
HEWLETT-PACKARD

HP-67 HP-97

Users' Library Solutions

Energy Conservation

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

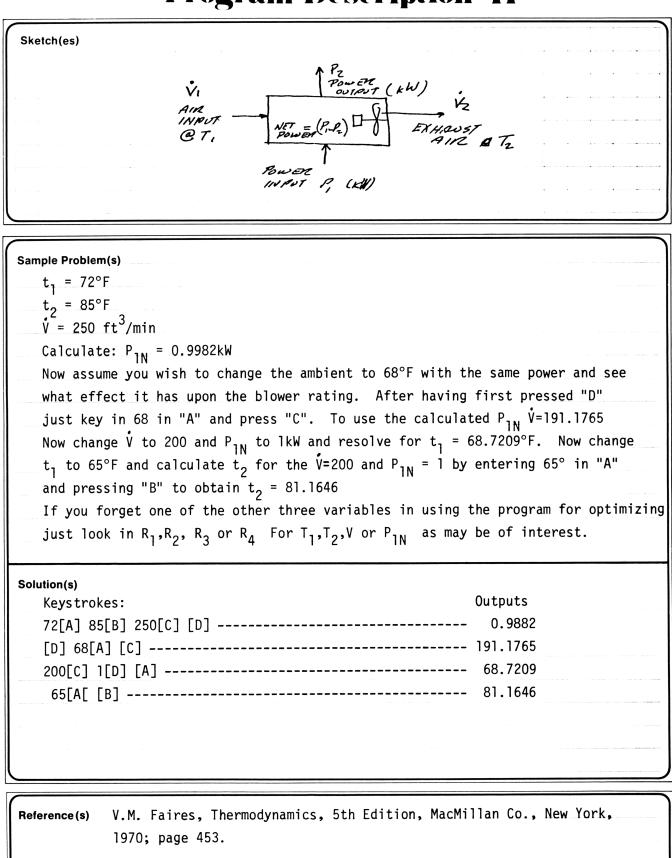
TABLE OF CONTENTS

AIR COOLING SYSTEM DESIGN Program calculates one of any four quantities in the design of an air cooling system for electronic equipment. Given the ambient temperature, the power dissipation in the enclosure, and the worst case maximum temperature, the program calculates the required blower rating in cubic feet per minute.	•	•	•	1
BLACK BODY THERMAL RADIATION Calculates wave length of maximum emissive power, total emissive power, monochromatic emissive power, emissive power from zero to a specified wave length, for black radiating surfaces.	•	•	•	6
ECONOMIC INSULATION THICKNESS Can be used to determine the economic thickness of insulation given the thermal properties of the insulation, the cost of energy, hours of operation, cost of insulation, and the temperature difference.	•	•	•	14
HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS Can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.	•	•	•	18
STEADY STATE COND. HEAT TRANS., HEAT LOAD & LOGARITHMIC MEAN TEMP DIFF. Computes heat duty, heat load, transfer area, logarithmic mean temperature difference, heat capacity, transfer coefficient and mass flow rate.	•	•	•	23
SUN ALTITUDE, AZIMUTH, SOLAR POND ABSORPTION	•	•	•	27
TOTAL DAILY AMOUNT OF SOLAR RADIATION Computes length of day and total amount of solar radiation received by a horizontal surface of unit area as a function of latitude and declination of the sun.	•	•	•	31
TEMPERATURE OR CONCENTRATION PROFILE FOR A SEMI-INFINITE SOLID May be used to find the temperature (or concentration profile) at a specified time for a semi-infinite solid with constant surface temperature (or concentration) the profiles is assumed to be uniform when time equals zero.		•	•	35

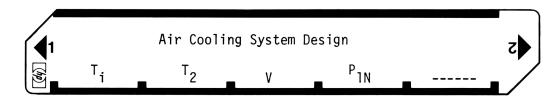
TRANSIENT TEMPERATURE DISTRIBUTION IN A SEMI-INFINITE SOLID WITH CONVECTION BOUNDARY CONDITION	40
CONSERVATION OF ENERGY.	ЦЦ

Program Title	Air Coolin	g System Design			
Contributor's Name Address	Hewlett-Packa 1000 N.E. Circl				
City (Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables H_i = Molal enthalpy of air at T_i and P_i (BTU/LB Mole) Define: P = Power in kilowatts (3413 kW-Hr/BTU) T_i = Temperature in degrees Rankine (°R) \dot{V}_{i} = Volumetric flow rate $\tilde{N}_{:}$ = Molal flow rate p_i = pressure (in atmospheres) i = 1 for outside enclosure C_{p}^{i} = specific heat at constant pressure = i = 2 for inside enclosure 6.953 (BTU/lb-mole °R) - Molar volume for air at a temperature T and pressure p is V = (0.35905) $(0.35905 \times 10^3 \text{ Ft}^3/1\text{b-mole}) (\text{Atm/p})(\text{T}/491.7^{\circ}\text{R}) = .7302$ - Energy balance at steady state $H_1N_1 + (P_1 - P_2) = H_2N_2$ - Molal volume for an ideal gas has a flow rate $\dot{V}_1 = (\frac{P_2}{P_1})(\frac{1}{T_1})\dot{V}_2$ - Specific heat equation $H_2 - H_1 = C_p (T_2 - T_1)$ - Neglect pressure difference $p_i = p_2$ Continued on next page \rightarrow **Operating Limits and Warnings** 1. Calculation assumes steady state, treats air as an ideal gas, neglects humidity, etc. 2. The "E" key should not be used as it contains several values needed to cram the program into the limited memory.


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.


Program Title	Air Cooling System Design				
Contributor's Nar	ne Hewlett-Packard				
Address	1000 N.E. Circle Blvd.				
City	Corvallis	State	Oregon	Zip Code	97330

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

This program is a translation of the HP-65 User's Library program #02001A submitted by Todd A.C. Heard.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter any three of the four variables in any order using the designated keys.			
2.	Do not use the"E" key. If you do by mistake,			
	just re-enter all the values again.			
3.	Enter ambient temperature.	T _l (°F)	A []	°F
4.	Enter max temperature for the enclosure.	T ₂ (°F)	B	°F
5.	Enter volumetric flow rate of air cooling system.	V(Ft ³ /min) C	Ft ³ /min
6.	Press and get max power (kW) that can be dissipated in the enclosure.			KW
	urssipated in the encrosure.			
	NOTE:			
	1) If you wish to change any of the input			
	variable to see its affect on the calculati key in the new value and press the key for	on,		
	the unknown.			
	 As the variables may be keyed in in any order the result may be considered as an input and new values can be calculated 			
	with one of the input variables becoming			
	the unknown.			

			97 Program	l Lis	ting I		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		857		21 14	
002		35 01		058		35 04	
003		00		859 869		00	
004 005		16-32		860 861		16-32	
005 006		24 27 15	Calls constants,etc	861 862	GSBE	24 23-15	
007 007		23 15 36 04		063		23 13 36 05	
008		36 0 4 36 0 6		064		36 03	
003		-22		065	x	-35	
610		36 03		866		36 06	1
611	÷	-55		067		-24	
012	RCL3	36 03		868		-21	
013	÷	-24		869		36 08	Computed P _{1N} (kW)
014	ENTŤ	-21		070	÷	-24	
015	RCL8	36 0 8	$C_{\text{omputed}} + (9\Gamma)$	671 672	RTN	24	
016	X	-35	Computed t _l (°F)	072 073	*LBLE	21 15	
017	RCL7	36 07		873 874		05 -62	
618	-	-45		875	9	-62 09	Constant 5.974
019	RTN	24		876		07	
020	*LBLB	21 12		877		84	
021 022	STO2	35 02 00		678	STOE	35 06	
022 023	8 V4V0	00 16-70		079	4	84	Constant ACO
623 624	X≠Y? RTN	16-32 24		080	6	8 6	Constant 460
024 025	GSBE	23 15		081	С	80	
025 026	RCL1	25 15 36 01		882	ST07	35 07	
027	RCL7	36 07		083	RCL2	36 02	
028	+	-55		884	RCL1	36 01	
029	RCL3	36 03		885 885	-	-45	(t ₂ -t ₁)
030	Х	-35		086 087	STO5 RCL2	35 05 36 00	
031	ENTŤ	-21		088	RCL7	36 02 36 07	
032	RCL4	36 04		089	+	-55	T (0D)
033	RCL6	36 06		090	STOR	35 08	T ₂ (°R)
034	X	-35		091	RTN	24	
035	CHS	-22					4
036	RCL3	36 03 FF					4
037 038	+ ÷	-55 - 24					+
638 639	RCL7	-24 36 07	Computed t ₂ (°F)				
64 <i>0</i>		-45	_				
041	RTN	24					
642	*LBLC	21 13					
043	STO3	Z5 03					
844	Ø	00		100			
045	X¥Y?	16-32					
846	RTN	24					
847 840	GSBE	23-15 76-89					
048 049	RCL8 RCL4	36-08 76-04					
049 050	RUL4 X	36 04 -35					SET STATUS
051	RCLE	36 06				51.4.00	
852	X	-35				- FLAGS	TRIG DISP
053	ENT†	-21					DEG 😡 🛛 FIX 😡
654	RCL5	$36 \ 05$	^	110		1 🗆 🛛	GRAD 🗍 🛛 SCI 🛱
055	÷		Computed V (Ft ³ /min)			2 🗆 🗙	RAD 🗆 ENG, 🗆
0 <u>56</u>	RTN	24				3 🗆 🗶	n_4
0	1	2	REGIS	-	6	7	⁸ T (9D) 9
J	¹ t _l (°F)	² t ₂ (°F)	$\sqrt[3]{V}$ (FT ³ /min) $\sqrt[4]{P}$ N (kW)	⁵ t ₂ -t ₁	⁶ 5.974	é 460	$ ^{8} T_{2}(^{\circ}R) ^{9}$
50	S1	S2		55	S6	S7	S8 S9
			1 1 1				1 1

D

Е

I

С

в

rogram Title B	lack Body Thermal Radiat	ion	
ontributor's Name	Hewlett-Packard		
ddress	1000 N. E. Circle Blvd.		
ity	Corvallis	State Oregon	Zip Code 97330
rogram Descriptior	n, Equations, Variables		
		tures emit thermal radiation. The the more thermal radiation e	
		imum possible amount of energy a	
		temperature are said to be black	
		actually exist in nature, many s	surfaces
	may be assumed to be black	for engineering considerations.	
		λ_{max_1}	
	Black body monochromatic emissive power	λ_{max_2} $T_1 > T_2 > T_3$	
		V3-	
		·	<u> </u>
	1 2		
		velength, microns Figure 1.	(continued next page)
Operating Limits and		t Lt-in [on [- cinco the
	or more may be required	to obtain $E_{b(0-\lambda)}$ or E	$b(\lambda_1 - \lambda_2)$ since the
integrati	ion is numerical.		
Sources c	differ on values for cons	stants. This could yiel	d small discrepancies
	published tables and prog		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases, the area under the curves (total emissive power $E_{b(0-\infty)}$) increases. Also note that the wavelength of maximum emissive power λ_{max} shifts to the left as temperature increases.

This program calculates the wavelength of maximum emissive power for a given temperature, the temperature for which a given wavelength would be the wavelength of maximum emissive power, the total emissive power over all wavelengths, the emissive power at a particlular wavelength, the emissive power form zero to a specified wavelength, and the emissive power between specified wavelengths.

Equations:

$$\lambda_{\max} T_{\lambda_{\max}} = C_3$$

$$E_{b(0-\infty)} = \sigma T^4$$

$$E_{b\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)}$$

$$E_{b(0-\lambda)} = \int_0^{\lambda} E_{b\lambda \ d\lambda}$$

$$= 2\pi c_1 \sum_{k=1}^{\infty} -T/kc_2 \ e^{-\frac{kc_2}{T\lambda}} \left[\left(\frac{1}{\lambda}\right)^3 + \frac{3T}{\lambda^2 kc_2} + \frac{6}{\lambda} \left(\frac{T}{kc_2}\right)^2 + 6\left(\frac{T}{kc_2}\right)^3 \right]$$

 $E_{b(\lambda_1 - \lambda_2)} = E_{b(0 - \lambda_2)} - E_{b(0 - \lambda_1)}$

where

λ_{max} is the wave	length of	maximum	emissivity	1n	microns:

- T is the absolute temperature in $^{\circ}R$ or K;
- $E_{b(0-\infty)}$ is the total emissive power in Btu/hr-ft² or Watts/cm²;
 - $E_{b\lambda}$ is the emissive power at λ in Btu/hr-ft²- μ m or Watts/ cm²- μ m;
- $E_{b(0-\lambda)}$ is the emissive power for wavelengths less than λ in Btu/ hr-ft² or Watts/cm²;
- $$\begin{split} E_{b(\lambda_1 \lambda_2)} & \text{is the emissive power for wavelengths between λ_1 and λ_2} \\ & \text{in Btu/hr-ft}^2$ or Watts/cm^2. \end{split}$$
 - $c_1 = 1.8887982 \times 10^7 \text{ Btu-}\mu\text{m}^4/\text{hr-ft}^2$
 - $= 5.9544 \times 10^3 \text{ W}\mu\text{m}^4/\text{cm}^2$
 - $c_2 = 2.58984 \times 10^4 \ \mu m^{\circ} R = 1.4388 \times 10^4 \ \mu m^{-K}$
 - $c_3 = 5.216 \times 10^3 \mu m^{-\circ} R = 2.8978 \times 10^3 \mu m^{-K}$
 - $\sigma = 1.713 \times 10^{-9} \text{ Btu/hr-ft}^2 \cdot R^4 = 5.6693 \times 10^{-12} \text{ W/cm}^2 \cdot R^4$
 - $\sigma_{exp} = 1.731 \times 10^{-9} \text{ Btu/hr-ft}^{2-\circ} \text{R}^4 = 5.729 \times 10^{-12} \text{ W/cm}^2\text{-K}^4$

Sketch(es)														
	1				and a second									-
					- (* 100) - 10 - 10 - 10 - 10 - 10 - 10 - 10	• • • • • • • • • • • • • • • • • • •								
2. Marked (2012) - 19 (2012) -			•			 		•						
			• • • • • • • • • • • • • • • • • • •						1 1		• • ••			-
e en entre la contra de contra		ana in conference on the											-	-
			• • • • • • • • • • • • • • • • • • • •			• • • • •	a∰ 2 - 2018 - San an ∳ ann	* · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	- - -	11 	•		
				ngen in densember and i	1. Anna 1. 1. 1811 - 1. 1911 1.	 ана солона се р ана на селото на с	÷				•••••••			•

Sample Problem(s) Example 1:	
What percentage of the radiant output of a lamp is	in the visible range (0.4
to 0.7 microns) if the filament of the lamp is ass	umed to be a black body
at 2400 K? What is the percentage at 2500 K?	
Keystrokes: [f] [B] 2400 [A] .4 [B] .7 [f] [E] [C] [±] 100 [x] 2500 [A] .7 [f] [E] [C] [±] 100 [x]	-→ 2.641%
Example 2:	
If the human eye was designed to work most efficin	etly is sunlight and the
visible spectrum runs from about 0.4 to 0.7 micron	s, what is the sun's
temperature in degrees Rankine? Assume that the su	n is a black body. Using
the temperature calculated, find the fraction of t	he sun's total emissive
power which falls in the visible range. Find the p	ercentage of the sun's
radiation which has a wavelength less than 0.4 mic	rons.
Keystrokes:	Outputs:
[f] [A]	\rightarrow 1.713 x 10 ⁻⁹ Btu/hr-ft ² -°R ⁴
Compute mean of visible range.	
.4 [+] .7 [+] 2 [÷]	\rightarrow 550.0 x 10 ⁻³ µm
Compute temperature of sun.	
[B]	-→ 9.484 x 10 ³ °R
(continued)	

Reference (s)

Robert Siegel and John R. Howell, *Thermal Radiation Heat Transfer*, Volume 1, National Aeronautics and Space Administration, 1968.

Compute percentage of power in visible range.	0
[A] .4 [B] .7 [£][ɛ] [C] [÷] 100 [x]→	33.70 x 10 ⁰ %
Compute percentage of power under 0.4 microns.	
[E] [C] [÷] 100 [x]→	8.433%

Black Body	Thermal Ra	diation			
Eng	SI	Exp σ		λ'→E _b (), , ,)	7
$I \rightarrow \lambda_{max}$	$\lambda \rightarrow T_{\lambda m}$, →E _b (₀ -∞)	→E _b		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2.			
2	Store constants:			
	For English units (Btu, µm, hr, ft, °R)		f A	1.713x10 ⁻⁹
	For SI units (W, µm, cm, K)		f B	5.669x10 ¹²
3	For experimental Stefan-Boltzman constant			
	instead of theoretical value press		f C	1.731x10 ⁻⁹
				or 5.729x10 ¹²
4	Calculate any or all of the following (T and			
	λ need only be input once):			
	Calculate λ_{max} for a given T;	Т	A] []	λ _{max}
	IIIdX			
	Calculate T such that λ is λ_{max} for T;	λ		T(λ _{max})
	IIIdX			indx
	Calculate total emissive power;	Т	AC	Е _{Ь(0-∞)}
				D(0-∞)
	Calculate the emissive power at λ ;	Т	Α	$\frac{\lambda}{max}$
		λ	BD	Ε _{bλ}
	Calculate the emissive power between zero			U.
	and λ ;	Т	A	λ max
		λ	BE	
	Calculate the emissive power between λ			D(U-x)
	and λ' .	Т	A [λμαγ
		λ	B	$T(\lambda_{max})$
		λ'	f E	$E_{b(\lambda-\lambda')}$
5	For a new case, go to steps 2, 3, or 4.			
		1I	Language and Language and	

Program Listing I

12				Q7 Program	LIS	ling I		
ST	EP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	801	*18La 21	15 11		057	5	05	
	002	1	01	Store English	858		-62	
	003	8	08	constants.	659	6	06 06	
	804	8	0 8		060	£	06	
	005	8	<i>68</i>		061	9	09 07	
	006	7	07		062	3	Ø3	
	007	3	0 9		063 064	EEX	-23	
	008	8	<i>08</i>		864 865	CHS	-22	
	009	2	02		065 065	1	01 02	
	010	STOI	35 01		066 067	2 ST04	02 35 04	
	811	2	02 07		068 068	RTN	30 04 24	
	012 017	5 S	05 00		069		21 16 13	
	013	3	08 00		655 676	#LBLU 1	21 16 13 01	Convert to exper-
	014	9 8	09 66		876 871	2	-62	imental σ.
	015	8	68 69		872	Ø	00	
	016 017	4	-62 04		073	í	01	
	017 018	STO2	35 02		874	Ô	80	
	010 019	5102	35 02 05		075	5	05	
	015 020	2	83 82		076		35-35 04	
	020 021	<u> </u>	01	1	070 077	RCL4	36 04	
	021 022	$\dot{\epsilon}$	06		078	RTN	24	Store T and cal-
	023	ST03	35 Ø3		079	*LBLA	21 11	culate λ_{max} .
	024	0,00	-62		080	ST05	35 05	max
	025	1	01		081	RCL3	36 03	
	026	7	07		082	X≢Y	-41	
	027	- 	01		083	÷	-24	
	028	3	03		084	RTN	24	
	829	1	Ōi		085	*LBLB	21 12	
	030	Ž	02		086	ST06	35 06	Store λ and calcu-
	031	EEX	-23		087	RCL3	36 03	late T for which
	032	CHS	-22		688	X≢Y	-41	λ would be λ_{max} .
	033	8	08		089	÷	-24	indx
	034	STO4	35 04		090	RTN	24	
	035	RTN	24		091	*LBLC	21 13	Calculate $E_{b(0-\infty)}$.
	036	*LBLb 21	16-12		092	RCL5	36 05	$b(0-\infty)$
	037	5	Ø5	Store SI constants.	093	χz	53	
	038	9	09		094		53	
	039	5	Ø5		095	RCL4	36 04	
	040	4	<i>0</i> 4		0 96	X	-35	
	041		-62		097	RTN	24	
	042	2	Ø4		698	*LBLD	21 14	
	043	ST01	35 01		099	RCL1	36 01	Calculate $E_{b\lambda}$.
	044	1	01		100	ENTT	-21	-Βλ
	045	4	Ø4		101	+	-55	
	046	3 8	03		102	Pi	16-24	
	047	3	08 00		103		-35	
	048	8 6700	08 75 00		104	RCL6	36 06 95	
	049 050	STO2	35 02 00		105	5	05 71	
	850 851	2	02 20		106	ې× -	31	
	851 852	8 9 7	08 00		107	÷ Prio	-24 76 02	
	052 057	7	09 07		108	RCL2 RCL6	36 02 36 06	
	053 054	í			109	RULE ÷		
	054 055	8	-62 08		110		-24 26 95	
	035 056	sto3	08 35 03		111 112	RCL5 ÷	36 05 -24	
1	000	0100	00 00	REGIS	TERS	-	-24	
0	1	1	2	3 4	5 T	6	7	8 kg /T 9
	λ		^C 2			λ, λ S6	S7	kc ₂ /T S8 S9
S0		S1	S2	S3 S4 S	65	30	57	00 09
A		В			5	I	E	I

% Program Listing II

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS $STEP KEY ENTRY KEY CODE COMMENTS$ 113 6 $-7 - 45$ 114 1 1 $-7 - 45$ 115 $-7 - 45$ 116 $-7 - 45$ 117 $-7 - 35$ 117 $-7 - 51$ 118 $-7 - 24$ 119 $-7 - 51$ 122 $-7 - 51$ 122 $-7 - 51$ 122 $-7 - 51$ 123 $-7 - 51$ 124 -24 125 $-7 - 51$ 125 $-7 - 51$ 126 $-7 - 51$ 127 $-7 - 35$ -51 127 $-7 - 35$ 127 $-7 - 35$ -51 128 $-7 - 51$ 129 $-7 - 41$ 129 $-7 - 45$ 129 $-7 - 41$ 129 $-7 - 41$ 129 $-7 - 41$ 129 $-7 - 41$ 129 $-7 - 45$ 129 $-7 - 41$ 129 $-7 - 45$ 129 $-7 - 41$ 129 $-7 - 41$ 129 $-7 - 45$ 129 $-7 - 45$ 120 $-7 - 45$ 120 $-7 - 45$ 120 $-7 - 45$ 121 $-7 - 50$ 122 $-7 - 7 - 50$ 123 $-7 - 7 - 50$ 124 $-7 - 7 - 50$ 125 $-7 - 24$ 126 $-7 - 24$ 127 $-7 - 50$ 128 $-7 - 24$ 129 $-7 - 30$ 129 $-7 - 30$ 120 $-7 - 7 - 7 - 30$ 120 $-7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$				· · ·						13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STEP	KEY ENTRY	KEY CODE	COM	MENTS	STEP	KEY ENTRY	KEY CODE	COMM	IENTS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	e*				169				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-						-31		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						172	CLX	-51		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	117	RTN	24							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118	*LBLE		Calculate	$E_{L(0,\lambda)}$	174	ENTA			
120 ST08 35 08 172 PI 16 ² -24 121 ST07 35 07 172 Y -35 122 xLBL1 21 01 179 PCL1 36 01 123 xL -31 179 PCL1 36 01 124 CLW -51 179 X -35 125 PCL2 36 02 182 ENTT -21 127 PCL5 36 05 182 ENTT -21 128 ST06 35 065 182 ENTT -21 129 - -45 184 BEEE 21 16 15 Calculate E _b ($\lambda - \lambda^+$). 129 ST06 35 06 185 X2Y -41 188 ENTT -21 128 ST06 35 06 190 058E 23 15 135 147 -24 193 PCL6 36 06 131 137 LS7 53 193 PCL6 36 06 132 147 -24 142 6 6 143 141 -45 147 <td></td> <td></td> <td></td> <td></td> <td>$D(0-\lambda)$</td> <td>174</td> <td>ENTI</td> <td></td> <td></td> <td></td>					$D(0-\lambda)$	174	ENTI			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						176	Pi	16-24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-35		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122	*LBL1	21 01							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ei v								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						181	≭LBLe 2	1 16 15	Calculate	F. /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	126	RCL2	36 02							⁻ b(λ-λ').
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	127	RCL5	36 05							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
130 ST06 35 03 166 RCLC 36 06 131 3 03 187 ST00 35 06 131 3 -24 189 ST00 35 06 133 \pm -24 189 ST00 35 06 134 RCL6 36 06 194 SST05 35 06 135 X 2 53 191 - -45 191 - -45 137 LSTN 16-63 194 SST06 35 06 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23 15</td> <td></td> <td></td>								23 15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						185	X≠Y	-41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			35 08			186	RCLE			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	131	3	03							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						190	GSBE	23 15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	135	X۶	53							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	136		-24							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
139 RCL6 36 06 140 \div -24 141 - -45 142 \in 06 143 RCL6 36 06 144 \div -24 145 RCL8 36 06 144 \div -24 145 RCL9 36 06 146 x^2 53 147 \div -24 148 $-$ -45 149 6 06 150 RCL9 36 08 151 X^2 53 152 -24 210 153 RCL9 36 06 154 -24 210		LU (M 4 20	10 00							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						194	STOE	35 06		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	139	RCL6	36 06			195	RJ.	-31		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140	÷	-24							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				156	<u>K</u> (n	24	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	144	÷	-24			200			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						}+			4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						├ ───┼			4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	148	-	-45							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149	6	06						1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						├ ───┼			ł	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						┣────╁			Į	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									J	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	153	RCL8	36 08							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						210			1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						┣────┼			1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						┣────┤			4	
$158 \div -24$ $159 e^{\times} 33$ 160×-35 $161 RCL8 36 08$ $152 \div -24$ $163 ST+7 35-55 07$ $164 RCL7 36 07$ $165 \div -24$ 165 ± -24 $166 EE \times -23$ $167 CHS -22$ $168 5 05$ $LABELS FLAGS SET STATUS$ $A T \rightarrow \lambda max b A \rightarrow T(\lambda max) \xrightarrow{C} E_{b}(0 \rightarrow \infty) d b \rightarrow a b A = b A + b (A \rightarrow A^{2}) A = b A + b A + b (A \rightarrow A^{2}) A = b A + b A + b A + b (A \rightarrow A^{2}) A = b A + b $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	÷	-24							
160×-35 $161 RCL \& 36 08$ $152 \div -24$ $163 ST+7 35-55 07$ $164 RCL7 36 07$ $165 \div -24$ 165 ± -24 165 ± -24 $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $ABELS \qquad FLAGS SET \ STATUS$ $A T \rightarrow \lambda \max \qquad B \lambda \rightarrow T(\lambda \max) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) \qquad D \rightarrow E_{b} \lambda = E_{b}(0 \rightarrow \lambda) \qquad 1 \qquad ON OFF$ $a Enq b SI exp \sigma d e \lambda' \rightarrow E_{b}(\lambda \rightarrow \lambda' = 2)$ $0 1 E_{b}(0 \rightarrow \lambda) Z B 0 D P SI E SI E SI SI SI SI $		e×				 +			1	
$161 RCL8 36 08 \\ 162 \div -24 \\ 163 5T+7 35-55 07 \\ 164 RCL7 36 07 \\ 165 \div -24 \\ 165 \div -24 \\ 166 EEX -23 \\ 167 CHS -22 \\ 168 5 05 \\ \hline \textbf{LABELS} \qquad FLAGS \qquad SET STATUS \\ \hline \textbf{A} \ T \rightarrow \lambda_{max} B \\ \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) D \rightarrow E_{b} \lambda E \\ F = E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 \\ \hline \textbf{N} \rightarrow E_{b}(0 \rightarrow \lambda) 1 \qquad 0 1 1 1 1 1 1 1 1 1 $						┣────┼				
$152 \div -24$ $163 ST+7 35-55 07$ $164 RCL7 36 07$ $165 \div -24$ $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $LABELS FLAGS SET STATUS$ $A \xrightarrow{T \rightarrow \lambda_{max}} \stackrel{B}{\rightarrow} \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) \stackrel{D}{\rightarrow} E_{b} \stackrel{E}{\rightarrow} E_{b}(0 \rightarrow \lambda) \stackrel{1}{\rightarrow} ON OFF$ $a \xrightarrow{Enq} \stackrel{D}{\rightarrow} SI \xrightarrow{Exp \sigma} \stackrel{d}{\rightarrow} e \xrightarrow{\lambda' \rightarrow E_{b}(\lambda - \lambda')} 2$ $a \xrightarrow{P} FLAGS TRIG DISP$						┝───┼			1	
$163 ST+7 35-55 07$ $164 RCL7 36 07$ $165 \div -24$ $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $LABELS \qquad FLAGS \qquad SET STATUS$ $A T \rightarrow \lambda_{max} B \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) d E \rightarrow E_{b}(0 \rightarrow \lambda) 1 ON OFF$ $a Enq b SI Exp \sigma d e \lambda' \rightarrow E_{b}(\lambda \rightarrow \lambda' 2 = 1 ON OFF$ $D GRAD SCI C SCI SCI SCI C SCI SCI SCI SCI C SCI SCI SCI SCI SCI SCI SCI SCI SCI S$										
$164 RCL7 36 07$ $165 \div -24$ $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $LABELS \qquad FLAGS \qquad SET STATUS$ $A T \rightarrow \lambda_{max} B \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) d b \lambda e b(0 \rightarrow \lambda) 1 ON OFF$ $a Enq b SI e Exp \sigma d b \lambda e b(0 \rightarrow \lambda) 1 ON OFF$ $a Enq b SI e Exp \sigma d b \lambda e b(\lambda \rightarrow \lambda) 2 DEG FIX DEG EX DEG $				i						
$164 RCL7 36 07$ $165 \div -24$ $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $LABELS \qquad FLAGS \qquad SET STATUS$ $A T \rightarrow \lambda_{max} B \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) d b \lambda e b(0 \rightarrow \lambda) 1 ON OFF$ $a Enq b SI e Exp \sigma d b \lambda e b(0 \rightarrow \lambda) 1 ON OFF$ $a Enq b SI e Exp \sigma d b \lambda e b(\lambda \rightarrow \lambda) 2 DEG FIX DEG EX DEG $	163	ST+7 3	35-55 07							
$165 \div -24$ $166 EE\% -23$ $167 CHS -22$ $168 5 05$ $LABELS FLAGS SET STATUS$ $A \rightarrow T(\lambda max) \xrightarrow{C} E_{b}(0 \rightarrow \infty) \xrightarrow{d} E_{b} \xrightarrow{E} E_{b}(0 \rightarrow \lambda) \xrightarrow{1} 0$ $FLAGS TRIG DISP$ $B \rightarrow T(\lambda max) \xrightarrow{C} E_{b}(0 \rightarrow \infty) \xrightarrow{d} e_{\lambda} \xrightarrow{E} E_{b}(0 \rightarrow \lambda) \xrightarrow{1} 0$ $ON OFF OF FIX \square$ $O \square E_{b}(0 \rightarrow \lambda) \xrightarrow{2} 3 \xrightarrow{4} b(\lambda \rightarrow \lambda) \xrightarrow{2} 2$ $D \rightarrow E_{b} \xrightarrow{A} \xrightarrow{E} E_{b}(\lambda \rightarrow \lambda) \xrightarrow{1} 2$ $O \square E_{b}(0 \rightarrow \lambda) \xrightarrow{2} 3 \xrightarrow{4} b(\lambda \rightarrow \lambda) \xrightarrow{2} 2$ $D = E_{b}(0 \rightarrow \lambda) \xrightarrow{2} 3$						220			1	
$166 EE\% -23$ $167 CHS -22$ $168 5 05$ $A T \rightarrow \lambda_{max} B \lambda \rightarrow T(\lambda_{max}) \stackrel{C}{\rightarrow} E_{b}(0 \rightarrow \infty) d b \rightarrow k E_{b}(0 \rightarrow \lambda) 1 ON \text{ OFF}$ $a Enq b SI c Exp \sigma d b \lambda e b(0 \rightarrow \lambda) 1 ON \text{ OFF}$ $0 DEG DEG FIX DEG FIX DEG SCI DE$						├ <u>├</u>				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						┝────┤				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CHS								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	168			<u> </u>						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		LABELS			FLAGS		SET STATUS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		В		D	E	 Г				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T→λmay		$(\lambda_{max}) \rightarrow E_{h}(x)$	∩- <u>∞</u>)	b } →	$E_{h(0-\lambda)}$	L		TRIG	DISP
$\begin{bmatrix} 0 & 1 \\ E \\ b \\ (0-\lambda) \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ RAD \end{bmatrix} = \begin{bmatrix} 4 & b \\ (\lambda-\lambda) \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ B \\ RAD \end{bmatrix} = \begin{bmatrix} 2 \\ B \\ C \\ C \\ C \end{bmatrix}$	la la			d	e,		1	ON OFF		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eng				λ	≻⊏b{}_}	1		DEG 🗗	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	¹ E. /	2	3	4	~ \ / - /.	12	1 🗆 🗷		SCI
	5	 _(∪= λ }	8			3	- 1 2 🗆 🗹 🖌	RAD 🗆	ENG
	Ŭ.	Ľ	ľ	Ŭ	3		ĭ	3 🗆 🗹		n

Program Title Economic Insulation Thick	ness	
Contributor's Name Hewlett-Packard		
Address 1000 N.E. Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330
Program Description, Equations, Variables		
$I = 3.46 \times 10^{-3} \sqrt{Y(\Delta T) M k/b} -6k$		
Where:		
I = thickness of insulation in inche	S	
Y = hours per year		
<pre>k = conductivity of insulation BTU/f</pre>	t ² °F/ft.	
ΔT = temperature difference, °F		
M = cost of energy \$ per 10 ⁶ BTU		
b = cost of insulation \$ per ft ² per	in. thickness	
Operating Limits and Warnings		
Insulation is assumed to be protected	d from moisture satu	uration possibilities.
		•

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s) A. What thickness of insulation is economic for a prefab wall used in a structure
with the following conditions?
$k = 0.15, \Delta T = 72^{\circ} - 32^{\circ} F$
Y = 24 hrs per day per year(8760),
$M = $1.00 \text{ per } 10^6 \text{ BTU}$
b = \$0.20 per sq. ft. per inch thickness
B. What if the energy price is \$2.50/million BTU?
Solution(s)
0.15 [+] 8760[B] 40[C] 1[D] 0.2[E] [A] [R/S]> 0.87 inches
A Ans. 0.87 inches
2.5[D] [A] [R/S]> 1.90
B Ans. 1.90 inches
Reference(s) Mechanical Engineers Handbook, L. Marks, McGraw-Hill 1941, pg 404.
This program is a translation of the HP-65 Users' Program #01621A submitted
by John R. Feemster.

		Economic	Insulation	Thickness		7
[dit]	in.	k↑ Y hr/yr	∆T°F	\$/10 ⁶ BTU	\$/Inch Ins	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Input program			
2.	Input data			
	<u> </u>	BTU/hr°F/ft		k
	Y	hr/yr	B	× °F
	ΔΤ	°F		°F
3.	Any two of the following are entered			
	Ι	inches	Α	inches
	\$/10 ⁶ BTU		D	
	\$/inch ins.	\$	Ε	\$\$
4.	Calculate			
	I		A R/S	inches
	\$/10 ⁶ BTU		D R/S	\$
	\$/inch ins.		E R/S	\$
5.	To begin new problem begin at step 2			

			4	110510		ting l	l		
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS	i
001	*LBLA	21 11					-24	T	
002	STOI	35 01	1		058		35 04		
603	3	03	1		059		24		
004	•	-62	Icon+	2 16 . 10	3 060		21 15		
005	4	64	lonst	. 3.46 x 10	061		35 07	Calculate b	
006	6	0 6			062		51		
007	EEX	-23			863	S RCL2	36 02		
008	3	03			064	F RCL5	36 05		
009	CHS	-22			065		-35		
010	STOE	35 0 6			066		36 04		
011	RCL1	36 01			067		-35		
012	R/S	51	Calcu	late I	068		36 03		
013			learea		069				
	RCL2 RCL7	36 02 76 07			663 676		-35		
014 015	RCL3	36 03 75					36 01		
015	Х 1001 (-35	1		071		36 05		
016	RCL4	36 04	1		072		06		
017	X	-35	1		073		-35		
018	RCL5	36 05			074		-55	1	
019	X	-35			075		36 06	t	
020	RCL7	36 07	1		076		-24	1	
021	÷	-24			077		53		
022	1 X	54	1		678		-24		
023	RCLE	36 Ø6	1		079		35 07		
023 024	X	30 00 -35	1		080		30 Ø7 24		
024 025	ε		1		F+	K10	<u> </u>		
		06 74 05	1					4	
626	RCL5	36 05							
027	Х	-35]	
028	-	-45						1	
029	ST01	35 01						1	
030	RTN	24						1	
031	*LBLE	21 12			+			1	
032	ST02	35 02					+	4	
033	R↓	-31			+		+	4	
034	ST05	35 05			090		+	4	
035	RTN	24			090		+	4	
036 036	*LBLC	24 21 13	1					4	
]	
037 070	STO3	35 03 24							
038 070	RTN	24]	
039 049	*LBLD	21 14]	
040	ST04	35 04]	
041	R∕S	51	Calcul	late M			1	1	
042	RCL1	3E 01					1	1	
043	RCL5	36 05			├ ───┼		1	1	
044	6	06			100		+	1	
045	x	-35	l				+	4	
046	+	-55			+		+	4	
047	RCL6	36 06			+		+	4	
048	÷	-24						4	
049	χz	53			∔			4	
043 050	RCL2	36 02					+ r		
050 051	RCL2 RCL5	36 02 36 05					↓	SET STATUS	
							FLAGS	TRIG DI	SP
052 057		-35					ON OFF		
053 054	RCL3	36 03							\mathbf{X}
054	X	-35			110		1 🗆 🛛		
055	RCL7	36 07					2 🗆 🙀		<u></u> γ□
05Ę	÷	-24					3 🗆 🛛	n	<u> </u>
				RI	EGISTERS				
			3 ^	T ⁴ M	⁵ k	⁶ Cons	t ⁷ b	8 9	
	¹ Ins.	² hrs/yr			ĸ				
	¹ Ins.	² hrs/yr ^{S2}	S3	S4	к S5	S6	S7	S8 S9	

Program Title	Heat Transfer	Through	Composite	Cylinders	and Wal	ls	
Contributor's Nan	ne Hewlett-F	Packard					
Address	1000 N.E.	Circle E	31vd.				
City	Corvallis		Sta	ite Oregon		Zip Code	97330

Program Description, Equation	ns, Variables
	This program can be used to calculate the overall heat transfer coefficient for composite tubes and walls from individual section conductances and surface coefficients.
T_2 k_2 Figure 1Composite	nube T_1 h_1 h_1 k_3 h_3 f_2 f_2 f_3 f_4 f_2 f_4 f_2 f_4 f
	se equations are for steady state heat transfer through materials a constant properties in all directions.
	ats must start with the inside convective coefficient and work in the case of composite cylinders.
	o is an invalid input for D, k, and h. nensional consistency must be maintained.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title	Heat Transfer Through Composite Cylinders and Walls	
Contributor's Na	ame Hewlett-Packard	
Address	1000 N.E. Circle Blvd.	
City		de 97330
Program Descri	iption, Equations, Variables	
A COLORADO A RECENTION OF	The overall heat transfer coefficient U is defined by:	
	$q/L = U \Delta T$	
. We have the M - M -	or	
	$q/A = U \Delta T$	
	where ΔT is the total temperature difference $(T_2 - T_1)$, q/L is the	
	heat transfer per unit length of pipe, and q/A is the heat transfer per unit area of wall.	
	For cylinders	an a
	$U = \frac{2\pi}{1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	
	$U = \frac{2\pi}{\frac{2}{h_1D_1} + \frac{\ln D_2/D_1}{k_1} + \frac{\ln D_3/D_2}{k_2} + \dots + \frac{2}{h_nD_n}}$	
	For walls	
(M, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1	
	$U = \frac{1}{\frac{1}{\frac{1}{h_1} + \frac{x_1}{k_1} + \frac{x_2}{k_2} + \dots + \frac{1}{h_n}}}$	
$\label{eq:matrix} (h, u_1, u_2) = d d h (h (h, u_1, u_2) + h (h, u_1) + h (h, u_2) + h (h, u_2) + h (h, u_2) + h (h, u_1) + h (h, u_2) + h (h, u_2) + h (h, u_1) + h (h, u_1) + h (h, u_2) + h (h, u_1) + h (h, u_1$	$h_1 k_1 k_2 h_n$	
- representation of the representation of the second science of	where	
	h is the convective surface coefficient;	
Í	D_n is the outside diameter of the annulus;	
$(1,1,2,\ldots,2n) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \right) \right)$	k is the conductive coefficient;	
	x is the thickness of a wall section.	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)			
	· · · · · · · · · · · · · · · · · · ·		
ample Problem(s)	Example 1:		
	A steel pipe with an inside diameter 0.5 inches has a conductivity of 2 asbestos (k = 0.1 Btu/hr-ft-°F) enclu- diameter to 9 inches. If the inside Btu/hr-ft ² -°F and the outside coeffic- the overall heat transfer coefficient feet of pipe if ΔT is 115°F?	5 Btu/ft-hr-°F. Two inches of ose the pipe bringing the total convective coefficient is 1000 cient is 5 Btu/hr-ft ² -°F, what is	
	Keystrokes	See Displayed	
	4	9	
	115 🗙	→ 112.44 Btu/hr-ft	
	100 🗙	► 11244.20 Btu/hr	
iolution(s)	Example 2:		
	A wall is composed of 1 foot of brinch of wood (k = 0.12 Btu/hr-ft-°F one side is 23 Btu/hr-ft ² -°F. The co- side is 5 Btu/hr-ft ² -°F. What is the heat flux if the temperature differen	 The convective coefficient on onvective coefficient of the other overall coefficient? What is the 	
	Keystrokes	See Displayed	
	RTN 1 ↔ 0.4 E 1 ↔ 12 ÷ .12 E 1	23 □ 5 □ C ► 0.29 Btu/ft ² -hr- [°] F	
	70 🗙 ——————	→ 20.36 Btu/ft ² -hr	

÷U h

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	For a composite wall go to			
	step 9.			
3	Input the inner diameter	D _{in}		D _{in}
4	Input the inner convective			
	coefficient	h _{in}	A	2/hD
5	Input next diameter value	D		D
	and corresponding coefficient	k or h	В	
6	Go to step 5 for next surface			
	or go to step 3 for outside			
	surface*			
7	Calculate overall heat transfer			
	coefficient		С	U
8	To calculate another overall			
	coefficient, go to step 2			
9	Input the coefficients for each			
	section of the wall:			
	Convective coefficient	h	D	1 <i>/</i> h
	or length of conductive path	x		
	and conductive coefficient	k	E	x/k
10	Go to step 9 for next input*			
11	Calculate overall heat transfer			
	coefficient		С	U
12	To calculate another overall			
	coefficient, go to step 2			

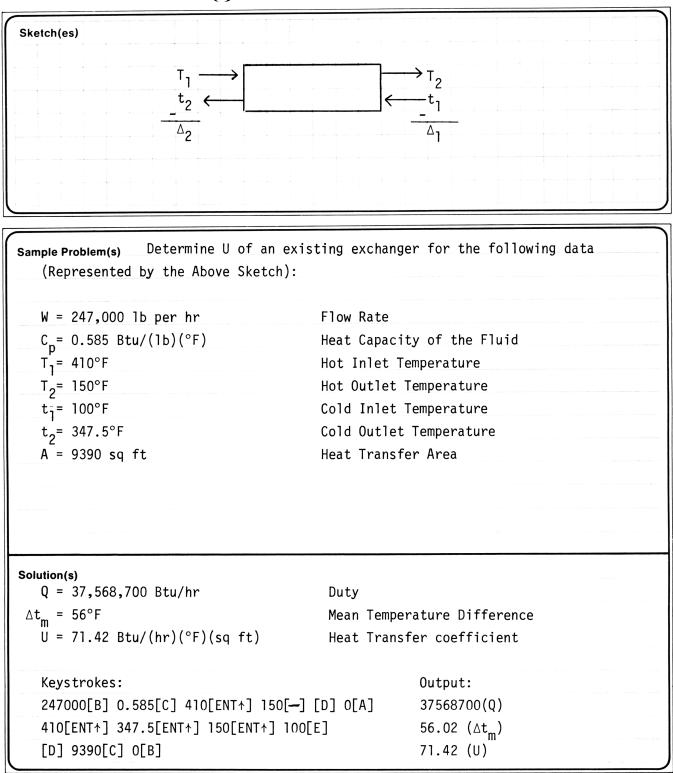
* Press RTN to restart a calculation.

COMPOSITE CYLINDERS AND WALLS RTN=START Deh Dek

© Program Listing I

22			Program	m Lis	sting I		
STEP		KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
801	*LBLA	21 11					
002	Fi	16-24	Initialize				
003	ST06	35 06		000			
604	CLX	-51		060			
005	ST08	35 08					4 1
806	R↓	-31					4
007	X≠Y	-41					4
008	ST07	35 07					4
009	X≠Y	-41					
010	GTOA	22 11	Idle				1
011	*LBL1	21 01					1 1
012 013	RTN *LBLA	24 21 11					1
013 014	*LDLH X	-35		070			1
015	1/2	-33 52	Add convective				1 1
015 016		35-55 08	factor				1
017		24					1 1
018	*LBLB	21 12					1 1
019	1/X	52					j l
020	X≠Y	-41]
821	RCL7	36 07					
822	X≠Y	-41	Add conductive				
623	ST07	35 07	factor				
624	÷	-24	Tactor	080			
025	LN	32					
026	X	-35					
027	2	02					4
828	÷	-24 75 45 20					4
029 030	ST-8 GT01	35-45 08 22 01					
030 031	*LBLC	22 81 21 13	Calculate U				4
631 632	RCL8	21 13 36 08					-
833	1/X	52					1
834	RCLG	36 06		090			
035	X	-35					1
036	ST04	35 04					
637	RTN	24			T		
0 38	*LBLD	21 14	Add convective				1
B39	1	01	factors				
040	X≠Y	-41					
841	*LBLE	21 15					
042	1	01					
043 044	STOG	35 06					
044 045	CLX STO8	-51 35 08		100	 		
645 646	5708 R↓	35 08 -31					
646 647	GTOE	-31 22 15					
848	*LBL2	21 02					
049	RTN	24			FLAGS	,	SET STATUS
050	*LBLE	21 15			0		TRIG DISP
851	X ≠ Y	-41	Add conductive		† 	FLAGS ON OFF	
852	÷	-24	factors		<u> </u>	0 🗆 🛛	DEG 🛛 FIX 🗶
853	*LBLD	21 14			2	1 🗆 🕱	GRAD SCI
054 055	1/X	52		110	3		RAD ENG n_2
055 055		35-55 08			L	3 🗆 🗶	·····
056	GTO2	22 02					
0	1	2	3 4	EGISTERS	6	7	8 9
Ŭ			U		l or t		ΣR
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
A		В	l c	D	T	L E	I

Program TitleSteady State Conductive Heat Transfer, Heat Load and Logarithmic
Mean Temperature DifferenceContributor's NameHewlett-PackardAddress1000 N.E. Circle Blvd.CityCorvallisState OregonZip Code97330


Program Description, Equations, Variables Given any Three variables $(Q,U, A\&\Delta t_m)$ OR $(Q,W,C_p\&\Delta t)$ The Program Computes the Fourth Variables: $Q = UA\Delta t_m$, $U = \frac{Q}{A\Delta t_m}$, etc. $Q = WCp\Delta t$, $C_p = \frac{Q}{W\Delta t}$, etc Given Temperature Conditions $(T_1,T_2, t_1 \& t_2), (t_1 \& t_2) \text{ or } (T_1 \& T_2)$ The Program Computes: $OR \Delta t_m = \frac{\Delta_2 - \Delta_1}{\ln(\Delta_2/\Delta_1)}$ $\Delta t = (t_2 - t_1), (T_2 - T_1).$

To combine these three basic heat transfer equations will increase the flexibility and speed of heat transfer design.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Reference(s) McAdams, W.H., Heat Transmission, McGraw-Hill Book Co. This program is a translation of the HP-65 Users' Library program #00648A submitted by Yu Tsung Pet.

Steady State Conductive Heat Transfer, Heat Load and Log Mean Temperature Difference

Q

3

U or W \triangle or C Δt_m or Δt_m Δt_m or Δt

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Compute Q			
2.		U or W	B	U or W
	Input U Btu/(hr)(°F)(sw ft) or W lb/hr Input A sq ft or C _p Btu/(lb)(°F)	A or C _p	С	A or C _p
	Input ∆t _m °F or ∆t °F	∆t _m or∆t	D	∕t _m or∆t
2.	Compute U or W			
	Input Q Btu/hr	А	A	Q
	Input A sq ft or C_Btu/(lb)(°F) Input ∆t _m °F or ∆t [°] °F	A or C	C	A or C _p ∆t _m or∆t
	Input ∆t °F or ∆t ^r °F	A or C _p ∆T _m or∆t	D	
2.	Compute A or C _p			U or W
	Input Q Btu/hr	Q	A	Q
	Input Q Btu/hr Input U Btu/(hr)(°F)(sq ft) or W lb/hr	U or W	B []	U or W
	Input ∆t _m °F or ∆t °F	∆t _m or_∆t		∆t _m or ∆t
			0 C	A or C _p
2.	Compute t _m or t			
	Input Q Btu/hr	Q	A	Q
	Input U Btu/(hr)(°F)(sq ft) or W lb/hr	U or W		UorW
	Input A sq ft or C Btu/(lb)(°F)	A or C _p	C _] [O _ [D _]	A or C _p
				∆t _m or ∆t
3.	Compute Δt_{m} or Δt from $T_{1}, T_{2}, t_{1} \& t_{2}, T_{1} \\ T_{1} \\ T_{2} \\ T_{2} \\ T_{2} \\ T_{3} \\ T_{3} \\ T_{2} \\ T_{3} \\$			
	1 2	T		T1
	t_2 t_1	t_2 T_2 or t_2		t_2 Tor t_2
		$t_1 \text{ or } t_1$		$\Delta t_{mor \Delta t}$
_				

			ozPro	gram	Lis	ting l	[
26 STEP	KEY ENTRY	KEY CODE	COMME		STEP			COMM	IENTS
001	*LBLA	21 11			057	*LBL0	21 00		
662	Ø	00	Compute th	e Q	058	-	-45		
003	X≠Y	-41			059	RŤ	16-31	$T_1 - t_2 = \Delta_2$	、
004	X≠Y?	16-32			060	X=Y?	16-33	1 2 2	-
005 007	GTC1 BCL2	22 01 36 02			061 062	R∕S X≟Y?	51 16-35	$T_2 - t_1 = \Delta_1$	
006 007	RCL2 RCL3	36 02 36 03			062 063	∧≞7: X≢Y	-41		
008	RCL4	36 04			863 864	ST05	35 05	$\triangle_2 = \triangle_1 =$	∆t _m
009	X	-35			065	ST06	35 06	L ;	
010	Х	-35			066		-31		
011	ST01	35 01			067		35-45 05		
012		24			068		35-24 06		
013	*LBL8	21 12	Compute th	e U or W	069		36 0 5		
014		00			870 871		36 06 32		
015 016		-41 16-32			071 072	LN ÷	-24		
010 017		22 02			073		35 04		
01. 018	RCL1	36 01			074		24		
619	RCL3	36 03			875		21 01		
020	RCL4	36 04			076		35 01		
021	X	-35			077		51		
022	÷	-24			078		21 02		
023	ST02	3 5 02			079		35 02		
024	RTN	24			080		51		
025		21 13	Compute th	e A or C	881		21 03		
026		00			082 807		35 03 Fi		
027 820		-41			083 084		51 21 04		
028 029		16-32 22 03			085		35 04		
020		22 03 36 01			086		51		
031	RCL2	36 02			000	K. 0	01		
032		36 04			1		1		
833		-35							
034	- -	-24			090				
035		35 03							
036		24							
037	*LBLD	21 14	Compute ∆t	or ∧t					
038 039		00		m					
039 040		-41 16-32							
040	GT04	22 04							
042		36 01	ł						
843		36 02							
044		3 6 0 3			100			1	
845		-35]	
046		-24]					1	
047 048		35 04 24						4	
048 049		24 21 15							
050		-45	Compute ∆1	: _m or ∆t				SET STATUS	
851	R↓	-31							
052	X≠Y?	16-32	from T ₁ ,T ₂	2 '' 1'' 2			FLAGS	TRIG	DISP
053	GTOØ	22 00					0 0 X	DEG 🛛	FIX 🛚 🛛
054		16-31]		110		1 🗆 🕱	GRAD 🗆	SCI 🗆
655		35 04					2 🗆 🖌	RAD 🗆	ENG □ n_2
056	RTN	. 24					3 🗆 🕱		I
	4 -	0	2		STERS	6	7	8	9
0	1 Q	² U,W	³ A,C _p		⁵ ∆1	[∆] 2			
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
A	I	В	с	L	D	I	E	I	
							1		

			d Absorption		
Contributor's Nam	e Hewlett-Packa	rd			
Address	1000 N.E. Circle	Blvd.			
City (Corvallis	State	Oregon	Zip Code	97330

$$h = \sin^{-1}(\cos 1 \cos d \cos t + \sin 1 \sin d)$$

1 - latitude in decimal degrees d = sun's declination = 23.45 sin D D = (no. of days after spring equinox)(0.9856 degrees/day) t = (no. of hours before or after solar noon);

)

$$A = \cos^{-1}\left(\frac{\cos i \sin 1 - \sin d}{\cos 1 \sin i}\right)$$

Fraction E = $2n(a^2 + b^2)$ cos i cos r

$$a = \frac{1}{\cos r + n\cos i} \text{ where } r - \sin^{-1}(\frac{\sin i}{n})$$
$$b = \frac{1}{\cos i + n\cos r}$$

n = index of refraction of pond fluid

(refs: Smithsonian Physical Tables, 9th rev. Ed. & Weinberger, H., Solar energy,v8,n2, 1954 (p 729) 1964 (pp 45-56)

OPERATING LIMITS AND WARNINGS

Does not compute azimuth at latitude of 90 degrees.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	
LowG.	
Loc. 7 h	
447.	
A	
Sample Problem(s)	
Find the sun's altitude, azimuth, and the fraction of the	
penetrate the surface of a solar pond under the following	ng circumstances:
Index of refraction of pond fluid n = 1.33	
Latitude 1 = 46.00	
Days after spring equinox = 68	
Hours before solar noon = 4	
Solution(s)	
h = 35.99 degrees	
A = 84.41 degrees	
E = 0.96	
Keystrokes:	Outputs:
23.45[ST0][1] .9856[ST0][2] 1.33[ST0][3]	
	25 00
46[A] 68[B] 4[C]>	35.99
46[A] 68[B] 4[C]> [R/S]>	84.41

Smithsonian Physical Tables, 9th rev. Ed., 1954, (p 729) Weinberger, H., Solar Energy, vol 8, no. 2, 1964 (pp 45-56) This program is a translation of the HP-65 Users' Library program #00683A submitted by Robert J. Zaworski.

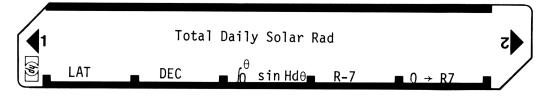
Sun Alti	tude, Azir	nuth, Solar	r Pond Abs	orption	5
LAT	DAYS	HRS			

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
2.	Turburg during a second second			
2.	Introduce constants	23.45	STO 2	
		0.9856 n	STO 3	
3.	Input latitude (O to 90) in decimal degrees	latitude	A	1
4.	Input numberof days (0 to 365) after Spring	days	B] []	d
	Equinox			
5.	Input number of hours (0 to 12) before or			h
	after solar noon, and compute altitude			
6.	Compute azimuth		R/S [Α
7.	Compute the fraction of solar rediation		R/S	E
	striking the pond surface which will penetrate			
	the pond surface			
		L		I

			o 7Program	Listing I		
30 6760	KEV ENTRY		COMMENTS	STEP KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11		057 GSBE	23 15	
002	COS	42		058 RCL6	36 06	
003	ST04	35 04	cos 1 in 4	059 RCL7	36 07	
004	LSTX	16-63		060 RCL3	36 03	
005 007	RTN ++ DLD	24	stops with latitude	061 GSBE	23 15	
006 007	*LBLB RCL2	21 12 36 02	in x	862 ÷	-55	
007	X	-35		063 RCL3 064 ×	36 03 -35	
009	SIN	41		064 2	02	
010	RCL1	36 01		066 ×	-35	
011	X	-35		067 RCL6	36 06	
012	STO5	35 05	d in 5	068 X	-35	
013	RTN	24	stops with decl.in >	069 RCL7	36 07	
014	*LBLC	21 13	stops with deci. In /	070 ^	-35	
615	1	01 05		071 RTN	24	
015 017	5 X	-35		072 *LBLD	21 14	
017 018	cos	42		073 COS-'	16 42	
018 019	STOS	35 08		074 SIN 075 RTN	41 24	
020	RCL4	36 04		076 *LBLE	21 15	
021	X	-35		077 ×	-35	
022	RCL5	36 05		078 +	-55	
023	COS	42		079 ENT1	-21	
024	X	-35		080 ×	-35	
025		36 04		0S1 1/X	52	
026		23-14 76-05		ØS2 RTN	24	
027 028		36 05 41		083 R/S	51	
028 029		35 07		L	l	
030		-35				
031	+	-55				
032	STD6	35 06				
033		16 41	Stops with alt. in >			
034	R∕S	51		090		
035		36 06 36 06				
036 077		36 04				
037 038		23 14 -35				
039		36 87				
040		-45				
041	RCL4	36 04				
642		-24				
043		36 06				
044		23 14		100		
045 045		-24				
046 047		16 42 51	Stops with azimuth			
047 048		36 06	in x			
040		23 14				
050		36 03				SET STATUS
051	÷	-24				
052		16 41			FLAGS	TRIG DISP
053 054		42 75 03				DEG 🕱 🛛 FIX 🔀
054 055		35 07 76 06	cos r in 7	110	1 🗆 🕱	GRAD 🗆 🛛 SCI 🗆
055 056		36 06 36 03				RAD 🗆 ENG 🗆 n_2
	NULU				3 🗆 🎽	
0	1	20.9856	lan (index)4	ISTERS 5 d 6	i ⁷ sin d/cos	8 9
	23.45	deg/day	of refrac	declination cos	1 \$1n d/cos	srčcost S8 S9
S0	S1	S2	S3 S4	S5 S6	5/	55 55
A		B	C	D	E	I

Program Title	Total Da	aily A	Mount	of	Solar	Radiation		
Contributor's Name	Hewlett	-Packa	ırd					
Address	1000 N.E.	. Circ	le Blv	d.				
City (Corvallis				State	Oregon	Zip Code	9733

Program Description, Equations, Variables This program determines the total amount of solar radiation received by a horizonatal surface of unit area during one calendar day. The result is expressed as equivalent hours of direct sunshine if sun were stationary and directly overhead. Also computes length of daylight and accumulates total radiation in R7 for succesive calculations. Input variables are latitude, L, suns declineation (from nautical almanac) in decimal degrees. Day Length = 24 θ/π , θ expressed in radians θ = Arc cos (-sin L Sin D/cos L cos D) Total Radiation = $2\int_{0}^{\theta} \sin H d\theta$ = $(\sin L \sin D) \theta$ + $\cos L \cos D \sin \theta$ **Operating Limits and Warnings** North latitudes and declinations are entered as positive values south as negative values. The value 90-L+D must be greater than zero.


Equations assume surface level with horizon and ignores atmospheric refraction and

assume cloudless sky.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Read Card			
2.	0 → R7	0.00	E	0.00
3.	Input latitude °N +	I AT °N	Α	LAT (+)
	or °S -	LAT °S	CHSA	" (-)
4.	Input suns declination °N +	DEC °N	В	HOURS
	-	DEC °S	CHS B	DAYLIGHT
5.	or°S Compute total rad = 2∫ ^θ sin Hdθ		C	TOTAL RAD
				HRS
	To obtain total radiation for a number of days			
	n (up to May of 365), repeat steps and 5.			
				N
6.	Total radiation for N days			Σ^{N} TOT RAD
	TABLE OF SUNS DECLINEATION (DECIMAL DEGREES)			
	DATE DEC DATE DEC DATE DEC			
	Jan 1 -23.00 May 7 16.85 Sep 3 7.30 8 -22.38 14 18.67 10 4.88			
	8 -22.38 14 18.67 10 4.88 15 -21.08 21 20.22 17 +2.20			
	22 -19.63 28 -21.48 24 -0.50			
	<u>29 -17.88 June4</u> <u>22.45 Oct 1 -3.24</u> Feb 5 -15.87 11 23.10 8 -5.94			
	Feb 5-15.871123.108-5.9412-13.631823.4215-8.57			
	<u>19 -11.22</u> 25 <u>23.40</u> <u>22 -11.10</u>			
	<u> 26 - 8.75 July2 23.05 29 -13.50</u>			
	Mar 5 - 6.00 9 22.35 Nov 5 -15.72 12 - 3.27 16 21.35 12 -17.74			
	<u></u>			
	<u>26 + 2.27</u> 30 18.48 <u>26 - 20.97</u>			
	Apr 55.00Aug 616.66Dec 3-22.0997.631314.6310-22.93			
	-16 10.17 20 12.40 17 -23.36			
	23 12.58 27 10.00 24 -23.42			
	30 14.82 31 -23.09			
		1		

Program Listing I

24			9 7	Program	LIS	ling I				
STEP	KEY ENTRY	KEY CODE		COMMENTS	STEP	KEY ENTRY	ł		COMM	IENTS
34 STEP 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 040 041 042 043 044 045 046 047 048 049 040 041 042 043 044 045 046 047 048 049 040 041 042 043 044 045 046 047 048 049 040 041 042 048 049 040 041 042 048 049 040 041 042 048 049 040 041 045 046 047 048 049 040 041 044 044 045 046 046 047 048 049 040 041 046 047 048 049 040 040 041 046 047 048 049 040 041 046 047 048 049 040 040 044 044 045 044 045 046 046 047 048 049 048 049 049 040 049 040 049 040 040	*LBLA DSP4 ST01 R/S *LBLB ST02 DEG RCL1 SIN RCL2 SIN X ST03 RCL1 COS RCL2 COS RCL2 COS X ST04 X2Y? GT01 RCL3 RCL4 ÷ ST05 *LBLC COS-7 7 5 ÷ ST05 *LBLC RCL3 RCL5 Pi X 2 4 ÷ ST06 RAD RCL3 RCL3 RCL6 X		Enter store Enter linat no. c sunsh This midn Conve (θ) day θ is radia the	COMMENTS r latitude & e in R-1 r sums dec- tion and compute of hours of hine takes care of ight sun erts degrees to length of in hr, min,sec converted to ans to perform integration & lt is converted	STEP 057 059 060 061 062 063 064 065 065 065 070 071 073 074 073 074	KEY ENTRY ENT1 RCL7 + ST07 R4 R/S *LBLD RCL7 *LBLD RCL7 *LBLE 8 *LBLE 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 8 8 8 9 8 9 8 9 8 9 8 9 8 8 8 8 8		CEY CODE -21 36 07 -55 35 35 07 -31 51 21 14 36 07 51 21 21 15 00 35 35 07 51 21 21 01 02 04 35 05 51 51	Display s accumulat Stores ze for new s calculati Limits of tion for s or case	ums ed in R-7 ro in R-7 eries of ons integra- midnight
047 048		36 06 41	1		├ ───┤		\vdash			
049	X	-35	1						057 074710	
050	1 +	-55	1		┝───┤				SET STATUS	
051 052		02 04	1		├			FLAGS ON OFF	TRIG	DISP
052 053		-35	1		110			0 🗆 🛛	DEG 🛛	FIX 🕅
054	P i	16-24	1		110		\vdash	1 🗌 🛛 2 🗌 🕅	GRAD □ RAD □	SCI □ ENG □
855 856		-24 -21						3 🗆 🛛		n
				REGIS	STERS	SOFIE		7	8	9
0	¹ LAT	² DEC of s		n Lx 4 cos Lx n D cos D		NE 0 RADI	<u>AN</u> S			
S0	S1	S2	S3	S4	S5	S6		S7	S8	S9
A	I	B		с	D		E	1	I	·

Program Title Temperatur	re or Concentration Profile For A Semi-Infinite Sol	id
Contributor's Name Hewlett-Pa Address 1000 N.E. Circle City Corvallis		330
Program Description, Equations, Va	riables	
	hy physical situations in heat and mass transfer may be solved nin engineering tolerances by assuming an infinite geometry.	
	T. (C.) Profile at t 	
	Figure 1.	
con At tran atu	Figure 1 an infinitely thick wall initially at temperature T_0 or accentration C_0 is subject to a constant surface potential T_s or C_s . a later time t, the internal profile will have been altered by the asport of heat or mass. This program computes values of temper- re T or concentration C at time t for specified distances x from outer surface.	
Operating Limits and Warnings	This solution is exact for infinite configurations with constant cross sectional areas. However, finite geometries where the argument of the error function is greater than two will yield little or no error. This means transfer in finite bodies such as plates may be predicted until the effects of the step are felt on the far side. Also, geometries such as cylinders may be studied if the depth of penetration is small compared to the radius.	
	The routine used by this program will resolve error functions with arguments less than 4.5. For larger arguments, the value of the error function is set to 1.0.	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Ti	tle Temperature or Concen	tration Profile For A S	Semi- Infinite Solid	
Contributor	r' sName Hewlett-Packard			
Address	1000 N.E. Circle Blvd.			
City	Corvallis	State Oregon	Zip Code 97330	

Program Description, Equations, Variables Equations: $T = (T_0 - T_s) \operatorname{erf} \left(\frac{x}{2\sqrt{\frac{k}{\rho c_p} t}} \right) + T_s$ where k is thermal conductivity of the material; ρ is the density of the material; c_p is the specific heat of the material; $k/\rho c_p$ is also known as the diffusivity of heat α . Similarly, for mass transfer $C = (C_0 - C_s) \operatorname{erf} \left(\frac{x}{2\sqrt{Dt}}\right) + C_s^*$ where D is the mass diffusivity. *erf is the error function. **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)							
					1 		
			and the second		• • • •		
				-			n an
					· · ·	· · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
	n ann an the generation and the second providence of the second	a new wakaness concerns to compare the same contract to the					
					and the second sec		
· · · · · · · · · · · · · · · · · · ·							

Example 1:

A large steel transmission shaft is case hardened by diffusion of carbon. The initial carbon concentration is 0.10% and the surface concentration is brought to 1.20% almost instantly. What is the carbon concentration at 1.0 mm $(1 \times 10^{-3} \text{ m})$ after 15 hours (54000 seconds), if the diffusivity of carbon in steel is taken to be $1.6 \times 10^{-11} \text{ m}^2/\text{s}$?

Keystrokes

See Displayed

1.6 EEX CHS 11 + 1 + 1 A 1.2 + .1 B 54000	
	0.59%

Example 2:

A furnace wall is at a constant 55°F. When the furnace is turned on the inside wall temperature is raised to 2000° F. How long will it take to raise the outside wall temperature 1° F?

 $k = 0.67 \text{ Btu/hr-ft-}^{\circ}\text{F}$ Thickness = 1.5 feet

c = 0.2 Btu/lb °F

 $\rho = 150 \text{ lb/ft}^3$

Keystrokes

See Displayed

An iterative solution is required since t is not a program output. Guess 5.0 hours for t.

.67 🛉 150 🛉 .2 A 2000 🕂 55 B 5 C 1.5 D → 57.92°F
Guess 4.0
Noting that \mathbf{x} is stored in register 8.
4.0 C RCL 8 D → 55.75°F
Guess 4.2
4.2 C RCL 8 D → 56.04°F
Guess 4.18
4.18 C RCL 8 D → 56.01°F
Noting that t is stored in register 7.
RCL 7 f →H.MS → ≈4 hr. 10 min.

User Instructions

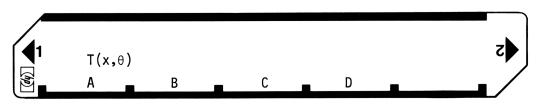
 $\begin{array}{c} \text{SEMI-INFINITE SOLID} \\ \hline \\ & & & \\ & &$ x++T(C) a++erf(a)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	To compute the error function			
	of an argument go to step 8.			
3	Input:			
	Conductivity	k		k
	<i>then</i> density	ρ	\uparrow	ρ
	then specific heat	Ср	A	α
	or heat (or mass) diffusivity	α (D)		α (D)
	then 1.00	1		1.00
	then 1.00	1	A	α (D)
4	Input:			
	Surface temperature (con-			
	centration)	T _s (C _s)	↑	T _s (C _s)
	then initial temperature			
	(concentration)	T ₀ (C ₀)	В	T _s (C _s)
5	Input time	t	С	t
6	Input distance from surface			
	and calculate temperature			
	or concentration	x	D	T (C)
7	For new case go to step 2, 3, or			
	4 and change inputs. For new			
	time go to step 5. For new x go			
	to step 6.			
8	Input argument and compute			
	error function	а	E	erf(a)

STEP	KEY ENTRY	KEY CODE		LIS				39
			COMMENTS		KEY ENTRY	KEY CODE	COMN	MENTS
001	≭LBLA	21 11 75		057		-55		
<i>002</i>	×	-35	Store constants as	058 059		16-32		
003	÷	-24	a or D	059		22 01		
004	STOE	35 06 34		060		02 75		
005	RTN	24		061		-35		
006		21 12 75 04	Store concentrations	062		16-24		
007	STO4	35 04	or temperatures	063		54		
008		-41	of cemperatures	864		-24		
009		35 05		065		36 02		
010		24		066		02		
011		21 13	Stone time	067		-24		
012		35 07	Store time	068		33		
013		24		069		-24		
014		21 14		070		24		
015		35 ØS		071		21 00		
016		02		072		Ø1		
017		-24		073	RTN	. 24]	
018		36 ØE	Calculate temp. or				1	
019		36 0 7	concentration given x					
020		-35						
021	٧X	54						
022	÷	-24						
023		23 15						
024		36 04		080				
025		36 05	1					
026		-45						
027		-35						
028		36 05						
020 029		-55						
030		24						
031		21 15						
032		35 01						
032		33 81 84						
033 034		-62		090			•	
034 035				090				
035 036		05 17-75					4	
		16-35 22.00						
037		22 00 Di		└───┤-				
038		-31						
039		-21						
040		-35						
041	.2	02					1	
042		-35						
043		35 02 01					4	
044	1	01		100				
045		35 03						
046		36 01					1	
047		21 01	Evaluate the error				1	
048		36 02 36 03	function				1	
049		36 03	- une er en					
050		02				L.	SET STATUS	
051	+	-55				FLAGS	TRIG	DISP
052		35 03				ON OFF		
053		-24					DEG 🔊	FIX 🙀
054		36 01		110			GRAD	
055		-35	}	$ \downarrow \downarrow$		$\begin{array}{c} 2 \\ 3 \\ \end{array}$	RAD 🗆	ENG 🗆
056	ST01	35 01				3 🗆 🙀		n
		10		STERS	6	17	8	9
0	¹ Part.S	um ² 2a ²	3 2n + 1 4 T ₀ (C ₀)	⁵ T _s (C _s) ⁶ α	⁷ t	° x	⁹ Used
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
A	<u>_</u>	B	c	D		E	I	

Program Title	Transient Temperature Dis	stribution	In A Semi-In	finite Solid W	lith
J	Convection Boundary Cond	ition			
Contributor's Nam	e Hewlett-Packard				
Address	1000 N.E. Circle Blvd	•			
City	Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables
Given the data set:
x = Depth from surface
α = Thermal diffusivity
k = Thermal conductivity
h = Heat transfer coefficient
θ = Time
The program computes the following factor \overline{x} $\overline{x} = ERF \frac{x}{2\sqrt{\alpha\theta}} + [EXP (\frac{hx}{k} + \frac{h^2\alpha\theta}{k^2})][1 - ERF (\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k})]$
where ERF = Error function
EXP = Exponential
The user must then manually compute the desired temperature $T(x,\theta)$,
according to:
$T(x,\theta) = T_m + (T_i - T_m) \overline{x}$
where $T_m = Sink temperature$
T _i = Initial solid temperature
Operating Limits and Warnings


This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)		
		an a
		ann an
		e s norder de la
Sample Brahlem(a)		
Sample Problem(s) For the data set:		
$x = 10^{-2}$ cm.		
$\theta = 10^{-1}$ cm.		
$\alpha = 7.141 \times 10^{-3} \text{ cm}^2 \text{ sec}^{-1}$		
$k = 6.322 \times 10^{-3} \text{ cal } \text{cm}^{-1} \text{ sec}^{-1} \text{ 0}_{\text{C}}^{-1}$ $h = 6.0 \times 10^{-1} \text{ cal } \text{ cm}^{-2} \text{ sec}^{-1} \text{ 0}_{\text{C}}^{-1}$		
$h = 6.0 \times 10^{-1}$ cal cm ⁻² sec ⁻¹ 0 _C -1		
Solution(s) The program computes the value:		
$\overline{\mathbf{x}} = 0.3973$		
for $T_i = 1050^{\circ}C$ and $T_{\infty} = 450^{\circ}C$		
$T(x,\theta) = T_{\infty} + (T_i - T_{\infty}) \overline{x} = 688.40^{\circ}C$		
Keystrokes: 0	utputs:	
1[EEX][CHS] 2[STO][4] 1[EEX][CHS] 1[STO][5] 7.141[EEX][CHS] 3[S	T0][6]	
6[EEX][CHS] 1[STO] [7] 6.322[EEX][CHS] 3[STO][8]		
[A][B][C][D]> 0.397	3	
1050[ENT+] 450[-][x] 450[+]>688.40		
Reference (s)		
Hockman, J.P. <u>Heat Transfer</u> Third Edition pgs. 91-96 McGraw Hi	11, 1972	2
	-	

This program is a translation of the HP-65 Users' Library program #01472A submitted by John S. Wasylyr.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load program			
2.	Enter data	X	STO 4	
3.	Enter data	θ	STO 5	
4.	Enter data	α	STO 6	
· · ·				
5.	Enter data	h	ST0 7	
6.	Enter data	k	ST0 8	
7.	Press			See 1 below
8.	·			<u> </u>
9.				" <u>3</u> "
10.		(T _i -T _∞)		<u>×</u>
	Enter (T _i -T _∞)	('i'w)		
12.	Press			
12.	F1 C55			
13.	Enter T_{∞}	Τ∞		
14.	Press		+	T(x,θ)
	For new case, go to step 2			
	1. Calculates $\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k}$			
	2. Calculates ERF $(\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k})$			
	$2\sqrt{\alpha\theta}$ k			
	3. Calculates & Stores:			
	$R8 = ERFC \left(\frac{x}{2\sqrt{\alpha\theta}} + \frac{h\sqrt{\alpha\theta}}{k} EXP \left(\frac{hx}{k} + \frac{h^2\alpha\theta}{k^2}\right)\right)$			
	$2\sqrt{\alpha\theta}$ k 2π k k^2			
	X			
	ERF ($\frac{x}{2\sqrt{\alpha\theta}}$) in stack			
	· · · · · · · · · · · · · · · · · · ·			

			07	Pro	ogram	Lis	ting I				40
STEP	KEY ENTRY	KEY CODE	1	сомм		STEP	KEY ENTRY		KEY CODE	COM	43 Ments
001	*LBLA	21 11				057	-		21 13	Calc	
002	RCL8	36 08				058			01	ERFC($\frac{x}{2\sqrt{\alpha\theta}}$	$ h\sqrt{\alpha\theta}$
003		35-24 07	Calc	(h/k)	Sto R-7	059			-41	ERFC(2 Vαθ	$- + \frac{1}{k} $
004 005	RCL6 ST×5	36 06 35-35 05	Calc	(a.e.)	Sto R-5	060 061			-45 35 08	Store R-8	
005 006	RCL4	36 04		(00)		062			36 07		
007	RCL7	36 07				063			36 05		
008	Х	-35				864	1×		54		
009	ST06	35 06	Calc	(hx/k) Sto R-6	065			-35		
010	RCL4	36 04				866			53	Calc /hx -	h ² xθ、
011	2	<i>02</i>				067 067			36 0 6	Calc (<u>hx</u> - EXP (<u>k</u> -	$+\frac{1}{k^2}$
012 013	÷ RCL5	-24 36 05				068 069			-55 33		
013 014	KCES √X	54				005 070			36 08	Calc (EXP	
615	10 ÷	-24				071	X		-35	Sto R-8	
016	ST04	35 04	Calc.	(4/2√	$\overline{\alpha\theta}$ Sto R-4				75 08		
017	RCL7	36 07		(, , _ ,		073			36 04	Calc. ERF	$\left(\frac{}{a}\right)$
018	RCL5	36 05				074					`2√αθ΄
019	ΛX	54			ĺ	075	RTN		24		
020	Х	-35	C-1c	1/2/2	$\theta + h \sqrt{\alpha \theta / \mu}$	876	*LBLD		21 14	Calc	
021	+	-55		(1) 2 10	^w ^w ^w ^w ^w ^w ^w ^w ^w	077 078			36 08 -55		EXP)(ERFC)
022 023	RTN *LBLB	24 21 12				078 079			-55 24		
023 024	sto1	21 12 35 01				080			-		
024	ENTT	-21	Calc					+			
026	X	-35			$+ \frac{h\sqrt{\alpha\theta}}{k}$			+			
027	2	02		×/ _{2√αθ}	· +			+			
028	Х	-35									
029	STO2	35 02									
030	1	01									
031 072	STO3	35 03 74 ex						+			
032 033	RCL1 *LBL1	36 01 21 01						+-			
033 034	RCL2	21 01 36 02				090		+			
035	RCL3	36 03				000	an ar an	+			
03E	2	02						╀			
037	1	-55						+			
038	ST03	35 03	1								
039	÷	-24									
040	RCL1	36 01						+			
041 042	× STO1	-35 35-01	1					╋			
042 043	5101	30 01 -55						+			
043	X≠Y?	1 <i>6-32</i>				100		+			
045	GT01	22 01	1					+			
046	2	02	1					+			
047	X	-35									
048	Fi	16-24									
049 050	72	54 74 - 20						╄	r	SET STATUS	
050 051	RCL2 2	36 02 02						╋		SET STATUS	
051 052	÷	-24						+	FLAGS	TRIG	DISP
053	e ^x	33						+	ON OFF	DEG 🛛	FIX 🛛
054	X	-35	1			110		Γ	1 🗆 🛛	GRAD 🗆	SCI 🗆
055	÷	-24							2 🗆 🛛	RAD 🗆	
056	RTN	24							3 🗆 🕅		n
			12		REGIS	5	6 0		7 h	8 k	9
0	¹ Usec			Jsed	^	5α	U U		п	ĸ	⁹ Used
S0	S1	S2	S3		S4	S5	S6		S7	S8	S9
A	I	В		С	•	D		E		I	

Program Title Conservat	ion of Energy			
Contributor's Name Hewlett-P	ackard			
Address 1000 N.E. Circl	e Blvd.			
City Corvallis	Stat	e Oregon	Zip Code	97330
Program Description, Equations, Va	riables			
volume wo is for SI or ning total. keys will ca velocity, he used in a lar	s convert kinetic energy, pot rk to energy. Card 1 is for metric units. Energy is stored When a zero is displayed, pre ause the running total to be ight, pressure or energy per u rge number of fluid flow prob essure change along the path o	English untis while (as a run- ssing the B , C , D converted to an equi unit mass. The cards m lems, where velocity.	Card 2 or E valent nav be	
Operating Limits and Warnings				
outp	vnstream values should be inp put is called for, the calculato rd to upstream or downstream	r displays the relative		
	hing zeros will result when the negative and an attempt is ma			

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title		CONSERVATION OF	ENERGY	
Contributor's	Name	Hewlett-Packard		
Address		Circle Blvd.		
City	Corvallis		State Oregon	Zip Code 97330
<u> </u>				
Program Des	cription, Equa	ations, Variables		
		$\frac{{v_1}^2}{2} + gz_1 + \frac{P_1}{\rho} +$	$\frac{E_1}{\dot{m}} = \frac{v_2^2}{2} + gz_2 + \frac{P_2}{\rho} + \frac{E_2}{\dot{m}}$	
		where		B. 1999 9
		v is the fluid velo	city.	
			ove a reference datum;	
		P is the pressure;	·····,	
		E is an energy ter friction loses (no	m which could represent inputs of vegative value);	work or
		g is the acceleration	on of gravity;	
		ρ is the fluid dens	ity;	
		m is the mass flow	rate (assumed to be unity);	
		subscripts 1 an values respective	nd 2 refer to upstream and down ely.	istream
Operating Lin	nits and Warn	ings		
<u> </u>				

this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)	Example 1:		.01/A
	A water tower is 100 feet high. Wh the base? The density of water is 62		
	Keystrokes	See Displayed	
	Using card 1		-summer of the
	62.4 A 100 C D	→ 43.33 psig	Reserves
	If water is flowing out of the tower the static pressure?	at a velocity of 10 ft/sec, what is	- 1880 and 10
	10 CHS B D	→ 42.66 psig	
	What is the maximum frictionles achieved with the 100 foot tower?	s flow velocity which could be	
	62.4 A 100 C B	→ 80.21 ft/sec	
	If 10000 pounds of water are pum hour, at a velocity of 20 ft/sec, wi psi, how much power is needed at t	th a frictional pressure drop of 2	a 000000
	62.4 A 20 B 2 D 100 C E	→ 0.14 Btu/lb	
Solution(s)	10000 🗵 ————————————————————————————————	→ 1424.29 (Btu/hr)	
Reference (s)			

	0		
e sense e angele e and a sense e a sense	a and a second		
Sketch(es)		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · ·		•
an a	· · ·		-
			· · · · · · · · · · · · · · · · · · ·
Sample Problem(s)			
	Example 2:		
	An incompressible fluid (ρ =	735 kg/m ³) flows through the conver-	
	ging passage of Figure 1. A	t point 1 the velocity is 3 m/s and at	
	point 2 the velocity is 15 m	n/s. The elevation difference between Assuming frictionless flow, what is the	
	static pressure difference bety	ween points 1 and 2?	
	static pressure amerence ere		
n na han an a			
	+		
	 3 m/s ^{1.}	\ \ \ T	
and an and the second			
	→ →	-3.7 m	
		2	
		15 m/s	
		Figure 1.	
Solution(s)			
	Koustrokos		
	Keystrokes	See Displayed	
	Using card 2		
	735 A 3 B 3.7 C 15 CHS B	▶ -52710.82	
		(Nt/m ²)	

Sketch(es) Sample Problem(s) Example 3: A reservoir's level is 25 meters above the discharge pond. Assuming 85% power generation efficiency, how much power can be generated with a flow rate of 20 m^3/s ? $\rho = 1000 \text{ kg/m}^3$ Keystrokes See Displayed Using card 2 1000 A 25 C E -▶ 245.17 (joule/kg) .85 🗙 -▶ 208.39 (joule/kg) 20 🛉 1000 🗙 – → 20000 (kg/s) **X** -→ 4167826.25 (watts) Solution(s) Reference(s)

User Instructions

/	CONSERVAT	TION OF E	ENERGY-ENG	LISH	_	
8	ρ(START) (Ib/ft ³)	v v(ft/sec)	v z (ft)	P (psi)	(Btu)	

/	CONSER	VATION O	F ENERGY	SI		
[5	ρ(START) (kg/m ³)	▼ (m/s)	₹ (m)	(N/m ²)	(J/kg)	
1	⊴ (kg/m⊃)	(m/s)	(m)	(14/11-)	(J/Kg)	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	For English units (pounds, feet,			
	seconds, Btus), enter			
	Card 1. for SI units			
	(kilograms, meters, seconds,			
	watts), enter Card 2			
2	Input fluid density	ρ	A	g
3	Input the following (negative			
	values are downstream values):			
	Fluid velocity	v	В	0.00
	Height from reference datum	Z	С	0.00
	Pressure	Р	D	0.00
	Energy input	E	E	0.00
4	Repeat step 3 for all input			
	values			
5	Calculate the unknown:			
	Fluid velocity	0.00	В	v
	Height from reference datum	0.00	С	Z
	Pressure	0.00	D	Р
	Energy	0.00	E	E
6	For new case go to step 2, or			
	store 0.00 in register 8 and go			
	to step 3.			

STEP K	EY ENTRY	KEY CODE	97 Program	STEP	KEY ENTRY	KEY CODE	COMMENTS
801	*LBLA	21 11		057	GT01	22 01	
002	ST04	35 04		058		36 0 8	
0C3	CLX	-51		059		36 07	
004	STOR	35 08		060		-24	
005	7	Ø7		061	RCL4	36 04	
886	7	07 00	Store ρ and	862		-35	
007 830	8	08 69	constants	063		36 06	
00S 009	• 1	-62	constants	064		-24	
005 010	e i	01 06		065 065		24 21 15	
011	ST05	06 35 05		066 067		-21	
812	3703	00 00 03		067		36 05	
013	2	03 02		869		-35	
614		-62		670		36 06	
015	1	01		871		-35	
016	7	07		072		00	Energy
017	STOE	35 06		073		16-32	2.1.01 9.5
018	RTN	24		874		22 01	
	*LBLB	21 12		075		36 08	
B20	ENT†	-21		076		36 05	
821	ABS	16 31	Velocity	077		-24	
B22	×	-35		078		36 06	
623	2	02		079		-24	
824	÷	-24		080		24	
825	Ø	00		081		21 01	
026	X≠Y?	16-32		082		-31	Summation
027 022	GT01 DCLO	22 01 76 00		083		35-55 08	Summacton
028 029	RCL8	36 08 00		084		86	
025 030	2 ×	02 -35		085	RTN	24	1
030 031	۲X	-33 54		+			-
032	RTN	24					-
	*LBLC	21 13					4
034	ENTT	-21		090			4
035	RCL6	36 06		000			-
Ø36	Х	-35					-
837	Ø	00	Height				-
038	X≠Y?	16-32	inc i gino			1	4
039	GT01	22 01					1
040	RCL8	36 08					
041	RCL6	36 06]
042	÷	-24					
843	RTN	24					
044 045	*LBLD ENT†	21 14		100			4
040 046	ENIT 1	-21 Ø1					4
048 047	4	01 04		+		-	4
048	4	04 04				+	4
849	sT07	35 07		+			4
050	X	-35				+	4
051	RCL4	36 04		+			4
052	÷	-24	Pressure			+	4
053	RCL6	36 06		+			1
054	X	-35		110]
055	Ø	00					1
056	X≠Y?	16-32					
				GISTERS		1-	
	1	2	3 4	5 778.10	6 6	7 144	⁸ ΣΕ Used
	S1	S2	ρ S3S4	S5	5 g S6	S7	S8 S9
	131	32	33 34	33	100	1~'	

		Ç)7 Program	Listi	ing II			51
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENT	S
001 002 003 004	*LBLA STO4 CLX STO8	21 11 35 04 -51 35 08	Store and gravity constant	057 058 059 060	ST+8 3 0	-31 5-55 08 00 24	Summation	
005 006 007 008 009	8 0	09 -62 08 00 06						
010 011 012 013 014	5 STOG RTN	06 05 35 06 24 21 12		180				
015 016 017 018 019	ENT↑ ABS × 2	-21 16 31 -35 02 -24	Velocity					
015 020 021 022 023 024	0 X≠Y? GT01 RCL8	00 16-32 22 01 36 08 02		190				
025 026 027 028	× √X RTN *LBLC	-35 54 24 21 13						
029 030 031 032 033	RCL6 × 0 × × 0 ×	-21 36 06 -35 00 16-32	Height	200				
034 035 036 037 038	RCL8 RCL6 ÷ RTN	22 01 36 08 36 06 -24 24						
839 840 841 841 842 843	ENT† RCL4 ÷ Ø	21 14 -21 36 04 -24 00		210				
044 045 046 047 043	GT01 RCL8 RCL4 X	16-32 22 01 36 08 36 04 -35	Pressure					
049 050 051 052 053	*LBLE ENT† 0 X=Y?	24 21 15 -21 00 16-33 36 08	Energy	220			-	
054 055	RTN	36 08 24]	
056		21 01	LABELS		FLAGS		SET STATUS	
Α _ρ	В	v c	z ^D P ^E	E	0	FLAGS	TRIG	DISP
a 0	b 1 Σ	с 2	d e 3 4		1 2	ON OFF 0 [] 23 1 [] 33	GRAD 🗆 🛛 S	
5	6	7	8 9		3	2 🗌 🔀 3 🗌 🕅		NG □ □ <u></u> 2

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner			
Portfolio Management/Bonds & Notes	Anesthesia			
Real Estate Investment	Cardiac			
Taxes	Pulmonary			
Home Construction Estimating	Chemistry			
Marketing/Sales	Optics			
Home Management	Physics			
Small Business	Earth Sciences			
Antennas	Energy Conservation			
Butterworth and Chebyshev Filters	Space Science			
Thermal and Transport Sciences	Biology			
EE (Lab)	Games			
Industrial Engineering	Games of Chance			
Aeronautical Engineering	Aircraft Operation			
Control Systems	Avigation			
Beams and Columns	Calendars			
High-Level Math	Photo Dark Room			
Test Statistics	COGO-Surveying			
Geometry	Astrology			
Reliability/QA	Forestry			

ENERGY CONSERVATION

This is a book with heat transfer calculations for everyday use. Programs include basic heat transfer calculations in conduction, convection, and radiation.

AIR COOLING SYSTEM DESIGN

BLACK BODY THERMAL RADIATION

ECONOMIC INSULATION THICKNESS

- HEAT TRANSFER THROUGH COMPOSITE CYLINDERS AND WALLS
- STEADY STATE COND. HEAT TRANS., HEAT LOAD & LOGARITHMIC MEAN

SUN ALTITUDE, AZIMUTH, SOLAR POND ABSORPTION

TOTAL DAILY AMOUNT OF SOLAR RADIATION

TEMPERATURE OR CONCENTRATION PROFILE FOR A SEMI-INFINITE SOLID

TRANSIENT TEMPERATURE DISTRIBUTION IN A SEMI-INFINITE SOLID WITH CONVECTION BOUNDARY CONDITION

CONSERVATION OF ENERGY

