HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions

Aircraft Operation

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

AIRCRAFT FLIGHT PLAN WITH WIND	•	9	. 1
FLIGHT MANAGEMENT	•	•	. 8
PREDICTING FREEZING LEVELS	•	•	.12
GENERAL AIRCRAFT WEIGHT AND BALANCE	•	•	.16
PILOT UNIT CONVERSIONS	•	,	.20
TURN PERFORMANCE	•	•	. 24
RATE OF CLIMB AND DESCENT Helps you to be sure you'll clear the mountain.	•	•	.29
HEAD WINDS AND CROSS WINDS		•	.33
FLIGHT PLANNING AND FLIGHT VERIFICATION	•	•	.37
DETERMINING IN-FLIGHT WINDS.	•	•	. 43
STANDARD ATMOSPHERE. Estimates atmospheric conditions from pressure altitude.	•	•	.47
MACH NUMBER AND TRUE AIRSPEED	•	•	,53
TRUE AIR TEMPERATURE AND DENSITY ALTITUDE	•	•	.58
LOWEST USABLE FLIGHT LEVEL	•	•	•62

Program Title Aircraft Flight Plan With Wind	
Contributor's Name Hewlett-Packard	
Address 1000 N.E. Circle Blvd.	
City Corvallis State Oregon	Zip Code 97330
Program Description, Equations, Variables	
This program is used when making a flight plan which includes winds. It solves the wind triangle, giving correct values for magnetic heading and ground speed. It works for multiple leg lengths, computing time for each leg, cumulative time, and fuel consumed for each leg. The program corrects reported winds from true direction to magnetic direction before using them in a calculation. The winds, true airspeed, fuel consumption, and magnetic variation can be altered on each leg of the flight. The equations used to compute the heading (HDG) and ground speed (GS) of the aircraft are $HDG = C + \sin^{-1} \frac{W}{TAS} \sin (D - C)$	
GS = TAS cos (HDG-C) - W cos (D-C) where W is wind velocity, D is wind direction (magnetic), C is the	· · · · · · · · · · · · · · · · · · ·
Operating Limits and Warnings	
Wind must be less than 100 knots. Wind speed must not exceed true airspeed.	
This program has been verified only with respect to the numerical example given in <i>Program Descri</i> this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program upon any representation or description concerning the program material. NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY	ption II. User accepts and uses m material and without reliance KIND WITH REGARD TO THIS
PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERF(ICHANTABILITY AND FITNESS INCIDENTAL OR CONSEQUEN- DRMANCE OF THIS PROGRAM

MATERIAL.

1

Sample Proble	em(s)					
			-	Leg 2 282 ⁰ 22 n.m.	START	
	م	Leg 3 24	45 ⁰ 60.5	n.m. Leg 1	249 ⁰ 91 n.m.	
	Leg 4 218	⁰ 50 n.m.		(Course	s are magnetic)	
	• END					
	Winds	for legs 1	1 and 2 –	230 degrees (true) @ 3	30 knots.	
	Winds Fuel c	for legs 3	3 and 4 -	· 300 degrees (true) @ 2	20 knots.	
	1	5 degrees	s E.	nr, TAS 105, mayneuc	variation	
						.
Solution(s)						
	For the sket	ch above	e the fo	Mawing data tabla i		
	(underlined val	ues are in	iput data)).	s completed	
	Course/Steer	GS	Dist	Time/Total	Fuel	
	249/240	79	<u>91</u>	1:09:18/1:09:18	9.2	
	$\frac{282}{267}$	90	22	0:14:44/1:24:02	2.0	
	$\frac{245}{218}$	89 96	$\frac{60.5}{50}$	0:40:50/2:04:53	5.4	
	210/220	90	50	0:31:23/2:36:16	4.2	
Reference (s)						
10.0.0.00(2)		•	•	to an lablan of t		the UD 65
	This program	is a a	irect	translation of a	a program rrom	the hr-05
	<u>Aviation Pac</u> .					

Sketch(es)			
•			
			• • • • • • • • • • • • • • • • • • •
Sample Problem(s)		
Sample Froblem			
Solution(s)	Kaystrokas	See Displayed	
Solution(s)	Keystrokes	See Displayed	
Solution(s)	Keystrokes [][Ê]8	See Displayed 240	
Solution(s)	Keystrokes [F][Ê]8 A 105 A 230.30 B 15 B 249 C C	See Displayed 240 79	
Solution(s)	Keystrokes [F][Ê]8 ▲ 105 ▲ 230.30 B 15 B 249 C C 91 D·	See Displayed 240 79 1.0918	
Solution(s)	Keystrokes [][Ê] 8 A 105 A 230.30 B 15 B 249 C C 91 D.	See Displayed 240 79 1.0918 1.0918	
Solution(s)	Keystrokes [-][Ē]8 A 105 A 230.30 B 15 B 249 C C 91 D, D	See Displayed 240 79 1.0918 1.0918	
Solution(s)	Keystrokes []][Ē]]8 A 105 A 230.30 B 15 B 249 C C 91 D E	See Displayed 240 79 1.0918 1.0918 9.2	
Solution(s)	Keystrokes [F][Ē]8 A 105 A 230.30 B 15 B 249 C G 91 D 1 2 282 C	See Displayed 240 79 1.0918 1.0918 9.2 267	
Solution(s)	Keystrokes [f][Ē]8 A 105 A 230.30 B 15 B 249 C C 91 D E 282 C G	See Displayed 240 79 1.0918 1.0918 9.2 267 90	
Solution(s)	Keystrokes [See Displayed 240 79 1.0918 1.0918 9.2 267 90	
Solution(s)	Keystrokes Image: C 91 D E 282 C 282 C 22 D	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes [-][Ē]8 A 105 A 230.30 B 15 B 249 C C 91 D E 282 C C 22 D	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes []][Ē]]8 A 105 A 230.30 B 15 B 249 C G 91 D 282 C 22 D	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes [F][Ē]8 A 105 A 230.30 B 15 B 249 C C 91 D 282 C 22 D	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes [][Ē] 8 A 105 A 230.30 B 15 B 249 C G 91 D. D E 282 C C 22 D	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes [-]][Ē]]8 105 91 0. 282 C 22	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes Image: Ima	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes Image: Ima	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes []-[][]][]] []][]][]] []][]]] []]][]]] []]]]]]] []]]]]]]] []]]]]]]]]]] []]]]]]]]]]]]]]]]]]]]]]] []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	
Solution(s)	Keystrokes [-]][Ē]]8 ▲ 105 ▲ 230.30 В 15 В 249 С G 91 □ .<	See Displayed 240 79 1.0918 1.0918 9.2 267 90 0.1444	

Sample Problem(s)			
Solution(s)		1.2403	
	3	2.0	
31	00.20 B 245 C	252	
<u> </u>	3	89	
60).5 D	0.4050	
D	1	2.0453	
E	1	5.4	
21	8 C	228	
C	l	96	
Reference (s)			

Sketch(es)		
	·····	
Sample Problem(s)		
Solution(s)		
50 D	0.3124	
D	0.0040	
	2.3616	
	4.2	
Reference (s)		

	↓ 1 ▶ Fuel Tas	Wind V	C→HDG → 6S	Leg→t → TTLt	→ Leg Fuel	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program]		
2	Initialize		f E	1		
3	Input fuel consumption	FC (gal/hr)	A	FC		
	then input true airspeed	TAS	A	TAS		
4	Input wind*	DDD.KK	В	кк		
	then magnetic variation]		
	(+E, _W)	v	В] v		
5	Input course and calculate]		
	heading	С	С	HDG		
	then calculate ground speed		С	GS		
6	Input leg length and compute]		
	leg time	leglength (n.m.)	D	H.MMSS**		
	then display total time		D	H.MMSS		
7	Calculate fuel used on leg		E	fuel (gal)		
8	For next leg with same]		
	fuel, TAS, wind, and]		
	magnetic variation go to]		
	step 5. To change fuel]		
	go to step 3 and input new]		
	value. To change wind go to]		
	step 4 and input new value.]		
	To change true air speed] .		
	go to step 3 input fuel]		
	consumption then true air]		
	speed. To change magnetic]		
	variation go to step 4 input]		
	wind then input magnetic]		
	variation. For new case go]		
	to step 2.]		
*DDD.K directio **H.MM	K means direction, decimal point, n of 325 degrees and a speed of 8 know ASS means hours, decimal point, min	wind speed. 325. ts.	08 means a			

**H.MMSS means hours, decimal point, minutes, seconds. 2.0355 is 2 hours 3 minutes and 55 seconds.

Program Listing I

STEP V K				co						7
		KET CODE	T	COMN	IENTS	STEP	KE	Y ENTRY	KEY CODE	COMMENTS
801	*LBLe	21 16 15					057	RTN	24	•
002	CLRG	16-53					8 58	*LB LC	21 13	
003	DSP2	-63 02					8 59	R∔	-31	
004	RTN	24					0 60	RCL2	36 8 2	
005	*LBLA	21 11					061	х	-35	
006	ST01	35 01				I	862	XIY	-41	
007	RTN	24					R 63	-	-45	
008	*LBLA	21 11				ж. Т	A64	RTN	24	
009	ST02	35 <i>0</i> 2					004 065	*I RI D	21 14	
010	RTN	24					003 022	+LDLU V+V	21-14	
011	*LBLB	21 12					000	A+ I -	-41	
B 12	ENTT	-21					001		-24	
Ø13	INT	16 34					000	5107	35 87	
Q14	5707	75 07					059	51+6	33-33 06	
Ø15	-	-45					070	USP4	-63 04	
015 015	EEV	-27					071	+HHS	16 35	
010	2	-2J 00					072	RTN	24	
017	·	02 75					073	≭LBLD	21 14	
610	A 0700	-33 75 oc					074	RCL6	36 0 6	
019	5108	30 88				-	075	→HMS	16 35	
020	RIN	24					076	RTN	24	
021	*LBLE	21 12					077	‡LBLE	21 15	
022	ST04	35 84					078	RCL7	36 87	
023	RTN	24				1	079	RCL1	36 0 1	
024	≭LBL C	21 13					080	х	-35	
025	DSPØ	-63 00					0 81	DSP1	-63 01	
026	ST05	35 0 5					8 82	RTN	24	
027	RCL3	36 Ø3					1		_	
0 28	RCL4	36 04]
0 29	-	-45								1
030	X≠Y	-41								1
031	-	-45								1
832	RCL 8	36 08							1	1
833	÷₽	44					1			
A24	X±Y	-41				090	1			1
A35	PCI 2	36 92								1
836	-	-24								4
877	STN-	16 41								4
870	010	10 41 AQ								4
030	1000	16-67					1			4
033	DOLE	76-05					-			4
040	RULJ	30 0J 55								-
U41 042	÷,	-35								4
042	· · 1	01						·····	+	4
043	<i>≠K</i>	44				100				4
U44	++ 	34					+			4
045	ULX	-51					+		+	-
046	X>Y?	16-34					+			4
047	6101	22 01								4
048	CLX	-51					+	FLACE	L	
649	+_	-55						FLAGS		SET STATUS
850	RTN	24					ΗĽ		FLAGS	TRIG DISP
051	≭LBL 1	21 0 1					+1		ON OFF	
0 52	CLX	-51					+ 1-			
8 53	3	8 3				110	+[
054	6	86					-3			
8 55	0	00					┼┸━╸			
056	+	-55			0501		L	·····		
0	1	2	13		REGI	SIERS	T	6	7121	18 19
U	Fuel	TAC	1 ๊ก ั	\mathcal{O}	i 1/	$^{\circ}$ (TOTAL	+ LEG	UT AN
50	IS1		53	~~	54	55		56	S7	IS8 IS9
Δ	L	 B			1	D		T	I	
7				,		ľ			-	.

Program Title Flight Management

Contributor's NameHP-67/97 Users' Library, Hewlett-Packard CompanyAddress1000 N. E. Circle BoulevardCityCorvallisStateORZip Code97330

Program Description, Equations, Variables This program calculates either time flown, distance flown or ground speed using the other two variables as inputs. Since the equations are analogous, fuel consumed, fuel consumption or time flown can also be calculated if two of the values are known. The program is very useful in calculating ETA and fuel reserves from in-flight data.

TIME = DIST/GS DIST = GS x TIME GS = DIST/TIME FUEL = FC x TIME FC = FUEL/TIME TIME = FUEL/FC

where

DIST is distance flown, GS is ground speed, and FC is fuel consumption.

Operating Limits and Warnings Fuel consumption and fuel must be in compatible units; i.e., gal/hr and gal, or liters/hr and liters. GS and DIST must be in compatible units; i.e., knots and nautical miles, or miles/hr and miles.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	
Sample Problem(s) A 380 nautical mile flight speed of 105 knots. The fuel consumption is 8	will be made at an estimated ground 3 gal/hr. Find the estimated time for
the flight and fuel consumed.	
Solution(s) Time = 3 hrs, 37 min, 8 seconds	
Fuel Consumed = 28.95 gal	
Keystrokes:	See Displayed:
380 [B] 105 [C] [A]	3.3709
8 [C] [B]	28.95
Reference (s)	
This program is a direct translati	on of a program from the HP-65
<u>Aviation Pac</u> .	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	For time-distance calculations go to step 5			
3	Input two of the following			WRONG
	time (H.MMSS)*	time	Α	0.00
	fuel consumed	fuel	В	0,00
	fuel consumption per hr.	FC	C	0.08
4	Compute the remaining value**			
	time (H.MMSS)		A	time
	or fuel consumed		В	fuel
	or fuel consumption		C	FC
5	Input two of the following			,
	time (H.MMSS)	time	A	2.00
	distance	DIST	В	0.00
	ground speed	GS	С	9.00
6	Compute the remaining value			
	time (H.MMSS)		Α	time
	or distance		В	DIST
	or ground speed		C	GS
7	For new case change appropriate inputs in step			
	3 or 5.			
8	To recall values in the order they appear on		D	(time)
	card			(fuel or DIST)
				(FC or GS)
	*H.MMSS means hours, decimal points, minutes,			
	seconds. 2.0355 is 2 hours 3 minutes and			
	55 seconds.			

Program Listing I

STE	ΡI	KEY ENTRY	KEY CODE		COMN	ENTS	STEP	KEY E	ENTRY	KE	EY CODE		COM	1 MENTS
	001	*LBLA	21 11											
	-002 -003	5701	16 36 35 01											
l	004	F3?	16 23 03				060							
· vr -	005	RTN	24											
X	006	DSF4	-63 04 76 00											
	007 008	RCLZ RCL3	36 02 36 03											
	009	÷	-24											
	010	ST01	35 01								v			
	011	→HMS	16 35											
	012 013	*IRIR	21 12							<u> </u>				
	014	DSP2	-63 02				070							
\bigcirc	015	ST02	35 0 2											
	016	F3?	16 23 03											
10 -	017	RIN RELT	24 36 Al							+				
H.	019	RCL3	36 03											
	020	Х	-35											
	021	STO2	35 02											
	823	≭LBLC	21 13											
	024	DSP2	-63 02				080							
6	025	STO3	35 03											
6	026	F 3? PTN	16 23 03											
6	028	- RCL2	36 02											
R	029	RCL1	36 01											
	030	÷	-24							<u> </u>				
	031 072	SIU3 PTN	35 03 24											
	033	*LBLD	21 14											
	034	RCL1	36 01				090							
	035	→HMS	16 35							ł				
	035 037	DSF4 PSF	-63 64							<u> </u>				
	038	RCL2	36 02											
	039	DSF2	-63 02							-				
	040	PSE	16 51							<u> </u>				
	041 R42	RUL3 PSE	36 03 16 51											
	043	RTN	24											
			+				100			<u> </u>				
				-						+				
				_				F	LAGS	L		SET S	SUTAT	
050								0				<u>т</u>		
								1			ON OFF			DISF
								2		0		DE		
			+	-			110			2		RAI		
								Ľ		3				n <u>2</u>
0		1	2 Fuel	or 3		4 REGI	5	6		7		8		9
Ĺ		Time	Dis	t. FC	or GS						7	60		50
S0		S1	S2	S3		S4	S5	S6		s	1	58		28
A			В		С	1	D			E		1	I	L
l^			[⁻		Ĭ									

	8
Program Title Predi	cting Freezing Levels
Contributor's Name	HP-67/97 Users' Library Hewlett-Packard Company
Address 1000 N.	E. Circle Boulevard
City Corvallis	State OR Zip Code 97330
Program Description, E	quations, Variables
	The program computes the theoretical freezing level in feet above
	This program computes the freezing level from
	FLD = Alt + 1000 (T/2) (Freezing level dry) FLW = Alt + 1000 (T/1.5) (freezing level wet)
	where temperature (T) is in degrees Celsius and altitude (Alt) is in feet or
	$FLD = Alt + 1000 \left(\frac{T-32}{3.6}\right)$
	$FLW = Alt + 1000 \left(\frac{T-32}{2.7}\right)$
	where temperature (T) is in degrees fahrenheit.
Operating Limits and W	/arnings
-	Limits and Warnings
	The actual lapse rate may differ from the standard lapse rate used in this program. This is especially true within 2000 feet of the ground where inversions are common. Also, the program does not give the correct answer when the atmosphere between you and the freezing level contains layers of clouds. When in doubt compute both wet

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

and dry freezing levels and use the more pessimistic value.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

(1	
Sketch(es)							
							Side is an observe
Sample Problem(s							
If the ou	tside air tempe	rature is -9	degrees c	entigrade at	: 8000 fe	eet. how	
high is t	L =+ fusoring	1 1 0					
nign is t	he wet treezing	level?					
				-			
• • • • • •							
Solution(s)							
	0-14: on						
	Solution						
	Altitude = 2000	eet					
					-		
	Keystrokes			See Display	ed		
	9 CHS	A 8000 C E		2000			
						n an	
Reference (s)							
Thi	s program is a	direct trans	lation of	a program f	rom the	HP-65	
<u>Avi</u>	ation Pac.						

						5
(dd)	C°	F°	ALT	→FLD	→FLW	┛

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program.			
2	Input altitude	feet	С	
	and corresponding temperature			
	in C°	C °	Α	
	or F°	F°	В	
3	Calculate either or both			
	Dry freezing level		D	feet
	or wet freezing level	1	Ε	feet
4	For new case, go to step 2.			

Program Listing I

STEP I		(KEY CODE	71	COMM		STEP	KF					CO1	MENTO	1
801	±IRI∆		21 11				1	057						MENIS	
001	etoz		ZI II 7E 07					037	1		-62 -62				
002	STU7 CE1	16	35 87					859 859	. 5		-02 A5				
000 004	DT 1 PTN	10	21 01					8 68	÷		-24				
885	* R R		21 12					061	EEX		-23				
886	STO7		75 97					Ø62	3		83				
887	CE1	16	22 81					R 63	x		-35				
885	RTN	10	24					064	RCL8		36 08				
809	#L BL C		21 13					065	+		-55				
A1A	STOS		35 08					066	RTN		24				
011	RTN		24												
012	#LBLD		21 14					_							
013	F1?	16	23 01												
014	GTUa	22	16 11				070								
015	RCL7		36 07												
016	3		03												
017	2		02												
018	_		-45							\bot		1			
019	3		03							\perp					
020			-62							+-		4			
021	6		06							+		4			
022	÷		-24							+		4			
023	EEX		-23				080			+		-			
024	3		03				080			+-		4			
025	X		-35							+		4			
026	RCLS		36 08							+-		4			
027	+		-55							+		{			
028	RTN		24					-		+		-			
029	¥LBLa	21	16 11							+		4			
030	RCL7		36 07							+		4			
031	2		02							+		4			
032	÷		-24							+-		{			
93 3	EEX		-23				090			+		1			
034	3		03					1		+		1			
035	Х		-35							+-		1			
036	RCL8		36 08					+		+					
037	+		-55					+		+		ł			
038	RTN		24					1		+		1			
039	*LBLE		21 15							+		1			
040	F1?	16	23 01					1		+		1			
041	GTOP	22	16 12					1		+	*****	1			
042	RCL7		36 07									1			
043	3		83				100	1		1		1			
844	2		62					T		Τ					
045	-		-45												
U4 6	2		62												
647			-62												
048			27 -						FLAGS			SET :	STATUS		
047 050	EEA 7		-23					\square°			FLAGS	Т	RIG	DISF	>
0J0 051	с х		-75					H^{1}				~		EIV.	57
001 052	Pri 9		36 88					+ 2					:o ⊠ ≀∆⊓ ⊡		
05Z 05Z	+		-55				110	H^{-}				RA		ENG.	ы П
a54	RTN		24					<u>+</u> − ³			3 🗆 🛛			n	<u> </u>
A 55	*LBL h	21	16 12					╧			■ 2010 1				
Ø 56	RCL7		36 07			REG	STERS	4							
0	1		2	3		4	5		6		7 -	8		9	
				L							lemp		Alt		
S0	S1		S2	S3		S4	S5	5	S6		S7	S8		S9	
	1	10		Ļ	0					-			1.	1	
A		R			C		D			E			1		

Program Title General Aircraft Weight and Balance		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis State Oregon	Zip Code	97330
Program Description, Equations, Variables		
The program calculates the final values of gross weight and moment or gross weight and center of gravity that are used to determine your position in the weight-balance envelope furnished with your aircraft. The program will accept either weights and moments or weights and moment arms for inputs. The program is written to accommodate changes in loading without restarting from the beginning. The center of gravity is computed by dividing the sum of the moments by the gross weight.		
Operating Limits and Warnings		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

The second s	a construição de la companya e construição de la companya de la construição da construição da construição da co					
Sketch(es)						
			.	n en en ser en		
	i		an a			·····
		· · · · · · · · · · · · · · · · · · ·				
			Bar (1997)			
	and a second			·····	i i i i	• • • • • • • • • • • • • • • • • • • •
	n					
		n oli sun na merina a	de in in i	n an	·····	
	n and an	- - 	denne en ar or			
ample Problem(s						
·						
	Sample Problem					
	The following table giv	es weight and	i balance dat	a for an aircraf	t.	
	Item	Weight	Arm	Moment		
	Empty plane	1200		15000		
	Pilot	180	11.25			
	Passenger	110	41			
	Oil	15		-500		
	Fuel	120	25			
	Find the gross weight,	total moment	and center (of gravity.		
				- 0 -		
Solution(s)	Solution					
	$W_{2} = 1625$					
	Weight = 1625					
	Center Gravity = $M_{\text{const}} = 24.024$	14.79				
K	Moment - 24,033)	S,	- Displayed		
Γ.				e Displayeu		
	f] [E]1200 A 15000 C	180 A 11.25	В			
11	10 A 41 B 15 A 500 Z	CHSJ C				
	f M		16	325		
	- 		1/			
	fВ		- 1	.79		
1	fC		24	035		
Reference (s)						
		a in the product specific spec				
This	s program is a dire	ct transla	ation of	a program	from the HP	-65
Avi	ation Pac.					

	⇒⊊Ģ			7
I →WT	→ARM	→MOM	Initialize	· /
NT NT	_ ARM	MOM	_Del Nxt Set_	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	OUTPUT DATA/UNITS	
1.	Enter program				
2.	Initialize		f	E	
	Turnut underlie	waight			Sum W+
3.	Input weight	werght	A		Juli WC.
4.	Input either the moment arm or the moment	arm	В		Sum. Mt.
		mom	С		Sum. Mt.
5.	Repeat steps 3,4 until all weights and moments				
	have been input				
					0
6.	Calculate the following sum of weights or		Ť		SUM Wt.
	center of gravity or sum of moments		f f		c.g.
					Sum Mt.
7	To delete the last set of weight-arm or				
_ .	weight_moment data noints		R/S		
8.	To delete any set of data points press [E],		E		
	then perform steps 3 and 4 inputing the data				
	is to be deleted. ([E] must be pressed				
	before each data pair to be deleted.)				

	Ĭ	97 Pro	gram	Lis	stin	ng I				10
STEP KEY ENTRY K		СОММЕ	ENTS	STEP	KEY	ENTRY	KEY CODE		COMME	ENTS
001 *LBLA	21 11				8 57	RTN	24			
002 F21 16 003 GT01	23 02				0 58	R∕S	51			
004 ST+1 35-	-55 Øi									
005 STO3	35 03									
006 RULI 007 CTO9	36 Ul 22 Ag				1	1		1		
808 *LBL1 3구	21 01									
A09 CHS	-22									
010 ST+1 35-	-55 01									
011 STU3 012 PCL1	30 03 36 01				+			_		
013 GT09	22 09							_		
814 * LBLa 21	16 11			070						
015 RCL1	36 01							_		
016 KIN 017 #IBLB	21 12							_		
018 RCL3	36 03							-		
019 X	-35									
020 F2? 16	23 02							_		
021 CH3 022 ST+2 35-	-22				+			_		
623 ST04	35 04									
824 RCL2	36 02			080						
025 GTU9 025 +1 PL 21	22 09							_		
026 #LBL6 21 027 RCL2	<i>36 02</i>				+					
028 RCL1	36 01									
029 ÷	-24									
030 GTU9 871 WIRLC	22 89									
032 F2? 16	23 02									
033 GTO3	22 03									
034 ST+2 35-	-55 02			090						
035 STU4 036 RCL2	35 04 36 82							_		
037 GT09	22 09									
038 *LBL3	21 03									
039 ST-2 35-	-45 02							_		
040 #LBL0 21 041 RCL2	36 02									
042 #LBL9	21 09				+			-		
043 R/S	51									
044 RUL3 045 ST-1 35-	35 03 -45 01			100				_		
046 RCL4	36 04							_		
047 ST-2 35-	-45 82									
048 CLX 049 STO7	-51					51 4 0 0			ATUC	
049 5703 050 ST04	35 04				10	FLAGS		5EI 51/	A105	
051 GT09	22 09				╆╋		ON OF		<u> </u>	
652 *LBLE 657 SE2 16	21 15				$\prod_{i=1}^{n}$			DEG		
855 572 10 854 RTN	24			110	$\frac{1}{2}$			RAD		
055 *LBLe 21	16 15				3		3 🗆 🗖			n_ <u>k</u>
356 CLRG	16-53		DECI	TEDO						
0 1 5 11/4	² 4 m t	3 1112	4 mJ	5	6		7	8	9	
S0 S1	S2	53	54 54	S5	S	6	S7	S8	s	9
						T.				
A B		C		U			E	ľ		

Program Title Pilot Unit Conve	rsions		
Contributor's Name Hewlett-Packard			
Address 1000 N.E. Circle Blvd.			
City Corvallis	State Oregon	Zip Code	97330
Program Description, Equations, Variables			
This program performs unit conve pilots. Included are conversions degrees, statute miles and nauti- gallons of gasoline and pounds of g	ersions commonly encountered by between Fahrenheit and Celsius cal miles, liters and gallons, and gasoline.		
Equations:			
°F = 1.8 °C + 32 °C = (°F - 32)/1.8 statute miles = nautical miles gallons = liters/0.2642 pounds gasoline = gallons gaso	/0.868978 oline x 6		
Operating Limits and Warnings			

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

	anna an			
and a construction of the second s				
	летени авто оснософились с ной опос со фактальська.			
		· · · · · · · · · · · · · · · · · · ·		•
	non mine a complete a conset conset a conset		-	
			· · · · · · · · · · · · · · · · · · ·	
		ne i como mensiona processario necessario a cua nativa subante cu		
Sample Problems				
1. Convert 10 pou	inds of gasoline to gallon	is of gasoline.	the construction spectrum of the set	
2. Convert 40 gall	ons to liters.			
3. Convert 100 sta	atute miles to nautical m	iles.		
4. Convert 212 de	grees Fahrenheit to degr	ees Celsius.		
Solutions				
1. 1.67 gallons				
2. 151.40 liters				
3 . 86.90 nautical r 4 100°C	niles			
4. 100 C				
Kevstrokes		See D.	isnlav	
1 10 [f] [d]]	1 6	7	
]			
]	151.40	,	
3. 100 [B]		86.90)	
4. 212 [A]		100.00)	
magnam is a dimost	thanclation of a	program fr	m the UD.	65
brogram is a unrect		ριογιαπ τη		.05
ion Pac.				
	Sample Problems 1. Convert 10 pou 2. Convert 40 gall 3. Convert 100 sta 4. Convert 212 de Solutions 1. 1. 1.67 gallons 2. 151.40 liters 3. 86.90 nautical model 4. 100°C Keystrokes 1. 1. 10 [f] [d] 2. 40 [f] [C] 3. 100 [B] 4. 212 [A]	Sample Problems 1. Convert 10 pounds of gasoline to gallor 2. Convert 40 gallons to liters. 3. Convert 100 statute miles to nautical m 4. Convert 212 degrees Fahrenheit to degr 4. Convert 212 degrees Fahrenheit to degr 5. 151.40 liters 3. 86.90 nautical miles 4. 100°C Keystrokes 1. 10 [f] [d] 2. 40 [f] [C] 3. 100 [B] 4. 212 [A] program is a direct translation of a ion Pac.	Sample Problems 1. Convert 10 pounds of gasoline to gallons of gasoline. 2. Convert 40 gallons to liters. 3. Convert 100 statute miles to nautical miles. 4. Convert 212 degrees Fahrenheit to degrees Celsius. Solutions 1. 1.67 gallons 2. 151.40 liters 3. 86.90 nautical miles 4. 100°C Keystrokes See D+ 1. 10 [f] [d] 1.67 2. 40 [f] [C] 151.40 3. 100 [B] 86.90 4. 212 [A] 100.00	Sample Problems 1. Convert 10 pounds of gasoline to gallons of gasoline. 2. Convert 40 gallons to liters. 3. Convert 100 statute miles to nautical miles. 4. Convert 212 degrees Fahrenheit to degrees Celsius. Solutions 1. 1.67 gallons 2. 151.40 liters 3. 86.90 nautical miles 4. 100°C Keystrokes See Display 1. 10 [f] [d] 1.67 2. 40 [f] [C] 151.40 3. 100 [B] 86.90 4. 212 [A] 100.00

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Convert from			
	Fahrenheit to Celsius	°F		°C nm
	or statute miles to nautical miles or liters to gallons	S.M. liters		nallons
	or gallons gasoline to pounds	$\pi a 1 / (\pi a s)$	D	$\frac{garrons}{1bs(as)}$
		ju / / ju 5 /		103 (903)
3.	Convert from			
	Celsius to Fahrenheit	°C	f A	°F
	or nautical miles to statute miles	n.m.	f B	s.m.
	or gallons to liters	gallons	f C	liters
	or pounds gasoline to gallons	lbs(gas)		gai(gas)
4	For next conversion go to step 3 or 4			

9[,] Program Listing I

STEP #		KEY CODE	CO	MMENTS	STEP	KE			COM	MENTS
ant.	tri Ri ó	21 11			—	957	x	-75		
001	+ <i>LULH</i> 7	21 11 87	1			001	DTN	24		
002	2	200 00	1			050	+1 Di J	21 16 14		
000	-	-45	1			032	#LDL0 C	21 10 14		
007	ę	-45	,			000	-	-24		
005	1	-67	1			001	- 5	-24		
000	•	-62			-	062	KIN	1 24	г	
007	8	88							4	
888	-	-24							4	
009	RIN	24							4	
010	* LBLa	21 16 11							4	
011	1	01				_			4	
012	•	-62							4	
013	8	08				_			4	
014	Х	-35			070					
015	3	03								
016	2	02								
017	+	-55]	
018	RTN	24								
019	*LBLB	21 12							T	
020		-62							1	
821	8	88							1	
R22	6	00 06							1	
R23	8	00 88							1	
824	q	89 89			080				1	
825	7	05 07							1	
023	, 0	01							1	
020		00				-			1	
027		-33							1	
020		24							4	
029	¥LBL6 .	21 16 12							4	
030		-62							4	
031	8	88							4	
032	6	Uć							{	
033	8	08			090				-	
034	9	0 9			030				{	
035	7	07							4	
036	8	08							-	
037	÷	-24				_			ł	
038	RTN	24							4	
039	≭LB LC	21 13							4	
040		-62							1	
041	2	62							4	
042	6	06							1	
043	4	84								
044	2	8 2			100					
645	x	-35				_				
046	RTN	24				_				
847	*LELc 2	21 16 13								
848		-62				1			L	
R4 9	2	02					FLAGS		SET STATUS	
050	6	86				0		FLAGS	TRIG	DISP
A51	4	Й4				± 1		ON OFF	r	
001 052	2	62						0 🗆 🗳	DEG 🗹	FIX 🗗
A22	÷	-24				$+ ^{2}$				
053 054	RTN.	24			110					
004 A22	×IRID	21 14				╷╷			L	L
000 056	TEDED F	06 21 17			1					
0.0				REG	STERS		<u></u>			10
U	ľ	2	3	4	5		σ	/	8	э
50	S1	52	53	54	S 5		S6	57	58	59
50	3	52	33	34	33		00	5,		~
``````		<b>I</b>		<b>I</b>	D		Ti	<b>I</b>	T	4
Δ								L	1*	

Program Title Turn Performance
HP-67/97 Users' Library Hewlett-Packard Company
Contributor's Name In Crypt Sector Library Henredo Fackara company
Address Open and Addres
City COTVETTIS State OK Zip Code 97330
<b>Program Description, Equations, Variables</b> This program calculates the G-force, turn diameter time required to complete a 360° turn, and stall speed for an airplane as a function
of an aircraft's bank angle, airspeed and normal stall speed.
$G = \frac{1}{\cos(bank)}$
TAC2
$Diameter = \frac{TAS}{34208 \tan (bank)}$
0 0055 TAS
$time = \frac{0.0000 \text{ ms}}{\text{tan (bank)}}$
stall = (normal stall) √ G
All values assume coordinated turns and no vertical
accelerations. Gusty conditions will alter the calculated results significantly.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

				• •							
 	 				-		•				
		 								na ann an taite a suidheann suidheann suidheann suidheann suidheann suidheann suidheann suidheann suidheann sui	 •
			•			•				 	
 			, 					•		 	 +
			•			•••••••••••			-		 
			<u>.</u>				•			 •	

Sample Problem a 360° turn, speed of 115	n <b>(s)</b> , and sta 5 knots a	Calcul 11 speed nd a sta	ate the G-force for an aircraf 11 speed of 60	, diameter of t in a 30° an knots.	turn, time required for d 45° bank with a cruising	
Solution (a)	Bank	 G	stall	Diameter	time	
Solution(s)	30°	1.15	64.47 Knots	0.67 n.m.	1 min 5 sec	
	45°	1.41	71.35 Knots	0.39 n.m.	38 sec	
Keystrokes:					See Displayed:	
[f] [a] 115	[A] 60 [	B] 30 [C	:] [D]		1.15	
[f] [d]					64.47	
[E]					0.67	
[f] [e]					1.05	

Reference (s)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
This program is a direct translation of a program from the HP-65	
Aviation Pac.	

Sketch(es)	
Samole Problem(s)	
Solution(s)	
	1 41
	1.41
[f] [d]	71.35
[E]	0.39
	0.20
	0.38
(	
Reference (s)	

	<b>-</b> )
	_
INITIALIZE →Knots →M.SS*	2
$\mathfrak{F}_{\mathbf{A}}$ TAS STALL BANK $\rightarrow \mathbf{G}$ $\rightarrow \mathbf{n.m.}$	. /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Enter program				
2	Initialize		fa		
3	Input all of the following				
	true airspeed	knots	A [	knots	
	normal stall speed	knots	В	knots	
	degrees of bank	degrees	C	degrees	
4	Calculate acceleration		D	Ğ	
	then turn stall speed		fd	knots	
	Calculate turn diameter			n.m.	
	then time of turn		fe	M.SS*	
5	For new case go to step 3 and change				
- U	appropriate inputs				
		ļ			

28			97	Pro	gram	n Lis	sting	I			
STEP	KEY ENTRY	KEY CODE		COMME	NTS	STEP	KEY ENTR	Y	KEY CODE	CO	MMENTS
00	1 ¥LBLa	21 16 11					Ì				0
00:	2 DEG	16-21									
00.	3 DSP2	-63 02				060				_	
884	4 RTN	24				000					
00:	5 ¥LBLA	21 11									
000	6 ST01	35 01					<u> </u>				
00. 00.	∕ KIN o ≠unun	24	1					-+-			
00	В #LDLD 9 стло	21 12 75 80	1							-	
00. Q11	9 5102 9 PTN	33 02 24	1								
G1	1 #LBLC	21 13	1								
012	2 ST03	35 03								_	
01	3 RTN	24	1			070					
01-	4 *LBLD	21 14	1			070					
01	5 RCL3	36 03	1							<b></b>	
010	5 COS	42	1								
Ø1:	( 1/X	52	1							-	
010	S KIN D widdiai	21 16 14	1							-1	
011	7 #LDLO R CSRD	21 10 14	1								
02) 02)	i JX	54	1								
022	2 RCL2	36 02	1							_	
623	3 X	-35	-			080					
624	4 RTN	24	+					-+-			
02:	5 <i><b>*LBLE</b></i>	21 15	1					-+-			
026	5 RCL1	36 01	1				<u> </u>	-+-			
627	/ X2	53	1								
020	5 3 5 1	<b>U</b> 3 07	1							_	
023 070	7 <del>4</del> 2 0	04 62	]								
030 031	) 2 I A	02 ЙЙ	1								
032	28	08	1							_	
033	 3 ÷	-24	4			000					
034	4 RCL3	36 03	{			090					
035	5 TAN	43	1								
036	5 ÷	-24	1								
037	7 RTN	24	1					-+-	n an anna far lan na staiffeir ann pholann a' firfeirth a		
038	S #LBLe	21 16 15	1								
035 040	7 KLLI G	36 01	]		r						
070 Q41	, . I A	-62 AØ	1			To Io			LAB	ELS	10
042	2 0	00	4		<u> </u>	В	STALL	Č –	BANK	G	⁻ n.m.
043	3 5	05	1		а	b		с		d KNOTS	e M.SS
844	1 5	05	1		0	1		2		3	4
045	5 X	-35	1		5	6		7		8	9
046	5 RCL3	36 03	1								
U47 040	r IAN	43	1			L					
040 Ø40	) <del>-</del> 3 -⇒⊔м⊆	-24 16 75	]				FLAG	S	<b>_</b>	SET STATU	S
050	RTN	24	1						FLAGS	TRIG	DISP
├Ť		-+	4				1				FIX 🕅
+-			1				2			GRAD	SCI 🗍
			]			110	3		2 🗆 🛛	RAD 🗆	ENG 2
			1				ļĽ		3 🗆 🕅		n
<u>├</u>		1	1								
0	1	2	3	14	HEGI	SIERS	6		7	8	9
ľ	TAS	S   stal	1	bank 📑		Ĭ	Ŭ			-	-
S0	S1	S2	S3	S	4	S5	S6		S7	S8	S9
A		в		C		U		E			

Program Title Rate of Climb and Descent							
Contributor's Name HP-67/97 Users' Library Address 1000 N. E. Circle Boulevard City Corvallis	Hewlet State	ct-Packard Co OR	mpany Zip Code 97330				
Program Description, Equations, Variables The inputs of this program are true airspeed (TAS), elevation change ( $\triangle$ ALT), and either rate-of-climb (ROC) or the distance (DIST) over which the elevation change is to occur. Outputs are rate-of-climb required to change elevation in the specified distance or, conversely, the distance required when the rate-of-climb is specified. ROC = $\frac{TAS (\triangle ALT)}{60 \sqrt{DIST^2 + (\triangle ALT)^2}}$							
$D = \frac{T}{6}$ $DIST = \sqrt{D^2}$	$\frac{\Delta \Delta ALT}{50 ROC}$	LT) ²					
<b>Operating Limits and Warnings</b> Constant airspeed must be maintained correction is made for decreased air Inputs for ROC and TAS should be con	through craft pe servativ	out change o rformance at e, average va	f altitude. No increased altitude. alues.				

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Skatab/as)	
Sketchies	
	-
Sample Problem(s)	lice a mountain nace having an
I. IS N.M. West OT Las vegas (EI. 2000 IC)	The second secon
elevation of 6600 ft. Assuming a clime	bout IAS of 80 knots, what is the
minimum ROC that you must maintain if y	you wish to clear the pass by 1000
feet?	
2. Assume that a different aircraft climbs	s out at 800 ft/min. and maintains
an airspeed of 120 knots. How far from	n the pass will it be when it is
at 7600 ft?	
Solution(s)	
2. 2.4/ n.m.	
Keystrokes:	See Displayed:
1. 80 [A] 5000 [B] 15 [C] [D]	443.78
2. 120 [A] 5000 [B] 800 [D] [C]	12.47
[CHS] 15 [+]	2.53
Reference (s)	
This program is a direct translation	op of a program from the HP-65
This program is a direct transfactor	
Aviation Pac.	

		c		
	↓ →DIST TAS △ ALT DIST	→ROC ROC	₹	
STEP	INSTRUCTIONS		KEYS	
1	Enter program	DATA/ONITO		DATAONITO
2	Input the following:			
	true airspeed	TAS (knots	Α	TAS
	and altitude change	∆ALT (ft)	В	∆ALT
	and either distance	DIST (n.m.	C	DIST
	or rate-of-climb/descent RC	)C (ft/min)		ROC
3	Calculate either distance		C	DIST (n.m.)
	or rate-of-climb/descent			ROC (ft/min)
4	Go to step 2 to change any values for			
	recomputation in step 3.			

20				97	Pro	gram	Li	stii	ng I					
STEP	, кі	EY ENTRY	KEY CODE		СОММЕ	NTS	STEP	KEY	ENTRY	κ	EY CODE		COM	MENTS
<b>r</b>	001	*LBLA	21 11					057 058	0 7		00 07	,		
	002 007	STO6	35 06					<b>0</b> 59	6		06			
	003 004	#IRIR	24				ŀ	060	X		-35			
	005	ST04	35 04				ŀ	061	ST05		35 85			
	006	6	06				ł	062	KIN ∗IRIJ	21	16 14			
	007	e	00				ł	003 064	ST05		35 05			
	008	7	07				ł	065	RTN		24			
	009	6	06											
	010 011	= 9707	-24 35 07							<b> </b>				
	012	RCL4	36 04											
	013	RTN	24				070	+		+				
×	014	<b>∗LB</b> LC	21 13					+		+				
	015	F3?	16 23 03				· · · · · · · · · · · · · · · · · · ·			1				
Dis	016		22 16 13											
	017 018	RCLD RCL7	36 00 36 07											
	019	X	-35											
	020	6	86					-						
	021	Ø	00									_		
	022	÷	-24											
	023	RUL5	36 85				080							
	024 025	÷	-24 86											
	026	Ũ	00					-						
	027	7	<b>0</b> 7											
	028	6	06	1				-						
	029	X	-35	1										
	030	X2 PCI7	53 76 97											
	031 032	KUL7 X2	30 07 53	ł										
	033	-	-45	4			090	+		+				
	034	٧V	54	1										
	<b>Ø3</b> 5	ST03	35 03	1						-				
	036	RTN	24	1										
	037 070	¥LBLC STO7	21 16 13											
	030 039	RTN	24							+				
	040	*LBLD	21 14	1						1	LA	BELS		
	041	F3?	16 23 03	1		A TAS	S B	∆ALT	r c	[;] D	IST	D RO	C ľ	E
0	042	GTOd	22 16 14	]		a	b		с		TST	d _PO		6
00	643	-RCL6	36 <b>8</b> 6 76 97			0					151	3	<u> </u>	4
K-	044 945	KUL7 X	-35			0								
	846	6	06	1		5	Ь		'	, 		8		9
	047	0	00	1										
	048	÷	-24	1					FLAGS			SET S	STATUS	
	U49 050	RCL3	36 03								FLAGS		RIG	DISP
	030 051	AF RCLZ	36 AZ					+1					GX	FIX 🗵
	052	X2	53					2		_		GR	AD 🗆	SCI 🗆
	<i>0</i> 53	+	-55	1			110	3			2 🗆 🛛	RA	D	ENG D
	<i>0</i> 54	٧X	54								3 🗆 🛛	<u>и</u>		
	055 054	÷	-24			DECI	STERS							
0	036	6  1	<b>и</b> б  2	3	DICT		5 00		⁶ тлс		7 • <b>/ 1 T /</b>	n m 1		9
S0		S1	S2	S3	121	USED S4	S5		S6	) 	S7	S8		S9
A			В		lc		D			E			I	
ľ							1							
Program Title Hea	d Winds and Cross Winds													
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------												
Contributor's Name	ewlett-Packard													
Address IUUU N.	E. LINCIE BIVA.													
City Corvallis	State Oregon	Zip Code 97330												
Program Description, E	quations, Variables													
· · · · · · · · · · · · · · · · · · ·	This program calculates both the head wind and cross wind co ponents from the aircraft heading and reported winds. The progr works both at altitude, where magnetic variation must be c sidered, and at landing and takeoff, where winds are reported magnetic directions rather than true directions.	om- am on- l in												
	The head wind (HW) and right cross wind (RCW) components computed from	are												
	$HW = K \cos (D - HDG - V)$													
	$RCW = K \sin (D - HDG - V)$													
Contributor's Name       Hewlett-Packard         Address       1000 N.E. Circle Blvd.         City       Corvallis       State       Oregon       Zip Code 97330         Program Description, Equations, Variables														
Contributor's Name       Hewlett-Packard         Address       1000 N.E. Circle Blvd.         City       Corvallis       State       Oregon       Zip Code 97330         Program Description, Equations, Variables       This program calculates both the head wind and cross wind components from the aircraft heading and reported winds. The program works both at altitude, where magnetic variation must be considered, and at landing and takeoff, where winds are reported in magnetic directions rather than true directions.         The head wind (HW) and right cross wind (RCW) components are computed from       HW = K cos (D - HDG - V)         RCW = K sin (D - HDG - V)       RCW = K sin (D - HDG - V)         where       K = the reported wind direction         HDG = the aircraft heading       V = the magnetic variation         V = the magnetic variation       HDG = the aircraft heading         V = the magnetic variation       V = the magnetic variation         Operating Limits and Warnings       Reported wind smust be less than 100 knots.         Wind directions reported by the control tower are magnetic and the variation need not be input when using the program for takeoff and the variation must be input when using the program for takeoff and the variation must be included to find the wind components.														
	K = the reported wind velocity D = the reported wind direction HDG = the aircraft heading													
	V = the magnetic variation													
Operating Limits and W	arnings													
	Limits and Warnings													
Program Title       Head Winds and Cross Winds         Contributor's Name       Hewlett-Packard         Address       1000 N.E. Circle Blvd.         City       Corvallis       State Oregon       Zip Code 97330         Program Description, Equations, Variables														
	Wind directions reported by the control tower are magnetic and variation need not be input when using the program for takeoff a landings. Other wind directions are reported in true directions a variation must be included to find the wind components.	the and and												

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

-		
mple Problem	<u>s)</u>	
	1. At takeoff on runway 28 the winds are reported as 240° at 25	
	knots. What are the head wind and cross wind components?	
	2. At altitude the wind is reported as 160° and 40 knots. Four magnetic heading is 270°. What are the head wind and cross	
	wind components if the magnetic variation is 15 east?	
lution(s)	Solutions	
	1. 19.15 knots (head wind); – 16.07 knots (left cross wind)	
	2. –22.94 knots (tail wind); –32.77 knots (left cross wind)	
	<ol> <li>-22.94 knots (tail wind); -32.77 knots (left cross wind)</li> <li>Keystrokes</li> </ol>	See Displaye
	<ol> <li>222.94 knots (tail wind); -32.77 knots (left cross wind)</li> <li>Keystrokes</li> <li>1. [f] [E] 280 [B] 240.25 [C] [D]</li> </ol>	See Displayed
	<ol> <li>-22.94 knots (tail wind); -32.77 knots (left cross wind)</li> <li>Keystrokes</li> <li>[f] [E] 280 [B] 240.25 [C] [D] [E]</li> <li>[f] [E] 270 [B] 160.40 [C] 15 [A] [D]</li> </ol>	See Displayed 19.15 -16.07 -22.94
	<ol> <li>-22.94 knots (tail wind); -32.77 knots (left cross wind)</li> <li>Keystrokes</li> <li>[f] [E] 280 [B] 240.25 [C] [D] [E]</li> <li>[f] [E] 270 [B] 160.40 [C] 15 [A] [D] [E]</li> </ol>	See Displayed 19.15 -16.07 -22.94 -32.77
	<pre>222.94 knots (tail wind); -32.77 knots (left cross wind) Keystrokes 1. [f] [E] 280 [B] 240.25 [C] [D] [E] 2. [f] [E] 270 [B] 160.40 [C] 15 [A] [D] [E]</pre>	See Displayed 19.15 -16.07 -22.94 -32.77
eference (\$)	222.94 knots (tail wind); -32.77 knots (left cross wind) Keystrokes <ol> <li>[f] [E] 280 [B] 240.25 [C] [D]</li> <li>[E]</li> <li>2. [f] [E] 270 [B] 160.40 [C] 15 [A] [D]</li> </ol>	See Displayed 19.15 -16.07 -22.94 -32.77
eference (s)	222.94 knots (tail wind); -32.77 knots (left cross wind) Keystrokes <ol> <li>[f] [E] 280 [B] 240.25 [C] [D]</li> <li>[E]</li> </ol> <li>2. [f] [E] 270 [B] 160.40 [C] 15 [A] [D]</li> <li>[E]</li> This program is a direct translation of a program from t	See Displayed 19.15 -16.07 -22.94 -32.77



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1.	Enter program				
2.	Initialize		f	E	0.00
3.	If winds are surface winds, go to				
	<pre>step 4; if not, input variation (+E,-W)</pre>	V(deg)	Α		V
4.	Input both airplane heading and	HDG(deg)	В		HDG
	reported winds	DDD.KK*	С		DDD.KK
	L				
5.	Calculate either or both of the				
	following: headwind		D		knots
	right crosswind		Ε		knots
	NOTE: negative answers mean tailwind				
	or left crosswind				
6.	To change any inputs go to step 3 and				
	change only the variables affected.				
*	DDD.KK means direction, decimal point,				
	wind speed 325 08 means a direction				
	of 325 degrees and a speed of 8 knots.				

# 97Program Listing I

36			Al	<b>051</b> 0					
STEP K	EY ENTRY	KEY CODE	CO	MMENTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
001	*LBLA	21 11							
002	STOL	35 61	1						
002	RTN	24							
004	*I BL B	21 12			060				
004	ST02	75 A2							
005	DTN	20 02 .							
900 007	KIR ALDIC	24 .							
007	#LBLU	21 13							
800	5103	30 83	ł						
889	RIN	24	1						
010	*LBLD	21 14	4			•			
011	RCL3	3603	4						
012	INT	16 34 .	1						
013	RCL1	36 01 .	1						
814	RCL2	36 02 .	1		070				
015	+	-55	1						
016	-	-45	]						
017	RCL3	36 03							
<b>A</b> 18	FRC	16 44							
Ø19	FFX	-23							
010 020	2	<u>6</u> 2							
020 021	<del>د</del> x	-75	1						
021	مد مد	6 Å Å	1						
022	75	44 ·	1						
023	F2?	10 23 02	1		080				
024	XIY	-41	ł						
825	USP2	-63 02 .	4						
026	R∕S	51	1						
027	*LBLE	21 15	4						
<b>0</b> 28	SF2	16 21 02	1						
829	GTOD	22 14	4						
030	¥LBLe	21 16 15	ł						
031	CLX	-51	1						
<b>83</b> 2	DSP2	-63 02	1						
033	DEG	16-21	1						
<b>Ø</b> 34	CLRG	16-53	]		090				
A35	PTN	24							
1 1		1							
			1						
			1						
040			1						
			1						
			1					1	
			1					1	
			1		100			1	
			1						
			4					1	
			{						
			{						
			-					SET STATUS	
050			-						
050			4				FLAGS	TRIG	DISP
J			ł						
		+	4						
		+	4		110				
<b>├</b> ─── <b>├</b> ─			1						n
<b>├</b> ─── <b>├</b> ─		+	1					L	
		1	1			1	1		
	1	2		<u> </u>		6	7	8	9
0	ľν	1 HDC	່າດດາ	1/K	5	Ŭ	ľ		-
50	S1	S2	S3	S4	S5	S6	S7	S8	S9
Δ		IB		I	D	T	E	I	
ľ`		_	ľ						

Program Ti	tle Flight Planning and Flight	Verificat	cion		
Contributor	's Name Hewlett-Packard Compa 1000 N. E. Circle Boulevard	ny, HP-67,	'97 Users'	Library	
City	Corvallis	State	OR	Zip Code	97330

**Program Description, Equations, Variables** This program can be used for flight planning and updating the flight plan as it is being flown. The program computes ETA's, ground speeds, cumulative distance flown, actual times for each leg and cumulative time flown. The ground speeds can be changed for each leg.

ETA = DIST/GS + TO GS = DIST/(ATA - TO)

where

ETA = estimated time of arrival	
DIST = distance	
GS = ground speed	
TO = take off time (or time over la	st checkpoint)
ATA = time over current checkpoint	

**Operating Limits and Warnings** Distances and speeds must be in compatible units (knots and n.m., or mph and miles). Ground speeds are rounded in the display to the nearest whole unit. They are carried internally to full significance.

Flight planning and flight verification are identical except that: (1) flight planning usually assumes that the take-off time is 0.00, and (2) flight planning accepts the calculated ETA as the ATA at the checkpoint.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)					
	na managementana ana aka mana ama ama				

Sample Problem(s)	Part 1 - Flig	jht Plan	A flight co	onsists of the following 3
			legs:	
		Ground spee	ed Di	istance
	Leg l	80K	20	) n.m.
	Leg 2	105K	53	3 n.m.
	Leg 3	105K	41	l n.m.
Make a flight pla	n showing the	individual leg	times, cumu	lative times, and distances
at the end of eac	ion Total	Distance	Total Time	lea Time
Lea	1	20	:15:00	:15:00
Leg	2	73	:45:17	:30:17
Leg	3	114	1:08:43	:23:26
Solution(s) Keyst	rokes:		Se	ee Displayed:
1. [f] [	a] 0 [A] 80 [0	20 [D]		20
[E]				0.1500
[A]				0.1500
105 [	C] 53 [D]	99 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199		73
[E]				0.4517
[A]				0.3017
105 [	C] 41 [D]			114
[E]	<u>.</u>			1.0843

Reference (s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Sketch(es)											
						4					
•								 		•	
	 1 <b>.</b>	- <b>4</b>	-		•	n An an		 			-
			• • •		• • • • • • • • • • • • • • • • • • • •	1 1 • • • • • • • • • •	• • • • • • • • • • • • •	 1	· · · · · · · · · · · · · · · · · · ·		
	 			•		• • •	n Jerrona on an aith a' can an ann ann ann an C	 	-		
ar san an a	 			• · · · · · · · · · · · · · · · · · · ·	- - 	- - 		 - -		•+	
								 	+	•	

Sample Problem(s) Part 2 - Flight Verification Assume that the actual flight was flown with a take off time of 10:17:00. Assume that the actual times of arrival at the checkpoints were 10:31:10, 11:01:10 and 11:23:50. Find the ETA's at each checkpoint using 80 knots as the ground speed for the first leg. After finding the actual ground speed for the first leg, assume that the difference between actual and estimated speeds is the wind velocity. Add the winds to the 105 knots assumed GS for leg 2. Use the GS calculated for leg 2 as the assumed GS for leg 3.

Compute ETA's for each checkpoint, actual leg times, cumulative time and actual ground speed for the flight.

Solution(s)	[A]	0.2326
	[f] [a] 10.17 [A] 80 [C] 20 [D] [E]	10.32
	10.3110 [A]	0.1410
	[R/S]	0.1410
	[B]	85
	110 [C] 53 [D]	73
	[E]	11.0005
	11.0110 [A]	0.3000
	[R/S]	0.4410

Reference (s)	

ketch(es)						
		ananan a an an ta an	a saas aa maanaya gaa kanaana			
•						

Sample Probler	m(s)				
Solut	ion	ETA	Actual leg time	Cumulative time	Calculated ground speed
Leg	1	10:32:00	14:10	14:10	85
Leg	2	11:00:04	30:00	44:10	106
Leg	3	11:24:22	22:40	1:06:50	109
Solution(s)	[B]			106	
	[C]	41 [D]		114	
	[E]			11.2422	
	11.2	2350 [A]		0.2240	
	[R/S	5]		1.0650	
	[B]			109	
Reference (s)					



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		fa	
3	Input take off time (usually 0 for flight			
	planning)	H.MMSS*	Α	
4	Input ground speed	GS_(knots)	С	GS
5	Input leg length and read cumulative distance	eg length (n.m.)	D	total dist (r
6	Calculate ETA	,,	Ε	H.MMSS
7	Input ATA and read leg time.	H.MMSS	Α	H.MMSS
	(for flight planning do not input ETA.			
	just press [A]).			
8	To read out total elapsed time to checkpoint			
	press [R/S]		R/S	H.MMSS
9	To calculate GS on the last leg		В	GS (knots)
10	To use calculated GS for the next leg press			
	[C] and go to step 5		C	
11	If you wish to change the GS for the next leg			
	go to step 4.			
12	To use the same ground speed for the next leg			
	as you used on the last leq, go to step 5			
	<i>M c M</i>			
	*H.MMSS means hours, decimal point, minutes,			
	seconds. 2.0355 is 2 hours 3 minutes and			
	55 seconds.			
		<b> </b>		
L				

### 97 Program Listing I

STEP K		KEY CODE		COMMENTS		STEP	KE	YENTRY	KEY CODE	CON	IMENTS
001	*LBLa	21 16 11					057	*LBLB	21 12		
002	CLX	-51					058	RCL4	36 04		
883	CLRG	16-53					<b>A</b> 59	RCI 1	36 01		
884	SE 1	16 21 01					060	RCL 2	36 02		
905	*1 BI Ø	21 00					861	CHS	-22		
995	DSPA	-63 88					062	HMG+	16-55		
000	D010 D/C	51					927	LMCA	16 36		
001	r v CTOQ	22 BB					003 024	ENT*	-21		
000	JID(A	21 11					004 0/F	ENII MUV	-51		
002	FLDLR DCL1	21 11					000	0140	-J1 16-74		
616	RULI	30 UI 75 00					866	8212	10-34		
611	5102	33 82					067	6556	23 16 12		
012	λ∓Υ •₹•1	-41					068	+	-55		
013	5101	35 01					069	÷	-24		
014	F1?	16 23 01					070	GIUU	22 00		
815	6104	22 04					071	*LBLb	21 16 12		
016	XZY	-41					072	2	<b>0</b> 2		
017	CHS	-22					073	4	04		
018	HMS+	16-55					074	RTN	24		
019	ENT↑	-21					+				
<b>8</b> 20	CLX	-51					+				
021	X>Y?	16-34									
022	GSBb	23 16 12									
023	HMS+	16-55				000					
024	RCL5	36 05	ļ			080					
025	X₽Y	-41								_	
<b>0</b> 26	HMS+	16-55									
<b>0</b> 27	ST05	35 <b>0</b> 5									
028	LSTX	16-63								_	
829	*LBL4	21 04									
030	CF1	16 22 01	1								
A31	DSP4	-63 04									
A12	R/S	51									
877	PCI 5	76 85									
R74	CT04	22 <b>0</b> 4	]			090					
975	*/ R/ C	21 17	]								
033	*LDL0 CTN7	75 97									
030	5103 CTOB	22 00	1								
031	4/ Di D	21 14	1								
030	ALDLU CTOA	21 14 75 0A	1								
037	5704 CT16	33 84 75_55 02									
040	DCLE	33-33 00 72 02	1						LAE	JELS	
041	KULO CTOR	30 00 22 00	1	A	USED	В	→G	s ^c	GS	D DIST	E
042		22 00		2		b		ED C		d	е
043	ALDLL DCIA	21 IJ 72 QA	1	1	NITIAL	IZE	05	ED			
044	RUL4 DCL7	30 04 76 07		0	USED	1		2		3	⁴ USED
04J 042	RULJ	30 <b>0</b> 3 -24		5		6		7		8	9
040	- 	-24 12 75		L						1	
047	7003	10 33									
040 DAO	КССІ Цмст	JO 01 12 <b>-5</b> 5						FLAGS		SET STATU	S
047	7 1137	10-JJ 02					0		FLAGS	TRIG	DISP
050	2	UL QA					1		ON OF	F	
831 050	4 V\V0	04 15-74							0 🗆 🛛	DEG 🛛	FIX 🗹
052	8217 619	10-34					2				
003	ULX CUC	-31				110	3				
004	UHS UHO:	-22 17 FF					╷╷└		3 🗆 🖸	<u>ا</u> ل	
600	HNS+	16-33									
836	6104	22 04			REGIS	TERS			<u>AT 1-</u>		
0	1 t	2 t ₁	³ G	is ⁴	DIST	5 TO			<u> </u>	8	9
<u> </u>	nev		63	C1		<u> 1</u>		56	S7	S8	
30	31	32	33	34		33					
A	<b>I</b>	в	-			D			E	I	
1											

0
Program Title Determining In-Flight Winds
Contributor's Name HP-67/97 Users' Library Hewlett-Packard Company Address 1000 N. E. Circle Boulevard
City Corvallis State OR Zip Code 97330
<b>Program Description, Equations, Variables</b> This program computes the winds at altitude from TAS, course of aircraft, ground speed and heading. Ground speed is automatically calculated from time-distance inputs. Winds can be computed as either magnetic or true. The latter must be used when verifying wind forecasts by the weather bureau. The program allows continuous updating of winds.
This program solves the wind triangle shown below.
$\vec{A} \qquad \vec{W} \qquad \vec{A} + (\vec{W}) = \vec{G}$ $\vec{W} = \vec{G} - \vec{A}$
$\vec{W}$ , $\vec{A}$ and $\vec{G}$ are all vector quantities representing wind direction and speed; TAS and heading; and ground speed and course respectively.
Since both $\vec{A}$ and $\vec{G}$ use magnetic directions, $\vec{W}$ is computed as a magnetic direction. It must be corrected to true heading by adding the variation (V).
True wind direction = magnetic wind direction + V
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s) After passing over a checkpoint at 3:05:20 a pilot flying a magnetic course of 150° finds that he must apply 15° right correction; i.e., steer 165° to maintain his ground course. He passes over his next checkpoint 70 n.m. away at 3:40:20. The TAS of his airplane is 110 knots and the variation is 7.5° east. If the local FSS asked him to report the winds, what would he tell them?

Solution(s)	
273° at 32 knots.	
Keystrokes:	See Displayed:
[f] [a] 7.5 [A] 150.110 [B] 3.0520 [C] 70 [D]	
3.4020 [C] 165 [E]	273.032
Reference (s)	
This program is a direct translation of a	program from the HP-65
Aviation Pac	
<u>Aviation rac</u> .	

	INITIALIZE			STEER	5
(del)	V (deg) 📕 MC.TAS	t], t2	DIST	→D	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		f A	0.0000
3	To obtain true winds rather than magnetic			
	winds input variation (+E, -W)	V(deg)	Α	V
4	Input all of the following:	-		
	MAG course and TAS	DDD.KKK*	В	TAS
	and time at first checkpoint t ₁ ,	(H.MMSS**)	С	H.MMSS
	and distance to next checkpoint	n.m.	D	H.MMSS
	and time at 2nd checkpoint t	2,(H.MMSS)	C	H.MMSS
5	To calculate wind, input heading of airplane			
	required to fly course	steer(deg)	E	DDD.KKK
6	To change any variable except time over first			
	checkpoint change the variable(s) and go to			
	step 5.			
7	To change time over first checkpoint go to			
	step 2.			
	*DDD.KKK means direction, decimal point, wind			
	speed. 325.080 means a direction of 325			
	degrees and a speed of 80 knots.			
	**H.MMSS means hours, decimal point, minutes,			
	seconds. 2.0355 is 2 hours 3 minutes and			
	55 seconds.			

### 97 Program Listing I

46			97	rrugram		ing i		
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP K		KEY CODE	COMMENTS
001 01	R1 ⊯IRia	21 16 11			057	7 ENT†	-21	<b>T</b>
A	92 CIRG	16-53	1		058	CLX	-51	
RI	93 SE1	16 21 01			059	) X>Y?	16-34	
RI	94 DSP4	-63 84			060	GSBe	23 16 15	
A	85 CIX	-51			061		-62	
A	AG RTN	24			062	5	02 05	
Â	87 *1 RIA	21 11			063	· +	-55	
0	AS STOL	35 A1	1		864	INT	16 74	
01 01	00 5101 09 PTN	24			865	+	-55	
0	10 +i RIR	21 12	]		866	DSP7	-67 07	
0.		16 7A			<b>8</b> 67	DOI O	24	
0. 0	11 101 12 CT02	75 02			869	*/ Pio	24	
0. G	12 5102 17 ictv	16-67			969	FLDLE CLV	21 10 1J _5(	
0. 01	IS LOIN 1A EDC	10-05 16 AA			005 070	7	-J1 97	
0. 0	14 FRG 15 EEV	-27			070 071	5	<b>0</b> 3 07	1
0. 0	IJ EEN 16 7	-23			071 072	o Q	00	
U. 0	10 J	03 -75			072 077	0 _	00 55	1
10. O		-3J 75 07	1		013 074	т	-00	1
U.	18 5103 10 DTU	30 03	1		U 1	KIN	1 24	1
U.	19 KIN	24						1
<i>U.</i>	20 ¥LBLU	21 13						1
0.	21 5105	30 80						1
67	22 F1?	16 23 01						1
0.	23 5104	30 04	1		080			1
6	24 UF1	16 22 01	1					1
67	25 RIN	24						1
6	26 ¥LBLU	21 14						1
e.	27 5106	35 06						1
01	28 RIN	24						1
0.	29 ¥LBLE	21 15						1
0.	30 RCL3	36 03						-
0.	31 →R	44						1
0	<b>32</b> ST07	35 <b>0</b> 7						-
0	33 X≠Y	-41			090			1
0	3 <b>4</b> STO8	35 <b>0</b> 8						1
0.	35 RCL2	36 02						1
0	36 RCL6	36 06						1
0	37 RCL5	36 05						+
0	38 RCL4	36 04						-
0	39 CHS	-22						1
8	40 HMS+	16-55					LABE	LS
0	41 HMS→	16 36		A	В	С	L L D	E E
0	42 ÷	-24		la (deo		· TAS		NUST STEER (DEG)
0	43 →R	44		ŭ	U	C	L.	e
0	44 ST-7	35-45 07		0	1	2	3	4
0	<b>4</b> 5 CLX	-51		5	6	7	8	9
0	46 RCL8	36 <b>0</b> 8						ő
0	47 -	-45						
0	<b>4</b> 8 CHS	-22				FLAGS		SET STATUS
0	<b>49</b> RCL7	36 07			C	)	FLAGS	
0:	50 →F	34					ON OFF	
0	51 EEX	-23					0 🗆 🖻	DEG 🗹 🖌 FIX 🗹
8	52 3	03			2	2	$1 \square \square$	GRAD 🗆 SCI 🗆
0	53 ÷	-24			110 3	3		RAD 🗆 ENG 🗆
0	54 X <b>Z</b> Y	-41					3 🗆 🗹	1_4
0	55 RCL1	36 01						
<u>9</u>	56 +	-55	10	REGIS	STERS	6	7	
<u> </u>	VARIATI	ON MAGCOUR	TF	$t_{\perp}$	΄ [±] λ	PIST	Éx	Ĕy
S0	S1	S2	S3	S4	S5	S6	S7	S8 S9
A	I	В		С	D	-1	E	I

Program Title Standard Atmosphere		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equation	ions, Variables	
	This program can be used to estimate atmospheric conditions from pressure altitude (PALT). It should be remembered that this is only an approximation based on average conditions.	
	The outputs, with the exception of temperature, are ratios of standard sea level conditions. For instance, if the pressure ratio $(P/P_0)$ is found to be 0.7375 and standard conditions are 29.92 inches of mercury the pressure (P) is the product of 29.92 and 0.7375 or 22.07 inches of mercury. Some standard sea level condition commonly used by pilots are	
	Pressure $\rightarrow P_0 = 29.92$ in Hg = 14.696 psi	
	Speed of Sound $\rightarrow a_0 = 661.51$ knots = 1116.4 ft/sec	
	Density $\rightarrow \rho_0 = 0.002378$ lb sec ² /ft ⁴	
	From 0 to 36089 feet the following relations hold	
	$T(^{\circ}C) = 154.981 \times 10^{-3} h$	
	$a/a_0 = \sqrt{T/T_0}$ ; $T_0 = 288.15 \text{ K}$	
	$P/P_0 = \left[\frac{T_0 - 1.981 \times 10^{-3} \text{ h}}{T_0}\right]^{5.2563}$	
	$\rho/\rho_0 = \frac{P}{P_0} \frac{T_0}{T}$	
Operating Limits and Warnir	ngs	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title	
Contributor's Name	
Address	
City State	Zip Code
	)
Program Description, Equations, Variables	
For altitudes between 36,089 feet and 82,000 feet, the follo relations hold	owing
$T = -56.5 \ ^{\circ}C$	
$a/a_0 = 0.8671$	
$P/P_{0} = 0.2234 e^{-\left(\frac{h-36089}{20804.9}\right)}$ $\rho/\rho_{0} = \frac{P}{P_{0}} \frac{288.15}{216.65}$ where T is temperature in degrees centigrade a is speed of sound P is pressure $\rho$ is density h is pressure altitude	
Operating Limits and Warnings         Limits and Warnings         Card 1 is valid from 0 to 30089 feet, card two is valid from 3608         feet to 82,000 feet.         above 36,000 feet and below 2000 feet.	9 +0 82,000 FT

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	e e Arron e compressioner administrative de la compressioner administrative de la compressioner administrative
	de norme e composition de la conservation de la Conservation de la conservation de
for a second	· · · · · · · · · · · · · · · · · · ·
a hanna a' ann a' ann ann an an an ann a' ann a' ann a' ann a' ann a'	
Sample Problem(s)	
	<b>M</b> • • • • • • • • • • • • • • • • • • •
Sample Problems	
1. What is the temperature and speed of sound at 27,000 feet	
assuming a standard atmosphere?	
2 What is the density at 70,000 feet assuming a standard	
atmosphere?	
	• • • • • • • • • • • • • • • • • • •
Solution(s)	
Solutions	
1. 27000 EAJEBJ	
[2]> 0.90	
(a(a), 51 (x)	
2. 70000[A][E]	
$1.38 \times 10^{-4}$	
Reference (s)	
Chemical Rubber Company Handbook, of Chemistry and Physics,	
47th edition, 1966–1967, page F–120	
	······
This program is a direct translation of a program from t	he HP-65
Aviation Pac.	



STEP	INSTRUCTIONS	INPUT DATA/UNITS	OUTPUT DATA/UNITS	
1.	Enter program			
2.	Input pressure altitude	Palt	Α	PALT
3.	Compute any or all of the following:			
	Temperature		В	T(C°)
	Speed of sound ratio		C	a/a
	Pressure ratio		D	P/P0
	Density ratio			OF / XP
				0
	For new case do to step 2			
	······			

### 97 Program Listing I

STEP K	EY ENTRY	KEY CODE		COMM	IENTS	STEP	κ	EY ENTRY	KE۱	CODE		COM	MENTS	5
001	*LBLA	21 11				í	457	ETN	-	24	T			
<i>002</i>	3	.03				, F	458	#IRLC	21	1 17				
003	6	$\partial \epsilon$				6	150	FRO	16 27	1 10 7 GØ				
004	Ø	66				c c	155 760	CTOC	22 14	5 17				
005	8	65				6	221	repp	22 10	7 10				
006	9	69				0	101	0000	20	0 12 00				
<b>N</b> R7	8705	35 65				0	202	2		62 a -				
009	X2Y2	16-35				6	163	<u>_</u>		67				
869	cTo.	22 16 11				ti d	164	3		ধত				
00J 818	CER	16 22 86				E E	165	•		-62				
010	DI	-71				Ľ	166	1		81				
011		75 61				Ū	967	5		85				
012	3101	00 01				0	68	+		-55				
013	2	82 57				Ø	69	RCL3	36	5 03				
014	8	60 00				0	170	÷		-24				
015	5	65				0	171	12		54				
016	•	-62				8	172	RTN		24				
017	1	<b>6</b> 1				0	73	*LBLc	21 16	5 13				
018	5	65				Ū	174			-62				
019	STO3	35 03				A	175	8		0 <u>9</u>				
020	RCL1	36 Øî				A	176	5		66 66				
021	RTN	24					177	7		67 67				
022	*LBLa	21 16 11				0	070	,		01 61				
R23	SFØ	16 21 00				0	1/0			<b>U</b> 1 53				
Ø24	R1	-31					179	KIN		24				
925	STOI	35 Ø1				U	86	*LBLU	21	14				
620	2.01	00 01 02				0	81	F0?	16 23	00				
020	2 0	85 85				0	182	GTOd	22 16	14				
027	0 0	<b>0</b> 0 60				0	83	RCL3	36	03				
028	ð	00 77				0	84	RCL1	- 36	61				
029	•	-62				Ū	85	1		01				
030	1	01				0	86	9		85	1			
031	5	60				0	87	8		Ø8	1			
032	STO3	<b>35</b> 03				a	88	1		61	1			
033	RCL1	36 01				Ŕ	89	FFX		-23	1			
034	RTN	24				A	90	CHS		-22	1			
035	*LBLB	21 12				Â	91	6110 E		85	1			
036	F0?	16 23 00				D.	02	v		-75	1			
037	GTOK	22 16 12					22 07	^		-33	4			
A38	1	61					70 04	сто.<	75	-4J 201	ł			
039	5	85					94 05	5704	30	07	1			
949	Pri 1	76 01					95	RULS	35	03	1			
040 041	1	00 01 Ø1				U.	96	÷		-24				
041	å	95				0.	97	5		85				
042		60 AC				0.	98			-62				
043	č ·	00 64				Ø.	99	2		02	1			
644		61				1	00	5		05				
645	EEX	-23				1	01	6		0E				
646	CHS	-22				1	02	3		83				
047	6	<u>06</u>				1	03	Υx		31	1			
048	X	-35				1	04	ST06	35	Ø6				
049	-	-45				1	05	RTN		24	ł			
050	RTN	24				11	0E	*LELd	21 16	14	1			
051	*LBLk	21 16 12				1	A7	RCLI	36	61				
<b>05</b> 2	5	05				1	<b>Ø</b> 8	RCL 5	36	05				
053	6	ē€				1	69	-	00	-45				
054		-62				1	10	0		 A 2				
055	5	85				1.	11	2 0		02 02	1			
056 056	CHS	-22				1	11	U S		66 60	1			
1					DECI	TEDE	12	¥		<b>U</b> 0	L			
)	1 1	2	3 -		4	15		6 <b>Q</b> i	7		8		9	
,	I h		28	8,15	T(K)	3608	39	Γ/P	ľ		ľ		ľ	
50	S1	S2	S3		S4	S5		S6	S7		S8		S9	
Ą	1	в В	C			D			E			I		

#### 97 Program Listing II

STED	KE			COMMENTS		STEP		KEY CODE	COMM	ENTS
	117		RET CODE			0.5				
	113	0 1	60 Ø4			170				
	115	7	-62							
	116	q	89							
	117	÷	-24							
	118	CHS	-22							
	119	۵۸۰۵ ×م	33							
	120	-	-62							
	121	2	62							
	122	2	02							
	123	3	03							
	124	4	<b>ē</b> 4			180				
	125	Х	-35							
	126	ST06	35 06							
1	127	RTN	24							
	128	*LBLE	21 15							
	129	FØ?	16 23 00							
	130	GTOe	22 16 15							
	131	GSBD	23 14							
	132	RCL3	36 03							
	133	Х	-35							
	134	RCL4	36 04			190				
	135	÷	-24							
	136	RTN	24							
	137	<b>∦</b> LBLe	21 16 15							
	138	GSBd	23 16 14							
	139	RCL3	36 03							
	140	Х	-35							
	141	2	02							
	142	1	01							
	143	6	<i>U6</i>							
	144	، -	-62			200				
	145	6	86 05							
	146	5	UE							
	147	÷	-24							
	148	RIN	24							
	149	R/S	51							
150									I	
						210				
160										
L										
				4						
	_		_	4		220				
				4						
				4						
<b> </b>			+	1						
	1		.1				FLAGS	T	SET STATUS	
A Da		В	С	al D Pi	E	2/-	0			
MAL	Ĩ	*	/ /	190 - 1/P0	L	18	+	FLAGS		DISP
а		b	с	d	е		1			
0		1	2	3	4		2			SCI 🗆
5		6		9	0		2		RAD 🗆	ENG, 🗆
ľ		0	l′	°	3		3	3 🗆 🗹		n

Program Title Mach Number and	d True Air Speed	
Contributor's Name Hewlett-Pack Address 1000 N.E. Circle Bl	kard Ivd.	
City Corvallis	State Oregon	Zip Code 97330
Program Description, Equations, Variables		
This program conve and true airspeed (7 to calculate mach r and indicated air ter true airspeed. The re around 0.8 for most	erts calibrated airspeed (CAS) to mach num TAS). Pressure altitude (PALT) must be kno number (M). Aircraft recovery coefficient (C mperature (IT) must also be known to calcul ecovery coefficient varies from 0.6 to 1.0 bu aircraft. $\frac{P}{P} = \left[\frac{518.67 - 3.566 \times 10^{-3} \text{ PALT}}{5.2563}\right]^{5.2563}$	ber wn CT) ate t is
$M^{2} = 5 \left[ \left( \frac{P_{0}}{P} \right) \right]$ $TAS = 39M \sqrt{(1)}$	$\left\{ \left[ 1 + 0.2 \left( \frac{CAS}{661.5} \right)^2 \right]^{3.5} - 1 \right\} + 1 \right\}^{0.286} - 1 \\ (IT + 273) \left[ C_T \left( \frac{1}{(1 + 0.2 M^2)} - 1 \right) + 1 \right] - 1 \\ \end{array} \right\}$	
Operating Limits and Warnings		
Limits and Warr Accuracy degene	<b>nings</b> erates for mach numbers in excess of o <b>ne</b> .	
This program has been verified only with respect t this program material AT HIS OWN RISK, in relian upon any representation or description concerning NEITHER HP NOR THE CONTRIBUTOR MAKES A PROGRAM MATERIAL, INCLUDING, BUT NOT LII FOR A PARTICULAR PURPOSE. NEITHER HP NOT TIAL DAMAGES IN CONNECTION WITH OR ARIS	to the numerical example given in <i>Program Desc</i> nce solely upon his own inspection of the progr g the program material. ANY EXPRESS OR IMPLIED WARRANTY OF AN MITED TO, THE IMPLIED WARRANTIES OF ME DR THE CONTRIBUTOR SHALL BE LIABLE FOR SING OUT OF THE FURNISHING, USE OR PERI	ription II. User accepts and user am material and without reliance Y KIND WITH REGARD TO THIS RCHANTABILITY AND FITNESS INCIDENTAL OR CONSEQUEN FORMANCE OF THIS PROGRAM

MATERIAL.

ketch(es)									
			*	 an de la companya de la companya					
	•	•	<b>.</b>					• • • •	
	•	*	a aa aan ahaa ahaa ahaa ahaa ahaa ahaa	 	en anna an anna an anna an an an Anna.	an a		•	
		- 				· · · · · · · · · · · · · · · · · · ·		• • • • •	
			tana an an ta			· · · · · · · · · · · · · · · · · · ·	 		

1. For a pressure altitude of 25,500 feet, a calibrated airspeed of 350 knots, a recover factor of 0.8, and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed? 2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed? olution(s) Keystrokes See Displayed 1. 25500 [A] 350 [B] 0.84 .8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 elerence(s) This program is a direct translation of a program from the HP-65	Samp	le Problem(s)
350 knots, a recover factor of 0.8, and an indicated air temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed? 2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed? volution(s) Keystrokes See Displayed 1. 25500 [A] 350 [B] 0.84 .8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 eference(s) This program is a direct translation of a program from the HP-65	1.	For a pressure altitude of 25,500 feet, a calibrated airspeed of
temperature of 5 degrees Celsius, what is the flight mach number and the true airspeed? 2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed? solution(s) Keystrokes See Displayed 1. 25500 [A] 350 [B] 0.84 .8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 eference(s) This program is a direct translation of a program from the HP-65		350 knots, a recover factor of 0.8, and an indicated air
number and the true airspeed? 2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed? Solution(s) Keystrokes See Displayed 1. 25500 [A] 350 [B] 0.84 .8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 eference(s) This program is a direct translation of a program from the HP-65		temperature of 5 degrees Celsius, what is the flight mach
2. For a pressure altitude of 40,000 feet with all other data unchanged, what is the mach number and the true airspeed?          Solution(s)       Keystrokes         Solution(s)       Keystrokes         See Displayed       0.84         1.       25500 [A] 350 [B]       0.84         .8       [C] 5[D]       515.76         2.       40000 [A] 350 [B]       1.10         .8       [C] 5[D]       657.42		number and the true airspeed?
unchanged, what is the mach number and the true airspeed? Solution(s) Keystrokes See Displayed 1. 25500 [A] 350 [B] 0.84 .8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 eference(s) This program is a direct translation of a program from the HP-65	2.	For a pressure altitude of 40,000 feet with all other data
Solution(s)         Keystrokes         See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42           eference(s)           This program is a direct translation of a program from the HP-65		unchanged, what is the mach number and the true airspeed?
Solution(s)         Keystrokes         See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42           eference(s)           This program is a direct translation of a program from the HP-65		
Solution(s)         Keystrokes         See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42           eference(s)           This program is a direct translation of a program from the HP-65	andar office in the of New Society	
See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42		
Solution(s)         Keystrokes         See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42           eference(s)           This program is a direct translation of a program from the HP-65		
Solution(s)         Keystrokes         See Displayed           1. 25500 [A] 350 [B]         0.84           .8 [C] 5[D]         515.76           2. 40000 [A] 350 [B]         1.10           .8 [C] 5[D]         657.42           eference(s)           This program is a direct translation of a program from the HP-65		
1. 25500 [A] 350 [B]       0.84         .8 [C] 5[D]       515.76         2. 40000 [A] 350 [B]       1.10         .8 [C] 5[D]       657.42         eference (s)         This program is a direct translation of a program from the HP-65	Soluti	on(s) Keystrokes See Displayed
.8 [C] 5[D] 515.76 2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 reference(s) This program is a direct translation of a program from the HP-65	1.	25500 [A] 350 [B] 0.84
2. 40000 [A] 350 [B] 1.10 .8 [C] 5[D] 657.42 leference(s) This program is a direct translation of a program from the HP-65		.8 [C] 5[D] 515.76
.8 [C] 5[D] 657.42	2.	40000 [A] 350 [B] 1.10
eference(s) This program is a direct translation of a program from the HP-65		.8 [C] 5[D] 657.42
eference(s) This program is a direct translation of a program from the HP-65		
eference(s) This program is a direct translation of a program from the HP-65		
eference(s) This program is a direct translation of a program from the HP-65		
This program is a direct translation of a program from the HP-65	Pofor	
This program is a direct translation of a program from the HP-65	ieleft	This program is a direct translation of a program from the UD CC
		ints program is a direct translation of a program from the HP-65



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Input pressure altitude	PALT	Α	P/P _O
				-
3.	Input calibrated airspeed in knots			
	and calculate mach number	CAS	B	М
4.	Input recovery coefficient	C		
	(.8 for most aircraft)	۲		Ч
5.	Input indicated air temperature and			
	calculate true airspeed in knots	IT (°C)		TAS
6	For some sinces ft at some DALT go to			
0.	For same arrerati at same PALT go to			
	step 4. For different PALL go to step 2 and skip step 4. For totally new			
	case do to step 2			

#### Program Listing I

STEP	KEY ENTRY	KEY CODE		СОММІ	ENTS	STEP	KE	YENTRY	κ	EY CODE		сомм	ENTS
AP	1 *LBLA	21 11	1			E	57	*LBLB		21 12			
86	2 3	<u>0</u> 3				e	58	6		06			
AP	3 6	06				e	159	6		06			
AA	4 R	80				P	160	i		<b>Ū</b> 1			
99	5 8	<u>08</u>				P	161	-		-62			
90	6 9	00 09				l a	A62	-		<b>8</b> 5			
00	0 7 V/V0	16-75					227	- U		-24			
00		22 15 11				6	224	- V9		57			
00	0 5100 0 V+V	-41					204	<u>~</u> -		-62			
00	2 A+1 0 7	-41					10J 12Z	•		-62			
01	6 J	<b>8</b> 3 05					200	<u>د</u> بر		75			
01		<b>U</b> J 07					101	· ·		-35			
01	2 6	<b>0</b> 0					168	. 1		01 EE			
01	3 5	06					169	+		-55			
01	4 EEX	-23					170	ن		03			
01	5 CHS	-22				E	171	•		-62			
01	66	86				E	372	5		05			
61	7 X	-35				6	173	γ×		31			
01	8 CHS	-22				6	374	1		01			
01	95	05				6	975	-		-45			
02	0 1	01				6	976	RCL6		36 06			
02	1 8	08				e e	977	÷		-24			
02	2.	-62				e e	978	1		01			
02	36	06				6	379	÷		-55			
02	4 7	07	1			6	380			-62			
62	5 ÷	-55				6	981	2		02			
02	6 LSTX	16-63				6	982	8		<b>Ø</b> 8			
82	7 ÷	-24	1			6	383	6		06			
82	8 5	05				(	384	γ×		31			
02	9.	-62				6	385	1		01			
63	0 2	02					386	-		-45			
03	1 5	ū5				1	787	5		85			
<i>A</i> .3	2 6	<b>A</b> 6	1			l i	188	x		-35			
83	3	03	1				989	۶X		54			
	Δ Υ×	31	1				998	STA		35 04			
	5 STA	75 Ø6	1				991	PTN		24			
01 07	5 0100 16 PTN	24	1				202	#1 R! C		21 13			
	7 #181a	21 16 11	1				207	STOR		75 87			
		-45	1				204	DTN		24			
00 00	0 0	40 A0	1				905	*/ Pi D		21 14			
00	9 2 10 0	02 Bû	1				995	*LULU 2		21 14 A2			
	· · · ·	00 Q0	1				207	7		97			
04 Q4	-1 0 -2 6	90	1				200	7		97			
04	20	00	1				770 200	ن ب		03 55			
04 04	3 <del>7</del> A	-59	1				977 100	CTO5		-33			
01	<b>.</b>	-02	1				100	DCLA		33 <b>8</b> 3 76 <b>8</b> 4			
04	J 3 Z 1	- 34	1				101	KGL4 Vo		30 <b>04</b> 57			
04 04	0 - - CUC	-24	1			1 1	102	A =		-62			
04	10 -X	-22	1				103	•		-02			
01	o e	-50	1				104	<u>_</u>		02			
04	· <b>7</b> · ·	-62	1				103	× ,		-30			
0.	10 Z	02	1				100	1		01 EE			
00 01		02 07	1				10/	+		-33			
00	2 3	63	1				188			-24			
U:	13 4 14	04					109	RULS		36 83			
65	14 X	-33	J				110	-		-40			
05	5 STU6	33 UG					111	RCL3		36 Ø3			
05	6 RTN	24			REGI	S. L	112	X		-35			
0	1	2	3 C		4	5 T T	711	6 P/2	Τ	7	8		9
			`	T	//\	ا ل	(n)	110		07	100		60
S0	S1	S2	S3		S4	\$5		56		5/	58		29
		<u></u>						l				I <del>.</del>	
A		в		C		U			E			l <b>*</b>	

				97Program	List	ing II			5
STEP	KE	( ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
1	13	RCL5	36 05		170			-	
1	14	+	-55		170			4	
1	15	√⊼ ₹	54 Ø3			1			
1	17	9	<b>0</b> 9					]	
1	18	х	-35					1	
1	119	RCL4	36 04 -75					1	
1	120	RTN	-33					1	
i	122	R∕S	51					]	
	+			-	180			4	
	+			-					
								1	
				4				4	
	+			-				-	
130									
	ļ								
				-				{	
					190			1	
				_				]	
	+			-				4	
	<u> </u>			-				1	
								1	
140	<b> </b>			4				-	
				-				{	
				-				1	
					200			]	
				-				4	
				1				1	
								]	
150				4				4	
130	1			-				1	
								1	
	<b> </b>			_	210			4	
	+			-	210			1	
				-				1	
	ļ								
	<b>}</b>			4				4	
160	<u> </u>			1				1	
								]	
	<b>}</b>			-				ł	
	<u> </u>		1	-	220			1	
								]	
	<del> </del>		+	4				4	
								1	
A		B	Ic.			0 FLAGS		SET STATUS	
							FLAGS	TRIG	DISP
a		D	c	a e				DEG 🗆	FIX 🗆
0		1	2	3 4		2			
5		6	7	8 9		3			n

Program Title True Air Temp	erature and Density Altitude
Contributor's Name Hewlett- Address 1000 N. E. Circl City Corvallis	Packard Company, HP-67/97 Users' Library e Boulevard State OR D: 53 State OR Zip Code 97330
Program Description, Equations, Varial effects of high speed fligh using <u>Mach Number and True</u> $(C_T = 0.8$ for most aircraft air temperature (T). True to density altitude. For 1 small. In such cases only calculate density altitude T(k)	This program accounts for the compressibility t. Given the mach number (M) (which can be calculated Airspeed, (V1-127)) and the aircraft recovery coefficient ), indicated air temperature (IT) is converted to true air temperature and pressure altitude are then converted ow flight mach numbers, compressibility effects are temperature and pressure altitude (PALT) are needed to (DALT). = $C_T \left( \frac{IT(K)}{2 + 2K} - IT \right) + IT(K)$
	(0.205 M + 1 / [- (2.)0.235]
	$DALT = 145366 \left[ 1 - \left( \frac{p}{\rho_0} \right) \right]$
$\frac{\rho}{\rho_0} =$	$\frac{288.15}{T(K)} \left[ 1 -6.876 \times 10^{-6} \text{ PALT} \right]^{5.256}$
Operating Limits and Warnings	The program is limited to altitudes under 36089 feet.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)			
			• • • • • • • • • • • • • • • • • • • •
Sample Problem(s)	_		
	1. M = 0.87		
	$C_{T} = 0.80$		
	$11 = 8^{-1}$		
	PALI = 10,000 feet		
	2. For a low speed aircraft		
	$T = 12^{\circ}C$		
	PALT = 9,000 feet		
Kov	stuckos:	Soo Dicplayed:	
Solution(s)	87 [A] 8 [B] 8 [C] 10000 [F]	-22 21	Т
		7852.96	
		,002.30	
2.	12 [D] 9000 [E]	10703.11	DALT
Reference (s)			
This	program is a direct translation of a	program from the	HP-65
Avia	tion Pac.		
1			



STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If you know the true air temperature go to			
	step 6			
3	Input the following:			
	mach number	М	Α	М
	recovery coefficient	с _т	В	с _т
4	Input indicated air temperature and calculate			
	true air temperature	IT (°C)	C	T (°C)
5	Go to step 7			
6	Input true air temperature	T (°C)	D	Т (К)
7	Input pressure altitude and calculate density			
	altitude	PALT	E	DALT (ft)
8	For new case go to step 2			

			97 Pro	ogram		LISUNG I						61	
STEP	KEY ENTRY	KEY CODE	Сом	MENTS	STEP	KE	YENTRY	KEY CODE		COM	MENTS	01	
00	1 ¥LBLA	21 11				857	6	86					
00	2 ST04	35 84				<b>0</b> 58	Yx ·	31					
80	3 RTN	24				059	RCL6	36 06					
00	4 <b>*</b> LBLB	21 12				000	1	<b>U</b> 1					
00 00	3 5103 2 DTN	30 <b>0</b> 3 94				061 020		80 - 55					
00	0 KIN 7 + I DI C	24				002 027	+ v	-33					
00		27 14				003 864	Pris	-3J 76 85					
00 88	9 RCI4	20 14 36 04				064 065	÷	-24					
R1	0 X2	53				066		-62					
01	1 .	-62				067	2	02					
01	2 2	02				068	3	03					
01	30	86				069	5	85					
01	4 5	<b>8</b> 5				070	γ×	31					
01	5 X	-35				071	CHS	-22					
01	61	01				072	1	<b>B</b> 1					
01	7 +	-55				073	+	-55					
01	8 ÷	-24				074	1	01					
01	9 RCL5	36 05				075	4	84					
02	0 -	-45				076	5	<b>8</b> 5					
02	1 RCL3	36 03				077	3	Ø3					
02		-35 76 05				878 070	6	<b>8</b> 6					
02	3 RULD	35 83				0(9 000	, D	06 75					
02 G2	4 T 5 CTA5	-JJ 75 05	ľ			000 001	PTN	-35					
B2	E PCLE	36 86				1	KIN	27					
N2	7 -	-45											
82	8 RTN	24											
02	9 *LBLD	21 14				ļ			_				
03	02	<b>0</b> 2				ļ			4				
03	1 7	07							4				
03	2 3	83							4				
03	3.	-62			090				-				
03	4 1	61							-				
03	5 5	05							-				
83	6 SIU6	35 <b>0</b> 6							-				
83	7 + Ο ετης	-33 75 85				1			1				
03 97	0 5103 9 PTN	33 83 24											
84	0 ¥LBLE	21 15											
04	1 6	06		A	B	<u>(</u> -	IC		<u>-L3</u>	- 16		-	
04	2.	-62		<u> </u>							PAL	. I	
64	38	08		а	р		с	ľ	3	e	e		
84	4 7	67		0	1		2		3		4		
04	5 9 6 FFU	<b>8</b> 9		5	6		7		3		9		
U4 04	6 EEX 7 CUC	-23											
04 QA	( LHS R E	-22				+							
A4	9 X	-35					FLAGS		SETS	STATUS			
05	e chs	-22				ΗĽ.		FLAGS		RIG	DISF	<u>`</u>	
05	1 1	01				<del> </del>  '			DE	GØ	FIX	K)	
05	2 +	-55				2		1 🗆 🛛	GR	AD 🗆	SCI		
05	35	85			110			2 🗆 🛛	RA	D	ENG		
85	4. F 0	-62						3 🗆 🗶					
85 85	5 Z	02 85		DECIS	TEDO								
)	1	2	3 r		5 T/V		⁶ 272 1	<b>5</b> ⁷	8		9		
			^V			/	<u> </u>		C 0		50		
50	S1	52	53	54	55		20	5/	38		39		
4		B	С		D		E	<b>L</b>		I	L		

H)

Program Titl	Lowest Usable	Flight Level			
Contributor's	s Name Hewlett-P 1000 N. E. Cir	ackard Company, HP-67/ cle Boulevard	/97 Users' L	ibrary	
City	Corvallis	State	OR	Zip Code	97330

**Program Description, Equations, Variables** This program computes the lowest usable flight level for aircraft flying above 18,000 feet mean sea level (MSL) from the current altimeter setting.

For flights operating at altitudes in excess of 18,000 feet the altimeter is set at 29.92 and aircraft are assigned flight levels. In order to avoid overlapping flight levels with true altitude above sea level, the lowest usable flight level is found at which a setting of 29.92 will place the aircraft above 18,000 feet MSL.

The lowest usable flight level is 18,000 feet if the altimeter setting is greater than or equal to 29.92 inches of mercury (Hg).

For altimeter settings below 29.92

 $LUFL = 18,000 + 500 \times INT (60.82 - 2 \times ASET)$ 

where

ASET = altimeter setting

INT = integer function

**Operating Limits and Warnings** 

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)			

Sample Problem	(s) For the	following a	altimeter	settings,	find the lowest usable
flight level					
		ASET		ANSWER	
		29.92		18,000	
		29.55		18,500	
		28.45		19,500	
Solution(s)	Keystrokes:				See Displayed:
	29.92 [B] [C]				18000
	29.55 [B] [C]				18500
	28.45 [B] [C]				19500
			anna - Anair a bhair a shear a shear an		
Reference (s)					
	This program i	is a direct	: translat	ion of a p	program from the HP-65
	Aviation Pac.				-

1				5
INITIALIZE	ASET	CALCULATE	RECALL	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		A	0.00
3	Input altimeter setting	In Hg	В	in Hg
4	Calculate lowest usable flight level		С	LUFL (ft)
5	For new case go to step 3			
6	To recall altimeter setting		D	in Hg

97 Program Listing I											
STEP	KE	Y ENTRY	KEY CODE	СОМ	MENTS	STEP		KEY CO	DE	COMM	68 IENTS
	001	*LBLA	21 11								
	002 007	CLX	-51								
4	003 QGA	STUB PTN	33 08 24			060					
	004 005	#I BI B	21 12				1				
	006	ST08	35 08								
i	007	RTN	24								
i	<b>00</b> 8	¥LBLD	21 14								
	009	RCL8	36 08								
	010	RTN	24				t	+			
	011	#LBLU	21 13								
	012 017	2 9	02 89								
	914 914	-	-62			070					
	015	9	09								
	016	2	02								
	017	RCL8	36 <b>8</b> 8								
	018	X>Y?	16-34				+				
	019	X≠Y	-41				<b> </b>				
	020	ENIT	-21				+				
	021 000	+	-33								
	022 027	D Ø	00 88								
	023 024		-62			080					
	025	8	08								
	026	2	82								
	<b>8</b> 27	X≠Y	-41						· · ·		
	<b>0</b> 28	-	-45					+			
	029	INT	16 34					+			
	030	5	<b>8</b> 5				1				
	031	6	<b>U</b> U 20								
	032 077	U Y	- 35								
	<u>й</u> й34		01			090					
	035	8	08								
	036	EEX	-23								
	037	3	03					+			
	038	÷	-55								
<b>1</b> 040	039	RIN	24	J				1			
				]					SET S	STATUS	
				4			+ <b>[</b> ⁰	FLAG	is ti	RIG	DISP
			+	4		100	$+ ^1$		OFFI XXI DE	GM	FIX 🛛
	-		+	1			2	1 0	🛛 GR	AD 🗆	SCI 🗆
				1			3	2	X RA	D·□	
	1			1			TL	3			··· <b>·</b>
					<b></b>			······	ABELS		
050				4	ANTTA	в			T D		
			1	1	a		ASEI	RUL ASE		e e	
				1	0			2	3		
			+	1	5			7	8		
				1	5	Ů			ľ		
				1	RFG	ISTERS					
0		1	2	3	4	5	6	7	⁸ A	LT SET	9
S0		S1	S2	S3	S4	S5	S6	S7	S8		S9
						<b>D</b>				TI	
^			в	C						ľ	

NOTES

#### **Hewlett-Packard Software**

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

#### **Application Pacs**

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

#### Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation

#### **Users' Library**

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

#### **Users' Library Solutions Books**

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

<b>Options/Technical Stock Analysis</b>	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
<b>Reliability/QA</b>	Forestry

#### AIRCRAFT OPERATION

Primarily intended for general aviation, although many of the programs are equally applicable to commercial aviation. Some of the subjects are flight planning, aircraft weight and balance, wind calculations, atmospheric parameter calculations, and unit conversions.

AIRCRAFT FLIGHT PLAN WITH WIND FLIGHT MANAGEMENT PREDICTING FREEZING LEVELS GENERAL AIRCRAFT WEIGHT AND BALANCE PILOT UNIT CONVERSIONS TURN PERFORMANCE RATE OF CLIMB AND DESCENT HEAD WINDS AND CROSS WINDS FLIGHT PLANNING AND FLIGHT VERIFICATION DETERMINING IN-FLIGHT WINDS STANDARD ATMOSPHERE MACH NUMBER AND TRUE AIRSPEED TRUE AIR TEMPERATURE AND DENSITY ALTITUDE LOWEST USABLE FLIGHT LEVEL

