HEWLETT-PACKARD

IIP(OTIIPOT

Math Pac I

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

Introduction

The 19 programs of Math Pac I have been drawn from the fields of number theory, algebra, trigonometry, analytical geometry, calculus, and special functions.
Each program in this pac is represented by one or more magnetic cards and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.

On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions to the use of the program. You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.
If you have already worked through a few programs in Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

Several programs in this pac were based on programs submitted to the HP-65 Users' Library. We wish to acknowledge the following contributors:

John Joseph Herro for Optimal Scale for a Graph,
Rene S. Julian for Rotations in Three-Dimensional Space,

Stuart D. Augustin for Bessel Functions,

Charles R. Ammerman for Extended Complementary Error Function.

We hope that Math Pac I will assist you in the solution of numerous problems in your discipline. We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.
Program
CONTENTSPage

1. Factors and primes 01-01
Finds prime factors of an integer; finds all primes between two numbers.
2. GCD, LCM, decimal to fraction 02-01
Finds greatest common divisor and least common multiple of two integers; finds nearest fractional approximation for a decimal number.
3. Base conversions 03-01
Converts a number in base b to its equivalent in base B (b, B < 100).
4. Optimal scale for a graph; plotting 04-01
Finds a "nice" scale for graphing a function; generates ordered pairs for a graph.
5. Complex operations 05-01
Arithmetic and several functions for complex numbers.
6. Polynomial solutions 06-01
Solves polynomial equations up to $5^{\text {th }}$ degree.
7. 4×4 matrix operations (2 cards) 07-01
Computes determinant and inverse of 4×4 matrix, solves 4 simultaneous equations in 4 unknowns, by Gaussian elimination.
8. Solution to $\mathrm{f}(\mathrm{x})=0$ on an interval 08-01
Uses combination of bisection and secant method to guarantee rapid convergence to a root.
9. Numerical integration 09-01
Trapezoidal rule and Simpson's rule for discrete case; Simpson's rule for functions known explicitly.
10. Gaussian quadrature 10-01
Uses the six-point Gauss-Legendre quadrature method to find integrals over finite or infinite intervals.
11. Differential equations 11-01
Solves first- and second-order differential equations by the fourth- order Runge-Kutta method.
12. Interpolations 12-01Linear, Lagrangian, and finite difference.
13. Coordinate transformations 13-01
Two- and three-dimensional translation and rotation of axes.
14. Intersections 14-01Line-line, line-circle, circle-circle.
15. Circles 15-01Circle determined by three points; equally spaced points on a circle.
16. Spherical triangles 16-01
Solutions to six cases of spherical triangles.
17. Gamma function 17-01
Computes $\Gamma(x)$ for $1 \leqslant x \leqslant 70$.
18. Bessel functions, error function 18-01
Computes the value of the Bessel functions $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{I}_{\mathrm{n}}(\mathrm{x})$; computes error function and complementary error function.
19. Hyperbolics 19-01
Finds hyperbolic functions and their inverses.

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the difference in the two machines and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.
Most of the computed results in this pac are output by PRINT statements: most often by the statement PRINTx, and occassionally by the command PRINT STACK. On the HP-97 these results will be output on the printer. On the HP-67 each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about 5 seconds, then continue execution. The term "PRINT/PAUSE"' is used to describe this output condition.
If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press any key on the keyboard. If the command being executed is PRINTx (eight rapid blinks of the decimal point), pressing a key will cause the program to halt. If the command being executed is PRINT STACK (two slow blinks of the decimal per value), the number in the display will remain there until the depressed key is released; then the next register in the stack will be displayed, and so on. After display of all four registers, the program will halt execution if a key was pressed at any time during the display of the stack contents. In both cases execution of the halted program may be re-initiated by pressing R/S .
HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.
Several programs in this pac allow you to choose an optional mode which will be referred to on the magnetic card as AUTO. This will apply only to programs that output a long list of results and will allow those results to be output automatically through PRINT/PAUSE commands. If AUTO is not selected, each computed value will be output on the display and the program will halt. The purpose of AUTO mode is to afford maximum convenience to users of both the HP-67 and the HP-97. On the HP-97 it is simplest to have a printed record of each computed result; this can be accomplished just by specifying AUTO. On the HP-67, if every result is to be written down, it may be advantageous not to select AUTO, and thus force the program to halt each time a result is found.
Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, f on the

HP-97 and f, 9 , and \boldsymbol{h} on the HP-67. For example, the operation 10^{x} is performed on the HP-97 as 710^{x} and on the HP-67 as 90^{x}. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, 10^{x}). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.
Also in keystroke solutions, those values that are output by the command PRINTx will be followed by three asterisks (***).

FACTORS AND PRIMES

This program will find all prime factors of a positive integer n, or list all prime numbers between lower and upper bounds specified by the user.

A routine under LBL a is used in determining the factors of an integer n. This routine selects a trial divisor d and tests d as a factor of n. If divides n, then $\mathrm{n} \leftarrow \mathrm{n} / \mathrm{d}$ and d is tested as a factor of the new n . If d does not divide n , a new d is selected. The process continues until $\mathrm{d}>\sqrt{\mathrm{n}}$, at which point n is returned as the final factor. The trial divisor d takes on the values $2,3,5,7$; then for $\mathrm{d}>10, \mathrm{~d}$ takes on those values that satisfy $(\mathrm{d}-10) \bmod 30=1,3,7,9,13,19,21$, or 27 . Thus in the first cycle of 30 integers from 11 to 40 , d takes on the values 11,13 , $17,19,23,29,31$, and 37 . This technique eliminates from the test those values of $\mathrm{d}(\mathrm{d}>10)$ which are divisible by 2,3 , or 5 .
To list primes, a lower bound for the search must be specified. The upper bound is an optional input; if omitted, a default value of 2×10^{9} is assumed. Upper and lower bounds need not be integers. The search for primes also uses LBL a to determine if an integer n has any factors or is indeed prime. Once an integer n $(\mathrm{n} \geqslant 3)$ has been tested and found to be either prime or non-prime, the next integer tested is $n+2$.

Remarks:

1. The number n to be factored must be an integer in the range $0<\mathrm{n} \leqslant 2 \times 10^{9}$. Any other input will result in a program halt with a display of "Error".
2. The upper bound of the search for primes must be greater than or equal to the lower bound, or an Error halt will occur.
3. AUTO mode is available to allow automatic output of all calculated results through PRINT/PAUSE commands. The end of all calculations is signalled by a 0.00 in the display for both modes.
4. Either routine can be quite time-consuming for large integers.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To allow automatic output of			
	results, set AUTO mode.		\mathbf{E}	1.00
3	To cancel AUTO mode later.		\mathbf{E}	0.00

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	To find factors, go to step 5;			
	to find primes, go to step 6.			
	FACTORS			
5	Key in the integer and find its			
	prime factors (0.00 signals end).	n	A	Factors
				0.00
6	KRIMES			
	Key in the lower bound of the			
7	search for primes.	FROM		B
	bound of the search (if omitted,			FROM
	TO $=2 \times 10^{9}$).	TO	C	TO
8	Find all primes between FROM			
	and TO (0.00 signals end of			
	calculation).		D	Primes
				0.00

Example 1:

Find the prime factors of 924 . Do not set AUTO mode.

Keystrokes:

Thus $924=2 \times 2 \times 3 \times 7 \times 11$.
Outputs:
0.00 (end)

Example 2:

Find the prime factors of 3623 . Do not use AUTO mode.
Keystrokes:
Outputs:

3623.00
$0.00 \quad$ (end)

3623 is prime.

Example 3:

Find all prime numbers between 101 and 125. Use AUTO mode.

Keystrokes:	Outputs:	
101 B 125 C E \longrightarrow	1.00	(AUTO set)
$\mathrm{D} \longrightarrow$	$101.00^{* * *}$	
	$103.00^{* * *}$	
	107.00 ***	
	$109.00^{* * *}$	
	113.00 ***	
	0.00	(end)

GREATEST COMMON DIVISOR, LEAST COMMON MULTIPLE, DECIMAL TO FRACTION

This program contains three different routines: greatest common divisor, least common multiple, and decimal to fraction.

Given integers a and b, the first routine finds their greatest common divisor, $\operatorname{GCD}(\mathrm{a}, \mathrm{b})$. Optional outputs of this routine are the values of the integers s and t which satisfy the equation $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{sa}+\mathrm{tb}$. The second routine will calculate, for integers a and b, their least common multiple, $\operatorname{LCM}(a, b)$. This routine is independent of the first, although both share a common subroutine, LBLe.

The basic algorithm used in finding $\operatorname{GCD}(a, b)$ is as follows:

1. If $b=0, \operatorname{GCD}(\mathrm{a}, \mathrm{b}) \leftarrow \mathrm{a}$ and the program halts.
2. If $\mathrm{b} \neq 0, \mathrm{z} \leftarrow \mathrm{a} \bmod \mathrm{b}, \mathrm{a} \leftarrow \mathrm{b}$, and $\mathrm{b} \leftarrow \mathrm{z}$. Return to 1 .

The algorithm is actually extended somewhat to allow calculation of s and t. Full details may be found in the reference below.
$\operatorname{LCM}(a, b)$ is found by

$$
\operatorname{LCM}(\mathrm{a}, \mathrm{~b})=\frac{\mathrm{ab}}{\operatorname{GCD}(\mathrm{a}, \mathrm{~b})}
$$

The third routine in this program will find rational fractional approximations for decimal values by the method of continued fractions. Each successive approximation is closer to the decimal value than the previous one. For example, if the decimal keyed in is 0.33 , the first fractional approximation computed will be $1 / 3$. The program will output first the numerator 1 , then the denominator 3 , then the 10 -digit value of the approximation, 0.333333333 , and finally the error in this approximation, displayed in scientific notation. The error is found by subtracting the original value, 0.33 , from the value of this approximation. At this step the error is 3.333333300-03.

The program will then go on to compute a closer fractional approximation. In this example, the next approximation would be $33 / 100$. Since this is the exact equivalent of the original decimal value, the program will halt after this step displaying 0.000000000 . The last fraction generated can be recalled by pressing D.

Equations:

The algorithm employed in this routine uses a method of continued fractions, so that the nth fractional approximation f_{n} is computed as

$$
f_{n}=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+.}}}
$$

Each f_{i} is output as a numerator N_{i} and a denominator D_{i}, which are computed as follows:

$$
\begin{aligned}
& N_{i}=a_{i} N_{i-1}+N_{i-2} \\
& D_{i}=a_{i} D_{i-1}+D_{i-2}
\end{aligned}
$$

where $\mathrm{N}_{-1}=0, \mathrm{D}_{-1}=1, \mathrm{~N}_{0}=1$, and $\mathrm{D}_{0}=0$ by definition.
The values for the a_{i} may be found by the following algorithm:
Let Dec be the original decimal keyed in. Then $\mathrm{a}_{1}=\mathrm{INT}(\mathrm{Dec})$. Let $\mathrm{x}_{1}=1$ and let $\mathrm{y}_{1}=\mathrm{FRAC}(\mathrm{Dec})$. Then

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{i}+1}=\operatorname{INT}\left(\mathrm{x}_{\mathrm{i}} / \mathrm{y}_{\mathrm{i}}\right) \\
& \mathrm{x}_{\mathrm{i}+1}=\mathrm{y}_{\mathrm{i}} \\
& \mathrm{y}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}+1} \mathrm{y}_{\mathrm{i}} .
\end{aligned}
$$

Remarks:

AUTO mode is available on the Decimal to Fraction routine.

References:

(GCD,LCM) D. E. Knuth, The Art of Computer Programming, Vol. 2, Addi-son-Wesley, 1969.
(Decimal to fraction) Charles G. Moore, An Introduction to Continued Fractions, National Council of Teachers of Mathematics, 1964.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	For greatest common divisor,			
	go to step 3; for least common			
	multiple, go to step 5; for deci-			
	mal to fraction, go to step 6.			
	GCD			
3	Key in integers a and b and find			
	their greatest common divisor.	a	ENTERA	
		b	A	GCD (a, b)
4	(optional) Compute coefficients			
	s and t such that GCD (a, b)			
	$=s a+t b$.		R/S	s
				t
	LCM			
5	Key in integers a and b and find			
	their least common multiple.	a	ENTER ${ }^{\text {d }}$	
		b	B	LCM (a,b)
	DECIMAL \rightarrow FRACTION			
6	To allow automatic output of			
	results, set AUTO mode.		E	1.00
7	To cancel AUTO Mode later.		E	0.00
8	Key in a decimal value and find			
	successive fractional approxi-			
	mations ($\mathrm{i}=1,2, \ldots$).	Dec	c	Num ${ }_{i}$
				Den ${ }_{i}$
				Num $_{i} /$ Den $_{i}$
				Error ${ }_{\text {i }}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	To re-output last fractional			
	approximation (Error n shown in			
	display only).		D	Num $_{n}$
				Den $_{n}$
				Num $_{n} /$ Den $_{n}$
				Error $_{n}$

Example 1:

Find the greatest common divisor of 406 and 266. Find also the constants s and t.

Keystrokes:	Outputs:
406 ENTER4 266 A	14.00 *** (GCD)
R/S	2.00 *** (s)
	-3.00 *** (t)

That is, $(2 \times 406)+(-3 \times 266)=14$.

Example 2:

Find the least common multiple of 406 and 266.

Keystrokes:

Outputs:
406 ENTER $266 \mathrm{~B} \longrightarrow 7714.00^{* * *}$ (LCM)

Example 3:

A gear designer wants to reduce the angular speed of a rotating shaft by a factor of 0.45647 . He will do this by having a gear on the driven shaft mesh with a smaller gear, called a pinion, on the drive shaft. If N_{g} and N_{p} are the number of teeth on the gear and pinion respectively, then the reduction in speed is by a factor of $\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{g}}$. Find the best values for N_{p} and N_{g} subject to the constraint that neither value exceed 100. Do not use AUTO mode.

Keystrokes:

Outputs:

1.	$\left(\right.$ Num $\left._{1}\right)$
2.	$\left(\right.$ Den $\left._{1}\right)$
0.500000000	$\left(\right.$ Frac $\left._{1}\right)$
$4.353000000-02$	$\left(\right.$ Error $\left._{1}\right)$

R/S	5.	(Num_{2})
R/S	11.	$\left(\mathrm{Den}_{2}\right)$
R/S	0.454545455	(Frac_{2})
R/S	-1.924545500-03	(Error_{2})
R/S	21.	$\left(\mathrm{Num}_{3}\right)$
R/S	46.	$\left(\mathrm{Den}_{3}\right)$
R/S	0.456521739	$\left(\mathrm{Frac}_{3}\right)$
R/S	5.173910000-05	(Error ${ }_{3}$)
R/S	173.	$\begin{aligned} & \left(\mathrm{Num}_{4}>100,\right. \\ & \text { so stop }) \end{aligned}$

The best values are thus $\mathrm{N}_{\mathrm{p}}=21, \mathrm{~N}_{\mathrm{g}}=46$.

Example 4:

Generate the series of fractional approximations to π. Use AUTO mode.

Keystrokes: Outputs:

1.00	(AUTO set)
3.	
3.000000000	
-1.415926540-01	
22.	
7.	
3.142857143	
$1.264489000-03$	
333.	
106.	
3.141509434	
-8.322000000-05	
355.	***
113.	
3.141592920	
2.660000000-07	***

$104348 .^{* * *}$
$33215 .^{* * *}$
$3.141592654^{* * *}$
0.000000000

BASE CONVERSIONS

This program will convert a positive number in base $\mathrm{b}, \mathrm{x}_{\mathrm{b}}$, to its equivalent representation in base $\mathrm{B}, \mathrm{x}_{\mathrm{B}}$. The bases b and B may take on integer values from 2 to 99 , inclusive. Inputs to the program are $\mathrm{x}_{\mathrm{b}}, \mathrm{b}$, and B ; the single output is the value of x_{B}. Input of either base, b or B, may be omitted if its value is 10 since a default value of 10 is assigned to both b and B upon input of x_{b} to key \boldsymbol{A}. If several conversions are to be done between the same two bases, i.e., there are several values of x_{b} for the same b and B, then the bases need not be re-input each time. Once the new value of x_{b} is keyed in, then pressing \mathbf{E} will immediately cause the calculation of x_{B}, based on the most recent values for b and B.

The heart of this program is a routine under LBL e which actually converts numbers to and from base 10 representations. If either b or B is equal to 10 , this routine is executed just once, and then the program halts displaying x_{B}. If, on the other hand, neither b nor B is 10 , then x_{b} is first converted to its decimal representation, x_{10}, and next x_{10} is converted to x_{B}. Thus the routine is here executed twice.

A number such as $4 \mathrm{~B} 6_{16}$ cannot be represented directly on the display because the display is strictly numeric. Therefore, some convention must be adopted to represent numbers R_{a} when a >10. We use the convention of allocating two digit locations for each single character in R_{a} when a >10.

For example, $4 \mathrm{~B} 6_{16}$ is represented as 041106_{16} by our convention (in hexadecimal system, $\mathrm{A}=10, \mathrm{~B}=11, \mathrm{C}=12, \mathrm{D}=13, \mathrm{E}=14, \mathrm{~F}=15$).
When displayed, this number may appear as 41106 or with an exponent

$$
\begin{equation*}
4.1106 \tag{04}
\end{equation*}
$$

which is interpreted as $4 . \mathrm{B} 6 \times 16^{2}$.
The displayed exponent 4 is for base 10 and only serves to locate the decimal point (in the same manner as for decimal numbers).

When base a >10 (as in the above example), divide the displayed exponent by 2 to get the true exponent of the number. When the displayed exponent is an odd integer, shift the decimal point of the displayed number one place (to the left or right) and adjust its exponent accordingly to make the true exponent an integer.

For example, the displayed number

$$
1.112-03
$$

is interpreted as B.C $\times 16^{-2}$ or $0 . \mathrm{BC} \times 16^{-1}$.

Remarks:

1. When the magnitude of the number is very large or very small, this program will take a long time to execute.
2. The program will not give any Error indication for invalid inputs for x_{b}. For example, 981_{8} will be treated the same as 1201_{8}.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To cause input values to be			
	output, set Print/Pause mode.		1 A	1.00
3	To cancel Print/Pause mode.		1 A	0.00
4	Key in number in first base.	x_{b}	A	
5	(optional) Key in first base.	b	B	
	(If omitted, default value of b			
	is 10.)			
6	(optional) Key in second base	B	c	
	(If omitted, default value of B			
	is 10.)			
7	Calculate number in second			
	base.		D	x_{B}
8	To convert another number			
	between the same two bases			
	(from b to B), key in the new			
	x_{b} and find the new x_{B}.	x_{b}	E	x_{B}
9	To change either base, go to			
	step 4.			

Example 1:

The following octal numbers $(\mathrm{b}=8)$ are addresses of a segment of a program in an HP2 100 minicomputer: $177700,177735,177777$. What are the values of these addresses in base $10(B=10)$?

Keystrokes:	Outputs:
177700 A 8 B D	65472.00 ***
177735 E	65501.00 ***
177777 E \longrightarrow	65535.00 ***

Example 2:

Find the ten-digit binary representation of $\pi .\left(\mathrm{x}_{\mathrm{b}}=3.141592654, \mathrm{~b}=10\right.$, $\mathrm{B}=2$)

Keystrokes:

Outputs:

园 A 2 C D DSP $9 \longrightarrow 11.00100100$

Example 3:

Convert the following octal numbers $(\mathrm{b}=8)$ into hexadecimal $(\mathrm{B}=16)$: $7.200067 \times 8^{-10}, 1.513561778 \times 8^{17}$

Keystrokes:

Outputs:

7.200067 EEX CHS 10 A 8 B

OPTIMAL SCALE FOR A GRAPH; PLOTTING

Two separate routines are included in this program. The first finds the optimal scale for a graph, given certain parameters of the graph. The second routine is designed to be of assistance in plotting functions of one variable by generating ordered pairs ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) for a range of x -values specified by the user.

Optimal scale for a graph

In the first routine the input parameters are the minimum and maximum values on the graph (Min and Max) and the number of major divisions (tics) from top to bottom of the graph. The routine will select a "nice" scale for the graph, meaning that the graph will fill as much of the page as possible, subject to these constraints: (1) the quantity Δ represented by one major division will be $1,2,4$ or 5 times an integral power of 10; (2) the bottom and the top of the graph will be integral multiples of one division; and (3) bottom \leqslant Min and top \geqslant Max. Outputs of the routine are values for the top and bottom of the graph; the amount of each major division, Δ; and the "efficiency," or percentage of the page filled by the graph. Efficiency is found by [(Max - Min)/(Top - Bot)] x 100 .

Plotting

In the second routine, the function $f(x)$ must be specified and loaded into program memory by the user. The user must also input beginning and ending values for x (Beginx and Endx), and the step size or increment used for x (Step). Then the routine will output the values of $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ for the successive values of x represented by

$$
\mathrm{x}_{\mathrm{j}}=\text { Beginx }+\mathrm{jStep} \quad, \quad \mathrm{j}=0,1,2, \ldots, \mathrm{n}
$$

where n is such that $x_{n+1}>$ Endx. The end of calculations is signalled by a 0.00 in the display.
The AUTO option is provided for output of the ordered pairs ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) through Print/Pause commands. If AUTO is not selected, the values will be output one at a time by the use of R/S.
Although we have discussed only one $f(x)$, there may actually be up to five different functions $\mathrm{f}_{\mathrm{i}}(\mathrm{x}), \mathrm{i}=1,2, \ldots, 5$, in program memory at one time. Each function should be under its own label, 1 through 5 , and should be followed by

RTN. The function to be evaluated is specified by keying in 1,2,3, 4, or 5 and pressing \boldsymbol{f}.

92 program steps are available to the user for specifying functions $f_{i}(x)$. This includes all LBL and RTN statements. The functions should assume that upon entry the value of x will be found in the x-register. Registers R_{0} through R_{9} and $\mathrm{R}_{\mathrm{s} 0}$ through $\mathrm{R}_{\mathrm{s} 9}$, as well as the stack, are available to the user. The functions $\mathrm{f}_{\mathrm{i}}(\mathrm{x})$ may use up to two levels of subroutines: note, however, that the only unused labels are 1 through 5 .
To specify your functions, you may wish to record them on a blank magnetic card for rapid entry. Alternatively, you may key them into program memory after loading side 1 and side 2 of this card. To link in recorded functions, follow these steps:

1. Load side 1 and side 2 of Optimal Scale, Plotting.
2. Press GTO (1) 3 (2).
3. Press MERGE.
4. Load your own magnetic card with the functions $f_{i}(x)$ recorded.

To key in a new function:

1. Load side 1 and side 2 of Optimal Scale, Plotting.
2. Press GTO (1) (2).
3. Key in your function(s), beginning each with LBL (1 through 5) and ending each with RTN.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	For optimal scale of a graph,			
	go to step 3; for plotting, go to			
	step 7.			
	OPTIMAL SCALE FOR			
	A GRAPH			
3	Key in the minimum value on			
	the graph.	Min	A	Min
4	Key in the maximum value on			
	the graph.	Max	B	Max
5	Key in the number of tics desired			
	and find the graph top, bottom,			
	value of one tic, and \% efficiency.	Tics	c	Top
				Bottom
				Δ
				\%
6	To change any value, go to the			
	appropriate step, then to step 5.			
	PLOTTING			
7	Load subroutine(s) (either key			
	them in with LEL and RTN,			
	or link from step 132).			
8	Select function under LEL 1, 2,			
	3,4 or 5.	i (1-5)	1 E	i
9	Key in the beginning x-value.	$B e g i n \times$	1 A	$B e g i n \times$
10	Key in the final or maximum			
	x-value.	End x	1 B	End x
11	Key in the step size for x .	Step	[C	Step
12	For automatic output of results,			
	go to step 13; for manual output,			
	go to step 16.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	AUTO mode			
13	Set AUTO mode to allow auto-			
	matic output of results.		E	1.00
14	To cancel AUTO mode later		E	0.00
15	Output successive ordered			
	pairs; program will halt displaying			
	0.00 when $\mathrm{x}>$ End x .		18	x
				$f_{i}(x)$
	Manual mode			
16	Output first ordered pair.		18	X
			R/S	$f_{i}(x)$
17	For all successive ordered pairs;			
	0.00 signals end ($x>$ End x).		R/S	x
			R/S	$f_{i}(x)$
18	The value for i may be changed			
	at any time. Begin x , End x , and			
	Step need not be re-input if			
	their values are unchanged.			

Example 1:

Find the best scale to graph a function whose minimum is 20 , maximum is 40 , with 5 major divisions from top to bottom (figure 1).

Keystrokes:

20 A 40 B 5 C \qquad Outputs:

40.00	(Top)
20.00	(Bottom)
4.00	(Δ)
100.00	$(\%$ Efficiency)

Figure 1

Figure 2

Example 2:

Suppose the minimum changes to 21 , the maximum to 41 , with the number of tics still 5 . Find the new optimal scale (figure 2).

Keystrokes:

Outputs:

21 A 41 B C $\longrightarrow \quad$| 45.00 | (Top) |
| ---: | :--- |
| 20.00 | (Bottom) |
| 5.00 | (Δ) |
| 80.00 | (\% Efficiency) |

Example 3:

Two different functions are to be plotted in the range from 2.00 to 3.00. The first is $f_{1}(x)=e^{x}$, and the second is $f_{2}(x)=x^{x}$. Use a step size of 0.25 for $f_{1}(x)$ and 0.2 for $f_{2}(x)$. Load $f_{1}(x)$ under LBL 1 and $f_{2}(x)$ under LBL 2. Use AUTO mode with $\mathrm{f}_{2}(\mathrm{x})$.

Keystrokes:

Outputs:
GTO 1 (13 ${ }^{2}$
Switch to PRGM.

ENTER ¢ y^{x} RTN	
Switch to RUN.	
1 IE 2 IA 3 f B	
.25 CBfD	2.00 (x)
R/S \longrightarrow	7.39 (e^{x})
R/S \longrightarrow	2.25
R/S \longrightarrow	9.49
R/S \longrightarrow	2.50
R/S \longrightarrow	12.18
R/S \longrightarrow	2.75
R/S \longrightarrow	15.64
R/S \longrightarrow	3.00
R/S \longrightarrow	20.09
R/S \longrightarrow	0.00 (end)
$2 \mathrm{fE} 2 \mathrm{f} \mathbf{C E} \longrightarrow$	1.00 (AUTO set)
f D \longrightarrow	$2.00^{* * *}$ (x)
	$4.00^{* * *}\left(\mathrm{x}^{\mathrm{x}}\right)$
	2.20 ***
	5.67 ***
	2.40 ***
	$8.18{ }^{* * *}$
	2.60 ***
	$11.99^{* * *}$
	2.80 ***
	17.87 ***
	$3.00^{* * *}$
	27.00 ***
	0.00 (end)

COMPLEX OPERATIONS

This program allows for chained calculations involving complex numbers. The four operations of complex arithmetic (,,$+- \times, \div$) are provided, as well as several of the most used functions of a complex variable $z\left(|z|, 1 / z, z^{n}, z^{1 / n}\right.$, and e^{2}). Functions and operations may be mixed in the course of a calculation to allow evaluation of expressions like $z_{3} /\left(z_{1}+z_{2}\right), e^{z_{1} z_{2}},\left|z_{1}+z_{2}\right|+\left|z_{2}-z_{3}\right|$, etc., where z_{1}, z_{2}, z_{3} are complex numbers of the form $a+i b$.

Keying in a complex number

A complex number is input to the program by keying in its real part, pressing ENTERA, keying in its imaginary part, and pressing \boldsymbol{A}. For example, the complex number $\mathrm{z}_{1}=2+3 \mathrm{i}$ is input as 2 ENTER 3 A. This number is then stored by the program. There is room in the program to remember up to two complex numbers at a time. A second complex number $\mathrm{z}_{2}=5-\mathrm{i}$ could be input as 5 ENTER 1 CHS A. The program would now contain both the first and the second complex number.

Functions

The complex functions in this program act on just one number. Thus to perform a function, you need simply to input a complex number z and then perform the appropriate function. For example, to find the reciprocal of $(2+3 i)$, press 2 ENTER 3 A B. The result is calculated as $\mathrm{a}+\mathrm{ib}=0.15-0.23 \mathrm{i}$. This result is now stored in place of the original number, and further calculations will operate on this result. All complex functions operate in this same manner, with one exception: since the function $|\mathrm{z}|$ returns a real number, its result is not stored.

Arithmetic Operations

An arithmetic operation needs two numbers to operate on. Both numbers must be input before the operation can be performed. Suppose that $z_{1}=2+3 i$, $\mathrm{z}_{2}=5-\mathrm{i}$, and we wish to find $\mathrm{z}_{1}-\mathrm{z}_{2}$. This can be calculated by the keystrokes 2 ENTER4 3 A 5 ENTERA 1 CHS A C. The result $\mathrm{z}_{3}=\mathrm{a}+\mathrm{ib}$ is found to be $-3+4 \mathrm{i}$. This result is now stored by the program in place of the second complex number z_{2}. A further calculation $\mathrm{z}_{3} \times \mathrm{z}_{4}$ could be performed by inputting z_{4} and pressing \boldsymbol{D} for multiplication. This type of chaining can be continued indefinitely, and functions can be interspersed with arithmetic operations.

Equations:

Let

$$
\begin{aligned}
& z_{k}=a_{k}+i b_{k}=r_{k} e^{i \theta_{k}} \quad, k=1,2 \\
& z=a+i b=r e^{i \theta}
\end{aligned}
$$

Let the result in each case be $u+i v$.

$$
\begin{aligned}
& z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) \\
& z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right) \\
& z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& z_{1} / z_{2}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)} \\
& |z|=\sqrt{a^{2}+b^{2}} \\
& 1 / \mathrm{z}=\frac{a}{r^{2}}-i \frac{b}{r^{2}} \\
& z^{n}=r^{n} e^{i n \theta} \\
& \left.z^{1 / n}=r^{1 / n} e^{i\left(\frac{\theta}{n}+\frac{360 k}{n}\right.}\right), k=0,1, \ldots, n-1
\end{aligned}
$$

(All n roots will be output and temporarily stored, $\mathrm{k}=0,1, \ldots, \mathrm{n}-1$; at the end of the calculation, the final root will be stored.)

$$
e^{z}=e^{a}(\cos b+i \sin b) \text {, where } b \text { is in radians. }
$$

Remarks:

The logic system for this program may be thought of as a kind of Reverse Polish Notation (RPN) with a stack whose capacity is two complex numbers. Let the bottom register of the complex stack be ξ and the top register τ. These are analogous to the X - and T -registers in the calculator's own four-register stack.* A complex number z_{1} is input to the ξ-register by the keystrokes a_{1} ENTERA b_{1} A. Upon input of a second complex number z_{2} (as a_{2} ENTER $\mathrm{b}_{2} \boldsymbol{A}$), z_{1} is moved to τ and z_{2} is placed in ξ. The previous contents of τ are lost.

[^0]Functions operate on the ξ-register, and the result (except for $|\mathrm{z}|$) is left in ξ; τ is unchanged. Arithmetic operations involve both the ξ - and τ-registers; the result of the operation is left in ξ and τ is unchanged.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Key in first complex number			
	$\left(a_{1}+i b_{1}\right)$.	a_{1}	ENTER	
		b_{1}	A	
3	For a function, go to step 7; for			
	arithmetic, go to step 4. A com-			
	plex result is $u+i v$.			
	ARITHMETIC			
4	Key in second complex number			
	$\left(a_{2}+i b_{2}\right)$.	a_{2}	ENTERA	
		b_{2}	A	
5	Select one of four operations:			
	- Add (+)		B	u
				v
	- Subtract (-)		c	u
				v
	- Multiply (x)		D	u
				v
	- Divide (\div)		E	u
				v
6	The result of the operation has			
	been stored; go to step 7 for a			
	function or to step 4 for further			
	arithmetic.			
	FUNCTIONS			
7	Select one of five functions:			
	- Magnitude ($\|z\|$)		18	$\|z\|$
	- Reciprocal (1/z)		1 B	u

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
				v
	- Raise zto an integer power (z^{n})	n	1 C	u
				v
	- Find the $\mathrm{n}^{\text {th }}$ root of $z\left(z^{1 / n}\right)$			
	Note: n roots $(u+i v)$ will be			
	found.	n	18	u
				v
	- Raise e to the power $\mathrm{z}\left(\mathrm{e}^{\text {z }}\right.$)		1 E	u
				v
8	The result, if complex, has been			
	stored; go to step 4 for arithmetic			
	or to step 7 for another function.			

Example 1:

Evaluate the expression

$$
\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}+\mathrm{z}_{3}}
$$

where $\mathrm{z}_{1}=23+13 \mathrm{i}, \mathrm{z}_{2}=-2+\mathrm{i}, \mathrm{z}_{3}=4-3 \mathrm{i}$. (Suggestion: since the program can remember only two numbers at a time, perform the calculation as

$$
\left.\mathrm{z}_{1} \times\left[1 /\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)\right] .\right)
$$

Keystrokes:
Outputs:
2 CHS ENTERA 1 A 4 ENTER 3

CHS A B \qquad
f B \longrightarrow

23
ENTERA 13 A D \longrightarrow

$$
\begin{aligned}
& 2.00^{* * *} \text { real }\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right) \\
& -2.00^{* * *} \operatorname{imag}\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)
\end{aligned}
$$

$$
0.25 * * * 1 /\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)
$$

$$
0.25^{* * *}
$$

$$
2.50 * * *\left(\mathrm{z}_{1} /\left(\mathrm{z}_{2}+\mathrm{z}_{3}\right)\right)
$$

$$
9.00^{* * *}
$$

05-05

Example 2:

Find the 3 cube roots of 8 .

Keystrokes:

Outputs:

8 ENTER4 0 A $3 \mathrm{D} \longrightarrow$| |
| ---: |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| $-1.00^{* * *}$ |
| $-1.00^{* * *}$ |
| $1.73^{* * *}$ |
| |
| $-1.00^{* * *}$ |
| $-1.73^{* * *}$ |

Example 3:

Evaluate $\mathrm{e}^{\mathrm{z}^{-2}}$, where $\mathrm{z}=(1+\mathrm{i})$.
Keystrokes:

Outputs:

1 ENTER4 1 A 2 C
$0.00^{* * *}\left(\mathrm{z}^{2}\right)$
2.00 ***
f B \qquad
1 E \qquad

$$
\begin{array}{r}
0.00^{* * *}\left(\mathrm{z}^{-2}\right) \\
-0.50 \text { *** } \\
0.88 * * *\left(\mathrm{e}^{\mathrm{z}^{-2}}\right) \\
-0.48 * * *
\end{array}
$$

Notes

POLYNOMIAL SOLUTIONS

This program will solve polynomial equations with real coefficients of degree 5 and below, provided the high-order coefficient is 1 . The equation may be represented as

$$
x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0 \quad, \quad n=2,3,4 \text {, or } 5
$$

If the leading coefficient is not 1 , it should be made 1 by dividing the entire equation by that coefficient.
The user must store the coefficients of the equation beforehand, beginning with a_{0} in R_{0} through a_{n-1} in R_{n-1}. Zero must be input for those coefficients which are zero. It is not necessary to store the leading coefficient as 1 , or any a_{k} where $\mathrm{k}>\mathrm{n}$.

After the coefficients have been stored, the user-definable key (A through D) which represents the order of the polynomial should be pressed. All roots of the equation, real and complex, will then be computed. For example, if coefficients a_{0}, a_{1}, a_{2}, and a_{3} have been stored in registers R_{0} through R_{3}, then key B should be pressed to compute the four roots of the fourth degree polynomial equation

$$
x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

Equations:

The routines for third and fifth degree equations use an iterative routine under LBL a to find one real root of the equation. This routine requires that the constant term a_{0} not be zero for these equations. (If $\mathrm{a}_{0}=0$, then zero is a real root and by factoring out x, the equation may be reduced by one order.) After one root is found, synthetic division is performed to reduce the original equation to a second or fourth degree equation.
To solve a fourth degree equation, it is first necessary to solve the cubic equation

$$
y^{3}+b_{2} y^{2}+b_{1} y+b_{0}=0
$$

where $b_{2}=-a_{2}$

$$
\begin{aligned}
& \mathrm{b}_{1}=\mathrm{a}_{3} \mathrm{a}_{1}-4 \mathrm{a}_{0} \\
& \mathrm{~b}_{0}=\mathrm{a}_{0}\left(4 \mathrm{a}_{2}-\mathrm{a}_{3}{ }^{2}\right)-\mathrm{a}_{1}{ }^{2} .
\end{aligned}
$$

Let y_{0} be the largest real root of the above cubic.

Then the fourth degree equation is reduced to two quadratic equations:

$$
\begin{gathered}
x^{2}+(A+C) x+(B+D)=0 \\
x^{2}+(A-C) x+(B-D)=0
\end{gathered}
$$

where $A=\frac{a_{3}}{2}, B=\frac{y_{0}}{2}$

$$
\mathrm{D}=\sqrt{\mathrm{B}^{2}-\mathrm{a}_{0}}
$$

$$
C= \begin{cases}\left(A B-\frac{a_{1}}{2}\right) / & \text { if } D \neq 0 \\ \sqrt{A^{2}-a_{2}+y_{0}} & \text { if } D=0\end{cases}
$$

Roots of the fourth degree equation are found by solving the two quadratic equations.

A quadratic equation $\mathrm{x}^{2}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{0}=0$ is solved by the formula $\mathrm{x}_{1,2}=$ $-\frac{a_{1}}{2} \pm \sqrt{\frac{a_{1}{ }^{2}}{4}-a_{0}} \cdot$ If $D=\frac{a_{1}{ }^{2}}{4}-a_{0}>0$, the roots are real; if $D<0$, the roots are complex, being $u \pm i v=-\frac{a_{1}}{2} \pm i \sqrt{-D}$.

A real root is output as a single number. Complex roots always occur in pairs of the form $u \pm i v$. They are output by loading the stack with u, v, u, and $-v$ in registers T, Z, Y, and X, respectively, and then executing the command Print Stack. If these roots are being output through a Pause (HP-67) rather than a Print (HP-97), some attention may be required to make sure that no roots go unnoticed.

Remarks:

1. Long execution times ($\sim 1-2$ minutes) may be expected for equations of degree 3,4 , or 5 , as these use an iterative routine once or more.
2. There is one condition in the solution of fourth or fifth degree polynomials that can cause the program to halt displaying Error. It is a very rare condition and you may never encounter it. It will occur when $b_{0}=a_{0}\left(4 a_{2}-a_{3}{ }^{2}\right)-a_{1}{ }^{2}=0$ in the solution of the cubic to find y_{0}. If the calculator halts at line 161 displaying Error, then b_{0} has been found to be zero and the following key sequence should be performed to recover from the error: 0 STO 7 RCL 19 STO 0 RCL 2 STO 1 D. After execution of \mathbf{D}, press $\mathbf{G T O} \odot 044$ R/S. The program will now continue to execute normally.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input coefficients below order			
	of polynomial (i.e., for degree n,			
	input through $\mathrm{a}_{\mathrm{n}-1}$).			
	Coefficients $=0$ must be so			
	input.	a_{0}	STO 0	
		a_{1}	STO 1	
		a_{2}	STO 2	
		a_{3}	Sto 3	
		a_{4}	STO 4	
3	Compute roots to polynomial			
	of degree			
	- 5		A	Roots 1-5
	- 4		B	Roots 1-4
	- 3		c	Roots 1-3
	- 2		D	Roots 1-2
4	A single number will be output			
	for a real root; complex pairs of			
	roots ($u \pm$ iv) will output as			
	shown:			u
				v
				u
				-v
5	For a new equation, return to			
	step 2.			

Example 1:

Solve $x^{5}-x^{4}-101 x^{3}+101 x^{2}+100 x-100=0$.

Keystrokes:

Outputs:

```
100
            CHS
            STO
            STO }
101 STO
    (2) }10
                                CHS
                                STO
\(\qquad\)
\[
\begin{array}{r}
10.00^{* * *}(\text { Root 1) } \\
1.00^{* * *}(\text { Root 2) } \\
1.00^{* * *} \text { (Root 3) } \\
-1.00^{* * *} \text { (Root 4) } \\
-10.00^{* * *} \text { (Root 5) }
\end{array}
\]

\section*{Example 2:}

Solve \(4 x^{4}-8 x^{3}-13 x^{2}-10 x+22=0\).
Rewrite the equation as \(\mathrm{x}^{4}-2 \mathrm{x}^{3}-\frac{13}{4} \mathrm{x}^{2}-\frac{10}{4} \mathrm{x}+\frac{22}{4}=0\).
Keystrokes:
Outputs:
22 ENTER 4 - StO 010 ENTER )
4 CHS STO 13 ENTER4 4 -
CHS STO 22 CHS STO 3 B \(\longrightarrow-1.00 \quad\) (Roots \(1 \& 2\)
1.00 are
\[
-1.00 \quad-1.00 \pm 1.00 \mathrm{i})
\]
\[
-1.00
\]
3.12 *** (Root 3)
0.88 *** (Root 4)

\section*{Example 3:}

Solve \(x^{3}-4 x^{2}+8 x-8=0\).

Keystrokes:

\section*{Outputs:}

8 CHS Sto 08 STO 1
4 CHS STO \({ }^{2} \mathrm{C} \longrightarrow\)
\begin{tabular}{rl}
2.00 & *** \\
1.00 & (Root 1) \\
1.73 & (Roots 2 \& \\
1.00 & \(1.00 \pm 1.73 \mathrm{i}\) ) \\
-1.73 &
\end{tabular}

\section*{Example 4:}

Solve \(2 \mathrm{x}^{2}+5 \mathrm{x}+3=0\).
Rewrite the equation as \(\mathrm{x}^{2}+2.5 \mathrm{x}+1.5=0\).

Keystrokes:

\section*{Outputs:}
\[
1.5 \text { STO 0 } 2.5 \text { STO } 1 \text { D } \rightarrow \quad \begin{aligned}
& -1.00^{* * *}(\text { Root 1) } \\
& -1.50^{* * *}(\operatorname{Root} 2)
\end{aligned}
\]

\section*{4x4 MATRIX OPERATIONS}


This two-card program allows several of the most important operations involving \(4 \times 4\) matrices, namely, the calculations of the determinant and inverse of a \(4 \times 4\) matrix, and the solution of a system of simultaneous equations in 4 unknowns.

The method used in this program is that of Gaussian elimination with partial pivoting. Space does not allow a full treatment of the pertinent equations; however, the Comments section of the program listing shows the operations in detail, step by step.

Basically, the first of these two cards, \(4 \times 4\) Matrix Setup, allows for input of the matrix \(A\) and transforms \(A\) into an upper triangular matrix \(U\), assuming \(A\) is nonsingular. The multipliers used to accomplish this transformation form a lower triangular matrix, \(L\), which has 1 's along its diagonal. If we disregard pivoting, a technique of row interchanges which may improve accuracy and which may introduce one or more permutation matrices, then the relationship among these matrices is \(U=L A\). At the end of execution of the first card, the original matrix A no longer exists in memory. The initial elements \(\mathrm{a}_{\mathrm{ij}}\) have been replaced by the elements of \(\mathrm{U}(\mathrm{i} \leqslant \mathrm{j})\) and of \(\mathrm{L}(\mathrm{i}>\mathrm{j})\). (The elements of U will still be referred to as \(a_{i j}\); those of \(L\) will be called \(m_{i j}\) in the program listing comments). The second card, \(4 \times 4\) Matrix Solutions, uses the transformed matrices U and L to compute the determinant and inverse of A , and to solve systems of simultaneous equations.

\section*{Equations:}
Let \(A=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44}\end{array}\right]\)

The determinant of A, Det A, is found after its transformation to \(U\) by the product of the diagonal elements:
\[
\text { Det } \mathrm{A}=(-1)^{\mathrm{k}} \mathrm{a}_{11} \mathrm{a}_{22} \mathrm{a}_{33} \mathrm{a}_{44},
\]
where k is the number of row interchanges required by pivoting.

A set of 4 simultaneous equations in 4 unknowns may be written as
\[
\begin{aligned}
& \mathrm{a}_{11} \mathrm{x}_{1}+\mathrm{a}_{12} \mathrm{x}_{2}+\mathrm{a}_{13} \mathrm{x}_{3}+\mathrm{a}_{14} \mathrm{x}_{4}=\mathrm{b}_{1} \\
& \mathrm{a}_{21} \mathrm{x}_{1}+\mathrm{a}_{22} \mathrm{x}_{2}+\mathrm{a}_{23} \mathrm{x}_{3}+\mathrm{a}_{24} \mathrm{x}_{4}=\mathrm{b}_{2} \\
& \mathrm{a}_{31} \mathrm{x}_{1}+\mathrm{a}_{32} \mathrm{x}_{2}+\mathrm{a}_{33} \mathrm{x}_{3}+\mathrm{a}_{34} \mathrm{x}_{4}=\mathrm{b}_{3} \\
& \mathrm{a}_{41} \mathrm{x}_{1}+\mathrm{a}_{42} \mathrm{x}_{2}+\mathrm{a}_{43} \mathrm{x}_{3}+\mathrm{a}_{44} \mathrm{x}_{4}=\mathrm{b}_{4}
\end{aligned}
\]
where the \(\left\{x_{i}\right\}\) are unknowns and the \(\left\{b_{i}\right\}\) constants.

In matrix notation, this becomes \(\mathrm{A} \mathbf{x}=\mathbf{b}\), where \(\mathbf{x}\) and \(\mathbf{b}\) are the column vectors \(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]^{\text {and }}\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]^{\text {respectively } .}\)

This problem is solved (neglecting pivoting) as \(U \mathbf{x}=\mathrm{L} \mathbf{b}\).

Let \(C\) be the inverse of \(A\), i.e., the \(4 \times 4\) matrix such that \(A C=C A=I\), where \(I\) is the 4 x 4 matrix such that
\[
\mathrm{I}_{\mathrm{ij}}=\left\{\begin{array}{ll}
1, & \mathrm{i}=\mathrm{j} \\
0, & \mathrm{i} \neq \mathrm{j}
\end{array} \quad, \mathrm{i}, \mathrm{j}=1,2,3,4\right.
\]

C is computed a column at a time in the following way: let \(\mathbf{c}^{(j)}\) be the \(\mathrm{j}^{\text {th }}\) column vector of C , i.e.,
\[
\mathbf{c}^{(j)}=\left[\begin{array}{l}
c_{1 \mathrm{j}} \\
c_{2 \mathrm{j}} \\
c_{3 \mathrm{j}} \\
c_{4 \mathrm{j}}
\end{array}\right], j=1,2,3,4
\]

Then \(\mathbf{c}^{(j)}\) is found by the solution of the equation
\[
A \mathbf{c}^{(j)}=\mathbf{I}^{(j)} \quad \text { where } \quad I^{(j)}=\left\{\begin{array}{ll}
1 & \mathrm{i}=\mathrm{j} \\
0 & \mathrm{i} \neq \mathrm{j}
\end{array} \quad, \mathrm{i}=1,2,3,4 .\right.
\]

For example, \(\mathbf{c}^{(1)}\) is found by solution of
\[
\mathrm{A} \mathbf{c}^{(1)}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
\]

\section*{Remarks:}
1. A halt during the execution of card 1 (Setup) with a display of "Error"' indicates that the matrix A is singular.
2. If operations are to be carried out on the same matrix over a period of time, it might be convenient to record the elements of the matrix on a magnetic card for rapid input at a later date. Because the program immediately starts operating on the matrix after the last element has been keyed in, the program needs to be modified to halt after the input of \(\mathrm{a}_{44}\). This may be accomplished by the following steps:
a. Load side 1 and side 2 of \(4 \times 4\) Matrix Setup.
b. Press GTO \(\odot 025\).
c. Switch to PRGM, press [DEL, R/S.
d. Switch to RUN and press A to start data input.
e. After the input of \(\mathrm{a}_{44}\), the program will halt. At this point, the data may be recorded for later use.
f. To continue execution, press B.

\section*{References:}

George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler, Computer Methods in Mathematical Computation, Computer Science Department, Stanford University, 1972.
G. Forsythe and C. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, 1967.
C. Moler, "Matrix Computations with Fortran and Paging," Comm. ACM, vol. 15, no. 4, pp. 268-270 (April, 1972).
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 of \(4 \times 4\) & & & \\
\hline & Matix Setup. & & & \\
\hline 2 & If data has already been stored & & & \\
\hline & on magnetic card, go to step 7; & & & \\
\hline & to key in data, go to step 3. & & & \\
\hline 3 & To cause output of elements & & & \\
\hline & \(\left\{\mathrm{a}_{\mathrm{ij}}\right\}\) of matrix as they are & & & \\
\hline & keyed in, set flag 0. & & SFP0 & \\
\hline 4 & Prepare to input elements of & & & \\
\hline & matrix in column order ( \(\mathrm{a}_{11}\), & & & \\
\hline & \(a_{21}, a_{31}, a_{41}, a_{12}, a_{22}\), etc.) & & A & 1.1 \\
\hline 5 & Display shows i.j; key in element & & & \\
\hline & in row i, column j. & \(\mathrm{a}_{\mathrm{ij}}\) & R/S & next i. j \\
\hline 6 & Repeat step 5 until all elements & & & \\
\hline & of matrix have been keyed in; & & & \\
\hline & after \(\mathrm{a}_{44}\) has been keyed in, & & & \\
\hline & program execution will begin & & & \\
\hline & immediately. Go to step 9. & & & \\
\hline 7 & If matrix data is already stored on & & & \\
\hline & magnetic card, load side 1 and & & & \\
\hline & side 2 of data card. & & & \\
\hline 8 & Begin program execution. & & B & \\
\hline 9 & Load side 1 and side 2 of \(4 \times 4\) & & & \\
\hline & Matrix Solutions. & & & \\
\hline 10 & For automatic output of results, & & & \\
\hline & set AUTO mode. & & E & 1.00 \\
\hline 11 & To cancel AUTO mode later & & E & 0.00 \\
\hline 12 & (optional) Compute determinant. & & A & Det A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 13 & To solve a system of four & & & \\
\hline & simultaneous equations, key in & & & \\
\hline & right-hand side and find \(\mathbf{x}\). & \(\mathrm{b}_{1}\) & ENTER \({ }^{\text {a }}\) & \\
\hline & & \(\mathrm{b}_{2}\) & ENTER & \\
\hline & & \(\mathrm{b}_{3}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(\mathrm{b}_{4}\) & B & \(\mathrm{x}_{1}\) \\
\hline & & & & \(\mathrm{x}_{2}\) \\
\hline & & & & \(\mathrm{x}_{3}\) \\
\hline & & & & \(\mathrm{x}_{4}\) \\
\hline 14 & Find the inverse of matrix \(A\) & & & \\
\hline & \(\left(C=A^{-1}\right)\), displayed in column & & & \\
\hline & order. & & c & \(\mathrm{c}_{11}\) \\
\hline & & & & \(\mathrm{c}_{21}\) \\
\hline & & & & \(\mathrm{C}_{31}\) \\
\hline & & & & \(\mathrm{C}_{41}\) \\
\hline & & & & \\
\hline & & & & \(\mathrm{c}_{12}\) \\
\hline & & & & \(\mathrm{C}_{22}\) \\
\hline & & & & \(\mathrm{c}_{32}\) \\
\hline & & & & \(\mathrm{C}_{42}\) \\
\hline & & & & \\
\hline & & & & \(\mathrm{c}_{13}\) \\
\hline & & & & \(\mathrm{C}_{23}\) \\
\hline & & & & \(\mathrm{C}_{33}\) \\
\hline & & & & \(\mathrm{C}_{43}\) \\
\hline & & & & \\
\hline & & & & \(\mathrm{C}_{14}\) \\
\hline & & & & \(\mathrm{C}_{24}\) \\
\hline & & & & \(\mathrm{C}_{34}\) \\
\hline & & & & \(\mathrm{C}_{44}\) \\
\hline & & & & 0.00 \\
\hline
\end{tabular}

\section*{Example 1:}

By applying the technique of loop currents to the circuit below, find the currents \(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\), and \(\mathrm{I}_{4}\). Do not use AUTO mode.


The equations to be solved are
\begin{tabular}{rrrrr}
\(2 \mathrm{I}_{1}\) & \(-\mathrm{I}_{2}\) & & & \(=34\) \\
\(-\mathrm{I}_{1}\) & \(+3 \mathrm{I}_{2}\) & \(-\mathrm{I}_{3}\) & & \(=\) \\
& \(-\mathrm{I}_{2}\) & \(+3 \mathrm{I}_{3}\) & \(-\mathrm{I}_{4}\) & \\
& & \(-\mathrm{I}_{3}\) & \(+3 \mathrm{I}_{4}\) & \\
& & & 0
\end{tabular}

In matrix form,
\[
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 3 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 3
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{I}_{3} \\
\mathrm{I}_{4}
\end{array}\right]=\left[\begin{array}{r}
34 \\
0 \\
0 \\
0
\end{array}\right]
\]

Load side 1 and side 2 of \(4 \times 4\) Matrix Setup. Prepare to store matrix data on a magnetic card.

Keystrokes:

\section*{Outputs:}

GTO \(\square^{-} 0\) 2 5
Switch to PRGM
DEL R/S
Switch to RUN
A 2 R/S 1 CHS R/S 0 R/S 0 R/S
1 CHS R/S \(3 \mathrm{R} / \mathrm{S} 1 \mathrm{CHS} \mathrm{R} / \mathrm{S}\)
\(0 \mathrm{R} / \mathrm{S} 0 \mathrm{R} / \mathrm{S} 1 \mathrm{CHS} \mathrm{R} / \mathrm{S} 3 \mathrm{R} / \mathrm{S}\)
\(1 \mathrm{CHS} \mathrm{R} / \mathrm{S} 0 \mathrm{R} / \mathrm{S} 0 \mathrm{R} / \mathrm{S} 1 \mathrm{CHS} \mathrm{R} / \mathrm{S}\)
\(3 \mathrm{R} / \mathrm{S} \longrightarrow\)

Program halts, displaying 4.0.


Insert side 1 of a blank magnetic card, see "Crd" and insert side 2.


Load side 1 and side 2 of \(4 x 4\)
Matrix Solutions.2.62

34 ENTER4 0 ENTER 4
\begin{tabular}{llrl}
0 ENTER 0 B \(\longrightarrow\) & 21.00 & \(\left(I_{1}\right)\) \\
\(R / S \longrightarrow\) & 8.00 & \(\left(I_{2}\right)\) \\
\(R / S \longrightarrow\) & 3.00 & \(\left(I_{3}\right)\) \\
\(R / S \longrightarrow\) & 1.00 & \(\left(I_{4}\right)\)
\end{tabular}

\section*{Example 2:}

Find the determinant and inverse of the matrix below. Use AUTO mode.
\(\left[\begin{array}{llll}7 & 5 & 1 & 3 \\ 5 & 7 & 7 & 7 \\ 3 & 3 & 3 & 5 \\ 1 & 1 & 5 & 1\end{array}\right]\)

Keystrokes:

\section*{Outputs:}

Load side 1 and side 2 of \(4 x 4\)
Matrix Setup

A 7 R/S \(5 \mathrm{R} / \mathrm{S} 3 \mathrm{R} / \mathrm{S} 1 \mathrm{R} / \mathrm{s}\)
5 R/S 7 R/S 3 R/S \(1 \mathrm{R} / \mathrm{S}\)
1 R/S 7 R/S 3 R/S 5 R/S
3 R/S 7 R/S 5 R/S 1 R/S \(\longrightarrow \quad 2.5\)

Load side 1 and side 2 of \(4 x 4\)
Matrix Solutions \(\longrightarrow \quad 2.46\)
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{E} \longrightarrow\) & 1.00 & (AUTO set) \\
\hline \(\mathrm{A} \longrightarrow\) & -256.00 & (Det A) \\
\hline DSP \(6 \mathrm{C} \longrightarrow\) & 0.218750 *** & ( \(\mathrm{c}_{11}\) ) \\
\hline & -0.046875 *** & \\
\hline & -0.015625 *** & \(\left(\mathrm{c}_{31}\right)\) \\
\hline & -0.093750 *** & ( \(\mathrm{c}_{41}\) ) \\
\hline
\end{tabular}
\[
\left.\begin{array}{r}
-0.281250
\end{array} \begin{array}{r}
* * * \\
0.453125
\end{array} \mathrm{c}_{12}\right) \text { ** }\left(\mathrm{c}_{22}\right)
\]

\section*{SOLUTION TO \(f(x)=0\) ON AN INTERVAL}


This program finds one real root of the equation \(f(x)=0\) in a finite interval [b,c], where \(f(x)\) is a function specified by the user which must be continuous and real on the interval. The program assumes without checking that of the values \(f(b)\) and \(f(c)\), one will be positive and one negative, i.e., \(f(b) \times f(c)<0\). In this way, b and c will bracket the root. An accuracy tolerance TOL ( \(\geq 0\) ) must also be specified. This number should be the greatest allowable error in the final approximation for the root. That is, the actual root will be no farther away than TOL from the program's solution for the root.

The function \(f(x)\) should be keyed into program memory under LBL \(E\) and should assume that x will be in the X-register upon entry. 85 program steps, registers \(\mathrm{R}_{1}\) through \(\mathrm{R}_{7}, \mathrm{R}_{\mathrm{S} 0}\) through \(\mathrm{R}_{\mathrm{S} 9}\), and the stack are available for defining \(f(x)\).

The method used is a combination of bisection (interval-halving) and the secant method. Bisection is often slow but is guaranteed to converge to a root, if one exists in the interval; the secant method is fast but does not always converge. The algorithm employed in this program combines the safety of bisection with some of the speed of the secant method. If the function is known to be wellbehaved on the interval in question, then the program in Standard Pac, Calculus and Roots of \(f(x)\), may lead to a faster and more convenient solution.

\section*{Remarks:}

As each value for b or c is input, its function value will be computed and displayed. If you are in doubt about values for \(b\) and \(c\) which will satisfy \(f(b) \times\) \(\mathrm{f}(\mathrm{c})<0\), you may simply keep inputting different values until you strike a good combination. Each new value input overwrites the old.

\section*{References:}

George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler, Computer Methods in Mathematical Computation, Computer Science Department, Stanford University, 1972.

Richard P. Brent, Algorithms for Minimization without Derivatives, PrenticeHall, 1973.
T. J. Dekker, "Finding a zero by means of successive linear interpolation," in B. Dejon and P. Henrici (editors), Constructive Aspects of the Fundamental Theorem of Algebra, Interscience, 1969.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2. & & & \\
\hline 2 & Prepare to key in function. & & GTO E & \\
\hline 3 & Switch to PRGM. See line 138. & & & \\
\hline 4 & Key in the function \(f(x)\) (need & & & \\
\hline & not add RTN). & & & \\
\hline 5 & Switch to RUN. & & & \\
\hline 6 & Key in the end points of the & & & \\
\hline & interval (remember \(\mathrm{f}(\mathrm{b}) \times \mathrm{ff}(\mathrm{c})<0\) ). & b & A & \(f(\mathrm{~b})\) \\
\hline & & c & B & \(f(\mathrm{c})\) \\
\hline 7 & Key in the accuracy tolerance. & TOL & c & TOL \\
\hline 8 & Compute a real root. & & D & root \\
\hline 9 & To evaluate the function at & & & \\
\hline & any point. & x & E & \(f(x)\) \\
\hline
\end{tabular}

\section*{Example 1:}

Find an angle \(\alpha\) between 100 and 101 radians such that \(\sin \alpha=0.1\). Hence let \(f(x)=\sin x-0.1\). Assume a tolerance of \(10^{-3}\).

\section*{Keystrokes:}

\section*{Outputs:}

Load side 1 and side 2 .

\section*{GTO E}

Switch to PRGM. See line 138.
RAD SIN . 1 - DEG
Switch to RUN.
\begin{tabular}{|c|c|c|}
\hline 100 A & -0.61 & (f(100)) \\
\hline 101 B & 0.35 & (f(101)) \\
\hline EEX Chs 3 C & 1.000000000-03 & \\
\hline & 100.63 & (root) \\
\hline
\end{tabular}

\section*{Example 2:}

Find a root of the equation \(\ln x+3 x-10.8074=0\) in the interval \([1,5]\). An accuracy of \(10^{-4}\) is acceptable. Store the constant 10.8074 in \(\mathrm{R}_{1}\).
Keystrokes:

\section*{Outputs:}

Load side 1 and side 2.

\section*{GTO E}

Switch to PRGM. See line 138.
LN LAST \(3 x+\) RCL 1 -
Switch to RUN.
10.8074 STO \(1 \longrightarrow 10.81\)
\(\begin{array}{lrr}1 \mathrm{~A} \longrightarrow & \begin{array}{r}-7.81 \\ 5.80\end{array} & \begin{array}{l}(\mathrm{f}(1)) \\ (\mathrm{f}(5)) \\ 5 \mathrm{~B} \longrightarrow\end{array} \\ \mathrm{EEX} \mathrm{CHS} 4 \mathrm{C} \longrightarrow & 1.000000000-04 & \\ \mathrm{D} \longrightarrow & 3.21 & \text { (root) }\end{array}\)

Check the solution by computing its function value.
E
\(\longrightarrow-1.901000000-05\)

\section*{NUMERICAL INTEGRATION}


This program will perform numerical integration whether a function is known explicitly or only at a finite number of equally spaced points (discrete case). The integrals of explicit functions are found using Simpson's rule; discrete case integrals may be approximated by either the trapezoidal rule or Simpson's rule.

\section*{Discrete case}

Let \(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\) be n equally spaced points ( \(\mathrm{x}_{\mathrm{j}}=\mathrm{x}_{0}+\mathrm{jh}, \mathrm{j}=1,2, \ldots, \mathrm{n}\) ) at which corresponding values \(f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\) of the function \(f(x)\) are known. The function itself need not be known explicitly. After input of the step size \(h\) and the values of \(f\left(x_{j}\right), j=0,1, \ldots, n\), then the integral
\[
\int_{x_{0}}^{x_{n}} f(x) d x
\]
may be approximated using
1. The trapezoidal rule:
\[
\int_{x_{0}}^{x_{n}} f(x) d x \simeq \frac{h}{2}\left[f\left(x_{0}\right)+2 \sum_{j=1}^{n-1} f\left(x_{j}\right)+f\left(x_{n}\right)\right]
\]
2. Simpson's rule:
\[
\begin{aligned}
& \int_{x_{0}}^{x_{n}} f(x) d x \simeq \frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\right. \\
& \left.\quad \ldots+4 f\left(x_{n-3}\right)+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
\]

In order to apply Simpson's rule, n must be even. If n is not even, the calculator will halt displaying "Error'" if \(\mathbf{D}\) is pressed.

\section*{Explicit functions}

If an explicit formula is known for the function \(f(x)\), then the function may be keyed into program memory and numerically integrated by Simpson's rule. The user must specify the endpoints \(a\) and \(b\) of the interval over which inte-
gration is to be performed, and the number of subintervals n into which the interval ( \(\mathrm{a}, \mathrm{b}\) ) is to be divided. This n must be even; if it is not, Error will be displayed. The program will go on to compute \(\mathrm{x}_{0}=\mathrm{a}, \mathrm{x}_{\mathrm{j}}=\mathrm{x}_{0}+\mathrm{jh}, \mathrm{j}=\) \(1,2, \ldots, \mathrm{n}-1\), and \(\mathrm{x}_{\mathrm{n}}=\mathrm{b}\) where
\[
\mathrm{h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}} .
\]

The integral \(\int_{a}^{b} f(x) d x\) is approximated by equation (2) above, Simpson's rule.
Up to five different functions \(\mathrm{f}_{\mathrm{i}}(\mathrm{x}), \mathrm{i}=1, \ldots, 5\), may be loaded into program memory at one time under labels 1 through 5 . The function to be integrated is selected by keying in a digit \(1,2,3,4\), or 5 , and pressing \(\boldsymbol{f}\). The function under the appropriate label will then be selected. 112 program steps are available for defining the \(f_{i}(x)\), as well as registers \(R_{1}\) through \(R_{8}, R_{50}\) through \(R_{s 9}\), and the four stack registers. The functions should assume x is in the X -register upon entry. Two levels of subroutines are allowed in the functions \(f_{i}(x)\), but recall that the only labels available are 1 through 5 .
Functions \(f_{i}(x)\) may be keyed into program memory after loading side 1 of Numerical Integration, or you may record these functions beforehand on a magnetic card and load them in the following manner:
1. Load side 1 of Numerical Integration.
2. Press GTO 112.
3. Press MERGE.
4. Load your card with the functions \(f_{i}(x)\).

\section*{Remarks:}

Note that the function values for the discrete case \(f\left(x_{j}\right), j=0,1, \ldots, n\), are keyed into \(\mathbf{B}\). There are actually three routines in the program which begin with LBL B, one for \(\mathrm{j}=0\), one for j odd, and one for j even. It is important that no other user-definable keys be pressed during the entry of the \(f\left(\mathrm{x}_{\mathrm{j}}\right)\), lest the next \(f\left(x_{j}\right)\) entered go into the wrong LBL B.
\begin{tabular}{|c|l|c|c|c|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \begin{tabular}{c} 
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & \begin{tabular}{c} 
OUTPUT \\
DATA/UNITS
\end{tabular} \\
\hline 1 & Load side 1 of program. & & & \\
\hline 2 & For explicit functions, go to step & & & \\
\hline & 8; for discrete case, go to step 3 & & & \\
\hline & DISCRETE & & & \\
\hline 3 & Key in the spacing between & & & \\
\hline & x-values. & h & A & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 4 & Repeat this step for \(\mathrm{j}=0\), & & & \\
\hline & 1, ... n : Key in the function & & & \\
\hline & value at \(\mathrm{x}_{\mathrm{j}}\). & \(f\left(x_{j}\right)\) & B & j \\
\hline 5 & Compute the area by the & & & \\
\hline & trapezoidal rule. & & C & TRAP \(\int\) \\
\hline 6 & Compute the area by Simpson's & & & \\
\hline & rule ( n must be even). & & D & SIMP \(\int\) \\
\hline 7 & For a new case, go to step 2. & & & \\
\hline & EXPLICIT FUNCTIONS & & & \\
\hline 8 & Load the function(s) into program & & & \\
\hline & memory (either key them in with & & & \\
\hline & LBL and RTN, or link from & & & \\
\hline & step 112). & & & \\
\hline 9 & Specify the function i to be & & & \\
\hline & selected. & \(i(1-5)\) & 15 & \\
\hline 10 & Key in the beginning and final & & & \\
\hline & endpoints of the integration & & & \\
\hline & interval. & a & ENTER & \\
\hline & & b & 1 A & \\
\hline 11 & Key in the number of subintervals & & & \\
\hline & (must be even). & \(n\) & 1 B & \\
\hline 12 & Compute the area by & & & \\
\hline & Simpson's rule. & & 1 c & \(\int_{a}^{b} f_{i}(x) d x\) \\
\hline 13 & To change \(\mathrm{a}, \mathrm{b}\) or n , go to the & & & \\
\hline & appropriate step; for a new case, & & & \\
\hline & go to step 2. & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Example 1:}

Given the values below for \(f\left(x_{j}\right), j=0,1, \ldots, 8\), compute the approximations to the integral
\[
\int_{0}^{2} f(x) d x
\]
by the trapezoidal rule and by Simpson's rule.
The value for \(h\) is 0.25 .
\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline \(\mathrm{x}_{\mathrm{i}}\) & 0 & .25 & .5 & .75 & 1 & 1.25 & 1.5 & 1.75 & 2 \\
\hline \(\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)\) & 2 & 2.8 & 3.8 & 5.2 & 7 & 9.2 & 12.1 & 15.6 & 20
\end{tabular}

Keystrokes:
Outputs:
. 25 A 2 B 2.8 B 3.8 B
5.2 В 7 В 9.2 В 12.1 В
15.6 B 20 BC \(\longrightarrow \quad 16.68^{* * *}\) (Trapezoidal)

D
\(16.58^{* * *}\) (Simpson's)

\section*{Example 2:}

Find the value of
\[
\int_{0}^{2 \pi} \frac{d x}{1-\cos x+0.25}
\]
for \(\mathrm{n}=10\) and then for \(\mathrm{n}=16\). Note that x is assumed to be in radians. For safety, if you work mostly in degrees, it is good programming practice to set the angular mode to radians at the beginning of the routine, then back to degrees at the end. Key the function in under LBL 1.

\section*{Keystrokes:}

\section*{Outputs:}

\section*{GTO © 112}

Switch to PRGM.
LBL 1 RAD cos \(10 x \geqslant y\) -
\(.25+1 / x\) DEG RTN
Switch to RUN.
0 ENTER 2 远 \(\boldsymbol{x}\) A 10 B


The exact solution is \(\frac{8 \pi}{3}=8.38\).

\section*{GAUSSIAN QUADRATURE}


This program will compute approximations for integrals over finite or infinite intervals by the six-point Gauss-Legendre quadrature method. If \(f(x)\) is the function to be integrated, then either
\[
\int_{a}^{\infty} f(x) d x \quad \text { or } \quad \int_{a}^{b} f(x) d x
\]
may be found.
The function \(\mathrm{f}(\mathrm{x})\) must be explicitly known and keyed into program memory under LBL E by the user. Upon entry, the value of \(x\) will be in the X-register. 48 program steps are available for defining \(f(x)\); registers \(R_{1}\) through \(R_{9}, R_{S 6}\) through \(R_{S 9}, R_{D}, R_{E}\) and the stack are also available to the user.

\section*{Equations:}
\[
\begin{aligned}
& \int_{a}^{b} f(x) d x \simeq \frac{b-a}{2} \sum_{i=1}^{6} w_{i} f\left(\frac{z_{i}(b-a)+b+a}{2}\right) \\
& \int_{a}^{\infty} f(x) d x \simeq 2 \sum_{i=1}^{6} \frac{w_{i}}{\left(1+z_{i}\right)^{2}} f\left(\frac{2}{1+z_{i}}+a-1\right)
\end{aligned}
\]
where
\[
\begin{aligned}
& \mathrm{z}_{1}=-\mathrm{z}_{2}=.2386191861 \\
& \mathrm{z}_{3}=-\mathrm{z}_{4}=.6612093865 \\
& \mathrm{z}_{5}=-\mathrm{z}_{6}=.9324695142 \\
& \mathrm{w}_{1}=\mathrm{w}_{2}=.4679139346 \\
& \mathrm{w}_{3}=\mathrm{w}_{4}=.360761573 \\
& \mathrm{w}_{5}=\mathrm{w}_{6}=.1713244924
\end{aligned}
\]

\section*{Remarks:}

If more program steps are needed to define \(f(x)\), all of LBL \(A\) (steps 001-076) may be deleted after executing it (pressing A) one time.

\section*{Reference:}

Applied Numerical Methods, Carnahan, Luther and Wilks, John Wiley and Sons, 1969.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 of program. & & & \\
\hline 2 & Prepare to key in function \(f(x)\). & & GTO E & \\
\hline 3 & Switch to PRGM. Line number & & & \\
\hline & is 177. & & & \\
\hline 4 & Key in the function \(f(x)\) (need & & & \\
\hline & not add RTN). & & & \\
\hline 5 & Switch to RUN. & & & \\
\hline 6 & Initialize. & & A & \\
\hline 7 & For a finite interval, key in the & & & \\
\hline & lower and upper bounds of the & & & \\
\hline & interval and compute the integral. & a & ENTER & \\
\hline & & b & B & \(\int_{a}^{b} f(x) d x\) \\
\hline 8 & For an infinite interval, key in the & & & \\
\hline & lower bound of the interval and & & & \\
\hline & compute the integral. & a & C & \(\int_{a}^{\infty} f(x) d x\) \\
\hline
\end{tabular}

\section*{Example 1:}

Find \(\int_{1}^{10} \frac{\mathrm{dx}}{\mathrm{x}}\).

The function is \(f(x)=\frac{1}{x}\); the only key required is \(1 / x\).

\section*{Keystrokes:}

\section*{Outputs:}

\section*{GTO E}

Switch to PRGM.
1/x
Switch to RUN.
A 1 ENTER 10 B
The exact answer is 1 n 10 .

\section*{Example 2:}

Find \(\int_{0}^{\infty} e^{-x} x^{0.8} d x\).

Keystrokes:

\section*{Outputs:}

\section*{GTO E}

Switch to PRGM.
(If Example 1 has been run, delete the key \(1 / x\).)

\section*{CHS \(\boldsymbol{e}^{\mathrm{x}}\) LAST \(x\) CHS . \(8 \boldsymbol{y}^{\mathrm{y}} \boldsymbol{x}\)}

Switch to RUN.
A (need not be pressed if Example
1 has been run)
0 C
0.92 ***

The correct answer is \(\Gamma(1.8)=0.9314\).

\section*{Notes}

\section*{DIFFERENTIAL EQUATIONS}


This program solves first- and second-order differential equations by the fourth-order Runge-Kutta method. A first-order equation is of the form \(y^{\prime}=f(x, y)\), with initial values \(x_{0}, y_{0}\); a second-order equation is of the form \(\mathrm{y}^{\prime \prime}=\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}^{\prime}\right)\), with initial values \(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{y}_{0}{ }^{\prime}\).
In either case, the function \(f\) should be keyed into program memory under LBL E , and should assume that x and y are in the X - and Y-registers respectively; \(\mathrm{y}^{\prime}\) will be in the Z-register for second-order equations. 56 program steps are available for defining the function, as well as registers \(\mathrm{R}_{1}-\mathrm{R}_{8}, \mathrm{R}_{50}-\mathrm{R}_{59}\), and I .
The solution is a numerical solution which calculates \(y_{i}\) for \(x_{i}=x_{0}+\) ih ( \(\mathrm{i}=1,2,3, \ldots\) ), where \(h\) is an increment specified by the user. The value for h may be changed at any time during the program's execution. This allows solution of the equation arbitrarily close to a pole ( \(\mathrm{y} \rightarrow \pm \infty\) ).
The values for \(x_{i}\) and \(y_{i}\) may be output in one of two ways. In its normal operation, the program will halt each time a value is calculated for \(x_{i}\) or \(y_{i}\). The user may re-initiate execution by pressing R/S. Thus, in its normal use, the program outputs all results by halting and showing the result in the calculator's display. The other way to operate the program is under AUTO mode. In this case, all results are output by a PRINTx command, which means that on an HP-97, the result will appear on the printer, while on the HP-67, the program will pause briefly to display the answer. After that output, the program will automatically go on to calculate the next result.

\section*{Equations:}
\(1^{\text {st }}\)-order:
\[
y_{i+1}=y_{i}+\frac{1}{6}\left(c_{1}+2 c_{2}+2 c_{3}+c_{4}\right)
\]
where
\[
\begin{aligned}
& c_{1}=h f\left(x_{i}, y_{i}\right) \\
& c_{2}=\operatorname{hf}\left(x_{i}+\frac{h}{2}, y_{i}+\frac{c_{1}}{2}\right) \\
& c_{3}=\operatorname{hf}\left(x_{i}+\frac{h}{2}, y_{i}+\frac{c_{2}}{2}\right) \\
& c_{4}=h f\left(x_{i}+h, y_{i}+c_{3}\right)
\end{aligned}
\]
\(2^{\text {nd }}\)-order:
\[
\begin{aligned}
& y_{i+1}=y_{i}+h\left[y_{i}^{\prime}+\frac{1}{6}\left(k_{1}+k_{2}+k_{3}\right)\right] \\
& y_{i+1}^{\prime}=y_{i}^{\prime}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& k_{1}=\operatorname{hf}\left(x_{i}, y_{i}, y_{i}^{\prime}\right) \\
& k_{2}=\operatorname{hf}\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} y_{i}^{\prime}+\frac{h}{8} k_{1}, y_{i}^{\prime}+\frac{k_{1}}{2}\right) \\
& k_{3}=\operatorname{hf}\left(x_{i}+\frac{h}{2}, y_{i}+\frac{h}{2} y_{i}^{\prime}+\frac{h}{8} k_{1}, y_{i}^{\prime}+\frac{k_{2}}{2}\right) \\
& k_{4}=h f\left(x_{i}+h, y_{i}+h y_{i}^{\prime}+\frac{h}{2} k_{3}, y_{i}^{\prime}+k_{3}\right)
\end{aligned}
\]

\section*{Remarks:}
1. When inputting values for a second-order solution, the values for \(\mathrm{x}_{0}\) and \(y_{0}\) must be input before the value of \(y_{0}{ }^{\prime}\). All values must be input even if zero.
2. If the program is to be run for different functions, be sure that the first function is no longer in program memory when the second is keyed in. The best way to ensure this is to load the program anew before keying in each function.
\begin{tabular}{|c|l|c|c|c|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \begin{tabular}{c} 
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & \begin{tabular}{c} 
OUTPUT \\
DATAUNITS
\end{tabular} \\
\hline 1 & Load side 1 and side2 of program. & & & \\
\hline 2 & Prepare to load function \(\mathrm{f}\left(\mathrm{x}, \mathrm{y}, \mathrm{y}^{\prime}\right)\) & & & \\
\hline & under LBL E. & & GTO E & \\
\hline 3 & Switch to PRGM. & & & \\
\hline 4 & Key in the function (need not & & & \\
\hline & add RTN ). & & & \\
\hline 5 & Switch to RUN. & h & A & \(\mathrm{h} / 2\) \\
\hline 6 & Input step size. & \(\mathrm{x}_{0}\) & ENTER: & \\
\hline 7 & Input initial values for x and y. & \(\mathrm{y}_{0}\) & B & \(\mathrm{x}_{0}\) \\
\hline & & & & \\
\hline 8 & For a second-order solution, & \(\mathrm{y}^{\prime}{ }^{\prime}\) & C & \\
\hline & input initial value of \(\mathrm{y}^{\prime}\). & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & \begin{tabular}{l}
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & OUTPUT DATA/UNITS \\
\hline 9 & For AUTO mode go to step 10; & & & \\
\hline & for manual use, go to step 13. & & & \\
\hline & AUTO & & & \\
\hline 10 & Select AUTO mode for output & & & \\
\hline & by Print/Pause. & & 15 & 1.00 \\
\hline 11 & To cancel AUTO mode later. & & 1 E & 0.00 \\
\hline 12 & Output successive values of & & & \\
\hline & \(x\) and \(y\). & & D & \(\mathrm{x}_{1}\) \\
\hline & & & & \(y_{1}\) \\
\hline & & & & \(\mathrm{x}_{2}\) \\
\hline & & & & \(\mathrm{y}_{2}\) \\
\hline & & & & etc. \\
\hline & Manual & & & \\
\hline 13 & Output successive values of & & & \\
\hline & \(x\) and \(y\). & & D & \(\mathrm{x}_{1}\) \\
\hline & & & R/S & \(y_{1}\) \\
\hline & & & R/S & \(\mathrm{x}_{2}\) \\
\hline & & & R/S & \(y_{2}\) \\
\hline & & & & etc. \\
\hline
\end{tabular}

\section*{Example 1:}

Solve numerically the first-order differential equation
\[
y^{\prime}=\frac{\sin x+\tan ^{-1}(y / x)}{y-\ln \left(\sqrt{x^{2}+y^{2}}\right)}
\]
where \(\mathrm{x}_{0}=\mathrm{y}_{0}=1\). Let \(\mathrm{h}=0.5\). The angular mode must be set to radians.

\section*{Keystrokes:}

\section*{Outputs:}

Load side 1 and side 2 of program

\section*{GTO E}

Switch to PRGM. See line 148.
RAD STO 1 x \(x \geqslant y\) STO 2 x \(x \geqslant y\)
\(\rightarrow\) PLN STO 3 RH RCL 1
SIN + RCL 2 RCL 3 - \(-{ }^{-1}\) DEG
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Switch to RUN. Do not set} \\
\hline \multicolumn{3}{|l|}{Auto mode.} \\
\hline . 5 A 1 ENTER4 1 B D \(\longrightarrow\) & 1.50 & ( \(\mathrm{x}_{1}\) ) \\
\hline R/S \(\longrightarrow\) & 2.06 & \(\left(y_{1}\right)\) \\
\hline R/S & 2.00 & \(\left(\mathrm{x}_{2}\right)\) \\
\hline \(\mathrm{R} / \mathrm{S} \longrightarrow\) & 2.78 & ( \(\mathrm{y}_{2}\) ) \\
\hline R/S \(\longrightarrow\) & 2.50 & \(\left(\mathrm{x}_{3}\right)\) \\
\hline R/S \(\longrightarrow\) & 3.28 & ( \(\mathrm{y}_{3}\) ) \\
\hline
\end{tabular}

\section*{Example 2:}

Solve the second-order equation
\[
\left(1-x^{2}\right) y^{\prime \prime}+x y^{\prime}=x
\]
where \(\mathrm{x}_{0}=\mathrm{y}_{0}=\mathrm{y}_{0}{ }^{\prime}=0\) and \(\mathrm{h}=0.1\).
Rewrite the equation as
\[
y^{\prime \prime}=\frac{x\left(1-y^{\prime}\right)}{1-x^{2}} \quad, x \neq 1
\]

\section*{Keystrokes:}

Outputs:
Load side 1 and side 2 of program.

\section*{GTO E}

Switch to PRGM. See line 148.

\section*{STO 8 RT Rt 1 - RCL 8 区 \\ RCL 8 줄 1 -}

Switch to RUN.
. 1 A 0 ENTER 0 B 0 C \(\boldsymbol{C}\) -
DSP 4 D
\begin{tabular}{|c|c|}
\hline 1.00 & (AUTO mode) \\
\hline 0.1000 & \(\left(\mathrm{x}_{1}\right)\) \\
\hline 0.0002 & \(\left(y_{1}\right)\) \\
\hline 0.2000 & \(\left(\mathrm{x}_{2}\right)\) \\
\hline 0.0013 & \(\left(\mathrm{y}_{2}\right)\) \\
\hline 0.3000 & ( \(\mathrm{x}_{3}\) ) \\
\hline 0.0046 & \(\left(y_{3}\right)\) \\
\hline 0.4000 & ( \(\mathrm{x}_{4}\) ) \\
\hline 0.0109 & ( \(\mathrm{y}_{4}\) ) \\
\hline 0.5000 & ( \(\mathrm{x}_{5}\) ) \\
\hline 0.0217 & \(\left(y_{5}\right)\) \\
\hline
\end{tabular}

\section*{INTERPOLATIONS}


This program allows selection of one of three different interpolation routines: linear, Lagrangian, and finite difference.

\section*{Linear interpolation}

If y is a function of x , let \(\mathrm{y}_{0}\) and \(\mathrm{y}_{1}\) be known function values corresponding to \(\mathrm{x}_{0}\) and \(\mathrm{x}_{1}\) respectively. Then if \(\mathrm{x}_{0}<\mathrm{x}<\mathrm{x}_{1}\), the function value of x can be approximated in a linear fashion by
\[
y=\frac{\left(x_{1}-x\right) y_{0}+\left(x-x_{0}\right) y_{1}}{x_{1}-x_{0}}
\]


\section*{Lagrangian interpolation}

Given three points, \(\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\), and \(\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\), the program will evaluate for an argument \(x\) the Lagrangian interpolating polynomial \(P_{2}(x)\) of degree two which passes through the three points. Let the value of \(P_{2}(x)\) also be denoted \(y\).
\[
P_{2}(x)=\sum_{i=0}^{2} L_{i}(x) y_{i}
\]
where
\[
L_{i}(x)=\prod_{\substack{j=0 \\ i \neq j}}^{2} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}, i=0,1,2
\]

\section*{Finite difference interpolation}

This program interpolates for data points in the region of tabulated data for uniformly spaced abscissas, with spacing h . The equation used is the backwardinterpolation formula of Gauss which uses four pairs of data points and sets up the polynomial for cubic interpolation.

The equation used is:
\[
y=y_{3}+u \delta y_{-1 / 2}+\frac{1}{2} u(u+1) \delta^{2} y_{0}+\frac{1}{3!} u(u+1)(u-1) \delta^{3} y_{-1 / 2}
\]

The difference table is:
\[
\begin{array}{rllrl}
u & x & y & \\
-2 & x_{1} & y_{1} & y_{2}-y_{1} \\
-1 & x_{2} & y_{2} & y_{3}-2 y_{2}+y_{1} \\
0 & x_{3} & y_{3}-y_{3}-y_{2} \\
1 & x_{4} & y_{4} & y_{4}-y_{3}
\end{array}<y_{4}-2 y_{3}+y_{2}-3 y_{3}+3 y_{2}-y_{1}
\]
where
\[
\begin{aligned}
& \delta y_{-1 / 2}=y_{3}-y_{2} \\
& \delta^{2} \mathrm{y}_{0}=\mathrm{y}_{4}-2 \mathrm{y}_{3}+\mathrm{y}_{2} \\
& \delta^{3} \mathrm{y}_{-1 / 2}=\mathrm{y}_{4}-3 \mathrm{y}_{3}+3 \mathrm{y}_{2}-\mathrm{y}_{1}
\end{aligned}
\]
and
\[
\mathrm{u}=\frac{\mathrm{x}-\mathrm{x}_{3}}{\mathrm{~h}}
\]
\begin{tabular}{|c|l|c|c|c|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \begin{tabular}{c} 
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & \begin{tabular}{c} 
OUTPUT \\
DATA/UNITS
\end{tabular} \\
\hline 1 & Load side 1 and side2 of program. & & & \\
\hline 2 & For linear, go to step 3; for & & & \\
\hline & Lagrangian, go to step 7; for & & & \\
\hline & finite difference, go to step 12. & & & \\
\hline & LINEAR & & & \\
\hline 3 & Input first point. & \(\mathrm{x}_{0}\) & ENTERA & \\
\hline & & \(\mathrm{y}_{0}\) & A & \(\mathrm{x}_{0}\) \\
\hline 4 & Input second point. & \(\mathrm{x}_{1}\) & ENTERt & \\
\hline & & \(\mathrm{y}_{1}\) & B & \(\mathrm{x}_{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 5 & Input an x and find the inter- & & & \\
\hline & polated y . & x & D & y \\
\hline 6 & Repeat step 5 any number of & & & \\
\hline & times. & & & \\
\hline & LAGRANGIAN & & & \\
\hline 7 & Input first point. & \(\mathrm{x}_{0}\) & ENTER & \\
\hline & & \(y_{0}\) & A & \(\mathrm{x}_{0}\) \\
\hline 8 & Input second point. & \(\mathrm{x}_{1}\) & ENTER4 & \\
\hline & & \(y_{1}\) & B & \(\mathrm{x}_{1}\) \\
\hline 9 & Input third point. & \(\mathrm{x}_{2}\) & Entert & \\
\hline & & \(y_{2}\) & C & \(\mathrm{x}_{2}\) \\
\hline 10 & Input an x and find the inter- & & & \\
\hline & polated y , where \(\mathrm{y}=\mathrm{P}_{2}(\mathrm{x})\). & x & D & y \\
\hline 11 & Repeat step 10 any number of & & & \\
\hline & times. & & & \\
\hline & FINITE DIFFERENCE & & & \\
\hline 12 & Input third abscissa. & \(\mathrm{x}_{3}\) & 1 A & \(\mathrm{x}_{3}\) \\
\hline 13 & Input abscissa spacing. & h & 1 B & h \\
\hline 14 & Input ordinates 1 through 4. & \(y_{1}\) & ENTER \({ }^{\text {a }}\) & \\
\hline & & \(y_{2}\) & ENTERA & \\
\hline & & \(y_{3}\) & Entera & \\
\hline & & \(y_{4}\) & 1 C & \(\delta^{2} y_{0}\) \\
\hline 15 & Input an x and find the inter- & & & \\
\hline & polated y . & x & 1 D & y \\
\hline 16 & Repeat step 15 any number of & & & \\
\hline & times. & & & \\
\hline
\end{tabular}

\section*{Example 1:}

The points \((7.3,1.9879)\) and \((7.4,2.0015)\) are known to lie along a curve which may be approximated by a straight line. Use linear interpolation to find approximations for the function values at 7.33 and 7.37.

Keystrokes:
©SP [4. 7.3 ENTERT 1.9879 A
7.4 ENTERA 2.0015 B 7.33 D - 1.9920 ***
7.37 D \(\longrightarrow 1.9974^{* * *}\)

\section*{Example 2:}

The points \((1,-5),(3,1)\) and \((10,25)\) lie on a curve which is to be approximated by a second-degree polynomial. Find by Lagrangian interpolation the function values corresponding to \(\mathrm{x}=1.7\) and \(\mathrm{x}=9\).

\section*{Keystrokes:}

\section*{Outputs:}

\section*{DSP 21 ENTERA 5 CHS A}

3 ENTERA 1 B 10 ENTERA 25 C

\(-2.94^{* * *}\)
9 D
\(21.29^{* * *}\)

\section*{Example 3:}

The following table lists four data points with uniformly spaced abscissas (x-values) of spacing 2.
\begin{tabular}{c|c|c|c|c}
i & 1 & 2 & 3 & 4 \\
\hline \(\mathrm{x}_{\mathrm{i}}\) & -1 & 1 & 3 & 5 \\
\hline \(\mathrm{y}_{\mathrm{i}}\) & -1 & 2 & 9 & 30
\end{tabular}

Use finite difference interpolation to approximate the y -values for x -values of \(-0.5,2.567\), and 4.8.

Keystrokes:

\section*{Outputs:}

3 A A 2 B 1 CHs
ENTERA 2 ENTERA 9 ENTERA 30
\begin{tabular}{|c|c|}
\hline 1 C & 14.00 \\
\hline . 5 CHS 1 D & -0.08 *** \\
\hline 2.567 ( D & 6.64 *** \\
\hline 4.8 [ D & 26.99 *** \\
\hline
\end{tabular}

\section*{COORDINATE TRANSFORMATIONS}


This program provides 2 -dimensional and 3 -dimensional coordinate translation and/or rotation.
For the 2-dimensional case, the coordinates of the origin of the translated system ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ) and the rotation angle ( \(\theta\) ) relative to the original system, specify the new coordinate axis. These quantities are input with the \(\boldsymbol{A}\) key. Subsequently, points specified in the original system ( \(\mathrm{x}, \mathrm{y}\) ) may be converted to the translated rotated system ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\) ) using the C key. Points in the new ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\) ) system may be converted to points in the original ( \(\mathrm{x}, \mathrm{y}\) ) system using the E key.


The 3 -dimensional case is analogous to the 2 -dimensional case. The only important difference is the specification of the rotation. The rotation axis passes through the translated origin ( \(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\) ) and is parallel to an arbitrary direction vector ( \(\mathrm{ai}, \mathrm{bj}, \mathrm{c} \overrightarrow{\mathrm{k}}\) ). The sign of the rotation angle \((\theta)\) is determined by the right-hand rule and the direction of the rotation vector. For instance, the special case of 2-dimensional rotation (rotation in the ( \(\mathrm{x}, \mathrm{y}\) ) plane) could be achieved using a direction vector of \((0,0,1)\) and a positive rotation angle for counter-clockwise rotations. The direction vector and angle are input using the 1 B key. The coordinates of the translated origin ( \(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\) ) are input using © . Conversions from the original system ( \(x, y, z\) ) to the new system ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{z}^{\prime}\) ) are initiated using \(\boldsymbol{f}\) C while the inverse conversion is performed with \(\boldsymbol{f} \mathbf{E}\).

\section*{Equations:}
\[
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
\mathrm{z}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1_{1} & \mathrm{~m}_{1} & \mathrm{n}_{1} \\
1_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2} \\
1_{3} & \mathrm{~m}_{3} & \mathrm{n}_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}-\mathrm{x}_{0} \\
\mathrm{y}-\mathrm{y}_{0} \\
\mathrm{z}-\mathrm{z}_{0}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{ccc}
1_{1} & 1_{2} & 1_{3} \\
\mathrm{~m}_{1} & \mathrm{~m}_{2} & \mathrm{~m}_{3} \\
\mathrm{n}_{1} & \mathrm{n}_{2} & \mathrm{n}_{3}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
\mathrm{z}^{\prime}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{x}_{0} \\
\mathrm{y}_{0} \\
\mathrm{z}_{0}
\end{array}\right]}
\end{aligned}
\]
where
\[
\left[\begin{array}{lll}
1_{1} & \mathrm{~m}_{1} & \mathrm{n}_{1} \\
1_{2} & \mathrm{~m}_{2} & \mathrm{n}_{2} \\
1_{3} & \mathrm{~m}_{3} & \mathrm{n}_{3}
\end{array}\right]=\left[\begin{array}{lcc}
\mathrm{a}^{2}(1-\cos \theta)+\cos \theta & \mathrm{ab}(1-\cos \theta)-\mathrm{csin} \theta & \mathrm{ac}(1-\cos \theta)+\mathrm{b} \sin \theta \\
\mathrm{ba}(1-\cos \theta)+\operatorname{csin} \theta & \mathrm{b}^{2}(1-\cos \theta)+\cos \theta & \mathrm{bc}(1-\cos \theta)-\mathrm{a} \sin \theta \\
\mathrm{ca}(1-\cos \theta)-\mathrm{b} \sin \theta & \mathrm{cb}(1-\cos \theta)+\mathrm{a} \sin \theta & \mathrm{c}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right]
\]

Two dimensional transformations are handled as a special case of three dimensional transformation with ( \(a, b, c\) ) set to \((0,0,1)\).

\section*{Remarks:}
1. Degree mode is set when the card is loaded. However, any angular mode will work.
2. For pure translation, input zero for \(\boldsymbol{\theta}\).
3. For pure rotation, input zeros for \(\mathrm{x}_{0}, \mathrm{y}_{0}\), and \(\mathrm{z}_{0}\).

\section*{Reference:}

Julian, Rene S. , Rotations in Three-Dimensional Space, HP-65 Users' Library Program—01368A
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2. & & & \\
\hline 2 & For 2-dimensional transforma- & & & \\
\hline & tions go to step 3. & & & \\
\hline & For 3-dimensional transforma- & & & \\
\hline & tions go to step 6. & & & \\
\hline 3 & Input the origin of the translated & & & \\
\hline & system and the rotation angle. & \(\mathrm{x}_{0}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(y_{0}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(\theta\) & A & 1.00 \\
\hline 4 & Transform coordinates from & & & \\
\hline & the original system to the & & & \\
\hline & translated-rotated system. & x & ENTER4 & \\
\hline & & \(y\) & C & \(\mathrm{x}^{\prime}\) \\
\hline & & & & \(\mathrm{y}^{\prime}\) \\
\hline & or & & & \\
\hline & From the translated-rotated & & & \\
\hline & system to the original system. & \(\mathrm{x}^{\prime}\) & ENTER4 & \\
\hline & & \(\mathrm{y}^{\prime}\) & E & x \\
\hline & & & & y \\
\hline 5 & For a new set of coordinates, go & & & \\
\hline & to step 4. For a new 2-dimen- & & & \\
\hline & sional transformation, go to & & & \\
\hline & step 3. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 6 & Input the origin of the translated & & & \\
\hline & system. & \(\mathrm{x}_{0}\) & ENTER4 & \\
\hline & & \(\mathrm{y}_{0}\) & ENTER & \\
\hline & & \(\mathrm{z}_{0}\) & \(\square\) A & \(\mathrm{x}_{0}\) \\
\hline & and & & & \\
\hline & Input the rotation direction & & & \\
\hline & vector and angle. & a & ENTER4 & \\
\hline & & b & ENTER4 & \\
\hline & & c & ENTER & \\
\hline & & \(\theta\) & 1 B & \(\sqrt{a^{2}+b^{2}+c^{2}}\) \\
\hline 7 & Transform coordinates from & & & \\
\hline & original system to translated & & & \\
\hline & rotated system. & x & ENTER & \\
\hline & & \(y\) & ENTERA & \\
\hline & & z & 1 C & \(\mathrm{x}^{\prime}\) \\
\hline & & & & \(y^{\prime}\) \\
\hline & & & & \(z^{\prime}\) \\
\hline & or & & & \\
\hline & From the translated-rotated & & & \\
\hline & system to the original system. & \(\mathrm{x}^{\prime}\) & ENTER & \\
\hline & & \(y^{\prime}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(z '\) & 1 E & x \\
\hline & & & & y \\
\hline & & & & z \\
\hline 8 & For a new set of coordinates, & & & \\
\hline & go to step 7. & & & \\
\hline & For a new 3-dimensional & & & \\
\hline & transformation go to step 6 & & & \\
\hline & (either ( \(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\) ) or ( \(\mathrm{a}, \mathrm{b}, \mathrm{c}, \theta\) ) & & & \\
\hline & may be changed independently). & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Example 1:}

The coordinate systems ( \(\mathrm{x}, \mathrm{y}\) ) and ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\) ) are shown below:


Convert the points \(\mathrm{P}_{1}, \mathrm{P}_{2}\) and \(\mathrm{P}_{3}\) to equivalent coordinates in the ( \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\) ) system. Convert the point \(\mathrm{P}_{4}^{\prime}\) to equivalent coordinates in the ( \(\mathrm{x}, \mathrm{y}\) ) system.

Keystrokes: Outputs:

\[
1.00
\]
\[
9 \text { CHS ENTERA } 7 \text { C } \longrightarrow
\]

\[
\begin{aligned}
& 11.04 \text { *** }\left(\mathrm{x}_{4}\right) \\
& -5.98^{* * *}\left(\mathrm{y}_{4}\right)
\end{aligned}
\]

\section*{Example 2:}

A 3-dimensional coordinate system is translated to (2.45, 4.00, 4.25). After translation, a 62.5 degree rotation occurs about the \((0,-1,-1)\) axis. In the original system, a point had the coordinates (3.9, 2.1, 7.0). What are the coordinates of the point in the translated rotated system?

Keystrokes:
2.45 ENTERA 4.00 ENTERA 4.25

1 A \(\longrightarrow\)
0 ENTERA 1 CHS ENTERA 1 CHS


Outputs:
3.9 ENTERA 2.1 ENTERA 7.0

1 C \(\qquad\)
\(0.26^{* * *}\left(\mathrm{y}^{\prime}\right)\)
\(0.59^{* * *}\left(z^{\prime}\right)\)

In the translated rotated system above, a point has the coordinate \((1,1,1)\). What are the corresponding coordinates in the original system?

Keystrokes:
Outputs:
1 ENTERA 1 ENTERA 1 \& \(\mathrm{E} \rightarrow\)
\[
2.91^{* * *}(\mathrm{x})
\]
\[
4.37^{* * *}(\mathrm{y})
\]
\[
5.88^{* * *}(\mathrm{z})
\]

\section*{INTERSECTIONS OF LINES AND LINES, LINES AND CIRCLE AND CIRCLES AND CIRCLES}


This program calculates the point of intersection of two coplanar lines, the points of intersection of a coplanar circle and line, or the points of intersection of two coplanar circles.
Lines may be specified by two points ( \(\mathrm{x}, \mathrm{y}\) and \(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\) ), or by one point ( \(\mathrm{x}, \mathrm{y}\) ) and an angle \((\theta)\), where \(\theta\) is the angle from the positive x -axis to the line. Circles are specified by their center coordinates ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ) and the radius ( r ).

To find the intersection of two lines, input lines specified by two points using 1 A and/or B. Input lines specified by one point and an angle using \(\boldsymbol{A}\) and/or B. Calculate the point of intersection using \(\boldsymbol{f}\) D. The coordinates of the point of intersection ( \(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\) ) will be output. "Error" will be displayed if you input parallel (non-intersecting) lines unless they were also vertical in which case an overflow will be generated.

Calculation of the intersections of a line and a circle requires that the line be input using \(\boldsymbol{A}\) for point-angle representation or \(\boldsymbol{A}\) for point-point representation. The circle is input using D. B, BB and E must not be used during circle-line intersection calculations. Once the line parameters and circle parameters have been input, pressing \(\mathbf{1} \mathbf{D}\) initiates calculation of one point of intersection and \(\mathbf{E}\) initiates calculation of the other point. If the line is tangent to the circle, both calculated points will be identical. If the line does not intersect the circle, "Error" will be displayed.
Calculation of the intersections of two circles is accomplished using the \(\boldsymbol{D}\) and E keys to input the circles and \(\mathbb{D}\) and \(\boldsymbol{E}\) to initiate calculation of the points of intersection. If the circles are tangent both calculated points will be identical. If the two circles do not intersect "Error" will be displayed.

\section*{Equations:}

Line-Line Intersection:
\[
\begin{gathered}
\mathrm{x}_{\mathrm{p}}=\frac{\mathrm{x}_{1} \tan \theta_{1}-\mathrm{x}_{2} \tan \theta_{2}+\mathrm{y}_{2}-\mathrm{y}_{1}}{\tan \theta_{1}-\tan \theta_{2}} \\
\mathrm{y}_{\mathrm{p}}=\mathrm{y}_{1}+\left(\mathrm{x}_{\mathrm{p}}-\mathrm{x}_{1}\right) \tan \theta_{1}
\end{gathered}
\]


Circle-Line intersections:
\[
\begin{aligned}
\mathrm{x}_{\mathrm{p} 1} & =\mathrm{x}_{1}+\mathrm{P}_{1} \cos \theta \\
\mathrm{y}_{\mathrm{p} 1} & =\mathrm{y}_{1}+\mathrm{P}_{1} \sin \theta \\
\mathrm{x}_{\mathrm{p} 2} & =\mathrm{x}_{1}+\mathrm{P}_{2} \cos \theta \\
\mathrm{y}_{\mathrm{p} 2} & =\mathrm{y}_{1}+\mathrm{P}_{2} \sin \theta
\end{aligned}
\]
where \(P_{1}\) and \(P_{2}\) are the roots of
\[
\begin{gathered}
\mathrm{P}^{2}-2 \mathrm{D} \cos (\theta-\alpha) \mathrm{P}+\mathrm{D}^{2}-\mathrm{r}^{2}=0 \\
\theta=\tan ^{-1}\left[\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}\right] \\
\alpha=\tan ^{-1}\left[\frac{\mathrm{y}_{0}-\mathrm{y}_{1}}{\mathrm{x}_{0}-\mathrm{x}_{1}}\right] \\
\mathrm{D}=\sqrt{\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right)^{2}}
\end{gathered}
\]


Circle-Circle intersections:
\[
\begin{gathered}
\mathrm{x}_{\mathrm{p} 1}=\mathrm{x}_{01}+\mathrm{r}_{1} \cos (\theta+\alpha) \\
\mathrm{y}_{\mathrm{p} 1}=\mathrm{y}_{01}+\mathrm{r}_{1} \sin (\theta+\alpha) \\
\mathrm{x}_{\mathrm{p} 2}=\mathrm{x}_{01}+\mathrm{r}_{1} \cos (\theta-\alpha) \\
\mathrm{y}_{\mathrm{p} 2}=\mathrm{y}_{01}+\mathrm{r}_{1} \sin (\theta-\alpha) \\
\theta=\tan ^{-1}\left(\frac{\mathrm{y}_{02}-\mathrm{y}_{01}}{\mathrm{x}_{02}-\mathrm{x}_{01}}\right) \\
\alpha=\cos ^{-1}\left[\frac{\mathrm{D}^{2}+\mathrm{r}_{1}{ }^{2}-\mathrm{r}_{2}{ }^{2}}{2 \mathrm{Dr}_{1}}\right] \\
\mathrm{D}=\sqrt{\left(\mathrm{x}_{02}-\mathrm{x}_{01}\right)^{2}+\left(\mathrm{y}_{02}-\mathrm{y}_{01}\right)^{2}}
\end{gathered}
\]


\section*{Remarks:}

You may specify any angular mode (degree, radian, grad) after loading the card. When the card is loaded degree mode is set.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 & & & \\
\hline & (degree mode is set). & & & \\
\hline 2 & For line/line intersections go to & & & \\
\hline & step 3. For line/circle inter- & & & \\
\hline & sections go to step 6. For & & & \\
\hline & circle/circle intersections go & & & \\
\hline & to step 10. & & & \\
\hline & LINE/LINE & & & \\
\hline 3 & Input two points on each line: & & & \\
\hline & First point on line one. & x 1 & ENTER4 & \\
\hline & & \(y_{1}\) & ENTER & \\
\hline & Second point on line one. & \(\mathrm{x}_{1}{ }^{\prime}\) & ENTER4 & \\
\hline & & \(y_{1}{ }^{\prime}\) & 1 A & \(\mathrm{x}_{1}{ }^{\prime}\) \\
\hline & First point on line two. & \(\mathrm{x}_{2}\) & ENTERA & \\
\hline & & \(y_{2}\) & ENTER & \\
\hline & Second point on line two. & \(\mathrm{x}_{2}{ }^{\prime}\) & ENTER4 & \\
\hline & & \(\mathrm{y}_{2}{ }^{\prime}\) & 1 B & \(\mathrm{x}_{2}{ }^{\prime}\) \\
\hline & or input one point and the angle & & & \\
\hline & of each line. Point on line one. & \(\mathrm{x}_{1}\) & ENTERA & \\
\hline & & \(y_{1}\) & ENTER4 & \\
\hline & Angle of line one. & \(\theta_{1}\) & A & \(\mathrm{x}_{1}\) \\
\hline & Point on line two. & \(\mathrm{x}_{2}\) & ENTER & \\
\hline & & \(y_{2}\) & ENTER4 & \\
\hline & Angle of line two. & \(\theta_{2}\) & B & \(\mathrm{x}_{2}\) \\
\hline 4 & Calculate intersection point. & & 1 D & \(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}\) \\
\hline 5 & For a new case go to step 3 & & & \\
\hline & and change either or both lines. & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline & LINE/CIRCLE & & & \\
\hline 6 & Input two points on line: & & & \\
\hline & First point on line. & x & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(y\) & ENTER & \\
\hline & Second point on line. & \(\mathrm{x}^{\prime}\) & ENTER) & \\
\hline & & \(y^{\prime}\) & 1 A & \(\mathrm{x}^{\prime}\) \\
\hline & or input one point. & x & ENTER & \\
\hline & & y & ENTER \({ }^{\text {d }}\) & \\
\hline & and angle of line. & \(\theta\) & A & x \\
\hline 7 & Input circle center & \(\mathrm{x}_{0}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(y_{0}\) & ENTER & \\
\hline & and radius. & r & D & \(\mathrm{x}_{0}\) \\
\hline 8 & Calculate one intersection & & & \\
\hline & point. & & 10 & \(\mathrm{x}_{\mathrm{p} 1}, \mathrm{y}_{\mathrm{p} 1}\) \\
\hline & Calculate the other intersection & & & \\
\hline & point. & & 1 E & \(\mathrm{x}_{\mathrm{p} 2}, \mathrm{y}_{\mathrm{p} 2}\) \\
\hline 9 & For a new case go to step 6 or & & & \\
\hline & 7 and change line or circle & & & \\
\hline & or both. & & & \\
\hline & CIRCLE/CIRCLE & & & \\
\hline 10 & Input circle one. & \(\mathrm{x}_{01}\) & ENTER4 & \\
\hline & & \(\mathrm{y}_{01}\) & ENTER4 & \\
\hline & & \(\mathrm{r}_{1}\) & D & \(\mathrm{x}_{01}\) \\
\hline & Input circle two. & \(\mathrm{X}_{02}\) & ENTER4 & \\
\hline & & \(\mathrm{y}_{02}\) & ENTERA & \\
\hline & & \(\mathrm{r}_{2}\) & E & \(\mathrm{x}_{02}\) \\
\hline 11 & Calculate one intersection point. & & 1 D & \(\mathrm{x}_{\mathrm{p} 1}, \mathrm{yp}_{\mathrm{p} 1}\) \\
\hline & Calculate the other intersection & & & \\
\hline & point. & & 15 & \(\mathrm{x}_{\mathrm{p} 2}, \mathrm{y}_{\mathrm{p} 2}\) \\
\hline 12 & For a new case go to step 10 & & & \\
\hline & and change either or both circles. & & & \\
\hline
\end{tabular}

\section*{Example 1:}

Find the intersection of the vertical line specified by two points:
\[
\begin{aligned}
\mathrm{P}_{1} & =(0,0) \\
\mathrm{P}^{\prime}{ }_{1} & =(0,50)
\end{aligned}
\]

And the oblique line specified by one point and an angle:
\[
\begin{gathered}
\mathrm{P}_{2}=(10,20) \\
\theta=45^{\circ}
\end{gathered}
\]

Keystrokes:

\section*{Outputs:}

0 ENTERA 0 ENTERA 0 ENTER
\(\qquad\)

10 ENTERA 20 ENTERA 45 B \(\longrightarrow \quad 10.00\)

\[
\begin{array}{r}
0.00 \\
10.0 * *\left(\mathrm{x}_{\mathrm{p}}\right) \\
\end{array}{ }^{* * *}\left(\mathrm{y}_{\mathrm{p}}\right)
\]

\section*{Example 2:}

Calculate the points of intersection for circles at \((0,0)\) radius 50 and \((90,30)\) radius 70 .

Keystrokes:

\section*{Outputs:}

0 ENTERA 0 ENTERA \(50 \mathbf{D} \longrightarrow 0.00\)
90 ENTERA 30 ENTERA 70 E \(\longrightarrow \quad 90.00\)


\section*{Example 3:}

Find the points of intersection for a circle with center at \((0,0)\) and radius 50 , and the line containing the points \((20,30)\) and \((0,-10)\).

Keystrokes:
Outputs:
0 ENTER4 0 ENTERA 50 D \(\longrightarrow\)
20 ENTER 30 ENTER 40 ENTER 4
10 CHS \(f \mathrm{~A} \longrightarrow\)
    D \(\longrightarrow \quad-18.27^{* * *}\left(\mathrm{x}_{\mathrm{p} 1}\right)\)
    \(-46.54^{* * *}\left(\mathrm{y}_{\mathrm{p} 1}\right)\)
    \(26.27^{* * *}\left(\mathrm{x}_{\mathrm{p} 2}\right)\)
    \(42.54^{* * *}\left(\mathrm{y}_{\mathrm{p} 2}\right)\)

Notes

\section*{CIRCLE COMPUTATIONS}


This card combines two separate circle programs. One program calculates the center ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ) and radius (r) of a circle given three non-collinear points. The other program calculates the coordinates of points on a circle ( \(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\) ), given the center and radius of the circle.
To find the center and radius of a circle, simply input three points \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) (represented by x and y coordinates) using 1 A, \(\boldsymbol{B}\), and \(\boldsymbol{C}\) respectively. After all three points have been input, press \(\boldsymbol{D}\) to generate the coordinates of the center ( \(\mathrm{x}_{0}, \mathrm{y}_{0}\) ) and the radius ( r ).

To find coordinates of points on a circle with a known center and radius, you may choose one of three options:
1. You may key in an angle \(\boldsymbol{\theta}\), press \(\boldsymbol{B}\), and calculate the coordinates of the point on the circle at angle \(\theta\), where \(\theta\) is measured counterclockwise from a radius parallel to and in the direction of the positive x -axis.
2. You may manually increment around the circle one point at a time by successively pressing E. The outputs are angle \((\theta)\), number of the point (i), and ( \(\mathrm{x}, \mathrm{y}\) ) coordinates of the point.
3. You may automatically increment around the circle by pressing \(\boldsymbol{f}\) once. The outputs are the same as those of option two above.
For options two and three above, two input options exist:
1. An initial angle \((\theta)\) and an incremental angle \((\Delta \theta)\) are specified and \(\mathbf{C}\) is pressed.
2. An initial angle and the number of increments around a complete circle are specified and \(\mathbf{D}\) is pressed.

\section*{Equations:}

Circle determined by three points:
where
\[
\begin{gathered}
\mathrm{y}_{0}=\frac{\mathrm{K}_{2}-\mathrm{K}_{1}}{\mathrm{~N}_{2}-\mathrm{N}_{1}}, \mathrm{x}_{0}=\mathrm{K}_{2}-\mathrm{N}_{2} \mathrm{y}_{0} \\
\mathrm{r}=\sqrt{\left(\mathrm{x}_{3}-\mathrm{x}_{0}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{0}\right)^{2}}
\end{gathered}
\]
\[
\begin{aligned}
& \mathrm{K}_{1}=\frac{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}+\mathrm{x}_{1}\right)+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right)}{2\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)} \\
& \mathrm{K}_{2}=\frac{\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)\left(\mathrm{x}_{3}+\mathrm{x}_{1}\right)+\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\left(\mathrm{y}_{3}+\mathrm{y}_{1}\right)}{2\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{N}_{1}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \\
& \mathrm{~N}_{2}=\frac{\mathrm{y}_{3}-\mathrm{y}_{1}}{\mathrm{x}_{3}-\mathrm{x}_{1}}
\end{aligned}
\]


Points on a circle:
\[
\begin{gathered}
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{c}}+\mathrm{r} \cos \left(\theta_{0}+(\mathrm{i}-1) \Delta \theta\right) \\
\mathrm{y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{c}}+\mathrm{r} \sin \left(\theta_{0}+(\mathrm{i}-1) \Delta \theta\right) \\
\Delta \theta=\frac{2 \pi}{\mathrm{n}}(\text { for n evenly spaced points) } \\
\theta_{\mathrm{i}}=\theta_{0}+(\mathrm{i}-1) \Delta \theta
\end{gathered}
\]

\section*{Remarks:}
1. If \(x_{1}=x_{2}\) or \(x_{1}=x_{3}\) in the calculation of the center and radius of a circle, then point 1 replaces point 3 , point 3 replaces point 2 and point 2 replaces point 1.
2. Degree mode is set when the card is loaded. However the program will also work for radians and grads provided the appropriate mode is set after loading the program.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 & & & \\
\hline & (degrees mode is set). & & & \\
\hline 2 & To determine a circle from three & & & \\
\hline & points go to step 3. To generate & & & \\
\hline & points on a circle go to step 6. & & & \\
\hline & CIRCLE FROM THREE POINTS & & & \\
\hline 3 & Input point 1. & \(\mathrm{x}_{1}\) & ENTER4 & \\
\hline & & \(y_{1}\) & 1 A & \(\mathrm{x}_{1}\) \\
\hline & Input point 2. & \(\mathrm{x}_{2}\) & ENTERA & \\
\hline & & \(y_{2}\) & 1 B & \(\mathrm{x}_{2}\) \\
\hline & Input point 3. & \(\mathrm{x}_{3}\) & ENTERA & \\
\hline & & \(y_{3}\) & - \(C\) & \(\mathrm{x}_{3}\) \\
\hline 4 & Calculate center coordinates & & & \\
\hline & and radius of circle. & & 1 D & \(x_{0}, y_{0}, r\) \\
\hline 5 & For a new case go to step 3 and & & & \\
\hline & change any or all of the points. & & & \\
\hline & POINTS ON A CIRCLE & & & \\
\hline 6 & Input circle center and radius. & \(\mathrm{x}_{0}\) & ENTERA & \\
\hline & & \(y_{0}\) & ENTERA & \\
\hline & & \(r\) & A & \(\mathrm{x}_{0}\) \\
\hline 7 & Optional: input an angle and & & & \\
\hline & calculate coordinates. & \(\theta\) & B & \(x, y\) \\
\hline 8 & Input starting angle & \(\theta_{0}\) & ENTERA & \\
\hline & and & & & \\
\hline & angle of increment & \(\Delta \theta\) & c & \(\Delta \theta\) \\
\hline & or & & & \\
\hline & number of increments. & n & D & \(\Delta \theta\) \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \begin{tabular}{c} 
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & \begin{tabular}{c} 
OUTPUT \\
DATA/UNITS
\end{tabular} \\
\hline 9 & Manually increment around & & & \\
\hline & circle by pressing E for each & & & \\
\hline & successive increment. & & \(\mathbf{E}\) & \(\theta_{i}, \mathrm{i}_{1}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\) \\
\hline & or & & & \\
\hline & automatically increment around & & & \\
\hline & circle. & & \(\mathbf{E}\) & \(\theta_{i}, \mathrm{i}, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\) \\
\hline 10 & For a new increment size go & & & \\
\hline & to step 8. For a new circle go to & & & \\
\hline & step 6. & & & \\
\hline
\end{tabular}

\section*{Example 1:}

Find the coordinates of the points shown on the circle below.

\begin{tabular}{c|r|c}
i & \(\mathrm{x}_{\mathbf{i}}\) & \(\mathrm{y}_{\mathbf{i}}\) \\
\hline 1 & 1.72 & 2.14 \\
2 & 2.06 & 2.62 \\
3 & 2.11 & 3.20 \\
4 & 1.86 & 3.72 \\
5 & 1.38 & 4.06 \\
6 & 0.80 & 4.11 \\
7 & 0.28 & 3.86 \\
8 & -0.06 & 3.38 \\
9 & -0.11 & 2.80
\end{tabular}

Keystrokes

\section*{Outputs}
1 ENTER4 3 ENTERA 1.125 A
1.00
50 CHS ENTER 30 C
30.00
f E \(\qquad\)
\[
\begin{array}{r}
-50.00^{* * *}(\theta) \\
1.00^{* * *}(\mathrm{i}) \\
1.72^{* * *}(\mathrm{x}) \\
2.14^{* * *}(\mathrm{y})
\end{array}
\]
\(-20.00^{* * *}\)
\(2.00^{* * *}\)
\(2.06^{* * *}\)
2.62 ***
\(10.00^{* * *}\)
\(3.00^{* * *}\)
\(2.11^{* * *}\)
\(3.20^{* * *}\)
\(40.00^{* * *}\)
\(4.00^{* * *}\)
\(1.86^{* * *}\)
\(3.72^{* * *}\)
\(70.00^{* * *}\)
\(5.00^{* * *}\)
\(1.38^{* * *}\)
\(4.06^{* * *}\)
\(100.00^{* * *}\)
\(6.00^{* * *}\)
\(0.80^{* * *}\)
\(4.11^{* * *}\)
\(130.00^{* * *}\)
\(7.00^{* * *}\)
\(0.28^{* * *}\)
\(3.86^{* * *}\)
\(160.00^{* * *}\)
\(8.00^{* * *}\)
\(-0.06^{* * *}\)
\(3.38^{* * *}\)
\(190.00^{* * *}\)
\(9.00^{* * *}\)
\(-0.11^{* * *}\)
\(2.80^{* * *}\)

R/S (stops program short of a complete circle.)

\section*{Example 2:}

What circle contains the points \((1,1),(3.5,-7.6)\), and \((12,0.8)\) ?

\section*{Keystrokes:}

\section*{Outputs:}

15-07

12 ENTER \(.8 \mp \mathrm{C} \longrightarrow 12.00\)
f D \(\qquad\)
\[
\begin{array}{r}
6.45 \\
-2.0 *\left(\mathrm{x}_{0}\right) \\
-2 * *\left(\mathrm{y}_{0}\right) \\
6.26
\end{array} \text { *** }^{(\mathrm{r})} \mathrm{r}
\]

\section*{Example 3:}

For the circle below calculate \(x\) and \(y\) coordinates at 4 equally spaced points, starting at \(225^{\circ}\). Use the manual increment feature ( E key). Also compute x and y at \(37^{\circ}\).


Keystrokes:

\section*{Outputs:}

\subsection*{5.5 ENTER \(\uparrow\) 5.5 ENTER 42.5 A \\ 5.50}

225 ENTER \(4 \mathrm{D} \longrightarrow \quad 90.00(\Delta \theta)\)
\(\mathrm{E} \longrightarrow\)
\(225.00^{* * *}\)
1.00 ***
3.73 ***
3.73 ***

E
315.00 ***
2.00 ***
7.27 ***
3.73 ***


\section*{SPHERICAL TRIANGLES}


This program will compute solutions to all six cases of spherical triangles, including the two ambiguous cases. In spherical triangles, as opposed to plane triangles, sides and angles have completely reciprocal qualitites. Thus a spherical triangle is well defined by the specification of its three angles. Let the angles of the triangle be \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) and the sides \(\mathrm{a}, \mathrm{b}, \mathrm{c}\).


\section*{Equations:}

The four unambiguous cases are three sides (SSS), three angles (AAA), two sides and the included angle (SAS), and two angles and the included side (ASA). The following equations are used for the four unambiguous cases (laws of cosines):
\[
\begin{gathered}
\cos a=\cos b \cos c+\sin b \sin c \cos A \\
\cos A=-\cos B \cos C+\sin B \sin C \cos a
\end{gathered}
\]

The two ambiguous cases are two sides and an opposite angle (SSA), and two angles and an opposite side (AAS). The case of SSA is equivalent to specifying \(a, b, A(a \neq b)\). The solution is found by the following equations:
\[
\begin{aligned}
& \sin \mathrm{B}=\sin \mathrm{b} \sin \mathrm{~A} / \sin \mathrm{a} \\
& \tan \frac{\mathrm{c}}{2}=\sin \left(\frac{\mathrm{A}+\mathrm{B}}{2}\right) \tan \left(\frac{\mathrm{a}-\mathrm{b}}{2}\right) / \sin \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right)
\end{aligned}
\]
\[
\cos \mathrm{C}=\frac{\cos \mathrm{c}-\cos \mathrm{a} \cos \mathrm{~b}}{\sin \mathrm{a} \sin \mathrm{~b}}
\]

If \(\mathrm{a}<\mathrm{b}\), two solutions exist. The alternate solution is found by replacing B by its supplementary angle \(\cos ^{-1}(-\cos \mathrm{B})\). The program computes both solutions.
The case of AAS is equivalent to specifying \(A, B, a(A \neq B)\). The solution is found by the following equations:
\[
\begin{aligned}
& \sin \mathrm{b}=\sin \mathrm{B} \sin \mathrm{a} / \sin \mathrm{A} \\
& \cot \mathrm{C} / 2=\sin \left(\frac{\mathrm{a}+\mathrm{b}}{2}\right) \tan \left(\frac{\mathrm{A}-\mathrm{B}}{2}\right) / \sin \left(\frac{\mathrm{a}-\mathrm{b}}{2}\right) \\
& \cos \mathrm{c}=\frac{\cos \mathrm{C}+\cos \mathrm{A} \cos \mathrm{~B}}{\sin \mathrm{~A} \sin \mathrm{~B}}
\end{aligned}
\]

If \(\mathrm{A}<\mathrm{B}\), two solutions exist. The alternate solution is found by replacing b by its supplementary angle \(\cos ^{-1}(-\cos b)\).
In the ambiguous cases, two sets of outputs will be given if two solutions exist. Whether one or two solutions exist in these cases, the end of all output for the cases SSA and AAS is signalled by a 0.00 in the display.
For all six cases, the output is similar in format and consists of the output of every parameter of the triangle. The first value output will be the first value input, whether an angle or a side. The second output will be the adjacent value to the first output. Each successive output is adjacent to the one before, thus alternating between sides and angles. For example, if the first value input is a side, the order of the outputs will be first side, first angle, second side, second angle, third side, third angle.

\section*{Remarks:}
1. AUTO mode is available to allow automatic output of all results through Print/Pause commands. If AUTO is not selected, each result will be output through a R/S.
2. The area of a spherical triangle is determined by the formula Area \(=r^{2}\) ( \(\mathrm{A}+\mathrm{B}+\mathrm{C}-\pi\) ), where r is the radius of the sphere and \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) are in radians.
3. The program works in any angular mode. If in DEG mode, decimal degrees must be used. Note that the program sets DEG mode when read in.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 of program. & & & \\
\hline 2 & Select AUTO mode to allow & & & \\
\hline & automatic output by & & & \\
\hline & Print/Pause. & & 1 E & 1.00 \\
\hline 3 & To cancel AUTO mode later. & & 1 E & 0.00 \\
\hline 4 & Go to appropriate step for case & & & \\
\hline & (SSS, SAS, SSA, AAA, ASA, & & & \\
\hline & AAS). & & & \\
\hline & SSS & & & \\
\hline 5 & Input three sides. & S 1 & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(\mathrm{S}_{2}\) & ENTER & \\
\hline & & \(\mathrm{S}_{3}\) & A & OUTPUT \\
\hline & SAS & & & \\
\hline 6 & Input two sides and included & & & \\
\hline & angle. & S 1 & ENTER \({ }^{\text {d }}\) & \\
\hline & & A & ENTER \({ }^{\text {d }}\) & \\
\hline & & \(\mathrm{S}_{2}\) & B & OUTPUT \\
\hline & SSA (ambiguous) & & & \\
\hline 7 & Input two sides and angle & & & \\
\hline & opposite first side (Two sets of & & & \\
\hline & outputs will be found if \(S_{1}<S_{2}\) ). & S 1 & ENTER & \\
\hline & & \(\mathrm{S}_{2}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & A & c & OUTPUT \\
\hline & & & & 0.00 \\
\hline & AAA & & & \\
\hline 8 & Input three angles. & \(\mathrm{A}_{1}\) & ENTER & \\
\hline & & \(\mathrm{A}_{2}\) & ENTER & \\
\hline & & \(\mathrm{A}_{3}\) & D & OUTPUT \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline & ASA & & & \\
\hline 9 & Input two angles and included & & & \\
\hline & side. & A & ENTER & \\
\hline & & S & ENTER4 & \\
\hline & & \(\mathrm{A}_{2}\) & E & OUTPUT \\
\hline & AAS (ambiguous) & & & \\
\hline 10 & Input two angles and side & & & \\
\hline & opposite first angle (Two sets & & & \\
\hline & of outputs will be found if & & & \\
\hline & \(A_{1}<A_{2}\) ). & \(\mathrm{A}_{1}\) & ENTER4 & \\
\hline & & \(\mathrm{A}_{2}\) & ENTER \({ }^{\text {d }}\) & \\
\hline & & S & 1 A & OUTPUT \\
\hline & & & & 0.00 \\
\hline & OUTPUT consists of the six para- & & & \\
\hline & meters of the triangle in the order & & & \\
\hline & First side (angle) input & & & \\
\hline & Adjacent angle (side) & & & \\
\hline & Adjacent side (angle) & & & \\
\hline & Adjacent angle (side) & & & \\
\hline & Adjacent side (angle) & & & \\
\hline & Adjacent angle (side) & & & \\
\hline & If two solutions exist, this schema & & & \\
\hline & will be repeated. & & & \\
\hline
\end{tabular}

\section*{Example 1:}

The three sides of a spherical triangle are 0.20 radians, 0.91 radians, and 0.93 radians. What are the three angles? Do not use AUTO mode.

Keystrokes:
RAD . 2 ENTER4 91 ENTER
\begin{tabular}{ll}
\(.93 \boldsymbol{A} \longrightarrow 0.20\) \\
\(\mathbf{R} / \mathbf{S} \longrightarrow\) \\
\(\mathbf{R} / \mathbf{S} \longrightarrow\) \\
& 1.59 \\
\(\left(\mathrm{~A}_{1}\right)\)
\end{tabular}

Outputs:
0.20
\begin{tabular}{llll}
\(R / S\) \\
\(R / S\) & \(\left(\mathrm{~A}_{2}\right)\) \\
\(R / S \longrightarrow\) & 0.25 & 0.93 & \\
& & 1.40 & \(\left(\mathrm{~A}_{3}\right)\)
\end{tabular}

\section*{Example 2:}

Solve the spherical triangle below for the missing parameters. Do not use AUTO mode.


Note that this is an angle-side-angle (ASA) case.

Keystrokes:
Outputs:
DEG 21.63 ENTER 1.12 ENTER 4
\begin{tabular}{|c|c|}
\hline \(158.05 \mathrm{E} \longrightarrow\) & 21.63 \\
\hline R/S \(\longrightarrow\) & 1.12 \\
\hline R/S \(\longrightarrow\) & 158.05 \\
\hline R/S \(\longrightarrow\) & 51.90 \\
\hline R/S \(\longrightarrow\) & 0.52 \\
\hline R/S \(\longrightarrow\) & 52.94 \\
\hline
\end{tabular}

\section*{Example 3:}

In the spherical triangle ABC below, \(\mathrm{A}=30^{\circ}\), \(\mathrm{a}=15^{\circ}\), and \(\mathrm{b}=20^{\circ}\). Find B , C , and c. Use AUTO mode. (Note that as this is a case of SSA, two solutions may exist.)


Keystrokes:
DEG \(f\) E \(\longrightarrow\)

\section*{Outputs:}

15 ENTER4 20 ENTER4 30 C \(\longrightarrow\)
\[
\begin{aligned}
& 1.00 \text { (AUTO set) } \\
& 15.00^{* * *} \\
& 111.15 \text { *** (C) } \\
& 20.00^{* * *} \\
& 30.00^{* * *} \\
& 28.87^{* * *}(\mathrm{c}) \\
& 41.36^{* * *} \text { (B) } \\
& \\
& 15.00^{* * *} \\
& 11.89^{* * *}(\mathrm{C}) \\
& 20.00^{* * *} \\
& 30.00^{* * *} \\
& 6.12 \text { *** (c) } \\
& 138.64 \text { }
\end{aligned}
\]

The two possible solutions are pictured below.




This program approximates the value of the gamma function, \(\Gamma(\mathrm{x})\), for \(1 \leqslant \mathrm{x}\) \(\leqslant 70\).

\section*{Equations:}
\[
\Gamma(\mathrm{x})=\int_{0}^{\infty} \mathrm{t}^{\mathrm{x}-1} \mathrm{e}^{-\mathrm{t}} \mathrm{dt}
\]

1. \(\Gamma(\mathrm{x})=(\mathrm{x}-1) \Gamma(\mathrm{x}-1)\)
2. For \(1 \leqslant x \leqslant 2\), polynomial approximation can be used.
\[
\Gamma(x) \cong 1+b_{1}(x-1)+b_{2}(x-1)^{2}+\ldots+b_{8}(x-1)^{8}
\]
where
\[
\begin{aligned}
& b_{1}=-0.577191652, b_{2}=0.988205891 \\
& b_{3}=-0.897056937, b_{4}=0.918206857 \\
& b_{5}=-0.756704078, b_{6}=0.482199394 \\
& b_{7}=-0.193527818, b_{8}=0.035868343
\end{aligned}
\]

\section*{Remarks:}
1. This program can be used to find the generalized factorial x ! for \(0 \leqslant x \leqslant 69\), where \(\mathrm{x}!=\Gamma(\mathrm{x}+1)\).
2. When the value keyed in for \(x\) is an integer, \(\Gamma(x)\) is evaluated as the factorial of ( \(\mathrm{x}-1\) ).
3. If \(x<1\), the program will halt and display "Error".

\section*{References:}

Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.
\begin{tabular}{|c|l|c|c|c|}
\hline STEP & \multicolumn{1}{|c|}{ INSTRUCTIONS } & \begin{tabular}{c} 
INPUT \\
DATA/UNITS
\end{tabular} & KEYS & \begin{tabular}{c} 
OUTPUT \\
DATA/UNITS
\end{tabular} \\
\hline 1 & Load side 1 and side 2 of program. & & & \\
\hline 2 & Initialize. & & A & 0.00 \\
\hline 3 & Key in x and compute \(\Gamma(\mathrm{x})\). & x & B & \(\Gamma(\mathrm{x})\) \\
\hline 4 & Repeat step 3 any number of & & & \\
\hline & times. & & & \\
\hline
\end{tabular}

\section*{Example:}

Find the gamma function for the following arguments:
\(5.25,8,3.34\).

Keystrokes:
A 5.25 B
8 B
3.34 B

Outputs:
\begin{tabular}{rl}
35.21 & *** \\
\(5040.00^{* * *}\) \\
\(2.80^{* * *}\)
\end{tabular}

\section*{BESSEL FUNCTIONS, ERROR FUNCTION}


This card combines two separate programs in one. The first routine computes the Bessel functions \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\) and \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\), where n is a positive integer and \(\mathrm{x}>0\). The second of the two routines finds the error function and complementary error function for positive arguments.

\section*{Bessel Functions}

The Bessel functions \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\) and \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) are computed by generating trial values \(\mathrm{T}_{\mathrm{k}}\) through the use of recurrence relations. The recurrence is begun at an index m given by
\[
\mathrm{m}=2 \operatorname{INT}\left[\frac{6+\max (\mathrm{n}, \mathrm{z})+\frac{9 \mathrm{z}}{\mathrm{z}+2}}{2}\right]
\]
where
\[
\mathrm{z}=\frac{3 \mathrm{x}}{2}
\]

The initial values selected for recurrence are \(T_{m+1}=10^{-9}, T_{m+2}=0\).

For the functions \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\), each term \(\mathrm{T}_{\mathrm{k}}, 0 \leqslant \mathrm{k} \leqslant \mathrm{m}\), is computed by the relation
\[
\mathrm{T}_{\mathrm{k}}(\mathrm{x})=\frac{2(\mathrm{k}+1)}{\mathrm{x}} \mathrm{~T}_{\mathrm{k}+1}(\mathrm{x})-\mathrm{T}_{\mathrm{k}+2}(\mathrm{x})
\]
beginning with \(\mathrm{k}=\mathrm{m}\).
\(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\) is then found by dividing the term \(\mathrm{T}_{\mathrm{n}}(\mathrm{x})\) by the normalizing constant
\[
\mathrm{K}=\mathrm{T}_{0}(\mathrm{x})+2 \sum_{\mathrm{k}=1}^{\mathrm{m} / 2} \mathrm{~T}_{2 \mathrm{k}}(\mathrm{x})
\]

After calculating a \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\), the values of \(\mathrm{J}_{0}(\mathrm{x})\) and \(\mathrm{J}_{1}(\mathrm{x})\) may also be found with very little additional computation.

For the functions \(I_{n}(x)\), each \(T_{k}\) is calculated from the recurrence relation
\[
\mathrm{T}_{\mathrm{k}}(\mathrm{x})=\frac{2(\mathrm{k}+1)}{\mathrm{x}} \mathrm{~T}_{\mathrm{k}+1}(\mathrm{x})+\mathrm{T}_{\mathrm{k}+2}(\mathrm{x}),
\]
\(0 \leqslant \mathrm{k} \leqslant \mathrm{m}\), beginning with \(\mathrm{k}=\mathrm{m}\).
\(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) is then found from the equation
\[
\mathrm{I}_{\mathrm{n}}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \frac{\mathrm{~T}_{\mathrm{n}}(\mathrm{x})}{\mathrm{T}_{0}(\mathrm{x})+2 \sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{~T}_{\mathrm{k}}(\mathrm{x})}
\]

\section*{Error Function}

The error function is defined as
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]
and the complementary error function as
\[
\operatorname{erfc}(x)=1-\operatorname{erf}(x) .
\]

For large values of \(\mathrm{x}(\geqslant 3)\), the error function is very close to 1 . If \(\operatorname{erfc}(x)\) is computed as \(1-\operatorname{erf}(\mathrm{x})\), most of the significant figures of \(\operatorname{erfc}(\mathrm{x})\) will be lost for \(\mathrm{x}>3\). Hence two different algorithms are employed in this program, one for \(\mathrm{x} \leqslant 3\) and one for \(\mathrm{x}>3\). For \(\mathrm{x} \leqslant 3\), the error function is computed by a series sum
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}} \sum_{n=0}^{\infty} \frac{2^{n}}{1 \cdot 3 \cdot \ldots \cdot(2 n+1)} x^{2 n+1}
\]
and the complementary error function by
\[
\operatorname{erfc}(x)=1-\operatorname{erf}(x) .
\]

For \(\mathrm{x}>3\), the complementary error function is computed first, by the asymptotic expansion
\[
\operatorname{erfc}(x)=\frac{1}{x \sqrt{\pi}} e^{-x^{2}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{\left(2 x^{2}\right)^{n}}\right]
\]
and the error function by
\[
\operatorname{erf}(x)=1-\operatorname{erfc}(x) .
\]

The accuracy of the calculation of \(\operatorname{erf}(\mathrm{x})\) and \(\operatorname{erfc}(\mathrm{x})\) from series sums may be controlled by the user's specification of the display setting. If the display is set at DSP 6, for example, the program will halt when two successive terms of the series are equal when rounded to 6 places. Thus if the display is set to DSP N, the result will have N places of significance. Alternatively, the digit N may be keyed into the program on key \(\boldsymbol{E}\) and the display will be set automatically by the program. For \(x \leqslant 3\), it is quite reasonable to specify DSP 9 for maximum accuracy; for \(\mathrm{x}>3\), the series may not ever converge with DSP 9, and a safer specification would be DSP 6.

\section*{Remarks}
1. The range of values \(0 \leqslant \mathrm{x} \leqslant 10^{-6}\) is out of bounds for the Bessel functions in this program. In this range, however, one may take \(\mathrm{J}_{0}(\mathrm{x})=\) \(\mathrm{J}_{0}(0)=\mathrm{I}_{0}(\mathrm{x})=\mathrm{I}_{0}(0)=1\), and \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})=\mathrm{J}_{\mathrm{n}}(0)=\mathrm{I}_{\mathrm{n}}(\mathrm{x})=\mathrm{I}_{\mathrm{n}}(0)=0, \mathrm{n} \neq 0\).
2. The computation of erfc \((x)\) will halt on overflow for \(x \geqslant 15\).

\section*{Reference}

Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards, 1968.
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 of program. & & & \\
\hline 2 & For Bessel functions, go to step3; & & & \\
\hline & for error function, go to step 6. & & & \\
\hline & BESSEL FUNCTIONS & & & \\
\hline 3 & To find \(J_{n}(\mathrm{x})\), go to step 4; to & & & \\
\hline & find \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\), go to step 5. & & & \\
\hline 4 & For \(\mathrm{J}_{\mathrm{n}}(\mathrm{x})\) : & & & \\
\hline & - Input n ( \(\mathrm{n}=0,1,2, \ldots\) ) & \(n\) & A & \(n\) \\
\hline & - Input \(x\) and find \(J_{n}(x)\) & x & B & \(J_{n}(x)\) \\
\hline & - (optional) Find \(\mathrm{J}_{0}(\mathrm{x})\) and \(\mathrm{J}_{1}(\mathrm{x})\) & & C & \(J_{0}(x)\) \\
\hline & & & R/S & \(J_{1}(x)\) \\
\hline 5 & For \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) : & & & \\
\hline & - Input n ( \(\mathrm{n}=0,1,2, \ldots\) ) & \(n\) & A & \(n\) \\
\hline & - Input \(x\) and find \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) & x & D & \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) \\
\hline & ERROR FUNCTION & & & \\
\hline 6 & Specify places of accuracy & & & \\
\hline & desired by setting display or by & & & \\
\hline & inputting N . & N & 1 E & N \\
\hline 7 & Key in x and find error function & & & \\
\hline & and complementary error & & & \\
\hline & function. & x & E & erf (x) \\
\hline & & & & erfc ( x ) \\
\hline
\end{tabular}

\section*{Example 1:}

Find \(\mathrm{J}_{5}(9.2)\); also find \(\mathrm{J}_{0}(9.2)\) and \(\mathrm{J}_{1}(9.2)\). Display results to 9 places and compare to table values.

\section*{Keystrokes: Outputs:}
\begin{tabular}{llrl} 
DSP 95 A \(9.2 B\) & -0.100528623 & \(* * *\) & \(\mathrm{~J}_{5}(9.2)\) \\
\(\mathrm{C} \longrightarrow\) & -0.136748371 & \(\mathrm{~J}_{0}(9.2)\) \\
\(\mathrm{R} / \mathrm{S} \longrightarrow\) & 0.217408655 & \(\mathrm{~J}_{1}(9.2)\)
\end{tabular}

The actual values from tables are \(\mathrm{J}_{5}(9.2)=-0.10053, \mathrm{~J}_{0}(9.2)=-0.1367483708\), and \(\mathrm{J}_{1}(9.2)=0.2174086550\).

18-05

\section*{Example 2:}

Find \(\mathrm{I}_{3}(4.7)\) and \(\mathrm{I}_{3}(5.0)\).


\section*{Example 3:}

Find erf and erfc of 1.34 to full 9-place accuracy.
Keystrokes:
DSP 91.34 E \(\qquad\) Outputs:
\[
\begin{aligned}
& 0.941913715 * * * \operatorname{erf}(1.34) \\
& 0.058086285 * * * \operatorname{erfc}(1.34)
\end{aligned}
\]

\section*{Example 4:}

Find erf and erfc of 4.55 to 6 places.

Keystrokes:
6 ㅌ 4.55 E

\section*{Outputs:}
\[
\begin{gathered}
1.000000^{* * *} \operatorname{erf}(4.55) \\
1.237404615-10^{* * *} \operatorname{erfc}(4.55)
\end{gathered}
\]

\section*{HYPERBOLICS}


This program computes the hyperbolic functions and their inverses. The stack is preserved during execution of any of the functions on this card. The argument, however, is not saved in the LASTx register.
Note, in the equations below, the appropriate restrictions on the values of the argument in each case.

\section*{Equations:}

Hyperbolic functions
\[
\begin{aligned}
& \sinh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2} \\
& \cosh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2} \\
& \tanh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}} \\
& \operatorname{csch} \mathrm{x}=\frac{1}{\sinh \mathrm{x}} \quad(\mathrm{x} \neq 0) \\
& \operatorname{sech} \mathrm{x}=\frac{1}{\cosh \mathrm{x}} \\
& \operatorname{coth} \mathrm{x}=\frac{1}{\tanh \mathrm{x}} \quad(\mathrm{x} \neq 0)
\end{aligned}
\]

Inverse Hyperbolic Functions
\[
\begin{array}{ll}
\sinh ^{-1} x=\ln \left[x+\left(x^{2}+1\right)^{1 / 2}\right] \\
\cosh ^{-1} x=\ln \left[x+\left(x^{2}-1\right)^{1 / 2}\right] & x \geqslant 1 \\
\tanh ^{-1} x=1 / 2 \ln \left[\frac{1+x}{1-x}\right] & x^{2}<1 \\
\operatorname{csch}^{-1} x=\sinh ^{-1}\left[\frac{1}{x}\right] & x \neq 0
\end{array}
\]
\[
\begin{array}{ll}
\operatorname{sech}^{-1} x=\cosh ^{-1}\left[\frac{1}{x}\right] & 0<x \leqslant 1 \\
\operatorname{coth}^{-1} x=\tanh ^{-1}\left[\frac{1}{x}\right] & x^{2}>1
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline STEP & INSTRUCTIONS & INPUT DATA/UNITS & KEYS & OUTPUT DATA/UNITS \\
\hline 1 & Load side 1 and side 2 of program. & & & \\
\hline 2 & For hyperbolics, go to step 3; & & & \\
\hline & for inverse hyperbolics, go to & & & \\
\hline & step 4. & & & \\
\hline & HYPERBOLIC FUNCTIONS & & & \\
\hline 3 & Key in argument and compute & & & \\
\hline & - hyperbolic sine & x & B & \(\sinh x\) \\
\hline & - hyperbolic cosine & x & c & \(\cosh x\) \\
\hline & - hyperbolic tangent & x & D & \(\tanh \mathrm{x}\) \\
\hline & - hyperbolic cosecant & x & 1 B & \(\operatorname{csch} x\) \\
\hline & - hyperbolic secant & x & 16 & \(\operatorname{sech} x\) \\
\hline & - hyperbolic cotangent & x & 10 & \(\operatorname{coth} \mathrm{x}\) \\
\hline & INVERSE HYPERBOLIC & & & \\
\hline & FUNCTIONS & & & \\
\hline 4 & Key in argument and compute & & & \\
\hline & - inverse hyperbolic sine & x & A B & \(\sinh ^{-1} x\) \\
\hline & - inverse hyperbolic cosine & x & A C & \(\cosh ^{-1} x\) \\
\hline & - inverse hyperbolic tangent & x & A D & \(\tanh ^{-1} x\) \\
\hline & - inverse hyperbolic cosecant & x & A & \\
\hline & & & 18 & \(\operatorname{csch}^{-1} \mathrm{x}\) \\
\hline & - inverse hyperbolic secant & x & A & \\
\hline & & & \(1{ }^{1}\) & \(\operatorname{sech}^{-1} \mathrm{x}\) \\
\hline & - inverse hyperbolic cotangent & x & A & \\
\hline & & & 10 & \(\operatorname{coth}^{-1} \mathrm{x}\) \\
\hline
\end{tabular}

19-03

\section*{Example 1:}

Evaluate the following hyperbolic functions:
\(\sinh 2.5\); \(\cosh 3.2\); \(\tanh 1.9\); \(\operatorname{csch} 4.6\); sech -0.25 ; coth -2.01 .
\begin{tabular}{|c|c|c|}
\hline Keystrokes: & Outputs: & \\
\hline 2.5 B & 6.05 & ( \(\sinh 2.5\) ) \\
\hline 3.2 C & 12.29 & ( \(\cosh 3.2\) ) \\
\hline 1.9 D & 0.96 & (tanh 1.9) \\
\hline 4.6 ( \({ }^{\text {¢ }}\) & 0.02 & ( \(\operatorname{csch} 4.6\) ) \\
\hline . 25 CHS 1 C & 0.97 & (sech -0.25) \\
\hline 2.01 CHS \(f\) D & -1.04 & (coth -2.01) \\
\hline
\end{tabular}

\section*{Example 2:}

Evaluate the following inverse hyperbolic functions:
\(\sinh ^{-1}(2.4) ; \cosh ^{-1}(90) ; \tanh ^{-1}(-0.65) ; \operatorname{csch}^{-1}(2) ; \operatorname{sech}^{-1}(0.4) ; \operatorname{coth}^{-1}(3.4)\).
\begin{tabular}{|c|c|c|}
\hline Keystrokes: & Outputs: & \\
\hline 2.4 A B & 1.61 & ( \(\sinh ^{-1} 2.4\) ) \\
\hline 90 A C & 5.19 & ( \(\cosh ^{-1} 90\) ) \\
\hline . 65 CHS A D & -0.78 & \(\left(\tanh ^{-1}-0.65\right)\) \\
\hline 2 A B & 0.48 & \(\left(\operatorname{csch}^{-1} 2\right)\) \\
\hline . 4 A C & 1.57 & ( \(\mathrm{sech}^{-1} 0.4\) ) \\
\hline 3.4 A D & 0.30 & ( \(\operatorname{coth}^{-1} 3.4\) ) \\
\hline
\end{tabular}

\section*{PROGRAM LISTINGS}

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.
Program ..... Page
1. Factors and Primes ..... L01-01
2. GCD, LCM, Decimal to Fraction ..... L02-01
3. Base Conversions ..... L03-01
4. Optimal Scale for a Graph; Plotting ..... L04-01
5. Complex Operations ..... L05-01
6. Polynomial Solutions ..... L06-01
7. \(4 \times 4\) Matrix Operations ( 2 cards) ..... L07-01
8. Solution to \(\mathrm{f}(\mathrm{x})=0\) on an Interval ..... L08-01
9. Numerical Integration ..... L09-01
10. Gaussian Quadrature ..... L10-01
11. Differential Equations ..... L11-01
12. Interpolations ..... L12-01
13. Coordinate Transformations ..... L13-01
14. Intersections ..... L14-01
15. Circles ..... L15-01
16. Spherical Triangles ..... L16-01
17. Gamma Function ..... L17-01
18. Bessel Functions, Error Function ..... L18-01
19. Hyperbolics ..... L19-01

Factors and Primes





\section*{Base Conversions}



\section*{Optimal Scale for a Graph; Plotting}



\section*{Complex Operations}



Polynomial Solutions



\section*{\(4 \times 4\) Matrix Setup}



\section*{\(4 \times 4\) Matrix Solutions}



Solution to \(f(x)=0\) on an Interval
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 601 & *LELA & & b & 657 & 1 & & If \(s \geqslant 1\), reject \(\mathrm{b}^{\prime}\). \\
\hline 002 & STOB & & & 858 & \(X \leq Y ?\) & & \\
\hline 083 & GSBE & & \(f(b)\) & 059 & GTO1 & & \\
\hline 884 & ST08 & & & 068 & RCLE & & \\
\hline 085 & RTN & & - - - & 661 & RCLC & & \\
\hline 086 & *LBLB & & & 062 & - & & \\
\hline 887 & STOA & & c & 063 & ABS & & \\
\hline 888 & STOC & & & 064 & 4 & & \\
\hline 889 & GSBE & & & 065 & \(\doteqdot\) & & If \(\mathrm{b}^{\prime}\) is closer than \\
\hline 010 & ST08 & & f(c) & 06e & RCLD & & \\
\hline 011 & ST09 & & ------------ & 067 & RCLC & & \(\frac{|b-c|}{4}\) to c , then reject \(\mathrm{b}^{\prime}\). \\
\hline 012 & RTN & & & 068 & - & & \(\frac{4}{}\) to \(c\), then reject \(b^{\text {b }}\) \\
\hline 013 & *LBLC & & TOL & 869 & AES & & \\
\hline 614 & STOE & & & 078 & \(X \leq Y\) ? & & \\
\hline 015 & RTN & & ----------- & 071 & \(6 T 01\) & & \\
\hline ele & *LBLD & & & 072 & RCLI & & \\
\hline 017 & RCLE & & If \(f(b)=0\), exit. & 073 & RCLD & & \\
\hline 018 & \(x=0\) ? & & & 074 & RCLE & & \\
\hline 019 & 6T05 & & & 875 & - & & If \(\left|b^{\prime}-\mathrm{b}\right| \leqslant\) TOL \(1, \mathrm{~b}^{\prime} \leftarrow \mathrm{b}+\) \\
\hline 020 & RCLE & & & 076 & ABS & & TOL1 \(\times\) sgn ( \(\mathrm{c}-\mathrm{b}\) ). \\
\hline 021 & RCLC & & & 677 & X) Y? & & \\
\hline 022 & - & & & 078 & \(6 T 02\) & & \\
\hline 023 & ABS & & & 079 & X \(2 \cdot 1\) & & \\
\hline 824 & RCLE & & If \(\mathrm{TOL}>\mid \mathrm{b}-\mathrm{cl}\), exit. & 886 & RCLC & & \\
\hline 025 & Y) Y? & & WHOL \(>\) |b-cl, exit. & 881 & RCLE & & \\
\hline \(02 \epsilon\) & \(6 T 05\) & & & 082 & - & & \\
\hline 027 & 2 & & & 083 & ENT 4 & & \\
\hline 028 & \(\div\) & & & 084 & AES & & \\
\hline 029 & EEX & & & 885 & \(\div\) & & \\
\hline 036 & CHS & & & 686 & x & & \\
\hline 831 & 9 & & TOL \(1=10^{-9} \mathrm{~b}+1 / 2\) TOL & 087 & RCLE & & \\
\hline 032 & RCLE & & & 088 & + & & \\
\hline 033 & \(\dot{8}\) & & & a89 & STOD & & \\
\hline 034 & + & & & 89. & \(6 T 02\) & & \\
\hline 075 & STOI & & & 891 & *LBL1 & & -------- \\
\hline 236. & RCLE & & & 092 & RCLE & & Reject \(\mathrm{b}^{\prime}\), set \\
\hline 037 & RCL8 & & & 093 & RCLC & &  \\
\hline 038 & RCL 8 & & method): & 094 & \(+\) & & \(\mathrm{b}^{\prime}=\frac{\mathrm{b}+\mathrm{c}}{2}\), i.e.,midpoint \\
\hline 839 & - & & & 095 & 2 & & \(b^{\prime}=\frac{b+c}{2}\), i.e.,midpoint \\
\hline 840 & RCLA & & \(\mathrm{b}^{\prime}=\mathrm{b}-\mathrm{f}(\mathrm{b})\) & 896 & \(\div\) & & of [b, c]. \\
\hline 041 & RCLE & & \(b^{\prime}=b-\frac{f(a)-f(b)}{\underline{a}}\) & 897 & STOD & & -- \\
\hline 042 & - & & \(a-b\) & 898 & *LBL2 & & Set new values for next \\
\hline 043 & \(\div\) & & & 899 & RCLE & & iteration. \\
\hline 844 & \(\div\) & & \(\mathrm{b}^{\prime}\) may be next b . & 100 & STOA & & \(a \leftarrow b\) \\
\hline 845 & RCLE & & & 101 & RCLE & & \\
\hline 846 & \(X=Y\) & & & 182 & STOO & & \\
\hline 847 & - & & & 103 & RCLD & & \(f(a) \leftarrow f(b)\) \\
\hline \(04 \varepsilon\) & STOD & & Test if \(\mathrm{b}^{\prime} \boldsymbol{\epsilon}[\mathrm{b}, \mathrm{c}]\). & 104 & STOE & & \(b \leftarrow b^{\prime}\) \\
\hline 049 & RCLE & & Testifbe lb, c). & 185 & GSEE & & \\
\hline 850 & - & & & 186 & STO8 & & \(\mathrm{f}(\mathrm{b}) \leftarrow f\left(\mathrm{~b}^{\prime}\right)\) \\
\hline 851 & RCLC & & \(s=\frac{b-b}{c}\) & 107 & RCL9 & & (b) \(-\left(b^{\prime}\right)\) \\
\hline 852 & RCLE & & c-b & 108 & \(x\) & & \\
\hline 853 & - & & & 189 & X<8? & & \\
\hline 054 & \(\div\) & & & 118 & 6 T03 & & unchanged. \\
\hline 855 & \(x<0\) ? & & If \(\mathrm{s}<0\), reject \(\mathrm{b}^{\prime}\). & 111 & RCLA & & Else replace \(\mathbf{c} \leftarrow \mathrm{a}\). \\
\hline 056 & \(6 T 01\) & & & 112 & STOC & & \\
\hline \multicolumn{8}{|c|}{REGISTERS} \\
\hline \({ }^{0} \mathrm{f}\) (a) & 1 & 2 & \(3{ }^{3}\) & 5 & 6 & 7 & \begin{tabular}{|l|l}
8 \\
f & b \()\) \\
\end{tabular} \\
\hline So & S1 & S2 & S3 & S5 & S6 & 57 & \begin{tabular}{l|l|l} 
S8 & \\
\hline
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{A a}} & \multirow[t]{2}{*}{\({ }^{8} \mathrm{~b}\)} & \multirow[t]{2}{*}{\({ }^{C}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }^{\text {D }} \mathrm{b}^{\prime}\)}} & \multirow[t]{2}{*}{\({ }^{\text {E TOL }}\)} & \multirow[t]{2}{*}{1 TOL1} \\
\hline & & & & & & & \\
\hline
\end{tabular}


Numerical Integration



Gaussian Quadrature



\section*{Differential Equations}



Interpolations



Coordinate Transformations



\section*{Intersections}



\section*{Circles}



Spherical Triangles

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
136
131
132
133
134
135
136
137
138
139
146
141
142
143
144
145
146
147
149
149
156
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168 &  & & \begin{tabular}{l}
Else end. \\
For \(2^{\text {nd }}\) solution, \(\mathrm{B} \leftarrow \cos ^{-1}\)
\[
(-\cos B)
\] \\
Routine finds one solution given 2 angles and \(\mathbf{2}\) sides.
\[
\begin{aligned}
& \tan \frac{c}{2}=\frac{\sin \left(\frac{A+B}{2}\right) \tan \left(\frac{a-b}{2}\right)}{\sin \left(\frac{A-B}{2}\right)} \\
& \cot \frac{C}{2}=\frac{\sin \left(\frac{a+b}{2}\right) \tan \left(\frac{A-B}{2}\right)}{\sin \left(\frac{a-b}{2}\right)}
\end{aligned}
\]
\[
\cos C=\frac{\cos c-\cos a \cos b}{\sin a \sin b}
\]
\[
\cos C=\frac{\cos C+\cos A \cos B}{\sin A \sin B}
\] \\
AUTO toggle.
\end{tabular} & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{SF8
1
RTN
*LBLQ
CF8
8
RTN
\begin{tabular}{l|l} 
& FLAGS \\
& \({ }^{0}\) Auto \\
\hline & \({ }^{1}\) Angles
\end{tabular}}} & & & \\
\hline \multicolumn{4}{|r|}{LABELS} & & & \multicolumn{3}{|c|}{SET STATUS} \\
\hline \({ }^{\text {A }}\) SSS & \({ }^{\text {B }}\) SAS & \({ }^{C}\) SSA & \({ }^{\text {D }}\) AAA \({ }^{\text {E }}\) E \({ }^{\text {a }}\) & & & FLAGS & TRIG & DISP \\
\hline \({ }^{\text {a }}\) AAS & b & c & \({ }^{\text {e }}\) A & & & ON OFF & DEG 区 & FIX \\
\hline \({ }^{0}\) Used & 1 & 2 & \(3{ }^{3}\) & & & \(\square \square^{\square}\) & GRAD \(\square\) & SCI \(\square\) \\
\hline 5 & 6 & 7 & \({ }^{8}\) Auto out \({ }^{9}\) O & & & & & \\
\hline
\end{tabular}

\section*{Gamma Function}



\section*{Bessel Functions, Error Function}



Hyperbolics



\section*{Appendix A \\ MAGNETIC CARD \\ SYMBOLS AND CONVENTIONS}
\begin{tabular}{|c|l|}
\hline \(\begin{array}{c}\text { SYMBOL OR } \\
\text { CONVENTION }\end{array}\) & \multicolumn{1}{c|}{ INDICATED MEANING }
\end{tabular}\(]\)\begin{tabular}{l} 
White mnemonic: \\
White mnemonics are associated with the user- \\
definable key they are above when the card is \\
inserted in the calculator's window slot. In this case \\
the value of x could be input by keying it in and \\
pressing \(\mathbf{A}\).
\end{tabular}

SYMBOLS AND CONVENTIONS (Continued)
\begin{tabular}{|c|l|}
\hline \begin{tabular}{l} 
SYMBOL OR \\
CONVENTION
\end{tabular} & \multicolumn{1}{c|}{ INDICATED MEANING } \\
\hline P? & \begin{tabular}{l} 
The question mark indicates that this is a mode \\
setting, while the mnemonic indicates the type of \\
mode being set. In this case a print mode is con- \\
trolled. Mode settings typically have a 1.00 or 0.00 \\
indicator displayed after they are executed. If 1.00 \\
is displayed, the mode is on. If 0.00 is displayed, \\
it is off.
\end{tabular} \\
START & \begin{tabular}{l} 
The word START is an example of a command. The \\
start function should be performed to begin or start \\
a program. It is included when initialization is \\
necessary.
\end{tabular} \\
A & \begin{tabular}{l} 
This special command indicates that the last value \\
or set of values input may be deleted by pressing \\
A.
\end{tabular} \\
DEL \\
A
\end{tabular}\(\quad\)\begin{tabular}{l} 
Three dots (...) indicate that additional output \\
follows. See User Instructions for complete \\
description of variables output.
\end{tabular}

\section*{HEWLETT (1) PACKARD}

1000 N.E. Circle Blvd., Corvallis, OR 97330```


[^0]:    *Each register of the complex stack must actually hold two real numbers: the real and the imaginary part of its complex contents. Thus it takes two of the calculator's registers to represent one register in the complex stack. We will speak of the complex stack registers as though they were each just one register.

