

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

CARDI	AC PROGRAM SERIES	•	•	1
VIRTU	AL PO2 AND 02 SATURATION AND CONTENT	•	•	3
BODY	SURFACE AREA FOR CARDIO PULMONARY PROGRAMS	•	•	10
DYE C	URVE CARDIAC OUTPUT . The program calculates cardiac output from measurements made during a dye dilution cardiac output maneuver by the gamma variate method.	•	•	15
FICK	CARDIAC OUTPUT Cardiac output is calculated by the Fick method given the arterial and venous blood oxygen contents.	•	•	20
VALVE	AREA This program calculates the areas of heart valves across which the pressure gradient has been measured.	•	•	24
ANATO	MIC SHUNTS The program calculates right to left and left to right blood shunts by the method of allegations.	•	•	28
CONTR	ACTILITY This program calculates indices of left ventricular contractility based on pressure rise during isovolumetric contractility.	•	•	32
STROK	E WORK Stroke work and stroke work index are calculated with this program.	•	•	37
EJECT	ION FRACTION, EJECTED VOLUME, CARDIAC OUTPUT	•	•	41
CALCU	LATION OF LEFT VENTRICULAR FUNCTIONS FROM ANGIOGRAPHS This program performs calculations of a number of left ventricular functions from angiographic data. Calculations may be performed by either the single plane or biplane method.	•	•	45
IMPED	ANCE CARDIAC OUTPUT, SYSTEMIC AND PULMONARY RESISTANCE . Stroke volume, cardiac output, cardiac index, and various total and vascular resistancesare calculated from impedance cardiograph data.	•	•	50
BASIC	EKG DETERMINATIONS	•	•	54

CARDIAC PROGRAM SERIES

The following programs may be used in a series to carry out the many calculations in a particular medical procedure. Following are examples from an adult cath lab and a pediatric cath lab. These examples are fairly complicated. Before attempting them, read over the detailed instructions for each of the programs and try the included examples. In these examples, values stored in memory for later use are underlined. When recalled from memory (so that they do not need to be reentered), they are enclosed in brackets.

Adult Cath Lab Example:

Note that cardiac output, calculated in DYE CURVE CARDIAC OUTPUT is used in BODY SURFACE AREA and VALVE AREA and STROKE WORK. BODY SURFACE AREA, calculated by the Du Bois method, is used in STROKE WORK.

Program

DYE CURVE CARDIAC OUTPUT	<pre>∆t = 1 sec.; DC = 38, 67, 80, 73, 61,</pre>	AREA = 532.60 Div sec; CAL X AREA = 58.59 mg/1 CO = 5.73 1/min
BODY SURFACE AREA (Du Bois)	Ht.= -72.1 in., Wt.= -191 lb. (CO)	Ht. = 183.13 cm; Wt. = 86.82 kg. BSA = 2.09 m ² CI = 2.74 1/min/m ²
VALVE AREA (Aortic)	<pre>SEP = 0.2 sec; Δ P = 38, 45, 40, 31 mmHg; R-R = 0.92 sec. (CO)</pre>	$\Delta P = 38.50 \text{ mmHg};$ AREA = 1.59 cm ²
VALVE AREA (Mitral)	DFP = 0.55 sec; $\Delta P = 10, 12, 8, 6, 2 \text{ mmHg};$ R-R = 0.94 sec; (CO)	$\Delta P = 7.60 \text{ mmHg};$ AREA = -1.90 cm ²
STROKE WORK	P _{sys} = 155, 169, 165, 152, 138 mmHg; R-R = 0.92 sec; (CO) (BSA)	∆P = 155.80 mmHg; SW = 186.17 gm • m SWI = 88.95 gm • m/m ²
CONTRACTILITY	t = 0.01 sec; $P_{N} = 14.8, 28.5, 51.7,$ 81.8, 105.6	MAX dP/dt = 3010 mmHg/sec MAX dP/dt/P = 63.3 sec; V _{MAX} = 2.49 circ/sec.

Pediatric Cath Lab Example:

Note that body surface area calculated in BODY SURFACE AREA (Boyd) is used in FICK Cardiac output. Venous oxygen content, calculated the first time O_2 SATURATION and CONTENT is run, is used in FICK. Hemoglobin, entered the first time SAT is run, automatically reappears the second time. Especially note that arterial oxygen content is left in the display the second time SAT is run, and is ready as the first entry in FICK. This is another method of transferring data between programs.

Program

BODY SURFACE AREA (Boyd)	Ht. = 55 cm; Wt = 4.2 kg	$BSA = 0.26 m^2$			
O ₂ SATURATION and CONTENT	$PO_2 = 30 \text{ mmHg};$	Est. Sat. = 57.18%			
(Venous)	Sat.=55%; Hgb = 18gm/100m1	C _V O ₂ = 13.36 Vol.%			
0 ₂ SATURATION and CONTENT	PO ₂ =52 mmHg; Sat.=84.5%	Est. Sat. = 86.86%			
(Arterial)	(Hgb)	<u>CaO₂ = 20.54 Vol.%</u>			
FICK CARDIAC OUTPUT	(CaO ₂); (C _V O ₂); VO ₂ = 60 ml/min (BSA); HR = 95 BPM	CO = 0.84 1/min CI = 3.15 $1/min/m^2$ SV = 8.74 m1; SI = -33.14 m1/m ²			
ANATOMIC SHUNTS	R-SYST = 55%; R-PUL = 62% L-SYST = 84.5%; L-PUL = 97%	L-R SHUNT = 16.67% R-L SHUNT = -29.76%			

0 1 -
Program Title VIRTUAL PO2 AND 02 SATURATION AND CONTENT
Contributor's Name Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis State Oregon Zip Code 97330
Program Description, Equations, Variables The first part of this program computes virtual PO2 for use in estimating O2 saturation. Generally, it will be more convenient to calculate venous values first, as arterial values are frequently needed in other programs and, thus, will be left in the storage registers after both calculations.
The equation solved is
$VPO_2 = PO_2 \cdot 10^{[0.024(37-BT) + 0.48(pH-7.4)] + 0.06(10gPCO_2)]}$
which is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.
The second part of the program estimates 0, saturation of blood from virtual PO, and computes 0, content. If the actual 0, saturation is known, 0, content may be computed directly.
Equations:
The part of the program for estimating O ₂ saturation is based on the polynomial curve fit of Thomas, where VPO ₂ is in mmHg.
$\Theta_2 \text{ Sat} = \frac{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2045(\text{VPO}_2)^2 + 2000(\text{VPO}_2)}{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2400(\text{VPO}_2)^2 - 31,100(\text{VPO}_2) + 2,400,000}$
$(VPO_2)^4 - 15(VPO_2)^3 + 2400(VPO_2)^2 - 31,100 (VPO_2) + 2,400,000$
This calculation assumes that the oxygen dissociation curve for the
hemoglobin is normal. The 0_2 content is computed from $C_x 0_2$ (Vol.%)= 1.34 · $\frac{SAT(\%)}{100}$ · Hgb(g/100ml) + 0.0031 PO ₂ (mmHg)
Operating Limits and Warnings Virtual PO ₂ is not in any way a real physiologic PO ₂ . Its only function is for use in estimating O ₂ saturation, and it should never be confused with PO ₂ corrected to body temperature. Furthermore, it must always be calculated from blood parameters measured at or corrected to 37° C. The calculation will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO ₂ and O ₂ saturation are measured, the program may be used as a convenient mean to check for the normality of the dissociation curve.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

DETAILED USER INSTRUCTIONS:

Input PO₂, PCO₂, and pH measured at 37° C. Input body temperature in degrees C. If PO₂ has been previously input, recall it by pressing [f] [A] then press [f] [B]. Otherwise, input PO₂ and press [f] [B]. For each variable after PO₂, stored values will be recalled. If none have been input, recalled values will generally be zero. It is important to input pH and body temperature exactly, as these have a great influence on the calculation of virtual PO₂. Errors, especially in body temperature, can result in large errors in VPO₂ and, hence, estimated saturation. PCO₂ has relatively little influence. Press the buttons from left to right and do not skip any. The virtual PO₂ remains in the display for immediate entry in calculation of O₂ saturation and content. It is not stored in place of the measured PO₂. The PO₂, PCO₂, and pH remain in memory. Note that separate storage registers are not maintained for arterial and venous values, only the most recent ones will be stored.

To compute O_2 content, input the PO_2 , O_2 saturation, and hemoglobin concentration. After PO_2 is input, an estimated O_2 saturation is calculated, based on a standard dissociation curve. This will only be meaningful if a virtual PO_2 (VPO₂) from the first part of the program is input. The estimated O_2 saturation may be accepted simply by pressing [B], or a measured value can be input. If Hgb was previously input, it will be recalled. If the calculated O_2 content is to be stored as arterial or venous for later use in Fick cardiac output or physiologic shunt calculations, press the appropriate button. Regardless of which content is computed first, CaO₂ is left in the display for convenience in case the ANATOMIC SHUNTS program is to be run next.

If 0_2 saturation of blood is to be estimated from $P0_2$, it is important to input the virtual P02 calculated in the first part of the program. A large error can result from inputting measured $P0_2$ without the corrections. The program may be used to compare estimated 0_2 saturation with measured 0_2 saturation, to obtain a rough idea of the variation of the dissociation curve from normal. This will be especially sensitive with partly unsaturated venous blood where the slope of the curve is fairly steep. When computing content for purposes of estimating physiologic shunt and Fick cardiac output, it is always best to measure the saturation. Small variations in the dissociation curve can cause considerable error in the shunt and cardiac output calculations and because the effect is not the same on venous blood as on the higher saturation arterial blood.

The calculated O_2 content includes both the dissolved oxygen and the hemoglobin bound oxygen. If only O_2 saturation was measured, and not PO_2 , an estimated PO_2 should be input to obtain the maximum accuracy in the content calculation. The estimate for PO_2 need only be rough as the effect is very small, unless the patient is breathing an oxygen-enriched atmosphere and PO_2 is well above 100 mmHg.

To compute equivalent alveolar blood 0_2 content, enter the equivalent $P_A 0_2$, rather than the virtual $P0_2$. The $P_A 0_2$ can be calculated by the A-a 0_2 DIFFERENCE program. In this case, the resulting 0_2 content should not be stored as either arterial or venous, but simply left in the display register

for use at the beginning of the PHYSIOLOGIC SHUNT AND FICK programs which should be executed next. Thus, the over-all sequence should be to compute venous content first, arterial content second, and alveolar content last. The PHYSIOLOGIC SHUNT AND FICK program may then be run without having to enter any new 0_2 content data.

 Sketch(es)

 Sketch(es)

 Sample Problem(s)

For the following patient data calculate virtual PO ₂ and from it estimated
0_2 saturation and 0_2 content. Store the value as venous 0_2 content.
$PO_2 = 75 \text{ mmHg}$
$PCO_2 = 45 \text{ mmHg}$
pH = 7.35
$BT = 40^{\circ}C$
Hgb = 16 gm/100 ml
Calculate est. 0_2 saturation and 0_2 content assuming the PO ₂ was actually 75 mmHg.
s) 1) 75 [f] [B] 45 [f] [C] 7.35 [f] [D] 40 [f] [E] \rightarrow 59.71 mmHg VPO ₂
[A] → 90.92 est. SAT%
[B] 16 [C] → 19.68 0 ₂ Content %
[E] → 0.00
(19.68% stored as venous 0_2 content. No previously stored arterial 0_2

2) [f] [A] [A] → 95.08 est SAT%
[B] [C] → 20.62 0₂ Content

Reference(s) Thomas, L.J. Jr., "Algorithms for Selected Blood Acid-Base and Blood Gas Calculations," J. Appl. Physiol. 33: 154-158, 1972
Kelman, G. Richard, "Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation," J. Appl. Physiol. 21: 1375-1376, 1966.
This program is a modification of the Users' Library Programs
00196A and # 00197A submitted by Hewlett-Packard.

User Instructions

	1 VIRTUAL PO ₂ AND O ₂ SATURATION AND	CONTENT			5	
	RCL PO ₂ PO ₂ PCO ₂ VPO ₂ , PAO ₂ SAT Hgb+Cont	pH CaO ₂	BT→ CvO	VP02 2		
STEP	INSTRUCTIONS	INPUT DATA/UNITS		ĸ	EYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2	PO	[]
2	If PO2 was previously input, recall it			f	Α	$PO_2(mmHg)$
3	INPUT PO2 if not recalled in step 2	PO2(mmHg)	[f	В	PCO ₂ (if stored)
4	INPUT PCO ₂ if not recalled in step 3	PCO ₂ (mmHg)	[f	С]
5	INPUT pH if not recalled in step 4	pH	[f	D	pH(if stored)
6	INPUT BT if not recalled in step 5		[BT(if stored)
	and calculate virtual PO ₂	BT (°C)	[f	E	
7	INPUT virtual PO ₂ from previous step or		[
	alveolar P _A O ₂	VP020rPA02		Α		est SAT(%)
8	INPUT est. SAT% from step 2 and recall Hgb		[
	if previously stored (use actual SAT		[
	if known)	est SAT%	ſ	В		Hgb(if stored)
9	INPUT Hgb	Hgb(g/100m	1) [С		$Cx0_2$ (Vo1%)
10	If calculated 02 content is to be stored		[
	as arterial	Ca0 ₂ (Vo1%)	ſ	D		Ca0 ₂ (Vo1%)
	or as venous	Cv0 ₂ (Vo1%)	ſ	E		Ca02(Vo1%)
			ſ			
			ſ]
			ſ			
			ſ			
			[
			[]
			[,]
						,
			ſ			í
			[í
			ſ]
			ſ			,
						/
			ſ			1
						,]
		1	ſ			
			ſ			
			ſ			j]
			L T			
			ſ			
			ſ			j
			ſ			j

97 Program Listing I

8						S I alli								
	EY ENTRY	к	EY CODE		сомм	ENTS	STEP KE	Y ENTRY	KEY (CODE		COMN	IENTS	
601	*LELo		16 11				8 57	Х		-35				
0 02	RCL5		36 05	Reca	11 PO	,	0 58	X≠Y		-41	1			
003	FRC		16 44	necu	11 10	2	059	3		03				
							060	7		07	1			
00 4	EEX		-23				061	-	_	-45				
005	3		03						-					· ·
00 6	Х		-35				0 62	2		0 2				
0 07	RTN		24				0 63	•	-	-62				
0 08	*LBLb	21	16 12 -				064	4		04				
009	EEX		-23				065	Х	-	-35				
010	3		03	т			0 66	-	-	-45				
011	ST08		35 08		t PO ₂	11	067	4		Ũ 4				
			-24	and	reca.	11 PCO ₂	068	EEX	-	-23				-
012	÷						0 69	3		03				
013	ST01		35 01						74					
014	RCL5		36 05				0 70	RCL5		0 5				
015	EEX		-23				071	÷		-24				
016	2		02				0 72	LOG	16	32				
017	÷		-24				073	6		06				
018	RTN		24				074	Х	-	-35				
0 19	*LBLc	21	16 13				075	÷		-55	1			
		<u> </u>	-23	+ _			076	EEX		-23	1			
0 20	EEX				t PCO		0 77	2		02	1			
021	2		02	and	reca	11 pH								
022	X		-35				0 78	÷		-24	1			
023	INT		16 34				079	10×		33				
024	RCL1		36 01				080	GSBa	23-16					
025	+		-55				081	Х	-	-35				
026	ST05		35 05				082	PRTX	-	-14	VPC)_		
827	RCL6		36 06				0 83	RTN		24		2		
8 28			36 08				084	*LBLA	21	11				
	RCL8						0 85	\$T01		01			<u> </u>	
029	÷		-24								Ing	out VP	0 ₂	
030	RTN		24				08 6	ENTŤ		-21	ar	nd cal	culate	
031	*LBLd	21	16 14				087	Х		-35	es	stimat	ed SAT	
032	RCL8		36 08				08 8	ST08	35	8 8				
033	х		-35	Tnnu	t pH		6 89	ENT↑	-	-21				
034	INT		16 34	Inpo	ic pii		0 90	Х		-35				
035	ST01		35 01				091	RCL8		0 8				
							092	RCL1		01				
036	RCL6		36 06				093	X						
037	FRC		16 44						-	-35				
0 38	RCL8		36 0 8				094	1		01				
039	х		-35				0 95	5		05				
04 0	RTN		24				0 96	Х		-35				
Ū41	*LBLe	21	16 15				097	-		-45				
042	ENTT		-21	1			0 98	ENTT		-21	1			
843	ENTT		-21	1			099	ENTT		-21	1			
043 044	RCL8		36 08				100	RCLS		08	1			
				1			101		50	02	1			
04 5	÷		-24	1				2			1			
04 6	RCL1		36 01	1			102	4		0 4	1			
047	+		-55	L			103	0		0 0	1			
048	ST06		35 06	Calc	ulate	VPO o	104	Ø		00	1			
849	RCL8		36 08			· - · Z	105	Х		-35	1			
0 50	÷		-24	1			106	+		-55	1			1
051	7		07	1			107	X≠Y		-41	1			1
052	•		-62	1			108	RCL8		08	1			1
052 053	•		-62 04	1			109	2		0 2	1			
	4			1			105	0		00	1			
05 4			-45								1			
055	4		0 4				111	4		0 4				
. 056	8		0 8	L			112	5		05	1			-
							STERS	1-			10		10	-
0	1'Used	D 2	2	3			5 Ugod	6 Ugod	7		⁸ Us	ed SAT	⁹ Hgb	
	1	P02		CvC	2	Ca0 ₂	Used	Used				UAI	50	
S0	S1		S2	S3		S4	S5	S6	S7		S8		S9	
А		В			С		D		E			I		

8

		9)7 P	rogran	n I	ist	in	gH			9
STEP KEY	ENTRY	KEY CODE	-	COMMENTS		STEP	KE	ENTRY	KEY CODE	E COMI	MENTS
113	X	-35					169 170	STO3 RCL4	35 03 36 04	Store Cy	
114 115	+ RCL1	-55 36 01					171	RTN	30 04 24	Recall Ca	1 ⁰ 2
115	2 RULI	30 01 02					72	R∕S	51		
117	EEX	-23			Г		1			1	
118	3	03									
119	X	-35									
120	+	-55			-						
121 122	X≠Y RCL1	-41 36 01			-		+				
122	KULI 3	30 01 03									
124	1	01			1	80					
125	1	01					1			_	
126	Ø	00				-g-,	1				
127	Ū	0 0									
128	x	-35									
129	-	-45									
130	2 4	0 2 84									
131 132	EEX	04 -23					+				
133	5	05					+				
134	+	-55			1	90	1				
135	÷	-24									
136	EEX	-23									
137	2	0 2									
138	X	-35	_				ļ			_	
139	STO8	35 08	Est.	SAT	-						
140 141	PRTX RTN	-14 24			-						
	*LBLB	21 12	Tool	- CAT	\vdash		+			-	
143	ST08	35 08	tuba	it SAT			+				
144	RCL9	36 09			2	00				-1	
145	RTN	24									
	*LBLC	21 13									
147	ST09	35 0 9	Calc	ulate Conte	nt 🖵						
148	RCL8	36 08									
149	1 3	01 03			\vdash						
150 151	4	04					 				
152	x	-35								-	
153	x	-35								_	
154	RCL1	36 01			2	10					
155	3	03									
156	1	Ø1								_	
157	× +	-35			-						
158 159	EEX	-55 -23									
160	4	04									
161	CHS	-22								-	
162	х	-35									
163	PRTX	-14									
164	RTN	24	- .		2	20	 				
	*LBLD	21 14 35 0 4	Stor	e CaO ₂							
166 167	STO4 RTN	35 04 24					<u> </u>				
	*LBLE	21 15	<u> </u>								
				BELS	-			FLAGS		SET STATUS	
^A PO ₂	^B SAT	^С Нg	Ь		E Cı	v0 ₂	0		FLAGS	TRIG	DISP
^a PO _a	^b PO ₂	^c PC	02	d pH	e VI	2 ⁰ 2	1			F DEG DAL	FIX 🔀
0	1	2			4	-	2				SCI 🗆
5	6	7		8	9		3			RAD 🗆	ENG □ n_2
	1	Ĺ					1		3 🗆 🛛		··· <u>é</u>

Program Title BODY SURFACE AREA FOR CARDIO	PULMONARY	
Contributor's Name Hewlett-Packard Company		
Address 1000 N.E. Circle Boulevard		
City Corvallis	State Oregon	Zip Code 97330
Program Description, Equations, Variables — $_{ m This-prog}$	ram calculates bo	ody surface area by
either the method of DuBois or the me	thod of Boyd. Ir	1 both cases, the
required inputs are height and weight	, which may be in	uput either in metric
(cm, kg) or English (in., lb.) units.	Quantities in H	Inglish units should be
input as negative numbers. If cardia	c output is giver	, the cardiac index
can also be calculated.		
Equations:		
Let Ht be height, Wt be weight,	and BSA be the b	oody surface area in m ² .
Ht (cm) = 2.54 Ht	(in.)	
Wt (kg) = 0.45359237	Wt (1b.)	
DuBois: D_{1}	T. A. D. 425	7 10/ 110-3
BSA $(m^2) = Ht (cm)^{0.725}$	• Wt (kg) ••+23 •	7.184 X 10 ³
Boyd: BSA $(m^2) = Wt (g)^{0.7285}$ -	0.0188 log Wt) .	Ht (cm) ^{0.3} · 3.207 X 10 ⁻⁴
$CI = \frac{CO(1/min)}{BSA (m^2)}$		
Operating Limits and Warnings The Du Bois formul with a BSA less than 0.6 m ² . In such c Boyd formula.		
This program has been verified only with respect to the numerica		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s) 1) Patient is 176 cm in height and weighs 63.5 kg. What is his
body surface area by both the DuBois and Boyd methods?
2) A patient 60 inches in height and 100 pounds in weight has a
cardiac output of 5 1/min. Calculate the body surface area and cardiac index
by DuBois. What is the cardiac index using the Boyd BSA?
· · · · · · · · · · · · · · · · · · ·
Solution(s) 1) 176 [A] 63.5 [B] [C] \rightarrow 1.78 m ² (DuBois) [D] \rightarrow 1.76 m ² (Boyd)
2) 60 [CHS] [A] 100 [CHS] [B] [C] \rightarrow 1.39 m ² (DuBois) 5 [E] \rightarrow 3.59 1/min m ² (CI, DuBois)
$[D] \rightarrow 1.40 \text{ m}^2 \text{ (Boyd)}$
[f] [E] \rightarrow 5.00 (Recalls CO, Stored above) [E] \rightarrow 3.57 1/min m ² (CI, Boyd)
Reference(s) D. DuBois and E.F. DuBois, Clin. Cal. 10, Arch. Int. Med., 17,863,1916.
Edith Boyd, Growth of the Surface Area of the Human Body, U. of Minnesota
Press, 1935, p. 132.
This program is a modification of the Users' Library Programs # 00203A and

00204A submitted by Hewlett-Packard.

User Instructions

	1 BODY SURFACE AREA for CARDIO PULMONA B Height Weight DuBois Body	R	CL CO) → CI	z		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	rs	OUTPUT DATA/UNITS]
1	Load Sides 1 and 2					1
2	Input Patient Height Ht	$t (\pm cm \text{ or } -in)$	A		Ht (cm)	1
3	Input Patient Weight Weight				Wt (kg)	1
4	Calculate BSA: By DuBois				BSA (m^2)	1
	By Boyd		D		BSA (m ²)	1
5	Recall cardiac output (if previously stored)		f	E	CO (1/min)	
6	Input CO and calculate CI	CO (1/min)	Е		CI(1/min m	1.
Ŭ	Input of and culture of					ľ
						1
						1
	DETAILED USER INSTRUCTIONS					1
	The height and weight may be input in eit	er metric				1
	or English units. If English units are used,					
	must be input as negative values. This is acc					1
	by pressing [CHS] after the number is input, 1					1
		1				1
	the program button is pressed. The metric equivill appear in the display	ilvalent				1
	will appear in the display. Press [C] or [D] to obtain body surface an					1
	which will also be stored in the calculator's					
						1
	If cardiac output has been previously calculat may be recalled by pressing [f] [E]. Alternat					
	it may be input. In either case, pressing [E]					
	yield cardiac index by means of the last body					
		Surrace				
	area calculated.					1
		<u> </u>]				1
						1

97 Program Listing I

			7/ i jugi am		116 1		13			
STEP KE	Y ENTRY	KEY CODE	COMMENTS	STEP K	EY ENTRY	KEY CODE	CO	MMENTS		
001	*LBLA	21 11	Enter Ht.	057		-62		1		
002	X>0?	16-44	If cm store	8 58	3	0 3				
003	GTO1	22 01		0 59	γ×	31				
004	CHS	-22	If inches, convert	060	RCL6	36 06				
005	2	02	to cm and store	061	EEX	-23				
006		-62	to cm and store	062	3	03				
007	5	05		063	x	-35				
002	4	04		0 63 0 64	ENTT	-21				
009	X	-35		065	LOG	16 32				
	*LBL1	21 01								
011	ST05	35 05		066 067	:	-62				
			Store Ht.	0 67	0	0 0				
012	RTN	24		0 68	1	01				
	*LBLB	21 12	Enter Wt.	069	8	08				
014	X>0?	16-44	If kg store	0 70	8	0 8				
015	GTO2	22 02		071	Х	-35				
016	CHS	-22	If 1bs., convert	0 72		-62				
017	2	02	to kg and store	0 73	7	07				
018	•	-62		8 74	2	02				
019	2	02		075	8	08				
0 20	÷	-24		0 76	5	8 5				
021	*LBL2	21 02		0 77	-	-45				
022	ST06	35 06	Store Wt.	0 78	γx	31				
0 23	RTN	24		079	÷	-24				
	*LBLC	21 13	Calculate BSA	0 80	3	03				
025	RCL5	36 05	by DuBois	081	1	01				
026		-62	by Dubbis	082	ī	01				
027	7	07		083	8	08				
028	2	02		084	÷	-24				
029	5	05								
029 030	γ×	31		0 85	ST01	35 01				
		36 06		0 86	EEX	-23	Tangle w	vith CO		
031 070	RCL6			0 87	2	0 2	and sto	ore as		
032	•	-62		0 88	÷	-24	100 CO	+ .01 BSA		
033	4	04		0 89	RCL7	36 07				
034	2	02		0 90	INT	16 34				
035	5	05		0 91	+	-55				
0 36	γ×	31		0 92	ST07	35 0 7				
037	Х	-35		093	RCL1	36 01				
0 38	1	01		0 94	PRTX	-14				
0 39	3	03		095	RTN	24				
040	9	09		096	*LBLe	21 16 15	Untangle	and		
041		-62		8 97	RCL7	36 0 7	recall			
042	2	02		6 98	EEX	-23				
043	÷	-24		8 99	2	8 2				
044	ST01	35 01		100	÷	-24				
045	EEX	-23	Tangle with CO	101	RTN	24				
046	2	02	and store as	102	*LBLE	21 15	Calculat			
047	÷	-24		103	EEX	-23				
04 8	RCL7	36 07	100 CO + .01 BSA	103	2	02		le CO with		
040	INT	16 34		104	x	-35	BSA and	l store		
0 50	+	-55		105	INT	16 34				
0 50 0 51	ST07	35 07				36 07				
051 052	RCL1	36 01		107	RCL7	36 07 16 44				
052 053	PRTX	-14		108	FRC					
		-14 24		109	+ CTO7	-55				
054 055	RTN		Calculate BSA	110	STO7	35 07				
	*LBLD	21 14 76 85	by Boyd	111	LSTX	16-63				
0 56	RCL5	36 05 .		112 51EHS	÷	-24				
0	1	2	3 4	5	6	7	8	9		
v	BSA		ľ ľ	HT.	WT.	Used				
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9		
A		В	C	D		E	I			

14				Ç)7 ľ	rogra	m	List	ing 11			
14 STEP	KEY	ENTRY	KEY			COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	IENTS
	113	EEX		-23								
	114	4		0 4				170			4	
•		÷ PRTX		·24 ·14 _							-	
2	117	RTN		14 _ 24							1	
1	118	R∕S		51							-	
120											4	
											-	
								180			-	
											4	
	-											
		.									1	
130											4	
											1	
											1	
								190			4	
	+										1	
]	
											4	
140											-	
											4	
								200			1	
											1	
											4	
											-	
											1	
150											4	
	1										1	
											1	
								210			-	
											1	
											1	
											-	
160											1	
]	
 											4	
								220			1	
											4	
											1	
											1	
A		В		C		D D	E		FLAGS 0		SET STATUS	
a Ht		b Wt.		C DuBo	J1S	Boyd d	e C.		1	FLAGS ON OFF	TRIG	DISP
0						3	4 R(CL CO	2	ON OFF 0 □ □ ↓ 1 □ ☑	DEG 🕅 GRAD □	FIX 🙀 SCI 🗖
5		' Sto. 6	Ht.	² Sto 7	. Wt.	8	9		3	2 🗆 🖄		ENG, 🗆
Ľ		ľ		<i>'</i>		ľ	3		, S	3 🗆 🖾		n_ <u>2</u>

Program Title	DYE CURVE CARDIA	AC OUTPUT			
Contributor's Name	e Hewlett-Packard				
Address	1000 N.E. Circle Blvd.				
City C	orvallis	State	Oregon	Zip Code	97330
	on, Equations, Variables, etc.				
	a computes the area of the first part	•	-	0	•
	point is calculated from an exponen				-
_	eak measured point; and the first m	-			-
-	y avoids problems of indicator recirc				
to be input.	Thus it is important to have a meas	ured point whic	h is below 45	% of the peak,	but before
	becomes obvious. If this isn't possi		mation can be	obtained by g	uessing at
the curve wit	hout recirculation and entering the	se values.			
Equation Use	ed:				
CO(<i>l</i> /mi	in) = $\frac{\text{DOSE (mg)} \cdot 60 \text{ (sec/min}}{\text{CAL(mg/l/div)} \cdot \text{AREA (div}}$) • sec)			
Operating Limits ar	nd Warnings				
Although this	s program leaves CO stored in mem	ory, it erases all	other stored	patient data, ir	cluding
BSA.					_
This program has be	een verified only with respect to the numeric	al example given ir	Program Desci	iption II. User ac	cepts and uses
this program materia	al AT HIS OWN RISK, in reliance solely up ation or description concerning the program	on his own inspecti			

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Detailed User Instructions

This program calculates cardiac output from measurements taken directly from an indicator dilution curve. To obtain accurate results, it is important to measure the curve at frequent intervals. Generally, about ten points on the curve, equally spaced in time between onset and the 40%-of-peak point on the downslope, will be adequate. Choose a measurement time interval accordingly. Input the interval (Δ t) and press [A].

Input the values measured from the curve (DC) and press [B] after each. The units of measurement are arbitrary; for example, divisions on the paper or volts, so long as the same units are used in inputting the calibration. The values are measured relative to the baseline, or starting level, of the curve. After each input entry, the display will indicate the number of points input.

As points on the downslope are input, the program compares each with the peak value. When the first point whose value is less than 65% of the peak value is found, it is stored for later use in the exponential projection as indicated by a minus sign preceding the displayed value representing the number of points input.

When a point having a value less than 45% of the peak value is input, the program automatically makes the exponential projection and displays the area under the curve, rather than the number of points entered.

At this time, input the CAL value. If indocyanine green dye is being used, it will generally be measured as milligrams of dye per liter of the patient's blood per division or unit of curve measurement. For other indicators, equivalent calibration factors must be determined.

Finally, input the dose of indicator given. For dye, this will usually be in mg. Press [D], and cardiac output in liters/min. will result. CO is stored in memory.

Sketch(es)

Sample Problem(s)

$\Delta t = 1 \text{ sec.}$	
DC = 5, 2, 45, 60, 50, 38, 28, 20 div.	
CAL = 0.2 mg/l/div.	
DOSE = 3 mg	
Solution(s)	
1[A] 5[B] 20[B] 45[B] 60[B] 50[B] 38[B] 28[B] 20[B]→ 318.32 div/sec (area	1)
.2[C] 3[D]> 2.82 1/min. (co)	
Reference (s)	

Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters,

F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program #00205A submitted by Hewlett-Packard.

User Instructions

	DYE CURVE CARDIAC		5	
STEP	$\Delta t \qquad DC \rightarrow A \qquad CAL$ INSTRUCTIONS	DOSE→CO INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
		DATA/UNITS		DATA/UNITS
1	Enter program			
2	Input ∆t	∆t(sec)		∆t(sec)
3	Repeat step 3 for each DC value measured from the curve	DC ₁ DC _{n-1} (Div)	В	1 (n-1)
	After the 45% or less DC value is input	DC n	В	area (Div∙sec)
4	Input CAL	CAL(mg/l/Div)		CAL x area
5	Input DOSE and calculate CO	DOSE (mg)		CO(<i>l</i> /min)
┝──┤				

97 Program Listing I

002 CLRG 16-53 Clear registers 058 x -35 003 ST07 35 07 059 CF1 16 22 01 004 RTN 24 060 ST02 35 02 060 ST02 35 02 005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 008 RCL2 36 02 New Peak? 065 × -35 Computer	COMMENTS ute total area
002 CLRG 16-53 Clear registers 058 x -35 003 ST07 35 07 059 CF1 16 22 01 004 RTN 24 060 ST02 35 02 060 ST02 35 02 005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 008 RCL2 36 02 New Peak? 065 × -35 Computer	ute total area
002 CLRG 16-53 Clear registers 058 x -35 003 ST07 35 07 059 CF1 16 22 01 004 RTH 24 060 ST02 35 02 060 ST02 35 02 005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 008 RCL2 36 02 New Peak? 065 x -35 Computer	uce cocal area
003 ST07 35 07 059 CF1 16 22 01 004 RTH 24 060 ST02 35 02 005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 Enter 008 RCL2 36 02 New Peak? 065 × -35 Compute	
004 RTN 24 060 ST02 35 02 005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 Enter 008 RCL2 36 02 Integrate 064 RCL2 36 02 009 X>Y? 16-34 New Peak? 065 × -35 Computer	
005 *LBLB 21 12 Enter dye curve values 061 PRTX -14 006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 Enter 008 RCL2 36 02 Integrate 064 RCL2 36 02 009 X>Y? 16-34 New Peak? 065 × -35 Compute	
006 DSZI 16 25 46 Count entries 062 RIN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 Enter 008 RCL2 36 02 Integrate 064 RCL2 36 02 009 X>Y? 16-34 New Peak? 065 × -35 Compute	
006 DSZI 16 25 46 Count entries 062 RTN 24 007 ST+1 35-55 01 Integrate 063 *LBLC 21 13 Enter 008 RCL2 36 02 Integrate 064 RCL2 36 02 009 X>Y? 16-34 New Peak? 065 × -35 Compute	
007 ST+1 35-55 01 063 *LBLC 21 13 Enter 008 RCL2 36 02 064 RCL2 36 02 Enter 009 X>Y? 16-34 New Peak? 065 x -35 Compton	
008 RCL2 36 02 Integrate 064 RCL2 36 02 009 X>Y? 16-34 New Peak? 065 × -35 Compute	
009 X>Y? 16-34 New Peak? 065 × -35 Compu	
	ute CAL x AREA
011 XIY -41 Yes 067 RTN 24	
012 ST02 35 02 Save 068 *LBLD 21 14 Enter	r dye dose
013 XZY -41 01 057 01 069 RUL2 36 02	
014 CF1 16 22 01 Clear 65% flag 070 ÷ -24	
015 ¥IBL1 21 01 071 6 06 cmm	
016 F1? 16 23 01 If flag l = Set 072 EEX -23 Compt	ute CO
019 6 06 075 INT 16 34	
020 5 05 076 STO7 35 07	
021 × -35 077 EEX -23	
022 X>Y? 16-34 If past 65% then 078 2 02	
023 GT03 22 03 save values and 079 ÷ -24	
024 RCLI 36 46 branch to LBL 3, 080 PRTX -14	
025 CHS -22 Else display count 081 RTN 24	
028 XIY -41 084 RTN 24	
029 ST03 35 03 085 R/S 51	
030 RCLI 36 46	
031 ST04 35 04	
032 SF1 16 21 01	
033 RTN 24	
03562	
036 4 04	
037 5 05	
039 X4Y? 16-35 If not past 45%	
040 GTO0 22 00 then RCL I & stop	
041 R4 -31 Else	
042 ST02 35 02	
043 RCL4 36 04	
044 RCLI 36 46	
04545	
046 RCL3 36 03	
047 RCL2 36 02	
048 ÷ -24	
049 LN 32 Compute exponential FLAGS SET S	TATUS
050 ÷ -24 area	
05162 FLAGS TR	IG DISP
	SIX FIX DA
	D □ ENG □ n_2
	·····
056 + -55 REGISTERS	
0 1 CD 2 Used 3 DCT 4 NCT 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9
SD Used D65 -N65 Cleared Cleared Δt/100C0 S0 S1 S2 S3 S4 S5 S6 S7 S8	Used S9
S0 S1 S2 S3 S4 S5 S6 S7 S8	
	I
A B C D E	Used

Program Title	FICK CARDIAC OUTPUT				
Contributor's I Address City	Name Hewlett-Packard 1000 N.E. Circle Blvd. Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.

This program computes cardiac output, stroke volume, and cardiac index by the Fick method.

Equations Used:

$$CO(l/min) = \frac{VO_2 \ (ml/min \ STPD) \cdot 100(\%)}{(C_a O_2 - C_v O_2)(vol.\%) \cdot 1000 \ (ml/l)}$$

 $SV(ml/beat) = \frac{CO(l/min) \cdot 1000 (ml/l)}{HR (beats/min)}$

$$CI(l/min/m^2) = \frac{CO(l/min)}{BSA(m^2)}$$

$$SI(ml/m^2) = \frac{SV(ml)}{BSA(m^2)}$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) $C_a Q_2 = 18 \text{ vol. }\%$

> $C_v O_2 = 15 \text{ vol. \%}$ VO₂ = 250 ml/min. STPD

 $BSA = 2m^2$

HR = 60 BPM

Solution(s)

18[A] 15[B] 250[C]	 8.33 1/min. = CO
2[D]	 4.17 1/min./m ² = CI
60[E]	 138.84 ml. = SV
[R/S]	 $-69.42 \text{ m}^2 = \text{SI}$

Reference (s)

Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters,

F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program #00206A submitted by Hewlett-Packard.

User Instructions

	FICK CARDIAC OUTPUT		5	
	$\mathbf{E} C_a O_2 C_v O_2 V_{2} C_0 BSA$	\→CI HR→	-SV	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If C_aO_2 was stored previously *		f_A	C _a O ₂
3	Input C _a O ₂	C_aO_2 (Vol.%)		C_vO_2 (if stored)
4	Input C _v O ₂	C _v O ₂ (Vol.%)	В	VO_2 (if stored)
5	Input VO ₂ and calculate CO	VO_2 (ml/min)	с	CO(l/min)
6	If BSA was stored previously		R/S	BSA(m ²)
7	Input BSA and calculate CI	BSA(m ²)	D	CI(<i>l</i> /min/m ²)
8	Input heart rate and calculate SV and SI	HR(BPM)	E	SV(ml)
9	Display SI		R/S	SL(ml/m ²)
	Detailed User Instructions:			
	* If the O _o Saturation program has been			
	* If the O ₂ Saturation program has been run immediately previously, to calculate ei	ither		
	in the display register. To start, simply [A]. If C _a O ₂ is not in the display register	hress		
	but has been previously stored, it may be			
	recalled by pressing [f] [A] after entering]		
	the program card. Proceed as usual by in-			
	<pre>putting values or accepting recalled values for each parameter. Be sure VO2 is in ml/</pre>			
	min STPD.			
	<u>To calculate cardiac index-assuming BSA has</u> been previously stored-press [R/S] to recal			
	BSA, then press [D]. Alternatively, enter			
	BSA and press [D]. To calculate stroke			
	volume enter heart rate and press [E].			
	Pressing [R/S] at this point will yield str index, with a minus sign, to avoid confusio			
	with SV. Pressing $[R/S]$ again returns to a			
	display of SV.			
├				
		-		

97 Program Listing I

												23
	EY ENTRY	KEY CODE		COMMENTS	S	STEP		Y ENTRY	I	KEY CODE	COM	AENTS
001		21 16 11	Recal	1 C _a 0 ₂			57	÷		-24		
002	RCL4	36 04	neou i	°a°2		θ	58	RCL8		36 0 8		
003	F S	51				0	59	÷		-24		
064	*LBLA	21 11	Enton				68	PRTX		-14		
0 05	ST04	35 04	Enter	° C _a 0 ₂			61	RTN		24		
006	RCL3	36 03					62	*LBLE		21 15	Enter hear	nt nato
007 007	RTN	24	Recal	1 C _v 0 ₂			63	RCL7		36 07	Lifter near	L TALE
												,
00 8	*LBLB	21 12	Enter	° ° v° 2			64	X≢Y		-41	Compute SV	
0 09	ST63	35 03		V Z			65	÷		-24		
010	RCL2	36 02	Recal	1 VO ₂			66	İ		01		
011	RTN	24	neeur	1 102			67	0		<u>00</u>		
012	*LBLC	21 13	Enton	VO			68	X		-35		
013	INT	16 34	Enter	v ⁰ 2		0	69	ST01		35 01		
614	ENTT	-21				0	170	PRTX		-14		
015	ENTT	-21					171	RTN		24		
016	RCL2	36 02	Entan	gle with	VCO		72	*LBL1		21 01	Compute	
017	FRC	16 44	Lincan	gie with	1002		173	RCL7		36 07	compute	
018	+	-55	in R ₂				74	FRC		16 44	SI	
	5702		2							-23	51	
015		35 0 2					175	EEX				
0 26	CLX	-51	Compu	te CO			76	2		02		
62 1	RCL4	36 04					177	X		-35		
0 22	RCL3	36 0 3					176	÷		-24		
023	-	-45				6	179	CHS		-22		
024	÷	-24				8	180	PRTX		-14		
025	1	Ð1	1				81	R/S		51		
026	Ũ	00					182	RCLI		36 01	Recall SV	
027	÷	-24					83	PRTX		-14		
028	ST01	35 01					184	R∕S		51		
02 0 02 9	EEX	-23					185	GTOI		22 01		
							00	6701	I	22 01		
030	2	02									4	
031	X	-35							+		1	
032	INT	16 34										
033	RCL7	36 07										
034	FRC	16 44				090						
035	÷	-55										
036	ST07	35 07	1									
637	RCL1	36 01	1								1	
038	PRTX	-14	1						+		1	
039	RTN	24	1						+		1	
040	RCL7	36 07	1						+		1	
640	FRC	16 44	linton						+		1	
			Touran	gle BSA					+		1	
042	EEX	-23	1						+		4	
043	2	02	1			100			╋		4	
044	_ X	-35	1			100			+		4	
045	R∕S	51	1						+		4	
046	*LBLD	21 14	1				L		+		4	
847	ST08	35 0 8	1				ļ		\vdash		4	
048	EEX	-23	Entan	gle BSA	with		L		1		4	
049	2	02	CO in	R7					1			
050	÷	-24	100	1.7							SET STATUS	
051	RCL7	36 07	1							FLAGS	TRIG	DISP
052	INT	16 34	1							ON OFF		
052 053	1N1 +	-55	1							0 🗆 🖾	DEG 😡	FIX 😰
			1			110				1 🗆 🗹	GRAD	SCI 🗆
054 055	STO7	35 0 7	1						Π	2 🗆 😥	RAD 🗆	ENG D
0 55	EEX	-23	1						\square	3 🗆 🕱		n
Ø 56	2	0 2	L		BEGIS	STERS			-			
0	1	2	3	4		5		6		7	8	9
	C0/S1		Cv		C _a 0 ₂	0.5		S6		Used S7	BSA S8	S9
S0	S1	S2	S3	S4		S5		30		5'		
Α	1	В	I	c I		D			E		I	

23

Program Title VALVE AREA				
Contributor's Name Hewlett-Packard				
Address 1000 N.E. Circle Blvd.				
City Corvallis	State (Oregon	Zip Code	97330
Corvarris				97.5.50
Program Description, Equations, Variables, etc.				
This program calculates aortic valve area and mitr	al valva area			
This program calculates abrice valve area and mit	ai vaive area.			
Equations Used:				
Valve Area (cm ²) = $\frac{\text{Mean Flow}}{0.0445\sqrt{\text{mean gradient}}}$	-			
where				
Mean Flow $(l/sec) = \frac{CO(l/min.)}{Valve Open Time (sec/b)}$	R—R (sec) eat) • 60 (sec/min	n.)		
Mitral Valve Area only = $\frac{\text{Valve } A}{0.7}$	rea			
	••			
Operating Limits and Warnings				
l				
This program has been verified only with respect to the numerica this program material AT HIS OWN RISK, in reliance solely upon upon any representation or description concerning the program	his own inspection			
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTI TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF T	OR IMPLIED WARRA IMPLIED WARRAN RIBUTOR SHALL BE	TIES OF MERCH	HANTABILITY CIDENTAL OR	AND FITNESS CONSEQUEN-

MATERIAL.

Sketch(es)

Sample Problem(s) DFP (mitral valve) = 0.55 sec $\triangle P = 10, 12, 8, 6, 2 \text{ mmHg}$ R-R = 0.94 secCO = 5.73 l/min.Solution(s) [f] [A] $\rightarrow 1.00$ (for mitral value) [C] ------> 7.60 mmHg,∆P .94[D] 5.73[E] ------> 1.90 cm², AREA Reference(s) Gorlin, R.; Gorlin, S.G., "Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts", American Heart Journal, Jan. 1957, VOL. 41, No. 1. This program is a modification of the Users' Library program #00207A submitted by Hewlett-Packard.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	For regular calculations		f A	0.00*
	For mitral valve calculations		f A	1.00*
3.	Input SEP or DFP	seconds	Α	SEP or DFP
4.	Repeat step 3 for each value of ΔP to be	seconds		SEP OF DEP
		∆P ₁ P _n (m	nHa) B	1 n
5.	Calculate $\overline{\Delta P}$	^{[2,} 1, u/		$\Delta \overline{P}$ (mmHg)
6.				CO(if stored)
0. 7.	Input R-R Input CO and calculate area	R -R (sec) CO(1/min)		
	· · · · · · · · · · · · · · · · · · ·			area(cm ²)
8.	If mitral valves			Mit.area
				(cm ²)
	DETAILED USER INSTRUCTIONS			
	Input the time duration, in seconds, of blood			
	flow through the valve of interest; that is,			
	the systolic ejection period (SEP) for outflow			
	tract valves or the diastolic filing period (DFP) for A-V valves. Press [A].			
	This program permits averaging of a number of			
	pressure gradients across the valve measured			
	at different times while the valve is open.			
	If the pressure gradient is to be measured at a number of different times, the time intervals			
	should be equally spaced across the duration			
	of the valve opening to obtain a true average.			
	Simply input each value of pressure difference,			
	(AP), in mmHg, and press [B] after each. The			
	display will then show the number of input entr	ies made.		
	When all input entries have been made, press			
	[C]. The average of all the ΔP values will be displayed (ΔP). If only one pressure gradient			
	measurement is to be input, because averaging h	as been		
	accomplished by some other means, simply input	AG Deen		
	the value, press [B] and then press [C]. The			
	input value will be displayed.			
	Input the R-R interval, in seconds, and press			
	[D]. Cardiac output, if previously stored, wil	h]
	be recalled. If not, input it. Pressing [E]			I
	will display the valve area, in cm ² . A mitral			
	area is indicated by a minus sign preceding the displayed value.			
	uispiayeu value.			
	* If you don't get the desired display			
		 		J
	repeat [f] [A] until you do.			
		I		

97 Program Li	isting I
---------------	----------

							S I alli			116 1				27
STEP	KEY ENTRY	1	KFY			COMM	ENTS	STEP	KE	EY ENTRY	K	EY CODE	COM	MENTS
00			16		Τοαα	le for	regular	é	157	RCL7		36 07		
0 0.		16	23			itral			35 8	FRC		16 44		
86				0 3		ulatio			59	+		-55		
86		16	21						960	ST07		35 07	Recover (20
00				0 1					61	R∔		-31		
00				24					62	RCL8		36 08	Calculate	area
00				0 3					63	÷		-24		
60		16	22						64	•		-62		
6 0.				00 24					65	e		<u>00</u>		
01			24	24	Stor	еT			66	4		84		
01 01				11 09					67	4		0 4	Hemodynar	nic k
61		12	22		Clea	r Flag	1		168 169	5		6 5	·	
01-		10	22	24					102 170	÷ RCL1		-24 36 01		
01			21	12	Ente	r ∆P			171	KCLI IX		54		
01		16	23		TF F	irst e	ntry		172	чл. ÷		-24		
Ø1				0 1		initi			173	CF1	16	22 01		
01				0 1			averaging		174	EØ2		23.00		
01. 01.		16	21				averugning		175	GT02		22 02		
62				01					76	PRIX		-14	Display 8	store
02			35	46					177	ST08		35 88	area	
0 2.				01					178	RTN		24		
62	3 RTN			24					79	*LBL2		21 82	Calculate	e mitral
6 2-	4 *LBL1		21	Ø 1					80			-62	area	
02:		35-	-55						81	7		07		
02		16	26	46		-			82	÷		-24		
62			36	46	Disp	lay co	unt	Ø	83	CHS		-22		
0 2;				24	C 1				84	PRTX		-14		
Ø2:				13	Calc	ulate	ΔP		85	RTN		24		
0 3(01				6	86	R∕S		51		
0 3				46										
03.				-24										
03.		16	22					090						
0 3-			35								<u> </u>			
03: 97:			-	-14							-			
03) 07			24	24	Ento	r R-R					1			
03) 03)			21 36	14 ag							<u> </u>			
0 3:				-41	Calc	ulate	S/M							
00. 04(-24										
64.				06										
64:				66										
<u>0</u> 4.			-	-35							 			
84				08	11		•	100			 			
04				07	unta	ngle C	U				┥			
84			-	-23							╂──			
84				0 2							╂			~
Ū48			-	-24							+			
645				24	Ente	r co				FLAGS	<u>+</u>		SET STATUS	
050			21		LIILE				10.					DISP
0 5:				-21					HĻ	<u>Mitral?</u>		FLAGS	TRIG	0138
05: 05:				-21					Ц'	AP Ave.		ON OFF	DEG 🕱	FIX 😡
05) 05				-23				110	2				GRAD 🗆	SCI 🗆
05×				<i>82</i>	Tang	le CO	with BSA		3		- 2		RAD 🗆	ENG 🗆
05: 05:			16	-35					Ľ		3			n
	- INT		_	34	10		REGIS			6	T-		19	9
0	¹ ΣΔΡ,	ΔP	2		3		4	5		0	7	Used	⁸ S/M,A	Τ
S0	S1		S2		S3		S4	S5		S6	s	7	S8	S9
L		1-				0					E L		l	
Α		в				С		D			E		I Use	be
		1											030	~~

Program Title	ANATOMIC SHUNTS					
Contributor's Nan Address City Corv	ne Hewlett-Packard 1000 N.E. Circle Blvd. vallis	State	Oregon	Zip Code	97330	

Program Description, Equations, Variables, etc.

This program calculates left-to-right and right-to-left shunts and displays them as a percentage. The program uses the method of allegations and can calculate bi-directional shunts.

Equations Used:

R-L shunt (%) =
$$\frac{(L-PUL) - (L-SYST)}{(L-PUL) - (R-SYST)} \cdot 100$$

L-R shunt (%) = $\frac{(R-PUL) - (R-SYST)}{(L-PUL) - (R-SYST)} \cdot 100$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

Calculate the left-to-right or right-to-left shunts for a patient having the following oxygen saturation values at the listed sites. Right atrium, 85%; pulmonary artery, 88%; left atrium, 95%; left ventricle, 93%.

Solution(s)

85[A] 88[B] 95[C] 93[D] [E] -----→ 30.00% (L-R Shunt) [E] -----→ -20.00% (R-L) Shunt)

Reference(s)

Zimmerman, H.A., Intravascular Catheterization, Charles C. Thomas, Springfield, Ill., 1966.

This program is a translation of the HP-65 Users' Library program #00208A submitted by Hewlett-Packard

User Instructions

	ANATOMIC SHUNTS			₹►)	
	🖲 R-SYST 🔳 R-PUL 🖬 L-PUL 🖬 L-SYST	■ →SHUI	NTS		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	к	EYS	OUTPUT DATA/UNITS
1	Enter program				
2	Input R-SYST	R-SYST(%)	A		R-SYST(%)
3	Input R-PUL	R-PUL(%)	В		R-PUL(%)
4	Input L-PUL	L-PUL(%)	С		L-PUL(%)
5	Input L-SYST	L–SYST(%)	D		L-SYST(%)
6	Calculate L-R		E		L-R(+%)
7	Calculate R–L		E		R–L (–%)
	(Pressing E will display L-R and R-L alternately)				
	DETAILED USER INSTRUCTIONS				
	The program assumes oxygen concentration values	s taken			
	from four sites in the cardiovascular system. S	ince			
	these sites may be various chambers in the heart				
	or great vessels, they are labeled right system	с,			
	right pulmonary, left pulmonary and left system	с.			
	For example, suppose oxygen concentration values	are			
	known for the right atrium, pulmonary artery, le	ft			
	ventricle, and aorta; then the right systemic sit	te			
	would be the right atrium, the right pulmonary s	ite			
	would be the pulmonary artery, the left pulmonary	y site			
	would be the left ventricle, and the left system	ic			
	site would be the aorta.				
	Input right systemic value, press [A]. Input				
	right pulmonary value, press [B]. Input left				
	pulmonary value, press [C]. Input left systemic				
	value, press [D]. Note that it is possible to er	nter			
	either oxygen contents or saturations, assuming h	nematocrit			
	does not change during the sampling interval. Q r	nce all			
	four sites have been input, press [E] to obtain t	che			
	percent left-to-right shunt. If no shunt is cal	culated,			
	0 is displayed. Press [E] again to obtain the ri	ight-			
	to-left shunt. Left-to-right shunts are reported	as			
	positive numbers, and right-to-left shunts as neg	jative			
	numbers. Each time [E] is pressed, either a left	:-to-			
	right or right-to-left shunt will be displayed.				

97 Program Listing I

					gram			151					3
STEP KE	EY ENTRY	KEY CODE		COMME	INTS	S TEP	KE	Y ENTRY		KEY CODE		COMN	
001	*LBLA	21 11	Entor	R-sys			57			22 83			
062	\$701	35 01	Lincer	N-593	56			GT03					
063	STOI	35 46	Set t	oggle	≠ 1		158	CLX		-51	1		
004	RTN	24		, . 			59	PRTX		-14	1		
		21 12	Entor	R-Pu	1		60	RTN		24			
0 65	*LBLB		Lincer	N-I U		4	61	*LBL3		21 03	1		
006	ST02	35 02			1 1	6	62 -	PRTX		-14			
0 07	STOI	35 46	Set t	coggle	ΣΙ		63	RTN		.24			
008	RTN	24			_		Ĺ						
0 09	*LBLC	21 13	Enter	L-Pu									
ð10	ST05	35 0 5											
611	STOI	35 46	Set t	coggle	≠ 1								
012	RTN	24											
013	*LBLD	21 14	Enter	L-sys	st								
616	ST06	35 06		2 39.		070		-	-				
	5701	35 46	Ca+ +		∠ 1								
015			sect	coggle	<i>F</i> 1		 						
016	RTN	24					—						
017	*LBLE	21 15		ite shi			L						
618	DSZI	16 25 46	IfI	≠ 1 tl	nen LBL 2								
019	GT02	22 02											
626	RCL5	36 05	lotuer	wise	compute						1		
021	RCL6	36 86	R-L s	shunt									
022	-	-45		, nan c									
023	RCL5	36 05	1										
024	RCL1	36 01	1			080	<u> </u>						
	RULI		ł				<u> </u>						
025 025	-	-45	1										
026	÷	-24					L						
027	EEX	-23	1				—		L				
0 28	2	0 2]										
029	X	-35											
030	ENTT	-21]										
031	ABS	16 31	1						Γ				
0 32	X=Y?	16-33	1										
032 033	GT01	22 01	1				<u> </u>						
			1			090							
034	CLX	-51	1						\vdash				
035	PRTX	-14	1				┣		+				
03 6	RTN	24					┣──						
037	*LBL1	21 01					I		 				
038	CHS	-22							-		1		
03 9	PRTX	-14											
640	RTN	24											
041	*LBL2	21 02	Comp	ute L-	R shunt								
042	1	01	1										
042 043	STOI	35 46	1						Γ		i		
		36 02	1			100	<u> </u>				1		
04 4	RCL2		1				<u> </u>				1		
845	RCL1	36 01	1				+		+		l		
046	-	-45					+		+		1		
847	RCL5	36 0 5					╂───		┢		1		
04 8	RCL1	36 01	1				─		┢─		ł		
049	-	-45	1				_		┢┥		CET C	TATUS	
050	÷	-24					<u> </u>						
051	ΕΕΧ	-23	1				_			FLAGS	TF	RIG	DISP
052	2	02	1				_			ON OFF			
053 053	x	-35							\square	0 🗆 🕰	DEC		FIX X
	ENTT	-21	1			110				1 🗆 🛛			SCI 🗆
0 54										2 🗆 🕱	RAC		
055	ABS	16 31	1							3 🗆 🖌			n_ <u>£</u>
056	X=Y?	16-33			REGI	STERS							
0	1	2	3		4	5		6		7	8		9
ľ	R-sy					L-Pu	1	L-syst					
S0	S1	S2	S3		S4	S5		S6		S7	S8		S9
1													
A		В		С		D			Е			I Tog	ale
												109	

Program Title	e CONTRACTILITY						
	Name Hewlett-Packard 1000 N.E. Circle Blvd. Corvallis State	Oregon	Zip Code	97330			
	cription, Equations, Variables, etc. ogram calculates the indices of left ventricular contractility	based on press	sure rise du	ring			
	netric contraction.	Subcu on press	Jure fibe uu	11116			
Equation							
,	P_{N} = most recently entered pressure (mmHg)						
P_{N-1} = next previously entered pressure							
Δt = time interval between pressure measurements (sec)							
P_P = pressure at which dP/dt/P is calculated							
$\Delta P = P_N - P_{N-1}$							
di d	$\frac{dP}{dt} = \frac{\Delta P}{\Delta t} \text{ mmHg/sec}$						
P	$P_{P} = \frac{P_{N} + P_{N-1}}{2}$						
dl	$dP/dt/P = \frac{dP/dt}{P_P} \sec^{-1}$						
P ₁	$P_M = P_P$ where $dP/dt/P$ is a maximum						
v	$V_{MAX} = \frac{1}{30} \frac{(P_{P LAST} \cdot MAX dP/dt/P) - (P_M \cdot dP/dt/P)}{P_{P LAST} - P_M}$	P _{LAST})					

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Program Title	Contractility
---------------	---------------

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis

State Oregon

Zip Code 97330

Program Description, Equations, Variables, etc.

dP/dt is calculated as the difference between successive pressure inputs divided by the time interval Δt . The largest value found is stored as maximum dP/dt.

dP/dt/P is calculated for each pair of successive inputs, by first determining dP/dt as above, then dividing by the mean of the two pressures. The largest value found is stored as maximum dP/dt/P.

 V_{MAX} is found in this program by a linear projection of the downslope of the dP/dt/P vs. P curve back to P = 0, and by dividing the resulting dP/dt/P by 30. The projection is based on the point at which the maximum dP/dt/P was found, and the last point input. The constant is controversial, values between about 28 and 32 having appeared in the literature. The value 30 is used in this program.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

Find maximum dP/dt, maximum dP/dt/P and maximum ventricular contractility if Δt is 0.005 seconds and P_N is 10, 20, 40, 60, and 80 mmHg.

Solution(s)

.005[A]	10[B]	20[B]	40[B]	60[B]	80[B]	[C]	>	4000 mmHg/sec(dP/dt)
						[D])	133.3 sec ⁻¹ (MAX.dP/dt/P)
						[E]	>	5.14 circ/sec (V _{MAX})

Reference(s)

Yang, Sing San, et al, "From Cardiac Catheterization Data to Hemodynamic Parameters", F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program #00209A submitted by Hewlett-Packard.

	CONTRACTILITY MAX _ MAX	(t/P _ →V _M	2	
	Δt PN dP/dt dP/dt	t/P		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input ∆t	∆t (seconds)		Δt (seconds)
3	Repeat step 3 for each P _n	$P_1 \dots P_n$	В	dP/dt/P(sec ⁻¹)
4	Calculate maximum dP/dt			dP/dt(mmHg/
				sec)
5	Calculate maximum dP/dt/P			dP/dt/P(sec ⁻¹)
6	Calculate V _{max}		E	V _{max} (circ/sec
	DETAILED USER INSTRUCTIONS			
	The indices of left ventricular contractilit	y calculate		
	by this program are based on the pressure rise	during		
	isovolumetric contraction. Measurements, equal	ly spaced		
	in time, should be input for the isovolumetric	phase only		
	Inputting values from the systolic ejection per	iod can		
	cause significant errors. Generally, between 5			
	pressure measurements should be input, and the			
		Too few		
	measurements will cause the maximum values to b			
	Too many will introduce excessive "noise" resul			
	errors.	5 <u>5</u>		
	Input t in seconds, for example, .005. Pres	s [A].		
	Input left ventricular pressure measurements in			
	press [B] after each. After each input except			
	dP/dt/P for the two most recent points will be			
	When all points have been input, press [C], [D]			
	in any order to obtain the corresponding result			
	dP/dt , maximum $dP/dt/P$ and V_{MAX} , maximum veloci			
	contractile element at zero pressure in circumf	erences or		
	lengths/sec.			
├ ──- 	If the contractility parameters are to be ca			
	using developed pressure, or any pressure refer			
	than zero, perform the subtraction before enter	ing		
	pressure values.			

26			9/ Program	I LISUNG I		
36 STEP К	EY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Enter ∆t	0 57 *LBLE	21 15	Compute V _{max}
002 867	STO6	35 06		0 58 DSP2	-63 02	
003 004	CLX STO1	-51 35 01		059 RCL8	36 08	
007	ST03	35 03		060 RCL4 061 ×	36 04 -35	
006	ST04	35 04		062 RCL5	-3J 36 05	
007	ST05	35 05		063 RCL2	36 02	
00 8	RCL6	36 06		0 64 ×	-35	
009	DSP3	-63 03		065 -	-45	
0 10	RTN	24		0 66 RCL8	36 08	
011	*LBLB	21 12	Enter P _N	0 67 RCL5	36 0 5	
012	DSP1	-63 01		0 68 -	-45	
013 014	RCL1 X≢Y	36 01 -41		069 X=0?	16-43	
014 015	ST01	35 01		070 GTO1	22 01	
0 16	X≢Y	-41		071 ÷	-24	
017	0	00		072 3 073 0	03 00	
018	X=Y?	16-33		074 ÷	-24	
019	RTN	24		075 PRTX	-14	
020	R↓	-31		076 RTN	24	
021	-	-45		077 *LBL1	21 01	
02 2	ENTT	-21		0 78 PRTX	-14	
023 024	ENTT	-21	Compute dP/dt	079 RTN	24	
024 025	RCL6 ÷	36 06 -24		0 80 R/S	51	
025 026	RCL3	36 03				
027	X≠Y	-41				
028	X>Y?	16-34				
029	ST03	35 03	Save max dP/dt			
0 30	RCL1	36 01		1 1		
0 31	RŤ	16-31				
03 2	2	02				
033	÷	-24				
034 075	-	-45	Savo D	090		
035 036	STO8 ÷	35 08 -24	Save P _p	 		
038 037	sto2	35 02		 		
038	RCL4	36 04				
039	X≠Y	-41				
040	X≟Y?	16-35				
041	RTN	24				
042	ST04	35 04				
043	LSTX	16-63				
044 045	ST05	35 05		100		
045 046	R↓ RTN	-31 24				
046 047	*LBLC	24 21 13	Display max dP/dt	<u>├</u>		
04 7 04 8	RCL3	36 03		├ ─── │		
0 49	DSPØ	-63 00				
6 50	PRTX	-14				SET STATUS
0 51	RTN	24			FLAGS	TRIG DISP
0 52	*LBLD	21 14	Display max dP/dt/P		ON OFF	
05 3	RCL4	36 04		110	0 🗆 🛛 1 🗆 🕅	DEG ⊠I FIX ⊠ GRAD □ SCI □
054 055	DSP1	-63 01				
055 056	PRTX RTN	-14 24			3 0 8	n <u>_2</u>
		24	REGI	STERS		
0	¹ P _N	² dP/dt/		⁵ P _n ⁶ ∆t	7	⁸ P 9
S0	S1	S2	S3 S4	S5 S6	S7	58 S9
	1					
Α	E	3	С	D	E	I
L						

Program Description I

Program Title	STROKE WORK		
Contributor's N			
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables, etc.

This program calculates stroke work (SW) and stroke work index (SWI). For stroke work based on systolic minus end-diastolic pressure, perform subtraction before data input.

Equations Used:

SW(gm · m) = $\frac{13.6 \cdot P(mmHg) \cdot CO(l/min) \cdot R - R(sec)}{60 (sec/min)}$

SWI(gm \cdot m/m²) = $\frac{SW(gm \cdot m)}{BSA(m^2)}$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

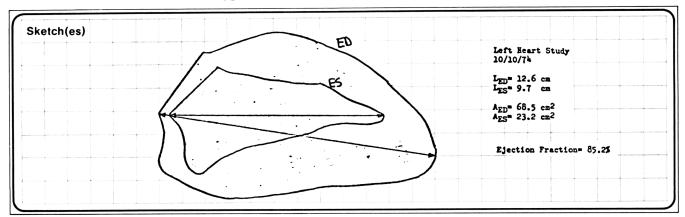
Sample Problem(s) $P_{svs} = 100, 110 \text{ mmHg}$ $R-R = 1 \sec \theta$ CO = 5 l/min. $BSA = 2 m^2$ Solution(s) 100[A] 110[A] [B] -----> 105 mmHg(P) 1[C] 5[D] -----> 119.0 gm·m(SW) 2[E] -----> 59.50 gm·m/m²(SWI) Reference(s) Yang, Sing San, et al, "From Cardiac Catheterization Data to Hemodynamic Parameters", F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program #00210A submitted by Hewlett-Packard.

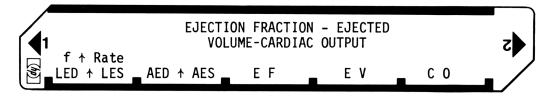
	STROKE WORK		5	
	B PSYS →P R-R CO-	→SW <u></u> BSA	I→SWI	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Repeat step 2 for each value of P _{sys} (mmHg)	P _{sys1} ,P _{sysn}	A	1 n
3	Calculate P		В	P (mmHg)
4	Input R-R	R-R(sec)	с	CO (if stored)
5	Input CO and calculate stroke work	CO(<i>l</i> /min)	D	SW(gm ∙m)
6	If BSA was previously stored		R/S	BSA(m ²)
7	Input BSA and calculate SWI	BSA(m ²)	E	SWI(gm∙m/m²)
	DETAILED USER INSTRUCTIONS			
	The mean systolic pressure, P, is required f	or stroke		
	work calculation. The program will average pre	ssures		
	measured at equal time intervals through systol	1		
	obtain the mean. Input the pressure measuremen	ts and		
	press [A] after each. The number of inputs wil	l be		
	displayed. When all inputs have been made, pre	ss [B]		
	to obtain the mean systolic pressure.			
	If averaging is accomplished by other means,	and		
	only a single value is input, press [A] and the	n [B]		
	If an error is made in the pressure inputs, res	tart		
	program by pressing [B] and rekey the input dat	a.		
	Input the R-R interval in seconds and press	1		
	cardiac output has been previously stored in me			
	it will be recalled; if not, input it now. Pre	0 -		
	and stroke work in gm.m will be displayed. To			
	stroke work index divide by BSA. If BSA has be			
	press [R/S] to recall it. Otherwise, input BSA.	1 1		
	[E]. and stroke work index will be displayed i			
		J ,		

40			97 Program	LISUII	g I	
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY E	NTRY KEY CODE	COMMENTS
00 00 00 00 00 00 00	2 F1? 3 GT01 4 ST01 5 1 5 CHS	21 11 16 23 01 22 01 35 01 01 -22 35 46	Enter P _{sys} If first entry then INT else integrate Initialize	058 F 059 060 061 R 062	T09 35 09 RTX -14 CF1 16 22 01 RTN 24 CL7 36 07 FRC 16 44 EEX -23	Untangle BSA
000 001 011 011 011 011 011	8 SF1 9 1 0 RTN 1 *LBL1 2 ST+1 3 DSZI 4 RCLI	16 21 01 01 24 21 01 35-55 01 16 25 46 36 46	Dicplay count N	064 065 066 067 *L 068 S 069 070	2 02 × -35 R/S 51 BLE 21 15 T01 35 01 EEX -23 2 02	Enter BSA Tangle BSA with CO
01: 01: 01: 01: 01: 02: 02:	6 RTN 7 *LBLB 8 RCL1 9 RCL1 0 CHS 1 ÷	-22 24 21 12 36 01 36 46 -22 -24	Display count, N Compute P	073 074 075 S 076 R 077 R	÷ -24 CL7 36 07 INT 16 34 + -55 T07 35 07 CL9 36 09 CL1 36 01	Compute SWI
022 022 024 025 025 025 025	3 PRTX 4 CF1 5 RTN 6 *LBLC 7 ST08 8 RCL7	35 01 -14 16 22 01 24 21 13 35 08 36 07	Enter R-R Untangle CO	080	÷ −24 RTX −14 RTN 24 R∕S 51	
021 031 03 03 03 03 03 03 03	0 2 1 ÷ 2 RTN 3 *LBLD 4 ENT↑ 5 ENT↑	-23 02 -24 21 14 -21 -21 -23	Enter CO	090		
03) 03) 03) 04) 04) 04) 04)	7 2 8 X 9 FRC 0 RCL7 1 FRC 2 +	02 -35 16 44 36 07 16 44 -55 35 07	Tangle CO with BSA			
04 04 04 04 04 04	4 R↓ 5 RCL8 6 × 7 6 8 Ø 9 ÷	-31 36 08 -35 06 00 -24	Compute stroke work		LAGS	SET STATUS
05) 05:		36 Ø1 -35		0	FLAGS	TRIG DISP
052 052 053 054 054	2 1 3 3 4 . 5 6	01 03 -62 06 -35	REGIS	110 10 2 3 5TERS	VER. 0 0 0 1 0 2 2 0 4 3 0 4	F DEG 🖄 FIX 🖄 GRAD 🗆 SCI 🗆 RAD 🗆 ENG 🗆
0	ΣP, P,	BSA 2		5 6	⁷ Used	⁸ R-R ⁹ SW
S0	S1	S2	S3 S4	S5 S6	S7	S8 S9
A	I	В	c	D	E	I Used

Program Description I


Program Title	Ejection Fraction - Ej	ected Volume - Cardiac Out	put	
Contributor's N Address	ame Hewlett-Packard 1000 N.E. Circle Blvd.			
City	Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables Given the following information: LED, LES, AED, AES, f and Heart Rate (HR).
Ejection Fraction = $\begin{bmatrix} 1 - \frac{AES^2}{AED^2} \times \frac{LED}{LES} \end{bmatrix} \times 100$ (in percent)
Ejected Volume = (Ejection Fraction) x $\left(\frac{8 \text{ AED}^2}{3\pi f^3 \text{ LED}}\right) \div 100$ (in cc/stroke)
Cardiac Output = (Ejected Volume) x (Heart Rate) ÷ 1000 (in l/min.)
Operating Limits and Warnings Calulate ejection fraction before ejected volume, and ejected volume before cardiac output.


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

	ction, Ejec	ted Volume, and Cardiac Output from the follow
data.		
LED = 12.6 cm		
LES = 9.7 cm		
$AED = 68.5 \text{ cm}^2$		
$AES = 23.2 \text{ cm}^2$		
f = 1.54:1		
Heart Rate = 72 bpm		
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2[0]
12.6 [ENT+] 9.7[A] 68		
12.6 [ENT+] 9.7[A] 68	[C]	>85.10% (Ejection Fraction)
12.6 [ENT+] 9.7[A] 68	[C] [D]	>85.10% (Ejection Fraction) >73.65% (Ejected Volume)
	[C] [D]	>85.10% (Ejection Fraction)
12.6 [ENT+] 9.7[A] 68	[C] [D]	>85.10% (Ejection Fraction) >73.65% (Ejected Volume)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load side 1			
2.	Enter length end diastole and	LED,cm	ENT	
	length end systole	LES, cm	Α	LED,cm
3.	Enter area end diastole and	AED, cm ²		
	area end systole	AES, cm ²		AED, cm ²
4.	Enter correction factor f and	f	ENT +	
	heart rate	HR,BPM		f
-				E.F,%
5.	Calculate ejection fraction			L.I. 9 /0
6.	Calculate ejected volume			E.V.,cc/scroke
– – – –				<u> </u>
7.	Calculate cardiac output		E	C.O.,1/min.
	· · ·			

44			97 Progran	n Lisung I		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTRY	KEY CODE	COMMENTS
06		21 11	Store LED & LES	057 RCL5	36 05	f ³
<i>00</i>		35 02		6 58 ×	-35	
00 00		-31 35 01		8 59 RCL8 060 X≠Y	36 08 -41	
00 00		24		061 ÷	-24	
00		21 12	Store AED & AES	062 PRTX	-14	Store ejected vol.
00		35 04		0 63 ST08	35 08	Store ejected vor.
00 00		-31 35 03		064 RTN 065 *LBLE	24 21 15	Calculate cardiac
01 01		33 83 24		065 #LBLE 066 RCL8	36 08	output
01		21 16 11	Store corr. factor	067 RCL6	36 06	ouopuo
01		35 06	& heart rate	0 68 ×	-35	
01 01		-31 35 05		069 EEX 070 3	-23 03	
01 01		35 85 24		070 3 071 ÷	-24	
01		21 13	Calculate ejection		-14	
01		36 04	fract.	0 73 ST09	35 <i>0</i> 9	Store cardiac
01 01		53 36 01	AES2	074 RTN	24 51	output
01 02		-35		075 R/S	51	
02		36 02]
0 2		-24				
8 2		35 07 36 03		080		-
02 02		36 Ø3 53	AED ²			1
02		35 08				1
0 2	?7 RCL7	36 0 7				
02		-41				4
02 03		-24 -22				4
03 03		01				1
03	12 +	-55]
03		35 07		090		-
03 03		36 08 -35		090		4
03 03		-33 35 08				4
03		36 07]
03		-23	Calc. %			4
03 04		02 -35				4
04 04		-14				4
04		35 07	Store EF]
84		24		100		-
04 04		21 14 36 0 8	Calculate ejected	100		4
04 04		36 86 88	RCL EF' x AED ²	<u> </u>		j
04	7 x	-35				
84		83				
04 05		-24 16-24			<u> </u>	SET STATUS
05 05		-24			FLAGS	TRIG DISP
05	2 RCL1	36 01	Get LED		ON OFF	
0 5		-24		110		DEG ⊠ FIX ⊠ GRAD □ SCI □
05 05		35 08 74 05	f		2 🗆 🕱	RAD 🗆 ENG 🗆
. 05		36 05 53			3 🗆 🕅	n_2
	- 11 -		REG	ISTERS	7 51505	8 F.IFCT 9
0	LED	² LES	AED AES	f HRT RA	TE ⁷ EJECT. FRACT	
S0	S1	S2	S3 S4	S5 S6	S7	S8 S9
A	I	В		D	E	I
			-			

Program Description I

Program Title Ca	alculation of Left Ventricular Functions from Angiograpic Data
Contributor's Name	Hewlett-Packard
Address	1000 N.E. Circle Blvd.
City Con	rvallis State Oregon Zip Code 97330
Program Description, E	Equations, Variables
Program allow	ws calculation of left ventricular functions by both single and
biplane metho	ods: Functions calculated are:
End systolic	colume (ESV),either single or biplane
End diastolic	c volume (EDV),either single or biplane
Velocity of a	circumf. fiber shortening (V _{cf})
Stroke volume	e (SV)
Stroke index	(SI)
Systolic ejec	ction fraction as % (SEF %)
Heart Rate	
Cardiac index	(CI)
Average syste	olic & diastolic diameters are also calculated
Equations:	Biplane CV = $\frac{8}{3\pi}$ $\frac{(A_{RAO})(CF_{RAO})(A_{LAO})}{L_{RAO}}$
S	Single plane CV = $\frac{8}{3\pi}$ $\frac{(A_{RAO})^2 \times (CF_{RAO})^{3/2}}{L_{RAO}}$
Т (м	rue ventricular volumes: Biplane TV = 0.895CV-5.113 m1 /here CV = Calc. volume) Single TV = 0.81CV+1.9 m1

Function Etc.,"<u>Catheterization & Cardiovascular Diagnosis</u>, 2:199-210 (1976) for complete description of calculations. OPERATING LIMITS AND WARNINGS When using this program on HP-67 be sure pause

OPERATING LIMITS AND WARNINGS When using this program on HP-67 be sure pause display of results has finished blinking before pressing key for next calculation. Otherwise erroneous results may occur.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es) Sample Problem(s) A patient's body surface area is 1.75m². Angiographic measurements give the following data:Number of frames: 19; number of frames per beat: 43; correction factors: 1.39(RAO), 0.83(LAO) Systolic Function Diastolic Function RA0 LA0 RA0 LA0 AREA 32.4 52.1 35.4 AREA 54.7 AXIS 9.1 7.7 AXIS 10.5 10.0 Calculate left ventricular functions by both the single plane & biplane methods.

Solution(s)	Single plane:	1.75 [ENT↑] 19[ENT↑] 35.4[ENT↑]	9.1[f] [E]
		1.39 [ENT↑] 43[ENT↑] 52.1[ENT↑]	10.5[R/S]
[A]	>157.06, ESV	[f] [C]>83.72,Heart Rate	[f][B]>196.66, EDV
	89.75,ESV/m ²	6.51,CI	112.38,EDV/m ²
[B]	>293.18,EDV	Biplane:	[f][D]> 5.36,SYS DIA.
	167.53,EDV/m ²	.83[ENT+] 32.4[ENT+]	6.90,DIAS DI
[C]	> 0.68, V _{cf}	7.7[f][A] 54.7[ENT∱]	[D]>108.07,SV
[D]	>136.12,SV	10[R/S]> 88.59,ESV	61.76,SI
[E]	77.78,SI > 46.43,SEF%	50.62,ESV/m ²	[E]> 54.95,SEF% [C]> 0.70 V _{Cf}

Reference(s) This program is a modification of the HP-65 Users' Library program #05352A submitted by J.H.K. Vogel.
Vogel, Swenson & Elings, "A Simple Method for Calculating Left Ventricular Functions from Angiographic Data, Etc", Cathetherization and Cardio Vascular Diagnosis, 2: 199-210, (1976).

		LEFT VENTRIC	ULAR FUNCTI	ONS		
 ¶¹	ESV _{Bi}	EDVBi	RATE, CI	AVE.DIA.	INITIAL.	7
	ESV	EDV	۷ _{cf}	SV,SI	SEF%	_ /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load sides 1 & 2			
2.	Enter data: Body surface area	BSA,m ²	ENT ⁺	
	Number of frames	#	ENT ⁺	
	Systolic area, RAO	SA,cm ²	ENT↑ [
	Systolic length, RAO	SL,cm	f E	
	Correction factor, RAO	CFRAD	<u>ENT</u> ↑	
	Number of frames/beat Diastolic area, RAO	DA, cm ²		
	Diastolic Length, RAO	DL, cm	R/S	
	SINGLE PLANE CALCULATIONS:	52,0		
3.	Calculate: End systolic VOL _O ,(ESV)		Α	ESV,m1
J.	and ESV index			ESV/m ²
				2017 11
			B	EDV,m1
4.	Calculate: End diastolic Vol., (EDV) and EDV			EDV/m ²
5.	Calculate: Velocity of circumferential fiber			
				V _{cf} , <u>circ</u>
	shortening, V _{cf}			sec
6.	Calculate: Stroke volume and			SV ml
				SV, m1 SI, m1/m ²
	stroke index			
7.	Calculate: Systolic ejection fraction (%)		E	SEF%
8.	Calculate: Heart rate and cardiac index		f C	Heart Rate
	BIPLANE CALCULATIONS:			CI,1/m1n.
9.	Enter data & calculate ESV & ESV index			
	Correction factor, LAO	CFLAO	ENT∱	
	Systolic area, LAO	SA,cm ²	ENT	
	Systolic length, LAO	SL.cm	f A	
	Diastolic area, LAO	DA, cm ²	ENT+	
	Diastolic length, LAO	DL,cm	R/S	ESV,ESV/m ²
10.	Calculate: EDV & EDV index		f B	EDV,EDV/m ²
11.	Calculate: Average systolic & diastolic DIA.		f D	Sys.,Dias.
12.	Calculate: Stroke volume & stroke index		D	SV,SI
13.	Calculate: Systolic ejection fraction (%)		E] [SEF%
14.	Calculate: Velocity of circumf. fiber shorteni	ng	С	V _{cf}
		ļ l		

48 STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP K		KEY CODE	COMMENTS
00.		21 16 15		057		-62	
00.		23 01	Initialize & store	0 58	9	69	
00		35 02	data	059	+	-55	
00-		51		060	RTN	24	
00:		16-51		061	*LBLS	21 08	Divide by BSA
00		23 01		062	RCL2	36 02	
00		35 00		063	÷	-24	
00		16-51		<i>064</i>	₽ ‡ S	16-51	
00		35 00		<i>0</i> 65	ST02	35 02	
610		24		0 66	0702 P≠S	16-51	
01.		21 01		0 66 0 67	PRIX	-14	
012 012		16-53		0 67 0 68	SPC	16-11	
01) 01)		35 06		0 60 069	RTN	24	
01. 01.		-31		083 0 70	*LBLC	21 13	Calculate V _{cf}
01		-31 35 04			RCL8	21 13 36 0 8	CT
				071 070			
010		-31		8 72	P‡S Det o	16-51	
017		35 03		9 73	RCL8	36 08	
018		-31		074	P‡S	16-51	
019		24	Calculate ESV	0 75	-	-45	
820		21 11	Calculate ESV,	0 76	CHS	-22	
0 21		23 09	single plane	077	LSTX	16-63	
022		35 11		078	÷	-24	
023		-14	FOV (2	079	RCL3	36 03	
0 24		22 08	ESV/m ²	0 80	÷	-24	
025		21 12	Calculate EDV,	081	6	06	
026		16-51	single plane	0 82	0	00	
0 27		23 09		083	Х	-35	
0 28		16-51		084	STOC	35 13	
025		35 12		0 85	PRTX	-14	
03(-14	2	086	SPC	16-11	
0 31		22 08	EDV/m ²	0 87	RTN	24	
032		21 09	Calculate	0 88	*LBLD	21 14	Calculate SV
03 3		36 04	ventricular volumes	0 89	FCLB	36 12	
034		36 00	single plane	8 90	RCLA	36 11	
035		54		0 91	-	-45	
036	5 X	-35		0 92	STOD	35 14	
037	7 4	Ø4		093	PRTX	-14	
0 38	3 ×	-35		0 94	GT08	22 08	Calculate SI
039) Pi	16-24		095	₽≢S	16-51	
0 40		-24		8 96	ST02	35 0 2	
0 41	RCL6	36 06		8 97	P#S	16-51	
042	? ÷	-24		098	PRTX	-14	
843	3 STO8	35 0 8		0 99	SPC	16-11	
04 4	1 2	02		100	RTN	24	
845	5 x	-35		101	*L BLE	21 15	Calculate SEF%
0 46		03		102	RCLD	36 14	
04 7	7 ÷	-24		103	RCLB	36 12	1
648		36 04		104	÷	-24	
849		-35		105	EEX	-23	
658		36 00		106	2	02	
051	X	-35		107	х	-35	
052		-62		108	PRTX	-14	
053		08		109	STOE	35 15	
0 54		01		110	SPC	16-11	
655		-35		111	RTN	24	
0 56	i 1	01			*LBLc	21 16 13	L
		2	REGIS	5 SA	16 01	7 61	
^{o ĆF} RAO	¹ CFLAC	D 🖞 BSA	#Frames ***RAO	⁵ SA _{RAO}	⁶ SL _{RAC}	⁷ SL _{LAO}	S DIAS.DIA9 S.DIA RAD
^{SO} CF _{RAO}	Sicr	S2 CT	SED /DEAT SANA	S5 DA	S6 DI	S7	
C RAO	^{S1} CFLAC	$) \int_{1}^{52} SI$	^S ³ FR∕BEAT ^S ⁴ DA _{RAO}	^{S5} DA _{RAO}	^{S6} DL _R /	AO ^{S7} DLLAO	D DIA D. DIA S9 D DIA RAO
A ES		B EDV	° V _{cf}	D SV		E SEF%	I
	v		VCT	51			

48

				1 vS 1 an									49
STEP KE	EY ENTRY	KEY CO	DE	COMMENTS		STEP		Y ENTRY	KEY CO		COMME	INTS	
113	₽₽S	16-51	Calcu	late heart		16		3	03				
114	RCL3	36 03				16		÷	-24				
115	6	96	5			17		RCL5	36 05				
116	0	ŪĖ				17		X .	-35				
117	X2	53	3			17		RCL1	36 01				
118	÷	-24				17		х	-35				
119	1×X	52	2			17		:	-62				
120	PRTX	-14	¥			17		8	08				
121	RCL2	36 02		ac index		17		9	0 9				
122	Х	-35				17		5	<i>0</i> 5				
123	₽≠S	16-51				17		X	-35				
124	EEX	-23				17		5	85				
125	3	03				18			-62				
126	÷	-24				18		1	8 1				
127	PRTX	-14				18		1 7	01 83				
128	SPC	16-11				18		3					
129	RTN	24				18		-	-45 24		Avo dia	hv hinla	. L
130	*LBLa	21 16 11		e biplane da	ta	18		RTN THE			Ave. dia. method	DA DIHIQ	۳Ę
131	ST07	35 07				18		*LBLd cops	21 16 14		method		
132	R↓	-3:				18		GSB6 ⊳≠c	23 06				
133	ST05	35 0				18		P ‡S repa	16-51 23 06		1		
134	R∔	-3:				18		GSB6 P ≠S	16-51				
135	ST01	35 0				19							
136	₽≢S	16-5.				19		SPC Rtn	16-11 24		1		
137	ST01	35 8.				19			21 86		1		
138	R∕S	5.				19		*LBL6	21 80				
139	ST07	35 0				19 19		4 Pi	16-24		1		
140	R↓	-3.				12		FI ÷	-24		1		
141	ST05	35 8				19		RCL5	36 85		1		
142	P≠S	16-5.				19		KULJ X	-35		1		
143	GSB7	23 0		ulate ESV,		19		RCLI	36 01		1		
144	STOA	35 1		ane		26		V VX	54		1		
145	PRTX	-1-		0		26		X	-35		1		
146	GT 08	22 8		n2			92 92	RCL7	36 07		1		
147	*LBLb	21 16 1		biplane		20		÷	-24		1		
148	P‡S	16-5	• ·	orprane		26		RCL9	36 09		1		
149	GSB7	23 0					95	+	-55		1		
150	P≢S	16-5				26		2	02 02		1		
151	STOB	35 1.					97 97	÷	-24]		
152	FRTX	-1-		"2			38	PRTX	-14				
153	GT08	22 0					39 39	ST08	35 08]		
154	*LBL7	21 0	, , , , , , , , , , , , , , , , , , , ,	ulation of			10	RTN	24]		
155	4	0 16-2	1 4 6 11 0	ricular		2		R/S	51		1		
156	₽i ÷	-2		mes by bipla	ne						1		
157		-2 36 0		od							1		
158	RCL4 x	36 Ø -3									4		
159	x RCLØ	-3 36 0									4		
160	RULU JX										4		
161	√ A X	-3							+		4		
162	RCL6	-3 36 0									4		
163	KUL6 ÷	-2				220			+		4		
164 165	5T09	-2 35 0							+		4		
165	5105	356							+		4		
166	ے x	3							+		1		
10/	~			BELS			-	FLAGS	1		SET STATUS		
Acu	B			D	Ec	FE %	0			20	TRIG	DISP	
ESV sing		sing	Vcf	SV	5	EF%	+		FLAC ON			DISP	_
^a ESV _{bi}	^b ED	V _{bi}	HRT RT.CI	^a AVE.DIA.	<u></u> In	itializ	ze'		0 🗆	X	DEG 🛛	FIX 🛛	
0	1 \$+	ore 2		3	4		2		1 🗆				
5			ESV&EDV B	18 Y / DCV	⁹ Us		3		2		RAD 🗆	ENG □ n_2	'
5	licald	c.AVE. 7	ESVAEDV B	I N/ BOH	1° US	eu	Ľ		3 🗆			· · ·	-

Program Description I

Program Title	Impedance Cardiac Output, S	Systemic and Pulmonary	Resistance
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Blvd.		
City	Corvallis	State Oregon	Zip Code 97330

r Program Description, Equations, Variables	ρ = 135
$\Delta V = \rho L^2 (dZ/dt) min$	L = mean dist. bet inner electrode (cm)
z²	Z _o = mean impedance bet electrode (ohm) (dZ/dt)min = minimum dz/dt (ohm/cm)
	T = ventricular ejection time (sec)
	ΔV = stroke vol. (ml)
$CO = \frac{V \cdot HR}{1000}$	HR= heart rate (beats/min)
1000	CO= cardiac output (L/min)
	CI= cardiac index (L/min)
$CI = \frac{CO}{BSA}$	BSA= body surface area (m ²)
- Pa - Pa	P _s = systolic pressure (mmHg)
$\overline{P} = \frac{P_s - P_d}{3} + P_d$	P _d = diastolic pressure (mmHg)
	P = mean arterial pressure (mmHg)
$R_t = \frac{\overline{P}}{CO}$ (or $\frac{\overline{P}}{CI}$) units	P _{Atr} = atrial pressure (mmHg)
$R_t = (units) \cdot 80 = R_t (dyne sec cm^{-5})$	R _{t=} total systemic (or pulmonary) resistance
$R_{v} = \frac{\overline{P} - P_{Atr}}{CO} (or \frac{P}{CI} - P_{Atr}) units$	R _v = systemic (or pulmonary) vascular
R _v (units)•80 = R _v (dyne sec cm ⁻⁵)	resistance
Operating Limits and Warnings	
For CI or CI derived values BSA must be	entered, either keyed [f][D] in and
saved in STO 1 or calulated by HP progra	am BODY SURFACE AREA FOR CARDIO PULMONARY
	sually indicates BSA has not been stored.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)					
		i i i i i i i i i i i i i i i i i i i			
	and an	• • • • • •	• . • . • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•

Find 1) stroke volume, cardiac output, cardiac index, 2) mean Sample Problem(s) arterial pressure, total systemic resistance (units dyne sec cm^{-5}), systemic vascular resistance (units, dyne sec cm^{-5}), 3) total pulmonary resistance, pulmonary vascular resistance Height 5'7" Weight 69.4 kg BSA 1.81 m² dZ/dt = .81BP systemic = 120/80 mmHg $CVP(\overline{P}_{P\Delta}) = 15 \text{ mmHg}$ Т = .23 BP pulmonary= 44/24 mmHg 1 = 28.5 **P**LA = 13 mmHa Zn = 20.2 Heart Rate = 103Solution(s) [f][E] = ----> 1.00 [f] [E] = ---> 0.00 (set for calc by CO)1) 1.81 [f][D] .81[ENT+] .23[A] 28.5[B] 20.2[C] ---->50.06m1,SV;103[D]--->5.161/min;CO 2.851/min;CI 2) 120[ENT+] 80[f] [A] ----> 93.33mmHg, mean press 18.10 units, total sys. resist. [R/S]----->1447.96dyne-sec-cm⁻⁵,sys. resist. 15[f] [B] -----> 15.19 units, sys. vasc. resist. [R/S]----->1215.25 dyne-sec-cm⁻⁵,vasc. resist. 3) 44[ENT+] 24[f][A] ----> 30.67mmHg, mean pulm. press. 5.95 units, total pulm. resist. 13[f][B] -----> 3.43_units, pulm_ vasc. resist. Pomerantz, M., Delgado, F., and Eiseman, B.: Unsuspected Depressed Reference(s) Cardiac Output Following Blunt Thoracic or Abdominal Trauma. Surg. 70:865-871, 197 Blackwell Scientific Publications: Medical and Surgical Cardiology, pp. 120-121, Wm. Cowles & Sons, Ltd., London, 1969. Kubicek, William: The Minnesota Impedance

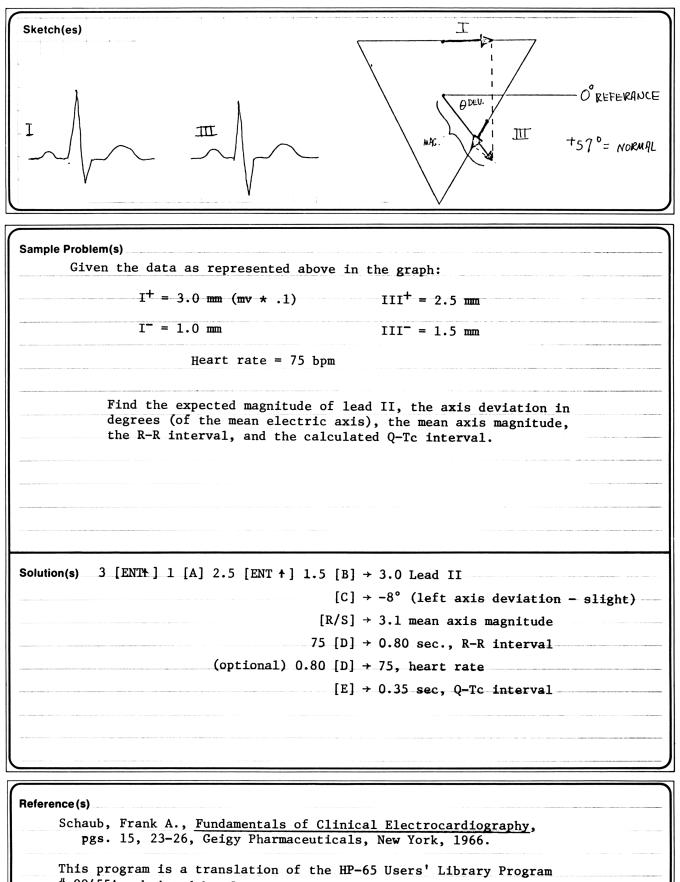
Cardiograph; Theory and Application. Biomed. Eng., Vol. 9, No.9, Sept.1974, pg.410-42

	IMP. CAR	OUTPUT,	SYS &	PULM.	RESIST			
TOTAL RES.	VASC R	ES.		BSA	4	CO or	· CI	7
🕃 🗖 dZ/dt 👌 T	_ L	_ ^Z () → SV	RATE	→ C0 _		-	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load side 1			
2.	Set toggle for resistance calculation:			
	By CO		f E	0.00*
	By CI		f E	1.00*
3.	Store body surface area	BSA,m ²	D	BSA,m ²
4.	Calculate stroke volume:			
	Input dZ/dt		ENT 🕆 📃	0 or
	Input ventricular ejection time	T,sec		Prev. L
	Input mean dist. between electrodes	L,cm		L
	Input mean impedance between electrodes	Z _O ,ohm		Stroke,Vol,ml
5.	Input heart rate & calculate cardiac output			00.1/
	& cardiac index	Ht.R.,		CO,1/min. CI,1/min.
				01,1/1111.
6.	Optional: for new cardiac output go to 4			
7.	Calculate total systemic resistance			
	Input systolic press (systemic)	BP.,mmHg		
	Input diastolic press (systemic)	BP.,mmHg		Mean P,mmHg
		51 . ,		Tot. Resist.
7'	Optional: for total resistance in dyne-sec-cm	ъ	R/S	Tot. Resist.
8.	Calculate vascular resistance:			
	Input atrial pressure	PATR, ^{mmHg}	f B	Vasc.Resist.
8'	Optional: for vascular resistance in dyne-sec			
	5		R/S	Vasc. Resist.
9.	To calculate pulmonary resistances repeat			
	<pre>steps 7 & 8 using pulmonary blood pressure</pre>			l
				ļ
	*If you don't get desired output press [f][E]			
	again, until you do.			

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP I		KEY CODE	COM	53 Ments
001		21 16 14		057		51	Resistance	
002		35 01	Store BSA	05 8		08	Dyne-sec.	- 111
003		24		0 59		0 0	Cm ⁵	
004		21 11		0 60) X	-35		
005		-35	aZ/dtx T	0 61	PRTX	-14		
006		35 <i>09</i>		0 62	RTN	24		
007		36 02		0 63	*LBLb	21 16 12		ial pressure
00 8		24		064		-22		te vascula r
009	*LBLB	21 12	Input L	8 65		36 8 6	resist.	
010		35 0 2		0 66		-55		
011		-21		0 67		22 0 2	Divide by	DCV
012	x	-35		0 68		21 0 0	Divide by	DSA
013	1	61		069		36 01		
014	3	03		070		-24		
015		0 5	p	071		24		
016	x	-35		072		21 16 15	Toggle fo	r calc by
017	' ST08	35 0 8		073		16 23 00	CO or CI	
018	RCL2	36 0 2		874		22 01		
019	RTN	24		075		16 21 00	Set FO, D	
020	*LBLC	21 13	Input Z _O and	0 76		01	calculate	by CO
021	ST03	35 0 3	calculate stroke	877		24		-
022		-21		0 78		21 01		
0 23	X X	-35	vol.	0 79		16 22 00	Clear fO	DSP 0.00
024		52		080		00	& calc. b	
0 25		36 0 9		0 81		24		
026		36 0 8		0 82	? R/S	51		
0 27		-35					4	
0 28		-35					1	
0 29		-14	SV				4	
030		24					4	
031		21 14	Input heart rate				ł	
032		-35	& calculate CO & CI	r 			4	
0 33		-23					4	
034		03		090			4	
0 35		-24				+	4	
0 36		35 04					4	
0 37		-14	СО				4	
0 38		36 01					1	
0 39		-24			•	+	1	
Ŭ4 0 041		-14 24	CI	<u>├</u>	.	+	1	
041 043		21 16 11		├ ──┼		+	1	
042 043		35 07	Calculate mean	├ ─── ├ ─		1	1	
043 044		35 07 -45	press.	100		+	1	
044 045		-4J Ø3					1	
040 046		-24				1	1	
04 0 04 7		36 07					1	
048		-55]	
0 49		-14	P			[1	
050		21 02	Calculate resist.		FLAGS		SET STATUS	
051		35 06			$^{\circ}$ CO or (I FLAGS	TRIG	DISP
052		36 04			1	ON OFF	T	
053		-24	By CI		0	0 🗆 🛛	DEG 🛛	FIX 🛛
054		16 23 00		110	2			
055		23 00	Yes	├ ─── ├	3	2 [] 🔀 3 [] 🕅	RAD 🗆	
. 856		-14	No,print resist.					
				STERS	6	7	18	9
0	¹ BSA	² L	³ Z ₀ ⁴ CO	⁵ CI	⁶ Use	d [′] Used	⁸ Used	Used
50			S3 S4	S5	S6	S7	S8	S9
S0	S1	52				[
A		В		D	I	TE	1	
14						IC	•	
		В	C	U			ŀ	

53


Program Description I

Program Title BASIC EKG DETERMINATIONS					
Contributor's Name Hewlett - Packard Comp	any				
Address 1000 N.E. Circle Boulevard	-				
City Corvallis	State Oregon	Zip Code 97330			
Program Description, Equations, Variables					
Given the magnitudes of both the pos leads I and III (in millimeters o	itive and negative d f a graduated EKG)	eflections of			
displayed is the predicted magnitude (pos. minus neg. deflections) according to Einthoven's Law: Lead II = Lead I + Lead III of Lead II					
computed is the mean electric axis of the heart axis rectangular coordinates = Lead I(.5774) + Lead III(1.1547) axis angular coordinates = conversion to polar coordinates					
Given either the heart rate or the R	-R interval, the oth	er is computed			
heart rate = $\frac{60}{R-R}$ interval	-				
computed is the predicted	normal Q-T interval	for that rate			
Q-T = 0.39 R-R	± .04				
Operating Limits and Warnings					
Both positive and negative deflections must be entered for each lead					

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

00455A submitted by Steven A. Conrad.

STEP	INSTRUCTIONS	INSTRUCTIONS INPUT DATA/UNITS		
1	Enter program			
2	Input lead I			
	positive deviation	mm	†	
	negative deviation	mm	A	III
3	Input lead III			
	positive deviation	mm	†	
	negative deviation	mm	В	lead II
4	Compute mean axis			
	deviation		С	degrees
	magnitude		R/S	mm
5	Input heart rate or	bpm	D	R-R,sec.
	input R-R interval	sec	D	rate, bpm
6	Compute Q-Tc		E	sec.
	(for a new case, go to step 2)			
├				

				// i i vgi am		7U	116 1		57
STER	P KE	Y ENTRY	KEY CODE	COMMENTS	STEP	KE		KEY CODE	COMMENTS
	061	*LBLA	21 11	input lead I		057	XZY	-41	
	002	-	-45	subt. neg. deviat.		0 58	÷	-24	
	0 03	ST01	35 Ø1	store lead I in 1		059	X≟Y?	16-35	
	004	DSFØ	-63 00	prompting info for		060	GT05	22 05	place R-R value in
	005	1	01	lead III		061	DSPØ	-63 00	the X register
	006	1	01			062	PRTX	-14	the A register
	007	1	01			0 63	RTN	24	
	008	RTN	24			064	∗LBL5	21 05	
	009	*LBLB	21 12	input lead III		0 65	DSP2	-63 02	
	010	-	-45	subt. neg. deviat.		0 66	PRTX	-05 02 -14	
	011	ST03	35 03	store lead III in 3					
	012	RCL1	36 01			067 070	RTN	24	
	013	+	-55	compute lead II		0 68	*LBLE	21 15	
	013 014	ST02	35 02			0 69 070	X>Y?	16-34	
	015	DSP1	-63 01	store lead II in 2		070	X≢Y	-41	compute Q-T from
	0 16	PRTX	-14	compute the Y point		071	1X	54	R-R
				of rectangular		072	•	-62	
	0 17	RTN	24	coordinates where		073	3	03	
	018	*LBLC	21 13	X point is lead I		074	9	8 9	
	019	RCL1	36 01			075	x	-35	
	0 20	ENTT	-21			076	DSP2	-63 02	
	021		-62			077	PRTX	-14	
	0 22	5	8 5			078	RTN	24	
	0 23	7	87			079	R∕S	51	
	024	7	07		080	1		1	Í I
	025	4	Ø 4						
	B 26	Х	-35						1
	027	RCL3	36 03			1			1
	0 28	ENTT	-21			+			1
	029	1	01			+			-
	030	-	-62			+			4
	031	1	01			+			4
	032	5	05						4
	033	4	84						4 1
	034 034	7	87		090				4
	034 035	×	-35		090				4
									-
	036	+	-55	enter Y into y and					
	03 7	ENTT	-21	X into x registers					4
	038	RCL1	36 01	convert to polar					4
	039	÷₽	34		L				4
	0 40	X≠Y	-41	move angle to x reg					
	641	5	85	find deviation from					1
	042	7	07	normal (57°)					
	043	-	-45						J
	044	DSPØ	-63 00	recall axis mag. to	100				J
	045	PRTX	-14	to X					
	04 6	R∕S	51			T]
	847	X≠Y	-41						ן ו
	84 8	ABS	16 31	abs. val. of ax.mag		1			1
	049	DSP1	-63 01	compute rate R-R	1	1			1
	050	PRTX	-14	compute rate K-K		1			SET STATUS
	051	RTN	24			1		FLACE	TRIG DISP
	052	*LBLD	21 14			+		ON OFF	
	053	ENTT	-21	determine if rate		+			DEG 😡 FIX 😡
	0 54	ENTT	-21	or R-R was compute	110	1			
	0 55	6	06		1	1			RAD 🗆 ENG 🗆
	0 56	0	88	& set proper display		1		3 🗆 🖬	n_ <u>2</u>
r-	000	U	00	REGI	STERS				
0		1	2	3 4	5		6	7	8 9
ľ		lead	I lead I	le l'	-				
S0		S1	S2	S3 S4	S5		S6	S7	S8 S9
A		<u> </u>	B		D			E	I
T .									
L									

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability / QA	Forestry

CARDIAC

A group of programs for carrying out common cardiac catheterization laboratory calculations. A number of the programs are designed to be self consistent for sequential use. Ventricular function calculations from radiographic data and basic EKG determinations are included.

CARDIAC PROGRAM SERIES

VIRTUAL PO2 AND O2 SATURATION AND CONTENT

BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS

DYE CURVE CARDIAC OUTPUT

FICK CARDIAC OUTPUT

VALVE AREA

ANATOMIC SHUNTS

CONTRACTILITY

STROKE WORK

EJECTION-FRACTION, EJECTED-VOLUME, CARDIAC OUTPUT

CALCULATIONS OF LEFT VENTRICULAR FUNCTIONS FROM ANGIOGRAPHS

IMPEDANCE CARDIAC OUTPUT, SYSTEMIC AND PULMONARY RESISTANCE

BASIC EKG DETERMINATIONS

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14018 Printed in U.S.A. 00097-90193