NPS55-77-43 NAVAL POSTGRADUATE SCHOOL Monterey, California WASSS-77-43
VAVAL POSTGRADUATE SCHOO
Monterey, California
Enclosed

INGS-ONLY INFORMATION
WO MOVING SENSORS WITH
NM FOR AN HP-67/97 CAI
by
R. H. Shudde
November 1977
Dlic release; distribu ESTIMATION OF A CONTACT'S COURSE, SPEED AND POSITION BASED ON BEARINGS-ONLY INFORMATION FROM TWO MOVING SENSORS WITH A PROGRAM FOR AN HP-67/97 CALCULATOR

by

R. H. Shudde

November ¹⁹⁷⁷

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL 'Monterey, California

Rear Admiral Isham Linder South Communications and Jack R. Borsting
Superintendent Superintendent

Reproduction of all or part of this report is authorized.

This report was prepared by:

Repositions

Sack R. Borsting

Provost

The Shudde, Associate Professor

Rex H. Shudde, Associate Professor

Rex H. Shudde, Associate Professor Department of Operations Research

Reviewed by:

Reviewed by:

Municipal C. SOVEREIGH, CHAIRMAN

Department of Operations Research

MICHAEL G. SOVEREIGH, CHAIRMAN WILLIAM M. TOLLES
Department of Operations Research Acting Dean of Research

 \overline{a} Lollen . I i.

WILLIAM M. TOLLES

DD , FORM 1473 EDITION OF 1 NOV EDITION OF 1 NOV 68
5/H 0103-014<mark>-6601</mark> | ¹⁸ OBSOLETE

ESTIMATION OF A CONTACT'S COURSE, SPEED AND POSITION BASED ON BEARINGS-ONLY INFORMATION FROM TWO MOVING SENSORS WITH A PROGRAM FOR AN HP-67/97 CALCULATOR

by

R. H. Shudde Naval Postgraduate School Monterey, Ca. 93940

ABSTRACT

This report provides a procedure for estimating a contact's course, speed and position based on bearings-only data from two moving sensors. This report also contains a program for the HP-67/97 calculator to implement the procedure.

KEYWORDS :

Tracking Programmable Calculator ASW Tactical Analysis Calculator Moving Sensors

The programs in this report are for use within the Department of the Navy, and they are presented without representation or warranty of any kind.

TABLE OF CONTENTS

A. Problem Statement

Bearings-only data for a single target from two sensors which may be moving or stationary are available at two distinct times. The following quantities are required: an estimate of course, speed and position of the target at the latest time; an estimate of a future position of the target and/or an estimate of a point on the track of the target with a specified lead distance at a future time. The relative positions of the two sensors are assumed to be known at the time of each target bearing determination.

B. Operational Analysis

Two simultaneous bearings from two sensors at two distinct times and with known relative positions are used to estimate the course and speed of a target. The HP-67/97 program presented here was designed so that the data corresponding to the earliest time point is purged if data corresponding to a third time point is introduced. The relative position of the sensors may be updated when required. Thus the estimated target position, course and speed are continually updated as new information becomes available. No course smoothing is performed.

 $\mathbf{1}$

- C. Computational Algorithm
- 1. Enter the course $\psi_{\mathbf{e}}$ and speed $V_{\mathbf{e}}$ of the primary sensor $s,$
- 2. Enter the bearing ϕ and range ρ of the secondary sensor S_2 from the primary sensor S_1 at the time of the latest bearing observation.
- 3. Enter the time t_1 , the bearing of the target from s_1 , and the bearing of the target from s_2 . Output the target range from S_1 .
- 4. Repeat Step 3 or Steps 2 and 3 for a second time $t_2 > t_1$.
- 5. Compute and output:
	- a. The estimated course and speed of the target.
	- b. The bearing and range $(n.mi.)$ of the target from S_1 at time t_2 .
	- c. The bearing and range $(n.mi.)$ of the target from S_2 at time t_2 .
- 6. If required, enter a time t_{ℓ} > t_2 at which a lead distance £ (n.mi.) is required. Then compute and output the target's predicted bearing and range from both S_1 and S_2 .
- 7. Repeat from Steps 1, 2, 3 or 4 as required.

D. HP-67/97 Calculator Program D. HP-67/97 Calculator Program

1. User Instructions

* Note: The (R/S) function is required when using the HP-67 mode. This output is automatically printed on the HP-97.

2. Sample Problem

- a. The Primary Sensor S_1 is traveling on a course of 210° at 10 knots.
- b. At the time of the first contact sensor, S_2 is 115° and 3.5 n.mi. from S_1 .
- c. At 1200 hours the first contact is at 245° from S_1 and 260° from S_2 . How far is the contact from S_1 and S_2 ? (Ans.: 8 n.mi. from S_1 and 10 n.mi. from S_2 .)
- d. At the next time mark sensor S_2 is 100° and 5.0 n.mi. from s_{1} .
- e. This next time mark is at 1230 hours with the contact at 160° from S_1 and 239° from S_2 .
- Estimate the course and speed of the contact. (Ans.: 126° and 14 knots.)
- g. What is the bearing and range of the contact from S₁ at 1230 hours? (Ans.: 160° and 3 n.mi.) From S_2 ? (Ans.: 239° and 4 n.mi.)
- h. Estimate the bearing and range of the contact from S_1 and $s₂$ at 1245 hours with a lead distance of 3.5 n.mi. $(S_1 \text{ Ans.}: 137^\circ \text{ and } 10 \text{ n.mi.})$ $(S_2 \text{ Ans.}: 164^{\circ} \text{ and } 7 \text{ n.mi.})$

Program Storage Allocation and Program Listing
Program 3. Program Storage Allocation and Program Listing

E. Geometric Analysis

1. Static Geometry

Let $\bar{R}_i = (\theta_{1i}, R_i)$ denote the bearing and range of the target from the reference (primary) sensor s_1 at time t_i , and let \vec{r}_i = (θ_{2i} , r_i) denote the bearing and range of the target from the secondary sensor S_2 at time t_i , i = 1,2, where $t_1 < t_2$. Let $\phi_i = (\phi_i, \rho_i)$ denote the bearing and range of S₂ from S₁ at time t_i . The static geometry for some fixed time t_i is depicted in Figure 1.

From Figure 1 we see that

$$
\vec{\mathbf{R}}_{i} = \vec{\rho}_{i} + \vec{\mathbf{r}}_{i} . \qquad (1)
$$

By equating the rectangular components of Equation (1) we have

$$
R_{i} \cos \theta_{1i} = \rho \cos \phi + r_{i} \cos \theta_{2i}
$$
 (2a)

and

$$
R_{i} \sin \theta_{1i} = \rho \sin \phi + r_{i} \sin \theta_{2i} . \qquad (2b)
$$

Equations (2) are two equations in the two unknown ranges R_i and r_i . Solving this system of equations we obtain

$$
R_{i} = \rho_{i} \frac{\sin(\theta_{2i} - \phi_{i})}{\sin(\theta_{2i} - \theta_{i1})}
$$
 for any i, (3)

and

FIGURE 1. The Relative Sensor and Target Geometry at Time t_i .

$$
r_{i} = \rho_{i} \frac{\sin(\theta_{1i} - \phi_{i})}{\sin(\theta_{2i} - \theta_{1i})}
$$
 for any i. (4)

At any time t_i the target range R_i from sensor S_i and the target range r_i from sensor s_2 may be computed from Equations (3) and (4), respectively. Thus \bar{R}_i and \bar{r}_i are determined at any time t_i .

2. Dynamic Geometry

Let $\vec{v}_g = (\psi_g, V_g)$ denote the course and speed of the primary sensor S,, and let \vec{V}_{-} = (ψ_{-} , V_r) denote the unknown Let $V_g = (W_g, V_g)$ denote the course and speed of the
primary sensor S_1 , and let $\vec{V}_T = (\Psi_T, V_T)$ denote the unknown
course and speed of the target. Let $\Delta t = t_a - t, > 0$ be the time between first and second observations of the target. The absolute motion of sensors and the target is depicted in Figure 2. From Piqure 2 it is evident that one of the many vectorial relationships is

$$
\vec{\hat{R}}_1 + \vec{v}_{T} \Delta t = \vec{v}_{g} \Delta t + \vec{R}_2 . \qquad (5)
$$

The target course and speed vector $\bar{\mathbf{v}}_{_{\mathbf{T}}}$ is then found to be

$$
\vec{v}_{T} = \vec{v}_{s} + \frac{1}{\Delta t} (\vec{R}_{2} - \vec{R}_{1}) . \qquad (6)
$$

FIGURE 2. Motion of Sensors s_1 and s_2 and of the Target T from Time t_1 to Time t_2 .

3. Lead Distance Geometry 3. Lead Distance Geometry

If, at some time t_{ℓ} (t_{ℓ} > t_2), it is desired to lead the target on its track by a distance ℓ , then the bearing $\theta_{1\ell}$ and range R_{ℓ} to this position from the primary sensor S_1 is obtained by converting the vector $[\psi_{T}, V_{T}(t_{\ell} - t_{2}) + \ell]$ to rectangular coordinates and adding it to the rectangular form of the position vector \vec{k}_2 (see Figure 3). The resulting vector is then converted to polar coordinates to obtain the vector $(0_{1\ell}, R_{\ell})$. The predicted bearing and range \dot{r}_{ℓ} of the target from the secondary sensor $s₂$ is computed from

$$
\vec{r}_2 = \vec{R}_2 - \vec{p} \quad . \tag{7}
$$

PIGURE 3. Target Lead Distance Geometry.