HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions

COGO-Surveying

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

SPECIAL NOTE

This Library Solutions book is based entirely on a set of HP-65 programs submitted by Carl M. King of Sarasota, Florida and translated for the HP-67/97 by Hewlett-Packard. Special thanks are due to Mr. King for this complete set of interrelated programs.

TABLE OF CONTENTS

COGO-SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS	1
COGO-01: BASIC TRAVERSE, INVERSE AND SIDESHOTS	7
COGO-02: BEARING-BEARING INTERSECTION AND TRAVERSE	12
COGO-03: BEARING-DISTANCE INTERSECTION AND TRAVERSE	18
COGO-04: DISTANCE-DISTANCE INTERSECTION AND TRAVERSE	23
COGO-05: TRAVERSE OF CURVE Included with the basic traverse calculations in this program is calculation of a curve as in a part of a subdivision or legal boundary. Tan., arc, chord and segment area are calculated.	28
COGO-06: CURVE INVERSE AND TRAVERSE. This program calculates a curve of given radius between two known points as a part of the traverse. Tan., arc, chord and segment area are calculated. Basic traverse routines are included.	33
COGO-07: COMPASS RULE ADJUSTMENT	38
COGO-08: ROTATION OF AXES The special feature of this program rotates axes of a survey by an angle of your choice. Translation of the traverse can also be accomplished.	43
COGO-09: CRANDALL'S RULE ADJUSTMENT This program, on two cards, performs adjustment of a traverse by Crandall's rule.	48
COGO-10: TRANSIT RULE ADJUSTMENT . This program performs adjustment of a traverse by the transit rule.	54
COGO-11: TO INSCRIBE CURVE	59
COGO-12: SLOPE SHOT TRAVERSE	64

Program Title COGO - SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS

This Hewlett-Packard translation is based on the COGO Series of HP-65 programs written by CARL M. KING 2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables These COGO programs constitute a comprehensive and self consistent series that solve all the CoOrdinate GeOmetry relationships regularly employed by surveyors and plat designers. The raw data from the surveyors' field notes are reduced to rectangular coordinates for ease of plotting and for detection of errors. From any given PAIR of coordinates, you advance a direction and a distance to a new POINT, identified by a new PAIR of computed coordinates. ALL the programs in this COGO series have certain features in COMMON, so that you can switch from one program to another without losing the thread of your calculations. The BEARING TRAVERSE and the DEFLECTION ANGLE traverse are common to all. The INVERSE TRAVERSE is shared by eight of them. When proceeding around a CLOSED traverse, along straight legs and circular arc segments, they automatically accumulate the AREA. In addition to the COMMON options, each program has a SPECIALTY: COGO-01: SIDE SHOTS COGO-07: COMPASS RULE ADJ. COGO-02: BRG.-BRG. INTERSECT'N COGO-08: ROTATION OF AXES COGO-03: BRG.-DIST. INTERSECT'N COGO-09: CRANDALL'S RULE ADJ. COGO-04: DIST.-DIST.INTERSECT'N COGO-10: TRANSIT RULE ADJ. COGO-05: TRAVERSE OF CURVE COGO-11: TO INSCRIBE CURVE COGO-06: INVERSE OF CURVE COGO-12: SLOPE SHOT TRAVERSE These programs are based upon the HP-65 User's Library COGO series submitted by Carl M. King.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Three systems for denoting HEADINGS in angular degrees: Fig 1 - This is how a navigator reads his compass, and surveyors call it North AZIMUTH. It is a positive angle reading from the North O° to 360°. Fig 2 - Also with the zero point at the North, you can read the W'ly quadrants as a negative (-) angle. This is equivalent AZIMUTH, and this is how the CALCULATOR displays its answers. It reads the whole circle from -180° to 0° to +180°. Fig 3 - Shows two zero points, at North and South points, and angles are read either CW or CCW, depending on the "quadrant". Headings read in this fashion are called BEARINGS, and their numerical values never exceed 90°.

Systems #1 and #2 are mathematically equivalent. The calculator produces the same answers for input expressed in either of these ways.

System #3 is equivalent only in the NE quadrant. However the relationships in the other quadrants are exceedingly simple. NW and SE bearings turn CCW. Think of them as negative (-) angles. SE and SW bearings face opposite to the N'ly quadrants. Think of their <u>distances</u> as negative numbers. YOU CAN INDEED ENTER BEARING AND DISTANCE DATA DIRECTLY INTO THESE PROGRAMS. You merely attach a negative (-) sign to the proper numbers (press [CHS]), as follows:

ç	uadrant no.	Quadrant	Bearing	Distance
	1	NE	+	+
	2	SE	-	- · · · · · · · · · · · · · · · · · · ·
	3	SW	+	-
	4	NW	_	+

IMPORTANT: Calculator output must at first be read as AZIMUTH. For the Users' convenience, routines for inputting bearing/quadrants, converting Azimuths to bearings and calculating supplementary angles have been included in these programs.

GENERAL DISCUSSION

This COGO series has been designed to provide you with a convenient means of closing and balancing a traverse, and for computing an entire subdivision plat, with a minimum of program CARD changes. Data entry and data read out are consistent throughout. It is as though it were one continuous program.

Each program CARD provides some specialized function, but it also contains many of the standard options for advancing the traverse. Thus, having selected a CARD, you can usually continue the traverse until you have need for a different special function. The standard options are as follows:

Key [A] stores Northings and Eastings (coordinates) of the Point of Beginning (P.O.B.) and initializes the program.

Key [f] [A] converts Azimuth outputs to bearing/quadrants.

Key [f] [C] calculates the supplement of an angle. This is useful for converting Bearings to Azimuths; or Interior Angles to Deflection Angles; and vice versa.

Key [B] calculates the traverse to a new set of coordinates, when the Azimuth and distance are given.

Key [f] [B] performs the above traverse using bearing/quadrant inputs.

Key [C] calculates (in seven of the programs) the inverse traverse. The Azimuth and distance are calculated when the respective coordinates are input.

Key [C], otherwise, initiates the special option, which is characteristic of the respective program.

Key [D] calculates the traverse to a new set of coordinates, when the Deflection Angle (Field Angle) and distance are given.

Key [E] is the ROLL DOWN print function which provides you with convenient singlekey means of manipulating and reading the data in the "stack". The answers are always in the same relative order as follows:

x = Northings; y = Eastings; z = Azimuth; t = distance

Key [f] [E] in most of the programs, recalls the area enclosed by the travers.

NOTES:

(1) In these COGO programs angles are <u>always</u> entered and read out in Degrees, Minutes, Seconds (the DD.MMSS format).

(2) Except for the "side shot", you are advanced to the new point after each traverse calculation, ready to advance again from the new coordinates and to utilize the completed backsight, all of which data are stored in the calculator.

(3) Every COGO program accumulates AREA as you go, so that when you close upon the P.O.B., you can recall the enclosed area immediately. Areas of curve segments enclosed along the way are also included.

STANDARDIZED DATA ENTRY & TRAVERSE OPTIONS

COGO is a closely knit family of programs, and a diligent effort has been made to standardize the data entry procedures within the family. However, certain Traverse Options could not be included in every program. Following is a listing indicating which options were omitted from the respective programs. The missing options are indicated with an X:

COGO
0000

NO.	SPECIALTY	fC Supplement	B Bearing	C Inverse	D Deflection
-01	BASIC w/SIDE SHOTS	=	=	=	=
-02	BRGBRG. INTERSECT'N	=	=	х	=
-03	BRGDIST. INTERSECTION	=	=	х	=
-04	DISTDIST. INTERSECTION	=	=	=	=
-05	TRAVERSE OF CURVE	=	=	Х	=
-06	INVERSE OF CURVE	=	=	=	=
-07	COMPASS RULE ADJUST	=	=	=	=
-08	ROTATION OF AXES	=	=	=	=
-09	CRANDALL'S RULE ADJUST	=	=	=	=
-10	TRANSIT RULE ADJUST	Х	=	=	=
-11	TO INSCRIBE CURVE	=	=	Х	=
-12	SLOPE SHOT TRAVERSE*	=	=	=	=

*Note: In the Slope Shot (COGO-12) the "B" and "D" routines are modified for slope data entry.

Another interesting feature of all these COGO programs, which you should be aware of, has to do with turning to a new heading while remaining at the same point. If you enter a Bearing angle, and attempt to traverse exactly a zero (0) distance, the calculated "backsight" will always be exactly N 0°00'00"E. In other words, you cannot establish a new heading by traversing exactly a zero (0) distance.

However, establishing a new heading while remaining at the same point is an operation that you occasionally wish to perform, and a provision has been designed into the COGO programs to make it easy for you. You enter the heading information in the usual fashion, (when you press [B] for "Bearing" or press [D] for "Deflection"), and at the STOP where you enter the distance, the programs always provide you with a reading that is a very small number (an infinitesmal) equal to 10^{-9} . This number will serve in lieu of zero, and will introduce no error. Unlike zero, though, it performs normally in the calculator, and you can attach a negative sign to it, if need be.

When this small number is referred to elsewhere in these User Instructions, it is represented by 1.0000-09.

4

Program Description 11

1200.000	N 75°14/ A	52"E	B ZT	*15' Y S>>>°30'0 /14-001	8"E C	N.
Sample Proble (CCW). CW backsight. or alterna its supple Thence run	em(s) Deflection Wangles are al "Azimuth In this case atively you car ement. Always <u>Given</u> : N N75°14'52"E,	on Angles c ways posit <u>Angles"</u> al a negativ find the refer to y Point "A" 115.255';	an be turned ive (+), and o so known as <u>"</u> e (-) value i equivalent de our sketch to Northing : Eastings thence deflec	either to the CCW angles are Angles Right" s used for the flection angle get the signs s = 1100.000 = 1200.000 t 27°15'00", 1	right (CW) o e negative (- are turned f e traverse di e, which nume s correct.	r the left). rom a stance; rically is oint "C".
Solution(s)	Field Angle	distance	Bearing	Northings	Eastings	Point
				1100.000	1200.000	"A" (Given)
		115.255	N75°14'52"E	1129.3485	1311.4557	"B"
	+27°15'00"	114.001	s77°30'08"E	1104.6785	1422.7554	"C"
Alternate:		-		1100.000	1200.000	"A"
		115.255	N75°14'52"E	1129.3485	1311.4557	"B"
	+207°15'00"	-114.001	s77°30'08"E	1104.6785	1422.7554	"C"
	(Azimuth Angl	e calls for	negative dis	stance.)		
IMPORTANT:	Always start	from a set	of given or	assumed coord	inates.	
• • • • • • • • • • • • • • • • • • • •	at loagt one	BEARING TR	AVEDCE bofore			

User Instructions

COGO (General) BRG/OD INPUT SUP

BRG/QD INPUT SUPP. _ BRG. TRAV. INVERSE

RSE _ DEF. TRAV. R↓PRINT

AREA

5

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card, sides 1 and 2			
2	Input point of beginning (P.O.B.)	Northing	ENT	
		Easting	A	180
	Bearing Traverse:			
3	enter Bearing* OR Azimuth.	DD.MMSS		
4	IF angle is CCW (negative):		CHS	+ DD.MMSS
5	with proper sign attached:		B*	1.0000-09
6	Enter distance.	d ₂		
7	IF angle is SE or SW Bearing:	2	CHS	-d,
8	with proper sign attached:		R/S	North'gs
9	roll down to read: Eastings		E	Eastings
10	roll down to read: Azimuth		Е	Azimuth
3'	*If bearing/quadrants are input	-bearing	ENT	
		quadrant	f B	1.0000-09
	Deflection Angle or Angles Right:			
11	enter ANGLE.	DD.MMSS		
12	IF angle is CCW (negative):		CHS	+ -DD.MMSS
13	with proper sign attached:		D	1.0000-09
14	enter distance.	d ₂		
15	IF angle is from BACKSIGHT:	_	CHS	$\frac{+}{-}$ d ₂
16	with proper sign attached:		R/S	North'gs
17	roll down to read Eastings		Е	Eastings
18	roll down to read Azimuth		Е	Azimuth
19	Inverse Traverse: enter Northings	Nn	ENT]
20	enter Eastings	En	С	North'gs
21	roll down to read Eastings		Е	Eastings
22	roll down to read Azimuth		Е	Azimuth
23	roll down to read distance		Е	distance
	Angle Supplement Routine: for converting 2nd or	-		
	3rd quadrant AZIMUTHS to BEARINGS, INTERIOR			
	ANGLES to DEFLECTION ANGLES, and vice versa.			
24	(Output = 180° - input) (DD.MMSS) Azimuth		f C	Bearing
25	TO READ enclosed AREA, traverse to POB, then		f E	Sq. Ft.
26	To convert Azimuth to bearing/quadrants	AZ	f A	Bearing
				Quadrant
		ļ		
		ļ		

Program Description I

Program Title COGO-01, BASIC TRAVERSE, INVERSE, & SIDE SHOTS

This Hewlett-Packard translation is based on program 02825A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-01 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the SIDE SHOT, which can be exceedingly useful when there are numerous structures and objects in the field to be located. Having set up the instrument and taken a "backsight", you can then take numerous readings from the same set-up, without relocating the instrument. Each of the SIDE SHOTS has no bearing on the area that you might enclose in your traverse, and they are unrelated to each other; i.e., they do not alter the "backsight" setting.

Any traverse leg can be a SIDE SHOT. You merely set the program "mode switch" to the correct mode and then it is treated as a SIDE SHOT. If you wish to make just one SIDE SHOT, you press l[f] [D] and the program automatically cancels the side shot flag after the shot. If you wish to make several SIDE SHOTS, you press 2 [f] [D] and then all subsequent traverses are SIDE SHOTS from the same originating point and from the same "backsight". When you wish to move the instrument, and advance the traverse again,you will need to reset the "mode switch" to traverse mode. Just press 0 [f] [D]

This program is a modification of the Users' Library Program #02825A submitted by Carl M. King.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Comple Broklam (a) Commence at point A for a P.O.B. Traverse to point D. make GIDD Guerra								
Sample Problem(s) commence at point R, for a P.O.B. Traverse to point B; make SIDE SHOTS								
(Set multiple side snot mode) to points P, Q. Continue traverse (reset to traverse								
mode) to point C. Make inverse traverse to close on point A.								
For calls \overline{BP} , \overline{BQ} , & \overline{BC} , use DEFLECTION TRAVERSE.								
(i.e., "angles right" and negative distance.)								
For call CA use INVERSE TRAVERSE.								
See solutions below. Quantities in parentheses are calculated; others are								
given as shown in sketch. Angles								
LegRightAzimuthDistanceNorthingsEastingsP.O.B1100.00001200.0000								
Brg.Trav. AB 75°14'52" 115.255 (1129.3485) (1311.4557)								
Side shots $\frac{BP}{BO}$ 159°07'13" (54°22'05") -75.531 (1173.3510) (1372.8455)								
$\frac{BC}{CA} = \frac{207^{\circ}15'00''}{CA} = \frac{(14'10'07')^{-48.4359''}(1176.3513)''(1323.4092)}{(1104.6785)''(1422.7554)'''''''''''''''''''''''''''''''''''$								
Solution(s) O[f] [D]* 1100 [ENT↑] 1200 [A] 75.1452 [B] 115.255 [R/S] →1129.3485, N _B [E] → 1311.4557, E _B								
2 [f] [D]* 159.0713 [D] 75.5310 [CHS] [R/S] \rightarrow 1173.3510, N _p ; [E] \rightarrow 1372.8455, E _p ; [E] \rightarrow 54.2205, AZ BP 119.0115 [D] 48.499 [CHS] [R/S] \rightarrow 1176.3513, N _Q ; [E] \rightarrow 1323.4092, E _Q [E] \rightarrow 14.1607, AZ BQ. 0 [f] [D] * 207 15 [D] 114 001 [CHS] [R/S] \rightarrow 1104 6785 N \rightarrow								
$[E] \rightarrow 1422.7554, E; [E] \rightarrow 102.2952, AZ BC, 1100[ENT^] 1200 [C] \rightarrow 1100.0000; N_{A}; [E] \rightarrow 1200.0000; E_{A}: [E] \rightarrow -91.1211, AZ, CA; [E] \rightarrow 222.8045, DIST. CA. [f] [E] \rightarrow 3008.0442, AREA.$								
*setting "Mode Switch" for traverse, multiple sideshots and back to traverse, respect ively.								

Reference(s) This program is a modification of the Users' Library Program #02825A submitted by Carl M. King.

User Instructions

	COGO -01:	BASIC TRAVE	RSE, INVER	SE AND SIDESH	IOTS	
	AZ→	BRG/QD INPUT	SUPP. /	MODE	AREA↓	
(hp)	P.O.B.	BRG TRAV	INVERSE	DEFLEC.TRAV	R	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	OUTPUT DATA/UNITS	
1	Load sides 1 and 2				
2	Input point of beginning (P.O.B.)	Northing	ENT↑		
		Easting	Α		180
	For Bearing Traverse:				
3	Set mode switch for traverse:	0	f	D	0
4	Follow instructions on "General COGO User				
	Instruction Sheet" Step 3. or Step 10.				
	For Deflection Angle Traverse or Angles Right:				
5	If needed, set mode switch for traverse.*	0	f	D	0
6	Go to "General COGO instruction sheet" Step 11				
	For Inverse Traverse:				
7	Go to "General COGO instruction sheet" Step 19.				
	For Side Shots:				
8	Set mode switch for side shots: single-	1	f	D	1
	multiple	2	f	D	2
9	Go to "Deflection Angle Traverse" instructions"				
	(i.e. use angles right and negative distances	A.R.	D		1.0000-09
		-dist.	R/S		N _{p+}
			E		E
			E		AZpt
				[]	FC.
10	To return to traverse after side shots, reset				
	to traverse mode and continue traverse.	0	f	D	0
11	After closing traverse obtain area.		f	E	Area
	See "General COGO" instructions for use of				
	other options: i.e., AZIMUTH \rightarrow BEARING,				
	SUPPLEMENTARY ANGLE, etc.				

Program Listing I

	-
1	\mathbf{n}
	υ

10							
STEP K	EY ENTRY	KEY CODE	COMMENTS	STEP KE	EY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B.	057	ST07	35 07	
8 82	8702	35 02	Easting	05 8	RCL2	36 02	
002 007	P.L	-31	Baberng	059	÷	-55	
000 004	etni	75 GI	Northing	060	RCL8	36 0 8	
007	0101	55 61	Norening	961	RCL1	36 01	
000	ULX OTOS	-01		962	×021	-55	
UN 6	S106	35 06		002		76 97	
0 07	1	01		800	RULI	30 07	
0 08	8	0 8		064	RULS	35 08	
009	Ø	0 0		65	÷+:	34	
010	ST09	35 09	Initialize	066	ST04	35 04	
011	RTN	24		067	R∔	-31	
R 12	*LBLC	21 13	Inverse	068	÷HMS	16 35	
013	RC12	36 02		069	ST03	3 5 0 3	
010 014	-	-45	Dep.	0 70	F1?	16 23 01	Multiple sideshots?
017	v+v	-41	-	Ø71	GTOI	22 81	I.
013		7/ 01		9 72	F20	16 23 02	Single sideshot?
016	RULI	36 01	Tat	072 077	CT01	22 B1	
017	-	-45	Lat.	013	1 CTV	16-67	No, set up for
018	GTOØ	22 00	Go to calc. SBR.	074	LOIA	10-03 75 AF	traverse
019	*LBLb	21 16 12	Bearing/qd input	.075	5105	30 0 0	
0 20	X≠Y	-41		076	R↓	-31	
021	HMS→	16 36	Bearing	077	R↓	-31	
022	X≠Y	-41	Dearing	0 78	ST01	35 Øİ	
023	ENTT	-21		079	R↓	-31	
024	ENTT	-21		0 80	ST02	35 02	
024	2011	21 00		081	RCL7	36 07	
020	<u>-</u>	02		6 82	2	Ø2	
025	-	-24		002	<u>-</u>	-24	
027	111	16 34		605		-45	
U 28	RCL9	36 09		004		-4J 76 00	
029	Х	-35		685	RULB	36 88	
0 30	XIY	-41		086	X	-35	
031	RCL9	36 09		087	ST-6	35-45 06	
032	Х	-35		088	RCL2	36 02	
033	COS	42		089	RCL1	36 01	
0 34	E.t	16-31		090	RCL3	36 03	
075 075	X	-75		091	*LBL1	21 01	Setup for side shots
000 072	_	-45	Azimuth	892	RCL4	36 04	1
830	et no	- 4 J 22 62		A93	XIY	-41	
037	6102	22 02	GO to calc. SBR.	094 094	P.L	-71	
0 38	*LELE	21 12	Azimuth input	005		21 15	Rolldown & print
039	HMS+	16 36		070	#LDLE	21 13	-
040	GT02	22 0 2	Deflection angle	095	K+	-31	
041	*LBLD	21 14	Dertection angle	U 97	PRIX	-14	
042	HMS→	16 36	Input	0 98	RTN	24	Distance entres set
043	RCL5	36 05		099	*LBL8	21 0 8	Distance entry set
044	÷	-55		100	X≠Y	-41	up
045	*LBL2	21 02	Calc. SBR.	101	R^{\downarrow}	-31	
Й46	EEX	-23		102	RTN	24	
Ø47	CHS	-22		103	*LBLa	21 16 11	Azimuth →Bearing
04, 049	0.10 Q	22 DQ		104	HMS→	16 36	
040 DAO	2 757	15 22 87		105	ENTT	-21	
047	073	10 22 03	Distance input	106	STN	41	
000	K/3 E70	JI 17 27 27	stocance input	107	CTN-I	16 41	
051	F 37	16 23 03	Was distance input	107	VZGO	10 41 12-45	
052	6SB8	23 0 8	Yes	108	45 0 7 606	10-43	
053	÷₽	44		109	CHS	-22	Bearing
054	*LBL0	21 0 0	Calc. SBR	110	→HMS	16 35	
055	STO8	35 0 8		111	PRTX	-14	
056	X ≠ Y	-41		112	R↓	-31	
			REGIS	STERS	6	17	8 10
0	זא	2 F		AZ	AREA	den (lat 180
50	S1	<u> </u>		S5	S6	S7	S8 S9
30		52					
Δ	1	IB		D	I	E	
ľ		Ĩ	Ĭ				

Program Listing II

		KEY	CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
113	9 0		09 00				170			_	
115	÷	-	-24				170				
116	1		01								
117	+ T.11T	-	·55								
118 119	INI PRTX	16	34 14								
120	RTN		24	Quadr	cant						
121	*LBLd	21 16	14	Mode	Switch					-	
122	STOI	35	46								
123	GTO:	22	45 AG				180				
124	*LBLØ CE1	16 22	00 Й1	Trave	erse Mode		100				
126	CF2	16 22	02							-1	
127	RTN		24								
128	*LBL1	21	01 00	Sing]	Le sideshot						
129	SF2 CE1	16 21	02 Qi								
130	RTN	10 22	24								
132	*LBL2	21	02	Multi	iple sidesho	ot					
133	SF1	16 21	61								
134	CF2 DTN	16 22	02 94				190				
130	*iBle	21 16	24 15	Aroa							
137	RCL6	36	0 6	Alea							
138	ABS	16	31								
139	PRTX	-	14								
140 141	*Ele	21 16	13	G							
142	ABS	16	31	Suppi	Lementary					-	
143	RCL9	36	0 9	c	ingre						
144	X≠Y	-	41				200				
145 145	UMS+	- 16-	22 55						· · · · · · · · · · · · · · · · · · ·		
140	RTN	10	24							-	
-										_	
150											
										_	
							210				
										-	
160											
										-	
							220			_	
				L				EL AGO			
ADOD	B		C T N 77 7 7			E D.I	ססדאיש	0 FLAGS		SEISIAIUS	
P.O.B.	AZII	AUTH IN	TNAF	KOE	DELTEC.		PRINT	1			DISP
ÄZ→BRG.	BRG	INPUT	SUPF	°•∠	MODE	° AR	EA	MULT.SID		K DEG 🛛	FIX 🕅
USED	¹ USEI	C	² USEI)	3	4		SING.SID			SCI ∐ ENG □
5	6		7		B DATA SETU	9 P		DATA ENT	RY 3 🗆 🕱		n

Program Description I

Program Title COGO-02: BEARING-BEARING INTERSECTION & TRAVERSE

This Hewlett-Packard translation is based on program 02826B written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables

UNKNOWN DISTANCE

An important feature of <u>all</u> these COGO programs is the method employed when taking a sighting on a new heading, when the distance is unknown. This situation comes up in the INTERSECTION routines.

You enter the Azimuth or heading information in the usual fashion, (when you press [B] for Azimuth or press [D] for "Deflection"), but at the STOP where you would normally enter the distance, the program automatically provides you with a reading of 1.0000-09. This number (i.e.an infinitesimal) will serve in lieu of zero (O), and will introduce no error. At the same time it performs normally in the calculator, AND YOU SHOULD USE IT TO REPRESENT THE UNKNOWN DISTANCE in the calculations, rather than absolute zero. The INFINITESMAL(1.000-09) may be given a negative sign, with proper significance, if you are making a "backsight".

When this number is referred to in the User Instructions, it is represented by 1.0000-09.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

point C. Make 1.0000-09 distance BEARING traverse toward point C. Imagine that you are at coordinates, using [C]. <u>READ:</u> Coordinates of point C and length of side BC. Change to another COGO program having INVERSE capability, (i.e. COGO-01) and complete the triangle, C to A, and recall the AREA, [f] [E].

```
SIDE AB: Azimuth =+106°08'03", Length = 593.5759.
Point B: Coordinates: Northings = 935.0526, Eastings = 1770.1971
Side BC: Azimuth =+15°47'57", Length = 276.0300
Side CA: Azimuth = -98°51'54", Length = 653.1534
AREA = -81921. sq. ft.
Notes: (1) Negative sign occurs when counter-clockwise turns enclose area, as in
this example. (2) If measured distances were in meters, the area would be
```

Reference(s)

interpreted in square meters.

Program Description II

Sketch(es)	
Solution(S)
	Using Bearing/Quadrant inputs:
	1100[ENT↑] 1200 [A] 73.5157 [ENT↑] 2 [f] [B] [R/S]
	15.4757 [ENT↑] 1 [f] [B] [R/S]
	1200.6548 [ENT [†]] 1845.3508 [C] \rightarrow 935.0526, N _B ;
	$[E] \rightarrow 1770.1971, E_B; [E] \rightarrow 106.0803 \text{ AZ AB}$
	[E] →593.5759, Dist. AB
	Continue, now using Azimuth inputs:
	15.4757 [B] [R/S] 98.5154 [CHS] [B] [R/S] 1100 [ENT [†]]
	1200 [C] →1200.6554, N _A ; [E] → 1845.3510, E_{A} ;
	[E] → 15.4757, AZ BC; [E] → 276.0307, Dist CA.
	If desired, change to COGO-01 with inverse capability, complete the
	traverse and obtain the area. (81921.1828 sq. ft.)
l	
Reference (s)	Davis, R.E., Foot, F.S., Kelly, J.W., <u>SURVEYING THEORY AND PRACTICE</u> . 5th Edition. 1966. McGraw-Hill Book Co. (Bearings & Azimuth page 260); (Deflection Angles page 262).
submit	This program is a modification of the Users' Library Program #2826B ted by Carl M. King.

User Instructions

/-	
	COGO-02
	AZ→BRG
	P.O.B.

0-02: BEARING - BEARING INTERSECTION

BRG/QD INPUT SUPP./

BRG. TRAV. N₃^E3/N₂^E2 DEFLEC.TRAV R↓PRINT

AREA

	7
-	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Load sides 1 and 2				
2	Input point of beginning	Northing	ENTT		
		Èasting	A	180	
	For Bearing Traverse:				
3	Follow instructions on "General COGO User				
	Instruction" sheet, step 3.				
	For Deflection Angle Traverse or Angles Right:				
4	Go to general "COGO User Instruction" sheet, step 11.				
	For Bearing-Bearing Intersection:				
5	Do two bearing traverses with no distance				
	inputs; with azimuths	azimuths	в	1.0000-09	
			R/S	Northing	
	or with bearing quadrants	bearing	ENT		
		QD	f B	1.0000-09	
	(Deflection angles; using [D], also work)		R/S	Northing	
	(Repeat above, for second traverse)				
6	Enter coordinates of terminal points	N ₃ ,Northing			
		E3,Eastings		Northing	
7	Read results			Easting	
				Azimuth	
				Distance	
8	If desired, change to another COGO program with				
	inverse capability, complete traverse and				
	obtain area.				

16

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP K	EY ENTRY	KEY CODE	COMMENTS
08	01 *LBLA	21 11	P.O.B. N+E	8 57	*LBLD	21 14	Deflection angle
00	92 STO2	35 02		0 58	HMS→	16 36	traverse
00	13 R↓	-31		059	RCL5	36 05	
00	94 STO1	35 01		060	STO8	35 0 8	
08	95 CLX	-51		061	F1?	16 23 01	
08	06 STO6	35 0 6		062	CLX	-51	
00	97 1	01		063	+	-55	
00	98 8	08		064	EEX	-23	
08	19 O	00		065	CHS	-22	
01	10 STO9	35 09	Initialize	0 66	9	0 9	
01	1 RTN	24		0 67	CF3	16 22 03	
01	12 *LBLC	21 13	Terminal Coord	068	R∕S	51	Input distance
01	13 RCL2	36 02		069	F3?	16 23 03	Was dist. input?
01	4 -	-45	Dep.	0 70	GT08	22 08	Yes
01	!5 X≠Y	-41		0 71	SF2	16 21 02	No - nonprint
01	IG RCL1	36 01		072	*LBL1	21 01	Calculation subroutin
01	17 -	-45	Lat.	073	÷R	44	
01	l8 →P	34		074	STO3	35 03	
01	9 X≠Y	-41		6 75	X≠Y	-41	
02	20 STO4	35 04		076	ST04	35 04	
02	21 RCL8	36 08		677	2	0 2	
02	2 -	-45		0 78	÷	-24	
02	23 RCL5	36 05		079	RCL2	36 02	
02	24 RCL4	36 04		0 80	+	-55	
02	5 -	-45		0 81	Х	-35	
02	?6 +	-55		082	ST-6	35-45 06	
02	27 LSTX	16-63		0 83	RCL4	36 04	
02	28 SIN	41		084	RCL2	36 02	
02	?9 X≠Y	-41		085	+	-55	
03	30 SIN	41		0 86	ST02	35 0 2	
03	31 ÷	-24		0 87	RCL3	36 03	
03	32 X	-35		08 8	RCL1	36 01	
03	33 RCL8	36 08		0 89	÷	-55	
03	14 X≠Y	-41	1	090	ST01	35 01	
03	15 GTO1	22 01	Go to calc. SBR.	091	RCL4	36 04	
03	16 *LBL6 2	21 16 12	Bearing/Od input	092	RCL3	36 03	
03	17 X≠Y	-4i	Bra	093	÷₽	34	
03	I8 HMS→	16 36	1213.	094	ST04	35 04	
03	89 X≠Y	-41	50	895	XZY	-41	
04	10 ENT†	-21	2a.	09 6	ST05	35 05	
84	1 ENT†	-21		097	→HMS	16 35	
04	2 2	0 2	I	098	ST03	35 03	
04	13 ÷	-24		099	RJ	-31	
04	4 INT	16 34	1	100	CF1	16 22 01	Roll down
	5 RCL9	36 09		101	*LBLE	21 15	
84	6 X	-35		102	R↓	-31	
04	7 X≠Y	-41	1	103	F 2?	16 23 82	Display only
04	8 RCL9	36 09	1	104	R/S	51	Print
04	9 x	-35	1	105	PRTX	-14	
05	50 COS	42	1	106	ETN	24	
05	51 R†	16-31		107	#LBL8	21 08	Input setup
05	52 ×	-35		108	XZY	-41	-ut as seeah
05	53 -	-45		109	R↓	-31	
05	54 →HMS	16 35	Az.	110	GT01	22 01	
05	55 *LBLB	21 12	Azimuth input	111	*LBLa	21 16 11	Azimuth →Bearing
05	56 SF1 1	16 21 01	institution imput	- 112	HMS→	16 36	
ļ			REG	ISIEns	10		
0	1 N	2 F:		5 2	6 ARFA	7	
<u> </u>		<u></u>		ⁿ 2	AREA S6	Q7	
50		152	131		1.711	1.37	100
	51	52	55	00			
	T	B		D		IF.	

Program Listing II

					0			0			
STEP K	EY ENTRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	ENTS
117	ENT+	-	21								
110	CTN		6 I A 1				170				
114	51N		T 1								
115	51N"	16	41								
116	X<0?	16-4	45								
117	CHS	- 2	22								
118	→HMS	16	35	BRa							
119	PPTY	-	1 A								
112	1 1 1 1 1		17 71								
120	<i>.</i>	-,	31								
121	9	4	09								
122	Ū		00								
123	÷	- 2	24								
124	i		G 1				180				
125			55	1							
120	T T : I T										
126	INI	16 .	34	OD.							
127	PRTX		14	~							
128	RTN		24								
129	*LBLc	21 16	13	Suppre	ementary and	JTe					
170	APC	16	71	1							
130	nolo	76 .	01 00								
131	RLL9	36 (99								
132	XIY		41								
133	CHS	-2	22								
134	HMS+	16-3	55				190				
135	RTN		24								
176	wi Dia	01 15	15	1,							
130	ALDLE DOLC	21 10 .	10 . oc	Area							
137	KULD	36 (96	ł							
138	ABS	16 :	31 .								
139	PRTX	- 2	14								
140	RTN	2	24								
141	₽/S	1	51	1							
141	N/ 0	•		1							
		-+		1							
		_		1			000				
							200				
				1					,		
				1						1	
				ł							
150											
				1							
				1						1	
							210				
				1							
				1							
160				1							
100				4							
				1			220				
				1							
		-		1							
				1							
1				L				EL COC	L		
•	10		<u> </u>	LAB		_		FLAGS		SEISTATUS	
^ Р.О.В.	BRG	. TRAV	NaEa	/NoEo	DEF. TRAV.	E	R↓	U	FLAGS	TRIG	DISP
a	b		c	1. 4	d	е		1	ON OFF		
AZ→BRG	BRG	/QDINPU	T SUI	PP.ANG		AF	REA	USED	0 🗆 🛛	DEG 🛛	FIX 🖾
0	1		2		3	4		2 NON DET	1 🗆 🛛	GRAD 🗆	SCI 🗆
5		C.SBK	7		8	9		INON PRI	2 🗆 🖬	RAD 🗆	ENG 🗆
5	ľ		'			D		אד בידער	ם 🖸 妃 קרוזס		n_4

Program Description I

Program Title COGO-03: BEARING-DISTANCE INTERSECTION AND TRAVERSE

This Hewlett-Packard translation is based on program 02827A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables

UNKNOWN DISTANCE:

An important feature of <u>all</u> these COGO programs is the method employed when taking a sighting on a new heading, when the distance is unknown. This situation comes up in the INTERSECTION routines.

You enter the Azimuth or heading information in the usual fashion, (when you press [B] for "Bearing" or [D] for "Deflection"), but at the STOP where you would normally enter the distance, the program automatically provides you with a very small number (an infinitesmal) equal to 0.000000001. This number will serve in lieu of zero (0), and will introduce no error. At the same time it performs normally in the calculator, and YOU SHOULD USE IT TO REPRESENT THE UNKNOWN DISTANCE in the calculations, rather than absolute zero.

When this number is referred to in the User Instructions, it is represented as 1.0000-09. The INFINITESMAL(1.0000-09.) may be given a negative sign, with proper significance, if you are making a "backsight".

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

A	57"E 2"	2 <u>9 1200.65</u> 1845.350	18 8	N.
1,20	B	<u>s</u>		7
Sample Problem(s) Start at point A. (Enter P.O.B. (Azimuth = +104°08'03", press [= 1200.6548, press [ENT*], Easti [R/S].) <u>READ</u> x = 496.0369 Select one value to remain in th Press: [R/S]. Program completes Having found point B, change to and complete the traverse: B t	<pre>coordinates.) Tak B], [R/S].) Enter of ngs = 1845.3508, pr ; or y e x-register. TRAVERSE to select another COGO progra o C to A, and re</pre>	xe sighting on coordinates of cess [C], Radiu = 706.4322 ced point. am having INVEN ecall the AREA.	point B. point C. (No us = 276.03, RSE capabilit	press
Side Bearing Azimuth	distance	Northings	Eastings	Point
AB \$75°51'57"E +104°08'03"	(496.0369)	1100.0000	1200.0000	A
	(19010909)	(978.8711) 1200.6458	(1681.0202) 1845.3508	(B) C
Change programs, and complete cl	osure. AREA = 6329	91.6476		
Note: Quantities above in paren <u>Sólution(s)</u> 1100[ENT [↑]] 1200 [A] 10 [1200.6548 [ENT [↑]] 1845. 276. choose d <u>OR</u> for Bearing/Qd input 1100[EN <u>Reference(s)</u> This program is a r submitted by Carl M. King. <u>SURVEYING THEORY AND PRACTINE</u> Raymond E. Davis (Bearings Francis S. Foote (Deflection Loo W Kelly (Postangul	theses are calculat 4.0803 [B] \rightarrow 1.000 R/S] \rightarrow 1100.000 3508 [C] \rightarrow 601.2346 03 [R/S] \rightarrow 496.0369 [E] \rightarrow 706.4322 [R^1] \rightarrow 496.0369 [R/S] \rightarrow 978.8711 [E] \rightarrow 1681.0202 T] 1200 [A] 75.515 modification of the CE - 5th Edition - & Azimuth page 26 n Angles page 26 ar Coords page 45	ted in the prod 00-09 (Display ignore d, d (Display on (Display on Northing Easting 7 [ENT] 2 [f] Users' Librar 1966 - McGraw- 50 52 54	only e) Ly) [B] → etc. cy Program #C -Hill Bk.Co.)2827A

User Instructions

COGO-0
AZ→BRG P.O.B.

GO-03 BEARING DISTANCE INTERSECTION

BRG. BRG/QD INPUT SUPP./ BRG. TRAV. N₃E₃, R

DEF. TRAV R↓, PRINT

	7	
_		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	OUTPUT DATA/UNITS	
1	Load side 1 & side 2				
2	Input point of beginning	Northing	ENT↑		
		Easting	A		180
	For Bearing Traverse:				
2	Follow instructions on "General COGO User				
	Instruction" sheet, step 3.				
	For Deflection Angle Traverse:				
4	Go to "General COGO User Instruction" sheet,				
	stop 11				
	For Bearing-Distance Intersection:				
-	The lighting for point of interportion and				
	Take "Signting" for point of intersection and	Δ7	В		1 0000 00
	input Azimuth				1.0000-09
	(or bearing, quadrant)	BRG	F	В	1 0000-09
	use 1 0000-09 distance	<u>QD</u>			Northings
		1.0000 05			nor chirigo
6	For radius point: input Northings	N3	ENTT		
	input Eastings	<u>E3</u>			"X"
	input <u>Radius</u>	R	R/S		d
					<u>a</u> .
	X=d, y=d' (Take your choice depending on				
	problem geometry)				
7	If d' is chosen		R/S		Northing
8	If d is chosen		R	R/s	Northing ₂
					Easting ₂
	Note: COGO-03 does not have inverse capabilit	v			
	If no more intersections are to be calculated				
	you will want to enter another COGO program				
	card such as COGO-01 for inversing.				

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP K		KEY CODE	COMMENTS
001	*LPLA	21 11	P.O.B. N & E	0 57	RCL9	36 09	
002	5102	35 82		0 58	Х	-35	
003	К¥ стон	-31 75 At		059	XZY	-41	
004		33 01 _51		U 60	RCL9	36 09	
000 006	STOR	35 Ø6	Cloar area	061	x coc	-30	
000 007	1	00 00 Ø1	Clear area	062	003 DA	42	
008	8	08		003 064	г. 1 Х	-75	
009	ē	00		865	_	-45	Agimuth
010	ST09	35 <i>09</i>	Initialize	066	→HMS	16 35	AZIMUCII
011	RTN	24		067	*LBLB	21 12	Azimuth input
012	*LBLC	21 13	Radius point	068	Ø	00	
013	RCL2	36 02	distance calc.	069	ST05	35 05	CLR 5
014	-	-45	Dep.	070	+	-55	
015	X77	-41		071	*LBLD	21 14	Deflection \angle
U16	RULI	36 81	Tat	072	HMS→	16 36	
017 010	-	-45	Lat.	073	*LBL1	21 01	
018 010	7F V+V	34 _41		074	RCL5	36 05	
015 020	∆+) ₽CL5	-41 76 05		0/5	+	-55	
020 021	NGLU -	-45		075	EEA	-23	
021 022	XZY	-41		0//	с п а а	-22	
023	÷₽	44		0 70	CE3	16 22 03	
024	₽∕S	51	Enter radius	819	R/S	51	Input dist
025	ENTT	-21		981	жI ВI Й	21 00	input dist.
026	Х	-35		082	F3?	16 23 03	Was dist input?
027	Rt	16-31		083	GTOS	22 08	Yes
0 28	Rt	16-31		084	SF2	16 21 02	No. input 10^{-9} and
0 29	Х	-35		085	*LBL2	21 02	set for non print
030	-	-45		086	÷R	44	See for non prine
031	1%	54		087	ST08	35 08	Calculation sub-
032	+	-55		088	X≠Y	-41	routine
U33 074	XIY	-41		089	ST07	35 07	
034	LSIX	16-63		090	2	02	
030 076	-	-45		091	÷	-24	
030 077	ENT+	-21		092	RULZ	35 62	
038 038	En Fl	-31		0 20 0 04	• •	-75	
039	*LBLE	21 15	Roll down and	094 095	ST-6	35-45 ØG	
049	R4	-31		896	RCL7	36 07	
0 41	F2?	16 23 02		097	RCL2	36 02	
042	R∕S	51	Display or	8 98	+	-55	
043	PRTX	-14	Print	099	ST02	35 02	
044	R∕S	51	11110	100	RCL8	36 08	
045	RCL5	36 05		101	RCL1	36 01	
045	X7Y OTOO	-41		102	+	-55	
U 4/ 040	GTUZ ALDIL	22 02		103	ST01	35 01	
1940 1940	#LDL0 0+0	-41	BRG/QD input	104	RUL7	36 07	
072 858	n+: HMS⇒	16 36	BRG	100	KUL8 AR	35 88	
051	XZY	-41		100	5704	34 75 Ø4	
052	ENTT	-21		101	X 2 Y	-41	
053	ENTT	-21		109	ST05	35 05	
054	2	02		110	→HMS	16 35	
055	÷	-24		111	STC3	35 03	
056	INT	16 34		112	R↓	-31	
	-L		REGI	STERS		7	
)	'N	2 E	$\int^{3} A^{\circ}(DMG) \int^{4} d$	A	AREA	DEP.	LAT. 180
50	S1		S3 S4	S5	S6	S7	S8 S9
-							
4		В	С	D		E	I
		1		1			

Program Listing II

STEP	KEY EN	TRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMME	ENTS
11	I GTI	0E	22	15	Displa	У						
11	14 *LBI	L8	21	0 8	Input	setup		170				
11	15 X	₽Υ	-	41								
11	16	R↓	-	31								
11	17 GTI	02	22	02	Azimut	h to						
11	18 #LBI 10 UM	La . Ca	21 16 . 15	11 76	Bea	ring/OD						
11	19 MM 20 EN	57 T#	10 -	30 21	Deu							
12	20 EN 21 C	17 TN	-	21 41								
12	21 J. 22 SI	N-I	16	41 41								
1:	22 31. 27 X()	00 00	16-	45								
12	24 C	HS	-	22				180				
12	25 + H	MS	16	35								
12	26 PR	TΧ	-	14								
12	27	R↓	-	31								
12	28	9		09								
12	29	Ũ		00								
15	36	÷	-	24								
13	31	1		01								
13	32	+	-	55	1							
13	33 I.		16	34				190				
1:	54 FK 75 D	18 Tu	-	14 04								
13	50 K 76 wide	IN Lo	21 16	24 17								
13	20 ALD) 77 A	LC DC	21 10	13	Supple	ementary an	igre					
17	2: DI 79 PC	19	36	01 09								
13	ло ко. 79 X	±7		41								
1.	40 C	HS	-	22								
14	41 HM	S+	16-	55								
14	42 R	TN		24								
14	43 R	/S		51							1	
			+		1			200			1	
											4	
					-						4	
					4						4	
150					{						ł	
100			1		1						1	
					1						1	
					1							
					1			210				
]							
											1	
100											4	
160											4	
					4						4	
					1						1	
			1		1			220			1	
			1									
]							
											1	
					L						L	
A	In				LAB	BELS	Te		FLAGS		SET STATUS	
P.O.	в. В	BRG.	TRAV	BRG	DIST	DEFLECTION	J R↓,	PRINT	U	FLAGS	TRIG	DISP
a	b		TNDUT	CUT		d	е		1			
AZ→B	I I	RKG	TNLOIL	2	<u>M. T. 7</u>	3	4		2			FIX E⊒ SCI □
DATA	INPUT	US	ED	CAL	С		, ,		PRINT?		RAD 🗆	
5	6			7		DATA SETUR	9		³ DISTANCE	3 🗆 😡		n4

Program Description I

Program Title COGO-04: DISTANCE - DISTANCE INTERSECTION AND TRAVERSE.

This Hewlett-Packard translation is based on program 2828A written by CARL M. KING 2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-04 is a member of the coordinate geometry
series described in the GENERAL DESCRIPTION I., hereof. The special option of this
program is the DISTANCE - DISTANCE INTERSECTION or the CURVE - CURVE INTERSECTION,
which ever way you want to think of it.

THE PROBLEM: to calculate the coordinates of a point and the heading and distance of a line to it, when the coordinates and respective distances of two known points are given. In general two circles intersect in two points. When you swing arcs about two known points, if they intersect at all, they are most apt to have two intersection points.

When you proceed from one known point to another by way of an intermediate point, you have a choice. You can either go in the direction that provides a clockwise (CW) deflection at the intermediate point, or going in the opposite direction a (CCW) deflection.

In this program we shall always choose the CW deflection, and thereby calculate the intersection point so identified.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

$\frac{B_{1200,6548}}{R_{22}} N.$ $\frac{R_{22}}{496.0369} CW n^{100} R_{3508} N.$
Start at known point A (Enter P.O.B. goordinates)
Make INVERSE TRAVERSE to know point D (Use defined South 101)
Fator radius length D , proce [D/G]
Enter radius length R_1 ; press $[R/S]$.
PEADs Northings Eastings on Line 1 line 2 line 5 in T
READ: Northings, Eastings and Azimuth and distance of side BC.
Make INVERSE TRAVERSE to point A.
Read area.
Note: Sequence of points A, B, C must be in clockwise (CW) order.
Side Bearing Azimuth distance Northings Eastings Point
AB N81°08'06"E (+81°08'06") (653.1532) 1200.6548 1845.3508 B
BC S36°32'12"W (-143°27'48") 276.0300
(978.8711) (1681.0202) (C) \overline{CA} N75°51'57"W (- 75°51'57") 496.0369
AREA = 63293.8059
Note: Quantities in parentheses tabulated above are calculated in the program. Solution(s) 1100 [ENT [↑]] 1200 [A] 1200.6548 [ENT [↑]] 1845.3508 [C] \rightarrow 1200.6548, NB; [E] \rightarrow 1845.3508, E _B , [E] \rightarrow 81.0806, AZ AB [E] \rightarrow 653.1532. Dist AB
276.03 [R/S] 496.0369 [R/S] \rightarrow 978.8711, N _C [E] \rightarrow 1681.0202, E _C [E] \rightarrow -143.2748, AZ \overline{B}_{C} [E] \rightarrow 276.03, Dist. \overline{B}_{C}
1100 [ENT [↑]] 1200 [C] → 1100.0000, N _A [E] → 1200.0000, E _A [E] → -75.5157, Az CA [E] → 496.0369, Dist. CA [f] [F] → 63293 8059 APEA
Reference(s) This program is a modification of the Users' Library Program #02828A submitted by Carl M. King.

User Instructions

COGO-04: DISTANCE-DISTANCE INTERSECTION									
INSTRUCTIONS	KEYS								

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load sides 1 & 2			
2	See "General COGO User Instruction" sheet for			
	Bearing & Deflection angle traverses			
	For Distance-Distance Intersection:			
3	Plan sequence of points, so that as you move from #1 to #2 to #3, you make a clockwise			
	(CW) circuit.			
4	Complete inverse traverse, point #1 to point #2 See "General COGO Instructions"			
	then:			
	input first distance (Bearing right,CW)	R ₁	R/S	(R ₁) ²
	input second distance	R ₂	R/S	Northing
			E	Easting
				Azimuth
			E	Distance
5	Complete traverse as desired and obtain area.			
	(see general instructions)			

97 Program Listing I

STEP I	KEY ENTRY	KEY CODE	COMMENTS	STEP KE	EY ENTRY	KEY CODE	COMMENTS
001	*LELA	21 11	P.O.B. N & E	0 57	RCL4	36 04	
002	STO2	35 02		0 58	RCL3	36 03	
003	R4	-31		0 59	Х	-35	
004	ST01	35 01		8 60	2	02	
005	CLX	-51		061	Х	-35	
006	ST06	35 06	Clear area	0 62	÷	-24	
007	1	01		063	CHS	-22	
008	8	<i>08</i>		064	COS-4	16 42	
009	0	00		065	RCL5	36 05	
010	STO9	35 ØS	Initialize	06 6	+	-55	
011	RTN	24		0 67	RCL3	36 03	
012	*LBLC	21 13	Inverse traverse	0 68	GT01	22 01	
013	RCL2	36 02		069	*LBLb	21 16 12	Bearing/QD input
014	-	-45		070	X≠Y	-4i	Bearing
015	X≠Y	-41	Dep.	071	HMS÷	16 36	
016	RCL1	36 01		0 72	X₽Y	-41	QD
017	-	-45	Lat.	073	ENTŤ	-21	
018	*LBLØ	21 00	Calculation sub-	074	ENTT	-21	
019	STOS	35 08	routine	075	2	02	
020	XZY	-41	Toucinc	076	÷	-24	
021	ST07	35 07		077	INT	16 34	
022	2	U2		078	RCL9	36 09	
023	÷	-24		079	X X	-35	
024	RCL2	36 UZ	ł	0 80	XZY	-41	
025	+	-55		081	RCLY	36 09	
026	X of c	-30		082	X 	-35	
027	5/-6	33-43 06		083	005	42	
028	KUL7 DOLO	35 07		084	KT	16-31	
029	KULS	36 08		080	X	-30	Azimu+h
030	75 СТО4	34 75 04	4	085	- 	-40 16 75	AZIMUCH
031 070	37 04 V+V	-41		6 87	700	10 30	
032	0+1 0T05	75 Ø5		0 00 000	#LDLD G	21 12	Azimuth input
033 074	arus ⇒µms	16 35		007 000	etns	75 Ø5	Clear 5
034	בהדפ	75 ØZ		050 001	3103 4	-55	cicui s
036	RCL 7	36 07		892	*! RID	21 14	Deflection angle
R37	RCL2	36 02		002 097	HMSA	16 36	Derreetion angre
N 38	+	-55		R94	RCL5	36 05	
039	ST02	35 02		895	+	-55	
040	RCL8	36 08		Ø 96	EEX	-23	
041	RCL1	36 01		097	CHS	-22	
0 42	+	-55	1	098	9	09	
043	ST01	35 01		0 99	CF3	16 22 03	
044	RCL4	36 04]	100	R∕S	51	Input distance
045	*LBLE	21 15	Rolldown/print	101	F3?	16 23 03	Was dist. input?
046	R↓	-31	1	102	GSB8	23 0 8	Yes
047	PRTX	-14		103	*LEL1	21 01	No, input 10-9
048	R/S	51	Input R ₁	104	÷R	44	
U4 9	5103	35 03		105	GTOØ	22 00	Go to calculation
050	X2 5.0	33 54		106	*LBL8	21 08	Input setup
U51	K/S	51	Input K2	107	X₽Y	-41	
052	7 2	33 45	4	108		-31	
003 051	- DCLA	-43 76 04	1	109	RIN	24	÷
034 DEE	RUL4 V2	JD 84 57	1	110	*LBLe	21 16 15	Area
000 05/	۲. ۲	-55 -55		111	RCL6	36 06	
636	Ť	-00	BEGI	SIENS 112	ABS	16 31	
0	1	2	3 4	5	6	7	8 9
	N	E	R ₁ ,A° C=d	A2	AREA	DEP	LAT 180
S0	S1	S2	S3 S4	S5	S6	57	58 59
L				D		I	
A		D					`

26

Program Listing II

		v	KEVO		-	COMMENTS		STEP		KEY CO	DE	COMME	NTS 2
31EP F		X	-	14		COMMENTS							
114	RTI	n N		24				170					
115	*! El /	. 2	1 16	11	Azimut	h to							
116	HMS	÷	16	36 36	Веа	ring/Qd							
117	ENT	t	-	21	ł	5, ~							
118	SI	N		41									
119	SIN	-1	16	41									
120	X < 0'	?	16-	45									
121	CHS	S	-	22									
122	+HM	S	16	35									
123	PRT	X	-	14	Bearin	a							
124	R	Į.	-,	31				180					
125	4	9		9 9									
126	l	0		90									
127	÷		-,	24									
128		1	i	91									
129	÷		-	55									
130	IN	T	16	34									
131	PRTA	X	-	14	OD								
132	RTI	N		24	2-								
133	*LBLc	o 2.	1 16 .	13	Supple	mentary a	ngle						
134	ABS	S	16	31	Sappro	ancircary c	ingre	190					
135	RCLS	9	36 (09									
136	X # 1	Y		41									
137	CHS	S	-,	22									
138	HMS	+	16-	55									
139	RTI	Ŋ		24									
140	R/S	5	-	51									
1					×								
								200					
150													
								210					
100													
160													
								220				1	
												1	
												1	
												1	
A					LAB	ELS			FLAGS			SET STATUS	
A	В	- С т	RAV	C	RSF	DEF ANC	ERC		0	FLAC	GS	TRIG	DISP
а т. о. в.	b			C		d	e		1	ON	OFF	T	
AZ→BRG	ĔВ	RG.I	NPUT	SUPE	ANG.	-	ĂF	EA		0	X	DEG 🛛	FIX 🐮
CALC S		SED		2		3	4		2		X		
5	6			7		⁸ DATA SET	ru ⁹		³ DIST.INP		κ X		n_4

Program Description I

Program Title COGO-05: TRAVERSE OF CURVE

This Hewlett-Packard translation is based on program 02829A written by CARL M. KING 2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-05 is a member of the coordinate geomtry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the calculation of a curve as a part of a subdivision boundary or legal description.

INVERSE TRAVERSE is not included in this program. However all the other COGO traverse functions operate the same as in the other COGO programs.

In the usual situation you approach a curve tangentially. You are given the DELTA angle (or central angle) and the RADIUS length. These two quantities are positive (+) if bearing to the right, and negative (-) if bearing to the left. At the "point-of-curvature" (PC) you enter the DELTA angle, press [C]; enter the RADIUS, press [R/S], (giving each the <u>same</u> sign); and the program computes the chord (CHD) traverse to the "point-of-tangency". Read the data for that leg; press [R/S], and the program accumulates the area of the arc segment, and displays the Tangent (TAN) and the arc (ARC) lengths.

Operating Limits and Warnings You may wish to use Cogo-O1 to continue this traverse. If so, when loading Cogo-O1, be sure to convert the contents of Register 5, which is in Radians in this program. To degrees. The following keystroke procedure will accomplish this: RCL5, R→D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING. USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

$(A)_{(E)}^{(0)} (0)^{(0)$	5.4553 ·	$ \begin{array}{c} R^{+} & R^{-} \\ R^{+} & \sqrt{86} \\ (cm0) $	PI ANGLE	= -90°20'06"	N.
 Sample Problem(s) Start at point Make a BEARING Obtain coordin Enter: DELTA Enter: RADIUS Obtain PT coordinat Press: [R/S]; Find coordinat Load COGO-01 p Make SIDE SHOT Return to trav DEFLECTION ANG 	A, for a P.O. TRAVERSE to p ates of B, als angle + -90°20 = -186.0000 dinates and C obtain: TAN a es of Pt.C by rogram card to S to calculato erse mode and LE traverse to Azimuth	.B. point B, util so known as P 0'06", press 0, press: HD Azimuth an and ARC. <u>DO</u> doing O° def complete tra complete tra complete tra point C, an	izing above da oint-of-Curvat : [C]. [R/S]. d length. <u>NOT</u> neglect th lection angle averse. point (R) and verse of figur d INVERSE TRAW	ta. Sure (PC). his step! traverse to the (PI). Te. Make zero TERSE to close Fastings	angle on point A.
Side Bearing		Distance	1100.0000	1200.0000	A
AB S73°53'57"E B(PT) N60°58'00"E	+106°08'03" (+60°58'00")	406.4853 (263.8116)	(987.0428)	(1590.4753)	(B)
Curve	Parts: TA	N = (187.0907)	(1115.0754)): ARC = (293)	(1821.1357)	(PT)
(PT)C N15°47'57"E	(+15°47'57"	88.9393	(1200.6548)	(1845.3508)	(C)
CA 581-08-06 W	(-98-51-54)	(653.1532)	1100.0000	12 0 0.0000	А
AREA enclosed Note: Quantities Solution(s): 1100 [E [E]→159 90.2006 [E]→182 [R/S]→1 0 [D] 8 [E]→15. Then lo Reference(s) This pro #02829A submitted	in figure = (in parenthese NT^{1} 1200 [A] 0.4753, E_{B} ; [2 [CHS] [C] 18 1.1357, E_{PT} ; 87.0907, TAN; 8.9393 [R/S] \rightarrow 4757,AZ; [E] \rightarrow ad COGO-O1 and ogram is a mod by Carl M. Ki	74394.8968) <u>s are calcula</u> 73.5157 [ENT E]→106.0803,A 6 [CHS] [R/S] [E]→60.5800, [E]→293.2556 1200.6548, N _C 88.9393, Dist d inverse to lification of .ng.	ted in the pro [+] 2 [f] [B] 4 $Z; [E] \rightarrow 406.485$ $\rightarrow 1115.0754, N_F$ $AZ; [E] \rightarrow 263.81$ o, ARC. $; [E] \rightarrow 1845.350$. PT to C. point A and ob the Users' Lii	bgrams. 106.4853 [R/S]= 53,Dist pT; CHD. 16, 08, E _C , 08, E _C , 01ain AREA = 74 brary Program	987.0428,N _B

User Instructions

1	COGO-05: TRAVERS	E OF CURVE				7
AZ→BRG P.O.B.	BRG/QD INPUT BRG.TRAV.	SUPP.∠ ±∆,±R	DEF.TRAV.	R↓	PRINT	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Load card sides 1 & 2				
2	Input point of beginning	Northing	ENT		
		Easting	A	180	
3	For Bearing or Deflection angle				
	traverses: see "COGO General Instruction	511			
	sheet				
	TRAVERSE OF CURVE:				
	Note: The curve is made tangent to the				
	traverse leg most recently completed. Therefor	re			
	at least one traverse leg must have been calcul	ated			
	prior to calculating a curve with this program				
4	Input Delta angle	±∆	C	1.0000-09	
5	Input Radius (same sign as Δ)	± _R	R/S	Northing	
	Read Easting			Easting	
	Read Azimuth		E	Azimuth	
	Read Chord		Е	CHD	
	Calculate tangent length		R/S	TAN	
	Read ARC length		E	ARC	
	Note: After completing step 5, you will be rea	ıdy			
	to continue your traverse. For greater convent	ence			
	you will probably wish to switch to another pro	gram CARD.			
	Having completed the curve calculations, you ca	in calculate			
	the PI and the radius point each as a SIDE SHOT	. The PI			
	is a 180° deflection, and the radius point is	±90°			
	deflection.				
	To continue the traverse forward, use a 0° def	lection			
	angle.				
		ļ			

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS			KEY CODE	COMMENTS
00	1 *LBLA	21 11	P.O.B.	0 37 0 58	*LBLD	-55 21 14	
00	Z 510Z 7 PI	33 02	E.	0 59	RAD	16-22	Deflection angle
00 00	о т.+ И стој	-31 75 81	Ν	0 60	HMS→	16 36	input
00 QQ	4 3101 5 CLV	-51		061	D→R	16 45	
00 00	E STOR	35 Ø6		8 62	RCL5	36 05	
00 00	7 1	00 80 Ø1		063	+	-55	
00 80	, 1 8 8	01 08		064	EEX	-23	
00 00	с о 9 а	00 00		06 5	CHS	-22	
R1	я sto9	35 09	Initialize	0 66	9	0 9	
01	1 RTN	24		0 67	CF3	16 22 03	
01	2 *LBLC	21 13	Traverse of curve,	068	R∕S	51	
01	3 HMS÷	16 36	input ±∆	0 69	*LBL0	21 00	Calc. SBR
01	4 D→R	16 45		070	F3?	16 23 03	Data input?
01	5 RAD	16-22		0/1	GSB8	23 08	Yes
01	62	02		072	*LBL1	21 01	No
01	7 ÷	-24		073	7K 0707	44	
01	8 ST07	35 07		074	5103	30 03	
01	9 RCL5	36 05		073 075	Δ+1 9704	-41 75 GA	
02	0 +	-55		070 077	5104	3J 04 02	
02	1 EEX	-23		079 079	- -	-24	
02	2 CHS	-22		879	Pri 2	76 02	
02	39	09		0 80	+	-55	
02	4 R/S	51	Input ±R	0 81	x	-35	
02	5 XZY	-41		0 82	ST-6	35-45 06	
02	6 <i>R</i> ∳ ⊐ 0700	-31		083	RCL4	36 04	
02	7 5108 0 DCL7	30 88		084	RCL2	36 02	
02 00	8 KULA O CIM	30 07		0 85	÷	-55	
02 07	9 31N 0 X	-75		0 86	ST02	35 02	
03 07	1 2	00 02		0 87	RCL3	36 03	
00 07	2 X	-35		8 88	RCL1	36 01	
03 03	3 6101	22 R1	GTO calc SBR	0 89	÷	-55	
03	4 *LBLb	21 16 12	BRG/OD input	090	ST01	35 01	
03	5 DEG	16-21		091	RCL4	36 04	
03	6 X ≠ Y	-41	BRG	092	RCL3	36 03	
03	7 HMS→	16 36		093	÷P ∪≠∪	34	
03	8 X≠Y	-41		U 94	XZY	-41	
03	9 ENT†	-21	22	090 002	5100	30 00	
04	0 ENT†	-21		020	LUNC	10 40	
04	1 2	02		027 000	7nnə Di	10 33	
04	2 ÷	-24	1	020 099	CTOF	22 15	
04	3 INT	16 34		100	*1 B1 8	21 08	Print northing
04	4 RCL9	36 09		101	XZY	-41	Data input setup
64	5 X	-35		102	R↓	-31	
U4 04		-41		103	RTN	24	
04	A RULY	30 UJ -75		104	*LBLE	21 15	
04 04	o ne	-33	1	105	R∔	-31	Rolldown & print
04 05	9 CU3 G DA	16-71	1	106	PRTX	-14	
05 05	0 Ki 1 X	-35	1	107	R∕S	51	Colo TAN S APC
05 05	2 -	-45	Azimuth	108	RCL7	36 07	CALC, TAN & ARC
05	- 3 →HMS	16 35	1	109	ENTT	-21	
05	4 *LBLB	21 12	Azimuth input	110	ST+5	35-55 05	4
05	50	00	1	111	SIN	41	4
8 5	6 STO5	35 05		112	KULT	36 07	L
<u></u>	1	2		5	6	7	8 9
0	N	Ē	(n)	A ₂ (RAD)	AREA	Δ/2	± R 180
50	S1	S2	S3 S4	S5	S6	S7	S8 S9
A		В	С	υ		E	1

Program Listing II

STEP	KEY	ENTRY	KEY	CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
1.	13	COS	T	42								
1.	14	Х	-	35				170				
1.	15	-	-	45							1	
1.	16	RCL8	36	08 57	ł						1	
1.	17 -	λ - γ	_	03 75							1	
1	10 19	ST+6	35-55	BE BE]	
1	20	0	00 00	00	1]	
1	21	RCL7	36	07								
1	22	2		02								
1.	23	Х	-	35				180			4	
12	24	RCL8	36	08							4	
11	25	X		35 00							1	
1.	26 97	RUL8 PCL7	36	08 07							1	
1:	27 28	TAN	30	07 47							1	
1:	29	X	-	35]	
1	30	PRTX	-	14	Print	tan						
1.	31	R∕S		51								
1.	32 ×	LBLa	21 16	11	AZ→BRG	;					4	
1.	33	DEG	16-	21		_		190			4	
13	34	HMS→	16	36	Azimut	h			1		4	
13	35	ENTT	-	21							1	
1:	56 77	SIN	15	41 							1	
1	27 78	51M- X702	16-	41 45							1	
1.	39	CHS		22]	
14	40	→HMS	16	35]	
14	41	PRTX	-	14	BRG						1	
1.	42	R↓	-	31							4	
1.	43	9		09				200			4	
14	44	0		00				200			4	
14	40 42	÷	-	24 01							1	
14	+0 17	1 +	_	01 55	1						1	
14	1: 18	INT	16	34]	
14	49	PRTX	-	14	DD]	
15	50	RTN		24	~-						1	
1	51 *	LBLc	21 16	13	Supp.	Angle					4	
1	52	ABS	16	31							4	
1	53	RCL9	36	09				210			1	
)4 55	X∓Y ⊖µe	-	41 · 90							1	
1	55 56	спэ НМС∓	16-	55							1	
15	57	RTN	10	24								
15	58	R/S		51								
160			+									
			1		1						1	
			1									
					1					~		
								220				
			1					┣				
											1	
					LAB	ELS			FLAGS		SET STATUS	
A P.O.	·B	B BRG	.TRAV.	C CURV	E TRAV	DEF. TRAV	ER↓	PRINT	0	FLAGS	TRIG	DISP
	2	b BPC /		C CITD	р /	d	e , p	шл.	1	ON OFF		
0	J 	1	YD INP	2 SUP	E. 6	3	4 4	БA	2			FIX ∐ SCI □
CALC	.SBR	USE	D	7		8	0		2		RAD 🗆	
l'		ľ		ľ		DATA SETU	3		DATA ENTR	χy 3 🗆 😡		n
Program Title COGO-06: CURVE INVERSE AND TRAVERSE

This Hewlett-Packard translation is based on program 02830A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-0 6 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION I., hereof. The special option of this program is the calculation of a curve of given radius between two known points in the coordinate plane.

The standard options operate the same in this program as in other members of the COGO series.

In this program, whenever you have completed a traverse leg, you may consider the point just left as the PC and the new point arrived at as the PT of a curve. You then enter the radius of curvature that you want. (Make it positive, if it bears right. Make it negative if it bears left.) Press: [R/S], and the program computes the TAN, ARC and DELTA angle, and you display them in that order, using the rolldown - print routine, [E]. The CHD is the distance between the PC and the PT, which you have just completed. The program accumulates the AREA enclosed by the curved boundary.

After completing a curve, you will find it convenient to reload COGO-01, and use the SIDE SHOT routine to find the PI and the radius point.

This program is a modification of the Users' Library Program #02830A submitted by Carl M. King.

Operating Limits and WarningsYou may wish to use Cogo-01 to continue this traverse.If so, when loading Cogo-01, be sure to convert the contents of Register 5,which is in Radians in this program. To degrees. The following keystrokeprocedure will accomplish this:RCL 5, R →D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

$ \begin{array}{c} $	RADIUS 186.0000 PT 182 AD TAN PI	<u>.0754</u> 1.1357	N.
Sample Problem(s)			
 Start at point B, for a P.O.B. (Or you Make an INVERSE TRAVERSE to the PT. Obtain the chord (CHD) Azimuth and len Enter: RADIUS = -186.0000 (Use negat Press: [R/S]; obtain: TAN, ARC and DE Continue traverse with zero deflection Complete figure with INVERSE traverses HINT: If you were to switch to progra calculate the PI and radius poi After closing on the P.O.B., read the 	could be conti gth. ive sign, since LTA angle. angle to point to point A, ar m CARD: COGO-01 nts as SIDE SHO AREA: press [f]	inuing from B) e curving left t C. nd finally clo L after step (DTS. [E].). t.) ose on point B. 6 you could
Side Bearing Azimuth	distance	Northings	Eastings Point
B(PT) N60°58'00"E (+60°58'00")	(263.8116)	987.0428	1590.4753 B
CURVE PARTS RADIUS = -186. TAN = (187.0907) ARC (PT)C N15°47'57"E (+15°47'57") 88.93 CA S81°08'06"W (-98°51'54") (653.1) AB S73°51'57"E (+106°08'03") (406.48) AREA enclosed in figure = (74394.9005) Note: Quantities in parentheses are calculated	= (293.2557) 93 (1200.6547) 532) 1100.0000 353) 987.0428 lated in the pr	DELTA = (1845.3509 1200.0000 1590.4753	(-90°20'06") (-90°
Solution(s): 987.0428 [ENT [†]] 1590.4753 [A] [E]+1821.1357, E _B ; [E]+60.5800, A _Z ; [E]+263 186 [CHS] [R/S]+187.0907, TAN; [E]+293.2553 0 [D] 88.9393 [R/S]+1200.6547, N _c ; [E]+1845 [E]+88.9393, DIST. 1100 [ENT [†]] 1200 [C]+1100, N _A ; [E]+ 1200, [E]+653.1532, DIST. CA 987.0428 [ENT [†]] 1590.4753 [C]+987.0428, N _B ; [E]+106.0803, AZ AB; [E]+ 406.4853, DIST Z [f] [E] +74394.9005, AREA	1115.0754 [ENT 3.8116, Chord L 7, ARC; [E]→ -9 5.3509, E_{C} ; [E] E_{A} ; [E]→ -98.5 [E]→1590.4753 AF.	<pre>↑] 1821.1357 ength. 0.2006, DELTA →15.4757, AZ; 154, AZ CA , E_B;</pre>	[C]→1115.0754,N _B

1	
	AZ→BRG P.O.B.

COGO-06; CURVE INVERSE AND TRAVERSE

BRG/QD INPUT SUPP./ AREA BRG.TRAV. INVERSE,R. DEFLEC.TRAV. R ↓ PRINT

	7
T	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS	
1	Load sides 1 & 2					
2	Enter point of Curvature (P.C.) as P.O.B.	Northing	ENT			
		Easting	A		180	
	or traverse in usual manner from point of					
	beginning to beginning point of curve (see STD					
	options)					
3	Input PT coordinates	Northing	ENT			
		Easting	С		Northing P	ł.
			E		Easting _{PT}	
			E		AZ _{PT}	
			E		Length of (hord
4	Input radius of curve					
	(+if curving right, -if left)	±R	R/S		TAN	
			E		ARC	
			E		±DELTA	
5	Continue with zero deflection					
	angle traverse to next point	0	D		1.0000-09	
	J	Distance	R/S		Northing	
			Е		Easting	
			E		AZ.	
			E		Dist.	
6	Complete traverse & close on P.O.B. then					
	obtain area		f	Е	AREA	1
						1
						1
						1
						1
						1

00	
36	

36							
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	D O B	057	*LBL0	21 00	Calaulation
002	ST02	35 02	F.U.B.	058	STO3	35 03	Calculation
003	₽↓	-31	Easting	R 59	X#Y	-41	subroutine for
RR4	ST01	35 Ø1	Northing	860	ST04	35 04	traverse
005	CL X	-51		RE1	2	00 01 02	
000	STAL	75 06		001	- -	-24	
000	3100	00 00		002	DCL 2	76 80	
00/	1	01 00		063	RULZ	30 02	
008	8	08		064	+	-00	
009	8	00		065	X	-35	
010	\$109	35 09	Initialize	066	ST-€	35-45 06	
011	RTN	24		067	RCL4	36 04	
012	*LBL& 21	16 12	BRG/OD input	068	RCL2	36 02	
013	DEG	16-21	/~ 1	069	+	-55	
014	X≢Y	-41	Bearing	070	ST02	35 02	
015	HMS÷	16 36	Dearing	871	RCL 3	36 03	
816	XIY	-41		Ø72	PCI 1	36 01	
017	ENT	-21	QD	072	4	-55	
610	ENTA	-91		010	eTO1	75 81	
010	Entr	-21		074	5101	33 01 76 04	
019		02		073	RUL4	35 04	
020	-	-24		U 76	RCL3	36 03	
021	INT	16 34		077	÷₽	34	1. I.
022	RCL9	36 09		078	STO4	35 04	
023	Х	-35		079	X≠Y	-41	
624	X≠Y	-41		080	ST05	35 05	
025	RCL9	36 09		081	R→D	16 46	
626	Х	-35		082	→HMS	16 35	
Ø 27	COS	42		00E	STU2	75 07	
029	Et	16-31		000 004	5105	-71	
820	K i V	-75		004	K₩ D!	-31	
027	~	-33		080	*LBLE	21 15	Rolldown & print
030	-	-40		086		-31	results
031	→HMS	16 35	Azimuth	087	PRIX	-14	
032	*LBLE	21 12	Azimuth input	088	R∕S	51	Input radius
033	0	00		089	STO8	35 0 8	_
034	ST05	35 05	CIr R5	090	RCL4	36 04	
035	+	-55		091	2	02	Calculate curve
036	*LBLD	21 14	Deflection angle	092	÷	-24	
037	RAD	16-22	traverse	093	RCL8	36 08	parameters
038	HMS+	16 36		N 94	÷	-24	
0 39	D→R	16 45	Convert to radians	095	ENT!	-21	
R4R	RCI 5	36 05		000	CTN-	16 41	
041	+	-55		8070	ST07	75 87	
041	EES	-27		027	5107	33 07 75-55 05	
042	CUS	-20		070	5173	33-33 03	
043	UN3 0	-22		039	205	42	
<u>044</u> 075	2	00 07		100	×	-35	
040	CF3 16	22 03		101	RUL7	36 U7	
U46	R/S	51	Distance insula	102	-	-45	
047	+37 16	23 03	Distance input?	103	RCL8	36 0 8	
048	GSB8	23 08	Yes	104	χz	53	
049	→R	44		105	X	-35	
050	GTOØ	22 00	Go to calc.routine	106	ST-6	35-45 06	
051	*LBLC	21 13	Transa incut a	107	RCL7	36 07	
05 2	RCL2	36 02	Inverse inputs	108	2	02	
05 3	-	-45	Dep.	109	- x	-35	
854	XIY	-41	÷ ;	110	 ₽+D	16 46	
055	RCI 1	36 01		111	ICTV	16-67	
000 054	-	-45	T at	111	L31A 040	10-03	
		70		TEDS	∆ + 1	-41	
	11	2		5	6	7	8 9
U I	Γ N	Έ	n _e A° leda		AREA	$\pm 1/2\Delta$	±R 180
50	<u></u>	52	S3 S4	<u>z (RAL</u> S5	S6	S7	S8 S9
ľ				-			
Α	I.I.R	l		D		E	I
ľ			-				

STEP	KEY	ENTRY		KEY	CODE		COMMENTS		STEP	KEY ENTRY	. 1	KEY CODE	COMM	ENTS
113	¦ →	HMS		16 3	5									
114	i Rí	\+1 N 8		-4 Зб Й	1 8	ł			170		-			
116		X		-3	5	1								
117	R R C	CL8		36 0	8	ţ								
118	RC	CL7		36 0	7]								
119				4	3 E	Į								
120		R†		-3.	J 1	ł					-			
122	G1	TOE		22 1	5	Go to	output							
123	*LE	3L8		21 0	8	Setup	data entrv							
124	, >	₹₽		-4	1				180					
125		К∳ ⊃ты		-3	1									
126	t sti F	cin Ble 2	21	16 1	4 5									
128	RC	CL6		36 0	6	Recall	l & print a	rea			-			
129	f f	ABS		16-3	1									
130	PR	RTX .		-1-	4	1								
131		KIN Dia Pia	21	15 1	4		1							
132	+LE 	DEG 2	21	16-2	i j	Azımut	to bearing	ng						
134	H	1S÷		16 3	6		1.		190		-			
135	Eŀ	1T†		-2	1	1					-			
136	9	SIN		4	1	1								
137	SI SI	[N-1 (80		16 4	1									
138	- A 1	(07 CHS		-2	5 2									
140	. → 	HMS		16 3	5	BBC								
141	PF	RTX		-1	4	DRG.								
142		R↓		-3	1									
143		9		0.	9 0	1								
144		с		9 -2	6 A				200					
145		1		e e	1									
147		+		-5	5									
148]	INT		16 3	4									
149	PR	RTX		-1-	4	aD								
150	· •	KHU PTN		16-2.	С А									
152	*LE	BLc 2	21	16 1	3	Supple	mentary and	Tle						
153	í f	ABS		16-3	1		increal f and	<u>j</u> _0						
154	R	CL9		36 0	9				210					
155	· · ·	ζ∓Υ Sue		-4	1]								
150		ла 494		16-5	2 5									
158	F	RTN		2	4									
			+			1								
160			T]								
			\perp											
			+			4								
			+			1			220					
						1								
						1								
			+											
						LAE	BELS			FLAGS			SET STATUS	
A P.O.E	3.	B AZI	ΕМ.		C INVE	RSE,R	D DEFLECT.	E RO	LLDOWN	0	Τ	FLAGS	TRIG	DISP
		b BBC /c	ייי	TNDI		р /	d	едр	FΔ	1	+	ON OFF		
TRAVER	SE_	1.	υ	TULO	2	£ • <u></u>	3	4		2	-			SCI
CALCUI	DITAL	N 6			7		8 TNPIIT	9		אייע 3	-	2 🗆 🖬	RAD 🖬	ENG 🗆
-		-			Ĺ		ŠĖTUP	ľ		ENTRY	7	3 🗆 🖌		n <u> </u>

Program Description I

Program Title

COGO-07: COMPASS RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 02831A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-07 is a member of the coordinate geometry
series described in the GENERAL DESCRIPTION , hereof. The special option of this
program is the COMPASS RULE adjustment, which can be used in an open traverse as
well as in a closed traverse. At the end of the traverse you "force" a closure on
a point known with precision. During the course of the initial traverse
calculations, the latitude (n), departure (e) and length (d) are accumulated, so
that the following equations can be evaluated for each traverse leg:
(adjusted latitude) $n_{(aj)} = \pm n + d(\frac{\pm n'}{\Sigma d});$ Precision Ratio
(adjusted departure) $e_{(aj)} = \pm e + d(\frac{\pm e'}{\Sigma d}); P/R = \frac{\Sigma d}{d'}$
$\pm n$ = unadjusted latitude $\pm n'$ = latitude of error of closure
$\pm e = unadjusted departure$ $\pm e' = departure of error of closure$
$n = absolute latitude$ $\Sigma n = sum of absolute latitudes$
$\Sigma e = absolute departure$ $\Sigma e = sum of absolute departures$
$d' = absolute error$ $\Sigma d = total perimeter$
Operating Limits and Warnings This is a three part program. Part 1 calculates and
accumulates summed quantities. Part 2 calculates the erior, if, e, the
bracketed quotients and the Precision Ratio. Part 3 repeats the traverse, making
all the adjustments as it goes. The Azimuth to bearing conversion routine is not
included because of program space limitations.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch	a(es) e314
12-03-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sample (1) (2) (3) (4) (5) (6) (7) (6) (7) (8) (9)	Problem(s) Initialize the program: set for part 1 (1 [f] [D]). Start at point A, for P.O.B. Make BEARING TRAVERSE to point B, utilizing data in Fig. 1. Continue traverse to succeeding points of figure, using standard options of your choice. (Bearing, Deflection or Inverse Traverses.) Note: computed coordinates are not identical to known coordinates of closing point. Go to part 2 of program (2 [f] [D]). Enter known coordinates and make INVERSE TRAVERSE to compute closing error. Press [D] to read PRECISION RATIO. Set for part 3 of program (3 [f] [D]). Begin at step (2) above, repeat traverse in same order as before, utilizing same data, (Fig 1.) (We chose to use inverse in this example). Obtain the adjusted coordinates and calls, as in Fig 2. Recall computed area of closed traverse: press [f] [E].
Adjus For C	Closing Error: Azimuth = 120°55'34", distance = 0.6590 (Bearing = S 59°04'26"E) PRECISION RATIO = 1280.3425 sted traverse, as shown in Fig 2., closes precisely. CCW traverse, enclosed AREA = 31670.2331 sg. ft. Dr(s)
	$\begin{array}{l} \underline{verse} & 1 & [f] & [D] & 1030 & [ENT^{+}] & 1515 & [A] & 25.1743 & [B] & 215.5 & [R/S] \rightarrow 1224.8374, N_{B}; \\ \hline & [E] \rightarrow 1607.0796, E_{B}. \\ \hline & 89.1926 & [ENT^{+}] & 4 & [f] & [B] & 323.73 & [R/S] \rightarrow 1228.6574, N_{C}; & [E] \rightarrow 1283.3721, E_{C}. \\ \hline & 49.2139 & [ENT^{+}] & 2 & [f] & [B] & 304.5 & [R/S] \rightarrow 1030.3387, N_{D}; & [E] \rightarrow 1514.4347, E_{D} \\ \hline & (Calc. errors) \\ \hline & 2 & [f] & [D] & 1030 & [ENT^{+}] & 1515 & [C] \rightarrow 1030.0000, N_{O}; & [E] \rightarrow 1515.0000, E_{O}; \\ \hline & [E] \rightarrow 120.5534, AZ_{error}; & [E] \rightarrow 0.6590, DIST_{error}. \\ \hline & [D] \rightarrow 1280.3425, P/R. \\ \hline & (Adjust) \\ \hline & 3 & [f] & [D] & 1224.8374 & [ENT^{+}] & 1607.0796 & [C] \rightarrow 1224.7509, N_{Bcorr}. \\ \hline & [E] \rightarrow 1607.2240, E_{Bcorr}; \\ \hline & 1228.6574 & [ENT^{+}] & 1283.3721 & [C] \rightarrow 1228.4410, N_{ccorr}; & [E] \rightarrow 1283.7334, \\ \hline & E_{ccorr}; & [E] \rightarrow -89.2047, AZ_{corr}; & [E] \rightarrow 323.5116, DIST_{corr}. \\ \hline & error $
Refe Foo by	1030.3397 [ENT↑] 1514.4347 [C]+1030.0000, N _A ; [E] → 1515.0000, E _A ; [E]→ 130.3754, AZ _{COTT} ; [E]→304.7344, DIST _{COTT} . [f] [E]→31670.2331, AREA erence(s): SURVEYING THEORY AND PRACTICE - 5th Edition - McGraw-Hill, 1966 Davis, ote and Kelly, Pages 461, 462 and 463. This program is a modification of the Users' Library Program #02831B submitted Carl M. King.

4	COGO-07:	COMPASS R	ULE AD	JUSTMENT		-
• 1			PAR	T NO.		4
	BRQ/QD INPU	JT SUPP.	Ζ		AREA	· /
Р.О.В., INIT	BEARING TRA	V. INVERS		TRAV/P/R	R↓,PRINT	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card, sides 1 and 2			
2	Set to part 1 for initial traverse	1	f D	1
3	Enter P.O.B.	Northing	ENTT	
		Easting	A	180
4	Proceed with traverse according to "COGO			
	GENERAL INSTRUCTIONS". Until final point			
	has been obtained.			
5	Switch to part 2	2	fD	2
6	Enter coordinates of closing point and	Northing	ENT	
	calculate errors	Easting	D	Northing
			Е	Easting
	Obtain error Azimuth		Е	Error Azimuth
	Obtain error Distance		Е	Error Distance
	Obtain precision ratio (P/R)		D	P/R
7	Switch to part 3 & adjust	3	fD	3
	traverse:			
8	If traverse is open, store P.O.B.	Northing	STO 1	
	coordinates	Easting	STO 2	
	and initialize		A	Northing
	(if traverse is closed step 8 may be skipped)			
9	Repeat the traverse leg by leg to the closing			
	point & obtain output data for each adjusted	Northing	ENT	
	leg:	Easting	С	N _{corr} .
		y	Е	Ecorr
			Е	AZcorr.
			E	DIST.corr
10	Obtain AREA of the adjusted traverse		f E	AREA

STEP	KEY ENTRY	KEY CODE	COMMENTS		STEP K		KEY CODE	COMMENTS
<i>80</i>	1 *LBL1	21 01			0 57	R↓	-31	
00 QQ	Z K/S 7 +1 Pla	01 01 12 17	Coloulate sum		058	STO1	35 01	
00 A0	4 ARS	16 31	calculate supp. a	ingre	: 009 DEG	1 1079	01 75 AG	
80	5 1	01			000 061	5101	33 40 R1	
00	6 8	08			862	8	88	
00	70	00			063	ē	80	
00	8 X ≠ Y	-41			064	STOA	35 11	
00	9 CHS	-22			065	GT01	22 01	
01	0 HMS+	16-55			<i>066</i>	*LBLC	21 13	Inverse
01	1 RTN	24			0 67	RCL2	36 0 2	
01	2 ¥LBLI6	21 16 12	BRG/QD inputs		068	-	-45	
01	3 X ₽Y	-41			069	X≠Y	-41	
61	4 HMS→ E 0+0	16 36			070	RCL1	36 01	
10	O ⊼∔ĭ ⁄ г ита	-41			071	-	-45	
01	5 ENIT 7 ENTA	-21			072	6109	22 89	
01 B1	0 9	-21			073 074	#LDL4 DC71	21 04 12 25 82	Reset I register
01 Ø1	0 <u>2</u> 9 =	-24			074	0321 ne71	16 25 46	i register
R2	9 INT	16 34			075 076	D321 D371	16 25 46	
02	1 RCLA	36 11			077	*/ BL 9	21 89	Calc. SBR. for
02	2 ×	-35			078	CF1	16 22 01	traverse
02		-41			079	ST+1	35-55 01	
02	4 RCLA	36-11			080	ABS	16 31	
02	5 X	-35			0 81	ST+7	35-55 07	
<i>0</i> 2	6 COS	42			082	CLX	-51	
02	7 R†	16-31			0 83	LSTX	16-63	
02	8 ×	-35			084	X≠Y	-41	
02	9 -	-45			085	ST+2	35-55 02	
03	Ø →HMS	16 35	_		086	ABS	16 31	
03	1 *LELB	21 12	Bearing input		087	ST+8	35-55 08	
03	2 U	00 75 of			088	CLX	-51	
63	3 5105	30 00 EF			089	LSIX	16-63	
03		-33 21 14	Deflection angle	innut	- 090	۲ 4۵ هد	-41	
03 07	S ALDLU C UMCX	21 14	Derrection angre	Input	- 071 000	75 0104	34 75 04	
03 03	e nn37 7 PCI5	76 00 76 05			052 097	ST+7	75-55 A7	
00 Az	7 KOLU 9 +	-55			094	X T Y	-41	
A3	9 EEX	-23			Ø95	ST05	35 05	
84	Ø CHS	-22			096	→HMS	16 35	
04	1 9	8 9	Distance input		097	RCL2	36 02	
04	2 CF3	16 22 03	L		0 98	RCL1	36 01	
04	3 R/S	51			0 99	RŤ	16-31	
04	4 F3?	16 23 03			100	GTOE	22 15	
04	5 GSB8	23 08	Set subroutine		101	*LBL2	21 02	Prog part 2
84	6 →R	44	number in I regi	ster	102	R∕S	51	
04	7 ISZI	16 26 46	- · · ·		163	*LBLA	21 11	Initialize
U4	8 1921	16 26 46	Go to proper sub- routine	-	104	ULX	-51	
U4 05	9 1521 a cto:	10 20 40	Program part		100	ENIT	-21	
03 05	0 5101 1 +1 RIJ	22 43	Go to proper pro	aram	100	PCI2	36 02	
6J 05	2 STOI	35 46	part pro		107	RCL 1	36 01	
05 05	3 GTO:	22 45	Program part 1		109	GT02	22 02	
05	4 *LBLA	21 11	P.O.B. & initial	ize	110	*LBLC	21 13	Enter closing point
05	5 CLRG	16-53	Listsi a initoluli		111	F1?	16 23 01	and calc. error
85	6 ST02	35 02			112	GT02	22 0 2	
		In				6	7	8 9
υ	N N	² E	USED d/E	、 ⁵	^A z∕±e	° AREA	Ú USED	ŬUSED P/R
50	S1	S2	S3 S4	Ś s	5	S6	S7	S8 S9
A 180		В	С)		E	I PART NO.

STEP	KEY	ENTRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	ENTS
1	13	SF1	16 21	01				169	GT07	22 07		
1	14	RCL2	36	02				17(*LBL6	21 06		
i	15	_	-	45				17:	DSZI	16 25 46	Reset I re	gister
1	16	ST+2	35-55	02				172	DSZI	16 25 46		
1	17	STOR	35	08				173	3 DSZI	16 25 46		
1	18	×Υ	-	41				174	i xLBL7	21 07		
1	10		36	71 Ø1				17	5 ST+3	35-55 03	Adjust tra	verse
1	1.) 20	-		45				17	5 X.7Y	-41	noint	9
1	20 21	CT±1	75-55	40 A1				17	7 ST+4	35-55 Ø4	Point	5
1	21 99	0171 0707	33-33	01 07				17	0,74	75 05		
1	22	3107 DCL7	75	01 07				17	o oroo o v+v	-41		
1	23	RULJ OT-7	75 24	03				11.	7 ∩+/ ⊐ →P	74		
1	24 05	51=7	33-24	07				10	2 7F	-21		
1	20	51-8	33-24	08				18.		-21		
1	26	K↓	-	31				18.	ENIT	-21		
1	27	` +₽		34				18.	S LSIX	16-63		
1	28	ST÷3	35-24	03			1	18-	4 XZY	-41		
1	29	RCL3	36	03				18:	5 RCL7	36 U 7		
1	30	STO9	35	09				18	5 X	-35		
1	31	R↓	-	31				18	7 +	-55		
1	32	X≠Y	-	41				18	3 ST+1	35-55 01		
1	33	+HMS	16	35				18:	9 RCL8	36 08		
1	34	RCL2	36	02				19	3 R1	16-31		
1	35	ST04	35	04				19	i ×	-35		
1	36	RCL1	36	01				19.	2 RCL5	36 05		
1	37	STO3	35	03				19	3 +	-55		
1	38	RŤ	16-	31				19	4 ST+2	35-55 02		
1	39	GTOE	22	15	Obtain	closure		19	5 ST05	35 05		
1	4й ж	IRID	21	14		errors		19	5 2	02		
1	41	F12	16 23	ดา	Precis	ion ratio		19	 7 ÷	-24		
1	42	CTO5	22	85				19	R RCI2	36 82		
1	47	CT02	22	82 82				19	9 -	-45		
1		1015	21	05 05				20	, G V∔V	-41		
1	77 T 45	CIV		51				20	1 X	-75		
1	70 AE	ENTA	_	.21				20	2 CT16	75-55 06		
1	40	ENIA		21				20	2 3170 7 DCL5	33-33 00 72 05		
1	47		_	21				20	A LOTY	30 03		
1	48 40	ENIT	75	21				20		10-03		
1	49	5706	33	00				20	J 7F ∕ U+U	34		
1	20	RUL9	36	29	P/R			20		-41 75 05		
1	51	KT OTOT	16-	31				20	6 5105	30 00		
1	52	GIUE	22	15	_			20	8 + HMS	16 35		
1	53 *	LBL3	21	63	Progra	m part 3		20	9 RCL2	36 02		
1	54	R∕S		51				21	U RULI	36 01		
1	55 ×	LBLA	21	11	Initia	lize & sto	re	21	1 <u>RT</u>	16-31	Dell Jerm	c muint
1	56	0		00	P.O.	в.		21	2 *LBLE	21 15	KOTT GOMU	α Ριτμε
1	57	ST06	35	06				21	3 R4	-31	routine	
1	58	RCL2	36	02				21	4 PRTX	-14		
1	59	ST04	35	04				21	5 GTO i	22 45		
1	60	RCL1	36	01				21	6 *LBL8	21 0 8	Data entry	setup
1	61	STO3	35	03				21	7 X ≠Y	-41		TTTT
1	62	GTO3	22	03				21	8 R ∔	-31		
1	63 *	LBLC	21	13	Input	coord. and		21	9 RTN	24		
1	64	RCL4	36	04	calc.	corrected		22	0 *LBLe	21 16 15	Recall are	a
1	65	-	-	45	points	(i.e.inve	erse)	22	1 RCL6	36 0 6		
1	66	X≢Y	-	41				22	2 ABS	16 31		
1	67	RCL3	36	03				22	3 PRTX	-14		
1	68	-	-	45				22	4 R/S	51		
					LAB	ELS					SET STATUS	
P.Q.	Baf	B	TRA17	C TNT7	CT OCT		E		0	FLAGE	TRIG	DISP
<u></u>	- 47	b	ITAN.	C TINK	acrose	d DELLAR	e K VI	TUL	1			5101
		BRG/	QD	SUPF	·. ∠	PART NO.	Ĭ	AREA	<u>ĊĹÔŠŪRI</u>		DEG 🖌	FIX 🗗
)		1 D7 D77	NO	2		3	4		2	1 🗆 🗴	GRAD 🗋	SCI 🗆
5		6	NU.	7	NO.	BART NO.	19	5D	3		RAD 🗆	ENG 🗆
USED		USED		USEL)	DATA SETU	USI	ED	DATA EN	$_{\rm MTR}$ $^{\rm TR}$ $^{\rm TR}$ $^{\rm TR}$		n_4

Program Description I

Program Title COGO-08: ROTATION OF AXES

This Hewlett-Packard translation is based on program 02832A written by CARL M. KING

2206 Siesta Drive, Darasota, Florida 33579

Program Description, Equations, Variables COGO-08 is a member of the coordinate geometry series described in the GENERAL DESCRIPTION, hereof. The special option of this program is the ROTATION OF AXES, which may be desirable in order to make a new survey match an earlier one.

When you have closed and balanced the survey, you may find that a line common to an earlier survey has a different computed Azimuth than in the earlier survey. By rotating the new survey in its entirety you can exhibit agreement between the two, and facilitate interconnecting computations.

You start with a given set of coordinates in the calculator as a P.O.B., <u>then</u> you initialize the program by entering the computed Azimuth of the line you wish rotated, followed by the desired Azimuth. The program computes the difference, and stores the constant by which succeeding computations will be rotated. (If you wish to "translate" the traverse as well, you may enter a different pair of P.O.B. coordinates again AFTER initialization, and the coordinates will all be shifted as well as rotated.)

Then you proceed to run your survey calls using any of the standard options, and the result of each TRAVERSE will be rotated by the desired amount, and the common line will be as desired.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Davis, R.E., Foot, F.S., Kelly, J.W., SURVEYING THEORY AND PRACTICE. 5th Edition. 1966. McGraw-Hill Book Co. (Bearings & Azimuth page 260); (Deflection Angles page 262); (Rectangular Coords page 454).

STEP

2

3

4

5

COGO-08: ROTATION OF	AXES	z	
AZ→BRG BRG/QD INPUT SUPP./		AREA	J
P.O.B.&INIT. BRG.TRAV. INVERSE DE	FLEC.TRAV	R↓ PRINT	·
INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
Load card, sides 1 & 2			
Input point of beginning	Northing	ENT	
	Easting	A	Northing
Then: input Azimuth to be rotated	AZ	ENT	
and desired Azimuth	AZ '	R/S	Diff.Angle
If you wish to translate the whole	Northing	STO 1	
traverse enter new P.O.B. coordinates	Easting	STO 2	
(otherwise skip this step)			
Proceed around the traverse using any of the			
standard options ("See COGO General Instruction	ns")		
for advancing the traverse.			
As each leg is completed the new coordinates			
and headings can be read out.		E	N,E, ETC.
Recall area		f E	AREA

	[
	 Lee and a difference of the second	
	 Lances of Lances and J	
	ן ייין ייין 🕇	
	terminal Landard I	
	 Land and Land Land	
	1 1	
	 L	
	ר יי דרי ד	
	lan and lan named	
	I J La constant	

STEP P		KEY CODE	COMMENTS	STEP KI	EY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B. & initialize	057	+	-55	
0 0 2	ST02	3 5 02	Easting	0 58	F3?	16 23 03	
003	ST04	3 5 04	Laberry	059	GSB1	23 01	
004	R↓	-31		060	EEX	-23	
005	ST01	35 01	Northing	061	CHS	-22	Distance input
006	ST03	35 03		062	9	09	Was distance input?
887	R/S	51		863	CF3	16 22 03	Data gotup
008	XIY	-41	AZ	R64	R/S	51	Data setup
669	CHS	-22		865	F32	16 23 03	
01G	HMC+	16-55	AZ' - AZ	966 966	CSB8	27 08	Calculation SBR.
010 011	инсь Имсь	16 36		000	0500 Dد	20 00 AA	
011 012	CT07	75 07		001	*i D! G	21 88	
012	3101 1 CTV	15-57		000 070	#LDL0	75-55 07	
013	LOIN	10-03	Diff. Angle	007	040	33-33 03	
014 015	U CTOC	00 75 0/	Initialize	070	∆+1 07.14	-41 75 55 04	
015	5106	30 00		071	51+4	33-33 04	
016	1	<i>в1</i> 00		072	XZY	-41	
017	8	68		U 73	+F	34	
018	U	86		074	5108	35 08	
019	ST09	35 89		075	X ‡ Y	-41	
026	+	-55		076	RCL7	36 07	
021	R↓	-31	Diff. Angle	077	÷	-55	
022	RTN	24		078	ST05	35 05	
023	*LBLC	21 13	Inverse	079	X₽Y	-41	
024	RCL4	36 04		080	÷R	44	
025	-	-45		081	ST+1	35-55 01	
026	X₽Y	-41		082	X≠Y	-41	
027	RCL3	36 83		083	ST+2	35-55 02	
628	-	-45		084	2	02	
R 29	GT00	22 00		085	÷	-24	
830	*LBLb	21 16 12	Permi (o l	086	RCI 2	36 82	
R31	XZY	-41	Bearing/Quadrant	0 87	-	-45	
A25	HMSA	16 36	input	007	¥	-75	
032 077	¥77	-41		929	ST+6	75-55 06	
033	ENT+	-21		000	Drio	72 90	
027	ENTA	_21		000	DOLE	76 05	
033	2011	62		071	AUMO	30 0J 12 75	
030		-2.1		032	5005	10 33	
037	- TNT	16 74		073	RULZ	30 02	Rolldown & print
030	101	10 34		024	RULI	30 01	routine
039	RULY	35 05		095	KT	16-31	
040	X LLAU	-30		096	*LBLE	21 15	
041	X7 1	-41		697		-31	Azimuth→ bearing
642	RCL9	36 69		698	PRIX	-14	5
043	X	-35		099	RTN	24	
044	COS	42		100	¥LBL1	21 01	
045	RŤ	16-31		101	RCL7	36 07	
046	Х	-35		102	-	-45	1
047	-	-45		103	RTN	24	
848	→HMS	16 35	Azimuth	104	*LBLa	21 16 11	l
049	*LBLB	21 12	Azimuth input	105	HMS÷	16 36	1
850	0	00	-	106	ENTT	-21	1
851	STO5	35 05		107	SIN	41	
8 52	+	-55		108	SIN-	16 41	1
053	CF3	16 22 03	Deflection angle	109	X<0?	16-45	1
054	≭LBLD	21 14	input	110	CHS	-22	
055	HMS÷	16-36	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	111	→HMS	16 35	
056	RCL5	36 05		. 112	PRTX	-14	
			REGI	STERS	1	1-	
0	1 NFW	N 2 NFW		5 4'0	6 AREA		
				A 2	ANEA	67	
S0	S1	52	53 54	55	30	5/	00 09
L				D	1		<u>I</u>
A							ľ

				-	-	0		0			4
STEP	KEY	ENTRY	KEY (CODE		COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
11	13	PRTX	-	14							
11	14	RTN		24			170				
11	15 *	LBLe	21 16	15	Recal	ll area					
11	16 .	RCL6	36	0 6							
11	17	ABS	16	31							
11	18	PRTX	-	14							
11	19	RTN		24							
12	20 *	LBL8	21	8 8	Data	setup SBR.					
12	21	X≠Y	-	41							
12	22	R↓	-	31							
12	23	RTN		24							
12	24 🔹	LBLc	21 16	13	Suppl	lementary and	gle ¹⁸⁰				
12	25	ABS	16	31							
12	26	RCL9	36	8 9							
12	27	X≠Y	-	41							
12	28	CHS	-	-22							
12	29	HMS+	16-	55							
1.	30	RTN		24							
1	31	R∕S		51							
			I	1							
							190				
140											
							200				
			-								
150											
			-								
			+				210				
			1								
			1								
160											
			1								
			-								
			1				220				
			1								
											i
					LAE	BELS		FLAGS		SET STATUS	
^A P.O.B	.,AZ	B BEA	RING	C	DCF	DEFIEC / E	R↓PRTNT	0	FLAGS	TRIG	DISP
a		b				d e	3053	1	ON OFF		
AZ→BR	G.	BEAR	ING/QD	SUPI	· _	ľ	AREA		0 🗆 🔁	DEG 🛛	FIX 53
°CALC.	SBR	1		2		3 4	ł	2	1 🗆 🗶		
5		6		7)	3 DATA FNTP	▼ 2 U ¥J ▼ 3 □ √□		n <u>4</u>
						I DALA SELUP					

Program Description I

Program Title

COGO-09: CRANDALL'S RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 04172A written by

CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables

COGO-09 is a member of the coordinate geometry series described in the general description, hereof. The special option of this program is Crandall's Rule Adjustment, which can be used in an open traverse as well as in a closed traverse. At the end of the traverse you "force" a closure on a point known with precision. During the course of the initial traverse calculations (card I, part 1), the latitude (n), departure (e) and length (d) are accumulated.

Equations for Crandall's Rule Adjustment may be found in: Davis, Foote, Kelly "SURVEYING THEORY AND PRACTICE", 5th edition, p. 461, McGraw-Hill, 1966.

Operating Limits and Warnings

This is a 2 card, 3 part program. Part 1 of card I calculates and accumulates summed quantities. Part 2 calculates the error, n',e', the bracketed quotients and the Precision Ratio. Card II repeats the traverse, making all the adjustments as it goes.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)	A. 1518							
C N 891926'W B 1261.01' C N 89'19'26"	W B 12 01.04							
323.7300' /.w 25143 323.424	8 7. N.							
12 1 5 2 0 0 1 12 0 3 · · · · · · · · · · · · · · · · · ·	NE							
<u>Fig 1.</u> <u>Fig 2.</u>	xx 1							
1 103-	Vina H							
330 A A 1515.0000 (N)	A 1515,0000							
Crandall's Rule								
Sample Problem(s))							
(1) Load Card I and go to Program Part 1								
(2) Start at point A, for P.O.B.								
(4) Continue traverse to succeeding points of figure, using stand	ard options of							
your choice. (Bearing, Deflection or Inverse Traverses.)								
(5) Note: computed coordinates are not identical to known	nates of closing							
(6) Enter known coordinates and make INVERSE TRAVERSE to compute	closing error.							
Press [D] to read PRECISION RATIO.								
(7) Enter program CARD 11. Begin at step (2) above, repeat traver as before. utilizing same data. (Fig 1.)	rse in same order							
(8) Read the adjusted coordinates and calls, as in Fig 2.								
(9) Recall computed area of closed traverse: press [f][E].								
Closing Error: Azimuth = $120^{\circ}55'34''$, distance = 0.6590								
(Bearing = 5 59 04 26 E) PRECISION RATIO = 1280.3425								
Adjusted traverse, as shown in Fig 2., closes precisely.								
For CCW traverse, enclosed AREA = 31668.2018 sq. ft.								
Solution(s) CARD I (Traverse) 1[f][D] 1030 [ENT*] 1515[A] 25.1743[B] 215.5[B/S] \rightarrow 1224.8374, Np	• [E]→ 1607-0796-Ep							
$= 89.1926[ENT^{+}] 4[f][B] 323.73[R/S] \rightarrow 1228.6574, N_{C}; [E] \rightarrow 1283.372$	1, E _C .							
49.2139 [ENT [†]] 2[f][B] 304.5 [R/S] \rightarrow 1030.3387, \tilde{N} ; [E] \rightarrow 1514.434	7, E.							
(Calc. Errors) $-2[f][D] - 1030[ENT+] = 1515[C] → 1030.0000, N_{CLORE}; [E] → 1515.0000, E$	For oart							
$[E] \rightarrow 120.5534, AZ_{error}; [E] \rightarrow 0.6590, DIST_{error}$	-CLOSE,							
$[D] \rightarrow 1280.3425, P/R.$								
25.1743 [B] 215.5 [R/S] \rightarrow 1224.7578, N _{corr.} ; [E] \rightarrow 1607.0420, E _{co}	rr .							
$[E] \rightarrow 25.1743, AZ_{corr.}; [E] \rightarrow 215.4120, DIST{corr.}$								
$[-89.1926 ENT^{+} - 4[t] B] = 323.73 K/S] \rightarrow 1228.5743, N_{COTT}; E] \rightarrow 120 IE] \rightarrow -89.1926, AZ_{COTT}; E] \rightarrow 323.4248, DIST_{COTT}; E] \rightarrow -89.1926, AZ_{COTT}; E] \rightarrow 323.4248, DIST_{COTT}; E] \rightarrow -89.1926, AZ_{COTT}; E] \rightarrow -89.1926, AZ_{CO$	33.6397, Ecorr.							
49.2139[ENT [↑]] 2[f][B] 304.5[R/S] → 1030.0000, N _{CLOSE} ; [E] → 1515.4	0000, E _{CLOSE} ;							
$[E] \rightarrow 130.3821, AZ_{CLOSE}; [E] \rightarrow 304.8923, DIST_{CLOSE}$	•							
$[I][E] \neq 51000.2010, \text{ AKLA}.$								
REFERENCE(S) Davis, R.E., Foot, F.S., Kelly, J.W., SURVEIING THEM 5th Edition. 1966. McGraw-Hill Book Co. Pages	ORY AND PRACTICE. 461-463.							
This program is a modification of the Users' Library Program	#04172A submitted							
by Carl M. King.								

CRANDALL'S RULE ADJUSTMENT CARD I BRG/QD input SUPP./ BRG TRAV INVERSE

OUTPUT DATA/UNITS KEYS

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load CARD I, sides 1 and 2			
2	Set to part 1 for initial traverse	1	fD	1
3	Enter P.O.B.	Northing	ENT	
		Easting	A	180
4	Proceed with traverse according to			
	"COGO General Instructions" until final			
	point is reached			
5	Switch to Part 2	2	f D	2
6	Enter coordinates of closing point	Northing	ENT个	
	and calculate errors	Easting	С	Northing
			E	Easting
	Read error Azimuth		E	Error Azimuth
	Read error Distance		E	Error Distance
	Precision Ratio		D	P/R
	COGO-09 CRANDALL'S RULE ADJUSTMENT		-	
	CARD II		۲ ۲	
	BRG/QD INPUT	AREA v R↓Prin	t _	
7	Load CARD II. side 1(only) to adjust traverse			
8	If traverse is open store	Northing	STO 1	
	P.O.B. coordinates	Easting	STO 2	
9	Initialize the traverse	<u> </u>		
	(NOTE: If traverse is closed steps 8 and 9			
	may be skipped)			
10	Repeat the traverse leg by leg to the			
	closing point and obtain output data for	Northing	ENT	
	each adjusted leg:	Easting	C	Ncorr
	<u> </u>		E	E _{corr}
				AZcorr
			E	DISTcorr
	(NOTE: You may use Bearing or deflection			
	angle traverse inputs in place of	 		
	inverse if desired)			
11	Obtain the area of the adjusted traverse	<u> </u>	f E	AREA
	5			
		1		
		1		

						CARD I	51
STEP I		KEY CODE	COMMENTS	STEP K	EY ENTRY	KEY CODE	COMMENTS
001	*LBLI	21 01 E1		057	RCL1	36 01	
882	K/5	10 1 10 10		058	-	-45	
003	*LBLk	21 16 12	Bearing/Quadrant	059	÷P	34	
004	XFY	-41		060	*LBL9	21 0 9	Calculation subrout
005	HMS→	16 36		061	ABS	16 31	for traverse
006	K≓Y	-41		062	ST04	35 04	
007	ENT†	-21		063	ST+3	35-55 03	
908	ENTT	-21		864	CLX	-51	
809) 2	02		865	LSTX	16-63	
810	÷	-24		966	→F	44	
011	INT	16 34		967	етло	75 80	
012	RCLA	36 11		001 020	ENT+	-21	
R13	X	-35		000 020	ENT+	-21	
G14	X : Y	-41		005	ENII DOLA	-21 76 ai	
815	E POLA	76 11		070	KUL4	36 84	
010		-75		071	÷	-24	
010		-33		072	A	-35	
017	6.03	42		073	ST+S	35-55 08	
618	KT .	16-31		074	CLX	-51	
019	X	-35		075	LSTX	16-63	
0 20	-	-45		076	Х	-35	
021	→HMS	16 35	Azimuth	077	ST+6	35-55 <i>06</i>	
022	*LBLB	21 12	Azimuth input	078	CLX	-51	
023	0	66		079	RCL4	36 04	
024	ST05	35 05		A SA	÷	-24	
025	+	-55		P 81	X	-35	
026	*LBLD	21 14	Deflection angle inpu	t 082	ST+7	75-55 ØZ	
827	HMS+	16 36		a07		-51	
02. 028	RCL5	36 85		603	DCLA DCLO	-J1 76 60	
	+	-55		004	RULZ	30 02 FF	
020 A7A	FFX	-27		083	+ 0700	-00	
930	CLA CUE	-22		885	5102	33 02	
031	0 C C	-22 BQ		687	RCLI	36 81	
032		87 17 00 87		088	RCL9	36 09	
033		16 22 03	.	089	÷	-55	
634	K/S	10 00 01	Distance input	0 90	ST01	35 01	
035	F3?	16 23 03		091	Rt	16-31	
036	GSB8	23 08	Data set-up	092	LSTX	16-63	
037	GT09	22 09		093	÷P	34	
038	*LBLd	21 16 14	Program part number	094	XIY	-41	
0 39	STOI	35 46	input	095	ST05	35 05	
040	GTO:	22 45		A 96	→HMS	16 35	
041	*LBLA	21 11	Input P O B and	092 097	CEI	16 22 01	
042	CLRG	16-53	initializa	D D D D D D D D D D D D D D D D D D D	P.L	-71	
Ø43	ST02	35 62	IIIIIIIIIIZE	000	CTOE	22 15	Read regults
R44	RT	-31		077 100	GIUE AIDIO	22 IJ 91 89	Drogrom Dont 2
045	ST01	35 01		108	REDEZ D 20	21 02 Fi	riogram Part 2
040 QA2	i 1	Q1		101	K/3 	J1 	T. 414.11
040 017		75 12		102	*LBLA	21 11	initialize
047	aru) 1	JJ 40 D1		103	CLX	-51	
040		61 60		104	ENTT	-21	ļ I
649	8	05 00		105	ENTT	-21	
050	U	U U T		10E	RCL2	36 02	t l
051	STOA	35 11		107	RCL1	36 01	
052	GT01	22 01	_	108	GT02	22 02	
053	*LBLC	21 13	Inverse traverse	109	*LBLC	21 13	Input closing point
054	RCL2	3 6 02		110	F1?	16 23 01	and calculate
055	i -	-45		111	GT02	22 02	errors.
0 56	X₽Y	-41		112	SET	16 21 01	
			REGIS	TERS			
	¹ N	² E	$^3 \Sigma D$, N ₀ $^4 d$, E ₀	⁵ A ₂ , e'	$^{6} \Sigma n^{e}/d$	$\Sigma e^2/d$. A	$ ^{8}\Sigma n^{2}/d, B ^{9} P/R$
20	S1			<u>2'</u>	56	57	58 59
U III		52	00 04			0,	
190		В	C	D		E	I Program
190							Part Number

97 Program Listing II CARD I

52							0TED	~		F		COMME	NTS
STEP		TRY	KEY C	ODE	COMMENTS	,	SIEP	<u>к</u> 9	CT05	ĸ	22 A5]
113	3 RCI	L2	36 l	02 4 E			10	ด	6103 6102		22 02		
114	4 	-	-4 75 55 (10			17	1	*LBL5		21 05		
115	5 SI- 5 ST-	+2 3 05	30-00 (75 (92 25			17	2	CLX		-51		
116	5 511	U0 40	35 6	9J 4 1			17	3	ENTT		-21		
117	ά Χ. Γο Ποί	έΪ ι τ	76 0	t1 71			17	4	ENT†		-21		
118	5 KU D		30 0	91 15 Colo	ulation of		17	5	ENT†		-21		
115	7 с ст	-	75-55				17	Ē	ST06		35 06		
120	9 31 • 67	ті . Пл	5J-JJ (75 /	av err	ors (continue	·α)	17	7	RCL9		36 09		
121	1 31 9 RC	15	35 0	94 95			17	8	RŤ		16-31		
122	2 KG 7 DC	12	36 1	00 06			17	9	*LBLE		21 15	Roll down	
123	а ко. И	LC V		75			18	Ø	R↓		-31	print rou	utine
125	7 5 DC	14	36	0.0 0.1			18	1	PRTX		-14	-	
124	6 RC. 6 RC	17	36 /	97 97			18	2	GTO:		22 45		
120	0 NC. 7	L . X		35			18	3	*LBL8		21 08	Data entr	y set up
121	, 8	_	-	45			18	4	X≠Y		-41		
120	9 PC	16	36	.с Аб			18	5.	R↓		-31		
171	о FN	T†	-	21			18	6	RTN		24		
17	1	x	-	35			18	7	*LBLa	21	16 11	Azimuth to	o
13	2 RC	17	36	07			18	8	HMS÷		16 36	Bearing	conv.
17	Z RC	18	36	0.8 0.8			18	9	ENTŤ		-21	Ū	
17.	0 KO 4	X	-	35			19	0	SIN		41		
134	5	-	-	45			19	1	SIN-		16 41		
136	с 6 ST	67	35	07			19	2	X<0?		16-45		
133	5 0. 7	÷	-	24			19	3	CHS		-22		
13	8 RC	14	36	04			19	4	→HMS		16 35		
13	9 RC	16	36	06			19	5	PRTX		-14	Bearing	
14	р Й	x	-	35			19	6	R4		-31		
14	1 RC	15	36	05			19	7	9		09	1	
14	2 RC	L8	36	08			19	8	0		00		
14	3	X	-	35			19	9	÷		-24		
14	4	-	-	45			20	0	1		61		
14	5 RC	L7	36	07			20	1	÷		-55		
14	6	÷	-	24			20	2	INT		16 34		
14	7 ST	08	35	08			20	3	PRTX		-14	Quadrant	
14	8 X	ŻΥ	-	41			20	14	RTN		24		
14:	9 ST	07	35	07			20	15	*LBLc	21	16 13	Supplemen	tary angle
15	0 RC	L5	36	05			20	16	ABS		16 31	1	
15	1 RC	L4	36	04			20	17	RCLA		36 11	1	
15	2	÷₽		34			26	18	XZY		-41		
15	13 R.C	L3	36	03			26	19	UH5		-22 17 EE		
15	4 X	(≓Y	-	41			21	6	HM5+		16-00	1	
15	5	÷	-	24			21	1	K I N D Z C		24 51	4	
15	6 ST	09	35	09			21	2	K/5		JI	4	
15	7 0	LX	-	51			┝───┤					4	
15-	8 LS	STX -	16-	63			┝────┤					4	
15.	9 X	¢₽Υ	-	41			┣────┤					4	
16	0 +H	IMS	16	3D			┝					4	
16	1 RC	:L2	36	62			┝───┤					4	
16	2 ST	04	35	U 4			┣────┤					4	
16	3 RC	:L1	36	01 07			220					4	
16	4 ST	03	35	03 71								4	
16	5	KŤ LOF	16-	15 MB+-	in closing	arr						1	
16	6 61	UE	22	15 ODLa	ision ratio	err.						1	
16	₩LE 10	3LU -10	21	14 1100	LOLON LACID							1	
16	- 8 F	-1?	16 23	UILA	BELS			Τ	FLAGS	;		SET STATUS	
Ф.О.В.	,init	BRG	Trav.	^C inv.&clo	se Deflec/P/	RR	↓Print	0			FLAGS	TRIG	DISP
$^{a}_{AZ} \rightarrow B$	RG b	BRG	/QD	^c Supp. /	^d Prog. Part	e		1	First Closure?	?		DEG X	FIX 🗓
0	1,	part	no.	² part no.	3	4		2			1 🗌 🗓	GRAD	
⁵ p/p	6			7	⁸ Dața	9		, 3	Data	_+ 1	2 ∐ X 3 ∏ V7		
<u>r/K</u>					ι δετ μρ	<u>, ca</u>	TC · 2R	SL.	Data ei	141	- <u> </u>		

			y / Program		ing l		
STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP H		KEY CODE	COMMENTS 53
001	*LBLA	21-11	Initialize	057	RŤ	16-31	1
002	9	90	1	0 58	÷₽	34	
003	STOE	35 06	4	0 59	X≠Y	-41	
U U4	RCLZ	36 02	1	0 60	ST05	35 05	
005	5104	35 04		061	CLX	-51	
006	RULI	36 UI	1	0 62	LSTX	16-63	
807	5103	35 03		063	RCL7	36 07	
668	RIN	24		064	Х	-35	
60 0	*LBLU	21 13	Inverse	065	RŤ	16-31	
010	KUL4	35 04 4F		0 66	RCLS	36 08	
011	- 0+0	-40		0 67	Х	-35	
012		-41 75 07		068	+	-55	
013	RULO	30 03 -45		069	+	-55	
014	- - -	-4J 22 00		070	ENTŤ	-21	
010 017	3100 	22 00	PPC/Outleast int	071	ENTŤ	-21	
015	×LBLN 0→0	-41	BRG/Quadrant input	872	RCL5	36 05	
017	A+1 ⊔M≎∆	16 76		073	X₽Y	-41	
010		10 30		074	→R	44	
017	\ 	-91		075	ST+1	35-55 01	
020	ENT#	-21		076	XZY	-41	
021	ENII	-21		U 77	ST+2	35-55 02	
022	- -	-24		678	2	02	
023 024	- T M T	16 74		U79	÷	-24	
024 G25	DCIA	10 34 76 11		880	RULZ	36 02	
020 005	KULH	-75		081	-	-45	
020 097	· v+v	-35		082	X	-35	
02 (000		76 11		683	51+6	35-55 06	
020 000	KULH	-75		084	ULX	-51	
027 076	- ne	-33 42		085	RCL5	36 05	Adjusted results
030	000 DA	16_71		686	+HMS	16 35	
031	K 1	-75		U 87	RCL2	36 02	
002 077	· -	-35	Azimuth	0 88	RCL1	36 01	
000 074	- - - - -	12 75		889	RT	16-31	Poll dorm and print
034	7000 •1010	21 10	Azimuth input	696	*LELE	21 15	Koli down and print
000 075	ALDLD Ø	LI IL 80	Azimuch input	U 91	K∳ DDTU	-31	subroutine
030 077	етря	75 85		092	FRIX	-14	
00: 070	0100 	-55		093	KIN	24	Data antru act us
000 070	חום ועי	21 14	Deflection angle	U 94	*L6L8	21 08	Data entry set up
005 GAG	ALDED UMCA	16 36	input	09 0 007	AF Y	-41	
040 Q41	PCI5	76 00 76 05	Input	096	K∳ DTP	-31	
041 042	KCLU 4	-55		097	K I N	24	Area
042 047	FFX	-27		0 98	*LBLe	21 16 15	Alea
043 043	CHS	-22		0 99	KUL6 ADC	36 86	
045		22 09		100	HDS DDTV	16 31	
040 046	CE7	16 22 AZ		101	PRIA	-14	
040 047	R/S	51	Input distance	102	R / N 5 / C	24	
042 042	F32	16 23 03	Mag distance	103	K∕ O	J J1	
049 049	ESBS	23 A8	Was distance input	£			
015 050	÷€	20 00	Data set up		FLAGS	· · · · · · · · · · · · · · · · · · ·	SET STATUS
000 051	*I BL Ø	21 00	Adjustment)	FLACE	
652 052	ST+3	35-55 03	calculation		1		
И53	X≠Y	-41	subroutine			0 🗆 🛛	DEG 🖸 FIX 🕅
054	ST+4	35-55 04	Subroutine	110	2	1 🗆 🛛	GRAD 🗆 🛛 SCI 🗖
055	ENTT	-21			Boto	2 🗆 🔀	RAD 🗆 ENG 🗆
056	ENTT	-21			bata en	icry 3 🗆 🕱	n_ 4
			REGIS	TERS	10	1-	
0	1 N. T	² EAT		5 A.	⁶ Area	7 A	в 9 В
50	S1	-AJ	IS3 IS4	<u>2</u>	IS6	57	58 59
		52				Ĭ,	
Α	I	В		D	·	E	
		1					

Program Description I

Program Title COGO-10: TRANSIT RULE ADJUSTMENT

This Hewlett-Packard translation is based on program 04173A written by CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-10 is a member of the coordinate geometry series
described in the GENERAL DESCRIPTION I., hereof. The special option of this program
is the TRANSIT RULE adjustment, which can be used in an open traverse as well as in
a closed traverse. At the end of the traverse you "force" a closure on a point
known with precision. (Part II) During the course of the initial traverse calc-
ulations (Part I) the latitude (n), departure (e) and length (d) are accumulated,
so that the following equations can be evaluated for each traverse leg:
(adjusted latitude) $n_{(ad)} = \pm n + n \left(\frac{\pm n'}{\Sigma n}\right)$; Precision Ratio
(a) $\pm e'$ Σd
(adjusted departure) $e_{(aj)} = \pm e + e_{(\Sigma e)}$; $P/R = \frac{1}{d'}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Operating Limits and Warnings This is a three part program. Part 1 calculates and
accumulates summed quantities. Part 2 calculates the error, n', e' and the
bracketed quotions and the Precision Ratio. Part 3 repeats the traverse, making
all the adjustments as it goes. Neither Azimuth to bearing nor supplementary
angle routines are included because of program space limitations.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

7

COGO-10: TRANSIT RULE ADJUSTMENT 1 BRQ/QD INPUT PART NO. AREA P.O.B.INIT BEARING TRAV INVERSE DEF TRAV/P/RR4, PRINT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	Load card, sides 1 & 2				
2	Set to part 1 for initial traverse	1	f	D	1
3	Enter P.O.B.	Northing	ENT^{\uparrow}		
		Easting	A		180
4	Proceed with traverse according to "COGO				
	GENERAL INSTRUCTIONS," until final point				
	has been reached				
5	Switch to part 2	2	f	D	2
6	Enter coordinates of closing point and	Northing	ENT		
	calculate errors	Easting	С		Northing
			Е		Easting
	obtain error Azimuth		Е		Error Azimuth
	obtain error Distance		Е		Error Distance
	obtain precision ratio (P/R)		D		P/R
7	Switch to part 3 & adjust	3	f	D	3
	traverse:				
8	If traverse is open, store P.O.B.	Northing	STO	1	
	coordinates	Easting	STO	2	
	and initialize		А		Northing
	(if traverse is closed step 8 may be skipped)				5
9	Repeat the traverse leg by leg to the closing				
	point & obtain output data for each	Northing	ENT		
	adjusted leg:	Fasting	С		N
		hasting	E		Ecorr.
			Е		AZcorr
			Е		DIST. Corr
10	Obtain AREA of the adjusted traverse		f	Е	AREA

STEP K		KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL1	21 01		051	7 *LBLC	21 13	Inverse
002	R/S	51		058	B RCL2	36 02	
003	*LBL6	21 16 12	BRG/QD input	055	9 -	-45	
004	XZY	-41		061	9 X≠Y	-41	
885	HM37	15 35		06:	I RCL1	36 01	
005	A+1 FUTA	-41		061	2 -	-45	
007	ENIT	-21		060	3 GTO9	22 0 9	
008	ENIT	-21		064	4 *LBL4	21 04	
007	. 2	02		065	5 DSZI	16 25 46	Reset 1 register
010	- 117	15 74		0 68	5 DSZI	16 25 46	
011	PCLA	10 34		061	7 DSZI	16 25 46	
012	KULH	-75		068	3 *LBL9	21 09	Calc. SBR.for traverse
013 014	× v+v	-33		069	7 CF1	16 22 01	
014	A+1 PCLA	76 11		076	a st+1	35-55 01	
01J 015	KULH	-75		071	I ABS	16 31	
010 017	202	-33		072	2 51+7	35-55 07	
017	003 D#	16-71		U 73	S ULX	-51	
010	K I V	-75		074	t LSIX	16-63	
015 020	<u></u>	-45		073) X∓Y	-41 75 55 00	
020 Q21	AUMS	16 35	Azimuth	U76	5 51+2	35-55 02	
021	*1 D! D	21 12	Azimuth input	077	ABS	16 31	
022	#LDLD 3	21 12		078	5 51 +8	33-33 08	
023	CTO5	75 85		075 007		-51	
027	3103 +	-55		088 001	1 L51X	10-63	
825	N RID	21 14		8 81 001	l ∆+ĭ ⊃ ∿⊓	-41	
620	HMS-	16 36	Deflection angle input	1877 1 001	: 7F 7 0704	34 75 04	
828	PCI 5	36 05	perfection angle inpu	- 983 007	5 5104 6 CT+7	33 04 75-55 07	
020 029	+	-55		00	+ 3173 = 040	33-33 03	
878	FFX	-23		003 004) A+1 5 0T05	-41 75 05	
030 071	CHS	-22		000	5 3703 7 2000	16 75	
832	9	<u>69</u>		00/ 00/		75 80	
N33	CF3	16 22 03		000 000	D Prit	76 01	
034	R/S	51	Distance input	00- 090		16-31	
035	F3?	16 23 03		020 001		22 15	
036	GSB8	23 08		001 092	2 #1R12	21 02	Program part 2
037	→R	44				51	
038	ISZI	16 26 46	Set subroutine number		1 */ RIA	21 11	
039	ISZI	16 26 46	in I register	895	5 CLX	-51	Initialize
040	ISZI	16 26 46		0 96	5 ENT†	-21	
041	GTO:	22 45	GTO proper subroutine	A97	ZENT†	-21	
0 42	*LBLd	21 16 14	Set program part	Ø 98	RCL2	36 02	
043	STOI	35 46		099	RCL1	36 01	
044	GTO i	22 45		100	6 GT02	22 02	
04 5	*LBLA	21 11		101	t *LBLC	21 13	Input closing points
046	CLRG	16-53	P.O.B. & initialize	102	F12	16 23 01	& calculate errors
047	ST02	35 02		103	3 GTO2	22 0 2	
048	R↓	-31		104	f SF1	16 21 01	
049	ST01	35 01		105	5 RCL2	36 0 2	
050	1	01		106	5 -	-45	
0 51	STOI	35 46		107	7 ST+2	35-55 0 2	
0 52	1	81		108	B ENT†	-21	
853	8	88		109	9 ENT†	-21	
0 54	0	00		116	RCL8	36 0 8	
0 55	STOA	35 11		111	÷	-24	
. 056	GT01	22 01		112	2 ST08	35 0 8	
	1.				6	7	18
U	N	ÉE	Σd,N _O d.E _O	Ao	AREA	Σ n $\stackrel{n}{=}$	$\Sigma e \frac{e}{\nabla e}$ P/R
S0	S1	S2	S3 S4 S4	 S5	S6	S7	S8 S9
Α		В	C	D	-	E	
180							FART NU.

STEP KE	Y ENTRY	KEY C	ODE	COMMENTS		STEP	KE	EY ENTRY	KEY CODE	COMN	IENTS
113	R↓	-3	31			1	69 70	*LBL6	21 06		
114	X≠Y	-4				1	70	DSZI	16 25 46	Reset I re	gister
115	RCL1	36 0				1	/1 70	USZ1 DC71	16 25 46		
116	- 	-4 75 55 0				1	12 -	USZI #UDU7	15 23 45	Adjust tra	verse
117	51+1	30-00 0				1	(3 71	¥LBL7 CT⊥7	21 07 75-55 07	point	s
118	ENIT	-2				1	(4 75	0170 V+V	-41		-
119	ENT PCLZ	-2 72 0	47			1	75 76	∆+1 97+4	75-55 Ø4		
120	KCE7 =	-2	24			1	77	FNTT	-21		
122	ST07	35 Ñ	7			1	 78	ABS	16 31		
123	RJ	-3	31			1	79 79	RCL8	36 08		
124	÷₽		34			1	80	X	-35		
125	RCL3	36 0	93			1	81	+	-55		
126	X≠Y	-4	41			1	82	X₽Y	-41		
127	÷	-2	24			1	83	ENTŤ	-21		
128	ST09	35 0	39			1	84	ABS	16 31		
129	CLX	-5	51			1	85	RCL7	36 07		
130	LSTX	16-6	53			1	86	Х	-35		
131	X₽Y	-4	41			1	87	+	-55		
132	→HMS	16 3	35			1	88	ST+1	35-55 01		
133	RCL2	36 E	<i>62</i>			1	89 89	XIY	-41		
134	S104	35 K	24			1.	90 04	51+2	30-00 02		
130	KULI CTOZ	36 8	91 37			1.	91 63		02 - 24		
135	5103	33 C 16-7	90 71			1.	22 07	Prio	-24 76 82		
137	CTOE	22 1	0b	tain closing		1.	70 91	RULZ -	-45		
130	VIDID	21 1	14 P/	R		1	27 95	X ₹Y	-41		
140	F12	15 23 0	R1 -/-			1	96 -	X	-35		
141	GT05	22 6	95			1	97	ST+6	35-55 06		
142	GT02	22 0	92			1	98	CLX	-51		
143	*LBL5	21 0	95			1.	99	LSTX	16-63		
144	CLX	-5	51			2	00	÷₽	34		
145	ENTŤ	-2	21			2	01	8 # Y	-41		
146	ENTŤ	-2	21			2	02	ST05	3 5 05		
147	ENTŤ	-2	21			2	03	→HMS	16 35		
148	ST06	35 E	96			2	04	RCL2	36 02		
149	RCL9	36 E	09			2	05	RCL1	36 01		
150	RŤ	16-3	31			2	06	RŤ	16-31		
151	GTOE	22 1	15 27 Pro	ogram nart 3		2	U/ 00	*LBLE	21 15	Rolldown	& print
152	*LBL3	21 8	93 ` = 1	ogram part 5		2	98 00	K∔ DDTV	-31	routin	e
103	K/3 	21.1	⊐. •• Tn	itialize & sto	ro	2	09 10	EKIA CTO:	-14 22 45		
104	*LBLH G	21 1	11 ±11. DG	Р.О.В.	ле	2	10 11	41 DI O	22 43		
155	етал	75 Ø	00 96			2	12	≉LDL0 X≓Y	-41	Data entr	y setup
157	8000 8012		00 02			2	13	R1	-31		
158	ST04	35 6	04			2	14	RTN	24		
159	RCL1	36 6	01			2	15	*LBLe	21 16 15	Recall ar	ea
160	ST03	35 (03			2	16	RCL6	36 06	incourt ut	cu
161	GT03	22 (03			2	17	ABS	16 31		
162	*LBLC	21 1	13 Inj	out coord. &		2	18	PRTX	-14		
163	RCL4	36 E	04 ca	alculate corre	ected	2	19	RTN	24		
164	-	-4	4 5 po	oints		2.	20	_ R∕S	51		
165	X≠Y	-4	41	(i.e.inverse	.)					4	
166	RCL3	36 6	03 							4	
167	-	-4	45 07							4	
168	6107	22 6	<i>bi</i>				—	FLAGS	L	SET STATUS	
ADODT					E_		0	. 2403			
F.O.B.IN	ицг. BRG	. TRAV.	INV.&CL	USE DEFLEC/P/F	R¥	, PRINT	+	170-7		I'RIG	DISP
a	BRG/	′QD ^C	J	PART NO.	ARI	EA	'E	LOSURE:		DEG 🖾	FIX 🖾
0	1 DA DM	NO			4		2		1 🗆 🗓	GRAD	SCI 🗆
5	6	110.	FART NU. 7	8	9	<u>חי</u>	3		2 🗆 🛚 🛛	RAD 🗆	ENG 🗆
USED	USED		USED	DATA SETUR	USE	ED	ΙT	DATA EN	TRY3 🗌 🗶 🛛		··

Program Description I

Program Title COGO-11: TO INSCRIBE CURVE

This Hewlett-Packard translation is based on program 04550A written by CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-11 is a member of the coordinate geometry serie described in the GENERAL DESCRIPTION, hereof. The special option of this program is the calculation of a curve inscribed at an angle of a traverse, so that the existing point becomes the P.I. (point-of-intersection) of the curve.

The INVERSE TRAVERSE function is not included in this program. However, all the other COGO traverse functions operate the same as in the other COGO programs.

As in the usual situation the curve fits tangentially to the line along which you approach the curve. You are given the heading of the exit tangent and the length of the RADIUS. You take a "sighting" on the new heading, and enter the RADIUS length, press [C], and the program computes the "curve parts". Press [R/S] and the traverse is automatically extended to the P.T. (point-oftangency). The program computes and accumulates the area enclosed by the ARC as a portion of the total traverse.

Operating Limits and Warnings If so, when loading Cogo-O1, be sure to convert the contents of Register 5, which is in Radians in this program. To degrees. The following keystroke procedure will accomplish this: RCL 5, R →D, STO 5.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

COGO-11: TO INSCRIBE CURVE

AZ→BRG BRG/QD INPUT SUPP. ∠ P.O.B., INIT AZ TRAV RAD↑

3

D† _____ DEFLEC.TRAV

7

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	Load card; sides 1 & 2				
2	Enter point of beginning of	Northing	ENT↑		
	Traverse, and initialize	Easting	Α		180
	TO INSCRIBE CURVE:				
	Note: The curve is made tangent to the				
	traverse leg most recently completed. Therefor	e			
	it is necessary to have calculated at least				
	one traverse leg prior to calculating a curve				
	with this program. (This prior leg may have				
	been calculated using any of the other COGO				
	programs of this series.)				
3	Proceed around traverse using "COGO GENERAL				Northing
	INSTRUCTION" sheet until you reach PI				EastingPI
4	Calculate a new "sighting" using either a				
	bearing or deflection angle traverse	Bearing	FNTA		
		OD	f	в	1,0000-09
	OR	Deflec./	D		1.0000-09
	and "zero" distance	1.000-09	R/S		
5	Input the given radius & read tangent	Radius	C		TAN
	read ARC		E		ARC
	read CHORD		Е		CHD
	(optional) read Central Angle		E		±∆°
6	Complete the traverse to the P.T.		R/S		Northingp
	and read Northing & Easting		E		EastingPT
	read Azimuth		E		AZ
	(optional) read Tangent		Е		TAN
	······································				
	(always use a positive value for the radius,				
	in this routine. The direction you are				
	looking has been elected by your new				
	"sighting")				
	Bighting V)				
		11			

STEP K		KEY CODE	COMMENTS	STEP KE	YENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	P.O.B.& initialize	057	DEG	16-21	
002	ST62	35 Ø2	E	058	XZY	-41	BRG
003	R4	-31	_	059	HMS÷	16 36	
004	ST01	35 01	N	060	X7Y	-41	QD
005	CLX	-51		U 61	ENIT	-21	
006	ST06	35 06	Initialize	862	ENIT	-21	
007	1	01		U 63	2	02	
00 8	8	08		U 64	÷	-24	
009	Ø	00		065	INI	15 34	
010	ST09	35 09		066	KULY	36 09	
011	RTN	24		067	×	-30	
012	*LBLC	21 13	Inscribe radius	068 068	Ă∔Ĭ Dolo	-41	
013	RAD	16-22		069	KULA	35 03	
014	ST08	35 08	Calc. routine	070	.X. 	-35	
015	ENT†	-21		U71	LUS D#	42	
016	Х	-35		072	KT .	16-31	
017	RCL7	36 07		073	X	-3J 4E	
018	2	02		074		-43	Azimuth
019	÷	-24		075	THNS	16 33	
020	TAN	43		075	*LBLB	21 12	Azimuth input
021	ST03	35 03		077	U OTO!	20 00	Fac
022	LSTX	16-63		0 78	6101	22 01	
023	-	-45		079	*LBLU	21 14 74 05	Deflection angle
024	Х	-35		080	RULD	36 63	input
025	ST-6	35-45 06		081	*LBL1	21 01	
0 26	RCL8	36 08		U 82	RAU	16-22	
027	RCL3	36 03		083	X7Y	-41	
0 28	ABS	16 31		U 84	H‼5≠	16 36	
0 29	Х	-35		085	U≠K	16 4J	
030	ST04	35 04		085	+	-33	
031	LSTX	16-63		U 87	EEX	-20	
032	TAN-'	16 43		088	UH5 0	-22	
033	ST03	35 03		089	9	17 00 0 7	
034	C0S	42		096	UF3 D/C	15 22 03	
035	Х	-35		091	K/S	JI 16 97 87	Data entry
036	2	02		092	г <i>э</i> ? стоо	10 20 00	Was data input?
037	X	-35		093	6108	12 00	Yes
03 8	RCL3	36 03		094 005	3F2 	10 21 02	T.C
039	ENT↑	-21		090	ALDLA مد	21 02	II not, set ilag
040	+	-55		026	75	75-55 01	for non print
041	RCL8	36 08		057	0171	33-33 81	Calc. SBR.
042	X	-35	ARC	070	0100 V+V	-41	
043	RCL4	36 04	Set up for display	100	0+1 0710	75-55 02	
U4 4	RCL7	36 07		100	OT NA	33 33 82 75 04	
045	K≠U	16 46	∆(RAD)→∆ DMS	101	2104	00 04 02	
046	+HMS	16 30		102	ے ۔	-24	
047	*LBLE	21 15	R↓ & print	100	PCI 2	36 02	
U48 040		-31		105	-	-45	
045	F 4 ? D 7 C	10 23 02	Print?	106	х	-35	
000	R/O DDTV	-14	No	107	ST+6	35-55 06	
001 050		-14	Yes	108	RCL4	36 04	
032 057		JI 72 05		109	RCL3	36 03	
033 054	RULU Dela	30 03 76 04		110	÷₽	34	
034	RUL4 CTOD	20 04 22 82		111	XZY	-41	
000 05/	6102 VIDIL	22 02	Bearing,QD input	112	RCI 5	36 05	
0 36	4LDLЮ	21 10 12	REGI	STERS			
0	1	2 -	3 4/2 4	5	6	7	8 9
	Ň	E	$n, \Delta/2$ e, Tan	^A 2	AREA	±Δ	R 180
S0	S1	S2	S3 S4	S5	S6	S7	58 59
		,l					
A		В	C	ט		E	

62

STEP	KE	Y ENTRY	KEY CO	DE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММІ	ENTS
	113	-	-45							
	114	ST07	35 07	,		170			1	
	115	RCL5	36 05							
	116	+ 0705	-50	i -					4	
	11/	5105	35 03	1 -					4	
	118	K≠D ∆UMC	15 45	Set i	up display				4	
	119	7885 PCL2	16 35	1					4	
	120	RULZ Pri 1	30 02 76 01							
	122	ROLI Pt	16-31							
	123	STOF	22 15	Go t	to print routine				1	
	124	*i Bi 8	21 08		to prine routine	180			1	
	125	XZY	-41	Data	a set up				1	
	126	Rŧ	-31							
	127	GTO2	22 02	•						
i	128	*LBLo	21 16 11	Azin	nuth→Bearing					
	129	DEG	16-21		, , , , , , , , , , , , , , , , , , ,					
1 1	130	HMS→	16 36	•						
L 1	131	ENT†	-21							
1	132	SIN	41							
1	133	SIN-'	16 41							
	134	X<0?	16-45			190				
1 1	135	CHS	-22						4	
	136	+HMS	16 35	1						
	137	PRIX	-14	Bear	ring				4	
	138	K↓	-31							
	139	7	63						4	
	(40) (7)	10 -	- 24						4	
	141 170	- 1	-29						4	
	142	ړ خ	-55						4	
	144	TNT	16 34			200				
	145	PRTX	-14							
	146	RTN	24	Quac	lrant			,		
	147	*LBLc	21 16 13	Supr	Angle				1	
	148	ABS	16 31	- up p					1	
	149	RCL9	36 09	1					1	
1	150	X₽Y	- 4 i						İ	
1 1	151	CHS	-22							
1 :	152	HMS+	16-55							
1 1	153	RTN	24	•						
1	154	R∕S	51			210			1	
			+						1	
	+								4	
	-								4	
160									1	
									1	
									1	
						220				
									1	
	+	t - y anno cara tart nati Sabahian							4	
	1								1	
<u> </u>	1		4	L	ABELS	.1	FLAGS	L	SET STATUS	
A P.O	B. TN		митн С			עראית	0	FLAGS	TRIG	DISP
a	2 · 11	b		/	d e	AT UTUL	1NON DETN	T ON OFF	T	
AZ→B	RG	BEAR	ING/QD	SUPP.∠				0 🗆 🖪	DEG 🐮	FIX 🖌
0		USED	2 C	ALC.SUBF	β . ³		2			
5		6	7		⁸ DATA SETUP ⁹		DATA ENTR	Y 3 □ X		n_4

Program Description I

Program Title COGO -12 SLOPE SHOT TRAVERSE

This Hewlett-Packard translation is based on program 04782A written by CARL M. KING

2206 Siesta Drive, Sarasota, Florida 33579

Program Description, Equations, Variables COGO-12 is a member of the coordinate geometry
series described in the GENERAL DESCRIPTION I, hereof. This program
differs from the others in that it contains an extra STOP where you
can enter the VERTICAL ANGLE for all those SLOPE SHOTS where you are
measuring distances on the slope.
COGO-12 calculates coordinates as projected on a horizontal plane,
and accumulates area, also projected on the horizontal plane.
In the substantial majority of surveying instruments the vertical
circles measure VERTICAL ANGLE starting from 0° at the horizontal
plane. Angles looking up hill are considered positive, and angles looking
down hill are negative.
For those users, who have instruments with the vertical circles
calibrated to read ZENITH ANGLE rather than vertical angle, the program
can be modified. (See Program Listing Addendum)
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s) Traverse the above fig	gure obtaining results shown below:
SYMBOLS:	SIDE AB
AZ = Azimuth	$AZ = 75^{\circ}14'52''$
d _s = Slope distance	d _s = 116.1812
v_{A} = Vertical angle (*)	$v_A = +7.14'23'' (Z_A = 82.45'37'')$
d = Horizontal distance	d = 115.2550
d' = Vertical distance	d' = +14.6413
SIDE BC	SIDE CA
$A7 = 102^{\circ}2015211$	
AZ = 102.29 52	$AZ = -91.12^{11}$
d _s = 114.6091	$d_s = 222.8228$
$\Psi_{A} = -5.54'17'' (Z_{A} = 95.54'17'')$	$v_A = -0.43'59'' (Z_A = 90.43'59'')$
d = 114.0010	d = 222.8046
d' = -11.7904	d' = - 2.8508
Upon completion of closed traverse,	recall the area = 3007.3999
Solution(s) 1100[ENT [↑]] 1200[A] 75.1452[H	B] 116.1812[R/S]
$7.1423[K/S] \rightarrow 1129.3485 N_B$	
$[E] \rightarrow 75.1452, AZ: [E] \rightarrow 11'$	$5.2550. d: [E] \rightarrow 14.6413 d'$
27.15 [D] 114.6091 [R/S] 5	$.5417 \text{ [CHS][R/S]} \rightarrow 1104.6784. N_{\odot}$
	\rightarrow 1422.7554, E _C
$[E] \rightarrow 102.2952, AZ; [E] \rightarrow 11$	14.0010, d; [E] \rightarrow -11.7904, d'.
88.4749 [ENT [†]] 3[f][B] 222.8	B228[R/S] .4359[CHS][R/S] → 1100.0005, N _A 1199.9999, E _A
$[E] \rightarrow -91.1211, AZ; [E] \rightarrow 22$	22.8046, d; [E] $\rightarrow -2.8508$, d'.
[f][E] → 3007.3999, AREA	• • • • • • • • • • • • • • • • • •

Reference(s) This program is a modification of the Users' Library Program #04782A submitted by Carl M. King.

	COGO-12: SLOPE SHOT TRAVERSE AZ → BRG BRG/QD INPUT SUPP. / P.O.B init. AZIMUTH INP INVERSE DI	EFLEC.	AREA R+PRINT	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load card, sides 1 and 2			
2	Enter point of beginning and initialize	Northing		
	For Boaring Trayorco:	Easting		180
2	For Bearing mayerse.	BRC	FNTA	
5	Input bearing and Quadrant			1 0000 -00
	OR: Azimuth			1.0000 = 09
4	Input Slope Distance	d _e		0
				0
5	Input Vertical Angle	VA	R/S	Northing
	and read Northings and Eastings			Easting
	<u> </u>			
6	Read Azimuth		E	AZ
7	Read Horizontal distance		E	d
8	Read Vertical distance		E	d'
	For Deflection Angle Traverse:			
9	Input Deflection angle and repeat	+ ^ °		1 0000 -09
	stops / through 8	± 4		1.0000 -09
	steps 4 through 6			
	For Inverse Traverse:			
10	See "COGO General Instruction" Sheet			
11	After closure of traverse obtain area		f	AREA
12	NOTE: If you prefer to use Zenith Angles*			
	rather than vertical angles modify the			
	program as shown on the Addendum on			
	Program Listing II			
	(* definition: $Z_A = 90 - V_A$)			

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP К		KEY CODE	67 COMMENTS
01	01 ¥LBLA	21 11	P.O.B	057	ST04	35 04	
01	02 STO2	35 02	Е	058	0	00	
Ø	03 R↓	-31		059	CF3	16 22 03	
61	04 STO1	35 01	N	060	R∕S	51	Vertical angle input
0(05 CLX	-51	Initialize	061	F3?	16 23 03	Data input?
Ø(06 STO6	35 06		062	GSB8	23 08	Yes
0(97 1	Ōĺ		063	HMS+	16 36	
00	98 8	08		Й64	XIY	-41	
0(99 0	00		865	÷₽	44	
01	10 STO9	35 09		REE	XIY	-41	
01	11 RTN	24		8 67	STO3	35 03	
01	12 *LBLC	21 13	Inverse	968	₽.L	-31	
01	13 RCL2	36 02		969	PCIA	36 00	
0:	14 -	-45		870	X#Y	-41	
0)	15 X ≢Y	-41		071 071		44	
Ø	16 RCL1	36 01		9 72	*I BL A	21 86	
0	17 -	-45		973	ST07	35 ØZ	Calc. Sbk
0	18 GTOØ	22 00	Go to Calc. SBR.	074	v,•v	-41	
Ū.	19 *!.BLb	21 15 12	BRG/OD Input	075	etne	75 00	
R)	PR XIY	-41	BRC	075 075	0100	33 80	
02	21 HMS→	16 36	bite.	070	ے ۔	-24	
D D	22 X#V	-41	Π	070	ECLO	75 00	
01 02	22 ENTA	-21	Qυ	010	RULZ	30 02	
02 02	24 ENTA	-21		073	• •	-JJ 75	
02 Q1	DF 2	62 62		080	от <i>с</i>	-30 75 45 04	
02 03	10 L DC 1	-24		8 81 8 82	51-5	33-43 06	
02 Q3	20 27 TNT	15 74		082	RULZ	36 02	
02 QC		10 34 72 80		083	KLL8	35 88 55	
02 Q2	DO ROLD	-75		084	+ 0700	-33	
02 07	20 V I V	-41		0 80 007	5102	33 0 2 76 01	
00 07	70 AFT 71 Drig	76 89		086	RULI	36 01	
00 00	71 KOLU 79 v	-75		0 87	RUL7	35 07 FF	
00 00	72 ^ 77 rne	-33		8 88	+ 0704	-33	
00 07	73 COS 74 DA	16-71		089	5101	35 01	
00 00	25 V	-75		090	KUL8	36 88	Set up to read
00 07	,	-45	Agimuth	091	KUL7	35 87	
03 07	>0 77 ⊥⊔MC	16 75	AZIMUTN	092	75°	34	
00 00)/ 7003 70 41010	10 33		693	5104	35 04	
00	DO ALDED 70 UMCS	10 70	Azimuth input	U 94	XFY OTOF	-41	
03 04	07 NI07	10 30	STO 47	095	5105	30 00	
04 04	10 STUD	22 61	510 AZ	096	*HN5	16 35	
04 04	H GIUI 19 widid	22 01		U 97	SF2	16 21 02	
01	E ALDEU 17 UMCA	21 14	Deflection angle	098	K↓	-31	Dell James and and the
04 04	10 DO15	10 30 72 85		N 33	*LBLE	21 15	Roll down and print
04 G 4	H KULD	30 00 FF		166	 ₽₽₹₩	-31	
64 04	13 T 17 CT00	-JJ 75 00	AZ	101	PRIX	-14	
04	10 3100 17 41014	55 00 21 61	STU AZ	102	FZ?	16 23 82	
64	n Aldli 10 g	21 01 DG		103	6102	22 02	include vert dist.
04 04	10 U	75 07		104	RIN	24	in stack
04 05	19 3103 Sa FEV	30 03		105	*LBL2	21 02	
00		-23		106	 ₽ - /	-31	
03 05) U HS	-22		107	RCL3	36 03	Vertical Dist.
00 05	12 7 17 057	12 00 07 12 00 07		108	GIUE	22 15	
00 05	10 UFO 14 D/C	10 22 03 . Et	Slope Dist. Input	109	RIN	24	Data Set up
00 05	/4 K/S te e70	- 12 - 12 - 27 - 27	Data input?	110	*LBL8	21 06	Data set up
00	10 F37 12 CODO	10 23 03 07 00	Yes	111	X≢Y	-41	
1 1	0 6000	23 08 1	REGIS	112 112	R↓	-31	
0	1	2 -	3 4	5	6	7	8 9
AZ OT	^A 2 ^N	E	d' d	AZ	AREA	n (LAT.	e(DEP.) = 180
50	51	52	53 54	20	30	37	00 09
A	l	В	C	D	L	E	I

68						1	- <i>-</i>				
STEP #		KEY CO	DDE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	IENTS
113	RTN	2	4							4	
114	*LBLa	21 16 1	1	Azimu	$th \rightarrow Bearin$	ıg	170			4	
115	HMS÷	16-3	6							4	
116	ENTŤ	-2	1							4	
117	SIN	4	i							4	
118	SIN-	16 4	1							4	
119	X<0?	16-4	5							4	
120	CHS	-2	2							4	
121	→HMS	16 3	5	DDC						4	
122	PRTX	-1	4	BRG						4	
123	R↓	-3	1				190			4	
124	9	0	9				180			4	
125	0	0	0							4	
126	÷	-2	4							4	
127	1	0	1							4	
128	+	-5	5							4	
129	INT	16 3	4	05						4	
130	PRTX	-1	4	QD						4	
131	RTN	2	4	_	1					4	
132	*LBLe	-21 16 1	5	Recal	I AREA					4	
133	RCL6	36 0	6				190			4	
134	ABS	16 3	1				130			4	
135	PRTX	-1	4							4	
136	RTN	2	4							-	
137	*LBLc	21 16 1	3	Suppl	ementary ar	ng⊥e				-	
138	ABS	16 3	1							4	
139	RCL9	36 0	9							4	
140	X≠Y	-4	1							4	
141	CHS	-2	2							4	
142	HMS+	16-5	5							4	
143	RTN	2	4				200000.00			4	
. 144	R/S	. 5	1				209PROG	RAM LISTIN	G ADDENDUM	4	
										4	
							For t	hose desir	ing to use	4	
							Vert	in lather	c modify	4	
							Prog	ram ac cho	J mourry	4	
150							ргов	EZ HMS)	16 36	1	
100							ē	64 9	09	2	
-		-					0	65 0	00		
		-					0	66 X≠Y	-41	Insert t	hese 4 ste
		-					0	67 -	-45	J	
		-					0	68 X≠Y	-41	Former 1v	step 64
		-							·-	. ormerry	
		1								1	
		1								1	
										1	
160]	
]	
]	
]	
							220]	
]	
										4	
										4	
								51400	L		
A	B	Ic		LAE	SELS	IF				SET STATUS	
Р.О.В.	init /	Azimuth	ÍInv	erse	Deflec /	[►] R∔	, Print	± ´	FLAGS	TRIG	DISP
$a AZ \rightarrow R$		G/OD C	Sup	р /	d	e A	REA	1			
0))	<u>r 1</u>	3	4		2			
Calc S	BR Us	sed	Ver	t. Dis	t	ļ		Used		RAD □	
5	6	7	7		⁸ Data setu	Þ		³ Data ent	$r_{y3} \square \overline{\mathbf{x}}$		n_4
NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

COGO

These COGO (Coordinate Geometry) Surveying programs constitute a comprehensive and self consistent series of programs to solve relationships regularly employed by surveyors and plot designers. All the programs have certain features in common so that they may be used consecutively without loss of continuity.

- COGO SURVEYING: GENERAL DESCRIPTION AND INSTRUCTIONS
- COGO 01: BASIC TRAVERSE, INVERSE AND SIDESHOTS
- COGO 02: BEARING BEARING INTERSECTION AND TRAVERSE
- COGO 03: BEARING DISTANCE INTERSECTION AND TRAVERSE
- COGO 04: DISTANCE DISTANCE INTERSECTION AND TRAVERSE
- COGO 05: TRAVERSE OF CURVE
- COGO 06: CURVE INVERSE AND TRAVERSE
- COGO 07: COMPASS RULE ADJUSTMENT
- COGO 08: ROTATION OF AXES
- COGO 09: CRANDALL'S RULE ADJUSTMENT
- COGO 10: TRANSIT RULE ADJUSTMENT
- COGO 11: TO INSCRIBE CURVE
- COGO 12: SLOPE SHOT TRAVERSE

Reorder No. 00097-14020 Printed in U.S.A. 00097-90195 Revision C 7-78