HP67HP97

Users' Library Solutions Chemistry

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

рН О	F WEAK ACID/BASE SOLUTIONS A program for calculating the pH of weak acid or base solutions using the Newton-Raphson iteration method. The program also performs a number of interconversions of pH, pOH, K _a ,K _b , (H+),(OH ⁻) etc.	•	1
ACID	-BASE EQUILIBRIUM (DIPROTIC) The program determines H ₃ 0+ concentration or pH for solutions of a dibasic acid and its salts. Useful for calculation of buffer solution.	•	6
WEAK	ACID/BASE TITRATION CURVE	1	11
EQUA	TIONS OF STATE	1	18
VAN	DER WAALS GAS LAW Performs calculations for gases obeying Van der Waals equation, given the Van der Waal constants. Also calculates critical temperatu pressure and molar volume of the gas.	•	24
BEER	'S LAW AND ABSORBTIVITY CALCULATIONS	ty	29
ACTI	VITY COEFFICIENTS FROM POTENTIOMETRIC DATA CONTROL Calculates the Standard Electrode Potential and activity coefficients given concentration and EMF.	5	34
CRYS	TALLOGRAPHIC TO CARTESIAN COORDINATE TRANSFORMATIONS This program transforms coordinates from crystallographic systems into a cartesian system and calculates distances and angles.	ı	39
KINE	TICS USING LINEWEAVER-BURK OR HOFSTEE PLOTS	1	Lļ Lļ
MIXT	URE VISCOSITIES The program provides estimates of the Viscosity of a mixture of gases at low pressures.		49
VAPO	R PRESSURE, BUBBLE AND DEW POINT CALCULATION Coefficients for the Antoine equation are calculated from 2 points of vapor pressure vs temperature. Bubble and dew points of the mixture may also be calculated.		54
SING	LE-STAGE EQUILIBRIUM CALCULATION The program calculates the compositions of liquid and vapor streams from a flash vessel for mixtures of up to 10 components.		59

Program Title	PH OF	WEAK	ACID/BASE	SOLUTIONS	BY	NEWTON-RAPHSON	ITERATION	
Contributor's Na	ıme	Alan	J. Rubin					
Address		2577	Kenview					
City		Colur	nbu s		Stat	e Ohio	Zip Code	43209

A flexible program for the calculation of the pH **Program Description, Equations, Variables** of a weak acid or a weak base solution by Newton-Raphson iteration of $x^3 + Kx^2 - (KC + K_y)x - KK_y = f(x)$ where x, K and C are (H^{+}) , K_{a} and C_{a} , respectively, for weak acid solutions or (OH^{-}) K_h , C_h for weak base solutions. The first estimate of x in the iteration is $x_0 = (KC + K_W)^{\frac{1}{2}}$ To calculate the pH of a weak acid solution, K (after conversion from pK, K, or pK_h , if necessary) is entered with Key B, followed by C_a molar entered into Key D (mg/1 may be converted to \underline{M}). Hydrogen concentration is flashed for one second followed by pH. To recover (H⁺), press A. To calculate the pH of a weak base solution K_h and C_h are entered, as above, and (OH) is flashed for one second followed by pOH. To convert to pH, press R/S. pH or pOH may be recovered at any time from memory without going through the entire calculation by pressing f, D. The error in x, f(x)/f'(x), may be recalled by f,B. Operating Limits and Warnings R1 through R6 are used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s)

- 1.) Find the pH of 1.0×10^{-4} M acetic acid solution if K is 1.8×10^{-5} .
- 2.) Find the pH of 3.0×10^{-6} M NH₄Cl solution if the pK_b for ammonia is 4.75.
- 3.) Calculate the pH of 0.002 molar KCN solution (pK $_{a}$ = 9.32).
- 4.) What is the molar concentration of a 150 mg/l solution of calcium if its molecular weight is 40.
- 5.) If the K_a of a weak acid is 1.68×10^{-3} , find the pK_b.

Reference(s)

J.N. Butler, "Ionic Equilibrium. A Mathematical Approach," Addison-Wesley, Reading, Mass., 1964.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
/	Load side 1			0.00
2	(Optional) Enter molecular weight	MW	5 C	. MW
3	CALC. OF PH OF WEAK AUD SOLUTION			
a	Enter Ka directly	Ka	B]
a	or after conversion of pka	pKa	A	•
a	or after conversion of Kb	K	+ =	
			8	
a	or after conversion of pkb	PKb	A	
			B	Ka
Ь	Enter molar conc. directly	Ca	D	
6	or after conversion from mg/l conc.	mg/L	C D	
3	CALC. OF PH OF WEAK BASE SOWTION			
C	Enter Kb directly	K	В	
2	or after conversion of pKb	PK	AB	
C	or after conversion of Ka	Ka	f E	
			В	
<u>_</u>	or after conversion of pka	PKa	AIR	
<u> </u>			В	Kb
	Enter molar conc. directly	G.		
d	or after conversion of mg/l conc.	mg/l	[C] D	
e	Convert poH to pH	ļ	RIS	
4		pH	[A] [£#+,}
-	or pH to SOH-7	ρH	$A \mid R/$	
<u> </u>	or pH to pOH	PH	f A	
	To determine error of calculation		+ B	7
6	To recover ph or poh		<i>f</i> [c	, , , , , , , , , , , , , , , , , , , ,
7	Convert pOH to pla or pks to pka		f A	
	(or reverse)	pKa	[f]A	ρK
	or [H+] to EON-] or Ka to Kb	Ca:1-7		- 1 (147
	(or reverse)	[OH-]	 	[H4]
	¥ CU+7 a Call-7 is line/a al /			. 1
	* [H+] or [OH-] is displayed for one			
-	scend followed by pH or pOH			
				1
		LL	<u>' </u>	

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	f LBL A	31 25 11	Convert		RCL 3	34 03	
	CHS	42	pka to Ka		f 1X	3154	
	lo*	32 53			STO 2	33 02	
	q SCI	32 23	PKb to Kb	060	GTO 1	22 01	
	RIS	84	PH to EHT) etc.		n RTN	35 22	
	g LBL @	32 25 15			q LBL b	322512	f(x) /f'(x)
	EEX	43	30		RCL S	3405	
	CHS	42	Ka and Kb			32 23	
	i	01			g sci Ris	84	DISPLAY K
010	4	04	or EH+7 and EOH-7		RCLI	34 01	
		35 52	CA Jana LOH 3		h RTN	35 ZZ	
	h ׺y	81			f LBL 1	31 25 01	
	g ScI	32 23			RCL2	3402	Newton - Raphson
	h RTN	35 22		070	RCLI	3401	100 100
	+ LBL E	31 25 15	<u></u>		+	61	iteration
	L06	31 53	Convert		RCL Z	34 OZ	
	CHS	42	EH+3 to pH		X	71	
		31 23	SOH-3 to poh				
	f FIX		Ka to pka of		RCL3	34 03	
020	RIS	32 25 11	Ka to pka etc.		RCL 2	51	
-	glaca	32 25 11	Interchange pka and pkb pH and pOH			34-02 71	
 	4	01	, , , , , , , , , , , , , , , , , , ,		X RCL4	3404	
		04	pka and pka		7024	51	
-	hxzy	35 52 51	4	080		34-02	
			pr and post	-	RCLZ		
-	+ FIX	31 23			3	03	
	h RTN	35 22			X	71	
	f LBL C	31 25 13	Calculate molarity		RCLI	34-01	
	EEX	43	from mg/R	<u> </u>	2	02	
200	3	03	<i>J</i> , <i>C</i>		×	71	
030	+	81			+	61	
ļ	RCL 6	34 06			RCLZ	3402	
<u> </u>	÷	81			×	71	
	950	32 23			RCL 3	3403	
	RIS	84	DISPLAY HW	090	_	51	
	RCL 6	3406			÷	81	
	f FIX	31 23			5TO 5	33 05	
	h RTN	35 22			h ABS	35 64	
	f LBL B	31 25 12	ENTER K		RCL Z	34 02	
	5701	3301			9	69	
040	h RTN	35 22			9	09	
	a LBL c	32 25 13	ENTER HW		+	81	
	5706	3306	210,12,0 7,10		h x = 4	3552	
	4 RTN	35 22			a xey?	3271	TEST
	+ LBLD	31 25 14	A	100	GTO fd	22 31 14	
	ECL 1	34 01	C-> PH OF PUH		RCL 2	3402	
	×	71	C-> pH or pOH Calculates		RCL 5	34 05	
	EBX	43	Calculates		_	51	
	CHS	42	Constants		STO 2	33-02	
	1	01			GTO 1	22 01	ITERATE
050	4	04			RIS	84	
	+	61			aLBLd	32 25 14	- 0H 05 00H
	5703	33 03			RCLZ		/ /
	h ls+x	35 82			a Sci	34 02 32 23	from memory
	RCL 1	34-01		110	h PAU	35 72	FLASH [X]
	×	71			GTO E	22 15	DISMAY PX
	5to 4	33 04					• / • ·
			REGIS	STERS			
0	1 1	2 11			6 44	7	8 9
	K	Hest	3CK+Kw 4 KKw	5fx)/f			
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
Α	E	3	С	D		E	I

6" Program Listing II

STEP	KEYE	NTRY	KEY	CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COM	MENTS
								170			_	
								170		\\	\dashv	
											4	
120											4	
											-	
								100]	
								180			\dashv	
											4	
											-	
130]	
											-	
								100			7	
	-							190			-	
											4	
											-	
140												
											-	
	ļ							200			4	
											1	
]	
								-			-	
150											4	
											\dashv	
											_	
								210			4	
											1	
											-	
160											1	
												,
								220			4	
											4	
	L				LAE	D C-> pH d -> pH			FLAGS		SET STATUS	
^A ρX→X ^a ρX ₀ ↔	; U	* K1	•	c mg/	Q→ M	D C→PH	EX-	م-41 ¿ Xم	0	FLAGS	TRIG	DISP
a pxa	PXb	f00/40	ø; K		w f	d → PH	e X	<u></u> 4→Χ _b	1	ON OFF	DEG 🗆	FIX 🗷
0	1	USO	L	2						1 🗆 🗷	GRAD □ RAD □	FIX SCI ENG n 2
5	6	3		7		8	9		3	2 S 3 5	nau 🗆	n_2_
-						L	<u> </u>		<u> L</u>	3 🗆 🔀		n_ ~

Program Title Acid-base equilibrium (diprotic)

Contributor's Name Charles Kingston

Address John Jay College, 445 w 59 37

City New York State MY. Zip Code 10019

Program Description, Equations, Variables Program determines [H30+] or pH of a solution of a dibasic acid and/or its salts. Required input are:

K; and K_2 : First and second equilibrium constants of the acid.

Ca: Initial conc. of the acid (H2A)

Cs.i: Initial conc. of the first salt (NaHA)

Cs.i: Initial conc. of the second salt (Na2A)

The following equations are used. (x = [H30+])

Mixture of (in Ha0)

Equation

1. H2A $x^{\mu} + K_1 x^3 + (K_1 K_2 - K_W - K_1 C_4) x^2 - (K_W K_1 + 2K_1 K_2 C_4) x - K_W K_1 K_2 = 0$ 3. Na HA $x^{\mu} + (C_{5,1} + K_1) x^3 + (K_1 K_2 - K_W - K_1 C_4) x^2 - (K_W K_1 + 2K_1 K_2 C_5, 1) x - K_W K_1 K_2 = 0$ 4. Na HA + Na2A $x^{\mu} + (C_{5,1} + 2C_{5,2} + K_1) x^3 + (K_1 K_2 - K_W + K_1 C_{5,2}) x^2 - (K_W K_1 + K_1 K_2 C_5, 1) x - K_W K_1 K_2 = 0$ 5. Na2A $x^{\mu} + (2C_{5,1} + K_1) x^3 + (K_1 K_2 - K_W + K_1 C_{5,2}) x^2 - (K_W K_1 + K_1 K_2 C_5, 1) x - K_W K_1 K_2 = 0$ Approximate values (used as starting values for the iterative solution) arc:

1. $x = (K_1 C_2)^{1/2}$ 2. $x = K_1 C_2 / C_{5,1}$ 3. $x = (K_1 K_2)^{1/2}$ 7. $x = K_2 C_{5,1} / C_{5,2}$ 5. $x = (K_W K_2 / C_{5,1})^{1/2}$ 7. $x = K_2 C_{5,1} / C_{5,2}$ 5. $x = (K_W K_2 / C_{5,2})^{1/2}$

Operating Limits and Warnings

The representations HEA, NaHA, etc. are used in a general sense and do not refer to any particular substance.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

sample Problem(s) What is the H30+ concentration for a solution containing 0.05 m sodium hydrogen oxalate and 0.01 m oxalic acid? What pH is this?

$$K_1 = 5.40 \times 10^{-2}$$
 $K_2 = 6.40 \times 10^{-5}$
 $C_4 = 0.01 \text{ m}$ $C_{5,1} = 0.05 \text{ m}$

```
Solution(s) Keystrokes
[A][7] .L
                                          → 0.00
                                                      00
2. 5.90 [EEX] [CHS] 2 [ENT] 6.40 [EEX] [CHS] 5 [A] → 5.40
                                                      - 02
3, .0/ [B]
                                          → 1.00
                                                      -02
  .05 [C]
                                          → 5.00
                                                      -02
5.
     [E]
                           Read [H30+]
                                         →5.54
                                                      -03
6. [f] [D]
                           Read pH
                                          → 2,26
```

Reference(s) J.G. Dick, <u>Analytical Chemistry</u>, McGraw Hill Book Co, 1973

User Instructions

Acid-Base	Equil	ibrium (Di	protic)		
$\begin{cases} \P^1 & \text{in } T \\ \mathbb{S} & K_1 \uparrow K_2 \rightarrow \\ \end{array}$	b⇒ Co	<u></u>	pH ■ Cs,2	→[0H-] -→[0H-]	- Z

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2			
	Initialize		FR	0.00 00
	Optional: To stop at approx. [H30+] or to			
	cancel stop at approx [Hz0+]		t C	1.00/0.00 00
4	Enter K, value	K,	ENTT	K,
1	Enter Ka value	Ka	A	k,
	Enter Ca (omit if Ca=0)	Ca M	B	Ca
7	Enter Csil (omit if Csi = 0)	Cs. M	C	Cs,1
8	Enter Csia Comit if Csia=0)	Cs,2 M	\mathcal{D}	Cs.2
	To set made for basic equilibrium		f B	
			E	[H3O+] W
11	Optional: To convert display to pH *		F D	pН
12	Optional: To convert display to pH Optional: To convert display [H2O+] to [OH-] For new case so to stee		¢ E	€0H-] M
13	it has ale do to step or			
	If K, and K2 are not to be changed, steps 4 and 5 may be omitted. All values for Ca, Cs,1 and Cs,2 must be entered for			
	steps 4 and 5 may be omitted. All values			
	for Ca, Cs, and Cs, = must be entered for			
ļ	each run (except 0)			
-	<u> </u>			
ļ	*[H:0+] may be recalled by:		RCL 4	[H30+] M
-	·			
	** If = mode is selected:			
10	Compute approx [H30+]		E	[H30+] M
104	(pH for approx. (HzO+7 will display w/pause)		R/S	рН
	•			EH30+] W
-				
-				
				l

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	+ TBT O	31 25 00	Solve quartic eq.		RCL 4	3404	
	STO 4	33 04	(,		DSP2	27 02	
	STO E	33 15			F!2	35 71 02	If basic mode set, con-
	£51	3571 01		060	G70 e	३२ 31 15	vert (on-) to [H30+]
	R/S	84			RTN	70 22	
	F?I	35 7/ 01			* LBL e	32 25 15	Convert [Hzo+) +o[OH]
	GSB d	32 22 14			RCL 8	34 08	CAUGES! [HIRA] 40(0H)
	FIX	31 23			÷	81	or reverse
	DSP8	23 08			1/X	35 62	1
010	H	64			RTN	35 22	
	1	01			* LBL A	3/ 25 11	1
	CHS	42			570 9	33 09	1
	STO I	35 33			*	33 09 35 53	1
	RCL 4	34 04		070	STO A	33 11	1
	RCL 3	34 03			RTN	35 22	1
	+	61			* LBL B	31 25 12	1
	RCL 4	34 04			STO B	33 12	1
	X	7/			310 8		1, , ,
	RCL 2	34 02			570+5	33 61 05	I sum to fn.
020	+	61			メデン	35 52	Indicator
	RCL 4	34 04			RTN	25 17	1
	X	71			* LBL C	35 22 31 25 13	1 1
	RCLI	34 01			STOC	33 13	1 1
	+			080	2		1
	RCL 4	34 04				02	1 2 2 2 2 4 6 640
-		71		-		33 61 05	indicator
	X RCL O				X=Y	35 52	l
-	+	34 00			KTN * IDI T	35 22	1
	RCL 4	61		-	* TBT D	31 25 14	l
030	4	34 04			STO D	33 14	۱.,
000		04		-	4	72 () 27	4 sum to fn.
	X	71		-		22 61 02	Indicator
	RCL 3	34 03		-	<i>x ≥ y</i>	35 52	1
	3	03		090	RTN	35 22	
	X +	71		090	·LBLE	31 25 15 34 11	Set up proper
		61		-		34 11	The proper
	RCL 4	34 04			570 3	33 03	coefficients used
	X	7/		-	RCL 9	3409	in all cases.
	RCL 2	34 02			X	71	Com 1.4
040	2	02			5TO 2	3302	Complete coefficients
040	X	7/			STO O	33 00	are calculated in
	+	61			RCL 8	34 08	subroutine pointed
ļ	RCL 4	3404		<u></u>	CHS	42	1
	X	71				33 61 02	to by function
	RCL 1	3401		100		33 71 00	Indicator (Reg. 5)
	+	61			RCLA	34 11	9 - 1
		8/			<u> </u>	71	
	RCL 4	3404			STO 1	33 01	
	x≑y	35 52			RCLC	34 13	
		33 51 04			ST0 +3		
050	CLX	44			RCLD	34 14	
	RCL 4	34 04				33 61 03	
		51		 	ST0 + 3	33 61 03	
	RND	3/ 24		110	RCL 5	34 05	Store for indicator
	X ± 0	3/ 6/		110	STO I	35 33	in I and go to (i) for
	GTO(i)	22 24			GTO (i)	22 24	in I and go to (i) for proper initial value.
	SCI	32 23	BEOU		+LBL 1	31 25 01	
	T ₁	<u> </u>	Ta IA	5 Funct	16 1 6	17	18 19
o a.	, a,	aa	3 Q3 xn;[H30*]	inducat	0 T	ľ	κω κ _Σ
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
	ľ.	-			1		
A	<u>, </u>	B 0	l c	D		E	I
Ι΄.	K , [Ca	C C Sel	C	s,2	approx [H30	s+] used
	•					<u> </u>	

Program Listing II

STEP	KEVI	ENTRY	KEA 4		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	IENTS
SIEP	RC		KEY C	7 11	COMMENTS		7	2	02	1	
 		LB		1 12			170	X	71	1	
	X			71				5TO-1	33 51 01]	
	STO	-2	33 5					RTN	25 12	1	
	57	07	33	3 07				* LBL 7	31 25 07	-K. L. C	4 D. 1
			31 22					RCLA	34 11	1,1,7,3,0,3,1	, Med 1
120		<u> </u>	34	67			-	RCL 4	34 09 71	1	
120		× 0	21	54 (K	(Ca)/2			X RCL C	34 13	1	
		0 0 L 2	31 25					X	71	1	
			31 25					STO-1	33 51 01]	
		LA		11			180	RTN	35 aa]	
		49	34	09				* LBL d	32 <u>25 14</u>	x pol-	
	د	(71	1/2			log	31 53	1	
		~		54 (k	(Kz) 72			CHS	42	1	
	GTO	0 0		00			-	FIX	31 23	1	
130	1		31 25					Pause RTN	35 72 35 22	1	
-		B 5 B 7	31 23					* 181 P	32 25 12	1	
		LA		ŧ 11				SF2	35 51 02	1	
		LB		12				RTN	35 22]	
	 	.		71			190	* LBL c	32 25 13]	
	T		33 5					F?I	35 71 01	1	
		LC	3 4	1 13				GT0 9	22 09	1	
				81 K	Ca/Cs,				01	1	
		00		00				3 = 1	35 51 01	4	
140			31 25					RTN * LBL 9	35 22	1	
140		. A		+ 11 + 14				0 - 131 1	31 25 09	1	
	X		1	71				CFI	35 61 01	1	
	STC	+2	33 6	1 02				RTN	35 22	1	
		- 8		108			200	* LBL a	32 25 11	1	
		4		t 09				EEX	43]	
	X			71				CHS	42]	
ļ		D	34	14				1	01	1	
ļ			ļ	81				4	04	1	
150	1 22			54 (K	w K2/C3.2) 1/2	L		STO 8	33 08	1	
150	4 LB			00				CLX	33 P5	1	
		87	31 25					STO 5 CF2	35 61 02	†	
		LA	31 %					SCI	32 23	1	
		D		14			210	DSP2	23 02	1	
		K		71				RTN	35 22	1	
	STO	+2	33 6]	
		L9	34	109				***]	
		<u> </u>	34	13							
160	X		-	7)						-	
160	RCL		34	14	c /a					1	
-	GT		99	81 152	C311/C212					1	
			31 25	- 05	Cs,1,/Cs,2 K1K2Ca + Reg					1	
	RC	LA	34	+ 11 -2	KikaCa + Ra	1	220			1	
	RCL	- 9	34	71		•				1	
	X			71						1	
	RCL		34	71			-			1	
 	L X		L		ABELS			FLAGS	<u> </u>	SET STATUS	
AVAL	ا حب	В С.		C Cs,1		E	[H30+]	0	FLACS		DIED
A K.1 F	13 2	La			D C5,2			1 . 2	FLAGS ON OFF	TRIG	DISP
141	T	b	→	=:	PΗ	1 7	C-H0	1 = ?	0 🗆 🗷	DEG 🔼	FIX 🗆
0 U Se	4	1 Haf	•	2 Na HA	3HZA -NAHA	4 1	NazA	² b →	1 🗆 🗷	GRAD □ RAD □	SCI 🔀 ENG □
5 used			+NAZA	7 Used	8	0	CFI	3	2 X 3 X	TIAD L	n_ 2

Program Title Weak Acid/Base Titration Curve

Contributor's Name Karl Marhenke

1710 Wilshire Drive Address

Zip Code 95003 Aptos CA City State

Program Description, Equations, Variables Consider a weak acid, H,A. The electroneutrality of any solution containing this acid and its ions requires that

 $[H^{+}] + [Na^{+}] = [OH^{-}] + [H_{A}^{-}] + 2[H_{A}^{2}] + 3[HA^{3}] + 4[A^{4}].$

The [Na⁺] term must be included once neutralization is begun; NaOH is assumed to be the titrant. The acid ion concentrations must be expressed in terms of the dissociation constants and C, the "analytical concentration" of the acid:

 $C = V_{a} \frac{M}{a} / (V_{a} + V_{b})$, where $V_{a} =$ the volume of $H_{4}A$ taken at the outset

M = the molarity of the HLA solution taken

V_h = the volume of titrant added

See any beginning text on quantitative analysis for the derivation of the formulas for the fraction of each ionic species as a function of [H⁺]. The results are used here. Let $Q = 1 + \frac{K_1}{\Gamma H^{+}1} + \frac{K_1 K_2}{\Gamma H^{+}1^2} + \frac{K_1 K_2 K_3}{\Gamma H^{+}1^3} + \frac{K_1 K_2 K_3 K_4}{\Gamma H^{+}1^4}$. For each acid ion concentration

in the equation above, we now substitute its fraction times C:
$$[H^+] + [Na^+] = \frac{K_w}{[H^+]} + \frac{CK_1}{Q[H^+]} + \frac{2CK_1K_2}{Q[H^+]^2} + \frac{3CK_1K_2K_3}{Q[H^+]^3} + \frac{4CK_1K_2K_3K_4}{Q[H^+]^4} .$$

After substituting for Q, clearing fractions and collecting terms (a straightforward but very involved process, and one which is hard (for me at least) to do without errors) we arrive at the 6th degree equation given at the top of the next page.

Operating Limits and Warnings If you make a bad guess for pH and the calculator iterates until your patience is exhausted, you can press R/S to halt the process, enter a guess which you hope will be better, and start again by re-entering your volume of titrant and pressing A. But make sure the primary and secondary storage registers are set "normally"; i.e. make sure that R contains an integer equal to the number of K's entered plus 1. Press f Prs if necessary. (You may have pressed R/S while the primaries and secondaries were switched.)

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

$$[H^{+}]^{6} + (K_{1} + [Na^{+}])[H^{+}]^{5} + (K_{1}K_{2} + [Na^{+}]K_{1} - CK_{1} - K_{2})[H^{+}]^{4}$$

+
$$(K_1K_2K_3 + [Na^+]K_1K_2 - 2CK_1K_2 - K_1K_4)[H^+]^3$$

+
$$(K_1K_2K_3K_4 + [Na^+]K_1K_2K_3 - 3CK_1K_2K_3 - K_1K_2K_4)[H^+]^2$$

+
$$([Na^{+}]K_{1}K_{2}K_{3}K_{4} - 4CK_{1}K_{2}K_{3}K_{4} - K_{1}K_{2}K_{3}K_{4})[H^{+}] - K_{1}K_{2}K_{3}K_{4}K_{4} = 0.$$

The equation is now re-written using the letters a, b, c, d, e, and f to represent the coefficients after the first one (i.e., 1):

$$[H^{+}]^{6} + a[H^{+}]^{5} + b[H^{+}]^{4} + c[H^{+}]^{3} + d[H^{+}]^{2} + e[H^{+}] + f = 0$$

The Newton-Raphson method for finding roots of functions is discussed in most beginning calculus texts. If the polynomial in hydrogen ion on the left side of the above equation

is called
$$g([H^+])$$
, the Newton-Raphson formula is
$$[H^+]_{n+1} = [H^+]_n - \frac{g([H^+]_n)}{g^*([H^+]_n)}$$

where $[H^{\dagger}]_{n} = a$ trial value of $[H^{\dagger}]$;

 $[H^{\dagger}]_{n+1}$ = a new value of $[H^{\dagger}]$, closer to the root of the equation than $[H^{\dagger}]_n$ was; $g([H^+]_n)$ = the function g evaluated at $[H^+]$ = $[H^+]_n$ and

 $g'([H^{\dagger}]) =$ the first derivative of g evaluated at $[H^{\dagger}] = [H^{\dagger}]_{*}$.

Here,
$$g'([H^+]) = 6[H^+]^5 + 5a[H^+]^4 + 4b[H^+]^3 + 3c[H^+]^2 + 2d[H^+] + e$$
.

The iteration process continues, using each value of [H+] generated as the trial value for the next iteration, until a value for hydrogen ion is generated which differs by 1% or less from the previous value. The last value of hydrogen ion obtained is then converted to pH and presented as the answer. The 1% figure corresponds to \pm 0.0043 in the pH, which means that these calculated pH's should agree about as well as can be expected with values obtained in the laboratory, since junction potentials, activity coefficients, etc., are not taken into account.

I have studied quite a few of the equations obtained in this computation, not only 6th degree ones but 5th, 4th and 3rd degree ones (see below). In every case I looked at, all 6 (or 5, 4, or 3) roots are real, but only one (the one of interest) is positive.

If a pH corresponding to too small a [H+] is taken, it is quite possible for the calculator to iterate its way to the largest of the negative roots. To prevent an "Error" message being produced when the calculator tries to take the log of a negative root, each value of hydrogen ion produced is checked at step 119 to see if it is negative. If it is, the program returns to LBLa (step 076), the pH is lowered (or

raised, if the calculator is in "base mode") by 2 units, and the iteration process started anew. The calculator will thus always get the right answer, but the process can be quite lengthy if a really bad initial guess is made. See the "warning" on the previous page.

If a tribasic acid, H_A is used, K_{μ} is zero, and the 6th degree equation given at the top of this page reduces to a 5th degree equation:

$$[H^{+}]^{5} + (K_{1} + [Na^{+}])[H^{+}]^{4} + (K_{1}K_{2} + [Na^{+}]K_{1} - CK_{1} - K_{2})[H^{+}]^{3}$$

+
$$(K_1K_2K_3 + [Na^+]K_1K_2 - 2CK_1K_2 - K_1K_1)[H^+]^2$$

+
$$([Na^+]K_1K_2K_3 - 3CK_1K_2K_3 - K_1K_2K_W)[H^+] - K_1K_2K_3K_W = 0$$

Here
$$g([H^{+}]) = [H^{+}]^{5} + a[H^{+}]^{4} + b[H^{+}]^{3} + c[H^{+}]^{2} + d[H^{+}] + e$$
 and $g([H^{+}]) = 5[H^{+}]^{4} + 4a[H^{+}]^{3} + 3b[H^{+}]^{2} + 2c[H^{+}] + d$

If a dibasic acid, H_2A is used, K_3 and K_4 are both zero, and the 6th degree equation given at the top of the previous page reduces to a 4th degree equation:

$$[H^{+}]^{4} + (K_{1} + [Na^{+}])[H^{+}]^{3} + (K_{1}K_{2} + [Na^{+}]K_{1} - CK_{1} - K_{w})[H^{+}]^{2}$$

$$+ ([Na^{+}]K_{1}K_{2} - 2CK_{1}K_{2} - K_{1}K_{w})[H^{+}] - K_{1}K_{2}K_{w} = 0$$
Here $g([H^{+}]) = [H^{+}]^{4} + a[H^{+}]^{3} + b[H^{+}]^{2} + c[H^{+}] + d$ and
$$g^{*}([H^{+}]) = 4[H^{+}]^{3} + 3a[H^{+}]^{2} + 2b[H^{+}] + c$$

Finally, if a monobasic acid, HA is used, K_2 , K_3 and K_4 are all zero, and the 6th degree equation reduces to

$$[H^{\dagger}]^{3} + (K + [Na^{\dagger}])[H^{\dagger}]^{2} + ([Na^{\dagger}]K - CK - K_{w})[H^{\dagger}] - KK_{w} = 0.$$

Here, $g([H^{\dagger}]) = [H^{\dagger}]^{3} + a[H^{\dagger}]^{2} + b[H^{\dagger}] + c$ and $g'([H^{\dagger}]) = 3[H^{\dagger}]^{2} + 2a[H^{\dagger}] + b$

The 6th degree equation can <u>not</u> be used for fewer than 4 K's. It is true that f will turn out to be zero; unfortunately, the remaining polynomial is a multiple of $[H^+]$ and thus $[H^+] = 0$ will be a root and this is not the right answer. Thus a separate routine must be used for each different number of K's entered. The parts of the routines that are common to all are performed under LBL 8 and LBL 9.

If the weak electrolyte being titrated is a base rather than an acid, the mathematical treatment is identical. However, the equation that must be solved is an equation in [OH] rather than in [H⁺], and the role of [Na⁺] is assumed by (say) [Cl]. Subroutine LBLd converts pH to pOH or vice versa, as needed, since even when titrating a base, the answer is pH and not pOH.

To get the computation of the coefficients a, b, c, d, e and f into few enough steps, I had to make the program calculate coefficients b through f by means of a loop. I hope that the chart on the next page will explain how the first part of LBLc does this. If 4 K's are entered, R, will be 5 initially, and the loop begins with the first column. If 3 K's are entered, R, will be 4 initially, and the loop begins with the second column, and so on. If n = 1000 K's are entered, it is necessary that n = 1000 be zero. Thus the initializing step n = 1000 is necessary to initialize the registers properly.

If the volume of titrant added is zero, the program automatically takes $\sqrt{K_1C}$ as its first trial [H⁺]. For titrant volumes greater than zero, usually the most practical trial pH to use is the one that was obtained for the previous volume (assuming that the previous volume was smaller than the present one!). It is not even necessary to key it in, as it is already in the display.

```
Sketch(es)
```

```
Sample Problem(s) For phosphoric acid, H_3PO_4, K_1 = 7.5 \times 10^{-3}, K_2 = 6.2 \times 10^{-8} and K_3 = 1 \times 10^{-12}. Plot a titration curve from 0 to 75 ml of base added for 50.00 ml of 0.200 M H_2PO_4titrated with 0.500 N NaOH.
```

Solution(s): For a complete solution for purposes of a plot, calculations of the pH at approximately 45 different titrant volumes are required. For purposes of illustration the following 15 calculations will suffice:

```
0.000
[f] [E] -----
 [C]
                        1; Base mode
 [C]
                        O; Acid mode (correct)
7.5 [EEX] [CHS] 3[E] 6.2[EEX] [CHS] 8[E] [EEX] [CHS] 12[E]
50[ENTER ] .2[ENTER ] .5[D] ----- 3.000 (number of K's entered)
THEN:
                              20.4[A]-- 20.400 Vol.
O[A] --- 0.000 Vol.
                                                             39.8[A]-- 39.800 Vol.
          1.454 pH
                                         5.527 pH
                                                                        9.142 pH
                              21[A] --- 21.000 Vol.
10[A] --- 10.000 Vol.
                                                             40.1[A]-- 40.100 Vol.
                                                                        9.832 pH
          2.192 pH
                                         5.930 pH
15[A] --- 15.000 Vol.
                              25[A] --- 25.000 Vol.
                                                             40.8[A]-- 40.800 Vol.
          2.637 pH
                                         6.730 pH
                                                                       10.584 pH
19.4[A]-- 19.400 Vol.
                              35[A] --- 35.000 Vol.
                                                             45[A] --- 45.000 Vol.
          3.654 pH
                                         7.685 pH
                                                                       11.457 pH
20[A] --- 20.000 Vol.
                              39[A] --- 39.000 Vol.
                                                             75[A] --- 75.000 Vol.
          4.677 pH
                                         8.483 pH
                                                                       12.845 pH
```

```
Reference(s) "A General Acid-Base Titration Curve Computer Program", G.L. Breneman, Journal of Chemical Education 51, 812-813 (197-)
```

Any beginning quantitative analysis text, such as Skoog & West, Fritz & Schenck, etc.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load both sides of card			0.000
2	Initialize		f	
	(Optional) Set "base mode"		C	1
	" Reset "acid mode" *		C	0
4	Enter dissociation constants	К ₁	E	K ₁
'	(If necessary)		E	K ₂
		K ₂	E	_
	(If necessary)	K ₃	(E	K ₃
5	(If necessary) Enter volume of weak acid or base to be titrate	K ₁	ENT†	K4
2		 	1	
	Enter molarity of " " " " " "	<u>M</u>	ENT†	
	Enter normality of strong base or acid titrant	N	[D] [# of K's
6	(Semi-optional) Enter guess for pH **	pH est	ENT†	
	Enter volume of titrant added	V	A	pН
7	Repeat step 6 as often as needed to plot curve			
8	For a new problem go to 2.			
	•			
	*: When you press C, whether you get a "1" o	-		
	a "O" depends on the position of the program			
	pointer at the time the key is pressed. It ma	.		
	be necessary to press C twice to get the	f		
	response you want ("1" for base, "0" for acid)			
	response you want (" " for base, "O" for actu)	!		
	the A war of Paragraph and he amband TE			
	**: A guess for pH need not be entered IF:			
	1) The volume of titrant is going to be zero			
	OR			
	2) The pH already in the display (usually from			
	the problem just done) is a suitable pH_{est} ;			
	it usually is suitable if the volume to be			
	entered is greater than the volume just			
	used.			
		LL		

97 Program Listing I

16				71-	ı v 8 1 am		74 11	-			
STEP	KE	Y ENTRY	KEY CODE	C	DMMENTS	STEP	KE	YENTRY	KEY CODE		COMMENTS
	001	*LBLC	21 13				0 57	ŔĊĹŨ	36 00	#K's +	·l→Rz; Rz now
	902	SF0	16 21 00	Reset F	O to acid mode		<i>0</i> 58	STOI	35 46	read	for step 90
	903	0.0	99				0 59	RCL1	36 Ø1	K,	
		RTN	96 24				059 060	RCL1 RCLA	36 11	[Nat]
	004										_
	005	*LBLA	21 11	Val. 02			061	+ 540	-55		
	<i>006</i>	X=0?	16-43	Vol. =0?	N 1 CC		062	₽≇S	16-51	Store	eain R _{so}
	007	SF2	16 21 02	Y: set F2	N: leave it off		<i>063</i>	ST00	35 00	Store	culli Kso
(998	PRTX	-14	1HP-67us	er should delete)		064	₽≢S	16-51	17	
	009	RCLB	36 12				065	RCL1	36 01	K,	
(010	X#Y	-41				<i>066</i>	RCLC	36 13	C	
	011	X	-35				067	X	-35	-	
	012	LSTX	16-63				068	√X	54	√K,C':	EH*]triel if Vol.=0
	013	RCLD	36 14				069	F2?	16 23 02	Was	Vol. =0?
	014	+	-55				070	GT01	22 01		gin iterations
	015	÷	-24				071	GTOB	22 12		e pH _{ost} first
	016	STOA	35 11	[Nat] -	D		072	*LBL0	21 00		A
	010 017	RCLE	36 15	LIVA 1	r\A		073	RCL:	36 45		T
										9	10.4
	018	LSTX	16-63 -34				074	X OTO:	-35	See	P.4]
	019	÷	-24				075	<i>GТОЬ</i>	22 16 12		
	020	STOC	35 13	C→R _C			<i>076</i>	*LBLa	21 16 11		T
	021	R1	16-31				<i>077</i>	2	0 2	~ .	
1	022	STO8	35 0 8	pHest -	· R _x		078	F0?	16 23 00	Chan	ge pH _{est} by±2
	023	RCL0	<i>36 00</i>	1	•		079	CHS	-22		, ,
	024	ST07	35 07	Initialize	coeff. counter		080	ST+8	35-55 08		<u> </u>
	025	*LBLc	21 16 13	2	A		081	*LBLB	21 12		
	026	RCL7	36 07		Ţ		082	RCL8	36 08		
	027	STOI	35 4 <i>6</i>				083	GSBal	23 16 14		
	028	ISZI	16 26 46				084	CHS	-22		
	029	RCL:	36 45				0 85	10×	16 33	ΓH+7	= 10 ^{-pH}
	030 030	RCLA	36 11				086	*LBL1	21 01	F(1)	10
	031	+	-55						16-51		
	032 032	DSZI	16 25 46				0 87	₽≇S			
					201		088	ENT†	-21		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	033	RCLI	36 46 36 43		ite coeff's.		089	ENT†	-21		I stack with [H+]
	034	RCLC	36 13 25	(See p.			090	GTO:	22 45		orrect N-R routine
	035	Х	-35	addition	al explanation)		091	∗LBL5	21 05	Roul	tine for 4 K's
	036		-45		1'		092	6	06		^
	037	RCL i	<i>36</i> 45				093	X	-35		
	038	X	-35				094	RCL0	36 00		
	039	EEX	-23				095	5	<i>0</i> 5		
	040	CHS	-22				096	GSB6	23 06		
	041	1	Øi				097	RCL1	36 01		
	042	4	04				098	4	0 4		
	043	-	-45			1	099	GSB6	23 0 6	Sta	rt forming f([H+])
	044	*LBLb	21 16 12			1	100	RCL2	36 0 2		, 5 151 ming 1 (E17 3)
	045	DSZI	16 25 46				101	3	03 03		
	046	6700	22 00			1	102	GSB6	23 0 6		
	047	RCL7	36 07			1	103	RCL3	36 0 3		
	047 048	XZI	16-41						30 83 02		
	048 049	λ≠1 Χ ≠ Υ	-41				104	2 cena			
							105	GSB6	23 06 36 04		.[.
	050	P#S	16-51 75-45				106	RCL4	36 04		<u> </u>
	051	STO:	35 4 5				107	GSB8	23 08		
	052	₽≢§	16-51				108	RCL3	36 03		↑
	053	7	07 75 46		1		109	GSB7	23 07	_	
	054	STOI	35 46				110	RCL4	36 04	Cont	inue forming f([H])
	0 55	DSZ:	16 25 45				111	GSB7	23 07		
	056	GT0c	<u>22 16 13</u>	ı	₩		112	RCL5	<i>36 0</i> 5		Ý
					REGI	STERS					
⁰ #K's	+1	1 K ₁	² K ₂	³ K ₃	4 K ₄	⁵ 0		⁶ O	7Counter	r 8 pl	est [H ⁺] trial
S0 a		S1 b	S2 c	S3 d	S4 e	S5 f		S6 g'([H+1 \$7	S8	S9
		<u> </u>	В	l c		D			ĪE .		I Control
	[Na [†]	<u>ֿ</u>	\overline{N}_{b}		С	Į V	a		MaVa		Control

Program Listing H

Program Title	EQUATIONS OF STATE	
Contributor's Name		HEWLETT-PACKARD 1000 N. E. Circle Blvd. Corvallis, Oregon 97330
City	State	

Program Descriptic

This card provides both ideal gas and Redlich-Kwong equations of state. Given four of the five state variables, the fifth is calculated. For the Redlich-Kwong solution, the critical pressure and temperature of the gas must be known. They are not needed for ideal gas solutions.

Values of the Universal Gas Constants

Value of R	Units of R	Units of P	Units of V	Units of T
8.314	N - m/g mole - K	N/m²	m³/g mole	K
83.14	cm ³ - bar/g mole - K	bar	cm³/g mole	K
82.05	cm³ - atm/g mole - K	atm	cm³/g mole	K
0.7302	atm - ft³/lb mole - °R	atm	ft³/lb mole	°R
10.73	psi - ft³/lb mole - °R	psi	ft³/lb mole	°R
1545	psf - ft³/lb mole - °R	psf	ft³/lb mole	°R
	·			

Critical Temperatures and Pressures

Substance	T _c , K	T _c , °R	P _c , ATM
Ammonia	405.6	730.1	112.5
Argon	151	272	48.0
Carbon dioxide	304.2	547.6	72.9
Carbon monoxide	133	239	34.5
Chlorine	417	751	76.1
Helium	5.3	9.5	2.26
Hydrogen	33.3	59.9	12.8
Nitrogen	126.2	227.2	33.5
Oxygen	154.8	278.6	50.1
Water	647.3	1165.1	218.2
Dichlorodifluoromethane	384.7	692.5	39.6
Dichlorofluoromethane	451.7	813.1	51.0
Ethane	305.5	549.9	48.2
Ethanol	516.3	929.3	63
Methanol	513.2	923.8	78.5
n-Butane	425.2	765.4	37.5
n-Hexane	507.9	914.2	29.9
n-Pentane	469.5	845.1	33.3
n-Octane	568.6	1023.5	24.6
Trichlorofluoromethane	471.2	848.1	43.2

Operating Limits ar

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title	Equations:	A SECOND SECOND COMMENTS AND ADMINISTRATION OF SECOND
Contributor's Name	Ideal acco	
	Ideal gas: $PV = nRT$	
Address	Redlich-Kwong:	
City	-	
	$P = \frac{nRT}{(V - b)} - \frac{a}{T^{1/2} V (V + b)}$	
Program Descripti	$a = 4.934 \text{ b } nRT_c^{1.5}$	
Program Descripti	h = 0.0967 nRT _c	
	$b = 0.0867 \frac{nRT_c}{P_c}$	
	where:	1977 1971 1971 1971 1971 1971 1971 1971
	P is the absolute pressure;	
	V is the volume;	ALL MANUFACTURE AND ADDRESS OF THE STATE OF
	n is the number of moles present;	
	R is the universal gas constant;	
	T is the absolute temperature;	
	T_c is the critical temperature;	
	P _c is the critical pressure.	
	Te is the efficient pressure.	
	Remarks:	
	P, V, n and T must have units compatible with R.	
	At low temperatures or high pressures, the ideal gas law does not represent the behavior of real gases.	
	No equation of state is valid for all substances nor over an infinite range of	
	conditions. The Redlich-Kwong equation gives moderate to good accuracy for a variety of substances over a wide range of conditions. Results should be used with caution and tempered by experience.	
Operating Limits	Solutions for V, n, R and T, using the Redlich-Kwong equation, require an iterative technique. Newton's method is employed using the ideal gas law to	
	generate the initial guess. Iteration time is generally a function of the amount of deviation from ideal gas behavior. For extreme cases, the routine may fail to converge entirely, resulting in an "error".	
	Registers R_0 , R_1 and R_{S0} — R_{S9} are available for user storage.	
	•	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

User Instructions

EP	[1	OUTPUT DATA/UNIT
	- STEP	INSTRUCTIONS	INPUT Data/Units	KEYS	OUTPUT DATA/UNITS		DATA/ONIT
	_ 1	Load side 1 and side 2.					
	_ 2	Select Redlich-Kwong (1.00) or					
	_	ideal gas (0.00) using mode					
	_	toggle.		f A	1.00/0.00		
	_ <u>3</u>	If you selected ideal gas in					
	- 	step 2, skip to step 5.					
	4	Input critical temperature	T _c	0 B	T _c		
	- 	and critical pressure.	P _c			===	
	— _ 		P _c	f C	P _c		
	_ 5	Input four of the following:					
	_	Absolute pressure	Р	A	P		
	_ _	Volume	V	В	V		
	_ _	Number of moles	n	G	n		
	_	Universal gas constant	R	0	R		
	_	Absolute temperature	Т	Œ	Т		
	6	Calculate remaining value:					
		Absolute pressure	7	A	Р		
	_ []	Volume		В	V		
		Number of moles		G	n		
		Universal gas constant		D	R		
		Absolute temperature		•	Т		
	7	For a new case, go to steps 2,					
		4, or 5 and change values or					
		mode.					
						,	

97 Program Listing I

22			71 1 S. m.	= 3 = L) U		L	
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP H	EY ENTRY	KEY CODE	COMMENTS
00	1 *LBLa	21 16 11		057	*LBL8	21 08	Ideal gas solution
99		16 23 00	Redlich-Kwong ideal	058		16 21 01	for n, R and T.
99		22 00	gas toggle.	059		21 09	
99		96 22 00		066		36 0 5	
98 98		16 21 00		061		36 06	
				062		-35	
00		24		063 063		36 07	
00		21 00				30 07 -24	
99		61	ł	964 968			
00		16 22 00		965		36 08	
01		24	Chana T	966		-24	
01		21 16 12	Store T _c .	067		36 09	
01		16 22 03		968		-24	
01		<i>35 13</i>		969		35 45	Cton if ideal and
01		24		976		21 00	Stop if ideal gas
01		21 16 13	Store P _c .	971		16 23 00	is desired.
91		16 22 03		972		24	
91	7 STOD	<i>3</i> 5 14		073		- 23 01	Calculate P by
01	8 RTN	24		974		22 00	Redlich-Kwong
01	9 ∗LBLA	21 11	P code.	975	*LBL2	21 02	
02		<i>8</i> 5		976	F1?	16 23 01	
02		22 00		977	GSB1	23 01	
92		21 12	V code.	978	*LBL0	21 00	
02		0 6		0 79	RCLE	<i>36 15</i>	
92		22 00		686		36 0 9	
92		21 13	n code.	981		-35	
02 02		27 10 07		082		36 Ø6	
02 02		22 0 0		983		36 12	
02 02		21 14	R code.	084		-45	
02 02		21 14 08	k code.	085		35 0 4	
				086 086		-24	
<i>03</i>		22 00 31 15	T	087 087		36 11	
93		21 15	T code.	088		36 11 36 09	
03		0 9					
03		21 00	_	089		54	
03		16 22 01	Store input.	096		-2 4	
03		35 4 <i>6</i>		091		35 02	
03		-31		092		36 <i>0</i> 6	
03		<i>35</i> 45		093		-24	
03		16 23 03		094		16-63	
03	9 RTN	24		095		<i>36 12</i>	
94	0 1	01		09 <i>6</i>		-55	
94	1 STO:	35 45	Dummy 1.00 for un-	097	' ST03	<i>35 03</i>	
04	2 GT0:	22 45	known and GTO ideal	098	} ÷	-24	
04	3 *LBL5	21 05	gas.	099	-	-45	
94	4 *LBL6	21 06	Ideal gas solution	100	RCL5	<i>36</i> 05	
94		36 07	for P and V.	101	-	-45	Calculate f(P).
04		36 08		102	GSB:	23 45	l
04		-35		103		-24	Calculate f'(P).
04		36 0 9		104		35-45 45	
04.		-35		105		36 45	Loop again?
05		36 05		106		-24	r J
<i>05</i> .		36 06		107		16 31	l
05.		-35		108		-23	
05. 05.		-33 -24		109		-22	l
95. 95.		35 45		116		04	
95: 95:		33 43 22 00		111		16-35	
				112		16-33 22 02	l
05	6 *LBL7	21 07			6102	22 02	
		To To	REGIS	STERS	T _G	T 7	8 9
0	1	² a/T ^{1/2}	$\begin{vmatrix} 3 & (V+b) & 4 & (V-b) \end{vmatrix}$	5 P	6 V	1	$\begin{bmatrix} 8 & R & \end{bmatrix} $
60	C1	S2	S3 S4	P S5	S6	n	R
S0	S1	32	55 54	J)	130	3'	
				D		E _	I
Α	a	В	C T	P _C		nR	Control
	~			c			33

Program Listing II

SI	EP K	EY ENTRY	KEY COD	E	COMMENTS		STEP	KE	Y ENTRY	KEY CODE	СОММ	ENTS
	113	RCLi	36 45	Displ	lay result o	f		69	Χs	53		
	114 115	RTN ≭LBL6	24 21 06	itera				70	÷	-24		I
	116	RCL6	36 0 6	$\frac{9 \text{ A}}{9 \text{ b}}$.71 .72	RCL2 X	36 0 2 -35		1
	117	ENT†	-21	j a v				73	-	-45		
	118	+	-55]				74	RCLE	36 15		ı
	119	RCLB +	36 12 -55	į.				75	X	-35		l
	120 121	RCL2	-33 36 02					76	RCL:	36 45 -24		
	122	X	-35					177 178	÷ RTN	-24 24		l
	123	RCL3	36 03					79	*LBL5	21 05	Dianlaw D	
	124	RCL6	36 0 6					80	LSTX	16-63	Display P	.
	125 126	Χz	-35 53					181	+ CTOE	-55 75 AF		
	127	÷	-24					182 183	STO5 R/S	35 0 5 51		
	128	RCLE	36 15					84	*LBL1	21 01		
	129	RCL9	36 0 9				1	85	RCL7	36 07	Calculate	a and b.
	130	x RCL4	-35 36 04					86	RCL8	36 0 8		
	131 132	XCE4	53					187 188	x STOE	-35 35 15		
	133	÷	-24					189	31UE	-62		
	134	-	-45					190	6	99		~
	135	RTN	24					91	8	0 8		
	136 137	*LBL9 RCLE	21 09 36 15	$\frac{9 \text{ P}}{2 \text{ P}}$				192	6	06 67		
	131 138	RCL4	36 Ø4	01				193 194	7 RCLD	67 36 14		
	139	÷	-24					195	÷	-24		
	140	RCL2	36 02				1	196	X ≠ Y	-41		
	141	_2	02 -24					197	RCLC	36 13		
	142 143	÷ RCL9	-24 36 09					198	X	-35 -35		
	144	÷	-24					199 200	x STOB	-33 35 12		
	145	RCL6	36 06					201	LSTX	16-63		
	146	÷	-24				2	202	Х	-35		
	147	RCL3 ÷	36 03 -24					203	RCLC	36 13 54		
	148 149	- +	-55					204 205	x 1 X	54 -35		
	150	RTN	24					206	^ 4	Ø4		
	151		21 07	aР	a P			207		-62		
	152	*LBL8	21 0 8	$\frac{\partial P}{\partial n}$ or	$\hat{a} = \frac{\partial r}{\partial R}$			208	9	0 9		
	153 154	RCL9 RCL6	36 09 36 06					209 210	3 4	03 04		
	155	X	-35					211	Ψ Χ	-35		
	156	RCL4	36 04					212	STOR	35 11		
	157	Χz	53				1	213	RTN .	24		l
	158 150	÷ RCL6	-24 36 06								1	
	159 160	ENT†	-21]	
	161	÷	-55					-			1	İ
	162	ROLB	36 12					-			ł	
	163	+ pri E	-55 36 15								1	
	164 165	RCLE ÷	36 13 -24				220]	
	166	RCL6	36 06					-			1	
	167	÷	-24					\vdash			1	
_	168	RCL3	36 03	<u> </u>	251.0				FLACO		CET OTATUS	
A	———P	B ↔V	С		BELS □ ↔R	E _	——— →T	0	FLAGS R-K	FLACC	SET STATUS TRIG	DISP
а	R-K?	h		<u>↔n</u>		 е	· I	1	a,b	FLAGS ON OFF	,	
0	Used	$\frac{\Gamma_{\rm C}}{1}$ a,		P _c Iter	3	4		2	u , D	1 🗆 🗹	DEG 型 GRAD □	FIX 🗹 SCI □
5	P	6 V	<u> </u>	n	8 R	9		3	Calc	2	RAD 🗆	ENG ₂ □ n
					ı .,					1 0 140		

Program Title Van der Waals Gas Law

Contributor's Name Hewlett-Packard

Address 1000 N.E. Circle Blvd.

City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables ___ The Van der Waals gas equation is given by $(P + \frac{a}{\overline{V}^2})$ $(\overline{V} - b) = RT$ where $\overline{V} = \frac{V}{n}$

Pressure and temperature may be solved for directly, but n and V must be calculated from the positive root of this cubic equation in \bar{V} :

$$\bar{V}^3 - \bar{V}^2 (b + \frac{RT}{P}) + \bar{V} \frac{a}{p} - \frac{ab}{p} = 0$$

The program solves this equation by fast, non-iterative techniques (see 2nd reference) and V and n can then be calculated. The critical temperature, pressure, and molar volume are given by $\bar{V}_C = 3b$, $P_C = \frac{a}{27b^2}$ $T_C = \frac{8a}{27bR}$

NOTE: The constant R is preprogrammed and is initially in R $_3$. Also subroutine e may be of some use by itself as it calculates $\sqrt[3]{x}$ for positive or negative x.

Operating Limits and Warnings Temperatures must be in °K, pressures must be in atmospheres, volumes must be in liters.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

ketch(es)							The second of the second of the second	The second second second second second
		The second of th		 				
						3		
****	1							
			•		 			

Sample Problem(s)

- 1) What is the temperature of .250 moles of Helium with a volume of 2.00 ℓ . and a pressure of 2.5 atm. a = .03412, b = .02370
- 2) What is the volume of 1.5 moles of CO_2 at 40° K and 10 atm. pressure? a = 3.592 b = .04267
- 3) What are the critical temperature, critical pressure and critical molar volume of H_2 where 0 = .2444 and 6 = .2661

Solution(s) (1) .03412; \(\daggeredge{c}\); .02370; [f] [A]; .25 [C] 2.00 [B] 2.5 [[]; [D] --->243.07°K

(2)3.592; \uparrow ; .04267; [f] [A] 1.5 [C] 40 [D] 10; [A]; [B] -----> .07 ℓ .

12.78 atm = Pc

 $33.16^{\circ}K = Tc$

Reference(s) This program is a modification of the User's Library program #01743A submitted by Timothy McGrath.

Daniels, F., and R.A. Alberty, <u>Physical Chemistry</u>, 3rd edition, John Wiley and Sons, Inc., New York, 1966, pp 18-20.

Abramowitz, M. and I.A. Stegan, Handbook of Mathematical Functions, Nat'l Bureau of Standards, 1964, p 17.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load side 1 and side 2			
2.	Input Van Der Waals constants a & b, &	a	ENT↑ A	.08
	initialize	<u> </u>		.00
3.	Input data (any 3 of 4)			
ļ	Pressure	P,atm.	A [Р
	Volume	V, liters	В	٧
	No. of Moles	n	С	n
	Temperature	T,°K		T
-				P,atm
4.	Calculate Pressure		L A _ L	1 , 4 (111
5.	Calculate Volume		В	V, Liters
	our our to raine			7, 210013
6.	Calculate No. of Moles		С	n, #
				—
7.	Calculate Temperature			T, °K
0	Coloulate Malau Valuma Va		E [ν̄c
0.	Calculate Molar Volume, Vc			Tc
	Critical Temperature, Tc Critical Pressure, Pc			Рс
	•			
9.	Optional: Calculate Molar Volume		GSB 5	V
10.	Optional: To Calculate ∛ -x		CHS	
-	i.e., cube root of a negative no.		L f L E	
	NOTE: Calculations may be made in any order			
	and repeated calculations may be made			
	without re-entering a & b, or other			
	values.			
-				
-				
 				

97 Program Listing I

			71	8 14111			_		27
STEP	KEY ENTR	Y KEY CODE	COMM	MENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	
224		04 45 44			057	3	03		
001	*LBLa	21 16 11	Initialia	ze:	058	÷	-24		
002		35 0 2			059	ST00	35 00		
003		-31	Store a,	5 & R	060	RCL5	36 6 5		
904	ST01	35 Ø1			061	3	0 3		
005		-62			062	÷	-24		
006	0	0 0				RCL0			
007	8	0 8			063		36 00		
008	2	02	1		864	Χs	53		
009	Ø	00	1		065	-	-45		
010		0 5	1		866	ENT†	-21		
011	6	<i>06</i>	1		06 7	ENT†	-21		
012	2	0 2	1		06 8	X	-35		
013	ST03	35 Ø3	-		069	X	-35		
014	RTN	24	1_		070	ST07	35 0 7		
015	*LBLA	21 11	Pressure		071	RCL5	36 0 5		
			Data enti	ry?	0 72	RCL0	36 00		
016	F3?	16 23 03			073	X	-35		
017	GTO1	22 01 27 05	Calculate	e P	074	RCL4	36 04		
018	GSB5	23 0 5			075	_	-45		
019	RCL3	36 Ø3			076	2	0 2		
020	RCLD	36 14			077	÷	-24		
021	Х	-35	1		078	RCL0	36 00		
022	RCL9	<i>36 0</i> 9	1 .		079	ENT†	-21		
023	RCL2	36 0 2	1		080	Χs	53		
024	-	-45	†		0 81	X	- 3 5		
025	÷	-24			082	-	- 4 5		
026	RCL1	36 01	1		083	ST08	35 0 8		
027	RCL9	<i>36 09</i>	1						
028	Χs	53	1		084 005	ENT†	-21 75		
029	÷	-24	1		<i>0</i> 85	X	-35		
939	_	-45	1		<i>086</i>	RCL7	36 07		
031	STOA	35 11	1		087	+	-55		
032	PRTX	-14			08 8	1X	54		
03Z	RTN	24	1		089	ST07	35 0 7		
033 034	*LBL1	21 01	Store P		090	RCL8	36 08		
	STOA	35 11]		091	+	-55		
035 036		24			092	€SBe	23 16 15		
036	RTN		Volume		093	RCL€	<i>36 08</i>		
037	*LBLB	21 12	Date ent	ry?	094	RCL7	36 07		
038		16 23 63		• •	095	-	-45		
039	GT02	22 02	Calculate	e V	096	GSBe	23 16 15		
040		36 0 2	1 00.100.100		097	+	-55		
041	RCL1	36 01	1		098	RCL0	36 00		
042	RCLA	36 11	1		099	-	-45		
043	÷	-24	1		100	RCLC	36 13		
044	ST05	35 0 5	1		101	X≠Y	-41		
045	X≢Y	-41	1		102	X	-35		
046		-35	1		102	STOB	35 12		
047		-22	1			PRTX	-1 4		
948		35 04			104			i e	
049	LSTX	16-63			105	RTN	24	Store V	
050		36 03			106	*LBL2	21 0 2	Stole V	
Ø51	RCLD	36 14			107	STOB	35 12		
05 2		-35			108	RTN	24	Moles	
053	RCLA	36 11			189	*LBLC	21 13		
054		-24			110	F3?	16 23 03	Data entry?	
655 655		-55	1		111	GT04	22 04		
. 0 55		-33 -22			112	RCLB	36 12		
	- una				TERS	10	17	8 9 -	
⁰ Used	1 a	² b	³ R	⁴ Used	5 Used	6	7 Used	8 Used 9 -	
				S4	S5	S6	S7	S8 S9	
S0	S1	S2	S3	54	33	36	13'		
		10			D		E	I	
Α	D	В	C	n		г	[•	
I	P) V		n	٦	l			

97Program Listing II

28						-	
STEP	KEY ENTRY		COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113		36 09	T	16	9 PRTX	-14	1
		-24	Calculate n	•			
114	÷			17		-41	
115		35 13		17		16-63	
116	PRTX	-14	l	17	'2 ÷	-24	
117	RTN	24		17	'3 PRTX	-14	
118		21 04		17		24	
119		35 13	Store n	17		21 16 15	
120		24		17		16-45	Calculate
			Temperature				carcarace
121	*LBLD	21 14		17		16 21 01	3/
122	F3?	16 23 03	Data entry?	17		16 31	³ √ - X
123		22 03		17		03	
124	GSB5	23 05		18	0 1/X	52	
125	RCLA	36 11	Calculate T	18	1 YX	31	
126		<i>36 01</i>		18		16 23 01	
127		36 09		18		-22	
128		53					
				18		16 22 01	
129		-24		18	5 RTN	. 24	
130		-55					_
131	RCL9	<i>36 09</i>					
132	RCL2	36 0 2					1 1
133	-	-45					1
134	X	-35		190			1 1
135		3 6 0 3		<u> </u>			1 1
136		-24					1 I
137		35 14		<u></u>			-
							-l
138		-14					」
139		24					
140		21 03	Stone T				1
141	STOD	35 14	Store T				1
142	RTN	24					1
143		21 05	_		 		┥
144		36 12	Calculate V	200			-l
145		36 13	İ				- I
		-24			ļ		-l
146			1				_ I
147		35 09					
148		24	_				
149		21 15	Calculate V, Pc,				1
150	8	0 8					1 1
151	RCL1	36 01	Tc				1 1
152	X	-35			†	+	┥ ┃
153	9	09		-	 		┥ ┃
154		-24		210		+	- I
155		36 0 3	1	210		-	⊣
156		-24			ļ		↓
]
157		36 0 1	1				
158		09	1				ן ו
159		-24	1				η Ι
160		36 0 2	1			1	7 I
161	÷	-24	1				1 I
162	RCL2	36 0 2	1		†		- I
163		03				+	- I
164		-35		220		-	- I
165		-63 0 5	1	220	ļ	+	4
165		-63 ØJ -14	1				4
			1		ļ		4
167		-63 02	1	<u> </u>	ļ		4
168	÷	-24	L	<u> </u>	L		
			LABELS		FLAGS	<u> </u>	SET STATUS
A D	В	,, C	D _ 5-		0	1	

	LABELS								SET STATUS	
Α	Р	В	٧	c n	^D T	√c,Pc,Tc	0	FLAGS	TRIG	DISP
^a In	itializ	b e		С	d	e 3/-x	1 3/ -X	ON OFF 0 □ ☑	DEG ⊅	FIX ☑
0		1	Sto P	² Sto V	³ Sto T	⁴ Sto n	2		GRAD □ RAD □	SCI □ ENG □
5	V	6		7	8	9	Data Entry	3 🗆 🖸	HAD L	n 2

Program Title Beer's Law/Absorbtivity Calculations

Contributor's Name Alan J. Rubin

Address 2577 Kenview

City Columbus State Ohio Zip Code 43209

Program Description, Equations, Variables A flexible program for the calculation of the parameters of the Beer-Lambert law used in colorimetry, A=abC+i, where i is the intercept (an error term). Given the light path, b, and a set of concentration, C, and percent transmittance, %T, or absorbance, A, data the program computes absorbtivity, a, by the least squares method:

$$a = \frac{1}{b} \frac{n\Sigma A\Sigma C - \Sigma AC}{n\Sigma C^2 - (\Sigma C)^2}$$

Initialization (Key A) clears all registers and sets b equal to 1 cm. Either conc., absorbance (Key D) or conc., %T (Key C) data may be entered. In the latter case %T is automatically converted to absorbance: $A = 2 - \log \%T$

Corrections to C,A or C,%T may be made by pressing f,D or f,C, respectively. If molecular weight has been entered (f,B), mg/l data may be converted to molar concentration via Key B.

After completing data entry, pressing R/S will display the absorbtivity for 5 seconds followed by the error intercept of A, i, and the correlation coefficient, r. Pressing R/S again repeats the sequence of a, i, r. Additional data may be added via Keys C or D, or corrected via Keys c or d. To enter a new data set requires only that Key A be pressed to clear the memories (initialize).

Operating Limits and Warnings Unless b is 1 cm, then a new value must be entered (f,A) each time the program is initialized. Initialization also removes molecular weight from memory. The least squares program requires at least two C,A data pairs to calculate a. Enter 0,0 into Key D if only one pair is available. Primary registers 0 through 9 are unused. Only side 1 of the program card needs to be loaded (side 2 can be used to retain the reduced data).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Prob	olem(s)					
Calc	ulate the molar absorbtivity					
for phosphate as determined by the			data			
"ascorbio	acid" method at 880 nm.	<u>%T</u>		mg/1 as P		
		a)	97.9	0		
Conc	entrations expressed as	ъ)	58.0	0.25		
phosphoru	0.50					
weight is	0.75					
Ligh	Light path was 1.2 cm. e) 14.5					
		f)	9.0	1.25		
Calution(a)	1. Kead program and initialize: A			1.0		
Solution(s)	2. Enter light path: 1.2 f,A			1.2		
	3. Enter molecular weight: 31 f,B			31.0		
	4. Enter data:					
	a) 01, 97.9 C			1.		
	b) .25 B \longrightarrow 8.06x10, 5	58 C —	-	2.		
	continue a s a bove			n _i		
	f) 1.25 B \longrightarrow 4.03x10 ⁻⁵ , 9 C -			6.		
	5. Obtain a, i, r : $R/S \longrightarrow 2$	1245, 0.0	0187, 0.9998	3 answers		

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1			0.0000
2	Initialize (clears all reg., sets b = 1)		A	1.0
3	(optional) enter light bath if b ≠ 1	ь	f A	ъ
4	(optional) enter molecular weight	MW	f B	MW
5	Enter molar conc. and absorbance	C _i , A _i	↑ D	ni
	or			
5	Enter mg/l and absorbance	C _i , A _i	↑ D	ni
	or			
5	Enter mg/l concentration	mg/l_i	B [<u>M</u> i
	Enter absorbance	Ai	D [ni
	or			
5	Enter molar conc. and percent transmittance	C _i , %T _i	↑ C	ni
	or			
5	Enter mg/l and percent transmittance	C _i , %T _i	† c	n _i
	or			
5	Enter mg/1 conc.	mg/l_i	B L	<u>M</u> i
	Enter percent transmittance	%T _i	C	ni
6	Continue data entry			n
	or correct an entry	$C_{\mathbf{k}}$, $A_{\mathbf{k}}$	↑ d	n-1
	or correct an entry	C _k , %T _k		n-l
7	Display absorbtivity, intercept and			
	correlation coefficient		R/S	a
				i
				r
8	To repeat a, i, r display		R/S	
9	To add further data, repeat step 5	_		
10	To enter a new set of data, go to			
	step 2 (initialize)			
	To calculate molar concentrations	MW	f B	MW
	from mg/l values	mg/l	B] []	<u>M</u>
	To calculate A from %T	%Т	E	Α
				ļ
-	To calculate %T from A	A	f	%T
				ļl
-				
-				ļ

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	f LBLA	31 25 11		T		51	T
	fcu REG	31 43	1		CHS	42	1
	+ PZS	3142	Clear all reg.		9 10×	32 53	1
	f CL REG	31 43	Set b=1	060	4 FIX	31 23	1
	1	01			1 42Q	2301	1
	STO A	33 11			h RTN	35 22	→ %T
	f FIX	31 23			f LBL 1	31 25 01	
	DSPI	23 01			f PSS	31 42	CALCULATE
	h RTN	35 22	i .		RCL9	34 09	absorbtivity
010	aLBLa	32 25 11	t		RCLB	34.08	
	STO A	33 11	enter b		×	71	intercept
	h RTN	35 22		***************************************	RCL 4	34 of	Cornelation Coet.
	f LBL B	31 25 12		***************************************	RCL 6	34 06	1
	RCLB	3412	$mg/l \rightarrow \mu$	070	X	71	1
	÷	81	1		2	51	1
	EEX	43	1		5TO C	33 13	1
	3	03			RCL9	34 09	1
	† ÷	81	1		RCL 7	34 07	1
	DSPZ	23 02			X	71	1
020	a Sci	32 23			RCL 6	3406	1
	L RIN	3522			gX2	32 54	1
	q LBL b		ENTER HW		72	51	1
	STOB	33 12	CHIER ILW		STOD	9314	1
	h RTN	35 22		080	+	81	1
	f LBL D	31 25 14			RCLA	34 11	1
	E +	21	ENTER Ci, Ai		÷	81	1
	& FIX	3123			4 FIX	31 23	1
	DSPO	23 00			DSP 0	23 00	1
	RIS	84			f -x-	3184	DISPLAY a
030	6-10 1	22 01	-> a,i,r		RCL 7	34 07	1
	q LBL d	32 25 14	CORRECT Ci, Ai		Rel 4	3404	1
	h 5-	3521	CORRECT Ci, A,		X	71	1
	RIS	84			RCLG	34 06	1
	STO 1	2201	> a, i, r	090	RCLB	34 08	1
	f LBL C	31 25 13			×	71]
	f GSBE	31 22 15	ENTER Ci, %Ti		_	51	1
	2+	21			RCL D	34 14	1
	f FIX	31 23			+	81]
	DSP 0	23 00			DSP4	2304]
040	RIS	84	_		f -x-	31 84	DISPLAY L
	GTO 1	2201	a, i, r		RCLC	3413]
	9 LBL C	32 25 13	CORRECT Ci, %Ti		RCLD	34 14]
	f 658 E	31 22 15	7, B'		4 V×	3154]
	h E-	3521		100	÷	81	1
	RIS	84	,		RCL9	34 09	1
	STO 1	22 01	a,i,r		RCLS	34 05]
	+ LBL E	31 25 15	EUTOR %T		×	71	1
	f LOG	31 53			RCL4	34 04	1
<u></u>	2	02			g x²	3254	1
050		51				51	4
ļ	CHS	42			f Vx	3154	1
	FFIX	31 23			÷	81	DISPLAY T
ļ	DSP4	2304	→ A	110	+ P€5	3142	1
-	4 RTN	35 22		<u> </u>	RIS GTO 1	22 OI	1
	g LBLE	32 25 15 OZ	enter a		h RTN	35 22	DISPLAY a, i, r AGAIN
 			REGI	STERS	FI KIN	1366	LOGERT WITH HOMIN
0	1	2	3 4	5	6.	7	8 9
ľ							
S0	S1	S2	S3 S4 EA	S5 E A ²	S6 E C	57 EC²	S8 S9
				ΣA	2.0	EC-	EAC n
Α	, 1	В	С		i	E	I
	Ь	MW	n ZAC-EAEC	nEC	-(zc) ²		

67 Program Listing II

			VI		. 6					33
STEP	KEY ENT	RY KE	Y CODE		COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	ļ					170			İ	
	-					170			ł	
	<u> </u>	<u> </u>							1	,
									1	
		1							1	
120										
						-				
						180			1	
									1	
									1	
100						-			1	
130	-								1	
	+	+				-			1	
	†								1	
						190]	
]	
									1	
									1	
	ļ									
140	 								1	
140									1	
									1	
									1	
						200				
									1	
150									†	
				1					1	
]]	
									1	
				l		210			-	
				1					1	
				1					1	
				1					1	
				1					1	
160				l]	
				l					1	
				l		-			ł	
	-					220			1	
				1					1	
				1					1	
				1					1	
				L			F1 4 0 0		CET OTATIO	
Δ	Τn		Ic.	LAE	BELS	F	FLAGS 0		SET STATUS	
A Initial	IZE D'N	gll > H	ςc,•	6 T↑	D CJA T	E 90T→A		FLAGS	TRIG	DISP
a 61		MW T		-9oT	d-c,-40T	e A→%T	. 1	ON OFF	DEG 🗆	FIX 🖭
0		-a,i,r	. 2		3	4	2	1 🗆 🖭	GRAD □	SCI □
5	6	ارکرک	7		8	9	3		RAD □	ENG n 4

Program Description I

Activity Coefficients from Potentiometric Data **Program Title**

Contributor's Name

John R. Joyce

Address

1825 S. 71st E. Avenue

City Tulsa

0klahoma State

Zip Code 74112

Program Description, Equations, Variables

Program calculates the standard Electrode Potential (S.E.P.) and the activity coefficients of a system from values of the concentration and observed EMF.

Equations Used: $E + E_{REF} + A \log m + B \log F - 0.0602 \sqrt{m} = E^{\circ} - A \cdot C \cdot m$

A = 0.059156 v / n

B = 0.059156 / n

E = measured EMF's in volts (V)

 E_{RFF} = E.M.F. of reference electrode

n = number of electrons invovled in the reaction

 $f = (v + v^+ v^-)$ e.g. for $CaCl_2: v_+ = 1; v_- = 2; v = 3, f = 4 f = [2^2 \cdot 1^1] = 4$

v = Total number of ions

Operating Limits and Warnings Program must be reinitialized for each case (e.g., push START, [C]) since the summation registers are used.

Greater accuracy may be obtained if values used as constants in program could be obtained to more significant figures. Also remember that the valid number of significant figures in the answer is related to the number of significant figures in the data.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

```
Sketch(es)
```

Sample Problem(s) For the following data determine the Standard Electrode Potential and the activity coefficient at each point.

```
F = 1
                             Potential (V)
Concentration (M)
    0.003215
                               0.52053
                                                        v = 2
                                                     E_{RFF} = 0.000
    0.004488
                               0.50384
    0.005619
                               0.49257
                                                        n = 1
                               0.47948
    0.007311
    0.009138
                               0.46860
                               0.45861
    0.011195
```

Pt (s) $| H_2 | H^+ C1^- (m) | AgC1 | Ag (s)$

```
Keystrokes: [C] 1[R/S] 2[R/S] 0[R/S] 1[R/S] --> 1
Solution(s)
.003215[ENTER] .52053[A] .004488[ENTER] .50384[A]
                                                              --> 2
.005619[ENTER] .49257[A] .007311[ENTER] .47948[A]
.0091384[ENTER] .46860[A] .011195[ENTER] .45861[A]
                                                                             (r<sup>2</sup>)
                                                              --> .9334
[D]
                                                              --> .2224
                                                                            (S.E.P.)
                                                              --> .0073
                                                                             (M)
.007311[ENTER] .47948[E]
                                                                             (Y)
                                                              --> .9188
```

Reference(s) Beech, G., <u>Fortran IV in Chemistry</u>, pp 64-6, John Wiley and Sons. 1975 Kemp, Marwin K., <u>Physical Chemistry for Engineering and the Physical Sciences: A Self-Paced Approach</u>, pp (10-142)-(10-144), University of Tulsa, 1974.

Literature value (REF 2) for S.E.P. is 0.2225.

User Instructions

Activity Coefficients	. 1
1	5
	•)
\bigcirc M+V (+) M+V (-) Start \longrightarrow S	.E.P M↑V→α

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load sides 1 and 2.			
2.	Initialize program		c R/S	
		f ,,	R/S	f ν
		E _{REF}	R/S	E _{REF} (V)
		n	R/S	n
3.	Input x value (molarity-M).	M _i	ENTER	Mi
4.	Input y value (electrode potential-V).	Vi	[A]	i+l
5.	Repeat steps 3 and 4 for all pairs.*			
6.	Compute coefficient of determination and the standard electrode potential.			V
7.	Input molarity	М	ENTER	M
8.	Input electrode potential	V	[M.Y.
9.	To insert additional data points repeat			
	step 3-6			
	•			
10.	For a new case go to step 2.			
	* A set of data pairs may be deleted by			
	entering them as in steps 3-4 and pressing [B].			
	h. c22 mg [2].			
		ļ		

97 Program Listing I

CTED	KEV ENTRY	, , , , , , , , , , , , , , , , , , ,	71		_	37
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTR		COMMENTS
00	1 ≭LBLA	21 11 -	Inserts data pairs	057 RCL5		
00	2 6SB1	23 01 ·	1	058 ×	-35	
99	3 Σ+	56	ł	0 59 RCL4		
99	4 RTN	24 -	1	060 X2		
00	5 *LBLB	21 12 -	Deletes data pairs	061 -	-45	
00		23 0 1 -	,	062 ÷	-24	
00		16 56	Į	0 63 STOE		S.E.P.
00		24		064 P‡S	16-51	Standard Electrode
00		21 13	Initializes program	065 RTN	24	potential.
01		16-53	and stores physical	066 *LBLE	21 15	Computes activity
01		16-51 .	parameters.	0 67 ST02		coefficient.
01		16-53	parameters.	068 R↓	-31	coerricient.
01		51		06 9 ST01	35 01	
01		35 11	F	070 RCLE	36 15	
01		51	1	071 RCLC	36 13	
01		35 12	lν	0 72 -	-45	
01		51	1 * ·	073 RCL2	36 02	·
		35 13	1 -	074 -	- 4 5	
01 01			E _{REF}	075 GSB2	23 02	1
01 60		51 25.14		076 RCL1	36 01	
92 92		35 14 24	#e ⁻	070 KCL1	16 3 2	
0 2			0.1		-35	
92		21 14	Calculates	078 × 079 -	-35 -45	
02		16-51	coefficient of		23 0 2	
02		36 08 .	determination and	080 GSB2	36 12	
82		36 06	standard electrode	081 RCLB		
92		36 04	potential.	082 ÷	-24 	
02		-35	1	083 RCLA	36 11	
92		36 0 9		084 L06	16 32	
02		-24		0 85 ×	-35	
93		-45		086 -	-45	
03	1 X2	53		087 GSB2		
93	2 RCL4	36 04		088 ÷	-24	
93	3 X2	53		0 89 10×	16 33	
03	4 RCL9	36	1	090 RCL1	36 01	Molanity
03	5 ÷	-24	1	091 PRTX		Molarity
<i>03</i>	6 CHS	-22		0 92 X ≠ Y		A - +
93		36 0 5	1	093 PRTX		Activity coefficien
03		-55	1	094 RTN		
03	_	-24	1	095 ∗LBL1	21 01	
04		36 06	1	09 6 ST02	35 0 2	Stores molarity and
94		53	1	0 97 ST03	35 6 3	potential values
04		36 09	 	098 R↓		then operates on
04		-24	1	099 ST01		the potential value
94 94		-22		100 RCLC		converting it to a
04 04		36 07		101 ST+3		form satisfactory
94 94		-55		102 GSB2		for a least-squares
94 94		-33 -24		103 RCL1		fit.
04 04		-24 -14	Coefficient of	104 LOG		
				105 ×	-35	l
Ø4		36 05 76 06	determination	106 ST+3		
95 95		36 06 -75		107 GSB2		
95 05		-35 75 04		100 RCLE		
95 95		36 04 36 00		100 KGE 109 ÷	-24	
9 5		36 08 35		103 = 110 RCLA		
05		-35		111 LOG		
95		-45		112 X	-35	
05	6 RCL9	36 09	REGIS		-33	1
0	¹ M	2 V	3 4	5 6	7	8 9
S0	S1	S2	γ S3 S4	S5 S6	S7	S8 S9
30			Σ Μ	Σ M^2 Σ	Σy^2	Σ My n
Α	f	В у	Ref.Electrode(v)	# e -	S.E.P.	I
		1				

97 Program Listing II

30		=			-	COMMENTS		CTED	VEV ENTRY	KEY CODE	COMM	FNTS
		Y ENTRY				COMMENTS		STEP	KEY ENTRY	KET CODE	COMM	
	113	ST+3	35-55	03							1	
	114			62				170			l	
	115	Ø		00							1	
		6		0 6							l	
	117	Ũ		00							l	
	118	2		<i>02</i>							1	
	119	RCL1	<i>36</i>	01								
	120	1X										
	121	X		35								
	122		35-45									
	123	RCL3	36									
	124	RCL1	36					180				
	125	RTN										
	126	*LBL2	21							-		
	127											
	128	0		00								
	129	5		05								
	130	9		09 09								
	131	1		61							1	
	132	5		01 05							1	
	133	6		өJ 06				ļ			ł	
	133 134	RCLB	36					190			1	
	135	KULB X	36 -					130			ł	
	135 136		36								ł	
		RCLD									Į.	
	137	÷		24							1	
	138	RTN		24							1	
140												
											l	
	1							200				
	1		†								1	
	1										1	
	1										1	
	+										1	
150	+-		+								t	
150	+-										1	
-	+-		+								1	
 	+-		+					-			1	
-	+-		-					210			1	
	+		-					210			1	
	+-							ļ			1	
	+										1	
											1	
											1	
L			_								1	
160											1	
											1	
											1	
											l	
								220				
											1	
L											1	
											<u> </u>	
						BELS			FLAGS		SET STATUS	
A M↑V	(+)	^B M↑V	(-)	^C STAF	RT _	D → S.E.P.	E M	tV→α	0	FLAGS	TRIG	DISP
а	` /	b	` '	c		d	е		1	ON OFF	, 1	
									<u> </u>	0 🗆 🗹	DEG ☑	FIX 🗹
0		¹ USE	D	2 J	١	3	4		2	1 🗆 🖬	GRAD □	SCI 🗆
5		6		7	-	8	9		3	2 🔲 🛂	RAD 🗆	ENG □
				ľ		Ī	ľ		Ĭ	3 □ 📈		n <u> 4 </u>

Program Description I

Program Title Crystallographic to cartesian coordinate transformations

Contributor's Name Craig Gr. Shaefer

Address 1335 Louisiana

City Lawrence

State Kansas

Zip Code 66044

program Description, Equations, Variables Program transforms coordinates from any crystallographic (oblique) system into a cartesian system and calculates the distances and angles between three points in space.

Equations used: variables: a,b,c = length of oblique axes

 $X = a + b \cos Y + c \cos \beta$ $Y = b \sin Y + c \cos (90-\beta) \cos \alpha'$ $Z = c \cos (90-\beta) \sin \alpha'$

cos a' = cos a - cos B cos Y sin B sin Y

α,β, X = angle between oblique axes
a;,b;,c; = coordinates of point
in oblique system
Xi, yi, Zi = coordinates of point
in cartesian system

Dij = distance from point i to j O1-2-3 = angle between points

 $\begin{pmatrix} x_i \\ y_i \\ z_i \end{pmatrix} = \begin{pmatrix} a & b \cos X & c \cos \beta \\ 0 & b \sin X & c \sin \beta \cos \alpha' \\ 0 & 0 & c \sin \beta \sin \alpha' \end{pmatrix} \begin{pmatrix} a_i \\ b_i \\ c_i \end{pmatrix}$

 $D_{ij} = \left[(x_1 - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 \right]^{1/2}$ $\theta_{i-2-3} = \cos^{-1} \left[\frac{(x_i - x_2)(x_2 - x_2) + (y_1 - y_2)(y_2 - y_2) + (z_1 - z_2)(z_3 - z_2)}{D_{i2} \cdot D_{23}} \right]$

Operating Limits and Warnings One of the distances, Dij, must be calculated before calculating the angle between three points. Input a,b,c before α , β , δ .

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11


```
Sample Problem(s) Suppose one has a monoclinic crystal with unit cell
                  a = 11.7/6 \text{ Å} A = 90.00^{\circ}
b = 8.102 \text{ Å} A = 106.14^{\circ}
c = 11.166 \text{ Å} A = 90.00^{\circ}
 dimensions:
 The crystallographic fractional coordinates of a nitrogen atom
  and two carbons bonded to the nitrogen are:
                         0.259 0.170
          N2 0.508
         Cı
                       0.410 0.189
                0.585
                         0.249 0.034
                0.430
  What are the rectangular coordinates of the three atoms, the
   distances (bond lengths) between the atoms and the augle
    between the three atoms?
Solution(s) 1.) 11.716 $ 8.102 $ 11.166 [A]
                                                   0.000
       2) 40.00 1 106.14 1 40.00 [f][A]
                                                  0.000
       3) 0.585 1 0.410 1 0.189 [B]
                                                  6.267
                                                          X,
4.) 0.508 1 0.259 1 0.170 [c] ->
                                    5.424 x2
                                                  3.322
                                                          Υı
5.) 0.4301 0.2491 0.034 [D]
                                    2.098 yz
                                                  2,027
                       > 4.932 K3
                                   1.823 ==
                                                 1.000
                                                          atom #1
                                     2.000 utom#2
                          2.017 y3
                          0.365 23
                          3,000 atom#3
```

```
Reterence(s) 6.) 12 [f][D] \rightarrow 1.500 Distance from atoms 1 to 2

[RCLB] \rightarrow 1.541 Distance from atoms 2 to 3

[RCLC] \rightarrow 2.499 Distance from atoms 1 to 3

7.) [E] \rightarrow 110.536 Angle from 1-2-3

1.500 Å N2

1.541 Å

C1 F10.5° A C3
```

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Input lengths of oblique axes	a	↑	
	- April 1979	lo		
		c	A	0.000
3	Input angles between oblique axes	ď	1	
	and and an an an an an an an an an an an an an	ß	1	
		Y	f A	0.000
4	Input coordinates of point #1	4,	1	
•	- April 2007 FOIR	bı	1	
		e,	B	X1, Y1, 7, 1.0
.5	Input coordinates of point #2	az	1	7,7,7,7
	THE COMMISSION OF POINT 2	b ₂	↑	
		Cz	c	x2, y2, =2,20
4	Input coordinates of point #3	43	A	N2, /2, -2,20
	- Apol Cooldinates of Point - 3	b ₃		
			[D] [X. V. 3. 3.A
7	Challeto diotana letana aista i l	£3	f D	$X_{3}, Y_{3}, \Xi_{3}, 3.0$
/	Calculate distance between points i und	ij		Dij
	Alaka, Tilah, Ilah			
	Note: The other two distances are		[
	also calculated and may be		[] []	
	recalled from the appropriate		1 1	
	register RCLA - Diz			
	RCLB -> D23			
	RCL C -> D13			
8	Calculate angle from 1 to 2 to 3		[E] [01-2-3
9	For new point to replace old one,			
	go to step 4,5, or b to replace the			
	apovopriate point.			
10	For new crystallographic system, go			
	to step 2.			
	Note: Step 7 must be performed			
	before step 8.			
	,			

67 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODÉ	J ' COMMENTS
001	*LBL A	31 25 11	store a, b, c		1	01	
-	STO 7	33 07			RTN	35 22	_
	ST0 8	33 08		060	* LBLC	31 25 13	i= 2
	STO 9	33 09				01	
	R+	35 53			4	04	
	STO 4	33 04			STOE	33 15	
	STÓ 5	33 05			R↓	35 53	
	R+	35 53			GSBO	31 22 00	
010	STO I CLX	33 01 44			RTN	35 a2	
	KTN					3) 25 14	i=3
	* LBL q	35 22 32 25 11	store a, B, Y		1	01	<i>(-)</i>
	STOC	33 13			7	07	
	R+	35 53	calculate	070	STOE	33 15	
	STO B	33 12	transformation		R↓	35 53	
	R+	35 53	matrix		GSB 0	31 22 00	
	cos	31 63			3	03	
	STOA	33 11	८७५		RTN	35 22	
	RCLC	34 13	¥		* LBL O		store ai bi ci
020	cos	31 63			STOB	33 12	•
	STOD	33 14	cos Y		Rt	35 53	
	STOX4	33 71 04			STOA	33 11	
	KCLC	34 13			R↓	35 353	
	SIN	31 62		080	STOO	33 00	
	STOE	33 15	sin Y		1	01	
	STOX5	33 71 05			STOI	35 33	
	RCLB	34 12				31 22 01	
	cos	31 63	4		a	02	
200	STOO	33 00	aos $oldsymbol{eta}$		Z OTZ	35 33	
030		33 71 07			GSBI	31 22 01	
	RCLB	34 12		<u> </u>	3	03	
	SIN	31 62	sinß		STOI	35 33	
	STO X 8	33 71 08		090		31 22 01	
		33 71 09	sin X	090	RTN	35 22	multiply oblique
	KCLE	34 15	Y COL			31 25 01	terripid to
	X	71	sin Ksinß		0	00	coordinate by
	RCL D	34 14	cos d		RCLO	34 00 31 22 02	
	RCL O	34 60 71	eas A		CySB2 RCLA	31 22 02 34 11	and add
040	RELA	34 11	cas & cosp			31 22 02	
	X = Y	35 52			ACLB	34 12	
	^	51			GSB2	31 22 02	
	X≓Y	35 52	AA1 A		PSE	35 72	dicplay rectangular
	÷	81	cas a - cas 8cos A sin Y sin A	100	RCLE	34 15	display rectangular coordinate
	STOX 8	33 71 08	The family		X=I	35 24	
	cos-1	32 63	•		Rt	35 53	store cartesian
	SIN	31 62	sin «		STO(i)	33 24	coordinates
	STOX9	33 71 09			ISE	31 34	
	CLX	44			R1	35 54	
050	RTN	35 22			X≑I	35 a4	
	* LBLB	31 25 12	ai bi ci→Xi yi Zi		STOE	33 15	
	 		i=1		RTN	35 22 31 25 02	- and farmer than
	STOE	33 15	6-1	110	* LBL 2 RCL(i)		perform matrix multiplication
<u> </u>	R↓			<u> </u>		34 2 4 7/	multiplication
	4580	35 53 31 a2 00			X +	61	•
	- 4400	, , , , , ,	REGI	STERS			
USE	D 1 a	2 0	3 4	5	6 0	7 ceosB	esingeos & c singsin &
			7 603 4	bsing			S8 S9
S0	S1 X ₁	S2	S3 2 , S4 X 2	S5 y 2	S6 ₹2	S7 X3	S8 y ₃ S9 2 ₃
A				n			1,
ľ	DIZ	D ₂₃	D ₁₃	US	ED	USED	USED

Program Listing II

STEP	KEY ENTRY	KEY C	ODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	MENTS
	 すらき	31	34			T-S Z	31 34		
	IS Z	31	34		170	RTN	35 22		
ļ	IS L		34			* LBL7	31 25 07	subtract	6 from I
-	RTN	35	22			RELI	35 34		
	* LBLd	32 25		calculate distan	nces	6	86		
	STOO	33	3 00	between point	τ 5		51		
120	 		01			STO I	35 33		
120	CTA T	7.	01			MTN	35 5 3		
	STOF	39	10			*LBL9	35 22 31 25 09	which o	listance
	GSB3	31 22	03	(X; - X;) \ (y; - y;) \ (\frac{1}{2}) \		1	31 a3 01 01	should	be
	05B3	31 2	2 03	("+ "1)2	180	à	02	displa	ved?
	GSB3		2 03	(71 70)		RCLO	34 00	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, .
	VX	31		(E1 - E)		X = y?	32 51		
	STO A	33		DIA		GTO (32 01		
	0		00	• • • • • • • • • • • • • • • • • • • •			01		
	GSB 3	31 22	03			3	03		
130	GSB3	31 22	2 03			x=y?	32 <i>51</i>		
	GSB3		2 03			GT 3	22 03		
	VX		154			KCLB	34 12	D_{23}	
	STOB	33	3 12	b_{23}	190	RIN	35 22		
	0 0	31 35	00		190		31 25 03	ъ.	
	G5B4	31 22	2 04			RCLC	34 13	D13	
	GSB4		04			KTN	35 az		
	GSB4	31 22	04				31 as 01 34 11	DIZ	
	STOC			Dis		RCL A RTN		- PIZ	
140	GT0 9	33		013			35 22 31 25 15	adoulate	anche for
	* LBL3		03	(x x .)2		P=S	31 42	1-2-	angle from 3
	RCL(i)	34		$(x_i - x_j)^{\infty}$		0	00	' ~	~
	GSB5	31 22		IST, IST, IST		STOF	35 33		
	RCL(i)	34		, ,	200		32 22 <i>15</i>	(X,-X)(X3 (Y1-Y2)(Y (Z1-Z2)(Z	- X2)+
	_		ज			GSBe	32 22 15	(x1-42)(x	3~Y2)+
	χ ^ą	32	54				32 a2 15	(z,-t1)(t	2-,51)
	+		61			RCLA	34 11	Diz	
	DSZ		33			÷	81		
	DSZ	31	33			KCLB	34 12	D23	
150	RTN	35	22			+	81		
	* LBL4			Dis		Cos-1	32 63	81-2-3	•
	RCL(i)	1	24	add-6 to I	-	P≓S	31 42		
	C ₁ SB 7		2 07	444 10 1	210	RTN	35 22		
	RCL(i)	1 34	4 24				32 25 15		
	X2	77	51 54		 	ACL(i)	31 34 34 24		
	₹ 2₹	32					31 22 05	IS7.IS	52, ISZ
	ISZ	31				Reli)	34 24	, ~	′
	ISZ	31				STUE	33 15		
160	ISZ.	31				-	51		
	IS7	31				G5B5	31 az as		
	Į5₹	31	34			RCLU)	34 24		
	+		61			RUE	34 15		
	‡\$¥	31	34		220	- 5	51		
	* IBI 5	3.5		add 3 to I	 	X	7/		
 	* LBL5	31 as		HAR O IO L	 	+ 1	31 22 07	subtract	6 from I
 	ISZ ISZ	31	34 34			GSB 7 RTN	31 22 07 35 22	3441.401	
			- 7/1	LABELS		FLAGS		SET STATUS	
A	c Baith	A C.	0 1 1 L	tcz ast batcz	Ε θ 1-2-3	0	FLAGS	TRIG	DISP
a161	h	1 -1	<u>421 0:</u>	d		1	ON OFF	iniu	DISF
atB				Vii	edot product		0 🗆 🗷	DEG 🗷	FIX 🕱
0 store ai bi	Ci Carte	sian coor.	2 matri:	$\frac{1}{1}$ icatio $\frac{3}{2}(x_i - x_j)^2$	4 D13	2	1 🗆 🗷	GRAD	SCI 🗆
5 I+3:		TIEM COUT	7 I-6=	7 8	10	3	2 🗆 🗷	RAD 🗆	ENG □ n_ 3
1 -13	-	1	+-0-	-	which distance	74	3 🗆 🗷		' '

Program Description I

Program Title Kinetics using Lineweaver-Burk or Hofstee plots

Contributor's Name R. Martin Bartholow

Address 1904 New Hampshire

City Lawrence State Ks Zip Code 66044

Program Description, Equations, Variables Using the methods of Lineweaver-Burk (1) or Hofstee (2) the program transforms reaction velocity (v) and substrate concentration (S) data into the general form of a line (y = bx + a). The values for the regression coefficients a and b

$$\frac{1}{v} = \frac{Km}{Vmax} \cdot \frac{1}{S} + \frac{1}{Vmax} \quad (1) \qquad v = -Km \cdot \frac{V}{S} + Vmax \quad (2)$$

and the coefficient of determination are determined by use of the formulas in the curve fitting program. Since b = Km/Vmax and a = 1/Vmax for the Lineweaver-Burk method and b = -Km and a = Vmax for the Hofstee method, the desired constants Km and Vmax may be calculated. Once constants for the line are found, projected values for velocity or substrate can be determined. If the same type of data in the presence of a competitive inhibitor is entered, then the Vmax' and Km' can be determined. Ki may be calculated from:

$$Km' = Km (1 - [i] / Ki)$$

Operating Limits and Warnings Because registers are cleared when selecting an operating mode, do not attempt to change from one type of curve fit to another during data entry. The methods of Lineweaver-Burk and Hofstee will give similar, but not necessarily identical results. For one discussion of the relative merits of each method see the last reference on page two.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) The following data on product formation at various substrate concentrations was determined in the presence and absence of a competitive inhibitor. Determine the Km and Vmax for product formation with and without the inhibitor. What is the Ki?

Substrate concentration (mM)	1.0	2.0	3.0	10.0	15.0
Product formed (uM/hr) (no inhibitor)	40	69	88	160	185
Product formed (µM/hr)	24	44	60	126	158
(6mM inhibitor)					

Solution(s) Dsp 4 fB	1.0000
40 A 69 A 88 A 10 160 A 15 185 A	6.0000
C	.9996 (r ²),.0042 (a),.0209 (b)
D	240.8340 (Vmax), 5.0275 (Km)
6.00 f A	1.0000
24 A 44 A 60 A 10 126 A 15 158 A	6.0000
C	.9999 (r ²), .0040 (a), .0377 (b)
D	249.7286 (Vmax'), 9.4028 (Km')
E	6.8943 (Ki)

Reference(s)A. Lehninger, <u>Biochemistry</u>, Worth Publishers, Inc., New York, 1970, pp 147-168. K. Plowman, <u>Enzyme Kinetics</u>, McGraw-Hill, New York, 1972, pp 7-38. J. Dowd and D. Riggs, J. Biol. Chem., <u>240</u>, 863 (1965).

User Instructions

Compet Lineweaver Hofstee $V \rightarrow S$ $S \rightarrow V$ Z

S $\uparrow V$ (+) $\downarrow S \uparrow V$ (-) $\downarrow r^2$, a, b $\downarrow V max$, Km $\downarrow Ki$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			0.00
2	Select type of analysis			
	a) Lineweaver-burk		$\begin{bmatrix} \mathbf{f} \end{bmatrix} \begin{bmatrix} \mathbf{B} \end{bmatrix}$	1.00
	b) Hofstee * **		fC	1.00
3	Input substrate concentration ^ ^ ^	S	Enter	,S
4	Input velocity	V	A	n + 1
5	repeat steps 3 and 4 for all data pairs			
6	compute and output coefficient of			
	determination (r^2) and of the line:			
	a and b			r ² ,a,b
7	optional: project substrate			
	concentration from a velocity	V	fD	ŝ
8	optional: project velocity from a			
	substrate concentration	S	f E	$\widehat{\mathbf{v}}$
9	compute and output Vmax and Km			Vmax,Km
10	Optional: if competitive inhibition			
	data is available, the competitive			
	mode may be selected * **			
	a) input inhibitor concentration	i	f A	1.00
	b) input substrate concentration	S	Enter	S
	c) input velocity	V	A	n + 1
	d) repeat steps 10b and 10c for all			
	data pairs			
	e) compute and output coefficient of			
	determination (r^2) and of the line:			
	a and b		C	r ² ,a,b
	f) compute Vmax' and Km'		D	Vmax',Km'
	g) compute Ki		E	Ki
	* This step may be skipped if the			
	substrate equals the display counter			
	XX m; - 7 - 4 - 4 - 6 3 - 4 3 - 4 3			
	** The last set of data pairs may be deleted by pressing $h R \psi$ then B .			
	A set of data may be deleted by			
	entering the set as in steps 3 and 4			
	and pressing B.			

67 Program Listing I COMMENTS STEP KEY ENTRY

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	VEV ENTRY	KEY CODE	47
001					KEY ENTRY	KEY CODE	COMMENTS
001	*Lbl b	32 25 12 35 61 00	LINEWEAVER-BURK		*Lbl d	32 25 14	PROJECT V→S
				 -	STO A	33 11	1
	SF 1		clear secondary	060	PYS	31 42	1
-	P'S		register	000	Rcl 2	34 02	
	Cl Reg	31 43		\vdash	1/X	35 62	
	P'S	31 42			Rcl 1	34 01	
	1	01			Rcl A	34 11	
	Rtn	35 22 32 25 13				35 71 01	
	*Lbl c	32 25 13	HOFSTEE		_1/X	35 62	
010	CF 1	35 61 01	Set flag 0 and	 	X<>Y	35 <u>52</u> 51	
	SF 0	35 51 00	clear secondary		_		
	P',S	31 41	register		x	71	
	Cl Reg	31 43	1 0820 001		F? 1	35 71 01	
	P S	31 41		070	1/X	35 62	
	1	01			P'>S	31 42	
	Rtn	35 22			Rtn	35 22	
			SUMMATION	+	¥Lbl e	32 25 15	PROJECT S → V
		35 61 03			STO A	33 11	
	*Lbl 8	31 25 08	orcar 2 rrag		P\s	31 42	1
020	F? 1		if flag 1 then	 	Rcl 1	34 01	1
	1/X	35 60	reciprocal	\vdash	RC1 1	34 02	1
	STO D	77 1/	r.ec_brocal	\vdash	RC1 A	34 11	
 	X 5 Y	33 14 35 52	1		F? 1	35 71 01	
 				080	1/X	35 62	
-	F? 1	75 (1	if flag 1 then	+			
-	1/X	35 62	reciprocal		X	71	
ļ	F? 0	35 71 00	if flag 0 then		+	61	
	GTO 9	22 09	go to label 9,	 		35 71 01	
	STO C		returning by 1b12	ļ	1/X	35 62	
	*Lbl 2	31 25 02 35 71 03	1	 	PS	31 42	
030			if flag 3 then∑-		Rtn	35 22	
	GTO Ø	22 00	_	+			COMPUTE b
	Σ+	21	compute sums		PSS	31 42	
	*Lbl 7	31 25 07	-		Rcl 8	34 08	
	Ent	41		090	Rcl 4	34 04	
	1	01	calculate n+1		Rcl 6	34 06	
	+	61			x	71	
	Rcl C				Rcl 9	34 09	
	X<>Y	34 13 35 52			÷	81	
	Rcl D	34 14			_	51	
040	X	35 52			Ent↑	41	
	Rtn	35 22			Ent↑	41	
	*Lbl B	31 25 12	DELETION			34 04	1 1
		31 25 12 35 51 03	20+ £10~ 2		Rcl 4		1
	SF 3	01	set flag 3	100	Rcl 9	32 54 34 09	1
	CITC	42				81	1
	CHS				+ Dol 5	34 05	
	V	35 53		 	Rcl 5		
	GTO 8	22 08	GOMPTIME TO A		X<>Y	35 52	
	*Lbl 9		COMPUTE V/S FOR			51	
050	÷	81	HOFSTEE		*	81	
050	STO C	33 13 34 14			STO 2	33 02	
	Rcl D			 	X	71	COMPUTE r ²
	XY	35 52 22 02		-	Rgl 6	34 06 32 54	
<u></u>	GTO 2	22 02		110	X-		
	*Lbl Ø		Σ -	110	Rcl 9	34 09	
	Σ-	35 21			*	81	
	GTO 7	22 07	2500	TERC	CHS	42	
		<u> </u>		STERS	• [6	7 •	8 _ 9
0 Vma	x la'	² b'	$\begin{vmatrix} 3 & \text{Km'} \end{vmatrix} \begin{pmatrix} 4 & \sum x' \end{vmatrix}$	$^{5} \Sigma x^{2}$	' ⁶ Σy'	7 Σ_{y}^{2} '	$\int_{0}^{\infty} \sum_{xy'} \int_{0}^{y} n'$
				0.5	100	67	S8 S9
so Vma	$\mathbf{x} = \begin{bmatrix} S1 \\ \mathbf{a} \end{bmatrix}$	S2 b	$\sum_{i=1}^{S3} Km$	$\sum x^2$	Σy	Σ _y 2	Σxy n
A u	sed	В	c used	D use		E Ki	I [i]

Program Listing II

STEP	KEY ENTRY	KEY CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	Rcl 7	34 07								
	+	61]			170				
	÷	81								
	Pause	35 72	1						**	
	Rcl 6	34 06	COMP	UTE a						
	Rcl 4	34 04								
	Rcl 2	34 02	1							
120	X	71	1							
	_	51	1							
	Rcl 9	34 09	1							
		81	1							
-	ST0 1	33 01	1			180				
-										
	Pause	35 72				 				
	Rcl 2	34 02								
	PK'S _	31 42								
	Rtn	35 22		CEODA A	NTD.	\vdash				
100	*Lbl D			SFORM a A		ŀ				
130	P'>S			Vmax AND						
<u> </u>	Rcl 1	34 01			_	 				
	F? 1	35 71 01	if	flag 1 t	hen					
	1/X	35 62	reci	procal,		100				
	STO_O_	33 00	othe	rwise v-		190				
<u></u>	Pause	35 72	inte	rcept is V	/max	<u> </u>				
L	Rcl 2	34 02	1			ļ				
	F? 1	35 71 01	if f	lag 1 the	n					
	GTO 4	22 04	labe	1 4						
	CHS	42	othe	rwise						
140	STO 3				b)					
	Pause	35 72	1	-slope (~ /					
	Rtn	35 22								
	*Lbl 4			or linewe	ave	r				
	Rcl 1			method		200				
		81	1 Dain	me onoa						
	STO 3	33 03	1							
	Pause	35 72								
	PS	31 42	1							
150	Rtn *Lbl a	35 22 32 25 11	COMP	ETTTTTE		 				
	CJ Pom	31 43	TNILIT	DIMUD		\vdash				
		74 / 0	1111111	DITUR						
	P's S	31 42		sitions	+					
 	ST i	35 33 01	brim	ary regis stores[i]	cer	210				
 	Rtn	35 22	and	stores[i]		+	·			
	*Lbl E	31 25 15	COME	UTE Ki		 				
-		31 25 15 31 42	1 COMP	OIT VI		\vdash				
 	P'S		1			\vdash				
	Rcl i	35 34				\vdash				
160	Rcl 3	34 03				 +				
100	P'S			ecalled f		┝──┼				
 	Rcl 3	34 03	seco	ndary reg		 				
	P'S	31 42	1			 				
	 	81	4			220				
	1	21	-			220				
	 -	51	1							
	* GEO E	81	1			\vdash				
 	STO E	33 15 35 72	1							
	Rtn	35 72		DELC.		L			CET CTATUS	
Δ	ĪΩ	10.0		BELS	ΙE		FLAGS		SET STATUS	
CAR SAW	(+) S^V	(-) [r ² .	a,b	Vmax, Km	C .	Ki	⁰ Linewea	FLAGS	TRIG	DISP
la	` b	I C		d T	e _	. 17	1	ON OFF		
compe	tit Line		stee	V→S	e _S -	→ V	Hofstee		DEG 🖾	FIX 🖾
Σ_	<u> </u>	2V	/s			(LWB)		1	GRAD □ RAD □	SCI □
5	6	7		8	9	, ,	³ ∑-	2		ENG D
		<u>Di</u>	splay	Σ-		v/s				

Program Description I

Program Title MIXTURE U	liscosities	
Contributor's Name Richard Address 23822 80 m	D. Hyman West	
city Edmonds	State Wash	Zip Code 98020

Program Description, Equations, Variables

This Program calculates the viscosity of a MixTure of gases using Chapman Enskog theory. The Wilke formula is used.

$$M_{mix} = \sum_{i=1}^{n} \frac{x_i u_i}{\sum_{j=1}^{n} x_j \Phi_{ij}}$$

$$\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j}\right)^2 \left[1 + \left(\frac{M_i}{M_j}\right)^2 \left(\frac{M_j}{M_i}\right)^4\right]^2$$

Xi = Mole fraction of component i Mi = Viscosity " i Mi = Molecular wieght of " i

Operating Limits and Warnings This Program is made for four gases
if using only 3 on 2 gases a 0 must be entened into the
extra Registers for mole fractions. And a non-zero number
must be entered for the Molecular wieght and viscosity
even though there are less than 9 gases being used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)						
		and annual facinities are a second description of the second				

at 1 atm	+ 293°K	from give	this gas mixture of the						
inde penden t	gases at	latn + 293	Κ						
Component	Χí	Mi	Mi (g						
1:02	.135	47.01	1462 X10-7						
2: O2	-039	32.000	2031 X107						
3: Nz	-828	28.016	1754 x10-7						
Solution(s)									
		24[N] O[C]							
		LOCAL TILL OF TO							
	[D] -> 1714.29912								
Thean	swen is 17	14 X10 - 7 gmsec	This agrees with						
11		1793 TO Within	•						

Reference (s)	R. By non Bird, Warnen E. Steward, Edwin N. Lightfoot.
	Transport Phenomena Indition
	John Wiley + Sons Inc. 1960

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Laid Side 1+20 (cand			
Z	In put Molecular wieght of	\mathcal{M}_{i}		
	Component (M.) must Bea			
	Non Zeno #			
3	Enter			
4	Input M2 (Must be \$0)	MZ		
5	Enter		[1	
6	Input M3	M 3		
7	Enten		[7]	
8	Input My "	MY	A	
9	Input Viscosity of 1 M,	и,		
10			[1]	
1/	Input M2 (Non Zeno)	M.		
(7			7	
13		Mz		
14	,		1911	
15		М4	13 1	
16	Input Male fraction of 1 X;	_X,		
12	Enten			
18	Input Xz	Xz		
19	Eriter	V		
20	Input X3 (Musse = O itanly 2 gas)	X3		
21				
20	Input X4 (X4=0 if only 2013)	X4		
	(gas mixture)			
2 2				
23	· · · · · · · · · · · · · · · · · · ·			Mmix
24	for a new case go To step			
	16 if only the mole fractions			
\vdash	Change,			
2	Tr			
25	If new gases are involved go to step 2			
\vdash	yo to step 2			
			1 1 1 2 2 2	
			· · · · · · · · · · · · · · · · · · ·	

97 Program Listing I

52				71	~ _	7					
STE	P KE	Y ENTRY	KEY CODE		COMMEN	TS	STEP	KE	Y ENTRY	KEY CO	DE COMMENTS
							·				
	001	*LBLA	21 11				l	0 57	RCLA	<i>36</i> 11	1
	002	CLRG	16-53				į	05 8	ST+0	35-55 00	6
							ı	0 59	RCL5	36 0	
	003	₽₽S	16-51				i				
1	004	CLRG	16 -5 3				}	060	RCLA	36 1	
	005	P≠S	16-51				1	061	X	-3:	5
	006	ST04					l	062	RCL0	36 00	A
			35 0 4				I	063	÷	-24	
	0 07	R4	-31				Ì				
	00 8	ST03	<i>35 03</i>				ł	864	ST09	35 0 5	
	009	R↓	-31				l .	<i>065</i>	RCL6	36 00	6
	010	STO2	35 0 2				ļ	0 66	RCL8	36 08	8
							1	067	RCL2	36 02	
	011	R↓	-31				l				
	012	STO1	35 01				ł	0 68	RCL4	36 0	
	013	RTN	24				ł	069	GSBE	23 13	
	014	*LBLB	21 12				ł	070	RCLD	36 14	4
							ł	071	Х	-3:	
	015	ST08	35 0 8				Ī		ST00	35 0	
	016	R↓	-31	i			ł	072			
	017	ST07	35 0 7				ł	073	RCL6	36 00	
	018	R↓	-31				ļ	<i>074</i>	RCL7	36 07	7
	019	ST06						075	RCL2	36 02	
			35 0 6					076	RCL3	36 0	
	020	R↓	-31				1				
	021	ST05	<i>35 05</i>				ł	077	GSBE	23 13	
	822	RTN	24				ŀ	<i>0</i> 78	RCLC	36 13	
	023	*LBLC	21 13				ļ	0 79	X	-3:	5
	024	STOD					l	080	ST+0	35-55 00	
			35 14				Ī			36 12	
	025	R↓	-31				ì	081	RCLB		
	026	STOC	35 13				ł	082	ST+0	35-55 00	
	027	R↓	-31				1	083	RCL6	36 00	6
	028	STOB	35 12				l	8 84	RCL5	36 0	5
							1	085	RCL2	36 02	
	029	R↓	-31				Ī			36 0 :	
	030	STOA	35 11				ł	086	RCL1		
	0 31	RTH	24				ł	0 87	GSBE	23 13	
	<i>032</i>	*LBLD	21 14				ļ	0 88	RCLA	36 13	1
	033	RCL5	36 05				1	0 89	X	-3:	5
	034	RCL8	36 0 8				l	090	ST+0	35-55 00	
				1			[091	RCL6	36 00	
	03 5	RCL1	36 01	1			Ì				
	0 36	RCL4	36 0 4	1			ł	092	RCLB	36 12	
	037	GSBE	23 15	1			ŀ	093	X	-3:	
	0 38	RCLD	36 14	ł			ļ.	094	RCL0	36 00	0
	039	X	-35	1			l	<i>09</i> 5	÷	-24	4
							l	096	ST+9	35-55 0	
	040	ST00	<i>35 00</i>	1			i				
	041	RCL5	36 0 5	†			ł	097	RCL7	36 07	
	04 2	RCL7	<i>36 07</i>	1			ł	098	RCL8	36 00	
	043	RCL1	36 01	1			ļ.	099	RCL3	36 03	3
	844	RCL3		j			l	100	RCL4	36 04	4
			36 0 3	1				101	GSBE	23 13	
	045	GSBE	23 15	1			1				
	046	RCLC	36 13	1			l l	102	RCLD	36 14	
	047	X	<i>-3</i> 5	1			ł	103	Х	-35	
	048	ST+0	35-55 00	1			ŀ	104	ST00	35 0 0	Ø
	049	RCL5	36 05	1			l.	105	RCLC	36 13	
							l	106	ST+0	35-55 00	
	<i>050</i>	RCL6	36 06				[
	0 51	RCL1	36 01	1			1	107	RCL7	36 07	
	<i>052</i>	RCL2	<i>36 02</i>	1			ŀ	108	RCL€	36 00	
	05 3	GSBE	23 15	1			ł	109	RCL3	36 00	3
	<i>0</i> 54	RCLB	36 12	1			ŀ	110	RCL2	36 82	
				1			1	111	GSBE	23 1	
	055	X	-35	L			l				
L	0 56	ST+0	35-55 00			REGIS	Siena	112	RCLB	36 12	
0		1	2	3	4		5.		6	7	8 9
		M.	1 112	M	,	My	м.		Mz	1 M =	
S0		S1	S2	00	10.4		S5		S6	S7	S8 S9
1		M:	S2 Mj	S3 M	; ľ	Mj					
A	. ,		В			<u>`</u>	D			E	I
1	X,		ΓX_{3}	1	X_3		1	X4		Ī	
	, . (1 / 4		٠, ۶			· /		L	

			97	78- 4				7			53
STEP KE	Y ENTRY	KEY (CODE	COMMENTS		STEP	KE	Y ENTRY	KEY CODE	COMMI	ENTS
113	X		35		7				75.00		
							169	STO2	35 0 2		
114	ST+0	35-55					170	R↓	-31		
115	RCL7	36					171	ST01	35 01		i
116	RCL5	36					172	RCL4	36 04		ı
117	RCL3	36	0 3				173	RCL3	36 03		
118	RCL1	36					174	÷	-24		
119	GSBE	23									
120	RCLA	36					175	4	Ø4		
							176	1/X	52		
121	X		35				177	γ×	31	,	
122	ST+0	35-55					178	RCL1	36 01		1
123	RCL7	36					179	RCL2	36 02		
124	RCLC	36	13				180	÷	-24		i
125	X	-	35				181	1X	54		1
126	RCL0	36					182	X	-35		
127	÷		24		1						i
128	ST+9	35-55			ì		183	1	6 1		
					ŀ		184	+	-55		
129	RCLD	36			ļ		185	Χz	53		
130	ST00	35					186	RCL3	36 0 3		-
131	RCL8	36					187	RCL4	36 04		
132	RCL7	36	0 7		[188	÷	-24		
133	RCL4	36	04				189	1	01		
134	RCL3	36			- 1						
135	GSBE	23			İ		190	+	-55		
136	RCLC	36			ľ		191	1X	54		
					ł		192	÷	-24		
137	X CT.O		35		ł		193	8	0 8		
138	ST+0	35-55			- 1		194	1 X	54		
139	RCL8	36			- 1		195	÷	-24		
140	RCL6	36			1		196	P≠S	16-51		
141	RCL4	<i>36</i>			- 1		197	RTH	24		
142	RCL2	36	0 2		L		Ī			1	
143	GSBE	23	15							1	
144	RCLB	36	12			200				1	
145	X		3 5		Ī					1	
146	ST+0	35-55			- 1					1	
147	RCL8	36			t		t			1	
148	RCL5	36			T I		 			1	
					ŀ		\vdash			ł	1
149	RCL4	36 ·			-		├ ──			1	1
150	RCL1	36			- 1					ļ	
151	GSBE	23	1		- ⊦		<u> </u>			1	
152	RCLA	36	11		L						
153	X	-,	35		L						
154	ST+0	35-55	00		Į.	210					l
15 5	RCL8	36			Γ]	I
156	RCLD	36			1					1	1
157	X		35		r		1			1	
158	RCLO	36					 			1	
159	÷		24				 			1	
155 160	ST+9	35-55			H		 			1	l
							-	-		1	
161	RCL9	36					 			1	l
162	RTN		24		}		├		_		l
163	*LBLE	21			l.	200					
164	P≢S	16-			1	220					l
1 <i>6</i> 5	ST04	<i>35 (</i>					-				
166	R↓		31		- 1						i
167	ST03	<i>35</i> (0 3		- 1						l
168	R↓		71 L	A D E L O			Ц	FI 400		057.07.5::5	
			L	ABELS	Tc +		-	FLAGS	-	SET STATUS	
A .	P MIN	20304	C X 1	4 Mmix	■重	زز	0		FLAGS	TRIG	DISP
611121314	b		c	d	е		1		ON OFF	T T	

		LAE	FLAGS		SET STATUS			
A	B MINZA3A4	C X 11 21 31 4	D M mix.	Ĕ 重じ	0	FLAGS	TRIG	DISP
81111 21131 4	b	c	d	е	1	ON OFF	DEG ≭	FIX 🖳
0	1	2	3	4	2	1 X X 2 X	GRAD □ RAD □	SCI □ ENG □
5	6	7	8	9	3	3 D X	,,,, <u>,,</u>	n <u>5</u>

Program Description I

```
Program Title 67 VAPOR PRESSURE, BUBBLE AND DEW POINT

CALCULATION

Contributor's Name ROGER N. LABAS

Address 1231 - B ARCHDALE DR.

City CHARLOTTE State NC Zip Code 28210
```

Program Description, Equations, Variables THIS PROCRAM UTILIZES TWO VAPOR - PRESS VS POINTS (FOR EACH COMPONENT UP TO FIVE) TO FIND THE TWO COEFFICIENTS OF THE AUTOINE EQUATION BELOW (TWO CONSTANT MODEL) LOC P. = A/T + B WHERE P. = VAPUR PRESSURE. HAVING FOUND THESE COFFFICIENTS, THE PROCRAM CALCULATES INDIVIDUAL EQUILIBRIUM CONSTANTS (K VALUE) AND MOLE FRACTIONS (BUBBLE POINT) DR LIQUID MOLE FRACTIONS (DEN POINT) ACCORDING TO: FOR IDEAL-LIQUID, GAS PHASES -> , x: =41/ki, yi= Kixi Pui = VAPOR PRESS. COMPONENT i, K: = EQUILIBRIUM CONST. COMPONENT ? = SYSTEM TOTAL PRESS. , Y: = LIQUID MOLE FRACT. COMPONENT : MOLE FRACT. COMPONENT i FOR BUBBLE POINTS, THE PROCLEM SEED GUESS (USUALLY LOWEST BOILING POINT OF COMPONENTS) AND FIRST BUBBLE, SIMILARLY INCREMENTS TEMPOGRATURE CHECKING & 4' FOR THE DEN POINTS, THE PROGRAM DECREMENTS FROM SEED (USV. HIGHEST 2 x; FIRST DRUP, THE DECREMENTS CONDENSING BOINT) (HECKING FOR THE THE ACCURACY WITH WHICH or increments are CHOSEN BY USER, AS IS 2 x; , 24. THE IDEAL 1.0, compares its 70 PRESENT TOMP AND EXIOR BY ARE ALLAYS AVAILABLE TO VIEW. THE Operating Limits and Warnings OBVIOUS LY THIS IS OFF APPLICABLE TO SYSTEMS THAT CAN PLOT OF PU VS /T OVER THE RANGE IN BE APPROXIMATED STRAKUT LINE QUESTICH, MANY SYSTEMS FOLLOW THIS QUITE WELL HOWEVER, AND MANY MORE CAN BE SHOUD TO AT FOR INTERVALS IN QUESTION. WHEN INPUTTING PURKT DATA IT IS CLOSE TO THE EXPECTED RANGE OF BUBBLE OR DEW POINTS INSURES A REPRESENTIVE RANGE FOR RELIABLE INTERPOLATION OF THE YAPOR PRESSURE AND SUBSEQUENT CALCULATIONS.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) Sample Problem(s) To COMPLETE A BOILING POINT DIALRAM THE BUBBLE POINT AND DEW POINTS OF AN ETHYLENE GLYCOL AND WATER SYSTEM ARE NEEDED. THE TOTAL PRESSURE IS 760 MM Hy AND CONCENTRATIONS (MOLE PRAC.) ARE EG = 0.196 H2O = 0.804 ALSO THE MAPOR PRESSURE OF EG AT 3 5 OF (855 OR) IS NEEDED. THE FOLLOWING IS GIVEN AT 338°F PUEG = 310 mm Hq PULL20 = 5942 mm Hq AT 320°F PUEG = 220 mm Hq PULL20 = 4636 mm Hq BOILING POINTS PURE COMPONENTS (CONDENSING POINTS SAME) AT 760 mm Hg EG = 338°F 420 = 212°F FIND BUBBLE AND DELL POINTS TO CURRESPOND WITH OIL 1/0 OF VAPOR AND LIQUID MOLE FRACTION SUMS (ie Extory: 5 1.001)

Solution(s) FOLLOW INSTRUCTIONS

KEYSTROKES

 $2[h][st I] 310[et] 338[et] 210[et] 320[A] \longrightarrow -5150.31$ $shaz[et] 338[et] 4636[et] 320[R/s][e/s] \longrightarrow -3727.35$

760 [STD] [B].001 [STD] [C] ? [STD] [D] [STD] [E] [F] [FS].196 [STD] [D], 804 [STD] [D] → 0.80

212 [Ef] 460[+] [STD] [A] [B] → RUHS ≈ 1003 EC. 221.12 BUBBLE POINT OF

2[STD] [D] 338 [Ef] 460[+] [STD] [A] [D] → RUHS ≈ 1303 EC. 308.8 DEW POINT OF

2[H] [ST] 345 [Ef] 460[+] [STD] [A] [C] → 834.89 MM Hq LITERATURE CIVES US

848 MM Hq AT 395 of SC 2800 IS 1.55 % FOR PV (ALCULATION

Reference(s)

"INTRODUCTION TO CHEMICAL ENCINEBRING THERODYNAMICS" SMITH & VAN WESS 2nd ED. COPYWRIGHT 1959 MCGRAU-HILL Pg 375, 210,352

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
\ \	S 044 1 23012 0401			
	LOAD RI WITH NUMBER COMPONENTS N	(11)	(U) 570I	
3	LOAD STACK WITH PUVS TOATA		Pulet	mm Ha
	N'TH COMPOLENT FIRST, ABS. DRESS MM		TNET	of ,
	HQ AND OF PRESS A		PN ET	mmlio
4	LOAD STACK WITH PUVS T DATA FOR		Tu' A	of.
	N-1 TH COMPONENT NEXT, PRESS ELS TWICE	N-17thomp	Du-1 E1	
	,		TU-1 ET	
	FOLLOW STEP 4 UNTIL ALL COMPONENT		Pi-1 ET	
	DATA HAS BEEN ENTERED.		Ti-, RIS	
			RIS	
5	STORE RA WITH SEED GUESS TEMP.	T OR	(T) STOA	
	STORE RB WITH TOTAL PRESSURE	Pr mmty	(P_t) stob	
	STORE RE WITH DE ie IF YOU WANT	•		
	14; or 14; = 1,001 stole 0,001		,001 S10C	
8	STORE ROWITH DT OR INTERNAL	OR	(DT) 500	
	STORE RE WITH N	N	(N) STOE	
10*		MOLE FRACT	6 2 2 P	
	Rinki		P."S	
11 *	FOR DEW POINT STORE YN IN	MOLE FRACT	P25 570N	
	P10 tu		PZ	
12	FOR DEW POINT PRESS D		D	٥٤
	FOR BUBBLE POINT PRESS B		B	٥F
14	FOR VAPOR PRESSURE STORE NIN RI		[LOTS]	
۱۶۳	STORE T IN RA	٥٥	(T) STO A	
16	PRESS C		C	mm Ha
	•			
*	ONIT ONE POINT BUBBLE UR OFW CAN			
	BE CALCULATED AT ONCE, BUT SURJEQUENT			
	CASES FOR SAME SYSTEM CAN START AT STEP 5			
××	THESE SHOPS OPTIONAL FOR LAPUR			
	PRESSURE CALCULATION, AND CAN BE			
	EXECUTED AFTER SITES 4.			
	NOTE: SPEED OF PROGRAM IS RELATIVELY			
	INSCHOLITING TO N,			

67 Program Listing I COMMENTS KEY ENTRY

STEP	KEY ENTRY						57
		KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001 💥		31 25 11	LOADING FOR		STO O	33 00	
	570 A	33 11		+		31 25 ∞	
	Rt	35 53	SOLUTIONS		GSB 1	31 22 01	
	STO B	33 12		060	×	71	CALCULATE 41
	R+	35 53			450 2	31 22 02	گ در :
	STO C	33 13			05£	31 33	•
	R+	35 53			400	22 ∞	LOOP WATIL N
	STO P	33 14			Relo	34 00	COMPARE & WITH
	Loa	31 53			\	01	1.
010	RCLC	34 13			_	Sı	
	4	04	Convertible of and		×>0	3181	CHECK FUR WIRECT
	6	06			4703	22 03	APPROACH, IF NOT
	O	00			ABS	35 64	CHANGE D'T
	+	61		070	eccc	3413	COMPARE ACCURACY
	510 C	33 13			X+Y	35 52	12000.10
	×	71			× ≤ Y	32 71	
	eci B	34 12			4TO 4	22 04	DISPLAY BUBBLE
	Loa	31 53			450 5	31 22 05	TRY NEW T
	RCL A	34 11			470 B	22 12	START AGAIN
020	4	04		*		31 25 13	CALC. PV
	6	06			RCL A	34 11	CAUCH IV
	0	60			X4J	35 24	
	+	61			5	05	
	STOA	33 11		080	+	61	
	X	71			X	35 24	
		51			Ru(i)	34 24	
	RUC	34 13			X	35 52	
	RCL A	34 11			÷	81	
	-	51			× <-> 2	35 24	
030	÷		SOLUED FOR WEFF. B		5	05	
-	STO(i)	33 24				51	
-	ecr D	34 (4	store in Ru		Z e>x	35 24	
		31 53			RCC(i)	34 24	
	106	34 13		090	+	61	
-	Rcic			-	10x	32 53	
-	(Pec (i)	34 24					
-		34 13		—	RTN	35 22	SSV SSVIT
	Racc			*	LBLD	31 25 14	DEU POINT
-	×	71	Solved For coeff. A		RCL E	34 15	Store in in RI
040		36 24	20CMB POIC SECTION		570 I	35 33	
040	Σ⇔Ι	35 24		-	CLX	44	CLEAR RS
	5	05			5700	33 00	4.5
	+	61		+	131 6		BELID DO LOUP
	XOI	35 24	0	100	45B 1	31 22 01	
ļ	570(1)		370RE 11 RN+5	100	× < > >	35 52	CALCULATE X
	Z↔Z	35 24		ļ	÷.	81	4
	5	<u>05</u> 51		ļl	4502	31 22 02	2 7 1
	-			ļ	052	31 33	10 (554)
	X e> 2	35 24		ļI	470 6	22 04	
255	\$ 2.0	31 33	HEXT COMPONENT		Rico	34 ∞	
050	Ris	84		ļ		01	1.
	RIS		STOP AT N COMPONENTS	ļ		51	
	4TO A	22 11	a. a. a. a. a	ļ	× >0		CHECK FOR CORRECT
¥		31 25 12	BUBBLE POINT	110	407	22 07	APPROACH, IF NOT
-	2(LE		store is in RI	110	A BS	35 64 34 13	
	STOI	35 33	0-	 		35 52	COMPANS ACCOUNTY
	CL X	44	CLEAR RO	L	×↔y	3, 50	
		To		STERS	6 0	Ī7 -	I8 - I9
°£' xig	gey: Du	² A _{µ-1}	³ A ₁₁₋₂ ⁴ A ₁₁₋₃	5Δ _N -α	t ° Bii	1 Bu-1	8 Bn-2 9 Bn-3
50	S1 N	S2 11-1	\ \S3 \ \nu^2 \ \S4 \ \nu^3	S5 N	-4 S6	S7	S8 S9
SO B	s ₁ × , 4	S2 × , 4	S3 N-2 S4 N-3 X , Y X , Y	آگر آر	1 "		
A	- - 	B -	C	D .		_ E	I
SEED	, ~ l'	TOTAL PA	ESS D &	7 6 □		์ ม	
7000		WINC PH	C/)				

Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММЕ	ENTS
	x ≤y	32 71						
	910 4	22 04	DISPLAY DEN	770				
	450 0	32 22 12	TRY WENT					
	470 D	22 14	START AGAIN					
¥	LBL 1	31 25 01						
	45BC	31 22 13	•					
	RCLB	34 12						
120	<u> </u>	81						
	XGI	35 24						
	1	01						
	0	<i>∞</i>		100				
	+	61		180				
	XGI	35 24						
	RCL(1)	34 24	RLL Xi or yi					
	RTN	35 22						
*	LBL Z	31 25 02	e xi ory;					
120	X ST	35 24						
130	1	01						
-	0	00						
-	× <> I	35 24						
-		33 61 00		190			1	
 	87N	35 22		<u> </u>				
¥		31 25 03	CHANGE DT FOR				1	
	45B b	32 12 12						
	45B a	32 22 11	56 2					
	470 B	72 12						
140			convoct or to of					
	RCL A	34 11	DISPLAY T					
	4	۵4	CIPPERT 1					
	6	06			H			
	0	00		200	•			
	_	51						
	RTN	ઝેક રા						
*		31 25 05	NEU T					
	RCLA	34 11						
	RCLD	34 14						
150	+	61						
	>10 A	33 11						
<u></u>	RTN	35 22						
*	1817	31 25 07		210				
 	4585	3, 22 05	Bubble	210				
	45Ba	32 22 11						
-	400	22 14						
*	RCL D	32 25 11						
 		34 (4		-				
160	5 ÷	81						
	570 D	33 14						
	RTN	35 22						
7	LBL b	32 25 12						
	RCLA	34 11		220				
	RCLD	34 14						
	+	51						
	Δ <i>σ</i> τ ε	33 11						
	RTN	35 22						
Δ	Ip.	10	LABELS		FLAGS	-	SET STATUS	
CALCI	A.B CALC	BUB. CALC	Py CAL DEW E		0	FLAGS	TRIG	DISP
а	E AT CHAN	C	d e		1	ON OFF	חבר ביי	FIV AN
0	1 1	2 1	. 3		2	_ 0 □ 🛂 1 □ 🕱	DEG 🔼 GRAD □	FIX 153+ SCI □
100 L	DOP CALC	<u>κί [ε γ</u>	iory: 3 CHADGE DT DIS	PT		2 🗆 🗷	RAD 🗆	ENG 🗆
CHANG	EST DO L	OOP CHAN	4 E DT 8		3	3 🗆 🗷		ENG n 2

Program Description I

Program Title SINGLE STAGE EQUILIBRIUM FLASH CALCULATION

Contributor's Name Kerry R. Kelly

Address 4208 Salem Drive

City Baton Rouge State Louisiana Zip Code 70814

Program Description, Equations, Variables Given the number of components (n), the mole fraction (z_i) , the equilibrium ratio between phases (K_i) for each component in the feed and a first guess for the mole ratio (V/F), the program will use a second order Newton convergence scheme to converge the Rachford-Rice equation to nearly zero (10^{-6}) .

$$f(V/F) = \sum_{i=1}^{n} z_i(K_i-1) / [(K_i-1)(V/F) + 1] = 0$$
, Rachford-Rice Eq'n

$$(V/F)_{i+1} = (V/F)_{i} - f[(V/F)_{i}] / f'[(V/F)_{i}]$$

$$f'[(V/F)_{i}] = -\sum_{i=1}^{n} z_{i}(K_{i}-1)^{2} / [(K_{i}-1)(V/F)+1]^{2}$$
Newton
Convergence
Method

Next the program can solve for (V/L) and the final compositions of the liquid and the vapor by: (V/L) = (V/F)/[1 - (V/F)]

$$x_{i} = z_{i}[1 + (V/L)]/[1 + K_{i}(V/L)]$$

$$y_i = z_i[1 + (L/V)]/[1 + (1/K_i)(L/V)]$$

Operating Limits and Warnings

Maximum number of components = 10

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s) A five component mixture of hydrocarbons is fed to a steady-state flash vaporization giving product equilibrium at 270°F and 50 psia. The details are given below:

Component	z _i	K _i @ 270°F & 50 psia
C3	0.15	12.75
C ₁	0.25	5.61
c ₆	0.05	1.40
C ₇	0.30	0.705
C ₈	0.25	0.375

Calculate (V/F) and the composition of both the vapor and the liquid product streams.

Solution(s)	$5(A) \rightarrow 5.00000; .19$	5 † 12.75(B) .25 ↑ 5.	.61(B) .05	† 1.4(B)
	.3 ↑ .705(B) .25 ↑	•375(B)		0.00000
MARKET MARKET STATE STAT	.5(C)(calculation	time \approx 72 sec)		0.80243
	(D)	\rightarrow x_i		Уi
		0.01438***		0.18339***
	***************************************	0.05320***	Allen IA.	0.29845***
	20.05 mm	0.03785***		0.05299***
		0.39304***		0.27709***
		0.50153***		0.18807***
_				

- Reference(s) (1) King, C. Judson; SEPARATION PROCESSES; First Ed.;
 Page 513; McGraw-Hill; 1971
 - (2) Kern, Donald Q.; PROCESS HEAT TRANSFER; First Ed.; Page 332; McGraw-Hill; 1950

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			1
2	Input number of components.	n	A	n
3	Input mole fraction of component i			
	in the feed.	zi	ENTER +	zi
4	Input equilibrium ratio between			
	phases for component i.	Ki	В	n - i
5	Repeat steps 3 and 4 for $i = 1$ to n			
6	Input a first guess for the mole ratio			
	(V/F) and compute and output the			
	actual ratio.*	(V/F) ₀	C	(V/F)
7	Optional: Compute and output the			
	mole fraction of each component in			
	both the liquid (x_i) and the vapor (y_i)			
	for i = 1 to n **		D	x ₁ ,y ₁
				x2, y2
				x_n, y_n
8	Optional: Compute and output the			l mon
	mole ratio (V/L)**		E	(V/L)
9	Optional: Input the mole feed rate			
7	and compute and output the vapor mole			
	and then the liquid mole rate.**	F	f E	V,L
10				1,5
10	to watch f(V/F) converge to less than			
	10 ⁻⁶ .		f A	1 00/0 00
	10 •			1.00/0.00
-	* This calculation is trial and error			
	and may take several minutes if a			
	large number of components is			<u> </u>
	involved and/or the first guess is			
-				
	poor.			
-	** This step can be performed only			—
\vdash	after step 6.			
	arver step o.			
				
\vdash				
-				

67 Program Listing I

62 STED	VEV ENTRY	KEN 0005			· · · · · · · · · · · · · · · · · · ·		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	f LBL A	31 25 11	Set up the I		RCL E	34 15	
	├-	δj	register for		+	61	
	-	51	data input by		STO E	33 15	
	h ST I	35 33 33 14	storing the no.	060	h RTN	35 22	
	STO D		of components		f LBL 2	31 25 02	Set flag 0 so
	1	01	minus one.		RCL A	34 11	that subroutine
	+	61	(n-1)		h SF 0	35 51 00	c will calc.
	h RTN	35 22			g GSB c	32 22 13	f'(V/F).
	f LBL B				CHS	42	- ('/ - / •
010	STO (i)	33 24	Store K_i and z_i		h CF Q	35 61 00	
	h x≥y	35 52	in the proper		h RTN	35 22	
	f P≥S	31 42	register and		f LBL C	31 25 13	Must constrain
	STO (i)		then diamless the		STO A	33 11	
	f P≷S	33 24 31 42	then display the	070	h ABS	35 64	trials to
	f DSZ	31 33	number of com-		g FRAC	32 83	$0 \le (V/F) \le 1$
	GTO 0	22 00	ponents for		g GSB c	32 22 13	Calc. f(V/F)
		31 25 00	which data has		STO C	33 13	_ 0410 • 1(1/1/
	h RC I	35 34	not yet been		h F1?	35 71 00	Davisa
 	1	01	entered.		h PAUSE		Pause?
020	+	61	(n-i)			35 72 35 64	
020	h RTN				h ABS		Is 10/11/10/16 20-62
-		35 22			EEX	43	$ f(V/F) < 10^{-6}$?
-	g LBL c	32 25 13	Prepare for		6	06	
-	STO A	33 11	calculation of	080	CHS	42	
<u> </u>	RCL D	34 14 35 33	f(V/F) or	080	g x>y GTO 4	32 81 22 04	
	h ST I	35 33	f'(V/F).		GTO 4		
	0	00	1 (1/1/1		f GSB 2	31 22 02	Adjust (V/F)
	STO E	33 15			RCL C	34 13	by Newton's
	f LBL 6	31 25 06			h x≷y	35 52	method and
		31 22 01	0-11-+- 6(1/m)		+	81	check the new
030	f DSZ	31 33	Calculate f(V/F)		RCL A	34 11	value by
	GTO 6	22 06	<u>n</u>		h x≷y	35 52	returning to C.
	f GSB 1	31 22 01	$= \sum_{i=1}^{n} \frac{z_{i}(K_{i}-1)}{(K_{i}-1)(V/F)+1}$		-	51	recurring to C.
	RCL E	34 15	$\underset{i=1}{\longleftarrow}$ (K _i -1)(V/F)+ 1		GTO C	22 13	
	h RTN	35 22	(-)	090	f LBL 4	31 25 04	Return with the
	f LBL 1	31 25 01			RCL A	34 11	latest value of
	RCL A	34 11	or		h RTN	35 22	(V/F) in dsply.
	RCL (i)	34 24	If flag 0 is set		f LBL D	31 25 14	- 7 1 1 1 11 G 2 b 1 3 •
-	1	01	Calc. f'(V/F)		f GSB E	31 22 15	
-			3423 2 (1)1)				0
040	_ X	51 71	n ,2		RCL D	34 14 35 33	Compute the
040			$=$ $\sum_{i=1}^{\infty} \frac{2i(K_i-1)}{i}$		h ST I		value of
	1	01 61	$=-\sum_{i=1}^{n}\frac{\mathbf{Z}_{i}\left(\left(K_{i}-1\right)^{2}\right)}{\left[\left(K_{i}-1\right)\left(W_{i}\right)+1\right]}$		f LBL 7	31 25 07 31 22 05	x; then y;
	+		(=1 =		f GSB 5	31 22 05	for $i = 1$ to n.
	h FO?	35 71 00		100	f DSZ	31 33	
	g x ²	32 54 34 24		100	GTO 7	22 07	
	RCL (i)	34 24			f GSB 5	31 22 05	
	f P≵S	31 42			h RTN	35 22	
	RCL (i)	34 24			f LBL 5	31 25 0 <i>5</i>	
	h x≷y	35 52			RCL (i)	34 24 34 15	
	1	01			RCL E	34 15	
050	-	51			Х	71	
	h FO?	35 71 00			1	01	
	g x ²	32 54			+	61	
	X	1 -			RCL E	34 15	
	h x≼y	35 52		110	1	01	
	+	81			+	61	
	f P≷S	31 42			h x≷y	35 52	
			REGIS	TERS			
0 ,,	1	2 ,,	3 4	5	6	7	8 9 7
K _n	K _{n-1}	K _{n-2}	• • • • • •	• •			• • • • K _{n-9}
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9_
zn	z_{n-1}	z_{n-2}	• • • • • •	• •	<u> </u>	• • •	• • • • z _n -9
Α		В		D		E	I
Tri	Trial (V/F) Used $f(V/F)$ n-l Used Used						

67 Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММЕ	NTS
	+	81						
	f P≷S	31 42		170			1	
}	RCL (i)	34 24 71					1	
	f -x-	31 84					1	
	RCL (i)	34 24					1	
	1	01						
120	RCL E	34 15						
	h 1/x	35 62 61					l	
-	+ X	71		<u> </u>			-	
-	RCL E	34 15		180				
	h 1/x	34 15 35 62						
	f P≷S	31 42					1	
	RCL (i)	34 24						
	+	81						
130	1	01					1	
130	+	61 81		—			1	
	f -x-	31 84					1	
	h RTN	31 84 35 22					1	
	f LBL E	31 25 15		190				
	RCL A	34 11	Convert (V/F)				1	
	l DOT A	01	to (V/L).	<u> </u>			1	
	RCL A	34 11						
}	+	51 81					1	
140	STO E	33 15						
	h RTN	35 22					1	
		32 25 15						
	ENTER +	41	Compute and					
	ENTER +	41	display both the vapor rate	200			1	
	RCL A	34 <u>11</u> 71	(V) and the	-				
	f -x-	31 84	liquid rate (L)					
	-	51	given the feed				1	
	f -x-	31 84	rate (F).					
150	h RTN	35 22 32 25 11					1	
	g LBL a	32 25 11						
	h FI?	35 71 01	Pause toggle				ł	
	GTO 8 h SF 1	22 08 35 51 01	to watch	210			1	
	1	01	convergence.				1	
	h RTN	35 22	- G •]	
	f LBL 8	31 25 08						
	0	00					1	٠.
160	h CF 1	35 61 01 35 22					1	
100	h RTN	35 22		+			1	
							ĺ	
				220			1	
-	-			-			l	
-				-		-		
			LABELS		FLAGS		SET STATUS	
A n	B zi	$K_i \stackrel{C(Y)}{=} 0$	$\rightarrow (\frac{\sqrt{y}}{F})$ $\rightarrow x_i, y_i$ \rightarrow	(V/L)	0 Used	FLAGS	TRIG	DISP
a PAUS		(V_F)	f(V) d e F	→ V, L	1 Used	ON OFF		EIV Ø
	-i) ¹ Us			Used	2	0 🗆 🛭	DEG ⊠ GRAD □	FIX ⊠ SCI □
			· / la		3	– 2 🗆 🛛	RAD 🗆	ENG5
$^{5}\rightarrow x_{1}$,yi ∪s	ed / Us	ed ⁸ Used ⁹			3 □ 🛭		

NOTES

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis Portfolio Management/Bonds & Notes Real Estate Investment Taxes **Home Construction Estimating** Marketing/Sales **Home Management Small Business Antennas Butterworth and Chebyshev Filters** Thermal and Transport Sciences EE (Lab) **Industrial Engineering** Aeronautical Engineering **Control Systems Beams and Columns High-Level Math Test Statistics** Geometry

Reliability/QA

Medical Practitioner Anesthesia Cardiac **Pulmonary** Chemistry **Optics Physics Earth Sciences Energy Conservation** Space Science **Biology Games** Games of Chance **Aircraft Operation Avigation Calendars Photo Dark Room COGO-Surveying Astrology Forestry**

CHEMISTRY

A variety of general physical chemical programs including equations-ofstate and acid-base equilibria are included. Several programs on gas mixtures and vapor liquid equilibrium are also of interest to chemical engineers.

ph of Weak acid/base solutions
acid-base equilibrium (diprotic)
Weak acid/base titration curve
Equations of state
Van der waals gas law
Beer's law and absorbtivity calculations
activity coefficients from potentiometric data
Crystallographic to cartesian coordinate
transformations
Kinetics using lineweaver-burk or hofstee plots
mixture viscosities
Vapor pressure, bubble and dew point calculation
Single-stage equilibrium calculation