||l-(07 |||-()7

 Users' Library Solutions

 Users' Library Solutions Cardiac

 Cardiac}

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.
REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

CARDIAC PROGRAM SERIES 1
A short note about use of 'this 'seriés of 'selff-consisten'tprograms.
VIRTUAL PO2 AND 0_{2} sATURATION AND CONTENT 3
This program calculates virtual oxygen tension, 'then 'uses'it to calculate \% oxygen saturation from the hemoglobin dissociation curve. Given the hemoglobin content it calculates the oxygen content of the blood.
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS 10
This program calculates body surface area by either the Dubois' or Boyd methods. in addition it calculates cardiac index if cardiac output is known.
DYE CURVE CARDIAC OUTPUT 15
The program calculates cardiac output from measurements made during a dye dilution cardiac output maneuver by the gamma variate method.
FICK CARDIAC OUTPUT 20
Cardiac output is calculated by the Fick method given the arterial and venous blood oxygen contents.
VALVE AREA 24
This program calculates 'the areas' of heart vaives 'acros's which' the pressure gradient has been measured.
ANATOMIC SHUNTS 28
The program calculate' right to' left' and 'left'to right 'blood shunts' by the method of allegations.
CONTRACTILITY 32
This program calculates 'indices' of lef't ventricular con'tractilitity based on pressure rise during isovolumetric contractility.
STROKE WORK 37
Stroke work and stroke work index are calculated with this program.
EJECTION FRACTION, EJECTED VOLUME, CARDIAC OUTPUT, 41
Ejection fraction, ejected volume and cardiac output are calculated from diastolic and systolic measurements.
CALCULATION OF LEFT VENTRICULAR FUNCTIONS FROM ANGIOGRAPHS 45
This program performs calculations of a number of left ventricular functions from angiographic data. Calculations may be performed by either the single plane or biplane method.
IMPEDANCE CARDIAC OUTPUT, SYSTEMIC AND PULMONARY RESISTANCE 50
Stroke volume, cardiac output, cardiac index, and various total and vascular resistances are calculated from impedance cardiograph data.
BASIC EKG DETERMINATIONS 54
This program computes the mean electric axis and axis deviation of an electrocardiogram from lead I and III deflections. R-R interval (or heart rate) and normal Q-T interval may also be calculated.

CARDIAC PROGRAM SERIES

The following programs may be used in a series to carry out the many calculations in a particular medical procedure. Following are examples from an adult cath lab and a pediatric cath lab. These examples are fairly complicated. Before attempting them, read over the detailed instructions for each of the programs and try the included examples. In these examples, values stored in memory for later use are underlined. When recalled from memory (so that they do not need to be reentered), they are enclosed in brackets.

Adult Cath Lab Example:

Note that cardiac output, calculated in DYE CURVE CARDIAC OUTPUT is used in BODY SURFACE AREA and VALVE AREA and STROKE WORK. BODY SURFACE AREA, calculated by the Du Bois method, is used in STROKE WORK.

Program

DYE CURVE CARDIAC OUTPUT	$\begin{aligned} & \Delta \mathrm{t}=1 \mathrm{sec} . ; \\ & \mathrm{DC}=38,67,80,73,61, \\ & 48,36,29 \mathrm{Div} ; \\ & \mathrm{CAL}=0.11 \mathrm{mg} / 1 / \mathrm{Div} ; \\ & \text { DOSE }=5.6 \mathrm{mg} \end{aligned}$	$\begin{aligned} & \text { AREA }=532.60 \mathrm{Div} \mathrm{sec} ; \\ & \mathrm{CAL} \times \mathrm{AREA}=58.59 \mathrm{mg} / 1 \\ & \mathrm{CO}=5.731 / \mathrm{min} \end{aligned}$
BODY SURFACE AREA (Du Bois)	Ht. = -72.1 in., Wt.= -191 lb. (CO)	$\begin{aligned} & \mathrm{Ht} .=183.13 \mathrm{~cm} ; \\ & \mathrm{Wt}=86.82 \mathrm{~kg} . \\ & \mathrm{BSA}=2.09 \mathrm{~m}^{2} \\ & \mathrm{CI}=2.741 / \mathrm{min} / \mathrm{m}^{2} \end{aligned}$
VALVE AREA (Aortic)	$\begin{aligned} & \mathrm{SEP}=0.2 \mathrm{sec} ; \\ & \Delta \mathrm{P}=38,45,40,31 \mathrm{mmHg} ; \\ & \mathrm{R}-\mathrm{R}=0.92 \mathrm{sec} . \\ &(\mathrm{C} 0) \end{aligned}$	$\begin{aligned} \Delta \mathrm{P} & =38.50 \mathrm{mmHg} \\ \text { AREA } & =1.59 \mathrm{~cm}^{2} \end{aligned}$
VALVE AREA (Mitral)	$\begin{aligned} \mathrm{DFP} & =0.55 \mathrm{sec} ; \\ \Delta \mathrm{P} & =10,12,8,6,2 \mathrm{mmHg} ; \\ \mathrm{R}-\mathrm{R} & =0.94 \mathrm{sec} ; \quad(\mathrm{CO}) \end{aligned}$	$\begin{gathered} \Delta \mathrm{P}=7.60 \mathrm{mmHg} ; \\ \text { AREA }=-1.90 \mathrm{~cm}^{2} \end{gathered}$
STROKE WORK	$\begin{aligned} & P_{\text {sys }}=155,169,165,152, \\ & 138 \mathrm{mmHg} ; \\ & R-R=0.92 \mathrm{sec} ; \quad(C 0) \quad(B S A) \end{aligned}$	$\begin{aligned} & \Delta \mathrm{P}=155.80 \mathrm{mmHg} ; \\ & \mathrm{SW}=186.17 \mathrm{gm} \cdot \mathrm{~m} \\ & \mathrm{SWI}=88.95 \mathrm{gm} \cdot \mathrm{~m} / \mathrm{m}^{2} \end{aligned}$
CONTRACTILITY	$\begin{aligned} \mathrm{t}= & 0.01 \mathrm{sec} ; \\ \mathrm{P}_{\mathrm{N}}= & 14.8,28.5,51.7, \\ & 81.8,105.6 \end{aligned}$	$\begin{aligned} & \operatorname{MAX} \mathrm{dP} / \mathrm{dt}=3010 \mathrm{mmHg} / \mathrm{sec} \\ & \mathrm{MAX} \mathrm{dP} / \mathrm{dt} / \mathrm{P}=63.3 \mathrm{sec} ; \\ & \mathrm{V}_{\mathrm{MAX}}=2.49 \mathrm{circ} / \mathrm{sec} \end{aligned}$

Pediatric Cath Lab Example:

Note that body surface area calculated in BODY SURFACE AREA (Boyd) is used in FICK Cardiac output. Venous oxygen content, calculated the first time 0_{2} SATURATION and CONTENT is run, is used in FICK. Hemoglobin, entered the first time SAT is run, automatically reappears the second time. Especially note that arterial oxygen content is left in the display the second time SAT is run, and is ready as the first entry in FICK. This is another method of transferring data between programs.

Program

BODY SURFACE AREA (Boyd)	Ht. $=55 \mathrm{~cm} ; \mathrm{Wt}=4.2 \mathrm{~kg}$	$\underline{B S A}=0.26 \mathrm{~m}^{2}$
0_{2} SATURATION and CONTENT (Venous)	$\begin{aligned} & \mathrm{PO}_{2}=30 \mathrm{mmHg} \\ & \text { Sat. }=55 \% ; \mathrm{Hgb}=18 \mathrm{gm} / 100 \mathrm{ml} \end{aligned}$	$\begin{aligned} & \text { Est. Sat. }=57.18 \% \\ & \mathrm{C}_{\mathrm{V}} 0_{2}=13.36 \mathrm{Vo} 1 . \% \end{aligned}$
0_{2} SATURATION and CONTENT (Arterial)	$\mathrm{PO}_{2}=52 \mathrm{mmHg} ;$ Sat. $=84.5 \%$ (Hgb)	$\begin{aligned} & \text { Est. Sat. }=86.86 \% \\ & \mathrm{CaO}_{2}=20.54 \mathrm{Vol} . \% \end{aligned}$
FICK CARDIAC OUTPUT	$\begin{aligned} & \left(\mathrm{CaO}_{2}\right) ;\left(\mathrm{C}_{\mathrm{V}} \mathrm{O}_{2}\right) ; \\ & \mathrm{VO}_{2}=60 \mathrm{ml} / \mathrm{min} \\ & (\mathrm{BSA}) ; \mathrm{HR}=95 \mathrm{BPM} \end{aligned}$	$\begin{aligned} \mathrm{CO} & =0.84 \mathrm{l} / \mathrm{min} \\ \mathrm{CI} & =3.15 \mathrm{l} / \mathrm{min} / \mathrm{m}^{2} \\ \mathrm{SV} & =8.74 \mathrm{~m} 1 \\ \mathrm{SI} & =-33.14 \mathrm{ml} / \mathrm{m}^{2} \end{aligned}$
ANATOMIC SHUNTS	$\begin{aligned} & \text { R-SYST }=55 \% ; \text { R-PUL }=62 \% \\ & \text { L-SYST }=84.5 \% ; \text { L-PUL }=97 \% \end{aligned}$	$\begin{array}{ll} \text { L-R } & \text { SHUNT }=16.67 \% \\ \text { R-L } & \text { SHUNT }=-29.76 \% \end{array}$

Program Title YIRTUAL PO_{2} AND O_{2} SATURATION AND CONTENT

Contributor's Name Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis State Oregon

Program Description, Equations, Variables The first part of this program computes virtual PO_{2} for use in estimating O_{2} saturation. Generally, it will be more convenient to calculate venous values first, as arterial values are frequently needed in other programs and, thus, will be left in the storage registers after both calculations.

The equation solved is

$$
\mathrm{VPO}_{2}=\mathrm{PO}_{2} \cdot 10^{\left[0.024(37-\mathrm{BT})+0.48(\mathrm{pH}-7.4)+0.06\left(1 \mathrm{ogPCO}_{2}\right)\right]}
$$

which is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman.

The second part of the program estimates 0_{2} saturation of blood from virtual PO_{2} and computes O_{2} content. If the actual O_{2} saturation is known, O_{2} content may be computed directly.

Equations:

The part of the program for estimating 0_{2} saturation is based on the polynomial curve fit of Thomas, where VPO_{2} is in mmg.

$$
0_{2} \text { Sat }=\frac{\left(\mathrm{VPO}_{2}\right)^{4}-15\left(\mathrm{VPO}_{2}\right)^{3}+2045\left(\mathrm{VPO}_{2}\right)^{2}+2000\left(\mathrm{VPO}_{2}\right)}{\left(\mathrm{VPO}_{2}\right)^{4}-15\left(\mathrm{VPO}_{2}\right)^{3}+2400\left(\mathrm{VPO}_{2}\right)^{2}-31,100\left(\mathrm{VPO}_{2}\right)+2,400,000}
$$

This calculation assumes that the oxygen dissociation curve for the hemoglobin is normal. The O_{2} content is computed from

$$
\mathrm{C}_{\mathrm{x}} \mathrm{O}_{2}(\mathrm{Vol} . \%)=1.34 \cdot \frac{\mathrm{SAT}(\%)}{100} \cdot \mathrm{Hgb}(\mathrm{~g} / 100 \mathrm{ml})+0.0031 \mathrm{PO}_{2} \text { (mming) }
$$

Operating Limits and Warnings Virtual PO_{2} is not in any way a real physiologic PO_{2}. Its only function is for use in estimating O_{2} saturation, and it should never be confused with PO_{2} corrected to body temperature. Furthermore, it must always be calculated from blood parameters measured at or corrected to $37^{\circ} \mathrm{C}$. The calculation will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO_{2} and O_{2} saturation are measured, the program may be used as a convenient mean to check for the normality of the dissociation curve.

[^0]DETAILED USER INSTRUCTIONS:
Input $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$, and pH measured at $37^{\circ} \mathrm{C}$. Input body temperature in degrees C. If PO_{2} has been previously input, recall it by pressing [f] [A] then press [f] [B]. Otherwise, input PO_{2} and press [f] [B]. For each variable after PO_{2}, stored values will be recalled. If none have been input, recalled values will generally be zero. It is important to input pH and body temperature exactly, as these have a great influence on the calculation of virtual PO_{2}. Errors, especially in body temperature, can result in large errors in VPO_{2} and, hence, estimated saturation. PCO_{2} has relatively little influence. Press the buttons from left to right and do not skip any. The virtual PO_{2} remains in the display for immediate entry in calculation of O_{2} saturation and content. It is not stored in place of the measured PO_{2}. The $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$, and pH remain in memory. Note that separate storage registers are not maintained for arterial and venous values, only the most recent ones will be stored.

To compute 0_{2} content, input the $\mathrm{PO}_{2}, \mathrm{O}_{2}$ saturation, and hemog1obin concentration. After PO_{2} is input, an estimated O_{2} saturation is calculated, based on a standard dissociation curve. This will only be meaningful if a virtual $\mathrm{PO}_{2}\left(\mathrm{VPO}_{2}\right)$ from the first part of the program is input. The estimated O_{2} saturation may be accepted simply by pressing [B], or a measured value can be input. If Hgb was previously input, it will be recalled. If the calculated 0_{2} content is to be stored as arterial or venous for later use in Fick cardiac output or physiologic shunt calculations, press the appropriate button. Regardless of which content is computed first, CaO_{2} is left in the display for convenience in case the ANATOMIC SHUNTS program is to be run next.

If O_{2} saturation of blood is to be estimated from PO_{2}, it is important to input the virtual PO_{2} calculated in the first part of the program. A large error can result from inputting measured PO_{2} without the corrections. The program may be used to compare estimated 0_{2} saturation with measured 0_{2} saturation, to obtain a rough idea of the variation of the dissociation curve from normal. This will be especially sensitive with partly unsaturated venous blood where the slope of the curve is fairly steep. When computing content for purposes of estimating physiologic shunt and Fick cardiac output, it is always best to measure the saturation. Small variations in the dissociation curve can cause considerable error in the shunt and cardiac output calculations and because the effect is not the same on venous blood as on the higher saturation arterial blood.

The calculated 0_{2} content includes both the dissolved oxygen and the hemoglobin bound oxygen. If only O_{2} saturation was measured, and not PO_{2}, an estimated PO_{2} should be input to obtain the maximum accuracy in the content calculation. The estimate for PO_{2} need only be rough as the effect is very small, unless the patient is breathing an oxygen-enriched atmosphere and PO_{2} is well above 100 mmHg .

To compute equivalent alveolar blood O_{2} content, enter the equivalent $P_{A} 0_{2}$, rather than the virtual PO_{2}. The $\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}$ can be calculated by the $\mathrm{A}-\mathrm{aO} \mathrm{O}_{2}$ DIFFERENCE program. In this case, the resulting 0_{2} content should not be stored as either arterial or venous, but simply left in the display register
for use at the beginning of the PHYSIOLOGIC SHUNT AND FICK programs which should be executed next. Thus, the over-all sequence should be to compute venous content first, arterial content second, and alveolar content last. The PHYSIOLOGIC SHUNT AND FICK program may then be run without having to enter any new O_{2} content data.

Progiram IDescription II

Sample Problem(s)

1) For the following patient data calculate virtual PO_{2} and from it estimated 0_{2} saturation and 0_{2} content. Store the value as venous 0_{2} content.

$$
\begin{aligned}
\mathrm{PO}_{2} & =75 \mathrm{mmHg} \\
\mathrm{PCO}_{2} & =45 \mathrm{mmHg} \\
\mathrm{pH} & =7.35 \\
\mathrm{BT} & =40^{\circ} \mathrm{C} \\
\mathrm{Hgb} & =16 \mathrm{gm} / 100 \mathrm{ml}
\end{aligned}
$$

2) Calculate est. O_{2} saturation and O_{2} content assuming the PO_{2} was actually 75 mmHg .

Solution(s) 1) 75 [f] [B] 45 [f] [C] 7.35 [f] [D] 40 [f] [E] $\rightarrow 59.71 \mathrm{mmHg} \mathrm{VPO}_{2}$
[A] $\rightarrow 90.92$ est. SAT\%
[B] $16[C] \rightarrow 19.680_{2}$ Content \%
$[\mathrm{E}] \rightarrow 0.00$
(19.68% stored as venous 0_{2} content. No previously stored arterial O_{2} content is present.)
2) $[f][A][A] \rightarrow 95.08$ est SAT\%
[B] $[C] \rightarrow 20.620_{2}$ Content

Reference(s) Thomas, L.J. Jr., "Algorithms for Selected Blood Acid-Base and Blood Gas Calculations," J. Appl. Physiol. 33: 154-158, 1972

Kelman, G. Richard, "Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation," J. App1. Physio1. 21: 1375-1376, 1966. This program is a modification of the Users' Library Programs \# 00196A and 非 00197A submitted by Hewlett-Packard.

Program Description

Program Title BODY SURFACE AREA FOR CARDIO PULMONARY

Contributor's Name Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis
State Oregon
Zip Code 97330

Program Description, Equations, Variables This program calculates body surface area by either the method of DuBois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., 1b.) units. Quantities in English units should be input as negative numbers. If cardiac output is given, the cardiac index can also be calculated.

Equations:
Let Ht be height, Wt be weight, and BSA be the body surface area in m^{2}.
$\mathrm{Ht}(\mathrm{cm})=2.54 \mathrm{Ht}$ (in.)
$\mathrm{Wt}(\mathrm{kg})=0.45359237 \mathrm{Wt}$ (1b.)

Du Bois:

$$
\text { BSA }\left(\mathrm{m}^{2}\right)=\mathrm{Ht}(\mathrm{~cm})^{0.725} \cdot \mathrm{Wt}(\mathrm{~kg})^{0.425} \cdot 7.184 \times 10^{-3}
$$

Boyd:

$$
\begin{aligned}
\mathrm{BSA}\left(\mathrm{~m}^{2}\right) & =\mathrm{Wt}(\mathrm{~g})^{0.7285-0.0188 \log \mathrm{Wt})} \cdot \mathrm{Ht}(\mathrm{~cm})^{0.3} \cdot 3.207 \times 10^{-4} \\
\mathrm{CI} & =\frac{\mathrm{CO}(1 / \mathrm{min})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)}
\end{aligned}
$$

Operating Limits and Warnings The Du Bois formula for BSA is undefined for children with a BSA less than $0.6 \mathrm{~m}^{2}$. In such cases BSA should be calculated by the Boyd formula.

[^1]

Sketch(es)

Sample Problem(s) 1) Patient is 176 cm in height and weighs 63.5 kg . What is his body surface area by both the DuBois and Boyd methods?
2) A patient 60 inches in height and 100 pounds in weight has a cardiac output of $51 / \mathrm{min}$. Calculate the body surface area and cardiac index by DuBois. What is the cardiac index using the Boyd BSA?

Solution(s) 1) 176 [A] 63.5 [B] [C] $\rightarrow 1.78 \mathrm{~m}^{2}$ (DuBois)
$[\mathrm{D}] \rightarrow 1.76 \mathrm{~m}^{2}$ (Boyd)
2) 60 [CHS] [A] 100 [CHS] [B] [C] $\rightarrow 1.39 \mathrm{~m}^{2}$ (DuBois)
$5[\mathrm{E}] \rightarrow 3.591 / \mathrm{min} \mathrm{m}^{2}$ (CI, DuBois)
[D] $\rightarrow 1.40 \mathrm{~m}^{2}$ (Boyd)
[f] [E] $\rightarrow 5.00$ (Recalls CO, Stored above)
$[\mathrm{E}] \rightarrow 3.571 / \mathrm{min} \mathrm{m}^{2}$ (CI, Boyd)

Reference(s) D. DuBois and E.F. DuBois, C1in. Cal. 10, Arch. Int. Med., 17, 863,1916. Edith Boyd, Growth of the Surface Area of the Human Body, U. of Minnesota Press, 1935, p. 132.
 \# 00204A submitted by Hewlett-Packard.

1 BODY SURFACE AREA for CARDIO PULMONARY
RCL CO
Height
Weight
DuBois
Boyd
$\mathrm{CO} \rightarrow \mathrm{CI}$

STEP K	KEY ENTRY	KEY CODE	COMments	StEP		Key entry	key code	COMMENTS
Qe:	*-ELS	2111	Enter Ht. If cm store		5		-62	
60.	N0?	16-44			58	3	83	
06.	0701	2201			59	Y^{*}	31	
064	CHS	-22	If inches, convert to cm and store		60	RCLE	3606	
005	2	62			61	EEX	-23	
806	.	-62			62	3	83	
007	5	45			E	x	-35	
000	4	04			64	ENT¢	-21	
009	- x	-35			65	LOG	1632	
010	NLELI	2101			66	.	-62	
011	5105	3505	Store Ht.		67	9	00	
012	RTN	24	Store Ht.		68	1	81	
013	*LELE	2112	Enter Wt. If kg store		69	8	88	
014	K0?	16-44			70	8	88	
815	GT02	2208			71	x	-35	
816	CHE	-22	If lbs., convert to kg and store		72	.	-62	
017	2	02			3	7	07	
018		-62			74	2	02	
019	2	02			75	8	08	
020	\div	-24			76	5	85	
021	*lele	21.42			77	-	-45	
022	Stue	3506	Store Wt.		78	ψ^{x}	31	
023	RTH	24			79		-24	
024	*LELC	2113	Calculate BSA by DuBois		80	3	03	
025	RCL5	3605			81	1	01	
026	-	-62			82	1	01	
927	7	87			83	8	08	
028	2	Q2			84	\div	-24	
029	5	05			85	stot	3501	
030	- ${ }^{\text {\% }}$	31			86	EEX	-23	Tangle with CO and store as 100 CO + . 01 BSA
031	RCLE	3606			87	2	02	
032		-62			88	\div	-24	
	4	64			89	RCLT 7	3687	
034	2	02			90	INT	1634	
035	5	05			91	+	-55	
036	γ^{x}	31			92	stor	3507	
037	- x	-35			93	RCLI	3601	
038	1	01			94	PRTX	-14	
039	3	03			95	RTN	24	
046	9	09			96	*LELe	211615	Untangle and
641	.	-62			97	FCL 7	3607	recall CO
042	2	02			98	EEX	-23	
043		-24			99	2	02	
044	ST01	3501			$0 \cdot$	\div	-24	
045	EE\%	-23	```Tangle with CO and store as 100 CO + . . 01 BSA```		01	RTN	24	
046	2	02			02	*LBLE	2115	Calculate CI
047	$\stackrel{\square}{\square}$	-24			03	EEX	-23	untangle CO with
1148	RCLT	3607			04	2	02	BSA and store
049	INT	1634			85	x	-35	
050	$\xrightarrow[+]{+}$	-55			96	INT	1634	
851	stor	3587			18	RCL 7	3607	
052	FCL1	3601			88	FRC	1644	
053	FRTX	-14			09	$+$	-55	
054	RTN	24			10	ST07	3507	
055	VIBLD	2114	Calculate BSA by Boyd		11	LSTX	16-63	
REGISIEHS								
0	B	${ }^{2}$	${ }^{3} \quad{ }^{4}$			${ }^{6}$	7	9
	BSA			HT.		WT.	Used	
so	S1	S2	S3	S5		S6	57	S8
A	B		c	D			E ${ }^{\text {E }}$	

Program Description, Equations, Variables, etc.

This program computes the area of the first part of the curve by trapezoidal rule integration. The part after the last point is calculated from an exponential projection based on the first measured point below 65% of the peak measured point; and the first measured point after that which is below 45% of the peak. This not only avoids problems of indicator recirculation in most cases, but also limits the amount of data to be input. Thus it is important to have a measured point which is below 45% of the peak, but before recirculation becomes obvious. If this isn't possible, an approximation can be obtained by guessing at the curve without recirculation and entering these values.
Equation Used:

$$
\mathrm{CO}(l / \mathrm{min})=\frac{\mathrm{DOSE}(\mathrm{mg}) \cdot 60(\mathrm{sec} / \mathrm{min})}{\mathrm{CAL}(\mathrm{mg} / l / \mathrm{div}) \cdot \operatorname{AREA}(\mathrm{div} \cdot \mathrm{sec})}
$$

Operating Limits and Warnings

Although this program leaves CO stored in memory, it erases all other stored patient data, including BSA.

[^2]Detailed User Instructions
This program calculates cardiac output from measurements taken directly from an indicator dilution curve. To obtain accurate results, it is important to measure the curve at frequent intervals. Generally, about ten points on the curve, equally spaced in time between onset and the 40%-of-peak point on the downslope, will be adequate. Choose a measurement time interval accordingly. Input the interval (Δt) and press [A].

Input the values measured from the curve ($D C$) and press [B] after each. The units of measurement are arbitrary; for example, divisions on the paper or volts, so long as the same units are used in inputting the calibration. The values are measured relative to the baseline, or starting level, of the curve. After each input entry, the display will indicate the number of points input.

As points on the downslope are input, the program compares each with the peak value. When the first point whose value is less than 65% of the peak value is found, it is stored for later use in the exponential projection as indicated by a minus sign preceding the displayed value representing the number of points input.

When a point having a value less than 45% of the peak value is input, the program automatically makes the exponential projection and displays the area under the curve, rather than the number of points entered.

At this time, input the CAL value. If indocyanine green dye is being used, it will generally be measured as milligrams of dye per liter of the patient's blood per division or unit of curve measurement. For other indicators, equivalent calibration factors must be determined.

Finally, input the dose of indicator given. For dye, this will usually be in mg. Press [D], and cardiac output in liters/min. will result. CO is stored in memory.

Sketch(es)

Sample Problem(s)

$\Delta \mathrm{t}=1 \mathrm{sec}$.
$\mathrm{DC}=5,2,45,60,50,38,28,20$ div.
$\mathrm{CAL}=0.2 \mathrm{mg} / \mathrm{l} / \mathrm{div}$.
DOSE $=3 \mathrm{mg}$

Solution(s)

```
1[A] 5[B] 20[B] 45[B] 60[B] 50[B] 38[B] 28[B] 20[B] ------> 318.32 div/sec (area)
.2[C] 3[D] ----------------------------------------------- 2.--- 1/min. (co)
```

Reference (s)
Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters,
F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program \#00205A submitted by Hewlett-Packard.

User Instructions

Program Description

Program Description, Equations, Variables, etc.

This program computes cardiac output, stroke volume, and cardiac index by the Fick method.

Equations Used:

$$
\begin{gathered}
\mathrm{CO}(l / \mathrm{min})=\frac{\mathrm{VO}_{2}(\mathrm{ml} / \mathrm{min} \mathrm{STPD}) \cdot 100(\%)}{\left(\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{v}} \mathrm{O}_{2}\right)(\mathrm{vol} . \%) \cdot 1000(\mathrm{ml} / \mathrm{l})} \\
\mathrm{SV}(\mathrm{ml} / \mathrm{beat})=\frac{\mathrm{CO}(l / \mathrm{min}) \cdot 1000(\mathrm{ml} / \mathrm{l})}{\mathrm{HR}(\text { beats } / \mathrm{min})} \\
\mathrm{CI}\left(l / \mathrm{min} / \mathrm{m}^{2}\right)=\frac{\mathrm{CO}(l / \mathrm{min})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)} \\
\mathrm{SI}\left(\mathrm{ml} / \mathrm{m}^{2}\right)=\frac{\mathrm{SV}(\mathrm{ml})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)}
\end{gathered}
$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

\square

Reference (s)

Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters,
F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program \#00206A submitted by Hewlett-Packard.

Program Description

Program Title
VALVE AREA

Contributor's Name Hewlet.t.-Packard
Address $\quad 1000$ N.E. Circle BTvd.
City
Corvallis
State Oreaon
Zip Code
$9733 n$

Program Description, Equations, Variables, etc.
This program calculates aortic valve area and mitral valve area.

Equations Used:

$$
\text { Valve Area }\left(\mathrm{cm}^{2}\right)=\frac{\text { Mean Flow }}{0.0445 \sqrt{\text { mean gradient }}}
$$

where

$$
\begin{gathered}
\text { Mean Flow }(l / \mathrm{sec})=\frac{\mathrm{CO}(l / \mathrm{min} .) \cdot \mathrm{R}-\mathrm{R}(\mathrm{sec})}{\text { Valve Open Time }(\mathrm{sec} / \mathrm{beat}) \cdot 60(\mathrm{sec} / \mathrm{min} .)} \\
\text { Mitral Valve Area only }=\frac{\text { Valve Area }}{0.7}
\end{gathered}
$$

Operating Limits and Warnings

> This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
> NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)
$\mathrm{DFP}($ mitral valve $)=0.55 \mathrm{sec}$
$\Delta \mathrm{P}=10,12,8,6,2 \mathrm{mmHg}$
$R-R=0.94 \mathrm{sec}$
$\mathrm{CO}=5.73 l / \mathrm{min}$.

Solution(s)
[f] [A] --------> 1.00 (for mitral valve)
.55[A] 10[B] 12[B] 8[B] 6[B] 2[B] -----------> 5.0
[C] ----------> $7.60 \mathrm{mmHg}, \overline{\Delta \mathrm{P}}$
.94[D] $5.73[E]$-----------------------------> $1.90 \mathrm{~cm}^{2}$, AREA

Reference(s) Gorlin, R.; Gorlin, S.G., "Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, Other Cardiac Valves, and Central Circulatory Shunts", American Heart Journal, Jan. 1957, VOL. 41, No. 1.
This program is a modification of the Users' Library program \#00207A submitted by Hewlett-Packard.

Program Description, Equations, Variables, etc.
This program calculates left-to-right and right-to-left shunts and displays them as a percentage. The program uses the method of allegations and can calculate bi-directional shunts.

Equations Used:

$$
\begin{aligned}
& \mathrm{R}-\mathrm{L} \operatorname{shunt}(\%)=\frac{(\mathrm{L}-\mathrm{PUL})-(\mathrm{L}-\mathrm{SYST})}{(\mathrm{L}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})} \cdot 100 \\
& \mathrm{~L}-\mathrm{R} \operatorname{shunt}(\%)=\frac{(\mathrm{R}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})}{(\mathrm{L}-\mathrm{PUL})-(\mathrm{R}-\mathrm{SYST})} \cdot 100
\end{aligned}
$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

Calculate the left-to-right or right-to-left shunts for a patient having the following oxygen saturation values at the listed sites. Right atrium, 85%; pulmonary artery, 88%; left atrium, 95%; left ventricle, 93\%.

Solution(s)

85[A] 88[B] $95[\mathrm{C}] 93[\mathrm{D}]$ [E] $-\cdots-\cdots 30.00 \%$ (L-R Shunt)
[E] --------> -20.00\% (R-L) Shunt)

Reference (s)

Zimmerman, H.A., Intravascular Catheterization, Charles C. Thomas, Springfield, Ill., 1966.

This program is a translation of the HP-65 Users' Library program \#00208A submitted by Hewlett-Packard

Program Description

Program Title

| Contributor's | Name \quad Hewlett-Packard | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Address | 1000 N.E. Circle Blvd. | | | | |
| City | Corvallis | State | Oregon | Zip Code | 97330 |

Program Description, Equations, Variables, etc.

This program calculates the indices of left ventricular contractility based on pressure rise during isovolumetric contraction.

Equations Used:

P_{N}	$=$ most recently entered pressure (mmHg)
$\mathrm{P}_{\mathrm{N}-1}$	$=$ next previously entered pressure
Δt	$=$ time interval between pressure measurements (sec)
P_{P}	$=$ pressure at which dP/dt/P is calculated
$\Delta \mathrm{P}$	$=\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{N}-1}$
$\frac{d \mathrm{P}}{\mathrm{dt}}$	$=\frac{\Delta \mathrm{P}}{\Delta t} \mathrm{mmHg} / \mathrm{sec}$
P_{P}	$=\frac{\mathrm{P}_{\mathrm{N}}+\mathrm{P}_{\mathrm{N}-1}}{2}$
$\mathrm{dP} / \mathrm{dt} / \mathrm{P}$	$=\frac{\mathrm{dP} / \mathrm{dt}}{\mathrm{P}_{\mathrm{P}}} \sec ^{-1}$
P_{M}	$=\mathrm{P}_{\mathrm{P}}$ where dP/dt/P is a maximum
V_{MAX}	$=\frac{1}{30} \frac{\left(\mathrm{P}_{\mathrm{PLAST}} \cdot \mathrm{MAX} \mathrm{dP} / \mathrm{dt} / \mathrm{P}\right)-\left(\mathrm{P}_{\mathrm{M}} \cdot \mathrm{dP} / \mathrm{dt} / \mathrm{P}_{\mathrm{LAST}}\right)}{\mathrm{P}_{\mathrm{P}}}$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL

Program Title Contractility				
Contributor's Name Hewlett-Packard				
Address 1000 N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.
$\mathrm{dP} / \mathrm{dt}$ is calculated as the difference between successive pressure inputs divided by the time interval $\Delta \mathrm{t}$. The largest value found is stored as maximum $\mathrm{dP} / \mathrm{dt}$. $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ is calculated for each pair of successive inputs, by first determining $\mathrm{dP} / \mathrm{dt}$ as above, then dividing by the mean of the two pressures. The largest value found is stored as maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$.
$V_{\text {max }}$ is found in this program by a linear projection of the downslope of the $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ vs. P curve back to $\mathrm{P}=0$, and by dividing the resulting $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ by 30 . The projection is based on the point at which the maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ was found, and the last point input. The constant is controversial, values between about 28 and 32 having appeared in the literature. The value 30 is used in this program.

Operating Limits and Warnings

[^3]
Program Deseription II

Sketch(es)

Sample Problem(s)

Find maximum $\mathrm{dP} / \mathrm{dt}$, maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ and maximum ventricular contractility if $\Delta \mathrm{t}$ is 0.005 seconds and P_{N} is $10,20,40,60$, and 80 mmHg .

Solution(s)
. 005 [A] $10[B] 20[B] 40[B] 60[B] 80[B][C]---------\rightarrow 4000 \mathrm{mmHg} / \mathrm{sec}(\mathrm{dP} / \mathrm{dt})$
[D] ------------ $133.3 \mathrm{sec}^{-1}(\mathrm{MAX} . \mathrm{dP} / \mathrm{dt} / \mathrm{P})$
[E] ------------ $5.14 \mathrm{circ} / \mathrm{sec}\left(V_{\text {MAX }}\right)$

Reference(s)
Yang, Sing San, et al, "From Cardiac Catheterization Data to Hemodynamic Parameters",
F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program \#00209A submitted by Hewlett-Packard.

STEP	InStructions	INPUT DATA/UNITS		KEYS	OUTPUT DATA/UNITS
1	Enter program				
2	Input Δt	$\Delta \mathrm{t}$ (seconds)	A		Δt (seconds)
3	Repeat step 3 for each P_{n}	$\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}$	B		$\mathrm{dP} / \mathrm{dt} / \mathrm{P}\left(\mathrm{sec}^{-1}\right)$
4	Calculate maximum dP/dt		c		dP/dt(mmHg/
					$\mathrm{sec})$
5	Calculate maximum dP/dt/P		D		$\mathrm{dP} / \mathrm{dt} / \mathrm{P}\left(\mathrm{sec}^{-1}\right)$
6	Calculate $\mathrm{V}_{\text {max }}$		E		$\mathrm{V}_{\text {max }}($ circ $/ \mathrm{sec}$)
	DETAILED USER INSTRUCTIONS				
	The indices of left ventricular contractility	y calculate			
	by this program are based on the pressure rise	during			
	isovolumetric contraction. Measurements, equally	ly spaced			
	in time, should be input for the isovolumetric	phase only			
	Inputting values from the systolic ejection peri	iod can			
	cause significant errors. Generally, between 5	and 10			
	pressure measurements should be input, and the t	time inter			
	between measurements, Δt, chosen accordingly. T	Too few			
	measurements will cause the maximum values to be	e missed.			
	Too many will introduce excessive "noise" result	ting in			
	errors.				
	Input t in seconds, for example, .005. Press	s [A].			
	Input left ventricular pressure measurements in	mmHg ;			
	press [B] after each. After each input except the	the first,			
	$\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ for the two most recent points will be	displayed.			
	When all points have been input, press [C], [D]	and [E]			
	in any order to obtain the corresponding results	s-maximum			
	$\mathrm{dP} / \mathrm{dt}$, maximum $\mathrm{dP} / \mathrm{dt} / \mathrm{P}$ and $\mathrm{V}_{\text {MAX }}$, maximum velocilt	ty of the			
	contractile element at zero pressure in circumfer	erences or			
	lengths/sec.				
	If the contractility parameters are to be cal	1culated			
	using developed pressure, or any pressure refere	ence other			
	than zero, perform the subtraction before enteri	ing			
	pressure values.				

Program Title STROKE WORK			
Contributor's Name Hewlett-Packard			
Address 1000 N.E. Circle Blvd.			
City Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.

This program calculates stroke work (SW) and stroke work index (SWI). For stroke work based on systolic minus end-diastolic pressure, perform subtraction before data input.

Equations Used:

$$
\begin{aligned}
& \mathrm{SW}(\mathrm{gm} \cdot \mathrm{~m})=\frac{13.6 \cdot \mathrm{P}(\mathrm{mmHg}) \cdot \mathrm{CO}(\mathrm{l} / \mathrm{min}) \cdot \mathrm{R}-\mathrm{R}(\mathrm{sec})}{60(\mathrm{sec} / \mathrm{min})} \\
& \mathrm{SWI}\left(\mathrm{gm} \cdot \mathrm{~m} / \mathrm{m}^{2}\right)=\frac{\mathrm{SW}(\mathrm{gm} \cdot \mathrm{~m})}{\mathrm{BSA}\left(\mathrm{~m}^{2}\right)}
\end{aligned}
$$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

$P_{\text {sys }}=100,110 \mathrm{mmHg}$
$\mathrm{R}-\mathrm{R}=1 \mathrm{sec}$
$\mathrm{CO}=5 \mathrm{l} / \mathrm{min}$.
$\mathrm{BSA}=2 \mathrm{~m}^{2}$

Solution(s)
100[A] $110[A][B]-2-105 \mathrm{mmHg}(\bar{P})$
1[C] 5[D] ------------------> $119.0 \mathrm{gm} \cdot \mathrm{m}(\mathrm{SW})$
2[E] ----n---------------> $59.50 \mathrm{gm} \cdot \mathrm{m} / \mathrm{m}^{2}($ SWI $)$

Reference (s)

Yang, Sing San, et al, "From Cardiac Catheterization Data to Hemodynamic Parameters",
F.A. Davis Co., Phil., 1972.

This program is a translation of the HP-65 Users' Library program \#00210A submitted by Hewlett-Packard.

97 Program Listing I

$4_{\text {STEP }}$		KEY ENTRY	KEY Code	COMmENTS	STEP	KE	KEY ENTRY	key code	comments	
	001	*LELA	2111	Enter $P_{\text {sys }}$ If first entry then INT else integrate Initialize		057	5 TOG	3509		
	602	F1\%	162301			058	FRTX	162^{-14}		
	063	$6 T 01$	2261			059		162201		
	004	ST0:	3501			060	RTN	${ }^{24}$		
	005	,	01			061	RCL 7	3607	Untangle	BSA
	006	CHS	-22			062	FRC	1644		
	007	STOI	3546			at3	EEX	-23		
	069	SFi	162101			064	2	08		
	009	1	01			065	x	-35		
	010	FIN	24			866	R/S	51		
	011	*LELI	2101			067	*LELE	2115	Enter BSA	
	012	ST+1	35-55 61			068	STO1	3541		
	013	DSEI	162546			069	EEX	-23	Tangle	with CO
	014	FCLI	3646			876	2	02	Tangle	with 0
	015	CHE	-22	Display count, N		071	\div	-24		
	016	FTN	24	Compute $\overline{\mathrm{P}}$		072	RCLT	3687		
	017	*LELE	2112	Compute P		073	INT	1634		
	018	RCL1	3601			974	+	-55		
	019	RCLI	3646			975	Stor	3507	Compute	WI
	020	CHS	-22			076	RCL9	3605		
	021	\because	-24			077	RCLI	3601		
	022	$5 T 01$	3501			678	\div	-24		
	023	PRTX	-14			679	PRTX	-14		
	024	CF1	162201			980	RTN	24		
	025	RTN	24			$08:$	Res	51		
	026	ALELC	2113	Enter R-R						
	027	ST08	3508							
	028	RCLT	3607	Untangle CO						
	029	EEX	-23							
	030	2	02							
	031	-	-24							
	032	RTN	24							
	033	*LELD	2114	Enter CO						
	034	ENT \uparrow	-21		090					
	035	ENTT	-21							
	036	EEX	-23							
	037	2	02							
	-038	x	-35							
	039	FRC	1644							
	040	RCLT	3607	Tangle CO with BSA						
	041	FRC	1644							
	042	+	-55							
	043	Stor	3507							
	044	$R \downarrow$	-31	Compute stroke work	100					
	845	fCLE	3608							
	046	\times	-35							
	047	ϵ	66							
	048	0	00^{0}							
	049	\cdots	-24							
	050	RCLI	3601			,	0 FLAGS		SET STATUS	
	051	x	-35					flags	trig	DISP
	052	3	01				¹P AVER.	\bigcirc		
	053	3	83				$\frac{1}{}{ }^{\text {P }}$ AVER.	0 1 1 \square		
	054	-	-62		110			1 2 2 \square	GRAD ${ }_{\text {RAD }}$	SCl ENG \square
	055	${ }^{6}$	${ }^{66}$			3				${ }_{\text {n }}$
	056	x	-35	REGIS	Sters					
0		${ }^{1} \mathrm{P}, \overline{\mathrm{P}}, \mathrm{B}$		${ }^{3} \quad{ }^{4}$	5		${ }^{6}$	${ }^{7}$ Used	${ }^{8}$ R-R	SW
so		S1	S2	S3	55		S6	57	S8	S9
			B	Tc						
A				c						

Progiram Description

Program Title Ejection Fraction - Ejected Volume - Cardiac Output				
Contributor's Name Hewlett-Packard				
Address $\quad 1000$ N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables
Given the following information: LED, LES, AED, AES, f and Heart Rate (HR).
$\underset{\text { (in percent) }}{\text { Ejection Fraction }}=\left[1-\frac{\text { AES }^{2}}{\text { AED }} \times \frac{\text { LED }}{\text { LES }}\right] \times 100$
$\underset{\text { (in cc/stroke) }}{\text { Ejected Volume }}=($ Ejection Fraction $) \times\left(\frac{8 \text { AED }^{2}}{3 \pi f^{3} L E D}\right) \div 100$ (in cc/stroke)

Cardiac Output = (Ejected Volume) x (Heart Rate) $\div 1000$ (in 1/min.)

Operating Limits and Warnings
Calulate ejection fraction before ejected volume, and ejected volume before cardiac output.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s)
Find the Ejection Fraction, Ejected Volume, and Cardiac Output from the following data.
$L E D=12.6 \mathrm{~cm}$
LES $=9.7 \mathrm{~cm}$
AED $=68.5 \mathrm{~cm}^{2}$
$A E S=23.2 \mathrm{~cm}^{2}$
$f=1.54: 1$
Heart Rate $=72 \mathrm{bpm}$

Solution(s)

12.6 [ENT \uparrow] 9.7[A] 68.5[ENT \uparrow] 23.2[B]
1.54[ENT] 72[f] [A] [C] ------------->85.10\% (Ejection Fraction)
[D] ------------->73.65\% (Ejected Volume)
[E] -------------> $5.30 \mathrm{l} / \mathrm{min}$. (CO)

Reference (s)
Doge, HT. Sandler, H. Ballew et al. "The use of biplane angio-cardiography for the measurement of left ventricular volume in man." American Heart J.60: 762-776 1960 Greene, D.G. Carlisle, R. Grant, C. Circulation 35: 61-69 1967. This program is a modification of the HP-65 Users' Library program \#01190A submitted by Norman R. McLarin.

EJECTION FRACTION - EJECTED
VOLUME-CARDIAC OUTPUT
f \uparrow Rate
LED \uparrow LES
AED \uparrow AES
E F
E V
C 0

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$	KEYS		$\begin{gathered} \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{gathered}$
1.	Load side 1				
2.	Enter length end diastole and	LED, cm	ENT 1		
	length end systole	LES, cm	A		LED, cm
3.	Enter area end diastole and	AED, cm^{2}	ENT \uparrow		
	area end systole	AES, cm^{2}	B		AED, cm^{2}
4.	Enter correction factor f and	f	ENT \uparrow		
	heart rate	HR, BPM	f	A	f
5.	Calculate ejection fraction		C		E.F,\%
6.	Calculate ejected volume		D		E.V., cc/s
7.	Calculate cardiac output		E		C.0., 1/mi

Calculation of Left Ventricular Functions from Angiograpic Data				
Hewlett-Packard				
Address 1000 N.E. Circle Blvd.				
City Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables

Program allows calculation of left ventricular functions by both single and biplane methods: Functions calculated are:
End systolic colume (ESV), either single or biplane
End diastolic volume (EDV), either single or biplane
Velocity of circumf. fiber shortening ($V_{c f}$)
Stroke volume
(SV)
Stroke index
Systolic ejection fraction as \% (SEF \%)
Heart Rate
Cardiac index (CI)

Equations:

$$
\begin{aligned}
& \text { Average systolic \& diastolic diameters are also calculated } \\
& \text { Equations: } \\
& \quad \text { Biplane } C V=\frac{8}{3 \pi} \quad \frac{\left(A_{R A O}\right)\left(\mathrm{CF}_{\mathrm{RAO}}\right)\left(\mathrm{A}_{\mathrm{LAO}}\right)}{\mathrm{L}_{\mathrm{RAO}}} \\
& \\
& \\
& \text { Single plane } \mathrm{CV}=\frac{8}{3 \pi} \frac{\left(\mathrm{~A}_{\mathrm{RAO}}\right)^{2} \times\left(\mathrm{CF}_{\mathrm{RAO}}\right)^{3 / 2}}{\mathrm{~L}_{\mathrm{RAO}}}
\end{aligned}
$$

True ventricular volumes: Biplane TV $=0.895 C V-5.113 \mathrm{ml}$ (where $\mathrm{CV}=$ Calc. volume) Single $\mathrm{TV}=0.81 C V+1.9 \mathrm{ml}$
SEE: Vogel, Swenson \& Elings,"Simple Method for Calculating Left Ventricular Function Etc.,"Catheterization \& Cardiovascular Diagnosis, 2:199-210 (1976) for complete description of calculations.
OPERATING LIMITS AND WARNINGS When using this program on HP-67 be sure pause display of results has finished blinking before pressing key for next calculation. Otherwise erroneous results may occur.

[^4]
Program Description II

Sketch(es)

Sample Problem(s) A patient's body surface area is $1.75 \mathrm{~m}^{2}$. Angiographic measurements give the following data:Number of frames: 19; number of frames per beat: 43; correction factors: 1.39(RAO), 0.83 (LAO)

Systolic Function

RAO	LAO
35.4	32.4
9.1	7.7

	Diastolic Function	
RAO	LAO	
AREA	52.1	54.7
AXIS	10.5	10.0

Calculate left ventricular functions by both the single plane \& biplane methods.

Reference(s) This program is a modification of the HP-65 Users' Library program \#05352A submitted by J.H.K. Vogel.
Vogel, Swenson \& Elings, "A Simple Method for Calculating Left Ventricular Functions from Angiographic Data, Etc", Cathetherization and Cardio Vascular Diagnosis, 2: 199-210, (1976).

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		OUTPUT DATA/UNITS
1.	Load sides 1 \& 2				
2.	Enter data: Body surface area	BSA, ${ }^{2}$	ENTT		
	Number of frames	\#	ENTA		
	Systolic area, RAO	SA, cm²	ENTA		
	Systolic length, RAO	SL, cm		E	
	Correction factor, RAO	CFRAO	ENTA		
	Number of frames/beat	\#	IENTH		
	Diastolic area, RAO	DA, cm^{2}			
	Diastolic Length, RAO	DL, cm	R/S		
	SINGLE PLANE CALCULATIONS:				
3.	Calculate: End systolic VOLO.(ESV)		A		ESV,m1
	and ESV index				$\mathrm{ESV} / \mathrm{m}^{2}$
4.	Calculate: End diastolic Vol., (EDV)		B		EDV,m1
	and EDV				$\mathrm{EDV} / \mathrm{m}^{2}$
5.	Calculate: Velocity of circumferential fiber				
	shortening, $V_{C f}$		C		$\mathrm{V}_{\mathrm{cf}}, \frac{\mathrm{circ}}{\mathrm{sec}}$
6.	Calculate: Stroke volume and		D		SV, ml
	stroke index				SI, ml/m²
7.	Calculate: Systolic ejection fraction (\%)		E		SEF\%
8.	Calculate: Heart rate and cardiac index		f	C	Heart Rate
	BIPLANE CALCULATIONS:				
9.	Enter data \& calculate ESV \& ESV index				
	Correction factor, LAO	$\mathrm{CF}_{\text {LAO }}$	ENTA		
	Systolic area, LAO	SA, cm 2	ENTA		
	Systolic length, LAO	SL, cm		A	
	Diastolic area, LAO	DA, cm^{2}	ENTA		
	Diastolic length, LAO	DL, cm	R/S		ESV, ESV/m²
10.	Calculate: EDV \& EDV index		f	B	EDV,EDV/m²
11.	Calculate: Average systolic \& diastolic DIA.		f	D	Sys., Dias.
12.	Calculate: Stroke volume \& stroke index		D		SV,SI
13.	Calculate: Systolic ejection fraction (\%)		E		SEF\%
	Calculate: Velocity of circumf. fiber shorteni		C		V_{cf}

STEP K	KEY ENTRY	KEY Code	comments	STEP KEY	KEY Entry	KEY Code	comments
$0 \cdot 1$	* Ele ż	211615		$0 \cdot 5$		-6c	
062	6561	2311		058	9	69	
0 O	5762	3542		059		-55	
064	Es	51		064	ETH	24	Divide by BSA
005	F+S	16-51		061	*LELE	2108	Divide by BSA
066	ESEI	2301		062	FCle	3662	
040	ST06	35010		063	-	-24	
Q6:	$F \pm S$	16-51		66.4	F*S	16-51	
009	STOU	350		065	ST02	3542	
610	RTN	24		066	F $\ddagger 5$	16-51	
611	RLELI	2101		067	FRTX	-14	
012	CLRG	16-53		668	SPC	16-11	
613	stoe	3506		069	FTN	24	
014	RV	-31		079	*LELC	2115	Calculate $\mathrm{V}_{\text {cf }}$
015	5704	35 ט4		071	FCl8	3608	
016	Kt	-31		812	P +5	16-51	
017	5703	3503		873	FCLE	3608	
018	R \downarrow	-31		074	P +5	16-51	
619	ETH	24		075	-	-45	
824	*LELA	2111	Calculate ESV,	076	CHS	-22	
021	6589	2309	single plane	077	LSTX	16-63	
022	STOA	3511		076	-	-24	
823	FRTX	-14		675	RCL3	3603	
024	6708	2288	$\mathrm{ESV} / \mathrm{m}^{2}$	080	-	-24	
025	*LELE	2112	Calculate EDV,	081	6	96	
026	$F+5$	16-51	single plane	082	-	09	
027	GSE	2369		083	-	-35	
028	$F+5$	16-51		084	STac	3513	
0, ${ }^{\text {a }}$	STOE	3512		685	FRTX	-14	
[130	FRTX	-14		use	SFC	16-11	
031	6708	2208	EDV/m ${ }^{2}$	687	RTN	24	
032	*LELG	2109	Calculate	086	* $2 E L D$	2114	Calculate SV
033	FCL4	3664	ventricular volumes	689	FCLE	3612	
034	FCLE	3604	single plane	890	RCLA	3611	
635	S.	54		691	-	-45	
036	x	-35		692	STOL	3514	
637	4	04		493	FRTX	-14	
038	\times	-35		094	GT08	2248	Calculate SI
039	Fi	16-24		095	$\mathrm{F}+\mathrm{S}$	16-51	
649	\bigcirc	-24		696	5702	3502	
64 :	RCLE	36 ט6		697	$F+5$	16-51	
042	\bigcirc	-24		098	FRTX	-14	
043	5708	35 ¢8		099	SPC	16-11	
044	$\overline{4}$	08		100	RTN	24	
645	x	-35		101	*LELE	2115	Calculate SEF\%
046	3	03		102	RCLLi	3614	Calculate SEF\%
047	\div	-24		163	RCLE	3612	
648	RCL4	3604		104	\doteqdot	-24	
649	${ }^{\chi}$	-35		105	EEX	-23	
656	RClu	3609		106	2	02	
051	\cdots	-35		107	$\stackrel{x}{\text { P }}$	-35	
652	-	-62		168	FRTX	-14	
053	$\stackrel{8}{8}$	98		109	STOE	3515	
054	${ }^{1}$	91		116	SPC	16-11	
855	${ }^{x}$	-35		111	FTN	24	
656	1	01	REGIS	112	*LELC	21613	
${ }^{0}{ }^{-} \mathrm{CF}_{\text {RAO }}$	${ }^{1}{ }^{C F}$ LAO	$2{ }^{2}$ BSA	${ }^{3}$ \#Frames ${ }^{4}{ }^{\text {S }}$ RAO	SA RAO	${ }^{6} \mathrm{SL}_{\text {RAO }}$	${ }^{7} \mathrm{SL}$ LAO	
${ }^{\text {S0 }} \mathrm{CF}_{\text {RAO }}$	${ }^{\text {S1 }} \mathrm{CF}_{\text {LAO }}$	S2 SI		${ }^{55} \mathrm{DA}_{\text {RAO }}$	${ }^{\text {s6 }}$ DL RAO	${ }^{\text {S7 }} \mathrm{LL}_{\text {LAO }}$	$\frac{S 8}{D}{ }_{D I A} D \cdot D I A^{S 9}{ }^{S 9} D I A_{R A O}$
A ESV		B EDV	${ }^{\text {C }} \quad \mathrm{V}_{\text {cf }}$	- SV		SEF\%	1

Program Description

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Find 1) stroke volume, cardiac output, cardiac index, 2) mean arterial pressure, total systemic resistance (units dyne sec cm^{-5}), systemic vascular resistance (units, dyne sec cm^{-5}), 3) total pulmonary resistance, pulmonary vascular resistance

Height 5'7" Weight 69.4 kg
BSA $1.81 \mathrm{~m}^{2}$

$d Z / d t$	$=.81$	BP systemic $=120 / 80 \mathrm{mmHg}$
T	$=.23$	CVP $^{2}\left(\overline{\mathrm{P}}_{\text {RA }}\right)=15 \mathrm{mmHg}$
L	$=28.5$	$B P$ pulmonary $=44 / 24 \mathrm{mmHg}$
Z_{0}	$=20.2$	$\bar{P}_{\text {LA }}$

Heart Rate $=103$

Solution(s) $[f][E] \cdots-\cdots 1.00[f][E] \cdots 0.00$ (set for calc by $C O$)

1) 1.81 [f][D] . $81[\mathrm{ENTA}]$.23[A] $28.5[\mathrm{~B}] 20.2[\mathrm{C}]---->50.06 \mathrm{ml}, \mathrm{SV} ; 103[\mathrm{D}]--->5.161 / \mathrm{mi}$
2) 120 [ENT \uparrow] $80[\mathrm{f}]$ [A] $\ldots-->93.33 \mathrm{mmHg}$, mean press 18.10 units, total sys. resist.
[R/S]------>1447.96dyne-sec-cm ${ }^{-5}$, sys. resist.
15[f] [B] -----> 15.19 units, sys. vasc. resist.
[R/S]------>1215.25 dyne-sec-cm ${ }^{-5}$, vasc. resist.
3) $44[E N T \uparrow] 24[f][A] \ldots--->30.67 \mathrm{mmHg}$, mean pulm. press. 5.95 units, total pulm. resist. 13[f][B] ------> 3.43_units, pulm, vasc resist.
Reference(s) Pomerantz, M., Delgado, F., and Eiseman, B.: Unsuspected Depressed Cardiac Output Following Blunt Thoracic or Abdominal Trauma. Surg. 70:865-871, 197 Blackwell Scientific Publications: Medical and Surgical Cardiology, pp. 120-121, Wm. Cowles \& Sons, Ltd., London, 1969. Kubicek, William: The Minnesota Impedance Cardiograph; Theory and Application. Biomed. Eng., Vol. 9, No.9, Sept.1974,pg.410-42)

IMP. CARD OUTPUT, SYS \& PULM. RESIST.
TOTAL RES. VASC RES.
BSA CO or CI $d Z / d t \uparrow T$
$L \quad Z_{0} \rightarrow S V$ RATE \rightarrow C0

Program Description

| Program Title BASIC EKG DETERMINATIONS | |
| :--- | :--- | :--- |
| Contributor's Name Hewlett - Packard Company | |
| Address 1000 N. E. Circle Boulevard
 City Corvallis State Oregon | |

Program Description, Equations, Variables
Given the magnitudes of both the positive and negative deflections of leads I and III (in millimeters of a graduated EKG)
displayed is the predicted magnitude (pos. minus neg. deflections) according to Einthoven's Law: Lead II = Lead I + Lead III of Lead II
computed is the mean electric axis of the heart
axis rectangular coordinates $=$ Lead $I(.5774)+$ Lead III(1.1547) axis angular coordinates $=$ conversion to polar coordinates

Given either the heart rate or the $R-R$ interval, the other is computed
heart rate $=\frac{60}{R-R \text { interval }}$
computed is the predicted normal $Q-T$ interval for that rate

$$
\mathrm{Q}-\mathrm{T}=0.39 \quad \mathrm{R}-\mathrm{R} \pm .04
$$

Operating Limits and Warnings

Both positive and negative deflections must be entered for each lead

Program Description II

Sample Problem(s)
Given the data as represented above in the graph:

$$
\begin{array}{ll}
\mathrm{I}^{+}=3.0 \mathrm{~mm}(\mathrm{mv} * .1) & \mathrm{III}^{+}=2.5 \mathrm{~mm} \\
\mathrm{I}^{-}=1.0 \mathrm{~mm} & \mathrm{III}^{-}=1.5 \mathrm{~mm}
\end{array}
$$

Heart rate $=75 \mathrm{bpm}$

Find the expected magnitude of lead II, the axis deviation in degrees (of the mean electric axis), the mean axis magnitude, the $R-R$ interval, and the calculated $Q-T c$ interval.

Solution(s) 3 [ENTY] 1 [A] 2.5 [ENT \uparrow] 1.5 [B] $\rightarrow 3.0$ Lead II
$[\mathrm{C}] \rightarrow-8^{\circ}$ (left axis deviation - slight)
$[R / S] \rightarrow 3.1$ mean axis magnitude
75 [D] $\rightarrow 0.80 \mathrm{sec} ., R-R$ interval
(optional) $0.80[\mathrm{D}] \rightarrow 75$, heart rate
[E] $\rightarrow 0.35 \mathrm{sec}, \mathrm{Q}-\mathrm{Tc}$ interval

Reference (s)

Schaub, Frank A., Fundamentals of Clinical Electrocardiography, pgs. 15, 23-26, Geigy Pharmaceuticals, New York, 1966.

This program is a translation of the HP-65 Users' Library Program \# 00455A submitted by Steven A. Conrad.

STEP	INSTRUCTIONS	INPUT OATA/UNITS		KEYS
DATA/UNITS				

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
 Mathematics
 Electrical Engineering
 Business Decisions
 Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying
 Civil Engineering
 Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds \& Notes
Real Estate Investment
Taxes
Home Construction Estimating Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering Control Systems
Beams and Columns High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

CARDIAC

A group of programs for carrying out common cardiac catheterization laboratory calculations. A number of the programs are designed to be self consistent for sequential use. Ventricular function calculations from radiographic data and basic EKG determinations are included.

CARDIAC PROGRAM SERIES
VIRTUAL PO_{2} AND O_{2} SATURATION AND CONTENT
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS
dYE CURVE CARDIAC OUTPUT
FICK CARDIAC OUTPUT
VALVE AREA
ANATOMIC SHUNTS
CONTRACTILITY
STROKE WORK
EJECTION-FRACTION, EJECTED-VOLUME, CARDIAC OUTPUT
CALCULATIONS OF LEFT VENTRICULAR FUNCTIONS FROM ANGIOGRAPHS
IMPEDANCE CARDIAC OUTPUT, SYSTEMIC AND PULMONARY RESISTANCE
BASIC EKG DETERMINATIONS

[^0]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^2]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^3]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^4]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

