘x’ ‘y’ ‘2’ ][ENTER][~][CALC][DERIV][DIV]

The result is: ‘EXP(x)*SIN(x)+EXP(x)*COS(x)+(2*y*SIN(y)+y"2*COS(y)+(EXP(z)+Z*EXP(z)))’
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To simplify this result use: [~][EVAL]. The final result is:

‘EXP(x)*SIN(x)+(2*y*SIN(y)+(EXP(x)*COS(x)+(y"2*COS(y)+(z+1)*EXP(z))))’, i.e.,

divv=esinx+ (2ysiny + (eX cos x + (Y cosy + (z+ 1) €%))).

 Formulas for the divergence

The following formulas apply to the calculation of divergence of vectorfields:

(a) div(cv) = c div(v)

(b) div(fv) = f div(v) + vegrad(f)

(c) div(f grad(g)) = f div(grad(g)) + grad(f) « grad(g)

(d) div(f grad g - g grad f) = f Vg - g Vf

 

 A physical interpretation of the divergence: mass flux of fluids

Consider the flow of a fluid through the differential volume shown in the figure below. In the
analysis of fluid flow, such volume is referred to as a differential control volume, and its outer

surface is known as the control surface.

 

I
~

 

  
 

Let the velocity field of the fluid flow be given by the function

a(x,y,z,t;) =u(x,y,z,t) i + v(x, y, z, t) j + w(x, y, z, t) k.

This expression will be used to represent the function at point P(x,y,z) corresponding to the
corner of the differential element that is closest to the origin, as shown in the figure below.
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The mass flux of the fluid through the face of the control volume parallel to the xz plane, for

example, is given by pv Ax A, where p(x,y,z,t) is the fluid density, defined as mass per unit
volume. (The mass flux has units of mass per unit volume). The function pv = f(x,y,z,t)

represents the product of density, p(x,y,z,t), and the y-component of the velocity, v(x,y,z,t),

on the face of interest. We can use a Taylor series expansion along each coordinate direction

to write out an expression for the products pu and pv at the different faces of the differential

volume. The figure above shows how the product pu changes by an amount A(pu) as we move
from face PR, located at x, to face SQ, located at x + Ax. The figure also shows how the

product pv changes by an amount A(pv) as we move from face PQ, located at y, to face RS,

located at y+Ay. From the Taylor series expansions of the corresponding functions along each

of the coordinate axes, we can show that the increases in the functions pu and pv are
approximated by

A (pu) = (d(pu)/ dx)-Ax, and A(pv) = (d (pv)/dy)-Ay,
respectively.

The net mass flux out of the control volume along the x direction is given by

Fx= [pu+(d(pu)/ ox)-Ax)Ay-Az]-(pu) Ay-Ax = (d(pu)/ ox)-AX-Ay-Az = (d(pu)/ dx)-AV,

where, AV= Ax-Ay-Az, is the (constant) volume of the differential element. We can prove that
the net mass fluxes out of the control volume in the y- and z-directions are given by

Fy= (d(pv)/dy) -AV, and F, = (d(pw)/ 9z)-AV,

respectively. The net mass flux out of the control volume is then given by:

F total = Fx+Fy+F, = [d(pu)/ ox + d(pVv)/dy + d(pw)/dz]-AV = div(p-q) -AV.

Therefore, the divergence of the vector function, p-q = f(x,y,z), is interpreted for fluid flow as

the total mass flux per unit volume out of a differential control volume, i.e.,

div(pq) = Frotal / AV.
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Assuming that there are not sources or sinks of fluid mass within the differential control

volume, the net mass flux out of the control volume must be equal to the rate of decrease with
respect to time of the mass within the control volume. This is a statement of the law of
conservation of mass for the elementary control volume, and it is written as:

Frotat = -(dp/0t)-AV, or div(pq)-AV = -(dp/dt)-AV.

Simplifying this equation, by dividing by AV, and rearranging terms results in the differential
form of the continuity equation for a compressible fluid flow, namely,

dp/ot + div(pq) = 0.

Most liquids at normal pressures are incompressible, meaning that their density, p(x,y,z,t); is

constant. For a constant value of p, the continuity equation reduces to

div(q) = Veq =du/ ox + dv/dy + ow/dz = 0.

 

The Laplacian operator

The gradient of a scalar function, f(x,y,z), is a vector function,

grad f = (of /0x)i + (df/9x) j + (of /9x) k.

The divergence of this vector function produces a differential operator known as the Laplacian
of the function f, namely:

V?f =div(gradf) =V e (Vf) SfSLL,

 

The function LAPL
 

The function LAPL takes as input a scalar function ‘f(x,y,z)’ and a vector of independent
variables [‘x’ ‘y’ ‘2’ ], and calculates the Laplacian of the function.

Example 1 - Determine the Laplacian of the function f(x,y,z) = x e” sin z.

Use:

‘x*exp(y)*sin(z)’ [ENTER] [‘x’ ‘y’ ‘Z’][ENTER] [+ ][CALC][DERIV][LAPL]

The result is ‘x*EXP(y)*SIN(z)+x*EXP(y)*-SIN(z)’. Press [~][EVAL] to simplify the expression to

0, i.e., V*f=0.
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Laplace’s equation

The Laplace equation is a differential equation that indicates that the Laplacian of a scalar
function is zero, i.e.,

Vi = of19x? + Of/ay? + flat = 0.

Laplace equation describes many physical phenomena, for example, the gravitational potential
of a point mass, the electric potential of a point charge, the velocity potential of a fluid flow.  
 

Curl (rotational) of a vector function

Consider the vector function v(x,y,z;) = vi(X,Y,z)1 + Va(X,Y,2Z)j + v3(x,y,z)-k. The function

i j k

curl v=V xv = 9 9 9 =
ox ay oz

V (x, v,2) v,(x,y,2) vi(x,y,2)

WyOv) [a9ny
dy oz dz ox ox dy

is called the curl of the vector field v or, simply, the curl of v.

 

The function CURL

The function CURL takes as input a vector function [‘v1(x,y,z)’ ‘v2(x,y,z)’ ‘v3(x,y,z)’] and a
vector of independent variables [‘x’ ‘y’ ‘2’ ], and returns the curl of the vector function. This
function is available through [+][CALC][DERIV][ CURL ].

Example 1 - Determine the curl of the vector function v = (x%y)i+(y?z)j+(z*x)k.

Use: [x2‘y*2*z’ ‘2"2*x’][ENTER] [‘x’ ‘y’ ‘2’ J[ENTER] [~][CALC][DERIV][ CURL ].

The result is [-y*2’ “-z"2’ -x"2'], i.e., Vxv = - (Yi+Z2j+x%K).

 

Physical interpretation of the curl: rotation of a rigid body

Consider a body rotating with constant angular velocity, Q = wi + a,j + ugk. Let r = xi+yj+zk

represent the position of a point P(x,y,z) in the solid body measured with respect to the origin
(0,0,0). The velocity of that point can be determined by the cross product, v = Qxr. Using

the HP 49 G calculator to enter this operation we write:

[ol ‘©2" ‘o3’] [ENTER] [‘x’ ‘y’ ‘2’] [ENTER ] [+][MTH][VECTR][CROSS].
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The result is

[‘x*02-y*®3’ ‘@3*x-z*ol1’ ‘y*ol- a2*x’].

Let’s now calculate the curl of the velocity field v(x,y,z) calculated above. In the calculator

use:

[‘x” ‘y’ ‘2’][ENTER] [«][CALC][DERIV][CURL].

The result is [‘of+ ol’ ‘02+ 2’ ‘03+ 03’] = [‘2*01’ ‘2*w2’ ‘2*w3’], i.e.,

Vxr = 2Q.

This result indicates that curl v = 2Q, i.e., the curl of the velocity field v(x,y,z) representing

the velocity of point (x,y,z) for a rigid body subject to pure rotation with an angular Q = oxi +
mj + upk., is equal to twice the angular velocity. This is a physical interpretation of the curl
for a particular type of motion.

 

Vorticity and circulation in fluid motion

Given a fluid motion characterized by the velocity vector q = ui+v-j+wk, we define the
vorticity vector as

€ = Vxq.

A flow for which { = 0 is said to be irrotational.

Associated with the vorticity of a flow is the concept of circulation of the flow, G, defined as

I'= 4qedr
-

Example 1 - Given the three-dimensional velocity vector q = (x%i+x-y-j+zk), determine the
vorticity vector for the flow.

Use:

[‘x"2’ ‘x*y’ ‘2’][ENTER][‘x’ ‘y’ ‘2’][ENTER] [<][CALC][DERIV][CURL].

The result is [00 ‘y’], i.e., { = yk. Since, { # 0 the flow is not irrotational.

 

Vector differential operations in generalized orthogonal coordinates

So far, we have defined and used the operations of gradient, divergence, and curl in Cartesian

coordinates. In this section we present a general approach to define these operations in other
systems of orthogonal coordinates.
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Unit vector bases

Cartesian, cylindrical, and spherical coordinate systems are called orthogonal coordinates
because it is possible to define a triad of unit orthogonal vectors associated with each of the
three coordinates (qi,q2,q3) that form a vector basis. A vector basis in three dimensions is a
set of three (unit) vectors eq,e;,e3;, so that any vector A in space can be written as a linear

combination of the basis vectors, i.e.,

A= Avert Ayer Ases,

where Aq,A;,A;, are the components of the vector A in the coordinate system under

consideration.

The following table shows the coordinates, unit vectors, and vector components for the
Cartesian, cylindrical, and spherical coordinates:

 

 

 

 

  

Coordinate Variables Unit vectors Components

system [91,92,03] [eq,e2,e3] [A1,A2,A5]

Cartesian [x,y,z] [i,j,k] [Ax.AyA

Cylindrical [0.2] leneoed|[AvAsAg
Spherical 0.00]| [epepel|[AnApAd     

The figure below shows the unit vectors for cylindrical and spherical coordinates at a generic
point P. While the unit vectors in Cartesian coordinates, fi, j, k], are constant, the unit

vectors in cylindrical coordinates (except for e, = k) and spherical coordinates change from
point to point. Because of the fact that its unit vector basis is constant, the Cartesian
coordinate system is the easiest to use. Most other orthogonal coordinate systems are

eventually referred to the Cartesian system.

 

Scale factors
 

Given a system of orthogonal coordinates (q,q;,q3) with unit vectors (e(,e;,e3), the absolute

value of the partial derivative of a position vector,

r=(qye+ qret gses,

with respect to the coordinate q, is know as the i-th scale factor of the coordinate system,

i.e.,
 

hi = |dr/oq;l

The derivative of the position vector with respect to the coordinate q; can be written as,

or/dq; = hie.

Therefore, the unit vector e; is defined in terms of its Cartesian components as

€ =0r/dq; /|or/oqil = (e)xi + (e)xj +(e) k.
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The differential of length in generalized orthogonal coordinates is written, in terms of the
scale factors, as

ds? = hi?.dg,? + hy2-dq,” + h32-dq4’.

Also, the differential of volume is

dV = (hy-dqy)-(h2-dqy)-(h3-dqs3) = hy-hz-h3-dqq-dg,-dqs.

 

 

cylindrical coordinates spherical coordinates   
The scale factors for cylindrical and spherical coordinates are:

a Cylindrical (r,0,z): hy =1, hy =r, hy =1

4 Spherical (p,0,0): hy =1, hy =p, hy = p sin ¢

We can check that the differentials of volumes for these two coordinate systems are

(dV)ey = r-dr-de-dz, and (dV)spn = pZsin ¢.dp-de-do
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 Gradient, divergence, curl and Laplacian in generalized orthogonal coordinates

Using the scale factors (hq,hy,h3)and unit vector basis (e, e ;,e3), the following vector

differential operations are defined:

we Gradient

3 1
grad / =Vff=ot

he Divergence

== Curl

h -e, h,-e, h;-e,

hy -h, hy dq, dq, dq,
h-A hy-A4, h,-A,

+ Laplacian

3 . .

pny oq h; dg,1

 

Programs for vector differential operations in generalized orthogonal coordinates

Create a sub-directory to be called OrtCoord (Orthogonal Coordinates). Within that sub-

directory enter the following programs:

Program INFO (INFOrmation):

<< Start program INFO

“Enter f,[h],[q] for GRADC & LAPLC” MSGBOX Show info on gradient and Laplacian

“Enter [A],[h],[q] for DIVC & CURLC” MSGBOX Show info on divergence and curl
>> End program INFO
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Program GRADC (GRADient for generalized orthogonal Coordinates):
<<

>f hq

qs]
<<

h AXL INV AXL

f qg HESS DROP SWAP DROP
HADAMARD
VSIMP
>>

>>

Start program GRADC

Enter f(q1,92,93), (hy, hy, hs], (a1, GQ,

Start first sub-program within GRADC
Calculate a vector containing [1/h;]

Calculate gradient of f with variables q
Multiply vectors [1/hj][grad f]
Simplify vector
End first sub-program within GRADC

End program GRADC
Program DIVC (DIVergence for generalized orthogonal Coordinates):

<<

>A hg

qs]
<<

h AXL LIST = K

<<

0

13 FOR j
Aj GET hj GET/K*

qj GET
+

NEXT

K / EVAL FACTOR TRIG
>>

>>

>>

Start program DIVC

Enter A(Q1,92,93), [hy, hy, hs], [ai, GQ,

Start first sub-program within DIVC

Calculate K = hy-hy-hs

Start second sub-program within DIVC
Place a zero in stack

Start FOR loop with j =1,2,3
Calculate K-A;/h;
Calculate d(K-A;/hy)/ aq;

Add term to the divergence
End FOR loop (j)
Simplify expression

End second sub-program within DIVC
End first sub-program within DIVC
End program DIVC

Program CURLC (CURL for generalized orthogonal Coordinates):

<<

>A hg
<<

h A HADAMARD CURL h gq HADAMARD
h AXL TILIST / VSIMP
>>

>>

Start program CURLC

Enter A(q1,92,93), (hy, ha, hs], [as qQ qs]

Start first sub-program within CURLC
Calculate determinant in eq. for curl A
Find K=h;-h,-h3,divide by K, simplify

Enderfirst sub-program within CURLC
End program CURLC

Program LAPLC (LAPLacian for generalized orthogonal Coordinates):

<<

>f hq
<<

h AXL TILIST => K
<<

0
13 FOR j

f g jGETOK*hjGET2"/q jGET a+
NEXT
K / EVAL FACTOR TRIG
>>

>>

>>
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Start program LAPLC
Enter f(q1,92,q3), [h1, hy, hs], [a1, Q2, G3]
Start first sub-program within DIVC
Calculate K = hy-hy-h;

Start second sub-program within LAPLC
Place a zero in stack

Start FOR loop with j =1,2,3

Calculate Laplacian
End FOR loop (j)
Divide by K =h;-h,-hs3, simplify expression

End second sub-program within LAPLC
End first sub-program within LAPLC
End program LAPLC
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Also, copy the program VSIMP from sub-directory VCALC into this sub-directory.

Before operating the programs, order the variables by using:

{ INFO GRADC DIVC CURLC LAPLC VSIMP } [ENTER] [«][PRG][ MEM ][ DIR J[NXT][ORDER],

so that the soft-menu key labels in your sub-directory now look like this:

[INFO][GRADC][DIVC][CURLC][LAPLC][VSIMP].

The programs GRADC (gradient) and LAPLC (Laplacian) use as input a function ‘f(q1,q2,q3)’, a
vector of scale factors [‘h1’ ‘h2’ ‘h3’], and a vector of independent variables [‘q1’ ‘q2’ ‘q3’].
For example, using cylindrical coordinates, try the following exercise:

Example 1-- Find expressions for the gradient, divergence, curl, and Laplacian in cylindrical
coordinates.

Since we are going to be using the vectorsh =[1 ‘r’ 1], and q = [‘r’ ‘0’ ‘Z’], several times,
create the following list in the stack:

{“f(r,0,z)’ [171] [‘r" ‘0’ ‘2’]}

and press [ENTER] three times to make three copies of this list.

Next, press [][EVAL] to separate the terms of the last copy of the list, followed by:

2 [ENTER] [«][PRG][TYPE][>LIST] [»] [<]

Also, put together a vector A as follows:

‘A1(r,0,z)’ [ENTER] ‘A2(r,0,z)’ [ENTER] ‘A3(r,0,z)’ [ENTER ] 3 [ENTER] [<][PRG][TYPE][->ARRY]

Next, swap this vector with the list in stack level 2, add the vector to the list, and make extra

copy of the new list, by using:

[> ]1[+][ENTER].

- First, we calculate the divergence of A by using:

 

[~][EVAL][VAR][DIVC]

The result is:

‘(r*dl1Al(r,0,z)+(d2A2(r,0,z)+(r*d3A3(r,0,z)+Al(r,0,2))))/r"', i.e.

94 94, oA.
ro ——+(—+(r-—=+4,))

VeA-= or 00 ( oz _1ad roa )eLA

¥ ror "Tr 086 oz
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+ Next, we calculate the curl of A by using:

[“][~][EVAL][VAR][CURLC]

The result is:

['*-((r*d3A2(r,0,z)-d2A3(r,0,2)) /r’ *d3Aal(r, 0,z)-dlA3(r, 0,z)"’
‘= ((d2Al(r, 0,z)-(r*d1A2(r,q,z)+A2(r, 0,2)))/r’],

i.e.,

0A 04. 04 9 04,
——ye, +(—=——"L)e, +[—(r- 4,)——=Zle.

0z or

a4 2
dz or 20

VXA =(—
r 00

  

* Next, we calculate the gradient of f by using:

[<]1[~][EVAL][VAR][GRADC]

There will be an error message reported. This is because of a conflict in using EVAL with
symbolic derivatives. Press [ON] [«][<][<][<][<][<]. The remaining vector is the result we
want:

[‘d1f(r,0,z)' ‘d2f(r,0,z)/r’ ‘d3f(r,0,z)'], i.e.,

Vo, LY LYe, +——-e, ]Vf =

SE 5g dz ~

EN Finally, the Laplacian is calculated by using:

[<]1[~][EVAL][VAR][GRADC]

The result is:

‘(r*2*dldl'f’ (r,q,z)+d2d2'f' (r,q,z)+r"2*d3d3"'f' (r,q,z)+r*dl'f£' (r,q,z)) /x"2",

i.e.,

Of If LS2¥7J J 2 xd

vio or 907 ger Tor 13),19°,3
2 2 2 2°or) r 00° ozr ror
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Example 2 - Determine the gradient and the Laplacian of the function f(p,0,¢) = p sin 6 cos ¢in
spherical coordinates.

Use:

‘p*SIN(6)*COS(¢)’ [ENTER] [1 ‘p’ ‘p*SIN(@) J[ENTER] [‘p’ ‘0’ ‘¢’'][ENTER]

To keep an additional copy of the input lines, let's create a list, by using: 3
[<][PRG][TYPE][>LIST]. Then, press [ENTER][ENTER] (Keep two copies of the list in the stack,
just in case you loose one accidentally).

= To calculate the gradient, use: [~][EVAL] [VAR][GRADC]. The result is:

[ “‘COS(¢)*SIN(6)’ ‘COS(¢)*SIN(6)’ “-SIN(0)’]

i.e., Vf = cos ¢sin 8 e, + cos ¢sin © ey - sin 6 e, = sin 6 [cos ¢ (e, + eg) - €].

wk To calculate the Laplacian, use: [«<][—][EVAL] [VAR][GRADC]. The result is:

‘COS(¢)*SIN(0)/p’

i.e., Vf = cos ¢sin 6/p.
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Surfaces

Surfaces in space can be represented implicitly as

f(x,y,2) = 0,

or explicitly as

z = g(x,y).

The latter can be converted into an implicit representation by writing,

f(x,y,z) =Z- g(x,y) = 0.

Surfaces described by z = g(x,y) can be plotted in the HP 49 G calculator by using Fast3D or
Wireframe graphs. Examples of these type of graphics are presented also in Chapter 11.

A parametric representation of a surface in terms of the two parameters u and v is,

r(u,v) = x(u,v) i+ y(u,v)j+ z(u,v) k.

Parametric representations of surfaces can be plotted in the HP 49 G calculator by using Pr-
Surface graphs. This type of graphs was also introduced in Chapter 11.

Example 1 - Plot the surface z = sin(x)cos(y) using a Fast3D graph.

Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to Fast3D.

> Press [¥] and type ‘SIN(X)*COS(Y)’ [OK].

» Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.

> Press [NXT][OK] to return to normal calculator display.

e Press [<1][WIN], simultaneously, to access the PLOT WINDOW screen.

>» Change the plot window ranges to read:

X-Left:-3.15 X-Right:3.15

Y-Near:-3.15 Y-Far: 3.15

Z-Low: -1 Z-High: 1

Step Indep: 15 Depnd: 12

> Press [ERASE][DRAW] to draw the three-dimensional surface. The following figure shows
one view of the FAST3D plot for this example:
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» Press [EXIT] to return to the PLOT WINDOW environment.

» Press [CANCL] to return to PLOT WINDOW.

~
>» Press [ON], or [NXT][OK], to return to normal calculator display.

Example 2 - Plot the surface represented parametrically by x = x(X,Y) = X sin Y, y = y(X,Y) = x
cosy,

Pr-Surface (parametric surface) plots are used to plot a three-dimensional surface whose
coordinates (x,y,z) are described by x = x(X,Y), y = y(X,Y), z=z(X,Y), where X and Y are

independent parameters.

 

 

Note: The equations x = x(X,Y), y = y(X,Y), z=z(X,Y) represent a parametric description of a

surface. X and Y are the independent parameters. Most textbooks will use (u,v) as the
parameters, rather than (X,Y). Thus, the parametric description of a surface is given as x =

x(u,v), y = y(u,v), z=z(u,v).
 

For example, to produce a Pr-Surface plot for the surface x = x(X,Y) = Xsin Y, y = y(X,Y) = X cos

Y, z=z(X,Y)=X"2, use the following:

eo Press [+1][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to Pr-Surface.

> Press [¥v] and type ‘{X*SIN(Y) X*COS(Y) X"2}’ [OK].

» Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.

» Press [NXT][OK] to return to normal calculator display.

eo Press [«1][WIN], simultaneously, to access the PLOT WINDOW screen.

» Change the plot window ranges to read:

X-Left:-1 X-Right:1

Y-Near:-1 Y-Far: 1

Z-Low: -1 Z-High:1

XE: -8 YE: -8 zE:-8

Step Indep: 15 Depnd: 15

Press [ERASE][DRAW] to draw the three-dimensional surface. The result is a tree-
dimensional surface that looks like a symmetric watermelon. Ideally, this should be the

plot of a sphere. The distortion occurs because of the rectangular shape of the calculator’s
screen. By the way, it is going to take the calculator a couple of minutes to finish the plot.
So, be patient. Here is what the surface looks like:

Y
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>» Press [EDIT][NXT][LABEL][MENU] to see the graph with labels and ranges.

> Press [NXT][NXT][PICT][CANCL] to return to the PLOT WINDOW environment.

>» Press [ON], or [NXT][OK], to return to normal calculator display.

Area of a parametric surface

The areas A of a surface S: r(u,v) is defined by the double integral

A= [fad = [[Ir, xr, |du-dv,
R R

where

ry, =or/ou, r, =or/ov,

and R is the region of the u-v plane corresponding to the surface.

The expression

dA =| r,x r, | dudy,

is called the element or differential of area of the surface.

Example 1 -- Consider the surface S: r = r(u,v) = [R-sin u-cos v, Rsin usin v, R-cos u;], O<u<n/2,

O<v<n. To obtain the integrand |r, x r,| we use the program VDeriv within sub-directory
VCALC, as well as the HP 49 G function CROSS, as follows:

[ “R*SIN(U)*COS(v)’ ‘R*SIN(u)*SIN(v)’ ‘R*COS(u)’] [ENTER] ‘r’ [STO»] Storer
[VDeri] ‘r’ [¥] ‘u’ [ENTER] Calculate ry
[VDeri] ‘r’ [¥v] ‘u’ [ENTER] Calculate ry

[<][MTH][VECTR][CROSS] [<][ABS] Calculate |ry x ry]
[][EVAL][~ ][ALG][FACTO][ ]J[TRIG][NXT][NXT][TRIG] Simplify last result

The result is ‘R"2*SIN(u)’.

To create the double integral required for calculating the area, we will use the equation writer
as follows:

[v] Enter eq. writer, expression is highlighted.

[~1[ 110] [»] [~][n] Place expression in integral, enter limits
[»1[»] [ALPHA][][V] Enter variable of integration for inner integral

[Al[AI[~10 S100] [>] [1m [+102] Select/place expression in integral, enter limits
[»]1[»] [ALPHA][<][U] Enter variable of integration for outer integral
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The integral should look like this:
 

m
m

| RES INCU) du du+

6

ENAETEEAETNENEE   
The integral is calculated by using [A][A][EVAL]. The result is ‘2*R"2*r’, which is the area of
the hemisphere defined by the surface S.

Area of a surface z = g(x,y)

A surface S represented by z = g(x,y) can also be written as

r(uv) =ui+vj+g(uv)k,

with

ry = i +g.K, ry = i +g.k,

and

| rax ry |2=1+g.2+ g%=1+ (3dg/0u)’ + (dg/ av)’.

Replacing u = x and v = y in this result we have:

 

where S* is the projection of S on the x-y plane.

Example 1 - Determine the side area of the cone described by S: { z = (x2+y%)'2, 0<z<1}.

The surface can be plotted in the HP 49 G calculator using a Fast3D graph to look as follows:

 

 

The projection of the surface on the x-y plane is obtained by replacing z = 1 in the expression z
= (x2+y")"'?resulting in X*+y? =1, or $* = { -(1-x}) "2 <y < (1-x?) "2, -1 <x < 1}. To put together
the integral use the following:

‘NV (x*2+y~2)’[ENTER][ENTER] Enter g(x,y), make extra copy
‘x’ [ENTER][~1[9] [2] [V‘][ENTER] [~][EVAL] Calculate (9g/dx)>
>] Swap levels 1 and 2, g(x,y) is now in level 1

‘v' [~1[01[<]1[x*]1[~ [EVAL] Calculate (9g/dy)*
[+] Calculate (9g/9x)? + (9g/ dy)?
[1] [+]1[Vx] Calculate [1+ (9g/dx)* + (9g/ay)*]"’?
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The result is ‘V2’.

Now, put together the following integral:

 

1

1-32

JZ'ay dxd

1-42

-1

{341   
Finally, press [A][A][EVAL], within the equation writer, to obtain the result “V2*r’.

Surface integrals

As a line integral is a generalization of the univariate integral, the surface integral is a
generalization of the double integral. Let S be a surface represented by r(u,v), with dA =| r,

xX ry | du-dv, then the surface integral of f(x,y,z) over S is calculated as

[Jxp. z)dA = [Jrx, v), (u,v), z(u,v)]-|r, xr, | du-dv.
S S

If S is represented in the form z = g(x,y), then

 

[[fxy.2)-da=[[flx.y.gx00:

Orientation of a surface

Let S be a smooth surface. At any point P on S we can select a unit normal vector n. The

direction of n is called the positive normal direction of S at P. There are, obviously, two

possibilities in choosing n for any given surface in space. The two expressions for the normal
vector can be obtained from

r, Xr,

Crxr|

A smooth surface is said to be orientable if the positive normal direction, when given at an
arbitrary point P of S, can be continued in a unique and continuous way over the entire
surface. The external surface of a sphere, for example, will be an orientable surface.
Classical examples of no-orientable surfaces are the Moebius strip, and Klein's bottle.

If a smooth surface is orientable, then we may orient the S by choosing one of the two possible
directions of the normal vector.

164 © 2000 Gilberto E. Urroz

All rights reserved



Evaluating surface integrals over a parametric surface

Depending on the sign selected for the normal vector n, the integral of a function f(x,y,z) over
a surface r(u,v) can be calculated as

I] f(x,y, z)dxdy = +]fx, Vv), y(u,v), z(u,v)]-J) -dudv,

Where R is the region corresponding to S in the u-v plane.

Example 1 -- Determine the value of the integral, [[R[x2+y*+(z-a)?]""/2dA, on the hemisphere
Sxtatdl a’, z>0. [Hint: represent S by r(u,v) = a sin u cos vi + a sin u sin v j+acosuk.]

Start by putting together the Jacobian, using the program JACOBIAN developed earlier:

[‘a*SIN(u)*COS(v)’ ‘a*SIN(u)*SIN(v)’ ‘a*COS(u)’] [ENTER]Enter vector [ ‘x(u,v)’ ‘y(u,v)’]
[‘u’ “v’][ENTER] [JACOB] Enter vector [‘u’ ‘Vv’
[JIEVAL][~ ][ALG][FACTO][r J[TRIG][NXT][NXT][TRIG] Simplify the expression

The result is ‘a”2*COS(u)*SIN(u)’.

“AN (x2+y"2+(z-a)"2)’
function

‘x = a*SIN(u)*COS(v)’
‘y = a*SIN(u)*SIN(v)’
‘z = a*COS(v)’

[ENTER]

[ENTER][~][ALG][SUBST]
[ENTER] [~][ALG][SUBST]
[ENTER][~][ALG][SUBST]

Next, evaluate the function in terms of u,v, as follows:

Enter expression for

Substitute x = x(u,Vv)
Substitute y = y(u,v)
Substitute z = z(u,v)

[~][EVAL][~][ALG][FACTO][~][TRIG][NXT][NXT][TRIG] Simplify the expression

The result is “1/(¥ -(2*(COS(u)-1)*ABS(a))’.
using:

Multiply the two terms and simplify the result, by

[x][~ [EVAL].

Next, put together the following double integral using the equation writer:

[v]
highlighted.

[101100] [»] [<]1[n]
[»]1[»] [ALPHA][<][V]
integral

[Al[Al[~]1[ 100] [>] [<]1[nI[<][2]
enter limits

[»]1(12 times) [ALPHA][+]{U]

integral

To evaluate the integral, step-by-step, use:

[a][A]
[viv]
cursor

(> 10>10>1[>10>]
[(al[a][a][a][a]

165

Enter equation writer, expression is

Place expression in integral, enter limits
Enter the variable of integration for inner

Select and place expression in integral,

Enter the variable of integration for outer

Select entire double integral

Select lower limit of outer integral, change

Move cursor to integrand expression

Select inner integral
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The screen should look like this:

 

 

0
EDIT] CURSETG[EVALJFACTO[TERFA    

Then, press [EVAL]. Highlight the remaining integral, and press [EVAL] again. Because the

calculator does not know that a is a real number, it will request to change settings to Complex,
accept the change as requested. The resultis:

 

22am
34

334i   
Considering the complicated expression that we are integrating, you should allow the
calculator a few minutes to achieve the result.
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Differential equations   
Differential equations are equations involving derivatives of a function. Because many physical
quantities are given in terms of rates of change of a certain quantity with respect to one or
more independent quantities, derivatives appear frequently in the statement of physical laws.
For example, the flux of heat, q [J/m?], in a one-dimensionaldirection is given by

q = -k-(dT/dx),

where T[K or °C] is the temperature, x [m] is positions, and k [J/(m K) or J/(m oC)]. This
equation can be considered as a differential equation if q and k are known, and we are trying
to solve for the temperature as a function of x, i.e., T = T(x). The equation of conservation of

energy for heat transfer in one-dimension, where there are no sources or sink of heat, requires
that the rate of change of the heat flux across an area perpendicular to the x-axis be zero,
i.e., dq/dx = 0,or,

FAR 42] _ 0.
dx

If k is a constant, i.e., not a function of x, then, the equation of conservation of energy

reduces to

d’T/dx? = 0.

The last two expressions are also differential equations. The solution for these equations will

be the temperature T = T(x).

Entering differential equations in the HP 49 G
calculator

The key to using differential equations in the HP 49 G calculator is typing in the derivatives in
the equation. The easiest way to enter a differential equation is to type it in the equation

writer. For example, to type the following ODE :

(x-1)-(dy/dx)? + 2-x-y = e™ sin x.
use:

a [<1] [ALPHAJ[<][X] [1011 [»1»1[»] [x] [10] [ALPHAJ[<][X] [»][ALPHA]
“][Y

[<1[0] [ALPHAJ[«I[X] [»1[»] [vI[2] [»1[»] [+] [2] [x] [ALPHA][<][X] [x] [ALPHA][«][Y]
11>] [1=] [<1[e*] [ALPHA][<][X] [»] [x] [SIN] [ALPHA]J[<][X] [ENTER]

The result is

“(x-1)* Ox (y(x))"2+2*x*y-EXP (x) *SIN(x)’.
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The derivative dy/dx is represented by ox (y(x)). For solution or calculation purposes, you
need to specify y(x) in the derivative, i.e., the dependent variable must include its
independent variable(s) in any derivative in the equation.

You can type an equation directly into the stack by using the symbol Jin the derivatives. For

example, to type the following ODE involving second-order derivatives:

d?u/dx? + 3-u(du/dx) + u* = 1/x,
directly into the stack, use:

[10 “1 [100] [ALPHA][<][X] [<1[()] [~1[d] [ALPHA][<][X] [<][()] [ALPHA] [«][U]
[<1[O] [ALPHAJ[<IX] [10> 10»]1 [+] [3] [x] [ALPHA]J[<][U] [x][~]1[0l[ALPHA][<][X] [<]1[0)]
[ALPHA][<][U] [<1[0)] [ALPHAJ[<][X] [»][»] [+][ALPHA][<][U] [y][2] [~]1(=] [1] [+]
[ALPHA] [<][X] [ENTER]

The result is

‘Ox (Ox (u(x)))+3*u*odx(u(x))+u~2=1/x".

Press [¥] to see the equation in the equation writer:

 

[FueJor
nutaedad

EDIT EYAL [FRCTDITERFA  
 

Partial differential equations can also be entered in the calculator by using the equation writer
or by typing directly into the stack. The only difference is that the dependent variable will
have more than one independent variable. For example, using the equation writer you could
write the equation

0*C/at? - u(x,t). (C/9x) = 0,
as follows:

[EQW] [~][d] [ALPHA][«][T] [»] [][d] [ALPHA][«<][T] [>] [ALPHA][C] [<][()]
[ALPHA] [][X] [SPC] [ALPHA] [«][T] [»][»1[»] [-1[ALPHA][][U] [<][()]
[ALPHA] [<][X] [SPC] [ALPHA] [«][T] [»] [~] [x] [0] [ALPHA][][X] [>] [ALPHA][C] [«][()]
[ALPHA] [][X] [SPC] [ALPHA] [«][T] [»][»1[»1[»1[»][~][=] [0] [ENTER]

In the stack, the result is:

‘dt (dt (C(x, y,.t)))-ulx, t)* dt (C(x, t))=0".

An alternative notation for derivatives typed directly in the stack is to use ‘d1’ for the
derivative with respect to the first independent variable, ‘d2’ for the derivative with respect
to the second independent variable, etc. A second-order derivative, e.g., d*x/dt?, where x =

x(t), would be written as ‘d1d1x(t)’, while (dx/dt)? would be written ‘d1x(t)"2’. Thus, the

PDE

dy/ ot? - g(x,y): (y/x?)= r(x,y),

would be written, using this notation, as

‘d2d2y(x,t)-g(x,y)*d1d1y(x,t)"2=r(x,y)’.
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The notation using ‘d’ and the order of the independent variable, as demonstrated in this
example, is the notation preferred by the calculator when taking derivatives. For example,
write the following equation and make an extra copy:

‘x*f(x,t)+g(t,y) = h(x,y,t)’ [ENTER][ENTER],

then, use ‘t’ [ENTER] [<][CALC][DERIV][DERIV] to obtain the implicit derivatives with respect
tot. The result is:

‘x*d2f (x, t)+dlg(t,y)=d3h(x,y,t)’,

i.e.,

x-(of/at) + dg/ot = oh/ot.

Because the order of the variable t is different in f(x,t), g(t,y), and h(x,y,t), derivatives with

respect to t have different indices, i.e., d2f(x,t), dig(t,y), and d3h(x,y,t). All of them,

however, represent derivatives with respect to the same variable.

Expressions for derivatives using the order-of-variable index notation do not translate into
derivative notation in the equation writer, as you can check by pressing [wv] while the last
result is in stack level 1. However, the calculator understands both notations and operates
accordingly regarding of the notation used.

Definitions

The following definitions allow us to classify equations, thus providing general guidelines for
obtaining solutions.

Ordinary and partial differential equations

When the dependent variable is a function of a single independent variable, as in the cases
presented above, the differential equation is said to be an ordinary differential equation

(ODE). If the dependent variable is a function of more than one variable, a differential
equation involving derivatives of this dependent variable is said to be a partial differential
equation (PDE). An example of a partial differential equation would be the time-dependent

would be the Laplace’s equation for the stream function, w(x,y,z), of a three-dimensional,

inviscid flow:

 

Pyrox? + ohyloy? + ohyiox? = 0.

Order and degree of an equation

The order of a differential equation is the order of the highest-order derivative involved in the
equation. Thus, the ODE
 

dy/dx + 3xy=0

is a first-order equation, while Laplace’s equation (shown above) is a second-order equation.

The degree of a differential equation is the highest power to which the highest-order derivative
is raised. Therefore, the equation
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(d’y/dt?)?+(dy/dx?)*-xy = €*,

is a third-order, second-degree ODE, while the equation

dy/ ot = c(dy/ ox),

is a first-order, first-degree PDE.

Linear and non-linear equations

An equation in which the dependent variable and all its pertinent derivatives are of the first
degree is referred to as a linear differential equation. Otherwise, the equation is said to be

non-linear. Examples of linear differential equations are:
 

d’x/dt? + B-(dx/dt) + myx = Asin ax t,
and

dC/at + u-(dC/ ax) = D-(9*C/ax%).

Constant or variable coefficients

The following equation:

dy/dt+n (d?y/dx?)?-5y = €*,

where all the coefficients accompanying the dependent variable and its derivative are
constant, would be classified as a third-order, linear ODE with constant coefficients. Instead,

the equation
 

9*C/ot? - u(x,t). (C/9x) = 0,

would be classified as a second-order, linear PDE with variable coefficients.
 

Homogeneous and non-homogeneous equations

Typically, differential equations are arranged so that all the terms involving the dependent
variable are placed on the left-hand side of the equation leaving only constant terms or terms

involving the independent variable(s) only in the right-hand side. When arranged in this
fashion, a differential equation that has a zero right-hand side is referred to as a homogeneous
equation. Examples of homogeneous equations are:

d®x/dt? + B-(dx/dt) + axx = 0,
and

(x-1)-(dy/dx) + 2.x-y = 0.

On the other hand, if the right-hand side of the equation, after placing the terms involving the
dependent variable and its derivatives on the left-hand side, is non-zero, the equation is said
to be non-homogeneous. Non-homogeneous versions of the last two equations are:

d’x/dt? + B-(dx/dt) + wx = Age VT,
and

(x-1)-(dy/dx) + 2-x-y = x2-2x.

170 © 2000 Gilberto E. Urroz

All rights reserved



Solutions

A solution to a differential equation is a function of the independent variable(s) that, when

replaced in the equation, produces an expression that can be reduced, through algebraic
manipulation, to the form 0 = 0. For example, the function

y = sin Xx,

is a solution to the equation
d’y/dx® +y =0,

because when we replace y into the equation we have

sin x +sin x =0,

or, 0=0, for all values of x. This follows from the fact that dy/dx = cos x, and d’y/dx? = - sin
X.

General and particular solutions

A general solution is one involving integration constants so that any choice of those constants
represents a solution to the differential equation. For example, the function

x = Cet

is a general solution to the equation
dx/dt + x =0,

because, substituting C-e* for x in the equation produces

Cet +Cet=0.

A particular solution is a solution corresponding to a specific value of the integration
constants. For example, the function

y = x2/2

is a particular solution to the equation,

dy/dx - x = 0.

A general solution for this equation would be

y = x}/2 + C,

where C is an arbitrary integration constant.
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Initial conditions and boundary conditions

To determine the specific value of the constant(s) of integration, we need to provide values of
the solution, or of one or more of its derivatives, at specific points. These values are referred
to as the conditions of the solution. For example, we could specify that the solution to the

equation

d’y/dtt+y = 0,
must satisfy the conditions

y(0) = -5,

and
dy/dt=-1att=>5.

Initial conditions are provided at a single value of the independent variable so that after

evaluating those conditions at that point all the integration constants are uniquely specified.
In general, first order differential equations include only one integration constant, requiring
only one condition to be evaluated to uniquely determine the solution. Thus, these type of
equations needs only one initial condition. The term “initial condition” is used because many

first order equations involve a derivative with respect to time, and the condition given to
specify the solution is typically the value of the function at time equal to zero, i.e., an initial
value of the function. Boundary conditions, on the other hand, are provided at more then one

value of the independent variable(s). The term “boundary conditions” is used because the

function is evaluated at the “boundaries” of the solution domain in order to specify the

solution.

An example of initial conditions used in a solution will be to solve the equation

d?u/dt? + 2-(du/dt) = 0,
given
u(0) = 1, du/dt|i = -1.

An example of boundary conditions used in a solution will be to solve the equation

d?y/dx2+y = Asin Xx,

using

y(0) = A/2, and y(1) = -A/2.

Checking solutions in the HP 49 G calculator

To check if a function satisfy a certain equation using the HP 49 G calculator, first enter the

differential equation, then enter the function in the form ‘y = f(x)’ or ‘y = f(x,t)’, etc., and use
[][ALG][SUBST]. You may need to simplify the result by using [—][EVAL]. For example, to
check that

u = Asin opt

is a solution of the equation
d?u/dt? + atu =0,

use:

‘d1d1u(t)+ @0*2*u(t) = 0’ [ENTER] ‘u=A*SIN (w0*t)’ [ENTER] [~][ALG][SUBST] [~][EVAL].
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The result is ‘0=0’.

For this example, you could also use:

At(At(u(t)))+ )+ 0"2*u(t) = 0’ [ENTER] ‘u=A*SIN (w0*t)’ [ENTER] [~][ALG][SUBST] [~][EVAL].

 

 

Slope field plots for visualization of solutions

Slope field plots, introduced in Chapter 11, are used to visualize the solutions to a differential
equation of the form dy/dx = f(x,y). A slope field plot shows a number of segments tangential
to the solution curves, y = f(x). The slope of the segments at any point (x,y) is given by dy/dx
= f(x,y), evaluated at any point (x,y), represents the slope of the tangent line at point (x,y).

Example 1 -- Trace the solution to the differential equation y’ = f(x,y) = sin x cos y, using a
slope field plot. Proceed as follows:

e Press [<][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to Slopefield.

> Press [¥] and type ‘SIN(X)*COS(Y)’ [OK].

» Make sure that ‘X’ is selected as the Indep: and ‘Y’ as the Depnd: variables.

» Press [NXT][OK] to return to normal calculator display.

e Press [+][WIN], simultaneously, to access the PLOT WINDOW screen.

» Change the plot window ranges to read:

X-Left:-5 X-Right:5

Y-Near:-5 Y-Far: 5

> Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to see
the plot unencumbered by the menu and with identifying labels. The graph should look

like this:
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>» Press [NXT][NXT][PICT] to leave the EDIT environment.

» Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or

[NXT][OK], to return to normal calculator display.

If you could reproduce the slope field plot in paper, you can trace by hand lines that are
tangent to the line segments shown in the plot. This lines constitute lines of y(x,y) = constant,
for the solution of y’ = f(x,y). Thus, slope fields are useful tools for visualizing particularly
difficult equations to solve.
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Try also a slope field plot for the function y’ = f(x,y) = tan(y/x), by using:

e Press [+1][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to Slopefield.

>» Press [¥] and type ‘ATAN (Y/X)’ [OK].

> Press [ERASE][DRAW] to draw the slope field plot. Press [EDIT][NXT][LABEL][MENU] to see
the plot unencumbered by the menu and with identifying labels. Here is the graph:
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>» Press [NXT][NXT][PICT] to leave the EDIT environment.

>» Press [NXT][CANCL] to return to the PLOT WINDOW environment. Then, press [ON], or
[NXT][OK], to return to normal calculator display.

In summary, slope fields are graphical aids to sketch the curves y = g(x) that correspond to
solutions of the differential equation dy/dx = f(x,y).
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Symbolic solutions to ordinary differential equations

By symbolic solutions we understand those solutions that can be expressed as a dosed-form
function of the independent variable. Because solution offirst-order differential equations
imply integrating the derivative involved in the equation, many of the techniques used for
solving first-order ODEs follow from integration techniques. Details of some techniques used for
solving ordinary differential equations follow.

Solution techniques for first-order, linear ODEs with constant
coefficients

A first order equation is an equation of the form

a-(dy/dx)"+ b-y™ = f(x),

where a, b, n and m are, in general, real numbers. Some specific techniques for linear

equations, i.e., when n =m = 1, follow:

Equations of the form: dy/dx = f(x) -- Direct integration
 

An equation of the form dy/dx = f(x) can be re-written as

dy= f(x)dx,

and a general solution found by direct integration,

[dy =] f(x)dx,
or

y = [f(x)dx+C.

If an initial condition y(x,) = Yo, is given, then the integration can be calculated as

J v=]fax,
or,

y=yy =]Sd

Example 1 - Determine a general solution for the equation, dy/dx = e™ sin x. Since the
integration is indefinite, we want to use the RISCH function as follows:

‘EXP(-x)*SIN(x)’ [ENTER] ‘x’ [ENTER] [+2][CALC][DERIV][NXT][RISCH].

The result is:

‘(-1/2*SIN(x)+-1/2*COS(x)) *EXP(-x)’,

y(x) = (-€”/2)(sin x + cos x) + C.
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Example 2 - Determine the solution of the equation, dy/dx = tan’ x, if at x=0,y=1. The
integration is now definite, thus we can set up the integrals in the equation writer to read:

 

y x
J: 1dy= olTANGdx

  EUIT] CURSTETGEVALIFACTOITERFH
 

Next, press [ENTER][—][EVAL]. The result is: ‘y-1=- (LN(x"2+1) -2*x*ATAN (x) ) /2) '’.
To solve for y, we can use: ‘y’[ENTER][<][S.SLV][ISOL]. The final result is:

‘y=- (2*x*ATAN (x) - (LN (x"2+1)-2))/2"".

Equations of the form: dy/dx = ¢(y) -- Inversion and direct integration

Equations of the form dy/dx = g(y), can be re-written as

dy/g(y) = dx.

Thus, an indefinite integral will be given by

[dy/g(y) = Idx,
or

[dy/g(y) = x + C.

From the latter expression, the dependent variable y may be solved for. A similar approach is

followed when using a definite integral, i.e., one with initial condition y(x,) = yo. The

integration in this case reads:

[= = I dx=x-x,.

Example 3 - Determine a general solution for the equation dy/dx = y Iny. To solve it, we re-
write the equation as

dy/(y ny) = dx,
and integrate

[dy/(y ny) =x+C.

The left-hand side integral can be calculated using the RISCH function:

‘“1/(y*LN(y))’ [ENTER] ‘y’ [ENTER] [<][CALC][DERIV][NXT][RISCH].

The result is

‘LN (ABS (LN (y)))’,
i.e.,

Inflny| =x + C.

To isolate y, edit the result to read:

‘LN (ABS (LN (y)))=x+C".
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Then, use [<][e*]. This result in

‘ABS (LN (y) ) =EXP (x+C)’.

Since the absolute value implies two possible solutions for the left-hand side of the equation,

namely, * In(y), we select one of the two signs, the positive one, for the absolute value to
continue with the solution. Selecting In(y)>0 means that we set y > 1. We need to edit the
latter result to read simply:

‘LN (y) =EXP (x+C)’.

Use [«][e*] once more to get:

‘

y = EXP (EXP (x+C))’.

Example 4 - Determine the solution to the equation dy/dx = 1+y?, if for x = 0, y=1. The
equation can be re-written as dy/(1+y?) = dx, and integrated by writing:

Yo »
=du =| 1dx

1 °

38 NTE BDEENEEOEE

 

 

   
Press [ENTER][—][EVAL] to get the result:

‘(4*ATAN(y) -T) /4=x".

To solve for y use: ‘y’ [ENTER][+][S.SLV][ISOL].

The solution is: ‘y=TAN( (n+4*x) /4)’.

Equations of the form: dy/dx = f(x)e(y) -- Separation of variables 

Equations of the form dy/dx = f(x)g(y), can be separated into

dy/g(y) = dx/g(x),

and then integrated using indefinite integrals for general solutions, or definite integrals with
initial conditions for particular solutions.

Example 5 -- Find a general solution for the equation dy/dx = y/x. Separating variables, we
have

dy/y* = dx/x,

which can be integrated as follows:

Left-hand side: ‘“1/y"2’[ENTER]’Y’[<][CALC][DERIV][RISCH]. Result: ‘-(1/y)’

Right-hand side: ‘“1/x’[ENTER] ‘x’ [«][CALC][DERIV][RISCH]. Result: ‘LN(ABS(x))’
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Combining the two results by using: ‘C’ [+] [~][=], we get:

‘-(1/y)= LN(ABS(x))+C’.

To solve for y use: ‘y’ [ENTER][+][S.SLV][ISOL].

The final result is:
‘y=-1/(C+LN(ABS(x))) .

Example 6 - Find the solution to the equation dy/dx = sin x-cos y, subject to the condition y = 0
when x = 0. Separating variables we have, dy/cos y = sin x dx. Using the initial condition as

lower limit of integration we can write:

 

u { w
_ =| SINCC05 I IN(x) dx

EOITCURSBIG EVAL    
Press [ENTER][—][EVAL] to get the result:

‘(LN (ABS (SIN(y)+1))-LN(ABS(SIN(y)-1)))/2=-(COS(X)-1)".

To solve for y, first combine the two log functions by using: [<1 ][EXP&LN][LNCOL].

Next, enter [2][x][~][EVAL], to move the 2 in the denominator in the left-hand side to the
right-hand side.

Next, use [+1][e*] to eliminate the LN function from the expression.

Next, edit the expression so as to eliminate the ABS functions out (i.e., selecting the positive
sign of ABS only).

The result now reads:

‘(SIN(y)+1)/(SIN(y)-1))=1/EXP(2*COS(X)-2)".

At this point, we can try to isolate y by using: ‘y’ [ENTER][«1][S.SLV][ISOL]. The result is the
following list:

“{ "y=-((2*n1-1)*n-ASIN( (EXP (2*COS (x) -2) +1) / (EXP (2*COS (x) -2)-1)))"

'y = 2*nl*n -ASIN( (EXP (2*COS(x)-2)+1)/(EXP(2*COS(x)-2)-1)))" }’.

The term n1 introduced in these expressions accounts for the periodicity of the function sine.

Equations of the form: dy/dx = g(y/x)

Using the change of variable

u=y/x,

we have

y = u-X,

dy = u-dx + x-du,

then
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(u-dx + x-du)/dx = g(u),

u-dx +x-du = g(u)-dx,

[g(u)-u] -dx = x-du,

from which the variables x and u can be separated as

du/[g(u)-u] = dx/x.

After integration, we replace

u=y/x

back in the result, and isolate, if possible, y(x).

Example 7 - Determine the solution of the equation

dy/dx = y/x + x/y.

With

u=y/x,

we have

y = ux,

dy/dx = u+x-(du/dx),

u + x-(du/dx) =u + 1/u,

x-(du/dx) = 1/u,

and

udu = dx/x,

integration results in
u?/2 =Ilnx + C/2,

or
(y/x)* =2lnx+C,

y/x = (2:ln x+ Q)'’?,

Finally,

y = x-(2:ln x+ C)"/2,
To verify the result, use:

“‘d1y(x) - y(x)/x-x/y(x)’ [ENTER] ‘y(x) = x*V 2*(LN(x)+C)’ [ENTER] [~][ALG][SUBST][~][EVAL]

The result is ‘0’.

Equations of the form: a-(dy/dx)+ b-y = f(x) -- Integrating factors

The expression

a-(dy/dx)+ by = f(x)

constitutes the most general form of a first-order, linear, ordinary differential equation. The

equation can be re-written as

dy/dx + (b/a) 'y = (1/a)f(x),

You can prove that, by multiplying both sides of this form of the equation by a function,
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IF(x) = exp(b-x/a),

known as an integrating factor, the equation becomes:

oeen)nosew)
dx a a a

This equation can be easily integrated to read:

p(x) =eo)(5 |oo2%) f(x) wc]
a a a

In terms of the integrating factor, this solution will be:

y(x) = (1/FI(x))-[(1/a) -FI(x) -f(x) -dx + C].

Example 8 - Find a general solution to the equation dy/dx -3y = x?, by using an integrating
factor. The integrating factor to use, witha =1, and b = -3 is,

FI(x) = exp(b-x/a) = exp(-3x).

The solution can be obtained by first finding the integral of the function

FI(x)f(x) = x>-exp(-3x),
as follows:

‘x"2*EXP(-3*x)’ [ENTER] ‘x’ [ENTER] [+][CALC][DERIV][NXT][RISCH].

To verify that this result satisfies the equation use:

‘y(x)’ [ENTER] [> ]1[][=] ‘d1y(x)-3*y(x)=x"2" [ENTER][»] ‘y(x)’ [~][ALG][SUBST]{—][EVAL].

The result is ‘x"2=x"2’.

Example 9 - Determine the solution to the equation: 2-(dy/dx)+5-y = sin(x), subject to the
conditions y = 0, when x = 0. This equation can be integrated in a similar manner as that in

example 8, by selecting the integrating factor Fl = exp(5x/2), and then integrating the
function (1/a)FI(x)f(x) = (1/2) exp(5x/2) sin(x), as follows:

“(1/2)*EXP(5*x/2)*SIN(x)’ [ENTER] ‘x’ [ENTER] [+ ][CALC][DERIV][NXT][RISCH].

Next, we add an integration constant, by using:

‘C’ [ENTER] [+]

Then, we divide by Fl(x), by using:

‘EXP(5*x/2)’ [ENTER] [+].
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The result is: “((5/29*SIN(x)+-2/29*COS(x))*EXP(5*x/2)+C)/ EXP(5*x/2)’, i.e
*

y(x) = (5 sin x - 2 cos x)/29+Ce™>*'2,

To verify that this result satisfies the equation use:

‘y(x)" [ENTER] [»][~]1[=] ‘2*d1y(x)+5*y(x)=SIN(x)’ [ENTER][»] ‘y(x)’
[~][ALG][SUBST][~ ][EVAL].

Note: the simplification takes about one minute. The result is ‘SIN(x)=SIN(x)’.

Solution techniques for first-order, linear ODEs with variable
coefficients

An equation with variable coefficients such as

Ki(x)(dy/dx) + Ka(x)y(x) = K3(x),
can be reduced to the form,

dy/dx + g(x)y(x) = f(x),

by dividing the entire equation by K;(x). This latter equation can be solved by multiplying both
sides of the equation by the integrating factor

IF(x) = exp(Jg(x)dx).

After identifying the integrating factor, IF(x), the solution procedure is very similar to the case
of a first-order, constant-coefficient ODEs,i.e.,

y(x) = (1/FI(x))-[[FI(x) -f(x) -dx + C].

Example 10 -- Solve the equation dy/dx + (1/x)y = x, using an integrating factor. The
integrating factor to use is

IF(x) = exp(J(1/x)dx) = exp(ln x) = x.

Thus, multiplying both sides of the equation by x produces,

x(dy/dx) +y = x2,
or

Integrating with respect to x, produces

xy = x3/3+C, and y = x2/3+C/x.

To verify that the solution satisfies the equation, try:

‘d1y(x)+y(x)/x=x’[ENTER] ‘y(x)=x"2/3+C/x’[ENTER] [~][ALG][SUBST][~][EVAL].

The resultis ‘X"2 = x"2’.
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Exact differential equations

In Chapter 14 we introduced the concepts of a first-order differential in three-dimensions,i.e.,
an expression of the form:

f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz,

and the conditions under which this first-order differential was an exact differential, i.e., the

differential of a function u(x,y,z), so that

f(x,y,z) = au/ ox, g(x,y,z) = ou/ay, h(x,y,z) =du/dz.

We also developed a procedure, and an User RPL program, to integrate the exact differential

to obtain the solution u(x,y,z).

An expression of the form,

F(x,y)-dx + G(x,y)-dy = 0,

will be considered an exact differential equation in two dimensions, if the components F(x,y)
and G(x,y) satisfy the conditions

dF/dy = dG ox.

In such case,it is possible to find a function u(x,y), such that

F(x,y) = ou/dx, G(x,y) = du/ ay.

The equation, u(x,y) = C, where C is a constant, will represent a solution to the exact

differential equation:

F(x,y)-dx + G(x,y)-dy = 0.

You can use the program Chk&Int within sub-directory ExDiff, as developed in Chapter 14, to
obtain the function u(x,y), as shown in the following example.

Example 1 - Determine a solution, if possible, to the equation
dy/dx = -(sin y - y cos x)/(x cos y - sin x).

This expression can be written as

(siny -y cos x)dx + (x cos y - sin x)dy = 0,

with

F(x,y) = Xx cos y - COS X,

and

G(x,y) =siny + y sin x.

The program Chk&Int was developed to check and integrate a three-dimensional first-order
differential, therefore, to solve this two-dimensional problem, use:

[ “SIN(Y)-Y*COS(X)’ ‘X*COS(Y)-SIN(X)’ 0 J[ENTER] [‘X’ ‘Y’ ‘Z’][ENTER][Chk&In]

The result, provided after receiving the message that the first-order differential is exact,is
given by:
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‘X*SIN(Y)-Y*SIN(X)’.

The solution to the differential equation is now,

xsiny-ysinx=C.

Because y cannot be isolated from the expression, the solution is said to be an implicit
expression.

Solutions of homogeneous linear equations of any order with
constant coefficients

Consider the linear, constant-coefficient, homogeneous ODE of order n:

d®y/dx™ + b n.4-(dy™™ 7dx™") + + by(d’y/dx?) + by-(dy/dx) + boy = 0.

where the coefficients by, by, ..., bn.1, are constant. We can use the operator D® = d ®)/dx®),
to re-write the equation as

Dy +b ,.:-D™"y + + b,:D%y + by-Dy + bOy = f(x).

Treating the operators p®), (k =n, n-1, ..., 1), as algebraic terms, the equation is re-written as

[D™ +b,DY + + by:D? + byD + bgly = 0.

The idea is that the linear combination of the operators, shown above in square brackets,is
applied to the function y(x), in a similar manner as algebraic terms would be multiplied to it.

Associated with the latter expression is a polynomial known as the characteristic equation of
the ODE, and written as

A" +bA" ++ bya? + bd + by = 0.

Suppose that the characteristic equation has n independent roots, then the general solution of
the linear, constant-coefficient, homogeneous ODE of order n given earlier is

y= Cet + Cpe++ Coqelng © + Copel.

If out of the n roots there is one that has multiplicity m, then the m terms corresponding to

this root Ain the solution, will be

Cy e™ + Co : x-e™ + Coy : x2.e™ + + Ci : x™eM,

Example 1 - Determine the general solution to the homogeneous equation

dy/dx3-4-(d%y/dx?)-11-(dy/dx)+30-y = 0.

In terms of the D operator, this ODE can be written as

[ D*-4. D®-11.D +30]y = 0.

The characteristic equation corresponding to this ODE is

A-422-11.0+30 = 0.
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To obtain solutions to this equation in the HP 49 G calculator, we can enter the equivalent
equation in terms of X (assuming that VX = ‘X’, where VX is the default independent variable

for the calculator’s CAS):

‘X"3-4*X"2-11*X+30 = 0’ [ENTER] [<][S.SLV][SOLVE] (first [SOLVE] key). The result is the list:

{ ‘X=-3" ‘X=5" ‘X=2’ }.

Thus, a general solution to the ODE under consideration is

y = Cre+ Cpe’ + Cel.

To verify that this general solution satisfies the equation use:

‘d1d1d1Y(X)-4*d1d1Y(X)-11*d1Y(X)+30*Y(X) = O’[ENTER]
Y(X)=C1*EXP(-3*X)+C2*EXP(5*X)+C3*EXP(2*X)’ [ENTER]

[~][ALG][SUBST] [—][EVAL]

Allow the calculator about twenty seconds to produce the result: ‘0=0.

Example 2 - Determine the general solution to the homogeneous ODE:

d*y/dx*-7-(d*y/dx3)+18-(d%y/dx?)-20-(dy/dx)+8-y = 0.

In terms of the D operator, this ODE can be written as:

[D*-7-D?+18.D*-20-D+8]y = 0.

Thus, the characteristic equation is

A*-7-13+18.12-20.1 +8 = 0.

To obtain the solution of this equation using the HP 49 G calculator, use:

‘X"4-7*X"3+18*X"2-20*X+8 = 0’ [ENTER] [«][S.SLV][SOLVE] (first [SOLVE] key).

The result is the list: { ‘X=1" ‘X=2" }. However, because the characteristic equation is of order
4, the product ‘(X-1)*(X-2)’ cannot generate the characteristic equation just solved. Obviously,
one or both of the roots have multiplicity larger than one. To figure out the multiplicity we
will use the function FACTOR to see the actual expansion of the characteristic equation. To
recover the equation use:

[~][UNDO]
Then,

[~][ALG][FACTO].

The resultis: “X-1)%(X-2)"3’.

Thus, the root A = 2 has multiplicity 3, and will produce the terms C;-€%* + C;x-e2* + C3-x%e?, in
the solution. The other term corresponds to the root A = 1, which produces the term C4”.
Thus, the general solution to the ODE under consideration is:

y= (Cy + Cox + C3x? )-e2 + Cy”.
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To verify that this is a solution of the original ODE, use:

‘d1d1d1d1Y(X)-7*d1d1d1Y(X)+18*d1d1Y(X)-20*d1Y(X)+8*Y(X) = 0’ [ENTER]
Y(X) = (C1+C2*X+C3*X" 3)*EXP(2*X)+C4*EXP(X)’ [ENTER]

[~][ALG][SUBST] [~][EVAL]

Allow the calculator about twenty seconds to produce the result: ‘0=0’.

The function LDEC: HP 49 G’s solution of linear equations of any
order with constant coefficients

The method presented in the previous section dealt only with homogeneous linear ODEs with
constant coefficients. The HP 49 G calculator provides the function LDEC (Linear Differential
Equation Command) that lets you find the general solution to a linear ODE of any order with

constant coefficients, whetherit is homogeneous or not. This function requires you to provide
two piece of input:

the right-hand side of the ODE
the characteristic equation of the ODE

Both of these inputs must be given in terms of the default independent variable for the
calculator’s CAS (typically X). The output from the function is the general solution of the ODE.

The function LDEC is available through the keystroke sequence: [<][CALC][DIFF][LDEC].

Example 1 - To solve the homogeneous ODE

d}y/dx3-4-(d®y/dx?)-11-(dy/dx)+30-y = 0.

Enter:

0 [ENTER] ‘X"3-4*X"2-11*X+30’ [ENTER] [<][CALC][DIFF][LDEC].

The solution is:

‘(6*C0-(C1+C2))/24*EXP(5*X)+(10*CO-(7+C1-C2))/40*EXP(-(3*X))+(15*C0+(2*C1-C2))/15*EXP(2*X)’

Now, this latter result looks way more complicated than the result obtained earlier, i.e.,

y= Cre+ Cpe’ + Cye?.

However, the two results are equivalent if you realize that the terms accompanying the
exponential terms in the result provided by LDEC are combinations of constants. Thus, if we

take

K1 = (10*C0-(7+C1-C2))/40, K2 = -(6*C0-(C1+C2))/24, and K3 = (15*C0+(2*C1-C2))/15,

we can write the result provided by LDEC as

y = Ke + Kpe™ + KyelX,

The reason why the result provided by LDEC shows such complicated combination of constants
is because, internally, to produce the solution, LDEC utilizes Laplace transforms (to be

presented later in this chapter), which transform the solution of an ODE into an algebraic
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solution. The combination of constants result from factoring out the exponential terms after
the Laplace transform solution is obtained.

Example 2 -- To solve the homogeneous ODE:

d*y/dx*-7.(d*y/dx3)+18-(d%y/dx?)-20-(dy/dx)+8-y = 0.

Enter:

0 [ENTER] ‘X"4-7*X"3+18*X"2-20*X+8’ [ENTER] [+][CALC][DIFF][LDEC].

The solution is:

(8*CO-(12"C1-(6*C2-C3)))*EXP(X)+(((4*CO-(8*C1-(5*C2-C3)))/2*XA2)+(6*CO-(11*C1-(6*C2-C3)))*X-(7*C0-(12*C1-(6"C2-
C3))))EXP(2*X)’

Again, if we replace the combination of constants as follows:

Ki= -(7*C0-(12*C1-(6*C2-C3))) , Kz =(6*C0-(11*C1-(6*C2-C3))), K3 = -(4*C0-(8*C1-(5*C2-C3)))/2,

on Ku = (8*C0-(12*C1-(6*C2-C3))),
we get a simpler result:

y = (Ki + Kpx + Kgx? )-e™ + Kee”.

Example 3 - Using the function LDEC, solve the non-homogeneous ODE:

dy/dx>-4-(d%y/dx?)-11-(dy/dx)+30y = x.

Enter:

‘X"2’ [ENTER] ‘X"3-4*X"2-11*X+30’ [ENTER] [+][CALC][DIFF][LDEC].

The solution is:

‘(750*C0-(125*C1+125*C2+2))/3000*EXP(5*X)+(270*C0-(189*C1-(27*C2-2)))/1080*EXP(-
(3*X))+(450*X2+330*X+241)/13500+(60*CO+3*C1-(4*C2+1))/60*EXP(2*X)’

Replacing the combination of constants accompanying the exponential terms with simpler
values, such as Kz = -(750*C0-(125*C1+125*C2+2))/3000, results in the expression

y = Ki-e3X + Kye+ Ky-e2¥ + (450-x2+330-x+241)/13500.

We recognize the first three terms as the general solution of the homogeneous equation (see

Example 1, above). If y, represents the solution to the homogeneous equation, i.e.,

Yh = Kie+ Kye+ Kye,

you can prove that the remaining terms in the solution shown above,i.e.,

Yp = (450-x*+330-x+241)/13500,

constitute a particular solution of the ODE.

Note: This result is general for all non-homogeneous linear ODEs, i.e., given the solution of
the homogeneous equation, y,(x), the solution of the corresponding non-homogeneous
equation, y(x), can be written as
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y(X) = ¥n(X) + ¥p(X),

where y,(x) is a particular solution to the ODE.

To verify that y, = (450-x%+330-x+241 )/13500, is indeed a particular solution of the ODE, use the

following:

‘d1d1d1Y(X)-4*d1d1Y(X)-11*d1Y(X)+30*Y(X) = X"2’ [ENTER]
“Y(X)=(450*X"2+330*X+241)/13500’ [ENTER]

[~][ALG][SUBST] [~ ][EVAL]

Allow the calculator about ten seconds to produce the result: ‘X*2 = X"2’.

Obtaining the particular solution for a second-order, linear ODE
with constant coefficients

Thus, how do we come up with a particular solution, y,, to complete the solution to a non-
homogeneous equation, y = yn+y,, given the solution to the homogeneous equation, y,? In this
section we present a general method to obtain y, for second-order, linear ODEs with constant
coefficients. The reason why we choose second-order equations is not only because they are

the simpler equations to solve (not including first-order equations, which were discussed in
great detail in an earlier section), but also because they are useful to model a number of real-

life situations. Typical systems modeled by second-order ODEs are the damped and undamped
oscillatory behavior in spring-mass and electric circuit systems.

The general expression for a second-order, linear, non-homogeneous ODE with constant

coefficientsis

d’y/dx? + by-(dy/dx) + boy = h(x).

The first step is to obtain the solution to the homogeneous equation

d’y/dx? + by-(dy/dx) + bey = 0,

by using the solutions to the characteristic equation

A + by: A+ bg = 0.

Consider the case in which the solutions to the characteristic equation are real numbers. The

solutions to this quadratic equation can be two different values of A, say A, and 2;, in which
case the homogeneous solution is written as

Yn(x) = Ciexp(A-x) + Coexp(hzX),

or a single solution of multiplicity 2, say Ag, in which case we write

h(x) = (C41+C2x) exp(Aox).

If the two solutions to the quadratic (characteristic) equation are complex numbers, they must
be complex conjugates of each other as required by the fundamental theorem of algebra. In
this case we can write

A =0+Bi, and A; =o-fi,
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where o and B are real numbers. Thus, the solution Ci-exp(A1-x) + C2-exp(A;'X), becomes

Cqe@PX 4 Celeb Ce.elfx + C,e®.eTPX = eX (C;.cos Px +i-Cq-sin Px + Cocos Bx - i-Cysin Bx)
= * *.[(C1+Cy)-cos Px + i-(C4-Cy)-sin Px] = e® *-(Ky-cos Px + Ky-sin Bx),

where

Ki = (C41+Cy), and K; = i-(C4-Cy).

Thus, for the case of two complex solutions to the characteristic equation, the homogeneous

solution is a sinusoidal function whose amplitude grows (a>0) or decreases (0<0) with x:

yn(x) = e**-(K;-cos Bx + Ky-sin Bx).

If the solutions are imaginary numbers, i.e., if a = 0 in the previous result, the homogeneous

solution is a pure sinusoidal function:
Yh(x) = Ky-cos Bx + Kz-sin Bx.

To obtain the particular solution, yp(x), that will produce the overall solution of the non-

homogeneous ODE, y(x) = yn(x) +yp(x), follow this rule that refers to the sub-sequent table of

functions:

If h(x), in the general non-homogeneous ODE, is given by one of the functions in the first

column of the table shown below, choose for y,(x) a linear combination of h(x) and its linearly
independent derivatives, as shown in the second column of the table.

If h(x) is the sum of some of the functions shown in column 1 of the table below, choose for

Yp(X) the sum of the functions in the corresponding lines.

If a term in h(x) is a solution of the homogeneous equation corresponding to the ODE under
consideration, modify your choice of y,(x) by multiplying the appropriate line of column 2 by x
or x*, depending on whether the root of the characteristic equation (column 3) is simple or
double.

 

 

    

Term in h(x) Choice for y,(x) Root of char. eqn.

ce Co-e™ a, real
cx" (n=0,1,...) Cox" + Coyx™" + ... + Cyx + Co 0
c-sin Bx C-sin Bx + Cy-sin Bx if, imaginary

C-Cos Bx Cq-sin Bx + Cy-sin Bx i3, imaginary
 

Once the particular solution is set up by following the rule above, the undetermined
coefficients in yp(x) can be determined by substituting yp(x) into the ODE.

Example 1 - Obtain the general solution to the non-homogeneous, second-order, linear ODE:

d?y/dx? - 5-(dy/dx) +6-y = x2.

The characteristic equation of the homogeneous equation is

N-5:L+6 = 0,
or

188 © 2000 Gilberto E. Urroz

All rights reserved



(A-3)(A-2) = 0,
with solutions

A=2,and A= 3.
Thus, the homogeneous solution is

yn(X) = Ki-e®* + Ky-e3*.

Since the right-hand side of the non-homogeneous equation is

h(x) = x,

from the table above we select

Yp(X) = Cox2+Cx+Co.

To obtain the values of Co, C4, and C;, replace the solution y(x) into the ODE. In the HP 49 G

calculator this is accomplished by using:

‘d1d1Y(X)-5*d1Y(X)+6*Y(X) - X"2’ [ENTER]
‘Y(X) = CO+C1*X+C2*X" 2’ [ENTER]

[~][ALG][SUBST]
This produces the result:

‘2*C2-5*(C1+C2*(2*X))+6*(CO+C1*X+C2*X"2)-X"2’.

To solve for CO, C1, and C2, using the calculator we will have to use the equation editor as

follows:

[v] Launch equation editor
[vi[vilv] Select first term (2) in equation, cursor -> rectangle

[»1[»>1[>1[Aa]l[Aa][A][A][EVAL] Expand term 5-(C1+C2- (2-X))
[»][EVAL] Expand term 6. (CO+C1-X+C2-X?)
[A][EVAL] Expand entire left-hand side of equation

Now, we need to put together terms in X°, X, and X?, by using selecting the proper terms to
move, and then using [~][CUT], and [—][PASTE]. Press [ENTER] when done. The expression,
after these changes, should look like this:

‘2*C2-5*C1+6*CO+6*X*C1-10*X*C2+6*X"2*C2-X"2’.

Going back to the equation editor you can factor out the terms X, and X?, by using:

[v] Launch equation editor

[vIilvilv] Select first term (2) in equation, changing cursor to
rectangle

1010101»11>] Moves cursor to the 6 in the first term with X
[~] (hold this key) [»][»][»] Select the two terms with X

[FACTO] Factor out X from these two terms
>i] [>] Select the two terms with X2
[FACTO] Factor out X? from these two terms

[ENTER] Return to main calculator display

The result now looks like this:

‘2*C2-5*C1+6*CO+X*(6*C1-10*C2) +X" 2*(6*C2-1)’.
This is equivalent to

2.C3-5.C4+6:Co+(6-C4-10-Cy) -X+(6:C2-1) -X; = 0,
or,
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6-Co-5-Cy+ 2-C, = 0,

6-C{-10C; = 0,

6C,=1.

The solution of this system can be calculated by using:

[0 0 1][ENTER] [[6 -5 2][0 6 -10][0 O 6]]1[ENTER] [+].

The result is Co=19/108, C; =5/18, and C; = 1/6.

Thus, yp(x) = x2/6+(5/18)x+19/108,

and the general equation to the non-homogeneous equation becomes:

yY(X) = Yr(X)+yp(X) = Kye + Kp-e¥ + x2/6+(5/18)x+19/108.

Of course, we don’t need to go through all these details in the calculation if we use the
function LDEC as follows:

‘X"2’[ENTER] ‘X"2-5*X+6’[ENTER][“][CALC][DIFF][LDEC].

The result is: ‘-(54*C0-(27*C1+2))/27*EXP(3*X)+(18*X"2+30*X+19)/108+(12*C0-(4*C1+1))/4*EXP(2*X)’.

With K1 = (12*C0-(4*C1+1))/4, K2 = -(54*C0-(27*C1+2))/27,

the result is y(x) = Ki-e+ Kp-e¥ +(18x2+30x+19)/108,

which, you can check, is the same result as obtained earlier using the step-by-step approach.

Applications of ODEs | : analysis of damped and
undamped free oscillations

Consider the mass-spring system shown in the figure below. The mass is removed from its
equilibrium position (x = 0) and released at a position x = xg at t=0. At the moment of its
release the body was moving with a speed v = v,.

The diagram shows the body of mass m being acted upon by the restoring force of the spring,

and by a viscous damping force,

Fv =-Bv=-B-(dx/dt).
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—» a= dv/dt = d°wdt?

x=0 —» v= dw/dt
Xx —» 

 

 

 

   

 

 

Newton’s second law, when applied in the x-direction to the mass m is written as:

—kx - B (dx/dt) =m (d’x/dt?),

which results in the second-order, linear, ordinary differential equation:

d®x/dt? + (B/m)-(dx/dt)+(k/m)x = 0.

Let us first consider the case in which the motion is undamped, i.e., b = 0. The equation in

this case reduces to

d?x/dt? +(k/m)x = 0.

The corresponding characteristic equation is

2 + (k/m) = 0,
with solutions,

A=+iv (k/m) = io.

This result suggest a solution of the form

x(t) = Cy cos apt + C3 sin axt.

Alternatively, by taking
Ci=Acos¢ and C; = - Asin ¢,

the solution can be written as

x(t) = A-cos(mpt + ¢).

The quantity

a = V(k/m)

is known as the natural angular frequency of the harmonic motion that results when no viscous
damping is present. The frequency of the oscillation can be calculated from

f =2m/w, = 1/T,

where T is the period of the oscillation (i.e., the time that the mass takes to return to a pre-

defined position in the motion). The quantity ¢ is known as the angular phase of the

oscillation, and A is known as the amplitude.

The velocity of the motion is given by
v = dx/dt = -ay-A sin(mpt + ¢),

and its acceleration, is

a =dv/dt = -ay>A cos(apt + ¢),
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The initial conditions, x(0) = xo, v(0) = vo, can be used to evaluate the constants A and f, as

follows:

Xo = X(0) = Acosd,

and

Vo = V(0) = -ay-A sin 6.

Thus,

tan § = - Vo/ (th Xo), OF ¢= tan” (-Vo/ (ws Xo)),
and

A= [xo + (Vol av)’]'"2

If damping occurs (#0), the characteristic equation becomes

2+ (B/m)A+ wt =0,
whose solutions are

A= -(B/(2m)=N ([B/(2m)]*-a?) = - a £V (0F-x’),
where

ao = B/(2-m).

The nature of the solution will depend on the relative size of the coefficients oo and ay, as

follows:

e If 0 < my, then V (-@y?) = i-w;, where

o = (wo)

is real, and the solutions of the characteristic equation are

M=-0+ io, and A = -0- 1.

The solution to the ODE, therefore, is written as

X(t) =(Cy cos ot + Ca-sin mit) = Age-cos(mt +d).

The parameter

o = V(@?-0?) = V[(k/m)*-(B/(2m))*] = J(4k*-B*)/ (2m),

represents the damped angular frequency of the oscillation, and ¢ represents the
corresponding angular phase. A, is the amplitude of the oscillation at t = 0. If we define
a variable amplitude,

A(t) = Age™,

then the solution to the ODE, also known as the signal, can be written as

X(t) = A(t)-cos(ot +).

Please notice that this solution is very similar to the case of an undamped oscillation,
except for the fact that in a damped oscillation the amplitude decreases with time. The
amplitude decreases, or decays, with time because the parameter a = /(2m) is positive.

Therefore, the function exp(-at) decreases with time.

e If a= ay, then the characteristic equation produces the solution A = -a, with multiplicity 2,
in which case the solution becomes

x(t) = e* (Cy + Cyt).
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This solution represents a linear function of t subjected to a decay factor, exp(-at).

e If a> my, then V (02-6?) = Kis real, and K < «a, the solutions of the characteristic equation

become

M=-o+K=-c,and Xy = -a-K=- cp,

both negative. Therefore, the resulting signal can be written as:

x(t) = Cy-exp(-cit) + Cr-exp(-cat).

Notice that the last two cases, namely, a = w, and ao > @,, produce signals that decay with

time. These cases correspond to harmonic motions that are said to be over-damped, i.e., the
viscous damping is large enough to quickly damp out any oscillation after the body of mass m is
released.

To illustrate an example of a damped oscillatory motion, we will plot the signals that result
from a motion having the following parameters:

Example 1 - Damped oscillatory motion: Plot position, velocity, and acceleration

corresponding to the following parameters: m = 1 kg, B= 0.1N-s/m, k = 0.5 N/m. With these

values, a = (k/m)"? = (0.5N/1kg:m)"2 = (0.552) "2 = 0.7071 s' = 0.7071 rad/s,

ne a = B/(2m) =0.1 N-s/ (2x1 kg-m) = 0.05 s'=0.05 rad/s.

Since, ao < oy, the resulting signal is that of a damped oscillation with

o = V(ap?-0?) = V(0.70712-0.05%) = 0.7053 rad /s.

The resulting equation is
x(t) = A, exp(-0.05t) cos(0.7053t - ¢).

The position x(t) for this motion can be entered into the HP 49 G calculator by using:

‘AO*EXP(-0.05*t)*C0OS(0.7053*t-¢1)’ [ENTER]

The velocity, v = dx/dt, is obtained by

[ENTER]‘t’ [ENTER] [r]1[0]

To determine the constants A, and ¢, we use initial conditions, x(0) = 1.5 m, and v(0) = -5.0

m/s. Using the calculator, we will enter:

‘t=0"[ENTER][— ][ALG][SUBST][~ ][EVAL],

which produces an expression for v(0). Make this expression equal to -5.0, by entering:

-5 [ENTER] [~]1[=].

Next, swap contents of levels 1 and two, replace the value ‘t=0’ in the expression for x(t), and
make it equal to 1.5, by using:

[»] ‘t = 0’ [ENTER][~][ALG][SUBST][—][EVAL] ‘1.5’ [ENTER][—][=].

| suggest that you keep a copy of these two equations by using the following:
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2 [ENTER][<][PRG][TYPE][~> LIST].

This create the list

{ <.7053*A0*SIN(¢1)-.05*A0*COS(p 1)=-5." ‘A0*COS(¢1) = 1.5}.

Press [ENTER] to keep an extra copy of the list, then press [~][EVAL] to decompose the list

back into the two original equations. Next, press [] to divide the two expressions term by
term, the result is:

“(.7053*A0*SIN(¢1)-.05*A0*COS(¢1))/ (AO*COS((¢1))=-3.333333333333’

Now, press [¥] to activate the equation writer. Use small font (i.e., de-select the soft-menu
key [ BIG ]), and press [¥] to select the left-hand side of the equation. Press [¥] once more to
select the numerator of the left-hand side, then press [EDIT], and edit out the expression to
read:

.7053*TAN(¢1)-.05 = -3.333333333.

Next, store this result in variable EQ:

‘EQ’[STOM].

Make sure your calculator’s angle measurementis set to radians, and launch the numerical
equation solver,

[~1[NUM.SLV][OK].

Press [ V][SOLVE] to obtain the value, ol: -1.3592.

Press [ENTER]. The result will be shown in stack level 1 as a tagged object. Transform the
tagged object into an equality by using:

[<][PRG][TYPE][OBJ->] Decompose tagged object

[v] Trigger line editor to edit string “¢1”
[ALPHA][][  ] [»1[»] [ALPHA][~][ ¢ ] [ENTER] Edit line to read ‘¢1’, entered as “ ‘1’

[OBJ->] Transform string into algebraic ‘1’
1 [l=] Swap levels 1 and 2, form equality

The result is: ‘01 = -1.3592’.

Now, in stack level 2 we should have the extra copy of the two equations we left in the stack.
To access those equations, and solve for AO, try the following:

[>] Swap levels 1 and 2
[][EVAL] Decompose list

>1<] Swap levels 1 and 2, drop second
equation

[»1[—][ALG][SUBST] Swap levels 1 and 2, substitute value of
1
[~][EVAL] Evaluate equation numerically
[~]1[ © IIALPHA][A][O][ENTER][+][S.SLV][ISOL] Isolate AO

The result is ‘AO = 7.142136’.
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So, we have the results A, = 7.142136, and ¢1 = -1.3592, which allows us to write the
oscillatory signal as:

X(t) = 7.142136 exp(-0.05t) cos(0.7053t +1.3592).

Let’s plot the signal, x(t), and its first two derivatives, v(t) = dx/dt, and a(t) = dv/dt, by using
the following:

‘7.142136*EXP(-.05*t)*COS(.7053*t+1.3592)’[ENTER][ENTER] Enter x(t), make copy

‘t’ [ENTER][—]1[0][][EVAL][ENTER] Calculate v(t), make

copy

‘t’ [ENTER] [~][2][~][EVAL] Calculate a(t)

3 [ENTER][<][PRG][TYPE][> LIST] Create list

{x(t),v(t),a(t)}
‘EQ’ [STOMP] Store list in EQ for plots

Next, prepare the plot by using:

[<]1[2D/3D] (simultaneously) To set up plot
[v]1[v] [ALPHA][<][T] [OK] Change independent variable to
‘t’

[NXT][OK] Accept changes
[<][WIN] (simultaneously) To set up plot window
[11[+/-1[OK] [4][O][OK] Change t-range to (-1,40)

[81[+/-1[OK] [8][OK] Changevertical range to (-8,8)
[ERASE][DRAW] Erase plot window, plot x,v,a
[EDIT][NXT][LABEL][MENU] Show the graphs w/o key labels

The graphics screen should look like this:

 

Notice the oscillatory nature of the three functions, as well as their amplitudes decay with

time as expected.

To cancel the graphics screen and return to normal calculator display, use:

[NXT][NXT][PICT][CANCL][ON].
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A program to create phase portraits of oscillatory motion

A phase portrait for oscillatory, or any kind of, motion is a plot involving the dependent

variable and one of its derivatives, or two derivatives of the dependent variable. For example,

a plot of velocity, v(t), versus position, x(t), represents a phase portrait. Other phase portraits
would be a(t) vs. x(t), and a(t) vs. v(t). To produce a phase portrait we will make use of the
DAT matrix for statistical calculations. We will load this matrix with four columns
corresponding to 100 values of time (column 1), position (column 2), velocity (column 3), and
acceleration (column 4). Then, plots of x-vs-t, v-vs-t, and a-vs-t, as well as phase portraits can

be generated as scatterplots of the proper combinations of columns in the ZDAT matrix.

Create a sub-directory to be called PPORT (for Phase PORTraits), and, within that sub-directory
create the following programs:

Program GETZ (GET XDAT):

<< Start program GETX
INPHASE Call sub-program INPHASE

2> x tO tf Pass values as x (signal), tO, tf

<< Start first-subprogram within GETX
x DEFFCTS Place signal, define functions x, v, t

to tf ‘(tf - t0)/100’ EVAL GETtLIST Place tO, tf, At, call GETtLIST
CRXEDAT Call sub-program CREZDAT to set up ZDAT

“YDAT ready” MSGBOX Announce completion of program
>> End first sub-program within GETX

>> End program GETX

Sub-program INPHASE (INput data for PHASE portraits, etc.):

<< Start program INPHASE
“Enter x(t),tO0,tf:”

“eoix(t)ie tO: tf” {203 VIINPUT Input string
0oBJ-> Decompose input string
13FORj Start FOR loop with j=1,2,3
DTAG 3 ROLLD Detag, roll down three levels

NEXT End FOR loop (j)

>> End sub-program INPHASE

Sub-program DEFFCTS (DEFine FunCTionS):

<< Start sub-program DEFFCTS
2 X Get x(t) as input

<< Start first sub-program within DEFFCTS
X ‘s(t)’ SWAP = DEFINE Define ‘s(t) = x’, position
Xx ‘t’ 0 EVAL DUP ‘v(t)’ SWAP = DEFINE Define ‘v(t) = ds/dt’, velocity

‘t’ EVAL ‘a(t)’ SWAP = DEFINE Define ‘a(t) = dv/dt’, acceleration

>> End first sub-program within DEFFCTS
>> End sub-program DEFFCTS
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Sub-program GETtLIST (GET the time LIST):

<<

> t0 tf At
<<

t0 1 LIST tO
1 100 FOR j

At + DUP 3 ROLLD + SWAP
NEXT
+

>>

>>

Sub-program CRXDAT (Create XDAT):

<<

DUP AXL SWAP
DUP ‘s’ LSTEVAL AXL SWAP
DUP ‘v’ LSTEVAL AXL SWAP
‘a’ LSTEVAL AXL

4 COL-> STOX
>>

Creates

Sub-program LSTEVAL (LiSt EVALuation):

<<

SL f
<<

{}LSIZE
1 SWAP FOR j

L j GET f EVAL +
NEXT
>>

>>

Program TPLOTS (Time PLOTS, i.e., x-vs-t, v-vs-t, a-vs-

<<

“x vs. t” MSGBOX

1 2 “t” “s” SCTPnm

DRAX LABEL PICTURE

“v vs. t” MSGBOX

1 3 “t” “v” SCTPnm

DRAX LABEL PICTURE

“v vs. t” MSGBOX

1 4 “t” “a” SCTPnm

DRAX LABEL PICTURE
>>
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Start sub-program GETtLIST

Input data tO, tf, At

Start first sub-program within GETtLIST

Create a list { t0 }, place tO afterlist
Start FOR loop with j = 1, 2, ..., 100

Add At to level 1, add result to list

End FOR loop (j)
Add last value of t to the list
Close sub-program within GETtLIST
End sub-program GETtLIST

Start sub-program CR DAT
a vector and a list with values of t

Produce vector of values of x(t)

Produce vector of values of v(t)

Produce vector of values of a(t)

Create 4-column matrix, store it in DAT

End sub-program CR DAT

Start sub-program LSTEVAL
Input list L and function f
Start first sub-program within LSTEVAL
Place empty list in stack, get size of L

Start FOR loop with j = 1, 2, ... SIZE(L)
Evaluate f(L;), add it to list on stack

End FOR loop (j)
End first sub-program within LSTEVAL
End sub-program LSTEVAL

t):

Start program TPLOTS
Announce upcoming plot x-vs-t

Place data to plot using SCTPnm
Draw axes, labels, recall picture

Announce upcoming plot v-vs-t

Place data to plot using SCTPnm
Draw axes, labels, recall picture

Announce upcoming plot a-vs-t

Place data to plot using SCTPnm

Draw axes, labels, recall picture

End program TPLOTS
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Program PPLOTS (Phase portrait PLOTS, i.e., v-vs-X, a-Vs-X, a-Vs-V):

<<

“v vs. x” MSGBOX

2 3 “x” “v” SCTPnm

PICTURE

“a vs. x” MSGBOX

2 4 “x” “a” SCTPnm

PICTURE

“avs. v” MSGBOX

3 4 “v” “a” SCTPnm

PICTURE

>>

Start program TPLOTS
Announce upcoming plot x-vs-t

Place data to plot using SCTPnm
Recall picture (no axes or labels)

Announce upcoming plot v-vs-t

Place data to plot using SCTPnm
Recall picture (no axes or labels)
Announce upcoming plot a-vs-t
Place data to plot using SCTPnm
Recall picture (no axes or labels)

End program TPLOTS

Sub-program SCTPnm (SCaTterPlot using columns n and m of DAT)

<<

2 nmsXsY

sX, sY
<<

(0, 0) # Ah sX sY 4 LIST AXES

n XCOL m YCOL

MINE MAXZ 2 LIST

DUP EVAL n GET SWAP n GET SWAP XRNG
EVAL m GET SWAP m GET SWAP YRNG
SCATRPLOT
>>

Start sub-program SCTPnm
Get column numbers n,m, and labels

Start first sub-program within SCTPnm
Load axes information for current plot
Select n-th col. for x, m-th col. fory
Min and max values in ZDAT put in list
Set x-axis range from data in column n

Set y-axis range from data in column m

Select graph type as scatterplot
End of first sub-program within SCTPnm

Example 1- Plots time plots and phase portraits for the acillatory motion: x = 2e*'"sin
(t/20), for t = 0 to 30.

Use:

[GETZ]

‘2*EXP(-t/10)*SIN(t/20)’ [¥]

0[v] 80 [v] [ENTER]

Wait about one minute to get the message box:

[OK]
[TPLOT]
[OK]
[CANCL]
[OK]
[CANCL]
[OK]
[CANCL]
[PPLOT]
[OK]
[CANCL]
[OK]
[CANCL]
[OK]
[CANCL]
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Start program to produce IDAT
Enter expression for x(t)

Enter initial and final values of time

 

[ ZDAT ready J
 

Clears message box
Shows plots of functions
To see the x-vs-t plot
To move to next plot

To see the v-vs-t plot
To move to next plot
To see the a-vs-t plot
To end program TPLOT
Shows phase portraits
To see the v-vs-x plot
To move to next plot
To see the a-vs-x plot
To move to next plot
To see the a-vs-v plot
To end program TPLOT
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The figures produced are shown below. The labels were added in the computer. In the
calculator, the labels are shown before each plot.

  

 

[Join]LeTATLE07[canc]

  

 

avs. vu

a

ma   IFPFSNEY(GFCTT CEP)ST(0TR

 
 
 

You can see from these plots that the xvs-t plot shows one relatively large oscillation, and
then x goes to zero. The v-vs-t and a-vs-t plots show the same trend. The phase portraits all
show curve orbits that quickly go to a fixed point, reflecting the fact that x, v, and a go to zero
after t > 70 or thereabouts.
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Example 2 - Plot the time-dependent plots and phase portraits for the signal obtained in
Example 1 in the previous section, i.e.,

x(t) = 7.142136 exp(-0.05t) cos(0.7053t +1.3592).

 

 

Use:

[ GETZ] Start program to produce DAT
‘7.142136*EXP(-.05%t)*COS(.7053*t+1.3592)’ [Vv] Enter expression for x(t)

0 [Vv] 40 [v] [ENTER] Enter initial and final values of time

Wait about one minute to get the message box: [ DAT ready J

[OK] Clears message box
[TPLOT] Shows plots of functions
[OK] To see the x-vs-t plot

[CANCL] To move to next plot
[OK] To see the v-vs-t plot
[CANCL] To move to next plot
[OK] To see the a-vs-t plot
[CANCL] To end program TPLOT

[PPLOT] Shows phase portraits

[OK] To see the v-vs-x plot
[CANCL] To move to next plot
[OK] To see the a-vs-x plot
[CANCL] To move to next plot
[OK] To see the a-vs-v plot
[CANCL] To end program PPLOT

The plots generated in this exercise are shown in the figure below.

Co Vous. x vr favs, bl TT

ICEEISTTlTE x ICE)SEA

 

These figures depict a damped oscillation that produces a good number of oscillations before
the amplitude becomes negligible. The figure for x-vs-t shows 4 complete oscillations for t <
40. The typical behavior of the damped oscillation is also shown in the v-vs-t and a-vs-t
graphs. The phase portraits of v-vs-x and a-vs-v show orbits spiraling inwards towards the
center of the picture, i.e., towards (0,0). This is because the amplitude of both variables

included in the phase portrait decreases at about the same rate with time. The phase portrait
a-vs-x shows data following a straight-line pattern, however, if you watch the plots being
plotted, you will notice that the trend is also an inward spiral, although the extension of the
spiral in space is quite narrow.
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Applications of ODEs II : analysis of damped and
undamped forced oscillations

Earlier we presented the analysis of damped and undamped free oscillations, meaning that,
once the particle subjected to oscillatory motion is released, all forces acting on it are internal
to the system, i.e., the restoring force of the spring, and the damping force from the dashpot.

If the particle is continuously subjected to an external force (an excitation), then the type of
oscillations thus generated are termed forced oscillations. Of interest are excitations that are

themselves oscillatory. The simplest case will be an external force,
Fe(t) = Fo, cos wt.

The differential equation for the mass-spring-dashpot system, including the excitation, F(t), is
now written as:

d?x/dt? + (B/m)-(dx/dt)+(k/m)x = (F,/m)-cos wt.

Let’s assume that the values of the parameters m, b, and k are such that the solution of the

homogeneous equation is

Xn(t) = Age 2'cos(wyt+).

Also, because the term cos wt shows up in the right-hand side term, the table for selecting the
particular solution (shown earlier in this chapter), suggest that we try

Xp(t) = C4 cos wt + C3 sin wt.

Because this particular solution must satisfy the governing ODE, we can write

d’x,/dt? + (B/m)-(dx,/dt)+(k/m)x, = (F,/m)-cos ort.

Let’s use the calculator to determine the values of C4; and C; as follows (use w0"2 = k/m):

‘d1d1xp(t)+(b/m)*d1xp(t)+ w0"2*xp(t)’ [ENTER]
‘xp(t) = C1*COS(w*t)+C2*SIN(w*t)’ [ENTER]

[~][ALG][SUBST].

The result is:

“(((B*o*C1-(M*w0"2- ®"2*m)*C2)*SIN(w*t)-((M*w0-w"2*m)*C1+f*w*C2)*COS(w*t))/m)’

This result must be equal to the right-hand side of the equation, which in the calculator would
be written as:

‘FO/m*COS (0't)’.

Thus, the coefficients of SIN(w*t) and COS(w*t) in both sides of the equation should be the
same, i.e.,

“(f*o*C1-(M*w0"2- ®*2*m)*C2)/m = 0’ [coefficients of SIN(w*t)]

‘((m*wl-0"2*m)*C1+p*0*C2)/m) = FO/m’ [coefficients of COS(w*t)]
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You can put together these two equations in the calculator by cutting and pasting terms from
the result above, of just by typing the equations in the stack or using the equation writer. In

any event, once you have the two equations in stack levels 1 and 2, as shown, enter:

2 [ENTER] [<][PRG][TYPE][>ARRY].

This creates an array with the two equations for the coefficients of SIN and COS. Next, enter
the array:

[‘C1’ ‘C2’][ENTER].

Finally, to solve the linear system of equations for C1 and C2, use:

[<][S.SLV][LINSO]

The solution is:

{[ ‘C1= -((FO*m*@"2-FO*w0"2*m)/ (02B"2+(M" 2*@"4-2*00*M" 2*@* 2+ 00"4*m*2)))’
‘C2 = FO*w'b/ (02°"2+(M" 2*0" 4-2*00*M" 2*0" 2+ 0"4*m"2))’] }

To decompose the list and the array from this result use:

[~1[EVAL][<][PRG][TYPE][OBJ>][<].

The expression for C2 should now be in stack level 1. To factor this expression, use the
equation writer (press [¥]), highlight the last three terms in the denominator of the right hand-
side of the equation, and press [ FACTO]. Press [ENTER] when done. The equation has been
simplified to:

‘C2 = FO*u'B/(0"2*B"2+m" 2*(0-w)" 2*(0+ )"2)’, i.e.,

Fyop
0’? +m’ (0; —0*)
 C, =

Press [>] to swap results, and [¥] to trigger the screen writer. Selectfirst the numeratorin
the right-hand side of the equation, and press [FACTO]. Then, select the last three terms in
the denominator, and press [FACTO]. The denominator is exactly the same as for C4. Press
[ENTER] when done. The expression gets simplified to:

‘C1 = -(-(FO*'m*(a0"2-®"2))/ (02*B*2+m"2*(00-0) "2*(0+ ©) "2)’, i.e,

Fm(w; —o?)
 

1 0*B? + m* (0? —w*)®

The particular solution can be written now as

mw; — w*)-cos(w-t) + wp -sin( @ - 1)

0’ B* +m’ (0 — 0)’
 x, (0)=F,-
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Suppose that we want to write this solution as

Xp(t) = Ap cos (wt + dp) = Ap COs wt COs ¢ - Ap sin ot sin dp,

by comparing the last two expressions we find that

A, cos ¢, = Fom(ap?-0?)/[ o'pr+m? (mp2?) 2],
and

Ap sin @ = - Foof/[ o’B?+m? (m’-0’) 7],

from which,

Apt = Fol /[ prem? (a0) 7,
and

tan ¢, = - of/ (M(w-w?)).

Thus, the particular solution can be written as:

Fy

Jo?B’ +m’ (0; —0°)*
  x,(1) = cos(w-t+9,).

To analyze the behavior of this particular solution, first we study the case in which no damping
is present, i.e., b= 0. In such case, ¢, = 0, and the particular solution becomes

F, F,(m-w
-cosw-t=A (w)-cosm-t.

mw; —>) 1-(w/w,)’ ()

For this case, the amplitude of the oscillation, Ay(®), becomes infinity as ® > «,. This

condition is known as resonance. Thus resonant conditions will occur if the exciting force has
the same frequency as the natural frequency of the system. In practice, the amplitude of the
undamped oscillations grows without bound until the system is severely damaged or destroyed.

This is important for analyzing building response to earthquakes. Every building has a natural
frequency of vibration. If a building is subjected for a long period of time to an earthquake
with a frequency similar or equal to its natural frequency, the building may suffer severe
damages as consequence of the earthquake.

If damping is present, then the amplitude of the oscillation is given by

  4, (0) = fy
’ Jo?B? +m’ (0; —0*)°

which has a maximum

2mkF,
A4,(0) =

B.4m*w’ — B°

when

B= 2m’ (a’-).
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Since the general solution of the damped equation,

Xn(t) = Age *'cos(ayt+9),

decreases with time, it will eventually become negligible when compared to the particular
solution. Thus, it is said that the general solution represents the transient (temporary)
response of the system to the exciting force, Fe(t). The particular solution, which turns out to
be a sinusoidal wave, represents the steady-state response of the system.
 

The function DESOLVE

So far we have used the function LDEC to solve linear ordinary differential equations. The HP
49 G calculator provides the function DESOLVE (Differential Equation SOLVEr) to solve certain

types of differential equations. The function requires as input the differential equation and
the unknown function, and returns the solution to the equation if available. You can also
provide a vector containing the differential equation and the initial conditions, instead of only
a differential equation, as input to DESOLVE. The function DESOLVE is available in the menu
[<1 ][CALC][DIFF]. Examples of DESOLVE applications are shown below.

Example 1 - Solve the first-order ODE:

dy/dx + x*y(x) = 5.
In the calculator use:

‘d1y(x)+x*2*y(x)=5" [ENTER] ‘y(x)’ [ENTER] [~][CALC][DIFF][DESOL].

The solution provided is {‘y = (INT(5*EXP(xt"3/3),xt,x)+C0)*1/EXP(x"3/3))’ }, i.e.,

yx) = exp(—x13)-([ 5 -exp(x 13) dx + C,)

The variable ODETYPE
 

 
You will notice in the soft-menu key labels a new variable called [ODETY] (ODETYPE). This
variable is produced with the call to the DESOL function and holds a string showing the type of
ODE used as input for DESOLVE. Press [ODETY] to obtain the string “1st order linear”.
 

Example 2 -- Solve the second-order ODE:

d?y/dx? + x (dy/dx) = exp(x).

In the calculator use:

‘d1d1y(x)+x*d1y(x) = EXP(x)’ [ENTER] ‘y(x)’ [ENTER] [~][CALC][DIFF][DESOL].

 

The calculator responds with the message: [<!> DESOLVE error: Unable to solve ODE].
 

This means that the calculator’s CAS is not set to recognize this type of equations and provide
a solution to them. For this particular equation, however, we realize that the left-hand side of
the equation represents d/dx(x dy/dx), thus, the ODE is now written:

d/dx(x dy/dx ) = exp Xx,
and
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x dy/dx = exp x + C.
Next, we can write

dy/dx = (C + exp x)/x = C/x + e*/x.

In the calculator, you may try to integrate:

‘d1y(x) = (C + EXP(x))/x’ [ENTER] ‘y(x)’ [ENTER] [~][CALC][DIFF][DESOL].

 

The result is { ‘y(x) = INT((EXP(xt)+C)/xt,xt,x)+C0’ }, i.e.,

y(x)= | c +C dx+C,.
xX

Performing the integration by hand, we can only get it as far as:

e'
y(x)= [-—ax +C-Inx+C,,

x

because the integral of exp(x)/x is not available in closed form.

Example 3 - Solving an equation with initial conditions. Solve

d?y/dt? + 5y = 2 cos(t/2),
with initial conditions

y(0) = 1.2, y’(0) = -0.5.
In the calculator, use:

[‘d1d1y(t)+5%y(t) = 2*COS(t/2)’ ‘y(0) = 6/5’ ‘d1y(0) = -1/2’][ENTER] ‘y(t)’
[ENTER][+][CALC][DIFF][DESOL].

Notice that the initial conditions were changed to their Exact expressions, ‘y(0) = 6/5’, rather
than ‘y(0)=1.2’, and ‘d1y(0) = -1/2’, rather than, ‘d1y(0) = -0.5’. If you don’t make these
changes, you will be asked to change to Approx mode, and then, the calculator will refuse to
solve the differential equation under the argument that the result is not exact. Just one of
those quarks of the calculator.

The solution is:

{ ‘y(t) = 8/19*COS(-1/2*t)+((19*(6/5)-8)/19*COS(V5*t)+ V5*(-1/2)/5*SIN(V5*t))’ }.

Press [—][EVAL][r][EVAL] to simplify the result to

‘y(t) = -((19*5*SIN(V5*t)-(148*COS(V5*t)+80*COS(t/2)))/ 190)’.

Press [VAR][ODETY] to get the string “Linear w/ cst coeff” for the ODE type in this case.
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Laplace Transforms

The Laplace transform of a function f(t) produces a function F(s) in the image domain that can
be utilized to find the solution of a linear differential equation involving f(t) through algebraic

methods. The steps involved in this application are three:

1. Use of the Laplace transform converts the linear ODE involving f(t) into an algebraic

equation.

2. The unknown F(s) is solved for in the image domain through algebraic manipulation.

3. An inverse Laplace transform is used to convert the image function found in step 2 into the
solution to the differential equation f(t).

Definitions

The Laplace transform for function f(t) is the function F(s) defined as

Lif} =F) =]f(@)-edt.

The image variable s can be, and it generally is, a complex number.

Many practical applications of Laplace transforms involve an original function f(t) where t
represents time, e.g., control systems in electric or hydraulic circuits. In most cases one is
interested in the system response after time t>0, thus, the definition of the Laplace transform,

given above, involves an integration for values of t larger than zero.

The inverse Laplace transform maps the function F(s) onto the original function f(t) in the time

domain, i.e.,

L {F(s)} = f(t).

The convolution integral or convolution product of two functions f(t) and g(t), where g is

shifted in time, is defined as

(f*e)Xt)=[ fu) gt—u)- du.

Laplace transform and inverses in the HP 49 G calculator

The HP 49 G calculator provides the functions LAP and ILAP to calculate the Laplace transform
and the inverse Laplace transform, respectively, of a function f(VX), where VX is the CAS
default independent variable (typically X). The calculator returns the transform or inverse
transform as a function of X. The functions LAP and ILAP are available under the menu
[<][CALC][DIFF].
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Example 1 - You can get the definition of the Laplace transform use the following:

‘f(X)’ [ENTER][<][CALC][DIFF][ LAP ]. The calculator returns the result:

J(0, oo, f(St)*EXP(-St)*X, St)’.

Press [¥] to activate the equation writer. The result is shown now as follows:

 

[Craver
0

  [04 ARO
 

Compare this expression with the one given earlier in the definition of the Laplace transform,

Lif} =F(s)=[f()-edt,

1
—
s°—4-5+5

and you will notice that the CAS default variable X in the equation writer screen replaces the
variable s in this definition. Therefore, when using the function LAP you get back a function

of X, which is the Laplace transform of f(X).

F(s)=L{e* -sint} =

Example 2 - Determine the Laplace transform of f(t) = e?tsin(t). Use:

‘EXP(2*X)*SIN(X)’ [ENTER] [«<][CALC][DIFF][ LAP ]. The calculator returns the result:

“1/(X"2+(-4,0)*X+(5,0))’.

The terms (-4,0) and (5,0) are complex number representation of -4 and 5, respectively,

therefore, you translate this result in paper as

Example 3 - Determine the inverse Laplace transform of F(s) = sin(s). Use:

‘SIN(X)’ [ENTER] [<][CALC][DIFF][ ILAP ].

The calculator returns the result: ‘ILAP(SIN(X))’, meaning that there is no closed-form

expression f(t), such that f(t) = A sin(s)}.

Example 4 - Determine the inverse Laplace transform of F(s) = 1/s3. Use:

‘1/X*3’ [ENTER] [«][CALC][DIFF][ ILAP ]. The calculator returns the result: ‘.5*X"2’, which is
interpreted as

L '{1/5% = t?/2.

Example 5 - Determine the Laplace transform of the function f(t) = cos (a-t+b). Use:
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‘COS(a*X+b)’ [ENTER] [<][CALC][DIFF][ LAP ]. The calculator returns the result:

“-((@*SIN(b)-X*COS(b))/(X"2+(1,0)*a"2))’,

which is interpreted as:

A {a-t+b} = (s-cos b - a-sin b)/(s*+a?).

Laplace transform theorems

To help you determine the Laplace transform of functions you can use a number of theorems,
some of which are listed below. A few examples of the theorem applications are also included.

e Differentiation theorem for the first derivative. Let f, be the initial condition for f(t),

i.e., f(0) = f,, then

L{df/dt} = 5 F(s) - fo.

 

 

Example 1 - The velocity of a moving particle v(t) is defined as v(t) = dr/dt, where r = r(t) is

the position of the particle. Let r, = r(0), and R(s) =L{r(t)}, then, the transform of the velocity

can be written as

V(s) = L{v(t)}=L{dr/dt}= s-R(s)-ro.

 

e Differentiation theorem for the second derivative. Let f, = f(0), and (df/dt), = df/dt|-,

then

L{d?*f/dt?} = s2-F(s) - s-f, - (df/dt) ,.

 

 

Example 2 - As a follow up to Example 1, the acceleration a(t) is defined as a(t) = d“r/dt*. If
the initial velocity is vo = v(0) = dr/dt|-g, then the Laplace transform of the acceleration can

be written as:

A(s) = L{a(t)} = A{d*r/dt’}= s2R(s) - sTo - Vo.

 

Differentiation theorem for the n-th derivative. Let f *), = d*f/dx*|-o, and f, = f(0), then

L{d"f/dt"} = s"F(s) - s""fo —...- 5-f2 - fOD

e Linearity theorem. L{af(t)+bg(t)} = a-A{f(t)} + b-A{g(t)}.

e Differentiation theorem for the image function. Let F(s) = L{f(t)}, then d"F/ds" = A{(-
t)"f(1)].
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Example 3 - Let f(t) = e™, using the calculator with ‘EXP(-a*X)’ [ENTER] [+ ][CALC][DIFF][LAP ],

you get ‘1/(X+a)’, or F(s) = 1/(s+a). The third derivative of this expression can be calculated
by using:

‘X’ [ENTER] [~][0] ‘X’ [ENTER][~][d] ‘X’ [ENTER] [~][3] [~][EVAL].

The result is

-6/(X4+4*a*X"3+6*a"2*X"2+4*a"3*X+a"4)’, or d’F/ds’® = -6/(s*+4-as3+6-a’s2+4-a>s+a?).

Now, use ‘(-XE34)"3*EXP(-a*X)’ [ENTER] [«][CALC][DIFF][ LAP ]. The result is exactly the
same.
 

e Integration theorem. Let F(s) = A{f(t)}, then

Lodf- 1 F(s).

e Convolution theorem. Let F(s) = A{f(t)} and G(s) = A{g(t)}, then

Llfgyuj= LIC *2)0)} =L{f0} -L{g(D)} = F(s)- G(s).

 

 

Example 4 - Using the convolution theorem, find the Laplace transform of (f*g)(t), if f(t) =

sin(t), and g(t) = exp(t). To find F(s) = A{f(t)}, and G(s) = A{g(t)}, use:

‘SIN(X)’ [ENTER] [«1][CALC][DIFF][ LAP ]. Result, “1/(X"2+1)’, i.e., F(s) =
1/(s2+1).

‘EXP(X)’ [ENTER] [<][CALC][DIFF][ LAP ]. Result, “1/(X-1)’, i.e., G(s) = 1/(s-1).

Thus, A{(f*g)(t)} = F(s)-G(s) = 1/(s2+1)-1/(s-1) = 1/((s-1)(s2+1)) = 1/(s>-5%+s-1).

 

e Shift theorem for a shift to the right. Let F(s) = L{f(t)}, then L{f(t-a)}=e®*.L{f(t)} = e*F(s).

e Shift theorem for a shift to the left. Let F(s) = L{f(t)}, and a >0, then

L{ f(t +a)} =e® (Fo - [ ft)-e™-a

eo Similarity theorem. Let F(s) = L{f(t)}, and a>0, then L{f(a:t)} = (1/a)-F(s/a).

e Damping theorem. Let F(s) = L{f(t)}, then L{e®"f(t)} = F(s+b).
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e Division theorem. Let F(s) = L{f(t)}, then

ol= I F(u)du.

eo Laplace transform of a periodic function of period T:
 

L{f()}—[r@y-e dt.
—e

eo Limit theorem for the initial value: Let F(s) = L{f(t)}, then

Jo =1lm f(t) =lm[s- F(s)].
t—0 §—ro0

 

e Limit theorem for the final value: Let F(s) = L{f(t)}, then

fo =lm f()=lm[s- F(s)].

Dirac’s delta function and Heaviside’s step function

In the analysis of control systems it is customary to utilize a type of functions that represent
certain physical occurrences such as the sudden activation of a switch (Heaviside’s step
function, H(t)) or a sudden, instantaneous, peak in an input to the system (Dirac’s delta
function, &t)). These belong to a class of functions known as generalized or symbolic
functions [e.g., see Friedman, B., 1956, Principles and Techniques of Applied Mathematics,
Dover Publications Inc., New York (1990 reprint) ].

The formal definition of Dirac’s delta function, &x), is &x) = 0, for x #0, and

[8(x)dx =1.0.

Also, if f(x) is a continuous function, then

[18x=x,)dx = f(x).

An interpretation for the integral above, paraphrased from Friedman (1990), is that the &
function “picks out” the value of the function f(x) at x = xo. Dirac’s delta function is typically
represented by an upward arrow at the point x = x0, indicating that the function has a non-zero
value only at that particular value of xo.

Heaviside’s step function, H(x), is defined as

I, x>0

= x<0
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Also, for a continuous function f(x),

[fHG=x)dx = f(x)dx.

Dirac’s delta function and Heaviside’s step function are related by

dH/dx = x).

The two functions are illustrated in the figure below.

 

y §(x-%y) y H(z-%g)

     
 

You can prove that
L{H(t)} = 1/s,

from which it follows that

L{UoH(t)} = Uo/s,
where U, is a constant. Also,

L {1/s}=H(t),
and

L {Uy /s}= Us-H(t).

Also, using the shift theorem for a shift to the right, A{f(t-a)}=e®A{f(t)} = e*F(s), we can
write

L{H(t-k)}=e*S-L{H(t)} = e™*(1/s) = (1/s)-e™".

Another important result, known as the second shift theorem for a shift to the right, is that

L '{e® -F(s)}=f(t-a)-H(t-a),
with F(s) = L{f(t)}.

In the HP 49 G calculator the Heaviside step function H(t) is simply referred to as ‘1’. To check

the transform in the calculator use:

1 [ENTER] [+][CALC][DIFF][ LAP].

The result is ‘1/X’, i.e, L{1} = 1/s.

Similarly,
‘U0’ [ENTER] [«][CALC][DIFF][ LAP],

produces the result ‘U0/X’, i.e., L{Uo} = Up/s.
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You can obtain Dirac’s delta function in the HP 49 G calculator by using:

1 [ENTER] [<][CALC][DIFF][ ILAP ].

The result is ‘Delta (X)’.

This result is simply symbolic, i.e., you cannot find a numerical value for, say ‘Delta(5)’.

This result can be defined the Laplace transform for Dirac’s delta function, because from

L '{1.03= (1),

L{a(t)} = 1.0

it follows that

Also, using the shift theorem for a shift to the right, L{f(t-a)}=e®.L{f(t)} = e*F(s), we can
write

L{S(t-k)}=e*S.L{§(t)} = e*51.0 = e™®*.

Applications of Laplace transform in the solution of linear ODEs

At the beginning of the section on Laplace transforms we indicated that you could use these

transforms to convert a linear ODE in the time domain into an algebraic equation in the image
domain. The resulting equation is then solved for a function F(s) through algebraic methods,
and the solution to the ODE is found by using the inverse Laplace transform on F(s).

The theorems on derivatives of a function, i.e.,

L{df/dt} = s-F(s) - fo,

L{d*f/dt’} = sF(s) - sf, - (df/dt),,
and, in general,

L{d"f/dt"} = s"F(s) - s"" fp —m 5.FO2 OD

are particularly useful in transforming an ODE into an algebraic equation.

Example 1 - To solve the first order equation,

dh/dt + kh(t) = ae”,

by using Laplace transforms, we can write:

| L{dh/dt + k-h(t)} = L{ae},

L{dh/dt} + k-A{h(t)} = a-L{e"}.

 

Note: ‘EXP(-X)’ [ENTER][«][CALC][DIFF][ LAP ], produces ‘1/(X+1)’, i.e., L{e" }=1/(s+1).

With H(s) = L{h(t)}, and L{dh/dt} = s-H(s) - hs, where h, = h(0), the transformed equation is

s-H(s)-ho+k-H(s) = a/(s+1).
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Use the calculator to solve for H(s), by writing:

‘X*H-hO+k*H=a/(X+1)’ [ENTER] ‘H’ [«][S.SLV][ISOL].

The result is ‘H=((X+1)*h0+a)/(X"2+(k+1)*X+k)’.

To find the solution to the ODE, h(t), we need to use the inverse Laplace transform, as follows:

[<]1[PRG][TYPE][OBJ>][<][<] Isolates right-hand side of last expression
[<][CALC][DIFF][ ILAP ] Obtains the inverse Laplace transform

The result is ‘a/(k-1)*EXP(-X)+((k-1)*h0-a)/ (k-1)*EXP(- (k*X))’, i.e.,

h(t) = a/(k-1)-e* +((k-1)-ho-a)/ (k-1)-e*".

Check what the solution to the ODE would be if you use the function LDEC:

‘a*EXP(-X)’ [ENTER] ‘X+k’ [ENTER] [+][CALC][DIFF][ LDEC ]

The resultis: ‘a/ (k-1)*EXP(-X)+((k-1)*C0-a)/ (k-1)*EXP(-(k*X))’, i.e.,

h(t) = a/(k-1)-e* +((k-1)-Co-a)/ (k-1)-e*".

Thus, CO in the results from LDEC represents the initial condition h(0).

 

 

Note: When using the function LDEC to solve a linear ODE of order n in f(X), the result will be

given in terms of n constants CO, C1, C2, ..., C(n-1), representing the initial conditions f(0),

£(0), f7(0), ..., f™" (0).   

Example 2 - Use Laplace transforms to solve the second-order linear equation,

d?y/dt?+2y = sin 3t.

Using Laplace transforms, we can write:

L{d%y/dt?+2y} = L{sin 3t},

L{d%y/dt?} + 2-A{y(t)} = L{sin 3t}.

 

Note: ‘SIN(3*X)’ [ENTER][+][CALC][DIFF][ LAP ], produces ‘3/(X"2+9)’, i.e., L{sin 3t}=3/(s"+9). |

With Y(s) = L{y(t)}, and L{d%y/dt’} = s*Y(s) - sy, - v1, where y = h(0) and y; = h’(0), the
transformed equation is

S2Y(S) - So - Yi + 2°Y(s) = 3/(s%+9).

Use the calculator to solve for Y(s), by writing:

XX 2*Y-X*y0-y1+42*Y=3/(X"2+9)’ [ENTER] ‘Y’ [«][S.SLV][ISOL].

The result is Y=((X"2+9)*y1+(y0*X"3+9*y0*X+3))/(X"4+11*X"2+18)’.

To find the solution to the ODE, y(t), we need to use the inverse Laplace transform, as follows:
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[<]1[PRG][TYPE][OBJ>][<][<] Isolates right-hand side of last expression
[~][CALC][DIFF][ ILAP ] Obtains the inverse Laplace transform

The result is ©1/7*SIN(3*X)+(y0*COS (V2*X)+(7*V2*y1+3*V2)/ 14*SIN(V2*X))’, i.e.,

y(t) = -(1/7) sin 3x + yo cos V2x + (V2 (7y;+3)/14) sin V2x.

Check what the solution to the ODE would be if you use the function LDEC:

‘SIN(3*X)’ [ENTER] ‘X"2+2’ [ENTER] [«1][CALC][DIFF][ LDEC ]

The result is: 1/7*SIN(3*X)+(CO*COS(N2*X)+(7*V2*C1+3*V2)/ 14*SIN(~2*X))’,

i.e., the same as before with CO = yO and C1 = y1.

 

 

Note: Using the two examples shown here, we can confirm what we indicated earlier, i.e., that

the function ILAP uses Laplace transforms and inverse transforms to solve linear ODEs given
the right-hand side of the equation and the characteristic equation of the corresponding
homogeneous ODE.
 

Example 3 - Consider the equation
d?y/dtt+y = §(t-3),

where &(t) is Dirac’s delta function.

Using Laplace transforms, we can write:

L{d®y/dt?+y} = L{§(t-3)},

L{d?y/dt?} + L{y(t)} = L{§t-3)}.

 

Note: With ‘Delta(t-3)’ [ENTER][+][CALC][DIFF][ LAP ], the calculator produces

‘(0,,Delta(St-3)*EXP(-(5t*X)),St)’, i.e.,

L{S(t—3)} =["6(1-3)-e dt.

The evaluation of the integral is not defined in the calculator. However, using the shift
theorem for a shift to the right, can write

L{&t-3)} = e*.
 

With Y(s) = L{y(t)}, and A{d%y/dt?} = s2-Y(s) - sy, - yi, Where % = h(0) and y; = h’(0), the
transformed equation is

s2Y(S) - SY - y1 + Y(s) =5.

Use the calculator to solve for Y(s), by writing:

X"2*Y-X*y0-y1+Y=EXP(-3*X)’ [ENTER] ‘Y’ [«][S.SLV][ISOL].

The resultis Y=(X*y0+(y1+EXP(- (3*X))))/(X"2+1)’.
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To find the solution to the ODE, y(t), we need to use the inverse Laplace transform, as follows:

[<][PRG][TYPE][OBJ>][<][<] Isolates right-hand side of last expression
[<1 ][CALC][DIFF][ ILAP ] Obtains the inverse Laplace transform

The result is ‘ILAP(X*yO+(y1+EXP(-(3*X))))/ (X"2+1)’.

This means that the calculator threw its arms up and decided it can not find an inverse Laplace
transform for the expression ‘(X*y0+(y1+EXP(-(3*X))))/(X"2+1)’. Let’s see if we can help it by

separating the expression into partial fractions, i.e.,

‘YO*X/(X"2+1) + y1/(X"2+1) + EXP(-3*X)/(X"2+1)’,

and use the linearity theorem of the inverse Laplace transform

L "{a-F(s)+b-G(s)} = a.L '{F(s)} + b-L "{G(s)},

to write,

L "fyos/(s2+1)+yi/(s*+1)) + e/(s™+1)) } = yorL {s/(s?+1)}+ yo L {1/(s?+1)}+ L "e¥/(s%+1))3,

Then, we use the calculator to obtain the following:

‘X/(X"2+1)’ [ENTER] [+][CALC][DIFF][ ILAP ]. Result, ‘COS(X)’, i.e., L '{s/(s*+1)}= cost.
“1/(X*2+1)’ [ENTER] [+ ][CALC][DIFF][ ILAP ]. Result, ‘SIN(X)’, i.e., L '{1/(s*+1)}= sin t.
‘EXP(-3*X)/(X"2+1)’ [ENTER] [+][CALC][DIFF][ ILAP ].

The last result is ‘ILAP(EXP(-3*X)/(X"2+1))’, i.e., the calculator cannot find the inverse Laplace

transform of this term. In this case, however, we can use the symbolic result (second shifting

theorem for a shift to the right)

L{feF(s)}=f(t-a)-H(t-a),

if we can find an inverse Laplace transform for 1/(s2+1). With the calculator, try

“1/(X"2+1)’ [ENTER] [<][CALC][DIFF][ ILAP 1].

The result is ‘0.+1*SIN(X)’, or, with [J[EVAL], ‘SIN(X)’. Thus,

L "{e35/(s%+1))} = sin(t-3)-H(t-3),

Thus, the solution to the original ODE is to be written as:

y(t) = yo cos t + y; sin t + sin(t-3)-H(t-3).

Check what the solution to the ODE would be if you use the function LDEC:

‘Delta(t-3)’ [ENTER] ‘X"2+1’ [ENTER] [«][CALC][DIFF][ LDEC ]

The result is: “CO*COS(X)+(J (0,0, Delta(St-3)*EXP(-(5t*X)),$t)+C1)*SIN(X)’.

Please notice that the variable X in this expression actually represents the variable t in the
original ODE, and that the variable St in this expression is a dummy variable.
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Thus, the translation of the solution in paper may be written as:

y(t) =Co -cost +(3-3)-e™ -du+C, J sin ¢.

When comparing this result with the previous result for y(t), we conclude that C, = y,, C; = yy,

and

e -3s

st +1

 L™¢ b= [8 =3)-sins-e™ “du =sin(t=3)- H(t-3).

Defining and using Heaviside’s step function in the HP 49 G
calculator

The previous example provided some experience with the use of Dirac’s delta function as input
to a system (i.e., in the right-hand side of the ODE describing the system). In this example, we
want to use Heaviside’s step function, H(t). In the calculator we can define this function as:

‘H(X) = IFTE(X>0, 1, 0)’ [ENTER] [+][DEF].

This definition will create the variable [ H ] in the calculator’s soft menu key.

Example 1 -- To see a plot of H(t-2), for example, use the following:

e Press [<1][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to FUNCTION, if needed

» Change EQ to ‘H(X-2)’.

» Make sure that Indep is set to ‘X’.

» Press [NXT][OK] to return to normal calculator display.

e Press [<1][WIN], simultaneously, to access the PLOT window.

v Change the H-VIEW range to 0 to 20, and the V-VIEW range to -2 to 2.

Y Press [ERASE][DRAW] to plot the function .

216 © 2000 Gilberto E. Urroz

All rights reserved



The resulting graph will look like this:

 

 

Cv) [TRACE] FEN [EDIT [CARCL

Unfortunately, use of the function H(X) with LDEC, LAP, or ILAP, is not allowed in the

calculator. Thus, you have to use the main results provided earlier when dealing with the
Heaviside step function, i.e.,

L{H(t)} = 1/s,

L '{1/s}=H(t),

L{H(t-k)}=e*S.L{H(t)} = e*-(1/s) = -(1/s)-e™,
and

L '{e® -F(s)}=f(t-a)-H(t-a).

Example 2 -- The function H(t-t,) when multiplied to a function f(t), i.e., H(t-t,)f(t), has the

effect of switching on the function f(t) at t = t,. For example, the solution obtained in

Example 3, above, was

y(t) = yo cos t + yy sin t + sin(t-3)-H(t-3).

Suppose we use the initial conditions y, = 0.5, and y; = -0.25. Let’s plot this function to see

what it looks like:
 

Press [«1][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to FUNCTION, if needed

» Change EQ to ‘0.5*COS(X)-0.25*SIN(X)+SIN(X-3)*H(X-3)’.

» Make sure that Indep is set to ‘X’.

» Press [ERASE][DRAW] to plot the function.

» Press [EDIT][NXT][LABEL] to see the plot.
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The resulting graph will look like this:
 

¥

    
Notice that the signal starts with a relatively small amplitude, but suddenly, at t=3, it switches
to an oscillatory signal with a larger amplitude. The difference between the behavior of the

signal before and after t = 3 is the “switching on” of the particular solution y(t) = sin(t-3)-H(t-
3). The behavior of the signal before t = 3 represents the contribution of the homogeneous
solution, yh(t) = yo, cos t + y; sin t.

The solution of an equation with a driving signal given by a Heaviside step function is shown
below.

Example 3 - Determine the solution to the equation,

d?y/dt?+y = H(t-3),

where H(t) is Heaviside’s step function.

Using Laplace transforms, we can write:

L{d?y/dt*+y} = L{H(t-3)},

L{d’y/dt’} + Ly(t)} = L{H(t-3)}.

The last term in this expression is:

L{H(t-3)} = (1/s)-e™.

With Y(s) = L{y(t)}, and L{d%y/dt?} = s>-Y(s) - sy, - 1, where y = h(0) and y; = h’(0), the
transformed equation is

s2Y(S) - SY - V1 + Y(s) = (1/5).

Use the calculator to solve for Y(s), by writing:

XA2PY-Xy0-y1+Y=(1/X)*EXP(-3*X)’ [ENTER] ‘Y’ [«][S.SLV][ISOL].

The resultis Y=(X"2*y0+(X*y1+EXP(-3*X)))/ (X"3+X)’.

To find the solution to the ODE, y(t), we need to use the inverse Laplace transform, as follows:

[<][PRG][TYPE][OBJ>][«<][«] Isolates right-hand side of last expression
[][CALC][DIFF][ ILAP ] Obtains the inverse Laplace transform

The result is ‘ILAP((X"2*y0+(X*y1+EXP(-3*X)))/ (X"3+X))’.

This means that the calculator can not find an inverse Laplace transform for the expression
separate the expression into partial fractions, i.e.,

‘yOxX" 2/(X"3+X) + y1*X/(X*3+X) + EXP(-3*X)/(X"3+X)’,

and, use the calculator to obtain the following:
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X"2/(X"3+X)’ [ENTER] [1][CALC][DIFF][ ILAP ]. Result, ‘COS(X)’, i.e., A '{s?/(s3+s)}= cos t.

‘X/(X"3+X)’ [ENTER] [+2][CALC][DIFF][ ILAP ]. Result, ‘SIN(X)’, i.e., A '{s/(s3+ s)}= sin t.
‘EXP(-3*X)/(X"3+X)’ [ENTER] [+][CALC][DIFF][ ILAP ].

The last result is ‘ILAP(EXP(-3*X)/(X"3+X))’, i.e., the calculator cannot find the inverse Laplace

transform of this term. Using the function PARTFRAC we can decompose the term X/(X"3+X)
into ‘“1/X-X/(X*2-1)’, therefore, ‘EXP(-3*X)/(X"3+X)’ is decomposed into ‘EXP(-3*X)/X - X*EXP(-

3*X)/(X"2-1)’. However, use of ILAP on these terms will not produce a solution either. Thus,
the solution to the original ODE is to be written as:

y(t) =yocost+yssint+ A '{e¥/s}+ A Te3/(s2+1)}.

We recognize A '{ e?*/s } = H(t-3), and A "{e */(s’+1)}= H(t-3)-sin(t-3). The remaining terms is
similar to that found earlier in Example 4 in the previous section. Thus, we write as the
solution:

y(t) = yo cos t + yy sin t + H(t-3)-(1+sin(t-3)).

Check what the solution to the ODE would be if you use the function LDEC:

‘H(t-3)’ [ENTER] ‘X"2+1’ [ENTER] [<][CALC][DIFF][ LDEC ]

The result is: ‘CO*COS(X)+(J (0,00,H(St-3)*EXP(-(5t*X)),5t)+C1)*SIN(X)’.

Please notice that the variable X in this expression actually represents the variable t in the
original ODE, and that the variable St in this expression is a dummy variable. Thus, the
translation of the solution in paper may be written as:

y(t) =Co -cost+C, -sin (+ H@=3)sint-e™ du.

Example 4 - Plot the solution to Example 3 using the same values of y, and y; used in the plot
of Example 1, above. We now plot the function

y(t) = 0.5 cos t -0.25 sin t + (1+sin(t-3))-H(t-3).

In the range 0 < t < 20, and changing the vertical range to (-1,3), the graph should look like

this:

 

0] a0.     
Again, there is a new component to the motion switched at t=3, namely, the particular solution

Y(t) = [1+sin(t-3)]H(t-3),

which changes the nature of the solution for t>3.
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The Heaviside step function can be combined with a constant function and with linear
functions to generate square, triangular, and sawtooth finite pulses, as follows:

Square pulse of size U, in the interval a < t <b:

f(t) = Uo[H(t-a)-H(t-b)].

Triangular pulse with a maximum value Uo, increasing from a < t < b, decreasing from b < t
<cC:

f(t) = Uo ((t-a)/(b-a)-[H(t-a)-H(t-b)]+(1-(t-b)/(b-c))[H(t-b)-H(t-c)]).

Sawtooth pulse increasing to a maximum value Uo for a < t < b, dropping suddenly down to
zero at t = b:

f(t) = Uy (t-a)/(b-a)-[H(t-a)-H(t-b)].

Sawtooth pulse increasing suddenly to a maximum of Uo at t = a, then decreasing linearly
tozerofora<t <b:

f(t) = Us:[1-(t-a)/ (b-1)] [H(t-a)-H(t-b)].

Examples of the plots generated by these functions, for Uo = 1, a =2, b = 3, c = 4, x-range =

(0,5), and y-range = (-1, 1.5), are shown in the figures below:
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Fourier Series

Fourier series are series involving sine and cosine functions that are typically used to expand
periodic functions. A function f(x) is said to be periodic, of period T, if f(x+T) = f(t). For
example, because sin(x+2m) = sin x, and cos(x+2m) = cos x, the functions sin and cos are 2m-
periodic functions. If two functions f(x) and g(x) are periodic of period T, then their linear
combination h(x) = a-f(x) + b-g(x), is also periodic of period T.

A T-periodic function f(t) can be expanded into a series of sine and cosine functions known as a
Fourier series given by

= 2nw 2
ft)=a, + 3. cosi+, ni)

n=1

where the coefficients a, and b, are given by

1 c7/2 27/2 nn 27/2 _2nrm
a, ==[ "fds a, ==[ f)-cos—r-di, b, == fysin—rdt

T - T -T/2 T T -T/2 TT/2

Example - Suppose that the function f(t) = t2+t is periodic with period T = 2. Determine the
coefficients ag, a1, and b, for the corresponding Fourier series.

Define f(t) as:

“f(t) = t"2+t’ [ENTER] [+][DEF]

Then, to calculate ag, use: “(1/2)*(~1,1,(t),t)’ [ENTER] [~][EVAL] Result: ag = 1/3.

To calculate ay, use: ‘J(=1,1,f(t)*COS(m*t),t)’ [ENTER] [][EVAL] Result: a, = -4/1.
To calculate by, use: ‘J(~=1,1,f(t)*SIN(t),t)’ [ENTER] [~][EVAL] Result: by = 2/7.

Thus, the first three terms of the function are:

f(t) = 1/3 - (4/1%)-cos (mt)+(2/m)-sin (wt).

A graphical comparison of the original function with the Fourier expansion using these three
terms shows that the fitting is acceptable for t < 1, or thereabouts. But, then, again, we
stipulated that T/2 = 1. Therefore, the fitting is valid only between -1 < t < 1.

t J

A ~
o -.5 o ENR

 

     
An alternative way to define a Fourier series is by using complex numbers as follows:

 
ix 2inTt

fy="Y c,-exp( —):
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where

1 or 2-i-n-m
c, =—| ft) exp(———0)-dt, n= —oo,..,2,~1,0,1,2,..c0.

T J; P T

The function FOURIER

The function FOURIER provides the coefficient ¢, of the complex-form of the Fourier series
given the function f(t) and the value of n. The function FOURIER requires you to store the

value of the period (T) of a T-periodic function into the CAS variable PERIOD before calling the

function. The function FOURIER is available in the menu [<][CALC][ DERIV].

Example 1 -- Determine the coefficients ¢, c;, and c; for the function f(t) = t2+t, with period T

=2.

Note: Because the integral calculating the coefficients with the function FOURIER is calculated
in the interval [0,T], while the one defined earlier was calculated in the interval [-T/2,T/2],

we need to shift the function in the t-axis, by subtracting T/2 from t, i.e., we will use g(t) =

f(t-1) = (t-1)2+(t-1).

Using the calculator:

‘g(t) = f(t-1)’ [ENTER] [+][DEF]
2 [ENTER] [~][ © ] [ALPHA][ALPHA][P][E][R][I][O][D] [ENTER] [STOMP]

‘g(X)’ [ENTER] O [ENTER] [«][CALC][ DERIV][FOURI]

[~][EVAL].

The result is ag = 1/3.

To calculate the coefficient ¢;, we use:

‘g(X)’ [ENTER] 1 [ENTER] [<][CALC][ DERIV][FOURI]
[~][EVAL].

The result is ay = (wi+2)/ 7.

To calculate the coefficient ¢;, use:

‘g(X)’ [ENTER] 2 [ENTER] [<][CALC][ DERIV][FOURI]
[~][EVAL]..

The result is a; = (mi+1)/ (210).

The Fourier series with three elements will be written as

g(t) = Re[(1/3) + (mi+2)/m-exp(i-mt)+ (wi+1)/(21)-exp(2imt)].
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A plot of the shifted function g(t) and the Fourier series fitting follows:

 

Naty

Ne
=a. 2.

-1.    

The fitting is somewhat acceptable for 0<t<2, although not as good as in the previous example.

A general expression for c,

The function FOURIER can provide a general expression for the coefficient ¢ of the complex
Fourier series expansion. For example, using the same function g(t) as before, the general
term c, is given by

‘g(X)’ [ENTER]’n’ [ENTER] [+][CALC][DERIV][FOURI]
[~][EVAL].

The general expression turns out to be:

_ (nm +20) e+20m? + 3nm = 2i
2inm
 

n

20m’ e

We can simplify this expression even further by using Euler’s formula for complex numbers,
namely,

elint _ cos(2nm) + i-sin(2nm) = 1 +i0 =1,

since cos(2nn) = 1, and sin(2nn) = 0, for n integer.

Using the calculator you can simplify the expression as follows:

[v] Trigger the equation writer

RAINAIAAINAIAAINAIZILZILILI IVSITSIDY Highlight the term EXP(2-i-n-m)

[1] Replace EXP(2-i-n-m) with 1
11>] ... [I>1[»] (17 times)[A]l[A][A] Highlight the term EXP(2-i-n-m)

[1] Replace EXP(2-i-n-) with 1
[A][A][A] Highlight the entire expression
[EVAL] Simplify the expression
[ENTER] Return to normal calculator display

The result is now

Cn = (inm+2)/ (n212).
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Putting together the complex Fourier series

Having determined the general expression for G, we can put together a finite complex Fourier
series by using the summation function (X) in the calculator as follows:

First, define a function c(n) representing the general term ¢, in the complex Fourier series.

[ALPHA] [<][C] [<1] [()] [ALPHA] [«<][N] [ENTER] Type in ‘c(n)’
[>] []=] Swaplevels, insert equal sign
[<][DEF] Define function c(n) = ¢,

This operation creates a variable [ ¢ ] in the soft-menu key.

Next, define the finite complex Fourier series, F(X, k), where X is the independent variable

and k determines the number of terms to be used. Ideally we would like to write this finite
complex Fourier series as

nF(X. k)= Sc(n) exp(LRLX),
n=-k

However, because the function c(n) is not defined for n = 0, we will be better advised to re-write the

expression as

k 2:i-mw-n 2-i-mw-n
F(X, k,c0) = c0+  [c(n)-exp( ——X)+ elon) exp(= - -X)],

n=1

[EQW] Start the equation writer
[ALPHA][F] [<1[()] [X] [SPC] [ALPHA][+][K] Type in F(X,k....

[SPCI[ALPHA]J[<][C][0][»] [][=] Type in c0) =
[ALPHA][<][C1[0] [+] Type in c0 +

[1] Z] [ALPHA][«][N] [»] [1] Type in Z,n = 1 (lower limit)
[»] [ALPHA][][K] Type in upper limit of sum

1 [10] Open parentheses in summation

[ALPHA] [<][C] [+] [O)] [ALPHA] [«][N] [>] [x] Type in c(n)*
[10e*1[2] [x] [101] [x] [<1[n] [X][ALPHA] [<][N] [x] [X] Type in EXP(2-i-mn-X...

[alla] [+] [ALPHA][ALPHA][P][E][RI[I][O][D] Type in /PERIOD

(>10>10>] [+] Type in +
[ALPHA] [«][C] [+2] [0] [+/-] [ALPHA][«<][N] [»][»] [x] Enter c(n)*
[<1[e*] [2] [x] [<][i] [X] [<][n] [X][ALPHA] [<][N] [x] [X] Enter EXP(2-i-mn-X...

[a][a] [+/-] [+] [ALPHA][ALPHA][P][EI[R][I][O][D] Enter /PERIOD
[ENTER]

The stack now shows the function:

‘F(X,k,c0) = cO+Z(n=1,k,c(n)*EXP(2*i**n*X/PERIOD)+c(-n)*EXP(-(2*i**n*X/PERIOD))’.

To define the function use: [<][DEF].

This operation creates the variable [ F ].
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The function [ F ] can be used to generate the expression for the complex Fourier series for
a finite value of k. For example, for k = 2, @ = 1/3,and using t as the independent variable,

use:

‘t’ [ENTER] 2 [ENTER] 1/3’ [VAR][ F ]

Be warned that the calculator will take some time in returning a result due to the number of
operations involved.

The result will look like this in the equation writer:

(0.2026,0.3183) - EX.

2

pha +(.2026,-0.3183)
—+
3 pxr{(0222 -t

0.12.56) -¢ Y
2

 

(5.066E —2,0.1591)EX. +(5.066E —2,~0.1591)

EarC53 t
 

+

This result can be written in paper as

S+(0.2026 + 0.3183-i)- EXP(i -7-¢) + (.2026—0.3183-i)- EXP(—i -7 --t)

+(0.05066 + 0.15911) - EXP(i- 2-7 -t)+ (0.05066 —0.1591-i) - EXP(—i-2- 7 -t).

Since we are interested in the real function that results from the complex Fourier series, we
want to modify the program [ F ] to produce only the real part of the function as follows:

[VAR][~][ F 1[V] Copy contents of F to stack, start editor
[1[v1[«] [~][EVAL] Evaluate F(X,k,c0), if possible
[~][MTH][NXT][CMPLX][ RE ] Get real part of result
[ENTER] Enter modified expression in stack level 1
[<1 F 1 Store new definition of F

The function F, thus defined, is fine for obtaining values of the finite Fourier series. For

example, a single value of the series, e.g., F(0.5,2,1/3), can be obtained by using:

0.5 [ENTER] 2 [ENTER] ‘1/3’ [ENTER] [VAR][ F 1]

Accept change to approx mode if requested. The result is the value -0.40467....

225 © 2000 Gilberto E. Urroz

All rights reserved



| should point out that the function generated with F(Xk,c0) evaluates too slowly for the

purpose of generating tables or graphics. Therefore, | suggest creating the following programs

to generate finite Fourier series.

A program to calculate a finite Fourier series

Instead of using the program F(X,k,c0) defined above, we will use the following program:

Program FReal (Fourier series Real component):

<< Start program FReal

2 Xkc0 Enter values X, k, ¢

<< Start first sub-program within FReal

la) Place value c0 in stack
1k FORnN Start FOR loop forn =1,2, ..., k

‘c(n)’ EVAL ‘EXP(i*2*m*n*X/PERIOD)’ EVAL * RE Get real part of ¢,exp(i2ZmX/T)

‘c(-n)’ EVAL ‘EXP(-i*2*m*n*X/PERIOD)’ EVAL * RE Get real part of c,-exp(-i2mX/T)
+ + Add terms in series

NEXT End FOR loop (n)

EVAL Simplify result
>> End first sub-program within FReal

>> End program FReal

The program requires that you have previously determined the values of cO and c(n), as shown
earlier.

Example 1 -- Just to check the results produced by FReal(X,k,c0), use;

0.5 [ENTER] 2 [ENTER] ‘1/3’ [ENTER] [VAR][ FReal ]

The result is the value -0.40467.

The actual value of the function g(0.5) is: 0.5 [ENTER] [ ¢g ], i.e., (0.5) = -0.25. The
following calculations show how well the Fourier series approximates this value as the number
of components in the series, given by k, increases:

k=0, the only component in the series is © = 0.3333333333
k =1, Use: 0.5 [ENTER] 1 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 1, 1/3) = -0.303286439037
k = 2, Use: 0.5 [ENTER] 2 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 2, 1/3) = -0.404607622677
k = 3, Use: 0.5 [ENTER] 3 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 3, 1/3) = -0.192401031887
k = 4, Use: 0.5 [ENTER] 4 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 4, 1/3) = -0.16707073598
k = 5, Use: 0.5 [ENTER] 5 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 5, 1/3) = -0.294394690454

k = 6, Use: 0.5 [ENTER] 6 [ENTER] ‘1/3’ [ENTER] [FReal], FReal(0.5, 6, 1/3) = -0.305652599744

Of course, as k increases so does the time that the calculator takes to produce a result.
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A program to visualize Fourier series approximations for a fixed
value of the independent variable

The following program will produce a table of values of the Fourier series for a fixed value of X
as k increases. The table is placed in the statistical matrix XDAT, and can be plot using a
scatterplot graph.

Program FAppx (Fourier series Approximation):

<<

> Xkc0
<<

0cO1 2 2 SLIST >ARRY DUP STOX ->ROW
k FOR n

1

‘c(n)’ EVAL ‘EXP(i*2*n*n*X/PERIOD)’ EVAL * RE

‘c(-n)’ EVAL ‘EXP(-i*2**n*X/PERIOD)’ EVAL * RE
+ EVAL

2 >ARRY + DUP RCLZ SWAP n 1 + ROW+
STOZ

NEXT

DROP “ZDAT Ready” MSGBOX
>>

>>

To check your program enter the following:

Start program FAppx
Enter values of X, k, ¢

Start first sub-program within FAppx
Set first row of TDAT

Start FOR loop withn=1, 2, ..., k

Place a 1 in the stack

Get real part of ¢,-exp(i2ZmX/T)

Get real part of c,-exp(-i2ZmX/T)
Calculate next term in series

Set row (n+1) of ZDAT

Store new DAT
End FOR loop (n)

Announce end of program

End first sub-program within FApprx
End sub-program FApprx

0.5 [ENTER] 3 [ENTER] “1/3’[~][> NUM] [ENTER] [FAppx].

After about 30 seconds you will get a message indicating that SDAT is ready. Press [OK]. Press
[DAT] to see the contents of the statistics matrix:

 
RAD XYZ HEX C~ 8°
{HOMES

2:
1: C

C

 
[ 8. .333333

1. .3032864
[2 -ldnd

(Z0HTF30EPHFhe]

33

‘6
16

333.
394...
226.
318.
EF   

The following table shows the values of the Fourier series approximation F(0.5) corresponding
to the function g(0.5). These values were obtained by using the program FAppx, with

0.5 [ENTER] 30 [ENTER] “1/3’[—][> NUM] [ENTER] [FAppx].

It took the calculator approximately 5 minutes to obtain these results:
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n F(0.5) n F(0.5) n F(0.5)
1 0.3032 110.2253 21 -0.2639
2 -0.4046 12 -0.2225 22 -0.2648
3 -0.1924 13 -0.2714 23 -0.2371
4  -0.1671 14  -0.2735 24  -0.2364
5  -0.2944 15  -0.2311 25  -0.2619
6  -0.3056 16  -0.2295 26  -0.2625
7  -0.2147 17  -0.2669 27  -0.2389
8  -0.2084 18  -0.2681 28  -0.2384
9  -0.2791 19  -0.2347 29  -0.2604
10  -0.2831 20  -0.2337 30  -0.2608
 

To see how the values of F(0.5) converges to the value g(0.5) = 0.25 using the data in SDAT for

n = 30, select the command SCATTERPLOT from the catalog. To see the resulting graph, press
[4]. Here is a graph of the values of F(0.5) vs. n:

 

   
The graph shows the value of F(0.5) following a sort of damped oscillatory behavior while
approaching the value of 0.25. From the table, you can see that the approximation, even after
30 terms in the series, is only -0.2608.

Plotting the Fourier series approximation

To plot the Fourier series approximation and the original function in the same graph we need
to use a FUNCTION plot with EQ holding the list of functions { ‘FReal(X,5,0.333333)’ ‘g(X)’}. In
this case we are using n = 5. Remember that the higher the value of n you select the longer it
will take to the graph to be generated. Also, when the calculator starts plotting the graphs
you will see no output for about 40 seconds, while it calculates the series. Therefore, be

patient while the calculator completes those steps The following graph shows the original

function g(X) = (X-1)2+(X-1), and its Fourier series approximation for n = 5. The plot ranges
used were (-0.5,2.0) in x, and (-0.5,2.0) in y.

 

 

   
 

As you can see from this figure, there is good agreement between the two functions for 0<X<2,
which is the period of the function under consideration.
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Example: Fourier series approximation for a triangular periodic
function

In this section we repeat the process used earlier to produce the Fourier series expansion for

g(x) = (x-1)%+(x-1),

but this time applied to the 2-period function:

x, if0<x<l1
g(x) =

2—-x, ifl<x<?2

First, we enter the period T = 2 into variable PERIOD, and define the function g(X) by using:

2 [ENTER] [ALPHA]J[ALPHA][P][E][RI[!][O][D] [STOM]
‘g(X) = IFTE(X<1,X,2-X)’ [ENTER] [<][DEF]

Next, we generate ¢, by using:

‘g(X)’ [ENTER] O [ENTER] [<][CALC][DERIV][FOURI] [~][EVAL]

You will be asked to change mode to Approx. The result is ¢g = 0.5.

Change CAS mode back to Exact by using: -105 [ALPHA][ALPHA][C][F][ENTER]

The next step is to obtain a general expression for ¢, as follows:

‘g(X)’ [ENTER] ‘n’ [ENTER] [<][CALC][DERIV][FOURI]

You will be asked to change mode to Approx. Accept the change. The calculator produces the
symbolic integral:

‘0.5*[ (0,2,IFTE(Xt<1,Xt,-(2-Xt))/EXP((0,1)*n*Xt*3.14159265359), Xt)’.

Change mode once more to exact by using:

-105 [ALPHA][ALPHA][C][F][ENTER],

and evaluate the integral with:[~][EVAL].

The calculator simply repeats the symbolic integral replacing the dummy variable Xt with Xtt.
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Basically, what the calculatoris telling us is that it cannot produce a close-form expression for
c, for this function g(X). We will have to re-define the value of ¢, by setting up the integral

ourselves as follows:
 

2-X
X dX +TAax

1

2 px DZone X px DZone X

PERIOD PERIOD

 

On the stack, this integral will look like this:

“1/2*(J (0,1,X/EXP(i*2*n*r*X/PERIOD),X)+ | (0,1,X/EXP(i*2*n*m*X/ PERIOD), X)))’.

Making sure that you set your CAS mode back to Exact, press [—][EVAL], and give the calculator
about a minute, to produce the result:

“-(((EXP(i*n*m)-2)*EXP(2*i*n*m)+EXP(i*n*m)) / (2*n" 2*" 2*EXP(i*n*m) *EXP(2*i*n*n)))’.

This expression can be simplified further by using the fact that

EXP(2*i*n*n) = 1, and EXP(i*n*n) = (-1)".

These replacements can be performed within the equation writer by highlighting the
corresponding term, e.g., EXP(i*n*n), and typing [<][()] [1]1[+/-1[»1[y*][ALPHA][<][N]. The
result, after simplification, is:

 

{-n"-1)
Ree13

Ed ETHBDENESET   
Use this expression to define ¢, as the function:

‘c(n) = -((-1)"n-1)/(n*2*1"2*(-1)"n)’ [ENTER] [<][DEF].

To plot the Fourier series approximation, with n = 5 and c0 = 0.5, and the original function,
store the list of functions

{ ‘FReal(X,5,0.5)’ ‘g(X)’}

into variable EQ. Use the plot ranges (0,2) in x, and (0,1) in y. Remember that the calculator

will produce no activity for the first 20 or 30 seconds. Here is the comparison of the two
graphs with n = 5:

 

  

 

  
As you can see from the graph, the agreement between the two functions is excellent. The
figure below shows the comparison between g(X) and its finite Fourier series approximation for
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n=2adn=3. You can see that even n = 2 produces an excellent fitting of the original
function.

 
 

 

  

n=3

+

4] [¢i,)[TRACE]FChEDIT[CARCL]
 

To verify that the Fourier series approximation indeed generates a periodic function, plot the
function F(X,3,0.5) changing the x-range to (-2,4). The result is:

 

   
 

Example: Fourier series approximation for a square wave

This time we produce the Fourier series expansion for the square wave of period 4 defined by:

0, if0<x<l

gx)=11 ifl<x<3

0, if3<x<4

First, we enter the period T = 3 into variable PERIOD, and define the function g(X) by using:

2 [ENTER] [ALPHA][ALPHA][P][E][R][1][O][D] [STOP]
‘g(X) = IFTE((X>1) AND (X<3),1,0)’ [ENTER] [~][DEF]

Because g(X)is zero for X<1 and X>3, we can write our own expressions for ¢ and ¢, as follows:

(far)

In the calculator, this integral will be written as:

For co:

“1/PERIOD*(/ (0,1,1,X))’.

Press [][EVAL] to obtain ¢ = 1/2.

Fo2ar]
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On the stack, this integral will look like this:

“1/PERIOD*(J (0,1,EXP(-i*2*n*r*X/PERIOD),X))’.

Press [~][EVAL][—][] to obtain

Ch = ‘(-(I*EXP(3*i*n*n/2))+i*EXP(i*n*r /2))/(2*n*n *EXP(i*n*r /2)*EXP(3*i*n*n/2))’.

This expression could be simplified further if we can find a way to express

EXP(3-i-n-m/2) = cos(3-n-w/2)+i-sin(3-n-w/2) = 0+i-sin(3-n-w/2) = i-sin(3-n-1/2)

ne EXP(i-n-m/2) = = cos(n-m/2)+i-sin(n-w/2) = 0+i-sin(n-m/2) = i-sin(n-/2).

One possibility is to use the fact that 3-n-w/2 = n-m+ n-w/2, and write

sin(3-n-m/2) = sin(n-7n-7w/2) = sin(n-1)-cos(n-n/2)+cos(n-w)-sin(n-w/2) = 0-cos(n-w/2)+(-1)"-sin(n-n/2),

i.e.,

sin(3-n-m/2) = (-1)"sin(n-n/2),
and

EXP(3-i-n-m/2) = (-1)™i-sin(n-w/2).

Thus, the expression for c, is (somewhat) simplified to

Co = “(-((-1)"n*iI"2*SIN(n*n/2))+i" 2*SIN(n*r /2))/ (2*n*m *i*SIN(n*® /2)*(-1)"n*i*SIN(n*1/2))’ =

S22*SIN(N*2)*(-(-1)"n+1)/((-1)"n*i"2*2*n**SIN(n*1/2)" 2)’ =

“(CDn+1)/( (-1)"n *2*n*1*SIN(n*1/ 2)’,

. = 1-1)"
"2mm (=D)-sin(n-m/2)
 

The simplified result, within the equation writer, is given by:

 

[¢-1)"1)
2nm(-1"s1n33]

EIT CURSBIGEVALJFRCTO[TERFA   
Notice that, when n is even, both the numerator and denominator of this expression become

zero, i.e., we get an undetermined form. Also, we did not simplified the expression more by

trying to evaluate sin(n-n/2), since this expression takes the values 0, 1, 0, -1, 0, 1, 0, -1, etc.,

asn=0,1,2,3,4,5,6, 7, etc.
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Because the only values that are define correspond to odd numbers (besides, n = 0, of course),

we can re-write the general expression for ¢, by replacing n = 2m-1, withm=1, 2, 3, 4, ...,

etc. Because n or m are dummy variables in the Fourier series expansion, we can simply
replace n with ‘2*n-1’, so that the expression now reads:

[-13{ain-1)i»

LBi-i)2an-ia]
 

22-12-13

Use this expression to define ¢, for positive values of n as the function:

‘cp(n) = -((-1)"(2*n-1)-1)/(2*(2*n-1)"2*1*(-1)"(2*n-1)*SIN((2*n-1)*n/2)’ [ENTER] [~][DEF].

A similar expression needs to be defined for c, corresponding to negative values of n, i.e.,

‘en(n) = -((-1)"(2*n+1)-1)/(2*(2*n+1)"2**(-1)" (2*n+1)*SIN((2*n+1)*n/2)’ [ENTER] [+][DEF].

We will have to nodify the program that calculates the function FReal, by introducing cp(n)
and cn(n), and by replacing n with (2*n-1) and (-2*+1) in the complex EXP functions within the

program as shown below. Let's call the resulting program FOdd. The new program should
read:

<< >XkcO <<cORE 1 k FOR n ‘cp(n)’ EVAL ‘EXP(i*2**(2*n-1)*X/PERIOD)’ EVAL * RE

‘cn(-n)’ EVAL ‘EXP(-i*2*n*(-2*n+1)*X/PERIOD)’ EVAL * RE + + NEXT EVAL >> >>

To plot the Fourier series approximation, with n = 3 and c0 = 0.5, and the original function,

store the list of functions
{ ‘FOdd(X,3,0.5)" ‘g(X)’}

into variable EQ. Use the plot ranges (-0.5,4.5) in x, and (-0.5,1.5) in y. Remember that the

calculator will produce no activity for the first 20 or 30 seconds. Here is the comparison of
the two graphs with n = 3:
 

1.54¢

JL
-.5    

Notice that even for n = 3 the Fourier series approximation captures the general behavior of
the square wave. There is no way to hide the oscillatory behavior of the Fourier series, in
particular the small peaks near the sharp corners of the square wave. Such overshooting (or

undershooting) near sharp corners is known as the Gibss phenomenon, and is a very well known
feature of Fourier series approximations.
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The following figure shows the approximation to the square wave using n = 10 in the Fourier
series expansion. The fitting is much better than the previous example where only n = 3 was
used. Still, the Gibbs phenomenonis observable near the sharp corners of the square wave.

Am
 

    

Fourier series applications in differential equations

Example - Suppose we want to use the periodic square wave defined in the previous example
as the excitation of an undamped spring-mass system whose homogeneous equation is:

d?y/dx? + 0.25y = 0.

We can generate the excitation force by obtaining an approximation with n =3 out of the
Fourier series, FOdd(X,n,0.5) by using:

‘X’ [ENTER] 3 [ENTER] 0.5 [ENTER] [ FOdd ]X

The result (using Approx and Complex modes) is a function of X. We can use this result as the

first input to the function LDEC when used to obtain a solution to the system

d?y/dx? + 0.25y = SquareWave(X)

Where SquareWave(X) is the function currently in the stack. The second input line will be the

characteristic equation corresponding to the homogeneous ODE shown above, i.e.,

‘X"2+0.25’ [ENTER]

With these two lines of input available in the stack, obtain a solution to the non-homogeneous
ODE by using:

[<][CALC][DIFF][LDEC].

The result is a function of X involving integration constants CO and C1. Assuming that CO = 0.5
and C1 = -0.5, we can substitute these values in the expression in the stack by using:

‘CO = 0.5’[ENTER] [~][ALG][SUBST] ‘C1=-0.5" [ENTER] [SUBST] [~][EVAL].

Next, to define this solution as a function h(X), use:

‘h(X)’ [ENTER][»][~1[=] [<][DEF].

This definition produces the variable [ h ] in the soft-menu keys. The definition needs to be
modified by adding, at the very end of the program, the function RE, since we are interested

only in the real part of the complex result. Once this modification has been made, you can
proceed to produce a graph of the function.

Plot the function h(X) using a xrange of (0, 100) and a y-range of (-1,6). The result is the
following graph:
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Example 2 - Suppose that we use the triangular periodic function defined earlier as the
excitation to a damped spring-mass system whose homogeneous equation is given by:

d?y/dx? + 0.1-(dy/dX)+0.5+y = 0.

Recall that for the triangular periodic function, PERIOD = 2, c0 = 1/3, and

‘c(n) =-((-1)"n-1)/(n"2*"2*(-1)"n)’.

We can generate the excitation force by obtaining an approximation with n = 3 out of the
Fourier series, FReal(X,n,0.333333333) by using:

‘X" [ENTER] 3 [ENTER] 1[ENTER] [+] [ENTER] [ FReal ]

The result (using Approx and Complex modes) is a complicated function of X We can use this

result as the first input to the function LDEC when used to obtain a solution to the system

d?y/dX? + 0.1-(dy/dX)+0.5-y = TriangularWave(X)

where TriangularWave(X) is the function currently in the stack. The second input line will be
the characteristic equation corresponding to the homogeneous ODE shown above, i.e.,

‘X"2+0.1*X+0.5" [ENTER]

With these two lines of input available in the stack, obtain a solution to the non-homogeneous
ODE by using:

[<][CALC][DIFF][LDEC].

Given the complexity of the right-hand side of the ODE, it will take the calculator a couple of
minutes to solve this equation. The result is a function of X involving integration constants CO
and C1. Assuming that the system is at rest and at its equilibrium position at t = 0, then C0 = 0
and C1 = 0, we can substitute these values in the expression in the stack by using:

‘CO = 0’[ENTER] [~][ALG][SUBST] ‘C1= 0’ [ENTER] [SUBST] [r][EVAL].

This solution involves complex numbers. Once more, due to the complexity of the function, it
will take the

Next, to define this solution as a function h(X), use:

‘h(X)’ [ENTER][»][][=] [~][DEF].
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This definition produces the variable [ h ] in the soft-menu keys, taking about another minute
to finish. The definition needs to be modified by adding, at the very end of the program, the
function RE, since we are interested only in the real part of the complex result.

 

 

Note: Solution of ODEs using Fourier series expansions as driving functions may result in too
long a process for the HP 49 G, as illustrated below. Although the calculator has the ability to
solve the equation and produce graphics of the solution, the time involved in producing the
data for such plots may be more than you are willing to invest in plotting the solution. Cases
like this may call for the use of a computer.
 

The graphs of the function presented below were produced using the programs GETX, TPLOT,
and PPLOT in sub-directory PPORT (Phase PORTraits). It took about 30 minutes to generate

the matrix DAT with GETZ. This is due to the fact that the function h(t) involves a large
number of operations. Thus, if you have 20 minutes to check the results in your calculator,

proceed (at your own risk) as follows:

eo Copy function [ f ] into sub-directory PPORT

e Generate the matrix DAT using: [GETZ] ‘h(t)’ [¥v] 0 [¥] 20 [ENTER]. Wait for about 30
minutes.

e Press [~][EDAT][V¥] to see the contents of the matrix DAT. Press [ENTER] when done.

e Press [TPLOT] to get the plots x-vs-t, v-vs-t, and a-vs-t.

 

 

 

             
e Press [PPLOT] to get the phase portraits v-vs-x, a-vs-x, and a-vs-v.
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Solutions to some specific second-order equations

In this section we present and solve specific types of ordinary differential equations whose

solutions are defined in terms of some classical functions, e.g., Bessel’s functions, Hermite

polynomials, etc.

The Cauchy or Euler equation

An equation of the form
x2. (d%y/dx?) + ax (dy/dx) + by = 0,

where a and b are real constants, is known as the Cauchy or Euler equation. A solution to the

Cauchy equation can be found by assuming that

y(x) = x".

In the HP 49 G calculator, type the equation as:

‘x"2*d1d1y(x)+a*x*d1y(x)+b*y(x)=0" [ENTER]

Then, type and substitute the suggested solution:

‘y(x) = x"n’[ENTER] [—][ALG][SUBST]

The result is:

XN 2*(n*(x (n-1-1)*(n-1)))+a*x*(n*x" (n-1))+b*x"n =0

which simplifies to

‘n*(n-1)*x"n+a*n*x"n+b*x*n = 0’.

Dividing by xn, results in an auxiliary algebraic equation:

‘n*(n-1)+a*n+b = 0’,

or

n*+(a-1)-n+b=0.

e If the equation has two different roots, say ny and n,, then the general solution of this

equation is

y(x) = Kix "y+ Koox

e If b= (1-a)%/4, then the equation has a double root ny = n; = n = (1-a)/2, and the solution

turns out to be

y(x) = (Ki + K-ln x)x".
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Legendre’s equation
An equation of the form

(1-x2)-(d%y/dx?)-2:x- (dy/dx)+n- (n+1) -y = 0,

where n is a real number, is known as the Legendre’s differential equation. Any solution for
this equation is known as a Legendre’s function. When n is a nonnegative integer, the solutions

are called Legendre’s polynomials. Legendre’s polynomial of order n is given by

n-2m
 

P(x) = Sn" (2n—2m)!
me 2" -m(n—m)(n—2m)!

__(2n)! - (2n-12)! ym

2" (n!)? 2" An -1i(n-2)!

where M = n/2 or (n-1)/2, whichever is an integer.

Legendre’s polynomials are pre-programmed in the HP 49 G calculator and can be recalled by
using the function LEGENDRE given the order of the polynomial, n. The function LEGENDRE can
be obtained from the command catalog ([CAT]) or through the menu:
[<1 ][ARITH][POLY][NXT][NXT][LEGEN]. The first six Legendre polynomials are obtained as
follows:

0 [ENTER][ LEGEN], result: 1, i.e, Po(x) = 1.0.

1 [ENTER][ LEGEN], result: ‘X’, i.e, P{(x) = x.

2 [ENTER][ LEGEN], result: ‘(3*X"2-1)/2’, i.e, P,(x) = (3x2-1)/2

3 [ENTER][ LEGEN], result: ‘(5*X*3-3*X)/2’, i.e, P3(x) =(5x*-3x)/2

4 [ENTER][ LEGEN], result: ‘(35*X"4-30*X"2+3)/8’, i.e, P4(x) =(35x*-30x%+3)/8.

5 [ENTER][ LEGEN], result: ‘(63*X"5-70*X"3+15*X)/8’, i.e, Ps(x) =(63x>-70x3+15x)/8.

Plots of these five polynomials can be obtained by defining the functions:

‘PO(X) = 1’ [ENTER][+][DEF]
‘P1(X) = X’ [ENTER][ +] [DEF]
‘P2(X) = (3*X*2-1)/2’ [ENTER] [+ ][DEF]
‘P3(X) = (5*X"3-3*X)/2’ [ENTER][+][DEF]
‘P4(X) = (35*X"4-30*X"2+3)/8"’ [ENTER][ + ][DEF]
‘P5(X) = (63*X"5-70*X*3+15*X)/8’  [ENTER][+][DEF]

Store the list { ‘PO(X)’ ‘P1(X)’ ‘P2(X)’ ‘P3(X)’ ‘P4(X)’ ‘P5(X)’ }into variable EQ. Check that the

independent variable is X, and set your X-range to (-1,1) and your Y-range to (-1.1,1.1). The

resulting plotis:

ATY

2
=

-1. .

 

    =
The ODE (1-x%)-(d*y/dx?)-2x- (dy/dx)+[n- (n+1)-m%/(1-x?)] -y = 0,
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has for solution the function y(x) = P,"(x)= (1-x})™2.(d™Pn/dx™).

This function is referred to as an associated Legendre function.

Bessel’s equation

The ordinary differential equation

x2.(d%y/dx?) + x (dy/dx)+ (x2-v?) y = 0,

where the parameter v is a nonnegative real number, is known as Bessel’s differential
equation. Solutions to Bessel’s equation are given in terms of Bessel functions of the first

kind of order v:
 

J=x"3 =D" x7
SY plTv +m +1)

where v is not an integer, and the function Gamma I'(a) is defined as

Ma) = | e”1%7dL.

Gamma and di-gamma functions

The Gamma function was introduced in Chapter... in relation to continuous probability
distributions. It was shown in that Chapter that the Gamma function is related to the factorial

function for a = n integer as:

I'(n+1) =n!, or T (n) = (n-1)!.

While this relationship applies to integer values, in the HP 49 G calculator it has been
generalized to apply to any real number. Therefore, the Gamma function in the HP 49 G is
calculated by using the factorial function, which is available in the menu:

[<1 ][MTH][NXT][PROB].

Related to the Gamma function is the di-gamma function, defined as the derivative of the

y(z) =d[ln I'(z)]/dz=T"(z)/ T (2),

which can be calculated in the HP 49 G calculator by using the calculator function psi

(available through the command catalog [CAT]). For example, to calculate (2) use:

2 [ENTER][CAT][ALPHA][P] (... find Psi...)[OK].

The result is ‘Psi(2)’, or with [][>NUM], 0.422784885098.

If v =n, an integer, the Bessel functions of the first kindfor n = integer are defined by 
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00 m 2m

J(x) =x"yx
=27 ml(n + m)!

Regardless of whether we use n (non-integer) or n (integer) in the HP 49 G calculator, we can
define the Bessel functions of the first kind by using the following finite series:

 

JOk)=x">

  
 

Thus, we have control over the function’s order, n, and of the number of elements in the

series, k. Once you have typed this function, you can press [ENTER] to get it in the stack, and
use [~][DEF] to define the function. This will create the variable [ J ] in the soft-menu
keys. For example, to evaluate J3(0.1) using 5 terms in the series, use:

0.1 [ENTER] 3 [ENTER] 5 [ENTER] [ J 1].

The result is 2.08203157E-5.
If you want to obtain an expression for Jo(x) with, say, 5 terms in the series, use:

x’ [ENTER] O [ENTER] 5 [ENTER] [ J 1]

The result is

‘1-0.25*x"3+0.015625*x"4-4.3403777E-4*x"6+6.782168E-6*x"8-6.78168*x" 10’.

The following plot was obtained by using 10 terms in the series:

x’ [ENTER] O [ENTER] 10 [ENTER] [ J ]

You can define this expression as the function Jy(x), by using:

‘JO(x)’ [ENTER] [»] [~][=] [<][DEF].

Plot this function using:

   

 

   
     

HEE | [BEES PLOT HWINDON - FUNCTION SEES
Type: Function py H-view :[FE 9.
Ee: Jad) U=igy:-1. 1.5

Indep LoH: DQFault High:Defqult

Indep: 'R' _SiHult Connect Step: Default _Fixels
H-Tack:10. WY-Taick:1i0. Fixel=z

Tick £pacing units are pixels? Enter HiniHuH horizontal walue
[EDIT [w CHE]  |ARES®[ERASE| DREAM IEDIT]| [AUTO [ERASE] DRAN
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The result is:

 

For non-integer values v, the solution to the Bessel equation is given by

    

y(x) = Ki-Ju(x)+Ka-Jy(X).

For integer values, the functions Jn(x) and J-n(x) are linearly dependent, since

n(x) = (-1)"Jn(x),

therefore, we cannot use them to obtain a general function to the equation. Instead, we
introduce the Bessel functions of the second kind defined as
 

Yu(X) = [Jy(x) cos vit - J_y(x)]/sin vm,

for non-integer v, and for n integer, with n > 0, by

x" =D" (h +h ) )

F (0) = 20,00 (hS44

=

TwPen) om

Cod V T X 22 mlm + n)!

x"yleomzl):\ (n— m—J.x2

T ~ D2m=n

where vis the so-called Euler constant, defined by

y=EEr]= 0.57721566490...,
r—300 v

and h,, represents the harmonic series

h, etlob
2 3 m

For the case n = 0, the Bessel function of the second kind is defined as

2 n"'.h ”

Fy) ==in++Xo |2m
m=0 2

With these definitions, a general solution of Bessel’s equation for all values of v is given by

(x) = Ki-Ju(x)+Ky-Yy(x).
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In some instances, it is necessary to provide complex solutions to Bessel’s equations by defining

the Bessel functions of the third kind of order v as

Hal"(x) = Jy(x)+i-Yy(x), and HaP(x) = Jy (x)=i-Yy(x),

These functions are also known as the first and second Hankel functions of order v.

In some applications you may also have to utilize the so-called modified Bessel functions of 

the first kind of order v defined as | (x)= i'-J,(i-x), where i is the unit imaginary number.
These functions are solutions to the differential equation
 

x2(d?y/dx?) + x (dy/dx)- (x*+v?) yy = 0.

The modified Bessel functions of the second kind,

K,(x) = (/2)-[l.y (x)=1, (X)]/sin vm,

are also solutions of this ODE.

You can implement functions representing Bessel’s functions in the HP 49 G calculator in a
similar manner to that used to define Bessel’s functions of the first kind, but keeping in mind
that the infinite series in the calculator need to be translated into a finite series.

Chebyshev or Tchebycheff polynomials

The functions

Ta(x) = cos(n-cos ' x), and U,(x) = sin[(n+1) cosx]/(1-x%)"'2,

n=0, 1, ... are called Chebyshev or Tchebycheff polynomials of the first and second kind,

respectively. The polynomials Tn(x) are solutions of the differential equation

(1-x%)-(d’y/dx?) — x- (dy/dx) + n*y = 0.

In the HP 49 G calculator the function TCHEBYCHEFF generates the Chebyshev or Tchebycheff
polynomial of the first kind of order n, given a value of n > 0. If the integer n is negative (n <
0), the function TCHEBYCHEFF generates a Tchebycheff polynomial of the second kind of order
n whose definition is

Un(x) = sin(n-arccos(x))/sin(arccos(x)).

You can access the function TCHEBYCHEFF through the command catalog ([CAT]).
 

 

The first four Chebyshev or Tchebycheff polynomials of the first and second kind are obtained
as follows:

0 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: 1, i.e, To(x) = 1.0.

-0 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: 1, i.e, Ui(x) = 1.0.

1 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: ‘X’, i.e, T(x) = Xx.

-1 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: 1, i.e, Us(x) =1.0.

2 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: ‘2*X"2-1, i.e, T2(x) =2x2-1.

-2 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: ‘2*X’, i.e, U(x) =2x.

3 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: ‘4*X"3-3*X’, i.e, T3(x) = 4x3-3x.

-3 [ENTER] [CAT] (TCHEBYCHEFF) [OK], result: ‘4*X"2-1’, i.e, Us(x) =24x2%-1.
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Laguerre’s equation

Laguerre’s equation is the second-order, linear ODE of the form

x-(d%y/dx?) +(1-x)- (dy/dx) + n-y = 0.

Laguerre polynomials, defined as

el d'(x" ce")

Ly(x)=1 L, (x)=0(%) (x) ” — ,n=12,...

are solutions to Laguerre’s equation. Laguerre’s polynomials can also be calculated with:

Ln-3EC“(>JerometbHe
n!

The term

n _ n! —C

ny

is the m-th coefficient of the binomial expansion (x+y)". It also represents the number of
combinations of n elements taken m at a time. This function is available in the HP 49 G
calculator by using:

[<1 ][MTH][NXT][PROB][COMB]

You can define the following function to calculate Laguerre’s polynomials:

 

L(x,m)=SerCyAPol

   
When done typing it in the equation writer press [ENTER] and [«][DEF]. This will create the

variable
[ L ]. To generate the first four Laguerre polynomials use:

‘x’ [SPC] O [ENTER][ L 1], result: 1, i.e, Lo(x) = 1.0.
x’ [SPC] 1 [ENTER][ L 1], result: ‘1-x’, i.e, L(x) = 1-x.
x’ [SPC] 2 [ENTER][ L 1], result: ‘1-2*x+5*x"2’, i.e, L(x) =1
2x+5x2.

x’ [SPC] 3 [ENTER][ L 1], result: ‘“1-3x+1.5x"2-0.1666*x"3’, i.e, L 3(x) =1-3x+(3/2)x%-
3

x’/6.
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Weber’s equation and Hermite polynomials

Weber’s equation is defined as

d’y/dx*+(n+1/2-x*/4)y = 0,

Forn=0, 1, 2, ... A particular solution of this equation is given by the function

y(x) = exp(-x2/4)H(x/V2),

where the function H'(x) is the Hermite polynomial:

Hyf=1, H,*@)=(Den
(e™ ), n=12,..

In the HP 49 G calculator, the function HERMITE, available through the menu

[<][ARITH][POLY][NXT][HERMI],

as argument an integer number, n, and returns the Hermite polynomial of n-th degree. For
example, the first four Hermite polynomials are obtained by using:

0 [ENTER][HERMI], result: 1, i.e., Ho= 1.
1 [ENTER][HERMI], result: ’2*X’, i.e., Hy = 2x.
2 [ENTER][HERMI], result: '4*X"2-2’, i.e., Hy = 4x%-2.
3 [ENTER][HERMI], result: '8*X"3-12*X’, i.e., Hy = 8x3-12x.

Orthogonal functions and series expansions

The concept of orthogonal functions apply to the case of functions of an independent variable x

often defined in terms of an index n over a certain interval, for example, g(x) = sin(nnx) on
the interval (0,1), with n = 1, 2, 3, ... The functions g,(x) and gn(x) are said to be orthogonal

on an interval a < x < b, if

b

(8,.8,)=]€,(x)-g, (x) dx =0,
for n= m.

If n =m, then the resulting integral represents the square of a quantity, ||g.||, known as the

2, I = (8,8) =|Tg, (0) dx #0.
norm of g(x):
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Example 1-- For the functions g(x) = sin(nnx) on the interval (0,1), you can check in the

calculator that the integral
 

i
[’sINC)S TNCmemrex) dix

EIT] CUR:[ETGEVAL[FACTOTERFA]   
evaluates to

 

(m-n)}SIN((m+n))-(m+n)STH((m-n))

a

 

   

This latter expression is equal to zero for n #m (n and m integers), and it is not defined if m =

n. For the case m = n, we can calculate the value of the integral by using:

 

1

|: I NGonme dx+4

  08 THEITOETNTROEET
 

which evaluates to

 

_SIN(2nm-2nm
dn

EDIT [CURSEIGEVAL [FACTO[TERFA   
For n integer, sin(2nm) = 0, and the result simplifies to %a.

If a function f(x) can be written as a series expansion of orthogonal functions g.(x), i.e.,

f(x)=3,C,g(x),
n=l

over the interval a < x < b, then we can use the property of orthogonality to obtain the
coefficients C, of the series as follows:

e Multiply the function by gn(x), i.e.,

f(x) gn (X) = Y.C,g,(x) “gw (X).
n=l
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e Integrate the resulting expression over the interval a < x <b, i.e.,

[08,00de=YC,[g,00 8,dx
n=l

Because all integrals in the summation in the right-hand side of the expression above are zero, except

for m = n, the expression simplifies to:

h b

[ 7x)-g,()-dx=C,[ lg,ar

e The coefficient Cn is calculated from the expression above by replacing m with n, i.e.,

Creamer(re

Cera lel
 

Example 2 -- For the orthogonal functions g,(x) = sin(nnx), O<x<1, the corresponding series is a
Fourier sine series, i.e.,

f(0)=3.C,sin nev)
n=l

and,

 
[[ f@) sinnmo) dx [ £(x) sin( no) - dx

[sin *(nmx) dx 1/2
n — 2 f(x) -sin( n7x) - dx.

Orthonormal functions

A set of normal functions ¢,(x) on an interval a < x < b is said to be orthonormalif

0, whenm #n

(0:00) [00a0=1, whenm =n

Thus, the norm of an orthonormal function is | [gn] | = 1.0.

Given a set of orthogonal functions g,(x) on an interval a<x<b, you can generate the
corresponding orthonormal set as
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(x) = gn(X)/ 1 18nl I.

Example 1 -- Determine the orthonormal functions corresponding to the set of orthogonal
functions

gn(X) = cos(nmx),

on the interval 0 < x < 1.

First, to verify that the set of functions given is orthogonal, evaluate the integral

 

1
|costmcostumodx

 EDIT CURS EVAL [FACTOJTENPA   
The result is

 

(m—r)S IM((m+r)w1+(m+n)S IN((m-n)m) 

(20f-202)n

   
For n and m integer, sin [(m+n)n] = sin[(m-n) ni] = 0, therefore, (g.,8m) = 0. Thus, the functions

gn(x) are orthogonal.

The norm of the function g,(x) is calculated as

! 2
COS(nemese) dx

a

|EOIT |CuRZ[BIG a]EVAL [FACTO[TENFA]

 

which evaluates to

 

SIN(2nw)+2nem
dn

  EDIT CURSBIG EVAL [FACTO[TERFA 

For n = integer, sin(2nx) = 0, thus ||g,]| 12 = 1%, and | len|| = 1/N2. The orthonormal functions

will be defined, therefore, as

h(x) = gn(x)/118nl | = N2-cos(nmx).
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Orthogonality with respect to a weight function

Some functions are orthogonal with respect to a weight function p(x), so that
 

b

[p(x g,(x)-g,(x)-dx = 0.

In this case, the norm squared of g,(x) is given by

lg, IP = [p(x)-[g,(dx #0.

If a function f(x) can be expanded in terms of the functions g,(x), i.e.,

f(x) = >.C,g,(0),

n=l

the coefficients of the series are given, in this case, by

_ [pf)g(x) dx Co

[[p0-Lg,on -ax lal
 

hn [p01)g,(x) dx

Example 1 -- The Chebyshev or Tchebycheff polynomials Ti(x) = x, T(x) = 2x*-1, on the
interval -1 < x < 1, are orthogonal with respect to the weight function p(x) = (1-x?)"/2, which
can be demonstrated by calculating the integral

-1
EDIT CURSEXGEVAL[FACTOTERF

 

Highlighting the integral in the equation writer and press [EVAL] to get the result ‘0’.

Sturm-Liouville problem

Although the details of the proof are not included in this book, you can verify that Bessel
functions, Laguerre polynomials, Hermite polynomials, and Chebyshev or Tchebycheff
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polynomials are all sets of orthogonal functions. In fact, all of these functions can be obtained
from solving the so-called Sturm-Liouville problem defined by the differential equation

d dy _rs[gx)+A- p(x)]y=0,
>

to be solved in the interval a < x < b, and subject to the boundary conditions

ary(a) + Bry’(@) = 0,
and

azy(b) + By’ (b) = 0.

By selecting the values of the functions r(x), p(x), and q(x), as well as the constants oy, 0, Br,

and B,, we can generate, out of the general ODE shown above, the Bessel equation, Laguerre’s

equation, etc. The solutions to the Sturm-Liouville ODE are given in terms of different values

of the parameter A, known as the eigenvalues of the problem, while the solutions themselves
are known as the eigenfunctions. Examples for obtaining eigenvalues and eigenfunctions are
presented when discussing partial differential equations.
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Numerical solution to ordinary differential equations

To solve differential equations numerically we can replace the derivatives in the equation with

finite difference approximations on a discretized domain. This results in a number of algebraic
equations that can be solved one at a time (explicit methods) or simultaneously (implicit
methods) to obtain values of the dependent function y; corresponding to values of the
independent function x; in the discretized domain.

Finite differences

Finite differences is a technique by which derivatives of functions are approximated by

function differences between a given value of the independent variable, say x, and a small
increment (xo+h). For example, from the definition of derivative,

df/dx = lim no (f(x+h)-f(x))/h,

we can approximate the value of df/dx by using the finite difference approximation

(f(x+h)-f(x))/h

with a small value of h. The following exercise shows approximations to the derivative of the
function

f(x) = exp(-x) sin (x2/2),

at x = 2, using finite differences:

‘f(x) = EXP(-x)*SIN(x"2/2)’ [ENTER] [~][DEF] Define function f(x)
‘df(x,h) = (f(x+h)-f(x))/h’ [ENTER] [~][DEF] Define derivative
approximation

Estimates of the derivative for different values of h are calculated as follows:

2 [SPC] 0.1 [ENTER][ df ][~]INUM], Result: -0.244160077287
2 [SPC] 0.01 [ENTER][ df ][~][NUM], Result: -0.2366848292
2 [SPC] 0.001 [ENTER][ df ][~][NUM], Result: -0.235798687
2 [SPC] 0.0001 [ENTER][ df ][~][NUM], Result: -0.23570874
2 [SPC] 0.00001 [ENTER][ df ][~][NUM], Result: -0.2356997
2 [SPC] 0.000001 [ENTER][ df ][~][NUM], Result: -0.235699

The actual value of the derivative can be calculated by using:

‘f(x)’ [ENTER] ‘x’ [ENTER] [~][0] ‘x=2" [~][ALG][SUBST] [~][NUM], Result: -0.23569874791.

This exercise illustrates the fact that, as h->0, the value of the finite difference

approximation, (f(x+h)-f(x))/h, approaches that of the derivative, df/dx, at the point of

interest.

250 © 2000 Gilberto E. Urroz

All rights reserved



Finite difference formulas based on Taylor series expansions

In chapter 13 we defined a Taylor series expansion of the function f(x) about the point x = x, as

oo (n)

f(x)=SL)(em

n=0

Where fV(xg) = (d"f/dx")Ix=x0, and f%(xo) = (Xo). If we let x = x0+h, then x-x0 = h, and the
series can be written as

oo (n) 1 "

fx, +h) = = fa)+LgyLC). h + Oh),
n=)

Where the expression 0(h?) represents the remaining terms of the series and indicates that the

leading term is of order h®. Because h is a small quantity, we can write 1 > h, and
h>h?>h*>h*>... Therefore, the remaining of the series represented by O(h?) provides the order
of the error incurred in neglecting this part of the series expansion when calculating f(xg+h).

From the Taylor series expansion shown above we can obtain an expression for the derivative
f’ (xo) as

f(xy) = ht Oh?) =: fo th) = f(x) J"a + O(h).fxg +h)— f(x)

h h

In practical applications of finite differences, we will replace the first-order derivative df/dx at
X = Xg, with the expression (f(x0+h)-f(x0))/h, selecting an appropriate value for h, and

indicating that the error introduced in the calculation is of order h, i.e., error = O(h).

Forward, backward and centered finite difference approximation to
the first derivative

The approximation

df/dx = (f(xo+h)-f(xg))/h

is called a forward difference formula because the derivative is based on the value x = xg and

it involves the function f(x) evaluated at x = x+h, i.e., at a point located forward from xg by an

increment h.

 

If we include the values of f(x) at x = xg - h, and x = xp, the approximation is written as

df/dx = (f(xg)-f(x0-h))/h

and is called a backward differenceformula. The order of the error is still O(h). 

A centered difference formula for df/dx will include the points (xg-h,f(Xg-h)) and (xg+h,f(xo+h)).

To find the expression for the formula as well as the order of the error we use the Taylor series
expansion of f(x) once more. First we write the equation corresponding to a forward
expansion:

f(xo+h) = f(Xo)+f’ (Xo)-h+1/2-f” (x0)-h?+1/6:F3 (xo) -h3 + O(h*).
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Next, we write the equation for a backward expansion:

f(xo-h) = f(Xo)-f’ (Xo)-h+1/2:”(x0)-h2-1/6-f3)(xg) -h® + O(h?).

Subtracting these two equations results in

f(xo+h)- f(Xo-h) = 2-f’ (xo)-h+1/3-f3)(x0) -h3+0O(h°).

Notice that the even terms in h, i.e., h?, h* ..., vanish. Therefore, the order of the remaining

terms in this last expression is O(h®). Solving for f’(xo) from the last result produces the
following centered difference formula for the first derivative:

af Sx +h) f(x, —h) Tay, 2 4LERfw) +OY),

or,

df_ f(x+h) = f(x, = h) +O0(h*).
dx 2-h (Rr)

This result indicates that the centered difference formula has an error of the order O(h?), while
the forward and backward difference formulas had an error of the order O(h). Since h’<h, the
error introduced in using the centered difference formula to approximate a first derivative will
be smaller than if the forward or backward difference formulas are used.

Forward, backward and centered finite difference approximation to
the second derivative

To obtain a centered finite difference formula for the second derivative, we'll start by using

the equations for the forward and backward Taylor series expansions from the previous section
but including terms up to O(h’), i.e.,

f(xo+h) = f(xo)+f’ (Xo)-h+1/2:f”(xo)-h2+1/6-f3)(xo) -h3 + 1/24-f9(xo) -h* + O(h?).
and

f(Xo-h) = f(Xo)-f’(X0)-h+1/2:f”(x0)-h2=1/6-F3(xg) -h® + 1/24-f9(xo) -h* — O(h*).

Next, add the two equations and solve for f” (xg):

d*f/dx? = [f(xo+h)-2-f(Xo)+f(Xo-h)]/h% + O(h?).

Forward and backward finite difference formulas for the second derivatives are given,

respectively, by

d*f/dx? = [f(xo+2-h)=2-f(Xo+h)+f(x0)]/h% + O(h),
and

d*f/dx? = [f(xo) —=2-F(Xo-h)+f(Xo-2-h)]/h? + O(h).
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Solution of a first-order ODE using finite differences - Euler forward
method

Consider the ordinary differential equation,

dy/dx = g(x,y),
subject to the boundary condition,

y(x1) = y1.

To solve this differential equation numerically, we need to use one of the formulas for finite
differences presented earlier. Suppose that we use the forward difference approximation for
dy/dx;, i.e.,

dy/dx = (y(x+h)-y(x))/h.

Then, the differential equation is transformed into the following difference equation:

(y(x+h)-y(x))/h = g(x,y),
from which,

y(x+h) = y(x)+h-g(x,y).

This result is known as Euler's forward method for numerical solution of first-order ODEs.

Since we know the boundary condition (x4,y;) we can start by solving for y at x, = x;+h, then

we solve for y at x3 = x;+h, and so on. In this way, we generate a series of points (x1, v1), (Xz,

¥2), --, (Xn, Yn), Which will represent the numerical solution to the original ODE. The upper

limit of the independent variable x, is either given or selected arbitrarily during the solution.

The term "discretizing the domain of the independent variable" refers to obtaining a series of

values of the independent variable, namely, x, i =1,2;,..., n, that will be used in the solution.

Suppose that the range of the independent variable (a,b) is known, and that we use a constant
value h = Ax to divide the range into n equal intervals. By making x; = a, and x, = b, then we
find that the values of x, i = 2,3, ... n, are given by

Xi = Xq1 +(i-1)-Ax = a+(i-1)-Ax,

and that fori = n, x, = x; +(n-1)-Ax. This latter result can be used to find n given Ax,

n= (X,-X1)/ Ax + 1 = (b-a)/ Ax + 1,

or, to find Ax given n,

AX = (Xp-X1)/(n-1) = (b-a)/(n-1).

The recurrent equation for solving for y is given by

Yis1 = Yi t AX-g(Xi, Yi),

fori = 1,2, ..., nt. Because the method solves y.; = f(xi,Y;, Ax), i.e., one value of the

dependent variable at a time, the method is said to be an explicit method.
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Example 1 - Given the ODE,

dy/dx = y-sin(x),

and the boundary condition,

y(0) =1,

use the Euler method to obtain a numerical solution to this ODE in the interval 0 < x < 2.5. Use

Ax = 0.25, 0.1, and 0.05.

Exact solution. The exact solution can be obtained by using the HP 49 G’s DESOL function.
Enter the differential equation and the function to solve for as shown in the screen below:

 

RAD RYZ HEX R= ‘'x*
{HONE
5:

Z
21 'ax(y(x)I=u*SIN(x)'
1: "yx!

FCT NTAIfT   
Press [DESOL] to obtain the result:

{ ‘y(x)=-(y*COS(x))+C0’ }.

Press [~][EVAL] to remove the equation from the list. You notice that the solution involves the
term y(x) as well as the term y. We need to replace y(x) with y, and then solve for y, as
follows:

‘y(x) =y’ [ENTER] [~][ALG][SUBST] ‘y’ [ENTER] [«][S.SLV][ISOL]

The result is ‘y=C0/(COS(x)+ 1)’.

To determine the value of CO, let’s first press [ENTER] to keep an additional copy of this result,
then use the following entries:

‘x =0" [ENTER] [~][ALG][SUBST] Replace x = 0
‘y=1" [ENTER][SUBST] Replace y = 1
‘co’ [ENTER] [«][S.SLV][ISOL] [~][EVAL] Solve for CO

Next, the solution is obtained by using: [~][ALG][SUBST]. The final result is

‘y = 2/(COS(x)+1)’.

To define this expression as a function, use:

‘y = f(x)’ [ENTER] [~][ALG][SUBST] [«][DEF].

To see a graph of the solution set up your plot screens to look like this:
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 2 SPLOT SETUR SE| RRPLOT WINDOW - FUNCTION SESE
TypR:Functaon H=Yaigu:0. 2.5
Eg: F(X) U-igu:-1. 11.

Indep Lou: High:DeFault
Step: Default _Faxelsz

   

Indep: 'H’ FiHult Connect
H-Taick:10. W¥-Tick:10. «Faixels

Flot Functions fiHultaneouszly? Enter HiniHuH aindep var uglug

(EDIT CHK] [RREs|ERASE[DRAW EDIT] [|AUTO [ERASE] DRAM     
The graph of the function is the following:

 

    
Numerical solution.

For the numerical solution we can create the following program

<< > a b Dx y0 << ‘(b-a)/Dx+1’ EVAL = n << 1 n FOR i ‘a+ (i-1)*Dx’ EVAL NEXT n

>ARRY DUP =» x << y0 DUP DUP 1 ‘n-1’' EVAL FOR i ‘'‘x(i)’ EVAL SWAP g Dx

* + DUP DUP NEXT n —>ARRY 2 COL~> STOX “Solution ready” MSGBOX >> >>

>>

Save it under the name NUMO1 (NUMerical solution to ODEs - program 1).

We also need to define the function

‘g(x,y) = y*SIN(x)’ [ENTER] [«+][DEF].

To run the program type the values of a, b, Dx, and y(a) = y0, then press [NUMO1]:

0 [ENTER] 2.5 [ENTER] 0.25 [ENTER] 1 [ENTER] [NUMO1]

When the message Solution ready shows up in the screen, the variable SDAT, containing values
of xi and yi in columns 1 and 2, respectively, will be ready for further operations. For
example, you may want to plot the scatterplot resulting from the numerical solution and
compare it with the plotting of the function f(x) = 2/(cos(x)+1), which represents the exact
solution to the ODE. This comparison is shown in the figure below.
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The dots represent the numerical solution. Notice that the agreement is excellent for small
values of x but the discrepancies between the numerical and exact solutions increase with the
value of x. Since we use a finite difference formula with order O(h), numerical errors
accumulate at a relatively high rate, which results in the discrepancies shown in the figure.

The reader can try the solution of the ODE for other values of Dx, namely 0.1 and 0.05, using

NUMODET1.

Finite difference formulas using indexed variables

In the presentation of the Euler forward method, above, we showed how you can get, from the

general formula for the first derivative,

dy/dx = [y(x+h)-y(x)]/h,

the recurrence formula for the explicit solution, namely,

Yie1 = Yi + AX-8(Xi, Vi),

fori=1,2;,..., n-1. This suggest re-writing the formula for the derivative as,

dy/dx = (yi.1-Yi)/ Ax + O(AX).

Using this sub-index notation, we can summarize the forward, centered, and backward

approximations for the first and second derivatives as shown below:

First Derivative

FORWARD: dy/dx = (yis1-Yi)/Ax+O(AX).

CENTERED: dy/dx = (Yie1-Yi1)/ (2-Ax)+O(AX?).

BACKWARD: dy/dx = (yi~Yi.1)/Ax+O (AX).

Second Derivative

FORWARD: d?y/dx? = (Yi.2=2-Yi.1+Yi)/ (AX?)+O (AX).

CENTERED: d?y/dx? = (yi1=2-yi+yi1)/ (AX?) +O(AX).

BACKWARD: d?y/dx? = (yi—2-yi1+Yi2)/ (AX?)+O(AX).

Solution of a first-order ODE using finite differences - an implicit
method

Consider again the ordinary differential equation, dy/dx = g(x,y), subject to the boundary

condition, y(x{) = y;. This time, however, we use the centered difference approximation for
dy/dx, i.e.

dy/dx = (y(x+h)-y(x-h))/(2*h).

With this approximation the ODE becomes,

(y(x+h)-y(x-h))/(2*h) = g(x,y).
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In terms of sub-indexed variables, this latter equation can be written as:

Yi1+2-AX-8(Xi,¥i)-Yie1 = 0, (1=2,3, ...,n-1)

where the substitutions y(x) = y;,y(x+h) = yi.1,y(Xx-h) = yi.1, and h = Ax, have been used.

If the function g(x,y) is linear in y, then the equations described above consist of a set of (n-2)

equations. For example, if n = 5, we have 3 equations:

y1+2:AX -g(X2,Y2)-y3 = 0

Y2+2-AX 8(X3,Y3)-Ya = 0

Y3+2-AX -g(X4,Ya)-y5 = 0

Since y; is known (it is the initial condition), there are still 4 unknowns, vy, ys, ys, and ys. We

need to find a fourth equation to obtain a solution. We could use, for example, the forward

difference equation applied toi=1, i.e.,

(Y2-y1)/Ax = g(x1,¥1),
or

Y2-AX -8(X1,Y1)-y1= 0.

The values of xj, and n (or Ax), can be obtained as in the Euler forward (explicit) solution.

Example 1 -- Solve the ODE

dy/dx = -y/x,

with initial conditions y(1) = 1, in the interval 1 < x < 3.5. Use Dx = 0.25.

Exact solution: To obtain an exact solution use:

‘d1y(x)=-y(x)/x’ [ENTER] ‘y(x)’ [ENTER] [<][CALC][DIFF][DESOL]

The result is { ‘y(x) = CO*(1/x)’ }. Use [~][EVAL][ENTER] to make two copies of the expression.

To obtain CO use:

‘x = 1’ [ENTER] [~][ALG][SUBST] ‘y(1) = 1” [SUBST] ‘CO’ [][S.SLV][ISOL]

The result is ‘CO = 1’. Press [~][ALG][SUBST] [~][EVAL] to obtain the exact solution of the
ODE:

‘y(x) =1/x".

Numerical solution:

Using a centered difference formula for dy/dx,i.e.,

dy/dx = (Yis1—Yi1)/(2-AX),

into the ODE, we get (yi.1—Yi-1)/(2-AX) = -yi/X;, which results in the (n-2) implicit equations:

—XiYi1+2-AXYi+Xiyi1 = 0, (1 = 2, 3, ..., n-1).
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We already know that

yr =1

(initial condition), thus we have (n-1) unknowns. We still need to come up with an additional
equation, which could be obtained by using a forward difference formula fori =1, i.e.,

dy/dx|x-1 = (Y2-¥1)/ AX = -y1/X4,
or

(-X1+AX)-y1+X1-y2 = 0.

These equations can be written in the form of matrices by using

1 0 0 0 01x 1

-x, +Ax x 0 0 (TR 0

— Xx, 2-Ax x 0 01»! |O

0 —x, 2-Ax x, ollr,| [0
: ; . : 0

0 0 0 0 --- x 1% 0
n <n

For the numerical solution we can create the following program

<< 2 a b Dx yl << ‘(b-a)/Dx+1’ EVAL = n << 1 n FOR i ‘a+(i-1)*Dx’ EVAL NEXT n

DARRY 2 x << {nn} 0 CON 11 PUT {nn} O CON {1 1} 1 PUT {2 1} ‘-a+Dx’ EVAL
PUT {2 2} 'x(2)’ EVAL PUT 2 ‘'n-1’ FOR i {‘i+1’ ‘i-1’} ‘-x(i)’ EVAL PUT {‘i+1’
*i+1’} ‘x(i)’ EVAL PUT {‘'i+1’ i} ‘'2*Dx’ EVAL PUT NEXT / 2 COL->  STOX
“Solution ready” MSGBOX >> >> >> >>

Save it under the name NUMO2 (NUMerical solution to ODEs - program 2).

To run the program type the values of a, b, Dx, and y(a) = y1, then press [NUMO2]:

1 [ENTER] 3.5 [ENTER] 0.25 [ENTER] 1 [ENTER] [NUMO2]

The following plot compares the exact solution with the numerical solution. As you can see the

agreement is acceptable, however, it is obvious that the error increases with x, producing a

certain oscillation of the numerical solution about the exact solution.
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Explicit versus implicit methods

The idea behind the explicit method is to be able to obtain values such as

Via = f(xi, yi), Vis2 = f(Xi,X i21,Y 1,Y i1), etc.

In other words, your solution proceeds by solving explicitly for a new unknown value in the

solution array, given all previous values in the array. On the other hand, implicit methods
imply the simultaneous solution of n linear algebraic equations that provide, at once, the

elements of the solution array. With this distinction in mind between explicit and implicit
methods, we outline explicit and implicit solutions for second-order, linear ODEs.

Outline of explicit solution for a second-order ODE

For example, to solve the ODE
d’y/dx*+y = 0,

in the x-interval (0,20) subject to y(0) = 1, dy/dx; = 1 at y = 0. Use Ax = 0.1.

First, we discretize the differential equation using the finite difference approximation

d’y/dx? = (Yie2-2 yin +yi)/ (AXP) ,

which results in

(Vie2-2Yie1 +i) / (AX) +y; = 0.

An explicit solution can be obtained from the recurrence equation:

Vier = 2¥ir-(1+8X%)y;, i=1,2, ..., 02;

This equation is based on the two previous values of y;, therefore, to get started we need the
values y = y1, and y = y,. The value y, is provided in the initial condition, y(0) = 1, i.e.,

yr = 1.

The value of y, can be obtained from the second initial condition, dy/dx = 1, by replacing the
derivative with the finite difference approximation:

dy/dx = (y2 - y1)/ Ax,
which results in

(Y2-y1)/ Ax =1,
or

y2 = y+ AX.

The x-domain is discretized in a similar fashion as in the previous examples for first derivatives,
i.e., by making x; = a, and x, = b, and computing the values of x;, i = 2,3, ... n, with

Xj = Xq1 +(i-1)-Ax = a+(i-1)-Ax,

where,

n = (Xp-X1)/Ax+1 = (b-a)/Ax+1.
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Outline of the implicit solution for a second-order ODE

We use the same problem from the previous section: solve the ODE

d’y/dx*+y = 0,

in the x-interval (0,20) subject to y(0) = 1, dy/dx; = 1 aty = 0. Use Ax = 0.1.

We discretize the differential equation using the finite difference approximation

d?y/dx? = (yie2-2Yin +yi)/ (AXY)
which results in

(Vie1-2Yi+¥i1) / (AX)+; = 0

From this result we get the following implicit equations:

Yi-t-(2-AX?)yi+yie1 = 0,

for i =2,3;, ..., n1. There are a total of (n-2) equations. Since we have n unknowns, i.e.,

Y1,¥2, ---,¥n, We need two more equations to solve a system of linear equations. The remaining
equations are provided by the two initial conditions:

From the initial condition, y(0) = 1, we can write yy = 1. For the second initial condition,

dy/dx = 1, at x =0, we will use a forward difference, i.e.,

dy/dx = (yz - y1)/ AX,
or

Y2 - y1 = AX.

The x-domain is discretized in a similar fashion as in the previous examples.

Numerical and graphical ODE solutions using the HP
49 G’s own features

Through the use of the numerical solver ([~][NUM.SLV]), you can access an input form that lets
you solve first-order, linear ordinary differential equations. The use of this feature is
presented using the following example. The method used in the solution is a fourth-order

Runge-Kutta algorithm.

Example 1 -- Suppose we want to solve the differential equation,

dv/dt = -1.5v'’2,

withv =4 at t=0. We are asked to find v for t = 2.

First, create the expression defining the derivative and store it into variable EQ:

[~10" 1110 10510+/- 10x] [VX][ ALPHA][1] [V][ENTER]
[10 ITALPHA][ ALPHA][E][Q][ ALPHA][STO]

Then, enter the NUMERICAL SOLVER environment:
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[=]INUM.SLV][Y][OK][¥][ ALPHA][+][T][OK][0][OK][2][OK][ ALPHA][+<][V][OK][4][OK]

The SOLVE screen should look like this:

SOLVE Y'(T)=F(T.V)  

INDEP: t INIT: @ FINAL: 2
SOLN: yu INIT: 4 rina
ToL: BE61 ster: Df It  _sTIFF

PRESS SOLVE FOR FINAL SOLN VALUE
Epil][INIT+[SOLVE]

To solve, press: [SOLVE](wait)[EDIT]. The result is 0.2499 = 0.25. Press [OK].

Solution presented as a table of values

Suppose we wanted to produce a table of values of v, for t = 0.00, 0.25, ..., 2.00, we will

proceed as follows:

 

First, prepare a table to write down your results:

t

0.00

0.25

 

2.00

Next, within the SOLVE environment, change the final value of the independent variable to
0.25, use:

[A1[-1[2]1[5][OK] [»]1[»] [SOLVE](wait)[EDIT] Solves for v at t = 0.25, v = 3.285.
Write down values of x and x’ in the table.

[OK][INIT+][A][.1[51[OK][»][»][SOLVE](wait)[EDIT] Change initial value of t to 0.25, and final
value of t to 0.5, solve again for v(0.5) =
2.640.

[OK][INIT+][A][.1[7]1[5]1[OK][»][»][SOLVE](wait)[EDIT] Change initial value of t to 0.5, and final
value of t to 0.75, solve again for v(0.75) =
2.066.

[OK][INIT+][a][1]1[OK][»][»] [SOLVE](wait)[EDIT] Change initial value of t to 0.75, and final
value of t to 1, solve again for v(1) =

1.562

Repeat for t = 1.25, 1.50, 1.75, 2.00. To finish, press [OK], [ON]. The different solutions will

be shown in the stack, with the latest result in level 1.

The final results look as follows:
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Graphical solution to a differential equation

When we can not obtain a closed-form solution for the integral, we can always plot the integral

by selecting Diff Eq in the TYPE field of the PLOT environment as follows: suppose that we
want to plot the position x(t) for a velocity function

v(t) = exp(-t’),

with x = 0 at t = 0. We know there is no closed-form expression for the integral, however, we
know that the definition of v(t) is

dx/dt = exp(-t?).

The HP48G series calculator allows for the plotting of the solution of differential equations of
the form

Y'(T) = F(T,Y).

For our case, we let Y = x and T = t, therefore,

F(T,Y) = f(t, X) = exp(-t?).

Let's plot the solution, x(t), for t = 0 to 5, by using the following keystroke sequence:

[<][2D/3D] (simultaneously) To enter PLOT environment

Highlight the field in front of TYPE, using the [A] [VY] keys. Then, press [CHOOS], and
highlight Diff Eq, using the [A] [¥] keys. Press [OK].

Enter the function f(t,x) by using:

[V1 [10 1[=1[e*1[-IIALPHA][<][T] [y*1[2] [OK].

Make sure that the following parameters are set: H-VAR: 0 V-VAR: 1

Change the independent variable to t by using.

[VII © II][ALPHA][<][T]IOK] To define t (lowercase) as the independent variable (INDEP)
[NXT][OK] Accept changes to PLOT SETUP
[<1 ]1[WIN] (simultaneously) To enter PLOT WINDOW environment

Change the horizontal and vertical view window to the following settings:
H-VIEW: -1 5; V-VIEW: -1 1.5

Move the cursor to the Init: field and change parameters as follows:

[0][OK][5][OK] To set the range of values of t [0, 2.5].
[v1[O0][OK] To define the initial condition (or initial value) for x
[OPTS] To define plot options.
[ERASE][DRAW] To plot the graph.

When you observe the graph being plotted, you'll notice that the graph is not very smooth.
That is because the plotter is using a time step that is too large. To refine the graph and make
it smoother, use a step of 0.1. Try the following keystrokes:
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[CANCL] [V1[VI[¥] [.][1][OK][OK][ERASE][DRAW]

The plot will take longer to be completed, but the shape is definitely smoother than before.

Pe
 

ELT][EPSENITTCT
ETT]CEFFNTEETT

With step = Dflt With step = 0.1

Try the following:

[EDIT][NXT][LABEL][MENU] To see axes labels and range.

Notice that the labels for the axes are shown as 0.000 (horizontal) and 1.000 (vertical). These
are the definitions for the axes as given in the OPTS screen (see above), i.e., H-VAR (t): 0, and

V-VAR(x): 1.

[NXT][NXT][PICT] To recover menu and return to PICT environment.
[(X,Y)] To determine coordinates of any point on the graph.

Use [>] and [4] to move the cursor in the plot area. At the bottom of the screen you will see
the coordinates of the cursor as (X,Y), i.e., the calculator uses X and Y as the default names for

the horizontal and vertical axes, respectively.

[NXT][CANCL] To recover the menu and return to the PLOT
environment

[ON] To return to stack.

Solving second-order ODEs with the numerical solver

Problems involving the interaction of a harmonic force (e.g., a mass-spring system) and a
damping force result in the equation of motion being a second-order ODE. Integration of such

ODEs can be accomplished by defining the solution as a vector. As an example, suppose that a
spring-mass system is subject to a damping force proportional to its speed. The resulting
differential equation is:

 IX _ 1875 x-1962. LZ
dt dt

or,
x"= -18.75x- 1.962 x,

subject to the initial conditions, v=x'=6, x =0, at t = 0. We want to find x, x at t = 2.

Re-write the ODE as:

Xx 0 1 Xx

| |[-18.75 -1.962] |x

w' = Aw,

or,
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where w = [ x x']", and A is the 2 x 2 matrix shown above.

The initial conditions are now written as w = [0 6], for t = 0. (Note: The symbol [ I" means
the transpose of the vector or matrix).

To solve this problem, first, we'll create the matrix A, as follows:

[~][MTRW][O][SPC][1][ENTER][¥] [«][«] [11[8][-1[71(51[+/-1[SPCI[1][-1[91[6][2][+/-]
[ENTER][ENTER][~1[ * ][ ALPHA][A][STOM]

Then, use the following keystroke sequence to solve for the differential equation for t = 2 s:

[~I1[NUM.SLV][¥][OK] Invoke Numerical solver for ODEs

[10 1[ ALPHA][ ALPHA][A][X][WI][ ALPHA][OK] Define F(T,Y), as Aw
[1] ' TALPHA][<][T] [0][OK][2][OK] Define independent variable and range.
[m1] HTALPHA][WI[OK]I[<11] [O][SPC][6] [OK] Enter dependent variable and init.

cond.
[SOLVE] Solve for w(t=2). Wait.
[EDIT] To see the solution vector.

The solution reads [ .16716... -.6271...], i.e., x(2) = 0.16716, and x'(2) = v(2) = -0.6271. Press

[CANCL] to return to SOLVE environment.

Solution presented as a table of values

In the previous example we were interested only in finding the values of the position and
velocity at a given time t. If we wanted to produce a table of values of x and x, for t = 0.00,
0.25, ..., 2.00, we will proceed as follows: First, prepare a table to write down your results:

X

0.00

 

Next, within the SOLVE environment, change the final value of the independent variable to

0.25, use:

[A1[.1[2]1[5][OK] [»]1[»] [SOLVE](wait)[EDIT] Solves for w at t =0.25, w = [0.968 1.368].
Write down values of x and x’ in the table.

[OK][INIT+][A][-1[51[OK][»]1[»][SOLVE](wait)[EDIT] Change initial value of t to 0.25, and final
value of t to 0.5, solve again for w(0.5) =
[0.748 -2.616]

[OK][INIT+][A1[-1[71[5]1[OK][»][»][SOLVE](wait)[EDIT] Change initial value of t to 0.5, and final
value of t to 0.75, solve again for w(0.75) =
[0.0147 -2.859]

[OK][INIT+][A][1][OK][»][»] [SOLVE](wait)[EDIT] Change initial value of t to 0.75, and final
value of t to 1, solve again for w(1) =
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[-0.469 -0.607]

Repeat for t = 1.25, 1.50, 1.75, 2.00. To finish, press [OK], [ON]. The different solutions will
be shown in the stack, with the latest result in level 1.

The final results look as follows:

t

 

Graphical solution for a second-order ODE

To plot x, x vs. t, use the following:

Start by pressing [~][NUM.SLV] (simultaneously), then, highlight the TYPE field and choose

Diff Eq (Use [CHOOS]...[OK]). Change the initial and final values of t to 0 and 2, respectively,
and the initial value of w to [0 6]. The screen should look like this:

TYPE: Diff Eg Z: Rad

F: 'AXW!

INDEP: t INIT: O FINAL: 2

SOLN: W INIT: [ -.. _STIFF

Before plotting, make the following changes in the OPTS screen:

[OPTS] [v1[»1[11(+/-1[OK]I[2][.1[51[OK][»] [51[+/-][OK] [5][OK] [.][5][OK] [5][OK]

Also, make sure that there is not a check mark, v, in front of PIXELS in the lower right corner

of this screen. Now, press [4][«][A][1][OK] (This indicates that we want to plot x, the first
variable in the vector w). Press [ERASE][DRAW].

to plot the x’ vs. t curve, press :
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[CANCL][OPTS] [Y1[¥]1[2][OK][DRAW] warning: do not press [ERASE]

 

To see labels, press [EDIT][NXT][LABEL][MENU]. The x-axis is identified as 0.000, while the y-
axis is identified as 2.000, since variable 2 (x') was the last plotted.
Press [NXT][NXT][PICT], to return to the PICT environment. Press [CANCL] to return to the
PLOT environment, and press [ON] to return to the stack.

Numerical solution for stiff ordinary differential equations

Consider the ODE:

dy/dt = -100y+100t+101,

subject to the initial condition y(0) = 1.

Exact solution. This equation can be also written as

dy/dt + 100 y = 100 t + 101,

and solved using an integrating factor, IF(t) = exp(100t), as follows:

‘(100*t+101)*EXP(100*t)’ [ENTER] ‘t’ [ENTER] [«~][CALC][DIFF][NXT][RISCH]

The result is ‘(t+1)*EXP(100*t)’.

Next, we add an integration constant, by using:

‘C’ [ENTER] [+]
Then, we divide by Fl(x), by using:

‘EXP(100*t)’ [ENTER] [+][~][EVAL].

The result is: “((t+1)*EXP(100*t)+C) /EXP(100*t)’, i.e.,

y(t) = 1+ t +C-e'%0,

Use of the initial condition y(0) = 1, results in 1=1 +0 + C-€% or C = 0, the particular solution

being

y(t) = 1+t.

Numerical solution. If we attempt a direct numerical solution of the original equation

dy/dt = -100y+100t+101
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using the HP 49 G’s own numerical solver, we will find that the solver will seem to take an
inordinate amount of time in solving the equation. To check this out, set your differential
equation numerical solver ([~][NUM.SLV] [¥][OK]) to:
 

 

3 BSOLVE Y' (TI=F(T," § %

fi '-100%Y+100+T+10
Indep: T Init:@ Final 2
Setn: Y Init:] Fino[IN
Tol:, @0G1 Step: DF1t  _stifs

Press SOLVE for Final soln uwalue
[053ITE

  

   
Here we are trying to obtain the value of y(2) given y(0) = 1. With the Soln: Final field

highlighted, press [SOLVE]. You can check that there will be no solution after 2 minutes. Press
[ON] to cancel the calculation.

This is an example of a stiff ordinary differential equation. A stiff ODE is one whose general

solution contains components that vary at widely different rates under the same incrementin

the independent variable. In this particular case, the general solution,

y(t) = 1+ t +C.e'%%

contains the components ‘t’ and ‘c-e'% which vary at very different rates, except for the

cases C=0 or C=0 (e.g., for C = 1, t =0.1, C-e'%" =22026).

The HP 49 G calculator’s ODE numerical solver allows for the solution of stiff ODEs by selecting

the option _stiff in the SOLVE Y'(T) = F(T,Y) screen. With this option selected you need
to provide the values of Jdf/dy and of /dt. For the case under consideration oJf/dy =-100 and
of/dt = 100.

Enter those values in the corresponding fields of the soLVE Y’ (T) = F(T,Y) screen:

 

  

 

3% £ SOLVE Y' (TI=F(T,V)

F 1.9F3y: '—1,, Fat

Indep: T Init:@ Final 2
Soln: Y Init:1 Fina Ll EFER
Tol: A@@1 step: Df It Stiff

Press SOLVE For Final soln value

eorvl11JInITs

 

   
When done, move the cursor to the rinal field and press [SOLVE]. Press [EDIT] to see the
solution: 2.9999999999, i.e., 3.0.

Note: The option stiff is also available for graphical solutions of differential equations.
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1 6 Partial Differential Equations

and Fourier transforms

Basic concepts and definitions for partial differential equations were introduced in Chapter 15.
Some definitions related to partial differential equations (PDE) are reviewed following.
Solutions to a variety of PDEs are presented in this chapter. The basic idea is to demonstrate
some advanced applications of the HP 49 G calculator, rather than being a comprehensive
presentation on partial differential equations.

   

Definitions

eo Equations involving one or more partial derivatives of a function of two or more
independent variables are called partial differential equations (PDEs).
 

e Well known examples of PDEs are the following equations of mathematical physics in which
the notation: u =adu/ dx, uy=au/yox, Ugx=du/ Nn, etc., is used:

[1] One-dimensional wave equation: Use = C2 Uy

[2] One-dimensional heat equation: Up = C2 Uyy

[3] Laplace equation: UxxtlUy = 0, (2-D), or uxctuy+uz= 0 (3-D)

[4] Poisson equation: UxxtUyy = f(X,¥),(2-D), or Uxtuy+uz= f(x,y,z) (3-D)

eo The order of the highest derivative is the order of the equation. For example, all of the
PDEs in the examples shown above are of the second order.

 

e A PDE is linear if the dependent variable and its functions are all of first order. All of the

PDEs shown above are also linear.

e A PDE is homogeneous if each term in the equation contains either the dependent variable
or one of its derivatives. Otherwise, the equation is said to be non-homogeneous.

Equations [1], [2], and [3] above are homogeneous equations. Equation [4] is non-
homogeneous.

e A solution of a PDE in some region R of the space of independent variables is a function,
which has all the derivatives that appear on the equation, and satisfies the equation
everywhere in R. For example, u = xX - *, u = € cos(y), and u = [n(x*+y?), are all solutions
to the two-dimensional Laplace equation (equation [3] above).
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Example 1 -- Verify that u = sin wct sin wx satisfies the wave equation.

In the calculator type:

‘d2d2u(x,t) = c*2*d1d1u(x,t)’ [ENTER] ‘u(x,t) = SIN(w*c*t)*SIN(w*x)’ [ENTER]

[][ALG][SUBST] [~][EVAL]

The result is: ‘-(w"2*c"2* SIN(w*c*t)*SIN(w*x)) = -(W"2*c"2* SIN(w*c*t)*SIN(w*x))’. Thus, the

wave equation is satisfied by the proposed solution.

Example 2 -- Determine the value of ¢ so that the function u = e* sin 3x satisfies the heat
equation.

In the calculator type:

‘d2u(x,t) = c*2*d1d1u(x,t)’ [ENTER] ‘u(x,t) = EXP(-t)*SIN(3*x)’ [ENTER]

[~][ALG][SUBST] [~][EVAL]

The resultis:

“-(SIN(3*x)/EXP(t)) = -(9*c"2* SIN(3*x)/EXP(t))’.

Dividing this equation by SIN(3*x)/EXP(t)), result in

‘1 =9*c"2’

From which, c=%+1/3.

Example 3 -- Verify that the function u = tan” (y/x) are solutions of Laplace’s equation in
two dimensions.

In the calculator type:

‘d1d1u(x,y) + d2d3u(x,y)’ [ENTER] ‘u(x,t) = ATAN(y/x)’ [ENTER]

[~][ALG][SUBST] [~][EVAL]

The result is 0. Thus, the Laplace equation is satisfied by the proposed solution.

e A unique solution to a PDE is obtained by using an appropriate number of initial conditions
(conditions dependent on time given typically at t = 0), and/or boundary conditions
(conditions at specific points of the solution domain known as boundaries of the domain).

Example -- Verify that u(x,y) = a [n(x*+y%)+b satisfies Laplace’s equation in two dimensions,

and determine a and b so that u satisfies the boundary condition u = 0 on the circle x2 +yf= 1

and u = 5 on the circle x?+y=9.

In the calculator type:

‘d1d1lu(x,y) + d2d3u(x,y)’ [ENTER] ‘u(x,t) = a*LN(x"2+y"~2)+b’ [ENTER]

269 © 2000 Gilberto E. Urroz

All rights reserved



[~][ALG][SUBST] [~][EVAL]

The result is ‘0=0’. Thus, the Laplace equation is satisfied by the proposed solution. To
determine the constants a and b we use the boundary conditions, u = 0 on x’+y?=1, and u = 5 on
x2+y? = 9, thus:

1=aln(1)+b =» b=1,

and

5=aln(9)+1->»a=4/ln(9) = 8.788898...

e In general there should be as many boundary or initial conditions as the highest order of
the corresponding partial derivative. For example, the one dimensional heat equation
(equation [2]) applied to a insulated bar of length L, will require an initial condition, say

u(x,t=0) = f(x), 0 < x < L,

as well as two boundary conditions, e.g., u(x=0,t) = up and u(x=L,t) = ug, or, Ux(x=0,t) = Uy

and u,(x=L) = uy, or some combination of these, for t >0.

Classification of linear, second-order PDEs

Linear, second-order PDEs, as the examples shown above as equations [1] through [4], are
commonly encountered in science and engineering. For that reason special attention is paid in

this section to this type of equations. First, we learn how to classify linear, second-order PDEs
as follows:

An equation of the form:
Aux + 2Buy + Cuy, = F(X,y,u,uy, uy),

is said to be:

e elliptic, if AC - B >0, e.g., heat flow and diffusion-type problems.

e parabolic, if AC - B’ = 0, e.g., vibrating systems and wave motion problems.

e hyperbolic, if AC - B’ < 0, e.g., steady-state, potential-type problems.

Analytical solutions of PDEs

There are a variety of methods for obtaining symbolic, or closed-form, solutions to differential

equations. In this section we will present two of those techniques:

1. Separation of variables

2. Integral transforms (Laplace transforms, Fourier transforms)

The method of separation of variables can be used to obtain analytical solutions for some
simple PDEs. The method consists in writing the general solution as the product of functions of
a single variable, then replacing the resulting function into the PDE, and separating the PDE
into ODEs of a single variable each. The ODEs are solved separately and their solutions
combined into the solution of the PDE.
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In many cases, the ODEs resulting from the separation of variables produce solutions that
depend on a parameter known as an eigenvalue (if the eigenvalue appears in a sine or cosine

function that depends on time, it is referred to as an eigenfrequency). The solutions involving
eigenvalues are known as eigenfunctions.

The use of integral transforms reduces a PDE in n independent variables into one that has only
(n-1) independent variables, thus a PDE with two variables can be easily changed into an ODE.

Integral Transforms

In Chapter 14 we introduced Laplace transforms for the solution of ordinary differential
equations. In this section we introduce other integral transforms that we will use in te
solution of partial differential equations. In general, an integral transform is a transformation
that relates a function f(t) to a new function F(s) by an integration of the form

F(s) = [ K(s,0)- f(£)- dt.

The function «k(s,t) is known as the kernel of the transformation.

The use of an integral transform allows us to resolve a function into a given spectrum of
components. To understand the concept of a spectrum, consider the Fourier series

f(t) =a, + > (a, -coSW,x + b, - sin wx),
n=1

representing a periodic function with a period T. This Fourier series can be re-written as

f@=ag+ YA, cos4)
n=1

where

 

forn=1,2, ..

The amplitudes A, will be referred to as the spectrum of the function and will be a measure of

the magnitude of the component of f(x) with frequency

fo=n/T.

The basic or fundamental frequency in the Fourier series is fo = 1/T, thus, all other frequencies

are multiples of this basic frequency,i.e., f, = nfo. Also, we can define an angular frequency,

o, = 2n/T = 2nf, = 21 n-fg = n-a,

where ay is the basic or fundamental angular frequency of the Fourier series.
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Using the angular frequency notation, the Fourier series expansion is written as

f(x) =a, +) 4, -cos(w,x+¢,) =a, + > (a, cos, x +b, -sinw, x).
n=1 n=1

A plot of the values A, vs. a is the typical representation of a discrete spectrum for a
function. The discrete spectrum will show that the function has components at angular
frequencies a, which are integer multiples of the fundamental angular frequency ay.

Suppose that we are faced with the need to expand a non-periodic function into sine and
cosine components. A non-periodic function can be thought of & having an infinitely large

period. Thus, for a very large value of T, the fundamental angular frequency, wy=2n/T,

becomes a very small quantity, say Aw. Also, the angular frequencies corresponding to , =
nay = nAw, (n=1, 2, .., «), now take values closer and closer to each other, suggesting the

need for a continuous spectrum of values.

The non-periodic function can be written, therefore, as

fx) = [T1c) .cos(@ + x) + S(w) - sin(@ - x)]do,

where

Cw) =~ : IN f(x): cos(w - x) dx,

and

S(w) =- : | f(x) sin( - x) - dx.

The continuous spectrum is given by

A) =[C(@)]* +[S(0)]}

The functions C(w), S(w), and A(w) are continuous functions of a variable ®, which becomes the

transform variable for the Fourier transforms defined below.

Example 1 - Determine the coefficients C(w), S(®), and the continuous spectrum A(w), for the

function f(x) = exp(-x), for x > 0, and f(x) = 0, x < 0.

In the calculator, set up and evaluate the following integrals to calculate C(®w) and S(w),
respectively:

 

 

L|expccosoace Terpsmos
2
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Their results are, respectively:

 

 

  

  

  

  

 

1 3 w

(0241) fz (4241) 572

 

    [104] || IE
 

The continuous spectrum, A(w) is calculated as:

1 2 w 2

EOITCURS[ETGEVAL[FACTO[TEFA]

which simplifies to

Alw)= |—1
 (0241). 2m

 

EDIT CURS[BIGEVAL[FHCTO[TERFA]

Define this expression as a function by using [ENTER][+][DEF]. Then, plot the continuous
spectrum as:

 

   

Fourier transforms

In Chapter 14 we introduced the Laplace transforms indicating that the transform will take a

function, f(t), in t-space, and transform it into a function, F(s), in s-space. Thus, F(s) = L{f(t)}
represents the Laplace transform of f(t), and f(t) = L'{F(s)} represents the inverse Laplace

transform of F(s). In this section we introduce three types of transform and their inverses as
follows:

Fourier sine transform:

F(/00) = F(@) ==] f@)-sin 0-1) dt
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Inverse sine transform:

FF)=f) = |F)-sino-1)-dr

Fourier cosine transform:

2
Fe{ f(t} =F@)==-[ f(t): cos(w-1)- di

TJ

Inverse cosine transform:

F' {F(w)} = f(t) = IX F(w)-cos(w -£)- dt

Fourier transform (proper):

FLA) = F@)== f(0)-e™ dr
Jar

Inverse Fourier transform

FF) =0==]Fl)ea

Example 1 - Determine the Fourier transform of the function f(t) = exp(-t), for t >0, and f(t) =

0, for t<0.

The continuous spectrum, F(m), is calculated with the integral:

 

— oYre —_ lim ——1 [e I S-Isiog _ 1np1

Jar m——|] or +i Jor vio

This result can be rationalized by multiplying numerator and denominator by the conjugate of

the denominator, namely, 1-io. The result is now:

  

1 1 1 1 l—iw 1 1 ow
F(@) = —- = — = 1.

Vr tio og \U+io \1-io) rll+e? +o’

which is a complex function.
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The real and imaginary parts of the function can be plotted as shown below

 

¥

Cm
0. S.    

Notes:

The absolute value of the Fourier transform, |F(w)l, is the frequency spectrum of the original
function f(t). For the example shown above, |F(w)| = 1/[2n(1+®?)]"’2. The plot of |F(w)| vs. ©
was shown earlier.

Some functions, such as constant values, sin x, exp(x), x2, etc., do not have Fourier transform.

Functions that go to zero sufficiently fast as x goes to infinity do have Fourier transforms.

Properties of the Fourier transform

Linearity: If a and b are constants, and f and g functions, then F{a-f + b-g} = a F{f }+ b F{g}.

Transformation of partial derivatives. Let u = u(x,t). If the Fourier transform transforms the

variable x, then

F{ou/ox} = iow F{u}
F{o*u/ox%} = -f F{u}
F{ou/ot} = oF{u}/ot

F{o’u/ot?} = 9*F{u}/ot?

Convolution: For Fourier transform applications, the operation of convolution is defined as

1
(f*e))==] f(x=8) g(£)- dE.

TT

The following property holds for convolution:

F{f*g} = F{f}-F{g}.

275 © 2000 Gilberto E. Urroz

All rights reserved



Analytical solutions to parabolic equations

Case | -- One-dimensional solution of the heat equation

The flow of heat in a thin, laterally insulated homogeneous rod is modeled by

au/at = k-(0*u/ox?),

where u = temperature, k = a parameter resulting from combining thermal conductivity and
density, together with an initial condition

u(x,0) = f(x)

and constant-value boundary conditions

u(0,t) = up, and u(L,t) = uy.

The physical phenomenon described by this PDE and its initial and boundary conditions is
illustrated in the figure below.

 

po ux0) = fx)

  

h
a
d
i
.
.
.

ux0)=0 uxL)=0
T

  
 

In the calculator the governing PDE is entered as:

‘d2u(x,t) = k*d1d1u(x,t)’ [ENTER].

We will try to find a solution to the PDE by the method of separation of variables. This method
assumes that the solution, u(x,t), can be expressed as the product of two functions, X(x) and

T(t), as follows:

‘X(x)*T(t)’ [ENTER][ENTER] [ENTER]

This will make 3 copies of u(x,t) available in stack.

Let’s calculate the derivative d2u(x,t) first:

‘t’ [ENTER] [~][0]
Then, calculate d1d1u(x,t) as follows:

[»]‘x’ [ENTER] [r~][0] ‘x’ [ENTER] [r][d]

Multiply this result by k and set up the equation by using:

‘Kk’ [ENTER] [x] [~][=]
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Now, divide by X(x)*T(t) by using:

[>] [ENTER] [~]1[=] [+]

To simplify this equation use the equation writer:

[v] Trigger the equation writer

[V][FACTO] Select left-hand side of equation and factor terms out
[»][FACTO] Select right-hand side of equation, factor terms out

The result is now:

 

diT(t) _d1diX()k

  
HOES

HEHEEDENEREEET
 

Since the left-hand side of the simplified equation is a function of t only, while the right-hand
side is a function of x only, the only possibility is that both sides of the equation are equal to a
constant value, say s —a.. This substitution produces two differential equations:

dT/dt +oT = 0, [A]
and

d®X/dx* + (o/k)X = 0. [B]

The solution to equation [A] can be easily found by using:

0 [ENTER] ‘X+a’ [ENTER] [<][CALC][DIFF][LDEC].

The result is: ‘CO*EXP(-(a*X))’, or T(t) = Co-exp(-o-t).

For equation [B], the solution is found by using:

0 [ENTER] ‘X*2+0a/k’ [ENTER] [«][CALC][DIFF][LDEC].

The result produced by the calculator (after about a minute of processing) is a complicated
expression in terms of ‘EXP(i- (a/k)”X)’. Assuming that a > 0, then this solution can be written
simply as:

X(x) = Cy sin((a/k)"x) + C;, cos((a/k)"x).

Suppose that the boundary conditions are u(0,t) = 0, and u(L,t) = 0. Replacing these conditions
in the equation for X(x) results in the equations:

0-= C0 + Cy1 > C,=0,

and

0 = Cqsin((o/k)"L) + 0-cos((a/k)"x) 2 Cqsin((o/k)”L) = 0.

The latter result produces Cy 0 only if sin((o/k)"L) = 0.

This equation is satisfied as long as (a/k)"L = nn, wheren =...-3, -2, -1,0, 1, 2, 3, ... Because

there is a different value of a for every value of n, we will identify those values as a,

(eigenvalues) and write:
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on= n’Pk/L, n=0,1, 2, ..

Thus, (a/k)” = n/L, and the solution corresponding to a particular value of n (eigenfunctions)

can be written as
Xn(X) = by-sin(nmx/L).

where Cy has been replaced by bn to emphasize the dependency of the solution on the value of

n.

The solution for the time-dependent component, T(t), in terms of n, can be written now as:

T(t) = Coexp(-n*kt/L?).

Combining the results for X,(x) and T(t) into a single solution, and letting Cy be absorbed by by,
we get as the general solution for a particular value of n:

Un(X,t) = bp-exp(-n*kt/L2)-sin(nmx/L).

The most general solution is, of course, an infinite series representing the linear combination
of all possible solutions u(x,t), i.e.,

n’m> kt nmx
u(x,t) = Db, expl=———) - sin-

n=I

restricting the solution to only positive values of n.

The initial condition u(x,0) = f(x), when replaced into this general equation produces a Fourier

F)=3b, - sind
n=I

nx
—)=u(x, t=0).I )

sine series, i.e.,

The coefficients b, are therefore found as in a Fourier series:

2 lL . NX
b, == f(x) sin(—=) -dx, n#0,

L°0 L

Recall that bg = 0.

Example 1 - Determine the solution for the one-dimensional heat equation subjected to u(0,t) =

u(L,t) = 0, if the initial conditions are given by u(x,0) = f(x) = 4-(x/L)> (1-x/L)%.

Without loss of generality we can take L = 1, and define the function:

“f(X) = 4*X*3*(1-X)"2’ [ENTER][+][DEF]

We will store in separate variables the values of the constants k and L, and of the number of
components to be included in the series solution, m. For example, fork=1,L=1, and m = 3,

we will use:
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1 [ENTER] [~][ “ ] [ALPHA][<][K] [STOM]
1 [ENTER] [~][ * ] [ALPHA][L] [STOM]

3 [ENTER] [~][ * ] [ALPHA][<][M] [STO»]

To calculate the coefficient bn, we define the function bb(n) using the following program:

<< on <<-105 CF n ‘w* ‘X' * L / SIN ‘f£(X)* EVAL * 0 SWAP L SWAP ‘x[2 L / * EVAL
>>

The program will be stored in variable [ bb ] by using:

[ALPHA][ALPHA][<][B][<][B][ENTER][STOM].

The following program, GETb, is used to obtain a vector with the values of the coefficients by:

<< 2 m << 1 m FOR n ‘bb(n)’ EVAL NEXT m —ARRY ‘b' STO >> >>

The coefficients will be stored in variable b. Press

3 [ENTER][GETb]

and allow the calculator about a minute to calculate array b form =3. Press[~][ b ]to
see the contents of the array:

[*-((16*n"2-192)/n"5)’ ‘(2*n"2-30)/ "5" ‘-((48*n"2-64)/(81*1"5)’ ].

Press [~][NUM] to obtain floating-point results for b:

[0.11138606854 -3.35298404164E-2 -1.65300837009E-2].

Store this version of the vector in variable b, by using: [«][ b ]

To calculate the function F(x,t), defined as:

m 2 2
n° mw’ -k-t n-m-x

F(x,t) = b(n) EX EE . SIN 
n=1

use the following program:

<< 2? xt << 0 1m FOR n ‘b(n)’ EVAL ‘EXP(-n"2*mn"2*k*t/L)‘ EVAL

* ‘SIN(n*m*x/L)‘ EVAL * + NEXT >> >>

Store the program in variable F, as [m1 “1 [ALPHA][F] [STO»].

Check the proper operation of F(x,t) by using the following values:

0.1 [ENTER] 0.1 [ENTER] [ F 1], the result is 1.2448375716E-2

0.5 [ENTER] 0.05 [ENTER] [ F ], the result is 6.81957051351E-2

0.8 [ENTER] 0.01 [ENTER] [ F 1], the result is 0.074338303467

A three dimensional picture of the solution F(x,t) can be obtained by using the following:
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Press [+][2D/3D] (simultaneously) to get the PLOT SETUP screen. The screen should be

modified to look like this:
 

 

   
  

 

T 5
EQ:FCX,Y)

Indep: '%'  Depnd:HEH

   Enter dependent variable namne

IEE(TES[154]

 

When done with the setting up of this screen, press [NXT][OK]. Next, press [<][WIN]
(simultaneously) to get the PLOT WINDOW screen. The screen should be modified to look like
this:

 

PLOT HINDON - FASTIDE
R-Left:0. ®-FKight:1.
Y-hear:0. Y-Far: 1
2-Lon: 0. 2-High: .1%

Step Indep:id. bepnd :ERE

Enter depnd var sanple count

|__|

 

When done with the changes in X-, Y-, and Z-ranges, press [ERASE][DRAW]. In the following
graph Y represents time t. A view of the three-dimensional depiction of F(x,t) is shown below:

 

  

 

 

Press [EXIT], and then [CANCEL], to return to the PLOT WINDOW screen. Press [ON] to return
to normal calculator display.

To see an animation of the function F(x,t), which will show F vs. x for different values of t,

press [<1][2D/3D] (simultaneously) to get the PLOT SETUP screen. Change the type of function

to Y-Slice, then press [ERASE][DRAW]. After a couple of minutes the calculator will show an
animation of the temperature vs. x for different values of t. Notice that the animation in the

calculator is actually run backwards. The temperature should be decreasing with time, rather

than increasing with time as suggested by the animation. Press [ON] to stop the animation.
Press [CANCL] to return to the PLOT SETUP screen. Finally, press [ON] to return to normal
calculator display.

To see a particular temperature distribution for a fixed value of t, say for t = 0.01, first
generate the expression corresponding to this value of t by using:

‘X’ [ENTER] 0.01 [ENTER][ F ]

The result is an expression involving SIN functions of X. Define this expression as a function
h(X) by using:

280 © 2000 Gilberto E. Urroz

All rights reserved



‘h(X)’ [ENTER] [»] [~]1[=] [<][DEF].

The plot of h(X) vs. X can be generated as follows:

Press [<1][2D/3D] (simultaneously) to get the PLOT SETUP screen. The screen should be
modified to look like this:

 

  
  3 PLOT SETUP $3 SR
Type:Function é:Rad
EQ:h(X)

  

 

      
      

    

Indep: '¥"' _Sinult Connect
H-Tick:10. Y-Tick:1i0. Fixels

Tick spacing units are pixels?

EDIT] CHK] [ANESS[ERASE]DRAM]

When done with the setting up of this screen, press [NXT][OK]. Next, press [<][WIN]
(simultaneously) to get the PLOT WINDOW screen. The screen should be modified to look like
this:

 

FEE PLOT NINDON - FUNCTION EEE
H-Yieu:0. 1.
V-Yieu:0. .15
Indep Lou: Default High:DeFault

Step: Default Fixels

Indep step units are pixels?

[EDIT][vw CHK] AUTO[ERASE]DRAM

 

When done with the changes in X-, and Y-ranges, press [ERASE][DRAW]. The figure should look
like this:
 

 

 

   
Check that the temperature distribution for t = 0.1 corresponds to the lower curve in the
following figure:

A

/ \

Case Il - Solving the heat equation with non-zero boundary
conditions

 

¥

   

 

 

The heat equation solved in the previous section corresponds to an insulated rod subjected to
zero temperature in both ends of the rod. If the boundary conditions turn out to be different
non-zero values of temperature on both ends, say u(0,t) = w, and u(L,t) = u_, the solution can

still be obtained by separation of variables, but a change of variable must be introduced. The

set up for initial and boundary conditions, as well as the general behavior of u(x,t), for t > 0, is

depicted in the figure below.
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t=0

uxt) ei2

t= ur,

Ug
x=0 x=L

| |
“ 1

u(x0) = Yq u(xL)= ug,  
 

As time goes to infinity, the solution u(x,t) will tend towards a steady state S(x) which will be a
linear function of x as illustrated in the figure, i.e.,

S(X) = ug + (uL-ug)(x/L).

Notice that 95/9x = (ug-up)/L., 3*S/9x* = 0, and 9S /at = 0.

The solution u(x,t) can be written as the sum of the steady-state component, S(x), and a
unsteady component, U(x,t), i.e.,

u(x,t) = S(x) + U(x,t).

Replacing this result in the governing PDE, u; = k uyy, with u; = Uy, and ux, = Ux, we obtain a

governing PDE for U(x), i.e.,

au/ at = k-(3*U/ x2).

Also, the boundary condition at x = 0 becomes u(0,t) = up = S(0) + U(0,t), i.e., ug = ug + U(0,t),

or

u(o,t) = 0.

Similarly, the boundary condition at x = L is transformed into

U(L,t) = 0.

The initial condition, u(x,0) = f(x) = S(x) + U(x,0), or,

U(x,0) = f(x) - S(x) = g(x).

Thus, the original problem with non-zero, constant boundary conditions has been transformed
into a problem of zero-valued boundary conditions for the transient component of the solution,
U(x,t). In terms of U(x,t), the solution to this problem is exactly the same as for u(x,t) in the

previous section, except that the initial condition is now g(x) = f(x) - S(x), rather than simply

f(x). With that difference in mind we can write as the solution for U(x,t):
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oo 2 2 kt

Utx,ty= Sb, - exp(~——) : sin =),
n=1

with

2 fL . nx
by =], (£0) = 500) sin(—=)- dx.

The solution of the original PDEis, therefore, written as:

2.2
x ” n‘mw°kt | nnx

(0) = ty +a, ug)(+ Fb, exp)sin ==)
n=1

Example 1 - Determine the solution to the heat equation with k = 1, L = 1, if the boundary
conditions are u(0,t) = up = 2, u(L,t) = u.=1.

Before using the program, store the values of u0, uL, and L in the calculator, i.e.,

2 [ENTER] ‘u0’ [ENTER][STO»] 1 [ENTER] ‘uO’ [ENTER][STOM] 1 [ENTER] ‘L’ [ENTER][STOM]

To calculate the coefficient b,, we define the function bb(n) using the following program:

<< =n <<-105 CF n mw* ‘X' * LL / SIN ‘f(X)-S(X)" EVAL EVAL * 0 SWAP L SWAP ‘x[2 L

/ * EVAL >>

The program will be stored in variable [ bb ] by using:

[ALPHA][ALPHA][<]1[B][<][B][ENTER][STOM].

We can now use the program GETb to obtain a vector with the values of the coefficients b,,.
Press

3 [ENTER][GETb]

and allow the calculator about a minute or two to calculate array b for m = 3. The coefficients
will be stored in variable b. Press [][ b ] to see the contents of the array:

[0.891088 -6.9035E-12 -0.13224].

Next, modify program F, from the previous section, to read:

<< 2? XxX t << 0 1m FOR n ‘b(n)’ EVAL ‘EXP(-n"2*n"2*k*t/L)‘ EVAL

* ‘SIN(n*n*x/L)‘ EVAL * ‘S(x) ‘ EVAL + + NEXT >> >>

Store this program under the name ‘G’.
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To see an animation of the function G(x,t), which will show G vs. x for different values of t,

first press [+1][2D/3D], and change the ranges in X, Y, and Z, respectively to (0,1), (0,1), and
(0, 3). Then, press [NXT][OK]. The next step is to press [<1][WIN] (simultaneously) to get the
PLOT SETUP screen. Change the type of function to Y-Slice, then press [ERASE][DRAW]. After

a couple of minutes the calculator will show an animation of the temperature vs. x for
different values of t. Press [ON] to stop the animation. Press [CANCL] to return to the PLOT
SETUP screen. Finally, press [ON] to return to normal calculator display.

A three-dimensional depiction of the solution G(x,t) can be obtained by selecting Fast3D for

the Type in the PLOT SETUP window. Also, change the Y-range to (0, 0.2) in the PLOT WINDOW
screen.

A view of the surface z = G(x,t) is shown below:
 

 

   
Press [EXIT][CANCL][ON] to return to normal calculator display.

Other forms of the heat equation and of its boundary conditions

The heat equation solved in the two previous sections, namely,

du/at = k-(0°u/ax?),

corresponds to an insulated rod subjected to zero temperature in both ends of the rod. Other
versions of the equation are:

Lateral heat loss due to convection:

au/at = k-(*u/ ax?) - x(u-up),

where u, = average ambient temperature in the fluid (air, water) that surrounds the rod. The
term

K -(U-ua),

represents the flux of heat loss due to convection, i.e., temperature difference between the

rod’s temperature u(x,t), and the ambient temperature us. The physical phenomenon
described by this ODE is sketched below.

 

RILEERED
CELTily
 

k
¥  
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Existence of an internal heat source (or sink)

ou/ot = k-(3%u/ox?) + (x,t),

where ¢(x,t) is a function describing the heat flux along the rod and as a function of time due

to a source of heat (hot spot) within the rod.

We distinguish three basic types of boundary conditions for heat transfer/diffusion type

problems:

Temperature defined as a function of time, i.e., u(0,t) = g(t), or u(L,t) = g(t).

Temperature gradient normal to the boundary defined as a function of time, i.e., du/on|y-g =

g1(t), or du/on|-L = g(t).

A linear combination of the gradient and the temperature given as a function of time, i.e.,

(ou/an+u)|x-0 = 1(t), or (u/on+u)|x-L = a(t).

These three basic types of boundary conditions are also commonly used for elliptic and
hyperbolic PDE problems. The last two examples of solutions for PDEs (sections Parabolic
Equations (I) and (Il)) use the first type of boundary conditions, i.e., temperature defined as a

function of time (actually constant values). In the next section, we show how to solve the heat

equation with one derivative boundary condition.

Case lll - Solving the heat equation with a derivative boundary
condition

In this section we solve the PDE:

ou/ot = k-(o%u/ox?),

subjected to the homogeneous boundary conditions:

u0,t) =0

uy (L,t)+ Bu(L,t) =0

and the initial condition:

u(x,0) = f(x).

Using separation of variables we can write:
u(x,t) = X(x)T(t).

This generates the following ODEs (see Case | for parabolic equations):

dT/dt +oT = 0,

whose solution is

T(t) = Coexp(-a-t),
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and

d?X/dx? + (a/k)X = 0,
whose solution is

X(x) = Cysin((a/k)*x) + Cy-cos((a/k)"x),

where a is an arbitrary constant. The general solution of the PDE is, therefore,

u(x,t) = X(x)-T(t) = exp(-o-t)[Cq-sin((a/k)"x) + C,-cos((a/k)"*x)],

where the constant Cy has been absorbed into constants C; and C,.

To find the value(s) of the constant a that satisfy the boundary conditions we now replace this

general solution into the expressions for the first boundary condition:

u(0,t) = C;- exp(-at) =0, 2 C; = 0,

which makes

u(x,t) = X(x)-T(t) = Cy-exp(-a-t)-sin((c/k)"x).

The second boundary condition produces the equation:

uy (L,t)+ Bu(L,t) = Cy-(a/k)exp(-a-t)-cos((o/k)*L)+ B- C1-exp(-a-t)sin((o/k)"*L)= 0

The term exp(-a-t) # 0 for a>0 and t>0. Under these conditions and for C; # 0, the equation
above reduces to:

tan((a/k)™L) = - (a/k)"/P.

The solution(s) of this equation depend on the values of B, k, and L, and can, in general, be

obtained through graphical or numerical methods.

Example 1 - Determine the solutions for o. from the equation above if k =1,L=1, and 3 = 1.

1/2
)The equation to solve is tan(a'/?) = — o'’2, or, using A= o'’?, tan A =- A.

To solve

tan() = -A,

you could plot the functions f;(X) = TAN(X), and f;(X) = -X, and find their intersections as shown

below:

Press [+1][2D/3D], simultaneously to access to the PLOT SETUP window.

» Change TYPE to FUNCTION, if needed, by using [CHOOS].

> Press [¥] and type in the equation list { ‘TAN(X)" ‘=X’ }.

>» Make sure the independent variable is set to ‘X’.

» Press [NXT][OK] to return to normal calculator display.

e Press [<1][WIN], simultaneously, to access the PLOT window.

» Change the H-VIEW range to 0 to 12, and the V-VIEW range to -6 to 0.
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» Press [ERASE][DRAW] to plot the function in polar coordinates. The resulting plot looks as
follows:

  

+

N       
>» Notice the vertical asymptotes. These are not part of the graph, but show up because

TAN(X) goes to + « at certain values of X. There are three roots of the equation tan(}) = -

A in this interval. One of the roots, although not obvious from the figure, is A= 0. To find

the next one to the right, move the cursor near the intersection of the two lines, and press
[FCN][ISECT]. The result is I-sect: (2.028757, -2.028757). Thus, the first positive solution
of tan(A) = - Ais

A= 2.028757.

The second solution can also be obtained from the graph by moving the cursor closer to the
second intersection shown and using ISECT again. This time the result is:

A=4.91318.

> Press [NXT][NXT][PICT][CANCL][ON] to return to normal calculator display.

To determine more solutions you can re-draw the graph using a more appropriate range for
both X and Y, or use the HP 49 G’s numerical solver as follows (angular measures in radians):

[~1[NUM.SLV][OK] Start equation solver
[10 ITANI[X] [>] [10=] [+/-1[X] [OK] Enter equation ‘TAN(X)=-X’

Since we want to obtain solutions larger than the values already found (2.028757 and 4.91318),
we enter next a value of 6 in the field labeled X:, i.e.

[6][OK] Enter initial value of 6 for X

[wv] [SOLVE] Move cursor back to X and solve equation

Interestingly enough, this starting value of X (X=6) returns a solution of X = 0, which we already

know. Let’s try changing the starting value to 7, i.e.,

[7][OK] Enter initial value of 7 for X
[vw] [SOLVE] Move cursor back to X and solve equation

The starting value of X = 7 produces a solution X = -2.028757. Since we are interested only in
positive solutions we change the initial value once more to 8, i.e.,

[8][OK] Enter initial value of 8 for X
[wv] [SOLVE] Move cursor back to X and solve equation

The solution is now X = 7.97867, which is larger than the last value found graphically, i.e., A =

4.91318. Continue changing the initial value of X to 9, 10, 11, etc. and check that you get the

following solutions:
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Initial X Solution Initial X Solution
 

6 0.0000 14 0.0000

7 -2.0875 15 14.2074
8 7.9787 16 0.0000

9 0.0000 17 11.2709

10 4.9132 18 17.3363

11 11.0855 19 0.0000

12 11.0855 20 0.0000
13 0.0000 21 20.4692
 

The solution that results when using 17 as an initial value is not correct. You can check with

the calculator all other solutions and all satisfy the equation ‘TAN(X) = -X’, except for the
value of 11.2709. This is obviously a fluke in the algorithm used for the numerical solution of
the equation, and should be dropped form the list of solutions. In summary, thus, the first six
positive solutions to the equation tan A = —A, and the corresponding values of «a, are:

 

Ma On = An

2.0875 4.3577

4.9132 24.1395

7.9787 63.6597

11.0855 122.8883

14.2074 201.8502

20.4692 418.9881

 

A
N
N
A
W
N
=
D

 

The sub-index n is used to indicate the different solutions. The values of «, in this case are

eigenvalues of the solution

Un(X,t) = Coexp(-ant)sin((an/k)"x) = Chexp(-ont)sin(on’x), with k = 1.

The most general solution for the PDE subjected to the boundary conditions under

consideration is the linear combination of an infinite number of these solutions u,(x,t), i.e.,

u(x,t) = YC, exp(—a, 1) sin( 4Jet,, © X),
n=1

or,

u(x,t) = SC, exp(—2 t)-sin( A, - x).
n=1

To find the coefficients C, we use the initial condition u(x,0) = f(x), or

f=C,sin( 4, x),

which is a series expansion similar to a Fourier sine series. To obtain the values of the
coefficients C,, n = 1, 2, 3, ..., we use the concept of orthogonal functions which were

presented earlier in Chapter 15.
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First, define the functions

gn(x) = sin (Ax), n=1,2, 3, ..

To check whether these functions are orthogonal we calculate the integral

 

1
Jsmamostiomoae

  {74 

which evaluates to
 

(Sm=5n)SINCm+n)—(5m+n)S INGm—%n)

2ame-24n°

 

   

To check whether this expression evaluates to zero, first press [ENTER] to get back to stack
display. Then press [~][TRIG][NXT][TEXPA] [—][EVAL] to expand and simplify the expression

 

SnCOS(AN)SING.m)=5mCOS(m)SINR)

En’

 

   
to:

Now, recalling that A, and A; are roots of the equation

tan A= -A,

then

sin A/cos A = -A,

or

sin A=- ACcos A

Thus, replacing sin Ap = - An-COS Aq, and sin A, = - A,-COs A,, in the numerator of the expression

framed above, we have:

(MACOS Aa: (- An-COS Am) - AmCOS Aq (- A'COS Aq)= Ags An-COS Aq-COS Ay + -An- Am-COS Ay-COS A = 0.

Thus, the functions g,(x) = sin (Axx), n=1, 2, 3, ..., where A, are roots of the equation tan A = -

A, are orthogonal functions.

The value of the integral when n = m can be obtained using the calculator by setting up the

integral
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1

|: INCS)dx4

[EIT[CURE[ETOEVAL[FRCTO[TERFH]

This value is

_SIN@sn)-2%n
4%n

 

IEENTEDETTTS

Using sin(2A,) = 2 sin A,-COs A,, this expression simplifies to

L A, —sin A, -cos A,
[ sin’ A,X dx =Ft,
0 2-2,

The coefficients of the expansion, C,, are calculated as

1 .

J, £(x)-sin A, x-dx 2-1, :

= = | f(x) sin 4, x.
[sin 2 2 x-dx A, —sin A, -cosA, 7°
0 n

 

n

Example 2 -- If the initial condition for the problem under consideration is given by f(x) = x,
determine the solution for the heat equation.

We will need to calculate a few coefficients C,, say for n = 1, 2, 3, by using the equation
obtained above. | propose we use a function

‘C(n)=2*A(n)/ (A(n) -SIN(A(n))*COS(A(n)))*J(0,1, f(x) *SIN(1 (n)*x),x)’

Use [«1][DEF] to create the function. Also, define the function

by using [<1][DEF] once more.

We also create a vector containing the values of In, i.e.,

[2.0875 4.9132 7.9787] [ENTER] ‘A’ [ENTER][STO]

To obtain the three coefficients use:
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1[ C 1], Result: C; = 0.723490
2[ C ], Result: C; =-0.156169
3[ C 1], Result: C3 = 0.061405

We can create a vector with these three values in the stack by using

3 [ENTER] [<][PRG][TYPE][->ARRY],

and save it under the name cc:

‘cc’ [STOM]

The solution, with three components, can now be written as

3
u(x,t) = >cen) -exp(=A(n)* - t) - sin( A(n) - x).

n=1

In the stack this is entered as

‘u(x, t)=2X(n=1,3,cc(n)*EXP(-(A(n)~2*t) *SIN(A(n) *x))’

Use [<1][DEF] to define the function u.

To see an animation of the function u(x,t), which will show u vs. x for different values of t,
first press [«1][2D/3D], and change the ranges in X, Y, and Z, respectively to (0,1), (0,1), and
(0, 1). Then, press [NXT][OK]. The next step is to press [<1][WIN] (simultaneously) to get the
PLOT SETUP screen. Change the type of function to Y-Slice, then press [ERASE][DRAW]. After
a couple of minutes the calculator will show an animation of the temperature vs. x for
different values of t. Press [ON] to stop the animation. Press [CANCL] to return to the PLOT
SETUP screen. Finally, press [ON] to return to normal calculator display.

A three-dimensional depiction of the solution G(x,t) can be obtained by selecting Fast3D for
the Type in the PLOT SETUP window. Change the Z-scale to (-0.5,1). Then, use

[ERASE][DRAW].

A view of the surface z = u(x,t) is shown below:

 

Press [EXIT][CANCL][ON] to return to normal calculator display.
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Case IV - Solving the heat equation with heat convection loss

In this section we solve the PDE:

ou/ot = k-(0*u/ox?) - Bu,

subjected to the homogeneous boundary conditions:

u0,t) =0

u(L,t)=0

and the initial condition:

u(x,0) = f(x).

A simple approach to the solution is to replace the temperature function u(x,t) with

u(x,t) = exp(-p-t)-w(x,t).

You can easily check that

Ue(x,t) = -B- exp(-p-t)w(x,t) + exp(-B-t)- W(X, t),

Ux (X,t) = exp(-B-t)- wk(x,t),
and

Uy x (X,1) = exp(-B-t): Wyx (X, 1),

which reduces the PDE to

aw/ dt = k-(*w/ ox),

and the corresponding boundary and initial conditions to

w(0,t) = 0, w(L,t) = 0, and w(x,0) = f(x).

Thisis basically as the problem solved in Case I. Once the solution w(x,t) for the latter system

is found, the solution to the original system, is simply u(x,t) = ePlw(x,t).

Case V - Solving the diffusion-convection equation with constant
flow velocity

Many equations related to diffusion in moving fluids include a term involving the flow velocity v
(in the x-direction)

ou/at + v-(u/ox)= k-(9%u/ox?).

If v is a constant, this equation can also be reduced to

ow/ ot = k-(o*w/ox?),
by using the transformation

 Lv]wa)» x 5 x,t).u(x,t) =exp| 5

The reduced equation is the same as the original heat equation without heat sources or sinks
and can be solved by separation of variables with an appropriate set of boundary conditions.
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Case VI - Solving the non-homogeneous heat equation by
eigenfunction expansion

In this section we solve the PDE:

ou/ot = k-(3%u/ax?) + h(x,t),

subjected to the homogeneous boundary conditions:

u0,t) =0

u(L,t) =0

and the initial condition:

u(x,0) = f(x).

The eigenfunction expansion method consists in writing the heat source term, h(x,t), as the

series expansion

het) = Sg, (1) sin no),
n=1

and the solution to the PDE as

u(x,t) = 37, ()- sin nx).

This method is called eigenfunction expansion is because the orthogonal functions {sin (nnx)},
used in the expansions for both h(x,t) and u(x,t), are the eigenfunctions of the Sturm-Liouville

problem (see Chapter 14) that results from the homogeneous PDE solution using separation of
variables.

Replacing the expression for u(x,t) in the PDE system

 
ou iu
—=k- +» g, (1) sin( nx),Sh St Xs nm)

u0,t)=0

u(L,t) = 0
u(x,0) = f(x).

Results in the simplified problem

dtn=1

= dT R
$2rk 1,0 = 5,0| sn) = 0

ST, (0) -sin( nx) = f(x).
n=1

The first equation is satisfied if
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T
“ +n’kT, (t) = g,@)

t

The second equation represents a Fourier sine series with

T (t)=b, exp(-n’ 7° et) + | expl(-n 7? ky) (t-1)] g, ©) dr.
The solution for T(t), using an integrating factor in the last linear, first-order ODE, and the

initial condition T,(0) = by, is

b, =T,(0)=2" |/(&)sin(nr&) - dE.

Replacing these results in the expression for u(x,t) produces the following solution for the
original PDE:

u(x,t) = Ue, 0) +S(x,1) = be" "= X sin(n) + Y sin(nm)- [Le"HDg(ny,
n=1 n=1

where U(x,t), equal to the first summation in the solution, represents a transient component

consequence of the initial condition, and S(x,t), equal to the second summation, represents a
steady-state component generated by the heat source h(x,t).

Example 1 -- To solve the non-homogeneous problem

du/at = 3*u/ox? + sin(x),

subject to the boundary conditions
u(0,t) = 0, u(1,t) = 0,

and to the initial condition,

u(x,0) = 1,

by eigenfunction expansion, we identify the following parameters:

k = 1, and, h(x,t) = sin(nx).

Thus, the heat source term has only one term, n = 1, and g(x) = sin(nx).

The coefficient b, is calculated using:

 

1
bi2sSIN(T§)ds

Hi TERFH   
Which results in b; = 4/1.
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Also, the integral in the steady-state term, for n = 1, can be calculated using

 

t

[LentoJ)dt

[EOIT]CURSBIGEVAL[FACTUTERFA   
The result being

  explt al)-1

reesetnd)
   
     ETAATHEHETNETSEE

or, (1/72)-[1-exp(-7t)].

The solution to the PDE is, therefore, written as

u(x,t) = (4/m)-exp(-t) -sin(mx)+ (1/1%)-[1-exp(-t)] sin(mx),
or

u(x,t) = (sin(rx)/m)-[4-exp(-7°t) + [1-exp(-7°t)] /n].

In the stack this is entered as

‘U(x, t)= (SIN(m*x)/ Tm) * (4*EXP(-T"2*t)+(1l- EXP(-mn"2*t))/m)’

Use [<1][DEF] to define the function u.

To see an animation of the function u(x,t), which will show u vs. x for different values of t,

first press [<1][2D/3D], and change the ranges in X, Y, and Z, respectively to (0,1), (0,1), and
(0, 1.5). Then, press [NXT][OK]. The next step is to press [<1][WIN] (simultaneously) to get
the PLOT SETUP screen. Change the type of function to Y-Slice, then press [ERASE][DRAW].
After a couple of minutes the calculator will show an animation of the temperature vs. x for
different values of t. Press [ON] to stop the animation. Press [CANCL] to return to the PLOT
SETUP screen. Finally, press [ON] to return to normal calculator display.

A three-dimensional depiction of the solution u(x,t) can be obtained by selecting Fast3D for the
Type in the PLOT SETUP window. Change the Z-scale to (-0.5,1). Then, use [ERASE][DRAW].

A view of the surface z = u(x,t) is shown below:

 

 
Press [EXIT][CANCL][ON] to return to normal calculator display.
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Case VII: Solving the heat equation in a semi-infinite domain using
Fourier sine transforms

To solve partial differential equations using integral transforms we take advantage of the fact
that you can reduce the order of a derivative by one by introducing the transforms into the
equation. In Chapter 14, when using Laplace transforms to solve ordinary differential

equations, we managed to convert the ODEs to algebraic equations. A similar approach can be
used to solve PDEs with Fourier sine and cosine transforms, which obey the following rules for

derivatives:

F J{df/dt} = -oF {f(t)}
F J{d*f/dt}} = (2/m)-0f(0) -&*-F ({f(t)}
F {df/dt} = -(2/m)-f(0) +oF {f(t)}

F {d*/dt?} = -(2/m)f(0) -o”F {f(t)}

We will use these rules to obtain the solution to the one-dimensional heat equation in a semi-
infinite domain (0<x<e):

ou/at =k-(9*u/ox?),

subject to the boundary condition u(0,t) = ug, and to the initial condition u(x,0) = 0.

Applying the Fourier sine transforms to both sides of the PDE we can write

Fs [ou/dt] = k-F 5 [0*u/ox?].

The term in the left-hand side of the equation is written as Fs {du/dt} = o®  {u}/dt = dU(t)/dt,
where U(t) = F {u(x,t)}. The integral to calculate this transform uses the variable x,

therefore, the resulting transform is only a function of t.

The term in the right-hand side of the equation is transformed by using the rule:

® ({o°u/x*} = (2/m)-wu(0,t) -a?-® Ju(x,t)} = (2/m)-wu(0,t) -&*-U(t) = 2-ruy/m--U(t).

The original PDE is transformed into the ODE:

du/dt = k[ -0*U(t). 2-0 ug/n],

Subject to the transformed boundary condition ® ({u(x,0)} = U(0) = 0.

The resulting ODE can be re-cast as: duU/dt+ke?U(t) = 2kaug/ mt, subject to U(0) = 0, which can

be solved using the calculator as:

[‘d1U(t)+k*@*2*U(t)=2*k*w*t0/n’ “U(0)=u0’][ENTER] ‘U(t)’ [ENTER] [+][CALC][DIFF][DESOL]

The solution is U(t) = 2-up[1 - exp(-k-w*t?)]/ (Tw).

|
The inverse Fourier sine transform will provide the solution to the PDE, i.e., u(x,t) = ® ;'{U(t)}.

Using a table of transforms [such as that given in Table B, Appendix 1 of Farlow, Stanley J.,
1982, “Partial Differential Equations for Scientists and Engineers,” Dover Publications Inc.,

New York], we find that the inverse Sine Fourier transform of the function U(t) above is

u(x,t) = ug-erfc(x/2V(kt)),
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where erfc(&), defined as

2 2
erfa(x)=—-| edt,fof) == [

is the complementary-error function. Also, if erf(x) is the error function of x, then erf(x) +

erfc(x) = 1.

 

The error function

Although the calculator does not provide the error function, nor its complement, as a pre-
programmed functions, we can obtain an expression for erfc(x) in terms of the Upper-Tail

Probability Normal (UTPN) function. The UTPN(p, o%,X) is defined in the menu

[~][MTH][NXT][PROB][NXT][UTPN]. Specifically, we want to use the standard normal
distribution,

®(z) = UTPN(O,1,2),

which has mean pu = 0 and variance o = 1 (See Chapters 4 and 12 for more information on the
UTPN function).

The function ®(z) is defined by

I IP— edt,
[or Je >

The value of ®(z) at z = 0 is ® (0) = 2, thus, we can write

D(z) =

LnOz) = 20)+="e 2dt = StoJeFdg =][1+ erf (z/A[2)].

Replacing z = x2, and solving for erf(x), we find the following expression for the error

function:

1

erf(x) = 1-2-0(x-V2) = 1 - 2.UTPN(0,1, x-\2).

The complementary error function, thus, can be written in the calculator as

erfc(x) = 1 - erf(x) = 22UTPN(0,1, x-V2).

 

For wy = 1, and k = 1, the function u(x,t), which solves the PDE under consideration, can be

defined in the calculator as the following program: << > x t<< 0 1 ‘x/ (2*t)’ EVALUTPN 2 *

>> >> which is to be stored in the variable u: [~][ ‘ ][ALPHA][<][U][STO»].

To see an animation of the function u(x,t), which will show u vs. x for different values of t,

first press [~][2D/3D], and change the ranges in X, Y, and Z, respectively to (0,1), (0,1), and
(0, 1). Then, press [NXT][OK]. The next step is to press [«<][WIN] (simultaneously) to get the
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PLOT SETUP screen. Change the type of function to Y-Slice, then press [ERASE][DRAW].
Because the erfc(x) function requires the evaluation of an infinite integral, it will take a few
minutes to come up with the animation. Press [ON] to stop the animation. Press [CANCL] to
return to the PLOT SETUP screen. Finally, press [ON] to return to normal calculator display.

A three-dimensional depiction of the solution u(x,t) can be obtained by selecting Fast3D for the

Type in the PLOT SETUP window. Then, use [ERASE][DRAW].

A view of the surface z = u(x,t) is shown below:

 

 

   
Press [EXIT][CANCL][ON] to return to normal calculator display.

Case VIII - Solution to the Cauchy problem (initial value problem)

The Cauchy problem consists of solving the heat equation

ou/ot =k-(a*u/ox?),

in an infinitely long rod subjected to an initial condition u(x,0) = f(x).

The solution to the Cauchy problem can be tackled by using Fourier transforms, so that the
equation is transformed to

du/dt = -ko'U,
subject to

U(0) = F(w),
where F(w) = ®{f(x)}.

The problem, having been transformed into an ODE, is easily solved with the calculator:

[‘d1U(t)+k*0"2*U(t)=0" ‘U(0)=F(w)’]J[ENTER] ‘U(t)’ [ENTER] [<][CALC][DIFF][DESOL]

The solution is: U(t) = F(w)exp(-kwt).

The inverse Fourier transform of this result can be found by using the convolution property:

u(x,t) = F{F(w)-exp(-kw’t)} = F'{F(0)}*F'{exp(-ka’t )} = f(x)*[(2kt) ""2-exp(-x?/4kt)],

thus, the solution is

(x -—w)°1 oo

u(x,t) =T=[_S@)explda.
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Fast Fourier Transform (FFT) applications

The Fast Fourier Transform is a computer algorithm by which one can calculate very efficiently
a discrete Fourier transform (DFT). This algorithm has applications in the analysis of different
types of time-dependent signals, from turbulence measurements to communication signals.

The discrete Fourier transform of a sequence of data values {x}, j = 0, 1, 2, ..., n-1, is a new

finite sequence {Xi}, defined as

n—I|

X, ==)x, -exp(—i- 21kj/ n), k=012,.,n-1

nso

The direct calculation of the sequence X involves rf products, which would involve enormous

amounts of computer (or calculator) time particularly for large values of n. The Fast Fourier

Transform reduces the number of operations to the order of n-log;n. For example, for n =
100, the FFT requires about 664 operations, while the direct calculation would require 10,000
operations. Thus, the number of operations using the FFT is reduced by a factor of 10000/664

= 15.

The FFT operates on the sequence {x;} by partitioning it into a number of shorter sequences.

The DFT’s of the shorter sequences are calculated and later combined together in a highly
efficient manner. For details on the algorithm refer, for example, to Newland, D.E., 1993,

“An Introduction to Random Vibrations, Spectral & Wavelet Analysis - Third Edition,” Longman
Scientific and Technical, New York (Chapter 12).
The only requirement for the application of the FFT is that the number n be a power of 2, i.e.,
select your data so that it contains 2, 4, 8, 16, 32, 62, etc., points.

Examples of FFT applications

FFT applications usually involve data discretized from a time-dependent signal. The calculator
can be fed that data, say from a computer or a data logger, for processing. Or, you can
generate your own data by programming a function and adding a few random numbersto it.

Example 1 - Define the function f(x) = 2 sin (3x) + 5 cos(5x) + 0.5*RAND, where RANDis the

uniform random number generator provided by the calculator. Generate 128 data points by
using values of x in the interval (0,12.8). Store those values in an array, and perform a FFT on

the array.

First, we define the function f(x) as a program:

<< 2x ‘2*SIN(3*x) + 5*COS(5*x)’ EVAL RAND 5 * + >NUM >>

and store this program in variable [ f ]. Next, type the following program to generate 2"
data values between a and b. The program will take the values of m, a, and b:

<< >mab<<2"m’ EVAL © n << ‘(b-a)/(n+1)’ EVAL > Dx << 1 n FOR j ‘a+(j-1)*Dx’ EVAL f

NEXT n 2ARRY >> >> >> >>

Store this program under the name GDATA (Generate DATA). Then, run the program for the

values:
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5 [SPC] 0 [SPC] 100 [SPC] [GDATA]

The figure below is a box plot of the data produced. To obtain the graph, first copy the array
just created, then transform it into a column vector, and store it in ZDAT by using:

[ENTER] [+][PRG][TYPE][OBJ=>] [1] [+] [> ARRY] ‘ZDAT’ [STON]

Select Bar in the TYPE for graphs, change the view window to H-VIEW: 0 32, V-VIEW: -10 10,

and BarWidth to 1.

 

  

 

oi]|JEDIT [CANCL
 

Press [CANCL][ON] to return to normal calculator display.

To perform the FFT on the array in stack level 1 use

[<][MTH][NXT][ FFT J[ FFT]

The FFT returns an array of complex numbers that are the arrays of coefficients Xi of the DFT.
The magnitude of the coefficients Xx represents a frequency spectrum of the original data. To
obtain the magnitude of the coefficients proceed as follows:

[ENTER][<][MATRICES][OPER][ AXL ][+][ABS][ AXL ]

To plot a barplot of these results convert the resulting array into a column vector and store it

in DAT before producing the bar plot (see procedure for the bar plot above). The spectrum of
frequenciesis the following:

 

    
The spectrum shows two large components for two frequencies (these are the sinusoidal
components, sin (3x) and cos(5x)), and a number of smaller components for other frequencies.

Example 2 - To produce the signal given the spectrum, we modify the program GDATA to
include an absolute value, so that it reads:

<< > mab << ‘2m’ EVAL > n << “(b-a)/(n+1)’ EVAL > Dx << 1 n FOR j ‘a+(j-1)*Dx’ EVAL f
ABS NEXT n ARRY >> >> >> >>

Store this version of the program under GSPEC (Generate SPECtrum). Run the program with:

6 [SPC] 0 [SPC] 100 [GSPEC]

Press [ENTER] when done, to keep an additional copy of the spectrum array.
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Using a bar plot, the spectrum generated in my calculator looks like this:

 

  

 

 

To reproduce the signal whose spectrum is shown , use

[<][MTH][NXT][ FFT ]J[ FFT]

The signal is shown as an array with complex numbers. We are interested only in the real part
of the elements, use:

[~][MTH][NXT][ CMPLX ][ RE ]

A bar plot of the signal is shown below:

rrp
 

   
Except for a large peak at t = 0, the signal is mostly noise. A smaller vertical scale shows the

signal as follows:
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1 / Statistical applications   
The subject of statistics (the analysis and inference of information from data) is closely related

to the subject of probability (the analysis of random events). Throughout this book we have
presented probability-related subject as illustrative examples of the applications of some
mathematical techniques. Some of those applications are listed below:

e In Chapter 4 review the following sections:

PROB menu

Combinatorics, random numbers, and probability functions
Factorials, permutations, and combinations

The Gamma function

Generating random numbers

Examples of probability calculations for continuous random variables

Normal distribution pdf

Normal distribution cdf

The Student-t distribution

The Chi-squared (y%) distribution
The F distribution

* In Chapter 5 review the following sections:

Applications of list operations
Mean, variance, and standard deviation of a sample

Calculating statistics from grouped data
Mean, variance, and standard deviation from a discrete probability distribution

Applications of programs for list generation
Generating tables of mass and cumulative distribution functions

Binomial distribution
Poisson distribution
Geometric distribution

e In Chapter 10, under the heading Matrix applications, review the following sections which
use least-square methods:

Multiple linearfitting
Polynomialfitting
Selecting the bestfitting

e In Chapter 11, review the sections on:

Plotting histograms, bar plots, and scatter plots
Bar plots
Scatter plots

e Also, in Chapter 11, under the heading Programming examples using drawing functions,
review the following section which uses least-square methods:
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Example 3 - A program to visualize a polynomial fitting

e In Chapter 12, under the heading Solving equations with one unknown through NUM.SLV,
review

Example 3 - Upper tail probabilities for Normal, Student-t, ¥*, and F distributions

e In Chapter 13, under the heading Univariate calculus applications, review the section on

Probability: Calculations with continuous random variables

Pre-programmed statistical features in the HP 49 G

The HP 49 G provides pre-programmed statistical features that accessible through the
keystroke combination [—][STAT] (same key as the number 5 key). These are the same

available in the HP 48 G, except that the HP 49 G includes hypothesis testing and confidence
interval applications that are not accessible in the HP 48 G. The applications available in the
HP 49 G are:

Single-var..
Frequencies..
Fit data..

Summary stats..
Hypoth. Tests..

Conf. Interval..S
N
R
W
N
-

Entering data

For the analysis of a single set of data we can use applications number 1, 2, and 4 from the list
above. All of these applications require that the data be available as columns of the matrix

YDAT. This can be accomplished by entering the data in columns using the matrix writer,
[<][MTRW].

This operation may become tedious for large number of data points. You may want to enter
the data as a list, by using [«][{}], and separating the elements of the list by spaces (using the
[SPC] key). When you finish entering the data in a given list, press [ENTER]. The list will be in
level 1 of the stack.

The next step is to transform this list into a column vector. Here is a program that will
accomplish this task. Type the following:

[]1[<<>>] [<][PRG] [TYPE] [OBJ->] [1] [SPC] [2] [=>LIST] [>ARRY] [ENTER]

This program will be stored in a variable called LXC (meaning List transformed to Column
vector), by using:

[~1[' IIALPHA][ALPHA][LI[X][C][ENTER][STOM].

It is preferable that you keep this program in your HOME directory so they will be accessible to
all your directories.

The next step is to store the column vector into the variable DAT. One way to do it is to
simply type that name in stack level 1 and store the data by using:
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[P10 1 [2 1ZI P11“][ALPHA][ALPHA][D][A][T] [ENTER] [STO»].

Example - Using the program LXC, defined above, create a column vector using the following

data:
2.1 1.2 3.145 23 1123 15 1.6 2.2 1.2 2.5.

Type in the data in a list:

{2.1 1.2 3.145 23 1.12.3 1.5 1.6 2.2 1.2 2.5} [ENTER][ LXC J[VAR].

Next, store the resulting column vector in variable DAT, as shown above.

Calculating single-variable statistics

I assume that at this point you have your data stored as a column vector in variable ZDAT. To
access the different STAT programs, press [~][STAT]. Press [OK] to select 1. Single-var.. There
will be available to you an input form labeled SINGLE-VARIABLE STATISTICS, with the data

currently in your XDAT variable listed in the form as a vector. Since you only have one column,

the field Col: should have the value 1 in front of it. The Type field determines whether you are

working with a sample or a population, the default setting is Sample. Move the cursor to the
horizontal line preceding the fields Mean, Std Dev, Variance, Total, Maximum, Minimum,

pressing the [CHK] key to select those measures that you want as output of this program.
When ready, press [OK]. The selected values will be listed, appropriately labeled, in the
screen of your calculator.

Example 1 -- For the data stored in the previous example, the single-variable statistics results
are the following:

Mean: 2.13333333333, Std Dev: .964207949406, Variance: .929696969697

Total: 25.6, Maximum: 4.5, Minimum: 1.1

The definitions used for these quantities are the following:

Suppose that you have a number data points x, x3, X3, ..., representing different measurements

of the same discrete or continuous variable x. The set of all possible values of the quantity x is
referred to as the population of x. A finite population will have only a fixed number of
elements x. If the quantity x represents the measurement of a continuous quantity, and since,
in theory, such a quantity can take an infinite number of values, the population of x in this
case is infinite. If you select a sub-set of a population, represented by the n data values {x,

X2, --, Xn}, We say you have selected a sample of values of x.

Samples are characterized by a number of measures or statistics. There are measures of
central tendency, such as the mean, median, and mode, and measures of spreading, such as

the the range, variance, and standard deviation.

 

Measures of central tendency
 

The mean (or arithmetic mean) of the sample, x, is defined as the average value of the

sample elements,
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| n

X=—x.
nog

The value labeled Total obtained above represents the summation of the values of x, or Xx; =

n- x.

This is the value provided by the calculator under the heading Mean. Other mean values used
in certain applications are the geometric mean, xq, or the harmonic mean, x, defined as:

1 "oq

no
Example 2 - To calculate the geometric and harmonic mean of the following data (entered into
the calculator in the form of a list), use:

{1.2 1.1 1.3 1.5 1.0} [ENTER]J[ENTER] Make two copies of the list

[<] [MTH][LIST][IILIST] 5 [~] [*Vy] Calculates the geometric mean

[»1[1/x][ZLIST] 5 [+] [1/x] Calculates the harmonic mean

The median is the value that splits the data set in the middle when the elements are placed in
increasing order. If you have an odd number, n, of ordered elements, the median of this

sample is the value located in position (n+1)/2. If you have an even number, n, of elements,

the median is the average of the elements located in positions n/2 and (n+1)/2. Although the
pre-programmed statistical features of the HP 49 G calculator do not include the calculation of

the median, it is very easily to write a program to calculate such quantity by working with lists.
For example, if you want to use the data in XDAT to find the median, type the following

program:

<< 2 nC << RCLX DUP SIZE 2 GET IF 1 > THEN nC COL- SWAP DROP OBJ-> 1 + >ARRY END

OBJ-> OBJ-> DROP DROP DUP = n << LIST SORT IF ‘n mod 2 == 0’ THEN DUP ‘n/2’ EVAL

GET SWAP ‘(n+1)/2’ EVAL GET + 2 / ELSE ‘(n+1)/2’ EVAL GET END “Median” >TAG>>

|Store this program under the name MED. To run the program, first you need to prepare your
YDAT matrix. Then, enter the column in DAT whose median you want to find, and press [ MED
1.

Example 3 - For the data currently in DAT (entered in an earlier example), use:

1 [ENTER][VAR][ MED ].

The result is Median: 2.15.

The mode of a sample is better determined from histograms, therefore, we leave its definition
for a later section.
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Measures of spread
 

The variance (Var) of the sample is defined as

1 z _
si =—(x, —%).

n—1 5

The standard deviation (St Dev) of the sample is just the square root of the variance, i.e., sy.

The range of the sample is the difference between the maximum and minimum values of the
sample. Since the calculator, through the pre-programmed statistical functions provides the

maximum and minimum values of the sample, you can easily calculate the range.

 

Coefficient of variation
 

The coefficient of variation of a sample combines the mean, a measure of central tendency,

with the standard deviation, a measure of spreading, and is defined, as a percentage, by:

V, = (s«/ x)100.

 

Sample vs. population
 

The pre-programmed functions for single-variable statistics used above can be applied to a

finite population by selecting the Type: Population in the SINGLE-VARIABLE STATISTICS
screen. The main difference is in the values of the variance and standard deviation which are
calculated using n in the denominator of the variance, rather than (n-1).

Example -- If you were to repeat the exercise in Example 1 of this section, using Population
rather than sample as the Type, you will get the same values for the mean, total, maximum,

and minimum. The variance and standard deviation, however, will be given by:

Variance: 0.85222222222, Std Dev: 0.923158828275.

Obtaining frequency distributions

The program 2. Frequencies.. can be used to obtain frequency distributions for a set of data.

Again, the data must be present in the form of a column vector stored in variable DAT. To
get started, press [~][STAT][V][OK]. The resulting input form contains the following fields:

IDAT: the matrix containing the data of interest.

Col: the column of DAT that is under scrutiny.
X-Min; the minimum class boundary to be used in the frequency distribution (default =
-6.5).
Bin Count: the number of classes used in the frequency distribution (default = 13).

Bin Width: the uniform width of each class in the frequency distribution (default = 1).

To understand the meaning of these parameters we present the following definitions:
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Given a set of n data values: {x;, xz, ..., X,}listed in no particular order, it is often required to
group this data into a series of classes by counting the frequency or number of values
corresponding to each class. (Note: the HP 49 G refers to classes as bins).

Suppose that the classes, or bins, will be selected by dividing the interval (xsor, Xtop), Into k =

Bin Count classes by selecting a number of class boundaries, i.e., {xB;, xB, ..., xBy.1}, so that

class number 1 is limited by xB;-xB;, class number 2 by xB;- xB3, and so on. The last class, class

number k, will be limited by xBy - xB ..

The value of x corresponding to the middle of each class is known as the class mark, and is
defined as

XM; = (xB; + xB j.1)/2, fori=1, 2, ..., k.

If the classes are chosen such that the class size is the same, then we can define the class size

as the value

Bin Width = AX = (Xmax = Xmin) / kK,

and the class boundaries can be calculated as

XBi= Xp+ (i - 1) * Ax.

Any data point, xj, j = 1, 2, ..., n, belongs to the i-th class, if xB; < xj < xB j.1

The program 2. Frequencies.. will perform this frequency count, and will keep track of those

values that may be below the minimum and above the maximum class boundaries (i.e., the
outliers).

Example 1 -- In order to betterillustrate obtaining frequency distributions, we want to

generate a relatively large data set, say 200 points, by using the following:

e First, seed the random number generator using: 25 [<][MTH][NXT][PROB]

e Type in the following program:

<< > n<<1nFOR j RAND 100 * 2 RND NEXT n LIST >> >>

and save it under the name RDLIST (RanDom number LIST generator).

e Generate the list of 200 number by entering: 200 [ENTER][VAR][RDLIST]

e With the list generated in stack level 1, press [ LXC ] to convert it into a column vector.

e Store the column vector into SDAT, by using: [CAT][ALPHA][S] (... find STOX...)[OK].

e Obtain single-variable information using: [~][STAT][OK]. Use Sample for the Type of data
set, and select all options as results. The results are:

Mean: 51.63715, Std Dev: .29.8571984431, Variance: .891.452298872

Total: 10327.43, Maximum: 99.35, Minimum: 0.09
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This information indicates that our data ranges from values close to zero to values close to 100.
Working with whole numbers, we can select the range of variation of the data as (0,100). To
produce a frequency distribution we will use the interval (10,90) dividing it into 8 bins of
width 10 each.

e Select the program 2. Frequencies.. by using [~][STAT][V][OK]. The data is already

loaded in DAT, and the option Col should hold the value 1 since we have only one column

in DAT.

e Change X-Min to 10, Bin Count to 8, and Bin Width to 10, then press [OK].

The results are shown in the stack as a column vector in stack level 2, and a row vector of two

components in stack level 1. The vector in stack level 1 is the number of outliers outside of

the interval where the frequency count was performed. For this case, | get the values [ 24.

25.] indicating that there are, in my DAT vector, 24 values smaller than 10 and 25 larger than
90.

oe Press [«] to drop the vector of outliers from the stack. The remaining result is the
frequency count of data. This can be translated into a table as follows:

 

 

 

 

  

Class No. Class Boundaries Class Mark Frequency |Cumulativ

i XB | XB. Xm; fi frequency

< XByJoutliers below range} 24]

1 10 20 15 18 18

2 20 30 25 15 33

3 30 40 35 16 49

4 40 50 45 17 66

5 50 60 55 23 89

6 60 70 65 22 111

7 70 80 75 19 130

k=8 80 90 85 21 151

>XBgJ outliers above range] 25       
This table was prepared from the information we provided to generate the frequency
distribution, although, the only column returned by the calculator is the Frequency, f;, column.

The class numbers, and class boundaries are easy to calculate for uniform-size classes (or bins),

and the class mark is just the average of the class boundaries for each class. Finally, the
cumulative frequency is obtained by adding to each value in the last column, except the first,
the frequency in the next row, and replacing the result in the last column of the next row.
Thus, for the second class, the cumulative frequency is 18+15 = 33, while for class number 3,
the cumulative frequency is 33 + 16 = 49, and so on. The cumulative frequency represents the
frequency of those numbers that are smaller than or equal to the upper boundary of any given
class.

Given the vector of frequencies generated by the calculator, you can obtain a cumulative
frequency vector by using the following program:
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<< DUP SIZE 1 GET = freq k << {k 13 0 CON => cfreq << ‘freq(1)’ EVAL ‘cfreq(1)’ STO 2 n FOR j
‘cfreq(j-1) +freq(j)’ EVAL ‘cfreq (j)’ STO NEXT cfreq >> >> >>

Save it under the name CFREQ. With the vector frequency in stack level 1, press
[VAR][CFREQ]. The result, for this example, is a column vector representing the last column of
the table above.

 

Histograms
 

A histogram is a bar plot showing the frequency count as the height of the bars while the class
boundaries shown the base of the bars. If you have your raw data (i.e., the original data

before the frequency count is made) in the variable XDAT, you can select Histogram as your

graph type and provide information regarding the initial value of x, the number of bins, and the

bin width, to generate the histogram. Alternatively, you can generate the column vector
containing the frequency count, as performed in the example above, store this vector into

>DAT, and select Barplot as your graph type. In the example above, we show you how to use

the first method to generate a histogram.

Example - Using the 200 data points generated in the example above (stored as a column

vector in DAT), generate a histogram plot of the data using X-Min = 10, Bin Count = 16, and
Bin Width = 5.

e First, press [«][2D/3D] (simultaneously) to enter the PLOT SETUP screen. Within this
screen, change Type: to Histogram, and check that the option Col: 1 is selected. Then,

press [NXT][OK].

eo Next, press [«][ WIN ] (simultaneously) to enter the PLOT WINDOW - HISTOGRAM screen.
Within that screen modify the information to H-View: 10 90, V-View: 0 15, Bar Width:
5.

e Press [ERASE][DRAW] to generate the following histogram:

hilLabdbpth

e Press [CANCEL] to return to the previous screen. Change the Vview and Bar Width once
more, now to read VView: 0 30, Bar Width: 10. The new histogram, based on the same

data set, now looks like this:

manila

A plot of frequency count, f;, vs. class marks, xM;, is known as a frequency polygon. A plot of

the cumulative frequency vs. the upper boundaries is known as a cumulative frequency ogive.
You can produce scatterplots that simulate these two plots by entering the proper data in
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columns 1 and 2 of a new SDAT matrix and changing the Type: to SCATTER in the PLOT SETUP

window.

Fitting data to a function y = f(x)

The program 3. Fit data.., available as option number 3 in the pre-programmed statistical
features of the HP 49 G calculator, can be used to fit linear, logarithmic, exponential, and

power functions to data sets (x,y), stored in columns of the IDAT matrix. In order for this
program to be effective, you need to have at least two columns in your DAT variable.

Example 1 - Fit a linear relationship to the data shown in the table below:

y

0.5

2.3

3.6

6.7

7.2

11O
h
W
N
=

O
O

X

e First, enter the two columns of data into variable DAT by using the matrix writer.

e To access the program 3. Fit data.., use the following keystrokes: [—][STAT][V][V][OK].

The input form will show the current DAT, already loaded. If needed, change your set up
screen to the following parameters for a linearfitting:

X-COL: 1 Y-COL: 2

MODEL: Linear Fit

eo To obtain the data fitting press [OK]. The output from this program, shown below for our
particular data set, consists of the following three lines:

3: '0.195238095238 + 2.00857242857*X"

2: Correlation: 0.983781424465

1: Covariance: 7.03

Level 3 shows the form of the equation. In this case, y = 0.06924 + 0.00383 x. Level 2 shows
the sample correlation coefficient, and level 1 shows the covariance of x-y.

Definitions for these two terms are provided below.

For a sample of data points (x,y), we define the sample covariance as

I —
$0 ==2(=D, =)

—Lli=l

The sample correlation coefficient for x,y is defined as
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Where s,, sy are the standard deviations of x and y, respectively,i.e.

  
I , ~
3 (x, ©) $223 (py, - 7)2

s, =
n—1 : n—1

i=1

The values s,, and ry, are the "Covariance" and "Correlation," respectively, obtained by using
the "Fit data” feature of the HP48G calculator.

 

Linearized relationships
 

Many curvilinear relationships "straighten out” to a linear form. For example, the different
models for data fitting provided by the HP48G calculator can be linearized as described below:

 

 

 

 

  

Independent Dependent

Type of Actual Linearized variable Variable Covariance

Fitting Model Model £ n Sen

Linear y =a + bx y =a + bx [same] X y Sxy

Logarithmic y=a+ bIn(x) y =a + b In(x) [same] In(x) y Sin(x).y

Exponential y=ae In(y) = In(a) + bx X In(y) Sx.in(y)

Power y=a x In(y) = In(a) + b In(x) In(x) In(y) Sin(x).In(y)       
The sample covariance of §n is given by

1 _
Se =——2. —-&)m, =1)

Also, we define the sample variances of £ and 1, respectively, as

 
| —— = 12 2 2 2

Se =——Y -&) Sy = Ym, =)

h—1 n—173

The sample correlation coefficient ry, is

y= Sen

én
Se ° Sh

The general form of the regression equation is 1 = A + BE.
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Best data fitting
 

The HP48G/GX can determine which one of its linear or inearized relationship offers the best

fitting for a set of (x,y) data points. We will illustrate the use of this feature with an example.

Suppose you want to find which one of the data fitting functions provides the best fit for the
following data:

X y
0.20 3.16

0.50 2.73

1.00 2.12

1.50 1.65

2.00 1.29

4.00 0.47

5.00 0.29

10.00 0.01

First, enter the data as a matrix, either by using the matrix editor and entering the data, or by

entering two lists of data corresponding to x and y and using the program CRMT (see frame

below). To use the latter approach use the following keystrokes:

[108] [J2I0SPCT [.I[51[SPC] [11[SPC] [1][.1[51[SPC] [2][SPC] [4][SPC] [51[SPC] [1][O0]
[ENTER]

(=108] (3I1011061(SPCT [2][-1[71(31[SPC] [2][-1(11[2][SPC] [1][.1(6]1[51[SPC] [1]1[.1[2]1[91[SPC]
[.1041(71[SPC] [.1[2][91(SPC] [-.1[O[1][ENTER]

[2][ENTER] [CRMT]

Next, save this matrix into the statistical matrix  XDAT, by using:
[<][STAT][DATA][][ZDAT]

Finally, the following instructions will allow you to find the best fit for your data:

[~I[STATI[V][V][OK]

The display shows the current XIDAT, already loaded. Change your set up screen to the
following parameters if needed:

X-COL: 1 Y-COL: 2

MODEL: Best Fit

Press [OK], to get: 1: *3.99504833324*EXP(-.579206831203*X)
2: Correlation: -0.996624999526
3: Covariance: -6.23350666124

The best fit for the data is, therefore, y = 3.995 e0-38x
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Program CRMT
 

 

The program [CRMT], introduced in Chapter 10, in the section entitled “A program to build a
matrix out of a number of lists -- Lists represent columns of the matrix,” allows you to put

together a pxn matrix (i.e., p rows, n columns) out of n lists of p elements each. To use this
program, enter the n lists in the order that you want them as columns of the matrix, enter the
value of n, and press [CRMT]. A listing of the program was presented in Chapter 10.

 

Obtaining additional summary statistics

The program 4. Summary stats.. can be useful in some calculations of measures for a sample.
To get started, press [~][STAT] once more, move to the fourth option using the down-arrow
key, and press [OK]. The resulting input form contains the following fields:

IDAT: the matrix containing the data of interest.
X-Col, Y-Col: these options apply only when you have more than two columns in the matrix

YDAT. By default, the x column is column 1, and the y column is column 2. If

you have only one column, then the only setting that makes sense is to have X-
Col: 1.

IX _ XY... summary statistics that you can choose as results of this program by checking
the appropriate field using [v'CHK] when that field is selected.

Many of these summary statistics are used to calculate statistics of two variables (x,y) that may
be related by a function y = f(x). Therefore, this program an be thought off as a companion

to program 3. Fit data..

Example 1 - For the x-y data currently in ZDAT, obtain all the summary statistics.

oe To access the summary stats... option, use: [~][STAT][V1[V][Y1[OK].

e Select the column numbers corresponding to the x- and y-data, i.e., X-Col: 1, and Y-Col: 2.

e Using the [v'CHK] key select all the options for outputs, i.e., _XX, _XY, etc.

e Press [OK] to obtain the following results:

IX: 15, ZY: 31.3, £X2: 55, £Y2: 236.23, XY: 113.4, NX:6

These results represent the following values:

sx=Yx =15, sy=%y =313, sx2=3 x? =55,
i=l i=l i=1

TY2=) y} =236.23, IXY =)xy =1134, NE=n=6.
i=l i=l
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There two other programs under the menu [~][STAT], namely, 5. Hypth. tests.. and 6. Conf.
Interval.. These two programs correspond to more advanced subjects and will be discussed later

in the chapter.

 

Calculation of percentiles

The basic procedure to calculate the 100 pth Percentile (0 < p < 1) in a sample of size n is as
follows:

1. Order the n observations from smallest to largest.

2. Determine the product np
A. If np is not an integer, round it up to the next integer and find the corresponding

ordered value.
B. If np is an integer, say k, calculate the mean of the kth and (k-1)th ordered

observations.

[Note: Integer rounding rule, for a non-integer x.yz..., if y > 5, round up to x+1; if y < 5, round
up to x.]

For example, in variable DT4 we have the data entered the same data as in array DT1, but this

time as a list. If we want to alculate the 37" percentile p = 0.37) of that data set, we
proceed as follows (assuming you are in the appropriate subdirectory):

[VAR][ DT4 ] Places contents of DT4 in display level 1.
[MTH][LIST][SORT] Orders list from smallest to largest.
[ENTER] [ENTER] Creates two more copies of the list for later use.
[PRG][LIST][ELEM][SIZE] Gives n as 60 (n = 60)

[O1L-1031[710x] Enter p in level 1 and multiply n times p, to give 22.2.
Round that number up to 22.

[<] Drop 22.2 from level 1.
[2]1[2][GET] Indicates that element number 22 of the ordered list in display

level 2 is to be extracted. GET produces a value of 26.4 for the
percentile.

We write the result as Pg37 = 26.4 for the data in DT4.

If we wanted to obtain the third quartile of the data in DT4, i.e., Q; = Pg.75 , with n = 60 and p

= 0.75, we find that np = 45 = k is indeed an integer. Therefore, to determine Q; we extract
from the ordered list elements number 44 (= k-1) and 45 (=k) and calculate their average.
The procedure is as follows:

[VAR][ DT4 ] Places contents of DT4 in display level 1.
[MTH][LIST][SORT] Orders list from smallest to largest.
[ENTER] [ENTER] Creates two more copies of the list for later use.
[PRG][LIST][ELEM] Displays programs that operate on elements of lists.
[4]1[4]1[GET] Gets element number 44 of the ordered list. Display level 1

shows a value of 31, i.e., x44 = 31, where x; represents the ith

element of the ordered list.

[<][SWAP] Swaps objects in levels 1 and 2 of the display, placing the
ordered list in level 1.

[4]1[5][GET] Gets element number 45 of the ordered list. Display level

1shows that x45 = 31.3.
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[+112]1[=] Calculates 3 = (x44 + x45 )/2. Display level 1 shows that Q; =
31.15

 

Please notice that there is a variety of ways to calculate percentiles, and that the way
presented above may not be the same utilized in your class or other books.

 

The STAT soft menu

The STAT soft menu key, that in the HP 48 G is obtained by pressing [~][STAT], is not readily
available in the HP 49 G. However, you can create your own program to access it by typing the
following:

[~]1[<<>>] [9][6][ . 1[0][1] [<][PRG] [NXT] [MODES] [MENU] [MENU] [ENTER]

Next, store the program in a variable called [STATm], by entering:

[10 J[ALPHA][ALPHA] [SI[TI[AI[T] [<][M] [ENTER] [STO->].

To recover your list of variables, press [VAR]. There should now be a program called [STATm]
in your menu. Press the corresponding button to obtain the STAT soft key menu.

At this point you should be able to use the operations outlined in the handout provided during
the first lecture for the [~][STAT] in the HP 48 G. However, | suggest you change the settings
of the calculator from choose box to soft menu as indicated below.

Use of STAT soft menu for data analysis, plots, and data fitting

The keystroke combination [<1][STAT], in the HP 48 G, or the program [STATm], in the HP 49 G,

provides direct access to several of the statistical functions in the calculator, namely:

[DATA][SPAR][1VAR][PLOT][ FIT J[SUMS]

Pressing the key corresponding to any of these menus provides access to different functions as

described below.

[DATA]: Commands under this menu are used to manipulate the statistics matrix DATA.

[ Z+ ]: add row in level 1 to bottom of DATA matrix.
[ Z- ]: removes last row in DATA matrix and places it in level of 1 of the stack.
The modified

YDATA matrix remains in memory.

[ CLX ]: erases current DATA matrix.

[DAT]: places contents of current DATA matrix in level 1 of the stack.

[<][=DAT]: stores matrix in level 1 of stack into DATA matrix.
[STAT]: returns to STAT menu.
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[ZPAR]: Commands under this menu are used to modify statistical parameters. The
parameters shown in

the display are:
Xcol: indicates column of DATA representing x (Default: 1)

Ycol: indicates column of DATA representing y (Default: 2)
Intercept: shows intercept of most recent data fitting ((Default: 0)

Slope: shows slope of most recent data fitting (Default: 0)
Model: shows current data fit model (Default: LINFIT)

n [XCOL]: changes Xcol to n.
n [YCOL]: changes Xcol to n.
[MODL]: lets you change model to LINFIT, LOGFIT, EXPFIT, PWRFIT or BESTFIT by

pressing the appropriate button, or press [ZPAR] to return to the ZPAR menu.

[EPAR]: shows statistical parameters.
[RESET]: reset parameters to default values

[INFO]: shows statistical parameters
[NXT][STAT]: returns to [STAT] menu.

[1VAR] : Commands under this menu are used to calculate statistics of columns in DATA
matrix.

[TOT]: show sum of each column in DATA matrix.
[MEAN]: shows average of each column in DATA matrix.

[SDEV]: shows standard deviation of each column in DATA matrix.
[MAXX]: shows maximum value of each column in DATA matrix.
[MINZ]: shows average of each column in DATA matrix.

Xs, AX, n [BINS]: provides frequency distribution for data in Xcol column in ZDATA
matrix with the frequency bins defined as [xs,Xs+Ax], [Xs,Xs+2AX],..., [Xs,Xs+NAX].

[NXT]: to access the second menu. Within this menu you will find the following commands:

[VAR]: shows variance of each column in DATA matrix.
[PSDEV]: shows population standard deviation (based on n rather than on (n-1)) of each

column in DATA matrix.

[PVAR]: shows population variance of each column in DATA matrix.
[MINZ]: shows average of each column in ZDATA matrix.
[STAT]: returns to [STAT] menu.

[PLOT]: Commands under this menu are used to produce plots with the data in the SDATA
matrix.

[BARPL]: produces a bar plot with data in Xcol column of the DATA matrix.

[HISTP]: produces histogram of the data in Xcol column in the DATA matrix, using the
default width corresponding to 13 bins unless the bin size is modified using
[<][STAT][1BAR][BINS]. Press [CANCL] to return to normal display.

[SCATR]: produces a scatterplot of the data in Ycol column of the ZDATA matrix vs.
the data in Xcol column of the DATA matrix. Press [CANCL] to return to
normal display. Equation fitted will be stored in the variable EQ.

[STAT]: returns to [STAT] menu.
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[FIT]: Commands under this menu are used to fit equations to the data in columns Xcol and
Ycol of the

XDATA matrix.

[ZLINE]: provides the equation corresponding to the most recentfitting.
[ LR J: provides intercept and slope of most recentfitting.
y [PREDX]: given y find x for the fitting y = f(x).

x [PREDY]: given x find y for the fitting y = f(x).
[CORR]: provides the correlation coefficient for the most recent fitting.
[ COV ]: provides sample co-variance for the most recent fitting

[NXT]: to access the second menu. Within this menu you will find the following commands:
[PCOV]: shows population co-variance for the most recent fitting.
[STAT]: returns to [STAT] menu.

[SUMS]: Commands under this menu are used to obtain summary statistics of the data in
columns Xcol and

Ycol of the DATA matrix.

[ ZX ]: provides the sum of values in Xcol column.
[ ZY 1]: provides the sum of values in Ycol column.

[ £X*2 ]: provides the sum of squares of values in Xcol column.
[ ZY"2 ]: provides the sum of squares of values in Ycol column.
[ ZX*Y]: provides the sum of xy, i.e., the products of data in columns Xcol and Ycol.

[ NX 1]: provides the number of columns in the ZDATA matrix.

 

Example1 -- Let ZDATA be the matrix:

[1.1 37 7.8 |

37 89 101

22 59 25

55 125 612
6.8 15.1 2245
92 19.9 24743

10.0 21.5 55066]  
e Type the matrix in level 1 of the stack by using the matrix editor.

e To store the matrix into ZDATA, use: [STATm] [DATA] [«][XDAT]

e Calculate statistics of each column: [STAT][1VAR]:
[TOT] produces [38.5 87.5 82799.8]
[MEAN] produces [5.5. 12.5 11828.54...]
[SDEV] produces [3.39... 6.78... 21097.01...]
[MAXX] produces [10 21.5 55066]

[MINX] produces [1.1 3.7 7.8]
[NXT][VAR] produces [11.52 46.08 445084146.33]
[PSDEV] produces [3.142... 6.284... 19532.04...]
[PVAR] produces [9.87... 39.49... 381500696.85...]
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e Generate a scatterplot of the data in columns 1 and 2 and fit a straight line to it:

[STAT][ZPAR][RESET] resets statistical parameters

[NXT][STAT][PLOT][SCATR] produces scatterplot
[STATL] draws data fit as a straight line

[CANCL] returns to main display

e Determine the fitting equation and some of its statistics:

[STAT][FIT][ZLINE] produces '1.5+2*X"

[ LR] produces Intercept: 1.5, Slope: 2
3 [PREDX] produces 0.75
1 [PREDY] produces 3. 50
[CORR] produces 1.0
[COV] produces 23.04
[NXT][PCOV] produces 19.74

e Obtain summary statistics for data in columns 1 and 2: [STAT][SUMS]:

[ =X ] produces 38.5

[ ZY ] produces 87.5
[ZX"2] produces 280.87
[ZY"2] produces 1370.23

[ ZX*Y] produces 619.49
[ NZ ] produces 7

e Fit data using columns 1 (x) and 3 (y) using a logarithmic fitting:

[NXT][STAT][ZPAR][3][YCOL] select Ycol = 3, and
[MODL][LOGFI] select Model = Logfit
[NXT][STAT][PLOT][SCATR] produce scattergram of y vs. x
[STATL] show line for log fitting

Obviously, the log-fit is not a good choice.

[CANCL] returns to normal display.

e Select the best fitting by using:

[STAT][ZPAR][MODL][BESTF] shows EXPFIT as the bestfit for these data
[NXT][STAT][FIT][ZLINE] produces '2.6545*EXP(0.9927*X)'
[CORR] produces 0.99995... (good correlation)
2300[PREDX] produces 6.8139
5.2 [PREDY] produces 463.37

e To return to STAT menu use: [NXT][STATS]

e To get your variable menu back use: [VAR].

Next, we will introduce some advanced concepts in statistics relevant to the generation of
confidence intervals, and to the testing of hypotheses using statistics from samples.
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Confidence intervals

Statistical inference is the process of making conclusions about a population based on
information from sample data. In order for the sample data to be meaningful, the sample
must be random, i.e., the selection of a particular sample must have the same probability as
that of any other possible sample out of a given population. The following are some terms
relevant to the concept of random sampling:

e Population: collection of all conceivable observations of a process or attribute of a
component.

eo Sample: sub-set of a population.
e Random sample: a sample representative of the population.

e Random variable: real-valued function defined on a sample space. Could be discrete or
continuous.

If the population follows a certain probability distribution that depends on a parameter 9, a

random sample of observations (X1,X;,Xs,... , Xn), of size n, can be used to estimate 9.

eo Sampling distribution: the joint probability distribution of X;,X;,X3,... , X,.

eo A statistic: any function of the observations that is quantifiable and does not contain any
unknown parameters. A statistic is a random variable that provides a means of estimation.

e Point estimation: when a single value of the parameter 0 is provided.
e Confidence interval: a numerical interval that contains the parameter 6 at a given level of

probability.

e Estimator: rule or method of estimation of the parameter 6.
eo Estimate: value that the estimator yields in a particular application.

Example 1 -- Let X represent the time (hours) required by a specific manufacturing process to
be completed. Given the following sample of values of X:

2.2 25 21 2.3 2.2

The population from where this sample is taken is the collection of all possible values of the
process time, therefore, it is an infinite population. Suppose that the population parameter

we are trying to estimate is its mean value, pn. We will use as an estimator the mean value of
the sample, X, defined by (a rule):

n

Nx
ieX=

S
|

i=l

For the sample under consideration, the estimate of pu is the sample statistic

X = (2.2+2.5+2.1+2.3+2.2)/5 = 2.36.

This single value of X, namely x = 2.36, constitutes a point estimation of the population
parameter pl.

 

A note on random variables
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Typically the name of a random variable is referred to by using an upper case letter (as in Xin
the example above), while a specific value taken by the variable is referred to with the

corresponding lower case letter (as in x in the example above).

When calculating probabilities of discrete random variables, for example, you would write “the
probability that the random variable X takes the value x is 025” using the notation: PriX =
x] = 0.25. If a random variable X can only take the discrete values x, xz, X3, ..., then we can

write:

 

PrX < xk] = Pr[X=xq] + Pr[X=x3]+...+ Pr[X=x]
PriX < xx] = Pr[X < xk.1] = Pr[X=x41] + Pr[X=xz]+...+ Pr[X=xx1]

PriX > x] = 1 - Pr{X <x]

PriX>xk] =1-Pr[X <xk] =1-Pr[X < xx]

For continuous random variables it does not make sense to talk about the random variable X

being equal to a specific value (in fact, for any continuous random variable X and any value x,
Pr[X=x] = 0). Instead, we talk about the random variable X belonging to the interval limited by
the values x { and x, or x < X < x. If this probability is p, the following expression can be

written:

Prix; < X < x3] = Pr[xq < X<x3] = Pr[xq £X < x3] = Pr[x; £X<x;] =p.

Refer to Chapters 3 and 4 for some examples on calculations using well-known continuous and

discrete probability distributions.

 

Estimation of Confidence Intervals

The next level of inference from point estimation is interval estimation, i.e., instead of
obtaining a single value of an estimator we provide two statistics, a and b, which define an
interval containing the parameter 6 with a certain level of probability. The end points of the
interval are known as confidence limits, and the interval (a,b) is known as the confidence

interval.

 

Definitions
 

Let (C,,C,) be a confidence interval containing an unknown parameter 6.

e (Confidence level or confidence coefficient is the quantity (1-a), where 0 < a < 1, such that

PrilCi<0<Cy]=1-0q.

This defines the so-called two-sided confidence limits.

e A lower one-sided confidence interval is defined by Pri[C,< 6] =1 - 0c.

e An upper one-sided confidence interval is defined by Prd < Cy] =1- 0.

eo The parameter a is known as the significance level. Typical values of a are 0.01, 0.05,

0.1, corresponding to confidence levels of 0.99, 0.95, and 0.90, respectively.

320 © 2000 Gilberto E. Urroz

All rights reserved



 

Confidence intervals for the population mean when the population variance is known
 

Let X be the mean of a random sample of size n, drawn from an infinite population with
known standard deviation o. The 100(1-a) % [i.e., 99%, 95%, 90%, etc.], central, two-sided

confidence interval for the population mean pu is ( X-zZy2-6/\Nn, X+zg/2-0/\n ), where zy; is a
standard normal variate that is exceeded with a probability of o /2. The standard error of
the sample mean, X,is -o/Vn.

The one-sided upper and lower 100(1-a) % confidence limits for the population mean pu are,
respectively,
X+z,-0/Nn , and X-z4-6/Vn . Thus, a lower, one-sided, confidence interval is defined as (-o ,

X+z,-0/\n), and an upper, one-sided, confidence interval as (X—z,-0/\n,+=). Notice that in
these last two intervals we use the value z,, rather than z.,.

 

 
The standard normal distribution
 

To indicate that the continuous random variable X follows the normal probability distribution

we use the notation X - N(u,o%), read as “N is normal with mean pu and variance or.” A

continuous random variable Z that follows the standard normal distribution is described as Z -

N(0,1), i.e., a normal distribution with n= 0, and ¢* = 1.

The definition of the value z,,;, used earlier to define the two-sided confidence interval for the

mean, is presented in the figure below. The curve represents the probability density function
of the standard normal distribution.

In general, the value % in the standard normal distribution is defined as that value of z whose

probability of exceedence is k, i.e., Pr[Z>z] = k, or Pr[Z<z] = 1 - k. The normal distribution
was described in Chapter 4.

 

For this example

+y
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Confidence intervals for the population mean when the population variance is unknown

Let X and S, respectively, be the mean and standard deviation of a random sample of size n,

drawn from an infinite population that follows the normal distribution with unknown standard

deviation o. The 100-(1-a) % [i.e., 99%, 95%, 90%, etc.] central two-sided confidence interval

for the population mean 1, is ( X= to1,q/2 -S /Vn, X+ to, o/2 S/N), where to.7 is Student's t
variate with v = n-1 degrees of freedom and probability a./2 of exceedence.

The one-sided upper and lower 100- (1-o) % confidence limits for the population mean pu are,

respectively,
X+ th1, a2 S/n , and X- th1, a2 -S /\n.

|

 
Small samples and large samples

The behavior of the Student’s t distribution is such that for n>30, the distribution is

indistinguishable from the gandard normal distribution. Thus, for samples larger than 30

elements when the population variance is unknown, you can use the same confidence interval
as when the population variance is known, but replacing c with S. Samples for which n>30 are
typically referred to as large samples, otherwise they are small samples.

 

Confidence Interval for a Proportion

A discrete random variable X follows a Bernoulli distribution if X can take only two values, X = 0
(failure), and X = 1 (success). Let X - Bernoulli(p), where p is the probability of success, then

the mean value, or expectation, of X is E[X] = p, and its variance is Var[X] = p(1-p).

If an experiment involving X is repeated n times, and k successful outcomes are recorded, then

an estimate of p is given by p’= k/n, while the standard error of p’ is oy = J(p-(1-p)/n) . In
practice, the sample estimate for p, i.e., p’replaces p in the standard error formula.

For a large sample size, n>30, and np > 5 and n(1-p)>5, the sampling distribution is very
nearly normal. Therefore, the 100(1-a) % central two-sided confidence interval for the

population mean p is (p’+Zq/2'0y, P'+Za/2'0y ). For a small sample (n<30), the interval can be

estimated as (p’-tn.1,0/2:0p",P *+tn-1,0/2:0p")-

 

Sampling distribution of differences and sums of statistics

Let S$; and S; be independent statistics from two populations based on samples of sizes n; and
n;, respectively. Also, let the respective means and standard errors of the sampling

distributions of those statistics be psy and ps;, and osy and os, respectively. The differences

between the statistics from the two populations, S¢-S;, have a sampling distribution with mean

Ws1.s2 = Ust - HUs2,

and standard error

2 2\1/2
Osis2 = (Os1” + 0527)

Also, the sum of the statistics T+T, has a mean

322 © 2000 Gilberto E. Urroz

All rights reserved



MH s1+52 = Usq +s,

and standard error

Ostus2 = (Ost + 05%)" 2.

Estimators for the mean and standard deviation of the difference and sum of the statistics S;

and S; are given by:

Hg+s, =X, X,,

 

In these expressions, X; and X; are the values of the statistics S; and S; from samples taken

from the two populations, and os? and og’ are the variances of the populations of the
statistics S; and S; from which the samples were taken.

 

Confidence intervals for sums and differences of mean values
 

If the population variances o12 and 0,2 are known, the confidence intervals for the difference

and sum of the mean values of the populations, i.e., putu,, are given by:

    
2 2

0, 0, Vv
—+—=, (XxX) +z,"
n, n,

   

 

(X,£X,)-2z,, ’

 

For large samples, i.e., ny > 30 and nm; > 30, and unknown, but equal, population variances oil =

0,2, the confidence intervals for the difference and sum of the mean values of the populations,

i.e., wy, are given by:

      

 

Ss: Ss _
pt (XxX) +z,
n,n,

(X, rT X,)—2z4,

 

If one of the samples is small, i.e., ny < 30 or m; < 30, and with unknown, but equal, population

variances oi? = 02, we can obtain a “pooled” estimate of the variance of pyty,, as

sp? = [(ng-1)512+(nz-1)-522]/( ny+np-2).

In this case, the centered confidence intervals for the sum and difference of the mean values

of the populations,i.e., pty, are given by:

(xX, £x,)~1 52(XE X,) Hops 50)va /2

where v = ny+n;-2 is the number of degrees of freedom in the Student’s t distribution.

In the last two options we specify that the population variances, although unknown, must be

equal. This will be the case in which the two samples are taken from the same population, or
from two populations about which we suspect that they have the same population variance.
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However, if we have reason to believe that the two unknown population variances are
different, we can use the following confidence interval

Ev 2

(X, +X) ~1, 00a 5%5

where the estimated standard deviation for the sum or difference is

 

and n, the degrees of freedom of the t variate, are calculated using the integer value closest to

[(S}/n)+(S; In)’

[(S?/ ny) (ny =DI+[(S3 ny) (ny =D]

 Determining confidence intervals using the HP 49 G’s own features

The program 6. Conf Interval can be accessed by using [][STAT][A][OK]. The program offers
the following options:

 

 

 
  

EAD [Conra :THON confidence anterugls

ped 11. 2-INT: 1 KH. _—
Je |3.2-INT: pdi-p2..
4: |z.2-InT: 1 F.
3: |4.2-InT: Fi-F2..
Zr |5.T-INT: 4 ow.
{= [6.T-INT: wi-u2..

III(TTIT

These options are to be interpreted as follows:

1.

2.

Z-INT: 1 p.: Single sample confidence interval for the population mean, u, with known

population variance, or for large samples with unknown population variance.
Z-INT: pl-p2.: Confidence interval for the difference of the population means, p- p;, with

either known population variances, or for large samples with unknown population
variances.

Z-INT: 1 p.: Single sample confidence interval for the proportion, p, for large samples with
unknown population variance.

Z-INT: pl- p2.: Confidence interval for the difference of two proportions, pi-p;, for large
samples with unknown population variances.
T-INT: 1 p.: Single sample confidence interval for the population mean, pu, for small
samples with unknown population variance.
T-INT: pl-p2.: Confidence interval for the difference of the population means, pi- pp, for
small samples with unknown population variances.
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Example 1 - Determine the centered confidence interval for the mean of a population if a
sample of 60 elements indicate that the mean value of the sample is x = 23.2, and its standard

deviation is s = 5.2. Use a = 0.05. The confidence level is C = 1-0 = 0.95.

Select case 1 from the menu shown above by pressing [OK]. Enter the values required in the
input form as shown:

BEES CONF. INT.: 4 uw, KNOWN o%PEE
%:23.2
«3.2
neo:
ES

gohfssence Level

LEpIT] [HELFL _[CAncL]ok

Press [HELP] to obtain a screen explaining the meaning of the confidence interval in terms of
random numbers generated by a calculator. To scroll down the resulting screen use the down-
arrow key [V¥]. Most pre-programmed random number generators produce uniform random
numbers in the interval (0,1). Therefore, the population mean and standard deviation are 0.5
and 0.2887, respectively. The explanation presented when you press [HELP] emphasizes the
fact that the value of p = 0.5 must be contained in the resulting confidence interval. Press
[OK] when done with the help screen. This will return you to the screen shown above.

To calculate the confidence interval, press [OK]. The result shown in the calculatoris:

FEE 95.2 Confidence interval HEE
Critical 2=11,959964

unin =21,88424
uw nax =24,51576

LL[HELElGERPHICARCLEOF|

The result indicates that a 95% confidence interval has been calculated. The Critical z value

shown in the screen above corresponds to the values +z,, in the @nfidence interval formula

( X=2o2-0/\n X+Zq/2-0/Nn ). The values u Min and pu Max are the lower and upper limits of

this interval, i.e., pu Min = X-zy/,-6/Vn, and p Max = X+zq/2-6/n.

Press [GRAPH] to see a graphical display of the confidence interval information:

0 2

-1.95936Y4 + Crit. 2 «+ 1.353364
21.88424 «+ *;,§ Ea + 345157¢

12%Z|
IITCRA(TTOT

The graph shows the standard normal distribution pdf (probability density function), the
location of the critical points +z,,, the mean value (23.2) and the corresponding interval limits
(21.88424 and 24.51576). Press [TEXT] to return to the previous results screen, and/or press
[OK] to exit the confidence interval environment. The results will be listed in the calculator’s
stack as follows:

RAD XYZ HEX C= ‘'¥' HLT
{HONEZ

2: Critical 2: ¢
-1. JoinesvasG

1: Inte al: ¢
zl. 842426353
24.5157573642 >

EAA(0ICCAETAETT

Example 2 -- Data from two samples (samples 1 and 2) indicate that x; = 57.8 and x; = 60.0.
The sample sizes are np = 45 and np = 75. If it is known that the populations’ standard
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deviations are oy = 3.2, and o; = 4.5, determine the 90% confidence interval for the difference

of the population means, i.e., y;- ls.

Press [—][STAT][A][OK] to access the confidence interval feature in the calculator. Press

[v][OK] to select option 2. Z-INT: u 1 - p2.. Enter the following values:

CONF. INT.: 2 Ww, KNOWN o$EE%
reO.
n:3.2 2:4.5
n:45, n2: 73.
¢ .9
Sanple nean For population 1

E258ICTEETEET

When done, press [OK]. The results, as text and graph, are shown below:

BRE 90.7 Confidence interval SEE
Critical 2=+1.644854

eu win 2-3, 360241
ou max =-1,039739 2

-1.€4485Y4 + Crit. 2 + 1.644854
=3.360241 + 30.7 S + -1. 033753

|__| [HELF lGRAFHICARCLLok [___[___[HELFITERT[cAncLlok

The variable Ap represents pu 1 - p2.
Example 3 - A survey of public opinion indicates that in a sample of 150 people 60 favor
increasing property taxes to finance some public projects. Determine the 99% confidence
interval for the population proportion that would favor incresing taxes.

Press [—][STAT][A][OK] to access the confidence interval feature in the calculator. Press
[v][V][OK] to select option 3. Z-INT: pu 1 - u2.. Enter the following values:

 

n: 156.
c:.99

Sanp le success Count

LEDIT][HELP L_lchncLlok |

When done, press [OK]. The results, as text and graph, are shown below:

HEE 99.2 Confidence interval $i
Critical 2=42,575829

a win =, 2969668
a max =, 5638332 z

-3.57582% + Crit. 2 + 2.572532%
.3963662 + Ea CI + 5020222

1 - 1 a

|___ [HELP JGRAPHICARCLL OR] ITE

Example 4 -- Determine a 90% confidence interval for the difference between two proportions

if sample 1 shows 20 successes out of 120 trials, and sample 2 shows 15 successes out of 100
trials.

Press [~][STAT][A][OK] to access the confidence interval feature in the calculator. Press
[Y1[Y1[Y1[OK] to select option 4. Z-INT: p1 - p2.. Enter the following values:

 

Sanple 1 success Ceo

ETid.
unt

ICTI(TEET
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When done, press [OK]. The results, as text and graph, are shown below:

HEE 99.2 Confidence interval SHEE
Critical 2=42.575829

ea nin =—_ 11083718
aa max =, 1437651 z

-2.575823 + Crit. 2 + 2.57522%
=.1103718 + 33.& CI «+ LL

.0166£67

|__|[HELE IGEAFHICHNCLLok L___[___THELFTERT]CARCLLOF

Example 5 - Determine a 95% confidence interval for the mean of the population if a sample of
50 elements has a mean of 15.5 and a standard deviation of 5. The population’s standard
deviation is unknown.

Press [][STAT][A][OK] to access the confidence interval feature in the calculator. Press
[A][A][OK] to select option 5. T-INT: pu. Enter the following values:

EB CconF. INT. 1 UNKNONN o$5
x:

sx: 5,

n: 58.
¢: .95
Sanple wean

LECIT][HELP_CHNCL]OK

When done, press [OK]. The results, as text and graph, are shown below:

HH 95.2 Confidence interval $585
Critical T=12, 089575

Ww nin =14,67902
uw nax =16,92098 2 1

-2.003575 «Crit. T+ 2.003575
14.07%02 + Bd£ + 1€.92038

1[HELPLGRAFHICANCLLok] ITY

The figure showns the Student’s t pdf for v = 50 - 1 = 49 degrees of freedom.

Example 6 -- Determine the 99% confidence interval for the difference in means of two
populations given the sample data: x; = 157.8 , x; = 160.0, ny = 50, n; = 55. The populations
standard deviations are sq; = 13.2, s; = 24.5.

Press [~][STAT][A][OK] to access the confidence interval feature in the calculator. Press
[A][OK] to select option 6. T-INT: pl-p2.. Enter the following values:

BEBCONF. INT.: 2 Ww, UNKNOWN «355
#:157.8 72: 160.

£1:13.2 s2:24.,5
n:5@. n2: 55.
c¢: ,99 MPoo ted

Pooled if checked

EDIT CHKIHELP]  JCARCL]ok

When done, press [OK]. The results, as text and graph, are shown below:

BEB 99.2 Confidence intervalHE
Critical T=1+2_,635632

en win =—-12.20098
on hax =7, 808978 1

-2.635632 «Crit. T+ 2.635632
-12.2003¢ + 93,3%CI +7. #00378

LL[KELP[GRAPHICARCLEOF] Ia:

These results assume that the values s; and s; are the population standard deviations. If these
values actually represent the samples’ standard deviations, you should enter the same values
as before, but with the option _pooled selected. The results now become:
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HER 99.2 Confidence Hisegun
Critical T=42,. 624406

en Hin =—12,42526
au max =8.@25261 I

=2.624406 «Crit. Te2.62440¢
=-12.4252¢ + ”37aCI «2. oasas1

AESE](INNAREINT(TY(ETTIT

Confidence intervals for the variance

X, of independent

To develop a formula for the confidence interval for the variance, first we introduce the
sampling distribution of the variance: Consider a random sample Xq, X;

normally-distributed variables with mean pu, variance o*, and sample mean X. The statistic

S? =      

is an unbiased estimator of the variance o

The quantity,

5EDVCESR(n—1)-=

has a xn.1" (chi-square) distribution with v = n-1 degrees of freedom

The (1-0)-100 % two-sided confidence intervalis found from

Prix’n1,1-ar2 < (n-1)-S2/0? < Yat] = 1- 0.

as illustrated in the figure below.

 

 

Confidence interval—
_100(1- a)%

012 / N
; \

/ Y,
4 I0.1 \

h

0.08 5\

0.061 .

0.04] ~

: a0.02 is 2

0 4 B6 8 10 12 14 16 18 20   

 

 

The confidence intervalfor the population variance ¢ is therefore
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[(n-1)S* Xna.a2; (0-1):S% Xntt-aral-

where nt a/2 , and Xont1-ar2 are the values that a x? variable, with v = n-1 degrees of freedom,

exceeds with probabilities a/2 and 1- 0 /2, respectively.

The one-sided upper confidence limit for ¢ is defined as (n-1)-5%/ x%n.1.1-a-

Example 1 - Determine the 95% confidence interval for the population variance o” based on the
results from a sample of size n = 25 that indicates that the sample variance is s* = 12.5.

In Chapter 12 we defined a variable EQC containing the program << y x UTPC a - >>. In this

program, vy represents the degrees of freedom (n-1), and o represents the probability of
exceeding a certain value of x xh), i.e.,

Pry? > Yo] =1-aq.

The contents of EQC can be copied into variable EQ , and the HP 49 G numerical solver used to

solve for x ?) given the probability of exceedence, a. For the present example, the value of

a = 0.05. To obtain the value Yn a2 = x224,0.025, we use the following:

[VAR][ EQC ] ‘EQ’ [STO] [r][NUM.SLV][OK]

Enter the values y= 24 and o = 0.025 in the input form. Highlight the field for x, and press
[SOLVE]. The result is shown in the screen below:

 

HES SOLVE EQUATION
v x UTPC « —

 

  

 

x: EE
« B25
Enter value or press SOLVE
EoITlJUARS[INFO[SOLVE]

Thus,

Wontar2 = 240025 = 39.3640770266.

On the other hand, the value ¥%n.1.a2 = YX’ 240.975 is calculated by using the values y = 24 and o =
0.975. The input screen for the numerical solver will look like this:

 

  
   

$8 SOLVE ECURTION Sass

 

      x:

oo:
2,40811582175|
L975

Enter value or press SOLVE

IEECTTSEEE

Thus,

Xn-t1-ar2 = x%240.975 = 12.4011502175.

The lower and upper limits of the interval will be:

(n-1)-S2/ Xonar = (25-1)-12.5/39.3640770266 = 7.62116179676

and,

(n-1)-5%/ Xont1-ar2 = (25-1)-12.5/12.4011502175 = 24.1913044144

Thus, the 95% confidence interval for this example is: 7.62116179676 < oF < 24.1913044144.
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Hypothesis testing

A hypothesis is a declaration made about a population (for instance, with respect to its mean).
Acceptance of the hypothesis is based on a statistical test on a sample taken from the
population. The consequent action and decision making are called hypothesis testing.

The process of hypothesis testing consists on taking a random sample from the population and
making a statistical hypothesis about the population. If the observations do not support the
model or theory postulated, the hypothesis is rejected. However, if the observations are in
agreement, then hypothesis is not rejected, but it is not necessarily accepted. Associated

with the decision is a level of significance o.

Procedure for testing hypotheses

The procedure for hypothesis testing involves the following six steps:

1. Declare a null hypothesis, Hy. This is the hypothesis to be tested. For example, Ho: pi-y; =
0, i.e., we hypothesize that the mean value of population 1 and the mean value of
population 2 are the same. If Hy is true, any observed difference in means is attributed to
errors in random sampling.

2. Declare an alternate hypothesis, Hy. For the example under consideration, it could be

Hi: wi-pz # 0 [Note: this is what we really want to test.]
3. Determine or specify a test statistic, T. In the example under consideration, T will be

based on the difference of observed means, Xi;- X;.
4. Use the known (or assumed) distribution of the test statistic, T.
5. Define a rejection region (the critical region, R) for the test statistic based on a pre-

assigned significance level a.
6. Use observed data to determine whether the computed value of the test statistic is within

or outside the critical region. If the test statistic is within the critical region, then we say
that the quantity we are testing is significant at the 1000 percent level.

Notes:
 

 

1. For the example under consideration, the alternate hypothesis Hi: py-u; # 0 produces what
is called a two-tailed test. If the alternate hypothesis is Hq: py-p, > 0 or Hy: py-pp < 0, then we

have a one-tailed test.

2. The probability of rejecting the null hypothesis is equal to the level of significance, i.e.,

Pr[TeR|Hg]=a.. The notation Pr[A|B] represents the conditional probability of event A given
that event B occurs.
 

Errors in hypothesis testing

In hypothesis testing we use the terms errors of Type | and Type Il to define the cases in which
a true hypothesis is rejected or a false hypothesis is accepted (not rejected), respectively. Let

T = value of test statistic, R = rejection region, A = acceptance region, thus, RNA = J, and

RUA = Q, where Q = the parameter space for T, and © = the empty set. The probabilities of
making an error of Type | or of Type Il are as follows:

Rejecting a true hypothesis, Pr[Type | error] = Pr[TeR|Hg] =l=a
Not rejecting a false hypothesis, Pr[Type ll error] = Pr[TeA|H{] B
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Now, let's consider the cases in which we make the correct decision:

Not rejecting a true hypothesis, Pr[Not(Type | error)] = Pr[TeAlHgl = 1 - «
Rejecting a false hypothesis, Pr[Not(Type ll error)] = Pr [TeR|H{]=1-8

The complement of B is called the power of the test of the null hypothesis Hy vs. the
alternative H;. The power of a test is used, for example, to determine a minimum sample size
to restrict errors.

Selecting values of a. and 8

A typical value of the level of significance (or probability of Type | error) is o = 0.05, (i.e.,
incorrect rejection once in 20 times on the average). If the consequences of a Type | error are

more serious, choose smaller values of a, say 0.01 or even 0.001.

The value of B, i.e., the probability of making an error of Type Il, depends on o, the sample
size n, and on the true value of the parameter tested. Thus, the value of B is determined after

the hypothesis testing is performed. It is customary to draw graphs showing 3, or the power of

the test (1-PB ), as a function of the true value of the parameter tested. These graphs are

called operating characteristic curves or power function curves, respectively.

Inferences concerning one mean

Two-sided hypothesis

The problem consists in testing the null hypothesis Ho: pu = po, against the alternative
hypothesis, Hy: p# 1, at a level of confidence (1-a)100%, or significance level a, using a sample
of size n with a mean x and a standard deviation s. This test is referred to as a two-sided or
two-tailed test. The procedure for the test is as follows:

First, we calculate the appropriate statistic for the test (t, or z,) as follows:

o If n < 30 and the standard deviation of the population, oc, is known, use

x —
z, — H,

c/n

° If n > 30, and o is known, use z, as above. If ois not known, replace s for gin z,, i.e.,

use

7 = X—U,

o
s/aln

° If n < 30, and s is unknown, use the t-statistic

RE el.
‘ s/n

with v =n - 1 degrees of freedom.
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Then, calculate the P-value (a probability) associated with either z, or t, , and compare it to a
to decide whether or not to reject the null hypothesis. The Rvalue for a two-sided test is

defined as either

P-value = P(1z|>|z,1), or, P-value = P(|t|>]ts]).

The criteria to use for hypothesis testing is:

. Reject H, if P-value < a

. Do not reject H, if P-value > a.

The P-value for a two-sided test can be calculated using the probability functions in the

HP48G/GX as follows:

o If using z, P-value = 2-UTPN(0,1, | Zo)

. If using t, P-value = 2.UTPT(v, | tol)

Example -- Test the null hypothesis Hy: pu = 22.5 ( = p,), against the alternative hypothesis,

Hi: n#22.5, at a level of confidence of 95% i.e., a = 0.05, using a sample of size n = 25 with a

mean x = 22.0 and a standard deviation s = 3.5. We assume that we don't know the value of
the population standard deviation, therefore, we calculate a t statistic as follows:

; xX—-pn, 220-225 0.7142

° s/n 35/425

The corresponding P-value, for n = 25 - 1 = 24 degrees of freedom is

 

P-value = 2.UTPT(24,-0.7142) = 2.0.7590 = 1.5169,

since 1.5169 > 0.05, i.e., P-value > ¢, we cannot reject the null hypothesis Hy: pu = 22.0.

One-sided hypothesis

The problem consists in testing the null hypothesis Ho: p = p,, against the alternative

hypothesis, Hi: pu>p, or Hi: p<, at a level of confidence (1-a)100%, or significance level «a,
using a sample of size n with a mean x and a standard deviation s. This testis referred to as a
one-sided or one-tailed test. The procedure for performing a one-side test starts as in the

two-tailed test by calculating the appropriate statistic for the test (t, or z,) as indicated above.

Next, we use the PRvalue associated with either z or t , and compare it to o to decide

whether or not to reject the null hypothesis. The P-value for a two-sided test is defined as

either

P-value = P(z > |z,]), or, P-value = P(t > |t,]).

The criteria to use for hypothesis testing is:

o Reject H, if P-value < a
° Do not reject H, if P-value > a.
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Notice that the criteria are exactly the same as in the two-sided test. The main difference is

the way that the Pvalue is calculated. The Pvalue for a one-sided test can be calculated
using the probability functions in the HP48G/GX as follows:

° If using z, P-value = UTPN(0,1,z,)

° If using t, P-value = UTPT(v,t,)

Example 2 -- Test the null hypothesis H,: pu = 22.0 ( = 1), against the alternative hypothesis,

Hq: n>22.5 at a level of confidence of 95% i.e., a = 0.05, using a sample of size n = 25 with a

mean x = 22.0 and a standard deviation s = 3.5. Again, we assume that we don't know the
value of the population standard deviation, therefore, the value of the t statistic is the same as

in the two-sided test case shown above, i.e., t, = -0.7142, and P-value, for v = 25 - 1 = 24

degrees of freedom is

P-value = UTPT(24, |-0.7142|) = UTPT(24,0.7124) = 0.2409,

since 0.2409 > 0.05, i.e., P-value > a, we cannot reject the null hypothesis Hy: pu = 22.0.

Inferences concerning two means

The null hypothesis to be tested is Ho: py-p; = 9, at a level of confidence (1-a)100%, or

significance level a, using two samples d sizes, ny and np, mean values x; and x, and

standard deviations § and §. If the populations standard deviations corresponding to the

samples, o; and ¢,, are known, or if ny > 30 and n; > 30 (large samples), the test statistic to be

used is

-¥,)-0
0 2

Oo oc,+

n, hn,

If ny < 30 or n; < 30 (at least one small sample), use the following test statistic:

{= (x, —X,)-0 nn, (n +n, —2)

Jn, =1)s? + (n, = 1)s? nm

If the alternative hypothesis is a two-sided hypothesis, i.e., Hi: ui-p; # 6, The P-value for this
test is calculated as

 
 

Two-sided hypothesis

° If using z, P-value = 2-UTPN(0,1, |z,l)

° If using t, P-value = 2-UTPT(v, tol)

with the degrees of freedom for the t-distribution given by v = ny + nz - 2.
The test criteria are
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° Reject H, if P-value < a

. Do not reject H, if P-value > a.

One-sided hypothesis

If the alternative hypothesis is a two-sided hypothesis, i.e., Hi: py-pp < §, or, Hy: py-pp < §,, the

P-value for this test is calculated as:

° If using z, P-value = UTPN(0,1, |z,])

° If using t, P-value = UTPT(v, | tol)

The criteria to use for hypothesis testing is:

. Reject H, if P-value < a

° Do not reject H, if P-value > a.

 

Paired sample tests
 

When we deal with two samples of size n with paired data points, instead of testing the null

hypothesis, H,: pi-p2 = 8, using the mean values and standard deviations of the two samples,

we need to treat the problem as a single sample of the differences of the paired values. In

other words, generate a new random variable X = X;-X;, and test H,: pu = §, where pu represents
the mean of the population for X. Therefore, you will need to obtain x and s for the sample
of values of x. The test should then proceed as a one-sample test using the methods described
earlier.

Inferences concerning one proportion

Suppose that we want to test the null hypothesis, Hy: p = pg, where p represents the probability
of obtaining a successful outcome in any given repetition of a Bernoulli trial. To test the
hypothesis, we perform n repetitions of the experiment, and find that k successful outcomes
are recorded. Thus, an estimate of p is given by

p’ = k/n.

The variance for the sample will be estimated as

spl = p’(1-p’)/n = k-(n-k)/n.

Assume that the Z score, Z = (p-po)/sp, follows the standard normal distribution, i.e., Z -

N(0,1). The particular value of the statistic to test is zg = (p’-po)/sp.

Instead of using the P-value as a criterion to accept or not accept the hypothesis, we will use
the comparison between the critical value of z0 and the value of z corresponding to o or a/2.

Two-tailed test

If using a two-tailed test we will find the value of z 2, from

Pr{Z> zq/3] = 1-®(zas2) = 0/2, or D(Z 4/2) = 1-0/2,
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where ®(z) is the cumulative distribution function (CDF) of the standard normal distribution.

Reject the null hypothesis, Hy, if zy >z/7, or if zy < - z,/7.

In other words, the rejection region is R = { |zg| > z,2 }, while the acceptance region is A =

{1zol < Zas2 }.

One-tailed test

If using a one-tailed test we will find the value of S, from

Pr{Z> z,] = 1-®(zo) = a, or ®(z 4) = 1- a,

Reject the null hypothesis, Hy, if zg >z,, and Hy: p>po, or if zg < - z,, and Hy: p<po.

Testing the difference between two proportions

Suppose that we want to test the null hypothesis, Hy: pi-p2 = po, Where the p's represents the
probability of obtaining a successful outcome in any given repetition of a Bernoulli trial for two
populations 1 and 2. To test the hypothesis, we perform n; repetitions of the experiment from
population 1, and find that lg successful outcomes are recorded. Also, we find k successful
outcomes out of n, trials in sample 2. Thus, estimates of p; and p; are given, respectively, by

pi’ = kq/ny, and p2’ = k,/n;.

The variances for the samples will be estimated, respectively, as

s12= pi’ (1-p1’)/n1 = ke(ny-kq)/ne’, and 53° = po’ (1-p2’)/ ny = ky-(na-ky) /n.

And the variance of the difference of proportions is estimated from:

Sp’ =s5.t 45,7.

Assume that the Z score, Z = (p1-p2-Po)/sp, follows the standard normal distribution, i.e., Z -

N(0,1). The particular value of the statistic to test is zg = (p1’-p2’-Po)/Sp-

Two-tailed test

If using a two-tailed test we will find the value of z ,,, from

PrlZ> 4/2] = 1-®(za/2) = 0/2, OF D(Z 4/2) = 1-0/2,

where ®(z) is the cumulative distribution function (CDF) of the standard normal distribution.

Reject the null hypothesis, Hg, if zg >z4,7, or if zg < - Zy/2.

In other words, the rejection region is R = { |zg| > 7,7; }, while the acceptance region is A =

{1201 < Zy/2 }.
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One-tailed test

If using a one-tailed test we will find the value of z,, from

Pr{Z> z,] = 1-®(zy) = a, or O(z 4) = 1-0,

Reject the null hypothesis, Ho, if zg >z,, and Hq: py-p2 > po, or if zg < - zy, and Hy: p1-p2 <po.

Hypothesis testing using pre-programmed features

The HP 49 G calculator provides with hypothesis testing procedures under program 6. Conf
Interval can be accessed by using [~][STAT][A][A][OK].

As with the calculation of confidence intervals, discussed earlier, this program offers the
following 6 options:

 

 

   

FAD [He iSHON Hipothasis tests

re —
eo 13 Z-Test: pl-pd..
di |7.2-Test: 1 F..
35 |4.2-Test: FPL-F2..
25 |5.T-Test: 1 Wn.
i: E.T-Test: pi-p2..

IIITTT

These options are interpreted as in the confidence interval applications:

1. Z-Test: 1 p.: Single sample hypothesis testing for the population mean, pu, with known
population variance, or for large samples with unknown population variance.

2. Z-Test: pul-u2.: Hypothesis testing for the difference of the population means, pi- yp, with
either known population variances, or for large samples with unknown population
variances.

3. Z-Test: 1 p.: Single sample hypothesis testing for the proportion, p, for large samples with
unknown population variance.

4. 1-Test: pl— p2.: Hypothesis testing for the difference of two proportions, p-p;, for large
samples with unknown population variances.

5. T-Test: 1 p.: Single sample hypothesis testing for the population mean, pu, for small
samples with unknown population variance.

6. T-Test: pul-u2.: Hypothesis testing for the difference of the population means, pi- pw, for
small samples with unknown population variances.

Try the following exercises:

Example 1 - For po = 150, o = 10, x = 158, n = 50, for o = 0.05, test the hypothesis Hop: 1 = po,

against the alternative hypothesis, Hq: pu # pg.

Press [~][STAT][A][A][OK] to access the confidence interval feature in the calculator. Press

[OK] to select option 1. Z-Test: 1 pu.
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Enter the following data and press [OK]:

 

Null hypothesis population nean

[07I ITC STRET

You are then asked to select the alternative hypothesis:

  EE 2-TEST: 4 Wu, KNOWN oF

. [Alternative Hypothesis

 

&

POlixi50.
Null hypothesis population wean

II(TTYIT

Select pu # 150. Then, press [OK]. The result is:

HBReject u=150. at 5.2 LVL 258%

Test 2=35,656854
Prob=1,541726E-8

Critical 2=41,.959964
Critical 2={ 147.2 152.8

|__|[HELE JikAFHICARCLLOR

Then, we reject Hp: p= 150, against Hy: pu # 150. The test z value is zp = 5.656854. The P-value
is 1.54x10%. The critical values of +z,; = +1.959964, corresponding to critical x range of
{147.2 152.8}.

This information can be observed graphically by pressing the soft-menu key [GRAPH]:

LI g
-1.96996Y4 +Crit. 2+ 1.%5%9:Y

Test 2=5.65685Y
R=158.

147.2322 «Crit, 7+ 153.7718
I 150. hi

|__|HELFTEXT [CANCL] OK

 

Example 2 -- For po = 150, x = 158, s = 10, n = 50, for o = 0.05, test the hypothesis Hop: [1 = Lo,

against the alternative hypothesis, H: pu > pp. The population standard deviation, oc, is not

known.

Press [~][STAT][A][A][OK] to access the confidence interval feature in the calculator. Press

[OK] [A][A] to select option 5. T-Test: 1 p.:
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Enter the following data and press [OK]:

  
TEST: 1 wu, UNKNONN oSHEE

n: 58.

Null hypothesis population Han

EIT] [HELP]fChncL]ok

Select the alternative hypothesis, Hi: n> 150, and press [OK]. The result is:

FERRE Reject u=150. at 5.72 LVL 88K
Test 1=5,656854

probs , BBBBBA392525
Critical 1=1,.676551
Critical %=152,371

AITAFTTEMT

We reject the null hypothesis, Hy: po = 150, against the alternative hypothesis, Hi: yu > 150.
The test t value is to = 5.656854, with a P-value = 0.000000393525. The critical value of t is tq

= 1.676551, corresponding to a critical x = 152.371.

Press [GRAPH] to see the results graphically as follows:

-— f+

Tq 1
Crit. T+ 1 676551

Test T=5.&65685Y4
x=158.

[ | q
EE IA ES ETEET

Crit. z+ 153.271
i500.

Example 3 - Data from two samples show that x; = 158, x; = 160, s; = 10, s; = 4.5, n1 = 50,
and n, = 55. For a = 0.05, and a “pooled” variance, test the hypothesis Hy: p;—1, = 0, against
the alternative hypothesis, Hy: p—1, < 0.

Press [~][STAT][A][A][OK] to access the confidence interval feature in the calculator. Press

[OK] [A] to select option 5. T-Test: ul-u2.: Enter the following data and press [OK]:

 

    
T-TEST: 2 u, UNKNOWN oSEE

a:S58. x2: 168.
s1:1@., 52: 4.5
ni: 58, nz: 55.
« .@5 ¢ Pooled?

Sanple Mean for population 1

LEOIT][HELP_CANCL]OR

Select the alternative hypothesis pul<pu2, and press [OK]. The result is:
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FEE accept wi=u2 at 5.7 LVL SEE
Test 1=—1,341776

Prob=, 89130961
Critical T=—1,659782

L_1[HELFJikAPH[CANCLLok

Thus, we accept (more accurately, we do not reject) the hypothesis: Hy: p,—, = 0, or Hy:

Wi=l,, against the alternative hypothesis Hy: p,—, < 0, or Hy: uy=u;. The test t value is t) = -
1.341776, with a P-value = 0.09130961, and critical t is -t, = -.1659782.

The graphical results are:

raTe T
-1.6585%733 + Crat. T

Text T=-1.34177e
ax=-3,

2.474008 +Crit. aX
| 1 a Aa

|[HELFJ TERT JCANCL] OH |

 

These three examples should be enough to understand the operation of the hypothesis testing
pre-programmed feature in the calculator.

Inferences concerning one variance

The null hypothesis to be tested is , Ho: o® = oo, at a level of confidence (1-0)100%, or
significance level a, using a sample of size n, and variance s2. The teststatistic to be used is a
chi-squared test statistic defined as

) (n—1)s°
0 2

0,

Depending on the alternative hypothesis chosen, the P-value is calculated as follows:

e Hyd <oyl P-value = P(x<xo?) = 1-UTPC(v, Xo?)
e Hi: 0?> 00 P-value = P(x%>02) = UTPC(V, Xo)
e Hy: 0% #0. P-value =2-min[P(x2<x0?), P(x*>Xo2)] = 2-min[1-UTPC(v, Xo), UTPC(V,x0%)]

where the function min[x,y] produces the minimum value of x or y (similarly, max[x,y]
produces the maximum value of x or y). UTPC(v,x) represents the HP48G/GX upper-tail

probabilities for v = n - 1 degrees of freedom.
The test criteria are the same as in hypothesis testing of means, namely,

° Reject H, if P-value < «a

° Do not reject H, if P-value > a.
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Please notice that this procedure is valid only if the population from which the sample was
taken is a Normal population. In order to check for normality of data, you can use the
procedure outlined in section 5.11 in your Textbook, or use the CHKN sub-directory described
in section 12 of Part Il of this guide.

Example -- Consider the case in which 6,’ = 25, 0=0.05, n = 25, and s” = 20, and the sample
was drawn from a normal population. To test the hypothesis, Hy: o* = 6,2, against Hy: o < Gof,
we first calculate

, (n=1)s?* (25 -1)-20
xX, = 7 =

o, 25
 = 189 .2

With v =n -1=25-1=24 degrees of freedom, we calculate the P-value as,

P-value = P(x2<19.2) = 1-UTPC(24,19.2) = 0.2587...

Since, 0.2587... > 0.05, i.e., Pvalue > «o, we cannot reject the null hypothesis, H,: o =25(=
2

Go).

Inferences concerning two variances

The null hypothesis to be tested is , H;: oc, = 02, at a level of confidence (1-a)100%, or

significance level «, using two samples of sizes, n; and n;, and variances s¢ and 5,2. The test

statistic to be used is an F test statistic defined as

where s? and 5? represent the numerator and denominator of the F statistic, respectively.

Selection of the numerator and denominator depends on the alternative hypothesis being

tested, as shown below. The corresponding F distribution has degrees of freedom, vy = ny-1,

and vp = np-1, where ny and np, are the sample sizes corresponding to the variances SN’ and Sp2,

respectively.

The following table shows how to select the numerator and denominator for F, depending on
the alternative hypothesis chosen:

 

 

Alternative hypothesis Test statistic Degrees of freedom

Hi: 6,2 < 03 (one-sided) Fo = 522/54 Vn = Na-1, Vp = Ng-1
Hi: 0,2 > 0,2 (one-sided) Fo = 512/557 Vn = Ng-1, Vp = Ng-1
Hi: 02 #202 (two-sided) Fo = Sm/Sm? VN = Nw-1,Vp = Nm-1(%)

sm2=max(s12,522), sm2=min(s,5;%)

 

(*) num is the value of n corresponding to the sy, and ny, is the value of n corresponding to sn.

 

The P-value is calculated, in all cases, as: P-value = P(F>F,) = UTPF(vn, Vvp,Fo)
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The test criteria are:

. Reject H, if P-value < a
° Do not reject H, if P-value > a.

Example1 -- Consider two samples drawn from normal populations such that n; = 21, n; = 31, $42

= 0.36, and s;> = 0.25. We test the null hypothesis, H,: 6,2 = 5,%, at a significance level o =
0.05, against the alternative hypothesis, H: ol + op’. For a two-sided hypothesis, we need to

identify sy and s,, as follows:

sm2=max(sq2,s2%) = max(0.36,0.25) = 0.36 = s,>

smZ=min(s;2,s7%) = max(0.36,0.25) = 0.25 = s,°

Also,

yw=Ng = 21 ,

Nm = Ny = 31,

VN = ny - 1=21-1=20,

Vp = Np -1 = 31-1 =30.

Therefore, the F test statistics is

Fo = su2/Sm?=0.36/0.25=1.44

The P-value is

P-value = P(F>F,) = P(F>1.44) = UTPF(vy, vo,Fo) = UTPF(20,30,1.44) = 0.1788...

Since 0.1788... > 0.05, i.e., P-value > «a, therefore, we cannot reject the null hypothesis that

Ho: 0,2 = 02°.
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Additional notes on linear regression

The method of least squares

Let x = independent, non-random variable, and Y = dependent, random variable. The
regression curve of Y on x is defined as the relationship between x and the mean of the

corresponding distribution of the Y’s.
Assume that the regression curve of Y on x is linear, i.e., mean distribution of Y's is given by A

+ Bx.

Y differs from the mean (A + B-x) by a value g, thus

Y=A+BX+¢g,

where ¢ is a random variable.

To visually check whether the data follows a linear trend, draw a scattergram or scatter plot.

Suppose that we have n paired observations (x;, y;); we predict y by means of

“y =a + bx,

where a and b are constant.

Define the prediction error as,

e =Yi-"yi=Yyi- (a+bx.

The method of least squares requires us to choose a, b so as to minimize the sum of squared
errors (SSE)

SSE=Ye! =) [y, —(a+bx,)]’
i=1 i=l

the conditions

J J
—(SSE)=0 —(SSE)=02 ) Era )

We get the, so-called, normal equations:

yy, —antbh 3x,
i=l i=l

n n n

2Sxov=aSe ene
i=l i=l i=l

This is a system of linear equations with a and b as the unknowns, which can be solved using

the linear equation features of the calculator. There is, however, no need to bother with

these calculations because you can use the 3. Fit Data ... option in the [~][STAT] menu as
presented earlier.
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Notes:

e a,b are unbiased estimators of A, B.

e The Gauss-Markov theorem indicates that among all unbiased estimators for A and B, the
least-square estimators (a,b) are the most efficient.

 

Additional equations for linear regression

The summary statistics such as Xx, ¥x?, etc., can be used to define the following quantities:

2

A =) (x, -X)° =(n—1)-s’ =)x’ 34]

i=l i=l ny ia

2
n n 1 n

S, =>, =P =(n-D-si=3y -— dy,
i=l i=l i=l

n _ _ n 1 n n

Sy = D(x, —X)(, —y) =(n-1)- Sw = D>xy,(3J
i=l i= i=l i=

From which it follows that the standard deviations of x and y, and the covariance of x,y are

given, respectively, by

 

  

S xX S 3 S5, 0m aE s, = § = a
n — 1 n — xy n — 1

Also, the sample correlation coefficient is

Se

Fo = :
S., ’ S.

In terms of X, Y, Sxx, Syy, and Sxy, the solution to the normal equationsis:

b= A Px

a=7y-bx = 2J S.
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Prediction error

The regression curve of Y on x is defined as Y = A + B-x + £. If we have a set of n data points

(Xi, Yi), then we can write

Yi= A+ BX +s. (i= 1,2,...,Nn)

Where Y; = independent, normally distributed random variables with mean (A +B-x;) and the
common variance o; & = independent, normally distributed random variables with mean zero

and the common variance o°.

Let y = actual data value, "vi = a + bx; = least-square prediction of the data. Then, the

prediction error is:

ei =yi- Yi=Yyi-(@a+bx).

An estimate of o” is the, so-called, standard error of the estimate,
 

S, —(S,)’ /S — n—1 .

n—2 n—2
 2==~(a bx)= 5 -(=ry)

Confidence intervals and hypothesis testing in linear regression

Here are some concepts and equations related to statistical inference for linear regression:

e Confidence limits for regression coefficients:

For the slope (B): b—(t n2.a/2)Se/VSxx < B < b+ (tn2.a2)5e/VSxx,

For the intercept (A):

a= (tnz,u2)sel(1/n)+ X*/Sx]" < A < a+ (taza)sel(1/n)+ x*/5x]"2,

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n

represents the number of points in the sample.

e Hypothesis testing on the slope, B:

Null hypothesis, Hy: B = Bg, tested against the alternative hypothesis, Hi: B # Bg. The test

statistic is

to=(b -Bo)/(se/VSxx),

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n

represents the number of points in the sample. The test is carried out as that of a mean

value hypothesis esting, i.e., given the level of significance, o, determine the critical
value of t, ty,;, then, reject Hy if tg > ty, or if tg < - ty/2.
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If you test for the value Bo= 0, and it turns out that the test suggests that you do not reject
the null hypothesis, Hyp: B = 0, then, the validity of a linear regression is in doubt. In other

words, the sample data does not support the assertion that B # 0. Therefore, this is a test
of the significance of the regression model.

e Hypothesis testing on the intercept , A:

Null hypothesis, Hy: A = Ag, tested against the alternative hypothesis, Hi: A # Ag. The test
statistic is

to = (a-Ag)/[(1/n)+ x*/Sk]'"?,

where t follows the Student’s t distribution with v = n - 2, degrees of freedom, and n

represents the number of points in the sample. The test is carried out as that of a mean
value hypothesis testing, i.e., given the level of significance, a, determine the critical

value of t, t,,,, then, reject Hq if tg > ty; or if tg < - too.

e Confidence interval for the mean value of Y at x = xq, i.e., o+Xp:

a+b-Xx=(t n2.0/2)-5e-[(1/0)+(Xo- X)2/Syx]""? < 0+PXo < @a+b-X+(t 02, a 2)Se [(1/0)+(Xo- X)2/Sxx]"2.

e Limits of prediction: confidence interval for the predicted value Yy=Y(xg):

a+b-X—(t n.2.0/2)-Se:[1+(1/N)+(Xo- X)2/Sxx]""? < Yo < a+b-x+(t n2,q 12) Se [1+(1/0)+(X0- X)2/Sxx]"2.

Procedure for inference statistics for linear regression using the
calculator

1) Enter (x,y) as columns of data in the statistical matrix ZDAT.

2) Produce a scatterplot for the appropriate columns of XDAT, and use appropriate H- and V-
VIEWS to check linear trend. Press [CANCL][ENTER] to return to normal display.

3) [~]ISTATI[V][V][OK], to fit straight line, and get a, b, sx, (Covariance), and ry,
(Correlation).

4) [«][STAT][1VAR][MEAN][SDEV] to obtain x, vy, sx, Sy.

5) Calculate

 S, =(n=1)-s; s, =——=s, (1-13)

6) For either confidence intervals or two-tailed tests, obtain ty,;, with (1- «)100% confidence,

from t-distribution with v =n -2.
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7) For one- or two-tailed tests, find the value of t using the appropriate equation for either A

or B. Reject the null hypothesis if P-value < a.

8) For confidence intervals use the appropriate formulas as shown above.

Example 1 -- For the following (x,y) data, determine the 95% confidence interval for the slope

B and the intercept A
 

2.0 2.5 3.0 3.5 4.0

5.5 7.2 9.4 10.0 12.2
 

       
 

Enter the (x,y) data in columns 1 and 2 of DAT, respectively. A scatterplot of the data shows
a good linear trend:

 

Use the Fit Data. . option in the [~][STAT] menu, to get:

3: '-.86 + 3.24*X'
2: Correlation: 0.989720229749

1: Covariance: 2.025

These results are interpreted as a = -0.86, b = 3.24, r,, = 0.989720229749, and sxy = 2.025. The

correlation coefficient is close enough to 1.0 to confirm the linear trend observed in the graph.

From the single-var.. option of the [~][STAT] menu we find: x = 3, s, = 0.790569415042, y=

8.86, s, = 2.58804945857.

Next, with n = 5, calculate

S. =(n-1)-s2 =(5-1)-0.790569415042> = 2.5

2 h— S
1 5-1 2

. == sy (1-rl) =Ty 2.5880494585 7° - (1-0.9897202297 49°) = 0.1826666666 67.
n— —

Confidence intervals for the slope (B) and intercept (A):

e First, we obtain t n.2,4/2 = t3,0.025 = 3.18244630528 (See chapter 12 for a program to solve for

tya):

eo Next, we calculate the terms

(t n2.0/2)Se/VSxx = 3.18244630528-(0.18266666667/2.5)"'% = 0.860242178182

(t n2.02)Se[(1/n)+ X2/S,4 1"? = 3.182446305280.18266666667-[(1/5)+32/2.5] /% = 2.65

e Finally, for the slope B, the 95% confidence intervalis
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(-0.86-0.860242, -0.86+0.860242) = (-1.72, -0.00024217)

For the intercept A, the 95% confidence interval is (3.24-2.6514, 3.24+2.6514) =

(0.58855,5.8914).

Example 2 -- Suppose that the y-data used in Example 1 represent the elongation (in
hundredths of an inch) of a metal wire when subjected to a force x (in tens of pounds). The

physical phenomenon is such that we expect the intercept, A, to be zero. To check if that
should be the case, we test the null hypothesis, Hy: A = 0, against the alternative hypothesis,

Hq: A # 0, at the level of significance o = 0.05.

The test statistic is

to = (a-0)/[(1/n)+ x2/Scx]""? = (-0.86)/ [(1/5)+3%/2.5] "* = -0.44117

The critical value of t, for v=n -2 = 3, and a/2 = 0.025, @n be calculated using the numerical

solver for the program EQT, whose contents are: << yt UTPT « - >>. In this program, y

represents the degrees of freedom (n-2), and « represents the probability of exceeding a
certain value of t, i.e.,

Pri t>t,] = 1 - 0.

The contents of EQT can be copied into variable EQ , and the HP 49 G numerical solver used to

solve for t given the probability of exceedence, a. For the present example, the value of the
level of significance is a. = 0.05. To obtain the value t,; 4/2 = t3,0.025, We use the following:

[VAR][ EQT ] ‘EQ’ [STO] [r][NUM.SLV][OK]

Enter the values y= 3 and a = 0.025 in the input form. Highlight the field for x, and press

[SOLVE]. The result is shown in the screen below:

 

v3
EEl 3. 18244630528
w B25

Enter value or press SOLVE

EpIT[ |[VARSINFo{SoLvE]

Thus,

th2,0/2 = t3,0.025 = 3.18244630528.

Because ft, > - t,2.4/2, We cannot reject the null hypothesis, H: A = 0, against the alternative

hypothesis, Hq: A # 0, at the level of significance a = 0.05.

This result suggests that taking A = 0 for this linear regression should be acceptable. After all,
the value we found for a, was -0.86, which is relatively close to zero.

Example 3 - Test of significance for the linear regression. Test the null hypothesis for the slope
Ho: B = 0, against the alternative hypothesis, Hi: B # 0, at the level of significance a = 0.05, for

the linearfitting of Example 1.

The test statistic is

to = (b -Bo)/(se/VSxx) = (3.24-0)/(N0.18266666667/2.5) = 18.95
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The critical value of t, for v=n - 2 = 3, and o/2 = 0.025, was obtained in Example 2, as tn.2 4/2

= 130.025 = 3.18244630528.

Because, ty > t,;;, we must reject the null hypothesis Hi: B # 0, at the level of significance a =

0.05, for the linearfitting of Example 1.

Note: The exercises presented in this chapter are a few of the statistical operations that can
be performed in the HP 49 G calculator. | have included here only those operations that relate
to those already programmed in the calculator. The number of statistical applications that
can be developed for the HP 49 G is larger than presented here, but it would require a
separate volume to present them all. Many of the calculations presented in this chapter can be

programmed in User RPL language for high-volume calculations.
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No index available for this volume. The Table of Contents, at the beginning of the book,

contains enough information to facilitate finding any subject to interest.
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