HP67 HP97 E.E. Pac I The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof. # **WE NEED YOUR HELP** To provide better calculator support for people like you, we need your help. Your timely inputs will enable us to provide high quality software in the future and improve the existing application pacs for your calculator. Your early reply will be extremely helpful in this effort. | 1. | Pac name | | | | | | |-----|---|--|--|--|--|--| | 2. | How important was the availability of this pac in making your decision to buy a Hewlett-Packard calculator? ☐ Would not buy without it. ☐ Important ☐ Not important | | | | | | | 3. | Did you buy this pac and your calculator at the same time? ☐ Yes ☐ No | | | | | | | | In deciding to buy this application pac, which three programs seemed most useful to you? Program numbers 1 2 3 | | | | | | | 5. | Which three programs in this application pac seemed least useful to you? Program numbers 123 | | | | | | | 6. | What program(s) would you add to this pac? | | | | | | | 7. | In the list below and "please" select up to three application areas for which you purchased this pac. Please indicate the order of importance by 1, 2, 3 (1 represents the most important area). | | | | | | | | Engineering — 01 Chemical — 02 Civil/Structural — 03 Electrical/Electronic — 04 Industrial — 05 Mechanical — 06 Surveying — 10 Other (Specify) — 58 Marketing — 51 Accounting — 52 Banking — 53 Insurance — 54 Investment Analysis — 55 Real Estate — 56 Securities — 57 Sales — 58 Marketing | | | | | | | | Science | | | | | | | Th | ank you for your time and cooperation. | | | | | | | Na | me Date | | | | | | | Ac | ldress | | | | | | | Cit | y State | | | | | | | Zip | Phone | | | | | | | Please fold and stable for mailing. | | |---|--------------------------| | | | | | | | | | | nents: | nmoO Isnoitibb | | | Permit No.
232 | | / | Cupertino,
California | | BUSINESS REPLY MAIL No postage stamp necessary if mailed in the United States | | | Postage will be paid by: | | | Hewlett-Packard Advanced Products 19310 Pruneridge Ave. Cupertino, California 95014 | | | | | **ATTENTION: APPLICATIONS** #### INTRODUCTION The 18 programs of EE Pac 1 have been drawn from the fields of network analysis, network synthesis, transistor theory, and microwave engineering. Each program in this pac is represented by one or more magnetic cards and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way. On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions to the use of the program. You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A. If you have already worked through a few programs in Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac. We hope that EE Pac 1 will assist you in the solution of numerous problems in your discipline. We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these. # **TABLE OF CONTENTS** | Prog | ram Page | |------|--| | | duction | | 1. | Network Transfer Functions | | | This program computes various transfer functions of a ladder
network composed of any number of standard elements. | | 2. | Reactive L-Network Inpedance Matching | | 3. | Class A Transistor Amplifier Bias Optimization | | 4. | Transistor Amplifier Performance | | 5. | Transistor Configuration Conversion | | 6. | Parameter Conversion: S | | 7. | Fourier Series | | 8. | Active Filter Design | | 9. | Butterworth or Chebyshev Filter Design | | 10. | Bode Plot of Butterworth and Chebyshev Filters | | 11. | Resistive Attenuator Design | | 12. | Smith Chart Conversions | | 13. | Transmission Line Impedance | | 14. | Microstrip Transmission Line Calculations | | 15. | Transmission Line Calculations | | 16. | Unilateral Design: Figure of Merit, Maximum Unilateral Gain, | |-----|--| | | Gain Circles | | | This program computes u, G_u , G_{min} , G_{max} , G_0 , G_{1max} , and G_{2max} from a transistor's s-parameters. It also computes r_{0i} and ρ_{0i} from $G_i \leq G_{imax}$ $(i = 1, 2)$. | | 17. | Bilateral Design: Stability Factor, Maximum Gain, | | | Optimum Matching | | | This program computes the maximum gain available and the load and source reflection coefficients which yield the maximum gain. | | 18. | Bilateral Design: Gain and Stability Circles, Load and | | | Source Mapping | | | This program computes the location and radius of stability circles. | | | It also computes the source or load reflection coefficient | | | corresponding to a given load or source termination. | | | ram Listing Contents | #### A WORD ABOUT PROGRAM USAGE This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the differences in the two machines, and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97. Most of the computed results in this pac are output by PRINT statements: most often by the statement PRINTx, and occasionally by the command PRINT STACK. On the HP-97, these results will be output on the printer. On the HP-67, each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for up to two seconds, then continue execution. The term "PRINT/PAUSE" is used to describe this output condition. If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press down any key on the keyboard. If the command being executed is PRINTx (eight rapid blinks of the decimal point), pressing down a key will cause the program to halt. If the command being executed is PRINT STACK (two slow blinks of the decimal point for each value), the number in the display will remain there until the depressed key is released; then the next register in the stack will be displayed, and so on. After display of all four registers, the program will halt execution if a key was pressed at any time during the display of the stack contents. In both cases, execution of the halted program may be re-initiated by pressing R/S. For output purposes, a "display" subroutine has been incorporated into most of the programs in this pac. This routine makes important use of internal flag 0 as follows: ``` Flag 0 "Set" — PRINT/PAUSE is enabled for output of result. Flag 0 "Clear" — PRINT/PAUSE is skipped and program execution halts with result in display. ``` Every program with this feature has flag 0 "set", initially. Thus, the user who is content to have his data output by PRINT/PAUSE simply loads the program and begins execution. The user who desires that the machine stop to display each result must press CLF 0 (CLEAR FLAG 0) after loading the program. The HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode, all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program. Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, on the HP-97 and 1, 9, and 1 on the HP-67. For example, the operation
$\overline{\mathbf{10}^{\times}}$ is performed on the HP-97 as $\overline{\mathbf{10}^{\times}}$ and on the HP-67 as $\overline{\mathbf{10}^{\times}}$. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, $\overline{\mathbf{10}^{\times}}$). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator. Also in keystroke solutions, those values which are output by the command PRINTx will be followed by three asterisks (***). #### NETWORK TRANSFER FUNCTIONS This program computes various transfer functions of a ladder network composed of any number of standard elements. The ladder is built up one element at a time by selecting shunt or series elements from the following menu. #### MENU OF CIRCUIT ELEMENTS ^{*} Ч is the Cyrillic letter "cha". The chain-parameter matrix is defined by the following sketch and matrix equation. $$\begin{bmatrix} \mathbf{I}_1 & & & & \\ & \mathbf{V}_1 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$ The operation of the program is based on the fact that the chain-parameter matrix of two cascaded circuits is equal to the product of their individual chain-parameter matrices. As the circuit is built up from right to left, the overall chain-parameter matrix is updated with the addition of each element. When the circuit description is complete, the second card is read in and any of the following transfer functions may be computed from the overall chain-parameter matrix. Input impedance $$Z_{in} = \frac{ \mathbf{q}_{11} \, Z_L + \mathbf{q}_{12} }{ \mathbf{q}_{21} \, Z_L + \mathbf{q}_{22} }$$ Voltage transfer ratio $$\frac{V_2}{V_1} = \frac{Z_L}{\Psi_{11} Z_L + \Psi_{12}}$$ Current transfer ratio $$\frac{I_2}{I_1} = \frac{-1}{\Psi_{21} Z_L + \Psi_{22}}$$ Power Gain $$\frac{P_{\text{out}}}{P_{\text{in}}} = \left| \frac{I_2}{I_1} \right|^2 \frac{\text{Re } \{Z_L\}}{\text{Re } \{Z_{\text{in}}\}} Z_L$$ Forward transfer admittance $$\frac{I_2}{V_1} = \frac{-1}{\Psi_{11} Z_L + \Psi_{12}}$$ Forward transfer impedance $$\frac{V_2}{I_1} = \frac{Z_L}{\Psi_{21} Z_L + \Psi_{22}}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---------------------------------|---------------------|------------|----------------------------------| | 1 | Load program 1. | | | | | 2 | Input frequency and initialize. | f, Hz | A | 0 | | 3 | Build circuit by selecting | | | | | | any sequence of the | | | | | | following elements. | | | | | | Series resistor | R | В | | | | Series inductor | L | 0 | | | | Series capacitor | С | D | | | | Series tank | L | ENTER+ | | | | | С | E | | | | Shunt resistor | R | ■ B | | | | Shunt inductor | L | o C | | | | Shunt capacitor | С | | : | | | Shunt L-C | L | ENTER+ | | | | | С | | | | 4 | Load program 2. | | | | | 5 | Input load impedance. | ۷ . کا | ENTER+ | | | | | Z _L | A | | | 6 | Select desired network | | | | | | function: | | | | | | Input impedance | | В | $\angle Z_{in}$ | | | | | | $ Z_{in} $ | | | voltage gain | | G | LV_2/V_1 | | | | | | $ V_2/V_1 $ | | | current gain | | 0 | \perp I_2/I_1 | | | | | | I ₂ /I ₁ | | | Transfer admittance | | I C | ∠ I ₂ /V ₁ | | | | | | I ₂ /V ₁ | | | Transfer impedance | | | ∠ V ₂ /I ₁ | | | | | | V ₂ /I ₁ | | | Power gain | | 3 | P ₂ /P ₁ | #### Example 1: What current will flow in a 1Ω resistor placed on the output of this network? What is the input impedance? #### **Keystrokes:** ## **Outputs:** Load card EE1-01A1 #### Note: No frequency need be input for a purely resistive network, but initialization is still necessary. ## Example 2: This program can be used to compute voltages within a network by dividing the problem into two parts. Find the voltage V_1 in the circuit shown. #### 01-05 #### **Solution:** First compute the input impedance of the circuit to the right of V₁. | Keystrokes: | Outputs: | |---|---------------------------------| | Load EE1-01A1 | | | 4 EEX 6 A 2400 EEX CHS | | | 12 1 D 2.56 EEX CHS 6 C | | | 796 EEX CHS $12 \ \blacksquare$ D \longrightarrow | 0.000 00 | | Load EE1-01A2 | | | 0 ENTER+ 50 A B → | 984.0-03 *** Angle of input | | | impedance | | | 497.7 00 *** Magnitude of input | | | impedance | Then compute the voltage transfer ratio for the network to the left of V_1 terminated in 497.7 \angle 0.984. Notes #### 2. REACTIVE L-NETWORK IMPEDANCE MATCHING An L-network consisting of purely reactive elements may be used to transform any complex impedance into any other complex impedance. In general, there are four possible networks, but in some situations there are only two. This program accepts complex load and source impedances in rectangular form and outputs all possible solutions, displaying an error message if a given topology is not suitable. Either of these two networks is possible: For each network there are two sets of reactances (X_1, X_2) that will transform Z_L into Z_S^* . These are given by: $$X_{1} = \frac{R_{S} X_{L}}{R_{S} - R_{L}} \pm \sqrt{\left(\frac{R_{S} X_{L}}{R_{S} - R_{L}}\right)^{2} - \frac{R_{S} (X_{L}^{2} + R_{L}^{2})}{R_{S} - R_{L}}}$$ $$X_{2} = \frac{R_{S} (X_{1} + X_{L}) - R_{L} (X_{1} + X_{S})}{R_{L}}$$ By reversing the subscripts S and L in these two equations, we get the two sets of reactances for the second network. | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------|---------------------|----------|----------------------| | 1 | Load program. | | | | | 2 | Input | | | | | | Load impedance | | | | | | Reactive part | X _L , Ω | ENTER+ | X _L , Ω | | | Resistive part | R_{L},Ω | A | X_L , Ω | | | Source impedance | | | | | | Reactive part | X _s , Ω | ENTER+ | X _s , Ω | | | Resistive part | R _s , Ω | B | X_s , Ω | | 3 | Compute values for first | | | | | | network. | | | | | | Shunt reactance | | 0 | X ₁ , Ω | | | Series reactance | | | X_2 , Ω | | | Shunt reactance | | (| Χ 1, Ω | | | Series reactance | | | X_2 , Ω | | 4 | Compute values for second | | | | | | network. | | | | | | Shunt reactance | | 0 | X ₁ , Ω | | | Series reactance | | | X ₂ , Ω | | | Shunt reactance | | | X ₁ , Ω | | | Series reactance | | | Χ ₂ , Ω | | | Note: If one of the above | | | | | | networks is inappropriate, | | | | | | an error message will occur. | | | | | | Simply press any key and | | | | | | continue with the next type | | | | | | of network. | ## 02-03 ## **Example:** What reactive L-networks could be used to match $Z_L = 50 + j50$ to $Z_S = 25 + j50$? ## **Keystrokes:** ## **Outputs:** 25 **B f C** $$\longrightarrow$$ -36.60 *** X_1 -6.70 *** X_2 $$\begin{array}{c} -38.76 *** X_1 \\ 11.24 *** X_2 \end{array}$$ Notes #### 3. CLASS A TRANSISTOR AMPLIFIER BIAS OPTIMIZATION This program is an automation of the method of bias optimization described in "Designing class A amplifiers to meet specified tolerances" by Ward J. Helms (Electronics/August 8, 1974). The program requires the user to specify a number of items from which it determines by an iterative technique the optimum values for R_1 , R_2 , R_E , and R_L . The minimum power gain is also computed. #### **Equations:** First, values are specified for the following parameters: ΔI_{CQ} = maximum desired percentage variation of quiescent current T_{Amax} = maximum ambient temperature (use the maximum case temperature for a transistor mounted on a heat sink) T_{Amin} = minimum ambient temperature T_{Jmax} = maximum junction temperature rating P_D = maximum rated power dissipation at 25°C I_1 = collector current, usually
selected for convenience so that I_1 and 10 I_1 bracket the expected operating point ΔV_{BE} = typical base-emitter voltage change over the range of I_1 to $10\ I_1$ at $25^{\circ}C$ V_{BE1min} = minimum base-emitter voltage at I_1 , 25°C V_{BE1max} = maximum base-emitter voltage at I_1 , 25°C Then the transistor's thermal resistance is calculated: $$\theta_{\rm JA} = (T_{\rm max} - 25^{\circ} \rm C)/P_{\rm D}$$ And the minimum load resistance and emitter resistance are estimated: $$R_{L1} = \frac{\theta_{JA} \ V_{CC}^2}{4.4 \ (T_{Jmax} - T_{Amax})} = R_{Ln}$$ $$R_{E1} = 0.1 R_{L1} = R_{En}$$ Next, the quiescent, maximum, and minimum collector currents are calculated: $$I_{CQ} = \frac{V_{CC}}{2 (R_{Ln} + R_{En})}$$ $$I_{Cmax} = I_{CQ} (1 + \Delta I_{CQ})$$ $$I_{Cmin} = I_{CQ} (1 - \Delta I_{CQ})$$ From these, we can calculate the base-emitter voltage under hot, high-current conditions (V_{BEX}) and under cold, low-current conditions (V_{BEX}). $$\begin{split} T_{max} &= \theta_{JA} \ I_{CQ} \frac{V_{CC}}{2} + T_{Amax} \\ V_{BEX} &= V_{BE1min} + \Delta V_{BE} \log \frac{I_{Cmax}}{I_{1}} - 0.0022 (T_{max} - 25^{\circ}\text{C}) \\ T_{min} &= \theta_{JA} \ I_{CQ} \frac{V_{CC}}{2} \ (1 - (\Delta I_{CQ})^{2}) + T_{Amin} \end{split}$$ $$V_{BEN} = V_{BE1max} + \Delta V_{BE} log \frac{I_{Cmin}}{I_{.}} -0.0022 (T_{min} - 25^{\circ}C)$$ Now, a better estimate for the emitter resistance can be made: $$R_{E(n+1)} = \frac{-\ 2\ (V_{BEX} - V_{BEN})}{I_{Cmax} - I_{Cmin}}$$ From this point, if $V_{BEX} > V_{BEN}$, then R_E is set to zero, R_L is increased by 10%, and the design procedure is repeated. Iterations continue until $\frac{R_{E(n+1)} - R_{En}}{R_{En}} < .5\%.$ If at any time the condition $T_{max} > T_{Jmax}$ occurs, R_L is increased by 10%. When the iterative procedure is complete, T_{max} , I_{Cmax} , T_{min} , and I_{Cmin} are displayed. Then values for $h_{FEmax} = maximum$ worst-case current gain at T_{max} or T_{min} and I_{Cmax} or I_{Cmin} and h_{FEmin} = minimum worst-case current gain at T_{max} or T_{min} and I_{Cmax} or I_{Cmin} are determined from the transistor's data sheet and the Thevenin-equivalent resistance (R_B) and voltage (V_{BB}) of the amplifier's bias network are calculated: $$\begin{split} R_B \, = \, \frac{h_{FEmax} \, h_{FEmin} \, \left[R_{E(n+1)} \, (I_{Cmax} \, - \, I_{Cmin}) \, + \, V_{BEX} \, - \, V_{BEN} \right]}{h_{FEmax} \, I_{Cmin} \, - \, h_{FEmin} \, I_{Cmax}} \\ V_{BB} \, = \, \, V_{BEN} \, + \, I_{Cmin} \left(\frac{R_B}{h_{FEmin}} \, + R_{E(n+1)} \right) \end{split}$$ Now the bias resistors R_1 and R_2 are calculated: $$R_1 = \frac{R_B V_{CC}}{V_{DD}}$$ $$R_2 = \frac{R_B V_{CC}}{(V_{CC} - V_{BB})}$$ Finally, the minimum power gain and minimum signal power are calculated: $$A_{\rm P} \, = \, \frac{R_{\rm B} \, R_{\rm L} \, h_{\rm FEmin}}{R_{\rm E} \, (R_{\rm B} \, + \, h_{\rm FEmin} \, R_{\rm E})} \label{eq:AP}$$ $$P_{\rm S} = (1 - \Delta I_{\rm CQ})^2 \left(\frac{V_{\rm CC}^2 R_{\rm L}}{8 (R_{\rm L} + R_{\rm E})^2} \right)$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---|------------------------|-------|----------------------| | - 1 | Load program. | | | | | 2 | Store design objectives. | | | | | | Power supply voltage | V _{cc} | STO 0 | | | | Maximum desired percent | | | | | | variation of quiescent current | ΔΙ _{ςα} | STO 1 | | | | Maximum ambient | | | | | | temperature | T _{Amax} , °C | STO 2 | | | | Minimum ambient | | | | | | temperature | T _{Amin} , °C | STO 3 | | | 3 | Store values from transistor's | | | | | | data sheet | | | | | | | T_{Jmax} | STO 4 | | | | | P₀ | STO 5 | | | | | I ₁ | STO 6 | | | | | ΔV_{BE} | STO 7 | | | | | $V_{\sf BE1min}$ | STO 8 | | | | | $V_{\sf BE1max}$ | STO 9 | | | 4 | Compute maximum and | , | | | | | minimum temperatures and | | | | | | currents; then stop with | | | | | | 500.0 -03 in display. | | Δ | T_{max} | | | | | | I_{Cmax} | | | | | | T_{min} | | | | | | I_{Cmin} | | 5 | Input maximum h _{FE} | | | | | | and minimum h _{FE} and compute | h _{FEmax} | ENTER | | | | resistor R₁ | h _{FEmin} | R/S | R ₁ | | | resistor R₂ | | | R₂ | | | load resistance | | | R_L | | | emitter resistance | | | R₅ | | | minimum power gain | | | $A_{\mathtt{p}}$ | #### Example: A single-stage class A amplifier is needed to operate from a 30-V power supply. The maximum power output and maximum power gain must be obtained from a Texas Instruments type TIS98 transistor over an ambient temperature range of 0° C to 70° C, with a maximum quiescent-current variation of $\pm 20\%$. From the transistor's data sheet, determine: ``` \begin{array}{lll} T_{Jmax} & = 150 ^{\circ} C \\ P_{D} & = 0.36 \ W \\ \Delta V_{BE} & = 0.10 \ v \ from \ 3 \ to \ 30 \ mA \\ V_{BE1min} & = 0.52 \ v \ at \ 3 \ mA \ at \ 25 ^{\circ} C \\ V_{BE1max} & = 0.72 \ v \ at \ 3 \ mA \ at \ 25 ^{\circ} C \\ I_{1} & = 0.001 \ A \end{array} ``` #### **Keystrokes:** #### **Outputs:** First store the data - 30. **STO** 0 - .2 **STO** 1 - 70. **STO** 2 - 0. **STO** 3 - 150. **STO** 4 - .36 **STO** 5 - .001 **STO** 6 - .1 **STO** 7 - .52 **STO** 8 - .72 **STO** 9 Then compute maximum and minimum temperatures and currents From the transistor's data sheet determine: $$h_{FEmax} = 600 \text{ at } 150^{\circ}\text{C} \text{ at } 18 \text{ mA}$$ $h_{FEmin} = 100 \text{ at } 80^{\circ}\text{C} \text{ at } 12 \text{ mA}$ Finish problem # **Keystrokes:** # **Outputs:** $\begin{array}{ccccc} 45.0 + 03 & T & R_1 \\ 4.18 + 03 & Z & R_2 \\ 888. + 00 & Y & R_L \\ 115. + 00 & X & R_E \\ 22.9 + 00 & *** & A_P \end{array}$ #### 4. TRANSISTOR AMPLIFIER PERFORMANCE This program computes certain small-signal properties of a transistor amplifier given the h-parameter matrix and the source and load impedances. Properties computed are current and voltage gains and input and output impedances. # **Equations:** Definition of h-parameter matrix $$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_i & h_r \\ h_f & h_o \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$ Current gain $$A_i \, = \, \frac{i_2}{i_1} \, = \, \frac{-h_f}{1 \, + \, h_o \, \, Z_L}$$ Voltage gain $$A_{v} = \frac{v_2}{v_1} = \frac{A_i Z_L}{Z_{in}}$$ Voltage gain with source resistor $$A_{vs} = \frac{v_2}{v_s} = \frac{A_i Z_L}{Z_{in} + Z_s}$$ Input impedance $$Z_{in} = h_i + h_r Z_L A_i$$ ## Output impedance $$Z_{out} = \frac{h_i + Z_S}{h_o h_i + h_o Z_S - h_f h_r}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|-------------------------------|---------------------------------------|-------------|----------------------| | 1 | Load program. | | | | | 2 | Input h-parameters. | | | | | | Angle | $ heta_{\scriptscriptstyle ij}$, deg | ENTER+ | | | | Magnitude | h _{ij} | ENTER+ | | | | Designation | ij | A | | | 3 | Input termination impedances. | | | | | | Angle of source impedance | $ heta_{s}$, deg | ENTER+ | | | | Magnitude of source | | | | | | impedance | Rs | | | | | Angle of load impedance | $ heta_{ t L}$, deg | ENTER+ | | | | Magnitude of load | | | | | | impedance | RL | B | | | 4 | Compute | | | | | | Voltage gain | | C | A_{v} | | | Current gain | | [] G | A _i | | | Voltage gain with source | | | | | | resistor | | D | A _{vs} | | | Input impedance | | o e | Z _{in} | | | Output impedance | | 8 | Z_{out} | ## **Example:** What are the small-signal properties of a transistor which has the following h-parameter matrix and has source and load impedances of 1000 and 10,000 ohms, respectively? $$[h] = \begin{bmatrix} 1100 & 250E-6 \\ 50 & 25E-6 \end{bmatrix}$$ 8 | Keystrokes: | Outputs: | |----------------------------------|-------------------------------| | 0 ENTER♦ 1100 ENTER♦ 11 A | | | 0 ENTER 250 EEX 6 CHS ENTER 12 A | | | 0 ENTER♦ 50 ENTER♦ 21 A | | | 0 ENTER 25 EEX CHS 6 ENTER ◆ | | | 22 A | | | 0 ENTER 1000 | 0.000+00 *** \(\alpha \) | | | $-400.0+00 *** A_v $ | | f C | $0.000+00 *** \angle A_{i}$ | | | $-40.00+00 *** A_i $ | | □ | 0.000+00 *** ∠A _{vs} | | | $-200.0+00 *** A_{vs} $ | | 1 E ── | 0.000+00 *** ∠Z _{in} | | | $1.000+03*** Z_{in} $ | $0.000 + 00 ~***~ \angle~Z_{out}$ 52.50+03 *** |Z_{out}| Notes #### 5. TRANSISTOR CONFIGURATION CONVERSION This program converts among h-parameter matrices for common-base, common-emitter, and common-collector transistor configurations. The program first converts the h-parameter matrix to a y-parameter matrix using the following transformation: $$[y] = \frac{1}{h_{11}} \begin{bmatrix} 1 & -h_{12} \\ \\ \\ h_{21} & h_{11} h_{22} - h_{12} h_{21} \end{bmatrix}$$ The y-matrix is then transformed into a y'-matrix depending on the conversion desired: CB $$\rightarrow$$ CE or CE \rightarrow CB $y'_{11} = y_{11} + y_{12} + y_{21} + y_{22}$ $y'_{12} = -(y_{12} + y_{22})$ $y'_{21} = -(y_{21} + y_{22})$ $y'_{21} = -(y_{21} + y_{22})$ $y'_{22} = y_{11}$ CC \rightarrow CB $y'_{11} = y_{22}$ $y'_{12} = -(y_{21} + y_{22})$ $y'_{21} = -(y_{12} + y_{22})$ $y'_{22} = y_{11} + y_{12} + y_{21} + y_{22}$ $$CC \rightarrow CE \text{ or } CE \rightarrow CC$$ $$y'_{11} = y_{11}$$ $$y'_{12} = -(y_{11} + y_{12})$$ $$y'_{21} = -(y_{11} + y_{21})$$ $$y'_{21} = -(y_{11} + y_{21})$$ $$y'_{22} = y_{11} + y_{12} + y_{21} + y_{22}$$ $$CB \rightarrow CC$$ $$y'_{11} = y_{11} + y_{12} + y_{21} + y_{22}$$ $$y'_{12} = -(y_{11} + y_{21})$$ $$y'_{21} = -(y_{11} + y_{12})$$ $$y'_{22} = y_{11}$$ Finally the desired h-parameter matrix is derived from the y'-matrix by the [h] - [y] transformation used above. | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------|---------------------|------------|----------------------| | 1 | Load program. | | | | | 2 | Input h-parameter matrix | | | | | | (ij = 11, 12, 21, 22). | | | | | | Angle of h-parameter | $ heta_{ij}$, deg | ENTER+ | | | | then Magnitude of | | | | |
 h-parameter | h _{ij} | ENTER+ | | | | then Designation of | | | | | | h-parameter | ij | A | | | 3 | Perform desired conversion. | | | | | | CE→CB | | B | | | | CB→CE | | ■ B | | | | CC→CB | | G | | | | CB→CC | | | | | | CC→CE | | 0 | | | | CE→CC | | | | | 4 | Display converted | | | | | | h-parameter matrix.* | | Œ | $ heta_{11}$ | | | | | | h ₁₁ | | | | | | $ heta_{12}$ | | | | | | h ₁₂ | | | | | | $ heta_{21}$ | | | | | | h ₂₁ | | | | | | $ heta_{22}$ | | | | | | h ₂₂ | *This feature may be used at | | | | | | any time to display whatever | | | | | | matrix is in storage. | | | | #### Example: Convert the following common-collector h-parameter matrix to common base. $$\begin{bmatrix} h_{cc} \end{bmatrix} \; = \; \begin{bmatrix} h_{ic} & h_{rc} \\ h_{fc} & h_{oc} \end{bmatrix} \; = \; \begin{bmatrix} 1000 \; \angle \, 30 & 100 \times 10^{-6} \; \angle \, -45 \\ 60 \; \angle \, 30 & 30 \; \times \, 10^{-6} \; \angle \, 0 \end{bmatrix}$$ #### **Keystrokes:** 30 ENTER ↑ 1000 ENTER ↑ 11 A 45 CHS ENTER ↑ 100 EEX CHS 6 ENTER ↑ 12 A 30 ENTER ↑ 60 ENTER ↑ 21 A 0 ENTER ↑ 30 EEX CHS 6 ENTER ↑ 22 A C E → ## **Outputs:** Notes #### 6. PARAMETER CONVERSION Two-port S-parameters may be converted to and from any of Y, Z, G or H parameters using a single matrix equation. Appropriate pre- and postconditioning operations must be performed depending on which conversion is desired. First, the preconditioning operation generates a T matrix. Then occurs the basic transformation $$T' = (I + T)^{-1} (I - T)$$ $$= \frac{2}{(1 + t_{11}) (1 + t_{22}) - t_{12} t_{21}} \begin{bmatrix} 1 + t_{22} & -t_{12} \\ -t_{21} & 1 + t_{11} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ Finally, the postconditioning operation is performed. The preconditioning operations performed when converting from S are | $S \rightarrow Y$ | $S \rightarrow Z$ | S - | → G | $S \to H$ | | |-------------------|-------------------|--|---|---|--| | T = S | T = -S | $T = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ S | $T = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ S | and those performed when converting to S are | $Y \rightarrow S$ | $Z \rightarrow S$ | $G \rightarrow S$ | | $H \rightarrow S$ | | |-------------------|-------------------|--|--------------|---|---------------| | $T = Z_0 Y$ | $T = Z/Z_0$ | $T = \begin{bmatrix} Z_0 & g_{11} \\ g_{21} \end{bmatrix}$ | g_{12} | $T = \begin{bmatrix} h_{11}/Z_0 \\ \end{bmatrix}$ | h_{12} | | 0 _ | , -0 | g ₂₁ | g_{22}/Z_0 | _ h ₂₁ | $h_{22} Z_0 $ | The postconditioning operations performed when converting from S are | $S \to Y$ | $S \rightarrow Z$ | $S \rightarrow G$ | | $S \rightarrow H$ | | |--------------|-------------------|--|--------------|--|---------------| | $Y = T'/Z_0$ | $Z = Z_0 T'$ | $G = \begin{bmatrix} t_{11}'/Z_0 \\ t_{21}' \end{bmatrix}$ | t_{12}' | $\mathbf{H} = \begin{bmatrix} \mathbf{t_{11}}' \ \mathbf{Z_0} \end{bmatrix}$ | t_{12}' | | / -0 | 0 - | _ t ₂₁ ' | $t_{22}'Z_0$ | $\lfloor {t_2}_1'$ | t_{22}'/Z_0 | and those performed when converting to S are | $Y \rightarrow S$ | $Z \rightarrow S$ | $G \rightarrow S$ | | $H \rightarrow S$ | | | |-------------------|-------------------|--|------------|-------------------|---------|-----------| | S = T' | S = -T' | $S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0
-1 T' | S = | -1
0 | 0
1 T' | | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---------------------------------|---------------------|------------|----------------------| | 1 | Load program. | | | | | 2 | Input S, Y, Z, G, or H. | | | | | | Angle of element ij | $ heta_{ij}$ | ENTER+ | | | | Magnitude of element ij | M_{ij} | ENTER+ | | | | Subscript to element | ij | 1 A | | | 3 | Select desired conversion. | | | | | | S→Y | Z _o | В | | | | Y→S | Z _o | 1 B | | | | S→Z | Z _o | C | | | | Z→S | Z_0 | | | | | S→G | Z ₀ | D | | | | G→S | Z _o | | | | | S→H | Z _o | 3 | | | | H→S | Z _o | | | | 4 | Display elements of new matrix. | | | | | | Input element subscript | ij | A | | | | Display angle of element ij | | | $ heta_{ij}$ | | | Display magnitude of | | | | | | element ij | | | M_{ij} | ## **Example:** The s-parameter matrix of a 2N3571 transistor is $$S = \begin{bmatrix} 0.62 \ \angle -44.0 & 0.0115 \ \angle 75.0 \\ 9.0 \ \angle 130 & 0.955 \ \angle -6.0 \end{bmatrix}$$ What is the h-parameter matrix? Z_0 is 50 Ω . **Keystrokes:** Outputs: 22 **[]** A 50 **E** 11 A $$\longrightarrow$$ -53.88 *** θ_{11} 119.1 *** h_{11} 12 A $$\longrightarrow$$ 39.26 *** θ_{12} 18.14-03 *** h_{12} 21 $$\blacksquare$$ 94.26 *** θ_{21} -14.19 *** h_{21} 22 A $$\longrightarrow$$ 21.17 *** θ_{22} 2.272-03 *** h_{22} Notes #### 7. FOURIER SERIES Any periodic function may be written as a series of sine and cosine waves by the application of the following formulas. $$\begin{split} f(t) &= \frac{a_0}{2} + \sum_{i=1}^{\infty} \left(\begin{array}{cc} a_i \cos \frac{i2\pi t}{T} + b_i \sin \frac{i2\pi t}{T} \end{array} \right) \\ &= \frac{a_0}{2} + \sum_{i=1}^{\infty} c_i \sin \left(\frac{i2\pi t}{T} + \theta_i \right) \\ \\ a_i &= \frac{2}{T} \int_0^T f(t) \cos \frac{i2\pi t}{T} dt, \quad i = 0, 1, 2, \dots \\ \\ b_i &= \frac{2}{T} \int_0^T f(t) \sin \frac{i2\pi t}{T} dt, \quad i = 1, 2, \dots \\ \\ c_i &= (a_i^2 + b_i^2)^{\frac{1}{2}} \\ \\ \theta_i &= \tan^{-1} \left(\frac{a_i}{b_i} \right) \\ \\ T &= \text{period of } f(t) \end{split}$$ This program computes the Fourier coefficients from discrete versions of the above formulas given a large enough number of samples of the periodic function. Up to ten consecutive pairs of coefficients may be computed at one time from N equally spaced points. The coefficients may be displayed in either rectangular or polar form. The value of N should be chosen to be more than twice the highest expected multiple of the fundamental frequency present in the wave to be analyzed. A low estimate for N will cause energy above one-half the sampling rate to appear at a lower frequency (a phenomenon known as aliasing). | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|-----------------------------|---------------------|-------------|----------------------| | 1 | Load program. | | | | | 2 | Initialize | | [] A | | | 3 | Input | | | | | | Number of samples | | | | | | in one period | N | ENTER+ | | | | Number of frequencies | | | | | | desired | #freqs | A | N | | | Order of first coefficient | J | В | J | | 4 | Input $y_k, k = 1, N$ | Уĸ | G | 2,, .111 | | 5 | Repeat step 4 until display | | | | | | shows 0.111 | | | | | 6 | Display coefficients for | | | | | | J≤i≤J+ #freqs | | | | | | in polar form | | | i | | | | | | $ heta_{ ext{i}}$ | | | | | | Ci | | | in rectangular form. | | D | i | | | | | | b _i | | | | | | a _i | | 7 | Compute value of Fourier | | | | | | series at t. | t | 3 | f(t) | # Example: Compute a discrete Fourier series representation for the waveform shown. Since there are 12 samples, select 7 frequencies (dc term plus 6 harmonics). | t | f(t | |----|--------| | 1 | 14.758 | | 2 | 17.732 | | 3 | 2 | | 4 | -12. | | 5 | -7.758 | | 6 | -11 | | 7 | -9.026 | | 8 | -12. | | 9 | 2 | | 10 | 14.268 | | 11 | 10.026 | | 12 | 15 | | | | | Keystrokes: | Outputs: | |---|----------| | \blacksquare A 12 ENTER 7 A 0 B \longrightarrow | 1.000 | | 14.758 C → | 2.000 | | 17.732 C — | 3.000 | | 2 ℃——— | 4.000 | | 12 CHS C | 5.000 | | 7.758 CHS C — → | 6.000 | | 11 CHS C | 7.000 | | 9.026 CHS C | 8.000 | | 12 CHS C | 9.000 | | 2 C | 10.000 | | 14.268 C ———— | 11.000 | | 10.026 C — | 12.000 | | | | 0.111 0. *** i 0.000 *** b_i 4.000 *** 1. *** 1.000 *** 15.000 *** 2. *** 1.000 *** 3.00000001-08 *** 3. *** 1.000 *** -5.000 *** 4. *** 3.20000001-09 *** 3.33333334-09 *** 1.467291667-05 *** 3.000 *** 1.467291667-05 *** 3.000 *** Thus $$f(t) = 2 + 15 \cos \frac{2\pi t}{12} + \sin \frac{2\pi t}{12}$$ $$+ \sin \frac{4\pi t}{12}$$ $$- 5 \cos \frac{6\pi t}{12} + \sin \frac{6\pi t}{12}$$ $+ 3 \cos \frac{10\pi t}{12}$ #### 8. ACTIVE FILTER DESIGN This program computes element values for the standard active filter circuits shown. The user selects corner frequency f_0 or center frequency f_0 , midband gain A, peaking factor α , and a capacitor C. The program then prints out a list of elements which form the desired filter. #### **Equations:** $$\alpha = \frac{1}{Q} = 2\zeta$$, where Q is quality factor and ζ is damping factor. Low pass filter $$C_5 = C$$ $$C_2 = \frac{4C(A+1)}{\alpha^2}$$ $$R_1 = \frac{\alpha}{4A\pi f_0 C}$$ $$R_3 = \frac{\alpha}{4\pi f_0 C(A+1)} = \frac{A}{A+1} R_1$$ $$R_4 = AR_1$$ High pass filter $$C_{1} = C_{3} = C$$ $$C_{4} = \frac{C}{A}$$ $$R_{2} = \frac{\alpha}{2\pi f_{0}C\left(2 + \frac{1}{A}\right)}$$ $$R_{5} = \frac{2A + 1}{\alpha 2\pi f_{0}C}$$ $$C_{4}$$ $$R_{5} = \frac{C}{\alpha}$$ $$C_{4}$$ $$C_{5}$$ $$C_{6}$$ $$C_{7}$$ $$C_{8}$$ $$C_{1}$$ $$C_{8}$$ $$C_{9}$$ $$C_{1}$$ $$C_{1}$$ $$C_{1}$$ $$C_{2}$$ $$C_{3}$$ $$C_{4}$$ $$C_{5}$$ $$C_{6}$$ $$C_{7}$$ $$C_{1}$$ $$C_{8}$$ $$C_{1}$$ $$C_{1}$$ $$C_{2}$$ $$C_{3}$$ $$C_{4}$$ $$C_{5}$$ $$C_{6}$$ $$C_{7}$$ $$C_{8}$$ $$C_{9}$$ Bandpass filter $$C_{3} = C_{4} = C$$ $$R_{1} = \frac{1}{A2\pi f_{0}C\alpha}$$ $$R_{2} = \frac{1}{\left(\frac{2}{\alpha^{2}} - A\right) 2\pi f_{0}C\alpha}$$ $$R_{5} = \frac{2}{\alpha
2\pi f_{0}C}$$ $$R_{5} = \frac{2}{\alpha 2\pi f_{0}C}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|----------------------------------|---------------------|------------|------------------------------| | 1 | Load program. | | | | | 2 | Input filter design | | | | | | specifications. | | | | | | Corner or center frequency | f _o , Hz | 1 A | f _o | | | Midband gain | Α | A | Α | | | Peaking factor (1/Q) | α | ■ B | α | | | Capacitor value | C, F | B | С | | 3 | Select desired filter character- | | | | | | istic and list elements. | | | | | | Low pass | | C | R ₁ , | | | | | | C ₂ , | | | | | | R ₃ , | | | | | | R₄, | | | | | | C ₅ | | | High pass | | D | C ₁ , | | | | | | $R_{\scriptscriptstyle 2}$, | | | | | | C ₃ , | | | | | | C₄, | | | | | | R₅ | | | Band pass | | Œ | R ₁ , | | | | | | R₂, | | | | | | C₃, | | | | | | C₄, | | | | | | R₅ | ## Example 1: Design a high-pass active filter with the following parameters: $$f_0 = 10 \text{ Hz}$$ $$A = 10$$ $$\alpha = 1$$ $$C = 1 \mu F$$ ## **Keystrokes:** # **Outputs:** #### 9. BUTTERWORTH OR CHEBYSHEV FILTER DESIGN This program computes component values for Butterworth or Chebyshev filters between equal terminations. Inputs are termination resistance, bandpass characteristics, attenuation at some out-of-band frequency, and, for the Chebyshev filter, allowable passband ripple. Before the filter elements can be calculated, a normalized frequency must be computed from the desired cutoff or center frequency and band pass characteristics. The normalized frequency is computed by one of these formulas: Low Pass High Pass $$\omega_{n} = \frac{\omega_{0}}{\omega_{0}}$$ $\omega_{n} = \frac{\omega_{0}}{\omega}$ Band Pass Band Elimination $$\omega_n \, = \, \frac{\omega^2 \, - \, \omega_0{}^2}{BW\omega} \qquad \qquad \omega_n \, = \, \frac{\omega BW}{\omega_0{}^2 \, - \, \omega^2} \label{eq:omega_n}$$ The basic form of the filter is this low-pass prototype whose elements are given by one of the following sets of formulas: #### BUTTERWORTH $$C_i = \frac{1}{\pi f_c R} \sin \frac{(2i-1) \pi}{2n}, \quad i = 1, 3, 5, ..., n-1$$ $$L_i = \frac{R}{\pi f_c} \sin \frac{(2i-1) \pi}{2n}, \quad i = 2, 4, 6, ..., n$$ where $$n = INT$$ $$\frac{1 + \ln(2 \times 10^{-\Delta dB/10} - 1)}{2\ln(\omega/\omega_0)}$$ #### **CHEBYSHEV** $$\begin{split} &C_i = \frac{G_i}{2\pi f_c R} \;, \quad i=1,\,3,\,5,\,...,\,n \\ &L_i = \frac{RG_i}{2\pi f_c}, \quad i=2,4,6,...,n-1 \end{split}$$ where $$G_1 = \frac{2a_1}{\gamma}$$ $$G_i = \frac{4a_{i-1} a_i}{b_{i-1} G_{i-1}}, \quad i = 2, 3, 4, ..., n$$ $$\gamma = \sinh \left[\frac{\ln \left(\coth \frac{\epsilon}{40 \log e} \right)}{2n} \right]$$ $$a_i = \sin \frac{(2i-1) \pi}{2n}, \quad i = 1, 2, 3, ..., n$$ $$b_i = \gamma^2 + \sin^2 \frac{i\pi}{n}, \quad i = 1, 2, 3, ..., n-1$$ $$\epsilon = \left(10^{\Delta dB/10} - 1\right)^{\frac{1}{2}}$$ The filter order is found by using Newton's method to solve for n in the following formula: $$(\omega + \sqrt{\omega^2 - 1})^{2n} + (\omega + \sqrt{\omega^2 - 1})^{-2n} = \frac{4}{\epsilon^2} (10^{\Delta dB/10} - 1) - 2$$ using $$n = \frac{\ln \left[\frac{4}{\epsilon^2} (10^{\Delta dB/10} - 1) - 2 \right]}{\ln (\omega + \sqrt{\omega^2 - 1})}$$ as an initial guess. The resulting value is then increased slightly: $$n \leftarrow INT(n + 1)$$ Once the low-pass values have been calculated, if some other bandpass characteristic is desired, the components of the filter are changed by frequency transformation as shown. To aid in deciphering the output, capacitors are output with a negative sign. A bit of thought may be necessary to determine whether the L-C's are connected in series or parallel. #### Note: The program will give erroneous results if asked to compute filter order when ΔdB is small (i.e.: when $\Delta dB \sim Loss(\omega_0)$). | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------------|---------------------|------------|----------------------| | 1 | Load first program (EE1-09A1). | | | | | 2 | Input termination resistance. | R, Ω | A | R | | 3 | Input frequency information | | | | | | for desired filter characteristic. | | | | | | Low Pass | f _o , Hz | B | | | | High Pass | f _o , Hz | ■ B | | | | Band Pass | BW, Hz | ENTER+ | | | | | f _o , Hz | ø C | | | | Band Elimination | BW, Hz | ENTER • | | | | | f _o , Hz | 0 | | | 4 | For Chebyshev filter, continue | | | | | | with steps 5, 7, and 9. | | | | | | For Butterworth filter, continue | | | | | | with steps 6, 7 and 8. | | | | | 5 | Input bandpass information and | | | | | | compute Chebyshev filter order. | | | | | | Passband ripple | Ripple, dB | | € | | | Frequency at which | | | | | | attenuation is specified | f ₁ , Hz | ENTER+ | | | | Desired attenuation | lpha, dB | D | n | | 6 | Input bandpass information and | | | | | | compute Butterworth filter order. | | | | | | Frequency at which attenua- | | | | | | tion is specified. | f₁, Hz | ENTER+ | | | | Desired attenuation | α, dB | 8 | n | | 7 | Load second program | | | | | | (EE1-09A2). | | | | | 8 | Compute Butterworth filter | | | | | | elements. | | E | | | 9 | Compute Chebyshev filter | | | | | | elements. | | D | | #### Example 1: Design a 100 Hz wide Butterworth filter centered at 800 Hz with a 30 db attenuation at 900 Hz. R_0 is 50Ω . The termination resistance R is 50Ω . #### **Keystrokes:** Load card 1 (EE1-09A1) 50 A 100 ENTER+ 800 **1** C 900 ENTER 30 E ——→ Load card 2 (EE1-09A2) ## **Outputs:** 6.000+00 *** filter order 1.000+00 *** component 1 -16.48-06 *** capacitor 2.402-03 *** inductor 2.000+00 *** component 2 112.5-03 *** inductor -351.7-09 *** capacitor 3.000+00 *** component 3 -61.49-06 *** capacitor 643.6-06 *** inductor 4.000+00 *** component 4 153.7-03 *** inductor -257.5-09 *** capacitor 5.000+00 *** component 5 -45.02-06 *** capacitor 879.2-06 *** inductor 6.000+00 *** component 6 41.19-03 *** inductor -960.8-09 *** capacitor # 10. BODE PLOT OF BUTTERWORTH AND CHEBYSHEV FILTERS This program provides gain, phase and group delay information for Bode plots of n-pole Butterworth or Chebyshev filters. A frequency transformation feature allows four types of filter characteristics: low pass, high pass, band pass, and band elimination. Frequency steps may be either linear (additive Δf) or logarithmic (multiplicative Δf). The poles of an n-pole Butterworth filter are given by the following expression. $$s_k = \sigma_k + j\omega_k = -\sin\left(\frac{2k-1}{3} \frac{\pi}{2}\right) - j\cos\left(\frac{2k-1}{3} \frac{\pi}{2}\right)$$ (k=1, ..., n) The poles of a Chebyshev filter are derived from Butterworth poles by the following procedure. Let $$\beta_{k} = \frac{1}{n} \sinh^{-1} \frac{1}{\epsilon}$$ Then the new poles are given by $$s_k = \sigma_k \sinh \beta_k + i \omega_k \cosh \beta_k$$ The gain, phase and delay functions of a filter are given by the following expressions. The network transfer function is $$\begin{split} H(j\omega) &= \frac{K}{(j\omega - s_1) \; (j\omega - s_2) \; \dots \; (j\omega - s_n)} \\ &= \frac{K}{(M_1 \; \angle \; \theta_1) \; (M_2 \; \angle \; \theta_2) \; \dots \; (M_n \; \angle \; \theta_n)} \\ &= \frac{K}{M(\omega) \; \angle \; \theta(\omega)} \end{split}$$ in which K is a constant chosen such that $$|H(j0)| = 1$$ The magnitude of the transfer function is $$\left| H(j\omega) \right| \; = \; \frac{K}{\displaystyle \prod_{i=1}^{n} \; \sqrt{{\sigma_{i}}^{2} + (\omega - \omega_{i})^{2}}} \label{eq:hamiltonian}$$ and its phase is $$\arg\left[H(j\omega)\right] = -\theta(\omega) = -\sum_{i=1}^{n} \tan^{-1} \frac{\omega - \omega_i}{-\sigma_1}$$ The normalized group delay is $$t_{\rm g} = \frac{d}{d\omega} \left\{ \theta(\omega) \right\} = \sum_{\rm i=1}^{n} \frac{\sigma_{\rm i}}{\sigma_{\rm i}^2 + (\omega - \omega_{\rm i})^2}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---------------------------------|---------------------|------------|----------------------| | 1 | Load program. | | | | | 2 | Select which filter. | | | | | | Butterworth | | | | | | # poles | n | A | | | | Chebyshev | | | | | | # poles | n | ENTER+ | | | | Passband ripple in dB | dB | 1 A | | | 3 | Select passband characteristic. | | | | | | Low pass-cutoff frequency | f _o | В | | | | High pass-cutoff frequency | f _o | I B | | | | Band pass-Bandwidth | BW | ENTER+ | | | | Center frequency | f _o | | | | | Band elimination-Bandwidth | BW | ENTER+ | | | | Center frequency | f _o | 0 | | | 4 | Select linear or logarithmic | | | | | | frequency incrementation. | | | 0-lin/1-log | | 5 | Specify band of interest. | | | | | | Minimum frequency | f ₁ , Hz | ENTER+ | | | | Maximum frequency | f₂, Hz | ENTER+ | | | | Frequency increment | Δf,Hz or ratio | D | | | STEP | INSTRUCTIONS | INSTRUCTIONS INPUT DATA/UNITS KEYS | | OUTPUT
DATA/UNITS | |------|--------------------------------|------------------------------------|---|----------------------| | 6 | Start computing. | | • | f | | | Magnitude of transfer function | | | 20log H(jω),dB | | | Angle of transfer function | | | arg{H(jω)} | | | Normalized group delay | | | t _g | | 7 | Step 6 is repeated auto- | | | | | | matically for the band | | | | | | specified. | | | | ## Example 1: Plot the response of a 6-pole Butterworth band-pass filter with BW = 100, $f_0 = 800$. Make a logarithmic plot using steps of $2^{1/8}$ from 400 Hz to 1600 Hz. ## **Keystrokes:** **1** □ 400 ENTER 1600 ENTER 1600 ## **Outputs:** | 400.000 | T | frequency 565.685 | Т | |----------|--------------|-------------------------------|----------| | -129.502 | | $ H(j2 \pi f) $ -90.309 | Z | | 161.536 | Y | $\angle H(j2 \pi f) $ 140.715 | Y | | 0.027 | | group delay, sec. 0.122 | X | | 0.027 | Λ | group delay, see. 0.122 | Λ | | 426 202 | T | (16.004 | T | | 436.203 | T | 616.884 | T | | -121.591 | \mathbf{Z} | -74.863 | Z | | 158.504 | Y | 126.993 | Y | | 0.036 | X | 0.223 |
X | | | | | | | 475.683 | T | 672.717 | T | | -112.727 | Z | -53.407 | Z | | 154.506 | Y | 99.228 | Y | | 0.051 | X | 0.524 | X | | | | | | | 518.736 | T | 733.603 | T | | -102.519 | Z | -17.172 | Z | | 148.966 | Y | 6.544 | Y | | 0.076 | X | 2.683 | X | ## Example 2: Plot the response of a 7-pole Chebyshev band-elimination filter of 5 Hz BW centered at 60 Hz with 3 dB passband ripple. Make a linear plot using steps of 0.5 Hz from 50 Hz to 61 Hz. ## **Keystrokes:** # 10-05 # **Outputs:** | 50.000 | T | frequency 53.500 | T | |----------|---|---------------------------------|---| | -2.997 | Z | $mag \{H(s)\}, dB$ -1.027 | Z | | -84.017 | Y | $arg\{H(s)\}, degrees$ -127.379 | Y | | 4.506 | X | group delay, sec. 7.737 | X | | | | | | | 50.500 | T | 54.000 | T | | -2.964 | Z | -0.364 | Z | | -87.457 | Y | -143.029 | Y | | 4.559 | X | 9.239 | X | | | | | | | 51.000 | T | 54.500 | T | | -2.880 | Z | 0.000 | Z | | -91.347 | Y | -164.525 | Y | | 4.675 | X | 10.286 | X | | | | | | | 51.500 | T | 55.000 | T | | -2.730 | Z | -0.478 | Z | | -95.842 | Y | 169.348 | Y | | 4.881 | X | 9.368 | X | | | | | | | 52.000 | T | 55.500 | T | | -2.491 | Z | -1.799 | Z | | -101.177 | Y | 143.391 | Y | | 5.216 | X | 6.957 | X | | | | | | | 52.500 | T | 56.000 | T | | -2.140 | Z | -2.932 | Z | | -107.732 | Y | 119.424 | Y | | 5.742 | X | 5.448 | X | | | | | | | 53.000 | T | 56.500 | T | | -1.651 | Z | -2.136 | Z | | -116.126 | Y | 88.980 | Y | | 6.550 | X | 7.335 | X | | | | | | | T | 59.000 | T | 57.000 | |---|----------------|---|----------| | Z | -88.662 | Z | -0.479 | | Y | 103.950 | Y | 8.481 | | X | 0.111 | X | 13.596 | | | | | | | T | 59.500 | T | 57.500 | | Z | -133.081 | Z | -0.066 | | Y | 96.633 | Y | -122.266 | | X | 0.024 | X | 37.279 | | | | | | | T | 60.000 | T | 58.000 | | Z | -1048.077 | Z | -34.346 | | Y | -90.000 | Y | 127.620 | | X | 1.985653756-15 | X | 1.179 | | | | | | | T | 60.500 | T | 58.500 | | Z | -133.598 | Z | -59.784 | | Y | -96.577 | Y | 113.071 | | X | 0.024 | X | 0.338 | | | | | | Note symmetry which indicates that we can reflect plot around 60 Hz. #### 11. RESISTIVE ATTENUATOR DESIGN Both the T attenuator and the Π attenuator can be used to match between two resistive impedances, R_{in} and R_{out} . This program computes the minimum loss of the attenuator and values for the resistors R_1 , R_2 and R_3 which will yield an attenuator having any desired loss. The minimum loss in decibels is given by $$\text{Min Loss} = 10 \log \left(\sqrt{\frac{R_{in}}{R_{out}}} + \sqrt{\frac{R_{in}}{R_{out}}} - 1 \right)^{2}$$ where $R_{in} \ge R_{out}$ If N is the desired loss of the attenuator expressed as a ratio (loss in $dB = 10 \log N$), then for the T attenuator $$R_3 = \frac{2\sqrt{N R_{in} R_{out}}}{N - 1}$$ $$R_1 = R_{in} \left(\frac{N+1}{N-1} \right) - R_3$$ $$R_2 = R_{out} \left(\frac{N+1}{N-1} \right) - R_3$$ and for the Π attenuator $$R_{3} = \frac{1}{2} (N - 1) \left(\frac{R_{\text{in}} R_{\text{out}}}{N} \right)^{1/2}$$ $$\frac{1}{R_{1}} = \frac{1}{R_{\text{in}}} \left(\frac{N + 1}{N - 1} \right) - \frac{1}{R_{3}}$$ $$\frac{1}{R_{2}} = \frac{1}{R_{\text{out}}} \left(\frac{N + 1}{N - 1} \right) - \frac{1}{R_{3}}$$ Note: If the desired loss is less than the minimum loss, an error message will be generated. | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|-------------------------|---------------------|------|----------------------| | 1 | Load program. | | | | | 2 | Input impedance levels. | | | | | | Input circuit | R_{in},Ω | A | | | | Output circuit | $R_out,\ \Omega$ | B | | | 3 | Compute minimum loss. | | C | min loss, dB | | 4 | Input desired loss and | | | | | | compute resistances. | | | | | | For T attenuator | Loss, dB | o | Loss | | | | | | R ₁ | | | | | | R ₂ | | | | | | R ₃ | | | For Π attenuator | Loss, dB | • | Loss | | | | | | R₁ | | | | | | R ₂ | | | | | | R ₃ | | | | | | | | | | | | | ## Example 1: Compute element values for T and Π attenuators matching 75Ω to 50Ω with 6 dB loss. | Keystrokes: | Outputs: | | |-------------------------------|-----------------------------|---| | 75 A 50 B C ──→ | 5.719+00 *** min loss | | | 6 □ | 6.000+00 T desired loss | ; | | | $43.34+00 Z R_1$ | | | | $1.572 + 00 Y R_2$ | | | | $81.97 + 00 X R_3$ | | | 6 € — → | 6.000+00 T desired loss | ì | | | $2.386+03$ Z R_1 | | | | $86.52 + 00 \text{ Y } R_2$ | | | | $45.75 + 00 X R_3$ | | | | | | #### Example 2: Compute element values for T and Π attenuators matching 50Ω to 50Ω with 10 dB loss. Notes ## 12. SMITH CHART CONVERSIONS The distance between a point on a Smith Chart and its center may be measured by a number of parameters. The first three keys of this program allow conversion among some of the most commonly used ones: standing wave ratio, reflection coefficient, and return loss. The last two keys of this program convert between impedance and reflection coefficient. The parameters σ = voltage standing wave ratio SWR = standing wave ratio expressed in decibels ρ = reflection coefficient R.L. = return loss are related as follows: SWR = $20 \log \sigma$ R.L. = $20 \log \frac{1}{\rho}$ $$\sigma = \frac{1+\rho}{1-\rho}$$ These relationships are perhaps more clearly seen in this sketch: For a system having characteristic impedance Z_0 , the impedance and reflection coefficient are related by $$\Gamma = \rho \angle \phi = \frac{\frac{\mathbf{Z}}{Z_0} - 1}{\frac{\mathbf{Z}}{Z_0} + 1}$$ and $$\mathbf{Z} = \mathbf{Z} \angle \theta = \mathbf{Z}_0 \frac{1 + \Gamma}{1 - \Gamma}$$ where Γ = complex reflection coefficient $$\rho = |\Gamma|$$ $$\phi = \angle \Gamma$$ $\mathbf{Z} = impedance$ $$Z = |Z|$$ $$\theta = \angle \mathbf{Z}$$ | | 0 - L L | | | | | | | |------|---------------------------------------|---------------------|------------|----------------------|--|--|--| | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | | | | | 1 | Load program. | | | | | | | | 2 | Convert among σ , SWR, $ ho$, | | | | | | | | | and R.L. as desired. | | | | | | | | | $\sigma \rightarrow SWR$ | σ | f A | SWR | | | | | | SWR $→σ$ | SWR | A | σ | | | | | | $\sigma \rightarrow \rho$ | σ | ■ B | ρ | | | | | | $\rho \rightarrow \sigma$ | ρ | В | σ | | | | | | ρ→R.L. | ρ | | R.L. | | | | | | R.L.→ρ | R.L. | C | ρ | | | | | 3 | Store characteristic | | | | | | | | | impedance. | Z _o | | | | | | | 4 | Convert between Z and Γ | | | | | | | | | as desired. | | | | | | | | | Z→Γ | θ | ENTER+ | | | | | | | | Z | Œ | ϕ, ho | | | | | | Γ→Z | φ | ENTER+ | | | | | | | | ρ | 0 | θ , Z | | | | #### 12-03 Convert a 6 dB SWR to σ . #### **Keystrokes:** #### **Outputs:** 6 A _____ 2σ ## Example 2: Convert a 7 dB return loss to SWR. ## **Keystrokes:** ## **Outputs:** 8.35 SWR # Example 3: A 50Ω system is terminated with an impedance of 62 \angle 37°. What is the reflection coefficient? # **Keystrokes:** # **Outputs:** ## Example 4: A reflection coefficient of .5 \angle 7° is observed in a 72 Ω system. What is the impedance? ## **Keystrokes:** # **Outputs:** 9.23 *** $$\theta$$ Notes ### 13. TRANSMISSION LINE IMPEDANCE This program computes high frequency characteristic impedance for five types of transmission line. # Transmission line configuration Equation for Z_0 open two-wire line $$Z_0 = \frac{120}{\sqrt{\epsilon}} \ln \left(\frac{2D}{d} \right)$$ single wire near ground $$Z_0 = \frac{138}{\sqrt{\epsilon}} \log \left(\frac{4h}{d} \right)$$ balanced wires near ground $$Z_0 = \frac{276}{\sqrt{\epsilon}} \log \left\{ \frac{2D}{d} \left[1 + \left(\frac{D}{2h} \right)^2 \right]^{-\frac{1}{2}} \right\}$$ wires in parallel near ground $$Z_o = \frac{69}{\sqrt{\epsilon}} \log \left\{ \frac{4h}{d} \left[1 + \left(\frac{2h}{D} \right)^2 \right]^{+1/2} \right\}$$ coaxial line $$Z_0 = \frac{60}{\sqrt{\epsilon}} \ln \frac{D}{d}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|----------------------------|---------------------|--------|----------------------| | 1 | Load program. | | | | | 2 | Compute impedance of open | | | | | | two-wire line. | | | | | | Input wire spacing | D | ENTER+ | | | | wire diameter | d | ENTER+ | | | | relative permittivity | $\epsilon_{ m r}$ | A | Z ₀ , Ω | | 3 | Compute impedance of a | | | | | | single wire near ground. | | | | | | Input wire diameter | d | ENTER+ | | | | wire height | h | ENTER+ | | | | relative permittivity | € _r | B | Z ₀ , Ω | | 4 | Compute impedance of | | | | | | balanced wires near | | | | | | ground. | | | | | | Input wire spacing | D | ENTER+ | | | | wire diameter | d | ENTER+ | | | | wire height | h | ENTER+ | | | | relative permittivity | $\epsilon_{ m r}$ | C | Z ₀ , Ω | | 5 | Compute impedance of wires | | | | | | in parallel near ground. | | | | | | Input wire spacing | D | ENTER+ | | | | wire diameter | d | ENTER+ | | | | wire height | h | ENTER+ | | | | relative permittivity | ε _r | D | Z ₀ , Ω | | 6 | Compute impedance of | | | | | | coaxial line. | | | | | | Input inside diameter of | | | | | | outer conductor | D | ENTER+ | | | | outside diameter of inner | | | | | | conductor | d | ENTER+ | | | | relative permittivity | €r | 3 | Z ₀ , Ω | #### 13-03 ## Example 1: Compute Z_0 of RG-218/U coaxial cable. (D = .68 in., d = .195 in., ϵ_r = 2.3 (polyethylene)). ## **Keystrokes:** ## **Outputs:** ## Example 2: Compute Z_0 of open 2-wire line with D = 6 in., d = .0808 in., $\epsilon_r = 1$ (air). ### **Keystrokes:** ## **Outputs:** 6 ENTER $$\cdot$$.0808 ENTER \cdot 1 A \rightarrow $$A \rightarrow$$ ## Example 3: Compute Z₀ of an air line consisting of a single .1285 inch wire 6 inches from a ground plane. ## **Keystrokes:** # **Outputs:** 313.44 *** Notes #### 14. MICROSTRIP CALCULATIONS This program accepts conductor width w, dielectric thickness h, and relative permittivity ϵ_r , and
computes relative phase velocity v_r and characteristic impedance Z_c for lossless line. The following formulas are used. $$\epsilon_{eff} = \frac{\epsilon_{r} + 1}{2} + \frac{\epsilon_{r} - 1}{2} \left(1 + 10 \frac{h}{w} \right)^{\frac{1}{2}}$$ $$v_{r} = \frac{1}{\sqrt{\epsilon_{eff}}}$$ $$Z_{0} = \begin{cases} 60 \ln \left(8 \frac{h}{w} + \frac{w}{4h} \right), & \frac{w}{h} \leq 1 \\ \frac{120\pi}{\frac{w}{h} + 2.42 - 0.44 \frac{h}{w} + \left(1 - \frac{h}{w} \right)^{6}}, & \frac{w}{h} > 1 \end{cases}$$ $$Z_{c} = v_{r} Z_{0}$$ where $\epsilon_{\rm r}$ = relative permittivity of dielectric $\epsilon_{\rm eff}$ = effective permittivity of dielectric h = dielectric thickness w = width of microstrip v_r = relative phase velocity of lossless line Z_0 = characteristic impedance of corresponding air line, Ω Z_c = characteristic impedance of lossless microstrip, Ω It then accepts the conductor thickness and computes a normalized conductor loss A. $$A = \begin{cases} \frac{20}{\ln 10} \frac{h}{w Z_0} \frac{dB}{\Omega} \text{, uniform current distribution} \\ \frac{10}{\pi \ln 10} \frac{\left(8 \frac{h}{w} - \frac{w}{4h}\right) \left(1 + \frac{h}{w} + \frac{h}{w} \frac{\partial w}{\partial t}\right)}{Z_0 e^{Z_0/60}} \frac{dB}{\Omega} \text{, } \frac{w}{h} \leqslant 1 \\ \frac{Z_0}{720\pi^2 \ln 10} \left[1 + 0.44 \frac{h^2}{w^2} + \frac{6h^2}{w^2} \left(1 - \frac{h}{w}\right)^5\right] \\ \times \left[1 + \frac{w}{h} + \frac{\partial w}{\partial t}\right] \frac{dB}{\Omega} \text{, } \frac{w}{h} > 1 \end{cases}$$ where $$\frac{\partial w}{\partial t} = \begin{cases} \frac{1}{\pi} \ln \frac{4\pi w}{t}, \frac{w}{h} \leq \frac{1}{2\pi} \\ \frac{1}{\pi} \ln \frac{2h}{t}, \frac{w}{h} > \frac{1}{2\pi} \end{cases}$$ Finally, the program accepts conductor resistivity ρ and frequency f and computes copper loss α_c , resistance per unit length R, and unloaded quality factor Q_0 using the following equations. $$\alpha_0 = \frac{R_S A}{h}$$ $$\mu_0 = 4\pi \times 10^{-9} \text{ H/cm}$$ $$R_S = \sqrt{\pi f \mu_0 \rho}$$ $$R = 2R_S/w$$ $$\alpha_c = \frac{\alpha_0}{v_r}$$ $$Q_0 = \frac{20\pi}{\ln 10} \frac{f}{c v_r \alpha_c}$$ $$c = 3 \times 10^{10} \text{ cm/s}$$ #### Reference: M.V. Schneider, "Microstrip Lines for Microwave Integrated Circuits," *Bell System Technical Journal*, 48, No. 5 (May–June 1969). | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------|---------------------|--------|----------------------| | 1 | Load program. | | | | | 2 | Input width of microstrip | w, cm | ENTER+ | | | | thickness of dielectric | h, cm | A | w/h | | 3 | Input relative permit- | | | | | | tivity and print relative | | | | | | phase velocity and imped- | | | | | | ance of lossless line. | € _r | В | V _r | | | | | | Z _c | | 4 | If a uniform current | | | | | | distribution is desired, | | | | | | skip to step 6. | | | | | 5 | Input conductor thickness. | t, cm | G | Α | | 6 | Input conductor resistivity. | ρ | O | | | 7 | Input frequency and | | | | | | print copper loss, | | | | | | resistance per unit | | | | | | length and unloaded Q. | f, Hz | g | $lpha_{ m c}$ | | | | | | R | | | | | | Q_0 | ## Example 1: What are the characteristics of 50-mil microstrip on a 50-mil alumina ($\epsilon_r = 9.5$) substrate at 2GHz? Assume a line thickness of 1 mil and a conductor resistivity of 3 E -6. ### #### Example 2: Repeat the above example, but assume a uniform current distribution. #### #### 15. TRANSMISSION LINE CALCULATIONS This program computes the input impedance of lossy transmission line terminated in Z_L . The program provides an exact solution when the distributed line parameters R_0 (= $\sqrt{L/C}$), R, and G are given, and it provides an approximate solution when R_0 , copper loss and dielectric loss are given. The transmission line shown has a lumped model composed of elements L, C, R, and G. From this model the following equations can be derived. Let $$R_0 = \sqrt{\frac{L}{C}}$$ $$r = \frac{R}{L} = \frac{vR}{R_0}$$ $$g = \frac{G}{C} = v R_0 G$$ $$\omega = 2\pi f$$ where L = inductance/unit length C = capacitance/unit length R = resistance/unit length G = conductance/unit length $v = 3 \times 10^8 v_r$ v_r = relative phase velocity f = frequency, Hz Then $$Z_{\rm in} = Z_0 \left(\frac{1 + \Gamma_L e^{-2\gamma l}}{1 - \Gamma_L e^{-2\gamma l}} \right)$$ where $$\Gamma_{\rm L} = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0}$$ I = line length Z_L = impedance of termination $Z_0 = \text{characteristic}$ impedance of line = $\text{Re}\big\{Z_0\big\}$ + j $\text{Im}\big\{Z_0\big\}$ γ = propagation constant of line = α + j β Z_0 and γ are computed differently depending on which solution is selected. $$Re\left\{Z_{0}\right\} = \frac{R_{0}}{\sqrt{2(g^{2} + \omega^{2})}} \left[rg + \omega^{2} + \sqrt{(r^{2} + \omega^{2})(g^{2} + \omega^{2})}\right]^{\frac{1}{2}}$$ $$Im \big\{ Z_0 \big\} = \frac{\pm \ R_0}{\sqrt{2(g^2 \ + \ \omega^2)}} \left[- (rg \ + \ \omega^2) \ + \ \sqrt{(r^2 \ + \ \omega^2)(g^2 \ + \ \omega^2)} \right]^{1/2}$$ in which the + sign is chosen when $g \ge r$ and the - sign is chosen when g < r and $$\alpha = \frac{1}{\sqrt{2} v} \left[rg - \omega^2 + \sqrt{(r^2 + \omega^2)(g^2 + \omega^2)} \right]^{\frac{1}{2}}$$ $$\beta = \frac{1}{\sqrt{2}v} \left[\omega^2 - rg + \sqrt{(r^2 + \omega^2)(g^2 + \omega^2)} \right]^{\frac{1}{2}}$$ The approximate solution is $$\operatorname{Re}\left\{Z_{0}\right\} = R_{0} \left[1 + \frac{1}{2} \left(\frac{\alpha_{C} - \alpha_{D}}{\beta_{0}}\right) \left(\frac{3\alpha_{D} + \alpha_{C}}{\beta_{0}}\right)\right]$$ $$\operatorname{Im}\left\{Z_{0}\right\} = R_{0} \left[\frac{\alpha_{D} - \alpha_{C}}{\beta_{0}}\right]$$ $$\alpha = \alpha_{C} + \alpha_{D}$$ $$\beta = \beta_{0} \left[1 + \frac{1}{2} \left(\frac{\alpha_{C} - \alpha_{D}}{\beta_{0}}\right)^{2}\right]$$ where $$\alpha_{\rm C}=$$ Copper loss, nepers/unit length $=\frac{1}{2}\,\frac{\rm R}{\rm R_0}$ $\alpha_{\rm D}=$ Dielectric loss, nepers/unit length $=\frac{1}{2}\,{\rm GR}.$ $\beta_0=\frac{\omega}{\rm V}$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---|------------------------------------|------------|----------------------| | 1 | Load program. | | | | | 2 | Inputs when R and G are | | | | | | known. | | | | | | Frequency | f, Hz | 1 A | | | | Relative phase velocity | V _r | ENTER+ | | | | Characteristic impedance of | | | | | | lossless line | $R_{\scriptscriptstyle{0}},\Omega$ | A | | | | Line length | <i>l,</i> cm | В | | | | Conductance of substrate | | | | | | per unit length | G, S/cm | ENTER+ | | | | Resistance of line per | | | | | | unit length | R, Ω /cm | C | | | | Angle of terminating | | | | | | impedance | ∠Z _L , deg | ENTER+ | | | | Magnitude of terminating | | | | | | impedance | $ Z_L , \Omega$ | Œ | $ heta_{in}$ | | | | | | Z_{in} | | 3 | Inputs when α_{C} and α_{D} | | | | | | are known. | | | | | | Frequency | f, Hz | 1 A | | | | Relative phase velocity | V _r | ENTER+ | | | | Characteristic impedance | | | | | | of lossless line | R_{o},Ω | A | | | | Line length | I, cm | В | | | | Dielectric loss per unit length | $lpha_{ extsf{D}}$ | ENTER+ | | | | Copper loss per unit length | $lpha_{ m c}$ | D | | | | Angle of terminating | | | | | | impedance | ∠Z _L , deg | ENTER+ | | | | Magnitude of terminating | | | | | | impedance | $ Z_{\scriptscriptstyleL} ,\Omega$ | • | $ heta_{in}$ | | | | | | Z_{in} | #### Example 1: A transmission line has the following properties: $R = 1.2664 \Omega / cm$ G = 0.000 041 87 Siemens/cm $R_0 = 55 \Omega$ $v_{\rm r}\,=0.85$ What is the input impedance of 3.5 cm of this line at 2 GHz if it is terminated in $Z_L = 75 \ L - 30^{\circ}$? #### #### Example 2: A 4-cm gold ($\rho = 2.3 \,\mu\Omega$ /cm) microstrip line of 50-mil width is on a 50-mil alumina ($\epsilon_r = 9.5$) substrate. Assuming a uniform current distribution and zero dielectric loss, what is the input impedance of the line at 124 MHz when it is terminated in 75 Ω ? Notes # 16. UNILATERAL DESIGN: FIGURE OF MERIT, MAXIMUM UNILATERAL GAIN, GAIN CIRCLES This program computes u, G_u , G_{min} , G_{max} , G_0 , G_{1max} , and G_{2max} from a transistor's s-parameters. It also computes r_{0i} and ρ_{0i} from $G_i \leq G_{imax}$ (i=1, 2). When designing a transistor amplifier with the aid of s-parameters, the often valid assumption that the reverse-transmission parameter s_{12} may be neglected leads to simplified equations. A transistor for which s_{12} is negligible is said to be a "unilateral device." The unilateral figure of merit u may be used to determine the reasonableness of the unilateral assumption: $$u = \frac{\left| s_{11} \ s_{12} \ s_{21} \ s_{22} \right|}{\left| (1 - \left| s_{11} \right|^2)(1 - \left| s_{22} \right|^2) \right|}$$ Clearly, the unilateral assumption is more nearly correct for u near zero. The maximum unilateral transducer power gain is given by $$G_{u} = \frac{\text{Power delivered to load}}{\text{Power available from source}}$$ $$= \frac{\left|s_{21}\right|^{2}}{\left|(1 - \left|s_{11}\right|^{2})(1 - \left|s_{22}\right|^{2})\right|}$$ Using the unilateral figure of merit we can place limits on the actual transducer power gain: $$G_{\min} = G_{\mathrm{u}} \frac{1}{(1+\mathrm{u})^2}$$ $$G_{\text{max}} = G_{\text{u}} \frac{1}{(1 - \text{u})^2}$$ When input and output impedances are conjugately matched, the transducer power gain is $$G_{u} = G_{0} \cdot G_{1} \cdot G_{2}$$ where $$G_u$$ = transducer power gain = $\frac{\text{Power delivered to load}}{\text{Power available from source}}$ $$G_0 = \left| s_{21} \right|^2$$ = transducer gain for Z_0 input and output impedances $$G_{1max} = \frac{1}{1 - \left|s_{11}\right|^2} = \text{gain contribution from change of source impedance from }
Z_0 \text{ to } s_{11}^*$$ $$\begin{aligned} G_{2max} &= \frac{1}{1 - \left|s_{22}\right|^2} = \text{gain contribution from change of load} \\ &\text{impedance from } Z_0 \text{ to } s_{22}^* \\ &s_{ij}^* = \text{complex conjugate of } s_{ij}. \end{aligned}$$ For source and load impedances other than s_{11}^* and s_{22}^* , G_1 and G_2 are less than the maximum values given above. The loci of points on a Smith chart representing values of source or load impedance which yield values of G_1 or G_2 less than G_{1max} or G_{2max} are circles. The center of a constant gain circle is in the direction of s_{ii}^* (i=1,2) at a distance $$r_{oi} = \frac{G_i \ s_{ii}}{1 + G_i |s_{ii}|^2}$$ from the origin. The radius of the circle is $$\rho_{oi} = \frac{\sqrt{1 - G_i(1 - |s_{ii}|^2)}}{1 + G_i |s_{ii}|^2}$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------|---------------------|--------|----------------------| | 1 | Load program. | | | | | 2 | Input magnitude of | | | | | | s-parameters for $i = 1, 2,$ | | | | | | j=1, 2. | | | | | | Magnitude | S _{ij} | ENTER+ | | | | Designation | ij | A | | | 3 | Compute | | | | | | | | B | u | | | | | | G_{u} | | | | | | G_{min} | | | | | | G_{max} | | | | | | G₀ | | | | | | G_{1max} | | | | | | G_{2max} | | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---|---------------------|------------|----------------------| | 4 | Input desired gain | | | | | | (≤G _{1max}) and compute loca- | | | | | | tion * of center of gain circle | | | | | | on input plane. | G₁, dB | G | r ₀₁ | | | | | | $ ho_{01}$ | | 5 | Input desired gain | | | | | | (≤G _{2max}) and compute loca- | | | | | | tion * of center of gain circle | | | | | | on output plane. | G₂, dB | I C | r ₀₂ | | | | | | $ ho_{02}$ | | | *Note: These points are | | | | | | located at a distance roi from | | | | | | the origin of the Smith chart | | | | | | in the direction of s _{ii} .* | | | | #### Example 1: An HP35876E option 100 transistor operating at 4 GHz has the following s-parameters: $$S = \begin{bmatrix} .51 \ \angle 154^{\circ} & .09 \ \angle 26^{\circ} \\ 1.4 \ \angle 22^{\circ} & .60 \ \angle -58^{\circ} \end{bmatrix}$$ What is the unilateral figure of merit? What is the maximum unilateral transducer power gain? What is the range of transducer gain due to the fact that s₁₂ is not zero? What are G_0 , G_{1max} , and G_{2max} ? Draw 0 dB, .5 dB, and 1 dB constant gain circles on input and output planes. #### **Keystrokes:** Outputs: | | 6.91 *** | Gactual max | |------------------|----------|---------------| | | 2.92 *** | | | | 1.31 *** | G_{1max} | | | 1.94 *** | G_{2max} | | 0 C | 0.40 *** | r_{o1} | | | 0.40 *** | $ ho_{ m o1}$ | | .5 C | 0.44 *** | r_{o1} | | | 0.32 *** | $ ho_{ m o1}$ | | 1 C | 0.48 *** | | | | 0.20 *** | $ ho_{01}$ | | 0 f C — | 0.44 *** | | | | 0.44 *** | $ ho_{02}$ | | .5 [] [] | 0.48 *** | | | | 0.38 *** | $ ho_{ m o2}$ | | 1 [C ——— | 0.52 *** | | | | 0.30 *** | $ ho_{02}$ | #### # 17. BILATERAL DESIGN: STABILITY FACTOR, MAXIMUM GAIN, OPTIMUM MATCHING $$\begin{array}{cccc} & \text{BILATERAL DESIGN: K, } G_{max}, \Gamma_{opt} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ &$$ Sometimes s_{12} is not sufficiently small that it may be neglected in transistor amplifier design. In this case it is necessary to compute a stability factor K and use different design approaches depending on its value. The stability factor is defined by the equation $$K = \frac{1 + \left| \Delta \right|^2 - \left| s_{11} \right|^2 - \left| s_{22} \right|^2}{2 \left| s_{21} \right| s_{12}}$$ where s_{ij} are s-parameters and $$\Delta = S_{11} S_{22} - S_{21} S_{12}$$ For K < 1 the amplifier is potentially unstable and the designer must choose input and output matching networks very carefully (see program EE1-18A). For K > 1 the amplifier is unconditionally stable and this program may be used to compute the maximum gain available and the load and source reflection coefficients which yield the maximum gain. Maximum gain is computed using the relation $$G_{\text{max}} = \frac{|s_{21}|}{|s_{12}|} (K \pm \sqrt{K^2 - 1})$$ in which the plus sign is used when the quantity $$B_1 = 1 + |s_{11}|^2 - |s_{22}|^2 - |\Delta|^2$$ is negative and the minus sign is used when B₁ is positive. The second portion of this program computes values of source and load reflection coefficients required to conjugately match the transistor using the equations $$\Gamma_{ms} = C_1 * \left[\frac{B_1 \pm \sqrt{B_1^2 - 4 |C_1|^2}}{2 |C_1|^2} \right]$$ $$\Gamma_{\text{ml}} = C_2^* \left[\frac{B_2 \pm \sqrt{B_2^2 - 4 |C_2|^2}}{2 |C_2|^2} \right]$$ where $$C_1 = S_{11} - \Delta S_{22}^*$$ $C_1^* = \text{complex conjugate of } C_1$ $$C_2 \, = \, s_{22} \, - \, \Delta s_{11} *$$ C_2^* = complex conjugate of C_2 $$B_1 = 1 + |s_{11}|^2 - |s_{22}|^2 - |\Delta|^2$$ $$B_2 = 1 + |s_{22}|^2 - |s_{11}|^2 - |\Delta|^2$$ | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|------------------------------|---------------------|--------|-----------------------| | 1 | Load program. | | | | | 2 | Input s-parameter matrix | | | | | | (ij=11, 12, 21, 22). | | | | | | Angle of s _{ij} | $ heta_{ij}$, deg | ENTER+ | | | | Magnitude of s _{ij} | s _{ij} | ENTER* | | | | Subscript | ij | A | Sij | | 3 | Compute stability factor and | | | | | | maximum gain.* | | В | K | | | | | | G _{max} , dB | | 4 | Compute angle and magnitude | | | | | | of source reflection | | | | | | coefficient. | | | $ heta_{\sf ms}$ | | | | | | $ \Gamma_{\sf ms} $ | | 5 | Compute angle and magnitude | | | | | | of load reflection | | | | | | coefficient. | | C | $ heta_{ml}$ | | | | | | $ \Gamma_{m I} $ | | | | | | | | | *If k<1, this calculation | | | | | | causes an error. | | | | #### Example: Design a maximum-gain amplifier using a transistor having the following s-parameters. $$s_{11} = 0.277 \ \angle -59^{\circ}$$ $s_{12} = 0.078 \ \angle 93.0^{\circ}$ $s_{21} = 1.920 \ \angle 64^{\circ}$ $s_{22} = 0.848 \ \angle -31^{\circ}$ #### **Keystrokes:** #### **Outputs:** $$21$$ A 31 CHS ENTER • $.848$ ENTER • 135.4+00 *** $$\angle \Gamma_{ms}$$ 729.8-03 *** $|\Gamma_{ms}|$ $$33.85+00 *** \angle \Gamma_{ml}$$ $951.1-03 *** |\Gamma_{ml}|$ Notes # 18. BILATERAL DESIGN: GAIN AND STABILITY CIRCLES, LOAD AND SOURCE MAPPING If it is desired to build an amplifier having gain less than the maximum possible for the transistor to be used, a gain circle is constructed. This circle shows all possible loads for the output that yield the desired power gain. When a load on this gain circle is selected, the load and source mapping routine may be used to compute the new source reflection coefficient required. This program computes the center $$\mathbf{r}_{02} = \left[\frac{\mathbf{G}}{1 + \mathbf{D}_2 \; \mathbf{G}} \right] \; \mathbf{C}_2 *$$ and radius $$\rho_{02} = \frac{(1 - 2K |s_{12}s_{21}| G + |s_{12}s_{21}|^2 G^2)^{\frac{1}{2}}}{1 + D_2 G}$$ where $$G = \frac{G_p}{G_0}$$ G_p = desired gain G_0 = maximum transducer gain = $|s_{21}|^2$ $$C_2 = S_{22} - \Delta S_{11} *$$ $$D_2 = |s_{22}|^2 - |\Delta|^2$$ $$\Delta = s_{22} s_{11} - s_{21} s_{22}$$ When a two-port network is terminated in a load having reflection coefficient Γ_L , the source reflection coefficient for a conjugate input match becomes $$\Gamma_{\rm ms} = \left[\begin{array}{c} s_{11} + \frac{s_{12} s_{21}}{\frac{1}{\Gamma_{\rm L}} -
s_{22}} \end{array} \right]^*$$ Similarly, when the source reflection coefficient of a two-port network is Γ_s , the output reflection coefficient for a conjugate output match becomes $$\Gamma_{\rm ml} = \left[s_{22} + \frac{s_{12} s_{21}}{\frac{1}{\Gamma_{\rm S}} - s_{11}} \right]^*$$ This routine accepts Γ_L or Γ_S and computes the corresponding source or load reflection coefficient. A typical use is to determine which area defined by a stability circle is the stable or unstable region (for stable operation, Γ_L must be such that $|\Gamma_{ms}| < 1$ and Γ_S must be such that $|\Gamma_{ml}| < 1$). For the potentially unstable amplifier (stability factor K < 1), it is necessary to avoid values of source and load reflection coefficients which could cause oscillations. The boundaries between stable and unstable regions are circles on the input and output planes. The centers of the stability circles are located at: $$r_{si} = \frac{C_i^*}{|s_{ii}|^2 - |\Delta|^2}$$ where r_{s1} = location of center of stability circle on input plane r_{s2} = location of center of stability circle on output plane $$C_1 = s_{11} - \Delta s_{22}^*$$ $$C_2 = S_{22} - \Delta S_{11}^*$$ $$\Delta = s_{11} s_{22} - s_{21} s_{12}$$ The radii of the stability circles are: $$\rho_{\rm si} = \frac{|s_{12} s_{21}|}{|s_{\rm ii}|^2 - |\Delta|^2}$$ where $\rho_{\rm s1}$ = radius of stability circle on input plane $\rho_{\rm s2}$ = radius of stability circle on output plane | STEP | INSTRUCTIONS | INPUT
DATA/UNITS | KEYS | OUTPUT
DATA/UNITS | |------|---------------------------------------|------------------------------|------------|------------------------------| | 1 | First run EE1-17A, then | | | | | | load this program. | | | | | 2 | Perform any or all of the | | | | | | following steps in any order. | | | | | 3 | Input desired gain less than | | | | | | G _{max} and compute location | | | | | | and radius of gain circle. | G₅, dB | Α | ۷r | | | | | | r | | | | | | ρ | | 4 | Input load reflection coefficient | | | | | | and compute new source | | | | | | reflection coefficient. | ∠ Γ _ι , deg | ENTER ◆ | | | | | 17 | В | $oldsymbol{L} \Gamma_{ms}$ | | | | | | $ \Gamma_{\sf ms} $ | | 5 | Input source reflection coef- | | | | | | ficient and compute new load | | | | | | reflection coefficient. | ے $\Gamma_{ extsf{s}}$, deg | ENTER+ | | | | | $ \Gamma_{s} $ | ■ B | $oldsymbol{L} \Gamma_{m i}$ | | | | | | $ \Gamma_{m_1} $ | | 6 | Compute location and radius | | | | | | of stability circles on input | | | | | | (i=1) or output (i=2) planes. | i | 0 | ∠ r _{si} | | | | | | r _{si} | | | | | | $ ho_{si}$ | #### Example 1: A gain of 10 dB is desired from an amplifier using a transistor whose s-parameter matrix is $$S = \begin{bmatrix} .277 & \angle -59^{\circ} & .078 & \angle 93^{\circ} \\ \\ 1.92 & \angle 64^{\circ} & .848 & \angle -31^{\circ} \end{bmatrix}$$ Where is the center of the 10 dB gain circle and what is its radius? ### **Keystrokes: Outputs:** Load EE1-17A 59 CHS ENTER ↑ .277 ENTER ↑ 11 A 93 ENTER ↑ .078 ENTER ↑ 12 A 64 ENTER 1.92 ENTER 1.92 € 1.92 A 31 CHS ENTER ↑ .848 ENTER ↑ 22 A B ——— 1.033+00 *** K 12.81+00 *** G_{max} $\longrightarrow 135.4+00 *** \theta_{\rm ms}$ 729.8-03 *** Γ_{ms} $33.85+00 *** \theta_{ml}$ 951.1-03 *** Γ_{ml} Load EE1-18A 10 A ——— $33.85+00 *** \angle r_{02}$ $781.2 - 03 *** |r_{02}|$ $214.2 - 03 *** \rho_{02}$ #### Example 2: We have determined that the 10 dB gain circle is located at $r_{02} = .781 \angle 33.85^{\circ}$ with a radius of $\rho_{02} = .214$. If we pick a load reflection coefficient of $(|r_{02}| - \rho_{02}) \angle r_{02} = .567 \angle 33.85^{\circ}$, what source reflection coefficient is required? # **Keystrokes:** Outputs: Continuing from Example 1, $$33.85 \text{ ENTER} \cdot .567 \text{ B} \longrightarrow 93.33 + 00 *** \bot \Gamma_{ms}$$ $$276.0 - 03 *** | \Gamma_{ms}|$$ #### Example 3: Construct stability circles for a transistor having the following s-matrix. $$S = \begin{bmatrix} .385 \ \angle -55^{\circ} & .045 \ \angle 90^{\circ} \\ \\ 2.7 \ \angle 78^{\circ} & .89 \ \angle -26.5^{\circ} \end{bmatrix}$$ #### Keystrokes #### **Outputs:** Load EE1-17A CLX (Clear "Error") Load EE1-18A 29.88+00 *** $$\angle$$ r_{s2} 1.178+00 *** $|$ r_{s2} $|$ 192.6-03 *** ρ _{s2} #### **Program Listings** The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owners Handbook. | Pro | ogram | Page | |-----|--|---------| | la. | Network Transfer Functions—Input | L01-01 | | 1b. | Network Transfer Functions—Output | L01-03 | | 2. | Reactive L-Network Impedance Matching | | | 3. | Class A Transistor Amplifier Bias Optimization | | | 4. | Transistor Amplifier Performance | L04-01 | | 5. | Transistor Configuration Conversion | L05-01 | | 6. | Parameter Conversion: S | L06-01 | | 7. | Fourier Series | L07-01 | | 8. | Active Filter Design | L08-01 | | 9a. | Butterworth or Chebyshev Filter Design | L09-01 | | 9b. | Butterworth or Chebyshev Filter Design | L09-03 | | 10. | Bode Plot of Butterworth and Chebyshev Filters | L10-01 | | 11. | Resistive Attenuator Design | L11-01 | | 12. | Smith Chart Conversions | L12-01 | | 13. | Transmission Line Impedance | L13-01 | | 14. | Microstrip Transmission Line Calculations | L14-01 | | 15. | Transmission Line Calculations | L15-01 | | 16. | Unilateral Design: Figure of Merit, Maximum | | | | Unilateral Gain, Gain Circles | L16-01 | | 17. | Bilateral Design: Stability Factor, Maximum | | | | Gain, Optimum Matching | L17-01 | | 18. | Bilateral Design: Gain and Stability Circles, | | | | Load and Source Mapping | .L18-01 | # **Network Transfer Functions—Input** | 001 | *LBLA | Inpu | t f | 857 | 1/8 | | | |-------------|-----------------|---|--|-----------------------------|----------------------------|-----------------------|---| | 802 | CLRG | | | 9 58 | 9 | | | | 887 | 2 | | | 65 9 | e | | | | 004 | x | | | 868 | CHS | | | | 865 | P: | | | 061 | GT02 | | Pass $(\omega C)^{-1} \angle -90$ to | | 886 | x | 1 | | | #LBLe | | LBL 2. | | 807 | STOR | Store | 9.63 | 862 | | | | | | | 31016 | ε ω | 963 | 6SB0 | | 1 (210 | | 008 | 1 | - 1 | | 0€4 | CHS | | Pass $\frac{1-\omega^2 LC}{\omega C} \angle -90$ to | | 909 | ST01 | 1 1 | r 1 | 965 | X#Y | | ωC | | 818 | ST07 | lſu⊧l | [1∠0 0
0 1∠0] | 966 | 1/X | | LBL 2. | | 811 | CLX | الأحا | [0 1∠0] | 867 | XZY | | | | 012 | RTN | | | | *LBL2 | | | | 013 | *LELE | - 1 | | 869 | | | | | 614 | 0 | | | | GSB7 | | | | 015 | GT01 | اما | D / O I DI . 4 | 878 | RCLC | | [, ,] | | | | Pass | R ∠ 0 to LBL 1. | 871 | RCLE | | ا بدا ' ا با | | 016 | *LBLC | | | 072 | RCL9 | | [4] [←] <u>+</u> ₁ [4] | | 017 | RCL0 | 1 | | 873 | 1/8 | | $[\mathbf{Y}] \leftarrow \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} [\mathbf{Y}]$ | | e 18 | × | | | 874 | RCLA | | L 3 | | 0 19 | 9 | l | | 875 | CHS | | | | 820 | e | l | | 876 | ESB9 | | | | 821 | GT01 | Page | ωL ∠ 90 to LBL 1. | | | | | | 822 | *LBLD | r dss | to EBL 1. | 877 | ST05 | | | | | | ı | | €78 | ₽↓ | | | | 023 | RCL@ | ı | | 879 | ST06 | | | | 824 | x | l | | 880 | RCLE | | | | 825 | 1/X | ĺ | | 881 | RCLD | | | | 826 | 9 | | | 682 | RCL9 | | | | 627 | e | | | 883 | 1/8 | | | | 628 | CHS | | | | | | | | 029 | GT01 | D | $(\omega C)^{-1} \angle -90$ to | 884 | RCLA | | | | 636 | #LELE | | | 885 | CHS | | | | | | LBL | 1 | 98€ | €SB9 | | | | 031 | XZY | 1 | 631 | 887 | ST07 | | | | 632 | €SB@ | Pass | $\frac{\omega L}{1 - \omega^2 LC} \angle 90 \text{ to}$ | 986 | R↓ | | | | 03 3 | *LBL1 | | 1 – ω² LC | 889 | ST08 | | | | 034 | GSB7 | LBL | 1. | 898 | CLX | | | | 035 | RCLC | ı | | 091 | RTH | | | | 03€ | STO2 | 1 | | | | | INPUT: y = Z | | 0 37 | RCLB | | C7 | | *LBL7 | | x = \(Z | | 638 | ST01 | 1 | $\leftarrow \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix} [\mathbf{q}]$ | 893 | STOA | | ^ | | 639 | RCLE | u • | ∸। ि प ो | 694 | X≇Y | | | | | | '-' | [0 1] | 895 | ST09 | | | | 040 | ST04 | | | 896 | RCL5 | | | | 841 | RCLD | | | 097 | RCL € | | Compute and store | | 842 | ST03 | ľ | | 898 | ESB9 | | $\mathbf{q}_{11} + Z\mathbf{q}_{21}$ | | 843 | CLX | 1 | | 899 | RCL2 | | 4 | | 844 | RTN | | | 100 | RCL1 | | | | 845 | *LBL& | | | | | | | | 846 | 6 | | | 101 | esb8 | | ı | | 847 | GT02 | 1_ | D / O I D . O | 102
103 | STOP | | · | | | | Pass | R ∠ 0 to LBL 2. | | R↓ | | | | 048 | *LBLc | | | 184 | STOC | | | | 649 | RCL® | | | 105 | RCLA | | | | 858 | × | | | 10€ | RCL9 | | | | 051 | 9 | | | 107 | RCL7 | | | | 052 | e | | | 188 | RCL8 | | | | 65 3 | GTO2 | Pass | ω L \angle 90 to LBL 2. | 109 | 6SB9 | | Compute and store | | 854 | *LBL d | ' " | | 110 | RCL4 | | U ₁₂ + Z U ₂₂ . | | 955 | RCLO | | _ | 111 | RCL3 | | 712 - 422. | | ₽5€ | X | 1 | | | | | | | 636 | | | | 112 | esbe | | | | - | 1. | Ta 1- | REGI | STERS | To | | lo lo | | ο ω | 1 y 11 | ² ∠ y ₁₁ ³ y | I ₁₂ 4 ∠ y ₁₂ | ⁵ પ્ 21 | ⁶ ∠ प 21 | 7 Y 22 | ⁸ ∠ y ₂₂ | | SO | S1 | S2 S3 | S4 | S5 | S6 | S7 | S8 S9 | | 150 | 1 " | 33 | 34 | 33 | 36 | l3′ | | | A / 7 | В | | Tc . | D . | | E / | | | ^ LZ | اً | U _{11 new} | | प 12new | , | _ ∠¶ _{12new} | ľ | | 114
115 ST
116 F
117 *LE
118
119
120
121
122 >
123
124 | TOD R | Subroutine to add compounders. | | | | | | |--|---
---|-------------|-------|--------|-----------------|-----------------------| | 127
128
129 k
130 *LE
131
132
133
134
135
136 k
137 *LE
138
139 LS | R↑
→P
+P
+P
+P
+P
++
++
++
++
++
+ | Subroutine to multiply complex numbers. INPUT: y = b x = a | | | | | | | 142 X
143 LS
144
145
146
147
148 0
149
150
151 | X
CTY
CTY
X
X
1
 | OUTPUT: $y = \frac{\omega a}{1 - \omega^2}$ | ab
 | | | | | | | | LABELS | | FLAGS | | SET STATUS | | | A f | Series R C S | | Series tank | 0 | FLAGS | TRIG | DISP | | a t | Shunt R C S | Hant E Shunt C | Shunt L-C | 1 | ON OFF | DEG 🗷 | FIX 🗷 | | 0 Used 1 | | osed | 4 | 2 | 1 1 | GRAD □
RAD □ | SCI □
ENG ⊠
n 3 | | | ' / L | Jsed ⁸ CADD | CMULT | 3 | 3 □ 🛣 | | n_3_ | # Network Transfer Functions —Output | 991 | *LBLA | Input Z _L | 057 RCL2 | 1 | |--|--|--|---|---| | 882 | ST09 | I IIIput ZL | 058 RCL1 | l | | 903 | XZY | 1 | 059 RCL4 | | | | | | | | | 004 | STOA | | 0€0 RCL3 | | | 995 | CLX | | 061 GSB6 | | | | | 1 | 062 RCLA | | | 986 | R/S | | | 1 | | 007 | *LBLB | Compute Z _{in} | 063 RCL9 | | | 888 | GSB4 | | 064 R↑ | | | | | • | 065 CHS | 1 | | 009 | RCLB | l . | | | | 1 616 | 1/X | | 966 R† | | | 011 | RCLI | | 067 1/X | | | | | | 068 XZY | | | 012 | CHS | | | | | 013 | GSB9 | | 069 GSB9 | 1 | | 014 | 6105 | 1 | 070 X2 | | | | | 0 | 071 RCLC | | | 015 | *LBLC | Compute V ₂ /V ₁ | | | | 01€ | RCL2 | | 072 x | | | 017 | RCL1 | | 073 F0? | | | | | | | 1 | | 918 | RCL4 | 1 | | 1 | | 019 | RCL3 | 1 | 075 RTN | | | 828 | | 1 | 07€ *LBL5 | IF flag 0 | | | CSB6 | I | 077 F0? | THEN go to LBL 0 | | 921 | RCLA | 1 | | | | 022 | RCL9 | | 078 GTO0 | ELSE | | 023 | | 1 | 079 *LBL1 | Display y and x | | | R† | 1 | 080 XZY | alternately. | | 824 | CHS | I | | -1.0.1.0.0.7. | | 025 | R† | 1 | 081 R/S | | | 02€ | | | 062 GTO1 | 1 | | | 1/X | | 1 11 11 11 11 11 11 11 11 11 11 11 11 1 | D.: | | 027 | XZY | | | Print y and x. | | 628 | GSB9 | | 884 X≇Y | | | 029 | | 1 | 085 PRTX | | | | GT05 | | 986 X≢Y | | | 030 | *LBLD | Compute I ₂ /I ₁ | | 1 | | 931 | RCL6 | | 087 PRTX | 1 | | | | | 088 RTN | 1 | | 932 | RCL5 | | 089 *LBL4 | | | 033 | | | | | | 000 | RCL8 | | | Compute and store | | | | 1 | 090 RCL6 | | | 034 | RCL7 | | 090 RCL6 | Z _L U ₂₁ + U ₂₂ . | | 034
035 | RCL7
GSB6 | | 090 RCL6
091 RCL5 | | | 034
035
036 | RCL7 | | 090 RCL6
091 RCL5
092 RCL8 | | | 034
035
036 | RCL7
GSB6
1/X | | 090 RCL6
091 RCL5 | | | 034
035
03€
03? | RCL7
GSB6
1/X
X≇Y | | 090 RCL6
091 RCL5
092 RCL8
093 RCL7 | | | 034
035
036
037
038 | RCL7
GSB6
1/X
XZY
CHS | | 090 RCL6
091 RCL5
092 RCL8
093 RCL7
094 GSB6 | | | 034
035
03€
03? | RCL7
GSB6
1/X
X≇Y | | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB | | | 034
035
03€
037
038
039 | RCL7
GSB6
1/X
XZY
CHS
XZY | | 090 RCL6
091 RCL5
092 RCL8
093 RCL7
094 GSB6 | | | 034
035
036
037
038
039 | RCL7
GSB6
1/X
XZY
CHS
XZY
CHS | | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
038
039
040 | RCL7
GSBC
1/X
XZY
CHS
XZY
CHS
GT05 | | 999 RCL6
991 RCL5
992 RCL8
993 RCL7
994 GSB6
995 STOB
896 R4
897 STO1 | | | 034
035
036
037
038
039
040
041 | RCL7
GSB6
1/X
XZY
CHS
XZY
CHS | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 SSB6
895 STOB
896 R4
897 STOI
898 RCL2 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
038
039
040 | RCL7
GSB6
1/X
X2Y
CHS
X2Y
CHS
CHS
4LBLE |
Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1 | Z _L ų ₂₁ + ų ₂₂ . | | 934
935
936
937
938
939
949
941
942 | RCL7
\$586
1/X
X2Y
CMS
X2Y
CMS
\$705
\$4LBLE
\$584 | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
038
039
040
041
042
043 | RCL7
GSB6
1/X
X2Y
CHS
X2Y
CHS
GTO5
#LBLE
GSB4
RCLB | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
180 RCL4 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
038
039
040
041
042
043
044 | RCL7
GSB6
1/X
XZY
CHS
XZY
CHS
GCD5
*LBLE
GSB4
RCLB
1/X | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
1808 RCL4
181 RCL3 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
038
039
040
041
042
043 | RCL7
GSB6
1/X
X2Y
CHS
X2Y
CHS
GTO5
#LBLE
GSB4
RCLB | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
188 RCL4
181 RCL3 | Z _L ų ₂₁ + ų ₂₂ . | | 034
035
036
037
039
040
041
042
043
044
045 | RCL7
\$SB6
1/X
X2Y
CHS
X2Y
CHS
\$105
\$LBLE
\$SB4
RCLB
1/X
RCLI | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
1808 RCL4
181 RCL3 | Z _L ų ₂₁ + ų ₂₂ . | | 934
935
936
937
938
949
941
942
943
944
945
946 | RCL7 \$SB6 11/X XZY CHS XZY CHS \$CTOS #LBLE \$SB4 RCLB 1/X RCLI CHS CHS | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
180 RCL4
181 RCL3
182 *LBL6
183 STOE | Z _L ų ₂₁ + ų ₂₂ . | | 934
935
938
939
949
941
942
943
944
945
946 | RCL7
GSB6
1/X
X2Y
CHS
X2Y
CHS
GCD5
*LBLE
GSB4
RCLB
1/X
RCLI
CHS
GSB9 | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
180 RCL4
181 RCL3
182 *LBL6
183 STOE | Z_ U 21 + U 22. Compute Z_ U 11 + U 12 | | 934
935
936
937
938
949
941
942
943
944
945
946 | RCL7 \$SB6 11/X XZY CHS XZY CHS \$CTOS #LBLE \$SB4 RCLB 1/X RCLI CHS CHS | Compute P ₂ /P ₁ | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 996 R4 997 STO1 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 ±BL6 183 STOE 184 R4 185 STOD | Z _L ų ₂₁ + ų ₂₂ . | | 934
935
936
937
938
939
940
941
942
943
944
945
946
947 | RCL7
\$SB6
1/X
X2Y
CHS
X2Y
CHS
\$T05
*LBLE
\$GSB4
RCLB
1/X
RCLI
CHS
\$SB9
+R | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
180 RCL4
181 RCL3
182 *LBL6
183 STOE | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}$. Compute $Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$. | | 934
935
936
937
938
949
941
942
943
944
945
946
947
948 | RCL7 GSB6 11/X X2Y CHS X2Y CHS GTO5 #LBLE GSB4 RCLB 11/X RCLI CHS GSB9 +R RCLA | Compute P ₂ /P ₁ | 898 RCL6
891 RCL5
892 RCL8
893 RCL7
894 GSB6
895 STOB
896 R4
897 STOI
898 RCL2
899 RCL1
180 RCL4
181 RCL3
182 #LBL6
183 STOE
184 R4
185 STOD | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}$ Compute $Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ INPUT: $\angle A$ A | | 934
935
936
937
938
949
941
942
943
944
945
946
947
949
959 | RCL7
\$586
1/X
X2Y
CHS
X2Y
CHS
\$105
\$4.BLE
\$584
RCLB
1/X
RCLI
CHS
\$589
\$R
RCLB | Compute P ₂ /P ₁ | ### ################################## | $Z_L \mathbf{U}_{21} + \mathbf{U}_{22}$. Compute $Z_L \mathbf{U}_{11} + \mathbf{U}_{12}$ INPUT: $\angle A$ $\begin{vmatrix} A \\ \angle B \end{vmatrix}$ | | 834
835
836
837
839
839
840
841
842
843
844
845
847
848
849
858
858 | RCL7 GSB6 11/X X2Y CHS X2Y CHS GTO5 #LBLE GSB4 RCLB 11/X RCLI CHS GSB9 +R RCLA | Compute P ₂ /P ₁ | 898 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 898 RCL2 899 RCL1 180 RCL4 181 RCL3 182 **LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCL9 | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}$ Compute
$Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ INPUT: $\angle A$ A | | 834
835
836
837
839
839
840
841
842
843
844
845
847
848
849
858
858 | RCL7 GSB6 1/X X±Y CHS X±Y CHS GTO5 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCL9 +R | Compute P ₂ /P ₁ | ### ################################## | ZL\(\bar{\mathbf{Q}}_{21} + \bar{\mathbf{Q}}_{22}\) Compute ZL\(\bar{\mathbf{Q}}_{11} + \bar{\mathbf{Q}}_{12}\) | | 934
935
936
937
938
949
941
942
943
944
945
950
951
952 | RCL7 GSB6 11/X X2Y CHS X2Y CHS GT05 #LBLE GSB4 RCLB 11/X RCLI CHS GSB9 +R RCLA RCL9 +R X2Y | Compute P ₂ /P ₁ | 898 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 898 RCL2 899 RCL1 180 RCL4 181 RCL3 182 #LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCL4 189 GSB9 | ZL\(\bar{\mathbf{Q}}_{21} + \bar{\mathbf{Q}}_{22}\) Compute ZL\(\bar{\mathbf{Q}}_{11} + \bar{\mathbf{Q}}_{12}\) | | 934
935
936
937
938
939
944
941
942
943
944
945
951
952
953 | RCL7 GSB6 1/X X2Y CHS X2Y CHS GT05 #LBLE GSB4 RCLB 1/X CHS GSB9 +R RCLA RCLA RCL9 -R X2Y R1 | Compute P ₂ /P ₁ | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 896 R4 997 STO1 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 ±18L6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLD | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}$. Compute $Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ INPUT: $\angle A$ A A A B B B B B B B B | | 934
935
936
937
938
949
941
942
943
944
945
946
949
951
952
953
954 | RCL7 SSB6 11/X XZY CHS XZY CHS GTOS 4LBLE GSB4 RCLB 1/X RCLI CHS GSB9 PR RCLA RCLA RCL9 AR XZY RJ FR XZY RJ FR FR RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCL | Compute P ₂ /P ₁ | 898 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 898 RCL2 899 RCL1 180 RCL4 181 RCL3 182 **LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 118 RCLA | ZL\(\bar{\mathbf{Q}}_{21} + \bar{\mathbf{Q}}_{22}\) Compute ZL\(\bar{\mathbf{Q}}_{11} + \bar{\mathbf{Q}}_{12}\) | | 934
935
936
937
938
939
944
941
942
943
944
945
951
952
953 | RCL7 GSB6 1/X X2Y CHS X2Y CHS GT05 #LBLE GSB4 RCLB 1/X CHS GSB9 +R RCLA RCLA RCL9 -R X2Y R1 | Compute P ₂ /P ₁ | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 896 R4 997 STO1 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 ±18L6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLD | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}$. Compute $Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ INPUT: $\angle A$ A A A B B B B B B B B | | 934
935
936
937
938
949
941
942
943
944
945
946
949
951
952
953
954 | RCL7 SSB6 11/X XZY CHS XZY CHS GTOS 4LBLE GSB4 RCLB 1/X RCLI CHS GSB9 PR RCLA RCLA RCL9 AR XZY RJ FR XZY RJ FR FR RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCL | | 898 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 898 RCL2 899 RCL1 180 RCL4 181 RCL3 182 #LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCL9 189 GSB9 110 RCLD 111 RCLD | ZL\(\mathbf{q}\)_{21} + \(\mathbf{q}\)_{22}. Compute \(Z_L\mathbf{q}\)_{11} + \(\mathbf{q}\)_{12} INPUT: \(\alpha\) A A \(\alpha\) B B OUTPUT: \(\alpha\)_{ZL} A + B | | 934
935
936
937
938
949
941
942
943
945
946
951
952
953
954
955 | RCL7 SSB6 11/X XZY CHS XZY CHS GTOS 4LBLE GSB4 RCLB 1/X RCLI CHS GSB9 PR RCLA RCLA RCL9 AR XZY RJ FR XZY RJ FR FR RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCL | REGI | 899 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 898 RCL2 899 RCL1 160 RCL4 181 RCL3 182 LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCL4 187 RCL9 189 RCL1 187 RCL9 188 RCL4 187 RCL9 188 RCL4 189 GSB9 111 RCLD 111 RCLE 112 GSB8 | $Z_L \mathbf{U}_{21} + \mathbf{U}_{22}$. Compute $Z_L \mathbf{U}_{11} + \mathbf{U}_{12}$ INPUT: $\angle A$ $\begin{vmatrix} A & \\ B & \\ B \end{vmatrix}$ OUTPUT: $\angle Z_L A + B$ $\begin{vmatrix} Z_L A + B \end{vmatrix}$ | | 934
935
936
937
938
949
941
942
943
944
945
946
949
951
952
953
954 | RCL7 GSB6 1/X X2Y CHS X2Y CHS GT05 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCL | REGI | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 896 RCL2 999 RCL1 100 RCL4 101 RCL3 102 #BL6 103 STOE 104 R4 105 STOD 106 RCL4 107 RCL9 109 RCL1 110 RCL3 110 RCL3 110 RCL3 110 RCL3 110 RCL3 110 RCL4 110 RCL3 110 RCL5 110 RCL5 110 RCL5 111 RCL6 111 RCL6 111 RCL6 111 RCL6 111 RCL6 112 GSB8 | $Z_L \mathbf{U}_{21} + \mathbf{U}_{22}$. Compute $Z_L \mathbf{U}_{11} + \mathbf{U}_{12}$ INPUT: $\angle A$ $\begin{vmatrix} A & \\ B & \\ B \end{vmatrix}$ OUTPUT: $\angle Z_L A + B$ $\begin{vmatrix} Z_L A + B \end{vmatrix}$ | | 934
935
936
937
938
949
941
942
943
944
945
947
959
951
953
954
955
955 | RCL7 GSB6 1/X X2Y CHS ST05 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCL9 +R X2Y R1 ÷ ST0C | REGI: | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 996 R4 997 STOI 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLD 111 RCLD 111 RCLE 112 GSB8 STERS 5 17 18 18 19 11 | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}.$ $Compute \ Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ $INPUT: \ \angle A \qquad A \qquad \angle B \qquad B $ $OUTPUT: \ \angle Z_L \ A + B \qquad Z_L \ A + B $ $ B \qquad $ | | 934
935
936
937
938
949
941
942
943
945
946
951
952
953
954
955 | RCL7 GSB6 1/X X2Y CHS X2Y CHS GT05 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCLA RCLA RCLA RCLA RCLA RCL | REGI | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 896 RCL2 999 RCL1 100 RCL4 101 RCL3 102 #BL6 103 STOE 104 R4 105 STOD 106 RCL4 107 RCL9 109 RCL1 110 RCL3 110 RCL3 110 RCL3 110 RCL3 110 RCL3 110 RCL4 110 RCL3 110 RCL5 110 RCL5 110 RCL5 111 RCL6 111 RCL6 111 RCL6 111 RCL6 111 RCL6 112 GSB8 | $Z_L \mathbf{U}_{21} + \mathbf{U}_{22}$. Compute $Z_L \mathbf{U}_{11} + \mathbf{U}_{12}$ INPUT: $\angle A$ $\begin{vmatrix} A & \\ B & \\ B \end{vmatrix}$ OUTPUT: $\angle Z_L A + B$ $\begin{vmatrix} Z_L A + B \end{vmatrix}$ | | 934
935
936
937
938
949
941
942
943
944
945
947
959
951
953
954
955
955 | RCL7 GSB6 1/X X2Y CHS ST05 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCL9 +R X2Y R1 ÷ ST0C | REGI: | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 996 R4 997 STOI 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLD 111 RCLD 111 RCLE 112 GSB8 STERS 5 17 18 18 19 11 | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}.$ $Compute \ Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ $INPUT: \ \angle A \qquad A \qquad \angle B \qquad B $ $OUTPUT: \ \angle Z_L \ A + B \qquad Z_L \ A + B $ $ B \qquad $ | | 834
835
836
837
838
839
840
841
842
843
844
845
845
848
849
851
852
853
853
854 | RCL7 \$SB6 11/X X2Y CHS X2Y CHS \$T05 \$LBLE \$SSB4 RCLB 1/X RCLI CHS \$SB9 +R RCLA RCL9 +R X2Y RJ \$100 1 | REGI: | 898 RCL6 891 RCL5 892 RCL8 893 RCL7 894 GSB6 895 STOB 896 R4 897 STOI 899 RCL2 899 RCL1 180 RCL4 181 RCL3 182 ★LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLB 111 RCLE 112 GSB8 STERS 56 57 56 57 56 57 56 57 57 56 57 58 56 57 58 58 58 58 58 58 58 58 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 934
935
936
937
938
949
941
942
943
944
945
947
959
951
953
954
955
955 | RCL7 GSB6 1/X X2Y CHS ST05 #LBLE GSB4 RCLB 1/X RCLI CHS GSB9 +R RCLA RCLA RCL9 +R X2Y R1 ÷ ST0C | REGI: | 999 RCL6 991 RCL5 992 RCL8 993 RCL7 994 GSB6 995 STOB 996 R4 997 STOI 998 RCL2 999 RCL1 180 RCL4 181 RCL3 182 LBL6 183 STOE 184 R4 185 STOD 186 R4 187 RCL9 188 RCLA 189 GSB9 110 RCLD 111 RCLD 111 RCLE 112 GSB8 STERS 5 17 18 18 19 11 | $Z_L \mathbf{q}_{21} + \mathbf{q}_{22}.$ $Compute \ Z_L \mathbf{q}_{11} + \mathbf{q}_{12}$ $INPUT: \ \angle A \qquad A \qquad \angle B \qquad B $ $OUTPUT: \ \angle Z_L \ A + B \qquad Z_L \ A + B $ $ B \qquad $ | | 113 RTN | |
ute I ₂ /V ₁ | | | | | | |-------------------------------------|---|---|------------------------------------|--------------------|--------|---------------|---------------| | .114 *LBLc
115 RCL2 | Compo | ite 1 ₂ / V ₁ | | | | | | | 116 RCL1 | | | | | | | | | 117 RCL4 | i | | | | | | | | 118 RCL3 | | | | | | | | | 119 GSB€ | | | | | | | | | 120 1/X | | | | | | | | | 121 X#Y | | | | | | | | | 122 CHS
123 X≇Y | l | | 1 | | | | | | 123 X≢Y
124 CHS | | | | | | | | | 125 GT05 | | | | | | | | | 126 #LBLd | Compu | ite V ₂ /I ₁ | 1 | | | | | | 127 RCL6 | | | | | | | | | 128 RCL5 | | | | | | | | | 129 RCL8 | | | | | | | | | 130 RCL7
131 GSB6 | l | | | | | | | | 131 GSB6
132 RCLA | | | | | | | | | 133 RCL9 | ı | | | | | | | | 134 Rt | - 1 | | | | | | | | 135 CHS | ı | | | | | | | | 13€ R1 | 1 | | | | | | | | 137 1/X | | | | | | | | | 138 XZY
139 GSB9 | 1 | | | | | | | | 140 GT05 | - 1 | | | | | | | | 141 #LBL8 | Subro | tine to add com | nlev | | | | | | 142 →R | numbe | | piex | | | | | | 143 RJ | | | | | | | | | 144 RJ | - 1 | | | | | | | | 145 →R | - 1 | | | | | | | | 146 X2Y
147 R4 | 1 | | | | | | | | 148 + | 1 | | | | | | | | 149 R4 | | | | | | | | | 150 + | | | | | | l | | | 151 R1 | | | | | | | | | 152 →P
153 RTN | | | | | | | | | 154 #LBL9 | 1 | | | | | | | | 155 R4 | | itine to multiply
ex numbers. | | | | | | | 156 × | 10000 | A Hambers. | | | | | | | 157 R4 | | | | | | | | | 158 +
159 Rt | | | | | | | | | 159 KT
160 RTN | | | | | | | | | 161 R/S | | | | | | | | | | - 1 | | | | | | | | | - 1 | - 1 | | | | | | | | | | DEL C | | FLAGS | | CET CTATUS | | | A Z _L B
→Z _{in} | Ic LAI | BELS | E _ D /D | | | SET STATUS | | | | ~ ~ \/ /\/ | | | | | | | | a b | $C \rightarrow V_2/V_1$ $C \rightarrow I_2/V_1$ | $D \rightarrow I_2/I_1$ $D \rightarrow I_2/I_1$ | E → P ₂ /P ₁ | ⁰ PRINT | ON OFF | TRIG
DEG ☑ | DISP
FIX 🗆 | | | | LAE | BELS | | FLAGS | | SET STATUS | | |----------------------|-----------------------------------|------------------------------------|-------------------------|--|---------|--------|-----------------|-----------------| | A ZL | ^B →Z _{in} | $^{C} \rightarrow V_{2}/V_{1}$ | $D \rightarrow I_2/I_1$ | $E \rightarrow P_2/P_1$ | O PRINT | FLAGS | TRIG | DISP | | а | b | C → I ₂ /V ₁ | $d \rightarrow V_2/I_1$ | е | 1 | ON OFF | DEG 🛭 | FIX 🗆 | | O Printy & x | 1 | 2 | 3 | ⁴ Z ų ₂₁ + ų ₂₂ | 2 | 1 🗆 🕱 | GRAD □
RAD □ | SCI □
ENG ko | | ⁵ Display | ⁶ Z _L A + B | 7 | ⁸ CADD | 9 CMULT | 3 | 3 🗆 🕱 | TIAD G | n 3 | # **Reactive L-Network Impedance Matching** | | | | T 053 | | | | |-------------|---------------|--|---------|---------------------|----------------|--| | 001 | *LBLA | l | 057 *LB | | | change Z_S and Z_L . | | 992 | STO1 | Store R _L | | B2 | Cor | mpute X _{1 (+)} . | | 993 | R↓ | | | B1 | | mpute X ₂ . | | 004 | STO2 | Store X _L | | B5 | | | | 005 | R/S | | | BE | | | | 906 | *LBLE | Store R _S | 062 GS | B 5 | | | | 907 | ST03 | , , | 063 | + | Sav | e X ₂ in LSTx. | | 908 | R.J. | | 964 GS | B 2 | | change Z _S and Z _L . | | 009 | ST04 | Store X _S | 065 LS | TX | | cover X ₂ . | | 610 | R/S | | 966 F | TN | | | | 011 | #LBL1 | Subroutine to compute | 967 #LE | l d | Ev | change Z _S and Z _L . | | 012 | RCL2 | | | B2 | | | | 013 | XS | $X_{1(+)}$ and $X_{1(-)}$. | | B1 | 0 | mpute X ₁₍₋₎ . | | 014 | RCL1 | | | 15 | | | | | | | | | l | | | 015 | Χs | | | B 5 | | | | 016 | + | | | BE | Cor | mpute X ₂ | | 017 | RCL3 | i | | B5 | - 1 | | | 018 | × | | 074 | + | Sav | e X ₂ in LSTx. | | 019 | RCL1 | | | B 2 | | change Z _S and Z _L . | | 020 | RCL3 | | 076 LS | TX | | cover X ₂ . | | 021 | - | | 977 F | TN | | | | 922 | ÷ | | 978 *LE | l F | e | proutine to compute | | 023 | LSTX | | | 07 | | | | 024 | 1/8 | | | L2 | X ₂ | | | 025 | RCL3 | | 981 | + | ł | | | 026 | X | | | L3 | 1 | | | 827 | RCL2 | | | | - 1 | | | 828 | X | | 083 | × _ | i | | | 029 | χz | | | L7 | i | | | | | | | L4 | ı | | | 939 | LSTX | | 986 | + | - 1 | | | 031 | R↓ | | | L1 | ı | | | 032 | + | | 988 | X | ĺ | | | 033 | 1% | | 089 | - | l | | | 034 | RŤ | | | L1 | 1 | | | 035 | X≠Y | | 091 | ÷ | 1 | | | 036 | - | | | ?TN | 1 | | | 037 | ST05 | | 893 *LI | BL2 | | proutine to exchange | | 938 | LSTX | | 094 RI | L1 | | | | 039 | ENT† | | 095 RI | L3 | ∠s | and Z _L . | | 949 | + | | 896 S | 01 | | | | 041 | + | | | ₹₹Y | | | | 842 | ST06 | 1 | | 103 | ı | | | 843 | RTH | | | L2 | ı | | | 844 | *LBLC | | | L4 | - 1 | | | 045 | GSB1 | Compute X ₁₍₊₎ | | 102 | ı | | | 846 | GSB5 | | | 102
{ 2 Y | l | | | | | | | | | | | 047 | ESBE | Compute X ₂ | | T04 | ı | | | 048 | GSB5 | 1 | | RTN | l | | | 049 | RTN | | | BL5 | פום | SPLAY ROUTINE | | 950 | ≉LBL c | Compute X ₁₍₋₎ | | 9? | | flag 0 | | 051 | ESB1 | | | RTX | | EN PRINT | | 95 2 | RCL5 | | | F 0 ? | 1 | | | 953 | GSB5 | | | RTN | l EL | SE | | 054 | GSBE | Compute X ₂ | 110 | R/S | | DISPLAY. | | 95 5 | GSB5 | | 111 | RTN | ı | | | 95€ | RTN | | 112 | R/S | ı | | | | | REC | SISTERS | | | | | 0 | 1 | 2 3 4 | 5 6 | 7 | 8 | 9 | | | RL | X _L R _S X _S | | 1(+) | X ₁ | | | S0 | S1 | S2 S3 S4 | S5 S6 | S | 7 S8 | S9 | | <u> </u> | Щ, | | D | | 1 | | | ^ | | С | ٢ | E | | ľ | | | | | | | l | |--|----------------|---------|-------|------------|----------------------------| | | | | | | l | | | | | | | | | | | | | | l | LABELS | FLAGS | | SET STATUS | | | IA ID IC | LABELS | | | | | | A XLTRL B XSTRS C T | LABELS D -O F | 0 PRINT | FLAGS | TRIG | DISP | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | D D E | | FLAGS | TRIG | | | ° .2 | de | 0 PRINT | FLAGS | TRIG | | | ° .2 | de | O PRINT | | | DISP FIX SCI □ ENG □ n 2 | # Class A Transistor Amplifier Bias Optimization | 001 | #LBLR | | | | 057 | STOE | | | | | |--------------------|-------------------------------|--|--------------------------------------|---------------------|--------------------------|------------------|--------------------|------------------|----------------------|------------------------| | 862 | RCL9 | 1 | Transfer V _{BEn} | nax to | € 58 | 1 | | | | | | 883 | ₽₽S | | secondary regi | | 659 | RCL1 | | | | | | | | | | | | | | | | | | 004 | ST09 | | | | 960 | Χs | | | | | | 805 | ₽₽S | 1 | | | 0€1 | - | | | | | | 1 00€ | RCL4 | l l | | | 962 | 2 | | | | | | 007 | 2 | 1 | | | 063 | ÷ | | | | | | | | 1 | | | | | | | | | | 668 | 5 | ļ | | | 064 | RCL I | | | | | | 809 | - | 1 | Compute θ_{JA} | | 965 | × | | | | | | 010 | RCL5 | 1 | | | 966 | RCL5 | | Cor | npute T | min | | 011 | | | | | 867 | X | | | | | | | - | | | | | | | | | | | 8:2 | ST 05 | | | | 868 | RCLØ | | ŀ | | | | e13 | RCLO | | | | 9 €9 | × | | | | | | 814 | Χź | 1 | | | 878 | RCL3 | | | | | | 015 | ÿ | 1 | | | | + | | | | | | | | 1. | O | | 071 | | | | | | | 816 | RCL 4 | - 1 | Compute R _{L1} | | 872 | esb3 | | | | | | 817 | RCL2 | | | | 673 | CHS | | | | | | 018 | - | I | | | 874 | 1 | | 1 | | | | | | i i | | | | • | | C | npute V | | | 0 19 | 4 | 1 | | | e75 | RCL1 | | Cor | npute v | BEN | | 020 | | 1 | | | 076 | - | | 1 | | | | 821 | 4 | 1 | | | e77 | GSB4 | | | | | | 022 | x | l | | | 6 78 | P 29 | | 1 | | | | | | 1 | | | | | | | | | | 0 23 | ÷ | | | | 0 79 | RCL9 | | ł | | | | 624
625 | STOC | l l | | | e 8e | + | | | | | | 825 | | i | | | 681 | P#8 | | | | | | 626 | • | 1. | Compute R _{E1} | | | | | 1 | | | | | * | I ' | compate nE1 | | 882 | ST09 | | ١ | | | | €27 | × | | | | 683 | RCLE | | 115 | $v_{BEX} >$ | VBEN | | 028 | STOD | 1. | | | 084 | 82.45 | | TH | EN redu | ce R _E to 0 | | 629 | #LBL0 | 11 | Begin iterative | loop. | 685 | GT02 | | | and incr | ement R _I | | 636 | RCLO | | | | | 6102 | | ELS | | | | | KLLE | - 1 | | | 68€ | | | | | e a new value | | 631
632 | .2 | | | | 9 87 | RCLI | | | | e a new value | | | ÷ | | | | 389 | ÷ | | 1 | for R _E . | | | 633 | ENT↑ | 1 | | | 889 | RCL1 | | | | | | 034 | ENT† | 1 | | | | | | 1 | | | | 835 | RCLC | 1 | | | 696 | ÷ | | | | | | | | 1 | | | 091 | RCLD | | | | | | 636 | RCLD | 1 | | | 692 | XTY | | 1 | | | | e 37 | + | 1. | Compute I _{ca} | | 893 | STOD | | 1 | | | | 638 | ÷ | 1 | Compate 1cq | | | | | 1 | | | | 639 | STOI | | | | 094 | ZCH | | 1 | | | | | | | | | 695 | | | 1 | | | | 848 | RCL5 | | | | 89€ | 5 | | I IF & | $\Delta R_E \ge .$ | 5% | | 841 | × | | | | 097 | XZY? | | Тн | EN repe | at loon | | 842 | × | - I - | Compute T _{max} | | 899 | STOR | | | flag 1 | op | | 043 | RCL2 | Ι. | ma: | • | | | | | | | | | | | | | 69 9 | F1? | | | | h problem | | 044 | + | | | | 100 | GT01 | | | SE repea | | | 045 | RCL4 | | | | 101 | SF1 | | 1 0 | once mo | re to print. | | 84€ | XZY | | IET ST | | 102 | STOR | | | | | | 847 | 8272 | ١. | IF T _{max} > T _J | nax | | | | 1 | | | | | | 1. | THEN increase | H L | 103 | #LBL1 | | 1 | | | | 848 | GT01 | | | | 104 | CF1 | | 1 | | | | 049 | ESB3 | - 1 | ELSE comput | VREY. | 185 | R/S | | Sto | n to acc | ept h _{FE} 's | | 656 | CHS | 1 | put | DEV. | 106 | STOP | | 1 5,0 | p to acc | Christs a | | | RCL1 | | | | | | | 1 | | | | 051
052 | | l | | | 107 | XZY | | | re hFEm | | | | . 1 | | | | 108 | STDA | | Sto | re h _{FEm} | iax | | 6 53 | + | | | | 189 | RCL1 | | 1 | | | | 85 4 | GSB4 | ļ | | | liie | 2 | | 1 | | | | 855 | RCLE | J | | | 111 | × | | l | | | | 05€ | + | 1 | | | | | | l | | | | 636 | | | | | 112 | RCLI | | | | | | | | | | REGIS | STERS | | | | | | | ° v _{cc} | ¹ ∆I _{cq} | ² T _{Amax} ,R _B | 3 T _{Amin} ,V _{BB} | 4 T _{Jmax} | $^{5}P_{D}, \theta_{JA}$ | 6 I ₁ | 7 ∆V _{BE} | 8 V _B | | 9 V _{BEN} | | | | | | | | | | V B | Emin | | | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | | S9 | | | | | | | | | | | | V _{BE max} | | | В | | c | | D | | E | | lı . | | | h _{FEmax} | ا | hFEmin | R _{Ln} | | R _{En} | | V _{BEX} | | Ico | | | Used | ¹ Used | ² Used | | ³ Used | 4 Us | ed | Used 2 | 0 X
1 X
2 X | DEG ₺
GRAD □
RAD □ | FIX □
SCI □
ENG ☑ | |--------------------|-------------------|-------------------|-------|--|------|------------------------------|-------------|-------------------------|--------------------------|-------------------------| | `→Ţ I _c | ^B Used | c | | d | e | | 1 Head | FLAGS
ON OFF | TRIG | DISP | | | | Ic | | ELS
D | E | | FLAGS | | SET STATUS | | | 167
168 | ÷
RCLĐ | | | | | | | | | | | 16€ | PRST | | PRINT | R ₁ , R ₂ , R _L , R | E | 221 | K/S | | | | | | RCLD
RCLD | | | | | 22 0
221 | STOØ
R∕S | | | | | 163 | ÷
RCLC | | - | | - | 219 | STOC | | | | | 162 | RCL3 | | | | | 217
218 | RCLC | | R _{Ln+1} | | | | LSTX | | Compu | te R ₂ | | 21€ | 1 | | | C., | | 159 | x | | | | | 214
215 | 1 | | R _{Ln+1} ←R | In x 1.1 | | | RCL2
RCL0 | | | | | 213 | | | | | | 15€ | X
DOLO | | - | | - | 212 | STOD | | | | | | RCL2 | | | | | 21 0
211 | ≉LBL2
Ø | | UE _ 0 | | | 153
154 | X ≇ Υ
÷ | | | | | 289 | RTH | |
R _E ←0 | | | | RCLE | | Compu | te R ₁ | | 208 | + | | | | | 151 | ST03 | | _ | | - | 206
207 | X X | | | | | 149
150 | RCL9 | | | | | 2 9 5
2 9 6 | LOG
RCL7 | | 1 | | | 148 | X
BCI 0 | | | | | 204 | ÷ | | | | | 147 | - | | | | | 202
203 |
RCLE | | """ | ic. | | 145
146 | RCL1 | | | | | 2 0 1
2 0 2 | F1?
PRTX | | IF flag 1
THEN PRI | NT I. | | 144 | x | | Compu | te V _{BB} | | 200 | × | | l | | | | RCLI | | | | | 198 | | | 1 | | | 141
142 | RCLD
+ | | | | | 197
1 9 8 | | | | | | 14€ | ÷ | | | | | 196 | | | | | | | RCLE | | | | | 195 | | | | | | 137
138 | ÷
5702 | | _ | | _ | 193
194 | | | | | | 13€ | RCLI | | | | | 192 | | | | | | 135 | ÷ | | | | | 191 | | | 0.0022 (x | - 25) | | 133
134 | <i>x</i> | | | | | 189
196 | | | Compute | | | | RCLB | | | | | 188 | | | Compute | | | 131 | + | | | | | 187 | 2 | | | | | 129
1 30 | 1
RCL1 | | | | | 185
186 | | | THEN PRI | NT T. | | 128 | x | | | | | 184 | | | IF flag 1 | | | 127 | RCLA | | | | | 183 | RTH | | | | | 125
126 | RCL1 | | | | | 181 | | | | | | 124 | PC 1 | | | | | 186
181 | | | | | | 123 | x | | | | | 179 | 1 | | | | | 122 | RCLA | | Compu | te R _B | | 178 | | | | | | 12 0
121 | RCLE | | | | | 176
177 | | | | | | 119 | - | | | | | 175 | | | | | | 118 | RCL9 | | | | | 174 | RCLE | | | • | | 11€
117 | RCLE
+ | | | | | 17:
17: | | | Compute A | A _D | | :15 | X
DC/ F | | | | | 171 | | | | | | | RCLD | | | | - 1 | 170 | | | 1 | | # **Transistor Amplifier Performance** | 198 | *LBLA | | T | | | 857 | RCL3 | | | | | | |-----------------|----------------------------------|---------------|--------|-----------------------|-----------------|------------------------------------|---------------|---|-----------------------|--------|---------|------------| | 882 | 2 | | 1 | | | 85 8 | RCL4 | | | | | | | | | | 1 | | | | | | | | | | | 883 | × | | l | | | 85 9 | ESB9 | | 1 | | | | | 804 | 2 | | ı | | | 968 | RCL2 | | l | | | | | 005 | 1 | | Com | oute stor | age location. | 861 | RCL1 | | | | | | | 886 | - | | l | | | 962 | CSB8 | | | | | | | 997 | STOI | | ı | | | 863 | STOR | | | | | | | 300 | R↓ | | ı | | | | | | | | | | | | | | ı | | | 964 | XZY | | | | | | | 009 | STO: | | Store | hii | | 865 | STOI | | | | | | | 818 | ISZI | | l | , | | 866 | F1? | | | IF t | flag 1 | | | 011 | R↓ | | ı | | | 867 | CSB5 | | | TH | EN PRI | NT or | | 812 | STO: | | Store | A | | | | | | | PLAY. | | | 613 | RTN | | 31016 | v _{ij} | | 968 | XZY | | | | | | | | | | | | | 869 | F1? | | | | flag 1 | | | 814 | *LBLB | | l | | | 878 | ESB5 | | | | EN PRI | NT or | | 815 | ST07 | | Store | R ₁ | | 871 | F1? | | | DIS | PLAY. | | | 81€ | X≆Y | | ı | - | | 672 | SPC | | | | | | | 817 | ST08 | | Store | Α. | | | | | i | | | | | | | | 0.016 | V.L | | 073 | RTH | | | | | | | 818 | RTN | | | | | 874 | *LBLD | | l | Cor | npute A | vs | | 019 | *LBLb | | ı | | | 875 | CF1 | | j | | | | | 626 | ST05 | | Store | Re | | 876 | GSBe | | | Cor | noute Z | in without | | 821 | XZY | | | | | | | | i | pri | iting. | W) | | 822 | STO6 | | Store | Δ. | | 877 | SF1 | | | , PIII | iting. | | | | | | Store | us. | | 9 78 | RCL 6 | | | | | | | 023 | RTH | | | | | 9 79 | RCL5 | | 1 | | | | | 824 | *LBLc | | Comp | ute A _i | | 880 | CSB8 | | | | | | | 825 | GSB7 | | l | | | 881 | 1/X | | l | | | | | 826 | X#Y | | | | | 082 | XZY | | 1 | | | | | | | | l | | | | | | 1 | | | | | 827 | CSB5 | | | | | 883 | CHS | | | | | | | 828 | XZY | | l | | | 8 84 | XZY | | | | | | | 829 | CSB5 | | l | | | 85 | RCL9 | | | | | | | 636 | SPC | | l | | | 886 | RCLA | | 1 | | | | | | RTH | | ı | | | | | | | | | | | 031 | | | | | | 887 | £5 8 9 | | | | | | | 832 | *LBLC | | Comp | ute A _v | | 888 | RCL7 | | | | | | | 03 3 | CF1 | | 1 | | | 889 | RCL8 | | | | | | | 834 | CSBe | | Comp | ute Z _{in} v | without | 898 | CSB9 | | 1 | | | | | 835 | SF1 | | printi | na. "' | | 891 | XZY | | | | | | | 936 | 1/X | | | | | | | | 1 | | | | | | 1/4 | | l | | | 092 | esb5 | | | | | | | 837 | XZY | | l | | | 893 | XZY | | | | | | | 838 | CHS | | | | | 894 | CSB5 | | | | | | | 039 | XZY | | | | | 895 | SPC | | 1 | | | | | 848 | RCL7 | | | | | | | | | | | | | 841 | RCL8 | | | | | 896 | RTH | | | - | | | | | | | ŀ | | | 897 | *LBLE | | I | Con | npute Z | out | | 042 | esb9 | | l | | | 29 8 | RCL2 | | ı | | | | | 843 | RCL9 | | ı | | | 89 9 | RCL1 | | ı | | | | | 844 | RCLA | | l | | | 180 | RCL6 | | ı | | | | | 845 | GSB9 | | l | | | | | | | | | | | 846 | XZY | | l | | | 101 | RCL5 | | I | | | | | | | | l | | | 1 0 2
1 0 3 | CSB8 | | ı | | | | | 847 | ese5 | | l | | | | 1/X | | l | | | | | 848 | X≇Y | | I | | | 184 | XZY | | l | | | | | 849 | CSB5 | | l | | | 165 | CHS | | I | | | | | 858 | SPC | | l | | | 186 | X≢Y | | 1 | | | | | | RTH | | l | | | | | | ł | | | | | 95 1 | *LBLe | | Com | 7 | | 107 | RCLB | | | | | | | | | | Comp | ute Z _{in} | | 108 | RCLC | | l | | | | | 95 3 | CSB7 | | I | | | 109 | CSB9 | | 1 | | | | | 85 4 | RCL7 | | l | | | 110 | RCL3 | | ı | | | | | 85 5 | RCL8 | | l | | | 111 | RCL4 | | 1 | | | | | 856 | ESB9 | | l | | | 112 | CSB9 | | | | | | | 100 | 3003 | | | | DEC. | TERS | 6303 | | | | | | | 0 | 1. | To | To . | | HEGIS | | le . | | T- | To | | To | | 10 | h ₁₁ = h _i | θ_{11} | o h₁: | 2 = h _r | θ ₁₂ | ⁵ R _S | θ_{S} | | 7 RL | 8 6 | L | 9 IAil | | Z _{in} | 1 1111 - 11 | | | | | | | | | 1 ' | _ | | | | | | 62 | | C4 | C E | ce | | 67 | tco. | | co | | S0 | S1 | S2 | S3 | | S4 | S5 | S6 | | S7 | S8 | | S9 | | | S1 | S2 | S3 | | S4 | | S6 | _ | S7 | S8 | | S9 | | | | S2 | S3 | С
_{Ө2} | | D h ₂₂ = h ₀ | S6 | E | S7
θ ₂₂ | S8 | ı | S9 | | 113 | CHS | | | | | 1€ | 9 R ‡ | | Subroutine | to multiply | |---------------------------------------|------------------------------------|-----------------------------|---------|---------------------|---------------------|------------------|--------------------|--------|------------|-------------| | | RCLE | - 1 | | | | 17 | | | complex n | | | | RCLD | | | | | 17 | | | 1 | | | | CSB8
1/X | | | | | 17 | 2 + | | l | | | 117
118 | 12A
X ⊋ Y | | | | | 17 | | | | | | 119 | CHS | | | | | 17 | | | | | | | GSB5 | | | | | 17 | 5 K/S | | 1 | | | 121 | X#Y | | | | | | | | | | | | CSB5 | | | | | l | | | | | | 123
124 | SPC
RTN | - 1 | | | | l | | | 1 | | | | LBL5 | | IF flag | • | | l | | | | | | 126 | FØ? | | | PRINT | | ł | | | | | | 127 | PRTX | | IF flag | 0 | | l | | | | | | 128 | F8? | | | RETURN | | l | | | | | | 129 | RTH | | ELSE | DISPLAY. | | 1 | | | | | | 130
131 | R/S
RTN | | | | | | | | | | | | LBL7 | | Subrou | tine to compu | te A _i . | l | | | | | | | RCLE | | | | | l | | | | | | 134 | RCLD | | | | | | | | 1 | | | | RCL7 | | | | | 1 | | | | | | | RCL8 | | | | | l | | | | | | 137
138 | GSB9 | | | | | 1 | | | | | | | ENT† | | | | | 1 | | | | | | 140 | 1 | - 1 | | | | | | | | | | | ESB8 | - 1 | | | | | | | | | | 142
143 | 1/X
X≇Y | | | | | | | | | | | 144 | CHS | | | | | | | | | | | 145 | XZY | | | | | | | | l | | | | RCLB | | | | | | | | l | | | 147 | CHS | | | | | | | | l | | | | RCLC | | | | | | | | l | 1 | | | ST09 | - 1 | | | | | | | l | | | 151 | X#Y | | | | | | | | | | | 152 | STDA | | | | | | | | ŀ | I | | 153 | XZ | - 1 | | | | | | | | | | 154 | RTH | | Cubra | | | | | | l | 1 | | 155 #
156 | LBLS
→P. | | numbe | tine to add cor | пріех | | | | l | 1 | | 157 | R↓ | | | | | | | | 1 | | | 158 | R4 | | | | | | | | | Ì | | 159 | →R
XZY | | | | | | | | | l | | 160
161 | RJ | | | | | | | | | | | 162 | + | | | | | | | | 1 | | | 163
164 | R4 | | | | | | | | l | - 1 | | | †
D+ | | | | | | | | | İ | | 165
166 | R†
→F | | | | | | | | | | | 167 | RTH | | | | | | | | 1 | | | | LBL9 | | | | | | | | | | | | - | | LAE | ELS | | | FLAGS | | SET STATUS | | | Aθ _{ij} †h _{ij} †ij | B $\theta_{L} \uparrow R_{L}$ | C →Av | | D → A _{vs} | E → | Z _{out} | ⁰ PRINT | FLAGS | TRIG | DISP | | a | b θ _S †R _S | c →A! | | d | _ | Z _{in} | 1 NO PRINT | ON OFF | DEG 😡 | FIX 🗆 | | 0 | 1 | 2 | | 3 | 4 | | 2 | 1 😡 🗆 | GRAD □ | SCI 🗆 | | 5 DISPLAY | 6 | ⁷ A _i | | ⁸ CADD | 9 C | MULT | 3 | 2 🗆 🖸 | RAD 🗆 | ENG 🗷 | | DIGITAL | L | L ~i | | LONDO | 1 - | | L | 3 🗆 😿 | | n3 | # **Transistor Configuration Conversion** | 001
802 | *LBLA
2 | | | 8 57 | RCLE | | | |---|---|---------------------------------|---|--|---|------------|---| | | | - 1 | Compute register to be | ₽5 8 | RCLD | | $y_{12}' = -(y_{12} + y_{22})$ | | 963 | X | | Compute register to be | 8 59 | esbe | | 712 (712 - 7227 | | e 94 | 2 | | used. | 860 | CHS | | | | 005 | 1 | | | 861 | ST03 | | | | 00€ | - | | | 862 | X#Y | | | | 887 | STOI | | | 863 | ST04 | | | | 888 | P.J | | | | | | | | ee 9 | STO: | - 1 | | 864 | XZY | | | | | | - 1 | Store h _{ij} | 865 | RCLC | | | | 0 10 | ISZI | | | 966 | RCLE | | | | 81 1 | R↓ | 1 | | 8€7 | ESB8 | | | | 012 | STO: | | Store θ_{ii} | 968 | RCLE | | | | 013 | RTN | | | | | | | | 014 | *LBLC | | 00.00 | 069 | RCLD | | $y_{11}' = -y_{22} + (y_{21}' + y_{12}')$ | | | | | CC→CB | 878 | ESB 8 | | + y ₁₁ | | 015 | esb0 | | Compute a new y-matrix. | e71 | CHS | | | | 01€ | *LBL3 | | | 872 | RCL2 | | $= y_{11} + y_{12} + y_{21} + y_{33}$ | | 617 | RCL1 | | Routine to transform | 873 | RCL1 | | | | €18 | RCLD | 1 | | | | | | | | | - 1 | a ₂₂ a ₂₁ | 674 | €SB€ | | | | 019 | ST01 | | 1 | 875 | ST01 | | | | 828 | R↓ | | a ₁₂ a ₁₁ | 87€ | R↓ | | | | 821 | STOD | 1 | into | 877 | ST02 | | | | 822 | RCL3 | - 1 | | 878 | RTH | | | | 623 | RCLE | 1 | [a ₁₁ a ₁₂] | | | | 05.00 | | | | | 1 1 | 879 | #LBL d | | CE→CC | | 024 | ST03 | | a ₂₁ a ₂₂ | 686 | *LBLD | | CC→CE | | 025 | R↓ | í | and then into | 881 | ESB0 |
| Compute new y-matrix | | 82€ | STOE | - 1 | | 882 | GSB7 | | Transform [y] to [h]. | | e 27 | RCL2 | 1 | 1 1 -a ₁₂ | | | | mansionin (y) to (ii). | | 828 | RCLE | | a ₁₁ a ₂₁ det a | 883 | RTN | | | | | | | [| 884 | *LBLc | | CB→CC | | 82 9 | STO2 | | | 885 | ESB0 | | Compute new y-matrix | | 838 | R↓ | | | 886 | 6703 | | Transform | | 8 31 | STOE | | | | *LBL0 | | | | 8 32 | RCL4 | 1 | | 887 | | | | | | | | | 988 | SSB7 | | Transform [h] to [y] ' | | 633 | RCLC | - 1 | | 889 | RCL2 | | | | €34 | ST04 | 1 | | 696 | RCL1 | | | | 935 | R↓ | 1 | | 891 | RCL4 | | | | 03€ | STOC | | | | | | | | 03 7 | GSB? | | | 892 | RCL3 | | $y_{12}' = -(y_{11} + y_{12})$ | | | | | | 893 | esb8 | | | | 0 38 | RTH | | | 894 | CHS | | | | e 39 | *LBL& | | CB→CE | 095 | ST03 | | | | 848 | *LBLB | - 1 | CE→CB | l €9€ | RĮ | | | | 841 | ESB8 | - 1 | | 897 | ST04 | | | | | GSB? | l | Compute a new y-matrix. | | | | | | 842 | | I | Transform [y] to [h]. | 898 | RCL2 | | | | 043 | RTH | ı | | 899 | RCL1 | | | | 844 | *LBL0 | - 1 | Transform [h] to [y] ' | 100 | RCLC | | | | 645 | ESB7 | - 1 | manaronni [n] to [y] | 181 | RCLB | | | | | RCLC | - 1 | | | | | | | 84€ | | - 1 | | 182 | esb8 | | $y_{21}' = -(y_{11} + y_{21})$ | | 847 | RCLE | - 1 | | 183 | CHS | | | | | | 1 | | 184 | STOE | | | | 84 8 | RCLE | | | 105 | X ≠ Y | | | | | | - 1 | | | | | | | 849 | RCLD | | $y_{21}' = -(y_{21} + y_{22})$ | | | | | | 849
858 | RCLD
GSB8 | | $y_{21} = -(y_{21} + y_{22})$ | 10€ | STOC | | | | 849
858
851 | RCLD
GSB8
CHS | | $y_{21} = -(y_{21} + y_{22})$ | 196
197 | STOC
X≇Y | | | | 049
050
051
052 | RCLD
GSB8
CHS
STOB | | $y_{21} = -(y_{21} + y_{22})$ | 106
107
108 | STOC
XZY
RCL4 | | | | 849
858
851 | RCLD
GSB8
CHS | | $y_{21} = -(y_{21} + y_{22})$ | 196
197 | STOC
X≇Y | | | | 049
050
051
052
053 | RCLD
GSB8
CHS
STOB
RJ | | $y_{21} = -(y_{21} + y_{22})$ | 106
107
108
109 | STOC
XZY
RCL4
RCL3 | | V22' = V11 + V12 + V2. + V | | 849
858
851
852
853
854 | RCLD
GSB8
CHS
STOB
R1
STOC | | y ₂₁ = -(y ₂₁ + y ₂₂) | 106
107
108
109
110 | STOC
XZY
RCL4
RCL3
GSB8 | | y ₂₂ ' = y ₁₁ +y ₁₂ +y ₂₁ +y | | 849
858
851
852
853
854
855 | RCLD
GSB8
CHS
STOB
R1
STOC
RCL4 | | Y ₂₁ = -(Y ₂₁ + Y ₂₂) | 186
187
188
189
118 | STOC
XZY
RCL4
RCL3
GSB8
RCL2 | | y ₂₂ ' = y ₁₁ +y ₁₂ +y ₂₁ + | | 849
858
851
852
853
854 | RCLD
GSB8
CHS
STOB
R1
STOC | | | 106
107
108
109
110
111 | STOC
XZY
RCL4
RCL3
GSB8 | | y ₂₂ ' = y ₁₁ +y ₁₂ +y ₂₁ + | | 849
858
851
852
853
854
855 | RCLD
GSB8
CHS
STOB
STOC
RCL4
RCL3 | | REG | 106
107
108
109
110
111
112
STERS | STOC
X2Y
RCL4
RCL3
GSB8
RCL2
RCL1 | | | | 849
858
851
852
853
854
855 | RCLD
GSBB
CHS
STOB
RJ
STOC
RCL4
RCL3 | ² θ ₁₁ | REG | 106
107
108
109
110
111 | STOC
XZY
RCL4
RCL3
GSB8
RCL2 | | y ₂₂ ' = y ₁₁ + y ₁₂ + y ₂₁ + y ₂₁ | | 849
858
851
852
853
854
855 | RCLD
GSBB
CHS
STOB
RJ
STOC
RCL4
RCL3 | ² θ ₁₁ S2 | REG | 106
107
108
109
110
111
112
STERS | STOC
X2Y
RCL4
RCL3
GSB8
RCL2
RCL1 | 7 ΔΔ
S7 | y ₂₂ ' = y ₁₁ + y ₁₂ + y ₂₁ + y 8 9 S8 S9 | | 849
858
851
852
853
854
855 | RCLD
GSBB
CHS
STOB
RJ
STOC
RCL4
RCL3 | 011 | REG | 106
107
108
109
110
111
112
STERS | STOC
X2Y
RCL4
RCL3
GSB8
RCL2
RCL1 | | 8 9 | | 113 GSB8 169 ST00 170 R1 171 ST0E 171 ST0E 172 RTN 173 4LBLS Subroutine to add complex numbers. Stop | | | | | | | | | |---|--|------------|----------------|---------------------------------|------------------|-------------------------|-------------|-------------| | 115 RCLE | | | | | | | | | | 11 | | | | | | | | | | 117 ESBS | 115 | RCLE | - 1 | | | | 1 | | | 119 ST00 | 11€ | RCLD | - 1 | | | | | | | 1:15 STOD | | SBS | 1 | | 173 #LBL9 | | Subroutine | e to add | | 119 | | | | | | | complex n | umbers. | | 128 STOE 121 RTW 122 aLBL7 Subroutine to convert 176 R4 R17 R12 ALBL7 RC12 ALBL7 ALBC7 ALBT7 | | | - 1 | | | | | | | 121 RTN | | | 1 | | | | 1 | | | 122 | | | | | | | 1 | | | 1223 RCL2 2 | | | ء ا | Subrouting to convert | | | 1 | | | 124 RCL1 | | | ١٩ | r - | | | | | | 125 RCLE | | | - 1 | a ₁₁ a ₁₂ | | | | | | 126 RCLE | | | - 1 | a21 a22 | | | 1 | | | 127 SSB9 128 1 | | | | 1 | | | 1 | | | 128 ST06 129 R4 139 ST07 131 RCL4 132 RCL3 132 RCLB 133 RCLB 133 RCLC 133 RCLC 134 RCLC 135 CSB9 136 CHS 137 RCL7 138 RCL6 139 CSB8 139 R4 137 RCL7 138 RCL6 139 CSB8 140 ST06 141 R1 141 R1 142 ST07 143 RCL2 144 CHS 145 ST02 144 CHS 146 RCL1 147 1/X 148 ST01 149 RCL3 140 RCL3 140 RCL3 150 RCL4 151 RCL4 152 CSB9 153 RCL4 154 RCL1 155 RCL4 155 RCL4 156 RCL2 157 RCL7 158 RCL6 159 RCL2 150 RCL2 150 RCL2 150 RCL2 151 RCL4 152 RCL3 155 RCL4 155 RCL4 155 RCL4 155 RCL4 156 RCL2 157 RCL7 158 RCL6 159 RCL2 150 RCL2 157 RCL7 158 RCL6 159 RCL2 150 RCL2 150 RCL2 151 RCL4 152 RCL3 155 RCL4 155 RCL4 155 RCL4 156 RCL2 157 RCL1 158 RCL6 159 157 RCL1 158 RCL6 157 RCL7 159 RCLC 150 | | | 1. | | | | 1 | | | 129 F 1 | | | l " | | | | | | | 129 | | | | 1 1 -a ₁₂ | | | | | | 138 SIU | | | | | | | | | | 132 RCL3 188 X 189 R4 190 H 137 KCLC 190 H 191 R7 135 KCSB9 191 R7 136 KCL6 192 HR 197 KCL7 138 KCL6 193 KCL6 195 KCL2 195 KCL6 195 KCL2 197 KCL2 197 KCL2 197 KCL2 197 KCSS5 196 KCL2 197 KCSS5 196 KCL2 197 KCSS5 196 KCL2 197 KCSS5 197 KCL2 199 KCL2 199 KCL1 199 KCL2 199 KCL2 KCL | | | - 1 | a11 a21 det a | | | | | | 1327 RCLB 189 R4 199 H2 191 R7 191 R7 192 H2 H2 192 H2 H2 H2 H2 H2 H2 H2 | | | - 1 | | | | complex n | umbers. | | 1327 RCLB 189 R4 199 H2 191 R7 191 R7 192 H2 H2 192 H2 H2 H2 H2 H2 H2 H2 | 132 | RCL3 | - 1 | | | | 1 | | | 134 | | | - 1 | | | | 1 | | | 135 6889 191 Rt 136 CHS 137 RCL7 Compute det a 193 +P 138 RCL6 194 RTH RCL2 195 48 195 48 RCL2 197 6858 195 48 RCL2 197 6858 195 48 RCL2 197 6858 195 68 RCL2 197 6858 195 RCL4 195 RCL4 195 RCL4 195 RCL5 | | RCLC | - 1 | | 190 + | | I | | | 136 | | | - 1 | | | | 1 | | | 137 RCL7 138 RCL6 195 4F 194 RTM 139 GSB8 195 4F 195 4F RTM 139 GSB8 196 RCL2 197 GSB5 142 ST07 198 RCL1 199 GSB5 142 ST07 198 RCL1 199 GSB5 144 CMS 199 GSB5 146 RCL4 145 ST02 146 RCL1 120 RCL3 146 RCL1 147
17% 280 GSB5 148 ST01 149 RCL3 280 RCL6 148 ST01 149 RCL3 280 RCL6 150 RCL4 160 RCL4 160 RCL6 151 RCL4 160 RCL6 151 RCL4 160 RCL6 152 GSB9 161 ST08 161 ST08 161 ST08 161 ST08 161 ST08 161 ST08 162 RL 163 RCL2 165 RCL2 165 RCL2 165 RCL2 166 RCL6 167 RCL7 168 GSB9 161 ST08 161 ST08 161 ST08 162 RCL2 165 RCL2 165 RCL2 165 RCL2 166 RCL6 167 RCL7 168 GSB9 161 ST08 161 ST08 161 ST08 162 RCL6 165 RCL2 165 RCL2 165 RCL2 165 RCL2 165 RCL2 165 RCL2 166 RCL6 167 RCL7 168 GSB9 161 ST08 161 ST08 161 ST08 162 RCL5 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 GSB9 169 RCL6 169 RCL6 160 RC | | | J | | | | 1 | | | 138 | | | l c | Compute det a | | | 1 | | | 139 CSB8 196 RLE 196 RLE 197 CSB5 196 RCL1 197 CSB5 198 RCL1 197 CSB5 198 RCL1 199 CSB5 199 CSB5 199 CSB5 199 199 CSB5 199 199 CSB5 199 | | | ١٣ | ompate det a | | | l | | | 140 ST06 197 SSB5 198 RCL1 197 SSB5 142 ST07 198 RCL1 199 SSB5 144 CHS 208 RCL4 145 ST02 146 RCL1 147 17% 208 CSB5 208 RCL3 208 RCL3 208 RCL3 208 RCL4 208 RCL4 208 RCL5 208 | | | 1 | | | | Print [h] | . – – – – – | | 141 | | | | | | | Finit (iii) | | | 142 ST07 198 RCL1 199 GSB5 144 CHS 145 ST02 146 RCL1 120 GSB5 147 178 178 148 ST01 149 RCL3 200 RCL4 200 RCL4 200 RCL5 | | | | | | | ĺ | | | 143 RCL2 199 CSB5 200 RCL4 145 ST02 146 RCL1 128 CSB5 200 RCL3 201 CSB5 202 RCL3 RCL5 202 RCL5 | | | - 1 | | | | | | | 144 | | | - | | | | ı | | | 145 ST02 146 RCL1 147 178 148 ST01 149 RCL3 282 RCL3 282 RCL3 282 RCL2 282 RCL6 285 286 RCL6 285 286 RCL6 287 CSB5 286 RCL6 287 CSB5 286 RCL6 287 CSB5 288 RCL1 287 RCL1 287 RCL2 287 RCL1 287 RCL1 287 RCL6 RCL | | | - 1 | | | | 1 | | | 147 17 17 18 18 18 19 19 19 19 19 | | | | 1 | | | 1 | | | 147 17 17 18 18 18 19 19 19 19 19 | | | a | 11 ← | | | 1 | | | 148 ST01 149 RCL3 150 CHS 151 RCL4 152 CSB9 153 ST03 154 R↓ 155 ST04 156 RCL2 157 RCL1 157 RCL1 158 RCLD 158 RCLD 159 RCLC 157 RCL1 158 RCLB 159 RCLC 160 CSB9 161 ST0B 161 ST0B 162 R1 162 R1 163 ST0C 164 RCL2 165 RCL2 165 RCL2 165 RCL2 165 RCL2 165 RCL2 166 RCL6 167 RCL7 168 CSB9 LABELS L | 14€ | RCL1 | - 1 | a11 | | | 1 | | | 149 RCL3 150 CHS 151 RCL4 152 CSB9 153 ST03 154 RJ 155 ST04 155 ST04 156 RCL2 157 RCL1 158 RCLB 157 RCL1 158 RCLB 159 RCLC 157 RCL1 158 RCLB 159 RCLC 159 RCLC 151 RCLB 150 RCLC 151 RCLD 151 RCLD 152 RCLD 155 RCLB 155 RCLB 156 RCLB 157 RCL1 158 RCLB 159 RCLC 159 RCLC 159 RCLC 150 RCLC 150 RCLC 151 RTN 152 RCLB 153 RCLC 154 RCC 155 RCLC 155 RCLC 156 RCLC 157 RCL1 166 RCLC 167 RCL7 168 SSB9 161 ST0B 162 RJ 163 ST0C 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 SSB9 LABELS LABELS LABELS FLAGS SET STATUS A θ _{ij} th _{ij} tij | | | - 1 | | | | I | | | 158 | | | 1 – | | 204 RCLC | | 1 | | | 151 RCL4 287 SSB5 288 RCL5 288 RCL5 218 | | | l l | | 205 GSB5 | | 1 | | | 152 GSB9 153 ST03 154 R↓ 155 ST04 156 RCL2 157 RCL1 158 RCLB 159 RCLB 161 ST08 161 ST08 162 R↓ 163 ST0C 164 RCL2 165 RCL1 166 RCL2 167 RCL1 166 RCL2 167 RCL1 167 RCL1 168 RCL8 169 RCLC 160 RCL2 170 RCL1 180 RCLC 181 RCLC 181 RCLC 181 RCC RC | | | | | 20€ RCLB | | ì | | | 152 | | | | | | | İ | | | 154 Rt 219 RCLD 155 ST04 211 st.BL5 212 F8° 156 RCL2 213 PRIX 214 F8° 215 RCLD 215 RTN 216 Rt Rt Rt Rt Rt Rt Rt R | 152 | CSB9 | l a | 12 ← -a ₁₂ | | | | | | 154 Rt | 153 | ST03 | " | a ₁₁ | 209 GSB5 | | | | | 155 S104 156 RCL2 157 RCL1 158 RCL8 159 RCLB 159 RCLC 160 SSB9 161 S10B 162 RJ 162 RJ 163 STOC 164 RCL2 165 RCL1 166 RCL6 167 RCL1 166 RCL6 167 RCL7 168 SSB9 ■ a21 ← a22 ← det a | | R‡ | | | | | 1 | | | 156 RCL2 212 F8° RCL1 213 PRTX 214 F8° RCL5 215 RTN 215 RTN 215 RTN 215 RTN 215 RTN 215 RTN 216 RTS | | | 1 | | | | 1 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1- | | | | IE flag 0 | | | 158 | | | 1 | | | | | NT | | 159 | | | 1 | | | | | | | 166 C589 161 STOB 162 R4 163 STOC 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 C589 LABELS LABELS LABELS FLAGS SET STATUS A θ _{ij} †h _{ij} †ij B CB+CE CB+CC CB | | | 1 | | | | L ELSE DISI | LAY. | | 162 RJ 163 STDC 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 GSB9 LABELS FLAGS SET STATUS A B ₁₁ th ₁₁ tij B CB+CE CB+CC CB+ | | | 1. | _ a ₂₁ | | | 1 | | | 162 RJ 163 STDC 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 GSB9 LABELS FLAGS SET STATUS A B ₁₁ th ₁₁ tij B CB+CE CB+CC CB+ | | | a ₂ | 21 - 311 | | | 1 | | | 163 STOC 164 RCL2 165 RCL1 166 RCL6 167 RCL7 168 SSP9 LABELS LABELS FLAGS SET STATUS A θ _{ij} th _{ij} tij B CB+CE CB+CC C CE+CC C CB+CC CB+CC C CB | 162 | BT
2.00 | 1 | -11 | | | | | | 164 | | | 1 | | 218 R/S | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | - | | | | 1 | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1 | det a | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | a ₂ | 12 + | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | ~11 | | | I | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 168 | 6589 | | | L | | L | | | a b CB→CE CB→CC d CE→CC e 1 ON OFF O NO N | | | To | | | | SET STATUS | | | a b CB \rightarrow CE c CB \rightarrow CC d CE \rightarrow CC e 1 ON OFF O SO DEG SO FIX D | | | IC CR+CC | CE+CC F | RINT [h] O PRINT | FLAGS | TRIG | DISP | | 0 10 DEG 10 FIX D | ^A θ _{ij} †h _{ij} †ij | B CB←CE | I CD CC | | | | | J.U. | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ^A θ _{ij} †h _{ij} †ij | 00 00 | | d CE - CC | [1 | ON OFF | l | | | 5 DISPLAY 6 7 [h] ≠[y] 8 CADD 9 CMULT 3 2 ⊠ RAD □ ENG 🕏 n 3 | ^A θ _{ij} †h _{ij} †ij
a | p CB→CE | c CB→CC | 02.00 | 1 | 0 k 🗆 | | FIX 🗆 | | I DISPLACE [IN] ← [I | a | p CB→CE | c CB→CC | 02.00 | 2 | 0 k | GRAD □ | SCI 🗆 | | | a
0 [h] → [y] ' | b CB→CE | c CB→CC | 3 4 | | 0 🔊 🗆
1 🗆 🗷
2 🗆 🗷 | GRAD □ | SCI 🗆 | # | ^ | | B M ₂₁ | , T ₂₁ ' | C θ ₂ | <u>Ι</u> ,, ΔΤ ₂₁ ' | D M ₂₂ , T ₂ | | E | θ ₂₂ , ∠ T ₂₂ ' | | l poi | inter | | |------------------|---------------|-------------------|---------------------|--|--|------------------------------------|--------------------------|---|---------------------------------------|------------------|---|----------------------------------|----------| | S0 | S1 | S2 | | S3 | 1 1 | S5 | S6 | | S7 | S8 | | S9 | | | 0 Z ₀ | 1 M11,T | 11' 2 θ1 | 1,LT11' | ³ M ₁₂ , T ₁₂ ' | 4 θ ₁₂ , ∠T ₁₂ ' | | 6 ∠ 2/D | | 7 | 8 | | 9 | | | #3£ | P281 | | | | REGIS | 112
STERS | ST×1 | | | Cor | npute (I | 1 | \dashv | | 855
856 | CHS
GSB1 | | 1" | T] = -[S] | | 111 | RCL0 | | | Con | npute (1 | r'1 | | | ₽54 | 1 | | | = -1 | | 110 | CSB6 | | | | L٥ | 1] " | | | 853 | STOO | | | | | 109 | GSB3 | | | Т= | [| (S) | | | 851
852 | ST01
*LBLC | | -
S- | | | 197
198 | 1
CHS | | | ξ= | - <u> </u> | ٦. | | | 850 | CHS | | (S | S] = -[T'] | | 186 | STOP | | | S→ | | | | | 049 | 1 | | ξ: | = -1 | | 105 | *LBLE | | | | | | | | 848 | €SB€ | | l c | ompute [T'] | | 104 | RTH | | | [1] | - lo | 1 ('') | | | 846
847 | 1/X
CSB1 | | ξ:
(7 | = 1/Z ₀
T] = [Z]/Z ₀ | | 102
103 | ST×1
ST×3 | | | (T) | ← [ξ | 0]
[T] | | | 845 | ST00 | | 1 | →S | | 101 | *LBL3 | | | | | | | | 844 | *LBLc | | - | - <u>-</u> | | 100 | CHS | | | ξ= | | | | | 843 | RTH | | Ι' | o | ξ] · · · | 89 9 | 1 | | | Cor | npute [1 | r') | | | 842 | CSB4 | | n l | r] ← [‡] | (T) | 898 | CSB6 | | | | h ₂₁ | h ₂₂ Z ₀ | | | 848
841 | #LBL1
CSB3 | | ı | Γε | ٥٦ | 896
897 | ST OD | | | [T] | • | | (H) | | 839 | 1/X | | ξ · | = 1/Z ₀ ; [Y] | = [T']/Z ₀ | 895 | RCLD | | | | 7. | h ₁₂ | 1 | | 838 | RCLO | | ۱à | ompute [T'] | | 894 | ST÷1 | | | | h ₁₁ | 7 | | | 837 | ESB6 | | ĺπ | T] = [S] | | 893 | STOO | | | H→ | S | | - | | 835
836 | *LBLB
STOR | | s- | | | 891
892 | RTH
≉LBLe | | | _ | _ | | | | 834 | €TO€ | | C | ompute [T'] | ; [S] = [T'] | 898 | STOD | | | | t21' | Z ₀ t ₂₂ ' | | | 933 | CSB1 | | (1 | $T] = Z_0 [Y]$ | | 689 | × | | | G= | Ζ, | | | | 832 | STOO | | - 1' | • | | 987
988 | RCLD | | | | t11 | t12' | | | 636
631 | RTN
≉LBLb | | - |
'→S | | 88£
887 | RCL0
ST÷1 | | | | г. , | ٠, | | | 829 | STOI | | | | | 885 | ESB6 | | - 1 | Cor | npute (1 | Γ'] | | | 627
628 | - | | | | | 884 | SSB4 | | 1 | | - | - | | | | 1 | | - 1 | | | 98Z | CHS | | | (., | Lo | -1] " | | | 825
826 | x
2 | | - 1 | | | 981
982 | ST08 | | | [T] | - ' | (S) | | | 824 | 2 | | re | egister location | on. | 888 | *LBLD | | | Ę = | -1
Γ₁ | ٦٦ | | | 823 | #LBL@ | | | ubroutine to | | 0 79 | RTN | | | S→ | | | | | 822 | RTN | | - | | | 878 | STOD | | | | | | | | 821 | R/S | | [" | DISPLAY. | | 876
877 | X | | | | | | | | 819
828 | FO?
RTN | | l e | LSE | | 875
876 | LSTX
RCLD | | | | | | | | 618 | PRTX | | Ι" | HEN PRINT | | 874 | STOR | | | | | | | | 817 | FØ? | | IF | F flag O | | 073 | x | | | | Lο | ŧJ | | | 816 | *LBL5 | | | ISPLAY RO | UTINE | 872 | KULB
X Z Y | | | [T] | $\leftarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | (T) | | | 814
815 | CSB5
X≇Y | | -
1 | | | 870
871 | *LBL4
RCLB | | | | Г1 | ٥٦ | | | 013 | RCL: | | - 1 | | | 969
870 | CHS | | | | | | | | 0 12 | ISZI | | - 1 | | | 868 | 1 | | | ξ= | -1 | | | | 011 | RCL: | | ij- | →θ _{ij} , M _{ij} | | 867 | €SB€ | | | | npute [7 | Γ'] | | | 810 | ESB0 | | ١٢ | nspidy outpu | ı uală. | 866 | STOD | | | | | | | | 888
889 | RTN
*LBLA | | - | isplay outpu | | 9 64
965 | RCLD
X | | | | 921 | 922/2 | ال" | | 887 | STO: | | 1 | | | 863 | 1/% | | | [T] | | g ₂₂ /2 | , | | 88€ | R↓ | | ı | | | 962 | STX1 | | | (- ' | | 911 912 | | | 005 | ISZI | | | | | 86 1 | STOR | | | G→ | · _ | | _ | | 884 | STOI | | 1 | | | 969 | *LBLd | | | | | | | | 982
983 | ESB6 | | Si | tore input da | ta. | 658
659 | RCL8
CT01 | | | (Z) | = Z ₀ [7 | Γ'] | | | 801 | *LBL a | | ۱. | | | 85 7 | CSB6 | | 1 | = ٤ | Z _o | | | | 113 | | | | | | | | | | |--|---|--|--------------------|-------|---|--|--------------------------|---|------------------------| | | 1/X | | | _ | 169 | XZY | | | | | | CLD | 1 1 | t11'Z0 t1 | ا 🖪 ر | 178 | | | | | | 115 | X | , . | -11 -0 -1 | ' II | 171 | | | | | | | TOD | [H] = | , t ₂ | ' [] | 172 | | | 1 | | | | | 1 1 | t21' = | _ | | | | ı | | | | RTN | 1 1 | _ Z, | ال | 173 | | | | | | | BL6 | | | 1 | 174 | | | ١. | | | | CL2 | | ne to compute | e | 175 | | | t21' | | | 120 RI | CL! | [T']. | | - 1 | 176 | XZY | | 1 | | | 121 6 | SB7 | 1 | | - 1 | 177 | STOC | | | | | | T05 | 1 | | - 1 | 178 | RCL1 | | 1 | | | | XZY | 1 | | - 1 | 179 | RCLD | | Rearrange t | u' and taa' | | | T06 | 1 | | - 1 | 180 | ST01 | | | 11 122 | | | | 1 | | - 1 | | X₹Y | | | | | | CLE | ı | | - 1 | 181 | | | 1 | | | | CLD | 1 | | - 1 | 182 | | | | | | | S87 | 1 | | - 1 | 183 | | | | | | | CL5 | 1 | | - 1 | 184 | RCLE | | | | | 129 R | CT 6 | ı | | - 1 | 185 | ST02 | | | | | 130 C | SB9 | 1 | | - 1 | 18€ | X ≠ Y | | | | | | T05 | 1 | | - 1 | 187 | STOE | | | | | | XZY | 1 | | - 1 | 188 | RTH | | l | | | | T06 | 1 | | - 1 | 189 | #LBL5 | | Cubrouting t | multiply by | | | | 1 | | - 1 | | | | 2/D and add | | | | CL4 | 1 | | - 1 | 190 | RCL5 | | 2/D and add | -1 L U. | | | CT3 | 1 | | - 1 | 191 | RCL€ | | 1 | | | | CTB | 1 | | - 1 | 192 | ESB9 | | 1 | | | 137 R | CTC | 1 | | | 193 | 0 | | l | | | 138 G | SB9 | 1 | | - 1 | 194 | ENTT | | | | | | CHS | 1 | | | 195 | 1 | | l | | | | CT 6 | 1 | | - 1 | 196 | CMS | | | | | | CL5 | 1 | | | 197 | CTOS | | l | | | | | 1 | | | | #LBL? | | Subrautian t | | | | SBE | 1 | | | 198 | | | Subroutine to | o add I∠U. | | 143 | .2 | 1 | | | 199 | | | 1 | | | 144 | ÷ | ı | | - 1 | 200 | ENT† | | | | | | 1/X | ١, | | - 1 | 201 | 1 | | | | | 146 S | T05 | 2
D | | - 1 | 282 | *LBL8 | | | | | 147 | X = Y | D | | - 1 | 293 | ÷₽ | | Subroutine to | add com- | | 148 | CHS | 1 | | - 1 | 204 | R.J. | | plex numbers | i. | | | T06 | 1 | | | 205 | R↓ | | 1. | | | | | | | | | | | | | | | CIF | ı | | | | AD. | | l | | | | CLE | | | | 2 8 6 | →R | | | | | 151 R | CLD | | | | 286
287 | X≇Y | | | | | 151 Ri
152 G | CLD
SB7 | | | | 2 8 6
28 7
2 8 8 | XZY
R4 | | | | | 151 R
152 G
153 G | CLD
SB7
SB5 | | | | 286
287
288
289 | X2Y
#4 | | | | | 151 RI
152 GI
153 GI
154 SI | CLD
SB7
SB5
TOD | t111' | | | 286
287
288
289 | X2Y
R1
+
R1 | | | | | 151 RI
152 GI
153 GI
154 SI
155 SI | CLD
SB7
SB5
TOD
X2Y | t11' | | | 206
207
208
209
210
211 | X2Y
R1
+
R1
+ | | | | | 151 RI
152 GI
153 GI
154 SI
155 SI | CLD
SB7
SB5
TOD | t ₁₁ ' | | | 206
207
208
209
210
211
212 | X2Y
R1
+
R1
+
R1 | | | | | 151 Ri
152 Gi
153 Gi
154 Si
155 Si
156 Si | CLD
SB7
SB5
TOD
X2Y | t11' | | | 206
207
208
209
210
211 | X2Y
R1
+
R1
+ | | | | | 151 Ri
152 Gi
153 Gi
154 Si
155 Si
156 Si | CLD
SB7
SB5
TTOD
X2Y
TOE
CL2 | t11' | | | 206
207
208
209
210
211
212 | X2Y
R1
+
R1
+
R1 | | | | | 151 Ri
152 Gi
153 Gi
154 Si
155 I
156 Si
157 Ri
158 Ri | CLD
SB7
SB5
TOD
X2Y
TOE
CL2
CL1 | t11' | | | 206
207
208
209
210
211
212
213
214 | X2Y
R↓
+
R↓
+
R↑
→P
RTN | | Subscutice | a mutinly | | 151 Ri
152 Gi
153 Gi
154 Si
155 Si
156 Si
157 Ri
158 Ri
159 Gi | CLD
SB7
SB7
STOD
X2Y
TOE
CL2
CL1
SB7 | t11' | | | 286
287
288
289
210
211
212
213
214
215 | X2Y
R↓
+
R↓
+
R↑
+P
RTN
#LBL2 | | Subroutine to | o multiply | | 151 Ri
152 G
153 G
154 S
155 S
156 S
157 Ri
158 Ri
159 G | CLD
SB7
SB5
TOD
X2Y
TOE
CL2
CL1
SB7
SB5 | | | | 286
287
288
289
210
211
212
213
214
215
216 | X2Y
R1
+
R1
+
P
RTN
#LBL2
RCL5 | | Subroutine to by 2/D. | o multiply | | 151 Ri
152 Gi
153 Si
154 Si
155 Si
156 Ri
157 Ri
158 Ri
159 Gi
160 Si | CLD
587
587
5700
XZY
TOE
CL2
CL1
587
587
587 | t ₁₁ ' | | | 286
287
288
289
210
211
212
213
214
215
216
217 | X2Y
R1
+
R1
+
P
RTM
#1B1.2
RC1.5
RC1.6 | | by 2/D. | | | 151 Ri
152 G
153 S
154 S
155 S
156 S
157 Ri
158 Ri
159 G
160 C
161 S | CLD
587
585
5700
XXY
TOE
CL2
CL1
587
585
701
XXY | | | | 286
287
288
289
210
211
212
213
214
215
216
217
218 | X2Y
R1
+
R1
+P
RTN
#LBL2
RCL5
RCL6
#LBL9 | | by 2/D.
Subroutine to | | | 151 Ri
152 G:
153 S:
154 S:
155 S:
156 Ri
158 Ri
159 G:
160 G:
161 S:
162 S: | CLD
SSB7
SSB5
TOD
X2Y
TOE
CL1
SSB7
SSB7
TO1
X2Y
TO2 | | | | 286
287
288
289
210
211
212
213
214
215
216
217
218
219 | X2Y
R1
+
R1
+
R1
RTIN
#LBL2
RCL5
RCL5
RCL6
#LBL9 | | by 2/D. | | | 151 Ri
152 G:
153 G:
154 S:
155 S:
157 Ri
158 Ri
159 G:
160 G:
162 S:
164 Ri | CLD
SB7
SB5
TOD
XB7
TOE
CL2
CL1
SB7
SB5
TO1
XB7
TO2
CL4 | | | | 286
287
288
289
211
212
213
214
215
216
217
218
219
228 | X2Y
R1
+
R1
+P
P RTM
#LBL2
RCL5
RCL6
#LBL9
R1
X | | by 2/D.
Subroutine to | | | 151 Ri
152 G:
153 G:
154 S:
156 S:
157 Ri
159 G:
169 G:
161 S:
162 S:
163 S:
164 Ri | CLD S87 S85 S170 S87 TOE CL2 CL1 S87 S85 TO1 XXY TO2 CL4 CL4 CL3 | | | | 286
287
288
289
210
211
212
213
214
215
217
218
219
229 | X2Y
R1
+
R1
+
R1
RTIN
#LBL2
RCL5
RCL5
RCL6
#LBL9 | | by 2/D.
Subroutine to | | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
158 G:
169 S:
162 S:
163 S:
164 Ri
165 R: | CLD SSE7 SSE5 STOD X2Y TOE CL2 CL1 SSE7 SSE5 STD1 X2Y TO2 CL4 CL3 CL4 CL3 CC4 | | | | 286
287
289
210
211
212
213
214
215
216
217
218
219
220
220 | X2Y
R1
++
R1
+P
RTH
REL2
RCL5
RCL6
*LBL9
R1
X
R1 | | by 2/D.
Subroutine to | multiply | | 151 Ri
152 G:
153 G:
154 S'
155 S'
157 Ri
159 Ri
169 G:
161 S'
162 S'
164 Ri
165 Ri
166 C: | CLD S87 S85 S170 S87 TOE CL2 CL1 S87 S85 TO1 XXY TO2 CL4 CL4 CL3 | t ₂₂ ' | | | 286
267
289
210
211
212
213
214
215
216
217
218
229
220
221
222
223 | X2Y
R1
+
R1
+P
P RTM
#LBL2
RCL5
RCL6
#LBL9
R1
X | | by 2/D.
Subroutine to | | | 151 Ri
152 G:
153 G:
154 S'
155 S'
157 Ri
158 Ri
168 G:
162 S'
163 S'
164 Ri
165 Ri
165 Ri | CLD S87 S87 S85 T00 X27 T0E CL2 CL1 S87 S85 T01 X27 T02 CL4 CL3 CL4 CL3 CHS S82 | | | | 286
287
289
210
211
212
213
214
215
216
217
218
219
220
220 | X2Y
R1
++
R1
+P
RTH
REL2
RCL5
RCL6
*LBL9
R1
X
R1 | | by 2/D.
Subroutine to | | | 151 Ri
152 G:
153 G:
154 S'
155 S'
157 Ri
158 Ri
168 G:
162 S'
163 S'
164 Ri
165 Ri
165 Ri | CLD SSE7 SSE5 STOD X2Y TOE CL2 CL1 SSE7 SSE5 STD1 X2Y TO2 CL4 CL3 CL4 CL3 CC4 | t ₂₂ ' | LS | | 286
267
289
210
211
212
213
214
215
216
217
218
229
220
221
222
223 | X2Y
R1
+
R1
+P
RTH
#LBL2
RCL5
RCL5
RCL6
#LBL9
R1
X
R1
R1
R1
R1
R1 | T | by 2/D. Subroutine to complex num | | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
159 G:
161 S:
162 S:
163 S:
164 Ri
165 Ri
166 C:
166 C: | CLD SSE7 SSE5 STOD X21 TOE CL2 CL1 SSE7 SSE5 TO1 X27 TO2 CL3 CL3 CL4 CL3 CC4 CC5 CC5 CC5 CC5 CC5 CC5 CC5 CC5 CC5 | t ₂₂ ' t ₁₂ ' LABE | | F s- |
286
287
288
289
210
211
212
213
215
216
217
218
219
220
221
222
223
224 | XIY R1 + R1 + R1 + P RTN #LBL2 RCL5 RCL6 #LBL9 R1 X R1 R1 RTN FLAGS | T | by 2/D. Subroutine to complex num | o multiply
bers. | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
158 Ri
159 G:
160 S:
162 S:
163 S:
164 Ri
165 Ri
165 S:
166 S:
167 G:
168 S: | CLD S87 S85 S700 X27 T0E CL2 CL1 S87 S85 T01 X27 T02 CL4 CL3 CKS S82 T03 S S > Y | t ₁₂ ' t ₁₂ ' LABE Z | S→G | E S- | 286
287
288
289
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224 | X2Y
R1
+
R1
+P
RTH
#LBL2
RCL5
RCL5
RCL6
#LBL9
R1
X
R1
R1
R1
R1
R1 | FLAGS | by 2/D. Subroutine to complex num | | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
159 G:
161 S:
162 S:
163 S:
164 Ri
165 Ri
166 C:
166 C: | CLD S87 S85 S700 X27 T0E CL2 CL1 S87 S85 T01 X27 T02 CL4 CL3 CKS S82 T03 S S > Y | t ₂₂ ' t ₁₂ ' LABE Z G G G G G G G G G G G G | S→G
G→S | | 286
287
289
210
211
212
213
214
215
216
217
218
229
221
222
223
224
+H | X2Y R1 + R1 + R1 + R1 + R1 - R1 - R1 - R1 - | T | by 2/D. Subroutine to complex num SET STATUS TRIG DEG 🖾 | o multiply bers. DISP | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
158 Ri
159 G:
160 S:
162 S:
163 S:
164 Ri
165 Ri
165 S:
166 S:
167 G:
168 S: | CLD S87 S85 S700 X27 T0E CL2 CL1 S87 S85 T01 X27 T02 CL4 CL3 CKS S82 T03 S S > Y | t ₁₂ ' LABE Z D | S→G
G→S | е н | 286
287
289
210
211
212
213
214
215
216
217
218
229
221
222
223
224
+H | XIY R1 + R1 + R1 + P RTN #LBL2 RCL5 RCL6 #LBL9 R1 X R1 R1 RTN FLAGS | FLAGS ON OFF 0 & □ 1 □ ₽ | by 2/D. Subroutine to complex num SET STATUS TRIG DEG © GRAD | DISP | | 151 Ri
152 G:
153 G:
154 S:
155 S:
156 S:
157 Ri
158 Ri
169 C:
160 S:
162 S:
163 S:
164 Ri
165 Ri
165 S:
166 S:
167 G:
168 S: | CLD SSE7 SSE5 STOD XZY TOE CL2 CL1 SSE7 SSE5 T01 XZY T02 CL4 CL3 CH5 SSE2 T03 SS+Y CS+ CH5 SSE2 T03 | t ₁₂ ' t ₁₂ ' LABE Z D | S→G
G→S
Used | e H- | 286
287
289
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
+H | X2Y R1 + R1 + R1 + R1 + R1 - R1 - R1 - R1 - | FLAGS
ON OFF | by 2/D. Subroutine to complex num SET STATUS TRIG DEG 🖾 | o multiply bers. DISP | #### **Fourier Series** | 001 | *LPLa | START | 05 7 9 | 5105 | |---|--|---|--|---| | | | SIANI | 058 1/X | ELSE | | 002 | CLRG | 1 | | DISPLAY 0.111. | | 003 | P≢S | l | 059 RTH | | | 084 | CLRG | 1 | 868 *LEL8 | | | | | | | | | 885 | RAD | | 061 R/S | DISPLAY new k. | | 89€ | RTN | | 062 GTOC | | | | | N↑# fregs | | | | 007 | *LBLA | NI# freqs | 063 #LBLd | PRINT POLAR | | 888 | 2 | | 064 SF1 | 1 | | | | ł | | 1 | | 889 | x | l . | 065 RCLE | 1 | | 818 | STOE | | 066 STDI | 1 1 | | | | | | 1 | | 011 | XZY | | 867 CT02 | | | 012 | STOE | | 868 *LBLD | PRINT RECTANGULAR | | | | | | 1 | | 813 | RTH | | 069 CF1 | 1 | | 814 | *LBLE | J | 970 RCLB | 1 | | | | | | 1 | | e15 | STOD | Store J | 871 STOI | | | 816 | 1 | | 072 *LBL2 | BEGIN loop 2. | | | | I | | Dedit loop 2. | | 817 | ST00 | INITIALIZE k | 073 RCLI | | | 8 18 | RTN | l | 074 RCLB | 1 | | | | | | 1 | | 819 | *LBLC | Yk | 875 - | 1 | | 82€ | STOC | Store yk | 8 7€ 2 | 1 | | | | 7 K | | [| | 821 | RCLB | I | €77 CHS | 1 | | 822 | STOI | INITIALIZE pointer | 078 ÷ | ı | | | | | | 1 | | 823 | *LBL1 | BEGIN loop 1. | 079 RCLD | 1 | | 824 | CLX | · · | 886 + | 1 | | | | ł | | 1 | | 825 | RCL0 | 1 | 081 FIX | 1 | | 82€ | RCLI | 1 | l 082 DSP0 | 1 | | | | | | 1 | | 827
828 | RCLE | | | | | 028 | - | 1 | l 084 DSP3 | 1 | | 829 | 2 | l | 085 RCL; | 1 | | | | l | | 1 | | e3e | CHS | l | 88€ DSZI | 1 | | 831 | ÷ | l | 087 RCL; | 1 | | 832 | DOLD. | l | | ł I | | | RCLD | l | 088 F1? | IF print polar | | | | | 1 000 11: | | | | + | 1 | | | | 83 3 | • | | 889 GT03 | THEN GO TO LBL 3 | | 833
834 | RCLE | | 889 GT03
890 2 | THEN GO TO LBL 3 | | 83 3 | • | | 889 GT03
890 2 | THEN GO TO LBL 3 ELSE | | 833
834
835 | RCLE
÷ | | 089 GT03
090 2
091 RCLE | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€ | RCLE
÷
× | | 089 GT03
090 2
091 RCLE
092 ÷ | THEN GO TO LBL 3 ELSE | | 833
834
835 | RCLE
÷ | | 089 CT03
090 2
091 RCLE
092 ÷
093 x | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837 | RCLE
÷
×
2 | | 089 CT03
090 2
091 RCLE
092 ÷
093 x | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838 | RCLE
±
×
2
× | | 889 GT03
896 2
891 RCLE
892 ÷
893 ×
894 XZY | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838
839 | RCLE
÷
×
2
×
Pi | | 889 CT03
896 2
891 RCLE
892 ÷
893 ×
894 M2Y
895 LSTM | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838 | RCLE
±
×
2
× | | 889 CT03
896 2
891 RCLE
892 ÷
893 ×
894 M2Y
895 LSTM | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838
839
848 | RCLE
÷
×
2
×
Pi
x | | 889 CT03
896 2
891 RCLE
892 ±
893 x
894 M2Y
895 LSTM
896
x | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838
839
848 | RCLE
± | | 889 ST03
896 2
891 RCLE
892 ±
893 ×
894 X2Y
895 LSTX
896 ×
897 *LEL4 | THEN GO TO LBL 3 ELSE Prepare to print | | 833
834
835
83€
837
838
839
848 | RCLE
÷
×
2
×
Pi
x | | 889 ST03
896 2
891 RCLE
892 ±
893 ×
894 X2Y
895 LSTX
896 ×
897 *LEL4 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
838
839
848
841
842 | RCLE
† | | 889 CT03
896 2
891 RCLE
892 ±
893 x
894 X2Y
895 LSTX
896 x
897 *LEL4
888 X2Y | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843 | RCLE
±
2
x
P:
x
xzy
+R
ST+i | | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LBL4 898 XZY 899 CSB5 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
840
841
842
843 | RCLE
† | | 889 CT03
896 2
891 RCLE
892 ±
893 x
894 X2Y
895 LSTX
896 x
897 *LEL4
888 X2Y | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843 | RCLE ± 2 X P: XZY +R ST+i XZZY | | 889 CT03 896 2 891 RCLE 892 ÷ 893 × 894 X2Y 895 LSTX 896 × 897 *LEL4 898 X2Y 899 GSB5 188 R1 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
838
839
849
841
842
843
844 | RCLE 2 X Pi X X X Y S S S S S S S S S S S S | | 889 CT03 899 C2 891 RCLE 892 * 893 X 894 X2Y 895 LSTX 896 X 897 *LEL4 898 X2Y 899 CSB5 100 R1 101 CSB5 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843
844
845 | RCLE
±
2
x
P;
xxy
+R
ST+;
xzy
DSZI
ST+; | | 889 CT03 896 2 891 RCLE 892 ÷ 893 × 894 X2Y 895 LSTX 896 × 897 *LEL4 898 X2Y 899 GSB5 188 R1 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843
844
845 | RCLE
±
2
x
P;
xxy
+R
ST+;
xzy
DSZI
ST+; | | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 CSB5 188 RI 181 CSB5 182 F87 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843
844
845
846 | RCLE
±
2
Pi
x=y
+R
ST+i
ST+i
RCLC | | 889 GT03 896 2 891 RCLE 892 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
838
839
841
842
843
844
845
846
847 | RCLE 2 X P: XZY >R ST+: XZY DS21 ST+: RCLC EMT+ | | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 CSB5 188 RI 181 CSB5 182 F87 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
836
837
839
849
841
842
843
844
845
846 | RCLE
±
2
Pi
x=y
+R
ST+i
ST+i
RCLC | JE pointer ≠ 0 | 889 CT03 896 2 891 RCLE 892 * 893 X 894 M2Y 895 LSTX 896 X 897 *LBL4 898 X2** 899 CSB5 188 R1 181 CSB5 182 F82 183 SPC 184 DSZ1 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
837
839
849
841
842
843
844
845
845
848
848 | RCLE
±
2
×
P:
XZY
+P:
XZY
+P:
ST+:
XZY
DSZI
SST+:
RCLC
ENT†
DSZI | IF pointer ≠ 0 | 889 ST03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 GSB5 108 R4 181 SSB5 182 F87 183 SPC 184 DSZI 185 ST02 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 823
834
835
836
837
838
839
841
842
843
844
845
846
846
849 | RCLE 2 X P: XZY >R ST+: XZY DS21 ST+: RCLC EMT+ | IF pointer ≠ 0
THEN REPEAT loop 1. | 889 CT03 896 2 891 RCLE 892 * 893 X 894 M2Y 895 LSTX 896 X 897 *LBL4 898 X2** 899 CSB5 188 R1 181 CSB5 182 F82 183 SPC 184 DSZ1 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. | | 833
834
835
837
839
849
841
842
843
844
845
845
848
848 | RCLE
±
2
×
P:
XZY
+P:
XZY
+P:
ST+:
XZY
DSZI
SST+:
RCLC
ENT†
DSZI | THEN REPEAT loop 1. | 889 CT03 896 2 891 RCLE 892 ± 894 X2Y 895 LSTX 896 X 897 #LEL4 898 X2Y 899 GSB5 188 R1 181 GSB5 182 F87 183 SPC 184 DSZ1 185 GT02 186 RTN | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 823
834
835
836
827
839
849
841
842
843
844
845
845
849
859 | RCLE | | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 M2Y 895 LSTX 896 x 897 *LEL4 898 X2Y 899 CSB5 188 RI 181 CSB5 182 F87 184 SSPC 184 SSZI 185 SPC 184 DSZI 185 CT02 186 RTN 187 *LEL3 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
837
839
841
842
843
844
845
846
847
849
858
858 | RCLE ± 2 X P: XZY +R ST+: XZY ST+: RCLC ENT+ DSZI GT01 1 ST+8 | THEN REPEAT loop 1. | 889 ST03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 GSB5 106 RI 181 GSB5 182 F87 183 SPC 184 DSZI 185 GT02 186 RTN 187 *LBL3 188 XZY | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 823
834
835
836
827
839
849
841
842
843
844
845
845
849
859 | RCLE | THEN REPEAT loop 1. | 889 ST03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 GSB5 106 RI 181 GSB5 182 F87 183 SPC 184 DSZI 185 GT02 186 RTN 187 *LBL3 188 XZY | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
837
839
849
841
844
845
846
847
848
849
859
859 | RCLE ± 2 Pi XZY +R SI+i SSZI SSZI ST+i DSZI ENT+ DSZI GT01 ST+0 RCLE | THEN REPEAT loop 1. | 889 CT03 899 CT03 8991 RCLE 8992 * 8993 X 8994 M2Y 8996 X 8997 *LEL4 8998 X2** 8999 GSB5 1808 R1 1811 GSB5 1802 FBP2 1803 SPC 1804 DSZI 1805 RTN 1807 *LBL3 1808 X2** 1809 YP | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
839
849
841
842
843
844
845
846
847
849
859
859 | RCLE ± 2 X P: XZY FR ST+: XZY DSZI SST+: RCLC ENT+ DSZI GTO1 ST+0 RCLE RCLE RCLE | THEN REPEAT loop 1.
ELSE INCREMENT k. | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 CSB5 100 R1 101 CSB5 102 FB7 104 DSZI 105 CT02 106 RTN 107 LBL3 108 XZY 109 +P 110 2 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
838
838
849
841
844
844
845
845
845
845
845
855 | RCLE ± 2 x P; x=y +R ST+i RCLC ENT† DS2I ST+0 RCLE | THEN REPEAT loop 1.
ELSE INCREMENT k.
IF k ≤ N | 889 ST03 896 2 891 RCLE 892 # 893 X 894 MTY 895 LSTX 896 X 897 #LEL4 898 X2V 899 GSB5 100 RI 101 GSB5 102 F87 103 SPC 104 DSZI 105 GT02 106 RTN 107 #LBL3 108 XZY 109 PP 110 2 111 RCLE | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
839
849
841
842
843
844
845
846
847
849
859
859 | RCLE ± 2 X P: XZY FR ST+: XZY DSZI SST+: RCLC ENT+ DSZI GTO1 ST+0 RCLE RCLE RCLE | THEN REPEAT loop 1.
ELSE INCREMENT k. | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 CSB5 100 R1 101 CSB5 102 FB7 104 DSZI 105 CT02 106 RTN 107 LBL3 108 XZY 109 +P 110 2 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
838
838
849
841
844
844
845
845
845
845
845
855 | RCLE ± 2 x P; x=y +R ST+i RCLC ENT† DS2I ST+0 RCLE | THEN REPEAT loop 1. ELSE INCREMENT k . IF $k \le N$ THEN GO TO LBL 0 | 889 CT03 899 CT03 899 CT03 8991 RCLE 892 ÷ 8993 x 8994 M2Y 8995 LSTX 8996 x 897 *LEL4 8999 CSB5 1808 R1 1811 CSB5 182 F87 1841 SSPC 1841 SSPC 1841 ST21 185 CT02 1867 RTN 1877 *LEL3 1888 X2Y 189 9 110 2 1111 RCLE | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. | | 833
834
835
836
839
849
841
842
844
845
849
851
852
853
855
854 | RCLE | THEN REPEAT loop 1. ELSE INCREMENT k. IF k N THEN GO TO LBL 0 REGIS | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 M2Y 895 LSTX 896 x 897 *LBL4 898 X2Y 899 CSB5 180 R1 181 CSB5 182 F87 184 DSZ1 185 GT02 186 RTN 187 SPC 188 SYC 189 P 110 2 111 RCLE 1112 ÷ | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. Convert (a, b) to (c, θ) | | 833
834
835
836
839
849
841
842
843
844
845
849
851
852
853
855 | RCLE | THEN REPEAT loop 1. ELSE INCREMENT k . IF $k \le N$ THEN GO TO LBL 0 | 889 CT03 896 2 891 RCLE 892 ÷ 893 x 894 MZY 895 LSTX 896 x 897 *LBL4 898 XZY 899 CSB5 100 R1 101 SP5 102 F87 103 SPC 104 SSPC 105 SPC 106 RTN 107 *LBL3 108 RTN 107 *LBL3 108 XZY 109 *P 110 2 111 RCLE 1111 ÷ | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer ≠ 0 THEN REPEAT loop 2. ———————————————————————————————————— | | 833
834
835
837
839
849
841
841
844
845
846
847
848
849
859
859
851
852
855 | RCLE ± 2 X Pi X=Y +R ST+i X=Y DSZ1 ST+i DSZ1 ST+i BSZ1 ST+o BSZ1 ST+o BSZ1 ST+o BSZ1 ST-o ST- | THEN REPEAT loop 1. ELSE INCREMENT k. IF k ≤ N THEN GO TO LBL 0 REGIS 3 b 4 a S3 S4 S4 | 889 CT03 896 2 891 RCLE 892 \$ 894 M2Y 895 LSTN 896 X 897 *LBL4 898 X2** 899 CSB5 188 R1 181 CSB5 182 F82 184 DSZ1 185 GT02 186 RTN 187 *LBL3 188 X2** 189 P 110 2 111 RCLE 112 \$ STERS 5 b 6 a 7 b SS S6 S6 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer $\neq 0$ THEN REPEAT loop 2.
Convert (a, b) to (c, θ) | | 833
834
835
836
839
849
841
842
843
844
845
846
849
859
851
852
853
855 | RCLE | THEN REPEAT loop 1. ELSE INCREMENT k . IF $k \le N$ THEN GO TO LBL 0 REGIS 3 b 4 a | 889 GT03 896 2 891 RCLE 892 ± 893 x 894 MZY 895 LSTX 896 x 897 *LEL4 898 XZY 899 GSB5 188 RL 181 GSB5 182 FB7 183 SPC 184 DSZI 185 GT02 186 RTN 187 *LBL3 188 XZY 189 *P 110 2 111 RCLE 111 TCLE 55 b 6 a 7 b | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer $\neq 0$ THEN REPEAT loop 2. Convert (a, b) to (c, θ) | | 833
834
835
836
837
838
839
849
841
842
844
845
845
845
855
855
855
856 | RCLE ± 2 X Pi X=Y +R ST+i RCLC ENT† DS2I ST+i RCLC ENT† DS2I ST+i RCLC ENT† DS2I ST-i ST-i RCLC ENT† DS2I ST-i ST | THEN REPEAT loop 1. ELSE INCREMENT k. IF k N THEN GO TO LBL 0 REGIS 3 b 4 a S3 S4 | 889 CT03 899 CT03 899 CT03 899 CLE 892 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer $\neq 0$ THEN REPEAT loop 2. Convert (a, b) to (c, θ) | | 833
834
835
837
838
839
849
841
841
844
845
846
849
859
859
859 | RCLE ± 2 X Pi X=Y +R ST+i ST+i DSZI ST+i DSZI ST+i ST+i BCLC ENT+ DSZI ENT+ DSZI ENT+ DSZI ST-i ST | THEN REPEAT loop 1. ELSE INCREMENT k. IF k ≤ N THEN GO TO LBL 0 REGIS 3 b 4 a S3 b S4 a | 889 CTO3 896 2 891 RCLE 892 \$\displaysty 894 M2Y 895 LSTA 896 X 897 *LEL4 899 CSB5 180 RJ 181 CSB5 182 F87 184 DSZI 185 SPC 184 DSZI 185 STO2 186 RTN 187 *LEL3 188 X2Y 189 3P 110 2 111 RCLE STERS 56 a 7 b S5 56 a 57 5 5 56 a 57 5 5 56 a 57 5 5 5 5 6 6 7 5 5 5 5 6 57 5 5 5 5 6 6 7 5 7 7 7 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 9 9 9 9 10 9 9 10 9 9 11 12 9 12 9 13 9 14 9 15 9 15 9 16 9 17 9 18 9 18 9 19 9 19 9 10 9 11 9 11 9 12 9 13 9 14 9 15 9 16 9 17 9 18 | THEN GO TO LBL 3 ELSE Prepare to print rectangular. IF pointer $\neq 0$ THEN REPEAT loop 2. Convert (a, b) to (c, θ) | | 113 × | | | 169 | PRTX | | THEN PRI | NT | |-------------------------------|----------|--------------------------------|----------|-------------------|----------------|------------------|---------------------| | 114 GT04 | | | 176 | | | - | | | 115 *LBLE | t→f(t) | | 171 | RTN | | ELSE DISF | LAY | | 116 CF2
117 ST00 | | | 172 | | | i | | | 118 RCLE | | | 173 | | | | | | 119 STOI | INITI | ALIZE pointer | 174 | K/3 | | | | | 120 CLX | _ | | . | | | 1 | | | 121 ∗LBL€ | BEGIN | loop 6. | | | | | | | 122 RCLI
123 RCLB | | | | | | | | | 123 ROLE
124 - | | | | | | | | | 125 2 | | | | | | | | | 12€ CHS | | | i | | | | | | 127 ÷ | | | | | | | | | 128 RCLD
129 + | | | | | | | | | 130 X=0? | IF i = i | n | | | | | | | 131 SF2 | | set flag 2. | | | | | | | 132 2 | | | 1 | | | | | | 133 × | | | | | | | | | 134 Pi
135 x | | | | | | | | | 135 ×
136 RCL0 | | | 1 | | | | | | 137 x | | | | | | | | | 138 RCLE | | | | | | | | | 139 ÷ | | | - 1 | | | | | | 140 1
141 F2? | IF flag | 2 | - 1 | | | | | | 141 FZ?
142 GSB0 | | $a_0 \leftarrow a_0/2$. | 1 | | | | | | 143 →R | | 40 4072 | - 1 | | | | | | 144 RCL: | | | - 1 | | | | | | 145 x | | | İ | | | | | | 146 XZY | | | | | | | | | 147 DSZI
148 RCL; | | | 1 | | | | | | 149 x | | | 1 | | | | | | 150 + | | | - 1 | | | i | | | 151 RCLE
152 ÷ | | | 1 | | | | | | 153 2 | | | - 1 | | | | | | 154 x | | | - 1 | | | | | | 155 + | | | | | | l | | | 15€ DSZI | | nter ≠ 0 | . | | | l | | | 157 GT06
158 GSB5 | | REPEAT loop 6
DISPLAY f(t). | ' | | | | | | 159 F0? | 1 2200 | DISI EAT I(t). | | | | | | | 168 SPC | | | - 1 | | | | | | 161 RTN | | | | | | | | | 162 *LBL0
163 CLX | | tine to replace 1 | ' | | | | | | 164 | with 0 | .5. | - 1 | | | | | | 165 5 | | | 1 | | | | | | 166 RTN | | | | | | | | | 167 *LBL5
168 F0? | IF flag | AY ROUTINE
0 | | | | 1 | | | 100 10 | | BELS | | FLAGS | | SET STATUS | | | A N1#freqs B J C | Yk | D RECT | E t→f(t) | O PRINT | FLAGS | TRIG | DISP | | a START b c | | d POLAR | е | 1 POLAR | ON OFF | DEG 🗆 | FIX 🗷 | | Used 1 Loop 2 | Loop | 3 →P | 4 PRINT | ² Used | 1 🗆 🔣
2 🗆 🖔 | GRAD □
RAD kŪ | SCI □ | | ⁵ DISPLAY 6 Loop 7 | | 8 | 9 | 3 | 3 🗆 K | | ENG □
n <u>3</u> | #### **Active Filter Design** | 001 | *LBLa | | | | 857 | RTN | | | |-------------|----------------|-----|----------|----------------------------------|--------------------|-------|------|------------------------| | 862 | STO# | | Store fo | li . | 65 8 | *LBLD | | HIGH PASS | | 883 | RTH | | | | 8 59 | RCL3 | | Display C ₁ | | 884 | #LBLA | | 1 | | 960 | esb5 | | 1 | | 885 | ST01 | | Store A | | 861 | RCLO | | l l | | 88€ | RTM | | | | 862 | x | | | | 007 | *LBLb | | 1 | | 963 | 2 | | 1 | | 808 | ST02 | | Store a | | 864 | x | | 1 | | 009 | RTH | | | | 865 | P; | | 1 | | 010 | *LBLB | | | | 966 | x | | i l | | | | | Store C | | 867 | ST04 | | 1 | | 011 | ST03 | | | | | RCL2 | | | | 812 | RTH | | LOW PA | | 968 | | | 1 | | 813 | *LBLC | | LOWF | 433 | 869 | X≇Y | | l . | | 014 | RCL2 | | l | | 070 | ÷. | | | | 815 | 2 | | | | 871 | 2 | | i i | | 816 | ÷ | | l | | 672 | RCL1 | | 1 | | 817 | RCL1 | | l | | 873 | 1/X | | 1 | | 818 | ÷ | | l | | 874 | + | | | | 019 | 2 | | l | | 675 | ÷ | | 1 | | 828 | P. | | l | | 87€ | CSB5 | | Display R ₂ | | 821 | X | | I | | 877 | RCL3 | | | | | | | ı | | 078 | CSB5 | | Display C ₃ | | 822 | RCLO | | 1 | | | | | l Display O3 | | 823 | X | | l | | 079 | RCL1 | | i i | | 824 | RCL3 | | l | | 989 | ÷ | | 1 | | 825 | x | | l | | 081 | esb5 | | Display C ₄ | | 82€ | STD4 | | l | | 882 | RCL1 | | 1 | | 827 | ÷ | | l | | 983 | 2 | | 1 | | 828 | ST05 | | l | | 884 | x | | 1 | | 829 | CSB5 | | Display | R ₁ | 885 | 1 | | l i | | 838 | RCL3 | | 1 | | 886 | + | | 1 | | 031 | 4 | | l | | 887 | RCL2 | | 1 | | 832 | x ⁷ | | l | | 888 | ÷ | | 1 | | 633 | RCL1 | | l | | 889 | RCL4 | | 1 | | 834 | 1 | | 1 | | 898 | + | | 1 | | 835 | + | | l | | 891 | ESB5 | | Display R ₅ | | 836 | x | | l | | | | | Display 113 | | | | | i | | 892 | RTN | | | | 637 | RCL2 | | l | | 093 | *LBLE | | BAND PASS | | 638 | Xs | | l | | 894 | RCL3 | | ł | | 839 | ÷ | | l | | 895 | RCL0 | | 1 | | 840 | ese5 | | Display | C ₂ | 89€ | x | | 1 | | 841 | RCL2 | | l | | 897 | 2 | | | | 842 | 2 | | l | | 898 | x | | 1 | | 843 | ÷ | | l | | 899 | Pi | | | | 844 | RCL1 | | l | | 190 | x | | 1 | | 845 | 1 | | 1 | | 100
101 | ST04 | | | | 846 | + | | 1 | | 182 | RCL1 | | 1 | | 847 | ÷ | | 1 | | 183 | x | | 1 | | 848 | RCL4 | | 1 | | 184 | RCL2 | | 1 | | 849 | ÷ | | 1 | | 185 | X | | 1 | | 858 | CSB5 | | Display | R. | 10€ | 1/8 | | Display R ₁ | | 8 51 | RCL1 | | Justian | , | 107 | GSB5 | | Sisping III | | 85 2 | RCL5 | | 1 | | 108 | 2 | | 1 | | 65 3 | x | | 1 | | 109 | RCL2 | | 1 | | 854 | CSB5 | | Display | = R. | 110 | KULZ | | 1 | | 65 5 | RCT3 | | Jispiay | ••• | | ** | | 1 | | 85€ | ESB5 | | Display | C. | 111 | | | 1 | | F-626 | 435 3 | | Lispiay | | STERS | RCL1 | | 1 | | 0 , | Ti . | 2 | 3 6 | I4 . | 51 2H5 | 6 | 7 | T8 T9 | | o fo | ' A | έ α | l, c | ⁴ 2π f ₀ C | 5 R _{1LP} | ľ | ľ | ľ ľ | | S0 | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 S9 | | 1 | Ι΄. | [| | 1 | Ī . | 1 | [| | | A | TE | 3 | Tc | | D | | TE . | 1 | | 1 | 1 | | ľ | | l | | | ľ | | 113
114
115
116
117
118
119
129
121
122
123
124
125
126 | RCL4 X RCL2 X L/X CSB5 RCL3 CSB5 CSB5 CSB5 CSB5 4 RCL4 ± | Disp | iay R ₂
ay C ₃
ay C ₄ | | | | | | |--|---|------|--|------|--------------------|---------|-----------------|-------| | 132
133
134
135
136
137 | PRTX
F#P:
RTN
R/S
RTN
R/S | ELSI | E
ISPLAY. | | | | | | | | | L. | ABELS | | FLAGS | | SET STATUS | | | ^A A | ВС | C LP | D HP | E BP | ⁰ PRINT | FLAGS | TRIG | DISP | | a fo | bα | c | d | e | 1 | ON OFF | | | | 0 | 1 | | 3 | 4 | 2 | 0 🗷 🗆 | DEG & | FIX 🗆 | | | İ | 2 | 1 | | | 1 🗆 🛭 | GRAD □
RAD □ | SCI □ | | 5 DISPLAY | 6 | 7 | 8 | 9 | 3 |] 3 K | | ENG ⊠ | | | | · | | | | | | | # **Butterworth or Chebyshev Filter Design** | 801 | *LBLE | | | | 857 | LI | | | | | | | |---|---|---------|--------------------|---------------------|---|---|--|----|----------------------|-------------|------------------------------|-------------| | 882 | 1 | | 1 | | 858 | X | | | | | | | | 983 | ė | | 1 | | 859 | ÷ | | | | | | | | | | | 1 | | 868 | STO | | | | 1 | | | | 884 | ÷ | | | | | | | | | Na. | / | ethod root | | 885 | 10× | | Compute order of | | 961 | *LBL | | | | | | etnoa root | | 006 | 2 | | Butterworth filter | . | 862 | REL | | | | find | er. | | | 007 | x | | | | 863 | RCL: | 3 | | | l | | | | 808 | 1 | | | | 864 | RCL | . | | | l | | | | 009 | • | | 1 | | 865 | Y | | | | l | | | | | | | 1 | | | STO | | | | l | | | | 010 | LN | | i | | 066 | | | | | l | | | | 011 | STOB | | | | 067 | ENT | | | | l | | | | 012 | XZY | | | | 06 8 | 1/ | K | | | l | | | | 013 | GSB9 | | | | 869 | + | | | | l | | | | 014 | GSB7 | | | | 070 | RCL | В | | | l | | | | | | | | | 871 | - | | | |
l | | | | 015 | RCLB | | | | | RCL | | | | ı | | | | 016 | XZY | | | | 072 | | | | | ı | | | | 817 | LN | | | | 073 | ENT | | | | ı | | | | 018 | ABS | | | | 074 | 1/ | X | | | Į | | | | 819 | ÷ | | | | 075 | - | | | | l | | | | 020 | 1 | | | | 076 | ÷ | | | | l | | | | 021 | + | | | | 077 | RCL | 7 | | | l | | | | | | | i | | | L | | | | 1 | | | | 022 | 2 | | | | 078 | | | | | 1 | | | | 023 | ÷ | | | | 079 | ÷ | | | | ł | | | | 024 | INT | | Į. | | 080 | | 2 | | | | | | | 925 | STOE | | l | | 881 | ÷ | | | | | | | | 026 | RTH | | | | 082 | - | | | | | | | | 827 | *LBLA | | Store R | | 083 | STO | Ε | | | | | | | | | | | | 084 | LST | | | | | | | | 028 | ST05 | | | | 085 | AB | | | | | | | | 029 | RTN | | | | 886 | HD | | | | | | | | 030 | *LBLD | | | | | | | | | | | | | 031 | 1 | | l | . | 087 | | 0 | | | | | | | 032 | 0 | | Compute order of | | 088 | | 1 | | | | | | | 033 | ÷ | | Chebyshev filter. | | 089 | X≟Y | ? | | | | | | | 034 | 10× | | 1 | | 090 | GT0 | 6 | | | | | | | | | | | | 091 | RCL | | | | 1 | | | | 075 | 1 | | 1 | | 092 | | 2 | | | l | | | | 036 | | | l | | | ÷ | | | | l | | | | 037 | 4 | | | | 093 | | | | | l | | | | 038 | x | | 1 | | 094 | | 1 | | | l | | | | 039 | RCL6 | | | | 095 | + | | | | | | | | 848 | Χ² | | Ì | | 096 | IN | | | | | | | | 041 |
÷ | | | | 097 | RT | | | | | | | | | | | Ì | | 898 | *LBL | 9 | | | C | routine : | to multiply | | 042
043 | _2 | | | | 099 | | 2 | | | | | to multiply | | | OTOD | | | | 180 | X | | | | by 2 | 2π. | | | 044 | STOB | | | | | | ; | | | l | | | | 045 | XZY | | 1 | | 101 | | - | | | l | | | | 046 | GSB9 | | | | 102 | X | | | | l | | | | 847 | GSB7 | | 1 | | 103 | R? | | | | l | | | | | | | | | 104 | *LBL | 7 | | | Sub | routine | to compute | | | | | 1 | | | | | | | | | frequency. | | 048 | ENT † | | 1 | | 105 | STO | A | | | nor | | | | 048
049 | ENT†
X2 | | | | | | | | | nor | | requeriey. | | 048
049
050 | ENT † | | | | 196 | RCL | D | | | nor | | requeries. | | 048
049
050
051 | ENT†
X2
1 | | | | 106
107 | RCL
STO | D
I | | | nor | | | | 048
049
050
051
052 | ENT†
X2
1
-
IX | | | | 106
107
108 | RCL
STO | D
I | | | nor | | | | 048
049
050
051
052
053 | ENT†
X2
1
-
IX
+ | | | | 106
107
108
109 | RCL
STO
STO
*LBL | D
I
i
4 | | | | | | | 048
049
050
051
052 | ENT†
X2
1
-
IX | | | | 106
107
108 | RCL
STO
STO
*LBL
CSE | D
I
I
4
3 | | | | | | | 048
049
050
051
052
053 | ENT†
X2
1
-
IX
+ | | | | 106
107
108
109 | RCL
STO
STO
*LBL | D
I
I
4
3 | | | | | | | 048
049
050
051
052
053
054
055 | ENT† | | | | 106
107
108
109
110
111 | RCL
STO
STO
*LBL
SSE
STO | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | | | Ban | | | | 048
049
050
051
052
053
054 | ENT†
X2
1
-
1X
+
ST03 | | | BEGIS | 106
107
108
109
110
111
112 | RCL
STO
STO
*LBL
CSE | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | | | Ban | d Elimir | | | 048
049
050
051
052
053
054
055
056 | ENT† X2 1 - IX + ST03 LN RCLB | 12 | J3 J4 | | 106
107
108
109
110
111
112
STERS | RCL
STO
STO
*LBL
SSE
STO
*LBL | D
II
4
4
3
19
2 | | , | Ban
Higi | d Elimir | ation. | | 048
049
050
051
052
053
054
055 | ENT† | 2 | 3 Used 4 | REGIS
Ripple, dB | 106
107
108
109
110
111
112 | RCL
STO
STO
*LBL
SSE
STO
*LBL | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | | · σ | Ban
Higi | d Elimir | | | 048
049
050
051
052
053
054
055
056 | ENT† XP 1 IX + ST03 LN RCLB | | | Ripple, dB | 106
107
108
109
110
111
112
STERS | RCL
STO
STO
*LBL
SSE
STO
*LBL | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | Ī | | Ban
Higi | d Elimir | ation.
 | | 048
049
050
051
052
053
054
055
056 | ENT† X2 1 - IX + ST03 LN RCLB | 2 \$2 | 3 Used 4 S3 S4 | Ripple, dB | 106
107
108
109
110
111
112
STERS | RCL
STO
STO
*LBL
SSE
STO
*LBL | D
II
4
4
3
19
2 | 7 | $\frac{7}{\omega_0}$ | Ban
Higi | d Elimir | ation. | | 048
049
050
051
052
053
054
055
056 | ENT† XP 1 1 IX + ST03 LN RCLB | S2 | S3 S4 | Ripple, dB | 106
107
108
109
110
111
112
STERS
5
S5 | RCL
STO
STO
*LBL
CSE
STO
*LBL | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | | | Ban
Higi | d Elimir | ation.
 | | 048
049
050
051
052
053
054
055
056 | ENT† XP 1 1 IX + ST03 LN RCLB | | | Ripple, dB | 106
107
108
109
110
111
112
STERS | RCL
STO
STO
*LBL
CSE
STO
*LBL | D
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I | Į, | | Ban
Higi | d Elimin
— — —
h pass. | ation.
 | | 113 GSB1 | | 169 RTN | | |--------------------|---------------------|---------|------------| | 114 *LBL0 | | 170 R/S | | | 115 1/X | | | | | | | | | | | i i | | 1 | | 117 GT05 | l. = | | | | 11E #LBL1 | Low Pass | | | | 119 RCLA | | | | | 120 RCL7 | | | i | | 121 ÷ | | | | | 122 GT05 | | | | | | Band Pass | | | | 123 *LBL3 | Dana - ass | | | | 124 RCLA | | | | | 125 X2 | l . | | | | 126 RCL7 | l i | | | | | | | | | 127 X2
128 - | | | | | 129 RCLA | 1 | | 1 | | 130 ÷ | | | | | 131 RCL8 | 1 | | | | | | | | | 132 ÷ | 1 | | | | 133 *LBL5 | l | | | | 134 ABS | | | | | 135 STOC | | | | | 136 RTN | | | | | 137 *LBLd | | | | | 138 ST04 | | | | | | | | | | 139 1 | | | | | 140 9 | dB Ripple→ε | | | | 141 ÷ | | | | | 142 10× | | | | | 143 1 | | | | | 144 - | i i | | | | 145 TX | | | | | 146 ST06 | | | | | | | | | | 147 RTN | High Pass | | | | 148 #LBLb. | | | | | 149 2 | | | | | 150 GT00 | Band Pass | | İ | | :51 ≭LB Lc | 54.14 . 433 | | | | 152 3 | | | | | 153 GT01 | Band Elimination | | | | 154 *LBLC | Dania Cilifiliation | | | | 154 #LBEC
155 4 | | | | | | | | | | 156 *LBL1 | | | 1 | | 157 GSB0 | · | | | | 158 R↓ | | | | | 159 GSB9 | | | ı | | 160 ST08 | | | 1 | | 161 RTN | Low Pass | | | | 162 *LBLB | 2011 . 433 | | I | | 163 1 | | | 1 | | | | | 1 | | 164 *LBL0 | | | 1 | | 165 STOD | | | I | | 166 R↓ | | | İ | | 167 GSB9 | | | | | 168 ST07 | | | | | | LABELS | FLAGS | SET STATUS | | | | | | | A R | B LP: fo | CBE: BW↑ f ₀ | ^D f ₁ ↑α→n | ^E f₁↑α→n | O PRINT | FLAGS | TRIG | DISP | |-------------------|----------------------|-------------------------|----------------------------------|---------------------|---------|-----------------|-----------------|----------------| | а | b HP: f ₀ | CBP: BW1 fo | ^d dB Ripple→ε | е | 1 | ON OFF
0 ☑ □ | DEG ⊠ | FIX 🗆 | | O Used | 1 Used | ² Used | ³ Used | ⁴ Used | 2 | 1 🗆 🛭 | GRAD □
RAD □ | SCI □
ENG ⊠ | | ⁵ Used | ⁶ Used | ⁷ Used | 8 | ⁹ Used | 3 | 3 🗆 😡 | HAD 🗆 | n_3_ | ## **Butterworth or Chebyshev Filter Design** | 001 *LBLE | BUTTERWORTH | 057 RCL8 | | |---|--|---|--| | 902 RCLE
903 STOI | INITIALIZE counter | 958 ÷
959 \$\$86 | | | 903 STOI
904 SF1 | | 969 CSB5 | | | 965 *LBL8 | BEGIN loop 8. | 961 LSTX | | | 806 RCLE | | 862 ÷ | | | 907 RCLI | Butterworth equations | 063 1/X | | | 90 8 - | | 964 RCL7 | | | 009 1 | | 965 X2 | | | 010 + | l | 966 ÷ | | | 811 ST09 | Store i | 0€7 CSB6 | | | 012 2 | | 068 CHS
069 CTOR | | | 013 × | | 069 GT00
070 #LBL4 | Band Elimination | | 914 1
915 - | | 871 XZI | Dand Chimination | | 016 Pi | | 072 R4 | | | 017 × | | 073 RCL8 | l i | | 018 2 | | 074 × | 1 1 | | 019 ÷ | (2i – 1) π/2n | 075 RCL7 | 1 | | 020 RCLE | 1 | 076 X2 | 1 | | 021 ÷ | 1 | 077 ÷ | | | 022 SIN | | 978 CSB6 | | | 923 2 | | 079 GSB5
080 LSTX | ł i | | 024 ×
025 *LBL9 | | 981 ÷ | 1 | | 826 STOA | | 982 RCL7 | 1 | | 827 RCL5 | | 983 X2 | | | 828 1 | | 084 × | | | 029 CHS | | 985 1/X | 1 | | 030 RCL9 | | 086 CSB6 | | | 031 CSB5 | DISPLAY i | 087 CHS | | | 032 Y* | / A3 | 988 *LBL9 | | | 833 Y× | R ^{(-1)ⁱ} | 889 CSB5 | | | 934 × | l | 090 F0?
091 SPC | 1 | | 035 RCLD
036 X#1 | Branch to appropriate
routine for frequency | 092 F1? | 150 | | 037 CTO: | transformation. | 093 CT01 | IF Butterworth THEN REPEAT loop 8 | | 038 *LBL1 | | 094 DSZI | ELSE REPEAT loop 7. | | 039 X21 | Low Pass | 095 CT07 | 1 2202 1127 2711 1000 71 | | 848 RJ | 1 | 09€ RTN | | | 041 RCL7 | | 097 *LBL1 | 1 | | 042 ÷ | 1 | 098 DSZI | 1 | | 043 GSB6 | | 099 GTO8 | 1 | | 044 CT00 | | 100 RTN | | | 045 *LBL2 | High Pass | 101 *LBL6
102 1 | Subroutine to change sign of capacitors. | | 046 XZI
047 R↓ | riigii rass | 103 CHS | or capacitors. | | 948 RCL7 | 1 | 104 RCL9 | | | 049 X | | 185 Y× | | | 050 1/X | 1 | 1 0 6 × | 1 | | 051 GSB6 | 1 | 107 RTN | | | 052 CHS | 1 | 108 *LBLD | CHEBYSHEV | | 953 GT00 | Band Ban | 109 1 | | | 054 *LBL3
055 X≠I | Band Pass | 110 ST09 | | | 056 RI | | 11: CF1
RCL4 | | | 100 | REGI | STERS | 1 | | 0 1 2 | 3 4 Ripple, dB | ⁵ R ⁶ ε ⁷ ω ₀ | 8 BW 9 i | | S0 S1 S2 | S3 S4 | S5 S6 S7 | S8 S9 | | 51 52 | 53 54 | 35 36 37 | 20 29 | | A G ₁ , G _{i-1} B a ₁ , a _i | C γ^2 | D 1 LP 3 BP E n | counter | | A B C D CH'SHEV E B'WORTH O PRINT FLAGS TRIG DISP a b c d e 1 Butterworth O SCI DEG SC FIX □ 0 Used 1 Used 2 Used 3 Used 4 Used 2 □ SCI □ C C C C C C C C C C C C C C C C C C C | 113 4 114 8 115 ÷ 116 1 117 ex 118
LOG 119 ÷ 120 ENT1 121 + 122 e 123 1 124 X=Y 125 + 126 LSTX 127 1 128 - 130 RCLE 131 STDI 132 2 133 X X 134 1 X 135 Y* 136 ENT1 137 1 X 138 - 136 ENT1 141 X 152 Y* 146 RCLE 147 SIN 148 SIN 149 STDB 150 RCLE 151 X 152 RCLC 153 IX 154 ÷ 155 RCLE 157 RCLB 158 RCLE 159 RCLI 160 - 161 1 162 + 163 STD9 164 1 165 - 166 2 167 X 168 1 | Chebyshev setup BEGIN loop 7. Chebyshev equations | 165
177
172
173
174
175
176
177
177
178
188
188
188
198
191
191
192
193
194
195
195
197
198
199
199
199
199
199
199
199
199
199 | Pi | | DISPLAY I
IF flag 0
THEN PRII
ELSE
DISPLA | NT | |---|--|---|--|--------------------------|----------------|---|-----------------| | a b c d e l Butterworth 0 N OFF O | A B C | 10 | E B'WORTH | | | | | | 0 Used 1 Used 2 Used 3 Used 4 Used 2 1 □ EG 52 FIX □ C GRAD □ SCI □ C C C C C C C C C C C C C C C C C C | | Chanev | BWONIN | | | TRIG | DISP | | 0 Used | a b c | d | e | ¹ Butterworth | ON OFF | DEG ₽ | FIX 🗆 | | 5 DISPLAY 5 Used 7 Loop 8 Loop 9 Used 3 3 80 n 3 | Osed Osed Os | 0 0560 | 0 | 3 | 1 🗆 🗓
2 🗆 🕄 | GRAD □ | SCI □
ENG_EX | # **Bode Plot of Butterworth and Chebyshev Filters** | 881 | *LBLc | | | | | | 857 | RCLE | | | | |---------------------------------------|--------|------------------|------------------------------------|---------|------------------|-----------------------|---------------------------------|-------------|-----|------|----------------------| | 882 | 1 | | | | | | 0 58 | STOI | | 1 | | | 883 | 9 | | | Conv | ert dB rip | ple to ϵ . | 859 | GSB7 | | Cor | mpute ω _N | | 004 | ÷ | | | | | | | *LBL8 | | | | | 005 | 19× | | | | | | 861 | RAD | | BE | GIN loop 8. | | 88€ | 1 | | | | | | 862 | GSB€ | | Co. | mpute s _k | | 887 | | | | | | | | RCL1 | | 00 | iipute sk | | 998 | 18 | | | | | | 863 | | | | | | 889 | ST0€ | | | | | | 864 | RCL9 | | 1 | | | | | | | Store | ϵ | | 865 | + | | | | | 810 | R↓ | | | | | | 96€ | RCL2 | | | | | 811 | CFE | | | Cheby | /shev | | 867 | →P | | | | | 012 | STOE | | | Store | n | | 868 | ST÷4 | | Gai | n . | | 813 | RTN | | | | | | 969 | X2Y | | | | | 814 | *LBLA | | | | | | 878 | ST-5 | | Pha | ise | | 815 | SF@ | | | Rutto | rworth | | 671 | RCL2 | | | | | 01€ | STOE | | | Store | | | 8 72 | RCL1 | | | | | 817 | RTN | | | Store | | | 873 | →P | | | | | 818 | | | | | | | | | | | | | 819 | 2 | | | | _ | | 874 | ST×4 | | Gai | in normalization | | | | | | High | | | 875 | →R | | | | | 828 | ST00 | | | - | | | 87€ | RCL9 | | | | | 821 | #LBLc | | | | | | e77 | + | | | | | 822 | 3 | | | Band | Pass | | 878 | RCL2 | | | | | 823 | ST01 | | | - | | | 879 | →P | | | | | 824 | *LELC | | | | | | 986 | XΣ | | | l | | 825 | 4 | | | Rand | Eliminat | ion | 6 81 | X≢Y | | 1 | | | 82€ | *LBL1 | | | Dania | | 1011 | 882 | R.J | | 1 | | | 827 | SSB0 | | | C+ | £:14 l | | | | | 1 | | | 828 | R↓ | | | | | aracteristic | 883 | ÷ | | l | | | 829 | SSB. | | | and a | 0 · | | 884 | ST+3 | | | ne delay | | | | | | _ | _ | | 985 | DSZI | | | IILE counter ≠ 0 | | 636 | ST08 | | | | $2\pi \times BW$ | | 88€ | ST08 | | RE | PEAT loop 8. | | 831 | RTN | | | - | | | 8 87 | RCLA | | 1 | | | 832 | | | | | | | 889 | 1 | | 1 | | | 633 | 1 | | | Low F | Pass | | 989 | esb9 | | | | | 834 | #LBL0 | | | | | | 698 | ÷ | | Fre | quency | | 835 | STOD | | | Store | filter cha | aracteristic. | 891 | RCL4 | | 1 | | | 836 | R↓ | | | | | | 892 | LDG | | - 1 | | | 037 | esb9 | | | Multi | oly by 27 | , | 893 | 2 | | - 1 | | | 838 | ST07 | | | Store | | | 894 | ē | | 1 | | | 839 | RTN | | | | | | 895 | x | | 1 | | | 848 | | | | | | | 89€ | RND | | C= | n, dB | | 841 | STOR | | | • | | | 897 | RCL5 | | Gai | n, ab | | 842 | SSB9 | | | Store | Δ† | | 898 | | | | | | | | | | _ | | | | 1 | | | | | 843 | | | | Store | $\Delta\omega$ | | 899 | →₽ | | - 1 | ļ | | 844 | R↓ | | | | | | 100 | DEC | | - 1 | | | 845 | | | | | | | 101 | →P | | Pha | ise, degrees | | 84€ | | | | Store | ω_2 | | 102 | CTX | | - 1 | | | 847 | | | | | | | 103 | RCL3 | | Del | ay I | | 848 | | | | | | | 184 | PRST | | | nt f, H , θ, t | | 849 | STOA | | | Store | ω_1 | | 195 | RCLE | | ' | | | 858 | RTN | | | | · · | | 18€ | RCLA | | - 1 | | | 851 | | | | Initial | ize regist | ers | 107 | F10 | | IF 6 | flag 1 | | 6 52 | | | | | | | 198 | STOP | | | EN GO TO LBL 0 | | 853 | | | | | | | 109 | RCLC | | ELS | | | 6 54 | | | | | | | 110 | + | | | ω←ω + Δω | | 855 | | | | | | | 111 | ET03 | | Ι ' | ~ ~ | | 856 | | | | | | | 112 | *LBL8 | | | | | # # # # # # # # # # # # # # # # # # # | 3104 | | | | | DEC | STERS | +2020 | | | | | 0 4, | Is . | | 2 , . | 3 , | | | | 16 | 17 | 18 _ | 9 | | ^U ∆f | ' -Im{ | s _k } | ² -Re {s _k } | ď de | lay | ⁴ –Π Η(ω) | $^{5}\Sigma\theta$ (ω) | ϵ | ′ω₀ | В | $W = \omega_N$ | | S0 | S1 ` | <u> </u> | S2 , | S3 | | S4 | S5 | S6 | S7 | S8 | S9 | | 1 | Ĭ. | | | | | | | 1 | | | | | Α | - | В | | | С | Δω | D 1 LP | 3 BP | E n | | I | | ω_1, ω | | 1 | ω_2 | | | Δω | | 4 BE | 1 " | | counter | | 113 RCL0 | | 169 LSTX | | | | |---|--|----------------------------|--------|------------------|---------------------| | 114 × | ω←ω x Δf | 170 CHS | | 1 | | | 115 #LBL3 | 1 | 171 e ^x | | | | | 116 STOA | Store new ω | 172 + | | 1 | | | 117 X≟Y? | IF $\omega \leq \omega_2$ | 173 ENT† | | 1 | | | 118 GTOE | THEN REPEAT loop E | 174 ENT† | | l | | | 119 RTN | ELSE stop. | 175 LSTX | | 1 | | | 120 #LBLT | | 176 2 | | i | | | 121 RCLD | Subroutine to compute ω _N . | | | ł | | | 122 %≇I | | 178 - | | ł | | | 123 GTO: | GO TO case i. | 179 STx2 | | 1 | | | 124 *LBL4 | BE | 180 R↓ | | l | | | 125 GSB3 | | 181 ST×1 | | ł | | | 12€ GT00 | | 182 2 | | ł | | | 127 *LBL2 | HP | 183 ST÷2 | | ľ | | | 128 GSB1 | | 184 ST÷1 | | 1 | | | 129 *LBL0 | | 185 RTN | | | | | 130 1/X | 1 | 186 #LBL1 | | Subroutine | to compute | | 131 CHS | 1 | 187 RCLI | | Butterwort | | | 132 GT05 | 1 | 188 2 | | location. | | | 133 *LBL1 | LP | 189 x | | 1 | | | 134 XZI | | 198 1 | | 1 | | | 135 RCLA | | 191 - | | 1 | | | 136 RCL7 | 1 | 192 RCLE | | 1 | | | 137 ÷ | 1 | 197 ÷ | | | | | 13E GT05 | | 194 GSB9 | | 1 | | | 139 *LBL3 | BP | 195 4 | | | | | 146 XZI | BP | 19€ ÷ | | | | | 141 RCLA | | 197 1 | | | | | 141 KCLH
142 X2 | | 198 →₽ | | | | | | i | 199 ST01 | | | | | 143 RCL7 | | 280 XZY | | l | | | 144 X2
145 - | | 201 5702 | | 1 | | | | | 282 RTN | | | | | 146 RCLA
147 ÷ | | 203 #LBLd | | | | | | | 204 1 | | i | | | 148 RCL8 | | 205 F10 | | | | | | 1 | 206 CLX | | l | | | 150 *LBL5 | | | | Set logarith | nmic | | 151 ST09 | Store ω _N | 207 SF1
208 X=0° | | increment. | | | 152 RTN | | | | | | | 153 *LBL6 | Subroutine to compute s _k . IF Butterworth | | | | | | 154 FØ? | THEN GO TO LBL 1 | 218 RTH | | Set linear in | | | 155 GTO: | ELSE get Butterworth pole | 211 *LBL9 | | 1 | | | 156 GSB1 | and modify it. | 212 2 | | | to multiply | | 157 1 | and modify it. | 213 × | | by 2π. | | | 158 RCL6 | 1 | 214 Pi | | I | | | 159 1/X | 1 | 215 × | | l | | | 160 →P | 1 | 216 RTN | | 1 | | | 161 XZY | 1 | 217 R/S | |
l | | | 162 R÷ | 1 | | | l | | | 163 LSTX | 1 | | | l | | | 164 + | 1 | | | | | | 165 LN | 1 | | | l | | | 166 RCLE | 1 | | | l | | | 167 ÷ | 1 | | | l | | | 168 e* | 1 | L | , | L | | | A . In In | LABELS | FLAGS | | SET STATUS | | | A B'WORTH n B LP: f₀ C BE | : BW↑f ₀ D f ₁ ↑f ₂ ↑∆f E " | PLOT" ⁰ B'WORTH | FLAGS | TRIG | DISP | | aCHEBn1dBR b HP: fo C BF | : BW↑f ₀ d LIN – LOG e | ¹ LOG | ON OFF | DEG 🗆 | FIX 🐷 | | ⁰ Used | ed ³ Used ⁴ U | lsed ² | 1 🗵 🗆 | GRAD □
RAD ko | SCI □ | | ⁵ Used ⁶ Used ⁷ Us | ed ⁸ Loop ⁹ U | sed ³ | 3 🗆 🛣 | HAU K | ENG □
n <u>3</u> | | | | | | | | #### **Resistive Attenuator Design** | | | | | | | | | | | | - | | | |----------------------------|-------------------|--------------------|---------|---------|------------------------------------|-----------------------------|------------------|---|----|----------------|------|-----------|-----------------| | 001 | *LBL6 | | | _ | | e 57 | × | | | | l | | | | 992 | ST01 | | Store | Rin | | 95 8 | - | | | | l | | | | 883 | RTH | | | | | 65 9 | CHS | | | | l | | | | 884 | *LBTB | | _ | _ | | 969 | ST05 | | | | l | | | | 005 | STO2 | | Store I | Hout | | 861 | 1 | | | | l | | | | 99€ | RTN | | | | | 862 | RCL4 | | | | l | | | | 007 | *LBLC | | | | | 063 | + | | | | l | | | | 908 | RCL1 | 1 | | | | 864 | LSTX | | | | l | | | | 809 | RCL2 | | | | | 865 | 1 | | | | l | | | | 010 | ÷ | | _ | | | 866 | - | | | | l | | | | 011 | ENT? | | Comp | ıte min | loss. | 9€7 | ÷ | | | | l | | | | 012 | ENT ↑ | | | | | 968 | RCL2 | | | | | | | | 613 | 1 | | | | | 069 | × | | | | l | | | | 614 | - | | | | | 870 | RCL7 | | | | l | | | | 015 | 1X | | | | | 071 | - | | | | l | | | | €16 | XZY | | | | | 872 | ST06 | | | | ł | | | | 017 | 1.8 | | | | | 673 | ET01 | | | | | | | | 018 | + | | | | | 874 | *LBLE | | | | II c | alculatio | on | | 919 | Χs | | | | | 875 | RCL3 | | | | ı | | | | 826 | L06 | I | | | | 87€ | X>Y? | | | | | | > desired loss | | 821 | 1 | l | | | | €77 | GT09 | | | | | ENERR | OR | | 822 | e | l | | | | 678 | XZY | | | | ELS | | | | 823 | X | I | | | | 879 | 1 | | | | 1 9 | Compute | R_1, R_2, R_3 | | 824 | GSB5 | 1 | | | | 986 | е | | | | l | | | | 625 | STO3 | ı | | | | 881 | ÷ | | | | 1 | | | | 826 | RTN | ı | | | | 882 | 10' | | | | 1 | | | | 627 | *LBLD | l | T calc | ulation | | 683 | ST04 | | | | 1 | | | | 828 | RCL3 | I | | | | 6 84 | 1/8 | | | | l | | | | 629 | X>Y? | | | | desired loss | 885 | RCL1 | | | | 1 | | | | 030 | GT09 | 1 | | ERROF | ₹ | 88€ | x | | | | | | | | 031 | X * / | | ELSE | | | 6 87 | RCL2 | | | | l | | | | 8 32 | 1 | 1 | Con | npute R | 1, R ₂ , R ₃ | 986 | X | | | | l | | | | 833 | 0 | l | | | | 989 | 1% | | | | ı | | | | €34 | ÷ | l | | | | 89€ | RCL4 | | | | 1 | | | | 835 | 10× | i | | | | 891 | 1 | | | | l | | | | ₽3€ | ST04 | | | | | 892 | - | | | | 1 | | | | 03 7 | RCL1 | I | | | | 093 | × | | | | l | | | | 938 | × | I | | | | 6 94 | 2 | | | | ı | | | | 839 | RCL2 | | | | | 895 | ÷ | | | | 1 | | | | 948 | × | | | | | 69€ | ST07 | | | | l | | | | 041 | 1X | | | | | 897 | 1 | | | | l | | | | 842 | 2 | | | | | 698 | RCL4 | | | | 1 | | | | 943 | X | | | | | 899 | + | | | | 1 | | | | 844 | RCL4 | I | | | | 100 | LSTX | | | | | | | | 845 | _1 | I | | | | 101 | 1 | | | | | | | | 946 | ÷ | 1 | | | | 182 | -
÷ | | | | 1 | | | | 847
848 | ST07 | I | | | | 193
194 | RCL1 | | | | 1 | | | | 045 | 5107 | | | | | 105 | KUL1 | | | | 1 | | | | 050 | RCL4 | | | | | 106 | RCL7 | | | | 1 | | | | 65 1 | + | l | | | | 107 | 1/8 | | | | 1 | | | | 85 2 | LSTX | | | | | 108 | 400 | | | | 1 | | | | 857 | 1 | | | | | 100 | 1/8 | | | | | | | | 05 3
05 4 | -* | | | | | 110 | ST05 | | | | | | | | 85 5 | ÷ | l | | | | 111 | 1 | | | | | | | | 85 € | RCL1 | | | | | 112 | RCL4 | | | | | | | | | | | | | REGI | STERS | | | | | | | | | 0 | 1 R _{in} | 2 R _{out} | 3 min | loss | 4 N | ⁵ R ₁ | 6 R ₂ | | 7 | R ₃ | 8 | | 9 | | SO | S1 | S2 | S3 | . 555 | S4 | | - | | S7 | 3 | 100 | | 60 | | 30 | 31 | 52 | 153 | | 54 | S5 | S6 | | S7 | | S8 | | S9 | | 4 | I B | | | C | L | D | 1 | E | L | | | I. | | | ľ | ľ | | ľ | • | | | | ľ | | | | ľ | | | | | | | | | | | | | | | 1 | | | 115 | DISPLAY IF flag 0 THEN PF ELSE DISPL | .AY. | | FLAGS | | SET STATUS | | |--|--------------------------------------|------|------|---------|----------------|-----------------|----------------| | A R _{in} B R _{out} C→m | in loss D | Used | Used | O PRINT | FLAGS | TRIG | DISP | | a b c | d | | | 1 | ON OFF | | | | | 3 | | | 2 | 0 X 🗆
1 🗆 X | DEG 😨
GRAD 🗆 | FIX □
SCI □ | | 0 1 Used 2 5 DISPLAY 6 7 | 8 | | | 3 | 2 🗷 | RAD 🗆 | ENG K | #### **Smith Chart Conversions** | 901 #LBLc | ρ→R | L. | 65 7 | RTN | | | | |----------------------------------|---------------------------|--------------------|-------------|-------|----|------------|------------| | 992 1/X | | | | *LBL? | | Input: L | _ | | 003 #LBLa | | | 85 9 | ENTT | | Input: Z | | | 004 LOG | | | 960 | R↓ | | l k | | | 005 2 | σ→S\ | VH | 861 | R. | | 1 " | | | 99€ € | | | 862 | ÷₽ | | 1 | | | 007 × | - 1 | | 663 | R† | | Subroutine | to compute | | 80E RTN | | | 864 | - | | | | | 009 *LBLC | R. L. | $\rightarrow \rho$ | 065 | 570€ | | a∠a+ | k ∠ 0 | | ele CHS | | | 06€ | R1 | | a∠a- | k∠0 | | 611 *LBLA | | | 867 | ₽ŧ | | | | | 012 2 | i | | 868 | + | | | | | 013 0 | 1 | | 665 | +_ | | | | | 014 ÷ | SWR- | → σ | 878 | →F | | | | | 815 18° | | | 671 | ₽÷ | | | | | 016 RTH | | | 072 | RCL€ | | | | | 817 *LBL& | ł | | 8 73 | →P | | 1 | | | 018 1/X | $\sigma \rightarrow \rho$ | | 874 | ₽↓ | | | | | 019 CHS | | | 875 | XZY | | 1 | | | 828 #LBLB | | | 876 | R† | | | | | 621 1 | | | 877 | ÷ | | 1 | | | 622 %≇Y | 1 | | 0 78 | R4 | | 1 | | | 623 + | | | 879 | - | | 1 | | | 824 1 | $\rho \rightarrow \sigma$ | | 686 | R* | | Output: ar | ng | | 025 LSTX | 1 | | 881 | RTN | | m | ag | | 82€ - | ł | | 682 | R/S | | | | | 827 ÷ | | | I | | | | | | 028 RTH | 1 | | 1 | | | 1 | | | 829 #LBLd | | | 1 | | | 1 | | | 030 ST01 | Store | Z_0 | 1 | | | 1 | | | 031 RTH | | | 1 | | | 1 | | | 032 *LBLD | Γ→Z | | 1 | | | | | | 833 : | | | 1 | | | | | | 034 GSB7 | | | 1 | | | 1 | | | 035 RCL1 | | | ł | | | 1 | | | 8 3€ CHS
83 7 × | | | 1 | | | 1 | | | 037 × | 1 | | 1 | | | l | | | 63€ →R | 1 | | 1 | | | l | | | 839 →P | 1 | | l | | | | | | 840 GT09 | | | l | | | 1 | | | 04: *LBLE | Z→Γ | | 1 | | | | | | 042 RCL1 | | | 1 | | | | | | 843 CHS | | | | | | 1 | | | 044 GSB7 | - | | 1 | | | | | | 845 *LBL9 | Print | results | 1 | | | | | | 846 X7Y | | | I | | | 1 | | | 647 GSB5 | | | 1 | | | | | | 848 XZY | 1 | | 1 | | | 1 | | | 049 GSB5 | | | 1 | | | 1 | | | ese RTN | | | 1 | | | 1 | | | 851 #LBL5 | Print | routine | 1 | | | 1 | | | 852 F8? | | | 1 | | | | | | 853 PRTX | | | 1 | | | | | | 854 F8? | | | 1 | | | | | | 055 RTN | | | 1 | | | | | | | | | | | | 1 | | | 0 1 - | 2 3 | REGI | STERS
 5 | 6 | 7 | 8 | 9 | | 0 Z ₀ | ľ ľ | ľ | ľ | Used | ľ | ľ | , | | S0 S1 | S2 S3 | S4 | S5 | S6 | S7 | S8 | S9 | | | | | | | | | | | A | В | С | D | | E | ı | | | | | | | | | | | | | | | | |
 | | | | |-----------|------------------|---------------------|-----------------------------|------------|---------|--|--------------------------|---| 1 | ł | İ | 1 | | | | - 1 | 1 | | | | | | | | | | | | - 1 | | | | | | | | | | | | | | | | | | | To | LAI | BELS | | FLAGS | | SET STATUS | | | A SWR→σ | ^B ρ→σ | C R.L.→ρ | D L→Z | E Z→Γ
e | O PRINT | FLAGS
ON OFF | TRIG | DISP | | a σ→SWR | b σ→ρ | ^C ρ→R.L. | ^d Z ₀ | 4 |
2 | 0 🗷 🗆 | DEG ☑
GRAD □
RAD □ | FIX kū
SCI □ | | 5 DISPLAY | 6 | ⁷ Used | 8 | 9 Used |
3 | FLAGS ON OFF 0 & 1 2 3 | RAD 🗆 | FIX & SCI DENG DENG DENG DENG DENG DENG DENG DENG | | | | Joseph | L | |
 | ં ા હ | | ., | # Transmission Line Impedance | 881 | *LBLA | | | | e 57 | 7 | | | | |---------------------|----------|-----|--------------------|--------|-------------|-------|----|----------|---------------| | 802 | STOR | | Open two-wire lin | ne. | 958 | 6 | | | | | 803 | R.J | | | | 95 9 | × | | | | | 884 | ÷ | | | | 969 | RCL0 | | | | | 805 | 2 | | | | 861 | 1.7 | | | | | 88€ | × | | | | 9€2 | + | | | | | 887 | ĹN | | | | 863 | ST85 | | l | | | | | | | | 864 | *LBLD | | Wires in | parallel near | | 889 | 1 | | | | 865 | 5700 | | ground. | | | 009 | 2 | | | | | | | ground | | | 610 | 0 | | | | 866 | R.J | | l | | | 811 | × | | | | 867 | ST01 | | 1 | | | 0 12 | RCL@ | | | | 868 | £1 | | 1 | | | 613 | 1X | | | | 0€9 | ST02 | | | | | 614 | ÷ | | | | 876 | R↓ | | | | | 815 | GT05 | | | | 871 | ST03 | | l | | | 81€ | *LBLB | | Single wire near g | round. | 6 72 | RCL1 | | 1 | | | e17 | STOR | | | | 873 | ÷ | | l | | | e18 | R. | | | | 0 74 | 1/8 | | l | | | 819 | 4 | | l | | 875 | 2 | | 1 | | | | | | | | 87€ | x | | 1 | | | 828 | ¥ | | l | | 877 | χ̂ε | | 1 | | | 021 | ÷ | | | | 877
878 | ۸. | | 1 | | | 822 | 178 | | l | | | | | ł | | | 023 | FDE | | | | 8 79 | + | | 1 | | | 824 | 1 | | ļ | | e ee | 1% | | ł | | | 025 | 3 | | | | 681 | RCL1 | | Į. | | | 82€ | 8 | | ì | | 682 | X | | l | | | 827 | × | | | | 8 83 | RCL2 | | l | | | 828 | RCL@ | | |
 884 | ÷ | | I | | | 829 | 1% | | | | 085 | 4 | | 1 | | | 829
838 | ÷ | | | | 68€ | x | | I | | | 631 | 6T05 | | | | 887 | LOG | | 1 | | | 832 | *LBLC | | | | 888 | € | | i | | | 633 | STOR | | Balanced wires no | ear | 089 | و | | 1 | | | e 34 | R. | | ground. | | 898 | x | | 1 | | | 835 | STO1 | | * | | e 91 | RCLO | | 1 | | | 83€ | R.‡ | | 1 | | e 92 | 1% | | | | | 837 | ST02 | | 1 | | 093 | *** | | | | | | R4 | | | | 894 | GT05 | | 1 | | | 638 | | | 1 | | 895 | *LBLE | | C | | | 639 | ST03 | | | | | | | Coaxial | line | | 848 | RCL1 | | İ | | 89€ | ST00 | | | | | 641 | ÷ | | ļ | | 897 | ₽↓ | | l | | | 842 | 2 | | 1 | | 698 | ÷ | | | | | 043 | ÷ | | l | | 899 | LN. | | 1 | | | 844 | Χs | | 1 | | 10€ | € | | 1 | | | 045 | 1 | | | | 101 | e | | 1 | | | 846 | + | | l | | 102 | X | | 1 | | | 847 | 1% | | | | 103 | RCL0 | | 1 | | | 848 | 1/X | | | | 184 | 12. | | l | | | 849 | 2 | | | | 105 | ÷ | | | | | 6 50 | × | | | | 10€ | *LBL5 | | DISPLA | AY ROUTINE | | 951 | RCL3 | | | | 107 | FB? | | IF flag | | | 85 2 | × | | | | 108 | PRTX | | THEN | PRINT | | 853 | RCL2 | | | | 189 | RTN | | ELSE | | | 854 | ÷ | | 1 | | 110 | R/S | | DIS | PLAY. | | 855 | LOG | | l | | ۰٬۰۰۱ | P . U | | | | | 95€ | 2 | | 1 | | | | | | | | | <u> </u> | | | REGIS | STERS | | | | | | 636 | | To | 3 4 | | 5 | 6 | 7 | 8 | 9 | | 0 | 1 . | 2 | | | | | | | | | 0
ε _r | 1 h | d | D | | | | | | | | 0 | 1
h | g d | D S3 S4 | ı | S5 | S6 | S7 | S8 | S9 | | 0
ε _r | S1 | d | S3 S4 | | | | | S8 | S9 | | 0
ε _r | | d | D | 1 | S5 | S6 | | S8 | S9 | | | | | | - | |--------|------------------|---------|-----------------|-----| - | | | | | | - 1 | | | 1 | LABELS | FLAGS | SET STATUS | | | ////// | LABELS C P D P F | O PRINT | FLAGS TRIG DISP | | | a b | c d e | O PRINT | FLAGS TRIG DISP | | | a b | LABELS C | O PRINT | FLAGS TRIG DISP | | # **Microstrip Transmission Line Calculations** | | *LBLn | | | | 05 7 | RCL 8 | | l | | |--------------------|------------------|---------|----------------------|-------------------|--------------------------------|--------|----------------|----------------------|---------------------------| | 002 | SF1 | | | | 8 5€ | + | | | | | 983 | STO7 | | Store h | | 8 59 | 2 | | l | | | 884 | XZY | | | | 666 | P: | | l | | | 995 | ST0€ | | Store w | | 9€1 | x | | | | | 996 | SFØ | | | | 862 | XZY | | | | | 887 | X2 Y? | | IF w > h | | 863 | ÷ | | | | | 800 | CFØ | | THEN cle | ar flag O | 064 | GT02 | | | | | 889 | ÷ | | | | 965 | *LBL1 | | Compute | Z ₀ for w ≤ h. | | 010 | ST09 | | Store h/w | | 86€ | 8 | | 1 | - | | 811 | 1/8 | | | | 867 | RCL8 | | | | | 612 | STOE | | Store w/h | | 968 | ÷ | | | | | e13 | 1 | | 1 01010 11711 | | 869 | LSTX | | | | | 814 | ė | | | | 876 | 4 | | | | | 815 | LN | | | | 871 | ÷ | | | | | 81€ | STOR | | | • | 872 | | | | | | 817 | | | Store In 1 | U | 873 | LH | | ł | | | | RTH | | | | 874 | #LBL2 | | ł | | | | *LBLB | | 1 | | 875 | | | | | | 819 | 1 | | ı | | | 6 | | 1 | | | 626 | XZY | | 1 | | 87€ | , e | | I | | | 821 | + | | 1. | | 877 | CTOA | | l | | | 822 | LSTX | | Compute | €eff | 878 | STOA | | Store Z ₀ | | | 823 | 1 | | 1 | | 879 | X | | 1 | | | 824 | - | | 1 | | 989 | ST01 | | Store Z _c | | | 825 | 1 | | | | 081 | XZY | | į . | | | 826 | 0 | | | | 082 | PRTX | | Print v _r | | | 827 | RCL8 | | | | 683 | XZY | | 1 | | | 928 | ÷ | | | | 084 | PRTX | | Print Z _c | | | 829 | 1 | | | | 885 | RTH | | | | | 936 | + | | | | €86 | *LBLD | | IF uniforn | n assumption | | 631 | 1X | | | | 827 | 1X | | THEN GO | TO 1. | | 832 | ÷ | | | | 989 | F1? | | I | 1 | | 833 | + | | | | 889 | GT01 | | 1 | | | 834 | 2 | | 1 | | 898 | #LBL4 | | i | 1 | | 835 | ÷ | | 1 | | 891 | RCL4 | | 1 | | | 83€ | īχ | | ı | | 092 | X | | 1 | | | 637 | 1/8 | | 1 | | 693 | RCL7 | | l | | | 838 | ST02 | | Store v _r | | 894 | ÷ | | i | | | 839 | F8? | | IF w ≤ h | | 895 | 2 | | l | | | 848 | GT01 | | THEN GO | TO 1 | 896 | × | | ı | | | | | | 1 | , 10 1. | 697 | P; | | l | | | 841 | DCI O | | 1 | | 698 | × × | | 1 | | | 842
843 | RCL9 | | 1 | | 699 | ST03 | | Store part | ial result | | 844 | 6 | | 1. | | 190 | RTH | | Store part | ai iesuit. | | | γ× | | Compute | Z_0 for w $>$ h | | #LBL1 | | l | | | 845
846 | 1" | | 1 | | 181 | | | I | | | 847 | 4 | | 1 | | 102
103 | 2
8 | | 1 | | | | | | 1 | | | | | I | | | 848 | ACL O | | ı | | 104 | RCLB | | 1 | | | 849 | RCL8 | | ı | | 185 | ÷ | | I | | | 656 | - | | 1 | | 106 | RCL9 | | 1 | | | 851
853 | -, | | - | | 107 | X DOLA | | ı | | | 852 | 2 | | I | | 108 | RCLA | | I | | | 853 | : | | I | | 109 | ÷ . | | I | | | 854 | 4 | | 1 | | 118 | ST04 | | I | | | 0 55 | 2 | | 1 | | 111 | R↓ | | | | | 056 | + | | | | 112 | ST04 | | 1 | | | | | | | | STERS | | | | _ | | ⁰ In 10 | 1 Z _c | 2
Vr | 3
α _c | 4 A | ⁵ f/10 ⁹ | 6 w | ⁷ h | 8 w/h | 9 h/w | | 1 | | S2 | S3 | S4 | | S6 | S7 | S8 | | | S0 | S1 | S2 | 53 | P4 | S5 | 36 | 57 | 198 | S9 | | <u> </u> | | TB | <u> </u> | | D | | - - | | | | ^ z _o | | ľ | С | | ľ | | E | ľ | | | 1 | | ı | 1 | | ı | | ı | 1 | | | 113 #LBLE |] | 169 1 | | |--------------------|---|--|------------------------| | 114 EEX | I | 176 + | | | 115 9 | I | 171 FØ? | lFw≤h | | | 1 | 172 GTO: | THEN GO TO 1. | | 11€ ÷ | ł | 173 1 | | | 117 ST05 | l | | | | 118 1% | | 174 RCL9 | | | 119 RCL3 | 1 | 175 - | Compute A for w > h. | | 120 × | Print α _c | 176 5 | | | | | 177 Y | 1 | | 121 RCL2 | | 178 6 | ł | | 122 ÷ | | | | | 123 STOB | | | 1 | | 124 PRTX | | 180 . | l | | 125 LSTX | | 181 4 | | | | | 192 4 | | | | | 183 + | | | 127 2 | l | 184 RCL9 | | | 128 × | Print R | | | | 129 RCL4
138 ÷ | | 185 X2 | | | 130 ÷ | | 18€ × | | | 131 RCL9 | 1 | 187 1 | | | 132 × | i | 188 + | l l | | | I | 189 x | l | | 133 PRTX | I | | 1 | | 134 2 | I | 190 RCLA | l | | 135 Pi | | 191 × | 1 | | 136 × | I | 192 7 | l | | 137 RCL0 | | 193 2 | | | 138 ÷ | | 194 € | | | | | 195 ÷ | | | 139 RCL5 | | | 1 | | 140 × | | 196 P: | | | 141 3 | | 197 GTD0 | | | 142 ÷ | Print Q ₀ | 198 *LBL1 | Compute A for w ≤ h. | | 143 RCL2 | 1 | 199 3 | Compute A for W & III. | | | 1 | 200 2 | | | 144 ÷ | | | | | 145 RCLB | İ | | | | 146 ÷ | | 202 X2 | | | 147 PRTX | | 283 × | l i | | 14E RTN | | 204 1 | 1 | | 149 *LBLC | ł | 205 - | | | | 1 | 20€ × | 1 | | 150 CF1 | 1 | | | | 151 RCL7 | | 207 RCLA | | | 152 2
153 x | 1 , | 208 ÷ | l | | 153 x | Calculate $\frac{\partial w}{\partial t}$ | 2 8 9 LSTX | | | 154 XZY | ðt . | 21€ € | | | 155 ÷ | I | 211 0 | 1 | | 156 RCL8 | I | 212 ÷ | l l | | | 1 | | | | 157 Pi | 1 | 213 e* | | | 158 2 | 1 | 214 ÷ | | | 159 × | l | 215 . | | | 160 × | i | 216 4 | l | | 161 × | I | 217 #LBL0 | | | 162 X>Y? | l | 218 ÷ | | | | 1 | | 1 | | 163 XZY | l | 219 RCL0 | l l | | 164 LH | ŀ | 220 ÷ | 1 | | 165 Pi | l | 221 Fi | | | 166 ÷ | l | 222 ÷ | | | 167 RCL8 | l | 223 5704 | Store A | | 168 + | l | 224 RTH | | | .66 7 | LABELS | | CET CTATUS | | A wth B s V Zo C t | | D = 10 > 1 | SET STATUS | | VIII CF 17, 20 1 | ·A P 1 | $\rightarrow \alpha_{c}, R, Q_{0}$ w > h FLAGS | TRIG DISP | | a b c | d e | 1 uniform ON OFF 0 □ 🗵 | DEG 😡 FIX 🗆 | | O Used 1 Used 2 U | sed 3 4 U | Jsed ² 1 🗆 🗷 | GRAD □ SCI □ | | | | | | | 5 6 7 | 8 9 | 3 2 2 | RAD □ ENG 図 n 3 | #### **Transmission Line Calculations** | 00: #LBLa | | 9 57 RCL6 | | | |--|---|--------------------------|---|---| | 96 2 EEX | | 9 58 + | | | | 003 1 | | 859 ST04 | | | | 884 8 | | 960 RCL6 | | | | 005 ÷ | | 061 RCL8 | | | | | Store f/10 ¹⁰ | | | | | 00€ STD9 | Store 1/10 | 002 | | | | 997 2 | | 8 €3 ST02 | | | | 008 F; | | 864 RCL5 | | | | 009 × | | 065 RCL3 | | | | 010 × | | 96 € ÷ | | | | 011 STO8 | Store ω' | 867 ST×1 | | | | | | | | | | 012 RTH | | 068 RCL5 | | | | 013 #LBLA | 0. 0 | 869 RCL3 | | | | 014 ST01 | Store R ₀ | 070 × | | | | 015 % ± Y | | 071 ST×7 | | | | 81 € ST 0 2 | Store v _r | 072 RTH | | | | 017 RTH | | 073 *LELD | | | | | | | 1 | | | 018 *LBLP | Store & | 874 X⊋Y | 1 | C+ | | 019 STOA | - | 075 ST08 | | Store α _D | | 820 2 | | 07€ R↓ | | _ | | 821 × | | 077 ST03 | | Store α _C | | 62 2 3 | | 078 RCLA | | | | 023 RCL2 | | 079 RCL2 | | | | 024 × | | ese RCL9 | | | | | Store 3 v _r | | | | | 025 ST03 | 313.3 3 17 | 081 Pi | 1 | | | <i>82€</i> ÷ | | 082 X | | | | 027 ST07 | Store 21/3 v _r | 083 1 | | | | 828 RTH | | B 84 . | | | | 829 *LBLC | | 085 5 | | | | 030 RCL3 | | 98€ ÷ | | | | | | 987 X≇Y | | | | 031 × | | | | | | 032 RCL1
033 ÷ | | | | | | | | 0 89 ST0€ | | | | 034 ST05 | Store 3 v _r R/R ₀ | 090 × | | | | 035 R↓ | | 091 2 | | | | 036 RCL1 | | 89 2 × | | | | 037 × | | 093 ST07 | 1 | | | 036 ST×3 | $R_3 \leftarrow 3 v_r R_0 G$ | 094 RCL8 | | | | | 113 5 47 118 4 | | | | | 039 RCL8 | | 895 1 | | | | 040 RCL5 | | 89€ 6 | | | | 841 →P | | 897 LN | | | | 842 IX | | 69 8 2 | | | | 043 ST05 | | 099 0 | | | | 044 X2Y | | 100 ÷ | | | | | | 101 RCL6 | | | | 045 2
046 ÷ | | 102 ÷ | | | | 047 ST06 | | 103 ST×3 | | | | | | | 1 | | | 045 RCLB | | 104 ST×8 | l | | | 04: RCL3 | | 105 RCL8 | | | | 6 56 →P | | 10€ RCL3 | 1 | | | 651 1X | | 107 - | 1 | | | 052 ST03 | | 108 ENT? | 1 | | | €53 X≇Y | | 109 ST05 | 1 | | | 954 ° | | 110 RCL8 | 1 | | | 854 2
855 ÷ | | | | | | 85€ STO8 | | 111 3 | | | | 656 5198 | | 112 x | | | | L | | STERS | | | | $\begin{bmatrix} 1 & R_0, Z_0 & V_r \end{bmatrix}$ | 3 Used 4 Used | ⁵ Used G Used | ⁷ 2ℓ/3 v _r ,2β ₀ ℓ |
${}^{8}\omega'$, ${}^{8}D$ 9 f/10 10 | | | | | | | | S0 S1 S2 | S3 S4 | S5 S6 | S7 | S8 S9 | | | 1 1 | l I | 1 | 1 1 | | | | | | | | A 0 B | C | D | E | Tı Tı | | A R | c | D | E | | | 113 RCL3 114 + 115 × 116 2 117 ÷ 118 CHS 119 1 120 + 121 +P 122 STX1 123 XXY 124 ST02 125 RCL5 126 X2 127 | | 169 CHS 178 X 171 XIY 172 CHS 173 X2Y 174 +R 175 1 176 + 177 +P 178 RCL7 175 X 181 X2Y 182 RCL8 185 - 184 CHS 185 +R 187 1 188 - 189 +P 198 1/X 191 2 | | | |---|---|---|--------|--| | 116 2 117 ÷ 118 CHS 119 1 1200 + 121 +P 121 +P 122 STX1 123 XZY 124 ST02 125 RCL5 126 X0 127 2 128 ÷ 129 1 130 + 131 RCL3 132 RCL8 133 + 134 +P | Store Z _L Store θ _L | 1773 | | DISPLAY ROUTINE IF flag 0 THEN PRINT ELSE DISPLAY. | | 168 2 | LABELC | FLAGS | | T STATUS | | A v _r ↑R ₀ B ℓ C G | tr D_{α_D} tr E Z | L→Z _{in} PRINT | FLAGS | T STATUS TRIG DISP | | a f b c | d e | 1 | ON OFF | | | 1 | 3 4 | 2 | 0 K 🗆 | DEG 🖫 FIX 🗆 | | | | | 1 | GRAD □ SCI □ RAD □ ENG █ | | ⁵ DISPLAY ⁶ | 8 9 | 3 | 3 🗆 🗵 | n_3_ | # Unilateral Design: Figure of Merit, Maximum Unilateral Gain, Gain Circles | 001 | *LBLA | | | | | 65 7 | + | | | | | |--------------------------|--------------------|-----------------|-----------------------|-------------------------------------|------|------------------|----------------------------------|-----|---|------------------|------------------| | 992 | 2 | | | | | € 58 | RCLD | | | | | | 883 | × | | | | | 8 59 | Χż | | | | | | 884 | 2 | J | | | | 860 | CHS | | | | | | 005 | 1 | | Input [S | i] | | 861 | GSB1 | | | | | | 80€ | _* | | | | | 862 | GSB2 | | | | | | 807 | STOI | 1 | | | | | ESB5 | | | Display (| 3- max | | | | | | | | 963 | | | | | | | 399 | R↓ | 1 | | | | 86 4 | RTH | | | DISBLAS | Y ROUTINE | | 869 | STO: | | | | | 86 5 | *LBL5 | | | IF flag 0 | ROUTINE | | 0 10 | RTH | | | | | 9 66 | F8? | | | | NAT | | 011 | *LBLE | | | | | 967 | PRTX | | | THEN P | TINI | | 812 | RCL1 | | Compu | te | | 96 8 | FB? | | | | | | 813 | RCL3 | | u, G _u , 0 | G _{min} , G _{max} | | 86 9 | RTH | | | ELSE | | | 814 | x | 1 | Go. Ga | max, G _{2max} . | | 878 | R/S | | | DISPL | ₋AY. | | 815 | RCLB | l | -0, -1 | max, Times | | 071 | RTH | | | | | | 816 | X | | | | | 872 | *LBL1 | | | Subrouti | ne to compute | | | RCLD | | | | | 873 | | | | | | | 017 | | | | | | 873
874 | +1 | | | 1 | | | 818 | ×. | l | | | | | | | | 1 + x | | | 0 19 | 1 | l | | | | 075 | 1/X | | | 1 + X | | | 929 | RCL1 | | | | | €76 | RTH | | | Cubacci | | | 921 | Χz | | | | | 677 | *LBL3 | | | | ne to re-compute | | 822 | - | | | | | 6 78 | RCLB | | | G _u . | | | 823 | 1 | I | | | | 879 | Χž | | | | | | 624 | RCLD | | | | | 986 | RCL€ | | | l | | | | 72
72 | ı | | | | 881 | ÷ | | | | | | 825
826 | 2" | | | | | 882 | *LBL2 | | | Subrouti | ne to convert to | | 827 | × | | | | | 883 | LOS | | | decibels. | | | 828 | STO6 | | | | | 884 | 1 | | | | | | | | | | | | 885 | ė | | | 1 | | | 829 | ÷ | | | | | | | | | ĺ | | | 9 30 | ST07 | | - | | | 98€ | × | | | 1 | | | 631 | ese5 | | Display | u | | 087 | RTN | | | | | | 032 | esb3 | - 1 | | | | 889 | *LBL4 | | | Subrouti | ne to compute | | 83 3 | GSB5 | | Display | Gu | | 989 | 1 | | | | | | 834 | RCL? | | | | | 0 90 | + | | | 1
(1 + x | | | 835 | SSB4 | | | | | 89 1 | Χs | | | (1 + v | 12 | | 83€ | GSB2 | i | | | | 89 2 | 1/8 | | | '''^ | , | | 637 | ESB3 | | | | | 893 | RTN | | | | | | 638 | + | | | | | 894 | *LBLC | | | Compute | Te1 . 0e1 | | 039 | GSB5 | | Display | G . | | 895 | 1 | | | | .017701 | | 846 | RCL7 | 1 | Display | Omin | | 896 | 6T06 | | | 1 | | | 841 | CHS | | | | | 897 | #LBLc | | | Compute | | | | ESB4 | 1 | | | | 898 | 2 | | | Compute | 102, 202 | | 842 | | 1 | | | | | | | | l | | | 843 | CSB2 | | | | | 89 9 | 3 | | | | | | 844 | ese3 | 1 | | | | 100 | *LBL6 | | | l | | | 045 | CCDE | | | | | 161 | STOI | | | l | | | 046 | £SB5 | | Display | G _{max} | | 102 | X27 | | | l | | | 847 | RCLB | | | | | 103 | 1 | | | I | | | 848 | Χs | | | | | 104 | 8 | | | l | | | 849 | GSB2 | | | | | 105 | ÷ | | | I | | | 6 50 | ese5 | | Display | G _o | | 10€ | 10× | | | l | | | 951
952 | RCL 1 | | | | | 107 | ST00 | | | I | | | | | | | | | 108 | RCL: | | | I | | | 05 3 | CHS | 1 | | | | 109 | × | | | 1 | | | 6 54 | es e 1 | | | | | 110 | LSTX | | | l | | | 85 5 | CSB2 | | | | | 111 | Χs | | | l | | | 85 6 | CSB5 | | Display | G _{1 max} | | 112 | RCLE | | | l | | | | | | | - , viiun | BECH | TERS | RULE | | | L | | | 0 | Ī1 | 2 | 3 | 14 | neul | c | 6 , | . 7 | | 8 | 9 | | Used | ` \$ ₁₁ | | S ₁₂ | <u> </u> | | G _i | s ₂₁ ² / | | u | r | ρ | | S0 | S1 | S2 | S3 | S4 | | S5 | S6 | S7 | | S8 | S9 | | A | IB | | | | | D | 1 | L L | | 1 . | | | ľ | ا | S ₂₁ | ۲ | | | S ₂ : | | ľ | | ľ | pointer | | | | | | | | | | | | | | | 118
119
128
121
122
123 | X 1 + + + CSB5 STOB LSTX 1 RCL1 RCL1 RCL2 | Display | <i>(</i> | | | | | | |--|---|---|----------|--------|---------|----------------|------------|---------------| | 132
137
134
135 | SSBS
STD9
RTM
R/S | LAB | ELS | | FLAGS | | SET STATUS | | | ^A s _{ij} †ij | B Compute | $^{\text{C}}$ $G_1 \rightarrow r_{o1}, \rho_{o1}$ | D | E | O PRINT | FLAGS | TRIG | DISP | | | b | | d | e | 1 | ON OFF | | | | | | -2 .02#-02 | | | | ON OFF | DEG 🖬 | FIX 🐷 | | 0 | ¹ Used | ² Used | 3 Used | 4 Used | 2 | 1 🗆 KO | GRAD □ | SCI ENG P | | 5 Used | ⁶ Used | 7 | 8 | 9 | 3 | 2 K
3 K | RAD 🗆 | n_2 | | | | L | | | | | | | # Bilateral Design: Stability Factor, Maximum Gain, Optimum Matching | 00: #LBLA | | 8 57 X 2 Y | | |---|--|---|---| | 902 2 | l | 0 58 ST07 | Store ∠ ∆ | | | | | 0.0.0.2.2 | | 96 3 × | Compute pointer | e 59 RCLD | 1 | | 964 2
865 1 | | 960 RCL1 | | | 1 885 1 | | | | | 88€ - | | 0 €1 GSB7 | 1 | | | | 062 RCL6 | | | 007 STOI | | 863 X2 | | | 888 R↓ | | | 1 | | | l | 0 64 1 | | | 009 STO: | Store s _{ij} | <i>06</i> 5 + | | | 010 ISZI | | | | | 011 R4 | | | | | | | 967 X2 | | | 012 STO: | Store θ_{ij} | 96 8 - | | | 013 RTN | | | | | | | 0€ 9 RCLD | | | 014 *LBLB | | 970 X2 | | | 015 RCL2 | | 0 71 - | | | 016 RCLE | Compute K, G _{max} | | | | | Compute K, G _{max} | 0 72 2 | | | 817 + | | 073 ÷ | | | 018 1 | | | | | | | 074 RCL3 | | | | | 075 RCLB | | | 020 RCL1 | | 0 76 × | | | 021 RCLD | | | | | | | 077 ABS
078 ÷ | 1 | | 82 2 × | | 0 78 ÷ | 1 | | 82 3 × | | 0 79 ST09 | 1 | | 824 X⊋Y | | | 1 | | | | 080 GSB5 | Display K | | 025 LSTX | | 0B1 ENT† | | | 026 × | | 08 2 × | | | | | | | | 827 RCL3 | | 083 LSTX | | | 028 RCLB | | 0 84 XZY | | | 82 9 × | | 085 1 | | | | | | | | | | 88 6 - | | | 831 CLX | | 887 JX | | | 032 RCL4 | | | 1 | | 032 8024 | | 088 RCL5 | 1 | | 033 RCLC
034 + | | 0 89 × | | | 034 + | | 090 CH S | | | 035 RCL9 | | 0 91 + | | | 03€ ST07 | | 092 RCLB | 1 | | | | | 1 | | | | | 1 | | 83 8 1 | | 0 93
x | 1 | | | | | 1 | | | | 094 RCL3 | | | 039 →R | | 094 RCL3
095 ÷ | | | 039 →R
040 ST06 | | 094 RCL3
095 ÷
096 ABS | | | 039 →R | | 094 RCL3
095 ÷
096 ABS | | | 039 →R
040 ST06
041 R4 | | 094 RCL3
095 ÷
096 ABS
097 LOG | | | 039 →R
040 ST06
041 R4
042 RCL7 | | 094 RCL3
095 ÷
096 ABS
097 LOG
098 1 | | | 039 →R
048 ST06
041 R4
042 RCL7
043 × | | 094 RCL3
095 ÷
096 ABS
097 LOG
098 1 | | | 039 →R
040 ST06
041 R4
042 RCL7 | | 094 RCL3
095 &
096 AB
097 LOG
098 1 | | | 039 →R
040 ST06
041 R4
042 RCL7
043 x
044 LSTX | | 094 RCL3
095 +
096 ABS
097 LOG
098 1
099 0
100 × | | | 039 →R
048 STO6
041 R4
842 RCL7
043 X
044 LSTX
045 STX6 | | 894 RCL3
895 ±
895 ABS
897 LOG
898 1
895 6
1868 ×
181 CSB5 | Display G _{max} | | ### 839 ### 848 \$706 ### 842 ### 842 ### 844 | | 094 RCL3
095 ABS
097 LOG
098 1
099 0
100 X
101 GSB5
162 RTN | Display G _{max} | | 039 →R
048 STO6
041 R4
842 RCL7
043 X
044 LSTX
045 STX6 | | 094 RCL3
095 =
096 ABS
097 LOG
098 1
099 8
100 ×
101 GSB5
102 RTH
183 #LBLc | | | 839 → R
848 STD6
841 R4
842 RCL7
843 ×
844 LSTX
845 STX6
846 CLX
847 RCLE | | 094 RCL3
095 =
096 ABS
097 LOG
098 1
099 8
100 ×
101 GSB5
102 RTH
183 #LBLc | | | 039 →R 048 STO6 041 R4 042 RCL7 043 X 044 LSTX 045 STX6 046 CLX 047 RCL6 048 R4 | | 894 RCL3
895 ABS
897 LOG
898 1
899 0
180 SB5
181 GSB5
182 RTH
183 #LBL0
184 RCL7 | | | 039 | | 094 RCL3
095 ABS
097 LOG
098 I
099 0
100 CSB5
101 CSB5
102 RTH
103 #LBL0
104 RCL7
105 RCL6 | | | 039 | | 894 RCL3
895 = 1
896 ABS
897 L06
898 1
899 8
180 ×
181 GSB5
182 RTM
183 **LBLc
184 RCL7
185 RCL6 | | | 039 | | 894 RCL3
895 = 1
896 ABS
897 L06
898 1
899 8
180 ×
181 GSB5
182 RTM
183 **LBLc
184 RCL7
185 RCL6 | | | 039 | | 894 RCL3
895 ABS
897 LOG
898 1
899 0
180 SB5
182 RTH
183 #LBL0
184 RCL7
185 RCL6
186 RCLD
187 RCLE | | | 839 | | 094 RCL3
095 ABS
097 LOG
098 1
099 0
100 x
101 GSB5
102 RTN
103 *LBL0
104 RCL7
105 RCL6
106 RCLD
107 RCLE | | | 039 | | 894 RCL3
895 ABS
897 LOG
898 1
899 0
180 SB5
182 RTH
183 #LBL0
184 RCL7
185 RCL6
186 RCLD
187 RCLE | | | 839 | | 894 RCL3
895 4
896 ABS
897 LOG
898 6
180 8
181 GSB5
182 RTM
183 **LBLc
184 RCL7
185 RCLG
186 RCLD
187 RCLG | | | 039 | | 894 RCL3
895 ABS
897 LOG
898 1
899 0
180 SB5
182 RTH
183 #LBL0
184 RCL7
185 RCL6
186 RCLD
187 RCLE
188 CHS
189 GSE9
110 CHS | | | 039 | | 894 RCL3
895 = 8
896 ABS
897 LOG
898 1
899 8
181 GSB5
182 RTM
183 **LBLc
184 RCL7
185 RCLG
186 RCLD
187 RCLE
188 CHS
189 GSB9
110 CHS | | | 039 | Store ∣∆∣ | 894 RCL3
895 ABS
897 LOG
899 D
180 SSE5
181 GSE5
182 RTN
183 *LBLc
184 RCL7
185 RCL6
186 RCLD
187 RCLE
188 CHS
189 CHS
110 CHS
111 CHS | | | 039 | Store ∣∆∣
REGIS | 894 RCL3
895 ABS
897 LOG
899 D
180 SSE5
181 GSE5
182 RTN
183 *LBLc
184 RCL7
185 RCL6
186 RCLD
187 RCLE
188 CHS
189 CHS
110 CHS
111 CHS | | | 039 | REGIS | 894 RCL3 895 4 896 ABS 897 L0G 899 1 809 8 1801 GSB5 1802 RTH 1803 #LBL0 184 RCL7 185 RCL6 186 RCLD 187 RCLE 188 CHS 189 111 RCL2 112 RCL1 | Compute Γ_{ms} | | 039 +R 048 ST06 041 R4 042 RCL7 043 X 044 LSTN 045 STN6 046 CLX 047 RCL6 048 R4 049 - | REGIS | 894 RCL3
895 4
896 ABS
897 LOG
898 1
899 8
180: GSB5
182 RTN
183 #LBL0
184 RCL7
185 RCL6
186 RCLD
187 RCLE
188 CHS
189 GSB9
110 CHS
111 RCL2
112 RCL1 | Compute Γ _{ms} | | 039 | REGIS 3 s ₁₂ 4 θ ₁₂ | 894 RCL3 895 4 896 ABS 897 L0G 899 1 809 8 1801 GSB5 1802 RTH 1803 #LBL0 184 RCL7 185 RCL6 186 RCLD 187 RCLE 188 CHS 189 111 RCL2 112 RCL1 | Compute $\Gamma_{\rm ms}$ | | 039 +R 048 ST06 041 R4 042 RCL7 043 X 044 LSTN 045 STN6 046 CLX 047 RCL6 048 R4 049 - | REGIS 3 s ₁₂ 4 θ ₁₂ | 894 RCL3 895 4BS 897 L0G 898 1 899 0 180 CSB5 182 RTN 183 #LBL0 184 RCL7 185 RCL6 186 RCLD 187 RCLE 188 CH6 189 CH6 189 CH6 111 RCL2 1112 RCL1 111 RCL2 112 RCL1 115 RCL1 115 RCL1 115 RCL2 111 RCL2 111 RCL1 115 | Compute Γ_{ms} | | ## 839 ## 848 \$706 ## 842 \$706 ## 842 \$706 ## 844 \$707 \$700 \$700 \$700 \$700 \$700 \$700 \$7 | REGIS 3 s_{12} $\frac{4}{\theta_{12}}$ S3 S4 | 894 RCL3 895 ABS 897 L06 898 B1 899 B1 899 B1 899 B1 899 B2 1891 GSB5 1802 RTN 1803 #LBLc 1804 RCL7 1805 RCL6 1806 RCLD 1807 RCLE 1808 CHS 1109 CSB9 1110 CHS 1111 RCL2 1112 RCL1 TEERS 5 sgn 6 Used 7 Used | Compute $\Gamma_{\rm ms}$ | | ## 839 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 894 RCL3 895 ± 896 ABS 697 L06 898 1 899 8 180 × 181 GSB5 182 RTN 183 **LBLc 184 RCL7 185 RCLC 186 RCLD 187 RCLE 188 CH5 189 GSB9 110 CH5 111 RCL2 111 RCL2 112 RCL1 **TERS** 5 sgn 6 Used 7 Used 55 S6 S7 | Compute Γ _{ms} 8 Used 9 Used S8 S9 | | ## 839 ## 848 \$706 ## 842 \$706 ## 842 \$706 ## 844 \$707 \$700 \$700 \$700 \$700 \$700 \$700 \$7 | REGIS 3 s_{12} $\frac{4}{\theta_{12}}$ S3 S4 | 894 RCL3 895 ABS 897 L06 898 B1 899 B1 899 B1 899 B1 899 B2 1891 GSB5 1802 RTN 1803 #LBLc 1804 RCL7 1805 RCL6 1806 RCLD 1807 RCLE 1808 CHS 1109 CSB9 1110 CHS 1111 RCL2 1112 RCL1 TEERS 5 sgn 6 Used 7 Used | Compute $\Gamma_{\rm ms}$ | | 113 GSB8 | 1 | 169 X ≍8 ? | | |--|--|-------------------------------|---| | 114 ST00 | I | 170 1 | | | 115 X≇Y | | 171 ABS | | | 116 STDA | | 172 LSTX | 1 | | | ł | | | | 117 RCLD | | 173 ÷ | 1 | | 118 RCL1 | | 174 ST05 | | | 119 GSB7 | 1 | 175 RTN | | | 120 GTD1 | 1 | 176 #LBL8 | Subroutine to add com- | | | | 177 →R | plex numbers. | | 121 #LBLC | Compute Γ_{ml} | | pież nambers. | | 122 RCL7 | | 178 R4 | | | 123 RCL6 | | 179 R ↓ | 1 | | 124 RCL1 | | 180 →R | | | 125 RCL2 | | 181 X2Y | 1 | | | | | 1 | | 126 CHS | | 192 R4 | | | 127 GSB9 | | 183 + | 1 | | 128 CHS | | 184 R↓ | | | 129 RCLE | | 185 + | | | | 1 | 186 Rt | 1 | | 130 RCLD | l | | | | 131 GSB8 | 1 | 187 +P | | | 132 ST00 | 1 | 188 RTN | | | 133 X2Y | 1 | 189 #LBL9 | Subroutine to multiply | | | 1 | 190 R4 | complex numbers. | | 134 ST0A | 1 | | complex numbers. | | 135 RCL1 | 1 | 191 × | | | 13€ RCLD | | 192 R↓ | | | 137 GSB7 | l . | 193 + | | | 138 *LBL1 | l | 194 R# | | | | | | | | 139 RCL8 | l | 195 RTN | | | 140 RCL0 | 1 | 19€ #LEL5 | | | 141 ÷ | i | 197 F8? | DISPLAY ROUTINE | | 142 2 | 1 | 198 PRTX | IF flag 0 | | 143 ÷ | l | | THEN PRINT | | | l | 199 F0? | | | | | | | | 144 ENT† | | 200 RTH | ELSE | | 145 X2 | | | DISPLAY. | | 145 X2 | | 201 R/S | | | 145 X2
146 1 | | 201 R/S
202 RTN | | | 145 X2
146 1
147 - | | 201 R/S | | | 145 X2
146 1
147 -
148 IX | | 201 R/S
202 RTN | | | 145 %2
146 1
147 -
148 JX
149 RCL5 | | 201 R/S
202 RTN | | | 145 %2
146 1
147 -
148 JX
149 RCL5 | | 201 R/S
202 RTN | | | 145 %2
146 1
147 -
148 JX
149 RCL5 | | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 X
151 - | | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 X
151 X | | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS | | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 -
151 -
152 RCLA
153 CHS
154 GSB5 | Display ∠ Γ | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS | Display ∠ Γ | 201 R/S
202 RTN | | | 145 X2
146 1
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS
154 GSB5
155 X#Y | | 201 R/S
202 RTN | | | 145 X2
146 I
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS
154 GSB5
155 XZY
156 GSB5 | Display \angle Γ | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 - 152 RCLA 153 CHS 154 GSB5 155 XEY 156 GSB5 157 RTN | | 201 R/S
202 RTN | | | 145 X2
146 I
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS
154 GSB5
155 X#Y
156 GSB5
157 RTM
158 #LBL7 | | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 - 152 RCLA 153 CHS 154 GSB5 155 X2Y 156 GSB5 157 RTN 158 *LBL7 159 X2 | | 201 R/S
202 RTN | | | 145 X2
146 I
147 -
148 IX
149 RCL5
150 X
151 -
152 RCLA
153 CHS
154 GSB5
155 X#Y
156 GSB5
157 RTM
158 #LBL7 | | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 X 152 RCLA 153 CRLA 153 GSB5 154 X5Y 156 GSB5 157 RTN 158 #LBL7 159 X2Y 168 X2Y | | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 - 152 RCLA 153 CHS 154 GSB5 155 X=7 156 GSB5 157 RTN 158 #LBL7 159 X2 160 X2 161 X2 | | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 RCLA 153 CHS 154 CHS 155 CHS 155 CHS 155 CHS 156 CHS 157 RTN 158 #LBL7 159 X2 160 X2 161 X2 162 - | | 201 R/S
202 RTN | | | 145 X2 146 1 147 - 148 IX 149 RCL5 150 X 151 - 152 RCLA 153 CHS 154 GSB5 155 X#Y 156 GSB5 157 RTN 158 #LBL7 159 X2 161 X2 162 - 163 1 | | 201 R/S
202 RTN | | | 145 | Display Γ | 201 R/S
202 RTN | | | 145 | | 201 R/S
202 RTN | | | 145 | Display Γ | 201 R/S
202 RTN | | | 145 | Display Γ | 201 R/S
202 RTN | | | 145 | Display Γ | 201 R/S
202 RTN | | | 145 | Display Γ Compute sgn(B). | 201 R/S
202 RTN
203 R/S | DISPLAY. | | 145 | Display Γ Compute sgn(B). | 201 R/S
202 RTN | | | 145 | Display
Γ Compute sgn(B). | 201 R/S
202 RTN
203 R/S | DISPLAY. | | 145 | Display | 201 R/S
202 RTN
203 R/S | DISPLAY. | | 145 | Display | 201 R/S
202 RTN
203 R/S | DISPLAY. SET STATUS AGS TRIG DISP NO OFF | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Compute sgn(B). LABELS nl D E ns D E | 201 R/S
202 RTN
203 R/S | SET STATUS AGS TRIG DISP DISPERSION OFF DEG RI FIX | | 145 | Display | 201 R/S
202 RTN
203 R/S | SET STATUS AGS TRIG DISP NO OFF NO OFF DEG NI FIX | | 145 | Compute sgn(B). LABELS nt D E ns d e 3 4 | 201 R/S
282 RTN
283 R/S | SET STATUS AGS TRIG DISP NO OFF NO OFF DEG NI FIX | | 145 | Compute sgn(B). LABELS nt D E ns d e 3 4 | 201 R/S
202 RTN
203 R/S | DISPLAY. | #### Bilateral Design: Gain and Stability Circles, Load and Source Mapping | 901 | *LBLA | | l | | 95 7 | ×. | | | |--|--|----------------------------------|----------------------|------|---|---|------------|---| | 882 | 1 | | ł | | 85 € | 1 | | 1 | | 863 | 8 | | l . | | 95 9 | + | | 1 | | 884 | ÷ | | | | 960 | ÷ | | Display ρ | | 005 | 19× | | l | | e 61 | *LBL5 | | DISPLAY ROUTINE | | 90€ | RCLB | | | | 962 | F0? | | | | 807 | XE | | 1 | | 963 | PRTX | | IF flag 0 | | 808 | ÷ | | 1 | | 864 | F8? | | THEN PRINT | | 989 | STOI | | Store Gp | | 865 | RTH | | ELSE | | | | | Store Gp | | 966 | R/S | | DISPLAY. | | 010 | RCL7 | | ł | | | | | DISPLAT. | | 011 | RCL6 | | | | 967 | RTN | | | | 812 | RCL1 | | | | 868 | *LBLC | | | | 013 | CHS | | | | 869 | STOI | | Store pointer | | 014 | RCL2 | | | | 878 | eto: | | | | 815 | CHS | | | | 871 | *LBL1 | | Compute input stability | | 916 | ESB9 | | 1 | | 872 | RCLE | | circles. | | 017 | RCLE | | l . | | 873 | CHS | | 1 | | 018 | RCLD | | | | 874 | RCLD | | 1 | | | | | | | 875 | RCL6 | | 1 | | 819 | GSB8 | | I | | | | | 1 | | 920 | STOP | | I | | 076 | RCL7 | | 1 | | 821 | XZY | | I | | 877 | ESB9 | | 1 | | 822 | CHS | | | | 8 78 | CHS | | 1 | | 823 | CSB5 | | Display ∠r | | 0 79 | RCL2 | | | | 824 | RCLD | | | | 686 | RCL1 | | | | 825 | XS | | i | | 881 | ESB8 | | 1 | | 826 | RCL6 | | | | 982 | XZY | | 1 | | | | | | | 983 | CHS | | 1 | | 027 | Χź | | l | | | | | 1 | | 82€ | - | | | | 084 | ese5 | | Display ∠ r _{s1} | | 829 | STOA | | | | 685 | XZY | | | | 030 | RCLI | | l | | 88€
887 | RCL1 | | | | <i>e</i> 31 | × | | | | | Xs | | | | 832 | LSTX | | | | 386 | RCL€ | | | | 033 | XZY | | | | 989 | ΧE | | 1 | | 034 | 1 | | | | 896 | - | | 1 | | 035 | +* | | | | 891 | ÷ | | 1 | | 83€ | _ | | | | | | | | | | | | | | 892 | ese5 | | Display Ir al | | | ÷
PCI 0 | | | | | | | Display r _{s1} | | 937
970 | RCLO | | | | 893 | CT03 | | | | 038 | RCL0
x | | Diaglass | | 893
894 | CTO3
*LBL2 | | Compute output stability | | 038
039 | RCL0
×
GSB5 | | Display r | | 893
894
895 | CTO3
*LBL2
RCL2 | | | | 038
039
040 | RCL0
X
GSB5
RCLI | | Display r | | 893
894
895
896 | #LBL2
RCL2
CHS | | Compute output stability | | 838
839
848
841 | RCL0
×
GSB5 | | Display r | | 893
894
895
896
897 | #LBL2
RCL2
CHS
RCL1 | | Compute output stability | | 838
839
848
841
842 | RCL0
X
GSB5
RCLI
RCL3
X | | Display r | | 893
894
895
89€
897
898 | CT03
*LBL2
RCL2
CHS
RCL1
RCL6 | | Compute output stability | | 838
839
848
841
842
843 | RCL0
×
GSB5
RCLI
RCL3 | | Display r | | 893
894
895
89€
897
898
899 | GT03
*LBL2
RCL2
CHS
RCL1
RCL6
RCL7 | | Compute output stability | | 838
839
848
841
842
843
844 | RCL0
X
GSB5
RCL1
RCL3
X
RCLB | | Display r | | 893
894
895
89€
897
898
899 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9 | | Compute output stability | | 838
839
848
841
842
843 | RCL0
X
GSB5
RCL1
RCL3
X
RCLB | | Display r | | 893
894
895
896
897
898
899
188
181 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9
CHS | | Compute output stability | | 838
839
848
841
842
843
844 | RCL0
X
GSB5
RCL1
RCL3
X
RCLB | | Display r | | 893
894
895
89€
897
898
899 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9 | | Compute output stability | | 838
839
848
841
842
843
844
845 | RCL0
X
GSB5
RCL1
RCL3
X
RCLB
ENT†
ENT† | | Display r | | 893
894
895
896
897
898
899
188
181 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9
CHS | | Compute output stability | | 838
839
848
841
842
843
844
845 | RCL0
x
GSB5
RCLI
RCL3
x
RCLB
x
ENT†
ENT† | | Display r | | 893
894
895
896
897
899
180
181
182
183 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9
CHS
RCLE
RCLD | | Compute output stability | | 838
839
848
841
842
843
844
845 | RCL0
X
GSB5
RCL1
RCL3
X
RCLB
ENT†
ENT† | | Display r | | 893
894
895
896
897
899
180
181
182
183 | #LBL2
RCL2
CHS
RCL1
RCL6
RCL7
GSB9
CHS
RCLE
RCLD
GSB8 | | Compute output stability | | 038
039
048
041
042
043
044
045
046
046
048 | RCL0
X
GSB5
RCLI
RCL3
X
RCLB
ENT†
ENT†
RCL9
ENT† | | Display r | | 893
894
895
896
897
698
899
180
181
182
183
184 | #LBL2 #CL2 CHS RCL1 RCL6 RCL7 GSB9 CHS RCLE RCLD GSB8 X2Y | | Compute output stability | | 838
839
848
841
842
843
844
845
846
847
848
849 | RCL0 x GSB5 RCL1 RCL3 x RCLB ENT† ENT† RCL9 ENT† | | Display r | | 893
894
895
896
897
899
180
181
182
183
184
185 | CT03 *LBL2 RCL2 CHS RCL1 RCL6 RCL7 CSB9 CHS RCLE RCLD GSB8 X2Y CHS | | Compute output stability circles. | | 938
939
941
941
942
943
944
945
946
947
949
959 | RCL0 X GSB5 RCL1 RCL3 X RCLB X ENT† ENT† RCL9 ENT† + X | | Display r | | 893
894
895
896
897
898
899
180
181
182
183
184
185
186
187 | CTD3 *LBL2 RCL2 CHS RCL17 RCL6 RCL7 CSB9 CHS RCLE RCLD CSB8 X2Y CHS CSB5 | | Compute output stability | | 838
839
848
841
842
843
844
845
846
847
849
850
851 | RCL0 X GSB5 RCL1 RCL3 X RCLB X ENT† ENT† ENT† + - X 1 | | Display r | | 893
894
895
896
897
898
899
180
181
182
183
184
185
186
187 | CTD3 *LBL2 RCL2 CHS RCL1 RCL6 RCL7 CSB9 CHS RCLE RCLD GSB8 X2Y CHS GSB5 X2Y | | Compute output stability circles. |
 838
839
848
841
842
843
844
845
846
847
858
859
851
851
852 | RCL0 X GSB5 RCL1 RCL3 X RCLB ENT† ENT† + - X 1 + | | Display r | | 893
894
895
896
897
898
899
188
181
182
183
185
186
187
186
187 | CTD3 *LBL2 RCL2 CHS RCL1 RCL6 RCL7 CSB9 CHS RCLE RCLD CSB8 X2Y CHS CSB5 X2Y RCLD | | Compute output stability circles. | | 838
839
848
841
842
843
844
845
846
847
849
851
852
853 | RCL0 x GSB5 RCLI RCL3 x RCLB x ENT† ENT† + | | Display r | | 893
894
895
897
898
899
180
181
182
184
185
186
187
186
187 | CTD3 *LBL2 RCL2 CHS RCL1 RCL6 RCL7 CSB9 CHS RCLE RCLD GSB8 X2Y CHS GSB5 X2Y RCLD X2 RCLD | | Compute output stability circles. | | 838
839
848
841
842
843
844
845
846
847
848
858
851
852
853
854 | RCL0
x
GSB5
RCLI
RCL3
x
RCLB
x
ENT†
ENT†
-
x
1
+
-
X
RCLI
RCL9
ENT†
-
X
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCL | | Display r | | 893
894
895
896
897
898
899
180
183
184
185
186
187
188
189 | CTD3 *LB12 RC12 RC12 RC11 RC16 RC17 CSB9 RC1E RC1D GSB8 X2Y RC16 RC16 RC16 RC16 RC17 RC10 RC16 RC16 | | Compute output stability circles. | | 838
839
848
841
842
843
844
845
846
847
849
852
851
852
853 | RCL0 x GSB5 RCLI RCL3 x RCLB x ENT† ENT† + | | Display r | | 893
894
895
896
897
899
188
181
182
183
184
187
186
187
189
118 | CTD3 *LBL2 RCL2 CHS RCL1 RCL6 RCL7 CSB9 CHS RCLE RCLD GSB8 X2Y CHS GSB5 X2Y RCLD X2 RCLD | | Compute output stability circles. | | 838
839
848
841
843
844
845
849
859
851
852
851
853
854 | RCL0
x
GSB5
RCLI
RCL3
x
RCLB
x
ENT†
ENT†
-
x
1
+
-
X
RCLI
RCL9
ENT†
-
X
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCLI
RCL | | | | 893
894
895
896
897
698
899
180
181
182
183
184
185
186
187
188
189
111
111
112 | CTD3 *LB12 RC12 RC12 RC11 RC16 RC17 CSB9 RC1E RC1D GSB8 X2Y RC16 RC16 RC16 RC16 RC17 RC10 RC16 RC16 | | Compute output stability circles. | | 838
839
849
841
842
843
844
845
849
851
852
852
853
855 | RCL0 x SSB5 RCLI RCL3 x RCLB ENT† ENT† ENT† + - x I RCLI RCLI RCLI RCLI RCLI RCLI | 2 σ ₁ , | la la | 4 | 893
894
895
896
897
698
899
180
181
182
183
184
185
186
187
188
189
111
111
112 | CTD3 #LB1.2 RCL12 CHS RCL11 RCL6 RCL16 CHS RCLE RCLE RCLE RCLE RCLE RCLE RCLE RCLE | 7 () | Compute output stability circles. Display \angle r _{s2} | | 838
839
849
841
842
843
844
845
849
851
852
853
854
855 | RCL0 x SSB5 RCL1 RCL3 RCLB ENT† ENT† + | θ_{11} | 3 512 | θ 12 | 893
894
895
896
897
898
899
180
181
183
184
185
196
189
118
111
111
112
STERS | RCL2 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 | 7 ΔΔ | Compute output stability circles. Display \angle r _{s2} | | 838
839
849
841
842
843
844
845
849
851
852
852
853
855 | RCL0 x SSB5 RCLI RCL3 x RCLB ENT† ENT† ENT† + - x I RCLI RCLI RCLI RCLI RCLI RCLI | 2 θ ₁₁ S ₂ | la la | 4 | 893
894
895
896
897
698
899
180
181
182
183
184
185
186
187
188
189
111
111
112 | CTD3 #LB1.2 RCL12 CHS RCL11 RCL6 RCL16 CHS RCLE RCLE RCLE RCLE RCLE RCLE RCLE RCLE | 7 ΔΔ
S7 | Compute output stability circles. Display \angle r _{s2} | | 838
839
849
841
842
843
844
845
846
847
852
852
853
854
855
856 | RCL0 x SSB5 RCLI RCL3 x RCLB ENT† ENT† + - x L1 H RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 | θ ₁₁ | 3 s ₁₂ S3 | θ 12 | 893
894
895
896
897
899
180
181
182
184
185
186
187
188
189
118
111
111
112
118
118
118
118
118
118 | RCL2 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 | S7 | Compute output stability circles. Display \angle r _{s2} | | 838
839
849
841
842
843
844
845
849
851
852
853
854
855 | RCL0 x SSB5 RCL1 RCL3 RCLB ENT† ENT† + | θ ₁₁ | 3 512 | θ 12 | 893
894
895
896
897
898
899
180
181
183
184
185
196
189
118
111
111
112
STERS | RCL2 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 RCL1 | | Compute output stability circles. Display \angle r _{s2} | | | , | | | | | | |--|------------------------------------|-----|--------------|-------|------------
-------------| | 113 - | } | 169 | | | | | | 114 ÷ | | 170 | | | | | | 115 GSB5 | Display r _{s2} | 173 | | | | | | 116 #LBL3 | | 172 | RTN | | | | | 117 LSTN | | 173 | *LBL8 | | | to add com- | | 118 1/X | | 17- | ; →R | | plex numbe | rs. | | 119 RCL3 | | 173 | 5 R ↓ | | | | | 120 × | | 170 | R.J | | | | | 121 RCLB | | 17 | | | | | | 122 × | | 170 | | | | | | 123 GSB5 | Display $\rho_{\rm si}$ | 17 | | | | | | 124 RTN | | 186 | | | | | | 125 *LBLB | $\Gamma_L \rightarrow \Gamma_{ms}$ | 18 | | | | | | 126 1/4 | . L ·ms | 18. | | | | | | 127 X=Y | | 18 | | | l | | | 128 CHS | | 18 | | | 1 | | | 129 XZY | | | | | l | | | | | 18 | | | Subroutine | to multiply | | | | 18 | | | complex nu | | | | | 18 | | | | | | 132 GSB7 | | 18 | | | | | | 133 RCL2 | | 18 | | | l | | | 134 RCL1 | | 19 | | | 1 | | | 135 GSB8 | | 19 | | | 1 | | | 136 XZY | | 19 | | | | | | 137 CHS | | 19 | 3 R/S | | | | | 138 GSB5 | | ı | | | | | | 139 XZY | | | | | | | | 140 GSB5 | | | | | | | | 141 RTH | | | | | | | | 142 #LBL& | $\Gamma_s \rightarrow \Gamma_{ml}$ | - 1 | | | | - 1 | | 143 1/X | | | | | | | | 144 XZY | | | | | | | | 145 CHS
146 XZY | | | | | | | | 146 %27 | | | | | | | | 147 RCL2 | | 1 | | | | | | 148 RCL1 | | i | | | | | | 149 CSB7 | | - 1 | | | l | | | 150 RCLE | | i | | | | | | 151 RCLD | | | | | | | | 152 GSB8 | | | | | | | | 153 X#Y | | - 1 | | | | | | 154 CHS | | | | | | | | 155 GSB5 | | - 1 | | | l | | | 156 X7Y | | 1 | | | | | | 157 CSB5 | | - 1 | | | | | | 158 RTH
159 #LBL7 | | | | | | | | 160 CHS | Subroutine to compute | - 1 | | | | | | 161 GSB8 | | | | | | | | 162 177 | S ₁₂ S ₂₁ | | | | | | | 162 1/X
163 X#Y | 1 | | | | | 1 | | 164 CHS | $\frac{1}{\Gamma} - s_{ii}$ | | | | | 1 | | 165 XZY | 1 | | | | | | | 166 RCL3 | | | | | | | | 167 RCL4 | | | | | | 1 | | 168 GSB9 | | - 1 | | | | | | 100 6000 | LABELS | | FLAGS | | SET STATUS | | | AC - Varia Br. AD IC | | E | | | | | | $^{A}G_{p}\rightarrow \angle r,r,\rho$ $^{B}\Gamma_{L}\rightarrow \Gamma_{ms}$ $^{C}i\rightarrow \angle r$ | ,τ,ρ | | O PRINT | FLAGS | TRIG | DISP | | LABELS | | | | | FLAGS | SELSTATUS | | | |-----------------------|--|-----------------------|--------|-------------------|---------|-----------------|-----------------|----------------| | A G_p → Lr,r,ρ | $^{B}\Gamma_{L}\!\rightarrow\!\Gamma_{ms}$ | ^C i→∠r,r,ρ | D | E | 0 PRINT | FLAGS | TRIG | DISP | | a | ${}^{b}\Gamma_{s} \rightarrow \Gamma_{ml}$ | С | d | е | 1 | ON OFF
0 🗷 🗆 | DEG 🗷 | FIX 🗆 | | 0 | ¹ Used | ² Used | 3 | ⁴ Used | 2 | 1 🗆 🗵 | GRAD □
RAD □ | SCI □
ENG ⊠ | | 5 DISPLAY | 6 | ⁷ Used | 8 CADD | 9 CMULT | 3 | 3 🗆 🛚 | | n 3 | # Appendix A MAGNETIC CARD SYMBOLS AND CONVENTIONS | SYMBOL OR CONVENTION | INDICATED MEANING | |--------------------------|--| | White mnemonic: x A | White mnemonics are associated with the user-definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing \triangle . | | Gold mnemonic: y x | Gold mnemonics are similar to white mnemonics except that the gold 1 key must be pressed before the user-definable key. In this case y could be input by pressing 1 E . | | x ∳ y
∆ | ♦ is the symbol for ENTER. In this case ENTER. is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER., key in y and press A. | | X
A | The box around the variable x indicates input by pressing (x) | | (x)
A | Parentheses indicate an option. In this case, x is not a required input but could be input in special cases. | | →x
A | → is the symbol for calculate. This indicates that you may calculate x by pressing key A. | | →x, y, z | This indicates that x , y , and z are calculated by pressing \triangle once. The values would be printed in x , y , z order. | | →x; y; z | The semi-colons indicate that after x has been calculated using \mathbf{A} , y and z may be calculated by pressing $\mathbf{R/S}$. | | → ''x '', y
A | The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y. | | ◆ x
A | The two-way arrow \Leftrightarrow indicates that x may be either output or input when the associated user-definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x. | ## **SYMBOLS AND CONVENTIONS (Continued)** | SYMBOL OR CONVENTION | INDICATED MEANING | |----------------------|--| | P? | The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off. | | START | The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary. | | DEL
A | This special command indicates that the last value or set of values input may be deleted by pressing A. | | →x;
A | Three dots () indicate that additional output follows. See User Instructions for complete description of variables output. | #### Notes Sales and service from 172 offices in 65 countries. 19310 Pruneridge Avenue, Cupertino, California 95014 00097-90057 BCDE