||l(0) ||

Users' Library Solutions

Aircraft Operation

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.
REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

AIRCRAFT FLIGHT PLAN WITH WIND 1Simplifies flight planning.
FLIGHT MANAGEMENT 8
Speed-Time-Distáncé-F́ue'.
PREDICTING FREEZING LEVELS 12Computes theoretical freezing ievel'.
GENERAL AIRCRAFT WEIGHT AND BALANCE 16
Helps determine your position in the weight-balance envelope.
PILOT UNIT CONVERSIONS 20 Common units encountered by 'pilots.
TURN PERFORMANCE 24
Computes G-force', turn' diametere', ánd' stali 1 spéed.
RATE OF CLIMB AND DESCENT 29
Helps you to be sure you'il 'clear' the 'mountain.
HEAD WINDS AND CROSS WINDS 33
Resolves reported winds into head'-winds 'and cross'-wind' components.
FLIGHT PLANNING AND FLIGHT VERIFICATION. 37 Plan and update the plan enroute. Computes ETA, ground speed, etc.
DETERMINING IN-FLIGHT WINDS. 43
Computes winds from time-dis'tance' inputs'.
STANDARD ATMOSPHERE, 47
Estimates atmospherićc conditions 'from 'pressure al alitudé.
MACH NUMBER AND TRUE AIRSPEED, 53 Converts calibrated airspeed to mach number and true airspeed.
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE, 58
Computes density altitude, accounting for compressibibility effects.
LOWEST USABLE FLIGHT LEVEL Used on flights operating above is,'000 feet.

Program Description, Equations, Variables

This program is used when making a flight plan which includes winds. It solves the wind triangle, giving correct values for magnetic heading and ground speed. It works for multiple leg lengths, computing time for each leg, cumulative time, and fuel consumed for each leg. The program corrects reported winds from true direction to magnetic direction before using them in a calculation. The winds, true airspeed, fuel consumption, and magnetic variation can be altered on each leg of the flight. The equations used to compute the heading (HDG) and ground speed (GS) of the aircraft are

$$
\begin{gathered}
\mathrm{HDG}=\mathrm{C}+\sin ^{-1} \frac{\mathrm{~W}}{\mathrm{TAS}} \sin (\mathrm{D}-\mathrm{C}) \\
\mathrm{GS}=\mathrm{TAS} \cos (\mathrm{HDG}-\mathrm{C})-\mathrm{W} \cos (\mathrm{D}-\mathrm{C})
\end{gathered}
$$

where W is wind velocity, D is wind direction (magnetic), C is the magnetic course and TAS is the true airspeed.

Operating Limits and Warnings

Wind must be less than 100 knots. Wind speed must not exceed true airspeed.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Reference (s)

Program Deseription II

Reference(s)

Reference (s)

Program Description I

Program Title	Flight Management					

Program Description, Equations, Variables This program calculates either time flown, distance
flown or ground speed using the other two variables as inputs. Since the equations
are analogous, fuel consumed, fuel consumption or time flown can also be calculated
if two of the values are known. The program is very useful in calculating ETA and
fuel reserves from in-flight data.
TIME $=$ DIST/GS
DIST $=$ GS \times TIME
GS $=$ DIST/TIME
FUEL $=$ FC \times TIME
FC $=$ FUEL/TIME
TIME $=$ FUEL/FC
where
DIST is distance flown, GS is ground speed, and FC is fuel consumption.

Operating Limits and Warnings
Fuel consumption and fuel must be in compatible units; i.e., gal/hr and gal, or liters/hr and liters. GS and DIST must be in compatible units; i.e., knots and nautical miles, or miles/hr and miles.

[^0]

Sample Problem(s) A 380 nautical mile flight will be made at an estimated ground speed of 105 knots. The fuel consumption is 8 gal/hr. Find the estimated time for the flight and fuel consumed.

Solution(s) Time $=3 \mathrm{hrs}, 37 \mathrm{~min}, 8$ seconds
Fuel Consumed $=28.95$ gal

Keystrokes:
See Displayed:
380 [B] 105 [C] [A]
3.3709

8 [C] [B]
28.95

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sample Problem(s)

If the outside air temperature is -9 degrees centigrade at 8000 feet, how high is the wet freezing level?

Solution(s)

Solution

Altitude $=2000$ feet

Keystrokes

9 CHS A 8000 C E

See Displayed 2000

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Progiram Description I

General Aircraft Weight and Balance				
Contributor's Name Hewlett-Packard				
Address $\quad 1000$ N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables

The program calculates the final values of gross weight and moment or gross weight and center of gravity that are used to determine your position in the weight-balance envelope furnished with your aircraft. The program will accept either weights and moments or weights and moment arms for inputs. The program is written to accommodate changes in loading without restarting from the beginning.

The center of gravity is computed by dividing the sum of the moments by the gross weight.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Listing

Progiram Description

Program Title Pilot Unit Conversions				
Contributor's Name Hewlett-Packard				
Address 1000 N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables
This program performs unit conversions commonly encountered by pilots. Included are conversions between Fahrenheit and Celsius degrees, statute miles and nautical miles, liters and gallons, and gallons of gasoline and pounds of gasoline. Equations: ${ }^{\circ} \mathrm{F}=1.8{ }^{\circ} \mathrm{C}+32$ ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$ statute miles $=$ nautical miles $/ 0.868978$ gallons $=$ liters $/ 0.2642$ pounds gasoline $=$ gallons gasoline $\times 6$
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sketch(es)

Sample Problem(s)

Sample Problems

1. Convert 10 pounds of gasoline to gallons of gasoline.
2. Convert 40 gallons to liters.
3. Convert 100 statute miles to nautical miles.
4. Convert 212 degrees Fahrenheit to degrees Celsius.

Solution(s)	Solutions	
	1. 1.67 gallons 2. $\quad 151.40$ liters 3. $\quad 86.90$ nautical miles 4. $100^{\circ} \mathrm{C}$	
	Keystrokes	See Display
	1. 10 [f] [d]	1.67
	2. 40 [f] [C]	151.40
	3. 100 [B]	86.90
	4. $272[A]$	700.00

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

User Instructions

Program Description

[^1]
Program Description II

Sketch(es)

Sample Problem(s)
Calculate the G-force, diameter of turn, time required for
a 360° turn, and stall speed for an aircraft in a 30° and 45° bank with a cruising speed of 115 knots and a stall speed of 60 knots.

Solution(s)	Bank	G	stall	Diameter	time
	30°	1.15	64.47 Knots	0.67 n.m.	1 min 5 sec
	45°	1.41	71.35 Knots	0.39 n.m.	38 sec
Keystrokes:					See Displayed:
[f] [a] 115 [A] 60 [B] 30 [C] [D]					1.15
[f] [d]					64.47
[E]					0.67
[f] [e]					1.05

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

\square

Reference (s)

Program Description, Equations, Variables

The inputs of this program are true airspeed (TAS), elevation change (\triangle ALT), and either rate-of-climb (ROC) or the distance (DIST) over which the elevation change is to occur. Outputs are rate-of-climb required to change elevation in the specified distance or, conversely, the distance required when the rate-of-climb is specified.

$$
\begin{gathered}
\text { ROC }=\frac{\operatorname{TAS}(\triangle A L T)}{60 \sqrt{D_{I S T}^{2}+(\triangle A L T)^{2}}} \\
D=\frac{T A S \triangle A L T}{60 \text { ROC }} \\
\text { DIST }=\sqrt{D^{2}-(\triangle A L T)^{2}}
\end{gathered}
$$

Operating Limits and Warnings

Constant airspeed must be maintained throughout change of altitude. No correction is made for decreased aircraft performance at increased altitude. Inputs for ROC and TAS should be conservative, average values.

[^2]
Program Description II

Sketch(es)

Sample Problem(s)

1. $15 \mathrm{n} . \mathrm{m}$. west of Las Vegas (E1. 2600 ft) lies a mountain pass having an elevation of 6600 ft . Assuming a climbout TAS of 80 knots, what is the minimum ROC that you must maintain if you wish to clear the pass by 1000 feet?
2. Assume that a different aircraft climbs out at $800 \mathrm{ft} / \mathrm{min}$. and maintains an airspeed of 120 knots. How far from the pass will it be when it is at 7600 ft ?

Solution(s)

1. $443.79 \mathrm{ft} / \mathrm{min}$
2. 2.47 n.m.

Keystrokes:

1. 80 [A」 5000 [B] 15 [C] [D]
2. 120 [A] 5000 [B] 800 [D] [C]

See Displayed:
[CHS] 15 [+]
443.78
12.47
2.53

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description, Equations, Variables

This program calculates both the head wind and cross wind components from the aircraft heading and reported winds. The program works both at altitude, where magnetic variation must be considered, and at landing and takeoff, where winds are reported in magnetic directions rather than true directions.
The head wind (HW) and right cross wind (RCW) components are computed from

$$
\begin{aligned}
& \mathrm{HW}=\mathrm{K} \cos (\mathrm{D}-\mathrm{HDG}-\mathrm{V}) \\
& \mathrm{RCW}=\mathrm{K} \sin (\mathrm{D}-\mathrm{HDG}-\mathrm{V})
\end{aligned}
$$

where
$\mathrm{K}=$ the reported wind velocity
$\mathrm{D}=$ the reported wind direction
HDG = the aircraft heading
$V=$ the magnetic variation

Operating Limits and Warnings

Limits and Warnings

Reported winds must be less than 100 knots.
Wind directions reported by the control tower are magnetic and the variation need not be input when using the program for takeoff and landings. Other wind directions are reported in true directions and variation must be included to find the wind components.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference(s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description, Equations, Variables
This program can be used for flight planning and updating the flight plan as it is being flown. The program computes ETA's, ground speeds, cumulative distance flown, actual times for each leg and cumulative time flown. The ground speeds can be changed for each leg.

$$
\begin{aligned}
& \mathrm{ETA}=\mathrm{DIST} / \mathrm{GS}+\mathrm{TO} \\
& \mathrm{GS}=\mathrm{DIST} /(\mathrm{ATA}-\mathrm{TO})
\end{aligned}
$$

where

> ETA = estimated time of arrival

DIST $=$ distance
GS = ground speed
TO = take off time (or time over last checkpoint)
ATA = time over current checkpoint

Operating Limits and Warnings Distances and speeds must be in compatible units (knots and n.m., or mph and miles). Ground speeds are rounded in the display to the nearest whole unit. They are carried internally to full significance.

Flight planning and flight verification are identical except that: (1) flight planning usually assumes that the take-off time is 0.00 , and (2) flight planning accepts the calculated ETA as the ATA at the checkpoint.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) Part 1-Flight Plan	A flight consists of the following 3	
	legs:	
Ground speed	$\frac{\text { Distance }}{}$	
Leg 1	80 K	$20 \mathrm{n} . \mathrm{m}$.
Leg 2	105 K	$53 \mathrm{n} . \mathrm{m}$.
Leg 3	105 K	$41 \mathrm{n} . \mathrm{m}$.

Make a flight plan showing the individual leg times, cumulative times, and distances at the end of each leg.

Solution	Total Distance	Tota1 Time	Leg Time
Leg 1	20	$: 15: 00$	$: 15: 00$
Leg 2	73	$: 45: 17$	$: 30: 17$
Leg 3	114	$1: 08: 43$	$: 23: 26$

Solution(s) Keystrokes:

1. [f] [a] 0 [A] 80 [C] 20 [D]
[E]
[A]
105 [C] 53 [D]
[E]
[A]
105 [C] 41 [D]
[E]
[

Reference(s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description II

Sample Problem(s) Part 2 - Flight Verification
Assume that the actual flight was flown with a take off time of $10: 17: 00$. Assume
that the actual times of arrival at the checkpoints were $10: 31: 10,11: 01: 10$ and
$11: 23: 50$. Find the ETA's at each checkpoint using 80 knots as the ground speed for
the first leg. After finding the actual ground speed for the first leg, assume that
the difference between actual and estimated speeds is the wind velocity. Add the
winds to the 105 knots assumed GS for leg 2 . Use the GS calculated for leg 2 as the
assumed GS for leg 3 .

Compute ETA's for each checkpoint, actual leg times, cumulative time and actual ground speed for the flight.

Solution(s)	[A]	0.2326
	$[\mathrm{f}][\mathrm{a}] 10.17$ [A] 80 [C] $20[\mathrm{D}][\mathrm{E}]$	10.32
$10.3110[\mathrm{~A}]$	0.1410	
$[\mathrm{R} / \mathrm{S}]$	0.1410	
$[\mathrm{~B}]$	85	
$110[\mathrm{C}] 53[\mathrm{D}]$	73	
$[\mathrm{E}]$	11.0005	
$11.0110[\mathrm{~A}]$	0.3000	
$[\mathrm{R} / \mathrm{S}]$	0.4410	

Reference (s)

Program Deseription II

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \end{gathered}$
1	Enter program				
2	Initialize		f	a	
3	Input take off time (usually 0 for flight				
	planning)	H.MMSS*	A		
4	Input ground speed	GS (knots)	C		GS
5	Input leg length and read cumulative distance	$\mathrm{g}^{\mathrm{g} ~\binom{\text { ength }}{\text { n.m.) }}}$	D		total dist
6	Calculate ETA		E		H.MMSS
7	Input ATA and read leg time.	H.MMSS	A		H.MMSS
	(for flight planning do not input ETA,				
	just press [A]).				
8	To read out total elapsed time to checkpoint				
	press [R/S]		R/S		H.MMSS
9	To calculate GS on the last leg		B		GS (knots)
10	To use calculated GS for the next leg press				
	[C] and go to step 5		C		
11	If you wish to change the GS for the next leg				
	go to step 4.				
12	To use the same ground speed for the next leg				
	as you used on the last leg, go to step 5				
	*H.MMSS means hours, decimal point, minutes,				
	seconds. 2.0355 is 2 hours 3 minutes and				
	55 seconds.				
				1	
				\square	
				-	
				\square	
				\square	
				\square	
				\square	
				\square	
				\square	
]	

Step	KEy entry	kEy code	COMMENTS			Step	KEy entry		KEY Code	comments	
801	*LBLa	211611					057	*LELE	2112		
002	CLX	-5i					058	FCL4	3604		
803	CLF6	16-53					059	RCL1	36 01		
004	SF1	162101					069	RCL2	3602		
005	*LBLO	210					861	CHS	-22		
006	DSF6	-63 00					062	HMS+	16-55		
007	R/s	51					063	HMS*	1636		
808	gTOE	22					064	ENT \uparrow	-21		
009	*LBLA	2111					065	CLX	-51		
016	RCL1	3601					866	XY\%	16-34		
011	STO2	3582					067	6SEb	231612		
012	X $\mathrm{X}+\mathrm{Y}$	-41					068	+	-55		
013	5701	3501					069	\doteqdot	-24		
014	F1?	162381					076	6100	2206		
015	6104	2204					071	*LEL6	211612		
016	CH	-41					872	2	82		
817	CHS	-22					073	4	64		
018	HMS+	16-55					074	RTN	24		
019	ENTt	-21									
820	CLX	-5i									
021	W) ${ }^{\text {a }}$	16-34									
022	GSEb	231612									
023	HMS+	16-55									
024	RCL5	3605				080					
025	- $\mathrm{X}+\mathrm{Y}$	-41									
026	HMS+	16-55									
827	Stos	3505									
028	LSTK	16-63									
829	*LEL4	2104									
030	CF1	162201									
031	DSP4	-63 04									
832	R/S										
833	RCL5	3685									
834	6T04	2284				090					
035	*LELC	2113									
036	Stoz	3583									
837	6106	2208									
838	*LELD	2114									
039	ST04	3504									
046	ST+6	35-55 86							LABE		
041	FCLE	3606 2206			${ }^{\text {A }}$ USED			GS	GS	DIST	
842 843	*LELE	2115			İNITIAL	IZE ${ }^{\text {b }}$		SED			
044	RCL4	3604			O 0 USED						
045	RCL3	3683			${ }^{\circ}$ USED				3^{3}		USED
046	$\stackrel{\text { ¢ }}{\square}$	-24							8^{8}		
047	- HMS	1635									
048	RCLI	3601						FLAGS		SET STATUS	
049	HMS ${ }^{2}$	16-55						0	FLAGS	TRIG	DISP
850	- 4	${ }_{6}^{62}$						1	ON OFF		
852	X ${ }^{\text {Y }}$?	16-34							$\bigcirc \triangle \triangle$	DEG \triangle	
053	CLX	-5i				110				GRAD $\quad \square$	ENG
054	CHS	-22				110			1 3 \square		${ }_{\mathrm{nNG}}^{2}$
855	HMS+	16-55									
856	6T04	2204			REGIS	TERS					
0	$t_{\text {new }}$	$\begin{array}{l\|l\|} \hline w & t_{\text {old }} \\ \hline \end{array}$		GS ${ }^{4}$	DIST	$\begin{array}{\|r\|} \hline 5 \mathrm{TO} \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \text { TAL } \\ & \text { ME } \\ & \hline \end{aligned}$	$\begin{array}{\|ll} \hline 6 & \text { TOTF } \\ \hline \end{array}$	$\begin{array}{l\|l} { }^{A L} \\ \hline \end{array}{ }^{7}$	${ }^{8}$	${ }^{9}$
So	S1	S2	S3	54		S5		S6	57	S8	S9
A		B		c		D			E	I	

Program Description, Equations, Variables This program computes the winds at altitude from TAS, course of aircraft, ground speed and heading. Ground speed is automatically calculated from time-distance inputs. Winds can be computed as either magnetic or true. The latter must be used when verifying wind forecasts by the weather bureau. The program allows continuous updating of winds.

This program solves the wind triangle shown below.

$$
O R \begin{aligned}
& \vec{A}+(\vec{W})=\vec{G} \\
& \vec{W}=\vec{G}-\vec{A}
\end{aligned}
$$

\vec{W}, \vec{A} and \vec{G} are all vector quantities representing wind direction and speed; TAS and heading; and ground speed and course respectively.

Since both \vec{A} and \vec{G} use magnetic directions, \vec{W} is computed as a magnetic direction. It must be corrected to true heading by adding the variation (V).

True wind direction = magnetic wind direction $+V$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) After passing over a checkpoint at 3:05:20 a pilot flying a magnetic course of 150° finds that he must apply 15° right correction; i.e., steer 165° to maintain his ground course. He passes over his next checkpoint 70 n.m. away at 3:40:20. The TAS of his airplane is 110 knots and the variation is 7.5° east. If the local FSS asked him to report the winds, what would he tell them?

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Cser Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		f A	0.0000
3	To obtain true winds rather than magnetic			
	winds input variation (+E, -W)	$V(\mathrm{deg})$	A	V
4	Input all of the following:			
	MAG course and TAS	DDD. KKK*	B	TAS
	and time at first checkpoint $\mathrm{t}_{\text {] }}$,	H.MMSS**)	C	H.MMSS
	and distance to next checkpoint	n.m.	D	H.MMSS
	and time at 2nd checkpoint	(H.MMSS)	C	H.MMSS
5	To calculate wind, input heading of airplane			
	required to fly course	steer (deg)	E	DDD.KKK
6	To change any variable except time over first			
	checkpoint change the variable(s) and go to			
	step 5.			
7	To change time over first checkpoint go to			
	step 2.			
			\square	
	*DDD. KKK means direction, decimal point, wind			
	speed. 325.080 means a direction of 325			
	degrees and a speed of 80 knots.			
			\square	
	**H.MMSS means hours, decimal point, minutes,			
	seconds. 2.0355 is 2 hours 3 minutes and			
	55 seconds.			
			\square	
			,	
			\square	
			\square	
			0	
			$] \square$	
			$\square \square$	

STEP	KEY ENTRY	KEY COde
\bigcirc	*LBLa	211611
001	*LBLa	211611
002	CLRG	16-53
003	SFI	162101
004	DSF4	-63 84
085	CLX	-51
086	RTN	24
887	*LELA	2111
008	ST01	3501
009	RTN	24
010	* L BLE	2112
011	INT	1634
812	5702	3502
013	LSTX	16-63
014	FRC	1644
015	EEX	-25
016	3	63
017	x	-35
018	$5 T 03$	3505
019	RTN	24
820	* 2 ELC	2113
021	ST05	3505
022	F1?	$16 \quad 2301$
023	ST04	3504
024	CF1	162201
825	RTN	24
026	* LBLD	2114
827	ST06	3506
028	RTN	24
029	*LBLE	2115
030	RCL3	3603
031	\rightarrow R	44
032	STOT	3507
833	$X+Y$	-41
034	ST08	3508
035	RCL2	3602
836	RCL6	3686
837	RCL 5	3685
038	RCL4	3684
039	CHS	-22
848	HMS+	16-55
841	HMS ${ }^{\text {+ }}$	1636
042	\div	-24
043	+ R	44
044	$S T-\bar{T}$	35-45 07
045	CLX	-51
846	RCL 8	3688
047	-	-45
048	CHE	-22
049	RCL 7	3607
659	$\pm F$	34
051	EEX	-23
052	3	03
053	\doteqdot	-24
054	$X+i$	-41
055	RCLI	3601
056	+	-55

	LABELS			
$\text { A } V \text { (deg) }$	Bmc.TAs	${ }^{c_{t}} \quad t_{2}$	$D_{I_{S T}}$	$\mathrm{S}_{\text {TEER (}}$ (1)6)
a	b	C	d	e
0	1	2	3	4
5	6	7	8	9

0	$V_{\text {ARIATION }}$	$]^{2} \text { mabcourse }$	IAS	$]^{4} t_{1}$	$\\|^{5} t_{2}$	${ }^{6} \mathrm{D}_{\mathrm{IST}}$	${ }^{7} E_{x}$		E_{y}	9
so	S1		S3	S4	S5	S6	S7	S8		S9
A	B		c		D E					

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description

Program Title		
Contributor's Name	State	
Address Zip Code City		

Program Description, Equations, Variables		
For altitudes between 36,089 feet and 82,000 feet, the following relations hold		
$\begin{aligned} & \mathrm{T}=-56.5^{\circ} \mathrm{C} \\ & \mathrm{a} / \mathrm{a}_{0}=0.8671 \end{aligned}$		
$\mathrm{P} / \mathrm{P}_{0}=0.2234 \mathrm{e}^{-\left(\frac{\mathrm{h}-36089}{20804.9}\right)}$		
$\rho / \rho_{0}=\frac{\mathrm{P}}{\mathrm{P}_{0}} \frac{288.15}{216.65}$		
where		
T is temperature in degrees centigrade a is speed of sound P is pressure ρ is density h is pressure altitude		
Operating Limits and Warnings		
Limits and Warnings progRAM is AALA FRom 0 to 8 2, 000 FT. There is disagreement among reference sourcesfeet 36,000 feet and below 2000 feet.		

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Progiram Deseription II

Sketch(es)

Sample Problems

1. What is the temperature and speed of sound at 27,000 feet assuming a standard atmosphere?
2. What is the density at 70,000 feet assuming a standard atmosphere?

Solution(s)

Solutions

2. $70000[A][E] \longrightarrow$
0.06
$.002377[x][S c \cdot] \longrightarrow$
1.38×10^{-4}

[^3]

| Program Title Mach Number and True Air Speed | |
| :--- | :--- | :--- |
| Contributor's Name Hewlett-Packard | |
| Address 1000 N.E. Circle Blvd.
 City Corvallis State Oregon | |

Program Description, Equations, Variables

This program converts calibrated airspeed (CAS) to mach number and true airspeed (TAS). Pressure altitude (PALT) must be known to calculate mach number (M). Aircraft recovery coefficient (C_{T}) and indicated air temperature (IT) must also be known to calculate true airspeed. The recovery coefficient varies from 0.6 to 1.0 but is around 0.8 for most aircraft.

$$
\begin{aligned}
& \text { Pressure ratio }\left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)=\left[\frac{518.67-3.566 \times 10^{-3} \mathrm{PALT}}{518.67}\right]^{5.2563} \\
& \mathrm{M}^{2}=5\left[\left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\left\{\left[1+0.2\left(\frac{\mathrm{CAS}}{661.5}\right)^{2}\right]^{3.5}-1\right\}+1\right)^{0.286}-1\right] \\
& \mathrm{TAS}=39 \mathrm{M} \sqrt{(\mathrm{IT}+273)\left[\mathrm{C}_{\mathrm{T}}\left(\frac{1}{\left(1+0.2 \mathrm{M}^{2}\right)}-1\right)+1\right]}
\end{aligned}
$$

Operating Limits and Warnings

Limits and Warnings
Accuracy degenerates for mach numbers in excess of one.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s)

1. For a pressure altitude of 25,500 feet, a calibrated airspeed of 350 knots, a recover factor of 0.8 , and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed?
2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed?

Solution(s) Keystrokes

1. 25500 [A] 350 [B] . 8 [C] 5[D]
2. 40000 [A] 350 [B]
. 8 [C] 5[D]

See Displayed
0.84
515.76
1.10
657.42

Reference(s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS	OUTPUT
1.	Enter program		\square	
2.	Input pressure altitude	PALT	A	$\mathrm{P} / \mathrm{P}_{0}$
			I	
3.	Input calibrated airspeed in knots			
	and calculate mach number	CAS	B	M
4.	Input recovery coefficient			
	(. 8 for most aircraft)	${ }^{\text {c }}$ T	C	${ }^{\text {c }}$ T
5.	Input indicated air temperature and			
	calculate true airspeed in knots	IT (${ }^{\circ} \mathrm{C}$)	D	TAS
6.	For same aircraft at same PALT go to			
	step 4. For different PALT go to step		$\square!$	
	2 and skip step 4. For totally new			
	case go to step 2.		$\square 1$	
			$\square \square$	
			$\square]$	
			$\square!$	
			$\square 1$	
]	
			I	
			,	
			,	
			I	

56			971	${ }^{\mathbf{8}}$	LiStin	$\underline{8}$			
STEP	KEY ENTRY	KEy Code		ENTS	STEP KEY	Y entry	KEY Code		COMMENTS
001	1 *LELA	2111			857 *	*LELE	2112		
082	2	- 0			858	E	66		
003	36	06			059	6	96		
004	-	90			860	1	01		
085	8	08			061	.	-62		
806	9	09			062	5	05		
007	x x ¢ 9	16-35			063	\cdots	-24		
008	GTua	221611			064	ye	53		
889	Y $\mathrm{X}+\mathrm{Y}$	-41			065	,	-62		
018	3	83			866	2	Q2		
011	15	85			067	x	-35		
812	26	66			068	1	01		
013	3 E	86			869	+	-55		
014	4 EEX	-23			076	3	03		
015	5 CHS	-22			071	.	-62		
016	6 6	66			872	5	05		
617	7 x	-35			073	$\%^{x}$	31		
819	CHS	-22			874	1	01		
019	5	05			075	-	-45		
028	1	01			876	RCLE	3606		
021	$1{ }^{8}$	08			077	\cdots	-24		
022	-	-62			878	1	01		
023	3 E	06			079	+	-55		
02	7	$8 \overline{7}$			086	-	-62		
825	$5 \div$	-55			081	2	02		
826	6 LSTX	16-63			882	8	08		
827	$7 \doteqdot$	-24			883	6	06		
828	5	05			884	${ }^{*}$	31		
029	9	-62			885	1	61		
¢38	- 2	02			Q8E	-	-45		
031	15	-5			487	5	05		
032	E	06			088	x	-35		
83	3	03			089	5\%	54		
034	- $\mathrm{Y}^{\text {x }}$	31			896	ST04	3504		
035	ST06	35 \%6			091	RTN	24		
036	6 RTN	24			092	*LBLC	2113		
837	*LBLa	211611			093	5103	3503		
838	-	-45			894	RTN	24		
839	2	02			095	*LELI	2114		
84	0	86			096	2	02		
041	18	88			097	7	87		
042	6	80			098	3	83		
04	4	04			099	+	-55		
04	4	-62			100	5705	3545		
845	59	09			101	RCLL	3684		
846	-	-24			102	x^{2}	53		
847	CHS	-22			103	-	-62		
848	$8 e^{x}$	35			104	2	02		
849	9	-62			185	x	-35		
95	- 2	82			106	1	01		
051	12	日2			107	+	-55		
85	3	0^{4}			188	\div	-24		
85	3	04			109	RCL5	3685		
05	$4{ }^{x}$	-35			110	-	-45		
855	5 ST06	3506			111	RCL 3	3603		
856	6 RTN	24			112	x	-35		
0	${ }^{1}$	${ }^{2}$	${ }^{3} C_{T}$	${ }^{4} M$	$\left.\left.\right\|^{5} I T(K)\right)^{6}$	${ }^{6} \mathrm{P} / \mathrm{P}_{0}$	${ }^{7}$	8	9
So	S1	S2	S3	S4	55	${ }^{\text {S6 }}$	57	58	59
A	${ }^{\text {B }}$		c				\square		

[^4]
Program Description II

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description

Program Title Lowest Usable Flight Level				
Contributor's Name Hewlett-Packard Company, HP-67/97 Users' Library				
Address $\quad 1000$ N. E. Circle Boulevard				
City Corvallis	State	OR	Zip Code	97330

Program Description, Equations, Variables This program computes the lowest usable flight level for aircraft flying above 18,000 feet mean sea level (MSL) from the current altimeter setting.

For flights operating at altitudes in excess of 18,000 feet the altimeter is set at 29.92 and aircraft are assigned flight levels. In order to avoid overlapping flight levels with true altitude above sea level, the lowest usable flight level is found at which a setting of 29.92 will place the aircraft above 18,000 feet MSL.

The lowest usable flight level is 18,000 feet if the altimeter setting is greater than or equal to 29.92 inches of mercury (Hg).

For altimeter settings below 29.92

$$
\text { LUFL }=18,000+500 \times \text { INT }(60.82-2 \times \text { ASET })
$$

where

$$
\text { ASET }=\text { altimeter setting }
$$

INT = integer function

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) For the following altimeter settings, find the lowest usable flight level.

ASET	ANSWER
29.92	18,000
29.55	18,500
28.45	19,500

Solution(s) Keystrokes:
29.92 [B] [C]
29.55 [B] [C]
28.45 [B] [C]

See Displayed:
18000
18500
19500

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
 Mathematics
 Electrical Engineering
 Business Decisions
 Clinical Lab and Nuclear Medicine

Mechanical Engineering
 Surveying
 Civil Engineering
 Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds \& Notes
Real Estate Investment
Taxes
Home Construction Estimating Marketing/Sales
Home Management Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering Control Systems
Beams and Columns High-Level Math Test Statistics
Geometry
Reliability/ QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

AIRCRAFT OPERATION

Primarily intended for general aviation, although many of the programs are equally applicable to commercial aviation. Some of the subjects are flight planning, aircraft weight and balance, wind calculations, atmospheric parameter calculations, and unit conversions.

AIRCRAFT FLIGHT PLAN WITH WIND
FLIGHT MANAGEMENT
PREDICTING FREEZING LEVELS
GENERAL AIRCRAFT WEIGHT AND BALANCE
PILOT UNIT CONVERSIONS
TURN PERFORMANCE
RATE OF CLIMB AND DESCENT
HEAD WINDS AND CROSS WINDS
FLIGHT PLANNING AND FLIGHT VERIFICATION
DETERMINING IN-FLIGHT WINDS
STANDARD ATMOSPHERE
MACH NUMBER AND TRUE AIRSPEED
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE
LOWEST USABLE FLIGHT LEVEL

[^0]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^2]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^3]: Reference(s) Reference:
 Chemical Rubber Company Handbook, of Chemistry and Physics, 47th edition, 1966-1967, page F-120

 This program is a direct translation of a program from the HP-65 Aviation Pac.

[^4]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

