HEWLETT-PACKARD

HP-67/HP-97

Clinical Lab and Nuclear Medicine Pac

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The 19 programs of Clinical Lab and Nuclear Medicine Pac have been drawn from the fields of clinical chemistry, nuclear medicine, radioimmunoassay, and statistics.

Each program in the pac is represented by a magnetic program card and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to assist you should you want to study the actual workings of the program.

No knowledge of programming is required to use the programs in this pac. However, some familiarity with keyboard operations, as described in Sections 1 through 5 of the Owner's Handbook, is assumed. If you have already run a number of programs from Standard Pac or another applications pac, you will be able to use these programs with very little additional instruction. We recommend that you read only "A Word about these Programs" on pages iv and v of this manual. If, on the other hand, this is your first exposure to running prerecorded programs, be sure to read the entire introductory section on pages iv to xii.

We hope that Clinical Lab and Nuclear Medicine Pac will assist you in the solution of numerous problems around the laboratory. We have tried to provide you with the most commonly used statistics programs as well, but should you find the need for more, there is another pac, Stat Pac I, exclusively for statistics.

We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

CONTENTS

Program

Clin	ical Chemistry	
1.	Beer's Law	01-01
	Converts between absorbance and % transmittance; solves for an unknown concentration given a standard concentration and the absorbance or % transmittance of the standard and unknown.	
2.	Protein Electrophoresis	02-01
	Given integration counts of a number of protein fractions, finds percentage of each. Calculation of weights optional.	
3.	LDH Isoenzymes	03-01
	Given values for the five LDH isoenzymes, finds activity of each as a percent of total. Compares results against normal values.	
4.	Body Surface Area	04-01
	Calculates an estimated BSA by method of Dubois or Boyd. Accepts either English or metric units.	
5.	Urea Clearance	05-01
	Calculates urea clearance with option of correcting for BSA.	
6.	Creatinine Clearance	06-01
	Calculates creatinine clearance with option of correcting for BSA.	
7.	Amniotic Fluid Assay	07-01
	Performs calculations for the spectrophotometric estimation of	
	bile pigments in amniotic fluid.	
8.	Blood Acid-Base Status	08-01
	Finds total plasma CO_2 and base excess from PCO_2 , pH and Hgb concentration.	
9.	Oxygen Saturation and Content	09-01
	Finds oxygen saturation and content in blood given PO_2 , PCO_2 , PL_2 ,	
10	Pad Call Indians	10.01
10.	Given hemotogrit percent red cell count and hemoglakin finds	10-01
	mean corpuscular volume, mean corpuscular hamoglobin, finds	
	mean corpuscular beneglobin concentration	
	mean corpuscular nemogroum concentration.	

Nuclear Medicine

11.	Total Blood Volume	.11-01
	Computes total blood volume by the radioisotope dilution method.	
12.	Schilling Test	.12-01
	The radioisotope determination of vitamin B_{12} absorption.	
13.	Thyroid Uptake	.13-01
	The radioisotope determination of thyroid uptake.	
14.	Radioactive Decay Corrections	.14-01
	Finds the activity of a radioisotope corrected for decay over time.	

Radioimmunoassay

15.	Radioimmunoassay15-01
	Computes least-squares regression line of logit of net counts vs.
	log concentration, including regression constants, correlation
	coefficient, and concentration for a given count.

Statistics

16.	Basic Statistics	.16-01
	Computes mean, standard deviation, standard error, and coefficient	
	of variation for grouped or ungrouped data.	
17.	Chi-square Evaluation and Distribution	.17-01
	Computes the chi-square statistic for goodness of fit. For given	
	$x \ge 0$, finds the chi-square density function $f(x)$ and the cumu-	
	lative distribution P(x).	
18.	t Statistics	.18-01
	Computes the paired t statistic and the unpaired t statistic.	
19.	t Distribution	.19-01
	For a given $x > 0$, evaluates the t density function and cumulative	
	distribution.	

A WORD ABOUT THESE PROGRAMS

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. Most of the computed results in this pac are output by the command PRINTx. On the HP-97 these results will be output on the printer. On the HP-67 each PRINTx command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution.

If you use an HP-67, you may want more time to copy down the number displayed by a PRINTx command. All you need to do is press any key on the keyboard during the pause interval in which the result is displayed. This action will cause the program to halt; execution of the halted program may be reinitiated by pressing **R/S**. Values that are output by a PRINTx command are marked by three asterisks (***) in the keystroke solutions to example problems. The keystroke solutions reflect another slight difference between the HP-67 and the HP-97. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, **(1)** on the HP-97 and **(1)**, **(2)**, and **(1)** on the HP-67. For example, the operation **(10)**^x is performed on the HP-97 as **(1) (10)**^x and on the HP-67 as **(1) (10)**^x. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, **(10)**^x). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

Programs 1 through 13 of this pac are alike in that many of the same operations are available in each of these programs. A look at the magnetic cards for these programs will show three instructions repeated in gold on every card of these thirteen: PTNT #, POFF?, and REPRINT. These three operations are intended primarily for use on the HP-97. In addition, either CLEAR or START appears on all of the first thirteen cards. Some discussion of these common operations may be helpful.

The instruction PTNT # allows you to key in a patient number which will be immediately printed in order to identify the data and results of the following calculations. The patient number used should be a whole number; the program will append two digits after the decimal point to identify the program being used, 01 to 13. For example, if the patient number 1234 is used in program 7, the program would print the identification 1234.07, which serves to identify the entire context of the calculations which are to follow. The use of the patient number for identification purposes is entirely optional and may be omitted.

The interrogative P OFF? asks the question: do you want to turn the print function off? When the program is loaded, a flag is set that causes all inputs and outputs of the program to be printed. If this information is not all desired, you may eliminate some or all of it, depending on the program, by turning the print

function off. It may later be turned back on at any time without affecting the operation of the program.

The instruction REPRINT allows for an additional printout of all data and results after a calculation has been completed. Frequently in the clinical lab, the results of a test must be reported to several different departments. The RE-PRINT feature allows you to obtain additional copies of the data and results directly from the program.

The instructions CLEAR and START are similar in that both have to do with initialization of the program and should be executed before any other operation in the program. They differ in that CLEAR is an optional instruction and START is mandatory. Basically, CLEAR simply sets certain registers to zero to insure that meaningless information is not output during a REPRINT. On the other hand, START loads registers with necessary initial values without which the program would fail to function properly.

RUNNING A PROGRAM

Loading a Program

Select the *Protein Electrophoresis* card, CL1-02A, from the card case supplied with this application pac.

Set the PRGM-RUN switch to RUN.

If you are using the HP-97, set the printer switch to MAN. All the programs in this pac are designed for manual printer setting.

Gently insert either end of the card (printed side up) in the reader slot of your calculator as shown in figure 1a or 1b.

Figure 1a. HP-97

Figure 1b. HP-67

When the card is part way in, a motor engages and passes it out the other side of the calculator. Sometimes the motor engages but does not pull the card in. If this happens, push the card a little farther into the machine. Do not impede or force the card; let it move freely.

The display will show "Error" if the card reads improperly. In this case, press **CLX** and reinsert the card.

Since *Protein Electrophoresis* is longer than 112 steps (the capacity of one side of a magnetic card), the display now shows "Crd" indicating that a

second card pass is necessary to load the remaining steps. With the writing still visible to you, insert the *opposite* end of the card (figures 2a and 2b) and pass the card through the card reader again.

Figure 2a. HP-97

Figure 2b. HP-67

When the motor stops, remove the card from the other side of the calculator and insert it in the "window slot" of the calculator (figures 3a and 3b).

Figure 3a. HP-97

Figure 3b. HP-67

The program has now been stored in the calculator. It will remain stored until another program is loaded or the calculator is turned off.

The Magnetic Card

Complete instructions for running the program are found in the User Instructions form for that program. The first few times you run the program, you should refer to these instructions at each step of the operation. Thereafter, mnemonic symbols on the magnetic card itself will provide shorthand instructions to the program's operation.

Take a look at the card that you have inserted in the window slot of the calculator. Notice that the mnemonic symbols on the card are grouped above the user-definable keys \land through \blacksquare . For example, the symbols " \rightarrow %" and "PTNT #" are associated with key \bigcirc . Symbols in gold are associated with the shifted keys \blacksquare through \blacksquare \blacksquare .

Below is a table of the important symbols and conventions you will find on magnetic cards.

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x	White mnemonics are associated with the user- definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \blacktriangle .
Gold mnemonic: y x [] E	Gold mnemonics are similar to white mnemonics except that the gold $\boxed{1}$ key must be pressed before the user-definable key. In this case y could be input by pressing $\boxed{1}$ $\boxed{1}$.
x ∔ y A	 ♦ is the symbol for ENTER♦. In this case ENTER♦ is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER♦, key in y and press A.

SYMBOLS AND CONVENTIONS (Continued)

SYMBOL OR CONVENTION	INDICATED MEANING		
X	The box around the variable x indicates input by pressing STO A .		
(x) A	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.		
→ x A	◆ is the symbol for calculate. This indicates that you may calculate x by pressing key ▲.		
→ x, y, z	This indicates that x, y, and z are calculated by pressing \triangle once. The values would be printed in x, y, z order.		
◆ x; y; z	The semi-colons indicate that after x has been calculated using \blacktriangle , y and z may be calculated by pressing \mathbb{R}/\mathbb{S} .		
	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.		
◆ x	The two-way arrow \diamondsuit indicates that x may be either output or input when the associated user- definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.		
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is con- trolled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.		
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.		
DEL	This special command indicates that the last value or set of values input may be deleted by pressing		

FORMAT OF USER INSTRUCTIONS

The completed User Instructions Form—which accompanies each program—is your guide to operating the programs in this Pac.

The form is composed of five labeled columns. Reading from left to right, the first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the operations to be performed.

The INPUT DATA/UNITS column specifies the input data, and the units of data if applicable. Data input keys consist of () to () and decimal point (the numeric keys), **EEX** (enter exponent), and **CHS** (change sign).

The KEYS column specifies the keys to be pressed after keying in the corresponding input data.

The OUTPUT DATA/UNITS column specifies intermediate and final outputs and their units, where applicable.

The following illustrates the User Instruction Form for *Protein Electro-phoresis*, CL1-02A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00
3	(optional) Key in patient number.	Ptnt #		Ptnt # .02
4	To suppress output of data, turn			
	print function off.			0.00
5	To turn print back on later.			1.00
6	Key in the counts of the first			
	protein fraction.	Fract₁	в	1.00
7	Repeat this step for the rest of			
	the fractions.	Fract _i	в	i
8	Calculate the percentage each			
	fraction is of the whole.		C	%
9	(optional) Key in the total grams			
	of protein and find the grams in			
	each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/			
	globulin ratio.		8	A/G
11	(optional) Obtain a reprint of all			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	data and results (Total Protein			
	and grams omitted if Total			
	Protein not input).		[] E	Ptnt # .02
				Fract₁
				Fract _n
				(%) ₁
				(%) _n
				Total Protein
				grams₁
				grams _n
				A/G
12	For a new case, go to step 2.			

Since you loaded this program in "Loading a Program" on page vi, step 1 is already done and we can move to step 2. (If you turned your calculator off, you must reload the program.) Leave the magnetic card in the window slot above keys \blacktriangle through \blacksquare .

Step 2 is an initialization procedure, marked START on the magnetic card. Press A now to perform the initialization, as shown in the KEYS column. You should see a display of 0.00.

Step 3 is optional and allows for input of the patient number if identification of the output is desired. The number output at this step is the patient number followed by ".02", which marks the second program of the pac, CL1-02A. Key in the patient number 1234 and see an output of 1234.02.

Steps 4 and 5 have to do with the optional print mode, which may be turned off or on through the keystrokes **1 D**. When the program is loaded, the print function is on; pressing **1 D** will turn it off and display 0.00. Try it. Successive presses of **1 D** will turn the print function on, then off, alternately displaying 1.00 (on) and 0.00 (off). Try this, but leave 1.00 displayed (print function on) when you are finished. This will allow the input data to be output through PRINTx commands.

Step 6 begins the actual input of the fractionation data. You are to key in the counts for the first protein fraction ($Fract_1$ under INPUT DATA/UNITS) and press **B**. This value will be output and a 1.00 will be displayed to mark the input of the first fraction. Step 7 instructs you to input the remaining protein fractionation counts in a like manner, keying in each value and pressing **B**.

The number displayed after each value is input indicates the number of functions input so far. Try this sequence with the values from the table below.

Fraction	Substance	Counts	
1	Albumin	67	
2	α_1 –globulin	4	
3	α_2 –globulin	10	
4	eta -globulin	14	
5	γ -globulin	13	

Use the keystrokes 67 **B** 4 **B** 10 **B** 14 **B** 13 **B**. At the end of this sequence the display should show 5.00.

Now that all fractions have been input, step 8 instructs you to find the percentages for the fractions input by pressing **C**. Each percentage is output by a PRINTx command, and the percentages will be output in the order the fractions were input. Press **C** now. The outputs you should see are, in this order, 62.04, 3.70, 9.26, 12.96, and 12.04.

Step 9 is optional. Here you may key in the total grams of protein and press to find the number of grams in each fraction. Key in 7, press , and you should see these outputs: 4.34, 0.26, 0.65, 0.91, and 0.84.

Step 10 is optional. You may press \mathbf{E} to compute the albumin/globulin ratio. Press \mathbf{E} now and find an A/G value of 1.63.

Step 11 is also optional. This is the REPRINT feature described on page v. If **I E** is pressed, the entire set of data and results will be output through PRINTx commands in the order shown in the OUTPUT DATA/UNITS column. You may do this now and check that the values returned by the REPRINT function are the same as those you keyed in or calculated earlier.

If your answers agree with ours, you are ready to try other programs in this pac. Otherwise, go back to the start of this section and try the procedure again. Notes

This program combines two independent routines in the area of spectrophotometry. The first routine, on keys \blacktriangle and \blacksquare , solves Beer's law interchangeably to find either absorbance (optical density) or percent transmittance (%T). To find %T, key in absorbance and press key \blacktriangle . The output will be %T. To find absorbance, key in %T and press key \blacksquare . Absorbance will be output.

The second routine, on keys \mathbb{C} , \mathbb{D} , and \mathbb{E} , allows calculation of the concentration of an unknown given the concentration of a standard and the absorbance of %T of the standard and unknown. If the percent transmittance of the standard (%T_s) is known, it may be keyed in to key \mathbb{C} . If the absorbance of the standard (%T_s) is known instead, it may be keyed in *as a negative number* to key \mathbb{C} . Similarly, for the unknown, percent transmittance (%T_u) may be keyed in as a positive number or absorbance (A_u) as a negative number to key \mathbb{D} . Then the concentration of the standard (c_s) should be keyed in to key \mathbb{E} . This will allow output of the concentration of the unknown (c_u).

Equations:

$$A = 2 - \log \% T$$
$$\% T = 10^{2-A}$$
$$c_u = c_s \times \frac{A_u}{A_s}$$

Reference:

Clinical Chemistry, ed. Henry, Cannon, and Winkelman, Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize for reprint.			0.00
3	(optional) Key in patient			
	number.	Ptnt #	[]	Ptnt # .01
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back on.		[] D	1.00
6	To solve interchangeably for			
	A and %T, go to step 7; to find			
	an unknown concentration,			
	go to step 9.			
	A≓%T			
7	To find percent transmittance,			
	key in absorbance.	А	А	%Т
8	To find absorbance, key in			
	percent transmittance.	%Т	B	А
	Unknown concentration			
9	Key in A or %T for the			
	standard and the unknown			
	(follow A by CHS):			
	Standard	$+\%T_s(-A_s)$	C	+%T _s (-A _s)
	Unknown	$+\%T_u(-A_u)$	۵	+%T _u (-A _u)
10	Key in concentration of .			
	standard and compute			
	concentration of unknown.	Cs	0	Cu

01-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Reprint			
11	Reprint all data and results.		1	Ptnt # .01
				A
				%Т
				+%T _s (-A _s)
				+%T _u (-A _u)
				Cs
				Cu

Example:

A standard solution with a solute concentration of 2 mg/ml is found to have an absorbance of 0.41 at 550 nm. An unknown from patient number 10183 is found to show 46% transmittance at the same wavelength. Convert this %T to absorbance. Also find the solute concentration in the unknown. After all calculations obtain a reprint.

Keystrokes:

Outputs:

0.00		(Clear)
10183.01	***	(Ptnt ID)
46.00	***	(%T)
0.34	***	(A)
-0.41	***	$(-A_s)$
46.00	***	(%T _u)
2.00	***	(c_s)
1.65	***	(c_u)
10183.01	***	(Ptnt ID)
0.34	***	(A)
46.00	***	(%T)
-0.41	***	$(-A_s)$
46.00	***	(%T _u)
2.00	***	(c_s)
1.65	***	(c_u)

Notes

PROTEIN ELECTROPHORESIS

This program is designed to aid in the calculations of protein fractionation. The required data for the program are the integration counts for each protein fraction and, optionally, the total protein. The results calculated by the program are the percentage of the total for each fraction and, if total protein has been input, the number of grams of each protein fraction. An optional output is the albumin/globulin ratio.

To operate the program, press key \square to intialize. Then for each fraction, key in its integration counts and press key \square . After the counts have been keyed in for every fraction, you may press key \square to find the percentage that each fraction is of the total. A single press of \square will cause all the percentages to be output in the same order as the counts were input. You may then, if you wish, key in the total protein in grams, press key \square , and output the grams of protein for each fraction.

The albumin/globulin ratio (A/G) may be calculated by pressing key \blacksquare . If A/G is to be found, albumin should be the first fraction input, followed by the four globulin counts.

Equations:

Let $Fract_i$ be the counts for the i^{th} fraction, and $(\%)_i$ the percentage of the total for the i^{th} fraction.

$$(\%)_{i} = \frac{\operatorname{Fract}_{i}}{\sum_{j=1}^{n} \operatorname{Fract}_{j}} \times 100$$

Let TPr be the total protein in grams and g_i be the number of grams of the ith fraction.

$$g_i = \frac{\text{Fract}_i}{\sum_{j=1}^{n} \text{Fract}_j} \times \text{TPr}$$

$$A/G = \frac{Fract_1}{\sum_{j=2}^{5} Fract_j}$$

Remarks:

- 1. If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.
- 2. If a reprint is called for by pressing **f E**, all possible inputs and outputs will be printed except that if no value was keyed in for total protein, neither it nor the grams of each fraction will be output.
- 3. The use of this program need not be restricted to protein fractionation. It may be used as a general-purpose total and percent-of-total program. The only restriction is that the number of inputs (fractions) is limited to 21.

Reference:

Clinical Chemistry, ed. Henry et. al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		А	0.00
3	(optional) Key in patient			
	number.	Ptnt #	1	Ptnt # .02
4	To suppress output of data,			
	turn print function off.			0.00
5	To turn print back on later.			1.00
6	Key in the counts of the first			
	protein fraction.	Fract₁	B	1.00
7	Repeat this step for the rest			
	of the fractions.	Fract _i	B	i
8	Calculate the percentage			
	each fraction is of the whole.		C	%
9	(optional) Key in the total			
	grams of protein and find the			
	grams in each fraction.	Total Protein	D	grams
10	(optional) Find the albumin/			
	globulin ratio.		G	A/G

02-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Obtain a reprint of			
	all data and results (Total			
	Protein and grams omitted if			
	Total Protein not input).			Ptnt # .02
				Fract ₁
				Fract _n
				(%) ₁
				(%) _n
				Total Protein
				grams₁
				grams _n
				A/G
12	For a new case, go to step 2.			

Example:

The following integration counts are determined electrophoretically for serum proteins:

Albumin	67
α_1 –globulin	4
α_2 –globulin	10
β –globulin	14
γ -globulin	13

If the total amount of protein is 7.0 grams, find the percentage of the total and the number of grams for each protein fraction. Also find the albumin/ globulin ratio. The patient number is 10183.

Keystrokes:		Outputs:		
Α		0.00		
10183 📶 🖸		10183.02 **	* (Ptnt ID)	
67 в		1.00		
4 B	>	2.00		
10 в ———	>	3.00		
14 в ———	>	4.00		
13 B ————		5.00		

LDH ISOENZYMES

This program analyzes the results of the fractionation of lactic dehydrogenase isoenzymes and computes for each isoenzyme $(LDH_1 \text{ through } LDH_5)$ the percentage it represents of the whole. After key \blacksquare is pressed to initialize the program, each enzyme value is input by keying in the value and pressing \blacksquare . After all five LDH fractions have been input, key \square may be pressed to find the percentage each enzyme is of the whole.

An additional feature of the program is the checking of the computed percentage of each enzyme against its accepted normal value. All five percentages are computed and output; if one or more of these values lie outside the accepted normal range, the word "Error" will be displayed at the end of all calculations. (This indicates only that a value is abnormal; the answers calculated are accurate.)

The abnormal value or values should then be determined by inspection. The normal values used by the program are shown below.

Enzyme	Normal Range
LDH₁	18%—33%
LDH_2	28%—40%
LDH_3	18%—30%
LDH_4	6%—16%
LDH₅	2%—13%

These values for normal ranges may be changed easily within the program if you so desire. Simply look at the program listing and find the value you want to change by referring to the program comments. Delete the number as it now exists in the program and key in your own value. Do not forget to record the modified program on a blank magnetic card if you want to preserve it.

Equations:

Let LDH_i be the value of the ith LDH isoenzyme (i = 1,...,5) and LDH_i% be that enzyme's percentage of the whole.

$$LDH_{i}\% = \frac{LDH_{i}}{\sum_{j=1}^{5} LDH_{j}}$$

Remarks:

If the print function is turned off, input data will not be printed. Calculated results will still be printed regardless of the status of the print function.

Reference:

Clinical Chemistry, ed. Henry et. al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		А	0.00
3	(optional) Key in patient			
	number.	Ptnt #	[] C	Ptnt # .03
4	To suppress printing of			
	input data, turn the print			
	function off.			0.00
5	To turn the print function			
	back on.			1.00
6	Key in the first LDH enzyme			
	value.	LDH1	B	1.00
7	Repeat step 6 for LDH			
	values 2 through 5.	LDH _i	B	i
8	Calculate the percentage			
	each enzyme is of the total.*		C	LDH ₁ %
				LDH₅ %

03-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	(optional) Obtain a reprint of			
	all data and results.*			Ptnt # .03
				LDH1
				LDH₅
				LDH ₁ %
				LDH₅ %
	*A display of "Error" following			
	execution of this step			
	indicates a percentage			
	value that lies outside the			
	normal range for that			
	enzyme.			

Example:

Electrophoretic separation of the LDH isoenzymes results in the following counts:

Enzymes	Counts
LDH₁	95
LDH₂	120
LDH_3	85
LDH₄	15
LDH₅	22

Find the percentage of the whole for each isoenzyme. The patient number is 10183. Obtain a reprint of the data and results.

A visual scan of the results indicates that the message "Error" resulted from the percentage value of LDH_4 (4.45%) being below the normal range (6%—16%).

BODY SURFACE AREA

This program calculates body surface area by either the method of Dubois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., lb.) units. Quantities in English units should be input as negative numbers; that is, **CHS** should be pressed after keying the number in.

To operate the program, the height in either cm or inches should be keyed in to \square , and the weight in either kg or pounds keyed in to \square . Then pressing \square will allow the calculation of body surface area in m² by the method of Dubois; pressing \square computes BSA in m² by the Boyd formula. Even if you have already found BSA by one method, you may also find it by the other method simply by pressing the appropriate key; the values of height and weight need not be re-input.

Equations:

Let Ht be height, Wt be weight, and BSA be the body surface area in m².

Ht (cm) = 2.54 Ht (in.)

$$Wt (kg) = 0.45359237 Wt (lb.)$$

Dubois:

Boyd:

BSA (m²) = Wt (g)^(0.7285 - 0.0188 log Wt) · Ht (cm)^{0.3} · 3.207 × 10⁻⁴.

Remarks:

- 1. The Dubois formula for BSA is undefined for children with a BSA less than 0.6 m^2 . In such cases BSA should be calculated by the Boyd formula.
- 2. Turning off the print function will suppress printing of both data and results.

References:

D. Du Bois and E.F. Du Bois, Clin. Cal. 10, Arch. Int. Med., 17, 863, 1916.

Edith Boyd, *Growth of the Surface Area of the Human Body*, U. of Minnesota Press, 1935, p. 132.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .04
4	To suppress printing of data			
	and results.			0.00
5	To turn print function back on.			1.00
6	Key in height (+ cm, - in.)	Ht	A	Ht (cm)
7	Key in weight (+ kg, - lb.)	Wt	B	Wt (kg)
8	Compute BSA by method of			
	either			
	Dubois		C	BSA (m²)
	• Boyd		D	BSA (m ²)
9	(optional) Reprint all data			
	and results.			Ptnt # .04
				Ht input
				Wt input
				BSA (m²)

Example 1:

Patient number 10183 is a male, height 176 cm, weight 63.5 kg. What is his BSA by the Dubois formula? Compare by also finding the Boyd BSA.

Keystrokes:

Outputs:

10183.04	***	(Ptnt ID)
176.00		(Ht (cm))
63.50		(Wt (cm))
1.78	***	(Dubois)
1.76	***	(Boyd)

04-03

Example 2:

Patient number 10070 is a female, height 64 inches, weight 112 pounds. Find her BSA by the Boyd formula. Obtain a reprint. Remember to input height and weight as negative numbers.

Outputs:

Keystrokes:

0.00		
10070.04	***	(Ptnt ID)
162.56		(Ht (cm))
50.80		(Wt (kg))
1.52	***	(Boyd)
10070.04	***	(Ptnt ID)
-64.00	***	(Ht)
-112.00	***	(Wt)
1.52	***	(BSA)

Notes

UREA CLEARANCE

This program calculates urea clearance given the urine flow rate and the concentration of urea in urine and blood. The urine flow rate may be corrected for the patient's body surface area, if desired. The program will calculate standard or maximum clearance depending on whether the corrected urine flow rate is above or below 2 ml/min. The percent of mean normal may also be found.

If the urine flow rate is to be corrected for body surface area, key \blacksquare B should be pressed to indicate that. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA) in register R_A . If the program *Body Surface Area* (CL1-04A) has been run immediately before this program, BSA will already have been stored in R_A . Otherwise you will need to key in the patient's BSA and store it in R_A .

When inputting the urine flow rate, you may either key in the flow rate (\dot{V} , in ml/min.) directly to key B, or key in both the urine volume V in ml and the time t in min. to key A. If the print function is on and inputs are being printed, in both cases the printout will be of \dot{V} , the flow rate in ml/min. The number in the display at the end of routine A or B is \dot{V}_{corr} , the flow rate after correction for BSA. It is the size of this number that determines whether the standard or the maximum clearance will be calculated. This number will also be printed if the print function is on.

Equations:

$$\dot{V}(ml/min) = \frac{V(ml)}{t(min)}$$

$$\dot{\mathbf{V}}_{corr} = \begin{cases} \frac{1.73}{BSA} \dot{\mathbf{V}} & \text{if corrected for BSA} \\ \dot{\mathbf{V}} & \text{if no correction for BSA} \end{cases}$$

Maximum clearance ($\dot{V}_{corr} > 2$):

$$C_{\rm m}({\rm ml/min}) = \frac{U_{\rm urea} \dot{V}_{\rm corr}}{B_{\rm urea}}$$

Standard clearance ($\dot{V}_{corr} \leq 2$):

$$C_{s}(ml/min) = \frac{U_{urea} \sqrt{\dot{V}_{corr}}}{B_{urea}}$$

where

 U_{urea} = concentration of urea in urine B_{urea} = concentration of urea in blood

% mean normal $C_m = 1.33 C_m$

% mean normal $C_s = 1.85 C_s$

Remarks:

- 1. Any units may be used for U_{urea} and B_{urea} as long as they are consistent.
- Some users may prefer to ignore the distinction between standard and maximum clearance and use the maximum formula for all cases. This can be accomplished by using the program *Creatinine Clearance* (CL1-06A) and inputting U_{urea} and B_{urea} in place of U_{creat} and P_{creat}, respectively.
- 3. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry et al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.		[] A	0.00
3	(optional) Key in patient			
	number.	Ptnt #	[] C	Ptnt # .05
4	To suppress printing of data			
	and results, turn the print			
	function off.			0.00
5	To turn the print function			
	back on.		1	1.00

05-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	If BSA is required and Body			
	Surface Area has not been			
	run, key in BSA.	BSA (m²)	STO A	
7	If \mathring{V} is to be corrected for BSA		1 B	BSA (m²)
8	Perform either one of the			
	steps below:			
	 Key in urine volume and 			
	time	V (ml)	ENTER+	
		t (min)	A	\mathbf{v}_{corr}
	 Key in urine flow rate 	ᢤ(ml/min)	в	$\mathbf{\dot{V}}_{corr}$
9	Key in the concentration of			
	urea in urine.	U_{urea}	G	U_{urea}
10	Key in the concentration of			
	urea in blood and find the			
	urea clearance.	B _{urea}	D	C _{urea} (ml/min)
11	Find the percent of mean			
	normal.		8	% m.n.
12	(optional) Reprint data and			
	results.		•	Ptnt # .05
				V
				\mathbf{v}_{corr}
				U _{urea}
				B _{urea}
				C_s or C_m
				% m.n.
13	For a new case go to step 2.			

Example 1:

A patient, number 10183, is to be tested for urea clearance. A volume of 204 ml of urine is collected over a period of 120 min. The concentration of urea in this urine is found to be 903 mg/100 ml. A blood sample is taken halfway through the urine collection and found to have a urea concentration of 26 mg/100 ml. Determine the urea clearance. Do not correct for body surface area.

Example 2:

Patient number 10142 is a male, height 188 cm, weight 88.5 kg. A urine flow rate of 2.7 ml/min. is recorded. The concentration of urea is 798 mg/100 ml in urine and 21 mg/100 ml in blood. Determine the urea clearance corrected for body surface area using the Dubois formula for BSA.

Keystrokes:

Outputs:

Load side 1 and side 2 of Body Surface Area (CL1-04A).

[] □	0.00	(Print off)
188 🗛	188.00	(Ht, cm)
88.5 B	88.50	(Wt, kg)
€	2.15	(Dubois BSA)

Load side 1 and side 2 of Urea Clearance (CL1-05A).

CREATININE CLEARANCE

This program allows the calculation of creatinine clearance given the urine flow rate and the concentration of creatinine in urine and plasma. The urine flow rate may be corrected for the patient's body surface area if desired.

To indicate that a correction should be made for the body surface area, press **1 B**. No action is necessary if the correction is not desired. If correction is to be made, the program will need to find the patient's body surface area (BSA, in m²) in register R_A . The program *Body Surface Area* (CL1-04A) automatically leaves BSA stored in R_A . If *Body Surface Area* has not been run immediately befroe this program, you will need to key in the BSA and press **STO A**.

When inputting the urine flow rate, you may either key in the flow rate (\dot{V} , in ml/min.) directly to key \blacksquare , or key in both the urine volume (V, in ml) and the time (t, in minutes) to key \blacktriangle . If the print function is on and inputs are being printed, in both cases the printout will be of \dot{V} , the flow rate in ml/min. The number in the display at the end of routine \blacktriangle or \blacksquare is \dot{V}_{corr} , the flow rate after correction for BSA. (If no correction is desired, \dot{V}_{corr} will be the same as \dot{V} .) This number will also be printed if the print function is on.

Equations:

$$\dot{V}(ml/min) = \frac{V(ml)}{t(min)}$$

 $\dot{\mathbf{V}}_{corr} = \begin{cases} \frac{1.73}{BSA} \dot{\mathbf{V}} & \text{if corrected for BSA} \\ \\ \dot{\mathbf{V}} & \text{if not corrected for BSA} \end{cases}$

$$C_{\text{creat}(\text{ml/min})} = \frac{U_{\text{creat}} \dot{V}_{\text{corr}}}{P_{\text{creat}}}$$

where

 C_{creat} = creatinine clearance U_{creat} = concentration of creatinine in urine P_{creat} = concentration of creatinine in plasma
Remarks:

- 1. Any units may be used for $U_{\rm creat}$ and $P_{\rm creat}$ as long as they are consistent.
- 2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Clinical Chemistry, ed. Henry et al., Harper and Row, 1974.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 of program.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #	<u>[]</u> C	Ptnt # .06
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later			1.00
6	If BSA is required and Body			
	Surface Area has not been			
	run, key in BSA.	BSA (m²)	STO A	
7	If $\overset{\bullet}{V}$ is to be corrected for BSA.		11 B	BSA (m²)
8	Perform either one of the			
	steps below:			
	 Key in urine volume and 			
	time	V (ml)	ENTER+	
		t (min)	А	$\mathbf{\dot{V}}_{corr}$
	 Key in urine flow rate. 	ᢤ(ml/min)	B	V _{corr}
9	Key in the concentration of			
	creatinine in urine.	U_{creat}	C	U_{creat}
10	Key in the concentration of			
	creatinine in plasma and find			
	the creatinine clearance.	P_{creat}	۵	C _{creat} (ml/min)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	(optional) Reprint data and			
	results.			Ptnt # .06
				v
				Ů _{corr}
				U_{creat}
				P _{creat}
				C _{creat}
12	For a new case go to step 2.			

Example 1:

A male, patient number 10095, is tested for creatinine clearance. A urine volume of 506 ml is collected over a 4-hour (240-min.) period. The concentration of creatinine is found to be 43.4 mg/dl in urine and 0.91 mg/dl in plasma. Find the creatinine clearance. Do not correct for body surface area.

Example 2:

Patient number 10124 is a female with a body surface area of 1.56 m^2 . Given a urine flow rate of 1.81 ml/min., a creatinine concentration of 46.5 mg/dl in urine and 1.03 mg/dl in plasma, find the creatinine clearance.

Keystrokes:

Outputs:

```
10124.06 *** (Ptnt ID)

1.56 (BSA)

1.56

1.81 *** (\dot{V})

2.01 *** (\dot{V}_{corr})

46.50 *** (U_{creat})

1.03 *** (P_{creat})

90.62 *** (C_{creat}, ml/min)
```

Notes

AMNIOTIC FLUID ASSAY

This program performs calculations for the spectrophotometric estimation of bile pigments in amniotic fluid. Measurement of absorbance changes in the fluid has been shown to be useful in determining the management of Rh-sensitized pregnancies. The absorbance of the fluid is measured at two wavelengths (typically, 365 nm and 550 nm) to form a baseline, and then at a third wavelength between these two (typically, 450 nm) to allow calculation of the difference (Δ) between the actual and the interpolated absorbances at the intermediate wavelength. Then, given the weeks of gestation, the "b" factor and, optionally, the Liley zone number may be found.

The inputs to the program, then, are the absorbances of the amniotic fluid at three wavelengths (A_{365} , A_{550} , and A_{450}). From these may be found ΔA_{450} , the difference in absorbance at the intermediate wavelength. The final input is the week of gestation (Wk), from which may be found the "b" factor and zone. The last two outputs are the most meaningful for the obstetrician; for interpretation, see references 1 and 2 below.

Equations:

$$\Delta A_{450} = A_{450} - e^{\left[.541 (\ln A_{365} - \ln A_{550}) + \ln A_{550}\right]}$$
$$b = \Delta A_{450}/a^{Wk}$$

where

a = 0.91509 Wk = week of gestation

Liley zones:

Zone I: b < 0.7Zone II: $0.7 \le b \le 3$ Zone III: b > 3

Remarks:

1. Some users may prefer to take absorbance readings at wavelengths other than those indicated here. Burnett³, for instance, advocates readings at 350 nm, 550 nm, and 455 nm. It is quite easy to modify the program to handle such a case. The only change required is the alteration of

one constant occupying four steps of program memory, 024–027. At present in these locations the program holds the constant .541. For Burnett's values (350, 550, 455) this constant would have to be changed to .475. In general, if the three wavelengths used are x, y, and z, with x < z < y, the constant to be used is

$$\frac{y-z}{y-x}$$

The absorbances at wavelengths x, y, and z should be input to keys A, B, and C respectively.

2. If the print function is turned off, neither inputs nor outputs will be printed.

References:

- R.C. Brown and W.J. Beckfield, "Computer-assisted spectrophotometric analysis of amniotic fluid in erythroblastosis fetalis," *Amer. J. Clin. Path.*, 57: 659-663, 1972.
- 2. A.W. Liley, "Liquor amnii analysis in the management of the pregnancy complicated by rhesus sensitization," *Amer. J. Obstet. Gynecol.*, 82: 1359-1370, 1961.
- 3. R. Burnett, "Instrumental and procedural sources of error in determination of bile pigments in amniotic fluid," *Clin. Chem.*, **18**: 150-154, 1972.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.		11 🖪	0.00
3	(optional) Key in patient			
	number.	Ptnt #	[] C	Ptnt # .07
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	Key in absorbance at 365 nm.	A ₃₆₅	А	A ₃₆₅
7	Key in absorbance at 550 nm.	A ₅₅₀	B	A ₅₅₀

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	Key in absorbance at 450 nm			
	and find ΔA_{450} .	A ₄₅₀	C	ΔA_{450}
9	Key in week of gestation and			
	find b factor.	Wk	D	b
10	(optional) Find Liley zone			
	number (1, 2, or 3),		8	Zone
11	(optional) To obtain a reprint			
	of data and results.		08	Ptnt # .07
				A ₃₆₅
				A ₅₅₀
				A ₄₅₀
				ΔA_{450}
				Week
				b
				Zone

Example:

A sample of amniotic fluid from patient number 10070 is found to have absorbances of 0.43, 0.25, and 0.39 at wavelengths 365 nm, 550 nm, and 450 nm respectively. Find ΔA_{450} , the b factor, and the Liley zone number given that it is the 35th week of gestation.

Keystrokes:

Outputs:

10070.07	***	(Ptnt ID)
0.43	***	(A_{365})
0.25	***	(A_{550})
0.39	***	(A_{450})
0.05	***	(ΔA_{450})
35.	***	(Wk)
1.22	***	(b)
2.	***	(Zone)

Notes

BLOOD ACID-BASE STATUS

This program computes total plasma CO_2 (TCO₂) and base excess (BE) from the partial pressure of CO_2 (PCO₂), pH, and hemoglobin concentration (Hgb). The PCO₂ and pH values used should be found at 37°C; if they are found at a body temperature (BT) other than 37°C, the program will correct them to 37°C values if BT is also input. An additional, optional output of the program is the concentration of plasma bicarbonate ([HCO₃⁻]).

To operate the program, if the body temperature is different from 37° C, then key in BT in °C and press key A. If BT = 37° C, it need not be input; if it is, however, no harm will be done. Next key in PCO₂ in mm Hg and press B; the number displayed at the completion of this step is the value of PCO₂ corrected to 37° C. Then key in pH and press G; the result in the display at the end of this step is the pH value corrected to 37° C. Finally, press D to calculate TCO₂ in mmol/l. As an optional step, hemoglobin may now be input in units of g/100 ml. Pressing E will allow the calculation of base excess in mEq/l using an equation suggested by Siggaard-Andersen. The last value output is [HCO₃⁻], which may be found by pressing R/S after the calculation of base excess.

Equations:

$$PCO_{2} (37^{\circ}C) = PCO_{2} (BT) \cdot 10^{0.019 (37-BT)}$$
$$pH (37^{\circ}C) = pH (BT) - 0.0146 (37 - BT)$$
$$TCO_{2} = s \cdot PCO_{2} [1 + 10^{pH-pK}]$$

where

s = solubility of CO₂ in plasma, mmol/l (taken to be 0.0307)

pK = 6.11

$$\begin{bmatrix} BE \end{bmatrix}_{b} = (1 - 0.0143 \text{ Hgb}) (\begin{bmatrix} HCO_{3}^{-} \end{bmatrix} - (9.5 + 1.63 \text{ Hgb}) (7.4 - pH) - 24)$$

where

 $[BE]_{b} = base excess in mEq/l of blood$ Hgb = hemoglobin concentration in g/100 ml $<math display="block">[HCO_{3}^{-}] = s \cdot PCO_{2} \cdot 10^{pH-pK}$

where

 $[HCO_3^{-}]$ = concentration of plasma bicarbonate in mmol/l.

Remarks:

- This program can also be used to correct PCO₂ and pH values from 37°C to body temperature. To do this, let x = (74 BT) °C. Key in x to key ▲. Then input PCO₂ and pH to keys and €, respectively. The number displayed after each of these steps is the value of the parameter corrected to body temperature. For example, if it is desired to correct a 37°C PCO₂ value of 45 mm Hg to a body temperature value with BT = 40°C, let x = 34. Key in 34, press ▲, key in 45, and press ■. The corrected PCO₂ is found to be 51.31 mm Hg.
- 2. The equation to correct pH to 37°C values is a simplication of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 units per °C.
- 3. If the print function is turned off, neither inputs nor outputs will be printed.

References:

John W. Severinghaus, "Blood gas calculator," J. Appl. Physiol., 21: 1108 - 1116, 1966.

Siggaard-Andersen, "Titrable acid or base of body fluids," *Annals New York Academy of Science*, **133**: 41-48, 1966.

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," *J. Appl. Physiol.*, **33:** 154-158, 1972.

			and the second sec	the second s
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	program.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .08
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	If PCO ₂ and pH are to be cor-			
	rected to 37°C, key in body			
	temperature in °C.	BT (°C)	A	37 – BT
7	Key in partial pressure of CO_2 in			
	mm Hg.	PCO₂(mm Hg)	B	PCO ₂ (37°)
8	Key in pH.	рН	C	pH (37°)
9	Find total plasma CO_2 in mmol/l.		D	TCO₂(mmol/l)
10	(optional) Key in hemoglobin			
	concentration and compute			
	base excess and $[HCO_{3}^{-}]$	Hgb(g/100ml)	8	BE (mEq/l)
			R/S	[HCO₃⁻](mmol/ <i>l</i>
11	To obtain a reprint.		08	Ptnt # .08
				ВТ
				PCO ₂
				рН
				TCO₂
				Hgb
				BE
				[HCO₃⁻]

Example :

Patient number 10183 has a body temperature of 40° C. His PCO₂ at 40° C is found to be 51 mm Hg, his pH at the same temperature 7.31. His hemoglobin concentration is 16 g/100 ml. Find TCO₂, BE, and [HCO₃⁻].

Keystrokes:

Outputs:.

OXYGEN SATURATION AND CONTENT

This program estimates oxygen saturation of blood from various body parameters and computes oxygen content. If the actual oxygen saturation is known, oxygen content may be computed directly.

Estimated saturation

Typically, the input parameters to the program are PCO₂, pH, and PO₂ *measured at 37*°C, and the body temperature in °C. If the parameters PCO₂ and pH are known only at body temperature, they may be corrected to 37°C through use of the program *Blood Acid-Base Status*, CL1-08A. If CL1-08A is run before this program, the values of BT, PCO₂, and pH may be recalled by this program for input to the appropriate keys. For example, pressing **1 B** will recall the value of BT. Pressing **A** will then input the recalled value to this program *and* recall the value of PCO₂. Pressing **B** will input the recalled PCO₂ value and recall the value of pH. If CL1-08A has not been run previously, the recalled values will be meaningless numbers or zero.

After the input of PO_2 to D, an intermediate value of virtual PO_2 (VPO₂) will be calculated prior to the calculation of estimated saturation. The value found for VPO₂ will not be output but may be displayed after the calculation of saturation by pressing **RCL C**. VPO₂ is not a real physiologic PO₂. Its only use is in estimating O₂ saturation.

Suppose as an alternate case that BT,PCO_2 , and pH are not known, but virtual PO_2 , or alveolar PO_2 (P_AO_2) is known. In this case, only the known VPO_2 or P_AO_2 need be input in order to compute estimated saturation. Input VPO_2 or P_AO_2 to key \square as *negative* numbers, i.e., key in the value followed by CHS, then press \square . The output, as before, will be estimated oxygen saturation.

After computing saturation, the hemoglobin concentration in g/100 ml should be keyed into \blacksquare . Output from this sequence will be the oxygen content as a volume percent.

Known saturation

If the actual O_2 saturation is known, the oxygen content may be computed directly. Simply key in the O_2 saturation, press **ENTER**, key in hemoglobin concentration and press **E**. Oxygen content will be output.

Equations:

$$VPO_2 = PO_2 \cdot 10^{[0.024(37-BT) + 0.48(pH-7.4) + 0.06\log(40/PCO_2)]}$$

$$O_2 \text{ Sat} = \frac{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2045(\text{VPO}_2)^2 + 2000(\text{VPO}_2)}{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2400(\text{VPO}_2)^2 - 31,100(\text{VPO}_2) + 2,400,000}$$

$$O_2 \text{ content} = 1.34 \cdot \frac{\text{Sat } (\%)}{100} \cdot \text{Hgb} + 0.0031 \text{ VPO}_2$$

Remarks:

- 1. In the computation of VPO_2 , it is important to input the values for pH and BT exactly, as these have a great influence on the value of VPO_2 . PCO_2 has relatively little influence.
- 2. The equation for VPO_2 is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.
- 3. The calculation of saturation from PO₂ will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO₂ and O₂ saturation are measured, the program may be used as a convenient means to check for the normality of the dissociation curve.
- 4. If the print function is turned off, neither inputs nor outputs will be printed.
- 5. After a keystroke sequence in which D is pressed to find saturation,
 should also be pressed to complete the sequence even if Hgb is not input and the calculated oxygen content is meaningless.

References:

L.J. Thomas, Jr., "Algorithms for selected blood acid-base and blood gas calculation," J. Appl. Physiol., 33: 154-158, 1972.

G. Richard Kelman, "Digital computer subroutine for the conversion of oxygen tension into saturation." J. Appl. Physiol., **21:** 1375-1376, 1966.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	(optional) Initialize if reprint			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #	[] C	Ptnt # .09
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	If oxygen saturation is to be			
	estimated, go to step 7; if it			
	is known already, go to step 14.			
	Estimated saturation			
7	If BT was stored from Blood			
	Acid-Base Status (CL1-08A),			
	it may be recalled.		1 B	BT (℃)
8	Input body temperature in °C.	BT (℃)	A	PCO ₂ (if stored)
9	Input PCO₂ in mm Hg.	PCO₂ (mm Hg)	B	pH(if stored)
10	Input pH.	pН	G	рН
11	Input PO₂ in mm Hg (снз for			
	VPO_2 or P_AO_2) and find			
	oxygen saturation.	PO ₂ (mm Hg)	٥	Sat (%)
12	Key in hemoglobin and find			
	oxygen content as a volume			
	percent.	Hgb (g/100ml)	3	O₂ content

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	To obtain a reprint.		0	Ptnt # .09
				BT
				PCO ₂
				pН
				PO ₂
				Sat (%)
				Hgb
				O₂ content
	Known saturation			
14	Key in saturation and			
	hemoglobin concentration and			
	find oxygen content as a			
	volume percent.	Sat (%)		
		Hgb (g/100ml)	G	O2 content

Example 1:

Patient number 10183 has a body temperature of 40°C. The following parameters are measured at 37°C: $PCO_2 = 45 \text{ mm Hg}$, pH = 7.35, and $PO_2 = 75 \text{ mm Hg}$. Find the estimated O_2 saturation. Given a hemoglobin concentration of 16 g/100 ml, find oxygen content.

Example 2:

Alveolar PO_2 ($P_A O_2$) is known to be 103 mm Hg in patient number 10184. Find the estimated O_2 saturation. Given a hemoglobin concentration of 14.5 g/100 ml, find the oxygen content.

Example 3:

Oxygen saturation is measured at 92%. Hemoglobin concentration is 16 g/100 ml. What is the oxygen content?

Notes

RED CELL INDICES

This program computes red cell indices based on three measured values: red cell count, hematocrit, and hemoglobin. The indices computed are mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC).

The red cell count in millions per mm³ should be input to key \triangle and hematocrit as a percent to key \square . Then hemoglobin in g/dl (g/100 ml) is keyed in, and \square is pressed to allow calculation of MCV in cubic microns (μ^3). Pressing \square will cause the output of MCH in picograms, pg (or micromicrograms, $\mu\mu$ g). Finally, key \square is pressed to compute MCHC in g/dl (g/100 ml).

Equations:

MCV
$$(\mu^3) = \frac{\text{Hct } (\%) \times 10}{\text{Count } (10^6/\text{mm}^3)}$$

MCH (pg) =
$$\frac{\text{Hgb (g/dl)} \times 10}{\text{Count (10^{6}/\text{mm}^{3})}}$$

MCHC (g/dl) =
$$\frac{\text{Hgb } (\text{g/dl}) \times 100}{\text{Hct } (\%)}$$

Remarks:

If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Davidson and Henry, *Todd-Sanford Clinical Diagnosis by Laboratory Methods*, W.B. Saunders Co., 1969.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize if reprint			
	desired.		11 A	0.00
3	(optional) Key in patient			
	number.	Ptnt #	[] C	Ptnt # .10
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	Key in red cell count in			
	millions per mm ³ .	Count (10 ⁶ /mm ³)	A	Count
7	Key in hematocrit.	Hct (%)	в	Hct (%)
8	Key in hemoglobin in g/100ml			
	and find mean corpuscular			
	volume in μ^3 .	Hgb (g/dl)	С	MCV (µ ³)
9	Compute mean corpuscular			
	hemoglobin in pg ($\mu\mu$ g).		D	MCH (pg)
10	Compute mean corpuscular			
	hemoglobin concentration			
	in g/dl (g/100ml).		8	MCHC (g/dl)
11	To obtain a reprint of data			
	and results.		[] E	Ptnt # .10
				Count
				Hct (%)
				Hgb
				MCV
				МСН
				МСНС

Example:

A sample of venous blood from patient 10183 reveals a red cell count of 2.25 x 10^{6} /mm³, a hematocrit of 21%, and hemoglobin of 7.2 g/dl (g/100 ml). Find the indices MCV, MCH, and MCHC.

Keystrokes:

Outputs:

10183.10 *** (Ptnt ID) 2.25 *** (Count) 21.00 *** (Hct %) 7.20 *** (Hgb) 93.33 *** (MCV) 32.00 *** (MCH) 34.29 *** (MCHC)

Notes

TOTAL BLOOD VOLUME

This program computes total blood volume by the radioisotope dilution technique. The inputs to the program are the background counts per minute (Bck), the volume of radioactive solution injected (V Inj), the dilution of the standard solution (Std Dil), the counts per minute of the standard (Std CPM), and the counts per minute of the sample of whole blood (WB CPM). From these values the program will compute total blood volume (TBV).

Equations:

$$TBV = Dil \times V Inj \times \frac{Std CPM - Bck}{WB CPM - Bck}$$

Remarks:

- 1. Total blood volume will be computed in the same units as volume injected. Typically the units used will be milliliters (ml).
- 2. Equal volumes of whole blood, diluted standard solution, and distilled water should be used for the measurement of whole blood counts, standard counts, and background counts. These three counts need not be counts *per minute;* they may be counts recorded over any length of time, so long as the same time interval is used for all three counts.
- 3. This same program may be used to find total plasma volume provided that a sample of plasma rather than whole blood is counted for the final input. Total blood volume may be determined from total plasma volume from the equation

Total blood volume =
$$\frac{\text{Total plasma volume}}{(1 - \text{Hct} \times 0.9)}$$

- 4. If the patient has had prior radioactivity administered, a patient background correction may be necessary. To do this, a count must be made of a blood sample before the current dose is administered. These pre-dose counts should be subtracted from the post-dose whole blood counts to give the corrected counts to be input at the final step.
- 5. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedure, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize for reprint.			0.00
3	(optional) Key in patient			
	number.	Ptnt #		Ptnt # .11
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	Key in background counts.	Bck	A	Bck
7	Key in volume of fluid			
	injected.	Vol. inj.	в	Vol. inj.
8	Key in dilution of standard.	Std. dil.	С	Std. dil.
9	Key in standard counts.	Std. CPM	D	Std. CPM
10	Key in whole blood counts			
	and find total blood volume.	Blood CPM	8	TBV
11	To obtain a reprint.			Ptnt # .11
				Bck
				Vol. inj.
				Std. dil.
				Std. CPM
				Blood CPM
				TBV

Example:

5 ml of radioiodinated serum albumin (RISA) are injected into patient 10183. The stock RISA is diluted by a factor of 250 and a 1 ml aliquot of this standard is found to have an activity of 2518 counts over a five-minute period. A 1 ml sample of the patient's whole blood, collected 10 minutes after injection, is found to have an activity of 837 counts over a five-minute period. A five-minute count of 1 ml distilled water yields 152 counts. What is the patient's total blood volume?

Keystrokes:

10183 🚺 🖸 -	
152 A ——	
5 B ———	
250 C ——	
2518 D ——	
837 E ——	

Outputs:

10183.11	***	(Ptnt ID)
152.00	***	(Bck)
5.00	***	(V Inj)
250.00	***	(Dil)
2518.00	***	(Std CPM)
837.00	***	(WB CPM)
4317.52	***	(TBV, ml)

Notes

SCHILLING TEST

This program performs the calculations involved with the Schilling test for the determination of vitamin B_{12} absorption. The inputs to the program are the background counts per minute, the dilution and counts per minute of the standard, the volume of urine excreted, and the counts per minute of the urine. The output is the % of dose excreted.

The program is set up to handle urine volume (U Vol) in liters (l). It is assumed that if the urine volume collected was less than 1 l, the volume was brought up to 1 l by the addition of water. If the volume was a liter or more, no dilution should be made.

Equations:

% excretion =
$$\frac{V}{Dil} \left[\frac{\text{Urine CPM} - \text{Background CPM}}{\text{Standard CPM} - \text{Background CPM}} \right] \times 100$$

where V =
$$\begin{cases} 1 \text{ if } U \text{ Vol} \leq 1 l \\ U \text{ Vol if } U \text{ Vol} > 1 l \end{cases}$$

Dil = Dilution of the standard

Remarks:

- 1. The background, standard, and urine counts should be of equal volumes counted over equal time intervals (which need not be one minute).
- 2. The patient should not have had recent prior radioactivity.
- 3. If the print function is turned off, neither data nor results will be printed.

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedures, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	(optional) Initialize if reprint is			
	desired.			0.00
3	(optional) Key in patient			
	number.	Ptnt #	0	Ptnt # .12
4	To suppress printing of data			
	and results, turn print			
	function off.			0.00
5	To turn print function back			
	on later.			1.00
6	Key in background counts.	Bck	A	Bck
7	Key in dilution of the standard.	Std Dil	B	Std Dil
8	Key in standard counts.	Std CPM	C	Std CPM
9	Key in volume of urine			
	collected.	U Vol (<i>l</i>)	D	U Vol
10	Key in the urine counts and			
	calculate percentage of dose			
	excreted.	U CPM	8	%
11	To obtain a reprint of data			
	and results.		11 E	Ptnt # .12
				Bck
				Std Dil
				Std CPM
				U Vol
				U CPM
				%

Example:

A capsule of radioactive B_{12} is administered orally to patient 10183. Over the following 24 hours, a volume of 2.54 *l* of urine is collected. A 20 ml aliquot of the urine is counted for 10 minutes to give 1923 counts. A 1 ml sample of the standard is diluted to 20 ml and counted for 10 minutes, giving 1757 counts. 20 ml of tap water is used for a background count; over a tenminute interval, 127 counts are recorded. Find the percent of dose excreted.

Keystrokes:

10183 🚺 🖸	
127 A	
20 в ——	
1757 C ——	
2.54 D ——	
1923 E ——	

Outputs:

10183.12	***	(Ptnt ID)
127.00	***	(Bck)
20.00	***	(Std Dil)
1757.00	***	(Std CPM)
2.54	***	(U Vol)
1000 00	ماد ماد ماد	

- 1923.00 *** (U CPM)
 - 13.99 *** (% excreted)

Notes

THYROID UPTAKE

This program computes thyroid uptake as a percentage of an administered dose of radioiodine. The inputs to the program are the counts per minute for the standard, the standard background, the patient counts (after ingestion of the dose), and the patient background. After these variables have been input, pressing **E** will allow computation of the percent uptake.

After calculation of the uptake, two corrections may be made to the computed value. The first correction involves recent prior radioactivity in the patient. The second correction involves a significant difference in activity between the standard and the dose. These are discussed in more detail below.

If the patient has had recent prior radioactivity, the computed uptake must be corrected to account for this. In such a case the patient counts and the back-ground counts *before* ingestion of the present dose must be known. In addition, it will be necessary to correct these predose counts for radioactive decay over the elapsed time between the measurements of the predose counts and of the counts after ingestion of the dose. The program *Radioactive Decay Corrections* (CL1-14A) may be used to account for this decay. *Radioactive Decay Corrections* will compute and store a decay factor D that will be used by this program, *Thyroid Uptake*, to adjust the predose counts to the present time.

To correct for prior radioactivity, then, you should first load side 1 and side 2 of *Radioactive Decay Corrections* (CL1-14A). Select the radioisotope of the *prior* radioactivity. Key in 1, press \blacktriangle , then key in the time interval over which the decay has occurred, in the format DD.HH (days.hours), remembering always to allow 2 places for hours. (For example, a period of 1 day 6 hours should be keyed in as 1.06.) After keying in the elapsed time, press \blacksquare , then press \bigcirc . The decay factor D will be displayed and automatically stored. Now load side 1 and side 2 of *Thyroid Uptake* and follow the basic procedure to find the uncorrected percentage uptake. After computing % uptake from key \blacksquare , key in the predose patient counts, press \boxdot , key in the predose background counts and press \blacksquare . The corrected percentage uptake will be computed.

The second possible correction to be made is to account for a significant difference in the activities of the standard and the dose. These activities should be measured before the dose is administered. The counts at this point are referred to as precounts. If the standard and dose precounts agree within $\pm 3\%$, no correction is necessary. If the precounts differ by more than 3%, however, then the computed thyroid uptake should be corrected. To make the correction, after pressing \blacksquare to find the uptake, key in the standard precount,

press **ENTER**, key in the dose precount, and press **1 B**. The program will compute the corrected thyroid uptake.

The two corrections to computed uptake operate independently of each other. Either, both, or neither correction may be made. If both are to be made, they may be made in either order. If a reprint is called for after a correction is made, the reprint will show the corrected value of uptake but will not show the inputs that went into the correction (i.e., the patient and background predose counts or the standard and dose precounts).

Equations:

% uptake = K
$$\times \frac{\text{NPC}}{\text{Std CPM} - \text{Std Bck}} \times 100$$

where

NPC = Net Ptnt Cts = Ptnt CPM - Ptnt Bck

and K is a correction factor.

$$K = \begin{cases} 1 \text{ if no correction} \\ \frac{\text{NPC} - \text{D} \times (\text{Ptnt Predose Ct} - \text{Bck Predose Ct})}{\text{NPC}} \text{ if prior radioactivity} \\ \frac{\text{Std. Precount}}{\text{Dose Precount}} & \text{if different activities} \end{cases}$$

where

D is the radioactive decay factor.

Remarks:

- 1. The counts need not be input as counts *per minute;* however, all counts should be measured over the same time interval.
- 2. If the print function is turned off, neither inputs nor outputs will be printed.

Reference:

Beierwaltes, Keyes, and Carey, Manual of Nuclear Medicine Procedures, Chemical Rubber Co., 1971.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	If correction is to be made			
	for prior patient radio-			
	activity, go to step 2.			
	Otherwise go to step 6.			
2	Load side 1 and side 2 of			
	Radioactive Decay Cor-			
	rections (CL1-14A) and select			
	the radioisotope of the prior			
	radioactivity.			
3	Key in a 1 for the initial			
	activity.	1	А	1.00
4	Key in time elapsed in format			
	Days.Hours (e.g., 1 day			
	6 hours is keyed in as 1.06).	t(dd.hh)	8	t(dd.hh)
5	Compute the decay factor			
	(will be stored automatically).		C	D
	Basic Procedure			
6	Load side 1 and side 2 of			
	Thyroid Uptake (CL1-13A).			
7	(optional) Key in patient			
	number.	Ptnt #	1	Ptnt # .13
8	To suppress printing of			
	data and results, turn print			
	function off.			0.00
9	To turn print function back			
	on later.			1.00
10	Key in counts for the standard.	Std. CPM	A	Std. CPM
11	Key in background counts			
	for the standard.	Std. Bck.	B	Net Std. Cts.
12	Key in counts for the patient.	Ptnt. CPM	С	Ptnt. CPM

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	Key in background counts for			
	the patient.	Ptnt. Bck.	D	Net Ptnt. Cts.
14	Compute thyroid uptake as			
	a percent.		G	% Uptake
	Corrections			
15	For prior radioactivity, go to			
	step 16, for differences in			
	standard and dose, go to			
	step 19. For no correction,			
	go to step 20.			
	Prior Radioactivity			
16	For prior radioactivity, CL1-14A			
	should have been run at			
	step 2.			
17	Now key in patient predose			
	counts and predose			
	background and compute the			
	corrected percent uptake.	Predose Cts.	ENTER+	
		Predose Bck.		% Uptake
18	For differences in dose and			
	standard, go to step 19.			
	Otherwise go to step 20.			
	Differences in dose and			
	standard			
19	Key in standard and dose			
	precounts and find the cor-			
	rected percent uptake.	Std. Prect.	ENTER+	
		Dose Prect.	1 B	% Uptake

1	3-05	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Reprint			
20	To obtain a reprint of data			
	and results.		[]	Ptnt # .13
				Std. CPM
				Std. Bck.
				Ptnt. CPM
				Ptnt. Bck.
				% Uptake

Example 1:

Before a dose of radioiodine (¹³¹I) is administered to patient 10183, a count is made of the patient's current level of radioactivity from a prior ingestion of ¹³¹I. The patient's predose activity is found to be 75 counts per minute (CPM) and the background predose activity 25 CPM. Twenty-four hours after ingestion of the dose, the patient's activity is measured as 350 CPM with a background of 100 CPM. The activity of a standard of ¹³¹I is measured at 1500 CPM with a background of 200 CPM. Find the percentage uptake corrected for prior radioactivity.

Keystrokes:

Outputs:

Load side 1 and side 2 of Radioactive Decay Corrections (CL1-14A).

Select ¹³¹I as prior radioisotope.

[] [] ───→	193.20	(¹³¹ I half-life)
1 ▲	1.00	
0.24 B	0.24	(24 hours)
₢	0.92	(Decay factor)

Load side 1 and side 2 of Thyroid Uptake (CL1-13A).

10183 🚺 🖸 ————	
1500 A	
200 B	
350 C	
100 D	
G	>
75 ENTER+ 25 🚺 🗛	

10183.13 ***	(Ptnt ID)
1500.00 ***	(Std CPM)
200.00 ***	(Std Bck)
1300.00	(Net Std CPM)
350.00 ***	(Ptnt CPM)
100.00 ***	(Ptnt Bck)
250.00	(Net Ptnt CPM)
19.23 ***	' (% uptake)
75.00 ***	(Ptnt Predose)
25.00 ***	(Bck Predose)
15.70 ***	(Corrected uptake)

Example 2:

A standard and a dose are measured (before ingestion of the dose) at activities of 14,500 and 12,500 counts. Since the activities differ by more than 3%, a correction will have to be made to the computed percentage uptake. After ingestion of the dose, the standard activity is found to be 11,500 counts with a background count of 1000. The patient's activity is found as 2650 counts with a background of 500 counts. Find the corrected uptake.

Outputs:

11500.00	***	(Std Cts)
1000.00	***	(Std Bck)
10500.00		(Net Std Cts)
2650.00	***	(Ptnt CPM)
500.00	***	(Ptnt Bck)
2150.00		(Net Ptnt Cts)
20.48	***	(% Uptake)
14500.00	***	(Std Prects)
12500.00	***	(Dose Prects)
23.75	***	(Corrected uptake)

RADIOACTIVE DECAY CORRECTIONS

This program is designed to allow calculation of the decay in radioactivity of an isotope over a specified time interval. The half-lives of 15 different radioisotopes are stored by the program and may be used in calculating the decay. Generally, to use the program you will select an isotope, key in the activity A_0 at the initial time, then key in the elapsed time t and calculate the present activity A. There are thus three variables needed to define the problem entirely: A_0 , t, and A.

An additional feature of the program is its ability to calculate *any* one of these variables given the other two. Thus you are not restricted to finding the present activity given the initial activity and time; you may also solve for initial activity given time and present activity, or for time given initial activity and present activity.

The radioisotope to be selected must be specified in one of two ways. Six isotopes are available directly by pressing user-definable keys E and f A through f E. Nine additional isotopes are available by keying in a digit, 1 through 9, and pressing D. For instance, to specify use of the radioisotope ⁵⁷Co, simply press f B. To specify the isotope ¹⁴C, key in the number 2 and press D. A table of the correspondence between the isotopes and the numbers 1-9 may be found in the User Instructions. A list of available isotopes and their assumed half-lives is shown below.

You may use any units for the initial and present radioactivity, so long as they are consistent. The elapsed time must be input in the units Days. Hours (DD.HH), where two full decimal places must be allotted to the hours. For instance, an elapsed time of 5 days 18 hours would be keyed in and displayed as 5.18; a time of 1 day 6 hours as 1.06; and a time of 12 hours as 0.12.

Equations:

$$A = A_0 \left(\frac{1}{2}\right)^{t/\tau_{1/2}}$$
$$t = \frac{\tau_{1/2} \ln (A/A_0)}{\ln (1/2)}$$

where:

 A_0 = initial radioactivity A = present radioactivity t = time elapsed, in hours $\tau_{1/2}$ = half-life of radioisotope, in hours
Isotope	$ au_{ m 1/2}~(m hrs)$
⁵¹ Cr	667.2
⁵⁷ Co	6480
^{99m} Tc	6
^{125}I	1440
^{131}I	193.2
¹³⁷ Cs	262980
³ H	107470
¹⁴ C	5.058×10^{7}
¹⁸ F	1.87
^{32}P	343.2
⁷⁵ Se	2880
85 Sr	1536
^{113m} In	1.73
¹³³ Xe	126.5
¹⁹⁷ Hg	65

Remarks:

- It is also possible to use this program for isotopes other than those provided by the program. In such a case, instead of selecting a radio-isotope by the usual means, simply key in half-life in hours of the new isotope and press **STO B**. Then execute the rest of the program in the same fashion as usual.
- 2. Hours are not always rounded nicely to days for output. For example, a time of 6 days 23.8 hours would be computed in days. hours format as 6.238. In display mode FIX DSP 2, this would appear as 6.24, even though 7.00 might be the preferred rounded format.
- 3. Neither inputs nor outputs will be printed by the program.

STEP	INSTRUCTION	s	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side	2.			
2	Select one of the fiftee	en radio-			
	isotopes and display h	nalf-life			
	in hours:				
	• Chromium—51	(⁵¹ Cr)			667.20
	 Cobalt—57 	(⁵⁷ Co)		[] B	6480.00
	 Technetium—99m 	(^{99m} Tc)			6.00
	lodine—125	(¹²⁵)		[] D	1440.00
	 Iodine—131 	(¹³¹)		1	193.20
	• Cesium—137	(¹³⁷ Cs)		G	262980.00
	 Hydrogen—3 	(³ H)	1	٥	107470.00
	• Carbon—14	(¹⁴ C)	2	D	50580000.00
	 Flourine—18 	(¹⁸ F)	3	D	1.87
	 Phosphorus—32 	(³² P)	4	D	343.20
	 Selenium—75 	(⁷⁵ Se)	5	D	2880.00
	 Strontium—85 	(⁸⁵ Sr)	6	D	1536.00
	 Indium—113m 	(^{113m} ln)	7	D	1.73
	• Xenon—133	(¹³³ Xe)	8	D	126.50
	 Mercury—197 	(¹⁹⁷ Hg)	9	D	65.00
3	Key in two of the follo	owing			
	three quantities:				
	 Activity at time zero 	D	A _o	A	A ₀
	• Time elapsed in da	ays.hours			
	format*		t (dd.hh)	B	t (dd.hh)
	 Present activity 		A	C	A
4	Compute remaining v	ariable:			
	Activity at time zero	0		A	A _o
	• Time elapsed in da	ays.hours			
	format			8	t (dd.hh)
	 Present activity 			G	А

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new isotope, go to step 2;			
	to change one or both input			
	parameters, go to step 3.			
	*Recall that two digits must			
	always be allocated for hours.			
	For example, 1 day 6 hours is			
	keyed in as 1.06.			

Example:

An activity of 200 μ Ci is measured for a standard of ⁵¹Cr. What is the activity after a week?

Keystrokes:

Outputs:

[] ▲	667.20	$(\tau_{1/2} \text{ for } {}^{51}\text{Cr})$
200 🗛	200.00	(A_0)
7 ₿	7.00	(t = 7 days)
€	167.97	(A, μ Ci)

RADIOIMMUNOASSAY

This program performs the calculations for a logit/log plot of radioimmunoassay data. The program allows for any number of replicates in the counts input and for any number of standards. Outputs include correlation coefficient r, slope m, and intercept b of the least-squares regression line computed. Then, given counts for an unknown, the program will compute the corresponding concentration.

To run this program, first press \triangle to initialize. Then key in the non-specific binding (or blank) counts, NSB, and press \square ; repeat for as many replicates as desired. After all replicates have been keyed in, press \square/S to compute the average non-specific binding count. (This step is *not* optional; do not omit it.) The same procedure is repeated for the counts at zero concentration, B₀, which are input to key \square . After input of all replicates \square/S is pressed to compute the average B₀.

The next step in the operation of the program is the input of the data for the standards. The counts for the first standard are input to key \square ; as many replicates as desired may be keyed in. After all replicates for the first standard have been keyed in, the concentration of the standard is input to key \blacksquare . This procedure (replicates to key \square , concentration to key \blacksquare) is repeated for as many standards as desired. Pressing key \blacksquare will then cause the output of the correlation coefficient r, the slope m, and the intercept b of the least-squares logit/log regression line computed from the standards. (The values of r, m, and b must be found before going to the next step, which is the calculation of the concentration of an unknown.) The regression performed is an unweighted regression.

At this point, the counts of an unknown may be keyed into 1 B; repeat for any number of replicates. After all replicates have been keyed in, 1 C may be pressed to find the concentration of that unknown. Repeat for as many unknowns as desired.

Two output options are available in this program. If neither option is selected, the only values output will be r, m, b, and the concentration of each unknown. Selection of the PRINT mode on key \square allows output of the following values as well: all input values (counts and standard concentrations) and the average of each set of counts input (assuming replicates). The second option, on key \square \square , is called PLOT. If this option is selected, the net B/B₀ and the log and logit (x and y) values for standards and unknowns will also be output. This information is intended to assist those who wish to make a plot by hand of the logit-log relationship.

Equations:

Let

NSB = average of replicate counts for non-specific binding B_0 = average of replicate counts for zero concentration B_i = average of replicate counts for ith standard (i = 1, 2, ..., n) C_i = concentration of ith standard

Let

$$\begin{split} x_i &= \log C_i \\ y_i &= \log it \left(\frac{B_i - NSB}{B_0 - NSB} \right) \\ &= \ln \left[\frac{(B_i - NSB)/(B_0 - NSB)}{1 - (B_i - NSB)/(B_0 - NSB)} \right] \\ &= \ln \left(\frac{B_i - NSB}{B_0 - B_i} \right) \\ net \ B_i/B_0 \ = \frac{B_i - NSB}{B_0 - NSB} \end{split}$$

The program fits a line of the form y = mx + b to the (x_i, y_i) pairs. All sums below are from 1 to n.

-

$$m = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$
$$b = \overline{y} - m \overline{x}$$
$$\overline{y} = \frac{\sum y}{n}$$
$$\overline{x} = \frac{\sum x}{n}$$
$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\left[\sum x^2 - \frac{(\sum x)^2}{n}\right]^{1/2}} \left[\sum y^2 - \frac{(\sum y)^2}{n}\right]^{1/2}$$

where:

Let

B = average of replicate counts for an unknown

 C_u = concentration of unknown

$$C_{u} = 10^{x}$$
where $x = \frac{1}{m} \left[\ln \left(\frac{B - NSB}{B_{0} - B} \right) - b \right]$

Remarks:

- 1. The term "intercept" is used in this program to refer to the point on the logit axis (the y-axis) where it is intersected by the regression line. It does not mean, as it is sometimes used in RIA documents, the concentration for which the value of the logit function is zero.
- 2. After computation of r, m, and b, these values may be found in the following registers: r in R_c and Z, m in R_B and Y, and b in R_A and X.

References:

Rodbard, Bridson, and Rayford, "Rapid calculation of radioimmunoassay results", J. Lab. Clin. Med., 74:770 (1969).

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To allow output of input data			
	and intermediate results, turn			
	print function on.			1.00
3	To turn print function off later.			0.00
4	To allow output of (log conc.,			
	logit) values, turn plot			
	function on.		1 C	1.00
5	To suppress further output of			
	plot data.		08	0.00
	Setup			
6	Initialize.		A	
7	Key in non-specific binding			
	counts; repeat for as many			
	replicates as desired.	NSB	B	i
8	After all replicates, find			
	average NSB.		R/S	NSB

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Key in counts for zero dose;			
	repeat for as many replicates			
	as desired.	B₀	C	i
10	After all replicates, find			
	average B ₀ .		R/S	B ₀
	Standards			
11	Key in counts for first standard;			
	repeat for as many replicates			
	as desired.	В	D	i
12	Key in concentration of first			
	standard; optional outputs			
	are shown in parentheses;			
	1.00 indicates first standard.	Conc.	8	(B)
				(net B/B ₀)
				(Conc.)
				(Logit)
				(Log conc.)
				1.00
13	Repeat steps 11 and 12 for			
	all standards.			
	Results			
14	Calculate correlation coef-			
	ficient (r), slope (m), and			
	intercept (b) of regression line.			r
				m
				b
	Unknowns			
15	Key in counts for an unknown;			
	repeat for as many replicates			
	as desired.	В	6 B	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
16	Find concentration of			
	unknown; optional outputs			
	are shown in parentheses.		[] C	(B)
				(net B/B _o)
				Conc.
				(Logit)
				(Log)
17	Repeat steps 15 and 16 for			
	any number of unknowns.			
	New Case			
18	For a new assay, go to step 6.			

Example:

Below are the data for non-specific binding (NSB), zero concentration (B_0) , and various standards for a radioimmunoassay.

Description	Counts per minute	Concentration (pg)
NSB	425, 339, 342, 369	-
Bo	10670, 10570, 10925	-
Standard 1	9176, 9850	25
Standard 2	8453, 7967	50
Standard 3	6323, 6057	100
Standard 4	3866, 4088	200
Standard 5	2027, 2221	400
Standard 6	1251, 1462	800

Find r, m, and b for the regression line. Find the concentrations corresponding to the unknown counts below.

Unknown	Counts per minute
1	10230, 10170
2	3270, 3400

Use the PRINT and PLOT options for complete outputs.

Keystrokes:	Outputs:
	1.00 (Print on)
[] [] ───→	1.00 (Plot on)
425 B	425.00 *** (1st NSB)
	1.00
339 B ►	339.00 ***
	2.00
342 ₿	342.00 ***
	3.00
369 B ───	369.00 ***
	4.00
D 7 A	268 75 *** (Aug. NCD)
	508.75 (Avg. 113B)
10670 C	10670.00 *** (1 st B _o)
_	1.00
10570 C	10570.00 ***
_	2.00
10925 C	10925.00 ***
	3.00
R/S	10721.67 *** (Avg. B ₀)
0176	0.176 0.0 *** (1st of std 1)
9170	1.00
	1.00
9850	9850 00 ***
	2.00
25	9513.00 *** (Avg. for std. 1)
_	$0.88 *** (net B_1/B_0)$
	25.00 *** (Conc. of std. 1)
	2.02 *** (Logit = y_1)
	$1.40 *** (Log = x_1)$
	1.00 (Std. 1)
_	
8453 ◘	8453.00 *** (1 st of std. 2)
	1.00

7967 🖸 —————	>	7967.00 *	**	
		2.00		
50 E		8210.00 *	**	(Avg. for std. 2)
		0.76 *	**	(net B_2/B_0)
		50.00 *	**	(Conc. of std. 2)
		1.14 *	**	(y ₂)
		1.70 *	**	(X ₂)
		2.00		(Std. 2)
6323 D		6323.00 *	***	$(1^{st} of std. 3)$
		1.00		
6057 D		6057.00 *	***	
		2.00		
100 E		6190.00 *	***	(Avg. for std. 3)
		0.56 *	***	(net B_3/B_0)
		100.00 *	***	(Conc. of std. 3)
		0.25 *	***	(y ₃)
		2.00 *	***	(x ₃)
		3.00		(Std. 3)
3866 D	>	3866.00 *	***	$(1^{st} of std. 4)$
		1.00		
4088 🖸		4088.00 *	***	
		2.00		
200 E		3977.00	***	(Avg. for std. 4)
		0.35	***	(net B_4/B_0)
		200.00^{-3}	***	(Conc. of std. 4)
		-0.63	***	(y ₄)
		2.30	***	(X ₄)
		4.00		(Std. 4)
2027 D	>	2027.00	***	(1 st of std. 5)
		1.00		
2221 D	>	2221.00	***	
		2.00		

3400 🚺 🖪 ────	3400.00 ***
	2.00
[] [] ───→	3335.00 *** (Avg. of unkn. 2)
	$0.29 *** (net B/B_0)$
	254.57 *** (Conc. of unkn. 2
	-0.91 *** (Unkn. y)
	2.41 *** (Unkn. x)
	254.57

Notes

This program computes the basic statistics of one variable: mean (\bar{x}) , standard deviation (s), standard error $(s_{\bar{x}})$, and coefficient of variation (C.V. %).

The input data to the program may be either grouped or ungrouped. Ungrouped data should be input to key **B** and grouped data to key **C**; keys **1 B** and **1 C** provide error correction for the ungrouped and grouped cases, respectively. If an incorrect entry is made, it may be corrected by keying in that entry a second time and pressing the appropriate error correction key. Suppose, for example, that 7.31 is one data point in a set of ungrouped data, but that a mistake is made in entering it. Instead of 7.31, the value 4.31 is input to key **B**. To correct this mistake, you would simply key in 4.31 and press **1 B**. At this point the error has been eliminated. Now enter the correct data, 7.31, and press **B**.

Equations:

Ungrouped data:

Let $\{x_1, x_2, ..., x_n\}$ be the set of data points.

Mean
$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

$$\mathbf{x} = \sqrt{\frac{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}{n-1}}$$

Standard error
$$s_{\overline{x}} = \frac{s}{\sqrt{n}}$$

Coefficient of variation C.V.
$$\% = \frac{s}{\overline{x}} \times 100$$

Grouped data:

Let $\{x_1, x_2, ..., x_n\}$ be a set of data points occurring with the respective frequencies $f_1, f_2, ..., f_n$.

Mean
$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{f}_i \mathbf{x}_i}{\Sigma \mathbf{f}_i}$$

Standard deviation s =
$$\sqrt{\frac{\sum f_i x_i^2 - \frac{(\sum f_i x_i)^2}{\sum f_i}}{\sum f_i - 1}}$$

Standard error
$$s_{\overline{x}} = \frac{s}{\sqrt{\Sigma f_i}}$$

Coefficient of variation C.V.
$$\% = \frac{s}{\overline{x}} \times 100$$

Remarks:

- 1. Grouped and ungrouped data may be mixed in the same set of data.
- The preprogrammed ≥ and ≥ keys may be used to input and correct ungrouped data in place of keys ≥ and
 Calculation of mean and standard deviation may also be done by the preprogrammed keys ≥ and
 for both grouped and ungrouped data.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Initialize.		A	0.00
3	To allow printing of input data,			
	turn print function on.			1.00
4	To turn print function off later.			0.00
5	For ungrouped data, go to			
	step 6; for grouped data, go			
	to step 9.			
	Ungrouped data			
6	Perform this step for $i = 1$,			
	2,, n:			
	Input data point.	Xi	B	i
7	To correct an erroneous entry.	X _k	[] B	i
8	Go to step 11.			
	Grouped data			
9	Perform this step for $i = 1$,			
	2,, n:			
	Input frequency and data.	f _i	ENTER+	
		Xi	C	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
10	To correct an erroneous entry.	f _k	ENTER+	
		X _k	[] C	i
	Results			
11	Compute mean and standard			
	deviation.		D	x
				S
12	Compute standard error and			
	coefficient of variation.		G	S∓
				C.V.%
13	For a new set of data, go			
	to step 2.			

Example 1:

Hemoglobin concentration was measured for nine male patients. Compute the basic statistics for these data.

Hemoglobin concentration (g/dl)

13.8	17.4
16.9	13.4
16.5	17.9
17.7	15.2
16.0	

Keystr	okes:
--------	-------

Outputs:

Α	 0.00	
🚺 🗛 ————	 1.00	(Print on)
13.8 в ———	 13.80 ***	(x _i)
	1.00	(i)
16.9 B ———	 16.90 ***	
	2.00	
16.5 B ———	 16.50 ***	
	3.00	
17.7 B ———	 17.70 ***	
	4.00	

Example 2:

A certain test was performed on college students ranging in age from 18 to 22 years. The number of subjects of each age is shown in the table. Compute the mean age of the students in the test.

Age	18	19	20	21	22
# Subjects	5	9	13	7	1

Outputs:

0.00

Keystrokes:

Α _____

If Example 1 has just been run, turn print off:

🚺 🗛	 0.00	(Print off)
5 ENTER↑ 18 C —	 1.00	
9 ENTER↑ 19 C —	 2.00	
13 ENTERA 20 C -	 3.00	
7 ENTER↑ 21 C —	 4.00	
1 ENTER↑ 22 C —	 5.00	
D	 19.71	*** (Mean)
	1.05	*** (Std. dev.)

CHI-SQUARE EVALUATION AND DISTRIBUTION

This program allows you to perform two important calculations concerning the chi-square statistic. The first of these calculates the value of the χ^2 statistic for the goodness of fit test. The second evaluates the chi-square density f(x) and the cumulative distribution P(x) given x and the degrees of freedom ν .

The χ^2 statistic may be computed for the case where the expected frequencies are equal as well as for the case where they are different. If they are equal, only the observed frequencies O_i need be input to key **B**; error correction is available on key **f B**. After calculation of χ^2 from key **D**, the expected frequency E may be calculated. If the expected frequencies are different, both the observed and expected frequencies should be input to key **C**. Error correction is provided on key **f C**.

To make calculations involving the chi-square distribution, first input the degrees of freedom ν to key \blacksquare . Then key in the value of x and press \blacksquare \square to find the density f(x) or \blacksquare \blacksquare to find the cumulative distribution P(x).

Equations:

Chi-square evaluation:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where:

 O_i = observed frequency E_i = expected frequency

If the expected values are equal

$$\left(E = E_i = \frac{\Sigma O_i}{n} \text{ for all } i\right)$$

then

$$\chi^2 = \frac{n\Sigma O_i^2}{\Sigma O_i} - \Sigma O_i$$

Chi-square distribution:

Chi-square density:

$$f(x) = \frac{1}{2^{\frac{\nu}{2}} \Gamma \left(\frac{\nu}{2}\right)} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}$$

where:

 $x \ge 0$ ν is the degrees of freedom.

Series approximation is used to evaluate the cumulative distribution

$$P(x) = \int_0^x f(t) dt$$

$$= \left(\frac{x}{2}\right)^{\frac{\nu}{2}} \frac{e^{-\frac{x}{2}}}{\Gamma\left(\frac{\nu+2}{2}\right)} \left[1 + \sum_{k=1}^{\infty} \frac{x^{k}}{(\nu+2)(\nu+4)\dots(\nu+2k)}\right]$$

 \mathbf{i}

where:

$$\Gamma\left(\frac{\nu}{2}\right) = \begin{cases} \left(\frac{\nu}{2}-1\right)!, \nu \text{ even} \\ \left(\frac{\nu}{2}-1\right)\left(\frac{\nu}{2}-2\right) \dots \left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right), \nu \text{ odd} \end{cases}$$
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

The program computes successive partial sums of the above series. When two consecutive partial sums are equal, the value is used as the sum of the series.

Remarks:

- 1. In order to apply the goodness of fit test to a set of given data, it may be necessary to combine some classes to ensure that each expected frequency is not too small (not less than, say, 5).
- 2. The program for distribution requires that $\nu \le 141$. If $\nu > 141$, erroneous overflow will result.
- 3. If both x and ν are large, the calculation of f(x) may cause overflow.

References:

(Evaluation) J.E. Freund, Mathematical Statistics, Prentice Hall, 1962.

(Distribution) Abramowitz and Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, 1968.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	20.00
3	To allow printing of data and			
	results, turn the print function			
	on.			1.00
4	To turn the print function off			
	later.			0.00
5	For χ^2 evaluation, go to			
	step 6; for χ^2 distribution,			
	go to step 15.			
	χ^2 evaluation			
6	If the expected frequencies			
	are equal, go to step 7;			
	if they are not equal, go to			
	step 11.			
	Expected frequencies equal			
7	Perform this step for $i = 1$,			
	2,, n:			
	Key in observed value.	O _i	B	i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
8	To correct an erroneous entry.	O _k	1 B	i
9	Calculate the χ^2 statistic and			
	(optionally) the average			
	expected frequency.		٥	χ²
			R/S	E
10	For a new case, go to step 2.			
	Expected frequencies			
	unequal			
11	Perform this step for $i = 1$,			
	2,, n:			
	Key in observed and	O _i	ENTER+	
	expected frequency.	E,	G	i
12	To correct an erroneous	O _k	ENTER+	
	entry.	Eĸ	1 C	i
13	Calculate the χ^2 statistic.		D	χ²
14	For a new case, go to step 2.			
	χ^2 distribution			
15	Key in degrees of freedom.	ν	G	$\Gamma(\nu/2)$
16	Key in x and compute either			
	 Density 	х		f(x)
	or			
	 Cumulative distribution 	х	12	P(x)
17	For a new case, go to step 2.			

Example:

Ten one-minute counts of a Cesium-137 check source yielded the following results. Use this program to evaluate the counting instrument. (Note that with 10 data points, the degrees of freedom $\nu = 9$.)

25601	25553
25546	25841
25592	25560
25820	25633
25569	25464

Keystrokes:

Outputs:

A 🚺 A	——— 1.00		(Print on)
25601 в		***	
	1.00		
25546 B	→ 25546.00	***	
	2.00		
25592 B	→ 25592.00	***	
	3.00		
25820 B	→ 25820.00	***	
	4.00		
25569 в	→ 25569.00	***	
	5.00		
25553 в		***	
	6.00		
25841 в	→ 25841.00	***	
	7.00		
25560 в	→ 25560.00	***	
	8.00		
25633 в		***	
	9.00		
25464 в	→ 25464.00	***	
_	10.00		< 9.
D	5.10	***	(χ^2)
R/S	→ 25617.90	***	(E)
9 E —	→ 9.00	***	(ν)
	11.63	***	$(1^{(\nu/2)})$
5.10 📶 🖪	■ 5 .10	***	
	0.17	***	$(P(\chi^{2}))$

Since P (χ^2) is between 0.1 and 0.9, the counting instrument is assumed to be operating properly.

Notes

This program will compute either of two test statistics which are used to compare population means: the paired t statistic or the t statistic for two means.

The paired t statistic applies to a set of *paired* observations drawn from two normal populations with unknown means μ_1 , μ_2 :

The paired t statistic can be used to test the validity of the hypothesis that the means are equal. If the computed value of t is significant (as determined by t *Distribution*, CL1-19A), then we reject the hypothesis that the population means are equal.

The x- and y-values are input to key **B**. Error correction is provided by key **1 B**. After the input of all x-y pairs, the t statistic may be found by pressing **C**.

The t statistic for two means applies to independent random samples $\{x_1, x_2, ..., x_{n_1}\}$ and $\{y_1, y_2, ..., y_{n_2}\}$ drawn from two normal populations with unknown means μ_1 , μ_2 and the same unknown variance σ^2 . The t statistic is used to test the validity of the hypothesis that the populations means differ by some amount d (i.e., that $\mu_1 - \mu_2 = d$). Note that d may be chosen to be zero.

To operate this routine, the x-values should first be keyed in to key \square . Error correction is available on key \square \square . After all x-values have been input, the value of d should be input to key \square \square . Then the y-values should be keyed in to key \square . After input of all the y-values, the t statistic may be found by pressing \square .

Equations:

Paired t statistic let

$$D_{i} = x_{i} - y_{i}$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_{i}$$

$$s_{D} = \sqrt{\frac{\Sigma D_{i}^{2} - \frac{1}{n} (\Sigma D_{i})^{2}}{n - 1}}$$

$$s_{\overline{D}} = \frac{s_{D}}{\sqrt{n}}$$

The test statistic

$$t = \frac{\overline{D}}{s_{\overline{D}}}$$

which has n - 1 degrees of freedom (df) can be used to test the null hypothesis

 $H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$

t statistic for two means

Define

$$\overline{\mathbf{x}} = \frac{1}{\mathbf{n}_1} \sum_{i=1}^{\mathbf{n}_1} \mathbf{x}_i$$

$$\overline{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\overline{x} - \overline{y} - d}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sqrt{\frac{\Sigma x_i^2 - n_1 x^2 + \Sigma y_i^2 - n_2 y^2}{n_1 + n_2 - 2}}$$

We can use this t statistic which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom (df) to test the null hypothesis

$$\mathrm{H}_{\mathrm{o}}:\,\boldsymbol{\mu}_{1}\,-\,\boldsymbol{\mu}_{2}\,=\,\mathrm{d}$$

References:

(Paired t) B. Ostle, Statistics in Research, Iowa State University Press, 1963.

(t for two means) K.A. Brownlee, *Statistical Theory and Methodology in Science and Engineering*, John Wiley and Sons, 1965.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2 of program.			
2	Initialize.		Α.	
3	To allow output of data and			
	results, turn print function on.			1.00
4	To turn print function off later.			0.00
5	For t statistic for two means,			
	go to step 11; for paired t			
	statistic, go to step 6.			
	Paired t statistic			
6	Repeat this step for all data			
	pairs (i = 1, 2,, n):			
	Key in x- and y-values.	X _i	ENTER+	
		y i	B	i
7	To correct an erroneous entry.	X _k	ENTER+	
		Ук	1 B	i
8	Compute paired t statistic.		C	t
9	(optional) Compute degrees			
	of freedom, mean difference,			
	and standard deviation of D.		R/S	df
				D.
				S _D
10	For a new case, go to step 2.			
	t statistic for two means			
11	Repeat this step for all			
	x-values (i = 1, 2,, n_1):			
	Key in x-value.	Xi	D	i
12	To correct an erroneous entry.	X _k		i

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	Key in difference to be tested.	d	08	d
14	Repeat this step for all			
	y-values (i = 1, 2,, n_2):			
	Key in y-value.	Уi	۵	i
15	To correct an erroneous			
	entry.	Ук		i
16	Compute t statistic for two			
	means.		G	t
17	(optional) Compute degrees			
	of freedom.		R/S	df
18	(optional) Change value of			
	d and repeat step 16.	d	STO 7	
19	For a new case go to step 2.			

Example 1:

The hemoglobin concentration in blood samples from six patients was measured by two different methods. Use the paired t-statistic to determine if there is a significant difference between the two methods of measurement.

	Met	hod
Sample	1 (g/dl)	2 (g/dl)
1	17.6	17.4
2	13.0	12.9
3	15.3	15.3
4	15.0	15.2
5	15.0	15.0
6	14.6	14.5

Outputs:

Keystrokes:

To interpret these results, load *t Distribution* (CL1-19A) and find the cumulative distribution I(x) for x = 0.60 and 5 degrees of freedom.

Keystrokes:		Outputs:			
5 A	.60 D		0.43	***	(I (0.60))

The probability of |t| > 0.60 is thus 57%. We conclude that the hypothesis that the means are equal cannot be rejected.

Example 2:

Hemoglobin concentration was measured for nine male and seven female patients. Use the t-statistic for two means to test the hypothesis that the difference between the means is negligible (i.e., d = 0).

Hgb concent	ration (g/dl)
Men	Women
13.8	11.9
16.9	14.4
16.5	13.7
17.7	16.8
16.0	11.7
17.4	14.9
13.4	12.3
17.9	
15.2	

Keystrokes:

Outputs:

Α		0.00		
If example	1 has not just been run:			
🚺 🗛 ——		1.00		(Print on)
13.8 D		13.80	***	(x ₁)
		1.00		(i = 1)
16.9 D —		16.90	***	
		2.00		
16.5 D —		16.50	***	
		3.00		
17.7 D —		17.70	***	
		4.00		
16 D ——		16.00	***	
		5.00		
17.4 🖸 —		17.40	***	
		6.00		
13.4 D —		13.40	***	
		7.00		
17.9 D —		17.90	***	
		8.00		
15.2 D —		15.20	***	
		9.00		
0 🚺 🗉 —		0.00	***	(d = 0)

Thus the value of t is significant and we should reject the hypothesis that the average hemoglobin concentrations in males and females are equal.

Notes

t **DISTRIBUTION**

This program calculates three parameters of the t distribution given x and the degrees of freedom ν . The density function f(x) is computed as well as two measures of the area under the distribution curve, P(x) and, for x > 0, I(x), where

Equations:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

(1) ν even

$$I(x) = \sin \theta \left\{ 1 + \frac{1}{2} \cos^2 \theta + \frac{1 \cdot 3}{2 \cdot 4} \cos^4 \theta + \dots + \frac{1 \cdot 3 \cdot 5 \dots (\nu - 3)}{2 \cdot 4 \cdot 6 \dots (\nu - 2)} \cos^{\nu - 2} \theta \right\}$$

(2)
$$\nu$$
 odd

$$I(x) = \begin{cases} \frac{2\theta}{\pi} \text{ if } \nu = 1\\ \frac{2\theta}{\pi} + \frac{2}{\pi} \cos \theta \\ \left\{ \sin \theta \left[1 + \frac{2}{3} \cos^2 \theta + \dots + \frac{2 \cdot 4 \dots (\nu - 3)}{1 \cdot 3 \dots (\nu - 2)} \cos^{\nu - 3} \theta \right] \right\} \text{ if } \nu > 1 \end{cases}$$

where

$$\theta = \tan^{-1}\left(\frac{x}{\sqrt{\nu}}\right)$$
$$P(x) = \begin{cases} \frac{1+I(x)}{2} \text{ if } x > 0\\ \frac{1-I(x)}{2} \text{ if } x \le 0 \end{cases}$$

Remarks:

The program requires $\nu < 141$. Otherwise an erroneous overflow will result.

Reference:

Abramowitz and Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, 1970.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
	of program.			
2	To allow printing of inputs,			
	turn print function on.		G	1.00
3	To turn print function off			
	later.		G	0.00
4	Key in degrees of freedom.	ν	A	ν
5	Key in x and compute either			
	 Density function 	х	B	f(x)
	or			
	 Cumulative distribution 	x	C	P(x)
	or			
	• Integral, $-x$ to x (x > 0).	×	D	l(x)

Example 1:

Find the density function and P(x) for x = 1.6 with 9 degrees of freedom.

Keystrokes:

Outputs:

Example 2:

Find I(x) for x = 1.83 and $\nu = 11$.

Keystrokes:

Outputs:

11	Α	→	11.00	(ν)
1.8	3 D	→	0.91 ***	(I (x))

Notes

Notes
PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.

Prog	gram	Page
1.	Beer's Law	L01-01
2.	Protein Electrophoresis	L02-01
3.	LDH Isoenzymes	L03-01
4.	Body Surface Area	L04-01
5.	Urea Clearance	L05-01
6.	Creatinine Clearance	L06-01
7.	Amniotic Fluid Assay	L07-01
8.	Blood Acid-Base Status	L08-01
9.	Oxygen Saturation and Content	L09-01
10.	Red Cell Indices	L10-01
11.	Total Blood Volume	L11-01
12.	Schilling Test	L12-01
13.	Thyroid Uptake	L13-01
14.	Radioactive Decay Corrections	L14-01
15.	Radioimmunoassay	L15-01
16.	Basic Statistics	L16-01
17.	Chi-square Evaluation and Distribution	L17-01
18.	t Statistics	L18-01
19.	t Distribution	L19-01

L01-01

Beer's Law

88: X: BLA	A → %T	257 +	For % T _{II} , compute A
032 STOD	G . /01.	258 GTO0	
003 F00		059 * LBL4	
004 PRTX	Α.	eee CHS	
005 Z		051 *LBL0	
306 -		052 ST09	Store A _u .
887 CHS		ess RCLH	Display input.
008 10×		254 RTN	
005 STOE	%Т.	065 *LBLE	
010 F0?		056 STOS	$C_s \rightarrow C_u$.
211 FRTX		357 F07	
012 F89		058 SFC	
013 SFC		859 FØ?	
014 RTN		070 PRTX	
015 *LBLB	%T → A.	371 RCL9	
C16 STOE		872 ×	$C_u = C_e \times \frac{A_u}{\Delta u}$
617 FØ?		073 RCLB	A _s
C18 PRTX	«т	974 ÷	
019 LOG	201.	075 ST07	
920 CHS		076 F0?	
821 2	1	077 FPTX	
P22 +		878 F00	
027 STOD		879 SPC	
624 FØS		230 RTN	
225 PRTX		831 *LBLa	
222 E82	A.	832 8	
007 CPC		837 ST0A	Clear for reprint.
200 DTN		084 STOE	
220 KIN 220 V R/C		085 STUC	
976 STOC	$+\% i_{s} (-A_{s}).$	986 STOD	
030 3100 071 E00		P37 STOF	
031 F07 070 CDC		C36 ST01	
032 3FU 077 E00		839 RTN	
933 F07 974 DDTV		398 N/BLC	
204 FKIA 075 V/00		000 ALDEC	Patient ID = Ptnt # .01.
333 AND? 376 CT07	For absorbance, GTO 3.	631 IN: 632	1
036 6103		002 0	
637 LUG 370 CHC		Pax 1	
338 LHS		005 4	
239 2	For %T _s , compute A _s .	290 T 207 CT01	
248 +		696 5701 007 007V	
041 6708		000 PRIA 000 PR	
842 *LBL3		098 5FL	
043 CHS	1		
044 ¥LBLU	1	100 #LBLd	Print toggle.
045 STOB	Store A _s .	101 -67	L Coggion
846 RCLC	Display input,	132 6106	1
E47 RTN		193 5F8	1
048 *LBLD	+ % T., (-A.,)	184 1	
949 STOA		IBS KIN	
858 F8?		196 *LBL0	
851 FRTX	For absorbance, GTO 4.	127 DF0	
052 X<0?		198 0	
853 GTO4		139 RTN	
254 LUG		110 *LBLe	Reprint
955 CHS		111 SFC	
<u>856 2</u>	1	112 SPC	
	REGI	STERS	
0 1 2	3 4	5 6 7 C	^B C _e ⁹ A _u
S0 S1 S2	\$3 64	CE CE C7	
50 51 52	53 54	50 5/	50 59
A IB			
Input to [D] As	Input to [C]	а 5%т	Ptnt # .01

L02-01

Protein Electrophoresis

					45.7	0701				
301	*LBLA	Initia	alize.		057	5101		Point	to Frac ₁	
002	2				0 58	#LBL8				
007	5				8 59	RCLI				
394	erai				960	RCLO				
004	5101				861	÷			F .	
962	LLX				8422	PCI 2		Gma	_ ⊢ract _i	UT Dr
0 0 6	STOØ				002	RULL		Gins	Σ	- • • • • •
007	ST01				863	x			-	
888	ST02				064	PRTX				
000	\$703				865	RCLI				
005	5100				866	RCL 1				
616	F 07				067	V-V2		Dow	to Bor	.7
011	SPC				007	0-12			110 1125.	-n '
012	RTH				968	6106		res,	exit.	
Ø13	#LBLB	Inou	t fractions.		869	DSZI		No, c	lecremen	tand
014	FRO	mpa	C II docional		070	GT06		loop	again.	
014	DDTV	-			871	#1 BL 0				
612	PRIX	Frac	t _i →R _{25-i} .		972	CLV		Disp	av 0.00 a	and return
016	DSZI				072	DTH		Disp	uy 0.00 (and retarn.
017	STOI				073	RIN				
018	ST+0	Acci	imulate Σ in	Bo.	874	*LBLE		Com	pute A/G	i.
A19				ů.	675	RCLE				
013					876	RCLD				
020	51+1				977	PCLC		1		
621	RCL1	Disp	lay i.		077	RULL			Fract	t ₁
022	RTN				6/8	+		A/G	=	
823	★LBLC	Out	out percents.		079	RCLB		1	~ -	
824	SPC				888	+			⊦	ract _i
024	DC(1	ł.			881	RCLA			i=2	
625	RULI	Ino	w contains (2	5 – n).	000	+				
026	ST01	Save	in R ₁ .		002	Ť				
827	2				8 83	÷		1		
828	4				084	SPC				
829	STOT				085	PRTX				
025	-1010				986	RTN				
030	#LBL9				307	+ DIA				
031	RCL i				007	#LBLC				
032	RCLO				988	111		Patie	nt ID = F	°tnt # .02
833	÷		F		089					
874	FEY	e -	Fracti v 10	۰ I	090	0				
075		<i>7</i> 0 -	Σ × 10	v.	891	2				
835	2				600	<u> </u>				
836	×				032					
637	FRTX				693	5103				
038	RCLI				094	SPC				
979	PCI 1	Dov	In to Bor -?		095	PRTX		1		
0.00	0-00	500	11 to 1125-h.		896	SPC				
040	A=17				897	PTN				
941	GIUE	Yes	, exit.		0.00	E DI I				
042	DSZI	No,	decrement an	nd	698	#LDLd		1		
043	6709	loor	again.		899	F0?		Print	togale	
844	*1 BI Ø	100			100	GTOP		1		
045	C	-	un 0 00 - 1	rature	161	SFØ		1		
045	DTU	Disp	biay 0.00 and	return.	182	1		1		
846	KIN				107	DTU		1		
047	≭LBL D	Tot	al protein.		103	RIN		1		
04 8	SPC		-		184	≭L BLU		1		
849	SPC				105	CFe		1		
950	FAO				1 8 6	0		1		
0.50	DOTY				187	RTN		1		
051	PRIA				100	+I Ri n				
052	F0?				108	+LDLe		Rep	rint	
8 53	SPC				109	2		1		
054	ST02				:10	4		1		
855	2				111	STOI		1		
050	4				112	SPC				
0.00	4			DECH	STERS					
0	1	2 2	14	neuk	5	6	7	8		9
ΣFract	25 – n	f Tot Pr	Ptnt # .02		Ŭ.	ľ	ľ	ľ		-
80	C1	62 63		4	\$5	S6	S7	SB		59
30	31	32 33	, Is	-		50	5	Ĭ		Fract ₆
A		B			D _		IE -		1	
Frac	ct ₅	Fract ₄	ĭ Fra	ct ₃	Frac	t ₂	Fract ₁		r 1	ndex
							1			

113	SPC								
114 K	INT								
116									
117	0								
118	*								
120 P	RTX	Patient	t ID						
121	SPC	-							
122 *L	BL7								
123 R	CLI PRTX		o print inputs						
125 R	CLI	Loop	o print inputs.						
126 R	CL1								
127 X	K=Y?								
128	191 1971								
138 6	T07	_							
131 ¥L	BL1								
132	2								
134 S	זחד								
135	SPC								
136 6	SB9	Print 9	б.						
137	SPC								
139 R	RCL2	If tota	Invotein = 0, ski	n to					
140 X	(=0?	print A	A/G.	pito					
141 6	STOE								
142 P	SPC	Otherv	vise print T Pr a	nd					
144	2	grams.							
145	4								
146 5	STOI								
148 6	STOE	Print (VG						
		Fine A	k/0.						
		LLA	BELS			FLAGS	[SET STATUS	
^A Start	^B Fract	^C →%	^D T Pr→g	E_	+A/G	⁰ Print	FLAGS	TRIG	DISP
a	b	^c Ptnt #	^d P off?	e p	Reprint	1	ON OFF	DEC E	
⁰ Used	¹ Used	2	3	4		2		GRAD	SCI 🗆
5	6	7 Prt frac	⁸ Prt ams	9 1	Prt %	3	2 🗆 🕱	RAD 🗆	ENG 2
1	1	i i i i i ac	I . i c gina	1 '		1	JJW		

LDH Isoenzymes

0.01	al Di A					857	RTN					
001	ALDLH		1			85 8	*/ B/ 1					
002	4		Initializ	e.		059	PCLA			Subre	outine to	o find % and
663	5					0.00	ROLO			test i	f within	normal
004	STOI					060	-			range		
305	CLX					861	EEX					
80 6	ST00					0 62	2					ы. I
307	ST01					063	×			(%).	=	¹ i x 100
000	6702					864	PRTX			(/0/1	Σ	
000	5102					955	879				ᄼ	он _ј
863	KIN					005	v\v0				i	
310	≢LBLB		Input L	DH valu	es.	000	0212				- 0/ -	
011	DSZI		LDHi⊣	R _{25-i}		667	SF 2			Min -	> % {	
812	STO:		l '			86 8	R↓			Yes,	set flag i	2.
813	ST+0					069	X>Y?			%>	Max?	
314	592		A	ulata ∑i	n R.	878	SF2			Yes	set flag	2
014	FC:		Accum		II N ₀ .	971	PTN			165,	sering	2.
015	PRIA					070	+ DI					
816	1					072	#LBLC			Patie	nt ID =	Ptnt # .03
017	ST+1					073	111					
018	RCL1		Display	/ i.		074						
319	PTN					075	0					
010	+1 21 C					876	3					
020	#LDLC		Calcula	ate and p	rint	677	Ť					
021	SPC		percen	tages.		070	0700					
022	- 3					078	5102					
823	3		Max L	$DH_1 = 3$	3.	079	PRIX					
A24	ENT!					080	SPC					
825	1					081	RTN					
023	1					962	et BL d		1			
325	8		Min L	$OH_1 = 18$	3.	002	+LDL0			Print	toggle	
027	RCLE		LDH ₁			683	F0?					
ð 28	6SB1		_			084	6108					
629	4					085	SFØ					
979	Â		1	- A	n	386	1					
371	ENT+		Max L	$DH_2 = 4$	u.	887	RTN					
031	Enti					200	+1					
632	2					505	ALDLO					
033	8		Min L	$DH_2 = 28$	3.	089	LFO					
∂ 34	RCLD		LDH ₂			890	e					
835	ESB1					091	RTN					
976	7		_			892	*LBLe		- 1	Door	int	
977	ă		1		•	897	SPC		1	nepi	int	
037	FUTA		Max L	$DH_3 = 3$	0.	994	CPC		-			
038	ENIT					0.54	SFL DOLD					
039	1					695	RULZ					
848	8		Min L	$DH_{2} = 18$	3.	096	INT					
Ø41	RCLC		LDH.			397			1			
942	CSR1		Long			098	0					
042	0001		-			299	7					
043	1					100			I			
344	6		Max L	$DH_4 = 1$	6.	100	DDTU					
845	ENTT					161	PRIX		I	Ptnt	# .03	
846	6		Min	DH4 = 6		102	SPC					
847	RCLB			- 4 0		103	RCLE			IDU		
949	ESB1		LOH			104	PRIX			LDH	1	
040	1					185	RCID		ł			
043	τ <u>1</u>					105	DDTV			LDH	2	
050	3		Max L	$DH_5 = 1$	3.	100	PR/A					
051	ENTT			-		167	RULU		1	LDH	3	
052	2		Min L	DH = 2		108	PRTX		1		-	
053	RCLA		LIDH			109	RCLB		1	LDH		
854	ESE!		Lons			110	PRIX		1	2011	-	
255	E 20					111	RELA					
635	2705		F2 set	indicate	s range error.	112	EDTY			LDH	5	
856	6 I UE		1			112	ER15					
					REGIS	STERS	-			10		1
0 21 01	1 .	2 Dear #	3		4	5	6	7		8		а
2 LDH	· ·	Ptnt # .	03							-		
S0	S1	S2	S3		S4	S5	S6	s	7	S8		59
										1		
A		В		С		D		E			1	
LDF	15	LDH₄		1	LDH ₃	L L D F	12	1	LDH,			ndex

113	SPC	Comp	ute and print %.					
114	GTOC							
1								
		1. S.						
1								
							1	
		LA	BELS	L	FLAGS		SET STATUS	
^A START	^B LDH _i	C →%	D	E None	⁰ Print	FLAGS	TRIG	DISP
а	b	C Ptot#	d P off2	e Benrint	1	ON OFF	mid	DISF
0	1	2	3	4 neprint	2 -		DEG 🖬	FIX 🖬
Used	· %	2	0	-	E Range error			
5	0	1	8	a	3	3 🗆 🔊		n2

Body Surface Area

201	1.0.4	1		007	-				
661	#LBLH	He	eight (+cm, - in)	007	(
802	STOE		5	858	1				
007	ERO			050	ō				
003	r 0			635	0				
004	SPC			060	- 4				
0.05	ERO			961	~				
603	FØ:			001					
006	PRTX			062	STOR				
007	V\ 80		balabalia and CTO 1	067	500				
001	0/0/	1"	neight in cm, GIOI.	000	r 0 :				
008	GT01			064	PRTX				
000	CHC			0/5	500				
003	CH3			600	r 0 ?				
616	2	I		966	SPC				
	-			0.67	DTH				
011			onvert inches to cm.	007	KIN				
012	5	I		968	#¦BID		D		
					POL D		воу	U BSA	
013	4			869	KLLL!				
814	×			876					
610	*LRF I			071	ى				
016	STOD	C+	ora baight in om	A72	ŶХ				
	0.02	1.00	ore neight in cin.	0.77					
017	KIN	-		0/3	RULE				
018	*LBLB		alaht/tha lb)	874	FEX				
1	0700	1 ***	eignt (+kg, - 10)	0.75					
019	5100			6.2	3				
626	FØ?	1		876	¥				
	DOTU	I		077					
021	PRIZ			077	ENIT				
022	F0?			878	106				
007	ODC.			0.70	200				
023	SPL			079					
R24	X>02	14	weight in ka GTO 2	988	8				
0.05	OTOC	1	weight in kg, GTO 2.	1					
623	6102			081	1				
a26	CHS			A82	8		1		
007	0110			002					
027				083	8				
828	4			884	¥				
000	-			001					
029	5			885					
030	3			886	7				
071	Ē	Co	onvert pounds to kg.		,				
031	5			687	2				
032	9			988	8				
077	2			1 000					
633	2			689	5				
834	3			898	-				
075	2								
835	(091	Y*				
836	x			892	÷				
077				1 005	•				
037	#LBL2			993	3				
038	STOR			294	1				
070	DTH	St	ore weight in Kg.	0.00					
033	KIR	-		090	1				
840	*LBLC		1	096	8				
041	BCI D		JDOIS BSA	007					
041	RULD			097	-				
842				A98	STOA				
017					500				
045	(033	F07				
044	2			188	PRTX				
945	5			101	FRO				
043	3			101	r 0 ?				
<i>046</i>	Υ×								
847		1		102	SPC				
071	PCIP			102	SPC				
	RCLE			102	SPC RTN				
848	RCLB			102 103 104	SPC RTN ≢LBL₀				
848	RCLB			102 103 104	SPC RTN ≉LBL₀		— — Clea		
048 049	RCLB			102 103 104 105	SPC RTN #LBLo 0		– – Clea	ar for rep	 rint
048 049 050	RCLB			102 103 104 105 106	SPC RTN *LBLo 0 STOI		— — Clea	ar for rep	 rint
048 049 050 051	RCLB			102 103 104 105 106	SPC RTN #LBLo 0 STOI PTN		– – Clea	ar for rep	 rint
048 049 050 051	RCLB 4 2 5			102 103 104 105 106 107	SPC RTN #LBLo Ø STOI RTN		– – Clea	ar for rep	 rint
048 049 050 051 052	RCLB 4 2 5 Y×			102 103 104 105 106 107 108	SPC RTN #LBLo Ø STOI RTN #LBLC		— — Clea	ar for rep	
048 049 050 051 052 057	RCLB 4 2 5 7 2			102 103 104 105 106 107 108	SPC RTN #LBLo 0 STOI RTN #LBLC		— — Clea	ar for rep	
048 049 050 051 052 053	RCLB 4 2 5 Y* ×			102 103 104 105 106 107 108 109	SPC RTN #LBLo Ø STOI RTN #LBLC INT		 Clea	ar for rep	
048 049 050 051 052 053 054	RCLB 4 2 5 Y× ×			102 103 104 105 106 107 108 109 110	SPC RTN *LBLo Ø STOI RTN *LBLC INT		— — Clea — —	ent ID =	
048 049 050 051 052 053 054 055	RCLB 4 2 5 Y× ×			102 103 104 105 106 107 108 109 110	SPC RTN #LBLo 0 STOI RTN #LBLC INT		 Clea Pati	ar for rep 	rint
048 049 050 051 052 053 054 054	RCLB 4 2 5 7× ×			102 103 104 105 106 107 108 109 110 111	SPC RTN #LBLo Ø STOI RTN #LBLC INT		 Clea 	ent ID =	
048 049 050 051 052 053 054 055 056	RCLB 4 2 5 Y× × 0 e			102 103 104 105 106 107 108 109 110 110 111	SPC RTN #LBLo 0 STOI RTN #LBLC INT 0 4		— — Clea — — Pati	ent ID =	rint
048 049 050 051 052 053 054 055 056	RCLB 4 2 5 Y× × 0 e		BEG	102 103 104 105 106 107 108 109 110 111 112 STERS	SPC RTN *LBLo STOI RTN *LBLC INT 0 4		 Clea Pati	ent ID =	rint
048 049 050 051 052 053 054 055 056	RCLE 4 2 5 7× × 0 e	12 13	REG	102 103 104 105 106 107 108 109 110 111 112 STERS	SPC RTN *LBL O STOI RTN *LBL INT 4	17	– – Clea – – Pati	ent ID =	
048 049 050 051 052 053 054 055 056	RCLE 4 2 5 7 2 5 7 2 7 2 7 2 8 6 6		REG	102 103 104 105 106 107 108 109 110 111 111 112 STERS	SPC RTN *LBLo O STOI RTN *LBLc INT 4	7	– – Clea – – Pati	ent ID =	Print #.04
048 049 050 051 352 053 054 055 056 0	RCLE 4 2 5 7× × 0 e	2 3	REG	102 103 104 105 106 107 108 109 110 111 112 STERS	SPC RTN #LBLo 8 STOI RTN #LBLC INT 4 6	7	Clea Pati	ent ID =	Ptnt #.04
048 049 050 051 052 053 054 055 056 0 856	RCLE 4 2 5 7× × 0 e	2 3 S2 S2	REG 4 33 S4	102 103 104 105 106 107 108 107 108 109 110 111 112 STERS 5 S5	SPC RTN *LBLo 8 STOI RTN *LBLc INT 9 4 6 56	7 57	Clea Pati	ent ID =	Ptnt #.04
048 049 050 051 052 053 054 054 055 056 0 0	RCLB 4 2 5 7× × 0 e 1 5	2 3 S2 S	REG 4 33 S4	102 103 104 105 106 107 108 109 110 111 112 5 5 5 5	SPC RTN #LBLo STOI RTN #LBLc INT 4 6 56	7 57	Clea Pati	ent ID =	Ptnt #.04
048 049 050 051 052 053 054 055 056 0 so	RCLB 4 2 5 7 ^x × 0 0 1 S1	2 3 52 S	REG 4 33 S4	102 103 104 105 106 107 108 109 110 111 112 STERS 5 S5	SPC RTN *LBL STOI RTN *LBL INT 6 6 S6	7 \$7	Clea Pati	ent ID =	Ptnt #.04
048 049 050 051 052 053 054 055 056 0 80 80 80 80 80 80 80 80	RCLB 4 2 5 7 ^x x 0 0 1 1 51 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 S2 S B Wt (kn)	REG 4 33 C Wt insut	102 103 104 105 106 107 108 109 110 111 112 STERS 5 S5	SPC RTN #LBL6 STOI RTN #LBLc INT	7 57 E u	Clea Pati	ent ID =	Ptnt #.04

Urea Clearance

001	AL 51 A			<u>й57</u>		1			1
861	*LELH	11/2		050	÷		0+	opuico h	aug maximum
002	÷	v/t		628	3		Othe	arwise na	ave maximum.
397	*I BL B			059	3				
000		l V		86 8	×				
004	STUE	*		000	0100				
885	F0^			001	5100				
RAG	SPC			062	F@?				
207	500			863	PRTX				
007	F0?			000	DTH				
008	PRTX			064	KIN				
889	F22	If F	2 set must correct	065	*LBL0		Ctor	dard	
005	0700			966	PLIA		Star	uaru	
616	GIUM	for t	BSA.	000	AULS				
811	GT01			667	1				
912	+1 01 0			068					
012	#LDL0			020	0				
013	1			005	0				
814				070	5				
615	7			871	×				
010	<u>'</u>		1.73 •	072	CTOP				
816	- 3	V _{cor}	$T = \frac{1}{DEA} V$	012	5100				
A17	RCLA		BSA	673	F0?				
010				974	PETX				
010	÷			075	DTH				
019	x			673	KIN				
828	#iBi1			076	*LBL o				
021	CTOD	0.4		877	9		Clas		wint
021	5100	Out	put	077			Clea	r for rep	print.
322	F0?			0.8	5108				
823	PPTY			079	STOI				
020	500			999	PTN	1			
024	FØ?			000					
025	SPC			081	*LBL&				
826	PTN			082	SF2		Set	E2 to all	ow correction
020	K I I			907	PCL O		Jei	2 10 41	OW CONECTION
627	*LBLC			000	RULH		for l	3SA.	
828	STOC	i U		084	RTN				
629	592	- 016	20	685	≭LB Lc				
025	r0:			900	THT				0 // 05
030	PRTX			000	111		Pati	ent ID =	Ptnt # .05
031	RTN			087					
975	+I DI R			888	A				
032	FLDLU			0000	ě				
033	STOB	B		089	- D				
874	EQ2	Dune	10	820	+				
0.75	DOT			001	CTOI				
632	PRIX			651	5101				
036	F0?			092	SPC				
977	SEC			893	PRTX				
0.01	5/ 6			004	DTN		1		
038	2	I If V	$_{\rm corr} \leq 2$, take \sqrt{V} for	0.54	KIN				
039	RCLD		-	095	≉LBL d				
949	9290		U√V	896	F92		Prin	t toggle	
040	0211	C ₅ =		207	CTOR				
841	18		в	097	6100				
942	RCLC	1	•	098	SF0				
847	DCI E	Oth	UV UV	A66	1				
043	ROLD	Uth	erwise C _m =	100	ET.				
944	÷		Ь	100	KIN				
945	×			101	*LBL0				
945	CTOO			182	CER				
040	5105	Clea	arance	102	010				
047	F0?			103	e				
848	PRTX			104	RTN				
240	DTH			105	*I Rio				
049	RIN			100	+LULe		Rep	rint	
850	*LBLE	× ~	and pormal	106	SPC				
851	2	76 17	ican normal	107	SPC				
0.51				100	DOL 1				
052	RCLD	Ι.		168	RULI				
85 3	X≟Y?	l If V	conr ≤ 2, GTO0 for	109	INT				
254	CT09		dard	110					
0.04	0100	star	Guid.	1					
855	RCL9			111	0				
056	1			112	5				
	-		BEGI	STERS					
0	1	2 2	14	15	6	7	18		0
Ľ.	ľ	2 3	1	Ľ	L.	ľ	°% n	n.n.	° c
	_						701		, v
S0	S1	S2 S3	S4	S5	S6	S7	S8		S9
				1					1
	1			0			-		1
PPA (m ²)	P		۲ <u>د</u> ۲	-1/: >	E		ľ ~	. # .05
D3A (11 1	Burea	Uurea	V corr (r	ni/min)	V (ml/min)		i Ptr	nt # .05

Creatinine Clearance

301	*LBLH				857				D: 1 # 00
082	÷		V/t		950	P		Patie	nt ID = Ptnt # .06
863	∦LBi Β		_		359	Ē			
384	STOF		v		050	, ř			
885	FØ2		•		951	STAL			
000	SPC				061	DETY			
367	EAC				062	CRIA CDC			
007	FU:				863	SPL			
965	PRIA				864	RTN			
663	F2?		IT F2 S	et, must correct for	065	∗LBL∞,		Print	toggle
816	6100		BSA.		0 66	F0?			109910
011	GT01		-		967	GTOØ			
ð12	*LBL0				068	SF®			
013	1				869	1			
014					878	RTN			
615	7		• V=	$= \frac{1.73}{V}$	871	*I BI R			
R16	3		• corr	BSA 🏅	270	CER			
817	PCL A				572	6			
010	-				010	0.14			
010	÷				074	KIN			
815			-		075	≴ LBLe		Repr	rint
626	*LBL1				076	SPC			
021	STOD		Outpu	t	077	SPC			
022	F0?				078	RCLI			
823	PRTX				079	INT			
024	F0?				880				
825	SPC				881	я		1	
026	RTN				482	Ē			
827	#LBLC				307	- C			
828	STOC		Iп.,		000	DDTV		Patie	nt ID
320	500		Creat		084	PRIA		Falle	
025	PDT-				885	SPL		:	
030	FRIA				086	RULE		ľ	
831	RIN				087	PRTX		1.	
032	*LBLD				088	RCLD		V _{cor}	т
033	STOB		Pcreat		089	PRTX			
034	F0?				898	SPC			
035	PRTX				891	RCLC		Ucre	at
036	RCLC				892	PRTX		1	
837	RCLD			•	997	PCIR		I P	
938	x		C = -		204	DDTV		· crea	IT
339	RCLE		Ŭ	P	0.24	CRIA CRC			
949	-				090	DOLO			
841	ст <u>л</u> е				096	RULS		l č	
041	5105				097	PKIA			
042	CDC				098	RIN			
043	571				1				
044	F07		1		1				
645	PRIX				1				
846	RTN				1				
047	*LBLa				1				
048	9		Clear	for reprint.	1				
049	STOI								
050	RTN		1		1				
051	*LBLb								
052	SF2		Set F	2 to allow correction					
353	RCLA		for P	SA					
854	ETN								
355	#L BLC								
854	TNT								
000	111.		1	PEGI	STERS			1	
0	1	2	3	4	5	6	7	8	9
ľ	ľ	L .	Ĭ		ľ	Ĭ	ľ	Ŭ	с (
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
	-			-	1	1	-		
A	2	в		с	D		E		
BSA (m*)	Pcreat		Ucreat	V _{corr} (nl/min)	V (ml/m	iin)	Ptnt # .06

		L/	ABELS	10		FLAGS		SET STATUS	
^ V†t	□ V	[⊂] U _{creat}	^D P _{creat}	C		Print	FLAGS	TRIG	DISP
^a Clear ⁰ Used	[□] Cor BSA? ¹ Exit V	^c Ptnt # 2	a P off?	e Rep 4	orint	² Cor BSA		DEG 🖬 GRAD 🗆 BAD 🗆	FIX ⊠ SCI □ ENG □
5	6	7	8	9		3	3 🗆 🕱		n2_

Amniotic Fluid Assay

001	*LBLA					057	RCLB		ΔA	450 (y)	
862	FIX					258	XZY				1
007	ncp2					859	÷				
663	0372		A			969	STOP		b=	v/a ^x	
004	STOE		A365			000	5105			//	
005	F0?	1				061	F0?				
886	SPC					062	PRTX				
000	EBO	1				967	RTH				
007	PDTV	I				000	*I RI F				
668	FRIX	1				004	*LDLE				
009	RTN	1				065	5				
010	*LBLB	1				066	RCL9				
a11	STOD	I	Asso			867					
011	5100		-550			620			1		I
012	F07					000	0.00		1		
813	PRTX	I				869	6217		1 "	u < 0.7, h	ave zone I.
814	RTN				 	87 0	GT01				
A15	#LBIC					071	R↓				
010	STOC					972	X>Y?		I If I	5 > 3. hav	e zone 3.
010	5100	I	A450		I	072	CT07		I,	_,	
817	F0?				1	073	6100				
018	PRTX					074	2		Ot	herwise, h	ave zone 2.
819	RCLF				1	075	6700				
000	1.0					976	#LBI 1		1		
020	DO: D					010					
021	KULD				1	0//	1				
022	LH	I 1			1	078	6100				
823	-					079	¥LBL3				
824						888	7				
024	:		-	Thus	ant if	600	* PIG				
625	5	1	ī	inis char	iyes if	061	ALDLU OTCO				
826	4		6	different	wavelengths	082	5108		Zo	ne numbe	r
827	1		,	of light a	re used	083	FIX				
000	Ŷ		1			884	DSPR		1		
020	noin		1			004 005	EBO				
629	KULD		1			885	F07				
030	LN		1			086	PRTX				
031	+		1			087	RTN				
072	eX.		1			888	#LBL o		-		
032	e		1			000	+LDL0				
033	-		1			689	LLX		Ini	tialize	
034	STOB)		ð90	ST08				
A35	FØ?		430	-		091	ST09				
070	CDC		1			600	STOA				
035	360		1		1	207	DTH				
037	F0?		1		1	093	KIN		_		
038	PRTX		1		I	694	≭ LBLc			tient ID -	Ptot # 07
039	F8?		1		I	895	INT		l ^{Pa}	tient ID =	· uit # .07
940	SPC		1			895	-				
040	DTH		1			807					
641	KIN	l	۱			097					
042	∦ LBLD		1			098	7				
043	STOA	1	Weak	(x)		899	+				
944	FIX		WEEK	~		188	STOI				
044	ncpo	I	1			101	PRTY				
043	DOFE		1			101	600		1		
646	182		1			102	SFL		1		
047	PRTX		1			103	RTN		1		
848	DSP2		1			104	*LBL d		- 1		
040			1			105	FAS		Pri	int toggle	
049			1			100	CTOP		1		
000	9		1			100	6100		1		
051	1		Slope	constant	а	107	SFØ		1		
852	5		1			108	1		1		
A57	Ã		1			109	RTN				
000	0		l			110	+ DIA		1		
054			l			110	+LDLU		1		
055	X₽Y					111	CHE				
856	γ×		a×			112	e		1		
					REGI	STERS					
0	1	2	13		4	5	6	17	Te.		9
ľ	ľ	ć	1		l, I	۲ 	ľ	ľ	8	Zone	b
60	- C -				64	0.5					
50	51	S2	53		54	55	56	57	S8		24
											L
Α		В		С		D		E		1	
Wee	ek	△ A ₄₅₀		l.	A450	A550)	A365		Ptr	nt # .07
		+									

113	RTN									
114 #L	BLe		Reprint	t						
115	FIX									
116 0	ISP2									
117	SPC									
118	SPC									
119 R	CLI									
120	INT									
121	•									
122	0									
123	7									
124	+									
125 F	RTX		Ptnt #	.07						
126	SPC									
127 R	CLE		A365							
128 F	PRTX									
129 R	CLD		A550							
130 P	PRTX									
131 R	CLC		A450							
132 P	PRTX									
133	SPC									
134 R	CLB		∆ A ₄₅₀							
135 P	PRTX									
136	SPC									
137 R	2CLA		Week							
138 D	ISP Ø									
139 F	RTX									
140 R	CL9		b							
141 0	ISP2									
142 P	PRTX									
143 R	CLB		Zone							
144 0	ISPO									
145 P	RTX									
146	RTN									
							-			
	D		LAE	BELS	Ic.	_	FLAGS		SET STATUS	
^ A ₃₆₅	A550	~ A450	∆≁ر	[∪] Wk→b	Ľ	Zone	Print	FLAGS	TRIG	DISP
^a Clear	D	^c Ptnt	#	^d P off?	e F	Reprint	1		DEG 🗵	FIX 🕱
⁰ Used	1 Zone 1	2		³ Zone 3	4		2	1 0 0	GRAD	sci 🗆
5	6	7		8	9		3	2 🗆 🕱	RAD 🗆	ENG 2
Ŭ.	ĭ	Ľ		ĭ	Ĩ		Č.	3 🗆 🕱		n2

Blood Acid-Base Status

801	*LBLA		вт			857	-		1		
80 2	F0?					058	10*		1		
883	PRTX					<i>059</i>	•		1		
384	FØ?					060	0				
885	SPC					861	3				
886						062	0				
887	7	1				063	7				
AAR	XZY					064	x			onH-nK	
200	-					865	ST05		s(1	(^{,,,,} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
005 Q10	STOP		37-BT			866	LSTX				
010	ST05		F1 set f	or BT.		867	+				
011	DTU					068	RCLD				
012						069	x				
013	#LDLP		PCO ₂			878	STOP		TO	0,	
614	SIUE					071	FA2		1 '	-1	
015	F07					072	PPTY				
816	PRIX		T	ant f P		012	CEL		Cia	ar flag 1	
017	F1?		l o cori	ect for B	1, 610 0.	073	DTN			a. mug 1.	
018	6100					0/4	KIN				
019	GT01		For 37	, GTO 1	·	875	*LBLE		1		
828	≭LBL €		_			076	5108		l Hgi	0	
021	RCL9					077	F8?				
822			Correct	PCO ₂ to	o 37°.	078	SPC				
023	e					079	F0?				
824	1					080	PRTX				
825	9					881	RCL5				
026	x					082	RCLD				
927	18*					083	x				
a20						884	ST06		(H	CO3-1	
020	+1 P Î 1		-			485	9			- 3 3	
023	+LDL:		PCO	37°C)		886	-				
030	5100		1002	57 61		887	5				
031	KIN					007	ENT+				
032	#LBLU		pН			000	1				
033	5100					002	1				
034	F.0?					090	;				
035	PRTX					091	6				
836	F1?		To cor	rect for E	BT, GTO 0.	892	3				
837	GTDØ					893	KCL8				
038	6702		For 37	°, GTO 2	2.	094	x				
039	#LBL0		_			095	+				
848	RCL9					096	7				
941			Correc	t pH to 3	7°	097					
842	0					8 98	4				
843	1					099	RCLB				
844	4					100	-				
845	6					101	х				
046	×					102	-				
847						103	2				
849	#LBI 2		-			104	4				
849	STOP		nH (2	°C		105	-				
950	PTN		pri (3)	0		186	1				
050	#I BI D					187	RCL 8				
051			Comp	te TCO ₂		100					
052	ROLD					100					
000						110	1				
054						110	4				
000						110	-				
856	1				DECH	TEDS	2				
0	11	2	13		4	5	. 6	7	8		9
ľ	ľ	ć.	ĭ			s(10 ^{pH - pH}	(HCO₃⁻)	"] BE	ĩ	Hgb	37-BT
S0	S1	S2	S 3		S4	S5	S6	S7	S8		S9
Ľ.											1
A		в	-	С		D		E		I	
Ľ	TCO2	pH (37°)		pН	input	PCO ₂	(37°)	PCO ₂ in	put	Ptr	nt # . 08

L08-02

113	x					169	CHS		BT	
115	×					170	PRIX			
116	ST07		BE			172	*1 BL Ø			
117	F82		1			173	RCLE		PCO ₂ · input	t
118	PRTX					174	PETX			
119	RTN					175	RCLC		pH input	
120	RCL6		[HCO ₃	-]		176	PRTX			
121	F0%					177	RCLA		TCO ₂	
122	PRIX					178	PRTX			
123	KIN +IPL-					179	SPC			
124	#LDL0		Initiali	ze.		180	RCL8		Hgb	
126	STOP					181	PRIX		RE	
127	ST07					182	RULY			
128	STOP					103	ROLE			
129	ST09					185	PPTY			
130	STOI					186	RTN			
131	RTN									
132	*LBL¢		-							
133	INT		Patient	ID = Ptnt # .08	s.					
134	:									
135										
136	,°									
170	stat									
139	PRTY									
148	SPC									
141	RTN									
142	*LBLd									
143	F8?									
144	6700		Print to	oggle						
145	SF@									
146	1									
147	ETH									
148	*LBL0									
149	LFU									
150	PTN									
152	#IRIA									
153	SPC		Reprin	t						
154	SPC									
155	RÜLI									
156	INT									
157										
158	6									
159	8									
160	+ DDTV									
161	EKIA SPC		Patient	ID						
167	RCLS									
164	X=0?				~					
165	GTOP			r entered, GTO	0.					
166	2									
167	7									
168	-									
	0	C	LAE	BELS	Ic.		FLAGS		SET STATUS	
́вт	^D PCO ₂	С pl	н	TCO2	⊾ н	gb→BE	^o Print	FLAGS	TRIG	DISP
^a Clear	Ь	c P	tnt #	d P off?	e R	eprint	' BT	ON OFF	DEG 🖬	FIX 🖬
0 Used	¹ PCO ₂ (37)	2 pl	H (37)	3	4		2	1 🗆 🛙	GRAD	SCI 🗆
5	6	7		8	9		3	2 🗆 🛛	RAD 🗆	ENG 2
1	1			1	1			3 ∐ kul		··

Oxygen Saturation and Content

301	*LBLA		вт			85 7	GT00			-		
882	FØ?					058	≭ LBL1			If inc	ut < n ,	nake positive
903	PRTX					859	CHS			mp		
884	3					868	*LBL0					
004	2					861	STOC			VPO ₂		
000	v+v	1				862	ENTT					
007	0+1	1				963	ENT+		1			
001	- 6700		37.PT			964	ENTT		1			
808	5109		37-01	- <i>114</i> -		925	1					
669	RULL		Hcl PC	J_2 (if inp	out).	04-5	5					
010	RTH					000	2		1			
011	*LBLB		PCO ₂			867	-					
012	F0?		-			868	×					
013	PRTX					3 69	2					
814	STOD					070	0					
015	RCLB		Rcl pH	(if input	:).	071	4					
016	RTN					072	5					
A17	#1 BLC					873	+					
A10	F09		рН			874	x					
B10	DDTY					875	2			Com	oute oxy	gen
019	CTOR					974	FFX		1			
020	5108					977	7			satura	ation.	
021	KIN					011	,		1			
022	*LBLD					6/8	•					
023	F0?					079	x					
024	PRTX					080	STUZ					
825	STOE		PO ₂ in	put		081	CLX					
826	X<0?		If inpu	t < 0, co	nsider as	082	1					
827	CT01		VPO-			083	5					
028	RCL9		Other	vise com	oute VPO ₂	084	-					
829						085	x		I			
A3A	A					986	2					
A71	2					087	4					
870	4					000	à					
032	_*					000	D					
033						003	۳ ۲					
034	KULB					050						
835	7					091	×					
036	•		1			052	3					
037	4		1			093	1					
038	-					094	1		1			
039						095	0					
848	4		1			096	0					
041	8		1			097	-		1			
642	x					898	x		1			
843	+					099	2		I			
844	4		1			100	4					
845	A					101	EEX					
945	PCI D		1			182	-					
947	RULU					1.47	÷.					
04/	1.00		1			103	FFY		I			
048	LUE					104	2					
649	:		1			105			1			
858	0		1			106						
851	6		1			107	SI÷/					
852	x					108	RCL7			O2 s	aturatio	n (%).
853	+					109	SF2			F2 s	et to inc	licate
854	10×					110	F0?			satu	ration co	omputed
855	RCLE					111	SPC			Jacu		pacea.
856	x					112	F0?					
					REGI	STERS						
0	1	2	3		4	5	6		7	8 .		9 07 07
									Sat	LH	igb	37-BT
S0	S1	S2	S3		S4	S5	S6		S7	S8		S9
Α.		В		C	-	D		E	DO 1		1 21	. # 00
0 ₂ cor	ntent	pH(37)		VP	02	PCO ₂ (37)		PO ₂ input		Ptn	t # .09

113	PRTX					169	PRTX			
114	FA2					170	SEC			
115	CPC					171	STOL			
115	DTH					170	5701			
116	KIN					172	KIN			
117	RCL8		Rcl Hgt	o (if input).		173	*LBLd		Print toggle	
118	R/S					174	F0?			
119	RIF					175	STOP			
120	E20		If Sat (computed do no	nt	176	CER			
126	FZ:		11 Jat. (computed, do m	<i>.</i>	170	Sre			
121	6100		input it			177	1			
122	XZY					178	RTN			
123	ST07		Otherw	ise store Sat.		179	#LBL0			
124	FAO					100	CER			
124	DDTY					100	0			
125	FRIA					101				
126	F0?					182	R1H			
127	SPC					183	*LBL€		Reprint	
128	XZY					194	SPC		neprint	
120	I DI A		-			195	SPC			
125 4	LDLO		.			165	SPL			
130	5108		Store H	gb.		196	KELI			
131	F0?					187	INT			
132	PRTX					188				
177	PCI 7					139	ê			
155	RULI					102				
134	x					196	9			
135	1					191	+			
136	3					192	PRTX		Patient ID	
177	4		Compu		int	197	SPC			
170	<u>,</u>		compu	te oxygen conte	anc.	194	-			
138						194	2			
139	RCLC					195	7			
148	3					196	RCL9			
141	1					197	-			
142	<u>,</u>					100	DDTV		DT	
142	^					150	PRIA DOLD		ы	
143	+					199	RCLD			
144	EEX					200	PRTX		PCO ₂	
145	4					281	RCLB		-	
145	± .					202	PETY		-14	
140	-		-			202			рп	
147	STUA		O ₂ con	tent		203	RULE			
148	F0?					204	PRTX		PO ₂ input	
149	PRTX					205	SPC			
:50	PTN					206	RCI Z			
151	+1 E1 .					207	DETV		a :	
151 4	LDLC		Initialia	e		207	600		Saturation	
152	U					208	SPL			
153	STOC					209	RCL8		Hemoglobi	n l
154	STOE					210	PRTX		-	
155	STOL					211	RCLA		Content	
156	PTN					210	DETY		Content	
106	KIN .					212	DT			
157 4	#LBLb					213	KIN			
158	3									
159	7		Rcl BT							
168	RC1 9									
1/1	-									
161	-		BT = 3	7 – (37-BT)						
162	RIN									
163 /	ŧLБL¢									
164	INT									
165			Patient	ID = Ptnt # .09)					
100										
166	e									
167	9									
168	+									
			LAF	BELS			FLAGS		SET STATUS	
A	B	С	-01	D no.	Eat		0 0			
BT	PCO ₂	р	н	PO ₂ →Sat	_ S↑	Hgb→O ₂	Print	FLAGS	TRIG	DISP
a Clear	^b → Bcl BT	C P	tnt #	d P off?	e Re	print	1	ON OFF		
Clear	- ner BT	· ·			1.16	print	0	0 🖾 🗆	DEG 🖬	FIX 🖾
0 Used	1 VPO	2		3	4		² Sat computed	1 🗆 🖾	GRAD 🗆	SCI 🗆
5	6	7		8	0		3	2 🗆 🗷	RAD 🗆	ENG 2
10	19	1′		l'	19		5	3 🗆 🎮		n

L10-01

Red Cell Indices

									T		
881	*LBLA					85 7	+		1		
882	STOE		Count.			858	STOI		1		
887	F#2					050	PDTY		1		
003	DOTU					039	000		1		
664	PRIX					868	SPL		1		
00 5	RTN					061	RTN				
886	#I RI R					862	#I BL d		Dein	togalo	
007	CTOD		Hemat	ocrit (%)		002	+LDL G		Prin	t toggie.	
007	5100		riemau			663	F 82				
80 8	F0?					8 64	GTDØ				
889	PPTX					965	SEA				
005	DTU					005	510				
016	RIN					066	1		1		
011	≉LB LC					067	RTN		1		
B12	STOC		Hemo	alobin.		920	+1 51 0		1		
012	5,000		1			000	*LDL0				
013	FØ?					069	CFB		1		
014	PRTX					070	0				
B15	E82					971	DTN				
010	000					011	Kin				
016	SPL					072	<i>*LBLe</i>		Rep	rint.	
017	RCLD					073	SPC		· ·		
A18	1		Comp	ite MCV		974	SPC		1		
010	â		1			074	DOLT		1		
019						075	RULI				
020	x		1			076	INT		1		
R 21	RCI F		1			977			1		
000			I			6.7	:				
622	-					078	1		1		
823	STOB		MCV.			079	+				
824	F0?		1			800	PPTY		Pati	ent ID	
0.7	DOTY					000	FRIA		1		
625	PRIX					081	SPC				
826	RTN		I			A 82	RCLE		Cou	nt.	
827	#I Bi D					002	DDTV				
021	TEDED		Comp	ute MCH		663	FRIA				
628	RULL					<i>0</i> 84	RCLD		Hct	(%)	
829	1					885	PRTX		1		
838	9					200	BCLC		Hab		
030						986	RLLL		I I I I I I I I I I I I I I I I I I I		
031	x					087	PRTX				
832	RCLE					88 8	SPC				
077	÷					000	DC/ D		1 440	,	
633						089	RULB		MC	/	
034	STOP		MCH.			090	PRTX				
035	F0?					001	PCIA		MCI	4	
976	DETY					031	ROLH		1	'	
830	FRIA					092	PRIX				
037	RTN					093	RCL9		MCI	HC	
038	*LBLE					894	PPTY				
879	PCLC		Comp	ute MCH	C.	0.05	DTH				
0.05	FEU					895	RIN				
846	EEX										
841	2										
940	- -		I I			1			1		
072			1						1		
843	RULU		1						1		
044	÷		1						1		
845	STO9		hour			1			1		
040	5105		I WCHC			1			1		
846	F 0 ?		1						1		
047	PRTX		1						1		
949	RTN								1		
040	+1 DL -					1					
049	#LBL 0		Clear						1		
858	0		Siear.			I					
85	STOL		1								
050	0.01		1			1					
032	KIN										
853	≉LB Lc										
854	INT		Patien	t ID = Pt	nt#.10				1		
DEF			1			1					
800	•		1			1					
8 56	1					I					
					BEGI	STERS					
0	1	2	2		4	5	16	17	le		0
0	ľ	ŕ	3		- T	5	P	ľ	⁶		мсно
			_								Miche
S0	S1	S2	S3		S4	S5	S6	S7	S8		S9
	-		-				1				
				C							
A MCH		B MCV		с	Hab	D Het I	96)	E Count		P+-	+ # 10

		L	ABELS			FLAGS		SET STATUS	
^A Count	B Hct (%)	^C Hgb→MC	V ^D →MCH	^E →N	иснс	⁰ Print	FLAGS	TRIG	DISP
^a Clear	b	^c Ptnt #	^d P off?	^e Re	print	1	ON OFF	DEG 🕱	FIX 🕱
⁰ Used	1	2	3	4		2			
5	6	7	8	9		3	3		n_2

Total Blood Volume

					057	I DL J		Print	toggle	
001	≭ LBLA				857	*LBL a			33	
802	STOE	В	ackground cour	its.	628	F07				
883	F0?				059	6106				
884	PRIX				060	SFØ				
995	FTN				061	1				
000		-			862	RTH				
660	#LDLD	l v	olume injected		957	+I RI R				
807	STUD	·	oranie injectou		003	ALDEO CEG				
00 8	F0?				064	LFO				
005	PRTX				865	e				
010	RTN	-			866	RTH				
ē11	#I BI C				067	¥LBLe		Repr	rint	
612	CTOC	S	tandard dilutio	n. 📘	868	SPC				
012	5700				969	SPC				
613	FØY				070	PCII				
014	PRTX				070	THT				
015	RTN	-			071	181				
016	≭LBL D				072	•				
617	STOP	S	itandard CPM.		073	1				
A 18	F82				074	1				
010	DDTV				975	+				
019	PRIA				976	PPTY		Patie	ent ID	
626	KIN	-			077	SPC				
021	*LBLE				077	DOLE		Bak		
022	STOA	v	Vhole blood CP	м.	0 78	RULE		DUK		
823	FØ?				879	PRTX				
824	PRTX				980	RCLD		Vol.	injected	
024	FAD				081	PRTX				
023	000				882	PCLC		Std	dilution	
026	SPL	Ι.		Cut CDM	002	PPTY				
027	RCLE	1	Net Std. CPM =	Sta. CPM-	003	DOLD			0014	
028	RCLE	E	Bck.		684	KLLD		Sta.	CPM	
629	-				085	PRIX				
630	XZY				8 86	RCLA		Bloc	od CPM	
471	PCIE	1.	Net blood CPM	= Blood	8 87	PRTX				
372	RULL		DIA Dala	0.000	888	SPC				
032	-	1	JPM- BCK.		000	PCI 9		Tot	al blood y	olume
033	÷				005	DDTV		1 100		olume
034	RCLC				896	PRIA				
835	x				091	KIN				
836	RCLD									
937	×	1	Total blood volu	ume.				1		
978	STOP							1		
270	5705							1		
033	DDTU									
940	PRIA									
041	RTN	I.								
042	#LBL a	I.	Initializa							
043	0	I'	and an 20.					1		
844	STOE							1		
945	STOT							1		
845	PTN							1		
040	*101	·								
04/	#LDLC	1	Patient ID = Ptr	nt # .11						
048	101									
849								1		
050	1									
851	1							1		
852	+							1		
957	STOT									
000	DDTV							1		
054	PRIA									
855	SPC									
056	RTN							1		
				REGI	STERS					
0	1	2	3	4	5	6	7	8		9 TBV
1										IBA
			Io.	C.4	95	IS6	S7	IS8		59
S0	S1	S2	53	34	55	00	.			
S0	S1	S2	\$3	34	55	00				
S0	S1	S2	c	34	D	00	E		1	

				FLS		1	FLAGS		SET STATUS	
A Bck	^B Vol. inj.	C Std.	dil.	DStd. CPM	E CP	M→TBV	⁰ Print	FLAGS	TRIG	DISP
^a Clear	b	^c Ptnt	#	^d P off?	e Re	print	1			FIX 🕅
⁰ Toggle	1	2		3	4		2	1	GRAD	SCI 🗆
5	6	7		8	9		3	2 🗆 🕅	RAD 🗆	n_2

L12-01

Schilling Test

001 002 003	*LBLA STOE F0?		Back	ground co	ounts.	057 058 059	1 2		Pat	ient ID =	Ptnt # .12
084 085 006 087	PRTX RTH #LBLB STOD		 Stand	lard dilut	— — — — — — —	060 061 062 063	+ STOI PRTX SPC				
008 009 010 011	F0? PRTX RTN #LBLC					064 065 066 067	RTN #LBLd F0? ST00		Prir	t toggle	
012 013 014 015	STOC F0? PRTX RTH		Stand	lard coun		068 069 070 071	SFØ 1 RTN #LBLØ				
016 017 018 019	*LBLD STOB F0? PRTX		Urine	volume.	(V)	072 873 074 075	CFØ Ø RTN #LBLe				
020 021 022 023	RTN #LBLE Stoa "F0?		— — - Urine	counts.		076 077 078 079	SPC SPC RCLI INT		Het		
824 825 826 827	PRTX 1 X≠Y RCLE		1 U Bck	U 1 U 1		080 081 082 083	1 2				
028 029 030 031	- RCLB X≦Y?		Net 1 V Is V 3	1 Net 1 1 Ne ≤ 1?	et 1	084 085 086 087	PRTX SPC RCLE PRTX		Pati Bck	ent ID	
032 033 034 035	R4 × × RCLC		Yes, No, V	eliminate / > 1, mu	V. Iltiply by V.	088 089 090 091	RCLD PRTX RCLC PRTX		Std.	. dilution . CPM	1
036 037 038 039	RCLE - ÷ RCLD		Net s	td. count	s.	092 093 094 095	RCLB PRTX RCLA PRTX		Urii Urii	ne vol. ne CPM	
040 041 042 043	÷ EEX 2 x		Conv	ert to %.		096 097 098 099	SPC RCL9 PRTX RTN		% e:	xcreted	
044 045 046 047	ST09 F0? SPC F0?		% of	dose excr	eted.						
048 049 050 051	PRTX RTN *LBLo _0		– – – Initia	 lize.							
052 053 054 055	STOE STOI RTN *LBLc										
056	INT				DEOW	TEDO					
0	1	2	3		4 REGIS	5	6	7	8		9 %
S0	S1	S2	S3		S4	S5	S6	S7	S8		76 S9
A Urine C	PM	B Urine Vol.		C Std. C	I CPM	D Std. dilu	ution	E Bck		l Ptr	it # .12

1										
										-
				FIS			FLAGS		SET STATUS	
A Bck	^B Std dil	C Std C	PM	D Urine Vol	EC	PM→%	⁰ Print	FLACE	TRIC	DIED
a Class	b	C Dent	4	d p off2	e c	laprint	1	ON OFF	TRIG	DISP
Clear	1	Put #	r	3		eprint	2	0 🛛 🗆	DEG 🖬	FIX 🕱
° Toggle		4		3	4		-			
5	ь	7		в	9		3	3 🗆 🗷		n2

L13-01

Thyroid Uptake

						267	POLO					
881	ALBLA OTOF		Standa	rd Coun	ts.	350	PCLE					
002	STUE		Junua			000	RULD					
003	F0?					853	-					
004	PRTY					060	+					
005	RTN					961	LSIX					
896	≭ LBLB		a . 1			062	÷					
007	STOD		Standa	ING Back	rouna.	063	ST×9			~		*-1
998	F0?					864	RCL9			Corr	ected up	take.
889	PRTX					065	F0?					
A10	RCLE					066	PRTX					
9 11	¥7Y					867	RTN					
212			Std. C	ts. – Std.	Bck.	868	#IBI h			Corr	ection f	or different
012	DTH					869	FØ2			0011	ining and the second se	Junierent
613						879	SPC			activ	ittes.	
614	#LELU		Pation	t Counte		971	0-0					
015	5100		ratien	Counts	•	071	A+1					
016	F0%					072	FOY			Ctor	dard are	
017	PRTS					073	PRIX			Stan	dard pre	counts.
018	RTH					074	XZY					
019	≭LBL D					075	F0?					
020	STOB		Patien	t Backgr	ound.	076	PRTX			Dos	e precou	nts.
021	F0?					877	÷					
322	PRTX					078	ST×9					
A23	RCLC					879	RCL9			Corr	ected up	otake.
224	¥.*Y					888	F8?					
825	· · ·		Ptnt (Cts. – Ptr	nt. Bck.	AS1	PETX					
025	DTH					302	PTN					
020	KIN .					002	+/ Pl o					
627	#LBLE		Comp	ute upta	ke.	803	#LDLC			Pati	ent ID =	Ptnt # .13
928	RULL					084	181					
029	RCLB					085	•					
030	-					086	1					
031	RCLE					087	3					
032	RCLD					888	+					
033	-					089	STOI					
834	÷					090	PRTX					
035	EEX					091	SPC					
036	2					892	RTN					
937	×					A93	#1BLd					
976	STOP		94 L Int	aka		094	F82			Prin	t toggle	
970	5702			ane.		295	CT08					
032	CD:					0.00	SEA					
846	550					650	510					
041	FC?		l I			037	DTH					
042	PK17					098						
043	RIN					699	#LBL0		1			
844	#LBLa		Corre	ction for	nrior	100	UFU					
045	F0?		radia		p.101	101	0		1			
846	SPC		radioa	ctivity.		102	RTN					
047	XZY					103	#LBLe			Ren	rint	
048	F0?					104	SPC			nep		
849	PRTX		Patier	t predos	e counts	105	SPC					
056	XZY		, acier	, preuos	- 50unta.	106	RCLI		1			
851	FA?					187	' INT					
052	POTX					189						
857	-		Backg	round p	reaose counts.	100						
053	PC: A		Deer	factor		110	7					
004	KULP		Decay	actor.		1 110			1			
000	×						ידיתם מ			D		
656	CHS					112	. PRIA			Pati	ent ID	
	-1		-1		REGIS	STERS						
0	1	2	3		4	5	6	7		8		⁹ % Uptake
<u>co</u>					64	0.5		07		60		
50	51	52	53		54	55	56	57		58		29
		<u> </u>	1	0	I	0						
Decav	factor	Ptnt. Bck		Ptnt.	Cts.	Std	Bck	E St	td. Cts.		Ptr	it # .13
						1		1				

113	SPC		Std. C	ts.						
115	PRTX									
116	RCLD PRTX		Std. B	CK.						
118	RCLC		Ptnt. (Cts.						
119	RCLB		Ptnt. E	3ck.						
121	PRTX									
122	RCL9		% Upt	ake						
124	PRTX									
125	KIII									
			LAP	BELS			FLAGS		SET STATUS	
A Std. CPM	^B Std. Bck.	^C Ptnt.	CPM	^D Ptnt. Bck.	E →9	6 Up	⁰ Print	FLAGS	TRIG	DISP
^a Rad C↑Bk	^b Pre Sd†D	^c Ptnt	#	^d P off?	^e Re	print	1		DEG 🕅	FIX M
⁰ Toggle	1	2		3	4		2		GRAD	SCI 🗆
5	6	7		8	9		3	2 🗆 KŪ 3 🗆 KŪ	HAD 🗆	ENG L

L14-01

857 STOD 001 *LBLA Initial activity (A₀). Store t (hrs). 892 F3? 858 RCLB 059 GTOO ÷ 883 Calculate: $A_0 = A/f$ 060 004 RCLC Store decay factor . 5 005 RCLA 861 $f = \frac{1}{2} \int_{-\infty}^{t/\tau} \frac{t}{2} dt$ 006 062 X₽Y ÷ 007 STOE **0**63 YX 064 STOA 888 RTN 065 Rt *LBL0 889 Display t as input. Store input A₀. RTN 866 010 STOE #LBLC 011 RTN 067 Present activity (A). _ _ _ _ _ _ 012 #LBLB 066 F32 Time in days, hours, 813 F3? 869 GT00 070 RCLE STOP 014 Calculate: RCLA 071 015 RCLC 072 x 016 RCLE $A = A_0 f$ STOC 873 017 ÷ Calculate: 874 018 STOR RTN -----075 #LBL0 A19 LH $t = \frac{\tau_{\frac{1}{2}} \ln f}{\ln \frac{1}{2}}$ 076 STOC 020 Store input A. 5 077 RTN 821 - - -078 *LBLD 022 LN Isotopes 1-9. 023 ÷ 079 STOI 824 RCLB 080 GSBi 825 081 STOB X Store $\tau_{1/2}$. STOD RTN 082 R26 Store t (hours). #LBL a 827 2 883 828 4 A84 6 829 ÷ 085 6 830 INT **8**86 7 5 1 Cr Convert t in hrs. to dd.hh 831 ENTT 087 . for display. ENTT 038 2 032 STOR 033 2 089 834 4 898 RTN 035 х 091 *LBLb 036 RCLD 892 6 837 093 4 X₽Y 894 038 8 _ ⁵⁷Co EEX 895 R **ð**39 STOP **∂4**€ 2 896 041 ÷ 097 RTH **∂**42 + 898 #LBLc RTN 043 099 6 99m Tc STOE 188 844 #LBL0 Time input. RTN 845 ENTT 101 846 ENTT 102 #LBLd 847 INT 103 1 048 2 104 4 Convert from dd.hh 105 649 4 4 125 I format to hours. 850 × 106 Ĥ 851 XZY 107 STOP 052 FRC 108 RTN 053 EEX 109 *LBLe 854 2 110 055 9 × 111 ¹³¹I 056 112 3 + REGISTERS 8 S2 S3 <u>S4</u> **S**5 S6 \$7 **S**8 C E Decay factor (A/A₀) $\tau_{1/2}$ (hours) А t (hours) A_0 Isotope no. (1-9)

Radioactive Decay Corrections

113				16	9.			
114	2			17	0 7			
115	STOR			17	1 3		113min	
115	RTN			17	2 PTN		1	
117	*I BI F			17	3 #/ B/ 8			
110	+LDLL			17				
110	2				4 I			
119	6			17	5 2		¹³³ Xe	
120	2	137	is in the second s	17	66		1	
121	9			17	7.			
122	8			17	8 5			
123	A			17	9 RTN			
124	CTOP			10	0 +I PI 9			
124	5100			10				
125	KIN			10			¹⁹⁷ Hg	
126	\$LBL1			18	2 5			
127	1			18	3 RTN			
128	0							
129	7	3						
170	4	I aH						
171	7							
131	0							
132	8							
133	RTN							
134	*LBL2							
135	5							
136	8							
137	5							
170	0	1*C						
138	8							
139	EE%							
140	4							
141	RTH							
142	#LBL3							
143	1							
144	•							
1 177		¹⁸ F						
145	8							
146	7							
147	RTH						1	
148	*LBL4						1	
149	3							
150	4							
151	7	³² P						
152	0							
152								
153	2							
154	RTN							
155	#LBL5							
156	2						1	
157	8							
158	8	⁷⁵ Se					1	
159	A						1	
150	DTN							
100								
161	#LDL0	1						
162	1	1						
163	5							
164	3	8°Sr						
165	6						1	
165	PTN						1	
167	+1 PL 7							
107	+LUL/							
168	1							
		LA	BELS		FLAGS		SET STATUS	
A A	B t (dd bb)	C A	D Isotope #	E 137Cs	0	51.4.05		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	13010000 #			FLAGS	TRIG	DISP
~~~	c (dd.iiii)							
^a s ¹ Cr	^b s ⁷ Co	c 99m Tc	d 125 I	e 131	1	ON OFF	D50 0	
^a ^{s1} Cr	b \$7Co	c 99m _{Tc}	d 125 I	^e ¹³¹ l	1		DEG 🕅	FIX 🖾
^a ^{s 1} Cr ⁰ Inputs	^b ^s ⁷ Co ¹ ³ H	c 99m _{Tc} 2 ¹⁴ C	^d ¹²⁵ I ³ ¹⁸ F	^e ¹³¹ l ⁴ ³² P	2		DEG 🕅 GRAD 🗆	FIX ⊠ SCI □
^a ⁵ ¹ Cr ⁰ Inputs ⁵ ⁷⁵ Se	^b s ⁷ Co ¹ ³ H ⁶ ⁸⁵ Sr	<pre>c 99m_{Tc} 2 14C 7 113m_{In}</pre>	^d ¹²⁵ I ³ ¹⁸ F ⁸ ¹³³ Xe	^e ¹³¹ l ⁴ ³² P ⁹ ¹⁹⁷ Ha	1 2 3 Data entry		DEG 🕅 GRAD 🗆 RAD 🗆	FIX X SCI C ENG C

# Radioimmunoassay

881	*LBLA		Initiali	ze.	<b>8</b> 57	F0?		B		
A92	PIS				<b>85</b> 8	PRTX				
997	CLEC				859	RCLE				
003	DIC				969	-				
004	P25				000	BCI D				
805	GT02				661	RULD				
8 <b>8</b> 6	*LBLB		Non-sp	ecific binding	062	RCLE				
AR7	<b>CSBD</b>		counts	(NSR)	063	-		net l	B/Bo	
888	PTN		counts	(100)	864	÷			-	
000	CODI				965	E12				
003	6361				000	DDTV				
010	STOF		Averag	e NSB.	800	PRIA				
011	RTN				067	F0?				
A12	#I BLC		Zero d	ose counts (B ₂ )	<b>8</b> 68	SPC				
917	CSRD		Zero u	Ose counts (D ₀ ).	869	R1				
013	0.000				870	502				
014	KIN				010	10:				
015	GSB1				071	PRIX		Con	centratio	on.
016	STOD		Avera	ne Bo	072	F0?				
817	PTH		/	0.001	873	SPC				
210	+1 DI 1				974	100				
610			Comp	ute average counts.	0.75	0007		logic	conc. (x)	1-
019	KCL8				073	6583		logit	: (y).	
020	RCL9				87€	F1?		-		
A21	÷				077	PRTX		Prin	t logit	
A22	STOT		5 5	D/-	279	XZY			t logit.	
022	5701		B = 21	B/n	970	E10				
823	r 0 ?				673	FI				
824	SPC				886	PRIX		Prin	t log cor	nc.
825	F0?				081	F1?			-	
826	PRTX		-		882	SPC				
827	582		в		887	7+				
021					000	<b>FA</b> 0		Sum	x- and	y-values for
828	SPC				084	F0?		regr	ession.	
029	F8?				885	SPU		- I		
038	SPC				<b>8</b> 86	RTH				
831	#IRI2				887	#LBL a				
072	46066		Clear	for n, ΣB	400	PCIT		Corr	npute r,	m,b.
032					000	RUL2				
033	5T08				889	x				
834	ST09				898	P#S				
035	R1				891	RCL9		1		
976	DTH				892	÷				
877					007	BCI D				
637	#LDLD		Count	s for standards and	855	RCLO		1		
038	#LBLD		unkno		894	XZY				
839	F0?		unkin		<b>89</b> 5	-				
840	PRTX				896	STOR			15	<b>T</b> 1/
841	ST+R				897	ENTT		2xy	-(2x)	2y)/n
	1				000	ENT+		1		
042	0T.C				0,70	Entit D#C		1		
043	51+9				699	P75		1		
844	RCL9				100	s		1		
845										
	RTN				101	×				
846	RTN #LBIF				182	×				
846 847	RTN #LBLE PCL8		 Stand	ard concentration.	182	× ÷ P#S				
846 847	RTN #LBLE RCL8		 Stand	ard concentration.	101 182 103	× ÷ P≵S				
846 847 848	RTN *LBLE RCL8 RCL9		– – – Stand	ard concentration.	101 182 103 1 <b>84</b>	× ÷ PZS RCLP				
046 047 048 049	RTN *LBLE RCL8 RCL9 ÷		 Stand	ard concentration.	101 102 103 104 105	× ÷ PZS RCL9 1				
046 047 048 049 050	RTN *LBLE RCL8 RCL9 ÷ ST01		Stand	ard concentration.	101 102 103 104 105 105	× ÷ P2S RCL9 1				
046 047 048 049 050 050	RTN *LBLE RCL8 RCL9 ÷ STO1 A		 Stand B = Σ	ard concentration.	101 102 103 104 105 105 105	× ÷ P2S RCL9 1 -				
046 047 048 049 050 051 051	RTN *LBLE RCL8 RCL9 ÷ STO1 0 STO9		Stand B = Σ	ard concentration. B/n	101 182 103 104 105 105 105	× ÷ P2S RCL9 1 - ÷				
046 047 048 049 050 051 052	RTN *LBLE RCL8 RCL9 ÷ ST01 @ ST08		 Stand B = Σ	ard concentration.	101 182 103 104 105 105 105 107	× ÷ P2S RCL9 1 - ÷ STDA				
046 047 048 049 050 051 052 053	RTN *LBLE RCL8 RCL9 ÷ ST01 @ ST08 ST09		 Stand B = Σ	ard concentration.	101 102 103 104 105 105 107 108 109	× ÷ P2S RCL9 1 - ÷ STDA PRTX				
046 047 048 050 051 052 053 054	RTN <b>*LBLE</b> RCL8 RCL9 ÷ ST01 @ ST08 ST09 R↓		 Stand B = Σ	ard concentration.	101 102 103 104 105 105 105 107 108 109 110	× ÷ PZS RCL9 1 - ÷ STOA PRTX RCLB				
046 047 048 050 050 051 052 053 054 055	RTN *LBLE RCL8 RCL9 ÷ ST01 @ ST08 ST08 ST09 R↓ F0?		 Stand B = Σ	ard concentration.	101 102 103 104 105 105 105 107 108 109 110 110	× ÷ PZS RCL9 1 - ÷ STDA PRTX RCLB RCL5				
946 947 948 959 959 951 952 953 953 955 955	RTN <b>*LBLE</b> RCL8 RCL9 ÷ ST01 @ ST08 ST09 R↓ F0? SPC		 Stand B = Σ	ard concentration.	101 102 103 104 105 105 105 107 108 109 110 111	× ÷ PZS RCL9 1 ÷ STDA PRTX RCL8 RCL5 RCL4				
946 947 948 959 959 951 952 953 954 955 956	RTN *LBLE RCL8 RCL9 ÷ ST01 @ ST08 ST09 R4 F0? SPC		Stand B = Σ	ard concentration.	101 102 103 104 105 105 105 106 107 108 109 110 111 112	× PZS RCL9 1 - ÷ STDA PRTX RCL5 RCL4				
046 047 048 059 051 052 053 054 055 056	RTN <b>*LBLE</b> RCL9 ÷ ST01 @ ST08 ST09 R↓ F0? SPC		 Stand B = Σ	ard concentration. B/n REGI	101 102 103 104 105 106 107 108 109 110 111 112 STERS	× ÷ PZS RCL9 1 - ÷ STOA PRTX RCL8 RCL5 RCL4	- 17			
946 947 948 959 959 959 951 952 953 954 955 955 956	RTN <b>*LBLE</b> RCL8 RCL9 ÷ ST01 @ ST08 ST09 R↓ F0? SPC 1	2		ard concentration. B/n REGI 4	101 102 103 104 105 106 107 108 107 108 109 110 111 112 STERS 5	× ÷ PZS RCL9 1 - ÷ STDA PRTX RCL8 RCL5 RCL4	7	8 28	used	
946 947 948 959 959 959 951 952 953 954 955 956	RTN *LBLE RCL8 RCL9 ÷ ST01 0 ST08 ST09 R↓ F0? SPC 1	2	$\overline{B} = \Sigma$	ard concentration. B/n REGI	101 102 103 104 105 106 107 108 109 110 111 112 55	× ÷ P≓SS RCL9 1 ÷ STOA PRTX RCL8 RCL5 RCL4 6	7	8 ΣΒ	, used	9 n, used
946 947 948 949 959 951 952 953 954 955 956 0 0 50	RTN *LBLE RCL9 ÷ ST01 @ ST08 RJ F0? SPC 1 S1	2	B = Σ	ard concentration. B/n REGI 4 S4 S4	101 102 103 104 105 106 107 108 109 110 111 112 5 5 5 5 5 5	× ÷ PZS RCL9 1 ÷ STDA PRTX RCLB RCL5 RCL4 6 S6	7 \$7	8 ΣΒ S8	, used	9 n, used S9
946 947 948 959 959 959 953 954 955 956 0 50	RTN *LBLE RCL9 ÷ ST01 8 ST08 ST09 R↓ F0? SPC 1 S1	2 52	B = Σ	ard concentration. B/n REGI 4 S4 S4 Sx	101 102 103 104 105 106 107 108 109 110 111 112 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	x ÷ PZS RCL9 1 - ÷ STDA PRTX RCL8 RCL5 RCL5 RCL4 6 S6 S7	7 57 Σγ ²	8 Σ8 S8	, used Σxy	9 n, used 59 n
846 847 848 849 959 851 852 853 854 855 855 856 0 0	RTN *LBLE RCL9 ÷ ST08 ST08 ST09 Ri F0? SPC 1 S1	2 52 8	Stand B = Σ 3 S3	ard concentration. B/n 4 S4 Σx C	101 102 103 104 105 1065 1065 1065 1067 108 109 110 111 112 5 5 5 5 5 5 5 5 Σx ² D	× ÷ PZS RCL9 1 - ÷ STDA PRTX RCL5 RCL5 RCL4 6 S6 Σy	7 57 Σγ ² Ε	⁸ ΣΒ S8	, used Σxy	9 n, used S9 n

113	X2					169	RCL9			
114 6	P 135					170	F12			
115	÷					171	PRTX		Print log of	
115			1			172	F12		1 milliog ci	JIIC. (X7.
110						177	SPC			
117	-					173	Dr.			
118 5	STUB					1.1	R+			
119 F	PRTX		m			175	K1			
120	P‡S					176	F0?			
121	x					177	SPC			
122	RCLR					178	6702			
123	x					179	#LBL3		Lania antes	1.4:
124	-					180	RCLI			lation.
124	TOC					101	POLE			
120 8			b≠y→	- mx		1 102	RULL			
126 F	'KIX					102				
127	SPC					183	RCLU		Logit = In	B - NSB
128	SPC					184	RCLI			$B_0 - B I$
129 R	CLA					185	-			
130 K	CLB					186	÷			
131 6	2010					187	LN			
172	PTN					188	RTN			
177 -	EL a					189	*I BL d			
174			Compu	ute concentratio	n of	100	FRO		Print toggle	e.
134 k			unkno	wn.		190	CT06			
135 R	2CL9					191	FIDE			
136	÷					192	SFE			
137 9	TOI		<u> </u>	1/-		193	1			
138	0		B = 26	3/n		194	RTH			
139 5	108					195	*LBL0			
149 9	709					196	CFØ			
140 5	DI					197	A			
141	K*					199	PTN			
142	FØ?					100	*1810			
143	SPC					199	#LDLe		Plot togale	
144	F0?					200	F1?		i iot toggie	
145 P	PRTX		-			201	GTOO			
146 R	CLE		в			202	SF1			
147	-					203	1			
149 5	CI D					204	RTN			
149 5						205	≢LBL0			
150						286	CEI			
150			net B/	Ba		297				
151	-			-0		201	DTN			
152	F1?					208	KIP			
153 P	PRTX									
154	Fer									
155	SPC									
156 6	SB3									
157 5	T08		Calcula	ate logit (y).						
156 8	ICL C									
150 1	-									
1/0 0	DCI P									
100 8	ULD .		x (loa	conc.) = (y - b)	/m					
161	-		1,109							
162 S	109									
163	10×									
164 P	RTX									
165	SPC		Estima	ted concentrati	on.					
166 R	CL8									
167	F12									
168 0	DTY		Diat							
100 P	NIO		Print	οgit (γ).			F1			
	D		LAE	BELS	1-		FLAGS		SET STATUS	
Start	[™] NSB; →NSB	6 Bo:-	→B _o	Std B	E S	Std conc	• Print	FLAGS	TRIG	DISP
a	b	c . c	<u> </u>	d D: D	e .		1 Dist	ON OFF		
→r, m, b	Unkn B	→c	onc	Print?		not?	Plot	0 🗆 🗷	DEG 🕱	FIX 🛛
0 Used	¹ Find B	² Clea	ar ΣB	³ Logit	4		2	1 🗆 🕱	GRAD 🗆	SCI 🗆
5	6	7		8	9		3	2 🗆 🕱	RAD 🗆	ENG
		Ľ		-	Ľ		Ť	3 🗆 🗙		n <u> </u>

#### L16-01

### **Basic Statistics**

			1									
301	*LBLA		Clear	Σ reaiste	rs	857	SPC		1	Prin	t	
802	P7S					<b>8</b> 58	525	1				
202	r+2					859	PRT	ć		fr		
663	e .					929		;		· K		
604	ST04					000	A+1					
005	ST05					861	PRT	5		×ĸ		
886	ST06		1			062	*LBL1	1				
367	ST07		1			863	ENT	•				
007	0107		1			964	ENT	•				
998	5108		1			0.04	Enti					
069	STOP					662	×					
Ø1 <b>0</b>	P≢S					066	R*	r				
811	RTN					067	ST-S	9		Σfi		
B12	+LEIP		15			868	x			1		
012	+LDLE		x; (24	-)		955	ST-1	5		54	2	
013	F Ø Y		1			005	515			21	×i-	
814	PRTX		1			070	K.	ŀ				
015	Σ+		1			071	X					
816	RTH					072	ST-4	4		Σf	X;	
A17	+I BI L		. 15			973		1		- 1/		
01/	FOLD		× k (2)	-)		374	ст.	- -				
918	F07		1			074	51-1	-				
619	SPC		1			675	RCL	5	1	i		
020	F0?		1			076	P≓	5	1			
<b>R</b> 21	PRTX		1			077	RT	N		_		
822	<b>5</b> -		1			079	*I BL	n				
022	2-		1			070	+LDL	Č.		Fin	a mean a	ind
023	RTN					079	58	L		star	ndard dev	viation.
024	*LBLC		Grou	oed data		080	x					
025	P≓S		1			081	PRT	X	1			
926	FRO		1			882	S		1			
020	CT00		1			807	DDT	v				
627	6100		1			693	PRI	n 1				
028	6701		I .			084	RT	N	1			
029	¥LBL0		Print			085	≉LBL	E		Ein	d standa	rd error and
838	SPC		1 · · ····			096	SP	с			finite	fueriet'
971	V+V		1			887	_ر	-		coe	Tricient o	or variation.
031	DDTU		1			001	ن ≁ ط	c				
032	PRIX		fi			988	P4	2				
032	X≠Y		1 '			089	RCL	9				
834	PRTX		x.			090	F₽	s	1			
875	#1 B! 1		1." .			851	5	X	1			
974	ENT+		1			802	-					
036	ENIT		1			0.92		0	1			
837	ENTT		I x	x; x;	f;	093	PRI	~		c		
038	×			- I AI	.1	994	x		1	°×		
039	Rt		1.4	. 2	4	095	S					
849	ST+9		Ti .	x _i x _i	Ti -	896	LST	x				
241	01.0		Σfi			<b>A</b> 97	-					
041			1			000		0				
642	51+5		Σf.v.	2		998	EE	A				
043	R∔		1 - 12			099		2				
844	x		1			100	X					
845	ST+4		1			10:	PRT	X		C. 1	V.%	
0.4.5	4		Σf _i x _i			102	DT	N				
047	07.6		1 '			102						
047	51+6		1			103	#LDL	٥		Deit	- + + 0	
948	RCL6					104	FØ	2		Prin	nt toggle	
049	P≢S		l n			105	GTO	0				
859	RTN		1			186	SF	P				
951	*( Pi o					187	51	1				
051	+LDLU		Grou	ped data	-correct	107	D.T					
052	P25		error			168	K!					
053	F0?		I enor.			109	*LBL	e .				
854	6100		1			110	CF	0				
055	6701		1			1 111		e				
a54	*1 FI B		1			112	DT	Ň				
030	#LDL0		1			1 112	K I					
	_				REGI	STERS	_					
0	1	2	3		4	5	6		7	8		9
										1		
		S2	53		S4	S5	S6		S7	S8		59
S0	S1		00									0.0
SO	S1		00		Σx	$\Sigma x^2$		Used	Used		Used	n, Σf _i
S0 A	S1	в	00	с	Σx	Σx ²		Used	Used		Used Ti	n, Σf _i
S0 A	S1	в		с	Σx	Σx ² D		Used E	Used		Used	n, Σf _i

									r	
							51 4 0 5			
^A START	^Β x _i (Σ+)	C fi†x	LAE (Σ+)	D →x, s	E →s	<u>x</u> , CV	⁰ Print	FLAGS		DISP
^a Print?	^b x _k (Σ-)	c f _k to	< _k (Σ–)	d	е		1		DEG	FIX X
⁰ Print	¹ Sums	2		3	4		2			SCI  ENG
5	6	7		8	9		3	3 🗆 🕅		n_2

# Chi-square Evaluation and Distribution

			-			057	DTN					
961	*LBLA		Start.			057	AL DL -					
002	CF1					058	#LBLC			Corr	ect erro	neous 0 _k †E _k
003	CLRG					059	GSB7			(Σ-)		
884	2					968	GSB9					
905						861	6SB7					
005	0701					952	STOC					
886	\$101		I points	to HA		002	5100					
007	RTN					063	-					
<b>AN</b> 3	#LBLB		Input 0	$(\Sigma +)$		064	X2					
000	CEI		mputo	1 (20.7.		865	RCLC					
005	OF 1		E 1			966	÷					
818	65B4		Fiset	or equa	11 Ej.	000						
011	RCLB					967	RLLB					
a12	827					368	-					
217						969	CHS					
015						270	CTOP					
014	STUB		$\Sigma 0_i$			070	5100					
815	LSTX					071	1					
816	¥2					<b>9</b> 72	ST-i					
017	DCL C					973	PCI :					
017	RULL					074	DTH					
018	+					014	KIN					
019	STOC		$\Sigma 0^{2}$			375	≰LBLD			Calc	ulate $\gamma^2$	
828	1		201			976	F1?					
020						877	CTOP					
021	51+1					077	6100			It eq	ual E _i , (	3101.
022	RCL i		i			6/8	RULE			Reca	all $\chi^2$ .	
823	RTN					879	GSB4					
824	+I DI L					888	P/S					
024	#LDL0		Correct	errone	ous $U_k(2-)$ .	000	CTOC					
625	ESB/					601	6706			"Err	or"	
026	GSB7					082	*LBLU			~ .	2	
A27	ESR8					883	RCLA			Calc	ulate χ <b>*</b>	for equal
820	0000					984	PCLC			E _i .		
020	6367					004	ROLO					
029	RCLB					085						
830	XIY					086	RCLP					
831	-					087	÷					
870	CTOR					900	ISTY					
032	5108					000	LOIN					
033	LSTX					689	-			$\sqrt{2}$		
834	82					090	GSB4			~		
875	PCIC					891	R/S					
070	AULU					602	PCIP			Calc	ulate E.	
030	-					0.52	RCLD					
037	CHS					093	RULA					
838	STOC					894	÷		1			
879	1					895	GSB8					
0.02						005	CCP7					
040	51-1					0.50	6501					
041	RCL i					897	KIN					
842	RTH					098	≉LBL9					
843	#I BI C		Input 0	) _i ↑E _i (Σ	;+).	899	XZY			Prin	t conter	its of Y- and
044	CEI					100	CCP4		1	X-re	gisters i	f FO set.
044	00000					100	0.004					
045	GSB9					101	X+1		1			
046	STOC					102	6SB8		1			
847	-					103	RTN		1			
040	¥2					194	#1 BI 4					
040						105	CCP7		1	Snar	re and n	rint
649	RULL					105	638/			Spat	p	
050	÷					106	#LBL8		1			
051	RCLB					107	F0?		1			
050			(0	E-)2		188	PRTY			Prin	t.	
0.52	CTOP.		$\Sigma \frac{10}{1}$	+1/		1 100	DTN					
000	5106		— Е	i		103	KIN .		1			
054	1					110	<b>≭LBL</b> 7			<b>C</b>		
055	ST+;					111	F0?		1	Spac	ce	
856	RCL					112	SPC					
	NUL					1						
	-	1.	10		REG	STERS		6		-		T
0	1	2	3		4	5	6	7		8		9
80	C1	60	60		64	65	0.0	0.7		<u></u>		0.0
30	51	52	33		34	35	50	5/		38		29
			_ <b>_</b>									
A n		$B \Sigma 0: \Sigma (0) = 1$	F:) ² /F:	Σ0. ²	E.	D		E			20	
		201, 2001-	-1/ / -1	~Ui	-1	1		1			20	

117	DTH				169	e×			
113					179	x			
114	*LBLE	+++[(V	/2)		170	<u>_</u>			
115	6SB8				171	2			
116	1				172	RCLA			
110					173	YX			
117	5100				170				
118	XIY				174	÷			
119	2				175	RCLC			
112					176	÷			
120	÷				110				
121	STDA				177	STUE			
122	INT				178	F1?			
122	1070				179	CSRP			
123	LSTX				115	6300			
124	X≠Y?	If v is or	Id GTO 1		180	F17			
125	CT01	1111130	, ar a n		181	GSB7			
125	6701				102	DTN			
126	1				102	KIN			
127	-				183	*LBLe		$x \rightarrow P(x)$	
120					184	CF1			
120		$(\nu/2 - 1)$	)!		105	CODE			
129	65B8				105	630.		First find f(	x).
130	ESB7				186	RCLE			
171	STOC				187	RCLA			
131	3100				100				
132	R∕S	-			199				
133	*LBL1				189	RCLE			
174	+2020	v odd.			198	x			
154	<u>:</u>				101	CTOF			
135	5				151	5106			
136	X=Y?				192	2			
177	CT02				193	RCLA			
137	6102				104	×			
138	XZY				134				
129	1				195	STOI			
140	_				196	1			
140					107	CTOD.			
141	RCLC				127	5100			
142	XIY				198	#LBL3		Sum torms	of corior
147					199	RCLB		Sum terms	of series.
143					200	PCL I			
144	STOC				200	RULI			
145	LSTX				201	2			
1.15	0101				262	+			
140	6101	-			202	0707			
147	#LBL2				203	5101			
148	Pi				204	÷			
140	rv				285	RCLD			
143					286				
150	RCLC				200				
151	×				207	STOD			
152	STOC				208	+			
152	3100				200	4440			
153	GSB8				203	0712			
154	ESB7				210	6103			
155	D/C				211	RCLE			
133	R/ J				212	Y			
156	¥LBLd				212				
157	SF1	$x \rightarrow f(x)$	)		213	6588			
150	#1 BI 5				214	RTN		1	
150	0000				215	#1 Bio			<b>_</b>
1 1 2 9	0000				215	FAO		Print togale	
160	STOB				216	F U Y		i i i i i i i i i i i i i i i i i i i	
161	RCLA				217	6700			
1 100					218	SER			
162	1	ł			210	010			
163	-				219	1			
164	YX				220	RTH			
104	ncin			1	221	#1 BL @			
165	KULB			1	221	+LDL0			
166	2				222	110			
167	- -				223	e		1	
101	-				224	PTN		1	
168	CHS				224	KIN			
		LAR	ELS			FLAGS		SET STATUS	
A	IB I	C		F		0			
Start	ο, (Σ+)	⊂ 0 _i †E _i (Σ+)	$\rightarrow \chi^2$ ; E	- ν→Γ	(v/2)	Print	FLAGS	TRIG	DISP
a	b a /= i	C 0 45 15	d , u ,	е	P/)	1 Llord	ON OFF		
~ Print?	$^{\circ} 0_{\mathbf{k}} (\Sigma -)$	$U_{k}TE_{k}(\Sigma -)$	$x \rightarrow f(x)$	x →	r(x)	Used	0 🗆 🛛	DEG 🕱	FIX 🗵
0	1.11.0	2 Llood	³ Llead	4 Print	t soc	2	1 🗆 🛛	GRAD 🗆	SCI 🗆
Used	Used	Usea	Used	PTIN	r, spc		2	BAD 🗆	ENG 🗆
10	6	7 -	8	9		3			2
P	~ 1	' Conco	Printy	Prin	TYV		1 3 M		

#### L18-01

#### t Statistics

001	*LBLA	Start.	057 TX	
002	0		058 STOB	^s D
003	ST01		059 RCL1	
884	STO2		966 4X	
885	ST03		861 ÷	
80E	RTN		862 ÷	
007	#LBLa	Print toggle.	863 SPC	τ
888	F0?		064 PKIX	
009	6100		050 K/5	
010	SFØ		DOD KLLL	
011	1		867 PKIA	
012	RTH		DOG KLLH	
013	*LBL0		007 FRIA 070 DCLD	
014	CFO		AZI POTY	
015	8		071 FKIA 972 PTH	
016	KIN		977 + BID	
017	*LBLF	Input x _i , y _i for paired t.	073 4LDLD	Input x _i or y _i for t for
618	F0/2		975 ST+2	two means.
019	P2R2		976 X2	1
020	-		877 ST+3	1
021	51+2		AZA RCLI	1
822	5° 6747	1	A79 1	1
023	0170 DCI 1		888 +	1
024	1		981 ST01	1
825	۰ ۲		082 RTN	
020 027	STAL		883 #LBLd	
027 028	RTN		084 GSB1	for two moons
A29	#LBLb	Correct v. V. for paired	085 6SB0	for two means.
838	FØ?	Correct x _k , y _k for paired	086 ST-2	
031	GSB9	L.	087 X2	
832	-	1	088 ST-3	
833	ST-2		089 RCL1	
034	X2		090 1	1
035	ST-3	1	091 -	
036	RCL 1	1	092 ST01	
837	1	1	093 RTN	
038	-		094 #LBLe	Input d
839	ST01		095 S107	
848	RTN		096 KLL1	
841	*LBLC	Compute paired t.	000 PCL2	Save $n_1$ , $\Sigma x$ , $\Sigma x^2$ .
042	RCL2		098 KLL2	
843	RCL 1		100 PCL7	
844	÷		100 RLL3	
045	STOR	ā	101 5100	
846	RLL3		103 5101	Clear for $\Sigma_{y}$ .
947	RULZ V9		1 <b>84</b> ST02	
040	PCL 1		105 ST03	
049	RULI	1	106 RCL7	
851	-		107 GSB1	
252	PEL 1		108 GSB0	
857	1		109 GSB1	
854	-		110 RTH	1
855	STOC		111 *LBLE	
056	÷	ar	112 RCL6	Compute t for two means
		REGI	STERS	
0	1 2	3 4	$5 \qquad 6 \qquad 7 \qquad 7 \qquad 7 \qquad 7$	8 9 df
50	C1 C2	S3 S4	S5 S6 S7	92 82
30	31 32	55 54	55 57	20 23
A	В	lc lc	D E	<b>t</b>
D	s _D	df		ľ
L1	8-	02		
----	----	----		

113 6	RCL5				16	9 FØ?			
114	V2				17	'6 SPC			
117					17	1 RTN			
115 1	RLL4								
116	÷								
117	-								
118 H	RCL3								
119	+								
120 1	PCI 2								
120 1	VO								
121	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
122	RULI								
123	÷								
124	-								
125	RÜL 1								
125	PCI 4								
120	NCL7								
127	*								
128	2								
129	-								
130	ST08								
131	÷								
172	17								
177 1	PCI 1								
133 1	RULI								
134	148								
135	RCL4								
136	178								
137	+								
138	5X								
170	Y Y								
107									
146	KULD DOLA								
141	KLL4								
142	÷								
143	RCL2								
144	RCL1								
145	÷								
146	-								
140	DOL 7								
147	RULY								
148	-								
149	X7Y								
156	÷								
151	SPC								
152	PRTX								
157	D/C		t						
100	DCLO								
154	RULE		df						
155	PRIA		<i>_,</i>						
156	SPC								
157	RTN								
159 *	LBL9								
159	XZY		Print co	ontents of X an	d Y.				
168	EB?	1							
151	SPC								
161	ort cone	1							
162	6356								
163	XIY								
164 *	LBL0		-						
165	F0?								
166	FRIX								
:67	RTN								
120 4	LI DE 1								
152 4	HEDE!		Space.					0.000	
			LAB	ELS	-	FLAGS		SET STATUS	
	Te	0		11	E	Print	FLAGS	TRIG	DISP
A Start	^Β x _i †y _i (Σ+)	^{C.} →t,	.	^ω x _i , y _i (Σ+)	- <del>-</del> -t; ar				DIGI
A Start	$\stackrel{B}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}{\overset{v}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}}{\overset{v}}{\overset{v}{\overset{v}}{\overset{v}{\overset{v}{\overset{v}}}{\overset{v}{\overset{v}}}}}}}}}$	C →t,	·	$d_{x_i, y_i}(\Sigma^+)$	e d	1	ON OFF		5.0
^A Start ^a Print?	$\stackrel{B}{{}}_{\mathbf{x}_{i}\uparrow\mathbf{y}_{i}}(\Sigma^{+})$	C →t, c		$\frac{d}{d} \frac{\mathbf{x}_{i}, \mathbf{y}_{i} (\Sigma^{+})}{\mathbf{x}_{k}, \mathbf{y}_{k} (\Sigma^{-})}$	e d	1			
^A Start ^a Print? ⁰ Used	$\frac{B}{x_{i}\uparrowy_{i}} (\Sigma^{+})$ $\frac{b}{x_{k}\uparrowy_{k}} (\Sigma^{-})$ $\frac{1}{Space}$	C →t, c 2		$\frac{d}{d} \mathbf{x}_{\mathbf{k}}, \mathbf{y}_{\mathbf{k}} (\Sigma^{+})$	e d 4	1		DEG 🕱 GRAD 🗆 RAD 🗆	FIX X SCI ENG

## t Distribution

						0707				
001	<b>≭</b> LBLA	1.1	nput V.		627	\$103				
882	ESB5				858	RTN		-		
997	STOD				859	<b>≭LBL1</b>		ν odd.		
003	5100				868					
004	RIM	-			0.00	Ē				
005	<b>≰LBLB</b>	,	< → f(x)		001					
006	SSB5				062	X=Y?				
887	STOP				063	GT02				
000	DC/ D				864	XZY				
968	RULD				075	1				
009	6SBa				665	1				
010	STOB				066	-				
A11	PCID				067	ST×3				
011	RULL				868	6101				
612	1				860	+1 PI 2				
013	+				002	#LDL2				
614	6SBa				878	Pi				
<b>A</b> 15	STOC				971	4X				
015	5100				A72	RCL3				
619	RULH				877	Y				
017	RCLC				0.9					
818	RCLB				074	ST03				
<b>A1</b> 9	-				075	RTN				
012					A76	#I BLC				
828	P				077	CCDS		$x \rightarrow P(x)$	K)	
021	RCLD				0//	63D_		-		
<b>R</b> 22	x				078	*LBLC		Enter	nere from LBL D.	
827	rv				079	CF1				
023	10				886	STDA				
824	÷				001	APC				
025	1				001	HD3				
B26	RCLA				082	RULU				
927	¥2				083	ST00				
027	0010				<b>R</b> 84	RAD				
828	RCLU				005	18				
029	÷				665	• •				
838	+				986	÷				
371	PCID				887	TAN-'				
031	RULD				<b>8</b> 88	ST02		1		
032	1				000	DCL B				
033	+				683	RULO				
974	2				090	2				
0.75					091	÷		1		
835	-				092	INT				
836	CH5				007	LOTY				
037	Yx				073	LSIZ		1		
038	×				094	X≠Y''		1		
970	6709				895	GT04		1		
035	5103				896	6				
040	PRIX				807	CTO5				
041	SPC				097	5105				
842	RTN				098	*LBLb				
947	+ Bio				099	RCL2		v even	•	
643	+LDL0		Compu	te Γ (ν/2).	188	COS		1		
044	1				101	¥2		1		
845	ST03				101	0107		1		
046	XIY				102	5103		1		
947	2				103	RCL2		1		
0.00	<u>.</u>				104	SIN		1		
048	-				105	STOA		1		
049	5101				100	000		1		
850	INT				106	KLLU		1		
851	ISTX				107	2		1		
0.51	V200				108	X=Y?				
052	A#17				100	STOR		1		
053	GTO!				1 100	0100		1		
854	1				110	=		1		
855	-				111	1		1		
252					112	-		1		
000	m:				1					
	REGISTERS									
0	1	2	3	4	5	6	7	8	9 41	
ν, ν - 1		θ	Used	u Used	Used	Used	н	Used	T(X)	
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	
l"			1		1					
		To	+ <u>1</u> 2		<b>b</b>		L	- L		
^		P	C	11	Ľ		E			
I X		Used		Used	V 1		1			

113 5	TOI					169	6106			
114	1					170	*LBL8			
115 5	106		-			171	RUL4			
115 ¥L	BL 3					173	#LBL6		Exit	
118	x					174	DEG		Exit.	
119 R	CL5					175	X>0?			
120	1					176	6T00		Compute F	(x) from
121	+					177	XZY		R(x) for x	≤ 0.
122	x					178	1			
123 L	STX					179	-			
124	1					180	LHS			
125	+					182	÷ 2			
120 3	÷					183	6T07			
128 5	T+6					184	#LBL0			
129 E	SZI					185	XZY			(x) for
130 6	103					186	1		x > 0.	
131 6	CL6					187	+			
132	CL4					188	2			
133	×					189	÷			
134	F17					190	F22		If F2 set, r	eturn to
135	RIN CLA					192	RTN		LBL D.	
137	TOR					193	PRTX			
138 #4	BL4		-			194	SPC			
139 k	CL2	'	vodd.			195	RTN			
140	2					196	*LBLD		$x \rightarrow I(x)$	
141	x					197	esb5			
142	Pi					198	SF2			
143	÷					200	HBS CHC			
144 3	00107					200	ESBe			
145	1					282	2		P(-x)	
147 9	505					203	x			
148 5	5T-0					284	1			
149 >	<=Y?					205	X2Y		1 00/ 1	
150 6	5709					206	-		1 - 2P(-x)	
151	SF1					207	PRIX		I(x)	
152 0	SBb					208	PTN		,	
154						210	#LBL5			
155	COS					211	FØ?		Print.	
156	x					212	PRTX			
157	2					213	RTH			
158	x					214	#LBLE			
159	Pi					215	FØ?		Print toggi	e.
160	÷					210	5100			
162						218	1			
167	eri a					219	RTN			
164	ST06					220	#LBL0			
165	RTH					221	CFO			
166 #	LBL9		-			222	0			
167	RCL7					223	RTH			
168	RCLA						F1 1 0 0			
A	в	С	LAB	ELS	F.		FLAGS		SET STATUS	
ν	$x \to f(x)$	×→P(	(x)	$x \rightarrow I(x)$	r Pr	int?	* Print	FLAGS	TRIG	DISP
^a Γ (ν/2)	^D νeven	^c x → P(	(x)	a	e		Call b		DEG 🗵	FIX 🗵
⁰ Used	¹ Used	² Used		³ Used	4 U	sed	² Call c		GRAD	SCI
⁵ Print	⁶ Exit	⁷ Outpu	It P	⁸ Used	⁹ U	sed	3	3 🗆 🕱		n_2



Sales and service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, California 95014

00097-90106