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INTRODUCTION

Machine Design Pac I is a collection of programs to aid the engineer
in the calculation of physical laws and machine element properties.
Each program includes a general description, formulas used in the
program solution, general user instructions, example problems with
keystroke solutions, and a program listing. By using the keyboard
functions of the HP-65 in combination with Machine Design Pac I,
complex problems can be solved in an easy, consistent manner. We
hope you find Machine Design Pac I a useful tool, and we welcome
your comments and suggestions.

Machine Design Pac I has benefitted immeasurably from the com-
ments and suggestions of practicing mechanical engineers. We espe-
cially wish to thank Mr. Dean Lampman for his assistance in re-
viewing this text and for contributing his engineering expertise.
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4  Using Machine Design Pac 1

USING MACHINE DESIGN PAC 1

PRERECORDED MAGNETIC CARDS

The prerecorded magnetic cards supplied with Machine Design Pac I
incorporate a shorthand set of operating instructions. Having
familiarized yourself with a particular program, these notations will
help in running the program without referencing the manual. A
typical card inserted in the window slot of an HP-65 is shown below:

E
OFF Il ON W/PRGM I RUN

CIRCLE-CIRCLE INTERSECTION MD1-33A
X14Y14 Xo4Yr4 *Xp1. +*Xp2.

Ry R, Yp1 Yp2

Above the [[§ key are the input variables X, , y;, and R, separated by
1, which is the symbol for[ENTER#]. This means key in x;, press

[ENTER#); key in y, , press[ENTER#); key in R, , press §.

Similarly, the variables x,, y,, and R, are input with the
and [ keys.

In other programs, a variable by itself is input by keying in the value
and pressing the corresponding program control key.

The > symbol pointing to variables above the [§ key means calculate.
To calculate Xy, pressf§. To calculate y;, press [y In all cases
throughout this pac where more than one output is found associated
with one program control key, press (Y for each subsequent output
after the first. In some cases, successive outputs as above rely on
previous outputs left undisturbed in the display. An * in the INPUT
DATA/UNITS column of the User Instructions page gives an indi-
cation in such instances. This is discussed further on page 6.

Another symbol used in the pac is an arrow pointing down to a

v
variable (F,). This indicates the variable may be either input or
calculated, following the user instructions. This allows for an
interchangeable solution between several variables.
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FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form, which accompanies each
program, is your guide to operating the programs in this pac.

The form is composed of five labeled columns. Reading from left
to right, the first column, labeled STEP, gives the instruction step
number.

The INSTRUCTIONS column gives instructions and comments
concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and
the units of data if applicable. Data input keys consist of [0] thru[9]
and the decimal point (the numeric keys), [EEX] (enter exponent),
and [CHS] (change sign).

The KEYS column specifies the function and program control
keys to be used to operate on the input data.

The OUTPUT DATA/UNITS column describes the values which
appear in the display as the various data are input and operated on
by the function and program control keys.

For example, look at the User Instructions associated with the
magnetic card on page 4:

STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
1 Enter program
2 Input the center coordinates Xy t Xy
and radius of circle one. Y1 t Y1
R, A X3
3 Input the center coordinates Xa t X2
and radius of circle two Y2 t Y2
R, B 0+a
4 Compute the coordinates of the C Xpy
points of intersection * R/S Yp1
D Xp2
* R/S Yp2

5 For a new case, go to step 2.

STEP 1: “Enter program” is the instruction to enter the pre-
recorded magnetic card into the HP-65 (See Entering a Program on

page 7).
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STEP 2: This step specifies input of variables necessary for program
operation. The first three variables are automatically stored when
the [ key is pressed.

STEP 3: This step indicates input of three more variables using the

B key.

STEP 4: Step 4 indicates calculation of the points of intersection of
two circles with the [ and [J keys. The y coordinate of each pair
of points is obtained by pressing . The *s in the INPUT
DATA/UNITS column indicate the display should be left undisturbed
between calculations of x and y coordinates for proper operation. In
this case, the x coordinate is necessary in the calculation of the y
coordinate.

STEP 5: This step gives directions for starting the calculations with
new input data.
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ENTERING A PROGRAM

From the card case supplied with this application pac, select a
program card.

Set W/PRGM-RUN switch to RUN.

Turn the calculator ON. You should see 0.00.

Gently insert the card (printed side up) in the right, lower slot as
shown. When the card is part way in, the motor engages it and passes
it out the left side of the calculator. Sometimes the motor engages
but does not pull the card in. If this happens, push the card a little
farther into the machine. Do not impede or force the card; let it
move freely. (The display will flash if the card reads improperly. In
this case, press [CLX]and reinsert the card.)

When the motor stops, remove the card from the left side of the
calculator and insert it in the upper “window slot” on the right side
of the calculator.

The program is now stored in the calculator. It remains stored
until another program is entered or the calculator is turned off.
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CONSTANT ACCELERATION-TIME

v
vo(wg) t

®  Voa) "

CONSTANT ACCELERATION-TIME ~ MD1-O1A 3
§ xo 1 @ 2
X

This program calculates an interchangeable solution among the vari-
ables displacement, acceleration, initial velocity, and time, for an
object that undergoes constant acceleration. The motion may be
either circular or linear. Final velocity as a function of initial veloc-

ity, acceleration, and displacement may also be computed.

Equations:

Linear

. 1
Displacement x = vot+ > at?

Angular

0= wot+iat2
2

- . 1
Initial velocity vo = — - — at wWy=—-—uat
t 2 t
. X =-Vot 0 - wot
Acceleration a= a=
1 1,
—t —t
2 2
. Vvo? +2ax - vo Vwe? +2a6 - wy
Time t= =
a «
Final velocity v=Vvy? + 2ax w=Vwe? +2a8

Remarks:

Any consistent set of units may be used.

Displacement, acceleration, and velocity should be considered as
signed (vector) quantities. For example, if initial velocity and accel-
eration are in opposite directions, one should be positive and the

other negative.

All equations assume that the initial displacement, xo or 84, equals

Zero.
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter program

2 Input three of the following:

Displacement x (0) A x (0)
Initial velocity Vo (wo) B Vo (wo)
Time t C t
Acceleration a(a) D a(a)
3 Compute the remaining variable:
Displacement A R/S x (0)
Initial velocity B R/S vo (wo)
Time C R/S t
Acceleration D R/S a(a)
4 To change any inputs, go to
step 2 and input the changed
variables.
5 Compute final velocity assuming
X, Vo, and a have been input or
calculated. E v

Example 1:

An automobile accelerates for 4 seconds from a speed of 35 mph
and covers a distance of 264 feet. Assuming constant acceleration,
what is the acceleration in ft/sec?? (7.33 ft/sec?) If the acceleration
continues to be constant, what distance is covered in the next sec-
ond? (84.33 ft)

Keystrokes:

264 [[Y 35 [ENTER+] 5280 [x] 3600 (=] B} 4

[D]r/s| > 7.33

5 —> 348.33

264 [=] > 84.33
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Example 2:

A flywheel turns 100 revolutions in 2.5 seconds. If the flywheel is
under constant acceleration of 200 RPM?, compute the initial veloc-
ity (2395.83 RPM), the velocity after S00 revolutions (2437.22
RPM), and the velocity after 1 minute has elapsed (2595.83 RPM).

Keystrokes:
100 Y 2.5 [EnTeR+] 60 (] [ 2001 2 —>2395.83
soold 3 —2437.22

To solve the final portion, input t and first solve for 6, since v is a
function of (0, wy, @).

W clafrs]e] 259583




Notes 1
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CONSTANT ACCELERATION-VELOCITY

é CONSTANT ACCELERATION- MD1-02A §J

x{e) vc'('m)0 V('(D) 3&) f(x;;,a) <

This program calculates an interchangeable solution among the vari-
ables displacement, acceleration, initial velocity, and final velocity,
for an object undergoing constant acceleration. The motion may be
either circular or linear.

Equations:

Linear Angular
Final velocity v=Vv,? + 2ax w=Vwy? +2af
Initial velocity vy =Vv? - 2ax wo =Vw? - 200

. V2 —vy? W? = wo?
Displacement x=-—u— 0= ———
2a 20
. Vi —vo? w? - wp?
Acceleration a=-——- Q= ———
2x 20

) Vvo? +2ax - v, Vwe? +2a8 - wy
Time t= t=
a a

The relation v = vy + at (w = wg + at) is not handled by this
program. It may sometimes be necessary to eliminate t from the
input data using the above relation.

Remarks:

Any consistent set of units may be used.

Displacement, acceleration, and velocity should be considered as
signed (vector) quantities. For example, if initial velocity and accel-
eration are in opposite directions, one should be positive and the
other negative.

All equations assume that the initial displacement, xo or 6, equals
zero.
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1 Enter program
2 Input three of the following:
Displacement x (0) A x (6)
Initial velocity vo (wo) B Vo (wo)
Final velocity v (w) C v(w)
Acceleration a(a) D a(a)
3 Compute the remaining
variables:
Displacement A R/S x (0)
Initial velocity B R/S vo (wp)
Final velocity [ R/S v (w)
Acceleration D R/S a(a)
4 To change any inputs, go to
step 2 and input the changed
variables.
5 Compute time assuming x, Vo,
and a have been input or
calculated. E t

Example:

An automobile engine idling at 1000 RPM is accelerated to 5000
RPM in 1.6 seconds. Assuming constant angular acceleration, how
many revolutions does the engine make in coming up to speed? (80
revs.) How much additional time would elapse to increase the speed
to 6000 RPM? (0.4 sec.)

Keystrokes:

First, find the acceleration a = (w - wq)/t where t = 1.6/60 min.
(The velocities are also stored during the calculations of «)

5000 [ 1000 B (=] 1.6 [ENTER4]60 (=] [+] B} — 150000.00
(A ] > 80.00

To solve the final portion, input w and first solve for 8, since tisa
function of (6, wy, ).

vl c | A f r/s | E [ET) > 2.00

1.6 [] > 0.40
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KINETIC ENERGY

( KINETIC ENERGY MD1-03A ;j
v v v m
E S| ENG K.E. w(m) v :

This program calculates an interchangeable solution among the vari-
ables weight (or mass), velocity, and kinetic energy, for an object
moving at constant velocity. The program operates in either English
or metric units. For metric units, any consistent set of units may be
used; the quantity mass must be used. For English units, the energy
must be in foot-pounds, the velocity in feet per second, and the
quantity weight in pounds.

K.E. = Kinetic energy
W = Weight (Ib)
m = Mass (kg, g)
v = Velocity
g = Acceleration due to gravity = 32.17398 ft/sec?

Equations:
English Metric
KE. = 1w v2 KE.= 1o
2 g 2

1 ftlb =198 x 10® hp
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter program

2 | Choose system of units:

Metric (S1) A 2.00

or

English B 64.35
3 Input two of the following

variables:

Kinetic energy K.E. [ K.E.

Weight (mass) W(m) D W(m)

Velocity v E v

4 Compute the remaining
variables:
Kinetic energy C R/S K.E.

Optional: convert K.E. (ft-Ib)

to K.E. (hp) R/S K.E. (hp)
Weight (mass) D R/S W(m)
Velocity E R/S v

5 To change any input variable,
go to step 3.

6 For a new case, go to step 2.

Example 1:

The slider of a slider-crank mechanism is used to punch holes in a
slab of metal. It is found that the work required to punch a hole is
775 ftb. If the slider weighs 5 1b. 4 oz., how fast must it be moving
when it strikes the metal? (97.46 ft/sec) What is the required work
in horsepower? (3.91 x 10™* hp)

Keystrokes:

B} 775 [ 5 [ENTER#] 4 [ENTER4]16 (5] [#]
D] E]Rs| > 97.46
(ospd c [ r/is fris| > 391 -04

Example 2:

An object weighing 4.8 kg is moving with constant velocity of 3.5
m/sec. Find its kinetic energy. (29.40 joules)

Keystrokes:

osp[ome] » ERd o ER £ [ c ] s

29.40
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FREE VIBRATIONS
FREE VIBRATIONS SET-UP MD1-04A1 S
B xoto PN scem o 2

(1)UNDER $2)CRIT (3)OVER
=

FREE VIBRATIONS SOLUTION MD1-04A2 §
=]
tax,%,X > X,X,X tex, »

This program provides an exact solution to the differential equation
for a damped oscillator vibrating freely: mX + cx + kx = 0.

The program employs two cards for a full solution. With the first
card, the user inputs the mass m, spring constant k, and damping
constant c; the value of ¢ for critical damping, c.,js, can be display-
ed. The other inputs are the initial conditions, i.e., the displacement
and velocity at time zero, Xo and Xq. The first card determines if the
system is underdamped, critically damped, or overdamped. This is
decided on the basis of a comparison between ¢ and c;; as follows:

If ¢ < c¢rit, the system is underdamped.
If ¢ = crijt, the system is critically damped.
If ¢ > ccrit, the system is overdamped.
The second card allows the user to input any time t and solve for the

displacement and velocity of the mass at that time. The type of
damping must be specified.

Equations:
Cerit = 2 Vkm
we X _ (<)
m 2m
X = —(cX + kx) /m
Underdamping (c® - 4km <0)

C

-t
x(t)=Re 2™  cos (wt - 8)
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¢ c
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20+ = “Im b C -~ 2m !
X(t) = - Rwe sin (wt—6)—%Re cos (wt -98)

where:

R cos d =xg

Critical damping (¢ = Cerit, OF ¢ =4km)

C

x(t) = (Ag +Bgt)e 2™

C

. c _
X(t) = [BCI’ - E (ACI' + Bcrt)] e 2m

where:

Acr =X

Ber =Xo + ﬁ Xo
Overdamping (c? - 4km >0)
x(t) = Agye"it + Byt
X(t) = Agyrie™ b+ Boyr, et
where:

2
rl,m:___zi\/ o\ _k
2m 2m m

AOV =Xo - Bov

t
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e

X

Remarks:

For overdamping, w has no meaning and is, in fact, an imaginary
number.

For ¢ = c¢rit, w = 0.

This program sets the angular mode of the calculator to radians.
Erroneous answers will occur if [ is mistakenly pressed on MDI1-
4A2 when the system is overdamped.

Reference: Elementary Differential Equations, W.E. Boyce and R.C.
DiPrima, John Wiley and Sons, 1969.



STEP

6a

6b

INSTRUCTIONS DATAUNITS KEYS
Enter MD 1-04A1
Input the initial position Xo t
and velocity Xo A
Input Mass m t
Damping constant c t
Spring constant and k B

Determine the damping of the
system
1 implies ¢ < cgit, system is
underdamped
2 imples ¢ = c¢yit, system is
critically damped

3 imples ¢ > cgyit, system is

overdamped
Optional: compute cgi¢ Cc
compute w D

Enter MD 1-04A2

For underdamped system, input

time and t A
calculate position, velocity
and * R/S
acceleration * R/S

For critically damped system,

input time and t B
calculate position, velocity
and * R/S
acceleration * R/S

For overdamped system, input

time and t [
calculate position, velocity . R/S
and . R/S
acceleration

Repeat step 6 for all desired
values of t.

For a new case, go to step 1.

MD1-04A 19

OUTPUT
DATA/UNITS

Xo

Xo

1,2,0r3

Cerit

x(t)

x(t)

X (1)

x(t)

x(t)

X (1)

x(t)
x(t)

X (t)
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Example:

A mass of 20 g stretches a spiral spring 10 cm. The mass is pulled
down an additional 4 cm, held, and then released. Find the mass’
displacement and velocity at 0.1 second intervals up to 1 second for
the cases in which (a) ¢ = 50 dyne-sec/cm (b) ¢ = ccrj¢ and (c)
¢ =400 dyne-sec/cm.

2
k:i:ﬂ: 20g (980 cm/s*) _ 20 x 980 dyne/cm
X X 10 cm 10

Solution (a) ¢ =50

ts X cm X cm/s X cm/s?
0 4.000 0.000 -392.000
1 2.334 -29.296 -155.494
2 -0.827 -28.715 152.880
3 -2.629 -5.330 270.947
4 -1.932 17.139 146.511
5 0.153 20.950 -67.408
.6 1.655 7.187 -180.174
T 1.503 -9.272 -124.104
.8 0.184 -14.685 18.677
9 -0.990 -7.173 114.959
1.0 -1.114 4.406 98.133

Keystrokes:

Enter MD1-4A1

4 o —> 4.00

20 (ENTER4] 50 [ENTER4]20 [ENTER#]980

EJUE] & | — 1.00

This indicates the system is underdamped.

Calculate ccpj:

¢ |ose |Ra; > 395.9797974
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Enter MD1-4A2
BR300 -+ 4.000
R/S » 0.000
R/S » -392.000
18 > 2.334
R/S » -29.296
R/S —» -155.494
INON A | » -1.114
R/S » 4.406
R/S > 98,133
x(t)
4
2
(o] t
-2
-4
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Solution (b) ¢ = c¢rit

ts X cm X cm/s X cm/s?
0 4.000 0.000 -392.000
1 2.958 -14.567 -1.464
2 1.646 -10.826 53.041
3 0.815 -6.034 39.621
4 0.378 -2.990 22.122
5 0.169 -1.389 10.970
.6 0.073 -0.619 5.098
i 0.031 -0.268 2.274
8 0.013 -0.114 0.986
9 0.005 -0.048 0419
1.0 0.002 -0.020 0.175
Keystrokes:
Enter MD14A1
4 [ENTER4]0 » 4.000
20 [ENTER4]395.9797974 [ENTER#] 20 ENTER#]
980 [x] 10 (5] & - 2.000
This indicates the system is critically damped.
Enter MD1-4A2
o3 » 4.000
R/S » 0.000
R/S > -392.000
18 —»> 2958
R/S > —14.567
R/S » -1.464

and so on.
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x(t)

-2

1 2 3

Solution (c) ¢ =400
ts X cm X cm/s X cm/s?
0 4.000 0.000 -392.000
.1 2.963 -14.469 -0.963
2 1.660 -10.752 52.336
3 0.833 -6.032 39.022
4 0.394 -3.028 21916
5 0.180 -1.433 11.005
.6 0.081 -0.656 5.212
7 0.035 -0.293 2.384
.8 0.015 -0.129 1.066
9 0.007 -0.056 0.470
1.0 0.003 -0.024 0.205

Keystrokes:

Enter MD1-4A1l

4 o - 4.000

20 [ENTER4] 400 [ENTER#] 20 [ENTER+] 980 [x]
oFE A » 3.000
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The system is overdamped.

(0] C | —» 4.000
R/S - (0.000
R/S » _392.000
18 » 2963
R/S > -14.469
R/S » -0.963
and so on.
x(t)
4
2
(4] t
-2
-4
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VIBRATION FORCED BY Fg COS ot

J

This program finds the steady-state solution for an object under-
going damped forced oscillations from a periodic external force of
the form Fy cos wt. The differential equation to be solved is

1S004

k +AMP,
nyg; wAF, > tx,%,%

VIBRATION FORCED BY F,COSut  MD1-O5A
g

mX + cx + kx = Fy cos wt
The program computes the following variables: the resonant fre-
quency, wres, for which the amplitude of the resultant oscillation is
greatest (i.e., the frequency which maximizes Fy/A); the amplitude
Fo/A; the phase of the oscillations, §; and the displacement, velo-
city and acceleration for any time t (steady-state only).

Equations:

The steady-state solution (t = <) to this equation is

Fo
x(t) = — cos (wt -9)

Fo
x(t) = ~w N sin (wt - 8)

where:

A=Vm? (wo? - w?)* +¢? w?

Wy = k. natural frequency of undamped system
v m

m (wo? - w?)

&=
cos A

CWw
ind=—"
sSin A
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Wres Is computed from

]

Focos wt I X

Remarks:

Flashing zeroes in the calculation for w;e¢ indicate that

2
(002 —i (—E—> <O0.
2 m

Simply stop the flashing by pressing any key, and continue with the
rest of the problem.

The above solution does not take into account the initial conditions
(x(0), x(0)) of the system. This program assumes that initial con-
ditions have already become negligible, and that the origin of time
(t = 0) is taken to be a time at which the driving force is at its
maximum amplitude F,. If a solution including initial conditions is
necessary, program MD1-6A may be used.

This program sets the angular mode of the calculator to radians.
Calculation of acceleration under [§J resets the angular mode to
degrees.

Reference: Elementary Differential Equations, W.E. Boyce and R.C.
DiPrima, John Wiley and Sons, 1969.
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STEP

MD1-05A

INSTRUCTIONS
Enter program
Input mass, damping constant,
and spring constant, and
compute the
Resonant frequency
Input the forcing frequency and
forcing amplitude
Compute the amplitude of the
resultant oscillation
Optional: display the phase of
oscillation
Input time and compute the
position,
velocity and
acceleration (steady-state

only)
Repeat step 5 for all desired

values of t.
To change w or Fy, go to step 3
To change m, c, or k, go to

step 2.

Example:

INPUT
DATA/UNITS

Fo

KEYS

R/S

R/S

R/S

OUTPUT
DATA/UNITS

Fo/A

x(t)

x(t)

X (t)

A 400-Ib. weight is suspended from a spring and stretches it a dis-
tance of 2 inches. The damping constant of the system is 0.5 1b-sec/
ft. If the weight is driven by a periodic external force whose greatest
value is 5 pounds, find (a) the resonant frequency of the system
(13.90 rad/s) and (b) the amplitude and phase shift of the oscillation
that will result if the mass is driven at the resonant frequency.
(0.72 ft = 8.63 in.; 1.57 radians = m/2). Calculate the position,
velocity, and acceleration for t = 6.0 sec. (0.71 ft, -1.46 ft/sec,
-137.50 ft/sec?).
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Keystrokes:

F _ 4001, (o F_ 4001 12in

m=

g 322 ft/sec? X 2in 1 ft

400 32.2 [£].5[ENTER#] 400 [ENTER#]
AEVAEY A | » 13.90

(To drive the system at the resonant frequency, leave 13.90 in the
display and key in the driving force of 5 pounds).

sl > (.72
12 [x] » 8.63
R/S > 1.57
6001 » (.71
R/S > -1.46

R/S » _137.50
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FORCED OSCILLATOR WITH
ARBITRARY FUNCTION

( wilPRSER OSSRy MD1-06A

>tx, kR1 cR3 XxoR6 ->
%X mR2 %RS pr7 ‘R8O

411050
———/

This program determines the displacement x, velocity X, and accel-
eration X of a damped oscillating mass m that is being driven by
some forcing function f. A numerical solution is computed for the
nonhomogeneous differential equation

mX + cx + kx = f(t)

where
¢ = Damping constant
k = Spring constant

f(t) = Driving force as a function of time.

There are 23 steps in memory available for f(t). The argument t is in
the X-register when f(t) is evaluated. It is also available in Rg. The
stack and Ry are available for scratch registers. The solution is found
using an improved Euler method:

Let <MW=y
@ =W =g

f(t) - cx® - kx@
Then @) =%= ©

m

Xn + 1(l)=xn(l)+hxn N 1/2(2)

Xn + 1(2) =Xn(2) + % [f <t + %h) = CXp + 1/2(2) —an+ 1/z(l)]
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h
Xn + ‘/2(2) = xn(2) + % [f(t) - an(2) - kxn(l)]

h
xg 1y =x, D 4 E %, @

where h = time increment for solutions.
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STEP INSTRUCTIONS oATEONITS KEYS 4

1 Enter program

2 Key the function into memory: GTO E
Switch to W/PRGM mode 156
Key in the function f(t)

Press RTN
Switch to RUN mode

The argument of the function

is in x when the routine is

called.

3 | Store Spring constant k STO 1 k
Mass m STO 2 m
Damping constant c STO 3 c
Initial position Xo STO 5 Xo
Initial velocity Xo STO 6 Xo
Time increment h STO 7 h
Initial time t STO 8 t

4  Compute Time A t
Position R/S x(t)
Velocity R/S x(t)
Acceleration R/S X (t)

5 Repeat step 4 for next time

increment.
6 Optional: input t and compute
f(t) t E f(t)

7 To change any parameters of the
solution, go to step 3. The initial
conditions xo and xo must be
re-stored to start a new problem.

8 For a new case, go to step 2.

Example 1:

A mass is being driven by a forcing function of the form

f(t)=t> + 7t - 14t + 40
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Constants for the system are m = 5, ¢ = 2, and k = 12. The mass is
held at an initial displacement of 20 at time zero. Determine the
position, velocity, and acceleration of the mass at 0.05 second inter-
vals for the first % sec. of the object’s motion.

Solution:
t sec 0.05 0.10 0.15 0.20 0.25

X 19.95 19.80 19.56 19.22 18.80
be -1.98 -3.92 -5.81 -7.62 -9.36
X -39.22 -38.22 -37.00 -35.58 -33.97

Keystrokes:

o

Switch to W/PRGM > 15

(ENTER#] [ENTER# ) [ENTER#] 7 [+] [X] 14 [=][X]

40

Switch to RUN

12 [sT0]1 -+ 12.00

5 [sT0]2 > 5.00

2 3 -+ 2.00

20 [5T0) 5 - 20.00

0(sT0] 6 » 0.00

05[s70] 7 —> 0.05

0[sT0)8 > 0.00

A} » (0.05

> 19.95

» -1.98

> -39.22

A ] » 0.10

> 19.80

R/S > 392

R/S > -38.22

and so on.
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Example 2:

This program can also be used to generate position, velocity, and
acceleration for cases where the forcing function is not explicitly
known, but where values for f(t) can be read from a graph. Consider
the following graph:

f(t)
100

80
60
40

20

Rather than keying in a function under [@, we can put in I G,
allowing us to enter values for the function from our graph each
time the [ routine is called. Three entries of f(t) are required for
each set of computed values.

To demonstrate this procedure, generate position, velocity and ac-
celeration data for the first 7 seconds of forcing in intervals of .5
seconds. Assume fort =0,x =%X=0and k=10, m=5,andc=2.



1.500
4.855
7.235
6.648
2.878
2.521
-7.139
-8.684
-6.865
-2.897

1.131

3.464

3.322

1.346

MD1-06A

5.400
6.208
2.049
-4.463
-9.288
-9.884
-5.845
0.773
6.336
8.230
6.259
1.830
-2.435
—4.558

\J

15

10.00

Y

5.00

\

Y

2.00

\J

0.00

> 0.00

— 0.50

Solution:
t X

0.500 0.000
1.000 1.425
1.500 4.629
2.000 8.502
2.500 11.268
3.000 11.546
3.500 9.050
4.000 4.750
4.500 0.505
5.000 -2.136
5.500 -2.556
6.000 -1.208
6.500 0.753
7.000 2.110

Keystrokes:

a

Switch to W/PRGM mode

Switch to RUN mode

10 1

5 2

2 3

0 5

0 [sT0]6

S 7

0 8

(DsP K] A

> 0.00

(f(0) = 0 from the graph)

> (0.000

< s]

» 0.250

35
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(f(:25)=15)
15 » 0.500 (t)
R/S » 0.000 (x(.5))
R/S » 1.500 (x(.5))
R/S » (0.500
(f(.5) = 30)
30 —» 5.400 (X(.5))
[A] » 0.500
(f(.5) = 30)
30 » (0.750
(f(.75) = 43)
43 — 1.000 (t)
R/S - 1.425 (x(1))
R/S > 4.855 (x(1))
R/S —» 1.000
(f(1) = 55)
55 » 6.208 (X(1))
(4] » 1.000
(f(1)=55)
55 > 1.250
(f(1.250) = 63)
63 > 1.500 (t)
R/S » 4.629 (x(1.5))
R/S > 7.235 (%(1.5))
R/S » 1.500
(f(1.5)=71)
71 > 2.049 (X(1.5))

and so on where



0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

The function actually represented by the graph is

f(t)

0.00
15
30
43
55
63
71
74
76
75
72
67
61
53
47

3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
6.25
6.50
6.75
7.00

f(t)= 62.5 t e=(t"/8)

MD1-06A

(t)

40
34
27
23

(62.5 (x] (8] (isTx | [EnTER4] [x]8[F] [r] [LN][%])

37
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FOURIER SERIES
FOURIER SERIES MD1-07A
S N J YViek+

Any periodic function, f(t), may be expressed as a sum of sines and
cosines by the Fourier series

S3IY3S
—

f(ty= — %4 E (a, cos + b; sin lsz )
i=

T .
a; = %— f f(t) cos lsz dt, i=0,1,2,..

'_? f(t) sin i=1,2,..

and

T = period of f(t)

This program computes the Fourier coefficients from discrete ver-
sions of the above formulas given a large enough number of samples
of a periodic function. Six consecutive sine or cosine coefficients
are computed at one time from N equally spaced points in one peri-
od of the function.

The discrete formulas for the Fourier coefficients are

N
}: cos z"kl,j=J,J+1,...,J+s
k=1

and
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N
Z ksm

k=1

=S

,J—J J+1,..,J+5

J = order of first coefficient to be computed

yi = f(ty)
kT
N
Remarks:

The value of N should be chosen to be more than twice the highest
expected multiple of the fundamental frequency present in the
waveform to be analyzed. A low estimate for N will cause energy
above one-half the sampling rate to appear at a lower frequency (a
phenomenon known as aliasing).

A single spectral value may be computed by setting flag 1.
For even functions (f(x) = f(-x)), b; = 0, for all values of j.
For odd functions (f(x) = -f(-x)), a; = O, for all values of j.

For convenience, the program modified to compute sine coefficients
may be recorded on the other track of the magnetic card by placing
the card into the machine with the uncut end first.
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STEP

N o o s

1

MD1-07A

INSTRUCTIONS
Enter program
For sine coefficients go to
step 10.
Input number of points
Input order of first coefficient
If only one coefficient is desired
Inputyg, k=1,2, ..., N
Repeat step 6 until display
shows N + 1
Display coefficients (If flag 1
was set, only aj or bj will have

been computed.)

For a new case, go to step 3.
To change to sine coefficients,
perform the following steps:
Branch to label 1
Switch to W/PRGM
Single step twice
Delete cosine
Insert sine
Record modified program on
opposite track

Switch to RUN and go to step 3.

INPUT
DATA/UNITS

Yk

KEYS

RCL
RCL
RCL
RCL
RCL
RCL

GTO

SST

SIN

SF 1

g s Wl IN

(=]

SST
DEL

OUTPUT
DATA/UNITS

aj or by
aj+1orbj+1
aj+2 orbj+2
aj+3o0rbj+3
ajt4orbj+4

aj+5o0rbj+5

01

05
31
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Example:

The following pressure data from a reciprocating compression pro-
cess has been gathered:

N=12 J=0
Yk

204
24.0
10.0
-4.0
-04
-3.0
-04
4.0
10.0
24.0
204
12 23.0

O 00 N O v A WD =

—
- O

Synthesize the Fourier series to represent this process.

f(t)
24

18

12

—6 T
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Solution:

f(t) = 329 +15 cos Eg-t -5 cos 6—;”_ +2.996 cos 1omt

Keystrokes:
The function is even, so { bj} =0.

RHRBEER3204324 31034 [chs]
4 [cns] [ 3 (chs] ] 4 [chs] [ 4 [chs)

1032432041238 » 1.300 01
[Rcy] 1 » 2.000 01
[RcL)2 —1.500 01
[RcL]3 » 3.300 -08
[RcL])4 »-5.000 00
[RcL]s »2.200 -08
[RcL] 6 »2.996 00

That is, {aj]j=0,1,..,5} = {20,15,33x107%,-5,22x 10"
2996}
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CRITICAL SHAFT SPEED
CRITICAL SHAFT SPEED MD1-08A ¢
(EH) "_Qg::l TN way et 3

Suppose a rotating shaft is simply supported at both ends and has a
series of n weights, W,, ... , Wy, attached. Then there are critical
speeds at which the shaft will become dynamically unstable. This
program finds the fundamental critical speed from the formula

n
g) Wiyi
i=1
n
Zwi yil
i=1

cycles/sec

where

g = Acceleration due to gravity

y;i = Static deflection of weight W;
The program is set up to accept the static deflections y; as inputs.
If the static deflections are not known, it computes y;;, the static

deflection of weight i due to W;. Then the total deflection of weight
iis the sum of the deflections from all the W;’s. That is,

n
Yi =Z Yij-
F1
The individual y;;’s are added to provide the y;’s which the program
accepts as inputs. The y;;’s are calculated as follows:
If x; < x5

Wj (Q - Xj) Xj
Vi g ¥ @

W; (£ - x;) X4 [ ]
=_JY 7 Coxi? - xi2
GREI 20%; - X;° = Xj
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If Xj = Xj
Wi x; (2 - x;)
_ WJ Xj (Q - Xi) [ 2 2]
"R 20%; - X% - Xj
where

X, X; = Distance of weights i, j from end of shaft
E = Modulus of elasticity
I = Moment of inertia
2 = Length of shaft

w1 Wi wi W,.

—r-T———————

Remarks:

If I is not known and if the shaft is cylindrical, it may be calculated
from the diameter d by a keystroke sequence shown on the User
Instructions.
(= mdt
64
Any consistent set of units may be used. The acceleration due to
gravity, g, will of course change from one set of units to another.

Some useful values are listed below:
g =32.1740 ft/sec?
=386.088 in/sec?
=9.80665 m/sec?
=980.665 cm/sec?

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall,
1971.
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STEP

2a

3a

5a

7a

8a

2b

3b

4b
5b

MD1-08A

INSTRUCTIONS
Enter program
If the y; are not known, input
Modulus of elasticity
Moment of inertiat
Length of shaft
Input W;
Xj
Input W;
xj where j # i
Repeat step 4a for all j # i
Store ZW;y; and ZW;y;? (W;
and y; are automatically in
position after step 5a.)
Repeat steps 3a—6a for i=1,...,n
Input acceleration of gravity and
compute critical speed.
If the y;.are known, input length
of shaft
Input W;
Yi
Repeat step3bfori=1,...,n
Input acceleration of gravity
and compute critical speed
For a new case go to step 2
T1f 1 is not known, it may be
calculated from the diameter
d by I = nd*/64 (solid cylin-

drical shaft only).

INPUT
DATA/UNITS

Wi

Xi

Xj

Wi

Yi

> > >

@

KEYS

OUTPUT
DATA/UNITS

6LEI

Wiyi®

f(cycles/sec)

Wi

Wiy;?

f(cycles/sec)

d2

d4
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Example:

A 2 inch diameter steel shaft of total length 40 inches has a fly-
wheel and a gear located respectively 15 and 25 inches from the end.
The flywheel weighs 60 pounds and the gear 45 pounds. Assume the
modulus of elasticity of the steel is 30 x 10° psi. Find the funda-
mental critical speed of the shaft. (44.15 cycles/sec, or 2648.85
RPM)

Keystrokes:

W, =60 x; =15

W, =45 X, =25

30 [EEX] 6 [ENTER#] 2 [ENTER#] [x] [ENTER4] [X]

(e] (] ()64 [+] 40 A E=A 2 > 5.65 09
60 [ENTERY]15 > 298 -03
45 [ENTERY] 25 @ —> 5.04 -03
a > 1.53 -03
45 (enTer+] 253 > 224 -03
60 [EnTER+] 15[ > 4.98 -03
(D - 1.12 -03
386.088 @ B [-]2 . 4415
60 [x] > 2648.85

| 60 Ib.

| 45 b

| |

i Yz in.

|

I

—15 in.»

——25in—»
40 in.

 /
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FOUR BAR FUNCTION GENERATOR

.“\

FREUDENSTEIN'S EQUATIONS MD1-09A1 3

x4R1 x3R3  63R6 ]

@ comp f)  ,)R2 o o6;R7 %3R8 3
J/

m\

3x3 SIMULTANEOUS EQUATIONS ~ MD1-09A2 X

@ 'PR1 "Rz 'PR3 B
_—

LINK LENGTHS AND RATIOS MD1-09A3 EW

= atbs *Ri,  Ri#Ra2¢ a»b, =
S  cad R2R3 R3 cd D,

These programs may be used to design a four bar linkage which will
approximate an arbitrary function of one variable. Freudenstein’s
approach is used in the solution. The second card of the three can be
used independently to solve 3 x 3 linear systems.

Three precision points are used in the solution.

Freudenstein’s equations
R; cos0; - R, cos ¢; + R3 =cos (8, — ¢;)
R, cos @, - R, cos ¢, + Rz =cos (0, — )
R; cos 03 - R, cos ¢3 + Ry =cos (03 — ¢3)

are solved simultaneously for R;, R, and R3 which are defined as
follows:

a2 +b% +d2 — 2
2bd

R; =a/d,R; =a/b,R;3 =

where a is the distance between fixed pivots, b is the length of the
input link, c is the length of the coupler and d is the length of the
output link. 6, refers to the angle of the input link at the first pre-
cision point, 8, the angle at the second point, and 63 the angle at
the third. ¢, is the angle of the output link at the first precision
point, ¢, is the angle at the second point, and ¢3 is the angle at the
third precision point.
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X2 — X1
6,=60,+ —— (63 -6,)

X3 — X3

f(x2) - f(x4)

2= T ) T

(¢3 - 91)

Xy, X, and x3 are the precision points or the three points at which
the mechanism will yield kinematically exact solutions to the func-
tion (f(x)) which is to be generated.

By manually storing values in appropriate registers, card 2 can be
used as a general 3 x 3 system solver.

For a system of the form
a; Ry +b; Ry +¢; Ry =d,
a Ry +by Ry +¢;, Ry =d,
a3 Ry +b3z Ry +¢c3 Ry =d;
where R, R, and R3 are unknowns
store  a;/c; in R4, b;/c; in Ry, d;/c; in Ry
a,/c, in Rs, by/c, in Rg, dy/cy in R,

33/C3 in R6,b3/C3 in Rg,d3/C3 in R3
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Remarks:

f(x) must be stated in 21 or less HP-65 steps. 8, may not equal 90 or
270 degrees.

cos ¢, cos 6, cos 03
cos ¢, — -
cos 0, cos 6,
cos 0, cos ¢ cos 65
— -1 cos¢pg - ——————
cos 0, cos 0,

Reference: Kinematics and Dynamics of Machines, G.H. Martin,
McGraw-Hill, 1969.

INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter MD 1—09A1

2 Key the function into memory:

@o to label B GTO B

Switch to W/PRGM mode 12
Key in the function f(x)

Press RTN

Switch to RUN mode
The argument of the function is
in x when the routine is called.

3 Store the following values:

First precision point Xy STO 1 Xy
Second precision point X2 STO 2 X2
Third precision point X3 STO 3 X3

Starting input angle

(6, # 90 or 270) 0, STO 4 0,
Final input angle 05 STO 6 'H
Starting output angle ' STO 7 'Y

Final output angle ' STO 8 [N



STEP

4

5

10
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INSTRUCTIONS oATAUNITS KEYS

Compute coefficients for

Freudenstein’s equations A

Optional: Review coefficients RCL 1
RCL 2
RCL 3
RCL 4
RCL 5
RCL 6
RCL 7
RCL 8
RCL 9

Enter MD 1-09A2

Compute Freudenstein’s ratios A

Optional: Display R, B

and R; C

Enter MD 1-09A3

Input fixed link length and com-

pute the remaining link lengths a D
R/S
R/S

For a new case, go to step 1.

The last program of this group
may be used alone to compute
the link ratios from the link
lengths, or the link lengths

from the link ratios, of the four-

bar mechanism.

OUTPUT
DATA/UNITS

b3
d,
d;
d;
a
a2
as
b,
b,

b

Ry
R,

Rs
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STEP INSTRUCTIONS DATAUNITS KEYS DATATONTS
1 Enter MD 1-09A3

2 Input the link lengths a t a
b t b

c t c

d A d

and compute the link ratios B R,

R/S R,

R/S R,

3 Input the link ratios R, ) R,
R, t R,
Rs3 C R;

and compute the link lengths

specifying the fixed link length a D b
R/S c
R/S d

4 Step 2 or step 3 may be

repeated as required.

Example 1:

Suppose the output of a linkage is to be the square root of the input.
The input link is to move from 70° to 110° while the output moves
from 100° to 140°. Precision points are x; =3 (70°), x, =5, and
X3 =9 (110°). The distance between foundation pivots is 3.75. What
are the remaining link lengths?

Solution:

b = -10.88, ¢ =3.04, d = -12.56 (The negative signs indicate that
the links are opposite to the assumed direction i.e., 8 = 250° and
¢ =280°).

Keystrokes:

f(x) =vx

X; =3;%X,=5,x3=9

6, =70°;0; =110°, ¢, = 100°, ¢3 = 140°
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250° 280° 290° 320°
[+
© ©
© o )
I i
%

Enter MD1-9A1

a

Switch to W/PRGM mode » 12

1]

Switch to RUN mode

3 1 > 3.00
5[sT0]2 > 5,00
9(s10]3 9,00
70(sT0] 4 > 70.00
110[sT0] 6 —>110.00
100(sT0] 7 —100.00
140 sy - 0.77
Enter MD1-9A2

(A »-0.30
Enter MD1-9A3

37583 —> —10.88
R/S > 3.04

R/S

> -12.56
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Example 2:
Compute the link ratios for the following link lengths:
a=1.0
b=1.371
c=2.12
d=1.502

Solution:
R,
R,
R;

6658
7294
1557

Keystrokes:
Enter MD1-9A3

EX3 (14 1 [ENTER4] 1.371 [ENTER#] 2.12

1.502 » 1.5020
B > 6658
R/S » 7294

R/S —» 1557
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PROGRESSION OF FOUR BAR SYSTEM

H

POR TSR R SR MD1-10A1 &

sl atbe S d . 3
cid -2 g1 -2 2] osa ¥ :
\

ASORBAR TV MD1-10A2 §

§ oeb e 2
J

These two cards calculate the position, angular velocity, and angular
acceleration of both the connecting and output links of a four bar
mechanism, given the same values for the input link. The link lengths
may be stored by the first card or by MD1-9A3.

0,6,6 =Input link angle, angular velocity (RPM), and angular

acceleration (RPM?)

¢, ®, ¢ =Output link angle, angular velocity (RPM), and angular
acceleration (RPM?)

@, &, & = Connecting link angle, angular velocity (RPM), and angular
acceleration (RPM?)

a = Fixed link length

b = Input link length

¢ = Connecting link length
d = Output link length

Equations:
Output Link

2 2 2
¢=sin"? Esin(9 +cos™! 4" te -c”
e 2de

Connecting Link

2 402 _ g2
a=sin"! <E sin 6> +cos™! <c__g___g_>
e -2ce

where e = Va? +b? + 2abcos 0

dg _ R, sin 0 -sin (6 - ¢)
d0 R, sin ¢ —sin (6 - ¢)
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da _ S;sinf -sin(6 - @)
dd S, sina-sin(f -a)

g, =_2 g =2
1 c 27y
dg \? dg \’
o R, cos 0 - R, cos¢<%> —6—%) cos (60 - ¢)
de? R, sin ¢ —sin (8 - ¢)
2 2
d da
d2a= S; cosf -S, cosa(d—g> _<1—W) cos (6 - )
de? S, sin a - sin (0 - @)
. do s
=—4§
¢ dé
2 2 2 2 o
;5=_d_¢=u(ﬁ)+ﬂ_9d_¢ Py
dt?  de? \adt dt2 do dg
s, d2¢ o do . da da
= 2_+ —r = 2__+ —_
0d620d0 a0d02ad6
[
a
a
d
b e
e (]
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Remarks:
d¢

¢ has the units of 6, since 30 is dimensionless.

2
d—? has units of rad™'. So that the dimensions making up ¢ agree,

a6 a2¢

the program assumes is given in RPM?, and

is multiplied

rad t do’
by 2n —:
e ev
. 2 32 .
5 TV _ g2 TV ¢rad" 2m rad S do
min? min? d? rev min2 dé

The program could be altered by the appropriate constant change if
6 and § are in units other than revolutions/time (e.g. for degrees/time
change 27 to w/180 (radians/degree), or for radians/time, no con-
stant necessary).

These same remarks apply to a and o .

Flashing zeroes during calculation of ¢ or a may indicate the linkage
may not physically assume the input position.
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STEP INSTRUCTIONS DATAUNITS KEYS o A‘}‘m’,"""ns
1 Enter MD 1—10A1
2 Input the link lengths a 1 a
b t b
c t c
d A a

3a | Input the input link angle and

compute the output link angle ‘] B ¢
4a | Input the angular velocity in

RPM and compute the output

link velocity 6 (RPM) c é(RPM)
5a | Optional: to compute the out-

put link acceleration, enter

MD 1-10A2, input the input

link acceleration and calculate
 (Then re-enter MD1—10A1) g (RPM?) A é (RPM?)
3b | Input the input link angle and

compute the connecting link

angle /] D a
4b | Input the angular velocity in

RPM and compute the con-

necting link velocity 6 (RPM) E & (RPM)
5b  Optional: to compute the con-

necting link acceleration, enter

MD 1-10A2, input the input

link acceleration, and calculate

@ (Then re-enter MD1—10A1) § (RPM?) B a (RPM?)
6 Repeat steps 3a-5a or 3b-5b for

all required values of (6, é, .0',).

7 For a new case, go to step 2.
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Example:

A four bar linkage is to be used to convert rotary motion from an
electric motor to the reciprocating motion necessary to activate a

shaking conveyor system which moves fruit between two process
stations.

® @

1%

0.5 ft.
6 ft.

©=(—) 60 RPM © =0

3ft.

For the geometry shown above, what is the motion of the output
link? Start at # = 0° and go to -330° by -30° increments. (The
negative sign is due to the sign convention for positive angles used in
this program) Find the corresponding connecting link motion.

Four Bar Shaker Mechanism

Ft.

<
L | 6.0 ft.

y
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Solution:
0° ¢° #(RPM) ¢(RPM?) a® «(RPM) a(RPM?)
0| 8669 —4.62 339291  154.67 -4.62 -92.82
-30 | 85.63 0.46 3816.90 15242 @ —4.20 713.38
-60 @ 87.18 5.70 3615.33  150.67 @ -2.60 1594.02
-90  91.19 @ 10.12 2592.67  150.01 0.10 2210.83
-120 | 96.94 & 12.38 449.28 | 150.84 3.19 2062.19
-150 | 102.95 @ 10.93 | -2597.20 153.04  5.34 887.00
-180 | 107.18 545 | —4998.56 @ 155.83 5.45 -693.75
-210 | 108.09 @ -1.86 | -5112.85  158.18 @ 3.73 = -1628.64
-240 | 105.56 | -7.86 | -3351.37 @ 159.45 132 -1738.45
-270 | 100.72 | -10.95 | -1099.60 @ 159.53 @ -0.93 @ -1481.44
-300  95.11 | -11.05 887.85 | 158.59 = -2.75 &= -1133.46
330 | 90.08 & -8.70 | 2404.65  156.87 @ —4.04 -698.86
Keystrokes:
Enter MD1-10A1
6 [ENTER#].5 [ENTER+] 7 [ENTER+| 3 |} 6.00
ol > 86.69
60 [cHs] > —4.62
Enter MD1-10A2
) A | > 339291
Enter MD1-10A1
ol > 154.67
60 [chs| @ > _4.62
Enter MD1-10A2
] & | > -92.82
Enter MD1-10A1
30[cns] B3 > 85.63
60 [cHs) » 0.46
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Enter MD1-10A2

(1] A | » 3816.90
Enter MD1-10A1

30 [chs] B —» 152.42
60 [cns) @ > —4.20
Enter MD1-10A2

(1] & | » 713.38

and so on.
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LINEAR PROGRESSION OF
SLIDER CRANK

INEAR PROGRESSION ®

L €L IDER CRANK MD1-11A ¢
NAEALY o, -y »a E:
=] R»0 mx,mn

This program computes the displacement, velocity, and acceleration
of the slider in a slider crank mechanism, (e.g. the piston wrist-pin in
an internal combustion engine) given crank radius, connecting rod
length, slider offset, crankshaft speed, and crank position. The
maximum and minimum displacements and the stroke are also
calculated.
N = Crankshaft speed, RPM
E = Slider offset
L = Connecting rod length
R = Crank radius
w = Crank angular velocity, radians/sec
0 = Crank angle
x = Slider displacement
Xmax = Maximum slider displacement
Xmin = Minimum slider displacement
Ax = Stroke
v = Slider velocity
a = Slider acceleration

¢ = Connecting rod angle

Equations:

x=Rcosf +Lcos¢

Xmax = (R + L) cos |:sin‘l (R—fl—:)]
Xmin = (L -R) cos l:sin‘1 <%>:|
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AX = Xmax = Xmin

6= sin"! E+Rsin 6
L

V= dax _ Roo <—sin 6+ ¢)>
dt cos ¢

d’x _ Re? 08 (6+¢) Rcos®
dt? cos ¢ L cos® ¢

a=

Remarks:

This program may halt on underflow for PR in calculating
—R sin (8 + ¢) and -R cos (8 + ¢). This occurs where (6 + ¢) = 90°,
270° and R < 1, resulting in a display of 0.00. If this occurs, press
to continue the normal execution.

Crank /\
4

Co,
R s?n 6 A_ n"ectl

v Slider

References:

Mechanical Design and Systems Handbook, H.A. Rothbart, McGraw-
Hill, 1964.

Kinematics, V.M. Faires, McGraw-Hill, 1959.
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STEP INSTRUCTIONS DATANITS KEYS DTS
1 Enter program
2 Input the slider crank
parameters N 1 N
E t E
L t L
and display the crank angular
velocity R A w
3 Input the crank angle and com-
pute the slider displacement 6 B X
Optional: calculate the maxi-
mum displacement R/S Xmax
Optional: calculate the mini-
mum displacement R/S Xmin
Optional: calculate the stroke * - Dx
4 | Calculate the slider velocity Cc v
5 | Calculate the slider acceleration D a

6 Repeat step 3 for all desired
values of 6.
Steps 4 and 5 may be executed
(in order) as required

7 For a new case, go to step 2.

Example 1:

Find the displacement, velocity and acceleration of the wrist-pin in
the slider of a slider crank mechanism having a crank radius of 2.0
inches and connecting rod length of 7.0 inches, turning at 4800
RPM. Compute values for

6 =0°,15°,45°, 90°, 135°, 180°, 225°.

Assume the slider crank mechanism is in-line (E = 0). Also find the
maximum and minimum displacements and the stroke.



Solution:
00

0

15

45

90

135

180
225

X (in)
9.00
891
8.27
6.71
5.44
5.00
5.44

Xmax = 9.00 in.

Xmin = 5.00 in.

v (in/sec)

0.00
-332.20
-857.50

-1005.31
-564.22
0.00
564.22

MD1-11A

a (in/sec?)

-649701.96
-614226.44
-360454.40
150658.43
354181.29
360945.53
354181.29

67

Ax =4.00 in.
Keystrokes:
4800 [ENTER#] O [ENTER#] 7[ENTER4| 2 [} ——— 502.65
W] B > 9.00
> 0.00
B > _649701.96
158 > 891
» -332.20
D | > _614226.44
2258 > 5.44
> 564.22
D) > 354181.29
8 [ris] > 9.00
R/S — 5.00
=] » 4.00
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Example 2:

Determine the same values as in example 1 for a slider crank with
offset of 1.5 inches (E = 1.5 inches).

Solution:
6° x (in) v (in/sec) a (in/sec?)
0 8.84 -220.55 -660249.41
15 8.63 -552.49 -602160.36
45 7.78 -1036.35 -289750.94
90 6.06 -1005.31 291748.80
135 4.95 -385.37 424884.76
180 4.84 220.55 350398.08
225 5.59 719.57 280733.14

Xmax = 8.87 in.
Xmin =4.77 in.
Ax =4.10in.

Keystrokes:
1.5 3 » 1.50

(Having executed example 1, we can repeat step 2 or manually store

E, since only one parameter is changed. See page 178 for register
allocation.)

(i & > 8.84

> _220.55
(D] > _660249.41
2258 > 5.59

> 719.57

D] > 280733.14
6 [Rs]| - 887

R/S —» 4.77

(=] - 4.10
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ANGULAR PROGRESSION OF
SLIDER CRANK

ANGULAR PROGRESSION )
P& L GRANR MD1-12A ¢

[l NOEALS 040, ; -- ]
R*w mx,mn,A¢ >0 ad @

This program computes the connecting rod angle, velocity, and
acceleration in a slider crank mechanism (e.g. the connecting rod in
an internal combustion engine), given crank radius, connecting rod
length, slider offset, crankshaft speed (RPM) and crank position. The
maximum and minimum angular values for ¢ and the total angular
throw of the connecting rod are also calculated.
N = Crankshaft speed, RPM
E = Slider offset
L = Connecting rod length
R = Crank radius
w = Crank angular velocity, radians/sec
0 = Crank angle
¢ = Connecting rod angular displacement
¢max = Maximum connecting rod angular displacement
¢min = Minimum connecting rod angular displacement
A¢ = Total angular throw of connecting rod
é) = Angular velocity of connecting rod

¢ = Angular acceleration of connecting rod

Equations:

E+Rsin @

=gqin~! (-
¢ =sin ( L )
E+R

=qin~!
¢max = sin < L )
E -R

s = i1
¢min = sin <—L >
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A¢ = gmax - ¢min

R cos 6
Lcos ¢

5 _ d’¢ 2| (4 2 R sin 0
¢ aw [<d§> tan¢_Lcos¢

Crank /\
L

- do_
¢ dt

€

Co,
R s?n 3] 0 nnectlh -
i A Rog

Slider

Guide
Rcos©

References

Mechanical Design and Systems Handbook, H.A. Rothbart, McGraw-
Hill, 1964.

Kinematics, V.M. Faires, McGraw-Hill, 1959.



72

STEP

MD1-12A
INSTRUCTIONS AT UNITS

Enter program

Input the slider crank

parameters N
E
L

and display the crank angular

velocity R

Input the crank angle and com-

pute the connecting rod angular

displacement ']

Optional: calculate the maxi-
mum connecting rod angular
displacement

Optional: calculate the mini-
mum connecting rod angular
displacement

Optional: calculate the total
angular throw of the connecting
rod

Calculate the angular velocity
Calculate the angular accelera-
tion

Repeat step 3 for all desired
values of 6.

Steps 4 and 5 may be executed
(in order) as required.

For a new case, go to step 2.

KEYS

R/S

R/S

R/S

OUTPUT
DATA/UNITS

@max

¢min
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Example 1:

Find the angular displacement, velocity, and acceleration of the con-
necting rod of a slider crank mechanism having a crank radius of
2.0 inches and connecting rod length of 7.0 inches, turning at 4800
RPM. Compute values for

6 =0°,15° 45° 90°,135°,180°, 225°.
Assume the slider crank mechanism is in-line (E = 0). Also find the

maximum and minimum displacements and the total angular throw
of the connecting rod.

Solution:
0° ¢ ¢ (rad/sec) ¢ (rad/sec?)
0 0.00 143.62 0.00
15 4.24 139.10 -1730041
45 11.66 103.69 -49902.29
90 16.60 0.00 -75329.22
135 11.66 -103.69 -49902.29
180 0.00 -143.62 0.00
225 -11.66 -103.69 49902.29
¢max = 16.60°
¢min = -16.60°
Ap =33.20°
Keystrokes:
4800 ENTER+] 0 [ENTER4] 7 [ENTER+| 2 [} 502.65
) B | > 0.00
> 143.62
» 0.00
1583 > 424
—> 139.10

D] > _17300.41
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22583 > _11.66
> —-103.69
D] » 49902.29
B | —» 16.60
R/S » -16.60
R/S —» 33.20
Example 2:

Determine the same values as in example 1 for a slider crank with
offset of 1.5 inches (E = 1.5 inches).

Solution:
6° ¢° ¢ (rad/sec) ¢ (rad/sec?)
0 12.37 147.03 4742.62
15 16.75 144 .87 -13194.60
45 24.60 111.69 -50429.96
90 30.00 0.00 -83356.80
135 24.60 -111.69 -50429.96
180 12.37 -147.03 4742.62
225 0.70 -101.56 51175.65
¢max = 30.00°
¢min = -4.10°
A =34.10°
Keystrokes:
1.5 3 > 1.50

(Having executed example 1, we can repeat step 2, or manually
store E since only one parameter is changed. See page 178 for register

allocation.)

1] 6| —> 12.37
» 147.03
B > 4742.62



MD1-12A 75

2258 » 0.70
» -101.56
D > 51175.65
8] r/s| > 30.00
R/S » -4.10

R/S

Y

34.10
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CAM DATA STORAGE

CAM DATA STORAGE MD1-13A §
=~ Rb NEXT 3
S Inc h (R3° - ¢

This program stores the cam data for programs 14 through 18 in this
Pac. A description is given with each of the programs for using this
program to set up the required cam parameters. It is also used to link
between different portions of a cam design.
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HARMONIC CAM DESIGN-RADIAL
ROLLER FOLLOWER

HARMONIC CAM DESIGN- z

RADIAL ROLLER FOLLOWER MD1-14A ©

A y d4y =
g +0 >y 0_,52 >a +>rg,n >

This program computes the parameters necessary for the design of a
harmonic circular cam with radial roller or point follower. MD1-13A
stores the required cam data for each portion of the design.

B = Duration of lift h

Inc = Angular increment of calculation
h = Total cam lift over angle §

Ry, = Base circle radius

R = Grinder radius

R; = Roller radius

6 = Cam angle
y = Follower lift
% = Follower velocity
d2
-&0—2' = Follower-acceleration

a = Pressure angle
rg = Center to center distance of grinder and cam

1 = Angle correction for grinder

Equations:
_h < 1800>
y=={1-cos
2 [

dy _ wh 1806 dy _ dy

o 28" [ T
2 2 2 2
d’y _ n’h 1800 % _ 2 4%y
de? 2 B dt? 6?
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a=tan™! 180 dy
ar  do

r=Ry ty

Iy = [r2 +(Rg - Rp)? +2r (R - R;) cos %

R, - R
n=sin"! <—g—~—L sin oz>
Ty

Center of cutter
or grinding wheel

\ /

Line of action | ® 1'
of follower —\

\
R, \
/ l\,/\
Cam Profile /\
N
\
i
\ e

o
*— Cam Center

Remarks:
A roller follower will not properly follow a cam profile with concave
section whose radius <R,, e.g. See Figure 1.

The values calculated for r, are at an angle 6 — n because of the lead
or lag of the roller surface.

Values calculated for y are with reference to the beginning of each
portion of the design.
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Figure 1
Note two points of contact

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall,
1971.
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STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
1 Enter MD 1-13A
2 Input the following:
Duration B A B
Increment Inc B Inc
Total lift h Cc h
Base radius Rp D Rp
Grinder radius Rg D Rg
Roller radius R, D R,
3  Enter MD 1-14A
4 Calculate the cam parameters:
Cam angle A [’}
Lift B '
Follower velocity Cc dy/d6
Follower acceleration * R/S d?y/d§?
Pressure angle D a
Grinder-cam center/center
distance E rq
Grinder correction angle R/S n
5 Repeat step 4 for all 0 <.
6 To continue cam design when
6 =, re-enter MD 1—13A, press
NEXT, and change duration,
increment and/or lift as required.
Then go to step 3. E Rp'

7 For an entirely new case, go to

step 1.

Example:

Design a cam with a 1.0 inch roller follower which develops har-
monic motion, dropping from a base radius of 12.0 inches to 7.5
inches in 130° of rotation. From 130° to 170°, increase the lift to
the original base radius. Using 10° increments, generate the cam
profile by letting R, = 0.
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Solution:
6° y (in)
0.0000 | 0.0000
10.0000 | —0.0654
20.0000 | -0.2577
30.0000 | -0.5659
40.0000 | -0.9719
50.0000 | -1.4521
60.0000 | —1.9788
70.0000 | -2.5212 |
80.0000 | —3.0479
90.0000 | —3.5281
100.0000 | -3.9341
110.0000 | -4.2423
120.0000 | -4.4346
130.0000 | -4.5000
(130)| 0.0000 | 0.0000
(140) | 10.0000 | 0.6590
(150) | 20.0000 | 2.2500
(160)| 30.0000| 3.8410
(170)| 40.0000 | 4.5000
Keystrokes:

Enter MD1-13A

Bo@RoA+sEs @RI —

Enter MD1-14A

osP IR

dy/de d*y/d6*

(in/deg)

-0.0130
-0.0253
-0.0361
-0.0447

| -0.0508 |

-0.0540
-0.0540
-0.0508
-0.0447
-0.0361
-0.0253
-0.0130

0.0000 |

0.0000
0.1250
0.1767

0.1250 |
9:_900707} -0.0139 1l 0.0000

0.0000 |

|
|
j

(in/deg?) a°

-0.0013| 0.0000
-0.0013 | -3.5746
-0.0012| -7.0289
-0.0010 | -10.2415
-0.0007 | ~13.0881
-0.0005 | -15.4382

-0.0002 | ~17.1509 |
0.0002 | —18.0701 |

0.0005 | —18.0244 |
0.0007 | -16.8378
0.0010 | -14.3662
0.0012| -10.5713
0.0013 | -5.6283
0.0013| 0.0000
0.0139|  0.0000
0.0098 | 41.2667
0.0000 | 46.0809
-0.0098 | 32.2638

R/S

R/S

YYVYY Jy v

vy

(o= ) >] ...HEEHHEE

R/S

Y

1g (in) n
11.0000 | 0.0000
10.9367 | 0.3266
10.7505 | 0.6522
10.4516 | 0.9747
10.0567 | 1.2903
9.5876 | 1.5910
9.0705 | 1.8631
8.5338 | 2.0830
8.0072 | 2.2146
7.5203 | 2.2074 |
7.1015 | 2.0023 |
6.7772 | 1.5512
6.5709 | 0.8552 |
6.5000 | 0.0000
6.5000 | 0.0000
7.4367 | -5.0883
9.0850 | —4.5476
10.5090 | -2.9117

| 11.0000 | 0.0000

1.00
0.0000
0.0000
0.0000
-0.0013
0.0000

11.0000
0.0000

130.0000
-4.5000

0.0000

\j

0.0013
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(D | > 0.0000
a > 6.5000
» 0.0000
Enter MD1-13A

a > 7.5000
200 > 40.0000
454 > 4.5000
Enter MD1-14A

A} » 0.0000
a > 0.0000
> 0.0000
> 0.0139
D] > 0.0000
a > 6.5000
R/S » 0.0000

and so on.
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HARMONIC CAM DESIGN-FLAT
FACED FOLLOWER

HARMONIC CAM DESIGN- z
FLAT FACED FOLLOWER MD1-15A o
y d2y z
> g,
+0 >y e, 62 sa >rgn e

This program computes the parameters necessary for the design of a
cam with radial flat-faced follower. MD1-13A stores the required
cam data for each portion of the design.

B = Duration of lift h

Inc = Angular increment of calculation
h = Total cam lift over angle 8

Ry, = Base circle radius

R; = Grinder radius

0 = Cam angle
y = Follower lift
—g-%;- = Follower velocity
2
_;10_3' = Follower acceleration

a = Pressure angle
rg = Center to center distance of grinder and cam

1 = Angle correction for grinder

Equations:
=h 1 -cos 1806
y=5 8

dy _nh . 1806 [dy_ dy

0 26" B [dt “ 1
2 2 2 2
dy=1rhcosl800 dy=w2 d“y
de? 2p? g dt? do?

_ 180 dy
= l ——— ——
a=tan < p— d0>
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r=Rp +y

. — 2 2 Y,
rg = (Rg* +r1.* + 2R 1. cos o)™

o r2+ 180 ﬂ 2\ %
¢ n \ df

o f Te T Rgcosa
n=cos | —— |-«
Tg

Centerof cutter or
grinding wheel

»

Cam profile

Cam center
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Remarks:

A flat follower will not properly follow a cam profile with any con-
cave section, e.g. see figure 1. The values calculated for r; are at an
angle § - n because of the lead or lag of the roller surface.

The program may halt on underflow during calculation of rg if the
pressure angle a = 90°.

Values calculated for y are with reference to the beginning of each
portion of the design.

Figure 1
Note two points of contact

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall
1971.
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—T T
STEP % INSTRUCTIONS | DATA/NITS | KEvs T‘ DATARIITS
1 | Enter MD 1-13A 1]
5772"7 . Input the following: A SC]
B ‘ Duration } B 4 [j . B ]
T rTncrement B [ Inc ' [:' ‘ Inc
I | TotalLift . h E}Ej h ]
| Base Radius Rb @(: Rb |
’ Grinder Radius ] Rg A E]:} Rg |
3 EnterMD 1-15A C 1]
4 iCaIculate the cam parameters: ‘ ] 7
| cam Angle [:] 0
Follower Velocity {: dy/df
j Follower Acceleration * | @[: | dzy/dﬁzw
; Pressure Angle E[:} ‘ o
1 Grinder-Cam (;gqter/Center [::][:j |
| Dsanee Le b1 w |
| 7i7 ,,,G,':inqg,r Correction Angle | * | [:] o0
5 iRepeat step 4 for all § <g. [: [:] )
6 | To continue cam design when :][:]
16 =, re-enter MD 1—-13A, press | [:H:
1NE,X,T' gﬂnd changg duration, | :][: |
Jincrement and/or lift as required.‘ :H:] ]
| Thengotostep3 e 1 s
71 ng grnientirely new case, go to [:] [:] B
istep 1. | :”:]
Example:

Design a plastic cam starting at a 5.0 inch base radius, develop a har-
monic motion for the first 110° of rotation, with a total lift of

1.0 inches.
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Solution:
dy/de d%y/de
0° y (in) (in/deg) (in/deg?) o° 1g (in) n°
0.0000 | 0.0000 | 0.0000  0.0004 0.0000  5.0000 | 0.0000

10.0000 | 0.0203 | 0.0040 = 0.0004 2.6289 | 5.0203  -2.6289
20.0000 | 0.0794 | 0.0077 | 0.0003 4.9771| 5.0794 -4.9771
30.0000 | 0.1726 | 0.0108 | 0.0003 | 6.8169 5.1726 -6.8169
40.0000 | 0.2923 | 0.0130 | 0.0002 8.0049  5.2923 | -8.0049
50.0000 | 0.4288 | 0.0141 0.0001  8.4846 | 5.4289 —8.4846
60.0000 | 0.5712 | 0.0141 @ -0.0001| 8.2709  5.5712 -8.2709
70.0000 | 0.7077 | 0.0130 | -0.0002 7.4290 | 5.7077  -7.4290
80.0000 | 0.8274 | 0.0108 -0.0003 | 6.0569 5.8274  -6.0569
90.0000 | 0.9206 | 0.0077 -0.0003  4.2728  5.9206 -4.2728
100.0000 | 0.9797 | 0.0040 | —0.0004  2.2076  5.9797  —2.2076
110.0000 = 1.0000 | 0.0000 A -0.0004 0.0000 | 6.0000 0.0000

Keystrokes:

Enter MD1-13A

EEA()4

IIOBIOEISBOE » (0.0000

Enter MD1-15A

A -» (0.0000

8] + 0.0000

» (0.0000

R/S » (0.0004

D - (0.0000

a > 5.0000

> 0.0000

B » 10.0000

B | > (0.0203

» (0.0040

» 0.0004

B » 2.6289

E | > 5.0203

R/S —» -2.6289

B » 110.0000

B | » 1.0000
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R/S

_» 0.0000

» —0.0004

HEHH

\J

0.0000

R/S

\j

6.0000

» 0.0000

89
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ROLLER FOLLOWER CAM
FUNCTION GENERATOR

ROLLER
cam FUNETIOR ¢ or MD1-16A
S »0 >y +rgn f(x) f'(x)

WvOY

]

]

This program generates roller follower circular cam data for an
arbitrary function. The user specifies the follower function and its
derivative by keying them in memory. Values are then calculated for
grinding the cam. MD1-13A is used to store the necessary cam
parameters. The values calculated for ry are at an angle § - n because
of the lead or lag of the roller surface. 35 steps are available to the
user for the function and its derivative.

B = Duration of lift h

Inc = Angular increment of calculation
h = Total lift over angle

Ry, = Base circle radius

R; = Roller radius

6 = Cam angle
y = Follower lift
% = Follower velocity

o = Pressure angle
1g = Center to center distance of grinder and cam

n = Angle correction for grinder

Equations:
y =hf (6/B)

r=Rpt+y

_1 (180 dy
=t 1 —_
a=tan (nr d0>



MD1-16A 91

rg = (1* + (Rg - R)? - 2r(Rg - Ry) cos a)”
R, -R
n=sin"! <¥ sin a>
Tg

Center of cutter
or grinding wheel

/

\
Line of action |
of follower —\

| |
v .
*~— Cam Center

Remarks:

This program may halt on underflow during calculation of r, if the
pressure angle o = 90°.

Values calculated for y are with reference to the beginning of each
portion of the design.

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall,
1971.
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter MD 1-13A

2 Input the foltowing:

>
E=Y

Duration B
Increment Inc
Total lift h
Base radius Rp

Grinder radius Rg

O O O O @
D
o

Roller radius R,
3  Enter MD 1-16A
4 Key the function and its deriva-
tive into memory: GTO D
Switch to W/PRGM mode 14
Key in the function function
Press RTN
a LBL E
Key in the derivative derivative
Press RTN
Switch to RUN mode
The argument of the function
and the derivative is in X when
the routines are called. The
argument is also available in Rg.
5 Calculate the cam parameters:
Cam angle A 0
Lift B y
Grinder-cam center/center
distance Cc rg
Grinder correction angle R/S n

6 Repeat step 5 for all § <f
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
7  To continue cam design, enter E Rp’

MD 1-13A, press NEXT, and
change duration, increment and/
or lift as required. Then go to
step 3.

8 For an entirely new case, go to

step 2.

Example:

A cam with a roller follower is to convert an angular input between
0° and 90° to a linear output according to the following equation
and its derivative:

If his 1 inch and 6 is incremented 10° at a time, generate the cam
profile by setting R, to zero. Skip the 0° calculations since y is
undefined at this point.

R; = 0.20 inches

Rp = 3.0 inches

Solution:
6° y (in) rg (in) 7
10.00 0.33 3.14 -1.00
20.00 0.47 3.28 -0.67
30.00 0.58 3.38 -0.52
40.00 0.67 347 -043
50.00 0.75 3.55 -0.37
60.00 0.82 3.62 -0.32
70.00 0.88 3.68 -0.29
80.00 0.94 3.74 -0.26

90.00 1.00 3.80 -0.24
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Keystrokes:
Enter MD1-13A

ool 3ol 20 > 0.20
Enter MD1-16A

GToJ o

Switch to W/PRGM mode » 14

(1 =) G E B 0 () 2 K@) (%) G0

Switch back to RUN mode

A} » 0.00
(Skip calculating for 0°)
(A ] > 10.00
5] > 033
> 3.14
—» -1.00
O > 20.00
a > 047
> 328
R/S > -0.67
(A | > 30.00
5] > 0.58
> 338
> -0.52
A > 40.00
8] > 0.67
> 347
R/S » 043
» 50.00
B > 0.75
> 3.55
R/S > _0.37
— 60.00
a > 0.82
> 362
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» -0.32
(A ] » 70.00
B] > 0.88
» 3.68
R/S > -0.29
A | » 80.00
B | > 0.94
> 3.74
» -0.26
» 90.00
B » 1.00
— 3.80
R/S » -0.24

The cam profile is plotted below:
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FLAT FACED FOLLOWER CAM
FUNCTION GENERATOR

FLAT FACED FOLLOWER
( CAM FUNCTION GENERATOR MD1-17A
[
~
|

34 WvOd

+0 +>y +Tgn f(x) '(x)

|

This program generates flat faced follower circular cam data for an
arbitrary function. The user specifies the follower function and its
derivative by keying them in memory. Values are then calculated for
grinding the cam. MDI1-13A is used to store the necessary cam
parameters. The values calculated for r, are at an angle 6 - n because
of the lead or lag of the follower surface. 29 steps are available to the
user for the function and its derivative.

B = Duration of lift h
Inc = Angular increment of calculation
h = Total lift over angle 8
Ry = Base circle radius
0 = Cam angle
y = Follower lift

:;’ Follower velocity

a = Pressure angle
= Center to center distance of grinder and cam

n = Angle correction for grinder

Equations:
y =hf(6/8)
dy _dy dx _h dy
dd dx df g dx
r= Rb + y
w=tan-! (180 dy>
I

gy
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rg = (R +12 +2R, 1, cos @) ”
1 fTc tRgcosa
n=cos!|{—E2——) -«
Tg

Centerof cutter or
grinding wheel

Cam profile

Cam center

Remarks:

This program may halt on underflow during calculation of ry if the
pressure angle a = 90°.

Values calculated for y are with reference to the beginning of each
portion of the design.

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall,
1971.
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INPUT KEYS OUTPUT

STEP INSTRUCTIONS DATA/UNITS DATA/UNITS

1 Enter MD 1-13A
2 Input the following:
Duration B
Increment Inc Inc
Total lift h

Base radius Rb Rb

O o O W >
>

Grinder radius Rg
3 | Enter MD 1-17A
4 Key in the function and its
derivative into memory: GTO D
Switch to W/PRGM mode 14
Key in the function function
Press RTN
LBL E
Key in the derivative, press derivative RTN
Switch to RUN mode
The argument of the function
and its derivative is in X when
the routines are called. The
argument is also available in Rg.
5  (Calculate the cam data:
Cam angle A 0
Lift B y
Grinder-cam center/center
distance Cc rq
Grinder correction angle * R/S n
6 Repeat step 5 for all § <8.
7 To continue cam design, enter
MD 1-13A, press NEXT and

change duration, increment and/

or lift as required. Then go to
step 3. E Rob
8 For an entirely new case, go to

step 2.
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Example:

A cam with a flat-faced follower is to convert an angular input to a
linear output according to the following equation and its derivative.

—<ﬂ>‘/’

(5.

_=1(2>—‘/z
2\

Let B = 90° and h = 1 inch. Generate the cam profile from 10° to

90° in increments of 10° by setting R, = 0. Skip the 0° calculations
since y is undefined at this point.

Rp =3.0 inches

h =1.0 inches
Solution:
0° y (in) 1y (in) 7°

10.00 0.33 3.47 -15.99
20.00 047 3.54 -11.01
30.00 0.58 3.62 -8.76
40.00 0.67 3.70 -7.42
50.00 0.75 3.77 -6.50
60.00 0.82 3.84 -5.83
70.00 0.88 3.90 -5.31
80.00 0.94 3.96 -4.89
90.00 1.00 4,01 -4.55

Keystrokes:

Enter MD1-13A

0] A B e B¥ c 3 o [ D | > 0.00

Enter MD1-17A

(D]

Switch to W/PRGM mode —» 14

(1 (=) G =8 @] [ 12 (x](e] (4] Bl
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Switch back to RUN mode

(A ] > 0.00
(Skip calculating for 0°)
A} » 10.00
B > 033
—» 347
> -15.99
(A ] —> 20.00
B > 047
> 3.54
» -11.01
[A] > 30.00
a > (.58
> 3.62
> _8.76
(A ] > 40.00
B8] > 0.67
> 3.70
R/S > 742
(A > 50.00
B > 0.75
> 3.77
> _6.50
A » 60.00
a > 0.82
> 3.84
> _5.83
A ] » 70.00
B | » (.88
> 3.90

\

S -5.31

pe)
=
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-» 80.00

Y

0.94

3.96
-4.89

Y

\j

» 90.00

—» 1.00

ﬂﬂﬂaﬂﬂﬂ

> 4.01

R/S

» -4.55

70
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LINEAR CAM FUNCTION GENERATOR

C FuncHNEARCAM. - MD1.18A o]

B »xy eew exgyy 0 f(x)

-

This program generates roller or point follower cam data for an
arbitrary function on a linear cam. The user specifies the follower
function and its derivative by keying them in memory. Values are
then calculated for the cam profile, pitch curve (or roller path) and
grinder path. MDI1-13A is used to store the necessary cam
parameters. 28 steps are available to the user for the function and its
derivative.

L = Duration of lift h
Inc = Linear increment of calculation
h = Total follower lift over length L
Ry, = Base height
R; = Roller radius
R, = Grinder radius
x = Linear displacement of cam
y = Roller center height above datum
X¢, Ye = Roller contact point coordinates for displacement x
Xg, Yg = Grinder center for displacement x

a = Pressure angle

Equations:
y =hf(x/L)+ Ry, + R,
Xc =X+ R, sin a Ve=y-R;cosa
Xg =X - (Rg - R;) sina Ye=y t(Rg - R;) cosa

_ dy)
=t 1 —_—
(41 an <dx

=tan~! (%f’ (x/L))
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(Rg'Rr)cosa ] {“ ‘
Rrcosa_ N N
i C
a
hf(x/L) +R,
X > |=R,sina
Ao —| |« (Re-R()sing
Remarks:

This program may halt during calculation of (X, y.) and (X, yg) if
the pressure angle a = 90°.

STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
1 Enter MD 1-13A1
2 Input the cam parameters:
Duration L A L
Increment Inc B Inc
Lift h C h
Base height Rp D Rp
Grinder radius Rq D Rq
Roller radius R, D R,
3 Enter MD 1-18A
4 Key in the function and its
derivative into memory: GTO D
Switch to W/PRGM mode 14
Key in the function function
Press RTN
a tBL || E
Key in the derivative derivative
Press RTN

Switch to RUN mode
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STEP INSTRUCTIONS DATAUNITS
The argument of the function
and its derivative is in X when
these routines are called. It is
also available if necessary by
the following:
5 Calculate the roller center
coordinates
6 Calculate the profile coordinates
*
7 Calculate the grinder center
coordinates
*
8 Steps 6 and 7 may be executed
in any order after [} is pressed.
Repeat step 5 for all x < L.
9 To continue the cam design,
enter MD 1—-13A, press NEXT,
and change duration, increment,
and/or lift as required. Then go
to step 3.
10 For an entirely new case, go to
step 1.
Example:

KEYS

RCL
RCL

R/S

R/S

R/S

OUTPUT
DATA/UNITS

argument
X
Yy
Xc

Yc

Xg

Yg

Rp

A 1 inch roller follower is to trace a path corresponding to the
function y = x?, from x = 0 inches to 10 inches on a linear cam. The
cam will be ground by a 3 inch radius grinder. The follower should
lift 2 inches over the total length. Calculate the cam data and roller
and grinder center locations at increments of 1 inch. The base height
of the cam is 1 inch.
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Solution:
x (in) y (in) X (in) ye (in) Xg (in) Yg (in)
0.0000 | 2.0000 0.0000 | 1.0000 | 0.0000 | 4.0000
1.0000 | 2.0200 1.0400 | 1.0208 | 0.9201 | 4.0184
2.0000 | 2.0800 2.0797 | 1.0832 | 1.8405 | 4.0736
3.0000 | 2.1800 3.1191 1.1871 | 2.7617 | 4.1658
4.0000 | 2.3200 4.1580 | 1.3326 @ 3.6840 | 4.2949
5.0000 | 2.5000 5.1961 1.5194 46078 | 44612
6.0000 | 2.7200 6.2334 | 1.7476 @ 5.5333 | 4.6648
7.0000 | 2.9800 7.2696 | 2.0170 @ 6.4607 | 4.9059
8.0000 | 3.2800 83048 | 2.3276 | 7.3904 | 5.1848
9.0000 | 3.6200 93387 | 2.6791 @ 83226 | 5.5018

10.0000 | 4.0000 | 103714 | 3.0715 | 9.2572 | 5.8570

Keystrokes:

Enter MD1-13A

N AR PACR{oEIo D] > 1.00

Enter MD1-18A

o]

Switch to W/PRGM » 14

@ A

Switch to RUN

(14

(A ] » 0.0000

- 2.0000

B | - (0.0000

> 1.0000

> (.0000

R/S > 4.0000

A ] » 1.0000

> 2.0200

B » 1.0400

> 1.0208

» (0.9201
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\ /

R/S 4.0184

- 10.0000
R/S - 4.0000
10.3714
3.0715
> 9.2572
R/S » 5.8570

R/S

Y

EHEHE
 J

To continue the cam design, the new function and its derivative must
be properly referenced to the desired point. For example, if the
follower is to return to its original position in 10 more units, by a
motion such that the follower profile is symmetric about x = 10, the
proper function is f(x/L) =1 - (x/L - 1)%.

The derivative is — 2(x/L - 1)/L. MD1—18A calls the function and its
derivative with the argument x/L, and the derivative portion auto-
matically divides by L once, so the cam design continues as follows:

Keystrokes:

Enter MD1-13A

a: > -2.0000
Enter MD1—-18A

0]

Switch to W/PRGM » 14

1{=] [ENTER#] [x]1 [=] [cHS]

EE O

Switch to RUN

A} » (0.0000

> 4.0000

B » -0.3714

» 3.0715
> 0.7428
R/S —» 5.8570

and so on. The computed values are with reference to x = 10 for
their zero point.
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Linear cam profile

Grinder

6 (xg;yg)
4] (xy)
3 VI /\

1 T=(Xc,¥c)

o 5 10 15 20
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SPUR GEAR REDUCTION DRIVE

SPUR GEAR REDUCTION DRIVE MD1-19A 9
v v v v +Dp, c
S f cD. P Np Neby 3

For a spur gear meshing with a pinion, this program performs an
interchangeable solution among the variables reduction (f), distance
between the centers (C.D.), diametral pitch (P), and number of
pinion teeth (Np,). Once these four basic variables have been deter-
mined, the program will also output values for the pitch diameters of
the pinion and the gear (D, and Dg) and the number of gear teeth

(Ng).

The basic formula used in all solutions is:

41 2PxCD. W
N

p

The calculations for f, P, and C.D. are straightforward. The solution
for N, is more complicated since it must be an integer. Because of
this constraint, there may not be a gear-pinion combination that will
give exactly the desired reduction. In this case, the program finds the
closest integer value for N, by the formula

N, = INT (w + 0.5)
f+1

where INT represents the f INT function on the HP-65. Then a new
value for the reduction, f’, is found by substituting this Ny into
equation (1) above. The next step is to compute the number of gear
teeth (also an integer) by

N = INT (f' N, +0.5).
Finally the true value of the reduction is found by

N
NP

This modified value for f is stored in R; and may be recalled by the
user if desired.
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+
Line
v
. action
\F’ Pinion PO
| " \d
4”
O"
‘ﬂ
L d
L )
O/
‘O
'¢
L 4
[}
AT~ Gear

Remarks:

The program assumes that the reduction will be expressed as a
decimal number greater than 1. For instance, a reduction of 9:2

should be input as %, or 4.5. If £ <1, the program will still work but
the pinion values and gear values will be reversed.

Reference: Design of Machine Elements, M.F. Spotts, Prentice-Hall,
1971.
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INPUT
STEP INSTRUCTIONS DATA/UNITS
1 Enter program

2 Input three of the following

variables:
Reduction f
Center distance C.D.
Diametral pitch P
Number of pinion teeth Np

3 Solve for the remaining
variables:
Reduction
Center distance
Diametral pitch
Number of pinion teeth
4 Display the following variables:
Pitch diameter of pinion
Number of gear teeth
Pitch diameter of gear
5  Todisplay any of the basic
variables:
Reduction

Center distance

Diametral pitch
Number of pinion teeth
6 To change any inputs, go to
step 2 and input the changed

variables.

o 0O W >

R/S
R/S

RCL

RCL

RCL
RCL

R/S
R/S
R/S
R/S

OUTPUT
DATA/UNITS
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Example:

A spur gear reduction mechanism is to be designed to reduce a rota-
tion from 1800 RPM to 650 RPM. The distance between the centers
of the gear and pinion is constrained to be 9 inches. If the designer
wishes to use teeth of diametral pitch 8, how many teeth should be
on the pinion? On the gear? (38,106) What will the diameters of the
gears be? (4.75 inches, 13.25 inches) What is the actual reduction
in speed? (2.79)

Keystrokes:

1800 [ENTER+] 650 (<] I} — 2.77

‘B » 38.00
(E | » 4.75

R/S > 106.00
R/S » 13.25
[Ren)1 > 2.79
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STANDARD EXTERNAL
INVOLUTE SPUR GEARS

STANDARD EXTERNAL -
INVOLUTE SPUR GEARS 1 MD1-20A1 z

[
S sl’)t: o4dw >invoy >ow -

TANDARD EXTERNAL
INVOLUTE SPUR GEARS 2 MD1-20A2
@ +>M At>M; +q +Rw

C ANI
—

This program uses two cards to compute various parameters for
standard external involute spur gears. Given the diametral pitch P,
number of teeth N, pressure angle ¢, and pin diameter d,y, the first
card of the program will compute the pitch diameter D, tooth thick-
ness t, and the involute and corresponding flank angle inv ¢, and
¢w- The flank angle ¢,y is calculated from the involute by a Newton’s
method iterative solution for the equation f (¢y,) =0,

where f (¢w) = tan ¢w - ¢w —inv ¢w-

In this solution, an initial guess is made for ¢y, :
0w =3 inv 9y)”

Newton’s method then provides refinements of the initial guess by

6,0+ =g @) _ f(pw™)
" Y (ew™)
p® tan ¢y, ™ - ¢y, ™ — inv ¢y
" tan? ¢y, ™

The second card of the program computes various measurements
over the pins, namely, the theoretical values of the measurement
over pins, M; the radius to the center of the pin, q; and the measure-
ment over one pin, Ry,. In addition, given the value of the tooth
thinning At, the program will return the measurement over pins with
tooth thinning, M.
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Equations:

p=N
P
t= L
2P
inv ¢ (radians)=i+tan¢_ LN dw —m
" D 180  Dcos¢ N
dw *+2q (N even)
M= 90
dy, t+2q cos (W) (N odd)
2 cos Py
d
M, =M - At 52
sin ¢y,

Reference: Adapted from a program submitted to the HP-65 Users’
Library by Mr. John Nemcovich, Los Angeles, CA.

Gear Handbook, D.W. Dudley, McGraw-Hill, 1962.

base
circle

\
addendum
pitch [, N q

circle ga«—2¢
/__\
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STEP

MD1-20A

INSTRUCTIONS
Enter MD 1-20A1
Input the following:
Diametral pitch and
Number of teeth, and calcu-
late the pitch diameter and
tooth thickness
Input the following:
Pressure angle
Pin diameter
Calculate the involute
Compute the corresponding
flank angle
Enter MD 1-20A2
Calculate measurement over pins
(theoretical)
Input tooth thinning and
calculate measurement over pins
with tooth thinning
Compute radius to center of pin
Compute measurement over one
pin
To change tooth thinning go to
step 8. To change any other

input go to step 1.

Tif d is not known, it may be
calculated from the pin con-
stant k and the pitch P:
dw =k/P
To compute ¢,y directly from
invéy: Enter MD 1—20A1

Store inv ¢,

Compute ¢

INPUT
DATA/UNITS

At

Inv ¢

KEYS

STO

OUTPUT
DATA/UNITS

[
¢

inv ¢y, (rad)

dw (dec. deg.)

M¢

dw (dec. deg.)
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Example:

A 27-tooth gear with pitch 8 is cut with a 20° pressure angle. The
pin diameter is 0.24 inches, and tooth thinning is reckoned at 0.002
inches. Calculate the unknown parameters. (D = 3.3750 inches,
t = 0.1963 inches; ¢y, = 25.6215°; M = 3.7514 inches; M; = 3.7470
inches; q = 1.7587 inches; R,, = 1.8787 inches).

Keystrokes:

Enter MD1-20A1

C=a (-4

8[ENTER] 27 I} » 3.3750
R/S > (0.1963

20[enTeRY] 24 B} > 0.0324

D —» 25.6215

Enter MD1-20A2

(A > 37514
0028 > 3.7470

> 1.7587
D] > 1.8787
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SPUR/HELICAL GEAR FORCES

|

This program computes the various forces that act on spur and
helical gears as a result of the gear torque. The inputs for spur or
helical gears are the gear torque T, the pitch radius r of the gear, and
the pressure angle ¢. For helical gears, the helix angle a, measured
from the axis of the gear, must also be input; the pressure angle may
be input as either transverse (¢, measured perpendicular to the gear
axis) or normal (¢,, measured perpendicular to a tooth). In either
case, the other pressure angle will also be calculated and stored.

SPUR/HELICAL GEAR FORCES  MD1-21A
@ (ah)T¢ ® (0,50) "F':t (*Fa)

49 H/S

Outputs of the program are the following gear forces:

for spur and helical gears, the tangential force F; and the
separating force F,;

for helical gears only, the thrust force F,.

Equations:

F,=F tan¢
R=T Fa=F,tana

h #/// ~ -
Pitch Circle Pitch Circle
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The parentheses around certain variables on the magnetic card are
used to denote inputs or outputs which apply to helical gears only.
These variables («, ¢,, F;) may be ignored when solving spur gear
problems.

Reference:

Machine

Design,

Schaum’s Outline

Holowenko, and Laughlin, McGraw-Hill, 1961.

STEP

2a

3a

4a

5a

2b

3b

4b

5b
6b

INSTRUCTIONS

Enter program
For spur gears, input the
following:

Gear torque

Pitch radius of gear
Input pressure angle
Calculate tangential force and

separating force

To change pressure angle, go to
step 3a. To change torque or
pitch radius, go to step 2a.
For helical gears, input the
following:

Helix angle

Gear torque

Pitch radius of gear
Input one of the following two
variables:

Transverse pressure angle or

Normal pressure angle
Calculate tangential force and
separating force
Calculate thrust force
To change pressure angle, go to
step 3b. To change any other

variable, go to step 2b.

INPUT
DATA/UNITS KEYS
T t
r A
] B
D
R/S
a t
T +
r A
) B
®n c
D
R/S
E

Series, Hall,

OUTPUT
DATA/UNITS

Ft
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Example:

A helical gear with pitch radius 12 cm has a torque applied to it of
450,000 dynes-cm. The helix angle is 30°, and the normal pressure
angle, measured perpendicular to a tooth, is 17.5°. Find the trans-
verse pressure angle and the tangential, separating, and thrust forces.
(20.01°; 37500.00 dynes, 13652.84 dynes, and 21650.64 dynes.)

Keystrokes:

30 [ENTER#4] 4.5 [EEX] 5 [ENTER4]

123175 » 20.01

(D] — 37500.00
R/S > 13652.84

a > 21650.64
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BEVEL GEAR FORCES

BEVEL GEAR FORCES MD1-22A
@ Tér RCLCC LC,RCC

49 A8

*F, ®n 4B FFg  *FpFg

J

This program computes the forces that act on straight or spiral bevel
gears as a result of the torque. Inputs to the program are the torque
T, the mean pitch radius r, the pressure angle ¢, the pinion spiral
angle a, and the pinion pitch cone angle . For spiral bevel gears, ¢,
must be the normal pressure angle, that is, measured in a plane
normal to a tooth. For straight bevel gears, the spiral angle a must be
input as zero.

The program outputs three mutually perpendicular components of
force: the tangential force Fy, the pinion thrust force Fj acting
parallel to the pinion axis, and the gear thrust force F, acting parallel
to the axis of the gear. Three sets of equations are used to calculate
these forces.

For all bevel gears, F; = %

For straight bevel gears, F, =F; tan ¢, sin §

F, =F; tan ¢, cos .

For spiral gears, the equations depend on the direction of the spiral
and sense of rotation of the pinion. For a right-hand pinion spiral
with clockwise pinion rotation or for a left-hand spiral with counter-
clockwise rotation,

tan ¢, sin
F, =F; <—¢n-—E - tan & cos B)

Ccos «

tan ¢, cos
F, = F; <;B+tanasinﬁ> .

cos «

When running the program, these equations and those for straight
bevel gears are selected by pressing the B key.
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For a left-hand pinion spiral with clockwise pinion rotation or for a
right-hand spiral with counterclockwise rotation,

tan ¢, sin
F, =F; (J +tan o cosB)

COSs &

tan ¢, cos
F, =F; <—H——~E— tan a sin B>

Cos «

These equations are selected by the [ key of the program.

Gear (Left hand spiral)

| Driven

‘Fg gl*\? Rotation

. F
Driver P"*
F
Pinion_ ‘3 E&_ |
o :

Rotation
(CW looking to right)

Remarks:

If the normal pressure angle ¢, is not known for a spiral bevel gear,
but the pressure angle § measured in a plane normal to the axis is
known, then 6, may be calculated by

¢n = tan~! (tan ¢ cos a).

The rotations of the pinion must be observed from the input end of
the pinion shaft.

Reference: Machine Design, Schaum’s Outline Series, Hall,
Hollowenko, and Laughlin, McGraw-Hill, 1961.
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STEP

MD1-22A
INSTRUCTIONS DATAUNITS
Enter program
Input gear torque and T
mean pitch radius and
calculate tangential r
force
Input the pressure angle (for Ont
spiral gears, ¢, must be
normal pressure angle)
Input the following:
Pinion spiral angle (zero for
straight gears) a
Pinion pitch cone angle B

For straight bevel gears
or

For right-hand spiral with
clockwise rotation
or

For left-hand spiral with
counter-clockwise rotation,

Compute pinion thrust force
and gear thrust force

For left-hand spiral with clock-
wise rotation
or

For right-hand spiral with
counter-clockwise rotation,

Compute pinion thrust force
and gear thrust force

For new case go to step 2.

OUTPUT
KEVS DATA/UNITS
1 T
A F,
B n
t a
c B
D Fo
R/S Fo
E Fo
R/S Fq
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
T1f the normal pressure angle ¢,
is not known for a spiral gear,

but the pressure angle ¢ mea-

sured perpendicular to the axis

is known, ¢, may be found: ¢ f TAN
a f COS
x !
TAN bn
Example:

A left-hand spiral pinion with mean radius 1.73 inches is subjected
to a torque of 745 inlb. The pinion is cut with a normal pressure
angle of 20°, a spiral angle of 35°, and a pitch cone of 18°. The
rotation of the pinion is clockwise. Find the forces acting on the
pinion. (F; =430.64 1b., F, =345901b., F, =88.801b.)

Keystrokes:

745 [ENTERY] 1.73 1} > 430.64
203135(enTers] 13 A » 345.90
R/S > 88.80

If a straight bevel gear with the same dimensions were used instead,
what would the forces be? (F; = 430.64 Ib., F, = 4843 Ib,,
F,=149.071b.)

Keystrokes:
745 [eNTER4] 1.73 Y » 430.64
20 0(enter+ ] 13 [ ) » 48.43

R/S » 149.07
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WORM GEAR FORCES

WORM GEAR FORCES MD1-23A £
E T, 140, Lo *fut, o,

Fgt o

This program computes the forces acting on a worm and worm gear
in mesh as a result of the input torque. Inputs to the program are the
worm torque T, the mean pitch radius of the worm r,,, the coeffi-
cient of friction f, the normal pressure angle ¢,,, measured in a plane
normal to a tooth, and the lead L of the worm. From these variables
the program computes the lead angle of the worm, A; the tangential
force on the worm, F; the tangential force on the worm gear, Fy;
and the separating force F;.

Equations:
A=tan!
2Mry,
——
I-W
l:r = l:"wt S.m ¢n
cos ¢y, sin A + f cos A
|- f tan A
cos ¢,
th = Fwt .
tan A +
cos P

Driver: Worm (Right hand)

Rotation Rt AN
ear)
Fr Ft (worm)
Fl (gear) = ~

Rotation Worm gear

y



Remarks:

The lead L may be found by L =P x N where P is the axial pitch of
the worm and N is the number of threads of the worm (e.g., N=2
for a double-thread worm).

MD1-23A

125

If ¢, is not known but the pressure angle ¢, measured in a plane
containing the axis of the worm, is known, then ¢, may be found by

Reference: Machine Design,

¢, =tan~! (tan ¢ cos A).

Schaum’s Outline Series,

Hollowenko, and Laughlin, McGraw-Hill, 1961.

STEP

INSTRUCTIONS
Enter program
Input
Torque on the worm
Pitch radius of the worm
Input
Coefficient of friction
Pressure angle measured
normal to a tooth
Input lead and calculate lead
angle
Calculate
Tangential force on the
worm
Tangential force on the
worm gear
Calculate separating force

For a new case, go to step 2

INPUT
DATA/UNITS
T t
w A
f t
én B8
L c
D
R/S
E

KEYS

Hall,

OUTPUT
DATA/UNITS

w
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Example:

A torque of 512 in-lb is applied to a worm having pitch diameter
2.92 inches and lead 2.20 inches. The normal pressure angle is 20°,
and the coefficient of friction is 0.10. Find the lead angle and the
forces on the worm and worm gear. (A = 13.49; F,; = 350.68 Ib;
Fg =986.99 Ib; F; = 379.101b.)

Keystrokes:

512 [ENTER+]2.92 [ENTER4]2 (] I}

1[enters]20 @221 » 13.49
D > 350.68
R/S > 986.99

> 379.10
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SPRING CONSTANT

SPRING CONSTANT MD1-24A 9
i v v v v v o
B X Fy Xz Fa k =

This program calculates the value of any variable given the other
four (X;, F,, X3, F3, k) in the spring equation. It may be used to
solve any general linear equation of the formy -y, = m(x - x¢). It
is also useful for linear interpolation in tables. Computed values are
automatically stored to provide an interchangeable solution.

X; = Spring length
F, = Force required to retain spring at length X,
X, = Spring length
F, = Force required to retain spring at length X,
k = Spring constant
Equations:
F, -F
k= 1 2
X, - X,

Fi =F, +k(X; -X;)
F, =F; +k(X; - X3)

F, -F
X1=L_—l+x2
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS
1 Enter program

2 Input four of the following five

variables: X, A X,
Fy B F,

X2 @ X,

F, D F,

k E k

3 Solve for the remaining

variable: A R/S X,
B R/S Fy

C R/S X,

D R/S F,

E R/S k

4 Repeat any portion of steps 2
or 3 as required.

5 For a new case, go to step 2.

Example 1:

A compression spring is 4.0 inches long under no compressive forces.
A force of 270 Ibf compresses the spring to a length of 2.8 inches.
The solid height of the spring is 2.5 inches. Find the spring constant
and the force to fully compress the spring(225.00 1bf/in., 337.501bf.)

Keystrokes:

spEoA23@27o0 A A > 225.00
25808 > 337.50

Example 2:

10.00% 10.25% 10.50%
21593 222.60 229.31

From the table shown, find the linear approximation to a value of
219.9749.(10.1516%)

Keystrokes:

103215938 102522260 @ @
219979 B A -4 » 10.1516%
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HELICAL SPRING DESIGN

HELICAL SPRING DESIGN MD1-25A §
g d4D »K fos s+P Pet &

+G

This program interchangeably computes deflection, stress, and load
for round-wire helical compression and extension springs. The Wahl
factor K is computed so that both pure torsional stress and stress
including curvature and shear may be handled. The energy stored per
spring coil is also calculated.
d = Wire diameter
D = Mean coil diameter
K = Wahl factor
f = Deflection per coil
s = Pure torsional stress
P = Load on spring
u = Energy/coil
G = Torsional modulus of rigidity

Equations:

fGd

S —
7D?

wsd3
8D

P=

8PD3
=227
Gd*
C-.25, 615 D

K= + —= where C=—
C-1 C d

|-
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-

d

Reference: Handbook of Mechanical Spring Design, Associated
Spring Corporation, 1955.

INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter program

2 Input the wire diameter and d t d
mean spring diameter D A G
3 Calculate the Wahl factor B K

4 Input the deflection/coil and

compute the torsional stress f C s
5 Input the torsional stress and
compute the load s D P

6 Input the load and compute

the deflection/coil P E f
Optional: Display the energy/ * R/S u
coil T

7 Repeat steps, 4, 5, or 6 individ-
ually or in sequence as
required. Step 3 may be
executed after pressing or
before[]. To compute the
total stress from [§: Torsional stress B X Total stress
For the torsional stress for

input to[J: Total stress B + Torsional stress
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INPUT KEYS OUTPUT

STEP INSTRUCTIONS DATA/UNITS DATA/UNITS

8 For a new case, go to step 2.
Note: The modulus of rigidity
is assumed to be
11500 000 and is auto-
matically stored when
B is pressed. G may be
changed after A is press-
ed by keying it in and
storing it in R3. G STO 3
£ computed under [@is stored
in Rg during calculation of u

if the user wishes to recall f

([RcL]8) to the display.

Example 1:

A compression spring has a mean diameter of 2.0 inches and a wire
diameter of 3/8 inches. Find the load necessary to deflect the spring
0.25 inches (88.83 lbs). Determine the stored energy resulting from
this deflection (11.10 in-Ib). Assume the spring has 10 active coils.

(For this solution we input the deflection per coil [.25/10] via
and calculate the load using the stress from as an intermediate
answer for input to E which gives the load. Similarly, the load is
retained as the input for [@ to calculate the energy [energy/coil
X #coils] ).

Keystrokes:

3 [ENTER+] 8 [+]2 Y .25 [ENTER4] 10 (=] [ B) —>- 88.83
e [ r's JUIER, > 11.10
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Example 2:

A spring is to compress 2.0 inches under aload of 100 pounds. The
spring has inside diameter of 3.25 inches and wire diameter of 0.5
inches. Calculate the minimum number of active coils required
(34 coils).

(For this problem we calculate the deflections/coil and divide this
result into the total deflection, giving the total number of coils.
3.25 + .5 is the mean diameter of the spring.)

Keystrokes:
.5 [ENTER4] 3.25 [ENTER#].5

[ I = PIBIE=I[E| > 34.07

Rounding 34.07 gives 34 coils.

Example 3:

An extension spring is initially loaded producing a stress of 5000 psi
(includes curvature and shear stress). Determine the initial load and
the total load to extend the spring 1 inch (4.08 lbs, 45.68 Ibs). Find
the energy from the total load (25.08 in-lbs). The spring is 0.125
inch round wire, has a mean diameter of 0.75 inch, and has 20 active
coils.

(The deflection per coil is 1/20 = .05. The stress input must be
divided by the Wahl factor to reduce it to pure torsional stress).

Keystrokes:

.125 [enTer+).75 Y 5000 @ (=] BJ(sT0]8 —> 4.08
.05 B [RcL]8(#] > 45.68
AR 20(x] > 25.08

(In the example above, Rg is used for temporary storage of the
initial load.)
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TORSION SPRING DESIGN

TORSION SPRING DESIGN MD1-26A §
d4DAN$  beheLe (7}
E ReE RE s s*p Pot =

This program interchangeably computes deflection, stress, and load
for round and flat wire torsion springs. The Wahl factor K is com-
puted so that both pure torsional stress and stress including curvature
and shear may be handled.
d = Round wire diameter
D =Mean diameter of spring
N = Number of active coils
R = Mean radius or lever arm
b = Flat wire width
h = Flat wire thickness
L = Length of active spring
E = Young’s modulus
t = Number of turns or revolutions
s = Pure torsional stress
P = Load at distance R
K = Wahl factor

Equations:
Helical Round Wire Flat Wire
s tdE wthE
DN L
p nd3s bh2s
32R 6R
¢ 32PRDN 6PRL
nd*E 7bh3E
K= C-.25 +———'615 where C=2

C-1 C d
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0 =t
)

Straight-offset

Flat wire spring

Total

N
deflection

Reference: Handbook of Mechanical Spring Design, Associated
Spring Corporation, 1955.

STEP INSTRUCTIONS oAThUNITS KEYS DTS
1 Enter program
2a  Input the round wire spring
parameters d t d
D t D
N t N
or R A E
2b  Input the flat wire spring
parameters b t b
h t h
L t L
R B E
3 Input the deflection and com-
pute the torsional stress t C s
4 Input the torsional stress and
compute the load s D P

5 Input the load and compute

the deflection P E t
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INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

6 Repeat steps 3,4, or 5 in
sequence as required. The
Wahl factor is available in
R¢ for helical torsion spring
stresses. To compute the
total stress from Torsional stress' | RCL 6
X Total stress
For the torsional stress for
input to [} Total stress RCL 6
+ Torsional stress
7 For a new case, go to step 2a
or 2b.
Note: Young's modulus E is
assumed to be
30,000,000 and is auto-
matically stored when
B orBis pressed. E may
be changed after [[Jor[E}
is pressed by keying it in

and storing it in R. E STO 7

Example 1:

A helical torsion spring is manufactured from .125 inch steel wire,
has a mean diameter of 2.50 inches and 40 active coils. A load is to
act with a lever arm of 2.0 inches. Determine the load necessary to
deflect the spring 1, 3, and 5 turns (3.60 lbs, 10.79 lbs, 17.98 Ibs).
Find the total stress at 5 turns (200666.94 psi).

Keystrokes:
.125 [ENTER#] 2.5 [ENTER#] 40 [ENTER#*
208 > 30000000.00

i§clp] > 360

k¥ c [ o - 10.79

3 clo > 17.98

5 6 [x] > 200666.94 psi
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Example 2 :

Find the deflection in degrees of a .02 inch stock flat wire spring
3/8 inches wide with 1.75 pounds load. The spring has 8 inches of
active length and the load will act at a mean radius of 1.5 inches
(160.43°).

Keystrokes:

3(ENTER4] 8 [+] .02[ENTER+) 8 [ENTER4+] 1.5}
1.75 @ 360(x] » 160.43
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FLAT SPRING DESIGN

FLAT SPRING DESIGN MD1-27A p
hR1  LR3 5
@ CODE+C P *° bnbR2  ER7

This program computes the load and stress given deflection for eight
cases of flat springs, including multiple leaf triangular plate springs.

h = Thickness of spring leaf
b = Width of spring leaf

L = Spring length

E = Young’s modulus

n = Number of leaves for multiple leaf spring

f = Deflection

P = Load
s = Stress
Equations :
2
p= sbh
6L
2
p= 4sbh
6L
_ ChfE
= X

nb

N|o
=

for Codes 1,2,3,6and 7

for Codes 4, 5 and 8

Code =1

C=1.00



MD1-27A
T—L |
— Code =1
b
v |h
C=1.00
P* ___T
Parabolic arc b h Code =2
—|
Py C=075
E[ Code =
h
|
C=1.50
Py |
Parabolic arc T h Code =4
T
21 T C=3.00

XXX XX XXX XXXIRIX1]

o C=6.00
21 }
b E Code=6
h
2] _;_
— C=092
P
b ! ‘ l
3
l_ b Code =7
T — "
Cc=1.15
b {P
4] -
T b_ . Code=8
XXX A XXX XXX IXIRIRX]] l
C=4.59
rt tp
2 2

139
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Reference: Handbook for Mechanical Engineers, T. Baumeister,
McGraw-Hill, 1967.

INPUT OUTPUT
STEP INSTRUCTIONS DATA/UNITS KEYS DATA/UNITS

1 Enter program

2 Store the spring parameters h STO 1 h
b STO 2 b
L STO 3 L
E STO 7 E

For multiple leaf triangular

plate springs, nb is stored

in Ry nb STO 2 nb
3 Input the spring code (1, 2,...,8) Code A (o]
4 Input the deflection f B f
5 | Calculate the load [ P
6 | Calculate the stress D s

7 Repeat steps 4, 5, and 6 as
required.

8 For a new case, go to step 2.

Example 1 :

A cantilever spring is loaded 18 inches from the fulcrum point, and
is made of 1/8” x 2” steel with E = 3 x 107 (Code = 3). Find the
load necessary to deflect the spring 5.25 inches (26.37 lbs).

Keystrokes:

1[ENTER4] 8[%] [sTO] 1 > 0.13

2 2 » 2.00

18(sT10] 3 > 18.00

3[EEx] 7 7 » 30000000.00

3@s25008 > 2637
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Example 2:

A triangular plate multi-leaf spring has a maximum allowable deflec-
tion of 2.0 inches. There are 5 leaves, the longest of which is 14.0
inches. The cross-sectional area of each leaf is .25” x 1.5”. Assume
E =3 x 107 (Code = 1). Calculate the maximum load and stress
(427.07 lbs, 76530.61 psi).

Keystrokes:

25 [sT0]1 » 025

1.5 [ENTER#] 5[x] [sTO] 2 » 7.50(nb—>R;)
14 [s70]3 > 14.00

3[eEx] 7 [sTo]7 » 30000000.00
13228 > 427.07

D] > 76530.61
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CONE AND PLATE CLUTCHES

CONE AND PLATE CLUTCHES MD1-28A

HOL1N1D

~ F ' >
g & f Ro#R;  naT asT

This program computes the torque and horsepower capacity for
cone and plate clutches assuming either uniform wear or uniform
pressure.
F = Axial force, 1b
N = Speed of rotation, RPM
f = Coefficient of friction
R, = Outside radius of contact in inches
R; = Inside radius of contact in inches
n = Number of surfaces in contact
a = Pitch cone angle
T = Torque capacity of clutch in in-Ib
Hp = Horsepower capacity of clutch

Equations:

Cone Clutches Plate Clutches
Uniform T= Ff Ry +R; T=Ffn R, +R;
wear sina 2 2

Uniform _ Ff |2(RZ-R} _ 2 (RS2 -R}

T=— = T=Ffn|={————=
pressure sina | 3 R02 _ Ri2 3 R02 _ Ri2
Hp = TN/63025.36

Reference: Machine Design, Schaum’s Outline Series, Hall,
Hollowenko, and Laughlin, 1961.



STEP

5a

5b

INSTRUCTIONS
Enter program
Input the axial force
Optional: input speed of
rotation
Input the coefficient of friction
Input the outside and inside
radius of

contact

(For plate clutches)
Input the number of surfaces in
contact and compute torque
capacity assuming uniform wear
Optional: display horsepower
capacity for uniform wear
Compute torque capacity
assuming uniform pressure
Optional: display horsepower
capacity for uniform pressure
(For cone clutches)
Input the pitch cone angle and
compute torque capacity
assuming uniform wear
Optional: display horsepower
capaci<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>