HP67HP97

M.E. Pac I

The program material contained herein is supplied without representation or warranty of any kind. Hewlett-Packard Company therefore assumes no responsibility and shall have no liability, consequential or otherwise, of any kind arising from the use of this program material or any part thereof.

WE NEED YOUR HELP

To provide better calculator support for people like you, we need your help. Your timely inputs will enable us to provide high quality software in the future and improve the existing application pacs for your calculator. Your early reply will be extremely helpful in this effort.

1. Pac name _____

2.		of this pac in making your decision to buy a could not buy without it. Important
3.	Did you buy this pac and your calc	culator at the same time? Yes No
	In deciding to buy this application	pac, which three programs seemed mos 1 2 3
5.	Which three programs in this application Program numbers 12	cation pac seemed least useful to you?
6.	What program(s) would you add to	this pac?
_		
7.	In the list below, select up to three this pac. Please indicate the order most important area).	application areas for which you purchased of importance by 1, 2, 3, (1 represents the
Th	Engineering — 01 Chemical — 02 Civil/Structural — 03 Electrical/Electronic — 04 Industrial — 05 Mechanical — 06 Surveying — 10 Other (Specify) — Science — 31 Biology — 32 Chemistry — 33 Earth Sciences — 34 Mathematics — 35 Medical Sciences — 36 Physics — 37 Statistics — 39 Other (Specify) — mank you for your time and cooperate	58 Marketing59 Other (Specify) Other71 Architecture72 Aviation73 Computer Science74 Education75 Navigation79 Other (Specify)
Na	ame	Date
Ac	ddress	
Ci	ity	State
Zip	р	Phone

Please fold and staple for mailing.	
nments:	Additional Con
BUSINESS REPLY MAIL No postage stamp is necessary if mailed in United States Postage will be paid by: Hewlett-Packard 1000 N.E. Circle Blvd. Corvallis, OR 97330	FIRST CLASS Permit No. 33 Corvallis, Oregon

ATTENTION: APPLICATIONS

Introduction

The 23 programs of ME Pac I have been drawn from the fields of statics, dynamics, stress analysis, machine design, and thermodynamics.

Each program in this pac is represented by one or more magnetic cards and a section in this manual. The manual provides a description of the program with relevant equations, a set of instructions for using the program, and one or more example problems, each of which includes a list of the actual keystrokes required for its solution. Program listings for all the programs in the pac appear at the back of this manual. Explanatory comments have been incorporated in the listings to facilitate your understanding of the actual working of each program. Thorough study of a commented listing can help you to expand your programming repertoire since interesting techniques can often be found in this way.

On the face of each magnetic card are various mnemonic symbols which provide shorthand instructions to the use of the program. You should first familiarize yourself with a program by running it once or twice while following the complete User Instructions in the manual. Thereafter, the mnemonics on the cards themselves should provide the necessary instructions, including what variables are to be input, which user-definable keys are to be pressed, and what values will be output. A full explanation of the mnemonic symbols for magnetic cards may be found in appendix A.

If you have already worked through a few programs in Standard Pac, you will understand how to load a program and how to interpret the User Instructions form. If these procedures are not clear to you, take a few minutes to review the sections, Loading a Program and Format of User Instructions, in your Standard Pac.

We hope that ME Pac I will assist you in the solution of numerous problems in your discipline. We would very much appreciate knowing your reactions to the programs in this pac, and to this end we have provided a questionnaire inside the front cover of this manual. Would you please take a few minutes to give us your comments on these programs? It is in the comments we receive from you that we learn how best to increase the usefulness of programs like these.

Contents

1.	Vector Statics
	and dot product, and finds angles between vectors.
2.	Section Properties (2 cards)
	The area, centroid, and moments of an arbitrarily complex
	polygon may be calculated using this program.
3.	Stress on an Element
	Reduces data from rosette strain gage measurement and performs
	Mohr circle analysis.
4.	Soderberg's Equation for Fatigue
	Solves for any one of the seven variables of Soderberg's
_	equation for fatigue.
5.	Cantilever Beams
	Calculates deflection, slope, moment and shear for point,
	distributed, and moment loads applied to cantilever beams.
6.	Simply Supported Beams
	Calculates deflection, slope, moment and shear for point, dis-
7	tributed, and moment loads applied to simply supported beams.
7.	Beams Fixed at Both Ends
	tributed, and moment loads applied to beams fixed at both ends.
8.	Propped Cantilever Beams
ο.	Calculates deflection, slope, moment, and shear for point, dis-
	tributed, and moment loads applied to propped cantilever beams.
9.	Helical Spring Design
7.	Performs one or two point design for helical compression springs.
10.	Four Bar Function Generator (2 cards)
	Program designs four bar systems which will approximate an
	arbitrary function of one variable.
11.	Progression of Four Bar System
	Calculates angular displacement, velocity, and acceleration
	for the output link of a four bar system.
12.	Progression of Slider Crank
	Calculates displacement, velocity, and acceleration of the slider
	and angular velocity and acceleration of the connecting rod for
	the progression of a slider crank system.
13.	Circular Cams
	Computes parameters necessary for design of harmonic, cycloidal, circular cams with roller, flat or point followers.
14.	Linear Cams
14.	Computes the parameters necessary for design of harmonic,
	cycloidal, or parabolic profiles for linear cams with roller
	followers.

15.	Gear Forces	.15-01
	Computes the reaction forces resulting from torque applied to	
	helical, bevel, and worm gears.	
16.	Standard External Involute Spur Gears	.16-01
	Calculates parameters necessary for the design, manufacture, and testing of standard, external, involute, spur gears.	
17.	Belt Length	.17-01
	Computes belt length around an arbitrary set of pulleys.	
18.	Free Vibrations	.18-01
	Calculates an exact solution to the differential equation for a damped oscillator vibrating freely.	
19.	Vibration Forced by $F_0\cos \omega t$.19-01
	Finds the steady-state solution for a damped oscillator forced by $F_0\cos \omega t$.	
20.	Equations of State	.20-01
	Ideal gas relation plus Redlich-Kwong model of real gas behavior.	
21.	Isentropic Flow for Ideal Gases	.21-01
	Replaces isentropic flow tables for ideal gases in	
	converging-diverging passages.	
22.	Conduit Flow	.22-01
	Calculates velocity or pressure drop for incompressible viscous	
	flow in conduits.	
23.	Heat Exchangers (2 cards)	.23-01
	Performs analysis of counter-flow, parallel-flow,	
	parallel-counter-flow and cross-flow (fluids unmixed)	
_	heat exchangers.	- 00 01
	ram Listings	
Appe	endix A—Card Mnemonic	A1

A WORD ABOUT PROGRAM USAGE

This application pac has been designed for both the HP-97 Programmable Printing Calculator and the HP-67 Programmable Pocket Calculator. The most significant difference between the HP-67 and the HP-97 calculators is the printing capability of the HP-97. The two calculators also differ in a few minor ways. The purpose of this section is to discuss the ways that the programs in this pac are affected by the difference in the two machines and to suggest how you can make optimal use of your machine, be it an HP-67 or an HP-97.

Many of the computed results in this pac are output by PRINT statements; on the HP-97 these results will be output on the printer. On the HP-67 each PRINT command will be interpreted as a PAUSE: the program will halt, display the result for about five seconds, then continue execution. The term "PRINT/PAUSE" is used to describe this output condition.

If you own an HP-67, you may want more time to copy down the number displayed by a PRINT/PAUSE. All you need to do is press any key on the keyboard. If the command being executed is PRINTx (eight rapid blinks of the decimal point), pressing a key will cause the program to halt. Execution of the halted program may be re-initiated by pressing R/S.

HP-97 users may also want to keep a permanent record of the values input to a certain program. A convenient way to do this is to set the Print Mode switch to NORMAL before running the program. In this mode all input values and their corresponding user-definable keys will be listed on the printer, thus providing a record of the entire operation of the program.

Another area that could reflect differences between the HP-67 and the HP-97 is in the keystroke solutions to example problems. It is sometimes necessary in these solutions to include operations that involve prefix keys, namely, \blacksquare on the HP-97 and \blacksquare , \blacksquare , and \blacksquare on the HP-67. For example, the operation \blacksquare is performed on the HP-97 as \blacksquare \blacksquare 0° and on the HP-67 as \blacksquare 0°. In such cases, the keystroke solution omits the prefix key and indicates only the operation (as here, \blacksquare 0°). As you work through the example problems, take care to press the appropriate prefix keys (if any) for your calculator.

Also in keystroke solutions, those values that are output by the PRINT command will be followed by three asterisks (***).

Notes

VECTOR STATICS

Part I of this program performs the basic two dimensional vector operations of addition, cross product and dot, scalar, or inner product. In addition, the angle between vectors may be found. Vectors may be input in polar form (r, θ) or rectangular form (x_1, y_1) .

Equations:

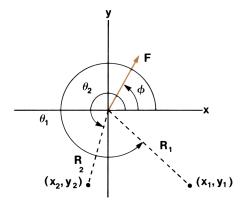
for addition:
$$\vec{V}_1 + \vec{V}_2 = (x_1 + x_2) \vec{i} + (y_1 + y_2) \vec{j}$$

for cross products:
$$\vec{V}_1 \times \vec{V}_2 = (x_1y_2 - x_2y_1) \vec{k}$$

for dot, scalar, or inner product:
$$\vec{V}_1 \cdot \vec{V}_2 = x_1 x_2 + y_1 y_2$$

for the angle between vectors:
$$\gamma = \cos^{-1} \frac{\vec{V}_1 \cdot \vec{V}_2}{|\vec{V}_1| |\vec{V}_2|}$$

where:


 x_1 is the x component of \vec{V}_1 ($x_1 = r_1 \cos \theta_1$);

 x_2 is the x component of \vec{V}_2 ($x_2 = r_2 \cos \theta_2$);

 y_1 is the y component of \vec{V}_1 ($y_1 = r_1 \sin \theta_1$);

 y_2 is the y component of \vec{V}_2 ($y_2 = r_2 \sin \theta_2$);

Part II of this program calculates the two reaction forces necessary to balance a given two-dimensional force vector. The direction of the reaction forces may be specified as a vector of arbitrary length or by Cartesian coordinates using the point of force application as the origin.

Equations:

$$R_1 \cos \theta_1 + R_2 \cos \theta_2 = F \cos \phi$$

 $R_1 \sin \theta_1 + R_2 \sin \theta_2 = F \sin \phi$

where:

F is the known force;

 ϕ is the direction of the known force;

 R_1 is one reaction force;

 θ_1 is the direction of R_1 ;

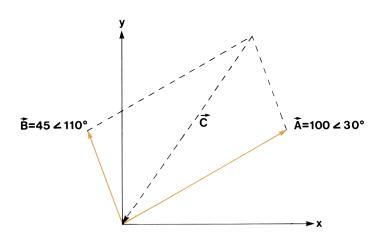
R₂ is the second reaction force;

 θ_2 is the direction of R_2 .

The coordinates x_1 and y_1 are referenced from the point where F is applied to the end of the member along which R_1 acts; x_2 and y_2 are the coordinates referenced from the point where F is applied to the end of the member along which R_2 acts.

Remarks:

Registers $R_0 - R_3$; $R_{S0} - R_{S9}$ and I are available for user storage.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	To resolve a force in two			
	known directions, go to step 6.			
	For vector addition, cross			
	product, or dot product con-			
	tinue with step 3.			
3	Input V ₁ and V ₂:			
	V ₁ in polar form	r ₁	ENTER+	r ₁
		$ heta_1$	A	У1
	or			
	$\vec{V}_{\scriptscriptstyle{1}}$ in rectangular form	X ₁	ENTER+	X ₁
		y 1	 A	У1
	and			
	$\vec{V}_{\scriptscriptstyle 2}$ in polar form	r ₂	ENTER+	r ₂
		$ heta_2$	B	y ₂
	or			

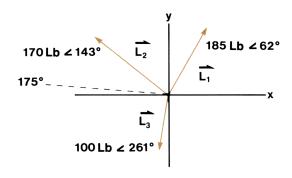
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	$\vec{V}_{\scriptscriptstyle 2}$ in rectangular form.	X ₂	ENTER+	X_2
		y ₂	f B	y ₂
4	Perform vector operation:			
	add vectors		G	r, <i>θ</i>
	or			
	take cross product		O	$\vec{V}_{1} \times \vec{V}_{2}$
	or			
	take dot (or scalar) product.		•	$\vec{\nabla}_1 \cdot \vec{\nabla}_2$
	(Optionally, calculate angle			
	between vectors after dot			
	product.)		R/S	γ
5	For a new case, go to step 3			
	and change \vec{V}_1 and/or \vec{V}_2 .			
6	Define reaction directions as			
	Cartesian coordinates or as			
	vectors of arbitrary magnitude.			
	(Use the point of force appli-			
	cations as the origin):			
	define direction one in polar			
	form	1	ENTER •	1.00
		$ heta_1$	A	$\sin heta_{\scriptscriptstyle 1}$
	or			
	in rectangular form	X ₁	ENTER+	X ₁
		y ₁	1 A	y ₁
	and			
	define direction two in polar			
	form	1	ENTER+	1.00
		$ heta_2$	B	$\sin heta_2$
	or			
	in rectangular form.	X ₂	ENTER+	X ₂
		y ₂	■ B	y ₂

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Input known force:			
	magnitude	F	ENTER+	F
	then direction.	φ		F sin ϕ
8	Compute reactions		1 3	R ₁ , R ₂
9	To change force, go to step 7.			
	To change either or both			
	directions, go to step 6.			

Example 1:

Forces A and B are shown below. If static equilibrium exists, what is force C.

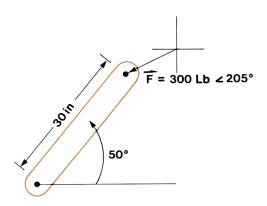
Keystrokes:


Outputs:

To obtain $\vec{C},$ add \vec{A} and \vec{B} using negative magnitudes for both.

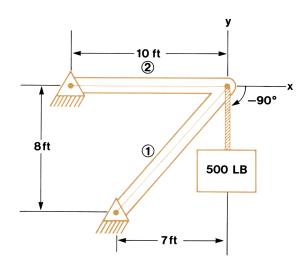
$$\vec{C} = 116.57 \angle -127.66^{\circ}$$

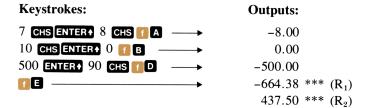
Example 2:


Resolve the following three loads along a 175 degree line.

Keystrokes:	Outputs:		
First add \vec{L}_1 and \vec{L}_2 .			
185 ENTER 62 A 170 ENTER €			
143 BC ───	270.12	***	(lb)
	100.43	***	(deg)
Define the result as \vec{V}_1 and add \vec{L}_3 .			
A 100 ENTER ◆ 261 B C	178.94	***	(lb)
	111.15	***	(deg)
To resolve the vector, just calculated			
along the 175° line.			
A 1 ENTER+ 175 B E	78.86	***	(lb)
What is the angle between the vector and the line?			
R/S	63.85	***	(deg)

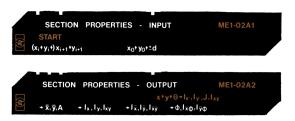
Example 3:


What is the moment at the shaft of the crank pictured below? What is the reaction force transmitted along the member?



Keystrokes:	Outputs:	
Moment by cross product $(\vec{V}_1 \times \vec{F})$.		
30 ENTER+ 50 A 300 ENTER+		
205 BD	3803.56	in-lb
Resolution along crank		
1 ENTER ◆ 50 A E	-271.89	lb

Example 4:


Find the reaction forces in the pin-jointed structure shown below.

Notes

SECTION PROPERTIES

The properties of polygonal sections (see figure 1) may be calculated using this program. The (x, y) coordinates of the vertices of the polygon (which must be located entirely within the first quadrant) are input sequentially for a complete, clockwise path around the polygon. Holes in the cross section, which do not intersect the boundary, may be deleted by following a counter-clockwise path.

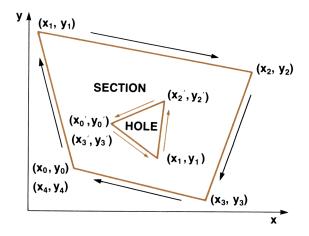


Figure 1 — Polygonal Sections

A special feature allows addition or deletion of circular areas. After the point by point traverse of the section has been completed, circular deletions or additions are specified by the (x,y) coordinates of the circle centers and by the circle diameters. If the diameter is specified as a positive number, the circular areas are added. A negative diameter causes circular areas to be deleted. Example 4 shows an application of this feature.

After all values have been input, the coordinates of the centroid $(\overline{x}, \overline{y})$ and the area (A) of the section may be output using card 2, key \blacksquare . The moment of inertia about the x axis (I_x) , about the y axis (I_y) and the product of inertia (I_{xy}) are output using \blacksquare . Similar moments, $I_{\overline{x}}$, $I_{\overline{y}}$ and $I_{\overline{xy}}$, about an axis translated to the centroid of the section are calculated when \blacksquare is pressed.

Pressing lacktriangle calculates the moments of inertia, $I_{\overline{x}\phi}$ and $I_{\overline{y}\phi}$, about the principal axis. The rotation angle (ϕ) between the principal axis and the axis which was translated to the centroid is also calculated. The moments of inertia $I_{x'}$, $I_{y'}$, the polar moment of inertia J and the product of inertia $I_{xy'}$ may be calculated about any arbitrary axis by specifying its location and rotation with respect to the original axis and pressing lacktriangle lacktriangle.

Equations:

$$\begin{split} A &= -\sum_{i=0}^{n} \ (y_{i+1} - y_{i})(x_{i+1} + x_{i})/2 \\ \overline{x} &= \frac{-1}{A} \sum_{i=0}^{n} \left[(y_{i+1} - y_{i})/8 \right] \left[(x_{i+1} + x_{i})^{2} + (x_{i+1} - x_{i})^{2}/3 \right] \\ \overline{y} &= \frac{1}{A} \sum_{i=0}^{n} \left[(x_{i+1} - x_{i})/8 \right] \left[(y_{i+1} + y_{i})^{2} + (y_{i+1} - y_{i})^{2}/3 \right] \\ I_{x} &= \sum_{i=0}^{n} \left[(x_{i+1} - x_{i})(y_{i+1} + y_{i})/24 \right] \left[(y_{i+1} + y_{i})^{2} + (y_{i+1} - y_{i})^{2} \right] \\ I_{y} &= -\sum_{i=0}^{n} \left[(y_{i+1} - y_{i})(x_{i+1} + x_{i})/24 \right] \left[(x_{i+1} + x_{i})^{2} + (x_{i+1} - x_{i})^{2} \right] \\ I_{xy} &= \sum_{i=0}^{n} \frac{1}{(x_{i+1} - x_{i})} \left[\frac{1}{8} (y_{i+1} - y_{i})^{2}(x_{i+1} + x_{i})(x_{i+1}^{2} + x_{i}^{2}) + \frac{1}{3} (y_{i+1} - y_{i})(x_{i+1} y_{i} - x_{i} y_{i+1})(x_{i+1}^{2} + x_{i+1} x_{i} + x_{i}^{2}) + \frac{1}{4} (x_{i+1} y_{i} - x_{i} y_{i+1})^{2}(x_{i+1} + x_{i}) \right] \\ I_{\overline{x}} &= I_{x} - A \overline{y}^{2} \\ I_{\overline{y}} &= I_{y} - A \overline{x} \overline{y} \end{split}$$

$$\begin{split} \phi &= \frac{1}{2} \, \tan^{-1} \, \left(\frac{-2 I_{\overline{x} \overline{y}}}{I_{\overline{x}} - I_{\overline{y}}} \right) \\ I_{x'} &= I_{\overline{x}} \cos^2 \theta + I_{\overline{y}} \sin^2 \theta - I_{\overline{x} \overline{y}} \sin 2 \theta \\ I_{y'} &= I_{\overline{y}} \cos^2 \theta + I_{\overline{x}} \sin^2 \theta + I_{\overline{x} \overline{y}} \sin 2 \theta \\ J &= I_{x'} + I_{y'} \\ I_{xy'} &= \frac{(I_{\overline{x}} - I_{\overline{y}})}{2} \sin 2 \theta + I_{\overline{x} \overline{y}} \cos 2 \theta \\ A_{circle} &= \frac{\pi d^2}{4} \\ I_{circle} &= \frac{\pi d^4}{64} \end{split}$$

where:

 x_{i+1} is the x coordinate of the current vertex point;

 y_{i+1} is the y coordinate of the current vertex point;

 x_i is the x coordinate of the previous vertex point;

y_i is the y coordinate of the previous vertex point;

A is the area;

 \overline{x} is the x coordinate of the centroid;

 \overline{y} is the y coordinate of the centroid;

 I_x is the moment of inertia about the x-axis;

I_y is the moment of inertia about the y-axis;

 I_{xy} is the product of inertia;

 $I_{\overline{x}}$ is the moment of inertia about the x-axis translated to the centroid;

 $I_{\overline{y}}$ is the moment of inertia about the y-axis translated to the centroid;

 $I_{\overline{x}\overline{y}}$ is the product of inertia about the translated axis;

 ϕ is the angle between the translated axis and the principal axis;

 $I_{\bar{x}_{\phi}}$ is the moment of inertia about the translated, rotated, principal x-axis;

 $I_{\bar{y}\phi}$ is the moment of inertia about the translated, rotated, principal y-axis;

 θ is the angle between the original axis and an arbitrary axis.

Ix' is the x moment of inertia about the arbitrary axis;

 $I_{y}{}^{\prime}$ is the y moment of inertia about the arbitrary axis;

J is the polar moment of inertia about the arbitrary axis;

 I_{xy} is the product of inertia about the arbitrary axis;

d is the diameter of a circular area.

Reference:

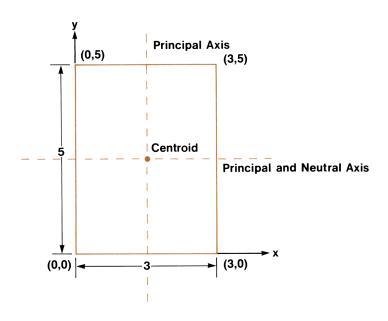
Wojciechowski, Felix; Properties of Plane Cross Sections; Machine Design; P. 105, Jan. 22, 1976.

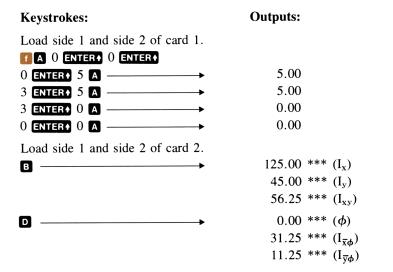
Remarks:

Registers $R_{S0} - R_{S9}$ are available for user storage.

The polygon must be entirely contained in the first quadrant.

Rounding errors will accumulate if the centroid of the section is a large distance from the origin of the coordinate system.

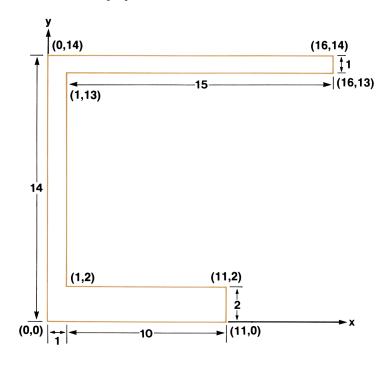

Curved boundaries may be approximated by straight line segments.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	card 1.			
2	Initialize.		f A	
3	Key in (x, y) coordinates of			
	first vertex.	X i	ENTER+	Уi
		Уi	ENTER+	Уi
4	Key in (x, y) coordinates of			
	next clockwise vertex.	X _{i+1}	ENTER+	X _{i+1}
		y i+1	A	y i+1
5	Wait for execution to end, then			
	repeat step 4 for next point.			
	Go to step 6 after you have			
	reinput the starting point.			
6	To delete subsections within			
	the section just traversed,			
	return to step 3, but traverse in			
	a counter-clockwise direction.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Optional: Add circular areas,	х	ENTER+	х
		у	ENTER+	у
		d	C	0.00
	or delete circular areas.	х	ENTER+	x
		у	ENTER+	у
		d	CHS C	0.00
8	Load side 1 and side 2 of			
	card 2.			
9	Calculate any or all of the			
	following:			
	Centroid and area;		A	₹, ₹, A
	Properties about original			
	axis;		B	I_x , I_y , I_{xy}
	Properties about axis trans-			
	lated to centroid;		0	$I_{\overline{x}}, I_{\overline{y}}, I_{\overline{x}\overline{y}}$
	Angular orientation of			
	principal axis and properties			
	about principal axis;		D	φ, Ι _{χφ} , Ι _{γφ}
	or			
	Specify arbitrary axis and			
	rotation and calculate			
	properties.	x'	ENTER+	
		y'	ENTER+	
		θ		$I_{x}', I_{y}', J, I_{xy}'$
10	To modify the section, go to			
	step 1, but skip step 2. For a			
	new case, go to step 1.			

Example 1:

What is the moment of inertia about the x-axis (I_x) for the rectangular section shown? What is the moment of inertia about the neutral axis through the centroid of the section $(I_{\overline{x}\phi})$?

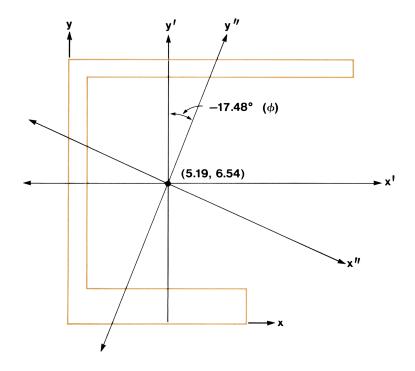


Since $\phi = 0$ we would expect $I_{\overline{x}\phi}$ to equal $I_{\overline{x}}$. Press \bullet to calculate $I_{\overline{x}}$, $I_{\overline{y}}$ and $I_{\overline{x}\overline{y}}$ and you will see that this prediction is correct. Also, $I_{\overline{x}\overline{y}}$ is zero about the principal axis.

$$\begin{array}{c} 31.25 *** (I_{\overline{x}}) \\ 11.25 *** (I_{\overline{y}}) \\ 0.00 *** (I_{\overline{y}\overline{y}}) \end{array}$$

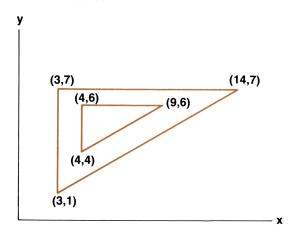
Example 2:

Calculate the section properties for the beam shown below.


Keystrokes: Outputs:

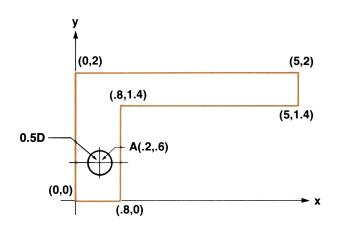
Load side 1 and side 2 of card 1.

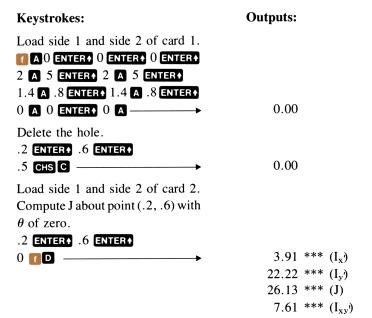
A 0 ENTER+ 0 ENTER+	
0 ENTER+ 14 A ————	14.00
16 ENTER ↑ 14 A	14.00
16 ENTER ◆ 13 A — →	13.00
1 ENTER ↑ 13 A	13.00
1 ENTER ↑ 2 A — →	2.00
11 ENTER ◆ 2 A — →	2.00
11 ENTER 0 A \longrightarrow	0.00


0 ENTER • 0 A — →	0.00	
Load side 1 and side 2 of card 2.		
A —	5.19	*** (\overline{x})
	6.54	*** (y)
	49.00	*** (A)
B	3676.33	*** (I _x)
	2256.33	*** (I _y)
	1890.25	*** (I_{xy})
€	1580.00	*** $(I_{\overline{x}})$
	934.49	*** $(I_{\overline{y}})$
	225.61	*** $(I_{\overline{x}\overline{y}})$
D	-17.48	*** (<i>ф</i>)
	1651.04	*** $(I_{\bar{x}\phi})$
	863.46	*** $(I_{\overline{v}\phi})$

Below is a figure showing the translated axis and the rotated, principal axis of example 2.

Example 3:


What is the centroid of the section below? The inner triangular boundary denotes an area to be deleted.

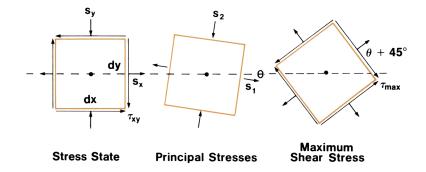


Keystrokes:	Outputs:
Load side 1 and side 2 of card 1.	
■ A 3 ENTER 1 ENTER 4	
3 ENTER ↑ 7 A — →	7.00
14 ENTER ↑ 7 A	7.00
3 ENTER ↑ 1 A	1.00
Delete inner triangle:	
4 ENTER 4 ENTER 9 ENTER ↑	
6 A ———	6.00
4 ENTER ↑ 6 A	6.00
4 ENTER♦ 4 A ————	4.00
Load side 1 and side 2 of card 2.	
Compute Centroid	
A	$6.85 *** (\overline{x})$
	$4.94 *** (\bar{y})$
	28.00 *** (A)

Example 4:

For the part below, compute the polar moment of inertia about point A. Point A denotes the center of a hole about which the part rotates. The area of the hole must be deleted from the cross section.

STRESS ON AN ELEMENT


This program reduces data from rosette strain gage measurements and/or performs Mohr circle stress analysis calculations.

Correlations for rectangular and equiangular rosette configurations are included.

Strain Gage Equations:

CONFIGURATION CODE	1	2
TYPE OF ROSETTE	RECTANGULAR	DELTA (EQUIANGULAR)
	c b b	c d d a
PRINCIPAL STRAINS: $\epsilon_{\scriptscriptstyle 1}, \epsilon_{\scriptscriptstyle 2}$	$\frac{1}{2} \left[\epsilon_{a} + \epsilon_{c} \pm \sqrt{2(\epsilon_{a} - \epsilon_{b})^{2} + 2(\epsilon_{b} - \epsilon_{c})^{2}} \right]$	$\frac{1}{3} \left[\epsilon_{a} + \epsilon_{b} + \epsilon_{c} \right]$ $\pm \sqrt{2(\epsilon_{a} - \epsilon_{b})^{2} + 2(\epsilon_{b} - \epsilon_{c})^{2} + 2(\epsilon_{c} - \epsilon_{a})^{2}} $
CENTER OF MOHR CIRCLE: $\frac{s_1 + s_2}{2}$	$\frac{\mathrm{E}(\boldsymbol{\epsilon}_{\mathrm{a}} + \boldsymbol{\epsilon}_{\mathrm{c}})}{2(1-\nu)}$	$\frac{E(\epsilon_a + \epsilon_b + \epsilon_c)}{3(1 - \nu)}$
MAXIMUM SHEAR STRESS: $ au_{ m max}$	$\frac{E}{2(1+\nu)} \sqrt{2(\epsilon_{a}-\epsilon_{b})^{2}+2(\epsilon_{b}-\epsilon_{c})^{2}}$	$\frac{E}{3(1+\nu)}\sqrt{2(\epsilon_{a}-\epsilon_{b})^{2}+2(\epsilon_{b}-\epsilon_{c})^{2}+2(\epsilon_{c}-\epsilon_{a})^{2}}$
ORIENTATION OF PRINCIPAL STRESSES	$\tan^{-1}\left[\frac{2\epsilon_{\rm b}-\epsilon_{\rm a}-\epsilon_{\rm c}}{\epsilon_{\rm a}-\epsilon_{\rm c}}\right]$	$\tan^{-1} \left[\frac{\sqrt{3} \left(\epsilon_{\rm c} - \epsilon_{\rm b} \right)}{\left(2 \epsilon_{\rm a} - \epsilon_{\rm b} - \epsilon_{\rm c} \right)} \right]$

The Mohr circle portion of the program converts an arbitrary stress configuration to principal stresses, maximum shear stress and rotation angle. It is then possible to calculate the state of stress for an arbitrary orientation θ' .

Mohr Circle Equations:

$$\tau_{\text{max}} = \sqrt{\left(\frac{s_{x} - s_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$s_{1} = \frac{s_{x} + s_{y}}{2} + \tau_{\text{max}}$$

$$s_{2} = \frac{s_{x} + s_{y}}{2} - \tau_{\text{max}}$$

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\tau_{xy}}{s_{x} - s_{y}}\right)$$

$$s = \frac{s_{1} + s_{2}}{2} + \tau_{\text{max}} \cos 2\theta'$$

$$au = au_{\text{max}} \sin 2\theta'$$

where:

s is the normal stress, and τ is the shear stress.

 ϵ_a , ϵ_b , and ϵ_c are the strains measured using rosette gages;

 s_x is the stress in the x direction for Mohr circle input;

s_y is the stress in the y direction for Mohr circle input;

 τ_{xy} is the shear stress on the element for Mohr circle input;

 ϵ_1 and ϵ_2 are the principal strains;

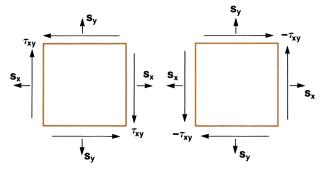
s₁ and s₂ are the principal normal stresses;

 au_{max} is the maximum shear stress;

 θ is the counterclockwise angle of rotation from the specified axis to the principal axis. Note that this is opposite to the normal Mohr circle convention.

 θ' is an arbitrary rotation angle from the original (x, y) axis; E is modulus of elasticity.

Reference:

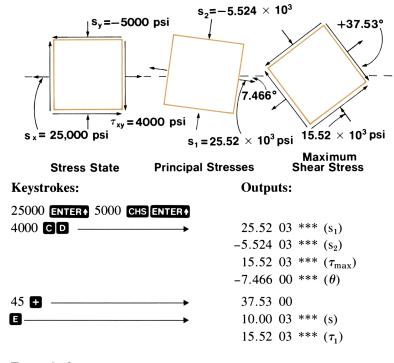

Spotts, M.F., Design of Machine Elements, Prentice-Hall, 1971.

Beckwith, T. G., Buck, N. L., Mechanical Measurements, Addison-Wesley, 1969

Remarks:

 R_0 , R_1 , R_7 , R_8 , R_D and R_{S0} – R_{S9} are available for user storage.

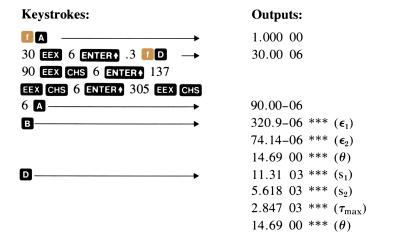
Negative stresses and strains indicate compression. Positive and negative shear are represented below:



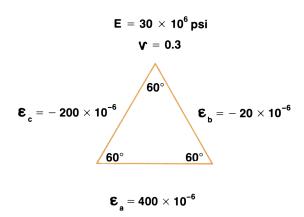
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	If a stress configuration is			
	known, go to step 8 for Mohr			
	circle evaluation. Continue			
	with step 3 for strain gage			
	data reduction.			
3	Select strain gage			
	configuration:			
	Rectangular		f A	1.000 00
	or Delta.		■ B	2.000 00

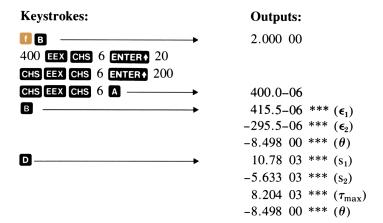
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Input modulus of elasticity,	E	ENTER+	E
	then Poisson's ratio.	ν	1 D	E
5	Input strains:			
		$\epsilon_{ m a}$	ENTER+	$\epsilon_{ m a}$
		ϵ_{b}	ENTER+	ϵ_{b}
		$\epsilon_{ m c}$	A	ϵ_{a}
6	Calculate principal strains			
	and rotation angle.		B	$\epsilon_1, \ \epsilon_2, \ \theta$
7	Skip to step 9 for Mohr circle			
	applications of calculations			
	just completed.			
8	Input stress on element in x			
	direction	S _x	ENTER+	S _x
	then stress in y direction	S _y	ENTER+	S _y
	then shear stress.	$ au_{xy}$	G	0.000 00
9	Calculate principal stresses.		0	$S_1, S_2, \tau_{max},$
				θ
10	Optional: Calculate stress			
	configuration at a specified			
	angle.	θ'	3	s, <i>τ</i>
11	To specify another angle go			
	to step 10. For a new case go			
	to step 2.			

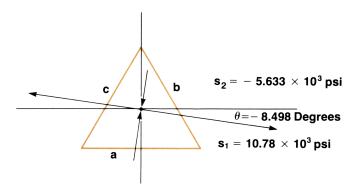
Example 1:


If $s_x = 25000$ psi, $s_y = -5000$ psi, and $\tau_{xy} = 4000$ psi, compute the principal stresses and the maximum shear stress. Compute the normal stresses, where shear stress is maximum ($\theta + 45^{\circ}$).

Example 2:

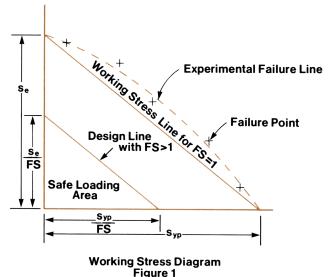

A rectangular rosette measures the strains below. What are the principal strains and principal stresses?


$$\epsilon_{\rm a} = 90 \times 10^{-6}$$
 $\epsilon_{\rm b} = 137 \times 10^{-6}$ $\epsilon_{\rm c} = 305 \times 10^{-6}$
 $\nu = 0.3$ $E = 30 \times 10^{6} \, \rm psi$



Example 3:

An equiangular rosette measures the strains below. What are the principal strains and stresses?



SODERBERG'S EQUATION FOR FATIGUE

This program will calculate the seventh variable from the other six values in Soderberg's equation. It is useful in sizing parts for cyclic loading, calculating factors of safety, choosing materials based on size constraints and estimating the fatigue resistance of available parts. Soderberg's equation is graphically represented in figure 1.

Equations:

$$\frac{s_{yp}}{FS} = \frac{s_{max} + s_{min}}{2} + K \left(\frac{s_{yp}}{s_e}\right) \left(\frac{(s_{max} - s_{min})}{2}\right)$$

$$\frac{s_{max} + s_{min}}{2} = \frac{P_{max} + P_{min}}{2A}$$

$$\frac{s_{max} - s_{min}}{2} = \frac{P_{max} - P_{min}}{2A}$$

where:

 s_{yp} is the yield point stress of the material;

s_e is the material endurance stress from reversed bending tests;

K is the stress concentration factor for the part;

FS is the factor of safety (FS ≥ 1.00)

 s_{max} is the maximum stress;

 s_{min} is the minimum stress;

P_{max} is the maximum load;

P_{min} is the minimum load;

A is the cross sectional area of the part.

Reference:

Spotts, M. F., Design of Machine Elements; Prentice-Hall, Inc., 1971.

Baumeister, T. Marks Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, 1967.

Remarks:

If s_{max} and s_{min} are to be input or calculated instead of P_{max} or P_{min} , simply use 1.00 for the value of area.

 R_0-R_7 , $R_{S0}-R_{S9}$ and I are available for storage.

This implementation of Soderberg's equation is for ductile materials only.

Values of stress concentration factors and material endurance limits may be found in the referenced sources.

In the presence of corrosive media, or for rough surfaces, fatigue effects may be much more significant than predicted by this program.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input six of the following seven			
	Yield point stress	S _{yp}	11 A	S _{yp}
	Endurance stress	S _e	 ■ B	S _e
	Cross sectional area	Α	A	Α
	Stress concentration factor	К	В	К
	Maximum load	P_{max}	0	P _{max}
	Minimum load	P_{min}	D	P_{min}
	Factor of safety	FS	Œ	FS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	Calculate the remaining value:			
	Yield point stress			S _{yp}
	Endurance stress		■ B	S _e
	Cross sectional area		A	Α
	Stress concentration factor		В	K
	Maximum load		G	P_{max}
	Minimum load		D	P_{min}
	Factor of safety		Œ	FS
4	Optional: Output values in			
	s_{yp} , s_{e} , A, K, P_{max} , P_{min} ,			
	FS order.			OUTPUT
5	For a new case, go to step 2			
	and change appropriate			
	inputs.			

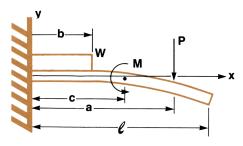
Example 1:

What is the maximum permissible cyclic load for a part if the minimum load is 2000 pounds and the area is 0.5 square inches?

$$s_{yp} = 70000 \text{ psi}$$

 $s_e = 25000 \text{ psi}$
 $K = 1.25$
 $FS = 2.0$

Keystrokes:	Outputs:		
70000 f A 25000 f B .5 A			
1.25 B 2000 D 2 E C →	8.889	03	(P_{max})
If P _{max} is changed to 10000 pounds			
what will s _e have to be?			
10000 C [B	30.43	03	(s_e)


If s_e is changed back to 25000 psi what will the factor of safety be? 25000 [] BE -----1.750 00 (FS) Output values for review: f C ---- $03 *** (s_{yp})$ 70.00 03 *** (s_e) 25.00 500.0 -03 *** (A) 1.250 00 *** (K) 10.00 $03 *** (P_{max})$ 2.000 $03 *** (P_{min})$ 1.750 00 *** (FS)

CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a rigidly fixed, cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, applied moments and combined distributed loads may be analyzed.

Equations:

$$y = y_1 + y_2 + y_3$$
 (total deflection)

$$y_1 = \frac{PX_1^2}{6EI} (X_1 - 3a) - \frac{Pa^2}{2EI} (x - a)(x > a)^* \qquad \text{(deflection due to point load)}$$

$$y_2 = \frac{-WX_2^2}{6EI} \left[X_2 \left(\frac{X_2}{4} - b \right) + 1.5 b^2 \right]$$
$$-\frac{Wb^3}{6EI} (x-b)(x>b) \qquad \text{(distributed load)}$$

$$y_3 = \frac{MX_3^2}{2EI} + \frac{Mc}{EI} (x-c)(x>c)$$
 (applied moment)

$$\theta = \theta_1 + \theta_2 + \theta_3$$
 (total slope)

$$\theta_1 = \frac{PX_1}{2FI}(X_1 - 2a)$$
 (slope due to point load)

$$\theta_2 = \frac{WX_2}{EI} \left[X_2 \left(\frac{X_2}{6} - \frac{b}{2} \right) + \frac{b^2}{2} \right]$$
 (distributed load)

$$\theta_3 = \frac{MX_3}{EI}$$
 (applied moment)

$$M_x = M_{x1} + M_{x2} + M_{x3}$$
 (total moment)

$$M_{x1} = P(X_1 - a)$$
 (moment due to point load)

$$M_{x2} = -W (X_2 (X_2/2 - b) + b^2/2)$$
 (distributed load)

$$M_{x3} = M (x \le c)$$
 (applied moment)

$$V = V_1 + V_2 + V_3$$
 (total shear)

$$V_1 = P(x \le a)$$
 (shear due to point load)

$$V_2 = W (b-X_2)$$
 (distributed load)

$$V_3 = 0$$
 (applied moment)

where:

y is the deflection at a distance x from the wall;

 θ is the slope (change in y per change in x) at x;

 M_x is the moment at x;

V is the shear at x:

I is the moment of inertia of the beam;

E is the modulus of elasticity of the beam;

 ℓ is the length of the beam;

P is a concentrated load;

W is a uniformly distributed load with dimensions of force per unit length.

M is an applied moment;

a is the distance from the foundation to the point load;

b is the distance to the end of the distributed load;

c is the distance to the applied moment;

$$X_1 = x \text{ if } x \leq a \text{ or a if } x > a;$$

$$X_2 = x \text{ if } x \leq b \text{ or } b \text{ if } x > b$$

$$X_3 = x \text{ if } x \le c \text{ or } c \text{ if } x > c.$$

^{*}The notation (x > a) is interpreted as 1.00 if x is greater than a and as 0.00 if x is less than or equal to a.

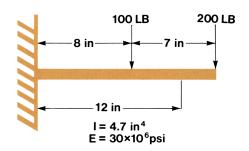
Remarks:

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers R_{S0}-R_{S9} are available for user storage.

SIGN CONVENTIONS FOR BEAMS

NAME	VARIABLE	SENSE	SIGN
DEFLECTION	у	^	+
SLOPE	heta	^	+
INTERNAL MOMENT	M_{x}	₹	+
SHEAR	V	↑— ↓	+
EXTERNAL FORCE OR LOAD	P or W	\checkmark	+
EXTERNAL MOMENT	М	Ç	+


Sums of y, θ , M_x and V may be stored in R_6 , R_7 , R_8 , and R_9 , respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.		1 A	0.000 00
3	Input moment of inertia	I	ENTER •	I
	then modulus of elasticity	Е	ENTER+	Е
	then beam length.	l	■ B	EI
4	Input load(s):			
	Location of point load	а	ENTER+	а
	Point load	Р	 □ C	а
	Length of distributed load	b	ENTER+	b
	Distributed load (force/length)	W		b
	Location of applied moment	С	ENTER+	С
	Applied moment	М		С
5	Key in x to specify the point			
	of interest and calculate			
	deflection	х	A	у
	or slope	х	B	θ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	or moment	х	C	M _x
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

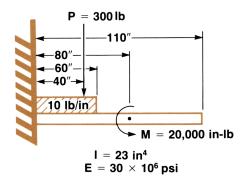
Example 1:

What is the deflection at x = 12? Neglect the weight of the beam.

Compute deflection at 12 inches due to 100 lb weight:

8 ENTER 100 [C 12 A
$$\longrightarrow$$
 -211.8 -06

Store deflection due to 100 lb load for addition to deflection due to 200 lb load:

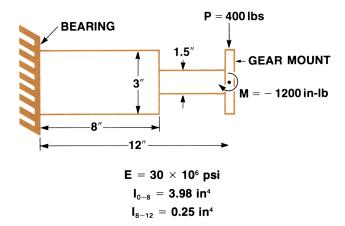

Compute deflection at 12 inches due to 200 lb load:

Compute total deflection:

Example 2:

Kovetrokoc.

For the beam below, compute deflection, slope, moment and shear at 0, 50, and 90 inches. Neglect the weight of the beam.



Outpute.

Keystrokes:	Outputs:
■ A 23 ENTER 30 EEX	
6 ENTER+ 110 1 B 40 ENTER+	
300 (C 60 ENTER 10 (D	
80 ENTER+ 20000 [E	
0 A	0.000 00 (y)
0 B ———	$0.000 00 \left(\theta\right)$
0 C	$-10.00 03 (M_x)$
0 D —	900.00 00 (V)
50 A ————	5.211 -03
50 B	582.1 -06
50 C	19.50 03
50 D ———	100.0 00
90 A ————	50.14 -03
90 ᠍ ─────	1.449 -03
90 C	0.000 00
90 🗖 ————	0.000 00

Example 3:

The axle for a gear has the cross sectional shape and properties below. Assuming that the shaft may be modeled as a cantilever, calculate the deflection and slope at the gear mount and the moment and shear at the bearing. Neglect the weight of the axle.

Keystrokes:

Outputs:

First compute the deflection and slope from 0 to 8 inches based on larger cross section.

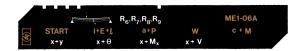
CHS [E 8 A STO 6
$$\longrightarrow$$
 -1.322 -03 (y_8) 8 B STO 7 \longrightarrow -294.8 -06 (θ_8)

Compute the deflection at 12 inches assuming no bending occurs from 8 to 12 inches.

4
$$\times$$
 RCL 6 + STO 6 \longrightarrow -2.501 -03 (y_{12})

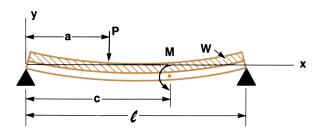
Compute the moment and shear at the bearing.

Change to smaller cross section and move origin to shoulder between large and small members.


Add deflection and slope at 12 inches based on smaller cross section to values previously stored for large cross section.

4 A
$$-5.831 - 03$$

STO + 6 RCL 6 $-8.333 - 03$ (y_{12})
4 B $-2.773 - 03$


STO + 7 RCL 7 $-3.068 - 03$ (θ_{12})

SIMPLY SUPPORTED BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a simply supported beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$$y = y_1 + y_2 + y_3 \qquad \text{(total deflection)}$$

$$y_1 = \frac{P(\ell - a)x}{6EI} \left[x^2 + (\ell - a)^2 - \ell^2 \right]^* \qquad \text{(deflection due to point load)}$$

$$y_2 = \frac{-Wx}{24EI} \left[\ell^3 + x^2 \left(x - 2\ell \right) \right] \qquad \text{(distributed load)}$$

$$y_3 = \frac{-Mx}{EI} \left[c - \frac{x^2}{6\ell} - \frac{c^2}{3} - \frac{c^2}{2\ell} \right]^{**} \qquad \text{(applied moment)}$$

$$\theta = \theta_1 + \theta_2 + \theta_3 \qquad \text{(total moment)}$$

$$\theta_1 = \frac{P(\ell - a)}{6EI} \left[3x^2 + (\ell - a)^2 - \ell^2 \right]^* \qquad \text{(slope due to point load)}$$

$$\theta_2 = -\frac{W}{24EI} \left[\ell^3 + \chi^2 (4\chi - 6\ell) \right]$$
 (distributed load)

$$\theta_3 = \frac{-M}{EI} \left[c - \frac{x^2}{2\ell} - \frac{\ell}{3} - \frac{c^2}{2\ell} \right]^{**}$$
 (applied moment)

$$M_x = M_{x1} + M_{x2} + M_{x3}$$
 (total moment)

$$M_{x1} = \frac{P(\ell - a)x}{\ell}$$
 (moment due to point load)

$$M_{x^2} = -\frac{Wx}{2} [x - \ell]$$
 (distributed load)

$$M_{x3} = \frac{Mx}{\ell}^{**}$$
 (applied moment)

$$V = V_1 + V_2 + V_3$$
 (total shear)

$$V_1 = \frac{P(\ell - a)^*}{\ell}$$
 (shear due to point load)
 $V_2 = W\left(\frac{\ell}{2} - x\right)$ (distributed load)

$$V_3 = \frac{M}{\rho}$$
 (applied moment)

where:

y is the deflection at a distance x from the left support;

 θ is the slope (change in y per change in x) at x;

 M_x is the moment at x;

V is the shear at x:

I is the moment of intertia of the beam;

E is the modulus of elasticity of the beam;

Q is the length of the beam;

P is a concentrated load;

W is a uniformly distributed load with dimensions of force per unit length;

M is an applied moment;

a is the distance from the left support to the point load;

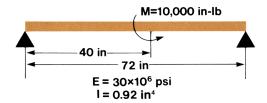
c is the distance to the applied moment.

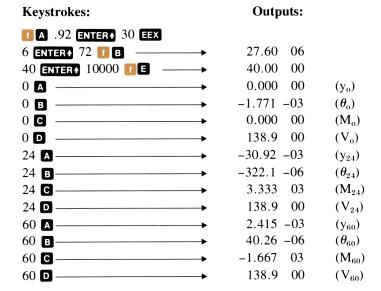
^{*}If x is greater than a, $(\ell - a)$ is replaced by -a and x is replaced by $(x - \ell)$.

^{**}If x is greater than c, x is replaced by $(x - \ell)$ and c is replaced by $(\ell - \epsilon)$.

Remarks:

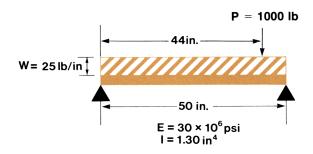
Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.


Registers $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

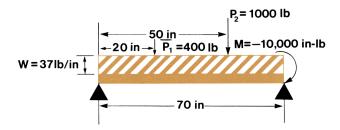

Sums of y, θ , M_x and V may be stored in R_6 , R_7 , R_8 , and R_9 , respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Initialize.			0.000 00
3	Input moment of inertia	I	ENTER+	I
	then modulus of elasticity	E	ENTER+	Е
	then beam length.	l	■ B	EI
4	Input load(s):			
	Location of point load	a	ENTER •	а
	Point load	Р		a
	Distributed load (force/length)	W		W
	Location of applied moment	С	ENTER+	С
	Applied moment	М	() (3)	С
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	Α	у
	or slope	х	B	heta
	or moment	х	G	M_x
	or shear.	x	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4. Be			
	sure to set obsolete loadings			
	to zero. For new beam properties	,		
	go to step 3. To restart, go to			
	step 2.			

Example 1:


Find the deflection, slope, internal moment and shear at distances of 0, 24 and 60 inches for the beam below. Neglect the weight of the beam.

Example 2:

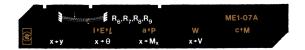

What is the slope of the beam below at x = 38 inches?

Outputs:		
39.00 06		
44.00 00		
25.00 00		
3.327 -03	(in/in)	
	44.00 00 25.00 00	

Example 3:

What is the total moment at the center of the beam below? (It is not necessary to know the values of E or I to solve the problem. Simply key in 70 and press **B**.)

First solve for the effect of the distributed load, P1, and M.


Keystrokes:	Outputs:		
■ A 70 ■ B 20 ENTER			
400 [€	20.00 00		
37 □ D 70 ENTER			
10000 CHS	70.00 00		
70 ENTER♦ 2 ÷ C ———	21.66 03		
Store values in R ₆ .			
STO 6	21.66 03	(in-lb)	

Now solve for the effect of P_2 and add it to the content of R_6 . This is the final answer assuming superposition is valid.

■ A 50 ENTER 1000 ■ C -	-	50.00	00	
35 C	-	10.00	03	(in-lb)
RCL 6 +	→	31.66	03	(in-lb)


Notes

BEAMS FIXED AT BOTH ENDS

This program calculates deflection, slope, moment and shear at any specified point along a beam of uniform cross section, fixed at both ends. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$$y = y_1 + y_2 + y_3$$
 (total deflection)

$$y_1 = \frac{P(\ell - a)^2 x^2}{6EL^3} \left[x(\ell + 2a) - 3a\ell \right]^* \qquad \text{(deflection due to point load)}$$

$$y_2 = \frac{Wx^2}{24FI} \left[x(2\ell - x) - \ell^2 \right]$$
 (distributed load)

$$y_3 = \frac{M(\ell - c)x^2}{\ell^2 EI} \left[\frac{cx}{\ell} + \frac{\ell - 3c}{2} \right]^{**}$$
 (applied moment)

$$\theta = \theta_1 + \theta_2 + \theta_3$$
 (total slope)

$$\theta_1 = \frac{P(\ell - a)^2 x}{2FL^3} \left[x(\ell + 2a) - 2a\ell \right]^*$$
 (slope due to point load)

$$\theta_2 = \frac{Wx}{12EI} \left[x(3 \ell - 2x) - \ell^2 \right]$$
 (distributed load)

$$\theta_3 = \frac{M(\ell - c)x}{{}^2EI} \left[\frac{3cx}{\ell} + \ell - 3c \right]^{**}$$
 (applied moment)

$$M_x = M_{x1} + M_{x2} + M_{x3}$$
 (total moment)

$$M_{x1} = \frac{P(\ell - a)^2}{\ell^3} \left[x(\ell + 2a) - a\ell \right]^* \qquad \text{(moment due to point load)}$$

$$M_{x^2} = \frac{W}{12} \left[6x(\ell - x) - \ell^2 \right]$$
 (distributed load)

$$M_{x3} = \frac{M(\ell - c)}{\ell^2} \left[\frac{6cx}{\ell} + \ell - 3c \right]^{**}$$
 (applied moment)

$$V = V_1 + V_2 + V_3$$
 (total shear)

$$V_1 = \frac{P(\ell - a)^2}{e^3} (\ell + 2a)$$
 (shear due to point load)

$$V_2 = \frac{-W}{2} (2x - \ell)$$
 (distributed load)

$$V_3 = \frac{-6M(\ell - c) c^{**}}{\ell^3}$$
 (applied moment)

where:

y is the deflection at a distance x from the left support;

 θ is the slope (change in y per change in x) at x;

 M_x is the moment at x;

V is the shear at x:

I is the moment of inertia of the beam;

E is the modulus of elasticity of the beam;

Q is the length of the beam;

P is a concentrated load;

W is a uniformly distributed load with dimensions of force per unit length;

M is an applied moment;

a is the distance from the left support to the point load;

c is the distance to the applied moment.

^{*}If x is greater than a, a is replaced by $(\ell - a)$ and x is replaced by $(\ell - x)$. The signs of θ_1 and V_1 are also changed.

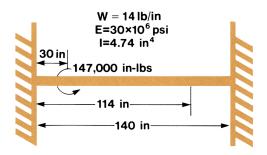
^{**}If x is greater than c, x is replaced by $(\ell - x)$ and c is replaced by $(\ell - c)$. The signs of y_3 and M_{x3} are also changed.

Remarks:

This card differs from other beam cards. The "start" function is not included on LBL 1 A. You must manually perform the "start" function by storing zero when P, W or M are not included in the problem.

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

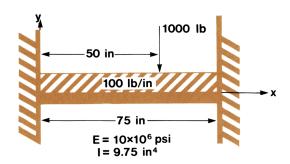
Registers R_{S0} - R_{S9} are available for user storage.


Sums of y, θ , M_x and V may be stored in R_6 , R_7 , R_8 , R_9 , respectively. Note that these registers are indicated on the magnetic card.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input moment of inertia	I	ENTER+	I
	then modulus of elasticity	Е	ENTER+	E
	then beam length.	l	□ B	EI
3	Input load(s):*			
	Location of point load	а	ENTER+	а
	Point load	Р	1 C	а
	Distributed load (force/length)	W		w
	Location of applied moment	С	ENTER+	С
	Applied moment	M	1 3	С
4	Key in x to specify the point			
	of interest and calculate			
	deflection	x	A	у
	or slope	×	B	θ
	or moment	х	G	M _x
	or shear.	x	0	V

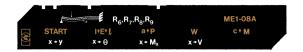
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	For a new calculation with the			
	same loading, go to step 4. For			
	new loads, go to step 3. Be			
	sure to set obsolete loadings to			
	zero. For new beam properties,			
	go to step 2.			
	*Loads must be input, even if			
	zero.			

Example 1:

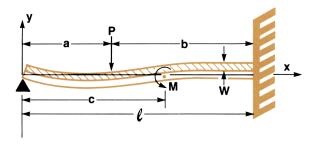

For the beam below, what are the values of deflection, slope, moment, and shear at an x of 114 inches?

Keystrokes:	Outputs:		
4.74 ENTER ◆ 30 EEX 6 ENTER ◆			
140	142.2 06		
0 [] C 30 ENTER 147000 [] E			
14 [] D ————	14.00 00		
114 A	43.72 - 03	(y)	
RCL O B	-3.155-03	(θ)	
RCL O C	13.05 03	(M_x)	
RCL O D	444.7 00	(V)	

Example 2:


Find the internal moment at x = 0 for the configuration below.

Keystrokes:	Outputs:		
9.75 ENTER 10 EEX 6 ENTER €			
75 [] B ———	97.50	06	
0 []E 100 []D 50 ENTER♦			
1000 [[□	50.00	00	
0 C	-52.43	$03 (M_0)$	
Also, find the deflection at $x = 40$.			
40 A ————	-101.0	$-03 (Y_{40})$	


Notes

PROPPED CANTILEVER BEAMS

This program calculates deflection, slope, moment and shear at any specified point along a propped cantilever beam of uniform cross section. Distributed loads, point loads, applied moments or combinations of all three may be modeled. By using the principle of superposition, complicated beams with multiple point loads, and multiple applied moments can be analyzed.

Equations:

$$y = y_1 + y_2 + y_3$$
 (total deflection)

$$y_1 = \frac{P}{6EI} \left[F(x^3 - 3\ell^2 x) + 3b^2 x \right]; \ x \le a$$
 (deflection due to point load)

$$y_2 = \frac{W}{48EI} (3 \ell x^3 - 2x^4 - \ell^3 x) \qquad \text{(distributed load)}$$

$$y_3 = \frac{M}{EI} G(x^3 - 3\ell^2 x) + \ell x - cx; x \le c$$
 (applied moment)

$$y_3 = \frac{M}{EI} G(x^3 - 3\ell^2 x) + \ell x - \frac{1}{2} (x^2 + c^2); x > c$$

$$\theta = \theta_1 + \theta_2 + \theta_3$$
 (total slope)

$$\theta_1 = \frac{P}{6FI} \left[F(3x^2 - 3\ell^2) + 3b^2 \right]; \quad x \le a$$
 (slope due to point load)

$$\theta_1 = \frac{P}{6FI} [F(3x^2 - 3\chi^2) - 3(x - a)^2]; x > a$$

$$\theta_2 = \frac{W}{48EI} (9 x^2 - 8x^3 - \xi^3) \qquad \text{(distributed load)}$$

$$\theta_3 = \frac{M}{EI} \left[G(3x^2 - 3\ell^2) + \ell - c \right]; \ x \le c$$
 (applied moment)

$$\theta_3 = \frac{M}{EI} \left[G(3x^2 - 3\ell^2) + \ell - x \right]; \ x > c$$

$$M_x = M_{x1} + M_{x2} + M_{x3}$$
 (total moment)

 $M_{x1} = PFx$; $x \le a$ (moment due to point load)

$$M_{x1} = PFx - P(x - b); x > a$$

$$M_{x2} = W (3/8x \ell - x^2/2)$$
 (distributed load)

$$M_{x3} = 6MGx$$
; $x \le c$ (applied moment)

$$M_{x3} = 6MGx - M; x > c$$

$$V = V_1 + V_2 + V_3$$
 (total shear)

 $V_1 = PF$; $x \le a$ (shear due to point load)

$$V_1 = PF - P; x > a$$

$$V_2 = W\left(\frac{3}{8} \ Q - x\right)$$
 (distributed load)

$$V_3 = 6MG$$
 (applied moment)

$$F = \left[\frac{3b^2 \, \ell - b^3}{2\ell^3} \right]$$

$$b = (\varrho - a)$$

$$G = \frac{\ell^2 - c^2}{4\ell^3}$$

where:

y is the deflection at a distance x from the left support;

 θ is the slope (change in y per change in x) at x;

 M_x is the moment at x;

V is the shear at x;

I is the moment of inertia of the beam;

E is the modulus of elasticity of the beam;

Q is the length of the beam;

P is a concentrated load;

W is a uniformly distributed load with dimensions of force per unit length;

M is an applied moment;

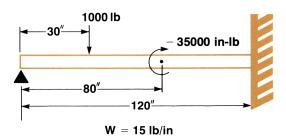
a is the distance from the left support to the point load;

c is the distance to the applied moment.

Remarks;

Deflections must not significantly alter the geometry of the problem. Beams must be of constant cross section for deflection and slope equations to be valid. Stresses must be in the elastic region.

Registers R_{S0} - R_{S9} and R_{B} are available for user storage.

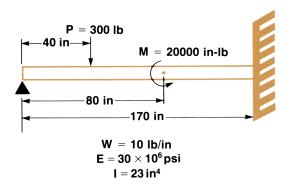

Sums of y, θ , M_X and V may be stored in R_6 , R_7 , R_8 and R_9 , respectively. Note that those registers are indicated on the magnetic card.

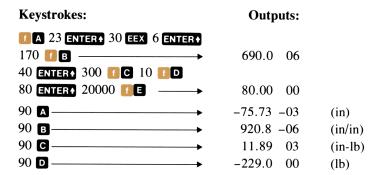
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side, 2.			
2	Initialize.		I A	0.000 00
3	Input moment of inertia	I	ENTER+	I
	then modulus of elasticity	Е	ENTER+	Е
	then beam length.	l	■ B	Ei
4	Input load(s):			
	Location of point load	а	ENTER+	а
	Point load	Р	1 C	а
	Distributed load (force/length)	W		W
	Location of applied moment	С	ENTER+	С
	Applied moment.	М	ø G	С

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
5	Key in x to specify the point of			
	interest and calculate			
	deflection	x	A	у
	or slope	x	8	θ
	or moment	х	0	M _×
	or shear.	х	D	V
6	For a new calculation with the			
	same loading, go to step 5.			
	For new loads, go to step 4.			
	Be sure to set obsolete			
	loadings to zero. For new			
	beam properties, go to step 3.			
	To restart, go to step 2.			

Example 1:

What are the values of moment and shear at both ends of the beam below? (It is not necessary to know the values of E or I since deflection and slope are not required.)




Keystrokes:	Outp	uts:	
1 A 120 f B 30 ENTER ◆ 1000 f C — → 80 ENTER ◆ 35000 CHS f E	30.00	00	
15 [D]	15.00	00	
0 🖸 ————	0.000	00	(in-lb)
0 🗖 ————	1.065	03	(lb)
120 C ———	-35.23	03	(in-lb)
120 D ———	-1.735	03	(lb)

08-05

Example 2:

Calculate the deflection, slope, moment and shear at x = 90 for the beam below.

Notes

HELICAL SPRING DESIGN

This program performs one or two point design for helical compression springs, of round wire, with ends square and ground.

After a tentative spring design has been found, a check can be run to determine whether stresses are acceptable, and whether sufficient clearance between coils is available at the point of highest operating load.

Equations:

$$k = \frac{P_2 - P_1}{L_1 - L_2}$$

$$s_2 = \frac{8 P_2 D_H}{\pi d^3}$$

$$D = D_H f_0 - d$$

$$N = \frac{G d^4}{8 D^3 k}$$

$$L_s = (N+2) d$$

$$L_f = \frac{P_1}{k} + L_1$$

$$s_s = \frac{8 D k (L_f - L_s) W}{\pi d^3}$$

$$W = \frac{4 (D/d) - 1}{4 (D/d) - 4} + \frac{0.615}{(D/d)}$$

$$s_{max} = \begin{cases} .45 TS \text{ for ferrous materials.} \\ .35 TS \text{ for non-ferrous materials.} \end{cases}$$

$$YS = \begin{cases} .65 TS \text{ for ferrous materials.} \\ .55 TS \text{ for non-ferrous materials.} \end{cases}$$

$$TS = \beta \ln d + \alpha$$

Design checking logic:

If $(L_2 - L_s) < 0.1 (L_f - L_2)$ and $s_s > s_{max}$, the spring lacks sufficient clearance between coils and stresses are too high; code = 1.

If $(L_2 - L_s) < 0.1 (L_f - L_2)$ and $s_s \le s_{max}$, clearance between coils is insufficient; code = 2.

If $(L_2 - L_s) \ge 0.1 (L_f - L_2)$ and $s_s > YS$, stress is too high; code = 3.

If $(L_2 - L_s) \ge 0.1$ $(L_f - L_2)$ and $s_s \le YS$, design is satisfactory. If $s_s \le 0.3$ TS, stresses are quite conservative and code = 4. If $s_s > 0.3$ TS, design is acceptable and code = 5.

where:

G is the torsional modulus of rigidity;

 α and β are tensile strength regression coefficients from table 1 (metric) or table 2 (English);

P₁ is the spring load at most extended operating point (see figure 1);

 L_1 is spring length, at the most extended operating point;

P₂ is spring load at most compressed operating point;

L₂ is the spring length, at the most compressed operating point;

k is the spring constant;

d is the wire diameter;

f₀ is the clearance factor for the spring and the hole (possibly imaginary) in which the spring is designed to work:

$$f_0 = \left\{ \begin{array}{l} 0.95 \text{ if } D_H \geqslant 12.70 \text{ mm (0.5 in)} \\ 0.90 \text{ if } D_H < 12.70 \text{ mm (0.5 in);} \end{array} \right.$$

D_H is the diameter of the hole (possibly imaginary) into which the spring must fit;

s2 is the uncorrected stress at operating point 2;

N is the number of active coils;

s_s is the Wahl corrected stress when the spring is fully compressed to solid (coils touching);

L_f is the free length of the spring;

L_s is the fully compressed or solid spring length;

D is the mean spring diameter;

OD is the outside spring diameter;

Code is a digit from 1-5, explained in program User Instructions;

W is the Wahl factor which corrects stresses for curvature;

 s_{max} is the maximum allowable working stress for the material;

YS is the yield strength of the material;

TS is the tensile strength of the material.

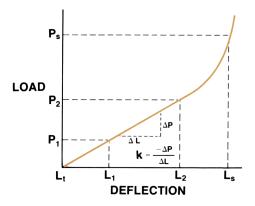


Figure 1-Spring Deflection

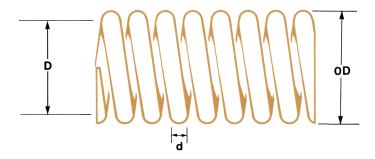


Figure 2-Helical Compression Spring

Table 1
MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS
(Metric Units)

MATERIAL	MODULUS OF RIGIDITY	WIRE DIAMETER	TENSILE STRENGTH COEF.		
MAT ET MAE	G,N/(mm) ²	RANGE— MILLIMETERS	$lpha$,N/(mm) 2	eta ,N/(mm) 2	
Music Wire ASTM-A228	7.93 × 10⁴	0.41-6.35	2205	-346.1	
Alloy Steel ASTM-A232	7.93 × 10⁴	0.64-7.62	1921	-249.7	
Stainless Steel ASTM-A313	6.90 × 10 ⁴	0.41-1.91 1.91-5.08 5.08-9.40	1851 1950 2221	-209.6 -393.6 -560.4	
Oil Tempered ASTM-A229	7.93 × 10⁴	0.51–6.86	1827	-304.7	
Hard Drawn ASTM-A227	7.93 × 10⁴	0.51-3.56 3.56-12.7	1773 1757	-283.4 -270.8	
Tempered Value Spring ASTM-A230	7.93 × 10 ⁴	2.36–5.08	1586	-153.1	
Phosphor Bronze ASTM-B159	4.07 × 10⁴	0.64-9.40	957	- 63.97	

Table 2
MINIMUM TENSILE STRENGTH REGRESSION COEFFICIENTS
(English Units)

MATERIAL	MODULUS OF RIGIDITY	WIRE DIAMETER RANGE—	TENSILE STRENGTH COEF.		
	G,psi	INCHES	lpha,psi	eta,psi	
Music Wire ASTM-A228	11.5 × 10 ⁶	0.016-0.25	157400	-50200	
Alloy Steel ASTM-A232	11.5 × 10 ⁶	0.025-0.30	161400	-36220	
Stainless Steel ASTM-A313	10.0 × 10 ⁶	0.016-0.075 0.075-0.20 0.20 -0.37	170200 98110 59190	-30400 -57090 -81280	
Oil Tempered ASTM-A229	11.5 × 10 ⁶	0.020-0.27	122100	-44190	
Hard Drawn ASTM-A227	11.5 × 10 ⁶	0.020-0.14 0.14 -0.50	124200 127800	-41110 -39280	
Tempered Valve Spring ASTM-A230	11.5 × 10 ⁶	0.093-0.20	158300	-22200	
Phosphor Bronze ASTM-B159	5.9 × 10 ⁶	0.025-0.37	108800	-9278	

Reference:

Design Handbook-Springs, Custom Metal Parts, Associated Spring Corporation, Bristol, Connecticut, 1970.

Remarks:

Registers R_{s0}-R_{s9} are available for user storage.

The assumptions implicit to this program are based on engineering practice and experience. Generally, designs found by this program will be conservative, however, caution must be exercised when high or low temperatures, corrosive media or other adverse environmental circumstances exist.

For one point design, specify the free length (L_1) and a corresponding zero load (P_1) , then specify the length (L_2) and corresponding load (P_2) .

Some designs achieved by this program may require coiling the spring wire in such a small radius that the spring material would fail in the manufacturing process. No program check is made for this condition.

If code = 2, then s_2 has no intelligent meaning.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Toggle ferrous (1) or non-			
	ferrous (0) material mode			
	(consider stainless steel			
	non-ferrous).		f A	1.00/0.00
3	Specify material properties			
	from table 1 (Metric) or			
	table 2 (English):			
	Modulus of rigidity	G	ENTER+	G
	Tensile strength Alpha	α	ENTER+	α
	Tensile strength Beta	β	■ B	G
4	Input load point 1:			
	Force 1	P ₁	ENTER+	P ₁
	Corresponding spring			
	length 1	L ₁		P ₁
5	Input load Point 2 and cal-			
	culate spring constant:			
	Force 2	P ₂	ENTER+	P ₂
	Corresponding spring			
	length 2	L ₂		k
6	Input wire diameter,	d	ENTER+	d
	and clearance factor (f ₀ = 0.90			
	if spring diameter < 12.70mm			
	(0.5 in); otherwise, $f = 0.95$).,	f _o	ENTER+	f _o
	and maximum outside spring			
	diameter.	D _H	O E	S ₂

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	If s₂ is a reasonable value			
	(not extremely high or low for			
	your application), proceed to			
	step 8. Otherwise, you may wish			
	to modify the design specifica-			
	tions in steps 4, 5 or 6.			
8	Compute number of coils.		A	N
9	Compute stress at solid			
	(maximum).		В	Ss
10	Check design.		C	Code
11	If code = 1, the design is	•		
	over constrained. The specified			
	conditions cannot be met. Try			
	another material, larger D _H ,			
	new load points or another type			
	of spring.			
	If code = 2, clearance between			
	coils is not sufficient. Press			
	to see current wire			
	diameter.		R◆	d
	Key in a smaller wire diameter			
	and calculate a new N. Go			
	back to instruction step 9.	d	R/S	N

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	If code = 3, stress at solid			
	is too high. Press 配 to			
	see the current wire diameter.		R◆	d
	Key in a larger wire dia-			
	meter and calculate a new N.	d	R/S	N
	Go back to instruction			
	step 9.			
	If code = 4, design is			
	acceptable but smaller wire			
	might also work. Press R			
	to see current wire diameter.		R◆	d
	Key in a new smaller wire			
	diameter and calculate N.	d	R/S	N
	Go back to instruction			
	step 9.			
	If code 5, design is			
	acceptable but not necessarily			
	optimal. Try manipulating			
	design parameters to obtain a			
	more economical design.			
12	Display free length, solid			
	length, mean diameter, and			
	outside diameter.		•	L _f , L _s , D, OD
13	Go to steps 2 through 6 for			
	a new case.			

Example 1:

Using Oil Tempered Wire (ASTM-A229), design a spring which supports a load of 270 newtons at a length of 62 millimeters and a load of 470 newtons at 50 millimeters. Wire is available in 0.5 mm increments. Try 4.0 mm wire first. Space available limits the spring diameter to 40.00 mm.

Variables:

$$P_{1} = 270 \text{ N}$$

$$L_{1} = 62 \text{ mm}$$

$$P_{2} = 470 \text{ N}$$

$$L_{2} = 50 \text{ mm}$$

$$d = 4.0 \text{ mm}$$

$$D_{H} = 40.0 \text{ mm}$$

$$f_{0} = 0.95 \text{ (since } D_{H} > 12.70 \text{ mm)}$$

$$G = 7.93 \times 10^{4} \text{ N/mm}^{2}$$

$$\alpha = 1827 \text{ N/mm}^{2}$$

$$\beta = -304.7$$
From table 1

Outputs: Keystrokes: Select iron wire (press **[]** A until 1.00 is displayed.) [] A -----1.00 00 7.93 **EEX** 4 **ENTER** ↑ 1827 **ENTER** ↑ 304.7 CHS **■** B -----79.30 03 270 ENTER♠ 62 1 C 470 ENTER♠ 50 🛮 🗖 🗆 ————— 16.67 00 *** (k) 748.0 00 *** $(N/mm^2, s_2)$ 00 *** (Coils) 3.874 В _____ 1.446 $03 *** (N/mm^2, s_s)$ 3.000 00 (Code)

Since Code = 3, select a larger wire. 4.5 mm wire is the next largest, so give it a try.

4.5 R/S
$$\rightarrow$$
 6.487 00 *** (Coils)

B \rightarrow 748.4 00 *** (s_s)

C \rightarrow 5.000 00 (Code)

Since code = 5, design is acceptable. Output free length, solid length, mean diameter and outside diameter.

Example 2:

Using music wire (ASTM-A228), design a spring which will work in a 0.25 inch hole, for the loading below:

$$P_{1} = 1 \text{ lb} \qquad \qquad L_{1} = 1.5 \text{ in}$$

$$P_{2} = 10 \text{ lb} \qquad \qquad L_{2} = 1.0 \text{ in}$$

$$G = 11.5 \times 10^{6} \text{ psi}$$

$$\alpha = 157.4 \times 10^{3} \text{ psi}$$

$$\beta = -50.20 \times 10^{3} \text{ psi}$$

$$d = 0.035 \text{ or } 0.040$$

$$f_{0} = 0.90 \text{ (from User Instructions)}$$

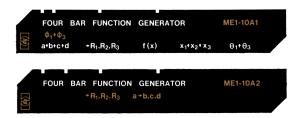
Keystrokes: Outputs:

Since music wire is a ferrous material, press [] A until 1.00 is displayed.

```
1.000 00
11.5 EEX 6 ENTER 157.4 EEX
3 ENTER ◆ 50.20 CHS EEX
3 f B —
                               11.50 06
1 ENTER ↑ 1.5 11 C 10 ENTER ↑
1.0
                               18.00 00 *** (k)
.035 ENTER ↑ .9 ENTER ↑
.25 [] [] ______
                               148.5
                                     03 *** (s_2, psi)
                               17.47
                                     00 *** (Coils)
                                     03 *** (s_s, psi)
                               227.7
                               3.000
                                           (Code)
                                     00
Try the larger wire.
.04 R/S _____
                              32.29
                                     00 *** (Coils)
                              32.66
                                     03 *** (s_s, psi)
                              2.000
                                           (Code)
                                     00
```

09-11

Since neither available wire will meet these specifications the specifications must be modified. After due consideration, it is decided that P_2 could be lowered to 9 pounds.


Interestingly, and unfortunately, $s_{\rm s} < s_{\rm 2}$ indicates that this spring cannot be compressed to $s_{\rm 2}$.

Sure enough, insufficient clearance. Try the smaller wire.

Since the design checks out, calculate the dimensions:

Notes

FOUR BAR FUNCTION GENERATOR

These cards may be used to design a four bar linkage which will approximate an arbitrary function of one variable. Freudenstein's approach is used in the solution. Cramer's rule is used to solve the 3×3 system of linear equations.

Equations:

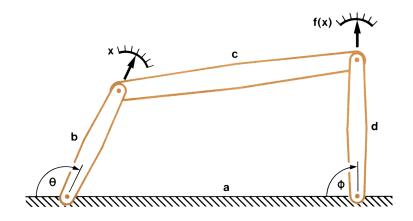
Three precision points are used in the solution.

Freudenstein's equations

$$R_1 \cos \theta_1 - R_2 \cos \phi_1 + R_3 = \cos (\theta_1 - \phi_1)$$

 $R_1 \cos \theta_2 - R_2 \cos \phi_2 + R_3 = \cos (\theta_2 - \phi_2)$
 $R_1 \cos \theta_3 - R_2 \cos \phi_2 + R_3 = \cos (\theta_3 - \phi_3)$

are solved simultaneously for R₁, R₂ and R₃ which are defined as follows:


$$R_1 = a/d$$
, $R_2 = a/b$, $R_3 = \frac{a^2 + b^2 + d^2 - c^2}{2bd}$

where a is the distance between fixed pivots, b is the length of the input link, c is the length of the coupler and d is the length of the output link. θ_1 refers to the angle of the input link at the first precision point, θ_2 the angle at the second point, and θ_3 the angle at the third. ϕ_1 is the angle of the output link at the first precision point, ϕ_2 is the angle at the second point, and ϕ_3 is the angle at the third precision point.

$$\theta_2 = \theta_1 + \frac{x_2 - x_1}{x_3 - x_1} (\theta_3 - \theta_1)$$

$$\phi_2 = \phi_1 + \frac{f(x_2) - f(x_1)}{f(x_3) - f(x_1)} (\phi_3 - \phi_1)$$

 x_1 , x_2 and x_3 are the precision points or the three points at which the mechanism will yield kinematically exact solutions to the function (f(x)) which is to be generated.

Reference:

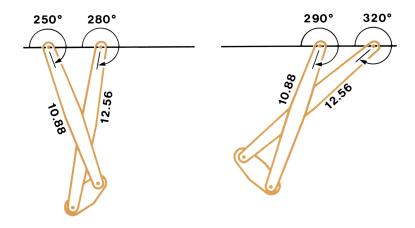
Martin, G. H., Kinematics and Dynamics of Machines McGraw-Hill, 1969.

Remarks:

f(x) must be stated in 119 or less steps.

$$\left(\cos \phi_2 - \frac{\cos \phi_1 \cos \theta_2}{\cos \theta_1}\right) \left(\frac{\cos \theta_3}{\cos \theta_1} - 1\right)$$

$$\neq \left(\frac{\cos \theta_2}{\cos \theta_1} - 1\right) \left(\cos \phi_3 - \frac{\cos \phi_1 \cos \theta_3}{\cos \theta_1}\right)$$


 θ_1 may not be equal to 90° or 270°. All registers are used.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2 of			
	card 1.			
2	To calculate link ratios, go to			
	step 4.			
3	For function generator, go to			
	step 7.			
4	Input the link lengths.	а	ENTER+	a
		b	ENTER+	b
		С	ENTER+	С
		d	A	а
5	Calculate the link ratios.		В	R ₁ , R ₂ , R ₃
6	For a new case, go to step 2.			
7	Key the function into memory:			
	i. Go to label C.		вто С	
	ii. Switch to PRGM mode.			
	iii. Key in the function.*	f(x)		
	iv. Switch to RUN mode.			
	(The argument of the			
	function is in X when the			
	routine is called.)			
8	Input 3 precision points	X ₁	ENTER+	X ₁
		X ₂	ENTER+	X ₂
		X ₃	0	X ₁
9	Input starting input angle and			
	final input angle ($\theta_1 \neq 90 \neq 270$)	$ heta_1$	ENTER+	$ heta_1$
		$ heta_3$	3	$ heta_{ exttt{2}}$
10	Input starting output angle	$\phi_{\scriptscriptstyle 1}$	ENTER+	ϕ_1
	and final output angle.	ϕ_3	0 A	ϕ_2
11	Load side 1 and side 2 of			
	card 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
12	Calculate R ₁ , R ₂ and R ₃ .		■ B	R ₁ , R ₂ , R ₃
13	Input a to calculate b, c,			
	and d.	а		b, c, d
14	For a new case, go to step 1.			
	*119 steps are allowed.			

Example 1:

Suppose the output of a linkage is to be the square root of the input. The input link is to move from 70° to 110° while the output moves from 100° to 140°. Precision points are $x_1 = 3(70^\circ)$, $x_2 = 5$, and $x_3 = 9(110^\circ)$. The distance between foundation pivots is 3.75. What are the remaining link lengths?

Data for input:

$$f(x) = \sqrt{x}$$

 $x_1 = 3, x_2 = 5, x_3 = 9$
 $\theta_1 = 70^\circ, \theta_3 = 110^\circ, \phi_1 = 100^\circ, \phi_3 = 140^\circ$
 $a = 3.75$

Keystrokes:

Outputs:

 (θ_2)

 (ϕ_2)

Load side 1 and side 2 of Card 1.

Switch to PRGM mode.

√x`

Switch to RUN mode.

Note that should you decide to run the program "PROGRESSION OF FOUR BAR SYSTEM" for the same linkage, then input of a, b, c and d is not necessary since a, b, c and d are already stored in the corresponding registers from this program.

b = -10.88, c = 3.04, d = -12.56 (The negative signs indicate that the links are opposite to the assumed direction i.e., $\theta = 250^{\circ}$ and $\phi = 280^{\circ}$).

Example 2:

Compute the link ratios for the following link lengths:

$$a = 1.0$$

$$b = 1.371$$

$$c = 2.12$$

$$d = 1.502$$

Keystrokes:

Load side 1 and side 2 of Card 1

DSP 4

$$0.7294 *** (R_2)$$

Notes

PROGRESSION OF FOUR BAR SYSTEM

This program calculates angular displacement, velocity and acceleration for the output link of a four bar system (figure 1). (Either the "connecting link" (c) or the "output link" (d) may be selected as the program's output link.)

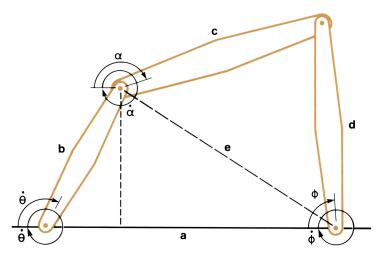


FIGURE 1-FOUR BAR SYSTEM SHOWING POSITIVE ANGULAR CONVENTIONS

Automatic and manual modes of operation are available. In manual mode, the output angle is calculated by keying in the input angle and pressing Δ . The angular output velocity may then be found by keying in the angular input velocity and pressing \Box . After angular velocity is calculated, the output link acceleration is found by keying in the input link acceleration and pressing \Box . In automatic mode, a starting input link angle θ_0 , the number of increments n, the angular increment $\Delta\theta$, and the constant input link RPM are input using \Box . The program automatically progresses from θ_0 through n increments of $\Delta\theta$. RPM is output once, followed by groups of four values. The first value, of these four-value groups, is input angle, the second value is output angle, the third value is angular output velocity and the fourth value is angular output acceleration. Example problem 1 demonstrates manual operation while example 2 demonstrates automatic operation.

Equations:

Output Link

$$\phi = \sin^{-1}\left(\frac{b}{e}\sin\theta\right) + \cos^{-1}\left(\frac{d^2 + e^2 - c^2}{2de}\right)$$

Connecting Link

$$\alpha = \sin^{-1}\left(\frac{b}{e}\sin\theta\right) + \cos^{-1}\left(\frac{c^2 + e^2 - d^2}{-2ce}\right)$$

where:

$$e = \sqrt{a^2 + b^2 + 2ab\cos\theta}$$

$$\frac{\mathrm{d}\phi}{\mathrm{d}\theta} = \frac{\mathrm{R}_1 \sin \theta - \sin (\theta - \phi)}{\mathrm{R}_2 \sin \phi - \sin (\theta - \phi)}$$

$$R_1 = \frac{a}{d}$$
 $R_2 = \frac{a}{b}$

$$\frac{d\alpha}{d\theta} = \frac{S_1 \sin \theta - \sin (\theta - \alpha)}{S_2 \sin \alpha - \sin (\theta - \alpha)}$$

$$S_1 = -\frac{a}{c}$$
 $S_2 = \frac{a}{b}$

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}\theta^2} = \frac{\mathrm{R}_1 \cos \theta - \mathrm{R}_2 \cos \phi \left(\frac{\mathrm{d}\phi}{\mathrm{d}\theta}\right)^2 - \left(1 - \frac{\mathrm{d}\phi}{\mathrm{d}\theta}\right)^2 \cos (\theta - \phi)}{\mathrm{R}_2 \sin \phi - \sin (\theta - \phi)}$$

$$\frac{d^{2}\alpha}{d\theta^{2}} = \frac{S_{1}\cos\theta - S_{2}\cos\alpha\left(\frac{d\alpha}{d\theta}\right)^{2} - \left(1 - \frac{d\alpha}{d\theta}\right)^{2}\cos(\theta - \alpha)}{S_{2}\sin\alpha - \sin(\theta - \alpha)}$$

$$\dot{\dot{\phi}} = \frac{\mathrm{d}\phi}{\mathrm{d}\theta} \ \dot{\theta} \qquad \qquad \dot{\alpha} = \frac{\mathrm{d}\alpha}{\mathrm{d}\theta} \ \dot{\theta}$$

$$\dot{\vec{\phi}} = \frac{d^2 \phi}{dt^2} = \frac{d^2 \phi}{d\theta^2} \left(\frac{d\theta}{dt} \right)^2 + \frac{d^2 \theta}{dt^2} \frac{d\phi}{d\theta}$$

$$= \dot{\theta}^2 \frac{d^2 \phi}{d\theta^2} + \dot{\theta} \frac{d\phi}{d\theta} \qquad \alpha = \dot{\theta}^2 \frac{d^2 \alpha}{d\theta^2} + \alpha \frac{d\dot{\alpha}}{d\theta}$$

Remarks:

 $\dot{\phi}$ has the units of θ , since $\frac{d\phi}{d\theta}$ is dimensionless.

 $\frac{d^2\phi}{d\theta^2}$ has units of rad⁻¹. So that the dimensions making up $\ddot{\phi}$ agree, the program assumes $\frac{d^2\theta}{dt^2}$ is given in RPM², and $\frac{d^2\phi}{d\theta^2}$ is multiplied by 2π $\frac{\text{rad}}{\text{rev}}$:

$$\dot{\phi} \frac{\text{rev}}{\text{min}^2} = \dot{\theta}^2 \frac{\text{rev}^2}{\text{min}^2} \frac{\text{d}^2 \phi}{\text{d}\theta^2} \text{rad}^{-1} \left[\frac{2\pi \text{ rad}}{\text{rev}} \right] + \dot{\theta} \frac{\text{rev}}{\text{min}^2} \frac{\text{d}\phi}{\text{d}\theta}$$

The program could be altered by the appropriate constant change if $\dot{\theta}$ and $\ddot{\theta}$ are in units other than revolutions/time (e.g. for degrees/ time change 2π to $\pi/180$ (radians/degree), or for radians/time, no constant necessary).

These same remarks apply to $\dot{\alpha}$ and $\ddot{\alpha}$.

An error during calculation of ϕ or α may indicate the linkage may not physically assume the specified position.

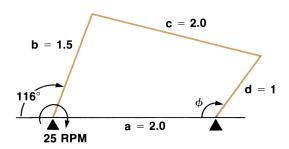
The sign of RPM determines the direction of rotation in automatic mode.

Two possible configurations exist for a given set of links:

Configuration A

Configuration B

Configuration A is assumed by the program. To obtain configuration B change step 87 from + to -.

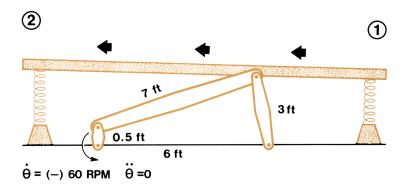

Registers R_{S0} - R_{S9} are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input link lengths:			
	fixed link	а	ENTER+	а
	input link	b	ENTER+	b
	connecting link	С	ENTER+	С
	output link	d	11 A	а
3	If connecting link output			
	values $(\alpha, \overset{\bullet}{\alpha}, \overset{\bullet}{\alpha})$ are desired,			
	rather than output link values			
	$(\phi, \stackrel{oldsymbol{\phi}}{\phi}, \stackrel{oldsymbol{\phi}}{\phi})$, set connecting link			
	mode by pressing 👩 🖸. A			
	1.00 appears in the display			
	indicating connecting link			
	mode is on. Pressing 🚺 🖸			
	repeatedly toggles connecting			,
	link mode off and on.		□ C	1.00/0.00
4	For automatic progression of			
	input link, go to step 9.			
5	Key in input link angle and			
	calculate output angle.	θ	A	φ (α)
6	Key in input RPM and calcu-			
	late output RPM.	$\hat{\theta}$ (RPM)	G	$\dot{\phi}$ (\dot{lpha})
7	Key in input link acceleration			
	and calculate output			
	acceleration.	$\overset{oldsymbol{artheta}}{ heta}$ (RPM 2)	3	$\overset{\bullet}{\phi}(\overset{\bullet}{\alpha})$
8	For a new input link angle, go			
	to step 5. For the alternate			
	output member (connector, or			
	output link), go to step 3. For			
	a new case, go to step 2.			

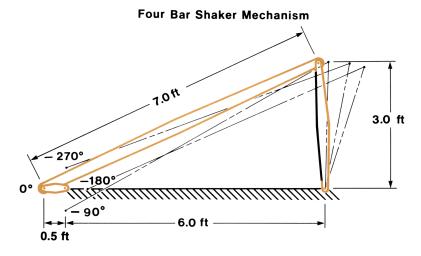
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	Key in starting input link angle	$ heta_{ extsf{o}}$	ENTER ◆	$ heta_{ extsf{o}}$
	then number of increments	n	ENTER +	n
	then angular increment	$\Delta heta$	ENTER +	$\Delta heta$
	then RPM (+ or -) and			
	calculate the output $ heta$ ($lpha$), $\dot{\phi}$ ($\dot{\alpha}$),			
	and $\overset{\bullet}{\phi}\overset{\bullet}{(lpha)}$ for constant input			
	RPM between θ_{0} and θ_{f} .	RPM		output
10	For another set of inputs, go			
	to step 9. For the alternate			
	output member (connector or			
	output link) go to step 3. For a			
	new case go to step 2.			

Example 1:

The input link of the four bar linkage below is instantaneously rotating at 25 RPM with an angular acceleration of 2.3 RPM². The input link is at 116°. What are the values of position, velocity, and acceleration of link d? Link c?

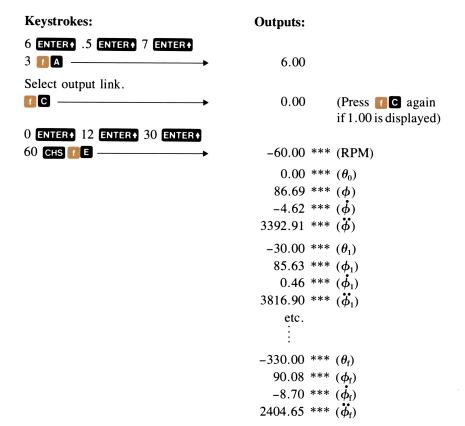


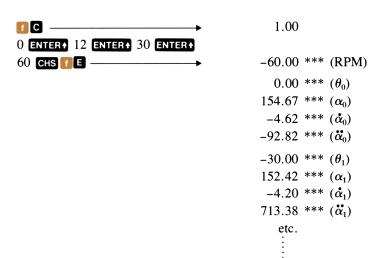
Outputs:	
2.00	
125.75	(ϕ)
39.29	$(\dot{m{\phi}})$
2279.89	$(\boldsymbol{\dot{\phi}})$
	2.00 125.75 39.29


↑ C	1.00	(connecting link selected)
116 A	195.56	(α)
25 ℃———	3.38	(\dot{lpha})
2.3 €	2049.01	(å)

Example 2:

A four bar linkage is to be used to convert rotary motion from an electric motor to the reciprocating motion necessary to activate a shaking conveyor system which moves fruit between two process stations.


For the geometry shown above, what is the motion of the output link? Start at $\theta = 0^{\circ}$ and go to -330° by 12, 30° increments. Find the corresponding connecting link motion.



11-07

Solution:

heta o	$\phi^{_0}$	$\dot{\phi}$ (RPM)	$\ddot{\phi}$ (RPM 2)	$lpha^{\scriptscriptstyle 0}$	α (RPM)	α (RPM 2)
0	86.69	-4.62	3392.91	154.67	-4.62	-92.82
-30	85.63	0.46	3816.90	152.42	-4.20	713.38
-60	87.18	5.70	3615.33	150.67	-2.60	1594.02
-90	91.19	10.12	2592.67	150.01	0.10	2210.83
-120	96.94	12.38	449.28	150.84	3.19	2062.19
-150	102.95	10.93	-2597.20	153.04	5.34	887.00
-180	107.18	5.45	-4998.56	155.83	5.45	-693.75
-210	108.09	-1.86	-5112.85	158.18	3.73	-1628.64
-240	105.56	-7.86	-3351.37	159.45	1.32	-1738.45
-270	100.72	-10.95	-1099.60	159.53	-0.93	-1481.44
-300	95.11	-11.05	887.85	158.59	-2.75	-1133.46
-330	90.08	-8.70	2404.65	156.87	-4.04	-698.86

PROGRESSION OF SLIDER CRANK

In a slider crank mechanism (e.g., the piston, wrist pin and connecting rod in an internal combustion engine), for given crank radius, connecting rod length, slider offset, crankshaft speed (RPM) and crank position, this program calculates the following: the displacement, velocity, and acceleration of the slider; the connecting rod angle, velocity and acceleration; the maximum and minimum displacements, and the maximum and minimum angular values for ϕ .

Equations:

$$\omega = \frac{\pi N}{30}$$

$$x = R \cos \theta + L \cos \phi$$

$$x_{max} = (R + L) \cos \left[\sin^{-1} \left(\frac{E}{R + L} \right) \right]$$

$$x_{min} = (L - R) \cos \left[\sin^{-1} \left(\frac{E}{L - R} \right) \right]$$

$$\Delta x = x_{max} - x_{min}$$

$$\phi = \sin^{-1} \left(\frac{E + R \sin \theta}{L} \right)$$

$$v = \frac{dx}{dt} = R\omega \left(\frac{-\sin (\theta + \phi)}{\cos \phi} \right)$$

$$a = \frac{d^2x}{dt^2} = R\omega^2 \left(\frac{-\cos (\theta + \phi)}{\cos \phi} - \frac{R \cos^2 \theta}{L \cos^3 \phi} \right)$$

$$\phi_{max} = \sin^{-1} \left(\frac{E + R}{L} \right)$$

$$\phi_{min} = \sin^{-1} \left(\frac{E - R}{L} \right)$$

$$\Delta \phi = \phi_{\text{max}} - \phi_{\text{min}}$$

$$\dot{\phi} = \frac{d\phi}{dt} = \omega \frac{R \cos \theta}{L \cos \phi}$$

$$\ddot{\phi} = \frac{d^2 \phi}{dt^2} = \omega^2 \left[\left(\frac{d\phi}{d\theta} \right)^2 \tan \phi - \frac{R \sin \theta}{L \cos \phi} \right]$$

where:

N is crankshaft speed in RPM;

E is slider offset:

L is connecting rod length;

R is crank radius;

 ω is crank angular velocity in radians/sec;

 θ is crank angle;

x is slider displacement;

x_{max} is maximum slider displacement;

x_{min} is minimum slider displacement;

 Δx is stroke:

v is slider velocity;

a is slider acceleration;

 ϕ is connecting rod angular displacement;

 ϕ_{\max} is maximum connecting rod angular displacement;

 ϕ_{\min} is minimum connecting rod angular displacement;

 $\Delta \phi$ is total angular throw of connecting rod;

 $\dot{\phi}$ is angular velocity of connecting rod;

 $\dot{\phi}$ is angular acceleration of connecting rod.

References:

H. A. Rothbart, Mechanical Design and Systems Handbook, McGraw-Hill, 1964.

V. M. Faires, Kinematics, McGraw-Hill, 1959.

Remarks:

Registers $R_{\rm S0}$ - $R_{\rm S9}$ are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the data for the			
	mechanism.	N	ENTER+	
		E	ENTER+	
		L	ENTER •	
		R	A	ω
3	Calculate maximum dis-			
	placement and minimum			
	displacement of slider.		1 A	X _{max}
				X _{min}
4	Calculate maximum and		Ą.	
	minimum angular displace-			
	ments for connecting rod.		■ B	$\phi_{\sf max}$
				ϕ_{min}
5	Input crank angle to calculate			
	slider displacement and			
	connecting rod angle.	θ	B	χ, φ
6	Calculate slider velocity and			
	connecting rod angular			
	velocity.		C	ν, φ

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Calculate slider acceleration			
	and connecting rod angular			
	acceleration.		0	a, 🏕
8	Repeat steps 5-7 for a			
	different $ heta$.			
9	To calculate x, ϕ , v, $\mathring{\phi}$, a, and $\mathring{\phi}$			
	for crank angles between $ heta_1$			
	and θ_2 with n intervals.	$ heta_1$	ENTER+	
		$ heta_2$	ENTER+	
		n	G	θ , x, ϕ , v, $\dot{\phi}$, a, $\ddot{\phi}$
10	For a new mechanism, go to			
	step 2.			

Example 1:

For an in-line slider crank mechanism (E=0), turning at 4800 RPM having a crank radius of 2.0 inches and connecting rod length of 7.0 inches, Find:

- (1) x_{max} , x_{min} and ϕ_{max} , ϕ_{min}
- (2) x, v, and a of the wrist pin in the slider
- (3) ϕ , $\dot{\phi}$, and $\dot{\phi}$ of the connecting rod for $\theta = 0^{\circ}$, 15°, 45°, 90°, 135°, 180°, 225°.

θ °	x(in)	φ°	v(in/sec)	$\dot{\phi}$ (rad/sec)	a(in/sec²)	$\dot{\phi}$ (rad/sec 2)
0	9.00	0.00	0.00	143.62	-649701.96	0.00
15	8.91	4.24	-332.20	139.10	-614226.44	-17300.41
45	8.27	11.66	-857.50	103.69	-360454.40	-49902.29
90	6.71	16.60	-1005.31	0.00	150658.43	-75329.22
135	5.44	11.66	-564.22	-103.69	354181.29	-49902.29
180	5.00	0.00	0.00	-143.62	360945.53	0.00
225	5.44	-11.66	564.22	-103.69	354181.29	49902.29

Keystrokes:	Outputs:	
4800 ENTER 0 ENTER ↑		
7 ENTER ↑ 2 A — →	502.65 ***	(ω)
f A	9.00 ***	(x_{max})
	5.00 ***	(x_{\min})
f B ────	16.60 ***	(ϕ_{\max})
	-16.60 ***	(ϕ_{\min})
0 B	9.00 ***	(x)
	0.00 ***	(ϕ)
G ———	0.00 ***	(v)
	143.62 ***	$(\dot{m{\phi}})$
D	-649701.96 ***	(a)
	0.00 ***	$(\boldsymbol{\dot{\phi}})$
15 B ───	8.91 ***	(x)
	4.24 ***	(ϕ)
⊙ ————	-332.20 ***	(v)
	139.10 ***	$(oldsymbol{\dot{\phi}})$
	-614226.44 ***	(a)
	-17300.41 ***	$(\boldsymbol{\dot{\phi}})$
45 B	8.27 ***	(x)
	11.66 ***	(ϕ)
G ————	-857.50 ***	(v)
	103.69 ***	$(oldsymbol{\dot{\phi}})$
D	-360454.40 ***	(a)
	-49902.29 ***	(ϕ)
:	5.44 ***	
225 B ————	-11.66 ***	
	564.22 *** -103.69 ***	
6		
	354181.29 *** 49902.29 ***	
	49902.29	

Alternatively, the values may be generated automatically.

$$0.00 *** (\theta)$$

 $9.00 *** (x)$

$$0.00 *** (\phi)$$

$$143.62 *** (\dot{\phi})$$

:

12-07

Example 2:

Determine the same values as in example 1 for a slider crank with offset of 1.5 inches (E = 1.5 inches).

Keystrokes:	Outputs:		
4800 ENTER 1.5 ENTER 7 ENTER 2 A	502.65	***	(61)
			` ,
□ A			(x_{max}) (x_{min})
88			
■ B	30.00 -4.10		
0 B ———	8.84		
□	12.37		` '
C	-220.55		
	147.03		
D	-660249.41		
_	4742.62		
15 B	8.63	***	(x)
_	16.75	***	(ϕ)
€	-552.49	***	(v)
	144.87	***	$(\dot{m{\phi}})$
D ———	-602160.36	***	(a)
	-13194.60	***	$(\boldsymbol{\dot{\phi}})$
: 225 B ———	5.59	***	
223 B ———		***	
C		***	
——————————————————————————————————————		***	
D		***	
	51175.65		
	211,2.05		

θ°	x(in)	φ°	v(in/sec)	$\dot{\phi}$ (rad/sec)	a(in/sec²)	$\dot{ec{\phi}}$ (rad/sec 2)
0	8.84	12.37	-220.55	147.03	-660249.41	4742.62
15	8.63	16.75	-552.49	144.87	-602160.36	-13194.60
45	7.78	24.60	-1036.35	111.69	-289750.94	-50429.96
90	6.06	30.00	-1005.31	0.00	291748.80	-83356.80
135	4.95	24.60	-385.37	-111.69	424884.76	-50429.96
180	4.84	12.37	220.55	-147.03	350398.08	4742.62
225	5.59	0.70	719.57	-101.56	280733.14	51175.65

-660249.41 *** 4742.62 ***

CIRCULAR CAMS

This program computes the parameters necessary for the design of a harmonic or cycloidal circular cam with a roller, point or flat follower.

Equations:

Harmonic cams:

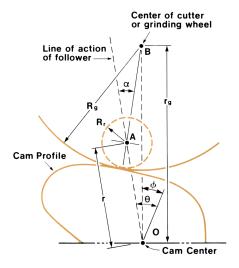
$$y = \frac{h}{2} \left(1 - \cos \frac{180\theta}{\beta} \right)$$

$$\frac{dy}{d\theta} = \frac{\pi h}{2\beta} \sin \frac{180\theta}{\beta} \qquad \left[\frac{dy}{dt} = \omega \frac{dy}{d\theta} \right]$$

$$\frac{d^2y}{d\theta^2} = \frac{\pi^2 h}{2\beta^2} \cos \frac{180\theta}{\beta} \qquad \left[\frac{d^2y}{dt^2} = \omega^2 \frac{d^2y}{d\theta^2} \right]$$

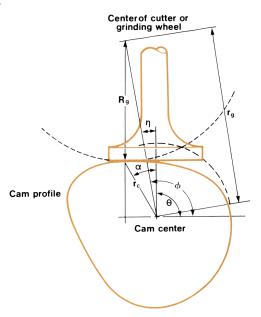
Cycloidal cams:

$$y = h \left[\frac{\theta}{\beta} - \frac{1}{2\pi} \sin \frac{2\pi\theta}{\beta} \right]$$


$$\frac{dy}{d\theta} = \frac{h}{\beta} \left[1 - \cos \frac{2\pi\theta}{\beta} \right] \qquad \left[\frac{dy}{dt} = \omega \frac{dy}{d\theta} \right]$$

$$\frac{d^2y}{d\theta^2} = \frac{2\pi h}{\beta^2} \sin \frac{2\pi\theta}{\beta} \qquad \left[\frac{d^2y}{dt^2} = \omega^2 \frac{d^2y}{d\theta^2} \right]$$

Both cycloidal and harmonic cams:


$$\alpha = \tan^{-1} \left(\frac{180}{\pi r} \frac{dy}{d\theta} \right)$$
$$r = R_b + y$$

Roller followers:

$$\begin{split} r_{\rm g} &= (r^2 + (R_{\rm g} - R_{\rm r})^2 - 2r(R_{\rm g} - R_{\rm r})\cos\alpha)^{1/2} \\ \phi &= \sin^{-1}\!\frac{R_{\rm g} - R_{\rm r}}{r_{\rm g}} \,+\,\theta \end{split}$$

Flat followers:

$$r_{c} = \left(r^{2} + \left(\frac{180}{\pi} \frac{dy}{d\theta}\right)^{2}\right)^{\frac{1}{2}}$$

$$r_{g} = (R_{g}^{2} + r_{c}^{2} + 2R_{g}r_{c}\cos\alpha)^{\frac{1}{2}}$$

$$\phi = \cos^{-1}\left(\frac{r_{c} + R_{g}\cos\alpha}{r_{g}}\right) - \alpha + \theta$$

where:

 β is duration of lift h;

 $\Delta\theta$ is angular increment of calculation;

h is total cam lift over angle β ;

R_b is base circle radius;

R_g is grinder radius (set to zero for cam profile);

R_r is roller radius (set to zero for point follower);

 θ is cam angle;

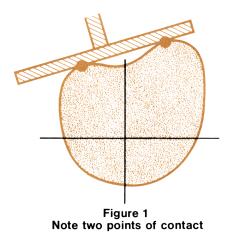
y is follower lift;

 $\frac{dy}{d\theta}$ is follower velocity;

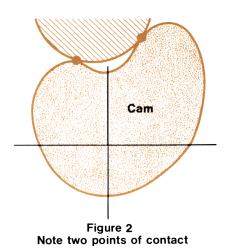
 $\frac{d^2y}{d\theta^2}$ is follower acceleration;

 α is pressure angle;

 ϕ is angle from zero to grinder center;


rg is center to center distance of grinder and cam.

Reference:


M.F. Spotts, Design of Machine Elements, Prentice-Hall 1971.

Remarks:

A flat follower will not properly follow a cam profile with any concave sections, e.g., see figure 1.

A roller follower will not properly follow a cam profile with concave section whose radius is less than the roller radius, e.g., see figure 2.

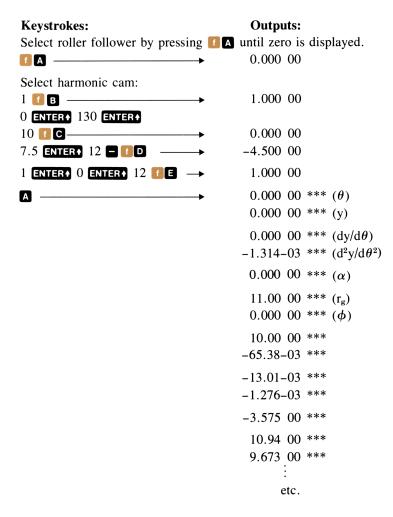
When the program is loaded, roller follower and harmonic profile modes are automatically selected.

Profiles other than harmonic and cycloidal may be generated by substituting them instead of label 1 or label 2. Example 3 demonstrates this.

13-05

Registers R_8 and $R_{\rm S0}\text{--}R_{\rm S9}$ are available for user storage.

For a parabolic profile, substitute the LBL 3 subrotine of ME1-14A for LBL 1 or LBL 2 of ME1-13A.


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select flat or roller follower			
	(1 = flat, 0 = roller. Roller			
	follower is set when card is			
	loaded).		1 A	1/0
3	Select cam function type:			
	Harmonic (set when card			
	was loaded)	1	■ B	1.000 00
	or cycloidal.	2	■ B	2.000 00
4	Input starting angle.	$ heta_{ extsf{o}}$	ENTER+	$ heta_0$
5	Input duration of lift.	β	ENTER+	β
6	Input increment of θ .	$\Delta heta$		0.000 00
7	Input lift.	h		h
8	Input radius of roller (skip for			
	flat followers).	R_r	ENTER+	R _r
9	Input radius of grinder (use			
	zero if cam profile is desired).	R _g	ENTER+	R_{g}
10	Input base radius.	R₅	1 3	$(R_r - R_g)$
11	For automatic output, go to			
	step 15.			
12	Output angle and lift.		B	<i>θ</i> , y
13	Optional: Output other			
	quantities of velocity and			
	acceleration		0	$dy/d\theta$, $d^2y/d\theta^2$
	and/or pressure angle		D	α
	and/or grinder radius and			
	angle.		E	$r_g,oldsymbol{\phi}$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
14	For next increment, go to			
	step 12. For a new lift, go to			
	step 4. For a new case, go to			
	step 2.			
15	Automatic output of θ , y, dy/d θ ,			
	$d^2y/d heta^2$, $lpha$, r_g , and ϕ with			
	increments of $\Delta heta$ from $ heta_{ exttt{o}}$			
	through θ_0 + β .		A	heta, y, dy/d $ heta$
16	For next lift, go to step 4. For			
	a new case, go to step 2.			

Example 1:

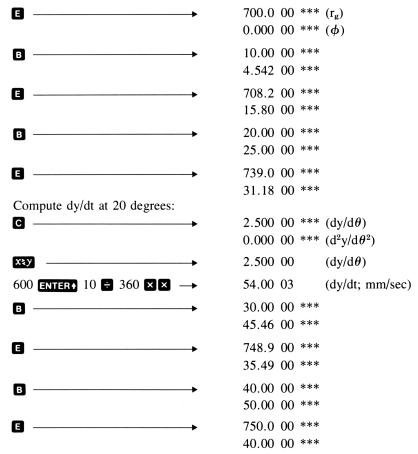
Design a harmonic cam with a 1.0 inch roller follower, which develops harmonic motion, dropping from a base radius of 12.0 inches to 7.5 inches in 130° of rotation. From 130° to 170°, increase the lift to the original base radius. Using 10° increments, generate the cam profile by letting $R_{\rm g}=0$.

θ°	y (in)	dy/d θ (in/deg)	$d^2y/d\theta^2$ (in/deg ²)	$lpha^{0}$	r _g (in)	φ
0.000 00	0.000 00	0.000 00	-1.314-03	0.000 00	11.00 00	0.000 00
10.00 00	-65.38-03	-13.01-03	-1.276-03	-3.575 00	10.94 00	9.673 00
20.00 00	-257.7-03	-25.27-03	-1.163-03	-7.029 00	10.75 00	19.35 00
30.00 00	-565.9-03	-36.06-03	-983.5-06	-10.24 00	10.45 00	29.03 00
40.00 00	-971.9-03	-44.75-03	-746.4-06	-13.09 00	10.06 00	38.71 00
50.00 00	-1.452 00	-50.84-03	-466.0-06	-15.44 00	9.588 00	48.41 00
60.00 00	-1.979 00	-53.98-03	-158.4-06	-17.15 00	9.070 00	58.14 00
70.00 00	-2.521 00	-53.98-03	158.4-06	-18.07 00	8.534 00	67.92 00
80.00 00	-3.048 00	-50.84-03	466.0-06	-18.02 00	8.007 00	77.79 00
90.00 00	-3.528 00	-44.75-03	746.4-06	-16.84 00	7.520 00	87.79 00
100.0 00	-3.934 00	-36.06-03	983.5-06	-14.37 00	7.101 00	98.00 00
110.0 00	-4.242 00	-25.27-03	1.163 03	-10.57 00	6.777 00	108.4 00
120.0 00	-4.435 00	-13.01-03	1.276-03	-5.628 00	6.571 00	119.1 00
130.0 00	-4.500 00	0.000 00	1.314-03	0.000 00	6.500 00	130.0 00
130.0 00	0.000 00	0.000 00	13.88-03	0.000 00	6.500 00	130.0 00
140.0 00	659.0-03	125.0-03	9.814-03	41.27 00	7.437 00	145.1 00
150.0 00	2.250 00	176.7-03	0.000 00	46.08 00	9.085 00	154.5 00
160.0 00	3.841 00	125.0-03	-9.814-03	32.26 00	10.51 00	162.9 00
170.0 00	4.500 00	0.000 00	-13.88-03	0.000 00	11.00 00	170.0 00

For the lift back to the original base radius, input β (170° – 130° = 40°) and $\Delta\theta$. The start of this lift (θ_0 = 130°) is already displayed and does not need to be keyed in again (unless you hit **R/S** and stopped the calculation prematurely).

Keystrokes:	Outputs:
40 ENTER 10 11 C	0.000 00
Key in new lift: 4.5 ▮ □ →	4.500 00

Key in previous roller and grinder radii and new base radius of 7.5:


1 ENTER• 0 ENTER• 7.5 [
$$\blacksquare$$
] 1.000 00
A] 30.0 00 ***

```
0.000 00 ***
0.000 00 ***
13.88-03 ***
0.000 00 ***
6.500 00 ***
130.0 00 ***
140.0 00 ***
125.0-03 ***
9.814-03 ***
41.27 00 ***
7.437 00 ***
145.1 00
:
etc.
```

Example 2:

Design a cycloidal, flat-faced cam with a lift of 50 millimeters in 40 degrees. The base radius is 500 millimeters and a 200 millimeter cutter is to be used for manufacture. Calculate θ , y, r_g and ϕ at 10 degree increments and calculate dy/dt (dy/dt = ω dy/d θ) at 20 degrees for a speed of 600 RPM.

Keystrokes:	Outputs:
Press	1.000 00
Select cycloidal subroutine: 2	2.000 00
Input θ_0 , β , $\Delta\theta$. 0 ENTER 40 ENTER 10 1 C	0.000 00
Input h: 50 f D	50.00 00
Input R_g and R_b : 200 ENTER+ 500 TE	200.0 00
₿	0.000 00 *** (θ) 0.000 00 *** (y)

Example 3:

A cam with a flat-faced follower is to convert an angular input to a linear output according to the following equation and its derivatives:

$$y = (\theta/\beta)^{2}$$
$$y' = 2 (\theta/\beta)$$
$$y'' = 2$$

Let $\beta = 90^{\circ}$ and h = 1 inch. Generate the cam profile from 0° to 90° in increments of 15° by setting $R_g = 0$.

$$R_b = 3.0$$
 inches $h = 1.0$ inches

The first step is to write a cam function subroutine incorporating the function and the derivatives. The subroutine can access (θ/β) in R_E and must store y' in R_4 , and y'' in R_3 , before returning to the main program with y in the X-register. One such subroutine is shown below:

```
LBL 3
2
STO 3 (y"calculated and stored)
RCL E
x
STO 4 (y'calculated and stored)
RCL E
x²
RTN (y calculated)
```

Now, load this sequence into program memory in place of LBL 1 (steps 168-188) or LBL 2 (steps 189-214). After this, the following keystrokes will generate the cam data:

Keystrokes: Outputs: Select flat-faced follower by pressing [A until 1.000 00 appears: 1.000 00 Select subroutine 3 (since the new subroutine is LBL 3): 3.000 00 3 **[] B** — 0 ENTER 90 ENTER 4 15 **[] C** ———— 0.000 00 1.000 00 0.00 00 0.000 + 00 ***0.000+00***0.000+00***246.9-06 *** 0.000+00***3.000+00***0.000+00***15.00+00 *** 27.78-03 *** 3.704-03 *** 246.9-06 *** $4.009 \pm 00 ***$ 3.035 + 00 ***19.01+00 *** $30.00 \pm 00 ***$

```
111.1-03 ***
7.407-03 ***
246.9-06 ***
7.768+00 ***
3.140+00 ***
37.77+00 ***
45.00+00 ***
250.0-03 ***
11.11-03 ***
246.9-06 ***
11.08+00 ***
3.312+00 ***
56.08+00 ***
60.00+00 ***
444.4-03 ***
14.81-03 ***
246.9-06 ***
13.84+00 ***
3.547+00 ***
73.84+00 ***
75.00+00 ***
694.4-03 ***
18.52-03 ***
246.9-06 ***
16.02+00 ***
3.844+00 ***
91.02+00 ***
90.00+00 ***
1.000+00 ***
22.22-03 ***
246.9-06 ***
17.66+00 ***
4.198+00 ***
107.7-00 ***
```

CAM DATA SUMMARY

θ	θeta	у	\mathbf{r}_{g}	φ
0°	0	0	3.000	0
15°	0.167	27.78-03	3.035	19.01
30°	0.333	111.1-03	3.140	37.77
45°	0.500	250.0-03	3.312	56.08
60°	0.667	444.4-03	3.547	73.84
75°	0.833	694.4-03	3.844	91.02
90°	1.000	1.000-00	4.198	107.7

Note that $y = (\theta/\beta)^2$ as specified by the original equation.

LINEAR CAMS

This program computes parameters necessary for the design of harmonic, cycloidal or parabolic profiles for linear cams with roller followers.

Equations:

$$y = hf(x/L) + R_b$$

$$x_g = x - (R_g - R_r) \sin \alpha \qquad y_g = y + (R_g - R_r) \cos \alpha$$

$$\alpha = \tan^{-1} \left(\frac{dy}{dx}\right)$$

$$= \tan^{-1} \left(\frac{h}{L} f'(x/L)\right)$$

$$\frac{dy}{dx} = \frac{h}{L} f'(x/L)$$

$$\frac{d^2y}{dx^2} = \frac{h}{L^2} f''(x/L)$$

For harmonic profiles:

$$f(x/L) = \left(1 - \cos\left(\frac{180x}{L}\right)\right)$$

For cycloidal profiles:

$$f(x/L) = \left(\frac{x}{L} - \frac{1}{2\pi} \sin \frac{180x}{L}\right)$$

For parabolic profiles:

$$f(x/L) \begin{cases} 2h \left(\frac{x}{L}\right)^2 & \frac{x}{L} < .5 \\ \left[1 - 2\left(1 - \frac{x}{L}\right)^2\right] & \frac{x}{L} \ge .5 \end{cases}$$

where:

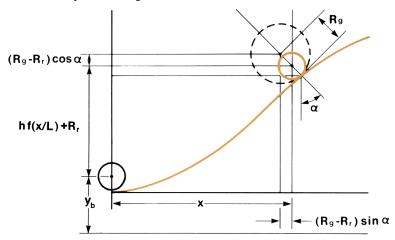
L is the duration of lift h;

 Δx is the linear increment of calculation;

h is the total follower lift over length L;

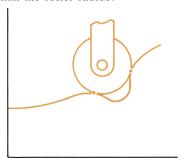
y_b is the base height from reference datum to roller center;

R_r is the roller radius (zero for point follower);


R_g is the grinder radius;

x is the linear displacement of cam;

y is the roller center height above datum;


 (x_g, y_g) is the grinder center for displacement x;

 α is the pressure angle.

Remarks:

The roller follower will not properly follow a cam profile with concave sections whose radius is less than the roller radius.

Note two points of contact

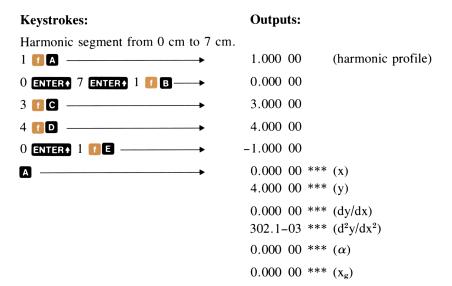
14-03

When the program is loaded, the harmonic profile mode is assumed. You may change to cycloidal by keying 2 and pressing [A]. Parabolic is selected by keying 3 and pressing [A]. Keying 1 and pressing [A] returns the program to original status.

Arbitrary functions of (x/L) may be substituted in a manner analogous to that of example 3, ME1-13A.

Registers R_{S0}-R_{S9} are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select cam function type:			
	Harmonic (set when card			
	was loaded)	1	1 A	1
	or cycloidal	2	1 A	2
	or parabolic	3	1 A	3
3	Input starting x.	x_{o}	ENTER+	X ₀
4	Input duration of lift.	L	ENTER+	L
5	Input increment of x.	Δχ	■ B	0.000 00
6	Input lift.	h		h
7	Input height of follower center			
	above reference datum at x_0 .	Уь		У _ь
8	Input grinder radius.	R ₉	ENTER •	R _g
9	Input roller radius.	R,	1 3	R_g – R_r
10	For automatic output, go to			
	step 14.			
11	Output x, y coordinates of			
	roller.		B	x, y
12	Optional: output other			
	quantities:			
	Follower velocity and			
	acceleration,		G	dy/dx,d²y/dx²
	and/or pressure angle,		D	α
	and/or grinder coordinates.		3	x_g, y_g


STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
13	For next increment, go to			
	step 11. For a new case, go to			
	step 2.			
14	Automatic output of x, y, dy/dx,			
	d^2y/dx^2 , α , x_g , and y_g with			
	increments of Δx from x_0			
	through x + L.		A	x,y, dy/dx
15	For a new case, go to step 2.			

Example:

Design a harmonic, linear profile which has a base follower displacement of 4 cm, and a 3 cm lift over a distance of 7 cm. After the harmonic profile, a cycloidal lift of 2 cm occurs over a distance of 8 cm. Then a parabolic profile returns the follower to its original height (a drop of 5 cm) over a distance of 10 cm.

The follower and the grinder both have a radius of 1 cm. Therefore, the grinder and follower paths are equivalent. Instead of generating redundant grinder data, generate the surface profile by setting $R_{\rm g}=0$.

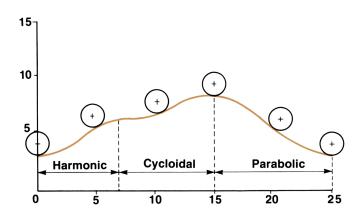
Use 1 cm step size.

2 **M** A —

A –

7 ENTER ♦ 8 ENTER ♦ 1 1 1 B →

2 **[] C** ————


7 [1]

```
3.000 \ 00 *** (y_g)
                                         1.000 00 ***
                                         4.149 00 ***
                                         292.1-03 ***
                                         272.2-03 ***
                                         16.28 00 ***
                                         1.280 00 ***
                                         3.189 00 ***
                                         7.000 00 ***
                                         7.000 00 ***
                                         0.000 00 ***
                                       -302.1-03 ***
                                         0.000 00 ***
                                         7.000 00 ***
                                         6.000 00 ***
Cycloidal segment from 7 cm to 15 cm.
                                         2.000 00
                                         0.000 00
                                         2.000 00
                                         7.000 00
                                         7.000\ 00\ ***\ (x)
                                         7.000 00 *** (y)
                                         0.000 \ 00 \ *** \ (dy/dx)
                                         0.000 \ 00 \ *** \ (d^2y/dx^2)
                                         0.000\ 00\ ***\ (\alpha)
                                         7.000\ 00 *** (x_g)
                                         6.000 \ 00 \ *** \ (y_g)
                                         8.000 00 ***
                                         7.025 00 ***
                                         73.22-03 ***
                                         138.8-03 ***
                                         4.188 00 ***
                                         8.073 00 ***
                                         6.028 00 ***
```

14.00 00 ***

```
8.975 00 ***
                                       73.22-03 ***
                                      -138.8-03 ***
                                       4.188 00 ***
                                        14.07 00 ***
                                       7.978 00 ***
                                        15.00 00 ***
                                       9.000 00 ***
                                       0.000 00 ***
                                       0.000 00 ***
                                       0.000 00 ***
                                        15.00 00 ***
                                       8.000 00 ***
Parabolic segment from 15 cm to 25 cm.
3 [] A ———
                                       3.000 00
15 ENTER ◆ 10 ENTER ◆ 1 1 1 1 B
5 CHS [ C 9 [ D _____
                                       9.000 00
                                       15.00 \ 00 *** (x)
                                       9.000 00 *** (y)
                                       0.000 \ 00 \ *** \ (dy/dx)
                                      -200.0-03 *** (d^2y/dx^2)
                                       0.000\ 00\ ***\ (\alpha)
                                       15.00\ 00 *** (x_g)
                                       8.000\ 00\ ***\ (y_g)
                                       16.00 00 ***
                                       8.900 00 ***
                                     -200.00-03 ***
                                     -200.00-03 ***
                                      -11.31 00 ***
                                       15.80 00 ***
                                       7.919 00 ***
```

24.00 00 ***
4.100 00 ***
-200.0-03 ***
200.0-03 ***
-11.31 00 ***
23.80 00 ***
3.119 00 ***
4.000 00 ***
200.0-03 ***
0.000 00 ***
25.00 00 ***
25.00 00 ***
3.000 00 ***

Notes

GEAR FORCES

This program computes three mutually perpendicular forces, resulting from input torque, on helical, bevel or worm gears.

Helical gear equations:

$$F_{t} = \frac{T}{r}$$

$$F_{gs} = F_{t} \tan \phi$$

$$F_{gax} = F_{t} \tan \alpha$$

$$\tan \phi = \frac{\tan \phi_{n}}{\cos \alpha}$$

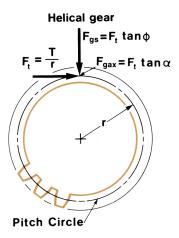


Figure 1-Helical Gear

where:

T is the input torque;

r is the pitch radius of the input gear;

F_t is the tangential force;

 α is the helix angle measured from the axis of the gear (for spur gears $\alpha = 0$);

 ϕ_n is the pressure angle measured perpendicular to the gear tooth;

 ϕ is the pressure angle measured perpendicular to the gear axis; F_{gs} is the radial force trying to separate the gears;

 F_{gax} is the force parallel to the gear axis.

Bevel gear equations: $F_{t} = \frac{T}{r}$ $F_{bpax} = F_{t} \left(\frac{\tan \phi_{n} \sin (cone \angle)}{\cos \alpha} + \tan \alpha \cos (cone \angle) \right)$ $F_{bgax} = F_{t} \left(\frac{\tan \phi_{n} \cos (cone \angle)}{\cos \alpha} - \tan \alpha \sin (cone \angle) \right)$ $\tan \phi = \frac{\tan \phi_{n}}{\cos \alpha}$ Driven

Pinion

Concave Side Of Spiral Gear Tooth

Rotation

(CW looking to right)

Figure 2—Spiral Bevel Gears

where:

T is the input (pinion) torque;

r is the pitch radius of the pinion gear;

 F_t is the tangential force;

 α is the pinion spiral angle (zero for straight tooth bevel gears);

 ϕ_n is the pressure angle measured perpendicular to the gear tooth;

 ϕ is the pressure angle measured perpendicular to the gear axis;

Cone∠ is the pitch cone angle of the pinion;

 F_{bpax} is the force along the axis of the bevel pinion;

 F_{bgax} is the force along the axis of the bevel gear.

Worm gear equations:

$$F_{t} = \frac{T}{r}$$

$$F_{ws} = F_{t} \left(\frac{\sin \phi_{n}}{\cos \phi_{n} \sin \alpha + f \cos \alpha} \right)$$

$$F_{gax} = F_{t} \frac{1 - \frac{f \tan \alpha}{\cos \phi_{n}}}{\tan \alpha + \frac{f}{\cos \phi_{n}}}$$

$$\tan \phi = \frac{\tan \phi_{n}}{\cos \alpha}$$

Driver: Worm (Right hand)

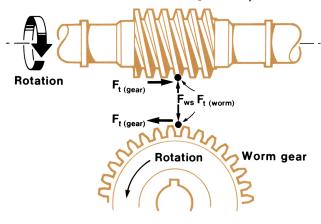


Figure 3 WORM GEAR

where:

T is the input (worm) torque;

n is the pitch radius of the worm;

F_t is the tangential force on the worm;

 α is the lead angle of the worm ($\alpha = \tan^{-1} (L/2\pi r)$, where L is the lead of the worm);

 ϕ_n is the pressure angle measured perpendicular to the worm teeth;

 ϕ is the pressure angle measured parallel to the worm axis;

f is the coefficient of friction;

F_{ws} is the separating force between the worm and gear;

 $F_{\rm gax}$ is the force parallel to the gear axis.

Remarks:

For bevel gears, the spiral angle (α) is positive if the concave face of the pinion teeth are facing the direction of rotation (see figure 2). α is negative if the convex surface of the pinion teeth face the direction of rotation.

Registers R_0 – R_3 , R_7 – R_{S9} and R_c – R_I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1.			
2	Input torque.	Т	ENTER+	Т
3	Input pitch radius and calculate			
	tangential force.	r	A	F _t
4	Input helix angle for helical			
	gears, or spiral angle for spiral			
	bevel gears, or lead angle for			
	worm gears.	α	B	α
5	Input normal pressure angle	$\phi_{\sf n}$	0	ϕ_{n}
	or			
	input pressure angle.	φ	0	ϕ_{n}
6	For helical gears, go to step 7,			
	for bevel gears, go to step 9,			
	for worm gears, go to step 12.			
7	Calculate separating force			
	and axial force.		Œ	F_{gs},F_{gax}
8	For a new case, return to			
	step 2 and modify inputs as			
	necessary.			
9	Input bevel cone angle.	cone∠	f A	cone∠
10	Calculate pinion axial force			
	and gear axial force.		■ B	F_{bpax},F_{bgax}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
11	For a new case, return to			
	step 2 and modify inputs as			
	necessary.			
12	Input coefficient of friction.	f		f
13	Calculate separating force			
	and gear axial force.		 ■	F _{ws} , F _{gax}
14	For a new case, go to step 2			
	and modify inputs as			
	necessary.			

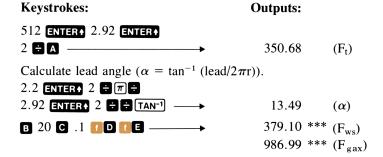
Example 1:

A helical gear with pitch radius 12 cm has a torque applied to it of 450,000 dyne-cm. The helix angle is 30°, and the normal pressure angle, measured perpendicular to a tooth, is 17.5°. Find the tangential, separating, and thrust forces.

Keystrokes:	Outputs:
450000 ENTER 12 A ——→	37500.00 (F _t)
30 B 17.5 CE ──→	13652.84 *** (F _{gs})
	21650.64 *** (F _{gax})

Example 2:

A spiral pinion with mean radius 1.73 inches is subjected to a torque of 745 in-lb. The pinion is cut with a normal pressure angle of 20° , a spiral angle of 35° , with a pitch cone of 18° . Find the forces acting on the pinion. Rotation is in the direction of the concave side of the pinion teeth, so α is positive 35° .


Keystrokes:	Outputs:	
745 ENTER ↑ 1.73 A ————	430.64 (F_t)	
35 B 20 C 18 fAfB	345.90 *** (F _{bpa}	_x)
	88.80 *** (F _{bggs}	.,)

If the rotation were reversed, leaving all other input values unchanged, what would the forces be?

35 CHS B
$$f$$
 B -227.65 *** (F_{bpax}) 275.16 *** (F_{bgax})

Example 3:

A torque of 512 in-lb is applied to a worm gear having a pitch diameter of 2.92 inches and a lead of 2.20 inches. The normal pressure angle is 20°, and the coefficient of friction is 0.10. Find the lead angle and the forces on the worm and worm gear.

STANDARD EXTERNAL INVOLUTE SPUR GEARS

This program calculates various parameters for standard external involute spur gears. Given the diametral pitch P, number of teeth N, pressure angle ϕ , and pin diameter d_w , the program will calculate the pitch diameter D, tooth thickness t, and the involute and corresponding flank angle inv ϕ_w and ϕ_w . The flank angle ϕ_w is calculated from the involute by a Newton's method iterative solution for the equation $f(\phi_w) = 0$,

where:

$$f(\phi_w) = \tan \phi_w - \phi_w - inv \phi_w$$

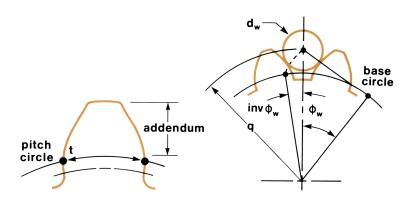
In this solution, an initial guess is made for $\phi_{\rm w}$:

$$\phi_{\rm w}^{(0)} = (3 \text{ inv } \phi_{\rm w})^{.3}$$

Newton's method then provides refinements of the initial guess by

$$\begin{split} \phi_{\mathbf{w}^{(n+1)}} &= \phi_{\mathbf{w}^{(n)}} - \frac{f(\phi_{\mathbf{w}^{(n)}})}{f'(\phi_{\mathbf{w}^{(n)}})} \\ &= \phi_{\mathbf{w}^{(n)}} - \frac{\tan \phi_{\mathbf{w}^{(n)}} - \phi_{\mathbf{w}^{(n)}} - \text{inv } \phi_{\mathbf{w}}}{\tan^2 \phi_{\mathbf{w}^{(n)}}} \end{split}$$

The program also calculates various measurements over pins, namely, the theoretical values of the measurement over pins, M; the radius to the center of the pin, 1; and the measurement over one pin, R_w . In addition, given the value of the tooth thinning Δt , the program will return the measurement over pins with tooth thinning, M_t .


Equations:

$$D = \frac{N}{P}$$

$$t = \frac{\pi}{2P}$$

inv
$$\phi_{\rm w}$$
 (radians) = $\frac{\rm t}{\rm D}$ + tan ϕ - $\frac{\pi \phi}{180}$ + $\frac{\rm d_{\rm w}}{\rm Dcos} \phi$ - $\frac{\pi}{\rm N}$

$$M = \begin{cases} d_w + 2q & \text{(N even)} \\ d_w + 2q \cos \left(\frac{90}{N}\right) & \text{(N odd)} \end{cases}$$

$$q = \frac{D \cos \phi}{2 \cos \phi_w}$$

$$R_w = q + \frac{d_w}{2}$$

$$M_t = M - \Delta t \frac{\cos \phi}{\sin \phi_w}$$

Reference:

Adapted from a program submitted to the HP-65 Users's Library by Mr. John Nemcovich, Los Angeles, CA.

Dudley, D.W., Gear Handbook, McGraw-Hill, 1962.

Remarks:

Registers R_0 , $R_{\rm S0}\text{--}R_c$ and I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input diametral pitch P	Р	ENTER+	Р
	and number of teeth N to			
	calculate the pitch diameter			
	and tooth thickness t.	N	A	D, t
3	Input pressure angle ϕ	φ	ENTER+	φ
	and pin diameter dw.	d _w	B	φ
4	Calculate the involute inv $\phi_{ m w}$.		0	inv $\phi_{\sf w}$ (deg.)
5	Calculate the corresponding			
	flank angle.		0	$\phi_{ m w}$ (deg.)
6	Calculate the measurement			
	over pins (theoretical).		3	М
7	Input tooth thinning and			
	calculate measurement over			
	pins with tooth thinning.	Δt	f A	M _t
8	Calculate radius to the center			
	of pin.		■ B	q
9	Calculate measurement over			
	one pin.		 □ □	R _w
10	To change tooth thinning, go			
	to step 7. To change any other			
	input, go to step 2.			
	Note: If dw is not known, it may			
	be calculated from the pin			
	constant k and pitch P:	k	ENTER+	
	$d_w = k/P$	Р	8	d _w
11	To calculate $\phi_{ m w}$ directly from			
	inv $\phi_{ m w}$: store inv $\phi_{ m w}$ in register 6	inv $\phi_{\sf w}$	STO 6	
	and calculate $\phi_{ extsf{w}}$.		D	$\phi_{\sf w}$ (deg.)

Example:

A 27-tooth gear with pitch 8 is cut with a 20° pressure angle. The pin diameter is 0.24 inches, and tooth thinning is reckoned at 0.002 inches. Calculate the unknown parameters.

Keystrokes:	Outputs:
8 ENTER ◆ 27 A ————	3.3750 *** (D)
	0.1963 *** (t)
20 ENTER 0.24 BC	1.8565 *** (inv $\phi_{\rm w}$)
D	25.6215 *** $(\phi_{\rm w})$
■	3.7514 *** (M)
0.002 [A	$3.7470 *** (M_t)$
f B ───	1.7587 *** (q)
□ C	$1.8787 *** (R_w)$

BELT LENGTH

This program computes the belt length around an arbitrary set of pulleys. It may also be used to compute the total length between any connected set of coordinates. The program assumes the coordinates of the first pulley to be (0,0). Optionally the x, y coordinates of the intersections of the belt and pulleys may be output.

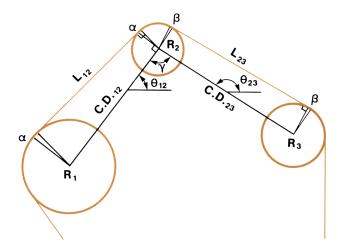
 $(x_i, y_i, R_i) = x$, y coordinates and radius of pulley i

 R_1 = Radius of first pulley

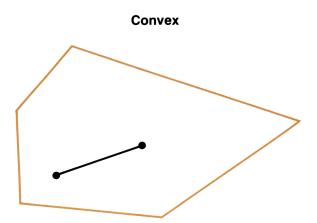
C.D. = Center to center distance of consecutive pulleys

L = Total length of belt

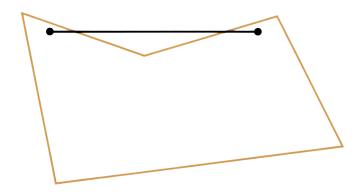
Equations:

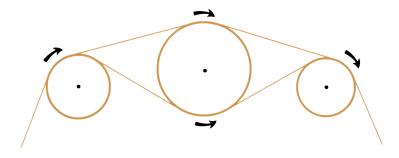

$$L_{12} = \sqrt{C.D._{12}^2 - (R_2 - R_1)^2}$$
Arc Length₂ = R_2 ($\pi - \alpha - \beta - \gamma_2$)
$$\alpha = \tan^{-1} \left(\frac{R_1 - R_2}{L_{12}}\right)$$

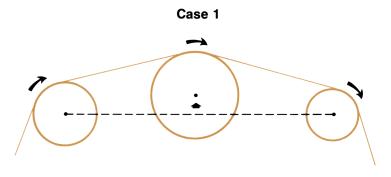
$$\beta = \tan^{-1} \left(\frac{R_3 - R_2}{L_{23}}\right)$$

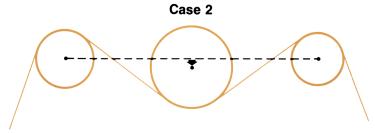

$$\gamma = \theta_{12} - \theta_{23}$$

$$\theta_{12} = \tan^{-1} \frac{y_2 - y_1}{x_2 - x_1}$$


$$\theta_{23} = \tan^{-1} \frac{y_3 - y_2}{x_3 - x_2}$$


This program generates accurate results for any convex polygon, i.e., a line between any two points within the region bounded by the center-to-center line segments is entirely contained within the region.


Concave


In some cases, there are two physically possible directions for the belt to take:

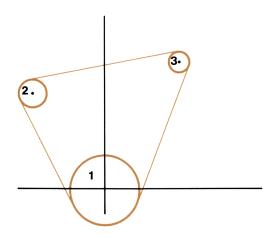
The program chooses the upper side if the middle pulley center lies above the line connecting the previous and following pulleys.

The program chooses the lower side if the middle pulley center lies below the line connecting the previous and following pulleys.

The program generates inaccurate answers in the second case. Note the figure bounded by the center-to-center line segments for the second case is not convex.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Optional: Toggle for printing			
	belt tangent points for each			
	pulley.*		1 A	1.00
3	Input the coordinates (x1, y1)			
	and radius of the first pulley.	X ₁	ENTER+	X ₁
		y 1	ENTER+	y 1
		R,	A	R₁
4	Input the next pulley co-			
	ordinates (x _i , y _i) and radius			
	(R_i) .	Xi	ENTER+	X i
		y i	ENTER+	y i
		R_{i}	B	R_{i}
5	Repeat step 4 for all remaining			
	pulleys.			
6	Calculate the belt length.		C	L
7	For a new case, go to step 2.			
	*Note: Pulley coordinates			
	have to be entered in the			
	clockwise sense.			

Example 1:


Assume three pulleys are positioned as shown below with the following coordinates and radii:

Pulley 1 (0, 0, 4 inches)

Pulley 2 (-8, 15, 1.5 inches)

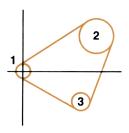
Pulley 3 (9, 16, 1 inches).

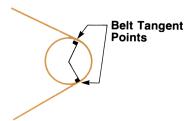
Find the belt length around the three pulleys.

Keystrokes:	Outputs:	
$0 \in \mathbb{N} $ ENTER $0 \in \mathbb{N} $ 4 A \longrightarrow	4.00	(R_1)
8 CHS ENTER ◆ 15 ENTER ◆ 1.5 B ———————————————————————————————————	1.50	(R_2)
9 ENTER ↑ 16 ENTER ↑ 1 B	1.00	(R_3)
C	66.53	(L)

Example 2:

Find the length of line connecting the points (0, 0), (1.5, 7), (3.2, -6), (0, 0.5), (0, 0). (28.01). Let the radius of each "pulley" be 0.


Keystrokes:	Outputs:
0 ENTER \bullet 0 ENTER \bullet 0 A \longrightarrow	0.00
1.5 ENTER• 7 ENTER• 0 B \longrightarrow	0.00
3.2 ENTER 6 CHS ENTER	
0 B	0.00


Example 3:

Find the belt length around the following pulley system, also find the belt tangent points on each pulley.

Pulley 2 (30, 3, 7.5)

Pulley 3 (18, -18, 3.66)

Keystrokes:

C -

30 ENTER ◆ 3 ENTER ◆ 7.5 B →

Outputs:

1.00

 (R_1)

-0.66 *** (x)

2.41 *** (y) 1st pulley

28.03 *** (x)

10.24 *** (y) 2nd pulley

7.5 (R_2)

$$3.66$$
 (R₃)

$$15.30 *** (x)$$

$$-1.85 *** (x)$$

FREE VIBRATIONS

This program provides an exact solution to the differential equation for a damped oscillator vibrating freely: $m\dot{x} + c\dot{x} + kx = 0$.

The user inputs the mass m, spring constant k, and damping constant c at \blacksquare . The output will be:

- 1. ω for an underdamped system, i.e. $c < c_{crit}$. c_{crit} is calculated by pressing **B**.
- 2. 0 for a critically damped system, i.e. $c = c_{crit}$.
- 3. -1 for an overdamped system, i.e. $c > c_{crit}$.

The initial conditions are the displacement and velocity at time zero (x_0 and \dot{x}_0).

Equations:

$$c_{crit} = 2 \sqrt{km}$$

$$\omega = \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^2}$$

$$\ddot{x} = -(c\dot{x} + kx)/m$$

$$(c^2 - 4km < 0)$$

Underdamping

$$x(t) = Re^{-\frac{c}{2m}t}\cos(\omega t - \delta)$$

$$\dot{x}(t) = -R\omega e^{-\frac{c}{2m}t}\sin(\omega t - \delta) - \frac{c}{2m}Re^{-\frac{c}{2m}t}\cos(\omega t - \delta)$$

where:

$$R \cos \delta = x_0$$

$$R \sin \delta = \frac{1}{\omega} \left[\dot{x}_0 + \frac{c}{2m} x_0 \right]$$

Critical damping

$$(c = c_{crit}, or c^2 = 4km)$$

$$x(t) = (A_{cr} + B_{cr}t)e^{-\frac{c}{2m}t}$$

$$\label{eq:continuous} \mathbf{\dot{x}}(t) \, = \, \left[\mathbf{B}_{\mathrm{cr}} \, - \frac{c}{2m} \, \left(\mathbf{A}_{\mathrm{cr}} \, + \, \mathbf{B}_{\mathrm{cr}} t \right) \right] \, e^{-\frac{c}{2m} \, t}$$

where:

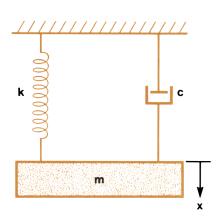
$$A_{\rm cr}\,=\,x_0$$

$$B_{\rm cr} = \dot{x}_0 + \frac{c}{2m} x_0$$

Overdamping

$$(c^2 - 4km > 0)$$

$$\dot{x}(t) = A_{ov}e^{r_1t} + B_{ov}e^{r_2t}$$


$$x(t) = A_{ov}r_1e^{r_1t} + B_{ov}r_2e^{r_2t}$$

where:

$$r_{1}, r_{2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^{2} - \frac{k}{m}}$$

$$A_{ov} = x_{0} - B_{ov}$$

$$B_{ov} = \frac{\dot{x}_{0} - r_{1} x_{0}}{r_{2} - r_{1}}$$

Reference:

Boyce, W.E. and DiPrima, R.C., *Elementary Differential Equations*, John Wiley and Sons, 1969.

Remarks:

For overdamping, ω has no meaning and is, in fact, an imaginary number.

For
$$c = c_{crit}$$
, $\omega = 0$.

This program sets the angular mode of the calculator to radians. Erroneous answers will occur if degree mode is inadvertently set.

Registers R_{S0} - R_{S9} are available for user storage.

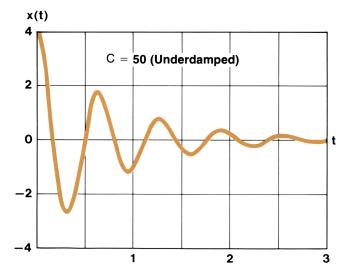
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the system parameters	m	ENTER+	
	of mass, damping constant,	С	ENTER+	
	and spring constant.	k	A	ω or 0 or −1
3	Optional: Calculate c _{crit}		B	C _{crit}
4	Input initial conditions of			
	position	X ₀	ENTER+	X ₀
	and velocity.	X ₀	C	x _o
5	Input t to calculate $x(t)$, $x(t)$,			
	and x (t).	t	D	$x(t),\dot{x}(t),\ddot{x}(t)$
6	Repeat step 5 for a different t.			
7	Input t_1 and t_2 and number of			
	intervals (n) to calculate			
	$x(t), \dot{x}(t), and \dot{x}(t)$ automatically.	t ₁	ENTER+	t ₁
		t ₂	ENTER+	t ₂
		n	3	$x(t), \dot{x}(t), \ddot{x}(t)$
8	For different initial conditions			
	for the same system, go to			
	step 4.			
9	For a different system, go to			
	step 2.			

Example:

A mass of 20 g stretches a spiral spring 10 cm. The mass is pulled down an additional 4 cm, held, and then released. Find the mass displacement and velocity at 0.1 second intervals up to 1 second for the cases in which (a) c = 50 dyne-sec/cm (b) $c = c_{crit}$ and (c) c = 400 dyne-sec/cm.

$$k = \frac{F}{x} = \frac{mg}{x} = \frac{20g (980 \text{ cm/s}^2)}{10 \text{ cm}} = \frac{20 \times 980}{10} \text{ dyne/cm}$$

(a)
$$c = 50$$


Keystrokes: Outputs: 20 ENTER+ 50 ENTER+ 20 ENTER+ 980 × 10 ÷ A ———— 9.820 (ω) В -----395.980 (c_{crit}) 4 ENTER ↑ 0 C ------4.000 (\mathbf{x}_0) 4.000 *** (x) $0 \square -$ 1.000000000-09 *** (x) $-392.00 *** (\mathring{x})$ $0.1\,\,$ D 2.334 **** (x) $-29.296 **** (\mathring{x})$ -155.494 *** (**x**) $0.2 \, \, \mathbf{D}$ -0.827 *** (x) $-28.715 **** (\mathring{x})$ 152.880 *** (**x**)

Or, the same results can be achieved automatically.

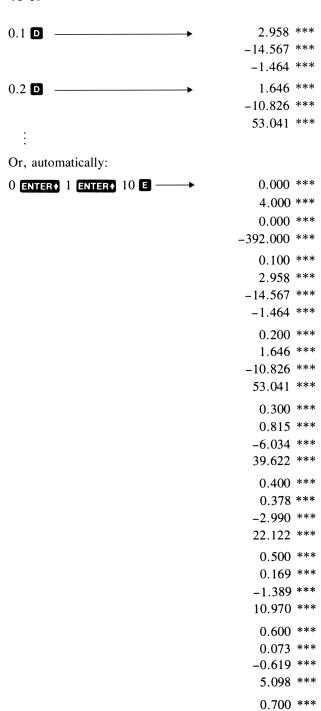
```
152.880 ***
   0.300 ***
  -2.629 ***
  -5.330 ***
 270.947 ***
   0.400 ***
  -1.932 ***
  17.139 ***
 146.511 ***
   0.500 ***
   0.153 ***
  20.950 ***
 -67.408 ***
   0.600 ***
   1.655 ***
   7.187 ***
-180.174 ***
   0.700 ***
   1.503 ***
  -9.272 ***
-124.104 ***
   0.800 ***
   0.184 ***
 -14.685 ***
  18.677 ***
   0.900 ***
 -0.990 ***
  -7.173 ***
 114.959 ***
   1.000 ***
 -1.114 ***
   4.406 ***
  98.133 ***
```

Solution (a) c = 50

t s	x cm	ẋ cm/s	┇ cm/s²
0	4.000	0.00	-392.000
.1	2.334	-29.296	-155.494
.2	-0.827	-28.715	152.880
.3	-2.629	-5.330	270.947
.4	-1.932	17.139	146.511
.5	0.153	20.950	-67.408
.6	1.655	7.187	-180.174
.7	1.503	-9.272	-124.104
.8	0.184	-14.685	18.677
.9	-0.990	-7.173	114.959
1.0	-1.114	4.406	98.133

(b) $c = c_{crit}$

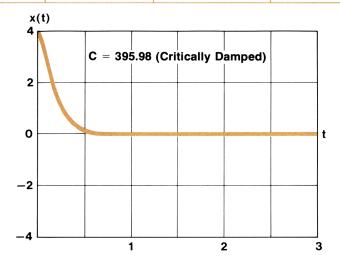
Keystrokes:


20 ENTER♦ 395.98 ENTER♦ 20 ENTER♦ 980 🗶

$$0.000$$
 4.000 (x_0)

$$4.000 (x_0)$$
 $4.000 *** (x)$

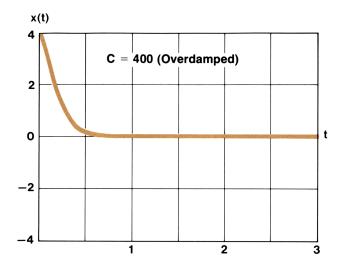
$$0.000 *** (\mathring{x})$$


$$-392.000 *** (x)$$

0.031 ***

Solution (b) $c = c_{crit}$

t s	x cm	ẋ cm /s	x cm/s²
0	4.000	0.000	-392.000
.1	2.958	-14.567	-1.464
.2	1.646	-10.826	53.041
.3	0.815	-6.034	39.622
.4	0.378	-2.990	22.122
.5	0.169	-1.389	10.970
.6	0.073	-0.619	5.098
.7	0.031	-0.268	2.274
.8	0.013	-0.114	0.986
.9	0.005	-0.048	0.419
1.0	0.002	-0.020	0.175


(c) c = 400**Keystrokes: Outputs:** 20 ENTER ◆ 400 ENTER ◆ 20 ENTER ◆ -1.000 *** 980 × 10 ÷ A → 4.000 (\mathbf{x}_0) 0 🗖 -----4.000 *** (x)0.000 *** (x) $-392.000 *** (\mathring{x})$ 0.1 🗖 ———— 2.963 *** (x) $-14.469 **** (\mathring{x})$ $-0.963 *** (\mathring{x})$ 0.2 🗖 ————— 1.660 *** (x) $-10.752 *** (\mathring{x})$ 52.336 *** (x) Or, automatically: $0 \text{ ENTER} 1 \text{ ENTER} 10 \text{ E} \longrightarrow$ 0.000 *** 4.000 *** 0.000 *** -392.000 *** 0.100 *** 2.963 *** -14.469 *** -0.963 *** 0.200 *** 1.660 *** -10.752 *** 52.336 *** 0.300 *** 0.833 *** -6.032 *** 39.022 *** 0.400 *** 0.394 *** -3.028 *** 21.916 *** 0.500 ***

> 0.180 *** -1.433 ***

11.005	***
0.600	***
0.081	***
-0.656	***
5.212	***
0.700	***
0.035	***
-0.293	***
2.384	***
0.800	***
0.015	***
-0.129	***
1.066	***
0.900	***
0.007	***
-0.056	***
0.470	***
1.000	***
0.003	***
-0.024	***
0.205	***

Solution (c) c = 400

t s	x cm	ẋ cm/s	¤ cm/s²
0	4.000	0.000	-392.000
.1	2.963	-14.469	-0.963
.2	1.660	-10.752	52.336
.3	0.833	-6.032	39.022
.4	0.394	-3.028	21.916
.5	0.180	-1.433	11.005
.6	0.081	-0.656	5.212
.7	0.035	-0.293	2.384
.8	0.015	-0.129	1.066
.9	0.007	-0.056	0.470
1.0	0.003	-0.024	0.205

Notes

VIBRATION FORCED BY F₀ cos ωt

This program finds the steady-state solution for an object undergoing damped forced oscillations from a periodic external force of the form F_0 cos ωt . The differential equation to be solved is

$$m\ddot{x} + c\dot{x} + kx = F_0 \cos \omega t$$

The program calculates the following variables: ω_0 , ω_n , ζ , ω_{res} , AMP, δ , x(t), $\dot{x}(t)$, and $\ddot{x}(t)$, which are defined as follows:

Equations:

The steady-state solution (t $\rightarrow \infty$) to this equation is

$$x(t) = \frac{F_0}{\Delta} \cos (\omega t - \delta)$$

$$\dot{x}(t) = -\omega \frac{F_0}{\Delta} \sin(\omega t - \delta)$$

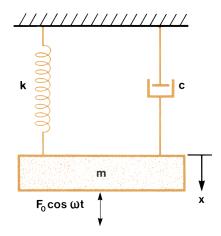
where:

$$\Delta = \sqrt{m^2 (\omega_0^2 - \omega^2)^2 + c^2 \omega^2}$$

$$\omega_0 = \sqrt{\frac{k}{m}} = \text{natural frequency or undamped system}$$

$$\omega_n = \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^2} = \text{damped natural frequency}$$

$$\zeta = \frac{c}{C_{crit}} = \frac{c}{2m \omega_0} = \text{damping ratio}$$


$$\delta = \tan^{-1} \frac{c\omega}{m(\omega_0^2 - \omega^2)}$$

$$AMP = \frac{F_0}{\Lambda}$$

 $\omega_{\rm res}$ is computed from

$$\omega_{\text{res}}^2 = \omega_0^2 - \frac{1}{2} \left(\frac{c}{m}\right)^2$$

$$AMP_{\text{max}} = \frac{F_0}{\Lambda} \text{ (where } \omega = \omega_{\text{res}})$$

Reference:

Boyce, W.E. and DiPrima, R.C., *Elementary Differential Equations*, John Wiley and Sons, 1969.

Remarks:

The above solution does not take into account the initial conditions $(x(0), \dot{x}(0))$ of the system, consequently values of $x(t), \dot{x}(t)$ and $\dot{x}(t)$ calculated by this program are for large values of t. However, should you need values of $x(t), \dot{x}(t)$ and $\dot{x}(t)$ for the system with initial conditions x(0) and $\dot{x}(0)$, use ME1-18A. Calculate the homogeneous solution $x(t), \dot{x}(t)$ and $\dot{x}(t)$ and add it to the values (the particular solution) calculated by this program.

This program sets the angular mode of the calculator to radians.

Registers R_{S0} — R_{S9} are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the system parameters			
	of mass,	m	ENTER+	
	damping coefficient	С	ENTER+	
	and spring constant.	k	A	ω ₀ , ω _n , ζ
3	Optional: Calculate the			
	resonant frequency ω_{res} .		B	ω_{res}
4	Input the frequency of external			•
	excitation	ω	ENTER+	
	and the external excitation			
	force.	F ₀	0	AMP, δ(deg.)
5	Input t to calculate x(t), x(t),			
	x (t).	t	0	x, x (t) x (t)
6	Input t₁ and t₂ and number of			
	intervals to calculate $x(t)$, $x(t)$,			
	and x(t) automatically.	t ₁	ENTER+	t ₁
		t ₂	ENTER+	t ₂
		n	9	n + 1 values of
				×(t), *(t),
				x(t) between
				t₁ and t₂
7	For a different external			
	excitation, applied to the same			
	system, go to step 4.			
8	For a different system, go to			
	step 2.			

Example:

A 400-lb. weight is suspended from a spring and stretches it a distance of 2 inches. The damping constant of the system is 0.5 lb-sec/ft. If the weight is driven by a periodic external force whose greatest value is 5 pounds, find (a) the resonant frequency of the system and (b) the amplitude and phase shift of the oscillation that will result if the mass is driven at the resonant frequency. Calculate the position, velocity, and acceleration for t = 6.0 sec. Also calculate the position, velocity, and acceleration for $t_1 = 6$ sec. and $t_2 = 10$ sec. with four intervals (n = 4).

$$m = \frac{F}{g} = \frac{400 \text{ lb}}{32.2 \text{ ft/sec}^2}$$
 $k = \frac{F}{x} = \frac{400 \text{ lb}}{2 \text{ in}} \frac{12 \text{ in}}{1 \text{ ft}}$

Keystrokes:

Outputs:

400 ENTER• 32.2
$$\div$$
 .5 ENTER• 13.900 *** (ω_0)
13.900 *** (ω_0)
0.001 *** (ζ)

13.900 (ω_{res})

(To drive the system at the resonant frequency, leave ω_{res} in the display and key in the driving force of 5 pounds).

or automatically:

9.000 *** -0.386 *** 8.442 *** 74.510 *** 10.000 *** 0.500 ***

7.197 *** -96.508 ***

Notes

EQUATIONS OF STATE

This card provides both ideal gas and Redlich-Kwong equations of state. Given four of the five state variables, the fifth is calculated. For the Redlich-Kwong solution, the critical pressure and temperature of the gas must be known. They are not needed for ideal gas solutions.

Values of the Universal Gas Constants

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	N - m/g mole - K	N/m²	m³/g mole	K
83.14	cm³ - bar/g mole - K	bar	cm³/g mole	K
82.05	cm³ - atm/g mole - K	atm	cm³/g mole	K
0.7302	atm - ft³/lb mole - °R	atm	ft³/lb mole	°R
10.73	psi - ft³/lb mole - °R	psi	ft³/lb mole	°R
1545	psf - ft³/lb mole - °R	psf	ft³/lb mole	°R

Critical Temperatures and Pressures

Substance	T _c , K	T _c , °R	P _c , ATM
Ammonia	405.6	730.1	112.5
Argon	151	272	48.0
Carbon dioxide	304.2	547.6	72.9
Carbon monoxide	133	239	34.5
Chlorine	417	751	76.1
Helium	5.3	9.5	2.26
Hydrogen	33.3	59.9	12.8
Nitrogen	126.2	227.2	33.5
Oxygen	154.8	278.6	50.1
Water	647.3	1165.1	218.2
Dichlorodifluoromethane	384.7	692.5	39.6
Dichlorofluoromethane	451.7	813.1	51.0
Ethane	305.5	549.9	48.2
Ethanol	516.3	929.3	63
Methanol	513.2	923.8	78.5
n-Butane	425.2	765.4	37.5
n-Hexane	507.9	914.2	29.9
n-Pentane	469.5	845.1	33.3
n-Octane	568.6	1023.5	24.6
Trichlorofluoromethane	471.2	848.1	43.2

Equations:

Ideal gas:

$$PV = nRT$$

Redlich-Kwong:

$$P = \frac{nRT}{(V - b)} - \frac{a}{T^{1/2} V (V + b)}$$
$$a = 4.934 b nRT_c^{1.5}$$
$$b = 0.0867 \frac{nRT_c}{P_c}$$

where:

P is the absolute pressure;

V is the volume:

n is the number of moles present;

R is the universal gas constant;

T is the absolute temperature;

T_c is the critical temperature;

P_c is the critical pressure.

Remarks:

P, V, n and T must have units compatible with R.

At low temperatures or high pressures, the ideal gas law does not represent the behavior of real gases.

No equation of state is valid for all substances nor over an infinite range of conditions. The Redlich-Kwong equation gives moderate to good accuracy for a variety of substances over a wide range of conditions. Results should be used with caution and tempered by experience.

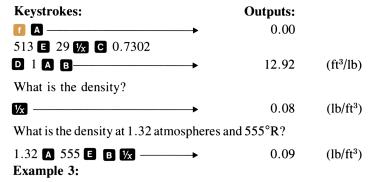
Solutions for V, n, R and T, using the Redlich-Kwong equation, require an iterative technique. Newton's method is employed using the ideal gas law to generate the initial guess. Iteration time is generally a function of the amount of deviation from ideal gas behavior. For extreme cases, the routine may fail to converge entirely, resulting in an "error".

Registers R_0 , R_1 and R_{S0} — R_{S9} are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Select Redlich-Kwong (1.00) or			
	ideal gas (0.00) using mode			
	toggle.		f A	1.00/0.00
3	If you selected ideal gas in			
	step 2, skip to step 5.			
4	Input critical temperature	T _c	 ■ B	T _c
	and critical pressure.	P_{c}		P _c
5	Input four of the following:			
	Absolute pressure	Р	A	Р
	Volume	V	B	V
	Number of moles	n	G	n
	Universal gas constant	R	o	R
	Absolute temperature	Т	Œ	Т
6	Calculate remaining value:			
	Absolute pressure		A	Р
	Volume		B	V
	Number of moles		G	n
	Universal gas constant		D	R
	Absolute temperature		•	Т
7	For a new case, go to steps 2,			
	4, or 5 and change values or			
	mode.			

Example 1:

0.63~g moles of air are enclosed in a $25,000~cm^3$ space at 1200~K. What is the pressure in bars? Assume an ideal gas.


Keystrokes: Outputs:

Select ideal gas by pressing [1] A until 0.00 is displayed.

	0.00	
25000 B .63 C 83.14 D		
1200 E A	2.51	(bars)

Example 2:

What is the specific volume (ft³/lb) of a gas at atmospheric pressure and at a temperature of 513°R? The molecular weight is 29. Assume an ideal gas.

The specific volume of a gas in a container is 800 cm³/g mole. The temperature will reach 400 K. What will the pressure be according to the Redlich-Kwong relation?

$$P_c = 48.2 \text{ atm}$$

$$T_{\rm c} = 305.5 \text{ K}$$

 $R = 82.05 \text{ cm}^3 - \text{atm/g mole-K}$

Keystrokes:	Outputs:		
1 A ────	1.00		
305.5 [] B 48.2 [] C 82.05			
D 1 C 400 E 800 B A \longrightarrow	36.27	(atm)	

Example 4:

6 gram moles of carbon dioxide gas are held at a pressure of 50 atmospheres, and at a temperature of 500 K. What is the volume in cubic centimeters? Use the Redlich-Kwong relation.

$$T_c = 304.2 \text{ K}$$
 $P_c = 72.9 \text{ atm}$
 $R = 82.05 \text{ cm}^3 - \text{atm/g mole} - \text{K}$

Keystrokes:	Outputs:	
1 A ────	1.00	
72.9 [] C 304.2 [] B 82.05		
D 6 C 50 A 500 E B	4695.86	(cm ³)

How many moles could be contained at this temperature and pressure in 5 liters?

ISENTROPIC FLOW FOR IDEAL GASES

This card replaces isentropic flow tables for a specified specific heat ratio k. Inputs and outputs are interchangeable with the exception of k.

The following values are correlated:

M is the Mach number;

 T/T_0 is the ratio of flow temperature T to stagnation or zero velocity temperature T_0 ;

 P/P_0 is the ratio of flow pressure P to stagnation pressure P_0 ;

 ρ/ρ_0 is the ratio of flow density ρ to stagnation density ρ_0 ;

A/A*_{sub} and A/A*_{sup} are the ratios of flow area A to the throat area A* in converging—diverging passages. A/A*_{sub} refers to subsonic flow while A/A*_{sup} refers to supersonic flow.

Equations:

$$T/T_0 = \frac{2}{2 + (k - 1) M^2}$$

$$P/P_0 = (T/T_0)^{k/(k-1)}$$

$$\rho/\rho_0 = (T/T_0)^{1/(k-1)}$$

$$A/A^* = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \left(1 + \frac{k-1}{2} M^2 \right) \right]^{\frac{k+1}{2(k-1)}}$$

In the last equation M^2 is determined using Newton's method. The initial guess used is as follows with a positive exponent for supersonic flow:

$$M_0^2 = (\sqrt{Frac}(A/A^*) + A/A^*)^{\pm 3}$$

Remarks:

After an input of A/A*, the program begins to iterate to find M² for future use. This iteration will normally take less than one minute, but may take longer on occasion. For extreme values of k (1.4 is optimum) the routine may fail to converge at all. An "Error" message will eventually halt the routine if it goes out of control.

A/A* values of 1.00 are illegal inputs. Instead, input an M of 1.00.

The calculator uses flag 3 to decide whether to store or calculate a value. If you use the data input keys (setting flag 3) and then wish to calculate a parameter based on a prior input, clear flag 3 before pressing the appropriate user definable keys.

Registers R_0 , R_5 and R_{S0} – R_I are available for user storage.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input specific heat ratio.	k	[] A	k
3	Input one of the following:			
	Mach number	М	A	М
	Temperature ratio	T/T _o	В	М
	Pressure ratio	P/P ₀	G	М
	Density ratio	$ ho/ ho_{ m o}$	0	М ,
	Subsonic area ratio	A/A* _{sub}	Œ	М
	Supersonic area ratio	A/A* _{sup}	ø e	М
4	Calculate one of the following:			
	Mach number		A	М
	Temperature ratio		В	T/T ₀
	Pressure ratio		0	P/P _o
	Density ratio	•	0	$ ho/ ho_0$
	Area ratio (subsonic or			
	supersonic)		•	A/A*
4′	Calculate and output all			
	values automatically.		 ■ B	k,M,T/T ₀ ,P/P ₀
				$ ho/ ho_0$, A/A*
5	For another calculation based			
	on same input, go to step 4			
	(or 4'). For a new input, go to			
	step 3. For a new specific heat			
	ratio, go to step 2.			

Example 1:

A pilot is flying at Mach 0.93 and reads on air temperature of 15 degrees Celsius (288 K) on a thermometer that reads stagnation temperature T_0 . What is the true temperature assuming that k = 1.38?

Keystrokes:	(Outputs:	
1.38 f A —	→	1.380	
.93 A —	→	0.930	
B	→	0.859	(T/T_0)
288 🗷 ——————————————————————————————————	→	247.352	(T, K)
273 🗖 —	→	-25.648	(T, °C)

If the same pilot reads a stagnation pressure P_0 of 700 millimeters of mercury, what is the true air pressure?

(Since the data input flag was set when 288 was keyed in, we must either clear it, or input 0.93 again.)

.93 A C
$$\longrightarrow$$
 0.575 (P/P₀)
700 \times \longrightarrow 402.843 (mm Hg)

Example 2:

A converging, diverging passage has supersonic flow in the diverging section. At an area ratio A/A^* of 1.60, what are the isentropic flow ratios for temperature, pressure and density? What is the Mach number? k = 1.74.

Keystrokes:	Outputs:	
1.74	1.740	
1.60	2.105	(M)
₿	0.379	(T/T_0)
C	0.102	(P/P_0)
D	0.269	(ρ/ρ_0)
or, alternatively, using automatic output.		
■ ■	1.740 ***	(k)
	2:.105 ***	(M)
	0.379 ***	(T/T_0)
	0.102 ***	(P/P_0)
	0.269 ***	(ho/ ho_0)
	1.600 ***	(A/A*)

Notes

CONDUIT FLOW

This program solves for the average velocity, or the pressure drop for viscous, incompressible flow in conduits.

Equations:

$$v^{2} = \frac{\Delta P/\rho}{2\left(f\frac{L}{D} + \frac{K_{T}}{4}\right)}$$

For laminar flow (Re < 2300)

$$f = 16/Re$$

For turbulent flow (Re > 2300)

$$\frac{1}{\sqrt{f}} = 1.737 \ln \frac{D}{\epsilon} + 2.28 - 1.737 \ln \left(4.67 \frac{D}{\epsilon \operatorname{Re} \sqrt{f}} + 1 \right)$$

is solved by Newton's method.

$$\frac{1}{\sqrt{f_0}} = 1.737 \ln \frac{D}{\epsilon} + 2.28$$

is used as an initial guess in the iteration.

where:

Re is the Reynolds number, defined as $\rho Dv/\mu$;

D is the pipe diameter;

 ϵ is the dimension of irregularities in the conduit surface (see table 2);

f is the Fanning friction factor for conduit flow;

 ΔP is the pressure drop along the conduit;

 ρ is the density of the fluid;

 μ is the viscosity of the fluid;

 ν is the kinematic viscosity of the fluid;

L is the conduit length;

v is the average fluid velocity;

 K_T is the total of the applicable fitting coefficients in table 1.

Table 1
Fitting Coefficients

Fitting	K
Glove valve, wide open	7.5—10
Angle valve, wide open	3.8
Gate valve, wide open	0.15—0.19
Gate valve, ¾ open	0.85
Gate valve, 1/2 open	4.4
Gate valve, ¼ open	20
90° elbow	0.4—0.9
Standard 45° elbow	0.35—0.42
Tee, through side outlet	1.5
Tee, straight through	.4
180° bend	1.6
Entrance to circular pipe	0.25—0.50
Sudden expansion	$(1 - A_{up}/A_{dn})^{2*}$
Acceleration from $v = 0$ to $v = v_{entrance}$	1.0

 $^{^{\}star}A_{\scriptscriptstyle up}$ is the upstream area and $A_{\scriptscriptstyle dn}$ is the downstream area.

Table 2
Surface Irregularities

Material	€ (feet)	€ (meters)
Drawn or Smooth Tubing	5.0×10^{-6}	1.5 × 10 ⁻⁶
Commercial Steel or Wrought Iron	1.5 × 10 [−]	4.6×10^{-5}
Asphalted Cast Iron	4.0×10^{-4}	1.2 × 10 ⁻
Galvanized Iron	5.0×10^{-4}	1.5 × 10 ^{-₄}
Cast Iron	8.3 × 10 [−]	2.5 × 10 ^{-₄}
Wood Stave	6.0 × 10 ⁻ 4to	1.8 × 10 ⁻ 4 to
	3.0×10^{-3}	9.1 × 10 ⁻⁴
Concrete	1.0 × 10 ⁻³ to	3.0 × 10 ⁻⁴ to
	1.0×10^{-2}	3.0×10^{-3}
Riveted Steel	3.0×10^{-3} to	9.1 × 10 ⁻ 4to
	3.0×10^{-2}	9.1×10^{-3}

Reference:

Welty, Wicks, Wilson; Fundamentals of Momentum, Heat and Mass Transfer, John Wiley and Sons, Inc., 1969.

Remarks:

The correlation gives meaningless results in the region 2300 < Re < 4000.

The solution requires an iterative procedure. The time for solution will range from 10 seconds for ΔP , to several minutes for v. The display setting is used to determine when the solution for v is adequately accurate. Time for solution of v is roughly proportional to the number or significant digits in the display setting.

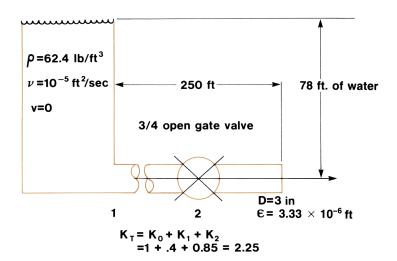
If the conduit is not circular, an equivalent diameter may be calculated using the formula below:

$$D_{eq} = 4 \frac{cross\ sectional\ area}{wetted\ perimeter}$$

Unitary consistency must be maintained with the exception of the pressure drop ΔP . If all length units are feet, time is measured in seconds and mass is given in pounds, pressure may be input or output in pounds per square inch, using the \square \blacksquare keys.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input the following in any order			
	(units must be consistent):			
	Viscosity of fluid	μ	f A	
	or			
	Kinematic viscosity of fluid	ν	■ B	ν
	Density	ρ		ρ
	Surface irregularity	€		ε
	Length of conduit	L	A	L
	Equivalent diameter of			
	passage	D	В	D
	Total fitting coefficient	Κ _τ	0	K _⊤ /4
3	Input one of the following:			
	Fluid velocity	V	D	V
	Pressure drop in compatible			
	units	ΔΡ	•	ΔΡ
	or			
	Pressure drop in psi	ΔP(psi)	1 3	144g∆P

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
4	Calculate one of the following:			
	Fluid velocity		D	v
	Pressure drop in compatible			
-	units		Œ	ΔΡ
	or			
	Pressure drop in psi		1 3	ΔP(psi)
5	Optional: After calculation of			
	ΔP or v, display Reynolds			
	number		R+	Re
	and Fanning friction factor.		R◆	f
6	For a new case, go to step 2 or			
	step 3 and change appropriate			
	inputs.			


Example 1:

A heat exchanger has 20, 3 meter tube passes (60 m of pipe) with 180 degree bends connecting each pair of tubes (from table 1, $K_T = 10 \times 1.6$). The fluid is water ($\nu = 9.3 \times 10^{-7}$ m²/s, $\rho = 10^3$ kg/m³). The surface roughness is 3×10^{-4} m and the diameter is 2.54×10^{-2} m. If the fluid velocity is 3.05 m/s, what is the pressure loss? What is the Reynolds number? What is the Fanning friction factor?

Keystrokes:	Outputs:	
9.3 EEX CHS 7 1 B EEX 3		
C 3 EEX CHS 4 ■ D 60		
A 2.54 EEX CHS 2 B 16 C		
3.05 D E ———	522. 03	$(\Delta P, N/m^2)$
R ♦	83.3 03	(Re)
R ♦ ————	10.2-03	(f)

Example 2:

For the system shown, what is the volume flow rate?

Keystrokes:

Outputs:

First calculate and store ΔP in psi from the given data.

78 ENTER• 62.4
$$\times$$
 144 \div

157. 03 (ΔP , psi)

Now store the other values.

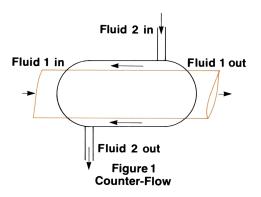
Calculate volume flow rate ($v \times Area$).

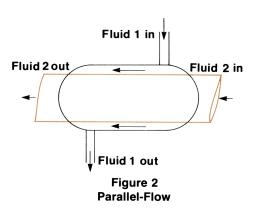
1.5 ENTER 12
$$\rightleftharpoons$$
 ENTER \bullet

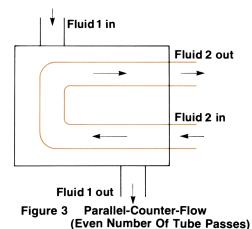
× π × × \longrightarrow 873.-03 (ft³/sec)

What will the height of the water be when the velocity is 15 ft/sec?

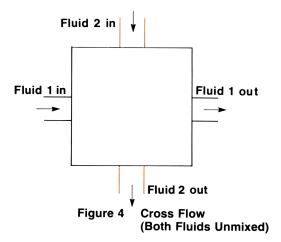
15 D ff E
$$\longrightarrow$$
 24.7 00 ($\triangle P$, psi) 144 \times 62.4 \rightleftharpoons \longrightarrow 57.0 00 (ft)


Notes


PARALLEL & COUNTER FLOW HEAT EXCHANGERS


This two card set allows analysis of counter-flow, parallel-flow, parallel-counter flow, and cross-flow (both fluids unmixed) heat exchanges.

The program is organized in four segments. The first side of card 1 performs heat balance calculations and acts as controller for the three slave program segments. Slave program segment one, on side 2 of card 1, is applicable to parallel-flow and counter-flow heat exchanges. Counter-flow is selected by pressing until 1.00 appears. Parallel-flow is selected by pressing until 0.00 appears.



The slave segment for **parallel-counter-flow** configuration (with an even number of tube passes) is on side 1 of card 2.

The slave segment for **cross-flow** (with both fluids unmixed) is on side 2 of card 2.

Equations:

Heat exchanger effectiveness E is the ratio of actual heat transfer to maximum possible heat transfer.

$$E = \frac{q}{C_{\min} (T_{\min} - T_{cin})} = \frac{C_h (T_{\min} - T_{ho})}{C_{\min} (T_{\min} - T_{cin})} = \frac{C_c (T_{co} - T_{cin})}{C_{\min} (T_{hin} - T_{cin})}$$

where:

q is the actual heat transfer;

 T_{hin} and T_{cin} are the inlet temperatures of the hot and cold fluids, respectively;

 T_{ho} and T_{co} are the outlet temperatures of the hot and cold fluids, respectively;

 C_h and C_c are the heat capacities of the hot and cold fluids, respectively, e.g., $C_h = m_h \times c_{ph}$, where m_h is the flow rate and c_{ph} is the specific heat capacity of the hot fluid;

 C_{min} and C_{max} (which are used later) are the smaller and larger values of C_h and C_c .

Effectiveness can be related to the product of the surface area of an exchanger and the overall transfer coefficient for specific geometries. This product is designated AU. The geometries considered in this pac have the following correlations:

Counter-Flow (See figure 1)

$$E = \frac{1 - e^{-\frac{AU}{C_{min}}} \left(1 - \frac{C_{min}}{C_{max}}\right)}{1 - (C_{min}/C_{max}) e^{-\frac{AU}{C_{min}}} \left(1 - \frac{C_{min}}{C_{max}}\right)}$$

For $C_{min}/C_{max} = 1$

$$E = \frac{AU/C_{\min}}{1 + AU/C_{\min}}$$

Parallel-Flow (See figure 2)

$$E = \frac{1 - e^{-\frac{AU}{C_{\min}}(1 + C_{\min}/C_{\max})}}{1 + C_{\min}/C_{\max}}$$

For $C_{min}/C_{max} = 0$, C_{min} is set to 1.

Parallel-Counter-Flow; Shell Mixed with an Even Number of Tube Passes (See figure 3)

$$E = \frac{2}{\left(1 + \frac{C_{\min}}{C_{\max}}\right) + \sqrt{1 + \left(\frac{C_{\min}}{C_{\max}}\right)^2 \left[\frac{1 + e^{-x}}{1 - e^{-x}}\right]}}$$

where:

$$x = \frac{AU}{C_{min}} \sqrt{1 + \left(\frac{C_{min}}{C_{max}}\right)^2}$$

Cross-Flow; Both Fluids Unmixed (See figure 4)

No exact expression exists for this case, but the following is a very good approximation. Note that it cannot be stated explicitly in terms of AU and thus requires an iterative solution.

$$E = 1 - e^{\left(e^{\left(-\frac{AU}{C_{min}}\frac{C_{min}}{C_{max}}y\right)} - 1\right)\left(\frac{C_{max}}{C_{min}}\frac{1}{y}\right)}$$

where:

$$y \, = \, \left\lceil \frac{C_{min}}{AU} \right\rceil^{\,\,0.22}$$

References:

W.M. Kays and A.L. London, *Compact Heat Exchangers*, National Press, 1955.

Eckert and Drake, Heat and Mass Transfer, McGraw-Hill.

Remarks:

Registers R_{S0}-R_{S9}, R_C, R_E, and R_I are available for user storage.

Solution for AU, using the cross-flow slave card takes significantly longer than other solutions because of the iterative technique required.

You should always solve for all values (AU, q, T_{co} , T_{ho} and E). It is quite possible for the heat balance equations to yield meaningless solutions for a particular type of heat exchange. By calculating all results, you are assured that the configuration being used is capable of the performance specified. An error message during calculation of AU or q usually indicates a violation of the second law of thermodynamics.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 of card 1.			
2	Select proper configuration			
	card and side, and load:			
	a. Parallel or counter-flow			
	exchangers→card 1,			
	side 2.			
	b. Parallel-counter-flow			
	(even number of tube			
	passes)→card 2, side 1.			
	c. Cross-flow (both fluids			
	unmixed→card 2, side 2.			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
3	If display says "Crd" press CLx.		CL X	0.00
4	If you loaded parallel/			
	counter-flow configurations in			
	step 2, select counter flow			
	(1) or parallel-flow (0) using			
	mode toggle.		1 3	1.00/0.00
5	Input the following values			
	Cold fluid inlet temperature	T_{cin}	I A	T_{cin}
	Cold fluid density flow rate	$ m \mathring{m}_c$	ENTER+	m _c
	then			
	Cold fluid heat capacity	C _{pc}	■ B	C _c
	and			
	Hot fluid inlet temperature	T_{hin}		T_{hin}
	Hot fluid density flow rate	$\dot{ extstyle m}_{ extstyle h}$	ENTER+	m _h
	then			
	Hot fluid heat capacity	C _{ph}		C _h
6	If the remaining known is			
	effectiveness, go to step 7.			
	If area-conductance product,			
	go to step 8. If heat transfer,			
	go to step 9. If cold fluid outlet			
	temperature, go to step 10.			
	If hot fluid outlet temperature,			
	go to step 11.			
7	With effectiveness displayed,			
	calculate area-conductance			
	product.	Ε	A	AU
8	With area-conductance			
	product displayed, calculate			
	heat transfer.	AU	B	q

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
9	With heat transfer displayed,			
	calculate cold fluid outlet			
	temperature.	q	G	T _{co}
10	With cold fluid outlet			
	temperature displayed,			
	calculate hot fluid outlet			
	temperature.	T _{co}	O	T _{ho}
11	With hot fluid outlet tempera-			
	ture displayed, calculate			
	effectiveness.	T_ho	g	Е
12	Go back to step 6 and com-			
	plete calculation of all outputs.			
13	For a new configuration, go to			
	step 2. It is not necessary to			
	repeat the input process if			
	values remain unchanged.			
14	For new input values, go to			
	step 5 and change appropriate			
	variables.			

Example 1:

Water ($c_p = 1$ Btu/lb- °F) is used to cool an oil ($c_p = .53$ Btu/lb- °F) from 200°F to 110°F. The water flow rate is 20,000 pounds per hour while the oil flows at 37,000 pounds per hour. If the water inlet temperature is 55°F and U is 25 Btu/ft²-hr-°F for the heat exchangers being considered, what are the area requirements for counter-flow, parallel-flow, parallel-counter-flow and cross-flow?

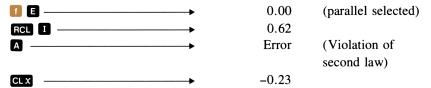
Knowns:

$$c_{pc} = 1.0 \text{ Btu/lb-}^{\circ}\text{F}$$

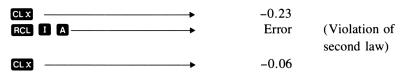
 $\dot{m}_{c} = 20,000 \text{ lb/hr}$
 $c_{ph} = 0.53 \text{ Btu/lb-}^{\circ}\text{F}$
 $\dot{m}_{h} = 37,000 \text{ lb/hr}$
 $T_{cin} = 55^{\circ}\text{F}$

$$T_{hin} = 200^{\circ}F$$
 $T_{ho} = 110^{\circ}F$
 $U = 25 \text{ Btu/ft}^2\text{-hr-}^{\circ}F$

Keystrokes:


Outputs:

Load side 1 and side 2 of card 1 and select counter-flow mode.


Since effectiveness is the same for all configurations, store it for later use.

Calculate AU.

Switch to parallel configuration.

Load parallel-counter flow configuration on side 1 of card 2 and clear display of "Crd."

Load cross-flow configuration on side 2 of card 2 and clear display of "Crd".

(Do not alter storage registers if you intend to continue with example 2.)

Example 2:

If a counter flow exchanger with an area of 1000 ft² and an overall heat transfer coefficient of 27 Btu/ft²-hr-°F is available, how close will the outlet temperature of the oil be to 110°F? What will the total heat transfer and outlet water temperature be? All unspecified values remain the same as example 1.

Keystrokes:	Outputs:	
Load counter-flow routine on side 2 o	f card 1 and selec	et counter flow mode.
CLX [1.00	
$Calculate\ AU\ product\ and\ calculate\ q.$		
27 ENTER • 1000 × ————	27000.00	(AU)
₿	1656452.69	(q, Btu/hr)
C	137.82	(T_{co})
D	115.53	(T_{ho})

0.58

(E)

Notes

PROGRAM LISTINGS

The following listings are included for your reference. A table of keycodes and keystrokes corresponding to the symbols used in the listings can be found in Appendix E of your Owner's Handbook.

Prog	gram	Page
1.	Vector Statics	L01-01
2.	Section Properties	L02-01
	Card 1	
	Card 2	
3.	Stress on an Element	L03-01
4.	Soderberg's Equation for Fatigue	
5.	Cantilever Beams	
6.	Simply Supported Beams	
7.	Beams Fixed at Both Ends	
8.	Propped Cantilever Beams	L08-01
9.	Helical Spring Design	L09-01
10.	Four Bar Function Generator	L10-01
	Card 1	
	Card 2	
11.	Progression of Four-Bar System	L11-01
12.	Progression of Slider Crank	L12-01
13.	Circular Cams	L13-01
14.	Linear Cams	L14-01
15.	Gear Forces	L15-01
16.	Standard External Involute Spur Gears	L16-01
17.	Belt Length	
18.	Free Vibrations	
19.	Vibration Forced by F ₀ cosωt	L19-01
20.	Equations of State	
21.	Isentropic Flow for Ideal Gases	
22.	Conduit Flow	
23.	Heat Exchangers	
	Card 1	
	Card 2	

VECTOR STATICS

TITLE _____

001 1	*LBLA	Convert from polar to	7	RCLB	
			658	RCLD	
002	X≢Y	rectangular.			
063	÷₽	_	0 59	X	
004			060	+	
	X≠Y				
005 1	*LBLa	Store x, y components of	061	STOE	
006	STOB		062	PRTX	
		\vec{V}_1 .			
007	X ≠ Y		063	RTN	
998	STOA		864	RCLE	
009	X ≠ Y		0 65	RCLA	
010	RTN		066	RCLB	
			967	→F	
011 1	¢LBLB	Convert from polar to			Calculate angle between
012	X≠Y	rectangular.	0 68	X≢Y	vectors.
		rectangular.	069	CLX	vectors.
013	÷₽				
014	X≢Y		070	RCLC	
	*LBLb		071	RCLD	
01€	STOD	Store x, y components of	072	→ F	
617	X₹Y		0 73	X≠Y	
		\vec{V}_2 .			
018	STOC	-	074	R4	
019	X₹Y		0 75	X	
			076	÷	
828	RTN				
021 4	KLBLd		077	COS-1	
			078	RCLE	
622	X≠Y	Store F cos ϕ and F sin ϕ .			
023	÷R	, Fr	079	X≠Y	
			080	PRTX	
824	ST08				
025	X≢Y		0 81	RTH	
			0 82	*LBLe	
026	ST09				
027	RTN		0 83	SFC	
	kLBLC		0 84	RCLB	
029	SPC	$\vec{V}_1 + \vec{V}_2$	0 85	RCLA	Calculate R ₁ .
030	RCLD	V1 · V2	0 86	→P	Calculate N ₁ .
			0 87		
031	RCLE			CLX	
032	+		9 88	1	
			0 89	→Ř	
033	RCLA				
				ST04	
U.14	PCT C		0 90		
034	RCLC				
035	+		091	X≠Y	
035	+				
035 036	+ →P		0 91 0 92	X≇Y STO5	
035 036 037	+ →F PRTX		091 0 92 0 93	X≇Y STO5 RCLD	
035 036 037	+ →F PRTX		091 092 093 094	X≢Y STO5 RCLD RCLC	
035 036 037 038	+ →P PRTX X#Y		091 092 093 094	X≢Y STO5 RCLD RCLC	
035 036 037 038 039	+ →P PRTX X‡Y PRTX		091 092 093 094 095	X‡Y STO5 ROLD ROLC →F	
035 036 037 038	+ →P PRTX X#Y		091 092 093 094 095 096	X#Y \$T05 RCLD RCLC →F CLX	
035 036 037 038 039 040	+ →P PRTX X‡Y PRTX RTN		091 092 093 094 095	X‡Y STO5 ROLD ROLC →F	
035 036 037 038 039 040 041	+ →P PRTX X≠Y PRTX RTN kLBLD		091 092 093 094 095 096	X‡Y ST05 RCLD RCLC →P CLX 1	
635 636 637 638 639 640 641 842	+ →P PRTX XZY PRTX RTN KLBLD SPC	v. vv.	091 092 093 094 095 096 097	X≇Y ST05 RCLD RCLC →P CLX 1 →R	
635 636 637 638 639 640 641 842	+ →P PRTX XZY PRTX RTN KLBLD SPC	$\vec{v}_1 imes \vec{v}_2$	091 092 093 094 095 096	X‡Y ST05 RCLD RCLC →P CLX 1	
635 636 637 638 639 646 641 42 642	+ →P PRTX XZY PRTX RTN KLBLD SPC RCLA	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	091 092 093 094 095 096 097 098	X‡Y ST05 RCLD RCLC →P CLX 1 →R ST06	
635 936 937 938 939 949 941 942 943	+ →P PRTX XZY PRTX RTN KLBLD SPC RCLA RCLD	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	091 092 093 094 095 096 097 099	X2Y \$105 RCLD +F CLX 1 +R \$106 X2Y	
635 636 637 638 639 646 641 42 642	+ →P PRTX XZY PRTX RTN KLBLD SPC RCLA	$\vec{\nabla}_1 \times \vec{\nabla}_2$	091 092 093 094 095 096 097 098	X±Y STO5 RCLD RCLC +F CLX 1 +R STO6 X±Y STO7	
635 836 937 838 839 848 841 842 843 844	+ →P PRTX X ² Y PRTX RTN KLBLD SPC SPC RCLA RCLD X	$\vec{\mathbf{v}}_1 imes \vec{\mathbf{v}}_2$	891 892 893 694 895 896 899 186	X±Y STO5 RCLD RCLC +F CLX 1 +R STO6 X±Y STO7	
635 836 837 838 838 849 841 842 843 844 845	+ +P PRTX XZY PRTX RTN VLBLD SPC RCLA RCLA RCLD X RCLC	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	891 893 894 895 896 897 898 188 181	X±Y STO5 RCLD RCLC +F CLX 1 +R STO6 X±Y STO7 R1	
635 836 937 838 939 948 941 942 943 944 945 945	+ →P PRTX X ² Y PRTX RTN KLBLD SPC SPC RCLA RCLD X	$\vec{V}_1 \times \vec{V}_2$	891 892 893 894 895 896 897 899 186 181 182 183	X±Y STOS RCLD RCLC →F CLX 1 →R STO6 X±Y STO7 Rf X±Y STO7 Rf X	
635 836 937 838 939 948 941 942 943 944 945 945	+ +P PRTX X2Y PRTX RTN VLBLD SPC RCLA RCLA RCLC RCLE	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	891 893 894 895 896 897 898 188 181	X±Y STO5 RCLD RCLC +F CLX 1 +R STO6 X±Y STO7 R1	
635 636 637 638 639 640 641 642 643 644 645 646 647	+ +P PRTX XZY PRTX RTN VLBLD SPC RCLA RCLA RCLD X RCLC	$ec{\mathbf{v}}_1 imes ec{\mathbf{v}}_2$	891 892 893 894 895 896 897 899 180 181 182 183 184	X±Y X±Y RCLD RCLC →P CLX 1 →R STO6 X±Y STO7 R1 X R1	
635 836 837 838 839 849 841 842 844 845 844 847 848 849	++ PPTX PRTX XZY PRTX RTN HIBLD SPC RCLA RCLA RCLC RCLC RCLC RCLC X CCC RCLC	$\vec{\mathbf{V}}_1 \times \vec{\mathbf{V}}_2$	091 092 093 094 095 096 097 099 100 101 102 103 104	X2Y STOS RCLC RCLC CLX 1 1 STOS X2Y STOY RT X R4 X	
635 836 837 838 839 849 841 842 844 845 844 847 848 849	++ PPTX PRTX XZY PRTX RTN HIBLD SPC RCLA RCLA RCLC RCLC RCLC RCLC X CCC RCLC	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	891 892 893 894 895 896 897 899 180 181 182 183 184	X±Y X±Y RCLD RCLC →P CLX 1 →R STO6 X±Y STO7 R1 X R1	
635 836 937 838 839 848 841 842 843 844 845 846 847 848 849	++ +P PRTX X2Y PRTX RTN LBLD SPC RCLA RCLD X RCLC RCLC RCLE X PRTX	$\vec{V}_1 \times \vec{V}_2$	891 892 893 894 895 896 897 899 180 181 182 183 184 185	X2Y STOS RCLC RCLC CLX 1 1 STOS X2Y STOY RT X R4 X	
635 636 637 638 639 640 641 642 643 644 645 647 648 649 650 651	++ PPTTX X2Y PRTX PRTX PRTN VLBLC SPC RCLC X RCLC X RCLC X RCLC X PRTN RTN	$\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2$	891 893 894 895 896 897 898 899 180 181 182 183 184 185	X2Y STO5 RCLD RCLC 1+ 2- STO6 X2Y STO7 R1 X R1 X R1	
635 636 637 638 639 640 641 642 643 644 645 647 648 649 650 651	++ +P PRTX X2Y PRTX RTN LBLD SPC RCLA RCLD X RCLC RCLC RCLE X PRTX		891 892 893 894 895 896 897 899 180 181 182 183 184 185 186	X27 RCLD RCLD +P CLX +R STOR X27 X27 X27 RT RT RT RT RT STOE	
635 836 937 838 949 941 942 943 944 945 945 947 948 949 959 851	+ P PRTX X2Y PRTX RIN RIN LELD SPC RCLB X RCLC RCLC RCLC RCLE X PRLC PRTX RTH LBLE	$\vec{\hat{\mathbf{v}}_1} \times \vec{\hat{\mathbf{v}}_2}$	891 892 893 894 895 896 897 899 180 181 182 183 184 185 186	X27 RCLD RCLD +P CLX +R STOR X27 X27 X27 RT RT RT RT RT STOE	
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 651 652 853	++ +P PRTX X2Y PRTX PRTN LBLD SPC RCLA X RCLC X RCLC X PRTX RTN LBLE SPC		891 892 893 894 895 896 897 899 180 181 182 183 184 185 186 187	X2Y ST05 ST06 CLX 1 1R ST06 X2Y ST07 R1 X R1 X R1 X R1 X R1 X	
635 636 637 638 639 640 641 642 643 644 645 647 648 649 651 652 853	+ P PRTX X2Y PRTX RIN RIN LELD SPC RCLB X RCLC RCLC RCLC RCLE X PRLC PRTX RTH LBLE		891 893 894 895 896 897 899 100 101 102 103 104 105 1067 108	X2Y STOS RCLD RCLD CLX 1 +R STOG X2Y STOG R1 X R1 X R1 STOE R1 X R1 STOE R1 X R1 STOE R1 X	
635 636 637 638 639 640 641 642 643 644 645 647 648 649 651 652 853	++ PPTTX X2Y PRTX RTN VLBL0 SPC RCLA RCLC X RCLC RCLC RCLE X RTN RTN RTN RTN RTN RTN RTN RTN RTN RCLA		891 892 893 894 895 896 897 899 180 181 182 183 184 185 186 187	X2Y ST05 ST06 CLX 1 1R ST06 X2Y ST07 R1 X R1 X R1 X R1 X R1 X	
635 836 937 838 839 849 841 842 843 844 845 846 847 848 849 851 851 854	+ P PRTX X2Y PRTX RIN RIN RSDC RCLA RCLA X RCLC RCLC RCLE - PRTX RTN LBLE SPC RCLC RCLC		891 892 893 894 895 896 897 899 100 101 102 103 104 105 106 107 1108	X2Y \$105 \$	
635 636 637 638 639 640 641 642 643 644 645 647 648 649 651 652 853	++ PPTTX X2Y PRTX RTN VLBL0 SPC RCLA RCLC X RCLC RCLC RCLE X RTN RTN RTN RTN RTN RTN RTN RTN RTN RCLA	$ec{ ilde{ extsf{v}}}_1 \cdot ec{ ilde{ ilde{ ilde{v}}}}_2$	891 892 893 894 895 896 897 899 180 181 182 183 184 185 186 187 188 189	X2Y STOS RCLD RCLD CLX 1 +R STOG X2Y STOG R1 X R1 X R1 STOE R1 X R1 STOE R1 X R1 STOE R1 X	
635 836 937 838 839 849 841 842 843 844 845 846 847 848 849 851 851 854	+ P PRTX X2Y PRTX RIN RIN RSDC RCLA RCLA X RCLC RCLC RCLE - PRTX RTN LBLE SPC RCLC RCLC	$ec{ ilde{ extsf{v}}}_1 \cdot ec{ ilde{ ilde{ ilde{v}}}}_2$	891 892 893 894 895 896 897 899 180 181 182 183 184 185 186 187 188 189	X2Y \$105 \$	
635 836 937 838 939 948 941 942 943 944 945 947 948 949 959 851 852 853	++P PRTX X2Y RTN RTN LELD SPC RCLB X RCLC RCLC X RCLE X PRTX RTN LBLE SPC SPC RCLC RCLC RCLC X PRTX RTN LBLE SPC RCLC RCLC X RCLC RCLC RCLC RCLC RCLC R	$\hat{\mathbf{v}}_1 \cdot \hat{\mathbf{v}}_2$	891 892 933 694 895 896 899 186 181 182 183 184 185 186 187 188 189 118	X27 RCLD RCLD +F CLX +R STDE X27 STO7 R1 X R1 STOE RCL RCL STOE RCL RCL RCL RCL RCL RCL RCL	Ja Jo
635 836 937 838 839 849 841 842 843 844 845 846 847 848 849 851 851 854	+ P PRTX X2Y PRTX RIN RIN RSDC RCLA RCLA X RCLC RCLC RCLE - PRTX RTN LBLE SPC RCLC RCLC	$ec{V}_1 \cdot ec{V}_2$	891 892 933 694 895 896 899 186 181 182 183 184 185 186 187 188 189 118	X27 RCLD RCLD +F CLX +R STDE X27 STO7 R1 X R1 STOE RCL RCL STOE RCL RCL RCL RCL RCL RCL RCL	⁸ Fcos ø ⁹ Fsin ø
635 836 937 838 939 948 941 942 943 944 945 945 946 947 948 949 959 851 852 853	+PPRTXY XZY RTN RIN ULBLD SPC RCLB RCLC RCLC RCLC RCLC RCLC RCLC RCL	$\vec{V}_1 \cdot \vec{V}_2$ REGIS $\begin{vmatrix} 3 & \begin{vmatrix} 4 & \cos \theta_1 \end{vmatrix} \end{vmatrix}$	091 093 093 094 095 096 097 098 099 100 101 102 103 104 105 106 117 108 119 111 111 112 112 112 112 112 113 114 115 116 117 117 118 118 119 119	X2Y \$105 \$105 \$106 \$106 \$107 \$107 \$107 \$107 \$107 \$107 \$108 \$107 \$107 \$107 \$107 \$108 \$107 \$107 \$107 \$108 \$108 \$109 \$	FCOS φ FSIII φ
635 836 937 838 939 948 941 942 943 944 945 947 948 949 959 851 852 853	++P PRTX X2Y RTN RTN LELD SPC RCLB X RCLC RCLC X RCLE X PRTX RTN LBLE SPC SPC RCLC RCLC RCLC X PRTX RTN LBLE SPC RCLC RCLC X RCLC RCLC RCLC RCLC RCLC R	$\vec{V}_1 \cdot \vec{V}_2$ REGIS $\begin{vmatrix} 3 & \begin{vmatrix} 4 & \cos \theta_1 \end{vmatrix} \end{vmatrix}$	891 892 933 694 895 896 899 186 181 182 183 184 185 186 187 188 189 118	X27 RCLD RCLD +F CLX +R STDE X27 STO7 R1 X R1 STOE RCL RCL STOE RCL RCL RCL RCL RCL RCL RCL	⁸ F cos φ
635 836 937 838 939 948 941 942 943 944 945 945 946 947 948 949 959 851 852 853	+PPRTXY XZY RTN RIN ULBLD SPC RCLB RCLC RCLC RCLC RCLC RCLC RCLC RCL	$\vec{V}_1 \cdot \vec{V}_2$ REGIS $\begin{vmatrix} 3 & \begin{vmatrix} 4 \cos \theta_1 \end{vmatrix} \end{vmatrix}$	091 093 093 094 095 096 097 098 099 100 101 102 103 104 105 106 117 108 119 111 111 112 112 112 112 112 113 114 115 116 117 117 118 118 119 119	X2Y \$105 \$105 \$106 \$106 \$107 \$107 \$107 \$107 \$107 \$107 \$108 \$107 \$107 \$107 \$107 \$108 \$107 \$107 \$107 \$108 \$108 \$109 \$	
635 636 637 638 639 649 641 642 643 644 645 645 646 647 688 649 651 652 653 654 655 656	++++++++++++++++++++++++++++++++++++++	$\hat{\mathbf{v}}_1 \cdot \hat{\mathbf{v}}_2$ REGIS $\begin{vmatrix} \mathbf{a} & \mathbf{a} & \cos \theta_1 \\ \mathbf{s}_3 & \mathbf{s}_4 \end{vmatrix}$	091 092 093 094 095 096 097 099 100 101 102 103 104 105 106 107 108 110 111 112 112 112 112 113 114 115 116 117 117 118 118 119 110 110 111 112 112 113 114 115 116 117 117 118 118	X±Y ST05 RCLD RCLC +F CLX 1 +R ST06 X±Y ST07 R1 x x R1 x R1 x R1 x RCL9 7 sin θ2	
635 636 637 638 639 649 641 642 643 644 645 646 647 648 649 651 652 653 654 655 656	++P PRTX X2Y PRTX RIN LBLD SPC RCLA RCLA RCLB X RCLE X RCLE X RCLE X PRTX RTN LBLE SPC RCLA RCLC Y	$\vec{\mathbf{V}}_1 \cdot \vec{\mathbf{V}}_2$ REGIS $\begin{vmatrix} 3 & 4 & \cos \theta_1 \\ & & & \\ & $	091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 112 112 113 114 115 116 117 117 118 118	X2Y ST05 RCLD RCLC +F CLX +R ST06 X2Y ST07 Rt X Rt X Rt X Rt X Rt X RCL9 7 sin \(\theta_2\)	
635 636 637 638 639 649 641 642 643 644 645 645 646 647 688 649 651 652 653 654 655 656	++++++++++++++++++++++++++++++++++++++	$\hat{\mathbf{v}}_1 \cdot \hat{\mathbf{v}}_2$ REGIS $\begin{vmatrix} \mathbf{a} & \mathbf{a} & \cos \theta_1 \\ \mathbf{s}_3 & \mathbf{s}_4 \end{vmatrix}$	091 092 093 094 095 096 097 099 100 101 102 103 104 105 106 107 108 110 111 112 112 112 112 113 114 115 116 117 117 118 118 119 110 110 111 112 112 113 114 115 116 117 117 118 118	X±Y ST05 RCLD RCLC +F CLX 1 +R ST06 X±Y ST07 R1 x x R1 x R1 x R1 x RCL9 7 sin θ2	

DATE	AUTHOR				
113 RCL6 114 X 115 - 116 RCLE 117 ÷ 118 PPTX 119 RCL9 120 RCL4 121 X 122 RCL8 123 RCL5 124 X 125 -	Calculate R ₂ .				
126 RGLE 127 ÷ 128 PRTX 129 RTN					
Δ Ιο Ιο	LABELS	FLAGS		SET STATUS	
b		1 -2//	FLAGS ON OFF	TRIG	DISP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 4	1; R ₂ 1	ON OFF 0	DEG ☑ GRAD □ RAD □	FIX €
5 6 7	8 9	3	2	HAU U	ENG □ n <u>2</u>

SECTION PROPERTIES

TITLE _____

001 *LBLa		0 57 ST-1	1
	Clear registers.		Sum ∆I _{xy} .
002 CLRG	1	05 8 RCLC	
003 RTN	l .	059 RCLB	
			1
004 *LBLA	Store coordinates.	060 ×	
	Store coordinates.		
005 STOD	1	061 RCLA	
006 R1	1	062 RCLD	
	1		
007 STDA	1	063 ×	
	1		i e
008 R1	1	Ø64 -	
009 STOB	I	065 ENT1	
	l .		
010 R1	1	066 ENT1	
011 STOC	Sum ∆A.	967 4	
	Sulli AA.		
	I		
013 +	1	0 69 RCL8	
014 STG8	1	070 ×	
	l .		
015 ROLD	1	071 RCLA	
016 RCLB	1	0 72 RCLC	
	1		
017 -	1	073 ×	
	1		1
018 ST07	1	074 RCLC	1
019 x	I	075 X2	1
	I		1
020 2	I	07€ ST09	1
	I		1
621 ÷	I	077 +	I
			1
022 ST-0	Sum ∆I _v .		1
023 1	Jun Aly.	679 X2	1
	1		I .
624 2	1	0 80 ST+9	1
	1		1
025 ÷		0 81 +	
026 RCLC		082 RCL7	1
027 RCLA		083 ×	1
	i		1
9 28 -		0 84 3	
	I	085 ÷	1
030 X2	1	08€ +	1
	I		1
031 RCL8		087 ×	
	i e		l .
032 GSB4		0 88 RCL9	
033 ST-4		0 89 8	
	Sum ∆I _x .		
034 RCL€	Julii Zix.	090 ÷	
	l .		1
035 RCLB		091 RCLS	
			1
Ø3€ RCLD		0 92 ×	
037 +		093 RCL7	1
0 38 ST09		094 X2	
			l .
039 ×		0 95 ×	
040 2		09€ +	
	1		1
041 4	1	097 RCL6	1
	1		1
042 ÷	1	0 98 X ≠0 ?	1
043 RCL9	I	0 99 ÷	1
	I		1
044 X2	1	100 ST+5	
	I		Recall x _i and y _i for next
045 RCL7	I	101 RCLC	
646 GSB4	1	102 RCLD	segment.
	1		
047 ST+3			
071 3173	I	163 RTN	1 0 1 1 1 1 1 1 1 1 1 1 1 1
	Sum ∆M _v .		
048 RCL6	Sum ∆M _x .	164 #LBL1	Calculate ΔM_x and ΔM_y .
048 RCL6	Sum ∆M _x .	164 #LBL1	Calculate ΔM_{χ} and ΔM_{γ} .
048 RCL6 049 RCL9	Sum ∆M _x .	104 ≉LBL1 105 %°	Calculate ΔM_{χ} and ΔM_{γ} .
048 RCL6	Sum ∆M _x .	104 ≉LBL1 105 %°	Calculate ΔM_{χ} and ΔM_{γ} .
048 RCL6 049 RCL9 050 RCL7	Sum ΔM _x .	104 *LBL1 105 X² 106 3	Calculate ΔM_X and ΔM_Y .
048 RCL6 049 RCL9 050 RCL7 051 GSB1	Sum ∆M _x .	104 #LBL1 105 X2 106 3 107 ÷	Calculate ∆M _X and ∆M _y .
048 RCL6 049 RCL9 050 RCL7 051 GSB1	Sum ∆M _x .	104 #LBL1 105 X2 106 3 107 ÷	Calculate ΔM _X and ΔM _y .
048 RCL6 049 RCL9 050 RCL7 051 GSB1 052 ST+2		104 #LBL1 105 X2 106 3 107 ÷ 108 XZY	Calculate ΔM_{χ} and ΔM_{γ} .
048 RCL6 049 RCL9 050 RCL7 051 GSB1	Sum $\Delta M_{\mathbf{x}}$.	104 #LBL1 105 X2 106 3 107 ÷	Calculate $\Delta M_{f x}$ and $\Delta M_{f y}$.
048 RCL6 049 RCL9 050 RCL7 051 GSB1 052 ST+2 053 RCL7		104 #LBL1 105 %2 106 3 107 ÷ 108 %2Y 109 GSB4	Calculate ΔM_{χ} and ΔM_{ψ} .
048		104 #LBL1 105 %2 106 3 107 ÷ 108 %2Y 109 6SB4 110 8	Calculate ΔM_{χ} and ΔM_{ψ} .
048		104 #LBL1 105 %2 106 3 107 ÷ 108 %2Y 109 6SB4 110 8	Calculate ΔM_{χ} and ΔM_{ψ} .
048		164 #LBL1 165 %2 166 3 167 ÷ 168 %2Y 169 6SB4 118 8	Calculate $\Delta M_{\mathbf{x}}$ and $\Delta M_{\mathbf{y}}$.
048		104 #LBL1 105 %2 106 3 107 ÷ 108 %2Y 109 6SB4 110 8	Calculate ∆M _x and ∆My.
048	Sum ΔM _V .	104 #LBL1 105	Calculate ΔM_{χ} and ΔM_{y} .
048 FCL6 049 FCL5 050 FCL7 051 GSE1 052 ST+2 053 FCL7 054 FCL6 055 FCL6 056 GSE1	Sum ΔM _y .	104 #LBL1 105	Calculate ΔM_{χ} and ΔM_{y} .
048 FCL6 049 FCL5 050 FCL7 051 GSE1 052 ST+2 053 FCL7 054 FCL6 055 FCL6 056 GSE1	Sum ΔM _y .	164 #LBL1 185 X2 166 3 167 ÷ 168 X2Y 169 GSB4 110 8 111 ÷ 112 PTN	
048 FCL6 049 FCL5 050 FCL7 051 GSE1 052 ST+2 053 FCL7 054 FCL6 055 FCL6 056 GSE1	Sum ΔM _y .	164 #LBL1 185 X2 166 3 167 ÷ 168 X2Y 169 GSB4 110 8 111 ÷ 112 PTN	
048 PCL6 049 PCLS 050 PCL7 051 GSE1 052 ST+2 053 PCL7 054 PCL8 055 PCL6 056 GSE1	Sum ΔM_{y} . REGIS	164 #LBL1 165 X2 166 3 167 ÷ 168 X2Y 169 GSB4 110 S 111 ÷ 112 PTN	
048 PCL6 049 PCLS 050 PCL7 051 GSE1 052 ST+2 053 PCL7 054 PCL8 055 PCL6 056 GSE1	Sum ΔM_{y} . REGIS $\begin{vmatrix} 3 & \Sigma I_{x} & 4 & \Sigma I_{y} \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)
048 RCL6 049 RCL5 050 RCL7 051 GSB1 052 ST+2 053 RCL7 054 RCL8 055 RCL6 056 GSB1	Sum ΔM _y .	164 #LBL1 185 X2 166 3 167 ÷ 168 X2Y 169 GSB4 110 8 111 ÷ 112 PTN	
048 PCL6 049 PCLS 050 PCL7 051 GSE1 052 ST+2 053 PCL7 054 PCL8 055 PCL6 056 GSE1	Sum ΔM_{y} . REGIS $\begin{vmatrix} 3 & \Sigma I_{x} & 4 & \Sigma I_{y} \end{vmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)
048 PCL6 049 RCL8 050 RCL7 051 GSB1 052 ST+2 053 RCL7 054 RCL8 055 PCL6 056 GSB1 0 ΣΑ 1 ΣΜ _V 2 ΣΜ _X S0 S1 S2	Sum ΔM _V . REGIS 3 Σ1 _X 4 Σ1 _V S3 S4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)
0+8 FCL6 049 RCL5 850 RCL7 851 GSP1 852 ST+2 853 RCL7 854 RCL8 855 RCL6 856 GSP1 O	Sum ΔM _y .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)
0+8 FCL6 049 RCL5 850 RCL7 851 GSP1 852 ST+2 853 RCL7 854 RCL8 855 RCL6 856 GSP1 O	Sum ΔM _y .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)
0+8 PCL6 049 RCL5 850 RCL7 851 GSE1 952 ST+2 953 RCL7 954 RCL8 855 PCL6 956 GSE1 O	Sum ΔM _V . REGIS 3 Σ1 _X 4 Σ1 _V S3 S4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ⁸ (x _{i+1} + x _i) ⁹ (y _{i+1} + y _i)

DATE _____ AUTHOR _____

113 #LBL	Calculation subroutine.		
114 X	Calculation subroutine.		
115 +			
116 ×			
117 RT		•	
		i	
118 *LBL			
119 ENT			1
12 0 AB			
121 ×			
122 P			
123 X			
125 ÷			
127 ST+			
128 ENT			
129 AB			
130 ×			
131 F			
132 ÷			
	ı	1	
		1	
135 STC			1
136 R			i i
137 STC			
138 F			
139 STC)		1
140 F			1
141			
142 RCL			
143			
144 ST			
145 RCL			
146 RCL			
147 RCL	: 1		
148			
149			
150		1	
151 ST-		1	
		1	
152 RCI		1	
153 RCI		1	
154 RCI		1	
155		1	
156		1	
157		1	
158 ST-		1	ł
159 RCI		1	į .
160 RC		1	
		1	
		1	
		1	
162 ST-	û		
163 RCI			
163 RCI	0		
163 RCI 164 RCI 165 :	ç		
163 RCI 164 RCI 165 : 166 ST	c 2		
163 RCI 164 RCI 165 : 166 STI 167 CI	C 2 X		
163 RCI 164 RCI 165 : 166 ST	C 2 X	FLAGS	SET STATUS

		LAC	DELO		FLAGS		SEI SIAIUS	
^A x _{i+1} ↑ y _{i+1}	В	^C x↑y↑±d	D	E	0	FLAGS	TRIG	DISP
а	b	С	d	e	1	ON OFF	DEG 🗷	FIX 🗷
0	1 Calculate	2	3	4 Calculate	2	1 🗆 🗵	GRAD □ RAD □	SCI ENG_
5	6	7	8	9	3	3 🗆 🕱	TIAD L	n 2

(Card 2)

TITLE . *LBLA Output \overline{x} , \overline{y} and A. **0**57 RCLA 002 €SB2 058 003 PETX 059 RCLE 864 XZY 060 PRTX 005 CHS 061 RCLB PRIX 006 062 RCL3 007 063 008 RTN 064 STOC 009 *LBL2 065 Calculate \overline{x} and \overline{y} . 010 SPC X≠0° 666 011 RCL2 **6**67 012 RCLa 968 Tan-013 RTH **0**69 STOA R14 676 *LBLD Calculate $I\overline{x}$, $I\overline{y}$, $I\overline{x}\overline{y}$ 015 RCL1 071 ese3 and output ϕ . 016 $RCL\theta$ STOI 017 073 2 018 STOE 074 019 ETN PRIX 675 Rotate to principal axis 020 *LBLB **0**76 **≉LBL**€ Output Ix, Iy and Ixy. 821 SPC 077 RCL3 022 **0**78 023 PRTS **0**79 ¥2 624 RCL4 080 STOA 025 PRTX 081 026 RCL5 082 PRTS 027 083 **0**28 RTN 084 Χs 029 *LBLC STOR 085 Calculate $I\overline{x}$, $I\overline{y}$ and $I\overline{x}\overline{y}$ 030 GSB3 RCLD 086 and ϕ . 031 ROLO 087 X 032 PRTX 888 633 ROLD PRIX RCLI 089 **034** 090 SIN 035 RCLE 091 RCLE PRTS 036 092 **0**37 RTN 093 **0**38 *LBL3 PRIX 094 039 GSB2 095 LSTX 040 RCL5 RCLA **0**96 641 **RCL**0 897 **RCLD** 042 RCLA **0**98 X 043 RCLB **0**99 844 100 RCLB 045 101 RCLC **04**6 102 х 847 STOE 103 **0**48 ENT: PRTX 164 049 RTH 105 050 RCL4 106 #1 Bl al 051 Calculate Ix', Iy', J and RCLB 107 ENT1 052 ΧZ 108 RCLO **0**53 109 STOI 054 X 110 ₽ŧ 055 111 STOC STOD

				HEGI	SIEHS				
⁰ ΣΑ	¹ ΣM _y	² ΣM _x	3 ΣI_{x}	⁴ ΣΙ _γ	⁵ ΣI _{xy}	6 (x _{i+1} -x _i)	7 (y _{i+1} -y _i)	8 (x _{i+1} +x _i)	9 (y _{i+1} +y _i)
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
$A \times_i, \overline{y}, co$	s²φ B	$\gamma_i, \overline{x}, \sin^2 \phi$	C ×i+1,	Ιÿ	$D_{y_{i+1}, \overline{1y}}$	E	Ιχγ		2φ

DATE	AUTHOR		
113 STOD	169	RCLI	

113 SILU		2			
114 6582 170 171 X 116 FCL6 171 X 116 FCL6 177 X 117 X 116 FCL6 177 X 117 FCL5 177 FCCL6 177 FCCL6 177 FCCL6 177 FCCL6 177 FCCCC 177 FCCCCC 177 FCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCCC 177 F	167	2		,	
114 6582 170 171 X 116 FCL6 171 X 116 FCL6 177 X 117 X 116 FCL6 177 X 117 FCL5 177 FCCL6 177 FCCL6 177 FCCL6 177 FCCL6 177 FCCCC 177 FCCCCC 177 FCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCC 177 FCCCCCC 177 F	1				1
114 6582 176 51N 1 1		-			
114 6582 178 SIN 171 X 116 RCL6 1177 X 172 RCLE 1173 RCL1 118 CHS 174 COS 1174 COS 1174 COS 1175 X 122 RCLE 1275 RCLE 1276 X 1226 CH 1277 PFTX 1228 PCLE 1277 PFTX 1228 PCLE 1277 X 1288 RCL0 1277 PFTX 1288 RCL0 1277 X 1288 RCL0 1277 RCL0 1377 RCL0 1377 RCL0 1378 RCL0 1378 RCL0 1378 RCL0 1379 - 1488 RCL0 1458 RCL0 1458 RCL0 1458 RCL0 1458 RCLC 1559 RCLC 15	165				
114 6582 176 51N 171 x 116 620 177 801E 177 x 172 801E 177 x 174 005 174 005 174 005 175 x 175 x 176 177 801E 1	164	ROLO			
114 6582 176 51N 171 x 116 RCL6 173 RCL1 173 RCL1 174 COS 174 COS 175 x 176 x 177 RCL1 178 RCL1 178 RCL1 177		PRTX			
114 6582 178 SIN 171 X 115 X 116 PCL6 172 PCL5 173 PCL1 174 COS 174 COS 175 X 176 + + 177 PFTX 122 PCLE 178 PFTX 122 PCLE 178 PFTX 122 PCLE 125 PCLH 126 - 127 PFTX 128 PCLC 125 PCLH 126 PCLF 131 STOE 132 PCLC 132 X 134 PCLC 137 X X 138 PCLC 137 X X 138 PCLC 137 X X 138 PCLC 138 PCLC 139 PCLC 139 PCLC 139 PCLC 130 PCLC 131 PCLC 131 PCLC 132 PCLC 133 PCLC 134 PCLC 135 PCLC 136 PCLC 137 PCLC					
114 6582 176 51N 171 x 116 RCL6 172 RCLE 173 RCL1 174 COS 174 COS 175 x 176 x 177 RCL5 175 x 176 x 177 PFTX 176 x 177 PFTX 177 PFTX 178 RCLD 178 RCLD 178 RCLD 178 RCLS 179 X 179 RCLS 179 RCL					
114 6582 176 51N 171 x 116 RCL6 172 RCLE 173 RCLI 174 COS 174 COS 175 x 176 x 177 PPTX 122 RCLB 177 PPTX 122 RCLB 178 RTN 17					
114 6582 178 51N 171 x 116 RCL6 172 RCLE 173 RCL1 174 COS 174 COS 175 x 176 x 176 x 177 PFTX 176 x 177 PFTX PFTX 177 PFTX					
114 GSB2 178 SIN 115 x 171 x 171 x 116 RCLB 1772 RCLE 117 x 173 RCL1 118 CMS 1774 COS 119 RCLS 1775 x 1120 + 1776 PPTX 1121 RCLD 1777 PPTX 1122 RCLB 1778 RTN 1123 - 124 RCLB 1778 RTN 1126 RCLB 1778 RTN 1127 x 128 RCLB 129 x 131 STOE 131 RCLB 131 STOE 131 STOE 131 RCLB 131 STOE 131 RCLB 131 STOE 131 RCLB 131 STOE 131 RCLB 132 RCLB 133 RCLB 134 RCLC 135 RCLB 135					
114 GSB2 170 SIN 115 X 171 X 116 PCL6 172 RCLE 117 X 173 RCL1 118 CHS 174 COS 119 RCL5 175 X 120 + 176 FTN 122 RCLD 1777 PPTX 122 RCLE 123 - 124 PCLC 125 PCLR 126 - 127 X 128 RCL6 129 X 130 + 111 STOE 132 PCLC 133 RCLA 134 RCLC 135 RCLA 136 X 137 2 138 X 139 - 140 RCL6 141 X 142 PCL3 144 STOC 145 RCLD 146 RCLE 149 X 159 2 151 X 159 2 153 RCL6 154 X 155 RCL4					
114 GSB2 178 SIN 115 x 171 x 171 x 116 RCL6 1772 RCLE 117 x 173 RCL1 118 CHS 173 RCL1 119 RCLS 175 x 1120 + 176 + 177 PPTX 1121 RCLD 177 PPTX 1122 RCLE 123 - 124 PCLC 125 PCLH 126 - 127 x 128 RCL0 129 x 130 + 131 STGE 132 PCLC 133 RCLA 136 x 137 2 2 138 RCLA 136 x 137 2 2 138 X 139 - 140 RCLG 141 x 142 PCLG 145 RCLG 141 x 142 PCLG 145 RCLG 146 X2 147 RCLD 148 RCLG 149 x 150 C 145 RCLD 148 RCLG 149 x 150 C 149 RCLG 140 RCLG 141 RCLG 141 RCLG 142 PCLG 145 RCLG 146 X2 147 RCLD 148 RCLG 149 x 150 C 149 x 150 C 140 RCLG 141 RCLG 141 RCLG 142 PCLG 143 RCLG 144 STGC 145 RCLG 146 X2 147 RCLD 148 RCLG 149 x 150 C 151 X 152 - 153 RCLG 155 RCLG 155 RCLG 155 RCLG 155 RCLG 155 RCLG 156 TCLG 157 RCLG 158 RCLG 159 RCLG					
114 GSB2 115 X 115 RCL6 117 X 116 RCL6 117 RCL1 118 CHS 119 RCL5 119 RCL5 119 RCLD 119 RCLD 117 PRTX 120 RCLD 121 RCLD 123 - 124 PCLC 125 PCLH 126 - 127 X 128 RCLH 126 - 127 X 128 RCLH 127 X 128 RCLH 128 RCLH 129 + 131 STOE 132 PCLC 133 RCLH 134 RCLC 135 RCLH 136 X 137 Z 138 X 139 - 140 RCLG 141 X 142 PCLG 145 RCLH 141 RCLC 145 RCLH 140 RCLH 141 RCLC 145 RCLH 146 RCLH 147 RCLD 148 RCLC 149 X 149 RCLC 140 RCLC 141 RCLC 141 RCLC 142 RCLC 145 RCLH 146 RCLH 147 RCLD 148 RCLE 149 X 150 Z 151 X 152 - 153 RCLH	154			Ì	
114					
114 6582 178 51N 116 RCL6 171 X 116 RCL6 172 RCLE 173 RCL1 173 RCL1 174 175 X 176 X 177 X 178 RTH 178					
114 6882 178 SIN 171 X 116 RC16 177 RC1E 177 RC1 178 RC11 178 RC11 179 RC15 179 RC15 176 X 177 PPTX 179 RC1 179 RC1 179 RC1 177 PPTX 179 RC1 1		X			
114 6582		2		Ì	
114 6882 178 SIN 115 X 116 RCL6 177 X 116 RCL6 177 X 117 X 117 RCL1 178 RCL1 179 RCL5 177 X 174 COS 179 RCL5 177 X 174 COS 177 X 175 X 176 PRTX 172 RCLB 177 PRTX 178 RTN 179 PRTX 17		×			
114 6882 178 SIN 115 X 116 RCL6 172 RCLE 171 X 118 CH3 174 COS 175 X 174 COS 175 X 176 COS 175 X 176 COS 175 X 176 COS 177 PPTW 122 RCLD 177 PPTW 122 RCLD 178 RTN 124 RCLC 125 PCLA 126 COS COS RTN 127 X 128 RCLB 129 X 138 X 139 COS RCLA 136 X 137 X2 138 X 139 COS RCLA 136 X 137 Z 138 X 139 COS TOS				İ	
114 6882 178 SIN 1115 X 1116 RCL6 1772 RCLE 1772 RCLI 1177 X 1174 COS 1174 COS 1175 X 1774 COS 11775 X 1774 COS 11775 X 1775 RCLI 1776 H 1777 PPTX 122 RCLE 1275 RCLA					
114 68B2 178 SIN 171 X 116 RCL6 177 RCLE 177 RCLI 178 RCLI 179 RTN 179		Χz			
114 6582 178 51N 115 x 116 RCL6 172 RCLE 171 x 118 CHS 174 COS 174 COS 175 x 176 CLS 175 x 176 CLS 175 x 176 TR TR TR TR TR TR TR T	145				
114 6882 178 SIN 1116 RCL6 1717 X 116 RCL6 172 RCLE 177 RCL1 178 RCL1 179 RCL5 174 COS 175 X 174 COS 175 X 174 COS 175 X 174 COS 175 X 175 X 176 X 177 PPTX 177 PPTX 178 RTN 179 RCL6 179 X 179 RCL6 179 R	144				
114 68B2 178 SIN 171 X 116 RCL6 177 RCL1 172 RCLE 177 X 178 RCL1 178 RCL1 179 RCL5 179 RCL5 179 RCL5 179 RCL5 179 RCL5 179 RCLD 179 RCLD 179 RCLD 179 RCLD 179 RTN 122 RCLE 123 — 124 RCLC 125 RCLA 126 — 127 X 128 RCLB 129 X 138 + 131 STOE 132 RCLC 133 RCLC 133 RCLC 134 RCLC 135 RCLA 136 X 137 Z 138 X 139 — 140 RCLC 141 X 142 PCL3	143	+			
114 GSB2 178 SIN 1115 X 1116 RCL6 172 RCLE 1772 RCLE 1177 X 1116 RCL5 1773 RCL1 1774 CCLS 1179 RCL5 1775 X 1774 CCLS 1775 X 1775 RCLD 1777 PRTX 1777 PRTX 1777 PRTX 1778 RTN 1778	142	RCL3			
114 6882 178 SIN 171 X 115 X 115 X 116 RCL6 172 RCLE 177 RCL1 178 RCL1 178 RCL1 179 RCL5 174 COS 175 X 174 COS 175 X 174 COS 175 X 174 COS 175 X 175 X 176 PRTX 176 PRTX 177 PRTX 178 RTN 178	141	X			
114 6582 178 SIN 115 x 171 x 172 RCLE 117 x 173 RCLI 118 CH3 174 COS 119 RCL5 175 x 120 + 177 PPTX 122 RCLE 123 - 124 RCLC 125 RCLA 126 - 127 x 128 RCLB 129 x 130 + 131 STDE 132 RCLC 133 X2 134 RCLC 135 RCLA 136 x 137 2 138 x	140				
114 6882 178 SIN 171 X 116 RCL6 172 RCLE 177 X 118 CH3 173 RCLI 174 COS 175 X 177 X 177 PFTX 177 PFTX 178 RCLD 177 PFTX 178 RCLD 178 RCLD 178 RTN 178 RCLD 179 RTN 179	139	-			
114 6582 178 51N 171 X 116 RCL6 177 RCLE 177 RCL1 178 RCL1 179 RCL5 179 RTN 122 RCLE 177 PRTN 122 RCLE 179 RTN 124 RCLC 179 RCLC	138	x		Ì	
114 6582 178 51N 171 X 116 RCL6 177 RCLE 177 RCL1 178 RCL1 179 RCL5 179 RTN 122 RCLE 177 PRTN 122 RCLE 179 RTN 124 RCLC 179 RCLC		2			
114 6582 178 51N 171 X 116 RCL6 177 RCL1 173 RCL1 178 RCL1 179 RCL5 174 COS 179 RCL5 175 X 176 RCL 177 PPTW 179 RCLD 179 RCLD 177 PPTW 179 RCLD 179 RCLD 179 RTM 179 RTM 179 RCLD 179 RTM 179	136	X			
114 GSB2 178 SIN 1115 X 1116 RCL6 172 RCLE 1717 X 1116 RCL6 172 RCLE 173 RCLI 173 RCLI 174 CCS 175 X 174 CCS 175 X 177 PRTX 177 PRTX 177 PRTX 178 RTN 17					
114 6882 178 SIN 115 X 1116 RCL6 172 RCLE 177 X 116 RCL5 173 RCL1 174 COS 119 RCL5 175 X 174 COS 119 RCL5 175 X 128 + 121 RCLD 1776 PPTX 122 RCLE 127 - 128 RCL 128 RCL 127 RCLD 178 RTN 122 RCLE 127 RCLD 178 RTN 127 RCLD 127 RCLD 178 RTN 128 RCL 126 - 127 X 128 RCLB 129 X 130 + 131 STOE 132 PCLC					
114 6582 178 SIN x 1116 RCL6 171 x x 1116 RCL6 172 RCLE 177 RCL5 173 RCL1 174 COS 1119 RCL5 175 x 120 + 121 RCLD 177 PPTX 122 RCLE 123 124 RCLC 125 RCLA 126 - 127 x 128 RCLA 126 - 127 x 128 RCLA 128 RCLA 129 x 130 + 131 STOE					
114 6882 178 SIN 115 x 171 x 1116 RCL6 117 x 172 RCLE 117 x 173 RCL1 118 CH3 174 COS 119 RCL5 120 + 175 x 176 + 177 PPTX 122 RCLE 123 - 124 RCLC 125 RCLA 126 - 127 x 128 RCLB 129 x 130 + 1	120				
114 6582 178 51N 171 X 116 RCL6 177 RCL1 171 X 116 RCL6 172 RCLE 173 RCL1 178 RCL1 179 RCL5 174 COS 174 COS 175 X 176 X 177 RCLD 177 PPTW 122 RCLE 177 PPTW 122 RCLE 177 PPTW 124 RCLC 177 PPTW 177 PPTW 178 RTN 178 R					
114 GSB2 178 SIN 115 X 171 X 116 RCL6 177 RCLE 177 RCLE 177 RCLE 177 RCL1 178 RCL1 179 RCL5 177 COS 17					
114 6882 178 SIN 115 x 171 x x 116 RCL6 172 RCLE 117 x 173 RCLI 118 CH3 174 COS 119 RCL5 175 x 120 + 174 COS 121 RCLD 177 PPTX 122 RCLE 123 - 124 PCLC 125 RCLH 126 - 127 x	128				
114 GSB2 178 SIN X 1116 RCLG 177 X 116 RCLG 177 X 177 RCLI 177 RCLI 178 RCLI 179 RCLS 177 RCLI 179 RCLS 177 RCLI 179 RCLS 177 RCLI 178 RCLI 179 RCLS 177 RCLI 177 PRTX 178 RCLI 178 RCL					
114 GSB2 178 SIN 115 X 171 X 116 RCL6 177 RCLE 177 RCLE 177 RCLE 177 RCL1 178 CH3 179 RCL5 177 X 179 RCL5 177 X 179 RCL5 177 RCL5 177 PRTX					
114 6382 178 SIN 115 x 171 x 116 RCL6 172 RCLE 117 x 173 RCLI 118 CH3 174 COS 119 RCL5 175 x 120 + 174 RCLD 176 + 1 121 RCLD 177 PPTX 122 RCLE 123 -	125				
114 GSB2 176 SIN x 115 x 116 RCL6 177 RCLE 177 x 116 CHS 177 x 177 RCLI 178 RCLI 179 RCL5 177 C S T S S S S S S S S S S S S S S S S S					
114 GSB2 178 SIN 115 x 171 x x 116 RCL6 172 RCLE 117 x 173 RCL1 118 CH3 174 COS 119 RCL5 175 x 120 + 177 PRTX 121 RCLD 178 RTN					
114 GSB2 176 SIN 115 x 177 RCL1 116 RCL6 172 RCLE 117 x 173 RCL1 118 CH3 174 COS 119 RCL5 175 x 120 + 176 + 121 RCLD 177 PRTX			1/0	610	
114 6382 176 51N 115 x 171 x 172 RCLE 117 x 172 RCLE 117 x 173 RCLI 118 CHS 174 COS 119 RCL5 175 x 176 +					
114 GSB2 178 SIN 115 x 171 x x 116 RCL6 172 RCLE 117 x 173 RCL1 118 CH3 174 COS 119 RCL5 175 x			170 177 - 1		
114 6582 176 SIN 115 X 171 X 116 RCL6 172 RCLE 117 X 173 RCLI 118 CH3 174 COS			175	Ŷ	
114 GSB2 176 SIN 115 x 177 x 116 RCL6 172 RCLE 117 x 173 RCLI	118	CHS BCLE			
114 GSB2 178 SIN 115 x 171 x 116 RCLG 172 RCLE					
114 GSB2 170 SIN 115 x 171 x					l
114 GSB2 170 SIN					
					l
117 STOD 169 RCLI	113	STOD			l

	LABELS					SET STATUS			
$A \rightarrow \overline{x}, \overline{y}, \phi$	B→Ix,Iy,Ixy	C→Ix,Iy,Ixy	^D →ΙπφΙγφΙπγφ	E	0	FLAGS	TRIG	DISP	
a	р	С	^d →Ix',Iy',Ixy'	е	1	ON OFF	DEG ₺	FIX 🗷	
0	1 tan-1	2 x, y	³ lx,ly,lxy	4	2	1 🗆 🕱	GRAD □ RAD □	SCI □ ENG □	
5	⁶ Rotate	7	8	9	3	3 🗆 🗵	1100	n2	

STRESS ON AN ELEMENT

TITLE

001	at Di	T	057 0716	T
991		Store code:	057 ST÷6	
662		1 = rectangular	058 GSB5	Calculate $ au_{max}$ and
993		2 = equiangular	059 RCLE	Calculate / max and
004	*LBLk	quiunguiun	060 RCL9	6. +6.
995	2	1	061 1	$\frac{s_1 + s_2}{2}$ from strains.
006			962 +	2
007		1		
			063 ÷	
008		Store ν and E.	064 ST×5	
009	≉LBL d	1	065 RCLE	
016	ST09		0 66 1	1
011	R↓		067 RCL9	1
012			668 -	1
013				
		Store ϵ_a , ϵ_b and ϵ_c .	0 69 ÷	1
014			070 ST×6	1
015	STOC	1	071 RCLC	1
016	R↓		072 RCLB	1
017		1	073 -	1
018		1		ł
			074 3	1
019		Calculate ϵ_1 and ϵ_2 .	075 IX	1
926		January C1 and C2.	076 GTO:	1
021	#LBLB	1	077 *LBL1	1
0 23	RCLA	1		1
023		1		1
024		1	079 RCLE	1
			080 ×	1
925			081 RCLA	1
0 26	+	1	0 82 -	1
0 27	*LEL1	1	083 RCLC	1
028		1	084 -	1
029		1		1
		ı	085 RCLA	
636			086 RCLC	1
031	0		087 GT04	1
032	GTO:	1	088 *LBL2	1
033		1		1
034		•		1
		1	090 2	1
035		I	091 RCLA	1
03 6	-	l	092 ×	1
037	*LBL1	1	093 RCLE	1
038		1	094 -	1
039				1
046			095 RCLC	l
			09€ *LBL4	
941			0 97 -	Output θ .
042	RCLA	i	098 GSB€	1
043	PCLB		099 R4	1
044			100 PRTX	1
045		1		1
		1	101 RTN	1
046		1	102 ≭LB LC	
647		1	103 R†	Calculate $\tau_{\sf max}$ and
948	x	1	164 R†	$(s_1 + s_2)/2$ from s_x , s_y
645		1	105 STO3	and τ_{xy} .
		1		/xy.
		1	10€ STO€	I
956 951	CTO:	1	107 Rt	1
0 51			168 ST+6	1
0 52 0 52	*LBL2		1	1
0 51 0 52 0 53	*LBL2		109 -	
0 52 0 52	*LBL2		1 0 9 -	
051 052 053 054	*LBL2 1 +		109 - 110 STO4	
051 052 053 054 055	*LBL2 ! 1 ! + ! *LBL1		109 - 110 ST04 111 2	
051 052 053 054	*LBL2 ! 1 ! + ! *LBL1	250	109 - 110 ST04 111 2 112 ST÷6	
051 052 053 054 055	*LBL2 1 + *LBL1 ST=5	3 4	109 - 110 ST04 111 2 112 ST÷6 STERS	18 19
953 953 955 955 956	*LBL2 1 + *LBL1 ST÷5	$\begin{array}{c} 3 \\ s_x \end{array} \qquad \begin{array}{c} 4 \\ s_x - s_y \end{array}$	109 - 110 ST04 111 2 112 ST÷6 STERS 5	8 9 _{\(\nu\)}
953 953 953 954 955 956	*LBL2 1 + *LBL1 ST=5	3 4	109 - 110 ST04 111 2 112 ST÷6	8 9 ν S8 S9
953 953 953 954 955 956	* *LBL2 :	3 s _x 4 s _x - s _y S3 S4	109 - 110 ST04 111 2 112 ST÷6 STERS 5	ν
953 952 953 954 955 956	*LBL2 1 + *LBL1 ST÷5	$\begin{array}{c} 3 \\ s_x \end{array} \qquad \begin{array}{c} 4 \\ s_x - s_y \end{array}$	109 - 110 ST04 111 2 112 ST÷6 STERS 5	ν

DATE __ _ AUTHOR _ 113 Rt 114 115 ST02 116 117 →P 118 STO5 RCL2 119 CHS 120 RCL4 121 122 *****LBL€ Calculate θ and 2θ . 123 X≠0? 124 125 TAN-126 127 ST02 2 128 ÷ 0 129 RTN 130 131 *LBLD Output s_1 , s_2 and au_{max} 132 6SB5 and θ . 133 134 135 RCL5 PRTX RCL2 2 136 137 PRTX 138 RTN 139 140 *LBLE SPC 141 Calculate s and t from θ' . ENTT 142 143 RCL2 144 145 ROL5 146 →R RCL€ 147 148 149 + PRTX 150 151 152 X≢Y PRTX 153 154 155 PTH *LBL5 Calculate ε_1 and ε_2 or s_1 and s_2 . 156 RCL6 157 PCL5 158 PRTX 159 160 RCLERCL5 161 162 163 PRTX RTN 164

	LABELS			FLAGS		SET STATUS		
$^{A}\epsilon_{a}\uparrow_{b}\uparrow\epsilon_{c}$	$^{B} \rightarrow \epsilon_1$, ϵ_2 , θ	$^{\text{C}}$ s _x †s _y † τ_{xy}	$D \rightarrow s_1, s_2, \tau_{max}, \theta$	E $\theta' \rightarrow s$, τ	0	FLAGS	TRIG	DISP
^a Rectangular	^b Equiangular	С	^d E↑v	е	1	ON OFF	DEG ₩	FIX 🗆
⁰ Store code	1 Rectangular	² Equiangular	3	⁴ Output	2	1 🗆 🛭	GRAD □ RAD □	SCI □ ENG ko
⁵ Calc	$^{6}\theta$	7	8	9	3	3 🗆 🛛	HAD 🗆	n_3_

SODERBERG'S EQUATION FOR FATIGUE

991	*LBLa	If flag 3 is set, store syp.	057	*LBLB	Store or calculate K.
002	STOS	in mag 3 is set, store syp.	9 58	STOP	Store or calculate K.
					1
963	F3?		059	F32	I
004	ETN		060	RTN	I
005	GSE1		. 061	RCL8	1
906	65B2	If flag 3 is not set, calcula	te 062	RCLE	1
		syp.			1
007	RCLB	712	063	÷	I
908	X		964	€SB1	1
869	RCL5		065	-	1
				0050	1
616	÷		966	GSE2	
011	CHS		067	RCL8	
012	RCLE		968	X	
013			069	RCL9	
	1/X				1
014	+		678	÷	
015	÷		071	÷	
01€	STOS		072	STOE	1
					1
017	RTN		_ 073	₽TN	
618	*LBLb		- 074	≉LBL C	
019	ST09	Store or calculate s _e .	975	STOC	Store or calculate P _{max}
					1
020	F3?		076	F3?	1
021	RTN		077	RTN	1
622	GSB2		0 78	RCLA	1
					1
023	RCLS		079	ENTT	1
024	x	İ	080	+	1
025	RCLB		081	RCL8	1
					1
026	x		082	×	
027	GSB1		e 83	RCLE	1
628	CHS		684	÷	1
					1
029	₽CL8		9 85	RCLE	
030	RCLE		08€	RCL8	
031	÷		087	X	1
6 32	+		9 88	RCL9	
832 833	÷		9 88 9 89	RCL9 ÷	
033	÷		089	÷	
933 934	÷ ST09		989 990		
933 934 935	÷ STO9 RTM		089 090 091	† _1 _	
933 934	÷ ST09		989 990	÷	
033 034 035 036	÷ STO9 RTN *LBLA		- 089 090 091 092	÷ _1 	
033 034 035 036 037	÷ STO9 RTN *LBLA STOA	Store or calculate A.	089 090 091 - 092 093	i RCLD X	
033 034 035 036 037 038	÷ 8109 RTN *LBLA \$10A F3?	Store or calculate A.	- 089 - 090 - 092 - 093 - 094	# 1	
033 034 035 036 037	÷ STO9 RTN *LBLA STOA	Store or calculate A.	089 090 091 - 092 093	i RCLD X	
033 034 035 036 037 038 039	÷ 8109 RTN *LBLA \$10A F3?	Store or calculate A.	089 090 091 092 093 094 095	÷ 1 RCLD X + RCLB	
933 934 935 936 937 938 939	÷ 8709 RTM *LBLG \$TOA F39 RTM 1	Store or calculate A.	- 989 - 991 - 992 - 993 - 994 - 995 - 996	# 1 	
933 934 936 936 937 938 939 949	÷ ST09 RTH *LBL6 ST0A F39 RTH 1 ST0A	Store or calculate A.	- 989 - 991 - 992 - 993 - 994 - 995 - 996	÷	
933 934 935 936 937 938 939	÷ 8709 RTM *LBLG \$TOA F39 RTM 1	Store or calculate A.	889 830 891 992 893 894 895 896 897	# 1 	
933 934 935 936 937 938 939 940 941 942	÷ ST09 RTN #LBLA ST0A F30 RTN 1 ST0A GSB1	Store or calculate A.	889 830 891 992 893 894 895 896 897	FCLB RCLB RCLB RCLB X RCLB	
933 934 935 936 937 939 949 941 941 943	÷ ST09 RTH *LBL6 ST0A F39 RTH 1 ST0A GSB1 GSB2	Store or calculate A.	889 830 891 992 893 894 895 896 897 898	# 1 RCLD	
833 834 835 836 837 838 839 848 841 842 843	÷ STO9 RTN *LBL6 STOA F30 RTN 1 STOA GSB1 GSB2 RCLB	Store or calculate A.	889 830 891 892 893 894 895 897 898 899	FOLD ROLD X ROLE ROLE ROLE X ROLE 1	
933 934 935 936 937 939 949 941 941 943	÷ ST09 RTH *LBL6 ST0A F39 RTH 1 ST0A GSB1 GSB2	Store or calculate A.	889 830 891 992 893 894 895 896 897 898	# 1 RCLD	
833 834 835 836 837 839 849 841 842 843 844	÷ STO9 RTH *LBL6 STO8 F30 FTN 1 STO8 6SB1 6SB2 RCLB X	Store or calculate A.	889 830 891 891 893 893 894 895 896 899 1806	# 1	
833 834 835 836 837 838 839 848 841 842 843 844	+ STO9 PTN *LBLG STO9 F39 FTN 1 STOA GSB1 GSB2 RCLE RCLB	Store or calculate A.	889 830 891 892 893 893 894 895 897 898 180 181	# 1	
833 834 935 836 937 938 839 949 941 842 943 944	÷ STO9 RTN #LBLA STOA F3? FTN STOA GSB1 GSB2 RCLB X RCLB X	Store or calculate A.	889 839 891 892 893 894 895 896 897 898 899 1801 1802	# 1	
833 834 835 836 837 838 639 841 841 842 844 845 846	+ STO9 PTN *LBLG STO9 F39 FTN 1 STOA GSB1 GSB2 RCLE RCLB	Store or calculate A.	889 839 891 892 893 894 895 896 897 899 186 181 182 183	# 1	
833 834 935 836 937 938 839 949 941 842 943 944	÷ STO9 RTN #LBLA STOA F3? FTN STOA GSB1 GSB2 RCLB X RCLB X	Store or calculate A.	889 839 891 892 893 894 895 896 897 898 899 1801 1802	# 1	
833 834 835 836 837 839 849 841 842 843 844 847 848	† STOP RTN #LBLA STOA F32 FTN 1 STOA GSB1 GSB2 RCLP X RCLP X RCLS	Store or calculate A.	889 839 891 892 893 893 895 897 898 180 181 182 183 184	# 1 RCLD X + RCLE RCLE RCL9 # 1 # 5 STOC FTH #LELD	Store or calculate Power
833 834 935 936 937 938 949 941 943 944 945 946 947 948	÷ STOP RTN #LBLA STOA F37 RTN STOA GSB1 GSB1 GSB2 RCLB X RCLB X RCLB + +	Store or calculate A.	889 839 891 892 893 894 895 896 897 188 899 181 182 183 184 185	#	Store or calculate P _{min}
833 834 835 836 837 838 849 841 842 843 845 846 846 849	÷ 5 8TH 8TH 8LELA 8 8TO 9 8TH 9 8TO	Store or calculate A.	889 830 891 892 893 894 895 897 899 180 191 192 193 194 195	# 1	Store or calculate P _{min}
833 834 935 936 937 938 949 941 943 944 945 946 947 948	÷ STOP RTN #LBLA STOA F37 RTN STOA GSB1 GSB1 GSB2 RCLB X RCLB X RCLB + +	Store or calculate A.	889 839 891 892 893 894 895 896 897 188 899 181 182 183 184 185	#	Store or calculate P _{min}
833 834 835 836 837 839 849 841 842 843 844 845 849 852	÷ TTO9 RTN #LELA \$TOA F37 FTN \$TOA GSB1 \$CSB2 RCLE X RCLE X RCLE + + RCLE ÷	Store or calculate A.	889 839 891 892 893 894 895 896 897 898 180 181 182 183 184 185 186	# 1	Store or calculate P _{min}
833 834 835 836 837 838 639 841 842 843 846 847 846 849 859	\$\frac{1}{2}\$ PT of the proof of the p	Store or calculate A.	889 839 891 892 893 894 895 896 897 180 181 182 183 184 185 186 187 188	# 1	Store or calculate P _{min}
833 834 835 836 837 838 849 841 842 844 845 846 847 848 852 852	÷ \$TO9 \$TIN \$LEL4 \$TO4 \$570 \$TO4 \$581 \$582 \$CLE \$\$X \$\$RCLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLCB \$\$CCCB \$\$CCCCB \$\$CCCCCB \$\$CCCCCCCCCC	Store or calculate A.	889 830 891 892 893 894 895 899 186 181 182 183 184 185 186 187 188 189	# 1	Store or calculate P _{min}
833 834 835 836 837 838 839 841 842 843 846 847 846 849 859	\$\frac{1}{2}\$ PT of the proof of the p	Store or calculate A.	889 839 891 892 893 894 895 896 897 180 181 182 183 184 185 186 187 188	# 1	Store or calculate P _{min}
833 834 935 936 937 938 949 941 943 944 945 946 947 948 949 951 952 953	† STO9 RTN #LBLA STOA F37 FTN 1 STOA GSB1 GSB2 RCLB X RCLB X RCLB + RCLS † RCLS † RCLS * RCLS	Store or calculate A.	889 839 891 892 893 894 895 896 897 180 182 183 184 185 186 187 188 189 118	:	Store or calculate P _{min}
833 834 835 836 837 838 849 841 842 844 845 846 847 848 852 852	÷ \$TO9 \$TIN \$LEL4 \$TO4 \$570 \$TO4 \$581 \$582 \$CLE \$\$X \$\$RCLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLB \$\$CLCB \$\$CCCB \$\$CCCCB \$\$CCCCCB \$\$CCCCCCCCCC		889 839 891 892 893 894 895 897 897 899 186 181 182 183 185 185 186 187 188 189 118	# 1	Store or calculate P _{min}
833 834 835 836 837 839 848 841 842 844 845 847 848 849 852 853 854 854	÷ STO9 RTN #LEL4 STO4 F32 FTN 1 STO4 GSB1 GSB2 RCLB X RCLB X RCLB + + + RCLS ÷ + + RCLS E RCLS STO4 RTN	RE	889 839 839 839 839 832 833 834 835 835 836 837 838 839 839 839 831 844 835 836 831 831 831 831 831 831 831 831 831 831	# 1	
833 834 935 936 937 938 949 941 943 944 945 946 947 948 949 951 952 953	† STO9 RTN #LBLA STOA F37 FTN 1 STOA GSB1 GSB2 RCLB X RCLB X RCLB + RCLS † RCLS † RCLS * RCLS		889 839 891 892 893 894 895 897 897 899 186 181 182 183 185 185 186 187 188 189 118	:	I8 I9
833 834 835 836 837 839 848 841 842 844 845 847 848 849 852 853 854 854	÷ STO9 RTN #LEL4 STO4 F32 FTN 1 STO4 GSB1 GSB2 RCLB X RCLB X RCLB + + + RCLS ÷ + + RCLS E RCLS STO4 RTN	RE	889 839 839 839 839 832 833 834 835 835 836 837 838 839 839 839 831 844 835 836 831 831 831 831 831 831 831 831 831 831	# 1	
833 834 935 936 837 938 839 949 941 942 844 945 846 847 848 951 852 853 854	÷ STO9 RTN #LELA STO4 F37 FTN 1 STO4 GSB1 GSB2 RCLB X RCLB † RCLB # RCLS ÷ RCLS # RCLS # RCLB A RTN	RE	889 839 839 839 839 833 834 895 836 837 838 839 839 839 839 839 839 839 839 839	# 1	8 9 Se
833 834 835 836 837 839 848 841 842 844 845 847 848 849 852 853 854 854	÷ STO9 RTN #LEL4 STO4 F32 FTN 1 STO4 GSB1 GSB2 RCLB X RCLB X RCLB + + + RCLS ÷ + + RCLS E RCLS STO4 RTN	RE	889 839 839 839 839 832 833 834 835 835 836 837 838 839 839 839 831 844 835 836 831 831 831 831 831 831 831 831 831 831	# 1	I8 I9
833 834 835 836 837 838 639 848 841 842 843 844 845 846 849 851 852 853 854 855	† † † † † † † † † † † † † † † † † † †	RE 3 4 S3 S4	889 839 839 839 839 833 833 834 835 836 837 837 837 838 839 839 839 839 839 839 839 839 839	# 1	8 9 Se
833 834 935 936 937 938 639 949 841 842 943 945 846 847 948 849 951 852 853 854 855 855	# STOP PTH # # # # # # # # # # # # # # # # # # #		889 899 891 892 893 894 895 896 897 898 899 188 181 182 183 184 185 186 187 188 199 111 112 GISTERS 5 6	# 1	8 9 Se
833 834 835 836 837 838 639 848 841 842 843 844 845 846 849 851 852 853 854 855	† † † † † † † † † † † † † † † † † † †	RE 3 4 S3 S4	889 839 839 839 839 833 833 834 835 836 837 837 837 838 839 839 839 839 839 839 839 839 839	# 1	8 9 Se

3 Calc

CANTILEVER BEAMS

001 *LELa	Initialize	0 57 F2?	
00 2 0	1	05 8 CLX	
003 ST03	1	05 9 STOD	y ₂ '
004 ST04	1	060 R↓	y 2
005 ST05	1	061 RCL1	
00€ RTN	I	062 4	
007 *LBLb			
	Store ℓ and EI.	063 ÷	
008 ST02	1	064 RCLE	
009 R1	1	065 -	
010 X	1	066 RCL1	
011 STOE	1	0 67 ×	
012 RTN		068 RCLB	
013 *LBLc	Store P and a.	0 69 X2	
014 ST03	1	979 1	
015 X≢Y	I	071 .	
Ø1€ STOA	1		
017 RTN	l		
		073 ×	
018 *LBLa	Store W and b.	074 +	
019 ST04	1	075 RCL1	
020 XZY	1	07€ X≊	
021 STOE	I	0 77 ×	
622 RTN	1	078 RCLD	
023 *LBLe		0 79 +	
024 ST05	Store M and c.		
025 XZY	1	080 RCL4	
		0 81 ×	y' + y ₂ '
026 STOC		0 82 -	7 - 72
027 RTN		0 83 RCLC	
028 *LBLA	-,	084 GSB4	
029 ST00	y ₁ '	0 85 €	
030 RCLA		<i>0</i> 8€ ×	
031 GSB4	1	087 RCL1	
032 LSTX		0 88 3	
032 E31A	l		
	1	0 89 ×	
034 CHS		8 90 X 2 Y	Уз [']
035 3		0 91 F2?	,,
03€ ×		0 92 CLX	
037 F29	1	0 93 +	
6 38 0	i	094 RCL5	
039 RCL1		0 95 ×	
848 RCLA		09€ RCL1	
041 3			
042 ×	l	097 x	y ₁ ' + y ₂ ' + y ₂ '
	l	098 +	yı · y2 · y2
043 -	l	0 99 6	
044 RCL1	1	100 ÷	
045 ×	l	101 RCLE	
946 +	l	102 ÷	У
047 RCL3	I	103 RTH	
648 ×	I	104 *LBLB	
049 RCL1	l	105 ST00	
050 X		10€ RCLA	
051 RCLB			
		107 GSB4	
052 GSB4		108 RCL1	θ_1 '
053 RCLE		109 2	•
054 3		110 ÷	
05 5 Y*		111 RCLA	
<i>05€</i> ×		112 -	
	REGIS	STERS	
0 1 / 2	2 4	5 6 7	8 9
x x (a)	S P W	" м " '	ľ
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A a B b	C	D E FI	· I
a B	С	EI EI	

SIMPLY SUPPORTED BEAMS

001 *LBL∘	Store zeros for P, W, and M.	0 57 2	
002 0	Otoro zoros for F, W, una m.	0 58 4	
	i	0 59 ÷	
064 ST04		060 RCL0	
005 ST05	ı	0 61 X ≠ Y	
006 P.TN		062 ×	
007 *LBL&	Store & and EI.	063 F0?	
008 ST02	0101011 0110 011	064 LSTX	
009 RJ		065 CHS	
	1		
010 X		066 GSB1	
011 STOE		067 RCL1	Compute
012 RTN		068 X2	
		069 F8?	y ₁ (EI)
	Store P and a.		or
014 ST03		070 3	θ_1 (EI).
015 X ≠ Y		871 F0?	- 1 1
016 STOA	-	0 72 ×	
017 RTN			
018 *LBLd	Store W.	074 X2	
019 ST04	Store W.	075 +	
020 RTH	1	07€ RCL2	
021 #LBLe	Store M and c.	077 Xº	
0 22 ST05	Store W and C.	6 78 -	
023 X≠Y	1	079 x	
	1		
024 STOC	l .	686 €	
025 RTN	i	091 ÷	
026 *LBLB		0 82 GSB2	
	Set derivative flag.	083 RCL1	
027 SF0			Compute
628 GT00	1	084 X2	y ₃ (EI)
029 *LBLA		085 RCL2	or
030 CF0	Clear derivative flag.	0 86 ÷	
			θ_3 (EI).
031 #LBL0	1	0 87 6	
032 ST00		0 98 ÷	
033 RCL2	Compute	089 F0?	
	Compate		
034 ENT↑		090 3	
035 ×	y_2 (EI) or θ_2 (EI).	091 F0?	
036 LSTX		6 92 ×	
037 ×		093 RCL2	
038 RCL0		094 3	
039 F0?	I	095 ÷	
040 4		0 96 +	
		097 RCLD	
	Į.		
042 X		6 98 X2	1
043 RCL2		6 99 2	
044 2		100 ÷	
		101 RCL2	
1			
04€ F8?		102 ÷	
047 3		103 +	
048 F0?		104 RCLD	
		105 -	
049 ×	1		
		10€ X	
050 -			
051 RCL0		107 RCL2	
051 RCL0		107 RCL2	
051 RCL0 052 X2		107 RCL2 108 ×	
051 RCL0 052 X2 053 X		107 RCL2 108 × 109 RCLI	
051 RCL0 052 X2 053 × 054 +		107 RCL2 108 × 109 RCLI 110 +	y = y ₁ + y ₂ + y ₃
051 RCL0 052 X2 053 × 054 +		107 RCL2 108 × 109 RCLI 110 +	
051 RCL0 052 X2 053 X 054 + 055 RCL4		107 RCL2 108 × 109 RCL1 110 + 111 RCLE	or
051 RCL0 052 X2 053 × 054 +		107 RCL2 108 X 109 RCL1 110 + 111 RCLE 112 ÷	
051 RCL0 052 X2 053 × 054 + 055 RCL4 056 X	REGIS	107 RCL2 108 X 109 RCLI 110 + 111 RCLE 112 ÷	or $\theta = \theta_1 + \theta_2 + \theta_3$
851 RCL8 852 X2 853 X 854 + 855 RCL4 856 X	3 4	107 PCL2 108 X 109 PCL1 110 + 111 PCLE 112 ÷	or
051 RCL0 052 X2 053 x 054 + 055 RCL4 056 x	3 P 4 W	107 RCL2 108 X 109 RCLI 110 + 111 RCLE 112 ÷	or $\theta = \theta_1 + \theta_2 + \theta_3$
051 RCL0 052 X2 053 X 054 + 055 RCL4 056 X	3 4	107 PCL2 108 X 109 PCL1 110 + 111 PCLE 112 ÷	or $\theta = \theta_1 + \theta_2 + \theta_3$
051 RCL0 052 X2 053 x 054 + 055 RCL4 056 x	3 P 4 W	107 RCL2 108 x 109 RCL1 110 + 111 RCLE 112 ÷ STERS	or $\theta = \theta_1 + \theta_2 + \theta_3$
051 RCL0 052 X2 052 X2 053 X 054 + 055 RCL4 056 X	3 P 4 W	107 RCL2 108 X 109 RCL1 110 + 111 RCLE 112 ÷ STERS 5 M 6 7 S5 S6 S7	or $\theta = \theta_1 + \theta_2 + \theta_3$
051 RCL0 052 X2 053 x 054 + 055 RCL4 056 x	3 P 4 W	107 RCL2 108 x 109 RCL1 110 + 111 RCLE 112 ÷ STERS	or $\theta = \theta_1 + \theta_2 + \theta_3$

BEAMS FIXED AT BOTH ENDS

001 ∗LELd	Store W.	057 ×	
002 STG4	l	6 58 3	
003 RTH		0 59 X ≠ Y	
004 *LBLk	Store ℓ and EI.	060 X	
005 ST02		061 F0°	
006 PJ		062 LSTX	
007 X	1	063 F0?	
008 STOE	1	864 -	
009 RTN	İ	065 -	
010 *LBLc		066 GSB6	
011 ST03	Store P and a.	967 €	
012 XZY		068 ÷	
013 ST06	1	069 F0?	
014 RTN			
015 *LBLe		670 3	
	Store M and c.	071 F0?	
016 ST05		072 x	
017 X#Y		073 F0?	
018 STOC	l	074 GSB3	
019 RTN	l	075 GSB4	
020 *LBLB	Set derivative flag and start	07€ RCLC	
021 SF0		077 GSB1	Coloulate El!/
022 ST00	$ heta_2$ calculation.	078 F6?	Calculate y ₃ EI and/or
023 GSB7	l	679 3	θ_3 EI.
024 RCL2	l	080 F0?	
625 3		081 ×	
026 ×		082 x 2 y	
	i	083 F0?	
028 GSE7		084 GSE7	
029 GT00		0 85 +	
030 #LBLA	Clear derivative flag and	08€ GSB€	
031 CF0	start y ₂ calculation.	087 GSB8	
032 ST00	start y 2 calculation.	088 RCLE	Calculate y or θ .
033 X2	l	0 89 ÷	Calculate y of U.
034 RCL2	i	090 PTN	
035 GSB7		091 ★LBLD	0 - 1
03€ RCL0		0 92 SF0	Set derivative flag and
037 *LBL0		093 STO0	start V ₂ calculation.
038 SF1		094 RCL2	
039 -	Complete calculation of θ_2	095 X∓Y	
040 RCL0	Elory ₂ El.	096 GSB7	
041 ×		097 GT00	
042 RCL2		098 *LBLC	Clear derivative flag and
042 K522		099 CF0	start M ₂ calculation.
644 -			
		100 STOS	
		101 RCL2	
046 2		102 X≠Y	
047 4		103 -	
048 ÷		104 RCL0	
049 RCL4		105 X	
050 x		106 RCL2	
051 RCLA	Calculate v. Fl. a. 4 Fl	107 X2	
052 GSB1	Calculate y_1 El or θ_1 El.	1 0 8 6	
053 RCL1		1 0 9 ÷	
054 X		110 *LBL0	
055 RCLD		111 SF1	Complete calculation of
05€ RCL2		112 -	V ₂ or M ₂ .
	REGIS		
0 1 2	3 4	5 6 7	8 9
x x, (ℓ - x) ℓ	P W	м [
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
А В	С	D (0) (0) E	·
a	С	a,(ℓ-a); c,(ℓ-c) EI	SUM

DATE		AU	THOR				
	113 2 114 ÷ 115 RCL4 116 X 117 RCLA 118 GSB1 119 F00 120 GT00 121 RCL1 122 X 123 RCLD 124 RCL2 125 X 126 - 127 *LBL0	Calculate V ₁ or M ₁ .		176 RC 177 RC 178 RC 179 180 F 181 182 183 RC	L0 - 01 L0 L5 12 L3 L2 L2 LD - 12 X2 X2 X	$\frac{\frac{P(\ell-a)^2}{\ell^3}}{\ell^3}$ $\frac{M(\ell-a)}{\ell^3}$	or
	128 X 129 F80 130 GSE3 131 GSE4 132 RCLC 133 GSE1 134 F80 135 R4 136 F80 137 CLK 138 F80 138 F80 139 RCLD	Calculate V ₃ or M ₃ .		186 187 RC 188 RC 189 F 190 GT 191 192 193 194 RC 195	LD 1? 00 3 x - L2 x	$\frac{(\ell-3a)\ell}{2}$	
	140 6 141 X 142 X‡Y 143 GSE7 144 + 145 X 146 *LBL8			198 RC 199 RC 200	L1 X Th	ax	
	147 F0? 148 GT04 149 GSB3 150 *LBL4 151 RCLI 152 + 153 RTN	Sign change? Calculate sum.		205 C 206 R 207 *LB 208 F	+ F1 TN	($\ell + 2a$) Sign change	 2.
	154 *LBL1 155 CF2 156 STOD 157 R4 158 STOI 159 RCLD 160 RCL0 161 STO1	Store a or c and sum.		210 F 211 *LE 212 213 RC 214 *LE 215 216 F 217	TN PL6 X PL1 PL5 X2 F0? VX	Calculation	subroutine.
	162 X 4 7 9 163 GTOR 164 SF2 165 RCL2 166 RCLD 167 - 168 STOR	Is x beyond loading μ Yes—set sign change and μ = ℓ - μ or μ = ℓ and μ = ℓ - μ	 flag	22 0 *LE 221 EN 222	IT 1 + ?TN	2X subrout	ine
Α	B ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	E	0			
x→y		→IVI _X X→V		Derivative	FLAGS ON OFF	TRIG	DISP
a	b I↑E↑ℓ c a′	tP d W	e c†M	1 P	0 0 8	DEG 🗵	FIX 🗆
O Used	¹ Calc. ²	³ Sign	4 sum	² Sign	1 🗆 🕱	GRAD □ RAD □	SCI □ ENG ⊠
⁵ Calc.	⁶ Calc. ⁷ 2	x 8	9	3	3 🗆 🗓	טארי 🗆	n3_

PROPPED CANTILEVER BEAMS

001 ≭LBLa		057 ÷	
0 02 0		058 RCL2	
803 ST03	Initialize	0 59 X2	
004 ST05		0 60 -	
005 *LBLd		0€1 STOD	
<i>00€</i> ST04	Store W.	062 ×	
007 RTK		063 RCLI	
008 *LBL&	l	064 X2	
009 STD2	Store ℓ and EI.	9 65 +	
010 R4		06€ GSB4	
011 ×		067 F2?	
012 STOE		068 GT00	
013 RTN		069 RCL0	
014 *LBLc		070 RCLA	
015 ST03	Store P and a.	071 -	
016 X≢Y		072 X2	
017 ST0A		073 F0?	
018 RTH		074 LSTX	
019 #LBLe	1	075 F0?	
020 ST05	Store M and c.	07€ ×	
021 X ≠ Y	l	077 F0?	
022 STOC		0 78 3	
023 RTN		079 F0?	
024 *LBLE	Store x, clear integral flag,	686 ÷	
025 CF0	load constants.	0 81 -	
026 ST00		082 *LBL0	
0 27 9		0 53 3	
028 ENT1		084 X	
0 29 8		085 RCL3	
030 ST00		086 ×	
031 *LBLA	Store x, set integral flag,	087 ST+1	EI (y ₁ + y ₂)
032 SF0	load constants.	088 €	$EI(\theta_1 + \theta_2)$
0 33 ST00		089 ST÷1	
034 3		090 GSB1	
035 ENT1		091 RCLD	
0 36 2		092 ×_	Calculate y ₃ EI
037 *LBL0		093 3	or θ_3 EI.
038 RCL0	Calculate 6 y ₂	094 X	
639 ×	EI or	095 RCL2	
040 RCL2	6θ ₂ EI.	096 +	
641 ÷		0 97 GSB4	
042 -		098 F2?	
043 RCL0		099 GT06	
044 X2		100 RCL0	
045 × 04€ RCL2		101 GSB4	
04€ RCL2 047 X2		162 6	
		103 F0?	
04 8 - 04 9 RCL2		104 R4	
050 X		105 F0? 106 RCLC	
051 GSB5		106 RCLC 107 X2	
052 RCL0	Calculate 6y ₁ EI		
053 X2	or 6 θ_1 EI.	108 + 109 F0?	
054 F0?	-	110 2	
0 55 3		110 2 111 F0?	
0 5€ F0?		111 FB? 112 ÷	
000 10:	REGIS	STERS	
0 x 1 sum 2 l	3 4	5 6 7	8 9
	D W	М	
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A B	C	D . 2 . 22. E	1
a	c	$(x^2/3 - \ell^2)$	(ℓ – a); c

DATE			AUT	HOR				
	113 GT00 114 *LBL6 115 RCLC				170 R 171 #L5		or $V = V_1 + V_2$ Multiply by	2 + V ₃
	116 GSB4 117 *LBL0 118 - 119 GSB8				173 RC 174 F	10? 12.0 10? X	flag is set.	
	120 RCLE 121 ÷ 122 RTN	$\theta = \theta_1$	$+ y_2 + y_3$ or $+ \theta_2 + \theta_3$	1	176 R 177 *LB 178 RC	TN L5 L4	Finish y ₂ , 6	
	123 *LBLD 124 CF0 125 ST00 126 2		, clear integral f ly by 2.	flag,	18 0 GS 181	x B4 ε ÷		
	127 × 128 €T00 129 *LBL C	 Store >		 ig.	184 C 185 RC	01 F1 L2 LA	Store b.	
	130 SF0 131 ST00 132 *LBL0 133 3				187 188 ST 189 LS	- 01 27%		
	134 RCL2 135 × 136 X≠Y 137 4	Сотр	ite M ₂ or V ₂ .		191 ∗LE 192 RC	:06 :L1 :LC :OI	Store c.	
	138 X 139 - 140 GSB5				194 *LE 195 C 196 RO	L0 F2 L0	Set x ≤ to a	or c flag.
	141 GSB4 142 F2? 143 GT00 144 1	Compu	ite M ₁ or V ₁		198 5	:Y? :F2 :LI :3	 Calculate	
	145 GSB4 146 - 147 F0?				202 F 203 RC	X 1? L2 L2	$\frac{3 a^2 \ell - a^3}{2\ell^3}$	-
	148 RCLA 149 F0? 150 + 151 #LBLO				205 206 RC 207	X° LII X	First pass, t	
	152 RCL3 153 X 154 ST+1 155 GSE1					- 2 1? X ²	$\frac{\ell^2 - c^2}{4\ell^3} \text{ or }$	
	156 € 157 × 158 GSB4	Compu	ite M ₃ or V ₃		212 213 RC 214 215	÷ 3 y×	Second pas	s.
	159 F2? 160 GT08 161 F0? 162 1				216 217 F 218 F	± 12 RTN		
	163 F0? 164 - 165 *LBL8 166 RCL5				22 0 R U 221	SF1 CLI X STN		
	167 X 168 ST+1		M ₁ + M ₂ + M ₃		FLAGS		SET STATUS	
^A Start	B I↑E↑ℓ	^C a↑P	D W	E c↑M	⁰ Integral	FLAGS	TRIG	DISP
a x→v	b ×→θ	c ×→W*	d x→V	е	1 Moment	ON OFF	DEG 🗷	FIX 🗆
⁰ Used	1 P	2	3	4 x mult	² x ≤ d or c	1 🗆 🕱	GRAD RAD	SCI □ ENG ☑
⁵ W – P	⁶ Used	ľ	⁸ Mult & Sum	Ľ	Ľ	3 □ 🗵		n_3_

HELICAL SPRING DESIGN

TITI F

001 *LELb		65 7 X2	
002 STOR	Store β , α , and G .	058 LSTX	
003 R↓ 004 STOA		059 x 060 ÷	
005 R4		961 RCL5	
00€ \$T09		062 ÷	
867 RTN		063 STOC	
00 8 ≭ LBLc		064 PRTX	
009 ST02	Store load point 1.	065 RTN	
010 XZY		066 *LBLB	Calculate free length.
011 ST01		967 SPC	3
012 RTN 013 #LBLd		068 RCL1 069 RCL5	
014 ST04	Store load point 2 and	070 ÷.	
015 XZY	calculate spring constant k.	071 RCL2	
016 ST03	saistant spring constant k.	0 72 +	
017 RCL1		0 73 STOD	
018 -		074 RCLC	
019 RCL2		0 75 2	Calculate solid length.
028 RCL4		076 +	
021 - 022 ÷		077 RCL8	
022 ÷ 023 ST05		078 × 079 STOE	
024 SPC		080 -	
025 PRTX		081 RCL5	Calculate stress at solid.
026 RTN		0 82 x	Calculate stress at sorid.
027		083 RCL6	
028 SPC	Calculate uncorrected stress	084 RCL8	
029 x	at point 2.	085 ÷	
030 STO€ 031 CLX		086 GSB1	
032 LSTX		087 × 088 RCL6	
033 RCL3		089 X	
034 X		090 RCL8	
0 35 8		091 X2	
036 ×		6 92 ÷	
037 Pi		0 93 RCL8	
038 ÷		094 ÷	
039 X≠Y		0 95 8	
040 STOS 041 ST-6		096 X 097 Pi	
042 3		098 ÷	
043 YX		0 99 ST00	
044 ÷		100 PRTX	
045 PRTX		101 RTN	
046 RTN		102 ≭LBLE	
047 *LBLA	Calculate number of coils.	103 SPC	Output dimensions.
048 SFC 049 RCL9		104 RCLD 105 PRTX	
050 RCL8		105 PRTX 106 RCLE	
051 X2		107 PRTX	
052 X2		108 RCL6	
053 x		109 PRTX	
0 54 8		110 RCL8	
055 ÷		111 +	
056 RCL6		112 PRTX	
0 1 2	REGIS	5 6 7	8 9
s _s P ₁ L ₁	P ₂ L ₂	k OD, D s ₂	d G
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A B		D F	
Γ α Γ β	C N	D L _f E L _s	TS

DATE			AUT	HOR				
	113 RTN 114 *LBLa 115 F0? 116 GT00 117 SF0	Ferrou	s/non-ferrous to	oggle.	169 17 0 171 172 173	RCL0 X \(\frac{1}{2}\)? GTO4 5 RTN		
	118 8 119 RTN 120 *LBL0 121 1 122 CF0 123 RTN 124 *LBLC 125 RCL4 126 RCLE 127 - 128 RCLD 129 RCL4 130 - 131 .		— — — — — to-coil clearance ste, branch to lal		174 175 176 177 178 179 180 181 182 183 184 185 186	*LBL4 RCL6 4 RTN GT05 *LBL2 *RCL8 LN RCL8 X RCL6 * RCL6 + ENT†	Spring may designed. T wire. ————————————————————————————————————	ry smaller e input. rire tensile
	132 1 133 × 134 X4Y? 135 GT00 136 GSB2 137 R4		stress with in-		187 188 189 19 0 191 192 193	STOI 5 ENT†	Convert to	S _{max} .
	138 RCL0 139 X≚Y? 140 GT03 141 1 142 RTN 143 ≭LBL3 144 RCL8				194 195 196 197 198 199	F0? CLX + x X≠Y LSTX	Convert to	 YS.
	144 RCL8 145 2 146 RTN 147 ST08 148 GT0A 149 #LBL0 150 GSB2	Store s			200 201 202 203 204 205 2 06	2 + x RTH *LBL1 ST00	 Compute W	
	151 RCL0 152 X±Y? 153 GT03 154 RCL8 155 3 156 RTN	clearar Try lai	 ger wire.		207 208 209 210 211 212	4 X 1 - ENT† ENT†		
	157 *LBL5 158 RCL8 159 ST+6 160 R4 161 ST08 162 ST-6		arger wire size a		213 214 215 216 217 218	3 - ÷ 6		
	163 GTOA 164 *LBL3 165 RCL1 166 . 167 3 168 X		to see if spring i	 is	219 22 6 221 222 223	5 RCL0 ÷ + RTH		
	To		BELS		FLAGS		SET STATUS	
^A →N	B →s _s	^C → code	D	E(→L _f ,L _s ,D,OD		FLAGS	TRIG	DISP
a Fe? O Used	^b G†α†β	^c P†L ₁	d P ₂ \uparrow L ₂ \rightarrow k 3 code 2,4,5	edffofD _H →S	2	ON OFF 0 😨 🗆 1 🗆 🗷	DEG ☒ GRAD □	FIX 🗆 SCI 🗆
5 Larger d	6	7	8	9	3	2 K 3 X	RAD 🗆	ENG ⊠ n_3_

FOUR BAR FUNCTION GENERATOR

001 *LBLA		0E7 CTC7	
001 *LBLA 002 STO4	Store d, c, b and a.	057 ST03 058 R↓	θ_1 and
063 R4		0 59 ST01	calculate $ heta_2$.
004 ST03		060 R1	
005 R↓		061 -	
006 ST02		062 RCLA	
007 R4		063 RCLB	
008 ST01		064 -	
009 RTN		0 65 ×	
010 *LBLE		066 RCLC	
011 RCL1	Calculate R_1 , R_2 and R_3 .	067 RCLA	
012 RCL4		0 68 -	
013 ÷		0 69 ÷	
B14 STOA		070 RCL1	
015 RCL1		071 +	
016 RCL2		0 72 ST02	
017 ÷		073 P≠S	
018 STOE		074 RTN	
019 RCL1		075 *LBLa	
020 X2		076 P\$S	Store ϕ_3 and ϕ_1 and
021 RCL2		077 STO6	calculate ϕ_2 .
022 X2		078 R4	
023 +		079 ST04	
024 RCL4		080 R1	
025 X2		0 81 -	
026 +		0 82 C H S	
027 RCL3		083 ST00	
0 28 X2		084 RCLA	
0 29 -		085 GSBC	
030 RCL2		0 86 ST01	
031 RCL4		087 STOE	
032 x		088 RCLC	
0 33 2		0 89 6 SBC	
034 ×		090 RCLI	
035 ÷		0 91 -	
036 STOC		0 92 ST01	
037 DSP4		093 RCLB	
038 RCLA		0 94 GSBC	
0 39 SPC		095 RCLE	
040 PRTX		0 9€ -	
841 RCLE		097 RCLI	
042 PRTX		0 98 ÷	
043 RCLC		099 RCL0	
844 PRTX		100 ×	
045 RTH		101 RCL4	
04 € * L B LC	f(x) - your function.	162 +	
047 ŘTN		103 ST05	
048 *LBLD	Store x ₃ , x ₂ , x ₁ .	104 P ≓ S	
049 STDC	** ** *	105 RTN	
050 R↓			
951 STOB			
052 R↓			
053 ST0A			
054 RTN			
055	Store θ_3 and		
05€ P≇S		TERC.	
0 1 12	REGIS	5 I6 I7	8 9
Used $\begin{bmatrix} a, \cos \theta_1 \end{bmatrix}^2$ b, $\cos \theta_2$	c, $\cos \theta_3$ d, $\cos \phi_1$	$\cos \phi_2$ $\cos \phi_3$ 1	o 1 9 1
So Used S1 θ_1 S2 θ_2	S3 θ_3 S4 ϕ_1	S5 ϕ_2 S6 ϕ_3 S7 ϕ_1	S8 R ₂ S9 R ₃
A B	10	D F	1 113
$R_1, x_1, \cos(\theta_1 - \phi_1)$ $R_2, x_2, \cos(\theta_1 - \phi_1)$		Det Used	Used

DATE	AUT	HOR				
DATE	AUT	HOR				
			FLAGS		SET STATUS	
A athtictd $\xrightarrow{B} R_1, R_2, R_3$ C fi	LABELS $(x) \qquad \qquad \Box x_1 \uparrow x_2 \uparrow x_3$	$\exists \theta_1 \uparrow \theta_3 \rightarrow \theta_2$	0 PLAGS	ELAGS	TRIG	DISP
	d d	e e	1	FLAGS ON OFF		
$\begin{bmatrix} a & \phi_1 \uparrow \phi_3 \rightarrow \phi_2 & b & c \\ 0 & 1 & 2 \end{bmatrix}$	3	4	2	ON OFF 0	DEG ☒ GRAD ☐ RAD ☐	FIX SCI CENG
1 1 1	ı	I	1	2	RAD 🗆	ENG [
5 6 7	8	9	3	2 0 10		n 2

(Card 2)

TITLE _

001 *1	LELlo Ca	Iculate R ₁ , f	R ₂ and R ₂		0 57	PRTX					
002 0	SSB6		.,		9 58	Χz					
003 ×L	LBL5				6 59	RCL0					
004 6	SSB0			1	060	RCL7					
	STOD			I	061	÷					
	RCLA			l	062	STOD					
	ST01			1	063	Χz					
	RCLB			1	864	+					
	ST02			i	065	RCLE					
	RCLC			ì	066	X2					
	ST03			ł	867	7					
				ł							
	SSB0			1	0 68	RCL0					
	ROLD				0 69	RCLS					
014	÷ .			ł	070	÷					
	STOI				071	RCLO					
	PRTX				0 72	RCL7					
	SSB6				0 73	÷					
	RCLA				074	×					
	ST04				675	2]				
	RCLB				0 76	×	1				
021 9	ST05				0 77	RCL9	- 1				
022 F	RCLC				078	X	1				
023 9	70€				079	-	- 1				
	SB0				080	18	1				
	RCLD				081	STOC					
826	÷				082	PRTX					
	TOE				0 83	RCLD					
	PRTS				084	₽₽S					
	SB6				085	PRTX	- 1				
					0 86		- 1				
	RCLA					SPC					
	ST07				087	RTN					
	RCLB					*LBL0		Calc	ilate di	etermi	nant
	307				0 89	RCL5		Ouici	and to G	CtCIIIII	iuiic.
	RCLC				090	RCL9					
	ST09				0 91	X					
	SSB0				0 92	RCL8					
	RCLD				0 93	RCL6	1				
038	÷				094	X	1				
	PRTX				095	-	1				
040	SPC				0 96	RCL1					
041	₽≓S				0 97	X	1				
	ST09				0 98	RCL4					
	RCLE				099	RCL9					
	STOS				100	x					
	RCLI				101	RCL7					
	T07				102	RCL6					
	RCL9				103	X					
048	P≢S				104	_	1				
049	RTN				105	RCL2	1				
	BLc -				106	X					
	STOR Ca	lculate b, c,	and d.		107	_	- 1				
0 52	PZS						- 1				
					108	RCL4	- 1				
	ST00				109	RCL8					
	RCL8				110	X					
0 55	÷				111	RCL7	- 1				
056 9	STOE				112	RCL5					
	To T-		REGIS	TERS							
	2 0 3		4	5 .	6 .	7	1	8		9	
Used $\frac{1}{\cos \theta_1}$		$\cos \theta_3$	$\cos \phi_1$	$\cos \phi_2$	cos φ	3			1	ľ	1
O Used $\begin{vmatrix} 1 & \cos \theta_1 \\ \cos \theta_1 \end{vmatrix}$ So Used $\begin{vmatrix} 1 & \cos \theta_1 \\ \theta_1 \end{vmatrix}$	θ_2			$\cos \phi_2$ S5 ϕ_2	S6 ϕ_3	3 S7	R ₁	S8	1 R ₂	S9	1 R ₃
Used $\cos \theta_1$	S2 S	θ_3	S4 ϕ_1	S5	S6			S8	R ₂	S9	

DATE		AUTHO)R				
113 X 114 - 115 RCL3 116 X 117 + 118 PTN				170 ST 171 172 ST 173 ST	R4 103 107 108 109		
119 #LBL6 120 PTS 121 RCL1 122 COS 123 LSTM 124 RCL4 125 - 126 LSTM 127 COS 128 CHS 129 MTY 130 COS 131 STOA 132 PTS 133 PTS 134 STOA 135 PA 136 STO1 137 PTS 138 RCL2 139 COS 140 LSTM 141 RCL5 142 COS 145 CHS 146 XTY 147 COS 148 STOB 149 R1 140 COS 145 CHS 146 MTY 147 COS 148 STOB 149 R1 150 PTS 151 STOS 152 R4 153 STOC 154 PTS 155 RCL0 155 RCL0 155 RCL0 155 RCL0 155 RCL0 155 RCL0 155 RCL0 155 RCL0 155 RCL0 156 COS 157 LSTM 161 COS 162 CHS 163 MTY 164 COS 165 CHS 165 CHS 166 CHS 166 CHS 166 CHS 166 CHS 167 PTS		ate the coefficients system of linear					
		BELS		FLAGS		SET STATUS	
А В	С	D E		0	FLAGS	TRIG	DISP
a b → R ₁ ,R ₂ ,R ₃	c a→b, c, d	d e		1	ON OFF		
O Determinant 1	2	3 4		2	0 🗆 🕱	DEG ☑ GRAD □	FIX ko SCI □
5	7	8 9		3	2 🗆 🗵	RAD 🗆	ENG □
⁵ R ₁ ,R ₂ ,R ₃ ⁶ Coefficients	ľ	J 9		Ĭ	3 🗆 🗷		n

PROGRESSION OF FOUR-BAR SYSTEM

001 *LBLa		057 RCLC	
001 ∗LBLa 002 STOD	Store link lengths.	058 F0?	
003 R4	Store in it rengths.	0 59 CHS	Compute ϕ .
004 STOC		060 RCLD	
005 R↓		061 F0?	
0 0€ STOE		0 62 X ≠ Y	
007 R↓	1	063 ST05	
00 8 STOA	1	0 64 % ≠ Y	
0 09 RTN	I	065 ST06	
010 *LBLc	1	0 66 RCL7	
011 F0?	Toggle connector flag.	067 RCLB	
012 GT00	Toggle connector mag.	0 68 →R	
013 SF0		069 RCLA	
014 1	1	670 +	
015 RTN	i	071 →F	
016 *LEL0		072 STOE	
017 CF0	l	073 X2	
0 18		074 RCL5	
019 RTN	l	075 X2	
020 ∗ LBLe		0 76 +	
021 CF2		077 RCL6	
6 22 SPC	Store loop parameters.	0 78 X2	
0 23 ST09	1	6 79 -	
024 PRTX		080 RCLE	
025 SPC	1	0 81 ÷	
026 R↓		0 82 2	
0 27 ST08		0 83 ÷	
0 28 R↓		084 RCL5	
0 29 STOI		0 85 ÷	
030 R↓		086 COS-	
031 ST07		0 87 +	1
032 RCL9		0 88 ST04	6
033 ENT1		0 89 SIN	Compute $d\phi/d\theta$.
034 ABS		090 RCLA	Compute αφ/ασ.
034 ABS 035 ÷		090 RCLA 091 RCLB	Compute αφ/αθ.
034 ABS 035 ÷ 036 ST×8		090 RCLA 091 RCLB 092 ÷	Compute αφ/ασ.
034 ABS 035 ÷ 036 ST×8 037 ≭ LBL9		090 RCLA 091 RCLB 092 ÷ 093 X	Compute ap/ar.
034 ABS 035 ÷ 036 ST×8 037 *LBL9 038 RCL7	Calculate φ.	090 RCLA 691 RCLB 092 ÷ 093 x 094 RCL7	Compute ap/ab.
034 ABS 035 ÷ 036 ST×8 037 *LBL9 038 RCL7 039 PRTX	Calculate φ.	090 RCLA 091 RCLE 092 ÷ 093 X 094 RCL7 095 RCL4	Compute ap/ab.
034 ABS 035 ÷ 036 STX8 037 #LBL9 038 RCL7 039 PRTX 040 GSBA	Calculate φ.	090 RCLA 091 PCLE 092 ÷ 093 X 094 RCL7 095 RCL4 096 -	Compute a ϕ a σ .
034 ABS 035 ÷ 036 STMS 037 #LBL9 038 RCLT 039 PRIN 040 GSBA 041 PRIN	Calculate φ.	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 896 – 897 SIN	Compute ap/ar.
034 ABS 035 ± 036 STMB 037 *LBL9 038 RCL7 039 PRTM 040 GSBA 041 PRTM 042 RCL9		090 RCLA 091 PCLE 092 ÷ 093 x 094 RCL7 095 RCL4 096 - 097 SIN 098 -	Compute op/av.
834 ABS 835 ± 836 STX8 837 *LBL9 838 RCL7 839 PRTX 840 GSBA 841 PRTX 842 RCL9 843 GSBC	Calculate φ.	090 RCLA 091 PCLE 092 ÷ 093 x 094 RCL7 095 RCL4 096 - 097 SIN 098 - 099 LSTX	Compute dø/dø.
834 ABS 835 ± 836 STMS 837 MLBL9 838 RCLT 839 PRIN 848 GSBA 841 PRIN 842 RCL9 843 GSBC 844 PRIN		898 RCLA 891 PCLE 892 ÷ 893 x 894 RCL7 895 RCL4 696 - 897 SIN 898 - 899 LSTX 188 CHS	Compute dø/dø.
034 ABS 035 ± 036 STM8 037 #LBL9 038 RCL7 039 PRTN 040 GSBA 041 PRTN 042 RCL9 043 GSBC 044 PRTN 045 6	Calculate φ.	090 RCLA 091 PCLE 092 ÷ 093 x 094 RCL7 095 RCL4 096 - 097 SIN 098 - 099 LSTX 100 CHS	Compute dø/dø.
034 ABS 035 ± 036 STMS 037 #LBL9 038 RCLT 039 PFTM 040 GSBA 041 PFTM 042 RCL9 043 GSBC 044 PRTM 045 05BC		898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 188 CHS 181 RCL7 182 SIN	Compute dø/dø.
034 ABS 035 ÷ 036 STMS 037 MLBL9 038 RCL7 039 PPTN 040 GSBA 041 PPTN 042 RCL9 043 GSBC 044 PRTN 045 0 046 GSBE 047 PPTN	Calculate φ.	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 696 - 897 SIN 898 - 699 LSTX 108 CHS 101 RCL7 102 SIN 103 RCLA	Compute op/av.
034 ABS 035 4 036 STMB 037 4LBL9 038 RCL7 039 PRTN 040 GSBA 041 PRTN 042 RCL9 043 GSBC 044 PRTN 045 6 046 GSBE 047 PRTN 046 SSBC	Calculate φ.	898 RCLA 891 PCLE 892 ÷ 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 100 CHS 101 RCL7 102 SIN 103 RCLA 104 x	Compute op/de.
834 ABS 835 ± 836 STME 837 MLBL9 838 CCLT 839 PRIM 840 GSBA 841 PRIM 842 RCL9 843 GSBC 844 PRIM 845 6 846 GSBE 847 PRIM 848 SPC 849 RCL8	Calculate φ. Calculate φ.	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 100 CHS 101 RCL7 102 SIN 103 RCLA 104 x 105 RCL5	Compute op/de.
834 ABS 835 ± 836 STMB 837 MLBL9 838 RCLT 839 PRTN 848 SSBA 841 PRTN 842 RCL9 843 SSBC 844 PRTN 845 SBE 846 SSBE 847 PRTN 848 SPC 848 SPC	Calculate φ.	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 188 CHS 181 RCL7 182 SIN 184 x 185 RCLA 184 x 185 RCL5	Compute op/av.
034 ABS 035 ± 036 STM8 037 #LBL9 038 RCLT 039 PFTM 040 GSBA 041 PFTM 042 RCL9 043 GSBC 044 PRTM 045 0 046 GSBE 047 PFTM 048 SPC 049 RCL8 050 ST-7 051 DSZI	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ .	898	Compute op/de.
834 ABS 835 ± 836 STME 837 MLBL9 838 RCLT 839 PRTM 848 SSBA 841 PRTM 842 RCL9 843 SSBC 844 PRTM 845 0 846 SSBE 847 PRTM 846 SPC 847 PRTM 848 SPC 849 RCL8 850 ST-7 851 SZI 852 ST-7	Calculate φ. Calculate φ.	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 696 - 897 SIN 898 - 899 LSTX 100 CHS 101 RCL7 102 SIN 103 RCLA 104 x 105 RCL5 106 ÷ 107 + 108 MZY	Compute op/de.
034 ABS 035 ÷ 036 STMB 037 *LBL9 038 RCL7 039 PRTN 040 GSBA 041 PRTN 042 RCL9 043 GSBC 044 PRTN 045 0 046 GSBE 047 PRTN 048 SPC 049 RCL8 059 ST+7 051 BSZ1 052 GT09 053 R4	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ .	898 RCLA 891 PCLE 892 ÷ 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 188 CHS 181 RCL7 182 SIN 183 RCLA 184 x 185 RCL5 186 ÷ 187 + 188 XZY 189 ÷	Compute op/de.
834 ABS 835 ÷ 836 STM8 837 *LBL9 838 RCL7 839 PRIM 840 SSBA 841 PRIM 842 RCL9 843 SSBC 844 PRIM 845 6 846 SSBE 847 PRIM 848 SPC 849 RCL8 850 ST+7 851 BSZI 852 GTD9 853 PJ 854 RTN	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ .	898	Compute op/de.
834 ABS 835 ± 836 STMB 837 *LBL9 838 RCL7 839 PRTM 848 SSBA 841 PRTM 842 RCL9 843 SSBC 844 PRTM 845 0 846 SSBE 847 PRTM 848 SPC 849 RCL8 850 ST+7 851 DSZT 852 GT09 853 PJ 855 RTH 855 *LBLA	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ .	898 RCLA 891 PCLB 892 ÷ 893 x 894 RCL7 895 RCL4 696 - 897 SIN 898 - 699 LSTX 160 CHS 161 RCL7 162 SIN 163 RCLA 164 x 165 RCL5 166 ÷ 167 + 168 M2Y 169 ÷ 110 STO3 111 RCL4	Compute op/de.
034 ABS 035	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ . Loop again?	898	Compute op/do.
834 ABS 835 ± 1889 837 *LBL9 838 RCLT 839 PRIN 840 ESBA 841 PRIN 842 RCL9 843 ESBC 844 PRIN 845 6 846 ESBE 847 PRIN 848 SPC 849 RCLS 850 ST-7 851 DSZI 852 ETO9 853 FL 854 RTN 855 *LBLA 855 *LBLA 855 *LBLA 855 *LBLA 855 *LBLA 855 *STOT	Calculate φ. Calculate φ. Increment θ. Loop again?	898 RCLA 891 PCLB 892 + 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 100 CHS 101 RCL7 102 SIN 103 RCLA 104 x 105 RCL5 106 ÷ 107 + 108 M2Y 109 + 110 STD3 111 RCL4 111 RCL4 111 RCL4 111 RCL4 111 RCL4 112 RTN	
834 ABS 835 ± 188.9 837 *188.9 838 *CLT 839 PRIM 848 GSBA 841 PRIM 842 RCL9 843 GSBC 844 PRIM 845 6 846 GSBE 847 PRIM 848 SPC 849 RCL8 850 ST-7 851 DSZI 852 GT09 853 FJ 855 *1RBA 855 *1RBA 856 ST07	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ . Loop again? PREGIS $ d\phi/d\theta d\alpha/d\theta $ $ d\phi/d\theta d\alpha/d\theta $ $ d\phi/d\theta d\alpha/d\theta $	896 RCLA 691 PCLB 692 ÷ 693 × 694 RCL7 695 RCL4 696 - 697 SIN 698 - 699 LSTX 160 CHS 161 RCL7 162 SIN 163 RCLA 164 × 165 RCL5 166 ÷ 167 + 168 MZY 169 ÷ 110 STOZ 111 RCL4 112 RTN STERS TO	8 Δ <i>θ</i> 9 RPM
834 ABS 835 ± 188.9 837 *188.9 838 *CLT 839 PRIM 848 GSBA 841 PRIM 842 RCL9 843 GSBC 844 PRIM 845 6 846 GSBE 847 PRIM 848 SPC 849 RCL8 850 ST-7 851 DSZI 852 GT09 853 FJ 855 *1RBA 855 *1RBA 856 ST07	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ . Loop again?	898 RCLA 891 PCLB 892 + 893 x 894 RCL7 895 RCL4 896 - 897 SIN 898 - 899 LSTX 100 CHS 101 RCL7 102 SIN 103 RCLA 104 x 105 RCL5 106 ÷ 107 + 108 M2Y 109 + 110 STD3 111 RCL4 111 RCL4 111 RCL4 111 RCL4 111 RCL4 112 RTN	
834 ABS 835 ± 188.9 837 *188.9 838 *CLT 839 PRIM 848 GSBA 841 PRIM 842 RCL9 843 GSBC 844 PRIM 845 6 846 GSBE 847 PRIM 848 SPC 849 RCL8 850 ST-7 851 DSZI 852 GT09 853 FJ 855 *1RBA 855 *1RBA 856 ST07	Calculate $\dot{\phi}$. Calculate $\dot{\phi}$. Increment θ . Loop again? PREGIS $ d\phi/d\theta d\alpha/d\theta $ $ d\phi/d\theta d\alpha/d\theta $ $ d\phi/d\theta d\alpha/d\theta $	896 RCLA 691 PCLB 692 ÷ 693 × 694 RCL7 695 RCL4 696 - 697 SIN 698 - 699 LSTX 160 CHS 161 RCL7 162 SIN 163 RCLA 164 × 165 RCL5 166 ÷ 167 + 168 MZY 169 ÷ 110 STOZ 111 RCL4 112 RTN STERS TO	8 Δ <i>θ</i> 9 RPM

	LABELS				FLAGS	SET STATUS			
$^{A} \theta \rightarrow \phi (\alpha)$	В	$C \stackrel{\cdot}{\theta} \rightarrow \stackrel{\cdot}{\phi} \stackrel{\cdot}{(\alpha)}$	D	$\vdash \theta \rightarrow \phi (\alpha)$	⁰ α	FLAGS	TRIG	DISP	
^a a↑b↑c↑d	b	c connector	d	$^{\mathrm{e}}$ θ †n† $\Delta \theta$ †RPM	1	ON OFF	DEG X	FIX 🕱	
0 connector	1	2	3	4	2 Δ	1 🗆 🕱	GRAD □ RAD □	SCI ENG	
5	6	7	8	⁹ loop	3	3 🗆 🗷	HAD 🗆	n2	

PROGRESSION OF SLIDER CRANK

001 ∗LBLE		057 RTN	
002 ST00	Store θ , calculate x and ϕ .	05 8 *LB La	Output x _{max} and x _{min} .
003 *LBL7	1	059 SPC	1
004 SFC	I	060 CF1	1
00 5 GSB2	1	061 GSB0	l
00 € COS		062 SF1	
007 ST04		063 ST04	1
008 RCLC	1	064 GSB0	1
009 X		065 RTN	
010 RCL0	1	066 ∗LBLb	Colorilate d
011 COS	1	0 67 SPC	Calculate ϕ_{max} and ϕ_{min} .
012 ST03		9 68 1	ł
013 RCLD		0 69 SIN-	l
014 X	ļ	070 GSB2	l
015 ÷			l
		071 ST04	1
016 ST01		072 PRTX	1
017 PRTX		673 1	1
018 RCL0		074 CHS	1
019 GSB2	I	075 SIN-	Į.
020 PRTX	l	076 GSB2	I
021 RTH		077 PRTX	1
0 22 ≭LB LA	Store R, L, E, and N and	078 RTN	l
023 STOD	calculate ω.	079 ≭LBL 2	Subroutine for ϕ .
824 R↓	Calculate W.	080 SIH	J σσοιστικέ τοι ψ.
0 25 STOC	i	081 RCLD	1
02€ R↓		082 ×	1
027 STOE		083 RCLE	i
028 R↓		084 +	1
0 29 STOA		085 RCLC	1
030 RCLA	1	086 ÷	1
031 Pi	1	0 87 SIN-	1
032 X	1	088 ST02	ł
6 32	!	089 RTN	1
034 0 <u> </u>	1	090 *LBLC	Calculate v and $\dot{\phi}$.
		091 SPC	
03€ STOE		092 RCL0	1
037 SPC		093 RCL2	1
038 PRTX	1	094 +	1
039 RTH		095 SIN	1
040 *LBL0	Calculate x _{max} or x _{min} .	0 9€ CHS	
041 RCLB	l	097 RCL4	1
042 RCLC		0 98 ÷	1
043 RCLD		099 RCLE	1
044 F1?	1	100 ×	1
045 CHS		101 RCLD	1
046 +	1	102 X	
047 ÷		103 PRTX	1
048 SIN-		104 RCL4	1
049 COS		105 RCLC	t
050 PCLC		106 ×	1
051 PCLD		107 RCLD	
0 52 F1?	I	108 ÷	1
0 53 CHS	1	109 1/X	1
054 +	l	110 ST05	i
055 ×	l	111 RCL3	
956 PRTX	1	111 K623	
000 FRTA	REGIS	STERS	1
			8 9
) 0 1 1 2 0	3 000 0 4 000 0		
θ χ φ	cos θ cos φ	${}^{5}R/(L\cos\phi) \stackrel{6}{(\theta_{1}-\theta_{2})/h} \stackrel{7}{\theta_{1}}$	θ ₂ n
θ 1 x 2 ϕ 50 S1 S2	$\frac{3}{\cos \theta}$ $\frac{4}{\cos \phi}$ $\frac{53}{\sin \theta}$	$\begin{array}{c c} R/(L\cos\phi) & (\theta_1 - \theta_2)/h & \theta_1 \\ \hline S5 & S6 & S7 \\ \hline \end{array}$	θ ₂ n
θ × φ	cos θ cos φ		θ ₂ n

DATE			AUT	HOR				
	113 RCLE 114 X 115 PRTX 116 PTN 117 #LBLD 118 SPC 119 RCL3 121 RCLD 122 X 121 RCLD 122 RCLD 122 RCLD 122 RCLD 122 RCLD 123 RCLC 124 ÷ 125 RCLC 125 RCLC 126 ÷ 127 YX 127 RCLD 127 YX 128 ÷ 129 RCLC 128 ÷ 129 RCLC 128 ÷ 129 RCLC 128 ÷ 129 RCLC 128 † 129 RCLC 128 † 129 RCLC 128 † 129 RCLC 128 † 129 RCLC 128 † 129 RCLC 128 RCLC 128 RCLC 131 + 132 RCLC 133 RCLC 134 + 135 RCLC 135 RCLC 144 X 144 RCLC 144 TAN 145 RCLC 146 RCLC 147 X 148 X 149 X 149 X 140 RCLC 141 X 141 X 142 RCLC 144 TAN 145 RCLC 146 RCLC 147 X 148 X 149 X 149 X 149 X 140 RCLC 140 RCLC 141 X 141 X 142 RCLC 141 X 142 RCLC 143 RCLC 144 TAN 145 RCLC 146 RCLC 147 X 148 X 149 X 149 X 140 RCLC 140 R	Autom $x, \phi, v,$ interva θ_2 .	atically output ϕ , a , and ϕ , for its between θ_1 a		171 RI 172 S: 174 *!! 175 S: 176 S: 177 RI 179 S: 180 G: 181 G: 182 G: 184 S: 186 G: 187 F: 188 G: 187 F: 199 S: 190 S: 191 S: 191 S: 191 S: 192 S: 193 S: 194 S: 195 S: 196 S: 197 S: 198 S: 199 S: 191 S:	5PC SPC CL7 RTX TD0 6F1 5BC SBC SBC SBC SBC SBC SBC SBC SBC SBC S	SET STATUS	
^A N†E†L†R→ω	^B θ→x, φ	$C \rightarrow v, \dot{\phi}$	^D → a, φ	$E_{\theta_1} \uparrow_{\theta_2} \uparrow_n \rightarrow List$	0	FLAGS	TRIG	DISP
a →x _{max} ,x _{min}	b →φ _{max} ,φ _{min}	c 2 d	d	e	¹ Max – Min	ON OFF 0	DEG x GRAD □	FIX 🛣
5 ×max	6	² φ ⁷ Used	³ Used	4 Used	3	1	RAD 🗆	ENG D

CIRCULAR CAMS

001 *LBLo	Flat or roller toggle.	05 7 PPTX	
002 F0?		058 GSB0	
003 GT08		059 RCL5	
004 1		060 PRTX	
005 SF0		061 RTK	
006 PTN	l .	062 *LBLC	Output dy/d θ and
007 *LBL0		063 SPC	$d^2y/d\theta^2$.
008 0	1	Ø64 RCL4	1
00 9 CF0		065 PRTX	l
010 RTN		066 RCL3	
011 *LBLb	Function code store, and	067 PRTX	
012 CF1	clear flag 1.	068 RTN	l
013 ST01		0 69 ≉ LBLD	Output α.
014 RTH		070 SPC	Catpara.
015	Store increased direction	071 RCL2	
016 STOC	Store increment, duration,	072 PRTX	
017 R↓	angle, π (according to	073 RTN	
018 STOE	angular mode of calculator)	074 ≉LBLE	
019 R↓	and initialize θ' register.	075 SPC	Output r_g and ϕ .
020 ST07	1	076 RCL0	1
021 1	1	077 PRTX	1
0 22 CHS	1	078 RCL1	1
023 COS-1		079 PRTX	
024 STOS		080 RTN	1
625 0	l .		
8 2€ ST0€	1	081 *LBL0	Harmonic if flag 1 is set.
		082 1	1
627 RTN		083 F1?	1
028 *LBLd	Store lift.	084 STOI	l
0 29 STOD	otore mt.	085 RCL6	θ/β→R _E
030 RTN	1	086 RCLB	0/p→nE
031 ≭ LBLe	Store R _b and R _g or R _r -R _g	0 87 ÷	
0 32 ST09	Store Rb and Rg or Rr - Rg	088 STOE	İ
033 R↓	for roller cams.	089 GSB;	Lift function.
034 STOA		090 RCLD	
035 F0?		0 91 ×	Calculate lift = h $f(\theta/\beta)$.
03€ RTH		092 ST05	1
0 37 -	1	093 RCLD	}
038 ST0A		094 RCLE	
039 RTK		095 ÷	Calculate velocity.
040 *LBLA		096 RCL4	i
041 GSBB	Calculate values auto-	097 X	1
042 GSBC	matically.	098 ST04	ł
043 ESBD		099 RCLD	
044 GSBE			Calculate acceleration.
		100 RCLE	
045 RCLB	Check for completion and	101 X2	1
046 RCL6	bring θ into display.	102 ÷	I
047 X≦Y?	bring o into display.	103 RCL3	1
048 GTOA		104 X	1
04 9 RCL7		105 ST03	1
050 RCLC		166 RCL8	Calculate pressure angle.
0 51 -		107 RCL9	1
0 52 RTN		108 RCL5	1
053 ≭LBLB	Output θ and y.	109 +	1
054 SPC		110 ST01	I
0 55 SPC		111 ÷	1
056 RCL7		112 P:	1
	I DECK	STERS	L
1 2	2 4	6 7	8 9
r _g h α	ο γ" ⁴ γ'	ν ν ν ν θ θ θ θ θ θ	B R _b
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A B (B B) B	C .	D . E	
$R_g \text{ or } (R_r - R_g)$ β β	Inc	h	Control

DATE _____AUTHOR ____

	x			170 171	x Fi		
116 TAI 117 ST	02		-	172 173	2 ÷		
118 F	Ø? " "at	follower go to LBL(·	174	÷R		
119 GT. 120 RC.			-	175 176	Pi ∑		
121	→R Calcul	ate grinder radius.		177	ST03		
122 RC. 123	LA			178 179	R↓ ST04	f'(θ/β).	
	→P			180	1	f(θ/β).	
125 ST			_		RCLE		
126 RC 127 X	L# ZY Calcul	ate grinder angular		182 183	RCL8 X		
128	÷ offset			184	COS		
129 RC 130 S	L2 IN			185 18€	2		
	x			187	÷		
132 SI				188	RTN		
133 GT 134 * LB	10		-		LBL2 ENT†		
135 LS	TX Calcul	ate grinder radius.		191	+	Cycloidal can $f'(\theta/\beta)$.	n:
136 RC 137	L1 x			192 I 193	RCL8	Ι (0/ρ).	
137 138 LS				193	x 1		
	→P			195	÷R		
140 ST 141 RC				196 197	CHS 1		
142 RC	LA			198	+		
143 144 RC	→R			199 S 200	8T04 R↓		
145	+				TO1	f''(θ/β).	
	→F :00				NT†		
	LA		-	203 204	+ Fi		
149 RC		ate grinder angular		205	x		
	x offset	•			RCLE		
152 RC	L1			208 F	RCL1	$f(\theta/\beta)$.	
	+ /≠Y			269 210	2 ÷		
	÷ '			210	Pi		
15€ 00)S-'			212	÷		
157 RC 158	:L2 -			213 214	- RTN		
159 0	ня						
160 *LE 151 RO		ate angle of grinder.	-				
162 Kt	+ Calcu	ate angle of grillder.					
163 51	701		_				
	CLC	nent angle.					
166 87	r+?	-					
167	RTN RL1		-				
100 #11	- I marini	onic cams BELS		FLAGS	T	SET STATUS	
Auto B→θ, y	C →v'. v''		+r _α , φ	0 FLT/RLR	FLAGS	TRIG	DISP

A Auto	$^{B} \rightarrow \theta$, y	C →y', y''	$D \rightarrow \alpha$	$E \rightarrow r_g, \phi$	0 FLT/RLR	FLAGS	TRIG	DISP	
a FLT/RLR	b HAR, CYC	c $\theta_{o}\uparrow\beta\uparrow\Delta\theta$	^d h	e (R _b †R _g †R _b)	1 HAR	ON OFF	DEG 😠	FIX 🗆	
⁰ Used	¹ Harmonic	² Cycloidal	3	4	2	1 🗓 🗆	GRAD □ RAD □	SCI □ ENG 🗵	
5	6	7	8	9 r _g , ϕ	3	3 🗆 🗵	TIAD L	n 3	

LINEAR CAMS

552 - 151	1		
001 #LBLa	Store function code and	057 PRTX	
002 CF1	clear flag 1.	058 RTN	
003 ST01	l order ridg ri	059 *LBLE	Output x_q and y_q .
004 RTN	1		Output Ag and yg.
		060 SFC	
005 ≉LBLb	Store increment, duration	061 RCL0	
00 6 STCC	angle, and initialize x'	062 PRTX	
007 R4		063 RCL1	
008 STOE	register.		
	1	064 PRTX	
009 RI	1	065 RTN	
010 STO7		066 ≉LBL0	Harmonic if flag 1 is set.
011 0		0 67 1	Transforme is stag 1 is set.
012 STO6			
013 RTK		069 STOI	
014 ≭ LBLc	Store lift.	070 RCL6	Store x'/L in R _F .
015 STOD	Store lift.	071 RCLE	Store x /L in ne.
016 RTN		072 ÷	
		672 -	
017 *LBLd	Store base lift.	073 STDE	
018 STOS	01010 0000 1111	074 GSB:	Multiply by lift.
019 RTH		075 RCLD	wurtiply by IIIt.
020 *LBLe		076 ST×3	l i
021 STOS	Store R _g - R _r .		
		077 ST×4	
022 -	1	078 ×	
023 STOA		079 RCL9	
024 RTN	I	080 +	У
025 *LBLA	1	081 ST05	
	Calculate values auto-		
026 GSBB	matically.	082 RCLE	Divide by L.
027 GSBC	matically.	083 ST÷4	Divide by L.
028 GSBD		084 ST÷3	
029 GSBE			
		085 ST÷3	
030 RCLB	Check for completion and	086 RCL4	Calculate α.
031 RCL6		087 TAN-1	Calculate &.
032 X±Y?	bring x into display.	088 ST02	
033 GTDA		089 RCLA	$(R_g - R_r) \sin \alpha$
	l		$(R_g - R_r) \cos \alpha$
034 RCL7		090 →R	
035 RCLC	l	091 RCL5	
036 -	İ	0 92 +	Уg
037 RTN		093 ST01	
038 *LBLB	Output x and y.	094 XZY	
039 SPC	Output x and y.	095 CHS	×g
040 SPC		096 RCL7	
041 RCL7		097 +	
042 PRTX	1	098 STO0	
043 GSB0	1	099 RCLC	
044 RCL5	1	100 ST+6	Increment x.
045 PRTX	I	101 ST+7	
046 RTN	1		
	1	102 RTN	
047 ≭ LBL€	0	103 *LBL1	
048 SPC	Output dy/dx and d ² y/dx ² .	104 DEG	Harmonic function.
049 RCL4	1	105 1	
050 PRTX	1		
	1	106 8	
051 RCL3	1	107 0	
052 PRTX	1	108 x	I
053 RTN	1	109 Fi	l
054 *LBLD			
	Output α.	110 2	I
055 SPC	1	111 ÷	
056 RCL2	1	112 →R	
	BEGI	STERS	•
0 1 2	3 4	5 6 7	8 9
$\begin{bmatrix} x_g \\ y_g \end{bmatrix}$	l° y" ' y'	l° y ° x' ′ x	R _r y _b
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
S' S' S'	54		30 59
			1
A R _g - R _r B L	C Δx	D h E x'/L	Control
	1 \(\triangle \triangle \t	" X/L	Control

DATE _____AUTHOR _____

117 51				169	χ2	T	
113 Pi 114 X				17 0 171	2 x		
115 ST03 116 R↓					RŤN		
117 ST04					BL0	x ≥ .5	
118 1 119 RCLE				174 (175	CLX 4		
120 1				176 (CHS		
121 8					T03		
122 0 123 x				178 179 RU	1 CLE		
124 COS				180	-		
125 - 126 - 2					x CHS		
127 ÷					T04		
128 RTN					STX		
129 #LBL2 130 DEG	Cycloid	dal function.		185 18€ EH	X2 YT1		
131 ENT†				187	+		
132 +					o H s		
133 1 134 8					1 +		
135 0					RTN		
136 × 137 1							
138 →R							
139 CHS							
140 1 141 +							
142 ST04							
143 RJ							
144 ST01 145 ENT1							
146 +							
147 Fi 148 X							
149 ST03							
150 RCLE							
151 RCL1 152 2							
153 ÷							
154 Fi 155 ÷							
156 -							
157 RTN							
158 *LBL3 159 .							
160 5	Parabo	lic function.					
161 X4Y?							
162 GT00 163 CLX							
164 4	x < .5						
165 STO3 16€ X							
167 ST04							
168 RCLE					,		
А		BELS D →α	E	FLAGS 0		SET STATUS	
	y , y		E →x _g , y _g e R-↑R-	1 Har	FLAGS ON OFF	TRIG	DISP

A Auto	B →x, y	C y', y''	$D \rightarrow \alpha$	$E \rightarrow x_g, y_g$	0	FLAGS	TRIG	DISP	
a (1, 2, 3)	^b x ₀ ↑L↑∆x	^c h	d Yb	e R _g ↑R _r	¹ Har	ON OFF	DEG 🗷	FIX 🗆	
0	¹ Harmonic	² Cycloidal	³ Parabolic	4	2	1 🗓 🗆	GRAD □ RAD □	SCI □ ENG ki	
5	6	7	8	9	3	3 🗆 🗵	TIAD U	n_3	

GEAR FORCES

TITLE _ *LBLA Calculate F_t. **0**58 002 059 ₽ŧ 003 STOE060 064 RTN RŤ 061 *LBLE Store a. PRTX 00€ 062 XZY **0**53 007 PRTX 008 *LBLC 064 RTN 999 065 STOS 066 *LBLd 010 RTN Store coefficient of ST04 *LBLD 011 Convert ϕ to $\phi_{\mathbf{n}}$ and store. friction. 068 RTN 012 TAN *LBLe 069 RCLA 013 Calculate F_{ws} , F_{gax} . 070 SPC 614 cos RCL5 015 071 072 SIN 016 TAN-073 074 017 ST05 LSTA 008 018 RTN *LBLE RCLA 019 Calculate F_{gs} and F_{gax}. 076 SIN 020 SPC 077 RCL6 021 078 RCLA 022 079 TAN COS RCL4 080 024 025 RCL5 081 082 026 TAN 083 RCLA 027 084 RCL6 028 COS 085 029 X PRTX RCL6 886 636 031 087 032 PRTX 088 RCLA 033 089 TAN RCL4 PRIX 090 034 035 RTN 091 Store bevel gear cone angle. 092 RCL5 036 *LBLa 093 COS STOE **0**37 094 038 RTN Calculate F_{bpax} and F_{bgax} . 095 **0**39 *LBLb 096 RCLA 646 TAN 097 041 RCLB 098 RCL4 842 RCL5 TAN 099 RCL5 043 100 005 044 RCLA 161 045 cas 102 046 103 **04**7 RCL6 X 104 RCL6 048 105 →P 049 106 PRTX 050 RCL6 RTN 051 RCLA 107 **0**52 053 054 RCLB 055 XZY **0**56 ÷₽ REGISTERS f F_t S6 α cone ∠

1 1 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
a cone ∠ b → F _{bpax} , F _{bgax} c d f e → F _{wx} , F _{gax} 1 c O N OFF OFF OFF OFF OFF OFF OFF OFF OFF	FIX SCI CENG CENG CENG CENG CENG CENG CENG CENG

STANDARD EXTERNAL INVOLUTE SPUR GEARS

001 *LBLA		057	3	
002 ST01		@ 58	γ×	
003 X≠Y	Store P and N and	059	ST07	1
004 ST02	calculate D and t.		kLBL1	1 1
005 ÷		061	RCL6	
006 ST05		062	RCL7	1 1
007 SPC		063	+	1
008 PRTX		064	RCL7	1 1
009 Pi		065	TAN	1
010 2		066	-	1
011 ÷		067	LSTX	1
012 RCL2		068	ENT†	1
013 ÷		069	X	
014 ST08		070	÷	
015 PRTX		071	ST+7	
016 RTN				
017 *LBLB		672	RCL7	
	Store d_w and ϕ .	073	÷	
018 STG3		074	ABS	1
019 X≠Y		075	EEX	1
020 ST04		076	CHS	1
021 RTN		077	6	1
0 22 ≭LBL C	Calculate inv $\phi_{\mathbf{w}}$.	078	X¥Y?	1
023 RCL8	Calculate IIIV ψ_W .	679	GT01	1
624 RCL5		880	RCL7	
025 ÷		0 81	SIN	1
026 RCL4		0 82	DEG	1
027 TAN		083	SIN-	
028 +		084	ST07	
029 RCL4		085	GT09	
030 Pi			*LBLE	
031 ×		087	RCL5	Calculate M.
e32 1				
		088	.2	
6 33 8		6 89	÷	
034 0		090	RCL4	
035 ÷		091	COS	
03€ -		692	x	1
037 RCL3		093	RCL7	1
038 RCL5		094	COS	1
039 ÷		095	÷	1
040 RCL4		096	STOE	
041 CDS		6 97	2	1
042 ÷		098	x	
043 +		099	RCL3	
044 Fi		100	RCL1	1
045 RCL1		101	2	1
046 ÷		102	÷	
047 -		103	FRC	
048 ST06		103	X=0?	
048 STU6 049 R→D			6T03	1
		105		1
		106	R↓ U±U	j l
051 *LBLD	Calculate $\phi_{\mathbf{W}}$.	107	X≠Y	1
052 RAD	- σσατο ψω.	108	9	1
053 RCL€		109	0	1
054 3		110	RCL1	1
055 ×		111	÷	[
Ø56 .		112	008	1
	REGIS	STERS		
0 1 1 2 2	3 4	5 6	7 ,	8 9
L N P	d _w φ	D $^{\circ}$ inv ϕ_{w}	φ _w	t Sused
S0 S1 S2	S3 S4	S5 S6	S7	S8 S9
	Ic		Te .	<u> </u>
A B	C	D		
A B	C	М	E q	

DATE	AUTHOR
113	AUTHOR Store Δt and calculate M _t . Print q. Calculate R _w .
144	Space and print. Space and

BELT LENGTH

TITI C

001 *LELo	Toggle for printing belt	057 RCL1	
802 0	tangent points.	058 RCL4	
003 F2?	tangont points.	0 59 -	
004 RTN		060 X2	
005 SF2	1	0 61 -	
966 1	1	0 62 1 X	
007 RTN	1	063 ST+8	
008 ≉LBLA	land a B	064 RCL1	
009 CLRG	Input x ₁ , y ₁ , R ₁	065 RCL4	
010 SF1	1	066 -	
011 STO0	1	0 67 X ≠ Y	
012 ST01		068 GSB1	
013 R4			
		069 ST07	
014 STOB		070 +	
015 R4		071 RCL1	
016 STOA		072 ×	
017 1		073 RCLC	
018 CHS		674 ÷	
019 COS-1	1	075 Pi	
020 STOC	1	076 ×	
021 RCL0	1	077 ST+8	
022 RTN	Input x _i , y _i , R _i and make	078 F2?	
023 *LBLB		079 GSB¢	
024 ST04	calculation.	080 RCL4	
025 CLX	1	081 ST01	
026 RCL3		082 CF1	
027 P#S		083 RTN	
028 ST03		Ø84 ∗LBLE	
029 P ≠ S		0 85 -	$\theta_i - \alpha_i$
030 X≠Y		0 8€ 1	
031 ST03		087 →R	
032 X≠Y		0 88 →P	
033 - 034 X≢Y		089 X	
		090 ABS	
035 RCL2		091 RCL7	
036 P≠S		0 92 -	
037 ST02		093 RTN	Colorator the test leads
038 P ≠S		094 *LBLC	Calculate the total length.
039 X≠Y		095 RCLA	
040 ST02		09€ RCLB	
041 X ≓ Y		097 RCL0	
042 -	1	098 GSBB	
043 →P		0 99 RCL6	
044 X2		100 RCL5	
045 X≠Y		101 GSBE	
046 X 0?			
		102 RCL1	
047 GSB0		103 ×	
047 GSB0 048 F1?		103 X 104 RCLC	
047 GSB0 048 F19 049 ST05		103 × 104 RCLC 105 ÷	
047 GSB0 048 F12 049 ST05 050 F12		103 × 104 RCLC 105 ÷ 106 F;	
047 GSB0 048 F17 049 ST05 050 F17 051 ST06		103 × 104 RCLC 105 ÷ 106 Fi 107 ×	
047 GSB8 048 F17 049 STU5 050 F17 051 STU6 052 RCL6		103 × 104 RCLC 105 ÷ 106 F: 107 × 108 ST+8	
047 GSB8 048 F12 049 ST05 050 F12 051 ST06 052 RCL6 053 %≠Y		103 × 104 RCLC 105 ÷ 106 Pi 107 × 108 ST+S 109 RCLS	
047 6588 048 F17 049 8705 050 F17 051 8706 052 RCL6 053 X27 054 8706		103 × 104 RCLC 105 ÷ 106 Fi 107 × 108 ST+S 109 RCLS 110 RTN	
047 GSB0 048 F17 049 ST05 050 F17 051 ST06 052 RCL6 053 X2Y 054 ST06		103 × 104 RCLC 105 ÷ 106 Pi 107 × 108 ST+S 109 RCLS	
047 6588 048 F17 049 8705 050 F17 051 8706 052 RCL6 053 X27 054 8706		103 × 104 RCLC 105 ÷ 106 Fi 107 × 108 ST+S 109 RCLS 110 RTN	
047 GSB0 048 F17 049 ST05 050 F17 051 ST06 052 RCL6 053 X2Y 054 ST06	REGIS	103 × 104 RCLC 105 ÷ 106 P; 107 × 108 ST+S 109 RCLS 110 RTN 111 *LBL8 112 RCLC	
047 6SB8 048 F17 049 ST05 050 F17 051 ST06 052 RCL6 053 X2Y 054 ST06 055 6SBE 056 X2Y	3 4	103 X 104 RCLC 105 ÷ 106 P; 107 X 108 ST+S 109 RCLS 110 RTN 111 ±LBL8 112 RCLC 55 6 12	8 9 11 1
047 6SBE 048 F17 049 ST05 050 F17 051 ST06 052 RCL6 053 X27 054 ST06 055 GSBE 056 X27	3 y _i 4 R _i	183 × 184 RCLC 185 ÷ 186 Fi 187 × 188 ST+8 189 RCLS 1110 RTN 111 *LBL® 112 RCLC STERS 5 θ₁ 6 θ₁ 7 α	Σ Length Used
047 6SB0 048 F17 049 ST05 050 F17 051 ST06 052 RCL6 053 %≠7 054 ST06 055 SSBE 056 X≠7 0 R ₁ 1 R _{i-1} 2 x _i S0 S1 S2	3 y _i 4 R _i S3 S4	103 X 104 RCLC 105 ÷ 106 P; 107 X 108 ST+S 109 RCLS 110 RTN 111 ±LBL8 112 RCLC 55 6 12	⁸ Σ Length
047 65BB 048 F17 049 ST05 059 F12 051 ST06 052 RCL6 053 X2Y 054 ST06 055 65BE 056 X2Y 0 R ₁ 1 R _{i-1} 2 x _i S0 S1 S2 x _{i-1}	3 y _i 4 R _i S3 y _{i-1} S4	103 x 104 RCLC 105 ÷ 106 Fi 107 x 108 ST+S 109 RCLS 110 RTN 111 ±LBL® 112 RCLC STERS 5 θ₁ 6 θ₁ 7 α SS5 S6 S7	
### 6588 ### 648 F17 ### 649 ST05 ### 651 ST06 ### 652 RCL6 ### 653 %## 965 ### 654 ST06 ### 655 ESBE ### 656 X## 966 ### 656 X## 96	3 y _i 4 R _i S3 y _{i-1} S4	183 × 184 RCLC 185 ÷ 186 Fi 187 × 188 ST+8 189 RCLS 1110 RTN 111 *LBL® 112 RCLC STERS 5 θ₁ 6 θ₁ 7 α	

DATE __ __ AUTHOR __ 113 169 RTN Add 180° LSTX 114 115 116 RTN 117 *LBL1 Adjustment for angles. 118 ÷₽ 119 R4 120 008 XK**0**? 121 122 123 GT09 CLX LSTX 124 125 RTN 126 127 *LBL9 Obtain θ or α . CLX LSTX RCLC 128 129 130 131 132 133 →R →F 134 R4 RTN 135 136 *LBLc Calculation for belt tangent 137 points. 138 139 SIN-RCL6 140 RCL7 141 142 143 STOD 144 RCL1 145 146 ₽≢S 147 148 RCL2 PRTX 149 150 151 X≠Y RCL3 152 153 PRTX 154 155 156 157 SPC P≢S RCLDRCL4 158 ÷₽ RCL2 159 160 161 PRTX 162 XZY 163 RCL3 164 165 PRTX

		LAE	BELS		FLAGS		SET STATUS	
$A_{x_1}\uparrow_{y_1}\uparrow R_1$	^B x _i ↑y _i ↑R _i	C →L	D	$\theta_i - \alpha_i$	O last?	FLAGS	TRIG	DISP
a points?	^b for last i	^C points	d	е	¹ first	ON OFF	DEG 🗷	FIX 😠
0	1 2π	2	3	4	² points	1 🗆 🕱	GRAD □ RAD □	SCI 🗆 ENG 🗆
5	6	7	8	⁹ θ or α	3	3 🗆 🗵	hAD 🗆	n 2

166

167

168

SF2

SPC

FREE VIBRATIONS

TITLE			
Ø01 ∗LBLA	Store k, c, and m and	057 ×	
002 CLR6	calculate ω .	058 CHS	
003 ST04	calculate w.	059 e*	
004 F↓		060 STOC	
005 ST03		061 RCL5	
066 R↓		062 X<0?	
007 ST02		063 GTO:	
008 RCL4		064 X=0?	
009 GSB0		065 GTOL	
010 RTN		066 *LBLa	5>
011 *LBL0	Coloridate	067 RCLD	For c > c _r .
012 RCL2	Calculate	068 RCL0	
013 ÷	k / c \	0 69 x	
014 STOE	$\left[\frac{k}{m} - \left(\frac{c}{2m}\right)^2\right]$	070 RCL1	
015 RCL3	[[/=/]	071 +	
016 RCL2		072 RCL5	
017 2		073 ÷	
018 x		074 RCL0	
019 ÷		075 →P	
020 STOD		076 STDA	
021 X2		077 R4	l
022 -		078 STOE	
023 RND		079 RCL5	l
024 X 0?		080 RCL7	ł
025 GT01	l .		
026 X=0?	1	081 ×	l
027 RTH		082 -	l
		083 CHS	l
028 *LBL3		084 ST09	
029 LSTX	1	085 COS	
638 1X		086 RCLC	
031 ST05	1	087 ×	l
032 RTN		088 RCLA	
033 *LEL1		8 89 ×	
034 LSTX		090 ST02	
035 ST05	1	091 PRTX	
036 1		092 RCLD	i
037 CHS	i	093 ×	1
038 RTH		094 RCL9	1
039 *LBLE	Colonian	095 SIN	1
040 RCL4	Calculate c _{cr} .	096 RCLC	1
041 RCL2	1	097 x	1
042 X	i	098 RCL5	1
043 1X		099 x	1
044 2		100 RCLA	l
045 X		101 ×	I
04€ RTN		102 +	l
047 *LBLC	Carro initial displace	103 CHS	l
648 ST01	Store initial displacement	104 PRTX	1
049 R↓	and velocity.	105 GTDe	i
0 50 ST00		106 *LBL&	
051 RTN		107 RCLD	For $c = c_r$.
0 52 ≭ LBLD		108 RCL0	1
0 53 SPC	Calculate displacement,	109 x	1
054 ≭LBL4	velocity and acceleration	110 RCL1	l
055 ST07	at time t.	111 +	I
056 RCLD		112 STOB	l
	REG	STERS	
0 x ₀ 1 x ₀ 2 m,x	3 4	5 6 7	8 · (t) 9 ωt – δ
X ₀	t) c, r ₁ k, r ₂		χ(t) ωt - δ
50 51 52	33 34	S5 S6 S7	59
A R, A _{cr} , A _{ov} B δ, B _{cr} , B _o	C e-c/2m t	D c/2m E k/m	l n
R, A_{cr}, A_{ov} δ, B_{cr}, B_{o}	v e	6,2m K/m	1 "

DATE			AUTH	HOR				
11 11 11 11 11 11 11 11 11 11 11 11 11	4		GC _r .		170 171 172 173 174 175 176 177 177 177 177 178 179 179 180 181 182 183 184 185 186 187 189 190 191 192 193 189 194 195 197 198 199 200 191 202 189 201 202 203 4EC 205 206 207 208 209 210 211 212 213 214 215 215 215 215 217 218 218 219 218 219 218 229 218 220 220 220 220 220 220 220 220 220 22	x + 42	velocity and automatical	splacement, laceleration ly.
	B→ccr	C x ₀ ↑x ₀	Dt→x, x, x	E t ₁ ↑t ₂ ↑n→List	,	FLAGS	TRIG	DISP
$^{\mathrm{a}}$ c $>$ c _{cr}	p c = cct	^c c < c _{cr}	d 🕱	^e Used	1	ON OFF	DEG 🗆	FIX 🗵
⁰ ω	1 c > c _{cr}	² c = c _{cr}	³ c < c _{cr} ⁸ Used	⁴ Used ⁹ t→x	3	1	GRAD □ RAD ☒	SCI ENG n 3

VIBRATIONS FORCED BY $\textbf{F}_0\textbf{COS}\omega\textbf{t}$

001 *LBLA 002 SPC 003 CLRG 004 SFG 005 ST04 006 R1 007 ST03 000 R1 009 ST02 010 RCL4 011 GSB0 012 PPTX 013 RCL3 014 RCL4 015 RCL2 016 X 017 JX 018 2 019 X 020 PTX 023 *LBLC 024 RCL2 026 ST0E 027 JX 028 ST0E 027 JX 028 ST0E 027 JX 028 ST0E 027 JX 028 ST0E 027 STX 028 ST0E 027 STX 028 ST0E 027 STX 029 RCLE 030 RCL3 031 RCL2 033 X 034 ÷ 0355 ST0D 036 X2 037 -	Store k, c, and m and calculate ω_0 , ω_n and ζ .	### ##################################	Store F_0 and ω and calculate AMP and δ . Input t and calculate $x(t)$, $\dot{x}(t)$ and $\ddot{x}(t)$.
820 ÷ 821 PRTX 822 PTN 823 #LBL0 824 RCL2 825 ÷ 826 STOE 827 IX 828 PRTX 829 RCLE 831 RCL2 832 2 831 RCL2 832 2 833 X 834 ÷ 835 STOD 836 XP 837 -	Calculate ω_0 and ω_n .	876 ST09 877 R1 878 RCLE 879 RCL9 880 GSB4 881 R-D 882 PRTX 883 PTN 883 PTN 885 SPC 886 *LBL6 887 ST06 888 RCL9 889 X 899 RCLB 891 - 892 COS 893 LSTX	
039 X<0? 040 CT01 041 X=0? 042 RTN 043 *LEL3 044 LSTX 045 ST05 047 RTN		995 XEY 996 RCLS 997 X 998 RCLC 999 ÷ 100 PRTX 101 RCL4 102 X 103 ST00	
048 *LBL1 049 LSTX 050 STD5 051 1 052 CHS 053 PTH 054 *LBL4 055 X2 056 -		104 XTY 105 RCL8 106 X 107 RCLC 108 ÷ 109 RCL9 110 X 111 CHS 112 PRTX	
		STERS	
0 k x(t) 1 c x(t) 2 m	3 c 4 k	$\frac{5}{\omega_{\text{n}}}\sqrt{-\omega_{\text{n}}^2}$ 6 t t $\frac{7}{\omega_{\text{res}}^2}$	⁸ F ₀ ⁹ ω
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A $(t_1 - t_2)/n$ B δ	С	D c/2m E k/m	0.00
	1		1

ENG 3

RAD x

⁶ Used

7t→xı

 $t + \Delta t$

 ω_{res}

EQUATIONS OF STATE

001	*LBLo	Redlich-Kwong; ideal gas		≉LB L8	Ideal gas solution for n,
002	F0?	toggle.	058	SF1	R and T.
003	GTOR		059	≭LBL 9	
004	e		060	RCL5	
995	SFØ		061	RCL6	
006	RTN		062	X	
007	*LBL0		063	RCL7	
998	1		064	KUL!	
009	CF0		065	RCLS	
616	RTN		966	÷	
011	*LBLb	Store T _c .	067	RCL9	
012	CF3		968	÷	
013	STOC		0 69	STO:	
014	RTN		979	*LBL0	6: ::::::::::::::::::::::::::::::::::::
015	*LBLc		071	F0?	Stop if ideal gas is desired.
616	CF3	Store P _c .	072	RTH	
017	STOD		073	ESE1	
					Calculate P by Redlich-
018	RTN		074	6700	Kwong.
019	*LBLA	P code.		*LBL2	1
020	5		076	F1?	
021	6100		077	GSB1	
822	*LBLB	V code.	078	*LBL0	
023	6	v code.	079	RCLE	
624	STOE		888	RCL9	
025	*LBLC		081	x	
		n code.	082	RCL6	
026	7		083		
827	GT00			RCLB	
028	*LBLD	R code.	084		
029	8		685	ST04	
636	6100		086	÷	
031	*LBLE	T code.	0 87	RCLA	
632	9	i code.	988	RCL9	
033	*LBL0		089	1X	
634	CF1		898	÷	
035	STOI	Store input.	091	ST02	
			092	RCL6	
636	R↓			÷	
037	STO:		093		
038	F3?	1	694	LSTX	
039	RTH		095	RCLE	
040	1	Dummy 1.00 for unknown	096	+	
041	STO:	and GTO ideal gas.	097	ST03	
042	eto:	and GTO lucal gas.	098	÷	1
043	*LBL5	Ideal gas solution for P	0 99	-	
044	*LBL€	and V.	100	RCL5	
945	RCL7	and v.	101	-	Calculate f(P).
046	RCL8		102	GSB;	
047	X X		103	63D1	Calculate f'(P).
048	RCL9		104	ST-i	Loop again?
049	X		105	RCL:	· -
050	RCL5		106	÷	
051	RCL6		167	ABS	!
052	×		108	EEX	
053	÷		109	CHS	
054	STO:		110	4	
e55	GT00		111	X≟Y?	
0 56	*LBL?		112	GT02	
636	TLUL:	BECH	STERS	6102	
0 1	2	3 4	5 6	7	8 9
	a/T 1/2	(V + b) (V - b)	J P J V	'n	R T
l° l'					
S0 S1	S2	S3 S4	S5 S6	S7	S8 S9
		S3 S4	S5 S6	S7	S8 S9
S0 S1	S2	Tc Tc	D	le .	
S0 S1	S2				S8 S9 Control

9 T

calc

⁸ R

٧

Ρ

X

ISENTROPIC FLOW FOR IDEAL GASES

TITLE . *LBLe SF3 Store k, k - 1, 1/(k - 1). 002 ST02 **05**8 GTOE 003 059 *LBLD Output ρ/ρ_0 . 004 868 005 STOR STOR 861 006 1/X 062 GSBE 007 ST04 063 RCL4 008 RCL2 064 RTN 009 865 RTN Output M. 010 *LBLA 066 *LBL@ Convert ρ/ρ_0 to ${\rm T/T_0}$ 011 SF3 067 and GTO B. GTOR 012 068 RCLZ 013 RCL1 VX 869 STOE 814 979 RTN 015 071 *LBLE Set -3 in display for 016 *LBL0 072 Store M² subsonic quess. 017 Χz 073 CHS 018 ST01 874 XZY 019 875 F3? 976 977 020 RTN GT01 021 *LBLE 6103 Output T/T₀. 622 878 *LBL1 023 GTOG 079 ENT: Make guess of M2. 024 2 080 ST06 RCL1 RCL3 025 081 FRO 026 027 $I\lambda$ 082 083 628 XZY 884 029 085 030 ST01 086 031 RTN 087 **≉LBL**2 Iterate by Newton's e32 e33 *LBL@ 088 RCLEConvert T/T₀ to M². method to find M² 089 GSB3 Corresponding to A/A*. XZY 034 090 035 691 1 636 092 037 693 RCL3 038 894 639 095 RCL8 STOI 848 **0**96 041 17. 897 RTN 642 698 043 *LBLC 099 RCL1 Output P/P₀. 844 F3? 188 ÷ GTOR 845 101 646 **ESEE** ÷ 047 RCL2 RCL3 103 ST+1 048 164 RCL1 649 105 y'y 050 10€ ABS **e**51 RTN 107 EE? 052 *LBL@ 108 CHS 053 RCL3 109 Convert P/P_0 to T/T_0 and 954 RCL2 110 X≚Y? GT02 GTO B 055 111 056 RCL1 REGISTERS M^2 A/A* k - 11/k - 1(k-1)/k+1Used Used

DATE			AU1	THOR				
	113 JX 114 PTN 115 *LBLe 116 3 117 XZY 118 F3? 119 GT01 120 *LBL3 121 2 122 RCL2	sonic	3 in display for guess.					
	122 RCL2 1144 + 125	Outpu	it values.					
A M → M	B _ /		BELS □ a/a →M	E Λ/Λ* →M	FLAGS 0		SET STATUS	
IAI > IAI	B T/T ₀ →M	C P/P ₀ →M	$\rho/\rho_0 \rightarrow M$	A/A sub /W	1	FLAGS ON OFF	TRIG	DISP
a k	b → k,M,T/T ₀	2 2		e A/A* _{sup} →M	'	0 🗆 🗙	DEG 🗷	FIX 🕱
Used	¹ M ² guess	² M ² iter	3 A/A*	9	3	1 🗆 🕱	GRAD □ RAD □	SCI DENG
	ľ	l'	ı	3	3 DATA?	3 🗆 🗵		n_3_

CONDUIT FLOW

TITLE _____

001 -151		0E7 4.00	_ _
001 *LBLo	Set divide by ρ flag.	057 1/X 058 X2	Set f and Re in display.
002 SF2 003 ST00	002 SF2		
964 #/ P/ /		059 RCL1 060 RCL4	
005 CF2 Clear divide by ρ flag.		061 RTN	
006 *LBL0			
007 ST09		062 *LBLD 063 ST02	Store velocity.
008 GTOG	Store μ or ν .	064 F3?	
009 *LBLc		065 RTN	
010 STOA	Store ρ .	066 SF0	Guess v.
011 GT00	Store ϵ .	067 GSB9	Guess v.
012 *LBLd	Store C.	068 *LBL3	Iterate to find v.
013 STOE		069 RND	iterate to find v.
014 GT00		070 ST00	
015 *LBLA	Store L.	071 GSB8	
016 ST03		072 RND.	
017 GT00		073 RCL0	1
618 *LBLB	Store D.	074 X‡Y	
019 STOD 020 GTO0		075 X≠Y? 076 GT03	1
020 GT00 021 ★LBLC		076 6103 077 RCL5	
022 4 022 4	Store K _T /4.	078 1/X	Set f, Re and v in display.
023 ÷		079 X2	1
024 STOR		ese RCL1	
025 *LBL0		081 RCL2	
026 CF3		082 RTN	
027 RTN	Clear data input flag.	083 *LBL9	
028 ≭LB Le		084 RCLA	Calculate constants.
029 4	C	085 F2?	
e30 6	Convert input psi to lb/ft-	0 86 ST÷9	
0 31 3	sec ² and store.	087 RCLD	
032 2		088 RCLE	
033 ×		0 89 ÷	
034 ST04		090 STO6	
035 F3?		091 LN	
036 RTN		092 1	
037 GSBE	Convert lb/ft-sec2 to psi	093 .	
038 4 039 6	and display.	094 7	
039 6 040 3		695 3 69€ 7	
041 2		09€ 7 097 STO7	
042 ÷		698 X	
043 RTN		099 2	
044 ≭LELE		100 .	
045 ST04	Store pressure.	161 2	
046 F3?		162 8	
047 RTN		103 +	
048 CF0		104 STOC	
04 9 6 S B 9	Compute pressure drop.	105 ST05	1
050 RCL2		106 F0?	1
051 X2		107 GT07	1
052 x		108 *LBL8	is flow turbulent?
053 RCLA		169 1	is now turbulent?
054 x		110 6	
055 ST04		111 RCL2	
056 RCL5	550	112 RCLD	
0 1 2	3 4	5 1/2/F 6 D/G 7 1 7 2 7	I8 . Iq
v Re v	L \(\Delta P \)	1/01 0/6 1.737	⁸ K _T /4 ⁹ ν, μ
S0 S1 S2	S3 S4	S5 S6 S7	S8 S9
A B	lc	D E	
ρ Used	1/√f ₀	D ε	

HEAT EXCHANGERS (Card 1)

TITLE _ 001 *LBLa RCL1 Store T_{cin}. 0*0*2 658 **0**59 CHS 004 *LBLb 060 PTN 005 061 ≰! B! F Calculate E from T_{co}. ST03 886 062 ST05 ETN AA: 063 GSB1 888 **≉LBL**c RCL4 Store Thin. 009 ST01 065 RCL7 010 066 011 *LBLd 067 068 RCL1 Store Ch. 012 RCL5 013 ST04 069 014 RTN 676 015 RCL1 *LBLe 071 Clear flag 1 for counter F12 016 072 RCL2 flow, set for parallel flow. 017 6T00 073 018 074 SF1 ST05 020 RTN 076 RTN 021 *LBL@ 077 *LBL0 Calculate AU for C_{min}/ **0**22 **0**23 078 X#R? $C_{max} = 0.$ CF1 079 GT00 RTN 024 080 025 *LBLA 081 RCL5 Calculate AU from E. ST05 026 082 **0**27 GSE1 083 LN GSB0 CHS 984 029 STOR 085 RTN 030 086 *LBL2 Calculate E for C_{min}/ *LBLE 031 **0**87 X≠**0**? Calculate q from AU. $C_{max} = 0.$ 032 STOR 088 GT02 033 GSB1 **0**89 034 GSB2 090 RCL8 035 RCL7 091 CHS 036 092 e× 037 RCL1 093 038 RCL2 094 RTN 039 095 *LBL1 Store C_{\min} and $\mathrm{C}_{\min}/$ **040** 096 RCL3 C_{max} . Ø41 ST06 097 RCL4 **04**2 RTN 098 X>Y? 043 *LBLC XZY 999 Calculate T_{co} from q. **044** ST06 100 ST07 045 RCL2 101 XZY **0**46 102 RCL2 047 103 STOO 048 164 RTN 049 050 *LBLD Calculate T_{ho} from T_{co} . 051 RCL2 052 **0**53 RCL3 054 055 RCL4 REGISTERS C_{min}/C_{max} C_{min} ΑU C_{max}

(Parallel-Flow and Counter-Flow)

DATE			AUTH	OR				
	13 *LBL0 14 *FI? 15 GTOS 16 RCL5 17 1/X 18 - 18 - 19 1 20 LSTX 221 - 222 + 23 LN 225 RCL0 227 X=00 228 GTO7 330 RCL7 331 X 33 *LBL7 333 RCL7 336 RCL7 337 - 338 RCL7 337 RCL5 337 RCL5 34 RCL5 35 LL RTN 338 RCL7 440 X 441 RTN 442 *LBL0 443 RCL6 444 1 445 + 446 RCL5 447 X 449 1 445 + 446 RCL5 447 X 448 CHS 449 1 455 LN 455 CHS 449 1 455 CHS 456 CHS 466 CHS 46	Counte C _{max} =	r-flow for C _{min} /1. -flow AU -flow AU -flow E calculat		178 171 172 173 174 175 176 177 177 177 177 177 177 178 181 182 183 184 183 184 185 186 187 188 189 191 192 193 194 193 194 193 194 195 196 197 198 199 200 197 201 202 203 204 206 207 208	LE X 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Parallel-flor calculation	
^A E→AU	^B AU→q	C q→T _{co}	^D T _{co} →T _{ho}	E T _{ho} →E		FLAGS	TRIG	DISP
^a T _{cin}	^b m _c ↑c _{pc}	^c T _{hin}	^d m _h ↑c _{ph}	e CNT?	CNT?	ON OFF	DEG 🗷	FIX 🛣
⁰ E→AU	1 C _{min}	² AU→ <i>E</i>	3	4	2	1 🛭 🗆	GRAD □	SCI 🗆
5	6	$^{7}C_{min}/C_{max}=1$	⁸ parallel	⁹ C _{min} /C _{max} = 1	3	2 🗆 🗷 3 🗆 🛣	RAD 🗆	ENG 2

(Card 2) (Side 1: Parallel-Counter-Flow)

TITLE _

1111.				
113 *LBL0 114 GSB6 115 2 116 X 117 RCL6 118 2 119 RCL5 120 ÷ 1212 + 1222 RCL9 123 - 124 ÷ 125 CH6 126 1 127 + 128 LN 129 RCL6 130 ÷ 131 CHS 132 RCL7 133 ÷ 134 LSTX 135 ENT1 136 X 137 X 138 PTH 139 *LBL2 140 GSB6 141 RCLS 142 RCL7 143 ÷ 144 RCL6 141 RCLS 142 RCL7 143 ÷ 144 RCL6 141 RCLS 142 RCL7 143 ÷ 144 RCL6 145 X 146 CH6 147 e× 146 CH6 147 e× 148 1 149 M2Y 150 + 151 1 152 LSTX 158 + 159 LSTX 158 + 159 LSTX 158 + 159 LSTX	Calculate AU for parallel-counter-flow. Calculate E for parallel-c counter-flow.	169 170 171 172 173 174	X° 1 + 1	
166 + 167 ST09				
168 RCL0				
0 1 2 2	3 4	STERS	17	Is Io
C _{min} /C _{max} T _{hin} T _{cin}	C _c C _h	E Used	C _{min}	⁸ AU _i ⁹ Used
S0 S1 S2	S3 S4	S5 S6	S7	S8 S9
A AU _{i-1} B F(AU _i)	С	D F(AU _{i-1})	E	1

(Side 2: Cross-Flow)

AUTHOR DATE _ 169 170 171 172 173 113 *LBL@ Calculate AU for cross-flow 114 115 CHS FIX B 1 116 STOA PTN 117 118 RCL5 119 CHS 120 STOD 121 122 123 LN CHS 124 ST08 125 *LBL6 126 RCL8 127 GSB2 128 RCL5 129 130 131 STOB RCLA 132 RCL8 133 STCA 134 RCLD 135 136 RCLB 137 STOD 138 139 140 X 141 ST-8 142 RCL8 143 144 RND 145 X≠@? GT0€ 14*6* 147 RCL8 RTN 148 149 *LBL2 Calculate E for cross-flow. 150 RCLE 151 RCL7 152 153 154 155 156 157 ENT† ENT1 2 **Y**× 158 159 ROLB 160 161 LSTX 162 163 XZY сня 164 165 e× 16€ 167 168 LABELS FLAGS SET STATUS FLAGS TRIG DISP ON OFF 0 DEG FIX SCI SCI SENG SCI GRAD | RAD | *E*→AU AU*→E* RAD 6 iterate

Appendix A MAGNETIC CARD SYMBOLS AND CONVENTIONS

SYMBOL OR CONVENTION	INDICATED MEANING
White mnemonic: x A	White mnemonics are associated with the user-definable key they are above when the card is inserted in the calculator's window slot. In this case the value of x could be input by keying it in and pressing A.
Gold mnemonic: y x f E	Gold mnemonics are similar to white mnemonics except that the gold f key must be pressed before the user-definable key. In this case y could be input by pressing f E .
x∱y ∆	↑ is the symbol for ENTER. In this case ENTER. is used to separate the input variables x and y. To input both x and y you would key in x, press ENTER., key in y and press A.
X	The box around the variable x indicates input by pressing \triangle A.
(x)	Parentheses indicate an option. In this case, x is not a required input but could be input in special cases.
→x A	→ is the symbol for calculate. This indicates that you may calculate x by pressing key A.
→x, y, z	This indicates that x , y , and z are calculated by pressing \triangle once. The values would be printed in x , y , z order.
→x; y; z	The semi-colons indicate that after x has been calculated using \mathbf{A} , y and z may be calculated by pressing $\mathbf{R/S}$.
→''x,'' y	The quote marks indicate that the x value will be "paused" or held in the display for one second. The pause will be followed by the display of y.
↔ x	The two-way arrow ←→ indicates that x may be either output or input when the associated user-definable key is pressed. If numeric keys have been pressed between user-definable keys, x is stored. If numeric keys have not been pressed, the program will calculate x.

P?	The question mark indicates that this is a mode setting, while the mnemonic indicates the type of mode being set. In this case a print mode is controlled. Mode settings typically have a 1.00 or 0.00 indicator displayed after they are executed. If 1.00 is displayed, the mode is on. If 0.00 is displayed, it is off.
START A	The word START is an example of a command. The start function should be performed to begin or start a program. It is included when initialization is necessary.
DEL A	This special command indicates that the last value or set of values input may be deleted by pressing A.

1000 N.E. Circle Blvd., Corvallis, OR 97330

00097-90094

A O C D E