HEWLETT hp PACKARD

PROGRAM FORMS

Merged Operations

STO 1	STO 5	RCL 1	RCL 5	$g x \neq y$	$g x \leftrightarrows y$
STO 2	STO 6	RCL 2	RCL 6	$g x \leq y$	$g R \downarrow$
STO 3	STO 7	RCL 3	RCL 7	$g x=y$	g R \uparrow
STO 4	STO 8	RCL 4	RCL 8	g $x>y$	g NOP
					g LSTX

To create and record a program:

1. Set the W/PRGM-RUN switch to W/PRGM.
2. Press f PRGM to clear memory.
3. Key in program steps.
4. Insert an unprotected (unclipped) card (printed side up) in the right, lower slot of the calculator. When the motor advances it through the card reader and out the left side of the calculator, the program is stored on the magnetic card.
5. Set the W/PRGM - RUN switch to RUN, and the program is ready to be used.
6. The information recorded on the card can be protected (that is, further recording is not allowed) if you clip off the upper left corner of the card.

Notes:

1. STO 9 and RCL 9 are not merged into one program step.
2. Trigonometric functions, rectangular-polar conversions and relational operations ($\boldsymbol{x} \neq \boldsymbol{y}, x \leq y$, $\boldsymbol{x}=\boldsymbol{y}, \boldsymbol{x}>\boldsymbol{y}$) use register R_{9} for scratch.
3. Conditional operations $(x \neq y, x \leq y, x=y, x>y$, TF1, TF2) skip two steps if false.
4. DSZ decrements contents (r_{8}) of register R_{8} and tests against zero as shown below:

HP-65 Program Form

Title
Page \qquad
SWITCH TO W/PRGM. PRESS \ddagger PRGM TO CLEAR MEMORY.

HP-65 User Instructions

Title \qquad
\qquad
Programmer \qquad

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
			\square	
			\square	
			\square	
			\square	
			\square	
			\square	

