

Civil Engineering Pac I

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The 18 programs of CE Pac I have been drawn from the fields of statics and stress analysis.
Each program in this pac is represented by one or more magnetic cards and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.
On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions to the use of the program. You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.
If you have already worked through a few programs in Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

We hope that CE Pac I will assist you in the solution of numerous problems in your discipline. We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

CONTENTS

1. Vector Statics 01-01
Performs basic vector operations of addition, cross product, and dot product, and finds the angle between vectors.
2. Section Properties (2 cards) 02-01
The area, centroid, and moments of an arbitrarily complex polygon may be calculated using this program.
3. Properties of Special Sections 03-01
Section properties for rectangles, triangles, ellipses circles and concentric circles are provided by this program.
4. Stress on an Element 04-01
Reduces data from rosette strain gage measurement and performs Mohr circle analysis.
5. Bending or Torsional Stress 05-01
Solves either the bending stress equation ($\mathrm{s}=\mathrm{Mv} / \mathrm{I}$) or the analogous torsional shear stress equation ($s=T R / J$) interchangeably for all variables.
6. Linear or Angular Deformation 06-01
This program solves for linear deflection under tensile load or the analogous angular deflection under torque. The solution is inter- changeable between the five variables.
7. Cantilever Beams 07-01
Calculates deflection, slope, moment and shear for point, distributed, and moment loads applied to cantilever beams.
8. Cantilever Beams-Trapezoidal Load 08-01
Calculates deflection, slope, moment and shear for cantilever beams with distributed trapezoidal loads.
9. Simply Supported Beams 09-01
Calculates deflection, slope, moment, and shear for point, distributed, and moment loads applied to simply supported beams.
10. Simply Supported Beams-Trapezoidal Load 10-01
Calculates deflection, slope, moment and shear for simply supported beams with distributed trapezoidal loads.
11. Beams Fixed at Both Ends 11-01
Calculates deflection, slope, moment, and shear for point, distributed, and moment loads applied to beams with rigidly fixed ends.
12. Beams Fixed at Both Ends-Trapezoidal Loads 12-01
Calculates deflection, slope, moment, and shear for distributed trape- zoidal loads applied to beams with rigidly fixed ends.
13. Propped Cantilever Beams 13-01
Calculates deflection, slope, moment, and shear for point, moment and distributed loads applied to propped cantilever beams.
14. Propped Cantilever Beams-Trapezoidal Load 14-01
Calculates deflection, slope, moment and shear for distributed trapezoidal loads applied to propped cantilever beams.
15. Six-span Continuous Beams 15-01
Solves for the intermediate couples present at the supports of continuous beams. Two to six spans are allowed.
16. Steel Column Formula 16-01
Computes allowable loads for steel columns. Column ends must be constrained by welds, rivets or in some other means which prevents deflection and rotation.
17. Reinforced Concrete Beams 17-01
Solves interchangeably between steel area, width, depth, concrete strength, steel strength and internal moment for reinforced concrete beams. Based on the American Concrete Institute code-ACI 318-71.
18. Bolt Torque 18-01
Calculates the torque that will yield a specified bolt load or the load resulting from a specified torque. The shear stress in the bolt may be calculated as an option.

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the difference in the two machines and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.

Many of the computed results in this pac are output by PRINT statements; on the HP-97 these results will be output on the printer. On the HP-67 each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/ PAUSE' ${ }^{\prime}$ is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press any key on the keyboard. If the command being executed is PRINTx (eight rapid blinks of the decimal point), pressing a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing R/S .
HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, f on the HP-97 and \mathbf{f}, \mathbf{g}, and \boldsymbol{h} on the HP-67. For example, the operation 10^{x} is performed on the HP-97 as $f 10^{x}$ and on the HP-67 as 98.10^{x}. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, $1 \mathbf{1 0}^{x}$). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.
Also in keystroke solutions, those values that are output by the PRINT command will be followed by three asterisks (${ }^{* * *)}$.

Notes

VECTOR STATICS

	VECTOR			CE1-01A
$x_{1}+y_{1}$	$\mathrm{x}_{2}+y_{2}$		F* \dagger	- $\mathrm{R}_{1}, \mathrm{R}_{2}$
$\mathrm{r}_{1}+\theta_{1}$	$\mathrm{r}_{2} \cdot \theta_{2}$	$-\dot{\mathbf{v}}_{1}+\dot{\mathrm{v}}_{2}$	$-\stackrel{\rightharpoonup}{v}_{1} \times \dot{v}_{2}$	- $\dot{v}_{1} \cdot \dot{v}_{2}: \mathrm{V}^{\prime}$

Part I of this program performs the basic two dimensional vector operations of addition, cross product and dot, scalar, or inner product. In addition, the angle between vectors may be found. Vectors may be input in polar form (r, θ) or rectangular form $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

Equations:

for addition: $\vec{V}_{1}+\vec{V}_{2}=\left(x_{1}+x_{2}\right) \vec{i}+\left(y_{1}+y_{2}\right) \vec{j}$
for cross products: $\vec{V}_{1} \times \vec{V}_{2}=\left(\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right) \overrightarrow{\mathrm{k}}$
for dot, scalar, or inner product: $\overrightarrow{\mathrm{V}}_{1} \cdot \overrightarrow{\mathrm{~V}}_{2}=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{y}_{1} \mathrm{y}_{2}$
for the angle between vectors: $\gamma=\cos ^{-1} \frac{\overrightarrow{\mathrm{~V}}_{1} \cdot \overrightarrow{\mathrm{~V}}_{2}}{\left|\overrightarrow{\mathrm{~V}}_{1}\right|\left|\overrightarrow{\mathrm{V}}_{2}\right|}$
where:
x_{1} is the x component of $\vec{V}_{1}\left(x_{1}=r_{1} \cos \theta_{1}\right)$;
x_{2} is the x component of $\vec{V}_{2}\left(x_{2}=r_{2} \cos \theta_{2}\right)$;
y_{1} is the y component of $\vec{V}_{1}\left(y_{1}=r_{1} \sin \theta_{1}\right)$;
y_{2} is the y component of $\vec{V}_{2}\left(y_{2}=r_{2} \sin \theta_{2}\right)$;
Part II of this program calculates the two reaction forces necessary to balance a given two-dimensional force vector. The direction of the reaction forces may be specified as a vector of arbitrary length or by Cartesian coordinates using the point of force application as the origin.

Equations:

$$
\begin{aligned}
\mathrm{R}_{1} \cos \theta_{1}+\mathrm{R}_{2} \cos \theta_{2} & =\mathrm{F} \cos \phi \\
\mathrm{R}_{1} \sin \theta_{1}+\mathrm{R}_{2} \sin \theta_{2} & =\mathrm{F} \sin \phi
\end{aligned}
$$

where:
F is the known force;
ϕ is the direction of the known force;
R_{1} is one reaction force;
θ_{1} is the direction of R_{1};
R_{2} is the second reaction force;
θ_{2} is the direction of R_{2}.
The coordinates x_{1} and y_{1} are referenced from the point where F is applied to the end of the member along which R_{1} acts; x_{2} and y_{2} are the coordinates referenced from the point where F is applied to the end of the member along which R_{2} acts.

Remarks:

Registers $\mathrm{R}_{0}-\mathrm{R}_{3} ; \mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S9}}$ and I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To resolve a force in two			
	known directions, go to step 6.			
	For vector addition, cross			
	product, or dot product con-			
	tinue with step 3.			
3	Input \vec{V}_{1} and \vec{V}_{2} :			
	\vec{V}_{1} in polar form	r_{1}	ENTERA	r_{1}
		θ_{1}	A	y_{1}
	or			
	\vec{V}_{1} in rectangular form	${ }_{1}$	ENTERA	x_{1}
		y_{1}	1 $\square^{\text {a }}$	y_{1}
	and			
	\vec{V}_{2} in polar form	r_{2}	ENTER	r_{2}
		θ_{2}	B	y_{2}
	or			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	\vec{V}_{2} in rectangular form.	X_{2}	ENTER	x_{2}
		y_{2}	1 B	y_{2}
4	Perform vector operation:			
	add vectors		c	r, θ
	or			
	take cross product		D	$\vec{V}_{1} \times \vec{V}_{2}$
	or			
	take dot (or scalar) product.		E	$\vec{V}_{1} \cdot \vec{V}_{2}$
	(Optionally, calculate angle			
	between vectors after dot			
	product.)		R/S	γ
5	For a new case, go to step 3			
	and change \vec{V}_{1} and/or \vec{V}_{2}.			
6	Define reaction directions as			
	Cartesian coordinates or as			
	vectors of arbitrary magnitude.			
	(Use the point of force appli-			
	cations as the origin):			
	define direction one in polar			
	form	1	ENTERA	1.00
		θ_{1}	\triangle	$\sin \theta_{1}$
	or			
	in rectangular form	x_{1}	ENTER	x_{1}
		y_{1}	- A	y_{1}
	and			
	define direction two in polar			
	form	1	ENTER 4	1.00
		θ_{2}	B	$\sin \theta_{2}$
	or			
	in rectangular form.	x_{2}	ENTER	x_{2}
		y_{2}	1 B	y_{2}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Input known force:			
	magnitude	F	ENTER	F
	then direction.	ϕ	D	$\mathrm{F} \sin \phi$
8	Compute reactions		E E	$\mathrm{R}_{1}, \mathrm{R}_{2}$
9	To change force, go to step 7.			
	To change either or both			
	directions, go to step 6.			

Example 1:

Forces A and B are shown below. If static equilibrium exists, what is force C.

Keystrokes:

Outputs:
To obtain \vec{C}, add \vec{A} and \vec{B} using negative magnitudes for both.
45 CHS ENTERA 110 A 100 CHS

ENTERt 30

BC

116.57 ***
-127.66 ***

$$
\overrightarrow{\mathrm{C}}=116.57 \angle-127.66^{\circ}
$$

01-05

Example 2:

Resolve the following three loads along a 175 degree line.

Keystrokes:

First add $\overrightarrow{\mathrm{L}}_{1}$ and $\overrightarrow{\mathrm{L}}_{2}$.
185 ENTER4 62 A 170 ENTER4
143 BCC

Define the result as $\overrightarrow{\mathrm{V}}_{1}$ and add $\overrightarrow{\mathrm{L}}_{3}$.
A 100 ENTER4 261 BC \longrightarrow

To resolve the vector, just calculated along the 175° line.
A 1 ENTER4 175 BE
$78.86^{* * *}$ (lb)

What is the angle between the vector and the line?
R/S \qquad $63.85^{* * *}$ (deg)

Example 3:

What is the moment at the shaft of the crank pictured below? What is the reaction force transmitted along the member?

Keystrokes:

Moment by cross product ($\overrightarrow{\mathrm{V}}_{1} \times \overrightarrow{\mathrm{F}}$).
30 ENTERA 50 A 300 ENTER4

Resolution along crank
1 ENTERA 50 AE $\longrightarrow \quad-271.89 \mathrm{lb}$

Example 4:

Find the reaction forces in the pin-jointed structure shown below.

Keystrokes:

Outputs:

$$
\begin{aligned}
&-8.00 \\
& 0.00 \\
&-500.00 \\
&-664.38 \\
& 437.50 * *\left(\mathrm{R}_{1}\right) \\
& * * * \\
&\left(\mathrm{R}_{2}\right)
\end{aligned}
$$

Notes

SECTION PROPERTIES

The properties of polygonal sections (see figure 1) may be calculated using this program. The (x, y) coordinates of the vertices of the polygon (which must be located entirely within the first quadrant) are input sequentially for a complete, clockwise path around the polygon. Holes in the cross section, which do not intersect the boundary, may be deleted by following a counter-clockwise path.

Figure 1 - Polygonal Sections

A special feature allows addition or deletion of circular areas. After the point by point traverse of the section has been completed, circular deletions or additions are specified by the (x, y) coordinates of the circle centers and by the circle diameters. If the diameter is specified as a positive number, the circular areas are added. A negative diameter causes circular areas to be deleted. Example 4 shows an application of this feature.

After all values have been input, the coordinates of the centroid (\bar{x}, \bar{y}) and the area (A) of the section may be output using card 2, key \boldsymbol{A}. The moment of inertia about the x axis $\left(I_{x}\right)$, about the y axis $\left(I_{y}\right)$ and the product of inertia ($\mathrm{I}_{\mathrm{x}, \mathrm{y}}$) are output using B. Similar moments, $\mathrm{I}_{\overline{\mathrm{x}}}$, $\mathrm{I}_{\overline{\mathrm{y}}}$ and $\mathrm{I}_{\overline{\mathrm{xy}}}$, about an axis translated to the centroid of the section are calculated when \mathbf{C} is pressed.

Pressing D calculates the moments of inertia, $\mathrm{I}_{\overline{\mathrm{x}} \phi}$ and $\mathrm{I}_{\overline{\mathrm{y}} \phi}$, about the principal axis. The rotation angle (ϕ) between the principal axis and the axis which was translated to the centroid is also calculated. The moments of inertia $\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}$, the polar moment of inertia J and the product of inertia $\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ may be calculated about any arbitrary axis by specifying its location and rotation with respect to the original axis and pressing \boldsymbol{D}

Equations:

$$
\begin{gathered}
A=-\sum_{i=0}^{n}\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 2 \\
\bar{x}=\frac{-1}{A} \sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right) / 8\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2} / 3\right] \\
\bar{y}= \\
\frac{1}{A} \sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right) / 8\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2} / 3\right] \\
I_{x}=\sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right) / 24\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right] \\
I_{y}=- \\
\sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 24\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2}\right] \\
I_{i=0}^{n} \frac{1}{\left(x_{i+1}-x_{i}\right)}\left[\frac{1}{8}\left(y_{i+1}-y_{i}\right)^{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}{ }^{2}+x_{i}^{2}\right)\right. \\
\\
+\frac{1}{3}\left(y_{i+1}-y_{i}\right)\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)\left(x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}^{2}\right) \\
\\
\left.+\frac{1}{4}\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)^{2}\left(x_{i+1}+x_{i}\right)\right] \\
I_{\bar{x}}=I_{x}-A \bar{y}^{2} \\
I_{\bar{y}}=I_{y}-A \bar{x}^{2} \\
I_{\bar{x} \bar{y}}=I_{x y}-A \bar{x} \bar{y}
\end{gathered}
$$

$$
\begin{gathered}
\phi=\frac{1}{2} \tan ^{-1}\left(\frac{-2 \mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}}}{\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}}\right) \\
\mathrm{I}_{\mathrm{x}}^{\prime}=\mathrm{I}_{\overline{\mathrm{x}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{y}}} \sin ^{2} \theta-\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \sin 2 \theta \\
\mathrm{I}_{\mathrm{y}}^{\prime}=\mathrm{I}_{\overline{\mathrm{y}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}}} \sin ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \sin 2 \theta \\
\mathrm{~J}=\mathrm{I}_{\mathrm{x}}^{\prime}+\mathrm{I}_{\mathrm{y}}^{\prime} \\
\mathrm{I}_{\mathrm{xy}}^{\prime} \\
\mathrm{I}_{\mathrm{circle}}=\frac{\left(\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}\right)}{2} \sin 2 \theta+\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \cos 2 \theta \\
\mathrm{~A}_{\text {circle }}=\frac{\pi \mathrm{d}^{2}}{4} \\
\mathrm{I}^{4}
\end{gathered}
$$

where:
$\mathrm{X}_{\mathrm{i}+1}$ is the x coordinate of the current vertex point;
y_{i+1} is the y coordinate of the current vertex point;
x_{i} is the x coordinate of the previous vertex point;
y_{i} is the y coordinate of the previous vertex point;
A is the area;
$\overline{\mathrm{x}}$ is the x coordinate of the centroid;
\bar{y} is the y coordinate of the centroid;
I_{x} is the moment of inertia about the x -axis;
I_{y} is the moment of inertia about the y-axis;
I_{xy} is the product of inertia;
$\mathrm{I}_{\overline{\mathrm{x}}}$ is the moment of inertia about the x -axis translated to the centroid; $\mathrm{I}_{\overline{\mathrm{y}}}$ is the moment of inertia about the y -axis translated to the centroid;
$\mathrm{I}_{\bar{x} \bar{y}}$ is the product of inertia about the translated axis;
ϕ is the angle between the translated axis and the principal axis;
$\mathrm{I}_{\overline{\mathrm{x}} \phi}$ is the moment of inertia about the translated, rotated, principal x -axis;
$\mathrm{I}_{\overline{\mathrm{y}} \phi}$ is the moment of inertia about the translated, rotated, principal y-axis;
θ is the angle between the original axis and an arbitrary axis.
$\mathrm{I}_{\mathrm{x}}{ }^{\prime}$ is the x moment of inertia about the arbitrary axis;
$I_{y}{ }^{\prime}$ is the y moment of inertia about the arbitrary axis;

J is the polar moment of inertia about the arbitrary axis;
$\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ is the product of inertia about the arbitrary axis;
d is the diameter of a circular area.

Reference:

Wojciechowski, Felix; Properties of Plane Cross Sections; Machine Design; p. 105, Jan. 22, 1976.

Remarks:

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
The polygon must be entirely contained in the first quadrant.
Rounding errors will accumulate if the centroid of the section is a large distance from the origin of the coordinate system.

Curved boundaries may be approximated by straight line segments.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	card 1.			
2	Initialize.		(1)	
3	Key in (x, y) coordinates of			
	first vertex.	x_{i}	ENTER	y_{i}
		y_{i}	ENTER4	y_{i}
4	Key in (x, y) coordinates of			
	next clockwise vertex.	$\mathrm{x}_{\text {i }}$	ENTER	$\mathrm{x}_{\text {i }}$
		y_{i+1}	A	y_{i+1}
5	Wait for execution to end, then			
	repeat step 4 for next point.			
	Go to step 6 after you have			
	reinput the starting point.			
6	To delete subsections within			
	the section just traversed,			
	return to step 3, but traverse in			
	a counter-clockwise direction.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Optional: Add circular areas,	x	ENTER	x
		y	ENTER	y
		d	C	0.00
	or delete circular areas.	x	ENTER	x
		y	ENTER	y
		d	CHS C	0.00
8	Load side 1 and side 2 of			
	card 2.			
9	Calculate any or all of the			
	following:			
	Centroid and area;		A	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{A}$
	Properties about original			
	axis;		B	$\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{xy}}$
	Properties about axis trans-			
	lated to centroid;		c	$\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\overline{\mathrm{y}}}, \mathrm{I}_{\overline{\mathrm{x}} \mathrm{l}}$
	Angular orientation of			
	principal axis and properties			
	about principal axis;		D	$\phi, \mathrm{I}_{\overline{\mathrm{x}} \boldsymbol{\prime}}, \mathrm{I}_{\overline{\mathrm{y}} \phi}$
	or			
	Specify arbitrary axis and			
	rotation and calculate			
	properties.	x^{\prime}	ENTER	
		y^{\prime}	ENTER	
		θ	1 D	$\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}, \mathrm{J}, \mathrm{I}_{\mathrm{xy}}{ }^{\prime}$
10	To modify the section, go to			
	step 1, but skip step 2. For a			
	new case, go to step 1.			

Example 1:

What is the moment of inertia about the x -axis $\left(\mathrm{I}_{\mathrm{x}}\right)$ for the rectangular section shown? What is the moment of inertia about the neutral axis through the centroid of the section $\left(\mathrm{I}_{\overline{\mathrm{x}} \phi}\right)$?

Keystrokes:

Outputs:

Load side 1 and side 2 of card 1.

Load side 1 and side 2 of card 2 .

B

$$
\begin{array}{rl}
125.00 & * * *\left(\mathrm{I}_{\mathrm{x}}\right) \\
45.00 & * * *\left(\mathrm{I}_{\mathrm{y}}\right) \\
56.25 & * * *\left(\mathrm{I}_{\mathrm{xy}}\right) \\
0.00^{* * *}(\phi) \\
31.25 & \text { *** }\left(\mathrm{I}_{\overline{\mathrm{x} \phi}}\right) \\
11.25 & \text { })
\end{array}
$$

Since $\phi=0$ we would expect $\mathrm{I}_{\overline{\mathrm{x}} \phi}$ to equal $\mathrm{I}_{\overline{\mathrm{x}}}$. Press \mathbf{C} to calculate $\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\bar{y}}$ and $\mathrm{I}_{\overline{\mathrm{x}}}$ and you will see that this prediction is correct. Also, $\mathrm{I}_{\overline{\mathrm{x}}}$ is zero about the principal axis.

C

$$
\begin{array}{rl}
31.25 & * * *\left(\mathrm{I}_{\mathrm{x}}\right) \\
11.25 & * * *\left(\mathrm{I}_{\overline{\mathrm{y}}}\right) \\
0.00^{* * *}\left(\mathrm{I}_{\overline{\mathrm{x}}}\right)
\end{array}
$$

Example 2:

Calculate the section properties for the beam shown below.

Load side 1 and side 2 of card 1 .

0 ENTERA 0 A
0.00

Load side 1 and side 2 of card 2 .
A

	($\overline{\mathrm{x}}$)
	(
49	(A)
676	(
2256	,
890	***
580	***
934	($\mathrm{I}_{\overline{\mathrm{y}}}$)
22	*** ($\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}}$
-17	*** (ϕ)
165	*** ($\mathrm{I}_{\overline{\mathrm{x}} \boldsymbol{\phi}}$)
863.4	* ($\mathrm{I}_{\overline{\mathrm{y}} \phi}$

Below is a figure showing the translated axis and the rotated, principal axis of example 2.

Example 3:

What is the centroid of the section below? The inner triangular boundary denotes an area to be deleted.

Keystrokes:
Outputs:
Load side 1 and side 2 of card 1.
f A 3 ENTER4 1 ENTER4

3 ENTERA $7 \boldsymbol{A} \longrightarrow$	7.00 14 ENTERA $7 \boldsymbol{A} \longrightarrow$ 3 ENTERA 1 A \longrightarrow
7.00	
1.00	

Delete inner triangle:
4 ENTERA 4 ENTERA 9 ENTERA
6 A
6.00

4 ENTERA 6 A $\longrightarrow \quad 6.00$
4 ENTERA $4 \boldsymbol{A} \longrightarrow \quad 4.00$
Load side 1 and side 2 of card 2 .
Compute Centroid
A
$6.85^{* * *}(\overline{\mathrm{x}})$
$4.94^{* * *}(\overline{\mathrm{y}})$
$28.00^{* * *}(\mathrm{~A})$

Example 4:

For the part below, compute the polar moment of inertia about point A . Point A denotes the center of a hole about which the part rotates. The area of the hole must be deleted from the cross section.

Keystrokes:
Outputs:
Load side 1 and side 2 of card 1.
f A 0 ENTER4 0 ENTER4 0 ENTER
2 A 5 ENTER4 2 A 5 ENTER4
1.4 A . 8 ENTERA 1.4 A . 8 ENTER4
$0 \boldsymbol{A} 0$ ENTER $0 \boldsymbol{A} \longrightarrow 0.00$
Delete the hole.
. 2 ENTER4 6 ENTER
.5 CHS C $\longrightarrow 0.00$
Load side 1 and side 2 of card 2 .
Compute J about point (.2, .6) with θ of zero.
. 2 ENTER4 6 ENTER4

$$
\begin{array}{rl}
3.91 & * * *\left(\mathrm{I}_{\mathrm{x}^{\prime}}\right) \\
22.22 & * * *\left(\mathrm{I}_{\mathrm{y}^{\prime}}\right) \\
26.13 & * * *\left(\mathrm{~J}^{2}\right) \\
7.61 & * * *\left(\mathrm{I}_{\mathrm{xy}}{ }^{\prime}\right)
\end{array}
$$

PROPERTIES OF SPECIAL SECTIONS

For rectangles, triangles, ellipses, circles, and concentric circles, this program performs an interchangeable solution between the section dimensions and the principle moment of inertia about the x axis. The section area and the principle moment of inertia about the y axis may also be calculated.

Sections and Equations:

$$
\begin{gathered}
\mathrm{I}_{\mathrm{x}}=\mathrm{a}^{3} \mathrm{~b} / 12 \\
\mathrm{I}_{\mathrm{y}}=\mathrm{ab} b^{3} / 12 \\
\mathrm{~A}=\mathrm{ab}
\end{gathered}
$$

$$
\begin{gathered}
I_{x}=a^{3} b / 36 \\
I_{y}=a b^{3} / 36 \\
A=a b / 2
\end{gathered}
$$

$$
\mathrm{I}_{\mathrm{x}}=\pi \mathrm{a}^{3} \mathrm{~b} / 64
$$

$$
\mathrm{I}_{\mathrm{y}}=\pi \mathrm{ab}^{3} / 64
$$

$$
\begin{gathered}
\mathrm{I}_{\mathrm{x}}=\pi \mathrm{a}^{4} / 4=\mathrm{I}_{\mathrm{y}} \\
\mathrm{~A}=\pi \mathrm{a}^{2} / 4
\end{gathered}
$$

$$
\mathrm{I}_{\mathrm{x}}=\frac{\pi\left(\mathrm{a}^{4}-\mathrm{b}^{4}\right)}{64}=\mathrm{I}_{\mathrm{y}}
$$

$$
\mathrm{A}=\pi \mathrm{ab} / 4
$$

$$
\mathrm{A}=\frac{\pi\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}{4}
$$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select cross section shape.			
	Rectangle		18	1.00000
	Triangle		B	2.00000
	Ellipse		C	3.00000
	Circle		1 D	4.00000
	Concentric Circles		1 E	5.00000
3	Input two of the following:*	a	A	a
		b	B	b
		I_{x}	c	I_{x}
4	Compute unknown value:*		A	a
			B	b
			c	I_{x}
5	Optional: Compute area		D	A
6	Optional: Compute Iy		E	I,
7	For a new case, go to step 3			
	and change inputs			
	*For circles, only one input or			
	output is allowed.			
	Input I_{x} or a only.			

Example 1:

For the rectangular section below, what is the moment of inertia about the x axis? What is the moment of inertia about the y axis?

Keystrokes:

42.5 B 90 AC

E

Outputs:

1.00000	(Select) (rectangles)
2.58206	$\mathrm{cm}^{4}\left(\mathrm{I}_{\mathrm{x}}\right)$ 575.7 $\mathrm{~cm}^{4}\left(\mathrm{I}_{\mathrm{y}}\right)$

Example 2:

For the elliptical section below, what is the required value of b to make $\mathrm{I}_{\mathrm{x}}=1000$? What is the area of the section?

Keystrokes:

Outputs:
$6.03600 \quad$ in (b)
$71.1100 \quad$ in 2 (A)

STRESS ON AN ELEMENT

This program reduces data from rosette strain gage measurements and/or performs Mohr circle stress analysis calculations.

Correlations for rectangular and equiangular rosette configurations are included.

Strain Gage Equations:

CONFIGURATION CODE	1	2
TYPE OF ROSETTE	RECTANGULAR	DELTA (EQUIANGULAR)
PRINCIPAL STRAINS: $\epsilon_{1}, \epsilon_{2}$	$\frac{1}{2}\left[\epsilon_{\mathrm{a}}+\epsilon_{\mathrm{c}} \pm \sqrt{2\left(\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{h}}\right)^{2}+2\left(\epsilon_{\mathrm{b}}-\epsilon_{\mathrm{C}}\right)^{2}}\right]$	$\begin{aligned} & \frac{1}{3}\left[\epsilon_{\mathrm{a}}+\epsilon_{\mathrm{b}}+\epsilon_{\mathrm{c}}\right. \\ & \left. \pm \sqrt{2\left(\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{b}}\right)^{2}+2\left(\epsilon_{\mathrm{b}}-\epsilon_{\mathrm{c}}\right)^{2}+2\left(\epsilon_{\mathrm{c}}-\epsilon_{\mathrm{a}}\right)^{2}}\right] \end{aligned}$
CENTER OF MOHR CIRCLE: $\frac{\mathrm{s}_{1}+\mathrm{s}_{2}}{2}$	$\frac{\mathrm{E}\left(\boldsymbol{\epsilon}_{\mathrm{a}}+\boldsymbol{\epsilon}_{\mathrm{c}}\right)}{2(1-\nu)}$	$\frac{E\left(\boldsymbol{\epsilon}_{\mathrm{a}}+\boldsymbol{\epsilon}_{\mathrm{b}}+\boldsymbol{\epsilon}_{\mathrm{c}}\right)}{3(1-\boldsymbol{\nu})}$
NAXIMUM SHEAR STRESS: $\tau_{\text {max }}$	$\frac{\mathrm{E}}{2(1+\nu)} \sqrt{2\left(\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{b}}\right)^{2}+2\left(\epsilon_{\mathrm{b}}-\epsilon_{\mathrm{c}}\right)^{2}}$	$\frac{\mathrm{E}}{3(1+\nu)} \sqrt{2\left(\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{b}}\right)^{2}+2\left(\epsilon_{\mathrm{b}}-\epsilon_{\mathrm{c}}\right)^{2}+2\left(\epsilon_{\mathrm{c}}-\epsilon_{\mathrm{a}}\right)^{2}}$
ORIENTATION OF PRINCIPAL STRESSES	$\tan ^{-1}\left[\frac{2 \epsilon_{\mathrm{b}}-\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{c}}}{\epsilon_{\mathrm{a}}-\epsilon_{\mathrm{c}}}\right]$	$\tan ^{-1}\left[\frac{\sqrt{3}\left(\epsilon_{\mathrm{c}}-\epsilon_{\mathrm{b}}\right)}{\left(2 \epsilon_{\mathrm{a}}-\epsilon_{\mathrm{b}}-\epsilon_{\mathrm{c}}\right)}\right]$

The Mohr circle portion of the program converts an arbitrary stress configuration to principal stresses, maximum shear stress and rotation angle. It is then possible to calculate the state of stress for an arbitrary orientation $\boldsymbol{\theta}^{\prime}$.

Mohr Circle Equations:

$$
\begin{gathered}
\tau_{\max }=\sqrt{\left(\frac{\mathrm{s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}^{2}} \\
\mathrm{~s}_{1}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}+\tau_{\max } \\
\mathrm{s}_{2}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}-\tau_{\max } \\
\theta=1 / 2 \tan ^{-1}\left(\frac{2 \tau_{\mathrm{xy}}}{\mathrm{~s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}\right) \\
\mathrm{s}=\frac{\mathrm{s}_{1}+\mathrm{s}_{2}}{2}+\tau_{\max } \cos 2 \theta^{\prime} \\
\tau=\tau_{\max } \sin 2 \theta^{\prime}
\end{gathered}
$$

where:
s is the normal stress, and τ is the shear stress.
$\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{b}}$, and ϵ_{c} are the strains measured using rosette gages;
s_{x} is the stress in the x direction for Mohr circle input;
s_{y} is the stress in the y direction for Mohr circle input;
τ_{xy} is the shear stress on the element for Mohr circle input;
ϵ_{1} and ϵ_{2} are the principal strains;
s_{1} and s_{2} are the principal normal stresses;
$\tau_{\text {max }}$ is the maximum shear stress;
ν is Poisson's ratio;
θ is the counterclockwise angle of rotation from the specified axis to the principal axis. Note that this is opposite to the normal Mohr circle convention.
$\boldsymbol{\theta}^{\prime}$ is an arbitrary rotation angle from the original (x, y) axis;
E is modulus of elasticity.

Reference:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.
Beckwith, T. G., Buck, N. L., Mechanical Measurements, Addison-Wesley, 1969

Remarks:

$\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{\mathrm{D}}$ and $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Negative stresses and strains indicate compression. Positive and negative shear are represented below:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
$\mathbf{1}$	Load side 1 and side 2.			
2	If a stress configuration is			
	known, go to step 8 for Mohr			
	circle evaluation. Continue			
	with step 3 for strain gage			
	data reduction.			
3	Select strain gage			
	configuration:			
	Rectangular		B	1.00000
	or Delta.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Input modulus of elasticity,	E	Entert	E
	then Poisson's ratio.	ν	18	E
5	Input strains:			
		$\epsilon_{\text {a }}$	ENTER	$\epsilon_{\text {a }}$
		ϵ_{b}	ENTER	$\epsilon_{\text {b }}$
		$\epsilon_{\text {c }}$	A	$\epsilon_{\text {a }}$
6	Calculate principal strains			
	and rotation angle.		B	$\epsilon_{1}, \epsilon_{2}, \theta$
7	Skip to step 9 for Mohr circle			
	applications of calculations			
	just completed.			
8	Input stress on element in x			
	direction	S_{x}	ENTER	S_{x}
	then stress in y direction	s_{y}	ENTER	S_{y}
	then shear stress.	$\tau_{\text {xy }}$	c	0.00000
9	Calculate principal stresses.		D	$\mathrm{s}_{1}, \mathrm{~s}_{2}, \tau_{\text {max }}$,
				θ
10	Optional: Calculate stress			
	configuration at a specified			
	angle.	θ^{\prime}	E	s, τ
11	To specify another angle go			
	to step 10. For a new case go			
	to step 2.			

Example 1:

If $\mathrm{s}_{\mathrm{x}}=25000 \mathrm{psi}, \mathrm{s}_{\mathrm{y}}=-5000 \mathrm{psi}$, and $\tau_{\mathrm{xy}}=4000$ psi, compute the principal stresses and the maximum shear stress. Compute the normal stresses, where shear stress is maximum $\left(\theta+45^{\circ}\right)$.

Keystrokes:

Outputs:

$$
\begin{array}{rlll}
25.52 & 03 & * * *\left(\mathrm{~s}_{1}\right) \\
-5.524 & 03 & * * * & \left(\mathrm{~s}_{2}\right) \\
15.52 & 03 & * * *\left(\tau_{\max }\right) \\
-7.466 & 00^{* * *}(\theta) \\
37.53 & 00 & \\
10.00 & 03 & \text { *** }(\mathrm{s}) \\
15.52 & 03 & * * *\left(\tau_{1}\right)
\end{array}
$$

Example 2:

A rectangular rosette measures the strains below. What are the principal strains and principal stresses?

$$
\begin{array}{lll}
\epsilon_{\mathrm{a}}=90 \times 10^{-6} & \epsilon_{\mathrm{b}}=137 \times 10^{-6} & \epsilon_{\mathrm{c}}=305 \times 10^{-6} \\
\nu=0.3 & \mathrm{E}=30 \times 10^{6} \mathrm{psi} &
\end{array}
$$

Keystrokes:

Outputs:

$$
1.00000
$$

30.0006

$$
\begin{aligned}
& 90.00-06 \\
& 320.9-06
\end{aligned}{ }^{* * *}\left(\epsilon_{1}\right)
$$

Example 3:

An equiangular rosette measures the strains below. What are the principal strains and stresses?

$$
\epsilon_{\mathrm{b}}=-20 \times 10^{-6}
$$

60°

$$
\epsilon_{\mathrm{a}}=400 \times 10^{-6}
$$

Keystrokes:

Outputs:

400 EEX CHS 6 ENTER4 20
CHS EEX CHS 6 ENTERA 200

D \qquad

BENDING OR TORSIONAL STRESS

This card solves either the bending stress equation or the analogous torsional shear stress equation, using an interchangeable solution. Given three known values, the remaining unknown value is calculated.
Variables involved in torsional shear stress calculations are shown in parentheses on the magnetic card.

Equations:

where:
\mathbf{s} is the normal stress at \mathbf{v};
M is the moment applied to the beam;
v is the distance from the neutral axis of the beam;
I is the moment of inertia of the beam;
s_{s} is the shear stress at r;
T is the applied torque;
r is the distance from the shaft center to the point of interest;
J is the polar moment of inertia.

Remarks:

This program is not applicable for non-elastic media or elastic media where stresses exceed the elastic limit. Materials must be isotropic.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 or side 2.			
2	Input 3 of the following:			
	Bending stress (or shear			
	stress)	$\mathrm{s}\left(\mathrm{s}_{\mathrm{s}}\right)$	A	$\mathrm{s}\left(\mathrm{s}_{\mathrm{s}}\right)$
	Bending moment (or applied			
	torque)	M (T)	B	M (T)
	Distance from neutral axis			
	(or radius)	v (r)	c	$v(r)$
	Moment of inertia (or polar			
	moment)	I (J)	D	I (J)
3	Calculate the remaining value:			
	Bending stress (or shear			
	stress)		A	$\mathrm{s}\left(\mathrm{s}_{\mathrm{s}}\right)$
	Bending moment (or torque)		B	M (T)
	Distance from neutral axis			
	(or radius)		c	$v(r)$
	Moment of inertia (or polar			
	moment)		D	I (J)
4	For a new case, go to step 2			
	and change appropriate inputs.			

Example 1:

If the maximum stress allowed in a beam is 10,000 pounds per square inch, the moment of inertia is $4.80 \mathrm{in}^{4}$, and the maximum distance from the neutral axis to the surface is 2 inches, what is the maximum applied moment?

Keystrokes:

Outputs:

10000 A 4.8 D 2 CB
24.0003 in-lb (M)

Example 2:

What torque will result in a stress of 12000 pounds per square inch at a radius of 1 inch for a 2 inch diameter shaft?

Keystrokes:

D 1 C 12000 AB

Outputs:
$1.57100 \quad \mathrm{in}^{4}$ (J)
18.8503 in-lb (T)

Example 3:

A moment of $30,000 \mathrm{in}-\mathrm{lb}$ is applied to a beam with a moment of inertia of $3.8 \mathrm{in}^{4}$. If the neutral axis is 1 inch from the surface, what is the stress at the surface?

Keystrokes:

30000 B 3.8 D 1 CA \longrightarrow

Outputs:

7.89503 psi (x)

LINEAR OR ANGULAR DEFORMATION

This card solves for linear deflection under tensile load or the analogous angular deflection under torque using an interchangeable solution. Given four of the five variables, the unknown is calculated.
Variables for circular shafts in torsion are shown in parentheses on the magnetic cards.

Equations:

where:
Δl is the change in length;
P is the applied load;
ℓ is the length;
A is the cross sectional area;
E is the modulus of elasticity;
θ is the deflection angle in radians;
T is the applied torque;
J is the polar moment of the section;
G is the modulus of elasticity in shear.

Remarks:

This program is not applicable for non-elastic media or elastic media where stress exceeds the elastic limit. Materials must be isotropic. The equation for angular deflection is not valid in the neighborhood of the applied torque.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 or side 2.			
2	Input four of the following:			
	Area (or polar moment of			
	inertia)	A (J)	A	A (J)
	Linear deflection (or torsional			
	deflection)	$\Delta(\theta)$	B	$\Delta(\theta)$
	Length of member	ℓ	c	ℓ
	Applied load (or torque)	P (T)	D	P (T)
	Modulus of elasticity (in shear)	E (G)	E	E (G)
3	Calculate remaining value:			
	Area (or polar moment of			
	inertia)		A	a (J)
	Linear deflection (or torsional			
	deflection		B	$\Delta(\theta)$
	Length of member		c	ℓ
	Applied load (or torque)		D	P (T)
	Modulus of elasticity (in			
	shear)		E	E (G)
4	For a new case, go to step 2			
	and change appropriate inputs.			

Example 1:

Steel bars, affixed to the roof are to be used to support the end of a cantilever balcony. The load on each bar will be 50,000 newtons. If the maximum allowable deflection is 0.001 meters, what should the area of the bars be? $\ell=10$ meters $\quad \mathrm{E}=2.068 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Keystrokes:

50000 D . 001 B 10 C
2.068 EEX 11 EA

Outputs:

For square bars, .05 meters on a side, what will the deflection be?

Example 2:

A 6 inch outside/5.5 inch inside diameter steel pipe $\left(G=11.5 \times 10^{6} \mathrm{psi}\right)$ is 15 feet long. How much torque will it resist with an angular deflection of 1.00 degree?

Keystrokes:
First compute $\mathrm{J}=\pi\left(\mathrm{D}_{0}{ }^{4}-\mathrm{D}_{\mathrm{i}}{ }^{4}\right) / 32$.
$6 x^{2} x^{2} 5.5 x^{2} x^{2}-\pi x$
$32 \div$
A 15 ENTER4 $12 \times$ C 11.5 EEX
6 E 1 D \rightarrow B

Outputs:
$37.4000 \quad \mathrm{in}^{4}(\mathrm{~J})$
$41.7003 \quad$ in-lb (T)

CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a rigidly fixed, cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, applied moments and combined distributed loads may be analyzed.

Equations:

$$
\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \quad \text { (total deflection) }
$$

$$
y_{1}=\frac{P X_{1}^{2}}{6 E I}\left(X_{1}-3 a\right)-\frac{P a^{2}}{2 E I}(x-a)(x>a)^{*} \quad(\text { deflection due to point load })
$$

$$
\mathrm{y}_{2}=\frac{-\mathrm{WX}_{2}^{2}}{6 \mathrm{EI}}\left[\mathrm{X}_{2}\left(\frac{\mathrm{X}_{2}}{4}-\mathrm{b}\right)+1.5 \mathrm{~b}^{2}\right]
$$

$$
-\frac{\mathrm{Wb}^{3}}{6 E I}(x-b)(x>b) \quad(\text { distributed load })
$$

$y_{3}=\frac{\mathrm{MX}_{3}{ }^{2}}{2 \mathrm{EI}}+\frac{\mathrm{Mc}}{\mathrm{EI}}(\mathrm{x}-\mathrm{c})(\mathrm{x}>\mathrm{c}) \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{\mathrm{PX}_{1}}{2 \mathrm{EI}}\left(\mathrm{X}_{1}-2 \mathrm{a}\right) \quad$ (slope due to point load)
$\theta_{2}=\frac{\mathrm{WX}_{2}}{\mathrm{EI}}\left[\mathrm{X}_{2}\left(\frac{\mathrm{X}_{2}}{6}-\frac{\mathrm{b}}{2}\right)+\frac{\mathrm{b}^{2}}{2}\right] \quad$ (distributed load)
$\theta_{3}=\frac{\mathrm{MX}_{3}}{\mathrm{EI}} \quad$ (applied moment)
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad$ (total moment)
$\mathrm{M}_{\mathrm{x} 1}=\mathrm{P}\left(\mathrm{X}_{1}-\mathrm{a}\right) \quad$ (moment due to point load)
$\mathrm{M}_{\mathrm{x} 2}=-\mathrm{W}\left(\mathrm{X}_{2}\left(\mathrm{X}_{2} / 2-\mathrm{b}\right)+\mathrm{b}^{2} / 2\right) \quad$ (distributed load)
$\mathrm{M}_{\mathrm{x} 3}=\mathrm{M}(\mathrm{x} \leqslant \mathrm{c}) \quad$ (applied moment)
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad$ (total shear)
$\mathrm{V}_{1}=\mathrm{P}(\mathrm{x} \leqslant \mathrm{a}) \quad$ (shear due to point load)
$\mathrm{V}_{2}=\mathrm{W}\left(\mathrm{b}-\mathrm{X}_{2}\right) \quad$ (distributed load)
$\mathrm{V}_{3}=0 \quad$ (applied moment)
where:
y is the deflection at a distance x from the wall;
θ is the slope (change in y per change in x) at x ;
M_{x} is the moment at x ;
V is the shear at x ;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length.

M is an applied moment;
a is the distance from the foundation to the point load;
b is the distance to the end of the distributed load;
c is the distance to the applied moment;

$$
\begin{aligned}
& X_{1}=x \text { if } x \leqslant a \text { or } a \text { if } x>a ; \\
& X_{2}=x \text { if } x \leqslant b \text { or } b \text { if } x>b \\
& X_{3}=x \text { if } x \leqslant c \text { or } c \text { if } x>c .
\end{aligned}
$$

*The notation $(x>a)$ is interpreted as 1.00 if x is greater than a and as 0.00 if x is less than or equal to a.

Remarks:

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
SIGN CONVENTIONS FOR BEAMS

NAME	VARIABLE	SENSE	SIGN
DEFLECTION	y	\uparrow	+
SLOPE	$\boldsymbol{\theta}$	\uparrow	+
INTERNAL MOMENT	M_{x}	\uparrow	+
SHEAR	V	\uparrow	
	\downarrow	+	
EXTERNAL FORCE OR LOAD	P or W	\downarrow	+
EXTERNAL MOMENT	M	C	+

Sums of $\mathrm{y}, \theta, \mathrm{M}_{\mathrm{x}}$ and V may be stored in $\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}$, and R_{9}, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		18	0.00000
3	Input moment of inertia	I	ENTER4	I
	then modulus of elasticity	E	ENTERA	E
	then beam length.	ℓ	1 B	EI
4	Input load(s):			
	Location of point load	a	ENTERA	a
	Point load	P	1 C	a
	Length of distributed load	b	ENTER*	b
	Distributed load (force/length)	W	1 D	b
	Location of applied moment	c	ENTER ${ }^{\text {d }}$	c
	Applied moment	M	\square E	c
5	Key in x to specify the point			
	of interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	or moment	x	C	$\mathbf{M}_{\mathbf{x}}$
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

Example 1:

What is the deflection at $\mathrm{x}=12$? Neglect the weight of the beam.

Keystrokes:

Outputs:

A A 4.7 ENTER4 30 EEX
6
ENTERA 15 f B $\longrightarrow \quad 141.0 \quad 06$
Compute deflection at 12 inches due to 100 lb weight:
8 ENTER 100 f C $12 \boldsymbol{A} \longrightarrow \quad-211.8-06$
Store deflection due to 100 lb load for addition to deflection due to 200 lb load:

STO 9

\qquad -211.8-06
Compute deflection at 12 inches due to 200 lb load:
15 ENTER4 200 © $12 \boldsymbol{A} \longrightarrow \quad-1.123-03$
Compute total deflection:
RCL $9+$

07-05

Example 2:

For the beam below, compute deflection, slope, moment and shear at 0,50 , and 90 inches. Neglect the weight of the beam.

$$
\begin{gathered}
I=23 \mathrm{in}^{4} \\
E=30 \times 10^{6} \mathrm{psi}
\end{gathered}
$$

Keystrokes:
Outputs:

A 23 ENTER4 30 EEX

6 ENTER 110 B 40 ENTER 4
300 f C 60 ENTER4 10 D
80 ENTER4 20000 fe

0 A	0.000	00 (y)
0 B \longrightarrow	0.000	00 (θ)
0 C	-10.00	$03\left(\mathrm{M}_{\mathrm{x}}\right)$
0 D \longrightarrow	900.0	00 (V)
50 A	5.211	
50 B	582.1	
50 C	19.50	03
50 D \longrightarrow	100.0	00
90 A	50.14	-03
90 B \longrightarrow	1.449	-03
90 C \longrightarrow	0.000	00
90 D \longrightarrow	0.000	00

Notes

CANTILEVER BEAMS—TRAPEZOIDAL LOADING

This program calculates deflection, slope, moment, and shear at any specified point along a cantilever beam of uniform cross section with a distributed trapezoidal load. By using the principle of superposition, complicated distribted loads may be analyzed.

Equations:

$$
\begin{gathered}
y=y_{d}-y_{e} \\
y_{d}=\theta_{0} x+y_{0}-\langle x-d\rangle^{4} *\left[\frac{w_{d}}{24 E I}+\frac{\left(w_{\ell}-w_{d}\right)}{120 E I(\ell-d)}\langle x-d\rangle\right]
\end{gathered}
$$

$$
\theta_{0}=\frac{(\ell-d)^{3}}{6 E I}\left[w_{d}+\frac{\left(w_{\ell}-w_{d}\right)}{4}\right]
$$

$$
\mathrm{y}_{0}=-\frac{(\ell-\mathrm{d})^{3}}{24 \mathrm{EI}}\left[\mathrm{w}_{\mathrm{d}}(3 \ell+\mathrm{d})+\frac{\left(\mathrm{w}_{\ell}-\mathrm{w}_{\mathrm{d}}\right)}{5}(4 \ell+\mathrm{d})\right]
$$

$$
w_{l}=w_{e}+\frac{\left(w_{e}-w_{d}\right)}{(e-d)}(\ell-d)
$$

y_{e} is analogous to y_{d} except w_{d} is replaced by w_{e} and d is replaced by e. Equations for slope, moment, and shear are the first, second, and third x derivitives of the equations above.
${ }^{*}$ If $x-d<0,\langle x-d\rangle=0$.

Definitions:

I is the moment of inertia of the section;
E is the modulus of elasticity of the material;
ℓ is the length of the beam;
d is the distance to the beginning of the load;
w_{d} is the initial value of the load with units of force per unit length;
e is the distance to the end of the load;
w_{e} is the final value of the load;
x is the point of interest along the beam;
y is the deflection at x ;
θ is the slope at x ;
M_{x} is the internal bending moment at x ;
V is the shear at x .

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

Remarks:

Deflections must not significantly alter the geometry of the problem.
Beams must be of constant cross section for deflection and slope equations to be valid

Stresses must be in the elastic region.
Registers $\mathbf{R}_{\mathbf{6}}-\mathbf{R}_{\mathbf{9}}$ are available for problems involving superposition.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the moment of inertia	I	ENTER4	I
	then the modulus of elasticity	E	ENTER4	E
	then the length of the beam.	ℓ	18	IE
3	Input distance to load	d	ENTER*	d
	then initial value of load	$w_{\text {d }}$	ENTER ${ }^{\text {a }}$	$w_{\text {d }}$
	then distance to end of load	e	ENTER4	e
	then final value of loading.	$\mathrm{w}_{\text {e }}$	1 C	$\mathrm{w}_{\text {e }}$
4	Key in x to specify points of			
	interest and calculate			
	deflection	x	A	y
	or slope	x	B	$\boldsymbol{\theta}$
	or moment	x	c	M ${ }_{\text {x }}$
	or shear.	x	D	V
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3.			

Example:

Calculate deflection, slope, moment and shear for the beam above using the following values:

$\mathrm{d}=23$ inches	$\mathrm{w}_{\mathrm{d}}=35 \mathrm{lb} / \mathrm{in}$	$\mathrm{e}=47 \mathrm{inches}$	$\mathrm{w}_{\mathrm{e}}=27 \mathrm{lb} / \mathrm{in}$
$\mathrm{I}=5 \mathrm{in}^{4}$	$\mathrm{E}=30 \times 10^{6} \mathrm{psi}$	$\ell=75 \mathrm{in}$	$\mathrm{x}=40 \mathrm{in}$

What is the deflection at $\mathrm{x}=55$?
Keystrokes:
23 ENTERA 35 ENTERA 47 ENTERA
27 C 5 ENTERA 30 EEX

6 ENTER 75 B \longrightarrow	150.006
40 A	-84.71-03
$40 \mathrm{~B} \longrightarrow$	-3.057-03
$40 \mathrm{C} \longrightarrow$	-680.6 00
$40 \mathrm{D} \longrightarrow$	197.200
$55 \mathrm{~A} \longrightarrow$	-130.7-03

SIMPLY SUPPORTED BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a simply supported beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \quad$ (total deflection)
$y_{1}=\frac{P(\ell-a) x}{6 E I}\left[x^{2}+(\ell-a)^{2}-\ell^{2}\right]^{*} \quad$ (deflection due to point load)
$y_{2}=\frac{-W x}{24 E I}\left[\ell^{3}+x^{2}(x-2 \ell)\right] \quad$ (distributed load)
$\mathrm{y}_{3}=\frac{-\mathrm{Mx}}{\mathrm{EI}}\left[\mathrm{c}-\frac{\mathrm{x}^{2}}{6 \ell}-\frac{\ell}{3}-\frac{\mathrm{c}^{2}}{2 \ell}\right]^{* *} \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total moment)
$\theta_{1}=\frac{P(\ell-a)}{6 E I}\left[3 x^{2}+(\ell-a)^{2}-\ell^{2}\right]^{*} \quad$ (slope due to point load)
$\theta_{2}=-\frac{\mathrm{W}}{24 \mathrm{EI}}\left[\ell^{3}+\mathrm{x}^{2}(4 \mathrm{x}-6 \ell)\right] \quad$ (distributed load)
$\theta_{3}=\frac{-\mathrm{M}}{\mathrm{EI}}\left[\mathrm{c}-\frac{\mathrm{x}^{2}}{2 \ell}-\frac{\ell}{3}-\frac{\mathrm{c}^{2}}{2 \ell}\right]^{* *} \quad$ (applied moment)
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad$ (total moment)
$\mathrm{M}_{\mathrm{x} 1}=\frac{\mathrm{P}(\ell-\mathrm{a}) \mathrm{x}}{\ell} \quad$ (moment due to point load)
$\mathrm{M}_{\mathrm{x} 2}=-\frac{\mathrm{Wx}}{2}[\mathrm{x}-\ell] \quad$ (distributed load)
$\mathrm{M}_{\mathrm{x} 3}=\frac{\mathrm{Mx}^{* *}}{\ell} \quad$ (applied moment)
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad$ (total shear)
$\mathrm{V}_{1}=\frac{\mathrm{P}(\ell-\mathrm{a})^{*}}{\ell} \quad$ (shear due to point load)
$\mathrm{V}_{2}=\mathrm{W}\left(\frac{\ell}{2}-\mathrm{x}\right) \quad$ (distributed load)
$\mathrm{V}_{3}=\frac{\mathrm{M}}{\ell} \quad$ (applied moment)
where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x ;
M_{x} is the moment at x ;
V is the shear at x ;
I is the moment of intertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;
M is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.

[^0]
Remarks:

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Sums of y, θ, M_{x} and V may be stored in R_{6}, R_{7}, R_{8}, and R_{9}, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		18	0.00000
3	Input moment of inertia	I	ENTERA	I
	then modulus of elasticity	E	ENTERA	E
	then beam length.	l	18	EI
4	Input load(s):			
	Location of point load	a	ENTERA	a
	Point load	P	$\square \mathrm{C}$	a
	Distributed load (force/length)	W	18	W
	Location of applied moment	c	ENTERA	c
	Applied moment	M	1 E	C
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ
	or moment	x	c	M_{x}
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4. Be			
	sure to set obsolete loadings			
	to zero. For new beam			
	properties, go to step 3. To			
	restart, go to step 2.			

Example 1:

Find the deflection, slope, internal moment and shear at distances of 0,24 and 60 inches for the beam below. Neglect the weight of the beam.

Keystrokes:
Outputs:

A . 92 ENTER 30 EEX		
6 ENTER4 $72 \rightarrow \mathrm{~B} \longrightarrow$	27.6006	
40 ENTER4 10000 E ${ }^{\text {E }} \longrightarrow$	$40.00 \quad 00$	
0 A	$0.000 \quad 00$	$\left(y_{0}\right)$
0 B	-1.771-03	$\left(\theta_{0}\right)$
0 C	0.00000	$\left(\mathrm{M}_{0}\right)$
0 D \longrightarrow	138.900	(V_{0})
24 A	-30.92-03	$\left(\mathrm{y}_{24}\right)$
24 B	-322.1-06	(θ_{24})
$24 \mathrm{C} \longrightarrow$	3.33303	$\left(\mathrm{M}_{24}\right)$
24 D	138.900	$\left(\mathrm{V}_{24}\right)$
60 A \longrightarrow	$2.415-03$	(y_{60})
60 B \longrightarrow	40.26 -06	$\left(\theta_{60}\right)$
60 C \longrightarrow	-1.667 03	$\left(\mathrm{M}_{60}\right)$
$60 \mathrm{D} \longrightarrow$	138.900	$\left(\mathrm{V}_{60}\right)$

Example 2:

What is the slope of the beam below at $\mathrm{x}=38$ inches?

Keystrokes:

f A 1.30 ENTERA 30 EEX

6 ENTER4 50 - B	$39.00 \quad 06$	
44 ENTERA 1000 ¢ \mathbf{C}	$44.00 \quad 00$	
25 f D \longrightarrow	$25.00 \quad 00$	
38 B \longrightarrow	3.327 -03	(in/in)

Example 3:

What is the total moment at the center of the beam below? (It is not necessary to know the values of E or I to solve the problem. Simply key in 70 and press fB.)

First solve for the effect of the distributed load, P_{1}, and M .

Keystrokes:
f A 70 f B 20 ENTER
400 C C $\longrightarrow \quad 20.00 \quad 00$
37 f 70 ENTER
10000 CHS f E
70 ENTER4 2 - C \qquad
$70.00 \quad 00$

Store values in R_{6}.
STO 6

$21.66 \quad 03$

Outputs:

$$
20.00 \quad 00
$$

Now solve for the effect of P_{2} and add it to the content of R_{6}. This is the final answer assuming superposition is valid.

(A) 50 ENTER4 1000 ¢ $\mathbf{C} \rightarrow$	50.00	00	
35 C	10.00	03	(in-lb)
RCL $6+\longrightarrow$	31.66	03	(in-lb)

Notes

SIMPLY SUPPORTED BEAMS-TRAPEZOIDAL LOADING

This program calculates deflection, slope, moment, and shear at any specified point along a simply supported beam of uniform cross section with a distributed trapezoidal load. By using the principle of superposition, complicated distributed loads may be analyzed.

Equations:

$$
\begin{gathered}
y=y_{d}-y_{e} \\
y_{d}=\theta_{0} x+\frac{R_{0} x^{3}}{6 E I}-\langle x-d\rangle^{4}\left[\frac{w_{d}}{24 E I}+\frac{w_{\ell}-w_{d}\langle x-d\rangle}{120 E I(\ell-d)}\right] \\
\theta_{0}=\frac{(\ell-d)^{2}}{24 \ell E I}\left[-w_{d}\left(\ell^{2}+2 d \ell-d^{2}\right)-\frac{w_{l}-w_{d}}{15}\left(7 \ell^{2}+6 d \ell-3 d^{2}\right)\right] \\
R_{0}=\frac{(\ell-d)^{2}}{2 l}\left[w_{d}+\frac{w_{l}-w_{d}}{3 \ell}\right] \\
w_{\ell}=w_{e}+\frac{\left(w_{e}-w_{d}\right)}{(e-d)}(\ell-e)
\end{gathered}
$$

y_{e} is analogous to y_{d} except w_{d} is replaced by w_{e} and d is replaced by e. Equations for slope, moment, and shear are the first, second and third x derivitives of the equations above.

Definitions:

I is the moment of inertia of the section;
E is the modulous of elasticity of the material;
ℓ is the length of the beam;
d is the distance to the beginning of the load;
w_{d} is the initial value of the load with units of force per unit length;
e is the distance to the end of the load;
w_{e} is the final value of the load;
x is the point of interest along the beam;
y is the deflection at x ;
$\boldsymbol{\theta}$ is the slope at x ;
M_{x} is the internal bending moment at x ;
V is the shear at x .

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

Remarks:

Deflections must not significantly alter the geometry of the problem.
Beams must be of constant cross section for deflection and slope equations to be valid.
Stresses must be in the elastic region.
Registers $\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}$, and R_{9} are available for problems involving superposition.

10-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the moment of inertia	I	ENTER4	I
	then the modulus of elasticity	E	ENTER	E
	then the length of the beam.	ℓ	B	IE
3	Input distance to load	d	ENTER4	d
	then initial value of load	$w_{\text {d }}$	ENTER4	$\mathrm{w}_{\text {d }}$
	then distance to end of load	e	ENTER4	e
	then final value of loading.	$\mathrm{w}_{\text {e }}$	C C	$\mathrm{w}_{\text {e }}$
4	Key in x to specify point of			
	interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ
	or moment	X	C	M_{x}
	or shear.	x	D	V
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3.			

Example:

Calculate deflection, slope, moment and shear for the beam above using the following values:

$d=23$ inches	$\mathrm{w}_{\mathrm{d}}=35 \mathrm{lb} / \mathrm{in}$	$\mathrm{e}=47 \mathrm{inches}$	$\mathrm{w}_{\mathrm{e}}=27 \mathrm{lb} / \mathrm{in}$
$\mathrm{I}=5 \mathrm{in}^{4}$	$\mathrm{E}=30 \times 10^{6} \mathrm{psi}$	$\ell=75 \mathrm{in}$	$\mathrm{x}=55 \mathrm{in}$

What is the deflection at $\mathrm{x}=40$?

Keystrokes:

Outputs:

23 ENTER4 35 ENTER4 47 ENTER4	
27 f C 5 ENTER4 30 EEX	
6 ENTERA 75 ¢ B	150.006
55 A	-29.58-03
55 B	1.175-03
55 C	6.84203
$55 \mathrm{D} \longrightarrow$	-342.100
$40 \triangle \longrightarrow$	-40.82-03

Notes

BEAMS FIXED AT BOTH ENDS

This program calculates deflection, slope, moment and shear at any specified point along a beam of uniform cross section, fixed at both ends. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$y=y_{1}+y_{2}+y_{3} \quad$ (total deflection)
$y_{1}=\frac{P(\ell-a)^{2} x^{2}}{6 E I^{3}}[x(\ell+2 a)-3 a \ell)^{*} \quad$ (deflection due to point load)
$y_{2}=\frac{W x^{2}}{24 E I}\left[x(2 \ell-x)-\ell^{2}\right] \quad$ (distributed load)
$\mathrm{y}_{3}=\frac{\mathrm{M}(\ell-\mathrm{c}) \mathrm{x}^{2}}{\ell^{2} \mathrm{EI}}\left[\frac{\mathrm{cx}}{\ell}+\frac{\ell-3 \mathrm{c}}{2}\right]^{* *} \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{\mathrm{P}(\ell-\mathrm{a})^{2} \mathrm{x}}{2 E I^{3}}[\mathrm{x}(\ell+2 \mathrm{a})-2 \mathrm{a} \ell]^{*} \quad$ (slope due to point load)
$\theta_{2}=\frac{\mathrm{Wx}}{12 E I}\left[x(3 \ell-2 x)-\ell^{2}\right] \quad$ (distributed load)
$\theta_{3}=\frac{\mathrm{M}(\ell-\mathrm{c}) \mathrm{x}}{\ell^{2} \mathrm{EI}}\left[\frac{3 \mathrm{cx}}{\ell}+\ell-3 \mathrm{c}\right]^{* *} \quad$ (applied moment)
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad$ (total moment)
$M_{x 1}=\frac{P(\ell-a)^{2}}{\ell^{3}}[x(\ell+2 a)-a \ell] * \quad$ (moment due to point load)
$M_{x 2}=\frac{W}{12}\left[6 x(\ell-x)-\ell^{2}\right] \quad$ (distributed load)
$\mathbf{M}_{\mathrm{x} 3}=\frac{\mathbf{M}(\ell-\mathrm{c})}{\ell^{2}}\left[\frac{6 \mathrm{cx}}{\ell}+\ell-3 \mathrm{c}\right]^{* *} \quad$ (applied moment)
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad$ (total shear)
$V_{1}=\frac{P(\ell-a)^{2}}{\ell^{3}}(\ell+2 a) \quad$ (shear due to point load)
$\mathrm{V}_{2}=\frac{-\mathrm{W}}{2}(2 \mathrm{x}-\ell) \quad$ (distributed load)
$\mathrm{V}_{3}=\frac{-6 \mathrm{M}(\ell-\mathrm{c}) \mathrm{c}^{* *}}{\ell^{3}} \quad$ (applied moment)
where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x;
M_{x} is the moment at x;
V is the shear at x;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;
M is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.

[^1]
Remarks:

This card differs from other beam cards. The "start'" function is not included on LBL f A. You must manually perform the 'start' function by storing zero when P, W or M are not included in the problem.
Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Sums of $\mathrm{y}, \theta, \mathrm{M}_{\mathrm{x}}$ and V may be stored in $\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{9}$, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input moment of inertia	I	ENTER	I
	then modulus of elasticity	E	ENTERA	E
	then beam length.	ℓ	1 B	EI
3	Input load(s):*			
	Location of point load	a	ENTER	a
	Point load	P	1 C	a
	Distributed load (force/length)	W	10	W
	Location of applied moment	c	ENTERA	c
	Applied moment	M	15	c
4	Key in x to specify the point			
	of interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ
	or moment	x	c	M_{x}
	or shear.	x	D	V

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3. Be			
	sure to set obsolete loadings to			
	zero. For new beam properties,			
	go to step 2.			
	*Loads must be input, even if			
	zero.			

Example 1:

For the beam below, what are the values of deflection, slope, moment, and shear at an x of 114 inches?

11-05

Example 2:

Find the internal moment at $\mathrm{x}=0$ for the configuration below.

Keystrokes:
9.75 ENTER4 10 EEX 6 ENTER4 $75 \mathrm{~B} \longrightarrow \quad 97.50 \quad 06$
0 EE 100 f(D 50 ENTER4
$1000-\mathbf{C}$ c

0 C
Also, find the deflection at $\mathrm{x}=40$.
40 A
$-101.0-03\left(\mathrm{Y}_{40}\right)$

Notes

BEAMS FIXED AT BOTH ENDS—TRAPEZOIDAL LOADING

This program calculates deflection, slope, moment, and shear at any specified point along a beam fixed at both ends, of uniform cross section, supporting a distributed trapezoidal load. By using the principle of superposition, complicated distributed loads may be analyzed.

Equations:

$$
\begin{gathered}
y=y_{d}-y_{e} \\
y_{d}=\frac{M_{0} x^{2}}{2 E I}+\frac{R_{0} x^{3}}{6 E I}-\langle x-d\rangle\left[\frac{w_{d}}{24 E I}+\frac{\left(w_{l}-w_{d}\right)\langle x-d\rangle}{120 E I(l-d)}\right] \\
M_{0}=-\frac{(\ell-d)}{12 \ell^{2}}\left[w_{d}(\ell+3 d)-\frac{\left(w_{\ell}-w_{d}\right)}{5}(2 l+3 d)\right] \\
R_{0}=\frac{(\ell-d)}{2 \ell^{3}}\left[w_{d}(l+d)+\frac{\left(w_{l}-w_{d}\right)}{10}(3 \ell+2 d)\right] \\
w_{\ell}=w_{e}+\frac{\left(w_{e}-w_{d}\right)}{(e-d)}(\ell-e)
\end{gathered}
$$

y_{e} is analogous to y_{d} except w_{e} replaces w_{d} and e replaces d.
Equations for slope, moment and shear are the first, second, and third x derivitives of the equations above.

Definitions:

I is the moment of inertia of the section;
E is the modulus of elasticity of the material;
ℓ is the length of the beam;
d is the distance to the beginning of the load;
w_{d} is the initial value of the load with units of force per unit length;
e is the distance to the end of the load;
w_{e} is the final value of the load;
x is the point of interest along the beam;
y is the deflection at x ;
$\boldsymbol{\theta}$ is the slope at x ;
M_{x} is the internal bending moment at x ;
V is the shear at x .

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

Remarks:

Deflections must not significantly alter the geometry of the problem.
Beams must be of constant cross section for deflection and slope equations to be valid.
Stresses must be in the elastic region.
Registers $\mathrm{R}_{\mathbf{6}}-\mathrm{R}_{9}$ are available for problem involving superposition.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the moment of inertia	I	ENTER	I
	then the modulus of elasticity	E	ENTER4	E
	then the length of the beam.	ℓ	[B	IE
3	Input distance to load	d	ENTER	d
	then initial value of load	$w_{\text {d }}$	ENTER4	$w_{\text {d }}$
	then distance to end of load	e	ENTER4	e
	then final value of loading.	$\mathrm{w}_{\text {e }}$	C	$\mathrm{w}_{\text {e }}$
4	Key in x to specify point of			
	interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ
	or moment	x	c	M_{x}
	or shear.	x	D	V
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3.			

Example:

Calculate deflection, slope, moment and shear for the beam above using the following values:

$\mathrm{d}=23$ inches	$\mathrm{w}_{\mathrm{d}}=35 \mathrm{lb} / \mathrm{in}$	$\mathrm{e}=47 \mathrm{inches}$	$\mathrm{w}_{\mathrm{e}}=27 \mathrm{lb} / \mathrm{in}$
$\mathrm{I}=5 \mathrm{in}^{4}$	$\mathrm{E}=30 \times 10^{6} \mathrm{psi}$	$\ell=75 \mathrm{in}$	$\mathrm{x}=55 \mathrm{in}$

What is the deflection at $\mathrm{x}=40$?

Keystrokes:

Outputs:

23 ENTER4 35 ENTERA 47 ENTER4

27 © C 5 ENTERA 30 EEX

6 ENTER4 75-B	150.006
55 A	-5.331-03
55 B	387.0-06
55 c	383.700
55 D	-328.6 00
40 A	-9.634-03

Notes

PROPPED CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a propped cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \quad$ (total deflection)
$y_{1}=\frac{P}{6 E I}\left[F\left(x^{3}-3 \ell^{2} x\right)+3 b^{2} x\right] ; x \leqslant a \quad$ (deflection due to point load)
$y_{2}=\frac{W}{48 E I}\left(3 \ell x^{3}-2 x^{4}-\ell^{3} x\right) \quad$ (distributed load)
$y_{3}=\frac{M}{E I} G\left(x^{3}-3 \ell^{2} x\right)+\ell x-c x ; x \leqslant c \quad$ (applied moment)
$y_{3}=\frac{M}{E I} G\left(x^{3}-3 \ell^{2} x\right)+\ell x-1 / 2\left(x^{2}+c^{2}\right) ; x>c$
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{P}{6 E I}\left[F\left(3 x^{2}-3 \ell^{2}\right)+3 b^{2}\right] ; \quad x \leqslant a \quad$ (slope due to point load)

$$
\begin{aligned}
& \theta_{1}=\frac{P}{6 E I}\left[F\left(3 x^{2}-3 l^{2}\right)-3(x-a)^{2}\right] ; x>a \\
& \theta_{2}=\frac{W}{48 E I}\left(9 x^{2}-8 x^{3}-\ell^{3}\right) \quad \text { (distributed load) } \\
& \theta_{3}=\frac{\mathrm{M}}{\mathrm{EI}}\left[\mathrm{G}\left(3 \mathrm{x}^{2}-3 \ell^{2}\right)+\ell-\mathrm{c}\right] ; \mathrm{x} \leqslant \mathrm{c} \quad \text { (applied moment) } \\
& \theta_{3}=\frac{M}{E I}\left[G\left(3 x^{2}-3 l^{2}\right)+\ell-x\right] ; x>c \\
& \mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad \text { (total moment) } \\
& \mathrm{M}_{\mathrm{x} 1}=\mathrm{PFx} ; \mathrm{x} \leqslant \mathrm{a} \quad \text { (moment due to point load) } \\
& \mathrm{M}_{\mathrm{x} 1}=\mathrm{PFx}-\mathrm{P}(\mathrm{x}-\mathrm{b}) ; \mathrm{x}>\mathrm{a} \\
& \mathrm{M}_{\mathrm{x} 2}=\mathrm{W}\left(3 / 8 \mathrm{x} \ell-\mathrm{x}^{2} / 2\right) \quad \text { (distributed load) } \\
& \mathrm{M}_{\mathrm{x} 3}=6 \mathrm{MGx} ; \mathrm{x} \leqslant \mathrm{c} \quad \text { (applied moment) } \\
& \mathrm{M}_{\mathrm{x} 3}=6 \mathrm{MGx}-\mathrm{M} ; \mathrm{x}>\mathrm{c} \\
& \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad \text { (total shear) } \\
& \mathrm{V}_{1}=\mathrm{PF} ; \mathrm{x} \leqslant \mathrm{a} \quad \text { (shear due to point load) } \\
& \mathrm{V}_{1}=\mathrm{PF}-\mathrm{P} ; \mathrm{x}>\mathrm{a} \\
& \mathrm{~V}_{2}=\mathrm{W}\left(\frac{3}{8} \ell-\mathrm{x}\right) \quad \text { (distributed load) } \\
& \mathrm{V}_{3}=6 \mathrm{MG} \quad \text { (applied moment) } \\
& \mathrm{F}=\left[\frac{3 \mathrm{~b}^{2} \ell-\mathrm{b}^{3}}{2 \ell^{3}}\right] \\
& \mathrm{b}=(\ell-\mathrm{a}) \\
& G=\frac{\ell^{2}-c^{2}}{4 \ell^{3}}
\end{aligned}
$$

where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x;
M_{x} is the moment at x;
V is the shear at x;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;
\mathbf{M} is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.

Remarks;

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ and R_{B} are available for user storage.
Sums of y, θ, M_{X} and V may be stored in R_{6}, R_{7}, R_{8} and R_{9}, respectively. Note that those registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		1 A	0.00000
3	Input moment of inertia	1	ENTERA	I
	then modulus of elasticity	E	ENTERA	E
	then beam length.	ℓ	1 B	EI
4	Input load(s):			
	Location of point load	a	ENTERA	a
	Point load	P	1 C	a
	Distributed load (force/length)	W	1 D	W
	Location of applied moment	c	ENTERA	c
	Applied moment.	M	1 E	c

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	\mathbf{A}	y
	or slope	x	\mathbf{B}	$\boldsymbol{\theta}$
	or moment	x	C	$\mathrm{M}_{\mathbf{x}}$
	or shear.	x	\mathbf{D}	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

Example 1:

What are the values of moment and shear at both ends of the beam below? (It is not necessary to know the values of E or I since deflection and slope are not required.)

Keystrokes:

Outputs:

1 A 120 B 30 ENTER			
1000 C	30.00	00	
80 ENTERA 35000 CHS			
15 ¢D \longrightarrow	15.00	00	
0 C	0.000	00	(in-lb)
0 D \longrightarrow	1.065	03	(lb)
120 C \longrightarrow	-35.23	03	(in-lb)
120 D	-1.735	03	(lb)

13-05

Example 2:

Calculate the deflection, slope, moment and shear at $\mathrm{x}=90$ for the beam below.

Keystrokes:
Outputs:
IA 23 ENTERA 30 EEX 6 ENTERA
170 В В $\longrightarrow \quad 690.0 \quad 06$

90 A	-75.73-03	(in)
90 B	920.8-06	(in/in)
90 c	11.8903	(in-lb)
90 D	-229.0 00	(lb)

Notes

PROPPED CANTILEVER BEAMS—TRAPEZOIDAL LOADING

This program calculates deflection, slope, moment and shear at any specified point along a propped cantilever beam of uniform cross section with a distributed trapezoidal load. By using the principle of superposition, complicated distributed loads may be analyzed.

Equations:

$$
\begin{gathered}
y=y_{d}+y_{e} \\
y_{d}=\theta_{0} x+R_{0} x^{3} / 6 E I-\langle x-d\rangle^{4}\left[\frac{w_{d}}{24 E I}+\frac{\left(w_{\ell}-w_{d}\right)\langle x-d\rangle}{120 E I}\right] \\
R_{0}=\frac{(\ell-d)^{3}}{8 \ell^{3}}\left[w_{d}(3 \ell+d)+\frac{\left(w_{\ell}-w_{d}\right)}{5}(4 \ell+d)\right] \\
\theta_{0}=-\frac{(\ell-d)^{3}}{48 E I \ell}\left[w_{d}(\ell+3 d)-\frac{\left(w_{\ell}-w_{d}\right)}{5}(2 \ell+3 d)\right] \\
w_{\ell}=w_{e}+\frac{\left(w_{e}-w_{d}\right)}{(e-d)}(\ell-e)
\end{gathered}
$$

y_{e} is analogous to y_{d} except w_{d} is replaced by w_{e} and d is replaced by e.
Equations for slope moment and shear are the first, second and third \mathbf{x} derivatives of the equations above.

Definitions:

I is the moment of inertia of the section;
E is the modulus of elasticity of the material;
ℓ is the length of the beam;
d is the distance to the beginning of the load;
w_{d} is the initial value of the load with units of force per unit length;
e is the distance to the end of the load;
w_{e} is the final value of the load;
x is the point of interest along the beam;
y is the deflection at x ;
θ is the slope at x ;
M_{x} is the internal bending moment at x ;
V is the shear at x .

Reference:

Roark, Raymond J., Young, Warren C., Formulas for Stress and Strain, McGraw-Hill Book Company, 1975.

Remarks:

Deflections must not significantly alter the geometry of the problem.
Beams must be of constant cross section for deflection and slope equations to be valid.

Stresses must be in the elastic region.
Registers $R_{6}-R_{9}$ are available for problems involving superposition.

STEP	INSTRUCTIONS	INPUT DATAUNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the moment of inertia	1	ENTER	I
	then the modulus of elasticity	E	ENTER4	E
	then the length of the beam.	ℓ	B	IE
3	Input distance to load	d	ENTER	d
	then initial value of load	$w_{\text {d }}$	ENTERA	$w_{\text {d }}$
	then distance to end of load	e	ENTER	e
	then final value of loading.	$\mathrm{w}_{\text {e }}$	\square	$\mathrm{w}_{\text {e }}$
4	Key in x to specify point of in-			
	terest and calculate deflection	x	A	y
	or slope	x	B	θ
	or moment	x	C	M ${ }_{\text {x }}$
	or shear.	x	D	V
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3.			

Example:

Calculate deflection, slope, moment and shear for the beam above using the following values:
$\mathrm{d}=23$ inches
$\mathrm{w}_{\mathrm{d}}=35 \mathrm{lb} / \mathrm{in}$
$\mathrm{e}=47$ inches
$\mathrm{w}_{\mathrm{e}}=27 \mathrm{lb} / \mathrm{in}$
$\mathrm{I}=5 \mathrm{in}^{4}$
$\mathrm{E}=30 \times 10^{6} \mathrm{psi}$
$\ell=75$ in
$x=55$ in

What is the deflection at $\mathrm{x}=40$?
Keystrokes:
23
3 ENTERA 35 ENTER4 47 ENTER4
27 CC 5 ENTERA 30 EEX

6 ENTER 75 - ${ }^{\text {B }}$	150.006
55 A	-8.849-03
55 B	674.9-06
55 c	-336.0 00
55 D	-472.6 00
40 回	-17.47-03

Notes

SIX-SPAN CONTINUOUS BEAMS

This program solves for the intermediate couples present at the support points of a continuous beam. From two to six span beams may be analyzed.

Each span of the beam may have a unique length, cross section, and/or modulus of elasticity but properties may not change within a span.
The first step in using this program is computation of the slope factors at each support of the span. This is best accomplished with programs designed for this purpose such as CE-09 and CE-10. Simply break the continuous beam at each support and calculate the slope at each end assuming no moment is transmitted across supports (it is not necessary to calculate the slope at the left end of the first section or the right end of the last section).
After all slope factors have been calculated for the beam sections, you are ready to use Six-Span Continuous Beam to solve for the unknown moments which develop across the intermediate supports of the continuous beam. After loading the program and specifying the number of spans (N), the moment acting at the left end of the beam is specified $\left(\mathrm{M}_{0}\right)$, even if zero, then the slope factors from the left side and the right side of the first intermediate support are input. The moment of inertia, modulus of elasticity, and length of the first span are input next.

For subsequent spans (except the last span) input the slope factors and beam properties only. In cases where sections repeat (same load and same properties) the B keys cause automatic span replication. This saves the effort involved in keying in five pieces of repeated data. If the loadings on successive spans change but beam properties remain constant, input the slope factors but use the automatic property duplication function on the © \mathbf{C} keys.
The last span requires input of only the beam properties and the applied moment at the end of the beam $\left(\mathrm{M}_{\mathrm{N}}\right)$, even if zero. After input of the end moment, calculation begins. About one minute later, the values of the moments acting at each end of each segment of the beam are output. The first output is the left end applied moment \mathbf{M}_{0}, the last output is the right end applied moment \mathbf{M}_{N}. All moments, inputs and outputs, follow the right hand rule sign convention. If you have a HP-67 and you miss the output of the moments it is not necessary to start over. Simply leave M_{N} in the display and press \mathbf{D}, the output routine will be repeated after a few seconds of calculation.

Algorithm:

The program starts by assumming that all internal moments are zero. Based on this assumption it calculates the moment across the first intermediate support using:
$\left.M_{1}=\left\{\left(\theta_{1}-\theta_{1}^{\prime}\right)-\frac{M_{1} \ell_{1}}{6 \mathrm{E}_{1} \mathrm{I}_{1}}-\frac{\mathrm{M}_{2} \ell_{2}}{6 \mathrm{E}_{2} \mathrm{I}_{2}}\right\} /\left(\frac{\ell_{1}}{3 \mathrm{E}_{1} \mathrm{I}_{1}}+\frac{\ell_{2}}{3 \mathrm{E}_{2} \mathrm{I}_{2}}\right)\right\}$
It then uses M_{1} in an analogous equation for the next support and the next until the end of the beam is reached. The program repeats this procedure until all calculated moments remain unchanged within the specified display setting for one complete cycle of moment calculations.

Reference:

Roark, Raymond J.; Young, Warren C.; Formulas for Stress and Strain, McGraw-Hill, 1975.

Remarks:

This program uses a trial and error procedure. It is possible that no answer would ever be found for some loadings.
The display setting is used to determine when answers are of satisfactory accuracy. Display of Engineering 3 is recommended for best operation. Larger numbers for display setting will take longer to converge.

STEP	INSTRUCTIONS	INPUT DATAUNITS	KEYS	OUTPUT DATAUNITS
1	Calculate all intermediate			
	slope factors using simply sup-			
	ported beam programs.			
2	Load side 1 and side 2.			
3	Input number of spans in beam			
	$(2 \leqslant n \leqslant 6)$	N	(1)	0.00000
4	Input moment applied at left			
	support (even if zero).	M	A	M_{0}
5	Input slope factor from left side			
	of next intermediate support	$\theta_{\text {n }}$	ENTER	θ_{n}
	and from right side of support.*	$\theta_{\mathrm{n}}{ }^{\prime}$	B	$\theta_{\mathrm{n}}-\theta_{\mathrm{n}}{ }^{\prime}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Input properties of the span:**			
	moment of inertia	I		I
	modulus of elasticity	E		E
	and length of span.	ℓ	C	n
7	For next span, go to step 5. For			
	last span, go to step 6 and then			
	skip to step 8.			
8	Input moment at end of last			
	span.	M_{N}	D	$M_{0}, M_{1}, M_{1}{ }^{\prime}$,
				$\mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{N}}$
9	To change any span, key in			
	number of span	n	10	n
	Go to step 5 for intermediate			
	spans, step 4 if first span, or			
	step 6 and skip to step 8 if last			
	span.			
10	For a new case, go to step 1.			
	* To duplicate $\theta_{\mathrm{i}}, \theta_{\mathrm{i}}{ }^{\prime}, \mathrm{I}, \mathrm{E}$, and l			
	from previous span to next			
	span press		18	n
	and go to step 7.			
	**To duplicate I, E, and l from			
	previous span to next span,			
	press		$1{ }^{\text {c }}$	n
	and go to step 7.			

Example:

For the three span beam above, calculate the internal moments transmitted across the two intermediate supports.
Separate the beam into three independent sections and use the Simply Supported Beam-Trapezoidal Load program to solve for the slope factors at the points of support.

What is θ_{1}, the slope factor at the end of the beam?

Keystrokes using CE-10:

Outputs:

109 ENTERA 30 EEX 6 ENTER4
480 B $\longrightarrow \quad 3.27009$
0 ENTERA 16.67 ENTERA
480 ENTERA $16.67 \boldsymbol{C} \longrightarrow 0.00000$
480 B $\longrightarrow \quad 23.49-03 \quad\left(\theta_{1}\right)$

Section 2 is loaded the same as section 1 . No values change, so compute the slope factors at the two ends of section 2 .
$0 \mathrm{~B} \longrightarrow$

$480 \mathrm{~B} \longrightarrow$	$-23.49-03$
$23.49-03$	
:---	
$\left(\theta_{2}\right)$	

Section 3 requires solution by superposition of the continuous load and the trapezoidal load. First solve for the continuous load and store the result in R_{7}, then add the result of the trapezoidal load.

Keystrokes using CE-15:
272 ENTERA 30 EEX 6 ENTERA
480 B 0 ENTER4
20.83 ENTERA 480 ENTER4
20.83 C 0 B \longrightarrow-11.76-03

STO 7120 ENTERA 58.3 ENTER4
340 ENTER4 66.7 © $\mathbf{C} 0$ B \rightarrow-22.74-03
$\boldsymbol{R C L} 7+\longrightarrow \quad-34.50-03$
Now we have the slopes at the supports. Using the continuous span program, we can compute the internal moments at the intermediate supports.

Summary of Knowns

\quad Span 1
$M_{0}=6000 \mathrm{Ib} \times 120 \mathrm{in}$
$\ell=+720,000 \mathrm{in-lb}$
$\theta_{1}=23.49 \times 10^{-3}$
$\mathrm{I}=109$
$\mathrm{E}=30 \times 10^{6}$
$\ell=480$

Span 2
Span 3
$\theta_{2}^{\prime}=-34.50 \times 10^{-3}$
$\mathrm{I}=272$
$E=30 \times 10^{6}$
$\ell=480$
$M_{3}=6000 \times 120$
$=-720,000 \mathrm{in}-\mathrm{lb}$
(M_{3} is negative by right hand rule)

Keystrokes:
Outputs:
Span 1
3 A A 720 EEX 3 A 23.49 EEX CHS
3ENTERt 23.49 CHS EEX CHS 3 B
109 ENTERA 30 EEX 6 ENTER4
$480 \mathrm{C} \longrightarrow \quad 1.00000$

Input for span 1 complete.

Span 2
23.49 EEX CHS 3 ENTERA 34.50 CHS EEX CHS 3 B

Since I, E, and ℓ remain the same between span 1 and span 2 , use the automatic section property duplicate function instead of keying the values in again.

Span 3
272 ENTERA 30 EEX 6 ENTER4
480 C $\longrightarrow \quad 3.00000$
720 CHSEEX 3 D $\longrightarrow \quad 720.003$

-125.5	03	$\mathrm{M}_{1}{ }^{\prime}$
125.5	03	$\mathrm{M}_{1}{ }^{\prime}$
-698.3	03	M_{2}
698.3	03	$\mathrm{M}_{2}{ }^{\prime}$
-720.0	03	M_{3}

Since we now know all loads and the moments at the ends of each span, we could calculate deflection, moment and shear for any point along the span using program CE-09 and program CE-10.

STEEL COLUMN FORMULA

This program computes the allowable load and the maximum load for structural steel columns using the American Institute of Steel Construction formula (1961). The column ends must be welded, riveted, or otherwise constrained against deflection and rotation.

Equations:

$$
\begin{array}{cc}
\mathrm{P}_{\text {allow }}=\mathrm{A} \sigma_{\mathrm{y}}\left[1-(\ell / \mathrm{k})^{2} / 2 \mathrm{C}^{2}\right] / \mathrm{m} & \text { for } \ell / \mathrm{k}<\mathrm{C} \\
\mathrm{P}_{\text {allow }}=\mathrm{A}\left(1.0273 \times 10^{12} \mathrm{~N} / \mathrm{m}^{2}\right) /(\ell / \mathrm{k})^{2} & \text { for } \mathrm{C}<\ell / \mathrm{k} \leqslant 200
\end{array}
$$

$$
\begin{gathered}
\mathrm{C}^{2}=2 \pi^{2} \mathrm{E} / \sigma_{\mathrm{y}} \\
\mathrm{~m}=5 / 3 \times 3(\ell / \mathrm{k}) / 8 \mathrm{C}-[(\ell / \mathrm{k}) / 2 \mathrm{C}]^{3}
\end{gathered}
$$

$$
P_{\max }=P_{\text {allow }} m
$$

Definitions:

$P_{\text {allow }}$ is the allowable load;
$P_{\text {max }}$ is the maximum load the column could carry;
A is the area of the section;
ℓ is the length of the column;
\mathbf{k} is the minimum radius of gyration of the column cross section;
I is the minimum moment of inertia of the cross section;
σ_{y} is the yield point of the steel.
E is the modulous of elasticity of steel.

Remarks:

Either SI (metric) or English units may be used. For SI units, input the yield point stress of the material using the \boldsymbol{A} key and use meters as the unit of length for all other inputs. For English units, input the yield point stress in pounds per square inch using the B key and use inches as the unit of length in all other inputs.
You may input the minimum moment of inertia I, instead of the minimum radius of gyration k . If I is input it will automatically be converted to k using the relation:

$$
\mathrm{k}^{2}=\mathrm{I} / \mathrm{A}
$$

Reference:

Roark, Raymond J.; Young, Warren C.; Formulas for Stress and Strain, McGraw-Hill, 1975.

Remarks:

Columns must be nominally straight, homogeneous, and of uniform cross section.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATAUUNITS
1	Load side 1 and side 2.			
2	Input the following values:			
	Input yield point stress of the			
	material in newtons per square			
	meter	$\sigma \mathrm{y}\left(\mathrm{N} / \mathrm{m}^{2}\right)$	1 A	0.0000
	or pounds per square inch	σy (psi)	1 B	0.0000
	and section area	A	A	A
	and column length	ℓ	B	ℓ
	and minimum radius of gyration	k	C	k
	or minimum moment of inertia	I	\square	I
3	Calculate allowable load		D	$\mathrm{P}_{\text {allow }}$
	and/or maximum load		E	$\mathrm{P}_{\text {max }}$
4	For a new case, go to step 2			
	and change any or all of the			
	inputs.			

Example 1:

Two steel channels are lased together to form the cross section below:

Calculate the allowable and maximum loads using the following specifications:
$\mathrm{k}=81.0 \times 10^{-3} \mathrm{~m} \quad \mathrm{~A}=9.46 \times 10^{-3} \mathrm{~m}^{2} \quad \sigma_{\mathrm{y}}=248 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
$\ell=7.5 \mathrm{~m}$ and 12 m

Keystrokes:

248 EEX 6 f A 9.46 EEX CHS

3 A 7.5 B 81 EEX CHS

E

Outputs:

918.2	03	$\mathrm{P}_{\text {allow }}(\mathrm{N})$
1.736	06	$\mathrm{P}_{\max }(\mathrm{N})$
442.8	03	$\mathrm{P}_{\text {allow }}(\mathrm{N})$
844.5	03	$\mathrm{P}_{\max }(\mathrm{N})$

Example 2:

For a column with the properties below, what is the allowable load?

$$
\sigma_{y}=33,000 \mathrm{psi} \quad \mathrm{~A}=20 \mathrm{in}^{2} \quad \mathrm{I}=223 \mathrm{in}^{4} \quad \ell=350 \mathrm{in}
$$

Keystrokes:
33000 f 20 A 223 f C
350 B D

Outputs:

$241.003 \quad P_{\text {allow }}$ (Pounds)

REINFORCED CONCRETE BEAMS

MET?	+a	-NA		Φf_{y}
$\triangle A_{s}$	Φ b	¢ M	$\triangle \mathrm{d}$	$\pm \mathrm{f}_{\mathrm{c}}$

This program can be used in the design and analysis of rectangular reinforced concrete beams in accordance with the strength design method of the American Concrete Institute Code (ACI 318-71). The program solves interchangeably between the following six variables:
A_{s}-The area of nonprestressed tension reinforcement (psi or $\mathrm{kg} / \mathrm{cm}^{2}$);
b -The width of the member (in or cm);
$\mathrm{M}-$ The maximum internal bending moment ($\mathrm{lb}-\mathrm{in}$ or $\mathrm{kg}-\mathrm{cm}$);
d-The depth to the centroid of the reinforcing steel (in or cm);
f_{c}-The compressive strength of the concrete (psi or $\mathrm{kg} / \mathrm{cm}^{2}$);
f_{y} - The yield strength of the steel (psi or $\mathrm{kg} / \mathrm{cm}^{2}$).

During calculation of the parameters listed above, the calculator checks to be sure that enough reinforcement has been specified to meet the minimum allowable value:

$$
\frac{A_{s}}{b d}>\frac{200}{f_{y}}
$$

If this condition is not met the display will flash 10.50 which signifies that the design does not meet section 10.5 of the ACI code. Stop the flashing by pressing R/S. Press Rt to see the current value of $\mathrm{A}_{\mathbf{s}}$. Press Rt again to see the minimum allowable value of A_{s}. Pressing © at this point stores the minimum value of A_{s} and readys the calculator for calculation of the desired variable.

The program also checks for too much steel. Code section 10.32 specifies the maximum steel area as:

$$
\frac{A_{\text {smax }}}{b d}=(0.6375) \beta_{1} \frac{f_{c}}{f_{y}} \frac{87000}{87000+f_{y}}
$$

where

$$
\beta_{1}=\left\{\begin{array}{l}
0.85 \text { for } \mathrm{f}_{\mathrm{c}} \leqslant 4000 \\
0.85-\left(\mathrm{f}_{\mathrm{c}}-4000\right) / 20000 \text { for } \mathrm{f}_{\mathrm{c}}>4000
\end{array}\right.
$$

If too much steel has been specified, the calculator flashes 10.32. Stop the flashing by pressing $\mathbf{R / S}$, then press $\mathbf{R T}$ to see the current steel area. Press RT again to see the maximum allowable tension steel area. Press \boldsymbol{A} if you wish to use the maximum amount of steel in subsequent calculations.
If the program halts displaying "Error," the input values are mathematically impossible to satisfy. This may be due to an entry error (you may review the values by recalling R_{1} for A_{s}, R_{2} for b, R_{3} for M etc....) or the configuration may be mathematically undefined. If this is the case, increase the beam size and/or decrease the moment.
Optionally, the depth of the compression zone (a) may be calculated using the
B keys and the depth of the neutral axis (NA) may be calculated using
C. The depth of the neutral axis is important since T-beams may be modeled as rectangular beams if the slab or flange equals or exceedes the depth of the neutral axis.

Equations:

$$
\begin{gathered}
\mathrm{M}=\mathrm{d} \phi \mathrm{~A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}-\left(0.59 \phi \mathrm{~A}_{\mathrm{s}}^{2} \mathrm{f}_{\mathrm{y}}^{2}\right) /\left(\mathrm{b} \mathrm{f}_{\mathrm{c}}\right) \\
\phi=\text { factor of safety }=0.9
\end{gathered}
$$

Reference:

ACI Standard Building Code Requirements for Reinforced Concrete (ACI 318-71), American Concrete Institute, May 1976 printing.

Remarks:

This program is intended as an aid to computation and cannot replace an understanding of ACI 318-71.

This program does not check for deflection of shear stress modes of failure. Refer to ACI 318-71 for specifics on deflection and shear stress.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: toggle metric units			
	(1 = kilograms and centi-			
	meters) or English units			
	($0=$ pounds and inches).		14	1 or 0
3	Input 5 of the following			
	variables:			
	Area of tension reinforcement	$\mathrm{A}_{\text {s }}$	A	$\mathrm{A}_{\text {s }}$
	Width of beam	b	B	b
	Bending moment	M	c	M
	Depth of section to centroid of			
	steel	d	D	d
	Compressive strength of			
	concrete	f_{c}	E	f_{c}
	Yield strength of tension			
	reinforcement	f_{y}	[E	f_{y}
4	Calculate remaining unknown			
	value:			
	Area of tension reinforcement		A	A_{5}
	Width of beam		B	b
	Bending moment		C	M
	Depth of section to centroid			
	of steel		D	d
	Compressive strength of			
	concrete		E	f_{c}
	Yield strength of tension			
	reinforcement		1 E	f_{y}
5	If step 4 resulted in an "Error"			
	or a flashing display, refer to			
	description for explanation.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	Optional: Calculate depth of			
	compressive stress block		B	a
	and/or depth of neutral axis		C	NA
7	For a new case, go to step 3			
	and change any or all of the			
	input values.			

Example 1:

For the specifications below, calculate the amount of reinforcing steel required.
$\mathrm{M}=1.2 \times 10^{6} \mathrm{in}-\mathrm{lb} \quad \mathrm{b}=18 \mathrm{in} \quad \mathrm{d}=26$ in $\quad \mathrm{f}_{\mathrm{c}}=3500 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=50000 \mathrm{psi}$

Keystrokes:

A A \qquad

Outputs:

0.00000 (Set for English units.)
1.2 EEX 6 C 18 B 26 D

3500 E 50000 EEA
10.5000
(Flashing display indicates that calculated steel area is too small to meet ACI minimum as specified in ACI 10.5. Press R/S to halt the flashing display. Press $\boldsymbol{R t}$ to see the calculated value, then press $\boldsymbol{R t}$ again to see the minimum value, then use the minimum value to recalculate M.)

R/S $\mathrm{Rt} \longrightarrow$	1.04500	in^{2} (calc)
Rt \longrightarrow	1.87200	in^{2} (min)
AC \longrightarrow	2.11606	in-lb (M)

Example 2:

For the beam specifications below, calculate the area of steel required.
$\mathrm{b}=25 \mathrm{~cm} \quad \mathrm{~d}=30 \mathrm{~cm} \quad \mathrm{M}=1.6 \times 10^{6} \mathrm{~kg}-\mathrm{cm} \quad \mathrm{f}_{\mathrm{c}}=281 \mathrm{~kg} / \mathrm{cm}^{2}$
$\mathrm{f}_{\mathrm{y}}=4219 \mathrm{~kg} / \mathrm{cm}^{2}$

Keystrokes:

Outputs:

$$
1.00000 \quad \text { (metric units) }
$$

(Flashing display indicates that calculated steel area is too large to meet ACI
specification 10.32. Press R/S to halt flashing display. Press Rt to see calculated value, then Rt again to see maximum value.)

$\mathrm{R} / \mathrm{S} / \mathrm{Rt} \longrightarrow$	17.7800 $\mathrm{Rt} \longrightarrow$	16.0200	$\mathrm{~cm}^{2}$
$\mathrm{~cm}^{2}$			

Using $16 \mathrm{~cm}^{2}$ for A_{s}, what is the minimum value for d ?
16 A D
32.0100
cm

Example 3:

Calculate the area of the steel and the depth of the slab or flange for the T-beam data below. Use the depth of the neutral axis as the minimum depth of the flange so that the T-beam can be modeled as a rectangular beam.
$\mathrm{M}=2 \times 10^{6} \mathrm{in}-\mathrm{lb}$
$b=20$ in
$\mathrm{d}=20$ in
$\mathrm{f}_{\mathrm{c}}=4000 \mathrm{psi}$
$f_{y}=60,000 \mathrm{psi}$

Keystrokes:

(A) A

Outputs:

2 EEX 6 C 20 B 20 D 4000 E 60000 EA \longrightarrow

C
0.00000
(English units)

BOLT TORQUE

This program may be used to calculate either the torque that will yield a specified bolt load or the load resulting from a specified torque. The maximum shear stress in the body of the screw may also be calculated.

Equations:

$$
\begin{gathered}
\mathrm{T}=\mathrm{W} \frac{\mathrm{D}_{\mathrm{m}}}{2}\left[\frac{\tan \alpha+\mathrm{f}_{\mathrm{t}} / \cos \theta}{1-\mathrm{f}_{\mathrm{t}} \tan \alpha / \cos \theta}\right]+\mathrm{W} \mathrm{f}_{\mathrm{c}} \frac{\mathrm{D}_{\mathrm{c}}}{2} \\
\tau_{\max }=\sqrt{\left(\mathrm{W} / 2 \mathrm{~A}_{\mathrm{r}}\right)^{2}+\left(16 \mathrm{~T}_{\mathrm{t}} / \pi \mathrm{D}_{\mathrm{r}}^{3}\right)^{2}} \\
\mathrm{~T}_{\mathrm{t}}=\mathrm{T}-\mathrm{Wf}_{\mathrm{c}} \frac{\mathrm{D}_{\mathrm{c}}}{2}
\end{gathered}
$$

where:
T is the applied torque;
W is the bolt load;
D_{m} is the mean thread diameter;
α is the helix angle of the thread;
f_{t} is the coefficient of thread friction;
θ is one-half of the thread angle;
f_{c} is the collar coefficient of friction;
D_{c} is the collar diameter;
$\tau_{\text {max }}$ is the maximum shear stress in the body of the screw;
A_{r} is the root area;
D_{r} is the diameter at the root of the thread.

Remarks:

The accuracy with which f_{t} and f_{c} are approximated has a significant effect on the applicability of the resulting computations.

Reference;

Hall, Holowenko, Laughlin Machine Design, Schaum's Outline Series, McGraw-Hill Co., 1961.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 or side 2.			
2	Input helix angle of thread	α	ENTER	α
	then one-half of thread angle	θ	ENTER4	θ
	then coefficient of thread			
	friction	f_{t}	A	0.00
	Input mean thread diameter	D_{m}	ENTERA	D_{m}
	then collar diameter	D_{c}	ENTER ${ }^{\text {d }}$	D_{c}
	then collar coefficient of			
	friction	f_{c}	B	0.00
3	Input one of the following			
	bolt load	W	c	W
	bolt torque	T	D	T
4	Calculate one of the following			
	bolt load		C	W
	bolt torque		D	T
5	Optional: Input diameter of the			
	root of the thread and compute			
	shear stress	$\mathrm{D}_{\text {r }}$	E	$\tau_{\text {max }}$
6	For a new load or torque go to			
	step 3. For a new case go to			
	step 2.			

Example:

Some bolts must exert a force of 11,000 pounds each. What torque is necessary to achieve this load assuming the following specifications? What is the shear stress in the bolt?

$$
\begin{array}{rlr}
\mathrm{D}_{\mathrm{m}} & =0.3344 \text { in } & \mathrm{f}_{\mathrm{c}}=0.30 \\
\alpha & =3.40^{\circ} & \mathrm{D}_{\mathrm{c}}=0.8750 \\
\mathrm{f}_{\mathrm{t}} & =0.15 & \mathrm{D}_{\mathrm{r}}=0.2983 \\
\theta & =30^{\circ} &
\end{array}
$$

Keystrokes:
3.40 ENTER 430 ENTER 4.15 A
.3344 ENTER 4.8750 ENTER \uparrow
.3 B 11000 C D
$12 \div$.2983 E B \longrightarrow

If the torque were set at 140 foot-pounds (1680 inch-pounds), what would be the bolt load?

1680 D C
9850.61 lbs

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owners Handbook.
Program Page

1. Vector Statistics L01-01
2. Section Properties (2 Cards) L02-01
3. Properties of Special Sections L03-01
4. Stress on an Element L04-01
5. Bending or Torsional Stress L05-01
6. Linear or Angular Deformation L06-01
7. Cantilever Beams L07-01
8. Cantilever Beams-Trapezoidal Load L08-01
9. Simply Supported Beams L09-01
10. Simply Supported Beams-Trapezoidal Load L10-01
11. Beams Fixed at Both Ends L11-01
12. Beams Fixed at Both Ends-Trapezoidal Load L12-01
13. Propped Cantilever Beams L13-01
14. Propped Cantilever Beams-Trapezoidal Load L14-01
15. Six-span Continuous Beams L15-01
16. Steel Column Formula L16-01
17. Reinforced Concrete Beams L17-01
18. Bolt Torque L18-01

VECTOR STATICS

SECTION PROPERTIES

	061 082 093 004 165 096 667^{7} 008 089 010 011 012 013 014 015 016 017 018 819 020 021 922 Q2? 024 025 626 827 028 829 Q30 031 Q32 033 034 035 036 037 038 039 449 841 042 24? 044 845 046 047 848 849 850 85! 852 853 854 855 856			Clear re	tes.		857 858 859 868 861 862 863 664 865 066 867 968 869 A70 071 072 873 874 875 076 677 678 879 680 e8: 082 083 084 085 086 087 088 089 098 091 092 093 094 095 896 097 898 899 180 101 182 :03 104 185 106 10 ? 108 189 118 111 112	ST-1 RCLC RCLB x $R C L A$ RCLD x - $E N T 4$ $E N T \uparrow$ 4 \vdots $R C L 8$ x $R C L A$ $R C L C$ x $R C L C$ $x 2$ $S T O 9$ + $R C L A$ x $S T+9$ + $R C L 7$ x 3		Sum $\Delta I_{\mathbf{x y}}$. Recall x_{i} and y_{i} for next segment. Calculate $\Delta M_{\mathbf{x}}$ and $\Delta M_{\mathbf{r}}$.	
REGISTERS											
${ }^{0} \mathrm{EA}$				$]^{3} \Sigma \mathrm{I}_{\mathbf{x}} \quad{ }^{4} \Sigma \mathrm{I}_{\mathbf{y}}$		${ }^{5} \quad \Sigma I_{x y}$	${ }^{6}\left(x_{i+1}-x_{i}\right)$		$\sqrt{7 \quad\left(y_{i+1}-y_{i}\right)}$		
So	S1		S2	S3	S4	S5	S6				
${ }^{\text {A }}{ }^{\text {a }}$	${ }^{B} y_{i}$			${ }^{C_{x_{i+1}}}$		$\begin{array}{\|l\|l\|} \hline D^{2} & \\ y_{i+1} & \\ \hline \end{array}$			E		

11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 139 149 14 14 143 14 14 14 14 14 14 15 15 15 153	113 114 115 116 117 118 119 128 121 122 123 124 125 126 127 128 129 138 131 132 133 134 135 136 137 138 139 149 141 142 143 144 145 146 148 148 149 159 159 151		Calcula $---$ Add to regions.	ion subroutine. sums for circular								
Labels						FLAGS	SET STATUS					
${ }^{4} x_{i+1} \uparrow y_{i+1}$	${ }^{8}$		${ }^{c} \times{ }^{\text {¢ }}$ y ${ }^{\text {d }}$							flags	trig	Disp
a	\bigcirc		${ }^{\circ}$	\bigcirc				$\bigcirc{ }^{\text {ONOFF }}$				
\bigcirc		Calculate	2	${ }^{3}$		Calculate	${ }^{2}$		${ }_{\text {GRAD }}^{\text {GRA }}$			
5			-				${ }^{3}$	$3{ }^{1}$				

(CARD 2)

PROPERTIES OF SPECIAL SECTIONS

STRESS ON AN ELEMENT

L05-01
BENDING OR TORSIONAL STRESS

LINEAR OR ANGULAR DEFORMATION

CANTILEVER BEAMS

CANTILEVER BEAMS—TRAPEZIODAL LOAD

SIMPLY SUPPORTED BEAMS

SIMPLY SUPPORTED BEAMS—TRAPEZIODAL LOAD

BEAMS FIXED AT BOTH ENDS

BEAMS FIXED AT BOTH ENDS—TRAPEZOIDAL LOAD

PROPPED CANTILEVER BEAMS

PROPPED CANTILEVER BEAMS—TRAPEZIODAL LOAD

SIX-SPAN CONTINUOUS BEAMS

STEEL COLUMN FORMULA

REINFORCED CONCRETE BEAMS

BOLT TORQUE

Notes

Appendix A
 MAGNETIC CARD SYMBOLS AND CONVENTIONS

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x A	White mnemonics are associated with the userdefinable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing A.
Gold mnemonic: y x E	Gold mnemonics are similar to white mnemonics except that the gold f key must be pressed before the user-definable key. In this case y could be input by pressing f E.
$x \uparrow y$	4 is the symbol for ENTERA. In this case ENTERA is used to separate the input variables x and y . To input both x and y you would key in x, pressENTERA, key in y and press A.
$\begin{aligned} & \mathrm{X} \\ & \hline \mathrm{~A} \end{aligned}$	The box around the variable x indicates input by pressing STO A.
(x) A	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
$\begin{array}{r} \rightarrow X \\ \boldsymbol{A} \end{array}$	is the symbol for calculate. This indicates that you may calculate x by pressing key \boldsymbol{A}.
$\rightarrow x, y, z$ A	This indicates that x, y, and z are calculated by pressing A once. The values would be printed in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ order.
$\rightarrow x ; y ; z$ A	The semi-colons indicate that after x has been calculated using A, y and z may be calculated by pressing \mathbf{R} / \mathbf{S}.
$\rightarrow \underset{A}{\prime \prime} x,{ }_{A}^{\prime} y$	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
$\stackrel{\Delta x}{\Delta}$	The two-way arrow \triangleleft indicates that x may be either output or input when the associated userdefinable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x .

SYMBOL OR CONVENTION	INDICATED MEANING
P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is con- trolled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off. The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
ATART	This special command indicates that the last value or set of values input may be deleted by pressing A.
DEL	

HEWLETT Th PACKARD

1000 N.E. Circle Blvd., Corvallis, Oregon 97330

00097-90147

- B C D E

[^0]: *If x is greater than $a,(\ell-a)$ is replaced by $-a$ and x is replaced by $(x-\ell)$.
 ${ }^{* *}$ If x is greater than c, x is replaced by $(x-\ell)$ and c is replaced by $(\ell-c)$.

[^1]: *If x is greater than a , a is replaced by $(\ell-\mathrm{a})$ and x is replaced by ($\ell-\mathrm{x})$. The signs of θ_{1} and V_{1} are also changed.
 ${ }^{* *}$ If x is greater than c, x is replaced by $(\ell-\mathrm{x})$ and c is replaced by $(\ell-\mathrm{c})$. The signs of y_{3} and $M_{x 3}$ are also changed.

