

M.E. Pac I

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

WE NEED YOUR HELP

To provide better calculator support for people like you, we need your help. Your timely inputs will enable us to provide high quality software in the future and improve the existing application pacs for your calculator. Your early reply will be extremely helpful in this effort.

1. Pac name
2. How important was the availability of this pac in making your decision to buy a Hewlett-Packard calculator? \square Would not buy without it. \square Important \square Not important
3. Did you buy this pac and your calculator at the same time? \square Yes \square No
4. In deciding to buy this application pac, which three programs seemed most useful to you? Program numbers 1. \qquad 2. \qquad 3. \qquad
5. Which three programs in this application pac seemed least useful to you? Program numbers 1. \qquad 2. \qquad 3. \qquad
6. What program(s) would you add to this pac?
7. In the list below, select up to three application areas for which you purchased this pac. Please indicate the order of importance by 1, 2, 3, (1 represents the most important area).

	Engineering		Business
- 01	Chemical	- 51	Accounting
-02	Civil/Structural	- 52	Banking
-03	Electrical/Electronic	- 53	Insurance
- 04	Industrial	- 54	Investment Analysis
-05	Mechanical	- 55	Real Estate
-06	Surveying	- 56	Securities
- 10	Other (Specify)	- 57	Sales
	Science	-58	$\begin{aligned} & \text { Marketing } \\ & \text { Other (Specify) } \end{aligned}$
-31	Chemistry		Other
-33	Earth Sciences	- 71	Architecture
-34	Mathematics	- 72	Aviation
-35	Medical Sciences	- 73	Computer Science
-36	Physics	- 74	Education
-37	Statistics	- 75	Navigation
39	Other (Specify)	- 79	Other (Specify)

Thank you for your time and cooperation.

Name	Date
Address	
City	State
Zip	Phone

:słuəuu0つ ןeuo!!!pp甘

FIRST CLASS
Permit No. 33
Corvallis, Oregon

BUSINESS REPLY MAIL

No postage stamp is necessary if mailed in United States

Postage will be paid by:

Hewlett-Packard
1000 N.E. Circle Blvd.
Corvallis, OR 97330

Introduction

The 23 programs of ME Pac I have been drawn from the fields of statics, dynamics, stress analysis, machine design, and thermodynamics.
Each program in this pac is represented by one or more magnetic cards and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.
On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions to the use of the program. You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.
If you have already worked through a few programs in Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.
We hope that ME Pac I will assist you in the solution of numerous problems in your discipline. We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

Contents

1. Vector Statics 01-01
Performs basic vector operations of addition, cross product, and dot product, and finds angles between vectors.
2. Section Properties (2 cards) 02-01
The area, centroid, and moments of an arbitrarily complex polygon may be calculated using this program.
3. Stress on an Element 03-01
Reduces data from rosette strain gage measurement and performs Mohr circle analysis.
4. Soderberg's Equation for Fatigue 04-01
Solves for any one of the seven variables of Soderberg's equation for fatigue.
5. Cantilever Beams 05-01
Calculates deflection, slope, moment and shear for point, distributed, and moment loads applied to cantilever beams.
6. Simply Supported Beams 06-01
Calculates deflection, slope, moment and shear for point, dis- tributed, and moment loads applied to simply supported beams.
7. Beams Fixed at Both Ends 07-01
Calculates deflection, slope, moment, and shear for point, dis- tributed, and moment loads applied to beams fixed at both ends.
8. Propped Cantilever Beams 08-01
Calculates deflection, slope, moment, and shear for point, dis- tributed, and moment loads applied to propped cantilever beams.
9. Helical Spring Design 09-01Performs one or two point design for helical compression springs.
10. Four Bar Function Generator (2 cards) 10-01
Program designs four bar systems which will approximate an arbitrary function of one variable.
11. Progression of Four Bar System 11-01
Calculates angular displacement, velocity, and acceleration for the output link of a four bar system.
12. Progression of Slider Crank 12-01
Calculates displacement, velocity, and acceleration of the slider and angular velocity and acceleration of the connecting rod for the progression of a slider crank system.
13. Circular Cams 13-01
Computes parameters necessary for design of harmonic, cycloidal, circular cams with roller, flat or point followers.
14. Linear Cams 14-01
Computes the parameters necessary for design of harmonic, cycloidal, or parabolic profiles for linear cams with roller followers.
15. Gear Forces 15-01
Computes the reaction forces resulting from torque applied to helical, bevel, and worm gears.
16. Standard External Involute Spur Gears 16-01
Calculates parameters necessary for the design, manufacture, and testing of standard, external, involute, spur gears.
17. Belt Length 17-01
Computes belt length around an arbitrary set of pulleys.
18. Free Vibrations 18-01
Calculates an exact solution to the differential equation for a damped oscillator vibrating freely.
19. Vibration Forced by $\mathrm{F}_{0} \cos \omega t$ 19-01
Finds the steady-state solution for a damped oscillator forced by $\mathrm{F}_{0} \cos \omega \mathrm{t}$.
20. Equations of State 20-01
Ideal gas relation plus Redlich-Kwong model of real gas behavior.
21. Isentropic Flow for Ideal Gases 21-01
Replaces isentropic flow tables for ideal gases in converging-diverging passages.
22. Conduit Flow 22-01
Calculates velocity or pressure drop for incompressible viscous flow in conduits.
23. Heat Exchangers (2 cards) 23-01
Performs analysis of counter-flow, parallel-flow, parallel-counter-flow and cross-flow (fluids unmixed) heat exchangers.
Program Listings L00-01
Appendix A—Card Mnemonic A1

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the difference in the two machines and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.
Many of the computed results in this pac are output by PRINT statements; on the HP-97 these results will be output on the printer. On the HP-67 each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/ PAUSE'" is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press any key on the keyboard. If the command being executed is PRINTx (eight rapid blinks of the decimal point), pressing a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing R/S .
HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, f on the HP-97 and \boldsymbol{f}, \mathbf{g}, and \boldsymbol{h} on the HP-67. For example, the operation 10^{x} is performed on the HP-97 as $f 10^{x}$ and on the HP-67 as 90^{x}. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, 10^{x}). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

Also in keystroke solutions, those values that are output by the PRINT command will be followed by three asterisks (***).

Notes

VECTOR STATICS

Part I of this program performs the basic two dimensional vector operations of addition, cross product and dot, scalar, or inner product. In addition, the angle between vectors may be found. Vectors may be input in polar form (r, θ) or rectangular form $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

Equations:

for addition: $\overrightarrow{\mathrm{V}}_{1}+\overrightarrow{\mathrm{V}}_{2}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \overrightarrow{\mathrm{i}}+\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) \overrightarrow{\mathrm{j}}$
for cross products: $\overrightarrow{\mathrm{V}}_{1} \times \overrightarrow{\mathrm{V}}_{2}=\left(\mathrm{x}_{1} \mathrm{y}_{2}-\mathrm{x}_{2} \mathrm{y}_{1}\right) \overrightarrow{\mathrm{k}}$
for dot, scalar, or inner product: $\vec{V}_{1} \cdot \vec{V}_{2}=x_{1} x_{2}+y_{1} y_{2}$
for the angle between vectors: $\gamma=\cos ^{-1} \frac{\overrightarrow{\mathrm{~V}}_{1} \cdot \overrightarrow{\mathrm{~V}}_{2}}{\left|\overrightarrow{\mathrm{~V}}_{1}\right|\left|\overrightarrow{\mathrm{V}}_{2}\right|}$
where:
x_{1} is the x component of $\overrightarrow{\mathrm{V}}_{1}\left(\mathrm{x}_{1}=\mathrm{r}_{1} \cos \theta_{1}\right)$;
x_{2} is the x component of $\overrightarrow{\mathrm{V}}_{2}\left(\mathrm{x}_{2}=\mathrm{r}_{2} \cos \theta_{2}\right)$;
y_{1} is the y component of $\vec{V}_{1}\left(y_{1}=r_{1} \sin \theta_{1}\right)$;
y_{2} is the y component of $\vec{V}_{2}\left(y_{2}=r_{2} \sin \theta_{2}\right)$;
Part II of this program calculates the two reaction forces necessary to balance a given two-dimensional force vector. The direction of the reaction forces may be specified as a vector of arbitrary length or by Cartesian coordinates using the point of force application as the origin.

Equations:

$$
\begin{aligned}
\mathrm{R}_{1} \cos \theta_{1}+\mathrm{R}_{2} \cos \theta_{2} & =\mathrm{F} \cos \phi \\
\mathrm{R}_{1} \sin \theta_{1}+\mathrm{R}_{2} \sin \theta_{2} & =\mathrm{F} \sin \phi
\end{aligned}
$$

where:
F is the known force;
ϕ is the direction of the known force;
R_{1} is one reaction force;
θ_{1} is the direction of R_{1};
R_{2} is the second reaction force;
θ_{2} is the direction of R_{2}.
The coordinates x_{1} and y_{1} are referenced from the point where F is applied to the end of the member along which R_{1} acts; x_{2} and y_{2} are the coordinates referenced from the point where F is applied to the end of the member along which R_{2} acts.

Remarks:

Registers $\mathrm{R}_{0}-\mathrm{R}_{3} ; \mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ and I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To resolve a force in two			
	known directions, go to step 6.			
	For vector addition, cross			
	product, or dot product con-			
	tinue with step 3.			
3	Input $\overrightarrow{\mathrm{V}}_{1}$ and $\overrightarrow{\mathrm{V}}_{2}:$			
	$\overrightarrow{\mathrm{V}}_{1}$ in polar form	r_{1}	ENTERt	r_{1}
			A	y_{1}
	or	$\overrightarrow{\mathrm{V}}_{1}$ in rectangular form	x_{1}	ENTERt
			x_{1}	
	and	r_{2}	ENTERt	r_{2}
	$\overrightarrow{\mathrm{~V}}_{2}$ in polar form	θ_{2}	B	y_{2}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	\vec{V}_{2} in rectangular form.	X_{2}	ENTER	X_{2}
		y_{2}	1 B	y_{2}
4	Perform vector operation:			
	add vectors		c	r, θ
	or			
	take cross product		D	$\vec{V}_{1} \times \vec{V}_{2}$
	or			
	take dot (or scalar) product.		E	$\vec{V}_{1} \cdot \vec{V}_{2}$
	(Optionally, calculate angle			
	between vectors after dot			
	product.)		R/S	γ
5	For a new case, go to step 3			
	and change \vec{V}_{1} and/or \vec{V}_{2}.			
6	Define reaction directions as			
	Cartesian coordinates or as			
	vectors of arbitrary magnitude.			
	(Use the point of force appli-			
	cations as the origin):			
	define direction one in polar			
	form	1	ENTER	1.00
		θ_{1}	A	$\sin \theta_{1}$
	or			
	in rectangular form	${ }_{1}$	ENTERA	x_{1}
		y_{1}	1 A	y_{1}
	and			
	define direction two in polar			
	form	1	ENTER	1.00
		θ_{2}	B	$\sin \theta_{2}$
	or			
	in rectangular form.	x_{2}	ENTERA	x_{2}
		y_{2}	1 B	y_{2}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Input known force:			
	magnitude	F	ENTERA	F
	then direction.	ϕ	1 D	$\mathrm{F} \sin \phi$
8	Compute reactions		15	$\mathrm{R}_{1}, \mathrm{R}_{2}$
9	To change force, go to step 7.			
	To change either or both			
	directions, go to step 6.			

Example 1:

Forces A and B are shown below. If static equilibrium exists, what is force C.

Keystrokes:

Outputs:

To obtain \vec{C}, add \vec{A} and \vec{B} using negative magnitudes for both.

$$
45 \text { CHS ENTERA } 110 \text { A } 100 \text { CHS }
$$

ENTERS 30 BC
116.57 ***

$$
-127.66 * * *
$$

$$
\overrightarrow{\mathrm{C}}=116.57 \angle-127.66^{\circ}
$$

Example 2:

Resolve the following three loads along a 175 degree line.

Keystrokes:

Outputs:
First add $\overrightarrow{\mathrm{L}}_{1}$ and $\overrightarrow{\mathrm{L}}_{2}$.
185 ENTERA 62 A 170 ENTERA
143 BC \longrightarrow

Define the result as $\overrightarrow{\mathrm{V}}_{1}$ and add $\overrightarrow{\mathrm{L}}_{3}$.
A 100 ENTER4 $261 \mathrm{BC} \longrightarrow \quad 178.94^{* * *}(\mathrm{lb})$
$111.15^{* * *}$ (deg)
To resolve the vector, just calculated along the 175° line.
A 1 ENTERA $175 \mathbf{B E E} \longrightarrow 78.86^{* * *}(\mathrm{lb})$
What is the angle between the vector and the line?

R/S

$63.85^{* * *}$ (deg)

Example 3:

What is the moment at the shaft of the crank pictured below? What is the reaction force transmitted along the member?

Keystrokes:

Outputs:

Moment by cross product $\left(\vec{V}_{1} \times \overrightarrow{\mathrm{F}}\right)$.
30 ENTER4 50 A 300 ENTER4
205 B D
3803.56 in-lb

Resolution along crank
1 ENTER4 50 AE $\longrightarrow \quad-271.89 \mathrm{lb}$

Example 4:

Find the reaction forces in the pin-jointed structure shown below.

Keystrokes:

SECTION PROPERTIES

The properties of polygonal sections (see figure 1) may be calculated using this program. The (x, y) coordinates of the vertices of the polygon (which must be located entirely within the first quadrant) are input sequentially for a complete, clockwise path around the polygon. Holes in the cross section, which do not intersect the boundary, may be deleted by following a counter-clockwise path.

Figure 1 - Polygonal Sections

A special feature allows addition or deletion of circular areas. After the point by point traverse of the section has been completed, circular deletions or additions are specified by the (x, y) coordinates of the circle centers and by the circle diameters. If the diameter is specified as a positive number, the circular areas are added. A negative diameter causes circular areas to be deleted. Example 4 shows an application of this feature.
After all values have been input, the coordinates of the centroid ($\overline{\mathrm{x}}, \overline{\mathrm{y}}$) and the area (A) of the section may be output using card 2 , key \boldsymbol{A}. The moment of inertia about the x axis $\left(\mathrm{I}_{\mathrm{x}}\right)$, about the y axis ($\left(\mathrm{I}_{\mathbf{y}}\right)$ and the product of inertia ($\mathrm{I}_{\mathrm{x} y}$) are output using B. Similar moments, $\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\overline{\mathrm{y}}}$ and $\mathrm{I}_{\overline{\mathrm{x}},}$, about an axis translated to the centroid of the section are calculated when \mathbf{C} is pressed.

Pressing D calculates the moments of inertia, $\mathrm{I}_{\overline{\mathrm{x}} \phi}$ and $\mathrm{I}_{\overline{\mathrm{y}} \phi}$, about the principal axis. The rotation angle (ϕ) between the principal axis and the axis which was translated to the centroid is also calculated. The moments of inertia $\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}$, the polar moment of inertia J and the product of inertia $\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ may be calculated about any arbitrary axis by specifying its location and rotation with respect to the original axis and pressing $\boldsymbol{1} \mathbf{D}$.

Equations:

$$
\begin{gathered}
A=-\sum_{i=0}^{n}\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 2 \\
\bar{x}=\frac{-1}{A} \sum_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right) / 8\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2} / 3\right] \\
\bar{y}= \\
\frac{1}{A} \sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right) / 8\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2} / 3\right] \\
I_{x}=\sum_{i=0}^{n}\left[\left(x_{i+1}-x_{i}\right)\left(y_{i+1}+y_{i}\right) / 24\right]\left[\left(y_{i+1}+y_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}\right] \\
I_{y}=- \\
I_{i=0}^{n}\left[\left(y_{i+1}-y_{i}\right)\left(x_{i+1}+x_{i}\right) / 24\right]\left[\left(x_{i+1}+x_{i}\right)^{2}+\left(x_{i+1}-x_{i}\right)^{2}\right] \\
\sum_{i=0}^{n} \frac{1}{\left(x_{i+1}-x_{i}\right)}\left[\frac{1}{8}\left(y_{i+1}-y_{i}\right)^{2}\left(x_{i+1}+x_{i}\right)\left(x_{i+1}{ }^{2}+x_{i}^{2}\right)^{2}\right. \\
\\
+\frac{1}{3}\left(y_{i+1}-y_{i}\right)\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)\left(x_{i+1}^{2}+x_{i+1} x_{i}+x_{i}^{2}\right) \\
\\
\left.+\frac{1}{4}\left(x_{i+1} y_{i}-x_{i} y_{i+1}\right)^{2}\left(x_{i+1}+x_{i}\right)\right] \\
I_{\bar{x}}=I_{x}-A \bar{y}^{2} \\
I_{\bar{y}}=I_{y}-A \bar{x}^{2} \\
I_{\bar{x} \bar{y}}=I_{x y}-A \bar{x} \bar{y}
\end{gathered}
$$

$$
\begin{gathered}
\phi=\frac{1}{2} \tan ^{-1}\left(\frac{-2 \mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}}}{\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}}\right) \\
\mathrm{I}_{\mathrm{x}}{ }^{\prime}=\mathrm{I}_{\overline{\mathrm{x}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{y}}} \sin ^{2} \theta-\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \sin 2 \theta \\
\mathrm{I}_{\mathrm{y}}{ }^{\prime}=\mathrm{I}_{\overline{\mathrm{y}}} \cos ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}}} \sin ^{2} \theta+\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \sin 2 \theta \\
\mathrm{~J}=\mathrm{I}_{\mathrm{x}}{ }^{\prime}+\mathrm{I}_{\mathrm{y}}{ }^{\prime} \\
\mathrm{I}_{\mathrm{x} y}{ }^{\prime}=\frac{\left(\mathrm{I}_{\overline{\mathrm{x}}}-\mathrm{I}_{\overline{\mathrm{y}}}\right)}{2} \sin 2 \theta+\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}} \cos 2 \theta \\
\mathrm{~A}_{\text {circle }}=\frac{\pi \mathrm{d}^{2}}{4} \\
\mathrm{I}_{\text {circle }}=\frac{\pi \mathrm{d}^{4}}{64}
\end{gathered}
$$

where:
$\mathrm{x}_{\mathrm{i}+1}$ is the x coordinate of the current vertex point;
y_{i+1} is the y coordinate of the current vertex point;
x_{i} is the x coordinate of the previous vertex point;
y_{i} is the y coordinate of the previous vertex point;
A is the area;
$\overline{\mathrm{x}}$ is the x coordinate of the centroid;
$\overline{\mathrm{y}}$ is the y coordinate of the centroid;
I_{x} is the moment of inertia about the x -axis;
I_{y} is the moment of inertia about the y-axis;
I_{xy} is the product of inertia;
I_{x} is the moment of inertia about the x -axis translated to the centroid;
$\mathrm{I}_{\bar{y}}$ is the moment of inertia about the y -axis translated to the centroid;
$\mathrm{I}_{\overline{\mathrm{x}}}$ is the product of inertia about the translated axis;
ϕ is the angle between the translated axis and the principal axis;
$\mathrm{I}_{\overline{\mathrm{x}} \phi}$ is the moment of inertia about the translated, rotated, principal x -axis;
$\mathrm{I}_{\bar{y} \phi}$ is the moment of inertia about the translated, rotated, principal y-axis;
θ is the angle between the original axis and an arbitrary axis.
$\mathrm{I}_{\mathrm{x}}{ }^{\prime}$ is the x moment of inertia about the arbitrary axis;
$I_{y}{ }^{\prime}$ is the y moment of inertia about the arbitrary axis;

J is the polar moment of inertia about the arbitrary axis;
$\mathrm{I}_{\mathrm{xy}}{ }^{\prime}$ is the product of inertia about the arbitrary axis;
d is the diameter of a circular area.

Reference:

Wojciechowski, Felix; Properties of Plane Cross Sections; Machine Design; P. 105, Jan. 22, 1976.

Remarks:

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
The polygon must be entirely contained in the first quadrant.
Rounding errors will accumulate if the centroid of the section is a large distance from the origin of the coordinate system.
Curved boundaries may be approximated by straight line segments.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	card 1.			
2	Initialize.		18	
3	Key in (x, y) coordinates of			
	first vertex.	x_{i}	ENTER 4	y_{i}
		y_{i}	ENTER	y_{i}
4	Key in (x, y) coordinates of			
	next clockwise vertex.	$\mathrm{x}_{\mathrm{i}+1}$	ENTER	$\mathrm{x}_{\text {i }}{ }^{\text {l }}$
		y_{i+1}	A	y_{i+1}
5	Wait for execution to end, then			
	repeat step 4 for next point.			
	Go to step 6 after you have			
	reinput the starting point.			
6	To delete subsections within			
	the section just traversed,			
	return to step 3, but traverse in			
	a counter-clockwise direction.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Optional: Add circular areas,	x	ENTER	x
		y	ENTER	y
		d	C	0.00
	or delete circular areas.	x	ENTER	x
		y	ENTERA	y
		d	CHS C	0.00
8	Load side 1 and side 2 of			
	card 2.			
9	Calculate any or all of the			
	following:			
	Centroid and area;		A	$\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{A}$
	Properties about original			
	axis;		B	$\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{xy}}$
	Properties about axis trans-			
	lated to centroid;		c	$\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\overline{\mathrm{y}}}, \mathrm{I}_{\overline{\mathrm{xy}}}$
	Angular orientation of			
	principal axis and properties			
	about principal axis;		D	$\phi, \mathrm{I}_{\overline{\mathrm{x}} \phi}, \mathrm{I}_{\overline{\mathrm{y}} \boldsymbol{\prime}}$
	or			
	Specify arbitrary axis and			
	rotation and calculate			
	properties.	x^{\prime}	ENTER	
		y^{\prime}	ENTER	
		θ	[D	$\mathrm{I}_{\mathrm{x}}{ }^{\prime}, \mathrm{I}_{\mathrm{y}}{ }^{\prime}, \mathrm{J}, \mathrm{I}_{\mathrm{x}}{ }^{\prime}$
10	To modify the section, go to			
	step 1, but skip step 2. For a			
	new case, go to step 1.			

Example 1:

What is the moment of inertia about the x - $\mathrm{axis}\left(\mathrm{I}_{\mathrm{x}}\right)$ for the rectangular section shown? What is the moment of inertia about the neutral axis through the centroid of the section ($\mathrm{I}_{\overline{\mathrm{x}} \phi}$)?

Keystrokes:
Outputs:
Load side 1 and side 2 of card 1.

Load side 1 and side 2 of card 2.
B
$125.00^{* * *}\left(\mathrm{I}_{\mathrm{x}}\right)$
$45.00^{* * *}\left(\mathrm{I}_{\mathrm{y}}\right)$
$56.25^{* * *}\left(\mathrm{I}_{\mathrm{xy}}\right)$
$0.00^{* * *}(\phi)$
$31.25 * * *\left(\mathrm{I}_{\overline{\mathrm{x}} \phi}\right)$
$11.25^{* * *}\left(\mathrm{I}_{\overline{\mathrm{y}} \phi}\right)$

Since $\phi=0$ we would expect $\mathrm{I}_{\overline{\mathrm{x}} \phi}$ to equal $\mathrm{I}_{\overline{\mathrm{x}}}$. Press C to calculate $\mathrm{I}_{\overline{\mathrm{x}}}, \mathrm{I}_{\overline{\mathrm{y}}}$ and $\mathrm{I}_{\overline{\mathrm{x}} \overline{\bar{y}}}$ and you will see that this prediction is correct. Also, $\mathrm{I}_{\overline{\mathrm{x}}} \overline{\mathrm{y}}$ is zero about the principal axis.

$$
\begin{array}{rl}
31.25 & * * *\left(\mathrm{I}_{\overline{\mathrm{x}}}\right) \\
11.25 & * * *\left(\mathrm{I}_{\overline{\mathrm{y}}}\right) \\
0.00^{* * *}\left(\mathrm{I}_{\mathrm{x} \overline{\mathrm{y}}}\right)
\end{array}
$$

Example 2:

Calculate the section properties for the beam shown below.

Keystrokes:

Outputs:
Load side 1 and side 2 of card 1.
A 0 ENTER4 0 ENTER4
0 ENTER4 $14 \boldsymbol{A} \longrightarrow 14.00$
16 ENTER4 14
16 ENTER4 13 A
14.00

1 ENTER4 13 A
13.00

1 ENTER4 2 A
13.00

11 ENTER4 2 A
2.00

11 ENTER4 0 A
2.00
\qquad 0.00

Load side 1 and side 2 of card 2.
A \qquad
B \qquad
C \qquad
D \qquad

5.19	*** $(\overline{\mathrm{x}})$
6.54	*** $(\overline{\mathrm{y}})$
$49.00^{* * *}(\mathrm{~A})$	
$3676.33^{* * *}\left(\mathrm{I}_{\mathrm{x}}\right)$	
$2256.33^{* * *}\left(\mathrm{I}_{\mathrm{y}}\right)$	
$1890.25^{* * *}\left(\mathrm{I}_{\mathrm{x} y}\right)$	
$1580.00^{* * *}\left(\mathrm{I}_{\overline{\mathrm{x}}}\right)$	
$934.49^{* * *}\left(\mathrm{I}_{\overline{\mathrm{y}}}\right)$	
$225.61^{* * *}\left(\mathrm{I}_{\overline{\mathrm{x}} \overline{\mathrm{y}}}\right)$	
$-17.48^{* * *}(\phi)$	
1651.04	$* * *\left(\mathrm{I}_{\overline{\mathrm{x}} \phi}\right)$
$863.46^{* * *}\left(\mathrm{I}_{\overline{\mathrm{y}} \phi}\right)$	

Below is a figure showing the translated axis and the rotated, principal axis of example 2.

Example 3:

What is the centroid of the section below? The inner triangular boundary denotes an area to be deleted.

Keystrokes:

Outputs:

Load side 1 and side 2 of card 1.
f A 3 ENTERA 1 ENTERA
3 ENTER $7 \boldsymbol{A} \longrightarrow \quad 7.00$
14 ENTER4 $7 \boldsymbol{A} \longrightarrow \quad 7.00$
3 ENTERA 1 A $\longrightarrow 1.00$
Delete inner triangle:
4 ENTER4 4 ENTER4 9 ENTER

| 6 A \longrightarrow | 6.00 |
| :--- | :--- | :--- |
| 4 ENTER4 $6 \boldsymbol{A} \longrightarrow$ | 6.00 |
| 4 ENTER4 $4 \triangle \mathbf{A} \longrightarrow$ | 4.00 |

Load side 1 and side 2 of card 2.
Compute Centroid

Example 4:

For the part below, compute the polar moment of inertia about point A . Point A denotes the center of a hole about which the part rotates. The area of the hole must be deleted from the cross section.

Keystrokes:
Outputs:
Load side 1 and side 2 of card 1.
f A 0 ENTER4 0 ENTER4 0 ENTER4
2 A 5 ENTERA 2 A 5 ENTER4
1.4 A .8 ENTER4 1.4 A . 8 ENTER4

0 A 0 ENTER4 0 A
Delete the hole.
. 2 ENTER4 6 ENTER4
. 5 CHS C \qquad
Load side 1 and side 2 of card 2 .
Compute J about point $(.2, .6)$ with
θ of zero.
. 2 ENTER4 6 ENTER4
0 TD

$$
\begin{array}{rl}
3.91 & * * *\left(\mathrm{I}_{\mathrm{x}^{\prime}}\right) \\
22.22 & * * *\left(\mathrm{I}_{\mathrm{y}^{\prime}}\right) \\
26.13 & * * *(\mathrm{~J}) \\
7.61 & * * *\left(\mathrm{I}_{\mathrm{x} \mathrm{y}^{\prime}}\right)
\end{array}
$$

STRESS ON AN ELEMENT

This program reduces data from rosette strain gage measurements and/or performs Mohr circle stress analysis calculations.
Correlations for rectangular and equiangular rosette configurations are included.

Strain Gage Equations:

| CONFIGURATION
 CODE | | |
| :--- | :--- | :--- | :--- |
| TYPE OF ROSETTE | RECTANGULAR | DELTA (EQUIANGULAR) |

The Mohr circle portion of the program converts an arbitrary stress configuration to principal stresses, maximum shear stress and rotation angle. It is then possible to calculate the state of stress for an arbitrary orientation θ^{\prime}.

Mohr Circle Equations:

$$
\begin{gathered}
\tau_{\max }=\sqrt{\left(\frac{\mathrm{s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{x} y}^{2}} \\
\mathrm{~s}_{1}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}+\tau_{\max } \\
\mathrm{s}_{2}=\frac{\mathrm{s}_{\mathrm{x}}+\mathrm{s}_{\mathrm{y}}}{2}-\tau_{\max } \\
\theta=1 / 2 \tan ^{-1}\left(\frac{2 \tau_{\mathrm{xy}}}{\mathrm{~s}_{\mathrm{x}}-\mathrm{s}_{\mathrm{y}}}\right) \\
\mathrm{s}=\frac{\mathrm{s}_{1}+\mathrm{s}_{2}}{2}+\tau_{\max } \cos 2 \theta^{\prime} \\
\tau=\tau_{\max } \sin 2 \theta^{\prime}
\end{gathered}
$$

where:
s is the normal stress, and τ is the shear stress.
$\epsilon_{\mathrm{a}}, \epsilon_{\mathrm{b}}$, and ϵ_{c} are the strains measured using rosette gages;
s_{x} is the stress in the x direction for Mohr circle input;
s_{y} is the stress in the y direction for Mohr circle input;
τ_{xy} is the shear stress on the element for Mohr circle input;
ϵ_{1} and ϵ_{2} are the principal strains;
s_{1} and s_{2} are the principal normal stresses;
$\tau_{\text {max }}$ is the maximum shear stress;
θ is the counterclockwise angle of rotation from the specified axis to the principal axis. Note that this is opposite to the normal Mohr circle convention.
θ^{\prime} is an arbitrary rotation angle from the original (x, y) axis;
E is modulus of elasticity.

Reference:

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.
Beckwith, T. G., Buck, N. L., Mechanical Measurements, Addison-Wesley, 1969

Remarks:

$\mathrm{R}_{0}, \mathrm{R}_{1}, \mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{\mathrm{D}}$ and $\mathrm{R}_{\mathrm{S}_{0}}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Negative stresses and strains indicate compression. Positive and negative shear are represented below:

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	If a stress configuration is			
	known, go to step 8 for Mohr			
	circle evaluation. Continue			
	with step 3 for strain gage			
	data reduction.			
3	Select strain gage			
	configuration:			
	Rectangular		\mathbf{B}	1.00000
	or Delta.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Input modulus of elasticity,	E	ENTER4	E
	then Poisson's ratio.	ν	18	E
5	Input strains:			
		$\epsilon_{\text {a }}$	ENTERA	$\epsilon_{\text {a }}$
		ϵ_{b}	ENTERA	ϵ_{b}
		$\epsilon_{\text {c }}$	A	$\epsilon_{\text {a }}$
6	Calculate principal strains			
	and rotation angle.		B	$\epsilon_{1}, \epsilon_{2}, \theta$
7	Skip to step 9 for Mohr circle			
	applications of calculations			
	just completed.			
8	Input stress on element in x			
	direction	s_{x}	ENTERA	s_{x}
	then stress in y direction	S_{y}	ENTERA	Sy
	then shear stress.	$\tau_{\text {xy }}$	c	0.00000
9	Calculate principal stresses.		D	$\mathrm{s}_{1}, \mathrm{~s}_{2}, \tau_{\text {max }}$,
				θ
10	Optional: Calculate stress			
	configuration at a specified			
	angle.	θ^{\prime}	E	s, τ
11	To specify another angle go			
	to step 10. For a new case go			
	to step 2.			

Example 1:

If $\mathrm{s}_{\mathrm{x}}=25000 \mathrm{psi}, \mathrm{s}_{\mathrm{y}}=-5000 \mathrm{psi}$, and $\tau_{\mathrm{x} y}=4000 \mathrm{psi}$, compute the principal stresses and the maximum shear stress. Compute the normal stresses, where shear stress is maximum $\left(\theta+45^{\circ}\right)$.

Keystrokes:
25000 ENTER 5000 CHS ENTER 4
4000 C D \qquad

Outputs:

$$
\begin{array}{rlll}
25.52 & 03 & * * *\left(\mathrm{~s}_{1}\right) \\
-5.524 & 03 & * * *\left(\mathrm{~s}_{2}\right) \\
15.52 & 03 & * * *\left(\tau_{\max }\right) \\
-7.466 & 00 & * * *(\theta) \\
37.53 & 00 & \\
10.00 & 03 & * * *(\mathrm{~s}) \\
15.52 & 03 & * * *\left(\tau_{1}\right)
\end{array}
$$

Example 2:

A rectangular rosette measures the strains below. What are the principal strains and principal stresses?

$$
\begin{array}{lll}
\epsilon_{\mathrm{a}}=90 \times 10^{-6} & \epsilon_{\mathrm{b}}=137 \times 10^{-6} & \epsilon_{\mathrm{c}}=305 \times 10^{-6} \\
\nu=0.3 & \mathrm{E}=30 \times 10^{6} \mathrm{psi} &
\end{array}
$$

Keystrokes:

Outputs:

1.00000
30.0006

$$
\begin{aligned}
& 90.00-06 \\
& 320.9-06
\end{aligned}{ }^{* * *}\left(\epsilon_{1}\right)
$$

Example 3:

An equiangular rosette measures the strains below. What are the principal strains and stresses?

$$
\varepsilon_{a}=400 \times 10^{-6}
$$

Keystrokes:

400 EEX CHS 6 ENTERA 20
CHS EEX CHS 6 ENTERA 200
CHS EEX CHS 6 A
B

Outputs:

2.00000

$$
\begin{array}{rll}
400.0-06 & \\
415.5-06 & * * *\left(\epsilon_{1}\right) \\
-295.5-06 & * * *\left(\epsilon_{2}\right) \\
-8.498 & 00 & \text { *** }(\theta) \\
10.78 & 03 & * * *\left(\mathrm{~s}_{1}\right) \\
-5.633 & 03 & * * *\left(\mathrm{~s}_{2}\right) \\
8.204 & 03 & * * *\left(\tau_{\max }\right) \\
-8.498 & 00 & \text { *** }(\boldsymbol{\theta})
\end{array}
$$

SODERBERG'S EQUATION FOR FATIGUE

This program will calculate the seventh variable from the other six values in Soderberg's equation. It is useful in sizing parts for cyclic loading, calculating factors of safety, choosing materials based on size constraints and estimating the fatigue resistance of available parts. Soderberg's equation is graphically represented in figure 1.

Equations:

Working Stress Diagram
Figure 1

$$
\begin{aligned}
& \frac{s_{\mathrm{yp}}}{\mathrm{FS}}=\frac{s_{\max }+s_{\min }}{2}+K\left(\frac{s_{\mathrm{yp}}}{s_{\mathrm{e}}}\right)\left(\frac{\left(s_{\max }-s_{\min }\right)}{2}\right) \\
& \frac{s_{\max }+s_{\min }}{2}=\frac{P_{\max }+P_{\min }}{2 A} \\
& \frac{s_{\max }-s_{\min }}{2}=\frac{P_{\max }-P_{\min }}{2 A}
\end{aligned}
$$

where:
$s_{y p}$ is the yield point stress of the material;
s_{e} is the material endurance stress from reversed bending tests;

K is the stress concentration factor for the part;
FS is the factor of safety ($\mathrm{FS} \geqslant 1.00$)
$\mathrm{s}_{\text {max }}$ is the maximum stress;
$\mathrm{S}_{\text {min }}$ is the minimum stress;
$\mathrm{P}_{\text {max }}$ is the maximum load;
$\mathrm{P}_{\text {min }}$ is the minimum load;
A is the cross sectional area of the part.

Reference:

Spotts, M. F., Design of Machine Elements; Prentice-Hall, Inc., 1971.
Baumeister, T. Marks Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, 1967.

Remarks:

If $s_{\text {max }}$ and $s_{\text {min }}$ are to be input or calculated instead of $P_{\text {max }}$ or $P_{\text {min }}$, simply use 1.00 for the value of area.
$\mathrm{R}_{0}-\mathrm{R}_{7}, \mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S9}}$ and I are available for storage.
This implementation of Soderberg's equation is for ductile materials only.
Values of stress concentration factors and material endurance limits may be found in the referenced sources.
In the presence of corrosive media, or for rough surfaces, fatigue effects may be much more significant than predicted by this program.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input six of the following seven			
	Yield point stress	s_{yp}	B	s_{yp}
	Endurance stress	s_{e}	B	$\mathrm{s}_{\mathbf{e}}$
	Cross sectional area	A	\mathbf{A}	A
	Stress concentration factor	K	\mathbf{B}	K
	Maximum load	$\mathrm{P}_{\max }$	\mathbf{C}	$\mathrm{P}_{\max }$
	Minimum load	$\mathrm{P}_{\min }$	\mathbf{D}	$\mathrm{P}_{\min }$
	Factor of safety	FS	\mathbf{E}	FS

04-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	Calculate the remaining value:			
	Yield point stress		1 A	$S_{y p}$
	Endurance stress		1 B	S_{e}
	Cross sectional area		A	A
	Stress concentration factor		B	K
	Maximum load		C	$\mathrm{P}_{\text {max }}$
	Minimum load		D	$\mathrm{P}_{\text {min }}$
	Factor of safety		E	FS
4	Optional: Output values in			
	$\mathrm{s}_{\text {yp }}, \mathrm{s}_{\mathrm{e}}, \mathrm{A}, \mathrm{K}, \mathrm{P}_{\text {max }}, \mathrm{P}_{\text {min }}$,			
	FS order.		1 C	OUTPUT
5	For a new case, go to step 2			
	and change appropriate			
	inputs.			

Example 1:

What is the maximum permissible cyclic load for a part if the minimum load is 2000 pounds and the area is 0.5 square inches?

$$
\begin{gathered}
\mathrm{s}_{\mathrm{yp}}=70000 \mathrm{psi} \\
\mathrm{~s}_{\mathrm{e}}=25000 \mathrm{psi} \\
\mathrm{~K}=1.25 \\
\mathrm{FS}=2.0
\end{gathered}
$$

Keystrokes:

Outputs:
70000 A 25000 (B . 5 A
1.25 B 2000 D $2 \boldsymbol{E C C} \longrightarrow \quad 8.889 \quad 03 \quad\left(\mathrm{P}_{\max }\right)$

If $P_{\text {max }}$ is changed to 10000 pounds
what will s_{e} have to be?
10000 C
$30.43 \quad 03$
(s_{e})

If s_{e} is changed back to 25000 psi what will the factor of safety be? 25000 f BE
1.75000 (FS)

Output values for review:

70.00	03	$* * *\left(\mathrm{~s}_{\mathrm{yp}}\right)$
25.00	03	$* * *\left(\mathrm{~s}_{\mathrm{e}}\right)$
500.0	-03	$* * *(\mathrm{~A})$
1.250	$00^{* * *}(\mathrm{~K})$	
10.00	03	$* * *\left(\mathrm{P}_{\max }\right)$
2.000	03	$* * *\left(\mathrm{P}_{\min }\right)$
1.750	00	*** (FS)

CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a rigidly fixed, cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, applied moments and combined distributed loads may be analyzed.

Equations:

$y=y_{1}+y_{2}+y_{3} \quad$ (total deflection)
$y_{1}=\frac{P X_{1}{ }^{2}}{6 E I}\left(X_{1}-3 a\right)-\frac{P a^{2}}{2 E I}(x-a)(x>a)^{*} \quad$ (deflection due to point load)
$y_{2}=\frac{-\mathrm{WX}_{2}^{2}}{6 \mathrm{EI}}\left[\mathrm{X}_{2}\left(\frac{\mathrm{X}_{2}}{4}-\mathrm{b}\right)+1.5 \mathrm{~b}^{2}\right]$
$-\frac{\mathrm{Wb}^{3}}{6 E I}(\mathrm{x}-\mathrm{b})(\mathrm{x}>\mathrm{b}) \quad$ (distributed load)
$y_{3}=\frac{\mathrm{MX}_{3}{ }^{2}}{2 \mathrm{EI}}+\frac{\mathrm{Mc}}{\mathrm{EI}}(\mathrm{x}-\mathrm{c})(\mathrm{x}>\mathrm{c}) \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{P X_{1}}{2 E I}\left(\mathrm{X}_{1}-2 a\right) \quad$ (slope due to point load)
$\theta_{2}=\frac{\mathrm{WX}_{2}}{\mathrm{EI}}\left[\mathrm{X}_{2}\left(\frac{\mathrm{X}_{2}}{6}-\frac{\mathrm{b}}{2}\right)+\frac{\mathrm{b}^{2}}{2}\right] \quad$ (distributed load)
$\theta_{3}=\frac{\mathrm{MX}_{3}}{\mathrm{EI}} \quad$ (applied moment)

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad \text { (total moment) } \\
& \mathrm{M}_{\mathrm{x} 1}=\mathrm{P}\left(\mathrm{X}_{1}-\mathrm{a}\right) \quad \text { (moment due to point load) } \\
& \mathrm{M}_{\mathrm{x} 2}=-\mathrm{W}\left(\mathrm{X}_{2}\left(\mathrm{X}_{2} / 2-\mathrm{b}\right)+\mathrm{b}^{2} / 2\right) \quad \text { (distributed load) } \\
& \mathrm{M}_{\mathrm{x} 3}=\mathrm{M}(\mathrm{x} \leqslant \mathrm{c}) \quad \text { (applied moment) } \\
& \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad \text { (total shear) } \\
& \mathrm{V}_{1}=\mathrm{P}(\mathrm{x} \leqslant \mathrm{a}) \quad \text { (shear due to point load) } \\
& \mathrm{V}_{2}=\mathrm{W}\left(\mathrm{~b}-\mathrm{X}_{2}\right) \quad \text { (distributed load) } \\
& \mathrm{V}_{3}=0 \quad \text { (applied moment) } \\
& \text { where: }
\end{aligned}
$$

y is the deflection at a distance x from the wall;
θ is the slope (change in y per change in x) at x ;
M_{x} is the moment at x ;
V is the shear at x ;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length.
M is an applied moment;
a is the distance from the foundation to the point load;
b is the distance to the end of the distributed load;
c is the distance to the applied moment;
$\mathrm{X}_{1}=\mathrm{x}$ if $\mathrm{x} \leqslant \mathrm{a}$ or a if $\mathrm{x}>\mathrm{a}$;
$X_{2}=x$ if $x \leqslant b$ or b if $x>b$
$\mathrm{X}_{3}=\mathrm{x}$ if $\mathrm{x} \leqslant \mathrm{c}$ or c if $\mathrm{x}>\mathrm{c}$.
*The notation $(x>a)$ is interpreted as 1.00 if x is greater than a and as 0.00 if x is less than or equal to a.

Remarks:

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

SIGN CONVENTIONS FOR BEAMS

NAME	VARIABLE	SENSE	SIGN
DEFLECTION	y	\uparrow	+
SLOPE	θ	\uparrow	+
INTERNAL MOMENT	M_{x}	\uparrow	\uparrow
SHEAR	V	\uparrow	+
EXTERNAL FORCE OR LOAD	P or W	\downarrow	+
EXTERNAL MOMENT	M	$母$	+
		+	+

Sums of $\mathrm{y}, \theta, \mathrm{M}_{\mathrm{x}}$ and V may be stored in $\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}$, and R_{9}, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		18	0.00000
3	Input moment of inertia	I	ENTERA	1
	then modulus of elasticity	E	ENTER	E
	then beam length.	l	1 B	EI
4	Input load(s):			
	Location of point load	a	ENTER	a
	Point load	P	- 6	a
	Length of distributed load	b	ENTER4	b
	Distributed load (force/length)	W	10	b
	Location of applied moment	C	ENTER4	c
	Applied moment	M	1 E	c
5	Key in x to specify the point			
	of interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	or moment	x	C	M_{x}
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

Example 1:

What is the deflection at $\mathrm{x}=12$? Neglect the weight of the beam.

Keystrokes:
A 4.7 ENTERA 30 EEX
6 ENTERA 15 B $\longrightarrow \quad 141.006$
Compute deflection at 12 inches due to 100 lb weight:
8 ENTERA 100 C $12 \boldsymbol{A} \longrightarrow \quad-211.8-06$
Store deflection due to 100 lb load for addition to deflection due to 200 lb load:
STO 9 \qquad -211.8-06
Compute deflection at 12 inches due to 200 lb load:
15 ENTERA $200 \boldsymbol{A C} 12 \boldsymbol{A} \longrightarrow \quad-1.123-03$
Compute total deflection:
RCL $9+$ \qquad -1.335-03

Example 2:

For the beam below, compute deflection, slope, moment and shear at 0,50 , and 90 inches. Neglect the weight of the beam.

Keystrokes:

Outputs:

f A 23 ENTER4 30 EEX
6 ENTERA 110 If 40 ENTERA
300 IC 60 ENTERA 10 fid
80 ENTER 20000 IE

0 A	0.000	00 (y)
0 B	0.000	00 (θ)
0 C	-10.00	$03\left(\mathrm{M}_{\mathrm{x}}\right)$
0 D	900.00	00 (V)
50 A	5.211	-03
50 B	582.1	-06
50 C	19.50	03
50 D	100.0	00
90 A	50.14	-03
90 B	1.449	-03
90 C	0.000	00
90 D \longrightarrow	0.000	00

Example 3:

The axle for a gear has the cross sectional shape and properties below. Assuming that the shaft may be modeled as a cantilever, calculate the deflection and slope at the gear mount and the moment and shear at the bearing. Neglect the weight of the axle.

$$
\begin{gathered}
E=30 \times 10^{6} \mathbf{~ p s i} \\
\mathrm{I}_{0-8}=3.98 \mathrm{in}^{4} \\
\mathrm{I}_{8-12}=0.25 \mathrm{in}^{4}
\end{gathered}
$$

Keystrokes:
Outputs:
First compute the deflection and slope from 0 to 8 inches based on larger cross section.
f(A) 3.98 ENTERA 30 EEX
6 ENTERA 12 IB 12 ENTER4
400 IC 12 ENTERA 1200
CHS $\boldsymbol{f E} 8 \mathbf{A}$ STO $6 \longrightarrow \quad-1.322-03 \quad\left(y_{8}\right)$
8 BSTO $7 \longrightarrow \quad-294.8-06 \quad\left(\theta_{8}\right)$
Compute the deflection at 12 inches assuming no bending occurs from 8 to 12 inches.
$4 \boldsymbol{x}$ RCL $6 \boldsymbol{+}$ STO 6 $\longrightarrow \quad-2.501-03 \quad\left(y_{12}\right)$
Compute the moment and shear at the bearing.

| $0 \mathbf{C}$ | | |
| :--- | :--- | :--- | :--- |
| $0 \mathrm{D} \longrightarrow$ | -6.000 03
 400.0 00 | $\left(\mathrm{M}_{0}\right)$
 $\left(\mathrm{V}_{0}\right)$ |

Change to smaller cross section and move origin to shoulder between large and small members.
. 25 ENTERA 30 EEX 6 ENTERA
4 ВВ $\longrightarrow \quad 7.500 \quad 06$
Add deflection and slope at 12 inches based on smaller cross section to values previously stored for large cross section.

4 A	-5.831-03	
STO + 6 RCL 6	$-8.333-03$	$\left(y_{12}\right)$
4 B	-2.773-03	
STO +7 RCL 7	-3.068-03	$\left(\theta_{12}\right)$

SIMPLY SUPPORTED BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a simply supported beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \quad$ (total deflection)
$y_{1}=\frac{P(\ell-a) x}{6 E I}\left[x^{2}+(\ell-a)^{2}-\ell^{2}\right]^{*} \quad$ (deflection due to point load)
$\mathrm{y}_{2}=\frac{-\mathrm{Wx}}{24 \mathrm{EI}}\left[\ell^{3}+\mathrm{x}^{2}(\mathrm{x}-2 \ell)\right] \quad$ (distributed load)
$\mathrm{y}_{3}=\frac{-\mathrm{Mx}}{\mathrm{EI}}\left[\mathrm{c}-\frac{\mathrm{x}^{2}}{6 \ell}-\frac{-}{3}-\frac{\mathrm{c}^{2}}{2 \ell}\right]^{* *} \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total moment)
$\theta_{1}=\frac{\mathrm{P}(\ell-\mathrm{a})}{6 \mathrm{EI}}\left[3 \mathrm{x}^{2}+(\ell-\mathrm{a})^{2}-\ell^{2}\right]^{*} \quad$ (slope due to point load)
$\theta_{2}=-\frac{\mathrm{W}}{24 \mathrm{EI}}\left[\ell^{3}+\mathrm{x}^{2}(4 \mathrm{x}-6 \ell)\right] \quad$ (distributed load)
$\theta_{3}=\frac{-\mathrm{M}}{\text { EI }}\left[\mathrm{c}-\frac{\mathrm{x}^{2}}{2 \ell}-\frac{\ell}{3}-\frac{\mathrm{c}^{2}}{2 \ell}\right]^{* *} \quad$ (applied moment)
$\mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad$ (total moment)
$\mathrm{M}_{\mathrm{x} 1}=\frac{\mathrm{P}(\ell-\mathrm{a}) \mathrm{x}}{\ell} \quad$ (moment due to point load)
$\mathrm{M}_{\mathrm{x} 2}=-\frac{\mathrm{Wx}}{2}[\mathrm{x}-\mathrm{\ell}] \quad$ (distributed load)
$\mathrm{M}_{\mathrm{x} 3}=\frac{\mathrm{Mx}^{* *}}{\ell} \quad$ (applied moment)
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad$ (total shear)
$\mathrm{V}_{1}=\frac{\mathrm{P}(\ell-\mathrm{a})^{*}}{\ell} \quad$ (shear due to point load)
$\mathrm{V}_{2}=\mathrm{W}\left(\frac{\ell}{2}-\mathrm{x}\right) \quad$ (distributed load)
$\mathrm{V}_{3}=\frac{\mathrm{M}}{\ell} \quad$ (applied moment)
where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x ;
M_{x} is the moment at x ;
V is the shear at x ;
I is the moment of intertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;
M is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.
*If x is greater than $a,(\ell-a)$ is replaced by $-a$ and x is replaced by $(x-\ell)$.
$* *$ If x is greater than c, x is replaced by $(x-\ell)$ and c is replaced by $(\ell-c)$.

Remarks:

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid.
Stresses must be in the elastic region.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Sums of y, θ, M_{x} and V may be stored in R_{6}, R_{7}, R_{8}, and R_{9}, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		18	0.00000
3	Input moment of inertia	I	ENTERA	I
	then modulus of elasticity	E	ENTERA	E
	then beam length.	l	1 B	EI
4	Input load(s):			
	Location of point load	a	ENTERA	a
	Point load	P	[$\square^{\text {c }}$	a
	Distributed load (force/length)	W	$1{ }^{1}$	W
	Location of applied moment	c	ENTERA	c
	Applied moment	M	1 E	c
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	A	y
	or slope	x	B	θ
	or moment	x	C	M ${ }_{\text {x }}$
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4. Be			
	sure to set obsolete loadings			
	to zero. For new beam properties,			
	go to step 3. To restart, go to			
	step 2.			

Example 1:

Find the deflection, slope, internal moment and shear at distances of 0,24 and 60 inches for the beam below. Neglect the weight of the beam.

Keystrokes:

Outputs:

A A . 92 ENTERA 30 EEX

6 ENTER4 72 [B \longrightarrow	$27.60 \quad 06$	
40 ENTER 10000 [E	$40.00 \quad 00$	
0 A	$0.000 \quad 00$	(y_{0})
0 B	-1.771-03	$\left(\theta_{0}\right)$
0 C	0.00000	$\left(\mathrm{M}_{0}\right)$
0 D	138.900	$\left(\mathrm{V}_{0}\right)$
24 A	-30.92-03	$\left(\mathrm{y}_{24}\right)$
24 B	-322.1-06	$\left(\theta_{24}\right)$
24 C	3.33303	$\left(\mathrm{M}_{24}\right)$
24 D	138.900	$\left(\mathrm{V}_{24}\right)$
60 A	$2.415-03$	(y_{60})
60 B	40.26-06	$\left(\theta_{60}\right)$
60 C	-1.667 03	$\left(\mathrm{M}_{60}\right)$
60 D	138.900	$\left(\mathrm{V}_{60}\right)$

Example 2:

What is the slope of the beam below at $\mathrm{x}=38$ inches?

Keystrokes:

A 1.30 ENTER4 30 EEX

6 ENTER4 50 B $\longrightarrow \quad 39.00 \quad 06$
44 ENTER4 $1000 \boldsymbol{f} \longrightarrow \quad 44.0000$
$25 \mathrm{D} \longrightarrow$
$25.00 \quad 00$
$3.327-03 \quad$ (in/in)

Example 3:

What is the total moment at the center of the beam below? (It is not necessary to know the values of E or I to solve the problem. Simply key in 70 and press fB.)

First solve for the effect of the distributed load, P_{1}, and M .

Keystrokes:

A 70 - B 20 ENTER 4
400 C
37 ID 70 ENTER4
10000 CHS E
70 ENTER4 $2 \div \mathbf{C}$
Store values in R_{6}.
STO 6 \qquad

Outputs:

$20.00 \quad 00$
$\longrightarrow \quad 70.00 \quad 00$

STO $6 \longrightarrow \quad 21.6603 \quad$ (in-lb)
Now solve for the effect of P_{2} and add it to the content of R_{6}. This is the final answer assuming superposition is valid.

f A 50 ENTER4 1000 ¢ $\mathbf{C} \rightarrow$	50.00	00	
$35 \mathrm{C} \longrightarrow$	10.00	03	(in-lb)
RCL $6+\longrightarrow$	31.66	03	(in-lb)

BEAMS FIXED AT BOTH ENDS

This program calculates deflection, slope, moment and shear at any specified point along a beam of uniform cross section, fixed at both ends. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$y=y_{1}+y_{2}+y_{3} \quad$ (total deflection)
$y_{1}=\frac{P(\ell-a)^{2} x^{2}}{6 E I^{3}}[x(\ell+2 a)-3 a \ell)^{*} \quad$ (deflection due to point load)
$y_{2}=\frac{W x^{2}}{24 E I}\left[x(2 \ell-x)-\ell^{2}\right] \quad$ (distributed load)
$\mathrm{y}_{3}=\frac{\mathrm{M}(\ell-\mathrm{c}) \mathrm{x}^{2}}{\ell^{2} \mathrm{EI}}\left[\frac{\mathrm{cx}}{\ell}+\frac{\ell-3 \mathrm{c}}{2}\right]^{* *} \quad$ (applied moment)
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{\mathrm{P}(\ell-\mathrm{a})^{2} \mathrm{x}}{2 \mathrm{EI}}{ }^{3}[\mathrm{x}(\ell+2 \mathrm{a})-2 \mathrm{a} \ell] * \quad$ (slope due to point load)
$\theta_{2}=\frac{\mathrm{Wx}}{12 \mathrm{EI}}\left[\mathrm{x}(3 \ell-2 \mathrm{x})-\ell^{2}\right] \quad$ (distributed load)
$\theta_{3}=\frac{\mathrm{M}(\ell-\mathrm{c}) \mathrm{x}}{{ }^{2} \mathrm{EI}}\left[\frac{3 \mathrm{cx}}{\ell}+\ell-3 \mathrm{c}\right]^{* *} \quad$ (applied moment)

$$
\begin{aligned}
& M_{x}=M_{x 1}+M_{x 2}+M_{x 3} \quad \text { (total moment) } \\
& M_{x 1}=\frac{P(\ell-a)^{2}}{\ell^{3}}[x(\ell+2 a)-a \ell]^{*} \quad \text { (moment due to point load) } \\
& M_{x 2}=\frac{W}{12}\left[6 x(\ell-x)-\ell^{2}\right] \quad \text { (distributed load) } \\
& M_{x 3}=\frac{M(\ell-c)}{\ell^{2}}\left[\frac{6 c x}{\ell}+\ell-3 c\right]^{* *} \quad \text { (applied moment) } \\
& V=V_{1}+V_{2}+V_{3} \quad \text { (total shear) } \\
& V_{1}=\frac{P(\ell-a)^{2}}{\ell^{3}}(\ell+2 a) \quad \text { (shear due to point load) } \\
& V_{2}=\frac{-W}{2}(2 x-\ell) \quad \text { (distributed load) } \\
& V_{3}=\frac{-6 M(\ell-c) c^{* *} \quad \text { (applied moment) }}{\ell^{3}} \quad l
\end{aligned}
$$

where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x;
M_{x} is the moment at x ;
V is the shear at x ;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;

M is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.

[^0]
Remarks:

This card differs from other beam cards. The "start'" function is not included on LBL A. You must manually perform the "start" function by storing zero when P, W or M are not included in the problem.
Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.
Sums of $\mathrm{y}, \theta, \mathrm{M}_{\mathrm{x}}$ and V may be stored in $\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}, \mathrm{R}_{9}$, respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input moment of inertia	I	ENTER4	I
	then modulus of elasticity	E	ENTER4	E
	then beam length.	l	1 B	EI
3	Input load(s):*			
	Location of point load	a	ENTER4	a
	Point load	P	1 C	a
	Distributed load (force/length)	W	18	W
	Location of applied moment	C	ENTER4	C
	Applied moment	M	1 E	C
4	Key in x to specify the point			
	of interest and calculate			
	deflection	X	A	y
	or slope	X	B	θ
	or moment	X	C	$M_{\text {x }}$
	or shear.	x	D	V

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3. Be			
	sure to set obsolete loadings to			
	zero. For new beam properties,			
	go to step 2.			
	*Loads must be input, even if			
	zero.			

Example 1:

For the beam below, what are the values of deflection, slope, moment, and shear at an x of 114 inches?

```
\(\mathrm{W}=14 \mathrm{lb} / \mathrm{in}\)
\(\mathrm{E}=30 \times 10^{6} \mathrm{psi}\)
\(\mathrm{I}=4.74 \mathrm{in}^{4}\)
30 in
147,000 in-Ibs
```


140 in

Keystrokes:

140 ¢ B	142.206	
0 fC 30 ENTER 147000 E		
14 D	$14.00 \quad 00$	
114 A	$43.72-03$	(y)
RCL 0 B	-3.155-03	(θ)
RCL 0 C \longrightarrow	13.0503	$\left(\mathrm{M}_{\mathrm{x}}\right)$
RCLOD \longrightarrow	444.700	(V)

07-05

Example 2:

Find the internal moment at $\mathrm{x}=0$ for the configuration below.

Keystrokes:
9.75 ENTER4 10 EEX 6 ENTER4

0 IE 100 I D 50 ENTER4

Also, find the deflection at $\mathrm{x}=40$.
40
A

$$
-101.0-03\left(\mathrm{Y}_{40}\right)
$$

Notes

PROPPED CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a propped cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$$
\mathrm{y}=\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3} \quad \text { (total deflection) }
$$

$y_{1}=\frac{P}{6 E I}\left[F\left(x^{3}-3 \ell^{2} x\right)+3 b^{2} x\right] ; x \leqslant a \quad$ (deflection due to point load)
$y_{2}=\frac{W}{48 E I}\left(3 \ell x^{3}-2 x^{4}-\ell^{3} x\right) \quad$ (distributed load)
$y_{3}=\frac{M}{E I} G\left(x^{3}-3 \ell^{2} x\right)+\ell x-c x ; x \leqslant c \quad$ (applied moment)
$y_{3}=\frac{M}{E I} G\left(x^{3}-3 \ell^{2} x\right)+\ell x-1 / 2\left(x^{2}+c^{2}\right) ; x>c$
$\theta=\theta_{1}+\theta_{2}+\theta_{3} \quad$ (total slope)
$\theta_{1}=\frac{\mathrm{P}}{6 \mathrm{EI}}\left[\mathrm{F}\left(3 \mathrm{x}^{2}-3 \ell^{2}\right)+3 \mathrm{~b}^{2}\right] ; \quad \mathrm{x} \leqslant \mathrm{a} \quad$ (slope due to point load)

$$
\begin{aligned}
& \theta_{1}=\frac{\mathrm{P}}{6 \mathrm{EI}}\left[\mathrm{~F}\left(3 \mathrm{x}^{2}-3 \ell^{2}\right)-3(\mathrm{x}-\mathrm{a})^{2}\right] ; \mathrm{x}>\mathrm{a} \\
& \theta_{2}=\frac{\mathrm{W}}{48 \mathrm{EI}}\left(9 \mathrm{x}^{2}-8 \mathrm{x}^{3}-\ell^{3}\right) \quad \text { (distributed load) } \\
& \theta_{3}=\frac{\mathrm{M}}{\mathrm{EI}}\left[\mathrm{G}\left(3 \mathrm{x}^{2}-3 \ell^{2}\right)+\ell-\mathrm{c}\right] ; \mathrm{x} \leqslant \mathrm{c} \quad \text { (applied moment) } \\
& \theta_{3}=\frac{M}{E I}\left[G\left(3 x^{2}-3 l^{2}\right)+\ell-x\right] ; x>c \\
& \mathrm{M}_{\mathrm{x}}=\mathrm{M}_{\mathrm{x} 1}+\mathrm{M}_{\mathrm{x} 2}+\mathrm{M}_{\mathrm{x} 3} \quad \text { (total moment) } \\
& \mathrm{M}_{\mathrm{x} 1}=\mathrm{PFx} ; \mathrm{x} \leqslant \mathrm{a} \quad \text { (moment due to point load) } \\
& \mathrm{M}_{\mathrm{x} 1}=P F x-\mathrm{P}(\mathrm{x}-\mathrm{b}) ; \mathrm{x}>\mathrm{a} \\
& \mathrm{M}_{\mathrm{x} 2}=\mathrm{W}\left(3 / 8 \mathrm{x} \ell-\mathrm{x}^{2} / 2\right) \quad \text { (distributed load) } \\
& \mathrm{M}_{\mathrm{x} 3}=6 \mathrm{MGx} ; \mathrm{x} \leqslant \mathrm{c} \quad \text { (applied moment) } \\
& \mathrm{M}_{\mathrm{x} 3}=6 \mathrm{MGx}-\mathrm{M} ; \mathrm{x}>\mathrm{c} \\
& \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \quad \text { (total shear) } \\
& \mathrm{V}_{1}=\mathrm{PF} ; \mathrm{x} \leqslant \mathrm{a} \quad \text { (shear due to point load) } \\
& \mathrm{V}_{1}=\mathrm{PF}-\mathrm{P} ; \mathrm{x}>\mathrm{a} \\
& \mathrm{~V}_{2}=\mathrm{W}\left(\frac{3}{8} \ell-\mathrm{x}\right) \quad \text { (distributed load) } \\
& \mathrm{V}_{3}=6 \mathrm{MG} \quad \text { (applied moment) } \\
& \mathrm{F}=\left[\frac{3 \mathrm{~b}^{2} \ell-\mathrm{b}^{3}}{2 \ell^{3}}\right] \\
& \mathrm{b}=(\ell-\mathrm{a}) \\
& G=\frac{\ell^{2}-c^{2}}{4 \ell^{3}}
\end{aligned}
$$

where:
y is the deflection at a distance x from the left support;
θ is the slope (change in y per change in x) at x;
M_{x} is the moment at x;
V is the shear at x ;
I is the moment of inertia of the beam;
E is the modulus of elasticity of the beam;
ℓ is the length of the beam;
P is a concentrated load;
W is a uniformly distributed load with dimensions of force per unit length;
M is an applied moment;
a is the distance from the left support to the point load;
c is the distance to the applied moment.

Remarks;

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers $R_{S 0}-R_{S 9}$ and R_{B} are available for user storage.
Sums of y, θ, M_{X} and V may be stored in R_{6}, R_{7}, R_{8} and R_{9}, respectively.
Note that those registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		A	0.00000
3	Input moment of inertia	I	ENTER4	I
	then modulus of elasticity	E	ENTER4	E
	then beam length.	l	B	EI
4	Input load(s):	a	ENTER4	a
	Location of point load	P	C	C
	Point load	W	C	W
	Distributed load (force/length)	C	ENTER4	C
	Location of applied moment	M	E	
	Applied moment.	C		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	\mathbf{A}	y
	or slope	x	B	$\boldsymbol{\theta}$
	or moment	x	C	M_{x}
	or shear.	x	\mathbf{D}	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

Example 1:

What are the values of moment and shear at both ends of the beam below? (It is not necessary to know the values of E or I since deflection and slope are not required.)

Keystrokes:

Outputs:

$1000 \mathrm{C} \longrightarrow$	30.00	00	
80 ENTER4 35000 CHS fe			
15 ¢	15.00	00	
0 C \longrightarrow	0.000	00	(in-lb)
0 D \longrightarrow	1.065	03	(lb)
120 C \longrightarrow	-35.23	03	(in-lb)
120 D	-1.735	03	(lb)

08-05

Example 2:

Calculate the deflection, slope, moment and shear at $\mathrm{x}=90$ for the beam below.

Keystrokes:

Outputs:

A 23 ENTERA 30 EEX 6 ENTERA
170 В $\longrightarrow \quad 690.0 \quad 06$

90 A	-75.73-03	(in)
90 B	920.8-06	(in/in)
90 c	11.8903	(in-lb)
90 D	-229.0 00	(lb)

Notes

HELICAL SPRING DESIGN

This program performs one or two point design for helical compression springs, of round wire, with ends square and ground.
After a tentative spring design has been found, a check can be run to determine whether stresses are acceptable, and whether sufficient clearance between coils is available at the point of highest operating load.

Equations:

$$
\begin{aligned}
& \mathrm{k}=\frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\mathrm{~L}_{1}-\mathrm{L}_{2}} \\
& \mathrm{~s}_{2}=\frac{8 \mathrm{P}_{2} \mathrm{D}_{\mathrm{H}}}{\pi \mathrm{~d}^{3}} \\
& D=D_{H} f_{0}-d \\
& \mathrm{~N}=\frac{\mathrm{Gd}^{4}}{8 \mathrm{D}^{3} \mathrm{k}} \\
& L_{\mathrm{s}}=(\mathrm{N}+2) \mathrm{d} \\
& \mathrm{~L}_{\mathrm{f}}=\frac{\mathrm{P}_{1}}{\mathrm{k}}+\mathrm{L}_{1} \\
& \mathrm{~s}_{\mathrm{s}}=\frac{8 \mathrm{Dk}\left(\mathrm{~L}_{\mathrm{f}}-\mathrm{L}_{\mathrm{s}}\right) \mathrm{W}}{\pi \mathrm{~d}^{3}} \\
& W=\frac{4(D / d)-1}{4(D / d)-4}+\frac{0.615}{(D / d)} \\
& \mathrm{s}_{\max }=\left\{\begin{array}{l}
.45 \mathrm{TS} \text { for ferrous materials } \\
.35 \mathrm{TS} \text { for non-ferrous materials } .
\end{array}\right. \\
& Y S=\left\{\begin{array}{l}
.65 \mathrm{TS} \text { for ferrous materials } \\
.55 \mathrm{TS} \text { for non-ferrous materials }
\end{array}\right. \\
& \mathrm{TS}=\beta \ln \mathrm{d}+\alpha
\end{aligned}
$$

Design checking logic:

If $\left(\mathrm{L}_{2}-\mathrm{L}_{\mathrm{s}}\right)<0.1\left(\mathrm{~L}_{\mathrm{f}}-\mathrm{L}_{2}\right)$ and $\mathrm{s}_{\mathrm{s}}>\mathrm{s}_{\text {max }}$, the spring lacks sufficient clearance between coils and stresses are too high; code $=1$.
If $\left(L_{2}-L_{s}\right)<0.1\left(L_{f}-L_{2}\right)$ and $s_{s} \leqslant s_{\text {max }}$, clearance between coils is insufficient; code $=2$.
If $\left(L_{2}-L_{s}\right) \geqslant 0.1\left(L_{f}-L_{2}\right)$ and $s_{s}>Y S$, stress is too high; code $=3$.
If $\left(L_{2}-L_{s}\right) \geqslant 0.1\left(L_{f}-L_{2}\right)$ and $s_{s} \leqslant Y S$, design is satisfactory. If $s_{s} \leqslant 0.3 \mathrm{TS}$, stresses are quite conservative and code $=4$. If $\mathrm{s}_{\mathrm{s}}>0.3 \mathrm{TS}$, design is acceptable and code $=5$.
where:
G is the torsional modulus of rigidity;
α and β are tensile strength regression coefficients from table 1 (metric) or table 2 (English);
P_{1} is the spring load at most extended operating point (see figure 1);
L_{1} is spring length, at the most extended operating point;
P_{2} is spring load at most compressed operating point;
L_{2} is the spring length, at the most compressed operating point;
k is the spring constant;
d is the wire diameter;
f_{0} is the clearance factor for the spring and the hole (possibly imaginary) in which the spring is designed to work:

$$
\mathrm{f}_{0}=\left\{\begin{array}{l}
0.95 \text { if } \mathrm{D}_{\mathrm{H}} \geqslant 12.70 \mathrm{~mm}(0.5 \mathrm{in}) \\
0.90 \text { if } \mathrm{D}_{\mathrm{H}}<12.70 \mathrm{~mm}(0.5 \mathrm{in}) ;
\end{array}\right.
$$

D_{H} is the diameter of the hole (possibly imaginary) into which the spring must fit;
s_{2} is the uncorrected stress at operating point 2 ;
N is the number of active coils;
s_{s} is the Wahl corrected stress when the spring is fully compressed to solid (coils touching);
L_{f} is the free length of the spring;
L_{s} is the fully compressed or solid spring length;

D is the mean spring diameter;
OD is the outside spring diameter;
Code is a digit from 1-5, explained in program User Instructions;
W is the Wahl factor which corrects stresses for curvature;
$s_{\text {max }}$ is the maximum allowable working stress for the material;
YS is the yield strength of the material;
TS is the tensile strength of the material.

Figure 1-Spring Deflection

Figure 2-Helical Compression Spring

Table 1
 MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS (Metric Units)

MATERIAL	MODULUS OF RIGIDITY $\mathrm{G}, \mathrm{N} /(\mathrm{mm})^{2}$	WIRE DIAMETER RANGEMILLIMETERS	TENSILE STRENGTH COEF.	
			$\alpha, \mathrm{N} /(\mathrm{mm})^{2}$	$\beta, \mathrm{N} /(\mathrm{mm})^{2}$
Music Wire ASTM-A228	7.93×10^{4}	0.41-6.35	2205	-346.1
Alloy Steel ASTM-A232	7.93×10^{4}	0.64-7.62	1921	-249.7
Stainless Steel ASTM-A313	6.90×10^{4}	$\begin{aligned} & 0.41-1.91 \\ & 1.91-5.08 \\ & 5.08-9.40 \end{aligned}$	$\begin{aligned} & 1851 \\ & 1950 \\ & 2221 \end{aligned}$	$\begin{aligned} & -209.6 \\ & -393.6 \\ & -560.4 \end{aligned}$
Oil Tempered ASTM-A229	7.93×10^{4}	0.51-6.86	1827	-304.7
Hard Drawn ASTM-A227	7.93×10^{4}	$\begin{aligned} & 0.51-3.56 \\ & 3.56-12.7 \end{aligned}$	$\begin{aligned} & 1773 \\ & 1757 \end{aligned}$	$\begin{aligned} & -283.4 \\ & -270.8 \end{aligned}$
Tempered Value Spring ASTM-A230	7.93×10^{4}	2.36-5.08	1586	-153.1
Phosphor Bronze ASTM-B159	4.07×10^{4}	0.64-9.40	957	- 63.97

Table 2
MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS (English Units)

MATERIAL	MODULUS OF RIGIDITY G,psi	WIRE DIAMETER RANGEINCHES	TENSILE StRENGTH COEF.	
			$\alpha, \mathbf{p s i}$	β,psi
Music Wire ASTM-A228	11.5×10^{6}	0.016-0.25	157400	-50200
Alloy Steel ASTM-A232	11.5×10^{6}	0.025-0.30	161400	-36220
Stainless Steel ASTM-A313	10.0×10^{6}	$\begin{aligned} & 0.016-0.075 \\ & 0.075-0.20 \\ & 0.20-0.37 \end{aligned}$	$\begin{array}{r} 170200 \\ 98110 \\ 59190 \end{array}$	$\begin{aligned} & -30400 \\ & -57090 \\ & -81280 \end{aligned}$
Oil Tempered ASTM-A229	11.5×10^{6}	0.020-0.27	122100	-44190
Hard Drawn ASTM-A227	11.5×10^{6}	$\begin{aligned} & 0.020-0.14 \\ & 0.14-0.50 \end{aligned}$	$\begin{aligned} & 124200 \\ & 127800 \end{aligned}$	$\begin{aligned} & -41110 \\ & -39280 \end{aligned}$
Tempered Valve Spring ASTM-A230	11.5×10^{6}	0.093-0.20	158300	-22200
Phosphor Bronze ASTM-B159	5.9×10^{6}	0.025-0.37	108800	-9278

Reference:

Design Handbook-Springs, Custom Metal Parts, Associated Spring Corporation, Bristol, Connecticut, 1970.

Remarks:

Registers $\mathrm{R}_{\mathrm{s} 0}-\mathrm{R}_{\mathrm{s} 9}$ are available for user storage.
The assumptions implicit to this program are based on engineering practice and experience. Generally, designs found by this program will be conservative, however, caution must be exercised when high or low temperatures, corrosive media or other adverse environmental circumstances exist.
For one point design, specify the free length $\left(L_{1}\right)$ and a corresponding zero load $\left(\mathrm{P}_{1}\right)$, then specify the length $\left(\mathrm{L}_{2}\right)$ and corresponding load $\left(\mathrm{P}_{2}\right)$.
Some designs achieved by this program may require coiling the spring wire in such a small radius that the spring material would fail in the manufacturing process. No program check is made for this condition.
If code $=2$, then s_{2} has no intelligent meaning.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Toggle ferrous (1) or non-			
	ferrous (0) material mode			
	(consider stainless steel			
	non-ferrous).		1 A	1.00/0.00
3	Specify material properties			
	from table 1 (Metric) or			
	table 2 (English):			
	Modulus of rigidity	G	ENTERA	G
	Tensile strength Alpha	α	ENTER	α
	Tensile strength Beta	β	1 B	G
4	Input load point 1:			
	Force 1	P_{1}	ENTER	P_{1}
	Corresponding spring			
	length 1	L_{1}	$\square \mathrm{C}$	P_{1}
5	Input load Point 2 and cal-			
	culate spring constant:			
	Force 2	P_{2}	ENTER ${ }^{\text {d }}$	P_{2}
	Corresponding spring			
	length 2	L_{2}	1 D	k
6	Input wire diameter,	d	ENTER 4	d
	and clearance factor ($\mathrm{f}_{0}=0.90$			
	if spring diameter $<12.70 \mathrm{~mm}$			
	(0.5 in); otherwise, $f=0.95$).,	f_{0}	ENTER ${ }^{\text {a }}$	f_{0}
	and maximum outside spring			
	diameter.	D_{H}	18	S_{2}

09-07

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	If S_{2} is a reasonable value			
	(not extremely high or low for			
	your application), proceed to			
	step 8. Otherwise, you may wish			
	to modify the design specifica-			
	tions in steps 4,5 or 6.			
8	Compute number of coils.		A	N
9	Compute stress at solid			
	(maximum).		B	S_{s}
10	Check design.		C	Code
11	If code $=1$, the design is			
	over constrained. The specified			
	conditions cannot be met. Try			
	another material, larger D_{H},			
	new load points or another type			
	of spring.			
	If code $=2$, clearance between			
	coils is not sufficient. Press			
	R ${ }^{\text {d }}$ to see current wire			
	diameter.		R	d
	Key in a smaller wire diameter			
	and calculate a new N. Go			
	back to instruction step 9.	d	R/S	N

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	If code $=3$, stress at solid			
	is too high. Press Rtto			
	see the current wire diameter.		Rt	d
	Key in a larger wire dia-			
	meter and calculate a new N .	d	R/S	N
	Go back to instruction			
	step 9.			
	If code $=4$, design is			
	acceptable but smaller wire			
	might also work. Press Rt			
	to see current wire diameter.		R	d
	Key in a new smaller wire			
	diameter and calculate N .	d	R/S	N
	Go back to instruction			
	step 9.			
	If code 5 , design is			
	acceptable but not necessarily			
	optimal. Try manipulating			
	design parameters to obtain a			
	more economical design.			
12	Display free length, solid			
	length, mean diameter, and			
	outside diameter.		E	$L_{f}, L_{s}, D, O D$
13	Go to steps 2 through 6 for			
	a new case.			

Example 1:

Using Oil Tempered Wire (ASTM-A229), design a spring which supports a load of 270 newtons at a length of 62 millimeters and a load of 470 newtons at 50 millimeters. Wire is available in 0.5 mm increments. Try 4.0 mm wire first. Space available limits the spring diameter to 40.00 mm .

Variables:

$$
\left.\begin{array}{rl}
\mathrm{P}_{1} & =270 \mathrm{~N} \\
\mathrm{~L}_{1} & =62 \mathrm{~mm} \\
\mathrm{P}_{2} & =470 \mathrm{~N} \\
\mathrm{~L}_{2} & =50 \mathrm{~mm} \\
\mathrm{~d} & =4.0 \mathrm{~mm} \\
\mathrm{D}_{\mathrm{H}} & =40.0 \mathrm{~mm} \\
\mathrm{f}_{0} & =0.95\left(\text { since } \mathrm{D}_{\mathrm{H}}>12.70 \mathrm{~mm}\right) \\
\mathrm{G} & =7.93 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2} \\
\alpha & =1827 \mathrm{~N} / \mathrm{mm}^{2} \\
\beta & =-304.7
\end{array}\right\} \text { From table } 1
$$

Keystrokes:

Outputs:

Select iron wire (press \boldsymbol{A} A until 1.00 is displayed.)

Since Code $=3$, select a larger wire. 4.5 mm wire is the next largest, so give it a try.

6.487	00	$* * *$
748.4	$00^{* * *}$	$($ Coils $)$
5.000	00	$($ Code $)$

Since code $=5$, design is acceptable. Output free length, solid length, mean diameter and outside diameter.
E

| 78.20 | 00 |
| :--- | :--- |${ }^{* * *}\left(\mathrm{~L}_{\mathrm{f}}\right) ~\left(\begin{array}{ll}\text { (}\end{array}\right.$

Example 2:

Using music wire (ASTM-A228), design a spring which will work in a 0.25 inch hole, for the loading below:

$$
\left.\begin{array}{rlr}
\mathrm{P}_{1} & =1 \mathrm{lb} & \mathrm{~L}_{1}=1.5 \mathrm{in} \\
\mathrm{P}_{2} & =10 \mathrm{lb} & \mathrm{~L}_{2}=1.0 \mathrm{in} \\
\mathrm{G} & =11.5 \times 10^{6} \mathrm{psi} \\
\alpha & =157.4 \times 10^{3} \mathrm{psi} \\
\beta & =-50.20 \times 10^{3} \mathrm{psi}
\end{array}\right\} \text { From table } 2
$$

Keystrokes:

Outputs:

Since music wire is a ferrous material, press \boldsymbol{A} until 1.00 is displayed.

1 $\boldsymbol{A} \longrightarrow$	1.000	00
11.5 EEX 6 ENTER 157.4 EEX		
3 ENTER 50.20 Chs EEX		
3 [$\square^{\text {B }}$	11.50	06
1 ENTERA 1.5 [CC 10 ENTER4		
1.0 [D	18.00	$00^{* * *}$ (k)
. 035 ENTER4. 9 ENTER4		
. 25 [E	148.5	$03^{* * *}\left(\mathrm{~s}_{2}, \mathrm{psi}\right)$
	17.47	00 *** (Coils)
	227.7	$03^{* * *}\left(\mathrm{~s}_{\mathrm{s}}, \mathrm{psi}\right)$
C \longrightarrow	3.000	00 (Code)
Try the larger wire.		
. 04 R/S	32.29	$00^{* * *}$ (Coils)
B \longrightarrow	32.66	$03^{* * *}\left(\mathrm{~s}_{\mathrm{s}}, \mathrm{psi}\right)$
C \longrightarrow	2.000	00 (Code)

09-11

Since neither available wire will meet these specifications the specifications must be modified. After due consideration, it is decided that P_{2} could be lowered to 9 pounds.

9 ENTER $1 \rightarrow \mathbf{D} \longrightarrow \quad 16.00 \quad 00^{* * *}(\mathrm{k})$

Interestingly, and unfortunately, $\mathrm{s}_{\mathrm{s}}<\mathrm{s}_{2}$ indicates that this spring cannot be compressed to s_{2}.

Sure enough, insufficient clearance. Try the smaller wire.

. 035 R/S	21.29	00	(Coils)
B	169.6	03	(s_{s}, psi)
C \longrightarrow	5.000	00	(Code)

Since the design checks out, calculate the dimensions:

E \qquad

$$
\begin{array}{lll}
1.563 & 00 & * * *\left(\mathrm{~L}_{\mathrm{f}}\right) \\
815.3 & -03 & * * *\left(\mathrm{~L}_{\mathrm{s}}\right) \\
185.0 & -03 & * * *(\mathrm{D}) \\
220.0 & -03 & * * *(\mathrm{OD})
\end{array}
$$

Notes

FOUR BAR FUNCTION GENERATOR

These cards may be used to design a four bar linkage which will approximate an arbitrary function of one variable. Freudenstein's approach is used in the solution. Cramer's rule is used to solve the 3×3 system of linear equations.

Equations:

Three precision points are used in the solution.
Freudenstein's equations

$$
\begin{aligned}
& \mathrm{R}_{1} \cos \theta_{1}-\mathrm{R}_{2} \cos \phi_{1}+\mathrm{R}_{3}=\cos \left(\theta_{1}-\phi_{1}\right) \\
& \mathrm{R}_{1} \cos \theta_{2}-\mathrm{R}_{2} \cos \phi_{2}+\mathrm{R}_{3}=\cos \left(\theta_{2}-\phi_{2}\right) \\
& \mathrm{R}_{1} \cos \theta_{3}-\mathrm{R}_{2} \cos \phi_{3}+\mathrm{R}_{3}=\cos \left(\theta_{3}-\phi_{3}\right)
\end{aligned}
$$

are solved simultaneously for $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} which are defined as follows:

$$
\mathrm{R}_{1}=\mathrm{a} / \mathrm{d}, \mathrm{R}_{2}=\mathrm{a} / \mathrm{b}, \mathrm{R}_{3}=\frac{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{d}^{2}-\mathrm{c}^{2}}{2 \mathrm{bd}}
$$

where a is the distance between fixed pivots, b is the length of the input link, c is the length of the coupler and d is the length of the output link. θ_{1} refers to the angle of the input link at the first precision point, θ_{2} the angle at the second point, and θ_{3} the angle at the third. ϕ_{1} is the angle of the output link at the first precision point, ϕ_{2} is the angle at the second point, and ϕ_{3} is the angle at the third precision point.

$$
\begin{gathered}
\theta_{2}=\theta_{1}+\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{x}_{3}-\mathrm{x}_{1}}\left(\theta_{3}-\theta_{1}\right) \\
\phi_{2}=\phi_{1}+\frac{\mathrm{f}\left(\mathrm{x}_{2}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)}{\mathrm{f}\left(\mathrm{x}_{3}\right)-\mathrm{f}\left(\mathrm{x}_{1}\right)}\left(\phi_{3}-\phi_{1}\right)
\end{gathered}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} are the precision points or the three points at which the mechanism will yield kinematically exact solutions to the function $(f(x))$ which is to be generated.

Reference:

Martin, G. H., Kinematics and Dynamics of Machines McGraw-Hill, 1969.

Remarks:

$\mathrm{f}(\mathrm{x})$ must be stated in 119 or less steps.

$$
\begin{aligned}
& \left(\cos \phi_{2}-\frac{\cos \phi_{1} \cos \theta_{2}}{\cos \theta_{1}}\right)\left(\frac{\cos \theta_{3}}{\cos \theta_{1}}-1\right) \\
& \neq\left(\frac{\cos \theta_{2}}{\cos \theta_{1}}-1\right)\left(\cos \phi_{3}-\frac{\cos \phi_{1} \cos \theta_{3}}{\cos \theta_{1}}\right)
\end{aligned}
$$

θ_{1} may not be equal to 90° or 270°.
All registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	card 1.			
2	To calculate link ratios, go to			
	step 4.			
3	For function generator, go to			
	step 7.			
4	Input the link lengths.	a	ENTERA	a
		b	ENTER4	b
		c	ENTERA	c
		d	A	a
5	Calculate the link ratios.		B	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$
6	For a new case, go to step 2.			
7	Key the function into memory:			
	i. Go to label C.		GTO C	
	ii. Switch to PRGM mode.			
	iii. Key in the function.*	$f(x)$		
	iv. Switch to RUN mode.			
	(The argument of the			
	function is in X when the			
	routine is called.)			
8	Input 3 precision points	x_{1}	ENTER	x_{1}
		x_{2}	ENTER	x_{2}
		x_{3}	D	x_{1}
9	Input starting input angle and			
	final input angle ($\left.\theta_{1} \neq 90 \neq 270\right)$	θ_{1}	ENTER ${ }^{\text {a }}$	θ_{1}
		θ_{3}	E	θ_{2}
10	Input starting output angle	ϕ_{1}	ENTER	ϕ_{1}
	and final output angle.	ϕ_{3}	(1)	ϕ_{2}
11	Load side 1 and side 2 of			
	card 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
12	Calculate R_{1}, R_{2} and R_{3}.		B	$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$
13	Input a to calculate b, c,			
	and d.	a	C	$\mathrm{b}, \mathrm{c}, \mathrm{d}$
14	For a new case, go to step 1.			
	$\star 119$ steps are allowed.			

Example 1:

Suppose the output of a linkage is to be the square root of the input. The input link is to move from 70° to 110° while the output moves from 100° to 140°. Precision points are $x_{1}=3\left(70^{\circ}\right), x_{2}=5$, and $x_{3}=9\left(110^{\circ}\right)$. The distance between foundation pivots is 3.75 . What are the remaining link lengths?

Data for input:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}} \\
& \mathrm{x}_{1}=3, \mathrm{x}_{2}=5, \mathrm{x}_{3}=9 \\
& \theta_{1}=70^{\circ}, \theta_{3}=110^{\circ}, \phi_{1}=100^{\circ}, \phi_{3}=140^{\circ} \\
& \mathrm{a}=3.75
\end{aligned}
$$

Keystrokes:

Outputs:

Load side 1 and side 2 of Card 1.

GTO C

Switch to PRGM mode.
\sqrt{x}
Switch to RUN mode.
3 ENTER4 5 ENTERA 9 D 70 ENTER

$110 \boldsymbol{E} \longrightarrow$	83.33	$\left(\boldsymbol{\theta}_{2}\right)$
$100 \boldsymbol{E N T E R 4} 140 \boldsymbol{A} \longrightarrow$	115.90	$\left(\boldsymbol{\phi}_{2}\right)$

Load side 1 and side 2 of card 2 .

$$
\begin{array}{rll}
-0.30 & * * * & \left(\mathrm{R}_{1}\right) \\
-0.34 & * * * & \left(\mathrm{R}_{2}\right) \\
1.03 & * * * & \left(\mathrm{R}_{3}\right) \\
-10.88 & * * *(\mathrm{~b}) \\
3.04 & * * *(\mathrm{c}) \\
-12.56 & * * *(\mathrm{~d})
\end{array}
$$

Note that should you decide to run the program "PROGRESSION OF FOUR BAR SYSTEM' for the same linkage, then input of a, b, c and d is not necessary since a, b, c and d are already stored in the corresponding registers from this program.
$\mathrm{b}=-10.88, \mathrm{c}=3.04, \mathrm{~d}=-12.56$ (The negative signs indicate that the links are opposite to the assumed direction i.e., $\theta=250^{\circ}$ and $\phi=280^{\circ}$).

Example 2:

Compute the link ratios for the following link lengths:

$$
\begin{aligned}
& \mathrm{a}=1.0 \\
& \mathrm{~b}=1.371 \\
& \mathrm{c}=2.12 \\
& \mathrm{~d}=1.502
\end{aligned}
$$

Keystrokes:

Outputs:

Load side 1 and side 2 of Card 1
DSP 4
ENTER4 1.371 ENTERA
2.12 ENTER4 $1.502 \boldsymbol{A B} \longrightarrow 0.6658^{* * *}\left(\mathrm{R}_{1}\right)$
0.7294 *** $\left(\mathrm{R}_{2}\right)$
0.1557 *** $\left(\mathrm{R}_{3}\right)$

Notes

PROGRESSION OF FOUR BAR SYSTEM

This program calculates angular displacement, velocity and acceleration for the output link of a four bar system (figure 1). (Either the "connecting link" (c) or the "output link" (d) may be selected as the program's output link.)

FIGURE 1-FOUR BAR SYSTEM SHOWING POSITIVE ANGULAR CONVENTIONS

Automatic and manual modes of operation are available. In manual mode, the output angle is calculated by keying in the input angle and pressing \boldsymbol{A}. The angular output velocity may then be found by keying in the angular input velocity and pressing C. After angular velocity is calculated, the output link acceleration is found by keying in the input link acceleration and pressing \mathbf{E}. In automatic mode, a starting input link angle θ_{0}, the number of increments n, the angular increment $\Delta \theta$, and the constant input link RPM are input using
E. The program automatically progresses from θ_{0} through n increments of $\Delta \theta$. RPM is output once, followed by groups of four values. The first value, of these four-value groups, is input angle, the second value is output angle, the third value is angular output velocity and the fourth value is angular output acceleration. Example problem 1 demonstrates manual operation while example 2 demonstrates automatic operation.

Equations:

Output Link

$$
\phi=\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{e}} \sin \theta\right)+\cos ^{-1}\left(\frac{\mathrm{~d}^{2}+\mathrm{e}^{2}-\mathrm{c}^{2}}{2 \mathrm{de}}\right)
$$

Connecting Link

$$
\alpha=\sin ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{e}} \sin \theta\right)+\cos ^{-1}\left(\frac{\mathrm{c}^{2}+\mathrm{e}^{2}-\mathrm{d}^{2}}{-2 \mathrm{ce}}\right)
$$

where:

$$
e=\sqrt{a^{2}+b^{2}+2 a b \cos \theta}
$$

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} \theta}=\frac{\mathrm{R}_{1} \sin \theta-\sin (\theta-\phi)}{\mathrm{R}_{2} \sin \phi-\sin (\theta-\phi)}
$$

$$
\mathrm{R}_{1}=\frac{\mathrm{a}}{\mathrm{~d}} \quad \mathrm{R}_{2}=\frac{\mathrm{a}}{\mathrm{~b}}
$$

$$
\frac{\mathrm{d} \alpha}{\mathrm{~d} \theta}=\frac{\mathrm{S}_{1} \sin \theta-\sin (\theta-\alpha)}{\mathrm{S}_{2} \sin \alpha-\sin (\theta-\alpha)}
$$

$$
\mathrm{S}_{1}=-\frac{\mathrm{a}}{\mathrm{c}} \quad \mathrm{~S}_{2}=\frac{\mathrm{a}}{\mathrm{~b}}
$$

$$
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} \theta^{2}}=\frac{\mathrm{R}_{1} \cos \theta-\mathrm{R}_{2} \cos \phi\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}\right)^{2}-\left(1-\frac{\mathrm{d} \phi}{\mathrm{~d} \theta}\right)^{2} \cos (\theta-\phi)}{\mathrm{R}_{2} \sin \phi-\sin (\theta-\phi)}
$$

$$
\frac{\mathrm{d}^{2} \alpha}{\mathrm{~d} \theta^{2}}=\frac{\mathrm{S}_{1} \cos \theta-\mathrm{S}_{2} \cos \alpha\left(\frac{\mathrm{~d} \alpha}{\mathrm{~d} \theta}\right)^{2}-\left(1-\frac{\mathrm{d} \alpha}{\mathrm{~d} \theta}\right)^{2} \cos (\theta-\alpha)}{\mathrm{S}_{2} \sin \alpha-\sin (\theta-\alpha)}
$$

$$
\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{~d} \theta} \dot{\theta} \quad \dot{\alpha}=\frac{\mathrm{d} \alpha}{\mathrm{~d} \theta} \dot{\theta}
$$

$$
\ddot{\phi}=\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}=\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} \theta^{2}}\left(\frac{\mathrm{~d} \theta}{\mathrm{dt}}\right)^{2}+\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}} \frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}
$$

$$
=\dot{\theta}^{2} \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} \theta^{2}}+\ddot{\theta} \frac{\mathrm{d} \phi}{\mathrm{~d} \theta} \quad \alpha=\dot{\theta}^{2} \frac{\mathrm{~d}^{2} \alpha}{\mathrm{~d} \theta^{2}}+\alpha \frac{\mathrm{d} \ddot{\alpha}}{\mathrm{~d} \theta}
$$

Remarks:

$\dot{\phi}$ has the units of θ, since $\frac{\mathrm{d} \phi}{\mathrm{d} \theta}$ is dimensionless.
$\frac{d^{2} \phi}{\mathrm{~d} \theta^{2}}$ has units of rad^{-1}. So that the dimensions making up $\ddot{\phi}$ agree, the program assumes $\frac{\mathrm{d}^{2} \theta}{\mathrm{dt}^{2}}$ is given in RPM^{2}, and $\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} \theta^{2}}$ is multiplied by 2π $\frac{\mathrm{rad}}{\mathrm{rev}}$:

$$
\ddot{\phi} \frac{\mathrm{rev}}{\min ^{2}}=\dot{\theta}^{2} \frac{\mathrm{rev}^{2}}{\min ^{2}} \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} \theta^{2}} \operatorname{rad}^{-1}\left[\frac{2 \pi \mathrm{rad}}{\mathrm{rev}}\right]+\ddot{\theta} \frac{\mathrm{rev}}{\min ^{2}} \frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}
$$

The program could be altered by the appropriate constant change if $\boldsymbol{\theta}$ and $\ddot{\boldsymbol{\theta}}$ are in units other than revolutions/time (e.g. for degrees/ time change 2π to $\pi / 180$ (radians/degree), or for radians/time, no constant necessary).
These same remarks apply to $\dot{\alpha}$ and $\ddot{\alpha}$.
An error during calculation of ϕ or α may indicate the linkage may not physically assume the specified position.
The sign of RPM determines the direction of rotation in automatic mode.
Two possible configurations exist for a given set of links:

Configuration A

Configuration B

Configuration A is assumed by the program. To obtain configuration B change step 87 from + to - .
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input link lengths:			
	fixed link	a	ENTERA	a
	input link	b	ENTERA	b
	connecting link	c	ENTER4	c
	output link	d	[4	a
3	If connecting link output			
	values ($\alpha, \dot{\alpha}, \ddot{\alpha}$) are desired,			
	rather than output link values			
	($\phi, \dot{\phi}, \ddot{\phi}$), set connecting link			
	mode by pressing $\boldsymbol{1}$ C. A			
	1.00 appears in the display			
	indicating connecting link			
	mode is on. Pressing [C			
	repeatedly toggles connecting			
	link mode off and on.		16	1.00/0.00
4	For automatic progression of			
	input link, go to step 9.			
5	Key in input link angle and			
	calculate output angle.	θ	A	$\phi(\alpha)$
6	Key in input RPM and calcu-			
	late output RPM.	$\dot{\theta}$ (RPM)	c	$\dot{\phi}(\dot{\alpha})$
7	Key in input link acceleration			
	and calculate output			
	acceleration.	$\ddot{\theta}\left(\mathrm{RPM}^{2}\right)$	E	$\ddot{\phi}(\ddot{\alpha})$
8	For a new input link angle, go			
	to step 5. For the alternate			
	output member (connector, or			
	output link), go to step 3. For			
	a new case, go to step 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Key in starting input link angle	θ_{0}	ENTER4	θ_{0}
	then number of increments	n	ENTERA	n
	then angular increment	$\Delta \theta$	ENTER4	$\Delta \theta$
	then RPM (+ or -) and			
	calculate the output $\theta(\alpha), \dot{\phi}(\dot{\alpha})$,			
	and $\ddot{\phi}(\ddot{\alpha})$ for constant input			
	RPM between θ_{0} and θ_{f}.	RPM	[E	output
10	For another set of inputs, go			
	to step 9. For the alternate			
	output member (connector or			
	output link) go to step 3. For a			
	new case go to step 2.			

Example 1:

The input link of the four bar linkage below is instantaneously rotating at 25 RPM with an angular acceleration of $2.3 \mathrm{RPM}^{2}$. The input link is at 116°. What are the values of position, velocity, and acceleration of link d ? Link c ?

Keystrokes:
Outputs:

2 ENTER4 1.5 ENTER4 2 ENTER		
1 A \mathbf{A}^{\square}	2.00	
116 A	125.75	(ϕ)
25 C	39.29	$(\dot{\phi})$
2.3 E	2279.89	$(\ddot{\phi})$

C C \longrightarrow	1.00	(connecting link selected)
116 A	195.56	(α)
$25 \mathrm{C} \longrightarrow$	3.38	(${ }_{\text {人 }}$)
2.3 E \longrightarrow	2049.01	($\ddot{\alpha})$

Example 2:

A four bar linkage is to be used to convert rotary motion from an electric motor to the reciprocating motion necessary to activate a shaking conveyor system which moves fruit between two process stations.
(2)

For the geometry shown above, what is the motion of the output link? Start at $\theta=0^{\circ}$ and go to -330° by $12,30^{\circ}$ increments. Find the corresponding connecting link motion.

Four Bar Shaker Mechanism

Solution:

θ^{0}	ϕ^{0}	$\dot{\phi}(\mathbf{R P M})$	$\ddot{\phi}\left(\mathbf{R P M}^{2}\right)$	α^{0}	$\alpha(\mathbf{R P M})$	$\alpha\left(\mathbf{R P M}^{2}\right)$
0	86.69	-4.62	3392.91	154.67	-4.62	-92.82
-30	85.63	0.46	3816.90	152.42	-4.20	713.38
-60	87.18	5.70	3615.33	150.67	-2.60	1594.02
-90	91.19	10.12	2592.67	150.01	0.10	2210.83
-120	96.94	12.38	449.28	150.84	3.19	2062.19
-150	102.95	10.93	-2597.20	153.04	5.34	887.00
-180	107.18	5.45	-4998.56	155.83	5.45	-693.75
-210	108.09	-1.86	-5112.85	158.18	3.73	-1628.64
-240	105.56	-7.86	-3351.37	159.45	1.32	-1738.45
-270	100.72	-10.95	-1099.60	159.53	-0.93	-1481.44
-300	95.11	-11.05	887.85	158.59	-2.75	-1133.46
-330	90.08	-8.70	2404.65	156.87	-4.04	-698.86

Keystrokes:
Outputs:
6 ENTER4 .5 ENTER4 7 ENTER4
$3 \underset{\mathrm{~A}}{ } \mathrm{~A} \xrightarrow{ } \quad 6.00$

Select output link.

60 CHS IE
$0.00 \quad \begin{array}{ll}\text { (Press }+\mathbf{C} \text { again } \\ & \text { if } 1.00 \text { is displayed) }\end{array}$

$$
\begin{array}{rl}
-60.00 & \text { *** }(\mathrm{RPM}) \\
0.00 & * * *\left(\theta_{0}\right) \\
86.69 & * * *(\phi) \\
-4.62 & * * *(\dot{\phi}) \\
3392.91 & * * *(\ddot{\phi}) \\
-30.00 & * * *\left(\theta_{1}\right) \\
85.63 & * * *\left(\phi_{1}\right) \\
0.46 & * * *\left(\dot{\phi}_{1}\right) \\
3816.90 & * * *\left(\ddot{\phi}_{1}\right) \\
\text { etc. } & \\
\vdots & \\
-330.00 & * * *\left(\theta_{\mathrm{f}}\right) \\
90.08 & * * *\left(\phi_{\mathrm{f}}\right) \\
-8.70 & * * *\left(\dot{\phi}_{\mathrm{f}}\right) \\
2404.65 & * * *\left(\ddot{\phi}_{\mathrm{f}}\right)
\end{array}
$$

0 ENTER4 12 ENTER4 30 ENTER4
60 CHS f E \longrightarrow

$$
\begin{array}{rl}
-60.00 & * * *(\mathrm{RPM}) \\
0.00 & * * *\left(\theta_{0}\right) \\
154.67 & * * *\left(\alpha_{0}\right) \\
-4.62 & * * *\left(\dot{\alpha}_{0}\right) \\
-92.82 & * * *\left(\ddot{\alpha}_{0}\right) \\
-30.00 & * * *\left(\theta_{1}\right) \\
152.42 & \text { *** }\left(\alpha_{1}\right) \\
-4.20 & * * *\left(\dot{\alpha}_{1}\right) \\
713.38 & * * *\left(\ddot{\alpha}_{1}\right) \\
\text { etc. } &
\end{array}
$$

PROGRESSION OF SLIDER CRANK

In a slider crank mechanism (e.g.,the piston, wrist pin and connecting rod in an internal combustion engine), for given crank radius, connecting rod length, slider offset, crankshaft speed (RPM) and crank position, this program calculates the following: the displacement, velocity, and acceleration of the slider; the connecting rod angle, velocity and acceleration; the maximum and minimum displacements, and the maximum and minimum angular values for ϕ.

Equations:

$$
\begin{aligned}
& \omega=\frac{\pi \mathrm{N}}{30} \\
& \mathrm{x}=\mathrm{R} \cos \theta+\mathrm{L} \cos \phi \\
& \mathrm{x}_{\text {max }}=(\mathrm{R}+\mathrm{L}) \cos \left[\sin ^{-1}\left(\frac{\mathrm{E}}{\mathrm{R}+\mathrm{L}}\right)\right] \\
& \mathrm{x}_{\text {min }}=(\mathrm{L}-\mathrm{R}) \cos \left[\sin ^{-1}\left(\frac{\mathrm{E}}{\mathrm{~L}-\mathrm{R}}\right)\right] \\
& \Delta \mathrm{x}=\mathrm{x}_{\text {max }}-\mathrm{x}_{\text {min }} \\
& \phi=\sin ^{-1}\left(\frac{\mathrm{E}+\mathrm{R} \sin \theta}{\mathrm{~L}}\right) \\
& \mathrm{v}=\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{R} \omega\left(\frac{-\sin (\theta+\phi)}{\cos \phi}\right) \\
& \mathrm{a}=\frac{\mathrm{d}^{2} \mathrm{x}}{\mathrm{dt}^{2}}=\mathrm{R} \omega^{2}\left(\frac{-\cos (\theta+\phi)}{\cos \phi}-\frac{\mathrm{R} \cos ^{2} \theta}{\mathrm{~L} \cos ^{3} \phi}\right) \\
& \phi_{\max }=\sin ^{-1}\left(\frac{E+R}{L}\right) \\
& \phi_{\min }=\sin ^{-1}\left(\frac{E-R}{L}\right)
\end{aligned}
$$

$$
\begin{gathered}
\Delta \phi=\phi_{\max }-\phi_{\min } \\
\dot{\phi}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\omega \frac{\mathrm{R} \cos \theta}{\mathrm{~L} \cos \phi} \\
\ddot{\phi}=\frac{\mathrm{d}^{2} \phi}{\mathrm{dt}^{2}}=\omega^{2}\left[\left(\frac{\mathrm{~d} \phi}{\mathrm{~d} \theta}\right)^{2} \tan \phi-\frac{\mathrm{R} \sin \theta}{\mathrm{~L} \cos \phi}\right]
\end{gathered}
$$

where:
N is crankshaft speed in RPM;
E is slider offset;
L is connecting rod length;
R is crank radius;
ω is crank angular velocity in radians/sec;
θ is crank angle;
x is slider displacement;
$\mathrm{X}_{\text {max }}$ is maximum slider displacement;
$\mathrm{x}_{\text {min }}$ is minimum slider displacement;
$\Delta \mathrm{x}$ is stroke;
v is slider velocity;
a is slider acceleration;
ϕ is connecting rod angular displacement;
$\phi_{\text {max }}$ is maximum connecting rod angular displacement;
$\phi_{\min }$ is minimum connecting rod angular displacement;
$\Delta \phi$ is total angular throw of connecting rod;
$\dot{\phi}$ is angular velocity of connecting rod;
$\ddot{\phi}$ is angular acceleration of connecting rod.

References:

H. A. Rothbart, Mechanical Design and Systems Handbook, McGraw-Hill, 1964.
V. M. Faires, Kinematics, McGraw-Hill, 1959.

Remarks:

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the data for the			
	mechanism.	N	ENTER4	
		E	ENTER	
		L	ENTER4	
		R	A	ω
3	Calculate maximum dis-			
	placement and minimum			
	displacement of slider.		1 A	$\mathrm{x}_{\text {max }}$
				$\mathrm{x}_{\text {min }}$
4	Calculate maximum and			
	minimum angular displace-			
	ments for connecting rod.		1 B	$\phi_{\text {max }}$
				$\phi_{\text {min }}$
5	Input crank angle to calculate			
	slider displacement and			
	connecting rod angle.	θ	B	x, ϕ
6	Calculate slider velocity and			
	connecting rod angular			
	velocity.		C	$\mathrm{v}, \dot{\phi}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Calculate slider acceleration			
	and connecting rod angular			
	acceleration.		D	a, $\ddot{\phi}$
8	Repeat steps 5-7 for a			
	different θ.			
9	To calculate $\mathrm{x}, \phi, \mathrm{v}, \dot{\phi}, \mathrm{a}$, and $\ddot{\phi}$			
	for crank angles between θ_{1}			
	and θ_{2} with n intervals.	θ_{1}	ENTER』	
		θ_{2}	ENTER4	
		n	E	$\theta, \mathrm{x}, \phi, \mathrm{v}, \dot{\phi}, \mathrm{a}, \ddot{\phi}$
10	For a new mechanism, go to			
	step 2.			

Example 1:

For an in-line slider crank mechanism ($\mathrm{E}=0$), turning at 4800 RPM having a crank radius of 2.0 inches and connecting rod length of 7.0 inches, Find:
(1) $\mathrm{x}_{\text {max }}, \mathrm{x}_{\text {min }}$ and $\phi_{\text {max }}, \phi_{\text {min }}$
(2) x, v, and a of the wrist pin in the slider
(3) $\phi, \dot{\phi}$, and $\ddot{\phi}$ of the connecting rod
for $\theta=0^{\circ}, 15^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}, 225^{\circ}$.

θ°	$\mathbf{x}(\mathbf{i n})$	$\boldsymbol{\phi}^{\circ}$	$\mathbf{v (i n / \mathbf { s e c })}$	$\dot{\boldsymbol{\phi}}(\mathbf{r a d} / \mathbf{s e c})$	$\mathbf{a}\left(\mathbf{i n} / \mathbf{s e c}^{\mathbf{2}}\right)$	$\ddot{\phi}\left(\mathbf{r a d} / \mathbf{s e c}^{2}\right)$
0	9.00	0.00	0.00	143.62	-649701.96	0.00
15	8.91	4.24	-332.20	139.10	-614226.44	-17300.41
45	8.27	11.66	-857.50	103.69	-360454.40	-49902.29
90	6.71	16.60	-1005.31	0.00	150658.43	-75329.22
135	5.44	11.66	-564.22	-103.69	354181.29	-49902.29
180	5.00	0.00	0.00	-143.62	360945.53	0.00
225	5.44	-11.66	564.22	-103.69	354181.29	49902.29

Keystrokes:

4800 ENTER4 0 ENTER

7 ENTER4 2 A \longrightarrow	$502.65^{* * *}(\omega)$
f A	$9.00^{* * *}\left(\mathrm{x}_{\text {max }}\right)$
	$5.00^{* * *}\left(\mathrm{x}_{\text {min }}\right)$
1 B	16.60 *** ($\phi_{\text {max }}$)
	-16.60 *** $\left(\phi_{\min }\right)$
0 B	$9.00^{* * *}$ (x)
	0.00 *** (ϕ)
C	$0.00^{* * *}$ (v)
	$143.62 * * *(\dot{\phi})$
D	-649701.96 *** (a)
	$0.00^{* * *}(\ddot{\phi})$
$15 \mathrm{~B} \longrightarrow$	$8.91{ }^{* * *}$ (x)
	$4.24^{* * *}(\phi)$
C	-332.20*** (v)
	$139.10^{* * *}(\dot{\phi})$
D \longrightarrow	-614226.44 *** (a)
	$-17300.41^{* * *}(\ddot{\phi})$
$45 \mathrm{~B} \longrightarrow$	8.27 *** (x)
	$11.66^{* * *}(\phi)$
C \longrightarrow	-857.50 *** (v)
	$103.69^{* * *}(\dot{\phi})$
D \longrightarrow	-360454.40 *** (a)
	-49902.29*** $(\stackrel{\text { ¢ }}{ }$)
225 B	$5.44^{* * *}$
	-11.66***
C \longrightarrow	$564.22^{* * *}$
	-103.69 ***
D \longrightarrow	$354181.29^{* * *}$
	49902.29 ***

Alternatively, the values may be generated automatically.
0 ENTER4 225 ENTER4 $5 \mathbf{E} \longrightarrow 0.00^{* * *}(\theta)$

90.00 ***
$6.71^{* * *}$
16.60 ***
$-1005.31^{* * *}$
0.00 ***
150658.43 ***
-75329.22 ***
225.00 ***
5.44 ***
-11.66 ***
564.22 ***
-103.69 ***
354181.29 ***
49902.29 ***

12-07

Example 2:

Determine the same values as in example 1 for a slider crank with offset of 1.5 inches ($\mathrm{E}=1.5$ inches).

Keystrokes:
4800 ENTERA 1.5 ENTERA

7 ENTER4 2 A \longrightarrow	$502.65^{* * *}(\omega)$
I A	8.87 *** ($\mathrm{x}_{\text {max }}$)
	4.77 *** ($\mathrm{x}_{\text {min }}$)
IB \longrightarrow	$30.00^{* * *}\left(\phi_{\max }\right)$
	$-4.10{ }^{* * *}\left(\phi_{\text {min }}\right)$
0 B \longrightarrow	$8.84{ }^{* * *}$ (x)
	$12.37{ }^{* * *}(\phi)$
C \longrightarrow	$-220.55^{* * *}$ (v)
	$147.03^{* * *}(\dot{\phi})$
D \longrightarrow	-660249.41 ${ }^{* * *}$ (a)
	$4742.62^{* * *}(\ddot{\phi})$
$15 \mathrm{~B} \longrightarrow$	$8.63^{* * *}$ (x)
	16.75 *** (()
C \longrightarrow	-552.49 *** (v)
	144.87 *** ($\dot{\phi}$)
D \longrightarrow	-602160.36 *** (a)
	-13194.60*** $(\ddot{\boldsymbol{\phi}})$
225 B \longrightarrow	5.59 ***
	0.70 ***
C \longrightarrow	719.57 ***
	-101.56 ***
D \longrightarrow	$280733.14^{* * *}$
	$51175.65^{* * *}$

$\boldsymbol{\theta}^{\circ}$	\mathbf{x} (in)	ϕ°	$\mathbf{v}(\mathbf{i n} / \mathbf{s e c})$	$\dot{\phi}(\mathbf{r a d} / \mathbf{s e c})$	$\mathbf{a}\left(\mathbf{i n} / \mathbf{s e c}^{\mathbf{2}}\right)$	$\ddot{\phi}\left(\mathbf{r a d} / \mathbf{s e c}^{\mathbf{2}}\right)$
0	8.84	12.37	-220.55	147.03	-660249.41	4742.62
15	8.63	16.75	-552.49	144.87	-602160.36	-13194.60
45	7.78	24.60	-1036.35	111.69	-289750.94	-50429.96
90	6.06	30.00	-1005.31	0.00	291748.80	-83356.80
135	4.95	24.60	-385.37	-111.69	424884.76	-50429.96
180	4.84	12.37	220.55	-147.03	350398.08	4742.62
225	5.59	0.70	719.57	-101.56	280733.14	51175.65

0 ENTER4 360 ENTER4 8 E \longrightarrow	$0.00^{* * *}(\theta)$
	8.84 *** (x)
	12.37 *** (ϕ)
	$-220.55^{* * *}$ (v)
	$147.03^{* * *}(\dot{\phi})$
	$-660249.41^{* * *}(\mathrm{a})$
	$4742.62^{* * *}(\ddot{\phi})$
	$45.00^{* * *}$
	7.78 ***
	24.60 ***
	-1036.35***
	111.69 ***
	-289750.94***
	$-50429.96 * * *$
	$360.00^{* * *}$
	8.84 ***
	12.37 ***
	-220.55 ***
	147.03 ***
	$-660249.41^{* * *}$
	4742.62 ***

CIRCULAR CAMS

This program computes the parameters necessary for the design of a harmonic or cycloidal circular cam with a roller, point or flat follower.

Equations:

Harmonic cams:

$$
\begin{gathered}
y=\frac{h}{2}\left(1-\cos \frac{180 \theta}{\beta}\right) \\
\frac{d y}{d \theta}=\frac{\pi \mathrm{h}}{2 \beta} \sin \frac{180 \theta}{\beta} \quad\left[\frac{\mathrm{dy}}{\mathrm{dt}}=\omega \frac{\mathrm{dy}}{\mathrm{~d} \theta}\right] \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}=\frac{\pi^{2} \mathrm{~h}}{2 \beta^{2}} \cos \frac{180 \theta}{\beta} \quad\left[\frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=\omega^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}\right]
\end{gathered}
$$

Cycloidal cams:

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{h}\left[\frac{\theta}{\beta}-\frac{1}{2 \pi} \sin \frac{2 \pi \theta}{\beta}\right] & \\
\frac{\mathrm{dy}}{\mathrm{~d} \theta}=\frac{\mathrm{h}}{\beta}\left[1-\cos \frac{2 \pi \theta}{\beta}\right] & {\left[\frac{\mathrm{dy}}{\mathrm{dt}}=\omega \frac{\mathrm{dy}}{\mathrm{~d} \theta}\right]} \\
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}=\frac{2 \pi \mathrm{~h}}{\beta^{2}} \sin \frac{2 \pi \theta}{\beta} & {\left[\frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=\omega^{2} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{~d} \theta^{2}}\right]}
\end{array}
$$

Both cycloidal and harmonic cams:

$$
\begin{gathered}
\alpha=\tan ^{-1}\left(\frac{180}{\pi \mathrm{r}} \frac{\mathrm{dy}}{\mathrm{~d} \theta}\right) \\
\mathrm{r}=\mathrm{R}_{\mathrm{b}}+\mathrm{y}
\end{gathered}
$$

Roller followers:

$$
\begin{gathered}
\mathrm{r}_{\mathrm{g}}=\left(\mathrm{r}^{2}+\left(\mathrm{R}_{\mathrm{g}}-\mathrm{R}_{\mathrm{r}}\right)^{2}-2 \mathrm{r}\left(\mathrm{R}_{\mathrm{g}}-\mathrm{R}_{\mathrm{r}}\right) \cos \alpha\right)^{1 / 2} \\
\phi=\sin ^{-1} \frac{\mathrm{R}_{\mathrm{g}}-\mathrm{R}_{\mathrm{r}}}{\mathrm{r}_{\mathrm{g}}}+\theta
\end{gathered}
$$

Flat followers:

$$
\begin{gathered}
\mathrm{r}_{\mathrm{c}}=\left(\mathrm{r}^{2}+\left(\frac{180}{\pi} \frac{d y}{\mathrm{~d} \theta}\right)^{2}\right)^{1 / 2} \\
\mathrm{r}_{\mathrm{g}}=\left(\mathrm{R}_{\mathrm{g}}^{2}+\mathrm{r}_{\mathrm{c}}^{2}+2 \mathrm{R}_{\mathrm{g}} \mathrm{r}_{\mathrm{c}} \cos \alpha\right)^{1 / 2} \\
\phi=\cos ^{-1}\left(\frac{\mathrm{r}_{\mathrm{c}}+\mathrm{R}_{\mathrm{g}} \cos \alpha}{\mathrm{r}_{\mathrm{g}}}\right)-\alpha+\theta
\end{gathered}
$$

where:
β is duration of lift h ;
$\Delta \theta$ is angular increment of calculation;
h is total cam lift over angle β;
R_{b} is base circle radius;
R_{g} is grinder radius (set to zero for cam profile);
R_{r} is roller radius (set to zero for point follower);
θ is cam angle;
y is follower lift;
$\frac{d y}{d \theta}$ is follower velocity;
$\frac{d^{2} y}{d \theta^{2}}$ is follower acceleration;
α is pressure angle;
ϕ is angle from zero to grinder center;
r_{g} is center to center distance of grinder and cam.

Reference:

M.F. Spotts, Design of Machine Elements, Prentice-Hall 1971.

Remarks:

A flat follower will not properly follow a cam profile with any concave sections, e.g., see figure 1 .

Figure 1
Note two points of contact

A roller follower will not properly follow a cam profile with concave section whose radius is less than the roller radius, e.g., see figure 2.

Figure 2
Note two points of contact

When the program is loaded, roller follower and harmonic profile modes are automatically selected.
Profiles other than harmonic and cycloidal may be generated by substituting them instead of label 1 or label 2. Example 3 demonstrates this.

Registers R_{8} and $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S9}}$ are available for user storage.
For a parabolic profile, substitute the LBL 3 subrotine of ME1-14A for LBL 1 or LBL 2 of ME1-13A.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select flat or roller follower			
	(1 = flat, $0=$ roller. Roller			
	follower is set when card is			
	loaded).		1 (1/0
3	Select cam function type:			
	Harmonic (set when card			
	was loaded)	1	1 B	1.00000
	or cycloidal.	2	f B	2.00000
4	Input starting angle.	θ_{0}	ENTER	θ_{0}
5	Input duration of lift.	β	ENTER	β
6	Input increment of θ.	$\Delta \theta$	1 c	0.00000
7	Input lift.	h	1 D	h
8	Input radius of roller (skip for			
	flat followers).	R_{r}	ENTER	R_{r}
9	Input radius of grinder (use			
	zero if cam profile is desired).	R_{g}	ENTER	R_{g}
10	Input base radius.	R_{b}	[E	$\left(R_{r}-R_{g}\right)$
11	For automatic output, go to			
	step 15.			
12	Output angle and lift.		B	θ, y
13	Optional: Output other			
	quantities of velocity and			
	acceleration		c	$\mathrm{dy} / \mathrm{d} \theta, \mathrm{d}^{2} \mathrm{y} / \mathrm{d} \theta^{2}$
	and/or pressure angle		D	α
	and/or grinder radius and			
	angle.		E	$\mathrm{r}_{\mathrm{g}}, \phi$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
14	For next increment, go to			
	step 12. For a new lift, go to			
	step 4. For a new case, go to			
	step 2.			
15	Automatic output of $\theta, \mathrm{y}, \mathrm{dy} / \mathrm{d} \theta$,			
	$\mathrm{d}^{2} \mathrm{y} / \mathrm{d} \theta^{2}, \alpha, \mathrm{r}_{\mathrm{g}}$, and ϕ with			
	increments of $\Delta \theta$ from θ_{0}			
	through $\theta_{0}+\beta$.		Δ	$\theta, \mathrm{y}, \mathrm{dy} / \mathrm{d} \theta$
16	For next lift, go to step 4. For			
	a new case, go to step 2.			

Example 1:

Design a harmonic cam with a 1.0 inch roller follower, which develops harmonic motion, dropping from a base radius of 12.0 inches to 7.5 inches in 130° of rotation. From 130° to 170°, increase the lift to the original base radius. Using 10° increments, generate the cam profile by letting $\mathrm{R}_{\mathrm{g}}=0$.

θ^{0}	y (in)	dy/d θ (in/deg)	$\mathbf{d}^{2} \mathbf{y} / \mathbf{d} \theta^{2}$ (in/deg ${ }^{2}$)	α^{0}	r_{9} (in)	ϕ
0000	00000	00000	-1.314-03	00000	. 0000	000
10.0000	-65.38-03	-13.01-03	-1.276-03	-3.575 00	10.9400	9.67300
20.0000	-257.7-03	-25.27-03	-1.163-03	-7.029 00	10.7500	19.3500
30.0000	-565.9-03	-36.06-03	-983.5-06	-10.24 00	10.4500	29.0300
40.0000	-971.9-03	-44.75-03	-746.4-06	-13.09 00	10.0600	38.7100
50.0000	-1.452 00	-50.84-03	-466.0-06	-15.44 00	9.58800	48.4100
60.0000	-1.979 00	-53.98-03	-158.4-06	-17.15 00	9.07000	58.1400
70.0000	-2.521 00	-53.98-03	158.4-06	-18.07 00	8.53400	67.9200
80.0000	-3.048 00	-50.84-03	466.0-06	-18.02 00	8.00700	77.7900
90.0000	-3.528 00	-44.75-03	746.4-06	-16.84 00	7.52000	87.7900
100.000	-3.934 00	-36.06-03	983.5-06	-14.37 00	7.10100	98.0000
110.000	-4.242 00	-25.27-03	1.16303	-10.57 00	6.77700	108.400
120.000	-4.435 00	-13.01-03	1.276-03	-5.628 00	6.57100	119.100
130.000	-4.500 00	0.00000	1.314-03	0.00000	6.50000	130.000
130.000	0.00000	0.00000	13.88-03	0.00000	6.50000	130.000
140.000	659.0-03	125.0-03	9.814-03	41.2700	7.43700	145.100
150.000	2.25000	176.7-03	0.00000	46.0800	9.08500	154.500
160.000	3.84100	125.0-03	-9.814-03	32.2600	10.5100	162.900
170.000	4.50000	0.00000	-13.88-03	0.00000	11.000	170.000

Keystrokes:

Outputs:

Select roller follower by pressing \boldsymbol{A} until zero is displayed.

$$
0.00000
$$

Select harmonic cam:

$1 \boldsymbol{B} \longrightarrow$	1.00000
0 ENTER4 130 ENTER4	
$10 \mathrm{f} \longrightarrow$	0.00000
7.5 ENTER4 $12-\mathrm{f} \longrightarrow$	-4.500 00
1 ENTERA 0 ENTERA 12 fe \rightarrow	1.00000
A	$0.00000^{* * *}(\theta)$
	0.00000 *** (y)
	$0.00000^{* * *}(\mathrm{dy} / \mathrm{d} \theta)$
	$-1.314-03^{* * *}\left(\mathrm{~d}^{2} \mathrm{y} / \mathrm{d} \theta^{2}\right)$
	$0.00000^{* * *}(\alpha)$
	$11.0000^{* * *}\left(\mathrm{r}_{\mathrm{g}}\right)$
	$0.00000^{* * *}(\phi)$
	10.0000 ***
	-65.38-03 ***
	-13.01-03 ***
	-1.276-03 ***
	-3.575 00 ***
	$10.9400^{* * *}$
	9.67300 ***
	仡
	etc.

For the lift back to the original base radius, input $\beta\left(170^{\circ}-130^{\circ}=40^{\circ}\right)$ and $\Delta \theta$. The start of this lift $\left(\theta_{0}=130^{\circ}\right)$ is already displayed and does not need to be keyed in again (unless you hit R/S and stopped the calculation prematurely).

Keystrokes:

Outputs:
40 ENTER4 10 IC
0.00000

Key in new lift:
4.5 fD \qquad 4.50000

Key in previous roller and grinder radii and new base radius of 7.5:
1 ENTER4 0 ENTER $7.5 \boldsymbol{f} \rightarrow \quad 1.00000$
A
$130.00^{* * *}$

0.00000 *
0.00000 ***
13.88-03 **
0.00000 ***
6.50000 ***
130.000 ***
140.000 **
659.0-03 ***
125.0-03
9.814-03 ***
41.2700 ***
7.43700 **
145.100

Example 2:

Design a cycloidal, flat-faced cam with a lift of 50 millimeters in 40 degrees. The base radius is 500 millimeters and a 200 millimeter cutter is to be used for manufacture. Calculate $\theta, \mathrm{y}, \mathrm{r}_{\mathrm{g}}$ and ϕ at 10 degree increments and calculate $\mathrm{dy} / \mathrm{dt}(\mathrm{dy} / \mathrm{dt}=\omega \mathrm{dy} / \mathrm{d} \theta)$ at 20 degrees for a speed of 600 RPM .

Keystrokes:

Outputs:

Press A until 1.00000 is displayed:
1.00000

Select cycloidal subroutine:
2 B

2.00000

Input $\theta_{0}, \beta, \Delta \theta$.
0 ENTERA 40 ENTER4
$10 \boldsymbol{C} \longrightarrow 0.00000$
Input h:
50 © D
50.0000

Input R_{g} and R_{b} :
200 ENTERA 500
E
200.000

B
0.00000 *** ($\boldsymbol{\theta}$)
0.00000 *** (y)

Example 3:

A cam with a flat-faced follower is to convert an angular input to a linear output according to the following equation and its derivatives:

$$
\begin{aligned}
& y=(\theta / \beta)^{2} \\
& y^{\prime}=2(\theta / \beta) \\
& y^{\prime \prime}=2
\end{aligned}
$$

Let $\beta=90^{\circ}$ and $\mathrm{h}=1$ inch. Generate the cam profile from 0° to 90° in increments of 15° by setting $\mathrm{R}_{\mathrm{g}}=0$.
$\mathrm{R}_{\mathrm{b}}=3.0$ inches
$\mathrm{h}=1.0$ inches
The first step is to write a cam function subroutine incorporating the function and the derivatives. The subroutine can access (θ / β) in R_{E} and must store y^{\prime} in R_{4}, and $\mathrm{y}^{\prime \prime}$ in R_{3}, before returning to the main program with y in the X -register. One such subroutine is shown below:

```
LBL }
    2
STO 3 (y"calculated and stored)
RCL E
    x
STO 4 (y'calculated and stored)
RCL E
    x
RTN (y calculated)
```

Now, load this sequence into program memory in place of LBL 1 (steps 168-188) or LBL 2 (steps 189-214). After this, the following keystrokes will generate the cam data:

Keystrokes:

Outputs:

Select flat-faced follower by pressing fa until 1.00000 appears:

1.00000

Select subroutine 3 (since the new subroutine is LBL 3):

$3 \mathrm{fB} \longrightarrow$	3.00000
0 ENTER4 90 ENTER 4	
$15 \mathrm{C} \longrightarrow$	0.00000
1 ¢D \longrightarrow	1.00000
0 ENTER 3.0 ¢ E \longrightarrow	0.0000
A	$0.000+00^{* * *}$
	$0.000+00^{* * *}$
	$0.000+00^{* * *}$
	246.9-06 ***
	$0.000+00^{* * *}$
	$3.000+00$ ***
	$0.000+00$ ***
	$15.00+00^{* * *}$
	27.78-03 ***
	3.704-03 ***
	246.9-06 ***
	$4.009+00^{* * *}$
	$3.035+00^{* * *}$
	$19.01+00^{* * *}$
	$30.00+00^{* * *}$

7.407-03
246.9-06
7.7
$3.140+00$
37.7
45.
250.0
11.11-03
246.9-06
$11.08+00$
3.3
$56.08+$
0.00
444.4-03
14.81-03
246.9-06
$13.84+00$
$3.547+00$ *
$73.84+00$
00+00
694.4-03
-03
246.9-06
$16.02+00$
. $844+00$
$91.02+00$
+00
$1.000+00$
22.22-03
246.9-06 **
$17.66+00$
$4.198+00$
107.7-00 ***

CAM DATA SUMMARY

θ	θ / β	\mathbf{y}	\mathbf{r}_{9}	ϕ
0°	0	0	3.000	0
15°	0.167	$27.78-03$	3.035	19.01
30°	0.333	$11.1-03$	3.140	37.77
45°	0.500	$250.0-03$	3.312	56.08
60°	0.667	$444.4-03$	3.547	73.84
75°	0.833	$694.4-03$	3.844	91.02
90°	1.000	$1.000-00$	4.198	107.7

Note that $\mathrm{y}=(\theta / \beta)^{2}$ as specified by the original equation.

LINEAR CAMS

This program computes parameters necessary for the design of harmonic, cycloidal-or parabolic profiles for linear cams with roller followers.

Equations:

$$
\begin{gathered}
y=h f(x / L)+R_{b} \\
x_{g}=x-\left(R_{g}-R_{r}\right) \sin \alpha \quad y_{g}=y+\left(R_{g}-R_{r}\right) \cos \alpha \\
\alpha=\tan ^{-1}\left(\frac{d y}{d x}\right) \\
=\tan ^{-1}\left(\frac{h}{L} f^{\prime}(x / L)\right) \\
\frac{d y}{d x}=\frac{h}{L} f^{\prime}(x / L) \\
\frac{d^{2} y}{d x^{2}}=\frac{h}{L^{2}} f^{\prime \prime}(x / L)
\end{gathered}
$$

For harmonic profiles:

$$
f(x / L)=\left(1-\cos \left(\frac{180 x}{L}\right)\right)
$$

For cycloidal profiles:

$$
f(x / L)=\left(\frac{x}{L}-\frac{1}{2 \pi} \sin \frac{180 x}{L}\right)
$$

For parabolic profiles:

$$
f(x / L) \begin{cases}2 h\left(\frac{x}{L}\right)^{2} & \frac{x}{L}<.5 \\ {\left[1-2\left(1-\frac{x}{L}\right)^{2}\right]} & \frac{x}{L} \geqslant .5\end{cases}
$$

where:
L is the duration of lift h ;
$\Delta \mathrm{x}$ is the linear increment of calculation;
h is the total follower lift over length L;
y_{b} is the base height from reference datum to roller center;
R_{r} is the roller radius (zero for point follower);
R_{g} is the grinder radius;
x is the linear displacement of cam;
y is the roller center height above datum;
$\left(\mathrm{x}_{\mathrm{g}}, \mathrm{y}_{\mathrm{g}}\right)$ is the grinder center for displacement x ;
α is the pressure angle.

Remarks:

The roller follower will not properly follow a cam profile with concave sections whose radius is less than the roller radius.

Note two points of contact

When the program is loaded, the harmonic profile mode is assumed. You may change to cycloidal by keying 2 and pressing \boldsymbol{A}. Parabolic is selected by keying 3 and pressing A. Keying 1 and pressing \boldsymbol{A} returns the program to original status.
Arbitrary functions of (x / L) may be substituted in a manner analogous to that of example 3, ME1-13A.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select cam function type:			
	Harmonic (set when card			
	was loaded)	1	18	1
	or cycloidal	2	1 A	2
	or parabolic	3	f $\square_{\text {A }}$	3
3	Input starting x .	x_{0}	ENTER	x_{0}
4	Input duration of lift.	L	ENTER	L
5	Input increment of x .	Δx	1 B	0.00000
6	Input lift.	h	1 C	h
7	Input height of follower center			
	above reference datum at x_{0}.	y_{b}	1 D	$y_{\text {b }}$
8	Input grinder radius.	R_{g}	ENTER	R_{g}
9	Input roller radius.	R_{r}	18	$\mathrm{R}_{\mathrm{g}}-\mathrm{R}_{\mathrm{r}}$
10	For automatic output, go to			
	step 14.			
11	Output x, y coordinates of			
	roller.		B	x, y
12	Optional: output other			
	quantities:			
	Follower velocity and			
	acceleration,		c	$d y / d x, d^{2} y / d x^{2}$
	and/or pressure angle,		D	α
	and/or grinder coordinates.		E	$\mathrm{X}_{\mathrm{g}}, \mathrm{y}_{9}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	For next increment, go to			
	step 11. For a new case, go to			
	step 2.			
14	Automatic output of $x, y, d y / d x$,			
	$d^{2} y / d^{2}, \alpha, x_{9}$, and y_{g} with			
	increments of Δx from x_{0}			
	through $x+L$.		Δ	$x, y, d y / d x \ldots$
15	For a new case, go to step 2.			

Example:

Design a harmonic, linear profile which has a base follower displacement of 4 cm , and a 3 cm lift over a distance of 7 cm . After the harmonic profile, a cycloidal lift of 2 cm occurs over a distance of 8 cm . Then a parabolic profile returns the follower to its original height (a drop of 5 cm) over a distance of 10 cm .
The follower and the grinder both have a radius of 1 cm . Therefore, the grinder and follower paths are equivalent. Instead of generating redundant grinder data, generate the surface profile by setting $\mathrm{R}_{\mathrm{g}}=0$.

Use 1 cm step size.

Keystrokes:

Harmonic segment from 0 cm to 7 cm .

Outputs:

$$
\begin{aligned}
& 1.00000 \quad \text { (harmonic profile) } \\
& 0.00000 \\
& 3.00000 \\
& 4.00000 \\
& -1.000 \\
& 0.000 \\
& 4.000
\end{aligned}{ }^{*} 00 \text { *** }(\mathrm{x})
$$

14-05

$$
\begin{aligned}
& 3.00000^{* * *}\left(\mathrm{y}_{\mathrm{g}}\right) \\
& 1.00000 \text { *** } \\
& 4.14900^{* * *} \\
& \text { 292.1-03 *** } \\
& \text { 272.2-03 *** } \\
& 16.2800^{* * *} \\
& 1.28000 \text { *** } \\
& 3.18900^{* * *} \\
& 7.00000 \text { *** } \\
& 7.00000 \text { *** } \\
& 0.00000 \text { *** } \\
& \text {-302.1-03 *** } \\
& 0.00000 \text { *** } \\
& 7.00000 \text { *** } \\
& 6.00000 \text { *** }
\end{aligned}
$$

Cycloidal segment from 7 cm to 15 cm .

$2 \boldsymbol{A} \longrightarrow$	2.00000
7 ENTER4 8 ENTER4 1 ¢ $\mathrm{B}^{\longrightarrow}$	0.00000
$2 \mathrm{fC} \longrightarrow$	2.00000
$7 \mathrm{D} \longrightarrow$	7.00000
A \longrightarrow	$7.00000^{* * *}(\mathrm{x})$
	$7.00000^{* * *}(\mathrm{y})$
	$0.00000^{* * *}(\mathrm{dy} / \mathrm{dx})$
	$0.00000^{* * *}\left(\mathrm{~d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)$
	$0.00000^{* * *}(\alpha)$
	$7.00000^{* * *}\left(\mathrm{x}_{\mathrm{g}}\right)$
	$6.00000^{* * *}\left(\mathrm{y}_{\mathrm{g}}\right)$
	$8.00000^{* * *}$
	$7.02500^{* * *}$
	73.22-03 ***
	138.8-03 ***
	$4.18800^{* * *}$
	8.07300 ***
	6.02800 ***

Parabolic segment from 15 cm to 25 cm .

15 ENTERA 10 ENTER4 1 B

A

$$
\left.\begin{array}{rl}
15.00 & 00^{* * *}(\mathrm{x}) \\
9.000 & 00^{* * *}(\mathrm{y}) \\
0.000 & 00^{* * *}(\mathrm{dy} / \mathrm{dx}) \\
-200.0-03^{* * *}\left(\mathrm{~d}^{2} \mathrm{y} / \mathrm{dx}^{2}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& 24.0000^{* * *} \\
& 4.10000 \text { *** } \\
& \text {-200.0-03 *** } \\
& \text { 200.0-03 *** } \\
& -11.3100^{* * *} \\
& 23.8000^{* * *} \\
& 3.11900^{* * *} \\
& 25.0000^{* * *} \\
& 4.00000 \text { *** } \\
& 0.00000^{* * *} \\
& \text { 200.0-03 *** } \\
& 0.00000 \text { *** } \\
& 25.0000^{* * *} \\
& 3.00000^{* * *}
\end{aligned}
$$

Notes

GEAR FORCES

This program computes three mutually perpendicular forces, resulting from input torque, on helical, bevel or worm gears.
Helical gear equations:

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{T}}{\mathrm{r}}
$$

$$
\mathrm{F}_{\mathrm{gs}}=\mathrm{F}_{\mathrm{t}} \tan \phi
$$

$$
\mathrm{F}_{\mathrm{gax}}=\mathrm{F}_{\mathrm{t}} \tan \alpha
$$

$$
\tan \phi=\frac{\tan \phi_{\mathrm{n}}}{\cos \alpha}
$$

Figure 1-Helical Gear
where:
T is the input torque;
r is the pitch radius of the input gear;
F_{t} is the tangential force;
α is the helix angle measured from the axis of the gear (for spur gears $\alpha=0$);
ϕ_{n} is the pressure angle measured perpendicular to the gear tooth;
ϕ is the pressure angle measured perpendicular to the gear axis; F_{gs} is the radial force trying to separate the gears; $\mathrm{F}_{\text {gax }}$ is the force parallel to the gear axis.

Bevel gear equations:

$$
F_{t}=\frac{T}{r}
$$

$$
\begin{aligned}
& \mathrm{F}_{\text {bpax }}=\mathrm{F}_{\mathrm{t}}\left(\frac{\tan \phi_{\mathrm{n}} \sin (\operatorname{cone} \angle)}{\cos \alpha}+\tan \alpha \cos (\operatorname{cone} \angle)\right) \\
& \mathrm{F}_{\text {bgax }}=\mathrm{F}_{\mathrm{t}}\left(\frac{\tan \phi_{\mathrm{n}} \cos (\operatorname{cone} \angle)}{\cos \alpha}-\tan \alpha \sin (\operatorname{cone} \angle)\right)
\end{aligned}
$$

$$
\tan \phi=\frac{\tan \phi_{\mathrm{n}}}{\cos \alpha}
$$

Driven

Worm gear equations:

$$
\begin{gathered}
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{T}}{\mathrm{r}} \\
\mathrm{~F}_{\mathrm{ws}}=\mathrm{F}_{\mathrm{t}}\left(\frac{\sin \phi_{\mathrm{n}}}{\cos \phi_{\mathrm{n}} \sin \alpha+\mathrm{f} \cos \alpha}\right) \\
\mathrm{F}_{\mathrm{gax}}=\mathrm{F}_{\mathrm{t}} \quad \frac{1-\frac{\mathrm{f} \tan \alpha}{\cos \phi_{\mathrm{n}}}}{\tan \alpha+\frac{\mathrm{f}}{\cos \phi_{\mathrm{n}}}} \\
\tan \phi=\frac{\tan \phi_{\mathrm{n}}}{\cos \alpha}
\end{gathered}
$$

Driver: Worm (Right hand)

Figure 3
WORM GEAR
where:
T is the input (worm) torque;
n is the pitch radius of the worm;
F_{t} is the tangential force on the worm;
α is the lead angle of the worm $\left(\alpha=\tan ^{-1}(\mathrm{~L} / 2 \pi \mathrm{r})\right.$, where L is the lead of the worm);
ϕ_{n} is the pressure angle measured perpendicular to the worm teeth;
ϕ is the pressure angle measured parallel to the worm axis;
f is the coefficient of friction;
$F_{w s}$ is the separating force between the worm and gear;
$\mathrm{F}_{\text {gax }}$ is the force parallel to the gear axis.

Remarks:

For bevel gears, the spiral angle (α) is positive if the concave face of the pinion teeth are facing the direction of rotation (see figure 2). α is negative if the convex surface of the pinion teeth face the direction of rotation.
Registers $\mathrm{R}_{0}-\mathrm{R}_{3}, \mathrm{R}_{7}-\mathrm{R}_{\mathrm{S} 9}$ and $\mathrm{R}_{\mathrm{c}}-\mathrm{R}_{\mathrm{I}}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Input torque.	T	ENTER4	T
3	Input pitch radius and calculate			
	tangential force.	r	A	F_{t}
4	Input helix angle for helical			
	gears, or spiral angle for spiral			
	bevel gears, or lead angle for			
	worm gears.	α	B	α
5	Input normal pressure angle	ϕ_{n}	c	ϕ_{n}
	or			
	input pressure angle.	ϕ	D	ϕ_{n}
6	For helical gears, go to step 7,			
	for bevel gears, go to step 9,			
	for worm gears, go to step 12.			
7	Calculate separating force			
	and axial force.		E	$\mathrm{F}_{\text {g }}, \mathrm{F}_{\text {gax }}$
8	For a new case, return to			
	step 2 and modify inputs as			
	necessary.			
9	Input bevel cone angle.	cone \angle	18	cone \angle
10	Calculate pinion axial force			
	and gear axial force.		1 B	$\mathrm{F}_{\text {bpax }}, \mathrm{F}_{\text {bgax }}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	For a new case, return to			
	step 2 and modify inputs as			
	necessary.			
12	Input coefficient of friction.	f	$\boxed{\mathbf{D}}$	f
13	Calculate separating force			
	and gear axial force.		\boxed{E}	$\mathrm{~F}_{\text {ws }}, \mathrm{F}_{\text {gax }}$
14	For a new case, go to step 2			
	and modify inputs as			
	necessary.			

Example 1:

A helical gear with pitch radius 12 cm has a torque applied to it of 450,000 dyne- cm . The helix angle is 30°, and the normal pressure angle, measured perpendicular to a tooth, is 17.5°. Find the tangential, separating, and thrust forces.
Keystrokes:
450000 ENTER4 $12 \mathrm{~A} \longrightarrow$

$30 \mathrm{~B} 17.5 \mathrm{CE} \longrightarrow$ | Outputs: |
| :--- |
| $37500.00 \quad\left(\mathrm{~F}_{\mathrm{t}}\right)$ |
| $13652.84 * * *\left(\mathrm{~F}_{\mathrm{gs}}\right)$ |
| $21650.64 * * *\left(\mathrm{~F}_{\mathrm{gax}}\right)$ |

Example 2:

A spiral pinion with mean radius 1.73 inches is subjected to a torque of 745 in-lb. The pinion is cut with a normal pressure angle of 20°, a spiral angle of 35°, with a pitch cone of 18°. Find the forces acting on the pinion. Rotation is in the direction of the concave side of the pinion teeth, so α is positive 35°.

Keystrokes:

35 B 20 C 18 AA国 \longrightarrow

Outputs:

$$
\begin{aligned}
430.64 & \left(\mathrm{~F}_{\mathrm{t}}\right) \\
345.90^{* * *} & \left(\mathrm{~F}_{\mathrm{bpax}}\right) \\
88.80^{* * *} & \left(\mathrm{~F}_{\mathrm{bgax}}\right)
\end{aligned}
$$

If the rotation were reversed, leaving all other input values unchanged, what would the forces be?

$$
35 \text { CHS B B } \longrightarrow \begin{array}{r}
-227.65^{* * *}\left(\mathrm{~F}_{\mathrm{bpax}}\right) \\
275.16^{* * *}\left(\mathrm{~F}_{\mathrm{bgax}}\right)
\end{array}
$$

Example 3:

A torque of $512 \mathrm{in}-\mathrm{lb}$ is applied to a worm gear having a pitch diameter of 2.92 inches and a lead of 2.20 inches. The normal pressure angle is 20°, and the coefficient of friction is 0.10 . Find the lead angle and the forces on the worm and worm gear.

Keystrokes:
512 ENTERA 2.92 ENTERA

Calculate lead angle $\left(\alpha=\tan ^{-1}\right.$ (lead $\left./ 2 \pi \mathrm{r}\right)$).
2.2 ENTERA $2 \boldsymbol{\square} \boldsymbol{\pi} \boldsymbol{\pi}$
2.92 ENTERA $2 \boldsymbol{\sim} \boldsymbol{\sim}$ TTAN $^{-1} \longrightarrow \quad 13.49 \quad(\alpha)$

B 20 C. 1 D \mathbf{D}
379.10 *** $\left(\mathrm{F}_{\mathrm{ws}}\right)$
986.99 *** ($\mathrm{F}_{\text {gax }}$)

STANDARD EXTERNAL
 INVOLUTE SPUR GEARS

	INVOLUTE	SPUR GEARS		ME1-16A
	-q	* R_{w}		
	$\phi+\mathrm{d}_{\mathrm{w}}$	$\rightarrow \mathrm{inv} \phi_{\mathrm{w}}$	$\rightarrow \phi_{w}$	-M

This program calculates various parameters for standard external involute spur gears. Given the diametral pitch P , number of teeth N , pressure angle ϕ, and pin diameter d_{w}, the program will calculate the pitch diameter D , tooth thickness t , and the involute and corresponding flank angle inv ϕ_{w} and ϕ_{w}. The flank angle ϕ_{w} is calculated from the involute by a Newton's method iterative solution for the equation $\mathrm{f}\left(\phi_{\mathrm{w}}\right)=0$,
where:

$$
\mathrm{f}\left(\phi_{\mathrm{w}}\right)=\tan \phi_{\mathrm{w}}-\phi_{\mathrm{w}}-\operatorname{inv} \phi_{\mathrm{w}}
$$

In this solution, an initial guess is made for ϕ_{w} :

$$
\phi_{\mathrm{w}}{ }^{(0)}=\left(3 \operatorname{inv} \phi_{\mathrm{w}}\right)^{\cdot 3}
$$

Newton's method then provides refinements of the initial guess by

$$
\begin{aligned}
\phi_{w}{ }^{(n+1)} & =\phi_{w}{ }^{(n)}-\frac{f\left(\phi_{w}{ }^{(n)}\right)}{f^{\prime}\left(\phi_{w}{ }^{(n)}\right)} \\
& =\phi_{w}{ }^{(n)}-\frac{\tan \phi_{w}{ }^{(n)}-\phi_{w}{ }^{(n)}-\operatorname{inv} \phi_{w}}{\tan ^{2} \phi_{w}{ }^{(n)}}
\end{aligned}
$$

The program also calculates various measurements over pins, namely, the theoretical values of the measurement over pins, M ; the radius to the center of the pin, 1 ; and the measurement over one pin, R_{w}. In addition, given the value of the tooth thinning Δt, the program will return the measurement over pins with tooth thinning, M_{t}.

Equations:

$$
\begin{aligned}
& \mathrm{D}=\frac{\mathrm{N}}{\mathrm{P}} \\
& \mathrm{t}=\frac{\pi}{2 \mathrm{P}}
\end{aligned}
$$

$$
\operatorname{inv} \phi_{\mathrm{w}}(\text { radians })=\frac{\mathrm{t}}{\mathrm{D}}+\tan \phi-\frac{\pi \phi}{180}+\frac{\mathrm{d}_{\mathrm{w}}}{\mathrm{D} \cos \phi}-\frac{\pi}{\mathrm{N}}
$$

$$
M=\left\{\begin{array}{cc}
d_{w}+2 q & (N \text { even }) \\
d_{w}+2 q \cos \left(\frac{90}{N}\right) & (N \text { odd }) \\
q=\frac{D \cos \phi}{2 \cos \phi_{w}} \\
R_{w}=q+\frac{d_{w}}{2} \\
M_{t}=M-\Delta t \frac{\cos \phi}{\sin \phi_{w}}
\end{array}\right.
$$

Reference:

Adapted from a program submitted to the HP-65 Users's Library by Mr. John Nemcovich, Los Angeles, CA.
Dudley, D.W., Gear Handbook, McGraw-Hill, 1962.

Remarks:

Registers $\mathrm{R}_{0}, \mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{c}}$ and I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input diametral pitch P	P	ENTER	P
	and number of teeth N to			
	calculate the pitch diameter			
	and tooth thickness t .	N	A	D, t
3	Input pressure angle ϕ	ϕ	ENTER	ϕ
	and pin diameter d_{w}.	d_{w}	B	ϕ
4	Calculate the involute inv $\phi_{\text {w }}$.		C	inv $\phi_{\text {w }}$ (deg.)
5	Calculate the corresponding			
	flank angle.		D	$\phi_{\text {w }}$ (deg.)
6	Calculate the measurement			
	over pins (theoretical).		E	M
7	Input tooth thinning and			
	calculate measurement over			
	pins with tooth thinning.	Δt	1 A	M
8	Calculate radius to the center			
	of pin.		1 B	q
9	Calculate measurement over			
	one pin.		18	R_{w}
10	To change tooth thinning, go			
	to step 7. To change any other			
	input, go to step 2.			
	Note: If d_{w} is not known, it may			
	be calculated from the pin			
	constant k and pitch P :	k	ENTER	
	$\mathrm{d}_{\mathrm{w}}=\mathrm{k} / \mathrm{P}$	P	+	d_{w}
11	To calculate ϕ_{w} directly from			
	inv ϕ_{w} : store inv ϕ_{w} in register 6	$\operatorname{inv} \phi_{\text {w }}$	STO 6	
	and calculate ϕ_{w}.		D	ϕ_{w} (deg.)

Example:

A 27-tooth gear with pitch 8 is cut with a 20° pressure angle. The pin diameter is 0.24 inches, and tooth thinning is reckoned at 0.002 inches. Calculate the unknown parameters.

Keystrokes:
8 ENTER4 27 A

Outputs:

$3.3750^{* * *}$ (D)
0.1963 *** (t)
$1.8565^{* * *}\left(\operatorname{inv} \phi_{\mathrm{w}}\right)$
$25.6215^{* * *}\left(\phi_{\mathrm{w}}\right)$
$3.7514^{* * *}$ (M)
$3.7470^{* * *}\left(\mathrm{M}_{\mathrm{t}}\right)$
$1.7587^{* * *}$ (q)
$1.8787^{* * *}\left(\mathrm{R}_{\mathrm{w}}\right)$

BELT LENGTH

This program computes the belt length around an arbitrary set of pulleys. It may also be used to compute the total length between any connected set of coordinates. The program assumes the coordinates of the first pulley to be $(0,0)$. Optionally the x, y coordinates of the intersections of the belt and pulleys may be output.

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{R}_{\mathrm{i}}\right) & =\mathrm{x}, \mathrm{y} \text { coordinates and radius of pulley } \mathrm{i} \\
\mathrm{R}_{1} & =\text { Radius of first pulley } \\
\text { C.D. } & =\text { Center to center distance of consecutive pulleys } \\
\mathrm{L} & =\text { Total length of belt }
\end{aligned}
$$

Equations:

$$
L_{12}=\sqrt{C \cdot D \cdot{ }_{12}^{2}-\left(R_{2}-R_{1}\right)^{2}}
$$

Arc Length ${ }_{2}=\mathrm{R}_{2}\left(\pi-\alpha-\beta-\gamma_{2}\right)$

$$
\alpha=\tan ^{-1}\left(\frac{\mathrm{R}_{1}-\mathrm{R}_{2}}{\mathrm{~L}_{12}}\right)
$$

$$
\beta=\tan ^{-1}\left(\frac{\mathrm{R}_{3}-\mathrm{R}_{2}}{\mathrm{~L}_{23}}\right)
$$

$$
\gamma=\theta_{12}-\theta_{23}
$$

$$
\theta_{12}=\tan ^{-1} \frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}
$$

$$
\theta_{23}=\tan ^{-1} \frac{\mathrm{y}_{3}-\mathrm{y}_{2}}{\mathrm{x}_{3}-\mathrm{x}_{2}}
$$

This program generates accurate results for any convex polygon, i.e., a line between any two points within the region bounded by the center-to-center line segments is entirely contained within the region.

Concave

In some cases, there are two physically possible directions for the belt to take:

The program chooses the upper side if the middle pulley center lies above the line connecting the previous and following pulleys.

Case 1

The program chooses the lower side if the middle pulley center lies below the line connecting the previous and following pulleys.

Case 2

The program generates inaccurate answers in the second case. Note the figure bounded by the center-to-center line segments for the second case is not convex.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Toggle for printing			
	belt tangent points for each			
	pulley.*		1 A	1.00
3	Input the coordinates ($\mathrm{x}_{1}, \mathrm{y}_{1}$)			
	and radius of the first pulley.	x_{1}	ENTER	x_{1}
		y_{1}	ENTER4	y_{1}
		R ${ }_{1}$	A	R ${ }_{1}$
4	Input the next pulley co-			
	ordinates ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) and radius			
	(R_{i}).	x_{i}	ENTER ${ }^{\text {d }}$	x_{i}
		y_{i}	ENTER ${ }^{\text {a }}$	y_{i}
		R_{i}	B	R_{i}
5	Repeat step 4 for all remaining			
	pulleys.			
6	Calculate the belt length.		c	L
7	For a new case, go to step 2.			
	*Note: Pulley coordinates			
	have to be entered in the			
	clockwise sense.			

Example 1:

Assume three pulleys are positioned as shown below with the following coordinates and radii:

Pulley 1 ($0,0,4$ inches)
Pulley $2(-8,15,1.5$ inches)
Pulley 3 ($9,16,1$ inches).
Find the belt length around the three pulleys.

Keystrokes:

Find the length of line connecting the points $(0,0),(1.5,7),(3.2,-6),(0,0.5)$, $(0,0)$. (28.01). Let the radius of each "pulley" be 0 .

Keystrokes:

0 ENTERA 0 ENTERA 0 A

Outputs:

0.003.2 ENTERA 6 CHS ENTERA
0.00

Example 3:

Find the belt length around the following pulley system, also find the belt tangent points on each pulley.

Pulley 1 ($0,0,2.5$)
Pulley 2 (30, 3, 7.5)
Pulley 3 (18, -18, 3.66)

Keystrokes:

0 ENTERA 0 ENTER 2.5 A \longrightarrow
30 ENTERA 3 ENTER4 7.5 B \rightarrow

18 ENTER 18 CHS ENTER 3.66

B

Outputs:

$$
1.00
$$

$$
\begin{array}{rl}
2.5 & \left(\mathrm{R}_{1}\right) \\
-0.66 & * * * \\
2.41^{* * *} & (\mathrm{x}) \\
28.03 & \text { (y) } 1^{\text {st }} \text { pulley } \\
10.24 & (\mathrm{x}) \\
7.5 & (\mathrm{y}) 2^{\text {nd }} \text { pulley } \\
7.5 & \left(\mathrm{R}_{2}\right)
\end{array}
$$

35.84	$* * *(\mathrm{x})$
-1.71	$* * *(\mathrm{y}) 2^{\text {nd }}$ pulley
20.85	$* * *(\mathrm{x})$
$-20.30^{* * *}(\mathrm{y}) 3^{\text {rd }}$ pulley	
3.66	$\left(\mathrm{R}_{3}\right)$
15.30	$* * *(\mathrm{x})$
-20.47	$* * *(\mathrm{y}) 3^{\text {rd }}$ pulley
-1.85	$* * *(\mathrm{x})$
-1.69	$* * *(\mathrm{y}) 1^{\text {st }}$ pulley
109.33	$(\mathrm{~L})$

FREE VIBRATIONS

This program provides an exact solution to the differential equation for a damped oscillator vibrating freely: $m \ddot{x}+\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}=0$.
The user inputs the mass m , spring constant k , and damping constant c at \boldsymbol{A}. The output will be:

1. ω for an underdamped system, i.e. $\mathrm{c}<\mathrm{c}_{\text {crit }}$. $\mathrm{c}_{\text {crit }}$ is calculated by pressing B.
2. 0 for a critically damped system, i.e. $\mathrm{c}=\mathrm{c}_{\text {crit }}$.
3. -1 for an overdamped system, i.e. $c>c_{\text {crit }}$.

The initial conditions are the displacement and velocity at time zero (x_{0} and $\dot{\mathrm{x}}_{0}$).

Equations:

$$
\begin{gathered}
\mathrm{c}_{\mathrm{crit}}=2 \sqrt{\mathrm{~km}} \\
\omega=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}-\left(\frac{\mathrm{c}}{2 \mathrm{~m}}\right)^{2}} \\
\ddot{\mathrm{x}}=-(\mathrm{c} \dot{\mathrm{x}}+\mathrm{kx}) / \mathrm{m}
\end{gathered}
$$

Underdamping

$$
\left(\mathrm{c}^{2}-4 \mathrm{~km}<0\right)
$$

$$
x(t)=\operatorname{Re}^{-\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{t}} \cos (\omega \mathrm{t}-\delta)
$$

$$
\dot{\mathrm{x}}(\mathrm{t})=-\mathrm{R} \omega \mathrm{e}^{-\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{t}} \sin (\omega \mathrm{t}-\delta)-\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{Re}^{-\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{t}} \cos (\omega \mathrm{t}-\delta)
$$

where:

$$
\begin{gathered}
\mathrm{R} \cos \delta=\mathrm{x}_{0} \\
\mathrm{R} \sin \delta=\frac{1}{\omega}\left[\dot{\mathrm{x}}_{0}+\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{x}_{0}\right]
\end{gathered}
$$

Critical damping

$$
\left(c=c_{c r i t}, \text { or } c^{2}=4 k m\right)
$$

$$
\begin{gathered}
x(t)=\left(A_{\text {cr }}+B_{\text {cr }} t\right) e^{-\frac{c}{2 m} t} \\
\dot{x}(t)=\left[B_{\text {cr }}-\frac{c}{2 m}\left(A_{\text {cr }}+B_{\text {crr }} t\right)\right] e^{-\frac{c}{2 m} t}
\end{gathered}
$$

where:

$$
\begin{gathered}
\mathrm{A}_{\text {cr }}=\mathrm{x}_{0} \\
\mathrm{~B}_{\text {cr }}=\dot{\mathrm{x}}_{0}+\frac{\mathrm{c}}{2 \mathrm{~m}} \mathrm{x}_{0}
\end{gathered}
$$

Overdamping

$$
\left(\mathrm{c}^{2}-4 \mathrm{~km}>0\right)
$$

$$
\begin{aligned}
& \dot{\mathrm{x}}(\mathrm{t})=\mathrm{A}_{\mathrm{ov}} \mathrm{e}^{\mathrm{r}_{1} \mathrm{t}}+\mathrm{B}_{\mathrm{ov}} \mathrm{e}^{\mathrm{r}_{2} \mathrm{t}} \\
& \mathrm{x}(\mathrm{t})=\mathrm{A}_{\mathrm{ov}} \mathrm{r}_{1} \mathrm{e}^{\mathrm{r}_{1} \mathrm{t}}+\mathrm{B}_{\mathrm{ov}} \mathrm{r}_{2} \mathrm{e}^{\mathrm{r}_{2}}
\end{aligned}
$$

where:

$$
\begin{gathered}
r_{1}, r_{2}=-\frac{c}{2 m} \pm \sqrt{\left(\frac{c}{2 m}\right)^{2}-\frac{k}{m}} \\
A_{o v}=x_{0}-B_{o v} \\
B_{o v}=\frac{\dot{x}_{0}-r_{1} x_{0}}{r_{2}-r_{1}}
\end{gathered}
$$

Reference:

Boyce, W.E. and DiPrima, R.C., Elementary Differential Equations, John Wiley and Sons, 1969.

Remarks:

For overdamping, ω has no meaning and is, in fact, an imaginary number.
For $\mathrm{c}=\mathrm{c}_{\text {crit }}, \omega=0$.
This program sets the angular mode of the calculator to radians. Erroneous answers will occur if degree mode is inadvertently set.

Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the system parameters	m	ENTER	
	of mass, damping constant,	c	ENTER	
	and spring constant.	k	A	ω or 0 or -1
3	Optional: Calculate $\mathrm{c}_{\text {crit }}$		B	$\mathrm{c}_{\text {crit }}$
4	Input initial conditions of			
	position	x_{0}	ENTER	x_{0}
	and velocity.	x_{0}	C	x_{0}
5	Input t to calculate $\mathrm{x}(\mathrm{t}), \dot{\mathrm{x}}(\mathrm{t})$,			
	and $\ddot{\mathrm{x}}(\mathrm{t})$.	t	D	$x(t), \dot{x}(t), \ddot{x}(t)$
6	Repeat step 5 for a different t .			
7	Input t_{1} and t_{2} and number of			
	intervals (n) to calculate			
	$x(t), \dot{x}(t)$, and $\ddot{x}(t)$ automatically .	t_{1}	ENTER	t_{1}
		t_{2}	ENTER	t_{2}
		n	E	$\mathrm{x}(\mathrm{t}), \stackrel{\dot{x}}{ }(\mathrm{t}), \ddot{\mathrm{x}}(\mathrm{t})$
8	For different initial conditions			
	for the same system, go to			
	step 4.			
9	For a different system, go to			
	step 2.			

Example:

A mass of 20 g stretches a spiral spring 10 cm . The mass is pulled down an additional 4 cm , held, and then released. Find the mass displacement and velocity at 0.1 second intervals up to 1 second for the cases in which (a) $\mathrm{c}=50$ dyne-sec/cm (b) c $=c_{\text {crit }}$ and (c) $c=400$ dyne-sec/cm.

$$
\mathrm{k}=\frac{\mathrm{F}}{\mathrm{x}}=\frac{\mathrm{mg}}{\mathrm{x}}=\frac{20 \mathrm{~g}\left(980 \mathrm{~cm} / \mathrm{s}^{2}\right)}{10 \mathrm{~cm}}=\frac{20 \times 980}{10} \text { dyne } / \mathrm{cm}
$$

(a) $\mathrm{c}=50$

Keystrokes:

Outputs:

Or, the same results can be achieved automatically.

0 ENTER 1 ENTER 10 E \longrightarrow	$0.000^{* * *}$ (t)
	$4.000^{* * *}$ (x)
	1.000000000-09 *** (${ }_{\text {x }}$)
	$-392.000^{* * *}(\ddot{\mathrm{x}})$
	$0.100^{* * *}$
	$2.334^{* *}$
	-29.296 ***
	-155.494***
	$0.200^{* * *}$
	$-0.827^{* * *}$
	-28.715 ***

$$
\begin{aligned}
& 152.880^{* * *} \\
& 0.300^{* * *} \\
& -2.629 \text { *** } \\
& -5.330^{* * *} \\
& 270.947^{* * *} \\
& 0.400^{* * *} \\
& -1.932 \text { *** } \\
& 17.139 \text { *** } \\
& 146.511^{* * *} \\
& 0.500^{* * *} \\
& 0.153^{* * *} \\
& 20.950^{* * *} \\
& -67.408^{* * *} \\
& 0.600^{* * *} \\
& 1.655^{* * *} \\
& 7.187^{* * *} \\
& -180.174^{* * *} \\
& 0.700^{* * *} \\
& 1.503 \text { *** } \\
& -9.272 \text { *** } \\
& -124.104 \text { *** } \\
& 0.800^{* * *} \\
& 0.184^{* * *} \\
& -14.685 * * * \\
& 18.677^{* * *} \\
& 0.900 \text { *** } \\
& -0.990^{* * *} \\
& -7.173^{* * *} \\
& 114.959 \text { *** } \\
& \begin{array}{r}
1.000^{* * *} \\
-1.114^{* * *}
\end{array} \\
& 4.406^{* * *} \\
& 98.133^{* * *}
\end{aligned}
$$

Solution (a) c $=50$

$\mathbf{t ~ s}$	$\mathbf{x ~ c m}$	$\dot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}$	$\ddot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}^{\mathbf{2}}$
0	4.000	0.00	-392.000
.1	2.334	-29.296	-155.494
.2	-0.827	-28.715	152.880
.3	-2.629	-5.330	270.947
.4	-1.932	17.139	146.511
.5	0.153	20.950	-67.408
.6	1.655	7.187	-180.174
.7	1.503	-9.272	-124.104
.8	0.184	-14.685	18.677
.9	-0.990	-7.173	114.959
1.0	-1.114	4.406	98.133

(b) $\mathrm{c}=\mathrm{c}_{\text {crit }}$

Keystrokes:

20 ENTER4 395.98 ENTERA
20 ENTER4 $980 \times$
10 - A \qquad
4 ENTERA 0 C \qquad
0 D \qquad

Outputs:

Or, automatically:

0 ENTER4 1 ENTERA 10 E

-0.26
0.800 ***
0.013 ***
-0.114
0.986 ***
900
0.005
-0.048
0.419 **
1.000 **
0.002
-0.020
175

$\mathbf{t ~ s}$	$\mathbf{x ~ c m}$	$\dot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}$	$\ddot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}^{2}$
0	4.000	0.000	-392.000
.1	2.958	-14.567	-1.464
.2	1.646	-10.826	53.041
.3	0.815	-6.034	39.622
.4	0.378	-2.990	22.122
.5	0.169	-1.389	10.970
.6	0.073	-0.619	5.098
.7	0.031	-0.268	2.274
.8	0.013	-0.114	0.986
.9	0.005	-0.048	0.419
1.0	0.002	-0.020	0.175

(c) $\mathrm{c}=400$

Keystrokes:

20 ENTER4 400 ENTER4 20 ENTER4

0.2 D \qquad

Or, automatically:
0 ENTER4 1 ENTER4 10 E \longrightarrow

Outputs:

0.000 ***
4.000 ***
$0.000^{* * *}$

$$
-392.000^{* * *}
$$

$$
0.100^{* * *}
$$

$$
2.963^{* * *}
$$

$$
-14.469 * * *
$$

$$
-0.963 * * *
$$

$$
0.200^{* * *}
$$

$$
1.660^{* * *}
$$

$$
-10.752 * * *
$$

$$
52.336 \text { *** }
$$

$$
0.300^{* * *}
$$

$$
0.833^{* * *}
$$

$$
-6.032 * * *
$$

$$
39.022 \text { *** }
$$

$$
0.400^{* * *}
$$

$$
0.394^{* * *}
$$

$$
-3.028 * * *
$$

$$
21.916 \text { *** }
$$

$$
0.500^{* * *}
$$

$$
0.180^{* * *}
$$

$$
-1.433 * * *
$$

$$
\begin{aligned}
& -1.000^{* * *} \\
& 4.000 \quad\left(\mathrm{x}_{0}\right) \\
& 4.000^{* * *} \text { (x) } \\
& 0.000^{* * *}(\dot{\mathrm{x}}) \\
& -392.000^{* * *}(\ddot{\mathrm{x}}) \\
& 2.963^{* * *}(\mathrm{x}) \\
& -14.469^{* * *}\left({ }^{\text {x }}\right) \\
& -0.963^{* * *}(\ddot{\mathrm{x}}) \\
& 1.660^{* * *}(\mathrm{x}) \\
& -10.752 \text { *** (} \mathrm{x} \text {) } \\
& 52.336^{* * *}(\ddot{\mathrm{x}})
\end{aligned}
$$

$11.005^{* * *}$
$0.600^{* * *}$
$0.081^{* * *}$
$-0.656^{* * *}$
$5.212^{* * *}$
$0.700^{* * *}$
$0.035^{* * *}$
$-0.293^{* * *}$
$2.384^{* * *}$
$0.800^{* * *}$
$0.015^{* * *}$
$-0.129^{* * *}$
$1.066^{* * *}$
$0.900^{* * *}$
$0.007^{* * *}$
$-0.056^{* * *}$
$0.470^{* * *}$
$1.000^{* * *}$
$0.003^{* * *}$
$-0.024^{* * *}$
$0.205^{* * *}$

Solution (c) c $=400$

$\mathbf{t ~ s}$	$\mathbf{x ~ c m}$	$\dot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}$	$\ddot{\mathbf{x}} \mathbf{~ c m} / \mathbf{s}^{2}$
0	4.000	0.000	-392.000
.1	2.963	-14.469	-0.963
.2	1.660	-10.752	52.336
.3	0.833	-6.032	39.022
.4	0.394	-3.028	21.916
.5	0.180	-1.433	11.005
.6	0.081	-0.656	5.212
.7	0.035	-0.293	2.384
.8	0.015	-0.129	1.066
.9	0.007	-0.056	0.470
1.0	0.003	-0.024	0.205

18-11

Notes

VIBRATION FORCED BY $F_{0} \cos \omega t$

This program finds the steady-state solution for an object undergoing damped forced oscillations from a periodic external force of the form $\mathrm{F}_{0} \cos \omega \mathrm{t}$. The differential equation to be solved is

$$
m \ddot{x}+c \dot{x}+k x=F_{0} \cos \omega t
$$

The program calculates the following variables: $\omega_{0}, \omega_{\mathrm{n}}, \zeta, \omega_{\text {res }}$, AMP, δ, $\mathrm{x}(\mathrm{t}), \dot{\mathrm{x}}(\mathrm{t})$, and $\ddot{\mathrm{x}}(\mathrm{t})$, which are defined as follows:

Equations:

The steady-state solution ($\mathrm{t} \rightarrow \infty$) to this equation is

$$
\begin{gathered}
\mathrm{x}(\mathrm{t})=\frac{\mathrm{F}_{0}}{\Delta} \cos (\omega \mathrm{t}-\delta) \\
\dot{\mathrm{x}}(\mathrm{t})=-\omega \frac{\mathrm{F}_{0}}{\Delta} \sin (\omega \mathrm{t}-\delta)
\end{gathered}
$$

where:

$$
\begin{gathered}
\Delta=\sqrt{\mathrm{m}^{2}\left(\omega_{0}{ }^{2}-\omega^{2}\right)^{2}+\mathrm{c}^{2} \omega^{2}} \\
\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}}=\text { natural frequency or undamped system } \\
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}-\left(\frac{\mathrm{c}}{2 \mathrm{~m}}\right)^{2}}=\text { damped natural frequency } \\
\zeta=\frac{\mathrm{c}}{\mathrm{C}_{\text {crit }}}=\frac{\mathrm{c}}{2 \mathrm{~m} \omega_{0}}=\text { damping ratio } \\
\delta=\tan ^{-1} \frac{\mathrm{c} \omega}{\mathrm{~m}\left(\omega_{0}{ }^{2}-\omega^{2}\right)} \\
\mathrm{AMP}=\frac{\mathrm{F}_{0}}{\Delta}
\end{gathered}
$$

$\omega_{\text {res }}$ is computed from

$$
\begin{aligned}
& \omega_{\text {res }}^{2}=\omega_{0}^{2}-\frac{1}{2}\left(\frac{\mathrm{c}}{\mathrm{~m}}\right)^{2} \\
& \mathrm{AMP}_{\max }=\frac{\mathrm{F}_{0}}{\Delta}\left(\text { where } \omega=\omega_{\mathrm{res}}\right)
\end{aligned}
$$

Reference:

Boyce, W.E. and DiPrima, R.C., Elementary Differential Equations, John Wiley and Sons, 1969.

Remarks:

The above solution does not take into account the initial conditions ($x(0)$, $\dot{x}(0))$ of the system, consequently values of $x(t), \dot{x}(t)$ and $\ddot{x}(t)$ calculated by this program are for large values of t. However, should you need values of $x(t), \dot{x}(t)$ and $\ddot{x}(t)$ for the system with initial conditions $x(0)$ and $\dot{x}(0)$, use ME1-18A. Calculate the homogeneous solution $x(t), \dot{x}(t)$ and $\ddot{x}(t)$ and add it to the values (the particular solution) calculated by this program.

This program sets the angular mode of the calculator to radians.
Registers $\mathrm{R}_{\mathrm{S} 0}-\mathrm{R}_{\mathrm{S} 9}$ are available for user storage.

19-03

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the system parameters			
	of mass,	m	ENTER	
	damping coefficient	c	ENTERA	
	and spring constant.	k	A	$\omega_{0}, \omega_{n}, \zeta$
3	Optional: Calculate the			
	resonant frequency $\omega_{\text {res }}$.		B	$\omega_{\text {res }}$
4	Input the frequency of external			
	excitation	ω	ENTER4	
	and the external excitation			
	force.	F_{0}	c	AMP, δ (deg.)
5	Input t to calculate $x(t), \dot{x}(t)$,			
	$\ddot{x}(t)$.	t	D	$x, \dot{x}(t) \ddot{x}(t)$
6	Input t_{1} and t_{2} and number of			
	intervals to calculate $\mathrm{x}(\mathrm{t}), \dot{\mathrm{x}}(\mathrm{t})$,			
	and $\ddot{\mathrm{x}}(\mathrm{t})$ automatically.	t_{1}	ENTER4	t_{1}
		t_{2}	ENTER	t_{2}
		n	E	$n+1$ values of
				$x(t), \dot{x}(t)$,
				$\ddot{x}(t)$ between
				t_{1} and t_{2}
7	For a different external			
	excitation, applied to the same			
	system, go to step 4.			
8	For a different system, go to			
	step 2.			

Example:

A 400-lb. weight is suspended from a spring and stretches it a distance of 2 inches. The damping constant of the system is $0.5 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. If the weight is driven by a periodic external force whose greatest value is 5 pounds, find (a) the resonant frequency of the system and (b) the amplitude and phase shift of the oscillation that will result if the mass is driven at the resonant frequency. Calculate the position, velocity, and acceleration for $t=6.0 \mathrm{sec}$. Also calculate the position, velocity, and acceleration for $t_{1}=6 \mathrm{sec}$. and $\mathrm{t}_{2}=10 \mathrm{sec}$. with four intervals $(\mathrm{n}=4)$.

$$
\mathrm{m}=\frac{\mathrm{F}}{\mathrm{~g}}=\frac{400 \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{sec}^{2}} \quad \mathrm{k}=\frac{\mathrm{F}}{\mathrm{x}}=\frac{400 \mathrm{lb}}{2 \mathrm{in}} \frac{12 \mathrm{in}}{1 \mathrm{ft}}
$$

Keystrokes:

Outputs:

```
400 ENTER4 32.2 % . 5 ENTER4
400 ENTER4 2 % \ \ A \longrightarrow 13.900 *** ( }\mp@subsup{\omega}{0}{0
    13.900 *** ( }\mp@subsup{\omega}{\textrm{n}}{}
    0.001 *** (\zeta)
B
    13.900 ( }\mp@subsup{\omega}{\textrm{res}}{}
```

(To drive the system at the resonant frequency, leave $\omega_{\text {res }}$ in the display and key in the driving force of 5 pounds).

5 C \qquad

6 D \qquad

$$
\begin{aligned}
& 0.719 \text { *** (AMP) } \\
& 89.917^{* * *} \text { (} \delta \text { in deg.) } \\
& 0.712 \text { *** (x) } \\
& -1.464 \text { *** (} \mathrm{x} \text {) } \\
& -137.499^{* * *}(\mathrm{x})
\end{aligned}
$$

or automatically:
6 ENTERA 10 ENTERA 4 E \longrightarrow

$$
\begin{aligned}
& 6.000 \text { *** } \\
& 0.712 \text { *** } \\
& -1.464 \text { *** } \\
& -137.499 \text { *** } \\
& 7.000 \text { *** } \\
& 0.065^{* * *} \\
& \text {-9.959 *** } \\
& -12.582 \text { *** } \\
& 8.000^{* * *} \\
& -0.681^{* * *} \\
& \text {-3.223 *** } \\
& 131.577^{* * *}
\end{aligned}
$$

$$
\begin{array}{r}
9.000^{* * *} \\
-0.386^{* * *} \\
8.442 \\
74.510^{* * *} \\
10.000^{* * *} \\
0.500^{* * *} \\
7.197
\end{array}{ }^{* * *} \begin{aligned}
&
\end{aligned}
$$

EQUATIONS OF STATE

This card provides both ideal gas and Redlich-Kwong equations of state. Given four of the five state variables, the fifth is calculated. For the Redlich-Kwong solution, the critical pressure and temperature of the gas must be known. They are not needed for ideal gas solutions.

Values of the Universal Gas Constants

Value of \mathbf{R}	Units of \mathbf{R}	Units of \mathbf{P}	Units of \mathbf{V}	Units of T
8.314	$\mathrm{~N}-\mathrm{m} / \mathrm{g}$ mole -K	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{~m}^{3} / \mathrm{g}$ mole	K
83.14	$\mathrm{~cm}^{3}-\mathrm{bar} / \mathrm{g}$ mole -K	bar	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
82.05	$\mathrm{~cm}^{3}-\mathrm{atm} / \mathrm{g}$ mole -K	atm	$\mathrm{cm}^{3} / \mathrm{g}$ mole	K
0.7302	$\mathrm{~atm}-\mathrm{ft}^{3} / \mathrm{lb}$ mole $-{ }^{\circ} \mathrm{R}$	atm	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$
10.73	$\mathrm{psi}-\mathrm{ft}^{3} / \mathrm{lb}$ mole $-{ }^{\circ} \mathrm{R}$	psi	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$
1545	$\mathrm{psf}-\mathrm{ft}^{3} / \mathrm{lb}$ mole $-{ }^{\circ} \mathrm{R}$	psf	$\mathrm{ft}^{3} / \mathrm{lb}$ mole	${ }^{\circ} \mathrm{R}$

Critical Temperatures and Pressures

Substance	$\mathbf{T}_{\mathbf{c}}, \mathbf{K}$	$\mathbf{T}_{\mathbf{c}},{ }^{\circ} \mathbf{R}$	$\mathbf{P}_{\mathrm{c}}, \mathbf{A T M}$
Ammonia	405.6	730.1	112.5
Argon	151	272	48.0
Carbon dioxide	304.2	547.6	72.9
Carbon monoxide	133	239	34.5
Chlorine	417	751	76.1
Helium	5.3	9.5	2.26
Hydrogen	33.3	59.9	12.8
Nitrogen	126.2	227.2	33.5
Oxygen	154.8	278.6	50.1
Water	647.3	1165.1	218.2
Dichlorodifluoromethane	384.7	692.5	39.6
Dichlorofluoromethane	451.7	813.1	51.0
Ethane	305.5	549.9	48.2
Ethanol	516.3	929.3	63
Methanol	513.2	923.8	78.5
n-Butane	425.2	765.4	37.5
n-Hexane	507.9	914.2	29.9
n-Pentane	469.5	845.1	33.3
n-Octane	568.6	1023.5	24.6
Trichlorofluoromethane	471.2	848.1	43.2

Equations:

Ideal gas:

$$
P V=n R T
$$

Redlich-Kwong:

$$
\begin{gathered}
\mathrm{P}=\frac{\mathrm{nRT}}{(\mathrm{~V}-\mathrm{b})}-\frac{\mathrm{a}}{\mathrm{~T}^{1 / 2} \mathrm{~V}(\mathrm{~V}+\mathrm{b})} \\
\mathrm{a}=4.934 \mathrm{bnRT}_{\mathrm{c}}^{1.5} \\
\mathrm{~b}=0.0867 \frac{\mathrm{nRT}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}
\end{gathered}
$$

where:
P is the absolute pressure;
V is the volume;
n is the number of moles present;
R is the universal gas constant;
T is the absolute temperature;
T_{c} is the critical temperature;
P_{c} is the critical pressure.

Remarks:

$\mathrm{P}, \mathrm{V}, \mathrm{n}$ and T must have units compatible with R .
At low temperatures or high pressures, the ideal gas law does not represent the behavior of real gases.

No equation of state is valid for all substances nor over an infinite range of conditions. The Redlich-Kwong equation gives moderate to good accuracy for a variety of substances over a wide range of conditions. Results should be used with caution and tempered by experience.
Solutions for $\mathrm{V}, \mathrm{n}, \mathrm{R}$ and T , using the Redlich-Kwong equation, require an iterative technique. Newton's method is employed using the ideal gas law to generate the initial guess. Iteration time is generally a function of the amount of deviation from ideal gas behavior. For extreme cases, the routine may fail to converge entirely, resulting in an "error".
Registers $\mathrm{R}_{0}, \mathrm{R}_{1}$ and $\mathrm{R}_{50}-\mathrm{R}_{59}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select Redlich-Kwong (1.00) or			
	ideal gas (0.00) using mode			
	toggle.		18	1.00/0.00
3	If you selected ideal gas in			
	step 2, skip to step 5.			
4	Input critical temperature	T ${ }_{\text {c }}$	18	T ${ }_{\text {c }}$
	and critical pressure.	P_{c}	$\square \mathrm{C}$	P_{c}
5	Input four of the following:			
	Absolute pressure	P	A	P
	Volume	V	B	V
	Number of moles	n	C	n
	Universal gas constant	R	D	R
	Absolute temperature	T	E	T
6	Calculate remaining value:			
	Absolute pressure		A	P
	Volume		B	V
	Number of moles		c	n
	Universal gas constant		D	R
	Absolute temperature		E	T
7	For a new case, go to steps 2,			
	4 , or 5 and change values or			
	mode.			

Example 1:

0.63 g moles of air are enclosed in a $25,000 \mathrm{~cm}^{3}$ space at 1200 K . What is the pressure in bars? Assume an ideal gas.

Keystrokes:

Outputs:

Select ideal gas by pressing A until 0.00 is displayed.

Example 2:

What is the specific volume ($\mathrm{ft}^{3} / \mathrm{lb}$) of a gas at atmospheric pressure and at a temperature of $513^{\circ} \mathrm{R}$? The molecular weight is 29 . Assume an ideal gas.

Keystrokes:

1 A
513 E $29 \mathbb{1 / x}$ C 0.7302
D 1 AB
What is the density?

$1 / x$

What is the density at 1.32 atmospheres and $555^{\circ} \mathrm{R}$?
1.32 A 555 E B $1 / x$
0.09
(lb/ft ${ }^{3}$)

Example 3:

The specific volume of a gas in a container is $800 \mathrm{~cm}^{3} / \mathrm{g}$ mole. The temperature will reach 400 K . What will the pressure be according to the Redlich-Kwong relation?

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{c}}=48.2 \mathrm{~atm} \\
& \mathrm{~T}_{\mathrm{c}}=305.5 \mathrm{~K} \\
& \mathrm{R}=82.05 \mathrm{~cm}^{3}-\mathrm{atm} / \mathrm{g} \text { mole- } \mathrm{K}
\end{aligned}
$$

Keystrokes:

1 A

305.5 © B 48.2 C 82.05

Example 4:

6 gram moles of carbon dioxide gas are held at a pressure of 50 atmospheres, and at a temperature of 500 K . What is the volume in cubic centimeters? Use the Redlich-Kwong relation.

$$
\begin{aligned}
\mathrm{T}_{\mathrm{c}} & =304.2 \mathrm{~K} \\
\mathrm{P}_{\mathrm{c}} & =72.9 \mathrm{~atm} \\
\mathrm{R} & =82.05 \mathrm{~cm}^{3}-\mathrm{atm} / \mathrm{g} \text { mole }-\mathrm{K}
\end{aligned}
$$

Keystrokes:

D 6 C50 A 500 EB \qquad

Outputs:

1.00

How many moles could be contained at this temperature and pressure in 5 liters?
6.39 (g moles)

ISENTROPIC FLOW FOR IDEAL GASES

This card replaces isentropic flow tables for a specified specific heat ratio k . Inputs and outputs are interchangeable with the exception of k .
The following values are correlated:
M is the Mach number;
$\mathrm{T} / \mathrm{T}_{0}$ is the ratio of flow temperature T to stagnation or zero velocity temperature T_{0};
P / P_{0} is the ratio of flow pressure P to stagnation pressure P_{0};
ρ / ρ_{0} is the ratio of flow density ρ to stagnation density ρ_{0};
$\mathrm{A} / \mathrm{A}^{*}{ }_{\text {sub }}$ and $\mathrm{A} / \mathrm{A}_{\text {sup }}$ are the ratios of flow area A to the throat area A* in converging-diverging passages. A / A^{*} sub refers to subsonic flow while A / A^{*} sup refers to supersonic flow.

Equations:

$$
\begin{gathered}
\mathrm{T} / \mathrm{T}_{0}=\frac{2}{2+(\mathrm{k}-1) \mathrm{M}^{2}} \\
\mathrm{P} / \mathrm{P}_{0}=\left(\mathrm{T} / \mathrm{T}_{0}\right)^{\mathrm{k} /(\mathrm{k}-1)} \\
\rho / \rho_{0}=\left(\mathrm{T} / \mathrm{T}_{0}\right)^{1 /(\mathrm{k}-1)} \\
\mathrm{A} / \mathrm{A}^{*}=\frac{1}{\mathrm{M}}\left[\left(\frac{2}{\mathrm{k}+1}\right)\left(1+\frac{\mathrm{k}-1}{2} \mathrm{M}^{2}\right)\right]^{\frac{\mathrm{k}+1}{2(\mathrm{k}-1)}}
\end{gathered}
$$

In the last equation M^{2} is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:

$$
\mathbf{M}_{0}^{2}=\left(\sqrt{\operatorname{Frac}\left(\mathrm{A} / \mathrm{A}^{*}\right)}+\mathrm{A} / \mathrm{A}^{*}\right)^{ \pm 3}
$$

Remarks:

After an input of $\mathrm{A} / \mathrm{A}^{*}$, the program begins to iterate to find M^{2} for future use. This iteration will normally take less than one minute, but may take longer on occasion. For extreme values of k (1.4 is optimum) the routine may fail to converge at all. An "Error"' message will eventually halt the routine if it goes out of control.
$\mathrm{A} / \mathrm{A}^{*}$ values of 1.00 are illegal inputs. Instead, input an M of 1.00 .
The calculator uses flag 3 to decide whether to store or calculate a value. If you use the data input keys (setting flag 3) and then wish to calculate a parameter based on a prior input, clear flag 3 before pressing the appropriate user definable keys.
Registers R_{0}, R_{5} and $\mathrm{R}_{\mathrm{S0}}-\mathrm{R}_{\mathrm{I}}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input specific heat ratio.	k	1 A	k
3	Input one of the following:			
	Mach number	M	A	M
	Temperature ratio	T/To	B	M
	Pressure ratio	$\mathrm{P} / \mathrm{P}_{0}$	C	M
	Density ratio	ρ / ρ_{0}	D	M
	Subsonic area ratio	$\mathrm{A} / \mathrm{A}^{*}$ sub	E	M
	Supersonic area ratio	A / A^{*} sup	18	M
4	Calculate one of the following:			
	Mach number		A	M
	Temperature ratio		B	T/To
	Pressure ratio		c	$\mathrm{P} / \mathrm{P}_{0}$
	Density ratio		D	ρ / ρ_{0}
	Area ratio (subsonic or			
	supersonic)		E	A/A*
4^{\prime}	Calculate and output all			
	values automatically.		18	k, M, $\mathrm{T} / \mathrm{T}_{0}, \mathrm{P} / \mathrm{P}_{0}$
				$\rho / \rho_{0}, \mathrm{~A} / \mathrm{A}^{*}$
5	For another calculation based			
	on same input, go to step 4			
	(or 4'). For a new input, go to			
	step 3. For a new specific heat			
	ratio, go to step 2.			

Example 1:

A pilot is flying at Mach 0.93 and reads on air temperature of 15 degrees Celsius (288 K) on a thermometer that reads stagnation temperature T_{0}. What is the true temperature assuming that $\mathrm{k}=1.38$?

Keystrokes:

1.38 ¢	1.380	
. 93 A	0.930	
B	0.859	(T/T ${ }_{0}$)
288 区	247.352	(T, K)
273 -	-25.648	($\mathrm{T},{ }^{\circ} \mathrm{C}$)

Outputs:

1.380
0.930
$0.859 \quad\left(\mathrm{~T} / \mathrm{T}_{0}\right)$
247.352 (T, K)
-25.648 (T, $\left.{ }^{\circ} \mathrm{C}\right)$

If the same pilot reads a stagnation pressure P_{0} of 700 millimeters of mercury, what is the true air pressure?
(Since the data input flag was set when 288 was keyed in, we must either clear it, or input 0.93 again.)
$.93 \boldsymbol{A} \mathbf{C} \longrightarrow$

$700 \boldsymbol{X} \longrightarrow$	0.575
402.843	\quad
:---	
$(\mathrm{mm} \mathrm{Hg})$	

Example 2:

A converging, diverging passage has supersonic flow in the diverging section. At an area ratio $\mathrm{A} / \mathrm{A}^{*}$ of 1.60 , what are the isentropic flow ratios for temperature, pressure and density? What is the Mach number? $\mathrm{k}=1.74$.

Keystrokes:

1.74 (A	1.740	
1.60 ¢ E	2.105	(M)
B	0.379	(T/T ${ }_{0}$)
C	0.102	$\left(\mathrm{P} / \mathrm{P}_{0}\right)$
D	0.269	$\left(\rho / \rho_{0}\right)$

or, alternatively, using automatic output.
© B
$1.740^{* * *}$ (k)
2:105 *** (M)
0.379 *** (T/T ${ }_{0}$)
0.102 *** ($\mathrm{P} / \mathrm{P}_{0}$)
$0.269^{* * *}\left(\rho / \rho_{0}\right)$
$1.600^{* * *}\left(\mathrm{~A} / \mathrm{A}^{*}\right)$

CONDUIT FLOW

This program solves for the average velocity, or the pressure drop for viscous, incompressible flow in conduits.

Equations:

$$
v^{2}=\frac{\Delta \mathrm{P} / \rho}{2\left(\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}}+\frac{\mathrm{K}_{\mathrm{T}}}{4}\right)}
$$

For laminar flow ($\operatorname{Re}<2300$)

$$
\mathrm{f}=16 / \mathrm{Re}
$$

For turbulent flow ($\mathrm{Re}>2300$)

$$
\frac{1}{\sqrt{\mathrm{f}}}=1.737 \ln \frac{\mathrm{D}}{\epsilon}+2.28-1.737 \ln \left(4.67 \frac{\mathrm{D}}{\epsilon \operatorname{Re} \sqrt{\mathrm{f}}}+1\right)
$$

is solved by Newton's method.

$$
\frac{1}{\sqrt{\mathrm{f}_{0}}}=1.737 \ln \frac{\mathrm{D}}{\epsilon}+2.28
$$

is used as an initial guess in the iteration.
where:
Re is the Reynolds number, defined as $\rho \mathrm{Dv} / \mu$;
D is the pipe diameter;
ϵ is the dimension of irregularities in the conduit surface (see table 2);
f is the Fanning friction factor for conduit flow;
$\Delta \mathrm{P}$ is the pressure drop along the conduit;
ρ is the density of the fluid;
μ is the viscosity of the fluid;
ν is the kinematic viscosity of the fluid;
L is the conduit length;
v is the average fluid velocity;
K_{T} is the total of the applicable fitting coefficients in table 1 .

Table 1
Fitting Coefficients

Fitting	K
Glove valve, wide open	$7.5-10$
Angle valve, wide open	3.8
Gate valve, wide open	$0.15-0.19$
Gate valve, $3 / 4$ open	0.85
Gate valve, $1 / 2$ open	4.4
Gate valve, $1 / 4$ open	20
90° elbow	$0.4-0.9$
Standard 45° elbow	$0.35-0.42$
Tee, through side outlet	1.5
Tee, straight through	.4
180° bend	1.6
Entrance to circular pipe	$0.25-0.50$
Sudden expansion	$\left(1-\mathrm{A}_{\mathrm{up}} / \mathrm{A}_{\mathrm{dn}}\right)^{2 \star}$
Acceleration from $v=0$ to $v=v_{\text {entrance }}$	1.0

* $A_{u p}$ is the upstream area and $A_{d n}$ is the downstream area.

Table 2
 Surface Irregularities

Material	$\boldsymbol{\epsilon}$ (feet)	$\boldsymbol{\epsilon}$ (meters)
Drawn or Smooth Tubing	5.0×10^{-6}	1.5×10^{-6}
Commercial Steel or Wrought Iron	1.5×10^{-4}	4.6×10^{-5}
Asphalted Cast Iron	4.0×10^{-4}	1.2×10^{-4}
Galvanized Iron	5.0×10^{-4}	1.5×10^{-4}
Cast Iron	8.3×10^{-4}	2.5×10^{-4}
Wood Stave	6.0×10^{-4} to	1.8×10^{-4} to
	3.0×10^{-3}	9.1×10^{-4}
Concrete	1.0×10^{-3} to	3.0×10^{-4} to
Riveted Steel	1.0×10^{-2}	3.0×10^{-3}
	3.0×10^{-3} to	9.1×10^{-4} to
	3.0×10^{-2}	9.1×10^{-3}

Reference:

Welty, Wicks, Wilson; Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, Inc., 1969.

Remarks:

The correlation gives meaningless results in the region $2300<\operatorname{Re}<4000$.
The solution requires an iterative procedure. The time for solution will range from 10 seconds for $\Delta \mathrm{P}$, to several minutes for v . The display setting is used to determine when the solution for v is adequately accurate. Time for solution of v is roughly proportional to the number or significant digits in the display setting.

If the conduit is not circular, an equivalent diameter may be calculated using the formula below:

$$
\mathrm{D}_{\mathrm{eq}}=4 \frac{\text { cross sectional area }}{\text { wetted perimeter }}
$$

Unitary consistency must be maintained with the exception of the pressure drop $\Delta \mathrm{P}$. If all length units are feet, time is measured in seconds and mass is given in pounds, pressure may be input or output in pounds per square inch, using the \boldsymbol{E} keys.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the following in any order			
	(units must be consistent):			
	Viscosity of fluid	μ	1 A	
	or			
	Kinematic viscosity of fluid	ν	1 B	ν
	Density	ρ	$1{ }^{1}$	ρ
	Surface irregularity	ϵ	[D	ϵ
	Length of conduit	L	A	L
	Equivalent diameter of			
	passage	D	B	D
	Total fitting coefficient	$\mathrm{K}_{\text {T }}$	C	$\mathrm{K}_{\mathrm{T}} / 4$
3	Input one of the following:			
	Fluid velocity	v	D	v
	Pressure drop in compatible			
	units	$\Delta \mathrm{P}$	E	ΔP
	or			
	Pressure drop in psi	$\Delta \mathrm{P}(\mathrm{psi})$	1 E	$144 \mathrm{~g} \Delta \mathrm{P}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate one of the following:			
	Fluid velocity		D	v
	Pressure drop in compatible			
	units		E	$\Delta \mathrm{P}$
	or			
5	Optional: After calculation of			$\Delta \mathrm{P}(\mathrm{psi})$
	$\Delta \mathrm{P}$ or v, display Reynolds			
	number		Rt	Re
	and Fanning friction factor.			f
6	For a new case, go to step 2 or			
	step 3 and change appropriate			
	inputs.			

Example 1:

A heat exchanger has 20, 3 meter tube passes (60 m of pipe) with 180 degree bends connecting each pair of tubes (from table $1, \mathrm{~K}_{\mathrm{T}}=10 \times 1.6$). The fluid is water ($\nu=9.3 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}, \rho=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$). The surface roughness is $3 \times 10^{-4} \mathrm{~m}$ and the diameter is $2.54 \times 10^{-2} \mathrm{~m}$. If the fluid velocity is $3.05 \mathrm{~m} / \mathrm{s}$, what is the pressure loss? What is the Reynolds number? What is the Fanning friction factor?

Keystrokes:

Outputs:

9.3 Eex ChS 7 B EEX 3
f C 3 EEX CHS 4 ID 60
A 2.54 EEX CHS 2 B 16 C

$3.05 \mathrm{DE} \longrightarrow$	522.03 $\mathbf{R \boldsymbol { t }} \longrightarrow$ $\mathbf{R \boldsymbol { t }} \longrightarrow$ 83.303 $10.2-03$

22－05

Example 2：

For the system shown，what is the volume flow rate？

Keystrokes：

Outputs：

First calculate and store $\Delta \mathrm{P}$ in psi from the given data．

```
78 ENTERA 62.4 \ 144 - 
|E\longrightarrow 157.03 (\DeltaP,psi)
```

Now store the other values．
EEX CHS 5 If B 62.4 I
C 3.33 EEX CHS 6 © D 250
A 3 ENTERA 12 －B 2.25
C D
$17.800 \quad(\mathrm{v}, \mathrm{ft} / \mathrm{sec})$
Calculate volume flow rate（ $\mathrm{v} \times$ Area）．
1.5 ENTERA 12 ENTER4
$\mathbf{~}$ 园区㐅 $\longrightarrow \quad 873 .-03 \quad\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$
What will the height of the water be when the velocity is $15 \mathrm{ft} / \mathrm{sec}$ ？
15 D \boldsymbol{E}
24.700
（ $\Delta \mathrm{P}, \mathrm{psi}$ ）
144×62.4－
57.000
（ft）

PARALLEL \& COUNTER FLOW HEAT EXCHANGERS

This two card set allows analysis of counter-flow, parallel-flow, parallelcounter flow, and cross-flow (both fluids unmixed) heat exchanges.
The program is organized in four segments. The first side of card 1 performs heat balance calculations and acts as controller for the three slave program segments. Slave program segment one, on side 2 of card 1 , is applicable to parallel-flow and counter-flow heat exchanges. Counter-flow is selected by pressing E until 1.00 appears. Parallel-flow is selected by pressing 18 until 0.00 appears.

Figure 2
Parallel-Flow

The slave segment for parallel-counter-flow configuration (with an even number of tube passes) is on side 1 of card 2.

The slave segment for cross-flow (with both fluids unmixed) is on side 2 of card 2.

Equations:

Heat exchanger effectiveness E is the ratio of actual heat transfer to maximum possible heat transfer.

$$
E=\frac{\mathrm{q}}{\mathrm{C}_{\min }\left(\mathrm{T}_{\mathrm{hin}}-\mathrm{T}_{\mathrm{cin}}\right)}=\frac{\mathrm{C}_{\mathrm{h}}\left(\mathrm{~T}_{\mathrm{hin}}-\mathrm{T}_{\mathrm{ho}}\right)}{\mathrm{C}_{\min }\left(\mathrm{T}_{\mathrm{hin}}-\mathrm{T}_{\mathrm{cin}}\right)}=\frac{\mathrm{C}_{\mathrm{c}}\left(\mathrm{~T}_{\mathrm{co}}-\mathrm{T}_{\mathrm{cin}}\right)}{\mathrm{C}_{\mathrm{min}}\left(\mathrm{~T}_{\mathrm{hin}}-\mathrm{T}_{\mathrm{cin}}\right)}
$$

where:
q is the actual heat transfer;
$\mathrm{T}_{\text {hin }}$ and $\mathrm{T}_{\text {cin }}$ are the inlet temperatures of the hot and cold fluids, respectively;
T_{ho} and $\mathrm{T}_{\text {co }}$ are the outlet temperatures of the hot and cold fluids, respectively;
C_{h} and C_{c} are the heat capacities of the hot and cold fluids, respectively, e.g., $C_{h}=m_{h} \times c_{p h}$, where m_{h} is the flow rate and $c_{p h}$ is the specific heat capacity of the hot fluid;
$\mathrm{C}_{\text {min }}$ and $\mathrm{C}_{\text {max }}$ (which are used later) are the smaller and larger values of C_{h} and C_{c}.

Effectiveness can be related to the product of the surface area of an exchanger and the overall transfer coefficient for specific geometries. This product is designated AU . The geometries considered in this pac have the following correlations:
Counter-Flow (See figure 1)

$$
E=\frac{1-\mathrm{e}^{-\frac{\mathrm{AU}}{\mathrm{C}_{\min }}\left(1-\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}\right)}}{1-\left(\mathrm{C}_{\min } / \mathrm{C}_{\max }\right) \mathrm{e}^{-\frac{\mathrm{AU}}{\mathrm{C}_{\min }}\left(1-\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}\right)}}
$$

For $\mathrm{C}_{\text {min }} / \mathrm{C}_{\text {max }}=1$

$$
E=\frac{\mathrm{AU} / \mathrm{C}_{\min }}{1+\mathrm{AU} / \mathrm{C}_{\min }}
$$

Parallel-Flow (See figure 2)

$$
E=\frac{1-\mathrm{e}^{-\frac{\mathrm{AU}}{\mathrm{C}_{\min }}\left(1+\mathrm{C}_{\min } / \mathrm{C}_{\max }\right)}}{1+\mathrm{C}_{\min } / \mathrm{C}_{\max }}
$$

For $C_{\min } / C_{\text {max }}=0, C_{\text {min }}$ is set to 1 .
Parallel-Counter-Flow; Shell Mixed with an Even Number of Tube Passes (See figure 3)

$$
E=\frac{2}{\left(1+\frac{C_{\min }}{C_{\max }}\right)+\sqrt{1+\left(\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}\right)^{2}}\left[\frac{1+\mathrm{e}^{-\mathrm{x}}}{1-\mathrm{e}^{-\mathrm{x}}}\right]}
$$

where:

$$
\mathrm{x}=\frac{\mathrm{AU}}{\mathrm{C}_{\min }} \sqrt{1+\left(\frac{\mathrm{C}_{\min }}{\mathrm{C}_{\max }}\right)^{2}}
$$

Cross-Flow; Both Fluids Unmixed (See figure 4)

No exact expression exists for this case, but the following is a very good approximation. Note that it cannot be stated explicitly in terms of AU and thus requires an iterative solution.

$$
E=1-\mathrm{e}^{\left(\mathrm{e}^{\left(-\frac{A U}{C_{\min }} \frac{\mathrm{C}_{\text {min }}}{C_{\text {max }}} y\right.}-1\right)}-{\left(\frac{\mathrm{C}_{\text {max }}}{\mathrm{C}_{\min }} \frac{1}{\mathrm{y}}\right)}
$$

where:

$$
\mathrm{y}=\left[\frac{\mathrm{C}_{\min }}{\mathrm{AU}}\right]^{0.22}
$$

References:

W.M. Kays and A.L. London, Compact Heat Exchangers, National Press, 1955.

Eckert and Drake, Heat and Mass Transfer, McGraw-Hill.

Remarks:

Registers $R_{S 0}-R_{S 9}, R_{C}, R_{E}$, and R_{I} are available for user storage.
Solution for AU, using the cross-flow slave card takes significantly longer than other solutions because of the iterative technique required.
You should always solve for all values ($\mathrm{AU}, \mathrm{q}, \mathrm{T}_{\mathrm{co}}, \mathrm{T}_{\mathrm{ho}}$ and E). It is quite possible for the heat balance equations to yield meaningless solutions for a particular type of heat exchange. By calculating all results, you are assured that the configuration being used is capable of the performance specified. An error message during calculation of AU or q usually indicates a violation of the second law of thermodynamics.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 of card 1.			
2	Select proper configuration			
	card and side, and load:			
	a. Parallel or counter-flow			
	exchangers \rightarrow card 1,			
	side 2.			
	b. Parallel-counter-flow			
	(even number of tube			
	c. Cross-flow (both fluids			
	unmixed \rightarrow card 2, side 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	If display says "Crd" press CLx		CLx	0.00
4	If you loaded parallel/			
	counter-flow configurations in			
	step 2, select counter flow			
	(1) or parallel-flow (0) using			
	mode toggle.		1 E	1.00/0.00
5	Input the following values			
	Cold fluid inlet temperature	$\mathrm{T}_{\text {cin }}$	1 A	$\mathrm{T}_{\text {cin }}$
	Cold fluid density flow rate	$\dot{\mathrm{m}}_{\mathrm{c}}$	ENTER4	m_{c}
	then			
	Cold fluid heat capacity	C_{pc}	18	C
	and			
	Hot fluid inlet temperature	$\mathrm{T}_{\text {hin }}$	1 C	$\mathrm{T}_{\text {hin }}$
	Hot fluid density flow rate	\dot{m}_{n}	ENTER ${ }^{\text {d }}$	m_{n}
	then			
	Hot fluid heat capacity	$\mathrm{C}_{\text {ph }}$	1 D	$\mathrm{C}_{\text {h }}$
6	If the remaining known is			
	effectiveness, go to step 7 .			
	If area-conductance product,			
	go to step 8. If heat transfer,			
	go to step 9. If cold fluid outlet			
	temperature, go to step 10.			
	If hot fluid outlet temperature,			
	go to step 11.			
7	With effectiveness displayed,			
	calculate area-conductance			
	product.	E	A	AU
8	With area-conductance			
	product displayed, calculate			
	heat transfer.	AU	B	q

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	With heat transfer displayed,			
	calculate cold fluid outlet			
	temperature.	q	\mathbf{C}	T_{co}
10	With cold fluid outlet			
	temperature displayed,			
	calculate hot fluid outlet			
11	temperature.	With hot fluid outlet tempera-		$\mathbf{T}_{\text {co }}$
	ture displayed, calculate			
	effectiveness.			
12	Go back to step 6 and com-			
	plete calculation of all outputs.			
13	For a new configuration, go to			
	step 2. It is not necessary to			
	repeat the input process if			
	values remain unchanged.			
14	For new input values, go to			
	step 5 and change appropriate			
	variables.			

Example 1:

Water ($\mathrm{c}_{\mathrm{p}}=1 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$) is used to cool an oil ($\mathrm{c}_{\mathrm{p}}=.53 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$) from $200^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$. The water flow rate is 20,000 pounds per hour while the oil flows at 37,000 pounds per hour. If the water inlet temperature is $55^{\circ} \mathrm{F}$ and U is $25 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}-{ }^{\circ} \mathrm{F}$ for the heat exchangers being considered, what are the area requirements for counter-flow, parallel-flow, parallel-counter-flow and crossflow?

Knowns:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{pc}}=1.0 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F} \\
& \dot{\mathrm{~m}}_{\mathrm{c}}=20,000 \mathrm{lb} / \mathrm{hr} \\
& \mathrm{c}_{\mathrm{ph}}=0.53 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{F} \\
& \dot{\mathrm{~m}}_{\mathrm{h}}=37,000 \mathrm{lb} / \mathrm{hr} \\
& \mathrm{~T}_{\mathrm{cin}}=55^{\circ} \mathrm{F}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{hin}}=200^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{ho}}=110^{\circ} \mathrm{F} \\
& \mathrm{U}=25 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}-{ }^{\circ} \mathrm{F}
\end{aligned}
$$

Keystrokes:

Outputs:

Load side 1 and side 2 of card 1 and select counter-flow mode.
55 (f A 20000 ENTERA 1
(f B 200 © 37000 ENTER

$.53 \boldsymbol{\square} \subset \mathbf{E} \longrightarrow$	1.00	(Counter-flow mode on) (Effectiveness)
$110 \mathbf{E} \longrightarrow$	0.62	

Since effectiveness is the same for all configurations, store it for later use.

Calculate AU.
A

$25 \longrightarrow \longrightarrow$$\quad$| 31587.76 |
| :---: |
| 1263.51 | | (AU) |
| :--- |
| $\left(\mathrm{ft}^{2}\right)$ |

Switch to parallel configuration.

CLX
0.00 (parallel selected)0.62
Error (Violation of second law)

Load parallel-counter flow configuration on side 1 of card 2 and clear display of "Crd."

CLx	-0.23	
RCL	Error	(Violation of second law)
CLX	-0.06	

Load cross-flow configuration on side 2 of card 2 and clear display of "Crd".

CLx RCL I A \longrightarrow	39383.22	(AU)
$25 \div \longrightarrow$	1575.33	$\left(\mathrm{ft}^{2}\right)$

(Do not alter storage registers if you intend to continue with example 2.)

Example 2:

If a counter flow exchanger with an area of $1000 \mathrm{ft}^{2}$ and an overall heat transfer coefficient of $27 \mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{hr}^{\circ}{ }^{\circ} \mathrm{F}$ is available, how close will the outlet temperature of the oil be to $110^{\circ} \mathrm{F}$? What will the total heat transfer and outlet water temperature be? All unspecified values remain the same as example 1.

Keystrokes:

Outputs:

Load counter-flow routine on side 2 of card 1 and select counter flow mode.
CLX f E
1.00

Calculate AU product and calculate q.

27 ENTER $1000 \times$	27000.00	(AU)
B \longrightarrow	1656452.69	(q, Btu/hr)
C	137.82	(T_{co})
D	115.53	(T_{ho})
E \longrightarrow	0.58	(E)

23-09

Notes

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.
Program Page

1. Vector Statics L01-01
2. Section Properties L02-01
Card 1 Card 2
3. Stress on an Element L03-01
4. Soderberg's Equation for Fatigue L04-01
5. Cantilever Beams L05-01
6. Simply Supported Beams L06-01
7. Beams Fixed at Both Ends L07-01
8. Propped Cantilever Beams L08-01
9. Helical Spring Design L09-01
10. Four Bar Function Generator L10-01
Card 1
Card 2
11. Progression of Four-Bar System L11-01
12. Progression of Slider Crank L12-01
13. Circular Cams L13-01
14. Linear Cams L14-01
15. Gear Forces L15-01
16. Standard External Involute Spur Gears L16-01
17. Belt Length L17-01
18. Free Vibrations L18-01
19. Vibration Forced by $\mathrm{F}_{0} \cos \omega t$ L19-01
20. Equations of State L20-01
21. Isentropic Flow for Ideal Gases L21-01
22. Conduit Flow L22-01
23. Heat Exchangers L23-01
Card 1
Card 2

L01-01

VECTOR STATICS
TITLE

	001 602 063 044 065 066 007 068 009 016 011 012 013 014 015 016 017 018 019 026 021 022 0.3 024 025 026 027 828 829 630 031 032 033 034 635 850 037 838 039 049 041 642 043 844 045 646 647 048 649 850 651 05.2 053 054 655 056		Convert from polar to rectangular. Store x, y components of \vec{V}_{1}. Convert from polar to rectangular. Store x, y components of \vec{V}_{2}. Store $\mathrm{F} \cos \phi$ and $\mathrm{F} \sin \phi$. $\vec{V}_{1}+\vec{V}_{2}$ $\vec{V}_{1} \times \vec{V}_{2}$ $\vec{V}_{1} \cdot \vec{v}_{2}$					Calculate angle between vectors. Calculate R_{1}.	
REGISTERS									
0	1	2^{2}	${ }^{3} \quad{ }^{4} \cos \theta_{1}$	${ }^{5} \sin \theta_{1}$	${ }^{6} \cos \theta$		部 θ_{2}	${ }^{8} \mathrm{~F} \cos \phi$	${ }^{9} \mathrm{~F} \sin \phi$
So	S1	S2	S3	S5	S6		57	58	S9
A		B	C ${ }^{\text {c }}$	D y_{2}		E	used	1	

\qquad

SECTION PROPERTIES
TITLE

DATE \qquad AUTHOR

(Card 2)
TITLE

\qquad AUTHOR \qquad

		STOD GSEE PCLE x CHS FCL5 RCLD FCLE PCLC FCLA x RCLO x + $S T O E$ $P C L C$ $X E$ $R C L C$ $R C L H$ x 2 x RCLO x PCL 3 STOC RCLE x^{2} RCLD RCLE x x^{2} - RCLE x RCL4 STOL FCLI 2 GSE6 PRTX FCLC RCLD					$\begin{aligned} & 169 \\ & 170 \\ & 171 \\ & 172 \\ & 173 \\ & 174 \\ & 175 \\ & 176 \\ & 177 \\ & 178 \end{aligned}$	FCLI SIN \times FCLE FCLI cos_{x} PRTX RTN			
LABELS								AGS	SET STATUS		
${ }^{\text {A }} \rightarrow \overline{\mathrm{x}}, \overline{\mathrm{y}}, \phi$, Ixy	${ }^{C} \rightarrow 1$	$\overline{\mathrm{I}}$, $\overline{\mathrm{x}} \overline{\mathrm{y}}$	$\mathrm{D}^{\mathrm{D}} \rightarrow \mathrm{I} \overline{\mathrm{x}} \mathrm{l}_{1} \overline{\mathrm{y}} \mathrm{l}_{1} \mathrm{l} \overline{\mathrm{x}} \mathrm{y} \phi$ \|		0		FLAGS	TRIG	DISP
a	b		c		$\xrightarrow{\text { d }} \rightarrow \mathrm{Ix}^{\prime}, \mathrm{I} \mathrm{I}^{\prime}, \mathrm{Ix} \mathrm{y}^{\prime}$		1		\bigcirc ON OFF	DEG χ	
0	${ }^{1}$ ta		${ }^{2} \bar{x}, \bar{y}$		${ }^{3} \mathrm{Ix}, \mathrm{I}, \mathrm{Ixy}$	4	2		\square	GRAD \square	$\mathrm{SCl} \square$
5	${ }^{6} \mathrm{R}$		7		8	9	3				

STRESS ON AN ELEMENT

TITLE

\qquad AUTHOR \qquad

SODERBERG'S EQUATION FOR FATIGUE

TITLE

\qquad AUTHOR

CANTILEVER BEAMS

TITLE

\qquad AUTHOR

SIMPLY SUPPORTED BEAMS
TITLE

\qquad AUTHOR

BEAMS FIXED AT BOTH ENDS

TITLE

DATE \qquad AUTHOR

PROPPED CANTILEVER BEAMS

TITLE

\qquad AUTHOR

HELICAL SPRING DESIGN
TITLE

\qquad AUTHOR

FOUR BAR FUNCTION GENERATOR
TITLE

(Card 2)
TITLE

\qquad AUTHOR \qquad

PROGRESSION OF FOUR-BAR SYSTEM

title

AUTHOR

PROGRESSION OF SLIDER CRANK
TITLE

\qquad AUTHOR \qquad

CIRCULAR CAMS

TITLE

\qquad AUTHOR \qquad

LINEAR CAMS
TITLE

DATE \qquad AUTHOR

GEAR FORCES
TITLE

STANDARD EXTERNAL INVOLUTE SPUR GEARS

TITLE

\qquad AUTHOR \qquad

BELT LENGTH
TITLE

DATE \qquad AUTHOR

FREE VIBRATIONS
TITLE

\qquad AUTHOR

VIBRATIONS FORCED BY F ${ }_{0} \mathbf{C O S} \omega \mathrm{t}$

TITLE

DATE \qquad AUTHOR

EQUATIONS OF STATE
TITLE

\qquad AUTHOR

ISENTROPIC FLOW FOR IDEAL GASES
TITLE

\qquad AUTHOR

DATE \qquad AUTHOR

HEAT EXCHANGERS (Card 1)

TITLE

(Parallel-Flow and Counter-Flow)

DATE \qquad AUTHOR

(Card 2)
(Side 1: Parallel-Counter-Flow)
TITLE

(Side 2: Cross-Flow)
DATE
AUTHOR

Appendix A
 MAGNETIC CARD SYMBOLS AND CONVENTIONS

\(\begin{array}{|c|l|}\hline SYMBOL OR

CONVENTION\end{array} \quad\)| INDICATED MEANING |
| :--- |$]$| White mnemonics are associated with the user- |
| :--- |
| definable key they are above when the card is |
| inserted in the calculator's window slot. In this case |
| the value of x could be input by keying it in and |
| pressing \mathbf{A}. |

HEWLETT hP PACKARD

1000 N.E. Circle BIvd., Corvallis, OR 97330

[^0]: *If x is greater than a , a is replaced by $(\ell-\mathrm{a})$ and x is replaced by ($\ell-\mathrm{x}$). The signs of θ_{1} and V_{1} are also changed.
 ${ }^{* *}$ If x is greater than c, x is replaced by $(\ell-\mathrm{x})$ and c is replaced by $(\ell-\mathrm{c})$. The signs of y_{3} and $\mathrm{M}_{\mathrm{x} 3}$ are also changed.

