HEWLETT-PACKARD

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The HP-67 Standard Pac provides an excellent nucleus from which to build your program library. The programs address topics common to business, science, and engineering as well as providing enjoyable programs such as *Arithmetic Teacher, Follow Me, and Moon Rocket Lander*.

No knowledge of programming is required to use the programs in Standard Pac. However, familiarity with sections one through five of the Owner's Handbook (or previous HP calculator experience) is assumed. If this is your first encounter with programmability, be sure to read "Running a Program" on pages iv to xi of this manual. This detailed description is designed to help you become more familiar with your calculator. It is most effective when you perform all operations as they are described.

For each program the Standard Pac provides a description, user instructions, keystrokes for example problems, a prerecorded magnetic card (in the plastic card case) and program listings (at the back of this manual). There is also a diagnostic program for checking calculator operation, a head cleaning card which can be used occasionally to clean the magnetic card read/write head, and blank magnetic cards which may be used to record the programs you write.

Standard Pac differs from optional HP-67/97 application pacs in that it contains explanations of important programming techniques. The titles and page numbers of these explanations may be found opposite page 15-03 of this manual.

We hope you find Standard Pac useful in your daily calculations.

NOTES

CONTENTS

Prog	gram Page	è
1.	Moving Average	l
2.	Tabulator	l
3.	Curve Fitting	l
4.	Calendar Functions	l
5.	Annuities and Compound Amounts	
6.	Follow Me	
7.	Triangle Solutions	
8.	Vector Operations	L
9.	Polynomial Evaluation	
10.	Matrix Operations	L
11.	Calculus and Roots of $f(x)$	
12.	English—SI Conversions (Metric Conversions)	
13.	Arithmetic Teacher	
14.	Moon Rocket Lander	l
15.	Diagnostic Program	l
Prog	ram Listings and Programming Techniques	L

RUNNING A PROGRAM

Loading A Program

Select the *Curve Fitting* card, SD-03A, from the card case supplied with this application pac.

Set W/PRGM-RUN switch to RUN.

Turn the calculator ON. You should see 0.00.

Gently insert either end of the card (printed side up) in the reader slot as shown in figure 1.

Figure 1.

When the card is part way in, a motor engages and passes it out the side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely.

The display will show "Error" if the card reads improperly. In this case, press CLx and reinsert the card.

Since *Curve Fitting* is longer than 112 steps, the display now shows "Crd" indicating that a second card pass is necessary to load the remaining steps. With the writing still visible to you, insert the *opposite* end of the card (figure 2) and pass the card through the card reader again.

Figure 2.

When the motor stops, remove the card from the side of the calculator and insert it in the "window slot" of the calculator (see figure 3).

Figure 3.

The program has now been stored in the calculator. It will remain stored until another program is loaded or the calculator is turned off.

MAGNETIC CARD

Instructions On The Magnetic Card

Look at the card that you just inserted in the window slot of the calculator. The mnemonics on the card can help you run the program. The most important thing to note is that the mnemonics are associated with the user-definable keys A - E. For instance "LOG?" and " $y \rightarrow \hat{x}$ " are associated with the D key.

Following is a table of the important types of symbols and conventions used in this pac. The table is provided as a reference until you become familiar with the symbols on the magnetic cards.

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x	White mnemonics are associated with the user- definable key they are above when the card is in- serted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \triangle .
Gold mnemonic: y x f E	Gold mnemonics are similar to white mnemonics except that the gold [] key must be pressed before the user-definable key. In this case y could be input by pressing [] E .
x try A	★ is the symbol for ENTER. In this case ENTER. is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER. , key in y and press A.
X	The box around the variable x indicates input by pressing STO A.
(x) A	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
◆x A	• is the symbol for calculate. This indicates that you may calculate x by pressing key $[A]$.
◆x, y, z	This indicates that x, y, and z are calculated by pressing \blacksquare once. The values would be sequentially displayed in x, y, z order.

Symbols And Conventions

SYMBOL OR CONVENTION	INDICATED MEANING
→x; y; z	The semi-colons indicate that after x has been cal- culated using \blacktriangle , y and z may be calculated in turn by pressing \blacksquare , and then again \blacksquare .
◆''x '',y ▲	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
◆ X A	The two-way arrow \Leftrightarrow indicates that x may be either output or input when the associated user-de- finable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.
P?	The question mark indicates that this is a mode set- ting, while the mnemonic indicates the type of mode being set. In this case a pause mode is control- led. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
DEL A	This special command indicates that the last value or set of values input may be deleted by pressing \square .

FORMAT OF USER INSTRUCTIONS

The completed User Instruction Form—which accompanies each program—is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT-DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of () to () and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT-DATA/UNITS column specifies intermediate and final outputs and their units, where applicable.

The following illustrates the User Instruction Form for Curve Fitting, SD-03A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Select pause input			
	mode.			1.00/0.00
3	Select type of regression:			
	for linear fit		1 B	1.00
	for exponential fit			1.00
	for logarithmic fit			1.00
	for power fit		•	1.00
4	Input x value*.	Xi	ENTER+	Xi
5	Input y value.	Уi	A	i + 1
6	Repeat steps 4 and 5 for all data			
	pairs**.			
7	Compute and output coefficient			
	of determination r ² and a and b.		C	r², a, b
8	Optional: Make projections			
	based on a known y value.	у	D	Ŷ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Optional: Make projections			
	based on a known x value.	x	8	ŷ
10	For a new case go to step 3.			
	*Note that this step may be skip-			
	ped if the x value equals the dis-			
	played counter (i + 1).			
	**The last set of data pairs may			
	be deleted by pressing D R.			
	then B. Any set of data pairs			
	may be deleted by entering them			
	as in steps 4 and 5 and			
	pressing B.			

Since you loaded this program in "Loading A Program" on page iv, step 1 is already done and we can move to step 2. (If you turned your calculator off, you must reload the program.)

Step 2 is optional. It is primarily intended for printer control on the HP-97 printing programmable calculator. On your HP-67 calculator, print commands are interpreted as pause commands. That is, the calculator stops and displays the X-register value for one second and then continues with program execution.

In this particular application the print mode provides a permanent record of input data on the HP-97 printing calculator. On the HP-67 pocket calculator the input values are displayed for review if the print input mode is selected.

To select this "print/pause" mode, you would press \blacksquare as shown in the KEYS column of the User Instruction Form. Go ahead and press \blacksquare A now. You should see a 1.00 in the display as indicated in the OUTPUT DATA/ UNITS column. Successive presses of \blacksquare A will cause 0.00 and 1.00 to be displayed alternately, indicating that the print/pause mode is off (0.00) or on (1.00). Try this, but leave 0.00 displayed (print/pause mode off) before moving to step 3. In step 3 the type of curve fit is selected. There are four options listed, and you must select one. For example, to select exponential curve fit, refer to the *KEYS* column of the same line and press **[] C**. Do this. The number 1.00 should be displayed, as shown in the OUTPUT-DATA/UNITS column.

The magnetic card gives short mnemonic hints about the four possible modes that may be selected. Printed in gold above the C key is "EXP?" indicating that the exponential mode is set by pressing 1 C.

To do a curve fit, you must input a number of data pairs $(x_i \text{ and } y_i)$. Steps 4, 5 and 6 give the input instructions. First key in x_i as indicated under INPUT-DATA/UNITS. Then press **ENTER** to tell the calculator that you have completed building the number x. Then key in the value for y_i and press **A**. The number of data pairs plus one (i + 1) will appear in the display. Repeat the procedure for all data pairs. Try it for this data set:

)	x,	1	3	7
}	y i	2.7	20	1100

The keystrokes you should use are 1 ENTER? 2.7 A 3 ENTER? 20 A 7 ENTER 1100 A. If you make a mistake, look at the second note at the bottom of the User Instructions. It describes procedures for correcting errors. If the last input pair was in error, you could press $h \mathbb{R}$ B and eliminate it. Don't do this. Instead eliminate the (3,20) pair and replace it with (4,60). The keystrokes are 3 ENTER 20 B 4 ENTER 60 A.

Now that you know how the program works, the mnemonics on the magnetic card will prompt you on data input and data correction.

When all data have been keyed into the calculator, the regression coefficients can be calculated. Step 7 of the User Instructions says press **C** to do this.

Three values will be displayed in the order listed in the comments column of the user instructions. First, the coefficient of determination (r^2 here equal to 1.00) will be displayed. Then the regression coefficients, a (1.02) and b (1.00), will be displayed. Go ahead and press **C**. When execution stops (after all three values have been displayed), you may review the values by pressing **C** again.

If you wish to have more time to observe a value during a pause, press R/S during the pause. This stops program execution leaving the value displayed. To restart the calculator, press R/S again. Try this. Press C, then stop the calculator during the first pause by pressing R/S. Press R/S again to restart program execution. Stop the calculator during the second pause and see 1.02. Press R/S again to complete the calculation. Note that during an output pause, the decimal point flashes. This signifies that program execution has not terminated and will resume automatically.

Now try a projection. Step 9 instructs you to key in an x value, press \blacksquare and see a projected \hat{y} value. Try an x value of 10. You should see a projected \hat{y} result of 22926.17. You can also estimate an x value \hat{x} using a known y value. Leave the value of 22926.17 in the display and press \square . The value 10.00 should be displayed again.

If your answers agree with ours, you are ready to try other programs in Standard Pac. If your answers did not agree with ours, try the procedure again.

In a moving average, a specified number of data points are averaged. When there is a new piece of input data, the oldest piece of data is discarded to make room for the latest input. This replacement scheme makes the moving average a valuable tool in following trends. The fewer the number of data points, the more trend sensitive the average becomes. With a large number of data points, the average behaves more like a regular average, responding slowly to new input data.

This program allows for a moving average span of 1 to 22 units. The number of units, n, must be specified before any data input begins by keying it in and pressing \blacksquare \land . Then the data is input by keying in each value, x_k , and pressing \land in turn. The calculator will display the current input number, k, until at least n values have been entered. After the nth value (and for all succeeding values), the calculator will flash the current input number before halting with the moving average, AVG, in the display.

In many applications moving averages are calculated daily, weekly, monthly, or even yearly. In such cases it is necessary to store the register contents on a magnetic card for future use. To do this, press if for WRITE DATA and insert one side of the blank card. If the display says "Crd" after the first card pass, insert the other end of the card. If the display is unchanged after the first pass, all data has been recorded on the first pass and you may proceed to other calculations. When the recorded data is required again, insert the data card. If "Crd" appears after the first pass, load the other end of the card. The original data has been returned to the storage registers and you are ready to continue the moving average at the point you left off.

The value of the average may be displayed at any time by pressing \square . This feature allows the average to be calculated before n data points have been input. The average is based on the number of inputs or n, whichever is smaller.

Remarks:

Attempts to input a value larger than 22.00 or smaller than 1.00 for n will result in a flashing display which can be cleared by pressing R/S.

All data storage registers are used.

Moving averages of 10.00 or more units require two passes of the data card to record or store the values.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	If data from a previous calcu-			
	lation is stored on a magnetic			
	card, insert the magnetic			
	card and skip to step 5.			
3	Input number of points in			
	average (1 \leq n \leq 22)	n		n
4	Optional: Select pause input		[] B	1.00/0.00
	mode.			
5	Input data point and compute			
	moving average.*	X _k	А	"k", AVG
6	Go to step 5 for next input.			
7	Optional: To store data on			
	magnetic card for future use,			
	press B and insert card in			
	reader.		8	Crd
8	Optional: Output values in			
	newest to oldest order.		C	Values
9	Optional: Display average at			
	any time.		D	AVG
	For a new case go to step 2.			
	*If you make an error on data			
	input, you must start over unless			
	you previously recorded data			
	on a magnetic card. If data was			
	previously recorded, load the			
	data card and start with the first			
	value input after recording the			
	card.			

01-03

Example 1:

A six-period moving average is used to project monthly sales. The first 6 months of sales are as follows:

Month	1	2	3	4	5	6
Sales	125	183	207	222	198	240

Compute the moving average. Also compute the average after month three.

Keystrokes:	Outputs:	
6 🚺 🗛 ────	6.00	
125 A	1.00	
183 A		
207 🗛 ———	3.00	
	171.67	(average after month three)
222 🗛 ———	4.00	
198 🗛 ———	5.00	
240 🗛 ———————————————————————————————————	''6.00'',	195.83

Now record the data for example 2.

■ ------ Crd

Insert a blank magnetic card in the card reader.

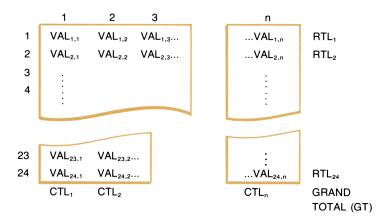
Now turn the calculator off and assume a month has passed. Turn the calculator back on and load both sides of *Moving Average*.

Example 2:

The actual sales for the seventh month totaled 225 units. Compute a new moving average with this data. Also, output the values in the average.

Load the magnetic data card recorded at the end of example 1.

Keystrokes:


Outputs:

ving
ues
)
.)
1

NOTES

This program is designed to be of aid in tabulating applications such as accounting and estimating. It can be used to add single columns containing up to 24 values (VAL), remember each value, and find the percent of total of each value. (The first example problem shows this type of use.) The program can also be used to total any number of columns and find row totals, the percent of total for each row total, and the grand total for a table of values. The total of each column is displayed as soon as the column is completed.

Column totals (CTL) are output when the column is complete.

Figure 1

Equations:

% of
$$\text{Total}_i = \frac{\text{Row Total}_i}{\text{Grand Total}} \times 100$$

Remarks:

If the last value input was in error, it may be deleted by pressing **B**. This subtracts the value from both column and row totals and resets the indices.

Attempts to specify more than 24 or less than 1 for the number of rows will result in flashing input which can be cleared by pressing **R/S**.

All data storage registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in number of rows (1 to 24)			
	and initialize*.	ROWS		0.00
3	Optional: Select pause input			
	mode		1 B	1.00/0.00
4	Input value	VAL	A	VAL (or CTL)
5	If your last data input was in			
	error execute this step to return			
	to prior status:		B	
6	Go to step 4 until all values have			
	been input.			
7	Obtain outputs:			
	Output row totals and grand total.		C	ROWS
	or			
	Output % of grand total for each			
	row total.		٥	ROW %
8	Optional: Compute percentage			
	of grand total for any number.	NUMBER	G	% of GT
9	For new case go to step 2.			
	*Flashing input indicates an			
	input less than one or greater			
	than 24. Clear with R/S .			

02-03

Example 1:

The following list of unit sales figures are to be totaled and converted to monthly percentages.

January: 1012	May: 1502	September: 1051
February: 1235	June: 1073	October: 1244
March: 895	July: 973	November: 1127
April: 1123	August: 1250	December: 977

Keystrokes:	Output:
12 [A	0.00
1012 A 1235 A 895 A 1123 A	• 1123.00
1502 A 1073 A 973 A 1250 A	
1051 A 1244 A 1127 A 977 A	
	• 7.52 *** (Percents)
	9.17 ***
	6.65 ***
	8.34 ***
	11.16 ***
	7.97 ***
	7.23 ***
	9.29 ***
	7.81 ***
	9.24 ***
	8.37 ***
	7.26 ***
	100.00 ***
₢	• 1012.00 *** (row totals)
	1235.00 ***
	895.00 ***
	1123.00 ***
	1502.00 ***
	1073.00 ***
	973.00 ***
	1250.00 ***
	1051.00 ***
	1244.00 ***
	1127.00 ***
	977.00 ***
	13462.00 ***

Example 2:

The following table is to be totaled (both rows and columns). Also, find the percent of total sales for each booklet.

BOOKLET SALES DATA					
	JAN	FEB	MARCH	APRIL	MAY
BOOK 1 BOOK 2 BOOK 3 BOOK 4	273 1093 423 118	284 847 654 255	303 1222 683 453	244 1027 540 755	252 978 570 805

Outputs:

Keystrokes:

$4 \text{ () } A \text{ ()$

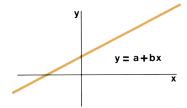
BOOKLET SALES DATA

	JAN	FEB	MARCH	APRIL	MAY	TOTALS
BOOK 1	273	284	303	244	252	^I 1356 ^{II} 11.51% ^I
BOOK 2	1093	847	1222	1027	978	¹ 5167 ¹¹ 43.87% ¹
BOOK 3	423	654	683	540	570	2870 24.37%
BOOK 4	118	255	453	755	805	2386 20.26%
TOTALS	1907	2040	2661	2566	2605	11779.00 100.00%

CURVE FITTING

This program can be used to fit data to:

- 1. Straight lines (linear regression); y = a + bx,
- 2. Exponential curves; $y = ae^{bx}$ (a > 0),
- 3. Logarithmic curves; $y = a + b \ln x$,
- 4. Power curves; $y = ax^b$ (a > 0).

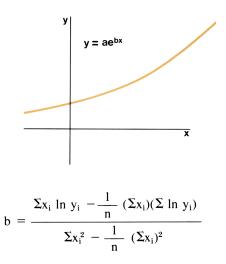

The type of curve fit must be determined before data input begins. To select linear regression, you would press the **1 B** keys. To select exponential curve fit, press **1 C**. To select logarithmic curve fit, press **1 C**. To select power curve fit, press **1 C**. Do not attempt to change from one type of fit to another after data input has begun because the summation registers are cleared when the type of curve fit is selected. Restarting can be accomplished by repeating the curve fit selection process.

Data pairs $(x_i \text{ and } y_i)$ are input by keying in x_i , pressing **ENTERS**, keying in y_i and pressing the **A** key. Any number of data pairs may be input. If, after pressing the **A** key, you discover a data pair was incorrect, wait until execution stops, press **h R**, then the **B** key. This will eliminate the errant data pair. If you wish to eliminate any data pair previously input, key it in (x **ENTERS** y) and press **B**.

After all data pairs have been input, press \square . This initiates calculation and output of the coefficient of determination r^2 , and the regression coefficients a and b. The coefficient of determination indicates the quality of fit achieved by the regression. Values of r^2 close to 1.00 indicate a better fit than values close to zero. The regression coefficients a and b define the curve generated, according to the equations at the beginning of this discussion.

After the regression coefficients have been calculated, projections may be made based on the curve fit. Key in a known x value, press \Box and see an estimated y value, \hat{y} , or key in a known y value, press \Box and see an estimated x value, \hat{x} .

Linear Regression

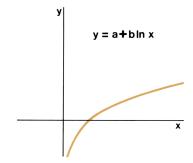


$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$

$$a = \left[\frac{\Sigma y_i}{n} - b \frac{\Sigma x_i}{n} \right]$$

$$r^{2} = \frac{\left[\Sigma x_{i}y_{i} - \frac{\Sigma x_{i} \Sigma y_{i}}{n}\right]^{2}}{\left[\Sigma x_{i}^{2} - \frac{(\Sigma x_{i})^{2}}{n}\right]\left[\Sigma y_{i}^{2} - \frac{(\Sigma y_{i})^{2}}{n}\right]}$$

Exponential Curve Fit

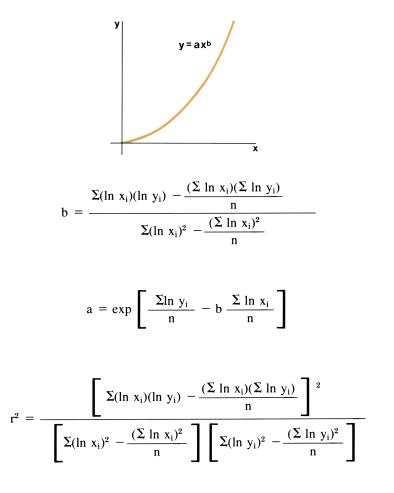


03-03

$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n}\right]$$

$$r^{2} = \frac{\left[\sum x_{i} \ln y_{i} - \frac{1}{n} \sum x_{i} \sum \ln y_{i} \right]^{2}}{\left[\sum x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n} \right] \left[\sum (\ln y_{i})^{2} - \frac{(\sum \ln y_{i})^{2}}{n} \right]}$$

Logarithmic Curve Fit



$$b = \frac{\sum y_i \ln x_i - \frac{1}{n} \sum \ln x_i \sum y_i}{\sum (\ln x_i)^2 - \frac{1}{n} (\sum \ln x_i)^2}$$

$$a = \frac{1}{n} (\Sigma y_i - b \Sigma \ln x_i)$$

$$r^{2} = \frac{\left[\Sigma y_{i} \ln x_{i} - \frac{1}{n} \Sigma \ln x_{i} \Sigma y_{i} \right]^{2}}{\left[\Sigma (\ln x_{i})^{2} - \frac{1}{n} (\Sigma \ln x_{i})^{2} \right] \left[\Sigma y_{i}^{2} - \frac{1}{n} (\Sigma y_{i})^{2} \right]}$$

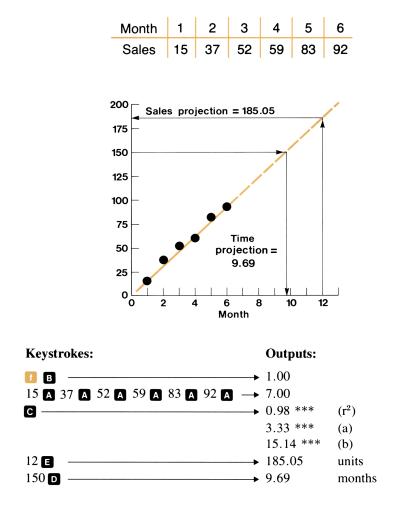
Power Curve Fit

Remarks:

Negative and zero values of x_i will cause a machine error for logarithmic curve fits. Negative and zero values of y_i will cause a machine error for exponential curve fits. For power curve fits both x_i and y_i must be positive, non-zero values.

Registers R_0-R_9 are available for user storage.

It is not necessary to key in the x value if it corresponds to the counter returned to the display (see example 1).


As the differences between x and/or y values become small, the accuracy of the regression coefficients will decrease.

03-05

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Select pause input			
	mode.			1.00/0.00
3	Select type of regression:			
	for linear fit		1 B	1.00
	for exponential fit		[] C	1.00
	for logarithmic fit			1.00
	for power fit		0 0	1.00
4	Input x value*.	Xi	ENTER+	Xi
5	Input y value.	Уi	А	i + 1
6	Repeat steps 4 and 5 for all data			
	pairs**.			
7	Compute and output coefficient			
	of determination r ² and a and b.		C	r², a, b
8	Optional: Make projections			
	based on a known y value.	у	D	Ŷ
9	Optional: Make projections			
	based on a known x value.	x	8	ŷ
10	For a new case go to step 3.			
	*Note that this step may be skip-			
	ped if the x value equals the dis-			
	played counter (i + 1).			
	**The last set of data pairs may			
	be deleted by pressing b R•			
	then B. Any set of data pairs may			
	be deleted by entering them as in			
	steps 4 and 5 and pressing B.			

Example 1:

Below is the sales data for the first 6 months of a product's life. According to a linear projection, what should the sales be after 12 months? When would sales reach the 150 unit per month mark assuming constant linear growth.

Example 2:

The velocity of a particle experiencing constant acceleration is expressed by

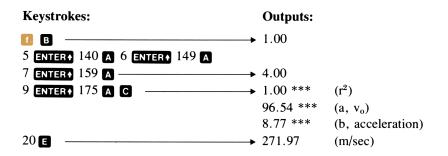
$$v = v_0 + \alpha t$$

where v is the velocity, v_0 is the initial velocity, α is the acceleration and t is the time since $v = v_0$.

03-07

t (sec)	V(m/sec)
5	140
6	149
7	159
9	175

The following time velocity data was experimentally obtained for a particle:


What was the velocity at t = 0? What will the velocity be when t = 20? Note that the equation for velocity

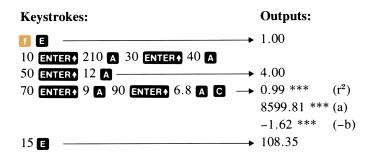
$$v = v_0 + \alpha t$$

is the equation of a straight line and is analogous to

$$y = a + bx$$

Therefore use linear regression with v substituted for y, v_0 for a, α (acceleration) for b and t for x.

Example 3:


Many compression processes can be correlated using the power curve

$$p = av^{-b}$$

where b is the polytropic constant of the process.

Pressure-volume data for a compression process is shown below. Run a power curve fit to determine the polytropic constant, -b. What is the pressure when v is 15?

v	р
10	210
30	40
50	12
70	9
90	6.8

CALENDAR FUNCTIONS

For the period March 1, 1900 through February 28, 2100, this program interchangeably solves for dates and days. Given two dates, the number of days between them can be calculated. Given one date and a specified number of days, a second date can be found. The program will also work in terms of weeks between dates or compute the day of the week given the date. After input of a date, its Julian Day number* is displayed.

A date must be input in mm.ddyyyy format. For instance, June 3, 1975 is keyed in as 6.031975. It is important that the zero between the decimal point and the day of the month be included when the day of the month is less than 10. Weeks are input and output as WKS.DYS. Seven weeks, three days would be 7.3. The day of the week is represented by the digits 0 through 6 where zero is Sunday.

Equations:

To compute the day number from the date:

Julian Day number = INT (365.25 y') + INT (30.6001 m') + d + 1,720,982

where

$$y' = \begin{cases} year - 1 & \text{if } m = 1 \text{ or } 2\\ year & \text{if } m > 2 \end{cases}$$
$$m' = \begin{cases} month + 13 & \text{if } m = 1 \text{ or } 2\\ month + 1 & \text{if } m > 2 \end{cases}$$

Then days between dates is found by

 $Days = Day number_2 - Day number_1$

To compute the date from a day number:

Day # = Julian Day Number - 1,720,982

$$y' = INT \left[\frac{Day \# - 122.1}{365.25} \right]$$

*The Julian Day number is an astronomical convention representing the number of days since January 1, 4713 B.C.

$$m' = INT \left[\frac{Day \ \# - INT(365.25 \ y')}{30.6001} \right]$$

Day of the month = Day # - INT [365.25 y'] - INT [30.6001 m']

Month = m =
$$\begin{cases} m' - 13 \text{ if } m' = 14 \text{ or } 15 \\ m' - 1 \text{ if } m' < 14 \end{cases}$$
$$Year = \begin{cases} y' & \text{if } m > 2 \\ y' + 1 & \text{if } m = 1 \text{ or } 2 \end{cases}$$

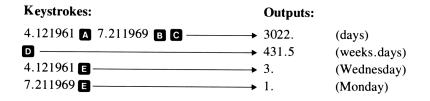
To compute the day of the week:

Day of the week = $7 \times \text{FRAC} \left[(\text{Day } \# +5)/7 \right]$

Remarks:

No checking is done to determine if input data represents valid dates.

In this program the calculator uses flag 3 to decide what to do after [A], [B], [C] or [D] is pressed. If the numeric keys have been pressed, flag 3 is on. This causes the value in the display to be stored as an input when the user-definable key is pressed. If no numeric keys have been touched, the program will calculate the value associated with the user-definable key. Thus, it is important not to touch the numeric keys between the last input and the attempt to calculate a result.


Registers R_0-R_2 , R_B , R_D , R_E and $R_{S0}-R_{S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	For day of the week calculations			
	go to step 6.			
3	Input two of the following:			
	First date (mm.ddyyyy)	DT ₁	A	Day #₁
	Second date (mm.ddyyyy)	DT₂	B	Day #₂
	Days between dates	DAYS	C	Days
	or weeks between dates*	WKS. DYS	D	Days

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate one of the following:			
	First date		A	DT1
	Second date		B	DT₂
	Days between dates		C	Days
	Weeks between dates		D	WKS. DYS
5	For a new case go to step 2.			
6	Input date and calculate day			
	of the week (0 = Sunday,			
	6 = Saturday).	DT	e	DOW
7	For a new case go to step 2.			
	*Either days between dates or			
	weeks between dates, but not			
	both, may be input in step 3.			

Example 1:

Senior Lieutenant Yuri Gagarin flew Vostok I into space on April 12, 1961. On July 21, 1969 Neil Armstrong set foot on the moon. How many days had passed between the first manned space flight and the moon landing? How many weeks and days? On what day of the week did each event take place?

Example 2;

A short term note is due in 200 days. If the issue date is June 11, 1976, what is the maturity date?*

*Some securities use a 30/360 day calendar while this program performs all calculations using the actual number of days. Do not use the program for financial purposes unless you are sure that actual calendar days are correct.

ANNUITIES AND COMPOUND AMOUNTS

This program can be used to solve a variety of problems involving money, time and interest. The following variables can be inputs or outputs:

- n, which is the number of compounding periods. (For a 30 year loan with monthly payments, $n = 12 \times 30 = 360$.)
- i, which is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year; i.e. 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT, which is the periodic payment.
- PV, which is the present value of the cash flows or compound amounts.
- FV, which is the future value of a compounded amount or a series of cash flows.
- BAL, which is the balloon or remaining balance at the end of a series of payments.

The program accommodates payments which are made at the end of compounding periods or at the beginning. Payments made at the end of compounding periods (ordinary annuity) are common in direct reduction loans and mortgages while payments at the beginning of compounding periods (annuity due) are common in leasing. When the program is loaded into the calculator or when the START function **1 A** is executed, the calculator is set in ordinary annuity mode. Pressing **1 B** sets the calculator in annuity due mode and displays 1.00 indicating that the annuity due mode is set. Pressing **1 B** again returns the machine to ordinary annuity mode and displays 0.00. Successive use of **1 B** will alternately display 1.00 and 0.00 indicating that the annuity due mode is on or off, respectively.

In this program **STO** A is used to input n, **STO** B to input i, **STO** C to input PMT, **STO** D to input PV and **STO** E to input FV or BAL. After all inputs are stored it is possible to calculate the unknown value by pressing the appropriate user-definable key. For instance, you would press B to calculate interest.

The START function (11 A) performs two functions:

- 1. It sets PMT, PV, and BAL to zero (n and i are not affected).
- 2. It sets the ordinary annuity mode.

START provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, FV problems involving different numbers and/or different combinations of knowns could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems, a zero would be stored (0 STO C) in place of PMT. Table 1 summarizes these procedures. START should always be used immediately after loading *Annuities and Compound Amounts*.

Allowable	Applic			
Combination of Variables	Ordinary Annuity Annuity Due		Initial Procedure	
n, i, PMT, PV (Input any three and calculate the fourth.)	Direct reduction loan Discounted notes Mortgages	Leases	Use START or set BAL to zero.	
n, i, PMT, PV, BAL (Input any four and calculate the fifth.)	Direct reduction loan with balloon Discounted notes with balloon	Leases with residual values	None	
n, i, PMT, FV (Input any three and calculate the fourth.)	Sinking fund	Periodic savings insurance	Use START or set PV to zero.	
n, i, PV, FV (Input any three and calculate the fourth.)	Compound amount Savings (Annuity mode is not applicable and has no effect)		Use START or set PMT to zero.	

 Table I

 Possible Solutions Using Annuities and Compound Amounts

Equations:

$$PV = \pm \frac{PMT}{i} A \left[1 - (1+i)^{-n} \right] + (BAL \text{ or } FV) (1+i)^{-n}$$

where

 $A = \begin{cases} 1 & \text{ordinary annuity} \\ (1+i) & \text{annuity due.} \end{cases}$

The sign is plus if FV is zero and minus if PV is zero.

05-03

Remarks:

The calculator must be in FIX display mode to solve for i when payments are involved.

The equation above is solved for i using Newton's method where:

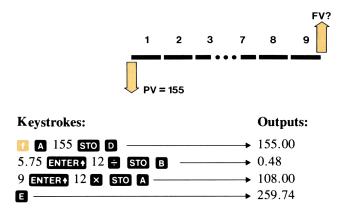
$$i_n = i_{n-1} - \frac{f(i_{n-1})}{f'(i_{n-1})}$$

This is why solutions involving PMT and i take longer than other solutions. The algorithm works best for positive input values and for interest rates between zero and 100%. It is quite possible to define problems which cannot be solved by this technique. Such problems usually result in an error message but may simply continue to run indefinitely.

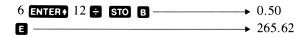
Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

RCL A, RCL B, RCL C, RCL D and RCL E may be used to review associated values at any time.

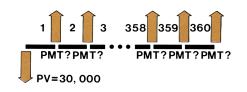

Registers R_0-R_2 and $R_{S0}-R_{S9}$ are a	available for user storage.
---	-----------------------------

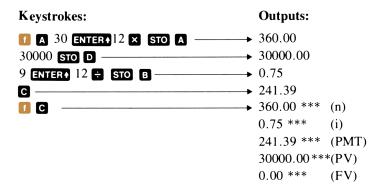
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize			0.00
3	If payments occur at the begin-			
	ning of the period set annuity			
	due mode*.		[] B	1.00/0.00
4	Input the known values:			
	Number of periods	n	STO A	n
	Periodic interest rate	i (%)	STO B	i (%)
	Periodic payment	PMT	STO C	РМТ
	Present value	PV	STO D	PV
	Future value, balloon or balance	FV, (BAL)	STO E	FV, (BAL)


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Calculate the unknown value.			
	Number of periods		А	n
	Periodic interest rate		B	i (%)
	Periodic payment		C	РМТ
	Present value		D	PV
	Future value, balloon or balance		ß	FV, (BAL)
6	Output values in n, i, PMT, PV,			
	FV-BAL order.		[] C	Values
7	For a new case, go to step 4			
	and change appropriate values.			
	Input zero for any value not			
	applicable in the new case.			
	*One or zero will be displayed			
	alternately after pressing 🚺 🖪,			
	indicating that the annuity			
	due mode is on or off.			

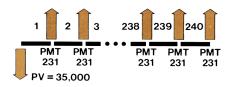
Example 1:

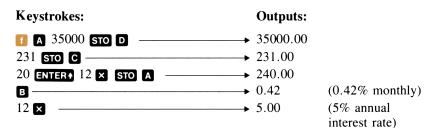
If \$155 is placed in a savings account paying $5\frac{3}{6}\%$ compounded monthly, what sum of money will be in the account at the end of 9 years?



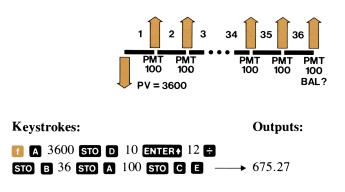

If the interest is changed to 6%, what is the sum?

Example 2:

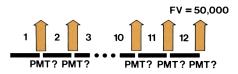

What is the monthly payment required to fully amortize a 30 year, \$30,000 mortgage if the annual percentage rate is 9%? After solving the problem, review the values.



Example 3:


A fixed term annuity is available which requires a \$35,000 initial deposit. In return the depositor will receive monthly payments of \$231 for 20 years. What annual interest rate is being applied?

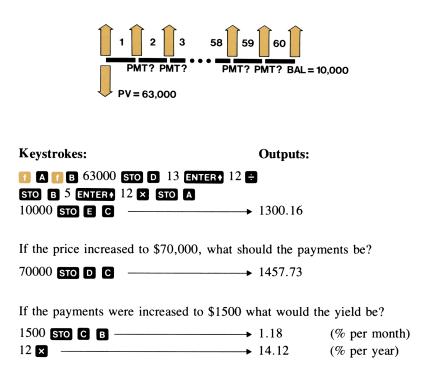
Example 4:


Two individuals are constructing a loan with a balloon payment. The loan amount is 3,600 and it is agreed that the annual interest rate will be 10% with 36 monthly payments of \$100. What balloon payment amount, to be paid coincident with the 36^{th} payment, is required to fulfill the loan agreement?

(Note that the final payment is 675.27 + 100.00 = 775.27 since the final payment falls at the end of the last period.)

Example 5:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment must be placed in the fund in order to cover this cost if savings are to start at the end of this quarter?


Keystrokes:	Outputs:
1 A 50000 STO E 3 ENTER+ 4 X	
STO A 7 ENTER 4 ÷ STO B C	3780.69

What single amount, invested immediately, would provide the same effect?

0 STO C D _____ ↓ 40602.89

Example 6:

A "third party" leasing firm is considering the purchase of a mini-computer priced at \$63,000 and intends to achieve a 13% annual yield by leasing the computer to a customer for a 5-year period. Ownership is retained by the leasing firm, and at the end of the lease they expect to be able to sell the equipment for at least \$10,000. What should they establish as the monthly payments in order to realize their desired yield? (Since lease payments occur at the start of the periods, this is an annuity due problem.)

For more accuracy in calculation of the interest rate, change the display setting to five places and calculate the interest rate.

Return display to two places.

FOLLOW ME

This program allows the calculator to learn a simple set of keystrokes and repeat them over and over with different data. The allowable functions are plus, minus, times, divide, percent, constant and input-output halt. Up to 23 operations may be included in a sequence. Constants count as two operations each.

To run the program you would press \triangle to start. Then do the first of the desired calculations using the +, -, ×, ÷, and % functions on the card. Any constants that repeat between problems should be followed by the **C** key so they will be automatically introduced at the proper times. Where intermediate answers or inputs are required, press **B** for an I/O halt. To signify the end of the sequence press **D**.

After the sequence has been learned by the calculator, only variables need be keyed in at I/O halts. The E key is used to start execution after I/O halts.

If an error is made while running a sequence, press D to start over. If an error is made while teaching the calculator a sequence, press A for a restart.

Program Control	Action
START	Clears program from <i>Follow Me</i> memory and prepares for a new program sequence.
END	Defines the end of a sequence of keystrokes and resets program counter to the beginning of <i>Follow Me</i> memory.
FOLLOW	Starts halted program.
Programmable Operations	
+	Adds content of X register and Y register leaving result in X register.
-	Subtracts content of X register from Y register leaving result in X register.

FOLLOW ME INSTRUCTION SET

Program Control	Action
×	Multiplies content of X register by content of Y register leaving result in X register.
÷	Divides content of Y register by content of X register leaving result in X register.
%	Multiplies content of Y register by content of X register divided by 100, replaces X register content with re- sult and leaves content of Y register undisturbed.
CNST	Recalls constant to X register (requires two steps).
I/O	Input or output halt causes <i>Follow Me</i> to stop for display of calculated results and/or input of variables.

Remarks:

All four registers of the operational stack are available for input and output of data. By using all four registers the need for I/O halts can be minimized. Keyboard functions other than $+, -, \times, \div$ and % may be used during I/O halts, but cannot be incorporated in a *Follow Me* program.

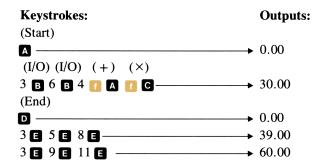
All data storage registers are used.

A flashing 24 results if more than 23 operations are attempted. This error condition may be cleared by pressing \mathbb{R}/S .

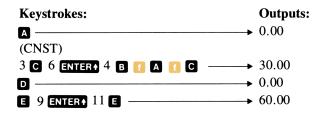
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	Perform first string calculation			
	by pressing B at each point			
	where a halt for input or output			
	is desired, C after each con-			
	stant, 🚺 🖪 for each addition,			
	I B for each subtraction,			
	👔 🖸 for each multiplication, 👔			
	for each division and T E			
	for percent operations. 23			
	steps are allowed (constants			
	count as two steps).			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	End calculation		٠	0.00
5	Key in variable(s) and initiate			
	execution	VAR	8	OUTPUT
6	If an error was made in step 5			
	go to step 4 and restart.			
7	Go to step five until calculation			
	is complete.			
8	For a new calculation of the			
	same type, go to step 5.			
9	For a new type of calculation,			
	go to step 2.			

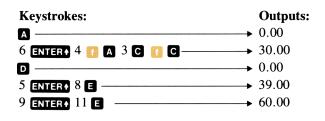
Example 1:


Using Follow Me, program

y = 3(P + Q)


and calculate y for the following data:

Ρ	Q
6	4
5	8
9	11


A solution:

A better solution:

Best solution (uses least amount of Follow Me memory):

Example 2:

A company determines the retail price of its products by adding the fixed cost of assembly and distribution to a variable parts cost then multiplying by 2.7. The company sets the wholesale price at 50% of the retail price. Use *Follow Me* to determine the retail and wholesale prices for the parts cost list below.

PARTS	S COST	LIST

PART #	PARTS COST
0001	\$17.35
0002	\$21.18
0003	\$26.07
0004	\$28.75
0005	\$33.15

Retail cost = [Parts + Fixed] \times 2.7 Wholesale cost = 50% of retail cost Fixed cost = \$25/unit

Keystrokes: Teach the sequence to the calculator and compute results for the first part # .	Outputs:	
A 17.35 ENTER♦ 25 C f A 2.7 C f C B 50 C f E D	57.17	(Retail) (Wholesale)
Compute prices for other parts.		
21.18 E PP PPPPPP PPP _	 62.34 137.89 68.94 	
Image: Contract of the second seco	• 157.01	

Example 3:

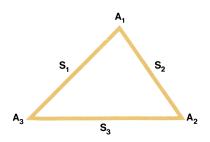
Use Follow Me to help evaluate the following formula using the data below.

 $y = 0.75 \text{ A } e^{0.63t}$

Α	2.3	2.8	3.7	6.4
t	1.0	2.0	4.5	6.0

Keystrokes:

Outputs:


A 1 ENTER ♦ .63 C I C B 9 @ 2.3		
ENTER 7.75 C 11 C 11 C	•	3.24
D	•	0.00
2.0 E 9 @ 2.8 E	•	7.40
4.5 E 9 ex 3.7 E	•	47.26
6.0 E g @* 6.4 E	•	210.32

Any keyboard function may be used during I/O halts.

NOTES

This program can be used to find the area, the dimensions of the sides (S_1, S_2, S_3) and the angles (A_1, A_2, A_3) of a triangle.

Simply key in three known values and press the corresponding user definable key. The calculator will successively display the values of the sides, the angles, and the area. The order of output is determined by the order of input. If input values are selected in a clockwise order around the triangle, the outputs will also follow a clockwise order around the triangle. The order is as follows:

First side input	(S ₁)
Adjacent angle	(A ₁)
Adjacent side	(S ₂)
Adjacent angle	(A_2)
Adjacent side	(S ₃)
Adjacent angle	(A_3)

Area

After calculation has ended, the area will be in the display, S_1 in R_9 , A_1 in R_A , S_2 in R_B , A_2 in R_C , S_3 in R_D , and A_3 in R_E .

Equations:

 S_1 , S_2 , S_3 (all sides of triangle are known)

$$A_3 = 2 \cos^{-1} \sqrt{\frac{P(P - S_2)}{S_1 S_3}}$$

where $P = (S_1 + S_2 + S_3)/2$

$$A_{2} = 2 \cos^{-1} \sqrt{\frac{P(P - S_{1})}{S_{2} S_{3}}}$$
$$A_{1} = \cos^{-1} \left(-\cos \left(A_{3} + A_{2}\right) \right)$$

A₃, S₁, A₁ (Two angles and the included side are known)

$$A_{2} = \cos^{-1} \left(-\cos (A_{3} + A_{1}) \right)$$
$$S_{2} = S_{1} \frac{\sin A_{3}}{\sin A_{2}}$$
$$S_{3} = S_{1} \cos A_{3} + S_{2} \cos A_{2}$$

 S_1 , A_1 , A_2 (side and following two angles known)

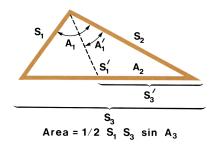
$$A_3 = \cos^{-1} \left(-\cos (A_1 + A_2) \right)$$

Problem has been reduced to the A_3 , S_1 , A_1 configuration.

 S_1 , A_1 , S_2 (Two sides and included angle are known)

$$S_3 = \sqrt{S_1^2 + S_2^2 - 2 S_1 S_2 \cos A_1}$$

The problem has been reduced to the S_1 , S_2 , S_3 configuration.


 S_1 , S_2 , A_2 (Two sides and the adjacent angle known)

$$A_3 = \sin^{-1} \left[\frac{S_2}{S_1} \sin A_2 \right] *$$

$$A_1 = \cos^{-1} \left[-\cos (A_2 + A_3) \right]$$

The problem has been reduced to the A_3 , S_1 , A_1 configuration.

^{*}Note that two possible solutions exist if S_2 is greater than S_1 and A_3 does not equal 90°. Both possible answer sets are calculated.

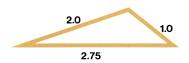
Remarks:

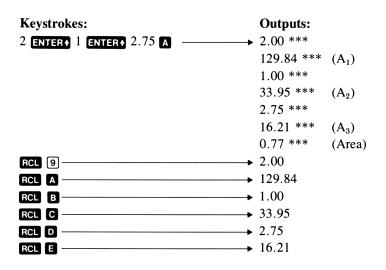
Registers $R_0 - R_6$, $R_{S0} - R_{S9}$ and I are available for user storage.

Angles must be in units corresponding to the angular mode of the machine. Degrees mode is set when the program is loaded.

Note that the triangle described by the program does not conform to standard triangle notation; i.e., A_1 is not opposite S_1 .

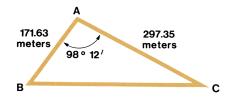
Angles must be entered as decimals. The **HMS** conversion can be used to convert degrees, minutes, and seconds to decimal degrees.


Accuracy of solution may degenerate for triangles containing extremely small angles.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Find applicable case in the list			
	below and input indicated			
	values:			
	All sides known	S ₁	ENTER+	S ₁
		S ₂	ENTER+	S ₂
		S₃	A	S ₁ , A ₁ , S ₂
	Two angles and included side			
	known	A ₃	ENTER+	A ₃
		S ₁	ENTER+	S ₁
		A ₁	B	S ₁ , A ₁ , S ₂

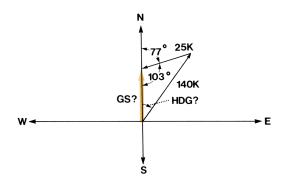
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Two angles and adjacent side			
	known	S ₁	ENTER+	S ₁
		A ₁	ENTER+	A ₁
		A ₂	C	S_1, A_1, S_2
	Two sides and included angle			
	known	S ₁	ENTER+	S ₁
		A ₁	ENTER+	Α,
		S ₂	D	S_1, A_1, S_2
	Two sides and adjacent angle			
	known	S ₁	ENTER+	S ₁
		S ₂	ENTER+	S ₂
		A ₂	8	S_1, A_1, S_2
3	After step 2, the values of the			
	sides and angles of the triangle			
	are successively displayed. The			
	first value output is the first			
	side input. The next five outputs			
	are the remaining angles and			
	sides. The last output is the			
	triangle's area. For the last case			
	(S_1, S_2, A_2) , two possible			
	solutions may exist and both			
	will be output.			

Example 1:


Find the angles and the area for the following triangle.

Example 2:

A surveyor is to find the area and dimensions of a triangular land parcel. From point A, the distances to B and C are measured with an electronic distance meter. The angle between AB and AC is also measured. Find the area and other dimensions of the triangle.


This is a side-angle-side problem where:

$$S_1 = 171.63$$
, $A_1 = 98°12'$ and $S_2 = 297.35$.

Keystrokes:	Outputs:	
171.63 ENTER♦ 98.12 👔 H.MS+		
297.35 ◘	171.63 ***	(AB)
	98.20 ***	(_ A)
	297.35 ***	(AC)
	27.83 ***	(<i>L</i> C)
	363.91 ***	(CB)
	53.97 ***	(∠B)
	25256.21**	*(Area)

Example 3:

A pilot wishes to fly due north. The wind is reported as 25 knots at 77°. Because winds are reported opposite to the direction they blow, this is interpreted as 77 + 180 or 257°. The true airspeed of the aircraft is 140 knots. What heading (HDG) should be flown? What is the ground speed (GS)?

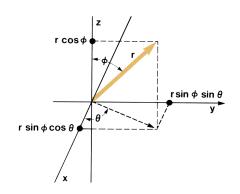
By subtracting the wind direction from 180 (yielding an angle of 103°), the problem reduces to a S₁, S₂, A₂ triangle.

Keystrokes:	Outputs:	
140 ENTER 25 ENTER 103 E	 140.00 ***	(TAS)
	66.98 ***	
	25.00 ***	(Wind velocity)
	103.00 ***	
	132.24 ***	(GS)
	10.02 ***	(HDG)
	1610.64 ***	:

Thus, the pilot should fly a heading 10.02° east of due north. His ground speed equals 132.24 knots.

This program performs the basic vector operations of addition, cross product, and dot or scalar product. It also allows conversion between spherical and cartesian coordinates and can find the angle between two vectors.

Either two-dimensional or three-dimensional space may be selected using the A keys. The machine is set in two-dimensional mode when the program is loaded. The first press of A yields a display of 3.00 indicating threedimensional space. Repeatedly pressing A will yield alternate displays of 2.00 and 3.00 indicating the mode of the machine. Be sure the mode is correct before input of data.


Another available option allows review of input values. Pressing **1 B** causes a 1.00 to be displayed alternately indicating that the pause input mode is on or off. A print stack command is used to successively display the inputs in the following format:

Vector number (1.00 or 2.00)	Т
ϕ (or π ÷ 2 for 2D vectors)	Ζ
θ	Υ
r	Х

Vector outputs are displayed in the following order:

POLAR FORM		RECTANGULAR FORM (S \rightarrow C only	
0.00	Т	0.00	Т
$oldsymbol{\phi}$	Z	Z	Z
θ	Y	у	Y
r	Х	X	Х

Equations:

Coordinate conversions:

$$x = r \sin \phi \cos \theta \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \phi \sin \theta \qquad \theta = \tan^{-1} (y/x)$$

$$z = r \cos \phi \qquad \phi = \cos^{-1} \left(z/\sqrt{x^2 + y^2 + z^2} \right)$$

Vector addition:

$$\vec{V}_1 + \vec{V}_2 = (x_1 + x_2)\vec{i} + (y_1 + y_2)\vec{j} + (z_1 + z_2)\vec{k}$$

Cross product:

$$\vec{V}_1 \times \vec{V}_2 = (y_1 \ z_2 \ - \ z_1 \ y_2) \ \vec{i} \ + (z_1 \ x_2 \ - \ x_1 \ z_2) \ \vec{j} \ + (x_1 \ y_2 \ - \ y_1 \ x_2) \ \vec{k}$$

Dot or scalar product:

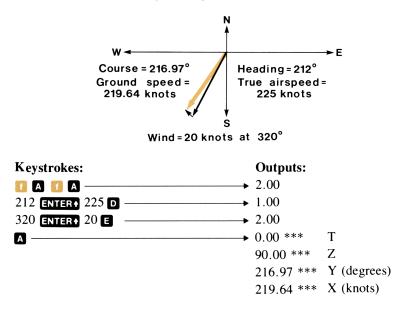
$$\vec{V}_1 \cdot \vec{V}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$

Angle between vectors:

$$\gamma = \cos^{-1} \frac{\vec{\nabla}_1 \cdot \vec{\nabla}_2}{|\vec{\nabla}_1| |\vec{\nabla}_2|}$$

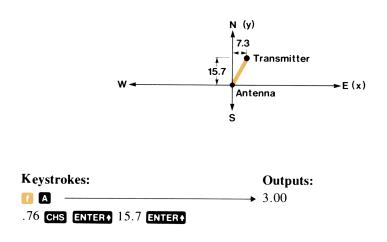
Remarks:

Registers $R_0 = R_6$ and $R_{S0} = R_{S9}$ are available for user storage.

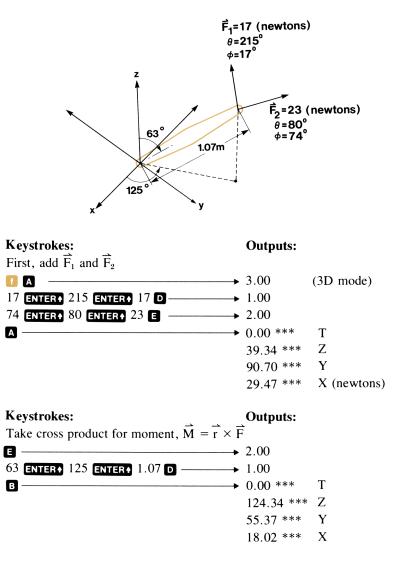

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2.			
2	Select mode for 2-dimensional			
	or 3-dimensional vectors.			3.00/2.00
3	Optional: Select pause input			
	mode.		[] B	1.00/0.00
4	If coordinate conversion			
	needed:			
	Spherical to Cartesian-go to			
	step 8.			
	Cartesian to spherical-go to			
	step 10.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Input vectors one and two:			
	Co-latitude (skip for 2D)	(\$ _1)	ENTER+	(\$ 1)
	Longitude	θ_1	ENTER+	θ_1
	Magnitude	r ₁	D	1.00
	Co-latitude (skip for 2D)	(φ ₂)	ENTER+	(\$ _2)
	Longitude	θ_2	ENTER+	θ_2
	Magnitude	r ₂	8	2.00
6	Perform vector operation:			
	Add vectors		А	Ο, <i>φ</i> , <i>θ</i> , r
	Cross product		B	Ο, <i>φ</i> , <i>θ</i> , r
	Dot product		C	\overrightarrow{V}_1 \cdot \overrightarrow{V}_2 , γ
7	For a new case go to steps 2, 3,			
	4 or 5.			
8	Input spherical coordinates:			
	(converts to Cartesian)			
	Co-latitude (skip for 2D)	(φ)	ENTER+	(φ)
	Longitude	heta	ENTER+	heta
	Magnitude	r		x
9	For a new case go to steps 2, 3,			
	4 or 5.			
10	Input Cartesian coordinates			
	(converts to spherical)			
	z—distance (skip for 2D)	(z)		(z)
	y—distance	у	ENTER+	у
	x—distance	x	11 🖬	r
11	For a new case go to steps 2, 3,			
	4 or 5.			

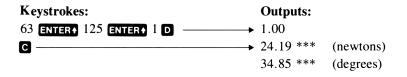
Example 1:


An aircraft flies a heading of 212 degrees at 225 knots. The wind is reported at 20 knots and 140 degrees (which translates to 20 knots and 320 degrees since

winds are reported opposite to the direction they blow). What is the course of the aircraft? What is the ground speed?


Example 2:

A microwave antenna is to be pointed at a transmitter which is 15.7 kilometers north, 7.3 kilometers east and 0.76 kilometers below. Use the cartesian to spherical conversion to find the total distance and the direction to the transmitter.


Example 3:

What is the moment at the origin of the lever shown below? What is the component of force along the lever? What is the angle between the resultant of the force vectors and the lever?

08-05

Take dot product to resolve force along the lever.

POLYNOMIAL EVALUATION

This program may be used to find the roots of the following equations: Cubic equation (3 roots)

 $f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 = 0$

Quadratic equation (2 roots)

$$f(x) = a_0 + a_1 x + a_2 x^2 = 0$$

Linear equation (1 root)

$$f(x) = a_0 + a_1 x = 0$$

where a_0 , a_1 , a_2 and a_3 are the polynomial coefficients input by the user. Both real and imaginary roots can be extracted. When imaginary roots are found, a –1. is displayed followed by imaginary and real parts. Real roots are displayed without the –1. indicator. Example 3 involves imaginary roots and should make this clear.

Polynomials may also be evaluated for arbitrary values of x. This is of aid in plotting polynomials and using data correlations based on polynomials. Example 2 demonstrates this type of use.

Equations:

Cubic Equation:

$$Q = \frac{3a_1 - a_2^2/a_3}{9a_3}$$
$$R = \frac{9a_2a_1/a_3 - 27a_0 - 2a_2^3/a_3^2}{54a_3}$$
$$S = \sqrt[3]{R + \sqrt{Q^3 + R^2}}$$
$$T = \sqrt[3]{R - \sqrt{Q^3 + R^2}}$$

If
$$Q^3 + R^2 \ge 0$$
,

then $x_3 = S + T - \frac{a_2}{3a_3}$

then
$$x_3 = 2\sqrt{-Q} \cos\left[\frac{1}{3}\cos^{-1}(R/\sqrt{-Q^3})\right] - \frac{a_2}{3a_3}$$

After x_3 is found, synthetic division is performed to reduce the cubic equation to a quadratic equation.

 $Q^3 + R^2 < 0$,

$$a'_{2} = 1.00$$
$$a'_{1}/a'_{2} = x_{3} + a_{2}/a_{3}$$
$$a'_{0}/a'_{2} = x_{3}(x_{3} + a_{2}/a_{3}) + a_{1}/a_{3}$$

Quadratic equation:

$$x_{1} = \begin{cases} -\frac{a_{1}}{2a_{2}} - \sqrt{(a_{1}/2a_{2})^{2} - (a_{0}/a_{2})} & \text{If } -a_{1}/2a_{2} < 0 \\ -\frac{a_{1}}{2a_{2}} + \sqrt{(a_{1}/2a_{2})^{2} - (a_{0}/a_{2})} & \text{If } -a_{1}/2a_{2} \ge 0 \end{cases}$$
$$x_{2} = \frac{a_{0}}{a_{2}x_{1}}$$

Linear equation:

$$x = -\frac{a_0}{a_1}$$

Remarks:

Registers R_0 , $R_5 - R_9$, and $R_{S0} - R_{S9}$ are available for user storage.

Accuracy degenerates if the real root of the cubic equation is extremely small.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize			0.00
3	Input coefficients of Polynomial:			
	Constant	a _o	B	1.00
	x coefficient	a,	C	2.00
	x ² coefficient	a₂	D	3.00
	x ³ coefficient	a ₃	8	4.00
4	To evaluate polynomial for			
	various values of x go to step 7.			
5	Find the roots of the polynomial.			
	(Imaginary roots will be output			
	in imaginary, real order preced-			
	ed by a negative one).		1 B	roots
6	Go to step 8.			
7	Input x and see f(x)	x	A	f(x)
8	For a new case of same or high-			
	er degree, go to step 3 and			
	change appropriate coefficients.			
	For a lower degree go to step 2.			

Example 1:

A ball is thrown straight up at a velocity of 20 meters per second, from a height of 2 meters. At what time, neglecting air resistance, will it reach the ground? The acceleration of gravity is 9.81 meters per second. From physics:

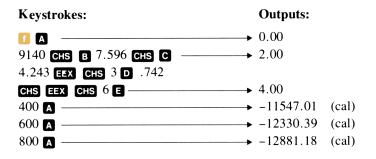
$$f(t) = x = x_0 + v_0 t + \frac{1}{2} at^2 = 0$$
$$= 2 + 20t + (-9.81/2)t^2 = 0$$

Keystrokes:

Outputs:

▶ 0.00

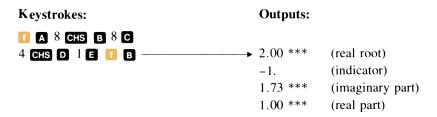
🚺 🗛


The answer is 4.18 seconds. The second root of -0.10 is a legitimate root of the equation but is not relevant to this problem.

Example 2:

The standard heat of formation of ammonia (NH_3) is given as a function of Kelvin temperature by:

 $\Delta H_{T}^{\circ} = -9140 - 7.596 T + 4.243 \times 10^{-3} T^{2} - 0.742 \times 10^{-6} T^{3}$ (cal)


Determine the heat of formation for temperatures of 400 K, 600 K, and 800 K.

Example 3:

Find the roots of the following equation.

$$x^3 - 4x^2 + 8x - 8 = 0$$

The real root is 2.00. The imaginary roots are 1.00 + 1.73i and 1.00 - 1.73i. The -1 (which is not followed by asterisks) indicates that the last two outputs will be imaginary and real parts rather than real roots.

3 × 3 MATRIX OPERATIONS

This program can be used to find the determinant or generate the inverse of a 3×3 matrix. It can also multiply a 3×3 matrix by a column matrix. By using the matrix inverse function in combination with the matrix multiply function, it is possible to solve three linear equations in three unknowns.

Equations:

Matrix A =
$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
Matrix D =
$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

Determinant of matrix A

$$Det = a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 b_3 a_2$$
$$- c_1 b_2 a_3 - c_2 b_3 a_1 - c_3 a_2 b_1$$

Inverse of matrix A

$$A^{-1} = \begin{bmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{bmatrix}$$

$$\alpha_1 = (b_2 c_3 - b_3 c_2)/\text{Det}$$

$$\alpha_2 = (a_3 c_2 - a_2 c_3)/\text{Det}$$

$$\alpha_3 = (a_2 b_3 - a_3 b_2)/\text{Det}$$

$$\beta_1 = (b_3 c_1 - b_1 c_3)/\text{Det}$$

$$\beta_2 = (a_1 c_3 - a_3 c_1)/\text{Det}$$

$$\beta_3 = (a_3 b_1 - a_1 b_3)/\text{Det}$$

Matrix multiplication

$$A \cdot D = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$
$$= \begin{bmatrix} a_1d_1 + b_1d_2 + c_1d_3 \\ a_2d_1 + b_2d_2 + c_2d_3 \\ a_3d_1 + b_3d_2 + c_3d_3 \end{bmatrix}$$

Remarks:

During matrix inversion, A^{-1} replaces A in storage. If you wish to save matrix A, store it on a magnetic card before starting the inversion process.

Two by two matrix operations can be performed with this program (see example 2). A 2 \times 2 matrix should be input in the following form:

$$A = \begin{bmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

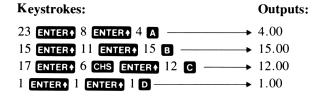
The corresponding column vector is:

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{0} \end{bmatrix}$$

If the determinant of a matrix is zero, the inverse cannot be found.

Registers R_{S0} - R_{S9} are available for user storage.

Matrices may be output at any time by pressing \blacksquare . The order of output is $a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3, d_1, d_2, d_3$.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input 3 \times 3 matrix:			
	Column 1	a1		a,
		a ₂	ENTER+	a₂
		a ₃	A	a ₃
	Column 2	b,	ENTER+	b,
		b ₂	ENTER+	b ₂
		b ₃	B	b3
	Column 3	C ₁	ENTER+	C ₁
		C ₂	ENTER+	C ₂
		C ₃	C	C ₃
3	For solution of simultaneous			
	equations or multiplication of			
	the 3 $ imes$ 3 matrix by a column			
	matrix, input column matrix.	d1	ENTER+	d,
		d₂	ENTER+	d ₂
		d ₃	D	d₃
4	To find a determinant go to step			
	5. To find the inverse or solve a			
	3 $ imes$ 3 system, go to step 8. To			
	perform multiplication, go to			
	step 10.			
5	Find the determinant of the			
	3 $ imes$ 3 matrix.			A
6	For a new case,go to step 2.			
	Change any or all of the columns			
	in step 3.			
7	If you wish to save the 3 $ imes$ 3			
	matrix for future use, record it			
	on a magnetic card.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	Find the inverse.		1 B	0.00
9	For a solution of a 3 $ imes$ 3 system			
	go to step 10. For a new case go			
	to step 2. The original 3 $ imes$ 3			
	matrix has been replaced in			
	storage by its 3 $ imes$ 3 inverse.			
10	Multiply the 3 $ imes$ 3 matrix by the			
	column matrix. (The resulting			
	column matrix is output in x, y, z			
	order).		[] C	x, y, z
11	For multiplication by another			
	column matrix, perform step 3,			
	then press 🚺 🖸 . For a new			
	case go to step 2.			

Example 1:

Find the determinant and inverse of the following matrix; then multiply by the column matrix.

$$\begin{bmatrix} 23 & 15 & 17 \\ 8 & 11 & -6 \\ 4 & 15 & 12 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

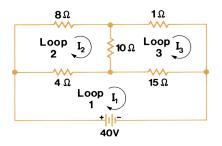
4598.00	(determinant)
0.00	(inverse found)
0.05 ***	(α_1)
-0.03 ***	(α_2)
0.02 ***	(α_3)
0.02 ***	(β_1)
0.05 ***	(eta_2)
-0.06 ***	(β_3)
-0.06 ***	(γ ₁)
0.06 ***	(γ_2)
0.03 ***	(γ_3)
1.00 ***	(d ₁)
1.00 ***	(d ₂)
1.00 ***	(d ₃)
(results of m	ultiplication)
4.349717270	-03 ***
0.08 ***	
-0.02 ***	
	0.00 0.05 *** -0.03 *** 0.02 *** 0.02 *** -0.06 *** -0.06 *** 0.03 *** 1.00 *** 1.00 *** 1.00 *** (results of m 4.349717270 0.08 ***

Example 2:

Find the determinant and the inverse of the 2×2 matrix below. After the inverse has been found, multiply by the column matrix.

14	-8	[20]
8	12	5

First transform the matrices to three dimensions as specified in the remarks section:


[14	-8	0	20
-8	12	0	5
0	0	1	0

Keystrokes:	Outputs:
14 ENTER 8 CHS ENTER 0 A \longrightarrow	0.00
8 CHS ENTER↑ 12 ENTER↑ 0 B	0.00
	1.00
20 ENTER♦ 5 ENTER♦ 0 D	0.00

f A	→ 104.00	(determinant)
[] B	→ 0.00	(inverse has been found)
3	→ 0.12 ***	(α_1)
	0.08 ***	(α_2)
	0.00 ***	(α_3)
	0.08 ***	(β_1)
	0.13 ***	(β_2)
	0.00 ***	(β_3)
	0.00 ***	(γ_1)
	0.00 ***	(γ_2)
	1.00 ***	(γ_3)
	20.00 ***	(d ₁)
	5.00 ***	(d_2)
	0.00 ***	(d ₃)
[] C	→ 2.69 ***	(results of
	2.21 ***	multiplication)
	0.00 ***	
England 2.		

Example 3:

Solve for the loop currents in the following circuit.

The three loop equations are:

Loop 1	$4I_1 - 4I_2 + 15 I_1 - 15 I_3 - 40 = 0$
Loop 2	$4 I_2 - 4 I_1 + 8 I_2 + 10 I_2 - 10 I_3 = 0$
Loop 3	$10 I_3 - 10 I_2 + 1 I_3 + 15 I_3 - 15 I_1 = 0$
or	$19 I_1 - 4 I_2 - 15 I_3 = 40$
	$-4 I_1 + 22 I_2 - 10 I_3 = 0$
	$-15 I_1 - 10 I_2 + 26 I_3 = 0$

or in matrix form

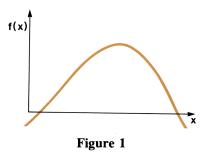
$$\begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} 19 & -4 & -15 \\ -4 & 22 & -10 \\ -15 & -10 & 26 \end{bmatrix}^{-1} \begin{bmatrix} 40 \\ 0 \\ 0 \end{bmatrix}$$

Keystrokes:

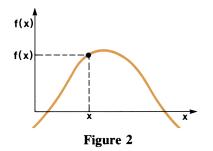
Outputs:


19 ENTER 4 CHS ENTER 15 CHS A \rightarrow -15.00	
4 CHS ENTER 22 ENTER 10 CHS B \rightarrow -10.00	
15 CHS ENTER 10 CHS ENTER 26 C \rightarrow 26.00	
I ■ 0.00	(inverse has been found)
1 C → 7.86 ***	(I_1)
4.23 ***	(I_2)
6.16 ***	(I ₃)

NOTES

CALCULUS AND ROOTS OF f(X)

This program incorporates four routines for numerical analysis of user specified functions. Suppose figure 1 represents a known function of x called f(x).



If the formula for f(x) can be keyed into program memory in less than 112 steps (including LBL and RTN), this program can be used to find the value of f(x) at any point x, the derivative of f(x) at any point x, the integral of f(x) over a specified interval and the real roots of f(x). There may be up to five different f(x) functions in program memory at one time. They must be labeled from 1 to 5. The function to be evaluated is selected by keying in 1, 2, 3, 4 or 5 and pressing \blacktriangle .

Only side 1 of Calculus and Roots of f(x) is used for the program. Side 2 of Calculus and Roots of f(x) has three functions recorded on it. These will be used in the example problems to show various applications of the program. You may wish to record functions you use frequently on blank magnetic cards. Once recorded, the functions can be linked to Calculus and Roots of f(x) by the following sequence of operations:

- 1. Load side 1 of Calculus and Roots of f(x).
- 2. Press GTO 1 1 2.
- 3. Press 9 MERGE.
- 4. Load your magnetic card.

Once a function is defined and selected, keying in a value of x and pressing the \mathbf{C} key will result in the evaluation of f(x) (see figure 2).

Similarly, the value of the slope of f(x) at a particular point x can be calculated by keying in x and pressing the \square key (see figure 3). The slope of f(x) is determined using an approximation to the differential:

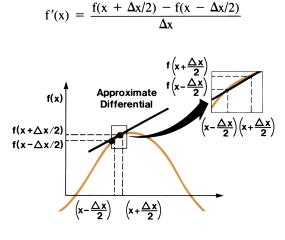
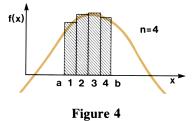


Figure 3

The value of Δx used to approximate the differential is assumed to be 0.01% of x (10⁻⁴ × x) unless a % Δ is specified by the user. That is:

$$\Delta \mathbf{x} = \frac{\%\Delta}{100} \cdot \mathbf{x}$$


In the special case where x = 0, Δx is set equal to $\%\Delta$.

For most applications, the assumed value of 0.01% should be adequate. In some cases more accurate results can be obtained using a smaller value of

11-03

% Δ . However, care must be taken to assure that the calculator can accurately resolve the difference between f(x - $\Delta x/2$) and f(x + $\Delta x/2$).

The **D** key may be used to approximate the integral or area under a curve.

You specify the end points of the interval (a and b) and the number of rectangles (n) the interval should be broken into (see figure 4). The calculator computes the sum of the areas of the rectangles. The more rectangles used the closer this value is to the actual area under the curve. However, more rectangles mean more computation time. Experience with a particular function should lead to a balance between accuracy and execution time.

Root finders are used to solve equations which are difficult or impossible to solve explicitly. An example of such an equation is

$$f(x) = \ln x + 3x - 10.8074 = 0$$

which is solved in example 4.

The root finder incorporated in this program uses a secant method of approximation. You must supply the routine with an initial guess of the root. Based on this guess, it will attempt to make better and better approximations of the root by the following formula:

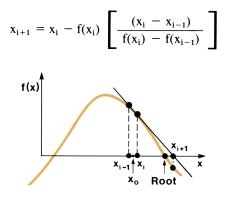


Figure 5

The display is automatically set to fix mode during the root finder portion of the program. When the last approximation is accurate to the number of places specified by the display setting of the calculator, the routine halts and displays the root.

Since the root finder starts its search based on your guess, care should be exercised in guess selection. A bad guess will cause long execution times and could result in a machine status error halt (overflow, division by zero, log of a negative number, etc.). If this happens, simply try another guess. Practice will make the pitfalls more obvious and easier to avoid.

A special feature of the iterative routine is the pause function. This feature allows the program to pause at one point in each iteration to display the current approximation of the root. The pause option may be turned off and on by pressing **1 E**. The pause allows you to watch the routine converge (or diverge) without interrupting the program. This can be a helpful tool when the iterative routine fails to converge. By watching each successive approximation of the root, the reasons for failure of convergence can usually be determined.

Remarks:

The value of x is stored in R_0 by the program. It is also in the X register when control transfers to the function subroutine.

Registers R_1 - R_8 , and R_{S0} - R_{S9} are available for use in f(x) or for other user storage.

User-specified functions may use one level of subroutine nesting.

The secant method does not guarantee convergence to a root.

Given one guess, the root finder will find, at most, one root of an equation. Other real roots, if they exist, may be found by modifying the initial guess.

In order to compute f'(x), the function f(x) must be continuous on the interval $(x + \Delta x/2, x - \Delta x/2)$.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Load subroutine(s) (either key			
	them in or link from program			
	step 112).			
3	Select function label number.	i(1-5)	A	i
4	Store any constants necessary			
	to subroutine(s) loaded in			
	step 2.			

11-05

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For differentiation, go to step 6.			
	For evaluation of a function, go			
	to step 9. For integration of a			
	function, go to step 11. To find a			
	root, go to step 15.			
6	Optional: Key in percent delta.	%Δ		%Δ
7	Key in x and calculate derivative			
	at x.	x	в	f _i ′(x)
8	For new x, go to step 7. For a			
	new case, go to step 2, 3, 4, 5			
	or 6.			
9	Key in x and evaluate function.	x	C	f _i (x)
10	For new x, go to step 9. For a			
	new case, go to step 2, 3, 4, or 5.			
11	Input the number of intervals.	n	ENTER+	n
12	Input the lower limit.	а	ENTER +	а
13	Input the upper limit and			
	calculate the integral.	b	D	∫ f _i (x) dx
14	For new limits or interval, go to			
	step 11. For a new case, go to			
	step 2, 3, 4 or 5.			
15	Optional: Key in percent delta.	%Δ		%Δ
16	Optional: Toggle pause			
	mode.		1 E	1.00/0.00
17	Key in guess and calculate root.	GUESS	8	x
18	For a new guess go to step 17.			
	For a new case go to step 2, 3,			
	4 or 5.			

Example 1:

Numerical integration provides the only solution to the complete elliptic integral of the first kind:

$$u = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - K^2 \sin^2\theta}}$$

Find the value of u for limits of integration of 0.0 to $\pi/2$. Let K be 0.5 and store it in register 1 for access by the program. Use 3 and then 10 for the number of intervals. The formula for the integral is recorded under label three on side two of the magnetic card. If either example 2 or example 3 has just been run, skip the first three lines under keystrokes.

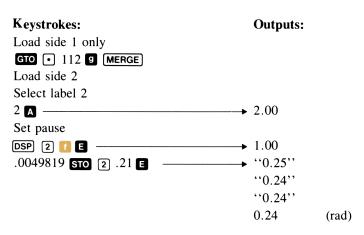
Keystrokes:

Outputs:

Load side 1 only	
GTO • 112 9 MERGE	
Load side 2	
Select label 3	
3 A	→ 3.00
0.50 STO 1	→ 0.50
Integrate using 3 intervals	
h ፹ 2 ₽ D	→ 1.685750251
Integrate using 10 intervals	
10 ENTER \bullet 0 ENTER \bullet h \overline{m} 2 \div D -	→ 1.685750355

Example 2:

In the design of gear teeth, it is frequently necessary to calculate x for a given value of the involute:

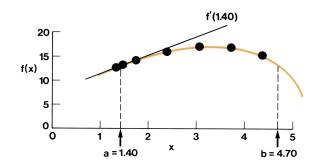

$$INV(x) = \tan x - x$$

or restated
$$f(x) = \tan x - x - INV(x) = 0$$

If the involute of x is 0.0049819, what is x?

This problem requires an iterative solution since the equation cannot be explicitly solved for x. Use 0.21 radians as your initial guess. The equation for f(x) is recorded under label 2 on side 2 of the magnetic card. Use the pause

11-07


feature to watch the routine converge. Skip the first three lines under keystrokes if Example 1 or 3 has been run. Store the involute (.0049819) in R_2 for access by the function.

Example 3:

In many instances, a function is represented graphically. This program can be of use in integration and, in some cases, differentiation of such graphs. Label 1 of side 2 of the prerecorded magnetic card is designed for this purpose. It returns x values to the display. You must find f(x) from the graph, key it in and press **R/S**.

For the function below find the integral from a to b using 5 intervals. Then find the derivative at a, using 10% for $\%\Delta$. After the problem is complete, return $\%\Delta$ to 0.01%.

If either Example 1 or Example 2 was run previously, skip the first three lines under keystrokes.

Keystrokes: Outputs: Load side 1 only GTO • 112 9 MERGE Load side 2 Select Label 1 1 A -----→ 1.00 Key in integration limits and return first x value 5 ENTER \downarrow 1.40 ENTER \downarrow 4.70 D \longrightarrow 1.73 (x) From the graph, f(x) at x = 1.73 equals 14.2. Key 14.2 in and press R/S. The next value of x will be displayed. 14.2 R/S ----→ 2.39 f(2.39) = 1616 **R/S** → 3.05 f(3.05) = 1717 **R/S** ——— → 3.71 f(3.71) = 16.916.9 **R/S** ——— → 4.37 f(4.37) = 15.3→ 52.40 15.3 R/S -----(Answer) To find the derivative at point a 2 10 👩 🗛 1.40 B-----→ 1.33 f(1.33) = 12.7 $x + \frac{\Delta x}{2}$ 12.7 R/S ------→ 1.47 f(1.47) = 13.3(Slope) 13.3 R/S ------▶ 4.29 Return $\%\Delta$ to 0.01% .01 🚹 🗛 ------**→** 0.01

Example 4:

Find the root of $\ln x + 3x - 10.8074 = 0$. Determine the slope at the root.

This equation is not recorded on the magnetic card. It must be manually keyed into program memory starting at step 112. Use R_1 to store the 3 and R_2 to store 10.8074.

Keystrokes:	Out	put	s:
Load side 1 only			
GTO • 112			
Switch to W/PRGM	112	35	22
[] LBL 1	31	25	01

11-09

114 31	52	(lnx)
115 34	01	
116 34	00	
	71	
118	61	$(\ln x + 3x)$
119 34	02	
	51	$(\ln x + 3x -$
		10.8074)
121 35	22	
1.00		
3.00		
10.81		
3.21		(ROOT)
3.31		f' (3.21)
	115 34 116 34 117 118 119 34 120	118 61 119 34 02 120 51 121 35 22 1.00 3.00 10.81 3.21

NOTES

ENGLISH-SI CONVERSIONS

This card provides the more common conversions between English and SI (metric) units. Side one of the card provides length, volume, force and mass conversions. Side two provides temperature, energy, pressure, density and power conversions. Only one side of the card may be loaded into program memory at any time.

Conversion Factors:

Side 1 of magnetic card

1 inch (in) = 25.4* millimeters (mm)

- 1 foot (ft) = 0.3048^* meters (m)
- 1 U.S. liquid gallon (gal) = 3.785411784^* liters (ℓ)
- 1 pound force avoirdupois (lbf) = 4.448221615 newtons (N)
- 1 pound mass avoirdupois (lbm) = 0.45359237* kilograms (kg)

Side 2 of magnetic card

Degrees Fahrenheit (°F) are related to degrees Celsius (°C) by the following formula:

$$^{\circ}C = (^{\circ}F - 32)/1.8$$

- 1 International Steam Table British thermal unit (Btu) = 1055.055853 joules (J)
- 1 pound per square inch (psi) = 6894.7572 newtons/square meters (N/m²)
- 1 pound per cubic foot $(lb/ft^3) = 16.018463$ kilograms per cubic meter (kg/m^3)
- 1 horsepower (550 ft-lbf/sec) = 745.69987 watts (W)

Remarks:

Only one side of the card may be in program memory at a time.

All data registers ($R_0 - I$) are available for user storage. The T register of the operational stack is lost during conversions. The LAST X register contains the input value for all conversions except temperature conversions.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	For length, volume, force or			
	mass conversion, load side 1.			
	For temperature, energy, pres-			
	sure, density, or power conver-			
	sion, go to step 4.			
2	To convert inches to millimeters	in	A	mm
	or millimeters to inches	mm		in
	or feet to meters	ft	B	m
	or meters to feet	m	1 B	ft
	or gallons to liters	gal	C	l
	or liters to gallons	l		gal
	or pounds to newtons	lbf	D	N
	or newtons to pounds	N		lbf
	or pounds to kilograms	lbm	G	kg
	or kilograms to pounds	kg		lbm
3	For a new case, go to step 2.			
4	Load side 2.			
5	To convert Fahrenheit to Celsius	۴	A	°C
	or Celsius to Fahrenheit	°C		۴
	<i>or</i> Btu to joules	Btu	B	J
	or joules to Btu	J	1 B	Btu
	<i>or</i> psi to N/m²	psi	C	N/m²
	<i>or</i> N/m² to psi	N/m²		psi
	or lb/ft ³ to kg/m ³	lb/ft ³	D	kg/m³
	or kg/m³ to lb/ft³	kg/m³		lb/ft ³
	or horsepower to watts	hp	8	W
	or watts to horsepower	W	1	hp
6	For a new case, go to step 5.			

12-03

Example 1:

Convert 3% of an inch to millimeters and round to an integer value.

Keystrokes:	Output:	
Load side one		
3 ENTER 8 ÷ A	→ 9.53	(mm)
DSP 0 11 RND	→ 10.	(mm)
DSP 2	→ 10.00	(mm)

Example 2:

Convert 212°F to °C. Convert 0°C to °F.

Keystrokes:	Outputs:
Load side two	
212 ▲	100.00
0 [] ▲	32.00

Example 3:

Convert 75 Btu/hr-ft² to joules/hr-m². (Since ft^2 is in the denominator, the sense of the conversion is reversed.)

Keystrokes:	Output:	
Side 1		
75 🚺 🖪 🚺 🖪 ────→	807.29	(Btu/hr-m ²)
Side 2		
₿	851739.50	(J/hr-m ²)

Example 4:

Convert six pounds per gallon to kilograms per liter.

Keystrokes:	Outputs:	
Side 1		
6 € 1 €	0.72	(kg/ l)

NOTES

Preschool and elementary school students may use this program to help them learn addition, subtraction, multiplication, and division. The program generates and displays problems in the following form:

х.у

Where x is one variable and y is the other variable. The child mentally computes the answer $(x + y, x - y, x \times y, \text{ or } \vec{x} \div y \text{ depending on the lesson})$, keys it in, and presses the answer key **I**. If the answer is correct, the calculator poses a new problem. If the answer is incorrect, the calculator returns the problem until a correct response is given.

One lesson consists of 20 problems. After problem 20, the calculator outputs number correct, number tried, and percent correct.

As the child progresses, the maximum size of the numbers, n_{max} , may be modified. For example, keying in 3 and pressing **1 B** would set the maximum number size to 3 for addition and multiplication, 3 + 3 for subtraction, and 3^2 for division. For more advanced students, n_{max} might be set to 15. If the value is not specified by the user, the program assumes a value of 9.

Remarks:

The type of problem to be solved $(+, -, \times, \div)$ can be changed at any time during the lesson. When the problem type is selected, a code number is displayed for a moment before a new problem is posed. The digit 1 indicates addition, 2 indicates subtraction, 3 indicates multiplication, and 4 indicates division.

If the student realizes that a wrong answer has been keyed in before the \mathbf{E} key is pressed, the **n** R* keys can be used to eliminate the error and return the problem to the display.

Any attempt to use the calculator to solve the problem will result in an error necessitating a restart of the program.

The number generator incorporated in this program will always give the same sequence of numbers unless n_{max} is changed or a "seed" is input. The seed can be any number between 0 and 1. To input a seed, simply key it in and press **1 E**.

Registers R_0 - R_6 and $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Start program.			0.00
3	Optional: Input a seed (any			
	number between 0 and 1).*	SEED	1 E	0.00
4	Optional: Select maximum			
	number size (default is 9).	°max	1 B	0.00
5	Optional: Select print lesson			
	mode.		[] C	1.00/0.00
6	Select arithmetic mode:* *			
	Addition		A	problem
	Subtraction		B	problem
	Multiplication		C	problem
	Division		D	problem
7	Let student key in answer and			
	press 🖪.	answer	B	problem
8	Repeat step 7 for 20 problems.			
	After problem 20 the calculator			
	will output number correct,			
	number attempted and %			
	correct.			
9	For another session go to step 7.			
	To change arithmetic mode go			
	to step 6. To select print lesson			
	mode go to step 5. To sleect a			
	new maximum number size go			
	to step 4.			

* See page L13-01 for description of algorithm and comments on optional seed selection.

* After an arithmetic mode is selected a code is output to indicate which mode was set: 1 addition, 2 subtraction, 3 multiplication and 4 division.

13-03

Example 1:

A child is to practice multiplication of the numbers one through eight.

Keystrokes:	Outputs:
1 A	▶ 0.00
Select maximum number size of 8.	
8 🚺 B	▶ 8.0 ***
Select lesson type	
С	▶ 3.0 ***
	6.8
48 E	▶ 1.4
4 E	▶ 7.3
21 🗉	▶ 8.8
64 🗉	▶ 7.7
49 E	
28 E	▶ 7.6
40 🗉	•
45 E	•
42 E	▶ 4.2
8 E	▶ 8.6
48 E	
64 E	▶ 8.7
56 E	▶ 8.6
48 E	► 5.8
40 E	▶ 6.7
40 E	
42 🗉	
40 E	▶ 8.4
32 E	▶ 4.6
24 E	▶ 7.4
28 E	
16 🗉 —	▶ 4.7
28 🗉	▶ 18.0 ***
	20.
	20. 90.0 ***
	90.0

The calculator displays the first problem of the next set.

Example 2:

The child of example 1 now wishes to practice division for numbers 1 through 10.

Outputs:
→ 10.0 ***
→ 4.0 ***
30.06
→ 70.07
→ 30.06
→ 28.04
→ 32.08
→ 6.06
→ 80.10
→ 40.04
→ 16.04
→ 80.08
→ 70.10
→ 80.08
→ 42.07
→ 81.09
→ 7.07
→ 10.05
→ 60.06
→ 56.08
→ 56.07
→ 70.10
→ 19.00 ***
20.
95.00 ***

MOON ROCKET LANDER

Imagine for a moment the difficulties involved in landing a rocket on the moon with a strictly limited fuel supply. You're coming down tail-first, freefalling toward a hard rock surface. You'll have to ignite your rockets to slow your descent; but if you burn too much too soon, you'll run out of fuel 100 feet up, and then you'll have nothing to look forward to but cold eternal moon dust coming faster every second. The object, clearly, is to space your burns just right so that you will alight on the moon's surface with no downward velocity.

The game starts off with the rocket descending at a velocity of 50 feet/second from a height of 500 feet. The velocity and altitude are shown in a combined display as -50.0500, the altitude appearing to the right of the decimal point and the velocity to the left, with a negative sign on the velocity to indicate downward motion. Then the remaining fuel is displayed and a rocket fire count down begins "3", "2", "1", "0",. Exactly at zero you may key in a fuel burn. You only have one second, so be ready. A zero burn, which is very common, is accomplished by doing nothing. However, if you miss the one second "fire window" and then try to key in a burn, your engine will die and you will have to restart by pressing **B**. This automatically uses 5 fuel units and gives no thrust. After a burn the sequence is repeated unless:

- 1. You have successfully landed—flashing zeros.
- 2. You have smashed into the lunar surface—flashing crash velocity.

You must take care, however, not to burn more fuel than you have; for if you do you will free-fall to your doom! The final velocity shown will be your inpact velocity (generally rather high). You have 60 units of fuel initially.

Equations:

We don't want to get too specific, because that would spoil the fun of the game; but rest assured that the program is solidly based on some old friends from Newtonian physics:

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 $v = v_0 + a t$ $v^2 = v_0^2 + 2a x$

where x, v, a, and t are distance, velocity, acceleration, and time.

Remarks:

Only integer values for fuel burn are allowed.

R/S can be used to stop *Moon Rocket Lander* at any time.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Assume manual control.		A	"V.ALT"
				"FUEL"
				"3"
				"2"
				"1"
3	Key in burn*.	BURN		"V.ALT"
				"FUEL"
				"3"
				"2"
				"1"
4	Go to step 3 until you land			
	(flashing zeros) or crash (flash-			
	ing impact velocity).			
5	If you survived last landing			
	attempt, go to step 2 for			
	another try.			
	*If you miss the burn window and			
	flameout, press B for a new			
	engine start.		B	

This program can be used to test the calculator and diagnose calculator malfunctions. Simply insert the card and press \blacktriangle . After approximately two seconds, the calculator should pause displaying:

57.0

If the calculator does not pause with this number, there is a malfunction in executing and returning from a subroutine, finding Label 0, program storage, the display, the magnetic card, the PAUSE command or the card reader. After the pause, the calculator should continue to run about one-and-one-half minutes more and then print the three lines shown:

-888.9-90 -8.889-88 -8.88888888-88

This output indicates that printing and display formatting are working correctly. If the calculator stops before displaying **-8.8888888888-88**, a code number corresponding to a function or operation malfunction will be displayed. For instance, if the calculator stopped with **36.0** in the display, an error in tangent or arctangent would be indicated. The sole exception is a failure in primary register 0. The calculator will stop execution of the program with the erroneous contents of R_0 displayed.

DIAGNOSTIC CODES

Function or Operation or Register Indicated	Code
STO i, RCL i, R_0 , GTO 0, LBL 0, $x=y$, $x\neq y$	0
ISZ I, R ₁	1
R_2	2
R_3	3
R ₄	4
R ₅	5
R ₆	6
R ₇	7
R ₈	8
R ₉	9
R _{S0}	10
R _{S1}	11
R ₅₂	12

If this program runs correctly, it strongly suggests that the calculator is operating correctly. However, the diagnosis is by no means complete or exhaustive. The diagnostic can be made to repetitively loop by changing step 224 from "R/S" to "GTO A". This may aid in detection of intermittent failures. The program relies on the status of the flags to be correctly set by the card. If a flag error occurs, re-insert the diagnostic card and verify repeatability of failure.

Malfunction	Code	Malfunction	Code
R ₁	1	y ^x , LAST x, 1/x	30
R_2	2	$\sqrt{\mathbf{x}}, \mathbf{x}^2$	31
R_3	3	LN, e ^x	32
R ₄	4	LOG, 10 ^x	33
R ₅	5	\rightarrow H.MS, H.MS \rightarrow , RND	34
R ₆	6	$\rightarrow P, \rightarrow R$	35
R ₇	7	TAN, TAN ⁻¹	36
R ₈	8	COS, COS ⁻¹	37
R ₉	9	DEG, SIN, SIN ⁻¹	38
R _{S0}	10	FLAG 2, test cleared	39
R _{S1}	11	FLAG 1, set; LBL9	40
R _{S2}	12	FLAG 2, set; LBL8	41
R _{S3}	13	FLAG 0, clear	42
R _{S4}	14	FLAG 3, test cleared	43
R _{S5}	15	FLAG 0, set by card; LBL7	44
R _{S6}	16	FLAG 3, set by card; LBL6	45
R _{S7}	17	FLAG 1, cleared by card	46
R _{S8}	18	FLAG 2, cleared by card	47
R _{S9}	19	x>0, true; LBL4	48
R _A	20	x<0, false	49
R _B	21	x=0, false	50
R _C	22	$x \neq 0$, true; LBL3	51
R _D	23	I-REGISTER	52
R _E	24	x≤y, true; LBL1	53
EEX, %	25	x=y, false	54
$D \rightarrow R, R \rightarrow D$	26	x>y, false	55
FRC, INT	27	ENTER [↑] , R [↓] , R [↑] , x \rightleftharpoons y, STACK (X, Y, Z, T)	56
×,÷	28	Subroutine execution and return, CLREG,	see
+, -	29	P≓S; LBL0	text

ERROR CODES

Function or Operation or Register Indicated	Code
Flag 3, off	48
Flag 0, on	49
Flag 1, on	50
Flag 2, on	51
Flag 3, on	52

Remarks:

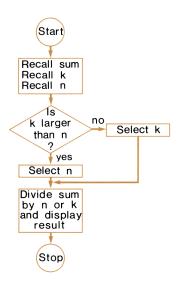
If this program runs correctly, it strongly suggests that the calculator is operating correctly. However, the diagnostic is by no means complete or exhaustive. All data storage registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Start diagnostic		A	-7.777777770-77
3	See documentation for descrip-			
	tion of outputs.			

PROGRAM LISTINGS* AND PROGRAMMING TECHNIQUES

Pro	gram	Page
1.	Moving Average	L01-01
	Comparisons	
2.	Tabulator	
	Decrement and Skip on Zero (DSZI)	
	Loop in Combination with Indirect Recall (RCLi)	
3.	Curve Fitting	L03-01
	Primary Exchange Secondary Registers	
4.	Calendar Functions	L04-01
	Multiple Storage In Registers	
5.	Annuities and Compound Amounts	L05-01
	Interchangeable Solutions	
6.	Follow Me	L06-01
	Indirect GTO	
7.	Triangle Solutions	L07-01
0	Variable Input	T 00 01
8.	Vector Operations	L08-01
	Flag Set, Clear and Test—Command	
0	Clearing Flags	T 00 01
9.	Polynomial Evaluation	L09-01
	Flag Set, Clear and Test—Test	
10	Clearing Flags	T 10 01
10.	Matrix Operations	· · · · ·
11.	Calculus and Roots of f(x)	L11-01
11.	Iterative Test and Loop	
12.	Unit Conversions	L12-01
12.	Arithmetic Teacher	
15.	Pseudorandom Number Generator	
14.	Moon Rocket Lander	L14-01
14.	Diagnostic	
1.5.	Diagnostie	

*Keycodes for program steps may be found in Appendix E of your Owner's Handbook.


L01-01

COMPARISON

Subroutine D of *Moving Average* computes the moving average when the **D** key is pressed from the keyboard.

LBL D
RCL 0
RCL E
RCL D
x≤y?
xzy
R+
÷
RTN

Generally, the average is calculated based on the summation of input values, Σ (stored in R_0) and the requested number of units, n (stored in R_D) in the moving average. However, if less than n values have been input, the average must be calculated based on the current number of inputs (k). The value of k is stored in R_E . The flowchart for this calculation might look like this:

Subroutine D begins by recalling the sum from R_0 , k from R_E and n from R_D . After these recalls the operational stack is as follows:

Unknown value	Т
Sum	Ζ
k	Y
n	Χ

The comparison step $x \le y$ (if x is less than or equal to y) causes program execution to *skip* the next step when the conditions of the comparison are *not met*. If the conditions of the comparison are met, the *following step is executed*. This is the "*DO* if *TRUE*" rule. For instance, if k = y = 15 and n = x = 6 the comparison would be true or satisified (since x is less than y) and the next step, **XX** (x exchange y), would be executed. If k were less than 6, say 4, the **XX** command would be skipped. The stack contents for both cases are shown below:

BEFORE COMPARISON

Unknown value	Т	Unknown value	Т
Sum	Z	Sum	Ζ
15	Y	4	Y
6	Х	6	Х

AFTER COMPARISON AND NEXT STEP

Unknown value	Т	Unknown value	Т
Sum	Z	Sum	Ζ
6	Y	4 not switched	Y
15 switched	Х	$6 \int \int dt switched$	Х

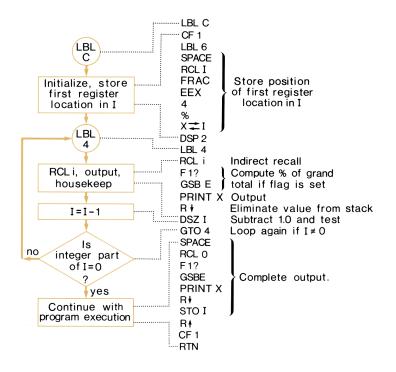
The next step rolls the stack down removing the unwanted value from the X-register.

15 (Unwanted value)	Т	6 (Unwanted value)	Т
Unknown value	Z	Unknown value	Ζ
Sum	Y	Sum	Y
6	Х	4	Χ

The last step divides the sum by the value in the X-register to complete the calculation.

Moving Average

			-						
801	≭LBL ∝				857	£.			
002	CLRG		Clear registe	rs.	853	FT1.			
807	P≓S				859	#LBL6		If print me	ode is off pause
804	CLRG				962	XZ		for display	of n.
805	1		If 1 ≤ n ≤ 2	2 continue.	861	FØ			
885	- x> v?		otherwise go		062	6108			
			o the wise ge		862	PSE			
662	GT Úi								
808	CLX				864	≭LBL €			
009	- 2				065	RCL0		Compute a	average.
616	2				866	PCLD			
011	XZY				867	÷			
012	X> 90				868	ENT		Output an	d set for display.
013	6701				- RE.9	F80			
014	STOD				870	PRTX			
815	1		Store n in R	e and	071	RTN		Write data	
	.'					*LBLB			
816			(n + n/100)	in HI.	672				
017	+				873	MDTA			
P18	STOI				874	RTN			
819	INT				075	*LBLk			
020	RTN				076	F00		Print/pause	e mode toggle.
021	≭LB L1				077	GT00			
822	₽₽		Flash input e	error.	878	1			
823	#LBL4				679	SFØ			
024	PSE				080	RTN			
025	GT04				081	≭LBL 0			
026	≉LBL A			by one. Print	882	0			
027	F0°			l input if flag O	083	CF8			
828	SPC		is set.		864	RTN			
02.9	RCLE				885	≭LBL C			
838	1				08ē	SPC		Output val	ues in newest
831	+				887	0		to oldest o	
032	FØS				083	∗LBL3		10 oldest o	idei.
833	PETA				089	RCLD			
					890	X=YO			
034	X ≠ Y					RTN			
035	FØ?				091				
836	PRTX				892	1			
037	RCL i		Remove olde	est value from	893				
038	ST-0		sum and add	input.	894	+			
839	X≠Y				895	RCLI			
848	STO:				096	X=>`?			
841	ST+0				097	FRC			
042	R4		Store k.		998	STOI			
843	XZY		SIGIE K.		899	ISZI			
			1		100	RCLI		1	
844	STOE								
845	RCLD		lf n ≤ k,GTC		101	PRIX		1	
846	X¥YC		calculate ave	rage.	102	RŤ		1	
847	6SB0				103	1		1	
048	DSZI		If I is not zer	o, GTO 5 for	104	+		1	
849	GT05		display		105	ET03			
050	RCLI				i8€	≭LBL D		1	
051	1				107	RCLO		Commute	vorage at
052	6		Reset index		108	RCLE			verage at any
053	ī			ior another	109	RCLD		time.	
854	x		loop.		110	X472			
855	STOI		1		111	XZY		1	
856	*LBL5				112	R4		1	
0.0	+LDL J		Display avera			R.+		1	
0	1	2	3	REGI	STERS	6	17	18	9
Σ	used	2 used	used	[5		(l.	
50	S1	S2	S3	used S4	used S5	used S6	Used S7	Used S8	S9
used	used			-					
	lusea	used	used	used	used	used	used	used	used
A used		в	с		D		E	ľ	
		used	used		n		k	CC	ontrol


117 114 115	÷ -: RTN : R/S :	4						
	10	LA	BELS		FLAGS		SET STATUS	
A x→"k," Avg	^B W DATA	^C →VAL	D→AVG	E	0 print	FLAGS	TRIG	DISP
a n	^b P?	c	d	e	1	ON OFF	DEG 🖬	FIX 🕱
⁰ used	¹ error	2	3 print	4 error	2	1 🗆 🗖 🖌	GRAD	FIX ⊠ SCI □ ENG □ n_2
⁵ display	6	7	8	9	3	2 🗆 🗙 3 🗆 🗙		n_2

DECREMENT AND SKIP ON ZERO (DSZI) LOOP IN COMBINATION WITH INDIRECT RECALL (RCLi)

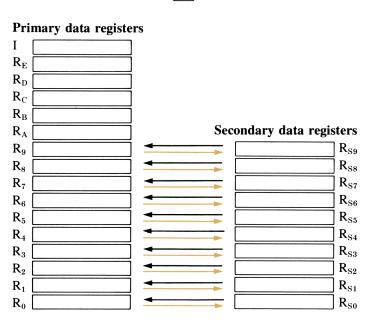
One of the most powerful features of your calculator is its ability to do indirect recalls. That is, recall a register which is specified by a value stored in the I register. For instance, if the contents of I were 3.0 and an indirect recall (RCLi) command were encountered, the contents of R_3 would be recalled. When the content of I is changed, the action of the RCLi is also changed. Because of this relationship, it is possible to access all 26 data storage registers with only one RCLi command.

DSZI (Decrement and Skip on Zero) was designed to help take full advantage of RCLi and other indirect capabilities. A DSZI command causes 1.00 to be subtracted from the contents of I. After the subtraction, the content of I is automatically compared to zero. If the integer part of the value is zero, the calculator skips the step following the DSZI command. If the integer part is non-zero, the following step is executed. This automatic test capability makes DSZI a valuable looping tool.

Steps 102–130 of *Tabulator* illustrate a typical use of DSZI and RCLi. The task is to recall the values of the row totals, in order, and output them. Below are the flowchart and the commented code which performs the task.

NOTES

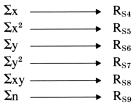
L02-03


Tabulator

			-							T		
001	≉LBL ₀					057	≢LBL1			Clear	stack ex	cept for last
882	CF2		Clear f	lag 2 and	registers.	858	6			input		
003	CLRG					859	ENTT					
864	₽₽S					968	ENTT					
005	CLRG					061	R1					
886	INT					062	ETN					
			I				#LBLB					
007	1				ut for number							changed
003	$X \ge Y$?		of row	s is not in	n the range of	064	F2°			GTO	1.	
009	GT02		1 to 24	1, reject t	he value.	065	GT01					
818	CLN					866	ISZI			Resto	re count	ter. Subtract
011	2					867	-			displa	y from	totals.
012	4					968	LSTX				,	
	-					069	ST-0					
013	X7 (
014	X£Y?					876	ST-					
015	6700					071	FØC			Print	space to	indicate
0 16	6707					872	SFC			deleti	on.	
017	≉LBL0					073	RTN					
018	1			# register		874	#LBL :					previous
	-					075	R!					
019	ž		registe	rs/100 in	1.		RCLI			colun	nn, last v	alue.
826	+		1			676				1		
021	STOI		1			077	FRC			1		
822	0		1			678	1			1		
823	ENTT		Clear s	tack		079	+			1		
024	ENTT		1 Ciear s	LOCK.		680	STOI			1		
825	ENTT		1			881	8101 R4					
							K.+					ay from
₿ 2€	RTN					882	-			totals		
027	≉LBLA		If flag	2 is set c	ear stack.	083	LSTX					
028	F2?		-			884	ST-0					
829	GSB1					085	ST-i					
030	ST+i					88E	F8?			Delas		indicate
831	ST+0			put to ro		087	SPC					indicate
			Add in	put to G	т.					deleti	on.	
032	XZY					886	RTN					
833	£↓		Add in	put to co	olumn total.	889	≉LBLb					
834	+					890	F0?			Togal	e print/r	bause flag.
835	LSTX					891	GT00			- 55		j.
036	FØ?					892	SFØ			1		
837	PRTX		Print i			093	CLX					
838	DSZI					094	SPC			+		
			Stop if	f I is not I	D.							
839	RTN					095	1					
848	F0?					096	RTN					
841	SPC			g 2 for ne		897	#LBL0					
842	SF2			y 2 101 11	W SLOCK	898	CFO					
843	RCLI		total.			899	CLX			1		
844	EEX		1			100	6			1		
845	4		Reset	index for	next loop.							
	•		1			161	RTN			1		
846	2		1			102	≉LB LC			1		
047	+		1			163	CF1			Class	% flag.	
848	STOI		1			104	≉LBL 6					
849	CLX					105	SPC					
850	ENTT			or display	column	100	RCLI					egin at first
851	Rt		total a	nd stop.		107	FRC			row t	otal.	
852	FØ		1							1		
			1			108	EEX			1		
853	PRTX					109	4			1		
854	F8?		1			110	2			1		
855	SPC		1			111	X≓I			1		
856	RTN					112	DSP2			1		
					BECH	STERS				1		
0	11	2	3		4	5	6		7	18		9
GT	used	used	usec	1	used	used	used		used	used		used
SO	S1	S2	S3		S4	S5	S6		S7	S8		S9
	used											
used	lusea	used	usec	_	used	used	used	_	used	used		used
^		в		с		D		E			Ľ	
used		used		used		used		u	sed		index	
								_				

114 PCL1 Reall and output values. If 115 F12 flag 1 is set. convert values 116 CSBE to % before output. 117 PRTX 118 R4 119 DS21 119 DS21 121 SPC Output grand total of % of 123 F12 124 GSBE 125 PRTX 126 GT04 127 ST01 128 R1 129 DS12 121 SF1 122 RTM 123 SF1 124 GSBE 125 PRTX 126 R4 127 ST01 128 CF1 129 CL0 133 GT06 using LE0	113	#IBI4							
115 F12 fligg 1 is set, convert values to % before output. 116 658E to % before output. 119 DS21 Hf 11 ≠0 loop again. 128 6704			Becall	and output val	ues. If				
116 CSBE In % before output. 117 PRTX									
117 PRTX 119 DS21 H1 ± 0 loop again. 128 6704 121 SPC 122 RCL# 123 SPC 124 GSBE 125 FF19 126 GSBE 127 ST01 128 RTN 129 FT1 121 SPC 122 SPCT 123 SF1 126 R4 127 ST01 128 RTN 129 CF1 1218 RTN 123 SF1 0 Output % of total values using LE0					values				
118 R4 III # 0 loop again. 129 DST III # 0 loop again. 121 SPC Output grand total or % of 122 RCL4 grand total or % of 123 SPC Output grand total or % of 124 SSE grand total or % of 125 RFX			10 % 0	erore output.					
119 DS21 H1#0 loop spin. 128 6T04									
128 GT04 121 SPC Output grand total or % of grand total if flag 1 is set. 123 F17 grand total if flag 1 is set. 124 GSBE GSBE 125 PRTX R 126 R4 Return original index to 1. 127 ST01 Clear flag 1 and stop. 128 RT Clear flag 1 and stop. 131 eLBLD Output % of total values 132 SF1 Output % of total values 133 GT06 using LBL C. 134 eLBLE using LBL C. 135 RCL 0 Comput % of total values 136 2 input value. 135 X Input value. 136 2 input value. 137 IELS Fride Grand values 135 RCL 0 Fride Fride 136 FT Fride Fride 137 IELS Fride Fride 145 FIC F									
I21 SPC Output grand total or % of I22 F17 grand total if flag 1 is set. I24 GSBE grand total if flag 1 is set. I25 PRTX Return original index to 1. I27 ST01 Return original index to 1. I27 ST01 Return original index to 1. I28 RT Clear flag 1 and stop. I38 RTN ST1 I39 ST1 Output % of total values I36 + Compute % of total for any I38 RTN Firor flash loop. I40 RTN Firor flash loop. I41 #LBL2 Error flash loop. I42 R/ Error flash loop. I45 GT07 I46 R/S I46 R/S I46 R/S I46 R/S I46 R/S			lifl≠C) loop again.					
I22 F10 grand total if flag 1 is set. I23 F17 F17 I24 GSBE F17 I25 FR1X F17 I26 F1 F17 I26 F1 F17 I25 F17 Return original index to 1. I26 R1 Clear flag 1 and stop. I28 R1 Clear flag 1 and stop. I29 CF1 Clear flag 1 and stop. I21 #LBL Compute % of total values I37 #ER compute % of total for any input value. I38 RCL0 FF I38 F17 Compute % of total for any input value. I39 × input value. I39 × Input value. I40 FIN Error flash loop. I41 #LB1 Error flash loop. I45 FI2 FI2 I46 F/S FI2 I47 FI2 FI2 I46 F/S Sett Status									
1:23 F10 Deck State 1:24 6SBE			Output	grand total or	% of				
124 CSSE 125 PRTX 126 F4 127 ST01 128 R1 129 CF1 138 RTM 131 et.BLD 132 SF1 Output % of total values 133 GTO6 134 et.BLE 135 RCL6 136 Compute % of total values 137 TEX 138 CTO6 138 CTO6 138 CTO6 138 CTO6 138 CTO7 137 EEX 138 C 146 RTM 141 et.BLZ 144 PSE 145 GTO7 146 R/S 145 GTO7 146 R/S 147 Et.BLS 148 PSE 149 C 140 C			grand t	otal if flag 1 is	set.				
125 PRTX			-						
126 R4 Return original index to 1. 127 ST01 Teturn original index to 1. 128 R1 Clear flag 1 and stop. 131 et.BLD Output % of total values 132 SF1 Output % of total values 133 eT06 using LBL C. 134 et.BLE using LBL C. 135 RCL8 Compute % of total for any 136 2 input value. 137 EEX input value. 138 2 input value. 139 X Ide RTM 144 PSE Error flash loop. 145 etD77 146 R/S									
127 STOI Inclusion marks to it 128 R1 129 CF1 128 RTH 139 RTH 131 LBLD 132 SF1 Output % of total values 133 GTO6 133 GTO6 134 LBLE 135 RCL0 136 RTN 137 EEX 138 2 139 × 146 RTN 141 etBL2 142 R4 143 etBL7 144 PSE 145 FTO7 146 R/S Imput value Imput value <th>125</th> <th>PRTX</th> <th></th> <th></th> <th> </th> <th></th> <th></th> <th></th> <th></th>	125	PRTX							
127 ST01	126	R↓	Return	original index	to L				
129 CFI Clear flag 1 and stop. 138 PTN Output % of total values 133 6706 using LBL C. 135 FI Output % of total values 136 ÷ Compute % of total for any input value. 136 ÷ Compute % of total for any input value. 138 R1 Compute % of total for any input value. 139 × Firor flash loop. 141 et.BL2 Firor flash loop. 144 PSE Firor flash loop. 145 FIO7 Firor flash loop. 146 R/S Firor flash loop. 146 R/S FIROS Val ^B Del ^C -rTot ² / ₃ % Tot ⁶ / ₂ mint ^b #rows ^b P7 ^c d ^e ⁵ / ₃ ^c	127	STOI		original maon					
129 CFI Clear flag 1 and stop. 138 PTN Output % of total values 133 6706 using LBL C. 135 FI Output % of total values 136 ÷ Compute % of total for any input value. 136 ÷ Compute % of total for any input value. 138 R1 Compute % of total for any input value. 139 × Firor flash loop. 141 et.BL2 Firor flash loop. 144 PSE Firor flash loop. 145 FIO7 Firor flash loop. 146 R/S Firor flash loop. 146 R/S FIROS Val ^B Del ^C -rTot ² / ₃ % Tot ⁶ / ₂ mint ^b #rows ^b P7 ^c d ^e ⁵ / ₃ ^c	128	Rt							
130 RTN Output % of total values 131 eLBLD 132 SF1 Output % of total values 133 6T06 134 eLBLE 135 RCL0 136 2 137 EEX 138 2 139 × 146 RTN 141 eLBL2 144 PSE 145 GT07 146 RYS									
131 eLBLD 132 SF1 133 6706 134 eLBLE 135 RCL0 136 ÷ 137 EEX 138 2 139 × 146 RN 141 eLBL2 142 R4 143 sLBL7 144 PSE 145 eTror flash loop. 146 RVS 146 RVS 146 RVS 146 RVS 146 RVS 147 sLABELS From flash loop.			Clear II	ag i and stop.					
132 SF1 Output % of total values 133 6706 134 eLBLE 135 RCL0 136 2 137 EEX 138 2 139 × 146 RTN 141 eLBL2 142 R4 144 PSE 145 GTO7 146 RYN 146 RYN 147 eLBL2 148 RL 149 PSE 144 PSE 145 GTO7 146 R/S 146 R/S 146 R/S 146 R/S 147 Boel C-Tot ^D / ₂ % Tot Val ^B Del ^C -Tot ^D / ₂ % Tot ^P / ₂ % Tot ^P / ₂ mint ^B #rows ^D P? ^C ^d ^e ^B / ₂ ^C ^d ^e ^N / ₂ ^O O O OFF ^C									
133 GT06 Using LBL C. 135 #LBLE 136 + 137 EEX 138 2 139 × 146 RTN 141 #LBL2 142 R4 143 #LB.7 144 PSE 145 \$600 146 R/S LABELS FLAGS SET STATUS ^Val B.Del 0 ON OFF 0 NO OFF 0 NO OFF 0 NO OFF Deg d									
134 #LBLE Using LDL C. 135 RCL0 136 + 137 EEX 138 2 139 × 146 RTN 141 eLBL2 142 R4 143 eLBL7 144 PSE 145 GT07 146 R/S 146 R/S 147 Error flash loop. 146 R/S 147 PSE 148 PSE 149 PSE 144 PSE 145 GT07 146 R/S Image: State					ues				
135 RCL0 136 ± 137 EEX 138 2 139 × 146 RTN 141 eLBL2 142 R4 143 #LBL7 144 PSE 145 GT07 146 R/S 146 R/S 147 Etror flash loop. 148 PSE 149 PSE 146 R/S 146 R/S 147 Etror flash loop. 148 PSE 149 PSE 146 R/S 147 PSE 148 PSE 149 PSE 140 PSE 1414 PSE 142 PSE 143 PSE 144 PSE 145 PSE 146 P/S 148 PSE 149 PSE 149 PSE			using L	BL C.					
136 ÷ Compute % of total for any input value. 138 2 139 × 146 RTM 141 #LBL2 142 R4 144 PSE 145 6T07 146 R/S 147 stBL7 148 PSE 149 SET 144 PSE 145 6T07 146 R/S 146 R/S 146 R/S 147 SET 148 ST07 149 SET 149 SET 140 R 141 SET 142 R4 145 ST07 146 R/S 147 SET 148 SET 149 SET 149 SET 149 SET 149 SET 149									
137 EEX Description of Notice									
138 2 139 X 146 RTM 141 et.BL2 142 R4 143 et.BL7 144 PSE 145 GTO7 146 R/S 146 R/S 146 R/S Ideal Sector Ideal Ideal Ideal Ideal Ideal Ideal Ideal Ideal					orany				
139 × 146 RTM 141 #LBL2 142 R4 143 #LBL7 144 PSE 145 GT07 146 R/S 146 R/S 147 #LABELS Error flash loop. 146 R/S I46 R/S I47 I48 I48 I48 I49 I48 I49 I49 I49 I48 I49 I49 I49 I49 I49 I49 I49			input v	alue.					
146 RTH 141 #LBL2 142 R4 143 #LBL7 144 PSE 145 6T07 146 R/S 146 R/S 147 PSE 148 PSE 149 PSE 146 R/S 146 R/S 146 R/S 146 R/S 146 R/S 147 PLAGS 148 PLAGS 149 PLAGS 149 PLAGS 140 PLAGS 141 PLAGS 142 PLAGS 143 PLAGS 144 PLAGS 145 PLAGS 146 PLAGS 147 148 149 149 140 141 142 143 144 145 146 <									
141 #LBL2 142 R4 143 #LBL7 144 PSE 145 6T07 146 R/S 146 R/S Idea Image: Second Sec									
142 Ri Error flash loop. 143 #LBL7 Error flash loop. 144 PSE 145 6 T07 146 R/S LABELS FLAGS SET STATUS ^A Val ^B Del ^C →Tot ^D % Tot ^C Val→% Tot ^O print FLAGS TRIG DISP ^a #trows ^D P? ^C ^d ^e ¹ % ^O ON OFF DEG< G FIX 5									
143 eLBL7 ETHOR main loop. 144 PSE 145 6 707 146 R/S LABELS FLAGS SET STATUS Åval B Del C→Tot P % Tot Val → % Tot Print FLAGS TRIG DISP ª#rows D P? C d e 1% 0 DISF DEG FIX 5									
I43 eLBL7 144 PSE 145 GT07 146 R/S LABELS FLAGS SET STATUS Åval B Del C → Tot D % Tot Val → % Tot Print FLAGS TRIG DISP ª#trows D P? C d e ½ 0 DN OFF DEG FIX B			Error f	lash loop.					
145 6T07 146 R/S 146 R/S Image: Second state	143	≭LBL 7							
146 P/S 146 P/S Image: state sta	144	PSE							
LABELS FLAGS SET STATUS ^A Val ^B Del ^C →Tot ^D % Tot ^C Val→% Tot ^O print FLAGS TRIG DISP ^a #rows ^D P? ^C ^d ^e ¹ % ^O N OFF DEG ^G FIX ^S	145	GTO7							
LABELS FLAGS SET STATUS ^A Val ^B Del ^C →Tot ^D % Tot ^Q print FLAGS TRIG DISP ^a #rows ^D P? ^C ^d ^e ¹ % ^o ON OFF DEG ^G FIX ^S	146	R∕S							
Aval B Del C → Tot D → % Tot Val → % Tot Print FLAGS TRIG DISP ^a #rows ^b P? ^c ^d ^e ^b % ^o ^O ^O E ^D ^E ^{FLAGS} FIX ^S									
Aval B Del C→Tot 0→% Tot Val→% Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 0 FEG S FIX S									
Aval B Del C→Tot 0→% Tot Val→% Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 0 FEG S FIX S									
Aval B Del C→Tot 0→% Tot Val→% Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 0 FEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0→% Tot Val→% Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 0 FEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S	1								
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S	1								
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S	1								
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S	1								
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S	1								
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 ON OFF DEG S FIX S									
Aval B Del C→Tot 0, % Tot Val → % Tot 0 print FLAGS TRIG DISP a#rows bp? c d e 1% 0 O FF DEG S FIX S			LA			FLAGS		SET STATUS	
a#rows ^b P? ^c ^d e 1% ON OFF 0 ⊡ ⊠ DEG ⊠ FIX ⊠	^∕al	BDel	^C →Tot		Eval→ & Tot				DIED
#rows P? 0 DEG 😨 FIX 🗵				1. 101				ING	UISP
	"#rows	⁰ P?	Ľ	ľ	e	'%		DEG 🖬	FIX 🕱
$\begin{bmatrix} 0 \\ used \end{bmatrix}^1$ Col Chg $\begin{bmatrix} 2 \\ error \end{bmatrix}^3$ Tot $\begin{bmatrix} 2 \\ Col Chg \end{bmatrix} \begin{bmatrix} 1 \\ Used \end{bmatrix}$ BRAD $\begin{bmatrix} SCI \\ SCI \end{bmatrix}$	⁰ used	¹ Col Cha	² error	3	fot	² Col Chg	1 0 8	GRAD 🗆	SCI 🗆
	5	6		8				RAD 🗆	
5 6% Tot 7error 8 9 3 3 0 0 n 2	Ľ	% Tot	error	1	1	I	3 🗆 🗷		n_ ∠ _

PRIMARY EXCHANGE SECONDARY REGISTERS


The data storage of your calculator is comprised of 26 registers. Sixteen of these registers are directly accessible at all times through store and recall commands. The remaining 10 secondary registers $R_{S0}-R_{S9}$ are not directly addressable but may be exchanged with primary registers R_0-R_9 at any time. The PES command can be used to do this. Figure 1 represents the action of PES. After execution of the command, the value originally stored in R_{S0} is found in R_0 , and the value originally in R_0 is in R_{S0} . A similar exchange would occur between R_1-R_9 and $R_{S1}-R_{S9}$, respectively.

P≥S

In *Curve Fitting*, the **D** command is used to automatically accumulate the necessary sums in the registers indicated below:

Before starting to accumulate the sums, registers $R_{S4}-R_{S9}$ must be cleared. Since the clear registers command only operates on the primary registers, a **Pess** command is necessary. The code from *Curve Fitting* which prepares the secondary registers for summation is shown below:

PSS	Exchange primary and secondary registers.
CL REG	Clear primary registers.
PSS	Return cleared registers to secondary status, ready to accumulate sums.

Note that this sequence has no effect on the original, primary registers R_0-R_9 . They still contain exactly what they contained before the sequence. This allows R_0-R_9 to be used for user storage during execution of *Curve Fitting*.

After the sums are accumulated, they must be accessed to calculate the regression coefficients a, b and r^2 . However, since the sums are in the secondary registers, they are not directly accessible by the store and recall commands. This necessitates use of PES again. Label C (steps 68–113) of *Curve Fitting* performs the calculation. PES is found at the beginning and the end of the Label C routine. The first PES allows the values to be accessed directly. The second PES returns the registers to their original configuration.

Exchanges primary and secondary registers for access by **STO** and **RCL**.

Exchanges primary and secondary registers returning calculator to original status.

Curve Fitting

-						
001	≢LBL a		857	X≢Y		1 1
002	e	Toggle print/pause mode	858	PRTX		1 1
863	F20					1 1
		flag.	859	X₽Y		1 1
884	FTN		868	PRTX		1 1
005	1		861	SF2		1 1
806	SF2		062	RTN		
807	RTN					
			063	≉LBLE		
808	*LBLL	Clear flags and registers for	864	SF3		Set Σ- flag.
809	CFØ	linear regression.	065	F2?		Print delete indicator if
818	CF1	inical regression.	866	6SB3		flag is set.
011	P≓S		067	GT08		Delete inputs.
012	CLRG		968	≉LBL C		Switch to secondary
013	P≓S		869	P≇S		
	1					registers.
814			970	SPC		Compute b.
015	RTN		871	RCL8		
016	≭LBL ¢	Call LBL b, then set	872	RCL4		1 1
017	6SBL		873			1 1
		exponential flag.		RCL6		1 1
018	SF1		874	×		1 1
019	RTN		875	RCL9		
828	#LBL d		876	÷		
	6SB6	Call LBL b, then set		-		1 1
021		logarithmic flag.	077	-		1 1
022	SFØ		078	ENT†		1 1
023	RTN		875	ENTT		
824	#LBLe			RCL4		1
		Call LBL d, then set flag	880			
025	6SB d	for power curve fit.	081	X2		1 1
026	SF 1		882	RCL9		
027	RTN		083	÷		
028	#LBLA					
		Clear Σ– flag.	884	RCL5		
829	CF3		685	X≓Y		
030	≉LB L8		986	-		
031	F2?		087	÷		
		Print if flag 2 is set.				
032	GSB9		083	STOB		
033	STOD		089	х		Compute r ² .
034	F1?		890	RCL6		
835	LN	In y if flag 1 set.	891	X2		1 1
						1 1
836	X₽Y	In x if flag 0 is set.	092	RCL9		
037	STOC		893	÷		1 1
838	F8?		894	CHS		1
839	ĽN		895			1
				RCL 7		
840	F3?	If flag 3, then Σ	896	+		1 1
841	GTOB		897	÷		
842	Σ+		898	PRTX		
		Compute sums.				
043	≉LBL 7	Calculate i + 1.	099	RCL6		Compute a.
844	ENTT	Guiddiate + + +.	100	RCL4		
845	1		101	RCLB		1
846	· •		102	X		1 1
						1 1
847	RCLC	Set inputs in stack posi-	103	-		1 1
048	X≓Y		104	RCL9		1 1
849	RCLD	tioned for possible deletion.	105	÷		1
850	XZY		106	F1?		
						1 1
051	RTH		107	e×		1 1
852	≭LBL0	Subtract from sums.	108	STOA		
853	Σ-	Subtract from sums.	189	PRTX		
854	GT0 7					Output a and b.
			:10	RCLB		1 1
055	≢LBL9	Print inputs and reset print	111	PFTX		
856	SPC	flag.	112	P∓S		Switch registers.
			STERS			
0	1	2 3 4	51ER5	6	7	8 9
ľ	ľ		ľ	ľ	ľ	° ⁹
	-					
S0	S1	S2 S3 S4	^{S5} Σx ²	S6	S7 Σγ ²	S8 S9
0	0	0 0 Σχ		Σγ	Σy²	Σxy n
A		в	D		ΤE	
а		b x _i	Yi		x,y	o
		- L '	171		^	1.

:13	RTN			169	÷		Power exp.ca	c		
114 #L	BLE	Positio	n coefficients in	stack 170	FØC		For power G			
115 S	TOE	for use	by projection	171	GTC1					
116 R	CLA	routine		172	LK		Exponential p	projection.		
117 R	CLB	routine	з.	173				-		
	CLE			174	F2 ⁿ					
	F12		is set, power or		6709		Print?			
	T01			176	FTN		Stop			
	F0?		jection.		#LBL1					
122	ĹN			178	XZY		1			
123	x	Logarit		1 1 70	Y×.		Power project			
123	+			180	F2?					
	F2?		or logarithmic		6709		Print?			
		project	ion		RTN		Stop.			
	T09	Print?								
	RTN			183	R∕S					
	BL 1	Stop_								
	F0?) is set, do powe							
	T02									
131	X	Doexp	onential projecti	on.						
132	e*	1-000								
133	x									
134	F29	Print?								
135 6	T09									
136	RTH	Stop								
	BL2									
	XZY									
139	Ýx.	Do pov	ver projection.							
148	x									
	F2?									
	109									
		Print?								
	RTN	Stop_	Stop							
	BL3		1 indicator.							
	SPC		- marcatori							
146	1									
	CHS									
	RTX									
	SF2									
150	R↓									
151	RTN									
152 #L	BLD		n coefficients in							
153 S	TOE			STACK						
	CLB		by projection							
	1/8	routine								
	CLA									
	CLE									
	XZY									
	F1?									
	T01		Power or exp?							
	-									
161	- x	Linear	and log projection	on.						
162										
	F0?	Logarit	Logarithmic.							
164	ex									
	F2?	Print?								
	T09									
	RTN									
168 #L	BL 1									
			BELS		FLAGS		SET STATUS			
^A x _i ↑ y _i (+)	^B x _i †y _i (–)	^C →r ² , a, b	^D _V → x	Ę → ŷ	⁰Log	FLAGS	TRIG	DISP		
		1				ON OFF		2.31		
^a P?	^b LIN?	°EXP?	dLog?	PWR?	Exp	0 🗆 🖾	DEG 🕱	FIX 🕱		
$0\Sigma^{-}$	¹ used	² power	Brint	4	² print	1 🗆 🗷	GRAD	SCI 🗆		
			<u> </u>			2 🗆 🗷	RAD 🗆	ENG, 🗆		
5	6	⁷ display	⁸ Σ-	print	$^{3}\Sigma^{-}$	3 🗆 🖬		n_2		

MULTIPLE STORAGE IN REGISTERS

In *Calendar Functions* the date is input in mm.ddyyyy format. This allows three pieces of information (the day, the month, and the year) to be carried in one register. In *Calendar Functions* this provides a convenient means of displaying the date. In other programs a similar technique could be used to store more than 26 values in the 26 addressable registers.

When multiple storage techniques are used, two types of code are usually required. The first type breaks a combined number into its individual components. The second type assembles the individual components into a single number.

Steps 83 through 97 of *Calendar Functions* break the date into its individual components.

PROGRAM STEPS	X REGISTER CONTENT					
ENT↑	mm.ddyyyy	(combined form)				
INT	mm.000000					
STO7	mm.000000	(months)				
—	.ddyyyy					
EEX						
2	100.000000					
Х	dd.yyyy00					
ENT↑	dd.yyyy00					
INT	dd.000000					
STO8	dd.000000	(days)				
—	.yyyy00					
EEX						
4	10000.000000					
Х	уууу.000000					
STO9	уууу.000000	(years)				

Steps 54 through 78 of *Calendar Functions* assemble the three values into one number for display. However, other operations are being performed which obscure the technique being used. Below is a sample program which could be used to build a date in mm.ddyyyy format if m were stored in R_7 , d in R_8 , and y in R_9 .

X REGISTER CONTENTS RCL7 mm.000000 RCL8 dd.000000 EEX 2 100.000000 ÷ 0.dd0000 mm.dd0000 +RCL9 yyyy.000000 EEX 6 100000.000000 0.00уууу ÷

mm.ddyyyy

PROGRAM STEPS

+

Calendar Functions

001	¥LBLA	Calculate ∆ days and put	857	X≇≆	
002	RCL4	control 3 in display.	058	RCLE	
003	RCLC	control o in display.	859	λ.	
884	-		850	INT	
885	3		861	-	
90E	6700		062	STO6	
007	★LBLB	Calculate Δ days and put	063	RCL7	Build (m' – 1). dd part of
008	RCL3		864	1	display.
809	RCLC	control 4 in display.	865	RCLS	display.
	RULL			RULO	
010	+		066		
011	4		067	-	
012	#LBL0		968	-	
B13	STOI	Store control code.	069	RCL7	
			870		Correct m' – 1 and y' to m
014	R↓	Store constants.		1	and y.
815	3		071	4	
816	6		072	÷	
017	5		073	GSB2	
	5		874	RCL9	
016	•				Finish building mm.ddyyyy
013	2		075	EEX	result and display final
828	5		076	6	answer.
821	ST05		877	÷	answer.
022			078	+	
	3				
023	6		679	DSP6	
024			080	RTN	
025	6		081	#LBL1	Production in such in the
826	ë		032	R↓	Break date input into the
					individual components of
827	0		883	ENTT	mm, dd, yyyy.
028	1		084	INT	
029	ST06		085	ST07	
830	R4		886	-	
		Return Δ days to display.	087	EEX	
031	R↓				
032	F3?	If data input, GTO 1.	880	2	
033	6701		089	x	
034	STO:	Share A days and in the	890	ENTT	
035	1	Store ∆ days according to	891	INT	
	-	control code.			
036	2		092	ST06	
037	2	Calculate y'.	093	-	
838		ouround of y	094	EEX	
839	1		895	4	
840	1		096	x	
	-				
841	RCL5		097	ST09	
842	÷		898	RCL7	m + 1
843	INT		899	1	
			100	.	
844	ST09	Calculate m'.			
045	RCL5		101	ENTT	1
846	x		102	1/X	m + 1 → m′
847	INT		103		
848	RCL		104	7	
	KULI		105	+	y → y'
849		1			
850	CHS		106	CHS	
051	STOA		107	65B2	
852	RCLE		108	RCL6	
853	÷	1	109	x	Compute day number.
054	INT		110	INT	1
85 5	ST07	Calculate day of month.	111	RCL9	
056	RCLA		:12	RCL5	
		REGI	STERS		
0	1 2	3 4	5	6 7	8 9
1		Day #1 Day #2	365.25	30.600i in	ă y
S0	S1 S2	S3 S4	S5	S6 S7	S8 59
r"	~' ³²		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°′	30 39
Α	В	c	D	E	
used		∆ days			control

				-				
113	λ			169	827			
114	INT			178	FRC			
115	+			171	1			
116	RCLS			172	0			
117	+			173	x			
118	STO;			174	+			
119	1			175	STOC			
120	;		te Julian day numb	176	RTN			
121	2	for out	put.	177	#LBLE			
122	ē				SF3		Calculate day	y number.
	e ç			178				
123	-			179	RCL5			
124	8			160	5			
125	2			181	GSB0			
126	+			:62	RCL i		Change day r	number to
127	DSP0			183	5		modulo 7 nu	
128	RTN			. 184	+			
129	#LBL2	If input	t to this routine has	185	ESE3			
138	INT			186	LSTX			
131	ST+9		e value 1 or greater	187	1		1	
132	1	y = y ±		188	6			
133	2	m = m :	± 12	189	x			
134	x			198	RTN		1	
135	-			191	R/S			
136	RTN	(+ for p	olus input)	1	R/ 0			
137	#LBLC							
138	DSP0	Store in	nput.					
139	STOC							
140	F3?	If input	t flag, stop.					
141	RTN			.				
142	RCL4	Calcula	te ∆days and stop.					
143	RCL3	Calcula	tte duays and stop.					
144	-							
144 145	- STOC							
	STOC RTN							
145								
145 146	RTN	— — — If input						
145 146 147	RTN #LBLD	– – – If input						
145 146 147 148 149	RTN #LBLD F3?							
145 146 147 148 149 150	RTN #LBLD F3? GT04 GSBC	 Compu						
145 146 147 148 149 150 151	RTN *LBLD F3? GT04 GSBC DSF1	 Compu 	 ite ∆days					
145 146 147 148 149 150 151 152	RTN *LBLD F3? GTO4 GSBC DSP1 *LBL3	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153	RTN #LBLD F3? GT04 GSBC DSF1 #LBL3 7	 Compu 	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154	RTN #LBLD F3? GT04 GSBC DSP1 #LBL3 7 ÷	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154 155	RTN #LBLD 6304 658C DSP1 #LBL3 7 ÷ INT	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154 155 156	RTN *LBLD F30 GT04 658C DSP1 *LBL3 7 ÷ 1NT LSTX	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154 155 156 157	RTN #LBLD 6304 658C DSP1 #LBL3 7 ÷ INT	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154 155 156 157 158	RTN #LBLD F37 GT04 GSBC DSP1 #LBL3 7 ÷ INT LSTX FRC	Compu Conpu	t to Δ weeks.days					
145 146 147 148 159 151 152 153 154 155 156 157 158 159	RTN #LBLD F3° 6T04 6SBC DSP1 DSP1 7 ÷ 1NT LSTX FRC 7	Compu Conpu	t to Δ weeks.days					
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160	RTN +LBLD F39 GT04 GSBC DSP1 +LBL3 7 ÷ 1NT LSTX FRC 7 ×	Compu Conpu	t to Δ weeks.days					
145 146 147 148 150 151 152 153 154 155 155 155 156 157 158 159 160 161	RTN #LBLD F3° GT04 GSBC DSP1 #LBL3 7 ÷ INT LSTX FRC 7 × *	Compu Conpu	t to Δ weeks.days					
145 146 147 148 150 151 152 153 154 155 156 157 158 159 160 161 162	RTN #LBLD F3° GT04 GSBC DSF1 #LBL3 ? ÷ INT LSTX FRC ? X * RTN	Compu Conpu	t to Δ weeks.days					
145 146 147 148 159 151 152 155 156 157 158 157 158 169 161 162	RTN *LBLD F3° GT04 GSBC DSP1 *LBL3 7 ÷ INT LSTX FRC 7 × + RTN *LBL4	Compu Conver format	t to ∆ weeks.days					
145 146 147 148 159 159 159 159 155 156 157 156 159 169 161 162 163	RTN #LBLD F3° GT04 GSBC DSP1 #LBL3 7 ÷ INT LSTX FRC ? * RTN #LBL4 DSP0	Conver format	t to ∆ weeks.days					
145 146 147 148 159 151 152 155 156 157 158 157 158 169 161 162	RTN #LBLD F37 GT04 GSBC DSF1 #LBL3 7 ÷ 1NT LSTX FRC 7 × + FRC 7 × 4 HTN #LBL4 DSP0 ENT†	Conver format	t to ∆ weeks.days					
145 146 147 148 159 159 159 159 155 156 157 156 159 169 161 162 163	RTN #LBLD F3° GT04 GSBC DSP1 #LBL3 7 ÷ INT LSTX FRC ? * RTN #LBL4 DSP0	Conver format	t to ∆ weeks.days					
145 146 147 148 159 159 159 159 159 155 156 155 156 157 158 159 169 169 162 163 164	RTN #LBLD F37 GT04 GSBC DSF1 #LBL3 7 ÷ 1NT LSTX FRC 7 × + FRC 7 × 4 HTN #LBL4 DSP0 ENT†	Conver format	t to ∆ weeks.days					
145 146 147 148 159 151 153 154 155 156 157 158 159 166 161 162 163 164 165	RTN #LBLD F3° GTD4 GSBC DSP1 #LBL3 7 ÷ INT LSTX FRC 7 × + RTN #LBL4 DSP8 ENT1 INT	Conver format	t to ∆ weeks.days					
145 146 147 148 159 159 151 155 156 157 156 159 160 161 162 164 165 166 167 168	RTN #LBLD F3° GT04 GSBC DSP1 *LBL3 7 ÷ INT LSTX FRC ? * RTN *LBL4 DSP0 ENT1 INT 7 x	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to nd store. BELS		FLAGS		SET STATUS	
145 146 147 148 159 159 151 155 156 157 156 159 160 161 162 164 165 166 167 168	RTN #LBLD F3° GT04 GSBC DSP1 *LBL3 7 ÷ INT LSTX FRC ? * RTN *LBL4 DSP0 ENT1 INT 7 x	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to nd store. BELS		FLAGS 0	FLACE		
145 146 147 148 159 159 151 155 156 157 156 159 166 161 162 163 164 165 166 167 168	RTN #LBLD F3° GT04 GSBC DSP1 #LBL3 ÷ INT LSTX FRC ? * RTN *LBL4 DSP0 ENT1 INT 7 ?	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to t ∆ weeks.days to d store. BELS			FLAGS	SET STATUS TRIG	DISP
145 146 147 148 159 159 151 155 156 157 156 159 160 161 162 164 165 166 167 168	RTN #LBLD F3° GT04 GS96 DSP1 #LBL3 F T ±LSTX FRC 7 × HTN #LBL4 DSP6 ENT↑ INT 7 × B→+DT2	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to d store. BELS ^D +∞ΔWks. Days E	T → DOW	0	ON OFF	TRIG	DISP
145 146 147 148 159 159 151 151 155 156 157 158 166 161 162 163 164 165 166 167 168 164 167 168	RTN #LBLD F3° GT04 GSBC DSP1 *LBL3 LSTX FRC 7 × HTT LSTX FRC 7 × HTT LSTX FRC 7 × 8 HTT B→+DT2 0 0	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to d store. BELS D++∆Wks. Days E d e			ON OFF 0 □ ⊠ 1 □ ⊠	TRIG DEG 🕱 GRAD 🗆	DISP FIX 🗵 SCI 🗆
145 146 147 147 159 159 159 155 156 157 156 159 166 161 162 163 164 165 166 167 169 169	RTN #LBLD F3° GT04 GS96 DSP1 #LBL3 F T ±LSTX FRC 7 × HTN #LBL4 DSP6 ENT↑ INT 7 × B→+DT2	Conver format	t to ∆ weeks.days t to ∆ weeks.days t ∆ weeks.days to d store. BELS □∆Wks. Days F d e	DT → DOW	0	ON OFF	TRIG	DISP

INTERCHANGEABLE SOLUTIONS

In programs like Annuities and Compound Amounts, it is necessary to be able to calculate any value given the other values. While there are many ways to do these interchangeable solutions, two methods are designed into your calculator. The method used in Annuities and Compound Amounts takes advantage of the STO A through STO E commands. The other method, used in Calendar Functions, takes advantage of the keyboard sensing flag (flag 3).

An interchangeable solution requires a method for storage and calculation. It is also desirable to associate inputs and outputs with the mnemonics on the magnetic cards. The STO A through STO E commands accommodate the storage of up to five values in the A through E registers and associate these values with the user definable keys which can be used to initiate calculation. Below is a diagram representing these relationships.

	nterchane	rable,	Solutio and l d	ns of 	2
Α	В	С	D	E	
LBL	A LBL B	LBL C	LBL D	LBL E	
С	С	С	С	С	
A	A	Α	Α	Α	
L	L	L	L	L	
С	С	С	С	С	
U	U	U	U	U	
L	L	L	L	L	
Α	Α	Α	Α	Α	
Т	Т	т	Т	Т	
E	Е	Е	Е	Е	
а	b	С	d	е	
STC	A STO B	STO C	STO D	STO E	
RT	N RTN	RTN	RTN	RTN	

To store a, press STO (A); to calculate a, press (A). Note that after any value is calculated, it is automatically stored just before the RTN command stops execution. This eliminates the need to reinput calculated values in subsequent calculations.

The keyboard sensing flag allows up to ten variables to be interchangeably input. It also allows more versatility in storage register selection and allows input processing of data. However, it is slightly more complicated, requires extra steps and may seem mysterious to the uninitiated program user. The diagram below shows the relationships between the magnetic card and the keyboard sensing code.

	ON J	a, b	gable	Dolut e, f	ims of	7
[dw]	å	Ъ'	Ċ	d	L	./
	А	в	С	D	E	
LBL f A	LBL A	LBL B	LBL C	LBL D	LBL E	
STO 0	STO 1	STO 2	STO3	STO 4	STO 5	
F3?	F3?	F3?	F3?	F3?	F3?	
RTN	RTN	RTN	RTN	RTN	RTN	
С	С	С	С	С	С	
Α	Α	Α	Α	Α	Α	
L	L	L	L	L	L	
С	С	С	С	С	С	
U	U	U	U	U	U	
L	L	L	L	L	L	
Α	Α	Α	Α	Α	Α	
Т	Т	Т	Т	Т	Т	
E	Е	Е	Е	Е	Е	
f	а	b	С	d	е	
STO 0	STO 1	STO 2	STO 3	STO 4	STO 5	
RTN	RTN	RTN	RTN	RTN	RTN	

To input the value a, key it in and press **A**. To calculate a, press **A**. Pressing **A** for both input and output works because Flag 3 is set when the digit entry keys are pressed. When Flag 3 is set, the value is stored and execution stops at the first RTN. If the flag is not set (no digit keys were pressed), the program skips the first return and continues through the calculate portion of the program.

i

РМТ

(1 + i) in R₅. 001 #LBL6 Store dummy 0 for n. 857 ST05 Store (1 + i) in R₇. 802 ß 058 ST07 883 STOA 859 RCLA _ _ _ _ _ _ _ _ _ _ Calculate $(1 + i)^{-n}$ and 884 6SB8 Calculate subroutine. 060 CHS 005 RCLE store in R₈. 061 Y) - - -**00**6 Solve for n and store it in STOR LSTX 062 FV (1 + i) ⁻ⁿ 887 R_A. 863 RCLE RCLD 888 864 x Calculate $[1 - (1 + i)^{-n}]$ 889 LSTX 065 , 010 _ 866 RCLE and store in R₄. 011 ÷ 067 _ _ _ _ 012 LN 068 ST04 Calculate ± (PMT/i). Use RCL7 013 869 RCLC - if FV flag is set. 814 LN 070 RCL9 Store in R₃. 015 871 ÷ ÷ STOA F1? 016 072 017 RTN 073 CHS #LELC 018 Store dummy 1 for PMT. 874 ST03 019 075 RCL5 Calculate 820 STOC 076 x $\frac{+PMT}{2} \left[1 - (1+i)^{-n} \right] R_5.$ 821 **GSB0** x 077 Calculate subroutine. 022 1/X 078 RTN . 023 RCLD 879 Solve for PMT and store it #LBL a Start by clearing PMT, PV, 824 Rt 888 CLX FV (BAL) registers and in R_C. 825 STOC _ 081 annuity due flag. 026 x 082 STOD 827 STOC 083 STOE 828 RTN 884 CFØ 829 #LBLD RTN 885 Store dummy 1 for PV. 830 **8**86 #LBLL 1 Annuity due flag toggle. STOD F0? 831 087 _ _ _ _ _ _ _ _ **GSB0** 832 GT01 888 Calculate subroutine. 833 889 4 Solve for PV and store in 1 STOD SFØ 834 890 R_D. 835 RTN 891 RTN #LBL1 836 **#LBLE** 892 Calculate subroutine. 837 GSB0 893 0 838 RCLD 894 CFØ Solve for FV (or BAL) and 839 XZY 895 RTN store in R_E. 848 896 #LBLB Clear R_B for sum of i terms. RCLS 841 842 097 A STOB 898 Store address of R_B in R_I 843 STOE 899 2 for indirect access. 844 RTN 100 . 845 *LBL0 STOI 101 Clear FV flag. 846 CF1 102 RCLE Recall FV, n, and PMT. _____ 847 RCLD 103 RCLA 848 X=8? 104 RCLC If PV = 0 set FV flag. If PMT = 0, GTO n, i, PV, 849 SF1 105 X=R? FV solution. 850 106 6108 Start guess of i. n PMT Set annuity due mode off 851 ST05 107 x (R₅ = 1). + BAL 852 RCLB 108 + 853 109 RCLD X Convert i to decimal and If PV = 0, GTO FV guess. 854 **ST09** store in Rg._____ Calculate (i + 1)._____ If AD flag is set store 110 X=0? 055 6103 111 856 FØ? PV guess for i. 112 REGISTERS n(1+i)⁻ⁿ⁻¹ ±PMT/i [1-(1+i)⁻ⁿ] 1 or 1 + i (1 + i) (1 + i)⁻ⁿ i/100 S2 S6 S0 **S**1 в

ΡV

FV (BAL)

21

Annuities and Compound Amounts

113	RCLA	nPMT	+ BAL – PV		169	+			
114	÷		n an	d	170	RCLC			
115	RCLD				171				
116	6704	recall F			172	RCLS			
117	♦LBL3	1							
			ess for i numerat	or:	173	÷			
118	RCLE	2(FV -	- nPMT)		174	RCL6			
119	LSTX				175	RCLE			
120	-				176	х			
121	ENTT				177	-			
122	+	and do	nominator:		178	÷			
123	RCLA				179	CHS		f(i)/f'(i)	
124	1	(n – 1)	² PMT + FV						
	1				180	ESB5		Subtract f(i)	/f (i) from
125	-				181	RCLE		current i valu	Je.
126	X2				182	÷			
127	RCLC			[182	RND		If value is no	t = to zero,
128	λ				184	X≠0°		loop again.	
129	RCLE				185	GTOE			
130	+				186 186	RCLE			
	•							Stop and dis	play.
131	≢LBL4	Guess 1	for i.		187	RTN			
132	÷				188	≢LBL8		Compute i fo	orn, i, PV, FV
133			s is less than -0.9		189	RCLE		problem.	
134	9				190	RCLD		problem.	
135	CHS	-0.9 to	or guess.		191	÷			
136	X4Y?				192	RCLA		1	
137	XZY				193	1/8			
138	6SB5				193	12 A YX			
		Store g	uess as a %.						
139	X=0?				195	1			
140	RTN	If guess	s = 0 stop.		196	-			
141	≉LBL6				197	*LBL5			
142	6SB0	Calcula			198	EEX			~
143	+	Calcula	ite (1).		199	2			% and add to
144	F1?				200	x		content of R	в.
145	CHS				201	ST+i			
146	RCLD				202	FTN			
147	-				203	≢LBL ¢		Output n i	PMT, PV and
148	RCL8		ate f'(i).		204	SFC		FV or BAL.	
149	RCLA	Calcula	ite f (i).		205	RCLA		FV or BAL.	
150	RCL7				206	PRTX			
151	÷				207	RCLB			
152	X				208	PRTX			
153	F1?			1	209	RCLC		1	
		1		I				1	
154	CLX	1		I	210	PRTX		1	
155	ST06				211	RCLD		1	
156	F1?				212	PETX			
157	R∔				213	RCLE			
158	F1?				214	PRTX			
159	LSTX				215	RTN			
168	RCL4				216	R S			
	RCL9				110	R. 0			
161									
162	÷								
:63	-								
164	RCL5								
165	x								
166	FØ?								
167	RCL4	1							
	FØ?								
168	F07						r	L	
		LA	BELS	-		FLAGS		SET STATUS	
^ n	Bi	Срмт	^D PV	FV FV	(BAL)	⁰ AD	FLAGS	TRIG	DISP
2		0	d	e			ON OFF		
° start	^b AD	print		Ľ		PV = 0	0 🗆 🔀	DEG 🕱	FIX DS
	1	2	³ FV guess	⁴ gue		2	1 🗆 🛛	GRAD 🗆	SCI 🗆
⁰ calc	l'AD	-			SS 1				
⁰ calc		7		9 gue	ss	3	2 🗆 🗷	RAD 🗆	ENG 🗆
⁰ calc ⁵ i → %	⁶ loop	7	⁸ FV, PV-i	9 9	ss	3	2 🗆 🗷 3 🗆 🛛	RAD 🗆	ENG □ n_2

L06-01

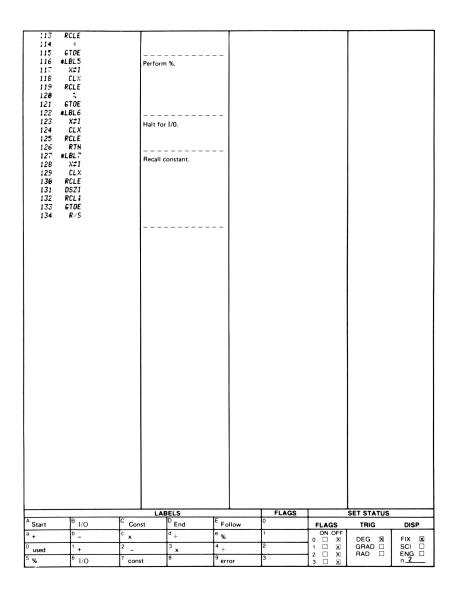
INDIRECT GTO

The GTO function is used to cause program execution to transfer from the location of the GTO to the label specified. The label may be specified in one of two ways:

- 1. As a direct branch such as GTO 1, GTO A, GTO f C, etc.
- 2. As an indirect branch GTOi which causes execution to transfer to the label specified by the content of the I register.

In *Follow Me* the content of the I register is used to specify the operation to be performed. The operation codes are:

CODE	OPERATION
1	+
2	-
3	×
4	÷
5	%
6	I/O HALT
7	Constant


The first time a problem is done using *Follow Me* these codes are stored starting in R_D and ending in R_1 . The calculator accesses these codes in subsequent calculations and performs the operations indicated by them.

The GTOi instruction at step 083 actually selects the next operation. The RCLi and $X \rightleftharpoons I$ commands directly above the GTOi place the operation code in the I register. The GTOi command transfers control to one of seven labels corresponding to the operation code stored in the I register. For instance, if 3 is stored in I, the GTOi command will transfer control to LBL3 and the multiply at step 108 will be performed.

NOTES

Follow Me

BE: 4LBLH Clear registers and set index B57 ST01 BE: CLP6 at 24 to begin sequence. B58 CLX BE: P#5 B55 RCLE BE: CLP6 at 24 to begin sequence. B55 RCLE BE: CLP6 at 24 to begin sequence. B55 RCLE	recall constant value.
002 CLR6 at 24 to begin sequence. 055 CLX 063 P≠5 055 RCLE	
003 P≠5 055 RCLE	1
	1 I
004 ULK6 000 #LDL0	
805 2 861 DSZI	If I is non zero after dec
866 4 862 GTO1	store cd.
067 STCI 063 GT09	GTO error.
008 CLX 064 #LBL1	
	Store code and return dis-
009 RTN 065 STO;	play to proper status.
018 #LBL Perform addition and put 066 CLX	
011 + addition code of 1 in display 067 RCLE	
013 GTOC 069 #LBLD	Store 24 in I to reset count-
014 #LBLb Perform subtraction and put 070 CLX	er and store zero code in
015 - 2 in display, then transfer 071 2	1
Alc 0	R ₀ for auto reset at end of
	sequence.
017 GTO0 073 STO1	
018 #LBLc Perform multiplication and 074 CLX	
019 X put 3 in display. 075 ST00	
020 3 076 RTN	
	1 1
821 GT06 877 *LBLE	Store display value, access
022 #LBLai 078 STOE	code after dec, put code in
823 ÷ Perform division and put 4 879 R4	
Terrorin division and put 4	I, transfer to LBL corre-
app at pi o	sponding to code.
025 #LBL0 081 RCL;	
026 DSZI Decrement step count. 082 X≠I	
027 GT01 GTO function store. 063 GTO	1 1
830 CT00	
GIO error.	Reset to start new sequence
	by setting I to 24 and re-
030 STO; Store function code and 086 2	turning output to display.
031 R↓ return operation result. 067 4	curring output to display.
032 RTN 088 STOI	
renorm a, store display	
034 : register value, and put 5 090 RCLE	
035 STOE code in display. 051 RTN	Perform addition and re-
036 CLX 0092 #LBL1	
USE FEDER	turn to LBL E for next
000 //+1	instruction.
036 GT06 094 CLX	
039 #LBLB 1/0 halt code of 6 put in 095 RCLE	
848 STOE display after storing display 896 +	
RA1 CLV display after storing display	
register value.	
000 +LDL2	Perform subtraction.
047 GTOS 099 X≠I	
844 #LBLC Constant code of 7 put in 108 CLX	
A45 CTOF	
display after display value is 101 KCLL	1 1
stored.	1 1
847 7 103 GTOE	
046 DSZI If I is non zero after decre- 104 #LBL3	Perform multiplication.
11 TIS IOI ZEIO AILEI GECLE. 104 +EDES	Ferrorm multiplication.
	1
riasi 24 indicating that too roo ozn	1 1
051 CLX many operations have been 107 RCLE	
I 852 2 I '` I teo v	1 1
053 4 attempted. 109 GTOE	
105 0102	Perform division.
	rei form aivisión.
855 GT09 111 XZI	
856 #LBL1 Store constant code and 112 CLX	
REGISTERS	
	8 9
0 1 2 3 4 5 6 7	
0 1 2 3 4 5 6 7 O used used used used used used used	used used
0 1 2 3 4 5 6 7	S8 S9
0 1 2 3 4 5 6 7 O used used used used used used used	
0 1 2 3 4 5 6 7 0 used used used used used used used used	S8 S9
0 1 2 3 4 5 6 7 0 used used used used used used used used	S8 S9

VARIABLE INPUT

In many instances, it is desirable to input more than one value per user definable key. In *Triangle Solutions*, the lengths of all three sides of a triangle are input with one press of \triangle . Before \triangle is pressed the values of S₁, S₂, and S₃ must be keyed into the operational stack. The sequence to do this is:

$S_1 \text{ ENTER } S_2 \text{ ENTER } S_3$

After this sequence is completed, the operational stack contains the values in the following positions:

T: Unknown value Z: S_1 Y: S_2 X: S_3

The X, or display register, shows S_3 .

To operate successfully, *Triangle Solutions* must store S_1 in R_9 , S_2 in R_B and S_3 in R_D . Since S_3 is in the X-register, it can be stored in R_D with a STO D command (step 002). The value of S_2 must now be moved to the X-register so that they can be stored. A RT function (step 003) is used for this purpose. It moves the Y value to X, the Z value to Y, the T value to Z and the X value to T. After the RT, STO B is performed placing S_2 in R_B . The operational stack is left as follows:

Both S_3 and S_2 are stored in the correct registers. After \mathbb{R}^3 and \mathbb{S}_2 \mathbb{P}^3 , S_1 is correctly stored. The final stack contents are as follows:

T: S_2 Z: S_3 Y: Unknown value X: S_1 The complete input sequence is:

```
LBL A
STO D (store S_3)
R\downarrow
STO B (store S_2)
R\downarrow
STO 9 (store S_1)
```

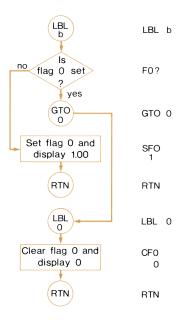
Up to four values may be input per user definable key using this type of technique.

Triangle Solutions

901	≢LBLA	Store le	ngths of sides S ₃ ,	057	RCLA		GSB third a	ngle
002	STOD	S ₂ , S ₁ .		058	6SB0			
003	R∔			059	STOC		$Y = S_1 sin A$	3.
804	STOR			868	RCLE			
865	₽4			061	RCL9		$X = S_1 \cos A$	A2.
886	ST09			062	→R			J.
807	8105 R∔				X2Y			
808	R↓ R↓			963			1	
		$P=(S_1+)$	S ₂ +S ₃)/2	064	ST08		$\frac{h}{Y} = \frac{X}{\sin A_2}.$	
809	+			065	RCLC			
610	+			0 6€	1		$X = \cos A_2$	
011	2			967	÷₽			
012	÷			068	₽↓		S2=S1sinA	/sin A ₂ .
013	ST07			8 €9	÷			
814	X٤			070	STOB			
015	LSTX			871	P+		Se=Secos A	3 + S2cos A2.
916	RCLB			872	2		03 01003 /	3 · 02003 A2.
017	x			873				
818	-		$s^{-1}\sqrt{\frac{P(P-S_2)}{S_1S_3}}$	874	STOD			
019	RCL9	A3=2cc	S.S.	875				
020	RCLD		V 0103		GT01		GTO print.	
	X			876	*LBLC		Store A2, A	A ₁ , and S ₁ .
821				077	STOC			
822	÷			878	R↓			
023	1X			079	STOA			
824	COS-			886	₽4			
025	2			081	ST09			
026	x			082	RCLC		GSB third a	ngle routine.
027	STOE			883	RCLA			5
028	SIN			884	6SB0		1	
029	RCL9	h=S ₁ si		085	RCL9		Sat stack fo	r A ₃ , S ₁ , A ₁
830	×	n-31 si	1 43	886	RCLA			' ^{A3, 31, A1}
031	ST08			887	GTOB		solution.	
032	RCL7			888	#LBLD			
833	X2			089	STOB		Store S ₂ , A	1, and S ₁ .
834	LSTX			898	8105 R4			
835	RCL9			091	STOA			
036	X							
837	^			892	R∔			
	-			093	ST09		1	
038	RCLB		DID S.)	094	RCLA			
839	÷	A ₂ =2co	$s^{-1}\sqrt{\frac{P(P-S_1)}{S_2S_3}}$	095	RCLB		$S_3^2 = S_1^2 +$	$-S_2^2 - 2S_1S_2$
840	RCLD	1-	√ ^S 2 ^S 3	096	÷₽		cos A1.	
841	÷		-	097	RCL9			
842	1X	1		898	-			
843	COS-			099	÷₽			
844	2			100	STOD			
845	x			101	RCL9			
846	STOC			102	RCLB			2, and S ₃ and
847	RCLE			103	RCLD		GTO A.	
848	6SB0	GSB thi	rd angle routine.	104	GTDA			
849	STDA			105	#LBLE			
850	GT01	GTO pr	int.	106	STOC		Store A2, S	2, and S ₁ .
051	#LBLB			100	810L R4		1	·
852	STDA	Store A	1, S ₁ , and A ₃ .				1	
853	R4		-	108	STOR		1	
853	ST09			109	₽↓			
				110	ST09			
855	R∔ CTOF			111	RCLC		1	
85€	STOE			112	SIN			
	1.	2 3	REGI:	STERS	6	17	10	
0	ľ	2 3	Ĩ	5	°	used	8 h	S ₁
S0	S1	S2 S3	S4	S5	S6	S7	S8	S9
A		B C		D		E	1	
A1		S ₂	A ₂	S ₃		Ā3		

L07-04

113	RCLB	$A_3 = \sin^{-1} \left(\frac{S_2}{S_1} \sin A_2 \right)$	169 2		
114	x	$A_3 = \sin^{-1} \left(- \sin A_2 \right)$	170 ÷		
	RCL9		171 PRTX		
116	÷		172 RTN		
117	SIN-		173 #LBL9	Area.	
118	STOE		174 R4		
	RCLC	CCP third and	175 RJ		
	65B0	GSB third angle.			
			176 RTN		
	STOA	Recall A_3 , S_1 , and A_1 and	177 R./S		
122	RCLE	GSB B.			
123	RCL9	000 0.			
	RCLA				
		1			
	GSBB				
126	RCL9	Stop if this is the only			
127	RCLB	solution.			
	XEY?	solution.			
		1			
	6109				
	RCLE	Find secondary angle for		1	
131	COS	alternate solution.		1	
132	CHS	arternate solution.			
	C05-			I	
		1			
	STOE				
135	RCLC	GSB third angle.		1	
136	6SB0				
	STOA				
		Recall A_3 , S_1 , and A_1 and			
	RCLE	GSB B.			
	RCL9	1 1			
140	RCLA				
141	GT 0B	1 1			
	LBLO				
		Third angle -			
143	+	\cos^{-1} [-cos (A + B)]			
144	COS				
145	CHS	1 1			
	C05-'	1 1			
	RTN	1			
147					
148 #		1 1			
	LBL1				
149					
	LBL1 SPC	Print values starting with S ₁ .			
150	LBL1 SPC SPC	Print values starting with S ₁ .			
150 151	LBL1 SPC SPC RCL9	Print values starting with S ₁ .			
150 151 152	LBL1 SPC SPC RCL9 PRTX	Print values starting with S ₁ .			
150 151 152 153	LBL1 SPC SPC RCL9 PRTX RCLA	Print values starting with S ₁ .			
150 151 152 153	LBL1 SPC SPC RCL9 PRTX	Print values starting with S ₁ .			
150 151 152 153 154	LBL1 SPC SPC RCL9 PRTX RCLA PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC	Print values starting with S ₁ .			
150 151 152 153 154 155 156	LBL1 SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL6 RCLB	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157	LBL1 SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158	LBL1 SPC SPC RCL9 PRTX RCLA SPC SPC RCLB PRTX RCLC RCLC	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158	LBL1 SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 156 157 156 159	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX RCLC PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160	LBL1 SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL8 PRTX RCLC PRTX SPC SPC SPC SPC SPC SPC	Print values starting with S _L .			
150 151 152 153 154 155 156 157 156 159 160 161	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX SPC RCLD SPC RCLD	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160 161 162	LBL1 SPC SPC RCL9 PRTX RCL4 PRTX SPC RCLB PRTX RCLC PRTX SPC RCLC PRTX SPC RCLD PRTX PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160 161 162 163	LBL1 SPC SPC RCL9 PRTX RCLA RCLA PRTX RCLC PRTX RCLC PRTX SPC RCLD PRTX RCLD PRTX RCLE RCLE RCLE RCLE	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160 161 162 163	LBL1 SPC SPC RCL9 PRTX RCL4 PRTX SPC RCLB PRTX RCLC PRTX SPC RCLC PRTX SPC RCLD PRTX PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX SPC RCLD PRTX RCLE PRTX RCLE PRTX RCLE PRTX	Print values starting with S ₁ .			
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	LBL1 SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL6 PRTX RCLC PRTX SPC RCLC PRTX RCLC PRTX RCLD PRTX RCLD PRTX RCLE PRTX SPC SPC SPC				
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX RCLC PRTX SPC RCLD PRTX SPC RCLE PRTX SPC RCLS RCLS RCLS	Print values starting with S ₁ .			
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166 166	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX SPC RCLD PRTX RCLE PRTX SPC RCLS RCLS RCLD RCLS RCLD	Calculate and print area =			
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX RCLC PRTX SPC RCLD PRTX SPC RCLE PRTX SPC RCLS RCLS RCLS	Calculate and print area = (S ₁ S ₃ sin A ₃)/2.			
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166 166	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC PRTX SPC RCLD PRTX RCLE PRTX SPC RCLS RCLS RCLD RCLS RCLD	Calculate and print area =	FLAGS	SET STATU:	s
150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167	LBL1 SPC SPC RCL9 PRTX RCLA RCLA PRTX SPC RCLB PRTX RCLC RCLD PRTX SPC RCLD RTX SPC RCLD RTX SPC RCL5 RCL5 RCL5 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS			
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166 166	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC RCLD PRTX SPC RCLD RTX SPC RCLD SPC RCL5 RCL5 RCL5 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS A ₁ , A ₂ O _{S1} , A ₁ , S ₂ E _{S1} , 1	S ₂ , A ₂ ⁰	FLAGS TRIG	S
150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167	LBL1 SPC SPC RCL9 PRTX RCLA PRTX SPC RCLB PRTX RCLC RCLD PRTX SPC RCLD RTX SPC RCLD SPC RCL5 RCL5 RCL5 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 RCL6	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS		FLAGS TRIG	DISP
150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167 168 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	LBL1 SPC SPC SPC RCL9 PRTX RCL4 PRTX RCL5 RCL6 PRTX SPC RCL0 PRTX SPC RCL1 PRTX RCL1 RCL2 RTX SPC RCL5 RCL6 RCL7 B A3, S1, A1 C S1	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS A ₁ , A ₂ D S ₁ , A ₁ , S ₂ E S ₁ , J d e	S ₂ , A ₂ 0	FLAGS TRIG ON OFF DEG 0 I	DISP FIX 🖾
150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167 168 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	LBL1 SPC SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL5 PRTX SPC RCL0 PRTX SPC RCLD PRTX SPC RCL5 RCL6 PRTX SPC RCL5 RCL6 PRTX B A., S1, A1 C B A., S1, A1 C	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS A ₁ , A ₂ O _{S1} , A ₁ , S ₂ E _{S1} , 1	S ₂ , A ₂ ⁰	FLAGS TRIG ON OFF DEG 0 I 1 I	DISP FIX XX SCI D
150 151 152 153 154 155 156 157 158 160 161 162 163 164 165 166 167	LBL1 SPC SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL5 PRTX SPC RCL0 PRTX SPC RCLD PRTX SPC RCLD PRTX SPC RCL0 PRTX SPC RCL0 X B A., S1, A1 C C	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS A ₁ , A ₂ D S ₁ , A ₁ , S ₂ E S ₁ , 3 d e 3 4	S ₂ , A ₂ 0 1 2	FLAGS TRIG ON OFF DEG X 1 X GRAD 2 X RAD	
158 151 152 153 154 155 156 157 158 169 161 162 163 164 165 166 167 168 [^] S ₁ , S ₂ , S ₃ ^a	LBL1 SPC SPC SPC RCL9 PRTX RCL4 PRTX SPC RCL5 PRTX SPC RCL0 PRTX SPC RCLD PRTX SPC RCLD PRTX SPC RCL0 PRTX SPC RCL0 X B A., S1, A1 C C	Calculate and print area = (S ₁ S ₃ sin A ₃)/2. LABELS A ₁ , A ₂ D S ₁ , A ₁ , S ₂ E S ₁ , 3 d e 3 4	S ₂ , A ₂ 0	FLAGS TRIG ON OFF DEG 0 I 1 I	DISP FIX 🖾


FLAG SET, CLEAR AND TEST—COMMAND CLEARING FLAGS

Review of the input values for *Vector Operations* is an option available to the user. When the program is loaded, the non-review status is automatically set. The user can change this status by pressing **1 B**. Each time the **1 B** keys are pressed, the status is changed and 1.00 or 0.00 is displayed to indicate whether or not the input values will be reviewed. The 1.00 indicates review and the 0.00 indicates no review.

Flag 0 and flag 1 are command clearing flags. That is, once they are set they remain set until a clear flag command is encountered. Testing them has no effect on their on/off status.

Flag 0 is used to control the review of the input values in *Vector Operations*. Lines 064, 090 and 112 contain PRST (print stack).* Preceding each of these statements is F0? (test flag 0). If flag 0 is set the PRST commands will be executed, reviewing the input values. If flag 0 is not on, the PRST commands are skipped. Below is the code used to change the flag status.

If flag 0 is off, this code sets flag 0 on and displays 1.00. If flag 0 is on, this code turns flag 0 off and displays 0.00.

*The HP-67 interprets PRST as pause stack. The values contained in the T, Z, Y, and X registers will be displayed for approximately 3 seconds each. The decimal point will flash, indicating program execution will resume automatically.

NOTES

Vector Operations

0.04			057	SIN-		TJ
801 802	≉LBLα F1?	Toggle two and three di-	058	#LBL0		content.
003	GTOO		859	+LDL0 R∔		Put vector code in T.
804	5F1	mensional modes.	868	CLX		Fut vector code in 1.
805	371		061	RCLI		
	RTN		862	R+		
806			063	FØ?		
007	#LBL0		864	PRST		Print input?
808	2		865	XZY		
009	CF1					Convert S→C.
818	RTN		966	1 →R		1 1
011	≭LBL Ь	Toggle print/pause mode.	067			1 1
012	F0?		0 6S	Rt		1 1
013	ST00		869	Rt		1 1
014	SFØ		070	÷₽		
015	1		071	X₽Y		1 1
816	RTN		072	Rt		1
017	≉LBL0		073	X≇Y		
018	CFØ		074	×		
019	0		075	LSTX		1
020	RTN		076	Rt		
821	*LBLD	Store magnitude and input	077	X		
822	ST07	1 code.	078	GT02		Begin C→S
023	1	1 0000.	079	≴ LBLe		If 2D, set content of Z
024	GT00		080	R↓		register to zero.
825	*LBLE	Store magnitude and input	081	R∔		
926	ST08	2 code.	082	F1?		
827	2	2 code.	083	GT00		
828	≉LBL0		884	CLX		
029	SF2	GSB S→C routine.	085	#LBL0		
830	CSB5		086	R4		Set T to zero.
831	GTO:		087	CLX		Set 1 to zero.
032	*LBL1	GTO storage routine.	986	R4		
833	ST09		889	F0?		
834	R↓	Storage for vector 1.	090	PRST		Print input?
835	STOA		891	#LBL6		
836	R↓		092	÷₽		
837	STOB		093	XŦY		Convert C→S.
038	1		894	X (8?		
839	RTN		895	6SB3		
848	#LBL2		096	R4		
841	STOC	Storage for vector 2.	897	XZY		
842	R∔		898	F1?		
843	STOD		899	GTOO		
844	R.		100	CLX		
845	STOE		101	#LBL0		
846	2		102	+LBL0 →₽		
847	RTN		102	Rt		
848	≉LBL d		104	XZY		
849	ALDE O	Keyboard S→C begins.	105	#LBL2		
858	≉LBL5		106	Rt		
851	STOI		107	cĹx		Put zero in T register.
852	Rt	Store code.	108	R.		
85 2	F1?		109	F2?		
854	GTOO	If 2D mode is set at the -/0	110	RTN		Return if GSB.
855	CLX	If 3D mode is set, skip $\pi/2$	111	F0?		
856	1	substitution for Z register	112	PRST		Print result?
- 0.0	1	BECH	STERS	FR51		4
0	1	2 3 4	5	6	7	8 9
Ľ	T		-	1	<u></u> 1	r ₂ x ₁
S0	S1	S2 S3 S4	S5	S6	S7	S8 S9
				1		
A		в с	D		E	
¥1		z ₁ x ₂	¥2		z2	code
-						

	L08	8-04

113	RTN				X 2 7			
114	#LBL3	Conver	t negative angles 1	0 170	R1			
115	1				CLX			
116	сніз	positive	e angles 0° – 360°					
				172	R↓			
117	COS-'			173	PRST			
118	+			174	RTN			
119	LSTX			175	#LBLC			
120	+							
				176	SPC		Take dot pro	duct.
121	RTN			177	RCL7			
122	#LBLA	V	and \vec{V}_2 and con		RCL8			
123	RCLB			179	x			
		vert bac	ck to spherical					
124	RCLE	coordin	ator	180	178			
125	+	coordin	lates.	181	RCL9			
126	RCLD			182	RCLC			
127	RCLA							
				183	x			
128	+			184	RCLA			
129	RCLC			185	RCLD			
130	RCL9						1	
				186	×		1	
131	+			187	+		1	
132	SF2	1		188	RCLB			
133	GSB6			189	RCLE			
134	PRST							
				190	x			
135	RTN				+			
136	≉LB LB	Take a	oss product.	192	PRTX		C	1. h
137	RCL9	Take Cr	oss product.	193	×		Compute ang	le between
138	RCLD						vectors.	
				194	LSTX			
139	X			195	XZY			
140	RCLA			196	C05-			
141	RCLC							
				197	PRTX			
142	×			198	RTN			
143	-			199	R∕S			
144	RCLB			1 100	K, 0			
145	RCLC							
145 146	RCLC							
145 146 147	RCLC × RCL9							
145 146 147 148	RCLC x RCL9 RCLE							
145 146 147 148 149	RCLC × RCL9							
145 146 147 148	RCLC x RCL9 RCLE							
145 146 147 148 149 150	RCLC × RCL9 RCLE × -							
145 146 147 148 149 150 151	RCLC X RCL9 RCLE X - RCLB							
145 146 147 148 149 150 151 152	RCLC x RCL9 RCLE - RCLB RCLD							
145 146 147 148 149 150 151 152 153	RCLC × RCL9 RCLE × - RCLB RCLD ×							
145 146 147 148 149 150 151 152	RCLC x RCL9 RCLE - RCLB RCLD							
145 146 147 148 149 150 151 152 153 154	RCLC x RCL9 RCLE x - RCLB RCLD x ST01							
145 146 147 148 149 150 151 152 153 154 155	RCLC x RCL9 RCLE x - RCLB RCLD x STOI CLX							
145 146 147 148 149 150 151 152 153 154 155 156	RCLC x RCL9 RCLE x RCLB RCLD x STOI CLX RCLA							
145 146 147 148 150 151 152 153 154 155 156 157	RCLC x RCL9 RCLE x RCLB RCLD x STOI CLX RCLA RCLA RCLE							
145 146 147 148 149 150 151 152 153 154 155 156	RCLC x RCL9 RCLE x RCLB RCLD x STOI CLX RCLA							
145 146 147 148 149 150 151 152 153 154 155 156 157 158	RCLC x RCL9 RCLB RCLB RCLB CLD x STOI CLX RCLA RCLA RCLA X							
145 146 147 148 150 151 152 153 154 155 156 157 158 159	RCLC x RCL9 RCLE x RCLB RCLD x STOI CLX RCLA RCLA RCLE							
145 146 147 148 159 150 151 152 153 154 155 156 157 158 159 160	RCLC x RCL9 RCLE - RCLB RCLD x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL4 - RCL1 -							
145 146 147 148 159 151 152 153 154 155 156 157 158 159 169 161	RCLC x RCL9 RCL5 RCLB RCLB RCLD x ST01 CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL1 -+F		t back to obtain					
145 146 147 148 159 150 151 152 153 154 155 156 157 158 159 160	RCLC x RCL9 RCLE - RCLB RCLD x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL4 - RCL1 -	– – – Conver	t back to spherica	 d.				
145 146 147 148 148 159 150 151 152 153 154 155 156 155 156 155 156 159 169 169	RCLC x RCL9 RCL8 x RCLB RCLB x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL5 x X X X X X X X X X X X X X	– – – Conver	t back to spherica	 I.				
145 146 147 148 151 152 152 155 156 155 156 157 158 169 161 161 162	RCLC x RCL9 RCL5 RCL6 RCL0 RCL0 X ST01 CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL5 X RCL1 - +P X2Y X(8°	– – – Conver	t back to spherica	 I.				
145 146 147 148 159 159 151 152 153 154 155 156 157 158 159 169 161 162 163 164	RCLC x RCL9 RCL8 RCLB RCLB RCLD x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL1 +P X=P X=P X=P	– – – Conver	t back to spherica	 I.				
145 146 147 148 151 152 152 155 156 155 156 157 158 169 161 161 162	RCLC x RCL9 RCL5 RCL6 RCL0 RCL0 X ST01 CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL5 X RCL1 - +P X2Y X(8°	– – – Conver	t back to spherica	 I.				
145 146 147 148 159 150 151 152 153 154 155 156 155 156 157 158 159 168 161 162 163 164 164	RCLC x RCL9 RCLE x - RCLD x STOI CLX RCLG RCLG RCLG RCLG X RCLG X RCLG RCLG RCLG RCLG RCLG RCLG RCL9 RCL0 X RCL0 RCL0 RCL9 RCL0 RCL0 RCL0 RCL9 RCL0 RCL9 RCL0 RCL0 RCL9 RCL0 RCL9 RCL0 RCL9 RCL0 RCL9 RCL0 RCL9 RCL9 RCL0 RCL0 RCL9 RCL0 RCL9 RCL9 RCL0 RCL9 RCL0 RCL0 RCL9 RCL9 RCL0 RCL9 RCL0 RCL9 RC1 RC1 RC1 RC1 RC1 RC1 RC1 RC1	– – – Conver	– – – – – – – – – – – – – – – – – – –	 I.				
145 146 147 148 159 159 151 152 153 154 155 156 156 158 158 161 162 163 164 164	RCLC x RCL9 RCL5 RCLB RCLD x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL4 RCL5 x RCL4 RCL5 x RCL9 ST01 CLX RCL9 X RCL9 X RC X RC Z Z Z Z Z Z Z Z Z Z Z Z Z	– – – Conver	t back to spherica	 I.				
145 146 147 148 159 151 152 153 154 155 156 157 158 159 169 161 162 163 164 165 166 166	RCLC x RCL9 RCL5 RCL6 RCL6 RCL0 x ST01 CLX RCL6 RCL6 RCL6 RCL6 RCL6 RCL6 X RCL6 RCL7 RCL7 RCL9 RCL1 	– – – Conver	– back to spherica	 I.				
145 146 147 148 159 159 151 152 153 154 155 156 156 158 158 161 162 163 164 164	RCLC x RCL9 RCL5 RCLB RCLD x STOI CLX RCL4 RCL4 RCL4 RCL4 RCL4 RCL4 RCL5 x RCL4 RCL5 x RCL9 ST01 CLX RCL9 X RCL9 X RC X RC Z Z Z Z Z Z Z Z Z Z Z Z Z							
145 146 147 148 159 159 151 155 155 155 156 157 158 159 166 166 166 166 166 165 166	RCLC x RCL9 RCL9 RCLB x STOI CLX RCLA RCLA RCLA RCLA RCLA RCL4 RCL4 RCL4 RCL4 RCL1 -+P X=P X=P S583 R4 X=1 +P R7 R7 +P R7 R7 R7 R7 R7 R7 R7 R7 R7 R7	LAI	BELS		FLAGS		SET STATUS	
145 146 147 148 159 159 151 155 155 155 156 157 158 159 166 166 166 166 166 165 166	RCLC x RCL9 RCL9 RCLB x STOI CLX RCLA RCLA RCLA RCLA RCLA RCL4 RCL4 RCL4 RCL4 RCL1 -+P X=P X=P S583 R4 X=1 +P R7 R7 +P R7 R7 R7 R7 R7 R7 R7 R7 R7 R7	LAI	BELS		FLAGS			
$\begin{array}{c} 145\\ 146\\ 147\\ 148\\ 149\\ 159\\ 151\\ 152\\ 153\\ 155\\ 155\\ 155\\ 155\\ 156\\ 157\\ 156\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 166\\ \hline \\ ^{\Lambda}\bar{\psi}_{1}+\bar{\psi}_{2}\\ \end{array}$	$\begin{array}{c} RCLC \\ x \\ RCL9 \\ RCLE \\ x \\ - \\ RCLB \\ RCLD \\ x \\ STOI \\ CLX \\ RCLA \\ RCLA \\ RCLE \\ x \\ RCLI \\ - \\ + P \\ RCLI \\ - \\ + P \\ X2Y \\ X4P^{\circ} \\ GSB3 \\ R4 \\ X2Y \\ + P \\ R1 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \\ \hline \end{array}$		BELS $D \phi_1 \uparrow \theta_1 \uparrow r_1$	$E_{\phi_2 \uparrow \theta_2 \uparrow r_2}$	⁰ PRINT?	FLAGS	SET STATUS TRIG	DISP
$\begin{array}{c} 145\\ 146\\ 147\\ 148\\ 149\\ 159\\ 151\\ 152\\ 153\\ 155\\ 155\\ 155\\ 155\\ 156\\ 157\\ 156\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 166\\ \hline \\ ^{\Lambda}\bar{\psi}_{1}+\bar{\psi}_{2}\\ \end{array}$	$\begin{array}{c} RCLC \\ x \\ RCL9 \\ RCLE \\ x \\ - \\ RCLB \\ RCLD \\ x \\ STOI \\ CLX \\ RCLA \\ RCLA \\ RCLE \\ x \\ RCLI \\ - \\ + P \\ RCLI \\ - \\ + P \\ X2Y \\ X4P^{\circ} \\ GSB3 \\ R4 \\ X2Y \\ + P \\ R1 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \\ \hline \end{array}$	LAI	BELS $D \phi_1 \uparrow \theta_1 \uparrow r_1$	$\frac{E}{\phi_2 \uparrow \theta_2 \uparrow r_2}$	FLAGS PRINT? 1 3D/2D?	FLAGS	TRIG	
$\begin{array}{c} 145\\ 146\\ 147\\ 148\\ 149\\ 159\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 156\\ 157\\ 156\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 166\\ \hline \begin{array}{c} \\ \wedge \ \tilde{\mathbf{v}}_1 + \tilde{\mathbf{v}}_2\\ \mathbf{a}_{3} \mathbf{D}/2 \mathbf{D} \end{array}$	$\begin{array}{c} RCLC \\ x \\ RCL9 \\ RCLE \\ x \\ - \\ RCLB \\ RCLD \\ x \\ STOI \\ CLX \\ RCLA \\ RCLA \\ RCLE \\ x \\ RCLI \\ - \\ + P \\ RCLI \\ - \\ + P \\ X2Y \\ X4P^{\circ} \\ GSB3 \\ R4 \\ X2Y \\ + P \\ R1 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \end{array}$		BELS ^D φ₁tθ₁tr₁ ^d S→C	$E \phi_2 \uparrow \theta_2 \uparrow r_2$ $E \phi_2 \uparrow \theta_2 \uparrow r_2$	⁰ PRINT? ¹ 3D/2D?	FLAGS ON OFF 0 🗌 🛛	TRIG	FIX 😡
$\begin{array}{c} 145\\ 146\\ 147\\ 148\\ 149\\ 159\\ 151\\ 152\\ 153\\ 155\\ 155\\ 155\\ 155\\ 156\\ 157\\ 156\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 166\\ \hline \\ ^{\Lambda}\bar{\psi}_{1}+\bar{\psi}_{2}\\ \end{array}$	$\begin{array}{c} RCLC \\ x \\ RCL9 \\ RCLE \\ x \\ - \\ RCLB \\ RCLD \\ x \\ STOI \\ CLX \\ RCLA \\ RCLA \\ RCLE \\ x \\ RCLI \\ - \\ + P \\ RCLI \\ - \\ + P \\ X2Y \\ X4P^{\circ} \\ GSB3 \\ R4 \\ X2Y \\ + P \\ R1 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \end{array}$		BELS ^D φ₁tθ₁tr₁ ^d S→C	$\frac{E}{\phi_2 \uparrow \theta_2 \uparrow r_2}$	⁰ PRINT?	FLAGS ON OFF 0 2 20 1 2	TRIG DEG 🛛 GRAD 🗆	FIX ⊠ SCI □
$\begin{array}{c} 145\\ 146\\ 147\\ 148\\ 149\\ 159\\ 159\\ 151\\ 152\\ 153\\ 155\\ 155\\ 155\\ 155\\ 156\\ 167\\ 168\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 166\\ 166\\ 166\\ 166\\ 166\\ 166$	$\begin{array}{c} RCLC \\ x \\ RCL9 \\ RCLE \\ x \\ - \\ RCLB \\ RCLD \\ x \\ STOI \\ CLX \\ RCLA \\ RCLA \\ RCLE \\ x \\ RCLI \\ - \\ + P \\ RCLI \\ - \\ + P \\ X2Y \\ X4P^{\circ} \\ GSB3 \\ R4 \\ X2Y \\ + P \\ R1 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \\ \hline B \tilde{v}_1 \times \tilde{v}_2 \end{array}$	LAI	BELS ^D φ₁tθ₁tr₁ ^d S→C	$E \phi_2 \uparrow \theta_2 \uparrow r_2$ $E \phi_2 \uparrow \theta_2 \uparrow r_2$	⁰ PRINT? ¹ 3D/2D?	FLAGS ON OFF 0 🗌 🛛	TRIG	FIX 🛛

FLAG SET, CLEAR AND TEST-TEST CLEARING FLAG

Flag 2 and flag 3* are test clearing flags. Each time they are tested, they are automatically cleared. This makes them especially useful in many programming situations.

In *Polynomial Evaluation*, flag 2 is used twice. At step 62 it is used to decide whether to add or subtract; and at step 145, it is used to determine whether a result should be positive or negative. The following discussion details the use in the latter case.

Label 1 calculates the cube root of a number. This would be very simple if y^x were defined for the case where y is negative and x is a non-integer. However, if we tried to find the cube root of -8 (which is -2) directly, we would obtain an error message. The following flow chart and code yield the desired result:

Flow chart	Code	X register	X register
	LBL 1	(Positive 8) 8	(Negative 8) -8
no input negative ? yes	x<0	8	-8
Set flag 2	SF2	8	-8
Take absolute value of input	ABS	8	8
Calculate root of value	3 1/x y*	3 0.333 2	0.333 2
no Was input negative ? yes	F2?	2	2
Change sign of output	CHS	2	-2
RTN	RTN	2	-2

*When using flag 3, you must be aware that it is set whenever the numeric keys are pressed.

NOTES

Polynomial Evaluation

001	≉LBL.	St	ore zero for	degree to	857	RCLB					
002	ø		itialize.		058	-					
003	STOE	""	itianize.		059	X< 0 1			Imag	inary roo	ots?
004	RTN				868	6100					
805	≢LBLE	St	ore a ₀ and se	et degree	0E1	1 X					
886	ST01	lin	dicator (= de	aree + 1) to	062	F2?			Com	pute x ₁	(the root of
887	1			3.00 . 17 10	063	CHS					te value).
005	RTN	1.			864	+					
									Com	pute x2.	
009	≉LBL C	St	ore a ₁ and se	et indicator to	065	÷					
010	ST02	2.			0 66	LSTX					
811	2				867	6106					
812	GTO				068	*LBL0					
									Com	pute ima	ginary part.
013	≉LBLD				069	ABS					
014	STO3	St	ore a ₂ and se	et indicator	878	1X					
015	3				071	1			Outr	out img c	ode
016	GTO	to	3.						Outp	at mg c	
					672	CHS					
017	*LBLE				073	PRTX					
018	ST04	St	ore a ₃ and se	at indicator	874	R↓			Ima	nart to X	
019	4				075	#LBL6			0		
		to	4.							_	img part.
020	≰LBL0				076	PRTX					
021	X≢Y	l So	ort to find an	d retain	077	≉LBL 2			Outp	out x1 or	real part.
022	X=0°		gest indicato		078	X#Y					
823	RTN	la	gest indicato	or.	879	PRTX					
824	X7)				880	RCLA					
025	RCLE				081	≉LBL5			Retu	rn equat	ion to orig-
026	X≠Y				082	ST×4				form.	
827	XXYO				063	ST×3			inali	orm.	
028	STOE				084	ST×2					
029	X₽Y				085	ST×1					
030	₽∔				886	R4			Ston	and disp	alay I
831	FTN				087	CF2			Stop	and disp	hay.
032	≢LBLb	St	art polynom	ial solution.	988	RTN					
033	SFC				089	≢LBL4			Start	3 rd deg	ree solution by
034	RCLE				090	3				puting Q	
035	STOI				091	÷			com	puting Q	·
		Pu	it degree cod	le in I for							
036	÷	cc	introl.		892	RCL3					
837	RCL :				893	X2					
036	STOA		vide all coef.	by coef of	094	9					
039	1/8			by coel. of	095	÷					
		hi	ghest deg.			÷					
848	6SB5				096	-					
041	RCL1	Se	lect proper o	lea solution	097	STOD					
842	CHS			leg solution.	098	3			Com	pute Q ³	
843	RCL2				899	Y×			Com	pute u	·
844	GTO:	·			100	STOC					
045	≉LBL 3	R R	gin quadrati	c equation	101	RCL 3			Com	pute R.	
846	RCL1		an doggigg	s squatton.	102	RCL2				pate n.	
847	#LBL9				103	X					
848	STOB	Ca	llculate - a	<u>_</u>	104	RCL 1					
849	X≢Y		2a	2	105	3					
050	CHS	1			106	x					
851	2				107	-					
						~		- 1			
052	÷				108	6					
053	X<0?	Se	t flag to det	sol order.	109	÷					
854	SF2				110	RCL3		1			
855	ENTT	17.	$(2a_2)^2 - (a_0)^2$		111	3					
856	X2	(a	1/2a2)(a0)	a21	112	y.					
- 030	A=			DECH	STERS	1					
		10 14		REGI		le			10		I
0	a0	2 a1	a2	4 a3	5	6	7		8		9
						-	-	-	-		
S0	S1	S2 S	3	S4	S5	S6	S	57	S8		S9
А		В	c ,		D		E			1	
ahigh		R, X, a ₀ /a ₂	Č Ω ³		Q		de	egree		contro	ol I
		· · · · · · · · · · · · · · · · · · ·									

113	ź		169 PRTX	
114	7		170 SPC	Output x ₃ and begin
115	÷		171 STOE	synthetic division.
116				
	-		172 RCL3	
117	STOB		. 173 +	
118	X2		174 ENT†	
119	+	$Q^3 + R^2$ decision.	175 ENT†	
120	X (0?	Q + A decision.	176 RCLB	
121	GTOB		177 X	
122	1X		178 RCL2	
123	RCLB	Compute x ₃ using	179 +	
124	XZY	compute x3 using	180 GT09	
125	-		181 #LBLA	
126	LSTX	a	182 ENT†	
		$x_3 = S + T - \frac{a_2}{3a_3}$		
127	RCLB	3a3	183 ENT†	Set up for polynomial
128	+		184 ENT1	evaluation.
129	GSB1	1	185 RCLE	evaluation.
130	XZY	1	186 STOI	
131	GSB1	1	187 CLX	
	+		188 RCL :	
132				
133	RCL3	1	189 DSZI	
134	3		190 GTDa	
135	÷	1	191 RTN	Degree one check.
136	-	1	192 #LBLd	Degree one check.
137	GT08		193 ×	
138	#LBL1	Cube root of a number.	194 RCL i	
139	X<0?		195 +	
140	SF2		19€ DSZI	Evaluate f(x).
141	ABS		197 GTOd	Evaluate (x).
142	3		198 RTN	
143	1/X		199 R/S	
144	Y×			Stop and display.
145	F2?			
146				
146	CHS			
147	CHS RTN		-	
147 148	CHS RTN #LBL0		-	
147 148 149	CHS RTN #LBL0 RCL5	Compute x ₃ using	-	
147 148	CHS RTN #LBL0		-	
147 148 149	CHS RTN #LBL0 RCL5		-	
147 148 149 150 151	CHS RTN #LBL0 RCLB RCLC CHS	Compute x ₃ using $x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$	-	
147 148 149 150 151 152	CHS RTN #LBL0 RCLE RCLC CHS JX			
147 148 149 150 151 152 153	CHS RTN #LBL0 RCL5 RCLC CHS JX ÷	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$	-	
147 148 149 150 151 152 153 154	CHS RTN \$LBL0 RCLC RCLC CHS ÷ CDS→			
147 148 149 150 151 152 153 154 155	CHS RTN #LBL0 RCL5 RCLC CHS JX ÷ CDS- 3	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 150 151 152 153 154 155 156	CHS RTN #LBL0 RCL6 RCLC CHS IX ÷ COS-' 3 ÷	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 150 151 152 153 154 155	CHS RTN #LBL0 RCL5 RCLC CHS JX ÷ CDS- 3	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$	-	
147 148 149 150 151 152 153 154 155 156 157	CHS RTN #LBL0 RCLB RCLC CHS JX ‡ COS~ 3 ± COS~ COS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 150 151 152 153 154 155 156 157 158	CHS RTN #LBL0 RCL5 RCLC CHS IX ÷ CDS-' 3 ÷ COS RCLD	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 150 151 152 153 154 155 156 157 158 159	CHS RTN #LBL0 RCLB CLS CHS TX ÷ COS- 3 ÷ COS- COS RCLD CHS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 150 151 152 153 154 155 156 157 158 159 160	CHS RTN #LBL0 RCLB RCLC CHS IX # CDS # CDS CDS RCLD CHS IX	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	CHS RTN #LBL0 RCL6 CHS JX ± COS- 3 ± COS- CUS RCL0 CHS GX X X	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	CHS RTN #LBL0 RCLB RCLC CHS IX # CDS # CDS CDS RCLD CHS IX	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161	CHS RTN #LBL0 RCL6 CHS JX ± COS- 3 ± COS- CUS RCL0 CHS GX X X	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	CHS RTN #LBL0 RCLE RCLC CHS JX ± COS COS RCLD CHS JX × ENTT +	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 151 152 153 154 155 156 157 158 159 169 161 162 163 164	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- 3 ÷ COS- 3 COS RCLD CHS JX X X ENT1 + RCL3	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 159 159 155 155 155 155 155 155 155 15	CHS RTN #LBL0 #CLB RCLC CHS JX ÷ COS→ 3 ÷ COS→ 3 ÷ COS RCLD COS RCLD CHS JX × + RCLS JX 3 3 3 3 3 3 3 3 3 3 3 3 3	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 158 151 152 155 155 155 155 155 155 155 157 158 169 160 161 162 163 164 165	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- 3 ÷ COS- 3 COS RCLD CHS JX X X ENT1 + RCL3	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where		
147 148 149 159 151 152 153 154 155 155 155 155 155 159 169 161 162 163 164 165 165	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- * COS- * COS COS RCLD CHS JX X X ENT1 + RCL3 3 ÷ -	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where	-	
147 148 149 158 151 152 155 155 155 155 155 155 155 157 158 169 160 161 162 163 164 165	CHS RTN #LBL0 #CLB RCLC CHS JX ÷ COS→ 3 ÷ COS→ 3 ÷ COS RCLD COS RCLD CHS JX × + RCLS JX 3 3 3 3 3 3 3 3 3 3 3 3 3	x = $2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where M = $\frac{1}{3} \cos^{-1} (R/\sqrt{-Q^3})$	-	
147 148 149 159 151 152 153 154 155 155 155 155 155 159 169 161 162 163 164 165 165	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- * COS- * COS COS RCLD CHS JX X X ENT1 + RCL3 3 ÷ -	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-\Omega^3})$ LABELS	- FLAGS	SET STATUS
147 148 149 158 151 152 153 154 155 156 155 156 161 162 163 164 165 166 166	CHS RTN #LBL0 RCL6 RCL6 CHS JX ÷ COS- 3 ÷ COS RCL0 CHS JX COS RCL0 CHS CHS CHS CHS CHS CHS CHS CHS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-\Omega^3})$ LABELS	0	SET STATUS
147 148 149 159 151 152 153 154 155 155 155 155 155 159 169 161 162 163 164 165 165	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- * COS- * COS COS RCLD CHS JX X X ENT1 + RCL3 3 ÷ -	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-\Omega^3})$		SET STATUS FLAGS TRIG DISP
147 148 149 158 151 152 155 156 157 157 157 157 158 169 160 161 162 163 164 165 166 167 168	CHS RTN #LBL0 RCL6 RCL6 CHS JX ÷ COS- 3 ÷ COS RCL0 CHS JX COS RCL0 CHS CHS CHS CHS CHS CHS CHS CHS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-\Omega^3})$ LABELS	0	SET STATUS FLAGS TRIG DISP
147 148 149 158 151 152 155 156 157 157 157 157 157 157 158 169 160 161 162 163 164 165 166 167 168 A x+f(x) a Start	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS- COS- COS COS RCLD CHS JX × ÷ COS RCLD CHS S COS RCLD CHS COS COS COS COS COS COS COS CO	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-Q^3})$ LABELS $Da_2 = E$ $d = e$	a ₃ 0 1	SET STATUS FLAGS TRIG DISP ○ ○ ○ 32 DEG 23 FIX 33
147 148 149 158 151 152 155 156 157 157 157 157 158 169 160 161 162 163 164 165 166 167 168	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ COS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-\Omega^3})$ $ $	a3 0 1 deg 3 2 sign	SET STATUS FLAGS TRIG DISP ON OFF 0 ON
147 148 149 150 151 152 155 155 155 155 155 155 155 155	CHS RTN #LBL0 RCLB RCLC CHS JX ÷ CDS 3 ÷ CDS CDS RCLD CHS SX X ENT1 + RCL3 3 ÷ ENT1 + RCL3 CHS CHS CHS CHS CHS CHS CHS CHS	$x = 2\sqrt{-\Omega} \cos(M) - \frac{a_2}{3a_3}$ Where $M = \frac{1}{3}\cos^{-1} (R/\sqrt{-Q^3})$ LABELS $Da_2 = E$ $d = e$	a ₃ 0 1	SET STATUS FLAGS TRIG DISP ○ ○ ○ 32 DEG 23 FIX 33

SUBROUTINES AND INDIRECT RECALLS

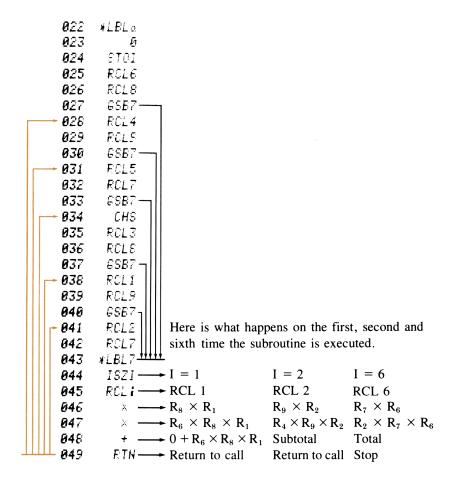
LBL a (lines 22 through 49) of *Matrix Operations* calculates the determinant of the 3×3 matrix stored in registers R₁ through R₉.

 $\begin{vmatrix} R_1 & R_2 & R_3 \\ R_4 & R_5 & R_6 \\ R_7 & R_8 & R_9 \end{vmatrix} = (R_5 R_9 - R_6 R_8) R_1 - (R_4 R_9 - R_6 R_7) R_2 + (R_4 R_8 - R_5 R_7) R_3$

 $= -(R_6R_8R_1 + R_4R_9R_2 + R_5R_7R_3) + R_3R_8R_4 + R_1R_9R_5 + R_2R_7R_6$

The following keystroke procedure will perform the calculation:

 RCL
 6
 RCL
 1
 X
 X
 RCL
 4
 RCL
 9
 RCL
 2
 X
 +
 RCL
 5


 RCL
 7
 RCL
 3
 X
 +
 CHS
 RCL
 3
 RCL
 4
 X
 +
 RCL
 1

 RCL
 7
 RCL
 3
 X
 +
 CRL
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

There are two patterns in the above procedure which can be exploited to reduce the number of program steps necessary for solution:

- 1. \times \times + appears repeatedly.

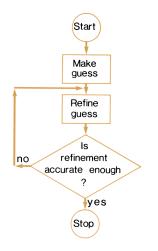
A subroutine can be used to take advantage of item one, while indirect recalls in combination with the ISZ command can be used to recall values consecutively. Let's examine the code that does this.

Each time the GSB 7 command is encountered, the calculator goes to LBL 7, executes the ISZ command, which adds one to the contents of register I, and recalls the contents of the register specified by the contents of register I (R_1 through R_6). After this, the $\times \times +$ is done and execution continues at the step following the GSB 7 call.

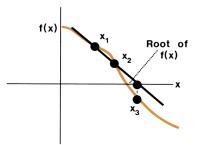
Matrix Operations

								-	
861	#LBL⊷		Set 0 in displa	iy for indi-	857	RCLT			
802	P		rect store.		858	6SE3			
867	6705				859	STOD			
884	*LBLE		Set 3 in displa	w for indi-	868	CLX			
	*LDLE			iy ioi iliai	061	PCL3			
862	2		rect store.						
86E	6105				862	RCL4			
007	≭LEL C		Set 6 in displa	iy for indi-	863	2			
663	6		rect store.		864	RCL1			
009	£T05				065	RCL6			
010	#LBLD		Set 19 in disp	lay for indi-	866	GSE3			
011	+LDLL'		rect store.		867	STOE			
	2				068	CLX			
612	-					RCL2			
013	#LBL5		Store code in		869				
614	STOI				070	RCL 7			
015	€SB€		Store three in	put values in	871	×			
0 16	ESB6		proper registe	rs according	872	RCL1			
017	#LBL6				873	PCLE			
019	R1		to code.		874	GSB3			
019	1521				875	STOI			
	STO				076	CLX		1	
820								1	
021	RTH		Calculate dete	rminant.	877	RCL1			
822	\$LBL α				078	RCL5			
823	e				879	х			
824	STOI		I		886	RCL2		1	
825	RCL6				081	RCL 4			
826	RCLS				882	ESE3			
827	ESB7				087	STOR			
828	RCL4				884	CLX			
829	RCL9								
					885	RCL3			
030	ESE7				88£	RCLS			
031	RCL5				887	λ			
032	RCL?				88 6	RCL2			
833	GSB7				069	RCL9			
034	CHS		1		890	GSB3			
035	RCL3				891	ST01			
036	RCL8				892	CLX			
037	ESB7				893	RCL2			
038	RCL 1								
839	RCLS				894	RCL6			
					895	х			
848	GSB7				896	PCL3			
841	RCL2				097	RCL5			
042	RCL7				098	ESE3			
843	≉LB L7				899	ST03			
844	ISZI				100	CL X			
845	RCL i				101	PCL5			
846	x				102	RCL9		1	
847	x							1	
848	÷				103				
					104	RCL6		1	
049	RTN		Calculate reci	procal of	105	RCL8			
050	#LBL&		determinant.		106	ese3			
851	6SBa		asterninght.		107	ST02			
052	1 × X				108	CLX			
853	RCL 1		Calculate inve		109	RCLE			
854	RCL9				110	RCL 7			
055	X				111				
856	RCL3				112	RCL4			
<u>⊢</u>				BEON		KUL4		1	
0	1.	10	3	REGI	STERS	6	17	18	19
γ3	a _{1,α1}	a ₂ ,α ₂	3 a3,α3	⁴ b ₁ ,β ₁	⁵ b ₂ ,β ₂	⁶ b3,β3	c1.71	⁸ c ₂ ,γ ₂	⁹ c ₃ ,γ ₃
50 S0	S1	S2	53	S4	S5	S6	S7	S8	59
	31	32	53	~		30	31	30	29
A	I				D		Te		
A d1	в	d ₂	C d3		D β2		Ε β3	'	ntrol

	-	T						
113 RCL				169	≰LBL: SPC		First value fro	-
114 GSE 115 STC				171	5FC 1		multiplication	
115 SIC				172	stoi		multiplication	
117 RCL				173	ESE:			
118 RCL				174	STOL		Second value	
119				175	2			
120 RCL				176	รтอวิ		multiplication	
121 RCL				1 177	ESE1			
122 658				178	STOE			
127 RCL				179	3		Third value fr	
124 RCL		Change in the	erse values in	180	ST01		multiplication	
125 GSE		proper re		16:	ESE1		multiplication	
126 RCL		proper rei	gisters.	182	STOP			
127 RCL				183	0		Put values in s	took for
128 RCL	3			184	RCLD			Lack TOP
129 GSE				185	RCLE		display.	
138 RCL				18€	RCLO			
13: RCL				187	RTN			
132 RCL		1		:88	▲LBL1		Multiplication	
133 6SE				189	0		martiplication	•
134 CL				190	RCLA			
135 R1	TN	Stop and	display 0.	191	GSB4			
136 #LBL	.3			192	RCLE			
137 >	x	Inverse su	broutine	193	GSB4			
138 -	-	1	biodine.	194	RCLC			
139	×			195	GSB4			
140 R1	TN			196	PRTX			
141 #LBI	E	Initialize	output loop.	197	RTN			
142 SF	PC	in the late	output loop.	198	≢LBL4		Multiplication	subroutine
143	1			199	RCL i		marcipilitation	
144 STU	DI			200	x			
145 #LBI	L2			201	+			
146 RCI		Output re	gisters R ₁ thro	202	ISZI			
147 PR		R ₉ .	gisters rif and	200	ISZI			
148	9	119.		204	ISZI			
149 RCI				205	PTN			
150 X=				206	R≓S			
151 GT								
152	3							
	÷							
154 FI		1						
155 X=0 156 SI								
156 SI 157 RCI								
157 RUI 158 IS								
158 15. 159 GT		1						
160 #LBI								
	PC	Output re	egisters R _A					
162 RC		through I						
163 PR			•					
164 RC								
165 PR		1						
166 RC		1						
167 PR		1						
	TN							
		LABE			FLAGS		SET STATUS	
a ₁ , a ₂ , a ₃ ^B	^b b ₁ , b ₂ , b ₃ ^C c ₁ ,	c ₂ , c ₃	⁰ d ₁ , d ₂ , d ₃	^E Print	0	FLAGS	TRIG	DISP
	°→Inv ^c →M			e	1		DEG 🛛	FIX 🛛
^D print ¹	mult ² prin	t S	³ inv	⁴ mult	2	1 🗆 🛛	GRAD 🗆	SCI 🗆
code 6	input ⁷ det	8	3	9	3	2 🗆 🗙 3 🗆 🗙	RAD 🗆	
0000	uer luer			1		3 🗆 🗙		··


L11-01

ITERATIVE TEST AND LOOP


Some equations cannot be solved explicitly. That is, it is impossible to separate a particular variable from the rest of the equation. Solution of this type of equation requires a repetitive technique. In general, such techniques are composed of three basic operations.

- 1. An initial guess is made.
- 2. This guess is refined.
- 3. The refined guess is tested for accuracy. If the accuracy is satisfactory, the result is displayed. If the result is not satisfactory, the refinement process is repeated.

In flow chart form, the process might look like this:

In Calculus And Roots Of f(x), LBL E (steps 83 through 112) performs a general interative solution for user-specified functions. The initial guess supplied by the user is refined using the secant method. The secant method evaluates the function f(x) at two points and generates a third refined point. Graphically, this can be represented by the sketch below:

By defining a straight line using x_1 and x_2 , x_3 can be found. Subsequently, x_2 and x_3 can be used to generate x_4 etc.

The equation defining the secant method is as follows:

$$x_{i+1} = x_i - f(x_i) \left(\frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \right)$$

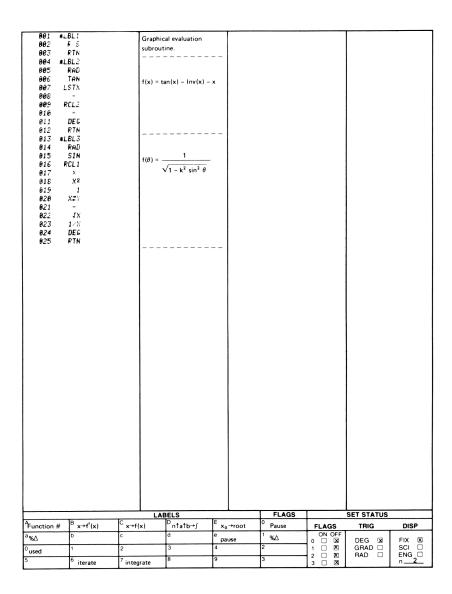
It is evaluated repeatedly by steps 88 through 103. Each time these steps are repeated, the value of x is refined.

Steps 104 through 110 (excluding steps 105 and 106) test to determine whether the guess has been refined to the desired accuracy. If another loop is required, control is transferred to LBL 6. If the value is sufficiently accurate, the program stops, displaying the result at step 112.

The display setting, in combination with the RND function, is used to determine the accuracy of the result. If the amount of change in x_i divided by x_{i+1} rounds to zero, the condition for convergence is met and x_{i+1} is displayed as the answer. If the rounded value is not zero, another iteration is required. For instance, if $x_i = 10$, the change in x_i is 0.1 and the display is set at two decimal places, the test value would be calculated as follows:

Test value = RND
$$(0.1/(10 - 0.1))$$
 = RND (0.01010101)
= 0.01

Since the value is not zero, another loop is required. If, on the next loop, the refinement were 0.01, and x_i were 9.9, the test value would be calculated as follows:


Test value =
$$\text{RND}(0.01/(9.9 - 0.01)) = \text{RND}(0.001011122)$$

= 0.00

Since the value is zero, x_{i+1} would be displayed as the result ($x_{i+1} = 9.89$). Note that, if the display had been set to three decimal places, another loop would be required since the RND function is display dependent.

L11-03

Calculus and Roots of f(x)

001	*LBLA	St	tore function number.	85 7	STOB		
002	STOI	-		058	÷		
003	RTN			059	STOC		
							(b – a)/n
804	#LB Le	Pa	ause toggle.	060	2		
005	FØ?		55	061	÷		b-a
886	6TO0			862	ST+8		
							<u>2n</u>
807	SFØ			063	8		Set integral sum at 0.
808	1			964	ST09		
009	RTN			965	RCLE		Put number of intervals
010	#LBL@			966	X≓I		in L
011	0						in I.
				067	≉LB L7		
012	CFO			068	X ≓ I		Return function number
013	RTN			869	STOR		1 1
							to Landin to R _B .
014	#LBLa	St	tore ‰∆ and set flag.	070	RCLØ		
015	SF1		tore has and tot hag	871	GSB i		F'(R ₀)
							F (00)
816	STOE			072	RCLC		
017	RTN			073	ST+0		$R_0 + (b - a)/n$
018	#LBLE				Y		
		C	hoose default ‰∆ or use	874			Add f(R ₀) (b - a)/n
019	EEX	0	.01%?	075	ST+9		
828	CHS	0.	.01/0:	876	RCLE		
							Decrement n and save
021	2	I		077	X∓I		function in display.
822	RCLE	1		078	DSZI		
023	F1?						
				079	GT07		Store function number.
824	XZY			080	STOI		
025	R∔			881	RCL9		1 1
							Display result of
026	1	If	x=0 use ‰∆ rather than	082	RTN		integration.
827	X=8?			083	*LBLE		
028	LSTX	%	of x as ∆x.				Use numerical differential
				684	FIX		
029	STDC			. 085	6SBB		to generate x _i from user
030	2			886	RCLB		quess.
	÷						3
031	÷	f(x – ∆x/2).	087	6T00		
032	-			888	≉LB L6		Eveluate (IV)
033	STDA						Evaluate f(x _i)
				089	RCLØ		1 1
034	STD O			898	6SB i		
035	GSB i			891	STOB		
036	STOD						1
				092	≢LBL0		
037	RCLA		x + ∆x/2).	093	RCLA		Secant method calculates
-38	RCLC	- TL	$x + \Delta x/2$.				1
				094	RCLØ		correction for x value
839							
	+			895	STDA		and sate welves for any
840	+ stoe				STDA		and sets values for next
	STOR			096	-		and sets values for next loop.
841	STOR GSB i			896 897	RCLD		
	STOR			896 897	RCLD		
941 942	STOR CSB I STOR		x+∆x/2)−f(x-∆x/2)	096 097 098	RCLD RCLB		
841 842 843	STOR GSB i	 	<u>x+Δx/2)-f(x-Δx/2)</u> Δx	096 097 098 099	RCLD		
841 842 843 844	STOR GSB I STOR RCLD	 <u>f(</u> ;		096 097 098	RCLD RCLB		
841 842 843	STOR CSB I STOR	<u>(;</u>		096 097 098 099 100	RCLD RCLB Stod		
841 842 843 844 844	STOR GSB; STOR RCLD RCLC	- <u>-</u>		096 097 098 099 100 101	RCLD RCLB Stod ÷		
841 842 843 844 845 845 846	STOD GSB; STOD RCLD RCLC ÷	 <u>f(</u> :		096 097 098 099 100 101 102	RCLD RCLB STOD ÷		
841 842 843 844 845 845 846 846 847	STDE GSBi STDB RCLD - RCLC ÷ RTN	<u></u>		096 097 098 099 100 101	RCLD RCLB Stod ÷		loop.
841 842 843 844 845 845 846	STOD GSB; STOD RCLD RCLC ÷		Δ×		RCLD RCLB STOD ÷ x ST-0		loop. Subtract correction
041 042 043 044 045 046 047 048	STOB GSB; STOB RCLD - RCLC ÷ RTN *LBLC			896 897 898 899 100 101 102 103 104	RCLD RCLB STOD ÷ ST-0 RCL0		loop.
941 942 943 944 945 946 946 947 948 949	STO STO STO RCLD RCLC ÷ RTN *LBLC STO		Δ×		RCLD RCLB STOD ÷ x ST-0		loop. Subtract correction Pause and display root if
041 042 043 044 045 046 047 048	STOB GSB; STOB RCLD - RCLC ÷ RTN *LBLC		Δ×	896 897 898 899 180 181 182 183 184 185	RCLD RCLB STOD ÷ X ST-0 RCL0 F0?		loop. Subtract correction
841 842 843 844 845 846 847 848 849 858	STOB SSB: STOB RCLD - RCLC ÷ RTN #LBLC STOB SSB:		Δ×	896 897 898 899 188 181 182 183 184 185 186	RCLD RCLB STOD ÷ X ST-0 RCL0 F0^ PSE		loop. Subtract correction
841 842 843 844 845 946 847 848 848 848 848 848 849 858 858	STOB SSB: STOB RCLD - RCLC ÷ RTN *LBLC STOB SSB: RTN		Δx	896 897 898 999 180 181 182 183 184 185 184 185	RCLD RCLB STOD ÷ ST-0 RCL0 FO? PSE ÷		loop. Subtract correction
941 942 943 944 945 946 947 948 949 959 959 959 951 952	STOB SSDB STOB RCLD - RCLC ÷ RTN *LBLC STOB SSB; RTN *LBLD		Δ×	896 897 898 899 188 181 182 183 184 185 186	RCLD RCLB STOD ÷ X ST-0 RCL0 F0^ PSE		loop. Subtract correction Pause and display root if
841 842 843 844 845 946 847 848 848 848 848 848 849 858 858	STOB SSB: STOB RCLD - RCLC ÷ RTN *LBLC STOB SSB: RTN		Δx	896 	RCLD RCLB STOD ÷ ST-0 RCL0 FO2 PSE ÷ RND		loop.
941 942 943 944 945 946 946 947 948 949 959 950 951 952 953	STO8 SSB: STOB RCLD - RCLC ÷ RTN *LBLC STO8 SSB: RTN *LBLD XZY		Δx	896 897 898 899 180 181 182 183 184 185 186 186 187 186 187	RCLD RCLB STOD ÷ X ST-0 RCL0 F0? PSE ÷ RND X≠0?		Subtract correction. Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display?
941 942 943 944 945 946 946 946 948 949 959 959 951 952 953 954	STOB SSDB STOB RCLD - RCLC ÷ RTN *LBLC STOB SSB; RTN *LBLD		Δx	896 897 898 899 180 181 182 183 184 185 184 185 186 186 186 186 186 186 186	RCLD RCLB STOD ÷ ÷ X ST-0 RCL0 FO° PSE ÷ RND X#0° GTO6		loop.
941 942 943 944 945 946 946 947 948 949 959 950 951 952 953	STO8 SSB: STOB RCLD - RCLC ÷ RTN *LBLC STO8 SSB: RTN *LBLD XZY		Δx	896 897 898 899 180 181 182 183 184 185 184 185 186 186 186 186 186 186 186	RCLD RCLB STOD ÷ ÷ X ST-0 RCL0 FO° PSE ÷ RND X#0° GTO6		Subtract correction Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display?
941 942 943 944 945 946 946 948 948 959 959 959 952 952 952 953 954 954	STDE SSDE STDB RCLD - RCLC ÷ RTN *LBLC SSDE CSB; RTN *LBLD X2Y STDE -		Δx	896 897 998 899 100 101 102 104 105 106 106 106 106 107 108 109 110 109 110 101 102 100 101 102 103 104 105 106 105 106 105 106 107 107 107 107 107 107 107 107	RCLD RCLB STOD ÷ × ST-0 RCL0 PSE ÷ RND X#0 GTOG RCL0		Subtract correction. Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display?
941 942 943 944 945 946 946 946 948 949 959 959 951 952 953 954	STO8 SSB: STOB RCLD - RCLC ÷ RTN *LBLC STO8 SSB: RTN *LBLD XZY		Δx x). 	896 897 898 899 100 101 102 103 104 105 106 107 106 107 108 109 110 111 112	RCLD RCLB STOD ÷ ÷ X ST-0 RCL0 FO° PSE ÷ RND X#0° GTO6		Subtract correction Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display?
941 942 943 944 945 946 945 946 947 948 949 959 959 959 950 951 952 955 956	STDE SSDE STDB RCLD - RCLC ÷ RTN *LBLC SSDE CSB; RTN *LBLD X2Y STDE -		Δx x). -a. -ore n. -REC	896 897 898 180 181 182 183 184 185 186 186 186 186 186 186 186 187 187 187 187 187 187 187 187 187 187	RCLD RCLB STOU ST- ÷ × ST-0 RCL0 FO^ PSE ÷ RCL0 RCL0 RCL0 RTN		loop. Subtract correction Pause and display root if flag set? RND (change/xi+1) Accurate to display? If it is, display result.
941 942 943 944 945 946 947 948 949 959 952 952 955 956	STDE SSDE STDB RCLD - RCLC ÷ RTN *LBLC SSDE CSB; RTN *LBLD X2Y STDE -		Δx x). -a. -ore n. -REC	896 897 898 899 100 101 102 103 104 105 106 107 106 107 108 109 110 111 112	RCLD RCLB STOD ÷ × ST-0 RCL0 PSE ÷ RND X#0 GTOG RCL0	7	Subtract correction. Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display? If it is, display result. 8< 9
941 942 943 944 945 946 945 946 947 948 949 959 959 959 950 951 952 955 956	STDE SSDE STDB RCLD - RCLC ÷ RTN *LBLC SSDE CSB; RTN *LBLD X2Y STDE -		Δx x). -a. -ore n. -REC	896 897 898 180 181 182 183 184 185 186 186 186 186 186 186 186 187 187 187 187 187 187 187 187 187 187	RCLD RCLB STOU ST- ÷ × ST-0 RCL0 FO^ PSE ÷ RCL0 RCL0 RCL0 RTN	7	loop. Subtract correction Pause and display root if flag set? RND (change/xi+1) Accurate to display? If it is, display result.
941 942 943 944 945 946 947 946 947 945 951 952 953 954 955 956 0 ×	STDE GSB: STDB RCLD RCLC RTN *LBLC STDE GSB: XZY STDE XZY		Δx x). tore a. -a. tore n. REC	096 097 098 099 100 101 102 104 105 104 105 106 - 107 106 - 107 106 - 107 106 - 107 108 5	RCLD RCLB STOD STOD ST-0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RTN	7	Ioop. _Subtract correction Pause and display root if flag set? RND (change/xi+1) Accurate to display? If it is, display result. 8 9 integral
941 942 943 944 945 946 947 948 949 959 952 952 955 956	STDE SSDE STDB RCLD - RCLC ÷ RTN *LBLC SSDE CSB; RTN *LBLD X2Y STDE -		Δx x). tore a. -a. tore n. REC	896 897 898 180 181 182 183 184 185 186 186 186 186 186 186 186 187 187 187 187 187 187 187 187 187 187	RCLD RCLB STOU ST- ÷ × ST-0 RCL0 FO^ PSE ÷ RCL0 RCL0 RCL0 RTN	7	Subtract correction. Pause and display root if flag set? RND (change/x _{i+1}) Accurate to display? If it is, display result. 8< 9
941 942 943 944 945 946 947 946 947 945 951 952 953 954 955 956 0 ×	STDE GSB: STDB RCLD RCLC RTN *LBLC STDE GSB: XZY STDE XZY		Δx x). tore a. -a. tore n. 4 3 54	096 097 098 099 100 101 102 104 105 106 - 107 106 - 107 110 110 110 110 110 5 5 55	RCLD RCLB STOD STOD ST-0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RTN	7	Ioop. _Subtract correction Pause and display root if flag set? RND (change/xi+1) Accurate to display? If it is, display result. 8 9 integral
941 942 943 944 945 946 947 946 947 945 951 952 953 954 955 956 0 ×	STDE GSB: STDB RCLD RCLC RTN *LBLC STDE GSB: XZY STDE XZY		Δx x). tore a. -a. tore n. REC	096 097 098 099 100 101 102 104 105 104 105 106 - 107 106 - 107 106 - 107 106 - 107 108 5	RCLD RCLB STOD STOD ST-0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RTN	TE	loop. Subtract correction
941 942 943 944 945 946 847 946 859 859 859 852 855 855 855 855 856 0 × \$50 8 4	STDE GSB: STDB RCLD RCLC RTN *LBLC STDE GSB: XZY STDE XZY		Δx x). tore a. -a. tore n. 4 3 54 C	096 097 099 100 101 102 103 104 105 106 106 107 106 106 107 106 107 106 107 106 107 106 107 107 106 5 5 5 5 5 5 5	RCLD RCLB STOD STOD ST-0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RTN	TE	Ioop. _Subtract correction Pause and display root if flag set? RND (change/xi+1) Accurate to display? If it is, display result. 8 9 integral
941 942 943 944 945 946 946 959 859 859 853 853 854 855 855 856	STDE GSB: STDB RCLD RCLC RTN *LBLC STDE GSB: XZY STDE XZY		Δx x). tore a. -a. tore n. 4 3 54	096 097 098 099 100 101 102 104 105 106 - 107 106 - 107 110 110 110 110 110 5 5 55	RCLD RCLB STOD STOD ST-0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RCL0 RTN		loop. Subtract correction

L12-01

English—SI Conversions (Metric Conversions)

		-		
001 #LBLa 002 SF2	Set millimeter inch flag.	857 1 858 5		
803 #LBLA		059 F20		
804 2	Input conversion constant.	0EP 1 %		
005 5		061 XZY 062 x		
006 , 007 4		BET RTN		
808 F2"	in to mm or mm to in?	8€4 ¥LBLe		
009 1×X	in. to mm or mm to in?	065 SF2		Pound mass-kilogram
810 XZY	Set stack for LST x	066 #LBLE		conversion.
011 ×		0€ ⁻ . 0€8 4		
012 RTN 013 #LBL6	Convert.	869 5		
814 SF2	Feet-meter conversion.	070 3		
815 *LBLE	reetimeter conversion.			
016 ·		071 5 072 9 073 2 074 3		
017 3		073 2		
019 0 019 4		874 3 875 7		
819 4 828 8		876 F22		
021 F2?		077 1 7%		
022 1×X		078 X≠Y		
823 X≓Y		079 ×		
824 ×		080 RTN 081 R/S		
825 RTN 826 #LBL0		001 8/3		
027 SF2	Gallon-liter conversion.			
026 #LBLC	Gallon-liter conversion.			
029 3				
030 .				
031 7				
032 8 033 5				
834 4				
035 1				
036 1				
037 7				
038 8 039 4				
040 F20				
841 1/X				
042 X≠Y				
043 ×				
844 RTN 845 #LBLd		1		
846 SF2	Baund forms another			
047 *LBLD	Pound force-newton conversion.			
048 4	CONTENSION.			
849 . 858 4				
051 4				
852 8				
853 2				
054 2 055 1				
055 1 056 6				
	REGI	I STERS		L
0 1. 2	3 4	5 6	7	8 9
S0 S1 S2	S3 S4	S5 S6	S7	S8 S9
A B		D	E	
r ľ	Ĭ	-	Ľ	ľ
		•	•	

881	*LBLA			<i>θ</i> 5	7 ¥LBLD			
662	3			85	8 1		Pound mass p	er cubic foot
003	2			05	96		to kilogram p	er cubic metre
664	-	0.0	5 000/4 0	06			conversion.	
005	1	C = (F - 32)/1.8	06				
006	•			86				
097	6			96				
008	÷			96				
009	RTN			06				
010	*LBLa			86				
011	1			06	7 F2?			
012	•	°F = 1	.8°C + 32	06				
613	6			06				
Ü14	x			07				
015	3			07	I RTN			
016	2			Ú7				
017	+			Ú7	3 5F2			
918	RTH			87			Horsepower t	o watt
÷019	*LBLL			07			conversion.	
020	SF2	British	thermal unit to	ioule 07]	
621	*LBLB	conver		97				
J22	1	conver	31011.	67				
023	Ũ			87				
024	5			<u></u> 08				
025	5			08				
026				Ū8				
827	ΰ			08				
928	5			08				
029	5			08	5 F2?			
030	6			98	6 17X			
031	5			98	7 X2Y			
032	3			86	6 ×			
833	F2?			08	9 RTN			
034	1×X			60	0 R∕S			
035	X₽Y							
036	A							
037	RTN							
038	*LBLc							
039	SF2	Pound	per square inch	to				
040	¥LBLC		n per square met					
041	6	conve						
042	8	Conve	131011.					
<u>0</u> 43	9							
844	4							
045								
846	7							
047	5							
048	7							
Ø45	2	1						
050	F2?						1	
051	1×X							
<i>⊎</i> 52	XZY							
053	x							
054	RTN							
055	*LBLd						1	
856	SF2							
		LA	BELS		FLAGS		SET STATUS	
Δ.	^B ft∙m	C gai-1	D _{lbf-N}	E Ibm-kg	0	FLAGS	TRIG	DISP
îin-mm		-			1	ON OFF		
^A in-mm		nci N/m ²	$lb/ft^{2} = kc/m$					
[°] in-mm [°] F – [°] C	Btu-J	psi-N/m ²	lb/ft ³ – kg/m	hp-W	2	0 0 8	DEG 🗵	FIX 🛛
		psi-N/m ² 2	3	4	² reverse	1 🗆 🛛	GRAD 🗆	SCI 🗆
					2 reverse 3		DEG 🖄 GRAD 🗌 RAD 🗆	FIX SCI SCI ENG n 2

PSEUDORANDOM NUMBER GENERATOR

Arithmetic Teacher incorporates a pseudorandom number generator. This generator supplies a sequence of numbers between zero and one which are converted into the problems displayed by the program.

The term "Pseudorandom" implies that the sequence of numbers is predictable from the algorithm and the initial value or seed used for the generator. A truly random device, such as a fair roulette wheel, is totally unpredictable. However, pseudorandom generators can be used to model random events provided they yield uniformly distributed numbers (i.e., as many values fall between 0.00 and 0.10 as fall between 0.10 and 0.20 etc.) and they do not repeat the same sequence of values during the simulation.

The pseudorandom number generator incorporated in *Arithmetic Teacher* is very simple but quite good. It uses the multiplicative linear congruential method:

 u_{i+1} = fractional part of (997 u_i) where i = 0, 1, 2,... u_0 = 0.5284163* (seed)

The period of this generator has a length of 500,000 numbers and the generator passes the frequency test (chi square) for uniformity, the serial test and the run test. The most significant digits (the left hand digits) are the most random digits. The right most digits are significantly less random.

In *Arithmetic Teacher* the initial seed of .5284163 is stored at step 022. Label 5 (steps 084-096) actually generates the digits for each arithmetic problem. However, pseudorandom number generation occupies only the first six steps of label 5. These six steps and the corresponding x register contents are as follows:

STEPS X REGISTER LBL 5 RCL E old seed 9 9 7 997 x seed × 997

*Other seeds may be selected but the quotient of (seed $\times 10^7$) divided by two or five must not be an integer. Also, it would be wise to statistically test other seeds before using them.

FRC	fractional part of (seed \times 997)
STO E	pseudorandom number is stored

• to act as seed for next loop.

•

Arithmetic Teacher

661	*LBL a			857	SPC		Output op	eration code.
863	8	Store	initial constants and	858	PRT)		1	
887	STOS			859	SPC			
		defau	It constants.				Gaparata	wo values for a
664	4			066	*LBL°			wo values for a
005	Ũ			861	GSB5		problem.	
80÷	ST07			062	STOC			
667	1			867	6SB5			
900	0			064	RCLC		Generate p	roblem.
009	STOD			065	ese i			
919	STOE			DEE	RCLH		Set display	
811	1			867	XII		loct display	·
	•				DSF			
012	ST04			868				
013				065	XZI		Scale one	value.
014				070	R.L			
				871	RCLE			
015	2				RULD			
016	8			072	÷		Add value	for display of
617	4			873	•		x, y.	
918				874	0		<i>, y</i> .	
	1			875				
015	6				DOL C		Place 0 in	
020	3			07E	RCL9			
021	*LBLe			877	X=Y^		If same pr	oblem was just
022	STOE	Store	seed, either default or	878	GT09			
	CLX		accu, ertiter uerault of	079	R4		given, gen	new problem.
823		user.						
024	RTN			080	ST09		Display pr	oblem.
025	*LBLb			081	F1?			
826	SFØ		and store n _{max} + 1.	082	PRIX		1	
027	SPC	Set fla	g to eliminate default	083	RTN			
		value.						
828	PRTX	·u.u.		084	≉LBL5		Pseudoran	dom number
029	SPC			085	RCLE		generation	
830	ABS			886	9		generation	
031	1			887	9			
	1				7			
832	+			380	· · · · ·			
033	STOD			089	х			
034	1	Colori		896	FRC			
835	0		ate display setting and	891	STOE			
	-	store	or later access.	892				
036	X				18		Skew num	bers high.
837	LDG			093	RCLD			
838	INT			094	×		1	ger no larger than
039	STOA			095	INT		Create inte	ger no larger than
840	10×			896	RTN		n _{max} .	
		Calcul	ate and store scale for					
041	STOB	proble	mr	897	≢LBL1		Addition p	rahlam
842	CLX	proble		098	+		Addition p	robiem.
843	RTN			895	STOC		1	
844	≭LBL A			100	LSTX			
		Select	addition.		LOIA		1	
845	1			101	-		1	
846	GT01			102	LSTX		1	
847	#LBLE			103	RTN		1	
848	2	Select	subtraction.	104	#LPL2			
							Subtraction	problem.
049	ET01			105	STOC			,
850	≉LBL C			10£	X = 1			
851	3	Select	multiplication.	107	+		1	
852	GTC1	1		102	LSTY		1	
053	≉LBL D	Select	division.	109	RTN		1	
054	4	Beneer		110	≉LBL 3		Multiplicat	ion problem.
855	≉LBL1			111	X=02		I	on problem.
056	STOI	Store	+, -, x, ÷ code.	112	X7		1	
	0101			STERS	*		L	
0	1	2 3	HEGI:		6	17	10	
ľ	l'	r s	1	5	ľ	20 – n	8 wrong	9 problem
S0	S1	S2 S3	S4	S5	S6	57	S8	
~~	3	32 33	34	35	30	51	38	S9
	1							
A		B	с	D		E .	1	
display		scale	answer	n _{max} + 1		seed	con	trol

113	X=0°			165			Display prob	lem again in
114	1			178			case of error.	
115	X			171	6		answer flag s	-
116	STOC			172			-	
117	LSTX			173	F1^		will be increr	nented.
118	÷			174	SPC			
	LSTX			175	RTN			
120	RTN			176			Display error	for cheating
	LBL4	1		177				for cheating.
122	STOC	1	ivision problem.	178			1	
123	XZY	ľ	rension problem.	179			1	
124	x=0?			188				
	6SB5	1		181			Undefined di	vision patch.
126	x			182				
127	LSTX			183				
128	RTN			184				
		-						
	LELE		keyboard was used	10 100				
	LSTX	sc	olve problem, GTO e	rror 186			Print toggle.	
	X≠0°	ro	outine.	187	F1°			
132	GTO7	_		188			1	
133	R4	lıf	answer is not right,	189			1	
134	RCLC		splay problem again.	190				
135	X≠Y?	10	spis, problem dydin.	191				
136	6708	_						
137	1	IT.	otal problems done a	nd 193	CF1			
138	F2?		oblems wrong.	194	0			
139	ST+8		oblems wrong.	195	RTN			
140	ST-7			196	R∕S			
141	RCL7	-						
142	X ≠0 ?		20 problems have no					
143	6709	ь	een done gen. anothe	r				
144	SPC	р	roblem.					
145	2	lō	utput results of lesso	n.				
146	6							
	RCL8							
149	-							
	PRTX							
150	2							
151	ā							
	PRTX							
153	÷							
153	EEX	1						
155	2 x	1						
156								
	PRTX	1						
158	SPC	1						
159	SPC							
160	SPC	1						
161	SFC	1						
162	2	1-						
163	0		tart new lesson.					
164	ST07	5	tart new lesson.					
165	0	1						
166	ST08	1						
167	6709							
	6709 LBL8	-						
		-	LABELS		FLAGS	1	SET STATUS	
168 4	L B L8	- I-	LABELS	E Answer	FLAGS		SET STATUS	DISP
168 4 ^+-?	B?	Xr	D ÷?	E Answer	0	FLAGS	SET STATUS TRIG	DISP
168 4	L B L8	с _{х?} с р?		E Answer ^e (seed)			TRIG	FIX 🖬
168 4 ^+-?	B?	Xr	D ÷?		0	FLAGS ON OFF 0 I X 1 X	TRIG DEG 🕱 GRAD 🗆	FIX ⊠ SCI □
168 1 A _{+?} ^a Start	B _? b (n _{max})	^C P?	D ÷?	^e (seed)	0 ¹ Print	FLAGS ON OFF 0 D X	TRIG	FIX 🖬

Moon Rocket Lander

0: LEL 0 0: <th0:< th=""> 0: 0: 0:<!--</th--><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-T</th><th></th></th0:<>									- T	
6 6 2 0 8 6 9 8 6 9 5 7 6 2 8 6 9 5 7 6 2 8 6 9 5 7 6 2 8 6 9 5 7 6 2 8 6 9 5 7 6 2 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 5 7 6 9 8 6 9 6 6 9 6 6 9 6 6 9 6 6 9 6 7 8 12 8 10 10 00		*LELA				057	RCL9			
Image: Product of the second	002	5				058	ST+7			
0 0	667	ĥ					F 1			
ØP5 STOC Store initial conditions. ØP1 If if inpact go for anoth burn. ØP5 Store initial conditions. ØP2 If if inpact go for anoth burn. If if inpact go for anoth burn. ØP5 STOP ØP2 If if inpact go for anoth burn. If if inpact go for anoth burn. ØP5 STOP ØP2 If if inpact go for anoth burn. If if inpact go for anoth burn. ØP2 If if inpact go for anoth burn. If if inpact go for anoth burn. If if inpact go for anoth burn. ØP2 STOP If if inpact go for anoth burn. If if inpact go for anoth burn. ØP3 #LEL5 Divide height by 10000 If if inpact go for anoth burn. ØP3 #LEL5 Divide height by 10000 If if inpact go for anoth burn. ØP3 #LEL5 Divide height by 10000 If if if inpact go for anoth burn. ØP3 #STOP4 If if if inpact go for anoth burn. If										
BPC 5 For a control BC2 XB7 For a control BC3 For a control BC3 <th></th>										
BP 6 First Burn Burn Burn First Firs				Store initial con	ditions.					
BPS CHS BP4 at RLS Flash crash velocity. BP5 ST07 BP5 BP5 BP5 BP5 BP1 BP5 Divide height by 10000 BP5 BP5 BP5 BP5 ST08 Divide height by 10000 BP5 BP5 BP5 BP5 DSP4 Vy Ohhh BP5 BP5 BP5 BP5 DSP4 Vy Ohhh BP5 ST45 BP5 BP5 DSP4 Vy Ohhh BP5 ST45 BP5 BP5 ST47 Build vy Ohhh display taking BP5 ST47 BP5 BP5 F27 Beid vy Ohhh display taking BP5 ST47 BP5 BP5 F27 Beight BP5 ST47 BP5 BP5 BP5 PSE Display velocity and BP5 ST67 BP5 BP5 BP5 SF2 Display velocity and BP5 ST65 BP6 F1 BP5 SF2 BP5 Accept in	005	5				062	X>0°		If no inpact	go for another
ØP CHS ØF4 4 LBL3	887	e				863	6109		burn.	-
ØPP STOT ØFF ØFF ØFF Flash crash velocity. ØFF 6 ØFF FLE Flash crash velocity. ØFF FLE Flash crash velocity. ØFF ØFF <t< th=""><th>800</th><th>CHS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	800	CHS								
010 6 011 6 012 ST08 013 #LL6 0r/de height by 10000 062 FCL7 #LBL4 014 #LL6 for combined display of workshow 070 #LBL2 Fuel-exhausted free-fail 017 4 0 <th0< th=""> <th0< th=""></th0<></th0<>										
0:1 0 $P:2$ ST08 $P:2$ ST08 $P:2$ ST08 $P:1$ <									Flash crash V	elocity.
P12 ST08	010	6				866	RCL7			
e12 ST08	0::	0				667	∗LBL4			
P13 4LBL5 Divide height by 10000 Pf^{e_9} FT^4 Pf^{e_9} FT^4 Pf^{e_9} FT^4 Pf^{e_9} <t< th=""><th>810</th><th>STOR</th><th></th><th></th><th></th><th></th><th>PSF</th><th></th><th></th><th></th></t<>	810	STOR					PSF			
P14 FCLE for combined display of vu0.hh P79 #LBL2 Fuelexhausted free-fail oran velocity. P17 4					40000					
Ø15 DSP4 vu0nhh Ø17 RCL 6 Fuel-exhausted free-fail Ø15 FEX										
#15 EEk #75 2 crash velocity. #15 #CL7 Build w.Ohhh display taking #74 5 #74 5 #15 #CL7 negative values into account. #75 5 - #74 5 #21 X(80 account. #75 5 - #75 5 #22 #F2 megative values into account. #75 5 - #75 5 #22 #F2 account. #75 \$77 2 #75 \$77 #7 <th></th> <th></th> <th></th> <th>for combined di</th> <th>splay of</th> <th></th> <th></th> <th></th> <th></th> <th></th>				for combined di	splay of					
017 4 617 4 673 7 674 5 674 5 674 5 674 5 675 7 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675	015	DSP4		vv.0hhh		671	RCLS		Fuel-exhaust	ed free-fall
017 4 673 674 874 5 018 ÷ Build vv.0hhh display taking 875 874 5 021 ×60° account. 875 5 16 021 ×60° account. 875 5 16 021 ×60° account. 875 5 16 022 SF2 879 5 17 876 2 021 ×60° account. 879 5 17 876 2 022 SF2 9 9 868 RCL2 877 2 877 2 877 2 878 877 2 878 878 878 874 5 878 879 5 7 878 893 6 893 6 893 6 89	016	EEX				872	2		crash velocit	v
018 ÷ Build vv.0hhh display taking 07.5 - 07.5 - 07.5 - 07.5 07.5 - 07.5 07.5 57.4 07.5 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th>,. </th>							-			,.
015 RCL7 Build vv.0hhh display taking negative values into account. 075 5 - 021 X.007 account. 075 57+6 075 57+7 022 SF2 079 57+7 079 57+7 024 + 079 57+7 086 RCLC 025 F27 081 1 082 081 1 026 CHS 082 0 081 1 026 PSE beight. 082 0 081 1 026 PSE beight. 082 0 082 0 026 PSE beight. 084 RCL7 085 X2 027 PSE Count down for burn. 087 X2 0 087 X2 037 PSE 091 5 Flame out recovery. 097 5 Flame out recovery. 097 1 092 57-8 0 0 0 0 0 0 0 0 0 0 0 0 <td< th=""><th></th><th>•</th><th></th><th></th><th></th><th></th><th>:</th><th></th><th></th><th></th></td<>		•					:			
822 CF2 821 negative values into account. 876 ST+6 821 X/89' 822 SF2 823 ABS 824 B77 2 823 ABS 924 + B79 ST+7 B89 824 4 B79 ST+7 B89 RCLC 825 F2? Display velocity and height. B82 2 B85 2 825 PSE Display velocity and height. B85 X2 B85 X2 826 PSE Display velocity and height. B85 X2 B85 X2 827 7 X B86 Count down for burn. B87 FX B88 FX 833 PSE Count down for burn. B92 ST-8 B93 B94 ET05 837 PSE Accept input. B93 B94 ET05 B93 B94 ET05 843 2 B95 Accept input. B95 R/S B94 ET05 B95 Fiame out recovery.							5			
021 X(0?) account. 077 2 022 SF2 079 X 023 ABS 079 ST+7 024 + 089 ST+7 025 F27 0879 X 026 CH3	815	RCL7		Build vv.0hhh d	isplay taking		-			
021 X(0) account. 077 2 022 SF2 079 x 023 ABS 079 ST+7 024 + 069 RCLC 025 F27 079 x 026 CHS	020	CF2		negative values i	nto	076	ST+6			
922 SF2 879 ST+7 923 ABS 879 ST+7 924 + 869 ST+7 925 F27 868 861 1 926 CHS										
027 AB5 025 F27 024 + 026 CH3 025 FSE Display velocity and 027 026 CH3 027 PSE Display velocity and 028 PSE height. 029 DSP0				account.						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
925 F2?		ABS								
826 CHS 852 8 827 PSE Display velocity and 867 2 828 PSE height. 864 RCL7 829 DSP6 865 X2 827 PSE height. 865 KCL7 827 PSE 065 X2 865 827 PSE 865 Classe 828 9 896 4LBL5 828 9 Accept input. 893 893 843 RCL8 Hall fuel has been used, 895 R/S 843 RCL8 Hall fuel has been used, 895 R/S 844 x12 895 R/S 843 S1-8 0 9 895 R/S 844 x121 895 R/S 843 S1-8 0 0 1 11 fuel has been used, 844 x121	824	+				880	RCLE			
026 CHS 052 0 027 PSE Display velocity and 067 2 028 PSE height. 065 X2 029 DSP0 057 X2 029 DSP0 065 X2 021 PSE 067 X3 023 PSE 069 420 025 PSE 069 420 026 PSE 069 420 027 PSE 069 420 028 0	825	F 22				081	1			
Ø27 PSE Display velocity and height. Ø27 X Ø28 PSE height. 084 RCL7 Ø29 DSPØ										
928 PSE height. 984 RCL7 929 DSP0 865 X2 932 PSE 865 X2 937 PSE 869 CHS 938 0 869 FLBLS 937 PSE 893 6 938 0 893 6 939 PSE Accept input. 893 6 940 #LEL5 895 R/S 944 #CL2 895 R/S 944 #CL2 895 R/S 944 #CL2										
029 DSP0 025 X2 030 PSE Count down for burn. 025 X2 026 X4 027 X4 027 X4 027 X4 027 X4 028 CUL 027 X4 028 CUL 027 X4 028 CUL 027 X5 027 S5 029 S5 029 S7-8 029 S5 029 S7-8 029 S7-8 029 S7-8 029 S7 029 S7-8 029 S7-8 029 S7-8 029 S7-8 029 S7-8 029 S7-8 029 S7 040 x1212 024 x21				Display velocity	and					
Ø?0 RCL8 Count down for burn. ØPF + Ø?1 PSE Ø?2 7 X Ø?2 7 X Ø?3 PSE Ø?2 88% CHS Ø?2 Filme out recovery. Ø?5 PSE Ø?2 ST-8 Ø?3 Ø?4 EF Ø?5 PSE Ø?2 ST-8 Ø?3 Ø?4 EF Ø?6 1 Ø?2 ST-8 Ø?3 Ø Ø?7 PSE Accept input. Ø?4 GT05 Fiame out recovery. Ø?8 Ø	028	PSE		height.		084	RCL7			
Ø?0 RCL8 Count down for burn. ØPF + Ø?1 PSE Ø?2 7 X Ø?2 7 X Ø?3 PSE Ø?2 88% CHS Ø?2 Filme out recovery. Ø?5 PSE Ø?2 ST-8 Ø?3 Ø?4 EF Ø?5 PSE Ø?2 ST-8 Ø?3 Ø?4 EF Ø?6 1 Ø?2 ST-8 Ø?3 Ø Ø?7 PSE Accept input. Ø?4 GT05 Fiame out recovery. Ø?8 Ø	R 29	DSPA				885	X2			
021 PSE 027 7X 022 3 082 7X 033 PSE 089 689 674 034 2 089 689 689 035 PSE 089 4LBLE 037 PSE 089 891 5 038 0 893 0 039 PSE Accept input. 093 0 040 #LEL5 894 6T05 041 RCL8 If all fuel has been used, determine crash velocity. 0 042 X2Y determine crash velocity. 0 043 X3Y? 0 0 044 Flame 0 0 045 ST-8 0 046 #LEL5 0 0 1 2 0 1 2				Count down for	hurn					
072 3 082 082 CHS 073 PSE 075 PSE 071 5 075 PSE 071 5 071 6 075 PSE 071 5 071 5 076 PSE 072 7 8 6 077 PSE 072 7 6 6 077 PSE 073 8 6 6 073 PSE Accept input. 094 6705 6 074 #LE5				Count down for	burn.					
033 FSE 059 6T04 034 2 090 #LBLE 035 FSE 092 \$T-6 037 PSE 092 \$ST-8 038 0									1	
034 2 035 PSE 037 PSE 037 PSE 038 0 039 PSE 040 xLEL5 041 RCL8 042 x2Y 043 x2Y 044 45 045 ST-8 047 PSE 048 xEL5 1 attribute 041 RCL8 042 x2Y 043 attribute 044 state 0 1 0 1 0 1 1 2 3 4 5 6 7 V 8 Fuel 9 Accel.	032	3				088	CHS			
034 2 035 PSE 037 PSE 038 0 039 PSE 040 xLEL5 041 RCL8 042 X2Y 043 X2Y 044 xLE25 041 RCL8 042 X2Y 043 X2Y 044 Flall fuel has been used, determine crash velocity. 043 X2Y 044 TO2 0 1 0 1 1 2 3 4 5 6 6 7 9 8	033	PSE				869	6704			
000 101 092 ST-8 037 PSE 094 6705 038 0 094 6705 039 PSE									Elama out re	0000000
037 PSE 093 0 038 0 Accept input. 094 6T05 049 xLEL5		PSE							I lame out le	covery.
038 0 894 GT05 039 PSE Accept input. 895 R/S 040 RLEL5 If all fuel has been used, 895 R/S 041 RCL8 If all fuel has been used, determine crash velocity. 043 X2Y determine crash velocity. 044 GT02 045 ST-8 Determine velocity and 047 x 048 5 0 1 2 3 44 5 0 1 2 3	03€	1				892	ST-8			
038 0 094 6705 039 PSE Accept input. 094 6705 040 xL2L5 If all fuel has been used, 041 RCL8 If all fuel has been used, 042 X2Y? 044 GT02 047 X 048 5 049 GT02 0 1 1 2 3 4 5 6 7 8 9 Accel,	837	PSE				093	6			
039 PSE Accept input. 040 #LEL5 041 #LEL5	879					894	6705			
040 #LEL5 If all fuel has been used, 041 RCL6 If all fuel has been used, 042 X2Y determine crash velocity, 043 X3Y? 044 GT02 0 1 1 1 0 1 1 2 3 4 5 6 7 8 9 Accel,				Accept input						
041 RCLB If all fuel has been used, 042 X2Y 043 X3Y? 044 RCLB 045 ST-8 0 1 0 1 2 3 44 5 65 6 7 V 8 Fuel 9 Accel.						690	K/5			
042 X2Y determine crash velocity. 043 X3Y? 044 502 045 ST-8 046 2 047 x 048 5 049 - 049 - 0417 x 0417 x </th <th>040</th> <th>≉LEL5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	040	≉LEL5								
843 X3 Y2' 844 GT02 945 ST-8 045 2 946 2 947 × 948 5 949 - 951 2 953 RCL6 957 RCL7 956 + 957 RCL7 956 + 9 1 2 3 4 5 6 X 7 8 Fuel 9 Accel.	041	RCL8		If all fuel has be	en used,					
843 X3 Y2' 844 GT02 945 ST-8 045 2 946 2 947 × 948 5 949 - 951 2 953 RCL6 957 RCL7 956 + 957 RCL7 956 + 9 1 2 3 4 5 6 X 7 8 Fuel 9 Accel.	842	XZY		determine crash	velocity.					
844 GT02 945 ST-8 Determine velocity and 945 2 947 x 949 - 949 - 950 ST09 951 2 952 ÷ 955 RCL7 955 RCL7 956 - 957 RCL7 956 - 957 RCL7 956 - 9 1 2 3 4 5 6 x 7 8 Fuel 9 Accel.										
Ø45 ST-8 Determine velocity and height. Ø46 2 Ø47 x Ø47 x Ø48 5 Ø49 - Ø50 ST09 Ø51 2 Ø52 ÷ Ø53 RCL7 Ø56 + Ø57 RCL7 Ø56 + Ø56 + Ø56 - Ø56 1 2 3 4 5 6 7 v 8 Fuel 9 Accel.										
046 2 height. 047 x 048 5 049 - 050 \$709 051 2 052 ÷ 053 RCL6 054 • 055 * 0 1 2 3 4 5 6 7 v 8 Fuel 9 Accel.									1	
047 × 048 5 049 - 0 1 2 3 4 5 6 7 9 6 7 8 8 6 9 6 1 2 3 4 5 6 7 8 9 Accel.		ST-8			ity and					
047 × 048 5 049 - 0 1 2 3 4 5 6 7 9 6 7 8 8 6 9 6 1 2 3 4 5 6 7 8 9 Accel.	046	2		height.						
848 5 849 - 950 \$5109 851 2 952 ÷ 953 RCL6 954 + 957 RCL7 456 + 9 1 2 3 4 5 6 × 7 8 Fuel 9 Accel.				-						
0 1 2 3 4 5 6 7 v 8 Fuel 9 Accel.										
856 ST09 851 2 952 ÷ 853 RCL6 954 + 955 RCL7 956 + 957 RCL7 956 + 9 + 9 6 1 2 3 4 5 6 7 8 Fuel 9 Accel.		5								
051 2 052 ÷ 053 RCL6 054 * 0 1 2 3 4 5 6 x 7 8 Fuel 9 Accel.		-			I					
052 ÷ 053 RCL6 054 + 055 RCL7 0 1 2 3 4 5 6 × 7 8 Fuel 9 Accel.	850	ST09								
052 ÷ 053 RCL6 054 + 055 RCL7 0 1 2 3 4 5 6 × 7 8 Fuel 9 Accel.	051	2								
0 1 2 3 4 5 6 7 8 8 0 1 2 3 4 5 6 7 8 Fuel 9										
054 + 955 RCL7 0 1 2 3 4 5 6 x 7 8 Fuel 9 Accel. 7		-			I					
#56 + REGISTERS 0 1 2 3 4 5 6 x 7 v 8 Fuel 9 Accel.	003	RLLD								
#56 + REGISTERS 0 1 2 3 4 5 6 x 7 v 8 Fuel 9 Accel.	004	PC1 7							1	
REGISTERS 0 1 2 3 4 5 6 × 7 v 8 Fuel 9 Accel.	100									
0 1 2 3 4 5 6 x 7 v 8 Fuel 9 Accel.	006	+							1	
				· · · ·			-			
	0	1	2	3		5	6	7	⁸ E.u.al	9
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9	L	_							Fuer	
	S0	S1	S2	S3 S	4	S5	S6	S7	S8	S9
	1									
	A	-	Тв			D	-	IF I		
	l'		1	ľ		-		L.	ľ	
			1					1	I	

A Cntrl B Restart a b 0 used 1 5 restart 6	LA C C 2 fuel = 0 7	BELS D d a crash 9	flash	FLAGS 0 1 2 sign 3	FLAGS ON 0FF 1 0X 2 0X	SET STATUS TRIG DEG യ GRAD □ RAD □	DISP FIX III SCI II ENG 2 III

Diagnostic Program

	361 ¥LBL0	Clear registers	057 GSBe	
	802 CLRG	subroutine.	058 X¥Y?	
	003 F#S		055 GT01	
	004 CLRG		060 RTH	
	005 RTN		061 *LBL1	
	006 ¥LBLa	Function test	062 6SBe	Decrement x.
	007 RND	subroutine.	663 STOI	
	008 RCLI		064 RCLI	I-register test.
	603 X≠Y?		065 XZY	
	016 R/S		066 X≠Y?	
	011 #LBL2		067 RTN	
	012 DSZI	DSZI & RCLI	068 6SB2	X to 0 comparisons.
	013 #LBL5	subroutine.	065 X#0?	A to o companionis.
	014 RCLI		070 GT03	
	015 RTN	RCLI & STOP	071 RTN	
	016 *LBLc	if called	072 *LBL3	
	017 RCL:	ir caned	073 65B2	
	01S RCLI		074 X=00	
	019 X≠Y?	Verify registers &	075 RTN	1
	015 AFT	sum in R ₀	076 GSB2	
	020 K/S 021 ST+0	subroutine.	075 6552 077 X(0?	
1	021 51+0 022 DSZI			
			076 RTN	
			675 6SB2	
	024 3		086 X>0?	
	025 EEX		081 GT04	
	026 2		082 RTH	
	027 RCL0		083 *LBL4	Check set status
	028 X≠Y?	Test R _O	084 DSZI	on flags.
	829 R/S		085 F2?	
	030 RTN		086 GTO5	
1	031 *LBL e	Decrement x	087 DSZI	
1	032 1	subroutine.	088 F1?	
	033 -		089 GTO5	
	034 RTH		690 DSZI	
	035 ¥LBLA	START &	091 F3?	
	036 5	pause after first	092 GTO6	
	037 7	subroutine execution.	093 GTO5	
	038 GSB0	subroutine excention.	094 *LBL6	
	039 PSE		095 DSZI	
	040 GSBe	Decrement x.	096 F0?	
	041 ENT1		097 GTO7	
	042 R4	STACK (X,Y,Z,T)	098 GTO5	
	043 X≠Y	TEST	099 ¥LBL7	Check complement
	044 R1	1231	106 SF2	
1	045 R†		101 SF1	of set status on
1	846 X≢Y		102 CF0	flags.
1	047 R1		103 DSZI	
1	048 X≠0?		104 F3?	
	049 X≠Y?		105 GT05	
	050 RTN		106 DSZI	
	051 GSBe		107 F0?	
	052 X>Y?	Decrement x.	108 GT05	
	053 RTN		109 DSZI	
	054 GSBe	X to Y comparisons	110 F2?	
	055 X=Y?		111 GT08	
	056 RTN		112 GT05	
		REGIS		
0	1 2	3 4	5 6 7	8 9
USED	USED USED	USED USED	USED USED USED	USED USED
S0	S1 S2		S5 S6 S7	S8 S9
USED	USED USED	USED USED	USED USED USED	USED USED
A	В	С	DE	1
USED	USED	USED	USED USED	USED

113	*LBLS				169	LSTX			
114	DSZI				170	INT		1	
115	F1?				171	+			
116	GTO9				172	X°			
117	GTO5				173	6SBa		Test D→R, R-	→D
118	*LBL9	Checl	<pre>F2 for test</pre>		174	D→R			
119	DSZI	cleari	ng,		175	R≁D			
120	F2?				176	6SBa			
121	GT05				177	EEX		Test EEX, %	
122	GSB2	Test	DEG, SIN, SIN ⁻¹		178	2			
123	DSF7	1030	520, 5114, 5114		179	X₽Ÿ			
124	DEG				180				
125	SIN				181	6SBa			
126	SIN-				182	DSP1		T	
120	6SBa				183	*LBLL		Test registers	
128	COS				184	RCLI		24→0	
120	C05-'	Test	COS, COS ⁻¹		185	STOI			
					185	DSZI		(sensitivity of	
130	6SBc							order registe	rs to
131	TAN	Test	TAN, TAN ⁻¹		187	GTOL		lower-order	register
132	TAN-				188	2		changes)	
133	GSBa				185	4			
134	÷₽	Test	→P, →R		190	XZI			
135	÷₽		,		191	GSBc			
136	GSBa				192	6SB0		Clear register:	s.
137	SIN	Test	→HMS, HMS→		193	\$LBL d			
138	→HMS	1 cst	11110, 11110		194	DSZI		Test registers	
139	HMS÷				195	RCLI		reatingisters	
140	SIN-				196	ABS		0→24	
141	6SBa				197	STO:		0 21	
142	LOG				198	2		(sensitivity of	f lower-
143	10×	Test	LOG, 10 [×]		199	4		order registe	
144	6SBa				200	X≠Y?			
145	LN				201	GTOJ		higher-order	register
146	e ^y	Test	LN, e [×]		202	STOI		changes)	
147	6SEa				203	GSBC			
148	1X				204	9			
140	¥0 X2	Test	\sqrt{X}, X^2		205	EEX		Generate 'PA	ASS''
					205	8		display.	
150	ESBa				200	7		-8-8888888	88-88
151	ENTT	Test	y×,LASTx, ¹ /x		207 208	1/8			
152	Y×				200	1/2			
153	LSTX								
154	1/X				210	CHS			
155	Y×				211	×			
156	6SBa				212	SFØ		Reset status	
157	ENTT				213	CF1		for possible s	acond
158	+	lest	+, -		214	SF3			econa
159	LSTX				215	RAD		pass.	
160	-				216	DSF3			
161	6SBa				217	ENG		Test display	
162	ENTT				216	FRTX		formatting	
163	×	Test	Х,÷		219	SCI		and printing.	
164	LSTX				220	PRTX			
165	÷				221	DSP1			
166	6SBa				222	FIX			
167	1X				223	PRTX			
168	FRC	Test	FRC, INT		224	R∕S		END TEST	
100	1.60		BELS	I		AGS		END TEST	
A START	3	C	D	E	0 USED		FLAGS	TRIG	DISP
a r	Decrementing register store	^C Register check & sum	d Incrementing register store	e Decrement	USED		ON OFF		FIX 🖾
Function test	1	0	3	4	0		0 🕅 🗆	DEG 🗆 GRAD 🗆	SCI 🗆
CL all REG	X SKIP	DSZI, RCLI	X≠0 SKIP 8	X>0 SKIP	USED		2 🗆 🛛	RAD 🛛	
RCLI & STOP	F3 SKIP	F0 SKIP	F2 SKIP	F1 SKIP	USED)	3 🕱 🗆	1	· · · <u>· · · · · · · · · · · · · · · · </u>

1000 N.E. Circle Blvd., Corvallis, OR 97330

00067-90021 Rev. 11/78

A B C • E