
THE HANDHELD CALCULATOR

WITH

ASW APPLICATIONS

ReEx H. SHUDDE

DEPARTMENT OF OPERATIONS RESEARCH

NAVAL POSTGRADUATE ScHoOL

MAY 19/8

Section

I

IT

III

IV

VI

VII

VIII

IX

XI

TABLE OF CONTENTS

INTRODUCTIONcceeeecccccccses e s e ccesc s

VECTORS ® © & & o & ¢ & o o & o o o o o o o 0o o ® © & o ¢ & oo ® o O o o

Polar/Rectangular Function Conventions...
Polar-to-Rectangular Conversion
EXErCiSeS .t.veeenceccoocas cecececcccnanna
Rectangular-to-Polar Conversion
EXercisesceeeeccecccecs ceeeeee ceeen
Summation Function Keysccc... .o
Vector Operations cececaccnccnann .

PROGWING ® @ @ @ © & o & & o o o o o o o o o @ & 0® o o ® & o o o

Program Memory ooooooooo @ © 6 @ o 06 06 9 © 0 o o o e o o

Keycodes ® ® & o O @ ¢ © &6 0 o o © o @ o o o o o 0 o o 0o o ® © o @ o o

Program Writing, Recording and Execution.
Program Editing and An Improved
Course-Made-Good Programcccceceee.

BRANCHING ...c0ceceesn beccscccsnnsenenes

Additional Comments ceeecnn ceeeen

SUBROUTINES cecerecosscerassccecese

PACKING THE OUTPUT DISPLAY ...vceesccnes

UNPACKING cececsocsec e vsccacsssanna

FLAGS ceeeessececenns ceecceccscacvaa

CARD READER OPERATIONScccceeecocccss

INDIRECT CONTROL (PANDORA'S BOX) ceeeeee

ADDITIONAL EXERCISESiiieeteneennn.

REFERENCESiccteeeceescscconcccacncens

53

71

81

82

86

93

99

111

122

135

139

Example

1

10

11

12

13

14

15

16

17

18

19

INDEX TO EXAMPLES

Rectangular Coordinates from Bearing
and Rangecccceeecenes cececcance ceco s seese

Bearing and Range from Rectangular
CoordinatesS ...iiieeeeeeeeesaonaosccasaancsnces

Bearing and Range from Rectangular

Coordinates .t .ttt eieeeeecseescanasosaacosnanas

Course and Speed from Rectangular Coordinates..

Vector Addition with the I+ Function Key.....

Course-Made-Good with Bearing and Distance.
TWO LEJS .+t eeecececccccnonscs cevevececssaese s

Course-Made-Good. Four LEegS .. eeeeeeeeeeacns

Course-Made-Good at Each Legciveeeeenns.

Course-Made-Good with Bearing, Speed,
and Timeiitieieneenncansenonocannnanss SR

Course and Speed of an Active Sonobuoy Contact.

Course-Made-Good PrograMeeeeceeeeoeeeeeses

Edit Course-Made-Good Programeeeeeeees.

Horizontal Range to the First Convergence
ZONE ittt ittt eeessecnsecssccsscssssaneanenna

Course-Made-Good Program Revised

Width of First Convergence Zone Annulus........

Packing Output Dataiceiettiinnneeneeeennnes

Course-Made-Good Program with Packed Output ...

Unpacking Input Data. Method l................

Unpacking Input Data. Method 2................

Page

12

13

14

18

21

25

28

31

34

49

63

65

76

78

89

90

95

95

Example Page

20 Course-Made-Good Program with Packed or
Unpacked Inputcccuiiecececeececccns coee 96

21 Output Control with Flagsccccceuenen 101

22 Leroy's Equationccceeeeeeececancaccnns 105

23 Leroy's Equation. Program/Data Card......... 118

24 Use of DSZ Instructioncceeeeecccecces 124

25 Display Control with I-Register 128

26 Leroy's Equation with Indirect Control....... 131

FIGURE

LIST OF FIGURES

Polar Coordinate Conventions

Rectangular Components of a Contact......

Course-Made-Good with TwWO LegS....eeeeecess

Course-Made-Good with Four LegS....eeeeeess

Course-Made-Good with Course, Speed
and Timeccccceeee

Course and Speed of an Active Contact......

22

27

33

35

PREREQUTIGSTITES

The reader is expected to have read and become

familiar with pages 15-107 and 118-167 of the

HP-67 "Ownen's Handbook and Programming Guide" "

and to have worked through the examples contained

on those pages.

*

Herein referred to as Ownen's Handbook.

I. INTRODUCTION

Uses of the handheld programmable calculator (HPC)

are rapidly being found in all areas of endeavor. To the

uninformed, the HPC appears to be nothing more than an expensive

toy, but to people involved in problem solving the HPC is an

indispensible tool which can perform routine or tedious analysis

quickly. A major advantage of the HPC is its portability;

it goes where you go and it can be used in any location with

or without an auxiliary power source.

One area of application of the HPC is to provide a

computational aid in solving environmental tracking and

localization algorithms used by search platforms in Anti-

Submarine Warfare (ASW). The Hewlett-Packard HP-67 Handheld

Programmable Calculator has been adopted for this task. With

the adoption of this HPC have come the additional tasks of

(1) providing training in the use of the HPC in the real-time

operational environment using available programs and (2) pro-

viding additional education in the use of the calculator

functions in general and the techniques and methods of design-

ing and constructing programs for the HPC in particular.

The material presented here has been developed from

the author's lecture notes for a short course which has been

presented by the Office of Continuing Education of the Naval

Postgraduate School at the Naval Air Stations at Moffett Field,

California; Brunswick, Maine; and Jacksonville, Florida.

The material has been designed to provide additional education

in the use of the HPC and hopefully to remove the Black-Box

mystique that generally prevails during the initial learning

phases. The material does not address actual programs that

are used 1n ASW; it is oriented toward the use of the calculator

and the demonstration of techniquesthat are used in many

of the ASW programs.

II. VECTORS

In ASW applications "vector" inputs are almost always

in polar form: bearing and range, or course and speed.

Almost all tactical problems require that these inputs be

"added" or "subtracted" in order to achieve some end result.

It has been common practice to place these quantities onto

a plotting table so that these "vector" quantities can be

conveniently manipulated.

Although plotting tables are a great aid to "visual-

izing" tactical situations, the use of such graphical aids

can be quite time consuming by modern standards. 1In a real-

time tactical encounter, speed is of the essence; and such

speed is available with properly programmed computers or even

with computational aids such as the HPC.

Vector operations are implemented easily on the HP-67

by using a combination of the Polar/Rectangular functions

and [g][>P]; and the summation functions '

, and [RCL] . Each of these functions will be

discussed separately and then the functions will be combined

into useful vector operations.

Polar/Rectangular Function Conventions

The polar-to-rectangular [f][R<] and rectangular-

to-polar functions are discussed on pages 98 through

103 of the HP-67 Ownen's Handbook. The polar diagram on page 99

is commonly used by mathematicains and electrical engineers,

but it is awkward to use for navigation and relation problems.

Throughout this text the following conventions will

be used:

l. North is the direction of the positive x-axis

and East is the direction of the positive y-axis.

2. Bearing angles and courses will be measured from

North at 0° and will become increasingly positive

in the clockwise direction from North.

The HP-67 was designed primarily to be used for mathematical

and scientific applications rather than navigational problems

~and so some care must be used with regard to Item 2. 1In

particular, bearings and courses as cafcufated on the HP-67

will be positive and increase in the clockwise direction from

North to +180° only, and will be negative and decrease in the

counterclockwise direction from North to -180°. Fortunately,

this is only a minor inconvenience and is remedied by adding

360° to negative bearings and courses; the result is that

bearings and courses will follow the usual navigational con-

vention of increasing from 0° to +360° as measured in the

clockwise direction from North. These conventions are illus-

trated in Figure 1.

North
(positive x-axis)

0°(0°

East

FIGURE 1. Polar Coordinate Conventions

(positive y-axis)

Inner circle: Navigation Convention.

Outer circle: Mathematical Convention

on HP-67.

Input and output information is almost always in the

polar form of bearing and range or course and speed. Unfortu-

nately we cannot manipulate directly with the quantities; they

must first be converted to a rectangular or x,y-coordinate

system. The vector operations of addition and subtraction

are performed in the rectangular system; then the results are

converted to the polar system.

Polar-to-Rectangular Conversion

To convert polar coordinates to rectangular coordinates

in the HP-67 we must first enter the bearing angle in decimal

degrees (if the input is in degrees and minutes, then this

must be converted to decimal degrees using the [f]

function discussed in pages 94 through 96 of the HP-67 Ownexr's

Handbook), and then we enter the range. More explicitly, the

‘angle is placed in the Y-register and the range is placed

in the X-register. The function keys [f][R«<] are then pressed.

The resulting rectangular x-coordinate is the X-register and

the rectangular y-coordinate is in the Y-register.

EXAMPLE 1. Rectangular Coordinates from Bearing and Range.

A contact is at bearing 075°, and range 20,000 yards

from own ship (Figure 2). What are the rectangular coordinates

of the contact?

Solution:

Press Display Comment

*

075[{] [75.00] Enter the bearing (polar angle)
into the Y-register

20000 [£] 5176.38 The x-coordinate of the target
is 5176.38 yards (North) from
own ship

[h] [x 2 il ll9318.52| Exchange the X- and Y-registers.
The y-coordinate of the target
is 19318.52 yards (East) from
own ship.

—
The symbol is used to designate the function key [ENTER].

North

(x-axis)

5176 .38 b — — — — — — — — — — contact

ards xds
Y 075° 500035 :

: East
> (y-axis)

own 19318.52 yards
ship

FIGURE 2. Rectangular Components of a Contact.

E
X
E
R
C
I
S
E
S
:

C
o
n
v
e
r
t

t
h
e

f
o
l
l
o
w
i
n
g

b
e
a
r
i
n
g

a
n
d

r
a
n
g
e

d
a
t
a

t
o

r
e
c
t
a
n
g
u
l
a
r

c
o
o
r
d
i
n
a
t
e
s
.

I
n
p
u
t

S
o
l
u
t
i
o
n

B
e
a
r
i
n
g

R
a
n
g
e

x
-
c
o
o
r
d
i
n
a
t
e

y
-
c
o
o
r
d
i
n
a
t
e

1.
05
0°

10
,0
00

yd
s

64
27

.8
8

yd
s

(6
42

7.
88

yd
s

No
rt
h)

76
60
.4
4

yd
s

(7
66

0.
44

yd
s

Ea
st

)

2.
12

3°
4,

00
0

yd
s

-2
17
8.
56

yd
s

(2
17
8.
56

yd
s

So
ut

h)
33

54
.6

8
yd
s

(3
35

4.
68

yd
s

Ea
st

)

3
.

2
4
5
°

2
5

n
.
m
i

-
1
0
.
5
7

n
.
m
i

(
1
0
.
5
7

n
.
m
i

S
o
u
t
h
)

-
2
2
.
6
6

n
.
m
i

(
2
2
.
6
6

n
.
m
i

W
e
s
t
)

4
.

3
3
6
°

3
0
k
.
y
d

2
7
.
4
1

k
.
y
d

(
2
7
.
4
1

k
.
y
d

N
o
r
t
h
)

-
1
2
.
2
0

k
.
y
d

(
1
2
.
2
0

k
.
y
d

W
e
s
t
)
 C
o
n
v
e
r
t

t
h
e

f
o
l
l
o
w
i
n
g

c
o
u
r
s
e

a
n
d

s
p
e
e
d

d
a
t
a

t
o

r
e
c
t
a
n
g
u
l
a
r

c
o
o
r
d
i
n
a
t
e
s
.

C
o
u
r
s
e

S
p
e
e
d

x
-
c
o
m
p
o
n
e
n
t

o
f

v
e
l
o
c
i
t
y

y
-
c
o
m
p
o
n
e
n
t

o
f

v
e
l
o
c
i
t
y

5
.

0
3
5
°

2
0

k
t
s

1
6
.
3
8

k
t
s

(
1
6
.
3
8

k
t
s

t
o
w
a
r
d
s

t
h
e

1
1
.
4
7

k
t
s

(
1
1
.
4
7

k
t
s

t
o
w
a
r
d

t
h
e

E
a
s
t

N
o
r
t
h

o
r

f
r
o
m

t
h
e

S
o
u
t
h
)

o
r

f
r
o
m

t
h
e

W
e
s
t
)

0
.

3
2
0
°

3
0

f
t
/
s
e
c

2
2
.
9
8

f
t
/
s
e
c

(
2
2
.
9
8

f
t
/
s
e
c

t
o
w
a
r
d
s

-
1
9
.
2
8

f
t
/
s
e
c

(
1
9
.
2
8

f
t
/
s
e
c

t
o
w
a
r
d
s

t
h
e

N
o
r
t
h

o
r

f
r
o
m

t
h
e

W
e
s
t

o
r

f
r
o
m

t
h
e

t
h
e

S
o
u
t
h
)

E
a
s
t
)

7
.

1
9
0
°

1
5

k
t
s

-
1
4
.
7
7

k
t
s

(
1
4
.
7
7

k
t
s

t
o
w
a
r
d
s

t
h
e

-
2
.
6
0

k
t
s

(
2
.
6
0

k
t
s

t
o
w
a
r
d

t
h
e

W
e
s
t

S
o
u
t
h

o
r

f
r
o
m

t
h
e

N
o
r
t
h
)

o
r

f
r
o
m

E
a
s
t
)

8
.

1
1
5
°

2
5

k
t
s

-
1
0
.
5
7

k
t
s

(
1
0
.
5
7

k
t
s

t
o
w
a
r
d
s

t
h
e

2
2
.
6
6

k
t
s

(
2
2
.
6
6

k
t
s

t
o
w
a
r
d
s

t
h
e

S
o
u
t
h

o
r

f
r
o
m

t
h
e

N
o
r
t
h
)

E
a
s
t

o
r

f
r
o
m

t
h
e

W
e
s
t
)

exercises illustrate the

A positive x-coordinate is

A negative x-coordinate is

A positive y-coordinate 1is

A negative

The range may be in any

y-coordinate is

following

North.

South.

East.

West.

points:

convenient measure such as yards,

kiloyards, nautical miles, feet, etc.; the x- and y-

coordinates are in the same measure.

Course and speed are treated in the HP-67 in exactly the

same way as bearing and range except

the X and Y

y-component of

A positive

A negative

A positive

A negative

registers denote the

velocity.

X-component

xX-component

y-component

y-cOmponent

10

is towand

is twoanrd

is towand

is towand

that the contents of

x-component and

North or faom South.

South or {1om North.

East or from West.

West or 4rom East.

Rectangular-to-Polar Conversion

The conversion of rectangular coordinates to polar

coodinates is the 4invense of the conversion of polar

coordinates to rectangular coordinates. To convert rectangular

coordinates to polar coordinates in the HP-67 we must first

enter the y-coordinate and then we enter the x-coordinate.

More explicitly, the y-coordinate or y-component is placed

in the vy-register and the x-coordinate or x-component is

placed in the X-register. The function keys [q] are

then pressed. The resulting range or speed is in the

X-register and the bearing or course is in the Y-register.

11

EXAMPLE 2. Bearing and Range from Rectangular Coordinates.

A contact is 6000 yards North and 8000 yards East.

What is the range and bearing of the contact?

Solution:

Press Display Comment

8000 [8000.00] The East/West or y-component
must be entered first. Use
+8000 since the contact is

East.

6000 [g] The North/South or x-component
is placed in the X-register
(+6000 since the contact is
North). The range of 10,000
yards is in the display.

[53.13] Exchange the X- and Y-registers.
The bearing angle of 53°.13
is in the display.

12

EXAMPLE 3. Bearing and Range from Rectangular Coordinates.

A contact is in 10 n.mi West and 15 n.mi South. What

is the range and bearing of the contact?

Solution:

Press

10 [CHS]

lS!CHSf

[9] [>2]

360 [+]

13

Comments

The East/West or y-component is
entered first. Use -10 since

the contact is West.

The North/South or x-component
is placed in the X-register.
Use -15 since the contact is
South.

The range of the contact is
14.14 n.mi.

The bearing of the contact is
146°.31 counterclLockwise from
North.

Since the bearing angle was
negative, add 360°. The bear-
ing of the contact is 213°.69
clockwise from North. This is
the conventional bearing angle..

EXAMPLE 4. Course and Speed from Rectangular Coordinates.

A contact is moving at 12 kts toward the North and

15 kts toward the West.

contact?

Solution:

Press

15 [CHS] [#]

12

e

360

[] GEms)

D

What is the course and speed of the

Comment
The East/West component of
velocity is entered first.
Use =15 since the contact 1is
moving ftoward the West.

The North/South component is
placed in the X-register. Use
+12 since the contact is moving
Ltoward the North.

The speed of the contact is
19.21 kts.

The course is negative, so
360° must be added.

The contact's course is 308°.66.
(Note: This is decimal

degrees.)

The contact's course is 308°39'

15

E
X
E
R
C
I
S
E
S
:

C
o
n
v
e
r
t

t
h
e

f
o
l
l
o
w
i
n
g

r
e
c
t
a
n
g
u
l
a
r

p
o
s
i
t
i
o
n
s

t
o
b
e
a
r
i
n
g

a
n
d

r
a
n
g
e
.

I
n
p
u
t

X
-
p
o
s
i
t
i
o
n

y
-
p
o
s
i
t
i
o
n

S
o
l
u
t
i
o
n

I
n
p
u
t

R
a
n
g
e

B
e
a
r
i
n
g

1
5

k
y
d
s

N
o
r
t
h

1
2

k
y
d
s

S
o
u
t
h

1
0

n
.
m
i

S
o
u
t
h

8
n
.
m
i

N
o
r
t
h

2
0

k
y
d
s

1
5

k
y
d
s

1
3

n
.
m
i

1
2

n
.
m
i

E
a
s
t

E
a
s
t

W
e
s
t

W
e
s
t

2
5
.
0
0

k
y
d
s

1
9
.
2
1

k
y
d
s

1
6
.
4
0

n
.
m
i

1
4
.
4
2

n
.
m
i

5
3
°
.
1
3

1
2
8
°
.
6
6

-
1
2
7
°
.
5
7

o
r

2
3
2
°
.
4
3

-
5
6
°
.
3
1

o
r

3
0
3
°
.
6
9

 C
o
n
v
e
r
t

t
h
e

f
o
l
l
o
w
i
n
g

r
e
c
t
a
n
g
u
l
a
r

v
e
l
o
c
i
t
y

c
o
m
p
o
n
e
n
t
s

t
o

c
o
u
r
s
e

a
n
d

s
p
e
e
d
.

X
-
c
o
m
p
o
n
e
n
t

y
—
-
c
o
m
p
o
n
e
n
t

I
n
p
u
t

S
p
e
e
d

C
o
u
r
s
e

1
0

k
t
s

t
o
w
a
r
d

N
o
r
t
h

1
0

k
t
s

f
r
o
m
N
o
r
t
h

1
0

k
t
s

t
o
w
a
r
d

S
o
u
t
h

8
k
t
s

f
r
o
m

N
o
r
t
h

8
k
t
s

t
o
w
a
r
d

S
o
u
t
h

8
k
t
s

8
k
t
s

8
k
t
s

1
5

k
t
s

1
5

k
t
s

t
o
w
a
r
d

E
a
s
t

t
o
w
a
r
d
E
a
s
t

t
o
w
a
r
d

E
a
s
t

f
r
o
m

E
a
s
t

t
o
w
a
r
d

W
e
s
t

8
[+
]

10

8
[t
]

-1
0

8
[*
]

-1
0

-1
5

[+
]

-
8

-1
5

[4
]

-
8

1
2
.
8
1

k
t
s

1
2
.
8
1

k
t
s

1
2
.
8
1

k
t
s

1
7
.
0
0

k
t
s

1
7
.
0
0

k
t
s

3
8
°
.
6
6

1
4
1
°
.
3
4

1
4
1
°
.
3
4

-
1
1
8
°
.
0
7

o
r

2
4
1
°
.
9
3

-
1
1
8
°
.
0
7

o
r

2
4
1
°
.
9
3

Summation Function Keys

The summation functions [Z+], =], and [(Z+]

are described with the statistical functions on pages 107

through 111 and 116 to 117. We will not be concerned with

the statistical functions mean and standard deviation, but

only with the operation of the three summation functions.

The use of and affects the contents of the

secondary storage registers S4, S5, S6, S7, S8, and S9.

It is important that the effect is recognized when programs

that require the use of the secondary storage registers are

being written. However the operation of only two of these

six registers, S4 and S6, is important for vector operations.

When the key is pressed, the contents of the

x-register are added to the contents of the S4 storage register

and simultaneously the contents of the Y-register are added to

the contents of the S6 storage register. It is important

to note that the words "added to" are used; the contents of

the X-register and Y-register are not stonred in secondary

registers S4 and S6, respectively, but they are added to the

contents of S4 and S6, respectively. This is why the [Z+]

key is referred to as a summation (I 1is the Greek letter

s4gma and is used to denote summation).

16

When the [1-] keys are pressed, the contents of

the X-register are subtracted §rom the contents of the S4 storage

register and simultaneously the contents of the Y-register

are subtracted from the contents of the S6 storage register.

When the keys are pressed, the contents

of the X-register are neplaced by the contents of the S4 storage

register and simultaneously the contents of the Y-register are

neplaced by the contents of the S6 storage register. The

contents of the S4 and the S6 registers remain unchanged

during this operation.

After the or the keys are pressed,

the contents of the X-register are changed. Whatever number

appears in the display is meaningless for our purposes and

should be ignored.

A rapid method for clearing (setting to zero) the S4

and S6 storage registers is the following keystroke sequence:

Recall the contents of storage
registers S4 and S6 and place
these contents in the X-register
and Y-register, respectively.
The contents of S4 and S6 are
unaltered.

EEIQEH Subtract the contents of the
X-register from S4 and subtract
the contents of the vY-register
from S6. The result is that
S4 contains 0 and S6 contains
0.

17

EXAMPLE 5. Vector Addition with the I+ Function Key.

Let X = 3 and Y| = 8. Let X, = 4 and Yy = -5,

Find Xy = X + X, and Y3 = ¥y + Yy, using the summation

function keys. The y-values are to be placed in the Y-register

and the x-values are to be placed in the X-register.

Solution:

Press Display Comment

[Z-] could be This key sequence clears the
anything secondary registers S4 and

S6. If the calculator was
Ignore just turned on, the contents

will be zero, but if a pro-
gram 1s being used it 1is
safest to clear these
registers.

8 [1] Place y; in the Y-register.

Place xl

(8 OO]

3 is added to the contents
of S4 (which was zero) and

8 1is added to the contents

of S6 (which was zero).

in the X-register.

5| CHS] -5,00 Place y, in the Y-register.

4 Place x, in the X-register

2+ |Ignore| Add 4 to the contents of S4
(which was 3) and add -5 to

the contents of S6 (which

was 8).

18

Press

[RCL] (4]

[h]2

Display

7.00

[3.00]

19

Comment

The X-register (display)
contains the contents of
S4, which is X + X,
=3+ 4 =17,

Exchange the contents of
the X- and Y-registers.
The display shows what was
in the Y-register, which
are the contents of the S6

register, which Y1 t Y,
=8 -5 = 3.

Vector Operations

Vector operations are briefly described on pages 118

through 120 of the HP-67 Owner's Handbook. Since vector

operations are of fundamental importance in tactical analyses,

they will be examined at some length here.

20

EXAMPLE 6. Course-Made-Good with Bearing and Distance. Two Legs.

From point 0, a course of 025° is maintained for 30 n.mi

to point A. At point A the course is changed to 160° and

the new course is maintained for 50 n.mi to point C. What

is the course-made-good from point 0 to point C? (See

Figure 3.)

Discussion: The track from point 0 to point A 1is a vector

whose polar components (025°, 30 n.mi) are known. Similarly

the track from point A to point B 1is a vector whose polar

components (160°, 50 n.mi) are known. The components of the

vector OB are the course-made-good and the distance-made-good.

. — —

To obtain the vector OB, we need to add the vector AB to

—
the vector OA, or

— — —

OB = OA + AB .

—
To perform this vector addition, we need to express OA 1n

—— .

rectangular coordinates. Then we need to express AB 1n

e

rectangular coordinates. If we add the x-component of OA

to the x-component of 'Xfi, the result is the x-component

—_ .] —_—
of OB. Similarly, if we add the y-component of OA to the

— . —
y-component of AB, the result is the y-component of OB.

Thus the rectangular components of OB will have been obtained.

Finally, if we convert the rectangular components of OB to

polar components, these polar components are the course-made-

good quantities that we want.

21

North

(x-axis) A

)
5
g

S/~

o Y 00)
of =
Q
-

East

0 (y-axis)

COQb

Se
~

de

Q\

0
Qo

FIGURE 3. Course-Made-Good with Two Legs

22

§olution:

Press Display Comment

[RCL] [Z+] [h] Ignore Clear secondary registers S4
and S6.

025[+] 30 Enterthe polar components of
of 0A

27.19 Convert the polar components
of OA to rectangular
components.

] Ignore Add the x-component of OA
to S4and add the y-component
of OA to S6.

160 50 50 Enterthe polar components
of AB.

[R<] —46.98 Convert the polar components
of AB to rectangular
components.E
E
R
E
E
Y

a3 Ignore Add the x-component of AB to
the x-component of OA in S4
and add the y—componeng+of AB
to the y-component of OA in
S6. As a result, S4 contains
the x-component of OB and S6
contains the y-component of
O

Z+] -19.80 The contents of S4 and S6
recalled to the X-register
and Y-register, respectively.
The -19.80 in the display
is the x-component of OR.

[9] [>P] Convert the rectangular
components of OB to polar
coordinates. The distance
made good is 35.76 n.mi.

X <y [123.61] Exchange the X- and Y-registers.
The course-made-good 1is
123°.61.

Vector additions are not limited to just adding one

vector to another. It is possible to find the course-made-

good after any number of course changes. The important rule

to remember is that

VECTOR ADDITION AND VECTOR

SUBTRACTION MUST ALWAYS BE

PERFORMED 1IN RECTANGULAR

COORDINATES.

24

EXAMPLE 7. Course-Made-Good. Four Legs.

Find the course-made-good for the following flight

legs (see Figure 4):

OR = (26°.5, 47 n.mi),

2B = (224° 91 n.mi),
—-—* .

BC = (105° 77 n.mi),

and CD = (305° 63 n.mi)

Solution:

Press Display Comment

Clear S4 and S6.
26.5[%]147(£] (R<] 42.06 Enter OA and convert

to rectangular.

[T+] Accumulate x and vy
components in S4 and S6.

224 (2191 [£] [R<] -65.46 Enter AB and convert
to rectangular.

Accumulate x and vy
components.

105 1] 77(£] [R<] [=19.93] Enter BC and convert
to rectangular.

[Z+] Accumulate x and vy
components.

305 [2]63[£] 6.14 Enter CD and convert
to rectangular.

2+| [Ignore]| Accumulate x and vy
components.

25

Press

[g] 2E]

]<

360 [+]

26

Comment

Recall rectangular components
of OD.

Convert to polar. Distance-
made-good is 20.76 n.mi.

Course is negative. And 360°.

Course-made-good is 249° 73 .

North

(x-axis)
y

East

(y-axis)

FIGURE 4. Course-Made-Good with Four Legs.

27

EXAMPLE 8. Course-Made-Good at Each Leg.

Using the data in the previous example, find the

course-made-good at the end of each leg of the flight.

Solution:

Press Display

[Fem] (o] (8] (=]
26.5[1]47[F] R<]

3]
224 [1]91 [£] [R«]

3
[RCL] [Z+]

5 2 [48.25]

[-118.98]

360 [£]

105 [4]77[£] [R<]

[Ignore|

[RCL] [Z+] [-43.33]

[g] =B] [53.94]

A EZy]

305 [t]63[£f] [R<] 6,14

28

Comment
Clear S4 and S6.

_—
Convert OA to rectangular.

Accumulate x and vy.

—_—
Convert AB to rectangular.

Accumulate x and vy.

Recali rectangular components

of OB

Distance-made-good to point B
is 48.29 n.mi.

Course is negative. Add 360°.

Course-made-good to point B
is 241°.02.

Convert BC to rectangular.

Accumulate x and vy.

—
Recall components of OC.

Distance-made-good to point C
is 53.94 n.mi.

Course-made-good to point C
is 143°.44.

—_—
Convert CD to rectangular.

[Z+] [Ignore] Accumulate x and vy.

[RCL] [Z+] [=7.19] Recall components of OD.

[g] [=P] [20.76]] Distance-made-good at point D
is 20.76 n.mi.

@ [-110.27] Negative. Add 360°.

360 [+] [249.73] ggugjggmgge—good at point D

29

This last example illustrates that it is possible to accumulate

and display intermediate results without having to start the

problem over to obtain the results at the end of each leg.

The rectangular coordinates of the previous course-made-good

are contained in secondary registers S4 and S6. This position

can be updated in real time as desired.

The next example will illustrate a slight wvariation

on the previous problem. Instead of having courses and

distances as direct input we will consider course, ground

speed, and time-on-leg as input data. Since time will be

entered in minutes or hours and minutes, it may be necessary

to review the [g][+H.MS| and [f] functions on pages

94 through 96 of the HP-67 Ownen's Handbook.

30

EXAMPLE 9. Course-Made-Good with Bearing, Speed, and Time.

Find the course-made-good at the end of the third leg

of the following flight (see Figure 5):

OA : 045° at 200 knots for 13 minutes.

AB : 194° at 170 knots for 26 minutes.
—-+

BC 316°.5 at 185 knots for 31 minutes.

Solution:

Press Display Comment

[RCL] [Z+] =] 'Ignore Clear S4 and S6.

045[*]200[%]0.13[F] [H+] Enter course, speed and
time. Convert time to

decimal hours.

43.3 Multiply time times speed.
At 200 knots for 13 minutes,
43.33 n.mi have been
traveled.

Ignore Convert to rectangular
and accumulate x and vy.

194 [#]170[*]0.26 [£] 0.43 Enter next course, speed
and time. Convert time to

decimal hours.

[x] 73.67 Multiple time and speed.
Distance traveled on second
leg is 73.67 n.mi.1

8
8
l

[R<] Ignore Convert to rectangular and
accumulate x and vy.

Press Display

316.5[1]185 [#]

0.31[£] [H<]

[95.58]95.58

gafia

FeE] (7] @ GE] [60.18]

-61.72[-61.72]

360 [+]

Comment

Enter final course, speed and
time. Convert time to
decimal hours.

Multiply time and speed.
Distance traveled on third

leg is 95.58 n.mi.

Convert to rectangular and
accumulate x and vy.

Recall x and vy components
of OC. Convert to polar.
Distance-made-good is
60.15 n.mi.

Angle is negative. Add 360°.

Course-made-good is 298°.28.

These examples have illustrated several variations of computing

course-made-good using the rectangular/polar functions and the

summation functions to perform vector addition.

32

North

(x-axis)

East
(y-axis)

FIGURE 5. Course-Made-Good with Course, Speed and Time.

33

The next example illustrates the use of the

rectangular/polar functions and the summation functions to

perform vector subtraction.

EXAMPLE 10. Course and Speed of an Active Sonobuoy Contact.

Using an active sonobuoy, a contact at 213° and

5 n.mi was made at 1420 hours. At 1450 hours the position

of the contact was 290° and 7 n.mi. Assuming that the

contact has not made a course or speed change, what is the

course and speed of the contact?

Discussion: There are several ways in which the solution to

this problem may be structured. For this example we will

take the easiest approach and assume that only the two contact

positions are to be used. If active updating of the contact's

course and speed is required with more than two position

marks then a more sophisticated solution would allow for

real-time updating.

In Figure 6 the target's track is denoted by the

vector AB. The two fixes are denoted by the vectors OA

and OB. In the Course-Made-Good with two legs problem

(Figure 3), we saw that OB = OA + AB. In that problem

we knew the components of 0 and AB and from those

components we calculated the components of ©OB. In Figure 6

the same vector geometry is valid and so again OB = OA + AB.

34

 Sonobuoy

FIGURE 6. Course and Speed of an Active Contact.

35

However, in this problem we know the components of OA and

53, and we wish to calculate the components of AB. We can

rewrite the vector relationship as

—
AB = OB - OR .

To perform this vector subtraction we will express the vector

OB in rectangular components. From the rectangular components

of OB we will subtract the rectanglar components of OA.

The result will be the rectangular components of AB. When

these components are converted to polar components we will

have the distance traveled by the contact and the course of

the contact. We can then divide the distance that the

contact has traveled by the time difference between the two

fixes to obtain the speed of the contact.

Solution:

Press Display Comment

[h] [Ignore] Clear secondary storage
registers S4 and S6

290[1]7 [7.] Enter the bearing and range

at the second contact time.

Convert to rectangular and
accumulate the x- and y-
components of OB in
S4 and S6, respectively.

213[%]5 Enter the bearing and range
at the {«4x4% contact time.

36

Press DisplaFXess 21sp_ay

[R<] [Z=] [Ignore]

w[RCT) [77] (5] GE T8

14.50 [£] [H<] 14,83

14,20 [£] [H<] 14,33

=] 0.50

(] [15.26]

360 [+] 329.67

37

Comment

Convert OA to rectangular
components and subtract the
x-component of OA from_$4
and the y-component of OA
from S6. The x-_and y-
components of AB are now in
S4 and S6, respectively.

Recall the rectangular com-
plements of AB and convert
to polar. The target has
traveled 7.63 n.mi.

Convert the time of the

second contact to decimal
hours.

Convert the time of the
§inst contact to decimal
hours.

The time between the first
and second contacts 1is
0.5 hours. Note that we
have used all of the
operational stack. Just
prior to the subtraction
the polar angle (which we have
not yet seen) was in the
T-register; the 7.63 n.mi
traveled was in the Z-register;
the 14.83 was in the vy-register;
and the 14.33 was in the
X-register. After the sub-
traction the time between
contacts, 0.5 hours, is in
the X-register and the 7.63
n.mi traveled is in the
Y-register.

This is the contact speed of
15.26 kts; 7.63 n.mi in 0.5 hours
is a speed of 15.26 knots.

This is the target course.
Since it is negative, add 360°.

The target course is 329°.67.

ITI. PROGRAMMING

As stated in the HP-67 Ownen's Handbook (pg. 124),

"A program is nothing more than a series of

calculator keystrokes that you would press

to solve a problem manually. The calculator

remembers these keystrokes when you key them

in, then executes them in order at the press

of a single key. If you want to execute a

program again and again, you have only to

press the single key each time."

You will be shown how programs can be written to perform the

operations that were done in the section on vector arithmetic.

These programs will be developed and elaborated upon a step

at a time. Occasionally a method will be needed that is not

in the normal sequence of the presentation in the Ownen's

Handbook if such is the case, then the need will motivate the

use of the method and we shall deviate from the sequence of

instruction.

38

Program Memory

The program memory in the HP-67 consists of 224

steps which are numbered 001 to 224, together with a top-

of-memory marker which is displayed as step 000. In any

HP-67 program, each program step will be equivalent to a

complete instruction, where a complete instruction may

consist of one, two, or three individual keystrokes. For

example, the single keystroke CLx is a complete instruc-

tion which means "clear the x-register." The double key-

strokes [3] and [1/x] are each complete instruc-

tions which mean "store the contents of the X-register into

primary storage register 3" and "take the reciprocal of the

contents of the X-register and display the result in the

X-register," respectively. The triple keystroke [STO] [+][5]

is a single instruction which means "add the contents of the

X-register to the contents of primary storage register 5."

A complete list of all of the program instructions can be

found in Appendix E of the HP-67 Ownen's Handbook.

Now, let us examine the HP-67 calculator. Turn the

calculator ON (or if it is already on, turn it OFF and then ON).

Slide the Program Mode Switch to the W/PRGM position. The

calculator is now in the Program Mode. 1In the left-hand

side of the display you will see the three digit program

address, in this case the is the top-of-program

marker. Now, perform the following operations.

39

Press Display

SST (001 84

[002 84 |

[001 84]

[224 84]

223 84 |

SST (222 84 |

SST [001 84|

[cro] [:] [goo] [000

40

Comment

The 001 denotes program
step number 1. The 84
is the keycode (to be dis-
cussed later) for R/S

The button allows
you to Single Step through
the program memory one
program step at a time.
Program step 002 also
shows the 84 keycode.

The instruction
allows you to Backstep
through the program memory.
Program step 001 is in the
display.

We have backstepped past
the top-of-memory to the
last program step 224,

Another backstep leads to
program step 223.

Single step forward.

Single step forward to
program step (often called
Location) 001. What
happened to 0007?

This keystroke sequence has
positioned the program
(Location) pointen to the
top-of-memory.

Press

[cTo] [-] [035]

Display

[035 84 |

[036 33 03]

41

Comment

This keystroke sequence
has placed the program
pointer at program step
035. This shows that it
is possible to GO TO any
desired program step
without having to single
step.

The program pointer

was at location 035. The
keystrokes [STO] [3]
comprise a complete
instruction which has been
insented into program
memory at location 036.
The keycode for [STO] is
33 and the keycode for [3]
is 03.

Keycodes

The two-digit keycodes are used to identify the

position of the keystrokes that have been used to make a

program step. Note that there are eight nows of keys in the

keyboard and there are either four or five keys in each row.

The first digit of the keycode designates the row number

(the top row is row 1 and the bottom row is row 8) and the

second digit designates the number of the key in the row

(counting with one from the £e4t side of the keyboard).

For example, 24 designates the second row of keys

and thefourth key in that row; thus 24 is the keycode for

the key which is labeled (i). The keycode denotes the fkey

position and not the key function. For example, the keycode

24 could denote the function (i), x T I, or RND; the actual

function depends upon the other keycodes that comprise the

complete instruction code. Consider some instructions that

involve the 24 key: 34 24, 35 24, and 31 24; the complete

instructions involved are 3], T 1], and

[RND], respectively. Each 4nstruction is unique, and for

each keycode sequence there is only one possible meaning,

but that meaning must be inferred from the associated key-

codes. This may sound complex, but usually the meaning is

clear. The keycode 35 can designate only the function [h];

42

is the black prefix key, thus 35 24 designates

plus the function in blfack on key 24, which is then .

Similarly, 31 can designate only the gold prefix key [£], so

that 31 24 designates [f] plus the function in gofd on

key 24, which is then .

The only exception to this rule is the designation

of the numbens on the numeric key. For example, the keycode

for [4] is 04. Since there is no zero row, the first digit

0 designates a numeric key, and the second digit designates

the numeral on that key. There are four possible instructions

involved in the [4] key:

Keycode Meaning

04 Numeral 4

35 62

31 62

32 62 o] [sin”7]

The numeral 4 is on key 62, but the keycode for the numeral 4

is 04 and not 62. However the other three functions that are

involved with the 62 key carry the 62 designation. To see

this on your calculator, turn the calculator ON (or OFF,

then ON) and place the Program Mode Switch in the W/PGRM

position. Now press the following key sequences:

43

Key sequence Display

[4] [001 04

[002 35 62]

[003 31 62]

[g] [sin="] [004 32 621

Additional keycode information may be found on

pages 129 and 130 of the HP-67 Ownen's Handbook. The

keycodes for every possible program instruction may be

found in Appendix E of the Ownen's Handbook.

44

Program Writing, Recording and Execution

In the section on vector operations there were

several examples and exercises on finding the course-made-

good. In this section we will discuss how to code the basic

course-made-good problem. You will create the program code,

record the code onto a magnetic program card, and then load

the program back into the calculator from the program card.

The basic program will not use any fancy program methods;

we will use the basic program on a few problems to see how

it works and in doing so we will probably find that there

are other features that would be "nice-to-have." We will

then learn how to modify or "edit" the program, make changes

and add new features.

In Examples 6 and 7 we used vector addition to find

a course-made-good for a two-leg flight and a four-leg flight,

respectively. For each leg of the flight there was a common

set of keystrokes that could form the basis for a program.

In Example 8 the additional feature of updating the course-

made-good at the end of each leg of the flight was introduced.

Since this seems to be a desirable feature, we will program

the basic set of keystrokes that were used in Example 8.

The basic keystrokes are

[R<] T+] [RCL] [Z+] [q]

45

These are not all of the keystrokes that we used, but they

at least are the most used keystrokes.

Now, turn your HP-67 ON (or OFF and then ON), and

slide the Program Mode Switch into the W/PRGM position and

press the key sequence above. Now, review the keycodes to

see that they have been properly entered. Proceed as follows:

Press Display Comment

[-]1oo0] [000 | Set the program pointer to
the top-of-memory.

[001 3L 72] Program step 001 is [£f][R<«].

SST [002 21 | Program step 002 is [z+].

[003 34 21| Program step 003 is T+].

(004 32 72] Program step 004 is [g][>P].

SST [005 84 | Program step 005 is

which we did not key in.
It is the end of our program.

Now, find a blank magnetic program card and insert it into

the second (lower) slot on the right-hand side of the HP-67.

When the blank card has been pushed almost two-thirds of the

way into the slot, a slight resistance is encountered.

With a slight bit more pressure on the card, the card

transport motor turns on and the card automatically continues

46

into the slot and out of the left-hand side of the calculator.

The card can now be removed from the calculator. Since the

Program Mode Switch is in the W/PRGM position, the program

in the calculator has been #ecorded onto the program card.

Let us experiment further. Turn the calculator OFF

and back ON (leave the Program Mode Switch in the W/PRGM

position). The display should show 000.

Press Display

(001 84 |

SST [002 84 |

| SST (003 84 |

SST (004 84 |

SST 1005 84 |

The program memory is filled with the keycode 84 or

in all locations, and our program 1s no longer in

the calculator. DO NOT RUN THE PROGRAM CARD THROUGH THE

CALCULATOR. SINCE THE PROGRAM MODE SWITCH IS IN THE

W/PRGM POSITION THE PROGRAM ON THE CARD WOULD BE REWRITTEN

AND HENCE DESTROYED.

47

Slide the Program Mode Switch to the RUN position.

The display should show . Now, place the recorded

program card into the lower slot on the right-hand side of

the HP-67 as before. Then remove the card from the left-hand

side of the HP-67. Now, slide the Program Mode Switch to

the W/PRGM position. The program pointer should be at the

top-of-memory 000 position.

Press Display

[001 31 72]

[002 21]

[003 34 21|

[004 32 72]

SST [005 84]

The keycodes indicate that the basic course-made-good program

is in the calculator memory.

Now, let us use the program on the data in

Example 8.

48

EXAMPLE 11. Course-Made-Good Program.

Use the program just created with the data in

Example 8 (see Figure 4):

OA = (26°.5, 47 n.mi),

AB = (224°, 91 n.mi),

BC = (105°, 77 n.mi),
—_— o .

and Ch = (305", 63 n.mi)

Discussion: As in Example 8 we must clear secondary program

register using the key sequence (Z+] [Z=], and we

need to enter the OA data using 26°.5[+]47, but then

what do we do? The next keystrokes that we want to use are

in the program memory, but how do we use them or get at

them? Each time we use the program we must start at the

top-of-memory. The keystroke sequence -] [0] [0] [0]

will position the program pointer at program step 000 (note,

this is true when the Program Mode Switch is either the

W/PRGM position or in the RUN position), but this is 5

keystrokes just to get to the top-of-memory, and our

entire program is only 7 keystrokes long to begin with.

Already we are encountering some undesirable features and

we have not yet used the program. Surely there must be

some better way.

49

When the Program Mode Switch is in the RUN position

(or, we sometimes say that the calculator is in the RUN

mode), we can position the program pointer to the top-of-

memory by pressing the keys . At least this is

only 2 keystrokes instead of 5 needed in (-1 [0] [0] [O],

and the result is the same in either case. Now, we can

start the program in the program memory by pressing the

key. The R/S or RUN/STOP key performs several

functions. When the calculator is in the RUN mode, pressing

the R/S key will start the program execution at the current

program pointer location, or, if a program is already running,

pressing the R/S key will stop the execution of the

program. Thus, to position the program pointer to the

top-of-memory and start the program running we can use the

sequence , . We can now proceed with the

example.

50

Solution: Turn ON the calculator and in the RUN mode read

in the program card.

Press

(h][Z-]

26.5[+]47

[h] [(RTN] [R/S]

[h]2

224 [4]91

360 [+]

105[+] 77

Display

Ignore IJ
47,

47.00

26.50

91

48.29

-118.98

77,

N W '—
.l

o N
.

53.94

Comment

Clear secondary registers
S4 and S6.

Enterthe polar components
of OA.

Execute the program.
Since only the first leg
has been entered the
distance-made-good is in
the display.

As a check, we see that
the course-made-good
on the first leg is
26°.50.

Enter the polar components

of AB.

Execute the program.
The distance-made-good
to point B is 48.29 n.mi.

Course is negative.
Add 360°.

The course-made-good
to point B is 241°.02.

Enterthe components
of BC.

Execute the program.
The distance-made-good
to point C is 53.94 n.mi.

Press

[h]xZy

305[1]63

(h] [zZ y]

360 [+]

Display

[63.]

[-110.27]

Comment

The course-made-good to
point C is 143°.44.

Enterthe components
of CD.

Execute the program.
The distance-made-good
to point D is 20.76 n.mi.

The course is negative.
Add 360°.

The course-made-good to
point D is 249°.73.

Although this program leaves a lot to be desired, its use

is somewhat simpler than the manual solution that was used

in Example 8. We shall return to this problem to modify

and streamline our program, but first we will discuss program

editing.

52

Program Editing and An Improved Course-Made-Good Program

In working through Example 11, several awkward

sequences could be observed. For one, the keystroke sequence

[R/S] is cumbersome. For another, the initialization

sequence is bothersome. And for yet another,

there must be something that can be done to convert negative

courses to positive courses easily, or at least more con-

veniently than manually adding 360°. Most but not all of

these handicaps will be overcome in this section.

The beginning and ending of a program are discussed

briefly on pages 133 to 134 of the Ownen's Handbook. The

suggestion is made that a program should start with a LABEL

A, B, ¢C, b, E, a, b, ¢, d, or e. These labels are some-

times referred to as "User Defined Labels." There are 10

such user defined labels, and they can be created as a pro-

gram step using one of the sequences:

31 25 11

31 25 12

[£] (LBL] [E] 31 25 15

[g] [LBLE] [&] 32 25 11

[g] [LBLE] [Db] 32 25 12

[g] (LBLE] [e] 32 25 15

53

The fact that there are 10 user defined labels means that

the user may have as many as 10 programs, subprograms, oOr

program segments in the program memory at one time. (It is

possible to create more than 10 user defined labels, but

that is beyond the scope of the present discussion.)

A program segment (created in the Program Mode)

with a user defined label will for example have the follow-

ing structure:

[£] 31 25 11

32 22

or or 84 .

The program segment starts with a user defined label and

ends with either or [R/S]. The dots in between

indicate a user defined program such as the four step

program that we generated in the previous section. To

execute the program section while in the RUN Mode, the

user must press only the key with the user label. 1In

the program segment above pressing is equivalent to

the sequence [R/S]. 1In other words, when

is pressed, the calculator will search for the program step

54

that contains [LBL][A], and when that program step is found,

the program will start execution at the nexft program step, and

execution will continue until either the instruction [h]

or the instruction is encountered.

At the beginning of this section it was mentioned

that the course-made-good program had three awkward coding

sequences: the initialization sequence [Z+] [h] [Z=]; the

execution sequence [R/S]; and the negative course or

bearing sequence 360[+]. This suggests that we might make

these three sequences into three program segments, each with

a distinct user defined label. 1In fact, we could write the

program segments as follows:

Program Instruction Comments

[£] (a] User defined label "A".

Program sequence

to add vectors

as shown in the

@ previous section.

[h] End of program segment "A",

User defined label "E".

A new program

(6] segment

(0] to

add 360°.

[RTN] End of program segment "E".

55

Program Instruction Comments

[g] |LBLE User defined label "c".

A new program segment
to clear secondary
registers S4 and S6.

End of program segment "c".

The skeleton outline of how to use these segments

is the following:

1. Clear S4 and S6

2. Enter bearing and distance

3. Distance-made-good is in the display.

4. Display the course-made-good

5. If the course-made-good is negative, add 360°

:

6. Read the course-made-good from the display.

Since the use of labels allows the program to be

operated with a minimum of keystrokes, the reader may wonder

why the sequence [f][c] 4is used at step 1 ([g] [c])

instead of the shorter [C] that would be required if

[£] were used instead. This is a program technique

56

that is used to insure that a portion of the storage,in this

case secondary memory registers S4 and S6, is not accidently

erased by pressing the wrong key by mistake. With the

sequence , two keystrokes are required to clear S4

and S6, and the chance of accidental erasure is much less

than if the single stroke had been used.

Since the proposed new program is short, we could

just power-up the calculator and key it all in at one time.

However, we will use the original program to illustrate some

of the edifting features of the HP-67.

A program might require editing for one of several

reasons:

l. A program step is incorrect and should be defefted.

2. A program step has been omitted and should be Lnsexrnted.

3. A program step is incorrect and needs to be neplaced.

To delete a step, the program pointer must be pointing

to the step to be deleted. Usually the program pointer is

placed at the appropriate step using the (] XxXX]

command, where XXX is the program step to be deleted.

For example in our original course-made-good program, Suppose

at step 002 the instruction (2+] 1is to be deleted. The

command [<][002] in either the RUN mode or the

PROGRAM mode will position the pointer at step 002.

57

Then with the calculator in the PROGRAM mode (the Program Mode

Switch is in the W/PRGM position) the keystrokes [h]

will cause program step 002 to be deleted.

Let us do this with our program. Turn the calculator

ON, place the Program Mode Switch in the RUN position, and

read the magnetic card with the course-made-good program into

the calculator. Now let us review the program. Place the

Program Mode Switch in the W/PRGM position and do the follow-

ing steps:

Press Display Instruction

[001 31 _72]

(002 21 |

(003 34 21] [RCL] [Z+]

[004 32 72] [9] [>2]

SST (005 84]

Now, 1f we want to delete step 002, then

Press Display Instruction

-1 [002 21]

[001 31 _72] L£]

SST [002 34 21]

SST [003 32 72] [g]B

SST [004 84]

58

The

step 002. The keystrokes delete program step 002

 .] [002] instruction places the pointer at program

and the pointer location is decreased by one and points to

step 001. The following SST instructions reveal that

the old step 003 is now at step 002, the old step 004 is now

at step 003, and the old step 005 is now at step 004. 1In

other words, when step 002 was deleted, all of the step

numbers of the instructions with step numbers larger than

002 were decreased by one so that there was no "empty" step

number left where the deleted step had been.

Now, let us repair the program and put the [Z+]

instruction back at location 002. That is, we want/to Ainsent

a [Z+] instruction between the steps 001 and 002 that are

now in the calculator. To do this, place the program pointer

of the step just above the location where the instruction

is to be inserted. Since we want to insert a new 002, place

the program pointer of step 001, and then press the keystroke(s)

that are to be inserted.

Press Display Instruction

[GTO] [+] [001] [001 31 72]

[002 21 [T+]

[003 34 21] [RCL]

[004 32 72] [g] 2E]

SST [005 87]

59

The [GTO][-][001] instruction placed the program

pointer at location 001. The keystroke was placed

at step 002. NOTE THAT THE PROGRAM STEP NUMBERS OF ALL

OF THE FOLLOWING STEPS WERE AUTOMATICALLY INCREASED BY

ONE. NO PROGRAM STEPS WERE DESTROYED BY BEING OVER-

WRITTEN BY ThE NEW KEYSTROKES. It is important to note

that no program steps can be accidently destroyed by

being overwritten for there is no way on the HP-67 to over-

write another instruction; if an instruction is to be

destroyed it must intentionally be deleted using the

instruction.

Finally, suppose that we want to #eplace the

instruction at step 002 with the [£-] instruction.

Since we cannot intentionally overwrite the |[Z+]| instruc-

tion we must first defete the [IZ+] instruction and

then Ansent the instruction.

Press Display Instruction

[-][002] [002 21] z+

[001 31 72] [R<]

[l (002 35 21]

60

To review

Press Display

[GTo] [-] [000 |

[00L 3L _72]

[002 35 21]

[ssT] (003 34 21]

[004 32 72]

SST 005 84]

Observe that the replacement of

was quite easy. The

Instruction

Top-of-memory

[(£] [R<]

[RCL] [Z+]

[g] [=B]

with

(-] instructions

placed the pointer at step 002. The instruction

deleted step 002 and placed the pointer at step 001,

exactly where it should be to insert a new instruction

such as of step 002.

Let us now modify the course-made-good program by

writing the program segments that we discussed earlier.

One way that this can be done is shown below. First, read

in the program card. Then slide the Program Mode Switch

into the W/PRGM position; the program pointer should be

at the top of memory. Then,

61

Press

[£] [LBL] [a]

0
0l

|
197

!
0

[0
|»

0N
H

H
E
E
E
E
E
E

[=]

[5] (EEEE] (]

] (EN]

Display

[001 31 25 11]

[002 31 72]

[003 21

[004 34 21|

[005 32 72]

[006 84]

[005 32 72]

[006 35 22|

[007 31 25 15]

(008 03]

[009 06 |

[010 00]

[011 61]

[012 35 _22]

[0I3_ 32 25 13]

[014 34 21

[015 35 21]

[016 35 22]

Instruction

[Z+]

onfie
g GBI
IR/S]

5] 2]
6] (E]

(3]

[e]

T
[+]

[g] EBLE] €]

) [Em]

While the calculator is in the PROGRAM Mode,

record the program onto the magnetic card. If you pass

the same card through the calculator, the new program

will be written on top of the old program. Place the

Program Mode Switch in the RUN position and

use the program on the data in Examples 8 and 1l.

62

EXAMPLE 12, Edit Course-Made-Good Program.

Use the program just created with the data in

Examples 8 and 11:

and

Solution:

Press

[(£] [c]

26.5[1]47

(2]

224 [f]91

(2]

[h]2

105[]77

ol
&l
&

8l (26°.5, 47 n.mi)

(224°, 91 n.mi)

(105°, 77 n.mi)

(305°, 63 n.mi)

Display Comment

Ignore

48.29

-118.98 16
B

B
l

~
J

~
J

63

Clear secondary registers
S4 and S6.

Enterthe polar coordinates
of OA.

Execute the program. Since
only the first leg has been
entered the distance-made-
good is in the display.

Enter the polar components

of

Execute the program. The
distance-made-good to point B
is 48.29 n.mi.

Course is negative. Add 360°.

The course-made-good to
point B is 241°.02.

—

Enter the components of BC.

Press

(a]

(BT£

305[%]63

Display

53.94

143.44

63

20.76

-110.27

10
B
k

249.73

Comment
Execute the program. The
distance-made-good to point C
is 53.94 n.mi.

The course-made-good to
point C is 143°.44.

Enter the components of EB.

Execute the program. The
distance-made-good to point D
is 20.76 n.mi.

The course 1is negative.
Add 360°.

The course-made-good to
point D is 249°.73.

This version of the course-made-good program is

considerably easier to use than the earlier version, and

should illustrate adequately the utility of the user defined

labels. It is possible to make further improvements, but

first we need to learn more of the HP-67 architecture.

EXAMPLE 13. Horizontal Range to the First Convergence zZone.

The horizontal range R, to the first convergence

zone is a function of the surface or reference sound velocity

Vr' The function is [References 1 and 2]:

R = -2264 + 0.8539V_ - 7.891 x 107> v2 ,
h r r

where the horizontal range is in nautical miles and the

sound velocity Vr is measured in feet/second. Write a

program to compute Rh for any value of Vr'

Solution 1.

Since v must be used twice in the evaluation of

Ry it should be stored in some storage register for later

use., Let Vr be stored in RO and let the user define

label [A] be used both to store V_ and to start the

program execution.

65

PROGRAM MODE:

Program

Instruction

f LBL A

STO O

EEX

CHS

Program
Step

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

Kezcode

66

31 25 11

33 00

83

08

05

03

09

71

02

02

06

04

51

07

83

08

09

01l

43

05

42

Comment

User defined key to
input and run.

Store V, in primary
storage register RO.

Vr remains in the

x-register after

storage. Multiply

Vr by 0.8539 to

evaluate the second

term in the equation.

Multiply. 0.8539V,. 1is
in the x-register.

Subtract 2264.

Set up the constant

7.891 x 107>

Program Program
Instruction Step

RCL O 022

g x° 023

X 024

- 025

DSP 1 026

h RTN 027

Keycode

34

32

23

35

00

54

71

51

0l

22

Comment

Recall Vr from RO.

Compute Vi.

Multiply Vfi times

7.891 x 10-5.

Subtract the result
from the value in

the Y-register.

Set the display for
one figure after
the decimal.

End of program segment.

This program illustrates that constants can be made

part of the calculator program by keying the digits of the

constants in the same way that any other instruction is

keyed. Long or many constants can rapidly increase the number

of program steps since each dig4<% of the constant requires a

separate program step.

Now, if the sound velocity of the reference depth

is 4962 feet/second, use the program to compute the range

to the first CZ.

67

RUN MODE:

Press Display Comment

4962 [4962.] Key in the reference
sound velocity.

(a] 30.2 Compute. The range
to the first C2Z

is 30.2 n.mi.

Solution 2.

The equation

R, = -2264 + 0.8539V_ - 7.891 X 10‘5vi

is said to be a second order polynomial in V.. Often space

can be saved and accuracy increased by evaluating polynomials

in a nested form. The equation

R = (-7.891 x 10”°v+ 0.8539)Vr - 2264

is called a nested polynomiaf. This equation is the same as

the original equation except that it has been rewritten.

It is important to observe that the only operations that are

used in nested polynomials are addition, subtraction, and

multiplication; we do not have to square the quantity Vr'

68

For third, fourth, and higher order polynomials the saving

in computational time and space can be quite dramatic; but

for our second order polynomial, we only break even. This

equation canbe coded in the following way.

PROGRAM MODE.

Program Program
Instruction Step Keycodes Comments

f LBL A 001 31 25 11 User defined label.

STO O 002 33 00 Store Vr in RO.

7 003 07

004 83

8 005 08

9 006 09 Set up the constant

1 007 01 ~7.891 x 107>,

CHS 008 42

EEX 009 43

5 010 05

CHS 011 42

X 012 71 Multiply by Vr in the
Y-register.

69

Program Program
Instruction _Step

013

8 014

5 015

3 0l6

9 017

+ 018

RCL O 019

X 020

2 021

2 022

6 023

4 024

- 025

DSP 1 026

h RTN 027

Keycodes

83

08

05

03

09

61

34 00

71

02

02

06

04

51

23 01

35 22

Comments

Set up the constant

0.8539

Add.

Recall Vr and

multiply.

Set up the constant

2264.

Subtract

Set the display.

End of program segment.

This second program is used in exactly the same way that

the first program is used.

70

IV. BRANCHING

The GTO instruction is used to perform an

unconditiondal branch (or an unconditional transfen) to

some specified location in the program memory. In effect,

it changes the position of the program pointer to a new

program step number (which is not generally the next

sequential program step number). For example, if a program

is running and the instruction is encountered,

the calculator will stop executing program instructions,

and will start a search for the instruction [LBL] [A]

by incrementing the program pointer (program step 001 {§ofLows

program step 224) until either the instruction [A]

is found or until the program pointer has returned to the

instruction. If the instruction [A]

is found, then calculator will resume execution program

instructions with the instruction immediately following

the instruction; in effect, all of instructions

between the [A] instruction and the

instruction are skipped. If the program pointer returns

to its original position without finding a [Aa]

instruction then the display will show [error].

71

Usually the unconditional transfer is of little use

by itself for seldom are programs written that jump from

one portion of program memory to another. When a jump is

made it is usually because of the outcome of a conditional

test. For example, in the course-made-good problem we

manually pressed to jump to [LBL] and execute

the program segment that added 360° to a negative course.

Visually we ftested the contents of the X-register (display)

for a negative value and if the value was negative we then

jumped (or branched) unconditionally to [LBL][A] to

continue execution. Testing for a negative value is one

of eight conditional tests that can be performed by the

HP-67 calculator upon the value in the X-register. The

eight tests are discussed on pages 185 through 192 of

the Ownen's Handbook.

Four of the conditional tests are used to compare

the value of the number in the X-register to the value

of the number in the Y-register. These tests are used

to ask one of the questions:

72

Question

Is x

Is x

Is x

Is x

N
W

y?

y?

y?

y?

Instruction

El
9]#v]

[l [x=v]

lg] [x>v|

The other four tests are used to compare the value in the

X-register to zero.

the questions:

These tests

Question

Is x =

Is x #

Is x <

Is x >

are used to ask one of

Instruction

[£] [x>0]

These conditional tests operate in the following

manner. If the answer to the question is YES, then the

program pointer is incremented by one and the instruction

at that address is executed. If the answer to the question

is NO, then the program pointer is incremented by Zwo

and the instruction at that address is executed.

73

In other words, if the answer is YES, the next instruction

is executed, but if the answer is NO, the next instruction

is skipped and the one following that is executed.

The conditional test together with the unconditional

transfer add a tremendous amount of power and capability

to the HP-67. The usefulness of this feature can be most

readily illustrated with the course-made-good problem.

In addition we will introduce the instruction

(Ownen's Handbook, page 172) which will be used to display

the distance-made-good result for five seconds. The

program is listed below:

Instruction Step Keycode

f LBL A 001 31 25 11

f R« 002 31 72

L+ 003 21

RCL I+ 004 34 21

g +P 005 32 72

f -x- 006 31 84

hx2y 007 35 52

f x <O 008 31 71

GTO E 009 22 15

h RTN 010 35 22

74

Instruction Step Keycode

f LBL E 011 31 25 15

3 012 03

6 013 06

0 014 00

+ 015 61

h RTN 016 35 22

g LBLf c 017 32 25 13

RCL I+ 018 34 21

h o+ 019 35 21

h RTN 020 35 22

This program may be generated by editing the

earlier course-made-good program. When the keycodes

have been verified the new program should be recorded

onto a magnetic card. The use of this program is illustrated

in Example 14.

75

EXAMPLE 14. Course-Made-Good Program Revised.

Use the program just created with the data in

Examples 8, 11,

and

Solution.

Press

[£] [c]

26.5[4]47

224 [+]91

N

105[+] 77

and

sl
&

&l
8

12:

47 n.mi)

91 n.mi)

77 n.mi)

63 n.mi) .

Comment

Clear secondary registers
S4 and S6.

Enter the polar coordinates
OA.

Execute the program.
Since only the first leg
has been entered, the
distance-made-good
(47 n.mi) flashes in
the display for five
seconds. Then the course-
made-good (26°.5) remains
in the display.

Enterthe polar components
of AB.

Execute the program. The
distance-made-good
(48.29 n.mi) is flashed
and the course-made-good
(241°.02) remains in the
display.

Enterthe components
of BC.

Press Display Comment

[A] 53,94 The distance-made-good
is 53.94 n.mi.

143.44 The course-made-good is
143°.44.

305 63 63. Enter the components of CD.

[20.76] The distance-made-good
is 29.76 n.mi.

249.73 The course-made-good is
249°.73.

There is very little that can be done to improve this

version of the course-made-good program. The only problem

that might arise is that in real time operation the user's

attention could be momentarily diverted and the flashing

distance-made-good display could be missed. In this

particular program the distance-made-good is in the Y-register

while the course-made-good is in the X-register (display).

Consequently the distance-made-good can be recovered by

pressing [h][x Z y| after the course-made-good has been

recorded. A second alternative is to replace the instruction

at step 006 with the instruction [R/S]. If this

is done then the program will stop execution of step 006

with the distance-made-good in the display. To resume

execution the key is pressed manually; the execution

then stops a second time with the course-made-good in the

display. This use of the key is discussed on pages

169 to 172 of the Ownexn's Handbook.

77

EXAMPLE 15. Width of First Convergence Zone Annulus.

The width of the first convergence zone annulus is

a function of the depth excess. A formula for annulus width

is [Reference 2]

g I 0.003 de + 1.25 for 0 <d,6 <500,
e

and

g I 0.006 4 - 0.25 for 500 < 4
e - €

where de is the depth excess measured in fathoms and W

is the annulus width in nautical miles. Write a program

which will use the proper formula for any value of de >0

and will display for a value of d_ < 0.

Discussion: There are several conditional tests that we

must perform. First, if de < 0, then generate an error

message, but if d, > 0, then calculate the annulus width.
2

In an earlier section we observed that if we use GTO (a label)

and if the calculator cannot find the address of that label,

then an error message is generated. This is the quickest

way to generate an error message: GTO an undefined

label. 1If de > 0, then the next test is to determine if

de is larger or smaller than 500. This can be done by

using one of the conditional tests in which the value of

78

the quantity in the

the quantity in the

give the same value

X-register is compared to the value of

Y-register.

of wa when

79

Observe that both formulas

can be used in that case.

Solution.

PROGRAM MODE.

Program Program
Instruction Step Keycodes

f LBL A 001 31 25 11

f x <O 002 31 71

GTO O 003 22 00

5 004 05

0 005 00

0 006 00

hx %y 007 35 52

g x Ly 008 32 71

GTO 9 009 22 09

010 83

0 011 00

0 012 00

6 013 06

500 so either formula

Comment

User defined input
and run label.

Is d < 0?
e

If YES, generate an
error message.

If NO, then dj > 0.

Enter the constant 500.

Put 500 in the yY-register
and de in the X-register.

Is d < 500?
e_

If YES, go to [LBL][9].

If NO, then de > 500.

Enter the constant 0.006.

Program
Instruction

X

h RTN

f LBL 9

h RTN

Program
Step

014

015

0lé6

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

Kezcodes

71

83

02

05

51

35 22

31 25 09

80

83

00

00

03

71

01

83

02

05

61

35 22

Comment

Multiply 0.006 and de‘

Subtact 0.25

End of program segment.
Display w_ -

Segment to evaluate W,
when de < 500.

Enter the constant

0.003.

Multiply 0.003 and d_.

Add 1.25

End of program segment.
Display W -

Additional Comments.

At step 002 the value of de in the X-register

is tested. 1If de < 0 then step 003 is executed and a

transfer is made to [0]. since [LBL][0] is not

defined in the program the calculator cannot find a program

step containing [0] and so an error message is

generated.

At step 007 de is placed in the X-register and 500

is placed in the Y-register. The test could have been done

without interchanging the contents of the X- and Y-registers,

but this would have left 500 in the X-register after the

test was performed. Consequently an instruction would be

required to get de back into the X-register in each leg

of the branch, and this would require one more [h]|[x2y]|

instruction than was needed by making the exchange before

the test.

Sample Problems and Solutions

l. 4 = 200 fathoms. w = 1.9 mi.
e a

2. de = 400 fathoms. wa = 2.5 mi.

3. d4d = 500 fathoms. w_= 2.8 mi.
e a

4. de = 1000 fathoms. w, = 5.8 mi.

5. de = =200 fathoms. Error.

81

V. SUBROUTINES

In writing programs we occasionally have the need

to execute a fixed series of instructions at two or more

different portions of the program. For example, if we were

constructing a program in which estimates of target bearing,

target course, and course-to-close are calculated, we would

need to use the "add 360°-routine" in three separate places

in our program. It would be convenient and would save

program steps if we could use the same "add 360° -routine"

at three different locations in the program and then continue

with other calculations. The way to accomplish this is by

using a subroutine (Ownen's Handbook, pages 197-211).

A subroutine is a portion of code that sfants with

a Label and ends with a sefunn. When a subroutine is used,

a special type of a branching instruction (GSB) will move

the program pointer to the subroutine label, and at the

same time a second (return) pointer is positioned at the

program step immediately following the location of the GSB

instruction. The program pointer will then move sequentially

through the program steps and execute the instructions

following the subroutine label (provided no additional

branching instructions are encountered) until the return

(h RTN) instruction is encountered. When the return instruc-

tion is found, the program pointer is repositioned to

82

coingide with the position of the return pointer. Execution

then continues in the usual manner.

A subroutine starts with one of the 20 labels:

[£] @Ben] &7, ... , [E EBL] [El,

[g) [LBLE] [a], ... , [g] [LBLE][e],

D, ... , EEen &

and ends with

[h] [RIN] .

The "branch to the subroutine and return" instruction

is the GSB instruction. We can cause a subroutine to be

executed by using one of the instructions

[fesBl[&], ... , [E][csB] [E],

5 CEEE & .- (] [CSEE
[£] [GsB] (01, ... , [EllcsBl @1,

-

where the letter or number corresponds to the subroutine

which we wish to execute.

GSB

GSBf

83

Just before Example 14 is a list of instructions

for the course-made-good program. If the instruction at

step 009 (GTO E 22 15) 1is replaced by the instruction

f GSB E (31 22 15), then the program at LBL E will be

executed as a subroutine. You will not notice any differ-

ence in the execution of the program, but there is indeed

a difference.

When course and distance information have been

input and key [A] has been pressed, the program will

pause at step 006 with the distance-made-good flashing in

the display. Execution will continue then at step 007

in which the contents of the X-register and Y-register are

exchanged. The course-made-good is now in the display,

but execution immediately proceeds to step 008 where the

value of the contents of the X-register is compared to

zero. If the contents of the X-register are positive or zero.

step 009 is skipped and the program stops at step 010 with

the value of the course-made-good in the display. If the

contents of the X-register are negative when the conditional

test at step 008 is made, then the instruction at step 009

is executed. Since this is a GSB instruction, a #xeturn

pointern is set to the next program step (010) and the

program pointen is moved until label E 1is found at

84

step 011. Execution then starts at step 012 where 360

is formed in the X-register and is added at step 015. At

step 016 an h RTN instruction is found; the reftusnn pointen

is examined and is found to be pointing at step 010, so

the program pointen is then set to step 010 and that

instruction is executed, which stops the program execution.

In the earlier program, the RTN at step 016 stopped

execution, but in the program above, the RTN at step 016

caused a branch back to step 010 where execution stopped.

This multiple use of the RTN instruction should be reviewed

on page 134 and pages 197 to 198 of the Ownexr's Handbook.

Even though there is little apparent difference in

the way the last two course-made-good programs operated,

there is indeed a fundamental difference. The first program

terminated at step 010 if the course-made-good was positive

or zero and it terminated at step 016 if the course-made-

good was negative. Had there been additional computations

between steps 010 and 011, then it would have been awkward to

execute them if the halt occurred at step 016. The second

program terminates at step 010 whether the course-made-good

was positive, zero, or negative and so additional computation

could immediately follow step 016. This feature will

become more obvious in the next section.

85

VI. PACKING THE OUTPUT DISPLAY

For some purposes it is convenient to display two

computed quantities simultaneously rather than sequentially

so that a user can read two pieces of information at a

glance. 1In the course-made-good problem, for example, the

distance-made-good was flashed for about five seconds before

the course-made-good was displayed. A fatigued operator

might miss the information in the flashing display and have

no way to recover it conveniently, whereas if the course-

made-good and the distance-made-good were displayed

simultaneously, nothing would be lost and considerable

convenience might be gained.

We will display the distance and course in packed

form. The format that we will use will be ddd.ccc, where

the d's denote distance information and the c¢'s denote

course information; these two pieces of information are

separated by a decimal point. The distance information

might require one to five digits (if distance were in yards

or in miles) but courses always require only three digits,

so the decision has been made to display the course

information a4fesn the decimal point where we can control

the digits in a consistent form. It is assumed that we

are only interested in course to the nearest degree and

the distance to the nearest unit (yard or mile).

86

The special functions that we will need to perform

the packing operation are display control DSP (Ownexn's

Handbook, pages 42-49) and the round RND function (pages

85-86) . Conceptually, the packing operation is quite

simple, we will convert the bearing to a fraction by

dividing by 1000, and then we will add this fractionally

formatted bearing to the distance. Before the addition

can take place we must guarantee that the fractional part

of the range is converted to zeros. This conversion is

most easily accomplished using the INT function (page 86),

but unfortunately for this application the INT function

truncates without rounding. For example, key in 23.85 and

press f INT; the result is 23.00 and not 24.00. Once more

key in 23.85 and then DSP 0; the result is 24. in the

display. Now press f INT and the truncated result is 23.

With the display still set at DSP 0, key in 23.85 once more

and then press the ENTER key; the result in the display

is 24. Now, press the keys f RND and observe that the

display is unchanged. Change the display by pressing

DSP 2 and observe that the contents of the display are

now 24.00. The RND function will leave the contents of

the numbers visible in the display unchanged, but will

replace all of the undisplayed numbers by zeros.

87

We are now able to pack the distance and the bearing

into a single display. We proceed as follows:

1. With the distance in the display, change the display

mode to DSP 0.

Round (RND) the distance to the nearest unit.

Place the rounded distance in the Y-register and

place the course in the X-register.

Divide the course by 1000. (We use the keys [EEX]

to obtain 1000 since it is two keystrokes less than

[1] (0] [o] [@].)

Set the display to DSP 3 to see the three digits of

the course.

Add the fractionally formatted course to the

rounded range. The result is a packed display.

88

EXAMPLE 16. Packing Output Data.

The course is 032°.45 and the distance is 45.8 n.mi.

Pack the distance and the course into a single display.

Solution:

32.45[1]45.8(DSP] [0] [EEX] [3]

=] =] .

The display contains 46.032.

89

EXAMPLE 17. Course-Made-Good Program with Packed Output.

Modify the course-made-good (Example 14) program

so that the course and distance in the final display are

in packed form.

Solution:

Instruction Step Keycodes

f LBL A 001 31 25 11

f Re 002 31 72

+ 003 21

RCL I+ 004 34 21

g +P 005 32 72

DSP 0 006 23 00

f RND 007 31 24

hx2Zy 008 35 52

fx<O0 009 31 711

f GSB 0 010 31 22 00

EEX 011 43

3 012 03

+ 013 81

DSP 3 014 23 03

+ 015 61

h RTN 016 35 22

90

Instruction Step Keycodes

£ LBL 0 017 31 25 00

3 018 03

6 019 06

0 020 00

+ 021 61

h RTN 022 35 22

g LBLf c 023 32 25 13

RCL I+ 024 34 21

h - 025 35 21

h RTN 026 35 22

Discussion: The following points should be noted:

1. Since the distance is in the X~register immediately

following the execution of step 005, the rounding was

performed immediately (steps 006 and 007) so that extra

steps (x.%2 y) will not be required later.

2. The label on the "add 360°" routine was changed from

E (in previous versions) to 0 (steps 010 and 017).

Since we do not need to access the "add 360°" routine

from the keyboard, we have freed the user defined label

E for possible future use.

91

The course is converted to fractional format at steps

011, 012, 013, and 014. The packing is finalized at

step 015.

Note the advantage of having the "add 360°" routine

available as a subroutine. If step 010 was a GTO O

rather than GSB 0 then we would somehow have to get

from step 022 to step 01l1l. It could be done but it

would be inconvenient.

Sample Problem. Use the data from Example 14.

Course-made-good

Leg ddd.ccc

OA = (26°.5, 47 n.mi) 47.027

AB = (224°, 91 n.mi) 48.241

- .
BC = (105°, 77 n.mi) 54.143

CD = (305°, 63 n.mi) 21.250

92

VII. UNPACKING

If sufficient program steps are available,

we may wish to enter our data in a packed form. The HP-67

has automatic packino and unpacking of HH.MMSS (hours-minutes-

seconds) in the built-in-conversion to and from hours and

fractional hours. Unpacking is the inverse operation of

packing.

Suppose we wish to enten distance and course in a

packed form such as ddd.ccc where the d's denote the distance

and the c¢'s denote the course. Before any computations

could be done on either the course or the distance, these

two quantities must be separated. Unpacking is accomplished

using the INT and FRAC functions (Ownexr's Handbook, pages

86 and 87). The LASTx function (pages 67 and 68) can also

be useful. We proceed as follows:

1. Key in the distance and course in packed form ddd.ccc.

2. The distance is recovered by pressing [£f][INT]. The

result is ddd.000.

3. The packed data is recovered by pressing [h] [LSTx]

to obtain ddd.ccc.

4. The fractionally formatted course can be recovered by

pressing [g] to obtain 000.ccc.

93

The course can then be obtained by multiplying by

1000 (EEX 3).

If the coordinates are to be changed to rectangular,

then we must use to get the course in

the Y-register and the distance in the X-register.

94

EXAMPLE 18. Unpacking Input Data. Method 1.

Unpack 1527.033.

Solution:

Key in 1527.033. Then

[£] [INT] [g] [ERAC| [EEX] [3]

(Optional: .)

EXAMPLE 19. Unpacking Input Data. Method 2.

Unpack 1527.033 some other way.

Solution:

1527.033[1] [g] [FRaC] [=] [A] [EEx] [3] [x]

(optional: [h] 2

Morale: There is always another way to solve a problem.

It may or may not be a shorter way.

95

EXAMPLE 20: Course-Made-Good Program with Packed or Unpacked Input.

Modify the last version of the course-made-good program

so that it will accept eithen unpacked data (via label A) o4

packed data (via label E).

Solution:

Instruction Step Keycodes

f LBL E 001 31 25 15

4 002 41

g FRAC 003 32 83

- 004 51

h LSTx 005 35 82

EEX 006 43

3 007 03

X 008 71

hxJly 009 35 52

f LBL A 010 31 25 11

f R+ 011 31 72

L+ 012 21

RCL 2+ 013 34 21

g P 014 32 72

DSP 0 015 23 00

96

Instruction Step Keycodes

f RND 016 31 24

hx2y 017 35 52

f x <O 018 31 71

f GSB 0 019 31 22 00

EEX 020 43

3 021 03

+ 022 81

DSP 3 023 23 03

+ 024 61

h RTN 025 35 22

f LBL 0 026 31 25 00

3 027 03

6 028 06

0 029 00

+ 030 61

h RTN 031 35 22

g LBLf c 032 32 25 13

RCL I+ 033 34 21

h Z- 034 35 21

h RTN 035 35 22

97

Discussion: The new program steps to unpack the data entry

(001-009) have been inserted just above label A. When

packed data is entered and key E is pressed, the unpacking

takes place in program steps 002 through 009. At step 010

LBL A is encountered and no action takes place. However the

contents of register X and Y have been set in the un-

packed format that is entered via key A. Execution then

continuous with step 011l in the usual manner.

98

VIII. FLAGS

Flags are primarily used to control and direct the

logical flow of an executing program. A flag might be

thought of as a mini-storage register that can contain a

single bit of information, that is, a 1 or a 0. The "1 or 0"

can be interpreted to mean "yes or no," "true or false,"

"on or off," "up or down," "set or clear," and "flying or

not flying," to name but a few of the commonly used terms.

The four flags, FO, Fl, F2, and F3 in the HP-67 can be

command set (i.e., set to the value 1) using the [h][SF][n]

instruction where n = 0,1,2, or 3. The four flags can be

command cleared (i.e., cleared to the value 0) using the

[h] [CF][n] instruction. Also, the condition of each flag

may be tested using the [F?] instruction. If the

flag tested is in a 4¢f (1) condition, then the next sequential

program step is executed; if the flag tested is in a clear (0)

condition, then the next sequential program step is bypassed

and the following program step is executed (see illustration

on page 255 of the Ownen's Handbook). The operation of the

flags is discussed on pages 255 through 269 of the (wnexr's

Handbook.

99

In addition to clearing the flags by command,

flags 2 and 3 are also ftest-cleared flags. That is, when-

ever flag 2 or flag 3 is tested using the [h][F2][n]

instruction (where n = 2 or 3), the program instruction

pointer is advanced by 1l or 2 depending on whether the flag

is on or off, and then the flag is automatically cfeaxred

before program execution continues at the current program

instruction designated by the instruction pointer. An

additional feature of flag 3 is that it is automatically

set each time a data entry is made; this feature will not

be discussed here.

100

EXAMPLE 21. Output Control with Flags.

Suppose that we wish to calculate distance (d)

when speed (s) and time of travel (t) is specified. Further,

speed will always be given in knots and time will be in

the HH.MMSS format. The distance, given by d = st, is to

be computed and displayed in either nautical miles or in

yards as an option. When the speed is in knots and the

time is in hours, the product is distance in nautical

miles. To convert nautical miles to yards, we must multiply

by 2025 (for more precision, multiply by 2025.372). For

input, we use [s][*]|¥], and then press [A] for output

in nautical miles or press for output in yards.

Solution.

Instruction Step Keycodes

f LBL A 001 31 25 11

h SF 0 002 35 51 00

GTO O 003 22 00

f LBL E 004 31 25 15

h CF O 005 35 61 00

101

Instruction Step Keycodes

f LBL O 006 31 25 00

f H« 007 31 74

X 008 71

h F? 0 009 35 71 00

h RTN 010 35 22

2 011 02

0 012 00

2 013 02

5 014 05

X 015 71

h RTN 016 35 22

Sample Problems.

1. Speed is 5 knots and time is 30 minutes. Compute the

distance traveled in nautical miles.

Solution: 5[(1]0.3[A] 2.50 n.mi.

2. Speed is 5 knots and time is 30 minutes. Compute the

distance traveled in yards.

Solution: 5[#]0.3[E] 5062 .50 yards.

102

Discussion.

Problem 1.

when the [A] key is pressed, the program pointer

is moved to step 001 and execution begins. At step 002,

flag 0 is placed in the 4e¢f mode and then transfer is made

to label 0 at step 006. At step 007 the time in HH.MMSS

format is convered to time in hours (see pages 94 to 96

of the Ownen's Handbook). At step 008, the speed in the

Y-register is multiplied by the time in the X-register,

the result is the distance in nautical miles in the X-

register. At step 009 the status of flag 0 is tested.

Since flag 0 was 4ef at program step 2, the next step

(step 010) is executed, thus halting the program at

step 010 with the distance in nautical miles in the display

(X-register).

Problem 2.

When the key is pressed, the program pointer

is moved to step 004 and execution begins. At step 005,

flag 0 is placed in the cfeaxr mode. Execution continues

through the label 0 at step 006, and then the operation

is the same as described above until flag 0 is tested at

step 009. Since flag 0 is cfear, the program pointer

103

advances from step 009 to step 011 (omitting step 010).

At steps 011 through 014 the constant 2025 is generated

in the X -register. At step 015 the distance in nautical

miles in the Y-register is multiplied by the conversion

factor 2025 in the X-register. The result is the distance

in yards in the display. Execution is halted at step 016.

In an earlier section we learned how to record a

program onto a magnetic card. Every time a program 1is

recorded onto a magnetic card, the current setting of the

display (DSP; FIX, SCI, or ENG), the current setting of

the trigonometric mode (DEG, RAD, or GRD), and the current

status of the four flags are also recorded onto the program

card (Ownenr's Handbook, pages 272 to 274). The next example

will illustrate a way in which the test cleared flag F2

can be preset when a program is recorded so that each time

the program is used, one portion of the coding is executed

once and once only. This feature can be used to preset

constants or initialize data so that the program execution

time is faster for the second and subsequent data entries

than it is on the first data entry.

104

EXAMPLE 22. Leroy's Equation.

The sound velocity in water can be calculated from

Leroy's Equation [Ref. 4]. An abbreviated form of Leroy's

equation is

V = 4755.2 + 15.067T - 0.1765T2 + 0.00085T3

where T 1is the water temperature in degrees Celsius and

V 1s the sound velocity in feet per second. (A more

detailed form of Leroy's equation will be presented later.

For now we will assume that we measure or convert water

temperature to the Celsius scale.)

This program is to be written so that Leroy's

equation is evaluated as a nested polynomial (see Example

13, Solution 2):

vV = ((0.00085T - 0.1765)T + 15.067)T + 4755.2 .

Further, and as a time saving device, the constants in

Leroy's equation are to be generated and stored in primary

registers Rl through R4 when the first value of T 1is

input, but the portion of the program that stores the con-

stants is to be bypassed if additional values of T are to

be converted to sound velocity.

105

Solution:

Instruction

f LBL A

STO

h F? 2

f GSB 9

RCL

RCL

X

RCL

RCL

RCL

RCL

RCL

A

4

A

h RTN

f LBL 9

106

Step

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

Keycodes

31 25

33

35 71

31 22

34

34

34

34

34

34

34

35

31 25

11

11

02

09

04

11

71

03

61

11

71

02

61

11

71

01l

61

22

09

04

07

05

05

Instruction Step Keycodes

. 024 83

2 025 02

STO 1 026 33 01

1 027 01l

5 028 05

: 029 83

0 030 00

6 031 06

7 032 07

STO 2 033 33 02

034 83

1 035 0l

7 036 07

6 037 06

5 038 05

CHS 039 42

STO 3 040 33 03

8 041 08

5 042 05

EEX 043 43

5 044 05

CHS 045 42

STO 4 046 33 04

h RTN 047 35 22

107

Discussion: The program card can be prepared in one of

two ways:

1. a. With the Program Mode Switch in the W/PRGM position,

key in the program.

Slide the Program Mode Switch to the RUN position.

Press the keys [h] [0].

Slide the Program Mode Switch to the W/PRGM position.

Pass a blank magnetic card through the card reader

to record the program and the Flag 2 SET status

onto the program card. The display status is also

recorded onto the program card.

With the Program Mode Switch in the RUN position,

press the keys [hl] [SE] [2] [0].

Slide the Program Mode Switch to the W/PRGM

position.

Key in the program.

Pass a blank magnetic card through the card reader

to record the program and the Flag 2 SET status

onto the program card. The display status is also

recorded.

108

When the program card is passed through the card

reader (Program Mode Switch in the RUN position), the

program 1is transferred to the program memory and Flag 2 is

SET. When the {4in4%f temperature is keyed in and [A] is

pressed, the temperature is stored in register A at

step 002. At step 003, the status of Flag 2 is tested.

The process of testing Flag 2 automatically CLEARS Flag 2,

but since Flag 2 was SET the instruction at step 004 is

executed and a branch is made to the subroutine at f LBL 9

(step 019). The subroutine stores the four constants in

registers Rl through R4, and then at step 045 the RTN

instruction returns control to program step 005. From

steps 005 through 018 Leroy's equation is evaluated and

execution of the program is halted at step 018 with the

sound velocity in the display.

When a 4econd temperature is keyed in and |A]

is pressed, the temperature is stored in register A at

step 002. At step 003, the status of Flag 2 is tested.

Since Flag 2 is now in the CLEAR condition step 004 is

skipped and execution continues from program step 005 and

Leroy's equation is evaluated. Since the constants are

stored in registers Rl through R4, a duplicate execution

of subroutine LBL 9 is bypassed.

109

Sample Problem.

Find the sound velocity for the following water

temperatures:

a. 25°C (5035.)

b. 20°C (4993.)

c. 15°C (4944.)

d. 1lo0°cC (4889.)

If Flag 2 has not been properly set and recorded

then the answers will not be correct. Note how much more

rapid the computations become at the second and subsequent

temperature inputs than they were for the first input.

Example 22 has been designed to illustrate the use

of the test cleared Flag 2 and of the recording of the flag

status onto a program card. (If Flag 3 had been used instead

of Flag 2, then subroutine LBL 9 would be executed each

time is pressed. Why?) We will write this program

more efficiently in later Examples.

110

IX. CARD READER OPERATIONS

In earlier sections we have shown how to record

and read program cards. We have also shown how a flag can

be preset and this information recorded onto a card. There

are other card reader operations that are discussed in the

Ownen's Handoook in Section 14 on pages 271 to 297. Pages

271 to 274 and pages 278 to 286 should be studied carefully;

the remaining portions of Section 14 contain other interest-

ing but rarely used operations that can be studied at a

later time.

The programs that have been presented here are short,

112 program steps or less, and so they have required only

one side of a card, or one pass through the card reader.

Let us create a small "do nothing" program that

illustrates the card reader operation of a long program.

Turn the calculator on and place the Program Mode Switch

in the W/PRGM position. Press the keys [LBL] [A] ;

position the program step pointer to step 113 by pressing

LGTo]] ; then press the keys [h] . Now

record the "program" onto a card by passing a blank card

through the card reader while the Program Mode Switch is

in the W/PRGM position. When the card has passed through

111

the card reader the display shows Crd|[, which is the prompt

which requests you to pass the second side of the card through

the card reader. When this is done the display shows

(114 35 22] which is the that we keyed in.

What we have done is to place information other than

the "power up" or code in the fLower half (steps

001-112) of program memory, namely [£] [LBL][A], and we have

placed in the uppen half (steps 113-224) of program

memory. When the first side of the card is passed through

the card reader, program steps 001-112, the display status, the

flag status, the program mode status, and the prompt to read

the second side of the card are written on the one half of the

card. The prompt Crd shows in the display to indicate that

there are additional program steps to be recorded on the second

half of the card. Now, slide the Program Mode Switch to

the RUN position, turn the calculator OFF, then ON, and

pass one side of the program card through the card reader.

The display will then show Crd in the display to

indicate that the other side of the card is to be passed

through the card reader (if the same side is passed through,

the display will still show Crd indicating that you

have not fooled the calculator; it is patiently waiting for

112

the other side). When the second side is passed through,

the display returns to normal (or to the pre-recorded

display status) indicating that the card has been success-

fully read.

In addition to recording program information onto

a card, it is also possible to record the contents of all

primary and secondary registers onto a card. All of the

primary register (R1-R9, RA-RE, and RI) contents are

written onto one side of a data card, and the secondary

register (S0-S9) contents are written onto the second side

of a data card. To illustrate this operation, press

[1] [STO] with the Program Mode Switch in the RUN position.

Then press the keys [£f] [W/DATA|; the display will show the

[Crd] prompt indicating that a blank card is to be passed

through the card reader. When this is done, the display

returns to normal. Now turn the calculator OFF, then ON,

then pass the recorded side of the card through the card

reader and press [1]; should be shown in the

display. In this example only a single side of a card

has been required to record the data (non-zero data) that

was stored in register 1.

113

To illustrate recording both sides of a data card,

press [STO] [1] as before to store a 1 in storage

register Rl. Now press [Z+]. If the 1.00 was still in

the display, it will be added to the contents of register S4

and simultaneously the contents of register S9 will be

increased by 1. What we have done is to introduce non-zero

information into the secondary storage registers. Now

press [f] [W/DATA]; the display will show indicating

that one side of a blank card is to be passed through the

card reader. When this is done, all of the data in the

primary storage registers are recorded onto one-half of

the card. The display will still show Crd indicating

that the second half of the card should be passed through

the card reader to record the secondary storage register

contents onto the second half of the card. When this is

done, the display returns to normal.

To illustrate reading the card, turn the calculator

OFF, then ON. Pass either side of the card through the

card reader (the calculator must be in the RUN mode); the

display will show Crd indicating that the other side

of the card is to be passed through the card reader so that

remaining information will be transferred to the proper

storage locations.

114

If a short program (112 program steps or less) is

written which also uses some fixed data (primary registers

only), then it is possible to place the program on one side

of a magnetic card and the data on the other side. To

illustrate this, turn the calculator on and place it in the

RUN mode. Key in , then [W/DATA]; when

Crd appears, pass one side of a magnetic card through

the card reader to record the data. Next place the

calculator in the W/PRGM mode and key in any thing except

R/S (for example, [f] [A]). Then pass the other side

of the magnetic card through the card reader to record

the "program." To demonstrate that the program/data card

has been properly written, place the calculator in the

RUN mode and turn it OFF, then ON. Pass one side and then

the other side of the program/data card through the card

reader. Observe that there was no Crd prompt given;

the calculator did not "know" that a part program, part

data card had been written. Press and the

1.00 from storage register 1 will appear. Slide the

Program Mode Switch to W/PRGM; 000 should appear. Press

SST| and observe [001 31 25 11] in the display

(f LBL A).

115

The only undesirable feature of producing a

program/data card as indicated above is the fact that we

do not obtain the very convenient [Crd] prompt. With a

little trickery we can produce a card which does give us

a prompt from one side of the card. Proceed with the

previous example as follows. With the calculator in the

RUN mode press [STO] [£+]; the quantity 1.00 is stored

in primary register 2, and the I+ has placed non-zero

"garbage" in the secondary statistical registers (which

are not to be recorded anyway). Place the calculator

in the W/PRGM mode and key in any keystrokes except R/S

(for example, [LBL] [a]). Next return the calculator

to the RUN mode and press when the [Crd

prompt appears, pass side 1 of a magnetic card through

the calculator. The Cxrd prompt will reappear, indicating

that there is data in the secondary registers to be recorded.

Instead of recording the secondary register data, press

CLx]|; the display should return to normal. Place the

calculator in the W/PRGM mode and pass the second side

of the card through the card reader. The program/data card

has been prepared with a prompt on side 1. This pro-

cedure is perhaps a little lengthy, but it is usually well

worth the additional effort required to add the prompt.

116

Test your card for proper operation by turning the calculator

OFF, then ON. In the RUN mode pass Side 1 of the card

through the card reader; [Crd] should show in the display.

Pass Side 2 of the card through the card reader and the

display should return to normal. Note that the prompt is

not obtained if Side 2 is passed through the card reader

before Side 1.

117

EXAMPLE 23. Leroy's Equation. Program/Data Card.

Rewrite the Leroy equation program (Example 22) so

that the data generated and stored by subroutine 9 is instead

placed on the data side of a program/data card. The Flag 2

and subroutine 9 usage can be removed from the program which

should be placed on the program side of the program/data card.

Place a [Crd] prompt on side 1 of the program/data card.

Recall that the nested form of Leroy's Equation

is

Vv = ((0.00085T - 0.1765)T + 15.067)T + 4755.2.

Solution:

In the RUN mode, Kkey in:

a) 4755.2 [STO]

b) 15.067 [sTo] [2]

c) -0.1765

d) 0.00085 (4]

e) 2+ Place nonzero information
in the secondary registers.

£f) [DSpP] [0]

g) Pass side 1 of a magnetic
card. When the prompt

appears, press .

118

Place the Program Mode Switch in the W/PRGM position.

a) Key in:

Instruction Step Keycodes

f LBL A 001 31 25 11

STO A 002 33 11

RCL 4 003 34 04

X 004 71

RCL 3 005 34 03

+ 006 61

RCL A 007 34 11

X 008 71

RCL 2 009 34 02

+ 010 61

RCL A 011 34 11

X 012 71

RCL 1 013 34 01

+ 014 61

h RTN 015 35 22

b) Pass Side 2 of the magnetic card through the card reader,

then place the Program Mode Switch in the RUN position.

119

The program is now ready to use. To test it, turn the

calculator OFF, then ON. Pass Side 1 of the program card

through the card reader, this will place the constants

of Leroy's Equation into Primary Registers R1l, R2, R3, and

R4. The display should show the prompt. Pass

Side 2 of the program card through the card reader. The

display should show [0.]. Now try the sample problem

a. 25°C 5035. ft/sec

b. 20°C 4993, ft/sec

c. 15°C [al 4944 . ft/sec

d. 10°cC 4889. ft/sec

Occasionally a program is written which cannot be

shortened to fewer than 224 program steps. In such cases

multiple cand programs can be written. Usually, as much

of the program as possible is placed in the 224 available

program steps. This program segment should end with an

[h] [RTN] or a [R/S] instruction. If the stack is not

being used a 2. immediately preceding the [h] or

[R/S] can be used to place [2.] in the display to prompt

the user to read in a second program card which contains

120

the continuation of the program. When the new program card

is read, the contents of the stack registers and all primary

and secondary registers are unaffected. Thus the new program

steps overlay the old program steps, which are no longer

needed. The computations are resumed by pressing some user

defined key in the second program card. This process may

be continued for as many program cards as required.

The additional card reader features of program

merging and data merging are discussed on pages 274 to 278

and pages 286 to 297 of the Owner's Handbook. These features

are used so rarely that they will not be discussed here.

121

X. INDIRECT CONTROL (PANDORA'S BOX)

Sections 11 and 12 (pages 213-253) of the Ownen's

Handbook are devoted to "Controlling the I-Register" and

"Using the I-Register for Indirect Control," respectively.

The uses of the indirect control features are quite varied

and are limited only by the creativity of the programmer.

One exotic use is to control the display in conjunction

with the printer on the HP-97 to plot graphs. This graphic

technique has been used to plot propagation loss profiles

on the HP-97 with ranges shown in the exponent field.

Here we will only describe the indirect functions briefly

and we will present a final version of the Leroy Equation

program to illustrate one application of indirect control.

The I-register and its contents are involved in

all indirect control applications. Any number in the display

can be stored in the I-register using the [h][STI] keystrokes.

Similarly the contents of the I-register can be recalled

using . The contents of the x-register and the

I-register can be exchanged using [h][x2I|. The contents

of the I-register can be increased by one using the

Increment and Skip on Zerno keystrokes , and the

contents of the I-register can be decreased by one using

122

the Decrement and Skip on Zero keystrokes [£f][DSZ]. 1In

the Program Mode, the and [f][DSZ] instructions

operate as conditional branches. For example, the [f][DSZ]

instruction operates as follows: first the contents of the

I-register is decreased by 1, then the contents of the I-

register is tested. 1If the integer part of the number in

the I-register is not zero, then the program instruction

pointer is increased by 1 and the instruction at that program

step is executed; i1f the integer part of the number in the

I-register is equal to zero, then the program instruction

pointer is increased by 2 (hence the Skip on Zexno) and the

instruction at that program step is executed.

123

EXAMPLE 24. Use of DSZ Instruction.

Write a program to compute the sum of the numbers

l, 2, ... , N by adding these integers together. (Do not

use the formula SUM = N(N+1)/2.) The program is to be

initiated by placing N 1in the x-register and then pressing

:

Solution.

Instruction Step Keycodes

f LBL A 001 31 25 11

h STI 002 35 33

0 003 00

f LBL 0 004 31 25 00

h RCI 005 35 34

+ 006 61

f DSZ 007 31 33

GTO 0 008 22 00

R/S 009 84

124

Discussion: At step 002, the number in the display is stored

in the I-register. At step 003 the contents of the X-register

are set to zero. At step 005 the contents of the I-register

are recalled, and at step 006 they are added to what was in the

X-register. At step 007, the contents of the I-register are

decreased by 1. If the new content of the I-register is

zero, then the program instruction counter is increased by

2 to 009 and the R/S instruction of step 009 is executed,

thus halting the computation with the sum in the display.

If the new contents of the I-register are not zero, then the

program instruction counter is increased by 1 to 008 and

the GTO 0 instruction at step 008 is executed. Control

branches unconditionally to step 004. At step 005 the new

contents of the I-register are recalled, and at step 006 they

are added to what was in the X-register. The process will

continue until the contents of the I-register are reduced

to zero and execution terminated at step 009.

125

Sample Problems.

N suM
1 1.00

2 3.00

3 6.00

4 10.00

5 15.00

10 55.00

20 210.00

50 1275.00

100 5050.00

The instruction operates in a manner

similar to the except that the contents of the

I-register are increased instead of decreased before testing.

[£] [IS2] will not be discussed here.

126

The five instructions discussed thus far involve the

I-register in a direct manner. Indirect control involves

using the contents of the I-register to control some other

function. For example, store a 5 in the I-register, and

then press the keys [DSP] and you will see 5.00000

in the display, just as you would if you had pressed the

keys . The key designates that 4i{ at all

possible the contents of the I-register are to be used to

perform the designated operation. If the contents of the

I-register conflict with the designated operation, then

the operation will not be performed and an indication

will be given.

Try [STI] [DSP] [(i)]. The result

9.990000000 is shown in the display. Here the integer part

of the contents of the I-register was used as if [9]

had been keyed. Now try [h] [ST1] [DSP] [(L)]. The

result is -9.99000000 in the display showing that the

absolute value of the integer part of the contents of the

I-register was used to set the display. However

[STI] [DSP] [(i)] 1leads to an |Error| display

since it is not possible to display 10 figures after the

decimal following any operation.

127

EXAMPLE 25. Display Control with I-Register.

This example illustrates both indirect control of

the display and direct control of the I-register. Key in

the following program:

Instruction Step Keycodes

f LBL A 001 31 25 11

9 002 09

h STI 003 35 33

f LBL O 004 31 25 00

h RCI 005 35 34

DSP (i) 006 23 24

h PAUSE 007 35 72

f DSZ 008 31 33

GTO O 009 22 00

R/S 010 84

Now press [A]. The following number will be displayed

with a brief pause for each number:

128

9.000000000

8.00000000

7.0000000

6.000000

5.00000

4.0000

3.000

2.00

1.0

Discussion: When [A] is pressed, a 9 is stored in the

I-register. At step 005 the contents of the I-register

are recalled to the X-register for display. At step 006

the display format is controlled indirectly by the number

in the I-register. At step 007 execution is halted for

about one second so that the contents of the X-register

may be viewed. At step 008 the contents of the I-register

are decremented by one and then the contents of the I-

register are tested. If the contents of the I-register are

not zero, then the program instruction counter is increased

by 1 and step 009 is executed thus branching unconditionally

129

to LABEL 0 at step 004. If the contents of the I-register

are zero after the decrement at step 008, then the program

instruction counter is increased by 2 and step 010 is

executed halting the program.

Indirect control of the display is only one of the

many indirect functions. A complete list of the indirect

control functions with a brief description of each is

given on pages 223-224 of Ownen's Handbook. We conclude

with a final version of the Leroy Equation program to

illustrate some of the saving that can be obtained with

indirect control.

130

EXAMPLE 26. Leroy's Equation with Indirect Control.

In Example 23 the Leroy Equation program was

written so that the data was stored on one side of a

magnetic card and the program was on the other side. The

same data storage allocation will be used here. With a

minor modification, the program instructions from

Example 23 are repeated below for ease of discussion.

They are:

131

Observe that three blocks of the program sequence are identical

with the exception of recalling a constant from a different

storage location. With indirect control we could replace

each of these blocks with the sequence:

RCL A

X

RCL (1)

Then the value of the I-register can be controlled using

the DSZ instruction.

Solution:

Instruction Step Keycodes

f LBL A 001 31 25 11

STO A 002 33 11

3 003 03

h STI 004 35 33

RCL 4 005 34 04

f LBL 5 006 31 25 05

132

Instruction Step Keycodes

i RCL A é 007 34 11

E X E 008 71

i RCL (i) g 009 34 24

i + i 010 61

f DSZ 011 31 33

GTO 5 012 22 05

h RTN 013 35 22

Discussion: Although the step saving in this example

is not dramatic it does indicate what can be done with

indirect control. If Leroy's Equation had one or two more

constants in the temperature series, the step saving would

become quite dramatic. In this program, the temperature

in °C is stored in register-A (step 002). At steps 003

and 004 the constant 3 is stored in the I-register for

indirect control. At step 005 the constant 0.00085

is brought into the X-register. At steps 007 and 008

the temperature is recalled and multiplied by the constant

133

from R4. At step 009 the contents of R3 are recalled

indirectly (a 3 is in the I-register), and at step 010

the constant is added. At step 011 the contents of the

I-register are decreased by 1 (to 2) and at step 012

a branch is made to LABEL 5 at step 006 and the block is

repeated using the constant in R2. The total process

is continued until the program execution is stopped at

step 013.

134

XI. ADDITIONAL EXERCISES

The surface duct cutoff frquency £ 1is a function of the

sonic layer depth d and the sound velocity c¢. The

relationship is

‘- cd-l.S
=s

4.7 x 10

where f 1is measured in Hertz, d 1is measured in feet,

and c¢ 1is measured in feet per second. Write a program

to calculate f for various input values of ¢ and d.

An additional embellishment is to provide a default sound

velocity of 5000 feet per second in the program.

5000 ft/sec and d[For c 260 ft, £ = 253.8 Hz;

for c 4980 ft/sec and d 500 ft, £ 94.8Hz.]

135

The velocity of sound in water can be calculated from

Leroy's equation. A more elaborate form of Leroy's

equation than that given in Examples 22, 23, and 25 is:

V = 4755.2 + 15.067T - 0.1765T2 + O.OOO85T3

+ 3.9(8 - 35) + D/61

where

T is the water temperature in °Celsius,

S 1is the salinity in parts per thousand,

D 1is depth in feet, and

V 1is the sound velocity in feet per second.

Until the United States "goes metric," temperatures will

commonly be measured in °Fahrenheit. The relationship between

the two temperature scales 1is:

T = (t - 32)/1.8

where

t is the temperature in °Fahrenheit and

T 1is the temperature in °Celsius.

136

2a. Write a program to compute V from various values

S, and D. Then use your program to find V when

t = 76°F, S = 33 ppt, and D = 330 feet

(Ans: 5028 feet/second.)

Provide options to input the temperature in either

Fahrenheit or degrees Celsius, and to input depth

either feet or meters. (1 foot = 0.3048 meters.)

137

of t,

degrees

in

If a Lloyd Mirror pattern is observed and if the water

conditions are isovelocity, then source depth ds can

be computed from range R, sound velocity c¢, hydrophone

depth dh and frequency separation F. The formula is

2
a =% h-__ZB
S 2 X 2 5

() -42 h

where) = c/F. R, ds’ and dh are in feet, ¢ 1is in

feet/second, and F 1s in Hertz. Write a program to

compute ds for various values of R, d c and F.hl

[For ¢ = 5000 ft/sec, R = 3000 ft, F = 35 Hz, and

dh = 300 ft we find that ds = 739 ft.]

138

REFERENCES

LT. R. P. Huff, "On-Station Update of Oceanographic
Information," COMPATWINGSPAC TAC MEMO 160-24-74,

22 October 1974.

R. H. Shudde, "On-Station Update of Oceanographic
Information with Programs for the HP-67 Calculator,"
Naval Postgraduate School Technical Report NPS55-77-41,
October 1977.

Robert J. Urick, Principles of Underwater Sound, 2nd Edition
McGraw-Hill Book Company, 1975.

C. C. Leroy, "Development of Simple Equations for Accurate

and More Realistic Calculations of the Speed of Sound in
Sea Water," J. Acoust. Soc. Am. 46, 216 (1969).

139

	Cover
	Table of Contents
	I. Introduction
	II. Vectors
	Polar/Rectangular Function Conventions
	Polar-to-Rectangular Conversion
	Exercises
	Rectangular-to-Polar Conversion
	Exercises
	Summation Function Keys
	Vector Operations

	III. Programming
	Program Memory
	Keycodes
	Program Writing, Recording and Execution
	Program Editing and An Improved Course-Made-Good Program

	IV. Branching
	Additional Comments

	V. Subroutines
	VI. Packing The Output Display
	VII. Unpacking
	VIII. Flags
	IX. Card Reader Operations
	X. Indirect Control (Pandora's Box)
	XI. Additional Exercises
	References

