HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions EE (Lab)

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

WIRE TABLE	•	1
OHM'S LAW Calculates the missing two values among E, I, R, and P.	•	5
REACTANCE CHART (NINE EQUATIONS)	•	9
COIL CALCULATIONS Calculates self-inductance of four types of inductors.	•	14
COMPLEX IMPEDANCE CALCULATOR - AC CIRCUIT CALCULATOR Gives your calculator a complex stack.	•	19
WYE-DELTA TRANSFORMATIONS	•	24
RC TIMING Interchangeable solution among R, C, V1, V2, Vi, and t.	•	29
SERIES R-L-C CIRCUIT ANALYSIS PROGRAM	•	34
PASSIVE HIGH AND LOWPASS COMPOSITE FILTER DESIGN Computes component values for a prototype "T" or "PI", high or lowpass filter. Given "m", computes component values for an m-derived filter section.	•	39
"L" ATTENUATOR (GENERATOR IMPEDANCE GREATER THAN LOAD IMPEDANCE) Computes resistor values needed to realize desired pads.	•	44
1% RESISTOR VALUE SUBROUTINE . Subroutine to find the nearest available 1% resistance.	•	48
WHEATSTONE BRIDGE	•	52

Program Title WIRE TABLE

Contribut	or' s Nam e	W. J. HOPKINS			101001 - 10 - 1 - 11 - 11 - 11 - 11 - 1
Address	1 366 8	Sunburst Street	5		
City	Arlet	28.	State	CA	Zip Code 91331

Program Description, Equations, Variables Calculates the wire diameter, circular area and linear resistance given any wire (AWG) gage from O up. Area and diameter are in circular mils (.001 inch) Will also find smallest usable AWG given either 1) wire length and max allowable resistance, or 2) required cross-sectional area and allowable current. By keying in one variable, the effect of changing the other may be seen. The following approximate equation is used: A=105530 X 0.79306^{AWG} R=rl/AA=Area in c.m. r=resistivity for copper=10575 ohm-c.m./1000ft l=length of wire in ft. R=total resistance in ohms AWG=wire gage To use this program for other than copper wire, insert the appropriate value for r in program steps 7-11 and 52-57. Value used in steps 52-57 is resistivity per foot, steps 7-11 use resistivity per 1000 feet.

Operating Limits and Warnings No safety design margins are built in. Accuracy of area equation is within .02% for large wire and ± 2 mils for small wire. Side two may be left unprotected to enable recording of data.

Registers 0-9, S1- S9 and I are available for user storage

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

1

 Sketch(es)

Sample Problem resistance	(s) (e pe	A) determine the cro r 1000 feet for 22 A	oss-section AWG wire.	al area, d	liameter and
(B) deter when the r	rmin nax	e the smallest usab allowable resistance	le wire size e is 14.0 ol	e for a 50 hms.	000 foot run
(C) detern area/amp n	nine nust	the smallest usable be 850 c.m. and can	ə wire gage rry 7.6 amp	if the cr s.	ross-sectional
Solution(s) (\mathbf{A}) ; 22 (\mathbf{A})	A)	22	(B):	5000 (E)	5000.0 ft
((5) D)	642.8 c.m. 25.4 m.		14 (b) (a)	14.0000 ohms 14 AWG
	<u> </u>		(C):	850 (c) 7.6 (d) (a)	850.00 c.m./Amj 7.60 Amps 12 AWG

Reference(s) The Radio Amateurs Handbook, 1974 (ARRL) Standard Electrical Engineering Handbooks

	→AWG	R_{max}	A _{xsect} /amp	I_{max}	START	5
[dd]	AWG	_∩/kft	Axsect	DIAcm	L ft	

STEP	INSTRUCTIONS						KE	YS	OUTPUT DATA/UNITS	
1	Load Side	1								
2	Optional:	clear all	storage	registers		ſ		E	0	
	To calcula	te ohms/10		coss-sect-						
	ional area	, or diame	eter:							
3	Enter wire	gage (AW	3)		AWG	A			AWG	
4	Compute an	d display	ohms/100	00 ft		В			ohms/kft	
4	o Compute an	r d display	cross-se	ectional A		C			Axsect	
4	Compute an	r d display	diameter	2		D			Diameter	
		to small	at wash	AWC						
	given the	cross-sect	tional ar	rea/amp and						
	max allowa	ble currer	nt:	, , , , , , , , , , , , , , , , , , , ,						
5	Enter cros	s-sections	al area/a	mp	Axsect/a	p f		C	area/am	
6	Enter maxi	mum currer	nt in amp	3	Imax	ſ		D	I _{amps}	
7	Compute sm	allest usa	able AWG			f _			AWG	
	To calcula	te smalles	st usable	e AWG						
	given wire resistance	length ar	nd max al	lowable						
8	Enter wire	length in	n feet		ft	E			feet	
9	Enter max	allowable	resistar	ice	Rmax	f		B	Rmax	
10	Compute sma	allest usa	able AWG			f		A	AWG	
						L				
]			
]			
		LAB	ELS	······	FLAGS			SET STATU	I IS	
AWG	^B ohms/kft	Axsect	DIAcm	^E Lft ⁰		FLAGS		TRIG	DISP	
AWG	^b Rmax	Åxset/amp	d Iamps	^e START ¹			F	DEG 📱	FIX 🖪	
	1	2	3	4 2	used					
	6	7	8	9 3					n_2'	

4			67	Program	n Lis	sting I			
STEP	KEY ENTRY	KEY CODE	• -	COMMENTS	STEP	KEY ENTRY	KEY CODE		COMMENTS
001	f LBL A	31 25 11				5	05	_	
	DSP 0					RCL E	34 15	-	
	b RTN	35 22			060	RCT B	74 12	1	
	f LBL B	31 25 12					81	1	
	DSP 4	23 04				f LBL 2	81 25 02	1	
	1	01				f LOG	31 53		
	0	00				1	01	4	
010	1 2	05				0	00	4	
	5					2	05	1	
	f GSB 1	31 22 01				2	03	1	
		81				6		1	
	h RTN	35 2 2			070	f LOG	31 53]	
	f LBL C	31 25 13				-	- 51		
	DSP 1	23 01				•	83	4	
	T GSB L	51 22 01				7	07	4	
	P TRT D	<u>27 22</u> 71 25 1/1				9	09	4	
020	DSP 1	23 01				2	00	1	
	f GSB 1	31 22 01				6	06	1	
	fVx	31 54				f LOG	31 53]	
	h RTN	35 22				÷	81	1	
	f LBL 1	<u>31 25 01</u>			080	f INT	31 83	4	
	•	83				DSP 0	+ -23.00	4	
	0	07				IN RTN	35 22	4	
	3					BELBL C	22 25 15	1	
	0	00				STO C	33 13	1	
030	6	06				h SF 2	85 51 02]	
	RCL A	34 11				h RTN	35 22		
	h yX	35 63				g LBL d	<u>B2 25 14</u>	4	
	1	01			090	DSP 2	23 02	4	
	<u>0</u>				030	b GE 2	25 51 02	1	
	5	05				h RTN	35 22	1	
	3	03				f LBL 3	81 25 03	1	
	Ó	00				RCL C	34 13	1	
	X	71				RCL D	34 14	1	
040	h RTN	35 22				X	71	4	
	g LBL b	<u> 82 25 12</u>				GTO 2	$\frac{22 02}{10}$	4	
	STO B					F CT PEC	$\frac{pe}{2} \frac{2}{1} \frac{1}{12}$	1	
	h RTN	35 22			100	f P2S	31 42	1	
	f LBL E	81 25 15				f CL REG	31 43	1	
	DSP 1	23 01				0	00]	
	STO E	33 15				h RTN	35 22	4	
	n RTN	25 22				R/S	84	4	
050	b F? 2	<u>pe eg II</u> 85 71 02						4	
	GTO 3	22 03						1	
	1	01]	
	0	00							
	•	83			110	-		1	
	2							1	
 	¥			REGI	STERS	1	L	L	
0	1	2	3	4	5	6	7	8	9
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A AW	G	B Rmax		^C circ-mils/A	D Ia	mps	E Lft		I

Program Title OHMS L	AW			
Contributor's Name	Jack B. Buster			
Address	P. O. Box 8062			
City	Anchorage,	State	Alaska	Zip Code 99508

ther two according to one of the

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) Sample Problem(s) Given 12 amps at 78 volts, find watts and resistance. (1) (2) Calculate power consumption at 12 volts for 1/4 to 1 ohm at 1/4 ohm intervals. Keystrokes: Solution(s) (1) [A] [1] [2] [C] [7] [8] [D] [B] =936 watts [E]= 6.5 ohms (2) [A] [1] [2] [E] [.] [2] [5] [B] = 576 watts [.] [5] [E][B] = 288 watts [.] [7] [5] [E][B] = 192 watts [1][E] [B] = 144 watts Reference(s)

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KE	KEYS OUTP DATA/U	
1	Load side 1 of card					0.00
2	Initialize			A		0.00
3	Enter first variable	P, IE or	R			
4	Enter second variable	P,I,E or F				
5	Calculate third quantity					
6	Calculate fourth quantity					
7	Return to (4) for new case using same first					
	variable					
					[]	
				[]		

0			67	Program	Lis	sting I				
STEP	KEY ENTRY	KEY CODE	•-	COMMENTS	STEP	KEY ENTRY	KEY CODE		COMN	IENTS
001	f LBL B	31 25 12				÷	81			
	STO B	33 12	-			STO B	33 12	4		
	<u>F? 3</u>	35 71 03	4		060	h RTN	35 22			
	<u>h RTN</u>	35 22	1			I LBL I	31 25 01	-		
	RCL C	34 13	1			RCL C	34 13	-		2
	<u>x=0</u>	31 51	1			RCL E	32 54	Sol	ve P=I	R
	RCL D	34 14	1			x	71	1		
	$\mathbf{x} = 0$	31 51	1	Solve P=1E		h RTN	35 22	1		
010	GTO 1	22 01	1			f LBL 2	31 25 02	1		
	X	71	1			RCL D	34 14	1		
	STO B	33 12	1			RCL E	34 15		lve T=	E/R
	h RTN	35 22	1			·	81] ~~	110 1	2710
	f LBL C	31 25 13			070	STO C	33 13]		
	STO C	33 13				h RTN	35 22 .			
	F? 3	35 71 03				f LBL 3	31 25 03			
	h RTN	35 22	1			RCL B	34 12	4		
	RCL B	34 12	1			RCL E	34 15	Sol	ve I‡	P/R
	x=0	31 51	1				81	4	,	
020	GTO 2	22 02	4			<u>1 x</u>	31 54	4		
	RCL D	34 14		Solve I=P/E		b PTN	33 13	4		
	x=0	31 51	1			f I.BT. A	31 25 04			
	<u>G10 3</u>	81	1		080	RCL C	34 13	1		
	STO C	33 73	1			RCL E	34 15	1		
	h RTN	35 22	1			x	71			
	f LBL D	31 25 14	1			STO D	33 14	501	ve E=1	R
	STO D	33 14	1			h RTN	35 22	1		
	F? 3	35 71 03	1			f LBL 5	31 25 05]		
030	h RTN	35 22]			RCL B	34 12			
	RCL B	34 12]			RCL E	34 15	$\int_{E} \gamma_{DD}$		
	x= 0	31 51				X	71		/ KF	
	GTO 4	22 04		Solve $E = P/I$		1/x	31 54			
	RCL C	34 13	1		090	STO D	33 14	4		
	x=0	31 51	1			h RTN	<u>B5 22</u>	d		
	GTO 5	22 05				f LBL 6	<u>B1 25 06</u>	-		
		81	1			RCL D	34 14	+		
	h RTN	35 22					<u>34 13</u> 81	1		
040	f LBL E	31 25 15			·	STO E	33 75	- So	lve R=	E/I =
	STO E	33 15	1			h RTN	B5 22			
	F? 3	35 71 03	1			f LBL 7	31 25 07	1		
	h RTN	35 22	1			RCL D	34 14	1		
	RCL B	34 12]		100	x ²	32 54] ₅₀	lve R=	E^2/P
	x=0	31 51]			RCL B	34 12		170 R	2 /1
	GTO 6	22 06		Solve $R=P/T^2$		•	81	4		
	RCL C	3413				STO E	33 15	4		
	<u>x=0</u>	31 51	4			<u>h</u> RTN	35 22	 		
050		22 07	4			<u>f LBL A</u>	31 25 11	4		
030	x ⁻	01	1			CL REG	31 43	In	itiali	ze
	h RTN	35 22	1				25 22	1		
	f LBL 0	31 25 00			}			1		
	RGL D	34 14	1		110]		
	x	32 54	5	$p_{P=F}^{2}/P$				1		
	RCL E	34 15		UIVE F-B /K				1		
				REGI	STERS	E	7	0		0
U		2	3	4	5	0	/	0		3
S0	S1	S2	S3	S4	S5	S6	S7	S8		S9
A	I	B		c	D	I	E		I	l
		WATTS		AMPS	VOL	JTS	OHMS			

Program Title REACTANCE CHART (N	IINE EQUATIONS)	
Contributor's Name H. Peter Meisinger Address c/o Versitron, Inc. City Washington, D.C.	6310 Chillum Pl, N.W. State	Zip Code 20011
Program Description, Equations, Variables $f = \frac{1}{2\pi \sqrt{LC}}$ $f = \frac{1}{2\pi \sqrt{LC}}$ $f = \frac{\chi_{L}}{2\pi L}$ $\chi_{c} = \frac{1}{2\pi L}$ $\chi_{c} = \frac{1}{2\pi L}$ $\chi_{L} = 2\pi f L$	$L = \frac{x}{2}$ $L = \frac{x}{4}$ $C = \frac{1}{4}$ $C = \frac{1}{4}$	$ \frac{2}{\sqrt{1}} $ $ \frac{1}{\sqrt{1}} $
Operating Limits and Warnings		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) Sample Problem(s) (1) What is the resonant frequency of a tank circuit consisting of a 250 pf capacitor and a 5 microhenry inductor? (2) At what frequency does a 100 pf capacitor have a reactance of 100 ohms? (3) At what frequency does a .02 henry inductor have a reactance of 16 ohms? (4) What is the reactance of a 250 pf capacitor at 3.2 Mhz? (5) What is the reactance of a 10 henry inductor at 60 hz? (6) What is the value of an inductor whose reactance is 4 ohms at 300 hz? (7) What is the value of an inductor that resonates with 250 pf at 3.2 Mhz? (8) What is the value of a capacitor whose reactance is 4 ohms at 300 hz? (9) What is the value of a capacitor that resonates with 12 h at 120 hz? (1) 250 pf & 5 μ h = 4 501 581.58Hz or 4 501.582KHz Solution(s) (2) 100 ohms & 100 pf = 15 915 494.31hz = 15 915.494KHz (3) 16 ohms & .02 hy = 127.32hz(4) 3.2 Mhz & 250 pf = 198.94 ohms (5) 60 hz & 10 h = 3 769.91 (6) 4 ohms & 300 hz = 2.1221 m H(7) 3.2Mhz & 250 pf = $9.894 6 \mu h$ (8) 4 ohms & 300 hz = 132.629 12μ farads (9) 120 hz & 12 h = $0.146 \ 59_{\mu}$ farads

Reference (s)

	Hz	kHz	Xc	х _L	INLZ	5
(dd)	μF	pF	Н	mН	μH	_ /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and 2 of Program Card			
2	Initialize		E	
3	Input any two knowns			
	Frequency: Hertz	Hz	Α	
	Kilohertz	kHz	В	
	Megahertz	MHz	CHS A or B	
	Capacitance: Microfarads	F	fa	
	Picofarads	рF	fb	
	Inductance: Henries	н	fc	
	Millihenries	mH	fd	
	Microhenries	Hپ	f	
	Capacitive Reactance	Xc (ohms)	C	
	Inductive Reactance	XL (ohms)	D	
		·		
4	Compute Unknowns			
	Frequency: Hertz		A	Hz
	Kilohertz		В	kHz
	Megahertz		CHS A or B	MHz
	Capacitance: Microfarads		fa	F
	Picofarads		fb	рF
	Inductance: Henries		fc	н
	Millihenries		fd	mH
	Microhenries		f	Hىر
	Capacitive Reactance		C	Xc (ohms)
	Inductive Reactance		D	XL (ohms)
5	Recall Inputs: Frequency		RCL1	f Hz
	Capacitance		RCL2	C Farads
	Inductance		RCL3	L Henries
	Capacitive Reactance		RCL4	Xc Ohms
	Inductive Reactance	ļ	RCL5	XL Ohms
	Computed data is automatically stored so that subse-	ļ		
	quent computations can be made without reentry.			
	NOTE: for new computation go to Step 2.			

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE 001 f LBL E $31-25-15$ 3 03 i f CL Reg $31-43$ \div 81 R/S 84 DSP 3 $23-03$ i f LBL A $31-25-11$ 060 h RTN $35-22$ f LBL $03-25-00$ Store	comments e-Compute decision z LBL A or B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e-Compute decision z LBL A or B
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e-Compute decision z LBL A or B
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e-Compute decision z LBL A or B
f X < 0 31-71 f LBL 0 31-25-00 Store	e-Compute decision z LBL A or B
	decision z LBL A or B
GIO 2 22-02 $STO (i) 33-24$	z LBL AorB
1 01 h RTN 35-22	z LBL AorB
h STi 35-33 f LBL 2 31-25-02 MHz	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
DSP 2 23-02	
RCL 2 34-02 C f GSB A 31-22-11	
RCL 3 34-03 L 070 EEX 43	
X 71 LC 6 06	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
h 77 35-73	
$\frac{X}{2}$ 02 $\frac{1}{2}$ \frac	
$\frac{1}{020}$ $\frac{2}{1}$ $\frac{1}{20}$ $\frac{1}{10}$	
$f X \neq Y$ 31-61 2110 1 h ST i 35-33	
h 1/X 35-62 $2 \times 1/1C$ h X \neq Y 35-52	
$f X \neq Y$ 31-61 $2 \pi V$ $h F ? 3 35-71-03$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{2}{100}$ $\frac{100}{100}$ $$	
$1 \frac{11}{12} $	
³⁰ RCL 2 34-02 C X 71 2 77	
X 71 2 ή C X 71	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$X = \frac{71}{2 \pi} CXc$ $STO = \frac{33-03}{2 \pi} \frac{2}{7}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$h \frac{1/X}{5} = \frac{33-62}{21-61} = 2 \frac{7}{7} CXc$	
1×70 $31-01$ 4×04 4 $51-01$ $h \mathcal{H}$ $35-73$	
$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	
h RTN 35-22 X 71 47/2	4
040 RCL 5 34-05 X _L RCL 1 34-01	f
$\frac{2}{1-$	2 2
$h \frac{1}{7} + \frac{35-73}{7} = \frac{1}{2} + \frac{1}{2} $	t
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	⁴ ² ²
$1 - \frac{1}{2} - $	
$-$ 81 X_L STO 3 33-03 $4\pi z$	TZ C
STO 1 33-01 2 1/L h RTN 35-22	
h RTN 35-22 g LBL d 32-25-14	
$\begin{bmatrix} f \\ LBL \\ B \\ 31-25-12 \\ C \\ $	
$\begin{bmatrix} 050 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y & 3 - / \\ 0 & f X < Y &$	
$- \frac{1}{1000} = \frac$	
3 03 <u><u><u></u></u> <u>EEX</u> 43</u>	
X 71 110 3 03	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	9
f C L Xc XL	
S0 S1 S2 S3 S4 S5 S6 S7 S8	59
A B C D E I	L

		12
STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE	COMME	NTS
a LBL e 32-25-15 µH f X≠Y 31-61	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 7/ fXc	
$f = \frac{6}{100}$	4	
$\frac{1}{2}$ $\frac{1}$	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	
120×71 h 120×71		
h RTN 35-22 g X ² 32-54	7/2	
f LBL D 31-25-14 X ₁ X 71	$]'' 4 {\mathcal{H}}^2$	
5 05 RCL 1 34-01	f	
h ST i 35-33 180 g X ² 32-54	f^2	
h X ≠ Y 35-52	427 4 -	
$H = \frac{1}{2} \frac{1}{2} \frac{35-71-03}{2} + \frac{1}{2} \frac{1}{2} \frac{34-03}{71}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	
130 h 27 $35-73$ 77 h RTN $35-22$	-	
X = 71 - 27 $a + B = 35-25-11$	1 "E	
RCL 1 34-01 f	- ⁻	
X 71 2 % f 6 06		
RCL 3 34-03 L		
X 71 2 % fL f GSB 1 31-22-01	4	
<u>STO 5 33-05</u> XL <u>EEX 43</u>	4	
h RTN 35-22 6 06	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$h = \frac{1}{3} + $	- ^{- P'}	
$h = \frac{1}{1} + \frac{1}{1} + \frac{1}{10} + \frac{1}{10$	-	
GTO 0 22-00	1	
DSP 2 23-02 $200 \div 81$	1	
2 02 2 f GSB 1 31-22-01		
h 71 35-73 17 EEX 43		
X 71 277 1 01		
RCL 1 34-01 f 2 02	4	
X 71 277f	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	
$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	-	
$1 \times 1/2$ $33-04$ 37×10^{-1}	1	
h RTN 35-22	4	
f LBL 1 31-25-01 Farads	1	
2 02	1	
h ST i 35-33		
h X ₹ Y 35-52	4	
h F ? 3 35-71-03	4	
	4	
	4	
$h \frac{1}{27} = \frac{1}{35-73} \frac{1}{27}$	4	
X 71 277 220	1	
RCL 1 34-01 f	1	
X 71 2 $%$ f	4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	
	SET STATUS	
	TOIO	
	TRIG	DISP
TZ KTZ AC CL Initialize FLAGS		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEG 🗆	FIX 🗆
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DEG 🗆 GRAD 🗆	FIX D

Program TitleC	DIL CALCULATIONS		
Contributor's Name	RICHARD L. KENNEDY		
City	EL PASO	State TEXAS	Zip Code 79924

Program Description, Equations, Variables PROGRAM CALCULATES SELF-INDUCTANCE OF FOUR TYPES OF INDUCTORS, OR REQUIRED NUMBER OF TURNS FOR THREE TYPES WHEN THE REMAINING PARAMETERS ARE GIVEN. EQUATIONS USED ARE: FOR SINGLE-LAYER COIL N = VL(9r+102) ALL DIMENSIONS ARE IN INCHES, L IS IN $L = \frac{0.8 r^2 N^2}{6r + 91 + 106}$ MICROHENRIES, f 15 IN HERTZ, P IS IN OHM CM FOR MULTI-LAYER COIL $N = 1.118 \frac{\sqrt{L(6r+91+106)}}{r}$ X 10⁻⁶, N IS THE NUMBER OF TURNS, & WAS DEFINED $L = \frac{F^2 N^2}{Br + 11b}$ IN REFERENCE 2 BY A GRAPH. TWO EQUATIONS FOR SINGLE-LAYER SPIRAL COIL $N = \frac{\sqrt{L(Br + 11b)}}{5}$ WERE FOUND TO FIT FOR $\chi \leq 4.5$ AND $\chi \geq 4.5$. $L = 0.00508 \left(\ln \frac{4l}{d} - 1 + \mu \delta + \frac{d}{2l} \right)$ FOR STRAIGHT WIRE WHERE $\mu = 1$ FOR COPPER, $\delta = 0.25 - \chi^2/202.5$ FOR $\chi \leq 4.5$, $\delta = 10^{-(\log_{10}\chi + 0.155)}$ FOR $\chi \ge 4.5$, AND $\chi = 0.3569 d \sqrt{\mu f/p} = 0.272 d \sqrt{f}$ FOR COPPER WIRE Operating Limits and Warnings ERUATIONS USED ARE APPROXIMATIONS ACCURATE TO ABOUT 1% FOR MOST SMALL AIR-CORE COILS, ACCURACY OF FIRST TWO SETS DETERIOR ATES FOR WINDING LENGTH MUCH DIFFERENT FROM THE DIAMETER (2R <<) OR 1 << 2R), EQUATIONS ARE VALID ONLY FOR NON-FERROUS MATERIALS, EXCEPT THAT THE EQUATION FOR INDUCTANCE OF A STRAIGHT WIRE IS FURTHER LIMITED TO COPPER WIRE, UNLESS A DIFFERENT VALUE OF RESISTIVITY (P) IS USED TO DEFINE X.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference (s) 1. EUGENE CARRINGTON, ALLIED ELECTRONICS DATA HANDBOOK, THIRD EDITION, FIRST PRINTING, PAGE 30, ALLIED RAPIO CORPORATION, FEB. 1962. 2. ENGINEERING STAFF, AEROVOX CORPORATION, ELECTRONICS REFERENCE DATA, VOL. 3, PAGE 114, HOWARD W. SAMS PUBLISHING CO., NEW YORK, N.Y., APRIL (963.

-->

0.0508 (L, HAT IGHZ)

2 [ENT 1], 0201 [ENT 1] [EEX] 9 [D]

COIL CALCULATIONS

7

r, a, L->N r, l, b, L->N r, b, L->N

 $r, l, N \rightarrow L = r, l, b, N \rightarrow L = r, b, N \rightarrow L = l, d, f \rightarrow L = l$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
١.	LOAD SIDE AND SIDE 2.			
2,	INPUT REQUIRED PARAMETERS, DEPENDING			
	ON TYPE OF INDUCTOR:			
	A, FOR SINGLE - LAYER INDUCTANCE :	r	ENTERT	
		l	ENTERT	
		N	A	L
	B, FOR MULTI-LAYER INDUCTANCE!	r	ENTERA	
		Q	ENTERA	
		Ь	ENTERT	
		И	В	L
	C, FOR SPIRAL WINDING INDUCTANCE!	r	ENTERA	
		Ь	ENTERT	
		N	С	۲
	D, FOR STRAIGHT WIREINDUCTANCE:	Q	ENTERA	
		d	ENTERA	
		f	D	L
	E, FOR SINGLE-LAYER TURNS :	r	ENTERA	
		٩ ٩	ENTERA	
		L	f A	N
	F, FOR MULTI-LAYER TURNS !	r	ENTERA	
		l	ENTERA	
		Ь	ENTERA	
		L	FB	N
	G. FOR SPIRAL WINDING TURNS 1	r	ENTERA	
		Ь	ENTERT	
		L	FC	N
3.	FOR A NEW CASE GO TO STEP 2			
	A THROUGH G, AS APPROPRIATE.			
	· · · · · · · · · · · · · · · · · · ·			

			07	Progr	am	Lis	sting I					47
STEP	KEY ENTRY	KEY CODE	71	COMMENTS		STEP	KEY ENTRY	KEY CODE	с	OMM	ENTS	17
001	LBL A	21 11					RCL A	36 11				
	STO C	35 13	STOI	REN			6	06]			
	KV STO B	-51	STO	RFS		060	X	-35	-			
	 R↓	-31	510				ACL D	09	-			
	STO A	35 11	STO	RER			×	-35	1			
	χ^2	53					+	- 55]			
	RCLC	36 13					RCLC	36 13				
010	7 -	55						01	-			
	RCL A	36 11					×	-35	1			
	9	09					+	-55				
	×	- 35					<u>.</u>	-24		,		
	RCL B	36 12				070	PRTX	-14	PRINTS	L	VAL	UE
	1	01					RTN	24	4			
	 X	00					LBL + b	21 16 12	STARE	1		
	+	-55					RJ	-31		_		
		-24					STO C	35 13	STORE	Ь		
020	PRTX	-14	PRI	NTS L VAL	_UE		R↓	-31				
	RTN	24					STO B	35 12	STORE	Q		
	LBLfa	21 16 11		REI			RY	-31	STORE	r		
	STO C	35 13	STO			080	STO A	35 11		'		
	STO B	-31	STO	RE &			6 X	-35	-			
	RU	-31	510				RCL B	36 12	-			
	STO A	35 11	STO	RET			9	09				
	9	D9					X	-35				
	X	-35					+	-55	4			
030	RCLB	36 12					RCL C	36 13	-			
	1							01	-			
	×	- 35					×	-25	-			
	+	-55				090	+	-55				
	RCL C	36 13					RCL D	36 14				
	X	-35					<u>×</u>	-35	4			
	$\sqrt{\mathbf{x}}$	54					172	54	4			
	KCLA	-74					•	- 67	-			
040	PRTX	-14	PRIN	TS N VAL	UE		1	01	1			
	RTN	24			ĺ		1	01				
	LBL B	21 12					8	08				
	STO D	35 14	STO	REN		100	×	- 35	_			
	RV	-31	CTO I			100	KCL A	36 [[-			
	SID C	-31	5101				PRT -	- 14	PRINTS	N	VALL	Æ
	STO B	35 12	STOR	EQ			RTN	24	1	•		•
	R↓	-31					LBL C	21 13				
	STO A	35 11	STOP	re r			STO C	35 13	STORE	N		
050	<u>γ</u> ²	53					R V	-31	STORE	Ь		
	RCL D	36 14					STO B	35 12		v		
	<u> </u>	-35					STO A	35 11	STORE	r		
	•	-62				110	χ^2	53				
	8	08					RCLC	36 3	4			
	X	-35			REGIS	TERS		55				
0	1	2	3	4		5	6	7	8	T	9	
Ľ						-				\rightarrow	20	
S0	S1	S2	S3	S4		S5	S6	S7	58		59	
^A USE	Ð	BUSED		USED		D US	EP	E	I			

18			97 Prog	gram	List	ing H			
STEP	KEY ENTRY	KEY CODE	СОММ	ENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	×	-35				•	-62		
	RCLA	36 11			170	2	02		
	8	08	4			7	07	4	
	×	-35	_			2	02		*~/'
	RCL B	36 12	-			X	- 35		۶,
		01	-			4	04	4	
120		-35				5	05	1	
	$\hat{+}$	-55	-			$f x > u^{?}$	16-34	15 "x" < OR	2 4,5 ?
		-24	-			GTO I	22 01	1	
	PRTX	-14	PRINTS L	VALUE		x = 4	-41		- (
	RTN	24			180	f LOĞ	16 32	EVALUAT	Εδ
	LBLfc	21 16 13				•	-62	1 1	
	STO C	35 13	STORE L				01	4	
	RV	-31	Laran h			5	05	4 1	
	STO B	35 12	- SIDRE D			5	-55	4	
130		-31	STARE Y				-72	4	
		08				£ 10×	16 33	1 (
	×	-35	-			GTO 2	22 02	1 /	
	RCLB	36 12	-			LBLI	21 01	1 /	
	1	01			190	XAY	-41]	
	1	01				~~ ²	53		
	X	-35	_			2	02	4 /	
	+	-55	4			0	00	4 1	
	RCLC	36 13	4			2	02	4)	
140	X	-35	4			•	-62	4	
140		26 //	-1			<u> </u>	-74		
		-74	-				-72	4	
	PRT ~	-14	PRINTS N	VALUE		•	-62		
	RTN	24			200	2	02	1 /	
	LBL D	21 14	-			5	05	1	
	STOC	35 13	STORE FR	EQUENCY		+	-55] 1	
	RV	-31				LBL 2	21 02		
	STOB	35 12	STORE d			RCL D	36 14	4	
	RV	-31				+	-55	4	
150	STO A	35 11	- STOKE X			KLL A	36 11	4	
	4	04	4				- 35	4	
	RCIB	36 12	-			0	-62	4	
	-	-24	42/1		210	0	00	4	
	Inx	32	1			5	05	1	
	1	01	1			0	00	1	
	-	-45				8	08]	
	RCL B	36 12				×	-35		NO. UNE
	RCL A	36 11	4			PRTZ	-14	PRINTS L	VALUE
160	2	02				RTN	24		PROCRAM
	1 ÷	-74	4			K/3	51		RUGRAN
	+	-55		. `				-	
	STO D	35 14	STORE (In 42	-1 + d) PART	220	†		-	
	RCL C	36 13		29					
	$\sqrt{\gamma}$	54							
	RCL B	36 12							
		-35			1		L.,		
A (0		JEI STATUS	
		-) - L		(4)			FLAGS		DISP
^a N (<i>ı</i>) [▷] N ((2) ^C N	(3) ^a	e				DEG 🛛	FIX 🕱
0	1 5	2 U	SED ³	4		2	1 🗆 🛛	GRAD	SCI
5	6	7	8	9	1	3		RAD 🗆	ENG ∐ n 4
1		1	1			1		1	

Program Title	Complex Impedance Calcula	tor - AC Circuit Calculator	
Contributor's I	Name Ian A. Webb 21 Canyon View Dr.	West Valley College Saratoga, CA 95070	
City Sar	atoga,	State CA	Zip Code 95070

Program Description, Equations, Variables An AC circuit/complex number or impedance calculator that behaves the same as the HP-67/97 for real numbers. Fully automatic stack lift and exact stack movement simulating the bare HP-67/97 is provided. Functions implemented are: X and Y register exchange, 1/X, multiplication, division, addition, subtraction, enter, roll-down, STO (0-6) and RCL (0-6). 5 secondary (protected) storage locations and 2 primary (non-protected) locations are provided. Register review is possible viewing first the imaginary and then the real portion of each complex number in the simulated four-level stack.

COMPLEX SIMULATED STACK	r	r	Z		Y		x		
REGISTER USED	0	1	2	3	4	5	6	7	L
QUANT ITY STORED	Imag.	Real	Imag.	Real	Imag.	Real	Imag.	Real	

COMPLEX SIMULATED STACK	2	s	Y	
HP-67/97 STACK	x	У	z	t
QUANT IT Y	Real	Imag.	Real	Imag.

Registers 8 and 9 contain either the last number pair worked with or the results of the last arithmetic operation. (8 = imaginary part, 9 = real part)

Operating Limits and Warnings During STO and RCL operations, a number 0 through 6 must be entered during the pause operation after pressing the STO or RCL user-defined keys. A 0. is displayed as a reminder during this pause. This number indicates the storage location used.

All entries must be converted to (or entered in) rectangular Real + j Imaginary format before any operations are used.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) $R X_{c} Z_{2} = 50 - j25 \Omega$ $V_{1,2} X_{c} Z_{4} = 16 - j10 \Omega$ $Z_{5}/16^{\circ}V RV$ $Z_{1} = 12 + j18 \Omega SG$ $Y_{3} = .015 + j.02 S$
Sample Problem(s) Find: I_T , Z_T , and $V_{1,2}$ in circuit above
$Z_{T} = Z_{1,2} + Z_{3,4}$ $1/Z_{1,2} = 1/Z_{1} + 1/Z_{2}$ $1/Z_{3,4} = Y_{3} + 1/Z_{4}$
$I_{T} = V_{T}/Z_{T}$
V _{1,2} = I _T X Z _{1,2} ANSWERS FROM STEPS BELOW
$Z_{\rm T} = 25.79 + j3.30 \text{A} \text{g} \rightarrow \text{P} \qquad 26 / 7.29^{\circ} \Omega$
$I_{T} = .95 + j.15$ A g $\rightarrow P$ $.96 / 8.71^{\circ}$ A
$V_{1.2} = 13.20 + j13.15 \text{ g} \rightarrow P$ 18.63 /44.89° V
Solution(s) 1/Z ₁ : 18 Ef 12 f D (.03 - j.04) (remember h x≠y to view other part) 1/Z ₂ : 25 CHS Ef 50 ff D (.02+j.01), 1/Z _{1,2} : (+)B (.04 - j.03) Z _{1 2} : (1/Z)f D (15.64+j11.44), Y ₃ : 02 Ef .015 (Ef)A (.02+j.02)
$1/Z_4$: 10 CHS EN 16 (1/Z) f D (.04 + j.03), $1/Z_{3,4}$; (+) B (.06 + j.05),
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Exchange Z_{T} and V_{T} : $f E$, I_{T} : $(\div) E$ (.95 + j.15), RCL $Z_{1,2}$: $f C$ 1, $V_{1,2}$: $(X) D$ (13.20 + j13.15)
Reference (s)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program from card or keyboard.			
2.	Clear as desired: Stack Clear and memories		f CLREG	
	5 and 6		CLX E	
	Clear memories 0-4		f Pas	
			f CLREG	
			f P F S	
З.	Solve complex number problem using RPN			
	ALL INPUTS IN RECTANGULAR FORMAT			
	ENTER (Ef) X Ef R (imag., enter, real)	X ET R	A	Real part
	R	1	f A	1
	+		В	
	-		С	
	X		D	
	·•		E	
	1/Z _X		fD	
	$Z_{\mathbf{x}} \longrightarrow Z_{\mathbf{y}} (\mathbf{X} \rightleftharpoons \mathbf{Y})$		f	t
	STO (0-6)	*	fB	0.
	input # of storage location 0 through 6	# location	#	Real part
	RCL (0-6)		fC	0.
	input # of storage location 0 through 6	f' location	#	Real part
	To raise to a power, use continued enters and			_
	multiplies.			
	STACK REVIEW $(X_T, R_T; X_Z, R_Z; X_V, R_V; X_V, R_V)$		h REG	
4.	To view imaginary part at any time:	Real part	h x₹ y	Imag. part
	CAUTION: Exchange before continuing	Imag. part	h x₹ y	Real part
5.	To enter and use a polar notation number			
	enter as an angle and magnitude 🖉 [] Z	magnitude	f R-	Real part
6.	To convert an answer from resistance and react-			
	ance (real and imaginary) to impedance and	Real part	g →P	magnitude
	angle (magnitude and angle)			
	CAUTION: Convert back to rectangular before	magnitude	f R-	Real part
	continuing calculations.			
7.	To correc t an incorrect entry use CLX to remove			
	old entry and key over.			
	CAUTION: Since the arithmetic operations use			
	the x,y,z,t stack for numbers, the previous			
	X is moved to z and t. The stack order must be			
	maintained when correcting an incorrect entry.			
	Stack can be restored by a RCL 6, RCL 7.			

22			67 Program	Lis	sting I		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	f LBL 🕲	31 25 08	ENDING LOCATION		RCL 4	34 04	Complex Y to X
	h SF 0	35 51 00	update x,y,z,t		STO 6	33 06	
	RCL 4	34 04	stack locations	060	RCL 5	34 05	
	RCL 5	34 05	-		b RTN	35 07	
	RCL 0	34 00	indicate no enter		f LBL (9)	31 25 09	
	h PTN	35 22	FO set		RCL 6	34 06	Complex X to Y
	f LBL O	31 25 00			STO 4	33 04	
	STO 9	33 09	DECISION TREE		RCL 7	34 07	
010	h x ≠ y	35 52	1		STO 5	33 05	
	STO 8	33 08	returns 2,3 or 5		h RTN	35 22	
	2	02	depending upon:		f LBLA	31 25 11	
	h F? 0	35 71 00	keyboard entry,		f GSB 0	31 22 00	Enter Routine
	GTO O	22 00	RCL operation or	070	GTO (i)	22 24	and stack ments
	h STI	35 33	previous operation		f LBL ③	31 25 03	and stack manip.
	h F? 3	35 71 03	an enter		f GSB 4	31 22 04	
	h RTN	35 22			f GSB 9	31 22 09	
	<u>h F? 2</u>	35 71 02	stores present		f GSB 6	31 22 06	
	5	05	number pair in		f LBL (2)	31 25 02	
020	h STI	35 33	temporary location		h SF 3	35 51 03	
	h RTN	35 22	8 and 9, enters		h SF 2	35 51 02	
	<u><u>F</u>LBL (U)</u>	31 25 00	in I register		f GSB 1	31 22 01 31 22 06	
			in i register	080	h CF O	35 61 00	
		25 22	1		f LBL (5)	31 25 05	ending for RCL only
		25 61 02	1		h RTN	35 22	
	h DTN	35 22	1		g LBL (a)	32 25 11	
	f LBL	31 25 01	1		f GSB 0	31 22 00	Roll down Routine
	RCL 2	34 02	Complex Z to T		GTO (i)	22 24	and stack manip.
030	STO 0	33 00	1		f LBL (2)	31 25 02	_
	RCL 3	34 03]		f GSB 7	31 22 07	
	STO 1	33 01			g SB a	32 22 11	
	h F? 3	35 71 03			f LBL 🕄	31 25 03	
	GTO 4	22 04	4	090	RCL 8	34 08	
	h RTN	35 22			STO 0	33 00	
	f LBL (4)	31 25 04	Complex Y to Z		RCL 9	34 09	
	RCL 4	34 04			STO 1	33 01	+
	STO 2	33 02	4		GTO 8	$\frac{22}{32} \frac{08}{25}$	
040	RCL 5	34 05	4		g GSB d	32 23 14 32 22 14	1/Z Routine
040	STO 3	33 03	4		f GSB 0	31 22 00	
		35 71 02	4		GTO(i)	22 24	1
		25 22	-		f LBL (3)	31 25 03	
	f I PI G	31 25 05		100	h SF 3	35 51 03	1
	RCL 8	34 08	Temporary t to Y		f GSB 1	31 22 01	
	STO 4	33 04	1		f GSB 9	31 22 09	1
	RCL 9	34 09	1		f LBL 2	31 25 02	
	STO 5	33 05]		f GSB 6	31 22 06	
	h RTN	35 22			GTO 8	22 08	
050	f LBL (6)	31 25 06	temporary t to X		f LBL 🕑	31 25 15	Divide Routine
	RCL 8	34 08			g GSB d	32 22 14	
	510 6	33 06	4		f LBL (D)	31 25 14	Multiply Routine
	RCL 9	34 09	4	110	$g \rightarrow r$	35 52	
	STO 7	33 07	4		h R	35 52	
	f LBL (7)	$\frac{35}{31} \frac{22}{25} \frac{37}{07}$				35 53	
		1 22 23 07	REGI	STERS			
⁰ COMF	PLEX \mathbf{T} REG.	² COMPL	$EX^{3}Z$ REG. ⁴ COMPLEX	⁵ YREC	G. ⁶ COMP	$LEX^7 X REG$	⁸ TEMPORARY REG, t
^{S0} ALL	SECONDARY	REGISTERS	USED FOR STORED QUANT	S5 ITIES	IN STO AND	RCL OPERAT	10NS
A RE	EGISTERS TH	BROUGH 🕞 US	ED FOR STORED QUANTIT	D IES IN	STO/RCL	E USED	I USED

Program Listing II

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMN	IENTS
	g →P	32 72	T		GTO 8	22 08		
	h R f	35 54		170	f LBL (3)	31 25 03	1	
	x	71			h SF 2	35 51 02		
	h R	35 53			h SF 3	35 51 03		
	+	61			f GSB 1	31 22 01		
	h R†	35 54			GTO 8	22 08		
	f R←	31 72			g LBL	32 25 13	RCL Routi	ne
120	f GSB 0	31 22 00			h SF 2	35 51 02		ine
	GTO (i)	22 24			f GSB A	31 22 11		
	g LBL (d)	32 25 14	Invort routing for		g GSB c	32 22 13		
	g →P	32 72	divide routine not		RCL E	34 15		
	h 1/x	35 62	1/7 routino	180	h STI	35 33		
	hx≓y	35 52			RCL (i)	34 24		
	CHS	42	4		STO 7	33 07		
	h x ≠ y	35 52	_		f ISZ	31 34		
	f R←	31 72	4		RCL (i)	34 24		
	h RTN	35 22			STO 6	33 06		
130	f LBL (C)	31 25 13			GTO 8	22 08		
	CHS	42	Subtract Routine		g LBL(b)	32 25 12	STO Routi	ne
	<u>hx</u> ≩ y	35 52	4		f GSB O	31 22 00		ne
	CHS	42	4	100	g GSB c	32 22 13		
	h x 🕈 y	35 52		190	GTO(1)	22 24		
	<u><u><u>t</u></u> LBL (B)</u>	31 25 12	Add routine		I LBL (3)	31 25 03		
	$h x \neq y$	35 52	-		n SF 3	35 51 03		
		35 53	-4		I GSB I	31 22 01		
	+		-4		I GSB 9	31 22 09		
140		35 53	4		f LBL (2)	31 25 02		
140	+		-		KUL E	34 15		
		35 54	4			35 33		
	f GSB U	31 22 00			f GSB 6	31 22 06		
	$\mathbf{F}_{10}(1)$	22 24	-	200	$\frac{STO(1)}{1}$	33 24		
	t LBL (2)	31 25 02	-		<u>f</u> ISZ	31 34		
	g GSB a	32 22 11	-1		h x ₹ y	35 52		
	<u>f GSB 6</u>	31 22 06	4		STO(1)	33 24		
	GIU 8	22 08			GTO 8	22 08		
	BCI 2	34 02	Complex 7 to Y			32 25 13	STO/RCL 1	ocation
150	STO 4					63	entry Ro	outine
		34 02	-			25 24		
	STO 5	32 05	1			<u> </u>		
		34 00	1		0 קאר	23.00		
	STO 2	33 02	4	210	b DAUSE	25 00		
	RCL 1	34 01	1		h F2 3	35 71 02		
	STO 3	33 03	1		GTO f c	22 31 13		
	h RTN	35 22	1		GTO(1)	22 24		
	f LBL (3)	31 25 03			g LBL C	$32\ 25\ 13$		
	f GSB 1	31 22 01	part of Add routine		DSP 2	23 02		
160	f GSB 6	31 22 06	1		5	05		
	GTO 8	22 08	7		+	61		
	g LBL	32 25 15	Complex V V Ruchne		2	02		
	f GSB Ö	31 22 00	Complex A, 1 Exching		x	71		
	h SF 2	35 51 02		220	STO E	33 15		
	GTO (1)	22 24			h R	35 53		
	ILBL (2)	$\frac{31}{25} \frac{25}{22} \frac{02}{27}$	4		h R	35 53		
	f GSB /	31 22 07	4		hx≩i	35 24		
	t GSB 5	31 22 05		L	h RTN	35 22	SET STATUS	
A was	D B HOT			CED	0 HORD		SEI STATUS	
USE		ו כ	ISED - USED - U	5ED	USED	FLAGS	TRIG	DISP
^a USE	D ^b USE	CD ^c I	JSED ^d USED ^e U	SED	1			FIX 52
0 1165		2 I	ISED 3 USED 4 II	SED	2 JISED			SCI 🗆
5				CED		2 0 8	RAD 🗆	
) USE	use use	י אן עז	DEED ° USED 9 U	SED	3 USED	3 🗆 🛚		n _ 🔏

Program Title WYE DELTA TRANSFORMATIONS DELTA WYE TRANSFORMATIONS Contributor's Name DOUGLAS R. RANZ Address GB MITCHELL ROAD City WILMINGTON State OHID Zip Code 45177

Program Description, Equations, Variables GIVEN A WYE OR DELTA. LDAD THIS PROGRAM CALCULATES THE RESPECTIVE IMPEDANCES OF THE OTHER EQUIVALENT LDAD. EQUATIONS USED ARE: $Z_{A} = \frac{\overline{z}_{1}\overline{z}_{2} + \overline{z}_{1}\overline{z}_{3} + \overline{z}_{1}\overline{z}_{3}}{\overline{z}_{1}} = \frac{\overline{z}_{A}\overline{z}_{B}}{\overline{z}_{A} + \overline{z}_{B} + \overline{z}_{C}}$ $\overline{z}_{B} = \frac{\overline{z}_{1}\overline{z}_{2} + \overline{z}_{2}\overline{z}_{3} + \overline{z}_{1}\overline{z}_{3}}{\overline{z}_{3}} \quad \overline{z}_{2} = \frac{\overline{z}_{B}\overline{z}_{c}}{\overline{z}_{3} + \overline{z}_{R} + \overline{z}_{c}}$ $\overline{z}_{c} = \frac{\overline{z}_{1}\overline{z}_{2} + \overline{z}_{2}\overline{z}_{3} + \overline{z}_{1}\overline{z}_{3}}{\overline{z}_{1}} \quad \overline{z}_{3} = \frac{\overline{z}_{A}\overline{z}_{C}}{\overline{z}_{1} + \overline{z}_{R} + \overline{z}_{C}}$ **Operating Limits and Warnings** 1. IT IS VERY IMPORTANT TO OBSERVE COMPONENT DESIGNATIONS. 2. BE SURE TO INPLIT ZERO (DO NOT SIMPLY PRESS [CLX]) FOR X (OR R) WHEN Z IS PURELY RESISTIVE (DR REACTIVE).

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	LOAD SIDE ONE AND SIDE TWO			
	INPUT:			
2	į X	RECT.	ENTHER	
3	R	RECT.		
4	4X	RECT.	ENTER	
5	· v	RECT.	ENTER	
0		RECT.	C	
7	SELECT TRANSFORMATION			
	<u> </u>			
			D	
	<u>1 2</u>			
	\rightarrow Y (WYE)		E	
	3			
	OUTPUT:			
	R PAUSE in A			REST.
	R PAUSE JA			RECT.
	R PAUSE JA			KECT.

			67 I	Progra	m Lis	sting I			0
STEP	KEY ENTRY	KEY CODE	V	COMMENTS	STEP	KEY ENTRY	KEY CODE	COM	Z.
001	FLBL A	31 25 11				RCL I	3401		
	STU O	35 00				KCL O	34 00		
	STDI	33 01			060	RUZ	31 22 01		
	h RTN	35 22				RCL Z	34 02		
	FLBL B	31 25 12				FGSB Z	31 22 02		
	STO 2	33 02				٤+	21		
	hxary	35 52				RCL 3	34 03		
010	SID S	35 05				FGSR I	3402		
	FIBLC	31 25 13				RCL 5	34 05		
	STO 4	33 04				RCL 4	34 04		
	h x ++ Y	35 52				FGSB2	31 22 02		
	STO 5	33 05			070	12+	21		
	KIN	21 75 14				KCL I	34 01		
	FASRO	31 23 (4)				fase 1	34 00		
	RCL 3	34 03				RCL 5	34 05		
	RCL Z	34 02				RCL 4	34 04		
020	FGSB 3	31 22 03				FGSB 2	31 22 02		
	RCL 5	34.05				2+	21		
	FUCE F	31 27 13				FGSR I	31 22 01		
	RCL 1	34 01			080	h RTN	35 22		
	RCL O	34 00	I			FLBL I	3125 01		
	FGSB 3	31 22 03				g→P	32 72		
	h RTN	35 22				STO 6	33 06		
	FLBLE	31 25 15				K X Y	55 56		
030	RCLI	34 00				h RTN	35 27		
	fGSB1	3122 01				FLBL Z	31 25 OZ		
	RCL 3	34 03				3-> P	3272		
	RCL Z	34-02			000	STO*6	337106		
	FGSB Z	3122 02	{		090	n xay	35 56		
	FGDB F	31 22 04				RCI 7	74 17		
	RCL S	34 02				RCI 6	34 06		
	FGSBI	3122 01	1			FR-	3172	•	
	RCL 5	34.05				h RTN	35 22		
040	RCL 4	34 04				+ UBL S	31 25 05		
	FGSBC	312202				STO 8	SC IC ZZ DB		
	RUI	34 01				h X-+Y	35 52		
	RCL O	34 00			100	STO 9	33 09		
	FGSBI	31 22 01				RCL 6	34 06		
	RCL 5	34 05				KCL B	34-08		
	KCL 4	34 04				STO A	22 11		
	465B2	3122 04				RCL 7	34 07		
050	HRTN	35 22				RCL 9	34 09		
	FLBL O	312500					51		
	+ P-s	3142				E R -	34 11		
	STO 4	33 04			110	F -x-	31 84		
	STO 6	33 06				h x↔y	35 52		
	f P+S	3142				+ -x-	31 84		
0	1	2	3	F	IS ISTERS	6	7	8	9
R	Υ _κ ΄	Ê R	Š Å	XR	Ĭ ' ' X	USE	DUSED	USED	USED
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
ļ				LISE		IUSE		<u></u> т	1
A <	= D	D					USED		

8		f	57 Program	n List	ing II			
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	h RTN	35 22		170				
	RCL O	34 00						
	RCL Z	34 02						
	4	5401						
120	+	61						
	RCL I	3401						
	RCL 3	34 03						
	+	61		180				
	+ Pri F	24.15						
	FGSB 3	31 22 03						
	h RTN	3522						
130								
				190				
140								
				200				
150								
100								
	+							
				210				
160								
				220				
Α	IR -			F I.Z	FLAGS		SET STATUS	
ix 1	R X	R X	IR + ave		1	FLAGS	TRIG	DISP
0	1		3	4	2			FIX 🕱
<u>LISE</u>	D USE		ED LISED		3	2		
-	Ľ	I′	Ŭ	-	Ĭ	3 🗆 🖬		n_ <u>~</u>

Program Title RC	TIMING		
Contributor's Name J	John Craig		
Address RF	D I		
Address Mal	P I Icala	~ N/ely	+ 6840 2
	-00(m	State /VCOV	
Program Description, Equation	ons, Variables		
Given	5 of 6 v	ariables, th	e sixth value
will be s	olved for.	They are: K	esistance.
constance	Valtage befor	ro ctop Volt	nop ofter step
in tantance,	· Voltage of	i Limo	uge al let step,
Ins ian ianeou	s vollage, un	a time.	
	V2 (atter)		
Vi (before)	9		
	ξø		
	ξŇ		
		instantaneous)	
	÷−c		
	Ŧ		
		-	
A variat	· · · · · · · · ·	solutions	1 1'+ 1
U Variei	or design	Car	be expedited
with this pr	ogram. 11m	ers, OSCIllato	ors, etc., of ten
use KC charg	ing times.		
	•		
Operating Limits and Warning	1 3		
Extra no	to: For volt	ages across	the resistor
Komom Las +	$l_{+} = V_{+} = V_{+}$	= V wind at	- 11 + 10 - 0
remember 11	hai VK T VC	applied u	all 1/14c2,
This program has been verified	only with respect to the numeric	al example given in Program	Description II. User accepts and uses
this program material AT HIS C upon any representation or des	WN RISK, in reliance solely upo cription concerning the program	on his own inspection of the p material.	program material and without reliance

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	all so	utions a	re alge	braically	deriv	ed fr	om
this basi	c form	ula:	U	/			s.
			-t		-t		
		$V_{\star} = V_{\star} \epsilon$	2 +	V2 (1 -	e ~)		
		EI 3	× 11 ⊥	C C		را	1 1)
		Flag S	indicale	s for	each	Key	Whether
dala enti	y 04	a solut	10n 15	gesire	do		

Sample Problem(s) Problem 1; A 555 type integrated circuit timer uses an external RC configuration for time determination. When used as a one-shot its output pulse terminates when the capacitor charges to 2/3 of the supply voltage. Until the pulse starts, the capacitor is shorted across, so V, = 0. Given a supply voltage of 12V, a 47 uF capacitor, and you need a I second pulse, what size resistor should you use? Load program, V, = O (no need to enter this) Vz = 12 (key A), Vi = 8 (key B), C= 47 x 10 6 (Key C), T= 1 (Key E), then R (Key D) = 19.4 KD Solution(s) Problem 2; Input voltage to an RC configuration suddenly drops from +12 VOC to -24 VDC. If R= I Meg (1x106) C = 47 MF (47×10⁻⁶), how long will it take for the voltage across the capacitor to reach -23 VK 23 chs B, Solution Steps: 12 fA, 24CHS $A_{,\Lambda}$ eex 6 D, 47 eex 6 chs C, $E (\rightarrow T)$ yields seconds 168 How about -22 VDC? 22 chs B, $E \rightarrow 136 sc.$ 21 chs B $F \rightarrow 117 sec.$ or -21 VDC? 21 chs B, $E \rightarrow 117$ sec.

etc.

	RCTTMING			
			7	
			_	
	$[\underline{\mathfrak{S}}_{\underline{V}_{\underline{Z}}}, \underline{V}_{\underline{L}}, \underline{C}_{\underline{L}}]$	ĸ	T	
STEP	INSTRUCTIONS		KEYS	
1	load side 1	DATAORITO		DATA/ONTO
2	Enter Known data and use			
_	annapriate tay to load Example:	2000	12	(Rentered)
	appropriare rey to toda. L'ampice			
3	Revent sten 2 for total of			
-	5 Knowns (Note that Vi is			
	often zero and needs no			
	loading.)			
	(out ing)			
4	Activate solution of the			
	Unknown value by using			
	appropriately labeled Key Examples		E	"seconds"
				(southin)
	Note: For multiple solutions			
	where maybe only one factor			
	Varies just reload the changing			
	Variable pach time. Data renains			
	after each solution.			

20			67	Progr	am	LĬS	sting I			
32 STEP	KEY ENTRY	KEY CODE	U/	COMMENTS		STEP	KEY ENTRY	KEY CODE		COMMENTS
001	LBC A	31 25 11					STOE	33 15		
	STOA	33 11					F7.3	35 71 03		
	F3	35 71 03		V_{\neg}		060	K/S	21 25 05		
	KS INP I	21 25 01		12			GRALA	37 22 12		
	GSB FC	32 22 13					RCLC	$\frac{34}{34}$ /3		
	RCL9	34 09					RCLD	34 14		
	+	61					X	7/		
	RCLB	34 12					<u> </u>	71		
010	ХУ	35 52					STOE	33 15		
	pria	8/					PAREA	27 75 11		
		37 09					STO9	23 09		
	STOA	33 11				070	F?3	35 71 03		
	RS	84					R/5	84		
	lse B	3/25 12					lbe 6	31 25 06		
	STOB	33 12					GSBFC	32 22 13		1/
	F?3	35 71 03					KCLA	34 11		V
020	8007	3175 02					RCIB	34 17		•
020	GSBFC	32 22 /3		\mathbf{X}			XY	35 52		
	RULA	34 11		Vi				51		
	RCL9	34 09					RCLE	34 15		
	-	51				080	RCLD	34 14		
	X	71					RCLC	34 13		
	RCL9	34 09					×	//		
	6TD B	33 12					CHS	47		
	R/S	84					e ^x	32 52		
030	lolc	3/25 13					4	81		
	STOC	33 13					5709	33 09		
	F?3	35 71 03					R/S	84		
	NS DOD 7	84		C		090	LEF B	52 45 12	S	ubroutine
	GSRER	32 22 12		\cup			RUR	34 12		
	KCLD	34 14					RCL9	34 09	_	$-l_{i}\left(1-\frac{V_{i}-V_{i}}{V_{i}}\right)$
	X	71					_	51	1	$V_2 - V_1$
	RCLE	34 15					RCLA	34 11		× /
0.40	XY	35 52					RCL9	34 09		
040	Ť.	77 17						5/		
	<u> </u>	33 13						51		
	idep	31 25 14					en	3/ 52		
	STOD	33 14				100	CHS	42		
	F?3	35 71 03					RTN	35 22		
	R/S	84					LHCFC	32 25 13		cul contina
	LUK 4	31 23 04		R			PriE	74 15		Surroutine
	RIIC	34 13		, ,			RCI_D	34 14		I - O RC
050	X	71					RAC	34 13		1 2
	RULE	34 15					X	71		
	<u> </u>	35 52					÷	81		
	- TON	37 14				110	CHS OX	32 52		
	R/S	84					-	51		
	IBEE	3/ 25 15					RTN	35 22		
					REGIS	STERS		7	Ie.	
0	1	2	3	4		5	b	ľ	0	Γ V _I
S0	S1	S2	S3	S4		S5	S6	S7	S8	S9
	I					D		F		I
	γ_{2}	\vee		ĭ C		0	R	T		-

			67 Progran	n List	ing H			33
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
			4	170				
			User may					
			wish to					
120								
			develop a					
			similar progra	180				
			for this half	2				
			of card fo	r				
			12 I circuit					
130				>				
			if it would					
			hene fit you	190				
			LBL A					
140			F?3					
			R/S					
				200				
			(Solution)					
150			R/S					
150								
			Use this					
			Format, modif	210 Ted				
			for could					
			I I I A					
160			Variable ot					
			course.					
			-	220				
			-					
					FLAGS		SET STATUS	
A V-	^B V	i c (E	0	FLAGS	TRIG	DISP
a V	b USE	d ° u.	sed	e	1	ON OFF	DEG 😡	FIX 🗆
0	¹ USea	d ² us	sed ³ used	⁴ used	2	1 🗆 🔀 2 🗆 🕅	GRAD □ RAD □	SCI 🗆 ENG 🛛
⁵ use	d ⁶ use	d 7	8	Э	odata?	3 🗆 🔀		n_ 2

Program Title SERIES R-L-C CIRCUIT ANALYSIS PROGRAM Contributor's Name HARLAN ASLIN Address 4796 WINGLATE DRIVE City PLEASANTON State CALIFORNIA Zip Code 94566

Program Description, Equations, Variables Given the values of R, L, and C, the program determines the characteristics and performance of the series RLC circuit for the condition where the capacitor is initially charged. The first part of the program determines whether the circuit is underdamped, critically damped, or overdamped. This information is followed by an evaluation of the time to peak current, and the normalized value of peak current. For the underdamped case, these information are supplemented by the normalized value of capacitor voltage reversal. The second part of the program determines circuit current as a function of time for a given capacitor initial charge voltage, Vc, and a given time step, At, specified by the User. The relevant equations are: critically damped under damped overdamped e " sin i Bt = <u>v</u> te F Tan jp $B = (\alpha^2 - \omega^2)^2$ Note: X= 1/2 normalized **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) \mathcal{m} V_{c+} ilt > R sample Problem(s) Evaluate circuit performance, and determine the current as a function of time for the following parameters: $R = 2\Omega$ $L = 4\mu H$ $C = 1\mu F$ V= IKV Let At = 0.2 us Solution(s) Keystrokes 9 --187.50 × 10 2.4184 × 10 273.15 × 10 1/03 03 × 10 2[1] 4x10 [1] 1X10 [A] (β^2) (t_p) [R/s] [R/s]163.03×10³ (rev.)* 0.0000×10°, 47,502×10°, 90.032×10°, ETC (itt)) [R/s] 1×103[4] 0.2×10 [B] Reference (s) Analysis of Electric Circuits, Brenner and Javid McGraw Hill, 1959

7

SERIES R-L-C CIRCUIT ANALYSIS PROGRAM START L(t)

STEP	INSTRUCTIONS		KEYS	
1	Load side 1 = 2	DATA/ONTO		DATA/ONTO
2	Inout value of R	R	ENTER	
3	Input value of L	L	ENTER	
4	Input value of C	C	A	β'*
				9
	* the sign of B determines the			
	type of circuit,			
	-p under damped			
	t a ² overdanced			
	+ p Overdamped			
5			R/S	t **
	** time to peak current			peak
				. +
6			R/s	Loeak
	t peak current normalized to			1
	$V_c = 1$ volt			
				le
7	(underdamped case only)		K/s	reversal TT
	* †			
	Capacitor Voltage reversal			
	normalized to Ve = I voit			
8	Toput consister initial	77	ENTED	
	Voltage	<u>~с</u>		
9	Input time step At	Δt	B	i(t)
	1			
	or alternatively to compute			
	Valt) rather than ilt)'			
8	Input capacitor initial voltage	Vc	RCL O	
	T			V.×R
4	Input Time Step, At	Δt		Nr (t)

			67	Progran	ı Lis	sting				37
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP		γκ	EY CODE	COMM	ENTS
001	FLBL A	31 25 11				R/S		84		
		35600				RCL 3		2403		
	STO 2	33 02	C.		060			2404		
	XZY	35.52	Ŭ			Ť		75 72		
	STO 1	3301	L			×		71		
	ENTER	41				CHS		42		
	RY	3553				e×		32 52		
	×	71				STO 7		3307	Cap. rev	ersal
010	/×	35 62				R/S		84	•	
	KND	31 44				KTN	71	32 (2		
	STO O	33 00	R			H LOL U	131	22 00		carry
	3100	3300	• •		070	STA F		33 15	damp	eo
	2	02				RCL 3		3403		
	x	71				Vx	-	35 62		
	Vx	3562				STO4		3304	toeak	
	Sto 3	33 03	α			R/S		84	Four	
	X ²	32 54				1		01		
020	RND	3124				CHS		42		
	RA	3554				<u>e</u> ^		32 22		
	-					<u> </u>				
					080	Prin	<u> </u>	34 00		
		31 81					4	81		
	GTOI	22 01				STO 5		33 05	i. sould	
	R/S	Ru	6-70	inderdamped		RTN		35 22	- peak	
	STO E	3315		1-1		FLBLI	31	2501	(+) overd	amped
	SFO	35 5/00				R/S		84		•
030	ABS	3564				STO E		33 15		
	TX .	3154	•			SFI	35	5101		
	510 4	3504	Þ			X X		31 24	Δ	
	KCL J	24 00			090	5104		55 04	P	
		32 / 1				- ENTES		<u> </u>		
	PCI LL	3401				BCI L		3404		
		STOT R				RCI	<	3403		
	STO 5	33 05	t,	est.				81	ľ	
	R/S	84	1			+-		61		
040	RCL 5	34 05				1		01		
	ENTER	41				LSTX	· •	35 82		
	RCL 4	34 04				-		<u> </u>		
		71			100	1		2, 42		
 	DOIZ					7 7	_ `	02		
	X	2705				\mathbf{x}	-	71		
	CHS	47				÷		81		
	e×	32 52				STO 5		33 05	Tpeak	
050	X	71				R/S		84		
	RCL4	3404				RCL 4		34 04		
	RCLI	34 91				RGLD		24 02		
		35/2			110	GSB	2 31	22 02		
	'/ X	23 02	•			RCL 3		3403		
	5106	33 06		reak		RCL 5		34 05		
				REG	ISTERS				10	0
°R	1 L	² C	3	x ^⁴ used	5usc	d ⁶ use	d	used	°	š∆t
S0	S1	S2	S3	S4	S5	S6		57	58	29
^ USI	ed	"ilt) or V.	(t)	° t	D	•	E	B ²	incr	Δt

20				K	7 P	rogr	am	List	ing II			
SO STEP	KEYI	ENTRY	KEY	CODE		COMMENT	S	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
		κ 📃		71					ENTER	41		
	CH	<u>s</u>	21	42				170	RCL 3	34 03	<u>8</u>	
	5		32	54					CUS	4	5	
	Pr		34							32 52	2	
	R	14	30	104					X	71	1	
		X		71					RCLA	3411]	
120	-	<u>.</u>		81					X	71	4	
	5	<u>ro6</u>	33	06	peak	value			STOB	3312	4	
	R		31 24	5 22	initi	alize			152	3 34	-	
			21 24	00	me			180	GTO 5	22.05		
	ST	56	34	5 33					FLBLE	312515] ilt) over	rdamped
	R	V	34	553					STO 9	3300	1	•
	F	0?	357	100					X=Y	3552		
	GIC	$\sum_{i=1}^{n}$	22	2 13					RCLI	340	7	
130	F		35 7	2 15					RCL4	3700	4	
100	6.7		2	2 14						35 6	5	
	F L	BLC	312	5 13	LE	underda	MDC	4	×	21		
	ST	09	3	3 09			F -		STO A	33 11		_
	X	₹Ύ	3	552				190	FLBLG	312506		op
	K		3	401					GSB4	31 2204	E	
	R		<u> </u>	404					ENTER	4	-	
			*	512					DUL	34 04		
		$\hat{\mathbf{x}}$		71					X	71	1	
140	ST	AO	3	311					GSB2	31 22 07	2	
	t r	BL3	312	503	しい	loop			×≠Y	35 52		
	GS	<u>B4</u>	312	204		•			RCL 3	3403	5	
	EN	TER		<u> </u>				200	X		,	
			31							32 52	•	
		X		71					X	71	-	
	S	IN	31	62					RCLA	3411		
	X:	=Y_	3:	5 52					X	71	4	
		<u>cli3</u>	31	403					STOB	3312	_	
150		X Je		-11					193	3184	-	
			32	2.57					GTO 6	2206		
		ζ		21					FLBL2	31 2502	SinhBt	
	RC	LA	3	411				210	C×	32.52		
		<u>× _</u>		71					ENTER	41	_	
	51	TO B	<u> </u>	512					1/X	35 67	-	
		×-	3	134					2		4	
	Gi	7)3	2	203						81	4	
160	17	BL D	312:	514	itt	critica	ily		RTN.	35 22	5	
	S-	109	3	3 09	dan	nped			FLBL4	312504] t + ∆t	
		<u> </u>	3	<u>5 52</u>					RCL9	3409	4	
		<u>ș</u> I	<u> </u>	4 01				220	RCLL	3234	4	
	57	A	3	3 11					STOC	3313	4	
	FL	BLS	31 2	505	LLES	1009			RTN	3522	1	
	G	SB4	31 2	204								
		MER.	L	41	L	RELS			ELAGE	L		
ADIC		Bill	<u></u>	Cites	Under	Ditescrit	Ļ. ∏E	ite over	ounder-		TDIO	DIOD
RLC	•		.)	dam	oed	damped	a c	damped	damped		TRIG	DISP
-	<u>``</u>			Ľ			e		damped		DEG 🗆	FIX 🗆
ORLC C	ed	ACM	bver-	² Sin	hBt	³ itt la	>op ⁴	t+∆t	2			
51101	000	6 ile	OOP	7		8	9		3			n_ 4
		/										

Program Title PASSIVE HIGH AN	D LOW PASS	
COMPOSITE FILTE	R DESIGN	
Contributor's Name ROBERT L.	SHERMAN	
Address 808 SOUTH SARATOGA	AVENUE, APT	Г. 0-206
City SAN JOSE	State CA	Zip Code 95129

Program Description, Equations, Variables Given the desired cut-off frequency and image impedance, the program computes the component values for a prototype "T" or "π" high or low pass filter. Given the desired frequency of infinite attenuation or the desired "m", the program will then compute the component values for an m-derived filter section based on the prototype previously computed. High-Pass Formulas

High-Pass Formulas	Low Pass Formulas
$L_{k} = \frac{R}{4\pi f_{c}} \qquad C_{k} = \frac{1}{4\pi R f_{c}}$	$L_{k} = \frac{R}{\pi f_{c}} \qquad C_{k} = \frac{1}{\pi R f_{c}}$
$Lb = \frac{Lk}{m} \qquad C_a = \frac{C_k}{m}$	$L_a = mL_k C_b = mC_k$
$L_a = \frac{4m}{1-m^2} L_k C_b = \frac{4m}{1-m^2} C_k$	$L_b = \frac{1-ma}{4m} L_k \qquad C_a = \frac{1-ma}{4m} C_k$
$m = \left[1 - \left(\frac{f_{\infty}}{f_c}\right)^2\right]^{\frac{1}{2}}$	$m = \left[1 - \left(\frac{fc}{f_{\infty}}\right)^2\right]^{\frac{1}{2}}$

Variables: fe= Cut-off frequency; R= Image impedance; L= Inductance; C = Capacitance; for= Frequency of infinite attenuation.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) <u>High Pass</u> ack 2Ck <u>aca</u> 2Ca alk <u>atb</u> + "T <u>alk</u> <u>atb</u> + "T <u>ck</u> <u>atb</u> <u>alk</u>	Low Pass ¹ / ₂ Lk ¹ / ₂ Lk ¹ / ₂ La ¹ / ₂ La ¹ / ₄ Ck ¹ /
Sample Problem(s)(1) Given fc= 10k Hz an prototype and m-derived filter section	d Ro= 100 r, design "T" 100 pass ons, (m = 0.5)
(2) Given fc=75 Hz ar prototype and m-derived filter sectio	nd $R_0 = 50 \text{ n}$, design " π " high pass ns. ($f_{\infty} = 65 \text{ Hz}$)
Solution(s)	
Keystrokes	Keystrokes
[4] [A] → 0.00	75 [+] 50[A] → 75 × 10°
10[2 € x] 3 [7] 100 [A] → 10.00 × 103	$[D] \rightarrow 106,1\times10^{-3} (2L_k)$
$[f] [B] \rightarrow 318.3 \times 10^{-9} (C_k)$	21,22×10-6 (Ck)
1.592 × 10-3 (1/2Lk)	$65[E] \rightarrow 212.7 \times 10^{-3} (2L_b)$
0.5[f][C] → 1,194×10-3 (Lb)	42.54×10 ⁻⁶ (Ca)
1 59.2 × 10 ⁻⁹ (Cb)	140,9 ×10-3 (La)
795.8×10-6 (1/2 Le)	
Reference(s) Skilling, Hugh H.; Electri Printing; Pages 619-620;	cal Engineering Circuits; Sixth John Wiley & Sons; 1961.

Prototype and m-Derived Low & High Pass Filter Design Set "m" Proto T-LP m-Der T-LP Proto T-HP m-Der T-HP Tfc, Ro Roto π-LP m Der π-LP Proto π-HP m-Der π-HP

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2*	Optional: Set "m" mode		f A	
3	Input tc	fc, Hz	ENTERT	fc, Hz
4	Input Ro	Roja	A	fc, Hz
5	Compute prototype "T" low pass		+ B	Ck, F
				1/2LK, H
6	Compute prototype "IT" low pass		B	$V_{a}C_{k}, F$
				LK, H
7	Compute m-derived "T" low pass	for, Hz	f C	L6, H
		or "m" +		Cb,F
				1/2 La, H
8	Compute m-derived "TT" low pass	for, Hz	C	42Cb, F
		or "m" t		La, H
				Ca, F
9	Compute prototype "T" high pass		4 D	Lk, H
				2CK,F
10	Compute prototype "IT" high pass		$[\mathcal{D}][$	2LK,H
				CK,F
11	Compute m-derived "T" high pass	for, Hz	f E	Cb.F
		or "m" [†]		Lb, H
				2Ca,F
12	Compute m-derived "T" high pass	for, Hz	E	216,H
		or "m"+		Ca,F
				La, H
	"Must be performed when "m" will be			
	input in Steps 7,8,11 or 12. Otherwise,			
	do <u>not</u> perform.			
	+-Ensure Step 2 has been performed.			
	-			

10			67 Program	n Lis	sting I		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	8 LBL f a	32 25 11	Set FO for		F LBL 3	31 25 03	
	L BTN	35 51 00	"m-derived fitters.		KCL 2	34 02	Compute
	FIRIA	21 25 11		060	4		Cr and Li
	STO 2	33 02	Store Ro		x	71	f Hick
	hR+	35 53			<u>+</u>	81	
	STO 1	33 01	Store to		5 075	33 05	(in) Pass filter
	h RTN	35 22			f GSB I	31 22 01	and store.
	A LBLF b	32 25 12	T-Low Pass Prototype		4	04	4
010	F GSB 2	31 22 02	4		X	71	4
	KCL 4	34 04	Display CL		KCL 2	34 02	4
	T - x - y - y - y - y - y - y - y - y - y	34 43				27 (2	4
	2	02	1	070	STO 6	32 04	(CK)
		81			L RTN	35 22	1 7
	h RTN	35 22	Display Yalk		SLBLF C	32 25 13	m-Derived "T"
	F LBL B	31 25 12	TT-Low Pass Prototype		STO O	33 00	Low Pass Filter
	FGSB 2	31 22 02			fGSB 5	31 22 05	
	RCL 4	34 04			RCL O	3400	_
020	12	02			nF?O	357100	4
	·	81	Display 1/2 CK		46584	31 22 04	4
	r - x - R(1 - 3)	24 03	Dispiral in the		R(1 3	34 03	4
	h RTN	35 22	Display LK	080	X	71	1
	9 LBLF d	32 25 14	T-High Pass Prototype		4 - x-	31 84	Display Lb
	FGSB 3	31 22 03			RCL 4	34 04	1
	RCL 5	34 05]		RCL 7	34 07]
	4 - x-	31 84	Display Lk		X	71	
	2	02			4 - x-	31 84	Display Cb
030	RCL 6	34 06			RCL 7	34 07	4
	X DTN	2= 22	Display 2Ck		KCP 2	34 03	4
	CIRI D	21 25 22	T-High Pass Prototy of		2	02	4
	F GSB 3	31 22 03		090	1 4	81	1
	2	02	1		h RTN	35 22	Display 1/2 La
	RLL 5	3405]		F LBL C	31 25 13	m-Derived ""
	X	71			STO O	33 00	Low Pass Filter
	4 - x -	31 84	Display 2Lk		F GSB 5	31 22 05	4
040	RCL 6	34 06	Display C.		RCL O	34 00	4
040	IN KIN	35 22	Dispicy Ck		h Fi U	35 11 00	4
	h TT	35 73	Compute		RU 4	34 04	4
	RCL 1	34 01	πfc		RCL T	34 07	1
	X	71	1	100	×	71	1
	h RTN	35 22			2	02]
	FLBL2	31 25 02	Compute			81	
	RCL 2	34 02	Compare		4 - x-	31 84	Display va Cb
	4 GSB I	31 22 01	Ck and Ck		RCL 3	34 03	4
050	STA 3	22 03	(L) tor Low		KCL I	71	4
	4 GSB I	31 22 01	Pass Filter		4 -x-	31 84	Display La
	RCL 2	34 02	and store		FGSB 7	31 22 07	1 ' '
	X	71			RCL 4	34 04]
	h Vx	3562		110	X		Disolar Co
· · · · · · · · · · · · · · · · · · ·	STO 4	33 04	(Ck)		N KIN	35 22	
ļ	INKIN	133 x x	l	I	T LOL 7	131 43 07	L
0,.	1 1 0	2 0	3 Lk 4 CL	5 L+	6 Ck	7	8 9
Use	d to	Ко	(Low Pass) (Low Pass)	(High)	Pase) (High Pa	ass) m	
S0	S1	S2	S3 S4	S5	S6	57	58 59
	I			D	I	F	
							ľ

			67	Program	List	ing II			42
STEP	KEY ENTRY	KEY CO	DE U B	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	43 ENTS
	STO 7	33 07		Store "m"		×	17		
	hCFO	35 61	00		170	4 -x-	31 84	Display a	2 L b
	h RTN	35 22				RCL 6	34 06		
	FLBL 5	31 25	05			RCL 7	34 07		
	RCL I	34 01		Compute and		+	81		<u> </u>
	hxzy	35 52		store "m",		f-x-	31 84	Display	لم
	÷ .	81		given for		RCL 5	34 05		
120	9 X2	32 54		(1 - Parce Filton		F GSB 7	31 22 07		
	CHS	42		(Low lassiner	ッ	+	81	Display	La
	1	01				h RTN	35 22	Dispiaq	
	+	61			100	+ LBL 6	31 25 06		
	n ABS	35 64			180	RCL I	3401	Cant	- and
	$+ \sqrt{x}$	31 54		、		4	81	Comput	e ano
	STO 7	33 07	lm)		y Xa	32 54	store	"m",
	h RTN	35 22			J	CHS	42	a ive o	¢.,
	F LBL 7	31 25				1	01	given	100
	RCL 7	34 07				+	61	(High Pas	s Filters)
130	9 X2	32 54		Compute		h ABS	35 64		-
	CHS	42		i-m2		+ VX	31 54		
	1	01		4		STO 1	33 07		
	+	61		TIM	190	IN RIN	35 22		
	RCL 1	34 01			190				
		81							
	ļ <u> </u>	09							
	7	81							
	h RTN	35 22		Desited "T"					
1.10	9 LBLT e	32 25	<u>_15</u>	- Derived "I					
140	STOO	33 00		ligh rass filter					
	+ GSB 6	31 22	06						
	KCL O	34 00							
	h F: O	35 11	00		200				
	t GZR J	31 22	04			+			
	RCL 6	34 06	07			ł			
	4 GSB 1	31 22	01						
				isolay CL			+		
	+	31 87		1-1-1 -6					
150	RCL 5	34 05						1	
130	KCL I	81							
	4 - 4-	3: 84	- D	isolay Lh				1	
		24 06				1		1	
	DCI 7	24 07			210			1	
	1	81					1	1	
	2	02				1		1	
	ÎX	71					1	1	
	h RTN	35 22	P	visplay 2Ca				1	
	H LBL E	31 2.5	15 m	- Derived "T"				1	
160	STO O	33 00	4	ligh Pass Filter]	
	FGSB 6	31 22	06	5					
	RCL O	3400							
	hf? O	35 71	∞]	
	FGSB 4	3122	04		220]	
	RCL 5	34 05						4	
	RCL7	34 07						4	
	<u> </u>	81				l		4	
	12	02				FLAGE	L	SET STATUS	
ASto	re BTL	WPase IC	m-Deriu	ed DIT High Pass Fr	n-Derived	10 IN I			
Ro 4	fc Proto	type n	- Low Pa	ss Prototype TT	High Pas	s Used	FLAGS	TRIG	DISP
a Set	FO bT Lo	w Pass C	m - Deri	ved dT High Pass en	m - Derive High Pace	d 1		DEG 🗖	FIX 🗆
0	1 Com	pute 2	CK & LE	K 3CKELK 4	Store -	2		GRAD 🗆	sci 🗆
56	The L G Carra		Low Pa	te 8 10		3	2 🗆 🛛	RAD 🗆	ENG 🛛
store	m(LP) store	m (HP) (1-m2)/4	m		ĭ	3 🗆 🕱		n_

Program Title "L" Attenuator (Generator Impedance	Greater than Load Impedance)
Contributor's Name H. Peter Meisinger Address c/o Versitron, Inc. 6310 Chillum F City Washington, DC State	21, NW Zip Code 20011
Program Description, Equations, Variables LCL C	Computes and stores K and S. Computes and displays the minimum loss.
$R_{s} \text{ (series)} = \frac{Z \text{ gen}}{S} \left(\frac{-KS-1}{K}\right)$ $R_{p} \text{ (parallel)} = \frac{Z \text{ gen}}{S} \left(\frac{1}{K-S}\right) \text{ where}$	$S = \sqrt{\frac{Z \text{ gen/Z load}}{K = 10^{(db/20)} = \frac{E \text{ in}}{E \text{ out}}}}$
Min Power loss db = 10 log 10 $\left(\sqrt{\frac{Z \text{ gen}}{Z \text{ load}}} \right)$	$+ \sqrt{\frac{Z \text{ gen}}{Z \text{ load}}} $
Z out = <u>R ser X R par</u> X out = <u>R ser + R par</u> (when Z gen = Zero)	
Z out = <u>1</u> <u>1</u> + <u>1</u> (when Z Z gen + R ser R par	gen is matched)
Operating Limits and Warnings Use the program only where greater than the load impedance.	the generator impedance is equal to or
This program has been verified only with respect to the numerical example this program material AT HIS OWN RISK, in reliance solely upon his own upon any representation or description concerning the program material. NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPL PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED FOR A PARTICIL AR PURPOSE.	e given in <i>Program Description II.</i> User accepts and uses inspection of the program material and without reliance IED WARRANTY OF ANY KIND WITH REGARD TO THIS D WARRANTIES OF MERCHANTABILITY AND FITNESS SHALL BE LIABLE FOR DECEMENTAL OF CONSCIS

44

MATERIAL.

Reference (s)

	Z gen	Z load	d b	R ser	R par	-
	Match	Zero	Min db	"L" Z	g≥ZL	
Ľ						

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Generator Impedance	Ohms	Α	Ohms
2	Enter Load Impedance	Ohms	B	Ohms
3	Enter Desired Loss	db		Win loss ab
4	Compute Minimum Loss Pad		fc	Min loss db
5	Compute R series		D	Ohms
6	Compute R parallel			Ohms
7	Compute Impedance of Pad and Matched Z Gener-			
	ator combination as viewed by the load			Ohms
0				
- °	compute impedance of Pad and Zero Z Generator		fb	Ohms
				Crimis
9	Recall Z gen		RCLA	Ohms
10	Recall Z load		RCLB	Ohms
	F := /dk/20			
11	Recall K = $\frac{E m}{E out}$ = 10 ^(db/20)		RCLC	К
12	Recall R series			Ohms
13	Recall R parallel			Ohms
				Onins
14	Recall S = Z gen/Z logd		RCI 3	S
				v
	· · · · · · · · · · · · · · · · · · ·			

			07 Program	Lis	sting I			47
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
001	f LBL A	31-25-11	7		STO E	33-15	R par	
	h RTN	33-11	Z gen			35-22	4	
	f IRI R	31_25_12		060	g LBL a	32-25-11	7	
	STO B	33-12	Zload			34-14	LZ gen	
	h RTN	35-22			+	61	$Z_{c} + R_{c}$	
	f LBL C	31-25-13			h 1/x	35-62		
	DSP 4	23-04			RCL E	34-15	R par	
010	2	02			h 1/x	35-62		
	÷	81			$\frac{+}{1/x}$	35-62	7	
	a 10×	32-53	$10^{(db/20)} = K$		h RTN	35-22		arcned Z gen
	STO C	33-13	K		g LBL b	32-25-12		_ gen
	RCL A	34-11	Z _G	070	RCL D	34-14	R ser	
	RCL B	34-12	Ζι <u>,</u>		RCL E	34-15	R par	
	÷	81	Z_{G}/Z_{L}			71	Rs Rp	
		31-54	$\sqrt{7} / 7 - 5$			34-14	K ser	
		<u>33-03</u>	VZG/ZL-J			<u> </u>	R par	
020	$a X^2$	32-54	Zc /Zı		÷	81	NS T NP	
	j A	01	-6/-1		h RTN	35-22		
	-	51	$(Z_{G}/Z_{L})-1$					
	f√X	31-54						
	+	61		080				
	$\frac{g}{f}$	31-53						
		01						
	0	00						
	X	71 <						
<u>^</u> 30	h RTN	35-22						
	g LBL c	32-25-13						
	t GSB C	31-22-13						
		$\frac{22-13}{31-25-14}$		090				
	RCI A	34-11	Zc					
	RCL 3	34-03	S					
	÷	81	Z _G /S					
	RCL C	34-13	К					
040	RCL 3	34-03	S					
040	<u> </u>	/1	KS					
	_	51	(KS)-1					
	RCL C	34-13	K					
	÷	81	[(KS)-1] /K	100				
	Х	71						
	<u>STO</u> D	33-14	R series					
	h KIN	33-22						
		34-11	7.					
050	RCL 3	34-03	S					
	÷	81	Z _G /S					
	RCL C	34-13	K					
	RCL 3	34-03	S K	110				
	- h 1/x	35-62	1/(K-S)					
	X	71	·/ (IX=3)					
			REGI	STERS		1-		
υ	1	2	$ ^3$ s $ ^4$	5	6	7	8	a
S0	S1	S2		S5	S6	S7	S8 5	S9
^A Zge	en B	Z load	с к	D R	series	E R par	I	

Program Title ^{1%}	RESISTANCE VALUE SUBROUTINE		
Contributor's Name	TERRY MICKELSON		
Address	PO BOX 608,		
City	DUNCAN, B.C., CANADA	State	Zip Code V9L 3X9

Program Description, Equations, Variables THE 28 STEPS OF THIS SUBROUTINE FIND THE NEAREST AVAILABLE 1% (2%) RESISTOR FROM WHATEVER VALUE IS ENTERED INTO THE PROGRAM. WHILE NO SAFEGUARDS ARE BUILT IN TO REJECT UNREAL VALUES, IT IS EXPECTED THAT THE USER WOULD RECOGNIZE THESE AND IGNORE THE OUTPUT. THE PROGRAM FINDS THE GRADE # OF THE INPUT VALUE THEN CALCULATES THE REAL VALUE FOR THAT GRADE. THIS IS DONE BY THE RND FUNCTION WHICH CORRECTS THE CALCULATED GRADE TO A REAL GRADE PRIOR TO FINDING THE RESISTANCE VALUE ASSOCIATED WITH THIS. A FEW OPTIONS ARE OPEN TO THE USER IN THAT THE LABEL MAY BE CHANGED, THE GRADE # MAY BE DISPLAYED AND THE OUTPUT MAY BE LEFT IN THE FIX MODE. PRESENTLY,THE OUTPUT IS SET TO THE ENG. MODE ALTHOUGH THE PROGRAM INCLUDES THE FIX MODE FOR THE RND FUNCTIONS'OPERATION. STEP ØØ2: FIX,MAY BE DELETED IF THE CALLING PROGRAM PRESETS THE FIX MODE -OR- THE FIX MODE IS USED EXCLUSIVELY IN WHICH CASE STEP Ø27: ENG., MAY BE DELETED ALSO FOR A 26 STEP ROUTINE.

Operating Limits and Warnings AN ERROR INDICATION WILL OCCUR IF THE INPUT IS NEGATIVE AND THAT'S AS IT SHOULD BE. VALUES OVER 10 MEGS ARE NOT AVAILABLE, SO IGNORE THE O/P IF OVER 10 MEGS. ie SELECT A 5% VALUE.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)							- reaction and the second second second		na angara kata kata kata kata kata kata kata k	
					an ann an Anna an Anna Anna Anna Anna A					
		n ga kan an ang ang ang ang ang ang ang ang an					an a		**************************************	
					• • • • • • • • • • • • • • • • • • •	•				
								· · · · · · · ·		
10.000,000,000,000 (10.000) (1	ne en antina en									
						ang in ang ang ang ang ang ang ang ang ang an				
				a in a real i ra	• • • • • • • • • • • • • • • •		n n n a an a a a a a a a a a a a a a a			
						k				
INPUT 3500 6300	CAL. GRADE. 52.231 76.737	ACTUAL GRA 52 77	ADE. ACTUAL A (3480) (6340)	AILABLE 3.480 6.340	VALUE. 03 03				•	
106284	2.541	3	(107000)1	07.0	03					
312247	47.472	47	(309000)3	09.0	03					
IT MAY (BE NECESSARY ULTANT REAL T	TO INCLUDE IMES, VOLT4	ANOTHER SUBROL AGES ETC. BASED	TINE IN ON THES	THE MAIN E NEW RE	I PROGE	RAM TO	GIVE THIS		

Solution(s)

Reference (s)

1% RESISTANCE VALUE SUBROUTINE.

28 STEPS-ONE LABEL __ . NO REGISTERS USED.

7

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	CHECK MAIN PROGRAM FOR A SUITABLE MERGE			
	LOCATION.GTO THAT LOCATION.			
2	PRESS g-MERGE or f-MERGE, READ CARD, ONE SIDE.			
3	IN W/PRGM MODE, KEY IN CALLING ROUTINES. <u>CHANGE</u>			
	THE SUBROUTINE'S LABEL IF IT CONFLICTS WITH			
	THE MAIN PROGRAM.			
4	AFTER THE CALLING ROUTINES, KEY IN OUTPUT-			
	ROUTINE ROUTING OR NEW VALUE CHECK SUBROUTINE-			
	ADDRESS.ie PERFORMANCE WITH REAL COMPONENTS.			
5	CHECK PROPER OPERATION WITH KNOWN VALUES.			
6	NOTE			
	FILL IN THE LABEL AND ITS CODE IN THE PROGRAM			
	LISTING. THIS WAS LEFT BLANK ON PURPOSE.			

			67	rogram		aing I				F
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP	KEY ENTRY	K		COM	5 MENTS
001	* LBL	3_ 25	Cal	culated value						
	FIX	31 23	of r	esistor.]	
		31 53	-		060				4	
	LAST Y	32 83	-	FIX MODE					4	
		31 83		USED ALLOWING					4	
	2	02		FUNCTION TO			-		•	
	_	51	OPE	RATE PROPERLY.					1	
	10 [×]	32 53	1						1	
010	XZY	35 52	1						1	
	9	09]						1	
	6	06]	
	1/X	35 62								
	÷	81			070					
	LAST X	35 82	1							
	10^	32 53	4							
	X 4 Y	35 52	1							
	DSP Ø	23 00	I							
020		31 24		NS.PAUSE TO SEE-	·					
020		35 63	G	RADE CLASSIFICA-	·					
	2	43	i ''	LON.						
	x	71	1							
	RND	31 24	1		080					
	x	71	1							
	DSP 3	23 03								
	ENG	35 23		IUNAL RIN. RESET						
	RTN	35 22								
			1							
030			1							
			1							
			1							
			4		000					
			1		030					
			1							
			1							
		ł	1							
			1							
040			1							
			1							
			I						IRIC & ST	ATUS TO
									AGREE WIT	
			1		100				PROGRAM 1	
			1						FIRST.	
							F		SET STATUS	
050								FLAGS	TRIG	DISP
								ON OFF		
								0 🗆 📕	DEG 🔳	FIX
					110		\square	1 ∐ ■		
							H	2 □ ■		n_2
		L	l	REGI	STERS					
0	1	2	3	4	5	6	Τ	7	8	9
S0	S1	S2	S3	S4	S5	S6		S7	S8	S9
					D	_				
A	1	В			U		C		ľ	

The state of the	regram Title Wheatstone Bridge ontributor's Name Harry E. Parshall Jr. ddress 3772 Menzie RD SE ity Fort Orchard State Wash Zp Code 98366 regram Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $\frac{2}{\chi} = \frac{2}{2_{\chi}} \frac{2}{2_{\chi}} - \frac{(\beta_{\chi} - \beta_{\chi} + \beta_{3})}{2_{\chi}}$ Rect. inputs are first converted to Polar. $\frac{2}{2_{\chi}} = \frac{2}{2_{\chi}} \frac{2}{2_{\chi}} \frac{(\beta_{\chi} - \beta_{\chi} + \beta_{3})}{2_{\chi}}$ perating Limits and Warnings None		0	-	
contributor's Name Harry E. Parshall Jr. Modress 3772 Menzie RD SE Port Orchard State Wash Zip Code 98366 Program Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{x} = \frac{2}{z_{x}} \frac{2}{z_{z}} - \frac{2}{z_{z}} - \frac{2}{z_{z}} - \frac{2}{z_{z}} \frac{2}{z_{z}} $	contributor's Name Harry E. Parshall Jr. ddress 3772 Menzie RD SE ivy Port Orchard State Wash zp Code 98366 rogram Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{\chi} = \frac{2}{z_{\chi}} \frac{2}{z_{\chi}} (\theta_{\chi} - \theta_{\chi} + \theta_{3})$ Rect. inputs are first converted to Polar. $\frac{1}{2} \frac{1}{\sqrt{2} \sqrt{2} \sqrt{2}} \frac{2}{z_{\chi}}$ representing Limits and Warnings None	Program Title W	heatstone Bridge		
Note: Note:: Note::	ddress 3772 Menzie RD SE Port Orchard State Wash Zip Code 98366 Trogram Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $2_{\chi} = \frac{2}{2_{\chi}} \frac{2}{2_{\chi}} \int (\theta_{1} - \theta_{2} + \theta_{3})$ Rect. inputs are first converted to Polar. $\frac{1}{2_{\chi}} \int (\theta_{1} - \theta_{2} + \theta_{3})$ reperating Limits and Warnings None	Contributor's Name	Harry E. Parshall	Jr.	
Sity Port Orchard State Wash Zip Code 98366 Program Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $\frac{z}{\chi} = \frac{2}{z_{\chi}^{2}} \frac{2}{z_{\chi}^{2}} \frac{2(\theta_{1} - \theta_{2} + \theta_{3})}{2(\theta_{1} - \theta_{2} + \theta_{3})}$ Rect. inputs are first converted to Polar.	ity Port Orchard State Wash Zip Code 98366 ity organ Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $\frac{z}{x} = \frac{z}{z_2} \frac{z}{z_2} (\underline{\theta}_1 - \underline{\theta}_2 + \underline{\theta}_3)$ Rect. inputs are first converted to Polar. $\frac{z}{z_1 + \frac{z}{z_2}} \frac{z}{z_2} \frac{z}{z_3} \frac{z}$	Address	3772 Menzie RD SE		
Program Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{\chi} = \frac{2}{z_{\chi}} \frac{2}{z_{\chi}} \frac{(\theta_{1} - \theta_{2} + \theta_{3})}{(\theta_{1} - \theta_{2} + \theta_{3})}$ Rect. inputs are first converted to Polar. $y_{\mu} = \frac{2}{z_{\chi}} \frac{1}{z_{\chi}} \frac{(\theta_{1} - \theta_{2} + \theta_{3})}{(\theta_{1} - \theta_{3} + \theta_{3})}$ None	Program Description, Equations, Variables Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{\chi} = \frac{2}{z_{\chi}} \frac{2}{z_{\chi}} \frac{(\theta_{\chi} - \theta_{\chi} + \theta_{3})}{(\theta_{\chi} - \theta_{\chi} + \theta_{3})}$ Rect. inputs are first converted to Polar. $\frac{1}{2} \frac{1}{2} \frac{1}{$	City	Port Orchard	State Wash	Zip Code 98366
Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{\chi} = \frac{z_{1}}{z_{2}} \frac{z_{3}}{2} \frac{(\theta_{1} - \theta_{2} + \theta_{3})}{(\theta_{1} - \theta_{2} + \theta_{3})}$ Rect. inputs are first converted to Polar.	Given three of the impedances in a basic Wheatstone Bridge, this program computes the fourth. Inputs are: real, polar, or rectangular numbers. $z_{\chi} = \frac{z_1}{z_2} \frac{z_3}{z_2} \frac{(\theta_1 - \theta_2 + \theta_3)}{(\theta_1 - \theta_2 + \theta_3)}$ Rect. inputs are first converted to Polar.	Program Description	- Equations Variables		
bit of the one impounds of the basis measures independent independent of the basis independent of the basis	The only of the impounded in a basis matrice of right spectrum of the program computes the fourth. Inputs are: real, polar, or rectangular numbers. $ \frac{z_{\chi}}{z_{\chi}} = \frac{\frac{z_{\chi}}{z_{\chi}}}{\frac{z_{\chi}}{z_{\chi}}} \frac{\Delta e_{\chi} - e_{\chi} + e_{3}}{\Delta e_{\chi} + e_{3}} $ Rect. inputs are first converted to Polar. $ \frac{z_{\chi}}{e_{\chi}} = \frac{z_{\chi}}{z_{\chi}} \frac{z_{\chi}}{e_{\chi}} \frac{z_{\chi}}{e_{\chi}} \frac{z_{\chi}}{e_{\chi}} $ Perating Limits and Warnings None	Given thr	ee of the immedances	s in a basic Wheats	stone Bridge
rectangular numbers. $z_{\chi} = \frac{z_{1}}{z_{2}} \frac{z_{3}}{(\theta_{1} - \theta_{2} + \theta_{3})}$ Rect. inputs are first converted to Polar. $\frac{z_{1}}{\theta_{1}} \frac{z_{2}}{z_{\chi}} \frac{z_{2}}{z_{3}}$ Deparating Limits and Warnings None	rectangular numbers. $ \frac{z_{\chi}}{z_{\chi}} = \frac{\frac{z_{\chi}}{z_{\chi}}}{\frac{z_{\chi}}{z_{\chi}}} \frac{(\theta_{\chi} - \theta_{\chi} + \theta_{3})}{(\theta_{\chi} - \theta_{\chi} + \theta_{3})} $ Rect. inputs are first converted to Polar. $ \frac{z_{\chi}}{\theta_{\chi}} = \frac{z_{\chi}}{z_{\chi}} \frac{z_{\chi}}}$	this prog	ram computes the for	irth. Inputs are:	real. polar. or
Rect. inputs are first converted to Polar. $ \frac{z_{\chi}}{2} = \frac{z_{\chi}}{z_{\chi}} \frac{z_{3}}{z_{\chi}} \frac{z_{3}}{z_{\chi}} \frac{z_{3}}{z_{\chi}} $ Rect. inputs are first converted to Polar.	Rect. inputs are first converted to Polar. $ \frac{z_{x}}{2} = \frac{z_{1}}{z_{2}} \underbrace{(\theta_{1} - \theta_{2} + \theta_{3})}_{i_{1}} $ Rect. inputs are first converted to Polar.	rect an gul	ar numbers		,,
$z_{\chi} = \frac{z_{1}}{z_{2}} \underbrace{\angle \theta_{1} - \theta_{2} + \theta_{3}}_{\substack{\chi = \frac{z_{1}}{z_{2}}}$ Rect. inputs are first converted to Polar.	$z_{\chi} = \frac{z_{1} z_{3}}{z_{2}} (\theta_{1} - \theta_{2} + \theta_{3})$ Rect. inputs are first converted to Polar. $\frac{z_{1}}{\theta_{1}} (\theta_{1} - \theta_{2} + \theta_{3})$ Properting Limits and Warnings None	rectangur	al numbers.		
Rect. inputs are first converted to Polar.	Rect. inputs are first converted to Polar.	2, =	$\frac{\overline{z_1}}{\overline{z_2}} \frac{\overline{z_3}}{\overline{z_2}} \frac{\overline{z_1}}{\overline{z_2}}$	<u>+</u> 03	
Diperating Limits and Warnings None	perating Limits and Warnings None	Rect. inp	uts are first conver	rted to Polar.	
Operating Limits and Warnings None	perating Limits and Warnings None			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Operating Limits and Warnings None	Operating Limits and Warnings None				
		Operating Limits and	d Warnings None		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

1	Wheatstone	Bridge		2
[d4]	real	polat	rect	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Read card into calculator.			
2	Select input mode:			
	real		B	1.00E00
	polar		C	1.00E00
	rect		D	1.00E00
3	To input real go to step 9.			
4	Input impedances 1,2,&3.	Θ or y	ENTER	
	· · · · ·	rorx	R/S	count
5	Repeat step 4 for all 3 impedances.			
6	After all three impedances are input			
	calculator will display r or x dependin	g		
	on mode selected.			r or x
7	To see θ or y press:		R/S	0 or y
8	For new case go to step 2.			
9	Input resistances 1.2.&3.	R	R/S	count
10	Repeat step 9 for all three impedances			
	calculator will display R ₄ .			R _L
11	For new case go to step 2.			

			67 Prog	gran	n Lis	sting				
STEP	KEY ENTRY	KEY CODE	СОММЕН	NTS	STEP		к к		СОМ	55 MENTS
001	FLBLB	31 25 12	STORE AND)		•,		81		
	1	01	CALCULATE	real,		RCL I		34 01		
	K/S	84			060	RCC 3		3403		
	+ PIS	3142			060	-	_	51		
	5/00	33 00				RCC S	<u> </u>	3405		
	F P FS	3/ 4/				+++		- 61		
	R/c	02						3352		
	fptc	2142				LIRI	2	1 75 00	\sim	
010	STO/	330/				1	2 3/	23 00		
	FPZS	3142				R/s		84		
	3	03				FPZ	5	31 42		
	R/s	84				5700	, , ,	3300		
	FP75	31 42			070	hRY		3553		
	5703	3303				5701		3301		
	RCLO	3400				FPZS	5	3142		
	X	7/				2		02	STOR	e
	RCL I	3401				R/s		84	7 2	7 +7
L		81				FPZS		3142	()	-2, -3
020	FP75	3142				5702		3302		
	GTOI	2201				n R¥		3553		
	FLBCD	31 25 14	recr.			5703		3303		
	+GSBO	31 22 00			080	+ P = 3	2	3/42		
	RCL 3	3403						05		
	$ACC \chi$	<u>340</u> 22 71				I P+	-	2/47		
	RCII	3401				5 m g	<u> </u>	37 14		
	RCIO	3401				LRL		3 ~ 52	1	
	Q Q +P	37 77				5705		3305		
030	6 X #Y	3552				6 RTN		35 22		
	b R t	35.54								
	-	51								
	h Rt	3553								
	hxty	3552			090					
	÷	81								
	h Rt	35 54								
	hXIY	35.52								
	RCL 5	34 05								
040	RCL4	3404				+				
	$\frac{9}{6} \frac{7}{7} \frac{7}{7}$	3×72				FLAG	is		SET STATUS	
	h X FY	3334				0		FLACE	TRIG	DISP
		35 5 5				╀┠┯┯┯	+	ON OFF	Thid	
	L R L	2652			100	<u>+</u> ['		0 🗆 🛛	DEG 🛛	FIX 🗆
	+	61				2		1 🗆 🗖	GRAD	
	hRt	3554				3			RAD 🗆	
	FLBL 1	31 25 01						3 🗆 🗖		
	R/S	84	Ç XFY	}			•			
	hxfy	35.52	}		lo.				. <u>s</u>	
050	6701	22 0/		[^]	В	real	PO	lan	rect	-
	FLBLC	31 25 13	polar	а	b		с	d	•	Э
	FGSBO	31 22 00		0	1		2	3		4
	RCLO	3400		STOR	<u>e</u>	USED	-			0
	XULT	34 04		5	6		ľ	8		J
	RCL2	3402								
				REG	ISTERS					
0	1	2	3 4		5	6		7	8	9
<u> </u>		80	63	4	\$5	32		S7	S8	S9
50	D ULF		used	USED	use	D				
a use		B			D	I	E		I	

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability / QA	Forestry

EE LAB

Many of the charts commonly found in electrical engineering labs appear in this collection of programs.

WIRE TABLE
OHM'S LAW
REACTANCE CHART (NINE EQUATIONS)
COIL CALCULATIONS
COMPLEX IMPEDANCE CALCULATOR - AC CIRCUIT CALCULATOR
WYE-DELTA TRANSFORMATIONS
RC TIMING
SERIES R-L-C CIRCUIT ANALYSIS PROGRAM
PASSIVE HIGH AND LOWPASS COMPOSITE FILTER DESIGN
"L" ATTENUATOR (GENERATOR IMPEDANCE GREATER THAN LOAD IMPEDANCE)
1% RESISTOR VALUE SUBROUTINE

WHEATSTONE BRIDGE

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14025 Printed in U.S.A. 00097-90200