
HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions Control Systems

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbock** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

FREQUENCY RESPONSE OF A TRANSFER FUNCTION	1
BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND ZERO GIVEN Computes magnitude and phase for a general transfer function.	5
BODE OF SECOND-ORDER OVER THIRD-ORDER TRANSFER FUNCTION	9
BODE OF SECOND-ORDER OVER SECOND-ORDER TIMES S**N TRANSFER FUNCTION . Computes magnitude and phase for still another common transfer function.	14
POLE-ZERO TO GROUP DELAY	19
ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME SYSTEM STABILITY Tests the location of the roots of a characteristic equation.	23
CONVERT FREQUENCY RESPONSE OPEN LOOP, CLOSED LOOP	28
AID TO ROOT LOCUS PLOTS I REAL POLES	32
AID TO ROOT LOCUS PLOTS II COMPLEX POLES	36
CLASSICAL CONTROL GAINS	40
FIRST ORDER REGULATOR	45
SECOND ORDER REGULATOR	49

Program Title	Frequency Response of	a Transfe	r Function		
Contributor's Address	Name Hewlett-Packard 1000 N.E. Circle Blvd.				
City	Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables For transfer function of the form: G (S) = $\frac{K_1 (\tau_2 S+1)}{S^N_3 (\tau_4 S+1) (\tau_5 S+1) (\frac{S^2}{\omega_4^2} + \frac{2\zeta_6 S}{\omega_7} + 1)}$ The program computes $/ G(j\omega)$, $|G(j\omega)|$ and $\log |G(j\omega)|$ for any input frequency ω . $\underline{/}G(j\omega)$ is displayed upon completion of the calculation. $|G(j\omega)|$ is stored in the stack (z and T) and in Register 8 $Log[G(j\omega)]$ is stored in the stack (y) and in register 9 Parameters $K_1, \tau_2, N_3, \tau_4, \tau_5, \zeta_6$ and ω_7 are stored in registers 1,2,3,4,5,6 and 7 respectively. **Operating Limits and Warnings** For type 0 systems enter $N_3=0$ τ_2,τ_4 and/or τ_5 can be entered as 0.1f there is no quadratic term enter ζ_6 as 0 and ω_7 very large compared to $\frac{1}{\tau_5}$. Where τ_5 is the smallest (other than zero) first order term used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

.1-87.182.02.30(6.10dB)1.0-85.64.2855(-11.09dE)	Sketch(es)				
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$G(s) = \frac{12 (s+.6)}{s(s+1)(s^{2}+6s \ 36)} = \frac{.2(1.675 + 1)}{s(s+1)(\frac{s^{2}}{36} + \frac{2x.5}{6} \ s+1)}$ For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_{1} = .2$ $\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega) degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_1 = .2$ $\tau_2 = 1.67$ $N_3 = 1$ $\tau_4 = 1$ $\tau_5 = 0$ $\zeta_6 = .5$ $\omega_7 = 6$ Solution(s) $\omega(rad/sec) \angle G(j\omega)degrees G(j\omega) Log G(j\omega) $.0189.71 20.00 1.30 (26.02dB) .187.18 2.02 .30 (6.10dB) 1.085.64 .2855 (-11.09dB)					
For input frequencies of $\omega = .01, .1, 1.0$ and 10 rad/sec. $K_1 = .2$ $\tau_2 = 1.67$ $N_3 = 1$ $\tau_4 = 1$ $\tau_5 = 0$ $\zeta_6 = .5$ $\omega_7 = 6$ Solution(s) $\omega(rad/sec) \angle G(j\omega)degrees G(j\omega) Log G(j\omega) $.0189.71 20.00 1.30 (26.02dB) .187.18 2.02 .30 (6.10dB) 1.085.64 .2855 (-11.09dB)	$G(s) = \frac{12}{s(s+1)(s)}$	$\frac{1.6}{2+6s-36} = \frac{.2(1.6)}{.52}$	75 + 1)		
$K_1 = .2$ $\tau_2 = 1.67$ $N_3 = 1$ $\tau_4 = 1$ $\tau_5 = 0$ $\zeta_6 = .5$ $\omega_7 = 6$ Solution(s) $\omega(rad/sec)$ $\angle G(j\omega) degrees$ 1 -89.71 20.00 $.1$ -87.18 2.02 $.0$ 55 $(-11.09dE)$	5(51)(5	$s(s+1)(\frac{32}{36})$	$\frac{+2\times.5}{6}$ s+1)		
$\begin{aligned} \tau_{2} &= 1.67 \\ N_{3} &= 1 \\ \tau_{4} &= 1 \\ \tau_{5} &= 0 \\ \zeta_{6} &= .5 \\ \omega_{7} &= 6 \end{aligned}$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) \\ .01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB) \\ .1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB) \\ 1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE) \end{aligned}$	For input freque	encies of ω =.01,.1,1.0 and	nd 10 rad/sec.		
$\tau_{2} = 1.67$ $N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$	K - 0				
$N_{3} = 1$ $\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dE)$					
$\tau_{4} = 1$ $\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $1.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dB)$					
$\tau_{5} = 0$ $\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dB)$					
$\zeta_{6} = .5$ $\omega_{7} = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dB)$	$\tau_{\rm E} = 0$				
$\omega_7 = 6$ Solution(s) $\omega(rad/sec) \qquad \angle G(j\omega)degrees \qquad G(j\omega) \qquad Log G(j\omega) $ $.01 \qquad -89.71 \qquad 20.00 \qquad 1.30 (26.02dB)$ $.1 \qquad -87.18 \qquad 2.02 \qquad .30 (6.10dB)$ $1.0 \qquad -85.64 \qquad .28 \qquad55 (-11.09dB)$	$\zeta_{6} = .5$				
ω (rad/sec) \angle G(j ω)degrees $ $ G(j ω) Log G(j ω) .01-89.7120.001.30 (26.02dB).1-87.182.02.30 (6.10dB)1.0-85.64.2855 (-11.09dB)					
ω (rad/sec) \angle G(j ω)degrees G(j ω) Log G(j ω) .01-89.7120.001.30 (26.02dB).1-87.182.02.30 (6.10dB)1.0-85.64.2855 (-11.09dB)					
.01-89.7120.001.30(26.02dB).1-87.182.02.30(6.10dB)1.0-85.64.2855(-11.09dB)		$\langle C(i_{1}) degrees$			N
.1-87.182.02.30(6.10dB)1.0-85.64.2855(-11.09dE)	$\omega(rad/sec)$	<u>/</u> G(Jw)degrees	G(J ω)	Log G(Jw)
1.0 -85.64 .2855 (-11.09dE	.01	-89.71	20.00	1.30	(26.02dB)
	.1	-87.18	2.02	.30	(6.10dB)
10.0 -224.56 .01 -1.86 (-37.29dB	1.0	-85.64	.28	55	(- 11.09dB
	10.0	-224.56	.01	-1.86	(-37.29dB

Reference(s) Automatic Control Engineering, F.H. Raven, McGraw-Hill, N.Y., 1968 This program is a translation of the HP-65 Users' Library program #00834A submitted by Eugene Bahniuk.

			FREOUE	NCY R	RESPONSE				
								z	
								· · · · · ·	
(dd)	Param.	-	ω	-		-	_	_ /	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Initialize		Α	1.00
3.	Enter the gain	۲	R/S	2.00 7.00
	Enter τ_2 when 2.00 is displayed	τ <mark>2, N3</mark>	R/S	2.00 → 7.00
	Repeat parameter entries in order N_{3} , τ_{4} , τ_{5} ,	^τ 4, ^τ 5, ^ζ 6		
	$\zeta_6 \text{ and } \omega_7$	ω7		
		(1)	R/S	8.00
4.	When 8.00 is displayed enter the frequency (rad/sec)	ω		0.00
5.	Upon completion of the calculations $\angle G(j_{\omega})$			$\angle G(j_{\omega})$
	will be display			
6.	Amplitude ratio $ G(j\omega) $ is stored in the			
	stack (z and T) and in register 8			
	To find G(jω) REC 8		RCL 8	$ G(j\omega) $
7.	$Log[G(j\omega)]$ is in stack y and in register 9			Log G(jω)
	To calculate decibels - REC 9, enter 20 and			
	multiply			
8.	For another frequency		B []	8.00
	· · · · · · · · · · · · · · · · · · ·			
9.	Enter the next frequency	ω	R/S	<u>/</u> G(jω)
10.	To change therefore function recordence out of			
10.	To change transfer function parameters enter	K ₁ ,τ ₂ ,N ₃		1.00 thru 7.00
	all parameters or if only one parameter is to	^{-τ} 4 ^τ 5 ^ζ 6 ^ω 7		
	be changed enter the changed parameter(s) in			
	the proper register(s) For τ_4 in register 4 and so on.			
11.	For frequency response of the new transfer	ω	[R/S][]	8.00
	function enter ω when 8.00 is displayed (if			
	only one parameter was changed first enter B)			

Program Listing I

4			// I 1051 ann				
	EY ENTRY	KEY CODE	COMMENTS	STEP KE	Y ENTRY	KEY CODE	COMMENTS
801	*LBLA	21 11		057	RCL3	36 03	
002	1	01		85 8	9	09	
003	STOI	35-46		8 59	0	88	
004	*LBL9	21 09	Start of parameter	8 68	x	-35	
005	RCLI	36 46	entry display 1.00	061	+	-55	
006	R/S	51	and stop for entry	962	CHS	-22	
007	STO i	35 45		8 63	RCL2	36 0 2	
668		16 26 46	of K _l Store K _l	864	RCLS	36 88	
009		36 46	Disply 2.00 and	065	X	-35	
010	9	09	stop for entry of τ_2	065 066	RCL1	36 01	
011	X>Y?	16-34	etc.	068 067	X	-35	
012		22 09	2001		RCL1	36 81	
012		36 08		8 68	ĸuli →P	34	
014		21 12	Compute $\angle G(j\omega)$,	069 070		16-31	
014		35 08	$\angle G(j\omega)$ and $\log G(j\omega) $	070	RŤ	-24	Replaces ω with
016		35 86 36 86		071	÷		G(jω)
				072	STD8	35 08	
017	RCL7	36 07		073	ENTT	-21	Stores log $ G(j\omega) $
0 18		-24	0-	074	LOG	16 32	
019		02 75	This is $^{2\zeta 6^\omega / \omega_7}$	075	ST09	35 09	
020		-35	,-,	076	Rt	16-31	Computes∠G(jω)
821	RCL8	36 08		877	RŤ	16-31	
022	X.	-35		8 78	+	-55	
023		01		6 79	RTN	24	
024		36 0 8		0 80	R∕S	51	
025		36 0 7					
026	÷	-24	2	t			4
027		-21	Results in $1-\omega^2 \omega_7$				4
<i>628</i>		-35	7				4
029		-45					4 1
0 30		34					4 1
031	X≠Y	-41					4
032	RCL5	36 05					4
83 3	RCL8	36 0 8					4
034	Х	-35		090			4
035	1	81					4
836		34					
037		-31					
038		-55					
039		-31					
040		-35					
041	Rt	16-31					
842		36 04					1
943		36 88	i.				
040	X	-35		100			
045		01					J
043 046		34					J
045 047		16-31					
04 8		-35					
048 049		-31					
049 050		-55					SET STATUS
05e 051		-55 16-31				FLAGS	TRIG DISP
6 52	RCL8	16-31 36 8 8				ON OFF	
053 053		36 68 36 63					DEG 🔯 FIX 😰
053 054	YX YX	36 03 31		110			GRAD C SCI C
		31 -35					RAD ENG n_2
055 056						3 🗆 🛛	l <u>"</u>
Ø56	X≢Y	-41		STERS	T		
0	¹ k ₁	² ^τ 2	3 N ₃ 4 $^{\tau}$ 4	⁵ ^τ 5	^{6 ζ} 6	⁷ ω 7	8 ω 9 Log G(jω) G(jω)
	·					S7	$\begin{array}{ $
S0	S1	S2	S3 S4	S5	S6	51	55 55
		<u></u>			I		
A		В	С	D		E	•
		1					

 Program Title
 BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND ZERO GIVEN

 Contributor's Name
 Hewlett-Packard Company

 Address
 1000 N.E. Circle Boulevard

 City
 Corvallis
 State Oregon
 Zip Code 97330

Program Description, Equations, Variables Given a laplace transfer function: $F(s) = K \frac{(s+z_1+jz_1^{\prime})(s+z_2+jz_2^{\prime})\cdots(s+z_N+jz_N^{\prime})}{(s+p_1+jp_1^{\prime})(s+p_2+jp_2^{\prime})\cdots(s+z_M+jz_M^{\prime})}$ $F(jw) = Magnitude \underline{\langle \Theta}}{Where magnitue} = |K| \frac{\sqrt{(z_1^{\prime}+\omega)^2+z_1^{\prime}}}{\sqrt{(p_1^{\prime}+\omega)^2+p_1^{\prime}}} \frac{\sqrt{(z_2^{\prime}+\omega)^2+z_2^{\prime}}}{\sqrt{(p_2^{\prime}+\omega)^2+p_2^{\prime}}}\cdots\sqrt{(p_M^{\prime}+\omega)^2+p_N^{\prime}}}$ and $\Theta = Tan^{-1}\frac{z_1^{\prime}+\omega}{z_1} + Tan^{-1}\frac{z_2^{\prime}+\omega}{z_2} + \cdots + Tan^{-1}\frac{z_N^{\prime}+\omega}{z_N}$ $-Tan^{-1}\frac{p_1^{\prime}+\omega}{p_1} + Tan^{-1}\frac{p_2^{\prime}+\omega}{p_2} + \cdots + Tan^{-1}\frac{p_N^{\prime}+\omega}{p_M} + 2\frac{|K|-K}{K}Tan^{-1} 1$ also decibels = 20 log10 magnitude N.B. $zero_1 = -(z_1+jz_1^{\prime})$ $pole_1 = -(p_1+jp_1^{\prime})$

Operating Limits and Warnings

K must be real and non-zero but may be negative.

About 4 seconds of computing time is required for each pole and each zero, whereas 00361A takes half as long.

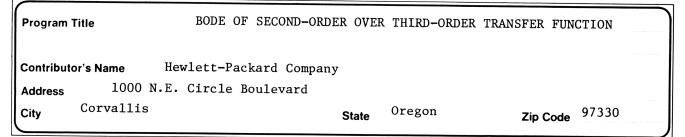
This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

	0	_
Sketch(es)		
Sample Problem(s) Find gain (in For F(s) = 0.0	s + 62890	olts/volt) and phase shift in degrees at 3333 Hz.
Solution(s)		
3333	[A] →	0.
62890	D [↑] O [B] →	1.
5717	[↑] 0 [C] → -	1.
	$91 [R/S] \rightarrow -$	
[D]		1.1 Decibels
[R/S]] →	2.77590 (10 ⁻¹) Volts/Volt
[E]		6.3 Degrees

Reference(s) HP-65 Program 00361A

This program is a translation of the HP-65 Users' Library Program #02582A submitted by E. P. Sansing.


1 BODE, EACH POLE AND ZERO GIVEN	5
bz/rps z _i , z _i ' p _i , p _i ' DB/mag angle	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program card			
2	(Optional) For dB = 1010g ₁₀ Magnitude:			
	Switch to run		GTO D	
	Switch to w/prgm		SST	31
			SST	02
			f DEL	062 1632
		1		01
	Switch to run			
3	(Optional) For phase angle not in degrees:			
	a. for θ in grads		fGRD	
	b. for θ in radians		f GRD	
4	Key in frequency			
	a. in Hertz or	Hz	A	0.
	b. in radians/second	rps	A R/S	1.
5	Key in z _i ,	Zi	↑ 	
	Key in zi'	z _i '	B	i.
6	Repeat step 5 for each i ≤ N			
7	Key in pi	Pi		
	Key in Pi	Pi'	C	-i.
8	Repeat step 7 for each i ≤ M			
9	(Optional) key in k, otherwise the program			
	will default to k = + 1	k	R/S	
10	Display decibels			db
11	Display magnitude		R/S	unitless
12	Display phase angle			depends or
				depends of
	For each new frequency, repeat steps 4			
	through 12.			
├				
\vdash				
├				
├				

97 Program Listing I

8											
STEP		EY ENTRY	KEY CODE	СОМ	MENTS	STEP	, KE	EY ENTRY	KEY CODE	CON	MENTS
	001	≭LBL A	21 11	Frequency	, input	•	6 57	X≠Y	-41		
	002	CLRG	16-53				8 58	÷F	34		
	00 3	ST06	35 0 6	Subrouti	ne		059	GTOO	22 00		
	004	2	02	Convert H	lertz to		060	#LBLD	21 14	Subrouti	ne to
	005	x	-35	routine			060 061	RCL1	36 01		decibels 1
	006	P i	16-24	routine,	becond					compute	decibers r
	007	x	-35				062	LOG	16 32		
	008	ST05	35 05	Store rad			063	2	0 2		
	000 009	5703	03 03 01				064	e	00		
		-			ault to 1		065	x	-35		
	010	ST01	35 01	unless s	step 9 used		8 66	DSF1	-63 01		
	011	RCL2	36 02				0 67	R ∕S	51		
	012	FIX	-11				0 68	RCL1	36 01	Display :	magnitude
	813	DSFØ	-63 00				869	DSP5	-63 0 5		
	014	R∕S	51	Display ().		070	SCI	-12		
	015	RCL6	36 0 6	If input	was		071	RTN	24		
	016	ST05	35 05	rads/sec			072	#LBLE	21 15	Subrouti	ne to call
	017	RCL1	36 01		ore rads/		073	RCL2	36 02	phase a	
	018	RTH	24	sec disp			074	DSP1	-63 01	pliase a	ligie
	019	#LBLB	21 12	Subroutir			074 075	FIX			
	020	RCL3	36 83						-11		
	021	1	01	zero inp			076 077	RTN R (C	24		
	022	* +	-55	Increment	N counter		077	R⁄S	51		
	022 023	ST03	35 03								
	023 024	ST03	35 87								
		5107 R4	-31								
	<i>025</i>						_		+		
	026	RCL5	36 05				<u> </u>			_	
	8 27	+	-55				<u> </u>			_	
	028	X≠Y	-41								
	6 29	÷₽	34								
	030	GTOØ	22 0 0								
	031	*LB LC	21 13	Subroutin	e for pole						
	032	RCL4	36 04	inputs						7	
	8 33	1	01	Decrement	-M pole					1	
	034	-	-45	inputs	-	090				1	
	035	ST04	35 04	-						1	
	036	ST07	35 0 7							1	
	037	R4	-31				+			-1	
	938	RCL5	36 05						1	-1	
	039	+	-55						1	-1	
	0 40	CHS	-22						+	-1	
	040 041	uns X≠Y	-22 -41			 	+		+	-1	
		×÷⊺ →P				— —	+		+	-1	
	04 2		34 50			 	+		+	-1	
	<i>043</i>	1/X	52	0.1		100			+	-1	
	844	*LBLO	21 00	Subroutin			+		+	-1	
	04 5	ST×1	35-35 01		agnitude		+		+		
	846	R↓	-31	and angl	e				+		
	047	RCL2	36 82			 			+		
	048	+	-55								
	849	1	01						↓		
	050	÷₽	44			 			+	SET STATUS	5
	0 51	÷₽	34			 			FLAGS	TRIG	DISP
	85 2	R∔	-31		i	 			ON OFF	=	
	85 3	ST02	35 02						0 🗆 😾	DEG 🖾	FIX 🖾
	054	RCL7	36 07	Display N	or -M	110			1 🗆 🖾	GRAD 🗆	SCI 🗆
	055	R/S	51			 	<u> </u>		2 🗆 🖄	RAD 🗆	ENG 🗆
1	056	0	00			L			3 🗆 🕱	1	n. <u>2</u>
				1		TERS					
0			ude ² phase	³ zero		5 radi		⁶ first	⁷ last	8	9
		М	ang. O	counts i < N	counts -i > -M	per		input, frequen	7 last updated cy (N or -	(M	1 1
1		S1				seco					+
1 6 6		191	S2	S3	S4	S5		S6	157	S8	S9
S0					104						
SO A			B	С	104	D			E	I	1

8

Program Description, Equations, Variables

 $F(s) = \frac{Qs^3 + Gs^2 + Hs + K}{Rs^4 + Ls^3 + Ms^2 + Ns + P}$ where Q and R are options, limited to [-1, 0, +1] G, H, L, L, M, N, and P may assume any real value

$$|\text{magnitude}| = \frac{\sqrt{(K-G\omega^{2})^{2} + (H\omega-Q\omega^{2})^{2}}}{\sqrt{(P-M\omega^{2}+R\omega^{4})^{2} + (N\omega-L\omega^{3})^{2}}}$$

where $\omega = 2\pi F$

Decibels = 20 log₁₀ |magnitude|

Phase =
$$Tan^{-1} \frac{H\omega - Q\omega^3}{K - G\omega^2} - Tan^{-1} \frac{N\omega - L\omega^3}{P - M\omega^2 + R\omega^4}$$

in degrees (unless angular mode is set to radians or grads).

Operating Limits and Warnings Frequency, F, can not equal zero. Coefficient of s^3 in numerator is -1, 0, or+1. Coefficient of s^4 in denominator is -1, 0, or +1. Display of phase will be between -180° and +180° (- π and + π radians or -200 and +200 grads).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)								
							. Y the second	

Sample Problem(s) Find gain (in decibels and volts/volt) and phase shift in degrees For $F(s) = \frac{8s^3 - 1}{3s^3 + 8}$ at DC and f=0.1 Hz Option 3 (see page 4) is required but the coefficient of s^3 in the numerator can be only -1, 0, or +1. Rewritten, $F(s) = \frac{s^3 - 0.125}{0.375s^3 + 1}$ G= 0 H = 0k=-0.125 L = 0.375M= 0 N = 0p= 1 $f=10^{-50}$ (zero is not allowed) and 0.1 Solution(s) Switch to Run: [GTO] 1 Switch to w/prgm: [g][DEL][RCL] 8[-] Switch to Run: $0[\uparrow] 0[\uparrow] .125[CHS][A] \rightarrow$ 0.00 .375 [↑] 0 [↑] 0 [↑] 1 [B] → 0.38 $F = 0 \quad Hz \begin{cases} Gain = -18.06 \ db \\ Gain = 0.13 \ volts/volt \\ Phase = 180.00 \ degrees \end{cases}$ [EEX] 50 [CHS][D] \rightarrow $[R/S] \rightarrow$ [E] → .1 [D] → (Gain = -11.16 db) $F = 0.1 \text{ Hz} \langle \text{Gain} = 0.28 \text{ volts/volt} \rangle$ $[R/S] \rightarrow$ [E] → \Phase = -111.43 degrees

Reference(s) This program is a translation of the HP-65 Users' Library Program #02272A submitted by Edward P. Sansing.

1	BODE OF	(Gs ² +Hs+K)/S ^N (Ls ² +Ms+Ns	+P)		7
(hp)	Numer	denom		gain	phase	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Exercise option(s) if desired (see page 4)			
3	Select angular mode if grads or radians			
	are to be computed			
4	Input numerator coefficients	G		G
		Н		Н
		К		G
5	Input denominator coefficients	L		L
		M		M
		N		N
		Р		L
6	Key in first frequency			
0		f (or ω)	D	gain/DB
	(Optional)			Magnitude
7	Compute phase			Θ
/				Onumer
	(Optional)		$\begin{bmatrix} g \end{bmatrix} \begin{bmatrix} R \downarrow \end{bmatrix}$	⊖numer ⊖denom
			RCL 8	⊖denom ω/rad/sec
				~/Iau/sec
	(After a step 6 is done, it is not			
	necessary to do steps 1, 2, 3, 4, 5, nor 7			
	before another step 6 is done.)			
	·			

	BODE OF	(Gs ² +Hs+K)/((Ls ³ +Ms ² +Ns+P)			5
(hp)	numer	denom		gain	phase	

	INSTRUCTIONS	DATA/UNITS	n	EYS	OUTPUT DATA/UNITS
	OPTIONS				
	Any combination of the four may be used;				
	however, order of selection must be as follows				
1	To use radians/second inputs instead of Hz.				
	Switch to Run		GTO	D	
	Switch to w/prgm				2114
	Perform 4 times		SST	f	35
			DEL		14
	Switch to Run				
2	For db=10 x log ₁₀ Magnitude				
	Instead of 20 x log ₁₀ Magnitude				
	Switch to Run		GTO	2	
	Switch to w/prgm				2102
	Single step 14 times		SST		02
			f	DEL	1632
		1			01
	Switch to Run				
3	For s ³ +Gs ² +Hs+K as numerator				
	Switch to Run		GTO	1	
	Switch to w/prgm		f	DEL	-24
			RCL	8	36 08
	(For -s ³ , use +)			_	-45
	Switch to Run				
	SWIECH ES NOM				
4	For s ⁴ +Ls ³ +Ms ² +Ns+P as denominator				
	Switch to Run		GTO	2	
	Switch to w/prgm		f	DEL	-24
			f	LST X	16 -63
	(For -s ⁴ , use -)			+	-55
	Switch to Run				

97 Program Listing I

												13
	EY ENTRY			COMM	ENTS	STEP	KE	Y ENTRY	1	KEY CODE	COM	MENTS
001	★LBL A	21 11	Nume	erator		6	857	X≠Y		-41		
0 02	ST03	35 03		efficie	anta		358	÷		-24		
883	R4	-31	COE	errrere	ents		959	ENT+		-21		
604	ST02	35 02					760 760	LOG		16 32		
005	₽4	-31										
006	ST01	35 01					<i>161</i>	2		8 2		
0 07	RTN	24					762	0		88		
			-	•			963	x		-35		
00 8	*LBLB	21 12	•	minato			964	R∕S		51		
009	ST07	35 07	coe	efficie	ents		965	X≠Y		-41		
0 10	R∔	-31				e	96E -	RTN		24		
e1 1	ST06	35 06				e	967	*LBLE		21 15	Compute	Phase
012	R4	-31				e	868	Rt		16-31		
013	ST05	35 05				e	169	Rt		16-31		
814	R↓	-31					170	RCL9		36 89		
015	ST04	35 84					71	-		-45		
016	RTN	24					172	CHS		-22		
017	* LBLD	21 14	Cont	ort de	egrees		173	LSTX		16-63		
018	2	02)74	XZY		-41		
019	X	-35	τo	radia	15							
020	Pi	16-24					175	1		01		
828 821	r I X	-35					76	÷₽		44		
			0				77	÷F		34		
022	STO8	35 0 8	Comp	oute 1	f(s)		178	R4		-31		
Ø23	RCL2	36 02					179	R∕S		51		
024	RCL8	36 08					180	₽∔		-31		
025	÷	-24					181	RTH		24		
026	*LBL1	21 01				8	82	R∕S		51		
027	RCL3	36 03										
028	RCL8	36 08							-			
8 29	χ2	53							-			
830	÷	-24										
031	RCL1	36 01										
032	-	-45										
033	÷₽	34										
034	ST09	35 09				090						
035	₽ 4	-31										
036	RCL6	36 06										
8 37	RCL8	36 Ø8										
638	÷	-24										
039	RCL4	36 84										
040	RCL8	36 08										
041	Х	-35										
042	-	-45										
843	RCL7	36 07										
044	RCL8	36 08				100						
045	22 22	53										
046	÷	-24										
047	*LBL2	21 02										
048	RCL5	36 05										1
040	KOLU -	-45										
045 050	RCL9	36 09									SET STATUS	
051	R↓	-31								FLAGS	TRIG	DISP
052	×+ ≁F	34								ON OFF		
052 053	⇒r R∔	-31								0 🗆 🕱	DEG 🕵	FIX 😰 SCI 🗍
654	R4 R4	-31				110				1 🗆 🛛	GRAD 🗆	SCI 🗆
004 055	ST09	35 09								2 🗆 🕱	RAD 🗆	ENG 🗆
000 056	8709 R4	-31								з 🗆 🙀		
1					REGIS					-		
0	1	2	3		4	5		6		7	8	9
S0	S1	S2	S3		S4	S5		S6		S7	S8	S9
		В		С	I	D			E		 I	l
A				0		2						

Program Til	BODE OF 2ND - OVER 2ND - OR	DER TIMES S**N	TRANSFER FUNCTION
Contributor	's Name Hewlett-Packard Company 1000 N. E. Circle Boulevard		
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables $F(s) = \frac{Qs^{3} + Gs^{2} + Hs + K}{s^{N}(Rs^{3} + Ls^{2} + Ms + P)}$ where: Q and R are options, limited to [-1, 0, +1]G, H, K, L, M, and P may assume any real value N is a non-negative integer [0, 1, 2, ...] $|\text{Magnitude}| = \frac{\sqrt{(K-G\omega^2)^2 + (H\omega-Q\omega^3)^2}}{\omega^N \sqrt{(P-L\omega^2)^2 + (M\omega-R^3)^2}}$ where: $\omega = 2\pi F$ Decibels = 20 log10 Magnitude Phase = $Tan^{-1} \frac{H\omega - Q\omega^3}{K - C\omega^2} - N \sin^{-1} 1.0 - Tan^{-1} \frac{M\omega - R\omega^3}{P - L\omega^2}$ in degrees (unless angular mode is set to radians or grads). Operating Limits and Warnings Frequency, F, can not equal zero. Power, N, is a non-negative integer. Coefficient of s^3 in numerator or denominator is -1, 0, or +1 display of phase will be between -180° and +180° (- π and + π radians or -200 and +200 grads).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s) Find gain (in decibels and volts/volt) and phase shift in degrees For $F(s) = \frac{8s^3 - 1}{s^2(s^2 - 2)}$ at $F = 0.1$ Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, $F(s) = \frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So $G = 0$ H = 0 K = -0.125 N = 2 L = 0.125 M = 0 P = -0.25 F = 0.1 and 1.0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Find gain (in decibels and volts/volt) and phase shift in degrees For F(s) = $\frac{8s^3 - 1}{s^2(s^2-2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2-0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
For F(s) = $\frac{8s^3 - 1}{s^2(s^2 - 2)}$ at F = 0.1 Hz and 1.0 Hz Option 3 (see page 4) is required but the coefficient of s ³ can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Option 3 (see page 4) is required but the coefficient of s^3 can be only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
only -1, 0, or +1 Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
Rewritten, F(s) = $\frac{s^3 - 0.125}{s^2(0.125s^2 - 0.25)}$ So G = 0 H = 0 K = -0.125 N = 2 L = 0.125 M = 0
So $G = 0$ $H = 0$ K = -0.125 $N = 2L = 0.125$ $M = 0$
K = -0.125 $N = 2L = 0.125 M = 0$
K = -0.125 $N = 2L = 0.125 M = 0$
L = 0.125 $M = 0$
Solution(s) Switch to Run: [GTO] 1 Switch to w/prgm: [g][DEL][g][DEL][RCL]8[F ⁻][~][-]
Switch to Run: 0 [\uparrow] 0 [\uparrow] .125 [CHS][A] \rightarrow 0.00
2 [\uparrow] .125 [\uparrow] 0 [\uparrow] .25 [CHS][B] \rightarrow 2.00
$.1 \text{ [D]} \rightarrow Gain = 7.42 \text{ db}$
$[R/S] \rightarrow$ F = 0.1 Hz Gain = 2.35 volts/volt
$[E] \rightarrow Phase =-116.74 degrees$
$1 [D] \rightarrow$ Gain = 1.67 db
$[R/S] \rightarrow$ F = 1.0 Hz Gain = 1.21 volts/volt
[E] \rightarrow Phase = -90.03 degrees

Reference(s) This program is a translation of the HP-65 Users' Library Program #02273A submitted by Edward P. Sansing.

1	bode of (gs ² +hs+1	k)/S ^N (LS ² +MS+P)	5
NUMER	DENOM	GAIN	PHASE

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Exercise option(s)			
	If desired (see page 4).			
3.	Select angular mode if grads or radians are			
	to be computed.			
4.	Input numerator coefficients	G	↑	G
	· · · · · · · · · · · · · · · · · · ·	н	↑	Н
		k	Α	G
5.	Input denominator power of S	N		N
	and coefficients	L	\uparrow	L
		М	\uparrow	м
		Р	В	N
6.	Key in first frequency	F (or _{ω})	D	GAIN/dB
	(Optional)		R/S	Magnitude
				·
7.	Compute phase		E	θ
	(Optional)		RCL 8	ω /RAD/SEC
	(After a step 6 is done, it is not necessary to do steps 1,2,3,4,5, nor 7 before another			
	step 6 is done.)			
I		II		

1		BODE OF (GS ² +HS+K)/S ^N (LS ² +MS-	(4+
(hp)	NUMER	DENOM	N PHASE

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	OPTIONS			
	Any combination of the four may be used; howev	er,		
	order of selection must be as follows:			
1.	To use radians/sec. inputs instead of Hz			
			GTO D	
	Switch to run Switch to W/PRGM			21 14
			SST f	35
	Perform 4 times			14
	Switch to run			
2.	For dB-10 x log ₁₀ Magnitude			
	Instead of 20 x log ₁₀ Magnitude			
	Switch to run		GTO 1	
	Switch to W/PRGM			23 01
	Single step 16 times		SST	02
			f DEL	16 32
		1		01
	Switch to run			
3.	For $S^3 + GS^2 + HS + k$ as numerator			
			GTO 1	
	Switch to run Switch to W/PRGM		RCL 8	34 08
	bwitch to w/ikon			54 00
			\mathbf{x}^2	50
	(for -5 ³ , use +)			53
				-45
	Switch to RUN			
	For S ^N (S ³ +LS ² +MS+P)			
4.				
	As denominator switch to run		GTO 2	
	Switch to W/PRGM			23 02
			RCL 8	34 08
	3		x ²	53
	(for -S ³ , use +)			-45
	Switch to RUN			

Program Listing I

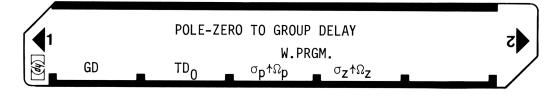
18											
			COM	MENTS	STEP		YENTRY		KEY CODE	COMM	MENTS
001	*LBLA	21 11			1	957	RCL9		3E 0 9		
002	ST03	35 03				958	Rŧ		-31		
003	R↓ cT0p	-31 35 02	Store nu	morator		859	÷₽		34		
8 <u>84</u>	STO2 R↓	30 02 -31	coefficie			860	Rt		16-31		
005 006	ST01	35 01	COETTICLE	:1115		861	÷		-24		
000 007	RTN	33 01 24				062	R∔		-31		
007	*LBLB	21 12				963	-		-45		
889	ST07	35 07				064	CHS		-22		
010	C107 R∔	-31				865	R†		16-31 -21		
011	3T06	35 06			1	966 967	ENTT		16 32	Total ph	250
012	R4	-31	Store den			967 960	106		16 32 02	magnitud	
013	ST05	35 05	coefficie	ents &	1	068 069	2 Ø		82 88	magnituu	e
614	R↓	-31	power		1	002 070	ю Х		-35		
015	ST04	35 04				676 871	R∕S		-53		
016	RTN	24				071 072	κ∕3 X≢Y		-41		
017	*LBLD	21 14	Compute g	ain		072 073 -	RTN		24		
0 18	2	02	compare e	ain		074 074	*LBLE		21 15		
019	x	-35				074 075	#LBLE R1		16-31		
020	Pi	16-24	These fou	ır		075 076	кі 1		16-31 01	Compute	nhase
021	x	-35	program s			076 077	÷₹		44	Sompule	Pliase
822	ST08	35 08	are delet			078 078	→P		34		
8 23	RCLE	36 06	for input			079 079	R↓		-31		
824	*LBL2	21 82	radians/s			080	RTN		24		
025	RCL7	36 0 7	radians/s	ceona		081	R∕S		51		
8 26	RCL8	36 0 8					Nº 6				
8 27	÷	-24									
0 28	RCL5	36 05				I					
0 29	RCL8	36 08									
838	Χ	-35									
031	-	-45									
9 32	÷F	34									
033	RCL8	36 08									
034	RCL4	36 84			090						
8 35	γx	31						-			
0 36	X	-35	Denominat			L					
037	1	01	magnitude	2				1			
038	SIN-	16 41						 			
039	RCL4	36 04						+			
048	X	-35									
041	XZY	-41						╂			
042	R↓	-31						+		4	
043	+	-55			100	 		+		4	
844	RŤ	16-31						+			
845 845	ST09	35 09						+			
846 847	R4 DCL7	-31						+		1	
047 049	RCL3	36 03 75 08						+			
048 049	RCL8	36 08 -24				t		1		1	
649 650	÷ RCL1	-24 36 01				t				SET STATUS	
050 051	RCL8	36 01 36 08				1			FLAGS	TRIG	DISP
051 052	KULO X	30 00 -35							ON OFF	inite initial	
052 053	-	-30 -45							0 🗆 🕱	DEG 🛛	FIX X
053 054	RCL2	36 02			110				1 🗆 🕱	GRAD	
855	*LBL1	21 01				ļ		_	2 []	RAD 🗆	ENG □ n_2
8 56	∓LDE1 X≢Y	-41	,						3 🗆 🗓		
			-10 -		STERS	T	6		17 -	8 ω	9 DENOM
⁰ G, coeff		eff ² H,coef of s ¹	f ³ k, coef	[±] ⁴ N, power	⁵ L, co	eff	°M,coe	ff	⁷ p,coeff of S0	RAD/SEC	MAGNIT
of S ²	of <u>\$</u> 2 S1	51 S ⁺	S3	S4	55 S5		01 51 S6		S7	S8	S9
							-				
A		B	С		D			E		I	

Program 1	Title	Pole-Zero to Group Delay				
Contributo Address		Hewlett-Packard N.E. Circle Blvd.				
City	Corval	lis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables Given a transmission function in the S-Plane: $\frac{V_0}{E_1} = \frac{k[s - (\sigma_{z1} + j\Omega_{z1})] [s - (\sigma_{z2} + j\Omega_{z2})] \cdot \cdot [s - (\sigma_{zn} + j\Omega_{zn})]}{[s - (\sigma_{p1} + j\Omega_{p1})] [s - (\sigma_{p2} + j\Omega_{p2})] \cdot \cdot [s - (\sigma_{pm} + j\Omega_{pm})]}$ in which poles & zeros are of the form: $\sigma + j\Omega$ This program evaluates the expression for time response: $T = \sum_{k=1}^{m} d_{pk} - \sum_{k=1}^{n} d_{zk} \text{ where } d_{k} = \frac{\sigma_{k}}{\sigma_{k}^{2} + (\omega - \Omega_{k})^{2}} \text{ for}$ either poles or zeros. A negative quantity for T indicates delay so that for positive values of time delay $TD = -T = \sum_{k=1}^{n} d_{zk} - \sum_{k=1}^{m} d_{pk}$ Group delay: GD = TD - TD₀ where is the time delay at reference frequency ω_{0} . As $\omega_{0} \neq 0$, TD₀ \rightarrow insertion delay.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.


NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

	8			<u>}</u>							
<u> </u>	$\begin{array}{c} X \\ P_{3} \\ Z_{4} \\ Z_{4} \\ Z_{6} \\ Z_{6} \\ Z_{7} \\ \end{array} \begin{pmatrix} N \\ P_{0LE} \\ P_{0LE} \end{pmatrix}$	GDA 5 4 5 5 4 5 7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7	4 6 18 10 RAD /SEC	DE	SERTION ELAY (3.775εC						
	A 7 pole Caver - Chebysl	nev filter	normalized t	o R = 1Ω a	nd						
Sample Problem(s) A 7 pole Caver - Chebyshev filter normalized to R = 1Ω and ω_0 = 1 rad/sec has pole & zero coordinates as follows:											
	In W. PRGM MODE:	α RAD/SEC	TD/GD SEC	RAD ^W SEC	GD SEC						
Solution(s) REGISTER:	$-P_0$: .787 OC	.001	TD=3.770	.8	1.544						
$R4=-\sigma_1=0.12406$	$-P_{1+}$: RCL 4 RCL 5 CHS C	.1	GD=0.015	.9	2.282						
$R5=\Omega_1=1.16504$	$-P_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_{1_$.2	0.064	1.0	3.647						
$R6=-\sigma_3=0.3904$	$-P_{3+}$: RCL 6 RCL 7 CHS C	.3	0.150	1.1	6.663						
R7=Ω ₃ =0.99847	-P ₃₋ : RCL 6 RCL 7 C	.4	0.281	1.2	7.220						
R8=-0 ₅ =0.65874	-P ₅₊ : RCL 8 .608 CHS C	.5	0.462	1.3	2.842						
	-P ₅₋ : RCL 8 .608 C	.6	0.708	1.4	0.390						
	TOTAL: 34 steps	.7	1.052	1.5	-0.808						
		<u>t</u>	-								

Reference (s)

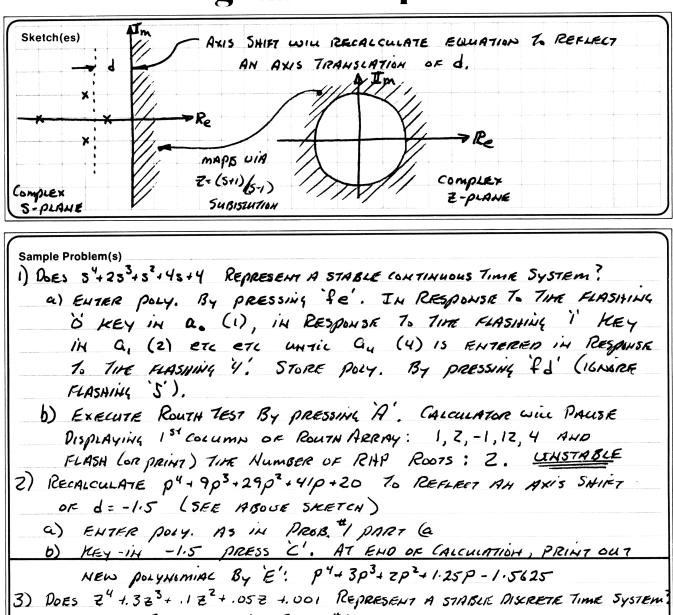
Handbook of Filter Synthesis - A. Zverev 1967 p. 149.

This program is a translation of the HP-65 program #04775A submitted by Charles R. Olson.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program & initialize		GTOO	
2.	Switch to W. PRGM mode. Enter 3 digit:			
	a) real component of negative * of 1st pole	-oplRAD/SE		11
	b) imag. comp. of neg. of 1st pole	-Ω _{p1} RAD/SE		REGISTERS
	c) repeat (a) & (b) for each pole			AND 183 STEPS
	d) real comp. of neg. of lst zero	$-\sigma_{z1}$ RAD/SE		
	e) imag. comp. of neg of 1st zero	−Ω _{z1} RAD/SE		AVAIL.
3.	Record on auxil. card. switch to RUN			
4.	Enter ω for GD=0	ω _O RAD/SEC		
5.	Calculate time delay at REF FREQ.		B	
6.	Enter ω	ω RAD/SEC		
7.	Calculate group delay		[A] [_]	GD SEC
	· · · ·			
8.	Repeat (6) & (7) for each freq.			
	NOTES: * 1) Since poles & zeros often lie			
	in the left half plane, entering			
	vectors results in positive valu	es saving		
	many CHS steps.			
	Any pole or zero with real comp.			
	to zero may be omitted in step 2			
	3) Use registers 4-8 and A-I to sto	re		
	coordinates of critical poles & Use RCL () in step 2 instead of			
	digit data and enter \uparrow .	Ŭ		·

Program Listing I

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS 961 R2:2 33 62 63 63 64 61 64 61 64 61 64 61 64 61 64 61 64 61 64 61 64 64 64 61 64 <t< th=""><th>22</th><th></th><th></th><th>97</th><th>Pr(</th><th>gram</th><th></th><th>sting I</th><th></th><th></th><th></th><th></th><th></th></t<>	22			97	Pr(gram		sting I					
ee2 FCL2 36 62 ee8 FCL3 36 63 ee8 FCL3 32 63 ee8 FCL3 36 63 ee8 FCL3 36 63 ee8 FCL3 36 63 ee8 FCL3 35 63 ee8 FCL3 35 64 ee1 FC1 52 64 ee1 FC1 52 64 ee1 FC1 52 64 ee1 FC1 52 64 ee13 FC10 22 64 ee13 FC10 22 64 ee14 *LELE 21 16 ee15 FC10 22 64 ee15 FC10 22 64 ee2 *L1 36 61 ee2 *1 23 55 ee3 FC1 62 42 ee3 *LD 21 64 ee3 *1 62 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>KEY CODE</td> <td></td> <td>сом</td> <td>MENTS</td>										KEY CODE		сом	MENTS
ee? Fi? 16 23 61 ee6 PCL3 36 83 ee6 45													
eee FIC3 22 e3 000 000 eee FIC3 3 e8 3 e8 000 000 eee FIC3 5 e8 000 000 000 000 eee FIC3 5 e8 000 000 000 000 000 eee FIC3 5 e8 000 00									+				
e8645 fi e87 F.S 51 e87 F.S 51 e87 F.I 62 e11 11 e7 11 e7 11 e7 11 e7 12 e7 11 e7 11 e7 12 e7 1 e7 e7 e7							060						
ee7 kr.s 51 ee8 kLB, 2111 ee8 kLB, 2111 e14 57013561 e12 57023562 e13 57063264 e14 still e14 still e15 ST1162264 e16 still e17 still e18 still e18 still e18 still e18 still e18 still e18 still e19 still e20 still e21 still e22 still e23 still e24 still e25 still e26 still e27 still e28 still e29 still													
008 r.E.R. 21 11 009 r.E.R. 21 11 009 r.E.R. 21 11 010 5701 35 82 011 6 6 6 7 6 9 011 6 6 7 6 9 9 011 6 6 7 6 9 9 011 6 6 7 6 9 9 011 6 6 7 6 9 9 011 31 32 33 54 35 86 87 86 9 011 6 7 6 9													
069 Cf1 16 22 01 0 011 6 00 012 ST02 35 02 0 013 CT00 16 22 00 0 014 K1B 22 12 0 015 SF1 16 21 01 0 016 ST01 35 01 0 0170 36 01 0 018 ST02 35 02 0 019 ST02 35 02 0 011 36 01 0 015 SF1 16 21 01 0 016 ST02 35 02 0 0170 S6 02 0 018 ST02 35 02 0 018 ST02 35 02 0 018 ST02 35 02 0 020 ST1 16 63 0 021 ST1 35 01 0 022 ST1 36 01 0 023 ST1 36 01 0 024 + 24 0 025 ST1 46 03 0 026 ST1 56 02 0 027 ST 46 02 0 028 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td></t<>									+				
θ11 θ θθ θ12 ST02 35 82 θ13 GT08 22 86 θ14 *LELB 21 12 θ15 SF1 16 21 81 θ16 ST02 35 82 θ17 θ θθ θ18 ST02 35 82 θ19 ST06 22 46 θ22 * -55 θ23 ST7 64 θ24 * 34 M θ25 ST7 16-63 θ26 X:2' -41 θ27 X:2 -24 θ26 X:2' -41 θ27 x:2 -24 θ28 -24 θp< subtracted from R2	00 9	CF1	16 22 01										
e12 ST02 35 82 e13 ST04 22 12 e15 SF1 16 21 81 e16 ST01 35 61 e17 e e0e e18 ST02 35 62 e19 ST02 36 61 e20 ELC 21 35 e21 RCL1 36 61 e22 + - - e23 X:Y -41 e4 e24 + - - e25 LSTN 16-63 e3 e26 + - - e27 Y - - e28 FTM 24 - e37 K2Y -41 e4 e37 K2Y -41 e38 FTM 24 e37 K2Y -41 e38 FTM 24 e44 FTL3 24 e44 FTL3 24									+				
e13 6700 22 66 e14 eLB 21 12 e15 SF1 f6 21 61 e16 ST01 35 61 97 e19 ST02 23 62 98 e19 ST02 23 62 98 e19 ST02 23 62 98 e19 ST06 22 64 98 e22 + -55 98									+				
815 SEC 16 21 16 916 ST01 35 01 917 0 00 00 00 918 ST02 35 02 00 919 St0106 22 00 00 00 919 St0106 22 00 00 00 919 St0106 22 00 00 00 920 St11 360 10 00 00 921 St11 360 10 00 00 00 921 St12 35-55 02 00 00 00 00 923 X27 -41 00 00 00 00 00 00 923 St12 35-55 02 00 00 00 00 00 923 X27 -41 02 added to R2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0	e 13	GT00	22 00										
θ16 ST01 35 θ1 θ17 θ θ2 θ2 θ2 θ19 ST02 35 θ2 θ2 θ2 θ19 ST02 35 θ2 θ2 θ2 θ2 θ21 R2LI 36 θ1							070		+				
e17 e e4e e18 ST02 35 62 e19 ST02 35 62 e19 ST02 35 62 e19 ST02 35 62 e20 #LBLC 21 13 e21 -55 63 64 e22 + -55 63 e24 +P 34 M 880 e25 LSTX 16-63 880									+				
eige cToB 22 efe B22 +LBLC 21 13 B21 RCL1 36 61 B22 + 55 B23 K2Y -41 B27 X2Y 41 B27 X2Y 41 B28 FIN 24 B29 51+2 35-55 B23 KLI 36 61 B23 +LBLD 21 14 B23 KLI 36 61 B23 +LBLD 21 14 B23 K2Y -41 B23 +Z -34 B23 +Z -41 B23 +Z -34 B23 +Z -41 B23 +Z -41 B23 +Z -41 B23 +Z -41 B23 +Z -24 B44 P/S 51 B44 P/S 51 B44 P/S 51 B24 -2 -2 B25 6 <td>017</td> <td>0</td> <td>00</td> <td></td>	017	0	00										
e2e rtBtC 21 13 e21 RCL1 36 61 g23 X:Y -41 e24 +P 34 e25 LSTX 16-63 e26 + -24 e27 X:2 53 e28 FIN 24 e39 FIC-63 60 e37 X:2Y -41 e38 FIX 16-63 e37 X:2Y -41 e38 FIX 24 e49 512 35-45 g29 ÷ -24 e44 FIX 21 e44 Pris 51 e44 Pris 51 e44 Pris 51 e44 Pris 51 e44 Pris <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>									-				
θ21 FCL1 36 θ1 θ22 + -55 θ23 X2Y -41 θ24 +P 34 θ25 X2Y -41 θ24 +P 34 θ25 X2Y -41 θ26 X2Y -41 θ27 X2 53 θ26 X2Y -41 θ27 X2 25-5 θ28 FTM 24 θ29 ST+2 23-55 θ21 H R2 θ23 K1K 24 θ31 #LBLD 21 θ33 +LBL0 21 θ34 X2Y -41 θ36 LSTX 16-63 θ41 RTN 24 θ42 #LBL3 21 θ44 P/S 51 060									+-				
θ22 + -55 θ23 X2Y -41 θ24 +P 34 M θ25 LSTN 16-63 θ26 X2Y -41 θ27 X2 X2 S3 θ25 LSTN 16-63 θ26 X2Y -41 θ2 S1+2 35-55 θ2 d g g g	821	RCL1	36 01										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		÷											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				м			080		+				
$\begin{array}{ c c c c c c c c } \hline 026 & \hline x27 & -41 \\ \hline 027 & x2 & 53 \\ \hline 028 & \div & -24 \\ \hline 029 & ST+2 & 35-55 & 02 \\ \hline 030 & PN & 24 \\ \hline 031 & tLBLD & 21 & 14 \\ \hline 032 & RCL1 & 36 & 01 \\ \hline 032 & RCL1 & 36 & 01 \\ \hline 033 & + & -55 \\ \hline 034 & x27 & -41 \\ \hline 036 & LSTX & 16-63 \\ \hline 038 & x2 & 53 \\ \hline 039 & \div & -24 \\ \hline 040 & ST-2 & 35-45 & 02 \\ \hline 041 & RTN & 24 \\ \hline 042 & star 2 & 35 & 03 \\ \hline 044 & R/S & 51 \\ \hline \hline \hline \hline 00 & \hline \\ 044 & R/S & 51 \\ \hline \hline \hline \hline \hline \\ 050 & \hline \\ 050 & \hline \\ \hline \hline \hline \\ 050 & \hline \\ \hline \hline \\ \hline \hline \\ 050 & \hline \\ \hline \hline \\ \hline \hline \\ 050 & \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline$													
$\begin{array}{ c c c c c c c c } & \theta & $	8 26	X ‡ Y	-41						-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									+				
θ30 K/M 24 K2 θ31 HBLD 21 14 36 81 θ32 RCL1 36 81 θ33 + -55 θ34 X?Y -41 θ35 ÷F 34 θ36 LSTX 16-63 θ37 X?Y -41 θ38 X2 53 θ37 ×7 -41 θ38 X2 53 θ40 ST-2 25-45 θ41 RTN 24 θ42 *LBL3 21 03 θ44 R/S 51 050				d_ s	ubtrac	ted from							
θ32 RCL1 36 θ1 θ33 + -55 θ34 ½½ -41 θ25 ÷P 34 θ37 ½½ -41 θ38 ½² 53 θ37 ½½ -41 θ38 ½² 53 θ39 ÷ -24 θ40 ST-2 35-45 θ41 RTN 24 θ42 ±LEL3 21 θ43 ST03 35 θ44 R/S 51 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - - 050 - <t< td=""><td>030</td><td>RTN</td><td>24</td><td>р</td><td>R2</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	030	RTN	24	р	R2				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									+				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
θ36 LSTX 16-63 θ37 X2'x' -41 θ38 X2 53 θ39 ÷ -24 θ40 ST-2 35-45 θ41 RTN 24 θ42 *LBL3 21 θ43 ST03 35 θ44 R/S 51 050	834	X≠Y	-41				090						
θ37 X±Y -41 θ38 X² 53 θ29 ÷ -24 θ40 5T-2 35-45 θ41 RTN 24 θ42 ±LBL3 21 θ44 R/S 51 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 050 0 0 0 0 0 110 1 0 110 1 0 110 1 0 110 1 0 110 1 0 110 1 0 12 0 0 10 1 0 <									+				
θ38 X² 53 θ39 ÷ -24 θ40 \$7.2 35-45 θ2 θ41 RTN 24 θ42 #LBL3 21 θ3 θ44 R/S 51 050									+				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 39			d_ a	t habb	o R2			+				
θ42 *LBL3 21 θ3 θ43 ST03 35 θ3 θ44 R/S 51 100 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100 110 100				uz u	uucu t	O KL			+				
θ43 ST03 35 θ3 θ44 R/S 51 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 SET STATUS 100 SET STATUS 110 100 100 100 110 100 100 100 100 110 100 100 100 100 100 110 100 <td></td>													
044 R/5 51 0 0 0 0 1 2 1 0 0 1 2 10 3 TD 4 5 6 7 8 9 Used S0 S1 2 S3 S4 S5 S6 S7 S8 S9	043	ST03	35 8 3				100						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	044	R∕S	. 51				100		+				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	├ ──- ├ ─								+				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									+-				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	050												
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	├ ──- ├ ─								╇		TF	liG	DISP
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										0 🗆 🛛			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							110		+				SCI
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	├ ─── ├ ─								+				n_3_
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9				1-									
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9	0	1 ω	² TD	3	тd	4	5	6		/	8		
A B C D E I	S0		S2	S3	-	S4	S5	S6		S7	S8		
	A				C		D		F		1	T	L
			<u> </u>		<u> </u>								


Program Title ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME SYSTEMI STABILITY Contributor's Name JAMES U. WISEMAN JR. Address 3976 CANYON Rd City LAFAYETTE State CALIE Zip Code 94549

Program Description, Equations, Variables DESIGNED TO TEST THE LOCATION OF THE ROOTS OF A CHARACTERISTIC EQUIATION IN THE FORM: Gop"+G,p"++...Gn-,p+Gn=0 pis's or's AT NAND ROWTH TEST FOR RHP ROOTS: REPRATED N+1 TIMES: (P& = 40/Q, #RHP ROOTS = E (#TIMES R<0) (4:=4,3,5..., 54:-1=4: Loop) (4:=9:+1-R4:-2 $\frac{A_{NS} S_{HIFT} For G_{UJEH} OFFSET d}{G_1 = G_1 + G_0 d} : (P < P' + d)}$ $\frac{G_1 = G_1 + G_0 d}{G_2 = G_2 + G_1 d} \begin{bmatrix} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \\ G_2 = G_2 + G_1 d \end{bmatrix} \begin{bmatrix} G_1 = G_1 + G_0 d \\ G_2 = G_2 + G_1 d \\ G_2 = G_2 + G_1 d \end{bmatrix}$ Qn = Qn + Qn-id $\frac{Z = \frac{(s+i)}{(s-i)} SuBistution}{[q_{1}' = q_{0} + R_{0}' q_{1}]} = \frac{Q_{1}' = Q_{0} + R_{0}' q_{1}}{[q_{1}' = q_{0} + q_{1} + R_{1}^{2} q_{2}]} \dots \dots}$ $\frac{[q_{1}' = q_{0} + R_{1}' q_{1}]}{[q_{2}' = q_{1} + R_{2}^{2} q_{2}]}$ <u>WHERE</u>: $R_{j} = \frac{(-1)^{j} i!}{(i-1)!}$ in= Gn- + Rn an **Operating Limits and Warnings** 1) LIMITED BY CALCULATOR REGISTERS TO 20th ORDER 2) ROUTH TEST WITH VARIOUS ROOTS ALONG IMAGINARY AXIS MAY INDICATE INSTRAJILITY. SILIFT AXIS SLIGHTLY to CITECR ACTUAL LOCATION OF ROOTS.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

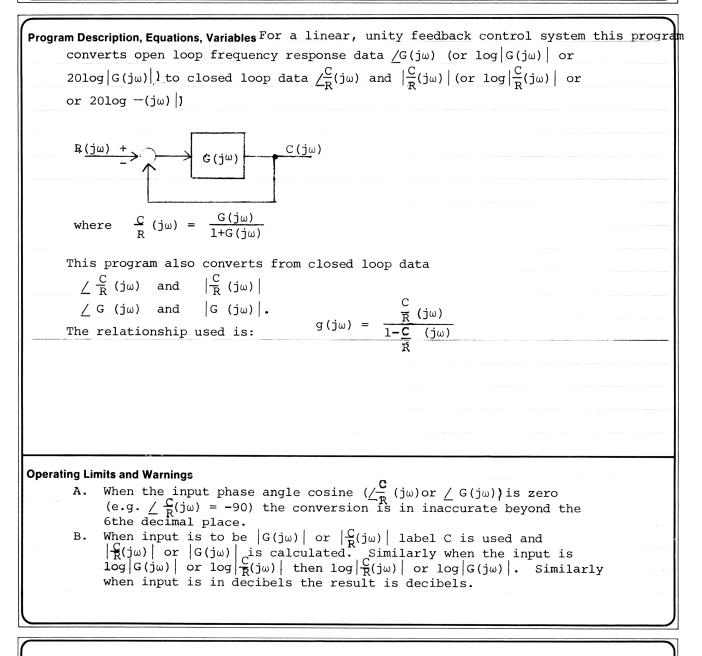
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

23

a) ENTER POLY. AS IN PROB [#]1 PART (a.
 b) MARE Z = (STI)/(STI) SUBISTUTION BY €C'. REGULTS CAN BE FOUND BY E' To BE: 1.4515⁴+4.4965³+5.8065²+3.4965+.751

C) EXECUTE ROUTH TEST BY PRESSING A'. AS IN PROB #1 PART (b (ALCULATOR WILL PAUSE AT 1.451, 4.496, 4.678, 2.774 \$ 0.751 STOPPING WITH "O," IN THE DISPLAY, THE # RHP : STABLE

Reference(s) 1) Y. TAKAHASHI, M. RABINS, AND D. AUSLANDER, CONTROL, ADDISON-WESLEY, READING, MASS., 1970 2) JURY, E.I., <u>TIMEORY AND ADDINATION OF TIME Z TRANSFORM METHOD.</u> NEWYORK: WILEY 1964 3) J. WISEMAN, <u>RECURSIVE ALGORITHMS FOR ROUTH TEST IN CONT. & DISCRETE TIME</u> TRANSACTIONS OF ASME, JOSMIC TO BR. PUBLISHED.

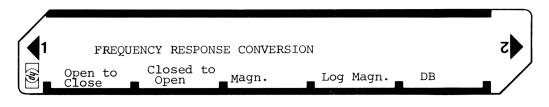

ROUTH	TEST	POLYNOM	ITAL OPER	ATIONS	
ROUTH TEST	ABORT	5 5'+x	RESTORE	WRITE	
		2- (8+1)	SAUE	READ	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEY	'S	OUTPUT DATA/UNITS
))	READ-IN BOTH SIRES OF CARD				0.
2)	•		f	د	
	M' WILL BE FLASHED FOR EACH Qm.				m
	REQUESTING USER TO KEY-IN Gm PURING	Gm			
	PAUSE, ONCE ENTRY HAS BEEN MADE				
	NEXT 'M' IS FLASHED. STOP DATA				
	ENTRY REQUEST By 'fd' (SAUE)		f	d	
	- THIS WILL SAUE GINS IN SELONDARY				
	REG'S IF N < 10, OTHERWISE IT WILL				
	STORE G' ON SCRATCH (ARD UNA 'CI'				0.
3)	IF DISCRETE TIME SYSTEM, MAKE				
	Z = (3+1)/(S-1) SUBISTUTION By fc. THIS		F	C	
	WILL GENERATE A NEW POLYNOMIAL IN				
	PLACE OF ORGINAL, REFLECTING SUBISTUTION				0.
4)					
- ''	IF AXIS SHIFT IS DESIRED, ENTER LOCATION		[C]	· · · · · · · · · · · · · ·	
	OF HEW ORLIN IN X, EXECUTE	OFFSET			
	SIDIET BY C' (5-5'+x). THIS				
	WILL GENERATE A NEW POLYNSMIAL				
	IN PLACE OF ORGINAL REFLECTING ANIS SHIFT				0,
51	ROUTH TREST IS EXECUTED By 'R' (BOUTH TEST	p			
	PROGRAM PAUSES DURING EXECUTION To				
	PISPLAY ELEMENTS OF 1St COLUMN				
	IN ROUTH AREAY. NO. OF SIGN				
	CHANGES INDICATES No. OF RIAP				
	ROOTS, PROGRAM HAULTS, PRINTING #				
	OF RHP ROOTS,				# RHPROOT
	NOTE				
	a) RECURSISE ALGORITHMS ARE DISTRUCTIVE				
	IN THAT THEY DESTROY THE CRESHAL				
	POLYNOMIAL, FOR ADDITIONAL RUNS,				
	DATA MUST BR RESTORED UIA				
	D' (RESTORE) IF NEID OTHERWISE		D		
	By SCRATCH CARD FROM STEP 2.				
	b) POLYNOMIAL MAY BE RELIEWED OR				
	PRINTED FOR RELORDS BY E'LWRITE).				
	C) IN AN ERROR IS MADE DURING Qm				
	ENTRY AND DATA is 'TAKEN' PRESS				
	B' (ABORT) AND START OUTER WITH		B		
	fe'		f	e	

00		6	57	Program	Lis	ting I				
26 STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP		KEY CODE		сомм	ENTS
001	* LBL A	31 25 11	4			570 (I)	33 24	1		
	SCI	32 23	ſ			DSZ	31 33			
	D5P3	2303			060	R 4 570 (I)	35 53 33 24			
	STO D	33 1 4				RUE	34 15			
	Y LBL Ø	31 25 00				X70 ?	31 81			
	RCL CB	34 00				670 0	22 00			
	PAUSE RCL 1	35 72				RCL Ø PAUSE	<u>34 00</u> 35 72			
010	X × Ø?	3161				RCL D	34 14			
	GTO a	22 31 11				FIX	3123			
	CLX	44				OSPO	23 00			
	EEX	43			070	PRINTX	31 84			
	CHS S	42 05			0/0	SPACE R/s	<u>35 84</u> 84			
		00				670 B	22 12	V		
	STO I	33 01				¥ LBL C	31 25 13	Ą		
	* LBLa	32 25 11				X=0?	3151	1		
020	1.	81				GTO B	22 /2 32 23			
020	570 C X74?	33 13 31 B1				SCI DSP4	23 04			
	670 a	22 31 11				PRINT X	31 84			
	RUD	34 14				STO D	33 14			
	1	01			080	RCLE	34 15			
	+ \$70 D	61				STOC ¥ LBLZ	33 13			
		32 25 11				7 LOLL	00	, I		
	1	01				57 I	35 33	14		
	ST I	35 33				¥ LBL 3		SNIE		
030	¥ LBL 1	31 25 01				R(L(I)	34 24	5		
	R(L(I) DSZ	<u>34 24</u> 31 33				RCL D X	3414	γ		
	570 (I)	33 24				ISZ	31 34	AXIS		
	570 (D	33 24			090		33 61 24	Z		
	152	31 34	52			RC I	35 34			
	/52	31 34	76			RUC	34 13			
	Rci (I) 152	34 24	3			× = y ? 670 3	32 61 22 03			
	RULL	34 24	RUUTH			1	1			
040	Rece	34 13	20			1	51			
	×					STOC	33 13			
	-	<u>51</u> 31 33	1			× # Ø ? 670 Z]		
	DSZ DSZ	31 33			100	670 B				
	STO (I)	33 24				¥ LBL C	32 25 13	A		
	152	31 34				CFZ	35 61 02	1		
	152	31 34				(33 14			
	RC I RCLE	35 34 34 15				STOD ¥ LBL b	32 25 12			
050	X77?	32 81				Ø	00			
	GTOI	22 01				57 I	35 33			
		<u>01</u> 51				¥ LBL 4 63B 5	31 25 04 31 22 05			
	STO E	33 15			110	6586	31 22 06			
	RCL (I)	34 24				RLL (I)	34 24			
	Ø	00			TERC	65B 6	31 22 06	1		
° 4.	1 Q,	² <i>Q</i> ₁	3 G	REGIS	5 5	6	7	8		9
S0 G₁₀ •R		-	S3 4/3 01	-	S5	S6	S7	S8		S9
A 42		BSCRATCH	C	SCRATCH	D 500	e A 741	^Е /)		I RESA	ERVED

		6	7 P	rograr	n List	ing H			27
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP	KEY ENTRY	KEY CODE	COMN	
	X	71				9	09	1	
	+ RCL (I)	61 34 24			170	RUE	3415		
	$X \stackrel{(1)}{\Rightarrow} Y$	35 52				x = y ? 6 To d	3271 22 31 14		
		33 61 24				W/DATA	31 41		
	152	3134				GTO B	22 12	<u>)</u>	
100	RCL D	3414					32 25 14	SAUE	
120	RCI	35 34				570 B	33 12		
	XZY? SFZ	32 61				ST I ¥ LBL 9	35 33 31 25 09		
	IS ♠	35 54				RCL (I)		4	
	FZ ?	35 71 02			180	PIS	31 42	20,	
	GTO 4	22 04				570 (I) P= 5	33 24	£51	
	GSB5					Pas	31 42	<i>Re</i>	
	RCL(I) X	<u>3424</u> 71				OSZ GTOG	31 33 22 09	,	
	+	61				RCLO	34 00		
130	570 (I)	33 24				P35	31 42		
	RCLE	34 15				5700	33 00	V	
	RCLD	34 14				GTOB	22 /2		
	X=Y? GTOB	32 51 22 12			190	X LBL CF3	32 25 15 35 61 03	A	
	61815	01				¢ Ø	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	+	61				STI	35 33		
	570 D	33 14					31 25 07		
		22 31 12				PAUSE	35 72		
140	¥LBL 5	31 25 05 35 34	~				35 71 03		
140	RL I X70?	35 34 31 61	(1-51/(1+57			670C	22 31 15	· X	
	6705	22 05	3				32 25 15	Reap - ix	
	1	0(Ì			STO (4)	33 24	8	
	STO C	33 13	Ś		200	RCI	35 34	L'H	
	RTN	35 22	_			570 E	33 15		
	¥ LBL 5 RCL P	31 25 05 34 14	ji Na			ISZ RC I	31 34 35 34		
	-	51	N			6707	ZZ 67	Ð	
	1	01	1				31 25 15		
150	-	51				SPACE	35 84	1	
	RCLC	34 13				SCI	32 23		
	x 570 C	71 33 13				osp5 Ø	23 OS 60		
	RCI	35 34			210	ST I	35 33		
	N!	35 81					31 25 08	K	
	•/.	8(RCC(I)	34 24	z	
	RTN	35 22				PRINTX	31 84	ZINTON	
	¥ LBL 6					152	31 34	518	
60	RCLD XZI	<u> </u>				RCLE RC I	<u>34 15</u> 35 34	Ž	
	\$70 D	33 14				X = 4 ?	32 71		
	R ¥	35 33	t			670 8	22 08	1	
	RTN	35 22			220	SPACE	35 84		
	Y LBL D	31 25 14 34 12	lβ		220	YLISL B CLX	<u>31 25 12</u> 44	N	
	RCL B STO E	33 15				FIX	31 23	HBORT	
	P₽S	31 42				PSPØ	23 00	40	
	* LBLd	32 25 14		BELS	1	R/S FLAGS	84	SET STATUS	
A ROLTH	A Bora	27 ° 54	7	D RESTORE	E WRITE	0	FLAGS	TRIG	DISP
а	b	°Z=(1			e READ	1	ON OFF		
<u>×</u>	1 x	2 x			1	² 2 Su B .		DEG 🗶 GRAD 🗆	FIX 🛣 SCI □
¥		^		K	K		2 🗆 🛛	RAD 🗆	
° ∨	×	Y		° ¥	⁹ X	³ PHTA ENTRY	3 🗆 🛚		n_ O

Program Title	CONVERT FREQUENCY F	RESPONSE, OPEN LOOP, CL	LOSED LOOP
Contributor's Nam Address	e Hewlett-Packard Comp 1000 N.E. Circle Boulevar		
	allis	State Oregon	Zip Code 97330


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

	<u>C(jw)</u> +→ -→	$G(j\omega)$ $R(j\omega)$	· · · · · · · · · · · ·
Syste	ms having feed	back elements can be converted to an equivalent	unity
		ee the reference for methods of determining equ	
	feedback syst		
			i a an ann ann ann ann ann ann ann ann a
Sample Proble	em(s) For the	system $G(j\omega) = \frac{4}{j\omega(1 + .25j\omega)(1 + .0625j\omega)}$	
For	$\omega = .1, 1 \text{ and } 10$	$rad/sec /G(j\omega) and G(j\omega) are:$	
ω rad/s	∠G(jω) ec degrees	G(jω)	
.1	- 91.79	39.99	
1	-107.61	3.87	
10	-190,20	.13	
Deter	mine closed lo		
Deter	mine closed lo	op frequency response for ω=.1, 1, 10 rad/sec	
Deter	mine closed lo	op frequency response for ω=.1, 1, 10 rad/sec	
		op frequency response for ω=.1, 1, 10 rad/sec	
Solution(s)	For each free	op frequency response for ω=.1, 1, 10 rad/sec	
Solution(s) ω	For each free $\sum_{R=0}^{\mathbf{C}} (j\omega)$	op frequency response for ω =.1, 1, 10 rad/sec quency $\left \frac{C}{R}(j\omega)\right $	
Solution(s) ω .1	For each free $\sum_{R}^{\mathbf{C}} (j\omega)$ degrees - 1.43	op frequency response for ω =.1, 1, 10 rad/sec quency $\left \frac{C}{R}(j\omega)\right $ 1.00	
Solution(s) ω .1 1	For each free $\int_{R}^{C} (j\omega)$ degrees - 1.43 - 14.96	<pre>op frequency response for ω=.1, 1, 10 rad/sec quency C/R(jω) 1.00 1.05</pre>	

This program is a translation of the HP-65 Users' Library Program

#00892A submitted by Eugene Bahniuk.

	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	To convert from open loop response to closed		А	0.00
	loop response			
	or			
	To convert from closed loop response to		В	0.00
	open loop response			
3	Enter open loop phase /G(jw)	/G(j <u>ω</u>)	R/S	1.00
	or	degrees		
	Enter closed loop phase $\angle \frac{C}{R}$	$\frac{C}{R}$ (j ω)	R/S	1.00
	K	degrees		
4	Enter open loop magnitude	G(jω)	C	$\left \frac{C}{B}(i\omega)\right $
1	Or		RCL 2	$\frac{\left \frac{C}{R}(j\omega)\right }{\frac{C}{R}(j\omega)}$
	Enter open loop log magnitude	log G(jω)	D	$\log \left \frac{C}{\pi}(j_{\omega}) \right $
	or		RCL 2	$\frac{\log \left \frac{C}{R}(j\omega) \right }{\frac{C}{R}(j\omega)}$
	Enter open loop decibels	20log G(jω)		$\frac{20\log \left \frac{C}{R}(j\omega)\right }{20\log \left \frac{C}{R}(j\omega)\right }$
	or	20109 6(j@)	RCL 2	<u>20109</u> _R (jω) <u>/</u> (jω)
	Enter closed loop magnitude	$\left \frac{C}{R}(j\omega)\right $	С	[]G(jω)]
	or	$+\frac{1}{R}(J^{\omega})+$	RCL 2	/G(jω)
	Enter closed loop log magnitude	$\log \left \frac{C}{R}(j\omega) \right $	D RCL 2	log G(jω) /G(jω)
	or	, C		
	Enter closed loop decibels	$20\log \left \frac{C}{R}(j_{\omega}) \right $		$\frac{20\log G(j_{\omega}) }{20\log G(j_{\omega}) }$
			RCL 2	<u>/</u> G(j _ω)
	For a new case go to step 2			
		ļ]		
		ļ		
		ļ		

97 Program Listing I

STEP	KEŸ EN	ITRY	к	EY C		-	СОММІ		STEP	KE					COM	IENTS	31
	01 *LE			21 1	1 -	Ind	that			0 57	#LBL2		21 02		COMIN		— – – – – – – – – – – – – – – – – – – –
86		e			0					85 8	CFO	16	22 00				
		06		35 0	6	loo	p is t	n to close o be l		0 59	LOG	10	16 32				
	04 ∗ LE	L5		21 0	5		r phas			960	2		02				
96	8 5	0		0	0	11100	r pilac			061	ē		80				
00	06 F	2/S		5	1					062	λ		-35				
0(07 S1	04		35 0	4					063	ST01		35 01				
96	08 RC	LE		36 Ø	6	Thes	e ster	s determ.		064	R/S		51				
	89	-		-4	5			add. or									
	10	1		0		vec	otr su	ub. is									
		∕∕S			1	per	formed	l									
	12 *LE			21 1		For	closed	l to open				L					
	13	1			1		p conv					L					
	14	8			8			ub. occurs									
	15 17 01	0 207			0			sing vecto	<u>r</u>	+		-					
		'06 '05		35 0 22 0				h then									
	17 61 18 #LE			22 0 21 1		add	resul	tin vecto	r	+		+					
		(≠ Y		-4								+					
		R4		-3						+		-					
		05		35 Ø						1		\mathbf{t}					
	22	÷₽				Step	s 22 t	hrough 34									
02	23	1		0	1	per	form t	he									
	24	÷		-5	5	con	plex a	algebra	080								
	25	→₽			4												
		Ľ5		36 0								 					
		(≢Y		-4													
	28	÷		-2						+		_					
		C1		35 Ø						+							
		(‡Y :HS		-4 -2								+					
		лэ 214		-2 36 0						+		-					
	32 RC 33	+		-5						+		-					
		02		35 Ø					090			1					
		τ¥Υ		-4													
		1?	16	23 0	1												
03	37 G1	01		22 0	1												
		0?		23 0								-					
		02		22 0													
		2/S			1	Maar	itudor	270		+		+					
	41 *LE			21 1	• •		itudes arithm			-							
		0×		16 3		109		iiiC		+		+					
		F1 70C		21 0 22 1					100			1					
	44 61 45 *LE			22 I 21 0						1		1					
		F1		22 Ø													
		.0G		16 3													
		01		35 0								1					
		2/S		5	1							+-1		OFT O	TATUS		. –
	50 ¥LE	LΕ		21 1	-			magnitude	5			┼┼					
	51	2			2	are	decik	pels				+	FLAGS	TR	llG	DIS	Р
	52	.0			0					+		+	ON OFF	DEC	G	FIX	X
	53	÷		-2					110			\Box	1 🗆 🙀	GRA	AD 🗆	SCI	
		0x		16 3									2 🗌 🖾	RAD		ENG n <u>2</u>	
		50 500		21 0 22 1									3 🗆 🛛			<u>n </u>	
L									TERS	T	6 0		7	8		9	
0	¹ C ma	ompu gnit	ited	2COI nl	mputed hase	13		entered phase	⁵ Ent.	magn or IC	, 0 _{R'} 180			ľ			
S0	S1	<u></u>		S2		S3		S4	S5	/ ^ح لیند ا	/ R¦ 180 S6		S7	S8		S9	
															T		
А			В				С		D			E			I		
I																	

31

Program Title AID TO ROOT LOCUS PLOTS	5 I -	REAL POLES	
Contributor's NameHewlett-Packard CompanyAddress1000 N.E. Circle Boulevard			
City Corvallis	State	Oregon Zip Cod	e 97330

Program Description, Equations, Variables Given the forward transfer function of unity $KG(s) = \frac{K(s+z_1)(s+z_2)}{s(s+p_1)(s+p_2)(s+p_3)(s+p_4)}$ feedback system

where $s = \sigma + i\omega$ is the complex frequency variable and z_1 , z_2 , p_1 , p_2 , p_3 and p_4 are real numbers, the program helps in finding the roots of 1 + KG(s) = 0, which determine the poles of the closed-loop system. It follows that at any point in the s-plane, which is a root of the above equation for some value of K, $G(\sigma+i\omega) = \frac{1}{\kappa} 180^{\circ}$.

Since the rules for approximate construction of root locus plots are well-known [1,2], this program can be used to obtain the exact location of the roots in certain regions of the s-plane. The user would select a value of σ , say σ_1 and assume a trial value for ω , say ω_1 . The program then determines $G^{-1}(\sigma_1+i\omega_1) = Ke^{i\phi}$, and ϕ is displayed. If ϕ is not equal to 180°, a new trial value of $\omega = \omega_2$ is obtained. The process is repeated until ϕ is as closed to 180° as desired. The equation for searching the correct value of ω is

 $\omega_2 = \omega_1 (4 - \frac{\phi}{60})$, where ϕ is in degrees.

The convergence may be slow when ω approaches zero; in this case the user may often extrapolate mentally to accelerate the convergence. Normally 4 to 8 iterations are sufficient.

The value of the gain constant K required for this location of the root is obtained from y-register.

Operating Limits and Warnings The search equation is based on the assumption that ω_{1} is greater than zero. This is no limitation since the root locus is always symmetrical about the real axis of the s-plane.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

(in the second
Sketch(es)
5
Sample Problem(s) $KG(s) = \frac{K(s+1)(s+2)}{s+1}$
s(s+3)(s+4)(s+5)(s+6)
It is desired to obtain the complex roots for $\sigma = 0$, $\sigma = -1$, and $\sigma = -2.5$
Solution(s) i) For $\sigma = 0$, starting with $\omega = 5$, after 4 iterations $\phi = 180.01$, for
$\omega = 8.545$, and K = 999.51
ii) For σ = -1, starting ω =6, after 4 iterations, ϕ = 179.99 for
$\omega = 6.823$ and K = 519.61
iii) For $\sigma = -25$, starting $\omega = 4$, after 5 iterations $\phi = 180.01$, for
$\omega = 4.35$ and K = 140.52.
0 - 1.05 and N = 140.52.
Reference(s) ⁽¹⁾ D'Azzo, J.J., Honpis, C.H. "Linear Control System Analysis and Design", McGraw-Hill Book Co. 3rd Edition. 1975. pp.202-242.
⁽²⁾ Evans, W.R. "Control-System Dynamics", McGraw-Hill Book Co. 1954.
This program is a translation of the HP-65 Users' Library Program
#04561A submitted by Naresh K. Sinha.

	AID TO ROOT LOCUS PLOTS I	5
(hp)	zeroes and $\sigma_1 \uparrow \omega_1 \rightarrow \omega_2$	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS OUTP DATA/U			
1	Enter Program					
2		zl	<u>↑</u>			
3		z2	A	zl		
4		Pl	\uparrow			
5		P2	\uparrow			
6		p3	↑			
7		P4	R/S	pl		
8		σι	↑			
9		ωı	в	ф		
10	If φ ≠ 180°,	_	C	ω2		
11	Repeat steps 9 and 10 until ϕ = 180			φ = 180		
12	To obtain K		x₹y	K		
13	To obtain ω at the root		RCL 8	^ω root		
	For a different value of σ_1 , start from step 8					
	-					

			7/	TIVE	51 A 111		311	ng i					35
	EY ENTRY	KEY CODE		COMMEN	rs	STEP	KE		1	KEY CODE		СОММЕ	
801	*LBLA	21 11				1	0 57	RŤ		16-31			
002	ST02	35 0 2	z ₂				658	RTN		24			
003	XZY	-41	2				85 9	#LBLD		21 14			
804	ST01	35 01	z_1				060	RCL7		36 07			
025	R∕S	51	Ŧ				0 61	+		-55			
00 6	ST06	35 06	P4				0 62	RCLS		36 08			
007	R↓	-31	- 4				063 063	KULO XZY					
80 8	ST05	35 05	De							-41			
009	R∔	-31	P3				864	÷₽ v≠v		34			
010	ST04	35 04	n				865	XZY		-41			
011	R4	-31	p2				066	R∔		-31			
012	ST03	35 03	~				867	÷		-24			
013	RTH	24	pl				068	R↓		-31			
014	*LBLB	21 12					0 69	-		-45			
015	ST08	35 08					870	CHS		-22			
015	3788 X ≠ Y	-41	ωı				871	Rt		16-31			
01 3 01 7	STO7	35 07	_				072	RTN		24			
			σι				073	RCL8		36 08			
918 010	+P ₽CLC	34					074	R∕S		51			
019	RCL6	36 86											
0 20	SSBE Dou F	23 15											
021	RCL5	36 85											
022	GSBE	23 15											
023	RCL4	36 04											
824	GSBE	23 15				080							Í
025	RCL3	36 03											
026	GSBE	23 15							1				
027	RCL2	36 02					1		1		_		
0 28	GSBD	23 14											
029	RCL1	36 01									-		
030	GSBD	23 14							-				
0 31	X≠Y	-41											
032	RTN	24	.	. .					+				
033	*LBLC	21 13	Disp	lay φ									
<i>03</i> 3		06				090							
034 035	6 Ø	00 00				090					_		
							+						
0 36 077	÷	-24							-		_		
<i>0</i> 37	4	04 15							-				
038	-	-45											
039	CHS	-22											
040	RCL8	36 88											
041	X	-35							1				
042	ST08	35 08							L		_		
843	RCL7	36 87											
844	RCL8	36 08	Disp	lay ω_2		100							1
045	RTN	24		-									
84 6	*LBLE	21 15											
047	RCL7	36 07											
048	÷	-55											
049	RCL8	36 0 8											
050	X≠Y	-41									SET STA	TUS	
051	÷₽	34								FLAGS	TRIG		DISP
852	X≠Y	-41								ON OF			
053	R↓	-31									DEG	X	FIX 😰
854	X *	-35				110				1 🗆 🖾	GRAD		SCI 🗆
055	R↓	-31								2 🗆 🕅			ENG □ n2
000 056	κ ÷	-55								3 🗆 🛛			n. <u>←</u>
806 I	Ŧ	-33 1			REGIS	STERS							
0	1	2	3	4		5		6		7	8	9	
	zl	z2	p	1	P2	P3		P4		σι	ω		Used
S0	S1	S2	S3	S4		S5		S6		S7	S8	S	9
А		В		С		D			E		I		

Program Title AID TO ROOT LOCUS PLOTS II -	- COMPLEX POLES	
Contributor's NameHewlett-Packard CompanyAddress1000 N.E. Circle Boulevard		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables Given the forward transfer function of a unity feedback system

 $KG(s) = \frac{K(s+z_1)(s+z_2)}{s(s+p_1)(s+p_2)(s+\alpha+i\beta)(s+\alpha-i\beta)}$

where $s = \sigma + i\omega$ is the complex frequency variable, and z_1 , z_2 , p_1 , p_2 , and are real numbers, the program helps in finding the roots of 1 + KG(s) = 0, which determine the poles of the closed-loop system. It follows that at any point in the s-plane, which is a root of the above equation for some value of K, the argument of G(s) is equal to 180 degrees.

Since the rules for the construction of the approximate root locus plot are well known, this program can be used to obtain the exact location of the roots in critical regions of the s-plane. The user would select a value of σ , say σ_1 and assume a trail value for ω , say ω_1 . The program then determines the modules M, and the argument, ϕ of $G^{-1}(s)$ at this point, and the argument ϕ is displayed. If $\phi \neq 180$, a new trial value of = 2 is obtained using the equation

$$\omega_2 = \omega_1 (4 - \phi / 180)$$

The process is repeated until ϕ is as close to 180 as desired. The convergence may be slow when ω approaches zero. In this case, the user may often extrapolate mentally to accelerate convergence. Normally 4 to 8 iterations are sufficient.

Operating Limits and Warnings The search equation is based on the assumption that ω is positive. This is no limitation since the root-locus plot is always symmetrical about the real-axis of the s-plane.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

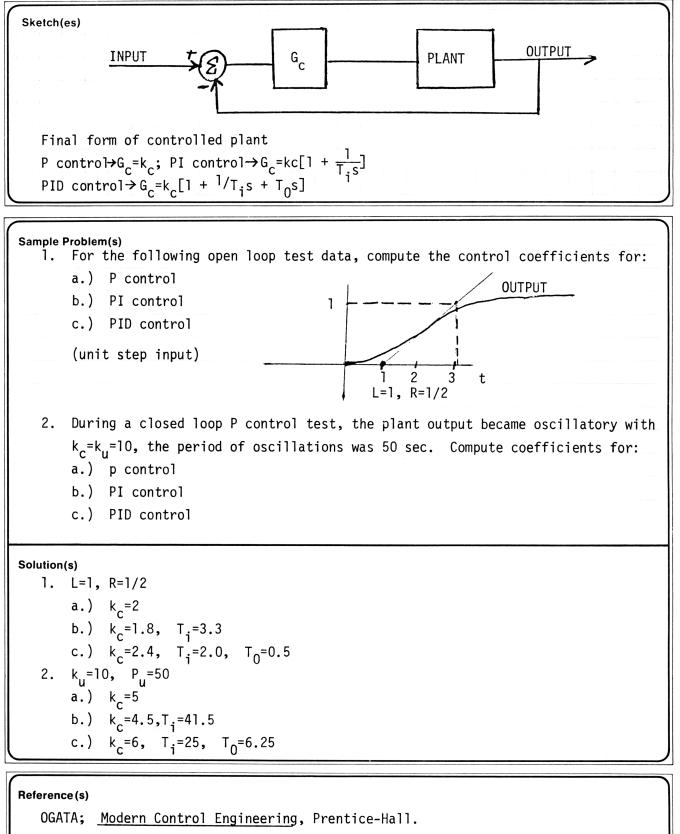
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
-12+15
Sample Problem(s) Consider
$KG(s) = \frac{K}{s(s+12+51)(s+12-51)} = \frac{K(s+1)(s+2)}{s(s+1)(s+2)(s+12+51)(s+12-51)}$
The approximate sketch of the root locus is easily obtained following standard rules (see references 1 or 2). It is shown above.
It is desired to obtain the exact locations of the roots for $\sigma = -1$, -2 and -4.
Solution(s) (1) For $\sigma = -1$, starting with $\omega = 12$, after 3 iterations the root is
located at ω = 11.14 with ϕ = 180.00 and K = 2750
(2) For σ = -2, starting with ω = 10, after 3 iterations the root is
located at ω = 9.22 with ϕ = 180.01 and K = 1780.7
(3) For $\sigma = -4$, starting with $\omega = 5.5$, after 8 iterations the root is
located at ω = 5.00 with ϕ = 180.01 and K = 656.3
Reference(s) 1. Evans, W.R. "Control Systems Dynamics". McGraw-Hill Book Co., 1954.
 D'Azzo, J.J. and Houpis, C.H., "Linear Control System Analysis and Design". McGraw-Hill Book Co. 3rd Edition. 1975.
This program is a translation of the HP-65 U se rs' Library Program

#04562A submitted by Naresh K. Sinha.

1 AID TO	ROOT LOCUS	PLOTS II		5
zeroes and poles	σ↑ω	$\rightarrow \omega_2$		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2		zl	↑	
3		z ₂	A	zl
4		p1	↑	
5		P2		
6		α		
7		β	R/S	p_1
8		σ	↑	
9		ω	В	φ
10	If ¢ ≠ 180		C	ω2
11	Repeat steps 9 and 10 until ϕ = 180			φ = 180
12	To obtain K		g x→ y	К
13	To obtain ω at the root		RCL 8	^w root
	For a different value of σ_1 , start from step 8			
L				


			7/	I I VE	5ª 44111		74 I	116 1				39
STEP K	EY ENTRY	KEY CODE		COMMEN	тѕ	STEP	KE	YENTRY	۲	EY CODE	СОМ	MENTS
001	*LBLA	21 11					6 57	RCL8	-	36 88		
66 2	ST02	35 62	z ₂				058	X		-35		
0 03	XZY	-41	2				059	ST08		35 88		
004	ST01	35 01	z _l				868	RCL7		36 07		
885	R/S	51	-				0 61	RCLS		36 88		
00 6	ST06	35 06	β				062	RTN		24	Display u	
007	R4	-31	P				062 063	*LBLD		21 14	Dispidy u	2
008	ST05	35 05	α				063 064	RCL7		36 07		
000	0,00 R∔	-31	<u> </u>									
010	ST04	35 04	n				865	+		-55		
	3104 R4	-31	P2				066	RCL8		36 08		
011	5T03		n				8 67	X≠Y		-41		
012		35 03	pl				068	÷P		34		
013	RTN	24					069	X#Y		-41		
014	*LBLB	21 12					878	R∔		-31		
015	STOS	35 08	ωι				071	÷		-24		
016	X # Y	-41					8 72	R ↓		-31		
017	ST07	35 0 7	α1				073	-		-45		
018	RCL5	36 05					874	CHS		-22	ļ	
019	÷	-55					075	RŤ		16-31		
020	X ‡ Y	-41					076	RTN		24		
021	RCLE	36 06					07 7	*LBLE		21 15		
022	÷	-55					078	XIY		-41		
023	RCL8	36 0 8					079	÷₽		34		
024	RCL6	36 06					080	X₽Y		-41		
8 25	-	-45					081	Rŧ		-31		
<i>826</i>	Rt	16-31					882	X		-35		
027	÷₽	34					083	R∔		-31		
028	R4	-31					384	+		-55		
029	R4	-31					8 85	Rt		16-31		
030	GSBE	23 15					003 086	RTN		24		
031	RCL4	36 84					087 087	R/S		51		
032	RCL7	36 07					001	K S		.71		
032 033	κυ <i>L</i> ; +	-55					1					
033 034	RCLS	36 08				090	+		1			
		23 15					1		1			
0 35	GSBE DCL 7						+		1			
036	RCL3	36 03					+		+			
0 37	RCL7	36 0 7					+		+		1	
0 38	+	-55					+		+			
039	RCL8	36 08							+			
840	GSBE	23 15					+		+			
041	RCL7	36 07					+		+		1	
842	RCL8	36 08					+		+		1	
043	GSBE	23 15				100	+		+		1	
844	RCL2	36 02					+		+		1	
845	GSBD	23 14					+		+		1	
04 6	RCL1	36 81					+		+		4	
047	GSBD	23 14							+		1	
848	X≠Y	-41		_			+				1	
049	RTN	24	Disp	ρ lay φ			+		+ r		SET STATUS	
858	*LBLC	21 13					+		┼╌┝			
0 51	6	06					+		+	FLAGS	TRIG	DISP
052	0	88					+		╀╌╿	ON OFF		FIX 🗓
8 53	÷	-24				110	+		+	0 🗆 🕵 1 🗆 🕵	DEG 🕅 GRAD 🗆	
854	4	84					+		+	1 🗌 👷 2 🗌 🗶	RAD 🗆	
055	-	-45					+		+ - 1	$3 \square \mathbf{K}$		n_2
8 56	CHS	-22			PECIE	STERS					1	· · · · · · · · · · · · · · · · · · ·
0	1	2	3	4		5		6		7	8	9
U	' z ₁	z_2		p ₁	p ₂	α		β		ω	σι	Used
S0	S1	2 	S3	P S4		S5		S6		S7	S8	S9
Ĭ												
A	4	в		С		D			E		I	
ľ												

Program Title Classical Control Gains				
Contributor's NameHewlett-PackardAddress1000 N.E. Circle Blvd.CityCorvallis	State	Oregon	Zip Code	97330
Program Description, Equations, Variables This program description, Equations, Equation, Equat	PID cont orm is G ion, mea	rol. Data i c ^{=k} c[1 +] sure respons	s required from + T _D s] e, draw tangen le L & R. TANGENT AT MA SLOPE	t at
R= maximum slope L= time intercept of maximum slope Then for P control, k _c = ¹ /RL; PI contr for PID control, k _c = ^{1.2} /RL, T _i =2L, Operating Limits and Warnings	rol, k _c = T ₀ =∀2	· · · · ·		
Note that plant must be greater than (s is Laplace operator) This program has been verified only with respect to the numeric this program material AT HIS OWN RISK, in reliance solely up	cal example	given in <i>Program</i>	Description II. User ac	ccepts and uses

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title Classical Control Gains				
Contributor's Name Hewlett-Packard Address 1000 N.E. Circle Blvd. City Corvallis	State	Oregon	Zip Code	97330
Program Description, Equations, Variables B CLOSED LOOP TEST - Increase k _c output). Let the magnitude of l of oscillation be called P _u .				
Then for P control, let $k_c = .5k_u$ PI control, let $k_c = .45k_u$ PID control, let $k_c = 0.6k_u$			P _u	TIME
General control form is = G _c = k _c [1	+ 1 T _i s +	T ₀ s]		
Operating Limits and Warnings Plant must be greater than second on	rder for	closed loop test.		
This program has been verified only with respect to the nume this program material AT HIS OWN RISK, in reliance solely upon any representation or description concerning the progr	pon his owr			

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

This program is a translation of the HP-65 Users' Library program #04463A submitted by Randy A. Coverstone.

1			CLASS	SICAL C	ONTROL GAINS		5
(dd)	R,L	⊾ k _u ,P _u		Р	PI	PID	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	For Open Loop Test Data:			
	INPUT R	R		R
	THEN L	L	A	0.00
2.	For Closed Loop Test Data:			
	INPUT k _u	Pu		k _u
	THEN Pu	P	B	0.00
3.	For P Control, calculate k _c		C []	k _c
3.	Ean DI Control calculato k			k
3.	For PI Control, calculate k _c			k _c Ti
	THEN T	·		'i
3.	For PID Control, calculate k _c		E] []	k
			R/S	k _c Ti
	THEN T _i THEN T _O		R/S	Τ _O
4.	For new case go to step 2			

44 STEP		YENTRY	KEY CODE		сомм	ENTS	STEP			I	KEY CODE	COM	MENTS
	001 002	*LBLA STO2	21 11 35 02	Open	loop	test		057 058			-62 08		
	002 003	5102 X	-35	data				038 059	8 3		80 83		
	004	178	52					060	x		-35		
	005	ST01	35 01					0 61	ST06		35 06		
	00 6	ST03	35 Ø3				1	062	CLX		-51		
	007 009	9	-62 09					063 064	RTN #LBLC		24 21 13		
	8 89	x	-35					065 065	RCL3		36 03	P control	
	010	ST04	35 04					8 66	RTN		24		
	011	RCL1	36 01					067	≭LBLD		21 14	PI contro	.1
	<i>812</i>	1	0 1					8 68 -	RCL4		36 84		, ,
	013 014	2	-62 02					069 070	R∕S RCL6		51 36 86		
	015	X	-35					071	RTN		24		
	016	ST05	35 05					072	#LBLE		21 15		
	017	RCL2	36 02					073	RCL5		36 05	PID contr	rol
	018 019	2 x	02 -35					074 075	R/S		51		
	019 020	sto7	35 07					075 076	RCL7 R/S		36 87 51		
	021	1	01					077	RCLS		36 08		
	822		-62					078	RTN		24		
	023 024	6	86 05				. 4	679	R∕S		51		
	024 025	5 ×	00 -35										
	026	STO6	35 86					1					
	0 27	RCL2	36 02									1	
	028	2	02							 			
	029 030	÷ Stor	-24 35 08							╂──		1	
	030 031	CLX	-51					+		+			
	032	RTN	24									1	
	033	≭LBLB	21 12	Close	ed loc	op test				<u> </u>			
	034 075	STO2	35 Ø2	data			090			┢			
	035 836	R↓ ST01	-31 35 B1							+		1	
	037 037	2	02									1	
	03 8	÷	-24							L			
	039	ST03	35 03							+			
	040 041	9	-62 09							+			
	041 042	2 X	-35									1	
	043	ST04	35 04										
	044	RCL1	36 01				100			-		-	
	045 046	6	-62 86							+		1	
	040 047	о Х	-35									1	
	048	ST05	35 05							ļ			
	049	RCL2	3E 02							+		I SET STATUS	
	050 051	2 ÷	82 -24					+		\uparrow	FLAGS	TRIG	DISP
	051 052	- ST07	-24 35 07								ON OFF		
	85 3	4	64				110			$\left \right $	0 🗆 🛛	DEG 🖄 GRAD 🗆	FIX 🕅 SCI □
	0 54	÷	-24					+		H	1 🗌 🗶 2 🗌 😡		
	055 056	STO3 RCL2	35 08 75 80					1		\Box	3 🗆 🕱		n_2_
	0.70	ROL2 11A-1/RL	36 02	13		1.	STERS		⁶ рт т		7	8	9
0		B-Kc	B-P.	³ P-	-k _c	PI-K _C	⁵PID-k	с	P1-1	i	′PID-Ti	⁸ PID-T ₀	
S0		S1	S2	S3		S4	S5		S6		S7	S8	S9
A		I E	3	-1	С	1	D			E	L	I	

	Program Title	FIRST ORDER	REGULATOR			
	Address	N.E. Circle		Oregon	7	9733(
	City Corvalli	5	State	oregon	Zip Code	97330
_						
	Program Description			;		
		Equations, Varia $\frac{d_x}{dt} = ax + bt$;		

a,b constant. This program solves the regulator problem i.e. determines the optimal feedback gain to minimize the following performance index: performance index = J = $1/2 \int_0^\infty (qx^2+ru^2) dt$ the solution is: u = -cx, where $c = \frac{b}{r} S$ and S is the positive solution to the Riccati equation: $0 = -2as + \frac{s^2b^2}{r} - q$ Then: $\mathbf{x} = \mathbf{a}\mathbf{x}$ where $\mathbf{a} = \mathbf{a} - \mathbf{b}\mathbf{c}$ and x = $x_0 e^{-\frac{t}{\tau}}$ where $\tau = -\frac{1}{a}$ **Operating Limits and Warnings** q ≥ 0 r > 0b ≠ 0

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)								

Sample Problem(s)	x = ax + bu	, $J = 1/2 \int_0^\infty [$	$\left(\frac{x}{x_{max}}\right)^2 + \left(\frac{u}{u_{max}}\right)^2 dt$
1. a = -1	, b = 1, q = $(-\frac{1}{2})$	$(\frac{1}{r_{max}})^2 = 0$, r =	$\left(\frac{1}{u_{\text{max}}}\right)^2 = 1$
2. a = 1	, b = 1, q	= 0 ,	r = 1
3. a = 1	, b = 1, q	= 1 ,	r = 1
4. a = 1	, b = 2, q	= 3 ,	r = 4
Solution(s) $1.$	c = 0 , $s = 0$	$, \bar{a} = -1 ,$	τ = 1
2.	c = 2 , s = 2	$, \bar{a} = -1 ,$	$\tau = 1$
3.	c = 2.41, $s = 2.41$.41, $\bar{a} = -1.41$,	$\tau = 0.707$
4.	c = 1.5, $s = 3$.	$.0$, $\bar{a} = -2$,	$\tau = 1/2$

Reference(s) Shultz and Melsa, <u>State Functions and Linear Control Systems</u>, McGraw-Hill, 1967. This program is a translation of the HP-65 Users' Library Program #04464A submitted by Randy A. Coverstone.

1	FIRST	ORDER REGU	LATOR			7
(hp)	a,b	q,r	c,s	a	τ	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Enter program				
2	Input a	а	↑	а	
	then b	Ъ	Α	0.00	
3	Input q	q	↑	q	
	then r	r	В	0.00	
4	Calculate c		C	С	
	(optional) then s		R/S	S	
5	(Optional) Calculate ā		D	ā	
6	(Optional) Calculate $\tau = -1/\bar{a}$		E	τ	
7	To change q and r go to step 3				
8	For new case go to step 2				

48				51 (1111		ing i			
STEP	KEY ENTRY	KEY CODE	COMMEN	TS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
	01 #LBLA	21 11	_						
0(02 ST02	35 02	b →R2						
61	03 R4	-31							
	04 STD1	35 01	q→ R1		060				
	05 CLX	-51							
	06 RTN	24							
	07 ¥LBLB	21 12							
	08 STO4	35 04	r→ R4						
	09 R4	-31							
	10 ST03	35 03	q→ R3						
	11 CLX	-51							
	12 RTN	24							
	13 #LBLC	21 13			070				
	14 RCL1	36 01							
	15 RCL2	36 0 2							
	16 ÷	-24							e
	17 X2	53 76 97							
	18 RCL3 19 RCL4	36 03 36 04							
	19 RCL4 20 ÷	36 0 4 -24							
	20 - 21 +	-24 -55							
	21 + 22 JX	- <u>5</u> 5							
	23 RCL1	36 01							
	24 RCL2	36 02			080				
	25 ÷	-24							
	26 +	-55							
	27 R/S	51	Calculate C						
	28 RCL4	36 04							
	29 X	-35							
	30 RCL2	36 02							
	31 ÷	-24				ļ			
	32 RTN	24	C						
	33 ¥LELD	21 14							
8	34 RCL1	36 01			090				
	35 X2	53							
	36 RCL2	36 02				+			
	37 X2	53				+		ł	
	38 RCL3	36 0 3							
	39 x	-35							
	40 RCL4	36 04							
	41 ÷	-24							
	42 +	-55							
	43 5 8	54			100				
	44 CHS	-22	S						
	45 RTN 46 #LBLE	24 21 15							
	46 #LBLE 47 GSBD	21 15 23 14							
	47 6360 48 1/X	23 14 52							
	48 123 49 CHS	-22	ā						
	50 RTN	24					1	SET STATUS	
	51 R/S	51					FLAGS	TRIG	DISP
						+	ON OFF 0 □ ⊠	DEG 😰	FIX 🕅
			1		110			GRAD	
			1		<u> </u>			RAD 🗆	ENG 🗆
		<u> </u>	1				3 🗆 🗓		n <u>2</u>
	L		L	REGI	STERS				
0	1	2	3 4		5	6	7	8	9
	a	Ъ	q	r		0.0	07	<u> </u>	S9
S0	S1	S2	S3 S	4	S5	S6	S7	S8	39
	l				D	I	E	 I	L
А		В	С				L.	ľ	
					L				

Program Title	SECOND ORDER REGULATOR	
Contributor's Na		
Address	1000 N.E. Circle Boulevard	
City Coa	vallis State Oregon Zip Code 97330	

Given a system and a quadratic performance index **Program Description, Equations, Variables** as follows: $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{b} \end{bmatrix} \mathbf{u}$ $J = 1/2 \int_0^\infty \{ [x_1 \ x_2] \begin{bmatrix} q_{11} & q_{12} \\ q_{12} & q_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u^2 r \} dt$ where: x_1 , x_2 are the system states u is the control J is the performance index to be minimized. The optimal control is given by: $u = -c_1, x_1 - c_2 x_2 \quad \text{and} \quad [\mathring{x}] = [\overline{A}] [x] \quad [A] = [A] - [\mathring{b}] [c_1 - c_2]$ where: $c_1 = \frac{1}{b} (c_1 * + a_{11} c_2 *) \quad c_2 = \frac{1}{b} (a_{12} c_2 *)$ $c_1^* = a_1 + \sqrt{a_1^2 + q_1 \frac{b^2}{r}} c_2^* = a_2 + \sqrt{a_2^2 + 2c_1^* + q_3 \frac{b^2}{r}}$ $a_1 = a_{12}a_{21} - a_{11}a_{22}$ $q_1 = q_{11} - 2 \frac{q_{12}a_{11}}{a_{12}} + \frac{q_{22}a_{11}^2}{a_{12}^2}$ $q_3 = q_{22}$ $a_2 = a_{11} + a_{22}$ **Operating Limits and Warnings** $q_{11}, q_{12}, q_{13} \ge 0$; $q_{11}+q_{12}+q_{13} \ne 0$ r > 0

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11	
Sketch(es)	
Sample Problem(s) $\ddot{y} + \theta \dot{y} + \phi = u$ second order system	
let $x_1 = y$ $x_2 = \dot{y}$	
so $\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\phi & -\theta \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$ suppose $\phi = 2$ $\theta = 3$	
Find the optimal control that minimizes:	
1. $J = 1/2 \int_0^\infty (x_1^2 + x_2^2 + u^2) dt$, i.e. $q_{11} = 1$, $q_{12} = 0$, $q_{22} = 1$,	r = 1
2. $J = 1/2 \int_0^\infty (4x_1^2 + u^2) dt$, i.e. $q_{11} = 4$, $q_{12} = 0$, $q_{22} = 0$,	r = 1
3. J = $1/2 \int_0^\infty u^2 dt$ - note that this case violates $q_{1+}q_{2+}q_3 \neq 0$	
Solution(s) $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ $b = 1$ $u = -c_1 x_1 - c_2 x_2$	
1. $0 = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$ $r = 1 \rightarrow u =236x_1236x_2$	

1. $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $r = 1 \rightarrow u = -.236x_1 - .236x_2$ 2. $Q = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$, $r = 1 \rightarrow u = -.828x_1 - .264x_2$ 3. $Q = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $r = 1 \rightarrow u = 0$

Reference(s) Shultz and Melsa, State Functions and Linear Control Systems, McGraw-Hill, 1967. This program is a translation of the HP-65 Users' Library Program #04465A submitted by Randy A. Coverstone.

1	SECOND	ORDER	REGULATOR				72
	[A]	b	[Q], 1	2	c ₁ , c ₂		/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input A matrix: input a _{ll}	a ₁₁	↑	a _{ll}
	then a ₁₂	a ₁₂	↑	a ₁₂
	then a ₂₁	a ₂₁		a ₂₁
	then a ₂₂	a ₂₂	Α	all
3	Input b	b	В	b
4	Input Q and r: input q ₁₁	qıı		q11
	then q ₁₂	q ₁₂	↑	q ₁₂
	then q ₂₂	922	↑]	q 22
	then r	r	C	q1/r
5	Calculate feedback coefficients		D	cl
			R/S	c ₂
	(Optional)* Calculate $[\overline{A}]$ (closed loop			
	dynamics matrix)		R/S	
	Recall [Ā]		RCL 1	a _{ll}
			RCL 2	a12
			RCL 3	a ₂₁
			RCL 4	a ₂₂
6	To change Q and r go to step 4			
7	For new case go to step 2			
**	DO NOT CALCULATE [A] IF STEP #6 IS TO BE			
	EXECUTED, AS [A] REPLAGES THE ORIGINAL [A]			
	MATRIX AND STEP 5 MUST OPERATE ON [A], NOT [A			
	$\begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$			
	$ \begin{array}{c} x_1 \\ x_2 \\ x_2 \\ a_{21} \\ a_{22} \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ x_2 \\ b \end{array} $			
	$J = 1/2 \int_0^\infty (q_{11}x_1^2 + 2q_{12}x_1x_2 + q_{22}x_2^2 + ru^2) dt$			
	minimize $J \rightarrow u = -c_1 x_1 - c_2 x_2$			
	1 - 2 2			
	x_1 $a_{11} a_{12}$ x_1			
	x2 a21 a22 x2			

52											
	Y ENTRY	KEY CODE	COMM	ENTS	STEP	KE	Y ENTRY	K	EY CODE	COM	MENTS
9 01	*LBLA	21 11	<u> </u>		A	57	χ2		53	a 0 *	
08 2	ST04	35 04	Store [A]			58			36 08	c2*	
0 03	R4	-31					RCL8				
						59	X		-35		
004	ST03	35 03			0	60	÷		-55		
0 05	R∔	-31			8	61	1%		54		
006	ST02	35 0 2				62	RCL1		36 01		
007	R4	-31									
008	STOI	35 01				63	RCL4		36 04		
					0	64	+		-55		
009	R/S	51			0	65	ST07		35 07		
010	*LBLB	21 12	Store b			6E	÷₽		34		
011	ST05	35 05	DCOLC D						36 07		
012	RTN	24				67	RCL7				
					0	68	+		-55		
013	*LBLC	21 13			0	69	ST07		35 07		
014	ST07	35 07				70	RCL1		36 01		
015	÷	-24									
016	ST08	35 08				71	Х		-35		
						72	RCL6		36 06		
017	LSTX	16-63			0	73	+		-55		
018	Х	-35				74	ST06		35 06		
019	RCL1	36 01							36 85		
620	X	-35				75	RCL5				
						76	÷		-24		
0 21	RCL2	36 02			0	77	R∕S		51	Display o	
022	÷	-24				78	RCL7		36 07		-
623	X≠Y	-41							36 82		
824	2	02				79	RCL2				
						80	Х		-35		
<i>625</i>	X	-35			0	81	ST07		35 07		
026	-	-45			Ø	82	RCL5		36 05		
0 27	RCL1	36 81				83	÷		-24		
6 28	X	-35								Display o	
029	RCL2	36 02				84	R/S		51	Dispidy (2
					0	85	RCL2		36 02		
030	÷	-24			θ	86	RCL3		36 03		
031	+	-55				87	RCL6		36 06		
8 32	RCL7	36 07				88	-		-45		
033	÷	-24								Compute	והז
						89	RCL4		36 04	compute	
034	ST07	35 07			Ø	90	RCL7		36 07		
03 5	RTN	24			P	91	-		-45		
036	*LBLD	21 14				92	RCL1		36 01		
33 7	RCL2	36 0 2									
038	RCL3	36 03				93	R↓		-31		
						94	GTCA		22 11		
039	X	-35			0	95	R∕S		51		
04 0	RCL1	36 01									
941	RCL4	36 04						1			
842	x	-35									
043	-	-45						1			
		35 86			100			+			
044	STO6							+			
045	RCL7	36 07						+			
646	17	54						1			
847	RCL5	36 05									
048	X	-35									
8 49	RCLE	36 0 6	°1*					1			
			~T					+ -		SET STATUS	
950	÷₽	34						┼╌┣╴		SET STATUS	·
851	RCL6	36 0 6						+	FLAGS	TRIG	DISP
0 52	+	-55							ON OFF		
0 53	ST06	35 86								DEG 🕅	FIX X
					110				1 🗆 🕅	GRAD	SCI 🗆
054 	2	82							$2 \square \overline{\mathbf{X}}$	RAD 🗆	ENG 🗆
8 55	X	-35						+	$3 \square \mathbf{k}$		ENG 🗆 n_2
856	RCL5	36 85									
L	·····				STERS			T-			10
0	¹ a ₁₁	² a ₁₂	³ a ₂₁	4 a	⁵ b		6 temp	, [⁷	7 temp	8 temp	9 R→P
				⁴ a ₂₂							
S0	S1	S2	S3	S4	S5		S6	15	57	S8	S9
										.l,	1
А	В		С		D			E		I	

52

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Portfolio Management/Bonds & NotesAnesthesiaReal Estate InvestmentCardiacTaxesPulmonaryHome Construction EstimatingChemistryMarketing/SalesOpticsHome ManagementPhysicsSmall BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrologyReliability/QAForestry	Options/Technical Stock Analysis	Medical Practitioner				
TaxesPulmonaryHome Construction EstimatingChemistryMarketing/SalesOpticsHome ManagementPhysicsSmall BusinessEarth SciencesSmall BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Portfolio Management/Bonds & Notes	Anesthesia				
Home Construction EstimatingChemistryMarketing/SalesOpticsHome ManagementPhysicsSmall BusinessEarth SciencesSmall BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Real Estate Investment	Cardiac				
Marketing/SalesOpticsHome ManagementPhysicsSmall BusinessEarth SciencesSmall BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceButterworth and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Taxes	Pulmonary				
Home ManagementPhysicsSmall BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Home Construction Estimating	Chemistry				
Small BusinessEarth SciencesAntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Marketing/Sales	Optics				
AntennasEnergy ConservationButterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Home Management	Physics				
Butterworth and Chebyshev FiltersSpace ScienceThermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Small Business	Earth Sciences				
Thermal and Transport SciencesBiologyEE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Antennas	Energy Conservation				
EE (Lab)GamesIndustrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Butterworth and Chebyshev Filters	Space Science				
Industrial EngineeringGames of ChanceAeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Thermal and Transport Sciences	Biology				
Aeronautical EngineeringAircraft OperationControl SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	EE (Lab)	Games				
Control SystemsAvigationBeams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Industrial Engineering	Games of Chance				
Beams and ColumnsCalendarsHigh-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Aeronautical Engineering	Aircraft Operation				
High-Level MathPhoto Dark RoomTest StatisticsCOGO-SurveyingGeometryAstrology	Control Systems	Avigation				
Test Statistics COGO-Surveying Geometry Astrology	Beams and Columns	Calendars				
Geometry Astrology	High-Level Math	Photo Dark Room				
	Test Statistics	COGO-Surveying				
Reliability/QA Forestry	Geometry	Astrology				
	Reliability/QA	Forestry				

CONTROL SYSTEMS

These programs incorporate many of the important calculations from control theory. Bode plots, stability criteria, root-locus plots, and optimization are included.

FREQUENCY RESPONSE OF A TRANSFER FUNCTION

- BODE OF TRANSFER FUNCTION THAT HAS EACH POLE AND ZERO GIVEN
- BODE OF SECOND-ORDER OVER THIRD-ORDER TRANSFER FUNCTION
- BODE OF SECOND-ORDER OVER SECOND-ORDER TIMES S**N TRANSFER FUNCTION
- POLE-ZERO TO GROUP DELAY
- ROUTH TEST FOR CONTINUOUS AND DISCRETE TIME SYSTEM ANALYSIS
- CONVERT FREQUENCY RESPONSE OPEN LOOP, CLOSED LOOP
- AID TO ROOT LOCUS PLOTS I REAL POLES
- AID TO ROOT LOCUS PLOTS II COMPLEX POLES
- CLASSICAL CONTROL GAINS
- FIRST ORDER REGULATOR
- SECOND ORDER REGULATOR

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14026 Printed in U.S.A. 00097-90201 Revision B 11-77