

Users' Library Solutions

Avigation

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.
REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

GREAT CIRCLE PLOTTING 1 Computes points on a great circle.
RHUMB LINE NAVIGATION 5 Computes rhumb line heading ánd distance.'
GREAT CIRCLE NAVIGATION 10
Computes great-circle distance and initial heading.
POSITION GIVEN HEADING, SPEED, AND TIME 14A dead reckoning program.
LINE OF SIGHT DISTANCE 18
A transmitter-aircraft geometry' prob'jem.
POSITION AND/OR NAVIGATION BY TWO VOR'S 23Simplifies the geometry of VOR's and aircraft.
POSITION BY ONE VOR 29
Computes distance from a' vÓR 'station'.
DME SPEED CORRECTION 34
Calculates ground speed 'from 'DME évén when not headed diréctly' towards a DME station.
AVERAGE WIND VECTOR 38Approximates an average wind.
COURSE CORRECTION 42
Helps get an aircra'ft 'back' on course'.
TIME OF SUNRISE AND SUNSET 48 Gives approximate times of these cimportant phenomena.
AZIMUTH OF SUNRISE AND SUNSET 54
Computes azimuth of rising or setting 'Sun'.

Program Description I

[^0]
Program Description II

Sample Problem(s) On a flight from St. Helena to Bermuda, what is the latitude at $35^{\circ} 17^{\prime}$ west longitude?

	LAT	LNG
St. Helena	$15^{\circ} 55^{\prime} \mathrm{S}$	$5^{\circ} 44^{\prime} \mathrm{W}$
Bermuda	$32^{\circ} 19^{\prime} \mathrm{N}$	$64^{\circ} 51^{\prime} \mathrm{W}$

Solution(s) $\quad L A T_{I}=11^{\circ} 17^{1} \mathrm{~N}$

Keystrokes:
See Displayed:
15.55 [CHS] [A] 5.44 [B] 32.19 [A]
64.51 [B] 35.17 [C] 11.17

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description I

Program Title Rhumb Line Navigation				
Contributor's Name Hewlett-Packard Company, HP-67/97 Users' Library				
Address 1000 N. E. Circle Boulevard				
City Corvallis	State	OR	Zip Code	97330

Program Description, Equations, Variables This program accepts the coordinates of two points on the globe and calculates the rhumb line heading (HDG) and distance (DIST) between them. The program inputs are latitude and longitude of the source (LAT,L_{S}) and latitude and longitude of the destination ($L A T_{D}, L N G_{D}$) in degrees, minutes, and seconds. The program outputs are heading in degrees and distance in nautical miles.

Since the rhumb line is the constant heading path between points on the globe, it forms the basis of short distance navigation. In low and mid latitudes the rhumb line is sufficient for virtually all course and distance calculations which private pilots encounter. However, as distance increases or at high latitudes, the rhumb line ceases to be an efficient flight path since it is not the shortest distance between points.

The shortest distance between points is the great circle. However, in order to fly great circles, an infinite number of heading changes are necessary. Since it is impractical to calculate an infinite number of headings at an infinite number of points, several rhumb lines may be used to approximate a great circle. The more rhumblines that are used the closer to the great circle distance the sum of the rhumb-line distances will be. Great Circle Plotting, may be used may be used to calculate intermediate heading change points which can be linked by rhumb lines. Operating Limits and Warnings

[^1]
Program Description I

Program Title Rhumb Line Navigation		
Contributor's Name Hewlett-Packard Company, HP-67/97 Users' Library		
Address $\quad 1000$ N. E. Circle Boulevard		
City Corvallis State	OR Zip Code	97330

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sample Problem(s) Find the leg lengths and headings for a flight from St. Helena to Bermuda using the intermediate point calculated in Great Circle Plotting, as an intermediate point of heading change.

| | LAT | LNG |
| :--- | :--- | :--- | :--- |
| St. Helena | $15^{\circ} 55^{\prime} \mathrm{S}$ | $5^{\circ} 44^{\prime} \mathrm{W}$ |
| Intermediate Point | $11^{\circ} 17^{\prime} \mathrm{N}$ | $35^{\circ} 17^{\prime} \mathrm{W}$ |
| Bermuda | $32^{\circ} 19^{\prime} \mathrm{N}$ | $64^{\circ} 51^{\prime} \mathrm{W}$ |

Solution

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

User Insiruetions

STEP	instructions	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Input source latitude*	DD.MMSS**	A		degrees
	and source longitude	DDD.MMSS	B		degrees
3	Input destination latitude	DD.MMSS	A		degrees
	and destination longitude	DDD.MMSS	B		degrees
4	Calculate distance		C		DIST (n.m.)
	and/or heading		D		HDG(deg)
5	If next leg starts at end of last leg go to				
	step 3				
6	For an entirely new case go to step 2				
	*Southern latitudes and eastern longitudes				
	are expressed as negative values.				
	**DDD.MMSS means degrees, decimal point,				
	minutes and seconds. 120.0713 is 120				
	degrees, 7 minutes and 13 seconds.				
				\square	
				-	

Program Description I

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

Find the great circle distance from St. Helena to Bermuda.

	LAT	LNG
St. Helena	$15^{\circ} 55^{\prime} \mathrm{S}$	$5^{\circ} 44^{\prime} \mathrm{W}$
Bermuda	$32^{\circ} 19^{\prime} \mathrm{N}$	$64^{\circ} 51^{\prime} \mathrm{W}$

Solution(s)

4458.19 n.m. (note that this is only slightly shorter than the sum of the rhumb lines in Rhumb Line Navigation).

Keystrokes
[f] [A] 15.55 [CHS] [A] 5.44 [B] 32.19 [A] 64.51 [B] [C]
See Display
[D]
4458.19
311.12

Reference (s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

GREAT CIRCLE NAVIGATION
INT
LAT LNG \rightarrow DIST \rightarrow HDG

Program Description

| Program Title Position Given Heading, Speed, and Time | | |
| :--- | :--- | :--- | :--- |
| Contributor's Name Hewlett-Packard | | |
| Address 1000 N.E. Circle Blvd.
 City Corvallis State Oregon Zip Code 97330 | | |

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

Program Description II

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description I

| Program Title Line of Sight Distance | |
| :--- | :--- | :--- |
| Contributor's Name Hewlett-Packard | |
| Address 1000 N.E. Circle Blvd.
 City Corvallis State Oregon Zip Code 97330 | |

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description, Equations, Variables

Since R_{g} is perpendicular to the line-of-sight

$$
\text { DIST }=\sqrt{R_{p}^{2}-R_{g}^{2}}+\sqrt{R_{t}^{2}-R_{g}^{2}}
$$

and

$$
A L T={\sqrt{R_{g}{ }^{2}+\left(D-{\sqrt{R_{t}{ }^{2}-R_{g}{ }^{2}}}^{2}\right.}}^{2}
$$

Operating Limits and Warnings Terrain input must not exceed either transmitter height or aircraft altitude. Any attempts to do so will result in an "error" display. This program does not account for refraction of radio waves.
The terrain input yields a worst case answer. If the terrain is close to either the station or the aircraft, the program will calculate a shorter distance or higher altitude than is actually necessary.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)

An omnidirectional antenna is 2000 feet high. The surrounding terrain is 1000 feet high. How high must you be to receive the transmission from a distance of 100 n.m?

Solution(s)
ALT $=4887.18$ feet

Keystrokes

See Display
[f] [A] 1000 [A] 2000 [B] 100 [D] [f] [C]

Reference(s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Title Position and/or Navigation by Two VOR's				
Contributor's Name Hewlett-Packard				
Address 1000 N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description

Program Title	Navigation by Two VORs		
Contributor's Name			
Address	State	Zip Code	
City	Zil\|		

Program Description, Equations, Variables | This program may be used to navigate between any two points |
| :--- |
| provided signals can be received from two VOR stations. |

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sample Problem(s) \quad _ Sample Problem
$R_{1}=170$ degrees
$\mathrm{R}_{2}=240$ degrees DIST $_{12}=27 \mathrm{n} . \mathrm{m}$. $H_{D G G}^{12}=125$ degrees

What is the distance from VOR_{1} ?

2. Sample Problem

$$
\begin{aligned}
& \mathrm{R}_{1}=170 \text { degrees } \\
& \mathrm{R}_{2}=250 \text { degrees } \\
& \mathrm{DIST}_{12}=13 \text { n.m. } \\
& \mathrm{HDG}_{12}=145 \text { degrees } \\
& \mathrm{HDG}_{1 \mathrm{D}}=255 \text { degrees } \\
& \text { DIST }_{1 \mathrm{D}}=20 \mathrm{n} . \mathrm{m} .
\end{aligned}
$$

Find the heading and distance to the destination.

Solution(s)

1. Solution

DIST $=26 \mathrm{n} . \mathrm{m}$.
2. Solution

HDG $=289$
DIST $=23$ n.m.

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description II

Sample Problem(s)

Solution(s) Keystrokes
See Displayed

1. [f] [A] 170 [A] 240 [A] 27 [B] 125 [C] [f] [C]
2. [f] [A] 170 [A] 250 [A] 13 [B] 145 [C] 255 [D] 20 [D] [E] 289
[E]

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Initialize		f A	
			-	
3.	Input all of the following:		-	
	Present position radial from			
	VOR_{\dagger} l	${ }^{R} 1$ (DEG)	$A][\square$	R_{1}
	Present position radial from VOR 2	R_{2} (DEG)	$A \quad \square$	R_{2}
	Distance between VORS	DIST 12	B	DIST 2
	Heading of VOR_{2} from VOR_{1}	HDG_{12} (DEG)	$C] \square$	HDG_{12}
			\square	
4.	Calculate distance from VOR ${ }_{\text {f }}$ or continue		$f \quad \mathrm{C}$	DIST
	inputs			
	Heading from VOR to destination	$H^{\text {a }}$ (DEG)	D [HDG_{7}
	Distance from VOR_{\dagger} to destination	$\begin{array}{\|l\|l\|} \hline \text { DIST } \\ \hline 10 \\ \hline \end{array}$	$D \quad \square$	DIS10
			$][\square$	
5.	Calculate magnetic heading		E	HDG
			\square	
6.	Calculate distance to destination		E	DIST
			$\square \square$	
			\square	
	For new case return to steps 3 and 4 and		\square	
	change appropriate inputs.		\square	
			$1 \square$	
			\square	
			-	
			,	
			\square	
			\square	

Program Title Position by One Vor		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables	This program computes the distance from a VOR station to an aircraft. The distance is found in a manner similar to the classical situation where one flies at right angles to the VOR radial and computes the time to the VOR from the time between bearings and the degrees of bearing change. This program offers a more complete solution in that it is unnecessary to fly at right angles to the VOR station and it includes the effect of winds.
The distance from the VOR station to the airplane is given by	

[^2]
Program Description

Program Title Position by One VOR				
Contributor's	Name	Hewlett-Packard		
Address	1000	N.E. Circle Blvd.		
City	Corvallis	State	Oregon	Zip Code

Program Description, Equations, Variables

Ground speed and course are found from the polar representation:

$$
\begin{equation*}
\frac{\mathrm{GS}}{60} \angle \mathrm{C}=\mathrm{TAS} \angle \mathrm{HDG}-\mathrm{W} \angle \mathrm{D}-\mathrm{V} \tag{2}
\end{equation*}
$$

where

$$
\mathrm{V}=\text { magnetic variation }
$$

TAS = true airspeed
HDG = aircraft heading
$\mathrm{W}=$ wind velocity
$\mathrm{D}=$ wind direction (true)
\angle should be read as "at angle".
Although the ground speed vector is the true airspeed vector plus the wind vector, equation (2) is correct because the wind direction D indicates the direction the wind is coming from, not the direction it is blowing toward.

Operating Limits and Warnings

Limits and Warnings
Overall accuracy is limited by VOR receiver resolution. The difference in VOR readings should be at least 5° and preferably 10° to obtain accurate results. Times must be input to the nearest second.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		OUTPUT DATA/UNITS
1.	Enter program				
2.	Initialize		f	A	0.00
				-	
3.	Optional: Input wind vector then	DDD.KK	A		DDD.KK
	magnetic variation ($+E,-W$)	V (Deg)	A		V
4.	Input all of the following:				
	Aircraft heading	HDG(Deg)	B		HDG
	then true airspeed	TAS(n.m.)	B		TAS
	Intersection time of first radial	t (H.MMSS)	C		t_{1}
	first radial heading to the VOR	R_{7} (Deg)	D		R1
5.	Input intersection time of second VOR radial	t_{2} (H.MMSS)	C		t_{2}
	and second radial heading to the VOR	$\mathrm{R}_{2}(\mathrm{deg})$	D	\square	R_{2}
6.	Calculate distance to VOR		E		DIST (n.m.)
7.	For a second fix using the same station go				
	to step 5. For a new case go to step 3.				
*	H.MMSS means hours, decimal point, minutes,				
	seconds. 2.0355 is 2 hours 3 minutes and 55				
	seconds.				
			\square	-	
				\square	

Program Description

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.
\square

Sample Problem(s)
An airplane flying a course of 265° intercepts the 220° TO radial of a DME station. . The indicated DME speed is 123 knots. What is the ground speed.

If you are 10,000 feet above the DME station and $7 \mathrm{n} . \mathrm{m}$. away what is your ground speed?

Solution(s)
GS $=174$ knots
GS' $=179$ knots

Keystrokes
[f] [A] 265 [A] 220 [B] 123 [C]
See Display
174
7 [D] 10000 [E]
179

Reference (s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description

Program Title Average Wind Vector		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables

Operating Limits and Warnings

Limits and Warnings

The greater the aircraft velocity as compared to that of the wind, the closer the approximation is to the actual case.
The velocity of input winds must be less than 100 .

This program has been verified only with respect to the numerical example given in Program Description $I I$. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

Program Description II

Reference (s)
This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description

Program Title Course Correction		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables
The program calculates the new corrected heading and the distance to destination for an aircraft which has strayed a known distance off course.
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description

Program Title		
Contributor's Name		
Address	State	
City	Zip Code	

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference (s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

Program Description

Program Title	Time of Sunrise and/or Sunset			
Contributor's	Name	Hewlett-Packard		
Address	1000	N.E. Circle Blvd.		
City	Corvallis	State	Oregon	

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Reference (s)

This program is a direct translation of a program from the HP-65 Aviation Pac.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program		-	
2.	Enter all of the following:			
	Day of the month	Day	A	
	Month	Month	B	
	Observer Latitude **	DD.MMSS*	C	
	Observer Longitude	DOD.MMSS	D	
	Observer Longitude	Ooc.uns		
3.	Compute Sunrise		E	HH.MM***
			\square	
4.	Compute Sunset		f E	HH.MM
			\square	
5.	To change any variable, go to Step 2 and change			
	only those affected.			
			\square	
			-	
*	DD.MMSS means degrees, decimal point, minutes		\square	
	and seconds. 120.0713 is 120 degrees, 7			
	minutes and 13 seconds.		\square	
			-	
**	Southern latitudes and eastern longitudes are			
	expressed as negative values.		\square	
			\square	
***	HH.MM means hours, decimal point, minutes.			
	2.03 is 2 hours 3 minutes.			
			\square	
			,	
			\square	
			\square	
			\square	

STEP

001	* LBLA	2111
002	STO1	3581
083	RTN	24
084	+ LBLE	2112
805	ST02	3502
886	RTN	24
007	* $2 B L C$	2113
808	ST03	3503
889	RTN	24
810	*LELD	2114
011	ST04	3504
012	RTN	24
013	*LBLE	2115
014	3	83
015	0	08
016	.	-62
017	3	03
018	RCL2	3602
019	1	81
020	-	-45
021	x	-35
822	RCLI	3681
823	+	-55
024	1	01
025	-	-45
026	-	-62
027	9	09
028	8	08
029	8	88
036	x	-35
831	ST05	3505
832	8	88
033	7	07
034	+	-55
035	cos	42
036	.	-62
037	1	81
838	2	02
839	3	83
848	x	-35
841	RCL5	3605
042	ENT \uparrow	-21
043	+	-55
044	2	02
845	8	08
046	+	-55
847	SIN	41
048	6	06
049	\doteqdot	-24
050	-	-45
851	CHS	-22
852	RCL5	3605
853	1	01
054	0	06
055	+	-55
056	COS	42

STEP	KEY ENTRY			KEY COD	
113	\#LBLL	21	16	12	
114	ENTt		-21		
115	-		-45		
116	RTN		24		

COMMENTS
STEP KEY ENTRY KEY CODE
COMMENTS

170		

Program Description

Program Title Azimuth of Sunrise and Sunset		
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables
This program computes the true heading (azimuth) of the sun as it rises or sets. Input data are day of the month, month of the year and latitude. The azimuth of the sun is given by Az $=\cos ^{-1} \frac{\sin \phi_{s}}{\cos \phi_{0}}$
ϕ_{s} is the latitude of the subsolar point $\phi_{\text {o }}$ is the latitude of the observer ϕ_{s} is approximated by $\phi_{s}=0.5-23.5 \cos (0.986$ day +9.66$)$ where day is the day of the year.

\square

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

This program is a direct translation of a program from the HP-65 Aviation Pac.

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

```
                    Statistics
                Mathematics
Electrical Engineering
    Business Decisions
Clinical Lab and Nuclear Medicine
```

Mechanical Engineering Surveying
Civil Engineering
Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds \& Notes
Real Estate Investment
Taxes
Butterworth and Chebyshev Filters
Test Statistics
Geometry

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

AVIGATION

This book contains programs dealing with great circle and rhumb line calculations, dead reckoning, position by one or two VOR's and time and azimuth of sunrise or sunset.

great circle plotting

RHUMB LINE NAVIGATION
GREAT CIRCLE NAVIGATION
POSITION GIVEN HEADING, SPEED AND TIME
LINE OF SIGHT DISTANCE
POSITION AND/OR NAVIGATION BY TWO VOR'S
POSITION BY ONE VOR
DME SPEED CORRECTION
average wind vector
COURSE CORRECTION
tIME OF SUNRISE AND SUNSET
AZIMUTH OF SUNRISE AND SUNSET

Program Comments

This form is your vehicle for commenting on programs obtained from the Users' Library. Your comments will be reviewed by the Library and when appropriate, the program contributor shall be contacted to initiate revisions. Please
complete this form and mail to: Hewlett Packard Company Attention: Users' Library 1000 N.E. Circle Blvd Corvallis, Oregon 97330

Report on Program Number

$0,0,6,1,1, D$

Title: TIME OF SUNRISE \&/OR SUNSET - Users Library Solutions - Avigation

Commenter's Name: DAVID G. TONES
Address: NEWMONT PROPRIETARY LIMITED, 535 BURKE STREET,

MELBOURNE,	VICTORIA	Street	AUSTRALIA

Comments:
There are two (2) errors in the Program Listing.
(a) STEP 107 READS HMS $\rightarrow 1636$

$$
\text { IT SHOULD READ } \rightarrow H M S \quad 1635
$$

(b) STEP 111 in SUBROUTINE " a " SHOULD BE FOLLOWED BY STEP $112+-55$ (THE IS AN EXTRA - AND NECESSARY -STEP)

$$
113 \quad \text { RUN } 24
$$

$$
114 * \text { LBLb } 211612
$$

$$
115 \text { ENS } \uparrow \quad-21
$$

$$
116 \quad-\quad-45
$$

$$
\because 7 \quad \text { RTN } \quad 24
$$

THESE CORRECTIONS THEN MAKE IT POSSIBLE' FOR US "Down under" in the Southern hemisphere to tell baht FROM DARKNESS, WITHOUT UPSETTING THOSE OF You in NORTHERN CLIMES!

[^0]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^2]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENtial damages in connection with or arising out of the furnishing, use or performance of this program MATERIAL.

