HEWLETT-PACKARD

Business Decisions Pac

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

WE NEED YOUR HELP

To provide better calculator support for people like you, we need your help. Your timely inputs will enable us to provide high quality software in the future and improve the existing application pacs for your calculator. Your early reply will be extremely helpful in this effort.

- 1. Pac name ____
- 2. How important was the availability of this pac in making your decision to buy a Hewlett-Packard calculator?
 Would not buy without it.
 Important □ Not important
- 3. Did you buy this pac and your calculator at the same time? \Box Yes \Box No
- 4. In deciding to buy this application pac, which three programs seemed most useful to you? Program numbers 1.____ 2.___ 3.___
- 5. Which three programs in this application pac seemed least useful to you? Program numbers 1._____3.____
- 6. What program(s) would you add to this pac?
- 7. In the list below, select up to three application areas for which you purchased this pac. Please indicate the order of importance by 1, 2, 3, (1 represents the

most important area).

-			
Fna	ino	Orir	na
	1110	CIII	IQ

- ____01 Chemical ____02 Civil/Structural
- ______01
 Civil/Structural
 ______05
 Banking

 _____03
 Electrical/Electronic
 ______53
 Insurance

 _____04
 Industrial
 ______54
 Investment Analysis

 _____05
 Mechanical
 ______55
 Real Estate

 _____06
 Surveying
 ______56
 Securities

- _____ 10 Other (Specify) ______ 57 Sales

Science

- ____31 Biology
- ____32 Chemistry
- 33 Earth Sciences

- 36
 Physics
 74
 Education

 37
 Statistics
 75
 Navigation

 39
 Other (Specify)
 79
 Other (Specify)

- **Business**
- ____ 51 Accounting
- ____ 58 Marketing
- ____ 59 Other (Specify) _____

Other

- ____71 Architecture
- 34Mathematics72Aviation35Medical Sciences73Computer Science36Physics74Education

Thank you for your time and cooperation.

Name	Date
Address	
City	State
Zip	Phone

ATTENTION: APPLICATIONS

1000 N.E. Circle Blvd. Corvallis, OR 97330

Hewlett-Packard

Postage will be paid by:

BUSINESS REPLY MAIL No postage stamp is necessary if mailed in United States Permit No. 33 Corvallis, Oregon

FIRST CLASS

:etnemmoO IsnoitibbA

Introduction

The 22 programs of the Business Decisions Pac have been selected from the areas of investment analysis, real estate, banking, leasing, securities, and statistics, areas which require rapid and accurate analysis of data. Programs for the most frequently occurring business decisions are included in the pac.

Each program in this pac is represented by one magnetic card. The manual provides a description of the program, a set of instructions for using the program, and one or more examples, each of which includes a list of the actual keystrokes required for its solution. Program listings for all of the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.

On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions for the use of the program. You should first familiarize yourself with a program by running the examples in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.

If you have already worked through a few programs in the Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

We hope that the Business Decisions Pac will be of assistance in the solution of your problems. We would very much appreciate knowing your reactions to the programs in the pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

Applications Table	Real Estate	Banking	Leasing	Investments	Securities	Insurance	Forecasting & Planning	Consumer Finance	Industrial Production	Accounting
Internal Rate of Return	x		x	x					x	x
Internal Rate of Return-Groups	x		x	x					x	x
Discounted Cash Flow Analysis	x		x	x					x	x
Direct Reduction Loans/Sinking Fund	x	X		x		x		x		
Accumulated Interest/ Remaining Balance	x	x						x		
Wrap-Around Mortgage	x									
Constant Payment to Principal Loan	x	x								
Add-on Rate Loan/ Rule of 78's	x	x						x		
Savings Plan—Leases		X	X	X		Х		Х		
Advance Payments			Х							
Savings-Compounding Different from Payments		x				x		x		
Simple Interest/ Interest Conversions	x	x						x		
Depreciation Schedules	X		Х					X	Х	Х
Days Between Dates		X		X	X			X	Х	
Bond Price & Yield				X	X			Х		
Interest at Maturity/ Discounted Securities					x					
Linear Regression/ Exponential Curve Fit					x		x		x	
Multiple Linear Regression					x		x		x	
Break-Even Analysis							Х		X	
Invoicing										X
Payroll										X
Inventory									Х	

Table of Contents

Intro Appl: Conte	duction	i ii iii
A W	ord About Program Usage	. v
Pro	ogram	Page
1.	Internal Rate of Return)1-01
2	Yield of a sequence of uneven cash flows.	0 01
۷.	Vield of groups of upeven cash flows	02-01
3.	Discounted Cash Flow Analysis—Net Present Value	3-01
	Finds the net present value of future cash flows.	
4.	Direct Reduction Loans—Sinking Fund	4-01
	Solves problems when payments are made at the end of	
~	the compounding periods (ordinary annuity).	
5.	Accumulated Interest/Remaining Balance	05-01
	and generates an amortization schedule(s)	
6.	Wrap-Around Mortgage	6-01
	Calculates yield of wrap-around mortgage.	
7.	Constant Payment to Principal Loan	7-01
	Generates schedule for constant payment to principal loan.	
8.	Add-on Rate Installment Loan/Rule of 78's0	8-01
	Calculations involving add-on loans and loans using the rule of 78's.	
9.	Savings Plan—Leases	9-01
	Solves problems involving payments at the beginning of the compounding periods (annuity due), and compounded amounts	
10.	Advance Payments	0-01
	Payment and vield calculations when additional	
	payments are made in advance.	
11.	Savings—Compounding Periods Different from	
	Payment Periods 1	1-01
10	Calculations when deposits and compounding periods differ.	2 01
12.	Simple interest interest Conversions	2-01
	rate conversions.	
13.	Depreciation Schedules 1	3-01
	Straight line, SOYD, declining balance, and crossover between straight line and declining balance.	
14.	Days Between Dates	4-01
	Calendar routine.	
15.	Bond Price and Yield 1	5-01
16	Calculates price and yield of semiannual coupon bonds.	6 01
10.	Price or yield of interest at maturity or discounted securities	0-01
	The of yield of interest at maturity of discounted securities.	

Prog	ram	Page
17.	Linear Regression—Exponential Curve Fit Fits a set of data points x, y to a straight line and a curve. Determines goodness of fit.	17-01
18.	Multiple Linear Regression Fits a set of data points x, y, z to a straight line. Also determines goodness of fit.	18-01
19.	Break-even Analysis Calculates all values for linear break-even chart.	19-01
20.	Invoicing	20-01
21.	Payroll Guide for writing a payroll program.	21-01
22.	Inventory Guide for establishing an inventory program.	22-01
Progra	am Listings	L00

Appendices

Α.	Magnetic Card Symbols and Conventions	4-1
Β.	Principal Equations	B-1

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the differences in the two machines, and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.

Some of the computed results in this pac are output by PRINTx statements. On the HP-97, these results will be output on the printer. On the HP-67, each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/PAUSE" is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press down any key on the keyboard. If the command being executed is PRINTx (four rapid blinks of the decimal point), pressing down a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing **R/S**.

A "display" subroutine has been incorporated into some of the programs in this pac. The function of this routine is to test flag 0 and display the result with a PRINT/PAUSE if the flag is set or by halting execution if the flag is not set. When this option is available, the user may set and clear flag 0 by pressing **f G**. Successive use of **f E** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

The HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, 1 on the HP-97 and 1, 2, and 1 on the HP-67. For example, the operation 2 is a primary key on the HP-97, and is performed on the HP-67 as 1 2. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, 2). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

INTERNAL RATE OF RETURN

Note:

The above diagram is representative of diagrams which will be used in this pac. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.

The interest rate that equates the present value of all future cash flows with the original investment is known as the internal rate of return (IRR, also called discounted rate of return or yield). Given a non-zero initial investment and up to 44 **positive** cash flows, this program calculates the periodic IRR. If there are negative as well as positive cash flows, the program accepts up to 22 cash flows.

If more than 44 positive cash flows are entered, all cash flows over 44 will be ignored. There will be no indication, however, that more than 44 cash flows have been entered. Likewise, if more than 22 positive and negative cash flows are entered, erroneous results will occur.

Zero should be entered for periods with no cash flow.

When more than 22 cash flows are involved (all of which must be positive), the user is asked to enter the largest cash flow in step 3 because of the storage techniques being used. This value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. Consequently, the resulting periodic rate of return should be considered accurate to within $\pm .01\%$ (.0001 decimal). This largest cash flow must be entered again in sequence in step 4. If a cash flow larger than the value entered for CF MAX is keyed in at step 4, erroneous results may occur.

The answer produced is the periodic rate of return. If the cash flow periods are

other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

In many instances another program may be more suitable for calculating IRR. If all cash flows are equal and equally spaced, or if all cash flows except the last are equal and equally spaced, DIRECT REDUCTION LOANS (BD-04) is a better choice. If the cash flows occur in groups of uneven amounts, IRR-GROUPS (BD-02) may be more suitable.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

Note:

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input initial investment.	INV	A	INV
3	If there are $>$ 22 cash flows, key			
	in the largest cash flow.	CF MAX	B	CF MAX
4	Beginning with the first period,			
	key in all cash flows in sequence,			
	pressing C after each value.	CF	C	# of CFs
5	Calculate the periodic internal			
	rate of return		D	IRR (%)

Example 1:

Income property requiring a \$250,000 equity investment and to be sold in ten years is expected to generate the "after tax" cash flows shown below. What is the expected yield or IRR?

01	-03

End of Year	Cash Flow	End of Year	Cash Flow
1	\$46,423	6	\$ 23,199
2	40,710	7	21,612
3	36,638	8	20,037
4	34,097	9	18,460
5	32,485	10	311,406 (property
	1	I	sold)
Keystokes:		Outputs:	
250000 🖪 4642	23 C 40710 C		
36638 C 34097	7 C 32485 C		
23199 C 21612	2 C 20037 C		
18460 C 31140	06 C D	→ 13.98	(annual IRR is 13.98%)

Example 2:

Property requiring a \$30,000 investment will be sold at the end of 2 years. If the investment results in the monthly net cash flows shown below, what is the IRR?

End of Month	Cash Flow	End of Month	Cash Flow
1	\$ 16	13	\$ 201
2	50	14	195
3	175	15	178
4	181	16	197
5	143	17	210
6	147	18	220
7	151	19	206
8	176	20	194
9	184	21	187
10	193	22	190
11	157	23	201
12	190	24	35,000 (propert sold)

Keystrokes:

30000	a 3500	0 в		
16 C 5	0 C 17	75 C 18	31 C	
143 C	147 C	151 C	176 C	
184 C	193 C	157 C	190 C -	
201 C	195 C	178 C	197 C	
210 C	220 C	206 C	194 C	
187 C	190 C	201 C	35000 C	
D				
12 🗙	-			>

Outputs:

12.00 (12 cash flows input)

24.00 (all cash flows input)

- 1.15 (monthly IRR)
- 13.79 (an annual IRR of 13.79%)

NOTES

This program solves for the internal rate of return (IRR) when groups of uneven cash flows are involved. Given a non-zero initial investment (INV), the cash flows (CF) and the corresponding number of times each cash flow occurs (#), the periodic IRR is calculated.

Up to 20 groups of positive or negative cash flows, with each group containing a maximum of 99 cash flows, may be entered. If more than 20 groups are input, erroneous results will occur.

Zero should be entered for periods with no cash flow.

The program works with even dollar amounts. When dollars and cents are involved, the cents will be lost.

If a cash flow (other than the investment) exists with more than 8 digits (i.e., more than \$99999999.00) the user is asked to enter this value in step 3 because of the storage techniques being used. The value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. This large cash flow must be entered again in sequence in step 4.

The answer produced is the *periodic rate of return*. If the cash flow periods are other than annual (monthly, quarterly) the answer should be multiplied by the number of periods per year to determine the annual internal rate of return.

The calculator must be in FIX mode, as the program is dependent upon the display setting. To obtain 4 decimals of accuracy, the program card was recorded in FIX 4 mode. More or less accuracy may be obtained by changing the display setting from DSP 4 to DSP 5, DSP 6, DSP 2, etc. However, time for solution increases as accuracy is improved.

If the user wishes to re-calculate the IRR without changing the data in any manner, simply input the number of groups and press **1 D**. This feature is useful if the calculator is halted prematurely, as it is not necessary to re-enter all of the data.

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation, and indicates that the program cannot solve that particular problem.

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present value. The NPV should be close to 0.

Note:

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating other possibilities.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input initial investment.	INV	A	INV
3	If one cash flow has more than			
	8 digits, key it in.	LRG CF	B	LRG CF/10 ^{k*}
4	Beginning with the first period,			
	key in each cash flow and the			
	number of times it occurs,			
	pressing C after each group.	CF	ENTER+	
		#	C	# of groups
5	Calculate the periodic internal			
	rate of return.		D	IRR (%)
6	To recalculate the IRR, enter			
	the number of groups.	# of groups		IRR (%)
	* k = 1 (LRG CF has 9 digits)			
	k = 2 (LRG CF has 10 digits)			

Example 1:

An income property is available for \$50,000. The annual income over a 23-year projection period (all payments received at the end of the year) may be grouped as follows:

Cash Flow (\$)
9,000
7,500
6,000
7,500
5,000

If the investor wishes a 15% return, does the property meet his objectives?

Since the IRR is more than 15%, the property meets the investor's objectives.

Example 2:

An investment of \$620,000,000 is expected to have the following annual income stream for the next 15 years.

Number of Years	Cash Flow (\$)
First 10 Years Next 5 Years	100,000,000 5,000,000
What is the expected rate of return?	
Keystrokes:	Outputs:

62000000 A 10000000 B → 6200000.00 100000000 ENTER+ 10 C 5000000 ENTER+ 5 C D _____ 10.0649 (annual IRR of 10.0649%)

02-04

NOTES

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

Assuming a minimum desired yield (cost of capital, discount rate), this program finds the present value of the future cash flows generated by the investment and subtracts the initial investment from this amount. If the final net present value is a positive value, the investment exceeds the profit objectives assumed. If the final net present value is a negative value, then the investment is no, profitable to the extent of the desired yield. If the net present value is zero, the investment meets the profit objectives.

The function associated with the \bigcirc key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with \bigcirc , and then the amount only once with \bigcirc . The program automatically assumes 1 for #. If the cash flow occurs only once, there is no need to enter anything for #.

Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with CHS.

Cash flows are assumed to occur at the end of cash flow periods.

This program can also be used to find the present value of a series of irregular cash flows that cannot be accommodated by the DIRECT REDUCTION LOANS program by simply entering zero as the initial investment.

An option is provided to print the initial investment and the NPV after each cash flow. Pressing **1 G** sets and clears the print flag. Successive use of **1 G** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Optional: Select			
	print/pause mode.			1.00 or 0.00
3	Key in			
	 Initial investment amount 	INV	A	INV
	 Periodic interest (discount) rate 	i (%)	B	i (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Key in the number of equal			
	cash flows if greater than 1.	#	C	#
5	Key in cash flow amount(s) and			
	calculate net present value.	CF	D	NPV
6	Optional: Display total number			
	of cash flows entered so far.		3	n
7	For next cash flow(s) go to			
	step 4.			
8	For a new case go to step 2.			

Example 1:

An investor has an opportunity to purchase a piece of property for 70,000. If the going rate of return on this type of investment is 13.75%, and the after-tax cash flows are forecast as follows, should the investor purchase the property?

Year	Cash Flow (\$)
1	\$14,000
2	11,000
3	10,000
4	10,000
5	10,000
6	9,100
/ Q	9,000
a a	9,000
10	71 000 (property sold
	in 10 th year)
Keystrokes:	Outputs:
70000 А 13.75 в	
14000 D	→ -57692.31 (NPV after 1 cash
_	flow)
11000	-49190.92 (NPV after 2 cash
	flows)
2 B 10000 B	10ws)
3 C 10000 D	\rightarrow -311/2.57 (NPV after 5 cash
	flows)
9100 🖸	→ -26971.76 (NPV after 6 cash
	flows)
2 C 9000 D	→ -20108.39 (NPV after 8 cash
	flows)
	110 (3)

•	 8.00	(checking that we've
		flows so far)
4500 D	 -18696.99	(NPV after 9 cash
		flows)
71000 D	 879.93	(NPV after 10 cash
		flows)

Since the final NPV is positive, the investment meets the profit objectives.

Example 2:

The Cooper Company needs a new photocopier and is considering leasing the equipment as an alternative to buying. The end-of-the-year net cash cost of each option is:

PURCHASE	
Year	Net Cash Cost
1	\$ 533
2	948
3	1,375
4	1,815
5	2,270
Total Net Cash Cost	\$6,941
LEASE	
Year	Net Cash Cost
1	\$1,310
2	1,310
3	1,310
4	1,310
5	1,310
Total Net Cash Cost	\$6,550

Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

Keystokes:	Outputs:
PURCHASE	
0 A 15 B 533 D 948 D	
1375 D 1815 D 2270 D →	4250.71

LEA	SE		
0 A	5 C	1310 D	 4391.32

Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative.

This program may be used to solve problems when payments are made at the end of the compounding periods (ordinary annuity). Direct reduction loans and mortgages are typical examples.

The following variables may be inputs or outputs:

- n is the number of compounding periods. (For a 30 year loan with monthly payments $n = 12 \times 30 = 360$.)
- i is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT is the periodic payment amount.
- PV is the present value of the cash flows.
- FV is the future value of a series of cash flows.
- BAL is the balloon payment or remaining balance at the end of a series of payments.

In this program, \triangle is used to input/calculate n, \blacksquare to input/calculate i, \bigcirc to input/calculate PMT, \bigcirc to input/calculate PV, and \blacksquare to input/calculate FV(BAL). After all inputs have been entered, it is possible to calculate the unknown value by pressing the appropriate user definable key.

When the START function (**1 (**) is executed, it sets PMT, PV, and BAL to zero (n and i are not affected). START provides a safe, convenient, easy to remember method of preparing the calculator for a new problem. It is not

necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, PV problems involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PMT, FV problems a zero would be input (0 \square) for PV.

START should always be used immediately after loading DIRECT REDUC-TION LOANS/SINKING FUND.

Iterative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize (START)			0.00
3	Input the known values:			
	 Number of periods 	n	А	n
	 Periodic interest rate 	i (%)	B	i (%)
	 Periodic payment 	PMT	C	PMT
	 Present value 	PV	D	PV
	 Future value, balloon 			
	payment, or balance	FV(BAL)	8	FV(BAL)
4	Calculate the unknown value:			
	 Number of periods 		A	n
	 Periodic interest rate 		B	i (%)
	 Periodic payment 		C	PMT
	 Present value 		D	PV
	• Future value, balloon			
	payment, or balance		8	FV(BAL)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new case, go to step 3			
	and change appropriate values.			
6	For a new type of problem, go			
	to step 2.			

Example 1:

A borrower can afford a \$368.21 monthly principal and interest payment on a 30 year, 9¼% mortgage. What is the largest such mortgage he can obtain?

Keystrokes:	Outputs	
1 A 368.21 C		
30 ENTER 12 × A→	360.00	(total monthly periods in mortgage life)
9.25 ENTER 12 ÷ B →	0.77 44757.63	(monthly interest rate) (mortgage amount)

Example 2:

A 30 year, \$50,000 mortgage has monthly payments of \$320, including principal and interest. What is the annual percentage rate?

Example 3:

An investor wishes to purchase a mortgage with a balloon payment to yield him 14% per annum. What maximum price can he pay if there are 60 monthly payments of \$250 and a \$10,000 balloon at the end of year 5? If he purchases the mortgage for \$14,500, what annual yield is he achieving?

Outputs:

15730.27 (maximum price to pay to yield 14%)

1.39 (monthly percent yield)

16.67 (annual % yield at \$14,500 price)

Example 4:

You have an opportunity to purchase a \$10,000, 8% note which has a term of 6 years (monthly payments). What should you pay for the note if you wish to achieve a 13% yield?

Keystrokes:	Outputs:	
[] A 10000 D		
8 ENTER♦ 12 ÷ B		
6 ENTER+ 12 × A C	175.33	(monthly payment)
Now determine the purchase price of the	note.	
13 ENTER↑ 12 ÷ B		
	8734.26	(purchase price)

Example 5:

A borrower is charged 2 points for the issuance of his mortgage and note. If the mortgage amount is \$60,000 for 30 years, and the interest rate is $8\frac{34}{\%}$ per year, with monthly payments, what annual percentage rate (APR) is the borrower paying? (1 point is equal to 1% of the mortgage amount.)

Keystrokes:

Outputs:

First calculate the periodic payment amount.

🚺 🗛 60000 🖸		
30 ENTER 12 × A		
8.75 ENTER♦ 12 ÷ B C	472.02	(monthly payment)
Now calculate the mortgage amount less	fees.	
RCL D 2 % D →	58800.00	(effective amount borrowed)
To obtain the annual percentage rate, pre-	ess:	
B 12 ×	8.97	(% APR)

04-05

Example 6:

You are setting up a travel fund for a trip to Australia. If you start in a month, depositing \$150 per month in a $5\frac{1}{2}\%$ account, compounded monthly, how long will it take from today to accumulate \$2500 for the trip?

Keystrokes:	Outputs:
150 C	
5.5 ENTER+ 12 ÷ B	
2500	16.10 (months)

Example 7:

A corporation has determined that a certain piece of equipment costing \$50,000 will be required in 3 years. Assuming a fund paying 7% compounded quarterly is available, what quarterly payment amount must be placed in the fund in order to cover this cost if savings are to start at the end of this quarter?

Keystrokes:	Outputs:
I A 50000 E 3 ENTER4	
4 × A7 ENTER+	
4 ₴ ₿ С	3780.69 (quarterly payment)

NOTES

ACCUMULATED INTEREST/REMAINING BALANCE

This program finds both the total interest paid over a specified number of payment periods and the remaining balance at the end of the last specified period, given the periodic interest rate, periodic payment amount, loan amount, and the beginning and ending payment numbers for the time span being considered. The payments associated with both the beginning (J) and the ending (K) payment period are included in the calculation.

The program can be used for loans with a balloon payment as well as loans arranged to be fully amortized provided two cautions are observed. First, the balloon payment of the loan must be at the same time as, and in addition to the last payment. Second, care should be taken not to enter a value for K that is after the last payment since the program has no way of knowing the term of the loan.

An option is available to output the amortization schedule between payments J and K (**f (**).

Pressing \blacksquare sets and clears the print flag. Successive use of \blacksquare will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

The data generated is valid for loans that have a balloon payment, as well as those that are arranged to be fully amortized. For loans with a balloon payment, the remaining balance of the last payment period is the balloon payment due in addition to the last periodic payment. For loans scheduled to be fully amortized, the remaining balance after the last payment period may be slightly more or less than zero. This is because the program assumes that **all** payments are equal to the value entered for PMT. In

fact for most loans, the last payment is slightly more or less than the rest. The calculator performs all internal calculations to ten digits. If the user wishes to round the schedule to dollars and cents, the following sequence may be used:

- 1. Press GTO .113
- 2. Switch to PRGM mode.
- 3. Press RND
- 4. Switch back to RUN mode.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Select print/pause			
	mode for amortization			
	schedule.		11 🖬	1.00 or 0.00
3	Key in			
	 Starting period number 	J	А	J
	 Ending period number 	к	А	к
	 Periodic interest rate 	i (%)	B	i (%)
	 Periodic payment amount 	PMT	С	PMT
	 Initial loan amount 	PV	D	PV
4	Compute the total interest paid			
	between periods J and K			
	inclusive, and the remaining			
	balance at the end of period K.		8	INT
			R/S	BAL
	OR			
5	Generate the amortization			
	schedule between payments J			
	and K inclusive. If the			
	print/pause mode is on (1.00),			
	the results are printed			
	automatically.			J

05-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Calculate amount paid to			
	interest for period J.		R/S	PMT to INT
7	Calculate amount paid to			
	principal for period J.		R/S	PMT to PRIN
8	Calculate remaining balance at			
	the end of period J.		R/S	BAL
9	Calculate total interest paid			
	between periods J thru K			
	inclusive.		R/S	TOT INT
10	Increment J for next period.		R/S	J + 1
	If $J \leq K$, go to step 6 for next			
	period's values. Otherwise,			
	stop.			
11	For a new case, go to step 2 and			
	change appropriate input			
	values.			

Example 1:

A mortgage is arranged such that the first payment is made at the end of October, 1975 (i.e., October is payment period 1). It is a \$20,000 loan at 9%, with monthly payments of \$167.84. What is the accumulated interest for 1975 (periods 1-3) and 1976 (periods 4-15) and what would the remaining balance be at the end of each year?

Keystrokes:	Outputs:	
1 A 3 A 9 ENTER 12 = B		
167.84 C 20000 D E→	449.60	(interest paid in 1975)
R/S→	19946.08	(remaining balance at the end of 1975)
4 A 15 A E→	1785.89	(interest paid in 1976)
R/S→	19717.88	(remaining balance at the end of 1976)

Example 2:

Generate an amortization schedule for the first two payments of a \$30,000, 7% mortgage having monthly payments of \$200. Then jump ahead and generate the data for the 36^{th} payment.

Keystrokes:

Outputs:

1 A 2 A 7 ENTER+ 12 ÷ B		
200 C 30000 D 🚺 A	1.00	(starting 1st period)
R/S	175.00	(payment to interest)
R/S	25.00	(payment to principal)
R/S	29975.00	(remaining balance)
R/S	175.00	(total interest to
		date)
R/S	2.00	(starting 2 nd period)
R/S	174.85	(payment to interest)
R/S	25.15	(payment to principal)
R/S	29949.85	(remaining balance)
R/S	349.85	(total interest to
		date)

Keystrokes:

Outputs:

Now let's skip ahead to the 36th payment period.

36 🗛	A 🚺 A	
R/S		
R/S		
R/S		
R/S		

36.00	(starting 36 th period)
169.36	(payment to interest)
30.64	(payment to principal)
29001.75	(remaining balance)
6201.75	(total interest to
	date)

WRAP-AROUND MORTGAGE

A wrap-around mortgage is essentially the same as a refinancing mortgage, except that the new mortgage is a junior lien mortgage granted by a different lender, who assumes the payments on the existing mortgage, which remains in full force. The new (second) mortgage is thus "wrapped around" the existing mortgage. The "wrap-around" lender advances the net difference between the new (second) mortgage and the existing mortgage in cash to the borrower, and receives as net cash flow the difference between debt service on the new (second) mortgage and debt service on the existing mortgage.

This program calculates the periodic yield to the lender (\blacksquare) of a wrap-around mortgage, with or without a balloon payment. A routine to solve for the periodic payment (\square \square) necessary to amortize a mortgage is also available.

The value of each mortgage, as well as the periodic payments, life of each mortgage (number of periods remaining), and balloon payment on the wraparound mortgage (if it exists) must be entered to calculate the yield.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following information			
	from the original mortgage:			
	 Remaining balance 	PV ₁		PV ₁
	 Periodic payment 	PMT ₁		PMT ₁
	 Number of periods remaining 	n ₁	A	n ₁
3	Key in the following information			
	from the wrap-around			
	mortgage:			
	 Total wrap-around amount 	PV₂	ENTER+	PV ₂
	 Periodic payment on wrap- 			
	around	PMT ₂	ENTER+	PMT₂
	 Number of periods in term of 			
	wrap-around	n ₂	C	n ₂

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Optional: If a balloon payment			
	exists on the wrap-around at			
	period n_2 , key in the balloon			
	amount.	BAL	D	BAL
5	Calculate the periodic yield of			
	the wrap-around to the lender.		e	Yield (%)
6	Optional: If a payment amount			
	is not known, it may be calculat-			
	ed by keying in:			
	 Total number of periods 	n		n
	 Periodic interest rate 	i (%)	1 B	i (%)
	 Loan amount 	PV		PV
7	Calculate periodic payment			PMT
	The payment is stored in R_c ,			
	and may be recalled at a later			
	time.		RCL C	PMT

Example 1:

A mortgage loan on an income property has a balance of \$200,000. The loan has a remaining life of 12 years, and a monthly payment of \$2030.21 A lender has agreed to "wrap" a \$300,000 second mortgage at 9.5%, with full amortization in level monthly payments over 12 years. What is the effective yield (IRR) to the lender on net cash advanced?

Keystrokes:

Outputs:

144.00

200000 ENTER♦ 2030.21 ENTER♦

Since the payment on the wrap-around is not given, it must be calculated, and is automatically stored in Register C.

•

Now calculate the yield.

300000 RCL C 144 C E 12 X \rightarrow

14.50 (% effective yield)

or wrapped mortgage)

3499.12 (payment of second

06-03

Note:

Recalling a number causes the stack to lift unless the proceeding keystroke was **ENTER+**, **CLX**, or **D+**. See Appendix D in your Owner's Handbook.

Example 2:

A customer has an existing mortgage with a balance of \$125,000, a remaining term of 200 months, and a \$1051.61 monthly payment. He wishes to obtain a \$200,000, $9\frac{1}{2}$ % wrap-around with 240 monthly payments of \$1681.71 and a balloon payment at the end of the 240th month of \$129963.35. If you accept the proposal, what is your rate of return?

 Keystrokes:
 Outputs:

 125000 ENTER↑ 1051.61 ENTER↑
 200 A

 200000 ENTER↑1681.71 ENTER↑
 240 C

 129963.35 D E 12 X → 11.84 (% rate of return)

NOTES

CONSTANT PAYMENT TO PRINCIPAL LOAN AMORTIZATION SCHEDULE

This type of loan is structured such that the principal is repaid in equal installments with the interest paid in addition. Therefore, each periodic payment is different; it has a constant amount applied to the principal and a decreasing amount to the interest.

The first part of the program displays the payment number and calculates the payment to interest, total payment, remaining balance, and total interest. The constant payment to principal required as input data (CPMT) can be found by simply dividing the loan amount by the total number of payment periods. The schedule may be started at any desired payment period; that is, the value entered for K need not be 1.

The second part of the program calculates the accumulated interest between any two payments J and K. The necessary inputs are the periodic interest rate, constant payment, initial loan amount, and the numbers of the starting and ending payments in the time frame.

A print option is available (**f E**) to automatically print the entire amortization schedule, or the accumulated interest. Successive use of **f E** will alternately display 1.00 and 0.00 indicating that the print mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Optional: Select print/pause			
	mode		1 3	1.00 or 0.00
3	Key in:			
	• First period of the desired			
	schedule (need not be 1)	к	A	к
	 Periodic interest rate 	i (%)	B	i (%)
	 Constant payment to 			
	principal	СРМТ	C	CPMT
	 Initial loan amount (present 			
	value)	PV	D	PV
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
------	--	---------------------	--------	----------------------
4	Generate the amortization			
	schedule for payments K			
	through term of loan. If the print			
	mode is on (1.00), the schedule			
	may be terminated prior to			
	completion by pressing R/S.		8	PMT to INT
			R/S	TOT PMT
			R/S	BAL
			R/S	TOT INT
			R/S	K + 1
			etc.	
	OR			
5	To find the accumulated interest			
	between any two points (J, K),			
	key in:			
	 Periodic interest rate 	i (%)	в	i (%)
	 Constant payment to 			
	principal	CPMT	C	CPMT
	 Initial loan amount (present 			
	value)	PV	D	PV
	 Starting period number 	J	ENTER+	J
	 Ending period number 	К		ACC INT

A twenty year, 8% loan for \$100,000 is being amortized by annual payments to principal of \$5,000 plus interest on the remaining balance. Generate a 2-year amortization schedule for this loan.

Keystrokes:

Outputs:

1 A 8 B 5000 C 100000 D E \longrightarrow

8000.00 (1st year's payment to interest) 13000.00 (total 1st payment) 95000.00 (remaining balance)

07-0	03
------	----

R/S	 8000.00	(total interest paid to date)
R/S	 2.00	(now starting 2 nd period)
R/S	 7600.00	(2 nd year's payment to interest)
R/S	 12600.00	(total 2 nd payment)
R/S	 90000.00	(remaining balance)
R/S	 15600.00	(total interest paid
		to date)

Example 2:

In the previous example, how much interest is accumulated during years 5 to 10 (inclusive)?

Keystrokes:	Outputs:
8 B 5000 C 100000 D	
5 ENTER 10 11 A	32400.00

NOTES

This program calculates the monthly payment amount, total finance charge, and the Annual Percentage Rate (APR) for an add-on rate loan.

When a loan is initiated in the middle of a month, the first payment is generally not required until the end of the first full month. The number of days from the beginning of the loan to the beginning of the first month (see above diagram) are called "odd days" and affect (decrease) the APR to be quoted with the loan. The calculation of the APR considers these odd days.

Note:

The payment amount (PMT) must be calculated in order to calculate the APR.

The second part of this program calculates the unearned interest (rebate) as well as the remaining principal due for a prepaid consumer loan using the rule of 78's.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in:			
	 Number of monthly pay- 			
	ments in loan	N	ENTER+	N
	 "Odd-days" to beginning of 			
	first month (0-30)	ODD	A	ODD
	 Add-on interest rate (annual 			
	rate)	AIR (%)	в	AIR (%)
	 Loan amount 	AMT	C	AMT
3	Calculate monthly payment.		D	PMT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate total finance charge.		R/S	FC
5	Calculate the annual			
	percentage rate.		Ø	APR (%)
6	Key in all of the following:			
	 Total number of monthly 			
	payments in loan	N		N
	 Number of the last payment 			
	made	к	11 B	К
	 Monthly payment amount 	PMT		PMT
	 Total finance charge 	FC		FC
7	Calculate the unearned			
	interest (rebate).		[]	REB
8	Calculate the remaining			
	balance.		R/S	BAL

A 36 month car loan for \$3,500 with a 6% add-on rate is initiated such that there are 18 "odd days". Calculate the monthly payment required to amortize this loan, the total finance charge, and the annual percentage rate.

Keystrokes:

Outputs:

115.01 (monthly payment)640.36 (total finance charge)10.89 (10.89% APR)

Example 2:

A \$1000 loan, with a total finance charge of \$180.00 is being paid at \$39.33 per month for 30 months. What is the uncarned interest (rebate) and remaining balance after the 25^{th} regular payment?

Keystrokes:

30 1 A 25 1 B 39.33 1 C

180 🚺 🖸 🚺 🗉 —

Outputs:

- 5.81 (unearned interest for payments 26 to 30)
- 190.84 (remaining balance after payment 25)

SAVINGS PLAN—LEASES

This program may be used to solve problems when payments are made at the beginning of the compounding periods (annuity due). The program also calculates all variables in compound interest situations. Savings plans and leasing problems are typical examples.

The following variables may be inputs or outputs:

- n is the number of compounding periods. (For a 30 year loan with monthly payments $n = 12 \times 30 = 360$.)
- i is the periodic interest rate expressed as a percent. (For other than annual compounding, divide the annual percentage rate by the number of compounding periods in a year, i.e., 8% annual interest compounded monthly equals 8/12 or 0.667%.)
- PMT is the periodic payment amount.
- PV is the present value of the cash flows or compounded amount.
- FV is the future value of a compounded amount or a series of cash flows.
- BAL is the balloon payment or remaining balance at the end of a series of payments.

In this program, [A] is used to input/calculate n, [B] to input/calculate i, [C] to input/calculate PMT, [D] to input/calculate PV, and [E] to input/calculate FV or BAL. After all inputs have been entered, the unknown value may be calculated by pressing the appropriate user definable key.

When the START function (\blacksquare \blacksquare) is executed, it sets PMT, PV, and FV(BAL) to zero (n and i are not affected). START provides a safe, convenient, easy-to-remember method of preparing the calculator for a new problem. It is not necessary to use START between problems containing the same combination of variables. For instance, any number of n, i, PMT, FV problems

involving different numbers and/or different combinations of known values could be done in succession without using START. Only the values which change from problem to problem would have to be keyed in. To change the combination of variables without using START, simply input zero for any variable which is no longer applicable. To go from n, i, PMT, PV problems to n, i, PV, FV problems a zero would be stored (0 C) in place of PMT. START should always be used immediately after loading SAVINGS PLAN—LEASES.

Interative interest solutions are accurate to the number of significant figures of the display setting. It is possible to obtain more significant figures by changing the display setting from DSP 2 to DSP 3, DSP 4, DSP 5, etc. before calculating. However, time for solution increases as accuracy is improved.

Problems with negative balloon payments may have more than one mathematically correct answer (or no answer at all). While this program may find one of the answers, it has no way of finding or indicating other possibilities.

The values for n, i, PMT, PV, and FV(BAL) are stored in registers A—E respectively. They may be displayed by recalling the appropriate register.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Initialize (START)			0.00
3	Input the known values:			
	 Number of periods 	n	A	n
	 Periodic interest rate 	i (%)	в	i (%)
	 Periodic payment 	PMT	C	PMT
	 Present value 	PV	D	PV
	 Future value, balloon pay- 			
	ment, or balance	FV(BAL)	8	FV(BAL)
4	Calculate the unknown value:			
	 Number of periods 		A	n
	 Periodic interest rate 		в	i (%)
	 Periodic payment 		С	РМТ
	 Present value 		D	PV
	 Future value, balloon pay- 			
	ment, or balance		8	FV(BAL)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new case, go to step 3			
	and change appropriate values.			
6	For a new type of problem, go			
	to step 2.			

What annual interest rate must be obtained to amass \$10,000 in 8 years on an investment of \$6,000, with quarterly compounding?

Keystrokes:	Outputs:	
10000 E 8 ENTER4 4 X A	32.00	(quarters)
6000 D B→	1.61	(% quarterly interest
		rate)
4 ▼	6.44	(% annual interest
		rate)

Example 2:

The buyer of 3 acres of land can afford to pay \$375.00 per month toward interest and principal. If the asking price is \$35,000 and the seller wants 8% annual interest with payments in advance, how long will it take to pay off the mortgage?

Keystrokes:

Output: A 375 C 35000 D 8 ENTER+ 12 ÷ B A -----144.87 (number of months) 12 ÷ _____ 12.07 (years)

Example 3:

An annuity of \$100 per month will begin in 2 years and continue for 3 years. What is its present value if the interest rate is 12%, compounded monthly?

Keystrokes:

Calculate the present value of the annuity when it commences (2 years from now).

3040.86 (present value when annuity commences)

Outputs:

Now find the present value of the annuity today.

STO E 0 C 2 ENTERA 12 X A D ------2394.88 (present value today)

Example 4:

Today you begin annual withdrawals of \$2,500 from a \$40,000 fund earning 6% annual interest. How long will it be before the fund is reduced to \$25,000?

Keystrokes:

Outputs:

1 A 6 B 2500 C 40000 D	
25000 E A	➤ 26.19 (years to reach balance of \$25,000)

Example 5:

The Cooper Company needs a photocopier, and the one that best suits its needs costs \$10,000. If the copier is purchased, the company would need a 5-year loan, with monthly payments of \$220.00. Mr. Cooper may also elect leasing as an alternative way of financing. The leased photocopier would have 36 monthly payments (in advance) of \$250.00 with a 33% purchase option at the end of 36 months. Which alternative is the least costly?

Keystrokes:

Outputs:

First find the annual interest rate of the lease option.

🚺 🗛 36 🗛 250 C 10000 D 33 % E B 12 × ------11.47 (% annual interest rate)

Now insert DIRECT REDUCTION LOANS/SINKING FUND (BD-04) and find the annual interest rate of the loan.

rate)

Since the lease option has a lower annual interest rate, it is the least costly alternative.

Payments on loans are typically made at the end of the period (in arrears). However, there are situations where payments are made in advance (leasing is a good example). Sometimes these agreements call for extra payments to be made when the transaction is closed, before the payments would normally be due. Or, the transaction has advance payments and a residual value at the end of the normal term.

This program solves for the periodic payment amount necessary to achieve a desired yield when a number of payments are made in advance. And, given the periodic payment, the program finds the yield. Either amount may be calculated when a residual value exists.

The necessary inputs are the total number of periods in the loan (n), the number of payments made in advance (A), the loan amount (PV), and either the periodic payment amount (PMT) or the periodic yield (i). The residual value at the end of the nth period (RESID) is optional.

The value of A must be less than the value of n. If this condition is not met, the display flashes the illegal input. Pressing R/S halts the flashing, and the values of n and A must be re-entered.

When $A = 0$ or 1, BD-04 or BD-09 could be used. $A = 0$ implies an ordinary
annuity calculation, while $A = 1$ means an annuity due calculation.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following:			
	 Number of periods in term 			
	of loan	n		n
	 Number of payments made 			
	in advance	А	A	А
	 Loan amount 	PV	D	PV
3	Optional: Key in residual value			
	at end of nth period.	RESID	8	RESID
4	Key in one of the following:			
	 Periodic payment 	PMT		PMT
	 Periodic interest rate 	i (%)		i (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Calculate the remaining			
	variable.		1 B	i (%)
				PMT
6	For a new case, go to 2 and			
	change the appropriate values.			

A lease has been written to run for 60 months. The leased equipment has a value of \$25,000 with a \$600 monthly payment. The lessee has agreed to make 3 payments in advance at the time of closing. What is the annual yield? (There is no residual value at the end of 60 months.)

Keystrokes:	Outputs:
60 ENTER 3 A	
25000 ◘ 600 🚺 🖪 12 🗙	17.33 (% annual yield)

Example 2:

A copier worth \$22,000 is to be leased for 48 months. The lessee has agreed to make 4 payments in advance, with a purchase option at the end of 48 months enabling him to buy the copier for 30% of the purchase price. What monthly payment is necessary to yield the lessor 12% annually?

Keystrokes:	Outputs:
48 ENTER 4 A 22000 D 30 Ø F	
12 ENTER 12 🖶 🚺 C →	453.84 (monthly payment)

Payments into a savings plan may not occur with the same frequency as the compounding frequency offered. This program solves for the number of payments, the periodic payment amount, or future value.

The diagrams above depict two of the many combinations that may be encountered. Note that payments are assumed to occur at the beginning of the payment period (annuity due).

Another assumption of this program is that payments deposited for a partial compounding period will accrue simple interest for the remainder of the compounding period. Thus, a deposit at the beginning of the 2nd month of a quarter into a savings plan that compounds quarterly is assumed to accrue two months simple interest. This is often the case, but is not true for all institutions.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the number of payment			
	periods per year.	Р		Р
3	Key in the number of com-			
	pounding periods per year.	С	A	P/C

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Key in the periodic interest rate	i (%)	B	i (%)
	and two of the following:			
	 Total number of payments 	n		n
	 Periodic payment amount 	PMT		PMT
	 Final amount (future value) 	FV		FV
5	Calculate the remaining value			
	 Total number of payments 			n
	 Periodic payment amount 		[] C	PMT
	 Final amount (future value) 		1	FV
6	For a new case, go to step 2.			

Quarterly deposits of \$95 are to be made into a savings account paying 5% compounded monthly. What amount will be in that account after 7 years (i.e., 28 total payments)?

Keystrokes:

4 ENTER♦ 12 A	0.33
7 ENTER♦ 4 🗙 1 A 95 1 C 1 E	3203.59 (amount after 7 years)

Example 2:

Assuming the previous calculation has just been performed as shown, determine the future value if the quarterly payment amount were \$100 instead of \$95.

Keystrokes:

Outputs:

Outputs:

100 🚺 C 🚺 E -----

3372.20 (amount after 7 years)

Example 3:

In 2 years, you will need \$4000. If a savings account will pay $5\frac{1}{6}\%$ compounded quarterly, what amount must you deposit each month to accumulate the desired amount?

SIMPLE INTEREST/INTEREST CONVERSIONS

This card actually contains three independent programs. The first part of the program (A—E keys) permits the user to solve for any variable of an accrued simple interest calculation. Given three of the four variables (number of days, annual interest rate, beginning amount, or accrued interest) the fourth is calculated. Accrued interest can be based on a 360 or 365 day year. In addition, the user may choose to add the calculated accrued interest to the initial principal to determine the final amount.

Three keys (**1 A**, **1 B**, **1 C**) address finite compounding, that is, quarterly compounding, monthly compounding, etc. Given the number of compounding periods in a year, and one of the rates (nominal or effective), the other rate can be calculated. If for example, you require the periodic interest rate for a calculation, given the effective rate, use this program to determine the annual nominal rate first. Dividing the annual nominal rate by the number of compounding periods in a year will give the required periodic interest rate.

The remaining keys (f D, f E) are for continuous compounding. Given either rate, the other is calculated.

The most common and straightforward definition of effective interest rate has been implemented (see Appendix B). Occasionally other definitions will be used and the results will not compare exactly with those calculated by these programs. For example, since the maximum annual nominal rate that savings institutions can offer is regulated by law, they may modify the process (also regulated) so that the effective rate is even higher (e.g., for daily compounding, the periodic rate may be divided by 360 and then compounding accomplished for 365 periods). It is important then, when attempting to match results, to understand the process employed.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		R/S	0.00
	Simple Interest			
3	Key in three of the following:			
	 Number of days 	DAYS	A	DAYS
	 Annual interest rate 	RATE (%)	B	RATE (%)
	 Beginning amount 	B AMT	C	B AMT
	• Accrued interest (360 day			
	year)	I 360	D	I 360
	OR			
	 Accrued interest (365 day 			
	year)	I 365	8	I 365
4	Calculate the remaining			
	variable			
	 Number of days 		A	DAYS
	 Annual interest rate 		в	RATE (%)
	 Beginning amount 		C	B AMT
	 Accrued interest (360 day 			
	year)		D	I 360
	 Final amount (optional) 		Đ	FIN AMT
	 Accrued interest (365 day 			
	year)		8	I 365
	 Final amount (optional) 		Đ	FIN AMT
	Interest Conversions			
5	Go to either step 6 for finite			
	compounding or step 8 for			
	continuous compounding.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Key in:			
	 Number of compounding 			
	periods/yr and one of the			
	following:	C/YR		C/YR
	 Annual nominal rate 	NOM (%)	[] B	NOM (%)
	 Annual effective rate 	EFF (%)		EFF (%)
7	Calculate the remaining rate			
	 Annual nominal rate 		[] B	NOM (%)
	 Annual effective rate 			EFF (%)
	Go to step 6 for new data.			
8	Key in one of the following:			
	 Annual nominal rate 	C NOM (%)		C NOM
	 Annual effective rate (for 			
	continuous compounding).	C EFF (%)		C EFF
9	Calculate the remaining rate			
	 Annual nominal rate 			C NOM (%)
	 Annual effective rate (for 			
	continuous compounding).		•	C EFF (%)
10	For continuous compounding			
	on a 365/360 day basis key in:			
	 Annual nominal rate 	C NOM (%)		
11	Calculate the continuous ef-			
	fective rate (365/360 basis).		GSB 8	C EFF (%)

Calculate the accrued interest and final amount (both 360 and 365 day basis) for a \$30,000, 8%, 90 day interest at maturity note.

Keystrokes:

Outputs:

E ______ 591.78 (interest, 365 day basis)
 t ______ 30591.78 (final amount, 365 day basis)

Example 2:

What is the nominal rate if the effective annual rate is 13% compounded quarterly?

Keystrokes:

Outputs:

Example 3:

A bank offers a savings plan with a 5% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

Keystrokes:

Outputs:

Example 4:

In the above example, what is the annual effective rate if compounding is continuous on a 365/360 basis?

Keystrokes:

5 GSB 8 —

Outputs:

5.20 (an annual effective rate of 5.20%)

DEPRECIATION SCHEDULES

Three methods of depreciation are commonly used: straight-line, sum-of-theyears'-digits, and declining balance. This program evaluates the depreciation schedules for these three methods, and calculates the crossover point between straight line and declining balance depreciation. For the schedules, the output is the annual depreciation amount (DEP), remaining depreciable amount (RDV), remaining book value (RBV), and the total depreciation to date (TOT DEP), as well as an increment for the next year's schedule.

An option is available to output the depreciation schedule beginning at a specified year. Pressing **1 E** sets and clears the print flag. Successive use of **1 E** will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.

Values for the last year of an asset with fractional years life (i.e., the 21^{st} year's values for an asset with 20.5 years life) are calculated correctly. However, all other values represent a full year's depreciation. For this reason only integer values (whole number, 1.0, 2.0, 17.0 etc.) may be entered for YR (the **D** key). The program makes no checks on this value and generates invalid results if other than whole numbers are entered.

Straight Line Depreciation

The annual depreciation allowance using this method is determined by dividing the cost or other basis of valuation (starting book value) less its estimated salvage value by its useful life expectancy. This program develops the starting book value (SBV), salvage value (SAL), life expectancy (LIFE), and first year of the schedule (YR). (The schedule may be started at any point in the useful life.)

Fractional years life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Sum of the Years' Digits Depreciation

The sum-of-the-years' digits method is an accelerated form of depreciation, allowing more depreciation in the early years of an asset's life than allowed under the straight line method. This program generates the schedule output, given the starting book value (SBV), the salvage value (SAL), expected useful life in years (LIFE), and beginning year (YR) for the schedule. (The schedule may be started at any point in the useful life.)

Fractional years asset life must be entered as an integer plus a fraction. Thus a life of 12 years 3 months would be keyed in as 12.25 for LIFE.

Variable Rate Declining Balance Depreciation

The variable rate declining balance method is another form of accelerated depreciation; as such it provides for more depreciation in earlier years and decreasing depreciation in later years. The program generates the depreciation schedule given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), the declining rate factor (FACT), and the first year of the desired schedule (YR). The schedule may be started at any point in the useful life.

The "variable rate" is indicated as either a factor or percent with equal frequency in the business community. Thus, "1.5 declining balance factor" and "150% declining balance" have the same meaning. The number to be keyed in for FACT (\blacksquare) in this program, should be in factor form, that is 1.25, 1.5, 2, and not 125, 150 or 200.

This method of depreciation is unique in that it may generate depreciation greater than the depreciable value for some assets, while it may not generate sufficient depreciation for others. The crossover calculation ($\blacksquare \square$) is provided to assist in determining the best time to switch to straight line depreciation (tax laws permitting) so that an asset may be fully depreciated.

Fractional years life must be entered as an integer and a decimal. Thus, a life of 12 years 3 months would be keyed in as 12.25.

Crossover Point

As indicated in the description above, the declining balance method of depreciation may not fully depreciate an asset in the asset's lifetime. In these circumstances there is an optimum point in the useful life where a switch from the declining balance method to the straight line method should be made. This is the 'crossover point', the first year in which the depreciation by the straight line method is greater than if depreciation were continued using declining balance method. (In accordance with Internal Revenue Service Publication 534, the straight line depreciation is determined by dividing the remaining depreciable value by the remaining useful life.)

Given the starting book value (SBV), salvage value (SAL), useful life expectancy (LIFE), and declining balance factor (FACT), this routine calculates the last year that the declining balance method should be used, and the remaining life and remaining book value after this "last year" so that a switch to straight line depreciation can be made. As in the previous routine, the factor (FACT) should be entered in factor form (1.25, 1.5, 2.0), not as a percent (125, 150, 200).

The crossover routine ($[1 \ D]$) may be used with the declining balance ($[1 \ C]$) and straight line ($[1 \ A]$) depreciation routines as follows:

1. Use **[] D** to determine the "crossover point" and associated values.

13-03

- 2. Use **[] C** to generate a declining balance depreciation schedule for the early years up to and including the year indicated as being the "last year". Since the same input values are used, only a value for YR (**D**) need be keyed in before pressing **[] C**.
- Now use 1 A to generate a straight line depreciation schedule for the remaining years. The remaining book value at the end of the last "declining balance year" is keyed in for starting book value (A), and the remaining life is keyed in for the asset's life (C). There is no need to enter the salvage value as it has been retained throughout this process.

For this portion of the depreciation schedule, the value for "total depreciation to date" will be in error by an amount equal to the amount depreciated during the declining balance calculations.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Select print mode		•	1.00 or 0.00
3	Key in all of the following:			
	 Starting book value 	SBV	STO A	SBV
	 Salvage value 	SAL	STO B	SAL
	 Life of the asset 	LIFE	STO C	LIFE
4	For depreciation schedules,			
	key in:			
	 Year for which depreciation 			
	is to be calculated.	YR	STO D	YR
5	To calculate straight line			
	depreciation schedule			YR
			R/S	DEP
			R/S	RDV
			R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Calculate the SOYD schedule		[] B	YR
			R/S	DEP
			R/S	RDV
			R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			
7	Calculate the declining balance			
	schedule (the appropriate			
	factor must be entered).	FACT	STO E	FACT
				YR
			R/S	DEP
			R/S	RDV
			R/S	RBV
			R/S	TOT DEP
			R/S	YR + 1
			etc.	
	For new case go to steps 3 and			
	4 and change appropriate			
	inputs.			
8	To find crossover point the			
	declining balance factor must			
	be stored.	FACT	STO E	FACT
9	Calculate last year to use de-			
	clining balance method.			LAST YEAR
10	Calculate remaining life.		R/S	REM LIFE
11	Calculate remaining book			
	value.		R/S	RBV

For a starting book value of 375,000, a salvage value of 30,000 and an expected life of 40 years, generate the 1st year's depreciation schedule using each of the common methods. Assume a declining balance factor of 1.5. Then jump ahead to the 15th year and generate the data for that year.

Keystrokes:	Outputs:	
375000 STO A 30000 STO B 40 STO C 1 STO D		
Straight Line		
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	1.00	(1 st year)
R/S→	8625.00	(1 st year's depreciation)
R/S→	336375.00	(remaining depre- ciable value)
R/S→	366375.00	(remaining book value)
R/S→	8625.00	(total depreciation to date)
Now jump ahead to the 15 th year.		
Keystrokes:	Outputs:	
15 STO D 🚺 A	15.00	(15 th year)
R/S →	8625.00	(15 th year's
		depreciation)
R/S →	215625.00	(remaining depre- ciable value)
R/S→	245625.00	(remaining book value)
R/S→	129375.00	(total depreciation after 15 years)
SOYD		
1 STO D 🚺 B	1.00	(1 st year)
R/S →	16829.27	(1 st year's depreciation)
R/S →	328170.73	(remaining depre- ciable value)
R/S →	358170.73	(remaining book value)

13-05

R/S —

→ 163630.49 (total depreciation 1st through 15th year)

13-07

Example 2:

Having just performed the previous calculation, determine the crossover point and the associated remaining life and remaining book value. Generate the depreciation data for the declining balance "last year," and then switch to the straight line method to generate the depreciation data for the year following the declining balance "last year."

Keystrokes:	Outputs:	
	18.00	(last year to use
R/S→	22.00	declining balance) (asset's remaining life after 18
R/S→	188471.01	years) (remaining book value after 18 th vear)
18 STO D 🚺 C	18.00	(18 th year)
R/S	7343.03	(18 th year's
		depreciation)
R/S→	158471.01	(remaining depre- ciable value)
R/S→	188471.01	(remaining book value)
	186528.99	(total depreciation 1 st through 18 th year)
	1 00	(1st year)
	1.00	(1 year)
₽/\$	7203.23	(19 ^{ch} year's depreciation)

Note:

Although 1 was keyed in for YR—the first year of straight line depreciation—this is the 19th year of the asset's life.

R/S	 151267.78	(remaining depre-
		ciable value)
R/S	 181267.78	(remaining book
		value)

NOTES

This program calculates the number of days between two dates on an actual or 30/360 basis (30 day month, 360 day year). When the actual number of days is desired, the two dates must occur between January 1, 1901 and December 31, 2099. There is no limitation for the 30/360 basis.

The earlier date is keyed in for DT 1 (\square), the later date is keyed in for DT 2 (\square). The calculation is performed by pressing \square for the actual number of days or by pressing \square for the number of days on a 30/360 basis. Both input dates are retained, so that only a changed date must be keyed in for a new calculation.

The date format for input is MM.DDYYYY (March 3, 1976 is keyed in as 3.031976). The program does not check input data. Thus, if an improper format or an invalid date (i.e., February 30) is keyed in, erroneous answers will result.

An important feature of this program is that it is designed to be used in conjunction with BOND PRICE AND YIELD (BD-15). When the settlement date is entered for DT 1 and the redemption date (maturity date, call date, etc.) is entered for DT 2, pressing \bigcirc or \bigcirc also causes the number of remaining semiannual coupon periods to be stored for use by the bond program. The number of semiannual coupon periods on an actual day basis is determined by subtracting the number of leap days (February 29 of a leap year) from the actual number of days (the displayed value) and dividing this by 182.5 (days per semiannual period). On a 30/360 basis the number of semiannual coupon periods are periods used to be stored for semiannual coupon periods periods is found by dividing the number of days (displayed value) by 180 days per semiannual period).

In addition, the settlement date is retained throughout the bond calculations. Therefore, on return to this program, it is only necessary to key in a new DT 1 if the settlement date is different.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in the following:			
	• Earliest date (DT 1)	MM.DDYYYY	A	DT 1
	Latest date (DT 2)	MM.DDYYYY	B	DT 2
3	Calculate the number of days			
	between the two dates on an			
	"actual" day basis.		C	Actual Days

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate the number of days			
	between the two dates on a			
	30/360 basis.		D	30/360 Days
5	For a new case, go to step 2			
	and change DT 1 and/or DT 2			
	as appropriate.			

Calculate the actual number of days between June 24, 1974 and December 5, 1985.

Keystrokes:

6.241974 ▲ 12.051985 B C → 4182.00 (actual)

Example 2:

Having just performed the above calculation, now calculate the actual number of days between June 24, 1974 and March 21, 1990.

Keystrokes:

Outputs:

Outputs:

3.211990 **B C** → 5749.00 (actual)

Example 3:

Calculate the number of days, on both an actual and 30/360 basis, between May 1, 1975 and November 1, 1980.

Keystrokes:

Outputs:

5.011975 🗛	11.011980 B C	
D		

2011.00 (actual)

1980.00 (30/360)

BOND PRICE AND YIELD

This program calculates the "flat" price (i.e., not including accrued interest) or annual yield of a semiannual coupon bond. Data required for input are the number of coupon periods (PER) between settlement date and redemption date (maturity date, call date, etc.), the annual coupon rate expressed as a percent (CR), the redemption value (RV) if other than 100, and either the annual yield expressed as a percent (YLD) or the bond price (PRICE).

All prices are expressed as a percent of the face value. (e.g., since most bonds have a face value of \$1,000, a call price of 107 implies an actual redemption value of \$1,070 if the bond is ''called''.)

The amount of the accrued interest for the expired portion of the current coupon period is available in register 8 and may be recalled (**RCL B**).

Each time the coupon rate is entered by pressing \square , the redemption value is automatically set to 100. This is the proper value for a price-to-maturity calculation, and no value must be keyed in for redemption value (RV). If however, the price-to-call is desired and the call price is other than 100, the call price has to be entered for RV *after* the coupon rate has been keyed in.

All input data are retained so that when alternative calculations are to be performed, only changed data must be keyed in. This permits, for instance, calculating the price for each of several different yields. In addition, the settlement date is retained throughout the bond calculations, and need not be reentered when returning to the calendar program for another bond calendar calculation.

The number of remaining coupon periods between settlement date and redemption date may be calculated and entered in two ways. If the calendar program is used to calculate the number of days between the settlement date and redemption date, the number of remaining semiannual coupon periods is automatically calculated and stored in register 0 for use by the bond program. In this case the instruction to enter the number of remaining coupon periods in step 3 below may be ignored. If however, the number of remaining coupon periods is already known, or the method used to calculate this value by the calendar program is deemed inappropriate, it may be entered in step 3. Choosing between an actual or 30/360 calendar calculation depends on trade custom for the particular security. Corporate bonds are traditionally traded on a 30/360 basis, while many government securities use an "actual" calendar.

This program may be used for after-tax as well as before-tax yield calculations. The procedure is to reduce the coupon and redemption values to their after-tax net values prior to entering them in the program. This can be important when comparing a bond with taxable coupons to one whose coupons are tax-free.

The program may also be used to calculate a yield when a bond is purchased, and then sold prior to redemption by the issuer. The procedure is simple to treat the exit date and price as the redemption date and reemption value respectively. The yield calculated is the precise yield if the exit date is also a coupon date, and is an approximate yield for other exit dates.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Optional: Use program BD-14			
	to calculate the number of re-			
	maining coupon periods.			
2	Load side 1 and side 2 of the			
	bond program.			
3	Key in:			
	 Number of remaining cou- 			
	pon periods (may be omitted			
	if step 1 is performed)	PER	A	PER
	 Annual coupon rate 	CR (%)	в	CR (%)
	 Redemption value if other 			
	than 100.	RV	D	RV
4	To determine the yield, key in			
	the bond price.	PRICE	•	PRICE
5	Calculate the annual yield.		C	YLD (%)
6	To find the price, key in the			
	annual yield rate.	YLD (%)	С	YLD (%)
7	Calculate the "flat" price.		C	PRICE
8	Optional: Recall the accrued			
	interest		RCL 8	ACC INT
	AND			
	add it to the "flat" price to obtain			
	total bond value as of the			
	settlement date.		Ð	Bond Value

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	For a new case go to step 1 or 3			
	and change appropriate values.			
	NOTE: When CR is entered,			
	RV is automatically set to 100.			

What is the price of a semiannual 3% bond to yield 10% with settlement date of January 1, 1972? The bond matures March 6, 1978, and a 30/360 calendar is used.

Outputs:

Keystrokes:

Enter program BD-14

1.011972 ▲ 3.061978 В D	2225.00	(days settlement to maturity, 30/360 basis)
Now enter program BD-15		
3 ₿ 10 ₢ ₤	68.29	(price-to-maturity)

Example 2:

Having performed the above calculation, determine the price of the same bond using the "actual" number of days. Remember, the settlement date has been retained and need not be reentered.

Keystrokes:	Outputs:	
Enter program BD-14 3.061978 B C	2256.00 (actual days settle- ment to maturity)	-
Enter program BD-15		
3 B 10 C E	68.31 (price-to-maturity)	

Example 3:

A U.S. Treasury Note with a 5.75% coupon and 88 days from settlement to maturity is purchased at 100 18/32. If there are assumed to be 183 days in a coupon period, what is the yield-to-maturity?

Keystrokes: O 5.75 B 88 ENTER ◆ 183 ÷ A →

Outputs:

0.48 (fraction of a coupon period remaining)

18 ENTER $32 \div 100 + E C \longrightarrow$

3.34 (% annual yield-tomaturity)

to-maturity)

Example 4:

Assuming that the previous problem has just been performed as shown, calculate the yield if there are assumed to be 182 days in a coupon period instead of 183.

Keystrokes:	Outputs:
88 ENTER+ 182 ₽ A C	3.35 (% annual yield-
	to-maturity)

Example 5:

An annual coupon bond with a 5% coupon is settled on March 1, 1974. If the yield is 5.5%, and the bond matures on February 1, 1984 what is the price-tomaturity on a 30/360 basis?

Keystrokes:

Outputs:

Enter program BD-14

Enter program BD-15 Α _____

3.011974 A 2.011984 B D →

3570.00 (days settlement to maturity, 30/360basis)

Determine the number of **annual coupon periods** remaining by dividing by the number of days in a coupon period.

360 💼 _____

9.92 (number of annual coupon periods)

9.92 (the correct value for PER is entered)

The coupon rate and yield rate must be multiplied by a factor prior to input. This factor is determined by dividing the number of coupon periods per year into 2. For annual coupon bonds the factor is therefore 2 (for quarterly coupons the factor is 0.5 etc.).

5 ENTER 2 × B 5.5 ENTER+ 2 X C E _____

96.24 (price-to-maturity)

Example 6:

A semiannual coupon bond with a 5% coupon rate maturing February 6, 1993 was purchased November 15, 1973 for a price of 99. The bond is callable on February 6, 1980 at a call price of 101. What is the yield-to-call and yield-tomaturity if the 30/360 calendar is used?

ts:

15-05

Keystrokes:	Outputs:	
Enter program BD-14		
11.151973 ▲ 2.061980 B D>	2241.00	(days settlement to call)
Enter Program BD-15		
5 B 101 D 99 E C	5.33	(% yield-to-call)
Enter program BD-14		
2.061993 ₪ □	6921.00	(days settlement to maturity)
Enter program BD-15		
5 ₿ 99 € 6	5.08	(% yield-to- maturity)

Example 7:

Having just completed the before tax yield-to-maturity calculation in the previous example, the bond purchaser wishes to perform an after tax yield-to-maturity calculation. He is in a 40% income tax bracket and a 25% tax is to be applied to capital gains.

Outputs:

Keystrokes:

First, calculate and enter the after tax value of the coupon.

5 ENTER♦ ENTER♦ .4 × - B ---->

3.00 (net after tax coupon)

Now calculate and enter the net after tax proceeds when the bond is redeemed for 100 at maturity.

100 ENTER↑ ENTER↑ 99 -	
.25 🛛	>
- D	

1.00 (capital gain)0.25 (capital gains tax)99.75 (net proceeds from

bond redemption)

(The price and remaining coupon periods have been retained from the previous calculation.)

С _____

3.06 (% after tax yield)

NOTES

INTEREST AT MATURITY/DISCOUNTED SECURITIES

The first part of this program calculates the price or yield of interest at maturity securities. The necessary inputs are the days from issue to maturity (DIM), the days from settlement to maturity (DSM), the calendar basis (360 or 365), the coupon rate (CR), and either the price (to calculate yield) or the yield (to calculate price).

The second part of the program calculates the price or yield of discounted securities such as U.S. Treasury Bills. The required inputs are the number of days from settlement to maturity and one of the following: discount rate (to calculate price and/or yield), yield (to calculate price) or price (to calculate yield).

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
	Interest at Maturity			
2	Enter the following:			
	 Days issue to maturity 	DIM	ENTER +	DIM
	 Days settlement to maturity 	DSM	A	DSM
	• Basis (360 or 365)	BASIS	B	BASIS
	 Coupon rate (as a percent) 	CR (%)	C	CR (%)
3	Enter one of the following:			
	● Yield (%)	YLD (%)	D	YLD (%)
	• Price	PRICE	E	PRICE
4	Calculate remaining variable		٥	YLD (%)
			e	PRICE
	Discounted Securities			
5	Key in days settlement to			
	maturity	DSM		DSM
6	Input one of the following:			
	 Discount rate 	DR	[] B	DR
	● Yield (as a %)	YLD (%)		YLD (%)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	• Price	PRICE	E	PRICE
7	Calculate either or both		D	YLD (%)
			8	PRICE

Find the yield of the following interest at maturity security:

	DIM = 22	20	
	DSM = 11	.7	
	Basis = 360		
	CR = 5%		
	Price = 99.53	1250	
Keystrokes:	(Outputs:	
220 ENTER 117 A			
360 B 5 C			
99.531250 E D		6.38 (% yield)	

Example 2:

Having just performed the above calculation, what is the price of this interest at maturity security to give a yield of 7%?

Keystrokes:	Output:		
7 D E	→ 99.33 (price)		

Example 3:

Given the number of days from settlement to maturity and the discount rate of the following security, find the price and yield.

$$DSM = 81$$
$$DR = 5.60$$

Keystrokes:

Outputs:

16-03

Example 4:

Find the yield of the following discounted security:

DSM = 307 Price = 96.27

•

Keystrokes:

Outputs:

307 f 🗛 96.27 f E f D

4.54 (% yield)
NOTES

LINEAR REGRESSION—EXPONENTIAL CURVE FIT

This program performs a least squares regression to determine both a linear and exponential fit for the given set of data pairs (x, y).

Linear regression is a statistical method for finding a straight line that best fits a set of data points. Forecasting and market projections are business applications where linear regression could be used to fit a set of data.

The equation of this straight line expresses the linear relationship between an independent (x) and dependent (y) variable and is of the form:

where:

$$y = a + bx$$

y = dependent variable

$$a = the value of y when x = 0$$
, called the "y-intercept"

b = the slope of the straight line

x = independent variable

In addition to calculating values for the slope and y-intercept, this program also calculates the coefficient of determination r^2 . This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

If the coefficient of determination is lower than expected, perhaps the data points could be better represented as a curve, rather than a straight line.

The program also determines the best exponential curve fit of the form:

 $y = ae^{bx} (a > 0 and y > 0)$

where:

y = dependent variable

a = the value of y when x = 0, called the "y-intercept"

e = a constant (2.718281828)

b = the slope or rate of growth of the curve

x = independent variable

The coefficient of determination is also calculated for the exponential curve.

The exponential curve fitting technique is often used to determine the growth rate of a variable such as a stock's value over time, when it is suspected that the performance is non-linear. The value for b is the decimal value of the *continuous* growth rate. For instance, assume after keying in several end-of-month price quotes for a particular stock, it is determined that the value for b is 0.10. This means that over the measured period the stock has experienced a 10%

continuous growth rate. (An option is available to convert this decimal continuous growth rate to an effective rate in percent. See program BD-12 for a description of continuous and effective interest rates.)

When evaluating the exponential curve, only positive y-values may be input. If a value of y is entered as a negative number, the linear regression slope, intercept, and goodness of fit will be calculated, and then the display will show ERROR. This means that at least one y-value is less than or equal to zero, and the exponential curve may not be evaluated.

When the user has data where the x-values are evenly spaced (i.e., the difference between any two successive x-values is always the same), the trend line key (C) may be used. In this case, it is necessary to key in only the y-values; the x-values are automatically incremented by 1. This feature may be used for inputting data for lines or exponential curves. Remember that if any y-values are input which are less than or equal to zero, the exponential curve fit cannot be calculated.

If any (x, y) data pair was input incorrectly it may be deleted by re-entering the incorrect pair and pressing **1 B**. Likewise, if the last trend value was input incorrectly, key in the incorrect value and press **1 C**.

After determining whether the linear or exponential fit is better, the user may then key in x-values and generate projected y-values (\hat{y}) , by pressing \square for the line, or by pressing \blacksquare for the curve.

A print/pause option is available ($[1] \square$). Successive use of $[1] \square$ will display 1.00 or 0.00 indicating that the print/pause mode is on or off respectively. When the print, pause mode is on (1.00) the results are automatically printed/ displayed.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Set print/pause mode		11 🖪	1.00 or 0.00
3	Initialize (START)		А	0.00
4	If data is unevenly spaced, key			
	in x and y-values, until each pair			
	has been entered.	x	ENTER+	
		У	B	# entries
5	To delete an incorrect data pair			
	(x _k , y _k)	X _k	ENTER+	
		Ук	[] B	# entries - 1
6	If data is evenly spaced, key in			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	successive y-values until all			
	have been entered.	у	C	# entries
7	To delete the last y-value	у		# entries -1
8	Calculate. If the print/pause flag			
	is on (1.00), these values are			
	automatically printed.			a
			R/S	b >linear
			R/S	r²)
			R/S	a)
			R/S	b exp.
			R/S	r²)
	Optional: Calculate			
	growth rate		R/S	% growth rate
9	Optional: Key in an x-value and			
	calculate a corresponding			
	y-value on the line. This may be			
	repeated as often as desired.	x	D	ŷ (lin.)
10	Optional: Key in an x-value and			
	calculate a corresponding			
	y-value on the curve. This may			
	be repeated as often as desired.	x	٠	ŷ (exp.)
11	Return to step 2 for a new set of			
	data.			

Example 1:

You bought a house three years ago for \$47,500. The first year it appreciated \$5,000. The second year its value rose to \$60,000. Today you figure the market price to be \$64,000 if you were to sell. What will your house be worth next year?

Keystrokes:

Outputs:

Since the data is evenly spaced, the trend line function could be used.

Now calculate the equation of the line (or curve if that gives a better fit).

Example 2:

A stock's price history is listed below. What effective growth rate does this represent? If the stock continues this growth rate, what is the price projected to be at the end of 1976 (year 5)?

End of Year	Price
1972 (1)	521/2
1973 (2)	551⁄4
1974 (3)	(missing data)
1975 (4)	75
1976 (5)	?

Keystrokes:

Α	>
1 ENTER↑ 52.5 B	
2 ENTER 55.25 B	
4 ENTER 75 B	

f A]
R/S	

The exponential curve gives a better fit.

5 🗉 _____

Outputs:

1.00

2.00

- 3.00 (total number of entries)
- 42.63 (linear a)
- 7.84 (linear b)
- 0.95 (linear r^2)
- 45.06 (exponential a)
 - 0.12 (exponential b)
- 0.96 (exponential r^2)
- 13.17 (percent annual growth rate)
- 83.65 (projected price at the end of 1976)

MULTIPLE LINEAR REGRESSION

This program performs a least squares multiple linear regression for a series of data points x, y, z. Linear regression is a statistical method for finding a straight line that best fits a set of data points. The equation of this straight line expresses the linear relationship between independent (x and y) and dependent (z) variables and is of the from:

$$z = a + bx + cy$$

Independent variables are input by pressing **B**. If one or more of the data points was entered incorrectly, simply re-enter the incorrect value(s) and press **1 A**. Then continue as before. The three coefficients (a, b, c) are calculated by pressing **C**.

In addition, the program also calculates the coefficient of determination r^2 (\square). This is an indication of the "goodness of fit" for the calculated straight line, and is a number between 0 and 1. Values closer to 1 indicate "better" fits than values closer to 0.

Having determined the equation (the \square key), the user can then project estimates of z for given x, y values (\square). The sums (Σx_i ; Σy_i ; Σz_i), the sums of squares (Σx_i^2 ; Σy_i^2 ; Σz_i^2), and the sums of cross products ($\Sigma x_i y_i$; $\Sigma x_i z_i$; $\Sigma y_i z_i$) are stored in registers 7–9, 4–6, and 1–3 respectively.

An option is available (\blacksquare \blacksquare) to automatically print/pause the calculated values. Pressing \blacksquare \blacksquare sets and clears the print option. Successive use of \blacksquare \blacksquare will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Optional: Select print/pause			
	mode			1.00 or 0.00
3	Initialize (START)		A	0.00
4	Key in x and y, and correspond-			
	ing z value	x	ENTER+	
		у	ENTER+	
		Z	B	# entries
5	Repeat step 4 for all x, y, z data			
	pairs.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	If a data pair was input incor-			
	rectly, re-enter incorrect x, y, z			
	values	x	ENTER+	
		У	ENTER+	
		z		# entries - 1
7	Calculate coefficients:		C	а
			R/S	b
			R/S	с
	If the print/pause mode is on			
	(1.00), b and c are auto-			
	matically calculated.			
8	Optional: Calculate the coeffi-			
	cient of determination: r ²		D	r²
9	Optional: Key in x and y values			
	and calculate the estimated			
	z value. (This may be repeated			
	as often as desired.)	x		
		у	G	ź
10	For a new case, go to step 2.			

Example 1:

A commercial land appraiser has examined 5 vacant lots in the downtown section of a local community, all of which have different depths, frontages, and values as shown below. Based on this data, what is the relationship between depth, frontage, and lot value? What is the coefficient of determination? What predicted value would a lot have with a 50 foot depth and 70 foot frontage? With a 75 foot depth and 80 foot frontage?

Lot Depth (feet)	Lot Frontage (feet)	Lot Value
70	70.8	\$101,000
90	60.0	82,190
85	90.0	170,000
40	70.0	100,000
100	60.0	90,000

18-(03
------	----

Keystrokes:	Outputs:	
A 70 ENTER♦ 70.8 ENTER♦ 101000 B 90 ENTER♦ 60 ENTER♦ 82190 B 85 ENTER♦ 90 ENTER♦ 170000 B 40 ENTER♦ 70 ENTER♦ 100000 B		
100 ENTER → 60 ENTER → 90000 B → C → R/S → R/S →	5.00 -118499.03 314.71 2892.02	(number of entries)(a)(b)(c)
Hence, $z = -118499.03 + 314.71x +$ D	2892.02y 0.98 99678.08 136466.08	(r ²) (value of 50 \times 70 foot lot) (value of 75 \times 80 foot lot)

Notice that if your lot has a depth of 50 feet and a frontage of 10 feet a negative \$ value results (-73843.26). You may have difficulty selling this property!

NOTES

Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:

Given four of the following variables: fixed costs (F), sales price per unit (P), variable costs per unit (V), number of units sold (U), and gross profit (GP), this program evaluates the remaining variable. To calculate the break-even values, simply let the gross profit equal zero.

The degree of operating leverage (OL) at a point is defined as the ratio of the percentage change in net operating income to the percentage change in units sold. The greatest degree of operating leverage is found near the break-even point, where a small change in sales may produce a very large increase in profits. This happens because the profits are close to zero near the break-even point. Likewise, firms with a small degree of operating leverage are operating farther from the break-even point, and they are relatively insensitive to changes in sales volume.

The necessary inputs to calculate the degree of operating leverage are fixed costs (F), sales price per unit (P), variable costs per unit (V), and number of units (U).

For subsequent calculations, it is necessary only to input new data.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1			
2	Key in four of the following in			
	any order:			
	• Fixed costs	F	А	F
	 Sales price per unit 	Р	B	Р
	 Variable costs per unit 	V	С	V
	 Number of units 	U	D	U
	 Gross profit 	GP	E	GP
3	Calculate the remaining			
	variable.		A	F
			B	Р
			С	V
			D	U
			E	GP
4	To calculate the degree of			
	operating leverage			OL

Example 1:

The Cooper Company sells finance textbooks at \$13 apiece. Given costs and revenues below, how many textbooks must be sold to break even?

Fixed Costs	
Typesetting Graphics production Printing and binding	\$ 4,000 5,000 3,000
Total fixed costs	\$12,000
Variable costs per copy	
Distribution Commissions Royalties	\$1.00 3.75 2.00
Total variable costs per copy	\$6.75
Sales price per copy	\$13.00

Keystrokes:	Outputs:		
12000 A 13 B 6.75 C			
0 E D	 1920.00 (number of units)		

Example 2:

19-03

Having just completed the above problem, what is the Copper Company's degree of operating leverage at 2000 units? At 5000 units?

Outputs:

in sales volume)

Keystrokes:

e	-	
2000 🖸 🚺 🗛	 25.00	(this is close to
		the break-even
		point)
5000 🖸 🚺 🗛	 1.62	(the company is far-
		ther from the break-
		even point and less
		sensitive to changes

NOTES

INVOICING

Given a discount rate (DISC), number of units (UNITS), and price per unit (PRICE) for each line item, this program calculates the net line total (NLT), maintains a running subtotal (ST) and grand total (GT), and determines each line total's percent of the grand total (%T). A maximum of 20 line items may be input. If more than 20 are input, ERROR is displayed.

The net line total is the number of units multiplied by the unit price, less the discount amount. Each time it is calculated (**E**), the value is added to both the running subtotal and the grand total. Pressing **1 A** displays the running subtotal and clears the subtotal accumulation (grand total is not affected). Pressing **1 B** displays the grand total (without clearing it). The grand total is not cleared (set to zero) until you START (**A**) a new problem.

Each line total's percent of the grand total is determined by pressing **1 C**. If the print/pause flag is on, the percentages are output automatically. Otherwise **R/S** must be used. The last output is 100.00, indicating that all percentages have been calculated.

If after calculating a net line total (\square) it is discovered that one of the last input values was keyed incorrectly, press \square \square to delete the last line total. The previous subtotal is displayed. If a prior line total was incorrect, it is necessary to input the appropriate discount, number of units, and price before \square \square is pressed to delete the corresponding line total.

The discount rate, number of units and unit price are retained and must only be keyed in when they change.

Pressing **[] E** sets and clears the print/pause option. Successive use of **[] E** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1			
2	Optional: Select print/pause			
	mode.			1.00 or 0.00
3	Initialize (START)		A	0.00
4	Key in:			
	 Discount rate 	DISC (%)	B	DISC (%)
	 Number of units 	UNITS	C	UNITS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	 Price per unit 	PRICE	D	PRICE
5	Calculate net line total		8	NLT
6	Optional: Display running			
	subtotal			ST
7	Optional: Display running			
	grand total		1 B	GT
8	Display each line total's percent			
	of the grand total		[] C	% T ₁
	Use R/S if print/pause mode is			
	off (0.00).		R/S	% T₂
			R/S	% T ₃
			etc.	
9	If last net line total was incorrect			ST
10	For additional items, same			
	grand total, go to step 4 and			
	change appropriate inputs. For			
	a new case (clear everything)			
	go to step 3.			

Example 1:

The controller of a small company can take advantage of several discounts if he pays the three bills shown below. What amount should be remitted for each bill, what is the grand total to be paid, and what percentage of the grand total is each payment?

Bill 1 (2% discount if paid today)

Line Item	# of Units	Unit Price
1	25	\$ 2.75
2	60	1.50
3	71	1.50

Bill 2 (2% discount if paid today)

Line Item	# of Units	Unit Price
1	12	\$10.50
2	17	37.20

Bill 3 (3% discount if paid today)

Line Item	# of Units	S	Unit	Price	
1	155		\$.28	
2	38			.92	
3	217			.56	
Keystrokes:		Outputs:			
A 2 B 25 C 2.75 D E	>	67.38			
60 C 1.50 D E	>	88.20			
71 C E	>	104.37			
[] A	>	259.95	(Subto	otal—Bill	1)
12 C 10.50 D E	>	123.48			
17 C 37.20 D E	>	619.75			
[] A	>	743.23	(Subto	otal—Bill	2)
3 B 155 C .28 D E	>	42.10			
38 C .92 D E	>	33.91			
217 C .56 D E	>	117.87			
[] A	>	193.88	(Subto	otal—Bill	3)
[] B	>	1197.06	(Gran	d total)	
<u>[]</u> C	>	5.63)		
R/S	>	7.37			
R/S	>	8.72	Eac	h net line	
R/S	>	10.32	total	l's percen	t
R/S	>	51.77	of the	ne grand	
R/S	>	3.52	tota	Ι.	
R/S	>	2.83			
R/S	>	9.85	/		
R/S	>	100.00			

NOTES

This section gives an illustration of a payroll program for a small business, which may be modified to suit the employer's particular needs. Since each individual business will have its own needs, requiring modification of this program, we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section. For *example* purposes we have chosen a small business operating in the state of California.

The basic concept around which the program is built is that there is one main program, with a separate data card for each employee. After the net pay for each individual is calculated (based on the data card information), the data card is re-entered to record the new data onto the card.

The data card may contain information on the employee's Social Security number, the number of exemptions, marital status, hourly wage, overtime wage, gross pay to date, Federal, State, Federal Insurance Contributions Act (FICA) and California State Disability Insurance (SDI) withholdings to date, and deductions such as savings deposits, contributions, health insurance, life insurance, stock plans, etc.

The program reflects the 1976 Federal Tax Laws. During 1976, the Social Security (FICA) tax base was increased to \$15,300, with the rate remaining at 5.85%. The California State Disability Insurance (SDI) taxable wage base is \$9000, with a rate of 1%.

The number of regular hours worked (#hrs), and the number of hours of overtime (#hrs OT), are input by pressing **D** and **C** respectively. Federal (FEDL) and state (STATE) taxes are input by pressing **D** and **C**. The net pay key (**1 A**) calculates the weekly FICA and SDI, deducts three constants, asks for a data card to record new data, and displays the net pay. All results are rounded to two decimal places.

An option is available (1 B) to display the gross pay and the Federal, State, FICA, and SDI deductions to date.

A print/pause option is also available (\blacksquare **G**). Successive use of **f G** will alternately display 1.00 and 0.00, indicating that the print/pause mode is on or off respectively. When the print/pause mode is off (0.00), multiple results must be output with **R/S**. If the print/pause mode is on (1.00) multiple results are automatically printed or displayed.

Note:

The user must provide the applicable Federal and State tax tables.

To use this program, the following registers need to be recorded on a data card:

To record data onto a data card, the following procedure may be used:

- 1. Set the PRGM-RUN switch to RUN.
- 2. Key the data into the appropriate storage registers.
- 3. Press (W/DATA) on the HP-67, or press (WRITE DATA) on the HP-97. The display will show [Crd].
- 4. Insert an unclipped blank card. If the secondary storage registers contain non-zero data, insert the second side of the card. The data in the storage registers is now recorded on the data card.
- 5. To change data already on an unclipped card, enter the card, key in the appropriate new data, repeat step 3, and re-enter the data card. The card now contains the revised data.

The following example illustrates the use of this program.

Example 1:

Having just purchased an HP-97 (or HP-67), Mr. Cooper is anxious to set up a payroll system for his hourly employees. The Cooper Company is located in Cupertino, California. A typical employee summary is:

	Gross	Total Federal Tax	Total State Tax	Total FICA	Total SDI	Health Insurance	Stock Plan(%)	United Fund
Joyce Waters SS No: 553-86-7778 Marital Status: Single Exemptions: 1 Hourly Wage: \$4.00 Overtime Wage: \$6.00	\$2064.00	\$335.64	\$44.20	\$120.74	\$20.64	\$2.50	5%	\$1.00

Table 1

Mr. Cooper checks Ms. Waters' time card and finds that she worked 37½ hours this week. What is her take-home pay, gross pay, and Federal, State, FICA and SDI deductions to date?

To make a data card for Ms. Waters:

Keystrokes: Outputs: 553867778 сто І .1 STO E 1 STO B 4 STO C 6 STO D 2064 STO 0 335.64 вто з 44.20 STO 4 120.74 STO 5 20.64 STO 6 2.50 STO 7 5 STO 8 1 STO A W/DATA -Crd

Insert an unclipped blank magnetic card.

To determine net pay, record the Payroll program on the printed card and initialize.

Keystrokes:	Outputs:	
A	→ 0.00	(blinking)
Insert data card	→553867778.0	(Ms. Waters' Social
		Security Number)
R/S	→ 0.10	(Ms. Waters is single)
R/S	→ 1.00	(one exemption)
37.5 B	→ 150.00	(weekly wage)

From a federal tax table for single persons paid weekly, the withholding for a wage of \$150.00 and one exemption is \$20.50. The corresponding amount of California State Tax to be withheld is \$2.90.

Keystrokes:		Outputs:	
20.50 🖸		20.50	(Federal tax)
2.90 E		2.90	(California tax)
To find the net pay:			
[] A		8.78	(FICA)
R/S	>	1.50	(SDI)
R/S	>	2.50	(Health insurance)
R/S	>	7.50	(Stock fund)
R/S		1.00	(United Fund)
R/S	>	Crd	

Insert data card to record new data. Program will then continue and display the net pay.

For subsequent weeks, it will not be necessary to make a new data card for Ms. Waters. Simply input the Payroll program, initialize (), input her data card, execute the program, and re-record on the same data card. Using this procedure, the payroll information is constantly updated.

21-05

Suppose that in 1977 the FICA is increased to 6.15% of the base pay, with a taxable wage base of \$16,000. To change the program to meet new requirements, the following procedure should be followed:

1. Press GTO .051 2. Switch to PRGM mode \longrightarrow 051 03 3. Delete the last two steps _____ 049 DEL DEL -01 4. Insert the two digits of the wage base which were changed 60 <u>−−−−−</u>→ 051 00 5. Press GTO .062 ------ 062 05 6. Delete the last four steps \longrightarrow 058 _ 03 (this code will DEL DEL DEL DEL vary between the HP-67 and HP-97) 7. Insert the new percentage 6.15 062 05

8. Switch to RUN mode.

A similar procedure may be used to change or delete the SDI subroutine (LBL 2). Simply press **GTO** [2], switch to PRGM mode, and make the appropriate changes.

The user may also wish to expand or decrease the number of deductions to be taken. Eleven additional registers are available for constant storage (SO-S9, I). Subroutine 5 (LBL 5) may be accessed by pressing **GTO (I)** (in RUN mode) and then switching to PRGM mode. Changes in the routine may then be made. Be sure to delete inappropriate routines already recorded.

Remember that if the secondary storage registers are used (S0-S9), both sides of the data card will need to be recorded.

We recommend that the user does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program. NOTES

INVENTORY

This section gives an illustration of how an inventory program might be written. Every business will probably have a different inventory method, so we have included a *blank* magnetic card with an unclipped corner. To run the example, the user must record the program included in the Program Listings section.

The first step in developing any program is to define what will be calculated, and which labels will be used to do the calculations. The card art shown above, could be programmed to do the following:

START		initializes the program by asking for a data card; then displays a part number (10 digit maximum)
PRICE		stores price of parts received
RECD		subtracts the number of units received from amount ordered; adds the number of units received to total on hand; calculates new unit price by weighted average method; calculates slack (quantity on hand plus quantity on order less quantity required)
ISSUED		subtracts number of units issued from those on hand; calculates slack
ORDER		adds number of units ordered to those already on order; calculates slack
MIN		stores minimum quantity
LT→SLH	ζ—	when the lead time (in days) is input, the slack is calculated
LIST		recalls and displays inventory information
UPDATE		asks for data card to record new inventory information
P?		sets and unsets the print/pause flag; successive use of 1 E displays 1.00 and 0.00 indicating that the print/pause mode is on or off respectively

The main program contains the instructions to perform the above calculcations. A separate data card holds the current inventory information for each part number. The data card may be updated after the transactions have been completed.

To use this program, the following registers should be recorded on a data card:

 $R_0 \longrightarrow$ Part number (10 digit maximum) $R_1 \longrightarrow$ Unit price

The program uses three additional registers for calculations, so 16 registers are still available.

The following report illustrates how this program might be used.

Inventory Report February 15, 1976

Part #	Unit Price	Quantity on Hand	Quantity on Order	Minimum Quantity	Lead Time
2417126 3668871	9.91 4.96	275 250	319 100	370 225	56 46
•				•	
•				•	
•	•			•	•

Data cards for each part number could be made in this manner:

1. In RUN mode, store data in the appropriate registers.

2. Press W/DATA and insert a blank, unclipped card.

3. Repeat the procedure for each part number.

Suppose that in the next week, the following part was received:

Part #	Unit Price	Amount Received
2417126	10.25	150

To update the data card to reflect this transaction, use the following procedure:

- 1. Record the inventory program.
- 2. Press ▲. The display will blink zeros until a data card is input. When the data card is entered, the display will show the part number
 2417126.00

22-02

22-03

- 3. Key in the price of each unit received and press **B**. 10.25 **B**
- 4. Key in the number of units received and press **C**. 150 **C** → 425.00

The number displayed is the quantity on hand.

5. To review the status of the part number, press:

	10.03	(New unit price)
R/S	425.00	(Amount on hand)
R/S	169.00	(Amount on order)
R/S	370.00	(Minimum quantity)
R/S	56.00	(Lead time)
R/S	224.00	(Slack
R/S	2417126.00	(Part number)

If the print/pause flag was on (1.00), these values would have been displayed automatically.

6. To record the new data press **[] D** and insert the data card. The new data is recorded, and the display shows 0.00.

Likewise, if parts had been sold or ordered, the appropriate amounts would be keyed in, the user would press D or E respectively, and then update the data card.

If the minimum quantity requirements change, key in the new minimum and press **1 A**. And if the user wishes to calculate the slack, key in the lead time and press **1 B**.

We recommend that the use does not clip the corner of the magnetic card provided. If you wish a permanent program card, you should use another blank card to record the program.

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owners Handbook.

Pro	gram	Page
1.	Internal Rate of Return	L01-01
2.	Internal Rate of Return—Groups of Cash Flows	L02-01
3.	Discounted Cash Flow Analysis—Net Present Value	L03-01
4.	Direct Reduction Loans—Sinking Fund	L04-01
5.	Accumulated Interest/Remaining Balance	L05-01
6.	Wrap-Around Mortgage	L06-01
7.	Constant Payment to Principal Loan	L07-01
8.	Add-On Rate Installment Loan/Rule of 78's	L08-01
9.	Savings Plan—Leases	L09-01
10.	Advance Payments	L10-01
11.	Savings—Compounding Periods Different from Payment Periods	L11-01
12.	Simple Interest/Interest Conversions	L12-01
13.	Depreciation Schedules	L13-01
14.	Days Between Dates	L14-01
15.	Bond Price and Yield	L15-01
16.	Interest at Maturity/Discounted Securities	L16-01
17.	Linear Regression—Exponential Curve Fit	L17-01
18.	Multiple Linear Regression	L18-01
19.	Break-Even Analysis	L19-01
20.	Invoicing	L20-01
21.	Payroll	L21-01
22.	Inventory	L22-01

INTERNAL RATE OF RETURN

001 002 003 004 005 006 007 008 009	*LBLA CLRG PZS CLRG STOE CF0 CF1 RTN *LBLB	16 16	21 11 16-53 16-51 16-53 35 15 22 00 22 01 24 21 12	Clear INV Clear	r registers → R _E r flags	ash flow if	057 058 059 060 061 062 063 064 065	RCLI 1 0 1 X STOI RTN *LBLe F0?	21 16	36 35 16 23	5 46 01 00 01 -35 5 46 24 5 15 5 00	LBL dow origi stori	fa sets o n <i>and</i> ke nal # of ing N.N.	ip I fi eps ti cash	or count rack of flows by
010 011 012 013 014 015 016	2 x STOØ RCLE X2Y ÷ STOE		02 -35 35 00 36 15 -41 -24 35 15	#CF	s > 22.	→R _E	066 067 068 069 070 071 072	GT00 INT EEX 5 ÷ RTN *LBL0		22 16 21	00 34 -23 05 -24 24 00	cash	flows.	016-2	lored
617	LSTX		16-63	Flag	0 indicate	- > 22 anab	073	FRC		16	44				
018	SFØ	16	21 00 02	flow	s.	s / ZZ Cash	074	RTN		21	24				
620	÷		-24				675	¢SB₀	23	16	11	Set-	up I		
021	RTN		24				077	RCLI		36	46	NN			
022	*LBLC	10	21 13	If FO) nack dat	a in registers	078	EEX			-23				
623	FØ?	16	25 46 23 00		, puer du	a in registers.	079 080	÷			-24				
025	GSBc	23	16 13				081	STOI		35	46	N.N	→1		
026	ST+i	35-	55 45				082	1			01				
027	X2Y PCLT		-41 76 46	Disn	lav # of ca	sh flows (add	083	:			-62				
020	F1?	16	23 01	if >	22 CF).		685	1			00 A1	1+	ia→Bro		
030	+		-55				086	STOD		35	14		0 10		
031	RTN		24				087	*LBL4		21	84				
032	*LBLc	21	16 13				088	CFØ	16	22	2 00				
033	23		0Z 03				089	STOR		75	99				
035	RCLI		36 46				891	*LBL5		21	05				
036	X≠Y?		16-32	23 rd	cash flow	?	092	RCLI		36	46				
837	6100		22 00				693	INT		16	34	Gat			
039	stor		35 46	Rese	tI		895	ESBJ	27	23	5 01	Get	1		
040	+		-55	Drop	stack and	l clear x.	896	RCL :	20	36	45				
841	CLX		-51				697	F1?	16	23	8 01				
042 847	ELX		-23			-	098	GSBe	23	16	15	Unp	ack CFj		
044	ST֯	35	24 00	2 CN	1AX/10" -	► R ₀	188	51+0 X	35	-93	- 35				
045	SF1	16	21 01				101	+			-55	f(i) i	n Ro		
846	*LBL0		21 00				102	RCLD		36	14				
047 048	K.		-31				103	51÷0	35	-24	-24				
849	-		-45				105	DSZI	16	25	46				
050	XZY		-41	Scale	e cash flow	,	106	6705		22	85				
051	RCLØ		36 00	0.00			187	F1?	16	23	01				
052 053	F12	16	23 01	If CF	j, j > 22,	drop frac-	108	6100 #1816		22	86				
854	INT		16 34	tiona	al part of C	ж _ј .	110	RCLO		36	00				
85 5	RTN	~	24				111	RCLE		36	15				
626	#LBL&	21	16 11				112	-			-45				
0	1		2	13		REGIS	5	6		Т	7	18		9	
Used	Used		Used	U	sed	Used	Used	Used	ł	1	Used	Us	ed	Ĺ	Used
SO Used	S1 Us	ed	S2 Used	53	Used	S4 Used	S5 Used	56 U	Jsed	5	⁵⁷ Used	58	Used	59	Used
A Used		в	Used		C Us	ed	D 1+	io	E		Used		1	Jsed	

113	XZY	· -4	1								
114	÷	-2	4	f /1	+ :)						
115	RCLL) 36 1	4	f'	+1)						
116	X	76	50								
110	XULL Y#Y	/ JOJ	4								
119	^+·	_	5	(1 + i) r	next.						
120	STOL) 35 1	4	1	io A t						
121	LSTX	16-6	3								
122	ABS	5 16 3	31								
123	EEX		23	f(i)/f'(i)						
124	СН	-2	22								
125			15								
126	A2 13	7 16-3	94 97								
120	CSB.	27 16 1	1		=!						
129	6104	22 6	14								
130	*LBL	21 6	90								
131	F03	16 23 6	90								
132	6106	5 22 6	96								
133	SFE	8 16 21 6	90								
134	GSBL	23 16 1	2								
135	GTOS	5 22 6	95	1							
136	*LULL	5 21 16 1	2	Loop b	ack for						
170	4	: e	12	lower 2	2 01 3						
139	RCL	36 4	16								
140	+	-5	55	Reset I	to lower 22 CF	s.					
141	STO	I 35 4	16								
142	CLX	· - ج	51								
143	+	-5	55								
144	RTI	N	24								
145	*LEL	21 16 1	4	Add 22	if flag O clear.						
145			12 20								
149	FR	2 16 27 6	40 10								
149	CL	-!	51								
150	+	-5	55								
151	RŢ	1 2	24								
152	≭ LBL7	7 21 8	97	Reset F	R _I for another						
153	RCLI	361	4	pressin	g of D						
154			11								
156	570	, 75 i	4								
157	FEX	< -2	23	R _I mus	t contain integ	er					
158		2 (92	nere.							
159	x	-3	35								
160	RCLI	1 36 4	16								
161	LST	K 16-6	53								
162	X		5								
163	5101	354	10								
165	PT.		4								
166	R/9		51								
				LAE	BELS			FLAGS		SET STATUS	
^A INV	B C	FMAX	c (CF	^D →IRR	E		⁰ > 22 CFs	FLAGS	TRIG	DISP
^a Used	٥L	Jsed	c (Jsed	^d Used	e U	sed	¹ Used	ON OFF	DEG 🕱	FIX 🕱
0 Used	1		2		3	4 U	sed	2	1 🗆 🛛		SCI
⁵ Used	⁶ L	Jsed	7 L	Jsed	8	9		3			n_2

INTERNAL RATE OF RETURN—GROUPS OF CASH FLOWS

				-			
001	*LBLA	21 11		657	std:	35 45	05
882	CLRG	16-53		058	RCLI	36 46	$CF_j \cdot n_j \rightarrow K(i)$
803	STOF	35 15	INV→R _E	059	CF8	16 22 00	
003	5102	91		868	RTN	24	
004	CT00	75 14		961	*1 81 4	21 16 14	Routine to sum cash
665	5100	33 14		001	+LDLU	21 10 19	flows and recall number
006	XZY	-41		062	6283	23 03	of groups before going
687	RTN	24		1063	B	86	to iteration routine
006	≉LBLB	21 12	If LRG CF exists	064	STOC	35 13	to iteration routine.
889	ABS	16 31		065	GTC7	22 07	
010	FFY	-27		866	#1 BL D	21 14	
011		23		0.67	PCLT	76 46	
611		67		007	ACL1	07 67	
012	÷	-24		068	6583	23 03	
013	LOG	16 32		069	\$LBL7	21 07	
014	INT	16 34	INT log	070	1	01	
015	XCR?	16-45	107	071		-62	1 + Initial guage
015	<i>CLY</i>	-51		872	â	88	r + mitiai guess
610	LLA	- 31		077	, i	00	
617	10-	16 33		073		61	
018	STOD	35 14		674	6SB¢	23 16 13	
619	RCLE	36 15		075	6106	22 00	
822	XZY	-41	INV/10 ^k →Br	076	*LBL1	21 01	
821		-24	inter in the	877	RCLA	36 88	
021	CTOF	75 15		870	CCPA	27 16 15	
622	STUE	33 10	k = 1 or 2	010	6356	23 10 13	
Ø23	RTN	24		673	STOC	35 13	
624	*LBLC	21 13		680	*LBL0	21 09	The secant method is used
025	1 SZ I	16 26 46	Scaling routine	031	RCLB	36 12	to evaluate f(i).
826	PCIC	76 17		082	RCLØ	36 00	
027	~~LU	30 13		0.97	STAR	75 12	
027	A+ 1	-41		000	5700	AE	
628	+	-55		684		-45	
029	STOC	35 13		685	RCLD	36 14	
030	CLX	-51		086	RCLC	36 13	
831	ISTX	16-63		087	STOD	35 14	
672	20//	-75		688	-	-45	
032		-33		000		-24	
633	57+6	35-55 00	Σn _i CF _i	005	-	-24	
634	LSTX	16-63	, ,	098	×	-35	
035	÷	-24		091	ST-0	35-45 00	
036	ISTX	16-63		692	RCLØ	36 80	
077	FFY	-27		693		-24	
070		25		824	DND	16 24	
038	2	02		0.05	~~~~	10 24	
633	÷	-24		695	A+0?	16-42	
040	XZY	-41		896	6101	22 01	
841	RCLD	36 14		897	RCLØ	36 00	
842	÷	-24		698	1	Ø1	
847	TNT	16 74		699	-	-45	
043	4/00	10 34		100	FEV	- 27	
044	XCOY	16-43	1	100	LEX	-23	
845	SFU	16 21 00		101	2	02	
046	ABS	16 31	1	102	×	-35	1
047	+	- 55	1	103	RTN	24	1
648	F0?	16 23 00		184	*LBL3	21 03	
049	CHE	-22		105	1	A1	1.01 (# groups)
043	1070	16.67		100	•	_ 43	(# groups)
050	LSIK	16-03		100	:	-02	
051	X=0?	16-43		107	v	00	1
Ø52	6585	23 05		108	1	01	
053	ENTT	-21	1	109	×	-35	- n ₁
854	ARS	16 31		110	5703	35 46	1
055	-	- 24		111	FTN	24	
000	-	75	1	1 112	*1 81 *	21 16 17	1
856	x	- 55		1 112	≠LDLC	21 10 13	
			REGI	STERS			• · · · · · · · · · · · · · · · · · · ·
0	1	2	3 4	5	6	7	8 9
* 1+i	CF1.	n ₁ CF ₂ · n ₂	CF ₃ •n ₃ CF ₄ •n ₄	CFs ⋅ ns	CF6	n ₆ CF ₇ •n ₇	CF ₈ •n ₈ CF ₉ •n ₉
S0 or	Slor	S2 or	\$3 or \$4 or	S5 or	S6 cr	S7 or	S8 of 59of
CF10 • n1	0 CF11	·n ₁₁ CF ₁₂ ·r	112 CF13 · n13 CF14 · n14	CF15 n		6 · n16 CF17 · n1	7 CF18*N18 CF19*N19
A CEastra	•	B Used		D f(i, .)		E Investment	I Used
20 112	0	Useu	'\'k/	(Vk-1/		investment	0360

							_	_				
	113	FFX	- :	23				169	÷	-24		
I	114	CHC		22				178	RCLE	36 15		
I	114	2/13		2				171	-	-45		
I	115			2				172	DIM	24		
	116	z		55	.01			1 1/2		24		
1	117	STOC	35	3				173	#LBL2	21 05		
	118	+	-	55				174	+	-55		
I	119	STOO	35 (98				175	ENTT	-21		
1	120	STOR	35	12				176	RTN	24		
1	121	CSRe	27 16	5				177	R/S	51		
1	121	CTOD	20 10 1									
I	122	5100	35	4								
	123	RCLU	36 (90								
I	124	RCLC	36	13								
I	125	-		\$5								
I	126	STOØ	35 /	90								
1	127	CSRe	23 16	15								
I	120	CTOC	20 10	17								
	120	DTN		13								
	129	KIN		4								
	130	*LBLE	21	15								
I	131	EEX		23								
1	132	2		32								
1	133	÷	- :	24								
1	134	1		31								
I	135			55	1 + : - 1	D						
	135	6100	75			n ₀						
I	136	5100	35 1	30								
I	137	*LELe	21 16	15								
	138	0		9(A								
	139	*LBL4	21 1	34								
	140	RCLØ	36 (96	Contin	ued fractions ar	е					
	141	RCL	36	15	used to	find the PV of						
1	142	FPC	16	14	the cas	h flows.						
I	142	400	10	74								
1	140	HDS	16	51								
1	144	EEX		23								
1	145	2		32								
	146	×		35								
	147	CHS	-3	2								
	148	Υ×		21								
1	1.49	, ¥	_	75								
1	150	^ .		31								
1	150	1		11								
1	151	LSIX	16-0	5								
	152	-		15								
	:53	RCL i	36 4	15								
	154	INT	16	34								
	155	x	-	35								
	156	<u> </u>		55								
	157	0.71	16 25	16								
	157	0521	16 23 .	+0								
	158	6104	22	14								
	159	RCLI	36 -	46								
I	160	1		31								
	161	0		30								
	162	1		81								
	167	× 1	_	75								
	163	~~~~		30								
	164	5101	35	46	0.05							
1	165	X2Y	-	41	DCF	-INV = NPV						
	166	RCLØ	3€	90	i							
	167	1		91								
	169	-		45								
I					L			1	E 1 4 6 C			
					LAE	BELS			FLAGS		SET STATUS	
	^A INV	B Lar	ge CF	CF	# #		E	Used	0	FLAGS	TRIG	DISP
	2	h		C		d			1	ON OFF		5.01
		ľ		ĭ Useo	ł	IN IRR	ſ	Used	Ľ		DEG 🕅	FIX 🕱
		1110	ad a	2		3 Liced	4	Llead	2	1.08	GRAD	sci 🗖
	Osea		su			Used	-	Osea			RAD 🗆	ENG 🗆
	⁵ Used	6		/ Used	ł	8	9		3	3 🗆 🖬		n4
- 6							-					

DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

001 002 003 004 005 006 007 008 008 008 001 002 008 008 008 008 011 012 013 014 015 016 017 018 021 022 023 024 025 0224 025 0224 0225 0224 025 026 027 028 029 030 031 032 033 0336 0337 038 0441 0442 0444 0444 0448 <t< th=""><th>*LBLA CHS STOA 0 STO3 1 STOC RCLA RCLA RCLS CHS GBB3 RTM *LBLB EEX STOB LSTX RTN *LBLC STOD STOD STOD RTN *LBLC STOD STOD 1 RCLB * RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCLA</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>-NPV → 0 → 1 → //100 → f = Calculat series.</th><th>RA R9 RC </th><th>057 059 060 061 062 064 065 066 067 068 067 070 070 071 072 073 074</th><th>#LBLe 2 F0? 1. ST01 SF0 1. RTN #LBL1 GT02 F0? 1 RTN #LBL9 F0? 1 GT02 R/S RTN #LB2 PRTX R/S</th><th>1 16 15 6 23 00 22 01 6 21 00 00 6 22 00 24 21 01 00 6 22 00 22 00 21 09 6 23 00 22 02 51 24 21 02 -14 51</th><th>Print</th><th>t option</th></t<>	*LBLA CHS STOA 0 STO3 1 STOC RCLA RCLA RCLS CHS GBB3 RTM *LBLB EEX STOB LSTX RTN *LBLC STOD STOD STOD RTN *LBLC STOD STOD 1 RCLB * RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA X RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCLA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-NPV → 0 → 1 → //100 → f = Calculat series.	RA R9 RC 	057 059 060 061 062 064 065 066 067 068 067 070 070 071 072 073 074	#LBLe 2 F0? 1. ST01 SF0 1. RTN #LBL1 GT02 F0? 1 RTN #LBL9 F0? 1 GT02 R/S RTN #LB2 PRTX R/S	1 16 15 6 23 00 22 01 6 21 00 00 6 22 00 24 21 01 00 6 22 00 22 00 21 09 6 23 00 22 02 51 24 21 02 -14 51	Print	t option
0	1	10	12	REGIS	TERS	6	7	To	10
0	ľ	2	3	4	5	6	7	8	⁹ Σn
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A NP	 v	B i/100	- Ic	#	D C	F	E (1 + i) ⁿ		1

						1			1	
		L	LAB	ELS	10		FLAGS		SET STATUS	
^A INV	^в i(%)	° #		U NPV	E	Σn	⁰ Print?	FLAGS	TRIG	DISP
a	D	c		a	e	Print?			DEG 🗵	FIX K
5	¹ Used	2 Used	d	3	4	llead	2	1 🗆 🖬 2 🗆 🕅	GRAD	SCI ∐ ENG □
ľ	ľ	ľ		-	ľ	Used	с С	3 🗆 🖬		n

DIRECT REDUCTION LOANS SINKING FUND

001 002	#LBLA Stoa	21 11 35 11	n→R _A	057 058	SF1 1	16 21 01 01	i/100→B-
003	F3?	16 23 03	Digit entered?	859	RCLB	36 12	1/100 / 119
884	RTN	24		868	¥ 9072	75 A9	
885	6SB0	23 00	Solve for n and store in R_{Δ} .	862	3103	-55	(1 + i) → R ₇
887	ISTX	16-63	2	863	ST07	35 87	
008	-	-45		864	RCLA	36 11	
009	RCLD	36 14		065	CHS	-22	(1 + i) ⁻ⁿ → R ₈
610	LSTX	16-63		066	Y×	31	
e11	-	-45		867	ST08	35 08	
612	÷	-24		668	RULE	36 15	$1 - (1 + i)^{-n} \rightarrow \mathbf{R}$
013	LN	32		003 070	Ŷ	-35	1 - (1+1) - 14
614	RCL /	36 07		871	RCLB	36 08	
01J 016	⊥	-24		072	-	-45	Calculate
R17	STOA	35 11		873	ST04	35 04	±(PMT/i)
018	RTN	24		074	RCLC	36 13	and store in
819	*LBLC	21 13	PMT→R _C	075	RCL9	36 09	R ₃
020	STOC	35 13	Digit entered?	876	÷	-24	
021	F3?	16 23 03		870	F1?	16 23 01	
022	RIN	24	Store dummy 1 for PMT	879	\$107	75 07	
023	0 TOT 9	75 17	Store durinity i for twitt.	080	x	-35	± 1 - (1 + 1) *
024	SBR	23 86		681	RTN	24	
826	1/X	52	Solve for PMT and store in	082	*LBLa	21 16 11	Start by clearing PMT.
027	RCLD	36 14	R _C .	683	CLX	-51	PV, FV(BAL) registers.
028	RŤ	16-31	÷	084	STOC	35 13	
029	-	-45		085	STOD	35 14	
030	×	-35		086	SIDE	35 15	
031	STOC	35 13		887	*1 PI P	21 12	
632		21 14		689	STOR	35 12	i→R _B
033 074	STOD	35 14	$PV \rightarrow PD$ Digit entered?	090	F3?	16 23 03	Digit entered?
035	F3?	16 23 03	Bigit entered.	091	RTN	24	1
836	RTN	24		092	0	88	Clear Ba for sum of i
037	GSBØ	23 00	Solve for PV and store in	093	STOB	35 12	terms.
638	+	-55	R _D .	094	2	02	Store address of Rp in
039	STOD	35 14		895	CTOI	25 46	R _I for indirect access.
040	RIN	24		030	PCLE	3J 40 76 15	
841	STOR	75 15	FV(BAL)→R _E	898	RCLA	36 11	
047	F32	16 23 03	Digit entered?	099	RCLC	36 13	
R44	RTN	24		100	×	-35	Start guess of I:
045	6SB0	23 00		101	+	-55	(DAL)
046	RCLD	36 14	Solve for FV(BAL) and	102	RCLD	36 14	If $PV = 0$ GTO $FV(BAL)$
047	X≓Y	-41	store in R _E .	103	X=0?	16-43	guess
049	-	-45		104	6103	-45	PV guess for i:
049	KULB	-24		105	RCLA	36 11	n PMT + FV(BAL) – PV
851	STOF	35 15		107	÷	-24	n
052	RTN	24		108	RCLD	36 14	and recall PV.
053	*LBL0	21 00	Clear FV(BAL) flag.	109	GT04	22 84	
854	CF1	16 22 01	If PV = 0 set FV(BAL)	110	∗LBL3	21 03	FV(BAL) guess for i
055	RCLD	36 14	flag.	111	RCLE	36 15	numerator:
056	X=0?	16-43		112	LSIX	16-63	
n	11	2	REGIS	STERS	16	. 17	18 19
	Ľ.	Ľ	[*] ±(PMT/i) [*] [1-(1+i) ⁻ⁿ]	5	ĭn(1+i) ⁻ⁿ⁻¹ (1 + i)	° (1 + i) ^{−n} [°] i/100
50	S1	S2	S3 S4	S5	S6	S7	S8 S9
A				D			
n		i i	С РМТ	P	v	FV(BAL)	21

113	- FNT†		45 21	2(FV(BAL) – n PMT)		169	÷		-24	lf value ≠ (), loop again.
115	+	-	55				170	KNU 4400		10 24		
116	RCLA	36	11	and de	nominator		172	CTOC		10-42 22 AC		
117	1		01	(n – 1)	² PMT + FV(BA	AL)	173	RCIR		36 12	Stop and d	isplay
118	-	-	45				174	RTN		24		
119	X2	:	53				175	#LBL5		21 05		
120	RCLC	36	13				176	EEX		-23	Convert i te	% and add
121	x		35				177	2		02	to content	of R _B .
122	RCLE	36	15				179	×		-35		
123	+	-:	55				179	ST+i	35-	55 45		
124	∗LBL4	21 (94	Guess	for i		180	RTN		24		
125	÷		24	IF gues	ss < -0.9; use –	0.9	181	R/S		51		
126	:	-	62	for gue	SS							
127	9		89									
128	LHS		22									
129	X41?	16	35									
130	741 CODE	27	41 95									
131	6383	23 0	47									
132	A-0?	16-	4J 24	If gues	s = 0 stop							
174	#I BLE	21	64 96									
135	ESR0	27	88									
136	+	-	55	0.1								
137	F1?	16 23	91	Calcula	ite f(i)							
138	CHS	-	22									
139	RCLD	36	14									
140	-		45									
141	RCL 8	36	98									
142	RCLA	36	11	0.1	- du							
143	RCL7	36 (37	Calcula	ite f (i)							
144	÷	-7	24									
145	x		35									
146	F1?	16 23 0	81									
147	CLX	- :	51									
148	STOE	35 (96									
149	F12	16 23	91									
150	RI		31									
151	FIY	16 23 0	51 67									
152	LSIX	16-	53									
153	RUL4	30	94 90									
155	KUL J	30	24									
156	-	-	45									
157	RCLC	.36	13									
158	x	-	35									
159	RCL 9	36	89									
160	÷	-	24									
161	RCLE	36	96									
162	RCLE	36	15									
163	×	-;	35									
164	-		45	41:14'1	`							
165	÷	- 2	24		,							
166	CHS	-	22									
167	GSB5	23	85									
168	RCLB	36	12									
	1-			LAE	BELS	Ic		FLAG	s		SET STATUS	
^ n	в	i	C PI	МТ	^D PV	E F	V(BAL)	0		FLAGS	TRIG	DISP
a STAR	г		с		d	е		¹ PV = 0				
⁰ Calc.	1		2		³ FV guess	4 01	Jess	2		1 🗆 🖬	GRAD	SCI 🗖
5 i→%	6 Io	ор	7		8	9		³ Digit?		2 2 2	RAD 🗆	ENG D
1	1				1					~ _ w		

L05-01

ACCUMULATED INTEREST/REMAINING BALANCE

								_					
881	*LBLA	21 11				057	\$LBLa	21	16 1	1			
882	RCLO	36 00				058	RCL7		36 6	17			
663	ST07	75 07	J→R ₇			659	FØ?	16	23 6	16			
003	v+v	-41	K→R			969	SPC		16-1	1			
004	0700	75 00				000	CCDO		27 6		J		
885	5100	35 00				061	6363		20 9				
006	RTN	24				062	1						
007	*LBLB	21 12				063	RCL1		36 (91			
005	EEX	-23				064	+		-	55			
609	2	82	i/100-	→R1		865	ST08		35 (8			
010	÷	-24				866	RCI 7		36 1	77			
010		75 01				000	CODI		27 1	2,			1
611	5101	35 61				067	6301		75 1				
012	LSTX	16-63				068	5104		30 1	14			
013	×	-35				069	RCLB		36 (98			
614	RTN	24				070	RCL7		36 (97	1		
015	#/ BLC	21 13				071	1		- (91			1
016	\$102	75 02	PMT-	B.		872	-		-4	15			
010	DTH	24		2		977	CCP1		27 1	21	1		
617		24				073	0014		70 1				
018	*LBLU	21 14				674	RUL4		30 6	79			
019	ST03	35 03				075	-			15			
620	RTN	24	PV→F	83		076	ST06		35 (36			
821	*LBLE	21 15				077	RCL2		36 (32			
822	RELA	36 88				078	XZY		- 4	11			
827	PCI 7	76 07				879	-			15	I INT	·.	
025	KCL7	1/ 75				000	0000		27	20	1	J	
024	A£1?	15-35				080	6589		23 1				
025	6100	22 00				681	RCL6		36 1	96			
026	STOØ	35 00				082	gsb9		23 1	9 9	PRI	NCJ	
827	R↓	-31				083	RCL4		36 1	34			
828	ST07	35 07				884	GSB9		23 1	39	B BB	AL.	
829	NI RI A	21 88				825	PCI Z		36	97			
020	*2020	21 00				005	DCI 2		76	22			
030	1	76 01				000	RULZ		30	26			
831	RCLI	36 01				087	×			35			
032	+	-55	(1 + i/	100)→R	8	088	RCL 3		36 (33			
033	ST08	35 08				089	RCL4		36 (94			
034	RCLØ	36 00				090	-			15			
035	GSB1	23 01	BAL	→ R.		091	-			15			
876	STOA	75 04	D'ALK	- 14		892	CSR9		23 1	20	1 70	-	
077	000	76 00				007	1		2.5	21	1 10		
637	RCLO	36 68				093		75	1	71			
638	RCLZ	36 07				094	51+7	32-	22 (11			
039	1	01				095	RCLØ		36 (30			
040	-	-45				096	RCL7		36 (97			
041	GSB1	23 01				097	X≦Y?		16-3	35	1	~ ~	
842	CHS	-22	- DAL	J-1		098	GTDa	22	16	11	1 2 4	N.	
847	PCI 4	76 94				699	PTN		•••	24			
045	ROLT	50 64				100							
		- 33	BALK	– BALJ	_{−1} → R ₆	100	ALDLI		21 9	71			
645	5106	32 66				101	LHS			~			
046	RCLØ	36 00				102	Y*			31			
047	RCL7	36 07				103	ST05		35 I	95			
648	-	-45				104	1		1	91			
849	1	A 1				105	-			15			
850	• •	-55				186	PCI 1		76 0				
051		76 60				107	NUL1		50 5				
051	RULZ	36 82				167			~ ~	4			
032	*	-35				108	KUL2		30 6	2			
053	+	-55	1			109	×		-3	15	1		
054	RTN	24	INT	ĸ		110	RCL 3		36 (33	1		
055	RCL4	36 84	BAL			111	+		-5	55	1		
056	R/S	51	1			112	RCL5		36 1	95	1		
			1								1		
			10		REGIS	STERS	lc.		1-		10		10
°к	i/100	² PMT	3	PV	4 Used	5 Used	^ь Used		ľ	J	8 1+	i/100	э
50	C1	62	63		54	C 6	56		\$7		58		sa
50	31	32	33		54	35	30		1°'		30		55
A				lc.	L	0		Te	I			L	L
<u>^</u>		0		Ŭ		5		Ē				ľ	
				-						-			
--------	--------------	---------	------------------	---------	-------------------	-------------------	----	----------	-------	------------	--------------		
113	÷	-2	24	RND n	nay be inserted	here.							
114	RTN		24										
115	*LBLe FØ2	16 27 6	15 16										
117	6102	22 6	A2	Print m	node option.								
118	SFØ	16 21 0	90										
119	1		91										
120	RTN		24										
121	#LBL2	216	12										
123	CER	16 22	90 90										
124	RTN		24										
125	*LBL9	21 6	19										
126	F0?	16 23 6	90										
127	6103	22 6	73 51										
120	RTN		4										
130	*LBL3	21 6	33										
131	PRTX	- 1	4										
132	RTN		24										
133	R/S	:	51										
				L				FLAGS		SET STATUS			
AIK	в		Ср		D PV	EINT	BB	0 Prin+2		JEISTATUS	D 107		
J, K	-		C PI	VI I	d	invi ;	nD	Print?	FLAGS	TRIG	DISP		
" SKD			Č			^e Prin	t?		0 🗆 🖬	DEG 🗵	FIX 🕱		
0 Used	1	Used	² Use	d	³ Used	4		2			SCI 🗆		
5	6		7		8	9 Use	ed	3		HAU U			

WRAP-AROUND MORTGAGE

										1		
881	#LBLA	21 11		-		857	×		-35			
882	CLRG	16-53	$-n_1 \rightarrow$	R		658	+		-55			
003	CHS	-22		→R ₃		859	RCL5	-	36 85			
884	ST01	35 01	-PV1	→R ₅		060	RCLE		36 86			
005	R₽	-31				861	x		-35			
006	ST03	35 03				062	-		-45	f(x)		
807	R↓	-31				0E3	STOI	3	35 4 6			
008	CHS	-22				064	RCL8	3	36 88			
889	ST05	35 85				065	RCL1	3	36 01			
616	PCI 1	36 01				066	х		-35			
R 11	CHS	-22				867	RCL3	3	36 03			
812	PTN	24				068	x		-35			
817	*/ 8/ 0	21 17				869	RCL 9	3	6 89			
013	+LDLC	_22	-n. +	R.		879	RCI 2		16 82			
014	6102	75 02	PMT.	→ R.		871	x		-35			
015	5102	35 82	PV/	$PV \rightarrow B$		872	PLIA		16 84			
010	CT04	-31			'5	973	×	•	-35			
017	5/04	35 84				074	-		-45			
018	K+	-31				075	BCI 7		76 97			
019	51+5	32-22 02				075	KLL/		24			
020	RCL2	36 02				676	-		-24			
621	CHS	-22				677	RULE		36 15			
022	RTN	24				678	RULE		56 86			
023	≰LBLD	21 14	BAL-	≻R₀		879	÷		-24			
024	STOO	35 00				080	-		-45			
025	RTN	24				881	RCLØ		36 00			
026	*LBLE	21 15				082	RCL2		36 02			
R27	EEX	-23	Initial	quess		083	×		-35			
828	CHS	-22	i→R ₆	5		034	RCL6	3	36 06			
029	7	A3				085	×		-35			
830	STOR	35 06				686	RCL 9	3	36 89			
071	AL RI A	21 89				087	x		-35			
031	1	21 00 01	Nout	an's math	and is used to	038	RCL Z	2	36 07			
032		70 90	finewic	on s metr	tod is used to	629	-		-24			
033	RULD	30 60	nna i.			898	÷.		-55			
034	1	61				000			-24	f(x)	/f`(x)	
035	*	-55				602	CT_C	75 - /	15 96			
636	5107	35 07				0.92	31-0 ADC	35				
837	RCL2	36 82				693	HBS		10 31			
038	Y۳	- 31				694	EEX		-23	Is th	is withi	n desired
039	ST09	35 09				695	CHS		-22	rang	e? If no	t, go to O.
640	-	-45				696	6		86	Oth	erwise m	ultiply by
041	RCL 4	36 04				097	X£Y?		16-35	100	and disp	olay periodic
842	×	-35				098	GTOØ		22 00	yield	J.	
043	1	01				699	RCLE		36 06			
844	RCL7	36 07				100	EEX		-23			
045	RCL 1	36 01				101	2		82			
846	Y×	31				102	×		-35			
847	STOR	35 08				103	RTN		24	1		
848	-	-45				104	*LBLa	21	16 11			
649	RCI 3	36 83				105	STOA	:	35 11		-	
850	x	- 75				106	RTN		24	1 1 1	אי	
851	-	-45				107	*LBLb	21	16 12			
052	STOP	75 15				108	EEX		-23			
857	PCIO	76 89				109	2		82	i/10	0→R _B	
054	PCLO	30 07				110	÷.		-24	1		
034	RULD	36 66				111	CTOD		75 12			
622	× .	-35				111	100		55 12			
056	RCL6	36 06	L			112	LOIX		10-63			
					REGI	STERS						
⁰ BAI	1 -n.	2 -0.2	3	PMT.	4 PMT ₂	⁵ PV ₂ - PV	6		⁷ 1+i	8 (1 -	+ i) ⁻ⁿ 1	$9(1+i)^{-n}2$
		.12					1				.,	
S0	S1	S2	S3		S4	S5	S6		57	S8		59
				1	1							
Α.	n	В		с	РМТ	D PV		E	Used		ľ	lised
		1 '		1		V			Osed		1	0300

1113 x 114 RTN 115 ±LELd 116 STOD 117 RTN 118 ±LBLc 119 RCLB 120 1 121 + 122 RCLA 123 CHS 124 Y ^x 125 1 126 X2Y 127 - 128 RCLB 129 ÷ 130 IX 131 RCLD 132 x 133 STOC 134 RTN 135 R-S	-35 24 21 16 14 35 14 21 16 13 36 12 36 11 -55 36 11 -41 -41 -41 -45 36 12 -24 51 35 13 24 51	PV→R Calcula R _C .	ate PMT and stor		FLAGS		SET STATUS	
^A n ₁ ,PMT ₁ ,PV ₁ ^B	C _{n2} ,	PMT ₂ ,PV ₂	D BAL	^E →i	0	FLAGS	TRIG	DISP
a n b	i ^C →Pi	ит	d PV	e	1	ON OFF		0.01
0 1 5 6	2		3	4 9	2 3		DEG 🛛 GRAD 🗆 RAD 🗆	FIX IX SCI ENG n 2

CONSTANT PAYMENT TO PRINCIPAL LOAN AMORTIZATION SCHEDULE

881	*LBLA	21 11			057	RCLB		36 12			
082	CF1	16 22 01			058	x		-35			
083	ST00	35 00	K→F	^k o	059	RCLD		36 14			
084	GSB9	23 09			060	x		-35			
005	RTN	24			061	F1?	16	23 81			
006	*LBLB	21 12			062	RTN		24			
007	EEX	-23	i/100)→R _B	063	6SB9		23 09	ТО	T INT	
808	2	82			864	RCLD		36 14			
809	÷	-24			065	RCLC		36 13			
619	STOR	75 12	1		866	÷		-24	Is I	oan paid	off?
010	1 674	16-67			967	RCIA		76 99	1		
011	LJIA	- 75			860	V) V2		16-74	1		
017	n	-35			800	PTN		10-34			
013	RIN	24			003	000		29			
814	*LBLU	21 13	0.00		070	SPL		16-11			
015	STUC	35 13	CPM	I → RC	071	6389		23 09			
016	RTN	24			072	GIUE	. .	22 15			
017	*LBLD	21 14			073	*LBLa	21	16 11			
Ø18	STOD	35 14	PV→	R _D	674	SF1	16	21 01	K⊣	Ro	
019	RTN	24			075	Stoø		35 00	J→	R ₈	
620	*LBLE	21 15			076	XZY		-41			
621	RCLD	36 14			077	ST0 8		35 08			
022	RCLC	36 13			078	1		01	1		
823	RCLØ	36 88			079	ST+Ø	35-	55 00	1		
624	x	-35			680	6SBØ		23 88	I το		
025	-	-45			681	STOT		35 46	1		*1
826	STOF	75 15		-> P	082	Prip		76 99			
020	BCLC	35 15		L⇒nE	002	STOR		75 00			
627	RULL	36 13			003	5100		33 88			
028	*	-55			004	6300		23 00		TINTJ	
629	RCLB	36 12			685	KLLI		36 46			
030	x	-35			686	XZY		-41			
631	ST09	35 09	PMT _i	→R ₉	087			-45			
032	1	61	Increi	ment for next period.	e 8 8	ESB9		23 89	TO'		+1- TOT INT
633	ST+Ø	35-55 00			089	RTN		24			
034	RCL9	36 09			090	*LBLe	21	16 15			
035	GSB9	23 09	INT		691	FØ?	16	23 00	Prir	nt/nause	flag
036	RCLC	36 13			892	6T01		22 01	1	re, puese	ing
637	+	-55			093	SF8	16	21 00			
638	ESR9	27 89	TOT	DMT	094	1		81			
679	RCLE	36 15			095	RTN		24			
640	CCDO	27 00			896	AL BL 1		21 61			
641	*1 PL 0	21 89		-	697			88			
642	+LDLU	21 00			898	CER	16	22 88			
042	0010	76 80	ΙΓ-	7	800	DTN		24			
043	KLLO	30 00	(2	- K) CPMT + 2	100			24			
644		-45		PV	100	ALDL3		21 07			
845	RULU	36 13		2	101	0100	10	23 00	Prin	nt/pause	routine.
846	x	-35			102	6102		22 02			
047	RCLD	36 14		Г	103	R/5		51			
048	÷	-24			104	KIN		24			
049	2	02			105	*LRL5		21 02	1		
850	+	-55			186	PRIX		-14			
051	2	02			107	RTN		24	1		
052	÷	-24			108	R∕S		51			
653	RCLØ	36 00									
854	1	81									
055	-	-45									
854	×	- 75							1		
0.70	~			DECH	TEDE				L		
0	11	2	3	4 REGI	5	16		7	18		9
чκ	ľ	ŕ	ľ	ľ	5	ľ		ľ	ľ.	J	″РМТ;
50	S1	S2	S3	S4	S5	S6		S7	S8		59
	ľ.					1					
A		B :/100	_	C CDMT	D		ΙE			1	
		1/100		CPMT			<u> </u>	RBAL		Us	ea

		5. 						
	-	LA	BELS		FLAGS		SET STATUS	
^A K	в i	ССРМТ	^D PV	E SKED	⁰ Print?	FLAGS	TRIG	DISP
^a J↑K	1 0	c	0	e Print?	2		DEG 🖬	FIX K
Used	Used 6	² Used	8	9	3		GRAD	
1			1	l Usea	1	13 LI 🖄		

ADD-ON RATE INSTALLMENT LOAN/ INTEREST REBATE—RULE OF 78's

831	*LBLA	21 11			657	1	01		
882	STOP	35 00	ODD x 12 _		658	+	-55		
883	1	B1	365	'	859	ST06	35 86	Calculate f(i)	
884	2	82			868	RCL2	36 02		
001	× -	- 75			861	CHS	-22		
805	^ 7	87			862	Y*	31		
000	Š	65			867	6107	75 AZ		
667	6	00			003	5107	35 67		
008	5	62			864		-43		
009	÷	-24			065	RCLU	36 84		
010	ST01	35 01			066	÷	-24		
011	X≓Y	-41			067	RCL5	36 85		
A12	ST02	35 02			068	x	-35		
B13	RCIA	36 00			069	RCL6	36 86		
B14	PTN	24			878	RCI 1	36 01		
015		21 12			871	YX	71		
615	*LBLD	21 12			872	Dria	76 94		
616	\$103	35 03			072	KCL4	30 04		
017	RTN	24			673	x	-35		
018	*LBLC	21 13			874	-	-45		
019	ST04	35 84	AMT→R₄		075	RCL7	36 87		
620	RTN	24			076	RCL6	36 96	Calculate f'(i	
821	#I BI D	21 14			077	÷	-24		
822	PCI 2	76 82			878	RCI 2	36 82		
022	DCL 1	70 81			879	1	A1		
623	RULI	36 01			073	.*	55		
024	+	-55			686	+	-55		
025	1	01			681	×	-35		
026	2	62		_	082	RCLØ	36 00		
027	÷	-24	[/		083	x	-35		
828	RCI 3	36 83		AMT	684	1	01		
820	KULU V	- 75	12		085	RCIZ	36 97		
023	rêv	27			804		-45		
630	EEX	-23	L .	J	000	DCL 0	74 00		
031	2	02			087	RLLE	36 86		
Ø32	÷	-24			668	+	-55		
033	RCL 4	36 04	FC→B _o		089	-	-45		
634	×	-35			690	RCLO	36 00		
835	STOP	35 88			091	X۶	53		
876	PCIA	76 84			092	÷	-24		
977		-55			693	RCI 5	36 85		
037	D (1)	7(0)	FC + AMT		894	NOLO	- 75		
038	RULZ	36 02	N	7 n ₅	0.05		-35		
039	÷	-24			095	RCLD	30 00		
040	ST05	35 05			096	RCLI	36 81		
041	RTN	24			697	Y*	31		
042	RCLØ	36 00			098	RCL6	36 06		
843	R/S	51			699	÷	-24		
844	+I PI F	21 15			180	RCI 1	36 R1		
845	PCI 7	76 87			101	XTY	-41		
045	RULJ	30 03	Calculate APR		102	~ · ·	-75		
646	1	01			102		-55		
647	2	65			103	L21V	10-03		
048	EEX	-23	Guess = AIR/1	200	104	-	-45		
049	2	02			105	RCL 4	36 84		
050	÷	-24	If AIR = 0 then		106	×	-35		
051	X=0?	16-43			107	-	-45		
852	RTN	24	Arn-0		108	÷	-24		
857	STOP	75 88			109	RCLØ	36 88		
033	41 DI 1	21 01			110	XTY	-41	i. = i 1	(i)
034	+LOLI	21 01			110	0+ I	45	'k = 'k-1 =	(1)
855	1	Ø1			111		-45	T	0
856	RCLD	36 00			112	5100	35 00		
				BEGIS	TERS				
0 Lland	1 1 100-	2 1100	3 1100	4	5	6	7.	18 1	9
Used	Used	Used	Usea	AMT	PMT	1+i/100	(1+i/100) ⁻¹	1 1	-
SO	S1	S2	S3	S4	S5	S6	S7	S8	S9
						1			
A		в	с		D		E	·	

			-						
113 114 115	ABS EEX	16-63 16 31 -23	ls ansv	ver close enough	?				
116 117 118 119	CHS X≰Y? GTOJ	-22 16-35 22 01	No→g – – –	o to LBL 1					
120 121 122 123	RCL0 1 2 0	36 00 01 02 08	Display	/ answer					
124 125 126	0 X RTN	00 -35 24							
127 128 129	STOO RTN	35 80 24	N→R₀						
131 132 133	ST01 RTN *LBLc 21	35 Ø1 24 1 16 13	K→R1						
134 135 136	STO2 RTN *LBLd 21	35 02 24 1 16 14	PMT→	R ₂					
137 138 139 148	STU3 RTN *LBLe 2: RCL0	35 03 24 1 16 15 36 00		3					
141 142 143	RCL1	36 01 -45 01							
144 145 146	RCL3	-55 36 03 -35	FC(N	<u>N – K + 1)</u> (N + 1)					
147 148 149 159	LSTX	53 53 16-63 -55							
151 152 153	÷ RCLØ RCL1	-24 36 00 36 01		 Г FC(N - K + 1	,ī-				
154 155 156	× ST04 PTN	-45 -35 35 04 24	(Rebat	N(N + 1)	_]				
158 159 160	RCL2 RCL0 RCL1	36 02 36 00 36 01	 PMT (N	– – – – – – – – – K) – Rebate					
161 162 163	- × RCL 4	-45 -35 36 04							
164	- R∕S	-40 51							
			LAI	BELS		FLAGS		SET STATUS	
^A N†ODD	^B AIR	с д	MT	D PMT, FC	E APR	0	FLAGS	TRIG	DISP
^a N	ьκ	с Р	мт	d FC	^e REB, BAL	1	ON OFF		
0	¹ Used	2		3	4	2		GRAD	SCI 🗆
5	6	7		8	9	3	2 2 2	RAD 🗆	ENG

L09-01

SAVINGS PLAN—LEASES

											_			
881	*LBLA		21 11	n→	RA		857	SF1	16	21 81				
882	STOA		35 11		<u>^</u>		858	1		01				
003	F3?	16	23 03	Digi	t entered?		859	RCLB		36 12	i/1	00→R,		
884	RTN		24				868	z		55				
885	6 SB0		23 00				061	ST09		35 89				
886	RCLE		36 15				862	+		-55	(1	+i)→R ₇		
087	LSTX		16-63	Solv	re for n an	d store in R _A .	063	ST07		35 07				
008	-		-45				864	RCLA		36 11				
889	RCLD		36 14				065	CHS		-22	(1	+i) ^{−n} →F	₹8	
R1 A	ISTX		16-63				066	Y×		31				
R 11	-		-45				067	ST08		35 88				
R 12	÷		-24				968	RCLE		36 15				
R13	Í N		72				869	x		- 75				
B14	PCI 7		76 87				870			91				
815			72				871	PCIR		76 89	1 1 -	$(1 + i)^{-}$	ⁿ → R.	
015	-		-24				872	NCLU		-45	1	11 - 17		•
Ø17	STUP		75 11				877	ST04		75 94				
810	DTN		24				874	Prin		76 17	Ca	culate ±		/1)
810			21 17				074	DCI 0		36 13	and	i store in	нз.	
015	+LDLU		75 17				075	RLLJ		36 09				
020	5100		37 13	PM	→R _C		676			-24				
621	F 3 ?	16	23 03	Digi	t entered?		077	F1?	16	23 01				
022	KIN		24				678	LHS		-22				
623	1		01	Stor	re dummy	1 for PMT.	679	5103		35 83	1	PMT .		
024	STUC		35 13				080	RCL7		36 07	± -	[1	-(1+	i)"] R ₇
025	ESBR		23 00				081	x		-35				
026	1/X		52				082	×		-35				
027	RCLD		36 14	Solv	e for PMT	and store in	683	RTN		24				
028	<u>R†</u>		16-31	R _C .			684	*LBLa	21	16 11				
029	-		-45	-			085	CLX		-51	Sta	rt by cle	aring	PMT,
630	x		-35				086	STOC		35 13	PV	, FV(BA	L) reg	gisters.
031	STOC		35 13				087	STOD		35 14				
Ø32	RTN		24				088	STOE		35 15				
033	*LBLD		21 14	PV-	+ R _D		089	RTN		24				
034	STOD		35 14		-		090	*LELB		21 12	li→	Ra		
035	F3?	16	23 03	Diai	t entered?		091	STOB		35 12		в		
036	RTN		24				092	F3?	16	23 03			د ۲	
837	6SB0		23 00	Solv	e for PV a	nd store in	693	RTN		24		nt entere	۵r	
e3 8	+		-55	Bo			094	0		00	0			
e 39	STOD		35 14	1.0.			095	STOB		35 12	tor		rsum	011
848	RTN		24				096	2		02	len	ns.		
841	*LBLE		21 15				897	1		01				. .
642	STOE		35 15	EVI	$BAL \rightarrow R$		098	STOI		35 46	Sto	re addre	ss of	R _B in
643	F3?	16	23 03			-	899	RCLE		36 15		for indir	ect ac	cess.
044	RTN		24		t entered?		100	RCLA		36 11				DAT
845	6SB0		23 80				101	RCLC		36 13	Re	call FV(E	SAL),	n, PMT
046	RCLD		36 14		- 4 E)//		102	X=0?		16-43	1 14 1	MT - 0	CTC	- : D\/
047	X₽Ŷ		-41	501	e iorrV(BAL) and	103	GT08		22 08		colution	310	n, I, FV,
048	-		-45	stor	e in nE.		104	x		-35	1.	solution	•	
049	RCL8		36 08				105	+		-55				
850	÷		-24				186	RCID		36 14	Sta	rt guess	ofi:r	PMT
051	STOE		35 15				197	X=8?		16-43		+ FV(BA	L)	
652	RTN		24				108	6103		22 83	IfF	•V = 0 G	TO F	V guess
853	*/ RI Ø		21 80				100	-		-45	PV	guess fo	ri:	
854	CE!	16	22 81	Clea	r FV(BAL	.) flag.	110	DCI A		76 11				
Ø55	RCID		36 14	I II P	v = U, set	FV(BAL) flag.	111	KULH		-24		n PM I +	BAL	- PV
856	X=87		16-47				112	PC1 D		76 14			n	
000	n-0?		.5 45				112	RULU		30 14	and	l recall P	v	
	1.		10			REGIS	STERS			1.	1.		-	
,	l'		ŕ	³ ±	(PMT/i)	4 Used	5	6 Use	d	(1 + i)	8 (1	+ i) ⁻ⁿ	9	i/100
30	S1		52	52		SA	S 6	32		67	50		60	
	<u> </u>		1°	33		~	35	30		ľ′	30		29	
4	1	в		I	Ic	1	D		١۶			Ti	1	
n		[⁻	i		ľ	PMT	PV		ľ	FV(BAL)		ľ	21	

113	GT04	22	84	EV/D	AL \		169	RCL6	36 86		
114	*LBL3	21	03		AL) guess for i		170	RCLE	36 15	f(i)/f'(i)	
115	RULE	36	15	numer	ator		171	×	-35	10,7107	
116	LSIX	16-	63	2/841	p PMT) and		172	-	-45		
117	-	-	45	denor			173	÷	-24		
118	ENIT	-	21	(n - 1	2 PMT + RAI		174	CHS	-22		
119	- +	-	55				175	ESB5	23 05		
120	KCLA	36	11				176	RCLB	36 12		
121	1		81				177	÷	-24	14	. .
122	-	-	45				178	RND	16 24	If value ≠	u, loop again.
123	×2	-	53				179	X≠0?	16-42		
124	KLLU	36	13				180	GT 06	22 06	Stop and d	icolov
125	DOL E	-	35				181	RCLE	36 12	Stop and u	ispiay.
126	RULE	36	12				182	RTN	24	Compute i	for a : DV/
12/			33	Guere	fori		183	*LBL8	21 08	EV probler	n n n n n n n n n n n n n n n n n n n
120	#L5L4	21	24	If quess		0	184	RCLE	36 15	i i problet	
129	÷	-	24	for au	ns < -0.3, use -0	1.5	185	RCLU	36 14		
130		-	62	ior gut			196	÷	-24		
172	C U C		22				187	RCLA	36 11		
132	v/vo	16	22 75				188	1/X	52		
133	A≝1? V+U	16-	33				189	YX.	31		
134	0CDE	27	41				190	1	01		
133	6303	23	47	16 00000	a = 0 atan		191	-	-45		
177	A-0:	10-	43	I i gues	s – U stop.		192	*LBL3	21 05	Convertit	o % and add
170		21	69 02				193	EEX	-23	to content	of R-
170	+LDL0	27	90				194	2	82	lo content	or ng.
140	6300	23	55	0.1.1.1			195	×	-33		
140	E10	16 27	0-1 0-1	Calcula	ate f(i)		196	51+4	30-00 40		
141	CUC	10 23	22				197	NIN D (C	24		
142	PCID	76	14				198	K/5	51		
143	KULD -	30	45								
145	Prio	76	a 0								
145	PCIA	76	11		du						
147	PCI 7	70	67 67	Calcula	ate f (i)						
140	×	30	24								
149	×.	_	75								
150	F12	16 23	A1								
151	ci x		51								
152	STOR	35	86 86								
153	F12	16 23	R 1								
154	P1		31								
155	F12	16 23	A1								
156	LSTX	16-	63								
157	RCL 4	36	04								
158	RCL 9	36	Ø9							1	
159	÷	-	24								
168	-	-	45								
161	RCL7	36	07								
162	×	-	35							1	
163	RCL 4	36	84								
164	+	-	55								
165	RCLC	36	13							1	
166	x	-	35								
167	RCL 9	36	89							1	
168	÷	-	24								
				LA	BELS			FLAGS	6	SET STATUS	
A n	в	i	С	PMT	D PV	^E FV	(BAL)	0	FLAGS	TRIG	DISP
a START	. b		с		d	е		1 PV = 0	ON OFF		
			2		3.54	4		2	• • • ×	DEG 🕱	FIX X
Calc.			É		✓ FV guess	" gue	ss	-			
⁵ →%	6	loop	7		⁸ n,PV,FV→i	9		³ Digit?	3 🗆 🛛		n_2

ADVANCE PAYMENTS

								057	001.0		76 00			
001	*LBLA		21 11					057	RLLD		30 00			
002	ST01		35 01	A→R	1			058	RCLI		36 01			
887	X2Y		-41	-n→F	ło –			859	+		-55			
004	CHC		-22					868	Y×		31			
004	610		75 00					961	.,		A 1			
005	\$100		35 00					001			01			
006	CHS		-22					062	X7 1		-41			
887	XIY		-41					063	-		-45			
800	V1 92		16-74	$\Delta > r$	2			864	RCL2		36 02			
000	A/ 11		10-34	~~ '				0.05	-		-24			
009	6102		22 02					065			76 04			
010	RTN		24					066	RCLI		36 01			
R11	*1 BL D		21 14					067	+		-55			
012	ST04		75 84	PV→	R.			068	RCI 3		36 03			
012	5704		35 64		•4			0.00			-75			
613	KIN		24					005			74 07			
614	*LBLE		21 15					070	RULT		36 07			
015	\$705		35 05	RESI	D→R			071	RCLO		36 00			
616	RTN		24					672	٧×		31			
010		21	16 17					077	PCI 5		76 05			
617	*L5LC	21	16 13					073	ACLU		30 83			
018	EEX		-23	i/100	→R₂			674	×		-35			
019	2		02					075	+		-55			
620	÷		-24					076	RCL 4		36 04			
021	6702		75 42					977	-		-45			
021	5102		35 02					0.70	CTOC		75 96			
622	1		61					078	3106		33 00			
023	+		-55	(1 + i	/100)→R	17		079	RCL7		36 117	Calo	culate f'(i)
824	ST07		35 07					080	RCLE		36 00			
825	PCIA		76 00					881	RCI 1		36 91			
025	KULU		30 00					002			-55			
026			31					002	· .		0.0			
027	RCL5		36 05					083	1		61			
628	x		-35					084	-		-45			
829	RCL4		36 Ø4	C-1				085	Υ×		31			
879	V+V		-41	Calcu	ate Pivi I			0.96	PCIA		36 88			
636	A+ 1		-41					000	CUC		- 22			
631	-		-45					087	CHS		-22			
032	RCL7		36 07					088	RCL1		36 01			
633	RCLR		36 88					089	-		-45			
974	PCI 1		76 01					690	×		- 35			
634	RULI		50 61					0.50	0012		76 02			
632	+		-55					091	RULZ		30 02			
036	Y×		31					092	×		-35			
637	1		81					893	RCL7		36 07			
078	XTY		-41					894	RCLØ		36 00			
0.30	0+1		45					005	PCI 1		76 01			
633			-45					0.00	NOL1		60 01 EE			
043	RCL2		36 82					096	+		-55			
041	÷		-24					697	Υ×		31			
842	RCL 1		36 01					098	1		01			
047			-55					699	XZY		-41			
043	-		-55					100	A+ /		- 45			
044	-		-24					100	-		-45			
645	RTN		24					101	-		-45			
046	*LBLb	21	16 12					102	RCL2		36 02			
047	ST07		35 83					107	¥2		53			
047	5103			PMT-	≻R3			103			-24			
648	EEX		-23					104			-24			
049	CHS		-22					105	RCL3		36 83			
050	3		83					106	×		-35			
051	ST02		35 82					107	RCL7		36 07			
051	+1 81.9		21 00					100	RCIA		36 88			
032	#LDLU							100	KULU 4					
053	1		61	Calcu	ate f(i)			109	1		61			
854	RCL2		36 02					110	-		-45			
055	+		-55					111	Y×		31			
054	5107		35 87					112	RCL5		36 05			
0,00	3107		55 67											
			Io			1.	REGI	STERS			-	1.		
-n	A		² i/100	3	РМТ	4	PV	5 RESID	۴ f(i)		⁷ i+i/100	8		9
S0	S1		S2	S3		S4		S5	S6		S7	S8		59
						1			- ⁻			1		
A		в			С	-		D		E			h	

113 114 115 116 117 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	x RCL0 36 x + st-2 35-45 ST-2 35-45 CHS 16 EEX 16 CHS 22 RCL2 36 EEX 2 x 2 RTN 16 PSE 16 GT02 22 R/S	-35 00 -35 -55 06 -24 -24 02 -35 00 2-22 06 -35 00 2-23 00 2-23 00 2-23 00 2-23 00 2-35 51	f(i)/f'(i ls this i accurac	i) within desired cri n, flash A on di	splay.		ELADO			
A D A	в	С	LAE		Ep		0 FLAGS		SETSTATUS	
n, A	b .	C		PV	I RI	-510	,	FLAGS	TRIG	DISP
a	° →i	→PM	т	u	e				DEG 🕱	FIX KG
⁰ Used	6	² Used 7		8	4 9		3		GRAD □ RAD □	SCI ENG n 2

SAVINGS-COMPOUNDING PERIODS DIFFERENT FROM PAYMENT PERIODS

001	*LBLA	21 11	If P/C > 1 set flag 0	057	X	-35	
002	÷	-24	11 F/C > 1, set hay 0.	058	RULD	36 14	
003	STOD	35 14		859		-55	
804	1	01		060	RELE	36 13	
005	XZY	-41		661	×	-35	
006	x>Y?	16-34		062	÷	-24	
007	F0?	16 23 00		063	1	01	
608	RTN	24		064	<i>+</i>	-55	
889	*LELB	21 12		065	LN	32	
010	EEX	-23	1400 - 0	066	RULB	36 12	
011	2	02	1/100→R _B	667	1	61	
812	÷	-24		068	.	-55	
013	STOB	35 12		069	LN	32	
814	LSTX	16-63		870	÷	-24	
015	×	-35		071	RCLU	36 14	
016	RCLB	36 12		072	X	-35	
017	1	01		673	RIN	24	
018	+	-55		074	*LBLC	21 16 13	Ro
019	RCLD	36 14		075	SIUC	35 13	110.
020	1/X	52	C/P -	076	F 3?	16 23 03	
021	Y۳	31	$(1+i)^{\circ,\circ} \rightarrow \mathbf{R}_{9}$	877	RIN	24	
022	ST09	35 09		078	FØ?	16 23 00	
023	X₽Y	-41		079	GT01	22 01	
624	RTN	24		080	RCL9	36 09	
025	*LBLa	21 16 11	If digit entered, store in	081	1	01	
026	STOA	35 11	na.	082	-	-45	If P/C ≤ 1, solve for pay-
Ø27	F3?	16 23 03		083	RCL9	36 09	ment amount.
028	RTN	24		084	RCLA	36 11	
029	F0?	16 23 00		085	Y×	31	
030	GTOØ	22 00		086	1	01	
631	RCL9	36 09	$P/C \le 1$, solve for number	087	-	-45	
03 2	1	01	of payments.	083	÷	-24	
033	-	-45		089	RCLE	36 15	
634	RCLE	36 15		090	x	-35	
835	x	-35		891	RCL9	36 09	
036	RCL9	36 09		092	÷	-24	
637	RCLC	36 13		093	RTN	24	
0 38	×	-35		094	*L6L1	21 01	If $P/C > 1$, solve for pay-
839	÷	- 24		R95	RUD	76 14	
848	1	-24		0.50	NULD	50 14	ment amount.
041	-	01		096	1/X	52	ment amount.
	+	01 -55		096 097	1/X RCLA	52 36 11	ment amount.
042	+ LN	01 -55 32		096 097 098	1/X RCLA X	52 36 11 -35	ment amount.
042 043	+ LN RCL9	-24 01 -55 32 36 89		096 097 098 099	1/X RCLA X RCLB	52 36 11 -35 36 12	ment amount.
042 043 044	+ LN RCL9 LN	-24 01 -55 32 36 89 32		096 097 098 099 100	1/X RCLA X RCLB 1	52 36 11 -35 36 12 01	ment amount.
042 043 044 045	+ LN RCL9 LN ÷	-24 01 -55 32 36 89 32 -24		096 097 098 099 100 101	1/X RCLA X RCLB 1 t	50 14 52 36 11 -35 36 12 01 -55	ment amount.
042 043 044 045 045	+ LN RCL9 LN ÷ RTN	-24 01 -55 32 36 09 32 -24 24		096 097 098 099 100 101 102	1/X RCLA X RCLB 1 + XZY	30 14 52 36 11 -35 36 12 01 -55 -41	ment amount.
042 043 044 045 045 046	+ LN RCL9 LN ÷ RTN *LBL0	-24 01 -55 32 36 09 32 -24 24 21 00	P/C > 1, solve for number	096 097 098 099 100 101 102 103	1/X RCLA x RCLB 1 + XZY Y [×]	30 14 52 36 11 -35 36 12 01 -55 -41 31	ment amount.
042 043 044 045 046 047 048	+ LN RCL9 LN ÷ RTN *LBL0 RCLE	-24 01 -55 32 36 09 32 -24 24 21 00 36 15	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104	1/X RCLA x RCLB 1 + X2Y Y [×] 1	50 14 52 36 11 -35 36 12 01 -55 -41 31 01	ment amount.
042 043 044 045 045 046 047 048 048 049	+ LN RCL9 LN ≑ RTN *LBL0 RCLE RCLB	-24 01 -55 32 36 09 -24 24 21 00 36 15 36 12	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105	1/X RCLA x RCLB 1 + X2Y Y [×] 1	50 14 52 36 11 -35 36 12 01 -55 -41 31 01 -45	ment amount.
842 843 844 845 845 845 845 845 845 849 858	+ LN RCL9 LN ÷ RTN *LBL0 RCLE RCL5 X	-24 01 -55 32 36 89 32 -24 24 21 80 36 15 36 12 -35	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 186	1/X RCLA RCLB 1 + XZY Y* 1 RCLB	36 11 -35 36 12 01 -55 -41 31 01 -45 36 12	ment amount.
842 843 844 845 846 847 848 849 858 859	+ LN RCL9 LN ÷ RTN *LBL0 RCLE RCLB X RCLD	01 -55 32 36 09 32 -24 21 00 36 15 36 12 -35 36 14	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 106 107	I/X RCLA RCLB I + XZY Y* I RCLB XZY	36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41	ment amount.
842 843 844 845 846 847 848 849 858 859 851 851	+ LN RCL9 LN ÷ RTN *LBL0 RCLE RCLB X RCLD 1	-24 -55 32 -25 36 89 -24 24 21 08 36 15 36 12 -35 36 14 61	P/C > 1, solve for number of payments.	896 897 898 899 100 101 102 103 104 105 106 107 108	1/X RCLA RCLB 1 + X2Y Y* 1 RCLB X2Y ÷	36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -24	ment amount.
842 843 844 845 846 847 848 849 858 859 859 859 859 859 853	+ LN RCL9 LN ÷ RTN *LBL0 RCLE RCLD X RCLD 1 +	-24 -55 32 -23 -24 21 60 36 15 36 12 -35 36 14 -55	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 106 106 107 108 109	I/X RCLA X RCLB 1 + XZY Y ^X 1 RCLB XZY ÷ RCLD	5 14 36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -41 -41 -45 36 12 -41 -41 -41 -41 -41 -41 -41 -41	ment amount.
842 843 844 845 846 847 849 849 858 859 851 852 853 854	+ LN RCL9 LN ÷ RTN *LBL0 RCLE RCLD × RCLD 1 + RCLB	-2-4 -55 32 32 -24 21 60 36 15 36 12 -35 36 14 -55 36 12	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 106 107 106 107 108 109 110	I/X RCLA x RCLB 1 + XZY Y× 1 RCLB XZY X * RCLD 1	36 14 36 11 -35 36 12 01 -55 -41 01 -45 36 12 -41 -24 36 14 01	ment amount.
842 843 845 845 846 845 846 845 849 851 851 852 853 854 853	+ LN RCL9 LN *LBL0 RCLE RCLE RCLE RCLE * RCLD + RCLB 2	-24 -55 32 36 09 22 -24 21 00 36 15 36 12 -35 36 14 -35 36 12 01 -35 36 12 02	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111	I/X RCLA X RCLB 1 + XZY Y [×] 1 - RCLB XZY ‡ RCLB XZY 1 - RCLB XZY + + - - - - - - - - - - - - -	36 14 -35 36 12 01 -55 -41 31 01 -45 36 12 01 -45 36 14 -24 36 14 -55 -55 -55 -55 -55 -55 -55 -5	ment amount.
842 844 845 846 845 846 849 858 859 851 852 853 854 853 854 855	+ LN RCL9 LN * RTN *LBL0 RCLE RCLE RCLE * RCLD 1 + + RCLD 2 +	-24 -55 32 -24 24 21 00 36 15 36 12 36 15 36 14 -35 36 14 -35 36 12 -24 -24 -24 -24 -25 -24	P/C > 1, solve for number of payments.	096 097 098 100 101 102 103 104 105 106 107 108 109 110 111 112	1/X RCLA X RCLB 1 + XZY Y ^X 1 RCLB XZY ÷ RCLD 1 + KCLB	36 14 36 11 -35 36 12 01 -55 -41 -41 -45 36 12 -41 -24 -24 -24 -36 14 01 -55 -36 12 -41 -55 -41 -45 -24 -55 -41 -55 -41 -55 -41 -45 -45 -45 -45 -45 -45 -45 -45	ment amount.
842 843 844 845 846 847 848 848 859 851 852 853 853 855 855	+ LN RCL9 LN * RTN *LBL0 RCLE RCLE RCLE RCLD 1 + RCLD 1 + RCLD 2 +	01 -55 32 36 09 32 -24 21 00 36 15 36 12 -35 36 14 01 -55 36 12 02 -24	P/C > 1, solve for number of payments.	096 097 098 099 100 101 102 103 104 104 106 107 106 109 110 111 111 111 111 555555	1/X RCLA x RCLB 1 + XZY Y X 1 - RCLB XZY X 2 RCLD 1 + RCLD 1 + RCLD	36 14 36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -55 36 12 -41 -55 36 12 -41 -55 36 12 -41 -55 36 12 -41 -55 -41 -41 -45 -41 -45 -41 -45 -41 -45 -41 -45 -41 -45 -41 -45 -41 -45 -41 -41 -45 -41 -41 -45 -41 -41 -45 -41 -41 -55 -41 -41 -41 -55 -41 -41 -41 -55 -41 -41 -55 -41 -41 -45 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -41 -55 -41 -55 -41 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -56 -57 -57 -57 -57 -57 -57 -57 -57	ment amount.
842 943 844 845 845 845 849 858 859 859 851 852 853 854 853 854 855 856	+ LN RCL9 LN ÷ RTN *LBLE RCL6 X RCL6 X RCL6 X RCL6 2 + + RCL8 2 +	-24 -55 32 36 09 32 -24 24 21 00 36 15 36 12 -35 36 12 -55 36 12 -24 21 00 -55 36 12 -21 2	P/C > 1, solve for number of payments. REG	096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 STERS	1/X RCLA x RCLB + XZY Y x x r RCLB XZY XZY XZY XZY XZY XZY XZY A RCLB A RCLB A A A A A A A A A A A A A	36 17 36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -41 -41 -55 36 12 -41 -55 36 12 -41 -55 -41 -41 -55 -41 -41 -45 -55 -41 -41 -45 -41 -55 -41 -45 -41 -55 -41 -45 -41 -55 -41 -45 -55 -41 -45 -55 -41 -45 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -41 -55 -55 -41 -55 -55 -41 -55 -55 -55 -55 -55 -55 -55 -5	8 9 (1 + 1) ^{C/P}
842 943 844 845 846 849 958 859 853 853 854 853 854 853 854 853 854 853 854 853 854 853 854 853 854 855 855 855 855 855 855 855 855 855	+ LN RCL9 LN * TN * LBL0 RCLE RCLB RCLB RCLB RCLB RCLD 1 + RCLB 2 +	24 -55 32 36 89 22 -24 21 88 36 15 36 15 36 15 36 15 36 15 36 15 36 12 -25 36 14 -25 36 12 -24 -24 -25 -25 -25 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	P/C > 1, solve for number of payments. B REG	096 097 098 099 100 101 102 103 104 105 106 106 107 108 109 110 111 5 5 5 5 5	1/X RCLA x RCLB 1 + XZY ÷ RCLB 6 6 6 6 6	36 14 36 11 -35 36 91 -55 -41 31 -45 36 36 14 -41 -24 -55 36 36 14 01 -55 36 12 7 7	8 9 (1 + 1) ^{C/P} Sa So
042 043 044 045 045 046 048 049 050 052 033 053 055 0 0	+ LN RCL9 LN * RTN *LBL0 RCLE RCL6 RCL6 RCL6 RCL6 RCL6 1 + RCL8 2 + 1 S1	-24 -55 32 32 -24 24 21 00 36 19 -35 36 12 02 -35 36 14 01 -35 36 12 02 -24 21 00 22 -24 21 00 25 -24 21 00 25 -24 21 00 25 -24 21 00 25 -35 25 -35 25 -24 24 00 36 15 36 15 36 15 36 15 36 15 36 15 36 15 36 15 36 12 -35 36 12 -35 36 12 -35 36 12 -35 36 12 -35 36 12 -35 36 12 -35 36 12 -35 -35 36 12 -35 -35 -36 12 -35 -36 12 -35 -36 12 -24 -35 -36 12 -24 -35 -36 12 -24 -35 -36 12 -24 -35 -36 12 -24 -24 -35 -36 12 -24 -24 -24 -35 -36 12 -24 -24 -24 -24 -25 -36 -24 -24 -24 -25 -36 -24 -24 -24 -25 -36 -24 -24 -24 -24 -24 -25 -36 -24 -24 -24 -24 -24 -24 -24 -24	P/C > 1, solve for number of payments. REG 3 4 S3 S4	096 097 098 099 100 101 102 103 104 105 107 108 109 100 107 108 109 110 111 112 5 5 5 5 5	1/X RCLA RCLB 1 + XZY 1 - RCLB XZY RCLD 1 + RCLD 1 + RCLB 5 S6	36 14 36 11 -35 36 91 -55 -41 -41 -24 36 91 -55 -51 14 91 -55 36 12 -7 57	8 9 (1 + 1) ^{C/P} S8 S9
842 943 844 845 846 847 948 849 850 853 853 854 853 854 853 854 853 854 855 856 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8	+ LN RCL9 LN + RTN *LBL0 RCLE RCLE RCLE X RCLD + + RCLB 2 + 1 1 1 S1	-24 -55 -52 -55 -55 -55 -55 -24 24 24 21 00 -55 -55 -55 -24 21 00 -55 -55 -24 21 00 -55 -24 24 24 21 00 -25 -24 24 24 24 24 24 24 24 24 24	P/C > 1, solve for number of payments. 3 4 S3 S4	696 697 698 699 100 101 102 103 104 105 106 107 108 109 111 112 5 5 5 5 5 5 5	1/X RCLA RCLB 1 + X2Y + RCLD 1 + RCLD 1 - - RCLB SE 6 S6	36 17 36 11 -35 36 12 01 -55 -41 31 01 -45 36 12 -41 -41 -41 -45 36 12 -41 -55 -41 -41 -45 36 12 -41 -55 -41 -55 -41 -55 -41 -55 -41 -45 -55 -41 -55 -41 -55 -41 -55 -41 -45 -55 -41 -55 -55 -41 -55 -55 -41 -55 -55 -55 -55 -55 -55 -55 -5	8 9 (1 + 1) ^{C/P} 58 59

113	2		92								
114	÷	-	24	1							
115	x	-	75								
116	Prin	76	14								
117	ACLD 1	3 0 _	55								
1 110			24								
110		70	15								
119	RULE	36	15								
120		-,	50								
121	RIN		24								
122	*LBLe	21 16	15	If digit	entered, store in	n					
123	STOE	35	15	RE.							
124	F3?	16 23 1	93								
125	RTN		24								
126	F0?	16 23 (30								
127	GT02	22 (32								
128	RCL9	36 (99	If P/C≮	≤1. solve for fu	ture					
129	RCLA	36	11	value.							
130	Υ×		31								
171	•		31								
172	-		45								
132		77 0	+0 20								
133	RULY	36 6									
134	×		35								
135	RCLC	36	13								
136	x	-,	35								
137	RCL9	36 1	99								
136	1		91								
139	-		45								
140	÷		24								
141	RTN		24								
142	*1 BL 2	21	92								
143	RCLD	36	14	11 0/0 >							
144	1		81	It P/C 2	> 1, solve for fu	ture					
145			55	value.							
145	DCI D	76	10								
140	RULD	30	20								
147	2		22								
148	-	-	24								
149	×		30								
150	RCLD	36	14								
151	+	-:	55								
152	RCLB	36	12								
153	1		81								
154	+	-:	55								
155	RCLA	36	11								
156	RCLD	36	14								
157	1/8	:	52								
158	x	-	35								
159	YX		31								
168	1		91								
161	-	-	45								
162	x	_	75								
167	Prir	76	17								
163	ALLE V	50	75								
104		-	10								
165	KLLB	36	12								
166	*	-	24	1			1				
167	RIN		4								
168	K/S		51								
				LAE	BELS			FLAGS		SET STATUS	
A P/C	B i/	/100	С		D	E		⁰ P/C > 1	FLAGS	TRIG	DISP
a	h		6 5	AT	d	e	514	1	ON OFF	ma	DISF
" #PAY	Ľ		PI	VI f	Ŭ.	e	۲V		0 🗆 🖾	DEG 🗵	FIX 🛛
0 Used	1 L	Jsed	2 U	sed	3	4		2	1 🗆 🛛	GRAD	sci 🗆
5	- 16		7		8	0		3	2 🗆 🗹	RAD 🗆	ENG
ľ	ľ		ľ		ľ	ľ		Digit?	3 🗆 🗹		n

SIMPLE INTEREST/INTEREST CONVERSIONS

001	7	67		~	57	CT07		22 87			
001	ž	03	Initialize		5/	- DIC3		21 17	RE	G AMT-	≻Bc
002	6	86			28	#LBLU		21 13		it entern	42
003	0	00	$360 \rightarrow R_8$	0	59	STUC		30 13		n entere	ui
884	STOP	35 08	365→R ₉	0	60	F3?	16	23 03			
005	5	85		0	61	RTN		24	1		
886	+	-55		R	62	F2?	16	23 82	360) or 365	2
807	6709	75 89		å	67	CT04		22 84			
007	3/05	00 00			24	DCLD		76 14			
008		66			64	RULD		30 14			
009	K/S	51			60	KLL8		36 08			
610	*LBLA	21 11	Days→R _A	0	66	*LBL5		21 05			
011	STOA	35 11	Digit entered?	0	67	x		-35	Cal	culate B	EG AMT and
R12	F.3?	16 23 83	-	0	68	RCLA		36 11	sto	re in R _C .	
017	PTN	24		l a	69	-		-24			
014	630	16 27 02	T . / 000 005 1	ľ	70	DCID		76 12			
014	FZ /	10 23 02	Test for 360 or 365 day		70	KULD .		30 12			
015	GIUB	22 00	basis	6	11			-24			
016	RCLD	36 14		0	72	STOC		35 13			
017	RCL8	36 08		0	73	RTN		24			
013	*LBL1	21 01		l e	74	*L5L4		21 84			
819	×	-35	Coloridate davis and store in		75	RCLE		36 15	365	i dav ba	ie
820	Prin	76 17	Calculate days and store in		70	DCI 0		76 89	1 000	, day Das	
020	KULU	30 13	HA.	1 6	10	KULJ		00 05	1		
021	÷	-24		0	17	6105		22 05			
022	RCLB	36 12		0	178	¥LBLD		21 14		r ₃₆₀ → R	D
023	÷	-24	1	6	79	STOD		35 14	1		
824	STOA	35 11		l a	180	F32	16	23 03	1		
025	R TN	24	ł	i a	81	RTN		24			د ۲
623	41 01 0	21 00			000	PCLC		76 17	1 Dig	it entere	ar
026	*LBLU	21 00		6	23	KULL		36 13			
027	RCLE	36 15	365 day basis	6	183	RCLA		36 11	Cal	culate IN	T ₃₆₀ and
028	RCL9	36 09		6	184	RCL 8		36 08	sto	e in Rn	
829	6101	22 B1		1 0	185	GSB6		23 06		- D	
870	N BI B	21 12		a a	336	STOD		35 14	1		
0.30	FEV	-27	RATE/100→RB	l õ	07	RTH		24	1		
031	EEA	-23			101			24			
032	2	62	1	6	88	*LBLF		21 15	Set	flag 2 fc	or 365 day
033	÷	-24		0	189	STOE		35 15	bas	is.	•
634	STOB	35 12	1	6	190	SF2	16	21 02	1		
035	ISTX	16-63		e e	91	F32	16	23 03			-12
035 075	v	-75			92	RTN		24	Dig	it entere	d?
630	r70	-35	1			DOLO		76 17	1		
031	+37	10 23 03	Digit entered?	6	33	KULU		36 13	1		
038	RTN	24		0	94	RCLA		36 11	Cal	culate IN	Tees and
039	F2?	16 23 02	Test for 360 or 365 day	0	95	RCL9		36 09	stor	re in R-	- 305 4114
849	GT02	22 82	hasis	6	196	GSB6		23 06	1	S III NE	
841	PCI 9	76 88	Dasis.		97	STOF		35 15	1		
043	PCLD	76 14	1	l õ	00	PTH		24	1		
042	RULD	30 14		1 2	20	AL DL C		21 07	1		
143	¥LBL3	21 03	1	1 6	99	#L5L6		21 06	1		
844	×	-35		1	00	÷		-24	1		
045	RCLA	36 11	Calculate BATE and store	1	01	RCLC		36 13	1		
846	÷	-24	in D	1	Ø2	x		-35	1		
847	RCLC	36 13	I III II B	1 7	63	RCLE		36 12	1		
840	-	-24		;	84	X		- 75	1		
040		-24			05	n		24	1		
649	LEX	-23		1 1	62	RIN		29	C/1	′R→R∧	
050	2	02		1	Ø6	*LBLa	21	16 11	1	A	
051	×	-35		1	87	STOA		35 11	1		
852	STOE	35 12		1	86	RTN		24	1		
057	PTN	24		;	09	AL BL L	21	16 12	1		
053	+10/2	21 62			10	CTOP	~ •	75 12	NO	M→R _B	
054	#LDLZ	21 02	365 day basis		10	3105		33 12	Dig	it entere	d?
055	RCL9	36 09		1	11	F 3?	16	23 03	1		
056	RCLE	36 15		1	12	RTN		24	1		
			BEGI	STERS							
0	1	2	3 4	5		16		7	18		9
•	[' .	ŕ	ř ľ	ľ		ľ		ľ	ľ	360	[°] 365
S0	S1	S2	S3 S4	S5		S6		S7	S8		S9
	1	-		- *		1					
۵		IB I		D		1	IE	1		I.	1
Used		Used	Used	ľ	Used		5	Used		ľ	
		1					1			1	

$\begin{array}{c} 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 122\\ 122\\ 122\\ 122\\ 122\\ 122\\ 124\\ 125\\ 126\\ 126\\ 127\\ 126\\ 127\\ 128\\ 131\\ 134\\ 135\\ 136\\ 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 143\\ 144\\ 145\\ 144\\ 145\\ 156\\ 157\\ 156\\ 155\\ 156\\ 156\\ 155\\ 156\\ 156\\ 156$	RCLC 34 EEX 2 ±	$ \begin{array}{c} 6 & 13 \\ -23 \\ 02 \\ -24 \\ 01 \\ 51 \\ 02 \\ -55 \\ 6 & 11 \\ 51 \\ 02 \\ -55 \\ 6 & 11 \\ -55 \\ 6 & 11 \\ -45 \\ -45 \\ -45 \\ -31 \\ 02 \\ 51 \\ 02 \\ 51 \\ 02 \\ -45 \\ -33 \\ 02 \\ -24 \\ 01 \\ -23 \\ 22 \\ -24 \\ 01 \\ -23 \\ 22 \\ -24 \\ 01 \\ -55 \\ -24 \\ -23 \\ 22 \\ -24 \\ 01 \\ -55 \\ -24 \\$	$\label{eq:calculation} \begin{bmatrix} Calculation R_B, & \\ EFF \rightarrow F \\ Digit en \\ Calculation R_C, & \\ \hline \\ Continue \\ Calculation R_D, & \\ \hline \\ Calculation R_D, & \\ \hline \\ \end{bmatrix}$	te NOM and stor	e re	169 170 171 172 173 174 175 176 177 180 180 181 182 183 184 182 183 184 189 190 191	STDE F3? RTM RCLD *LBL7 EEX 2 2 * ex 1 - EEX 2 2 2 X STDE RTM *LBL8 RCL8 X RCL8 X GT07 R/S	16	35 15 23 03 24 36 14 21 07 -23 02 -24 33 35 15 -24 21 08 -35 36 09 -24 22 07 51	Calculate El in R _E . For continu day basis.	FF and store
166	STOD 3 RTN	35 14 24									
168	*LBLe 21 1	6 15					FLACE	<u> </u>		SET STATUS	
ADAXO	BBATC	CBEC		DINT 260	E	17 265	0 FLAG	2	51.400	TRIC	DICD
DAYS	RATE	BEG	AMT	- INT 360	- II	1 365	1		FLAGS	TRIG	DISP
^a C/YR	^b NOM	° EFF		^a NOM(cont)	е Е 4	FF(cont)	2 205 1			DEG X GBAD	FIX K
⁵ Used	6 Used	² Used		⁸ Used	9	sed	³ Digit?	-	2 🗆 🕺	RAD	ENG 2
Usea	Used	Used		Usea	1		Digite		3 (X		

DEPRECIATION SCHEDULES

					1						
801	*LBLa	21 16 11			857	-		-45			
882	FØ?	16 23 00	Straig	ht line	858	X<0?		16-45			
887	SPC	16-11	1		859	GT03		22 03			
000	PCID	76 14	к		868	CSR2		23 82			
007	RCLD	30 14			861	PCI 7		76 97			
663	6589	23 09			001	RUL/		-24			
006	RCLA	36 11	SB	V – SAL	062			-24			
807	RCLB	36 12			063	\$104		35 84			
888	-	-45	1	22	864	RCL 8		36 ØB			
009	RCLC	36 13			065	×		-35			
R1 R	÷	-24			866	#1 BL 3		21 03			
Q11	etot	75 44	DEP		967	STOR		35 86			
011	0000	33 40			000	0000		27 80		V.c	
612	6589	23 09			068	6307		23 09		VK	
013	RCLU	36 13			669	RULB		36 12			
014	RCLD	36 14			070	+		-55			
015	-	-45	(LIFE	- YR) DEP = RDVK	071	GSB9		23 09	RB	V _K = RD	V _K + SAL
016	RCLI	36 46			072	1		81			N.
Ø17	×	-75			973	RCI 4		36 84			
010	CC00	27 00			974			-45			
618	6559	23 89			074	001.0		70 00			
019	RULB	36 12			0/5	RLLB		30 08			
620	+	-55			076	×		-35			
821	65B9	23 09	RBVk		077	GSB9		23 09	ТО	T DEP	
822	RCLI	36 46	1/		078	1		01		ĸ	
027	PCID	76 14	SB	V - SAL	879	ESRD.		23 14	1		
023	RULD	30 14	1		000	BCLC		76 17			
624	~~~~	-35		/ DEP	000	RULU		36 13			
025	65 89	23 Ø 9			681	RCLD		36 14	K≤	≤ LIFE?	
026	1	01			082	X≦Y?		16-35			
627	GSBD	23 14			083	GTOL	22	16 12			
628	RCLC	36 13			084	RTN		24			
620	PCID	76 14			895	*1 BI 2		21 82			
025	V/VO	30 14				ENTA		-21			
030	A±1 :	16-35	K≤L	IFE?	660	ENTI		-21			
631	GIUa	22 16 11			087	FRU		16 44		(1 + W)(2	2F + W)
032	RTH	24			688	ENTŤ		-21	- 1	2	
633	*LBL6	21 16 12	SOYD)	689	+		-55	1	2	
874	EQ2	16 23 00			890	XZY		-41			
075	CDC	10 20 00			001	THT		16 74			
635	556	16-11			0.91	1111		10 34		= SOYD	
836	KLLD	36 14			692	+		-55			
037	65 89	23 09	к		093	LSIX		16-63	1		
638	RCLA	36 11			894	1		01			
039	RCLB	36 12			095	+		-55	1		
848	_	-45			896	×		-35			
041	6700	75 00			007			82			
041	5100	30 60			0.07	.*		24			
042	RULL	36 13			096			-24			
043	CSB2	23 82		1	699	RTN		24			
044	ST07	35 07		+1-K	100	*LBLc	21	16 13	L D~	lining P	alance
045	RCLC	36 13	11-00	(SBV-SAL)	101	F8?	16	23 00	1 000	anning Da	arance
846	1	Ø1	1\ ^{sc}	ייי /	182	SPC		16-11	1		
947	· ·	-55	1		107	0179		36 14	1		
040	DCI P	- , ,	1		103	CCDO		27 00	1		
648	RULU	36 14			164	6389		23 07	Ιĸ		
649	-	-45	1		105	ESB4		23 84	1		
050	RCL7	36 07			106	RCLD		36 14	1		
051	÷	-24	1		107	1		01	1		
852	RCL8	36 06			188	-		-45			
857	x	- 75	1		109	Υ×		31			
055	ccno	27 60	0.00		110	prin		36 11	1		
054	6383	23 09	DERK		110	KULH		30 11			
055	RCLC	36 13	1		111	x		-35	1		
056	RCLD	36 14	1		112	RCL8		36 08	1		
			•	REG	ISTERS				•		
0	1	2	3	4	15	6		7	8		9
-	ľ	ľ	ľ	Used	Used	TRDV _k		Used	l I	Used	TOT DEP
50	51	52	53	54	\$5	56		\$7	58		59
	51	52	100	54	35	30		Ľ'	130		~ 3
A SRV	,	B SAI			U YR		E	FACTOR		SBV -	SAL/LIFE
500					1 ⁱⁿ		1			1 304-	one/en e

113	x	-	35				169	R/S		51		
114	ST01	35	46	DEP			178	RTN		24		
115	CCDO	27					171	+/ DI 1	2			
115	6303	23	03				171	*LDL1	<i>c</i> .			
116	1		91				172	PKIX		-14		
117	RCL7	36	07				173	RTN		24		
118	RCLD	36	14				174	*LBLd	21 10	5 14	Crossover p	point
119	Υ×		31				175	8		00		
120	-	-	45				176	STOD	74	5 14		
120	DCI A	76		(CDV)		•	177	0000		7 04		
121	KULH	36	11	(360 -	SAL) - TUT DE	۲ĸ		6384	~ ~ ~			
122	×	-	35				178	*LBL8	2	1 88		
123	ST09	35	89				179	RCL7		5 07		
124	RCLA	36	11				180	1		01		
125	RCIE	76	12				181	ESRD	2	3 14		
120	NOLD	50	45				100	0000		01		
120			4 J				102	1		01		
127	RILS	36	09				163	-		-45		
128	-	-	45				184	٧×		31		
129	6SB9	23	89				185	RCLA	36	5 11		
170	RCIE	76	12	1.0.0			186	×		- 75		
171			55				107	PLIP	74	6 00		
131			33				107	RULD	50	75		
132	6589	23	89	RBVK			188	×		-35		
133	RCL9	36	8 9				189	RCL7	- 36	5 07		
134	GSB9	23	Ø9	тот р	FPv		190	RCLD	36	5 14		
175	1		A 1	1.01.0	-		191	1		B 1		
170		27	14				102			-45		
136	6280	23	14				192			-45		
137	RCLC	36	13				193	¥*		31		
136	RCLD	36	14	κ≤Π	FF2		194	RCLA	- 36	5 11		
139	X2Y7	16-	35				195	×		-35		
148	CTOC	22 16	17				196	PLIP	76	5 1 2		
140	0100	22 10	15				150	ROLD	50	45	1	
141	RIN		24				197		_	-45		
142	*LBLD	21	14	To add	to register D		198	ST09	3	5 89		
143	RCLD	36	14		10 · • 9.0101 £ 1		199	RCLC	- 36	5 13		
144	+	-	55				200	1		61		
145	CTOD	75	14				201			-55		
145	3100		14				201		-	- 35		
146	RIN		24				202	RULD	30	5 14		
147	*LBL4	21	04				203	-		-45		
148	1		01	EACT/			204	÷		-24		
149	PLIE	76	15	FACI			285	XZY		-41		
150	DOLO	76	17				286	¥3¥2	1.	- 7A		
150	RULL	30	13				200	0/12	10	0-34	1	
151	÷	-	24				207	6108		< 68		
152	ST08	35	<i>0</i> 8	1 - EA			203	RCLD		514		
153	-	-	45	1 - 1 - 7			209	1		01		
154	ST07	75	87				210	-		-45		
1.54	0107		24				211	6320		7 60 7		
155	KIN		24				211	6363	2.		Last year	
156	*LBLe	21 16	15	Print/p	ause		212	RULU	30	5 13		
157	F0?	16 23	00				213	X≓Y		-41	1	
158	GTOB	22	86				214	-		-45	1	
159	SEG	16 21	88				215	6SB9	2	3 89		
1.00			61				216	prio	7	6 60	Remaining	life
100	1		0.4				210	DCLD		C 10		
161	RTN		24				217	KULB	اک	5 1Z		
162	*LBL0	21	00				218	+		-55		
163	0		00				219	G T09	2	209	0.01/	
164	CEP	16 22	aa				220	R/S		51	нвл	
104	0.0	10 10	24							•••		
102	KIN		c4									
166	*LBL9	21	89									
167	F0?	16 23	60									
168	6101	22	01									
	0.01			1.47			FLAC	e		CET CTATIO		
			lo.	LAE	SELS		FLAG	>		SELSIATUS		
A	в		C		U Used		⁰ Print?		LAGS	TRIG	DISP	
3.0	h -		Cast	DAL d CROSS e				1		ON OFF		
° St. line	° s	OYD	~ DEC	BAL	" CROSS	° SO	CHED?	l'	0		DEG 🗵	
0 Llead	1 1	lead	2 502	n	3 Llead	4 11	ad	2	-1,		GRAD	SCI 🗆
Oseu			301	0	Useu		scu				BAD 🗆	
5	6		7		⁸ Used	9 U	sed	3	15			n_2
			1						1.3	പപ		

DAYS BETWEEN DATES

801 002	*LBLA Sto7	21 11 35 87	DT1-	≻R ₇			057 058	CLX RCL5	;	-51 36 85	Co	mpute da	lys since 0 AD
803	RTN	24					859	+		-55	110	giecting 4	oos and 100s.
004	*LBLB	21 12	DT ₂ -	≻R,			060	KLL3	•	90 03 01			
000	DTN	33 61					962			-45			
807		21 13					863	3		03			
888	PCI 7	36 07					864	1		R 1			
809	ASBE	23 15	1				865	x		- 35			
010	\$102	35 82	1				066	+		-55			
011	LSTX	16-63	Contr	ol and st	orage		067	RCLE	;	36 86			
012	STOB	35 00					668	4		84			
013	RCL 1	36 01					869	÷		-24			
014	GSBE	23 15					070	INT		16 34			
015	LSTX	16-63					071	X≓Y		-41			
016	ST-0	35-45 00					072	+		-55			
017	CLX	-51					073	RTN		24			
018	RCL2	36 02					074	*LBLD		21 14			
019	-	-45					075	3		03			
020	RCL4	36 Ø4					076	0		00			
021	2	02					077	ST02		35 02	Co	ntrol and	storage
022	÷	-24					078	RCL7		36 07			
023	ST֯	35-24 00				1	079	GSBe	23	16 15			
024	X≓Y	-41					080	STOO		35 88			
025	RTN	24					881	RCLI		36 101			
026	*LBLE	21 15					002	CSBe	23	16 15			
027	GSB4	23 64					003	RCLU		36 04			
028	5106	35 06					084	-		-45			
029	3	03					085	5100		35 88			
030	6	06					086	RUL 4		36 114			
031	5	85					087	CHS		-22			
032	5104	35 84					888	2		02			
833	×	-35					689	÷	75	-24			
034	2	20	z = y	- 1			090	51÷0	35-	24 00			
835	RLLJ	36 03					091			-31			
036	X) Y?	16-34					092	* RIN	21	16 15			
037	6100	- 75					000	ALDLE CCDA	21	27 04			
030	<u> </u>	-33					895	5007		23 04 07	Su	m years a	nd months.
033	DCLC	76 96					896	6		03 06			
040	KULD 1	10					A97	ด		60			
042		-45					698	ST04		35 84			
043	ST06	35 86					N99	x		-35			
844	GT01	22 01	1				100	RCL 3		36 03			
045	#LBL0	21 00					101	3		03			
846		-62	{				102	е		88			
847	4	84					103	×		-35			
048	x	-35					104	+		-55			
049		-62	x = 10	JT (4M +	23)		105	RCL5		36 05			
050	3	03			2.07		106	3		03	Are	e davs equ	ual to 31?
051	+	-55					107	1		81		,	
052	+	-55					108	X=Y?		16-33			
053	INT	16 34					109	GT02		22 82			
054	-	-45	1				110	R↓		-31	No	, add and	return.
055	RCL6	36 06					111	ST02		35 02			
056	*LBL1	21 01					112	+		-55			
<u></u>			10		REGIS	TER	S	10		-	1.0		
[∪] −PER	DT2	² Used	3	м	⁴ 365/360	5	D	6 y, z		7 DT1	8		9
S0	S1	S2	S3		S4	S5		S6		57	S8		S9
A		В		с		D			E			1	

113 114 115 116 117	RTI *LBL R R RCL	N 24 2 21 0 4 -3 4 -3 2 36 0	1	ls regis	ter 2 equal to 3	30?					
118 119 120 121 122 123 124	X=Y GTO R CL RCL	3 0 0 0 16-3 13 22 0 ↓ -3 X -5 5 36 0	3 9 3 3 1 1 5	No, add	d and return.						
125 126 127 129 129 130 131 132	STO + RT *LBL R STO + RT	22 35 0 -5 N 2 3 21 0 V -3 12 35 0 -5 N 2	25431254	31→30	add and retur	n					
133 134 135 136 137 138 139 140	*LBL ENT IN STO EE	.4 21 0 1 -2 11 16 3 13 35 0 4 2 6 (-3	41435325	Break u	ıp year.						
141 142 143 144 145 146 147	ENT IN STO EE	FT -2 NT 163 D5356 4 EX -2 4 6 K -3	1455345								
148 149	R1 R/	rn 2 /s 5	4								
A DT	Тв	DT	C D	LAE	BELS	IE		FLAGS		SET STATUS	
a		U12	- Days	Actual	- Days 360		sed	1	ON OFF	TRIG	DISP
0 Llead		lleed	211000		3 Llead	4 11	sed	2	0 2 8	DEG X GBAD	FIX X
5	6	0.960	7		8	9	360	3	$\begin{array}{c} 2 \\ 3 \\ \end{array}$	RAD	ENG

L15-01

BOND PRICE AND YIELD

											_		
	801	*LBLA	21 11				057	÷		-24			
	002	CF3	16 22 03				056	-		-45			
	003	CHS	-22				059	ST-6	35-45	Ø6			
	004	STOP	35 88	-F	PER→R₀		060	ABS	16	31	Has	s limit be	en reached?
	005	CHS	- 22				061	EEX		-23			
	006	RTN	24				862	CHS		-22			
	807	#IRIR	21 12				863	6		06			
	666	FFY	-23				864	X ∠Y?	16	-35			
	000	220	42				865	GT01	22	B 1			
	005	6707	75 97	10	00→R3		866	F27	16 23	ñ2			
	010	0103	33 83				867	CT02	22	A2			
	011	6701	-31				869	Pric	74	96			
	012	5101	35 61	1	n / n1		869	CTOZ	22	97			
	015	RIN	24				005	+1013	22	00			
	014	*LBLD	21 14				070	ALDLZ	70	02			
	615	LFJ	16 22 83	_ <u> </u> ^	v -> n3		072	KLLJ	30	65			
	010	\$103	35 03				072			01		any pric	e for next
	017	RIN	24				873	KLLU	36	66	set	oriterat	ions.
	018	*LBLC	21 13				074	FRU	16	44			
	019	F3?	16 23 03	ľ	LD→R ₂		075	+		-55			
	020	GT05	22 05				076	LSTX	16	-63			
	021	RCL 8	36 00				877	x		-35			
	022	ABS	16 31				078	4		84			
	823	1	01				079	÷		-24			
	024	X>Y?	16-34	1	>PER?		080	RCL1	36	01			
	025	GT0 0	22 00				081	×		-35			
	026	SF2	16 21 02				082	RCL6	36	06			
	027	RCL1	36 01	Ca	alculate initia	l guess	063	x		-35			
	028	2	92				084	-		-45			
	029	÷	-24				085	ST05	35	05			
	030	RCI 4	36 84				086	6701	22	01			
	031	ST05	35 05				087	*LBL0	21	00			
	932	+	-24				688	RCL 3	36	83	Cal	oulate vi	ald if loss than
	033	STOR	75 46				089	RCL 1	36	A1			riod remaining
	974	+1 RI 1	21 81				890	2		82	1 '''	oupon pe	enou remaining
	075	+1	21 01				891	÷-		- 24			
	035	Priz	76 97	14	acculate (y)		892	÷		-55			
	077	DCLS	36 83				697	ISTY	16.	.67			
	970	-	- 24				894	PLIN	76	00			
	070		24				895	1	50	A1			
	035		74 06				896		_	.55			
	040	RLLD	36 86				897	÷		- 35			
	041	BCL O	-55				0.96	Pri A	76	04			
	042	RLLU	36 00				0,0	RUL 4	30	04 55			
	043	11	31				100			24			
	044	5108	35 88				100	÷.	-	24			
	045	x	-35				101	1		01			
	845	-	-45				102	- -		40			
	047	RCLE	36 06				103	KLLB	36	202			
	848	×	-35				104	СН5	-	22			
	849	1	81				105		~ ~ ~	24			
	020	KCT8	36 88				106	#LBL3	21	83	Dis	olav ansv	ver if second
	051	-	-45				107	2		62	tim	e throug	h.
	052	÷	-24				108			88			
	053	RCL1	36 01				109			00			
	054	2	02				110	X		-35			
	055	÷	-24				111	5102	35	02			
	056	RCL5	36 05				112	RTN		24			
_						REGI	STERS						
0	-PER	CF	2 YII) 3	RV	PRICE	5 Used	6 	d 17	DT.	8 40	c Int	9
50		51	52		3	54	\$5	56	- 67	0.1	158	o	50
~		Ľ	52		~	-		30	31		130		35
A			в		С		D		TE L			li -	
					ľ				1			ľ	
_													

113	*LBL5	21 1	95				169	+	-55		
114	ST02	35 (82	1			170	RCI 5	36 85		
115	RTN		24				171	1	81		
116	#/ BLE	21	15				172		-45		
117	F72	16 27	97	Price→	R. R.		172	001.0	76 00		
110	CTOC	22 10 23	20				113	RLLD	35 06		
110	0100	70	20				1/4	x	-35		
119	RULC	36 1	82				175	CHS	-22		
120	2		92				176	1	61		
121	U		40	Calcula	te J		177	+	-55		
122	0		80				178	÷	-24		
123	÷		24				179	RCL1	36 81		
124	1		01				180	2	02		
125	+		55				181	÷	-24		
126	ST05	35	05				182	RCL6	36 06		
127	1		01				183	×	-35		
128	RCLO	36	88				184	STOR	35 08		
129	FRC	16	44				105	-	-45		
170	1	10	55				100	DTH	24		
171	etoc	75	05 06				100		21 26		
172	DCIG	30	00				187	#LDLO	21 00		
132	CUC	30	20				188	5104	35 84		
133	LH3	-	~~		< • • •		189	\$105	35 85		
134	1		61	IS PER	< 1?		190	RTN	24		
135	X>Y?	16-	34				191	R∕S	51		
136	GT04	22	04								
137	RCL5	36	05								
138	RCL6	36	06								
139	۲×		31								
140	RCL5	36	05	Calcula	te price for long						
141	RCLO	36	00	term ho	ands						
142	YX		31								
143	STOS	75	05								
144	5105		45								
145	DCI 1	70	4J 01								
145	RULI	36	75								
146		-	33								
147	KUL2	36	12								
148	÷		24								
149	EEX		23								
150	2		92								
151	x		35								
152	RĊL6	36	86								
153	2		92								
154	÷	-	24								
155	RCI 1	36	R 1								
156	x		35								
157	STOP	35	AA A								
150	-		45								
150	PCI F	76	95								
1.19	PCI 7	70	6J 67								
100	RULS	36	75								
101	.	-	30 FF								
162	· · ·	-	22								
163	RIN		24								
164	*LBL4	21	64								
165	RCL1	36	61	Calcula	te price for sho	rt					
166	2		0 2	term be	onds.						
167	÷	-,	24								
16B	RCL3	36	03								
				LAE	BELS			FLAGS		SET STATUS	
A PER	в	CR	C YI	D	D RV	ΕP	RICE	0	FLACE	TRIC	DIED
			L		d			1	ON OFF	IRIG	DISP
a	P		۲ ⁰		u .	e		'		DEG 🗵	
0 Used	1 1	Used ² Used		1	³ Used	4 Us	ed	² Used		GRAD	sci 🗆
			² Used					2	2 🗆 🛛	RAD 🗆	ENG 🗆
⁵ Used	°ι	Jsed	7		0	9		³ Digit?	3 🗆 🗶		n_2_

L16-01

INTEREST AT MATURITY/DISCOUNTED SECURITIES

		04.44		857	PCLO	76 80			
881	*LBLA	21 11		037	RULO	30 00	1		
662	STOA	35 11	DSM→R _A	628	÷	-24	1		
883	XZY	-41	DIM→R ₉	059	1	01	1		
004	STOP	75 09	, í	86 8	+	-55	1		
004	0103	-41	1 1	861	ECLA	36 11	1		
005	A+1 •••		1	862	PCIP	76 12	1		
006	RIN	24		002	RULD	30 12	1		
007	*LBLB	21 12	Basis→R _B	063	÷	-24	1		
808	STOP	35 12	1	064	RCLD	36 14	1		
880	FEY	-27	100→B	865	х	-35	1		
009		-23	100 - R ₈	965	PLIP	76 88	1		
610	2	U2		000	RULO	20 00	1		
011	STOS	35 Ø 8		067	÷	-24	1		
012	XZY	-41	1	068	1	Ū1	Į –		
R17	RTN	24		869	+	-55	1		
	41 PI C	21 17	CB→B-	878	÷	-24	1		
614	ALDLL	21 13	S. AC	071	PCI C	76 00	1		
015	STOC	35 13	1	0/1	RULY	30 07	1		
016	RTN	24		672	RULA	36 11	1		
017	*LBLD	21 14		673	-	-45	1		
810	CTOD	75 14	VID + R-	074	RCLB	36 12	1		
618	5100	37 14	1 LD THD	875	-	-24	1		
019	F3?	16 23 03		075		76.47	1		
020	RTN	24		676	RULU	36 13	1		
921	RC1 9	36 89	Calc. Yield	677	х	-35	1		
800	PCID	76 10		078	RCL 8	3E 08	I		
622	KLLE	30 12		679	-	-24			
623	÷	-24		013	÷	-24	1		
024	RCLC	36 13		680	-	-45	1		
825	x	-35		081	EEX	-23			
826	ECI P	76 80		082	2	82	Stor.	o prior :	o P-
020	RULD	36 66		687	×	- 75	Stor	e price i	IN DE-
627	+	-55		003	CTOF	75 15			
028	RCL 9	36 09		684	STUE	35 15	1		
629	RCLA	36 11		005	RTN	24			
070	-	-45		886	*LBLa	21 16 11	DO		
0.50	001.0	76 10		897	STOP	75 11	1 050	u→RA	
631	RULB	36 12	1	007	STUR	10 00 01	1		
£32	÷	-24	1	088	UF1	16 22 01	1		
633	RCLC	36 13	1	689	RTN	24	I _		
074		_75	1	090	*LBL h	21 16 12	1		
0.34		-33	1	801	CFI	16 21 81	1		
035	RCLE	36 15	1	0.01	or I	10 21 01	1		
036	+	-55	I	092	S101	35 46	Calc	price o	iven DR
837	÷	-24	1	093	RCLA	36 11	1	9	
070	· ·		1	894	X	-35	1		
038	1	61	1	095	7	87	1		
839	-	-45	1	1 000	2	00	1		
040	RCLB	36 12	1	896	t	86	1		
641	x	-35	1	097	8	00	1		
842	RCIA	36 11	1	€98	÷	-24	1		
047		-04		600	FFY	-27	1		
643	÷	-24	1	1 100		00	1		
044	RCL8	36 08	1	100		02	1		
045	x	-35	Store vield in R-	101	X≢Y	-41	1		
846	STOD	35 14	Store yield in hD.	102	-	-45	1		
047	יידק	33 14	1	107	\$707	35 MZ	1		
047	KIN	24		104	CCP-	27 16 17	1		
048	\$LBLE	21 15		104	0000	20 10 13	1		
849	STOE	35 15	Price→Br	105	RCLI	36 46	1		
850	F39	16 23 03	L. ING. THE	106	RTN	24	1		
000	DTN	34		107	*LBL c	21 16 13			
851	K I N	24		100	FEV	- 27	Calc	. yield g	iven price
052	RCL9	36 09		100	660	-23	1		
053	RCLB	36 12	Calc. price	109	2	62	1		
054	÷	-24	1	110	X#Y	-41	1		
004 0FF	prin	76 17	1	111	-	-45	1		
000	KLLL	30 13	1	110	1070	14-67	1		
056	X	-35	1	112	L016	10-03	L		
			REGI	STERS					
0	1	2	3 4	5	6	7	8		9
-	T .	ľ	T I I	Ľ	- Ľ	Used	1 1	00	DIM
50	C+	60	63 64	85	84	C7	Ca		50
00	3	32	54	33	30	<i>'</i>	100		l
		<u></u>							1
		B 360/365	C CB(%)	D YIF	,	E PRICE		DISC	RATE
DOW		300/303	Cn(<i>M</i>)			I mice		1 0130	

				T			T			т	
113	÷	-	24								
114	RCLA	36	11								
115	÷	-	24								
116	3		<i>0</i> 3								
117	:	-	62								
118	6		06								
119	EEX	-	23								
120	4		64								
121	~ ×		35								
122	5100	35	14								
123	KIN	~ ~ ~	24								
124	FLBL9	21 16	14								
125	F1?	16 23	01								
120	CTOD	22	14								
120	5700	16 27	14								
120	DTN	16 23	03								
129		76	15								
171	CCDA	27 16	13	1							
172	DTN	23 10	24								
132		21 16	15								
174	STOF	75	15								
135	F12	16 27	6 1								
136	GTOI	22	аı								
137	F3?	16 23	A 3	Calc	rice given vield						
136	RTN		24	Ourc. p	nee given yield						
139	1		61								
140	RCLD	36	14								
141	EEX	-	23								
142	2		02								
143	÷	-	24								
144	RCLA	36	11								
145	x	-	35								
146	3		03								
147	e		06								
148	8		00								
149	÷	-	24								
150	+	-	55								
151	EEX	-	23								
152	2		02								
153	X≓Y	-	41								
154	÷	-	-24								
155	STOE	35	15								
156	RIN		24								
157	KLBL1	21	81								
158	RUL7	36	87								
159	STUE	35	15								
160	KIN	24	24								
161		21	14								
162	PTN	30	24								
164	P/S		51								
104	K/ J		51								
				LAE	BELS			FLAGS		SET STATUS	
A DIM/DSM	^B Ba	sis	сс	R	D YLD	E PF	RICE	0	FLAGS	TRIG	DISP
^a DSM	D DF	3	с ц	sed	d YLD	e pr	RICE	¹ DB	ON OFF		
0	1		2		13	4		2		DEG	FIX KU
-	-				-	1			2 0 0	RAD 🗆	ENG 🗆
5	l°		<i>′</i>		0	9		³ Digit?	3 🗆 🕱	_	n_2_

L17-01

LINEAR REGRESSION—EXPONENTIAL CURVE FIT

		+/ RIA 21 11					_							— —				
	801	*LBLA	A 21 11 1 16 22 01							857	R↓		-31	- 1	Cal	- ا مغمان		
	882	CF1	16	22	01	Cle	ars	flag 1 an	d storage	058	RCLB		36 12	- 1	Calc	uiate iin	ear r-	
	803	CLRG		16	-53	regi	iste	rs.		059	x		-35	- 1				
	804	PIS		16	-51					060	RCL7		36 07	- 1				
	005	CLRG		16	-53					861	RCL6		36 06	1				
	886	CIX			-51					862	Xe		53	- 1				
	000	DTN			24					967	Prig		76 00	- 1				
	001			2.	12	v→	Re		_	964	-		- 24					
	000	#LBLD		41	12	, '	8			004	-		-45					
	009	5108		33	00					005								
	818	XIY		-	-41					066	-		-24		2	-		
	e11	ST09		35	09	×→	R9			067	STOL		35 15		r″ →	н _Е		
	012	XZY			-41					066	RCLA		36 11	- 1				
	e13	X>0?		16	5-44	y >	×0?			069	6889		23 09		Disp	lay a (li	n.)	
	814	6700		22	2 00					670	RCLB		36 12					
	015	SF1	16	21	01	lfn	10, 1	set flag 1		071	6 SB9		23 09		Disp	lay b (li	n.)	
	816	*LBL4		21	84			,		672	RCLE		36 15		Disp	lay r ² (li	n.)	
	817	RCL8		36	5 88	Per	for	ms summ	nations	673	₽≓S		16-51					
	R 18	RCL 9		34	69	1.01	.0/1		141.0113	874	CSB9		23 09					
	819	Σ+			56					875	F12	14	23 81		If an		display	
	020	PTN			24					876	GT0P		22 00		FRE	,,,, ~ 0 2∩R	, dispiay	
	020			2.	64					977	PCI 2		76 00		CUL	ion.		
	021	*LDLU		<i>c</i> 1	72					070	DCIA		76 40		C 1			
	622		76		52	51				076	RCLU		30 00		Calc	ulate b	exponent	tial)
	023	51+0	35	-55	00	210	יγ	·н ₀		079	F75		16-51					
	624	Xs		_	53			a –		186	RCL4		36 44					
	e25	ST+1	35	-55	5 01	Σ(Ι	ny)	≁ → R ₁		081	×		-35					
	026	RCL8		36	5 08					082	RCL9		36 09					
	027	LN			32					683	÷		-24					
	028	RCL 9		36	5 89					084	-		-45					
	029	x			-35					085	RCL5		36 05					
	030	ST+2	35-55 02		Σ×	Inv	→R₁		886	RCL4		36 84						
	031	GT04	35-55 02 22 84							887	X?		57					
	832	#I BL a	21	22 84 21 16 11						888	PCI 9		36 09					
	877	p+c	~ 1	22 09 21 16 11 16-51						800			-34					
	033	PCL P		- 10	- 01 C 00					000	-		-24					
	034	RCLO		30	000	Cal	cula	ate b (lin	iear)	000	-		-40					
	633	RULA		38	0.04					891	-		-24					
	036	RULE		56	5 06					092	SIUL		35 13	- 1	b→l	٦c		
	e37	X		_	-35					693	RCL4		36 84	- 1		5		
	038	RCL9		36	5 89					094	x		-35	- 1	Calc	ulate a (exponent	ial)
	839	÷			-24					095	CHS		-22	- 1				
	040	-			-45					896	P≓S		16-51					
	641	RCL5		36	8 05					097	RCLO		36 00					
	842	RCL4		36	6 04					898	+		-55					
	843	×2			53					699	P2S		16-51					
	844	RCI 9		34	69					100	RCI 9		36 89					
	845	-			- 24					101			-24					
	846	-			- 45					102	- • *		77					
	847	-			-43					102	CTOP		75 14					
	047	-			-24					103	5100		33 14		a→F	l ^D		
	645	STUB		3	12	b→	R _B			104	R4		31					
	649	RCL4		36	64		5			105	RCLC		36 13	- 1	Calc	ulate ex	ponential	r ²
	850	×			-35					106	×		-35					
	051	CHS			-22	Cal	cula	ate a (lin	ear)	107	₽≠S		16-51					
	Ø52	RCL6		36	5 0 6					108	RCL1		36 01					
	853	+			-55					109	RCLØ		36 00					
	854	RCL9		36	5 09					110	X2		53					
	055	÷			-24					111	PIS		16-51					
	856	STOA		35	5 11	a→	R۸			112	RCL 9		36 09					
	000	0.0.1		~			A		BECH	TERS								
0		11		12		12			HEGIS I4	5	6		7		18		9	
٥Σ	Iny	'Σ(Iny) ²	ľ	ΣxIny	ľ			1	5	ľ		ľ		°١	,	×	
50		S1		-	2	5	3		54	\$5	56		57		58		59	
50		3		ľ	~	ľ	-		Σxi	^{σσ} Σx _i ²	Σγ	i .	΄ Σγι	2	τ,	(i Yi	n "	
Δ			TB				-	0	1	D		Te			1	1		
ິ a	(Linea	r)	ľ	ь ((Linear)			ĭb(Exp	onential)	a(Expor	ential)	ľ	Used				Jsed	
			1									- 1						

											-	
113		÷ -2	1				169	RCL8	3	36 8 8		
114		4:	5				170	RCL9	3	86 89		
115	ст		7				171	Σ-	1	6 56		
117	F	R2 16 27 R	G G				172	RTN		24		
118	Ś	PC 16-1	1	Display	(a (exp.)		173	*LBL1	2	72		
119	RČ	LD 36 1	4	Display	a (exp.)		174		75	32		
120	GS	89 23 0	9	Display	b (exp.)		175	31-0	35-4	5 00		
121	RC	LC 36 1	3	,	5 (e.ipi)		176	6T_1	75-/	53 15 61		
122	GS	B9 23 R	9	Display	r ² (exp.)		170	51-1 DCID	35-	1 01 1 00		
123	RC	LE 36 1	5				179	IN	•	32		
124	P	‡ S 16−5	1				180	RCI 9		76 A9		
125	GS	89 23 6	9				181	x		-35		
126	RC	LC 361	3	Contin	uous effective ra	te	182	ST-2	35-4	15 02		
127		e* 3	3	asa %.			183	GT05		2 05		
128		1 0	1				184	*LBLc	21	6 13	Delete last	trend value.
129	-	4.	5				185	DSZI	16 2	25 46		
136	E	EK -2.	٤				186	RCL9		36 09		
131		2 6	2				187	X≓Y		-41		
132	~~	X -3.	5				188	eto1	2	22 01		
133	65	DJ 1C 23 8					189	*LBLe	21 1	16 15		
175			1				190	F0?	16 2	23 00	Print/pause	flag.
176	P	TN 2	1				191	GT02		22 02		
137	*/ B	10 21 1	-				192	SFØ	16 2	21 89		
138	IS	ZI 16 26 4	5				193	1		01		
139	RC	LI 36 4	ŝ	Perforn	ns summations f	or	194	EIN		24		
148	ST	09 35 8	9	trend li	ne.		195	*LSLZ		21 02		
141	X	≓Y -4.	1				190	CE 0	16	22 88		
142	\$T	08 35 8	8				190	PTN	10	24		
143	X)	87 16-4	4				199	*I RI 9		21 99		
144	GT	08 22.8	3				289	FR?	16	23 88		
145	S	F1 16 21 0	1				201	GT03		22 03	Print comm	and
146	GT	04 22 04	4				202	R/S		51		una.
147	*LBI	LD 21 1	4				203	RTN		24		
148	RU	LB 367.	2	$\hat{v} = a +$	bx		204	∗LBL3		21 03		
145	PC	10 361	1				205	PRTX		-14		
151	NC.	+ -5	5				206	RTN		24		
152	6T	09 22 A	9				207	R∕S		51		
153	*LB	LE 21.1	5				-					
154	RC	LC 36 1	3	л _b	×							
155		× -3	5	y = ae								
156		e* 3.	3									
157	RC.	LD 36 1-	4									
158		x -3	5									
159	GT	09 22 0	9									
160	*LB	Lb 21 16 1	2				-					
161	51	U8 3⊃0 →v 1	17 1	For del	eting incorrect							
162	e t	+1 [−] 4 ∩0 75 0	1 0	inputs.	-							
163	31		1									
165	- xî	02 16-4	4									
166	GT	01 22 A	1									
167	Š	F1 16 21 0	1									
168	≭ LB	L5 21 0	5									
				LAE	BELS			FLA	GS		SET STATUS	
^A START		^B Data Input	^C Tren	d Line	D Lin y	E	Expy	⁰ Print?		FLAGS	TRIG	DISP
a		^b Del Data	C Del	T I	d	e	D=1=+2	1		ON OFF	inia	DISF
a; b; r*		Del. Data	Del.	1.L.		<u> </u>	FINT?	V ₽ 0		0 🗆 🗶	DEG 🗷	FIX K
⁰ Used		' Used	² Used		³ Used	4	Used	2			GRAD	
⁵ Used		6	7	8 9				3		3 🗆 🛛		n2

L18-01

MULTIPLE LINEAR REGRESSION

B01 B02 B03 B04 B05 B06 B06 B07 B086 B086 B07 </th <th>*LBLA CLRG CF1 8 CLRG CF1 8 CLRG CF1 8 CF2 CF2 CF2 CF2 CF2 CF2 CF2 CF2</th> <th>16 16 35- 35- 35- 35- 35- 35- 35- 35-</th> <th>$\begin{array}{c} 21 & 11 \\ 16 - 53 \\ 22 & 00 \\ 21 \\ 21 \\ 23 \\ 5 \\ 33 \\ -31 \\ 23 \\ 35 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 00 \\ 00 \\ 07 \\ -31 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\$</th> <th>Initia Inpu Com</th> <th>solution for the formula $\Sigma \mathbf{x}_{i}$, \mathbf{y}_{i}, \mathbf</th> <th>$\begin{split} & \sum y_i, \ \sum z_i \\ & \sum y_i^2, \ \sum z_i^2 \\ & \mu_b \ \forall y_i z_b \ \sum z_i x_i \\ & \sum x_i^2, \dots \end{split}$</th> <th>857 858 859 859 868 862 863 866 867 868 867 868 867 868 867 868 867 868 867 868 867 867 878 878 875 876 875 876 878 825 826 827 828 829 829 829 899 899 894 895 895 897 899 100 1822 1023 182 1021 182 1021 182 1021 182 1021 182 1021 182 1021 182 1027 182 1027 182 1027 182 1027 <t< th=""><th>- STOI R X2 GSB2; RTN RCL0</th><th>35-</th><th>$\begin{array}{c} -45 \\ -45 \\ -35 \\ -36 \\ -37 \\ -53 \\ 23 \\ -37 \\ -53 \\ 23 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$</th><th>Ca</th><th>iculate a</th><th>, b, c</th></t<></th>	*LBLA CLRG CF1 8 CLRG CF1 8 CLRG CF1 8 CF2 CF2 CF2 CF2 CF2 CF2 CF2 CF2	16 16 35- 35- 35- 35- 35- 35- 35- 35-	$\begin{array}{c} 21 & 11 \\ 16 - 53 \\ 22 & 00 \\ 21 \\ 21 \\ 23 \\ 5 \\ 33 \\ -31 \\ 23 \\ 35 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 23 \\ 00 \\ 07 \\ -31 \\ 00 \\ 00 \\ 07 \\ -31 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ 00 \\ $	Initia Inpu Com	solution for the formula $\Sigma \mathbf{x}_{i}$, \mathbf{y}_{i} , \mathbf	$\begin{split} & \sum y_i, \ \sum z_i \\ & \sum y_i^2, \ \sum z_i^2 \\ & \mu_b \ \forall y_i z_b \ \sum z_i x_i \\ & \sum x_i^2, \dots \end{split}$	857 858 859 859 868 862 863 866 867 868 867 868 867 868 867 868 867 868 867 868 867 867 878 878 875 876 875 876 878 825 826 827 828 829 829 829 899 899 894 895 895 897 899 100 1822 1023 182 1021 182 1021 182 1021 182 1021 182 1021 182 1021 182 1027 182 1027 182 1027 182 1027 <t< th=""><th>- STOI R X2 GSB2; RTN RCL0</th><th>35-</th><th>$\begin{array}{c} -45 \\ -45 \\ -35 \\ -36 \\ -37 \\ -53 \\ 23 \\ -37 \\ -53 \\ 23 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$</th><th>Ca</th><th>iculate a</th><th>, b, c</th></t<>	- STOI R X2 GSB2; RTN RCL0	35-	$\begin{array}{c} -45 \\ -45 \\ -35 \\ -36 \\ -37 \\ -53 \\ 23 \\ -37 \\ -53 \\ 23 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -$	Ca	iculate a	, b, c
004 055 056	RCLI	30-	36 46 87 83				110 111	- X5		53 -45			
636	ۍ 		ยง			REGIS	112 STERS	÷		-24			
0 n	$1 \Sigma x_i y_i$		$2 \Sigma_{x_i z_i}$	3Σν	:Z:	$4 \Sigma x^2$	$5 \Sigma v^2$	$6 \Sigma z^{2}$		7 Σ.χ.	8.	54:	9 57
 S0	S1		52	S3	141	S4	∠¥i S5	S6		2x _i S7	S8	2γ;	22 ₁ 59
A		в			c		D		E			I	Ļ
Use	a	1	Used		Us	ed	Used		Ē	Used		Us	ed

113	\$7	OC 35	3				169	F0?	16	23 00		
114	RC	LB 36 1	2				170	G SB6		23 06		
115	RC	LA 361					171	RCLC		36 13		
117	RL	LL 361 X -	13				172	x→v		-35		
118			15				174	RCLE		36 12		
119	R C	LD 36	4				175	x		-35		
128		÷ -2	4				176	+		-55		
121	- 51	OB 35 3	2				177	FCLA		36 11		
122	RC	:L9 3€ I	99				178	+		-55		
123	RC	LC 36	13				179	GT09		22 09		
124	RC	L8 36 (88				180	*LBLa	21	16 11	Correction	of input
125		× -,	5				181	CORD	16	21 01	values.	
120	50	 1.P 76	12				182	65BE	16	23 12		
128	RC	27 361	77				184	RTN	16	22 01		
129	1.0	x -	75				185	*LELe	21	16 15	Drint instrum	
138			15				186	F0?	16	23 00	Frint instruc	cuons
131	RC	LB 36 (30				187	6705		22 05		
132		÷ -;	24				188	SFC	16	21 00		
133	ST	DA 35	1	а			189	1		Øt		
:34	63	B7 23 (17				190	RTN		24		
135	RC	LE 36	2	b			191	#1.8LC		21.05		
130	63 Df	163 Z31 110 Z6	19				193	CER	16	22 88		
138	61	09 22	39	с			194	RTN		24		
139	*1.5	LD 21	14				195	*LBL7		21 87		
140	RC	CLA 36	11				196	F0?	16	23 08		
141	RC	L9 36 I	99				197	SPC		16-11		
142		x -	35	Calculat	te r ²		198	*LBL9		21 69		
143	FC.	LS 36	12				199	F@?	16	23 80		
144	FC	CLZ 36	02				200	GIUE		22 86		
140		x -	50 55				201	5/2 DTN		51		
140	P(יור דר זר דר	17				283	NI BLE		21 86		
148	EC	0.2 36 J	az				204	PETX		-14		
149		x -	35				205	RTN		24		
150		+ –	55				206	*LBL2		21 02	Change sign	for
151	F C	$2LS=-3\epsilon$.	99				287	F1?	1E	23 01	correction.	101
152		Х5	53				208	CHS		-22		
153	R C	CLE 36	00				289	RTN		24		
154		÷	24				210	*LBLB		21 08		
155	D.f	- 	40 04				211	6T09		22.09		
157	RC	29 36	99				213	R/S		51		
158		Ma .	53							• •		
159	F C	26 36 i	96									
160		÷	24									
161			45									
162		÷ -	24									
163	61	07 22										
164	*15		1.0	Calculat	te 'z`for given x,	y.						
165			86									
167	65	B8 23	 88									
168)	(#Y -	4)									
				LAB	ELS			FLAG	iS		SET STATUS	
A STAR	т Т	Β Σ+	^C a;b;c	;	D r ²	E	z	⁰ Print		FLAGS	TRIG	DISP
^a Σ-		b	С		d	e pr	int?	¹ Correct	ion	ON OFF		
-		1 Llood	2140-		3	4		2				SCI
5		Usea 6	- Used		8	a		3		2 🗆 🕱	RAD 🗆	
Used		~ Used	1' Used		r≃ Used	r≚ Us	sed	~				n 2

BREAK-EVEN ANALYSIS

80 80 80 80 80 80 80	1 *LBLA 2 STOA 3 F3? 4 RTN 5 RCLB 5 RCLC 7 -	21 11 35 11 16 23 03 24 36 12 36 13 -45	F→R _A Digit entered? Calculate F and store in	857 R 858 R 859 860 R 861 862 R 863		36 12 36 13 -45 36 14 -35 36 11 -45	Calculate GP in R _E .	and store
00: 00: 01: 01: 01: 01:	RCLD RCLE RCLE STDA	36 14 -35 36 15 -45 35 11	R _A .	864 S 865 866 *L 867 R 868 R	TOE RTN BLa 21 CLB CLC	35 15 24 16 11 36 12 36 13	– – – – – – Calculate OL	
81 81 81 81 81 81 81	3 RTN 4 #LBLB 5 STOB 5 F3? 7 RTN 8 RCLA 9 RCLE	24 21 12 35 12 16 23 03 24 36 11 36 15	P→R _B Digit entered?	069 070 R 071 072 S 073 R 074 R 075	- CLD X TOI CLI CLA	-45 36 14 -35 35 46 36 46 36 11		
02 02 02 02 02 02 02	RCLD RCLD RCLC RCLC STOB	-55 36 14 -24 36 13 -55 35 12	Calculate P and store in R _B .	876 877 873	÷ RTN R∕S	-24 24 51		
82) 82) 82) 83) 83) 83)	5 RTN 7 #LBLC 8 STOC 9 F3? 3 RTN 1 RCLB	24 21 13 35 13 16 23 03 24 36 12	V→R _C Digit entered?					
03: 03: 03: 03: 03: 03: 03:	2 RCLA 3 RCLE 4 + 5 RCLD 5 ÷ -	36 11 36 15 -35 36 14 -24 -45	Calculate V and store in R _C .					
831 841 841 841 841	8 510C 7 RTN 8 ¥LBLD 1 STOD 2 F3? 8 RTN	35 13 24 21 14 35 14 16 23 03 24 76 11	U→R _D Digit entered?					
644 641 641 641 641 642	RCLE RCLE RCLB RCLC	36 11 36 15 -55 36 12 36 13 -45	Calculate U and store in R _D .					
05: 05: 05: 05: 05: 05:	\$TOD RTN \$#LBLE \$\$TOE \$\$F3? \$\$RTN	-24 35 14 24 21 15 35 15 16 23 03 24	GP→R _E Digit entered?					
			REGIS	TERS				
U	1	2	3 4	5 6		7 8		9
S0	S1	S2	S3 S4	S5 S	6	S7 S	68	S9
A F	I	ВР	c v	D U	E	GP	P(U -	V)

										T	
								FLACE	1	CET CTATUS	
A	Вр	С		D		E	CP	0 FLAGS	51.400	JEISTATUS	
а	b	с	v	d	0	e	GP	1	ON OFF	TRIG	DISP
0	1	2		1		ľ.		2	0 🗆 🛛	DEG 🛛	FIX 🗵
6	6	2		°		4		2		RAD 🗆	
2	0	Ľ		ľ		la la		³ Digit?	3 🗆 🗵	_	n2

INVOICING

801	*LBLA	2	1 11	~			057	*LBLc	21	16	13	B	ما ممط ا	ionlau lina
002	CLRG	1	6-53	Clear	registers	and	058	2			02	tota	all and d	Grand Total
003	P75	1	6-51	mua	126 UI		059	STOI		35	46			Grand Fotal.
804	CLKG	1	6-53				060	*LBL1		21	01 45			
885	STOI	-	5 46				961	X-02		16	43			
887	3101 A		89				962	CT04		22	-43 04			
008	RTN		24				063	DCI 1		36	01 01	Che	ck to red	all only those
889	TRI RI R	2	1 12	DISC	→Rc		004	=		30	-24	regi	sters con	taining line
010	STOE	3	5 15				065	FFX			-23	tota	ıls.	-
011	RTN		24				967	2			02			
012	*LBLC	2	1 13				968	×			-35			
013	STOD	3	5 14	UNIT	S→R _D		869	€SB2		23	02			
014	RTN		24				070	ISZI	16	26	46			
015	*LBLD	2	1 14				071	2			02			
016	STOC	3	5 13	PRIC	E→R _C		072	1			01			
017	RTN		24				073	RCL I		36	46			
018	*LBLE	2	21 15				074	X≦Y?		16	-35			
019	GSB5	ć	3 05	Net li	ne total⊣	≻R _i	075	GT01		22	01			
020	STOI	3	35 45				076	*LBL4		21	04	Las	t output	is 100 – you
021	ST+0	35-5	55 00				077	1			01	are	done!	
022	ST+1	35-5	55 01	Charl		auguahas of	078	0			00			
023	ISZI	16 2	26 46	input	$c to see fi c i c \leq 22$	If not show	079	0			00			
024	2		02	FRR	אמי מי אר	n not, snow	080	GSB2		23	02			
025	DC1 7		02		511.		881	RIN		~	24			
025	KLLI		06 46				882	*LBL2		21	82	les	t print/p	ause flag.
027	A/1?		22 80				083	FU?	16	23	60			
020	6103 D1		-71				805	6103 D/C		22	51			
878	P1		- 31				005	PTN			24			
R31	PTN		24				000	+1 817		21	24 07	Prin	t/nause	
032	#/ BI 5	;	21 85				899	PPTY		21	-14	1	() puuse	
033	RCLC		36 13	Net li	ne total d	alculated	689	PTN			24			
034	ENTT		-21		no total t	around to a.	009	t Rie	21	16	15			
035	ENTT		-21				R91	FØ?	16	23	00	Prin	t/pause	flag set and
036	RCLE	3	36 15				R92	GTOR		22	00	uns	et.	
037	EEX		-23				093	SFØ	16	21	00	1		
038	2		02				894	1			01	1		
039	÷		-24				895	RTN			24	1		
040	x		-35				096	*LBL0		21	00			
041	-		-45	1			097	CFØ	16	22	0 0			
042	RCLD	- 3	16 14				898	0			00			
043	×		-35				899	RTN			24			
044	RTN		24				100	*LBLd	21	16	14	Rou	tine to d	lelete
845	#LULa	21 1	0 11	Displa	ay subtot	al and clear	101	usz1	16	25	46	inco	orrect lin	e totals.
046	KLLU ENTA	•	-21	regist	er.		102	610		75	80			
04/ 04P	CIX		-51				103	5101		27	40			
849	STOR	ę	15 88				104	6303	75	2J -45	80			
850	X-1Y	``	-41				105	51-0	75	-45	B1			
851	GSB2	:	23 02				197	RCLA	55	36	88			
852	RTN		24				189	R/S			51	1		
053	*LBLb	21	16 12	Bacal										
854	RCL 1		36 01	necal	Grand	otai								
855	6SB2	2	23 82									1		
856	RTN		24											
						REGIS	STERS							
Subtotal	¹ Grand	Total	² Used	³ U	sed	⁴ Used	⁵ Used	⁶ Used		7	Used	⁸ Us	ed	⁹ Used
0 Used	S1 Used	I	S2 Used	S3 (Jsed	S4 Used	S5 Used	S6 Use	d	S7	Used	58 เ	Jsed	S9 Used
Usec	4	в	Used		C Pri	ce	D Un	its	E		Disc.		^I Co	ntrol

									-	
			LAE	BELS			FLAGS		SET STATUS	
^A START	^B Disc.	^c U	nits	D Price	ENet	Line Tot.	⁰ Print?	FLAGS	TRIG	DISP
^a Subtotal	^b Grand Total	^с % То	tal	^d DEL	^e Prir	nt?	1	ON OFF	DEG 🗷	FIX KG
0 Used	¹ Used	2 U	sed	³ Used	⁴ Use	d	2	1 🗆 🕅 2 🗆 🕅	GRAD 🗆 RAD 🗆	SCI 🗆 ENG
^o Used	0	ľ		0	9		3	3 🗆 🗹		n_2_

PAYROLL

801	*LBLA		21	11	Read	data carc	I. If data card	857	RCL1		36 01	(1)	uge) 5.95	2
002	0		•	60	read,	gotoc.C	Otherwise	058	*LBL3		21 03	1 (***	ige/ 0.65	/0
003	FSE F70	16	27	31	repear	sequenc	æ.	809	5		62			
004	CTOC	22	16	17				821	:		-62			
886	ETOD	~~	22	11				862	5		95			
887	ALELO	21	16	13	Displa	v SS No		263	ž		55			
808	RCLI		36	46		,		REA	RND		16 24			
669	GSB9		23	89	Displa	iy marita	l status.	865	ST+5	35-5	55 05	ΣF	ICA	
610	RCLE		36	15				866	ST-9	35-4	15 09	Net	pay-FI0	CA
011	6SB9		23	89				967	GSB9		23 09			
812	RCLB		36	12	Displa	iy numbe	er of	865	*LBL2		21 02	Cali	ifornia S	DI tax base
e13	GSB9		23	09	exem	otions.		869	9		09			
814	RTN			24				070	EEX		-23			
015	*LBLB	i	21	12				671	3		03			
616	RCLC		36	13	#hrs :	k hrly wa	ge	872	RCLO	;	36 00			
017	x		-	-35				873	X>Y?		16-34	Gro	ss > 900	0?
018	RND		16	24				874	GT06		22 06			
019	ST01		35	01				675	RCL1		36 01			
020	ST09		35	09				876	*LBL4		21 04	(Wa	ige) 1%	
621	ST+0	35-5	55	<u>00</u>				877	1		01			
622	GSP9	1	23	69				678	¥.		55			
623	RIN			24				079	RND		16 24			
024	*LBLC		21	13	#nrs :		le	686	51+5	35-3	55 86	ΣS	DI	
025	KLLU		35	14				681	57-9	30-4	45 89			
625				-35				682	6559		23 89	Net	pay – SC	01
020	KNU ST+0	75-1	10	24				083	*LELD		21 80			
829	S170 CT41	75-	55	86 01				024	KCL7	76	35 87 45 90	Net	pay – Co	onst. 1
878	CT+9	75-	55	5 89				005	0000	33-	43 83			
631	RUA		36 89					000	DCI 1		23 89			
P32	6SB9	2	56 89 27 AQ					828	PCLE		76 88	Net	Pay – W	age x Const. 2
833	RTN		23 89					689	2		55			
834	*LBL0	ź	21	14	Eed'l	tav		696	RND		16 24			
835	ST02		35	82	Tot F	iad'i tav		891	ST-9	25-	45 89			
036	ST+3	35-5	55	83	TOL. P	eu I. tax		692	GSB9		23 89	Net		ant 3
637	ST-9	35-4	45	ð9	Netp	ау – гео	1. Lax	893	RCLA		36 11	1	pu, o	inst. O
638	RCL2	3	36	82	Displa	v Fed'l.	tax	094	ST-9	35-	45 09			
639	GSB3	2	23	89		,		095	6SB9		23 09	Net	pav	
040	RTN			24				896	RCL9		36 09	Writ	te new da	ata
041	★I.BLE	2	21	15				097	NDTA		16-61			
042	ST02		35	65	State	tax		698	CF3	16	22 03			
843	ST+4	35-5	55	64	Tot. S	tate tax		099	GSB9		23 09			
644	S1-9	35-4	15	89	Net p	ay-State	tax	100	RTN		24	DO	NE!	
645	RULZ	3	36	02				101	*LBLC		21 00			
045	6359	ć	: 3	09	Displa	y State t	ax	102	XZY		-41	Gro	ss — 1530	0
647	K I N 4 I D I	a		24				103			-45			
048 840	+LDLù	21 1	6	11				164	KUL1		36 81	Wag	ge > Gros	is – 15300?
650	5			05	FICA	tax base		165	A) Y (16-34			
651	3			03 07				105	6/01		22 UI 00	No	more FIG	CA to with-
052	a			00 00				107	0000		27 20	hold	d; contin	ue.
053	e			86				1.00	6363		22 82			
854	RCIN		76	88 I	Gross	> 15300	7	110	4/ 111		22 02			
855	X>Y?	1	6-	30			-	111	XIY		-41		ount t0 a is	PPIY TO FICA
85E	6100	ż	2	ē.				112	-		-45	waq	e – (Gros	s – 15300)
							REGIS	STERS						
Gross	¹ Want	, ,	² F	ed'I/State	³ то	tal Fed'l	4 Total State	⁵ Σ.ΕΙCA	6 S SD		7 Const 1	8 6	onet 2/94	9 Net Pay
3,033	- Traye	-	1°		· · · · ·	arreul		2 FICA	2 30		Const. I		JIIST. 21%	Net Pay
50	51		52		53		54	55	S6		57	58		59
A		в	1			С	L	D		IF	I		L.	
Const.	. 3	#	#E×	emption	s	Hrly V	Vage	OT Wag	e	Ľ	Used		SS N	umber

113	STO	3	22	93								
114	*LBL	.6	21 (96	Grow	0000						
115	A.	- 1		41 45	01055-	- 5000						
117	RCL	1	36	91 91	Wage >	Gross - 9000?						
118	X>I	γ?	16	34	l nuge x	0.000						
119	GTO	07	22	07	No mo	re SDI to withh	old;					
120		0		0C	continu	Je.						
121	GSI	89	23	0 9								
122	GTO	5	22	05 07								
123	*1.51	+0	21	97 4 1	Amoun	t to apply to S						
124	^.	- 1	_	41		vage – (Gross – s	0000	' I				
126	GT(14	22	44 194								
127	*L EI	e 2	1 16	15								
128	F	0? 1	6 23	90	Set and	l unset print/pa	Jse					
129	GTO	01	22	81	flag.							
130	SI	FØ 1	6 21	00								
131		1		01								
132	R	TN		24								
133	*LEI		21	81 33								
134	61	6 1	0 22	00 00	Print or	mmand						
136	R	TŇ		24	Frint Co	ommand						
137	∗LBI	19	21	89								
138	F	0? 1	6 23	88								
139	GTO	08	22	0 8								
140	R	∕S		51								
141	R	TN		24								
142	*1.81	L8	21	08								
143	PK	18	-	14								
144	* / DI	1. 2	1 16	24 10								
146	*LDI ECI	10 2	76	12 80	Gross							
147	GS	69	23	89								
:48	RCI	L3	36	83	Total F	ed'l						
149	65!	89	23	<i>0</i> 9	1 otur i							
158	RCI	L4	36	i74	Total S	tate						
151 152	GSI RCI	89 15	23 36	09 05	Total F	ICA						
153	GSE	89	23	09 06	T							
155	65	R9	23	00 09	l lotal S	DI						
156	R	TN		24								
157	R	/S		51								
								1				
								1				
									FLACE		CET OTATUS	
ASTART	В	#br=		C #F		D Ead'l tax	E 4	toto tou	0 Print?		SEISTATUS	
a Not Pour		#nrs		^C Line	rsOT ^D Fed'Itax ^E Sta			print?	Print?	ON OFF	TRIG	DISP
O LL - L		Totals Used			ad ^o ^e Pi			2		DEG 🕱	FIX K	
Used		Used	Jsed ² Used			ed ³ Used ⁴ Used		Jsed		2	RAD 🗆	
ິ Used	l°.	Used	Used ⁷ Used			Used	l, i	Jsed	🗸 Data?	3 🗆 🕱		n2

INVENTORY

		_	_					-				_				
801	*LBLA		21	11					857	RTN			24			
802	А			aa I	Read	data card	t.		958	*I BL c	21	14				
002	000			20 I	If dat	a card re	ad no to 1		050	ALDEC.	21	10	, 13	Init	ialize	
003	PSE		16	51	Othor			1	059	1			61			
804	F3?	16	23	83	Other	wise repe	at sequence.		868	STOI		- 35	546			
005	6101		22	B 1					861	±1 B1 2		21	82			
006	CTOA		22	11					862	PCI :		74	45			
000	0104		~~						002	RULI		30	43			
007	*LBL I		21	01					863	GSB9		23	389	Rec	all and c	lisplay
008	CF 3	16	22	03 I					064	ISZI	16	26	546	inve	entory in	formation.
000	PLIA		76	80					865	PCIT		74	16			
005	ACC D		22	~ I					005	NUL1		50	, <u>to</u>			
010	6283		23	69					066				0/			
011	RTN			24					067	X>Y?		16	-34			
812	★LBLB		21	12	Store	new pric	e.	1	868	6702		22	992			
917	CTOF		75	15					000	DCLO						
015	3102		35	12					063	RLLU		36				
014	KIN			24					070	6589		23	509			
015	*LBLC		21	13					871	F0?	16	23	8 8 8 8			
Ø16	STOD		75	14	Store	amount	rec'd.		872	SPC		14	-11			
017	DCI 1		32	11 I					072	570		10				
017	RULI		30	61					073	RIN			24			
018	RCL2		36	02					874	*LBL d	21	16	14	Ask	s for dat	a card.
819	x		-	-35 I	Unit	price by v	weighted	1	075	NDTA		16	-61			
820	RCIE		76	15	avera	e metho	d.	1	076	CE7	10					
020	DOLD		30		2.0.0	,		1	010	0.1	10	22	03			
821	KULD		36	14				1	677	ULX			-51			
022	x		-	35				1	078	RTN			24			
023	+		-	-55 I				1	879	*I BL P	21	16	15			
624	Pri 2		76	62				1	000	FRO	10					
024	RULZ		30	02					080	F 0 ?	16	23	00			
025	RCLD		36	14				1	081	GTOØ		22	00	Prin	it/pause	flag
026	+		-	-55					082	SFØ	16	21	00			
927	-		-	24					807	1			A1			
027			75	57					003				01			
028	5101		30	61				1	684	RIN			24			
029	RCLD		36	14	Adjus	ts on har	nd and on		085	*LBL0		21	00			
030	ST+2	35-	55	Ø2	order	quantitie	es by amount	1	886	CER	16	22	88			
971	ST-7	75-	45	A7	receiv	ed			007							
031	0007	33-						1	087	6			00			
032	ESB3		23	03	Calc.	slack.			088	RTN			24			
033	RCL2		36	02					689	*LBL9		21	09	Prin	t comm	and
034	RTN			24					898	FR2	16	23	88			
975			21	14	C				201	CTOO		20				
033	+LDLD	76		17 I	Jubu	act # 1550			091	6108		22	88			
036	51-2	32-	43	02	those	on hand.			092	R/S			51			
037	esb3		23	03	Calc.	slack.			Ø93	RTN			24			
838	RCL2		36	Ø2					894	*/ R/ R		21	88			
870	DTM			24					005	DDTV		•••				
035	K / R		~ ·	57					035	FRIA			-19			
040	#LRFF		21	15					096	RIN			24			
041	ST+3	35-	·55	03	Add #	<pre># ordered</pre>	to those on	1	097	R∕S			51			
842	GSB3		23	Ø3	order											
947	PCI 7		76	A7												
043	RULJ		30	3	Calc.	slack.		1								
044	RIN			24				1								
045	*LBLa	21	16	11												
946	ST04		35	04 I	Store	minimum	n quantity									
847	RTN			24	21016		- quantity.	1								
849	+) DI L	21	16	10 1				1								
048		21	10	16				1								
049	\$105		35	62	Store	lead time	e.	1								
858	*LBL3		21	83				1								
851	RCL 2		36	82	Bout	ne to col	sulate clack	1								
852	PCI 7		76	97	nouti	ne to can	Surate stack.	1								
0.52	RULJ		30	03				1								
853	+			-22				1								
854	RCL4		36	84									1			
855	-		-	-45				1								
854	STOP		75	in a												
030	3100		35					1								
	1		0		10		REGIS	STE	ERS	10		-		1.		-
⁹ Part #	' Unit p	rice	² Or	n hand	° On	Order	⁴ Min. Quant.	۶ı	Lead Time	^b Slack		ľ		8		9
50	S1		S2		S3		S4	S5		S6		S7		S8		S9
A	-	в			-	с		D		-	F	_		1	1	
		Ĺ						1	Amount R	ec'd.	Ľ	Ne	w price		Use	d

						T				
Actes	Bai	C .	LAE	BELS	IE o		FLAGS		SET STATUS	
^a Min, Quant.	Price b LT→SLK	C List	ved	d Update	- 0 e p	raerea	Print?	FLAGS ON OFF		DISP
⁰ Used	¹ Used	² Used		³ Used	4		2			
5	6	7		⁸ Used	⁹ U	sed	³ Data?	3 🗆 🛛	HAU LI	n_2_

Appendix A

MAGNETIC CARD SYMBOLS AND CONVENTIONS									
SYMBOL OR CONVENTION	INDICATED MEANING								
White mnemonic: x	White mnemonics are associated with the user definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \blacktriangle .								
Gold mnemonic: y x I E	Gold mnemonics are similar to white mnemonics except that the gold 1 key must be pressed before the user definable key. In this case y could be input by pressing 1 E .								
x ♠ y A	 ♦ is the symbol for ENTER●. In this case ENTER● is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER●, key in y and press A. 								
X	The box around the variable x indicates input by pressing STO A .								
(x) A	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.								
→ x A	• is the symbol for calculate. This indicates that you may calculate x by pressing key \blacksquare .								
→x, y, z	This indicates that x, y, and z are calculated by pressing \triangle once. The values would be printed in x, y, z order.								
→ x; y; z	The semi-colons indicate that after x has been calculated using $[A]$, y and z may be calculated by pressing $[R/S]$.								
	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.								
↔ x ▲	The two-way arrow \diamondsuit indicates that x may be either output or input when the associated user definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.								
SYMBOL OR CONVENTION	INDICATED MEANING								
-------------------------	--								
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is con- trolled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.								
START	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.								
DEL A	This special command indicates that the last value or set of values input may be deleted by pressing A.								

Appendix B PRINCIPAL EQUATIONS

Unless otherwise stated, all interest rates (i, APR, IRR, NOM, EFF, CR, YLD, etc.) are expressed in decimal form in the equations which follow. Only symbols not defined in the program descriptions are defined here.

Program Number

1. Internal Rate of Return

Solve for IRR in:

$$INV = \sum_{j=1}^{n} \frac{CF_{j}}{(1 + IRR)^{j}}$$

where:

$$\label{eq:constraint} \begin{split} n &= number \mbox{ of } cash \mbox{ flows} \\ CF_j &= j^{th} \mbox{ cash } flow \end{split}$$

2. Internal Rate of Return—Groups

INV =
$$\sum_{j=1}^{k} CF_{j} \left[\frac{1 - (1 + i)^{-n_{j}}}{i} \right] \left[(1 + i)^{-\sum_{\ell < j}^{n} \ell} \right]$$

 $n_{0} = 0$

where:

 $CF_{j} = j^{th} \text{ cash flow}$ n = number of cash flows

3. Discounted Cash Flow Analysis—Net Present Value

$$NPV_{k} = -INV + \sum_{k=1}^{n} \frac{CF_{k}}{(1 + i)^{k}}$$

where:

n = number of cash flows $CF_k = k^{th} cash flow$ $NPV_k = net present value after k^{th} cash flow$

4. Direct Reduction Loans—Sinking Fund

$$PV = \pm \frac{PMT}{i} \left[1 - (1+i)^{-n} \right] + BAL (1+i)^{-n}$$

5. Accumulated Interest/Remaining Balance

$$BAL_{K} = \frac{1}{(1+i)^{-K}} \left[PMT \frac{(1+i)^{-K} - 1}{i} + PV \right]$$

Int_{J-K} = BAL_K - BAL_{J-1} + (K - J + 1) · PMT

where:

 k^{th} payment to principal = $BAL_{K-1} - BAL_K$ k^{th} payment to interest = $PMT - (BAL_{K-1} - BAL_K)$ Total payment to interest = (K) × (PMT) - (PV - BAL_K)

6. Wrap-Around Mortgage

$$PV_2 - PV_1 = \frac{PMT_2 \left[1 - (1+i)^{-n_2} \right]}{i} - \frac{PMT_1 \left[1 - (1+i)^{-n_1} \right]}{i} + BAL(1+i)^{-n_2}$$

7. Constant Payment to Principal Loan Amortization Schedule

where:

$$BAL_{K} = PV - (K \times CPMT)$$

 K^{th} payment to interest = (i) $(BAL_{K-1}) = (PMT_{i})_{K}$
 K^{th} total payment = $CPMT + (PMT_{i})_{K}$
Total interest to payment K =

$$\frac{\frac{(2-K) CPMT}{PV} + 2}{2} \left[(K-1) (i/100) (PV) \right]$$

8. Add-on Rate Installment Loan/Interest Rebate—Rule of 78's

$$FC = AMT \cdot \left(\frac{N+h}{12}\right) \cdot AIR$$
$$PMT = \frac{AMT + FC}{N} = AMT (1+i)^{h} \left[\frac{i}{1 - (1+i)^{-N}}\right]$$

APR = 12i

where:

$$h = ODD \cdot 12/365$$
$$REB_{K} = (N - K) \cdot \left[\frac{FC (N - K + 1)}{N \times (N + 1)}\right]$$
$$BAL_{K} = (N - K) \cdot PMT - REBATE_{K}$$

9. Savings Plan—Leases

$$PV = \pm \frac{PMT}{i} (1+i) \left[1 - (1+i)^{-n} \right] + (BAL \text{ or } FV) (1+i)^{-n}$$

10. Advance Payments

$$PMT = \frac{PV - BAL (1 + i)^{-n}}{\left[\frac{1 - (1 + i)^{-(n - A)}}{i} + A\right]}$$

11. Savings-Compounding Periods Different from Payment Periods

$$PMT = \frac{FV}{Z} \left[\frac{Q}{(1+Q)^n - 1} \right]$$

when P/C ≤ 1 $Q = (1 + i)^{C/P} - 1$ Z = (1 + Q)n = #PAY when P/C > 1

$$Q = i$$

$$n = (\#PAY) \times (C/P)$$

$$Z = (P/C + 1) \times \left(\frac{Q}{2}\right) + (P/C)$$

12. Simple Interest/Interest Conversions

INT
$$360 = \frac{\text{DAYS}}{360} \cdot \text{BEG AMT} \cdot \text{RATE}$$

INT
$$365 = \frac{\text{DAYS}}{365} \cdot \text{BEG AMT} \cdot \text{RATE}$$

finite compounding

$$EFF = \left(1 + \frac{NOM}{C}\right)^{C} - 1$$

continuous compounding

$$EFF = (e^{NOM} - 1)$$

13. Depreciation Schedules

where:

K = value for YRTOTDEP_K = total depreciation for years 1 through K. W = integer portion of LIFE F = decimal portion of LIFE (i.e., for a LIFE of 12.25 years W = 12 and F = .25)

Straight Line Schedule

$$DEP_{K} = \frac{SBV - SAL}{LIFE}$$
$$DEP_{K} (last year) = \left(\frac{SBV - SAL}{LIFE}\right) \cdot F$$

$$TOTDEP_{K} = (K) \cdot \left(\frac{SBV - SAL}{LIFE}\right)$$

$$RDV_{K} = (LIFE - K) \cdot \left(\frac{SBV - SAL}{LIFE}\right)$$

 $RBV_{K} = RDV_{K} + SAL$

Sum-of-the-Years'-Digits Schedule

SOYD =
$$\frac{(W + 1) (W + 2F)}{2}$$

$$\text{DEP}_{K} = \left(\frac{\text{LIFE} + 1 - K}{\text{SOYD}}\right) \cdot (\text{SBV} - \text{SAL})$$

$$TOTDEP_{K} = \left[1 - \frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)}\right] \cdot (SBV - SAL)$$

$$RDV_{K} = \left[\frac{(W - K + 1) \times (W - K + 2F)}{2 \times (SOYD)}\right] \cdot (SBV - SAL)$$

$$RBV_{K} = RDV_{K} + SAL$$

Variable Rate Declining Balance Schedule

$$DEP_{K} = SBV \cdot \left(1 - \frac{FACT}{LIFE}\right)^{K-1} \cdot \left(\frac{FACT}{LIFE}\right)$$
$$TOTDEP_{K} = SBV \cdot \left[1 - \left(1 - \frac{FACT}{LIFE}\right)^{K}\right]$$
$$RDV_{K} = (SBV - SAL) - TOTDEP_{K}$$

$$RBV_{K} = RDV_{K} + SAL$$

Crossover Point-Declining Balance to Straight Line

$$\operatorname{SBV}\left(1-\frac{\operatorname{FACT}}{\operatorname{LIFE}}\right)^{\operatorname{K}-1} \cdot \left(\frac{\operatorname{FACT}}{\operatorname{LIFE}}\right) > \frac{(\operatorname{SBV}-\operatorname{SAL})-\operatorname{TOT}\operatorname{DEP}_{\operatorname{K}-1}}{\operatorname{L}+1-\operatorname{K}}$$

where $TOTDEP_{K-1}$ is determined as shown above.

The largest integer value for K which maintains the above relationship is the "last year" to use the Declining Balance depreciation method.

14. Days Between Dates

Actual

$$DAYS = f (DT2) - f (DT1)$$

where

f(DT) = 365 (yyyy) + 31 (mm - 1) + dd + Int (z/4) - x

and

for mm ≤ 2 $\mathbf{x} = \mathbf{0}$ z = (yyyy) - 1for mm > 2x = Int (.4 mm + 2.3)z = (yyyy)Int = Integer portion 30/360 Basis DAYS = f (DT2) - f (DT1)f(DT) = 360 (yyyy) + 30 mm + zfor f(DT1) if $dd_1 = 31$ then z = 30if $dd_1 \neq 31$ then $z = dd_1$ for f (DT2) if $dd_2 = 31$ and $dd_1 = 30$ or 31 then z = 30if $dd_2 = 31$ and $dd_1 < 30$ then $z = dd_2$ if $dd_2 < 31$ then $z = dd_2$

15. Bond Price and Yield for PER > 1

PRICE =
$$RV\left(1 + \frac{YLD}{2}\right)^{PER} + 100 \frac{CR}{YLD}\left[\left(1 + \frac{YLD}{2}\right)^{J}\right]$$

$$-\left(1 + \frac{\text{YLD}}{2}\right)^{-\text{PER}} - 100\left(\frac{\text{CR}}{2}\right) J$$

where

J = 1 - FRAC (PER) FRAC (PER) = fractional portion of the number of remaining coupon periods

i.e., if PER = 12.6, FRAC (PER) = .6, and J = 1 - .6 = .4 for PER < 1

$$PRICE = \frac{RV + \frac{CR}{2}}{1 + \frac{YLD}{2} \cdot PER} - \left(\frac{CR}{2}\right)J$$

16. Interest at Maturity/Discounted SecuritiesPrice (given yield) =

$$\frac{\left(\frac{\text{DIM}}{\text{B}} \times \frac{\text{CR}}{100} + 1\right)}{\left(\frac{\text{DSM}}{\text{B}} \times \frac{\text{YLD}}{100} + 1\right)} - \left(\frac{\text{DIM} - \text{DSM}}{\text{B}} \times \frac{\text{CR}}{100}\right)$$

Yield (given price) =

$$\left[\frac{\left(\frac{\text{DIM}}{\text{B}} \times \text{CR} + 100\right)}{\frac{\text{DIM} - \text{DSM}}{\text{B}} \times \text{CR} + \text{PRICE}} - 1\right] \left(\frac{\text{B}}{\text{DSM}}\right) (100)$$

Price (given yield) =
$$\frac{100}{1 + \frac{\text{YLD}}{100} \times \frac{\text{DSM}}{360}}$$

YLD (given price) = $\left(\frac{100 - \text{PRICE}}{\text{PRICE}} \times \frac{360}{\text{DSM}}\right) \times 100$
Price (given discount rate) = $100 - \left(\frac{\text{DR} \times \text{DSM}}{360}\right)$

17. Linear Regression

for

$$y = a + bx$$
$$b = \frac{\sum x_i y_i - \frac{\sum x_i \sum y_i}{n}}{\sum x_i^2 - \frac{(\sum x_i)^2}{n}}$$
$$a = \overline{y} - b\overline{x}$$

where:

$$\overline{\mathbf{x}} = \frac{\Sigma \mathbf{x}_i}{n}$$
 $\overline{\mathbf{y}} = \frac{\Sigma \mathbf{y}_i}{n}$

$$r^{2} = \frac{\left[\Sigma_{x_{i}y_{i}} - \frac{\Sigma_{x_{i}} \Sigma_{y_{i}}}{n}\right]^{2}}{\left[\Sigma_{x_{i}^{2}} - \frac{(\Sigma_{x_{i}})^{2}}{n}\right]\left[\Sigma_{y_{i}^{2}} - \frac{(\Sigma_{y_{i}})^{2}}{n}\right]}$$

n = number of data pairs

Exponential Curve Fit

y = ae^{bx} (a > 0)
b =
$$\frac{\sum x_i \ln y_i - \frac{1}{n}(\sum x_i) (\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp\left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n}\right]$$
$$r^2 = \frac{\left[\sum x_i \ln y_i - \frac{1}{n} \sum x_i \sum \ln y_i\right]^2}{\left[\sum x_i^2 - \frac{(\sum x_i)^2}{n}\right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n}\right]}$$

n = number of data pairs

Annual growth rate = $(e^b - 1) 100$

18. Multiple Linear Regression

$$z = a + bx + cy$$

$$\Sigma z_{i} = an + b\Sigma x_{i} + c\Sigma y_{i} \qquad i = 1, 2, ..., n$$

$$\Sigma x_{i} z_{i} = a\Sigma x_{i} + b\Sigma x_{i}^{2} + c\Sigma x_{i} y_{i}$$

$$\Sigma y_{i} z_{i} = a\Sigma y_{i} + b\Sigma x_{i} y_{i} + c\Sigma y_{i}^{2}$$

$$c = \frac{A - B}{\left[n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2}\right] \left[n\Sigma y_{i}^{2} - (\Sigma y_{i})^{2}\right] - \left[n\Sigma x_{i} y_{i} - (\Sigma x_{i}) (\Sigma y_{i})\right]^{2}}$$

where:

$$\begin{split} A &= \left[n \Sigma x_{i}^{2} - (\Sigma x_{i})^{2} \right] \left[n \Sigma y_{i} z_{i} - (\Sigma y_{i}) (\Sigma z_{i}) \right] \\ B &= \left[n \Sigma x_{i} y_{i} - (\Sigma x_{i}) (\Sigma y_{i}) \right] \left[n \Sigma x_{i} z_{i} - (\Sigma x_{i}) (\Sigma z_{i}) \right] \\ b &= \frac{\left[n \Sigma x_{i} z_{i} - (\Sigma x_{i}) (\Sigma z_{i}) \right] - c \left[n \Sigma x_{i} y_{i} - (\Sigma x_{i}) (\Sigma y_{i}) \right]}{n \Sigma x_{i}^{2} - (\Sigma x_{i})^{2}} \\ a &= \frac{1}{n} (\Sigma z_{i} - c \Sigma y_{i} - b \Sigma x_{i}) \\ R^{2} &= \frac{a \Sigma z_{i} + b \Sigma x_{i} z_{i} + c \Sigma y_{i} z_{i} - \frac{1}{n} (\Sigma z_{i})^{2}}{(\Sigma z_{i}^{2}) - \frac{(\Sigma z_{i})^{2}}{n}} \end{split}$$

19. Break Even Analysis

$$GP = U(P - V) - F$$
$$OL = \frac{U(P - V)}{U(P - V) - F}$$

20. Invoicing

Net line total =
$$\left(\text{Price} - \text{Price} \times \frac{\text{DISC}}{100} \right) \cdot (\#)$$

NOTES

1000 N.E. Circle Blvd., Corvallis, OR 97330

Rev. 6/77 00097-90084

A B 🔵 D E