
HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions

Aeronautical Engineering

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

PROPERTIES OF AIR This program computes the following properties of air at low pressures for a given temperature: specific heat ratio, specific heat at constant pressure, specific heat at constant volume, coefficient of viscosity, and absolute Rankine temperature.

THEORETICAL U.S. STANDARD ATMOSPHERE TEMPERATURE AND PRESSURE BELOW 35,332 FT. The program computes the theoretical U.S. Standard Atmosphere values for temperature and pressure at any altitude from -16,500 to 35,332 feet or by converting to metric units in the formula, -5,000 to 11,000 meters. Temperature is provided in absolute and thermometer standards. Pressure results are in Hg, psf, psi and mb.

- ISENTROPIC FLOW FOR IDEAL GASES The card replaces isentropic flow tables for a specified specific heat ratio k. Inputs and outputs are interchangeable with the exception of k.
- OBLIQUE SHOCK ANGLE FOR WEDGE Given the upstream Mach number, the flow deflection angle, and the ratio of specific heats the program determines if an oblique shock is possible and finds the shock angle for the weak shock condition if the condition is possible.
- TAKE-OFF RUN VS DENSITY ALTITUDE Computes actual take-off run required given sea level run at 15⁶ C at full 32 gross weight, pressure altitude, actual air temperature, and actual takeoff weight.
- AIRCRAFT CLIMB This program permits one to determine the desirability of climbing from an altitude of high headwinds to an altitude with lower headwinds. Determine the minimum that must remain at the start of the climb to make the climb to higher altitude worthwhile. Program is good for non-supercharged aircraft only.

Program Title	Propertie	s of Air				
Contributor's Name	Hewlett-P					
AddressCor	IOOO N.E. vallis	Circle Blvd	State	Oregon	Zip Code	97330

Program Description, Equations, Variables

This program computes properties of air at low pressures for a given temperature * in degrees

Fahrenheit or Rankine.

The following properties are computed:

1. Specific heat ratio

$$k = 1/(1-R/JC_p)$$

where:

- R Universal gas constant
- J Mechanical equivalent of heat
- 2. Specific heat at constant pressure

$$C_{p} = 0.2478 - 4.2047 \times 10^{-5}T + 5.8 \times 10^{-8}T^{2} - 1.49 \times 10^{-11}T^{3},$$

Btu/lb. - ^oR

3. Specific heat at constant volume

$$C_v = C_p/k$$
, Btu/lb. - ^{o}R

- 4. Coefficient of viscosity $\mu = 7.4 \times 10^{-7} (T)^{1.5} / (T + 200),$ lbm./ft. - sec.
- 5. Absolute Rankine temperature T = 459.7 + (T, $^{\circ}$ F), $^{\circ}$ R
- If temperature is in degrees Centigrade or Kelvin, use Temperature Conversion program (\$TD - 08A) from Standard Pac to convert to degrees Fahrenheit or Rankine.

Operating Limits and Warnings

Properties k, C , C and μ are good for temperature and pressure ranges of 300 – 2000 $^{\circ}$ R and 0 – 300 psia respectively.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s)

Find the specific heat ratio, specific heat at constant pressure, specific heat at constant volume, coefficient of viscosity, and absolute Rankine temperature for air at a temperature of 300 degrees Fahrenheit.

k = 1.3930 $C_p = 0.2428 \text{ Btu/lb.} - ^{\circ}\text{R}$ $C_v = 0.1743 \text{ Btu/lb.} - ^{\circ}\text{R}$ $\mu = 1.6146 \times 10^{-5} \text{ lbm./ft.} - \text{sec.}$ T = 759.70°R

Solution(s)

Condition(s)	
Keystrokes:	Outputs:
300[E] [A]>	> 1.3930
300[E] [B]>	> 0.2428
300[E] [C]>	> 0.1743
300[E] [D]>	> 1.6146 x 10 ⁻⁵
300[E]>	> 759.70

Reference (s)		
	<u>s Tables</u> , fifth printing, J	ohn Wiley & Sons, Inc.,
March, 1956. Hall,	, Newman A., <u>Thermodynamics</u>	of Fluid Flow, Prentice-
Hall, Inc., 1951.		
This program is a t	translation of the Users' L	ibrary program #01078A
submitted by Paul.		

	PROPERTIES OF AIR		5	
	k C _p C _v	μ	°R)
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Compute Specific heat ratio	T, ^o r *	A	k
		T, °F	E A	н
	or			
2	Compute specific heat at constant pressure	T, ^o R *	В	C _P /Ib.= ^O R
		T, ^o f	E B	
	or			Da.
2	Compute specific heat at constant volume	T, ^o R *		C _v , <u>Btu</u> " ^{Ib. •} R
		T, ^o f		
	or	T 0D +		lbm.
2	Compute coefficient of viscosity	T, °R *		/4,
		T, ^o f		
2	or Compute absolute Rankine temperature	T, °F		T, ^o r
3	For a new case, repeat step 2	', '		
	* Temperature can be input as ^o R or ^o F as shown.			
	Note: having calculated one of the variables			
	k,C,,C, or u, to calculate a second:			
	р V			
	Recall the temperature	Τ, ^O R	RCL 1	T, ^O R
	Go to step 2			
├				

•					-	
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY ENT		COMMENTS
001	*LBLA	21 11		85 7 RCL2		
002	FIX	-11	Compute k	058 RTN		
003	DSP4	-63 04	T, [°] R	059 *LBLC		Compute C _v
604	ST01	35 01		060 GSBA	23 11	V
	ENTT	-21		061 RCL2	36 82	
005				062 X≠Y		
006	×_	-35		863 ÷	-24	
007	5	05		064 RTN		
008	•	-62		065 *LBLD		
869	8	0 8		066 ST01		Compute µ
010	EEX	-23				
011	CHS	-22		067 1		
012	8	0 8		068 .	-62	
013	×	-35		<i>069</i> 5		
014		-62		070 Y×		
815	2	82		071 RCL1		
016	4	04		0 72 2	8 2	
	7	07		B73 D		
017				874 B		
018	8	08		875 +	-55	
019	+	-55		076 ÷	-24	
020	RCL1	36 01		877 7		
821	2	02				
022	3	03		078 .	-62	
023	7	07		079 4		
024	7 8 3	08		680 EEX		
025	3	03		081 CHS		
026	÷	-24		082 7		
027	-	-45		083 ×	-35	
028	1	93 01		084 SCI	-12	
				085 RTN		
829 979	4	0 4		086 *LBLE		
030	9	<u>09</u>		000 #2022		Compute T, °R
031	EEX	-23		088 4		compute i, k
032	CHS	-22				
833	1	01		089 5		
034	3	03		090 9		
035	RCL1	36 01		0 91 .	-62	
036	3	03		092 7		
037	Υ×	31		893 +	-55	
038	x	-35		094 FIX		
839	-	-45		095 RTN	24	
840	ST02	35 02				1
040	1	01	С _р			1
041 042	ENTT	-21				
043	1	01		100		4 1
844	ENT†	-21		100		4 1
845	•	-62				4 1
846	e	00				4 1
847	6	0 6				4 1
048	8	08	1			4 1
04 9	5	0 5				
050	RCL2	36 02				SET STATUS
051	÷	-24	1		FLAGS	TRIG DISP
052	_	-45			ON OFF	
053	÷	-24	1		0 0 2	DEG 🖄 FIX 🗷
053 054	RTN	24	1	110	1 🗆 🕱	GRAD 🗆 🛛 SCI 🗆
055	*LBLB	21 12			2 🗆 🛛	RAD 🗆 ENG 🗆
			Compute C _p		3 🗆 🛛	n_4_
056	GSBA	27 11		STERS		
0	1	2	3 4	5 6	7	8 9
-	Use					
S0	S1	S2	S3 S4	S5 S6	S7	S8 S9
						I
Α		В	с	D	E	`
					I	

Program Title	Standard Atmospher	e Below 35,322	Feet		
Contributor's Name	Hewlett-Packard				
Address	1000 N.E. Circle				
City	Corvallis	State Ore	gon	Zip Code	97330

Program Description, Equations, Variables This program computes the theoretical U.S. Standard Atmosphere temperature and pressure in English and Metric units at altitudes below 35,332 feet and 11,000 meters. Additionally, the actual mean sea level values, at a specific time, can be placed in the program for prediction of altitude temperature and pressure based on the following formulas:

$$P = \frac{T_{o}}{\left(\frac{T_{o}}{T_{o}} - aZ\right)^{n}} \qquad T = T_{o} - aZ \qquad t = T - T \text{ abs reference}$$

P = Pressure at altitude above/below mean sea level. P = Standard air pressure at mean sea level. T = Standard absolute temperature at mean sea level in Rankine/Kelvin. a = Temperature lapse rate per foot of altitude in ${}^{\circ}F/per$ meter ${}^{\circ}C$. Z = Altitude above/below mean sea level in feet/meters. n = Constant G/aR = 5.2561 T = Temperature absolute at altitude in Rankine/Kelvin. T abs ref. = 459.688 ${}^{\circ}R/273.16 {}^{\circ}K$.

t = Temperature at altitude in Fahrenheit/Centigrade

Operating Limits and Warnings 1. The program will accurately reproduce the theoretical U.S. Standard Atmosphere tables of temperature and pressure within the limits of -16,500 to 35,332 feet or -5,000 to 11,000 meters.

2. The correct temperature and pressure cannot be predicted under actual conditions when the temperature gradient is not linear, i.e. the lapse rate is not linear per foot of altitude.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s) 1. What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? 2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226,319813 1bs/in ² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 °k = 216.660000 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] 																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 1bs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> 4.364107 II. Journe Statistical Content of the statis content of the statistical content of the statistical cont																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] 																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] 																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] 																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7] 																
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 lbs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 3000[D]> 8.885413 [E]>-47.984800 [RCL] [6]>-47.984800 FCL] [6]>-411.703200 ff] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]]						
 What is the theoretical U.S. Standard Atmosphere pressure in inches of mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 2. mb = 226.319813 1bs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> 4.364107 II. Journe Statistical Content of the statis content of the statistical content of the statistical cont																
mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? 2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 1bs/in ² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> 4.364107 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]	le Problem	(s)							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
mercury, pounds per square foot, pounds per square inch, temperature i degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? 2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 1bs/in ² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> 4.364107 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]		•••	e theo	retica	1 U.S	S. St	andar	d Atmo	osphe	re ni	- -	ire	in i	nche	s of	
degrees Fahrenheit and degrees Rankine at an altitude of 30,000 feet? 2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 1bs/in ² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 °K = 216.660000 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]> -47.984800 [RCL] [6]> 4.364107 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]																
2. What is the theoretical U.S. Standard Atmosphere pressure in millibars temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? Hg = 8.885413 mb = 226.319813 lbs/in² = 4.364107 C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 RCL] [6]> 4.364107 Hold State																n
temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 lbs/in ² = 4.364107 °C = -56.50000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> [F] [b] 3000[D]> [F] [b] 3000[D]> [A:G4107	degr	ees Fah	irenhe	it and	l degr	rees	Ranki	ne at	an a'	ltitı	ıde c	of 3	0,00	0 fe	et?	
temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 lbs/in ² = 4.364107 °C = -56.50000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> [F] [b] 3000[D]> [F] [b] 3000[D]> [A:G4107				*****												
temperature in degrees centigrade and degrees Kelvin at an altitude of 11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 lbs/in ² = 4.364107 °C = -56.50000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: 0utputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]>-47.984800 [RCL] [6]> [F] [b] 3000[D]> [F] [b] 3000[D]> [A:G4107	2. What	: is the	theo	retica	1 U.S	. St	andar	d Atmo	sphe	re pr	ressi	ire	in m	illi	hars	
<pre>11,000 meters? 1. Hg = 8.885413 2. mb = 226.319813 1bs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]> 8.885413 [E]> 47.984800 [RCL] [6]> 4.364107 [013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>																
<pre>1. Hg = 8.885413 2. mb = 226.319813 1bs/in² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]> 8.885413 [E]> 47.984800 [RCL] [6]> 47.984800 [RCL] [6]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>					cent	igiu	uc un	uegi	663 1		n at	, all	ait	-i cuui	E 01	
lbs/in ² = 4.364107 °C = -56.500000 °F = -47.984800 °k = 216.660000 °R = 411.703200 °L = 216.660000 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 8.885413 [E]>-47.984800 RCL] [6]>411.703200 [RCL] [6]> 4.364107 4.364107 [013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]	······································				~											
<pre>°F = -47.984800</pre>																
<pre>°R = 411.703200 Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]> 47.984800 [RCL] [6]> 47.984800 [RCL] [6]> 411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>				07												
Solution(s) Keystrokes: Outputs: [RTN] [f] [a] 30000[D]> 8.885413 [E]> 47.984800 [RCL] [6]> >411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]						°k	= 216	6600	00							
<pre>[RTN] [f] [a] 30000[D]> 8.885413 [E]> 8.885413 [E]>-47.984800 [RCL] [6]>->411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>	°R =	411.70	3200													
<pre>[RTN] [f] [a] 30000[D]> 8.885413 [E]> 8.885413 [E]>-47.984800 [RCL] [6]>->411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>																
<pre>[RTN] [f] [a] 30000[D]> 8.885413 [E]> 47.984800 [RCL] [6]> 411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>																
<pre>[RTN] [f] [a] 30000[D]> 8.885413 [E]> 47.984800 [RCL] [6]> 411.703200 [f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]</pre>	ion(s) ^{Keys}	trokes:										Outp	outs	•		
[RCL] [6]>411.703200 [f] [b] 3000[D]> 4.364107 [013.25[A] 288.16[B] .0065[C] 273.16[ST0] [7]										>	8.8	8541	13			
_f] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[STO] [7]										>-	47.9	8480)0			
[+] [b] 3000[D]> 4.364107 1013.25[A] 288.16[B] .0065[C] 273.16[STO] [7]	.] [6]									>4	11.7	0320)0			
	[b] 3000	[D]								>	4.3	6410)7			
	.25[A] 2	88.16[B].006	55[C]	273.1	6[ST()][7]									
										>2	26.3	1981	3			
[E]>-56 5000										>-	56.5	000				
[RCL] [6]>216.6600	[E]					*****	*****					*****				
	[E]	6														

by William D. Staton.

23

24

Recall ^OK at altitude.

For new case change altitude input in step 21.

	STANDARD ATMOSPHERE BELOW 35,332 FEET		5	
	P ₀ T ₀ LR AL	T t		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			0.00
2	Initialize		RTN R/S	0.00000
3	Automatic input of U.S. Standard Atmosphere		GTO 1	
	mean sea level values of Hg, temperature, lapse		R/S	459.688000
	rate plus reference temperature absolute.			
4	Input altitude and compute Hg.	Feet	D	Hg
5	Compute temperature ^O F at altitude.		Е	°F
6	Recall ^O R at altitude.		RCL 6	°R
7	To recall input altitude in step 4		RCL 5	Feet
8	For new case change altitude input in step 4			
9	Convert program to compute LBS/IN ² at altitude.		GTO 2	
			R/S	14.695949
10	Repeat steps 4 thru 8			
11	Convert program to compute LBS/FT ² at altitude.	2116.216	A	2116.216
12	Repeat steps 4 thru 8			
13	To compute pressure and temperature based upon	Hg	A	Hg
	other than U.S. Standard Atmosphere, input			
	pressure reference at mean sea level.			
14	Input temperature reference at MSL.	°R	В	°R
15	Input temperature lapse rate per foot of	° _{F/FT} .	С	^o f/ft.
	altitude in ^O F.			
16	Repeat steps 4 thru 8.			
17	To compute the Standard Atmosphere in metric	1013.25	A	1013.25
	units, input millibars at MSL.			
18	Input temperature reference at MSL in ^O K.	288.16	В	288.16
19	Input lapse rate per meter in ^O C.	.0065	С	0.0065
20	Input temperature abs reference in ^O K	273.16	STO 7	273.16
21	Input altitude and compute pressure.	meters	D	mb
22	Compute temperature ^O C at altitude.		Е	°c
	-			

°ĸ

RCL

6

0							
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
801	*LBLa 21	1 16 11		057	ST02	35 02	Input MSL ref.
002	2	02	Inputs U.S. Stan-	058	RTN	24	temperature
003	9	09 .	dards in program	859	≭LBLC	21 13	
884		-62		060	STO3	35 03	Input temperature
005	9	09		061	RTN	24	rate.
006	2	02		0 62	≭LBLD	21 14	1 4 6 6 .
007	1	01		063	ST05	35 05	Input altitude for
008	2	02		064	RCL2	36 02	desired pressure
009	6	06		Ø65	ENTŤ	-21	and computes P_A .
010	STOI	35 01	Temponature at MSI	066	ENT†	-21	and computes A.
011	5	05	Temperature at MSL	067	RCL3	36 03	
012	1	01	in ^o R	068	RCL5	36 05	
013	8	08		069	х	-35	
014		-62		070	-	-45	
015	6	06		071	ST06	35 06	
016	8	08		072	÷	-24	
017	8	08		073	5	05	
018	ST02	35 02	1	874		-62	
019	•	-62	Temperature lapse	075	2	02	
020	0	00	rate in °F per foot	076	5	0 5	
021	ē	00	of H.	077	6	06	
022	3	03		078	1	01	
823	5	05		079	۲×	31	
824	5 6	06		080	RCL1	36 01	
025	6	06		081	X≓Y	-41	
026	1	01		082	÷	-24	
027	6	06		083	RTN	24	
028	STOJ	35 03	Tomponatura abcolut	004	*LBLE	21 15	
829	4	04	Temperature absolute	C 005	RCL6	36 0 6	Computes °F or °C
030	5	05	at the melting poin	086	RCL7	36 0 7	at altitude.
031	9	0 9	of ice under	087	-	-45	
032		-62	29.92126 Hg minus	088	RTN	24	
033	6	Ø6	32 degrees.				
834	8	08		090			
035	8	08					
836	ST07	35 07					
037	DSP6	-63 06					
038	RTN	24					
839	≭LВL Ь 2	1 16 12					
840	1	01	Input lbs/in ² for				
841	4	84	MSL reference				
<i>042</i>		-62	pressure				
843	6	06				ļ	1
844		09		100			1 I
045	9 5 9	05					1
846		09				ļ	1
047	4	04					4 1
848	8	0 8		\vdash			4 1
049	6	0 6		\vdash		<u>↓</u>	
050	1	01		\vdash		╀-┠─────	SET STATUS
051	ST01	35 01		\vdash		FLAGS	TRIG DISP
Ø52	RTN	24				ON OFF	
Ø53	*LBLA	21 11	Input MSL ref.	110			
054	ST01	35 01	pressure.	110			GRAD ⊠ SCI □ RAD ⊠ ENG □
055	RTN	24		┣───┼		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n \underline{-4}$
056	*LBLB	21 12	L				····
-				STERS	6 Temp	at 7_	8 9
0	¹ P _O Re	ef. ' T _n Ref	. Lapse Rate⁴	5A1tH	H°R/°	K T abs r	e t.
SO	S1	S2	S3 S4	S5	S6	S7	S8 S9
1							
A		В	С	D		E	I

Program Tit	le Aircraft Flyove	er Acoustic Tone Doppler	Shift
Contributor'	sName Hewlett-Packa 1000 N.E. Cin		
City	Corvallis	State Oregon	Zip Code 97330

	am Description, Equations, Variables COMPUTES COPPTER SNITT OF an alreatt fly over acoustic source frequency observed on the ground. Also
	determines the 1/3 octave-band filter, and location within the
	filter, of the observed frequency. Inputs are flight path speed
	and angle, air temperature, source frequency, and aircraft elevat
	angle. Any input frequency can be located in the A.N.S.I.* 1/3
	octave-band filters. Equations: See sketch on next page.
	Doppler shift $f_0/f_s = 1/(1-M \cos\beta)$ f_0 is observed freq. where M is source freq. M is Mach Number of
	Source angle $\beta = \theta + \alpha$ (source β =Source angle to θ serve
	Mach number Mach = V/(29.04√ t+459){V=Flt. path speed, kt (T=Air temp,°F
	*Mid-frequency of 1/3 oct-band $f_m = 10^{N/10}$, N any integer
	*Upper frequency of 1/3 oct-band f ₂ = 1.1225 f _m (nominal band edge)
	*American National Standards Institute
	ting Limits and Warnings $1/3$ octave band filters start at $f_m = 50H_z$ which
*****	corresponds to N=17, ANSI convention. Minimum input frequency of
	45 H _z .
	f_m 's are exact preferred frequencies, which are within 0.7% of
	nominal preferred frequencies.
	The time required for filter band location is a function of the l_{no3} sec <time<34 <math="" for="" sec="">17 < N < 40.</time<34>

upon any representation or description concerning the program material. NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

A			
Sketch(es)	+ of T OBSERV	ER t	
		-	observer)
Calculate the Doppler sh band filter position (f _O			
frequency for the follow $\theta_1 = 45 \text{ degre}$ $\theta_2 = 90 \text{ degre}$ $\theta_3 = 135 \text{ degre}$	ees ees	levation angl	es.
Aircraft Elev. Angle f ₀ /f _s		θ ₂ = 90° 1.01	$\theta_3 = 135^{\circ}$ 0.87
fo ^{,H} z f ₀ /f _m Band No.	829 1.04 29 2	695 1.10 28	595 0.94 28
f _m ,H _z Solutions:	7.9x10 ² (nominal of 800		6.3x10 ²
Keystrokes: 77[ENT+] 3[CHS] [A]	687[ENT+] 155[B]		Jtput
45[C]>1.21[R/S] etc.	>829.04[D]	>1.04[R/S] 29[F	R/S] 7.9 x 10 ²
Reference(s) 1. Wood, A.B., A Textbook of 2. S1.11-1966, Specification Sets, page 12, American Na	for Octave, Half	-Octave, and Thi	ird-Octave Band Filter

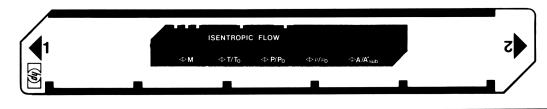
This program is a translation of the HP-65 Users' Library program #01291A submitted Edgar L. ZWieback-

	FLYOVER ACOUSTIC DOPPLER	7
INPUT t,α	INPUT f _s ,V f0/fs 1/3 O-B	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Input air temperature	t,°F		
3.	Input flight path angle (refer:Horz,+ is up)	α ,Deg .		
	Input source (aircraft) tone freq.	f _s ,H _z		
	Input flight path speed (refer:observer)	V,kts		
6.	Input aircraft elevation angle (looking towards on-coming aircraft) and calculate	θ ,Deg		f0/fs
	Doppler shift freq. ratio			
7.	Calculate tone frequency received at OBS.		R/S	f ₀ ,H _z
	Calculate 1/3 octave-band position of input freq.(ratio of input freq. to mid-freq. of appropriate band)	f,H		f/f _m
9.	Display filter band no.		R/S	N
10.	Display mid-freq. of band		R/S	f _m ,Hz
	(For a set of θ 's for a given flyover, it is			
	only necessary to do steps 6 & 7, and steps 8-10 if desired)			
	(A change in t or α can be made without affecting f, and V, and vice versa)			
	5			
	(The time required for step 8 is a function of			
	of the value of f)			
├				
┝──┤				
├				
┝──┨				
┝──┤				
┝──┦				

STEP	KEY ENTRY	KEY CODE	COMN	IENTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
001	*LBLA	21 11			057	0	00		
802	ST02	35 02	Input t,α		058	÷	-24		
003	X≠Y	-41			059	10×	16 33		
004	ST04	35 04			060	STC7	35 07		
005	X≠Y	-41			061	1	Ø1		
006	RTN	24			062	•	-62		
007	*LBLB	21 12		N/	063	1	Ø 1		
008	ST03	35 03	Input f _s ,	V	064	1 2 2	02		
009	X≠Y	-41	-		065	2	02		
010	STOE	35 06			066	5	05		
011	RTN	24			067	x	-35		
012	*LBLC	21 13			068	RCL5	36 05	Compare f	withf
		-11	Input &	calc.	069	X>Y?	16-34		z
013 014	FIX			curc.	070	GT01	22 01		
014 015	DSP2	-63 02	f ₀ /f _s		071	RCL7	36 07		
015	ST01	35 01 36 01			072	RCL5	36 05		
816	RCL4	36 04	{		073	X≠Y	-41		
017	4	04 05	1		074	÷	-24	f/f	
018	5 9	<i>0</i> 5	ł		875	R∕S	51	f/f _m	
019		<u>09</u>	1		076	RCLI	36 46		
020	+	-55	ł		677	CHS	-22		
021	1X	54	ł		078	1	01		
022	2 9	02			078	6	06		
023	9	09	1		075 080	+	-55		
024	•	-62	ļ		080 081	r∕s	-55 51	Band no.	
625	0	00							
026	4	Ø4			Ø82 807	RCL7	36 07	1	
027	Х	-35	1		883	SCI DCD1	-12	£	
0 28	RCL3	36 03]		Ø84	DSP1	-63 01	f _m	
Ø29	X≠Y	-41]		085	RTN	24		
030	÷	-24							
031	RCL1	36 01						1	
032	RCL2	36 02]						
833	+	-55]						
034	COS	42	1		090				
035	×	-35	1						
036	CHS	-22	1						
037	1	01	1					1	
038	+	-55	1					1	
039	1/X	52	1]	
840	R/S	51	1					1	
640 641	RCLE	36 06	∣ f _O /f _S Dop	pler shift				1	
042	X	-35	1		├ ──┼			1	
042 043	ST05	-35 35 05	1		 			1	
	RTN	35 05 24	1		100		1	1	
844 845			1		├ ───┼		1	1	
845 846	*LBLD	21 14	1		┣───┼		1	1	
046 047	STO5	35 Ø5	1		┣───┼		t	1	
847 840	0 0	00 75 46	1		├ ──┼		+	1	
04 8	STOI	35 46	1	~	├ ──┼			1	
049	*LBL1	21 01	Calc. upp	er freq.	┣────╂		-	SET STATUS	
050		16 25 46	f ₇ of 1/3	oct-	\vdash				
051	RCLI	36 46	1 4		┣───╋			TRIG	DISP
052	CHS	-22	ban filte	ers	┣───┼		ON OFF	DEG 🛛	FIX 🗹
Ø53	1	01	1		110			GRAD	SCI 🗆
054	6	0 6	1					RAD □	ENG D
055	÷	-55	4		┠───┼				n_2
85 6	1	01		DEAN				1	
1			12	REGIS	STERS	6	7	8	9
0	¹ θ,de	g $\left[\begin{array}{c} 2\\ \alpha, deg \end{array} \right]$	³ V,kts	^⁴ t,°F	^₅ f ₀ /H _z	°f _s ,H _z	∫ f _m ,H _z	Ň	
S0	S1	S2	S3	S4	S5	S	S7	S8	S9
30		52			1				
A		В			D		E	I	
^		ľ	ľ						
							L		

Program Title	ISENTROPIC FLOW	FOR IDEAL GASES	
Contributo Address	HEWLETT-PACKARD 1000 N. E. Circle Blvd.		
City	C orv allis, Oregon 97330	zate Zip Coo	de
Program D			
	This card replaces isentropic flow tabl Inputs and outputs are interchangeable	es for a specified specific heat ratio k. e with the exception of k.	
	The following values are correlated:		
	M is the Mach number;		
	T/T_0 is the ratio of flow temper temperature T_0 ;	rature T to stagnation or zero velocity	
	P/P_0 is the ratio of flow pressure	e P to stagnation pressure P_0 ;	
	ρ/ρ_0 is the ratio of flow density	ρ to stagnation density ρ_0 ;	
		tios of flow area A to the throat area g passages. A/A_{sub}^* refers to subsonic supersonic flow.	
	Equations:		
	$T/T_0 = \frac{1}{2 + 1}$	$\frac{2}{(k-1)M^2}$	
	$P/P_0 = (T)$	$[/T_{0})^{k/(k-1)}$	
		$\Gamma/T_0)^{1/(k-1)}$	
	$A/A^* = \frac{1}{M} \left[\left(\frac{2}{k+1} \right) \right]$	$\left(1 + \frac{k-1}{2} M^2\right) \right]^{\frac{k+1}{2(k-1)}}$	
	In the last equation M^2 is determined guess used is as follows with a positiv	d using Newton's method. The initial ve exponent for supersonic flow:	
Operating Limits			
	Remarks:		
	This iteration will normally take less on occasion. For extreme values of k (gins to iterate to find M^2 for future use. than one minute, but may take longer 1.4 is optimum) the routine may fail to e will eventually halt the routine if it	


NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title		
0		
	· · · · · · · · · · · · · · · · · · ·	
	StateZip Code	
		\mathcal{I}
Program Description,	Equations, Variables	
	A/A* values of 1.00 are illegal inputs. Instead, input an M of 1.00.	
	The calculator uses flag 3 to decide whether to store or calculate a value. If you use the data input keys (setting flag 3) and then wish to calculate a parameter based on a prior input, clear flag 3 before pressing the appropriate user definable keys.	
	Registers R_0 , R_5 and R_{S0} - R_1 are available for user storage.	
Operating Limits and V	warnings	

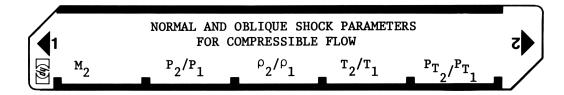
This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)						
			4	-+++	1 1	
	Example 1:					++
	A pilot is flying at N	fach 0.93 and reads	on air temp	perature of 15	5 degrees	
	Celsius (288 K) on a t	hermometer that rea	ds stagnation			
	is the true temperature	e assuming that k =	1.38?			
	Keystrokes:		Outmuter			
			Outputs:			
			1.380			
	.93 A		0.930			
	в — 288 × —		0.859	(T/T_0)		
Sample Problem(s)	288 × 273		247.352	(T, K)		
•	_		-25.648	(T, °C)		
	If the same pilot reads		P_0 of 700 m	illimeters of	mercury,	
	what is the true air pro		.			
	(Since the data input		288 was key	ed in, we mu	ist either	
	clear it, or input 0.93	•				
	.93 A C		0.575	(P/P_0)		
	700 🗵 ————		402.843	(mm Hg)		
	Example 2:					
	-		· a ·	a 12	.•	
	A converging, divergir At an area ratio A/A*	of 1.60 what are	sonic flow in	the diverging	section.	
	perature, pressure and	density? What is th	e Mach num	her? $k = 1.7$	101 tem-	
	r, r		e reaction mann			-
	Keystrokes:		Outputs:			
	1.74 f 🗛 ———		- 1.740			
			2.105	(M)		
	B		0.379	(T/T ₀)		
	C		0.102	(P/P_0)		
	D		0.269	(ρ/ρ_0)		
Solution(s)	or, alternatively, using	automatic output.				
		-	1.740 **	* (1-)		
			2:105 **	• •		
			0.379 **			
			0.102 **			
			0.269 ** 1.600 **			
			1.000			
Reference (s)						

STEP							OUTPUT
SIEP	s	TEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	DATA/UNITS
		1	Load side 1 and side 2.				
		2	Input specific heat ratio.	k		k	
		3	Input one of the following:				
			Mach number	М	А	м	
			Temperature ratio	T/T _o	в	м	
			Pressure ratio	P/P₀	C	м	
			Density ratio	$ ho / ho_0$	D	м	
			Subsonic area ratio	A/A* _{sub}	G	м	
			Supersonic area ratio	A/A* _{sup}	08	м	
		4	Calculate one of the following:				
			Mach number		A	м	
			Temperature ratio		B	T/T₀	
			Pressure ratio		C	P/P _o	
			Density ratio		D	ρ/ρ_0	
			Area ratio (subsonic or				
			supersonic)		E	A/A*	
	 _	4'	Calculate and output all				
	_ _		values automatically.		f B	k,M,T/T₀,P/P₀	
	-		values automatically.			ρ/ρ ₀ , Α/Α*	
		5	For another calculation based			<i>P</i> / <i>P</i> 0, 7 47 4	
	_ _		on same input, go to step 4				
			(or 4'). For a new input, go to				
			step 3. For a new specific heat	· · · · · · · · · · · · · · · · · · ·			
			ratio, go to step 2.				
						[

			// i i vși an				
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KE	Y ENTRY	KEY CODE	COMMENTS
06	91 *LBLa	21 16 11	Store k-1,1/(k-1)	057	SF3	16 21 03	
	92 STO2	35 02		0 58	GTOB	22 12	Output a/a
0(93 1	01		059	≭LB LD	21 14	Output ρ/ρ ₀ .
	94 -	-45		060	F3?	16 23 03	
	95 STO3	35 03		061	GT00	22 0 0	
	86 17X	52		062	GSBB	23 12	
	97 STO4	35 04		063	RCL4	36 04	
	08 RCL2	36 02		064	γx	31	
	09 RTN	24	Output M.	065	RTN	24	
	10 ¥LBLA	21 11	•	066	≭ LBL0	21 00	
	11 F3?	16 23 03		067	SF3	16 21 03	Convert ρ/ρ_0 to
	12 GTOO	22 00		068	RCL3	36 03	T/T _{and}
	13 RCL1	36 01		069	YX YX	31	T/T and GTO ^O B.
	13 KULI 14 VX	50 51		070	GTOB	22 12	
	15 RTN	24		871	*LBLE	21 15	
		21 00		072	+LDLL 3	83	Set -3 in display
		21 00 53	Store M ² .	072	CHS	-22	for subsonic guess.
	17 X2					-41	for subsonite guess.
	18 STO1	35 0 1		074 075	X≠Y		
	19 √X	54		075	F3?	16 23 03	
	20 RTN	24		876	GT01	22 01	
	21 * LBLB	21 12		877	GT03	22 03	
	22 F3?	16 23 03	Output T/T _O .	078	≢LBL1	21 01	
	23 GTOØ	22 00	Ŭ	679	ENTT	-21	Make guess of M^2 .
	24 2	0 2		080	ST06	35 06	Hand guess of the
	25 RCL1	36 01		081	FRC	16 44	
	26 RCL3	36 03		082	٩X	54	
	27 X	-35		0 83	+	-55	
02	28 2	0 2		084	X₽Y	-41	
82	29 +	-55		085	γx	31	
03	30 ÷	-24		086	ST01	35 0 1	
83	31 RTN	24	_	0 87	*LBL2	21 02	
	32 * LBL0	21 00	Convert T/T ₀ to M^2	088	RCL6	36 06	Iterate by Newtog's
	33 2	02		• 0 89	GSB3	23 03	method to find M ²
	34 X≠Y	-41		890	÷	-24	Corresponding to
	35 ÷	-24		8 91	1	01	A/A*.
	36 2	02		8 92	-	-45	
	37 -	-45		093		-62	
	38 RCL3	36 03		894	5	05	
	39 ÷	-24		895	RCLE	36 88	
	40 STO1	35 01		096	÷	-24	
	40 0707 41 √X	54		8 97	-	-62	
	42 RTN	24		8 98	5	0 5	
	43 ¥LBLC	21 13		099	RCL1	36 01	
	43 #LBLC 44 F3?	16 23 03	Output P/P	100	÷	-24	
	44 F3? 45 GT00	22 00	Output P/P ₀ .	101	-	-45	
	46 GSBB	23 12		102	÷	-24	
	47 RCL2	23 12 36 0 2		102	ST+1	35-55 01	
				103	RCL1	35-35 81 36 01	
	48 RCL3	36 03 -24		104 105		-24	1
	49 ÷	-24			÷		
	50 YX	31 24		106	ABS	16 31 - 27	
	51 RTN	24		107	EEX	-23	
	52 * LBL0	21 00		108	CHS	-22	
	53 RCL3	36 03	Convert P/P _O to	109	4	84	
	54 RCL2	36 02		110	X≟Y?	16-35	
	55 ÷	-24	T/T _O and GTO B.	111	GT02	22 02	
. 0:	56 Y×	31	PEG	ISTERS 112	RCL1	36 01	L
0	1 0	2	3 4	5	6	7	8 9
۲.	¹ M ²	ŕ k	∫ k−1 [1/k−1	-	°A/A*		Used Used
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
	- ·						
A		В	C ,	D		E	I
		4					


i

10			/ i i ugi am					
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	IENTS
1	13 - 1 X	54						
	14 RTN	24	1	170]	
		21 16 15	Set +3 in display					
	16 3	03	for supersonic					
	17 X≠Y	-41	guess]	
	18 F3?	16 23 03	34000				1	
	19 GT01	22 01					1	
	20 * LBL3	21 03					1	
		21 03 02	Convert M^2 to A/A*				1	
	21 2 22 RCL2	36 8 2					1	
							1	
	23 1	01 55		180			1	
	24 +	-55					1	
	25 ÷	-24					1	
	26 RCL3	36 03					1	
	27 LSTX	16-63					4	
	28 ÷	-24					4	
	29 STO7	35 07					4	
	30 RCL1	36 01					4	
	31 ×	-35		L			4	
	32 +	-55					4	
1	33 STO8	35 0 8					4	
	34 RCL7	36 07		190			4	
	35 2	82		L			4	
	36 ×	-35						
	37 1/X	52						
	38 Y×	31]	
	39 RCL1	36 01					1	
	40 JX	54					1	
	41 ÷	-24					1	
	42 RTN	24					1	
	43 * LBLb	21 16 12					1	
			Output values	200			1	
	44 SPC	16-11	output values				1	
	45 CF3	16 22 03					1	
	46 RCL2	36 02					1	
	47 PRTX	-14					1	
	4 8 SPC	16-11					4	
	49 GSBA	23 11					4	
	50 PRTX	-14					4	
	51 GSBB	23 12					4	
	52 PRTX	-14					4	
	53 GSBC	23 13		010			4	
	54 PRTX	-14		210			4	
	55 GSBD	23 14					4	
	56 PRTX	-14					4	
	57 GSBE	23 15					1	
	58 PRTX	-14					1	
	59 RTN	24					1	
			4				1	
]]	
			1]	
]	220]	
]]	
·]	
			LABELS		FLAGS		SET STATUS	
A M →	M B T/1	$A \rightarrow M \sim P/P$	$0 \rightarrow M \rho \rho \rho \rightarrow M \epsilon A \rho$	′A* → N sub	0	FLAGS	TRIG	DISP
	., . h			SUD	a 1			
^a k	°→k,	1,T/T ₀ °	^e A/	′A* →N sup	۳ '	ON OFF	DEG 😡	FIX 🖌
⁰ Used	1 м2	guess ² M ²	iter ³ A/A ⁴		2	1 🗆 🖄	GRAD 🗆	FIX ∲ SCI □
5	6	<u>yucss 1</u>	1ter 8 9		³ Data 2	2 🗆 🛛	RAD 🗆	ENG
Ľ	ĭ	/	Ĭ		³ Data?	3 🗆 🙀		n <u>3</u>

Contributor's Name Hewlett-Packard	
Address 1000 N.E. Circle Blvd.	
City Corvallis State Oregon	Zip Code <u>97330</u>
Program Description, Equations, Variables	
Given the values for: free stream Mach number (M_1) , the r	ratio of specific heats
(γ) , and the shock angle (θ) ; the program computes:	
$M_{2} = \left[\frac{(\gamma+1)^{2} M_{1}^{4} \sin^{2}\theta - 4(M_{1}^{3}\sin^{2}\theta - 1)(\gamma M_{1}^{3}\sin^{2}\theta + 1)}{[2\gamma M_{1}^{2}\sin^{2}\theta - (\gamma-1)][(\gamma-1)M_{1}^{2}\sin^{2}\theta + 2]}\right] Mach Nc$	b. behind shock
$\frac{P_2}{P_1} = \frac{2\gamma M_1^2 Sin^2 \theta - (\gamma - 1)}{\gamma + 1}$ Static pressure ratio	
$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)M_1^2 \sin^2\theta}{(\gamma-1)M_1^2 \sin^2\theta+2}$ Density ratio	
$\frac{T_2}{T_1} = \frac{\left[2\gamma M_1^2 Sin^2 \theta - (\gamma - 1)\right] \left[(\gamma - 1) M_1^2 Sin^2 \theta + 2\right]}{(\gamma + 1)^2 M_1^2 Sin^2 \theta}$ Temperature rati	0
$\frac{P_{T_{2}}}{P_{T_{1}}} = \left[\frac{(\gamma+1)M_{1}^{2}Sin^{2}\theta}{(\gamma-1)M_{1}^{2}Sin^{2}\theta+2}\right] \frac{\gamma}{\gamma-1} \left[\frac{\gamma+1}{2\gamma M_{1}^{2}Sin^{2}\theta-(\gamma-1)}\right] \frac{1}{\gamma-1}$	l -1 Total pressure ratio
Where the 1 subscript denotes the value upstream of the sh subscript denotes the value downstream of the shock.	nock, and the 2
Operating Limits and Warnings	
Assumes calorically perfect (Cp and Cv are constant) and t (P= ρRT) gas, and adiabatic flow. Only solutions where $_{M_2}<$	thermally perfect $M_1; \frac{P_2}{P_1}, \frac{\rho_2}{\rho_1}, \frac{T_2}{T_1} > 1$
and $P_{T_2/P_{T_1}} < 1$ are valid. If any one of these conditions four are satisfied.	is satisfied, the other

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s)
1. Find the Mach number and static pressure behind an oblique shock where
M_1 = 2.5,0=70°, γ =1.4 and P_1 =85 psi. Also find the ratios across the shock for
density, temperature and totalpressure. (See Fig. 1)
2. Find the temperature, Mach number and total pressure behind a normal shock
$(\theta=90^{\circ})$ where M ₁ =6.23, =1.4, P _{T1} =64 psi and T ₁ =624°R (See Fig. 2)
Solution(s)
1. 1.4[+] 70[+] 2.5[f] [a] [A] 0.80 (M)
[B] 6.27 (P ² /P ₁)
85[X] 533.12 (psi) (P ₂)
[C] $3.15 (P_2/P_1)$
[D] 1.99 (T ₂ /T ₁)
I ₂ /r I ₁ ,
2. 6.23 [STO] [] 90 [STO] [2] [GTO] [0] [R/S] [D] 8.49 $\left(\frac{12}{T_1}\right)$
624 [X] 5296.40 (°R)(T ₂)
$[E]30 (P_{T_2}/P_{T_1})$
64 [X] 1.62 (psi) (P _{T2})
Reference (s)
National Advisory Committee for Aeronautics, Report 1135, Equations, Tables and
Charts for Compressible Flow, By Ames Research Staff, pgs. 7,8, U.S. Government Printing Office, 1953.
This program is a translation of the HP-65 Users' Library program #01303A submitted
by Glenn D. Rambach.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.			RTN	
3.	Input specific heat ratio	Υ		Υ
	Input shock angle	θ(deg)		θ
5.		M		<u>М</u> 1
6.		1	f	-
7.	Compute any parameter:			
	Mach No. behind shock		Α	^M 2
	Static pressure ratio		В	P_2/P_1
	Density ratio		С	^ρ 2/ ^ρ ī
	Temperature ratio		D	T_2/T_1
	Total pressure ratio		E	P_{T_2}/P_{T_1}
8.	For calculations using new values for M ₁	M ₁	STO 1	M
	and/or θ	θ (deg)	STO 2	θ
9.	Reset for preliminaries		GTOO	
10.	•		R/S	
11.	Perform step 7 for any of the new parameters			
	Put unice Put unice P			
	NOTE: To perform calculations for a new value			
	of γ , use steps 2 through 7.			
	•			

-							
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLa 21			8 57	*LBLB	21 12	Compute P /P
002	ST01	35 01		058	RCL3	36 03	Compute P ₂ /P ₁
002	R4	-31	Store M ₁ in R ₁	Ø59	RCL4	36 04	
				860 860	X	-35	
664	STO2	35 0 2	Store θ in R_2				
005	R4	-31	_	061	2	02	
006	STO3	35 03	Store γ in R_3	062	×	-35	
007	1	ē1		063	RCL7	36 07	
008	-	-45		864	-	-45	
009	ST07	35 07		065	RCL8	36 08	
010	2	02		<i>066</i>	÷	-24	
611	+	-55		067	RTN	24	Display P ₂ /P ₁
	sto8	35 08		068	*LBLC	21 13	Compute ρ_2^2 / ρ_1^1
012				069	RCL5	36 05	2 1
013	*LBL0	21 00	Initial point for				
014	RCL2	36 02	repeated operations	070	RCLE	36 06	
015	SIN	41		071	2	02	
016	RCL1	36 01		072	+	-55	
017	X	-35		073	÷	-24	
018	X2	53		074	RTN	24	Display ρ_2/ρ_1
019 019	ST04	35 04		075	*LBLD	21 14	
019 020	RCL8	36 08		076	GSBB	23 12	Compute T ₂ /T ₁
				077	GSBC	23 13	
021	X	-35					
022	STO5	35 05		678	÷	-24	
023	RCL7	36 07		679	RTN	24	
024	RCL4	36 04		080	*LBLE	21 15	Display T ₂ /T ₁
025	Х	-35		081	GSEC	23 13	
026	STOE	35 06		082	GSBB	23-12	Compute P_{T_2}/P_{T_1}
020 027	R/S	51		883	÷	-24	
				084	RCL7	36 07	
628	*LBLA	21 11	Compute M ₂				
029	RCL5	36 05	-	085	1/X	52	
030	RCLS	36 08		086	Υ×	31	
031	X	-35		087	GSBC	23 13	
032	RCL1	36 01		688	x	-35	Display P _{T2} /P _{T1}
033	XS	53		089	RTN	24	
034	x	-35				+	, İ
				090			4 1
035	RCL4	36 04					
036	RCL3	36 03					
037	X	-35					1
038	1	01					1
039	+	-55					1
040	4	Ø4					4
041	х	-35					4
042	RCL4	36 04					4
042 043		30 04 01					4 1
	1]
044	-	-45		100			j i
045	X	-35]
046	-	-45					1
047	GSBC	23 13				1	1
048	x	-35		┝ ─ ──┤─			4
049	GSBB	23 12					4 1
050	÷	-24					
051	RCL8	36 08			-	L	SET STATUS
						FLAGS	TRIG DISP
052 057	÷	-24				ON OFF	
053	RCL5	36 05					DEG 🕱 🛛 FIX 😿
054	÷	-24		110			GRAD 🗆 🛛 SCI 🗆
855	1×	54				2 🗆 🛛	RAD \Box ENG \Box
056	RTN	24	Display M ₂			$3 \square \mathbf{K}$	n_2_
			4	STERS			
	11	2		5	6	2 7	8 1 9
0	¹ M ₁	² θ	3 γ $M_{1}^{2}Sin^{2}\theta$	(γ+1)M ₁	² ⁶ (γ–1)Μ	$\left[\frac{2}{1} \right]' \gamma - 1$	°γ+1
<u></u>			±				S8 S9
S0	S1	S2	S3 S4	$Sin^2 \theta$	Sin ²	5	
Α	В		С	D		E	I

Program Title Oblique Shock Angle for W	edge
Contributor's Name Hewlett-Packard	
1000 N E Circle Blvd	
Address	State Oregon Zip Code 97330
City	
Program Description, Equations, Variables	
When the upstream Mach number, the def	lection angle and the specific heat ratio
are given the compressible flow equation	on will give at most three values for the
	the weak oblique shock angle when it is
possible.	
The equation which must be solved is	
$\sin^6\sigma$ + b $\sin^4\sigma$ + c $\sin^2\sigma$	+ d = 0
where $b = - \frac{M_1^2 + 2}{M_1^2} - k \sin^2 \delta$	
$c = \frac{2M_1^2 + 1}{M_1^4} + \left[\frac{(k+1)^2}{4} + \frac{k-1}{M_1^2}\right]$] sin ² δ
2.	
$d = -\frac{\cos^2 \delta}{M_1 4}$	$M_1 = Upstream Mach number > 1.0$
MT *	δ = Deflection angle (deg)
	k = Specific heat ratio
	σ = Shock angle (D.M.S.)
Operating Limits and Warnings	
If no shock condition is possible, i.e	
corner, then the first program card st	
	ram takes some time (1 min or so) to
converge. I have never had the program	m fail to converge, although it may be
possible. Should convergence not occu	r, change the calculator to the DEG mode
after the iteration is stopped.	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.


NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)		j shock	Megde tion	
	M, >1.0	the states of th	57798	
	Pz	= specific h	act ratio	

Sample Problem(s)	Given
	$M_1 = 2.0$
	$\delta = 10^{\circ}$
	k = 1.4
	20. 0100 D
	$\sigma = 39.3139 \text{ Deg}$
Solution(s)	
Keystrokes:	Outputs:
2[x ²] [STO] [1] 10 [ST0] [2] 1.4 [ST0] [3] [A]> 39.3139

Reference(s) 1. Introductory Gas Dynamics, A.J. Chapman and W.F. Walker, HRW Series in Mech. Engineering.

This program is a translation of the HP-65 Users' Library program #00630A submitted by Harry W. Townes.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program card #1		RTN	
2.	Enter the Mach number M ₁ , square it and store			
	M_2^2 in R1	² ן M	STO 1	
3.	Enter the deflection angle δ in deg, store in			
	R2	δ/deg	ST0 2	
4.	Enter the specific heat ratio P _c store in R3	k		
5.	Run the program If program stops with a blinking display showin	~		σ deg
		y		
	zeros, the shock is detached and no solution			
	is possible for a weak shock angle.			
	NOTE: Some time is usually required for a solu	tion		
	NOTE: Some time is usually required for a solu especially as $\delta \rightarrow \delta_{max}$. The output will			
	be σ in D.MS in the X stack location.			
	Should the program not converge σ in RAD			
	is in the R8 register for as far as the			
	iteration ran.			
	The program stops when the residual is			
	< 1 x 10^{-6}			
	A direct solution of the equation gives			
	only <1% accuracy for σ without any			
	iteration.			

				'					
STEP	KEY ENTRY	KEY CODE		COM	MENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA								
		21 11				057	ENT†	-21	
002	RCL2	36 02				058	Х	-35	
003	SIN	41				059	-	-45	
004	ENTŤ	-21					ST07	35 07	
						060			
005	х	-35				061	RCL4	36 04	
006	ST07	35 07				062	RCL5	36 05	
007	RCL3	36 03				063	×	-35	
008	x	-35							
						064	3	03	
009	RCL1	36 01				065	X	-35	
010	2	<i>02</i>				066	RCL6	36 06	
011	+	-55							
						067	-	-45	
012	RCLI	36 01				068	2	02	
013	÷	-24				069	÷	-24	
014	+	-55				070	RCL4	36 04	
015	CHS	-22							
						071	ENTŤ	-21	
01E	3	03				072	ENT†	-21	
017	÷	-24	1			873	Х	-35	
018	ST04	35 04	b/3	R4		074	x	-35	
			1						} I
619	RCL3	36 03	1			075	-	-45	
020	1	01	1			076	STO8	35 08	
021	+	-55	1			077	RCL7	36 07	
022	ENTT	-21	1						
			1			078	ENTT	-21	
023	Х	-35	1			079	ENTŤ	-21	
824	4	Ø4				080	Х	-35	
025	÷	-24				081	X	-35	
026	RCL3	36 03				082	ST06	35 06	
027	1	01				083	RCL8	36 08	
628	-	-45				084	ENTT	-21	
		36 01							
8 29	RCL1					085	X	-35	
030	÷	-24				<i>886</i>	÷	-55	
031	+	-55				087	0	00	
032	RCL7	36 07							Test for existance
						088	X¥Y?	16-35	
033	х	-35				089	1/X	52	of weak shock
034	RCL1	36 01				090	RCL2	36 02	
035	2	02							Blinking display
						091	TAN	43	for no solution
036	Х	-35				092	STO2	35 02	possible
837	1	01				093	RAD	16-22	possible
038	+	-55				094	RCLS		
								36 08	
03 9		36 01				<i>09</i> 5	RCL6	36 Ø6	
040	ENTT	-21				096	CHS	-22	
841	х	-35	1			097	12	54	
	÷	-24	ł						
042			1			098	÷	-24	
043	+	-55	1			099	COS-	16 42	
044	3	03	1			100	Pi	16-24	
045		-24	1						
			C/3	R5		101	4	04	
046		35 05	10/3	сл		102	X	-35	
047	RCL2	36 02	1			103	+	-55	
048		42	1				3	03	
			1			104			
049	RCL1	36 01	1			105	÷	-24	
050	ENTŤ	-21	1			106	COS	42	
051	х	-35	1			107	RCL7	36 07	
052		-24	1						
			1			108	CHS	-22	
05 3		-22	d	R6		109	1X	54	
854	ST06	35 06	la l			110	x	-35	
055	RCL5	36 05	1						
						111	2	02	
8 56	RCL4	36 04				112	х	-35	
		-			REGIS	TERS			
0	1 1 2	2500110	2 3	k		⁵ Used	⁶ Used	⁷ Used	$^{8}\sigma$ in RAD 9
ľ	¹ Mן ²	² δand tor	10	k	4 Used	usea	Usea	Usea	
<u></u>	S1	S2	S3		S4	S5	S6	S7	S8 S9
S0	51	32	33						
					1			L	
А		В		С		D		E	I
1									

		7	7 riugiai		1115 11			2
STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
·	DCL 4	36 04		169	SIN	41		
113		36 04 -45		170		-45		
114				171		-24		
115		54		172		-22		
116		16 41 75 ao		173		36 01		
117		35 08	σ in RAD from di	rect 174		-45		
118		-62	solution of the	175		24		
119		00	equation. Itera	tion '		2 /		
120		Ø1	improves accurac					
121		35 06	A R/S in step 30					
122		36 08	would eliminate					
123		-55	iteration	180				
124		23 00	rteration				1	
125	ST07	35 07						
126	RCL8	36 08					4	
127		23 0 0					4	
128		36 07					4	
129		-41					4	
130		-45					4	
130		36 06					1	
131		-24					1	
]	
133		35 07		190				
134		21 01						
135		36 08						
136		23 00					1	
137		36 07					1	
138	÷	-24					1	
139	ST-8	35-45 08					4	
140	RCL8	36 08					4	
141		-24					ł	
142		16 31					4	
143		-23					4	
144		-22		200				
145		06						
145		16-35]	
140		22 01						
147		36 08						
			σ in deg after					
149		16 46	convergence				Ĩ	
150		24					1	
151		21 00						
152		35 05						
153		43		210			1	
154		52					1	
155		36 02					1	
156		-55					1	
157		02					1	
158		-35					1	
159		36 05					1	
160		02					1	
161		-35					1	
162		35 05					1	
163		42		220			1	
164		36 03					1	
165		-55					1	
166		36 02					1	
167		-35				·····	1	
. 168		36 05	LLABELS	I	FLAGS		SET STATUS	
Δ	B			E	0			
0	b	c		e	1	ON OFF	TRIG	DISP
а	d	c	u	ъ		0 □ ⊡⁄,	DEG 🗹	FIX 🗹
0	1	2	3	4	2	100/	GRAD 🗆	SCI
5	6	7	8	9	3		RAD 🗆	ENG 🗆
		ľ.				3 🗆 🗹	1	···

Program Title	Mach Number	and True A	irspee	ed		
Contributor's Na		-Packard				
Address	1000 N.E.	Circle Blvo].			
City	Corvallis		State	Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.

This program converts calibrated airspeed (CAS) to mach number and true airspeed (TAS). Pressure altitude (PALT) must be known to calculate mach number (M). Aircraft recovery coefficient (C_T) and indicated air temperature (IT) must also be known to calculate true airspeed. The recovery coefficient varies from 0.6 to 1.0 but is around 0.8 for most aircraft.

Pressure ratio
$$\left(\frac{P}{P_0}\right) = \left[\frac{518.67 - 3.566 \times 10^{-3} \text{ PALT}}{518.67}\right]^{5.2563}$$

$$M^2 = 5 \left[\left(\frac{P_0}{P} \left\{ \left[1 + 0.2 \left(\frac{CAS}{661.5}\right)^2 \right]^{3.5} - 1 \right\} + 1 \right)^{0.286} - 1 \right]$$

$$TAS = 39M \sqrt{(IT + 273)} \left[C_T \left(\frac{1}{(1 + 0.2 M^2)} - 1 \right) + 1 \right]$$

Operating Limits and Warnings

Accuracy degenerates for mach numbers in excess of one.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

(1	1			1	
Sketch(es)									
· · · · · · · · · · · · · · · · · · ·				•					
			+	++-					
				++					
				++					
				++-					
	anna an an an ann an ann an ann ann ann								
(Oceanity Developments)									
Sample Problem(s)	For a press	uro altitud -	of 25 500 (-			
		sure altitude	or 25,500 f	eet, a calib	rated airsp	eed of			
	550 KHOIS	, a recovery	lactor of	U.8, and a	an indicat	ed air			
	temperatur	e of 5 degr	ees Celsius	, what is	the flight	mach —			
		d the true airs	speea ?			-			
						····			
Solution(s)		0.04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		= 0.84							
	TA	S = 515.76 k	nots						
	Keystrokes			and a second	See Die	splayed			
		350 в							
					0.84				
	.8 C 5 C	D			515.76				
Reference (s)									
This program	ic a trans	lation	of the	HD_65	lleane	1 i k	rany	nnana	n
					USERS	LID	rary	prograi	
#00531B subm	itted by He	ewlett-P	ackard	•					

	MACH NUMBER A			5
PALT →P/P	CAS 0 →M	C _T T(→T	°C) AS	/
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program*			
2	Input pressure altitude	PALT	A	P/P ₀
3	Input calibrated airspeed in			
	knots and calculate mach			
	number	CAS	В	м
4	Input recovery coefficient			
	(.8 for most aircraft)	С _Т	С	Ст
5	Input indicated air temperature			
	and calculate true airspeed			
	in knots	IT (°C)	D	TAS
6	For same aircraft at same			
	PALT go to step 3 and skip			
	step 4. For different PALT go			
	to step 2 and skip step 4. For			
	totally new case go to step 2.			

*For pressure altitudes above 36089 feet, calculate P/P_{o} using Standard Atmosphere,

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY COD 001 *LBLA 21 11 057 ST04 35 04 002 3 03 058 RTH 24 003 5 05 059 *LBLC 21 13 004 6 06 060 060 ST03 35 03 005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14 007 CHS -22 02 02 02 02	Input recovery
001 *LBLA 21 11 057 ST04 35 04 002 3 03 058 RTN 24 003 5 05 059 *LBLC 21 13 004 6 06 060 ST03 35 03 005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14	Input recovery
002 3 03 058 RTH 24 003 5 05 059 *LBLC 21 13 004 6 06 068 ST03 35 03 005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14	
003 5 05 059 *LBLC 21 13 004 6 06 068 ST03 35 03 005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14	
004 6 06 060 ST03 35 03 005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14	
005 6 06 061 RTN 24 006 EEX -23 062 *LBLD 21 14	
006 EEX -23 062 *LBLD 21 14	coefficient
AND CHS -22 863 2 82	
808 6 06 064 7 07	Calculate TAS
009 x -35 065 3 03	
010 CHS -22 Convert pressure 066 + -55	
011 5 05 altitude to 067 ST05 35 05	
012 1 01 pressure ratio 068 RCL4 36 04	
013 8 08 069 GSBE 23-15	
011 00 07024	
01462 015 6 06 071 RCL5 36 05	
018 LSTX 16-63 074 × -35	
019 ÷ -24 075 RCL5 36 05	
820 5 05 876 + -55	
82162 877 JX 54	
<u> </u>	
023 5 05 079 9 09	
024 6 06 080 × -35	
025 3 03 081 RCL4 36 04	
826 Y× 31 882 × -35	
027 STO6 35 06 083 RTN 24	
03 0 6 0 6 0 86 × -35	
83 1 6 0 6 0 8762	4
03 2 1 0 1 0 88 2 0 2	
03362 089 × -35	1
034 5 05 Convert CAS to mach 090 1 01	
$035 \div -24$ number $091 + -55$	
036 GSBE 23 15 092 RTN 24	
037 3 03	1 1
038 -62	
039 5 05	
040 Y [×] 31	
041 1 01	
043 RCL6 36 06	
84 4 ÷ −24	
045 1 01	
846 + -55	
04762	
048 2 02	
04 9 8 08	
05 0 6 0 6	SET STATUS
051 Y* 31 FLAG	S TRIG DISP
052 1 01 ON C	
	🕱 DEG 🛛 FIX 🖾
	🕅 GRAD 🗆 SCI 🗆
	🛛 RAD 🗆 ENG, 🗆
	X n_2_
05€ √X 54 REGISTERS	i and i a
	8 9
°T M T P/P ₀	
S0 S1 S2 S3 S4 S5 S6 S7	S8 S9
	I
A B C D E	

ogram Title	TAKE-OFF RUN VS. D	ENSITY ALTITUDE	
ontributor's Name	Hewlett-Packard,	Corvallis Division	
\ddress	1000 N. E. Circl	e Blvd.	
ity	Corvallis	State OR	Zip Code 97330
	h, Equations, Variables 6 $[1 - (\frac{\rho}{20})^{0 \cdot 235}]$	Density altitude	
$\rho/\rho \sigma = (28)$	^β /T _{°K}) (1-6.87 x 10	-	
	Pressure altitude		
F = 1 + 2.2	18 x 10 ⁻⁵ A _D + 2.0	$32 \times 10^{-8} A_{\rm D}^2$	
	/W _G) · W _A · F		
where			
D _A = Actua	l take-off run (Ft)	
D _{STD} = Sea	level take-off ru	n at 15°C and full gross	weight
W _G = Gross	weight		
W _A = Actual	l take-off weight		
Operating Limits and	Warnings Comput	ed value of D _A is an appr	oximation to be tempered
• •	-	It depends on runway surf	ace condition, aircraft
		mes zero wind. No provis	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)
Sample Problem(s) Land performance of a popular twin engine amphibian is a ground run
of 965 feet (sea level) at 15°C at full gross weight of 6,000 lbs.
· · · · · · · · · · · · · · · · · · ·
How much runway will it require at Laramie, Wyoming (elev, 7300 ft.) on a summer
day when outside air temperature is 35° C (95°F) and plane is loaded to 5750 lbs?
day when outside all temperature is 55 c (55 F) and plane is foaded to 5750 ibs:
Solution(s) 965/6000 = .1608 - Aircraft parameter to be inserted in program at LBL 1.
A _D (density altitude) = 11094 ft
D _A (actual take-off distance) = 3461 ft Outpoints
$K_{\text{excharge}} = 0.65[\text{ENT} A] - 60.00[A][CTTD][O] - 25[\text{ENT} A] - 72.00[\text{ENT} A] - 575.0[A] + 11.00/A$
Keystrokes: $965[ENT +] 6000[+][STD][0] 35[ENT +] 7300[ENT +] 5750[A] \rightarrow 11094$
$ B \rightarrow 3461$
[B] → 3461
[B] + 3461
[B] + 3461
Reference(s) 1) HP-65 Users' Library Program #532A
Reference(s) 1) HP-65 Users' Library Program #532A
Reference(s) 1) HP-65 Users' Library Program #532A 2) "AOPA Handbook for Pilots - 1974", page 15 (F VS A _D)
Reference(s) 1) HP-65 Users' Library Program #532A
Reference(s) 1) HP-65 Users' Library Program #532A 2) "AOPA Handbook for Pilots - 1974", page 15 (F VS AD) 3) "Aerodynamics of the airplane", Millikan, John Wiley & Sons, 1941,
Reference(s) 1) HP-65 Users' Library Program #532A 2) "AOPA Handbook for Pilots - 1974", page 15 (F VS A _D)
Reference(s) 1) HP-65 Users' Library Program #532A 2) "AOPA Handbook for Pilots - 1974", page 15 (F VS AD) 3) "Aerodynamics of the airplane", Millikan, John Wiley & Sons, 1941,

User Instructions

TAKE-OFF RUN/DENSITY ALTITUDE

7

DENS. ALT. T OFF RUN

1

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Adjust aircraft constant as required	G.R.Height		Height
		F.G.Weight	÷	
			<u>STO</u> φ	
3.	Input T _A	°C		
4.	Input A _P	Ft.		
5.	Input W _A	lbs.		
	Display A _D			Ft.
6.	Compute and Display D		B	Ft.

Program Listing I

						5							
S	TEP	KEY ENTRY	KEY CODE		COM	MENTS	STEP	KEY ENTRY		KEY CODE		СОМ	MENTS
	001	*LBLA	21 11	1			057	ENTT		-21			
	002	DŚPØ	-63 00				0 58	2		02	1		
	003	ST01	35 Ø1	WA	(Take	off Wt.)	059 059			-62	1		
	004	R↓	-31			ure Alt.)	005 060			81	1		
	005	ST02	35 02	P P	(11699	ule All.)		1			1		
	006	R↓	-31				061	8		08	1		
							062	EEX		-23	1		
	<i>007</i>	2 7	02				063	CHS		-22	1		
	008	<u> </u>	07				064	5		05	1		
	009	3	03				065	х		-35			
	010	STO3	35 03				065	1		Ø1	1		
	011	÷	-55				ØE7	+		-55			
	012	STO4	35 04	Tem	p.°k		068	X≢Y		-41	1		
	013	6	0 6				069			-21		_	
	014		-62									2	
	015	• 0	08				070	X_		-35	A D		
	016	8 7	00 07				071	2		02			
							072			-62			
	017	6	06	1			073	0		00			
	018	EEX	-23	1			074	3		03			
	019	CHS	-22	1			075	2		02			
	620	6	06				076	EEX		-23			
	021	RCL2	36 02				07 7			-22			
	022	X	-35										
	023	CHS	-22				078 070	8		08 75			
	824	1	01				079	Х		-35			
	025 025	+		}			080			-55			
			-55				081	RCLØ		36 00			
	026	5	05				082	X		-35			
	027	•	-62				083	RCL1		36 01		<i>.</i> .	
	02 8	2 5	0 2				084	x		-35		(Actu	al Take-
	029	5	05				085			24			ance, Ft.)
	030	6	Ø6				086	R∕S		51		DISL	ance, rl.)
	031	γ×	31					K/ 0		51			
	032	RCL3	36 03						+		t		
	033	1	00 00 01						+		1		
	034	5	05				090		+		1		
							090		+				
	035 074	+	-55						-		1		
	036	х	-35										
	037	RCL4	36 04										
	038	÷	-24								I		
	039	•	-62										
	040	2	02						Γ		1		
	041	3	03						\top		1		
	842	5	05				├ ───┼		+		1		
	042 043	γ×	31				┣───┼		+		1		
	043 044	CHS	-22	1			100		+				
									+				
	045 045	1	01				\vdash		+				
	046	+.	-55						\downarrow				
	847	1	01										
	048	4	Ø4										
	849	5	05						Γ		L		
	05 0	3	03						Τ		SET S	STATUS	
	051	6	06						1	FLAGS	т	RIG	DISP
	052	6	06	Ι.			┣────┼		+	ON OFF		nid	
	052 053	X	-35	A _D			┝───┼		+		DE	G 🕱	FIX 😡
		RTN		-			110		+		GR		sci 🗖
	054 055		24						+	$2 \square \mathbf{X}$	RA		
	055	*LBLB	21 12				┝───┼		╉──	3 🗆 🖄			n_0
	05 6	ENTT	-21								L		
				1-			STERS			1	10		10
0		¹ W _A	² A _P	3	273	4 T [°] k	5	6		7	8		9
50		″A	S2	S3	_,_		S5	S6		S7	S8		S9
S0		51	52	53		34	33	30		5'			
A		<u> </u>	I B		С	1	D	1	E	L	1	1	<u> </u>
l^			-		Ĭ		-		-			ľ	

Program Description I

Program Title TRU	E AIR TEMPERATURE AN	ND DENSITY ALTITUDE	
Contributor's Name	Hewlett-Packard,	Corvallis Division	
Address	1000 N. E. Circle	e Blvd.	
City	Corvallis	State OR	Zip Code 97330

Program Description, Equations, Variables This program accounts for the compressibility effects of high speed flight. Given the mach number (M) and the aircraft recovery coefficient (C_T = 0.8 for most aircraft), indicated air temperature (IT) is converted to true air temperature (T). True air temperature and pressure altitude are then converted to density altitude. For low flight mach numbers, compressibility effects are small. In such cases only temperature and pressure altitude (PALT) are needed to calculate density altitude (DALT).

$$T(K) = C_T \left(\frac{IT(K)}{0.205 M^2 + 1} - IT\right) + IT(K)$$

DALT = 145366
$$[1 - (\frac{\rho}{\rho o})^{0.235}]$$

where

$$\frac{\rho}{\rho_0} = \frac{288.15}{T(K)} [1 - 6.879 \times 10^{-6} PALT]^{-5.256}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)							
Sample Problem(s)							
	1. M:	= 0.87					
		= 0.80					
		= 8°C					
	PA	PALT = 10,000 ft					
	PAI	LT = 9,000 ft					
	1. T =	=-22,21°C					
Solution(s)		LT = 7852.96 ft	ar e r				
		LT = 10,703.11 ft	•				
	Keystro	okes [f][a]	See	Displayed			
		7[A]8[C]	-22				
		D00[E]		2.96			
	100						
		[D]9000[E])3,11			

Reference(s) This program is a translation of the HP-65 Users' Library Program #00532A Submitted by User's Library.

User Instructions

		TRUE AIR TEMPERATURE &		
1		DENSITY ALTITUDE IT	DALT	7
(h)	М	c _T →T	→DALT	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	EYS	OUTPUT DATA/UNITS
1	Enter program		A	а	
2	Initialize				0.80
3	If you know the true air temperature, go to				
	step 7				
4	Input the following:				
	mach number	М	Α		М
	recovery coefficient (if different from				
	0.8)	C _T	В		C _T
5	Input indicated air temperature and calculate				
	true air temperature	IT(°C)	С		T(°C)
6	Go to step 8				
7	Input true air temperature	T(°C)	D		T (K)
8	Input pressure altitude and calculate density				
	altitude	PALT	E		DALT (ft)
9	For new case go to step 3				
├					
├					
			J	L	

97 Program Listing I

$T_{\rm T}$ $T_{\rm T}$ $T_{\rm T}$ $T_{\rm T}$ $T_{\rm T}$ $T_{\rm T}$				// I 1051 and				
602 . -62 Initialize 65 + -55 66 803 805 711 24 859 5 85 86 -62 805 811.11 1000 862 5 85 86 -62 86 86 -62 86 86 -62 86 86 -62 86 86 -62 86 86 -62 86 86 86 86 86 66 1 86				COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*LBLa 2			057	1	Ø1	
883 6 66 <td< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		•						
864 \$17.3 35 03				Initialize				
e865 RIM 24 661 2 62 e867 ST04 35 64 Input mach number 663 6 66 e808 RILB 21 11 662 5 65 66 66 66 e809 #LEB 21 12 Input mach number 663 6 67 75 65 66 66 67 75 65 67 74 71 74 73 74								
Bef S104 35 04 Input mach number 063 6 064 7^{\times} 31 Bef S103 35 03 Input mach number 063 6 064 7^{\times} 31 Bef S101 21 Input recovery 867 5 053 665 665 665 666 1 01 Bef S23 S23 Input recovery 867 5 053 665 665 665 665 665 665 665 665 665 673 6626 7 755 667 667 75 667 75 667 767 673 26 266 675	005	RTN	24			2		
Bef S104 35 04 Input mach number 063 6 064 7^{\times} 31 Bef S103 35 03 Input mach number 063 6 064 7^{\times} 31 Bef S101 21 Input recovery 867 5 053 665 665 665 666 1 01 Bef S23 S23 Input recovery 867 5 053 665 665 665 665 665 665 665 665 665 673 6626 7 755 667 667 75 667 75 667 767 673 26 266 675	006	≭LBLA	21 11			5		
068 RTN 24 Imput factor 064 y+ 31 010 ST03 35 03 065 71 01 065 76 06 011 RTN 24 Input recovery 065 7 05 05 05 011 RTN 24 Input recovery 065 7 05 05 05 011 RTN 24 Input recovery 065 7 05 05 05 011 RTN 24 Input recovery 060 x -35 05	007	ST04	35 04	Input mach number		6		
0009 #LBLE 21 i2 12 665 $RCL6$ 35 66 61 011 RTN 24 Input recovery 665 $RCL6$ 35 66 61 012 LEL 21 i factor 666 61 61 61 61 013 580 23 14 675 665 871 -55 665 014 RCL 366 692 \times -355 616 871 $7-24$ 871 616 015 $RT1$ -21 677 7^{\times} 31 606 675 7° 31 616 32° -355 616 877 1° 616 33° 31 616 622 7° 31 012 X° 735 879 1° 61 822 75° 616 021 X° 75° 823 30° 30° 30° 30° 30° 30° 30° 30° <	008	RTN		input mach number				
effect Store <								
eff:1 RTN 24 Input recovery 067 5 05 012 8180 213 14 066 + -55 066 + -55 014 RCL4 36 04 878 RCL5 36 05 35 015 ENT -21 878 RCL5 36 02 02 02 04 077 5 062 + 24 02 04								
e12 xIBLC 21 is 3 factor 066 -35 <				Input recovery				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
eff RCL4 35 044 RCL4 35 047 -24 -762 RCL5 36 -52 Calculate true 070 RCL5 36 -52 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
eff ENT1 -21 000000000000000000000000000000000000								
eff × -35 Calculate true eff -62 eff -62 eff								
eff - -62 Calculate true 877 2 62 62 Calculate density 818 2 82 5 65 87 5 85 87 3 87 87 3 87 87 3 87 3 87 87 3 87 87 88 4 44 44 44 44 44 44 44 46 46 825 6 66 66 66 825 6 66 66 825 6 66 66 825 6 66 6 6 6 6 6 6 6 6 6 6 6								
016 2 02 <th02< th=""> 02 <th03< th=""> <th0< td=""><td></td><td></td><td></td><td>Coloulate true</td><td></td><td></td><td></td><td></td></th0<></th03<></th02<>				Coloulate true				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						2		Calculate density
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2		Lemperature		3		
021 \times -35 027 CHS -22 022 1 01 01 01 01 023 $+$ -55 079 $+$ -55 024 $+$ -24 028 1 01 025 $RCL5$ 36 03 03 03 026 $ -45$ 082 5 05 027 $RCL5$ 36 05 082 5 066 026 $ -45$ 086 -35 086 -35 086 -35 023 $ -55$ 086 -35 086 -37 -35 023 $ -55$ 086 -37 -35 086 -37 -37 033 $ -36$ 066 -37 -37 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>arcrude</td>		5						arcrude
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
625 RCL5 36 65 626 - -45 982 5 95 627 RCL3 36 93 983 3 93 628 x -35 984 6 96 629 RCL5 36 96 983 3 93 629 RCL5 36 96 987 R1N 24 930 + -55 986 x -35 931 ST05 35 987 R1N 24 933 - - - - - - 933 - - - - - - 933 - - - - - - - 933 - <td></td> <td></td> <td></td> <td></td> <td>080</td> <td>1</td> <td>01</td> <td></td>					080	1	01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		RCL5						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	027	RCL3				3		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	028	X	-35			Ĕ		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	829	RCL5	36 0 5					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 1	K / H	27	1 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					├ ───┼			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					090			4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Convert $T(^{\circ}C)$ to				4
039 . -62 040 1 01 041 5 05 042 ST06 35 06 043 + -55 044 ST05 35 05 044 ST05 35 05 044 ST05 35 05 044 ST05 35 05 045 RTN 24 046 *LBLE 21 15 047 6 06 048 . -62 049 8 08 050 7 07 051 9 09 052 EEX -23 053 CHS -22 054 6 06 055 x -35 056 CHS -22 056 CHS -22 056 CHS -22 050 S1 S2 051 S2 S3 056 CHS -22 056 CHS -22 </td <td></td> <td>7</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>4 </td>		7			+			4
040 1 01 041 5 05 042 ST06 35 06 043 + -55 044 ST05 35 05 044 ************************************		3		I(K) and store It.	+			4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•						4
042 ST06 35 06 043 + -55 044 ST05 35 05 044 ST05 35 06 044 ST05 35 06 044 ST05 35 06 044 ST05 06 0 100 046 *LBLE 21 15 06 047 6 06 06 0 55 050 7 07 0 52 EEX -23 055 x -35 05 CHS -22 50 GRAD BCG FLAGS FIX SCI 0 1 2 3 C 10 1 SCI ENG SCI ENG SCI ENG SCI ENG SCI ENG N SCI ENG <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4 </td>								4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	┝───┼			4
044 \$\$T05 35 05 045 \$\$RTN 24 046 *LBLE 21 15 047 6 06 048 . -62 049 8 08 050 7 07 051 9 09 052 EEX -23 053 CHS -22 055 x -35 056 CHS -22 0 1 2 3 0 1 2 3 C _T 4 M 5 T(K) 6273.15 7 8 9 53 S4 S5 S6 S7 0 1 2 3 S4 S5 S6 S7 8 9 - - - - - - 0 1 2 3 S4 S5 S6 S7 S8 S9					┝───┼			4 1
045 RTN 24 046 *LBLE 21 15 047 6 06 048 -62 049 8 08 050 7 07 051 9 09 052 EEX -23 053 CHS -22 055 x -35 056 CHS -22 0 1 2 3 C 0 1 2 3 C 0 1 2 3 5 7 0 1 2 3 5 56 0 1 2 3 5 5 0 1 2 3 5 5 0 1 2 3 5 5 0 1 2 3 5 5 0 1 2 3 5 5 0 1 2 3 5 5 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 I</td></td<>								1 I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					100			1 1
047 6 06 048 -62 049 8 08 050 7 07 051 9 09 052 EEX -23 053 CHS -22 0 1 2 0 3 5								1 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*LBLE						1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	049							L
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			07					SET STATUS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9					FLAGS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Calentate				DEG 😡 🛛 FIX 😠
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					110			GRAD 🗆 🛛 SCI 🗆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				ratio			2 🗆 🛣	
REGISTERS 0 1 2 3 C _T 4 M 5 T (K) 6273.15 7 8 9 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9							<u>3 🗆 x</u>	n
0 1 2 3 C _T 4 M 5 T (K) 6273.15 7 8 9 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9	1	CHO	<i>~~</i>	REGIS	STERS			
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9	0	1	2		F	6,70 15	7	8 9
	ľ				T(K)	2/3.15		
	S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
A B C D E I								
	A		в	c	D		E	I

Program Description I

Program Tit	Ne Aircraft Climb		
Contributor'	's Name Carroll F. Lam		
Address	4411 Random Ct.		
City	Annadale	State VA	Zip Code 22003
-	escription, Equations, Variables	citudes, A ₁ and A ₂ , and ass	sociated headwinds at
		program will compute the	
		VW_	

1. $D_{min} = [(V_{cr} - V_{cl}) + (\frac{1}{2})] (\frac{Cr}{W_1 - W_2}) TC$		
	where: V _{cr} = cruise air spe	ed
	V _{cc} = climb air spee	d
Δ	$T_c = time to climb,$	A _l to
2. $T_{climb} = \frac{A_m}{ROC_{max}} ln \left(\frac{A_m - A_1}{A_m - A_2}\right)$	where: A _m = aircraft celin	
3. $T_{act} = \frac{\frac{D_{act} - [V_{c1} - (\frac{W_1 + W_2}{2})] T_c}{V_{cr} - W_2} + T_c}{V_{cr} - W_2}$	ROC _{max} = sea level r of-climb	ate-
4. $T_{save} = \frac{D_{act}}{V_{cr} - W_{l}} - T_{act}$		
Operating Limits and Warnings		
W ₁ , W ₂ ≥ 0		
A ₂ >A ₁		
D > D if steps 9,10,11 are to be used.		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description I

Program Title Aircraft Climb						
Contributor's Name Carroll F. Lam Address 4411 Random Ct.						
City Annandale	State VA	Zip Code22003				
Program Description, Equations, Variables(conThe equation for D_{min} is derived by spossibilites for traveling between poassures that the travel time based onheadwind component is less than the taltitude A_1 .	etting up an equation ints A and B ₁ and so climbing to a highe	olving for the D that er altitude with a smaller				
Although the program doesn't incorporate it, there would in general be an additional benefit in climbing to a higher altitude, namely a higher true airspeed will generally result.						
Operating Limits and Warnings See previous page.						

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es) W_1 V_{CR} V_{CR						
Sample Problem(s)						
Assumed aircraft parameters: $V_{cr} = 150 \text{ mph}$ $V_{c1} = 85 \text{ mph}$ $ROC_{max} = 850 \text{ ft/min}$ $A_{max} = 18.5 \text{ kft}$						
Given: Current Altitude $(A_1) = 3.5 \text{ kft}$ Current Headwind Component $(W_1) = 38 \text{ mph}$ Potential Altitude $(A_2) = 11.5 \text{ kft}$ Headwind Component at^2A_2 $(W_2) = 10 \text{ mph}$ Distance Remaining $(D_{act}) = ^2185 \text{ miles}$ Find: 1. Distance required for climb to breakeven						
2. Time to fly distance remaining if climb is made 3. Time saved by climbing to higher altitude 4. Time to climb to new altitude						
Solution(s) 150[ST0] [1] 85[ST0] [2] [850] [ST0] [3] 18.5 [ST0] [4]						
11.5 [ENTER] Store Az	11.50					
10 [ENTER] Store W _z	10.50					
3.5 [ENTER] Store A	3.50					
<u>38 [A]</u> Store W ₁	11.50					
1. [B] Compute D 2 105 [G] Compute D	87.54					
2. 185 [C] Compute T for 185 miles	1.28 (1 hr, 28 mins)					
3. [R/S] Compute T saved	0.10 (10 mins)					
4. [D] Compute T _{climb}	0.16 (16 mins)					
Reference(s) Equations (1),(2), and (4) are submitter's own derivations based on the geometry of the problem. Equation (3) is based on an assumption that ROC varies lineary with altitude						
$\begin{bmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	e any good aeronautical gineering text.					

L

User Instructions

STEP	INSTRUCTIONS INPUT DATA/UNIT		KEYS	OUTPUT DATA/UNITS
1.	Enter program card 1			
2.	Input specific aircraft parameters			
		V _{cr}	STO 1	Vcr
	Cruise airspeed V (miles/hr) Climb airspeed V _{c1} (miles/hr)		ST0 2	V _{c1}
	Sea-level rate of climb (ft/min)	RoC	STO 3	R _o C
	Ceiling (kft)	Amax	STO 4	A _{max}
3.	Enter program card 2			
4.	Input higher altitude	A _z (kft)	ENTER	
5.	Input wind at higher altitude	W _z	ENTER	
6.	Input lower altitude	$A_1(kft)$	ENTER	
7.	Input wind at lower altitude	W		
8.	Compute minimum remaining distance		B	D _{min}
	If actual distance remaining is greater than			
	D _{min} k go to step 9; otherwise stop, or go to			
	12.			
9.	Key in actual stage length	Dact		
10.	Compute actual remaining time with climb		C	$T_{act}(H.MM)$
11.	Compute time saved by climbing		R/S	T _{save} (H.MM)
12.	Compute climb time		D	T _{climb} (H.MM)
	Repeat steps 4-7 to enter new data.			
	· · · · · · · · · · · · · · · · · · ·			

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	
801	*LBLA	21 11	T	057	+	-55	Compute Actual	
002	ST05	35 05		058	2	02	Stage Time	
003	R↓	-31	Store Data	0 59	÷	-24	Stage Time	
004	STOE	35 06						
004	3788 R↓	-31		060	CHS	-22		
				061	RCL2	36 02		
006	STO7	35 07		062	+	-55		
007	R↓	-31		063	RCL9	36 09		
008	ST08	35 0 8		064	x	-35		
009	RTN	24	1	0 65	-	-45		
010	*LBLŨ	21 14	1	066	RCL 1	36 01		
011	RCL4	36 04		067	RCL7	36 07		
012	RCL8	36 08						
		-45		068	-	-45		
013	-			069	÷	-24		
814	RCL4	36 04		070	RCL9	3 6 0 9		
015	RCL6	36 06		071	+	-55		
016	-	-45		672	→HMS	16 35		
017	÷	-24		073	R∕S	51		
018	LN	32	Compute Climb Time	674	X≠Y	-41	Compute Time	
019	RCL3	36 03		674 675	RCL1	-41 36 01		
015 020	÷	-24					Savings	
			1	876	RCL5	36 05		
021	RCL4	36 04	1	877	-	-45		1
Ø22	X	-35		078	÷	-24		
023	CHS	-22		079	+HMS	16 35		
824	1	01		080	CHS	-22		
025	6	06	1	081	HMS+	16-55		
026	-	-62		082	CHS	-22		
627	7	07		683	RTN	24		
028	x	-35		1 1	KIN	24		
029	ST09	35 09						
030	→HMS	16 35						
031	RTN	24						
032	*LBLB	21 12						
033	RCL1	36 01						
034	RCL5	36 05	Compute Minimum	090				
035	-	-45						
036	RCL5	36 05	State Length					
037	RCL7	36 07						
638	-	-45						
039	÷	-24						
040	LSTX	16-63						
041	2	02						
042	÷	-24				1		
843	RCL1	36 01		┝────┼		<u> </u>		
		36 02		100				
844	RCL2			100				
045	-	-45		└─── │				
046	+	-55						
847	X	-35						
048	GSBD	23 14						
049	HMS+	16 36						
050	X	-35					SET STATUS	
051	RTN	24		┝───┤		1_1		
				┝		FLAGS	TRIG DISP	
052 057	*LBLC	21 13		┝┣			DEG 🛛 FIX 🕱	- I
053	ENTT	-21		110			DEG ⊠ FIX K GRAD □ SCI □	
65 4	ENTT	-21		110				
055	RCL5	36 05		ļ			RAD □ ENG □ n2	
. 056	RCL7	36 07				3 🗆 🔀	·····	
			REGIS	STERS				
0	1	21/	³ R.O.C ⁴ A max	5	6 A	7 W	⁸ Δ ⁹	
ľ	Vcruis	e ^{2V} climb	3 R.O.C 4 M 8 Max	° W _l	° A _l	′ W ₂	^{° A} z ^{°T} climb	
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9	
1	-							
		I B	C	D		E	I	
			l v	-		-		
Α								I

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner		
Portfolio Management/Bonds & Notes	Anesthesia		
Real Estate Investment	Cardiac		
Taxes	Pulmonary		
Home Construction Estimating	Chemistry		
Marketing/Sales	Optics		
Home Management	Physics		
Small Business	Earth Sciences		
Antennas	Energy Conservation		
Butterworth and Chebyshev Filters	Space Science		
Thermal and Transport Sciences	Biology		
EE (Lab)	Games		
Industrial Engineering	Games of Chance		
Aeronautical Engineering	Aircraft Operation		
Control Systems	Avigation		
Beams and Columns	Calendars		
High-Level Math	Photo Dark Room		
Test Statistics	COGO-Surveying		
Geometry	Astrology		
Reliability / QA	Forestry		

AERONAUTICAL ENGINEERING

Includes programs in several areas for Aeronautical Engineering, such as calculations for properties of air and atmosphere, behavior of gas flows, calibration of temperature and speed, and also some aircraft maneuvering.

PROPERTIES OF AIR

THEORETICAL U.S. STANDARD ATMOSPHERE TEMPERATURE AND PRESSURE BELOW 35,332 FT.

AIRCRAFT FLYOVER ACOUSTIC TONE DOPPLER SHIFT

ISENTROPIC FLOW FOR IDEAL GASES

NORMAL AND OBLIQUE SHOCK PARAMETERS FOR COMPRESSIBLE FLOW

OBLIQUE SHOCK ANGLE FOR WEDGE

MACH NUMBER AND TRUE AIRSPEED

TAKE-OFF RUN VS DENSITY ALTITUDE

TRUE AIR TEMPERATURE AND DENSITY ALTITUDE

AIRCRAFT CLIMB

1000 N.E. Circle Blvd., Corvallis, OR 97330

Reorder No. 00097-14036 Printed in U.S.A. 00097-90211 Revision B 1-78