

COMPUTER PROGRAMS (HP-65 DOCUMENTATION)

by CHARLES C. CAMPBELL, L.S.

PUBLICATION sponsored by INDIANA SOCIETY OF PROFESSIONAL LAND SURVEYORS, INC.

COMPUTER PROGRAMS

(HP-65 DOCUMENTATION)

ΒY

Charles C. Campbell, L.S. (with contributions by others)

sponsored by

Indiana Society of Professional Land Surveyors, Inc.

January 1976

Copyright 1976. All rights reserved. No part of this publication may be reproduced, in any form or by any means without the prior written permission of Charles C. Campbell, except the program instructions contained herein may be recorded on magnetic or paper cards or tape for any type computing equipment. This does not negate the prior rights of the Hewlett-Packard Company.

PREFACE

There have been many aids developed in the past for the surveyor to help him with his computations, eg: logs, slide rules, mechanical calculators, electronic calculators, scientific calculators, each one considered the ultimate, but now we have the HP-65 manufactured by the Hewlett-Packard Company, which probably is still not the ultimate, but close to it.

There has been much discussion on whether the 65 is a calculator or a computer. Actually it is both, but a computer first and a calculator second. Its power can be compared with the first digital computers developed, those which would take a building the size of a five room house to contain its electronic components and environmental control equipment. This is because trig. functions, logs, square root, conversions, etc., are programmed into the hardware of the 65, which eliminates the need for large memories to store software routines.

Several of the programs by the author were considered to be needed once every 5 years, but were used the "next day". The programs have evolved from the authors past 20 years of experience and represents what he considers the best way to solve the problems. Sometime days were spent just to find a formula for a particular problem.

This manual is hereby dedicated to the memory of John H. Kantner, who was taken from us before his time and who first described to me, the HP-35 which Hewlett-Packard Company was about to place upon the market, at which time, was the only time during my long association with him, that I thought he was "telling me a story". It is further dedicated to Vincent J. Schneider, who programs the "big ones" and leaves the "little ones" to me.

ii

A C K N O W LEDGEMENTS

This publication was sponsored by the Indiana Society of Professional Land Surveyors, Inc.

Acknowledgement is made to Richard H. Cassera, John A. Gilbert, M.S.E., Grant J. Munsey for their fine program contributions; to M. Neil Franklin, LS, PE for his help with the Manning's formula; to Ursell W. Cox for the drawings and special characters; to Gordon Martain for his fine cartoons, and to my wife Laura D. for her many hours of typing. Special acknowledgement is made to Prof. Kenneth S. Curtis, LS and Dr. John G. McEntyre, LS, authors of ISPLS Manuals 1 through 4, for their inspiration and encouragement and for allowing me to attempt to "bridge the gap between the academics and practical field use", if indeed such a gap exist, and to Thomas H. Murphy, LS, for many ideas for programs and testing them in the field.

Indianapolis, In., Jan. 1976

Charles C. Campbell

CONTENTS

PREFACEii
ACKNOWLEDGMENTiii
INTRODUCTION1
ANGLES TO AZIMUTH
AZIMUTH TRAVERSE/INVERSE
AZIMUTH-AZIMUTH INTERSECT10
AZIMUTH-DISTANCE INTERSECT14
DISTANCE-DISTANCE INTERSECT
STA./OFFSET CALC
BEARING TRAVERSE/CURVES
HORIZONTAL STREET CURVES
LEAST SQUARES TRAVERSE ADJUSTMENT
CURVE FROM C & L
SPECIAL ANGLE COMPUTATION, CASE 1
SPECIAL DISTANCE COMPUTATION, CASE 1
SPECIAL ANGLE COMPUTATION, CASE 2
SPECIAL DISTANCE COMPUTATION, CASE 2
SPECIAL ANGLE COMPUTATION, CASE 362
SPECIAL DISTANCE COMPUTATION, CASE 3
TANGENT ELEVATION
VERTICAL CURVE ELEVATION74
YARDAGE
Q FOR DITCH(MANNINGS)
D FOR DITCH(MANNINGS)
BOX CULVERT (CDH METHOD)
AZIMUTH FROM SUN(H.A. METHOD)
AZIMUTH FROM POLARIS104

CONTENTS CONTINUED

POLAR DISTANCE INTERPRETER
MEAN TIME/ANGLE
STOPWATCH116
PHOTOGRAMMETRY 1
PHOTOGRAMMETRY II124
PHOTOGRAMMETRY III
CURVED STREET FIT
EQUAL DELTA REVERSED CURVES
CURVE THRU POINT140
CURVE FROM 3 POINTS144
GROUND/GRID CONV148
GEO./GRID AZIMUTH CONV154
BUILDING RADIAL STAKE-OUT
EDM/STAKE-OUT
EDM/STAKE-OUT TWO
ELEVATION & HORIZ. DIST. FROM ZENITH ANGLE & SLOPE DIST170
ELEVATION FROM ZENITH ANGLE & HORIZ. DISTANCE
EDM RADIAL CURVE STAKE-OUT OS
CURVE STAKE-OUT
CURVE-STAKE FROM PI
TANGENT OFFSETS
CHORD OFFSETS
STADIA REDUCTIONS
GEODIMETER(REG) ATMOSPHERIC CORRECTIONS
GEODIMETER(REG) MO. 700 REDUCTIONS
GEODIMETER(REG) MO. 76 REDUCTIONS
TIME TRIALS(NON-SURVEYING)

Although computers won't make "Super Surveyors" out of us, they will relieve us from the drudgery of endless calculations so that our time can be devoted to worthier purposes and allows us to stake projects in the field using methods which would not have been considered before computers and electronic distance measuring equipment.

Although there are other "pocket computers" currently being developed, the HP-65 has features that should be considered necessary, such as: merged store and recall codes, degree-minute-second arithmetic, absolute value, integers, exchange x and y registers, plus software support. There are now approximately 4000 programs available for the 65. If more than 100 steps are needed in a program merely use another magnetic card. The author feels that all in all the "reversed polish notation" method is easier to master and use than the "algebraic" method.

The hardware of the HP-65 is not set out herein, since it is well covered in the "Owners Handbook". The magnetic cards may be purchased separately from Hewlett-Packard Co. and the program steps listed can be quickly keyed into the HP-65 and recorded onto the cards.

As general rules for CCC programs, (1) If one data item is entered with a function key: the data is keyed into the 65 then the function key is pushed. If more than one data item is entered: the function key is pushed first and data is entered with the R/S key. Exceptions include those programs requiring longitude and latitude in which both data items are entered with the same function key. (2) For most programs: distrubing the stack by using the HP-65 as a calculator during stops for intermediate answers does not affect the normal resumption of the program. Warnings are given for each program where the stack should not be distrubed. In any event, studying the program will yield the dos and don'ts.

In the future it is hoped that a supplemental manual of programs may be published. Anyone who has programs or ideas and formulas for programs, who may wish to contribute to CCC and is considered worthy of publication, will be rewarded with a free copy of the supplement.

	Program D	escriptio			
Program Title AN	IGLES TO AZIMUTH				
Contributor's Name	Charles C. Campbell, LS				
Address City	9841 E. 21st Street Indianapolis	State r	ndiana	Zip Code	46229
Program Description beginning azimu exterior angle or angle measured conversly angle	, Equations, Variables, etc. Comp th and left deflection angle, any combination thereof. A on the left side of line as we right(E key) means that the a	outes azimuths of th right deflection ar angle left(D key) m "walk" the trave ngle is on the right	he survey lin ngle, interior neans interior rse toward th t side.	es, given r angle, or or exterio e point and	or d
All angles are co entered or compu	onverted to a right deflection uted.	angle then added	to the last a	zimuth	
					а. С. а.
Operating Limits and azimuths have 1/(Warnings South or north azi) format of DDD.MMSS	muths may be comp	outed. Angle	es and	
<u> </u>					

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

	1, 19, 54'3. 1, 19, 10, 52 1, 19, 10, 52 1, 10, 10, 52 1, 10, 10, 10, 52 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	
Sample Proble	em(s) Compute azimuths for the lines in the above sketch.	7
Steps:	329.3842A, 87.5419C, 119.1632E, 295.4853D, 44.1603B, 285.1416D, 214.3507 R/S.	
Solution(s)	1. 329-38-42= beginning azimuth 2. 57-33-01 3. 118-16-29	
	4. 234-05-22 5. 189-49-19	
	6. 295-03-35 7. 329-38-42	
Reference (s)	None	

ANGLES TO AZIMUTH 1.5 BGN. AZ. DEF. L DEF. R A L AR

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load Program			
2.	Optional (See flag)		RTN R/S	1.5
3.	Input Bgn. Az.	DDD.MMS		
4.	Input Defl. Left	DDD.MMS\$	B	Az.
4.	or Defl. Right	DDD.MMS		Az.
4.	or Angle Left	DDD.MMSS		Az.
4.	or Angle Right	DDD.MMS	E	Az.
5.	If next angle is same type, enter angle, push R/S.			
5.	Or return to step 4 for next angle			
		·		
				· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			
	· ·			
L				

Program Form

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21		RCL	3403		R ₁
•	83		f-1	32		Bgn. Az.
1	01		D.MS+	02		
1	01		1	01		R ₂ 360
	83		STO8	3308		180
5	05	Flag	A	11		
R/S	84	Inp. Bgn. Azimuth	R/S	84	New azimuth	R ₃ 180
LBL	23		GTO	22		
A	11		D	14		
g	35		LBL	23		R4
DSZ	83	· · · · · · · · · · · · · · · · · · ·	E E	15	Angle right	
GTO	22		RCL3	3403		<u> </u>
0	00		gx = y	3507		R ₅
gł	3508			32		
RCLI	3401		D.MS+	02		
	31			01		R6
D.MS-	02			3308		
	3524		P/S	84	Now azimuth	P
	3324			22		n7
	3402			15		
f	3402			23		Ro used
	02		0	00		
PC12	3402			21		DJL
	3524			83		Ro used
CIX	44		4	04		tests
0	00		3	03		
F-T	32		6	06		LABELS
D.MS+	02		0	00		A Bgn.Az.
STO1	3301		STO2	3302		B Def.L
RTN	24		2	02		C Def.R
LBL	23	Defl. left	÷	81		$D \triangle L$
B	12		STO3	3303	· · · · · · · · · · · · · · · · · · ·	E <u> </u>
CHS	42		gt	3508		0 used
	01			3301	Begin azimuth	1
12108	3308		HKIN-	24_		2
		Now azimuth	┨┟─────			3
	22		┨┝────			4
	12					5
	23	Defl, right				0
C	13	J J J J J J J J J J				9
1	01					9
STO8	3308					3
A	11					FLAGS
R/S	84	New azimuth				1
GTO	22		J			
C	13		┨┠─────	l		2
LBL	23	Angle left	┨┝────			
	14					/L

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title AZIN	MUTH TRAVERSE/INVERSE				
Contributor's Nam e	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Uses north azimuths to compute the unknowns by traversing or inversing from same point or from point to point. Additionally the last azimuth traversed or inversed may be used in the traverse routine as is or rotated any amount left or right.

TRAVERSE:

N2 = N1 + cos azimuth x distance E2 = E1 + sin azimuth x distance

INVERSE:

azimuth =
$$\tan^{-1} \frac{22 - 21}{N2 - N1}$$

distance = $\sqrt{(N2 - N1)^2 + (E2 - E1)^2}$

WHERE:

N1 = North coord. point 1 E1 = East coord. point 1

N2 = North coord. point 2

E2 = East coord. point 2

Operating Limits and Warnings

None

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

	3 - 309° 24' 15" 50.00'	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 N 290.8 50.007 E 358.7 N 90.888 E 302.411	71 777 -	N- T. S.
Sample Proble shown o STE 309.241 R/S, B, 50R/S,	m(s) Solve for the un ne time, except for d EPS: RTN, R/S, 100F 5R/S, 50R/S, R/S, C R/S, 100R/S, R/S, E R/S, E, 90.888R/S,	nknowns in the above s coord. of point 2: R/S, R/S, D, E, 90.88 C, A, 192.1724R/S, B , 290.871R/S, 358.77 302.411R/S, R/S.	ketch, entering 38R/S, 302.411R , 180CHS, R/S, 77R/S, R/S, B,	the known da R/S, R/S, A, 100R/S, 180R/S,	ta as
Solution(s) LINE 1-2 5-6 7-2	AZIMUTH 92-34-39 91-12-16 181-49-01	DISTANCE 202.616 216.253 201.135	POINT 3 4 5 7	N 131.739 197.708 295.417 291.922	E 61.366 121.286 142.572 308.788

Reference(s) Any surveying textbook.

(C)

AZIMUTH TRAVERSE/INVERSE

[C]

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input starting coordinate (Note 1)		RTN R/S	1.00
	Starting Northing	N1	R/S	
	Starting Easting	E1	R/S	
3	Traverse point to point (Note 2)		CA	
3	Or traverse from same point (Note 2)		DA	
4	Input azimuth	А	R/S	
5	Input distance (see north coordinate)	d	R/S	Nn
6	(See east coordinate)		R/S	En
	Repeat steps 4,5,&6 or go to steps 2,3,7, or 11			
7	Inverse point to point (Note 2)		CE	
7	Or inverse from same point (Note 2)		DE	
8	Input next north coordinate	Nn	R/S	
9	Input next east coordinate (See azimuth)	En	R/S	azimuth
10	(See distance)		R/S	distance
	Repeat steps 8,9, & 10 or go to steps 2,3,7,11			
11	Recall last azimuth and rotate (Note 3)		В	
12	No rotation		R/S	
12	Rotate xx ^o xx ['] xx ["] right (Note 4)	dd.mmss	R/S	
12	Rotate xx ^o xx'xx" left	dd.mmss	CHS R/S	
	Continue at step 5			
	NOTE 1: Point 2 from intersection programs by the			
	contributor, is in starting coordinate position.			
	NOTE 2: C or D key does not have to be pressed, if it	was		
	pressed during prior computation.			
	NOTE 3: Last azimuth travered or inversed.			
	NOTE 4: OK if azimuth is negative or exceeds 360 de	grees.		
	NOTE 5: When traversing with south azimuths, the use	r may		
	input the south azimuth, (without 180 degree rotation),	then		
	input the distance as a negative value, which has the e	ffect of		
	rotating the azimuth 180 degrees.			
	•			

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY. KEY ENTRY KEY ENTRY CODE CODE COMMENTS COMMENTS REGISTERS SHOWN SHOWN R1_N1 Υ 01 | Flag GTO 22 R/S 84 Input N1 Nn 01 23 1 LBL STO 1 R/S 3301 84 Input E1 D $R_2 E1$ 14 From same point STO2 3302 f 31 En R/S51 23 84 SF 1 **L'BL** 23 LBL R₃ azimuth E 13 Point to point 15 С Inverse DSP 21 f-1 32 83 SF 1 51 • R4 3 23 03 distance LBL R/S 84 Input N2(See dist.) inversed 11 Traverse A DSP STO5 21 3305 R₅ N2 R/S 84 83 Input E2 . STO6 3306 3 03 R/S 84 Input az. (See En) RCL2 3402 R₆ E2 f-1 32 51 -RCL5 3405 3401 -D.MS 03 LBĽ RCL1 23 Return point from B R₇ 1 01 51 f STO3 3303 31 R/S RCL3 R-P 01 84 Input distance R₈ 3403 STO4 3304 3507 gx≓y 3507 gxŦy f-1 32 0 00 R9____ 3524 R-P gx≥y 01 03 06 RCL1 3401 3 6 LABELS 61 A TRA. f-1 00 32 0 61 + TF 1 Blast az. 61 + 61 STO1 3301 CPT.- PT D from PT STO3 3303 gnop 3501 f 31 E INV. R/S 84 See Nn -D.MS 03 gx = y RCL2 3507 0 ---21 DSP 3402 1 used 83 61 + 2 _____ 4 04 f-1 32 3 _____ R/S 84 See azimuth TF 1 61 4 _____ RCL4 3404 STO2 3302 5 31 3501 f gnop 6 _____ TF 1 61 GIO 22 7 _____ GTO 22 11 8 ____ 15 23 Last azimuth E 9 _____ RCL5 3405 B 12 0 00 STO 1 3301 FLAGS R/S f-1 84 Input rotation 32 RCL6 3406 1 used 3302 STO2 -D.MS 03 RCL4 3404 2 _____ RCL 3 3403 <u>22</u> 15 GIO 61 E +

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

RSECT
≱II, LS t
State Indiana Zip Code 46229
we known coordinated points, the program computer

distance a (pt. 1 to 2) = $\frac{(N3-N1)\sin B-(E3-E1) \cos B}{\sin(B-A)}$

distance b (pt. 2 to 3) = $\frac{(N3-N1) \sin A - (E3-E1) \cos A}{\sin (B-A)}$

 $N2 = N1 + a \cos A$ $E2 = E1 + a \sin A$

Operating Limits and Warnings

Flashing 0 indicates that the problem is ambiguous: eg the two lines will not intersect.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

1 Enter Program	
2 Start (See flag)	2.00
3 Input north coordinate of point 1 N1 R/S	
4 Input east coordinate of point 1 E1 R/S	
5 Input azimuth of line 1-2 A R/S	
6 Input azimuth of line 2-3 B R/S	
7 Input north coordinate of point 3 N3 R/S	
8 Input east coordinate of point 3 E3 R/S	dist. a
9 R/S	dist. b
10 See north coordinate of point 2	N2
11 See east coordinate of point 2	E2
12 Return to step 2 for next intersection	
NOTES:	
1 g = distance line 1-2	
2 b = distance line 2-3	
3 Coordinate of point 2, the intersection point, is	
stored for use as the starting coordinate with	
"Azimuth Traverse/Inverse" program.	
4 Flashing 0 indicates the problem is ambiguous. Lines	
will never intersect.	
5 Azimuths have 1-0 format of DDD_MMSS	
	==
	==

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		RCL 3	3403		R ₁
Α	11		RCL 7	3407		N1 N2
DSP	21		f-1	32		
	83		R-P	01		R ₂
3	03		RCL 1	3401		E1 E2
2	02	Flag	+	61		
RTN	24	Input N1	STO1	3301		B ₂ A
STO1	3301			3507		
R/S	84	Input F1	RCL 2	3402		
STO2	3302		+	61		R₄ B
R/S	84	Input azimuth A	STO2	3302		
f-1	32		RCL T	3401		
-D MS	03		R/S	84	See N2	R ₅ used
STO3	3303		RCI 2	3402		
DSP	21		R/S	84	Sec. 52	
•	83		GTO	22		R ₆
4	04		Δ	11		Sin B-A
aLSTx	3500		LBL	23		
R/S	84	Input azimuth B	F	15		R ₇ a
f -1	32		1	01		
-D.MS	03		f-1	32	-	
STO4	3304		R-P	01		Re
al STx	3500		at	3509		
R/S	84	Input N3	X	71		
RCL 1	3401		gxIy	3507		Ro
-	51		RCL 5	3405		······································
STO5	3305		x	71		
DSP	21		-	51		LABELS
•	83		RCL 6	3406		∧ start
3	03		÷	81		B
aLSTx	3500		g	35		C
+	61		ABS	06		
R/S	84	Input E3	RTN	24		F Used
RCL 2	3402					
-	51					1
RCI 4	3404					
RCL 4	3404					3
RCL 3	3403					4
-	51					5
f	31					6
SIN	04					7
STO6	3306					8
gt	3508					9
E	15					
STO7	3307					FLAGS
R/S	84	See a		ļ		1
gt	3508					
RCL 3	3403					2
E	15					
LR/S	84	See b]]

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title AZIMUTH-DISTANCE INTERSECT					
Contributor's Name	Charles C. Cabpbell, LS				
Address	9841 E 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Given a known north azimuth from one coordinated point and a known distance from another coordinated point. The program computes the unknown azimuth, distance, and the coordinates of the intersecting point, short or long solution. The computed coordinates are stored for use as the starting coordinates with the "AZIMUTH TRAVERSE/INVERSE" program. Let 1st course contain known azimuth and 2nd course contain known distance.

 $Sin(B-A) \pm 180 = (N3-N1) SinA - (E3-E1) Cos A$ b

 $a = (N3-N1) \operatorname{SinB-}(E3-E1) \operatorname{Cos} B$ Sin (B-A)

N2 = N1 + aCosA

E2 = E1 + a SinA

Operating Limits and Warnings Flashing 0 indicates that the problem is ambiguous; eg: the two lines will not intersect.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

		N 100.00 1 E 100.00	$\frac{2}{c_{3}}$ $\frac{140.00}{c_{1}}$ $\frac{140.00}{E 500.00}$
<u> </u>			
Sample Probl	em(s) N	IO.1 Solve for t	the knowns (long solution) in the above sketch:
STEP	S: A, 1	100R/S, R/S, 42.1	823R/S, 269.061R/S, 140R/S, 500R/S, R/S, R/S, R/S
	Ν	NO.2 Solve same	e for short solution:
675			
SIE	PS: Same	e as No. I except	push B instead of A.
Solution(s)		LONG	SHORT
No. 1	a	308.167	No. 2 a = 289.474
	В	134-17-49	B = 130-18-56
	N2 F 2	327.906 307.425	N2 = 314.082 F2 = 294.843
Reference (s)	Weld	ch, Harold J., Tro	averse Tips, out of print.

15

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Choose long intersection			
2	Or short intersection		В	
3	Input North coordinate of point 1	N1	R/S	
4	Input East coordinate of point 1	E1	R/S	
5	Input azimuth of line 1–2	Α	R/S	
6	Input distance of line 2–3	b	R/S	
7	Input North coordinate of point 3	N3	R/S	
8	Input East coordinate of point 3	E3	R/S	dist. a
9			R/S	В
10	See North coordinate of point 2		R/S	N2
11	See East coordinate of point 2		R/S	E2
12	Return to step 2 for next intersection			
	NOTES:			
1	a = distance line 1–2			
2	B = azimuth line 2–3			
3	Coordinate of Point 2, the intersection point, is			
	stored for use as the starting coordinate with			
	"Azimuth Traverse/Inverse" program.			
4	Flashing 0 indicates the problem is ambiguous. Lines			
	will never intersect.			
5	Azimuths have 1/0 format at DDD.MMSS			
		· ·		

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
f-1	32	Long	ABS	06		R ₁ N1
SF 1	51	Off	STO4	3304		N2
LBL	23		R/S	84	See a	
3	03		PCLA	3406		R ₂ E1
DSP	21		f	31		E2
	83			03		
2	03			21		R ₂ A or
RTN	24	Input N1	USP	83	· · · · · · · · · · · · · · · · · · ·	A + 180
STOI	3301			0.0		
D/S	84	Input El		04	C B	RA D
STO2	3302			3407	See D	Sin B-A
	0.002		RCL A	3404		a
f_{-1}	32			2707		Re
-	02					N3-N1
STO7	3307			2401		
5107	21			<u>5401</u> 61		P. B
TC 1				2201		n6
			SIUT	3507		
	01		$\int \frac{gx}{y} - y$	3507		
8	80		KCL Z	3402		h7
0			+	01		
+	01			3302		
STO3	3303	· · · · · · · · · · · · · · · · · · ·	RCL 1	3401		R8
KCL /	340/		DSP	21		
R/S	84	Input b		03		
5104	3304	l	3	03		R ₉
R/S	84	Input N3		84	See N2	
RCL 1	3401		RCL 2	3402		
-	51		R/S	84	See E2	LABELS
STO5	3305		ILBL	23		A long
aLSTx	3500			15		B short
+	61			01		C
R/S	84	Input E3	f−1	32		D
RCL 2	3402	•	R - P	01		E <u>used</u>
-	51		gx Ty	3507		0
RCL 3	3403		RCL 5	3405		1
E	15		_×	71		2
f-1	32		gx = y	3507		3 used
SIN	04		g	3509		4
RCL 3	3403		×	71		5
+	61		↓ ⊢ − −− −	51		6
	01		RCL 4	3404		7
8	08		↓ :	81		8
0	00		STO4	3304		9
gx > y	3524		RTN-	24		
CHS	42			23		FLAGS
gnop	3501		B	12	Short	1 <u>used</u>
Ľ- '	51			31		
STO6	3306		SF 1	51	On	2
E	15		GIO	22		
g	35			03	L][

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title DIS	TANCE - DISTANCE INTERSECT				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Given two known distances from two known coordinated points, the program computes the two unknown north azimuths and the coordinates of the intersecting point. The computed coordinates are stored for use as the starting coordinates with the "AZIMUTH TRAVERSE/INVERSE" program. "Traverse" in a "clockwise" direction. For opposite solution "traverse" from point 3 to 1.

USES COSINE LAW:

$$A = azimuth (1-3) - Cos^{-1} \qquad \frac{C}{a}$$

$$B = azimuth (1-3) + Cos^{-1} \qquad \frac{d-c}{b}$$
Where:
$$d = \sqrt{(E3-E1)^2 + (N3-N1)^2}$$

$$Azimuth (1-3) = tan^{-1} \qquad \frac{E3-E1}{N3-N1}$$

$$c = \frac{d^2 + a^2 - b^2}{2d}$$

$$N2 = N1 + aCos \quad A$$

$$E2 = E1 + aSin \quad A$$

Operating Limits and Warnings Flashing 0 indicates that the problem is ambiguous; eg: the sum of the two lines is to small to intersect.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

		•		
N IO E IO	00.00 00.00	2 5. 169.065	3 N 140.00 E 500,00	-N-
Sample Prob	lem(s) Solve for the un	knowns in the above sk <mark>e</mark> t	ch:	
STEPS:	A, 100 R/S, R/S, 308.10	56R/S, 269.061R/S, 140	R/S. 500R/S. R/S.	R/S, R/S.
		·····		
Solution(s)	A= 42-18-23 B=134-17-49			
	N2 = 327.906			
	E2 = 307.425			
Reference (s)	Welch, Harold J., Trav	verse Tips, out of print.		
	· ·			

	DISTDIST. INTERSECT			3
STEP	INSTRUCTIONS	DATA/UNITS	KEYS	DATA/UNITS
1	Enter Program			
2	Start (See flag)			3.000
3	Input north coordinate of point 1	NI	R/S	
4	Input east coordinate of point 1	E1	R/S	
5	Input distance of line 1–2	a	R/S	
6	Input distance of line 2–3	b	R/S	
7	Input north coordinate of point 3	N3	R/S	
8	Input east coordinate of point 3	E3	R/S	А
9			R/S	В
10	See north coordinate of point 2		R/S	N2
11	See east coordinate of point 2		R/S	E2
12	Return to step 2 for next intersection			
	NOTES:			
1	A = azimuth line 1–2			
2	B = azimuth line 2–3			
3	Coordinate of point 2, the intersection point, is			
	stored for use as the starting coordinate with			
	"Azimuth Traverse/Inverse" program.			
4	Flashing 0 indicates the problem is ambiguous. Lines			
	will not intersect.			
5	Azimuths have I-O format of DDD.MMSS			

Program Form

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY		COMMENTS	KEY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21	Start	1 4	04		B ₁ NI
•	83		f	31		N2
3	03		-D.MS	03		
3	03	flag	R/S	84	See A	R ₂ E1
RTN	24	Input N1	<u>ČLX</u>	44		E2
STO1	3301	•	RCL 5	3405		
R/S		Input El	RCL 6	3406		R ₃ _a
STO2	3302			51		
R/S	84	Input a		3404		
STO3	3303			81		R4 D
R/S	3304	Input b		32		
	94	Input N3		61	Sub 240 if no correction	P. N3
STO5	3305		1 3	03	Sub. Sou II necessary	d d
D/C	84	Input F3		06		
RCI 2	3402		1 Ö	00		R ₆ C
-	51		$ \alpha x > v$	3524		
RCI 5	3405		CIX	44		
RCL 1	3401		0	00		R ₇ A
-	51		-	51		
f	31		f	31		
R - P	01		D.MS	03		R ₈
STO5	3305		R /S	84	See B	
gx = y	350/		DSP	21		
E	15			83	· · · · · · · · · · · · · · · · · · ·	R ₉
gx_y	3507			03		
				340/		
PCI 3	3403		f-1	32		start
f-1	32		R P	01		A
1×	09		RCL 1	3401		С — — — — — — — — — — — — — — — — — — —
+	61		+	61		D
RCL 4	3404		STO 1	3301		E Used
f-1	32		R/S	.84	See N2	0
VX	09		gx=y	3507		1
-	51		KCL 2	3402	· · · · · · · · · · · · · · · · · · ·	2
RCL 5	3405			61		3
2				3302	c 50	4
+ <u>×</u>	21 21	=c		84	See EZ	5
STO4	3204			15	it negative, add 300	6
BCI 3	3403		1 ō	00		/
÷	81		ax > v	3524		
f-1	32		3	03]
COS	05		6	06		FLAGS
-	51		0	00		1
E	15		- ↓	61		
STO7	3307			61		2
DSP	21			24	·····	
•	03	L		L	1] [

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

	Flugram D	escriptio			
Program Title	STA. /OFFSET CALC.				
Contributor's Name Address	Charles C. Campbell,LS 9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229
the north azim coordinates of and negative c stationing is a rectangular co	uth of the line, and the coord the second point given station offset is left of line. Positive long the opposite extension of ordinates of point 1 and N2	rdinates of the sec oning and offset. e stationing is alo of the line. Let N & E2 the rectangu	cond point. Positive offsong the line of N1 & E1 reproduced N1 ar coordination	Also comput et is right of and negative esent the tes of point	es the line 2:
STA=stationing N2 = N1+ STA E2 = E1+STA	y = d COS B A Cos A+OFF Cos(A+90) Sin A+ OFF Sin(A+90)	OFF=offset = d	I SIN B		
WHERE:	A = azimuth of the line B = \tan^{-1} <u>E2-E1</u> -/	Ą			

 $d = \sqrt{(E2-E1)^2 + (N2-N1)^2}$

Operating Limits and Warnings

None

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) (1) Compute the stationing and offsets of points 2 through 7 with respect to line (1-2) with point 1 being station 0+00.

STEPS: A, 2678.491R/S, 2482.392R/S, 268.5429R/S, B, 2653.284R/S, 1159.892, R/S, R/S, 2682.353R/S, 2486.061R/S, R/S, 2677.755R/S, 2485.318R/S, R/S, 2670.656R/S, 2023.666R/S, R/S, 2659.454R/S, 1428.56 R/S, R/S, 2653.39R/S, 1191.564 R/S, R/S.

(2) Compute the coordinates of the points. Start by pressing C key, then inter the desired stationing R/S, then the offset R/S, see the northing and press R/S to see the easting.

Solution(s)	NO.1		NO. 2		
POINT	STATIONING	OFFSET	Ν	E	
2	13+22.740	0.000	2653.284	1159.892	
3	-0+03.742	3.791R	2682.353	2486.061	
4	-0+02.911	-0.792L	2677. 755	2485.318	
5	4+58.792	0.908R	2670.656	2023.666	
6	10+54.003	1.049R	2659.454	1428.560	
7	12+91.072	-0,497L	2653.390	1191.564	

Reference (s)

None

(C)

וכא

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Start (See flag)		A	9.
3	Input N1	N1	R/S	
4	Input El	E1	R/S	
5	Input north azimuth of line	A	R/S	
6	Calc. stationing and offset (see flag)		В	2.
7	Input N2	N2	R/S	
8	Input E2 (note 1)	E2	R/S	Sta.
9	(note 2)		R/S	Off.
10	Return to step 7 or go to step 2 or 11			
11	or calc. coordinates (see flag)		С	3.
12	Input stationing (note 1)		R/S	
13	Input offset (note 2)		R/S	N2
14			R/S	E2
15	Return to step 12 or go to step 2 or 6			
	NOTES:			
1	If sta. is negative, it is back stationing			
2	If positive, it is right of line, if negative, it is left			
	of line			
_3	Input format for A is DDD.MMSS			

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		ax=y	3507		R ₁ N1
Δ	11		RCI 3	3403		
DSP	21			51		
•	83		axty	3507		R ₂ E1
0	00		f-1	32		
9	09	flag	$R \rightarrow P$	01		
DTNI	24			3507		Ba
STO 1	3301		STO 6	3306		azimuth
	21			3507		
031	83	· · · · · · · · · · · · · · · · · · ·	R/S	84		B ₄
2	02		PCI 6	2406		N2-NI
R/S	84	Input El	GIO	22		-11
	2202		0	00		Be
R/S	84	Input azimuth	IRI	23		azimuth
STO 5	3305	inpor dzimorn	C	13		DDD.MMSS
f_{-1}	32		DSP	21		Be
D.MS	03			83		offset
STO 3	3303		0	00		
0 310 3	00		3	03		R ₂
0	00			23		azimuth
	41			01		+90
5107	3307		R/S	84	Input STA (see E2)	Ro
DCI 5	2405		DSP	21		
DSP	21			83		
	83		3	03		Bo
4	04		STO 6	3306		
R/S	84		R/S	84		
	23		RCL 7	3407		LABELS
R	12		ax = v	3507		NI-EI-A
DSP	21		f-1	32		Bcalc. S-O
	83		R P	01		calc. coord.
0	00		RCL 1	3401		
2	02		+	61		F
LBL	23		gx Cy	3507		Used
0	00		RCL 2	3402		1 Used
R/S	84	Input N2(see offset)	+	61		
RCL 1	3401	· · · · · · · · · · · · · · · · · · ·	RCL 3	3403		
_	51		RCL 6	3406		4
STO 4	3304		f-1	32		5
aLSTx	3500		R P	01		6
+	61		gt	3508		7
DSP	21		+	61		8
	83		STO 4	3304		9
3	03		g t	3508		
R/S	84	Input E2		_61		FLAGS
RCL 2	3402		R/S	84	See N2	1
-	51		RCL 4	3404		
RCL 4	3404		IGTO	22		2
f	31		╢────	01		
<u>R</u> P	01		ال		L	

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title BEAR	ING TRAVERSE/CURVES			
Contributor's Name	Charles C. Campbell, LS			
Address	9841 East 21st Street			
City	Indianapolis	State	Indiana	Zip Code 46229

Program Description, Equations, Variables, etc. Card One contains traverse routine similar to program 00116A, except lettered keys are used to define bearing quadrant. Also closing errors and area(sq. ft. and acres) are computed. Card One is used to enter first radial of curve(from PC to radius point). Bearing of second radial of curve(from RP to PT) is entered with Card Two. Central(delta) angle of curve, arc length, and coordinates of PT are computed with Card Two. The program may be used in conjunction with "CLOSURE FOR FIELD ANGLE AND BEARING TRAVERSE NO. 00117A" and "SIDE SHOTS NO. 00119B". Formulas same as program No. 00116A except: arc length = $\frac{\pi \Delta R}{180}$

area sector of circle = $\frac{\text{radius x length}}{2}$

delta = difference in bearing of radials
En = error in northing
N1 = North coordinate of point 1

Ee = error in easting E1 = East coordinate of point 1

Operating Limits and Warnings (1) Flashing O(zero) after displaying easting, indicates R/S was pushed. CLX and enter bearing with B, C, D, or E key or press the A key.

(2) Only curves with delta angle less than 180 degrees is legal. For delta angles greater than 180 degrees, break curve into two parts.

(3) The arc length of curves is summed in register two.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Reference(s) None. The program will either work or it won't work, like being pregnant, either you are or you aren't.

\angle	BRG 1	rra/Cl	JRVES	Card	1	
	ERROR	NE	SE	รูฟ	NW	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS		
1	Enter Card 1					
2	Initilize		RTN R/S	1.00		
3	Input beginning north coordinate	N1	R/S	N1		
4	Input beginning east coordinate	E1	R/S	E1		
5	Input bearing NE	dd.mmss	В	north azimuth		
5	Input bearing SE	dd.mmss	С	north azimuth		
5	Input bearing SW	dd.mmss	D	north azimuth		
5	Input bearing NW	dd.mmss	E	north azimuth		
6	Input distance		R/S	N2		
7	(Optional)		R/S	E2		
8	See note					
9	Go to step 5 for next course. If last course was first					
	radial of curve(from PC to RP, continue with step 10.					
10	Enter Card 2					
11	Enter bearing of second radial of curve(from RP to PT)	NE dd.mmss	В	delta angle		
11	Enter bearing of second radial of curve(from RP to PT)	SE dd.mmss	С	delta angle		
11	Enter bearing of second radial of curve(from RP to PT)	SW dd.mmss	D	delta anale		
11	Enter bearing of second radial of curve(from RP to PT)	NW dd.mmss	E	deTta anale		
12	Compute arc length		R/S	arč length		
13	If curve is arcing right from PC to PT		R/S	N of PT		
13	If curve is arcing left from PC to PT		CHS R/S	N of PT		
14	(Optional)		R/S	E of PT		
15	See note					
16	Error of failing to close in northing		A	En		
17	Error of failing to close in easting		R/S	Ee		
78	For area of polygon (square feet)		R/S	sq. ft.		
19	For area of polygon (acres)		R/S	acres		
20	See note					
NO	NOTE: If side shots are needed after 6 or 7 or after steps 12 or 13, go					
10 F	rogram 001198. When finished re-enter card 1 and conti	nue at step				
5.	If last course is last course in traverse, go to step 16 wit	n card 1				
ente	ered or enter program 00117A for closure data.					
r •						
Ĺ						
CARD 1

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
f	31		-D.MS	03		R ₁
REG	43		-	51		azimuth
1	01	Flag	a	35		
DSP	21		ÅBS	06		R ₂ sum of
•	83		STO 1	3301		distances
3	03		RTN	24	Input dist, or radius	
R/S	84	Input N (one)	STO 3	3303		R ₃
STO 6	3306	·····	STO	33		distance
STO 8	3308		+	61		or radius
R/S	84	Input El	2	02		R ₄ double
STO 5	3305		RCL 1	3401		area
STO 7	3307			3507		sq. feet
LBI	23		f_1	32		R ₅
1	01		R - p	01		E1
R/S	84	See easting	RCI 8	3408		
0	00	· · · · · · · · · · · · · · · · · · ·		61		R ₆
÷	81			3308		NT
IRI	23		alSTx	3500		
A	ÎĬ	a a canada da ang ang ang ang ang ang ang ang ang an		61		R ₇ En
RCL 8	3408			3507		1
RCI 6	3406			71		
-	51		STO	22		Re Nn
RTN	24	See error porthing		61		
RCL 7	3407	See citor norming		04		{
RCL 5	3405		alSTx	3500	······································	Bo
-	51		RCI 7	3407		1
R/S	84	See error easting	+	61		1
RCL 4	3404	see endredsring	STO 7	3307		LABELS
2	02		RCL 8	3408		finish
÷	81		R/S	84	See northing	B NF
a	35		RCI 7	3407		C SE
ABS	06		GTO	22		
R/S	84	See area sa feet	1	01		
4	04		IBI	23		
3	03		C	13		
5	05		2	02		2 Used
6	06		GIO	22]] 3
0	00		2	02] 4
÷	81		LBL	23		5
R/S	84	See area acres	D	14		6
ĽBL	23		2	02		7
В	12		CHS	42		8
0	00		GIO	22		9
LBL	23		2	02		
2	02		LBL	23		FLAGS
9	09		E	15		1
0	00		4	04		41
x	71		GTO	22		2
gx⊇y	3507		2	02		
[f-1	32][

CARD 2 SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
RTN	24	Kill A key	1 ÷	81		B1
LBL	23		STO	33		1
В	12		+	61		
0	00		2	02		R ₂
LBL	23		R/S	84	See arc length	
2	02		×	71		
9	09		STO	33		R ₃
0	00		+	61		
X	71		4	04		
gxCy	3507		RCL 1	3401		R ₄
f-1	32		g ł	3509		
-D.MS	03		STO	33		
-	51		-	51		R ₅
g	35		2	02		
ABS	06		f-1	32		
KCL 3	3403		<u>R</u> - P	01		R ₆
	01		RCL 8	3408		
8	80			61		
	00		STO 8	3308		R ₇
KCL I	3401		gLSTx	3500 [.]		
g 1	3509		+	61		
SIQT	3301		gx℃y	3507		R8
gx > y	3524		X.	71		
gx_y	350/		STO	33		
gnop	3501		+	61		R ₉
-	51		4	04		
gx=y	3523		gLSTx	3500		
	2501			340/		LABELS
gnop	3301			61	· ·	A
-	25		15107	3307		B INC
ADC	35		HECT 8	3408	Constant DT	C SE
DSP	21			04	See northing Pl	D_SW
0.51	83			340/	2	ENW
1	01			23	See easting PT	0
f	21		C	13		1
D MS	03		2	02		2 Used
RTN	24	See delta anale	GTO	22		3
DSP	21		2	02		4
•	83		IBI	23		5
3	03			14		6
g t	3508		2	02		/
aLSTx	3500		CHS	42		8
g	35		GTO	22		9
Π	02		2	02		FLAGS
x	71		LBL	23		
x	71		E	15		'
1	01		4	04		2
8	08		GIO	22		
0	00		2	02		

Program Title HORI	Program Title HORIZONTAL STREET CURVES					
Contributor's Name	Charles C. Campbell, LS					
Address	9841 E. 21st Street					
City	Indianapolis	State	Indiana	Zip Code	46229	

Program Description, Equations, Variables, etc. Computes tangent, radius, degree of curve, arc length and chord length for centerline, inside R/W line and outside R/W line, given R/W width, delta and tangent or delta and radius, for concentric street curves.

 $R = T \operatorname{co} \tan \Delta/2$ D = 18000/ πR L = Δ (100)/D C = 2R sin $\Delta/2$

WHERE:

T = tangent R = radius D = degree of curve L = arc length C = chord length

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) R/W width = 50' centerline $\Delta = 36^{\circ} 15' 22''$ centerline $T = 150.00^{\circ}$ С Solution(s) 🛆 Т R D L CL 36º 15' 22" 458.166 285.109 12.5054701 289.922 150.000 269.552 274.102 IN н 141.815 433.166 13.2272187 П 300.666 OUT 158.185 483.166 11.8584111 305.742

Reference(s) Bouchard, Harry and Moffitt, Francis H., SURVEYING, fifth edition, pages 269–274, International Textbook Company, Scranton, Pennsylvania, 1965.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Input R/W width	R∕W	A	
3	Input delta angle	Δ	В	
4	Input tangent length	Т	С	T cl
5	or radius	R	D	T cl
6			R/S	R cl
7			R/S	D cl
8	-		R/S	L cl
9			R/S	C cl
10			R/S	T in
11			R/S	R in
12			R/S	D in
13			R/S	L in
14			R/S	C in
15			R/S	T out
16			R/S	R out
17			R/S	D out
18			R/S	L out
19			R/S	C out
20	Return to step 3 for next curve or to step 2 for R/W			
	width change.			
		· .		
1				

3wiich		PHESS I THOM TO CLEAR MEMOR	Y.			_
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		EEX	43		B ₁ R/W
Α	11		2	02		width
STO 1	3301		X	71		1
RTN	24		DSP	21		$B_2 \Delta$
LBL	23			83		
B	12		7	07		
f-1	32		R/S	84	Degree	Ro R
-D.MS	03	· · · · · · · · · · · · · · · · · · ·	DSP	21	209,00	
STO 2	3302			83		
aLSTx	3500		3	03		R ₄
DSP	21		RCI 2	3402	· · · · ·	$\sin \frac{\Delta}{2}$
•	83		RCI 5	3405		
4	04			81		Re
RTN	24		R/S	84	length	D/foot
IBI	23		RCL 3	3403	Leugin	
C	13		2	02		Be
F	15		<u>-</u>	71		1 co tap 4/2
~	71		RCI A	3404		
ĜTO	22			71		B-
0	00		R/S	84	Chord	
LBL	23		RCL 3	3403	Chord	
D	14		RCI 1	3401		Ro
F.	15		f_1	32		
	3508		TF 2	81		
LBI	23		GTO	22		Ba
0	00			01		
DSP	21		12	02		111
•	83		- ÷	81		LABELS
3	03		CHS	42		
f	31		f-1	32		
SF 2	71		SF 2	71		
0	00		GTO	22		
LBL	23			01		L used
1	01		IBI	23		
+	61		F	15		
STO 3	3303		RCI 2	3402		1
RCL 6	3406		2	02		
÷	81		÷	81		
R/S	84	Tangent	1	01		
RCL 3	3403		f-1	32		
R/S	84	Radius	R P	01		1 7
]	01		ax C v	3507		
8	08		STO 4	3304		
0	00		÷	81]]]
a	35		STO 6	3306		FLAGS
π	02		RTN	24		
RCL 3	3403					
x	71					2 /
÷	81					
STO 5	3305					

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

Program Title	LEAST SQUARES TRAVERSE ADJU	STMENT		
Contributor's Nam	e Richard H. Cassera			
Address	524 Ferro Lane			
City	Paso Robles	State California	Zip Code	93446

Program Description, Equations, Variables, etc. If a traverse does not close on a fixed point because the angles were measured with greater precision than were the distances then it can be adjusted as follows:

Let B1, B2, B3,..., Bi be the bearings of a traverse Let D1, D2, D3,..., Di be the corrections to the distances along the bearings Let dN be the error in latitude (total correction) Let dE be the error in departure (total correction) The latitudes will close if: D1CosB1 + D2CosB2 + D3CosB3 +...+ Di CosBi - dN = 0 The departure will close if:

The departure will close if:

 $D_1SinB_1 + D_2SinB_2 + D_3SinB_3 + \dots + D_iSinB_i - dE = 0$

These two equations in "n" unknowns can be solved by the method of correlatives derived from the principle of least squares which is fully explained by David Clark in PLANE and GEODETIC SURVEYING VOL. II HIGHER SURVEYING on page 270.

Operating Limits and Warnings As in all adjustment methods this adjustment should be applied to field work after all systematic errors have been removed.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) Given distances chained to .1	Sample Problem(s) Given: Traverse from pt. 1 to pt. 4 with angles turned to 1" with T-2 and distances chained to .1'							
1 COURSE D	DISTANCE	NORTHING	EASTING					
N74 31 14E	1420.5	1000.000	1000.000					
2 S 8 1 42 31E	2856.3	1379.121	2368.973					
3 N79 29 42E	1090.8	967.221	5195.418					
4 True coordinates of poi	nt 4	1166.097 1166.198	6267.935 6267.102					
Col Pre	rrections: cision:	. 101 1:6300	833					
Solution(s) COURSE	DISTANCE	NORTHING	EASTING					
1 N74 31 14E	1420.55	1000.000	1000.000					
2 S81 42 31E	2855.53	1379.134	2369.021					
3 N79 29 42E	1090.68	967.345	5194.707					
4		1166.198	6267.102					

 Reference (s)
 Clark, David.
 PLANE and GEODETIC SUEVEYING, Volume II.

 HIGHER SURVEYING.
 London: Constable & Company, Ltd., 1951.

LEAST SQ. TRAVERSE ADJ. #1

[LEAST	SQ. TI	RAVERS	E ADJ	. #2	
	NE	Bearing	Compute	Distance	Easting	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program [#] 1			
2			f REG	
3	Enter correction to latitudes	άN		
4	Enter correction to departures	dE	A	
5	Enter bearing of courses to be adj.	Bi		
6	Enter quadrant number		В	
	Go to step 5 until all bearings have been entered			
7	Compute		С	
8	Enter program #2 for adjusted coordinates			
9	Enter beginning northing		A	
10	Enter beginning easting		A	
11	Enter bearing		+	
12	Enter quadrant number		В	
13	If distance is to be adjusted	distance	D	adjusted distance
13	If distance is not to be adjusted	distance	STO 4	
14	Compute coordinates		С	Northing
15	Display Easting		E	Easting
16	Go to step 11 until all courses have been entered.			
	NOTE: quadrant 1 is NE bearing			
	quadrant 2 is SE bearing			
	quadrant 3 is SW bearing			
	quadrant 4 is NW bearing			

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		gLSTx	3500		R ₁ dN
Α	11		f	31		
STO 1	3301	SN in R1	SIN	04		
RTN	24		•	41		R ₂ dE
LBL	23		4	41		
A	11		X	71	Sin ² Bi	
STO 2	3302	SE in R2	aRt	3508		Ra
RTN	24		X	71	sin ² Ri Cos ² Ri	ⁿ Cos ² Bi
LBL	23		STO	33		Σ C S D
B	12	(Bearing to azimuth)	1 +	61		R
STO 8	3308	augdrant in R8	04	04	5 sin ² Bi Cor ² Bi	$\frac{1}{2}$ Cos ² Bi+
aRt	3508			3508		SinZBi
F-1	32		I I	41		Be
-D.MS	03			71	Cos ² Bi	Sin2B:
a	35		STO	33		
DS7	83			<u> </u>		BaCa
GTO	22		03	03	Σ Cos ² Bi	'' [®] ⊆†
00	00		aRi	3508		
GTO	22		STO	2200		B-Co
02	02			<u>33</u>		117 <u>2</u>
LBL	23		05	05	5 5: 20.	
00	00		DTN	24	- 3IN-BI	Requerd
01	01			24		ngquuu
08	08		C C	13	(program to solver)	
00	00		RCI 1	3401	C1Cor ² Bi+Co S Cor ² Bi	D.
	51			2404	Sin $Bi=0$	ng
CHS	12			-3404	Cis Cor2Bi Sin ² Bi+Co	
a	35		RCI 2	3402	$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$	
DS7	83	-	DCL 2	2402		
GTO	22		X	<u>3403</u> 71		
01	01			51		Bbearing
GTO	22			2404		
02	02			3404		D
IRI	22			71		E
01	01		RCI 3	3403		0 4000
03	03		PCL 5	2405		1 quad
06	06		X	<u> </u>		2 quad
ŎŎ	ŎŎ			51		3
-	51			81		4
CHS	42		STO 7	3307	$C_0 := P7$	5
a	35		RCL 4	3404		6
DSZ	83		X	71		/
GTO	22		PCI 1	2401		8
00	00			51		9
GTO	22		CHS	42		FLAGS
02	02	azimuth in x	RCI 3	3403		
LBI	23			81		'
02	02		STO 6	3306	C1 in R6	2
f	31		RTN	24	~ - · · · · · · · · · · · · · · · · · ·	£
cos	05		gnop	3501		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCH	TO W/PRGM.		. PRC	DGRAM	2	
LBL 23 COS 05 Cas Bi R1 northing STO 1 3301 Northing in R1 f 31 at Tx morthing RIN 24 SIN 04 Sin Bi R2 essting A 11 X 71 C2 Sin Bi R2 essting morthing A 11 X 71 C2 Sin Bi R3 morthing R3 STO 2 3302 Easting in R2 gxCy 3507 R1 R3 R3 morthing R3 R1 morthing R4 3106 R4 3308 guadrant in R8 STO 4 3406 R1 R3 azimuth R4 distance + Di R6 G2	KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
A 11 Image of the system	LBL	23		COS	05	Cos Bi	R ₁
STO 1 3301 Northing in R1 f 31 Sin Bi R2 RIN. 24 Sin Bi RCL 7 3407 RCL 7 RCL 6 3406 RCL 7 <	Α	11		gLSTx	3500		northing
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	STO 1	3301	Northing in R1	f	31		
LBL 23 RCL 7 3407 easting A 11 X 71 C2 Sin Bi easting STO 2 3302 Easting in R2 $gx \sim y$ 3507 R3 RTN 24 RCL 6 3406 R1 C1 Cos Bi R3 B 12 (beoring to azimuth) + -61 Di=ClossBit/C2SinBi R4 gR + 3508 quadrant in R8 STO 4 3304 Di n 4 R4 gR + 3508 RCL 5 3405 azimuth in x R5 azimuth 9 35 D 14 - R6 azimuth R6 OO 00 RTN 24 3404 R6 R6 - R6 - OO 00 RTN 24 3404 R6 - - R6 - - OO 00 RTN 24 3404 R6 - - - R6 - - - R7 - - - - R7 - <	RTN	24		SIN	04	Sin Bi	R ₂
A 11 X 71 C2 Sin Bi RTN 24 $g_X \simeq y$ 3507 $g_X \simeq y$	LBL	23		RCL 7	3407		easting
SIO 2 3302 costing in K2 $p_X \ge y$ 3507 R3 IBL 23 RL 61 Di=C1 Cos Bi R4 B 12 (bearing to azimuth) + 61 Di=C1 cos Bi+C2SinBi R4 GTO 8 3308 quadrant in R8 STO 4 3304 D i=C1 cos Bi+C2SinBi R4 gR + 3508 RCL 5 3405 ozimuth in x R5 ga 35 D 14 R6 G2 imuth R4 9 35 D 14 R6 G2 imuth R4 00 00 RTN 24 R6 R6 R7 02 02 C 13 prog. to comp. coords. R7 1BL 23 F-1 32 R7 R8 00 00 R + 61 R4 R4 R4 01 01 STO 33 R9 R9 R4 9 35 + 61 M0 Mathemathemathemathemathemathemathemathem	A	11		X	71	C2 Sin Bi	
NIN 24 RCL 6 3406 C1 Cos Bi B 12 (beering to azimuth) $+$ 61 Di=ClcosBi+C2SinBi fiatome STO 8 3308 quadrant in R8 STO 4 3404 Di in 4 distance gR + 3508 RCL 5 3405 azimuth in x Rs 9 35 D 14 Rs Rd 9 35 D 14 Rs Rd 9 35 D 14 Rs Rd 00 00 RTN 24 Rd Rs 01 01 RTN 24 Rs Rs 02 02 C C 13 prog. to comp. coords. 1BL 23 F-1 32 Rs Rs 01 01 STO 33 Rs Rs 02 02 C 33 Rs Rs 03 33 Sto STO	DTNI	3302	Easting in KZ	gx-y	3507		R ₃
B 12 (bearing to azimuth) Λ 11 Difections R_4 STO 8 3308 quadrant in R8 STO4 3304 Di in 4 distance gR 1 3508 RCL 5 3405 azimuth in x R5 azimuth in x R5 +D.MS 03 LBL 23 azimuth in x R5 azimuth R5 9 35 D 14 R6 azimuth R6 azimuth 9 35 RCL 4 3404 R6 R6 m6 m7 m6 m2 00 00 RTN 24 R6 m2 m2 R6 m2 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m3 m3 m3 m4 m3 m3 <td></td> <td>24</td> <td></td> <td>RCL 6</td> <td>3406</td> <td>CI Cos Bi</td> <td></td>		24		RCL 6	3406	CI Cos Bi	
D D	B	$\frac{23}{12}$	(begring to grimuth)		/1		B
310 0 3000 quadram in Ro 1000 1010 1100 $f-1$ 32 RTN 24 Rs azimuth in x Rs pD,MS 03 03 03 14 Rs azimuth rd g 35 0 14 Rs azimuth rd rd <t< td=""><td>STO 8</td><td>3308</td><td>guadrant in P8</td><td>STO4</td><td>3304</td><td>Di in A</td><td>distance</td></t<>	STO 8	3308	guadrant in P8	STO4	3304	Di in A	distance
gr. 1 32 RL 0 340 02100 mm kx Rs $*D.MS$ 03 LBL 23 azimuth azimuth Rs g 35 D 14 azimuth Rs azimuth Rs g 35 D 14 azimuth Rs azimuth Rs g 35 D 14 azimuth Rs azimuth Rs 00 00 R Add4 Rs azimuth Rs azimuth Rs 00 00 R F-1 32 Rs quad Rs azimuth Rs azimuth Rs azimuth Rs azimuth Rs azimuth Rs azimuth azimuth Rs azimuth Rs azimuth Rs azimuth azimuth Rs azimuth Ax Ax Ax <td< td=""><td></td><td>3508</td><td></td><td></td><td>3405</td><td>grimuth in y</td><td>aisiance</td></td<>		3508			3405	grimuth in y	aisiance
$D_{D,MS}$ D_{22} D_{14} D_{33} R_{1} D_{2} R_{2} g 35 D 14 R_{1} R_{1} R_{1} R_{1} DSZ 83 $RCL 4$ 3404 R_{6} R_{6} R_{6} OTO 22 $+$ 61 distance + Di R_{6} R_{7} R_{8} R_{9} R_{1} R_{2} R_{1} R_{1} R_{1} R_{1} R_{2} R_{1} R_{2} R_{1} <td>f-1</td> <td>32</td> <td></td> <td>RTN</td> <td>24</td> <td></td> <td>R</td>	f-1	32		RTN	24		R
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-D MS	03		IBI	23		azimuth
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	a	35			14		
GTO 22 + 61 distance + Di 00 00 RTN 24 RTN 24 GTO 22 LBL 23 R7	DSZ	83		RCI 4	3404		Be
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GTO	22		+	61	distance + Di	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00	00		RTN	24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GTO	22		LBL	23		R ₇
LBL 23 f-1 32 R 00 00 R P 01 R 01 01 SIO 33 R 00 00 01 01 01 R 00 00 01 01 01 R 00 00 01 01 01 R 01 01 01 01 01 R 02 02 330 R R R 9 35 - + 61 - LABELS A N & E B Beering C compute D GTO 22 RCL 2 3401 Northing in X B Beering C compute D distance E Biesring 0 quad 1 quad 1 quad 1 quad 1 quad 3 -	02	02		С	13	prog. to comp. coords.	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LBL	23		f-1	32		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	00		R - P	01		R ₈
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01	01		STO	33		quad
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	08	08		+	61		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00	00		01	01		R ₉
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	51		gx⊇y	3507		
g 35 + 61 LABELS DSZ 83 02 02 A N & E GTO 22 RCL 2 3401 Northing in X B bearing O1 01 RCL 1 3401 Northing in X C compute O2 02 RTN 24 Distance E easting 0 quad 01 01 IBL 23 E 15 0 quad 1 quad 03 03 03 gnop 3501 3 3 3 06 06 gnop 3501 3 3 3 3 3 05Z 83 gnop 3501 5 5 5 6 3 6 00 00 gnop 3501 8 9 9 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 7 8 6 7 7 5 5 5 1	CHS	42		STO	33		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g DCZ	<u>30</u>		+	61	·	
CIC 22 RCL 2 3402 Northing in X B bearing O1 01 RCL 1 3401 Northing in X C compute O2 02 RTN 24 D D distance E easting 01 01 01 22 23 23 23 24 23 01 01 01 32 303 30	DSZ CTO	03			2402		A
Cit C				RCL Z	3402	Northing in X	B bearing
O2 O2 O2 D1 D1 D2 D1 D1 D2 D2 <thd2< th=""> D2 D2 <thd< td=""><td>GTO</td><td>22</td><td></td><td></td><td><u>3401</u> 24</td><td></td><td>C compute</td></thd<></thd2<>	GTO	22			<u>3401</u> 24		C compute
LBL 23 LBL 23 E 15 0<	02	02			27		Daisrance
D1 01 01 10 $gx \ge y$ 3507 Easting in X 1 quad 03 03 03 RTN 24 2 quad 2 quad 06 06 gnop 3501 3<	IBI	23			15		Eedsting
03 03 03 03 1 1 1 1 1 1 1 2 1 2 1 2 1 <td>01</td> <td>01</td> <td></td> <td></td> <td>2507</td> <td>Easting in V</td> <td>0 quad</td>	01	01			2507	Easting in V	0 quad
06 06	03	03		RTN	24		a quad
00 00 gnop 3501 4	06	06		anop	3501		2 4000
- 51 gnop 3501 5 GHS 42 gnop 3501 6 g 35 gnop 3501 7 DSZ 83 gnop 3501 7 GTO 22 gnop 3501 8 GTO 22 gnop 3501 9 00 00 gnop 3501 1 GTO 22 gnop 3501 9 GTO 22 gnop 3501 1 GTO 22 gnop 3501 9 GTO 22 gnop 3501 1 GTO 22 gnop 3501 1 Q2 02 gnop 3501 1 LBL 23 gnop 3501 2 Q1 gnop 3501 2 2 STO 5 3305 azimuth in R5 gnop 3501 2 gnop 3501	00	00		gnop	3501		Δ
CHS 42 gnop 3501 6 g 35 gnop 3501 7 DSZ 83 gnop 3501 8 GTO 22 gnop 3501 8 00 00 gnop 3501 9 01 22 gnop 3501 9 02 02 gnop 3501 1 02 02 gnop 3501 1 02 02 gnop 3501 1 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 2 gnop 3501 gnop 3501 2	-	51		gnop	3501		5
g 35 gnop 3501 7 DSZ 83 gnop 3501 8 GTO 22 gnop 3501 9 00 00 gnop 3501 9 GTO 22 gnop 3501 1 U2 02 02 gnop 3501 1 LBL 23 gnop 3501 2 2 STO 5 3305 azimuth in R5 gnop 3501 2	CHS	42		gnop	3501		6
DSZ 83 gnop 3501 8 9 GTO 22 gnop 3501 9 9 00 00 gnop 3501 1 1 1 GTO 22 gnop 3501 1 1 1 1 02 02 02 gnop 3501 2 1	g	35		gnop	3501		7
GTO 22 gnop 3501 9 00 00 gnop 3501 FLAGS GTO 22 gnop 3501 1 GTO 22 gnop 3501 1 02 02 gnop 3501 1 LBL 23 gnop 3501 2 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 f 31 gnop 3501	DSZ	83		gnop	3501		8
00 00 00 gnop 3501 GTO 22 gnop 3501 FLAGS 02 02 02 gnop 3501 1 LBL 23 gnop 3501 2 02 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 2 f 31 gnop 3501 2	GIO	22		gnop	3501		9
GTO 22 gnop 3501 FLAGS 02 02 gnop 3501 1 LBL 23 gnop 3501 1 02 02 gnop 3501 2 02 02 gnop 3501 2 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 f 31 gnop 3501	00	00		gnop	3501		
USL 02 02 gnop 3301 1 LBL 23 gnop 3501 2 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 f 31 gnop 3501 2		22		gnop	3501		FLAGS
LBL 23 gnop 3501 2 02 02 gnop 3501 2 STO 5 3305 azimuth in R5 gnop 3501 f 31 gnop 3501		02		gnop	3501		1
STO 5 3305 azimuth in R5 gnop 3501 2 f 31 gnop 3501	02	<u>23</u> 02		gnop	3501		
f 31 gnop 3501	STO 5	3305	azimuth in P5	gnop	3501		2
	f	31		gnop	3501		

Program Title CUR	/E FROM C & L				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Given the arc and chord lengths of a curve the program computes the Delta Angle utilizing the Bassham Iteration; computes radius, tangent, and degree of curve; and also displays the arc length and chord length entered. See reference for the Iteration of 1/2 delta, otherwise standard curve formulas are used. Operating Limits and Warnings See notes on page 3 herein. The accuracy of delta is unknown by CCC, but is believed to be + 0.5 seconds.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

43

	CURVE FROM C & L C L Compute			3
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2a	Input chord length	С	A	xx.xxx
2b	Input arc length	L	В	xx.xxx
3	Compute \triangle (note 1)		C	DDD.MMSS
4	Compute R		R/S	xx.xxx'
5	Compute T (note 2)		R/S	xx.xxx'
6	Compute D (note 3)		R/S	DD.DDDD
7	(Optional) Check L entered		R/S	xx.xxxxx'
8	(Optional) Check C entered		R/S	xx.xxxxx'
9	Go to step 3 to re-compute			
9	Or hold C or L. execute step 2g or 2b and go to step			
	3 to compute.			
9	Or new case, ao to step 2a.			
9	(Note 4) To see seconds and fractions: of \triangle		RCL 6	
			f-1 INT	
			$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	
			f-1 INT	
			$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	
				55 5
	NOTE 1: If the given chord is larger than or equal to the	e given		
	are length a flathing "0" will be displayed			
	NOTE 2: If tangent is negative, it is the back tangent			
that	180 degrees)			
	NOTE 3. D denotes "degree of curve"			
	NOTE 4: An idiosynamous of the HB 65 is an desired			
	angle to DD MMSS conversions the 65 trungester but			
	does not always round			
·				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23	C	÷	81		R ₁ C
A	11		STO 4	3304		
STO 1	3301		gx⊋y	3507	· · · · · · · · · · · · · · · · · · ·	
DSP	21		gx ≤ y	3522		R ₂ L
•	83		GTO	22	· · · · · · · · · · · · · · · · · · ·	
3	03		E.	15		
	24	······	GIO	22		R ₃
	23			14		<u> </u>
	2202		LBL	23		P. A/2
R/S	8/				•	
LBL	23			2206		
С	13	Compute	f	31		Re
RCL1	3401		-D.MS	03		180/77
RCL2	3402		DSP	21		
ax ≠ y	3522		•	83		$R_6 \Delta$
Ŏ ´	00		4	04		
÷	81		R/S	84		
÷	81		DSP	21		$R_7 \cos$
STO 3	3303		•	83		$\Delta/2$
]	01		3	03		- D
8	08		RCL Z	3402		R ₈ _"
STO A	3304		RCL 5	3405		
1	01		RCI 6	3406		P. used
	51		-	81		tria 8
a	35		STO 8	3308		tests
π	02		R/S	84	R	LABELS
÷	81		RCL 8	3408		ΔC
STO 5	3305		RCL 6	3406		BL
LBL	23		2	02		C compute
D	14		÷	81		D used
RCL 4	3404	·	TAN	31		E used
RCL 4	3404		IAN_	06		0
L 1	01		X		т	1
	32		R/S	2405		2
	2207		RCL S	3405		3
-	81		÷	81		4
RCI 4	3404		FFX	13		5
RCL 5	3405		2	02		7
÷	81		x	71		8
-	51		DSP	21		9
RCL 5	3405		· ·	83		
X	71		5	05		FLAGS
RCL 3	3403		K/S	84	Degree of curve	1
	<u>340/</u> 01		R/S	3402	Lebeck	
1	01			3401	L CHECK	2
-	51		R/S	84	C check	
	Y					

Program Title	SPECIAL ANGLE COMPUTATIO	DN, CASE	1		
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Three-point resection. Computes X and Y angles given distances A & B and angles A, B, and G according to the formulas on USC&GS form 655A. Handy for locating topo instrument stations in corn fields, etc.

tan alpha = <u>b sin A</u> a sin B

 $\tan \frac{1}{2}(y-x) = \tan(\alpha - 45) \tan \frac{1}{2}(y+x)$

1/2(y+x) = 180-1/2(A+B+G)

Alpha is an auxillary angle computed and used in the program.

Operating Limits and Warnings If all points are located on the circumference of the same circle, the problem is indeterminate.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

	SP. ANGLE CALC.CASE 1	· · · · · · · · · · · · · · · · · · ·		5
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program]
2	Start (see flag)		A] 1.0000
3	Input distance a	a	R/S]
4	Input distance b	þ	R/S]
5	Input angle A	A	R/S]
6	Input angle B	В	R/S]
7	Input angle G (see x)	G	R/S] ×
8	See seconds and fraction of x (note)		R/S	SS.SSS
9	See y		R/S] y
10	See seconds and fraction of y (note)		R/S] y ss.ssss
]
]
]
]
]
	NOTE: The x and y angles should be considered]
	no more accurate than the least accurate angle]
	known, (A, B, or G angles).]
	If $x = 90$ and $y = 0$ all the points lie on the]
	circumference of a circle, in which case the]
	problem is indeterminate.]
]
]
]
]
]
]
]
]
]
]
]
]

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21		TAN	06		B ₁ × in
•	83		×	71		D.DDD
4	04		f-1	32		
1	01	flag	TAN	06		R_2 y in
RTN	24	Input a	+	61		D.DDD
STO 1	3301		STO	2 3302		
STO 3	3303		al	3508		R ₃ a
R/S	84	Input b	alST	3500		
STO 4	3304		-	51		
С	13		STOI	3301		R ₄ b
g	35		LBL	23		
1/x	04		0	00		
R/S	84	Input A	f	31		R ₅ A
STO 5	3305	•	-D.MS	03		in D.MS
R/S	84	Input B	R/S	84	See x then y	
STO 6	3306	-	gLSTx	3500	·	$R_6 B$
R/S	84	Input G	В	12		in D.MS
5107	3307		В	12		
t-1	32		R/S	84		R ₇ G
-D.MS	03		RCL 2	3402		IN D.MS
RCL 5	3405	A	GTO	22		
E	15		0	00		R ₈
gLSIX	3500		LBL	- 23		
gx≆y	3507		В	12		
	13		f-1	32		R9
	44	2		83		
RCL O	3406	В	0	06		
	10		U	00		LABELS
CIX				24		A sign
	3500			<u>4</u> ~		B Used
J	<u> </u>		C	13		C used
+	61			35		
2	02		$\frac{9}{1/x}$	04		
÷	81		I BI	23		
СНС	42		D	14		2
1	01		STO	33		3
8	08		x	71		4
0	00		1	01		5
+	61		RTN	24		6
+	41		LBL	23		7
f	31		E	15		8
IAN	06		f-1	32		9
RCL 1	3401		-D.MS	03		
f-1	32		f	31		FLAGS
	06		SIN	04		1
4	04		KIN	24		
5	05					2
-						
L_I	لــــلك ــــــا		L			

Program Title SPECIAL	DISTANCE COMPUTATION	, CASE 1			
Contributor's Name Address City	Charles C. Campbell, LS 9841 E. 21st Street Indianapolis	State	Indiana	Zip Code	46229
Program Description, Equa problem shown o COMPUTATION in the proper reg program first. P	tions, Variables, etc. Compute n USCGS form 655A. Intende , CASE 1" program, which lea isters, although the distances rovided the X and Y angles ar	s all the un d to follow aves the nee could be c re known.	known distar the "SPECIA eded data in omputed witl	nces of the (L ANGLE the proper hout using s	Case 1 format aid
USES SINE LAW	= b =	<u>c</u> sin (A + B)	-		
Operating Limits and Warni Enter deg If you sto A key.	ings prees, minutes, and seconds as p in middle of computations,	s DDD.MMS push RTN b	SSS before restart	ing with the	e
This program has been verifie uses this program material Ai reliance upon any represent	d only with respect to the numerical T HIS OWN RISK, in reliance solely u	example given pon his own in	in Program De spection of the	scription II. Us program mater	ser accepts and rial and without

Reference (s) Gossett, F.R., MANUAL OF GEODETIC TRIANGULATION, Special Publication No. 247, Superintendent of Documents, U.S. Gov. Printing Off., Washington D.C., 1959, Pages 174–176

SP. DISTANCE CALC. CASE 1

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	If not from "Special Angle Computation" program,			
	then load proper registers with x, y, A, & B angles			
	and distance a and b in proper format.		A.	c
2	If from "Special Angle Computation" program			c
3			R/S	d
4	· · · · · · · · · · · · · · · · · · ·		R/S	е
5	Equal b?		R/S	f
6	What is f-b equal to?		R/S	f-b
	Should be 0.000 plus or minus.			
7	Did you forget to write down a distance(s)?			
	Go to the second step 2. (Push A)			
	NOTE: Flashing 0 indicates all distances have been			
	computed and R/S was pushed.			
	· · · · · · · · · · · · · · · · · · ·			
				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		STO8	3308		B ₁ x in
Α	11		RTN	24		D.DD
DSP	21		I BI	23		-
•	83		D	14		R ₂ y in
3	03		f	31		D.DD
RCL 3			SIN	04		
STO 8	3308	a	RTN	24		R ₃ a
RCL 5	3405	A	LBL	23		
E	15		E	15		
•	41		f-1	32		R ₄ b
D	14		-D.MS	03		
B	12		RTN	24		
RCLI	3401	X				$R_5 A In$
D/C						D.1VIS
	2402					P. D.
RUL Z	<u>3402</u>	- Y			· · · · · · · · · · · · · · · · · · ·	
D	14					D.MS
B	12					R ₇
RCI 6	3406	В				··· /
F	15					
Ċ	13					R ₈ used
R/S	84					
RCL 4	3404	b				
-	51					R ₉
R/S	84					
0	00					
÷	81					LABELS
LBL	23					A start
B	12					B used
- SIU	01					C used
•						D Used
	2500					E Used
RTN	24					0
IRI	23					
C	13					2
4	41					4
9 †	3508					5
+	61					6
f	31					7
SIN	04					8
RCL 8	3408					9
X D/C	71					
K/S	2500					FLAGS
19 T	3509					1
	3100					۲ <u> </u>
X	71					
			· · · · · · · · · · · · · · · · · · ·			

Program Title SPE	CIAL ANGLE COMPUTATION C	CASE 2			
Contributor's Name Address	Charles C. Campbell, LS 9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes x and y angles given angles A, B, C, D, E, and F according to the formulas on USCGS form 655A. Handy for locating topo instrument stations in corn fields, etc.

tan alpha = <u>sin A sin C sin E</u>____ sin B sin D sin F

 $\tan 1/2(y-x) = \tan(alpha-45) \tan 1/2(y+x)$

1/2(y+x) = 1/2(C+D)

Alpha is an auxillary angle computed and used in the program.

Operating Limits and Warnings

None.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

	SPECIAL ANGLE COMP. CASE 2			5
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter p rogr am			
2	Start (See flag)		A	2.0000
3	Input Angle A	A	R/S	
4	Input Angle B	В	R/S	
5	Input Angle C	С	R/S	
6	Input Angle D	D	R/S	
7	Input Angle E	E	R/S	
8	Input Angle F (See x)	F	R/S	×
9	See seconds and fraction of x (note)		R/S	×
10	See y		R/S	у
11	See seconds and fraction of y		R/S	y \$\$ • \$\$\$\$
	NOTE: The x and y angles should be considered no			
	more accurate than the least accurate angle known			
	(A, B, C, D, E, or F angles).			

KEY ENTRY	CODE SHOWN	COMMENTS	ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21		f	31		R ₁ accum-
•	83		TAN	06		ulator
4	04		×	71		x in D.DD
2	02	flag	f-1	32		R ₂
RTN	24	Input A	TAN	06		y in D.DD
STO 3	3303	-	RCL 2	3402		
R/S	84	Input B	gx 🖓 y	3507		$R_3 A in$
STO 4	3304		STO	33		D.MS
R/S	84	Input C	+	61		
STO 5	3305		2	02		R4 B in
K/S	84	Input D		51		D_MS
SICO	3306		STO 1	3301		
$\frac{K}{5}$	2207	Input E		23		R₅ <u>C in</u>
5107	330/		0	00		D.MS
K/S	84	Input F		31		
5108	3308		-D.MS	03		$R_6 D in$
	15			2500	See x & y	D_MS
	3301	<u> </u>	gL31X	3500		
	3404	В	B	12		$ R_7 E in$
	13				· · · · · · · · · · · · · · · · · · ·	D.MS
RCIA	3406	Ν		0400		
E	15	D	KCL 2	3402		R8 F in
	1/		010	22		D.MS
alSTy	3500			22		
RCI 5	3405	C		12		ng
F	15	U	f_1	32		
alSTx	3500		INT	83		LABELS
ax 🗘 y	3507		6	06		A start
Č	13		0	00		- A start
gt	3508		×	71		
+	61		RTN	24		
2	02		LBL	23		Eused
•••	81		С	13		oused
STO 2	3302	1/2 v+x	g	35		1
RCL 3	3403	Á Í	1/x	04		2
E	15		LBL	23		3
C	13		D	14		4
RCL 7	3407	E		33		5
E	15		×	71		6
C	13			01		7
RCL 1	3401			24		8
	32			23		9
	00		E	15		
4	04			32		FLAGS
5	- 05		-I-D.MS	03		_ 1
	51			-31		
TAN				04	,	- ²
RCI 2	3402			24		

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY

rogram Title SPEC	IAL DISTANCE COMP	UTATION, CASE 2	2		
contributor's Name	Charles C. Cam	obell, LS			
ddress	9841 E. 21st Stre	eet			
;ity	Indianapolis	State	Indiana	Zip Code	46229
Program Description, Eq problem shown Computation, proper register program first,	uations, Variables, etc. on USCGS form 655A Case 2" program, whic s, although the distanc provided the X and Y o	Computes all the ur Intended to follow th leaves the neede tes could be compute angles are known.	hknown dista w the "Specie d data in the ted without u	nces of the Ca al Angle e proper forma using said	ase 2 at in the
USES SINE LA	W:				
	<u>a = b</u>	c			
	sin A sin B	sin (A+B)			
perating Limits and Wa stop in middle	ornings Enter degrees, of computations push F	minutes, and seco TN before restartin	nds as DDD . ng with the A	MMSSS. If yo key.	חמ

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

SP. DISTANCE CALC. CASE 2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If not from "Special Angle Computation" program,			
	then load proper registers with x,y,A,B,C,D,E and			
	F angles in proper format			
2	If from "Special Angle Computation" program, do			
	nothing.			
3	Enter "a" distance	a	A	b
4			R/S	с
5			R/S	d
6			R/S	е
7	equal b?		R/S	f
8			R/S	g
9	equal d?		R/S	h
10	equal a?		R/S	i
11	Did you forget to write down a distance(s)?			
	Go to step 3.			
	NOTE: Flashing 0 indicates all distances have been			
	computed and R/S was pushed.			
		ļ		

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		SIN	04		B ₁ x
Α	11		ax 2 v	3507		in D. DD
DSP	21		X	71		
•	83		R/S	84		R ₂ v
3	<u>03</u>		aLSTx	3500		in D.DD
RCL 4	3404	В	94	3509		
E	15		f	31		R ₃ A in
D	14		SIN	04		D.MS
В	12		X	71		
RCL 2	3402	у	RTN	24		R ₄ B in
С	13		LBL	23		D.MS
R/S	84		D	14		
RCL 6	3406	D	f	31		R ₅ C in
E	15		SIN	04		D.MS
D	14		RTN	24		
В	12	A	LBL	23		R ₆ D in
RCL 3	3403	A	E	15		D.MS
E	15		f-1	32		
C	13		-D.MS	03		R ₇ E in
R/S	84		RTN	24		D.MS
RCL 8	3408	..				
E	15					R ₈ F in
D	14					D.MS
B	12					
RCL 5	3405	С				R ₉
E	15					
C	13					
K/S	84					LABELS
RCLI	3401	х				A start
						B used
	2407	E				C_used
	3407	E				D <u>used</u>
	12		· · · · · ·			E
	04					0
0	00					1
÷	81					2
IRI	23					3
	12		11			4
	3500		1			5
at	3508		1			0
÷.	81					
94	3509		1			0
RTN	24					3
LBL	23					FLAGS
С	13					1
•	41					
91	3508					2
+	61					
f	31					

Contributor's NameCharles C. Campbell, LSAddress9841 East 21st StreetCityIndianapolisState IndianaProgram Description, Equations, Variables, etc.Computes X and Y angles given distances A and Band angles A, B, C, and G according to the formulas on USCGS form 655A. Handy forlocating topo instrument stations in corn fields, etc.tan alpha = $\frac{b sinA sinC}{a sinB sinD}$ tan 1/2(y-x) = tan(alpha-45) tan 1/2(y+x)1/2(y+x) = $270 - 1/2(A+B+C+D+G)$ Alpha is an auxillary angle computed and used in the program.	Contributor's NameCharles C. Campbell, LSAddress9841 East 21st StreetCityIndianapolisStateIndianaProgram Description, Equations, Variables, etc.Computes X and Y angles given distances A and Band angles A, B, C, and G according to the formulas on USCGS form 655A. Handy forlocating topo instrument stations in corn fields, etc.tan alpha $\frac{b sinA sinC}{a sinB sinD}$ tan 1/2(y-x) $tan (alpha-45) tan 1/2(y+x)$ 1/2(y+x) $1/2(y+x) = 270 - 1/2(A+B+C+D+G)$ Alpha is an auxillary angle computed and used in the program.	Program Title SPE	CIAL ANGLE COMPUTATIO	ON, CASE 3		
CityIndianapolisStateIndianaZip Code 46229Program Description, Equations, Variables, etc.Computes X and Y angles given distances A and B and angles A, B, C, and G according to the formulas on USCGS form 655A. Handy for locating topo instrument stations in corn fields, etc.tan alpha $=$ $\frac{b \ sinA \ sinC}{a \ sinB \ sinD}$ tan $1/2(y-x)$ $=$ $tan (alpha-45) \ tan 1/2(y+x)1/2(y+x) = 270 - 1/2(A+B+C+D+G)Alpha is an auxillary angle computed and used in the program.$	City Indianapolis State Indiana Zip Code 46229 Program Description, Equations, Variables, etc. Computes X and Y angles given distances A and B and angles A, B, C, and G according to the formulas on USCGS form 655A. Handy for locating topo instrument stations in corn fields, etc. tan alpha = b sinA sinC / a sinB sinD tan 1/2(y-x) = tan(alpha-45) tan 1/2(y+x) 1/2(y+x) = 270 - 1/2(A+B+C+D+G) Alpha is an auxillary angle computed and used in the program.	Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street			
Program Description, Equations, Variables, etc. Computes X and Y angles given distances A and B and angles A, B, C, and G according to the formulas on USCGS form 655A. Handy for locating topo instrument stations in corn fields, etc. $\tan alpha = \frac{b \ sinA \ sinC}{a \ sinB \ sinD}$ $\tan 1/2(y-x) = \tan(alpha-45) \ \tan 1/2(y+x)$ $1/2(y+x) = 270 - 1/2(A+B+C+D+G)$ Alpha is an auxillary angle computed and used in the program.	Program Description, Equations, Variables, etc. Computes X and Y angles given distances A and B and angles A, B, C, and G according to the formulas on USCGS form 655A. Handy for locating topo instrument stations in corn fields, etc. $\tan alpha = \frac{b \ sinA \ sinC}{a \ sinB \ sinD}$ $\tan 1/2(y-x) = \tan(alpha-45) \ \tan 1/2(y+x)$ $1/2(y+x) = 270 - 1/2(A+B+C+D+G)$ Alpha is an auxillary angle computed and used in the program.	City	Indianapolis	State	e Indiana	Zip Code 46229
		Program Description and angles A, locating topo i	n, Equations, Variables, etc. Co B, C, and G according to t instrument stations in corn fi tan alpha = $\frac{b \ sinA \ sinC}{a \ sinB \ sinD}$ tan 1/2(y-x) = tan(alpha-4 1/2(y+x) = 270 - 1/2(A+E Alpha is an auxillary angle	omputes X and Y he formulas on U elds, etc. 45) tan 1/2(y+x) 3+C+D+G) e computed and u	angles given SCGS form 65	distances A and B 55A. Handy for ogram.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Start (See flag)		Α		3.0000
3	Input distance a	a	R/S		
4	Input distance b	Ь	R/S		1/b
5	(Opt.) See b just entered		g	1/x	
6	Input angle A	A	R/S		
7	Input angle B	В	R/S		
8	Input angle C	С	R/S		
9	Input angle D	D	R/S		
10	Input angle G	G	R/S		×
11	See seconds and fraction of x (Note)		R/S		ss.ssss
12	See y		R/S		у
13	See seconds and fraction of y (Note)		R/S		y ss.ssss
	NOTE: The x and y angles should be considered no				
	more accurate than the least accurate angle known				
	(A, B, C, D, or G angles.)				
		+			
			[]		
		1		L	
SWITCH TO W/PRGM. PRESS [] PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21		TAN	06		Rigccum-
•	83		x	71		ulator
4	04		f-1	32		x dec.
f	31		TAN	06		R ₂ anale
REG	43		+	61		accumulator
3	03	flaa	STO 2	3302		y dec.
RTN	24	Input a	g 🛉	3508		R_3 Å in
STO 1	3301	•	gLSTx	3500		D.MS
STO 7	3307		-	51		
R/S	84	Input b	STO 1	3301		R ₄ B in
C	13		LBL	23		D.MS
R/S	84	Input A	0	00		
STO 3	3303	•	f	31		$R_5 C in$
R/S	84	Input B	D MS	03		D.MS
STO 4	3304	-	R/S	84	See x and y	
R/S	84	Input C	gLSTx	3500		R ₆ D in
STO 5	3305	•	B	12		D.MS
R/S	84	Input D	В	12		
STO 6	3306	•	R/S	84	See fraction of second	R ₇ a
R/S	84	Input G	RCL 2	3402		
E	15	-	GTO	22		
RCL 3	3403	A	0	00		R ₈
E	15		LBL	23		
C	13		В	12		
RCL 4	3404	В	f-1	32		R ₉
E	15		INT	83		
D	14	-	6	06		
RCL 5	3405	С	0	00		LABELS
E	15		X	71		A start
C	13		RTN	24		B <u>used</u>
RCL 6	3406	D	LBL	23		Cused
<u> </u>	15		C	13		Dused
D	14		g	35		E used
2	02		1/x	04		0 used
Z	07		LBL	23		1
	00		D	14		2
RCL2	3402		SIO	33		3
2	02		X	/1		4
	01			01		5
-	51			24		6
r 2	41			23		7
TAN	04			15		8
RCI 1	3401			02		9
	22			22		
	0/			<u> </u>		FLAGS
			2	02		1
5			f	21		2
-	51		SIN	04		۲ <u>ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ</u>
f	31		RTN	24		

Program Title SPECIA	L DISTANCE COMPUTATION	N, CASE 3		
Contributor's Name	Charles C. Campbell, IS			
	9841 F 21st STreet			
Address		State	Indiana	Zin Code 44220
		State	Indiana	
Program Description, Equa problem shown o Computation, Co proper registers, first, provided t	ntions, Variables, etc. Compu n USCGS form 655A. Intend ase 3" program, which leaves although the distances could he X and Y angles are known.	tes all the u ed to follow the needed be compute •	nknown dist the "Specie data in the d without u	ances of the Case 3 al angle proper format in the using said program
USES SINE LAW	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{b}{\sin B}$	c sin(A+B)		
Operating Limits and Warn stop in middle of	ings Enter degrees, minut computations, push RTN bef	es, and secc ore restartin	nds as DDD g with the A	.MMSSS. If you A key.

uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference (s) Gossett, F.R., <u>MANUAL OF GEODETIC TRIANGULATION</u>, Special Publication No. 247, Superintendent of Documents, U.S. Gov. Printing Off., Washington D.C., 1959 Pages 174–176

SP. DISTANCE CALC. CASE 3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If not from "Special Angle Computation" program,			
	then load proper registers with x, y, A, B, C, & D			
	angles and distance a in proper format.			
2	If from "Special Angle Computation" program			
	do nothing.			
3			A	с
4			R/S	d
5			R/S	е
6			R/S	f
7			R/S	g
8	Equal b?		R/S	h
9	Did you forget to write down a distance(s)? Go to			
	step 3.			
	NOTE: Flashing 0 indicates all distances have been			
	computed and R/S was pushed.			

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY. CODE SHOWN CODE SHOWN KEY ENTRY KEY COMMENTS REGISTERS COMMENTS ENTRY LBL 23 24 RTN $R_1 \times in$ 11 Α____ LBL 23 Dec. DSP 21 В 12 R₂ y in 83 STO 33 3 03 ÷ 81 Dec. RCL 7 STO 8 3407 8 08 a 3308 3508 g 🕴 R₃ A in RCL 3 3403 RTN LBL <u>24</u> 23 Α D.MS E 15 41 D 14 R₄ Bin D B 14 f 31 D.MS 12 SIN 04 RCL 1 3401 R₅ Cin RTN 24 23 х С 13 LBL D.MS R/S 84 E 15 R₆ D in f-1 RCL 5 3405 C 32 -D.MS Ε 15 03 D_MS 4 41 RTN 24 <u>14</u> 12 D B R₇_a RCL 4 E 3404 B 15 R₈ used C 13 R/S 84 RCL 2 3402 R9____ 41 D 14 В 12 LABELS RCL 6 3406 D A start Ε 15 B used C 13 C used R/S 84 D used 00 0 E_used -81 0 _____ LBL 23 1 _____ С 13 2 _____ Ĭ 41 3 _____ gł 3508 4 _____ +____ 61 5 _____ f 31 6 _____ SIN 04 7 _____ RCL 8 3408 8 _____ 71 X 9 _____ R∕S g ↓ 84 3509 FLAGS 31 1 _____ SIN 04 RCL 8 3408 2 _____ 71 STO 8 3308

Program Title	TANGENT ELEVATIONS				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street	State	Indiana	Zin Code	16220

Program Description, Equations, Variables, etc. Given an interval, beginning stationing and elevation, and percent of grade, the program computes elevation of the station, which station is computed based on the interval, or a special station entered by the user. The program is designed to be used in conjuntion with "Vert. Curve Elevations", so that an entire street may be computed without re-entry of known data.

New Elev = Last Elev. +
$$\begin{bmatrix} g1 \\ 100 \end{bmatrix}$$
 x (New Sta-Last Sta)
Next Station = (n of $\begin{bmatrix} last station \\ interval \end{bmatrix}$ +1) Interval

Elev. = Elevation

n = integer

Operating Limits and Warnings

If interval is fractional: round and truncate to 7 significant digits or less. If below sea level, elevations are negative, including the entry thereof.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

2+53.15 609.15 3+00 3+00 3+00 5pecial	2:30,2%	5+00	e+00 100 100 100 100 100 100 100	× 2.00	20 00+6
Sample Problem(s) problem in the	Compute the e above sketch.	elevations every	v 33.33 feet plus the spe	cial station f	or the
STEPS: 33 300.01R/S, R/ OOPS! To fan R/S, R/S, R/S	3.33333A, 253 /S, R/S, R/S, F r, 500R/S, 3.4 , R/S, 2C, R	.15R/S, 609.15 R/S, R/S, R/S, 52 CHS C R/S /S, R/S, R/S, I	5R/S, 2.542R/S, R/S, R R/S, R/S, R/S, R/S, R/ , R/S, R/S, R/S, R/S, R/S, R/S, R/S, R/S, R/S, R/	/S, R/S, R/S /S, R/S, R/S, R/S, R/S, R/S, S, R/S, R/S,	, R∕S,
Solution(s)	FI FV	STA . 5+33,33	ELE∨. 614_27	8+66 67	611 85
2+66.67	609.49	5+66.67	613.12	9+00	612.52
3+00.	610.34	6+00.	611.97		
3+00.01	610.34	6+33.33	610.82		
3+33.33	611.19	6+66.67	609.67		
3+66.67	612.04	7+00	608.52		
4+00.00	612.88	7+33.33	609.19		
4+33.33	613.73	7+66.67	609.85		
4+66.67	614.58	8+00	610.52		
5+00	615.42	8+33.33	611.19		

Reference(s) Bouchard, Harry and Moffitt, Francis H., <u>SURVEYING</u>, fifth edition, pages 284–285, International Textbook Company, Scranton, Pennsylvania. 1965.

TANGENT ELEVATIONS #5

STEP	INSTRUCTIONS	INPUT DATA/UNITS KEYS		OUTPUT DATA/UNITS	
1	Enter Program				
2	(Optional) See flag		RTN	R/S	5
3	Input interval	I	Α		
4	If from "Vert. Curve " program push E then go to step				
	8(skip_step 3 or change interval)				
4	Or input beginning station and elevation		В		×
5	Input beginning station	STA	R/S		
6	Input beginning elevation	ELEV	R/S		
7	Input grade and compute(see next station)	gl	С		STA
8	Accept		R/S		ELEV
8	Or override with special station	STA	R/S		ELEV
9	If at BVC, go to Vert. Curve program				
9	Or see next station		R/S		STA
9	Or go to step 3 or 4				
	Repeat steps 8 and 9 as desired.				
	NOTES: If D is pressed, a 6 will be displayed, which				
	means enter "Vert. Curve Elevation" program, then				
	press D to enter VC length and g2.				
	BVC = Beginning of vertical curve				
	g1 is "grade one", g2 is grade two"				
	B and C keys do not have to be pushed if coming from				
	preceeding funtion key (A or B).				
1	use R/S to enter data				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
5	05	flag	INT	83		R ₁ last
DSP	21		1	01		station
•	83		1 +	61		
0	00		RCL 8	3408		R ₂ last
R/S	84	See flag	X	71		elevation
LBL	23		R/S	84	See station	
E	15		RCL 1	3401		R ₃ al
9 \	3509)	ox⊋ v	3507		
STO 2	3302		STO 1	3301		
RCL 5	3405		ax≎v	3507		R ₄
STO 3	3303		-	51		
RCL 4	3404		RCL 3	3403		
STO 1	3301		X	71		R ₅
DSP	21		RCL 2	3402		
•	83		+	61		
2	02		STO 2	3302		R ₆
GTO	22		R/S	84	See elevation	
Ο.	00		GTO	22		
LBL	23		0	00		R ₇
D	14					
6	06	flag(go to VC prog.)				
RTN	24					R ₈
LBL	23					interval
Α	11	Inp. interval				
STO 8	3308	•				R ₉
LBL	23					
В	12					
DSP	21					LABELS
•	83					A used
2	02					B used
RTN	24	Inp. Bgn. Sta.				C_used
STO 1	3301					D used
R/S	84	Inp. Bgn. Elev.			· · ·	E_used
STO 2	3302					o used
R/S	84					1
LBL	23	Inp.glgrade				2
<u>C</u>	13					3
DSP	21	·				4
•	83					5
2	02		┨┝────			6
EEX	43		┨┝			7
2	02		┨┝────			8
	81		┫┝			9
510 3	3303	······································				
LBL	23		┫┝───── `			FLAGS
						1
KUL	3401					
KCL O	0400		·{}·			2
1	- <u>Ö</u>					
	<u></u>		J L	1	I	/ L

Program Title VERT. CUI	RVE ELEVATION				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Given an interval, the stationing and elevation of the beginning of the curve, the two grades in %, and the length of curve, the program computes sta. and elev. of high or low point, if grades have different signs, and the elevation of the stations, which stations are computed based on the interval or a special station entered by the user. The program is designed to be used in conjuntion with "Tangent Elevations".

Equations of the Parabola: r = <u>g2 - g1</u>	Next Station = (n of $\begin{bmatrix} last sta. \\ interval \end{bmatrix}$ +1) interval
L Elev = Elev BVC + (StaSta.BVC) g1+	$\left[\frac{r}{2} \times (\text{StaSta. BVC})^2\right]$
Sta. Low Point = $\frac{-g1}{r}$ + Sta. BVC	-
r = rate of change of grade	BVC = Beginning of Vert. Curve
g1 = initial grade (decimal)	EVC = End of Vert. Curve
g2 = final grade (decimal) L = length of curve	n = Integer

Operating Limits and Warnings If interval is fractional: round and truncate to 7 significant digits or less. If interval is fractional: EVC, STA. and ELEV. may have to be computed twice before the 5 is displayed. If below sea level, elevations are negative, including the entry thereof. It is possible to compute elevations of the parabola which is outside that part used for the VC.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference (s) Bouchard, Harry and Moffitt, Francis H., <u>SURVEYING</u>, fifth edition, pages 280–289, International Textbook Company, Scranton, Pennsylvania, 1965.

VERT. CURVE ELEVATION #6 Interval & Sta. 91 Length

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional) see flag		RTN R/S	6.00
3	If from "Tan Elev" program; go to step 9			
4	Input interval	1	A	
5	Input BVC, STA and ELEV		В	
6	Input BVC STA	STA	R/S	
7	Input BVC ELEV	ELEV	R/S	
8	Input g1(first grade) in %	gl	C	
9	Input VC length and g2(second grade)		D	
10	Input VC length	L	R/S	
11	Input g2 in % (see STA high or low point if there	g2	R/S	STA
	is one)			
12	See ELEV of high or low point if there is one		R/S	ELE∨
13	Next station (accept STA)		R/S	ELEV
13	Or override with special station	STA	R/S	ELEV
14	See next sta		R/S	STA
	Repeat steps 13 and 14 until a 5 is displayed, which			
	means you are at the end of cutve, then enter			
	"Tan Elev" program and continue on tangent.			
	Or go to step 4 to change interval.			
	Or go to step 5 for next curve.			
	NOTES: BVC=Beginning of Vertical Curve			
	B, C, and D keys do not have to be pushed if coming			
	from preceding function key(A, B, or C key), use			
	R/S to enter data.			
	If Step 3: You may do step 4, then go to step 9.			
	If error is detected at steps 13 or 14: You may re-			
	start computations at step 9 or excute step 4 and/or			
	excute steps 5, 6, 7 first, then go to step 9.			

KEY	CODE	COMMENTS	KEY	CODE	COMMENTE	DECISTERS
ENTRY	SHOWN	61	ENTRY	SHOWN	COMINIENTS	REGISTERS
0	00			23		R ₁ _BVC
	84	See flag		01		STA
	23			3401		
	2200		510	33		H ₂ BVC
5108	3308		+	61		
	12		4	04	= EVC SIA	
RTN	24	Inn BC STA		23		R ₃ gr
	2301		PCI 8	3408		
$\frac{310}{R/S}$	84	Inc. BC FLEV		01		P.
STO 2	3302		t .	21		Sta
R/S	84		INIT	83		FVC
LBL	23	Inp. al in %	1	01		
C	13		+	61		
FFX	43		RCI 8	3408		
2	02		X	71		R ₆ R
÷	81		RCL 4	3404		
STO 3	3303		ax > y	3524		
LBL	23		g †	3508		R ₇
D	14		gnop	3501		present
R/S	84	Inp. VC length	R/S	84	See next sta	Sta.
STO 4	3304	, , , , , , , , , , , , , , , , , , , ,	STO 7	3307		R ₈
R/S	84	Inp. g2 in %	E	15		interval
EEX	43		R/S	84	See elevation	
2	02		RCL 4	3404		R ₉ used
÷	81		RCL 7	3407		tests
SIO 5	3305		gx=y	3523		
RCL 3	3403		5	05		LABELS
-	51		R/S	84		A used
RCL 4	3404	D	GIO	22		B used
TO (01	—K	2	02		C used
	3300			23	Compute elevation	D Used
DCI 2	3403			2401		E Used
	42		ACL I	51		0
RCI 6	3406		•	41		1 Used
÷	81		f-1	32		2 Used
0	ŎŎ		······································	00		3
ax> v	3524		RCL 6	3406		4
GIÓ	22		2	02		5
1	01		÷	81		7
+	61		x	71		8
gx > y	3524		gx≎y	3507		9
GTO'	22		RCL 3	3403		
1	01		×	71		FLAGS
RCL 1	3401		RCL 2	3402		1
+	61		±	61		
R/S	84	See low or high sta	+	61		2
E D/C	15		RTN	24		
LK/S	84	See elev high or low				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

 Program Title
 YARDAGE

 Contributor's Name
 Charles C. Campbell, LS

 Address
 9841 East 21st Street

 City
 Indianapolis

 State
 Indiana

Program Description, Equations, Variables, etc. Program utilizes the cross section(x-section) method to determine the volumes of Cut and Fill, where the End Areas(EA's) of adjacent x-sections are averaged and multiplyed by distance(Reach) between them and divided by 27 to obtain cubic yards. The program also displays the Mass Ordinate(MO) (Vol. cut-Vol. filled). The EA's are developed in segments defined by points consisting of stationing, proposed elevation, and existing elevation and computed according to the following CASES:

CASE 1:	Section F End Area = $\frac{(F1+F2) D}{2}$
CASE 2:	Section C End Area = $\frac{(-C1+-C2)}{D}$
	2
CASE 3:	Section F End Area = $\frac{F^2}{F^2}$ D
	(C + F) 2
	Section $-C$ End Area $= \frac{C^2 D}{C^2}$
	-(C+F) 2

See Sketches Next Page

CASE 4: -C and F are exchanged to form a CASE 3 problem.

Operating Limits and Warnings None known.

The data for the program is normally taken from a Development Plan for a particular project.

It is not necessary to index the scale at "0" at the edge of the cross section.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK. in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING. BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS. INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

91.7 92.5 92.5 Sta. 0+00 200.00' Sta. 0+46	795	FI AII FIII F2	-C, AII Cut -CZ
0 0 R: 793.0 40' 40' Sta 1+15 5 6 6 6 6	Exist. Grude	-C Cut Fill F	F Fill Cut -c
100- 021 021 5ta. 1+50	Grade	CASE 3	CASE 4

STA. P. ELEV. E.ELEV. STEPS: Enter Card 1, RTN, R/S, A, R/S, 91.7 94.4 0 91.7 94.4 91.7R/S, 94.4R/S, Enter Card 2, 150 90.5 150 90.5 91.4 150R/S, 90.5R/S, 91.4R/S, Enter Card 1, A, R/S, 92.5R/S, 94.5R/S, 91.5R/S, 115R/S, 45 93.0 93.5 115 93.0 93.5 93R/S, 92R/S, 150R/S, 92.5R/S, 91.2R/S 115 93.0 92.0 Enter Card 1, 40B, C, D, R/S, E, 40B, C, DUPE x-sec. R=40 Card 2, 150R/S, 91R/S, 91.3R/S, DUPE x-sec. Enter Card 1, 120B, C, D, R/S. R=40 91.3 R=120	Sample Proble	em(s)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STA.	P.ELE∨.	E.ELEV.	STEPS: Ente	er Card 1, RTN, R/S, A, R/S,
150 90.5 91.4 150R/S, 90.5R/S, 91.4R/S, Enter Card 1, A, R/S, 92.5R/S, 94.5R/S, Enter Card 2, 45 0 92.5 94.5 45/S, 93R/S, 93R/S, 93.5R/S, 115R/S, 93R/S, 92R/S, 150R/S, 92.5R/S, 91.2R/S 115 93.0 92.0 Enter Card 1, 40B, C, D, R/S, E, 40B, C, 150 92.5 92.5 91.2 D, R/S, A, R/S, 92R/S, 91.2R/S, 91.2R/S, 150 92.5 91.2 D, R/S, A, R/S, 92R/S, 91.3R/S, Enter Card 1, 40B, C, D, R/S, Enter 0 92.0 94.3 150 91.0 91.3 R=40 0 91.3 Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 91.3 R=120 7.10 4198.89 X1-2 -245.99 47.10 4198.89 X1-3 -337.96 141.30 4196.67 TOTAL X1-4 -909.26 282.59 +626.67	0	91.7	94.4	91.7R/S, 94	.4R/S, Enter Card 2,
R=None A, R/S, 92.5R/S, 94.5R/S, Enter Card 2, 45R/S, 93.6K/S, 115R/S, 93.6 0 92.5 94.5 45 93.0 93.5 93.0 92.0 Enter Card 1, 40B, C, D, R/S, E, 40B, C, D, R/S, F, 40B, C, D, R/S, 92R/S, 91.2R/S 150 92.5 91.2 D, R/S, A, R/S, 92R/S, 94.3R/S, 91.2R/S NUPE x-sec. Card 2, 150R/S, 91.2/S, 91.3R/S, Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 150 91.0 91.3 R=120 CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67	150	90.5	91.4	150R/S, 90.	5R/S, 91.4R/S, Enter Card 1,
0 92.5 94.5 45R/S, 93R/S, 93.5R/S, 115R/S, 45 93.0 93.5 93R/S, 92R/S, 150R/S, 92.5R/S, 91.2R/S 115 93.0 92.0 Enter Card 1, 40B, C, D, R/S, E, 40B, C, 150 92.5 91.2 D, R/S, A, R/S, 92R/S, 94.3R/S, Enter R=40 Card 2, 150R/S, 91R/S, 91.3R/S, Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 150 91.0 91.3 R=120 Solution(s) CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67		R=None		A, R/S, 92.	5R/S, 94.5R/S, Enter Card 2,
45 93.0 93.5 93R/S, 92R/S, 150R/S, 92.5k/S, 91.2R/S 115 93.0 92.0 Enter Card 1, 40B, C, D, R/S, E, 40B, C, D, R/S, E, 40B, C, D, R/S, A, R/S, 92R/S, 94.3R/S, Enter 150 92.5 91.2 D, R/S, A, R/S, 92R/S, 91.3R/S, 91.3R/S, Enter R=40 Card 2, 150R/S, 91R/S, 91.3R/S, Enter Card 2, 150R/S, 91R/S, 91.3R/S, Enter 0 92.0 94.3 150 91.0 91.3 R=120 8=120	0	92.5	94.5	45R/S,	93R/S, 93.5R/S, 115R/S,
115 93.0 92.0 Enter Card 1, 408, C, D, R/S, E, 408, C, D, R/S, E, 408, C, D, R/S, 928/S, 94.3R/S, Enter Card 2, 150R/S, 91R/S, 91.3R/S, DUPE x-sec. R=40 Card 2, 150R/S, 91R/S, 91.3R/S, Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 150 91.0 91.3 R=120 R=120 Solution(s) CUT cy X1-2 -245.99 X1-3 -337.96 X1-3 -337.96 X1-4 -909.26 282.59 +626.67	45	93.0	93.5	93R/S, 92R/	S, 150R/S, 92.5R/S, 91.2R/S
150 92.5 91.2 D, R/S, A, R/S, 92R/S, 94.3R/S, Enter R=40 Card 2, 150R/S, 91R/S, 91.3R/S, DUPE x-sec. Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 150 91.0 91.3 R=120 R=120 FILL cy MO cy X1-2 -245.99 47.10 X1-3 -337.96 141.30 TOTAL X1-4 -909.26 282.59	115	93.0	92.0	Enter Card 1	, 40B, C, D, R/S, E, 40B, C,
R=40 Card 2, 150R/S, 91R/S, 91.3R/S, Enter Card 1, 120B, C, D, R/S. $0 92.0 94.3 150 91.0 91.3 R=120$ Solution(s) $CUT cy FILL cy MO cy 172 -245.99 47.10 +198.89 173 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67$	150	92.5	91.2	D, R/S, A,	R/S, 92R/S, 94.3R/S, Enter
DUPE x-sec. Enter Card 1, 120B, C, D, R/S. 0 92.0 94.3 150 91.0 91.3 R=120 R=120 Solution(s) CUT cy FILL cy MO cy $X1-2$ -245.99 47.10 +198.89 $X1-3$ -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67		R=40		Card 2,	150R/S, 91R/S, 91.3R/S,
$ \begin{array}{c} R=40 \\ 0 & 92.0 \\ 150 & 91.0 \\ R=120 \end{array} \\ \hline \\ Solution(s) \\ \hline \\ X1-2 \\ X1-3 \\ TOTAL \\ X1-4 \\ \end{array} \\ \begin{array}{c} CUT \ cy \\ -245.99 \\ 47.10 \\ 141.30 \\ +198.89 \\ 141.30 \\ +196.67 \\ 282.59 \\ +626.67 \end{array} \\ \hline \\ \end{array} \\ \hline \\ \end{array} \\ \begin{array}{c} NO \ cy \\ +198.89 \\ +196.67 \\ -909.26 \\ 282.59 \\ +626.67 \end{array} \\ \hline \\ \end{array}$		DUPE x-sec.		Enter Card 1	, 120B, C, D, R/S.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R=40			
150 91.0 91.3 R=120 R=120 Solution(s) CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67	0	92.0	94.3		
R=120 Solution(s) X1-2 X1-2 X1-3 TOTAL X1-4 Solution(s) CUT cy FILL cy MO cy +198.89 47.10 +196.67 141.30 +196.67 282.59 +626.67	150	91.0	91.3		
Solution(s) CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67		R=120			
Solution(s) CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67					
CUT cy FILL cy MO cy X1-2 -245.99 47.10 +198.89 X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67	Solution(s)				
X1-2 X1-3 TOTAL X1-4 -245.99 47.10 +198.89 +196.67 282.59 +626.67			CUT cy	FILL cy	MO cy
X1-3 -337.96 141.30 +196.67 TOTAL X1-4 -909.26 282.59 +626.67		X1-2	-245.99	47.10	+198.89
TOTAL X1-4 -909.26 282.59 +626.67		X1-3	-337.96	141.30	+196.67
	TOTAL	×1-4	-909.26	282.59	+626.67
	l				

Reference(s) Bouchard, Harry and Moffitt, Francis H, <u>SURVEYING</u>, fifth edition, Chapter 16, page 520, International Textbook Company, Scranton, Pennsylvania, 1965.

YARDAGE Initilize RTN/R/S Card 1 X-Sec. Reach V.Cut V.Fill Dup. X-Sec. 2

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	Enter Card 1				
2	Initilize (Vol. accumulators)		RTN	R/S	
3	Input X-section		A		
3	If re-starting X-section after mistake.		GTO	5	
4	Input first station	STA	R/S		STA
5	Input first proposed elevation	PE	R/S		PE
6	Input first existing elevation	EE	R/S		2
7	Enter Card 2				
8	Input next station	STA	R/S		
9	Input next proposed elevation	PE	R/S		PE
10	Input next existing elevation	EE	R/S		1
11	Repeat steps 8,9, & 10 for each point in X section				
12	Re-enter Card 1				
13	Input reach between last two X-section	reach	В		
14	See Volume Cut(cu. yards) to date		С		cut
15	(Optional) See mass-ordinate		R/S		MO
16	See Volume Fill(cu. yards) to date		D		FILL
17	(Optional) See mass-ordinate		R/S		MO
18	Duplicate end areas of last X-section(optional)		E		
19	Go to step 3 for next X-section				
	NOTES: At step 13: two x-sections should be computed	before a re	ach		
	is entered and volumes computed, excepting at the beg	nning of			
	a job where the first x-section has EA's of zero, provid	ed the			
	"last" EA was initilized by merely pushing the A key.	(zeros			
	out registers 1 and 2) and the second pushing moves the	zeros			
	to the last EA position.				
	Steps 14 through 18 are optional except after the last				
	x-section in job.				
	GTO 5 prevents movement of "last x-section" EA's.				
	•				

YARDAGE CARD 1

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY	CODE	COMMENTS	REGISTERS
0	00	Initilize Vol.	STO	33		B ₁ EA Fill
STO 7	3307			61		accumulator
STO 8	3308		8	08		(current)
R/S	84		RTN	24		R ₂ EA Cut
0	00		LBL	23		accumulator
÷	81	Error stop	C	13		(curr _e nt)
LBL	23		RCL 8	3408		R ₃ EA Fill
A	11	Start new x-section	<u>Ģ</u> TO	22		(last)
RCLI	3401	transfer end areas	6	06		
510 3	3303			23		R4EA Cut
RCL 2	3402			14		(last)
	3304		RCL /	3407		D CTA
	25			23		R5214
0	00	re-start x-section		06		
	3301	zoro gooumulators		24	See Cut or Fill	D
	3302	Zero accumulators		3408		
	0.002	input first station		42		PE-EE
$\frac{1}{5}$	3305	Input first station		51		R-Vol Fill
R/S	84	Input first PE	– p/c	21 84	See MO	accumulator
	81		0	00	See MO	(cu vds)
J	51		1 ÷	81	error stop	BeVol Cut
STO 6	3306		LBL	23		accumulator
2	02	flaa	E	15	duplicate last x-section	(cu. yards)
Ē∕S	84	go to Card 2	RCL 1	3401		Raised
0	00		STO 3	3303		tests
÷	81	error stop	RCL 2	3402		& reach
LBL	23		STO 4	3304		LABELS
В	12	input reach	RTN	24		A x-sec.
STO	33		0	00		Breach
9	09		÷	81		c Cut
RCL 1	3401					DFill
RCL 3	3403					E dupe.
+	61					0 x-sec.
x	/1					1
<u> </u>	05					2
<u>4</u>	<u>04</u> <u>81</u>		-			3
STO	33					4
+	61					5 used
7	07					b <u>used</u>
RCI	34					/
9	Ŭ9					0
RCL 2	3402					9
RCL 4	3404					FLAGS
+	61					1
x	71					
5	05					2
4	04					
1 ÷	81		11			

SWITCH	TO W/PRGM.	PRESS f PRGM TO CLEAR MEMOR	۲.			
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
RCL 5	3405		9 1	3508		R ₁ EA Fill
gx>y	3524		gx⊋y	3507		accumulator
GTO	22	Sta. enter too small	-	51		(current)
0	00		gLSTx	3500		R ₂ EA Cut
gł	3508	Sta. is ≥ last Sta.	<u>f-1</u>	32		accumulator
R/S	84	Input PE2n	√x	09		(current)
R/S	84	Input EE2n	gł	3508		$ R_3 EA Fill$
-	21		1	81		(last)
gx - y	350/			41		
KCLD	51		CHS	2500		R4 EA CUT
STO	22		91	3508		(last)
310	33			3508		D CTA
5	01		<u>9</u>	14		nº221A
	3507			14		
PCI 6	3406			04	End Case 2	Rancon
	2507			22	End Case 5	heptop.
STO 6	3306			03	Cano 2	elevexist.
0	00			61		
ax > v	3524		 +	61		
GIO	22		C	13		
ì	01	R side Cut	GTO	22		Bal/ol Cut
+	61	R side Fill	4	04	End Case 2	accumulator
ax=y	3507		LBL	23	Fill Routine	(cu. yds.)
0	00		D	14		Raised
gx≻y	3524		X	71		tests
GTO	22		2	02		
2	02	L cut R fill(case 3)	÷	81		LABELS
+	61	L fill R fill (case 1)	STO	33		A
+	61		+	61		В
D	14			01		C used
GIO	22		RTN	24		D used
4	04	End Case 1		23	Cut Routine	E
L BL	23		C	$\frac{13}{71}$		O used
			X	/1		1 used
	2507					2 <u>Used</u>
gx-y	3307	· · · · · · · · · · · · · · · · · · ·		01		3 used
	3524			61		
GIO	22		2	02		5
3	03	Lout Rout(case 2)	PTN	24		0
+	61	L fill R cut(case 4)	IBI	23		/
gx⊃y	3507	Cont. to Case 3	4	04		
0	00		1	01		9
LBL	23	Case 3	LBL	23		FLAGS
2	02		0	00		1
+	61		R/S	84		
+	41		gnop	3501		2
f-1	32		gnop	3501		
√x	09] gnop	3501		

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM

YARDAGE

CARD 2

Program Title Q FOR I	DITCH(MANNINGS)				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 E. 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes the Q (discharge in cubic feet per second) for a trapezoidal ditch utilizing Manning's formula, given width of bottom, side slope (horizontal distance for the rise of 1 foot), depth of ditch, slope(in feet per foot), and the roughness factor n. Also displays V (mean Velocity) in feet per second.

Where

 $Q = A \cdot \underbrace{1.486}_{n} \cdot R^{2/3} \cdot 5^{1/2}$ A = D(DX+W) = cross sectional area x = side slope x to 1 R = Hydraulic Radius in feet = A/WP $WP = Wetted Perimeter = W+(2D\sqrt{X^{2} + 1})$ V = Velocity = Q/A D = Depth of ditch S = Slope or grade in feet per foot

n = coefficient of roughness

Operating Limits and Warnings See reference and other works for roughness factors which are not listed on program description \square .

If box culvert: use 0 for X in side slope of X to 1.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL. INCLUDING. BUT NOT LIMITED TO. THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS. INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

East 42nd Street, New York, New York, 10017, 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input ditch bottom width	W	A	W
3	Input side slope, X to 1	X	В	
4	Input depth of flow	D	С	D
5	Input slope (feet per foot) (Note 1)	S		S
6	Input roughness factor n (Note 2)		E	n
7	Compute Q in cfs		R/S	Q
8	(Optional) See velocity		R/S	
9	(Optional) See End Area		÷	A
9	Or (optional) See End Area		RCL 6	A
10	Return to steps 2, 3, 4, 5 or 6 to change any			
	design factor then go to step 7 to recompute.			
10	Or recompute by pressing		RTN R/	s Q
	and then go to step 8			
	NOTE 1: To see S ^{11/2} after executing step 5.			
	press gx y or RCL 4.			
	NOTE 2: To see 1.486 after executing			
	n			
	step 6, press gx 🗢 y or RCL 5.			

SWITCH TO W/PRGM. PRESS f PRGM TO CLEAR MEMORY.

00

23

0 LBL

CODE KEY KEY CODE COMMENTS REGISTERS COMMENTS ENTRY SHOWN ENTRY SHOWN R₁_W В 12 LBL 23 Compute STO 2 3302 01 Х (bottom) 1 RCL 3 3403 GIO 22 R₂ X RCL 3 3403 0 00 (side slope) RCL 2 3402 LBL 23 71 С X 13 x to 1 RCL 1 3401 STO 3 R_3 D 3303 D (depth of 61 + GTO 22 flow) **Z**1 0 00 X R4 ____ STO 6 3306 LBL 23 <u>51/2</u> RCL 1 3401 D S 14 RCL 2 f-1 3402 f 31 32 VX R₅ 1.486 09 VX. 09 STO 4 3304 1 01 gLSTx 3500 R_6 A + 61 GTO 22 f 31 (end area) 0 00 09 LBL 23 $\sqrt{\mathbf{x}}$ RCL 3 3403 $R_7 R$ E 15 n 71 1 01 X 2 02 83 71 4 04 R8 R 2/3 Х + ÷ 61 8 08 6 81 06 STO 7 R₉_V 3307 3507 gx℃y 02 ÷ 81 velocity 2 <u>41</u> 03 ł STO 5 3305 3 gLSTx 3500 LABELS <u>81</u> 35 23 A _W LBL 0 00 g B_X_ 05 DSP c D уХ 21 STO 8 3308 83 D_____ • RCL 4 3404 2 02 E_n_ RCL 5 3405 **R∕S** 84 o used 22 GTO 71 X 1 _used 71 1 01 х 2 ____ 33 09 <u>şto</u> 3 _____ 4 _____ 71 _X 5 _____ R/S RCL See Q 84 6 _____ 34 7 _____ 9 09 8 -----GTO 22 9 _____ 0 00 LBL <u>23</u> FLAGS 11 <u>A</u> 1 ____ <u>STO 1</u> 3301 W 22 GTO 2 ____

Program Title D	OR DITCH(MANNINGS)			
Contributor's Name	Charles C. Campbell, LS			
Address	9841 East 21st Street			
City	Indianapolis	State	Indiana	Zip Code 46229

Program Description, Equations, Variables, etc. Uses "The Franklin Interation" to compute the D(depth) of a trapezoidal ditch utilizing Manning's formula, given width of bottom, side slope(horizontal distance for the rise of 1 foot), Q(discharge in cubic feet per second), slope(in feet per foot) and the roughness factor n. $Q = A \cdot \frac{1.486}{2} \cdot R^{2/3} \cdot S^{1/2}$ Where A = D(Dx+W) = cross sectional areaX = side slope x to 1R = hydraulic radius = A/wpWP = wetted perimeter = W+(2D $\sqrt{X^2 + 1})$ V = velocity = Q/AD = depth of ditchS = slope or grade in feet per foot n = coefficient of roughnessD₁ is assumed by the program to be 5.00 feet, then: (A) D2...n = D1...n + (Q1...n) - (Q2...n) $\vee [W + (2xD1...n)]$ The program interates until Dn = Dn-1. The right term in the right member of the above equation(A) is truncated to two decimal places and may be positive or negative. A value of 0.005 is added to said term to force Dn to equal Dn-1. This sometimes makes D high, up to 0.01 foot, which should be of no consequence. Operating Limits and Warnings See reference and other works for roughness factors which are not listed on Program Description \mathbf{I} . If box culvert: use 0 for X in side slope of X to 1.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s) What is the depth required for a ditch where slope is 4 feet per mile, bottom width of 16 feet, Q of 1215 cfs, side slopes of 2:1, and a roughness factor of 0.025?

STEPS: 16A, 2B, 1215C, 4 Enter 5280 ÷ D, 0.025E, RTN, R/S.

Solution(s) $D = 8.00^{\circ}$

Reference(s) Handbook of Steel Drainage & Highway Construction Products, second edition, Chapter 4, page 146, published by American Iron and Steel Institute, 150 East 42nd Street, New York, New York, 10017, 1971.

D for DITCH (MANNINGS)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input ditch bottom width	W	A	□ w
2	Input side slope to the depth of 1	x	В	
2	Input discharge in cfs.	Q	С	Q
2	Input slope(feet per foot) (Note 1)	S	D	S
2	Input roughness factor (Note 1)	n	E	
3	Compute D		RTN R/S	D
4	Change one or more of the design parameters at			
	step 2 and recompute at step 3.			
	Note 1: to see data entered		g LST>	s or n
	Note 2: after step 4, to see:			
	Q		RCL 8] Q
	W		RCL 1) w
	X		RCL 2	×
	D		RCL 3	D
	s 1/2		RCL 4	
	1.486/n		RCL 5] 1.486/n
	Α		RCL 6	A
	R (hydraulic radius)		RCL 7	R
	V (velocity in feet per second)		RCL 8	
			RCL 6	
			÷	
				_

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
5	05	Compute	÷	81		R ₁ W
LBL	23		EEX	43		
1	01		2	02		
STO 3	3303		Y	71		R ₂
RCL 3	3403			83		x to 1
RCI 2	3402		5	05		
Y	71		+	61		B ₂ D
	2401		f	31		
	61			02		
	71			43		R.
STO 6	2206			07		stz
	2401		∠ -~	81		J
	2402			2402		P
	22		KCL S	3403		1.486/n
	00			2402		1.400/11
	07		KCL S	3403		ΡΛ
			gx - y	3507		n6 <u>~</u>
+ 	0		gx-y	3523		
T	31		R/S	84	See D	
VX	09		gnop	3501		R ⁷ R
RCL 3	3403		GIO	22	Refine D	
x	//			01		
2	<u>02</u>		LBL	23		R ₈ _Q
x	/1		A	11	Input W	
+	61		STO 1	3301		
÷	81		RTN	24		R ₉
STO 7	3307			23		
2	02		В	12	Input x to 1	
4	41		STO 2	3302		LABELS
3	03		RTN	24		AW
÷	81		LBL	23		B <u>x to 1</u>
g	35		C	13	Input Q	cQ
у×	05		STO 8	3308	•	DS
RCL 4	3404			24		En
RCL 5	3405		LBL	23		0
x	71		D	14	Input S	1 used
x	71		f	31		2
.x	71		VX	09		3
gLSTx	3500		STO 4	3304		4
RCL 3	3403		RTN	24		5
2	02		LBL	23		6
x	71		E	15	Input n	7
RCL 2	3402		1	01	•	8
x	71		•	83		9
RCL 1	3401		4	04		
+	61		8	08		FLAGS
x	71		6	06		1
RCL 8	3408		gx⊋y	3507		
g \	3509		÷	81		2
_	51		STO 5	3305		
gx≎ y	3507		RTN	24		

Program Title BOX	CULVERT(CDH METHOD)				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				·
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. For storm drainage design, the program computes rectangular box culvert dimensions or Q10 or d of round pipe, utilizing the California Division of Highways method which requires the following criteria for balanced design: (1) a 10-year flood without static head at entrance and (2) a 100-year flood utilizing the available head at entrance.

Q10 = 3.086 H^{1.5} W = 2.581
$$\left(\frac{d}{12}\right)^{2.5}$$

$$H = \left(\frac{Q10}{3.086W}\right)^{2/3}$$

$$W = \frac{Q10}{100}$$

d =
$$12 \left(\frac{Q10}{2.581} \right)^{-4}$$

Operating Limits and Warnings

1. If d is unknown, R4 must contain a zero before Q10 can be computed from H & W. You may input 0 for d. (If HP65 was just used with another program).

2. Program leaves Flag 2 on.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Second Edition, pages 158–160, published by American Iron and Steel Institute, 150 East 42nd Street, New York, New York 10017, 1971.

BOX CULVERT (CDH METHOD) 2 H W Q 10 d Comp 3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter Card 1				
2	Generate and store constants		Α		0.00
3	(Optional) Check 3.086 constant		С		3.086
3	(Optional) Check 2.581 constant		D		2.581
3	(Optional) Check 1.5 constant		E		1.5
3	(Optional) re-set display 2 places		В		x.xx
4	Enter Card 2				
5	Input knowns:				
	Height	Н	Α		н
	or Width	W	В		В
	or Q10	Q10	С		Q10
	or diameter of round pipe eq.	d	D		
6	Compute: (NOTE 1)				
	height		E	Α	Н
	Width		E	В	W
	Q10		E	С	Q10
	d		E	D	d
	NOTE 1: Don't distrube the "1" displayed after the				
	E key is pressed.				
	Q10 must be computed first if unknown.				
	NOTE 2: d is in inches				
	Q = cubic feet per second, 10 year rain(see program de	scription)			
	H & W are in feet and decimal thereof.				
	d must be 0 if Q10 is computed from H & W				
	NOTE 3: Any step 6 may be executed in order to see				
	the variables entered, after the unknown(s) are compute	ed.			

BOX CULVERT CARD 1 SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		1	01		R ₁
Α	11		RTN	24		
3	03					
•	83					R ₂
0	00					
8	08					
6	06					R ₂
STO 5	3305		1			
2	02					
•	83					R4
5	05		1			
8	08					
i	ŎĨ					B _€ 3,086
STO 6	3306					constant
1	01					Considin
	83					Be 2 581
5	05					constant
STO 7	3307					Constant
f	31					B-15
SF 2	Ži	On	and the second product of statements of			11/ 1.5
DSP	21					constant
	83					Ro
2	02					n8
0	00					
ŘTN	24	0.0				P
IBI	23					ng
B	12					
DSP	21					
031	83					LADELS
2	02					
DTNI	24					B DSP.Z
IBI	23					C 3.000
<u> </u>	12	3 086 Constant				$D_{-2.501}$
RCI 5	3405	5.000 Considin				E _1.J
DSP	21					0
	83					1
3	03					2
RTN	24					3
LBL	23		1			4
D	14	2 581 Constant				5
RCI 6	3406					0
DSP	21		1			/
	83					0
3	03		1			Э
RTN	24					FLAGS
LBL	23					1
E	15	1.5 Constant				
RCL 7	3407		1			2 used
DSP	21		1			
	83		1			

BOX CULVERT CARD 2

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
a	35	IBL A	5	05		B ₁ H
	83		F	15		
STO 1	3301		STO 3	3303		
RTN	24		RTN	24	See Q from d	R ₂ W
STO 8	3308		IRI	22		
	2402			23		-
PCI 2	3403			2402		B Q
PCL 5	3405		RCL 2	3402	······································	
NCL J	3403			2407		
<u> </u>	81			15		Ba d
	2407			2405		
RCL /	340/		KCL J	3405		
g 1/~	04		X STO 2	2202		Beconstant
	15			3303		3 096
	2201			24	See Q from H&W	3.000
	3301			23		Reconstant
	24	See H		14		2 591
LBL	23		g	35		
В	12		USZ	83		D constant
g	35		510 4	3304		R ₇ constant
DSZ	2202		RIN	24		
SIO Z	3302		15108	3308		
RIN	24			01		R ₈ DJZ
510 8	3308		2			
RCL 3	3403		RCL 3	3403		
RCL 5	3405		RCL 6	3406		R ₉ fest
RCL 1	3401			81		
RCL /	340/			83		
E	15		4	04		
	01		<u>E</u>	15		_ A
SIO 2	3302		STO 4	3304		B
	24	See W		24	See d	_ C
LBL	23			23		
LC	13		_ E	15		E compute
g	35		g	35		0 Used
DSZ	83		IDSZ	83		1 Used
510 3	3303		<u>Ģ</u> IO	22		2
KIN	24			01		3
510 8	3308		f-1	32		4
0	00			81		5
RCL 4	3404		110	00		6
gx=y	3523		1	81	No constant stop	7
610	22		g	35		8
0	00		<u></u>	05		9
KCL 6	3406			71		
gx - y	350/			24		
			- Ļ₿L	23		1
<u> </u>						
	81			01		2 <u></u>
2				3308		
L •	1 03	L			1	

NOTES

Program Title AZ. FR	OM SUN (H.A. METHOD)				
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Utilizing the Hour Angle method, this program computes North azimuth to mark and sun. Accurate time is a must. Vertical angle to sun is not required. Inputs with card [#]1 are: Latitude, longitude, declination of sun at OH, difference per hour, equation of time at OH, change per hour. The computations are made with card two after entering mean horizontal angle and mean Coordinated Universal Time(UCT).

N. Azimuth to $Sun = \frac{\sin t}{\cos \phi \tan \delta - \sin \phi \cos t}$ where: $t = UCT + EOT(ephemeris) + UCT [Difference/Hour(ephemeris)] -West \lambda$ $\delta = \delta$ (ephemeris) + UCT [Change/Hour(ephemeris)] EOT = Equation of Time UCT = Coordinated Universal Time $\phi = latitude$ (North) $\lambda = longitude$ (West) $\Delta = clockwise$ angle, mark to sun's center N. Azimuth to Mark = Az. to Sun - Δ

Operating Limits and Warnings The author has had little experience with this program. Watch for 180⁰ error in azimuth.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

UCT is also known as Greenwich Civil Time or Greenwich Mean Time. The author has found that utilizing time signals received from stations WWV, United States or CHU, Canada, by short wave radio, the "Realistic Time Kube" available from "Radio Shack" (Registered Trademarks) and a stopwatch to measure the elaspe time from the moment of pointing to the voice announcement at the even minute on said radio, is the best way to obtain UCT.

Sample Problem(s) An observation of the sun was made, where the following field and ephemeris data was obtained.							
DA Latitude ¢	「E: May 13, 19 ǿ : 39°47'46"	75	ephemeris α δ	DATA: = N 18 ⁰ 10.4'			
Longitude	入: 85 ⁰ 59'33"		DIFF./h	= +0.62 ^m			
Mean ang	le: 33º10'59.7	" to center of sun	EOT	$= 03^{m}41.2^{s}$			
Mean UC	r : 23 ^h 28 ^m 09.	1 ^s	CHANGE/h	= +0.03 ^s			
What is th STEPS: Ei Ei	What is the N. Azimuth to the mark and sun? STEPS: Enter Card 1, 39.4746A, 85.5933A, 18.1024B, .62C, .03412D, .03E, Enter Card 2, 33.10597A, 23.28091B, C, R/S,						
Solution(s)	North Azimu	th to:					
	Mark: 2494	21'00"					
	Sun : 282 ⁰	31'59"					
Reference(s) Curtis, Kenneth S., MERIDIAN DETERMINATION BY SOLAR AND POLARIS OBSERVATION, Manual #4, ISPLS Inc., 111N. Capitol Ave., Indpls.							

AZIMUTH FROM SUN CARD 1						
لا / ه	δ	DIFF	EOT	CHANGE S		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program Card #1			
2	Input instrument station data:			
3	Ø scaled from map	DD.MMSS	A	
4	λ scaled from map	DD.MMSS	A	
5	δ (declination from ephemeris) (Note 1)	DD.MMSS	В	
6	DIFF. in declination for 1 hour(Note 2)	M.MM	C	
7	EOT(equation of time from ephemeris(Note 3)	H.MMSS	D	
8	Change for 1 hour (Note 2)	S.SS	E	
9	Enter program Card [#] 2			
10	Input observation data:			
11	Δ , clockwise angle mark to sun (Note 4)	DDD.MMSS	A	
12	UCT, coordinated universal time (Note 4)	HH.MMSS	В	
13	Compute North azimuth to Mark		C	DD.MMSS
14	(Optional) See N. azimuth to sun		R/S	DD.MMSS
15	See N. azimuth to mark again		R/S	
16	New observation data, same station, go to step 11			
16	New station; go to step 1			
	NOTE 1: Enter 8 as negative value if South or			
	positive value if North.			
	NOTE 2: If decreasing towards next day, enter as			
	negative value. If increasing, enter as positive			
	value. Watch signs.			
	NOTE 3: Enter negative values with CHS.			
	NOTE 4: Mean angle and time to center of sun.			
CA	RD 1			
-------------------	--------------------------------------			
SWITCH TO W/PRGM.	PRESS f PRGM TO CLEAR MEMORY.			

KEY ENTRY	CODE SHOWN	COMMENTS	KEY	CODE	COMMENTS	REGISTERS
LBL	23		STO 8	3308		B1 UCT
A	11	ø	gł	3508		
f-1	32		RTN	24		
-D.MS	03					$B_2 \lambda$
STO 3	3303					
aLSTx	3500					
DSP	21					B ₂ Ø
•	83					
4	04					
RTN	24					$R_4 \Delta$
LBL	23					
A	11	א	1			
f-1	32					R ₅ 8
-D.MS	03					J
STO 2	3302					
gLSTx	3500					R ₆ DIFF
RTN	24			1		
LBL	23		1			
В	12	δ				R ₇ EOT
f-1	32					
-D.MS	03					
STO 5	3305					R ₈
gLSTx	3500					Change
ŔTN	24					
LBL	23					R ₉
С	13	DIFF. m				
4	41					
•	41					LABELS
6	06					AØD
0	00		1			Β_δ
÷	81					C DIFF.
STO 6	3306					D EOT
gt	3508					E Change
RTN	24				· · · · · · · · · · · · · · · · · · ·	0
LBL	23		┨┝────			1
D	14	EOT	J			2
<u>f-1</u>	32					3
-D.MS	03					4
510 /	330/					5
gLSIx	3500		┨┝────			6
RIN	24		┨┝────			7
	23		┨┝────			8
	15	Change 3	┨┝────			9
	41		1			
2	41		1			FLAGS
6			1			
0						
lð	- XX					2 <u> </u>
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			<u> </u>		
L				1	L	

CA	ARD 2	
SWITCH TO W/PRGM.	PRESS f PRGM TO CLEAR MEMORY.	

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		-	51		R1 UCT
A	11	Δ	g	35		
f-1	32		ABS	06		
-D.MS	03		1	01		$R_2 \lambda$
STO 4	3304		f-1	32		
GTO	22		R → P	01		
D	14		g †	3509		R ₃ Ø
LBL	23		X	71		
B	12			42		
<u>t-1</u>	32		91	3509		$R_4 \Delta$
-D.MS	03			01		
	3301		8	80		
	23			2508		$H_5 O$
	2500			61		
DTNI	24		<u>;</u>	<u><u> </u></u>		Be DIFE O
IRI	23		f_1	32		
Č	13	Compute	TAN	06		
RC13	3403		0	00		R ₇ EOT
1	01		gx>y	3524		at ^o h
f-1	32		+	61		
R → P	01		gnop	3501		R ₈
RCL 1	3401		+	61		Change ^o
RCL 6	3406		 -	32		
X			<u>TF 2</u>	81		R ₉ _used
KCL 5	3405		-	51		trig. &
+	01			61		tests
TAN				15		
	71			41		A UCT
RCI 1	3401		1	<u> </u>		
RCL 8	3408		RCL 4	3404		
×	71		-	51		E used
RCL 7	3407		0	00		
+	61		gx>y	3524		1
RCL 1	3401		3	03		2
+	61		6	06		3
1	01		0	00		4
5	05		↓ +	ļ ģļ		5
	2402			01		6
RUL Z	5402					7
1			R/C	Q.A	Azimuth to mark	8
8	08			3508		9
0	00		g ·	31		FLAGS
f-1	32		-D.MS	03		1
SF 2	71		R/S	84	Azimuth to sun	
gx>y	3524		gt	3508		2 Used
f	31		GIO	22		
<u>SF 2</u>	71		JL E	15		

Program Title AZIML	ITH FROM POLARIS				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. This program computes the North Azimuth from an observation station to a second mark from a polaris observation when given latitude and longitude(could be scaled from a USGS map), UCT(coordinated universal time) and clock-wise angle, mark to polaris, measured in field, and GHA for Oh and polar distance from an ephemeride. Also will display the azimuth of polaris.

Azimuth to polaris = $\frac{\sin t \sin pd}{\cos h}$ Where t = G.H.A. (Greenwich Hour Angle) - West Longitude pd = polar distance h = altitude = ϕ +pd (cos t)

 ϕ = latitude of station

 λ = longitude of station

Operating Limits and Warnings UCT is also known as Greenwich Civil Time or Greenwich Mean Time. The author has found that utilizing time signals received from stations WWV, United States or CHU Canada, by short wave radio, the "Realistic Time Kube" available from "Radio Shack" (Registered Trademarks) and a stopwatch to measure the elaspe time from the moment of pointing to the voice announcement at the even minute on said radio, is the best way to obtain UCT.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) obtained:	An observation of polaris was Date: May 11, 1975	made in which the fo N Ø = <u>39°47'46''</u> W λ = <u>85°59'33''</u>	ollowing field data was					
MARK 36°02'10" ^D 216°02'07" ^R	POLARIS 146º16'35" ^D 326º16'55" ^R	WW∨ TIME 3:11 3:13	STOPWATCH ELASPE TIME 16.8" 17.4"					
Mean Angle = Mean LICT =	Mean Angle = $110^{\circ}14'36.5''$ pd from ephemeris = $0^{\circ}50'58.8''$							
What is the N STEPS: 39.47	What is the North Azimuth to mark and to polaris? STEPS: 39.4746A, 85.5933A, 3.11429B, 110.14365C, 196.2636D, .50588E, R/S							
Solution(s)								
	Azimuth to mark	= 249 ⁰ 21'21"						
	Azimuth to polaris	s = 359°35'58"						

Reference(s) Curtis, Kenneth S., MERIDIAN DETERMINATION BY SOLAR AND POLARIS OBSERVATION, ISPLS Inc., 111 N. Capitol Ave., Indpls. In. 46204, 1975

AZIMUTH FROM POLARIS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Input (latitude of station)	DD.MMSS	A	
3	Input (west longitude of station)	DD.MMSS	A	
4	Input Mean UCT of observation	HH.MMSSS	В	
5	Input Mean clockwise angle (mark to polaris)	DDD.MMSS		
6	Input GHA Oh for date (from ephemeris)	DDD.MMSS	D	
7	Input polar distance for date (from ephemeris)			
	and compute azimuth to mark	D.mmss	E	DD.MMSS
8	(Optional) See azimuth to polaris		R/S	DD.MMSS
	See Azimuth to mark again		R/S	DD.MMSS
	For next case, same date and station,			
	execute steps 4 and 5 then compute with		RTN R/S	DD.MMSS
	Or go to step 2 for next station			
		· ·		

106

SWITCH	TO W/PRGM.	PRESS				
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
RCL 6	3406		+	61		R ₁ _UCT
RCL 5	3405		f	31		
RCL 1	3401		-D.MS	03		
1	01		R/S	84	Azimuth to polaris	$ R_2 \lambda$
5	05		RCL 7	3407		
•	83		GTO	22		
0	00		7	07		R ₃ Ø
4	04		LBL	23		
1	01		Α	11	Input Ø	
0	00		f-1	32		R ₄ mean
6	06		-D.MS	03		anale
5	05		STO 3	3303		
x	71		aLSTx	3500		R ₅ GHA
+	61		DSP	21		for Oh
RCL 2	3402		•	83		
_	51		4	04		R ₆ polar
CHS	42		RTN	24		distance
1	01		LBL	23		
f-1	32		A	11	Input λ	R ₇ azimuth
R - P	01		f-1	32		of polaris
	3509		-D.MS	03		(dec. deg.)
X	71		STO 2	3302		Ra
RCL 3	3403		aLSTx	3500		
+	61		RTN	24		
f	31		IRI	23	Input UCT	Ro
COS	05		B	12	F =	1
÷	81		f_1	32		
×	71	= azimuth	-D.MS	03		LABELS
STO 7	3307		STO 1	3301		
LBL	23		aLSTx	3500		B UCT
7	07		RTN	24		C angle
RCL 4	3404		LBL	23		ngha Oh
_	51		C	13	Input anale	F pd/comp
0	00	if negative: add 360	f-1	32		
ax > y	3524		D.MS	03		1
3	03		STO 4	3304		2
6	06		aLSTx	3500		3
0	ŌŌ		RTN	24		4
+	61		LBL	23		5
+	61		D	14	Input GHA Oh	6
f	31		f-1	32		7 used
-D.MS	03		-D.MS	03		8
R/S	84	Azimuth to mark	STO 5	3305		9
RCL 7	3407		gLSTx	3500		
0	QO		RTN	24		FLAGS
gx>y	3524		LBL	23		1
3	03		E	15	Input pd	
6	06		f-1	32		2
0	00		-D.MS	03		
+	61		ISTO 6	3306	continues at step 1]

Program Title POL	AR DIST. INTERPRETER					
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street					
City	Indianapolis	State	Indiana	Zip Code	46229	_

Program Description, Equations, Variables, etc. This is a support program used to generate the polar distance of polaris, for a particular date, which is required for the reduction of observation data to determine azimuth of polaris and which is required for use with the "AZIMUTH FROM POLARIS" program, utilizing the Ephemeris Tables which list the polar distance about every ten days.

pd = pda-pdb (nb) + pdb

where: pda = polar distance after date of observation(from tables)

pdb = polar distance before date of observation (from tables)

nb = number of days before date of observation

na = number of days after date of observation

pd = polar distance required for the date of observation

Operating Limits and Warnings

None

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) On May 8, 1975, distance of polaris on that date?	an observation was made on polaris. What was the polar
Polar distance from ephemeris:	May 1, 1975: pd = 50.93'
	May 11. 1975: pd = 50.98 '
STEPS: 7A, 50.93B, 3C, 50.98D,	E, R/S, R/S.
Solution(s) pd=50.965 minutes o	r 0°50'58" (57.9")
Reference(s) Curtis, Kenneth S., 1 POLARIS OBSERVATION, ManuaT	MERIDIAN DETERMINATION by SOLAR and #4 ISPLS Inc., 111 N. Capitol Ave., Indpls. In. 46204,

1975 NOTE: The within formulas are the work of CCC.

SWITCH	TO W/PRGM.	PRESS T PRGM TO CLEAR MEMOR	۲.			
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		gł	3509		R ₁
Α	11	Input nb	6	06		
STO 6	3306	·	0	00		
DSP	21		÷	81		R ₂
e	83		LBL	23		
0	00		8	08		
RTN	24	• •	•	41		R ₃
LBL	23		•	41		
В	12	Input pdb	•	41		
STO 7	3307		f	31		R ₄
DSP	21		-D MS	03		
•	83		DSP	21		
2	02		•	83		R ₅
RTN	24		4	04		
IBI	23	· · · · · · · · · · · · · · · · · · ·	R/S	84	See nd D MMSS	
C	13	Input pg	a 4	3509		R6 n days
STO 8	3308		f_1	32		before
DSP	21			83		DEIDIE
0.51	83			05		B ₇ pd
0	00			00		before in
DTNI	24			71		minutos
	24			20		- minures
	23			32		n days
	14	Input paa		83		after
510	33			06		
	09			00		Hgpa
DSP			X			
	83		DSP			minutes
2	02		-↓}	83		LABELS
RIN	24			01		
LBL	23			84	See seconds & tenths	Bpdb
E	15	Compute	g٩	3509		C na
RCL	34		GIO	22		D bqa
9	09		8	08		E compute
RCL /	340/					0
-	51					1
KCL 6	3406			<u>↓</u> ↓		2
X	71			·		3
KCL 8	3408					4
gLSTx	3500					5
+	61			ļļ		6
<u> </u>	81					7
RCL 7	3407					8 used
+	61					9
DSP	21					
•	83			<u>↓</u> ↓		FLAGS
3	03		-↓	ļļ		1
1	41		_			
•	41					2
4	41					
	24	See pd in minutes				

Program Title	MEAN TIME/ANGLE			
Contributor's Name	Charles C. Campbell, LS			
Address	9841 East 21st Street			
City	Indianapolis	State	Indiana	Zip Code 46229

Program Description, Equations, Variables, etc. This is a support program for any other program which requires average time and/or angle as input data for meridian determination from solar or star observation, which time is obtained from short wave radio time signals and elaspe time obtained from a stopwatch and angle obtained from direct and reverse transit (Theodolite) observations of a mark and the sun or star.

For Angle: <u>≤ so</u> - <u>≤ mo</u> plus 180° if negative nso nmo

so = star angle direct reading or reverse reading - 180° mo = mark angle direct reading or reverse reading - 180° n = number observations

For Time: \leq wwv - \leq sw nwwv nsw

n = number of WWV = Radio time signals SW = Stopwatch elaspe time

Operating Limits and Warnings

All angle/time inputes are in format of DDD.MMSSS and HH.MMSSS Time signals obtained are from short wave radio. Best radio for this purpose that the author has found is the "Realistic Time Kube" available from "Radio Shack", Registered Trademarks.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Steps could be: For angle: D, cLx, E, OB, 180.0003CB, 33.0543A, 33.1439A, 33.2119A, 212.5928CA, 213.0816CA, 213.1642CA, D, R/S, (R/S to reset display) For time: E, 23.26A, 23.27A, 23.28A, 23.29A, 23.30A, 23.31A .00147B, .00166B, .00315B, .00187B, .00201B, .00239B, D, R/S A sun shot was made where the following field data was obtained: Sample Problem(s) WWV TIME SW MARK SUN 14.7" 33°05'43"D 23:26 00°00'00"D 33°14'39"D 23:27 16.6" 33921'19"D 23:28 31.5" 212059'28"R 23:29 18.7" 213°08'16"R 23:30 20.1" 180°00'03"R 213°16'42"R 23:31 23.9" What is the mean angle (mark to sun) and the mean UCT(coordinated universal time)? Solution(s) Mean Angle = 33°10'59.7" Mean UCT = 23h28m09.1s

Reference (s) Curtis, Kenneth., MERIDIAN DETERMINATION BY SOLAR AND POLARIS OBSERVATION, Manual #4, ISPLS Inc., 111 N. Capitol Ave., Indpls. In. 46204, 1975

NOTE: The within formulas are the work of CCC.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional) Set display to 4 places (DSP.4)			
2	or		DCLx	
3	Clear (Reg. 5,6,7 & 8)		E	00.0000
4	For Mean Angle:			
5	Enter Star angles: direct telescope	DD.MMSS	A	DD.MMSS
6	Repeat step 5 for any number			
7	Enter Star angles: reverse telescope	DD.MMSS	CA	DD.MMSS
	(To reconvert to direct angle push R/S			
	after pushing C)			
8	Repeat step 7 for any number			
9	Compute mean angle		D	DDD.MMS
10	See seconds and tenths		R/S	SS.S
11	See angle DDD.MMSS again and to reset			
	display to 4 places.		R/S	DDD.MMSS
12	Return to step 3 for next mean angle			
12	Or for mean time:			
13	Clear		E	00.0000
14	Enter Radio time(Hours & Minutes)	нн.мм		HH.MM00
15	Repeat step 14 for any number			
16	Enter elasped stopwatch time	0.MMSSS	В	0.MMSSS
	(from time of pointing to radio time)			
	Repeat step 16 for any number			
17	Compute mean UCT		D	HH.MMSS
18	See seconds and tenths		R/S	SS.S
19	See time, HH.MMSS again and to reset display to			
	4 places.		R/S	HH.MMSS
20	return to step 13 for next mean time			
	or to step 3 for next mean angle			
	NOTE: Direct and reverse telescope pointings, star			
	or mark pointings, or radio and stopwatch times may			
	be entered in any sequence. Reg. 1 through 4 remain u	changed.		

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		f-1	32	if accident: push	R ₁
A	11	WWV or star	SF 1	51	R/S to cancel	
•	41		R/S	84		1
f-1	32		IBI	23		R ₂
-D.MS	03		D	14	compute	1
t	21		DSP	21	Compore	1
TF 1	61			83		R ₂
1	01		4	04		1
8	08		RCL 5	3405		
0	00		RCI 6	3406		R₄
_	51			81		1
STO	33		PCI 7	3407		11
+	61		RCI 8	3408		$R_5 \Sigma of$
5	05	· · · · · · · · · · · · · · · · · · ·		81		WWV or
1	01		-	51		star
STO	33		0	00		R ₆ n of
	61		ax > y	3524	if negative:	WWV or
6	06			01	add 180	star
IRI	23			00		$R_7 \ge of$
9	09		1 0	00		SWor
at	3508			61		mark
at	3508		+	61		R ₈ n of
f-1	32		f	31		SW or
SF 1	51	Turn off	D MS	03		mark
RTN	24		R/S	84	See mean anale	R ₉
LBL	23		gLSTx	3500		used
В	12	Stopwatch or mark	f-1	32		tests
4	41	•	INT	83		LABELS
f-1	32		6	06		AFS/WWV
- D.M	5 03		0	00		BBS/SW
f	31		×	71		C Versed
TF 1	61		f-1	32		D compute
1	01			83		E clear
8	08		6	- 06		0
0	00		0	00		1
-	51		×	71		2
STO	33		DSP	21		3
+	61			83		4
<u> </u>	07			01		5
1	01		R/S	84	See seconds & tenths	6
STO	33		GIO	22		7
+	61			14	re-compute	8
	00			23		90300
				15	clear	
	07		STO 5	3305		FLAGS
	12	Reverse angle		3302		10 <u>sea</u>
	21	Neverse ungre		3307		1 ,
SE 1	51	turn on	ISTO 9	3300		
RTN	24		IPTNI	21		1
	<u> </u>			<u> </u>		

Program Title STC	PWATCH						
Contributor's Name	Grant J. Munsey						
Address	1331 S. Wolfe Rd.	Apt. 80					
City	Sunnyvale		State	Ca.	Zip Code	94087	

Program Description, Equations, Variables, etc. This program allows the HP 65 to be used as a stopwatch. Elasped time may either be set to zero or allowed to accumulate at the start of the program(A or B Function). The program has a built in calibration routine which allows one to compensate for variations between different calculators. The constant derived from calibration may be incorporated into the program itself to provide a custom tailored card which will give more accurate results. Tests have shown that(after calibration) accuracy of approximatly one second is attainable over the calculators normal temperature operating range.

Operating Limits and Warnings The timer functions (A or B) will only run for about one and one half hours continuously if the calculator is using its battries (fully charged) for power.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) Find the accuracy of an auto speedometer given that mile markers are available along the roadside.

Solution(s) Upon passing a mile mark on the road start the timing function(A key) and hold the auto's speed constant. Stop the timing function (R/S key) at the next mile mark.Calculate the elasped time (C key). Now use the calculator to divide 3600 by the elasped time. The result will be the average speed (miles/hour) of the auto between the mile marks.

Reference(s) N.A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		E	constant
3	Start timer(from zero)		A	
	or			
3	Start timer (accumulating		В	
	from last run)			
4	Stop timer		R/S	
5	Calculate total elasped time		С	elapsed time(sec.)
	convert time to HH.MMSS			
	HH=HRS., MM=MIN., SS=SEC.		R/S	HH.MMSS
6	To run timer again go to 3 above			
	* * STOPWATCH CALIBRATION **			
1	Run program as above and use a real stopwatch to			
	obtain the actual elapsed time in seconds.			
2	Enter the time from step 1	elapsed time(sec)		
3	Compute constant		D	constant
4	To custom configure a program card for a particular			
	HP 65 replace the constant 10.000 under label "E"			
	with the value obtained in step 3.			
	NOTE: Be sure to retain the CHS instruction after the			
	constant since the program requires that the value in			
	register 1 be negative.			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23	set time ≅ 0	0	00	this value	R ₁ const.
Α	11	and count	•	83	with the res ult	
1	01		0	00	from "D"	
CHS	42		0	00		R ₂
STO 8	3308	set up dez count	0	00		
LBL	23		CHS	42		
0	00		STO 1	3301	store const.	R ₃
g	35		RTN	24	end "E"	
DEZ	83	INC, count(add-1)				
GIO	22					R4
0	00					
RTN	24	end of "A"				
LBL	23	leave time alone				R ₅
В	12	and count				
GTO	22					
0	00					R ₆
RTN	24	end of "B"				
LBL	23 c	ompute total				
С	13	elapsed time				R ₇
RCL 8	3408	get count				
RCL 1	3401	aet const.				
÷	81	calculate				R ₈ DEZ
DSP	21	# of seconds				count
•	83	show time to				
1	01	nearest tenth				R9
R/S	84	stop				
3	03	convert time				
6	06	to hours,				LABELS
0	00	minutes, seconds				A start
0	00					B cont.
÷	81					C compute
f	31					D_calib.
-D.MS	03	HH, MMSS				E in ite
DSP	21					oused
•	83					1
4	04					2
RTN	24	end "C"				3
LBL	23	calibrate				4
D	14	function				5
RCL 8	3408	actual count			, 	6
x=y	3507	put # sec in x				7
TO I	81	compute const.				8
5101	3301	(-) and store				9
DSP		show const. to				
·	00					
3	03	be put under "E"				
HRIN_	24	end "D"			· · · · · · · · · · · · · · · · · · ·	
	23	mmunze		t		
ا۲		### replace		1		

Program Title PH				
Contributor's Name Address	John A. Gilbert 12214 East Kepner Place			
City	Aurora	^{State} Colorado	Zip Code	80012

Program Description, Equations, Variables, etc. This program will convert measurements on a tilted aerial photograph into ground coordinates and find the datum scale at the point represented by the measured coordinates. The photo measurements are made in a right-handed system with the principal point as the origin and the ground coordinates are calculated with the nadir point as the origin of another right hand system. θ , the first rotation, is clockwise about the optical axis, while t, the tilt angle, is counter-clockwise about the once-rotated photo x-axis.

Formulas used are:

$$s = \frac{-y' \sin t + f \sec t}{H-h}$$
$$x = \frac{(H-h) x'}{f \sec t - y' \sin t}$$

 $x' = x \cos \theta + y \sin \theta$

 $y = \frac{(H-h) y' \cos t}{f \sec t - y' \sin t}$ $y' = x \sin \theta + y \cos \theta + f \tan t$

Operating Limits and Warnings For counter-clockwise values of θ and clockwise values of t, the stored parameters are negative. Focal length is in inches. Flying height above terrain (H-h) is in feet. Photo coordinate measurements (x & y) are in inches. Ground x & y are in feet. f = focal length

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

121

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Enter parameters			
	Rotation Angle	θ	STO 1	
	Tilt Angle	t	STO 2	
	Height Above			
	Terrain	(H-h) ft.	STO 3	
	Camera Focal			
	Length	f ft.	STO 4	
3	Store Photo			
	Coordinates	X	STO 7	
	of any point	Y	STO 8	
4	Compute X'		A	X^1 in
5	Compute Y ¹		В	Y' in
6	Compute Scale at the point		С	S
7	Find Ground			
	X coordinate		D	X Ft.
8	Find Ground			
	Y coordinate		E	Y Ft.
9	To obtain data for any other point, repeat 3			
	through 8			
L				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		÷	81		R. A
Δ	11			25		···
RCI 7	3407		1/2	04		
RCL 1	3401			01		R _a t
f	31		2			112
COS	05		2	71		
COS	71		X CTO 7			D (H-b)
	2400		DTN	330/		
PCI 1	2400			24		
F F	21		LBL	23		D. f
				14		R4_1
	04		RCL 7	3407		
X			KCL 3	3405	· · · · · · · · · · · · · · · · · · ·	
CTO F	- 51		X			R ₅ <u>X'</u>
510 5	3305			01		
KIN	24		2	02		
LBL	23			81		R ₆ Y'
B	12		RTN	24		
RCL 7	3407		LBL	23		
RCL 1	3401		E	15		R ₇ X
f	31		RCL 7	3407		S
SIN	04		RCL 6	3406		
x	71		x	71		R ₈ Y
RCL 8	3408		RCL 2	3402		
RCL 1	3401		f	31		
f	31		COS	05		R ₉
COS	05		x	71		
x	71		1	01		
+	61		2	02		LABELS
RCL 4	3404		÷	81		Δ X'
RCL 2	3402		RTN	24		B Y'
f	31		anop	3501		
TAN	06			1		
X	71					
+	61					
STO 6	3306					0
RTN	24		1			1
IBI	23					2
C	12	· · · ·		1		3
RCI 4	3404					4
PCI 2	2402			t		5
G	21			t		0
COS	05			1		· · · · · · · · · · · · · · · · · · ·
	<u>91</u>			t		8
PCI A	3404					9
PCI 2	3400					FLACE
F	21			<u> </u>		FLAGS
				<u> </u>		
	71			<u> </u>		
^						2
				t		
LKLL 3	J		L	1		

Program Title					
Contributor's Name Address	John A. Gilbert 12214 E. Kepner Place				
City	Aurora	State	Colorado	Zip Code	80012

Program Description, Equations, Variables, etc. This program will compute the values of differential orientation element corrections for independent relative orientation of two photographs in an analytical plotter(Kelsh, A-7, etc.). The output values of omega, phi, and kappa are the result of a least squares adjustment of observed y- parallax at six points in the stereo model formed by the two photos.

The equations used are:

$$\delta \mathcal{W}_{L} = \frac{h(-2P1-2P2+P3+P4+P5+P6)}{4d^{2}}$$

$$\delta \mathcal{P}_{L} = \frac{h(P4-P6)}{2 bd}$$

$$\delta \mathcal{Q}_{R} = \frac{h(P3-P5)}{2 bd}$$

$$\delta \mathcal{K}_{L} = \frac{(P2+P4+P6-(3h+\frac{2d^{2}}{h}))}{3b} \delta \mathcal{U}_{L}$$
The $\Delta \mathcal{K}$ correction
$$\delta \mathcal{K}_{R} = \frac{(P1+P3+P5-(3h+\frac{h}{h}))}{3b} \delta \mathcal{U}_{L}$$

Operating Limits and Warnings User must press R/S after computing $\mathcal{S}_{\omega_{L}}$ using subroutine A, then use B & C to find $\mathcal{S}_{K_{L}}$ and $\mathcal{S}_{K_{R}}$. All linear measurements must be in the same units (inches or MM). Output angles are in radians.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

h is the projector principal distance Points 1 and 2 should be at or near conjugate principal points	ce.* r the
Sample Problem(s) For a stereo model with dimensions d = 125mm, b = 250mm, h = 300m an operator estimates parallax values as:	m,
$P_1 = 1.0$ mm $P_2 = -1.0$ mm $P_3 = 1.25$ mm	
$P_4 = -1.50 \text{ mm}$ $P_5 = 2.0 \text{ mm}$ $P_6 = 1.50 \text{ mm}$	
Solution(s) 1.0, STO 1, 1.0, CHS, STO 2, 1.25, STO 3, 1.5, CHS, STO 4, 2.0, STO 5 1.5 STO 6, 250.0, STO 7, 125.0 STO 8, 300, STO 9, DSP, . 9, A $\delta \omega_{\perp}$ R/S, B $\delta_{R_{\perp}}$ = 0.002517361 RAD E $\delta_{R_{\perp}}$ C $\delta_{K_{R_{\perp}}}$ = 0.005666667 D $\delta \omega_{\perp}$ = -0.00250000 E $\delta_{\mathfrak{D}R_{\perp}}$ = -0.000625000 Now the operator should make the corrections, then observe parallax and repeat if needs	, ed.
Reference (s)	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Store constants:	constants	STO 1	Parallax
	Parallax at	(mm or in.)	STO 2	
	Points 1 – 6		STO 3	
	Model Dimensions		ETC.	
	b		STO 7	b
	h		STO 8	h
	d	•	STO 9	d
3	Compute SwL		A	రియి
4	Compute the correction to the SK element		R/S	Δκ
5	Compute SKL		В	8KL
6	Compute SKR		С	SKR
7	Compute SOL		D	50L
8	Compute S Or		E	δOR
	· · · · · · · · · · · · · · · · · · ·			
	(NOTE: δκ-δκ)			
	From B,C			

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		+	61		R ₁ P ₁
A	11	Compute Sw-	+	61		
RCL 1	3401	~~~~	3	03		
RCL 2	3402		÷	81		R_2P_2
-	51		RCL 7	3407		
2	02		÷	81		
x	71		RTN	24		R ₃ P ₃
RCL 3	3403		LBL	23		
+	61		C	13	Compute SKR	
RCL 4	3404		RCL 1	3401	•	R₄P₄
RCL 5	3405		RCL 3	3403		
RCL 6	3406		RCL 5	3405		
+	61		+	61		R ₅ P <u>5</u>
+	61		+	61		
+	61		3	03		
RCL 8	3408		<u> </u>	81		R ₆ P ₆
x	71		RCL 7	3407		
RCL	34			81		
9	09		RTN	24		R ₇ b
t-1	32		LBL	23		
√x ·	09		D	14	Compute 396	
	81		RCL 4	3404		R ₈ _n
4	04		RCL 0	3406		
	81		-	51		
R/S	84	\	RCL 8	3408		R9_0
	41		X	24		
KCL	34		KCL	34		
F 1	22		· ·	07		
	00	1	RCI 7	3407		A <u>SC</u>
2	02	1	L.	81		C SKC
×	71	Compute	2	02		D SQ
RCI 8	3408	SK & SKR	÷-	81		E SOP
	81	Corrections	RTN	24		
RCL 8	3408		IBI	23		1
3	03		F	15	Compute 80R	2
x	71		RCL 3	3403		3
+	61		RCL 5	3405		4
x	71		-	51		5
3	03		RCL 8	3408		6
÷	81		x	71		7
RCL 7	3407		RCL	34		8
-	81	/	9	09		9
R/S	84	/		81		
KIN	24		RCLZ	3407		FLAGS
	23	C		81		1
B		Compute DK	2	02		
KCL2	3402		DTN	81		2
KCL4	3404			3501		
LRCL 6	<u> </u>		gnop	1 3301	L	الـــــ

Program Title	PHOTOGRAMMETRY	Ш				
Contributor's Nan	ne John A. Gilbert					
Address	12214 East Kepner	r Place				
City	Aurora		State	Colorado	Zip Code	80012

Program Description, Equations, Variables, etc. This program computes the values of differential orientation element corrections for dependent relative orientation to another in a universal plotter (Kelsh, A – 7, etc.). The output values of b y, b z , Omega, Phi, and Kappa result from a least squares adjustment of observed y – parallax at six points in the stereo model formed by the two photos.

The equations used are:

$$\delta Y = \frac{1}{3} (P1+P3+P5) - h \left(1 + \frac{2d^2}{3h^2}\right) \delta \omega$$
$$\delta z = \frac{h (P5-P3)}{2d}$$
$$\delta \omega = \frac{h (-2P1-2P2+P3+P4+P5+P6)}{4d^2}$$

$$\delta \phi = \frac{h(P4-P6+P5-P3)}{2bd}$$

$$SK = \frac{P2 + P4 + P6 - P1 - P3 - P5}{3b}$$

Operating Limits and Warnings All linear input quantities must be in the same units. Output linear values will be the same as input. Angular output is in radians.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

5 y x 3 b	2	h is the distance from projector focal point to the model plane. Points 1 and 2 should be at or near the conjugate principal points.
Sample Problem(s) For a stereo ma an operator estimates paralla	odel with dimensions d = x values as:	125mm, b = 250mm, h = 300mm,
P] = 1.0mm	P2 =-1.0mm	P ₃ = 1.25mm
P ₄ =-1.50mm	$P_5 = 2.0 mm$	$P_6 = 1.50 mm$
Solution(s) 1.0, STO 1, 1.0, C 2.0, STO 5, 1.5, S 300, STO 7, DSP, Correct and repeat as needed.	HS, STO 2, 1.25, STO TO 6, 250.0 STO 9, 12 . 9, A - B - C - D - E - R/S - Sy = 5	3, 1.5, CHS, STO 4, 5, STO 8, $\delta y_1 = 1.416666667$ mm $\delta z = 0.90000000$ mm $\delta \Phi = -0.010800000$ RAD $\delta K = 0.00233333$ RAD $\delta \omega = 0.015600000$ RAD $\Delta y = 5.221666668$ mm $y_1 - \Delta y = -3.80500001$ mm
Reference (s)		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Store constants:	constants	STO 1	constants
	Parallax at	(mm or in.)	STO 2	
	points 1 – 6	1	ETC.	
	Model Dimensions			
	h		STO 7	
	d		STO 8	
	b	•	STO 9	
3	Compute Sy.			Sy,
4	Compute Sz		В	82
5	Compute So		С	50
6	Compute SK		D	δK
7	Compute Sເມ		E	స్ట
8	Calculate the correction to Sy,		R/S	Δγ
	(NOTE: $\delta y = \delta y, - \Delta y$)			
	C true correction			

SWITCH TO W/PRGM. PRESS **f** PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBI	23		RCL 5	3405		$R_1 P_1$
Ā	11	calculate Sy	-	51		
RCL 1	3401		-	51		
RCL 3	3403		RCL	34		$R_2 P_2$
RCL 5	3405		9	09		
+	61		-	81		
+	61		3	03		R ₃ P ₃
3	03	· · · · · · · · · · · · · · · · · · ·	-	81		
	81		RIN	24		
KIN	24		LEBL	23	Calculate C.	R4 P4
LBL	23	anlaulata Sz		15		
	2405	calculate o 2	KCL I	3401		D D-
RCL J	3403		RCL 2	3402	· · · · · · · · · · · · · · · · · · ·	ns r5
KCL 3	5403					
PCI 7	3407			71		Be Pr
	71		CHS	12		
	2409		RCL 3	3403		
2	02		+	61		B ₇ h
X	71		RCI 4	3404		
÷	81		RCI 5	3405		
RTN	24		RCI 6	3406		R ₈ d
IRI	23		+	61		
C	13	calculate SO	+	61		
RCL 4	3404		+	61		R ₉ b
RCL 6	3406		RCL 7	3407		
-	51	:	x	71		
RCL 5	3405		RCL 8	3408		LABELS
+	61		f-1	32		A <u></u>
RCL 3	3403		J.X.	09		B SZ
-	51			81		C 80
RCL /	340/		4	04		DSK
X DCL 0	2409			81	<	E 800
KCL O	3400		K/S	64		0
KCL	34		RCI 8	3408		1
2	02		RCL 7	3407		2
×	71	· · · · · · · · · · · · · · · · · · ·		81	/	3
×	71		f_1	32	/	5
	81		Vx	09		6
RTN	24		2	02	/ sempere	7
LBL	23		x	71	Ν	8
D	14	Calculate SK	3	03		9
RCL 2	3402		÷	81		
RCL 4	3404		1	01		FLAGS
RCL 6	3406		+	61		1
±	61		RCL 7	3407	l _ l	
+	61		X	1	↓ <i>↓ </i>	2
RCLI	3401		X		/	
IRCL 3	3403		JLK/S	84_	V] [

Program Title CURVED STREET FIT							
Contributor's Name Address City	Charles C. Campbell, LS 9841 East 21st Street Indianapolis	State	Indiana	Zip Code	46229		

Program Description, Equations, Variables, etc. Computes the centerline tangent length and coordinates of the PI of a curved street so that the R/W PC and PT will fall on the R/W line of the curved street, on each side, given the coordinates of the PC centerline, the azimuth of one tangent, the R/W width of the connecting curved street, the radius and the coordinates of the radius point of the opposite curve. Both tangent lines are radial to the curves.

$$T = \frac{B^2 - A^2}{2B \cos \Delta + 2A}$$

Where: $A = \sqrt{R^2 - (1/2 R/W)^2}$
 $B = \sqrt{(N3-N1)^2 + (E3 - E1)^2}$
 $\Delta = Azimuth - tan^{-1} \left(\frac{E3 - E1}{N3 - N1}\right)$

Operating Limits and Warnings See notes on page 3

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Input coordinates of Point 1		Α		
3	Enter N1	NI	R/S		NI
4	Enter El	E1	R/S		E1
5	Input N. azimuth (point 1 to 2)	DD.MMSS	В		A2
6	Input R/W width	R/W	С		R∕W
7	Input radius (from point 3)	R	D		R
8	Input coordinates of Point 3 and compute		E		
9	Enter N3	N3	R/S		N3
10	Enter E3	E3	R/S		Т
11			R/S		N2
12			R/S		E2
	The coordinates of Point 2(the PI) are now in the				
	starting position for use with the "Azimuth Traverse/				
	Inverse" program				
13	Recompute using the last data entered.				
	(allows changing a known data item without		RTN	R/S	Т
	reentering the rest.)		R/S		N2
			R/S		E2
	NOTES:				
	T=Tangent length of curve				
	R=Radius				
	Steps 3 through 10 may be executed in order by				
	entering data with R/S and the function keys need				
	not be pushed. The function keys are used to change				
	or correct given data. Flashing "zero" indicates that				
	the problem is ambiguous, eg: R/W > 2R				
		11			

SWITCH TO W/PRGM. PRESS **f** PRGM TO CLEAR MEMORY. KEY ENTRY CODE KEY CODE REGISTERS COMMENTS COMMENTS SHOWN ENTRY SHOWN 34 RCL R₁ B, T, f-1 32 09 R + P RCL 3 and 01 STO 2 3302 3403 N2 $R_2 E3$ RCL 4 3404 <u>+</u>__ 61 temp. 51 STO 1 3301 **≰ E2** RCL 8 3408 RCL 2 3402 R₃ N1 STO 33 RCL 3 3403 -51 9 09 RCL 4 3404 f 31 R4 E1 g) R - P 01 3509 STO 1 3301 + 61 STO 2 f–1 32 3302 R₅___ RCL 1 3401 $\sqrt{\mathbf{x}}$ 09 azimuth RCL 6 3406 R/S RCL 2 84 See N2 2 ÷ 3402 02 R∕S 84 See E2 $R_6 R/W$ 81 f-1 32 0 ÷ 00 09 81 error stop √x R_7 LBL 23 CHS 42 radius 11 RCL 7 3407 A DSP 21 f-1 32 R₈ N3 83 09 $\sqrt{\mathbf{x}}$ 61 3 03 +____ CLX 51 44 -<u>g</u>LSTx R₉ E3 R/S 3500 84 Input N1 STO 3 3303 31 $\frac{\sqrt{x}}{2}$ R/S Input El 09 84 02 STO 4 3304 LABELS A N1 E1 71 R/S 84 Input azimuth X RCL 5 3405 LBL 23 B Az c_R/W g 3509 В 12 51 f-1 32 D_R___ --D.MS STO 5 f 31 03 E N3 E3 3305 COS 05 0 _____ RCL 1 3401 gLSTx 3500 1 _____ R/S 84 Input R/W 71 X 2 _____ 2 02 LBL 23 3 _____ x 71 13 C 4 _____ 61 3306 + STO 6 5 _____ -<u>81</u> 35 R/SInput R 6 _____ 84 23 **L'BL** g 7 _____ ABS 06 D 14 8 _____ STO 7 STO 1 3301 3307 9 _____ RCL 2 3402 23 LBL 33 E 15 FLAGS STO r/s sto 8 9 09 84 Input N3 1 ____ 3308 RCL 1 R/S 3401 r/s sto 84 See T 84 2 _____ Input E3 RCL 5 RCL 1 3405 3401 33 9 09

Program Title EQUAL DELTA REVERSE CURVES							
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street						
City	Indianapolis	State	Indiana	Zip Code	46229		

Program Description, Equations, Variables, etc. delta of both curves (equal), and the coordinates of the point of reverse curve, given the azimuth (RP to PC), radius and coordinates of the radius point of the first curve and the coordinates of the PT of the second curve.

$$R2 = \frac{a^2 - Rl^2}{2aCos A + 2Rl}$$

Sin $\triangle = \frac{a Sin A}{Rl + R2}$
WHERE: $a = \sqrt{(Nrpl-Npt2)^2 + (Erpl - Ept2)^2}$
 $A = \tan^{-1} \frac{Erpl - Ept 2}{Nrpl - Npt 2} - Azl$

See page 3 for connotations

Operating Limits and Warnings

See notes on page 3

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

136

Reference(s) None: The formula for R2 is from the files of Ursell Cox.

137

 EQUAL △
 REVERSED CURVES

 RP1
 AZ1
 R1
 PT 2
 compu
 5

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Input coordinates of Rad. Pt. 1		A		
3	Enter Northing	Nrp1	R/S		
4	Enter Easting	Erpl	R/S		
5	Input azimuth curve 1 (RP to PC)	DD.MMSS	В		
6	Input radius curve 1	R1	c		
7	Input coordinates of point 3 (PT)		D		
8	Enter Northing	Npt2	R/S		
9	Enter Easting	Ept2	R/S		
10	Compute (push R/S or)		E		R2
11			R/S		Δ
12			R/S		Nprc
13			R/S		Eprc
	The coordinates of the PRC are now in the starting				
	position for use with the "Azimuth Traverse/Inverse"				
	program.				
	NOTES: Steps 3 through 10 may be executed				
	in order by entering data with R/S and the function				
	keys need not be pushed.				
	The function keys are used to change or correct				
	given data.				
	A negative value or a flashing "0" for R2 means the]	
	problem is indeterminate or ambiguous.				
	R2 = radius of second curve				
	pt = point of tangent				
	pc = point of curvature				
	rp = radius point				
	prc = point of reverse curve	ļ			
		ļ			
		ļ]			

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	2]		f-1	32		R ₁ R2
•	83		R P	01		Nprc
3	03		qx⊋y	3507		
CLX	44		ŠTO'	33		R ₂ a,
R/S	84	Inpute Nrp1	x	71		$aSinA, \Delta$,
STO 3	3303	•	2	02		Eprc
R/S	84	Inpute Erp1	gł	3508		R ₃
STO 4	3304		x	71		Nrp1
R/S	84	Inpute Az1	RCL 6	3406		•
LBL	23		2	02		R4
В	12		x	71		Erp1
f-1	32		+	61		
-D.MS	03		÷	81		R ₅
STO 5	3305		STO 1	3301		Azl
gLSTx	3500		R/S	84	See R2	
R/S	84	Inpute R1	RCL 2	3402		R ₆ R1
LBL	23		RCL 1	3401		
C	13		RCL 6	3406		
STO 6	3306		+	61		R ₇
LBL	23		÷	81		Npt2
D	14		f-1	32		
R/S	84	Inpute Npt2	SIN	04		R ₈
STO 7	3307		STO 2	3302		Ept 2
R/S	84	Inpute Ept2	f	31		
STO 8	3308		-D.MS	03		Rgused
R/S	84		DSP	21		(trig.)
LBL	23			83		
E	15	compute	4	04		LABELS
RCL 4	3404		R/S	84	See <u>A</u>	ANErpi
KCL 8	3408		RCL 2	3402		BAzl
-	51		RCL 5	3405		CKI
RCL 3	3403		+	01		DNEpt 2
RCL /	340/		RCL 6	3406		E compute
-	51			32		0
P P				2402		1
	2202		RCL 3	3403		2
	3302			3301		3
	<u> </u>			3507		4
PCI 6	2406		gx y	2404		5
f_1	32			61		6
$\sqrt{\mathbf{v}}$	09		STO 2	2202		7
-	51		RCI 1	3401		8
RCI 2	3402		DSP	21		9
2	02			83		FLAGS
Y	71		3	03		1
RCI 5	3405		R/S	84	See Norc	
ał	3509		RCL 2	3402	www.iuprise	2
-	51		R/S	84	See Enro	
1	01					

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title CUR	VE THRU POINT				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes radius and tangent of curve joining give tangents and passing through given point. Useful for computing curb radius to pass through storm structure or placing street curve so that an existing tree will lie in middl of grass strip between curb and sidewalk, etc. Given central angle (Δ) of curve, angle measured at P.I. from either tangent to point, and distance from P.I. to point.

 $r = \frac{d \sin (\Delta + A)}{1 - \cos (1/2 \Delta + B)}$

 $t = r \tan 1/2 \Delta$

where $B = C - \left[90 - (1/2 \bigtriangleup + A) \right]$

$$\sin C = \frac{\cos(1/2 \bigtriangleup + A)}{\cos 1/2 \bigtriangleup}$$

t = tangent r = radius d = distance, pi to point

Operating Limits and Warnings Flashing zero obtained during calculation indicates problem is ambiguous, eg: delta angle greater than 180 degrees.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

141

TEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT
1	Enter program			
2	Input 🛆 angle		A	
3	Input A anale	Δ	В	
4	Input d distance	d	С	
5	Compute radius		E	r
6	(Optional) Compute tangent		R/S	t
7	Go to step 2 for next problem			
	NOTE: Angles are entered DD.MMSS			
	<u> </u>			
	-			
	-			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY	CODE SHOWN	COMMENTS	KEY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23	Input A angle	-	51		$B_1 \Delta$
A	11		RCI 1	3401		
f-1	32		RCL 2	3402		
-D.MS	03		+	61		R ₂ A
STO 1	3301		f	31		
aLSTx	3500		SIN	04		
DSP	21		RCL 3	3403		R ₃ _d
•	83		x	71		
4	04		gx⊋y	3507		
RTN	24		1	01		R4
LBL	23	Input A angle	gx⊋y	3507		1/2
В	12		RCL 4	3404		
f-1	32		+	61		$R_{5} 1/2$
-D.MS	03		f	31		
STO 2	3302			05		
gLSTx	3500		-	51		К ₆ _г
DSP	21		-	81	=Radius	
•	83		DSP	21		D
4	04			03		п ₇
	24		J STO 4	2204		
	12		DTN	3300	-Padius	Pa
	2202		BCI 6	3406		n8
	3303		DCL 4	2404		
DSF	83		f KCL 4	3404		Bo
3	03		TAN	06		
RTN	24		X	71		
LBL	23		R/S	84	=Tangent	LABELS
D	14					
LBL	23					вА
E	15					Cd
RCL 1	3401	· · · · · · · · · · · · · · · · · · ·				D
2	02					E comp.
÷	81					0
STO 4	3304		┨┝─────			1
RCL 2	3402		┨┝			2
	61		┨┝────			3
15105	3305		┨┠─────			4
	31		┫┝━━━━━			5
	2404		┫┝─────			6
f	3404					· · · · · · · · · · · · · · · · · · ·
i COS	05		1			0
-	81		1			9
f-1	32		1			FLAGS
SIN	04					1
9	09					
0	00					2
RCL 5	3405					
-	51					

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title CUR	/E/FROM 3 POINTS			
Contributor's Name	Charles C. Campbell, LS			
Address City	Indianapolis	State	Indiana	Zip Code 46229

Program Description, Equations, Variables, etc. Program computes the radius of the curve(circle) and the coordinates of the radius point(center), given the coordinates of three points on the curve(circle). The computed coordinates are stored for use as the starting coordinates with the "Azimuth Traverse/Inverse program, so that the radials may then be inversed to determine the azimuths thereof.

Standard traverse and inverse routines are utilized and:

Radius = R = _____ distance of line 1 to 2

1/2 sin (Az line 3 to 2-Az line 3 to 1

Az = azimuth

This program is dedicated to my good friend and fellow Land Surveyor, Tom H. Murphy, who spends his Sundays calculating his next weeks work.

Operating Limits and Warnings Flashing "O" obtained during computation, means the three points lie on a straight line or the curve has an infinate radius, like way outside of this universe.

Points 1 and 3 may be exchanged, but leave point 2 in the middle. Radius and coordinates are not limited to 3 decimal places.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Reference(s) Any surveying textbook.

4	Input El (Note I)	EI		2.000
5	Input point 2 (Optional)		В	2.000
6	Input N2	N2	R/S	N2
7	Input E2 (Note 1)	E2	R/S	3.000
8	Input point 3 (Optional)			3.000
9	Input N3	N3	R/S	N3
10	Input E3	E3	R/S	R
11	Optional		R/S	Nrp
12	Optional		R/S	Erp
13	Execute steps 2, 3 & 4 for new point 1			
13	Or execute steps 5, 6 & 7 for new point 2			
13	Or go to step 8 for new point 3			
14	Compute			R
15	Optional		R/S	Nrp
16	Optional		R/S	Erp
17	Enter program "Azimuth Traverse/Inverse"	program		
	to inverse the azimuths from the radius poir	nt to the		
	points. The coordinates of the rp are in the	starting		
pos	tion if steps 11 or 15 above was executed.			
	NOTE 1: g after R/S to see easting enter	ed,		
	(optional),			
	NOTE 2: rp = radius point			
	NOTE 3: Flashing "0" means problem is in	determinate.		

STEP

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		STO 1	3301		R_1 Az 3 to
А	11		f	31		1/alpha/
DSP	21		SIN	04		Nrp
•	83		÷	81		R ₂ Az 3 to
3	03		STO 2	3302		2/R/
1	01		g	35		Erp
R/S	84	Input N1	ABS	06		R ₃ N1
STO 3	3303		R/S	84	See radius	
R/S	84	Input El	ĊLX	44		
STO 4	3304		RCL 1	3401		R4 E1
LBL	23		+	61		
В	12		9	09		
2	02		0	00		R ₅ N2
R/S	84	Input N2	+	61		
STO 5	3305	•	RCL 2	3402		
R/S	84	Input E2	f-1	32		R ₆ E2
STO 6	3306	•	R → P	01		
LBL	23		RCL 5	3405		
C	13		+	61		R ₇ N3
3	03		STO 1	3301		
R/S	84	Input N3	gx⊋y	3507		
STO 7	3307	•	RCL 6	3406		R ₈ _E3
R/S	84	Input E3	+	61		
STO 8	3308		STO 2	3302		
LBL	23		RÇL 1	3401		R ₉ used
D	14	Compute	R/S	84	See Nrp	trig.
RCL 4	3404		RCL 2	3402		
RCL 8	3408		R/S	84	See Erp	
RCL 3	3403		GIO	22		A PI I
RCL /	340/			14	to compute again	B PI 2
E	2507			23	· · · · · · · · · · · · · · · · · · ·	C <u>FI 3</u>
gx y	3507		╢╘───	15		D compute
SIOT	3301			2500		E_used
KCL O	3400		9 .	51		0
RCL 8	3408		-	2500		1
RCL J	3403			0.007		2
F	15		R - P	01		3
ax av	3507		RTN	24		4
STO 2	3302				t	5
RCIA	3406		1	t		7
RCI 4	3404		1			/
RCI 5	3405		1			0
RCL 3	3403		1			
E	15		1			FLAGS
2	02					1 1
÷	81					
RCL 2	3402					2
RCL 1	3401					
-	51			1	1	

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title GRC	OUND/GRID CONV.				
Contributor's Name	Charles C. Campbell, LS				
Address City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Converts ground distance to state plane grid distance or grid distance to ground distance in zones utilizing transverse mercator projection. While the program is for Indiana E and W zones, the constants for each mercator zone in the continental United States is listed and may be substituted in the program. Inputs are elevation and X co-crdinate. EF, SF, and CF are also displayed. Elevation factor= EF = 20906000 20906000 + elevationScale factor = SF = $(X')^2$ k- $\frac{1}{r}$ +1 Combination factor = $CF=EF \times SF$ Where k and r are constants which vary with each zone and are listed on next page. User should assure the constants are correct and program **Operating Limits and Warnings** will do the job it is intended to do in a particular zone.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

r	k		
AL E 25EEX3	114	512	
AL W 15EEX3	114	524	
AK 2 unknown	113	770	
AK 3 unknown	113	770	
AK 4 unknown	113	770	
AK 5 unknown	113	770	
AK 6 unknown	113	770	
AK 7 unknown	113	770	
AK 8 unknown	113	770	
AK 9 unknown	113	770	
AZ E 1EEX4	114	495	
AZ C 1EEX4	114	495	
AZ W 15EEX3	114	487	
DE 2EEX5	114	345	
FL E 17EEX3	114	640	
FL W 17EEX3	114	640	
GA E 1EEX4	114	530	
GA WIEEX4	114	530	
HI 1 unknown	114	795	
HI 2 unknown	114	773	
HI 3 unknown	114	753	
HI 4 unknown	114	/44	
HI 5 unknown	114	/46	
ID E 19EEX3	114	229	
ID C IYEEX3	114	107	
ID WIDEEX3	114	10/	
	114	224	
	114	3Z4	
	114	334 224	
AAE E IEEXA	114	100	
	114	107	
$\frac{1}{1}$	114	218	
	114	208	
MI W 11FFX3	114	208	
MAS E 25EEX3	114	522	
MS W 17FFX3	114	516	
MO = 15FEX3	114	377	
MO C 15FFX3	114	377	
MO W 17FFX3	114	373	
NH 3FFX4	114	216	
NJ 4EEX4	114	321	
NM E 11EEX3	114	492	
NM C 10EEX3	114	495	
NM W 12EEX3	114	472	
NY E 3EEX4	114	256	
NY C 16EEX3	114	263	

		r	k	
NY	W	16EEX3	114	26 3
RI		16EEX4	114	289
VT		28EEX3	114	22 3
WY	Ε	17EEX3	114	2 53
WY	EC	17EEX3	114	253
WY	WC	17EEX3	114	253
WY	W	17EEX3	114	253
NV	Ε	EEX4		
NV	С	EEX4	unknown	
NV	W	EEX4	try 114400)

Note: k constant from Berry, Ralph Moore, Simple Algorithms for the calculation of Scale– Factors for Plane Coordinate Systems, papers from the 1972(32nd)annual meeting ACSM, March 1972. r constant from Mitchell, Hugh C. and Simmons, Lansing G., The State Coordinate Systems(A Manual for Surveyors) SP 235, Sup. of Documents, reprint 1957

Reference(s) Curtis, Kenneth S., The Indiana
State Plane Coordinate System, Manual #2, ISPLS
Inc., 111 N. Capitol Ave. Indpls. In. 46204, 1974.
McEntyre, Dr. John G., The
Perpetuation of Corners in Indiana, Manual # 1,
ISPLS Inc., 111 N. Capitol Ave. Indpls. In. 46204,
1972.

Sample Proble	em(s)	
NO. 1: 615,000 c	In Indiana where average elevation is 750 feet and average x coordinate is and ground distance is 1826.52 feet, what is EF, SF, CF and grid distance?	
NO. 2:	Same area, convert grid distance of 352.249 meters to ground distance.	
NO. 3: acres: wh	Same area: state plane coordinates were used to compute an area of 41.249 hat is the acreage on the ground?	
NOTE: d	divide by CF ² . Steps 41.249DD, assuming EF and SF was computed.	
Solution(s)		
NO.1	EF=.9999641 SF=.9999818 CF=.9999459	
	grid distance = 1826.421 feet	
NO.2	352 .26 8 meters	
NO.3	41.253 acres	
Reference (s)		

GROUND/GRID CONV.IN E&W

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Input average elev.	elev.	Α		
3	(Optional) See EF		R/S		EF
4	Input × (East co-ord.)	X	В		
5	(Optional) See SF		R/S		SF
6	Input ground length	distance	С		grid distance
6	Or input grid length	distance	D		ground distance
7	Return to step 6, 2 or 4		E		CF
8	(Optional) See CF				
					· · · · · · · · · · · · · · · · · · ·
		-			
<u>├</u>					

SWITCH	TO W/PRGM. F	PRESS f PRGM TO CLEAR MEMO	RY.			
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		4	04		R ₁ EF
A	11	Input elev.	a	35		
STO 3	3303		1/x	04		
2	02		-	51		R ₂ SF
0	00		×	71		
9	09		STO 2	3302		
0	00		RCL 3	3403		R_3 used
6	06		DSP	21		
ĔEX	43		•	83		
3	03		2	02		R ₄
+	61		RTN	24		
gLSTx	3500		RCL 2	3402		
ax⊋v	3507		DSP	21		R ₅
÷	81		•	83		
STO 1	3301		7	07		
RCI 3	3403		R/S	84	See SF	R ₆
DSP	21		LBL	23		
•	83		C	13		
2	02		Ē	15		R ₇
RTN	24		×	71		
RCI 1	3401		DSP	21		
DSP	21		•	83		R ₈
•	83		3	03		
7	07		RTN	24	See arid distance	
R/S	84	See FF	LBL	23		R ₉
LBL	23		D	14		
В	12	Input x coord.	F	15		
STO 3	3303		÷	81		LABELS
5	05 2		DSP	21		A elev.
EEX	43 9	- NJ Zone use	•	83		B x
5	05)	2 EEx6	3	03		Cto arid
-	51		RTN	24	See ground distance	D" ground
f-1	32		LBL	23		E ČF
\sqrt{x}	09		E	15		0
.1	<u>ر اه</u>		RCL 1	3401		1
1	01		RCL 2	3402		2
4	04		x	71		3
3	03	constant k		21		4
3	03 (· · ·	83		5
4	04)		Z	07		6
EEX	43			24	See CF	7
CHS	42					8
2	02					9
0	00					
,×	<u> </u>					
I						1 1
+	61					
gLSTx_	3500					2
3	03			+		
LEEX	<u> </u>	Constant r	L	.L	1	[

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title GEO/GRID AZ CONV.						
Contributor's NameCharles C. Campbell, LSAddress9841 East 21st StreetCityIndianapolisState IndianaZip Code46229						
Program Description, Equations, Variables, etc. Converts state plane grid azimuth to geodetic azimuth or geodetic az. to grid az. in zones utilizing transverse mercator projection, given latitude and longitude of point and azimuth. Any two zones may be incorporated in the program. While the program is for Indiana E and W zones, the constants for each mercator zone in the continental United States is listed and may be substituted in the program.						

 $\triangle a = \triangle \land sin \phi$ Grid azimuth = Geodetic Azimuth - $\triangle a$

where;

Geodetic Azimuth = Grid Azimuth + \triangle a λ = longitude $\triangle \lambda = \lambda$ central meridian - λ station

 ϕ = latitude

Operating Limits and Warnings Second term g has been omitted since in Indiana it is always less than 1/2 second. User should assure the program will do the job the program is intended to do.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Substitiude any	two longitude of a	central meridian in	program:		
AL E 85.5	ID E 112.1	MI C 85.45	NH 71.4	WY 1 105.1	
AL W 87.3	ID C 114	MI N 88.45	NJ 74.4	WY 2 107.2	
AZ E110.1	ID W 115.45	MS E 88.5	NM E 104.2	WY 3 108.45	
AZ C 111.55	IL E 88.2	MS W 90.2	NM C 106.15	WY 4 110.05	
AZ W113.45	IL W 90.1	MO E 90.3	NM W 107.5		
DE 75.25	IN E 85.4	MO C 92.3	NY E 74.2		
FL E 81	IN W 87.05	MO W 94.3	NY C 76.35		
FL W 82	ME E 68.3	NV E 115.35	NY W 78.35		
GA E 82.1	ME W 70.1	NV C 116.4	RI 71.3		
GA W 84.1	MI E 83.4	NV W 118.35	VT 72.3		

Sample Problem(s)

NO. 1: A sun shot was made in Indiana W zone where $\phi=40^{\circ}12'22''$, $\lambda = 86^{\circ}57'08''$ and the true azimuth of a line was determined to be 220°38'39''. What is grid azimuth of this line?

NO. 2: Indiana E zone, $\phi=40^{\circ}41'03.949"$, $\lambda =86^{\circ}23'30.437"$, grid Az= 181°46'14.3". What is geodetic azimuth?

Solution(s)

- 1. 220^o33'34.31"
- 2. 181°17'52.58"

Reference (s) Curtis, Kenneth S., THE INDIANA STATE PLANE COORDINATE SYSTEM, Manual [#]2, ISPLS Inc. 111 N. Capitol Ave. Indpls. In. 46204, 1974

McEntyre, Dr. John G., <u>THE PERPETUATION OF CORNERS IN INDIANA</u>, Manual [#]1, ISPLS Inc. 111 N. Capitol Ave. Indpls. In. 46204, 1972 Mitchell and Simmons, THE STATE COORDINATE SYSTEMS, Special Pub. No. 235

	GEO./GRID AZ, CONV.IN, E&W		ΙΙ	5
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program]
2	Choose zone (IN W)		A	
2	Or (IN E)		В	
3	Inter latitude	¢	С	
4	Inter longitude	K	С	
5	Inter geodetic Az compute grid azimuth		D	Grid Az.
5	or compute geodetic azimuth		E	Geo. Az.
6	(Optional) See seconds and hundreths of		R/S]
	computed azimuth.			
]
]

- 1		
	1	
	A	

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		5	05	sub. desired	R ₁ ,
Α	11		•	83	ZONE UNDER B KEY	Sin Ø
f	31		4	04 /		
SF 2	7 1		LBL	23		R ₂ 人
RTN	24		1	01		
LBL	23		f-1	32		
B	12		-D.MS	03		R ₃ 0
f-1	32		RCL 2	3402		
SF 2	71		-	51		
RTN	24		×	71		R4
LBL	23		†	31		
	13		IF 1	61		
DSP	21		-	51		К ₅
i	03		0			
STO 3	3303		 	01		P.
f_{-1}	3303			31		n6
-D.MS	03		DSP	21		
f	31		0.51	83		R-
SIN	04		1	04		/
STO 1	3301	·	RTN	24		
RCL 3	3403		aLSTx	3500		Ra
RTN	24		f-1	32		
LBL	23		INT	83		
С	13		6	06		R ₉
f-1	32		0	00		
-D.MS	03		x	71		
STO 2	3302		f-1	32		LABELS
gLSTx	3500			83		AW. Zone
RIN	24		6	06		BE. Zone
LBL	23	compute and	0	<u>00</u>		
	14	compute grid	X	/1		D grid
	51		DSP	21	-	Ecomp.geo
	21		•	03		0 Used
2	02			02	ananda 8 hundustha	1 Used
LBL	23			00	seconas & nunarerns	2 <u>0seu</u>
F	15		÷	01		3
f-1	32	Sempere yee	LBL	23		4
SF 1	51		0	00		6
LBL	23		8	08)		7
2	02		7	07	Sub. desired	8
f-1	32		•	83	zoned under A key	9
-D.MS	03		0	00 (
RCL 1	3401		5	ر 05		FLAGS
	31		GIO	22		1 used
	81		-1	01		
	22					2 <u>Used</u>
8	00					{
<u> </u>		Lf	I L			J L

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM

Program Title BUIL	DING RADIAL STAKE-OUT				
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes azimuth and distance from a "SUPER-STAKE" placed near the centroid of a building, given stake location dimensions, and "walking" around the building inputing building dimensions with right and left 90 degree deflections controlled by the A and E keys. The footing offsets of building may then be staked with only one transit setup. The same "SUPER-STAKE" is also used to pin the footing, utilizing a second set of computations. The staking can be accomplished with a roll-up tape hooked onto a tack on the "SUPER STAKE". The building stakes may be checked for proper location by measuring directly between them.

Point 1 is always a "NE" corner of the building. Dimensions n and e represents the rectangular coordinates of point 1. The first distance from point 1 is always a right deflection(E key).

Standard traverse and inverse routines are used in the program. The "SUPER-STAKE" is assigned a coordinate value of 0 north and 0 east.

Operating Limits and Warnings A flashing 0 after displaying a distance indicates R/S was pushed when the program was ready for a lettered function key. Push CLX and continue.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY. KEY ENTRY KEY ENTRY CODE CODE REGISTERS COMMENTS COMMENTS SHOWN SHOWN 3 03 R1_____d 23 LBL R/S 84 See polar dist. 11 Α Ó RCL 8 3408 00 ÷ CHS GTO <u>42</u> 22 R₂ last 81 23 LBL direction 01 D 14 1 RCL 3 23 3403 R₃ LBL RCL 2 3402 azimuth Set flag 1 on 12 B f 31 51 STO 3 3303 R₄ SF 1 51 3500 RTN 24 gLSTx N1...n LBL 23 61 + R₅ 13 С RCL 1 3401 CHS E1...n 9 09 42 00 22 0 GTO R₆ N1 STO 3 3303 3 03 STO 8 3308 LBL 23 15 Ε DSP 21 83 RCL 8 3408 R₇E1 3 03 LBL 23 f-1 32 1 01 STO 2 R₈90⁰ SF 1 R/S 51 Set flag 1 off 3302 RCL 3 3403 84 Input n 3304 STO 4 61 + STO 6 3306 Ra STO 3 3303 3507 R/S STO 5 gx∓y 84 Input e 3301 3305 distance STO 1 STO 7 3307 LABELS LBL 23 3 03 RCL 6 AL 3406 f - 1 32 Blast line 23 LBL 2 02 R-P **C** start 01 Dback up f 31 gx≎y 3507 R - P 01 RCL 5 3405 ER___ 3507 61 + 0 1 ^{used} gxœy STO 5 3305 Õ 00 gx≎y oused 3524 3507 gx>y ŘCL 4 3404 03 3 used__ 3 6 06 + STO 4 61 4 _____ 3304 00 0 5 _____ f-1 32 61 6 _____ + TF 1 61 61 7 _____ + 22 GIO f 31 8 -----D.MS 03 02 2 9 ____ 3406 51 RCL 6 DSP 21 83 FLAGS . 24 1 used RTN En 04 4 gx≎y 3507 RTN 24 See azimuth polar 2 ____ RCL 7 3407 gx⊋y 3507 21 83 ĎSP 51 R/S 84 Ee

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title EDM/STAKE-OUT	
Contributor's Name Charles C. Campbell, I	_S
Address 9841 East 21st Street	
City Indianapolis	State Indiana Zip Code 46229
Program Description, Equations, Variables, etc.	Ae = Azimuth to EDM
	$\Pi e = \Pi orizontal distance to EDM$
C IV/EN1	$\angle e = \angle enith$ angle to EDM
	Ar = Azimuth to retlector (point)
	$\Box p = Horizontal distance to point$
	$\angle r = \angle enith$ angle to reflector
	Ser = Slope distance, EDM to reflector
AT - Angle, reflector-theodolite-EDM	on plane through retlector and optical centers of
Theodolite and EDM.	
UIFF. = Morizontal distance to reflecto	r minus horizontal distance to point
$\Pi T = \Pi O T I Z O T T I I O I S T O I T $	o reflector.
At = $2 \operatorname{ArcSin} \frac{V(\operatorname{CosZr-CosZe})^2}{V(\operatorname{CosZr-CosZe})^2}$	eCos Ae-Ar -SinZr) ² +(SinZeSin Ae-Ar) ²
	2
	··· · · · ·
$ Htr = \frac{\cos At (He)}{\sin At} + Ser^2 - \frac{\sin At}{\sin At} $	
SinZe V SinZe	
	- +
DIFE = Htr - Hr	
Operating Limits and Warnings Ze can not be	e 0 degrees (flashing 0).
Check values entered under "A" key by	measuring distance to the control point sighted.
EDM-TheoControl Point angle should k	be approximately 45° or 135° in order to check
all three values and to assure the correct	control points are occupied.
For accurate work, the reflector should r	not be off line, particularly when theoreflEDM
angle is not small.	•••••••••••••••••••••••••••••••••••••••
l	
This program has been verified only with respect to	the numerical example given in Program Description II. User accepts and
uses this program material AT HIS OWN RISK, in rel	iance solely upon his own inspection of the program material and without
reliance upon any representation or description con	cerning the program material.

Sample Problem(s)

(1): Compute distance from reflector to point to be set. Start by pushing "A" key, see"1.00". $A_e = 103^{\circ} 45'29"$ $H_e = 28.39'$ $Z_e = 89^{\circ}07'56"$ $A_r = 269^{\circ}33'47"$ $H_p = 454.85'$ $Z_r = 90^{\circ}23'08"$ $S_{er} = 479.24'$

(2): Compute next distance using above data, except S_{er} = 482.43' Start by pushing "D" key, see "4.00".

(3): Compute distance from reflector to next point to be set. Start by pushing "B" key, see "2.00".

(4): Compute distance same point, changing Z_r to 92°52'40" and S_{er} to 158.31'. Push "C" key, see "3.00" to start.

Solution (1)	n(s) DIFF. -3.20'	MEANS move away from theo. 3.20'	Htr 451.65'
(2)	-0.01'	move away from theo. 0.01'	454.84'
(3)	7.32'	move toward theo. 7.32'	170.33'
(4)	0.00'	at point to be set	163.01'

	EDM/STAKE OUT			3
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input EDM location data:			1.00
	azimuth to EDM	Ae	R/S	
	horizontal distance to EDM	H _e	R/S	
	zenith angle to EDM	Za	R/S	
3	Input point to be set data:		B	2.00
	azimuth to point(reflector)	Ar	R/S	
	horizontal distance to point	Hp	R/S	
4	Input zenith angle to reflector:	F	С	3.00
	zenith angle to reflector	Zr	R/S	
5	Input slope distance to reflector:		D	4.00
	slope distance to reflector	Ser	R/S	DIFF.
			R/S	Htr
	Return to step 3 for next point OR;			
	return to step 4 for new zenith angle OR;			
	return to step 5 for new slope distance.			
6	Compute using previous slope distance		E	DIFF.
			R/S	Htr
	NOTES: (1) Data entered under steps 2, 3, 4 & 5 re-			
	mains unchanged after computation.			
	(2) Not necessary to push function key going			
	from step 2 to 3, 3 to 4, or 4 to 5.			
	(3) Enter angles as DDD.MMSS			
	(4) Push DSP . 3 for 3 decimal display.			
	⁽⁵⁾ Not necessary to push R/S and see Htr			
		ļ		
]
1				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
IBI	23		RCI 8	3408		RiAe =
	11			3509		Az, to FDM
1	01	(flog)		3308		
R/S	84			3300		Ba Ha =
	2201	Inpor Ac	D D	01		Horiz dist
	3301			2500		to EDAA
R/S	84	Input He	97	3509		
SIO 2	3302		-	51		$R_3 \underline{2e} - 1$
R/S	84	Input Ze		31		Zen, angle
t-1	32		K-P	2500		
-D.MS	03		97	3509		$h_4 Ar =$
STO 3	3303		f	.31		Az. to
LBL	23		R- ₽ P	01	= 2 Sin 1/2 At	reflector
B	12	(0)	2	02		$H_5 Hp =$
2	02	(flag)		81	= Sin 1/2 At	Horiz. dist.
R/S	84	Input Ar	f-1	32		to point
STO 4	3304		SIN	04	······	$R_6 Zr =$
R/S	84	Input Hp	2	02		Zen <u>. angle</u>
STO 5	3305		Χ	71	= At	to refl.
LBL	23		RCL 2	3402		$R_7 Ser =$
С	13		RCL 8	3408		slop <u>e</u> dist.
3	03	(flag)	÷	81	=slope dist. 🛪 to EDM	EDM to refl.
R/S	84	Input Zr	f-1	32		R ₈ used
f-1	32	- F	R- P	01		
D.MS	03		gx ≑ y	3507		
STO 6	3306		RCL 7	3407	· · · · · · · · · · · · · · · · · · ·	R ₉
LBL	23		f– 1	32		
D	14		VX	09		
4	04	(flag)	ax 🗲 y	3507		LABELS
R/S	84	Ìnput Ser	f−1 ′	32		A EDM
STO 7	3307		VX	09		B point
LBL	23		-	51		C Zr
E	15		f	31		D Ser
RCL 1	3401		VX	09		F compute
RCI 4	3404		+	61	= slope dist. π to refl.	0
f_1	32		RCI 6	3406		1
D MS+	02		f	31		2
f_1	32		SIN	04		2
D MS	03		X	71	= Htr	3
STO 8	3308		STO 8	3308		5
PCIA	3406		RCL 5	3405		6
1	01			51		7
f_1	32		R/S	84	See DIFF.	
R → P	01	Compute Sin & Cos Zr	RCL 8	3408		0
PCI 3	2103		RTN	24	See Htr	
1	01		1		GMM IIII	FLAGS
f-1	32					1
R P	01	Compute Sin & Cos 7e				
	3507		1			2
a↓	3508					
-	51		1			
				and the second se		-

Program Title EDN	STAKE-OUT TWO				
Contributor's Name Address City	Charles C. Campbell, LS 9841 East 21st Street Indianapolis	State	Indiana	Zip Code 4622	29
Program Description, I DIFF. =Horizonta Htr. = Horizonta Htr = $\sqrt{B^2 + 4Ac}$ where: A = B = C = S Elev DIFF. = Htr - Hp trigonometric lev refraction. c+r =	Equations, Variables, etc. Ae = He = $\Delta h = $ $\Delta h = $ Ar = c Hp = Zr = z Ser = s I distance to reflector minu distance, theodolite to ref $\frac{2}{2} + B$ $1+(\tan 90-Zr)^2$ [He cos(Ae-Ar) + $\Delta h(\tan Ser^2 - (He^2 + \Delta h^2))$. = HI + tan 90-ZrHtr NOTI eling on lines over 1000 fee horiz. distance in feet ² x	azimuth to EDM horizontal distand height of EDM ax azimuth to reflect horizontal distand zenith angle to re- lope distance, El s horizontal dist. lector. 90-Zr)] ² E: For accuracy, of the in length shoul 2.059x10- ⁸ .	ce to EDM tis with respe- for(point) ce to point offlector DM to reflect to point	ect to theo. tor termined by ed for curvature	and
Operating Limits and V the control point or 135 ⁰ in order occupied. particularly wher	Varnings (1) Check value sighted. EDM-Theo. –Cont to check all three values an (2) For accurate theo. – refl.–EDM angle i	es entered under " rol Point angle sl ad to assure the co work, the reflect s not small.	'A" key by n hould be app prrect contro tor should	neasuring distance roximately 45 ⁰ I points are not be off line,	e to

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s)

(1): Compute distance from reflector to point to be set and reflector elevation. Start by pushing RTN R/S key, see "5.00". HI=1000.00

Ae=103 ^o 45'29"	He=28.39'	∆h=0.43
Ar=269°33'47"	Hp=454.85'	
Zr= 90°23'08"	Ser=479.24'	
(2): Compute next distance using above data,	except Ser=482.43'	
Start by pushing "D" key, see "4.00".		
(3): Compute distance from reflector to next	point to be set. Start b	by pushing

"B" key, see "2.00".

Ar=178°47'00" Hp=163.01' Zr= 92°39'26" Ser=165.50'

(4): Compute distance, same point, changing Zr to 92°52'40" and Ser to 158.31'. Push "C" key, see "3.00" to start.

Solution(s) DIFF. (1) -3.20'	MEANS move away from theo. 3.20'	HTR. 451.65'	ELE∨. 996.96
(2) -0.01'	move away from theo. 0.01'	454.84'	996.94
(3) 7.32'	move toward theo. 7.32'	170.33'	992.09
(4) 0.00'	at point to be set	163.01'	991.81

Reference (s)

INSIGHTS, Vol. 2, No. 4 by Hewlett-Packard Company, 1974 EDM STAKEOUT written by CCC.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional) Input HI Elev.		RTN R/S	5.00
	See Note 5	н	R/S	
3	Input EDM location data:		A	1.00
	Azimuth to EDM	Ae	R/S	
	Horizontal distance to EDM	He	R/S	
	Delta h (If EDM higher than theo.)	Δh	R/S	
	Delta h (If EDM lower than theo.)	Δh	CHS R/S	
4	Input point to be set data:		В	2.00
	Azimuth to point (reflector)	Ar	R/S	
	Horizontal distance to point	Hp	R/S	
5	Input zenith angle to reflector:		С	3.00
	Zenith angle to reflector	Zr	R/S	
6	Input slope distance to reflector:		D	4.00
	Slope distance to reflector	Ser	R/S	DIFF.
7	Optional		R/S	Htr.
8	Return to step 4 for next point OR:		R/S	Elev.
	Return to step 5 for new zenith angle OR:			
	Return to step 6 for new slope distance			
9	Compute using previous slope distance		E	DIFF.
			R/S	Htr.
	NOTES: (1) Data entered under steps 2, 3, 4, 5, 6		R/S	Elev.
	remains unchanged after computation.			
	(2) Not necessary to push function key going			
	from step 2 to 3, 3 to 4, 4 to 5, or 5 to 6			
	(3) Enter angles as DDD.MMSS			
	(4) Push DSP .3 for 3 decimal display.			
	(5) HI elevation could be: elevation of			
	theodolite station + height of theodolite-height of			
	reflector to compute ground elevation at			
	reflector station.			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
5	05	flag	x	71		R ₁ Ae
R/S	84		RCL 3	3403		
STO 8	3308	HI Elevation	RCL 6	3406		
LBL	23		x	71		R ₂ He
Α	11		+	61		
1	01	flag	2	02		
R∕S	84	Ae	x	71		$R_3 \Delta h$
STO 1	3301		RCL 6	3406		
R/S	84	Не	f-1	32		
STO 2	3302		VX	09		R ₄ A _r
R/S	84	h	1	01		
STO 3	3303		+	61		
LBL	23		STO	33		R ₅ Hp
B	12	<u></u>	9	09		
2	02	flag	4	04		
R/S	84	Ar	x	71		R ₆ tan.
STO 4	3304		RCL 3	3403		<u>90–Zr</u>
R/S	84	Нр		32		D
510 5	3305		VX DCL 0	09		Sor
LBL	23			3402	·····	Jel
<u>C</u>	13	flag		32		D. alay
5	03	7	V X	61		R ₈ elev.
K/S	84	<u> </u>		01		
9	09		KCL /	340/		P. used
	2507		gx-y	330/		ng <u>Usea</u>
GX-y	300/		-	71		
	03			3509		
0,1413	51		f_1	32		A used
f	31		1	00		A used
Tan	06			61		c used
STO 6	3306	· · · · · · · · · · · · · · · · · · ·	f	31		D used
IBI	23		VY	09		
D	14		1+	61		
4	04		RCL	34		0
R/S	84		9	09		2
f-1	32		2	02		2
JX	09		x	71		4
STO 7	3307		1	81		5
LBL	23		RCL 5	3405		6
E	15		-	51		7
RCL 2	3402		R/S	84	See Diff.	8
RCL 1	3401		RCL 5	3405		9
RCL 4	3404		+	61		-
f-1	32		R/S	84	See Horiz. Dist.	FLAGS
D.MS+	02		RCL 6	3406		1
f-1	32		X	71		
D.MS	03		RCL 8_	3408		2
f	31		1+	61		
COS	05	L	JLR/S	<u> </u>	I See elev.	J L

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Title ELEVATION & HORIZ. DISTANCE FROM ZENITH ANGLE & SLOPE DISTANCE						
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street					
City	Indianapolis	State	Indiana	Zip Code	46229	

Program Description, Equations, Variables, etc. Primarily a program for the trigonometric leveling with an EDM instrument. Computes the elevation of and horizontal distance to a point, given the zenith angle and slope distance after the elevation of the ground(stake) at the instrument, the height of the horizontal axis of EDM above the stake, and the height of the reflector above the ground are given. The elevation is corrected for curvature and refraction utilizing the standard "textbook" factor.

Hd = Horizontal Distance = S sin Z Elevation = G + Mu - Rh + S cos Z + (c+r) Where: S = Slope distance Z = Zenith angle G = Ground Mu = "Measure up"

Rh = Reflector height

(c+r) = curvature + refraction = $2.059 \times 10^{-8} \times Hd^2$

Operating Limits and Warnings Elevation determined by trigonometric leveling on lines over 1000 feet in length should be considered approximate due to uncertainty caused by refraction. Reciprocal zenith angles at both ends of the line would improve accuracy.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

[()]

OUTPUT DATA/UNITS

1	Enter program			
2	Input elevation of ground(stake) @ Inst.	G		G
3	Input height of inst. above stake (Mu)	Μυ	В	Μυ
4	Input height of reflector above ground	Rh	С] Rh
5	To enter Z & S (Notes 1 and 2)		E]
6	Input Z	DD.MMSS	R/S	DD.MMSS
7	Input S	S	R/S	Hd
8			R/S	Elev.
9	Return to step 6 for next case, same A, B, C data.			
9	Or change AB and/or C data and continue at step 6.			
]
]
				7
]
	NOTE 1: Z denotes zenith angle and S denotes]
	slope distance			
	NOTE 2: Steps 2, 3, and 4 end with the execution]
	of step 5 and the HP 65 is ready for step 6.]
	NOTE 3: Hd denotes horizontal distance and elev.			
	denotes elevation.]
	NOTE 4: Mu denotes "measure up".]
]
]
]
]
]
]
				j
				ī
				i
				ī
				i
				j

r
SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		9	09		R ₁ Ground
Α	11	around @ inst	f-1	32		@ Inst.
STO 1	3301	g	VY	09		
GTO	22		2	02		R ₂ MII
D	14			83		
IRI	22		0	00		
R	12	"mogguno un"	5	00		R. PH
	3302	medsure op	0	00		<u> 13 KII</u>
GTO Z	22			107		
			EEX	43		Ρ.
				42		n4
LDL	23		8	08		
C	13	retl. height	X			
STO 3	3303		RCL 8	3408		R ₅
LBL	23		RCL 5	3405		G+Mu-Rh
D	14	·	<u>+</u>	61		
RCL 1	3401		+	61		R ₆ SD
RCL 2	3402		GTO	22		· · · ·
RCL 3	3403		E	15		
-	51					R7 zenith
+	61					
STO 5	3305		1			
g ł	3509		1			R ₈
DSP	21	· · · · · · · · · · · · · · · · · · ·				height
	83		1)			diff.
3	03					Bo HD
IRI	23					
F	15	compute (see elev.)	1			
D/C	04	innut - anith	1			
f - 1	32					A G @inct
						A G winst.
STO 7	3307		┨┝────	1	· · · · · · · · · · · · · · · · · · ·	Buieds. Op
	2500		{}			
GL SIX	3500		┨┠─────			D Usea
DSP			┨┝────			E compute
•	83		┨┝─────		· · · · · · · · · · · · · · · · · · ·	0
4	04		┫┠────			1
R/S	84	input SD	┨┠			2
510.6	3306					3
RCL 7	3407					4
gx⊋y	3507		┨┝─────			5
f-1	32					6
<u>R - P</u>	01		J			7
STO 8	3308		JI			8
gt	3508		1			9
STO	33					
9	09					FLAGS
DSP	21					1
	83					
3	03					2
R/S	84	See HD				
RCL	34					

Program Title ELEVA	TION FROM ZENITH ANGLE &	HORIZONT	AL DISTAN(CE	
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Primarily a program for trigonometric leveling with an EDM instrument. Computes the elevation of a point given the zenith angle and horizontal distance after the elevation of the ground(stake) at the instrument, the height of the horizontal axis of EDM above the stake and the height of the reflector above the ground are given. The elevation is corrected for curvature and refraction utilizing the standard "textbook" factor.

Elevation = $G+Mu-Rh + [tan(90-Z)] \times D + (c+r)$

Where:

G = Elevation of ground at instrument Mu = "Measure up"

Rh = reflector height

Z =zenith angle

D = horizontal distance

 $(c+r) = curvature + refraction = 2.059 \times 10^{-8} \times D^2$

Operating Limits and Warnings Elevation determined by trigonometric leveling on lines

over 1000 feet in length should be considered approximate due to uncertainty caused by refraction. Reciprocal zenith angles at both ends of the line would improve accuracy.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

175

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNIT
1	Enter program			
2	Input elevation of ground(stake) @ inst.	G		G
3	Input height of inst. above stake(Mu)	Μυ	В	Mu
4	Input height of reflector above ground	Rh	C	Rh
5	To enter Z & D (Notes 1 and 2)		E	
6	Input Z	DD.MMSS	R/S	DD.MMS
7	Input D	D	R/S	Elev.
8	Return to step 6 for next case, same A. B. C data			
8	Or change AB and/or C data and continue at step 6.			
	• • • • • • • • • • • • • • • • • • • •			
	NOTE 1: Z denotes zenith angle and D denotes			
	horizontal distance.			
	NOTE 2: Steps 2, 3, and 4 end with the execution	1		
	of step 5 and the HP 65 is ready for step 6.			
	NOTE 3: Mu denotes "measure up"			
-+				
- 1				

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		1.	83		R ₁
A	- F1	ground @ inst.	0	00		around @
STO 1	3301		5	05		inst
GTO	22		9	09		R ₂
D	14		FFX	43		"measure
LBL	23		CHS	42		
В	12	"measure up"	8	08		Bo rofl
STO 2	3302			71		height
GIO	22		1	61		l neigin
D	14		GTO	22		RAUD.
IBI	23			15		'' ⁴ חט
C	13	refl height	┨ ┝─ ───	1.5		
STO 3	3303		┨┟─────			R.
	22		┨┠			
D	14					
RCI 1	3401		1}			P.
PCI 2	3402					n6
DCL 2	3402					
NCL J	51		┨┠━━━━━			D
	61					
STO 5	2205		┫╞			24
	3500					
	22					K8
	15	computo	┨┝────			
	21	compute	┨┝━────			
031	21					Kg
2	83					
D/C	81	inputo 74(See alow)				
	22	inpute ZA(See elev.)				
	02		┨┝─────			AG (<i>a</i>) inst.
	2207		┨┝────			Bmeas. up
	3507		┨┠─────			Crefl. H
GL2IX	3500		┨┝─────			Dused
DSP	21					E compute
	0.0		┨┝────			0
4 D/C	04		┨┝────			1
	2204	Inpute HD	┨┝────			2
510 4	3304		┨┝────			3
9	09		┨┠─────			4
	00					5
RCL /	340/		┥┝────			6
-			┨┝─────			7
TAN			1)			8
	71					9
	2405					
	<u>5405</u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>					FLAGS
	3404		┨┝────			1
	0404					1
	- 32					2
2	07		11			
L 4	<u> </u>		ا			

Program Title EDM/RADIAL CURVE STAKE-OUT OS							
Contributor's Name	Charles C. Campbell, LS						
Address	9841 East 21st Street						
City	Indianapolis	State	Indiana	Zip Code	46229		

Program Description, Equations, Variables, etc. Computes angles and distance for curves for both sides of a street for curb offset staking, with instrument set up on outside PC or PT offset stake, using total station type EDM setup or a long tape for short length curves, given minumum known data and staking interval, program computes the station of the PT (PC) first for data entry and plan dimension verification. The computed station may be overridden by the users own special station. The staking may be checked by measuring between the stakes at each station.

Standard traverse and inverse routines are used and:

Next station = (n of $\left[\frac{\text{last sta}}{\text{interval}}\right]$ +1) interval

Deflection angles = (sta-PC Sta) $\frac{\times 90}{\pi R}$ or angle = (Sta-PC STA) $\frac{\times 180}{\pi R}$

Chord = 2RxSin deflection angle R == Radius

n == integer

Operating Limits and Warnings Program will not compute beyond the PT(PC) station. If interval is fractional: round and truncate to 7 significant digits or less. If from PT of curve: input PT station with opposite sign in place of PC station. All stations are then entered and displayed with opposite signs. All angles are "right angles". 0 degrees is toward the PI of the curve occupied. Program on card 2 could be put on top of card 1. Don't distrube stack during program execution.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Reference(s) None used. Any surveying textbook.

179

EDM CURVE STAKE-OUT OS #1

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Card 1 program			
2	Input interval	INT		
3	Choose curve left		В	
3	Or curve right		С	
4	Data for curve (Note 1)		D	
5	Input PC station	STA	R/S	
5	Or if PT STA	STA	CHS R/S	
6	Input offset from center line	OFF	R/S	
7	Input curve center line radius	R	R/S	
8	Input curve delta	DD.MMSS	R/S	PT STA
9	Enter Card 2 program			
10	Compute		A	1ST STA
11	Accept STA shown		R/S	ANG OUT
11	Or input special Sta	STA	R/S	ANG OUT
12			R/S	DIST OUT
13			R/S	ANG IN
14			R/S	DIST IN
15			R/S	NEXT STA
16	Return to step 11 until PT is reached.			
	NOTE 1: Not necessary to push D key if coming from			
	steps 2 or 3.			
	NOTE 2: If from PT to PC, all stations are of			
	opposite sign.			
	NOTE 3: To restart calc., go to step 10 or go to step			
	4 for next curve with same interval, to step 2 to			
	change interval, or to step 3 to change direction			
	with Card 1 entered. If curve data entered at steps			
	5,6,7 and 8 is OK, then go to step 10 to compute,			
	with Card 2 entered.			
	NOTE 4: Don't distrube stack between any of these			
	steps. If stack is distrubed it is most convient to			
	restart computations at step 10. Keep your finger			
	on the R/S key!			

CARD 1

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
RTN	24	Kill E key	STO 5	3305		R ₁ PC
LBI	23	Input interval	RCL 3	3403		STA
A	11		RCL 3	3403		
STO 8	3308		+	61		R ₂ 2× OFF.
GTO	22		RCL 2	3402		=easting
D	14		a	35		inside
LBI	23		ABS	06		R ₃ CL R
B	12		-	51		
f	31		+	41		
SF 1	51		4	41		R ₄ Deg.
GTO	22		aLSTx	3500		of c <u>ur∨e</u>
D	14		aLSTx	3500		per foot
LBL	23		+	61		R ₅ _PT
C	13		+	61		STA
f-1	32		STO 6	3306		
SF 1	51		÷	81		R ₆ 2R
LBL	23		STO 7	3307		out
D	14		RCL 5	3405		
DSP	21		R/S	84	See PT STA	R ₇ chord
•	83		0	00		con <u>stant</u>
2	02		÷	81	flash 0 if R/S is pushed	out to in
RIN	24	Input PC STA				R ₈
STO 1	3301					int <u>erval</u>
R/S	84	Input offset				
2	02					R ₉ used
gx⊋y	3507					trig <u>. &</u>
x	71					tests
f	31					LABELS
TF I	61					A interval
CHS	42					B_used
gnop	3501					C used
STO 2	3302	·····				D_used
gLSTx	3500					E killed
R/S	84	Input CL radius				0
510 3	3303	1 1 1 1				1
R/S	84	Input delta angle				2
t-1	32					3
-D.WS	03					4
						5
8	08					6
0	25					7
T	02					8
÷	81					9
RCI 3	3403					FLAGS
	81					1 used
STO 4	3304					'
	81	= Arc length				2
RCL 1	3401					
+	61					

CARD 2 SWITCH TO W/PRGM. PRESS **f** PRGM TO CLEAR MEMORY.

			-			
KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		gx € y	3507		R ₁ PC
A	11		CLX	44		STA
RCL 1	3401		gLSTx	3500		
LBL	23		qx € y	3507		$R_2 2 \times OFF$
0	00		RCL 7	3407		= ea <u>sting</u>
RCL 8	3408		x	71		inside
• •	81		f-1	32		R ₃ CL R
f	31		R-P	01		
INT	83		gx€y	3507		
aLSTx	3500		RCL 2	3402		R ₄ Deg.
gx℃y	3507		+	61		of curve
$gx \leq y$	3522		gxᢏy	3507		per foot
Ì Í	01		f	31		'R ₅
+	61		R P	01		PT STA
RCL 8	3408		В	12		
x	71		R/S	84	See angle in	R ₆ 2R
RCL 5	3405		С	13		OUT
gx > y	3524		R/S	84	See distance in	
gł	3508	·	g ł	3509		R7 chord
gnop	3501		GIO	22		con <u>stant</u>
LBL	23		0	00		out to in
1	01		LBL	23		R ₈
R/S	84	Inp. or accept STA	В	12		int <u>erval</u>
RCL 5	3405	•	gx ͡ y	3507		
gx℃y	3507		0 ·	00		R ₉ used
gx > y	3524		gx℃y	3507		trig <u>. &</u>
GTO	22		$ \mathbf{q}\mathbf{x} > \mathbf{y} $	3524		tests
1	01		ĞIO'	22		LABELS
4	41		2	02		Acompute
4	41		gx€ y	3507		B used
RCL 1	3401		CLX	44		C_used
-	51		3	03		D
RCL 4	3404		6	06		E
x	71		0	00		0 used
2	02		LBL	23		1 used
÷	81		2	02		2 _used
f	31		+	61		- 3
SIN	04		l f	31		4
gLSTx	3500		-D.MS	03		5
f	31		DSP	21		6
IF 1	61		-↓↓	83		_ 7
CHS	42		4	04		8
gnop	3501			24		9
gx€y	3507			23		
RCL 6	3406			13		
x	71		gx⊇y	3507		1 <u>used</u>
B	12		_ <u></u>	21		
R/S	84	See angle out	- :	83		- ²
C	13		- 2 DTN			
1 K/ S	84	See distance out		L 24		_」 ∟

Program Title CURVE STAKEOUT								
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street							
City	Indianapolis	State	Indiana	Zip Code	46229			

Program Description, Equations, Variables, etc. Computes deflection angles and chords for curves for both sides of a street for curb offset staking, given a staking interval, PC stationing, offset from CL, CL radius, and the delta angle of the curve. Program computes the station of the PT first for data entry and plan dimension verification. The program computes the stationing based on the given interval, which station may be accepted or overridden with a special station. Where n = integer 2Ri = (Rcl-offset)2 Next station=(n of LAST STA + 1) interval

2Ro = (Rcl+offset)2out chord = 2RoSin(last angle) in chord = $\frac{2Ri}{2Ro}$ x out chord

Next station=(n of LAST STA + 1) inter-
Interval _ + 1) inter-
defl. angle = (STA-PC STA)
$$\times \frac{90}{\pi R}$$

Deflection angles are right if curve is arcing right(radius point is to the right) or left if curve is arcing left.

Negative stations may be entered and/or displayed, if less than zero.

Operating Limits and Warnings Program will not compute beyond the PT of the curve, except when a special station is entered which is larger that the PT station, then funny things happen, although still mathematically correct. If interval is fractional: round and truncate to 7 significant digits or less. Offset may be 0 to compute CL chords(twice).

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Proposed 30' pavement ab
--

Sample Problem(s) Compute deflection angles and chords to stake the points in the above sketch for each 25 foot stationing, including low point and skip station 2+25.

Forget to write down an answer? Recompute; start by pushing C, or change interval with A key and recompute with C.

Solutio	on(s)	STA	DEFLECTION	CHORD out	CHORD in
PC	1+75	.92	0 ⁰ toward PI of curve		
	2+00	•	4-32-35	27.06	21.04
LP	2+24	.92	9-14-41	28.01	21.78
	2+50		13-58-35	28.19	21.92
	2+75		18-41-35	28.10	21.85
PT	2+87	.96	21-08-16	14.57	11.33

Reference(s)

None used. Any surveying textbook.

	CURVE STAKEOUT #7			
	Interval R. D Compute			9
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional) See flag, push D or E or		RIN R/S	7.00
3	Input interval	INT	A	
4	Data for curve		В	
5	Input PC station	STA	R/S	
6	Input offset from center line	OFF	R/S	
7	Input curve CL radius	R	R/S	
8	Input curve delta	DD.MMSS	R/S	PT. STA
9	Compute		C	lst. STA
10	Accept STA shown		R/S	DEF ANG
10	Or input special STA	STA	R/S	DEF ANG
11			R/S	CHARD
12			R/S	CHORD IN
13			R/S	NEXT STA
14	Return to step 10 until PT is reached.			
	NOTE 1: Step 4 is optional if coming from step 3			
	NOTE 2: To restart calc: go to step 9, or to step 4			
	for next curve with same interval or step 3 to change			
	interval. If curve data entered at steps 5, 6, 7 & 8			
	OK, then go to step 9 to compute.			
	NOTE 3: Negative stations may be used.			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
7	07		STO 2	3302		R ₁ PC
R/S	84	See flag	LBL	23		STA
ĽBL	23	Inp. interval	0	00		
Α	11	·	RCL 2	3402		R ₂ offset
STO 8	3308		RCL 8	3408		2last Sta.
LBL	23		÷	81		
В	12		f	31		R ₃ _0
RTN	24	Inp. PC STA	INT	83		last ∆ /2
STO 1	3301	•	1	01		
R/S	84	Inp. Offset	+	61		R ₄ degree
STO 2	3302	-	RCL 8	3408		ot curve
R/S	84	Inp.CL R	X	71	Next even station	per ft.
STO 3	3303		RCL 5	3405		R ₅
R/S	84	Inp. delta	gx> y	3524		PT STA
f-1	32		g t	3508		
-D.MS	03		gnop	3501		R ₆ ZR OUI
9	09		R/S	84	Inp sta. or use sta. show	yn
0	00		RCL 3	3403		Dahard
g	35		RCL 4	3404		R ₇ cnora
π	02		RCL 2	3402		constant
-	81		g •	3509		
RCL 3	3403		SIQ 2	3302		H8 inter val
-	81		gx = y	350/		
510 4	3304		-	<u>51</u>		Burged
	81		X			tria 8
2	02			01		hig. a
-	81			3500		
RCL 3	3403		gr v	3507		Ainterval
RCL Z	5402		f dy y	3307		A used
2				02		C compute
	71			21		
PCI 3	3403			83		с – – – – – – – – – – – – – – – – – – –
RCL 2	3402		1	04		oused
+	61			84	See DEF angle	1
2	02		DSP	21		2
X	71			83		3
ŜTO6	3306		2	02		4
÷	81		gx≎v	3507		5
STO 7	3307		f	31		6
a t	3508		SIN	04		7
RCL 1	3401		RCL 6	3406		8
+	61		x	71		9
STO 5	3305		R/S	84	See chord out	
R/S	84	See PT stationing	RCL 7	3407		FLAGS
ĽBL	23	ļ	x	71		1
С	13		R/S	84	See chord in	
0	00		IGTO	22		2
STO 3	3303		0	00		
IRCL 1	3401]	1]

Program Title	CURVE-STAKE FROM PI				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. the PI of a curve, given a staking interval, PC stationing, radius, and delta angle. The program computes the station of the PT first for data entry and plan dimension verification. The program computes the stationing based on the given interval, which station may be accepted or overridden with a special station.

Next station = (n of Last Sta + 1) Interval , where n = integer

(Station to PC) angle = (Sta. – PC Sta.) $\times \frac{180}{\pi R}$

Otherwise standard traverse and inverse routines are used.

Operating Limits and Warnings Program will not compute beyond the subject curve. If interval is fractional: round and truncate to 7 significant digits or less. Zero degrees is toward the PC if stationing is normal and toward the PT if stationing has opposite sign. Angles are to left or right, depending on direction of curve.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

			-				
00+1		00 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$R = 151.843'$ $\Delta = 42°'16'32''$ V				
 Sample Problem(s) Compute the angles and distances to the points on the curve in the above sketch for each 25 foot interval, including the low point and excluding station 2+25. STEPS: 25A, 175.92R/S, 151.843R/S, 42.1632R/S, (See PT stationing), R/S, R/S, R/S, R/S, 224.92R/S, R/S, R/S, 250R/S, R/S, etc. 							
You n with (nay now recomput C key.	e by pushing C key or	change interval with A key then recompute				
Solution(s) PC LP	STATION 1+75.92 2+00 2+24.92 2+50 2+75	ANGLE 0° to PC of curve 3-08-26 36-36-11 125-08-29 137-01-58	DISTANCE 34.78 13.14 21.66 45.77				
PT	2+87.96	137-43-28	58.71 = tangent length of curve				
Reference(s	s) None used.						

TEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program]
2	Input interval	INT	A]
3	Data for curve		В]
4	Input PC station	STA	R/S	
5	Input curve radius	R	R/S]
6	Input_curve_delta	DD.MMSS	R/S	PT STA
7	Compute		С] 1st STA
8	Accept STA shown		R/S	ANGLE
8	Or input special STA	STA	R/S	ANGLE
9			R/S	DISTANCI
10			R/S	NEXT STA
11	Repeat steps 8, 9 and 10 until PT is reached.]
] [
]
]
]
	NOTE 1: Steps 3 and 7 are optional if coming from]
	preceeding step.]
	NOTE 2: To restart calc., go to step 7, or go to step]
	3 for next curve with same interval, or to step 2 to]
	change interval.]
	NOTE 3: OK to skip steps 3, 4, 5 and 6, when]
	changing interval and curve data has been entered]
	correctly.]
	NOTE 4: Negative stations may be used.]
	NOTE 5: Normal calculation is with 0° to PC. For]
	0 ^o to PT, use opposite signs on all stationing.]
]
]
]
]
]
]

KEY ENTRY CODE SHOWN KEY ENTRY CODE REGISTERS COMMENTS COMMENTS SHOWN RTN 24 Kill D & E keys + 61 R₁ PC Sta RCL 8 23 3408 LBL A 11 Input interval 71 x STO 8 3308 RCL 5 3405 R₂ Last Sta LBL 23 12 gx > y3524 В g ł 3508 R₃ CL RTN 24 Input PC STA gnop LBL 3501 23 STO 1 3301 radius R∕S STO 3 <u>84</u> 3303 1 01 Input CL radius R∕S R₄ degree 84 See new STA STO 2 R/S 84 3302 of curve Input delta angle f-1 per foot 32 RCL 5 3405 R_5 -D.MS 03 gx⊋y 3507 PT STA gx > ý GTO 1 01 3524 8 08 22 01 R_6 0 00 1 RCL 1 g T 35 3401 02 3524 gx > y R_7 RCL 3 3403 g ♥ GTO 3508 22 tangent 71 x ÷ 81 1 01 STO 4 3304 3508 gt R₈ interval 81 51 = arc length RCL 1 RCL 4 3401 3404 R₉ used 61 71 STO 5 3305 RCL 3 3403 trig. & g ∔ 2 CHS 3509 42 tests LABELS f-1 32 02 ÷ R --- P 81 01 Ainterval RCL 3 3403 B data 31 c compute TAN + 61 06 D killed RCL 3 3403 gx≎y 3507 ŘCL Ź 3407 E killed <u>71</u> Χ..... STO 7 RCL 5 3307 3405 +____ 61 0 used f 31 1 used 01 84 See PT STA R/S R - P 2 _____ 3507 gx≎y LBL 23 3 _____ 13 <u>31</u> 03 <u>C</u> f 4 _____ D.MS RCL 1 3401 5 _____ 21 83 DSP STO 2 3302 6 _____ • 7 _____ 23 LBL 4 04 0 00 Begin loop 8 _____ R/S 84 See angle RCL 2 3402 9 _____ gx ℃y DSP 3507 3408 RCL 8 ÷ <u>81</u> 41 21 FLAGS 83 1 _____ f 31 2 02 R∕S GTO INT 83 See distance 2 ____ 84 22 3522 01 0 00

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

	1105rum 2000	- Pin					
Program Title TAN	IGENT OFFSET						
Contributor's Name	Charles C. Campbell, LS						
Address	9841 East 21st Street						
City	Indianapolis	State	Indiana	Zip Code	46229		
Program Description, Equations, Variables, etc. Computes the distance along the tangent from the end of the curve and the right angle offset to points on a curve, given a staking interval, PC/PT stationing, radius, and delta angle. The program computes the station of the PT/PC							
first for data entry and plan dimension verification. The program computes the stationing based on the given interval, which station may be accepted or overridden with a special station.							
Next station = $(n \text{ of } \frac{\text{Last Sta}}{\text{Interval}} +1)$ Interval, where $n = \text{integer}$							
(Station to PC)	angle = (StaPC Sta.) × $\frac{180}{\pi R}$						

Operating Limits and Warnings Program will not compute beyond the subject curve. If interval is fractional: round and truncate to 7 significant digits or less. The distances

Otherwise standard traverse and inverse routines are used.

are measured along the tangent and its extension, from the PC if stationing has normal sign and from the PT if stationing has opposite sign.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

801-	7	angent PI $+ \frac{1}{26} \cdot \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} - \frac{1}{2} $	= 151.843 = $42^{\circ}16'32''$ $\frac{1}{6}$ m/
Sample Problem sketch	n(s) Compute the for each 25 foot i	distances and offsets to the nterval including the low p	points on the curve in the above oint and skipping station 2+25.
STEPS:	25A, 175.92R/S R/S, R/S, R/S,	, 151.843R/S, 42.1632R/S R/S, 224.92 R/S, R/S, R/S	, (See PT stationing), , 250R/S, R/S, etc.
Solution(s)	STATION	TANGENT DISTA	NCE OFFSET
PC	1+75.92	0+00	0.00
ΙP	∠+00 2+24,92	0+23.98	7.84
L,	2+50	0+71.18	17.72
	2+75	0+92.20	31.19
PI	2+87.96	1+02.14	39.47
Reference (s)	None used.		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input interval	INT	A	
3	Data for curve		В	
4	Input PC station	STA	R/S	
5	Input curve radius	R	R/S	
6	Input curve delta	DD.MMSS	R/S	PT STA
7	Compute		C	1st STA
8	Accept STA shown		R/S	from PC
8	Or input special STA	STA	R/S	from PC
9			R/S	offset
10			R/S	Next Sta.
11	Repeat steps 8, 9 and 10 until PT is reached.			
	NOTE 1: Steps 3 and 7 are optional if coming from			
	preceeding step.			
	NOTE 2: To restart calc., go to step 7, or to step			
	3 for next curve with same interval or to step 2 to			
	change interval.			
	NOTE 3: OK to skip steps 3, 4, 5 and 6 when			
	changing interval and curve data has been entered			
	correctly.			
	NOTE 4: Negative stations may be used.			
	NOTE 5: Normal calculation is from PC. If from			
	PT, use opposite signs on all stationing.			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
RTN	24	Kill D & E keys	gnop	3501		R1
IBI	23		LBL	23		PC STA
Δ	11	Input interval	1	01		
	3308		R/S	84	See new sta	R ₂
IBI	23		RCI 5	3405		Last STA
R	12		ax 2 v	3507		
DSP	21		ax > y	3524		R ₃ CL
•	83		GTO'	22		radius
2	02		1	01		
PTN	24	Input PC STA	RCL 1	3401		R₄degree
	3301		ax > y	3524		of curve
R/S	84	Input CL R	a t	3508		per foot
STO 3	3303	· · · · ·	GTO	22		R ₅
R/S	84	Input delta angle	1	01		PT_STA
f-1	32	•	g t	3508		_
-D.MS	03		ax 2 v	3507		R ₆
1	01		ŠTO 2	3302		offset
8	08]	51		
0	00		CHS	42		R ₇
g	35		RCL 4	3404		
π	02		×	71		
÷	81		RCL 3	3403		R8
RCL 3	3403		f-1	32		int <u>erval</u>
÷	81		R P	01		
STO 4	3304		STO 6	3306		R ₉ used
÷	81		gx℃y	3507		tr <u>ig. &</u>
RCL 1	3401		R/S	84	See dist. from PC	Tests
+	61		RCL 3	3403		LABELS
STO 5	3305		RCL 6	3406		A interveil
R/S	84	See PT STA	-	51		B_data
LBL	23		IR/S	84	See offset	Ccompute
C	13	Compute		22		Dkilled
RCL 1	3401		0	00		Ekilled
STO 2	3302					0 <u>used</u>
LBL	23		-1}			1 Usea
0	00	Begin loop				2
RCL 2	3402					- 3
KUL 8	3408					- 4
	81					
1	41			+		╢┇───
	3			1		
	00			1		11 °
gx = y	3522			1		1 9
<u>+</u>	61			1		FLAGS
PCI 0	3/02					
X	71					
RCI 5	3405					2
$ \alpha x > v$	3524					
at	3508					

Program Title CHOR	D OFFSETS				
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes the distance along the chord from the end of the curve and right angle offset to points on a curve, given a staking interval, PC/PT stationing, radius, and delta angle. The program computes the station of the PT/PC first for data entry and plan dimension verification. The program computes the stationing based on the given interval, which station may be accepted or overridden with a special station.

Next station =
$$(n \text{ of } Last Sta + 1)$$
 Interval , where n = integer

(Station to PC) angle = (Sta.-PC Sta.) $\times \frac{180}{\pi R}$

Otherwise standard traverse and inverse routines are used.

Operating Limits and Warnings Program will not compute beyond the subject curve. If interval is fractional: round and truncate to 7 significant digits or less. The distances are measured along the long chord, from the PC if stationing is normal and from the PT if stationing has opposite sign.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

197

				OUTPUT
STEP	INSTRUCTIONS	DATA/UNITS	KEYS	DATA/UNIT
1	Enter program			
2	Input interval	INT		
3	Data for curve		В	
4	Input PC station	STA	R/S	
5	Input curve radius	R	R/S	
6	Input curve delta	DD.MMSS	R/S	PT STA
7	Compute		c	1st STA
8	Accept STA shown		R/S	distance PC (from)
8	Or input special STA	STA	R/S	from PC
9			R/S	chord offset
10			R/S	Next Sta
11	Repeat steps 8, 9 and 10 until PT is reached.			
	NOTE 1: Steps 3 and 7 are optional if coming from			
	preceeding step.			
	NOTE 2: To restart calc., go to step 7, or to step 3			
	for next curve with same interval, or to step 2 to			
	change interval.			
	NOTE 3: OK to skip steps 3, 4, 5 and 6, when			
	changing interval and curve data has been entered			
	correctly.			
	NOTE 4: Negative stations may be used.			
	NOTE 5: Normal calculation is from PC. If from PT,			
	use opposite signs on all stationing.			

SWITCH TO W/PRGM. PRESS 1 PRGM TO CLEAR MEMORY.

KEY	CODE	COMMENTS	KEY	CODE	COMMENTS	REGISTERS
DTNI	SHOWN 24	Kill D & E kave		SHOWN 2524		R
	24	KIII D & E Keys		3508		PC STA
		Input interval		2501		
	3308			22		Ba
	2200			01		Last Sta
R R	12	Input PC Sta	P/S	84	See new sta	LOSI JIG
	21		RCI 5	3405	Jee liew sid.	B ₂ CI
USF	83		I ROLD	2507		
2	02			3524		radius
RTN	24		GIO	22		R4 dearee
STO 1	3301			01		of curve
R/S	84		PCI 1	3401		per $1/2$ ft.
STO 3	3303		ax > y	3524		R ₅
R/S	84	Input delta anale	a +	3508		PT STA
f-1	32		GTO	22		
-D.MS	03]]]	01		R ₆
2	02		a t	3508		offset
÷	81		gx≎ y	3507		
STO 7	3307		STO 2	3302		R ₇
9	09		_	51		1/2 delta
0	00		CHS	42		
g	35		RCL 4	3404		R8
π	02		x	71		interval
÷	81		RCL 7	3407		
RCL 3	3403		gx⊋ y	3507		R ₉ used
÷	81			51		trig. &
STO 4	3304		gLST×	3500		tests
÷	81		f	31		LABELS
RCL 1	3401		SIN	04		A interval
+	61		RCL 3	3403		B_data
STO 5	3305		2	02		Ccompute
R/S	84	See PT Sta	X	71	· · · · · · · · · · · · · · · · · · ·	D killed
LBL	23			/1		E_killed_
	2401			32		
KUL I	3401		<u>⊣ R→P</u>			1 used
15102	3302			350/		2
		Pagin lear	12100	3500		3
				04	See diet from DC	1 4
PCI 0	3402			3404	See dist. Ifom PC	5
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		R/S	84	See offset	1 2
1	<u> </u>		GTO	22		11 6
t	21			00		11 0
INT	83					11 9
gx≦ v	3522					FLAGS
1	01] 1
+	61					
RCL 8	3408					2
x	71					
RCL 5	3405					

Program Title	STADIA REDUCTION				
Contributor's Name	Charles C. Campbell, LS				
Address	9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Computes difference in rod readings, horizontal distance, and elevation given instrument height, bottom, top, and middle hair rod readings and vertical angle. Also computes horizontal distance and elevation given instrument height, stadia distance, middle hair rod reading and vertical angle.

SD = TH-BH (100)

 $HD = (\cos VA)^2 \times SD$

 $EL = HI - MH + SinVA \times CosVA \times SD$

See page 3 for connotations.

Operating Limits and Warnings Program under B key uses TH-BH to determine horizontal distance and MH to determine elevation.

Horizontal distance is displayed to two decimal places. For all practical purposes it should be rounded to nearest foot (.1 meter?).

Negative HI and elevation is below sea level.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

					STEPS: 995.09 Enter
Sample Proble	em(s) Compute the f	ollowing:			4.91+, A, B4.02R/S
	HI	SD	MEAS UP		6R/S, 5R/S, 2.09
					CHS, R/S, R/S, 1.24
POINT	BH	тн	мн	VA ELEV,	R/S, 4.31R/S, 2.77
×@ A	1000.00HI		4.91MU	995.09	R/S, R/S, R/S,6.78
1	4.02	6.00	5.00	-2 ⁰ 09'	R/S, 9.32R/S,8.04
2	1.24	4.31	2.77	0	R/S, 3.19R/S, R/S,
В	6.78	9.32	8.04	3 ⁰ 19' (1006.63)	5.04+A, C, 219K/S,
					4.03K/3, 3.10C TS D/C D/C 194D/C
Instrument a	t B sight				6 78R/S R/S R/S R/S
1	011.67HI		5.04MU		178R/S. 12.17R/S.
					4.14R/S, R/S,
3		219	4 03	-3916'	
4		124	6.78	0	
5		178	12.17	4 ⁰ 14'	
Solution(s)	DIFF.		HD	ELE	VATION
	0.02		197.72	987	7.58
2	0.01		307.00	997	.23
В	0.02		253.15	1006	.63
3			218.29	995	.18
4			124.00	1004	.87
S			1/7.03	1012	.00
l					
<u> </u>					

Reference(s) Any surveying textbook.

201

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Optional (See flag)		RTN	R/S	15
3	Input beginning HI	н	Α		
4	Choose BH-TH-MH type		В		
5	Input BH	ВН	R/S		
6	Input TH	ТН	R/S		
7	Input MH	мн	R/S		DIFF
8	If VA= 0 degrees (If stack is undistrubed)		R/S		HD
8	If VA is downward	VA	CHS	R/S	HD
8	If VA is upward	VA	R/S		HD
9			R/S		EL
10	Go to step 5(input BH) for next "shot" of this type				
4	Or choose SD-MH type		С		
5	Input SD	SD	R/S		
6	Input MH	мн	R/S		
7	If VA=0° (If stack is undisturbed)		R/S		HD
7	If VA is downward	VA	CHS	R/S	HD
7	If VA is upward	VA	R/S		HD
8			R/S		EL
9	Go to step 5(input SD) for next "shot" of this type				
	BH = Bottom Hair Reading				
	TH = Top Hair Reading				
	MH = Middle Hair Reading				
	$VA = Vertical Angle (0^{\circ} is 90^{\circ} from zenith)$				
	SD = Stadia Distance				
	HD = Horizontal Distance				
	EL = Elevation				
	DIFF. = (TH-MH)-(MH-BH) absolute value				

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
DSP	21			41		R ₁ HI
	83			3508		
0	00		STO 4	3304		
1	01		R/S	84	Inpute VA	R ₂ BH
5	05	flag	E	15		
R/S	84		RCI 6	3406		
LBL	23	Inpute HI	x	71		R ₃ TH
Α	11		R/S	84	See HD	
DSP	21		D	14		
•	83		GIO	22		R₄ <u>MH</u>
2	02		С	13		
STO 1	3301		LBL	23		
RTN	24			14		$R_5 Cos VA$
LBL	23	· · · · · · · · · · · · · · · · · · ·	gt	3508		
В	12		RCL 5	3405		
R/S	84	Inpute BH(See EL)	- ×	71		R ₆ _50
STO 2	3302		RCL 6	3406		
R/S	84	Inpute TH	X			D
STO 3	3303			3404		K ₇
R/S	84	Inpute MH		61		
STO 4	3304			3401		
RCL 2	3402		<mark>∣ gx </mark>	350/		Raused
-	2402			24		
RCL S	3403			24		Bused
KUL 4	5404			25		tria &
-	51			3509		toote
-	25			3523		LABELS
ARS	06			00		1 AHI
	41		4	41		BB-T-M
at	3508		gt	3508		CSD-M
R/S	84	See diff. (inp. VA)	0	00		Dused
E	15		gx=y	3523		Eused
RCI 3	3403		GTO	22		oused
RCL 2	3402			01		1 used
-	51		g t	3508		2
EEX	43		f_1	32		3
2	02		-D.MS	03		4
X	71			42		5
STO 6	3306			01		6
×	71		f-1	32		- 7
R/S	84	See HD		2205		8
	14			3305		- 9
1010				00		ELACS
B	12			07		
	12			24		11 '
P/C	<u>دا</u> ۸۹			01		1 2
STO A	3304		- ;	Ŏ		11 *
R/S	84	Inpute MH	RTN	24		

Program Title GEODIMETER ATMOSPHERIC CORRECTIONS								
Contributor's Name	Charles C. Campbell, LS							
Address	9841 East 21st Street							
City	Indianapolis	State	Indiana	Zip Code	46229			
Program Description, Equ	ations, Variables, etc. Given:	^o F and In.	Hg.					
The program con distance from M	nputes the correction in ppm. odel 76 or Model 700 Geodim	to be appli neter.	ed to the mea	isured slope				
For Model 76: Correction in pr	om = 281- 2741.295 × Pressu Temp. (^o K	re(in. Hg.)						
For Model 700: Correction in pr	om = 308.6 - 2741.295 x Pro Temp.	essure (in. (°K)	Hg.)					
where °K = 5	/9 (°F-32) + 273.15							
K = Kelvin								
F = Fahrenheit								
Operating Limits and Wa	Operating Limits and Warnings None							

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) 1. Find correction for Model 76 if pressure = 29.25 and temperature = 84° 2. Find correction for Model 700 if pressure = 29.15 and temperature = 72° Solution(s) 1. 15.5 2. 38.1

Reference (s)

Geodimeter operating manuals and training lecture notes.

TEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNIT
1	Enter program			
2	Choose Model 700			700
	Or Model 76		В	76
3	Input temperature	٥ _F	C	
4	Input pressure	In. Hg.	D	
5	Compute correction factor (ppm)		E	ppm
	Go to step 3 or 4 for next problem			
	•			
	NOTE: Temperature or pressure may be changed			
	without reentering the other.			

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

KEY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
LBL	23		5	05		B ₁ ^o F
A	11		STO 5	3305		
3	<u>Ó</u> ġ		RTN	24		
0	00		LBI	23		R_2 in.Hg.
8	08		9	09		
•	83		DSP			
6	06			83		R ₃ _used_
STO 3	3303		1	01		
1	01		STO 1	3301		
510.8	3308		RTN	24		R ₄ Used
Ç	$\frac{13}{07}$		LBL	23		
/	0/		D	14		D
0	00		DSP	21		R ₅ Used
	00			03		
	24			2202		Ra
	10			3302		n6
2	02			24		
8	02			15		R ₇
1	00		RCI 3	3403		
STO 3	3303		RCI 4	3404		
1	01		RCL 2	3402		Rs used
STO 8	3308		Y	71		
C	13		RCI 1	3401		
7	07		3	03		Rg
6	06		2	02		
RTN	24		-	51		
LBL	23		5	05		LABELS
С	13		×	71		A 700
g	35		9	09		в 76
DSZ	83			81		
GIO	22		RCL 5	3405		D in Hg.
9	09		+	61		E compute
DSP	21			81		0
•	83			21		1
2	00			83		2
7	02			01		3
4	0/		RTN	24		4
[]	01					6
•	83			1		7
2	02					8
9	09					g used
5	05					
STO 4	3304					FLAGS
2	02					1
7	07					
3				+		2
	83					
	1 01		J L	1		

Program Title	GEODIMETER MD. 700 REDUCTION	S			
Contributor's Name Address	Charles C. Campbell, LS 9841 East 21st Street				
City	Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. Given atmos. correction in ppm, F2, F3, and zenith angle, computes horizontal distance and vertical distance from plane through horizontal axis of 700, to reflector. Also computes reflector elevation, corrected for curvature and refraction, given H1.

Slope distance = S = (1+Ax10⁻⁶) (na+F2) Horizontal Distance = HD = S sinZ Vertical Distance = V = S cos Z Reflector Elevation = HI + V + (c+r)

Where: A = Atmospheric correction in ppm n = Integer F3-F2(1000)/a Note: when $F3 \le F2$ add 16.404 to F3 a = 500 meters in feet = 1640.41667 F2 = Frequency 2 F3 = Frequency 3 HI = Instrument Height Z = Zenith Angle c+r = 2.059×10^{-8} HD² = standard correction for curvature and refraction

Operating Limits and Warnings Elevation determined by trigonometric leveling on lines over 1000 feet in length should be considered approximate, due to uncertainty caused by refraction. Reciprocal zenith angles at both ends of the line would improve accuracy.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
Program Description II

Sample Problem(s)	Sam	ple	Prob	lem(s)
-------------------	-----	-----	------	--------

No. 1 Given:	HI=1000.00 A = 21 F2 = 477.858 F3 = 481.594 Z = 91°45'23"
No. 2 Given:	HI = 1000.00 A = 17 F2 = 1390.364 F3 = 1386.879 Z = 89°06'12"

Solution(s)	No. 1	No. 2
Horizontal Distance	= 3757.004	12871.923
Vertical Distance	= -115.206	201.459
Reflector Elevation	= 885.084	1204.871

Reference(s) Geodimeter Model 700 Operating Manual. Bouchard, Harry and Moffitt, Francis H., <u>SURVEYING</u>, fifth edition, pages 32, 33, 34, International Textbook Company, Scranton, Pennsylvania, 1965.

User Instructions

	GEODIMETER 700 REDUCTIONS			
	ATMOS. F2 F3 ZEN A Compute 3			3
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional)		RTN R/S	700
3	(Optional) Input HI	HI	R/S	
4	Input atmospheric correction (ppm)	А	A	
5	Input F2	F2	В	
6	Input F3	F3	c	
7	Input Zenith Angle	Z	D	
8	Compute Horizontal Distance		E	HD
9	Compute Vertical Distance (Optional)		R/S	V
10	Compute Reflector Elevation (Optional)		R/S	ELEV.*
	Return to step 4 or 2 for next reduction.			
	* corrected for curvature and refraction.			
	•			

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KËY ENTRY	CODE SHOWN	COMMENTS	KEY ENTRY	CODE SHOWN	COMMENTS	REGISTERS
7	07		LBL	23		R ₁ Atmos.
0	00		Ε	15		correction
0	00		RCL 5	3405		factor
R∕S	84		0	00		R ₂ F2
STO 7	3307		RCL 3	3403		
R/S	84		RCL 2	3402		
ĹBL	23		-	51		R ₃ _F3
A	11		gx ≤ y	3522		
STO 8	3308		+	61		
EEX	43		RCL 6	3406		R4 <u>500</u>
6	06		+	61		meters
÷	81		EEX	43		in feet
1	01		3	03		$R_5 _ Z$
+	61		X	71		∠ <u>en.</u> ∆
SIO	3301		RCL 4	3404	a	
RCL 8	3408			81		R ₆₅
RTN	24		f	31		meters
LBL	23			83	n	in_feet
B	12		RCL 4	3404		
SIO 2	3302		X	//	na	
DSP			RCL 2	3402		D used
•	83			61		R ₈ useu
	03		KCL I	3401	c	
	24		x f_1	22	3	
	12			01		^{ng}
	2202			2507		
3103	03		gx- y	3507		
0	00		ARS	06		A (ppm)
3	03		RTN	24	НО	PF2
7	07		ax 2 v	3507		C F3
4	41		R/S	84	V	
2	02		av = v	3507	· · · · · · · · · · · · · · · · · · ·	E compute
4	04		f-1	32		
0	00		1 VX	09		
÷	81		2	02		
STO 6	3306		•	83		3
EEX	43		0	00		4
2	02		5	05		5
x	71		9	09		6
STO 4	3304		EEX	43		7
gł	3508		CHS	42		8
RTN	24		8	08		9
LBL	23		x	71		
D	14		+	61		FLAGS
f-1	32		RCL 7	3407		1
D.MS	03		+ 	61		
510 5	3305		K/S	84	Llev.	2
gLSTx_	3500			+		41
	24	L]	1	I	J L

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Description I

Program Title GEODIMETER (REG.) 76 REDUCTIONS						
Contributor's Name	Charles C. Campbell, LS					
Address	9841 East 21st Street					
City	Indianapolis	State	Indiana	Zip Code	46229	

Program Description, Equations, Variables, etc. Computes horiz. distance & vert. distance from plane through horiz. axis of theodolite to reflector given atmospheric corrected slope dist. or uncorrected slope dist. and zenith angle. Temperature and pressure are given with uncorrected slope dist., eliminating the determination of the ppm correction factor and setting the factor in the Geodimeter. Optionally computes elevation of the reflector, corrected for curvature and refraction, given HI elevation. A zero (0) entered for pressure, tells the HP 65 that the slope distance is corrected for atmospheric conditions.

Corrected Slope Dist. $S = (1+A10^{-6}) M$ Horizontal Distance $D = S \sin Z$ Vertical Distance $V = S \sin Z$ Reflector Elevation = HI+V+ (c+r)Where: $A = 281 - \frac{2741.295(\text{pressure inches Hg.})}{OK} = atmospheric correct. in ppm <math>OK = 5/9(F-32) + 273.15 = degree Kelvin$ $F = ^{O}Fahrenheit$ M = uncorrected Measured distance(slope) Z = Zenith Angle HI = Instrument Height $c+r = 2.059 \times 10^{-8} D^2 = standard correction for curv. and refraction$

Operating Limits and Warnings

Elevation determined by trigonometric leveling on lines over 1000 feet in length should be considered approximate, due to uncertainty caused by refraction. Reciprocal zenith angles at both ends of the line would improve accuracy.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s)		
No. 1 Given:	HI = 1000.00' oF = 78 Hg = 30.55 Z = 92°11'14'' M = 7289.14'	
No. 2 Given:	HI = 1000.00' Z = 88° 44'17" S = 9478.92'	
	Note: Inter pressur	re as zero (0).
Solution(s)	No. 1	No. 2
Horizontal distance	7283.83'	9476.62'
Vertical distance	-278.19'	208.76'
Reflector elevation	722.90'	1210.61'
Bouchard, Harry and Moffitt, Fra International Textbook Company	ancis H., <u>SURVEYING</u> , Scranton, Pennsylva	hidal. <u>-</u> , fifth edition, pages 32, 33, 34, nia, 1965.

User Instructions

	GEODIMETER 76 REDUCTIONS			
	°F in Hg. ZEN ∆ MEAS COMPLTE			5
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	(Optional)		RTN R/S	76
3	(Optional) Input HI	НІ	R/S	
4	Input ^O F (skip if meas. is atmos. corr.)	°F	Α	
5	Input in. Hg. (0 if meas. is atmos. corr.)	in. Hg.	В	
6	Input zenith angle (DDD.MMSS)	Z	С	
7	Input measured slope distance	S or M	D	
8	Compute horizontal distance		E	D
9	Compute vertical distance (optional)		R/S	V
10	Compute reflector elevation (optional)		R/S	Elev. *
	Return to step 4, 5, 6, 7, or 2.			
	(Data entered at steps 3, 4, 5, 6, and 7 remains			
	unchanged after computation)			
	* corrected for curvature and refraction.			
	<u></u>			
				1

Program Form

SWITCH TO W/PRGM. PRESS I PRGM TO CLEAR MEMORY.

KEY ENTRY		COMMENTS	KEY		COMMENTS	REGISTERS
7	07			24		B1 °K
6				24		
R/S	84	flag		15	compute	
STO 5	3305	HI	2	02		R ₂
R/C	81		8	02		2741.295
	23		1	01		X in, Ha,
Δ	11		RCI 2	3402		R ₃ Z
	3308			01		J
3	03		ax > v	3524		
2	02		GIO	22		R ₄
-	51		0	00	skip atmos, corr.	M or S
5	05		CL x	44		
x	71		RCL 1	3401	°K	R₅HI
9	09		÷	81		
÷	81		_	51	A (ppm)	
2	02		EEX	43		R ₆
7	07		6	06		
3	03		÷	81		
•	83		1	01		R ₇
1	01		<u>+</u>	61	1+A10-6	
5	05		LBL	23		
+	61		0	00		R ₈ <u>used</u>
STO 1	3301	٥K	RCL 4	3404		
RCL 8	3408		x	71		
RTN	24	°K	RCL 3	3403		R ₉
LBL	23		gx ² y	3507		
B	12		f-1	32		
STO 8	3308		_ R → P	01		
2	02		gx⊇y	3507		A <u>F</u>
/	0/		g A DC	35		Bi <u>n</u> _Hg
4	04			06	_	
				24	D	D M or S
· · · · · · · · · · · · · · · · · · ·	83			350/		
2			k /S	84	V	Oused
5	09			1 350/		1
	71					2
X STO 2	3302			07		3
	3408			83		4
DTN	21	in Ha		00) 5
	23		5	05		
C	13			00		1
f_1	32		FFY	42		1 0
-D MS	03		CHS	42] "
STO 3	3303		8	08		FLAGS
aLSTx	3500		X	71] 1 _
RTN	24		+	61		
IBI	23		RCL 5	3405		2
D	14		+	61		
STO 4	3304		_lr∕s	84	elevation	

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.

Program Description I

Program Title	TIME TRIALS				
Contributor's Name Address City	Charles C. Campbell, LS 9841 East 21st Street Indianapolis	State	Indiana	Zip Code	46229

Program Description, Equations, Variables, etc. This program computes single lap speed from time in minutes and seconds, and (optional) computes average speed, total elaspe time, and/or number of laps run, from the accumulation of the single lap times entered. The track length is entered as a constant. Additionally the program computes either time, speed, or number of laps, given the other two.

$$S = \frac{LM}{T}$$

Where: S = Speed in MPH (Miles Per Hour)

T = Time in minutes

M = Track length in miles x 60

L = Laps

Note: Time is entered and displayed as MM.SSSS where MM is minutes and SSSS is seconds and decimal parts thereof.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER ISPLS, INC. NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER ISPLS, INC. NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL. Sample Problem(s) (1). A.J. qualified and won the pole position at the "INDY 500" (2.5 mile track) with lap times of 46.91, 46.72, 46.15, and 47.23 seconds. What was his speed for each lap, average speed after each lap, and his total elaspe time? STEPS:
2.5 A, EE, .4691 B, .4672 B, EC, .4615 B, EC, .4723 B, EB, EC.
(2). Ole Rube was exactly 3/4 through the last lap (3.75 laps completed) and his elaspe time was 2^m 55.31^s, when his engine "blew". He said he would have beated A. J. out of the pole if his xxxxx car would have held together. Would he? assuming he maintained his average speed for the last 1/4 lap. STEPS:
EE, 2.5531 B, 3.75 D, EC.

Solution(s)

(1)

time^s lap speed average speed 46.91 191.857 191.857 46.72 192.246 192.637 46.15 195.016 193.161 47.23 190.557 192.503 Total time 3^m 07.01^s

(2) Yes, at 192.516mph. Tough luck,Rube.

Reference(s)

User Instructions

	TIME TRIALS			
	TRACK TIME MPH LAPS COMPUTE TO			5
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input track length in miles (Note 1)	length		
	FOR QUALIFICATIONS			
3	Clear		EE	
4	Input time (MM.SSSS)	Т	В	S
5	(Optional) display total elaspe tíme		E B	Т
6	(Optional) display average speed		E C	S
7	(Optional) display no. of laps		E D	L
8	return to step 4 for next lap			
9	or return to step 3 for next qualification.			
	COMPUTE TIME, SPEED, OR NO. LAPS			
10	Clear		EE	
11	Input two of the following:			
	Time (MM.SSSS) (Note 2)	Т	В	disregard
	Speed (MPH)	S	C	S
	No. Laps	L		L
12	Compute the unknown:			
	Time (MM.SSSS)		EB	Т
	or Speed (MPH)		EC	S
	or Laps		E D	L
	Return to step 10 or step 3			
	Note 1: Track length may be changed at any time.			
	Note 2: Time must be entered first, if known.			
		-		

Program Form

KEY ENTRY KEY ENTRY CODE CODE COMMENTS COMMENTS REGISTERS SHOWN SHOWN 6 06 2 02 $R_1 M$ 0 00 STO 8 3308 gx<mark>℃</mark> y 3507 13 71 R₂ L 3401 RCL 1 х STO 1 3301 Μ RCL 5 3405 gLSTx 3500 ÷ 81 track length RTN 24 $R_3 T$ RTN 24 S single lap 23 LBL LBL 23 B 12 Ċ 13 R₄ S 35 35 g a ĎSZ 83 DSZ STO 4 83 GTO 22 3304 R_5 used 01 24 RTN RCL 1 3401 3401 RCL 1 RCL 2 3402 RCL 2 RCL 3 3402 RCL 4 3404 3403 R₆ ÷ 81 ÷ 81 71 х 71 x 3304 S for single lap R₇___ STO 4 STO 3 3303 <u>21</u> 83 31 DSP INT 83 • 3500 3 aLSTx 03 R₈DSZ 32 f-1 RTN 24 <u>83</u> 83 23 INT LBL 14 R₉___ D 06 6 g 35 71 DSZ х 83 STO 2 3302 61 LABELS DSP 21 RTN 24 ATk. Len. 83 <u>3404</u> 3403 RCL 4 BTime 4 04 RCL 3 CMPH RČL I T in MM.SSSS RTN 24 3401 D Laps 23 LBL 81 ECom/C101 1 71 X STO 2 0 _ 1 used 3302 f 31 INT 83 DSP 21 2 _ 83 gLSTx 3500 • 3 ____ f-1 32 3 03 4 _____ RTN 24 INT <u>83</u> 83 5 _____ LBL 23 6 ____ 6 06 E 15 7 ____ 81 1 01 8 ----+ 61 g 35 9 _____ STO 5 3305 T single lap DSZ 83 STO 33 STO 8 3308 FLAGS 24 44 61 RTN compute clear + 1____ CLx 3 03 01 STO 2 3302 2 _ STO 33 STO 3 3303 + 61 RTN 24

SWITCH TO W/PRGM. PRESS T PRGM TO CLEAR MEMORY.

TO RECORD PROGRAM INSERT MAGNETIC CARD WITH SWITCH SET AT W/PRGM.