IIP-07 IIP-07

Users' Library Solutions
Marketing/Sales

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.
REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

FORECASTING USING EXPONENTIAL SMOOTHING 1
Useful for making short term forecasts using a geometric weighted moving average. Includes consideration for seasonal variation using the SEAVAR program.
FINANCIAL TREND ANALYSIS 11
Analyzes growth trends for a best fit exponential function. Includes several parameters of "goodness of fit".
SEASONAL VARIATION FACTORS (SEAVAR) 16
Develops seasonal variation factors based on historical figures. The factors are useful for projecting seasonal sales. Can be used in conjunction with "Forecasting using Exponential Smoothing".
PRICE ELASTICITY OF DEMAND. 20
Using historic (or estimated) 'prices 'and ressulting unit 'saies', 'this program calculates the elasticity of demand.
experience (learning) CURVE FOR manufacturing cost 24
Produces standard learning curve parameters useful in projecting production cost as a function of units produced.
BREAKEVEN ANALYSIS. 28
Considers the operating leverage relation between fixed costs, variable cost, \# of units, selling price and gross profit, and allows the user to dynamically evaluate the effect of various changes in any of the variables upon the other variables.
income statement (p\&L) analysis 32
Allows the user to posit numerous alternatives in manufacturing cost, overhead, price etc, and see immediately the effect on the income statement.
INTERNAL RATE OF RETURN 40
Solves for the rate of' return 'on' an investment which yields various changing cash flows over the period of the investment.
SALES FORCE REQUIREMENTS 47
Calculates the required number of salesmen when given average annual call frequency per salesman, number of customers forecasted and desired call frequency per customer.
COST \& PRICE COMPUTATIONS 51
Helps quickly and easily solve those problems of markup, margin and chain discounts.

Program Description

Program Description, Equations, Variables This is a singly-smoothed exponential forecasting routine whioh: (1) accommodates quarterly seasonal correction factors, (2) can handle some trend in the data, (3) produces smoothed estimates of current demand, D_{t}. (4) produces next-period smoothed demand estimates, D_{t+1}. (5) calculates a mean absolute deviation, $M A D$, and a tracking ratio, TR, (6) also provides a goodness-of-fit measure, V, which measures the variance between the next period's demand estimate to that period's actual demand, and (7) provides for convenient restarting when the user wants to update a data-series. While written for an HP-67, the program coding includes the option of printing 211 important results when an HP-97 is used.

Introductory Remarks. Exponential isis a special kind of moving average. It is often used for short-term sales and inventory forecasts. Typical forecast periods are a month or quarter of a year.

Unlike a moving average, exponential smoothing does not require a great deal of historical data. This program, for example, forecasts demand by using only a smoothing constant, an "old smoothed average," and a current-period usage statistic.

Normally, exponential smoothing uses data measured in physical quantities

Operating Limits and Warnings Should not be used with data which has more than a moderate amount of up or down trend. (Use double smoothing for data with a pronounced trend.) Program has no provision for error correction. Initialising resets the seasonal correction constants to 2.0. \hat{D}_{t+1} must be calculated for each time period if MAD. $T R$, or V are desired. At least two projections of \widehat{D}_{t+1} wust be done before MAD or TR can be calculated.
(cases, tons, dozens, reams, etc.). It also can be used with dollar amounts but care must be taken to see that the amounts are stated in constant-dollar terms.

1. Methodology. This program is a versatile first-order smoothing routine for short-term forecasting with data having modest changes in its time-trend component. Such data will appear as a more-or-less horizontal line when plotted against time on a graph, with time being on the horizontal axis. If there is a trend in the plot this program will generate estimates which lag behind the trend line even though the formulas contain a trend correction factor. Double exponential smoothing should be used when the trend is pronounced.

Quarterly seasonal adjustments are available in this program but they are not required. This explanation begins without considering the deseasonalizing option. See Section 6 for the deseasonalizing option.

A trend-responsive first-orderfecast ${ }^{\text {formes }}$ deseasonalized data is developed as follows.
a. Calculate a smoothed (weighted) average of: (1) actual demand/usage/ sales in the current time-period, and (2) the smoothed average of demand/usage/sales in prior time periods.

$$
S_{t}=\alpha x_{t}+(1-\alpha) S_{t-1}
$$

where

$$
\begin{aligned}
S_{t} & =\text { Current period's smoothed average } \\
\mathbf{x}_{t} & =\text { Actual current period usage } \\
\alpha & =0<\alpha<+1
\end{aligned}
$$

b. Calculate the change, C_{t}, in the smoothed average S_{t} between this period (t) and the prior period ($t-1$).

$$
c_{t}=S_{t}-S_{t-1}
$$

c. Calculate the current smoothed rate-of-change (trend), T_{t}, in the smoothed average, S, between $t-1$ and t.

$$
T_{t}=\alpha c_{t}+(1-\alpha) T_{t-1}
$$

d. Calculate the current period's expected usage, D_{t}. This result is an exponentially smoothed projection of what usage is expected to be in the current time period, t. It is not a forecast for period $t+1$.

$$
D_{t}=S_{t}+((1-\alpha) / \alpha) T_{t}
$$

e. Forecast the next period's expected usage.

$$
\hat{D}_{t+1}=S_{t}+(1 / \alpha) T_{t}
$$

f. More generally, a forecast for n time periods in the future can be obtained from the formula

$$
\hat{D}_{t+n}=S_{t}+(1 / \propto+n-1) T_{t}
$$

This formula is not included in the program but the necessary data can be gotten by inserting R/S instructions after Step $101\left(S_{t}\right)$ and Step $112\left(T_{t}\right)$. When Key B
is pressed these values will appear after B_{i} but before D_{t}.
2. Choice of Smoothing Constant, $\alpha . \alpha$ must be determined empirically. Low values of α make the trend line less responsive to new data. Responsiveness, however, means that the trend line will respond to spurious changes as well as real changes in trend. Brown and other authorities (see references below) recommend α values between 0.1 and 0.3. Trial-and-error experimentation usually is required to find a good α value for a time series. See Sections 4 and 5 for further comments.
3. Starting Data. The equations used for exponential smoothing constitute a system which has infinite regress. In theory one could go backwards in time forever because of the equation

$$
S_{t}=\alpha x_{t}+(1-\alpha) s_{t-1}
$$

Where should one stop (or begin)? Somehow, then, a starting value for S must be found. This program assumes a default option of $S t=X_{\text {f }}$ on the ${ }^{t-1}$ first iteration, following Buffa and Taubert. (This can be ${ }^{t-1}$ defeated. See Step 6 of the User Instructions.)

In addition, a starting value for T must be found. This program assumes a default option of $T_{t-1}=0$. Again, this follows Buffa and Taubert. (This also can be defeated. See ${ }^{t-1}$ Step 5 of the User Instructions.)

These assumptions make it advisable not to forecast until at least four periods of current data have been entered (i.e., until Key B has been used at least four times).
4. Tracking Signals. Brown (p. 296) and Enrick (p. 17) describe the concept of a tracking signal, or tracking ratio. This measure is one way to evaluate goodness-of-fit. Conceptually, a tracking ratio is the cumulative sum of an equation's forecasting errors (either + or -) relative to the equation's cumulative mean absolute deviation.

A tracking ratio which is consistently close to 0.0 is good, while a tracking ratio which goes much above ± 3 is questionable. Exceeding 3 suggests that the process no longer is being controlled by the smoothing formula and that the researcher should develop a new formula to cope with changed conditions.

The formulas used here are from Enrick. They are simpler than Brown's and avoid several measurement problems which cannot be easily summarized in this write-up. The trade-offs are: (1) Enrick's tracking ratio is not as accurate for the first few iterations, and (2) Enrick's tracking ratio does not lend itself to statistical inference. (Brown's does.)

In this program all the calculations are done with deseasonalized data. Here are the formulas.

$$
\begin{aligned}
& \mathrm{CFE}=\sum_{2}^{N}\left(\mathrm{X}_{t}-\hat{\mathrm{D}}_{t}\right) \\
& \mathrm{CAD}=\sum_{2}^{N}\left|\left(\mathrm{x}_{t}-\hat{\mathrm{D}}_{t}\right)\right| \\
& \mathrm{MAD}=\mathrm{CAD} / \mathrm{B}_{\mathrm{n}-1} \\
& \mathrm{TR}=\mathrm{CFE} / \mathrm{MAD}
\end{aligned}
$$

where

Notice the "hat" superscript over the D_{t} values in the formulas. The hat emphasizes that the comparisons are being made between observed demand in period t and the forecasted demand projection made earlier in period $t-1$. Also notice that the formula for CFE is written so that an overforecast of demand results in a negative value for CFE. Conversely, an underforecast results in a positive value. This sign convention carries through to the tracking ratio results as well.
5. Variance Measure. This program also calculates a variance, V, as follows.

$$
V=\frac{\sum e_{i}^{2}}{n}=\frac{\sum\left(\hat{D}_{t}-X_{t}\right)^{2}}{B_{n}}
$$

This variance is provided to give another measure of variability. It is useful for measuring variance as statisticians define it, but it is not a particularly good way to assess goodness-of-fit. Oftentimes the variance*when α is set very high, such as in the range of 0.7 to 0.9 . Such an α implies that the smoothing process is not working very well and that some other smoothing procedure should be tried. Restated, a high value of α implies that practically no smoothing is being done and that another approach should be tried. *will be minimized
6. Deseasonalization of Data. The following examples show how seasonalized and deseasonalized data are distinguished in this write-up.
$\left.\begin{array}{rl}X_{t(S)} & =\text { Actual usage, inclusive of a seasonal } \\ & \text { component }\end{array}\right] \begin{aligned} & X_{t(D)}=\text { Actual usage, deseasonalized } \\ & D_{t(D)}=\text { Deseasonalized expected usage }\end{aligned}$
Assuming that quarterly deseasonalizing constants, $\mathrm{SV}_{\mathrm{i}} \quad(\mathrm{i}=1,2,3,4$) are available, those constants can be entered into this program so that the deseasonalization will be done automatically. One program which will produce the correct seasonal constants is "Seasonal Variation Factors," in the Hewelett-Packard Marketing/ Sales Solutions Manual.

This program assumes that the seasonal factors will be used multiplicatively to eliminate seasonality. That is,

$$
X_{t(S)} \cdot S V_{i}=X_{t(D)}
$$

A multiplicative constant of $0.909 \quad(0.909=1.00 / 110 \%)$ thus would be used to deseasonalize an observation for a quarter which normally had a usage rate which was 10% greater than the annual average.

This process operates in the reverse when re-seasonalizing data. To obtain
$\hat{\mathrm{D}}_{\mathrm{t}+1(\mathrm{~S})}$, for example, the following is done. $\hat{\mathrm{D}}_{\mathrm{t}+1(\mathrm{D})} \div \mathrm{SV} \mathrm{i}_{\mathrm{i}}=\hat{\mathrm{D}}_{\mathrm{t}+1(\mathrm{~S})}$
7. Counters for Time. Two counters keep track of time. B_{i} records the number of times a smoothed demand estimate is calculated. It does that by counting the number of times Key B is pressed. Counter Q_{i} is used with the deseasonalizing adjustment option. Q_{i} keeps track of the fiscal quarter or calendar quarter associated with a given X_{t}. Since Q_{i} is entered by means of Key A for time period $t-1, Q_{i}$ should always be for time period $t-1$.

Examples: (refer to the numbering convention in the next paragraph) Suppose that X_{t-1} (Key A's input) is for the 4 th calendar quarter of the preceding year. ${ }^{t-1}$ Then Q_{i} should be entered as 4 . Now suppose that X_{t-1} is for the 2nd quarter of the current year. Then Q_{i} should be entered $t-1$ as 2 .

Following is the numbering convention.

$B_{i}=$| 1 | lst quarter of the year |
| :--- | :--- |
| 2 | 2nd quarter of the year |
| 3 | 3rd quarter of the year |
| 4 | 4th quarter of the year |

Finally, Key f b assumes that the seasonal constants always will be entered in this order: $\mathrm{SV}_{1}, \mathrm{SV}_{2}, \mathrm{SV}_{3}$, and SV_{4} (see the User Instructions). The order of entry via Key f b has no relationship to the Q_{i} figure entered in the start-up process.
8. Coding. The basic coding is relatively straightforward. The one thing to remember is that all values are time-dated. The coding in f LBL 0 may therefore seem confusing, for it uses D_{t+1} values calculated in prior time periods as the basis for its calculations. \quad Just keep in mind that those values were calculated one iteration earlier.

Some users are likely to want to modify the instructions used here for the program stops (h PAUSE, $f-x-, R / S$) to better fit their needs. That can be done, but be sure not to alter any h RTN instructions without carefully considering the consequences. Changes in some of them could cause the program to "run through" a label and desynchronize the time-counters B_{i} and Q_{i}. Also, 97 users may want to add print-outs of the input data: only results are printed in this program.
9. Limitations. The chief limitation of this program is the limitation of the methodology itself. First-order exponential smoothing is not appropriate for data with a pronounced upward or downward trend. A lesser shortcoming is the need to let the start-up assumptions work themselves out of the equation system.

References. Robert Goodell Brown, Smoothing, Forecasting, and Prediction of Discrete Time Series (Englewood Cliffs, N.J.: Prentice-Hall, 1963). An excellent general introduction to the subject.

Elwood S. Buffa and William H. Taubert, Production-Inventory Systems: Planning and Control, Rev. ed. (Homewood, Illinois: Richard D. Irwin, 1972), pp. 44-45. Has the formulas used for Keys B and C.

Norbert Lloyd Enrick, Market and Sales Forecasting (San Francisco, Calif.: Chandler Publishing Co., 1969), p. 17. Has the formulas for Key D.

Program Description II

9. $\operatorname{Hind} \Sigma e_{i}^{2}, B_{2} \cdot V$

E

$$
\begin{array}{rl}
1142.44 & \sum e_{i}^{2} \\
2.00 & B_{2} \\
571.22 & V
\end{array}
$$

See page 7 for additional example results.

User Instructions

STEP	KEY ENTRY	key cour	comments	STEP	KEy Entry	KEY Code	COMMENTS
001	* ${ }^{\text {g }}$ LBLf a	322511	Initialize		STO + 8	336108	$Q_{i} Q_{i}=5 \text { ? }$
	\dagger CL REG	3143			5	05	
	$f{ }^{\text {P }}$? S	3142			RCL 8	3408	
	f CL REG	3143		060	$g x=y$?	3251	
	ST0	01		Yes	f GSB 6	312206	Reset. Step 204.
	STO 1	3301	Assume no seasonality. Store 1 in all SV registers.	No	RCL 8	3408	
	STO 2	3302			1	01	Get SV_{i}
	STO 3	3303			0	00	
	STO 4	3304			+	61	
010	$f{ }^{\text {P }}$ ¢ 5	3142	$S V_{i}=1$ prompt		h ST I	3533	$\stackrel{S v_{i}}{\rightleftarrows} x_{i}$
	1	01			RCL (i)	3424	
	h RTN	3522			RCL 0	3400	
	*g LBLf b	$32 \quad 2512$	Enter SV's		X	71	$\overleftarrow{x}_{t(D)} x_{t(s)}$
	$f \mathrm{P}$ < S	3142	SV_{4}	070	STO E	3315	
	STO 4	3304			1	01	Increment B_{i}
	h R^{\downarrow}	3553	SV_{3}		STO +9	336109	
	STO 3	3303			RCL 9	3409	B_{i}
	h R \downarrow	3553	SV_{2}		h F? 1	357101	
	STO 2	3302		Yes	f - x -	3184	
020		3553		No	h PAUSE	3572	
	STO	3301	SV_{1} Prompt - SV's used		*f LBL 0	$3125 \quad 00$	Fit, MAD, Tracking
	RCL 4	3404			1	01	
	f $P \geqslant 5$	3142			$g-x=y$?	3251	First iteration?
	h RTN	3522		${ }^{089}$ Yes	GTO 1	2201	$\begin{aligned} & \text { Bypass to Step } 093 \\ & X_{t}(D) \end{aligned}$
	*g LBLf c	322513	Print? Yes, all.	No	RCL E	3415	
	h SF I	355101			f $P \geqslant$ S	3142	
	$h \mathrm{Pi}$	3573	Mnemonic for print		RCL 9	3409	Prior period estimate of \hat{D}_{t+1} (D) CFE
	h RTN	3522			-	51	
	*g LBLf c	322513	Print? Not all results.		STO +5	336105	
030	h CF 1	356101			STO 8	3308	
	0	00			h ABS	3564	
	h RTN	3522			STO +6	336106	CAD
	*f LBL A	312511	Enter start-up data x_{t-1}		RCL 8	3408	$\mathrm{e}_{\boldsymbol{i}}$
	STO C	3313		90	$9 \mathrm{x}^{2}$	3254	
	h R \downarrow	3553			$f \mathrm{P}$ 2 S	3142	
	STO 8	3308	Q_{i} for X_{t-1}		STO +3	336103	Σe^{2}
	h R \downarrow	3553			$\pm f$ LBL 1	312501	Calculate $\mathrm{S}_{t}(\mathrm{D})$
	STO A	3311			RCL B	3412	
	CHS	42			RCL 1	3401	$s_{t-1}(\mathrm{D})$
040	1	01			X	71	
	+	61			RCL A	3411	$X_{t}(\mathrm{D})$
	STO B	3312	1		RCL E	3415	
	RCL 8	3408	Deseasonalize $\mathrm{X}_{\mathrm{t}-1}$		X	71	
	1	01		100	+	61	
	0	00			STO 2	3302	$\begin{aligned} & S_{t}(D) \\ & \text { Calculate } C_{t}(D) \end{aligned}$
	+	61			*f LBL 2	312502	
	h ST I	3533	SV,		RCL 1	3401	C_{t}
	RCL (i)	3424			-	51	
	RCL C	3413			\pm ¢ LBL 3	312503	Calculate $\mathrm{T}_{\mathrm{t}}(\mathrm{D})$
050	X				RCL A	3411	
	STO D	3314			X	71	
	STO 1	3301			RCL 4	3404	
	h RTN	3522			RCL B	34.12	
	*f LBL B	$3125 \quad 12$	Enter X_{t}	110	X	71	$\mathrm{T}_{\mathrm{t}}(\mathrm{O})$
	STO 0	3300			+	61	
	1	م1			STO 5	3305	
REGISTERS							
${ }^{0} \mathrm{X}_{\mathrm{t}}(\mathrm{s})$	${ }^{1} S_{t-1}$	${ }^{2} S_{t}$	T_{t-1}	${ }^{5} \mathrm{~T}_{\mathrm{t}}$	${ }^{6} D_{t-1}$	${ }^{7} \mathrm{D}_{\mathrm{t}}$	$\mathrm{Q}_{\mathbf{i}}{ }^{9} \quad \mathrm{~B}_{\mathbf{i}}$
so	SS_{1}	${ }^{\mathrm{S2}} \mathrm{SV}_{2}$	${ }^{53} \mathrm{SV}_{3} \mathrm{SA}^{\text {SV }} 4$	${ }^{\text {S5 }}$ CFE	${ }^{\text {S6 CAD }}$	57	${ }^{\text {S8 }}$ Temp $\mathrm{e}_{\mathbf{i}}{ }^{\text {S9 }}{ }^{\text {D }}$ t+1
A $\quad \alpha$		${ }^{\text {B }} 1-\alpha$	${ }^{\text {c }}{ }^{\text {a }}$ t-1 (s)	$x_{t-1(D)}$		$x_{t}(D)$	${ }^{\text {R Rel }}$, address

Program Title Financial Trend Analysis					
Contributor's Name	Robert Wal				
Address	23413 Broa				
City	Torrance,	State	Calif.	Zip Code	90502

Program Description, Equations, Variables Many types of financial data follow a continuous compounded growth pattern which can be depicted by an exponential function ($\mathrm{Y}=a e^{\mathrm{bx}}$). This program fits these data points to an exponential curve and calculates the regression coefficients and the coefficient of determination. In addition, the program outputs the compounded annual growth trend $100\left(1-e^{b}\right)$ and the geometric mean of the data. $\left(G M=e^{(\Sigma \ln Y / N))}\right.$.

Stability is a number which measures the degree of consistency about a given reference. This program calculates the stability about the mean (standard deviation of the data), $\sigma=[(\ln Y-\overline{\ln \bar{Y}}) / N]^{\frac{1}{2}}$; and the stability about the trend line (standard error of the estimate), $\sigma_{e}=\sigma\left(1-r^{2}\right)^{\frac{1}{2}}$.

Projections for the independent variable can also be made.

Operating Limits and Warnings Since the program uses logrithms to manipulate the data, negative values will cause an error message to be displayed.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) Listed are the company's reported earnings per share (EPS) for the years 1966-1975. Calculate the coefficients of the least square trend line for the data, the coefficient of determination, the annualized rate of EPS growth, the geometric mean EPS for the period, the stability of the percentage fluctuations about the mean, and the stability of the percentage fluctuation about the trend line.

| Year | $\frac{1966}{\text { EPS }}$ | $\frac{1967}{\$ 0.68}$ | $\$ 0.73$ | $\$ 0.75$ | $\frac{1969}{\$ 0.82}$ | $\frac{1970}{\$ 0.73}$ | $\frac{1971}{\$ 1.03}$ | $\frac{1972}{\$ 1.47}$ | $\frac{1973}{\$ 1.89}$ | $\frac{1974}{\$ 1.65}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\frac{1975}{\$ 2.08}$

What is the trend line estimated EPS for 1976 ?

Reference(s) Francis, Jack Clark, Investments - Analysis and Management. McGraw-Hi11: New York, 1976.

Whitbeck and Kisor,"A New Tool in Investment Decision Making,"
Financial Analysts Journal, Vol 19, No. 3 (May-June 1963), pp. 55-62.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2		$\square \square$	
2	Initialize		$f \quad \mathrm{a}$	1.00
3	Enter data			
	input x value ${ }^{\text {* }}$	Xi	Enter \uparrow	
	input y value	Yi	A	i+1
4	Optional: delete an incorrect data pair		[[\square	
	input x value	Xi	Entef \uparrow	
	input y value	Yi	$\mathrm{f}][\mathrm{B}]$	i+1
5	Compute and Output a, b and r^{2}		B	
6	Optional: Make projections based on a		$\square][\square]$	
	known x value	X	C] \square	Y
7	Compute and output the trend	D	\square	Trend (\%)
8	Compute and output the geometric mean	D		G.M.
9	Compute and output the stability about			
	the mean		E	σ
10	Compute and output the stability about			
	the trend line		$\mathrm{E}] \square$	$\sigma_{\text {E }}$
			\square	
			\square	
			\square	
			$\square]$	
	*Note: This step may be skipped if time		\square	
	increments are equal (X value equals the		\square	
	display counter (i+1))		\square	
			-	
			\square	
			\downarrow	
			\square	
			\square	
			$]$	
			$\square \square$	

Progiram Description

Program Title	SEASONAL VARIATION FACTORS			
Contributor's Name	Hewlett Packard			
Address	loo	N.E. Circle Boulevard		
City	Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables, etc.
This program utilizes the four quarter moving average, two item averaging technique to develop seasonal variation factors. The technique should be applied whenever the historical data appears to have a short term cycle, i.e. less than a year. If forecasting with exponential smoothing is to be done on a basis other than quarterly it is suggested that the historical data may be grouped into quarterly figures, the quarterly seasonal variations developed, and graphed over time. The quarterly seasonal variation figures should be plotted in the center of the quarter. Seasonal variation factors for other time periods, i.e. monthly, semi-annually, etc., may then be extrapolated from the plotted graph. These extrapolations should be determined at the center of the time period involved. When graphing, the user is reminded that seasonal variation at December 31 must equal seasonal variation at January 1.

Operating Limits and Warnings

1) D has not been used as a subroutine. Depression of this key will cause indeterminant errors. Program should be restarted.
2) E is a subroutine used in data manipulation and should not be depressed. Depression of this key will cause erroneous results. Program should be restarted.
3) A minimum of two years data is required.

[^0]

Reference (s)
This program is a translation of the HP-65 User's Library Program \# 03973A submitted by Jim Caldwell.

97 Program Listing I

Program Description

Program Description, Equations, Variables
Mathematical model $: \quad E d=\left[\frac{\Delta Q}{Q_{i}+Q_{i+1 / 2}} / \frac{\Delta P}{P_{i}+P_{i+1 / 2}}\right]$
Where:

```
            Ed = Demand elasticity
                    (That is elasticity of quantity sold with respect to
                    a change in price.)
Q i+l = Quantity sold after price change
                    Qi}=\mathrm{ Quantity sold before price change
P i+1 = New price
                    P}\mp@subsup{i}{}{\prime}=Old pric
            [for i= l,2,3,. . . .n]
    \DeltaQ =[Q [i+1 - Qi]
    \DeltaP}=[\mp@subsup{P}{i+1}{}-\mp@subsup{P}{i}{}
```

Operating Limits and Warnings

$$
\frac{\Delta P}{\left(P_{i}+P_{i+1}\right)} / 2 \neq 0
$$

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sample Problem(s) Sales volume of certain product varied with the different price changes per unit as follows:

	Quantity sold	Price/Unit
n	Q	P
1	0	6
2	10	4
3	20	2
4	30	0^{*}

Compute price elasticity of demand.
*just hypothetical price for simplicity of explanation.

Solution(s)

6	$[E \uparrow]$	0	$[A]$
4	$[E \uparrow] 10$	$[B]$	0.00
2	$[E \uparrow] 20$	$[B]$	5.00
0	$[E \uparrow] 30$	$[B]$	1.00
		0.20	

Reference(s) Paul A. Samuelson, "Economics" Mc Grawhill. 1975; 9th edition. This program is a modification of the User's Library Program \#05168A submitted by Ashok H. Doshi

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Key in lst price of series	\$	E \uparrow	\$
	Key in lst quantity of series	anits	A	units
3	Key in subsequent price		E \uparrow	
	Key in subsequent quantity		B	Ed
	continue step 3 for all price quantity			
	pairs			
	For a new case go to step 2.			
			\square	
			\square	
			$\square \square$	
			\square	
			$\square \square$	
			\square	
			\square	
			-	
			Z	
			\square	
			\square	
			0	
			\square	
			\square	
			\square	

801	+LELA	2111	
002	5704	3504	
803	$\mathrm{X}+\mathrm{Y}$	-41	store initial
084	STGE	3562	$P+Q$
805	$\mathrm{X}+\mathrm{Y}$	-4i	
086	RTN	24	
007	CLELE	2112	
088	RCL 2	3682	
089	STO1	3501	
916	ECL4	3684	replace i data
011	ST03	3563	daa
812	Rt	16-31	
013	ST02	3562	
814	Rt	16-31	
015	5704	3504	
016	4	84	
817	ST0I	3546	set for reg
018	+LEL1	2181	recall calculate
819	65E2	2302	Ed
826	DS2I	162546	
021	6701	2201	
022	\doteqdot	-24	
023	C.HS	-22	
024	RTH	24	
825	+LBL2	2102	
826	RCLi	3645	
827	ENTt	-2i	
828	DS2I	16 2546	subroutine 4 for
829	RCL;	3645	$x_{0}-x_{1}$
836	-	-45	${ }^{x^{*} 1}$
031	$\mathrm{X}+\mathrm{i}$	-41	$\mathrm{Y}_{2}+\mathrm{Y}_{1}$
032	LSTX	16-63	
833	+	-55	
034	\doteqdot	-24	
835	RTN	24	
036	R/s	51	

060		

Program Description I

Program Description, Equations, Variables Many production process costs vary with output in close relation to the learning curve:

$$
\mathrm{Cn}_{n}=\mathrm{C}_{1} \mathrm{n} \quad \log \mathrm{r} / \log 2
$$

where C_{1} is the cost of the first unit produced
C_{n} is the cost of the $n^{\text {th }}$ unit produced
n is the number of units produced
r is a special constant arrived by through empirical
analysis
This program solves for any of the above variables and also solves for average cost over a range from i to j using the formula:

Operating Limits and Warnings The theory applies to a single product, or closely related series of similar products.

The average cost is only approximate since the function is continuous although the data is discrete the greater n, the less the error.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) A computer manufacturer begins a pilot run on a component. Cost accounting informs him that the first unit off of the line cost $\$ 975$ and the looth unit a week later cost $\$ 643$. What cost can the manufacturer expect for the 10,000 th unit off the line. What is the average cost of the 10,000 units.

Reference(s) Publications of the Boston Consulting Group on Experience Curve Theory.

These programs are a modification of the User's Library Programs \#'s 02319A \& 00985A submitted by Harry G. Heard and George E. Comstock.

Program Description

Program Title	BREAK-EVEN ANALYSIS		
Contributor's Name	HEWLETT-PACKARD COMPANY		
Address	Corvallis Division		
City	Corvalit. Circle Boulevard		

Program Descript	Break-even analysis is basically a technique for analyzing the relationships among fixed costs, variable costs, and income. Until the break-even point is reached, at the intersection of the total income and total cost lines, the producer operates at a loss. After the break-even point, each unit produced and sold makes a profit. Break-even analysis may be represented as follows:

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reiiance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Break Even Analysis

$$
\begin{aligned}
\mathrm{GP} & =\mathrm{U}(\mathrm{P}-\mathrm{V})-\mathrm{F} \\
\mathrm{OL} & =\frac{\mathrm{U}(\mathrm{P}-\mathrm{V})}{\mathrm{U}(\mathrm{P}-\mathrm{V})-\mathrm{F}}
\end{aligned}
$$

Program Description, Equations, Variables Using the standard product income formula

```
Net Income = (I-Tax) (Net sale price - Mfg. - Op Ex)
```

Although freely capable of calculating in dollars or percents, the dynamic simulator operates only with net income return (\%) and percent operating expense. Both percentage figures are based on net sales price.
net sale $=$ list (1-discount (\%)*)
operating expense (\%) o operating expense \div net sale price
The program can also be used to simulate a company wide income statement by replacing list with gross sales, and manufacturing cost with cost of goods sold.
\qquad

Operating Limits and Warnings * discount is a percentage of list

The program assumes a tax rate of 48%. Since the rate varies from company to company, the .52. (1-.48) in the program must be replaced by one minus your applicable tax rate (steps: 44-5, 64-5, 112-3, 190-1)

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)

Sample Problem(s) What is the net return on an item that is sold for 11.98 , discounted through the distribution at an average of 35%, and has a manufacturing cost of $\$ 2.50$. Your standard company operating expense is 32% of net shipping (sale) price.
b) if manufacturing is increased to $\$ 3.25$, what is the effect or the return.
c) what is the total net dollar cash flow if 10,000 units are sold. (assuming the 3.25 manufacturing cost)
d) how high could the overhead (operating expense) go before the product begins to lose money.
e) how sensitive is the profit to the selling price (for each dollar below \$12.00)
f) print out an income statement for the final selling price of 10.49, 35% discount, $\$ 3.00$ manufacturing cost and 32% operating expense.


```
Solution
```

a) 11.98 [A] 35 [B] 2.5 [C] 32 [D] [E]....18.67
b) $3.25[C]$ [E]........13.67
C) F [E] 10000 [X]..... 10634.83
d) 0 [E] [D] 58.26
e) 32 [D]* [E]** 12 [E个] 1.00 [f] [A]...35 discount
3.25 manufacturing cost

32 operating expense (\%)
12.00 list price
13.69% return (at $\$ 12$ list)
11.00 list
11.72\%return
10.00 list
9.36% return
9.00 list
6.47 return
8.00
2. 86% return
seven dollars would yield
a negative return
f) 10.49 [A] 35 [B] 3 [C] 32 [D] [E]** [F] [B]..10.49 list (\$)
-3.67 discount (\$)
6.82 net sale (\$)
-3.00 manufacturing (\$)
3.82 gross (contribution) margin (\$)
-2.19 applied operating expense (overhead)
(\$)
1.64 net profit before tax $(\$$
-. 7.9 tax (\$)

Sample Problem(s) $\quad .85$ net after tax profit.

Solution(s) con't
**It is always necessary to complete a solution before using a shift ([f]) option.
*Change operating expense from the previous answer of 58.26% back to 32%.

Reference (s)

| STEP | INSTRUCTIONS | INPUT |
| :--- | :--- | :--- | :--- | :--- |
| OUTPUT | | |
| DATA/UNITS | | |

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEY		OUTPUT DATAUUNITS
	-Manufacturing				\$
	Gross (contribution) margin				s
	-Operating Expenses				\$
	Profit before taxes			\square	s
	-Taxes				\$
	Net profit after taxes				\$
	*If any variable has been changed				
	(or all variables have just been			\square	
	entexed) it is necessary to activate			\square	
	a solution (steps 3 or 5) before using			\square	
	any of the shift options $f(a)$ through			\square	
	$f(0)$			\square	
				\square	
			-	\square	
				\square	
				\square	
				-	
			\square	-	
			-	\square	

Figure 1

Note:

The above diagram is representative of diagrams which will be used in this pac. The horizontal line represents the time period(s) involved, while the arrows represent the cash flows.
The interest rate that equates the present value of all future cash flows with the original investment is known as the internal rate of return (IRR, also called discounted rate of return or yield). Given a non-zero initial investment and up to 44 positive cash flows, this program calculates the periodic IRR. If there are negative as well as positive cash flows, the program accepts up to 22 cash flows.

If more than 44 positive cash flows are entered, all cash flows over 44 will be ignored. There will be no indication, however, that more than 44 cash flows have been entered. Likewise, if more than 22 positive and negative cash flows are entered, erroneous results will occur.

Zero should be entered for periods with no cash flow.
Operating Limits a।
When more than 22 cash flows are involved (all of which must be positive), the user is asked to enter the largest cash flow in step 3 because of the storage techniques being used. This value is then used to scale all other cash flows, and depending on these values, accuracy may be reduced. Consequently, the resulting periodic rate of return should be considered accurate to within $\pm .01 \%$ (. 0001 decimal). This largest cash flow must be entered again in sequence in step 4. If a cash flow larger than the value entered for CF MAX is keyed in at step 4 , erroneous results may occur.

The answer produced is the periodic rate of return. If the cash flow periods are

[^1] MATERIAL.

Program Title		
Contributor's Name		
Address		
City	State	

Program Description, Equations, Variables
other than annual (monthly, quarterly) the answer should be multiplied by the
number of periods per year to determine the annual internal rate of return.
In many instances another program may be more suitable for calculating IRR. If
all cash flows are equal and equally spaced, or if all cash flows except the last
are equal and equally spaced, DIRECT REDUCTION LOANS (BD-04) is a
better choice. If the cash flows occur in groups of uneven amounts, IRR-
GROUPS (BD-02) may be more suitable.
This program was designed for optimum operation when the interest rate being
solved for is between 0 and 100\%. The program will often solve for interest
rates outside this range, but occasionally may halt prematurely with ERROR in
the display. This is an error condition genersted by an intermediate calculation,
and indicates that the program cannot solve that particular problem.
The calculated answer may be verified by using DISCOUNTED CASH FLOW
ANALYSIS-NET PRESENT VALUE (BD-03), to calculate the net present
value. The NPV should be close to 0 .
Note:
When the sign of the cash flows is reversed more than once, more than one
interest rate is considered correct in the mathematical sense. While this
program may find one of the answers, it has no way of finding or indicating
other possibilities.

[^2] this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

\square

PRINCIPAL EQUATIONS

Unless otherwise stated, all interest rates (i, APR, IRR, NOM, EFF, CR, YLD, etc.) are expressed in decimal form in the equations which follow. Only symbols not defined in the program descriptions are defined here.

Program Number

1. Internal Rate of Return

Solve for IRR in:

$$
\operatorname{INV}=\sum_{j=1}^{\mathrm{n}} \frac{\mathrm{CF}_{\mathrm{j}}}{(1+\mathrm{IRR})^{\mathrm{j}}}
$$

where:

$$
\begin{aligned}
\mathrm{n} & =\text { number of cash flows } \\
\mathrm{CF}_{\mathrm{j}} & =\mathrm{j}^{\text {th }} \text { cash flow }
\end{aligned}
$$

Solution(s)

97 Program Listing

Progiram Description

Program Title SALES FORCE REQUIREMENTS					
Contributor's Name	Hewlett Pa				
Address	1000 N.E.				
City	Corvallis	State	Oregon	Zip Code	97330

Program Description, Equatinns, Variables The calculation of required salesman to cover n
territories utilizes the ${ }_{\eta}$ model:
1.

$$
N=\frac{\sum_{i=1} C_{i} F_{i}}{P}
$$

2. Where:
$\mathrm{n}=$ Desirable number of salesmen
$C_{i}=$ Number of customers in class size i
$\mathrm{F}_{\mathrm{i}}=$ The desirable number of annual calls to make to customers in size class i.
$P=$ The annual average numbers of calls to be made by a salesman.
$\eta=$ The number of customer size classes

Operating Limits and Warnings
The optimality of the overall solution depends upon managements accuracy in estimating call frequencies for different size accounts.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) Territorie

F_{i}
Call frequencies in territories i

1000
2500
3000

Given the above data and the information that the number of calls made by each salesman averages 2000 per year; find how many salesmen would be required to reach the workload?

Solution(s) 2000 [A] 2000.00 [P]

3	[B]	1.00	[ent\#ry ${ }_{\text {] }}$	[E]	20.00	$\left[\begin{array}{ll} & C_{i}\end{array}\right]$
1000	[C]	1.00]	[E]	6500.00	[$\sum \mathrm{F} \mathrm{i}_{\mathrm{i}}$]
	[D]	3000.00	$\left[C_{i} \mathrm{~F}_{\mathrm{i}}\right]$	[E]	25.00	[N]
7	[B]	2.00				
2500	[C]	2.00				
	[D]	17500.00	$\left[C_{i} \mathrm{~F}_{\mathrm{i}}\right]$			
10	[B]	3.00				
3000	[C]	3.00				
		30000.00	$\left[\mathrm{C}, \mathrm{F}_{1}\right]$			

Reference(s) S.E. Heymann, "Determining the Optimum Size of the Sales Force," in Marketing Research in Action (New York: The Conference Board Report, Studies in Business Policy, No. 84, 1957), pp.82-84.

This program is a translation of the HP-65 Users' Library Program \#05176A submitted by Ashok H. Doshi.

| Program Title COST AND PRICE COMPUTATIONS | | |
| :--- | :--- | :--- | :--- |
| Contributor's Name | Hewlett Packard | |
| Address 1000 N.E. Circle Boulevard
 City Corvallis State Oregon | | |

Program Description, Equations, Variables Sales work often involves calculating the unknown amongst the interrelated terms margin, markup, selling price, and cost. Margin is defined as 100 x (selling price-cost)/ selling price. Markup is 100 x (selling price - cost)/cost.

There are numerous equations which evolve from the interrelation of these terms. This program solves for any of the four variables when two of the other variables are known.

In addition, with discount synonymous with margin, list with selling price and net with cost, this program calculates any unknown among list, net and up to three consecutive discounts rates.

[^3]
Sketch(es)

Sample Problem(s)

a) If the margin is 20% and cost is $\$ 160$, what is the selling price?
b) If the margin is 30% what markup would this be?
c) If list price is $\$ 3.28$, net is $\$ 1.45$ and two of the discounts are 48% and 5\%, what is the third discount rate?
d) If list price is 6.20 and there are two discount rates, 50% and 2% what is the net?
e) The discounts $20 \%, 5 \%$, and $.5 \%$ are equivelant to what single discount rate.

Solution(s)

a) 20 [C], 160 [B] [A] 200
b) 30 [C] [D] 42.86\%
c) 3.28 [f] [A] 1.45 [f] [B] 48 [f] [C] 5 [f] [D] [f] [E] 10.51%
d) 6.20 [f] [A] 50 [f] [C] 2 [f] [D] 0 [f] [E] [f] [B]3.04\%
e) 1 [f] [A] 20 [f] [C] 5 [f] [D]. 5 [f] [E] [f] [B] 1 [X> Y] [-] 24 or 24\%

Reference(s) These programs are a modification of the Users' Library Program \# 2305A submitted by Miguel Tarrab and \# 4571 submitted by R.W. Edelen.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program card			
2	Input the known values			
	'selling price	\$	A	
	- cost	\$	B	
	- margin	\%	C	
	-markup	\%] D	
3	Calculate the unknown		11	
	- selling price] A	\$
	- cost] B	\$
	-margin		$][\mathrm{C}]$	\%
	- markup		D	\%
	OR		$1 \mid \square$	
2	Input the known values		$\square]$	
	- list price	\$	$\mathrm{f}\|\mid \mathrm{A}]$	
	- net	\$	f] ${ }^{\text {d }}$ B	
	- discount 1	$\%$	$\mathrm{f}][\mathrm{C}]$	
	-discount 2	\%	$f][\mathrm{D}$	
	- discount 3	\%	$\mathrm{f}\left\|\left.\right\|_{\mathrm{E}}\right]$	
3	Calculate the unknown		$\square \square$	
	${ }^{\text {l }}$ ist price		$\underline{\mathrm{f}}$] A	\$
	- net		$\mathrm{f}][\mathrm{B}$	\$
	- discount 1		f] C	\%
	- discount 2		$\left[\mathrm{f} \left\lvert\,\left[\begin{array}{l}\text { d }\end{array}\right]\right.\right.$	$\%$
	- discount 3		$\mathrm{f}\rfloor\lfloor\mathrm{E}$	\%
			-	
	If you wish to solve discount problems with		.	
	less than three discounts, use ofor the)	
	remaining discounts			
			1	
]	
			11.	
			$1 \square$	
			$1[\square]$	
] \cdots	
			$1 \square$	
			$11 \square$	
			$1[\square]$	
] $\square \square$	
			$\square \square$	

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

```
                    Statistics
                    Mathematics
    Electrical Engineering
    Business Decisions
Clinical Lab and Nuclear Medicine
```

Mechanical Engineering Surveying
Civil Engineering
Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds \& Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability/QA	Forestry

MARKETING/SALES

Anyone in sales or marketing, whether a small businessman or a large corporate manager, should find these programs covering sales forecasting, price and profitability analysis useful and time saving.

FORECASTING USING EXPONENTIAL SMOOTHING
FINANCIAL TREND ANALYSIS
SEASONAL VARIATION FACTORS (SEAVAR)
PRICE ELASTICITY OF DEMAND
EXPERIENCE (LEARNING) CURVE FOR MANUFACTURING COST
BREAKEVEN ANALYSIS
INCOME STATEMENT (P \& L) ANALYSIS
INTERNAL RATE OF RETURN
SALES FORCE REQUIREMENTS
COST \& PRICE COMPUTATIONS

1000 N.E. Circle Blvd., Corvallis, OR 97330

[^0]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM

[^2]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses

[^3]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

