
LBL-5485
~UC-25
TID-4500-R66

HP-67 CALCULATOR PROGRAMS FOR
THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS

Leo Brewer

May 25, 1978

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

 

9
8
7
9
-
1
1



 

 

 LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the Depart-

ment of Energy, nor any of their employees, nor any of their con-

tractors, subcontractors, or their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness or usefulness of any information, appa-

ratus, product or process disclosed, or represents that its use would

not infringe privately owned rights.
 

Printed in the United States of America

Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy, $ 6.00 Domestic; $12.00 Foreign

Microfiche, $ 3.00 Domestic; $ 4.50 Foreign

 



-1ii- LBL~-5485

HP-67 CALCULATOR PROGRAMS

FOR THERMODYNAMIC DATA AND PHASE DIAGRAM CALCULATIONS

by

Leo Brewer

Materials and Molecular Research Division, Lawrence Berkeley Laboratory

Department of Chemistry, University of California

Berkeley, California 94720

¥This report was done with support from the United States Energy Research

and Development Administration. Any conclusions or opinions expressed

in this report represent solely those of the author(s) and not necessarily

those of The Regents of the University of California, the Lawrence Berkeley

Laboratory or the United States Fnergy Research and Development Administration.

If you wish to purchase a copy of this report (either hard copy or microfiche),
please address your request to:

National Technical Information Service

U. 5S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
U.S.A.

Ask for this report as LBL-5485,





I

THERMODYNAMIC HP67 CALCULATOR PROGRAMS

Introduction

Thermodynamic data and phase equilibria are greatly needed to meet

current materials problems. Specific design criteria often require rather

unique combinations of materials. Of the many combinations that might be

of interest, data are available for only a small fraction. Useful combina-

tions are often overlooked or great expense is incurred because an unnecessarily

large number of combinations must be tested. The calculation of thermo-

dynamic data and phase diagrams, even when no experimental data exist, is

posgible using spectroscopic levels of the gaseous atoms and chemical

bonding theory (1-11). This was demonstrated for a large number of transi-

tion metal binary and multicomponent systems for which little or no data

were available (2). Because of limitations of space for the large number

of binary and multicomponent systems presented, projections of phase diagrams

along the temperature axis were presented yielding only maximum extent of

phase boundaries at the optimum temperatures although the text did discuss

temperatures coefficients of the boundaries. The results of the calculations

as a function of temperature will be presented in detall in subsequent

publications.

The present report is a supplement to a tabulation of the thermodynamic

and phase data for the 100 binary systems of Mo with the elements from H to

Lr. The calculations of thermodynamic data and phase equilibria were

carried out from 5000 K to low temperatures at which attainment of phase

equilibria would not be practical. The results of these calculations are

to be published as a speclal issue of the Atomic Energy Review, a publication

of the International Atomic Energy Agency, Vienna. As only the results of

the calculations are presented in the Atomic Energy Review issue, the present

report is being used to present the methods of calculation used.

The thermodynamics involved is rather straightforward and the reader

is referred to any of the advanced thermodynamic texts, e.g. Ref. (12), for

derivations of the thermodynamic relations. The procedures for using

chemical bonding theory to provide estimates of thermodynamic data have been

outlined in previous publications (1-12).
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The calculations were largely carried out using an HP-65 programmable

calculator and the programs have been tabulated (13). In this report,

those programs have been put in form for use with the HP-6T calculator

which allows for a great reduction in the number of programs required to

carry out the calculations.

It ig difficult in a compendium of calculation procedures of this

type to present topics in a coherent manner, but an effort has been made

to assemble programs into related groups. As the equations which serve

as the basis for the calculations are discussed in detail in Ref.(13), the

discussion of the background equations will be limited in this report.
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CHAPTER I

Data Fitting Using the Chebyshev Polynomials

A. Least-Bguare Fitting Using Chebyshev Orthogonal Polynomials

The Chebyshev (Tschebycheff) polynomials, Ty(x) = cos (ncosx), are

orthogonal over the continuous interval 0 < x £ 1 and they have been shown

to be the most economical polynomial for expressing f(x) as a polynomial

series with the minimum number of terms for a given accuracy.

(7%,15)The Chebyshev polynomial can be modified to Cn(x) which is ortho-

gonal for discrete integer values of the variable, x, from 0 to N with

aE)2hee)a= (X~m) IN!

ilCo = 1 and Cy

1
» (-1 yo {n+m)! x! (N-m)!

eet (n-m) 1 (p1)2 (F-m)!N
 

The recurrence relation is

Cp+1 = [(2n+1) (N=2%)Cp, = n(N4n+1)Cpho1]/ (n+l) (N-n)

Co =1

Ci =1-2%/N

Co = 1 + 6x(x-N)/N(N-1)

For N = 7, for example,

- —- - 2 NE 2,Co=1, C1 =1-Hx)L0p =1-X+3x)°C3=1 - FHEWX)"- 33x)".

The Chebyshev polynomials for discrete integer values are particularly

useful for least square fitting of experimental data. Because of the ortho-

gonality, cross terms are zero in the matrix used to solve the set of linear

equations obtained by setting the partial derivatives of the squares of the

deviations equal to zero.

Thus, the coefficients of £(X) = colo(x) + c1C1(x) + coColx) + c3C3(x) + .

are readily calculated without solution of a matrix by the relation

cp = (£,C)/(Cpq,Cpn) where

3 - — a2 N 1) N-n)!
(f£,Cp) = 2,1en®) and (Cp,Cn) = 2,[6a] = ( AE

For N+1 values of f(x) at N evenly spaced intervals of x, the values of

Cn(x) to be multiplied by f(x) are evaluated by the following program,
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(en+1)(N=-2%)Cp = n(W+n+l)C,
 

 

Cpt) = xn+l (n+1) (Nn)

Co =: and Cp = (N-2x)/N

_3(n-2x)ey ~ (2)
Co = 2(N-1)

5(N-2%)Co = 2(N+3)Cq
C3 = 3(N-2) 9 etc,

The integers x, which range from 0 to N, are related to x by

x = (x-%1)/1 = x/1 ~ r, where xj is the initial value of x and I is the

interval spacing of x.

The values of Cp(X) are stored in the registers starting with C1(1),

Co(l) =+- Cray(1) c1(2), Co(2) --- Cry(2) c1(3) ... . In each cycle

of calculations of Cp(x), n is incremented until Copp (*) has been calculated,

then x is incremented and the cycle started again at n = 1. The calculation

stops when x exceed W/2,as the second half of the values of (n(x) are the

same as the first half except for change of sign for 0dd values of n. For

n' = 3, there is sufficient storage to calculate the Cp(x) values up to

N =15. For n= 4, the maximum is N = 11. However, if storage is to be

provided for subsequent (£,Cpn) calculations, the maximum NW values for n'=3

and 4 are 13 and 9, respectively.

n', the maximum value of n or the order of the polynomial used for

fitting, is keyed in first. With N evenly spaced intervals of x, the number

of data points to be treated, N+1l, is keyed in next.

Directions:

(1) Insert tape Cheb Cp

(2) n' 4 N+1 A 2h displayed at end of calculation

The values of Cp(x) calculated in the order of increasing n for each value

of X and in order of increasing x are stored in the registers in reverse

order from index number 24 to T. Tf it is desired to examine the Cp(x)

values, R/S following the calculations of step 2 will display 24 C1(1),

23 Co(1), 22 C3(1), 21 C1(2), ete. Only the contents of registers with

non-zero values are displayed. When no non-zero values remain, 6 followed

by 2k will be displayed (See Ref. 23).
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It it is desired to preserve the Cp(x) values for future (,Cp)

calculations, key f W/DATA and insert data card. Values of Cp(x) are

also tabulated for several values of N and n in Ref. (13) and could be

keyed in for calculation of (f,C,) values by Prgm. Cheb (f,Cp).
 

 

Prem. Cheb Cn

 

 

  

(2) fLBLA 1 - 8T05  hRY 1 - ST06 2 5
hSTI 0 STOM 13
fLBLO RCLS 2 + RCLY 1 + gx>y GTO2 STO
1 STO3  RCLL 2 X RCLS + CHS 1 +
fD87Z  STO(i) 35
fLBL1L RCLL 2 X RCL5 - X RCL3 2 X

1 + X  hxey RCL3 X RCL5 1 + RCL3
+ X + RCL3 RCI5 - + RCL3 1 +
+ fDSZ  STO(i)RCL6  RCL3 1 + gx>y GTO0 STO3
hR¥ hRY fISZ RCL(i) hxey fDSZ GTOL 82
fLBL2 2 STO+5 giBLfe RCLS fINT STOL 2 L h3TT
hRTN 6 STO6  fLBLC RCL(i) fx#0  GTOD FDS GTOC FLBLD
hRCI DSPO  hPSE RCL(i) gx=y GTOfe DSP2 fx fDSZ GTOC 112

R 3 4 5 6 Values of Cp(x) are
n=1 %=0 N n'-1 Index stored in reverse

to to N. I order from E to A,

nel int 2 > 89 to 80, and 9 to T.

Test:

(2) n'=3 + No. of data pts.=14 A, 2h after 40 sec.

R/S 2h, c1(1) = 0.85; 23, Co(1) = 0.54; 22, C3(1) = 0.08;

21, C1(2) = 0.69; 20, Cp(2) = 0.15; 19, C3(2) = -0.L6;

18, €1(3) = 0.54; 17, Co(3) = -0.15; 16, C3(3) = -0.69;

15, Cp(h) = 0.38; 1h, Co(k) = -0.38; 13, C3(h) = -0.66;

12, C1(5) = 0.23; 11, Cp(5) = ~0.54; 10, C3(5) = ~0.LT;

9, C1(6) = 0.08; 8, Co(6) = ~0.62; 7, C3(6) = -0.17; 6. 2k,
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The least square fit to the starting data with teyms ranging in n up

to the maximum value, n', yields the equation f(x) = [(£,00)/(Cp,Cp C(x),

which has the advantage over equations fit by other 18ast-square procedures in

not weighting the different powers unequally. Unless weighting factors are

added, all points will have equal weight. The equation can be expanded in

powers of x by substitution of

n

n(®) = 3(lnm Gen
“= (nem' (m1) (x~-m") IN!

i - . - , 0 =I
Each Cp(x) will provide n terms in powers of x ranging from (x)” to (x) .

 

Substitution of X¥ = %x/I = r will then convert each term to m' terms in x"

. n' . . coe .
ranging {rom x° to X +. The final equation will be a polynomial

f(x) = Ke n' Bach of these coefficients relate to the original (f,Cn)

terms by a = byn(f,Cpn). For n' = 3, there will be ten by, coefficients.

For n' =k, there will be fifteen byn coefficients to be evaluated,

multiplied by the appropriate (f,Cy) values and summed to obtain the ap

values.

The bpp coefficients are evaluated by the equation
n

a 1
bmn = (CpsCyp) To2a fmt nfm

) = (Wn+1)! (Nn)!
(on+1) (N1)2

(n+m' ) 1 (Wem)!

 

where (Cp ,Cp

and Av, = ~—
nn (n=m' 1 (m'!)2N!

1 {Nn 1
Form = n, m'=m=n, R =1 and A = ant (X n)!

5 (wm! )=N!
1 on 1

Thus b = (2n!)” (N-n)! for m=n. 

mn (01)2) (-1)2(Cy, Cn)
Form= n=l, by.1 pn = (bpp) (=In)(N/2 + r)

5
 

n

} 1
For m = 0, Ryto = rlr+l) «.. (r+ m' = 1) and by, = Toy ApryBmto

n>Yn 2

Form' = mtl, Ry'm = ne + da! (m'-1.)

Form=1, m'=3, Ry, = 3r" + 6r + 2
2

Form= 1, m' =h, Ry, = 2002 + Or” + llr + 3)

Form =2, m'=k, Ry, = 6r° + 180 + 11. 
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Values of bog, bpp, bis» ops bios boo, bo3, b13, bos, and b3z are tabulated

for n=3 and N = L, 7 and 8, and 9 and equations as a function of N are given

in Table I-5 of Ref. (13).

When values of f(x) are given for x values that are evenly spaced at N

intervals of magnitude I starting with an initial value xj, Prgm. Cheb(f,Cy)

will convert to variable x = x/I = x:/1 = x/T = rv with X varying by integral

values from O to N and then will least-square fit f(x) to a Chebyshev poly-

momial of order n' using the bp, coefficients of Prgm. Cheb C, corresponding

to n' and N as discussed in Ref. (13). If followed by Prgm. Cheb-a, the

Chebyshev polynomial is expressed as f(x) = ax upon ingertion of I and

r = xq/I. The following program is designed for n' = 3, but can be adapted

ton' =k, 1 5is integer value of x.

Directions:

(1) Insert Cheb (f,C,) Prgm.

(2) Insert Cheb Cp Data Tape for n'=3 and appropriate N
Display

(3) £(o) B £(0)

(4) r(1) R/S £(1)
£(2) R/S £(2)

NO : oriN£(iz 1) : £(15 -1)

N LN
£(i3) When N odd, £(i5)C3(i35); otherwise =

£(i% +1) —£ (15 +1)

LN N= + . -f{i= +£(i3 2) : £( > 2)

f(N-1) R/S ~f(N-1)
(5)£(w) E (r,Cq)

(f,Cq

(£,Co)

(f,C3)

Start at step 3 for each new set of data with same N. Step 5 must be keyed

before starting again at step 3. For different N start at step 2.
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Insert Cheb C, Data tape for n'=3 and N+1=1L data points.

By 15 R/S; Lo R/S; 85 R/S; 156 R/S; 259 R/S; after each of these

the inpul number used in the calculation is displayed;

133; 585 R/S; 820 R/S; 1111 R/S: 1h6h R/S; 1885 R/S;

steps,

hoo 1/5 « 67.

2380 R/S; after each of these steps, the negative of the input number

ils displayed;

(5) 2955 & 1

 

~7h83, 2632, -L08,
   

 

 

 

Prem.Cheb(f,C,TTaRTrrILLNRAIdsLorene LE I Ilo =

glLBLfe RCL5 PINT SI0k 2 ly hSTL  hRTN 8
(3) FLBLB S00 STOLL  8T02  ST03 hRIN 14
(h) gLBLfe 4 + + FGSB3  fGSB5 hxzl  hRt  hRTN RCLL

£x=0 GTOfh  hRY GTOfe fIBLFb hRY GTOfd 31
FLBL3  STO+0  £GSBL  STO+1L  FESBL  STO+2 £GSBL  STO+3 hRTIN 80
TLBLY Cx RCL(i) £DS%7 X hRTN kg
T1BL5 h hx gDSZ(i) hRTN £GSB6  hx2l hRTN 54
FLBL6  hxzl £187  RCLS RCLS INT  gx#y hRTN hRCI 3
+ hSTL RTH 67
gLBLLA  fGSBY  £GSBE  hRrt hRIN  GTOfd 73

(5) FLBLE  £GSBT  STO+0  hRY STO+1 hRY  STO+2 hRY  ST0+3 gGSBfe
RCLO RCL RCL2  RCL3 gSTK  hRTN 89
FIBLT CHS + CHS + CHS + CHS  hRTN I.
FLBLS8  STO+0  £GSB9 STO+3  £GSBY ST0+2 £GSBY  STO+1 hRTN 107
TLBLO CLix RCL(1) FIST X hRTN 113 memory steps.

rR 0 EE > 3 h 5 T
N

(£,C0) (£,00) (£,Cp) (£,C3) X > Cn
- Index ’ Index

Cplx) values in B to A, 89 to 0, and P9 to 7.

Directions:

(1) Insert Cheb-a tape

(2) Insert (£,C0) to (£,C3) in registers 0-3
if not carried over from Prgm. Cheb. (f,Cy). Display

(3) 14 raA ag

(ha) SST a1

(bp) ger az
(he) ssm a3

(5) x B=» fx); I » £{x+1); BE + F(x+2I), etc.

NOTE: After step ke, the ap values can be reviewed by keying another SST

which will flash the four ap values in the order ap to a3.

The (f£,Cy,) values are retained in RO-3 and step 3 can be repeated
after N/2 STO 5; for example, if incorrect values of I or r are used.



 

 

 

 

Test:

(2) 12159 STOO, T4883 CHS STO1l; 2632 STO2; 408 CHS STO03;6.5, STO5;

(3) 200 4 1.5 A 0.625; (L) SST 0.00375; SST -1.25%107° SST 1.25x107
(5) 300 B hy E15, EMO, E85; 1500 B 400, E585, E820.

Prgm. Cheb-a

(3)  fLBLA STORE hR+ CHS  STOC  RCLS 0 X STOD 3
STOA STOR fGSB1  RCL3  STO6 x STOG  fGSBY RCL3 X
STO8 2 STOA  STOB fGSB1L RCL2  STOS X sTo+8 fGSB2
RCL? X STOT 3 STOA STOB fGSBO  STOX6 RCLE 3
X 6 + RCLE X 2 + £GSB3 2 STOB
RCLE X 1 + fGSB3 + 1 STOB £GSB3 +
RCLC + RCL6 hSTI X STO+T 1 STOA fgsp1l RCLI
X STO+7 fGSB2 RCL1 X STO6  RCLD 1 + nl/x

RCLO X STO+6 2 STOA  fGSBO STOX5 RCLE fGSB3 1
+ 0 STOB  hR¢ RCLE 1 +  RCLE x STOL

FTGSB3 + RCL5 X STO+6 3 STOA  RCL4 fGSRB3 1
STOB + RCLE  fGSB3 + 3 STOB  hR¥ ROLE 2
+ ROLY X fGSB3 + hRCT X STO+6 Rens hRIN

(4) RCLY RCL8 RCLO  gSTK 134
fLBL2  fGSBL RCLC X RCLA X RCLD 2° 3 RCLE
+ X hRTN 147

fLBL1  fGSBO fGSB3 RCLC RCLA  hy¥ + hRTN 155
fLBLO RCLD  hN! gx® RCLD RCLA - nN + RCLD
RCLA + 1 + hi! 3 RCLA 2 X 1
+ X hRTN 178

fLBL3 RCLD RCLB - hi! X RCLD  hN! + RCLA
RCLB + nN! X RCLA  RCLB - hi! + RCLB
hi! gx2 + hRTN 202

(5) fLBLE  hR4 RCLC - fLBLB 4 + 4 RCLO X
RCLS + X RCLT + X RCL6 + hRTN 591

R 0 1 2 3 h 5 6 7 8 9
2 N

(£,Co) (£,C1) (£,C0) (£,C3) r +r = (£,C3) a; ap aj
(£,Co) (£,03)(C3,C3)

(£,02)/(Co,Co ao

R A Cc E I

n m' -T T 4 or 5

(£,03)/(C5,C3)

 

 

The three programs Cheb-Cp, Cheb-(f,Cpn), and Cheb-a can be combined in

several ways. There is enough space on one tape to combine the first two

programs for a total of 204 memory steps if the 8 steps of gLBLfe are not

duplicated; thus there would be no need to put the C(x) values on a data

tape. However, if N+1, the number of data points, is frequently used,

it would save time to have stored the Cp (x) values on a tape rather than

to recalculate each time. If a data tape is used for the Cp (x) values,

a portion of Prgm. Cheb-a can be added to the end of Prgm.Cheb-(f,Cp).
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This would provide enough space for the following additions for calculation
x

of df{x)/dx and J f(x )dx upon keying xC and xD, respectively, or following

xB with R/S to obtain df(x)/dx and another R/S to obtain the integral.

hR+ fLBLC + + RCL9 3 X X RCL8 2

X + xX RCLT + hRTN hit

fLBLD A 4 RCLY L + X RCLS 3 3

+ X RCLT 2 + + x RCL6 + x

hRTN

Tt is unusual to have thermodynamic data of sufficient accuracy to

warrant more than the four constant fit of Prgm. Cheb--a. Prgm. Cheb~C,

already can accommodate quartic or higher power fits. Prgm. Cheb-(f,Cp)

and Cheb-a could be expanded to a quartic fit if desired.

For most applications of Prgms. Cheb Cp, Cheb(£,Cq) and Cheb-a, the

same number of data points, N+1, would not be repeatedly used and there would

be no need to store the constants from the Cheb Cp calculations. Then

Cheb Cp, and Cheb(f,Cy) would be combined on the same tape and the instructions

would be simplified to the following:

Directions:

(1) Insert Cheb Cp~Cheb(f,C,) tape Display

(2) n'=3 4 N+l A )

(3) £(0) B £(0)

(b) £(1) R/S £(1)

£(2) R/S £(2)

£ (1-1) R/S wf (H-1)

(5) f£(N) E (£,C0),(£,C1),(r,Cp),(£,C3)

(6) Insert Cheb-a tape

(71) T4raA ag

(8) 8ST SST S87 a7 ,85,873

(9) x B »f(x); B + £(x+I); BE > f(x+21), ete.

TEST: (Continuation of Prgm. Cheb C, test at top of pg. 8)

(7) 10 4+ 1A 1; (8) ssr .1, 8ST .01L, SST .001; (9) 10 Bk, E15, ELO.
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Chapter IT

Pitting of Experimental Data by An Analytical Function
 

Two types of operations will be considered. The first type requires

a very accurate fit in a limited range of x for interpolation purposes, with

no smoothing of the data. The second type smooths the data to fit some

predetermined functional form by a least-square procedure. The first type

will be discussed first and illustrated with some examples.

A. Interpolation Fit to f(x) = Lapx
 

Program Interp. GK fits four (x,y) pairs with the x values at evenly

spaced intervals of magnitude I to a cubic polynomial, or any three pairs

to a quadratic equation, or any two pairs to a linear equation, which can

be used for interpolation purposes. The calculations are outlined in

Ref. (13). In addition, the program is specifically designed to accept

values of -(G°-H8yq)/RT or -(G°-HE,4)/T for each of the reactants and products

of a chemical reaction at two, three or four temperatures and fit the

resulting -(AG®-AHS,4)/RT values to an interpolation equation which can then

be combined with AHS: or DHE, 4/R for the reaction to calculate 1n K or K,

the equilibrium constant of the reaction, at desired temperatures.

Directions:

(1) Insert tape Interp.GK

2 Pt. Fit Display

(2a) yq * yo A y1-y2

(3a) x1 * Xp R/S ag

(La) sgT al

(5) x EB y

3 Pb. Fit

(2b) y1 + yo t ¥3 B y1-Y2

(3b) xp boxy 4x3 R/S ag

(Lb) s8T 887 a7 san

(5) x E vy

hL Pt. Fit

(2c) yu 4 yo + y3 4 Wy Cc as

(3¢) IT 4x R/S ag

(ke) SST SST SST a1 580,83

(5) x E ¥
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For the reaction aA + bB = mM + nN + o0, the values of g = -(G°~HE4) /RT

(a positive number) for the reactants and products are keyed in as follows:

Display
(a) Ie to initiate a complete set of data 0.00

(b) gn aX ggtbX b 0.00

(¢) sy tmx gytnX ggtoX R/S -(AGC=AHS,4)/RT, 0.00

Steps b and ¢ are repeated at each temperature. If only one mole of a

reactant or product appears in the equation, e.g. n=l, omit n X and merely

key gy *. After the values at each of the temperatures have been entered,

the following steps are carried out depending upon whether a 2, 3 or 4 pt.

fit is desired.

Display

(a) £ a ~(AG°-AHE;4) /RT at Lth
temperature or zero if

less than b temperatures

 

treated.

(ey) For 4 pt. rit: key C and then 12a,
continue with steps 3c,bc,and 5.

(e}) For 3 pt. fit: key fb ~(AGO-AHE,  )/RT at
third temperature

(e3) B y1-¥2

Continue with steps 3b, 4b, and 5.

(eb) For 2 pt. fit: key £ b twice. ~(AGO~AHSt 4) /RT at
second temperature

(eB) A V1-Vo

Continue with steps 3a,ba,and 5.

After the values of ~(AG®~AHE4) /RT have been fit to either a linear,
quadratic or cubic equation for interpolation purposes, the following steps

yield values of 1nK or K.
Display

(6) ~AHEt 3/R aro 6 -AHSt 4 /R

(71) Trad In K

(8) soT K

NOTE 1: A new set of data cannot be treated unless $TeP d has been carried
out followed by step a. The program will accommodate an

equation with three different products or four products if there

is only one mole of the last product value entered. There can be

two different reactants or three if there is only one mole of the

last reactant value entered. However, any number of products and

reactants can be accommodated if + is keyed in after the second

reactant entry and every subsequent one and if + is keyed in after

the third product entry and every subsequent one.



NOTE 2:

NOTE 3:

NOTE L:

 

cont'd.
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The program can be used for -(G-H§y4)/T and AHS4 as well as for

the dimensionless quantities used to illustrate the displays, but

step 7 will display R 1nK instead of 1nK and it must be divided by

R before obtaining K by step 8. R in appropriate units can be

stored in register D for use with step 7 or RCL D STO+0 S7T0:1

8TO+2 STO+3 will convert the equation for -(AG°-AHZ4)/T to the
dimensionless -(AG®-AHZq)/RT form: so that it is unnecessary to
divide by R each time step 7 is carried out. Of course, the

appropriate -AH§yq or —-AHS4/R must be used.

The values of ~(AGo-LHE,1) /RT obtained at each temperature are
stored in the secondary registers starting with S80 during the

calculations following step d. Thus, a set of values at four

temperatures is available for repeat fits using two, three or four

of the temperatures. For each fit, after the first, key fP25 and

go to step d and then continue with either step eh, ez, or ep

depending upon which fit is desired. Step d returns the values

to the secondary registers and they are avallable for repeated use.

Although the program will not fit more than values for four temper-

atures at a time, steps a-c can be carried out repeatedly for up

to ten temperatures. Any two, three, or four of these values can

be recalled and stored in the stack as one would do to initiate

steps 2a, 2b, or 2c. After fP2S to safeguard the values for

future use, one would then proceed with steps 2 to LU for the parti-

cular fit chosen. Also as discussed in Note 4, this procedure

requires keying of hSFO if steps a to ¢ are to be used again.

Steps a to c¢ can also be used to evaluate AH8y4q/R of the reaction
from the enthalpies of formation of the reactants and products.

One should use P25 appropriately to insure that values of

-(AG°-AHE. 4) /RT or values of ap that are wanted for subsequent
calculations are not erased by the AH calculations.

Flag 0 is used to control the index numbers that regulate the

storing of values during steps a to ¢. The program sets FO when

inserted and subsequent operation of the program maintain FO in

the proper set or cleared position as needed. However, if the
use of steps a to c¢ is not subsequently followed by step d, the

next operation of steps a to ¢ will not start storage in RO but

will store beyond the last registers used.

) 1.978 4 2.536 4 3.25 B -0.558;

) 0.3 40.4 40.5 R/S 1.240;

) SST 0.120 SST 7.800; (5) 0.4 E 2.536;

ec) 1.552 + 1.978 + 2.536 + 3.25 C 0.00L;

) 0.1% 0.2 R/S 1.000

) SST 2.000 SST 3.000 SST 4.000; (5) 0.4 E 2.536



1h

Clgr) + 2C1o(g) = cc(g) (a) fe 0.00

500 (by) 1.16 + 49.85 + 2X D 0.005 (cp) 68.1 R/S - 32.76,
1000 (bp) 2.78 + 55.43 4 2X D 0.00; (c,) 81.31 R/S - 32.33,
1500 (b3) 4.19 + 58.85 + 2X D 0.00; (cg) 90.01 R/S - 31.88,
2000 (by) 5.38 4 61.34 + 2X D 0.005 (cp) 96.53 R/S - 31.53,

K
(d) £ a = 31.530; (ey) C = 0.020; (3c) 500 + 500 R/S - 33.050;

(he) SST 3.60x10™ SST 5.00x107 SST - 1.60x1070, (5) FEX 3 E - 32.330;

1.98719 STOD, -AHO/R = 25x10° RCID + = 12581 STO6

RCID 1.98719 STO+6 STO+1 STO+2 STO*3

(7) 500 fa glib (8) ssT 5858
750 fd 0.392 1.479

EEX3 fd -3.689 2.50%x10~2
1500 fa ~T7.656 I. 73x10~k

SEFX3 fd -9.576 6.94x10=2

fP2S f a -31.530; £ b - 31.880; (2b) B — 0.430; §3v) 500 4 EEX3 4
1500 R/S — 33.170% (4b) SST 8.0x10~4 sgT 4.ox1079,

RCLD 1.98719 ST0+0 STO+1 STO+2

(7) 500 fd 8.676 5858
750 fd 0.395 1.485

1500 fa -T.656 L.73x10-4

fP2S fa - 31.530; fb - 31.880 fb - 32.330; (2a)
(3a) 500 4 FEX 3 R/S - 33.190; (4a) SST 8.6x10~k

RCLD 1.98719 STO*0 STO+1

(7) 750 £f& 0.397 1.487
1500 fd ~-7.666  L.69x10~k

0.403;A =~

(5) EEX 3 E - 32.330;

o
o

O
o
o
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Prgm., Interp.GK

 

 

 

 

 

 

(a) gLBLfa RCLO RCL1 RCL2 RCL3 fP2S hSFO  hRTN 8
(e,f) fLBLfb hRY hRTN 1
(2a)  fLBLA  STOk - 0 STO02 STO3  hRY hRTN Ly
(3a)  8TO5 - + STOL  RCLS X CHS RCLY + ST00
(ka)  nRIN RCL1 31
(2b)  fLBLB  hxzy - STO5  hRY hLSTx STOOL - 0

STOO STO3  hRY hRTN i
(3b)  S8TO9 hR¥ ST08  hRY STO7  RCLS - + RCL8  RCLY

+ STOB X RCLTY  RCL8 + RCL5 X RCLO  RCLS
- STOA 3 - RCLO  RCLT - 2 STO1  RCLS
RCLA + - CHS RCLB + ST02  RCL8 B CHS

(kb)  RCLL + STOO  hRTN  RCL1  RCL2 90
(2c) fLBLC  hRt STOC - STOT7T  hR¥ hLeTx = STOS5  hRy

hLSTx - STOOL  RCLT 3 + RCLA + RCLS -
2 + hRTN 113

(3c)  STOB hRY STOA 3 hy* 3 ST03  RCLB RCLA +
X 3 X CHS RCL5  RCLL 2 X - 2
+ RCLA gx? + + ST02  RCLLE  RCLA + RCLA
RCLB 2 X + RCL2 X - RCLA RCLB +
RCLB X 3 X RCLA  gx© + RCL3 X -
STO1 0 STOO  RCLB E CHS RCLC + STOO  hRTW, 44

(ke) RCL1 RCL2  RCL3 1/6
(71,8) gLBLfd E RCL6 hR4 + + hRTN ge® Tuk
(5) fLBLE + + + RCL3 X RCL2 + X RCL1

+ X RCLO + hRTN lug
(a) gLBLe 0 4 4 + hF?0  hSTI  hRTN ou?

(b) FLBLD + + STO(i) CLX hRTN ba
(c) + + + RCL(i) ~ STO(i) fISZ  hCFO f-x- fe

hRTN 22k memory steps.uas

2 pt. RO 1 2 3 h 5
(a-ha) ag ay O 0 yo xo

3 pt. RO 1 2 3 L 5 6 7 8 9
(Pb=-bb} © a; ap 0 Yo  ¥3Y2 xq Xo X3

ag
A B

X3=Xp Kotxsg

Lpt.R 0 1 2 3 by 5 T
(2c~kc) O,agay a, a3 yo=¥1 ¥3-¥1 ¥h~V1

K B T

I x un

R 0 to 3 L 5 6 7 8 9
Bach a, is yo or used Ag,4/R x] or 0 0
in Rp yo-Yi. yL=¥y1 or Xp or x3

R A B I
X3=Xp Xotx3 Index

or 1 or Xi or yi

RS

temperature.

0-3 store -(AG®-AH84)/RT for 2 to 4 temperatures in order of increasing
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B. Least-Bquare Fitting of Data to an Analytical Function

Least-square fitting of data to an equation y = f(x) is not a routine

process but requires careful consideration of the variations of errors in

, (15, 16,17)
vy as a function of x I'or example, if it were desired to obtain

the values of ¢ and d in the expression y = ox” + dx that best represent

a set of data, one could least-square a variety of functions of y. The

use of the unweighted function would tend to heavily weight values of y at

large x. As just one alternative example, one could least-square

v/x° = ¢ + dx and obtain, in general, quite different values of ¢ and d

that would correspond to more heavy weighting of values of y at low x than

for the previous procedure.

One should carefully consider the magnitude of errors in y as a

function of x before selecting the appropriate procedure. One should apply

appropriate weighting to off-set any bias of the least-square procedure as

well as to attempt to correct for systematic errors. (11)

The first example will be the fitting of a set of data (x,y) to a three

constant equation, y = a + bfy(x) + cfo(x). To minimize [y—a-bfy (x)-cfo(x)]°,

one takes partial derivatives with respect to a, b and ¢ and sets them equal

to zero to obtain

ia + Lf(x)b + Ifp(x)e = Ly

If(x) + re (x)1% + If (x)falx)e = Iyfy(x)
Lfo(x)a + Lf(x)fo(x)b + L[fo(x)]e = Iyfo(x)

where the sums are over the i values of x.

Directions:

(1) Insert tape LSf(x)

(2) GTO £ d W/PRGM, key in f(x), SST SST, Key in fo(x), RUN

(3) 4 Display

(h) xq repeat 4 & 5 for all i £1(x)

(5) y; R/S vifolxi)

(6) R/S a

(7) 8ST 8sT b,c

(8) x ¢ y

NOTE: Return to step 3 for each new set of data. To add more data after
step 7, RCL3 STOXS and start at step 4 again.
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x) = lnx, fox) = xt(

2) W/PRGM f LN SST SST h 1/x RUN; (3) A

Lt) 1 B 0.000; (5') 20.0 R/S 20.000

Ly 10 B 2.303; (5") 15.605 R/S 1.561

4") Exx2 B 4.605; (5%) 19.310 R/S 0.193

6) R/S 10.000; (7) 8ST 2.000 SST 10.000 (8) 10 C 15.605
 
 

 

 

 

Prem. LSf(x)
(3) fLBLA fCLREG fPz2S fCLREG hRTN 5
(4) frLBLB * + + fe hR+ fd T+ hLSTx hRTN
(5) fLBLL STO+5 X STO+6  hRY  hLSTx X  STO+7 hRIN 24
(6) RCLI+ STO1 hRY ST02 fP2S RCL9O RCL8 RCLT  RCLS P25

ST08  hRY STO9 hRY STO4  hRY STO3 RCL1L gx? RCL3
STO*5 + RCL8  ~ RCL1 RCL2 RCL3 + X RCL
- STO8 hxzy STO RCL?  gx© RCL3 + RCL9 -
ST09  RCL6 RCL7 RCLS RCL2 X hxzy  - hSTI RCL5
RCL1 X hr? - STOO RCLL RCLO X RCL8 gx2
- RCLO RCLY X RCL8 hRCI X - hxzy :
STOR RCLL X RCLO hxy  -— RCL8 + STOC RCL2
X RCLL RCLB X + RCL3 + RCL5  hxy -
STOA  hRTN RCLB RCLC 118

(71) fLBLC #4 + fe RCLC X hxey fd RCLB ¥
+ RCLA + hRTN 132
gLBLfA [ £1 (x) ] hRTN
gLBLfe | fo(x) ] hRTN 136 memory steps + f£1(x)+fo(x)

R 0 1 2 3 L 5 6 7 8 9
t If(x) Ifo(x) 1 Ify(x)folx) Ly Zyfq(x) Iyfpo(x) Z[f1(x)]° Z[ro(x)]”

1
q Ty 8 r

RS h 5 5 6 T 8 9 A B C I
ify (x) lr (x)]1° fox) I(f (x)1° Lf(x)fo(x) i a b cc u
 

- Tyfi(x), u = IyLfo(x)/i - Zyfo(x)
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Linear Regression

For a simple linear regression to fit a set of (x,y) to f(y)=bf(x)+a,

the following program is adapted from program Stat 1-22 of the HP-65 User's

Tibrary (18). r(x) may be 1/x and f(y) may be In y or more complicated

functions. In the equations for the coefficient of determination and for

the standard errors, f(x) will be taken as x and f(y) will be taken as y.

The coefficient of determination is given by

2 [Bry - (5avy)/il”
r = »

[5° - (2x)/1005y° — (5y)%/1)
The standard error estimate of y on x is given by

 

2

y° = aly = blay|
i -2

r 1
} dah _
 s = nm

ye Xx 1-2

The standard error of a is given by
1

) “12

Co |
Sa 7 Sy.x Ta

TE Lk? - (x0)?
The standard error of b is given by

ok
- 2 2,09 2

sp, = Sy, xl LX - (Ix) /i]

Directions:

(1) Insert tape LR

(2) Key GTO fb W/PRGM, key f(x) SST 88T, key f(y) SST S8T, key £7 (y) RUN.

If f(x) = x or f(y) = y, nothing need be keyed in for F(x) or for f(y) and £7 (yr).

(3) fa

(Lb) x 4 yp E 1

xo * yo E 2

xy Vn I n

(5) A a

SST b

(6) B re
(7) xc ¥
(8) » Sy. x

R/S Sg

ser b
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NOTE 1: For data at regular intervals, after fLBLE add hLSTx eH) +

hx#y gLBLe and after fLBLC add hR+ It + 4+ 4  glLBLc where I is

the interval between x values and (x) couverts f(x) to x.

Step 4 is changed to x; 4 yy fe, yo BE, y3 BE... y, F and step(5)

is changed to xq; + 4 4 fc > yy, C+ yp, ¢>y3 ov. C > yy.

Prem. LR

fLBLE fd hxzy fb T+ hRTN o
gLBLa fCLREG fPzS hRTN 10

fLBLA PS RCL8 RCLh RCL6 X RCILO * - STOC

RCLS RCLY gx? RCLO 3 - STOD + STOR PS
fx RCLB X - STOA hRTN RCLB 37

fLBLB RCLB  RCLC  X £P&S  RCLT RCL6 gx°  RCLO 3
- : £P2S  hRTN 51
fLBLC fb RCLB X RCLA + fGSBO hRTN 59

fLBLD P25 RCLY RCL6 RCLA X - RCLS RCLB X

- RCLO 0 - + vx hRTN 76

RCL5 RCL9  fPaS + RCLD + vx X + 4

RCLD vx 3 hxzy  hRTN hx2y 92

gLBLb[ f(x Jmo
guild[£(y) JnRTIN
FLBLO[ £~ oo Tom

R 4 5 6 7 8 9
2 2 .

ne (x) Z(r(x)) ze (y) 2(e(y)) pf(x)f(y) i

R A C D
2 2,.

a SE(x)f(y)=(Zr(x)Ee(ya (r(x) =(2r/(x))7/1

Test:

(2) GTO fb W/PRCGM hl/x SST SST fLN SST SST ge” RUN

(3) fa (4) 1300 4 1.47x107° E 1, 1400 + 2.63x10”

1600 + 6.96x10°°F

(5) A, a=h.112 8ST, b = -10835 (6) B 0.9998

(7) 1300 C 1.466%1072, 1600 C 6.99x107°

Dy Sipge/x = 0-012k5 R/S sg = 0.08; SST sp, = Ths.

© E2, 1500 4 b.5x10™° E3,
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Least-Square Fit of f(y) = afy(x) + bfo(x) + cf3(x)
 

Prgm. LSfyfof3 is an extension of Prgm. LSf(x).

a = (ALyfy - qffp + riff) /D

b = (qIf? - BIyfy + s%f1£3)/D

c= (-rZf© - sLfyfo + CLyfy)/D

)@
where 18,05" - (Lfpfy

ERFY
Lf)folfpfy = Lfyf3Rfp?

ALf1? = BEfifo + CIfyfs3

LyfiIf3° — Lyf3lfofa

Lyfolfofy = Lyf3lfp?

Lyf3iffp — Lyfolffy

1}
if

A

B

C

D

q

r

II)

If fy, fo, and {3 are not functions of x directly but are functions

f(x') of x' = £'(x), the program provides for conversion of x to x'. For

example, if a solidus or liquidus curve is to be expressed as a function of

Typ-T rather than T, f'(x) would be keyed in as Typ-CHS. After insertion of

a set of data, additional data can be added after steps (5)-(T7); follow with

steps (5)-(6) for new values of a, b, and c.

Directions:

(1) Insert tape LSfifpfg(x)

(2) Key GTO fa W/PRGM, key in f'(x) SST SST 8ST, key in fy(x) SST 8ST, key
in fy(x) SST SST, key in f3(x) SST SST, key in f(y) SST SST, key in £~Ll(y)
RUN. If any f(x) = x or fly) = vy, key in nothing for that function.

(3) A (before a set of data to clear registers) Display

(4) x4 ty; B repeat for all i. fq (x) r3(x)

(5) ¢ a

(6) 8ST gsr b,c

(71) = D g

(8) (x7-100) STOE E > yy, E + yo, etc for
x at 100 intervals.



=P]

 

 

 

 

 

LSTfaf3(x)

(3) fLBLA fCLREG £P2ZS fCLREG hRIN s
(4) fLELB fd STOA hRY fa  STOB  RCLA X

STO+1  hRY 4 fb STOC  RCLA X  STO+2 hRY
RCLC RCLB T+ hR hRY fe STOD RCLA X STO+3
RCLC RCLD TPS T+ fPZS  hLSTx  RCLB X STO+0  hRTN 42
gLBLa. f'(x) 4 + + f(x) hRIN
gLBLb fo(x)  hRTN
glBLc fa(x) hRTN
gLBLA ly) hRTN
glBLe f-1l(y) hRTN ss+f( )

(5) fLBLC fPZS RCL5 RCL8  £PZS STO9 hRY STO6  RCLT  RCLS
X RCLS gx° ~  8TOA RCLY RCL5 X  RCLO RCHS
X - STOB  RCL9  RCLS X RCLO RCLT X -
STOC RCLO X RCL6  RCLA X + RCL9  RCLB X
- STOD RCL2  RCL8 X RCL3  RCLT X - STOR
RCLO X RCL2  RCLS X RCL3  RCL8 X - hSTI
RCLO X - RCLA  RCLL X + RCLD 3 STOA
RCL3  RCL9 X RCL2  RCLO X - STOL  RCLO X
RCLB  RCL1 X - hRCI RCL6 X + RCLD x
STOB RCLC RCLL X RCLAY  RCLY X —- RCLE RCL6

(6) x - RCLD + STOC RCLA  hRTN RCLB  RCLC 14+ f(x)
(7) fLBLE RCLE EEX 2 + STOE fLBLD fa RCLA X

STOL hRY 4 fb RCLB X STO+4 hR¥ + fe
RCLC X STO+4  RCLM fe  hRTN 1eo+f (x)

P 0 1 2 3 L 5 6 7 8 9

Lffy Lyfy Lyfo ryfa Lf3 £0 LEpfs i

2

S T 8 9

np” iret ner, i

Reg. A B D BE I

f(y) f(x) f(x) 5x)

A B D

b r q
 
 

GTO f a W/PRGM 3 EEX 3 — CHS SST SST SST SST SST gx° SST SST 3 h y*

SST SST h 1/x SST 8ST h 1/x RUN

A (4) 1800 4 2.289hx10™" 5 2.07x100

SERX 3 4 3.333107 B 1310705
5.123000" Bh. 1x00
¢, 0.992 (6) SST 1.016X107° SST 9.92x10°

1800 D 2.28910" (8) 1700 STOE E 2. 080hx10™"

3.333x10=4% 1,100x10-* 5.1235%107".

2 Lb 2
B 1.46310",

2200

: 1900 4 2.7h65%10°

2100 + b.1x107% B 6.56x107;

3 1. (7) 2200 D 5.135510"

E 2. 7hehx1o™
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The common practice of high precision fitting of experimental data

with a power series with a large number of terms is not followed here.

The experimental error inherent in most data do not warrant high

precision fits and the use of a large number of terms that work against

one another makes it impossible to assign physical significance to any

term. When the data have been made available at even intervals, the

use of orthogonal functions such as the Chebyshev polynomials of Chapter 1L

to fit fly) = x a, [£(x)" offers many advantages. The orthogonality makes

the solution of matrices simple and a change in the number of terms does

not change the coefficients of the earlier terms. However, there are

often theoretical reasons to expect a better fit with a mixture of functions

such as lnx with powers of x as well as inverse powers of x. Then

f(y) = a + dbfy(x) + cfolx) or f(y) = af1(x) + bfo(x) + efs(x) can be fit

using the previous programs. The next section describes ways of using

additional functions without increasing the number of independent parameters.

Pit of Data to Equations with More Than Three Constants

The solution of simultaneous equations with more than three variables

requires L4xL and higher matrices. If the data are avallable at even spaced

x values, a much simpler procedure involves the use of orthogonal polynomials

such as the Chebyshev polynomials. Such a simpler procedure is to use

interpolation programs to provide data for evenly spaced x values and to fit

the data with a Chebyshev polynomial as illustrated in Chapter I.

Sometimes, it is desired to fit data to a four constant equation, but

it may not be advisable to fit an equation with four simultaneously adjustable

constants, as errors in the data can yleld quite unreasonable constants when

the four terms are allowed to work against one another in an attempt to fit the

scattered data. A procedure for fitting the four constants with only three

being independently adjusted will be illustrated for heat capacity data and

for values of enthalpy increments available from drop-calorimeter measurements.

The equation Cp =a + pT + oT is often adequate for many substances for a

considerable temperature range above room temperature and can be fit as

described for a three constant fit. The negative eT? term represents the

drop in heat capacity at lower temperatures due to quantized vibrational

levels. The 'a' term corresponds to the classical Dulong and Pettit value.
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The '"bT' arises from electronic, thermal expansion and anharmonicity contri-

butions. These contributions also provide higher order terms which together

with a contribution from vacancy formation necessitate a ar’ term at higher

temperatures. The enthalpy equation corresponding to Cp = g + bT + oT? + aT

is Hp-Hpg,q = a(T-Tgpg) + Lo (1775,4) - e (115tg) + (a/3)(13-13r4). As

the enthalpy data often have approximately the same percent error over the

temperature range of study, the expression to be fitted by least-square

procedures is often

(Hp-tipg,,)/ (T-Tgeq) = a + $0(T¥Tgpq) + o/TTgpq + (4/3) (I4TTgpa+Theq).
If both the 'c¢' and 'd' terms are important, there will be a minimum

value of dCp/aT at (yl = ~3¢/d with the contribution of the a7 term

becoming very small at lower temperatures and with the contribution of the

or? term becoming very small at higher temperatures. A first approxi-

mation to T¥ can be obtained from inspection of the data. A revised value

can be selected upon examination of the deviations between observed and

calculated Cp values near T*, A practical way of treating the data is to

replace the constant d by 3c) (TY to obtain Cp = a + bT + [2a(pe)Hp?

One could also replace ¢ to obtain Cp = g + cT + afr?)p2], The

equations are equivalent. Program LSf(x) can be used with £1(x) = T and

fox) = 7? - 3 (mp) "lp? if the constant c ig retained or with

fox) = 7° - Lope yy? if the constant d is retained. Program LSC¥

is given here with the constant c¢ retained.

Directions:

(1) Insert tape LS C} Displa

(2) T% A T*

(3) = 8 repeat for all data *

(kh) Cp R/S Cp a(x)

(5) R/S a

(6) ©8T SST SST b,e,d

(1) Tc Cp

(8) Ty 4 Hi-Hog8 fa Ty

(9) T D H~H;

(10) R/S H-Hpgg

NOTE: If T; = 298.15, key H;-Hpgg = 0 in step 8. Start at step 2 for
each new set of data. To add more data after step 6, RCL3 STOX5
and start with step 3 again.
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Test:

(2) ho A; (3) 500 By (4) 1.35 R/S 2.0x10°

1500 Bj; L.7056 R/S - 1.ox10™ 2BEX 3 B; 6.975 R/S - 2.8x10”

(5) R/S 0.999; (6) SST 0.001001, SST ~ 99932; SST 0.9998x1.0™°

(7) 500 C 1.350; (8) 298.15 4+ 0 fa 298.15; (9) 500 D 179.9 (10) R/S 179.9

 

6 >; EEX3 By 2.9 R/S = 2.6x107;
ly

 

Prem. LS C#

(2)"TfLBLA fCLREG FPS fCLREG STOE  hRTN 6
(3) fLBLB 4 4 4 fe hR4 T+  hLSTx  hRTN 1s
(kh) gro+s X STO+6  hRY nLSTx XX STO+7 hRTN £ 23)
(5) The next 91 steps are unchanged from Prgm. LSf(x) through STOA® EPS25=115

RCLC CHS 3 X RCLE L hy + STOD  hxZy
(6) DRTN RCLB RCLC RCLD 128

gLBLfe RCLE Ly hyX 3 hxzy + CHS
hy exe X  hLSTx hl/x +  hRIN uy

(7) fLBIC 4 + + RCLD X RCLB + X RCLC

hR* Exe + + RCLA + hRTN 160
(8) gLBLa STOO hRY  hSTI hRTN 165
(9) fLBLD + + + hRCT + X  hRCI xe +

RCLD X 3 + RCLC  hRCI + hRY + +
hR+ hRCI + RCLB X 2 + + RCLA +
hR4 hRCI - X hRTN RCLO +  hRIN 203 memory steps.

 

Registers are the same as for LSf(x) except for Hi-Hpg8 in O and for A-I.

A B C D BE I

a, b c da T* u

Ty
 

 

Program LS cs can be readily adapted to the fit of (Hp-Hy, )/ (7-15) values

to the constants a, b, c¢ and d.

(Bp=~fp, )/ (T-T3) =g' + b'T + F(T) where
= i 2

a! =a + $00; - et(7%) Yl +pT + +dT]

b' = db - em (M%)T = dp + Lamy

oe! = —e(T*) = lq
3

p(T) = T° ~ (1%) pz,



 

 

 

Directions:

de de 3%(1) Insert tape LS H nisrle

(2) T* 4 7; + Hij-Hpgg A T*

(3) © 3B repeat for all data x

(4) H-H; R/S | £o(T) (H=H; )/ (T-T5 )

(5) R/S d

(6) S8T 8ST SST c,b,a

(1) © ¢ Cp

(8) T D H-H;

(9) R/S H-Hp98

Test:

(2) Tho + 298.15 4 0 A Tho

(3) 500 By; (4) 180 R/S ~ 1570828; EEX 3 B; 1246.5 R/S - 10220;

1500 B; 3130 R/S 4113513; 2EEX3 Bj; 6030 R/S 12391015;

(5) R/S 9.9997x10™ (6) 8ST - 99953, SST 0.001000, SST 1.00048;

(7) 500 C1.35;500 D 180; R/S 180

Prem. LS H*

(2) fLBLA fCLREG STOO hRY fPzS  fCLREG hSTI  hRY  STOE  hRTN
(3) fLBLB 4 4 + fe hit + hLSTx hRTN 19
(k) sTO0 CLx hRCI - RCLO  hx2y + hRt  hxzy

STO+5 X STO+6 hRY hLSTx X STO+7 hRTN 36

(7

The next 91 steps to STOA are unchanged from Prgm. LSE (x) except Tor

changing hSTOI and hRCI to STO6 and RCL6 at steps T3 and 90.
RCLC 3 X STOD RCLB
STO1  hxzy 2 X  STOB
- CHS STOA  RCLE kL
RCLB hxzy  RCLD hRIN hRV
fIBLD RCL1  hxzy  X hLSTx
X 3 + hxzy hRY
- X hRTN £P2S RCLO
gLBLfe RCLE 4 ly hy*
hLSTx gx? + hRTN
fLBLC 4 4 nl/x gx°
+ RCLA + hRTH

RCLC

hRY
hy%
hRY

fe
-+

£P2S
hRCI

RCLC

hRCI X - RCLB
RCI X  RCLA  BTOO
RCLC X CHS  STOC
hR¥ 164
hLSTx vx hxgzy  RCLD
RCLO +  hRY  hRCI

+ hRTN 192
tT hxry Ot CHS

206

X  hxy RCLB  X
220 memory steps.
 

All registers are the same as for LSf(x) except that u is stored in RG,
Hi-Hpgg in ©, a' is added to RO, b' is added to Rl and A to I are as follows:

A B C
al ! co!

a b Cc

D BE I

d T* Ty
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Program LSf(x) and the related programs fit data to a three constant

equation. To least-square fit the two constant y = bf(x) + cfp(x) equation,

it is necessary to minimize X[y - bf (x) - ef(x)]? to obtain the two

equations: prs + chfyfp = Yyfy and  bIfqf, + eis = Lyfo. Simultaneous

solution yields b = (Tyeles - Zyfplf1fp)/D and c¢ = (Typies ~ LyfIfifp)/D

where D = ne5res - (5£17,)7. With f(x) = x, the above equations would

also fit to a equation with a constant term plus a function of x. However,

program SD-03A of the HP-67 Standard Pac(1l8)covers several of the commonly

used simple functions such as y = a + bx, y = ae” (850), y = a + blax, and

y= ax(a0).

A program based on the above equations for a two constant fit is given

here to deal with properties of binary solutions as a function of molefraction,

x, which varies from 0 to 1. The properties Cp» Hy, 5S and G are—

as functions of x in the following manner:

¥y = bxs + x3, ¥o = (b+ lo)it - cx3, and ¥ = x1xo(b + +c + dexo).

In many solutions, the change from an excess of one component to an excess

of the other component changes the character of the interaction and the

constants of the function. 19) Thus, it is often expedient to fit each portion

of the composition range independently with the change often at the midpoint,

but frequently at other compositions depending upon the orbitals being utilized

as one metal is added to another. When a single equation is not used over

the entire composition range for partial molal quantities, a constant of

integration of the Gibbsg-Duhem equation must be evaluated at the overlapping

composition for 7 at high xp or for Ys at high x7 to assure continuity of

the functions. The programs given below provide for evaluation of the

constant of integration when necessary.

Because of occurrence of substantial systematic errors in many data,

complications in the character of the interactions, and inherent bias of

the least-square process when applied to the functions of interest, sultable

weighting of the data is very important. A variety of weighting procedures

are used. Key A makes a least-square fit to 7 = bx5 + ex, which heavily

weights values at high xo. Key B uses Y,/ xp = bxp + cx5 to reduce the

bias of the least-square process toward high xo values. Key C uses ¥,/x5 =b + exo

to further reduce the weight at high xo. Components are assigned 1 and 2

so that the experimental ¥ is 7. When integral quantities are available,

key D fits Y/xyxp = Db + te + Sexo.
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When a single equation for Y; is not used over the entire composition

12)
range, the integration of the Gibbs-Duhem equation to obtain 5 at high

x7 requires evaluation of a constant of integration which is obtained from

d = Hl (bret )=(b"+c")] where the single primes apply to the constants for

1the x 0.5 - 1 range and the double prime applies to the constants for

the x5 = 0 - 0.5 range. When the change in equations is at a value of x7

not at the midpoint, d = «A [1b + ec! (F=x1)] - Jp" + eM (F=xy)1} which is

stored in RD for evaluation of Ts and Y at low x5.

To calculate Yq, Yo or Y given b and c, store b in RB and c¢ in RC and

steps 6 to 8 will yield the desired quanties. If necessary, d should also

be stored in RD.

 

 

 

 

 

 

Directions:

(1) Insert Prgm. LS ¥

(2) fa Display

To fit Yq = tl + ex>

(3a) xoA| x5
alr ox2 repeat for all data “3

(La) ¥y R/S Yixo

(5) R/S b,c

(6) x» EB 7,
(1) R/S Yo

(8) R/S
- 2

Tofit Yq/x, = bxp + cxp

3b) x B x
2 repeat for all data _ e

(bb) Yq R/S ¥y%0

Steps 5-8 as above

To Tit 71 /x5 =D + cxp

x
(3¢) *2 repeat for all data _ 2
(be) ¥1 R/S Yq /x5

Steps 5-8 as above

To fit Y/xqxp = b + 4c + SCxp

d) > D Xx
(34) 2 repeat for all data +
(kd) Y R/S Y/x1x2

(5) R/S bre, de

(54) R/S I)

Steps 6-8 as above
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NOTE 1: For each new sel of data, start at step 2.

NOTE 2: Once constants b, c¢, and,if necessary, d are stored, steps 6-8

can be repeated for any values of x in range of fit.

NOTE 3: For calculations of Tp at low xp, d is needed if the original Yj
data were not fit to a single equation for the entire composition

range as explained in the text. For such a situation, follow

step 6 with step 6' after evaluation of data for x8 = 0 to 0.5
range. Step (6'): (b'+c') fe will store d = + (bre )=(b"+e")]
in register D. When the break in the data treatment is not at

x = 0.5, use equation for d in the text.

Prem.
(2) gLBLfa fCLREG fP2S  fCLREG  hRTN 5
(3a) fLBLA 4 gx X nLSTx I+  hLSTx  hRIN i.
(ha) Xx STO+1 hxzy  hLSTx X STO+2 hRTN GTO0 01
(3b) FLBLB gx° hISTx T+ hILSTx  hRTN 57
(bb) STO+L X ST0+2  hRTN GTOO 49
(3c) fLBLC 1 y+ hR{ LRT sy
(he) 4 nRY hx2y + STO+2 hR4  hLISTx  gx© : gro+l

hRTN GT00 4g

(3d) fLBLD  fGSBC 4 4 1 - CHS hRTN 67
(ha) hxzy + STO+2  hxzy + STO+1 hRTN 6
(5) fLBLO  fP3S RCL5  RCL8 RCLT FPS  STO5 hR¥ STOL  hRY

ST03 RCL2 X RCLL RCLk X - RCL3 RCL X
RCL 2x2 - STOO + STOC RCL1 RCL5 X  RCL2

(54) RCL x - RCLO v STOR fex- RCLC  hRTN  -
STOR hLSTx 2 X sToc f-x-  RCLB hRTN 112

(6) TLBLE S709 gx? hL3Tx RCLC X  RCLB + STCA  X
hRTN 123

(7) 1 RCL ~  8TO8 gx®  RCLC 2 + RCLA +
X RCLD + hRTN 137

(8) RCLY X hxzy  RCL8 X +  hRTN 1th
(6') gLBLfe RCLB RCLC + - L + STOOD  hRTN 153

R 1 L 5 8 9
, - 2D Syf,  Iyfe fh Lf1fs LTS xq xp

RS 5 7 8 A B Cc D

2 2 Ll 1
Lfy Lfs Lffo bic SC

b+cxo b Cc d

  

eenm
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The following values can be used to test Prgm. Y.

Xo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tq L 2k 72 160 300 50h 784 1152 1620

¥o 113k 102k 882 720 550 38h 23h 112 30

117 22h 315 38k Los L32 399 320 189

As these values are derived from ¥y = x3 + exp with b = 200 and ¢ = 2000,

any of the weighting procedures of Prgm. Y will yield b = 200 and c¢ = 2000.
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CHAPTER III

Standard Thermodynamic Calculations

A. Thermodynamic Properties of Gages
 

The several programs tabulated here are designed to calculate the

translational, electronic, vibrational and rotational contributions to the

thermodynamic functions of gaseous molecules using the equations given in

Chapter 27 of Ref.(12). For gaseous atoms, Prgm. E-A provides the elec—

tronic and translational contributions to the thermodynamic functions. It

can also be used to calculate only the electronic contribution for either

atoms or molecules.

Program D-LT calculates the translational, rotational and vibrational

contributions for diatomic or linear polyatomic molecules. Program Cor

calculates the corrections to the results of Prgm. D-LT if the effects of

anharmonicity, centrifugal stretching and vibration-rotation interaction

are to be included. When it is desired to obtain moments of inertia for

the rotational calculations from molecular constants, Prgm. ID can be used

to calculate Be values for diatomic or linear molecules, moments of inertia

or products of moments of inertia for a variety of molecules including bent

triatomic, symmetric top CBA3, octahedral BAg, etc. Program NL uses the

product of the moments of inertia of non-linear molecules to calculate the

translation, rotational and vibrational contributions.

The spectroscopic constants used should be expressed in units of emt,

the unit conventionally used in spectroscopic publications. All the thermo-

dynamic quantities are calculated in dimensionless form, which is most suit-

able for direct calculation of equilibrium constants. However, the programs

provide for multiplication by R in appropriate units to yield the functions

in the units desired.

In identifying quantities, the subscripts e, r, t andv are used to

refer to electronic, rotational, translational and vibrational contributions,

respectively. The superscript © for quantities including translational

contributions indicate that the values are for the gaseous standard state,

although the superscript is not always shown,as all values are for the gaseous

standard state.
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Diatomic or Linear Polyatomic Gases 

Program D-LT uses the rotational constants Be and a, the symmetry

number 0, the vibrational constants we and xgwe, and the molecular weight

M. The calculations using the equations on pp. 420-30 of Ref. (12) proceed

as follows with y = he(Be — 50)/kT and U = he(we = 2xeWa)/KT.
2 2

Cot/R = J+ y/U5, 8. g/R = E- lye - 37/90 + $1nM - 3.665 + nT,
—(G=H)p,t/RT = Sp ¢/R + 3/3 + y /h5 =F,

a_i 1 12(lpg8-Hy yp, ¢/R

=

298.15(F = 37208 - T3598)
-(G-Hpgg)y ¢/RT = ~(0-Tlo JoJY + (Hogg=Ho lp, 4/RTs

7 1 1
(H-Ho )y, ¢/RT = Fm 3Y ws

(H-H298)y ¢/R = [(H=H)p t/RT = (Hogg=Ho)y, ¢/RTIT with -(Hogg=Ho)p/RT

obtained by subtracting ~(G-Hogg )y 4 /RT from -(G-H,)yp + /RT stored in the stack.

i

Ce/R = ue?/(e%1)%, ~(G-H,)y/RT = -ln(l-e”%),

(H-Ho)y/RT = u/(e'=1), Sy/RT = (H-Hy)y/RT - (G-Hg)v/RT,

(Hogg-Ho)y/R = (ul)/( “298yy, ~(G=H298)/RT = —(G=Hg)y/RT + (Hpgg=Ho)y/Re

(B-Hpgg)y/R = T[(H-Hy),/RT - (Hpgg-Hy)y/RT].

The various contributions to S/R, Cp/R, =(G-Hpgg)/RT, (H-Hpgg)/R and (Hogg-He)/R

are summed and are finally stored in registers 5 to 9, respectively.

Directions:

(1a) Insert Tape D-LT

(1b) Insert Data Tape D~LT

Diatomic Gas
Display

(2) M+ Bra toh 1.5 1nM-3.665

(3) we t xewe B uT

(b) mT ¢C C3/R

(5) R/S S°/R

~(G°-H3gg) /RT

(Hg-HEg5) /R

(6) 8ST (HSgg-H)/R

(1) B® D cs

(8) R/S 50

-(GO-H3gg)/T

7 O Oo1 ~Hogg

cont'd.
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cont'd. from p. 1

Triatomic Linear Gas
Display

(2) M1 Bs toto a 1.5 1nM=3.665

(3) wit xewd B u'T

(3a) wg + xgqug £1 u''T

(3b) wo + xowa £b WT (doubly degenerate bend)

(hr) T E C2/R

(5-8) same as for diatomic gas.

NOTE 1: After constants are entered, start at step 4 or UT for each temperature.

After completing calculations for one molecule, go back to step 1b

before entering constants for new molecule. However, entering

f P25 RCL 2 STO A RCL 3 h STI f PS or entering

3.665 STO A 1.4388 h STI will replace step 1b and allow starting
at step 2.

NOTE 2: wl&'' must be doubly degenerate bending frequency. If a or XgWe
are not known, key zero.

NOTE 3: Step 7 can follow either step 4, 5 or 6, but step 5 can only follow
step Lb, step 6 can only follow step 5, and step 8 can only follow step T.

Test for Diatomic

(2) 114.938 4 .31k 4+ .003 + 1 A 3.452,

(3) 700 + 7 B 987.017; (L) EEX 3 C k.Lho3

(5) R/S 32.981, 29.975, 3005.472; (6) SST 1080.765

(7) 1.98719 D 8.789¢ (8) R/S 65.539, 59.567, 5972.LuL

Test for Linear Trigtomic

(2) 113.936 4 .211 + 0 4+ 2 A 3.438;

(3) 700 + 0 B 1007.160;

(37')650 + 0 fb 935.220;

(31")150 4 0 fb 215.820;

(47) EEX 3 E T.3k2; (5) R/S 38.822, 33.87k, LokT.9

(6) ssT 1527.743; (7) 1.98719 D 14.590; (8) R/S 77.1h6, 67.31k, 9832.k.
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Prem. D=-LT

Data Tape: 298.15 in E, 3.665 in A and RS2, and 1.4388 in I and RS3.

TapeD-LT

(P) TLBLA STOC hRY 2 + - hRCI X STOB hR4
PLN 1 ° 5 X RCLA - STOA  hRTN lo

(3) fLBLB f£GSBO STOD hRTN 23

(37) gLBLfb fGSBO hF?2 GTOL STOO hSF2  hRIN 30
fLBLO 2 X - hRCIL  X hRTN 37
fLBL1  STO1 hRTN 40

(47) fLBLE hSFO fGSBC RCLO  fGSB2 STOO fGSB3 RCL1 fGSB2 STO
£GSB3  fGSB3  RCLO £GSB2 RCLL STOO  hRY STOOL  hCFO GTOkL
fLBL2 RCLD hxzy STOD  hRY¥ hRTN 66

(4)  fLBLC fGSB5 RCLB hxay + STO? gx? L 5 :
STO03 3 ° 5 STO6 + RCLC RCL? X LN
CHS RCL6 + RCL3 2 + —- RCLA + hRCI
LN 2 ° 5 X + I+  hLSTx RCL2 3
+ RCL3 + ST03 +  RCL6 - RCLB 3 +

RCLE B 4 gx? 5 3 + RCL6  ~- RCLE
X CHS STO9 hRCI + + sTo7T  - RCL3 -
RCL6 + hRCI  X STO8 Lil
fLBL3 RCLD hRCI + STO2 gx°  hLSTx ge’ STO3 X
hLSTx 1 - STok  gx2 + RCL3 RCLL FIN
STO5  RCL2 RCLL + STO6 + I+ RCL5 RCLZ2  RCLD
RCLE + geX 1 - + STOS + STO+7  -
RCL6 + hRCI  X STO+8 RCL5  hRCI XX STO+9  hF?0
hRTN 192

(5) FLBLL RCLI+ 8TO5 hxpy ST06 fLBL6 hRTN  hRY  f-x-  RCLT
(6) f-x- RCLS hRTH RCLY 206

~ FLBLS £728 0  STOL ST06 PS hRY hSTI  hRTN 21%
(7) fLBLD STOX5  STOX6 STOXT STOX8 RCL5  RCL6  GTO6 223

Ro 1 2 3 5 6 | J on
2'Towtr oy yobs eel —ln(l-e”Y) 3.5 | - 298 5 __298),72087 0

RT R R
2 -

A wT Ly (Baog-Mo)y  u
3 45 RT ely

u'r oT oy el IS/R XCL/R

R 82 33 sh sé R A B C D E I

3.665 1.4388  LS/R IC,/R 3.665 yT 0 ull 208.15 1.1388
ut

Sa) wT T
~3.665 u'T
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Calculation of Contributions from Anharmonicity, Centrifugal Stretching

and Vibration-Rotation Interaction

Program Cor provides the corrections to be applied to the thermodynamic

functions calculated for a diatomic molecule by the harmonic-oscillator-rigid-

rotator approximation. The initial spectroscopic values are used in units

of emt. The final results are first displayed in dimensionless form with

the quantities divided by R, the gas constant. Insertion of R = 1.98719cal/K mol

or 8.31hkL J kKtmo1™t will yield the values in either set of units. However,

the dimensionless values are the most suitable if the values are to be used

for subsequent equilibrium calculations; steps T and 8 can be omitted if

quantities in dimensions are not needed. The calculations are based on the

following equations on pp. 430-7 of Ref.(12).

 

Wo = We = 2gWe, By = Be = 30 X= WeXe/VW,

Jie (he/le)wo/T= 1.43879 wo/T, y= 3B/vg 8 = a/By = (Be/a - 0.5)
F-H_)
— = [s+2xu/(e™1)1/(e"-1) + 8 v/u

cor
H-H

¢ = {oue” + [2ue"(e"1)1(2xu)/(e%1)} /(e™1)° + 8 v/u
RT cor

Ceor/R = (gue(a1) + [oue" + u-2(e’=1) 1 (2ue™) (2xu)/e™1)}/(1) + 16 y/u

Seor = (H~Ho)cop/T “ (F=~Ho)oop/T .

Display
Directions:
ESR
(1) Insert tape Cor

(2) wg txewet Be to A (Hog8-Hp)o/R

(3) ©8T (8208) c/R

(1) SST (Cog8)c/R

(5) T B -(G-Hogg) eo /RT

(6) SST will flash the following quantities (H-Hpg8)e/R

sequentially Sc/R
Co/R

~(G-Hpgg)o/RT

(1) RC -(G~Hpg8) /T

(8) ssT (-fizgg).,

~(G-Hpo8 )o/T

NOTE: Steps 3 and Ut can be skipped if corrections to 5008 and Cogg are not
needed. Once step 2 has been run, start at step 5 for each tempera-
ture. Steps T and8 can be omitted if dimensionless quantities are adequate.
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Prgm. Cor

(2) fLBLA STO6  hRY STOTT hRY 4 + 2 X hR4
- CHS 1 . h 3 8 8 hx2y X

STOA nRY  hLSTx + STOB  hR¥ 8 hxzy + RCLT
X STOD hLSTx RCL6 T . 5 - hl/x  STOC
2 9 8 . 1 5  fGSBB  RCLY RCLO X

(3,4) STOE  hRTN RCL9 RCL8
(5) fLBLB STOO  RCLA hxZy + STO1 4 ge ST02 1

- ST03 + 2 X RCLB X ST05 RCLC +
RCL3 + RCLD RCL1 + +  hS8TI RCL1 RCL2 X
STOh 2 X, RCL3 - RCL5 X RCLA RCLC X

+ RCL3 gx + RCLD RCLL + + STO7  RCLL
2 X RCL1 + RCL3 2 X - RCLL X
2 X RCL5 X RCLC RCL3 2 + X RCLA
X RCL1 X + RCL3 3 hyX + RCLD 2
X RCL1 + + ST08 RCLT  RCLO X ROLE -

STO5  hR¥ hRCI RCLY + STO9  hxzy  RCLE RCLO +
(6) hRCI + ST06 RCLS hRY  hRTN  gSTK

(7) fLBLC STOX5 STOX6 STOX8 STOX9 RCL5 RCLO  RCLS RCL6 hRTN
(8) gSTK 172 memory steps.

RO 1 2 3 L 6 7 8 9
T ou oe” el ue” _2Xu_ o Be C/R S/R

er-1) Hil)
-Hpo8 (G-Hpo8) (H-H
R - RT RT

¢ D BE I
R . B 8 Hogg-Hg _ (G-HQ)

R RT

Test:

0359.6 4 1h.h6 4 2.01 4 .0187 A 0.181; SST 0.001; SST 0.001

ox10° B 0.007; SST 23.7, 0.019, 0.030, 0.007

1.98719 C 0.0147; SST 47.1, 0.038, 0.060, 0.01h7
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Moments of Inertia

The moments of inertia of molecules are needed to calculate the

rotational contributions to thermodynamic properties using Prgms. DLT and NL.

When there is more than one value, Ig is the moment about the axis of

greatest symmetry. I" indicates a doubly degenerate moment. The

symmetry number, 0, 1s tabulated along with the equations for I. If m

is the atomic weight of A and r is the internuclear distance in 8, mr

must be divided by 1040 No = 6.02209%10°7 to obtain units of g cn”.

Program ID calculates x1057 in g ol, Be = n/8n°el in emt for linear

molecules, and the product of the three principal moments of inertia,

117
Dx10 , For non-linear molecules. For symmetric top molecules and

unsymmetric linear molecules, mj is atomic weight of A, mo of B and m3 of C.

 

Distomic Ap, 0=2 = dm?

Linear ABA, 0=2 "= mr
2

Planar BA3, g=6 Ig = 3mr

"= Ea

Tetrahedral BAL, 0 =12 I = Spy

Trigonal Bipyramid BAg, 0 = 6 Ig = mr”
2

we TE= or

Octahedral BAG, 0 = 24 I = hmr
_ - 2 Lreosd)

Bent BAo, g=2 Ig = nr 2 - Tmg/2m

I =mr (1+c058), (1+2m/mg)

I = mre (1=cos0)

A
For a symmetric top TN ’ 0 = 3, and 6 in degrees.

a A

a

. 2
Ig = 3myrip(i-cosd)

z my (myed,(1t2cosf)
no. -

I" = miryo(l cosO) + Era

1

m3ro3 | (- 20050)?ES + + 6 semeSapmprng [OM mo)rp3 bmyrip(T

If m3 = 0, the equations give I for the symmetric top gh og = 3.

If mp = 0, I" becomes the doubly degenerate moment of inertia of diatomic

C-B, 0 = 1.

If 6 = 0, I" becomes the moment of inertia of a linear triatomic molecules with
atomic masses m3, mo and my, if my is divided by three at the initiation of the
program.



Directions:

(1) Insert Prem. ID

(2) mtr A

DiatomicAp
(3D) R/S

LinearABA
(30LT)B

Planar BAA
. LR

(3p) ©

LetrahedralBA)
(31) D
 

Trigonal Bypyramid BAg 
(3TB)E

Octahedral BAg

(30C7Ffa

BentTriatomicBA
(3BT)m/mg + 0 £ Db o

Symmetric TopCBA

(a) rip my$0Tc
3a) ro1 + my tomo R/S

SymmetricTop BA
(2b) rin +mq +0fc

LinearCBA

(2¢) rio + mp fd
(3c) rpg + my + my R/S

Diatomic CB

(2d) r'n3 4 3 4 mo fe
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Display

nr’[6.02009
Q

T'%10°7 » Be

T9%10°7 , Bg

Tx10°7

Thx7039
DX1LOLLT

1x10
DxL017

Tex10°2

Tjx103%,
x10

11077
px1.0LLT

TpXx1037
T,%1037
T3x1037
pxtT

Ta10-2
Tix039

x10

1x10
THx1039

px1oLLT

0
T"x1039

Be

T5109

Be
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(2) FLBLA a X 6 . 0 2 2 0 9
STOk + STOA  hRTN 14

(3D) . 5  £GSBO GTO 18
(311) FLBLB 2 FGSBO  fLBLL STOO 2 . 7 9 9

3 2 hxey + S101 hRTN 34
(3P) FLBLC 3 fGSBO S100 1 . 5  f£GSBO  GTO2 43
(37) FT,BLD 8 + 3 + £GSBO + GTO2 51
(3TB) FLBLE 3 FGSBO STOO 3 . 5. fGSBO GTO? 60
(3 0C) gLBLfa L fGsBO + FLBL2  ST01 axe X STO3  hRTN

fLBLO  RCLA hxzy X foX—  hRTN 76
(3BT) gLBLfb £COS 1 + STO8  hxzy STOTT h 1/x 2 +

3 1 - CHS 2 X fGSBO STOO RCL  RCLT
2 X 1 + 3 FGSBO STOOL 2 RCL8 -

fGSBO  8T02 X X STO3  hRTN 112
(2a~d)  gIBLfe £COS STOD hR STO5 hxpy STOE fGSBA 1 RCLD

- RCLA X STO6 2 X RCLD 2 X 1
+ STOT  hxgy STOO  hRTN 137

(3a~c)  fLBL3  STOB  hxezy STOC + RCLA X RCL5 3 X
RCLB + STO8 RCLC + STO9 + RCLT X RCL6
+ hxzy hSTI  hRY  RCLY 3 3 f/x RCLS X
6 x RCLE X RCL8  hRCI X + RCLC X

hRCI X RCLO + RCLL + + STOL  f=x~ gx
RCLO X STO3 hRTN 191

(2c) gLBLfd 3 + 0 gGSBfe hRTN 197
(3c) fGSB3  RCL1  fGSB1 hRTN 201
(2d) gLBLfe ©STOB CLX hRé STOC CLK hRY  hSTI  hRY hRY

gGSBfe hRCI RCLC RCLB  f£GSB3 RCL1  fGSBL hRTN 219

R 0 1 2 3 L 5 6 7 8 9
I oB, 6.022 my mr”, (1-cos) — T+cosf!  3mytmptmy
Ig "

In In Iz D 1+2cos0  3mytmp

A B ¢ D E I

mr
5.0220002200 mo m3 cosh rio ro

Test:

(2) 10 +2 A 6.64 (30) R/S 3.32, 0.84
(3LT) B 13.28, 0.21 (3P) C 19.93, 9.96, 1978.07
(37) D 17.71, 5557.05 (318) FE 19.93, 23.25, 10 769.50
(3 0C)f a 26.57, 18 755.05 (38T) .1 460 fb 11.62, 8.30,3.32, 320.52
(2a) 2 410 460 f c 6.64 (3a) 3 430 4 20 R/S 57.95, 22305.50
(eb) 2 410 +60 Ff ¢c 6.6k (3b) 0 + 20 R/S 8.635, Ly5.25
(2c) 2 410 fd 0.00 (3¢) 3 430 4 20 R/S 37.92, 0.07
(2d) 3 430 420 fe 17.93, 0.16



30

Non-Linear Gases

Program 1D calculates pxaottT, where D is the product of the three

principal moments of inertia, for a variety of non-linear molecules. The

following equations from Ref. (12) are used by Prgm. NL to calculate the

rotational and translational contributions to the thermodynamic functions

of non-linear molecules. The symmetry numbers, O, are available in Ref. (12)

and are also listed in the discussion of Prgm. ID.

Cp, t/R = h,(H3gg-H3)y/R = 4(298.15), (H°-H3gg)r,t/R = W(T-298.15)

80 4/R = UlnT + (7)1nM + Lin(pxi0™tT) - Ino - 1.1823

b+ 16h” + 1n(82.057c3)/ (820210707) = -1.1823
~(G%-H3gg),./RT = Sp ¢/R = 4(1-298.15/1).

The vibrational contributions are calculated using the same equations as used

for Prgm. D-LT.

The program requires that the singly degenerate vibrational frequencies

be inserted first followed by doubly degenerate frequencies and finally by

triply degenerate frequencies. The number of frequencies of each type must

be entered. 11 is the number of singly degenerate frequencies, ip is the

number of doubly degenerate frequencies, and i3 is the number of triply

degenerate frequencies.

Directions:

(1) Insert tape NT Display
(2) M4 ot Dx107TA 0.000
(3) Values of w in SS are entered on w)het]B20

stack so that singly degenerate values witwSB>0
are inserted first (lowest on the or
stack) followed by doubly and then triply wi Awd BO

degenerate values. Groups of 1,2, but 2riEs0
not over 3 values on the stack are entered 2 7
and followed by B. A maximum of 10 values 15870
can be entered. 5

(b) diy + dip 4 igcC 102i, + ip +107 Tig
© 3 Orr Q(5) T D ~(G2H3gg)/RT

(6) R/S (H°-13gg)/R

S°/R

aCo/R

(6") SST (H3gy-H)/R

cont'd.
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Directions, cont'd.

(7)

(8)

(9)

R STO B R

Oo OCE -(G ~H3gg)/T

oO Oo

go

Qo

Pp

NOTE 1: Calculations at each temperature start at step 5 once the constants

have been inserted. Step T need not be repeated unless new

constants are entered in step 2.

NOTE 2: If dimensionless quantities are not wanted, step 6 can be deleted.

SST after either step 6 or step 9 will display value of (H3gg-H3)/R.

NL Test:

(2 )

(3)

(5)

(7)

133.936 4 2 + 202.5 A 0.000;

700 + 150 B 0.000; (4) 24 0+ 0 C 200.00;

EEX 3 D 35.772; (6) R/S L588.2; L0.360, 6.835, SST 1466.9;

1.98719 810 B; (8) E 71.086; (9) R/S 9117.6, 80.204, 13.583.
 

 

Prom. NL

(2) fLBLA fCLREG PS 0 hRY f/x 3 fLN CHS  hxzy
LN 1 . 5 X 1 . 1 8 2
3 ~ + STOD CLX 1 0 hSTI CLx  hRTN

(3) FLBLB 1 . I 3 8 8 X STO(i) £ISZ
CLx hR* CLx hRV hRY fx=0  hRTN GTOB he

(4) fLBLC EEX 2 % +  hxzy EEX 2 X +
STOA HRTN 60

(5) fLBLD  8TOC PLN h X  RCLD + STO5 h ST06
RCLC x 2 9 8 . 1 5 STOE hy
X STOO - STO8 RCLC + - STOT RCLA EEX
2 5 fINT F#0 fa RCLA EEX 2 + gFRAC
=0 GTO8 EEX 2 X  fINT fb fLBLS RCLA  gFRAC

EEX 2 X £40 fc GTOT 116
gLBLfa 1 0  hSTI + STO:  fLBLO f£GSB3 gx=y  hRTN 126
GTOO0 127

gLBLfb STO+L4 fLBL1L fGSBY  £GSB3 gx=y hRTN  GTOL 135
gLBLfc STO+4 fFfLBL2 f£GSBL  £GSBLY  f£GSB3 gx=y  hRTN GTo2 1a
fLBL3  fGSBLY fISZ  hRCI RCLL  hRTN 150
FLBLY  RCL(i) RCLC * ST00 gx2 hLSTx ge STOL X10
hLSTx 1 ~  STO2 gx? : STO+6  RCLL RCL2 3
FLY STO3 RCLO RCL? + 8TOoL + STO+5 RCL3  RCLO
RCL(i) RCLE To ge¥ 1 - a STO3 + STO+7
- RCL +  RCLC ¥  STO+8 RCL3  RCLC X STO+9
hRTN 201

(6,6) fLBLY RCLT hRTN  RCL8 f-x— RCL5  f-x- RCL hWRTN  RCL9 21!
(8,9) fLBLE RCLB  STOX5 STOX6  STOX7 STOX8 GTOT 218
 

continued...



cont'd. from pg. 38

R 0 1 2 3 h

 

 

5 6 7 8 9

uu =u 5 Cp |. (G-lipgg) H-Hpgg Hogg-tlg
u e el  =In(l-e 7) Index be Le V - ar = Tn =

limit

u (Hpgg=Hg)y
eth] RT

R A B C D Ti I RS0-9 are available for

i10ip+0iz RT (°rs/5) 298.15 Index up to 10 values of ul.

~L1nT
   

Calculation of Electronic Level Contributions to Thermodynamic Functions

Program A can be used to calculate the complete thermodynamic functions

for gaseous atoms including translational and electronic contributions or it

can be used to just calculate the electronic level contributions for either

atoms or molecules. Degeneracies and energies of up to seventeen levels can

be stored for the calculations. Although the program is intended for calcu-

lating the contribution of electronic levels to thermodynamic functions, it

can be used for any internal energy levels. For example, if the vibrational

or rotational levels are sufficiently perturbed to introduce significant

error even after using Prgm. Cor for anharmonic and centrifugal stretching

corrections, the partition function can be calculated, seventeen levels at

a time, to evaluate the vibrational or rotational contributions.



De

The spectroscopic unit, en, is used for the energies. The thermo-

dynamic functions are calculated in dimensionless units, whichare most

appropriate for equilibrium calculations, but insertion of the gas constant

R in appropriate units will provide the thermodynamic functions in the same

units. The calculations follow the equations on pp. ool of Ref. (12).

After energy levels and degeneracies have been stored in the preliminary

steps, calculations at various temperatures commence with step(5). There

are several choices in the sequence of steps following step(5). If the

interest is primarily in the complete thermodynamic functions for an atom,

step (5) would be followed by step(6"a) to yield -(G°-H8gg)/RT and then by

step(6"b) if the remainder of the functions are desired in dimensionless

form. If -(G°~H3gg)/T is desired, step (6"a) would be followed by step(T7)

and then by step(8) if the other functions are of interest. If values

for all functions are wanted both with dimensions and in dimensionless form,

the sequence after step(5) would be (6"a), (6b), (7) and (8). If only the

electronic contributions are wanted, step (5) would be followed by step(6')

and then by steps (7) and (8) for values expressed in the units of the

value of R introduced in step(7). If, after obtaining the electronic

contributions of an atom through step(6'), the complete thermodynamic functions

should also be wanted, replacement of the directions of step(6"a) by

hRY hRY T STO D M D will allow calculation of the complete functions without

repeating step(5). The restrictions are summarized as follows:

step(8) only after (7), step(6"b) only after (6"a), step(7) after (6'),(6"a),

or (6"b), step (6') only after (5), and step(6"a) only after (5) except after

(6') with insertion of the special step given above.

In addition to the program tape, a data tape is used to store the

following constants: 3.665 ST0 A, 298.15 STO B, 1438.8 8T0 C. These constants

can be keyed in manually or by tape. If the constants have not been inserted

before step 2, integers will be lacking in all of the displays of step 2.



Directions:

(1) Insert tape A and Data tape A

(2-1)gy + gy A

(e~2)go * €5 R/S

(e-i)gy * €; R/S
i up to 17

(3) B

(h) R/S

(5) TC

(6')IRr/S
(not to be followed by 6a"
without step given in text)

NOTE 1:

~L3e

Display

ua*8eqTgX10

1388800X10

1438+8€; *g;%10

-2

-2

-2

(Hpga=H,)/R

(So. /R)e

(Coga/R)e

=(G-TIpg8) o/RT

(B-Hpo8 Je /R

SOR
Ce/R

~(C-Tpgg)o/RT

(H°-H8qg)/R
67
CR/R

~(GO-8gg) /RT

H~Togg9

C
(Gling) /T

If a number of levels are inserted together at an average value

of £4 the total g must not exceed 99.

NOTE 2: If values of €4 larger than 69 502 emt are to be used, change

constant in ig C to 143.88 and change 3 at step 95 to 2 to
allow values
truncated Beyond .0L

NOTE 3:
display will read Error.
each require 45 sec calculation time.

p to 695990 cmt, With this change,& values are

If values for more thom seventeen energy levels are inserted, the

With seventeen levels, steps (3) and (5)

With fewer levels, the time

is cut as the calculation stops when a zero degeneracy is encountered.

If calculations for a new atom or molecules is started by inserting

new level values, one can start at step 2 if the same number cr a

greater number of levels is inserted:

the data card.

otherwise, one mugt reinsert

If only the electronic contributions are desired, up

to twenty levels can be stored if three pairs of £GSBO hRIN are
added after step 36, RCLC at step 38 is replaced by 1438.8, BCLB at

step 54 is replaced by 298.15, the 19 of steps 112-113 is changed
to 22 after at least fifteen steps of the fLBLD subroutine have been

deleted to accommodate the insertions.

cont'd
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Notes, cont'd.
 

NOTE L: The dimensionless values for functions at 298 XK given by steps (3)
and (4) can be multiplied by R by the following procedure. After
step (4), key R in the desired units followed by E to display (Hpgg-Hg),.

Then R/S will display the electronic contributions to 5098, Cog8, and

-(Gpog-H,)/T. If the total HSga-Hg is wanted for a gasedus atom, it

can be obtained by adding 1481.20 to the electronic contribution in

cal/mol.

NOTE 5: If -(G=Hgy) /RT is desired, it can be obtained after step 5 or any

of the following steps by keying h RCI. Keying of g e¥ would then

give Q, the partition function.

Tegt with Si gas at 5000 K

(2) 140 A 0.010
3 4 77.12 R/S 110960.030
5 4+ 223.16 R/S 321082.050
5 4 6298.86 R/S 9062799.050
1 4 15394.37 R/S o21hok19,01
5 4 33326 R/S L7oLkokh8.05
9 + 39860 R/S 57350568.09
3 4 L0992 R/S 58979289.03

15 4 45303 R/S 65181956.15
3 4 L7284 R/S 68032219.03
5 4 47352 R/S 68130057.05

15 4 L8161 R/S 692940k6.,15
9 4 Lo128 R/S T0685366.09
3 4 49kLoo R/S 71076720.03

21 4 L9966 R/S 71891.080.21
5 4 50189 R/S 72211933.05

10 + 50535 R/S 72709758.10

B 162.716(3)

(4) R/S, 2.108, 0.176; 1.98719 E 323.347 R/S 4.190, 0.350, 3.105

(5) 5 EEX 3 C 2.279

(67) R/S 8L4kL.589, 2.448, 0.277, 2.279

(7) 1.98719 E 1678.4; (8) R/s L.864, 0.550, 4.528

or after (5) (6"a) 28.086 D 12599.21Lk; (6"b) R/S 27.579, 2.777, 25.059

(7) 1.98719 E 25037.031; (8) 54.80k, 5.518, 49.796 cal.
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rgm.AP

(2-1 to 3) fLBLA 3 hoTT hRY fGSBO hRTN  f£GSBO hRTN f£GSBO hRTN

(p=h to 8) F£GSBO hRTN f£GSBO  hRIN f£GSBO BRTN fGSBO hRTN fGSBO hRIN

(2-9 to 13) £GSBO  hRTN f£GSBO  hRTN f£GSBO hRTN fGSBO hRTN fGSBO hRTN

(
(
o-1h to 16)fGSBO  hRIN f£GSBO  hRTN fGSBO hRIN 36
2-17) fLBLO  RCLC X TINT  hx2y EEX 2 5 + ST0(1)

£187, hRTN  GTO9 49
(3) fLBLB  fGSBL 0 STOE RCLB STOD fGSB2 £GSB3 hRt STOR
(lh) STOD hRTN RCL1 f-x- RCL2 hRTN 68
(5) fLBLC STOOD fGSBL  fGSB2 GTO3 70

FLBLL 0 STOO STOL  Sro2 3 hSTI hRTN 78
fLBL2 RCL(i) 4 gFRAC EEX 2 X fx=0 hRTN hx2y
INT EEX 3 5 RCLD + 4 hRY CHS  geX
X STO+0  hR% X STO+1 hSTx X  ST0+2  fISZ 1
9 hRCI gx>y  hRTN  GTO2 113

fLBL3 RCL2  RCLO + RCL1 RCLO + @8ToL gxe -
STO2  RCLL RCLD X RCLE =~ RCLO FIN hSTI  RCLL
+ STO01  RCLE RCLD + hRCI + S8T00 hRTN 142

(61) hR+ STOD  CLX RCL2  hxey gSTK hRIN 149
(63) fLBLD hR* hxzy fLN hLSTx RCLD X FIN 2 .

5 STO+2  STOC X hxzy = RCLA  - + 4
hRCI + heTT hR¥ + + RCLC + STO+1 hR¥
RCLB  RCLD + RCLC X +  STO+0 hRV RCLD  RCLB
- RCLC X + STOD 1 L 3 8 .

(60) 8 STOC hR¢ fLBLL hRTN RCLL f-x- RCL2  f-x- RCLO
hRTN 210

(7,8) FLBLE STOX0 STOX1  S8TOX2 RCLD X STOD  GTOk 218
 

Data Tape: 3.665 STO A, 298.15 STO B, 1438.8 S10 C.
 

R 0 1 2 Registers 3 to 9 have

Q Q' Q" 1L438+8e4+g;x10=2 with i = 1 to 7

-(G-Hpgg)
—=2- aa ¢/R

S/R 
-2 .

RS 0 to 9 have 1438+8e;-g;x10 with 1 = 8 to 17
 

R A B C D i I

3.665 208.15 1438.8 i Hogg~Hg 3 to 20
H-Hogg R several times

2.5 a -(G-H,)

1438.8 RT
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B. Calculation of Thermodynamic Functions from Cp Or H1Values

Heat capacity or enthalpy data may have been fit to Cp/R = ADHTT+AT

   

or Cp/R = ag + al + aT” + aT” using the programs of Chapter II. Programs

CHSG and Cheb CHSG use the constants of these equations to calculate Cp/R,

(H-Tipgg) /R, S/R and -(G-Hpgg)/RT.

The Cy equations generally will have a limited temperature range of

application fixed by either the range of existence of the phase or by the

range for which the equation gives a sufficiently accurate fit. Thus, the

programs provide for joining at the temperature T; at which a new range

starts and (Hi-Hpgg)/R and S;/R, calculated in the lower temperature range,

are inserted to allow extension into the higher temperature range. The

equations for Prgm. CHSG are based on Cp/R = g + dT + ore + are,

(H-H;)/R = (TT; ) [ado (T+) +e /TT;+1(T+TT,+15)
Crp2(8-5{)/R = aln(T/T;) + (7-73) [bige(T+Ty)/TT5+Ha(T+T,) ]

-(G-Hpgg)/RT = (8-8;)/R + S;/R ~- C(ioRy ) FogTipo) /R1/T

The constants a, b, ¢ and d are stored in registers A, B, C and D. If the

data have been fit to an equation with fewer constants, store 0 for the

unused constants. The program has been illustrated with dimensionless

functions; it operates equally well if the constants yield Cp rather than

Cp/R. Then 8; and Hj-Hpgg§ should be inserted in steps 3 and I and the

displays of steps 5 and 6 will be the indicated displays multiplied by R.

If it is desired to convert the dimensionless displays of steps 5 and 6 to

values in cal or J, R in the appropriate units should be stored in register

. Then step 7 will display the values multiplied by R. If the displays

of steps 5-6 are already in dimensions, step 8 will divide by R from register

IE to display dimensionless values.

Directions

(1) Insert Prgm. CHSG; store constants in registers A-D if not

carried over from previous calculation a—-—-

(2) Ts A

(3) S;/R 8ST Ssi
(Hi-Hpgg)/R 8ST; 0 SST if T; = 298 (Hjs=Fogg)/R

5) T B /R
(6) SST SST SST (H-Hogg)/R, S/R, Re~Hpgg) /RT
(1) ¢ to multiply by R Cos Hefogg, 8, ~(G-_fipog) /T
(8) D to divide by R P



-47-

 

 

 

 

 

Prgm. CHSG

(p=) FLBLA  STO5 hRIN STO  STO3
(5) fLBLB A STO2  RCLS + STOO X RCLS gx? +

RCLD X 3 + RCLC  RCLS 3 RCL2 + +
RCLO RCLB X 2 + +  RCLA + RCL2  RCL5
- STOL X RCL3 + STO06 RCLC 2 : RCLO
X RCL2  RCLS X gx? + RCLB + RCLD 2
+ RCLO X + RCLL X RCL2 RCLS + LN
RCLA X + RCLA4 + STO7 hxzy  RCL2 = -
ST09 RCLD  RCL2 gx? X RCLC hLSTx + + RCLB

(6) RCL2 X + RCLA + STO8 hRTN  RCL6 RCLT  hR4
(7) fLBLC RCL9 RCLE X hSTI RCL8 hLSTx X RCL6  hLSTx

X RCLTY  hLSTx X hRCI gSTK RTN 112
(8) fLBLD RCL9  RCLE + hSTI  RCL8 hLSTx + RCL6  hLSTx

+ RCL7  hLSTx + hRCI gSTK RTN 129

R © 1 2 3 li 5 6 7 8 9
THT; T-T; T Hi-Hpgg 8; Ty HeHpgg 8 Cp -(G-Hpgg)

R rR R RR TTRT

A ¢ I
-(G-Hpgg)

a, C T

Test:

10 STO A, EEX CHS 3 STO B, 1 CHS EEX 5 STOC,

EEX CHS6 STOD, 1.98719 STOE

(2) 298.15 A; (3) 10 SST; (4) O SST

(5) EEX 3 B 11.900; (6) SST T7563, SST 22.7L47, SST 15.183;

(6) C 23.648, 15029, 45.202, 30.172

(7) D 5.888, 3806, 11.hh7, 7.641

From Cp/R = ag + aiT + asl? + a3T>,

(HH; )/R = ag(T-Ty) + Lap (T°-1%) + oo(rn]) + Lag(1"-1])
(8-81)/R = agln(T/Ty) + ay (T-Ty) + Jao(T 1%) + Lag (1-13)

-(G-Hogg) /RT = (8-8;)/R + 8;/R - [(H-H;)/R + (Hj-Hpgg)/R)1/T

ap to az will be in R6 to R9 if evaluated by Prgm. Cheb-a.



Directions:

(1)

NOTE

N18

Insert Prgm. Cheb CHSG and ap to a3 in R6-8 if not already there

T, A

s;/R SST

(H;-Hpgg) /R SST

R 8ST

TB

SST SST SST

D repeats display of steps 5 & 6 divided by R if the an

constants gave C

: After step 6, another SST will flash in turn the four values

Display
Ts

Si /R

R

Cp/R

(H;-Hog8)/R

(H-Hpgg) /R, S/R, -(G-Hpgg)/RT

C repeats display of steps 5 & 6 multiplied by R if
R has been stored in register T by step 4".

in dimensions of R and therefore steps

5 & 6 gave the indicated quantities multiplied by R.

previously displayed if a review is wanted.

 
 

Prem. Cheb CHSG

 

 

(2-4) fLBLA  STOA ox” STOB hRTN  STOC  STOD STORE 5 8
(5) fLBLB hSTI RCLA - STO5  RCL6 X hRCI ; RCLB

- STOL  RCLTY X 2 + + hRCI hy*

RCLA RCLB X - STO3  RCL8 X 3 +
NRC I hyX  RCLB gx? - RCLY X 3
+ RCLD + STO1  hRCI + RCL3  RCLY 3
3 RCLL RCL X 2 3 + RCLS RCLT X
+ hRCI RCLA + LN RCL6 X +  RCLC +
ST02 hxzy - STO3  RCLY  hRCI X RCLS8 hRCI
X RCLT + hRCI X RCL6 + STOO hRTN  RCL1

(6) RCL2 hR4 goTK 101
(7) fLBLC RCL3 RCLE X STOL  RCLO  RCLE X RCL1  RCLE

X RCL2 RCLE X RCLL  gSTK hRTN 118
(8) fLBLD RCL3 RCLE = STOL  RCLO RCLE + RCL1L RCLE

+ RCL2  RCLE + RCLL  gSTK hRTN 135

R 0 1 2 33 3 ot 5 5 6 7 8 9
T= 7-14 T-T5 ag a1 ap aj

Cp/R (H-Hpgg8)/R S/R =-(G-Hpgg) /RT ~-(G~Hpgg)/T

R A B ¢ D E I

Ts 75 Si /R (Hi-Hpgg)/R R T



Test:

Cp = ag + aT + 8pT" + TE with Prgm. CHSG

1.50365 STO 6, 8.19918x107° STO 7, -4.13509%x107 STO 8, 9.21717%x10~+0 STO 9;

(2) 1400 A; (3) Syu00 = 16.792 cal Kt sem; (Wh) Hi)o0-Hogg = T7307 cal SST,

1.98719 ssT; (5) 1koo B 7.L0OT7, SST T7307, SST 16.792, SST 11.573;

2800 B 12.276, SST 20 320, SST 23.057, SST 15.800; SST reviews the four

6

values, D divides them by R.

The programs of Chapters I and II have provided least-square fits of

enthalpy or heat capacity data to four constant equations. Programs CHSG

and Cheb CHSG calculate values of the other thermodynamic functions from

the four constant heat capacity equations. Using eight values of the Cp

of molybdenum solid at 200 K intervals from 1400 to 2800 K,

0, = 1.5037 + 8.1992x1073T - 4.1351x10"01% + 9.2172 107007
p

was obtained whichfit the original values with an average deviation of

0.009 or less than 0.1%. The same values were fit by Prgm. LS C¥, which

uses only three independent constants, to obtain

C. = 9.5466 - 3.8026x107°T - 1.360x10°T2
Db

This equation fits the original values with an average deviation of 0.06 or

+ 1.6987x10™07%.

about 0.6%. Both equations were used with Prgms. Cheb CHSG and CHSG, res~

respectively. The values of -(G-Hpgg)/T calculated by Prgm. CHSG using

the constants from Prgm. LS CH were only slightly lower than those calculated

using the constants from Prgm. Cheb-a with an average deviation of 0.002 or

0.02%, thus illustrating the insensitivity of (G-Hpgg)/T values to errors

in Cpe

It is sometimes useful to go directly from the analytical equations for

Cp to an analytical equation for -(G-Hpgg) /T, which will have six terms

derived from the four terms of the original heat capacity equations.

Prgm. CgK described below carries out this operation. This program not only

calculates values of -(G-Hpgg)/T, but if the constants for each of the

reactants and products of a reaction are combined to obtain an equation for

ACH, the program calculates -(AG°-AHBg8) /T for a given T. The program can

be used for either Cp or Co/R. The program providesfor multiplication or

division by R to provide consistency.
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The ability to calculate -(AG°- H89g)/RT allows calculation of

AHZgg/R from a value of K, the equilibrium constant, or the calculation

of ¥ from knowledge of AH3g8/R. Normally the C. equations will be of the

same form and ACy/R will either be ’

Nag + DajT + hapT” + pagT? or da + MOT + AcT2 + AdT".

Prgm. CgK will handle either form. In addition, if not all of the reactants

or product heat capacities are in the same form, the program will handle

3 + AeT™2, Constants of terms that are
2

AC,/R = hag + DagT + AapT” + NagT

not used should be entered as zero.

ACH /R = AT? + Mag + DagT + ha,T + pag where b terms are included in

Mag and d terms are included in Aap.

~(ACO-AH3gg)/RT = laglnT + fa_gT™2 + Aa_yT70 + Aad + fall + BapT® + Air’
where lat = Frhaz, hah = +a, Aa = Ha, Da_p = He,

bal = ASY/R - dag(inT;+1) + phen” - ports - Joep - LhagT?, and

- 1 1 1 -
Ba_q = AagTs + shaqTy + shaoTy + 7hasTi - AcT; - (AHS - AH3gg) /R.

The equations are written for AH3gg but can be used for AH and (AG-AHg)/RT

if (AHS-AHZGg) /R is replaced by (AH$- HJ)/R. T; is the temperature limit

for range of validity of the Cp equations. The following equations are used

for calculation of K, Af398/R, or AG°/R.

Ai3gg/R = T[- (AG°-AH3Zgg)/RT - 1nK].

The values of M398 from a set of T and K values are averaged and then used

for calculation of AG®°/R and K by 1nK ==AG°/RT = -{AG°- H3gg)/RT - (MHBgg/R)T™.

When accurate entropies are not available for all reactants and products,

both AHP and AS can be determined21)

A3gg/R ~ TASS/R = T[-(AG° - H8gg)/RT - AS§/R - 1nK] = T[A - InK]

where A can be calculated from just the constants of the ACH/R equations by

through evaluation of

step 10 of Prgm. CgK if zero is entered for AS$/R in step 3. If steps 1h

and 15 are carried out for a set of T and XK values with ASS /R = 0, the

display of step 15 is Ai3gg/R - TAS/R which is stored in the secondary

register. These values can then be least-square fit to a linear equation

after all data have been inserted in steps 14 and 15 by carrying out step 21.

Step 21 displays first AHZg/R followed by AS{/R and incorporates these

constants; so that steps 10 and 18 to 20 can then be carried out.
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Directions:

(1) Insert Prgm. CgK

Store Day in RO, lay in Rl, las in R2, daz in R3, Ac in RC, and

R = 1.98719 or 8.314L in RE.
Display

T, * AS/R 4 (AHS- MH3gg)/R A Nag

SeT ha_p

SST Na_q

SST Nay

1STSUN hag

38T Aa}

S8T hat

CGT B -(AG°-AHSgg) /RT

f a to multiply by R

fe to divide by R

ff c before starting set of data in steps 0.00

1h and 15
T; 4 Ky C repeat for all i AHZgg/R

Ad o
R/S TEAHD9g/R

R/S Standard Deviation

T D K

SST ln XK

T E AG®/R

+ jo oO£ a after step 15 if 298/R> AS? /R
ASY/R = 0 in step 3

1: Enter 0 for (AHS-AHS9g) /R if Ty = 298.15 XK and enter zero for Ac,
Maz, or Aap if the Co equations do not use these terms.

2: If it is desired to repeat the calculations using a changed value

of Ty, it is necessary to start back at step 2. Steps 4 to 9 can

be bypassed if there is no need to check the constants. With

AS?/R known and stored in RA and step 3 completed, steps 10-12, 18
and 20 can be carried out in any order. If SY/R is known and has
been inserted in step 3, steps 16 and 17 follow the insertion of all

of the sets of K and T values. If S9/R is not known, it is entered
as zero in step 3 and steps 10 and 16-20 cannot be used until ASS /R

has been determined by carrying out step 21 after the insertion of

all of the sets of K and T values. After step 21, steps 10, 18 and
20 can be used in any order.



 

 

 

 

 
 

Prem. CgK

(3) fLBLA STOB  hR¥  STOA  hRY + + STOD  RCL3
+ X RCL2 3 3 + X RCL 2 +
+ X RCLO + X RCLC hR+ 3 - RCLB
- STOh  hRy  RCL3 3 + X RCL? 2 +
+ X RCL1 + X RCLC hR+ gx? + 0
+ - hR+  fLN 1 + RCLO X + RCLA
- CHS ST05 2 STO+1 6 STO+2 1 2 STO+3

(L-7)  RCLC 2 + 8TOC RCLO  hRTN RCLC  RCLL4  RCLS RCLL
(8-9) RCL2 RCL3 82
(10) fLBLB + + + RCL3 X RCL2 + X RCLL

+ x RCLY  hR4 + + RCLC  hR4 gx2 E
+ RCLS + hRt PLN RCLO X + hRTN 111

(11) glBLa RCLE X hRTN 115
(12) glBLe RCLE + hRTN 119
(13) glBLe fP2S 0 STOM  STOS5  ST06 STO7  STO8  ST09 P25

(1h) hRTN fLBLC fLN  STO6 hRY _ ban
(16) B RCL6 - X hR+ I+ hR+ hRTN fx HRY 4
(17) STOTT hRTN gs  hRY  hRTN
(18-19) fLBLD B RCL7 hR4 + - ge” hRTN £LN 158
(20) fLBLE B X CHS  RCLT + hRTN 165
(21) glBLA fP2S  RCL4L RCL6 X RCL9 RCL8 X - RCLA

gx RCL9  RCLS X - + CHS STOA  RCLL X
RCL6 + RCLO + fP2S  STOT f-x- RCLA  STC+5 hRIN qs

RP 0 1 2 3 L 6 7
Aa May Aas Nai 1.

t t ¥ t = <bay Aa), hay Aa_y Da) 1nK TPAHgg/R

RS L 5 6 7 8 9
2 . 2 o .

oI oT LAHZGa/R 2(AHZgg/R) IT(AHZGg/R) i

AHSg~TAS?
or % RT

R A B Cc D E

AHSAH?
ASS /R ~d2a Ac 1; R

Na_o
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Test with Co = ag + aT + aT" + a1 for Mo, 1400-2800 K:

(2) 1.50365 STO 0, 8.19918x10"° STO 1, _i.13500%10™° STO 2,

9.21717x1070 STO 3, 0 8T0 €, 1.98719 STO E;

(3) 1L00 4 16.792 4 7307 A 1.50365; (kL) SST 0; (5) SST ~63.706;

(6) SST -3.87h; (7) SST 4.0996x107>; (8) SST -6.892x10"3 (9) SST 7.681x107";

(10) 1400 B 11.573; (12) f e 5.82k; (10) 1800 B 12.956;

(10 ) 2200 B 1h.171; (10) 2800 B 15.800; (12) fe 7.951; (11) f£ a 15.800.

Test with Cp = a + bT + an” + or? for Mo, 1k00-2800 K
 

(2) 9.54656 STO 0, ~3.80258x107°> STO 1, 1.6987x10~° STO 2,

0 STO 3, ~1.3595Ux10° STO C, 1.98719 STO E;

) 1L0o0 + 16.792 4 7307 A 9.5L656; (4) SST -67 977; (5) SST 3982.51;

) 9ST -58.2878; (7) SST -1.90129x107°; (8) SST 2.8312x1071; (9) SST 0;
0) 1400 B 11.573; (12) f e 5824; (10) 1800 B 12.955;

0 ) 2200 B 14.168; (10) 2800 B 15.796; (12) f e 7.949; f a 15.796

Test of complete program with AS? known

(2) 1 s8T0 0, 1073 gro 1, 107° aro 2, 0 8TO 3, 10° STO C, 1.98719 STO Ii;

(3) 10° 4 20 4 100 A 1.000; (4) ssT _5x10°; (5) s8T 2733 4; (6) SST 10.092;

(7) ssr 5x10", (8) ssr 507; (9) 0; (10) 10° B 19.900;

(10) 2000 B 20.601; (11) f a 40.939; (12) f e 20.601 (13) f c 0.000;

(1h) 10° 4 0.905 C 19 999.8; (1h) 2x10° 4+ ho 194 C¢ 2000.0;

(16) R/S 19 999.9; (17) R/S 0.3; (18) 10° p 0.905;

(19) ssT ~0.100 (18) 2000 D 40 196; (19) SST 10.602; (20) 10° 99.918

 

Test of program with AST to be determined
 

(2) same as above; (3) 10° +0 4 100 A 1.00; (4&5) same as above;

6) 8ST -9.908, (7-9) same as above; (13) f ¢ 0.000;(

(1k) 10° 4 0.905 C -0.180; (1) 2x10 + 4019h C¢ -19 999.98;

( 21) fd 19 999.6, 20.00; (10) 10° B 19.900; (10) 2000 B 20.601
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As Prgm. CgK would be repeatedly used for equilibrium calculations of

the solidus-liquidus equilbria for molybdenum, it is worthwhile to use a

variant of Prgm. CgK specifically designed for this type of equilibrium

calculation. The program can be simplified by calculating -(AG®-AHE;4) /RT

for the fusion process at several evenly spaced temperatures and fitting

these values with Prgms. Cheb (f,C,) and Cheb~a. The resulting four ap

values are then put on a data tape to be stored in registers 0 to 3. Also

AH3/R for the fusion process would be on the tape to be stored in register

9. The atomic weight of molybdenum, 95.94 would be stored in register C

to be used if any data in weight percent are to be converted to mole fraction.

With the molefractions of Mo in the solid and liquid phases at a given

temperature, the program provides values of yr/Yg and 1nyr/x5. For values

at several temperatures, a least-square fit is made to estimate the excess

entropy and enthalpy of mixing in the liquid phase. With these constants

and for systems with moderate solid solubilities, the liquidus curve can then

be calculated by the present program.

The choice of standard temperature to serve as a reference for enthalpy

values and the choice of liquid standard state is sometimes found to be

confusing. A number of possible choices for molybdenum were discussed in

detail in Ref. (13) to demonstrate that the final calculations do not depend

upon the arbitrary choices that can be made. A summary of the different

types of calculations from Ref.(13) is presented here. The heat capacity

data for Mo(s) at 200 K intervals from 1400 to 2800 K were fit by Prgms.

Cheb (£,Cp) and Cheb-a. The heat capacity of Mo(l) was extrapolated to

lower temperatures by Cp/R = 2,832 + 5.923x10™ to join the solid C3 at

800 K. For Mo(s) = Mo(l), ACH/R = 2.075 = 3.534x10™°T + 2.0809%x10" n°

- 14.638x10710p3 for 1400-2800 XK. This choice of Cp for Mo(1)

fixes the metastable liquid standard state between 1400 and the melting

point. If 298.15 K is chosen as the reference temperature and AHSq is

the enthalpy of fusion at 298 K, the method of extrapolating the liquid

thermodynamic properties from 1400 K to 298 K can be completely arbitrary

with no effect upon the calculations in the operating range of 1400 to 2890 XK.

This is most simply seen from the equation

In K = -AG°/RT = -(AGO-AHSyq)/RT ~ AHRyq/RT = @ - (AHS-AHS4q)/RT-AHG,o/RT
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where § represents those terms of ~(AGO-AHE,4) /RT that depend only upon the

heat capacity contributions and T4, the bound to the range of validity of

the heat capacity equation, and not upon Taig. It is apparent that any

change in the standard reference temperature or in the methods of extra-

polating to the standard reference temperature cancels out due to an equal

change in (AG-AHS8t4)/RT and in MIE,4/RT. This was illustrated in Ref. (13)

by using different heat capacity equations for liquid Mo between 298 and

1400 XK and as expected from the above equation, identical values of ln K

are obtained in the range 1400-2890 KX. Also the use of 2890 X instead

of 298 K as the standard reference temperature gave identical In K values.

Likewise, Tgtgq = O K changes (AH{-AHSq)/RT and AH§,4/RT equally. If the

same standard reference state, e.g. Mo(g) at 298.15 K, is used for both the

solid and liquid phases such that AHBgg = 0 for Mo(s) = Mo(1l), LHY)go-0HS.g

is changed correspondingly to yield the same AG®/RT. The various quantities

are shown for comparison where A corresponds to extrapolation of the liquid

Cp equation from 1400 to 298 K; B takes ACy = 0 from 800 to 298 K, C refers

both liquid and solid to the solid reference state at 298 K and D uses

2890 K as the standard reference temperature.

A B C D

Tey 298.15 298.15 298.15 2890 K

AHE¢4/R 5305 5323 0 4303 ¥

(AH00-0HEgq) /R 2 17 5307 1005 K

~ (AGS),0o-LHEtq) /RT 1.904 1.916 -1.885 1.188

-AGS),00/RT -1.886 ~1.886 -1.886 -1.885

Within the limit of rounding errors, the final results are identical.

Since there is no difference, Prgm. {xb is set-up to use the conventional

standard reference temperature of 298.15 K but a wider temperature range is

handled than previously (13). For the range 900 K to the melting point,

CO/R = 2.18 + 2.048Ux10™Tr — 1.10l9x10”On? + 0315503071

for the solid. For the liquid, C3/R = 2.832 + 5.923x10 T

to extrapolate from the value of U4.5LL at 2890 K to join the solid value of

3.306 at 800 K. For Mo(s) = Mo(1), ACJ/R = 0.651-1.456x107T +1.10h9x10™0p?

~0.31558 10771

wags used

was used

from 900 XK to the melting point. acy was taken as
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izero below 900 XK. AH3890/R

AS§op/R = -(8G§pp=-LH3gg ) /RT

The constants of the acy equation were inserted in Prgm. CgK with

Ti = 900, ASP/R = 1.921, and (AH{-AH3gg)/R = 0. Values of -(AG°-AH3gg)/RT

4303, AHpp/R = AH3gg/R = 5329 K and

1.92L

were calculated ranging from 900 K to the melting point and fitted with

Prgms. Cheb. C,~(f,Cy) and Cheb-a3 to obtain

~(AGO-AH3gg) /RT = 1.9357 = 3.5kkx107° Bp? Hop3T + 3.123x107 T° - 1.042x107

for Mo(s) = Mo(1l) between 900 K and the melting point with an average

deviation of less than 0.00L compared to the values from

Prgm. CgK.

K = TRRT and Vito /iio are calculated from the equation

Ink = -AG/RT = -(AG®-AH3gg)/RT - AH3gg/RT = 10¥ido Vito + 1n Xo!Kip

From just the liquidus curve, it is not possible to unambigously fix the

enthalpy of mixing and the excess entropy of mixing for the solution.

However, the approximation of assuming that both the enthalpy of mixing

and the excess entropy of mixing vary as (1-x300)° is made for preliminary

treatmentof the datas Aff,/R = bo, (sig), ABygo/R = tog (1x)%, and

Inyy, = AGMo/RT = (bp/T - bo) (1 - XMo) Where the partial molal quantities

are for the mixing of liquid Mo with the other component. At a given

temperature, by/T - bg will be designated as fi. When io and Vito are

close to unity, ovis will be very small and will be approximated by

8 )2S L S L \2 . 5 5
InyMo = [1n{vMo/Yo) (1-1, /(1-xy,)". If the resulting yyxyo> 1,

 Yio is approximated by - . Then multiplication of ito /Yoo» determined

in the equation above Fri the liquidus and solidus points and AG®/RT of

fusion, by io will yield ito which can then be converted to Q or by/T - bg.

From values at several temperatures, a least square fit will yield the

values of by and bg from which the first approximation to the enthalpy and

excess entropy of mixing of liquid Mo with the other component will be

available. Then using bonding theory to fix reasonable enthalpy and

entropy values, a second approximation to by and bg is obtained that fits

both the liquidus data and provides reasonable enthalpy and entropy values.

An approximate liquidus curve can be calculated using the initial by and bg

with an estimated solid solubility. The program also provides for

converting Celsius temperatures to Kelvin and converting weight percent

to molefraction.
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Directions:

(1)

(2)

NOTE

NOTE

NOTE

NOTE

Insert Prgm. (xb

Insert data tape with constants of equation for ~(0G°-ABSgg) /RT and
AHSgg for the fusion of Mo and the atomic weight of Mo.

If any weight percent data are to be treated, store atomic weight of

second component in register C.
Display

E (to preceed each new set of data) 0.000

T 4 (1-x) + (1-x37,) A £2, VitoYio

Repeat step 5 for data at each T

R/S after all data entered in step 5 bysbg

(1x0 IH (1-2375)B values will flash until T within 2°

Tf a -AGH/RT

t C T

wt. FAD xp = (L-xy,)

1: Step 9 is used to preceed steps 5, 7 and 8 when t°C is to be
converted to TK.

2: Step 5 calls for xj = (l-xy,). When wt.%A is available, step
(10) converts to xp. Starting with wt.%Mo, key 100 wt.%Mo - D
for step 5.

3: The initiation of a new set of data in step 5 must be initiated

by step 4 which clears the secondary registers. At any time

after completion of step 5 and before step 4 is carried out to

prepare for a new set of data, step 6 can be repeated by keying f c.

L: Tn step 7, small values of xh have little effect on the liquidus and a

rough estimate can be used. xP=10"" or 1072 can be used for all very

small solid solubilities. Thecalculation is inadequate for large

5: FRI,RE bg obtained in step (6) are sensitive to
experimental error. After modification to match reasonable
enthalpies and excess entropies, the revised by is stored in RS
and the revised bg is stored in RI; step 7 will then use these

values for calculation of the liquidus curve.

6: To use for another component, store AHZ/R in A, ASE/R in 0, and
0 in 1-3 if ACh = 0. In steps 5 and T, xy, is replaced by xo.
When AC, # 0, the next level of approximation is to use the average

values of MHZ/R and ASP/R over the temperature range. For Mo, one
can use AHP/R = 5127 and ASR/R = 1.774 as averages for 1400-2890 K.
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Prom. {ixb

fLBLC RCLD + hRTN i
PLIBLD TIX 0 : hi/x | - RCLC X RCT.R
: | + hi/x HRN re
LBL rP2S 0 STOL  8T05  STO6  STO8  STO9 FPS hRTN
fLBLA  STOE 1 - hxzy hSTI 1 - + LN
ST06 hRY STOL fa RCL6 - STO9  hRCI  RCLE +
gx® x A 4 1 WRCI  - FIN + £350
fGSBL hRY  STO8  RCLY + RCLE  gx° 3 STOT RCLY
X hLSTx +  hLSTx + fex—~ RCL ge¥ hRTN 78

glBLfc fP2S RCLL RCL6E X RCL8  RCL9 X - RCLY
gx? RCLY RCL5 X - 3 CHS hSTI RCL4 X
RCL6 + RCLO + fP2»8 STO5  f-x- hRCI hRTN 107

FLBLB 1 ST08 ST09 KRY  STO-9 gx2  hxey ST0-8  gx°
- A + RCL5 X RCLA + STO7T  RCL8 RCLY
+ FIN  hR+  hRCI X + STO6  RCLO + :
fLBL3  f-x- fa RCIA hR+ + + RCLT  hx=y RCL6
+ + STOL - hABS 2 gx<y GTOL ROLL hRTN
TLBLY  RCLY  @T03 160
gLBLfa 4 + + RCL3 X RCL2 + X RCL1
+ X RCLO + RCLA hR4 + - hRTN 179

fLBL1 1 hRCI - fLN CHS + hRTN 187

0 1 2 3 L 5 7 8 9
Eo 5 Yiap ay an a3 T by, 1n—5= Q In YMe 1n ra

Mo Mo
L

used used Mo Xo

I 5 6 7 8 9

pn) $7 Sor 50°7° Trt 4

A B c D E I
L S

AHZgg/R 95.94 M, 273.15 x, Xp

bg

Test:

(3) 157.26 STO C
L 3150 ¢ 423.15; (10) .09 D 5.L49x107 7, 1.53 D 9.39x10~;

E 0.000; (5) 2800 4 1075 4 .0553 A 1.715, 1.005;
2700 4 107 4.132 A 1.741, 1.031; (5) 2600 + 107° 4.0522 A 1.769, 1.119;

2500 4 107° + .5hk202 A 1.800, 1.697; (5) 2400 + 1070 + .7315 A 1.833, 2.667;

R/S 1977.8, =1.009; (7) 107° 4 .0553 B 2683, 2783, 27197,2800,2800;
1077 4 0500 B 2503, 2502,0599,2600; (8) 2700 f a 0.111;

fc 1977.8, =1.009
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Calculation of Composition Boundaries of Saturating Phases
 

Such calculations require that Gibbs energy of solution be expressed

in analytical form as a function of temperature and composition. The

functional form of the regular solution equation is the most practical for

most systems.

2 i .
7 gives the Gibbs energy in terms

. . , 1
The regular solution derivation

of volume fraction. If the volume fraction is expanded as a truncated power

series in mole fraction, one obtains

= 2 2B , 2ABY/RT = bgxh + cx and MB/RY = [bghieg let - cgi

AG is the excess partial molal Gibbs energy of component 1 and V4 is the

molal volume of component 1. As the regular solution equation is derived

under constant volume conditions, an excess entropy term arises from the

volume change upon mixing. In addition, since b= (V3/71 ) [AV1 )2-(ABV)712Re,

the temperature coefficients of the molal volume and of the energy of

vaporization, AE, also result in an excess entropy. The enthalpy and

excess entropy can be expressed as similar functions of mole fraction.

Their combination to give the partial molal Gibbs energy equation yields

for each component in its standard state dissolving in the solution

FF 0 >Inyy = AG)/RT = (by/T-bglxs + (ep/Tmcg x SE
~ . . 2 2

lnyp = AGH/RT = [by/T=bg+Hen/Tecy) Ixy - (cp/T-cg x = fox

where the signs of the by, cp, by and cg terms are the same as the signs

of the corresponding enthalpy and entropy terms in the Gibbs energy

equation. Thus, bgT at a temperature T equals bp-bgl, ete. These equations

average out the contributions of AC, values to the Gibbs energy by using

the average enthalpy and entropy values over the temperature range of

interest. Analytical equations of this form are found to reproduce,

within the range of experimental uncertainty, the thermodynamic properties

of many metallic solutions over a considerable range of temperature and

composition.

When a miscibility gap exists in the solution at a given temperature,

the partial molal Gibbs energies of both components are equal in both

saturating phases. If the mole fractions are expressed as x; = l-y and

¥o = y in the phase with excess component 1 and as x = x and xp = 1-X
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in the phase with excess component 2, the equilibrium condition can be

expressed as

)3 = In(l-y) + by” + oy

)3

Inx + (1x) + c(l-x
2 3

lny + (bide) (1-y)° - c(l-y = In{1-x) + (brie )x - ex”

where b = (bp/T~bg) and similarily for c¢. When the same values of b and c

are not applicable for both phases, the equations become

Tnx + by(1-x)® + ey (1-x)” + ey = In(l-y) + (byrdey)y” - opp” = dy
o 2

lny + by (1-y) + ey (1-y)° te, = In(l-x) + (by+ic, )x - ox = -dy

The subscript x indicates the constants apply in the phase region for which

x = x7 1s small and y indicates applicability in the phase region for which

1y xp is small. These general equations may be reduced to the first set

if by = b, by = bic, cx = ¢, and Cy = =C. When the solubilities are small,

the cubic terms can be dropped with the constants of the quadratic terms being

lx = bytey and fy = bytey. The e, and ey terms are discussed below.

For a symmetrical immiscibility gap when the molal volumes of the two

components are closely the same, ¢ = 0 and by = by resulting in equal values

of x and y. The two equations reduce to In[x/(1l-x)] + b(1-2x) = 0 which is

readily solved by Prgm. Im. If the excess entropy is neglected,

b will be inversely proportional to T and the calculations can be repeated

at a new temperature Tp by multiplying b by T1/To. This can be done by

Ty + Tp + STO X 4 RCL 4 £ b to obtain the value of x =y at Tp. The

temperature that brings b down to 2 will be the critical temperature. For

b < 2, the system will be miscible.

Program Im carries out the simultaneous solution of these two equations

for x and y to yield the compositions of the saturating phases. The

iterative solution using the secant method is based in part on a portion of

Prgm. 8D~11 of the HP-6T Standard Pac(18). Program Im first assumes that

the solubilities are small enough to neglect dy and dy and to approximate

1-x by 1. This yields as the first approximation x' = = (Pxtex) x' is

used to calculate the first approximation of dy.

2 3
lny + by (1-y) + cy(1-y) tidy fey = 0

is then solved by iteration to yield y". If flag O is set, the value of

y obtained by each iteraction is flashed. The process continues until the

fractional change in y in the last iterative step rounded to the number of
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places after the decimal designated in step 2 is displayed as zero. The

same process is then used in step 7 to calculate x". The value of x" is

used to calculate a new value of dy and the equation for y is solved again

to obtain vy!" Steps 6 and 7 are alternately repeated until the values of

x and y show no additional change. To speed convergence, step 2 should

be set initially at DSP 2 and no change in x and y will be noted after

Ax/x or Ay/y < 0.005. For x and y ~0.1, the values of x and y will be

accurate to 0.0005 and can be read to 4 places by keying DSP L. If it is

desired to calculate x and y more accurately, steps 7 and 6 can be repeated

with DSP 3 or kL. If there is no interest in the progress of the iteration

at each step, hCFO will stop the flashing of successive x or y values.

hSFO will change back to flashing.

If the same standard states are not used for both phases, a constant

term would be added to dy or dy or both corresponding to the Gibbs energy

difference between the standard states divided by RT. The equilibrium

between the solidus and liquidus portions of a phase diagram will be

considered as an example. For solid with largely component 1 in

equilibrium with the liquid phase, then ey = AGE ,/RT = ABS|/RT - ASE4/R

and ey = -AGE o/RT = ~AHS o/RT + ASR o/R, where AH? and ASP are the average

enthalpies and entropies of fusion of the two components over the temperature

range of interest. In the equations given on the previous page, b, and by

will be considerably different, in general, for the example of solid-liquid

equilibria.

Program Im provides for insertion of the enthalpy and entropy terms

to allow calculation of by, cy, ey, by, Cy and ey at various temperatures

and then to solve for x and y values for the saturating phases at the given

temperature. When the b, c¢ and e values are already known for the desired

temperature, the enthalpy values are inserted as zero and the b, ¢ and e

values are inserted with reversed sign for the entropy terms as illustrated

in one of the test examples.

For mutual solubilities of two liquid phases or two solid phases for

which there are no ey, or ey terms due to differences in standard states,

AH1,ASEAHR2 and ASE are entered as zero. When the difference in

standard states corresponds to the solid phase transition, then AHP and
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ASS are replaced by the corresponding values for the transition. For

liquid immiscibility with small enough solubilities for the approximation

lny; = (byte, )y™ and 1lnyo = (byrbey) (1-y)° in the phase rich in component

2, the regular solution theory predicts (bytex)/ (byricy) = (Vo/V1),

This is sometimes useful, but, in practice, the value of c¢ is often more

dependent upon change in character of the bonding across the solution range than

upon the volumes of the pure materials, especially with change in electronic

configuration upon solution. One can sometimes obtain a useful value of c¢ by

comparison of (1nyy)/x5 = b+c at large xp with (1ny,)/xs = be at large xq.

If ¢ = 0 is used in Prgm. Im, (1nyy)/x5 and (1nyp)/x5 are taken equal for a

given solution, but their value can be greatly different on opposite sides of

the miscibility gap.

Directions:

) Insert Prgm. Im

DSP n, usually n=2 initially

(1

(2) Pind
X x 25D8)(3) ABR 5/R + ASE J/R 4 by + bg A AHP 1/R

(4) -AHQ o/R + -AS® o/R + by +Wy R/S (or fa)  -AHS ,/R20 f, 2 h f,2

(5) of 4 c? + ch 4 ch R/S (or fb) cf

(6) T B (or t° D) x, vo... y"

(1) ¢ Repeat 7 and 8 alternately until x" ee. x!"
a x and y show no change in succes- " "t

(8) R/S sive steps; read final values MAE J
with DSP n+l

If vy is known; after step 7, DSP n to desired accuracy followed by

(8') vy STO A fa dy

(1") ¢ x" ee Xpinal

If x is known; after step 6, DSP n to desired accuracy followed by

(1") x STO A fd dy

(8") ¢ Fan, Vinal

NOTE 1: The alternatives fa and fb for R/S in steps 3 and 4 allows alteration

of part of the data without need to reinsert all of the data. For

step 6, temperature in °C can be inserted followed by D to convert

to °K and initiate the calculations.

NOTE 2: The display control of step 2 can be changed at any time, but is

best started with only two places. If higher than 3 place accuracy

is desired, n can be increased at each successive repeat of steps

7 and 8. For each new T, start at step 6 following step 8. If step

7 was the last step, key fP2S before starting again at step 6.

cont'd.



NOTE

NOTE

NOTL

NOTE

TES:

(3)

6:

5127 4 1.77h 4

rR

C can be used in place of R/S for step 8, but alternating between
C for the x calculation and R/S for the y calculation helps one
keep track of which value is being calculated.

If it is desired to repeat step 7T' to obtain a value to a larger
number of places, change DSP n and repeat steps 8' and 7'. Similarily,
if x is known, repeat steps T" and 8".

an R/S
After T STOD, E calculates AGS LeeAESBEes by and fe calculates
cy Tor component 1 if the compdnent 1 constants are in the primary
registers. If dy =-ln aj is desired, it may be obtained by RCLS
after step 8.

Step 6 assumes x and y are small. If they are not, replace step 6

by T STO D x' 4 y' GTO 8 R/S, where x' and y' are estimates of the
solution. Then continue with steps 7 and 8. This procedure is also

used for calculating solubilities for a sequences of temperatures.

If the temperature intervals are small, only T STOD is needed for

step 6.

34x10” 4 3 A 5127.00;

(4) -1371 4 -.762 + 8x10° + .2 R/S 1371.00;

(5) 500 + .1 4 500 4 .1 R/S 500.00;

(6) 2x10° B (or 1726.85 D) =x=.07, y=.02,

(71) C€ x=.10, .10, .10, .10;

(8) R/S y=.02, .02, DSP L, .0190;

(7) © =x=.101k, .20LL,.101k,.201k, DSP 5, .10138;

(8) R/S y=.01902, .01902,.01902, DSP 6, .019022.

y_= .019022 known

Steps 2-7 the same as above; (8') .019022 STO A fd, dy=.017T;

(7') ¢ .101k, .101k, .101k, DSP 5, .10138

.10138 known

.02, .02, .02, .02;

wo=

Steps 2-6 the same as above; (7") .10138 STO A fd, d

(8") ¢ .0190, .0190,

0, br

yoo.

X .= 2.5, by = 3, Cp = 5s cy = 1ey =

) 040404 -2.5A0.00

) 040404 ~3R/S 0.00

) 04-1404 -.5R/S 0.00

) 1B x=.05, y=.04, .06,.00,.06,.06

) © .08, .08, .08, DSP 3, .075; (8) R/S .062, .062, .062, DSP kL,

) C .0755, 0755, .0755, .0755

.0618
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Prem. Im

(3) TLBLA  STO7  hRY STO6  hRY  STOL hRY STO3 hRTN 9
(4) gLBLfa PS A fPxS  hRTN Lu
(5) gLBLIb  STO9  hRY STO8  hRY TPS STO9  hRV STO8 PS

hRTN 25
(6) fLBLB  STOD fc fGSBG + E + CHS ge  nPSE

fGSBO  fGSB1  RCL1  STOA £4 fe + POSB6 +
+ CHS geX hPSE fGSBO fGSBL GTOC 52
FLBLO 4 A 2 + STOO + STO1  hRIN 61

(7,7') fLBLC fe hSTI fogB6 STORE  fGSB2  fGSB3  STOA  f£GSBL  RCLA
(8,8") rd RCLA  hRTN  GTOC 7s
(6) FLBLD 2 7 3 . 1 5 + GTOB 84

fLBL1L  RCL1  RCLO - STO2 2 + - STOO  hRTN
gLBLfd fc X hLSTx 1 . 5 X FESRE +

- RCLA gx? X 1 RCLA - FLN - fP2S
STO5 hRTN 116
fLBL6  RCL6  RCLD : RCLT - hRTN 123
gLBLfc RCL8  RCLD + RCL9Y - hRTN 130
fLBL2  RCL1 fe STOC  RCLO fe STOB hRTN 13
fLBL3 RCLC  GTOh  fLBL5 RCL1 fe STOC fLBL4L RCLO  RCLL
- RCLC RCLB - + X STO+1 RCL1  hF?0  hPSE
: fRND  fx#0 (TO5 RCL1 hRTN 164
gLBLfe fLN 1 hLSTx = gx?  hLSTx hRCI X
RCLE + X + RCL5 + E + hRTN 182
fLBLE RCL3  RCLD + RCLL - hRTN 189
FLBLS  STOB  hR¥ fGSB9 RCLB  f£GSBY9  hRTN 196
fLBLY + STOA STOO EEX CHS 4 ST02 + STO1
hR+v fd hRTN 5 209
FLBLT fo RCLA X fGSB6 + RCLA gx X ge”
RTN 2290

R 0 1 2 3 b 7 8 9

P x! " Ax AHS/R  AS$/R bh og ch cy
8 y' " Ay -MH3/R  -AS3/R y bY of ct

A B Flag 0 is set

x" of(y') fly")

y" r(x") f(x") x
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Gibbs Fnergy from Phase Boundaries

When the compositionsof saturating phases are known, two constants

can be directly determined. If the same b and c¢ values are assumed for

both phases for which the same standard states are used,

3 = In(l-y) + by© + ey = lna; = AGy/RT

ny + (ble) (1-y)® - (ly) = In(i-x) + (b+dc)x - cx” = 1lnap = AGp/RT

nx + o(1-x)° + c(1-x

The mole fraction of component 1 is x in he phase rich in 2 and is 1-y in

the phase rich in 1. The simultaneous solution of these equations expressed

as ob + Bjc = g1 and ooh + Bpe = €5 is discussed on pg. 11h of reference 13

using the quantities

op = 1- £2 (1-y)%, ap = 1 - x (1-)%,

By = 1-x-y(1x)? Bp = dy - =(1)2 + x(1p),
ge, = [n(1-y)/x1/(1-0)%, ep = [in(1-x)/y]/(1y)°,

and D = aq Bs - ao By

When the same b and c values are not expected to be applicable for both

phases or if the solubilities are small enough to combine the cubic terms

with the square terms, then one uses ny/(1-x)° = by and 1nyp/ (1=y)° = by.

In addition to calculating values of b and c¢ or by and by, values of

ny = AGE/RT and lnaj = AGy /RT and the corresponding values for the other

components are calculated for both phases. If a set of b and c values or by

and by values have been obtained at several temperatures, steps L-6 of

Prgm. xb can be used to obtain enthalpy and excess entropy terms corresponding

to b = by/R + bg or ¢ = c/T + by and similarily for by and by. The steps

are (L) E, (5) T 4 b for each b value, then (6) f ¢ will yield by and bg.

The same steps are repeated to obtain cp and cg values from the set of c¢

values,

Directions:

(1) Insert Prgm. yx-be Display

(2) vy +x A b

(3) s8sT c

(by vy + xB by

(5) s8sT by,

(6) ¢ 1nyq,lnay,lnyo,lnap for phase rich in 2

(71) D lnyp,lnap,lny],lna; for phase rich in 1
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NOTE 1: b and c¢ can be obtained after step (5) by RCLE hRCI.

NOTE 2: Steps 6 and 7 can be used in either order following step 3 or

step 5.

Prgm. yx-bc Test:

 
 

 

 

(2) .095 + .07 A 2.4837; (3) SST 0.5397;
(Lk) .ok + .03 B 3.6889; (5) SST 3.4635;
(6) C 3.4709, -0.0357, 0.0036, -0.0269;
(7) D 3.1920, -0.0269, 0.0051, -0.0357;
after (2), (6) ¢ 2.5823, -0.0769, 0.0160, -0.0566;

(7) D 2.2973, -0.0566, 0.0229, -0.0769.

Prem. yx-be — oT

(2) fLBLA STOS 1 - CHS  ST06  hxzy  STO3 1 -
CHS STO RCL5  hxyy + STO8  hR RCL3  hxey :
STOT  RCL6 . 5 +  RCL8 gx? X  RCLL +
CHS 1 . 5 + STOD 1 ROLT 3 hy*
- RCL6 X STOC  RCLT  £LN CHS RCL gx© 3
STO? 1 RCLT  gx° - STOA  RCL8  fLN CHS RCL6
gx? + 8TolL 1 RCL8  gx° = STOB X hazy
RCL? X - RCLC  RCLB  X RCLA RCLD X -
STO9 3 hSTOI RCLC RCL? X RCL1L RCLD X -

(3) RCL9 3 STOE  hRTN  hxy hRTN se
(4) fLBLB A + hRCI RCL5 X - STOC  RCL3 .
(5) 5 + hRCT £ RCLE + STOD  RCLC hRTN hxy
(6) fLBLC hRCI RCL6 X RCLE + RCL6 gx X STOO

RCL5 LN + fa RCL5 X - RCL5 gxe X
+ STO. RCL6 LN + RCLO hRY gSTK  hRTN 145

(7) fLBLD fa RCL X -  ROLM gx? X 8TO2 RCL3
fLN + hRCT  RCL3 X RCLE + RCLY gx? X
+ STO9 RCLAE  fLN + RCL2  hRY gSTK  hRTN 17h
gLBLfa RCLE 1 . 5 hRCI X + hRCT hRTN EY

0 1 2 3 b 5 6 7 8 9

£1 oF y 1-y x 1-x y/(1-x) x/(1-y) D

(2) (2) . (1) (1)
Inyq ny, Inyo, Inyq

A B C D B I

oy On Bq Bo b c

by by
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Calculation ofThermodynamic Properties of Liquid Solution from Properties

of Solid Solution and Solidus-Liquidus Data and Effect of Errors

Program Im presents the equations for the solidusg-ligquidus equilibrium.

The same equations and symbols will be used here for Prgm. Qyxbe. This

program starts with enthalpies and entropy of fusion of both components and

the partial molal enthalpies and entropies in the solid phase and calculates

ot = Tyr/x3 and qs = 105)x

for the liquid phase of eonpountsion 1 = x in equilibrium with the solid

phase of composition Xo = y and then calculates bx and cx of ot = byte, (1-1).

It is often of interest to determine the influence of error in x and y on

the calculated values of {] and Qo. This program provides values of

df2/dx and df2/dy for both compenents. The variation of each Q with the change

of by and cy can also be calculated. An error in the entropy of fusion

of a component causes an error only in ot for the same component. The

program gives the error in 25 for an error in ASg/R.
2

naj = lny + by (1-y)° + ey (1-y)°, 1na’ = In(1l-x) + (by+dcy-cyx)x

L s ° alnas = lnas = ~0CGpgq, o/RT = ey

: 2 £2
nag + ey - In(l-x) = Lna’ - In(l-x) = (bytdey—eyx)x = (ox

2 oe 2
os = [ny + by (1=y) + ey(1-y)> + ey = In(l-x)]/x

Ts = lnx + by (1x) + ey (12x)
1nat - inal z= —AGS /RT = -—e + 5A + xX 3 .

fus,L Ina} = In(l-y) + (by+aey )y - egy”

2
na) - ey, = lnx = nat - Inx = (by + Cy = cyex) (Lax) = ot(1-x)?

£ 2 3 ; 2
gf = [in(l-y) + (byrieyly” - cyy” = ey = 1nx]/(1-x)

cy = 200 =~ 9), by = 301 ~ 200 + 2(Qp-0y)x = Q) - ex(lex)

£
dsl 1 2 [2
- = B 2 by(l-y) = Rey(l-y)7|/x dey. do, 0)

dv av dv

£ .
dey 1 . Can oe te)? where v = X,¥ Dy OF Cy.— = 2 + (2by + 2c. )y 3eyy Je x)

¥
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(1)
(2)

(3)

(4)

(5)

(6)

 

24
af | amex) , 1 el 0pm], of
wo x2(1-x) x3 (1) |X

asf - 1 2lnx _ [2(1-x) 20+1x] 1 oot
-— —-— Se

re——

— te

pts

- + ea

dx x(1-x)? (1-x)3 (1-x)3 x(1-x)? (1-x)

an 2 3
de | (=v) dp (1-y)
db. 52 dey, «2

asd y° Q 2
I = 5 hae = (2- ) A

(1-x) dc 2 7 2
J y (1-x)

dby = dso dey as allo ay

wy = Ue) os om = 20x) Soe

asi T a (T=T rn) db 2Y(T=T ro)
2 = T= MP2 Cx - 2{T- MP2 x - (2x- ~MP2

d(Asp o/R) m2 ° a(AS¢o/R) x2 > 4(ASe/R) Ty2

Directions: .
em Display

Insert Qyxbc tape

Ap 1/R A Ase1/R A AHp1/R

~AHg
ef +

T B

o/R + =S¢p, bY t+ BY R/S Migo/R
yCg R/S ch

vy +x C So

BE

Typo

cont'd.

fa ap/a(ASe, 2/R)
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NOTE 1: After step 6, steps 7, 8 and 9 can be carried out in any order.

NOTE 2: After step 9, 2X gives dey/d(ASe,2/R) which yields dby/d(ASp 2/R)
by multiplication by x-1.

NOTE 3: If liquid thermodynamic data are available and it is desired to

calculate solid data from x,y values, the same program can be

used with reversal of 1 and 2 and x and y with the following

directions:

(2) =AHo/R 4 -ASo/R A
(3) AHp/R 4 15/8 A of 4 by R/S
(4) cf t+ cX R/S
(5) TB + boHcy
(6) x+y C 9 08, cys by

Pr xbc

(2) fLBLA  fP35 STOY hRY STO3 hPZS hRTN 7

(3) hR+¥ STO6 hRv STOL hRY ST03 hRTN 1s

(hh) hR ST08 hRTN +9
(5) fLBLB  STOD h 1/x RCL X RCLT - STOO  RCL8  RCLD

: RCLY - STOS P28 CHS STO05 3 X 2

STOO fPZ5  hRTIN

fLBLC fPZS STOL 1 - CHS STo2 fPZS  hRY STOA

ui

 

 

 

(6)
hx2y - STOB hLSTx fe + fPYS  RCL2  fLN
RCL1 gx? + STO9 fxm RCLB fe - RCL1
- RCL2 gx? s 87108 f-x-  RCLO - o

CHS STOT f-x-  RCL2 xX RCLB - CHS STO6 .
hRTN ?

gLBLe LN 1 hLSTx  - gx? nLSTx  RCL5 x RCLO
xX + RCL3  RCLD + ROLY - hRTN Lo

(7) fLBLD RCLB  RCLB RCL5 X 3 X RCLO 0 x
x RCLA h 1/x - CHS PS RCL1 gx? :

hLSTx f-x- RCIA RCLA  RCLS X 3 x RCLO 2
+ X RCLB  h 1/x - RCL2 gx? : STOR

RCLO 2 X RCLL RCL2 X h 1/x - RCL1
: CHS STOC f-x-  RCI8 2 X RCL1 RCL? xX

h 1/x - RCL2 + PIS STOL RCLC ST02  hRY hRTN 185
(8) fLBLE f£PZS  RCLB RCL 3 gx? STOC fex-~  RCLB xX

RCLA  RCL2 + gx? Fox 1 . 5 ROLA
- X PIS hRTN

(9) gLBLa  RCLD - hLSTx + PIS RCL gx? + CHS
hRTN

RP 1 2 3 L 5 6 7 8 9

ao dio v y vy y
i I -AHo/R -037 /R Cy by by ch, Cy

xX XK

RS 1 2 3 L 5 6 7 8 9

Cy X l-x MH/R OAS; /R -Cy Dy Cy 0 Qo

B C D E I

1-y a0) dy, dfp/dby  T ay aa
dy dy
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TEST: (2) 4300 * 1.487 A; (3) -2184 t -0.993 + 2500 t+ 0 R/S;
(k) 200 4 O R/S; (5) 2773 B 1.010; (6) .10 *.78 C

0.328, 1.848, ~3.040, 2.517; (7) D 13.481, -18.829,
6.629, -9.686; (8) BE 1.331, 1.198, 0.207, 0.289;

(9) 2199 fa 0.340; 2X, 0.680; (0.781-1)X, 0.150.
 

 

If it is desired to determine the effect upon by and cy of the liquid phase

of errors in by and Cy of the solid phase, Prgm. bc calculates dey/dby,

dex/dey, dby/dby, and dby/dby.

 

 

dy (2.2) _ Jog.
aby db, dby x2 (1-x)?

dey oe _ on) - Joss ER v°
dey dey dey x2 2 (1-x)2

an de an an agdby 1 (lox) =X = 1 2(1-x) 2 Gi
aby dby doy dby dby db

2 2 2
yo G=y)” vy5 = 2(1-x) 5 - 5

(1-x) x (1-x)

Te = Ge. - Ux = ogo - 2g - 1€y y y Cy ¢y y

2 3 2
= (3y) — ~ 2(1-x) A=y)7 (ey) —Loes

(1~-x%) x2 (1-x)%

Directions:

Display

(1) Insert tape bc

(2) y+ x A dey/dby
dey/dey
dby/dby
dby/dby

Prgm. be =

fLBLA  STOA 1 - CHS STOB hRY STOC 1 -
CHS STOD RCLA + gx® STO9 RCLC  RCLB + axe
STO8 - 2 X STO2 fax RCL9  RCLD X RCLS
1 . 5 RCLC - X STOT - 2 X
STO3 fex— RCLS 1 RCLA - RCL2 xX - STOO
Fam RCLT 1 RCLA - RCL3 X - STOL hRTN go
 

cont'd.
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0 1 2 3 7 8 9

vom oa awy y ny y ’

yyTey
x 1x v 1-y
 

TEST: 0.38 + 0.42 A 3.50, 1.7h, -1.60, 0.53

There is no general procedure for applying the various programs that have

been described for treating a phase diagram. Liquidus data usually would be

treated first by Prgm. (xb which neglects the effect of solid solubility to

obtain a rough idea of the partial molal enthalpies and entropies in the

liquid phase. Neglect of solid solubility or experimental error in the

data can yield values substantially in error and the initial values may

have to be somewhat modified to be within the range of reasonable

values indicated by various theoretical models. Program Im can be used

to calculate the boundaries of the solidus and liquidus from the selected

thermodynamic values. There are, in general, an infinite combination of

thermodynamic quantities that will fit a set of experimental data within

experimental error. Comparison of the results from Prgm. Tm with the

original experimental data will indicate what changes in thethermodynamic

data might be necessary to give a better fit and still be in the range of

reasonable entropy and enthalpy values. Program yx-be is of use of obtain

Gibbs energy values from boundary values at a given temperature or Prgm. Qyxbe

will yield the molefraction dependence of the thermodynamic properties in

one phase knowing the properties in the saturating phase. This last program

can be of value in adjusting the thermodynamic data through analysis of

the effect of error in various quantities upon the phase boundaries and the

effect of error in one thermodynamic quantity upon related thermodynamic

values. For intermediate phases with relatively limited solid solubility,

the next program, Prgm. SP, is often of value. Because of the experimental

error in most observations and the resulting wide spread of thermodynamic

quantities that could be used to fit the data, it is important that this

fitting process not be carried out in a mechanical manner. Considerable

judgment using theoretical models with useful predictive value is essential

to narrow down the range of thermodynamic values consistent with the

experimental data.
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Solubility Product Calculations for Liquidus of Intermediate Phases
 

Combination of the equations AGS/RT = (AG°-AHZgg8) /RT + A368/RT for

A(s) + nB(s) = AB, (s), A(s) = AL), and nB(s) = nB(L) gives for

ABp(s) = A(L) + nB(L), -AGP/RT = -AHSgg/RT - (AG°-AHZgg)/RT = lnk =

Inxg+nlnxp+lnyy+nlnyp = nxrnlnxg- (bemby/T) (L-xp) “= (cgmen/T) (1-xy) >

- nlbg+icy - (byron) /T heh + n(cg=cy/T)x; -

MHpgg/R + [yep (13a) (1x) © + nlbie,—cpxa xa
1 £4 a

(fe 8) - ing - nln(l-xp) + betes (1-xn) | (Lox) “4nlbgogcoxy xf

 

; 2 2
[bpten(L-xp) [{L-xp)" + nl[bp+riep—chxp xy
 ~AGO/RT = Inxy + nln(l-x,) +

0 2
- [bgteg(1-xp) (1x4) - nlbgticg-cyxg Ixy

Program SP can be used to calculate the liguidus curve when Af3gg/R is known

or to calculate MHZ08/R when the liquidus curve is known.

 

 

Directions:

(1) Insert Prgm. SP

(2) by tecy + bg + cg E

(3) AliSoq/R STOA, -(AG-AHSgg) /RT STOB n STOE, 273.15 ST03

(Lh) Xp A» T

(5) R/S +t

(6) x3 + T B > -AG°/RT

(7) R/S - AH°/R

A B Cc D E

MDa/R -(AG°-AH3gg ) /RT Xp 1-xp n

RP 0 1 2 3

by, cy used 273.15

RS ba Cy

cont'd.



Prem. SP

fLBLE  fP2S

hRTN

fLBLA ~~STOC

£P2S FGSBO

RCLC LN

RCL3 -

fLBLO

RCLE X

RCLD ax”

fLBLB  STOk

X RCLC

P28

RCLB

RCL2

gx

STOC

RCLB

~T3=

STOO

CHS

hxey

RCLC

hRTN

£GSBO

hR¥

STOD

RCLD

RCLD

ROLY

RCL4

P28

fGSBO

FLN

hRTN

RCL1

RCL1

CHS

STOL

RCLA

RCLE

RCL3

STOOD

CHS

hRvy

RCLO

RCLO

fLN

£P2S

LRTN

STOO

11

sT02

hRTN

by

69

RCLE

£GSBO

98
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Chapter IV

Regular Solution Calculations

The previous chapters have frequently referred to regular solution

equations and their application to thermodynamic calculations. (12,19,20)

In Chapter IIT, it was pointed out that the partial molal Gibbs energies

expressed in terms of volume fractions as composition variables can be

conveniently expanded in terms of mole fraction truncated at the cubic term.

In its simplest form, the regular solution theory is a pair-interaction

model with interactions between unlike atoms or molecules being taken as

the geometric mean of the interactions between like atoms of molecules and

excess entropy contributions comes only from the temperature coefficients

of the volume and energy of sublimation terms. For most actual systems,

the geometric mean assumption must be modified and additional entropy

contributions must be considered. For metallic atoms, there is also the

question of the appropriate valence state to use for evaluating the cohesive

energy (7).

The programs tabulated below can use for AH either the enthalpy of

sublimation to the grotnd electronic state or to any valence state in

obtaining the first approximations to the solubility parameters. Subsequent

approximations depend upon the types of atoms being mixed and an appraisal

of the types of chemical interactions that can take place. Thus strain

contributions due to size disparity can add positive contributions to the

Gibbs energy of mixing for solids with equivalent lattice positions and can

add negative contributions for appropriate size differences for structures

such as those of the Laves phases, liquids, and other systems with non-

equivalent sites that achieve better space filling with appropriate size

disparities. The very substantial acid-base interactions that can take

place when atoms with non-bonding electrons are mixed with atoms with

unoccupied low energy orbitals must also be considered. (8) However, the

simplest form of internal pressure calculation is the starting point for

most systems. For this level of approximation, the energy of vaporization

is taken as AH~RT where T4 1s the average temperature of the range of interest.

Tlnyy / (1x )° = Vy (8-6, )°/R = o(3 - 05) i,|?- (Bn 2)2

Tiny,/x5 = V,(84-6)

ii

 

0,

0, il

1

Topitical = [2Vn(8,-81)2/R1/[1+(v,fv; 7]



~T5=

Program RS can store data for eight binary systems of component 1.

  

 

 

 

Directions: .
em Display

(1) Insert Prgm. RS
1

(2) RAT; + AH] 4 V{ A [ (AH) /R-T1)/V|Z

(3) B 2

(4) AH, + V, C; repeat for all n V1 (8,-61)°/R, Vo (8,_-61)%/R
up ton =9 5 5

(5) T4+4nbD OQ=lny1/x5, Qn=lny,/x]

(6) nE Topitical fOr l-n system

NOTE 1: Step 3 is required before a new set of data in step bi,

NOTE 2: Steps 5 and 6 can be used in any order. If it is desired to add

more values in step 4 after step 5 or 6 has been used, carry out

step 6 for last value of n used in step 4. Then key f b and
step bowill accept values for n+l, n+2, etc. up to the maximum of 9.

Prem. RS

(2) fLBLA STOA hR¥ STOB hRV¥ STOC hRY¥ STORE RCLB hxzy

+ RCLC - RCLA + vx STOD hRTN 18
(3) fLBLB 2 hSTI hRTN 29
(4) fLBLC STOO hR¥ STOLL RCLE + RCLC - RCLO +

£v/% RCLD - gx® 4 STO(i) fa  RCLO  STO(i)
ob hx2y RCLA X fxm hRY hRTN 49

(5) fLBLD hSTI hRY  RCL(i) hxzy + + 4 fa RCL(1)
xX hx2y RCLA X f-x- hRY  hRTN 66

(6) fLBLE hSTI RCL(i) 2 X fa RCL(i) X RCL(i) RCLA
+ x 1 + gx® + KRW 03
gLBLfa hRCI 1 0 + hSTI hRY hRTN 91

gLBLfob hRCI 9 - hSTI hRY hRTN a8

A B C / D 1 BE I
AH /R=Ts\ 5

Vy Aly T, (Fain7; 4) R Tndex

P 1 2 3 Ciera 8 9

v AB (6,-8,)2/R  (87-62)°/R (81=88)°/R  (81-80)°/R1 ‘n i= 2 1- 3 ee ® 0s es ee sw 1- 8 I= 9

S 2 Bittreect 8 9

Vo Va se e300 4% 0 8 2 Tt ese EN eee Vg Vg
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Use of Regular Solution Equations for Fitting of Data
 

When there is substantial solid and liquid solubility and Prgm. Im

of Chapter TIT is required, an exact analytical solution cannot be given,

but quite accurate fitting of the results can be obtained in terms of a

polynomial fit of the deviation from simple limiting equations.

If the solid and liquid solubilities are small, the liquidus of

. . \ L -
component A of an A-B binary system is given by 1n Xp, = 0 + aT + where

L L L
0 = ASL/R + by + ol and a_y = -AHG/R - by ~ cp

and all quantities refer to component A. The solidus can be expressed as

In xq = a® + a2Tt

where

s  _ S S S _ 8 S
a = ~ASL/R + bg + cg and a_y = AH2/R - by - cp

and all quantities refer to component B.

Actual data are fitted to the equation ln x = a_77 + A, where A is

= aT4h. a power series in T. It is sometimes useful to fit 1n T=

When the liquidus or solidus is of very limited extent near the melting

point, a simpler equation can be used. The limiting liquidus near the

melting point of B becomes

L
Xp 3 ASS/R

TET OS STTaw] -(Te~1) T(1-xy/xy)

19-1k) of ref.(12) which reduces to

OoLo AS2/R

ToT) T

from Eq.

b
e
n

Xx

 

when solid solubility is small.

The various modifications of these limiting equations can be used to

obtain accurate least square fits for liquidus or solidus boundaries to a

polynomial with a minimum number of terms. Prg. LSA is designed to handle

the variety of situations thatmight arise by evaluating the constants of

f{x,T) = ap/T + ag + aT + apT”, where f(x,T) may be In[x/(T.-T)1, ln x, or

x/(Tp=T) . a_q is fixed as indicated below by the type of equilibrium and

A= £(x,T) - a_7/T is fit to a power series in T or under some circumstances

in Tp-T.



wn

a
- o i. 1 os 3 i li zPrem. LSA for £(x,T) = ~5= + A, A = ag + all + apt

Display
(1) Tnsert tape LSA

(2) Store a_j in B a_]

(3) fa to clear registers a_q

(bh) Modify prem. to fit £(x,T) = x/(T=T) or lnx in place of 1n SBT
2 ST(5) x, Tp B 7 A

If any of T values are evenly spaced,

key xA after 2nd of regularly spaced

values if 10~2 has been replaced by
proper I.

(6) R/S a0

(7) 88T 887 a1» 8p

(8) T D» x

BE after 2nd of regularly spaced T x

(9) ¢, g8sT al, af for Te-T in place of T

(10) T ra x

fe for evenly spaced T X

NOTE 1: Prgm. is set for f(x,T) = In spa, although usually a simpler
oa 2890-7
function is used.

WOTE 2: For f(x,T) = lnx, remove fGSB 1- in 3rd line (steps 22-3) and
FGSBL + near end of IBL D (steps 132-3 minus 2) and if Tp~T power

series be used, remove hRY FLN + of glBLA, step 192.

NOTE 3: Tf x is keyed in as 10"x, add EEX n + in 3rd line (after hRtof step 20)

NOTE L For melting point of metal other than Mo, replace 2890 by Te after

fLBLL, fLBLC, and end of gLBLA.

NOTE 5: For even spaced temp. at intervals IT other than 100°, replace EEX 2

by IT after fLBLA, fLBLE, and glLBLd.

NOTE 6: If x is to be used instead of lnx, remove fIN in 3rd line (step 21),
and remove ge* at end of fLBLE and end of gLBLe.

‘ 3 2
NOTE 7: For an A-B system with In Yy = bis + exp and In B= (ode )xg-cxy,

there are the following combinations of £(x,T) and a_q.



Solid-Liquid Fquilibrium
 

A liquidus, low x5

A solidus, low xy

A liquidus, high x,

A solidus, high xy

B liquidus, high Xp

B solidus, high x

Solid-Solid Equilibrium
 

-T8-

rem)
In xp

In xp

xp/ (Tp=T)
Inxp or in[xp/ (Tp 4-T)]

xp/ (Tp 5=T)

1nx, or Infx,/ (Te p-T)]

 

 

A solidus in xp pSLe”

B solidus In xp ~bSc®

Prem. LSA

gLBLA RCLB fCLREG fP7S FCLREG STOR hRTN 5 7
PLBLA RCLE EEX 2 + fLBLB STOR 4 4 gx
I+ hLSTx  hR+ LN FGSB1 - RCLB  RCLE + -
FPS rt hLSTx ROLE X STO+1  £PZ5  hRIN 35
ROLL RCLS PIS STO2 hRY STOO RCLY + STOL RCL6E
gx? RCLO 3 RCLT - hISTx RCL6 RCL9 + X
RCL - STO3 hx2y STO8 RCLT gx2 RCL + RCLS
- STO5 RCL RCL2 RCLA RCLT X hxzy ~-  hSTI
RCL RCL6 X hR+ - STOE RCIL8 RCL5 X RCL3
pxe - RCLE RCL5 x RCL3  hRCI  X -  hxpy
x STOC RCLS X RCLE hxzy - RCL3 +  STOD
RCLT X RCL6 RCLC X + RCL9 + RCLY hxpy
- STOA hRTN RCLC RCLD 120
FLBLE hR4 EEX 2 + fLBLD fb RCLB hR+ +
+ fGSBL + g ex hRTN 135

fLBLL 2 8 9 0 hR+ - fLN hRTN Tun
gLBLD 4 + 4 RCLD 7 RCLC + X  RCLA
+ hRTN 156
FLBLC 2 8 9 0 fb STO3  hR% RCILD X
2 X RCLC + CHS STOU hRTN RCL3 174
gLBLd hR+ EEX 2 + gLBLe + + + RCLD
X RCLY + X RCL3 + hR+ PLN + 2
8 9 0 hR+ - RCLRB hx2y B + ge¥
hRTN
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RS STA pr? wrt wr wr? ped dg
then 1

RP nA prea oe 10 r 4

1 ¥
aq an

L 5 6 7 8 9

} 2 .Rp sa AS §re wrt Toa 4
then

RS

A B c D T

2.1

ag ay an t u

 

 

A fifth chapter entitled "Philosophy of Critical Evaluation and Compilation"

has been written which describes the compilation procedures and use of some

of the programs described in the earlier chapters and which particularily

reviews some of the bonding models used to predict thermodynamic values

for systems lacking data. Because of the length of the present report, the

decision was made to issue the fifth chapter as a separate report (LBL-T7666)

and the present summary of calculation programs will be ended with a program

used to estimate enthalpies of formation using the Rittner model for

gaseous halides with a large ionic component.
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Bonding Energies of Gaseous Halideg Using the Rittner Model
 

Rittner (24 ) has used an ionic model including polarizability to

calculate bonding energies of gaseous halides. There are a number of

difficulties in the model having to do with the proper treatment of over-

lap repulsion, the appropriate value of the polarizability to be used, and

the contribution of higher order terms. In spite of the limitations,

Cubiceciotti (25,27) and Hildenbrand (26) have reported success in using

the model for compounds of highly charged cations and criteria have been

developed to predict range of applicability of the model.

It is of interest to determine how far the model can be extended among

the gaseous transition metal halides, for which thermodynamic data are very

scanty. It would be useful to compare the calculated values with the

available experimental data to determine if the model or some modification

of the model might yield useful data. The HP-6T calculator program given

below follows the calculations of Cubiceiotti, Hildenbrand, et al. ( 27 ).

Enthalpies of formation or dissociation energies to the gaseous ions can

be readily calculated for MX, linear MX,, planar MX3, and tetrahedral MX)

given a value of the cation-anion distance and the polarizabilities. These

molecules will be described as MX, with x=1 to kL. The operation of the pro-

gram will be illustrated using typical parameters for Zr and Mo.

H§/R = 167 103lay/r + ob,rv| for

(1) Mg) + nx (g) = Mx,(g)

where 0 is the anion polarizability in a3 for the symmetrical molecules and

is the sum of the anion and cation polarizabilities for MX molecules. The

constant 167 103, given by ey10"R = ?/1070% = (h.80324)710" /1. 38065.

yields values of AHR/R in Kelvin units when r ig given in A. The values. of

an and by, are (27 ):

al = -iT by = ~yy
an = -12(3.5) bp = =H(42)

ay = -12(9./3) by = 378.17)

a, = -:(15-3/1.5) by = -:1(16.48)

where 4+ = 1 = =an = NI L— p, the power of the overlap repulsion

term, taken equal to 11.
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Xo = NM" (g) + nX (g) is given by the

sum of ALS for the following reactions.

() Ms) = M

(3) 2X = 3
fl

The value of MHZ/R for M(s) +

where Xo is taken as gaseous for Fp and Cl, at OK and solid for Bro and I.

(4) nX(g) + ne(g) = nx(g)

(5) Mig) = MT(g) + ne"(g).

For reaction (2), AHS/R = T8970+250K was used (29) for Mo and T2560+500K

was used (28) for Zr. For reaction (3), AHR/R was taken (30-35) as 9 2L0%70

for F, 1h 386+1 for C1, 14 185+5 for Br, and 12 889+2 KX for I. For

reaction (4), AH3/R was taken (36,37) as -39 LLO£20 for F, -41 930430 for CI,

-39 03030 for Br, and -35 550+£30K for I. The ionization potentials in em

from Moore (38) for

+ 4 + h+Mo 57 260, Mo=t 130 300, MooT 219 100, Mo 37h 180
+ D4 3+ hyo

Zr 55 1kLs, Zr 105 900, Zr” 185 L000 and Zr 276 970

are used to calculate AHE/R for veaction(5). The gum of AHZ/R values [lor

reactions (1) to (5) yields AHB/R for the formation from the elements.

(6) Ms) + 2 %ylg) = MX, (n0) )
(MiZgg/R = MHG/R + (H3ga~HG)/Rux, - (H3ge-Hg)/Ry - S{HJ ~H§)/Ry, -
298

For M(s), (H29g-HG)/R = 552K for Mo and 665K for Zr. For gaseous Xo.

F(H3gg-H3)/R = 531 for Fp and 552 for Clp. For Brp(L) at 298K, F(H5og-HE)/R =

LHTHK and for Io(s), 4(H3gg-HE)/R = TUK. Values of (HSgg-HY)/R for MX,(g)

are tabulated in Table A.

The calculation of AZgq /R for reaction(6) can be expressed as AHZgg/R =

U/R + M, + nXx+ (H39g-13) /Ray, » where AHJ/R for reaction(l) is expressed as

U/R = Ap/r + oBp/r with Ay = 167 103 a, and By = 167 103 by, My is the sum

of the AH§/R values of reactions(2) and (5) minus (H3gg-HE)/R for M(s), and

Xyis the sum of AHS/R values of reactlons(3) and (4) minus (HSgg~HJ) /R for

i>KD The My values are calculated by step 5 of the program. The other

values, along with oy, values, are tabulated as follows:
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 n An By Xx 0,1
1 -151 912 ~ 53 169 F  =30 730 1.2

2 -531 691 -325 660 C1 -28 100 3.0

3 -1 10k 087 -868 800 Br -26 320 L.5

L -1 872 k29 -1 752 500 I ~23 L450 6.h2

The o value for I is from Cubicciotti, Hildenbrand, et al.( 27 ). The other

values are from Dalgarno (39). The calculation is carried out in two stages.

After storing A, and By, U/R is calculated from the M-X distance r by

U/R = Ap/r + aBp/r . Then the value of U/R is combined with (HSgg-H§)/R

of MX,, to calculate AH38/R of reaction(6). Constants are stored in registers

or are inserted with a data card as indicated.
 

 

 

 

RP 0 1 2 3 L 5 6 7 8 9

RS 1 2 3 L 6 T 8 9
By Bs Bs B), Mq Mo M3 My,

A B C D E I
Xx My, Ap OyBy R 6-9

n
n+10

n+l5

TABLE A Values of (H2gg-H§)/R in K

MoF, MoCl, MoBr,, MoI, ZrFy ZrCly ZrBry ZrI)y
n

1 1079 11k1 1176 1221 1092 1132 1172 1213

2 1624 1948 2080 2200 1k23 1783 1872 1842

3 1768 21.04 2395 2570 1817 2119 2321 2930

h 227h 2678 2987 3168 2278 2713 3001 3185

Frentione
(1) Insert Prgm. I
(2) Insert Data Tape I Display
(3) a4+ntr +6 for F, 7 for Cl

8 for Br, or 9 for I A U/R of M¥n(g)
(3a) If calculation is to be repeated

for different nwith same X,
a 4+ntr B U/R of MXn(g)

(4) With U/R displayed, key
(Hpgg-Hp) /R of MX, R/S AHSog/R of MXp(g)

(5) To insert data for different M,
AH3/R subl. of M 4(H3gg-HB)/R of M(s) E  L1.hk
IP, + IP 4 IPp + IP] + R/S My,

(6) fa to multiply any value by R
(7) fe to divide any value by R



NOTE 1: a is 0, Of halide ion except for n = 1 where sum of o values of

anion and cation are used.

NOTE 2: Step 2 leaves registers prepared for fluoride calculations. One

can go directly from step 2 to step 3a for MF, calculations.

 

  

Prem. 1

(3) fLBLA  hSTI hRY  RCLi  STOA  hRY  FLBLB  STOC  hRY  hSTI

hRY RCLi STOC  hR¥ hRCT 1 0 + hSTI  hRY

RCLi X STOD  hRCI 5 + hSTT RCLi  STOB RCLO

he RCLC hxzy X RCLD  hLSTx 4 ny” x +

hRTN Wy

Ly + hRCT 1 5 - RCLA X + RCLB +

LRTN 52

(5)  fLBLE 1 9 nSTI  hRY - STO {DS% STO: {DSZ

STO £DSZ STOOL RCL5 STOO  hRTN 68

STOX0  hRV RCLO STO+i f£ISZ  hRY  RCLS X RCLO +

FGSBO  FGSBO STO+i RCLL  STOB  hRTN -

fLBLO STO+i  fISZ hx=y RCLS X + hRTN 92

(6) gLBLa  RCLE X hRTN 96

(7) gLBLe RCLE + hRTN 100

TEST
(2) RP © 1 2 3 b 5

hREG, 0 -151 912 531 691 ~1 10% 087  ~1 872 Log 1.4388

6 7 8 9 A B ¢ D E I
-30 730 -28 100 -26 320 -23 450 ~30 730 0 0 0 1.98719 0

RS 1 2 3 Lh 6 7 8 9
- 53 169 -32560 -868800 -~1752500 160802 348275 663510 1201871

(3a) 1.2 4h 4 3.82 B -1220L77, (4) 227k R/S -139252
(3a) 8.2 414 1.82 B -12320L, (4) L079 R/S TOUT
(3) 34h 42.264 7A -1030001,(4) 2678 R/S foro
(3a) 10 4 1 4 2.26 B -87599, (4) 11k1 R/S h62Ls5
(3) 6.h2 4+ 342.66 +9 A 526181, (4) 2570 R/S 69249
(5) 78970 4 552 & 1.hk, 374180 + £19100 + 130300 + 57260 R/S 1201871,
(6) fa 2388347 (7) fe 1201871
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Cheb Cp, Cheb(f,Cn), Cheb-a Programs - Combined Use of Programs

Cheb(f,Cy) Program - Applications of Chebyshev Fitting Programs

Chebyshev Polynomials, Data Fitting Using the - Programs Cy, Cheb Cy

and Cheb (f, Cy)
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CHSG Program - Calculation of Thermodynamic Functions from Cp values

Constants, Fit of Data to Equations with more than Three -

Program LS cp

Cor Program ~ Anharmonicity Contribution from Anharmonicity,
Centrifugal Stretching and Vibration-Rotation Interaction

Cp or H values, Calculation of Thermodynamic Functions from -

Programs CHSG and Cheb.CHSG

10

70

59

3h

51

48

10

1

10

L6

22

hé



-88-

 

Index

Page

D.

Diatomic Gases, Calculation of Thermodynamic Functions for -
D-LT Program 31

I.

Electronic Level Contributions to Thermodynamic Functions, Calculation

of - Program A Lh

Enthalpy Values, Calculation of Thermodynamic Functions from -

Programs CHSG and Cheb.CHSG L6

FF.

Fit of Data to Equations with more than Three Constants ~ Programs

Ls cs and LSH* 22

Fitting, Data, Using Analytic Functions - Programs Interp.GK and
LSf(x) 11

Fitting, Data, Using Chebyshev Polynomials - Programs Cy, Cheb Cy
and Cheb (f, Cyn) 3

Fitting of Data, Least-Square, Using Analytic Functions - Program

LS f1fefs(x) 20

Fitting of Data, Use of Regular Solution Equations for - Program LSA 76

G.

Gases, Diatomic, Thermodynamic Calculations for - Program D-LT 31

Gases, Linear Polyatomic, Thermodynamic Calculations for -

Program D-LT 31

Gases, Thermodynamic Properties of - Program A Li

Gibbs Energy from Phase Boundaries =~ Program yx-be 65

H.

H Values, Calculation of Thermodynamic Functions from Cp or -

Program Cheb. CHSG Lé

Heat Capacity (Cp) Values, Calculation of Thermodynamic Functions
from - Program CHSG Lé

I.

I Program - Bonding Energies of Gaseous Halides 80-83

Im Program - Calculation of Boundaries of Saturating Phases 62

Inertia, Moments of

Diatomic, linear, planar, tetrahedral, trigonal bipyramid,

octahedral, bent triatomic, symmetric tops - Program ID 37

Other non-linear molecules - Program NL 39



-89-

Index

Page

I. cont'd.

Interpolation fit to Analytic Function expressed as a Power Series -

Interp. GK Program 11

Introduction 1

J.

No listing

K.
Calculation of Equilibrium Constant - Programs GK, CgK 12-15,50~56

Li.
Least-Square IMitting Using Chebyshev Orthogonal Polynomials -

Cheb Cy, Cheb(f,C,) and Cheb-a Programs 3

Least~Square Fitting of Data to an Analytic Function - LSf(x). LR,

Lsfyfofs(x), LS Cf, LS H* and LS ¥ Programs 16-29

Linear Polyatomic Gases, Calculation of Thermodynamic Properties

for - Program D--LT 31

Linear Regression - Program LR 18

Liquidus Curve, Calculation of Points on = Program Quxb 57

Liquidus, Solubility Product Calculations for, of Intermediate

Phases ~ Program SP 12

LSA Program - Use of Regular Solution Equations for Fitting of Datla 7

M.
Moments of Inertia [see Inertia, Moments of]

N.

NL Program — Non-linear Gases 39

0.
No listing.

P.

No listing.

Q.

No listing.

R.

References 84-86

Regression, Linear - Program LR 18

Regular Solution Gibbs-Duhem Integrations — Program LS ¥ 26-29

RS Program ~ Regular Solution Calculation 15



-90-

Index

Page

Ss.

Saturating Phases, Calculation of Composition Boundaries of -

Program Im >9

Solubility Product Calculations for Liquidus of Intermediate Phases -

Program SP 72

Solution, Liquid, Calculation of Thermodynamic Properties of, from

Properties of Solid Solution - Programs Qyxbe and be 67

Solution, Regular, Calculations - Programs Im, LSA, yx-be, SQyxbe,
RS,be, and SP 59-70

Solution, Regular, Equations, Use of, for Fitting Data - Program LSA 76

Solution, Solid, Calculation of Thermodynamic Properties of Liquid

Solution from Properties of - Program Qyxbe 67

SP Program - Solubility Product Calculations for Liquidus of Inter-

mediate Phases 72

Standard Thermodynamic Calculations - Programs D-LT, Cov, ID, NL, 4,

CHSG, Cheb. CHSG, CgK 30-55

T.

Thermodynamic Properties, Calculation of

from analytic equation for Cy - Program CgK 51

from Cp or HU value - Programs CHSG and Cheb.CHS L6

diatomic or linear polyatomic gases - Program D-LT 31

gases, complete functions of electronic level contributions -

Program A L3

for liquid solution from properties of solid solution and solidus-

liquidus data and effect of errors - Programs Qyxbe and be 67

non-linear gases (rotational and translational contributions) -

Program NL 39

Tschebycheff [see Chebyshev]

U.W.X. 7,
No listing.

V.
Vibration-Rotation Interaction, Calculation of Contributions from

Anharmonicity, Centrifugal Stretching and - Program Cor 3k

exh Program - Gibbs Energy from Phase Boundaries 65

2.
xb Program - Calculation of Activity Coefficients from Liquidus Curve 54-58

Qyxbe Program - Calculation of Thermodynamic Properties of Liquidus
Solution from Properties of Solid Solution and Solidus-Liquidus
Data and Effect of Errors. 68





 

 

This report was done with support from the United States Energy Re-
search and Development Administration. Any conclusions or opinions

expressed in this report represent solely those of the author(s) and not
necessarily those of The Regents of the University of California, the

Lawrence Berkeley Laboratory or the United States Energy Research and
Development Administration.

 
 


	Cover
	Introduction
	Chapter I: Data Fitting Using the Chebyshev Polynomials
	A. Least-Square Fitting Using Chebyshev Orthogonal Polynomials

	Chapter II: Fitting of Experimental Data by An Analytic Function
	A. Interpolation of Fit to f(x) = ∑aₙxⁿ
	B. Least-Square Fitting of Data to an Analytical Function
	Linear Regression
	Fit of Data to Equations with More Than Three Constants


	Chapter III: Standard Thermodynamic Calculations
	A. Thermodynamic Properties of Gases
	Diatomic or Linear Polyatomic Gases
	Calculation of Contributions from Anharmonicity, Centrifugal Stretching and Vibration-Rotation Interaction
	Moments of Inertia
	Non-Linear Gases
	Calculation of Electronic Level Contributions to Thermodynamic Functions

	B. Calculation of Thermodynamic Functions from Cₚ or H Values
	Calculation of Composition Boundaries of Saturating Phases
	Gibbs Energy from Phase Boundaries
	Calculation of Thermodynamic Properties of Liquid Solution from Properties of Solid Solution and Solidus-Liquidus Data and Effect of Errors
	Solubility Product Calculations for Liquidus of Intermediate Phases


	Chapter IV: Regular Solution Calculations
	Use of Regular Solution Equations for Fitting of Data
	Bonding Energies of Gaseous Halides Using the Rittner Model

	References
	Index

