HEWLETT-PACKARD

HP-67 HP-97

Users' Library Solutions Marketing/Sales

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing I indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

FORECASTING USING EXPONENTIAL SMOOTHING	1
FINANCIAL TREND ANALYSIS. A set of the exponential function. Analyzes growth trends for a best fit exponential function. Includes several parameters of "goodness of fit".	11
SEASONAL VARIATION FACTORS (SEAVAR) Develops seasonal variation factors based on historical figures. The factors are useful for projecting seasonal sales. Can be used in conjunction with "Forecasting using Exponential Smoothing".	16
PRICE ELASTICITY OF DEMAND. Using historic (or estimated) prices and resulting unit sales, this program calculates the elasticity of demand.	20
EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST Produces standard learning curve parameters useful in projecting production cost as a function of units produced.	24
BREAKEVEN ANALYSIS. Considers the operating leverage relation between fixed costs, variable cost, # of units, selling price and gross profit, and allows the user to dynamically evaluate the effect of various changes in any of the variables upon the other variables.	28
INCOME STATEMENT (P&L) ANALYSIS Allows the user to posit numerous alternatives in manufacturing cost, overhead, price etc, and see immediately the effect on the income statement.	32
INTERNAL RATE OF RETURN	40
SALES FORCE REQUIREMENTS Calculates the required number of salesmen when given average annual call frequency per salesman, number of customers forecasted and desired call frequency per customer.	47
COST & PRICE COMPUTATIONS Helps quickly and easily solve those problems of markup, margin and chain discounts.	51

r Program Ti	tle "Forecasting Using Expon	ential Smoothing"	
Contributor Address	's Name Robert Olsen, Profes Dept. of Marketing, LH-626,	ssor of Marketing California State University,	Fullerton
City	Fullerton	State California	Zip Code 92634

Program Description, Equations, Variables This is a singly-smoothed exponential forecasting routine which: (1) accommodates quarterly seasonal correction factors, (2) can handle some trend in the data, (3) produces smoothed estimates of current demand, D_t . (4) produces next-period smoothed demand estimates, D_{t+1} . (5) calculates a mean absolute deviation, MAD, and a tracking ratio, TR, (6) also provides a goodness-of-fit measure, V, which measures the variance between the next period's demand estimate to that period's actual demand, and (7) provides for convenient restarting when the user wants to update a data-series. While written for an HP-67, the program coding includes the option of printing all important results when an HP-97 is used.

Introductory Remarks. Exponential, is a special kind of moving average. It is often used for short-term sales and inventory forecasts. Typical forecast periods are a month or quarter of a year.

Unlike a moving average, exponential smoothing does not require a great deal of historical data. This program, for example, forecasts demand by using only a smoothing constant, an "old smoothed average," and a current-period usage statistic.

Normally, exponential smoothing uses data measured in physical quantities

Operating Limits and Warnings Should not be used with data which has more than a moderate amount of up or down trend. (Use double smoothing for data with a pronounced trend.) Program has no provision for error correction. Initializing resets the seasonal correction constants to 1.0. \hat{D}_{t+1} must be calculated for each time period if MAD. TR. or V are desired. At least two projections of \hat{D}_{t+1} must be done before MAD or TR can be calculated.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

(cases, tons, dozens, reams, etc.). It also can be used with dollar amounts but care must be taken to see that the amounts are stated in constant-dollar terms.

1. <u>Methodology</u>. This program is a versatile first-order smoothing routine for short-term forecasting with data having modest changes in its time-trend component. Such data will appear as a more-or-less horizontal line when plotted against time on a graph, with time being on the horizontal axis. If there is a trend in the plot this program will generate estimates which lag behind the trend line even though the formulas contain a trend correction factor. Double exponential smoothing should be used when the trend is pronounced.

Quarterly seasonal adjustments are available in this program but they are not required. This explanation begins without considering the deseasonalizing option. See Section 6 for the deseasonalizing option.

A trend-responsive first-order/from deseasonalized data is developed as follows.

a. Calculate a smoothed (weighted) average of: (1) actual demand/usage/ sales in the current time-period, and (2) the smoothed average of demand/usage/sales in prior time periods.

$$S_{+} = o(X_{+} + (1 - o)S_{+-1})$$

where

S = Current period's smoothed average Xt = Actual current period usage ∝ = 0 < ∝ < +1

b. Calculate the change, C_t , in the smoothed average S_t between this period (t) and the prior period (t-1).

$$C_t = S_t - S_{t-1}$$

c. Calculate the current smoothed rate-of-change (trend), T_t , in the smoothed average, S, between t-1 and t.

$$T_{+} = \alpha C_{+} + (1 - \alpha) T_{+-1}$$

d. Calculate the current period's expected usage, D_t. This result is an exponentially smoothed projection of what usage is expected to be in the current time period, t. It is not a forecast for period t+1.

$$D_t = S_t + ((1 - \alpha) / \alpha) T_t$$

e. Forecast the next period's expected usage.

$$D_{t+1} = S_t + (1 / \ll) T_t$$

f. More generally, a forecast for n time periods in the future can be obtained from the formula

$$D_{t+n} = S_t + (1/\infty + n - 1)T_t$$

This formula is not included in the program but the necessary data can be gotten by inserting R/S instructions after Step 101 (S_t) and Step 112 (T_t). When Key B is pressed these values will appear after B, but before D,.

2. Choice of Smoothing Constant, \checkmark . \checkmark must be determined empirically. Low values of \checkmark make the trend line less responsive to new data. Responsiveness, however, means that the trend line will respond to spurious changes as well as real changes in trend. Brown and other authorities (see references below) recommend \checkmark values between 0.1 and 0.3. Trial-and-error experimentation usually is required to find a good \checkmark value for a time series. See Sections 4 and 5 for further comments.

3. <u>Starting Data</u>. The equations used for exponential smoothing constitute a system which has infinite regress. In theory one could go backwards in time forever because of the equation

 $S_{t} = A_{t} + (1 - A_{t})S_{t-1}$

Where should one stop (or begin)? Somehow, then, a starting value for S must be found. This program assumes a default option of S = X_{t-1} on the t-1 first iteration, following Buffa and Taubert. (This can be defeated. See Step 6 of the User Instructions.)

In addition, a starting value for T must be found. This program assumes a default option of T = 0. Again, this follows Buffa and Taubert. (This also can be defeated. See Step 5 of the User Instructions.)

These assumptions make it advisable not to forecast until at least four periods of current data have been entered (i.e., until Key B has been used at least four times).

4. <u>Tracking Signals</u>. Brown (p. 296) and Enrick (p. 17) describe the concept of a tracking signal, or tracking ratio. This measure is one way to evaluate goodness-of-fit. Conceptually, a tracking ratio is the cumulative sum of an equation's forecasting errors (either + or -) relative to the equation's cumulative mean absolute deviation.

A tracking ratio which is consistently close to 0.0 is good, while a tracking ratio which goes much above ± 3 is questionable. Exceeding 3 suggests that the process no longer is being controlled by the smoothing formula and that the researcher should develop a new formula to cope with changed conditions.

The formulas used here are from Enrick. They are simpler than Brown's and avoid several measurement problems which cannot be easily summarized in this write-up. The trade-offs are: (1) Enrick's tracking ratio is not as accurate for the first few iterations, and (2) Enrick's tracking ratio does not lend itself to statistical inference. (Brown's does.)

In this program all the calculations are done with deseasonalized data. Here are the formulas.

$$CFE = \left\{ \begin{array}{c} (x_t - \hat{D}_t) \\ CAD = \left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\} \right\} \left[(x_t - \hat{D}_t) \right] \\ MAD = CAD/B_{n-1} \\ TR = CFE/MAD \end{array}$$

CFE = Cumulative Forecast Error (can be + or -)
CAD = Cumulative Absolute Deviation
MAD = Mean Absolute Deviation
TR = Tracking Ratio
B_n = Number of times a smoothed forecast D
thas been calculated (done by pressing
Key C after Key B after each entry of
data by Key B)

Notice the "hat" superscript over the D_t values in the formulas. The hat emphasizes that the comparisons are being made between observed demand in period t and the forecasted demand projection made earlier in period t-1. Also notice that the formula for CFE is written so that an overforecast of demand results in a negative value for CFE. Conversely, an underforecast results in a positive value. This sign convention carries through to the tracking ratio results as well.

5. Variance Measure. This program also calculates a variance, V, as follows.

$$v = \frac{\xi e_i^2}{n} = \frac{\xi \begin{pmatrix} A_1 & - & X_t \end{pmatrix}}{B_n}$$

This variance is provided to give another measure of variability. It is useful for measuring variance as statisticians define it, but it is not a particularly good way to assess goodness-of-fit. Oftentimes the variance*when \checkmark is set very high, such as in the range of 0.7 to 0.9. Such an \checkmark implies that the smoothing process is not working very well and that some other smoothing procedure should be tried. Restated, a high value of \checkmark implies that practically no smoothing is being done and that another approach should be tried. *will be minimized

6. <u>Deseasonalization of Data</u>. The following examples show how seasonalized and deseasonalized data are distinguished in this write-up.

X_{t(S)} = Actual usage, inclusive of a seasonal component X_{t(D)} = Actual usage, deseasonalized D_{t(D)} = Deseasonalized expected usage

Assuming that quarterly deseasonalizing constants, SV_i (i = 1, 2, 3, 4) are available, those constants can be entered into this program so that the deseasonalization will be done automatically. One program which will produce the correct seasonal constants is "Seasonal Variation Factors," in the Hewelett-Packard Marketing/ Sales Solutions Manual.

This program assumes that the seasonal factors will be used multiplicatively to eliminate seasonality. That is,

 $X_{t(S)} \cdot SV_{i} = X_{t(D)}$

A multiplicative constant of 0.909 (0.909 = 1.00/110%) thus would be used to deseasonalize an observation for a quarter which normally had a usage rate which was 10% greater than the annual average.

This process operates in the reverse when re-seasonalizing data. To obtain

where

 $\hat{D}_{t+1(S)}$, for example, the following is done. $\hat{D}_{t+1(D)}$: $SV_i = \hat{D}_{t+1(S)}$

7. <u>Counters for Time</u>. Two counters keep track of time. B_i records the number of times a smoothed demand estimate is calculated. It does that by counting the number of times Key B is pressed. Counter Q_i is used with the deseasonalizing adjustment option. Q_i keeps track of the fiscal quarter or calendar quarter associated with a given X. Since Q_i is entered by means of Key A for time period t-1, Q_i should always be for time period t-1.

Examples: (refer to the numbering convention in the next paragraph) -Suppose that X_{t-1} (Key A's input) is for the 4th calendar quarter of the preceding year. Then Q_i should be entered as 4. Now suppose that X_{t-1} is for the 2nd quarter of the current year. Then Q_i should be entered as 2.

Following is the numbering convention.

B,	=	1	lst	quarter	of	the	year
1		2	2nd	quarter	of	the	year
		3	3rd	quarter	of	the	year
		4	4th	quarter	of	the	year

Finally, Key f b assumes that the seasonal constants always will be entered in this order: SV_1 , SV_2 , SV_3 , and SV_4 (see the User Instructions). The order of entry via Key f b has <u>no</u> relationship to the Q₁ figure entered in the start-up process.

8. <u>Coding</u>. The basic coding is relatively straightforward. The one thing to remember is that all values are time-dated. The coding in f LBL 0 may there-fore seem confusing, for it uses D_{t+1} values calculated in prior time periods as the basis for its calculations. Just keep in mind that those values were calculated one iteration earlier.

Some users are likely to want to modify the instructions used here for the program stops (h PAUSE, f -x-, R/S) to better fit their needs. That can be done, but be sure not to alter any h RTN instructions without carefully considering the consequences. Changes in some of them could cause the program to "run through" a label and desynchronize the time-counters B_i and Q_i . Also, 97 users may want to add print-outs of the input data: only results are printed in this program.

9. <u>Limitations</u>. The chief limitation of this program is the limitation of the methodology itself. First-order exponential smoothing is not appropriate for data with a pronounced upward or downward trend. A lesser shortcoming is the need to let the start-up assumptions work themselves out of the equation system.

References. Robert Goodell Brown, <u>Smoothing</u>, Forecasting, and Prediction of <u>Discrete Time Series</u> (Englewood Cliffs, N.J.: Prentice-Hall, 1963). An excellent general introduction to the subject.

Elwood S. Buffa and William H. Taubert, <u>Production-Inventory Systems: Planning</u> and Control, Rev. ed. (Homewood, Illinois: Richard D. Irwin, 1972), pp. 44-45. Has the formulas used for Keys B and C.

Norbert Lloyd Enrick, <u>Market and Sales Forecasting</u> (San Francisco, Calif.: Chandler Publishing Co., 1969), p. 17. Has the formulas for Key D.

Sample Problem(s) Refer to the d	lata on pa	age 7 for t	he case where de	eseasonalizat	tion is
to be done. Proceed as follo	W8.				
		Inputs	Keys	Outputs	
1. Initialize			f A	1.00	
2. Enter seasonal factors	sv ₁	1.15	1		
	sv ₂	0.94	1		
	SV3	0.89			
	sv4	1.02	f B	1.02	SV4
3. Enter start-up data	œ	•2			
	Q	4	†		
	x	100	A	102.00	X _{O(D)}
4. Enter current usage.	x	100	В	1.00	B
find D				106.80	
			R/S	92.77	$D_{1(S)}$
A Find former at ad warmen D			<u> </u>	107 20	
Setation(s)			V	107.20	^D 2(D)
				114.04	^D 2(S)
6. Enter current usage,	x ₂	150	В	2.00	B ₂
D_2				119.37	$D_{2(D)}$
			R/S	126.99	$D_{2(S)}$
7. Find forecasted usage, D			C	121.24	D ₃ (D)
				136.22	D _{3(S)}
8. Find MAD, TR			D	33.80	MAD
				1.00	TR

•	Find	Źeĩ,	B ₂ • V	e 1142.44	Źe₁ź
				2.00	B ₂
				571.22	V

Test Data When Deseasonalization Not Done, Alpha = 0.2

7

User Instructions

	SINGLE EXPONEN	NTIAL	SMOOTHING	W/	TREND	æ	SEASONAL	ADJUSTME	nts	
	1 Initial.	sv _i †	Pri	nti	?			_	2	
10	_∝ÎQ;ÎXt-1_	Xt —	→Dt _→Dt	:+1	→ 1	MAI), TR 🕂	≤ei, V	_	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	Load both sides of program card				
2	Initialize		f	A	1.00
3	(Optional) Enter seasonal coefficients (default	sv ₁		1	
	assumption is no seasonal variation)	SV2		Ť	
		SV3		Ť	
		SV4	f	В	SV4
4	Choose print mode (toggle)		f	C	Pi / 0.00
	(Pi = print all results / 0.00 = print some)				
	Pi and zero appear alternately				
5	(Optional) Store T_{+-1} , if known (default = 0)	T _{+_1}	STO	4	
	V-1	• - 1			
6	Input \propto , Q, for T _{t-1} , X _{t-1} (or S _{t-1} , if	X		↑	
	known)	Q		1	
		X _t		A	$X_{t-1}(D)$
7	Find expected current usage. Key in X _t	Xt		В	Bi
					$D_{t(D)}$
	(Optional) Find seasonalized D ₊			R/S	D _{t(s)}
					(5)
8	(Optional) Find D _{t+1} and set up calculations			C	$\hat{D}_{++1}(p)$
	needed for MAD, TR, & V				$\hat{D}_{++1}(s)$
					UTL(D)
9	Find MAD, TR. (Can be done if Key C has been p	ressed		D	MAD
	each time data has been entered by Key B. Erro	r mes-			TR
	sage is given if $B_1 = 0$ or $1.$				
	2				
10	Find $\leq e_1^{\mathcal{L}}$, V (Can be done if Key C has been pr	essed		E	Źe ² i
	each time data has been entered by Key B. Erro	r mes-			Bi
	sage is given if $B_1 = 0$)				v
ll	Continue entering data by Key B (Step 6), re-				
	peating steps 8 - 10 as desired.				
12	Record data for future use		f W	DATA	
13	To restart with data recorded on data card				
	a. Load both sides of program card				
	b. Load both sides of data card				
	c. Begin at Step 7				

Program Listing I

STEP	KEY ENTRY	KEY COUL	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*g LBLf a	32 25 11	Initialize		STO + 8	33 61 08	Q
	f D2 C	31 45			5	05	$1s Q_{i} = 5?$
	F CL REG	31 43		060	$\frac{RUL o}{2} = \sqrt{2}$	34 00	
	1	01		Yes	$f_{GSB} = y_1$	31 22 06	Resat Step 204
	STO 1	33 01	Assume no seasonal-	No	RCL 8	34 08	Reset. Step 204.
	STO 2	33 02	ity.Store 1 in all		1	01	Get SV.
	STO 3	33 03	SV registers.		0	00	
010		33 04			+	61	
010	1 1	31 42	SV = 1 promot		h ST I	35 33	
	h RTN	35 22			RCL (I)	34 24	sv _i
	*a LBLf b	32 25 12	Enter SV's		X	71	X. (s)
	f P X S	31 42		070	STO E	33 15	^`t(D)
	STO 4	33 04	sv ₄		1	01	Increment B;
	hR↓	35 53	,		STO + 9	33 61 09	'
	STO 3	33 03	sv ₃		RCL 9	34 09	Bi
	h R↓	35 53	c.v.	<u> </u>	h F? 1	35 71 01	
020		33 02	sv ₂	Yes		31 84	
020	STO I	33 37	SV1	NO_		35 72	Fit MAD Treaking
	RCL 4	34 04	Prompt - SV's used			01	FIL, MAD, TRACKING
	fP≩S	31 42			q x = y?	32 51	First iteration?
	h RTN	35 22		⁰⁸⁰ Yes	GTO 1	22 01	Bypass to Step 093
	*g LBLf c	32 25 13	Print? Yes, all.	No	RCL E	34 15	X _t (D)
	h SF 1	35 51 01			fP≷S	31 42	
	h Pi	35 /3	mnemonic for print		RCL 9	34 09	Prior period esti-
		35 22	Print? Not all re-		$\frac{-}{50 + 5}$	33 61 05	CFF Dt+1(D)
030	h CF 1	35 61 01	sults.		STO 8	33 08	CIL
	0	00			h ABS	35 64	
	h RTN	35 22			STO + 6	33 61 06	CAD
	*f LBL A	31 25 11	Enter start-up data		RCL 8	34 08	ei
	STO C	33 13	X _{t-1}	090	g x ²	32 54	
	h R ↓	35 53			f P Z S	31 42	
	STO 8	33 08	Q _i for X _{t-1}		STO + 3	33 61 03	<u>že</u> ²
	h R ↓	35 53			*† LBL I	31 25 01	Calculate S _t (D)
		<u> </u>			RCL B	34 12	S. MAN
040	1	01			X	71	³ t-1(D)
	+	61			RCL A	34 11	
	STO B	33 12	1-~		RCL E	34 15	X ₁ (D)
	RCL 8	34 08	Deseasonalize X _{t-1}		X	71	()
	1	01		100	+	61	
	0	00			STO 2	33 02	^S t(D)
	+ 5 CT 1	25 22			T LBL 2	31 25 02	Calculate C _t (D)
	$\mathbf{R}(\mathbf{I}_{i})$	34 24	sv			51	
		34 13	X+-1		*f LBL 3	31 25 03	Calculate $T_{+}(n)$
050	X	71	X_{t-1}		RCL A	34 11	
	STO D	33 14	Proxy for St-1		X	71	
	STO 1	33 01			RCL 4	34 04	
		35 22	Enter X	110		34 12	
	STO O	31 25 12	Enter At		+	61	
	1	01			ST0 5	33 05	T _t (D)
			REGIS	STERS			
⁰ Xt(S)	¹ St-1	² S t	$^{3} \not\leq e_{i}^{2}$ $^{4} T_{t-1}$	⁵ T _t	⁶ Dt-1	⁷ D _t	⁸ Q _i ⁹ B _i
S0 _	stv1	^{S2} SV ₂	^{S3} SV ₃ ^{S4} SV ₄	S5 CFE	S6 CAD	S7 -	S8 Temp e; S9 Dt+1
A c	× [3 1-×	^c X _{t-1(S)}	^D X _t −	·1(D)	E X _{t(D)}	Rel. address

10

Program Listing II

STEP	KEÝ EŅ	Юнт	KEY	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОМ	MENTS
	*f_LBL	4	3] 25	04	Calcu	late D ₁ (p)			f PZ S	31 42	4	
	PCL A		34 12			ť(D)		170	RCL_9	34 09	$D_{t+1(D)}$	
	+		81						h v? v	31 42	1	
	RCL 5		34 05	;					÷	81		
	X		71						h F? 1	35 71 01		
	RCL 2		34 02	2				Yes	f -x-	31 84		
120	+		61					No	h RTN	35 22		
		8	33 07	08	$M_{t}(D)$				*f LBL 7	<u>B1 25 07</u>	Reset Q	
	RCL 2	. 0	34 02	00	t reg	isters to t	-1		1	D1	-	
	STO 1		33 01		regist	ters	•	180	h RTN	35 22	1	
	RCL 5		34 05	,					≭f LBL D	31 25 14	MAD & Tra	cking Rat-
	STO 4		33 04						fP≷S	31 42	lio	
	RCL 7		34 07	1					RCL 5	34 05	CFE	
	<u>STO 6</u>		33 06)					RCL 6	34 06		
120	RCLE		34 15						T PES	31 42	4_	
130	SIO D		33 14							34 09	-l ^B i	
	KUL /	1	<u>34 U/</u> 25 71	01	^D t(D)				-	51	-	
Yes	f - x -		31 84						÷	81	MAD	
No	R/S		84					190	f -x-	31 84		
	*f LBL	9	31 25	09	Calcul	late $D_{+(s)}$			÷	81	TR	
	1		01			τ(3)			h F? 1	35 71 01	4	
	0		00					Yes	f -x-	31 84	4	
	RCL 8		34 08		Q;			NO		35 22	L	
140	† ь ст	-	25 3	2	•				PCI 2	31 25 15		
	RCL 7	,	34 0	, 7					f -x-	31 84		
	RCL ((i)	34 2	ł					RCL 9	34 09]в.	
	÷		81		$D_{+}(s)$				h PAUSE	35 72] '	
	h F?	1	35 7	01	t(S)			200	÷	81	V	
	f -x-		31 84	+				Vee	h F?	35 71 01	4	
			35 22	- 12	C = 1 =	1-+- D		No		31 84	4	
	RCI 2		34 03	<u>, , , , , , , , , , , , , , , , , , , </u>	carcu	t+1			f LBL 6	31 25 06	Reset 0:	to l
	RCL 5	;	34 04	5					1	01		
150	RCL A		34 1						STO 8	33 08	1	
	÷		81						h RTN			
	+		61		$D_{t+1}($	(ח					4	
	h F?		35 7	01		.,		210			4	
Yes_		ISE	35 72	t >							4	
	f PZ	S	31 42								4	
	STO 9		33 09)							1	
	f₽≷	S	31 42	2]	
160	1		01		Q, mo	re than 4?					4	
			21. 00	2	<u>ا</u> ر						4	
		,	34 00)	^Q i						-	
	1		01								1	
	+		61					220				
	<u>g x =</u>	<u>y?</u>	32 51]	
Yes	<u> t GSB</u> ь ст	7	31 22	07	Step	177					-	
NO.	RCL ($\frac{1}{1}$	34 24) }	sv:						4	
					LAB	BELS			FLAGS		SET STATUS	3
Ate:t)	(t-1 B	Х	+	^C D₊.	+1	MAD. TR	E 🛨	£ e ²	0 _	FLAGS	TRIG	DISP
alnit	ial. b	SV	;	c .	-	d _	e	-	¹ Prin+2	ON OFF		
0 / 2			1	2 -		3 -	4		2			
2 e		s _t		- C.	t	T _t		Dt				
5012,		eset	۷i	/ Res	et Add	° t → t-1	₽Dt	(S)	3 _	3 🗆 🕱		n2

Robert Walker				
23413 Broadwell Ave Torrance,	State	Calif.	Zip Code	90502
quations, variables Many wth pattern which ca s program fits these regression coeffici he program outputs t mean of the data. (G is a number which me	types of n be depic data poin ents and t he compoun $M =_{e}(\Sigma \ln Y)$ asures the	ted by an ext ts to an ext he coefficie ded annual g /N)).	ata follow a consistency about the second se	ntinuous tion and ation. 0(1-e ^b) and
e. This program cal	culates th	e stability	about the mean	(stan-
]	23413 Broadwell Ave Torrance, quations, Variables Many wth pattern which ca s program fits these regression coeffici he program outputs t mean of the data. (G is a number which me e. This program cal	23413 Broadwell Ave. Torrance, State quations, Variables Many types of wth pattern which can be depic s program fits these data poin regression coefficients and t he program outputs the compoun mean of the data. (GM = $_{e}(\Sigma \ln Y)$ is a number which measures the e. This program calculates th	23413 Broadwell Ave. Torrance, State Calif. quations, Variables Many types of financial dates with pattern which can be depicted by an exp s program fits these data points to an exp regression coefficients and the coefficients he program outputs the compounded annual genean of the data. (GM = $_{e}(\Sigma ln Y/N)$). is a number which measures the degree of components the stability	Torrance, State Calif. Zip Code quations, Variables Many types of financial data follow a con- wth pattern which can be depicted by an exponential funce s program fits these data points to an exponential curver regression coefficients and the coefficient of determin he program outputs the compounded annual growth trend 100 mean of the data. (GM = $_{e}(\Sigma ln Y/N)$). is a number which measures the degree of consistency above. This program calculates the stability about the mean

trend line (standard error of the estimate), $\sigma_e = \sigma (1-r^2)^{\frac{1}{2}}$.

Projections for the independent variable can also be made.

Operating Limits and Warnings Since the program uses logrithms to manipulate the data, negative values will cause an error message to be displayed,

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	
	in an
Sample Problem(s) Listed are the company's reported earnings the years 1966-1975. Calculate the coefficients of the line for the data, the coefficient of determination, t growth, the geometric mean EPS for the period, the stat fluctuations about the mean, and the stability of the ation about the trend line. <u>Year 1966 1967 1968 1969 1970 1971 1972 19</u> EPS \$0.68 \$0.73 \$0.75 \$0.82 \$0.73 \$1.03 \$1.47 \$1. What is the trend line estimated EPS for 1976?	per share (EPS) for least square trend he annualized rate of EPS bility of the percentage percentage fluctu- 73 <u>1974</u> <u>1975</u> 89 \$1.65 \$2.08
f A	→ 1.00
.68 A .73 A .75 A .82 A .73 A 1.03 A 1.47 A 1.89 A 1.65 A 2.	$_{08 A} \longrightarrow 11.00$
В	a> 0.51
В	b -> 0.14
В	$r^2 \rightarrow 0.88$
D → 14.60 Annualized Trend (%) ; D→1.08 Geometry	tric mean of EPS
$_{\rm E} \twoheadrightarrow 0.44$ Stability about the mean ; $_{\rm E} \twoheadrightarrow 0.16$	Stability about
trend line 11 C→ 2.29 estimated 1976 EPS	
	j
Reference(s) Francis, Jack Clark, Investments - Analysis and	Management.
McGraw-Hill: New York, 1976.	
Whitbeck and Kisor,"A New Tool in Investment Decisio	on Making,"
Financial Analysts Journal, Vol 19, No. 3 (May-June	1963), pp. 55-62.

User Instructions

	Fin INI
(det)	ΣΧ 1

Financial	Trend	Analysis
INIT	Σχϯν	<i>z</i> (-)

 $\Sigma X \uparrow Y(+) \xrightarrow{} a, \rightarrow b \rightarrow r^2 \xrightarrow{} x \rightarrow \hat{y}$

→trend→G.M. →σ→σ_E

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Initialize		fa	1.00
3	Enter data			
	input x value [*]	Xi	Enter 🕇	
	input y value	Yi	Α	i+1
4	Optional: delete an incorrect data pair			
	input x value	Xi	Enter 🕇	
	input y value	Yi	fB	i+1
5	Compute and Output a,b and r ²		В	
6	Optional: Make projections based on a			
	known x value	X	C	Ŷ
7	Compute and output the trend	D		Trend(%)
8	Compute and output the geometric mean	D		G.M.
9	Compute and output the stability about			
	the mean		E	σ
10	Compute and output the stability about			
	the trend line		Ε	σ _E
				<u> </u>
	*Note: This step may be skipped if time			
	increments are equal (X value equals the			
	display counter (i+1))			

7

67 Program Listing I

COMMENTS

9 Used

S9

8

S8

́а

I

σ

4													
STEP	KEY	ENTRY	K	EY CODE		COMM	ENTS	STEP	KE	EY ENTRY	<u>۲</u>	EY C	ODE
001	L BL	а	32	2 25 11				057	RC	L_1	34	+ 01	
002	CLR	eg	31	43				058	┣	Ť	8	ļ	
003		1						059 -		2	L 		
004	DTN		33					061	<u>с</u> т		8	2 07	
005	T DI	٨	33	$\frac{0}{25} \frac{22}{11}$				062			3.		
000		$\frac{1}{N} = \frac{1}{21} \frac{21}{52} \frac{11}{52}$		<u> </u>				062		<u>ь 4</u> т 7	34	<u>+ 04</u>	
007		7	21	. 52				06%			34	$\frac{1}{100}$	
000	STO -	/ + /ı	33					065		v v	7	<u>+ 02</u> I	
010	$\frac{510}{x^2}$. 4	32	9 <u>01 04</u> 9 54				066		-	5		
011	STO -	+ 5	33	8 61 05				067	RC	T. 1	3/	<u> </u>	
012	v ÷ v	. <u> </u>	35	52				068	<u> </u>	<u>1</u>	8		
013	STO -	+ 2	33	61 02				069		x	3	2 52	
014	v v	2	32	01 02 0 54				070	ST	0.8	3	3 08	
015	STO -	+ 3	32	61 03				071	RT	<u> </u>	2	5 22	
016	LST X	x	35	82				072	T.B	I. B	31	25	12
017	RCL	7	34	07				073	RC	<u>т.</u> 7	3/	<u> </u>	
018	X		71					074	RT	'N	31	5 22	
019	STO -	+ 6	33	61 06				075	T.B	I. B	31	25	12
020	RCL 1	1	34	01				076	RC	<u>т.</u> 7	32	<u> </u>	
021		1	01					077	RC	L 9	34	+ 09	
022	-	+	61					078		x	71		
023	STO	1	33	01				079	RC	L 5	34	+ 05	
024	RTN		35	22				080	RC	L 4	34	+ 04	
025	LBL 1	C	32	25 12				081		x ²	32	2 54	
026	LN		31	52				082	RC	L 1	34	+ 01	
027	STO	7	33	07				083			81	L	
028	STO -	- 4	33	51 04				084		_	51	Ĺ	
029	X	2	32	54				085		<u><u>`</u></u>	81	L	
030	STO	- 5	33	51 05				086		STO 0	33	3 00	
031	x≠y	7	35	52				087	RT	N	35	<u>; 22</u>	
)32	БТО -	2	33	51 02				088	LB	LC	31	_ 25	13
)33	X2	2	32	54				089	En	ter	41		
)34	STO	- 3	33	51 03				090	RC	L 7	34	07	
)35	LST	X	35	82				091	ļ'	X 		-	
)36	RCL	7	34	07				092		e^ T	32	, 52	
)37		- 6	71	51 06				093	RC.	L 8	34	08	
<u>)20</u>	1 310	- 0	55	JI 00				094		X	1/1		
040		- 1	22	UI 51 01				095			21	22	1/
)/1	1 DOT	<u>- 1</u>	23	01				090		<u>ь р</u> т 7	121	. 23	14
)41)// 2	DTM	1	34	01 01				098	L KC	<u> </u>	134	· U/	
043	I.BL.	B	21	25 12				099	<u> </u> '	<u>e</u> 1	01	. 52	
044	1 1	-	<u> </u>	01				100		<u>-</u>	51		
045	STO	- 1	33	51 01				101	EE	X	43	 }	
046	RCL	6	34	06				102		2	102	,	
047	RCL	2	34	02				103		 X	71	<u>.</u>	
048	RCL	4	34	04				104	RTI	Ň	35	22	
049	x		71					105	LB	L D	31	25	14
050	RCL	1	34	01				106	RCI	L 4	34	04	
051	-		81					107	En	ter	41		
052	-		51					108	RCI	L 1	34	01	
053	STO	9	33	09				109		<u>+</u>	81		
054	KCL	3	34	03				110		ex	132	52	
055	RCL	2	34	02					RTI	N	135	22	
056	x ²		32	54				1112	LBI	LE	131	_25	15
				2	12		REGI	SIERS		6		7	
° r ²	!'	i+1,	i	ΣXi		² Xi ²	$\sum \Sigma LN(y)$	$\sum LN($	y) ²	$\sum \Sigma X LN($	y)	LN ((y),
S0	s	1		S2	S3		S4	S5		S6		S7	
-	ľ												
A	I	TE	3			С		D			E		

67 Program Listing II

STEP	KELENINT	KET C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	ENTS
113	RCL 5	34 05									
114	Enter	41		1			170			1	
115	RCL_4	34 04]	
116	x ²	32 54		1							
117	Enter	41									
118	RCL 1	34 01									
119	<u>÷</u>	81									
120	-	51		1						1	
121	Enter	41									
122	RCL 1	34 01		1						4	
123	Enter	41					100			1	
124	1	101					180			1	
125	-	151								ł	
126		181								4	
12/	X	31 54								ł	
128	STO A	33 11								4	
129	RTN	35 22	1.5							4	
101	LBL E	31 25	15							4	
131	L Entor	$\frac{101}{161}$								4	
132	RCI 0									4	
134		51					190			1	
135	<u>√x</u>	31 54								1	
136	RCL A	34 11								1	
137	x	71								1	
138	RTN	35 22								1	
										1	
140										1	
]	
							200				
]	
										1	
										ł	
										Į	
150		+								ł	
150		+								4	
										4	
										1	
		+					210			1	
										1	
										1	
										1	
										1	
160											
]	
							220			1	
										4	
		-								4	
 		+								1	
				LAE	BELS			FLAGS		SET STATUS	
A TAT 2	$(+) \xrightarrow{B} \rightarrow a =$	$\rightarrow b \rightarrow r^2$	C vest	¢	D >trend+C	ı E →	<u>π</u> →σ –	0	FLAGS	TRIG	DISP
a	b		C	,	d	e /	<u>́ ~ К</u>	1	ON OFF		2.0.
IN		†y(-)							0 🗆 🖪	DEG 🖌	FIX X
0	1		2		3	4		2			
5	6		7		8	9		3	3 1 12		n_2

Program Title	SEASONAL VARIATION	FACTORS		
Contributor's Name Address	Hewlett Packard 1000 N.E. Circle	Boulevard		
City	Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.

This program utilizes the four quarter moving average, two item averaging technique to develop seasonal variation factors. The technique should be applied whenever the historical data appears to have a short term cycle, i.e. less than a year. If forecasting with exponential smoothing is to be done on a basis other than quarterly it is suggested that the historical data may be grouped into quarterly figures, the quarterly seasonal variations developed, and graphed over time. The quarterly seasonal variation figures should be plotted in the center of the quarter. Seasonal variation factors for other time periods, i.e. monthly, semi-annually, etc., may then be extrapolated from the plotted graph. These extrapolations should be determined at the center of the time period involved. When graphing, the user is reminded that seasonal variation at December 31 must equal seasonal variation at January 1.

Operating Limits and Warnings

1) D has not been used as a subroutine. Depression of this key will cause indeterminant errors. Program should be restarted.

- E is a subroutine used in data manipulation and should not be depressed. Depression of this key will cause erroneous results. Program should be restarted.
- 3) A minimum of two years data is required.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

mple Problem(s) Example 1	SALES IN HUNDREDS OF UNITS
U	8 ×
N T	6 x x x x
T	x x
S	2
	1 2 3 4 5 6 7 8 9
Find the seasonal variat	l 2 3 4 5 6 7 8 9 QUARTERS ion factors for the sales data plotted ab
Find the seasonal variat	l 2 3 4 5 6 7 8 9 QUARTERS ion factors for the sales data plotted ab
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS tion factors for the sales data plotted ab
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS tion factors for the sales data plotted ab Display
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS tion factors for the sales data plotted ab Display 2/S 4.00 5 [R/S] 8 00
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS cion factors for the sales data plotted ab Display L/S 4.00 5 [R/S] 8.00 0.89 (SV.)
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS cion factors for the sales data plotted ab Display L/S 4.00 5 [R/S] 8.00 0.89 (SV_1) 1.02 (SV_1)
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS cion factors for the sales data plotted ab Display R/S 4.00 5 [R/S] 8.00 0.89 (SV ₁) 1.02 (SV ₂) 1.15 (SV ₁)
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS tion factors for the sales data plotted ab Display R/S 4.00 5 [R/S] 8.00 0.89 (SV ₁) 1.02 (SV ₂) 1.15 (SV ₃) 0.94 (SV.)
Find the seasonal variat	1 2 3 4 5 6 7 8 9 QUARTERS cion factors for the sales data plotted ab Display R/S 4.00 5 [R/S] 8.00 0.89 (SV ₁) 1.02 (SV ₂) 1.15 (SV ₃) 0.94 (SV ₄)
Find the seasonal variat	<pre> 1 2 3 4 5 6 7 8 9 QUARTERS ion factors for the sales data plotted ab Display A/S 4.00 5 [R/S] 8.00 0.89 (SV1) 1.02 (SV2) 1.15 (SV3) 0.94 (SV4) </pre>

03973A submitted by Jim Caldwell.

User Instructions

				7
		c .		•
init qts	add. qts	factors	_	_ /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			0.00
2	Key in Q.	Data Q	Enter	Q
3	Key in Q	Data Q	Enter	2,
4	Key in O	Data Q	Enter	Q
5	Key in Q	~3 Data Q,	A	4
6	4 Key in 0	Data O_	В	
7	Key in Q_{c}^{5}	Data Q	R/S	
8	Key in Q	Data Q_	R/S	
9	Key in Q _e	Data Q.	R/S	
10	° Repeat steps 6 thru 9 for all values of	0		
	Q,			
	1			
	Note: Erroneous depression of R/S FOR			
	5th Q in year is indicated by flashing			
	No harm has been done. Re-enter			
	Z and depress B.			
11	Calculate SV1		С	SV1
12	Calculate SV2		R/S	SV2
13	Calculate SV3		R/S	SV3
14	Calculate SV4		R/S	SV4

97 Program Listing I

STEP	KEYI	ENTRY	KEY	CODE		COMME	NTS	STEP	KE	Y ENTRY	к	EY (CODE		COM	MENTS
06	31 ×1	LBLA	21	11				•••	057	RCL1		36	81	atr	4	
UE	12 (ULRG	16-	53					8 58	x		-	-35		•	
88	13 3 24	5104	30	04 71					8 59	RTN			24			
00	14 25 (κ+ 6707	75	97	stor	e init	ial		860	<i>*LBLE</i>		21	15			
00	90 i 92	5103	- 35	71	quar	ters			0 61	RCL 1		36	01			
	90 97 (STU2	75	82 82	-				062	RULZ		36	02			
90	97 . 98	R1		31					U63	5101		30	U 1 07			
A/	99 y	STAT	35	A1					004 0/5	KLL3 CTO2		30	03 02			
01	10	4		84					00J 022	5102		30	02 .55	movi	ng 2	vorago
01	11 9	STO5	35	05	# OI	data	pts		000	PCI A		76	-JJ 04	for	lact	atr
01	12	R∕S		51					00/	CTO7		30 75	04 A7	101 07to	rad	qui
01	13 *1	LBLB	21	12					A 69	+			-55	ence	reu	
01	14 (GSBE	23	15	c+				878	ENTT		-	-21			
01	15 1	ST+8	35-55	8 8	1 ^{°°}	quarte	r accum		071	Rt		16-	-31			
01	16 1	RCL5	36	05					872	ST04		35	84			
61	17	R∕S		51					873	+		-	-55			
01	18 (GSBE	23	15					874	+		-	-55			
Ø)	19	ST+9	35-55	0 9	2 nd	quarte	r accum		075	+		-	-55			
02	20	RCL5	36	85		4 u u 1 v v	1 uooum		0 76	RCL2		36	0 2			
62 01	21	R/S	27	51					077	X≠Y		-	-41			
02 02	22 (658E CTAC	23	15	rð				8 78	÷		-	-24			
02	20 0 DA 1	0170 0015	33-33	00 05	3 .	quarte	r accum		079	1			01			
02 02	54 I 25	D/C	36	6J 51				1	080	ST+5	35-	-55	05			
02 R:	26 I	CSRF	27	15					081	K+		-	-31			
82	27 9	ST+7	35-55	R 7	4^{th}	guarte	r accum		007	KIN D/C			29			
A2	P8 1	RCL 5	36	85		1			000	K/ 3			JI			
82	29	RTN		24												
03	30	0		00												
03	31	÷	-	-24	warı	ning										
03	32 *1	LBLC	21	13												
8 3	33 I	RCL6	36	0 6												
03	34 I	RCL7	36	07				090								
03	35 I	RCL8	36	8 8	cald	culate	grand									
03	36 I	RCL9	36	09 55	avei	cage										
03	37	+	-	-55					+							
U.: 07	58 70	+	-						+							
03 07	17 10	Ť	-						1							
0- 84	10	¥ . 7	-	41												
0- 04	12	.∩+1 ÷	-	-24												
84	43 9	STO1	35	01												
84	14 I	RCL6	36	06				100								
84	15 I	RCL1	36	01	qtr	1										
84	16	х	-	35												
04	47	R∕S		51							L					
84	18 I	RCL7	36	07												
04	19 I	RCL1	36	01		•					 ,			CET C	TATUS	
05	50	x	-	35	qtr	2			+		+			SET 3	TATUS	
05	51	R/S	76	51							\vdash	FL	.AGS	TF	NG	DISP
00	02 57		36	08								<u>ر</u>			sп	FIX 174
03	DG 1 54	KULI	35	UI 75	atr	3		110				1		GR	AD 🗆	SCI 🗆
0. 01	/4 55	D/5		51	901	5						2	$\Box \dot{q}$	RAI		ENG 🗆
0. A ^r	56 I	RCI 9	36	A 9.								3				n_ <u>4</u>
L				nd		70 1	REGI	STERS	÷	6		7		10		0
0		Juar	ter ² a	uarte	$\frac{3}{2}$ at	arter	guarte	oπ O ats	-	° acc	1	' a	acc 2	°ac	с 3	°acc 4
S0	S1		S2		S3		54	S5		S6		S7		S8		S9
A	•		В			С		D			E				I	

Program Title PRIC	E ELASTICITY OF DEM	IAND	
Contributor's Name	Hewlett Packard		
Address	1000 N.E. Circle E	Boulevard	
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables Mathematical model: Ed = $\left[\frac{\Delta Q}{Q_{i} + Q} / \frac{\Delta P}{P_{i} + P_{i+1/2}}\right]$
Where:
Ed = Demand elasticity
(That is elasticity of quantity sold with respect to
a change in price.)
$Q_{i+1} = Quantity$ sold after price change
Q _i = Quantity sold before price change
P = New price
P _i = Old price
[for i= 1,2,3, n]
$\Delta Q = [Q_{i+1} - Q_i]$
$\Delta P = [P_{i+1} - P_i]$
Operating Limits and Warnings
· · · · · · · · · · · · · · · · · · ·
ΔΡ
$\frac{(\mathbf{P}_{i}+\mathbf{P}_{i+1})}{(\mathbf{P}_{i}+\mathbf{P}_{i+1})}/2 \neq 0$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

This program is a modification of the User's Library Program #05168A submitted by Ashok H. Doshi

User Instructions

			7
	subsequent		د ار ا
₽↑Q	₽↑Q→Ed	-	
₽↑Q	P↑Q→Ed		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	DATA/UNITS
1	Enter program			
2	Key in 1st price of series	\$	E	\$
	Key in 1st quantity of series	units		units
3	Key in subsequent price	un - 00		4.1.2.0.0
	Key in subsequent quantity		В	Ed
	continue step 3 for all price quantity			
	pairs			
	For a new case go to step 2.			

			97	Program	Lis	sting I					,
STEP K	EY ENTRY	KEY CODE		COMMENTS	STEP		к	EY CODE		COMN	IENTS
STEP K 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031	EY ENTRY *LBLA ST04 X≠Y ST02 X≠Y RTN *LBLB RCL2 ST01 RCL4 ST03 R↑ ST04 4 ST04 4 ST01 *LBL1 GSB2 DS21 GT01 ÷ CHS RTN *LBL2 RCL; ENT↑ DS21 RCL; - Y≠Y	$\begin{array}{c} \text{Key CODE} \\ 21 & 11 \\ 35 & 04 \\ -41 \\ 35 & 02 \\ -41 \\ 24 \\ 21 & 12 \\ 36 & 02 \\ 35 & 01 \\ 36 & 04 \\ 35 & 03 \\ 16 - 31 \\ 35 & 02 \\ 16 - 31 \\ 35 & 04 \\ 04 \\ 35 & 46 \\ 21 & 01 \\ 23 & 02 \\ 16 & 25 & 46 \\ 21 & 01 \\ 23 & 02 \\ 16 & 25 & 46 \\ 22 & 01 \\ -24 \\ -22 \\ 24 \\ 21 & 02 \\ 36 & 45 \\ -21 \\ 16 & 25 & 46 \\ 36 & 45 \\ -45 \\ -45 \\ -45 \\ -41 \\ \end{array}$	97 sto P+Q rep i+2 set rec Ed sub x_2	Program COMMENTS re initial lace i data daa for reg all calculate routine 4 for $\frac{x_1}{x}$						COMM	2 IENTS
028 029 030 031 032 033 034 035 036	US21 RCL: - X≠Y LSTX + ÷ RTN R∕S	16 25 46 36 45 -45 -41 16-63 -55 -24 24 51	$\frac{x_2}{y_2}$	routine 4 for <mark>x</mark> 1 ^y 1	090						
050								FLAGS ON OFF	SET ST/ TRIC	ATUS	DISP
					110			$\begin{array}{c} 0 & \Box & \overrightarrow{D} \\ 1 & \Box & \overrightarrow{D} \\ 2 & \Box & \overrightarrow{D} \\ 3 & \Box & \overleftarrow{D} \end{array}$	DEG GRAD RAD		FIX ∅ SCI □ ENG □ n_2
0	11	2	13	REGI	STERS	6		7	8		9
0	Pi	Pi+i	Ĵ	Qi Qi+i	<u> </u>	Ľ					
S0	S1	S2	S3	S4	S5	S6		S7	S8		S9
A	4	В		c	D		E		I	Us	ed

Program Title Expe	erience	(Learning)	Curve	for	Manufacturing	Cost	
Contributor's Name	Hewlet	t Packard					
Address	1000 M	N.E. Circle	Boule	vard			
City	Corval	llis		State	Oregon	Zip Code	97330

Program Description, Equations, Variables Many production process costs vary with
output in close relation to the learning curve:
$Cn = C_{1}n \qquad \log r/\log 2$
where C ₁ is the cost of the first unit produced C _n is the cost of the n th unit produced n is the number of units produced r is a special constant arrived by through empirical
analysis
This program solves for any of the above variables and also
solves for average cost over a range from i to j using the formula:
$\overline{C}_{n} = \frac{C}{\frac{1}{j-1}} \frac{j}{\frac{j}{j-1}}$ where B = log r/log 2
Operating Limits and Warnings The theory applies to a single product, or closely
related series of similar products.
The average cost is only approximate since the function is
continuous although the data is discrete the greater n, the less
the error.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)						
		075	· · · · · · · · · · · · · · · · · · ·	•		
		9/5		•	•	
		642				
		043				
					•	
		- L	100	n		
Sample Prot	olem(s) A	computer ting infor	manufact ms him +	urer be	gins	a pilot run on a component.
cost	\$975 a	nd the 100)th uni+	a week	later	· cost \$643.
	What co	st can the	manufac	turer e	xpect	for the 10.000+h uni+
off 1	the line	e. What i	s the av	erage c	ost o	of the 10.000 units
			~ ~			
					TO TO AND AN ANY OF A SHARE WANNER	
Solution(s)	975	[A]			0.00	
	643	[C]			0.00	
	100	[D]			0.00	
		[B]			.94	(learning factor r)
	10 -	[B]			0.00	
	10,000			-	0.00	
				42	4.05	10,000th unit cost
		ក្រែ]		62	υ.34	average for 10,000 units
Reference (s) Public Theory	cations of	the Bos	ton Con	sulti	ng Group on Experience
	Those	nrograma	are	dificit	ion	f the Hearle tites
Proce	ame #1-	Programs	are a mo	uilicat	101 0	Harry G Hoord and Court
Frogi Frogi	mstock	. υζοιάς δα	ACREDO	submitt	εα by	nally G. Heard and George
	- MULUUK					

User Instructions

Learning	Curve	Prici	ng		5
° ₁	r	_	c _n	 N	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input three of the following:			
	cost of first unit		A	
	·learning exponent		B	
	cost of the n-th unit		С	
	Number of units			
3	Compute the remaining variable			
	cost of first unit	C ₁ (\$)	A	C ₁ (\$)
	·learning exponent	r	в	r
	cost of n-th unit	C (\$)	C_C	C (\$)
	number of units	n N	D	n N
4	Compute average cost on N units	Ē	E	Ē (\$)
	Notes:			
a.	Variables may be entered in any order.			
-b.	The value of N is rounded to the			
	nearest whole number of units			
	nearest whole number of units			

			97	Program	Listi	ing l	[07
STEP K	EY ENTRY	KEY CODE		COMMENTS	STEP K	EY ENTRY	KEY CODE		COMMENTS	27
001 002	*LBLA STD1	21 11 35 01			857	0	00			
003	0	00			8 58 8 59	5	-62 85			
004	X≠Y?	16-32			060	+	-55			
005	GSBe	23 16 15			0 61	INT	16 34	ł		
006	GSB1	23 01			0 62	RTN	24			
007 888	- KUL4 	30 04 -4:			063	#LBL1	21 01			
809	- YX	31			864 865	RUL2	36 UZ 16 72			
010	RCL3	36 83	n		865 865	2	10 3Z R2	K=10	g r/log 2	
011	X₽Y	-41	Nk		0 67	LÓG	16 32			
012	÷	-24			868	÷	-24			
013	RTN	24			8 69	RTN	24			
014 Q15	FLBLB STA2	ZI 12 75 A 2			870	<i>*LBLe</i>	21 16 15			
015	0702	00 02			071 972	19 10/0	88 51			
017	X≠Y?	16-32			972 973	tR/S ±IRIF	21 15	$\overline{C} = 0$	C. r.k+1 .1	к+1,
018	GSBe	23 16 15			874	ST05	35 85	n -	$\frac{1}{1}$ (<u>j</u> -1)	-+'
019	RCL4	36 84			875	GSB1	23 01	· ·	J-1 K+1	
020	LOG	16 32			8 76	1	01			
021 022	100	16 32	r=lo	og -1	877	+	-55			
022 023		-24		$\{\log (C_n/C_1)\}$. 1978 1970	5107 VX	32 07			
824	RCL3	36 03		log n/log 2	873 888	STN9	35 89			
025	RCL1	36 01			081	R↓	-31			
026	÷	-24			0 82	ST08	35 08			
027	LOG	16 32			8 83	RCL7	36 0 7			
028		-41 -24			884	Yx	31			
023 838	18×	16 33			8 85 805	CHS	-22			
831	RTN	24			000 087	KUL9	30 07 -55			
032	* LBLC	21 13			088	RCL7	36 07			
Ø 33	ST03	35 83			089	÷	-24			
034	0	00			090	RCL1	36 0 1			
USD 075	X≠Y? CSPo	16-32			091	X	-35			
9 38 9 37	SSB1	23 10 13			092 007	RULD	36 80 76 80			
8 38	RCL4	36 04			893 894	KULO -	-45	1		
0 39	X≓Y	-41			095	÷	-24			
040	Υ×	31		,k	8 96	R∕S	51			
041	RCL1	36 01 75	$\int_{-\infty}^{\infty} n^{-1}$	1 ^N						
04Z 047	× PTN	-35 24			├──१ ─		1	1		
043	*LBLD	21 14			100			1		
845	STD4	35 04]		
046	6	00						4		
047	X≠Y?	16-32						4		
048	6SBe	23 16 15						4		
047 050	BCI3	23 01 36 03						1		
8 51	RCL1	36 01]		
8 52	÷	-24	.	-1				4		
6 53	LOG	16 32	log	log C_/C.l	110			4		
054	XZY	-41		د <u></u> ۲				1		
855	÷ 101	-24		~				1		
030	10^	10 33		REGI	STERS					
0	¹ C	² r	³ C	n ⁴ N	5	6	⁷ 1+k	⁸ i	j, i+k	
50	S1	S2	S3	 S4	S5	S6	S7	S8	S9	\neg
		<u></u>		<u> </u>	2			,		
A		В		С	ט		E	'		

Program Title E	REAK-EVEN ANALYSIS		
Contributor's Name Address	HEWLETT-PACKARD COMPANY Corvallis Division		
City	Corvallis, OR 97330	ate	Zip Code

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

	Break Even Analysis		
	GP = U(F)	• – V) – F	
	$OL = \frac{U}{U(I)}$	$\frac{(P - V)}{(P - V) - F}$	
Sample Problem(s)	Example 1:		
	The Cooper Company sells finance tex revenues below, how many textbooks	tbooks at \$13 apiece. Given costs a must be sold to break even?	and
	Fixed Costs		
	Typesetting Graphics production Printing and binding	\$ 4,000 5,000 3,000	
	T , , , , , , , , , , , , , , , , , , ,		

Typesetting		\$ 4,000	
Graphics production		5,000	
Printing and binding		3,000	
Total fixed costs		\$12,000	
Variable costs per copy			
Distribution		\$1.00	
Commissions		3.75	
Royalties		2.00	
Total variable costs per copy	,	\$6.75	
Sales price per copy		\$13.00	
Keystrokes:	Outputs:		
12000 A 13 B 6.75 C			
	▶ 1920.00	(number of units)	
Example 2:			1
Having just completed the above pr degree of operating leverage at 2000	oblem, what is units? At 5000	the Copper Company's) units?	
Keystrokes:	Outputs:		
	> 25.00	(this is close to	
	25.00	the break even	
200 - B 1		no orcar-even	
	► 1.62	(the company is far-	
	1.02	ther from the break	
		even point and less	
		sensitive to changes	
		sensitive to changes	
		in salas voluma)	
	Typesetting Graphics production Printing and binding Total fixed costs Variable costs per copy Distribution Commissions Royalties Total variable costs per copy Sales price per copy Sales price per copy Keystrokes: 12000 A 13 C 6.75 C 0 C C Example 2: Having just completed the above pr degree of operating leverage at 2000 Keystrokes: 2000 C C A	Typesetting Graphics production Printing and bindingTotal fixed costsVariable costs per copyDistribution Commissions RoyaltiesTotal variable costs per copySales price per copyKeystrokes:Outputs:12000 \triangle 13 \bigcirc 6.75 \bigcirc 0 \boxdot 0 \bigcirc 0 \bigcirc 1920.00Example 2: Having just completed the above problem, what is degree of operating leverage at 2000 units? At 5000Keystrokes:Outputs:2000 \bigcirc 1 \bigtriangleup 0 \bigcirc 1 \bigtriangleup 25.005000 \bigcirc 1 \bigtriangleup 0 \bigcirc 1 \bigtriangleup 1.62	Typesetting Graphics production Printing and binding\$ 4,000 5,000 9,000Printing and binding $3,000$ Total fixed costs\$12,000Variable costs per copy $$1.00$ CommissionsCommissions 3.75 RoyaltiesRoyalties 2.00 Total variable costs per copy\$6.75Sales price per copy\$13.00Keystrokes:Outputs:12000 [1] 13 [2] 6.75 [2]1920.00 (number of units)Example 2: Having just completed the above problem, what is the Copper Company's degree of operating leverage at 2000 units?Keystrokes:Outputs:2000 [2] [2] [2] \longrightarrow 25.00 (this is close to the break-even point)5000 [2] [2] [2] \longrightarrow 1.62 (the company is far- ther from the break- even point and hor

User Instructions

BREAK EVEN ANALYSIS	5
♠♥ ₽ ♥₩ ₽ ₽₩	GP

STEP		INSTRUCT	IONS		INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS	
		INSTRUCTIONS	INPUT	KEVE	Ουτρυ	тт			
			DATA/UNITS		DATA/UN				
	1	Load side 1							
	2	Key in four of the following in							
		any order:							
		Fixed costs	F	A	F				
	┃───	 Sales price per unit 	Р	B	Р				
		Variable costs per unit	V	C	V				
		Number of units	U	D	U				
		 Gross profit 	GP	G	GP				
	3	Calculate the remaining							
		variabie.		A	F				
	I			B	Р				
	t[C	v				
	1			D	U				
	1			E	GP				
	4	To calculate the degree of							
	1	operating leverage			OL				
	† 								
		······							
	<u> </u>								
	 								
	 								
	 								

97 Program	Listing I
-------------------	-----------

						8 • • • • • •		5011							3.	1
STEP KE	EY ENTRY	K	FY CODF		COMM	ENTS	STEP	KE	Y ENTRY	KE	Y CODE		COMN	IENTS		
001	*LBLA		21 11		``````````````````````````````````````			057	RCLB		36 12		• •	0.0		
002	STOR		35 11		ζ			8 58	RCLC		36 13	Cal	culate	GP 8	s stor	P
683	F3?	16	23 03	Diai	it ente	red?		059	-		-45	in	R _F •			
AB4	RTN		24	bigi		i cu.		868	RCLD	:	36 14		L			
885	RCIB		36 12					861	x		-35					
886	POID		76 17	C-14		E and		862	RCIA	-	36 11					
000	-		_45	Lait		r anu		867	-	``	-45					
00. 00C	DOLD		76 14	Stor	reink	A.		BCA	CTOE	-	75 15					
000	KULD		30 14 -75					007	DTL		2J IJ 24	1				
007			-33					000			24					
916	KULE		36 10					000	#LBLa	21 1						
011	-		-45					067	RULB		56 12	C-1	ou] -+o	01		
612	STOA		35 11					668	RCLC	3	56 13	Lai	curate	UL		
013	RTN		24					869	-		-45					
014	*LBLB		21 12					070	RCLD	3	56 14					
015	STOB		35-12	P F	۲ _R			071	X		-35					
016	F3?	16	23 83		0			072	STOI	3	35 46					
017	RTN		24	Digi	it ente	red?		073	RCLI	3	36 46					
A18	RCLA		36 11					074	RCLA	3	16 11					
Ø19	RCLE		36 15					875	-		-45					
015 020	+		-55	Calc	ulate	P & store		876	÷		-24					
020	Prin		76 14	in F				977	PTN		24					
021	ROLD		20 14	111 1	` B•			1	617	1	27					
022			76 17					+		1		4				
023	RULL		36 13				080	+		+		4				
024	+		-00					+				4				
025	STOB		35 12									4				
026	RTH		24									4				
B 27	*LBLC		21 13									4				
028	STOC		35-13	VF	۲,							4				
<i>029</i>	F3?	16	23 03		С :н амна											
838	RTN		24	Digi	it ente	rear										
031	RCLB		36 12		. .											
9 32	RCLA		36 11	Calc	culate	V & store										
00L 077	PLIF		36 15	in F	۲ _۲ ۰							1				
033			-55		C		090					1				
034	DOID		75 14					1				1				
033	RULU		30 14									1				
036	÷		-24					+				4				
837	-		-40					+				4				
838	STUC		35 13					+				4				
Ø39	RTH		24							-		4				
940	¥LBLD		21 14		`			+				4				
0 41	STOD		35 14	Uł	۲D			+				-				
84 2	F3?	16	23 03	Diai	it ente	red?	 	+	- FI	AGS	·		SET STA	TUS)
043	RTN		24					+							8:07	
844	RCLA		36 11				100	+			FLA	GS	TRIG	i T	DISE	
045	RCLE		36 15		_		L		1					5	FIX	M
846	+		-55	Calc	culate	U & store					╺┥╎╞		GRAD		SCI	Π
R47	RCI R		36 12	in I	R				-		; F	ייבשיי 1021	RAD	Ы	ENG	
A 48	RCLO		36 13		U				- ³ Di	nit?	3 [10.02	_	n_2	
040	-		-45							git:						
043			-94									LABE	LS			
0.0	- 		75 14			A	F	в	Р	С	; V	U	U	E	GP	
031	5100		35 14	CD	D	12		h				d		e		
052	MIN		24	ur	ĽΕ	ŭ		Ľ		Ľ						
053	*LBLE		21 15			0		1		2	2	3		4		
854	STOE		35 15	Dig	it ente	erea?		6			,	8		9		
8 55	F3?	16	2 3 0 3			5		ľ		ľ						
8 56	RTN		24	L		REGI	STERS									
0	1		2	3		4	5		6	7		8		9		
ľ	ľ		ľ	Ē												
S0	S1		S2	S3		S4	S5		S6	s	7	S8		S9		
-																
A –		в			C ,	1	D	11		E	GP		I P(II	-V)		
F F		1	Р		۱ ۱	1		U			ui i		1 ' '	• /		1

Program Title	ogram Title INCOME STATEMENT (P & L) ANALYSIS												
Contributor's Name	Hewlett Packard												
Address	1000 N.E. Circle H	Boulevard											
City	Corvallis	State	Oregon	Zip Code 97330									

Program Description, Equations, Variables Using the standard product income formula
Net Income = (l-Tax) (Net sale price - Mfg Op Ex)
Although freely capable of calculating in dollars or percents,
the dynamic simulator operates only with net income return (%) and
percent operating expense. Both percentage figures are based on
<u>net</u> sales price.
net sale = list (l-discount (%)*)
operating expense (%) = operating expense ÷ net sale price
The program can also be used to simulate a company wide income
statement by replacing list with gross sales, and manufacturing
cost with cost of goods sold.
Operating Limits and Warnings * discount is a percentage of <u>list</u>
The program assumes a tax rate of 48%. Since the rate varies from
company to company, the .52. (148) in the program must be replaced
by one minus your applicable tax rate (steps: 44-5, 64-5, 112-3,
190-1)

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

ketch(es)							
				•			
				•			
			· · · · · · · · · · · · · · · · · · ·				
				····			
					. that is		
	、What is	the net	return o	n an iter	п тпат із	sold for	11.98
mple Problem(s) What is	the net	return o	n an iter	a that is	sold for	11.98
mple Problem(s discounte	;) What is ed throug	the net h the dis	return o stributio	n an iter n at an a	average o	sold for f 35%, and	11.98 d has a
mple Problem(s discount manufactu) What is ed throug uring cos	the net h the dis t of \$2.9	return o stributio 50. Your	n an iter n at an a standard	average o l company	sold for f 35%, and operating	11.98 d has a g expen

- b) if manufacturing is increased to \$3.25, what is the effect of the return.
 - c) what is the total net dollar cash flow if 10,000 units are sold. (assuming the 3.25 manufacturing cost)
 - d) how high could the overhead (operating expense) go before the product begins to lose money.
- e) how sensitive is the profit to the selling price (for each dollar below \$12.00)
 - f) print out an income statement for the final selling price of 10.49, 35% discount, \$3.00 manufacturing cost and 32% operating expense.

Reference (s)

Sketch(es)	
Solution	
a) 11.98 [A] 35 [B] 2.5 [C] 32 [D] [E]	.18.67
b) 3.25 [C] [E]13.67	
C) F [E] 10000 [X]10634.83	
d) O [E] [D]58.26	
e) 32 [D]* [E]** 12 [E↑] 1.00 [f] [A]	.35 discount
	3.25 manufacturing cost
	32 operating expense (%)
	12.00 list price
	13.69%return (at \$12 list)
	11.00 list
	11.72% return
	10.00 list
	9.36% return
	9.00 list
	6.475return
	8.00
	2.86%return
	seven dollars would yield
f) 10 49 [2] 35 [3] 2 [0] 2 [0] 10 ++ [1	a negative return
<u>17 10.45 [K] 35 [B] 5 [C] 52 [D] [E] * [E</u>	[B] 10.49 [1st (\$)
	$\begin{array}{c} -3.67 \text{ alscount } (5) \\ 6.82 \text{ pot cale} (5) \end{array}$
	-3.00 manufacturing (\$)
/ 	3.82 gross (contribution) margin (\$)
	-2.19 applied operating expense (overhead) (\$)
	1.64 net profit before tax(\$
	79 tax (\$)

Sketch(es)												
	 		+			•			 			
								•				
	 		; •						 			 -
	 		÷	+		• • • • •		++-		÷	L	 +
			•	+		++	•	+	 	•	++	
	 								 	++		 +
	 	-		L i.	····				 1		L	 _

Sample Problem(s) .85 net after tax profit.
Solution(s) con't
<pre>**It is always necessary to complete a solution before using a shift ([f]) option.</pre>
*Change operating expense from the previous answer of 58.26% back to
32%.
Keterence (s)

User Instructions

	Price Sen	Income	Net	Op Exp	Net Prft	(\$)
1	1 ^{List † Decr}	Statement	Sale	(\$)		5
			(\$)		Not Draft	
	List (\$) I	Disc (%)	Mfg.	(\$)Op Exp(%)	Net Prit	
					(8)	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load program			
2	Key in values for four of the following 5 variables	F		
	'list	\$		
	discount	90	В	
	.manufacturing cost	\$	С	
	operating expense	8		
	•net profit after tax	8	E	
3	Solve for the fifth variable		A-E	
4	Change any variable by keying in a new			
	value		A – E	
_5	Press any of the 4 remaining variables to see the effect of step 4.			
6	Press any of the following 2 kows t			
	inet sales (\$)	\$	fc	
	•operating expense (\$)	\$	fd	
	<pre>.net profit (\$)</pre>	\$	f	
7	To preview the list price sensitivity			
	of the net profit*			
	a) beginning price	\$		
	b) decrement	\$	fa	
	preview of constants			
	disc			
	Manufacturing cost			Ş
	operating expense			%
	Beginning price			\$
	resulting net profit			96
	Beginning price minus decrement			Ş
	resulting net profit			
	<u>Beginning price minus (2 times decr)</u>			
	resulting net profit			
	in mershel belev which the second	5		
	us reached below which the profit would be zero.			
8	To preview the income statement *		f	
	List price			\$
	-Discount			\$
	Net Sale			\$

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	OUTPL DATA/UN	JT NITS	
	-Manufacturing			\$	
	Gross (contribution) margin			\$	
	-Operating Expenses			\$	
	Profit before taxes			\$	
	-Taxes			\$\$	
	Net profit after taxes			\$	
	*If any variable has been changed				
	or all variables have just been				
	entered) it is necessary to activate	.		 	
	a solution (steps 5 of 5) before usin	9			
	any of the shift options $T(a)$ through $f(a)$				
	I (8)				
				╡┠───	
				┤ ┣───	
				╣┠───	
				_	

97 Program Listing I

38					• • vs • u			116 1						
STEP K	EY ENTRY	' KEY	CODE		COMMENTS	STEP	KE	Y ENTRY	к	EY CODE		СОМ	MENTS	
001	*LBLA	21	11		wa 11	i	6 57	*LBLD		21 14				
002	STOA	35	11	sto	re list price	l.	058	STOD		35 14	stor	e % 0	р Ехр	
003	F3?	16 23	03	lior	use of flag		059	F3?	16	23 03				
004	RTN		24	see	std pac 105-		060	RTN		24				
005	RCLC	36	13	02			061	GSB3		23 03				
886	6SB2	23	A 2			1	062	RCLE		36 15				
887	÷		-24			1	063			-62				
808	STOP	35	A9				064	5		05	1b13	-Net	Profit	
889	1	.00	R 1	MFG	/ 7 7 7 4	l	065	2		82		•	52	-
B10	CSR4	23	R4	LBL	2^{1014}	i	866	÷		-24				
B11		20	-24]		i	R 67	-		-45				
Q12	ст л а	75	11	1		i	068	STOD		35 14				
B17	PTN	00	24			i	869	RTN		24				
013 014	*I RI R	21	12			Ì	070	xi Bi o	21	16 11				
017	CTOD	75	12	{		Ì	971	STIR		75 ØG				
01J 015	5100	16 27	97	sto	re % disc		0 72	0100 P1		-71				
010	r J : DTN	10 23	03 34				977	STUD		75 11				
017		7/	24 . 17				07J	CDC		16-11				
010	KULU	30	13				075	ort epr		16-11				
019	6582	23	02		100		075 075	Drip		10-11 76 10	nrin	+ • 4	ica mf	~
020	÷	75	-24	1 + ~	100		010 077	RULD DDTV		30 IZ _14	e o~ Friu	L O Q.	LSC III	9
021	5109	35	89	<u>115</u>	t = (MFG/LDI2) x		0//	PRIA		-14	s op	Ехр		
022	CHS		-22		list		878	RULU		36 13				
023	RCLA	36	11			l l	979	PRIX		-14				
024	+		-55	-		l l	886	RCLD		36 14				
025	RCLA	36	11			(081	PRIX		-14				
0 26	÷		-24			ŧ	882	SPC		16-11				
027	EEX		-23			6	983	*LBL5		21 05				
0 28	2		02				084	CF3	16	22 03	calc	ulato	not n	rofit
8 29	x		-35				985	GSBE		23 15	Carc	urace	net p	TOLLA
030	STOB	35	12				986	0		00	end	on ne	t prof	it
031	RTN		24				987	X>Y?		16-34	les	s tha	n zero	
032	*LBLC	21	13				988	R∕S		51				
033	STOC	35	13	sto	ro mfa		989	RCLA		36 11	prin	t list	C	
034	F3?	16 23	03	500	remig	6	990	PRTX		-14				
035	RTN		24			6	991	RCLE		36 15	prin	t net	profi	t
0 36	GSB1	23	01				992	PRTX		-14				
0 37	GSB2	23	8 2	Lbl	lxlbl2	6	993	SPC		16-11				
8 38	x		-35			e	394	RCLA		36 11				
039	STOC	35	13			6	995	RCL6		36 06	decr	ement	list	
040	RTN		24	20		e	996	-		-45				
841	*LBL2	21	02	<u> </u>		6	997	STOA		35 11				
042	RCLE	36	15	뜅		e	398	GT05		22 05				
843			-62	ç		P	999	1	-	01	auna	rf1	1a	₂
844	5		05	÷		1	00	4		84	aupei	LIIUOI	un jun	~
A4 5	2		02	e.		1	01	CHS		-22				
94 6	÷		-24	T I		1	02	STOI		35 46				
R47	RCID	36	14	5		1	03	GTO	÷	22 45				
R4 8	+		-55	Ľ	0	Î	04	*LBI F		21 15				
A4 9	CHS		-22		10	1	105	STOF		35 15		. <u>.</u>		
07 <i>9</i>	FFY		-23	S S		1	06	F39	16	23 83	store	e net	profi	t
000 051	2		A 2	a		1	87	RTN		24	1			
A22	÷ +		-55	et	l l		<u> </u>		 					
052	FEV		-27	Z	ļ				┥					
0J3 D5 <i>A</i>	2	-	20 02	ĭ	ļ	110			 					
0,14 055	ے ب		-24	Ö	ļ				╂					
000 052	- DTH	•	24	н					1					
000			24	10	REGIS	TERS		6			10		Into+	
v	1	2		3	4)		° Decr	1	Net Prft	q٥°	Exp	Sale	(\$)
S0	S1	52		53	S4 0	35		S6	s	<u>(S)</u> 7	158 (S	÷)	S9	
									ľ				[
A	4	В			C I	 D			E			I		
List			% Disc	:	Mfg (\$)	% Op	Ex	p	8 N	Net Prft				

Program Listing II

STEP	KEY ENTRY	KEY CODE		COMMENTS		STEP	ĸ	EY ENTRY	KEY CO	DE	COMM	IENTS
10	0 0007	27.07					163	*LBLb	21 16 12	2		
10	10 6000 10 DCID	23 03					164	RCLA	36 11	!		
10	19 KULU 9 -	JO 14 -45					165	PRTX	-14	ŧ –		
11	e –	-43	.52(1	b13-% oper	Exp`		166	RCL9	36 09	9		
11	2 5	-02			F /		167	-	-45	5		
11	2 J 7 9	0J 02					168	LSTX	16-63	3		
11	3 Z A V	-75					169	X≠Y	-41			
11	4 A 5 CTOE	-35					170	CHS	-22	?		
11		33 IJ 24					171	PRTX	-14	ļ.	List -disc	ount net
11		24					172	XZY	-41	ļ	sale	
11	(#LBL3	21 03					173	PRTX	-14	ŀ		
11	O CODI	30 13					174	SPC	16-11			
11	9 6581	23 61					175	RCLC	36 13	3		
12		-24	[1-(M	fg/(list(l-	8		176	CHS	-22	?		
12	1 645	-22	disc)	/100)))] x 10	0		177	PRTX	-14	Ļ	-Mfg contr	ibution
12	2 1	01 55					178	+	-55	5	margin	
12	3 + 	-55					179	PRTX	-14	Ļ		
12	4 EEX	-23					180	SPC	16-11			
12	5 2	02					181	6SBd	23 16 14	ļ		
12	6 X	-35					182	CHS	-22	2		
12	Y RIN	24	Rcl 1	ist			183	PRTX	-14	ļ		
12	8 #LBL1	21 01					184	X≠Y	-41		OD EXD DT	ofit
12	9 RULA	36 11					185	R∔	-31		before ta	x
13	U *LBL4	21 04					186	+	-55	i		A
13	I RCLB	36 12	1-*Di	SC			1.87	PRTX	-14	L		
13	2 EEX	-23	- 10	0			188	SPC	16-11			
13	32	02					189		-62	2		
13	4 ÷	-24					190	5	05	i		
13	5 CHS	-22					191	2	02	2		
13	6 1	01					192	X≠Y	-41		Ltax profi	t after
13	7 +	-55					193	x	-35	i	tax pion	c arcer
13	'8 X	-35					194	LSTX	16-63	1	Lax	
13	9 ST09	35 09					195	-	-45	i		
14	0 RTN	24					196	PRTX	-14			
14	1 ¥LBLd	21 16 14					197	LSTX	16-63	1		
14	2 GSBe	23 16 15					198	+	-55	ī		
14	3 RCL9	36 09					199	PRTX	-14			
14	4 RCLD	36 14					200	R∕S	51		I	
14	5 X	-35	Not a	alore Da								
14	6 EEX	-23	Net s]	
14	7 2	02		100]	
14	8 ÷	-24				210						
14	9 STO8	35 0 8]	
15	Ø RTN	24									1	
15	1 #LBLe	21 16 15]	
15	2 RCL9	36 09]	
15	3 RCLE	36 15			c .							
15	4 EEX	-23	Net S	ale x%net p	rtt							
15	52	02		100								
15	6 ÷	-24]	
15	7 X	-35										
15	8 ST07	35 07				220						
15	9 RTN	24										
16	0 #LBLc	21 16 13	Net s	ale							4	
16	1 RCL9	36 09									4	
. 16	2 RTN	24		BELS				FLAGS	<u> </u>		SET STATUS	
A used	^B used		ed	Dused	E	ed	Q,	sed	FLAG	is.	TRIG	DISP
a	b			d	e		1		ON	OFF		
used			ea	usea 3	use 4	ea	- 2			k K		FIX 🗆
5	used	d þus	ed	used	us	ed				k.	RAD 🗆	
used	ľ	ľ		ľ	ľ		3	used	3 🗆			n

Program Title	NTERNAL RATE OF RETURN		
Contributor's Name	HEWLETT-PACKARD COMPANY Corvallis Division		
City	1000 N.E. Circle Boulevard Corvallis, OR 97330	State	Zip Code

Program Descript	$\begin{array}{c} CF \\ \hline \\ $
	Note:
·	The above diagram is representative of diagrams which will be used in this pac. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.
	The interest rate that equates the present value of all future cash flows with the original investment is known as the internal rate of return (IRR, also called discounted rate of return or yield). Given a non-zero initial investment and up to 44 positive cash flows, this program calculates the periodic IRR. If there are negative as well as positive cash flows, the program accepts up to 22 cash flows.
·	If more than 44 positive cash flows are entered, all cash flows over 44 will be ignored. There will be no indication, however, that more than 44 cash flows have been entered. Likewise, if more than 22 positive and negative cash flows are entered, erroneous results will occur.
	Zero should be entered for periods with no cash flow.
Operating Limits a	When more than 22 cash flows are involved (all of which must be positive), the user is asked to enter the largest cash flow in step 3 because of the storage techniques being used. This value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. Consequently, the resulting periodic rate of return should be considered accurate to within $\pm .01\%$ (.0001 decimal). This largest cash flow must be entered again in sequence in step 4. If a cash flow larger than the value entered for CF MAX is keyed in at step 4, erroneous results may occur.
	The answer produced is the <i>periodic rate of return</i> . If the cash flow periods are

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title		
contributor's Na	Ime	
Address		
City	State	Zip Code
Program Descri	ption, Equations, Variables	
	other than annual (monthly, quarterly) the answer should be number of periods per year to determine the annual intern	e multiplied by the al rate of return.
	In many instances another program may be more suitable for all cash flows are equal and equally spaced, or if all cash flows are equal and equally spaced. DIRECT REDUCTION IO	calculating IRR. If ows except the last

better choice. If the cash flows occur in groups of uneven amounts, IRR-

This program was designed for optimum operation when the interest rate being solved for is between 0 and 100%. The program will often solve for interest rates outside this range, but occasionally may halt prematurely with ERROR in the display. This is an error condition generated by an intermediate calculation,

The calculated answer may be verified by using DISCOUNTED CASH FLOW ANALYSIS—NET PRESENT VALUE (BD-03), to calculate the net present

When the sign of the cash flows is reversed more than once, more than one interest rate is considered correct in the mathematical sense. While this program may find one of the answers, it has no way of finding or indicating

and indicates that the program cannot solve that particular problem.

GROUPS (BD-02) may be more suitable.

value. The NPV should be close to 0.

Note:

Operating Limits and Warnings

other possibilities.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) **PRINCIPAL EQUATIONS** Sample Problem(s) Unless otherwise stated, all interest rates (i, APR, IRR, NOM, EFF, CR, YLD, etc.) are expressed in decimal form in the equations which follow. Only symbols not defined in the program descriptions are defined here. Program Number 1. Internal Rate of Return Solve for IRR in: $INV = \sum_{j=1}^{n} \frac{CF_{j}}{(1 + IRR)^{j}}$ where: n = number of cash flows $CF_j = j^{th}$ cash flow Solution(s) Reference(s)

Sketch(es)					
	na Araban kara sa sa kara sa na	· · · · · · · · · · · · · · · · · · ·		•	
999 - Galerin H. (1990) - State Stat					
		na mara ang sana ang Sana ang sana ang san Sana ang sana ang san			
	Example 1:				
	Income property requiring a years is expected to generate the expected yield or IBP?	\$250,000 equity inves the ''after tax'' cash fl	tment and to be ows shown bel	e sold in ten ow. What is	

hlem(e)	End of Year	Cash Flow	End of Year	Cash Flow	
	1	\$46,423	6	\$ 23,199	
	2	40,710	7	21,612	
	3	36,638	8	20,037	
	4	34,097	9	18,460	
	5	32,485	10	311,406 (property	
				sold)	
	Keystokes:		Outputs:		
	250000 🖪 4642	3 9 40710 9	-		
	36638 6 34097				-
	22100 C 21612				
	23199 C 21012		12.09	(
	16400 🕒 31140		13.98	(annual IKR is 13.98%)	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
					40 - 107 - 108 MILLION
	Evample 2.				
	Example 2:				
	Property requirin	g a \$30,000 inves	tment will be sold at	the end of 2 years. If the	
	investment result	s in the monthly n	et cash flows shown	below, what is the IRR?	
	End of Month	Cash Flow	End of Month	Cash Flow	
	End of Month	Cash Flow \$ 16	End of Month 13	Cash Flow \$ 201	
	End of Month	Cash Flow \$ 16 50	End of Month 13 14	Cash Flow \$ 201 195	
	End of Month 1 2 3 4	Cash Flow \$ 16 50 175 191	End of Month 13 14 15	Cash Flow \$ 201 195 178	
	End of Month 1 2 3 4 5	Cash Flow \$ 16 50 175 181 143	End of Month 13 14 15 16 17	Cash Flow \$ 201 195 178 197 210	
	End of Month 1 2 3 4 5 6	Cash Flow \$ 16 50 175 181 143 147	End of Month 13 14 15 16 17 18	Cash Flow \$ 201 195 178 197 210 220	
· · · · · ·	End of Month 1 2 3 4 5 6 7	Cash Flow \$ 16 50 175 181 143 147 151	End of Month 13 14 15 16 17 18 19	Cash Flow \$ 201 195 178 197 210 220 206	
	End of Month 1 2 3 4 5 6 7 8 9	Cash Flow \$ 16 50 175 181 143 147 151 176 184	End of Month 13 14 15 16 17 18 19 20 21	Cash Flow \$ 201 195 178 197 210 220 206 194 187	
	End of Month 1 2 3 4 5 6 7 8 9 10	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193	End of Month 13 14 15 16 17 18 19 20 21 22	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190	
	End of Month 1 2 3 4 5 6 7 8 9 10 11	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157	End of Month 13 14 15 16 17 18 19 20 21 22 23	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 24	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 cold	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 24	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes:	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs:	Cash Flow \$ 201 195 178 197 210 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 20000 25000	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs:	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (A) 35000	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 23 24 Outputs:	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (\[3,5000] 16 (\[5,50] (\[5,175])	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 23 24 Outputs:	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 [] 35000 16 [] 50 [] 175 143 [] 147 [] 1	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 B C 181 S1 C 51 C 181 C 51 C 176 C	End of Month 13 14 15 16 17 18 19 20 21 22 23 23 24 Outputs:	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (\$\[35000] 16 (\$\[50 (\$\[175])\$ 143 (\$\[147 (\$\[11])\$ 144 (\$\[193 (\$\[11])\$ 193 (\$\[11])\$	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 176 51 176 57 190 57 190	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: 12.00	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 [] 35000 16 [] 50 [] 175 143 [] 147 [] 1 184 [] 193 [] 1 201 [] 195 [] 1	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 © 181 © 57 © 190 © 78 © 197 ©	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: 12.00	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 (property sold) (12 cash flows input)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (\$ 35000 16 (\$ 50 (\$ 175) 143 (\$ 147 (\$ 1] 184 (\$ 193 (\$ 1] 201 (\$ 195 (\$ 1] 210 (\$ 220 (\$ 2)	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 C 176 C 57 C 190 C 78 C 197 C 06 C 194 C	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: 12.00	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (A 35000 16 C 50 C 175 143 C 147 C 1 184 C 193 C 1 201 C 195 C 1 210 C 220 C 2 187 C 190 C 2	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 176 57 190 78 197 06 194 01 35000	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: 12.00 → 24.00	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 (property sold)	
	End of Month 1 2 3 4 5 6 7 8 9 10 11 12 Keystrokes: 30000 (A 35000 16 (C 50 (C 175 143 (C 147 (C 1 184 (C 193 (C 1 184 (C 193 (C 1 201 (C 195 (C 1 201 (C 195 (C 1 210 (C 220 (C 2 187 (C 190 (C 2	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 176 57 190 6 197 6 194 01 35000	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: → 12.00 115	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 (property sold)	
	End of Month	Cash Flow \$ 16 50 175 181 143 147 151 176 184 193 157 190 51 176 57 190 78 197 06 194 01 35000	End of Month 13 14 15 16 17 18 19 20 21 22 23 24 Outputs: → 12.00 → 24.00 → 1.15 12.70	Cash Flow \$ 201 195 178 197 210 220 206 194 187 190 201 35,000 (property sold)	

User Instructions

	INTERNAL RATE OF RETURN	5
INV	CF MAX CF -IRF	

STEP		INSTRUCTIO	ONS		INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
]
			INPLIT			PUT		
	STEP	INSTRUCTIONS	DATA/UNITS	KEYS	DATA/			
	1	Load side 1 and side 2.]
	2	Input initial investment.	INV	А	11	NV]
	3	If there are $>$ 22 cash flows, key	· · · · · · · · · · · · · · · · · · ·]
		in the largest cash flow.	CF MAX	B	CF	MAX]
	4	Beginning with the first period,]
		key in all cash flows in sequence,						1
		pressing C after each value.	CF	C	# o	fCFs]
	5	Calculate the periodic internal						1
		rate of return		D	IRF	R (%)]
	- L			A]
								,]
]
]
								1
]
]
]
]
]
]
]
]
]
			•]]
								J
]
								J 1
								J 1
								J 1
]
]
]
]
]
								J
]

97 Program Listing I

STEP	KEY ENTRY	H	EY CODE	COMM	IENTS	STEP	KE	YENTRY	H			СОМ	MENTS	40
00	1 *LBLA		21 11	Clear regi	sters		057	RCLI		36 46	LBL	fa se	ts up	I for
86. Da	2 LLK6 7 D+C		16-00 16-51				038 050	1		01 68	coun	t dow	n and	keeps
00. AA-	4 CLRG		16-53				033 060	i i		ee At	trac	k of	origiı	nal
08	5 STOE		35 15	$INV \rightarrow R_{-}$			000 061	X		-35	# of	cash	flows	s by
00	6 CF0	16	22 88	E			062	STOI		35 46	stor	ing N	.N.	
00	7 CF1	16	22 01	Clear flag	IS		963	RTN		24				
00	B RTN		24	Input land	act arch		064	‡LB Le	21	16 15				
00.	9 ¥LBLB		21 12	flow if #0	JEST Cash		965	F0?	16	23 00	linna	ck do	ublo	
01	02		02	TIOW II #C	'' s ^{~22}	1	966	GTOØ		22 00	lotor	ed ca	ubie ch fli	-we
61	I X о стор		-35				967 - 920 -	INT		16 34	3.001	eu cu	511 110	
01. D1	z siue 7 denie		33 00 76 15				000 020	5		-23 85				
01. R1.	8 KULL 8 X7V		-41				003 070	- -		-24				
A 1	5 ÷		-24				971	RTN		24				
01	6 STOE		35 15	INV/2CMAX→	-R _⊏		972	≢LBL0		21 00				
01	7 LSTX		16-63		E		973	FRC		16 44				
01	B SFØ	16	21 00	Flag 0 inc	licatos		974	RTN		24				
01:	92		02	>22 cash f	Tows		075	≭LBLD		21 14	Set-	un I		
021	9 ÷		-24		10115		976	GSBa	23	16 11	N N	up I		
02.	1 RTN		24				977	RCLI		36 46				
02:	2 ¥LBLC		21 13				978	EEX		-23				
02	3 ISZI	16	26 46	If FO, pac	:k data		879	2		82				
024	4 FØ?	16	23 00	in registe	ers		980	÷		-24		. т		
023	5 GSBC	23	16 13 EE 4E				181	\$101		35 46	N.N-	≁ 1		
020	5 5/ † 1 7 040	30-	-33 43 -41				982 007	1		61				
02: 02:	r ∆+i R Prit		76 46	Dispaly #	of cash		903 904	A		-02 Rū				
02. 02:	9 F12	16	23 81	flows (add	1 if >22(F)		885	1		00 A1	11 +	i.→R_		
831	9 11. A +		-55	11003 (000			986	STOD		35-14	l' '	'0''D		
03	1 RTN		24				987	*LBL4		21 84				
03	2 #LBLc	21	16 13				380	C F0	16	22 00	ĺ			
03.	32		62			1	989	Ū		00				
03-	4 3		03				890	STOØ		35 00				
03	5 RCLI		36 46				091	¥LBL5		21 85				
03	6 X¥Y?		16-32	23rd cash	flow?		992	RCLI		36 46				
03	7 GTOØ		22 00				993	INT		16 34				
<i>U3</i>	8 1 9 0701		01 75 4/				994	F17	16	23 81	Get	j		
03: 04:	9 5101 0 1		JJ 46 _55	Reset I			993 902	655d RCL:	23	16 14 76 AF				
04) QA	יד ופ 1 רויצ		-51				970 907	E10	12	30 43 27 Ai				
04. 04:	2 FFX		-23	Urop stack	c and		996 998	ESRe	23	16 15	linna			
R4.	3 5		<u>й5</u>	clear x			1 99	ST+A	35	-55 AA	Junpa	ICK UF	j	
04	4 ST÷0	35-	-24 00	2CMAX/10 ⁹ -	r, Ro		100	x		-35				
04	5 SF1	16	21 01		0		101	+		-55	f(i)	in R	0	
64	6 ≢LBL0		21 00				102	RCLD		36-14			0	
84)	7 R↓		-31				103	ST÷0	35-	-24 00				
04:	5 1		01				104	÷		-24				
84:	9 -		-45				105	DSZI	16	25 46				
U51			-41	Scale cash	n f low		166	6105	• ~	22 05				
03. 051	I KULU D ±		36 88 -24	IF CF is	2 drop		107 100	F1? Стор	16	23 81 22 86				
0J/ 05	2 - 7 F19	16	-24 27 A1	j, j,	<i>z</i> , urop		100	+1816		22 00 21 RE				
05. 05.	4 TNT	10	16 34	fractiona	l part		110	RCLA		21 00 36 0 0				
A21	5 RTN		24	of CF _i			111	RCLE		36 15				
05	5 *LBL a	21	16 11	5			112	-		-45				
			-		REGIS	LEHS		6		7	18		9	
Used	¹ Used		² Used	³ Used	^⁴ Used	ັUsed		ັUsed		′ Used	ľUs	ed	Űse	d
60	S1		S2	S3	S4	S5		S6		S7	S8		S9	
Used	Used		Used	Used	Used	Used		Used		Used	Us	ed	Use	d
Us	ed	В	Used	C U	sed	D 1	+ i	0	E	Used		ľι	lsed	

45

97 Program Listing II

46		4									
STEP KE	YENTRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
113	XIY		41 ~~								
114	÷		24				170				
115	RULD	36 .	14 75	$\int f(1)$	+ i)						
116			50 1 é	f'	+ I)						
117	KULU Vav	36 .	14 1 i	1.							
118	A+1 		41 55								
117	стор	75	JJ 1 /i	(1 + i	i) next						
120	ICTV	30 . 16-1	1 4 57								
121	ARC	16	21 71						-		
122	FEY	-10	97 97								
123	CHS	-	22				180				
127	5		85 85	(1)/	/f'(i)						
125	8392	16-1	74								
120	GT07	22 1	97 97	+DONF	!						
128	ESB.	23 16	11								
120	63D4	22 1	R4							1	
170	*/ RI A	21	AA AA								
171	FR2	16 23 1	96 96							1	
132	CTOR	22 1	96 96							•	
137	SEA	16 21 1	96 96							1	
134	ESBL	23 16	12				190			1	
135	GT05	22	N5								
136	*IBLb	21 16	12							1	
137	2		A2	Loop b	back for					1	
138	2		92 92	lower	22 CF_					4	
179	RCIT	36	46		5					4	
140	+	-!	55	Posot	I to lowon					4	
141	STOT	35	46		I to Tower					1	
142	CLX		51		S					1	
143	+	_!	55							1	
144	RTN		24				200			1	
145	* Bid	21 16	14							1	
145	2	LI 10 1	A2	1	0 #f flag 0					1	
147	2	Ì	82		2 IT TIAG U					1	
148	FR?	16 23	90 90	clear						1	
149	CLX		51							1	
150	+	-	55							ł	
151	RTN		24							1	
152	★LBL7	21 1	97	Deset		.				1	
153	RCLD	36	14	Reset	R I TOR ano	τηει	1			1	
154	1		01	press	ing of [D]		210			1	
155	-		45							1	
156	STOD	35	14							1	
157	EEX	-	23	R _z mus	st contain					1	
158	2	i	02							1	
159	x	-	35	Intege	er here					1	
160	RCLI	36	46							1	
161	LSTX	16-0	63							1	
162	х	-,	35							1	
163	STOI	35 -	46							1	
164	X≠Y		41				220				
165	RTN		24								
166	R∕S	i	51								
J			****	L	51.0				L		
							FLAGS		SET STATUS		
ÎNV	L CF	MAX	0	CF	⊢ →IRR	C		>22 CF₅	FLAGS	TRIG	DISP
	p lic	FD	с II	SED		e ı			ON OFF		
0	1 03		2	JLU	3	4		2			
USED					-		JSED	<u> </u>		RAD 🗆	
⁵ USEn	6 US	ED	7 II	ISED	8	9		3	3 🗆 🛛		n_2

Contributor's Name	Hewlett Packard				
Address	1000 N.E. Circle Boulevard				
City	Corvallis	State Oregon	Zip Code	97330	

Program Description, Equations, Variables The calculation of required salesman to cover n territories utilizes the model: 1. $\sum_{N=\frac{i=1}{P}}^{n} C_{i} F_{i}$ Where: 2. n = Desirable number of salesmen C_i= Number of customers in class size i F_{i} = The desirable number of annual calls to make to customers in size class i. P = The annual average numbers of calls to be made by a salesman. η = The number of customer size classes **Operating Limits and Warnings** The optimality of the overall solution depends upon managements accuracy in estimating call frequencies for different size accounts.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)		
Sample Problem(s) Territories	C _i	F.
	Number of customers	Call frequencies
		in territories i
1	3	1000
2	7	2500
	10	3000
Solution(s) 2000 [A] 2000.00 [P]		
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [^{entry}]	[E] 20.00	[Σ C.]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [^{entry}] 1000 [C] 1.00 []	[E] 20.00 [E] 6500.00	[Σ C _i] [Σ F _i]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [entry] 1000 [C] 1.00 [] [D] 3000.00 [C ₁ F ₁]	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [^{en‡ry}] 1000 [C] 1.00 [] [D] 3000.00 [C _i F _i] 7 [B] 2.00	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [entry] 1000 [C] 1.00 [] [D] 3000.00 [C_iF_i] 7 [B] 2.00 2500 [C] 2.00	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 $[^{entry}]$ 1000 [C] 1.00 [] [D] 3000.00 $[C_iF_i]$ 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 $[C_iF_i]$	[E] 20.00 [E] 6500.00 [E] 25.00	$\begin{bmatrix} \Sigma & C_{i} \end{bmatrix}$ $\begin{bmatrix} \Sigma & F_{i} \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$
Solution(s)2000 [A]2000.00 [P]3 [B]1.00 [$entry$]1000 [C]1.00 [][D]3000.00 [C_iF_i]7 [B]2.002500 [C]2.00[D]17500.00 [C_iF_i]10 [B]3.00	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s)2000[A]2000.00[P]3[B] 1.00 $[^{en} \ddagger ry]$ 1000[C] 1.00 []1000[C] 1.00 [][D] 3000.00 $[C_{i}F_{i}]$]7[B] 2.00 [2500[C] 2.00 [[D] 17500.00 $[C_{i}F_{i}]$ 10[B] 3.00 3000[C] 3.00	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [$entry$] 1000 [C] 1.00 [] [D] 3000.00 [C_1F_1] 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 [C_1F_1] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C_1F_1]	[E] 20.00 [E] 6500.00 [E] 25.00	[Σ C _i] [Σ F _i] [N]
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [^{en‡ry}] 1000 [C] 1.00 [] [D] 3000.00 [C ₁ F ₁] 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 [C ₁ F ₁] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C ₁ F ₁] S.E. Heymann, "Determining	[E] 20.00 [E] 6500.00 [E] 25.00	$\begin{bmatrix} \Sigma & C_i \end{bmatrix}$ $\begin{bmatrix} \Sigma & F_i \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [$entry$] 1000 [C] 1.00 [] [D] 3000.00 [C_iF_i] 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 [C_iF_i] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C_iF_i] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C_iF_i] Reference(s) S.E. Heymann, "Determini Marketing Research in Action (New	<pre>[E] 20.00 [E] 6500.00 [E] 25.00</pre>	$\begin{bmatrix} \Sigma & C_i \end{bmatrix}$ $\begin{bmatrix} \Sigma & F_i \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [$entry$] 1000 [C] 1.00 [] [D] 3000.00 [C_iF_i] 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 [C_iF_i] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C_iF_i] Reference(s) S.E. Heymann, "Determini Marketing Research in Action (New in Business Policy, No. 84, 1957)	[E] 20.00 [E] 6500.00 [E] 25.00 Ing the Optimum Size of the York: The Conference Boar , pp.82-84.	$\begin{bmatrix} \Sigma & C_i \end{bmatrix}$ $\begin{bmatrix} \Sigma & F_i \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$ $\begin{bmatrix} N \end{bmatrix}$ e Sales Force, "in ard Report, Studies
Solution(s) 2000 [A] 2000.00 [P] 3 [B] 1.00 [$entry$] 1000 [C] 1.00 [] [D] 3000.00 [C,F] 7 [B] 2.00 2500 [C] 2.00 [D] 17500.00 [C,F] 10 [B] 3.00 3000 [C] 3.00 [D] 30000.00 [C, F] Reference(s) S.E. Heymann, "Determini Marketing Research in Action (New in Business Policy, No. 84, 1957) This program is a translation	[E] 20.00 [E] 6500.00 [E] 25.00 [E] 25.00 Ing the Optimum Size of the York: The Conference Boat , pp.82-84. on of the HP-65 Users' Libr	<pre>[Σ C_i] [Σ F_i] [N]</pre> e Sales Force," in ard Report, Studies cary Program #05176A

Ľ

User Instructions

	Sales	Force	Structu	re	(Terr	itor	ial)			
										5
(hp)	P		°,		F i		ΣC F i i	N		┛

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Enter program.				
2	Input annual average # of calls made by a				
	salesman	P	Α	Р	
3	Input # of customers in class size i (C.)	C.	В	# of entries i	
4	Input # of annual calls to make to customers	T			
	in class size i. (F.)	F.	С	i	
5	$\frac{1}{1}$	ĺ	D	ΣC.F.	
	Repeat 4-6 for i=1, 2,3, \dots			1 1	
6	Compute total # of customers		E	Σc,	
7	Compute total # of annual calls to make to			±	
	customers		E	Σ _F ,	
8	Compute # of salesmen required		E	N.00	
9	For a new case go to step -2				

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	к	EY CODE	сомм	ENTS
001	*LBLA	21 11							
002	: ULK6 7 CTA1	16-33 75 01	clear register						
003 004	STUL L RTN	55 61 24	store P	060					
005	5 *LBLE	21 12							
006	5 ST02	35 02							
007	7 ST+3	35-55 03							
008	31	01							
009	9 ST+4	35-55 04							
016	3 RCL4	36 B4							
Ø11 013	I Ă∔Ĭ D Di	-41							
012 017	E RW R RTN	-31 24							
014	4 *LBL0	21 00	Input C. to compute	070					
015	5 RCL3	36 03							
016	5 RCL4	36 04	C _i						
Ø17	7 ÷	-24	_						
018	B RTN	24							
019	9 *LBLC	21 13 75 65							
028	9 5103 1 6716	33 03 75-55 02							
021 021	1 3170 P 1	33 33 8 1							
023		35-55 07							
824	F RCL7	36 07	input F. to compute	080					
025	5 X ≓ Y	-41	Σ F. and to compute						
026	5 R4	-31							
027	r RTN	24	ľi.			L			
028	B #LBL1	21 01							
025	7 KULD D DCL7	36 06 72 67							
036 071	9 RUL/ I ∸	30 07 -24							
832	P RTN	24				-			
03	3 *LBLD	21 14				1			
034	# RCL2	36 62		090					
035	5 RCL5	36 05	50.5						
036	5 . X	-35	compute 20 F						
831	/ SI+8	35-55 08				_			
030 070	S KIN G KIDIE	24 21 15				+			
03: 041	R RCI3	ZI 13 36 03	compute ΣC .			+			
04	1 R/S	51 51	i						
04:	2 *LBLE	21 15							
043	3 RCL6	36 06	$compute \Sigma F$						
044	4 R/S	51	i i	100					
04:	5 ¥LBLE	21 15							
040 043	5 KULS 7 Prij	35 88 72 Bi	compute N						
047 045		-24							
040	9 INT	16 34							
050	9 RTN	24						SET STATUS	
05:	1 R/S	51					FLAGS	TRIG	DISP
		-+	-				ON OFF		
			4	110		+			
		-	1	<u> </u>		+	2 2 3	RAD	
			1				3 🗌 🖬	_	n
			REGI	STERS			-	10	0
0	¹ P	² C.	³ ΣC. ⁴ F.	5Σ	⁶ Σ F.		/	δ ΣC, F.	9
50	S1	<u>1</u>	i S3S4	S5	S6		S7	S8 i i	S9
	ľ								
A	•	В	С	D		E		I	

Program Title COST AND PRICE COMPUTATIONS											
Contributor's Name Address	Hewlett Packard 1000 N.E. Circle Boulevard										
City	Corvallis	State	Oregon	Zip Code	97330						

Program Description, Equations, Variables Sales work often involves calculating the unknown
amongst the interrelated terms margin, markup, selling price, and cost. Margin is
defined as 100 x (selling price-cost)/ selling price. Markup is 100 x (selling
price - cost)/cost.
There are numerous equations which evolve from the interrelation of these terms.
This program solves for any of the four variables when two of the other variables

are known. In addition, with discount synonymous with margin, list with selling price and

net with cost, this program calculates any unknown among list, net and up to three consecutive discounts rates.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s)
a) If the margin is 20% and cost is \$160, what is the selling price?
b) If the margin is 30% what markup would this be?
c) If list price is \$3.28, net is \$1.45 and two of the discounts are 48% and
5%, what is the third discount rate?
d) If list price is 6.20 and there are two discount rates, 50% and 2% what is the
net?
e) The discounts 20%, 5%, and .5% are equivelant to what single discount rate.
a) 20 [C], 160 [B] [A] 200
$D) 30 [C] [D] \dots 42.80\%$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
a) 6.20 [I] [A] 50 [I] [C] 2 [I] [D] 0 [I] [E] [I] [B] $\dots 3.04\%$
e) 1 [I] [A] 20 [I] [C] 5 [I] [D] .5 [I] [E] [I] [B] 1 $[X < Y$] [-]24 or 24
Peterence(s) These programs are a modification of the Users' Library Program # 2305A
submitted by Miguel Tarrab and # 4571 submitted by R W Edelen

User Instructions

List	Net	Disc 1	Disc 2	Disc 3	
∫ ¶1					5
S Colling	Cost	Manada			1
Serring	COST	Margin	Markup		L⁄

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Enter program card				
2	Input the known values				
	selling price	Ś			
	cost	Ś			
	•margin	8	С		
	•markup	8	D		
3	Calculate the unknown				
	:selling price		Α	\$	
	·cost		В	Ś	
	·margin			9	
	•markup			95 95	
	OR				
2	Input the known values				
	·list price		f A		
	•net	Ś	f		
	idiscount 1	Ŷ			
	·discount 2				
		6			
	Colculate the unknown				
	list price				
	inst price			\$	
	discount 1			\$\$	
				*	
	discount 2			<u> </u>	
	discount 3				
	If you wish to solve discount problems with				
	less than three discounts, use 0 for the				
	remaining discounts				
		l			

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KE	EY ENTRY	KEY CODE	COMMENTS
00	1 #LBLa	21 16 11		057	F3 ?	16 23 03	
UU. 00	2 5101 7 570	30 01 16 27 87	store list price	058	RTN	24	calculate D ₂ F3 is
00. RA	S FOR A PTN	10 23 83		059	RCL5	36 05	used to differentiate
80	5 RCI 5	36 05		060	RCL4	36 04	between entering a
88	S RCL4	36 R4		061	RCL2	36 UZ	value and solving
00	7 RCL3	36 03		062	RULI	36 81 07 61	for a value see
00	B RCL2	36 02		863	GSE1	23 01 75 07	standard pac p.L0502
00	9 x	-35	calculate list	064	5103 EEV	30 03 -97	
01	0 x	-35		065 055	55 A	-20	
01	1 ÷	-24		065	<u>د</u> ب	-75	calculate D ₂
01	2 RND	16 24		007 020	DTN	24	2
01	3 ST01	35 0 1		860 869	*!Rie	21 16 15	
01	4 RTN	24		005 070	FEX	-23	
01	5 *LBLk	21 16 12		971	2	0 2	
01	6 ST05	35 05	store net	072	÷	-24	
01	7 F3?	16 23 03		073	1	01	
01	8 RTN	24		074	XZY	-41	
01	9 RCL4	35 04		075	-	-45	
62		36 03 72 02		076	ST04	35 04	
82	I RULZ	36 02 76 01		077	F3?	16 23 03	store D
02	Z KULI	-75	· · ·	078	RTN	24	calculate D ₂
02	3 A A X	-35		079	RCL5	36 05	note
02 02	5 X	-35	calculated net	086	RCL3	36 03	
82	6 RND	16 24		081	RCL2	36 02	Fl is used to
02	7 ST05	35 05		082	RCLI	36 01	decide which of two
02	8 RTN	24		883	65 6 1	23 81 75 04	equations to use to
02	9 #LBLc	21 16 13		084	5104 EEV	30 04 -27	solve for selling
03	IO EEX	-23	change to desimal	895	2	-23 82	or cost
03	81 2	8 2	change to decimal	887	ے ×	-35	1 using margin
03	12 ÷	-24		888	ETN	24	2 USING MARKUP
03	33 1	01		089	*LBL1	21 01	
03	3 4 XZY	-41 4F		090	χ.	-35	
U.:	5 - 7 0700	-40 75 00		891	Х	-35	
03 03	00 3102 77 57 9	16 27 07		092	÷	-24	
01	78 PTN	20 20 24		0 93	1	81	
0.	89 RCL5	36 05		094	X∓Y	-4	
84	10 RCL4	36 84		695	-	-45	
04	1 RCL3	36 03		896	RIN	24	
84	2 RCL1	36 01		897	#LBLR	21 11 75 11	
04	IJ GSB1	23 01	calculate D _l	098	5106	37 11	
04	14 STO2	35 0 2		033	3F2 570	16 21 82	calculate or store
84	5 EEX	-23		100	RTN	20 20 80	O.
04	6 2	02		102	RCLB	36 12	(u
94 01	Н X 10 рти	-30		103	RCLC	36 13	arl gin
04	10 #101.J	24		104	F1?	16 23 01	arr
0- 0*	SA FEX	-27		105	CHS	-22	- u (1
Ø.	51 2	02		106	1	01	, (1 or
0	52 ÷	-24		107	+	-55	
05	53 1	01		168	F1?	16 23 01	=bt
05	54 XZY	-41		109	1/X	52	
05	55 -	-45		110	X OTOA	-35 75 11	el]]
0	56 STO3	35 0 3			5104	30 11	<u> </u>
)	1	2		5	6	7	8 9
,	list	Γ D ₁		net	Ĩ		
50	S1	S2	S3 S4	S5	S6	S7	S8 S9
		,l				I	
4		B cost	C Markup or marg	D in		E	I I
6011	ing	1					

97 Program Listing II

STEP KEY	Y ENTRY	KEYC	CODE		COMMENTS	S	STEP	KE	EY ENTRY	KE	Y CODE	COMM	IENTS
112	RTN		24					168	STOC	3	15 13		
113	#LBLB	21	12					169	CF1	16 2	2 01		
114	SF2	16 21	12 82					170 171	2		-23		
116	F3?	16 23	02 03				1 :	172	×		-75		
117	RTN		24				1	173	RTN		24		
118	RCLA	36	11				1 .	174	*LBL3	2	1 03		
119	RCLC	36	13				1 :	175	CF1	16-2	2 01		
120	F1?	16 23	01	cost =	=S/(1+ma)	rkup)	:	176	CF2	16 2	2 02		
121	CHS	-	22	cost =	=S(1-marg	gin)	-	177	1		01	store mark	מ מוו
122	1	_	81 55				1 :	178 470	7 000	7	55	adjust fla	as
124	F12	15 23	33 A1				:	1(2 100	DTN	0	5 13 24		
125	1/X	10 20 .	52					181	★ 1.BL.4	2	1 84		
126	1/X	I V	52	-	Lte			182	RCLA	3	6 11		
127	x	-;	35		гта пд			183	RCLE	3	6 12		
128	STOB	35 :	12	, s	enu viı			184	XCH	1	6 55	margin = s	elling -
129	RIN	21	24		e L O L		1	185	CHS		-22	cost/selli	ng
130	FILELU FIZO	21. 12.27 j	13 97	dny	н С			186	5F 1	16 2	1 81		
132	ETN2	10 23 0	03 A2	ar)	of of	Je	<u>د</u> ا	(87 100	· · ·		01 55		
133	RCLC	36	13	- X E d	ds ds	alı		189	STOC	3	5 13		
134	F2?	16 23 (02	ma	an. an	Ď]	190	X≠Y		-41		
135	GT04	22 (04	5 t +	lue let lgi	ruq	t l	191	RTN		24		
136	ENTT	-;	21	/ i i	u o n nar 1ir	() ()	t l	192	*LBL5	2	1 05		
137	ENTT		21	kuj ed	el. F	ate	1	193	RCLB	3	6 12		
138	1 +	• _/	01 55	lar us	U O O O	й	1	(94 605	RCLA *CH	5	6 11 7 FF		
135	1/X	-	33 52		th th tup Jse	Jse		190 196	40A 100	16.2	6 33 9 A1		
141	x	-	35		en 'rg ark		1	197	1	10 2	A1		
142	STOC	35 (13	gir gir	. žeč	5.	t	198	*		55	markun -	colling -
143	SF 1	16 21 (01	la la	oret		, t	99	STOC	3	5 13	markup -	serring -
144	EEX	-2	23	E E G	дч		2	200	X≢Y		-41		COSL
145	2	l	02 75				2	201	RTN		24		
140	A PTN		30 94				4	202	R/5		51		
148	±i BL2	21 (67 A2										
149	1	(01									ł	
150	%	ļ	55					L					
151	STOC	35)	13	store	margin a	and]	
152	SF 1	16 21 0	01 60	adjust	flags		210					4	
103 1 54	UF2 PTN	10 22 6	02 24	_	-		210	 				4	
155	*LBLD	21	14					 		╂───		4	
156	F3?	16 23 (03					 		+		1	
157	GT03	22 (83									1	
158	F2?	16 23 (02]	
159	GT05	22 0	05 4 7										
160	KULU ENTA	30 J	13 21					──				4	
162	ENT†	-;	21	- rkup	- marai	-1	<u> </u>			+		{	
163	CHS	-7	22	markup	$= marg_{\perp}$.n/	220					1	
164	1	(01		(I-mary-	.11)						1	
165	+	-	55					\square		Ţ]	
166	17X		52					──		╂		ł	
167	X		35	LAB	BELS			<u>'</u>	FLAGS	<u> </u>		SET STATUS	
A selling	В	st	Cmar	rgin	D	E		0				TRIG	DISP
a	b		C D	9111	d D	e		1		- <u>-</u>	ON OFF		
0	ne	<u>;c</u>	2 D		3 2	4	<u>-</u> 3	2		-1^{0}_{1}			SCI
5	6		7		8	9		3		2		RAD 🗆	ENG 🗆

NOTES

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

MARKETING/SALES

Anyone in sales or marketing, whether a small businessman or a large corporate manager, should find these programs covering sales forecasting, price and profitability analysis useful and time saving.

FORECASTING USING EXPONENTIAL SMOOTHING FINANCIAL TREND ANALYSIS SEASONAL VARIATION FACTORS (SEAVAR) PRICE ELASTICITY OF DEMAND EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST BREAKEVEN ANALYSIS INCOME STATEMENT (P & L) ANALYSIS INTERNAL RATE OF RETURN SALES FORCE REQUIREMENTS COST & PRICE COMPUTATIONS

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14032 Printed in U.S.A. 00097-90207 Revision C 6-78