
# HEWLETT-PACKARD

### Users' Library Solutions Medical Practitioner



#### INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

#### A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I 19, HP-97), key in the program from the Program Listing I and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

### TABLE OF CONTENTS

BLOOD PRESSURE AVERAGES AND MEAN ARTERIAL PRESSURE . . . . . This program calculates the mean arterial pressure of 1 a given blood pressure reading and the averages of systolic, diastolic and mean arterial pressure for a group of readings. 5 rate and interval in the care of pacemaker patients. Rate, interval and statistics (mean and standard error of mean) are calculated. g BLOOD ALCOHOL. . The program calculates the approximate percent of alcohol concentration in the blood when the person's weight, amount of alcoholic beverage and time are known. HUMAN POST-TRAUMA EPILEPSY SEIZURE PREDICTION 13 a patient suffering head injury is calculated by this program. . . . 18 BEDSIDE BLOOD-GAS INTERPRETER Blood gas values are used to calculate alveolar - arterial oxygen difference, estimated venous admixture and acid-base values and corrections. Oxygen flow values for desired  $0_{2}$ concentrations are also calculated. skinfold thickness measurements. ESTIMATING OBESITY, BODY FAT SURFACE AREA & TOTAL BODY WATER. 28 From body height and weight the program calculates whether or not the subject is obese. Body fat, body surface area and total body water can also be calculated. a burn from estimates of burned areas of various body parts. - 37 reserves. It is particularly useful in correcting serum potassium in acid-base disorders. . . 42 ANESTHESIOLOGY PARAMETERS Body surface area, estimated blood volume, acceptable blood

ii

other parameters may be calculated with this program.

loss, normal and surgical fluid requirements and deficits and

| DISCOUNTED CASH FLOW ANALYSIS - NET PRESENT VALUE<br>This program finds the net present value of future cash flows.<br>Useful for decisions on real estate investment, equipment<br>purchases, etc. | • | • | .47         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------------|
| INCOME PROPERTY ANALYSIS                                                                                                                                                                            | • | • | <b>.</b> 53 |

| Program Title     | Blood Pressure Averag               | ges and Mean | Arterial | Pressure |       |
|-------------------|-------------------------------------|--------------|----------|----------|-------|
| Contributor's Nam | e Hewlett-Packard                   |              |          |          |       |
| Address           | 1000 N.E. Circle Blvd.              |              |          |          |       |
| City C            | orvallis                            | State        | Oregon   | Zip Code | 97330 |
| Program Descripti | ion, Equations, Variables           |              |          |          |       |
|                   | rial Pressure (MAP)                 |              |          |          |       |
| 0                 | - (2P diastolic + P systc           |              |          |          |       |
| = P               | diastolic + $\frac{1}{3}$ (P systol | lic – P dias | tolic)   |          |       |

P systolic and diastolic are entered, P map is calculated and the data are stored in order to calculate averages in case of erroneous entries.

The calculation and storing can be reversed. All readings are rounded up to the point.

**Operating Limits and Warnings** 

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

 Sketch(es)

 Sample Problem(s)

 Blood Pressure Readings

 SYST/DIAST

 120/80

 140/90

 130/85

 Find the mean arterial pressure for each reading, the average systolic, diastolic and mean arterial pressures for the group of readings.

| Solution(s)                                        | [f][A]             | 0                                        |
|----------------------------------------------------|--------------------|------------------------------------------|
|                                                    | 120[A] 80[B] [C]   | 93. Mean arterial press                  |
|                                                    | 140[A] 90[B] [C]   | 107. Mean arterial press                 |
|                                                    | 150[A] 100[B] [C]  | 117(Erroneous entry, correct it by using |
|                                                    |                    | following sequence)                      |
| MANAGEMENT AND A COMPANY OF A COMPANY OF A COMPANY | 150[D] 100[E]      | 117(Erroneous entry corrected)           |
|                                                    | 130[A] [R/S]       | 130Average systolic press                |
|                                                    | 85[B] [R/S]        | 85 Average diastolic press               |
|                                                    | [C] [R/S]          | 100 Average mean arterial press          |
|                                                    | [ <del>R</del> /S] | 3 Number of readings                     |

Reference(s) Bell, G.H. et al, <u>Textbook of Physiology and Biochemistry</u>, Williams and Wilkins, Baltimore, Maryland, 1968, pg. 582.

This program is a translation of the HP-65 Users' Library program #01329A submitted by H. Peter Blumenthal.



| 1. |                                                                                             | DATA/UNITS           | KEYS              | OUTPUT<br>DATA/UNITS                        |
|----|---------------------------------------------------------------------------------------------|----------------------|-------------------|---------------------------------------------|
|    | Load side 1                                                                                 |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
| 2. | Initialize                                                                                  |                      | f A               | 0.                                          |
|    | $\begin{bmatrix} \text{Denform 2 } F & \text{for each needing is } 2 & (n01) \end{bmatrix}$ |                      |                   |                                             |
| 3. | [Perform 3-5 for each reading i-1-2(n01)]                                                   | D. evet              |                   | D ovet                                      |
|    | Input P <sub>i</sub> systolic                                                               | P <sub>i</sub> syst  |                   | P <sub>i</sub> syst<br>P <sub>i</sub> diast |
| 4. | Input P <sub>i</sub> diastolic                                                              | P <sub>i</sub> diast |                   | $P_i$ map                                   |
| 5. | Calculate mean arterial press                                                               |                      |                   |                                             |
| 6. | If erroneous data entry is made, correct it.                                                | P <sub>k</sub> syst  | D                 | P <sub>k</sub> syst                         |
|    |                                                                                             | P <sub>k</sub> diast | Ε                 | P <sub>k</sub> diast                        |
|    |                                                                                             |                      |                   |                                             |
| 7. | Input final blood pressure readings                                                         | <u>↓</u>             |                   |                                             |
|    | (i=n) and calculate averages                                                                | P <sub>n</sub> syst  | A    <br>R/S   [] | P syst                                      |
|    |                                                                                             | P diast              | B                 | Psyst<br>P diast                            |
|    |                                                                                             | P diast<br>n         | R/S               | P diast<br>P diast                          |
|    |                                                                                             |                      |                   | P <sub>n</sub> map                          |
|    |                                                                                             |                      | R/S               | <b>P</b> map                                |
| 8. | Recall number of readings                                                                   |                      | R/S               | n                                           |
|    |                                                                                             |                      |                   |                                             |
| 9. | For new group of data go to (2)                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             | ļ                    |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             | <u> </u> ]           |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |
|    |                                                                                             |                      |                   |                                             |

### 97 Program Listing I

| 4          |                    |                  | 97    | <b>Pr</b> () | gram    | LİS                | <b>ti</b> n | lg I                                                                                                           |              |         |            |      |       |
|------------|--------------------|------------------|-------|--------------|---------|--------------------|-------------|----------------------------------------------------------------------------------------------------------------|--------------|---------|------------|------|-------|
| STEP       | KEY ENTRY          | KEY CODE         |       | СОММ         |         | STEP               |             | ENTRY                                                                                                          | ĸ            | EY CODE |            | COMN | IENTS |
| 001        | *LBLa 21           |                  |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 002        | 0                  | 00               | Init  | tialize      | 9       |                    |             |                                                                                                                |              |         |            |      |       |
| 003        | CLRG               | 16-53<br>-63 00  | 1     |              |         | 060                |             | ti de la facto de la facto de la composición de la composición de la composición de la composición de la compo |              |         |            |      |       |
| 004<br>005 | DSPØ<br>RTN        | -63 00<br>24     | 1     |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 005        | *LBLA              | 21 11            | Psys  | c+           |         |                    |             |                                                                                                                |              |         |            |      |       |
| 007        | 1                  | 01               | 'sy:  | 56           |         |                    |             |                                                                                                                |              |         |            |      |       |
| 008        |                    | 5-55 04          | 1     |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 009        | XZY                | -41              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 010        | ST05               | 35 Ø5            |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 011<br>012 | ST+1 35<br>R∕S     | 5-55 01<br>51    |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 012<br>013 | RCL1               | 36 01            | 1.    | <b>.</b> .   |         |                    |             |                                                                                                                |              |         |            |      |       |
| 013        | RCL4               | 36 04            | Ave.  | . Psyt       |         | 070                |             |                                                                                                                |              |         |            |      |       |
| 015        |                    | -24              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 016        | RTN                | 24               |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 017        | *LBLB              | 21 12            | Pdia  | ast          |         |                    |             |                                                                                                                |              |         |            |      |       |
| 018        | ST06               | 35 06<br>5 55 00 |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 019<br>020 |                    | 5-55 02<br>51    |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 020<br>021 | RCL2               | 36 02            |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 022        |                    | 36 04            | Ave   | . Pdia       | st      |                    |             |                                                                                                                |              |         |            |      |       |
| 023        | ÷                  | -24              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 624        |                    | 24               |       |              |         | 080                |             |                                                                                                                |              |         |            |      |       |
| 025        |                    | 21 13            | Map   |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 026        |                    | 36 05            | l nap |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 027        |                    | 36 06<br>01      |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 028<br>029 |                    | -21<br>-55       |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 025<br>030 |                    | -55              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 031        | 3                  | 03               |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 032        | ÷                  | -24              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 033        |                    | 5-55 03          |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 034        |                    | 51               |       |              |         | 090                |             |                                                                                                                |              |         |            |      |       |
| 035        |                    | 36 03<br>36 03   |       | Main         |         |                    |             |                                                                                                                | <u> </u>     |         |            |      |       |
| 036        |                    | 36 Ø4            | Ave.  | . Map        |         |                    |             |                                                                                                                |              |         |            |      |       |
| 037<br>038 | ÷<br>R∕S           | -24<br>51        |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 030<br>039 |                    | 36 04            |       |              |         |                    |             |                                                                                                                | 1            |         |            |      |       |
| 040        |                    | 24               |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 041        | *LBLD              | 21 14            |       |              | roneous |                    |             |                                                                                                                |              |         |            |      |       |
| 042        |                    | Ü1               |       | syst         | oneous  |                    |             |                                                                                                                | <b> </b>     |         |            |      |       |
| 043        |                    | 5-45 04          |       | 5556         |         | 100                | <b> </b>    |                                                                                                                | ╂──          |         |            |      |       |
| 044<br>045 |                    | -41<br>5-45 01   |       |              |         |                    |             |                                                                                                                | +            |         |            |      |       |
| 045<br>046 |                    | 24<br>24         |       |              |         |                    |             |                                                                                                                | <del> </del> |         |            |      |       |
| 047        |                    | 21 15            |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 048        |                    | 5-45 02          |       |              | roneous |                    |             |                                                                                                                |              |         | l          |      |       |
| 049        | ENTŤ               | -21              | Pc    | liast        |         |                    |             |                                                                                                                |              |         |            |      |       |
| 050        |                    | -55              |       |              |         |                    |             |                                                                                                                | ┨            |         |            |      |       |
| 051<br>052 |                    | -55              |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |
| 052<br>053 |                    | 03<br>-24        |       |              |         |                    |             |                                                                                                                | <u> </u>     |         |            |      |       |
| 053<br>054 |                    | -24<br>5-45 03   |       |              |         | 110                |             |                                                                                                                |              |         | 1          |      |       |
| . 055      |                    | 24               |       |              |         |                    |             |                                                                                                                |              |         | 1          |      |       |
|            |                    |                  |       |              |         |                    |             |                                                                                                                | L            |         | L          |      |       |
| 0          | 11                 | 2                | 12    |              | 4       | STERS              | F           |                                                                                                                |              | 7       | 8          |      | 9     |
| 0          | <sup>1</sup> Σ Psy |                  |       | Pmap         | n       | <sup>5</sup> Psyst |             | Pdias                                                                                                          |              |         |            |      |       |
| S0         | S1                 | S2               | S3    |              | S4      | S5                 | 5           | 66                                                                                                             |              | S7      | S8         |      | S9    |
| A          | I                  | <b>I</b> B       |       | С            | L       | D                  | 1           |                                                                                                                | E            |         | _ <b>_</b> | I    |       |
|            |                    |                  |       |              |         |                    |             |                                                                                                                |              |         |            |      |       |

| Program Title      |                               | E AND INTERVAL | AVERAGER      |            |       |
|--------------------|-------------------------------|----------------|---------------|------------|-------|
| Contributor's Name | Walter J. Gam<br>300 Longwood |                |               |            |       |
| City               | Boston,                       |                | Mass<br>State | . Zip Code | 02115 |

Program Description, Equations, Variables Pacemaker Rate analizers usually display the pacemaker rate with one digit after the decimal. When using telephone transmission, this last digit usually changes frequently (see example of actual intake.) The operator observes a few beats, then enters the selected base rate (usually two digits to the left of the decimal, or alternately can be 1st digit and zero.) Next the last digit (or last two) is entered without decimal. The calculator converts to the full number for the rate, prints it, calculates the pacemaker interval, and accumulates data for the statistics (see below). Errors are removed at any time through the use of a different user-definable key (D), and are indicated on the printed tape by a minus sign. Mean Rate and Standard Error of the Mean are printed for results. (The standard deviation of the sample is displayed) A similar analysis can be made of the pacemaker interval by a different key. Incidently, the entry can be made of intervals instead of the rate. Then the analysis keys are reversed in function, but with proper results. Individual Rate Entry = (Base Rate) + (Entry number)+10 Interval (milliseconds) =  $\frac{\text{Rate}}{6 \cdot 10^4}$ Standard Error of the Mean =  $\sqrt{\frac{N\Sigma X^2 - (\Sigma X)^2}{N^4 (N-1)}}$ ; Standard Deviation = (S.E.M.)( $\sqrt{N}$ ) Program can process about 1 reading every 2.2 seconds. **Operating Limits and Warnings** 

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| Sketch(es)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|----------|---------------------------------------|---------|-------------------|---------------------------------------|------|-------|----------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an a |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | ······        |          |                                       |         |                   | · · · · · · · · · · · · · · · · · · · |      |       |          | - daaree are so |
| Sample Problem(<br>Rate meter )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>s)</b> Case # 1                       |               |          |                                       |         |                   |                                       |      |       |          |                 |
| Rate meter i<br>display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.2 to 72.0                             | 71.5 71.6     | 71.4 7   | 1.9 71.6                              | 71.5    | 71.0              | 71.5                                  | 71.5 | 71.6  | 71.4     |                 |
| Entry & key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 5 E 6E        |          | 9E 6E                                 |         | 0E                |                                       | - 77 | 6E    | 4E       |                 |
| Case # 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |               |          |                                       | ,       |                   |                                       | 1    |       | ;<br>,   |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.7 to 89.3                             |               |          |                                       |         |                   |                                       |      |       |          |                 |
| Entry & Key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 A                                     | 85 E 87E      | 89E 9    | 1E. 89E                               | 90E     | 92E               | 88E                                   | 89E  | 91E   | 9CE      |                 |
| Case # 3<br>Rate meter<br>display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.1 to 75.8                             | 75.5 75.4     | 75.1 7   | 5.2 75.5                              | 75.3    | 75.8              | 75.3                                  | 75.3 | 75.6  | 75.7     |                 |
| Entry & key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |               | 1E 2     |                                       |         |                   | 3E                                    | 3E   |       | 7E       |                 |
| MANY CONTRACTOR OF A |                                          |               |          | 1                                     | i       | • • • • • • • • • |                                       | i    | 1     | <b>i</b> |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | N D           |          |                                       |         |                   |                                       |      |       |          |                 |
| Solution(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se # 1 $[B] \rightarrow$                 |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | If one consi<br>Repeat anal              |               |          |                                       |         |                   |                                       |      |       |          |                 |
| Case # 2. [R]_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | → Mean Rate                              | $00.9; \pm 0$ | .UU 5.E. | м; [U]—                               | • inte: | rval              | 0/4.8                                 | ms.  | ± 0.2 | 46 S.E   | .M.             |
| Case # 3;[B]-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | → Mean Rate                              | 75.4; ± 0     | .06 S.E. | M.;[C]→                               | Inte    | rval              | 795.5                                 | ms.  | ± 0.6 | 58 S.E   | .M.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          | · · · · · · · · · · · · · · · · · · · |         |                   |                                       |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   | 1                                     |      |       |          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |               |          |                                       |         |                   |                                       |      |       |          |                 |

**Reference(s)** Tips, if using a base and the value drops below it, you can enter a negative number i.e. if in case #1 meter read 70.9, entering 1 & CHS (-1) would give correct result of 70.9 from the base rate of 71.

| 1       Z         BASE RATE       RATE       INTERVAL       ERROR       ENTRY         ENTRY       Solution       Solution       (Tenths)       (Tenths) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|

| STEP | INSTRUCTIONS                                 | INPUT<br>DATA/UNITS  | KE  | YS | OUTPUT<br>DATA/UNIT | S     |
|------|----------------------------------------------|----------------------|-----|----|---------------------|-------|
| 1    | Load side 1 of program card                  |                      |     |    | ]                   |       |
| 2    | Enter "BASE RATE"                            | Beats/min.           | A   |    | Base Rat            | te    |
| 3    | Input last digit(s)                          | tenths               | Е   |    | Rate/N              | *     |
| 4    | Repeat step 3 until sufficient number input  |                      |     |    | ]                   |       |
| 5    | To Obtain Rate Data Analysis                 |                      | В   |    | ] Mean Rate         | e     |
|      |                                              |                      |     |    | ] S.E.M. ra         | ate   |
|      |                                              |                      |     |    | ] * Std.Dev.1       | Rate* |
| 6    | To Obtain Interval Data Analysis             |                      | С   |    | Mean Inte           | erval |
|      |                                              |                      |     |    | ] S.E.M. Int        | terva |
|      |                                              |                      |     |    | ] * Std.Dev         | Intr♥ |
| 7    | To Remove Erroneous Data                     | bad number<br>tenths | D   |    | -Rate/N*            |       |
|      |                                              |                      |     |    | ]                   |       |
| 8    | To obtain number of data points analized     |                      | f   | Е  | ) N                 |       |
|      |                                              |                      |     |    | ]                   |       |
|      |                                              |                      |     |    | ]                   |       |
|      |                                              |                      |     |    |                     |       |
|      |                                              |                      |     |    | ]                   |       |
|      | Note * indicates number left in display, all | others               |     |    |                     |       |
|      | are printed out (HP-97)                      |                      |     |    | ]                   |       |
|      | N = number of points retained in analysi     | s pool.              |     |    | 1                   |       |
|      |                                              |                      |     |    | 1                   |       |
|      |                                              |                      |     |    | j · ]               | _     |
|      |                                              |                      |     |    | í                   |       |
|      |                                              |                      |     |    | ,<br>]              |       |
|      |                                              |                      |     |    | í                   | _     |
|      |                                              |                      |     |    | ,                   |       |
|      |                                              |                      |     |    | í                   |       |
|      |                                              |                      |     |    | ,                   |       |
|      |                                              | 11                   |     |    | ,                   |       |
|      |                                              |                      |     |    | ]                   |       |
|      |                                              |                      | [ ] |    | ] ]                 |       |
|      |                                              |                      |     |    | ]                   |       |
|      |                                              |                      | []  |    | ]                   |       |
|      |                                              |                      |     | [  | ]                   |       |
|      |                                              |                      | []  | [  | ]                   |       |
|      |                                              |                      | []  | L  | ]                   |       |
|      |                                              |                      | []  |    | ]                   |       |
|      |                                              |                      | []  | L  | J<br>1              |       |
|      |                                              |                      | []  |    | ]                   |       |
|      |                                              |                      |     |    | J I                 |       |

### 67 Program Listing I

| 8          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | <b>S</b> I 4111 |                        |              |                         |                 |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|------------------------|--------------|-------------------------|-----------------|
| STEP       | KEY ENTRY    | KEY CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMM | ENTS            | STEP                   | KEY ENTRY    | KEY CODE                | COMMENTS        |
| 001        | LDL D        | 21 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         |                 |
|            | LBL E        | 21 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 057                    | <u>R'TN</u>  | 24                      |                 |
| 002        | <u>}:</u>    | -62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 058                    | LBL A        | 21 11                   | 1               |
| 003        | 1            | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 059                    | CL RG        | 16-53                   |                 |
| 004        | x            | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 060                    | P <b>≑</b> S | 16-51                   |                 |
| 005        | RCL E        | 36 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 061                    | CL RG        | 16-53                   |                 |
| 006        | +            | -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 062                    | STO E        | 35 15                   |                 |
|            | ENT 1        | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 063                    | SPC          | 16-11                   |                 |
| 007        |              | the state of the second s |      |                 |                        |              |                         |                 |
| 008        | PRT X        | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 064                    | PRT X        | -14                     |                 |
| 009        | 1/X          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 065                    | SPC          | 16-11                   |                 |
| 010        | Σ+           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 066                    | 6            | 06                      |                 |
| 011        | RTN          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 067                    | EEX          | -23                     |                 |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 | 068                    | 4            | 04                      |                 |
| 012        | LBL B        | 21 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 4               |
| 013        | X            | 16 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 069                    | STO D        | 35 14                   | 4               |
| 014        | X≓ Y         | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 070                    | X <b>≑</b> Y | -41                     |                 |
| 015        | STO 1        | 35 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 071                    | RTN          | 24                      |                 |
| 016        | S            | 16 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 072                    | LBL e        | 21 16 15                |                 |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        | SPC          | 16-11                   | 1               |
| 017        | X 2 Y        | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 073                    |              |                         | 4 1             |
| 018        | LBL 1        | 21 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 074                    | P <b>≑</b> S | 16-51                   | ļ l             |
| 019        | ENT /        | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 075                    | RCL 9        | 36 09                   | ]               |
| 020        | P <b>≑</b> S | 16-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 076                    | PRT X        | -14                     | 1               |
| 021        | RCL 9        | 36 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 | 077                    | P ≠ S        | 16-51                   | 1               |
|            |              | 16-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1               |
| 022        | P ≑ S        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 | 078                    | RTN          | 24                      | 1               |
| 023        | $\sqrt{X}$   | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 079                    | R/S          | 51                      | 4               |
| 024        | ÷            | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 080                    |              |                         | 1 1             |
| 025        | RCL 1        | 36 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1               |
| 026        | SPC          | 16-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         |                 |
| 027        | DSP 1        | -63 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                 |                        |              |                         |                 |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        |              |                         |                 |
| 028        | PRT X        | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 4 1             |
| 029        | R            | -31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 4 1             |
| 030        | DSP 2        | -63 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                 |                        |              |                         | ] [             |
| 031        | PRT X        | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         |                 |
| 032        | DSP 1        | -63 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                 |                        |              |                         | 1               |
| 033        | R            | -31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         |                 |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 | 090                    |              |                         | 1               |
| 034        | RTN          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 030                    |              |                         | 4 1             |
| 035        | LBL C        | 21 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1               |
| 036        | X            | 16 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         |                 |
| 037        | RCL D        | 36 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         |                 |
| 038        |              | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1               |
| 0.00       | X            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        |              |                         | 1 1             |
| 039<br>040 | STO 1        | 35 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 4 1             |
|            | S            | 16 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              | l                       | 4 1             |
| 041        | RCL D        | 21 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1               |
| 042        | x            | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | ]               |
| 043        | GTO 1        | 22 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1 1             |
| 044        | Ø            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 | 100                    |              | 1                       | 1 1             |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        |              | <u>+</u>                | 1               |
| 045        | LBL D        | 21 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 4 1             |
| 046        | · ·          | -62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 4 1             |
| 047        | 1            | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |                        |              |                         | 4               |
| 048        | x            | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1               |
| 049        | RCL E        | 36 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         | 1               |
| 049        |              | -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1               |
| 051        | CHS          | -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1               |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        |              |                         | 1               |
| 052        | PRT X        | -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1               |
| 053        | CHS          | -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 |                        |              |                         | 1 1             |
| 054        | ENT /        | -21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                 | 110                    |              |                         | 1               |
| 055        | 1/X          | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                 |                        |              |                         | 1               |
| 056        | Σ-           | 16 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                 |                        |              |                         |                 |
| <u> </u>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | REGIS           | STERS                  |              |                         |                 |
| 0          | 1            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3    | 4               | 5                      | 6            | 7                       | 8 9             |
| ľ          | Used         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĭ    |                 | 5                      | ľ            |                         |                 |
| S0         | S1           | S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S3   | 54 E (1/ Rate)  | <b>S</b> 5             | S6 E Rate    | S7                      | S8 N S9         |
| 50         | 51           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33   | ΣΧ              | $\sum^{55} \Sigma x^2$ | $\Sigma Y$   | <b>Σ</b> γ <sup>2</sup> | $(\Sigma XY)$ N |
| <b> </b>   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | <u> </u>        |                        |              |                         |                 |
| А          | E            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С    |                 | D                      |              | E                       | 1               |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 | 60 0                   | .000         | Base Value              | 2               |
|            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                 |                        |              |                         |                 |

Program Title BLOOD ALCOHOL

Contributor's NameHEWLETT-PACKARDAddress1000 CIRCLE BLVD.CityCORVALLIS

State OREGON

Zip Code 97330

| Program Description, Equations, Variables Equations were derived from tables in the CRC |
|-----------------------------------------------------------------------------------------|
| Handbook of Tables for Applied Engineering Science.                                     |
|                                                                                         |
| %=(((ALC)(0Z)/50)-T)(3.751)/WT                                                          |
| <i><sup>m</sup></i> ((( <i>h</i> =0)(02)) 50)-1)(5:751)) <b>w</b>                       |
|                                                                                         |
| T=0 if HRS $\leq 1$                                                                     |
| =HRS-1 if HRS > 1                                                                       |
|                                                                                         |
| % : Percent alcohol in the blood                                                        |
| ALC : Ounces of the beverage consumed                                                   |
| WT : Weight of the subject in pounds                                                    |
|                                                                                         |
| HRS : Period of time over which the beverage was consumed                               |
|                                                                                         |
| Pounds = (2.20462) Kilograms                                                            |
| Ounces = (0.033813087)Milliliters                                                       |
| % alcohol by weight - (0.5) Proof                                                       |
|                                                                                         |
| This program is a translation of the HP-65 User's Library program #00829A               |
|                                                                                         |
| submitted by Walter L. Gregory Jr.                                                      |
| Operating Limits and Warnings                                                           |
| All negative values generated by the above equations are displayed as zero (0.000).     |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |
|                                                                                         |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| PERCENT ALCOHOL                  | CONCENTRATION IN THE BLOOD                                                        |
|----------------------------------|-----------------------------------------------------------------------------------|
| (Committee on )                  | Alcohol and Drugs of the National Safety Council)                                 |
|                                  |                                                                                   |
| 0.000 to 0.050                   | No influence by alcohol under the law.                                            |
| 0.000 to 0.050<br>0.051 to 0.100 | No influence by alcohol under the law.<br>Alcoholic influence is usually present. |

| Sample Problem(s)<br>(1) WT = 150 lbs OZ = 4 oz ALC = 20 % HRS = 0.5 hrs |
|--------------------------------------------------------------------------|
| (2) WT = 90 kg $OZ = 150 \text{ m}$ ALC = 40% HRS = 2 hrs                |
| (3) WT = 180 lbs OZ = 5 oz ALC = 100 proof HRS = 3.5 hrs                 |
|                                                                          |
|                                                                          |
|                                                                          |
|                                                                          |
| Solution(s) 1) 150 [A] 4[B] 20[C] .5[D] [E]> 0.040%                      |
| 2) 90 [A] [R/S] 150[B] [R/S] 40[C] 2[D] [E]> 0.058%                      |
| 3) 180 [A] 5[B] 100[C] [R/S] 3.5[D] [E]> 0.052%                          |
|                                                                          |
|                                                                          |
| Reference (s)                                                            |

This program is a translation of the HP-65 User's Library program #00829A submitted by Walter L. Gregory Jr.

Bolz, Ray E., Tuve, George L., CRC Handbook of Tables for Applied Engineering Science, pages 619, 620, Chemical Rubber Co., 1970.

|    |    | BLOOD ALCC | )HOL |   | 5 |
|----|----|------------|------|---|---|
| WT | 0Z | ALC        | HRS  | % | / |

| STEP | INSTRUCTIONS                                                 | INPUT<br>DATA/UNITS | KEYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OUTPUT<br>DATA/UNITS |
|------|--------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1.   | Load side ]                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 2.   | Input data (any order)                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lbs                  |
|      | Subject's weight in pounds                                   | lbs                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | OR Kilograms                                                 | kg                  | AR/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lbs                  |
|      |                                                              | οz                  | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 Z                  |
|      | Amount of beverage consumed in Ounces<br>OR Milliliters      | <br>                | B R/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 Z                  |
|      |                                                              | <b>↓ ₩ ↓</b>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | Alcoholic content of beverage in                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | Percent by volume                                            | %                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                    |
|      | OR Proof                                                     | proof               | C R/S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %                    |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | Period of time over which the                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | beverage was consumed in hours                               | hrs                 | [ D] []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hrs                  |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/                   |
| 3.   | <u>Compute percent alcohol concentration</u><br>in the blood |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                    |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 4.   | For a new case, go to step 2                                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | (Any or all of the prameters may be                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      | changed in step 2.)                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              | 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|      |                                                              |                     | SET STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
|      |                                                              |                     | FLAGS TRIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DISP                 |
|      |                                                              |                     | $\begin{array}{c c} 0 & \Box & U \\ 1 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ 0 & G \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c c} 0 & \Box & U \\ \end{array} \\$ |                      |
|      |                                                              |                     | 2 🗆 🗹 🛛 RAD 🗆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ] ENG 🛛              |
|      |                                                              |                     | 3 🗆 🖆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                    |

### 97 Program Listing I

| STEP        | KEY ENTRY       | KEY CODE         | COMMENTS                            | STEP KEY EN            | -       | COMMENTS     |
|-------------|-----------------|------------------|-------------------------------------|------------------------|---------|--------------|
|             |                 |                  | COMMENTS                            |                        |         | COMMENTS     |
| 001         | *LBLA           | 21 11            |                                     |                        | 0 00    |              |
| 002         | ST01            | 35 Ø1            | Store WT in lbs.                    | 058 *LBL               |         | If T > 1 hr. |
| 003         | R∕S             | 51               | 4                                   | 059 -                  | -45     |              |
| 004         | 2               | 02               |                                     |                        | 3 03    |              |
| 005         | •               | -62              | Convert kg to                       | 061                    | 62      |              |
| 006         | 2               | 62               | lbs                                 | 062                    | 7 07    |              |
| 007         | Ø               | ŪŪ               | IDS                                 | 063                    | 5 05    |              |
| 003         |                 | <b>Ū</b> 4       |                                     | 064                    | 1 01    |              |
| 009         |                 | Ø6               |                                     | 065 ×                  | -35     |              |
| 010         |                 | <b>0</b> 2       |                                     | 066 RCL                | 1 36 01 |              |
| 011         | ×               | -35              | 1                                   | 067 ÷                  |         |              |
| 012         |                 | 35 01            | Store lbs.                          |                        | 0 00    | If negative  |
| 013         |                 | 51               |                                     | 069 X≦Y                |         | display 0    |
| 010         |                 | 21 12            | 1                                   | 070 XI                 |         | dispidy o    |
|             |                 | 35 02            | Store bev. in oz                    | 071 DSF                |         |              |
| 015         |                 |                  |                                     |                        |         |              |
| 016         |                 | 51               | •                                   |                        |         |              |
| 017         |                 | -62              | Convert ml to oz                    | 073 R/                 | °S 51   |              |
| 018         |                 | 00               | 4                                   |                        | ·       | t            |
| 019         | 3               | Ø3               | 4                                   |                        |         | 4            |
| 020         | 3               | 03               | 4                                   |                        |         | 4            |
| 021         | 8               | 08               |                                     |                        |         | 4            |
| 022         | 1               | Ũ1               | 1                                   |                        |         | 4            |
| 023         |                 | 63               | 1                                   |                        |         | 4            |
| 024         | e               | 00               |                                     | 080                    |         |              |
| 025         |                 | 08               |                                     |                        |         |              |
| 026         |                 | 07               | 1                                   |                        |         |              |
| 027         |                 | -35              | 1                                   |                        |         | 1            |
| 028         |                 | 35 02            | Store oz                            |                        |         | 1            |
| 629         |                 | 51               |                                     |                        |         | 1            |
| 020         |                 | 21 13            | Store alc.cont.                     |                        |         |              |
| 031         | ST03            | 35 03            |                                     |                        |         | 1            |
| 031         |                 | 35 83<br>51      | 1                                   |                        |         | 1            |
|             |                 |                  |                                     |                        |         | 4            |
| 033         |                 | 02<br>24         | Convert proof                       | 090                    |         | 4            |
| 034         |                 | -24              | to %                                |                        |         | 4            |
| 035         |                 | 35 03            | Store %                             |                        |         | 4            |
| 036         |                 | 51               | 4                                   |                        |         | 4            |
| 037         |                 | 21 14            | Store time                          |                        |         | 4            |
| 038         |                 | 35 04            |                                     |                        |         | 4            |
| 639         |                 | 51               | 4                                   |                        |         | 4            |
| 040         |                 | 21 15            | Calculate blood                     | <b>├</b> ──── <b>│</b> |         | 4            |
| 041         | RCL3            | 36 03            | alcohol                             |                        |         | 4            |
| 042         |                 | 36 02            |                                     |                        |         | 4            |
| 043         |                 | -35              | 1                                   |                        |         | 4            |
| 044         |                 | 05               | •                                   | 100                    |         | 4            |
| 045         | Ø               | 00               |                                     |                        |         | 4            |
| 046         | ÷               | -24              |                                     |                        |         | 4            |
| 047         |                 | 01               | Is time ≤ 1 hr.                     |                        |         | 4            |
| 048         |                 | 36 04            |                                     |                        |         | 4            |
| 049         |                 | 16-35            | 1                                   |                        |         | 4            |
| 050         |                 | 22 01            | 1                                   |                        |         | 4            |
| <b>Ø</b> 51 | X≠Y             | -41              | 1                                   |                        |         | 4            |
| 052         |                 | -45              | 1                                   |                        |         | 4            |
| 053         |                 | 22 02            | 1                                   |                        |         | 4            |
| 054         |                 | 21 01            |                                     | 110                    |         | 4            |
| 055         |                 | -31              | If T ≤ 1 hr.                        |                        |         | 4            |
| 056         |                 | -31              |                                     |                        |         |              |
|             |                 |                  |                                     | STERS                  |         |              |
| 0           | <sup>1</sup> WT | <sup>2</sup> VOL | <sup>3</sup> ALC% <sup>4</sup> Time | 5 6                    | 7       | 8 9          |
| <u> </u>    |                 |                  | S3 S4                               | S5 S6                  | S7      | S8 S9        |
| S0          | S1              | S2               | 33 54                               | 33 30                  | 5,      |              |
| A           | ħ               | I<br>B           |                                     | D                      | I       | I            |
| l^          | ľ               | 6                | Ĭ                                   | -                      | -       |              |
| L           |                 |                  |                                     |                        | L       |              |

| Program Title | Human Post | -Tr | auma Epilepsy | Seizure Pr | ediction    |     |          |         |       |
|---------------|------------|-----|---------------|------------|-------------|-----|----------|---------|-------|
| Contributor's | lune       |     | Pittman Jr.   | •          | HP-65 USERS |     | MEMBER   | NUMBER  | 1002) |
| Address       | Department | ΟΤ  | Psychology,   | University | OT NEW MEX  | 100 |          |         |       |
| City A1       | ouquerque  |     |               | State      | N. M.       |     | Zip Code | e 87131 |       |

**Program Description, Equations, Variables** This program computes the probability that a patient with head injury will have seizures within a given time after injury and computes the elapsed time after injury when probability of seizures will have decreased to a given value. Compare your patient's injuries and symptoms to those listed in the Risk Value Table. Select the four (or fewer) epileptogenic factors with the highest theta values. Enter these theta values to compute the initial risk probability  $R_{I}$ . Enter the time (months) since injury and compute the probability of seizure beyond that time. Enter an "acceptable" risk level (e.g., 5%) and compute the time to elapse after injury before the risk of seizure will have declined to that level.

TABLE OF THETA VALUES AND RISK FACTORS FOR BRAIN INJURIES

| <del>0</del> -VALUE | RISK FACTOR                               | <u> <del>0</del>-VALUE</u> | RISK FACTOR                   |
|---------------------|-------------------------------------------|----------------------------|-------------------------------|
| .05                 | Unconsciousness/amnesia, 1 hr or more     | e .20                      | Missile wound/dura tear       |
| .10                 | Persisting EEG abnormality                | .05                        | Linear skull fracture*        |
| .20                 | Hemiplegia, aphasia                       | .10                        | Depressed skull fracture*     |
| .20                 | Hemorrhage (intracranial)                 | .25                        | Central/parietal damage**     |
| .15                 | Seizure(s) during first week              | .15                        | Temporal damage**             |
| .10                 | Prefrontal/occipital damage**             | .10                        | Infection of CNS              |
| *                   | Do not use with missile wounds unles      | ss the du                  | ra is intact.                 |
| **                  | With multiple brain damage use the        | single la                  | rgest theta value.            |
| Operating Lir       | nits and Warnings Theta values must be en | ntered in                  | decreasing order of magnitude |
| (i.e., 1a           | rgest first). Use no more than four       | theta val                  | ues (program simply ignores   |
| any beyon           | d four). Do not enter times shorter       | than one                   | week (i.e., 0.25 month) nor   |

any beyond four). Do not enter times shorter than one week (i.e., 0.25 month) nor longer than five years (i.e., 60 months). Formulas in this program use a constant probability mathematical model and fit published clinical data of human patients. The model predicts at p = .05 confidence level the chance of post-traumatic epileptic seizures in single cases.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| $\bigcap$ | EQU            | ATI | $\underline{ONS} \qquad P_n = P_0 (.925)^n \qquad [Equation 1]$                  |
|-----------|----------------|-----|----------------------------------------------------------------------------------|
| Where:    | n              | =   | number of months since injury.                                                   |
|           | Pn             | =   | probability of seizure after "n" months after injury.                            |
|           | PO             | =   | probability of seizure any time after injury (Let $P_0 = R_I$ from Eq. 2).       |
|           | 0.925          | =   | constant of probability of seizure during any given month.                       |
|           |                |     | $R_i = R_{i-1} + \Theta_i(1.2 - R_{i-1})$ and $R_i \rightarrow R_I$ [Equation 2] |
| Where:    | R <sub>O</sub> | =   | initial value of $R_i = 0.01$ , lowest probability of post-trauma seizure.       |
|           | 1.2            | =   | constant to fit R <sub>I</sub> value to published clinical data.                 |

| Sample Pr<br>Look up | roblem A patie<br>theta values, th        |                   |        | oital wound, d<br>tion 2 to calc |                          |                |                        | · . |
|----------------------|-------------------------------------------|-------------------|--------|----------------------------------|--------------------------|----------------|------------------------|-----|
| 1) Depre             | essed skull frac                          | ture:             | θ =    | .10 R <sub>1</sub> =             | .010 + (.10)(            | (1.201         | 0) = 0.129             |     |
| 2) Occi              | pital damage:                             |                   | θ =    | .10 R <sub>2</sub> =             | .129 + (.10)(            | 1.212          | 9) = 0.236             |     |
|                      | nsciousness:                              |                   |        |                                  |                          |                |                        |     |
| Thus the             | probability of                            | a fit             | any t  | ime after the                    | injury is R <sub>I</sub> | = 0.284.       | After six              |     |
| months tl            | he probability w                          | ill ha            | ve dec | clined and may                   | be calculate             | ed by usin     | g Equation 1           |     |
| with n s             | et to 6.0 and P <sub>O</sub>              | set e             | equa 1 | to $R_{I} = 0.284$               | as follows:              |                |                        |     |
| a)                   | $P_6 = (.284)($                           | .925)6            | 5 =    | 0.18 <sup>°</sup> or 18 p        | ercent probal            | bility of      | <pre>seizure(s).</pre> |     |
|                      | at which the pr                           |                   |        |                                  |                          |                |                        |     |
| (say, 5              | percent) may be                           | calcul            | lated  | by solving Equ                   | ation 1 for              | n as follo     | ws:                    |     |
| b)                   | log <sub>e</sub> (P <sub>n</sub> /        | P <sub>0</sub> )  |        | log <sub>e</sub> (.05/           | .284)                    |                |                        |     |
|                      | $n = \frac{\log_e(P_n/P_n)}{\log_e(.92)}$ | 5)                |        | $n = \frac{1}{\log_e(.9)}$       | 25) =                    | 22.3 mont      | hs.                    |     |
| Solution             | Initialize (se                            | ts R <sub>O</sub> | )      | fa                               | 0.010                    | R <sub>0</sub> | (Initial)              |     |
|                      | Enter θ values                            | 1)                | .1     | А                                | 0.129                    | R              | (Computed)             |     |
|                      |                                           | 2)                | .1     | А                                | 0.236                    | R <sub>2</sub> | (Computed)             |     |
|                      |                                           | 3)                | .05    | А                                | 0.284                    | R <sub>3</sub> | (Computed)             |     |
|                      | End θ entry                               |                   |        | В                                | 0.284                    | RI             |                        |     |
|                      | Enter n                                   |                   | 6      | D                                | 6.0                      | n              | (Stored)               |     |
|                      | Compute P <sub>n</sub>                    |                   |        | E                                | 0.18                     | Pn             | (Computed)             |     |
|                      | Enter new P <sub>n</sub>                  |                   | .05    | E                                | 0.05                     | Pn             | (Stored)               |     |
|                      | Compute new n                             |                   |        | D                                | 22.3                     | n              | (Computed)             |     |

**Reference** Dennis M. Feeney and A. Earl Walker. MATHEMATICAL PREDICTION OF HUMAN POST-TRAUMATIC EPILEPSY. <u>Neuroscience Abstracts</u>, Vol. III, 1977. Reprints are available on request.

EPILEPSY SEIZURE PREDICTION START PRINT? ENTER, RECALL OR COMPUTE:  $\theta_{i} \rightarrow R_{i}$   $R_{I}$   $P_{0}$  n  $P_{n}$ 

| STEP | INSTRUCTIONS                                              | INPUT<br>DATA/UNITS | KEYS           | OUTPUT<br>DATA/UNITS |
|------|-----------------------------------------------------------|---------------------|----------------|----------------------|
| 1    | Load side 1.                                              |                     |                |                      |
| 2    | Initialize. (Sets initial value of $R_{\Omega}$ .)        |                     | fa             | 0.010                |
| 3    | Clear print mode. (For HP-67 or HP-97)                    |                     | fb             | 0.000                |
|      | Set print mode. (For HP-97)                               |                     | fb             | 1.000                |
| 4    | Compare patient's symptoms to table of risk               |                     |                |                      |
|      | values (page 1) and select four (or fewer)                |                     |                |                      |
|      | corresponding theta values.                               |                     |                |                      |
| 5    | Enter the <u>largest</u> theta. Compute $R_1$ .           | θ1                  | Α              | (1) R <sub>1</sub>   |
| 6    | Repeat step 5 for the other theta values.                 | θi                  | <b>A</b>       | (i) R <sub>i</sub>   |
|      | a) If a $\theta$ value larger than a previous one is      |                     |                |                      |
|      | entered, "Error" will appear. Clear with [CLx]            |                     |                |                      |
|      |                                                           | e.g., θ5            | Α              | θ5                   |
|      |                                                           |                     | h   R.↓        | θ4                   |
| 7    | Terminate theta entry. $P_0$ is set equal to $R_I$ .      |                     | B              | RI                   |
|      | v ()                                                      |                     |                | · · · ·              |
| 8    | Enter a value for either n or P <sub>n</sub> and compute  |                     |                |                      |
|      | the value of the other. (If desired, values of            |                     |                |                      |
|      | $P_0$ can be computed based on n and $P_n$ values.)       | n                   | D              | n                    |
|      |                                                           |                     | E              | Pn                   |
|      | NOTES: Keying a number <u>before</u> a letter key         | Pn                  | <b>E</b> ] [ ] | Pn                   |
|      | results in that number being stored. Keying a             |                     | D              | n                    |
|      | letter key without keying a number results in             |                     | C              | Po                   |
|      | that value being computed from the other two              |                     |                |                      |
|      | stored values. Keying [B] is equivalent to                |                     |                |                      |
|      | entering a number $(R_{I})$ before keying [C].            |                     |                |                      |
|      |                                                           |                     |                |                      |
| 9    | Recall original $R_{I}$ at any time. (See step 7.)        |                     | <b>B</b>       | RT                   |
| 10   | For a new problem, go to step 2.                          |                     |                |                      |
|      |                                                           |                     |                |                      |
|      | NOTES ON DISPLAY AND PRINTING:                            |                     |                |                      |
|      | (Print off) Keys [C], [D], and [E] set DSP 3,             |                     |                |                      |
|      | DSP 1 and DSP 2 respectively, not to indicate             |                     |                |                      |
|      | accuracy but as a cue to which value is being             |                     |                |                      |
|      | displayed. [A] sets DSP 0 and displays i for              |                     |                |                      |
|      | one second, then DSP 3 for display of R <sub>i</sub> .    |                     |                |                      |
|      | (Print on) [A] will print R <sub>i</sub> values but not i |                     |                |                      |
|      | nor theta values. [C], [D], and [E] will print            |                     |                |                      |
|      | all three values $P_0$ , n, and $P_n$ when any one is     |                     |                |                      |
|      | computed, with display set at DSP 4.                      |                     |                |                      |

### 67 Program Listing I

| 16<br><b>STEP</b> | KEY ENTRY           | KEY CODE                        | COMMENTS                        | STEP  |                   | KEY CODE          | COMMENTS                           |
|-------------------|---------------------|---------------------------------|---------------------------------|-------|-------------------|-------------------|------------------------------------|
| 001               | *g LBLf a           | 32 25 11                        | Initialize.                     | 057   | *f LBL B          | 31 25 12          |                                    |
|                   | f CL REG            | 31 43                           | 111101011201                    | 0.57  | DSP 3             | 23 03             |                                    |
|                   |                     | 83                              |                                 |       |                   |                   |                                    |
|                   | 9                   | 09                              |                                 | 060   | RCL 0<br>STO C    | 34 00<br>33 13    | Set $P_0 = R_I$ .                  |
|                   | 2                   | 02                              |                                 |       | h SF 3            | 35 51 03          | Digit entry flag.                  |
|                   | 5                   | 05                              |                                 |       | h SF O            | 35 51 00          | End θ entry.                       |
|                   | ST0 1               | 33 01                           | Store constant.                 |       | h RTN             | 35 22             | ç                                  |
|                   |                     | 83                              |                                 |       | *f LBL C          | 31 25 13          |                                    |
|                   | 0                   | 00                              |                                 |       | DSP 3             | 23 03             | PO                                 |
| 010               | ]                   | 01                              |                                 |       | STO C             | 33 13             | , e                                |
|                   | STO O               | 33 00                           | Store R <sub>O</sub> .          |       | h F? 3            | 35 71 03          | New P <sub>O</sub> ?<br>Yes; stop. |
|                   | h CF O              | 35 61 00                        | 0                               |       | R/S               | 84                | Yes; stop.                         |
|                   | h SF 2              | 35 51 02                        |                                 |       | RCL E             | 34 15             | No; compute.                       |
|                   | h RTN               | 35 22                           |                                 | 070   | RCL 1             | 34 01             | .925                               |
|                   | *g LBLf b<br>h CF 1 | 32 25 12<br>35 61 01            | Print clear/set.                |       | RCL D             | 34 14             |                                    |
|                   |                     |                                 |                                 |       | h y <sup>x</sup>  | 35 63             |                                    |
|                   | 0                   | 00                              |                                 |       | •/•               | 81                |                                    |
|                   | R/S                 | 84                              | "O" No print.                   |       | STO C             | 33 13             | Computed P <sub>O</sub> .          |
|                   | *g LBLf b           | 32 25 12                        |                                 |       | GTO 9             | 22 09             | To print routine.                  |
| 020               | h SF 1              | 35 51 01                        |                                 |       | *f LBL D          | 31 25 14          |                                    |
|                   | 1                   | 01                              |                                 |       | DSP 1             | 23 01             | n                                  |
|                   | h RTN               | 35 22                           | "1" Print.                      |       | STO D             | 33 14             |                                    |
|                   | *f LBL A            | 31 25 11                        | θi                              |       | h F? 3            | 35 71 03          | New n ?                            |
|                   | h F? 0              | 35 71 00                        | Over four θs ?                  | 080   | R/S               | 84                | Yes; stop.                         |
|                   | h RTN               | 35 22                           |                                 |       | RCL E             | 34 15             | No; compute.                       |
|                   | h F? 2              | 35 71 02                        | Is this θ <sub>l</sub> ?        |       | RCL C             | 34 13             |                                    |
|                   | STO A               | 33 11                           |                                 |       | */•               | 81                |                                    |
|                   | RCL A               | 34 11                           | θi-l                            |       | f LN              | 31 52             |                                    |
|                   | h x≷y               | 35 52                           |                                 |       | RCL 1             | 34 01<br>31 52    | .925                               |
| 030               | g x≼y ?             | 32 71                           | θ <sub>i</sub> θ <sub>i-l</sub> |       | f LN              |                   |                                    |
|                   | GTO 1               | 22 01                           |                                 |       | •/•               | 81                |                                    |
|                   | GTO O               | 22 00                           | "Error" message.                |       | STO D             | 33 14             | Computed n.                        |
|                   | *f LBL 1            | 31 25 01                        | 0.                              |       | GTO 9             | 22 09             | To print routine.                  |
|                   | STO A               | <u>33 11</u><br>31 34           | θi                              | 090   | *f LBL E          | 31 25 15<br>23 02 | D.                                 |
|                   | f ISZ               |                                 |                                 |       | DSP 2             | 23 02             | Pn                                 |
|                   | ļ                   | 01                              |                                 |       | STO E             | 33 15             |                                    |
|                   | · · ·               | 83                              |                                 |       | h F? 3            | 35 71 03          | New Pn?                            |
|                   | 2                   | 02                              | 5                               |       | R/S               | 84                | Yes; stop.                         |
| 0.10              | RCL O               | 34 00<br>51                     | Ri-1                            |       | RCL C             | 34 13             | No; compute.                       |
| 040               | -                   |                                 |                                 |       | RCL 1             | 34 01             | .925                               |
|                   | X                   | 71                              |                                 |       | RCL D             | 34 14             |                                    |
|                   | STO + O             | 33 61 00                        | <u>.</u>                        |       | h y <sup>x</sup>  | 35 63             |                                    |
|                   | h RC I              | 35 34                           | i                               |       | X                 | 71                |                                    |
|                   | 4                   | 04                              | To this 0. 0                    | 100   | STO E             | 33 15             | Computed P <sub>n</sub> .          |
|                   | g x≤y ?             | 32 71                           | Is this θ4 ?                    |       | *f LBL 9          | 31 25 09          | Durint 2                           |
|                   | h SF O              | 35 51 00                        | End $\theta$ entry.             |       | h F? 1            | 35 71 01          | Print ?                            |
|                   | h R ↓               | 35 53                           | 1                               |       | GTO 8             | 22 08             | Yes.                               |
|                   | DSP 0<br>h PAUSE    | 23 00<br>35 72                  |                                 |       | h RTN<br>*f LBL 8 | 35 22<br>31 25 08 | No; stop.                          |
| 050               | RCL 0               | 35 72                           | D.                              |       | DSP 4             | 23 04             |                                    |
|                   | STO B               | 34 00                           | R <sub>i</sub>                  |       | RCL C             |                   | Po print                           |
|                   |                     |                                 |                                 |       |                   | 34 13<br>31 84    | P <sub>O</sub> print.              |
|                   | STO C<br>DSP 3      | <u>33 13</u><br>23 03           |                                 |       | f - x -<br>RCL D  | 34 14             | n print.                           |
|                   | h F? 1              | 35 71 01                        | Print ?                         | 110   | f - x -           | 34 14<br>31 84    |                                    |
|                   | f - x -             | 31 84                           | · ···· •                        |       | RCL E             | 34 15             | P <sub>n</sub> print.              |
|                   | h RTN               | 35 22                           |                                 |       | f - x -           | 31 84             |                                    |
|                   |                     |                                 | REGI                            | STERS |                   |                   |                                    |
| 0                 |                     | 2                               | 3 4                             | 5     | 6                 | 7                 | 8 9                                |
| R <sub>0</sub> ,  |                     |                                 |                                 |       |                   |                   |                                    |
| S0                | S1                  | S2                              | S3 S4                           | S5    | S6                | S7                | S8 S9                              |
|                   | l                   |                                 |                                 |       | l                 |                   |                                    |
| A A               |                     | B<br>D. D.                      | $c_{R_i, R_I, P_0}$             | D     | n                 | e Pn              | <sup>Ι</sup> θ Counter             |
| -1 <sup>0</sup>   | ι, θ <sub>ί</sub>   | R <sub>i</sub> , R <sub>I</sub> | [ ``1'' '`1'' ' O               | I     |                   | ' n               |                                    |

16

### 97 Program Listing II

| STEP                          | KEY ENTRY          | KEYO             |                       | сомм           | ENTS                 | STEP             |                                    | KEY CODE  | COM                          | 17<br>Ments            |
|-------------------------------|--------------------|------------------|-----------------------|----------------|----------------------|------------------|------------------------------------|-----------|------------------------------|------------------------|
| 113                           | R/S                | T                | 84                    |                | 836                  | 1                | 01                                 |           | 75 GTO9                      | 22 09                  |
|                               |                    |                  |                       |                | 03T                  |                  | -62                                |           | 76 *LBLD                     | 21 14                  |
|                               |                    | ļ                |                       |                | 038                  | 2                |                                    |           | 77 DSP1                      | -63 61<br>35 14        |
|                               | Program            | 001              | *LELc                 | 21 18 11       | 639<br>840           | RCLØ             | 36 <b>86</b><br>-45                |           | 78 STOD<br>79 F3? 1          | 35-14<br>16-23-03      |
| <u> </u>                      | Listing            | 002              | CLRG                  | 16-53          | 040<br>041           | X                | -35                                |           | 30 R/S                       | 51                     |
|                               | for                | 003              | •                     | -62            | 042                  | ST+0             |                                    | 0         | 81 RCLE                      | 36-15                  |
| 120                           | HP <b>-</b> 97:    | 004<br>005       | 9                     | 09<br>02       | <b>0</b> 43          | RÒLI             | 36 46                              |           | 82 RCLC                      | 36 13                  |
|                               | 1                  | 005<br>006       | 25                    | 02<br>05       | 044<br>045           | 4                |                                    |           | 83 ÷<br>84 LN                | -24<br>32              |
|                               |                    | 807              | STOI                  | 35 <b>0</b> 1  | 045<br>046           | ;⊒Y?<br>SF0      |                                    | -         | 84 LN<br>85 RCL1             | 32<br>36 <b>0</b> 1    |
|                               |                    | 008              |                       | -62            | 640                  | E4               |                                    |           | 86 LN                        | 32                     |
|                               |                    | 683              | Û                     | 80             | 045                  | DSPØ             | -63 00                             |           | 87 ÷                         | -24                    |
|                               |                    | 010<br>011       | l<br>etos             | 01<br>35 80    | 049                  | PSE              |                                    |           | SS STOD                      | 35 14                  |
|                               |                    | 011<br>012       | STOØ<br>CFØ           | 15 22 88       | 050                  | RCLO             |                                    |           | 89 GTO9<br>9 <b>0 *LBLE</b>  | 22 <b>0</b> 9<br>21 15 |
|                               |                    | 012              | SF2                   | 16 21 02       | 051<br>052           | STOB<br>STOC     |                                    |           | 90 *LBLE<br>91 DSP2          | -63 02                 |
| 130                           |                    | 014              | RTN                   | 24             | 052<br>053           | DSF3             |                                    |           | 92 STOE                      | 35 15                  |
|                               |                    | 015              | *LELL                 | 21 16 12       | 654<br>654           | F1?              |                                    |           | 93 F3? 1                     | 16 23 03               |
|                               |                    | 016              | CF1                   | 16 22 01<br>20 | 055                  | PRTX             | -14                                |           | 94 R/S                       | 51                     |
|                               |                    | 017<br>010       | 0<br>R/S              | 00<br>51       | 05 <i>6</i>          | RTN              |                                    |           | 95 RCLC                      | 36 13                  |
|                               |                    | 018<br>015       | r∕s<br>∗LBLk          | 21 16 12       | 057<br>050           | *LBLB            |                                    |           | 96 RCL1<br>97 RCLD           | $36 81 \\ 36 14$       |
|                               |                    | 020              | SF1                   | 15 21 01       | 058<br>059           | DSP3<br>RCLØ     |                                    |           | 97 RULD<br>98 Y <sup>x</sup> | 36 14<br>31            |
|                               |                    | 821              | 1                     | õi             | 855<br>868           | STOC             |                                    |           | 99 X                         | -35                    |
|                               |                    | 022              | RTN                   | 24             | 061                  | SF3              |                                    |           | 00 STOE                      | 35 15                  |
|                               |                    | 023              | *LBLA                 | 21 11          | <b>e</b> 62          | SFØ              | 16 21 00                           |           | 01 *LBLS                     | 21 09                  |
| 140                           |                    | 024<br>035       | FØ?<br>RTN            | 16 23 00<br>24 | 063                  | RTN              |                                    |           |                              | 16 23 01               |
|                               |                    | 020<br>826       | E29                   | 24<br>16 23 82 | 064                  | *LBLC            |                                    |           | 03 GTOS                      | 22 <b>0</b> 8<br>24    |
|                               |                    | 027-<br>027-     | STOR                  | 35 11          | 065<br>065           | DSF3<br>STOC     |                                    |           | 04 RTN<br>05 #LBL8           | 24<br>21 08            |
|                               |                    | 029              | FCLA                  | 35-11          | 066<br>067           | F3?              |                                    |           | 06 DSP4                      | -53 04                 |
|                               |                    | 029              |                       | -41            | 068                  | RZ S             |                                    | 1         | 07 RCLC                      | 36-13                  |
|                               |                    | 030              | XY7?                  | 16-35          | 069                  |                  | 36 15                              |           | 08 PRTX                      | -14                    |
|                               |                    | 031<br>032       | GTO1<br>GTO0          | 22-01<br>22-00 | 070                  |                  |                                    |           | 89 RCLD                      | 36 14                  |
| L                             |                    | 032<br>033       | *LBL1                 | 22 00<br>21 01 | 071<br>072           | RCLE             |                                    |           | 10 PRTN<br>11 RCLE           | -14<br>36 15           |
| 150                           | +                  | 034              | STUR                  | 35 11          | 072<br>073           | ېد<br>ج          | 31<br>-24                          |           | 12 PRTX                      | -14                    |
| 100                           |                    | 035              |                       | 16 26 46       | 873<br>874           |                  |                                    |           |                              | 51                     |
|                               |                    | 1                | 1                     |                | ·····                | i                | i i                                |           | 1                            |                        |
|                               | HP-97 o            | wners:           | This                  | program w      | as intentio          | onally           | limited to                         | o one sid | e of a prod                  | aram                   |
|                               | 🖡 card, b          | ut by            | adding                | a few ste      | eps the prim         | ntout c          | apability                          | can be i  | mproved.                     | ,                      |
|                               | 🛉 Enter t          | he pro           | gram as               | s given, t     | hen, in PRO          | GM mode          | e, perform                         | the foll  | owing:                       |                        |
|                               | f GTO.1            | 12 f             | SPACE                 | RTN (H         | IP-97)               | GTO.             | .112 h SI                          | PACE h    | RTN (HP-6                    | 57)                    |
|                               | f GT0.0            |                  | F? 1                  | PRINTX         |                      | GTO.             |                                    |           | -x-                          |                        |
|                               | GTO.0              |                  | F? 1                  | PRINTX         |                      |                  | 034 h F                            |           | -x-                          |                        |
| 160                           | Г GTO.0<br>GTO.0   |                  | SPACE                 | DSP 3          |                      |                  |                                    | PACE DSP  |                              |                        |
|                               | †                  |                  |                       |                | PRINTX               | GTO.             |                                    | 2 h F?    |                              |                        |
| <b> </b>                      | Go to R            | UN mod           | e, test               | and list       | your prog            | ram, wh          | nich now w                         | ill have  | 123 steps.                   |                        |
|                               | t Tho noo          |                  | ill nor               | , nnint.       | Λf+c~ Γf - '         | l. o '           | 0 <u> </u>                         | indianti  |                              | lom                    |
|                               | I me proj          | yrall W          | III NOW               | i print:       | After [f a]          | ]: 0.1           | $v = \kappa_0 \tau_0$              | indicate  | a new prot                   | )iem.                  |
|                               | ł                  |                  |                       |                | After [A]:           | θį,              | i, R <sub>i</sub>                  | for each  | entry.                       |                        |
|                               |                    | 1                | 1                     | LABELS         | 1                    | ī                | FLAGS                              |           | I<br>SET STATUS              |                        |
| <sup>Α</sup> θ <sub>i</sub> → | $\sim R_i B R_i -$ | ► R <sub>T</sub> | $^{CP_0} \rightarrow$ |                | → n <sup>E P</sup> n | → P <sub>n</sub> | <sup>ο</sup> θ4 ?                  | FLAGS     | TRIG                         | DISP                   |
| a Ini                         | <br>h              |                  | c                     | d              | e                    |                  | <sup>1</sup> Print ?               | ON OFF    |                              | FIX X                  |
| <sup>0</sup> OMIT             |                    |                  | 2                     | 3              | 4                    |                  | $^2$ $\theta_1$ ?                  |           | GRAD 🗆                       | SCI 🗆                  |
| 5                             | 6                  |                  | 7                     | 8 Prig         | 1t_ 9 Duri           |                  | <sup>3</sup> Store or<br>Compute ? |           | RAD 🗆                        |                        |
| L                             |                    |                  |                       |                | nt <sup>9</sup> Pri  | πL               | Compute ?                          | 3 🗆 🛛     |                              |                        |

17

| Program Title     | Bedside Blood-Gas Inter | preter |            |          |       |
|-------------------|-------------------------|--------|------------|----------|-------|
| Contributor's Nam | e Charles W. Bollinger  |        |            |          |       |
| Address           | 644 Longshaw Drive      |        |            |          |       |
|                   | nerton                  | State  | Washington | Zip Code | 98310 |

Lbl's a and A accept patient data and store in Program Description, Equations, Variables metric form. Lbl B: Computes ideal alveolar gas:  $P_A O_2 = P_I O_2 - PCO_2 (F_1 O_2 + \frac{1 - F_1 O_2}{R})$ .  $P_I O_2 = F_1 O_2 x P_B$ . For this "bedside" program, P<sub>B</sub> is 760 (appears as "dry" P<sub>B</sub>=760-47.713). Difference in O2 values over scale of barometric pressures at sea level is 8 Torr, maximum. Users living in altitudes or other places with differing average  ${\rm P}_{\rm R}$  should modify steps 038-040 accordingly. The (A-a)  $DO_2$  varies with age and oxygen concentration. This figure is calculated and subtracted from the actual (A-a)  $\mathrm{DO}_2$  to give a "significant" figure. The actual figure, however, is the one stored for shunt computation. Lbl C: If the patient is on 100% oxygen, the (A-a)  $DO_2$  can be used to estimate venous admixture, or shunt. Laboratory accuracy is not sought. The A-J content difference is taken to be 4.5 %.  ${}^{Q}s/Q_{t} = \frac{(A-a) D02 \times 0.0031}{(A-a) D0_{2} \times 0.0031 + (C_{a}O_{2}-C_{v}O_{2})}$ Lbl D: When various respiratory therapy equipment are air-driven, and it is desirable to enrich with oxygen to a known percentage, this routine calculates the oxygen flow required in L/min. Lbl e: This is a convenience routine to work the Henderson-Hasselback equation. If the pH and total  $CO_2$  are known,  $PCO_2$  and  $HCO_3$  - can be found. Lbl E: Finds base deficit and calculates the amount of sodium bicarbonate to correct it. See below regarding calc. used. Operating Limits and Warnings Pt.height is not used in this program, but provision for storing and converting is included to keep program compatible with a series under developement. Computation of N<sub>a</sub>HCO<sub>3</sub> - to administer uses a multiplier of 0.<u>3</u>xBExwt. Clinicians preferring another unit should change step #146. "Base deficit" is similar to "Base Excess" of Astrup, but not identical, which is why the different terminology is used. This program has been verified only with respect to the numerical example given in *Program Description II.* User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material. NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| Ske                   | tch(es)                                                           |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------|-------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          | <ul> <li>A second sec<br/>second second sec</li></ul> |
|                       |                                                                   |       |                                          | <ul> <li>A set of the set of</li></ul>     |
|                       |                                                                   |       |                                          | a a construction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sam                   | ple Problem(s)                                                    |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Α.                    | Pt is 64 years old and weighs 195 pounds.                         | On r  | oom air his P_O,                         | is 50 Torr, PCO,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | is 63 Torr., HCO <sub>3</sub> 21 meq/ <sub>L</sub> pH: 7.15. Find | (A-   | a)DO <sub>2</sub> and Base c             | leficit, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | amount of sodium bicarbonate to correct.                          |       | L                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Β.                    | On 100% oxygen a patient has a $P_aO_2$ of Torr                   | and   | a PCO, of 17 Tc                          | orr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · · · · ·             | Find (A-a)DO <sub>2</sub> and estimate shunt.                     |       | L                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| С.                    | A patient receiving mist from air-powered ne                      | ebul  | izer at 12 L/min                         | is to have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 44% $0_2$ . How much oxygen must be added to a                    |       |                                          | <b>I</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D.                    | A patient comes in hyperventilating but with                      |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | gas machine is "cold" but lab technician car                      |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | away. They are: pH 7.2, CO <sub>2</sub> ct 18, find oth           | ner v | values and base                          | situation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i <sup>n</sup> i isha | L                                                                 |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solu                  | lion(s)                                                           | B.    | 150[+] 17[+] 1                           | [B] 696(P <sub>A</sub> 0 <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Α.                    | 195[+] 64[A]                                                      |       |                                          | $546(A-a)D0_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 50[↑] 63[↑] .21[B] 74 P <sub>A</sub> 0 <sub>2</sub>               |       |                                          | 480sig.(A-a)D0 <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | 24 (A-a)DO <sub>2</sub>                                           |       | [c]                                      | 27 % shunt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 8 Sign(A-a)DO <sub>2</sub>                                        | С.    | 12[↑] .44[D]                             | 4.9 L/min 0 <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 21[+] 7.15[E]5.5 Base Def                                         | D.    | 7.2[ <sup>+</sup> ](C0 <sub>2</sub> ct)1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 146 N <sub>a</sub> HCO <sub>3</sub> meg                           |       | 2                                        | 16.7HC0 <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | a 3 -                                                             | *     | 7.2[E]                                   | 9.3Base Def.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                   |       | Note:16.7 is res                         | ult 247 NaHCO2 meg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                     |                                                                   |       | n x-will e                               | nter automatically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                                                   |       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Reference(s) Paulin, Edw G and Hornbein, T.F.: HSA Workshop in Acid-Base #114,115-San Francisco 1976 Comroe, J.H. et al: The long. Yearbook Medical Publishers, Inc.-Chicago 1970.

■ a:English Bedside Blood Gas Interpreter  $e:pH^{CO}_2ct \rightarrow HCO_3^{-} = PO_2^{+PCO}_2^{+F} \rightarrow Qs/Qt \%$  A  $\uparrow F \rightarrow O_2^{+PCO}_3^{+PH \rightarrow BE}$ 

| STEP | INSTRUCTIONS                                                                                                 | INPUT<br>DATA/UNITS                               | KEYS                       | OUTPUT<br>DATA/UNITS                                                                  |
|------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------|
| ٦.   | Load program side 1 and side 2                                                                               |                                                   |                            |                                                                                       |
| 2.   | Input patient data: Height in inches or cm<br>Weight is pounds or km<br>Age(yr) English<br>Metric            |                                                   | ENTER<br>ENTER<br>f a<br>A |                                                                                       |
| 3.   | To find alveolar Oxygen and Alveolar-Arterial<br>diff:                                                       | D O                                               |                            |                                                                                       |
|      | Input P <sub>a</sub> O <sub>2</sub> in Torr                                                                  | $P_a 0_2$                                         |                            |                                                                                       |
|      | Input $PCO_2$ in Torr<br>Input $F_1O_2$ as fraction                                                          | PC0 <sub>2</sub><br>F <sub>1</sub> 0 <sub>2</sub> |                            | P <sub>A</sub> O <sub>2</sub><br>(A-a)DO <sub>2</sub><br>Sign i f(A-ā)DO <sub>2</sub> |
| 4.   | To find per-cent venous admixture (shunt)Qs/Qt<br>(valid only when F <sub>1</sub> O <sub>2</sub> above is 1) | -                                                 |                            | Qs/Qt %                                                                               |
| 5.   | To find amount of oxygen to add to airflow for<br>a desired F <sub>1</sub> 0 <sub>2</sub> :                  |                                                   |                            |                                                                                       |
|      | I 2<br>Input airflow in L/min<br>Input desired F <sub>1</sub> 0 <sub>2</sub> in decimal                      | A<br>F <sub>1</sub> 0 <sub>2</sub>                | ENTER↑                     | 0                                                                                     |
| 6.   | To find PCO <sub>2</sub> and HCO $_{3}^{-}$ when pH and CO <sub>2</sub> content                              |                                                   |                            |                                                                                       |
|      | are known:                                                                                                   |                                                   |                            |                                                                                       |
|      | Input pH                                                                                                     | рН                                                | ENTER                      |                                                                                       |
|      | Input CO <sub>2</sub> Ct                                                                                     | CO <sub>2</sub> Ct                                | f E                        |                                                                                       |
| 7.   | To find base deficit and amount of sodium bicarbonate to correct                                             |                                                   |                            | нсо <u>-</u>                                                                          |
|      | Input HCO <sub>3</sub> (or use value from above)                                                             | HC03                                              | ENTER                      |                                                                                       |
|      | Input pH                                                                                                     | рН                                                |                            | Base Deficit<br>NaHCO <sub>3</sub> in meg                                             |

### 97 Program Listing I

|            |               |                  |       |                                                                                                                           |                                            |                      |                |                      | 21                                  |
|------------|---------------|------------------|-------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|----------------|----------------------|-------------------------------------|
| STEP       | KEY ENTRY     | KEY CODE         |       | COMMENTS                                                                                                                  | STEP                                       | KEY ENTRY            | KEY CODE       | CO                   | MMENTS                              |
| 001        | *LBLa         | 21 16 11         |       |                                                                                                                           | 057                                        | PRTX                 | -14            | Print "s             | ignificant"                         |
| 002        | STOC          | 35 13            |       |                                                                                                                           | 058                                        | SPC                  | 16-11          | (A-a)D0 <sub>2</sub> |                                     |
| 002        | R4            | -31              | Conv  | ert English                                                                                                               | 059                                        | RTN                  | 24             | 2                    |                                     |
| 004        | 2             | 02               | valu  | es to metric                                                                                                              | 060                                        | *LBLC                | 21 13          | Convert              | $(\Lambda_{-3}) = 0$                |
| 005        |               | -62              |       |                                                                                                                           | 061                                        | RCL1                 | 36-01          | 1                    | (A-a)DO <sub>2</sub> to             |
| 006        | 2             | 02               | and   | store                                                                                                                     | 062                                        |                      | -62            | content              | difference                          |
| 007        | Ū.            | 00               |       |                                                                                                                           | 063                                        | $ar{b}$              | 00             | 1                    |                                     |
| 008        | 5             | 05               |       |                                                                                                                           | 064                                        | Ø                    | 00             |                      |                                     |
| 009        | ÷             | -24              |       |                                                                                                                           | 065                                        | 3                    | 03             |                      |                                     |
| 010        | STOB          | 35 12            |       |                                                                                                                           | 066                                        | 1                    | 01             |                      |                                     |
| 011        | R4            | -31              |       |                                                                                                                           | 067                                        | X                    | -35            |                      |                                     |
| 012        | 2             | 02               |       |                                                                                                                           | 068                                        | ENT†                 | -21            |                      |                                     |
| 013        |               | -62              |       |                                                                                                                           | 669                                        | ENTŤ                 | -21            | Add aver             | age (a-v)DCO'                       |
| 014        | 5             | 05               |       |                                                                                                                           | 670                                        | 4                    | 04             | to denom             | inator 1                            |
| 015        | 4             | Ū4               |       |                                                                                                                           | 071                                        | :                    | -62            |                      |                                     |
| 016        | X             | -35              |       |                                                                                                                           | 672                                        | 5                    | Ø5             |                      |                                     |
| 017        |               | 35-11            |       |                                                                                                                           | 073                                        | +                    | -55            |                      |                                     |
| 018        | RTN           | 24               |       |                                                                                                                           | 074                                        | ÷                    | -24            | Evoross              | as percent                          |
| 019        |               | 21 11            | Stor  | e Ht, Wt. and                                                                                                             | 075                                        | EEX                  | -23            | LAPIESS              | as percent                          |
| 626        | STOC          | 35 13            | Age   | in A,B, and C                                                                                                             | 076<br>077                                 | .2                   | 02<br>35       | 1                    |                                     |
| 021        | R4            | -31              | l'ige | in hyp, and o                                                                                                             | 077<br>072                                 | X                    | -35            |                      |                                     |
| 022        |               | 35-12            |       |                                                                                                                           | 078<br>078                                 | PRTX                 | -14            |                      |                                     |
| 023        | R↓            | -31              |       |                                                                                                                           | 079<br>029                                 | SPC                  | 16-11          | Calculat             |                                     |
| 024        | STOA          | 35-11            |       |                                                                                                                           | 080                                        | RTN                  | 24             |                      | add to air-                         |
| 025        |               | 24               |       | •                                                                                                                         | 081                                        | <b>≭LBLD</b><br>STO5 | 21 14<br>35 05 | flow:                |                                     |
| 026        | <b>∗</b> LBLB | 21 12            | Calc  | ulate the                                                                                                                 | 082<br>083                                 | 3703<br>X≠Y          | -41            |                      | 21Å                                 |
| 027        | 1             | Ü1               | alve  | olar air                                                                                                                  | 083<br>084                                 | ST06                 | 35 06          | <u>0=FA-</u>         |                                     |
| 028        |               | -41              |       |                                                                                                                           | 085                                        | 5700<br>X            | -35            | 1 1-1                |                                     |
| 029        |               | 35 05            | equa  | tion:                                                                                                                     | 086                                        | ~                    | -62            | 1                    |                                     |
| 030        | -             | -45              |       |                                                                                                                           | 087                                        | 2                    | 02             |                      |                                     |
| 031        | :             | -62              |       |                                                                                                                           | 088                                        | 1                    | 01             | 1                    |                                     |
| 032        |               | 08               |       | P <sub>1</sub> 0 <sub>2</sub> -Pc0 <sub>2</sub> (F <sub>1</sub> 0 <sub>2</sub> + <sup>1-F<sub>1</sub>0<sub>2</sub>)</sup> | 089                                        | RCL6                 | 36 <b>0</b> 6  | 1                    |                                     |
| 033        |               | -24<br>74 - 65   |       |                                                                                                                           | 090                                        | X                    | -35            | 1                    |                                     |
| 034<br>075 |               | 36 05<br>FF      |       |                                                                                                                           | 091                                        | -                    | -45            | 1                    |                                     |
| 035<br>076 |               | -55<br>-35       |       |                                                                                                                           | 092                                        | 1                    | <b>Ū</b> 1     | 1                    |                                     |
| 036<br>077 | ×<br>CHS      | -33              |       |                                                                                                                           | 093                                        | RCL5                 | 36 05          | 1                    |                                     |
| 037<br>038 | UH3<br>7      | -22              |       | Н)<br>Н                                                                                                                   | 094                                        | -                    | -45            | 1                    |                                     |
| 038<br>039 | 1             | 01               |       | 0,00                                                                                                                      | 095                                        | ÷                    | -24            | ]                    |                                     |
| 035<br>040 | 1<br>3        | 03               |       | PG                                                                                                                        | 096                                        | DSP1                 | -63 01         | Print 0              | in I/min                            |
| 040<br>041 | RCL5          | 36 Ø5            |       | 2                                                                                                                         | 097                                        | PRTX                 | -14            |                      |                                     |
| 042        |               | -35              | I     | 5                                                                                                                         | 098                                        | SPC                  | 16-11          |                      |                                     |
| 042        |               | -55              | 1     | ц.                                                                                                                        | 099                                        | DSPØ                 | -63 00         | 1                    |                                     |
| 040        | PRTX          | -14              | Prin  | t"ideal"                                                                                                                  | 100                                        | RTN                  | 24             | Calculate            | e Henderson-                        |
| 045        |               | -41              |       |                                                                                                                           | 101                                        | <b>*</b> LBLe        | 21 16 15       |                      | ck equation:                        |
| Ø46        | -             | -45              | arve  | olar gas                                                                                                                  | 102                                        |                      | 35 03          |                      |                                     |
| 647        | PRTX          | -14              | Prin  | t(A-a)DO <sub>2</sub>                                                                                                     | 103                                        | X <b>≠</b> ¥         | -41            | pH-pK+1              | $\log\left(\frac{1003}{100}\right)$ |
| 048        |               | 35 01            |       |                                                                                                                           | 104                                        | 6                    | <b>0</b> 6     | +                    | $\log(\frac{HCO_{3}}{H_{2}CO_{3}})$ |
| 049        | RCLC          | 36-13            | Perf  | orm age regres-                                                                                                           | 105                                        | •                    | -62            | 4                    |                                     |
| 050        |               | 36 05            | sion  | to find allow-                                                                                                            | 106                                        |                      | Ø1             | 1                    |                                     |
| 051        | X             | -35              |       | $(A-a)DO_2$                                                                                                               | 107                                        | -<br>10X             | -45            | 1                    |                                     |
| 052        | 2             | 02               | 1     | ζ.                                                                                                                        | 108                                        |                      | 16 33          | 1                    |                                     |
| 653        | •             | -62              | 1     |                                                                                                                           | 109                                        | 1                    | 01<br>55       | 1                    |                                     |
| 054        | 5             | 05               | 1     |                                                                                                                           | 110                                        | +                    | -55            | 1                    |                                     |
| 055        | ÷             | -55              | 1     |                                                                                                                           | 111<br>- 112                               | ÷<br>etna            | -24<br>75 04   |                      |                                     |
| . 056      | -             | -45              | L     | REGI                                                                                                                      | - 112<br>STERS                             | ST04                 | 35 04          | <b>A</b>             |                                     |
| 0          | 1 / .         | $\mathbf{r}$     | 30    |                                                                                                                           | -                                          | 6 Å                  | 7              | 8                    | 9                                   |
|            | (A-a          | )D0 <sub>2</sub> | 302   |                                                                                                                           | <sup>5</sup> F <sub>1</sub> 0 <sub>2</sub> |                      |                |                      |                                     |
| S0         | S1            | S2               | S3    | S4                                                                                                                        | S5                                         | S6                   | S7             | S8                   | S9                                  |
|            |               |                  |       |                                                                                                                           |                                            |                      |                | I                    |                                     |
| ^ Heig     | ht(cm)        | B Weight(        | kg)   | <sup>C</sup> Age (yr)                                                                                                     | D                                          |                      | E              | ľ                    |                                     |
| I          |               | 1                | -     |                                                                                                                           | 1                                          |                      | 1              |                      |                                     |

| 22                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 Program                                                                                           | List                | ing H     |                 |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|-----------|-----------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                         | KEY ENTRY                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     | STEP                | KEY ENTRY | KEY CODE        | COMMENTS                    |
| 22<br>STEP<br>113<br>114<br>115<br>116<br>117<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>138<br>139<br>140<br>141<br>152<br>153<br>152<br>153 | 8<br>1<br>÷<br>PRTX<br>RCL3<br>RCL4<br>-<br>DSP1<br>PRTX<br>DSP0<br>SPC<br>RTN<br>*LBLE<br>CHS<br>7<br>4<br>+<br>1<br>8<br>×<br>-<br>2<br>4<br>-<br>DSP1<br>PRTX<br>DSP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>SP0<br>RCLB<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} \mathbf{KEY \ CODE} \\ -62 \\ 00 \\ 03 \\ 00 \\ 01 \\ -24 \\ -14 \\ 36 \\ 03 \\ 36 \\ 04 \\ -45 \\ -63 \\ 01 \\ -14 \\ -63 \\ 00 \\ 16 \\ -11 \\ 24 \\ 21 \\ 15 \\ -22 \\ 07 \\ -62 \\ 04 \\ -55 \\ 01 \\ 00 \\ -35 \\ -45 \\ 02 \\ 04 \\ -55 \\ 02 \\ 04 \\ -45 \\ -63 \\ 01 \\ 00 \\ -35 \\ -45 \\ 02 \\ 04 \\ -45 \\ -63 \\ 01 \\ 00 \\ -35 \\ -35 \\ 02 \\ 04 \\ -45 \\ -63 \\ 01 \\ 00 \\ -35 \\ -35 \\ 02 \\ 04 \\ -45 \\ -62 \\ 03 \\ -35 \\ -35 \\ -22 \\ -14 \\ 16 \\ -11 \\ 24 \\ 51 \\ \hline \end{array}$ | Perform calculation<br>to find Base deficit<br>Determine amount of<br>NaHCO <sub>3</sub> to correct | STEP                |           |                 |                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                     |           |                 |                             |
|                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LABELS                                                                                              |                     | FLAGS     |                 | SET STATUS                  |
| Sto Pt                                                                                                                                                                                                                                                                                                                  | data <sup>B</sup> (A-a                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(a)DO_2 \subset Qs/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Qt% <sup>D</sup> Oxygen add <sup>E</sup> Ba                                                         | sedefi              | cit -     | FLAGS           | TRIG DISP                   |
| a Conv<br>Sto Pt                                                                                                                                                                                                                                                                                                        | and b                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                     | 0 <sub>2</sub> +HC0 |           | ON OFF          |                             |
| Sto Pt                                                                                                                                                                                                                                                                                                                  | data<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 4                                                                                                 | 2                   | 2         | 0 [ K<br>1 [ X] | DEG Ø FIX Ø<br>GRAD □ SCI □ |
| 5                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 9                                                                                                 |                     | 3 -       | 2 🗆 🛛           |                             |
|                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĹĹ                                                                                                  |                     |           | 3 🗌 🕱           | n                           |

| Program Title                 | Body Density , Fat and                    | Lean Mass From Skinfolds |          |       |
|-------------------------------|-------------------------------------------|--------------------------|----------|-------|
| Contributor's Name<br>Address | Hewlett-Packard<br>1000 N.E. Circle Blvd. |                          |          |       |
|                               | orvallis                                  | State Oregon             | Zip Code | 97330 |

**Program Description, Equations, Variables** For adult males: Given the triceps & scapular skinfold thicknesses in millimeters and body weight (in lbs. or kg). Body Density (1) = 1.0923-0.00202 (triceps thickness) Body Density (2) = 1.0896-0.00179 (scapular thickness) Body Density =  $\frac{BD1 + BD2}{2}$ For adult females: Given the triceps & iliac crest (mid axillary line) skinfold thickness in millimeters and body weight (in lbs. or kg) Body Density = 1.0764 - 0.00081 (iliac thickness) - 0.00088 (triceps thickness) for both adult males & females % body fat =  $\left[\frac{4.57}{D_{\rm R}} - 4.142\right] \times 100$ Fat weight = Body weight x  $\frac{\% \text{ Fat}}{100}$  = kg Lean body mass (LBM) = Body weight - Fat weight = kg **Operating Limits and Warnings** 

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| Sketch(es)                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                   |
| Sample Problem(s)                                                                                                                                                                                                                                                                 |
| <ol> <li>For an adult male: Body weight 132 lbs., triceps skinfold 9mm, scapular<br/>skinfold 12mm, calculate body density, % body fat, fat weight (kg) and lean<br/>body mass (kg).</li> </ol>                                                                                   |
| 2) For an adult female: Body weight 54 kg., iliac skinfold 15mm, triceps<br>skinfold 8mm, calculate body density,% body fat, fat weight (kg) and<br>lean body mass (kg).                                                                                                          |
|                                                                                                                                                                                                                                                                                   |
| Solution(s) 1) [f][A]>0.00 (choose mode for male)                                                                                                                                                                                                                                 |
| 9[f][B] 12[f][C] 132[CHS][f][E]->60<br>[A]> 1.07112 (body dens.) [B]>12.46 (%body fat)                                                                                                                                                                                            |
| [C]> 7.47 (fat weight, kg) [D]>52.53 (lean body mass, kg)                                                                                                                                                                                                                         |
| 2) [f][A]>1.00 (choose mode for female)                                                                                                                                                                                                                                           |
| 8[f][B] 15[f][D] 54[f][E]> 54                                                                                                                                                                                                                                                     |
| [A]>1.05721 (body dens.) [B]>18.07% (body fat)                                                                                                                                                                                                                                    |
| [C]>9.76(fat weight, kg) [D]>44.24 (lean body mass, kg.)                                                                                                                                                                                                                          |
| Reference(s) This program is adapted from 2 HP-65 programs #0966A and #01954A submitted by Gerald A. Spurr, Ph.D.                                                                                                                                                                 |
| <ol> <li>Pascale, L.R., Grossman, M.I., et.al., Human Biology <u>28</u>: 165-176, 1956</li> <li>Brozek, J., Grande, F., et. al., Ann. N.Y. Acad. Sci. <u>110</u>: 113-140, 1963</li> <li>Sloan, A.W. &amp; Weir, J.B. de V., J. Appl. Physiol. <u>28</u>: 221-22, 1970</li> </ol> |

| <b>1</b> Male 0        | Body Densit      | y, Fat and          | Lean Mass          |          | ~ |
|------------------------|------------------|---------------------|--------------------|----------|---|
| Female 1<br>Body Dens. | Triceps<br>% Fat | Scapular<br>Fat Wt. | Iliac<br>Lean Mass | Body Wt. |   |

| STEP | INSTRUCTIONS                                | INPUT<br>DATA/UNITS | KEYS                    | OUTPUT<br>DATA/UNITS |
|------|---------------------------------------------|---------------------|-------------------------|----------------------|
| 1.   | Load side 1 and side 2                      |                     |                         |                      |
|      |                                             |                     |                         |                      |
| 2.   | Choose: Male, or                            |                     | f A                     | 0.00                 |
|      | Female*                                     |                     |                         | 1.00                 |
| 3.   | For males:                                  |                     |                         |                      |
|      | Input triceps skinfold thickness            | mm.                 | f B                     | Input                |
|      | Input Scapular ""                           | mm.                 | f C                     | Input                |
| 3'.  | For females:                                |                     |                         |                      |
| 5.   | Input triceps skinfold thickness            | mm.                 | f B                     | Input                |
|      | Input iliac " "                             |                     | f D                     | Input                |
|      |                                             | mm .                |                         |                      |
| 4.   | Input body weight                           |                     |                         |                      |
|      | in kilograms                                | Wt.kg.              | f    E                  | Wt. kg.              |
|      | OR, in pounds (as a negative value)         | Wt.lbs.             |                         |                      |
|      |                                             |                     | f    E                  | Wt. kg.              |
| 5.   | Calculate values:                           |                     |                         |                      |
| J.   | Body density                                |                     |                         | B.D.                 |
|      | % body fat                                  |                     | B   [ ]                 | % Fat                |
|      | Fat weight                                  |                     | C                       | Fat, kg.             |
|      | Lean body mass                              |                     | D                       | LBM, kg.             |
| 6.   | Calculated values available for review from |                     |                         |                      |
|      | registers:                                  |                     |                         |                      |
|      | Body density                                |                     | RCL    0  <br> RCL    1 | B.D.<br>% Fat        |
|      | % body fat<br>Fat weight                    |                     | RCL    2                | Fat, kg.             |
|      | Lean body mass                              |                     | RCL 3                   | LBM, kg.             |
|      |                                             |                     |                         |                      |
| *    | If you don't get the display desired repeat |                     |                         |                      |
|      | [f][A]                                      |                     |                         |                      |
|      |                                             |                     |                         |                      |
|      |                                             |                     |                         |                      |
|      |                                             |                     |                         |                      |
|      |                                             |                     |                         |                      |
|      |                                             |                     |                         |                      |

### 97 Program Listing I

| 26<br>STEP | KEY ENTRY      | KEY CODE | COMMENTS              | STEP        |                    | KEY CODE   | COMMENTS             |
|------------|----------------|----------|-----------------------|-------------|--------------------|------------|----------------------|
|            |                | 16 11    |                       | 057         |                    | -35        |                      |
| 001<br>002 | CLRG           | 16-53    | Togglo for mole       | <b>0</b> 58 | -                  | -45        |                      |
| 002        |                | 23 00    | Toggle for male,      | 059<br>059  | STOØ               | 35 00      | Store body density   |
|            |                | 22 00    | female                | 060         | DSF5               | -63 05     | 1                    |
| 004<br>005 | GTOO<br>CEO 10 |          |                       | 061         | PRTX               | -14        | Print body density   |
| 005        |                | 21 00    |                       | 062         | RTN                | 24         | i i inc body density |
| 005        | 6<br>570       | 00       |                       | 063         | *LBL2              | 21 02      | 4 1                  |
| 007        | RTN            | 24       |                       | 063<br>064  | * <i>LDLL</i><br>1 | 01         | Calculate male       |
| 003        | *LBL0          | 21 00    |                       |             | 1                  | -62        | body density         |
| 009        |                | 22 00    |                       | 065<br>865  | •                  |            |                      |
| 010        | 1              | 01       |                       | 066         | 0                  | 00         | 4                    |
| 011        | RTN            | 24       |                       | 067         | 9<br>2             | <b>0</b> 9 | 1                    |
| 012        |                | 16-12    | Store triceps         | 068         |                    | Ø2         | 1 1                  |
| 013        | STOE           | 35-12    |                       | 069         | 3                  | 03         |                      |
| 014        | RTN            | 24       |                       | 070         | RCLB               | 36 12      |                      |
| 015        | *LBLc 21       | 16 13    | Store Scapular        | 071         | 2                  | 02         |                      |
| 016        | STOC           | 35 13    | Store Scapular        | 072         | •                  | -62        |                      |
| 017        | RTN            | 24       |                       | 073         | 6                  | 00         | 1                    |
| 013        |                | 16 14    |                       | 074         | 2                  | 02         | 1                    |
| 019        | STOD           | 35 14    | Store Iliac           | 675         | EEX                | -23        |                      |
| 020        | RTN            | 24       | 1                     | 076         | 3                  | 03         | 1                    |
| 021        |                | 16 15    | Body Wt.              | 077         | CHS                | -22        | 1                    |
| 022        | X<0?           | 16-45    | Is input lbs or kg    | 078         | X                  | -35        |                      |
| 023        | GT01           | 22 01    | Go to 1bs             | 079         | -                  | -45        |                      |
| 023        | STOE           | 35 15    | Store kg              | 080         | 1                  | 01         |                      |
| 025        | RTN            | 24       |                       | 081         | -                  | -62        |                      |
| 025        | *LBL1          | 21 01    |                       | 082         | 6                  | 00         |                      |
| 020<br>027 | CHS            | -22      | Convert lbs to kg     | 083         | 5                  | 08         |                      |
|            |                |          | CONVENT IDS CO Kg     | 084         | 9<br>9             | 09         |                      |
| 023<br>029 | 2              | 02<br>60 | 4                     | 085         | 6                  | 06         |                      |
| 029<br>070 | •              | -62      |                       | 086         | RCLC               | 36 13      |                      |
| 030        | _2             | 02<br>04 |                       | 088<br>087  | i i                | 01 01      |                      |
| 031        | ÷              | -24      |                       |             | 1                  | -62        |                      |
| 032        | STOE           | 35 15    | Store kg              | 088         | •                  |            |                      |
| 033        | RTN            | 24       |                       | 089         | 7                  | 07<br>80   |                      |
| 034        | *LBLA          | 21 11    |                       | 090         | 9                  | <b>0</b> 9 |                      |
| 035        |                | 23 00    | Male or female        | 091         | EEX                | -23        |                      |
| 036        | GTO2           | 22 02    | Go to male            | 092         | 3                  | 03         |                      |
| 037        | 1              | 01       | Calculate female      | 093         | CHS                | -22        |                      |
| 038        | •              | -62      | body density          | 894         | $\Sigma_{\rm c}$   | -35        |                      |
| 039        | 0              | 00       |                       | 095         | -                  | -45        |                      |
| 040        | 7              | 07       |                       | <i>096</i>  | ÷                  | -55        |                      |
| 041        | 6              | 06       |                       | <b>0</b> 97 | 2                  | 02         |                      |
| 042        | 4              | 04       | †                     | 098         | ÷                  | -24        |                      |
| 043        | RCLD           | 36 14    | 1                     | 099         | STOO               | 35 00      | Store body density   |
| 044        | 8              | 08       | 1                     | 100         | DSP5               | -63 05     |                      |
| 045        | 1              | 01       | 1                     | 101         | PRTX               | -14        | Print body density   |
| 046        | EEX            | -23      | 1                     | 102         | RTN                | 24         |                      |
| 047        | 5              | 05       | 1                     | 103         | *LBLB              | 21 12      |                      |
| 048        | снэ            | -22      | 1                     | 104         | DSP2               | -63 02     | Calculate % body fat |
| 040        | X              | -35      | 1                     | 105         | 4                  | Ø4         |                      |
| 050        | -              | -45      | 1                     | 106         | -                  | -62        |                      |
| 058<br>051 | S              | -43      |                       | 107         | 5                  | 05         |                      |
| 051<br>052 | 0<br>8         | 08<br>08 | 1                     | 108         | 7                  | 07         |                      |
|            |                |          | 1                     | 100         | RCLÓ               | 36 00      |                      |
| 053<br>054 | EEX            | -23      | 1                     | 110         | ÷                  | -24        |                      |
| 054<br>055 | 5              | 05<br>00 | 1                     |             |                    | -24<br>04  |                      |
| 055<br>055 | CHS            | -22      | 4                     | 111         | 4                  |            |                      |
| 056        | RCLE           | 36-12    |                       | 112         | •                  | -62        |                      |
|            |                |          |                       | STERS       |                    | 17         |                      |
| Body d     | ens %Fat       | Fat Wi   | t. $^{3}$ LBM $^{4}$  | 5           | 6                  | 7          | 8 9                  |
|            |                |          | S3 S4                 | S5          | S6                 | S7         | S8 S9                |
| S0         | S1             | S2       | 53 54                 | 35          | 30                 | 37         |                      |
| <u> </u>   |                |          |                       | D           |                    | <b>I</b>   |                      |
| А          | В              | Triceps  | <sup>C</sup> Scapular | U Ili       | ac                 | e Wt.      | *                    |
|            |                |          |                       | 1           |                    |            | 1                    |

26

### Program Listing II

|                     |                       |                     | 1 i ugi am                        |          | 1115 11           |                                       |            | 27    |
|---------------------|-----------------------|---------------------|-----------------------------------|----------|-------------------|---------------------------------------|------------|-------|
| STEP                | KEY ENTRY             | KEY CODE            | COMMENTS                          | STEP     | KEY ENTRY         | KEY CODE                              | СОММ       | ENTS  |
| 113                 |                       | ē i                 |                                   |          |                   |                                       |            |       |
| 114                 |                       | 04                  | 1                                 | 170      |                   |                                       |            |       |
| 115                 |                       | 02                  | 1                                 |          |                   |                                       |            |       |
| 116                 |                       | -45                 | 1                                 |          |                   |                                       |            |       |
| 117                 |                       | -23                 | ł                                 |          |                   |                                       |            |       |
| 118                 |                       | 02                  | 1                                 |          |                   |                                       |            |       |
| 119                 |                       | -35                 | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
| 120                 |                       | 35 01               |                                   |          |                   |                                       |            |       |
| 121                 |                       | -14                 |                                   |          |                   |                                       |            |       |
| 122                 |                       | 24                  | ]                                 |          |                   |                                       |            |       |
| 123                 |                       | 21 13               | Calculate fat wt.                 |          |                   |                                       |            |       |
| 124                 |                       | $36 \ 15$           |                                   | 180      |                   |                                       |            |       |
| 125                 |                       | 36 01               | 1                                 |          |                   |                                       |            |       |
| 126                 | λ                     | -35                 | 1                                 |          |                   |                                       |            |       |
| 127                 | EEX                   | -23                 | 1                                 |          |                   |                                       |            |       |
| 128                 | 2                     | 02                  | 1                                 |          |                   |                                       |            |       |
| 129                 | ÷                     | -24                 |                                   |          |                   |                                       |            |       |
| 130                 |                       | 35 02               | 1                                 |          |                   |                                       |            |       |
| 130                 |                       | -14                 | 1                                 |          |                   |                                       |            |       |
| 132                 |                       | 24                  | 1                                 | <b> </b> |                   |                                       |            |       |
| 132                 |                       | 21 14               |                                   |          |                   |                                       |            |       |
| 133<br>134          |                       | 21 14<br>36 15      | Calculate lean                    |          |                   |                                       |            |       |
|                     |                       |                     | body mass                         | 190      |                   |                                       |            |       |
| 135                 |                       | 36 02               |                                   |          |                   |                                       |            |       |
| 136                 |                       | -45                 |                                   |          |                   |                                       |            |       |
| 137                 |                       | 35 03               |                                   |          |                   |                                       |            |       |
| 138                 |                       | -14                 | 1                                 |          |                   |                                       |            |       |
| 139                 | RTN                   | 24                  | 1                                 |          |                   |                                       |            |       |
| 140                 |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 | 200      |                   |                                       |            |       |
|                     |                       |                     | 4                                 | 200      |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     |                                   |          |                   |                                       |            |       |
|                     |                       |                     |                                   |          |                   |                                       |            |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
| 150                 |                       |                     | 1                                 |          |                   |                                       | 1          |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 | 210      |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
| <b>├</b> ───┤       |                       | -+                  | 4                                 |          |                   |                                       |            |       |
| ├                   |                       | -+                  | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
| <b>├</b> ───┤       |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   | · · · · · · · · · · · · · · · · · · · |            |       |
| 160                 |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | 4                                 |          |                   |                                       |            |       |
|                     |                       | 1                   | 4                                 |          |                   |                                       |            |       |
|                     |                       |                     | ]                                 |          |                   |                                       |            |       |
|                     |                       |                     | ]                                 | 220      |                   |                                       |            |       |
|                     |                       |                     | ]                                 |          |                   |                                       |            |       |
|                     |                       |                     | 1                                 |          |                   |                                       |            |       |
|                     |                       |                     | ]                                 |          |                   |                                       |            |       |
|                     |                       |                     |                                   |          |                   |                                       |            |       |
|                     |                       |                     | LABELS                            |          | FLAGS             |                                       | SET STATUS |       |
| <sup>A</sup> Body [ | Dens. <sup>B</sup> %F | at <sup>C</sup> Fat | Wt. <sup>D</sup> LBM <sup>E</sup> |          | <sup>0</sup> Used | FLAGS                                 | TRIG       | DISP  |
|                     |                       |                     |                                   |          | 1                 | ON OFF                                |            |       |
| <sup>a</sup> Toggle | e Tri                 | ceps Sca            | pular Iliac                       | Wt.      |                   | 0 🗆 🛛                                 | DEG 🛛      | FIX 🛛 |
| 0                   | 1                     | 2                   | 3 4                               |          | 2                 | 1 🗆 🕱                                 | GRAD       |       |
| 5                   | 6                     | 7                   | 8 9                               |          | 3                 | 2 🗆 🔀<br>3 🗆 🕱                        | RAD 🗆      | ENG 🗆 |
|                     |                       |                     | I                                 |          |                   | 3 🗆 🛱                                 |            | ···   |

| Program Title      | Estimating Obesity, Body Fat, Surface Area, and |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------|--|--|--|--|--|--|--|
|                    | Total Body Water.                               |  |  |  |  |  |  |  |
| Contributor's Name | Andrew C. M. Coile                              |  |  |  |  |  |  |  |
| Address            | 4323 Rosedale Avenue                            |  |  |  |  |  |  |  |
| City               | Bethesda State Maryland Zip Code 20014          |  |  |  |  |  |  |  |
|                    |                                                 |  |  |  |  |  |  |  |

| Prog                                      | ram Description, Equatio  | ons, Variables      |                                            |                    |                                          |  |  |  |  |  |
|-------------------------------------------|---------------------------|---------------------|--------------------------------------------|--------------------|------------------------------------------|--|--|--|--|--|
| Α.                                        | Weight-height             | Index (somet        | times called Que                           | telet's Index      | (Reference 1)                            |  |  |  |  |  |
| Sector and the sector of the              |                           | $I = \frac{W}{H^2}$ |                                            |                    |                                          |  |  |  |  |  |
|                                           | where W is w              | veight in ki        | ilograms and H i                           | s height in m      | netres.                                  |  |  |  |  |  |
| (Marian and Same                          | Cut-off point for Obesity |                     |                                            |                    |                                          |  |  |  |  |  |
| 1 1 1 1 mm                                | Sex Frame Obesity if I >  |                     |                                            |                    |                                          |  |  |  |  |  |
|                                           |                           | Men                 | Medium                                     | 27.5               |                                          |  |  |  |  |  |
|                                           |                           | Women               | Medium                                     | 27.0               |                                          |  |  |  |  |  |
| 1. and 1. and 1.                          |                           | Men                 | Large                                      | 29.9               |                                          |  |  |  |  |  |
|                                           |                           | Women               | Large                                      | 29.5               | an a |  |  |  |  |  |
| В.                                        | <u>Body Fat</u> , F       | Men                 | $%F = 1.281 \left( \frac{W}{H^2} \right)$  | -] - 10.13         | (Reference 1)                            |  |  |  |  |  |
|                                           |                           |                     | $= 1.48 \left( \frac{W}{H^2} \right)^{-1}$ |                    |                                          |  |  |  |  |  |
| с.                                        | Body Surface A            | Area, B.S.A.        | in square metre                            | es.                | (Reference 2                             |  |  |  |  |  |
|                                           |                           | B.S.A. =            | 0.007185 W <sup>0.425</sup>                | H <sup>0.725</sup> |                                          |  |  |  |  |  |
| D.                                        | <u>Total Body Wat</u>     |                     |                                            |                    | (Reference 2                             |  |  |  |  |  |
| <b>- - - - - - - - -</b>                  |                           | Men T.B             | .W. = 0.296785W                            | + 19.4786H -       | 14.012934                                |  |  |  |  |  |
| Later and a dense of                      |                           | Women T.B           | .W. = 0.183809W                            | + 34.4547H -       | 35.270121                                |  |  |  |  |  |
| Opera                                     | ating Limits and Warning  | ]S                  |                                            |                    |                                          |  |  |  |  |  |
| the second state of a difference of       |                           |                     |                                            |                    |                                          |  |  |  |  |  |
| to an |                           |                     |                                            |                    |                                          |  |  |  |  |  |
|                                           |                           |                     |                                            |                    |                                          |  |  |  |  |  |
|                                           |                           |                     |                                            |                    |                                          |  |  |  |  |  |
| 1                                         |                           |                     |                                            |                    |                                          |  |  |  |  |  |
|                                           |                           |                     |                                            |                    |                                          |  |  |  |  |  |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

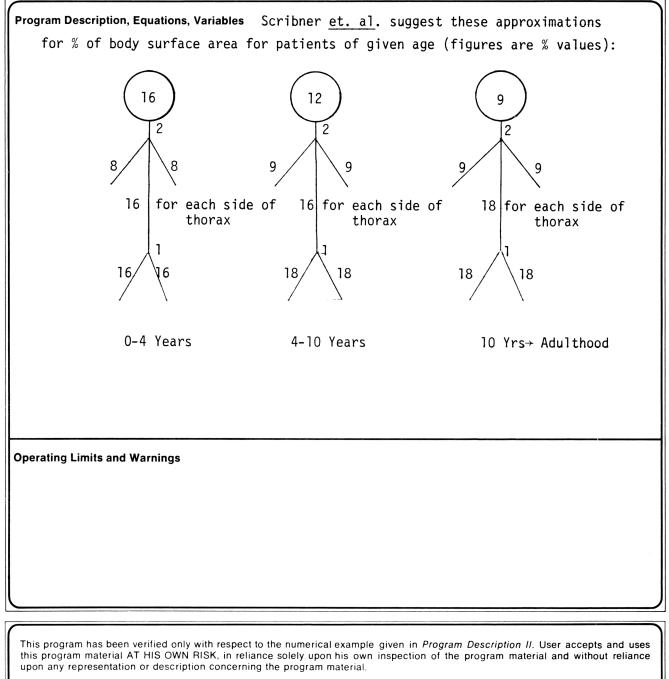
| Sketch(es)                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  | a ser a ser a ser a ser a ser a ser a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                  | A second s |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  | الاستنباط ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  | e e e e e e e e damard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Sample Problem(s) 1. Is a 6'6" male basketball player weighing 200 lbs. with a large frame obese?                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 2. What is his percent h                                                                                                                         | oody fat?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 3. What is his body surf                                                                                                                         | ace area?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 4 What is his total has                                                                                                                          | lu votor?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 4. What is his total boo                                                                                                                         | ly water?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  | 2. Percent body fat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Solution(s)                                                                                                                                      | $\{D\} \rightarrow 19.48 \%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| $1. \qquad \text{Obese?}$                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| ${f}{A} \rightarrow 1.00$ for male.<br>${f}{D} \rightarrow 4.00$ for large frame.                                                                | 3. Body surface area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| 78 inches $\{A\} \rightarrow 1.98$ metres.                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 200 lbs. $\{B\} \rightarrow 90.72 \text{ kilos.}$                                                                                                | $\{E\} \rightarrow 2.26$ square metres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| $\{C\} \rightarrow 29.90 \text{ critical Index}.$                                                                                                | 4. Total body water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 23.11 subject's Index.                                                                                                                           | $\{f\}\{E\} \rightarrow 51.50 \text{ litres.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 25.11 Subject's index.                                                                                                                           | $\{I\}\{E\} \neq JI.JU IILLES.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Peterseta Poference 1. Decembra of                                                                                                               | the (A DUSS/MPC Barant) by U.P.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Reference(s) Reference 1: Research on Obest                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| James. Her Majesty's Stationery Office, London, 1976,ISBN 0 11 450034 7<br>Reference 2: Hume, R and Weyers, Elspeth, "Relationship between total |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| body water and surface area in normal and obese subjects", Journal of                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| body water and surface area in normal a                                                                                                          | and obese subjects", <i>Journal of</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

Clinical Pathology, Vol.24, pages 234-238, 1971.



| STEP | INSTRUCTIONS                            | INPUT<br>DATA/UNITS | KEYS |   | OUTPUT<br>DATA/UNITS |
|------|-----------------------------------------|---------------------|------|---|----------------------|
|      |                                         |                     |      |   |                      |
| 1.   | Load side 1 and 2 of the magnetic card. |                     |      |   |                      |
|      | Select: Man                             |                     | f    | A | 1.00                 |
|      | Woman                                   |                     | f    | В | 2.00                 |
| 3.   | Select: Medium frame                    |                     | f    | С | 3.00                 |
|      | Large frame                             |                     | f    | D | 4.00                 |
| 4.   | If height is in metres, do step 5;      |                     |      |   |                      |
|      | if height is in inches, do step 6.      |                     |      |   |                      |
| 5.   | Enter height in metres.                 | metres              | STO  | Α | metres               |
|      | Enter height in inches.                 | inches              |      | A | metres               |
|      | If weight is in kilograms, do step 8;   |                     |      |   |                      |
|      | if weight is in pounds, do step 9.      |                     |      |   |                      |
| 8.   | Enter weight in kilograms.              | kilos.              | STO  | В | kilos.               |
|      | Enter weight in pounds.                 | pounds              |      | В | kilos.               |
|      | <b>5</b>                                | •                   |      |   |                      |
| 10.  | Find weight-height index.               |                     |      | С | critical             |
|      | 5                                       |                     |      |   | value,               |
|      | If subject's value is > critical        |                     |      |   | subject's            |
|      | value, subject's value will flash,      |                     |      |   | value.               |
|      | indicating subject is obese.            |                     |      |   |                      |
| 11.  | Find Percent body fat.                  |                     |      | D | % fat.               |
| 12.  | Find Body Surface Area in square metres |                     |      | E | m²                   |
|      | Find Total Body Water in litres.        |                     | f    | E | litres.              |
|      | For a new case, go to step 2.           |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      | ] |                      |
|      |                                         |                     |      |   |                      |
|      |                                         |                     |      |   |                      |

|                          |                     |                                 | 97 Program       | Listing I                       |                       | 31                       |
|--------------------------|---------------------|---------------------------------|------------------|---------------------------------|-----------------------|--------------------------|
| STEP KE                  | EY ENTRY            | KEY CODE                        | COMMENTS         | STEP KEY ENTRY                  | KEY CODE              | COMMENTS                 |
| 001                      | *LBLa               | 21 15 11                        | Man.             | 057 *LBL2                       | 21 02                 | Female.                  |
| 002<br>003               | CF0<br>1            | 18 22 88<br>81<br>34            |                  | 058 2<br>059 7                  | 02<br>07              | Critical value.          |
| 004<br>005<br>006        | RTN<br>★LBL‰<br>SFØ | 24<br>21 16 12<br>15 21 60      | Woman.           | 060 *LBL3<br>061 PSE<br>062 X≠Y | 21 83<br>16 51        | Display critical value.  |
| 007<br>008               | 2<br>RTN            | 02<br>24                        |                  | 062 X≠Y<br>063 X>Y?<br>064 GT09 | -41<br>16-34<br>22 89 | Obese?                   |
| 000                      | *LBL:               | 21 16 13                        | Medium frame.    | 065 RTN                         | 22 65<br>24           |                          |
| 010<br>011               | CF1<br>3            | 16 22 81<br>83                  |                  | 066 *LBL1<br>067 F0?            | 21 01<br>16 23 00     | Large frame.<br>Female?  |
| 012                      | RTN                 | 24                              |                  | <b>0</b> 68 GT04                | 22 84                 |                          |
| 013<br>014               | *LBLd<br>SF1        | 21 16 14<br>16 21 81            | Large frame.     | 069 2<br>070 9                  | 02<br>69              | No.                      |
| 015<br>016               | 4<br>RTN            | 64<br>24                        |                  | 071 .<br>072 0                  | -62                   | Critical reluc           |
| <i>016</i><br><i>017</i> | ĸ⊺n<br>≭LBLA        | 24<br>21 11                     | Height.          | 072 9<br>073 GTO3               | 89<br>22 83           | Critical value.          |
| 018                      | 1                   | 01<br>02                        | (in inches).     | 074 *LBL4                       | 21 04                 | Female.                  |
| 019<br>020               | 2<br>÷              | 01<br>-24                       | Convert to feet. | 075 2<br>076 9                  | 02<br>09              |                          |
| 021<br>822               | •                   | -62                             |                  | 077 .<br>070 5                  | -62                   |                          |
| 022<br>023               | 3<br>0              | 63<br>60                        |                  | 078 5<br>079 GTO3               | 85<br>22 83           | Critical value.          |
| 024                      | 4                   | 04                              |                  | 080 *LBLD                       | 21 14                 | % Fat.                   |
| 025<br>026               | 8<br>X              | 08<br>-35                       | Convert to metre | 081 F0?<br>082 GT05             | 16 23 00<br>22 05     | Female?                  |
| 028<br>027               | STŪA                | -50<br>35 11                    | Store in metres. | 082 6103<br>083 RCLC            | 22 03<br>36 13        |                          |
| 028                      | RTN                 | 24                              | <i></i>          | 034 1                           | 51                    |                          |
| 029<br>030               | *LBLB               | 21 12<br>-62                    | Weight.          | 085 .<br>086 2                  | -62<br>82             |                          |
| 031                      | •                   | C 4                             | (in kilos).      | <b>0</b> 87 8                   | 02<br>08              |                          |
| 032<br>077               | 5                   | 05<br>87                        |                  | 088 1                           | 01<br>75              | $1 001 - 11/11^2$        |
| 033<br>034               | 3<br>5              | 83<br>85                        |                  | 089 ×<br>090 1                  | -35<br>61             | 1.281 x W/H <sup>2</sup> |
| 035                      | 9                   | 89                              |                  | 091 0                           | 60                    |                          |
| <b>0</b> 36<br>077       | 2                   | 92<br>97                        |                  | 092 .<br>207 :                  | -62                   |                          |
| 037<br>038               | 3<br>7              | 03<br>07                        |                  | 093 1<br>094 3                  | 61<br>63              |                          |
| 039                      | Х                   | -35                             | Convert to kilos | 095 -                           | -45                   | - 10.13.                 |
| 040<br>041               | STOB<br>RTN         | 35-12<br>24                     | Store in kilos.  | 096 RTN<br>007 M D F            | 24<br>21 05           | <b></b>                  |
| 041<br>042               | *LBLC               | 24<br>21 13                     | Index.           | 097 *LBL5<br>098 RCLC           | 21 00<br>36 13        | Female.                  |
| 043                      | RCLB                | 36 12                           | Indda.           | 099 1                           | E1                    |                          |
| 044<br>045               | RCLA<br>X2          | 36 11<br>53                     |                  | 100 .<br>101 4                  | -52<br>34             |                          |
| 043<br>046               | ÷                   | -24                             | W/H <sup>2</sup> | 101 4<br>102 8                  | 88<br>88              |                          |
| 047                      | STOC                | 35 13 -                         |                  | 103 ×                           | -35                   | $1.48 \times W/H^{2}$    |
| 048<br>049               | F1?<br>GT01         | 16 23 01<br>22 01               | Large frame?     | 104 7                           | 87<br>45              | - 7                      |
| 049<br>050               | 6701<br>FØ?         | 16 23 00                        | No. Female?      | 105 -<br>106 RTN                | -45<br>24             | - /                      |
| 051                      | GTO2                | 22 82                           |                  | 107 *LBL9                       | 21 09                 | Obese blink.             |
| 052<br>053               | 2<br>7              | 02<br>07                        |                  | 108 PSE<br>109 GTC9             | 16 51<br>22 65        | Endless loop.            |
| 053<br>054               | í                   | -52                             |                  | 109 GTU9<br>110 *LBLE           | 22 63<br>21 15        | B.S.A.                   |
| 055<br>056               | 5<br>GT03           | 05<br>22 03                     | Critical value.  | 111 RCLA<br>112 EEX             | 36-11<br>-23          |                          |
| 1                        | 6103<br>L           |                                 | REGIS            | TERS                            | -20                   | 8 9                      |
| 0                        |                     | 2                               |                  |                                 |                       |                          |
| S0                       | S1                  | S2                              | S3 S4 S          | 65 S6                           | S7                    | S8 S9                    |
| A Height<br>(in metr     | t<br>ces).          | <sup>B</sup> Weight<br>(in kilo |                  | D                               | E                     | I                        |


#### 32

## 97 Program Listing II

| 32<br>STEP         | KEY ENTRY  | KEY CO     | DE           | COMMENTS            |                 | STEP |            |           | KEY CODE        | COM             | MENTS                                    |
|--------------------|------------|------------|--------------|---------------------|-----------------|------|------------|-----------|-----------------|-----------------|------------------------------------------|
| <u> </u>           |            | 82         |              | COMMENTS            |                 |      | 169        | RTN       | 24              |                 |                                          |
| 11.                |            | -35        |              |                     |                 |      | 170        | *LBL8     | 21 08           | Female          |                                          |
| 11                 |            | -62        |              |                     |                 |      | 171        | +====     | -52             | remare          | 1.0                                      |
| 110                |            | 07         | ,            |                     |                 |      | 172        | 1         | 01              |                 |                                          |
| 11                 |            | 82         |              | alculate:           |                 |      | 173        | 8<br>3    | 88              |                 |                                          |
| 11                 |            | 85         |              | 3.S.A. =            |                 |      | 174        |           | 03              |                 |                                          |
| 11                 |            |            | 0.00         | )7185 x             |                 |      | 175        | 8         | 63              |                 |                                          |
| 120                |            | 36 13      |              | 425 X               |                 |      | 176        | Ø         | 88              |                 |                                          |
| 12.                |            | -62        | W            | х<br>То Т           |                 |      | 177        | 9<br>DCLD | 09<br>36 12     |                 |                                          |
| 12:<br>12:         |            | 04<br>02   | H            | 725                 |                 |      | 178<br>179 | RCLB<br>x | -35             |                 |                                          |
| 12.                | s 2<br>4 5 | 05<br>05   |              |                     |                 |      | 180        | 3         | 00<br>03        |                 |                                          |
| 12                 |            | 31         |              |                     |                 |      | 181        | 4         | 64              |                 |                                          |
| 120                |            | -35        |              |                     |                 |      | 182        |           | -62             |                 |                                          |
| 12                 |            | 87         | <del>,</del> |                     |                 |      | 183        | 4         | C 4             | Calcul          | ate:                                     |
| 128                |            | -62        |              |                     |                 |      | 184        | 5         | 35              | T.B.            |                                          |
| 12:                |            | 81         |              |                     |                 |      | 185        | 4         | 64              | 0.18380         |                                          |
| 130                |            | 98<br>35   |              |                     |                 |      | 186        | 7         | 87              | 34.4547         |                                          |
| 13.                |            | 85<br>- 23 |              |                     |                 |      | 187        | RCLÂ      | 35 11<br>- 75   | 35.2701         | 21                                       |
| 13:<br>13:         |            | -23<br>83  | ;<br>,       |                     |                 |      | 188<br>189 | ×<br>+    | -35<br>-55      |                 |                                          |
| 13.                |            | -22        |              |                     |                 |      | 189<br>190 |           | -30<br>82       |                 |                                          |
| 13:                |            | -35        |              |                     |                 |      | 191<br>191 | 35        | 85<br>85        |                 |                                          |
| 130                |            | 24         |              |                     |                 |      | 192        |           | -62             |                 |                                          |
| 13                 |            | 21 15 15   | Tota         | al Body Wa          | ater            |      | 193        | 2         | - 82            |                 |                                          |
| 130                |            | 16 23 00   |              | -                   |                 |      | 194        | 2<br>7    | 67              |                 |                                          |
| 13:                |            | 22 08      |              | ale:                |                 |      | 195        | 6         | 68              |                 |                                          |
| 141                |            | 36-12      |              |                     |                 |      | 196        | 1         | 61              |                 |                                          |
| 14.                |            | -62        |              |                     |                 |      | 197        | 2         | 82              |                 |                                          |
| 14:                |            | 62<br>09   |              |                     |                 |      | 198        | 1         | 81<br>15        |                 |                                          |
| 14:<br>14:         |            | 05<br>06   |              |                     |                 |      | 199<br>200 | -<br>RTN  | -45<br>24       |                 |                                          |
| 14                 |            | 07<br>07   |              |                     |                 |      | 200        | <u></u>   | <u> </u>        | -+              |                                          |
| 140                |            | 08<br>08   |              |                     |                 |      | +          |           |                 | -               |                                          |
| 14                 |            | 85         |              |                     |                 |      |            |           |                 | -               |                                          |
| 14                 |            | - 35       |              |                     |                 |      | 1          |           |                 |                 |                                          |
| 14                 | 9 RCLA     | 36-11      |              |                     |                 |      | 1          |           |                 | -               |                                          |
| 150                | 91         | 01         |              |                     |                 |      |            |           |                 |                 |                                          |
| 15.                |            | 09         | ·            |                     |                 |      |            |           |                 |                 |                                          |
| 152                |            | - 52       |              |                     |                 |      |            |           |                 | _               |                                          |
| 15.<br>15-         |            | 04<br>37   |              | alculate:           |                 | 210  |            |           |                 | -1              |                                          |
| 15                 |            | 07<br>08   |              | $\Gamma.B.W. =$     |                 | 2.0  | +          |           |                 | -1              |                                          |
| 150                |            | 66         |              | 96785 W +           |                 |      | +          |           |                 | -1              | С. С |
| 15                 |            | - 35       |              | 4786 Н <del>-</del> |                 |      | 1          |           |                 | -1              |                                          |
| 150                | 5 +        | -55        | - 19.º       | )12934              |                 |      |            |           |                 |                 |                                          |
| 15:                |            | 01         |              | 512757              |                 |      |            |           |                 |                 |                                          |
| 160                |            | 64         |              |                     |                 |      |            |           |                 | 4               |                                          |
| 16.<br>161         |            | -52<br>00  |              |                     |                 |      |            |           |                 |                 |                                          |
| 16.<br>150         |            | 96<br>31   |              |                     |                 |      | +          |           |                 | -1              |                                          |
| 15.                |            | 62         |              |                     |                 | 220  |            |           |                 | -1              |                                          |
| 16:                |            | 05<br>05   |              |                     |                 |      |            |           |                 | -1              |                                          |
| 160                | 5 3        | 63         |              |                     |                 |      |            |           |                 | ]               |                                          |
| 16                 | 7 4        | 84         |              |                     |                 |      |            |           |                 |                 |                                          |
| 168                | 9 -        | -45        |              |                     |                 |      | 4          | FLACE     |                 | CET OTATIO      |                                          |
| A                  | В          | С          |              | BELS                | E               |      | 0          | FLAGS     |                 | SET STATUS      |                                          |
| Heigh              | t We       | ight       | Index        | % Fat               | B.              | S.A. | 1          | Female    | FLAGS<br>ON OFF | TRIG            | DISP                                     |
| Man                | Woi        |            | Medium       | Large               | <u>т</u> .      | B.W. | <u> </u>   | Large     | _ 0 🗆 🕱         | DEG 🕱           | FIX X                                    |
| 0                  | La         | rge 2      | Female       | <sup>3</sup> Entry  | <sup>4</sup> Fe | male | 2          |           | 1 🗆 🗶<br>       | GRAD □<br>RAD □ | SCI 🗆<br>ENG 🗆                           |
| <sup>5</sup> Femal | 6          | 7          |              | <sup>8</sup> Female | 19              | ese  | 3          |           | 3 🗆 🗙           |                 | n_2                                      |

### **Program Description I**

| Program Title                         | 67-Fluid & | Electrolytes/Bod                       | y Burn | Area |          |       |
|---------------------------------------|------------|----------------------------------------|--------|------|----------|-------|
| Contributor's Name<br>Address<br>City |            | C. Rodgers, M.D<br>Street Apt 3<br>.co | State  | СА   | Zip Code | 94117 |



NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

| Sketch(es)                                                              |
|-------------------------------------------------------------------------|
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
| Sample Problem(s)                                                       |
| Given the following percentage burn areas:                              |
| Head = $5\%$                                                            |
| Neck = 100%                                                             |
| R Arm = 20%                                                             |
| L Arm = 10%                                                             |
| Anterior Torso = 50%                                                    |
| Posterior Torso = 20%                                                   |
| Genitalia = 0%                                                          |
| R Leg = $10\%$                                                          |
| L Leg = $0\%$                                                           |
| Calculate total burn area for patient 1) 3 years old 2) 5 years old     |
| 3) 20 years old.                                                        |
|                                                                         |
| Solution(s) 1) [f][A] 3[A], input data according to data input routine  |
| below, [f][C]> 18                                                       |
| 2) [f][A] 5[A], input data according to data input routine              |
| below, [f][C]> 18                                                       |
| 3) [f][A] 20[A], input data according to data input routine             |
| below, [f][C]> 20                                                       |
| Data input routine for above problems:                                  |
| 5[B] 100[C] 20[D] 10[D] 50[f][D] 20[f][D] 0[f][E]                       |
| 10[E] 0[E]                                                              |
|                                                                         |
| Reference(s) Scribner, et. al., Fluid & Electrolyte Balance, Washington |
| University Bookstore, 1963.                                             |

## **User Instructions**

| FLUID & LYTE | S/BODY BUR | N AREA     |               |   | _ |
|--------------|------------|------------|---------------|---|---|
|              | R          | <u> </u>   |               | E |   |
| AGE          |            | L          |               | e |   |
| CLR TOTAL    | •          | C=RCL TOTA | L EACH SIDE O |   |   |
|              |            |            |               |   |   |

| STEP | INSTRUCTIONS                                  | INPUT<br>DATA/UNITS | KEYS | OUTPUT<br>DATA/UNITS |
|------|-----------------------------------------------|---------------------|------|----------------------|
| 1.   | Enter sides 1 or 2 of card 1/1                |                     |      |                      |
|      |                                               |                     |      |                      |
| 2.   | Input age (years)                             | Age                 | Α    | AGE                  |
|      |                                               |                     |      |                      |
| 3.   | Clear previous totals, if any                 |                     | fa   | -0-                  |
|      |                                               |                     |      |                      |
| 4.   | Input % area burned for each of the following |                     |      |                      |
|      | body pars:                                    |                     |      |                      |
|      | 1) Head                                       | % Area              | B    | % Total Are          |
|      | 2) Neck                                       |                     |      | n                    |
|      | 3) Anterior Torso                             | п                   | f d  | "                    |
|      | 4) Posterior Torso                            |                     | _fd_ | "                    |
|      | 5) R Arm                                      |                     |      |                      |
|      | 6) L Arm                                      |                     |      | "                    |
|      | 7) Genitalia                                  |                     | _fe  | "                    |
|      | 8) R Leg                                      |                     |      |                      |
|      | 9) L Leg                                      |                     |      |                      |
| F    |                                               |                     |      |                      |
| 5.   | Recall and print body surface area burned,    |                     |      | Body area            |
|      | total (%)                                     |                     | fc   | Burned               |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      | <b> </b> ]           |
|      |                                               |                     |      | <u> </u> ]           |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |
|      |                                               |                     |      |                      |

### Program Listing I

| 36         |                    |                                 | 91 Program                    | LIS        | ling I         |                  |                                           |
|------------|--------------------|---------------------------------|-------------------------------|------------|----------------|------------------|-------------------------------------------|
| STEP       | KEY ENTRY          | KEY CODE                        | COMMENTS                      | STEP       | KEY ENTRY      | KEY CODE         | COMMENTS                                  |
| 108        | *LBLA              | 21 11                           | Input age                     | 057<br>058 | *LBLD<br>F0: 1 | 21 14<br>6 23 00 | Arm, R&L                                  |
| 002        |                    | 23 03<br>22 00                  | If no data entered recall age | 058<br>059 | GT04           | 22 04            | 1                                         |
| 003        | GTO0<br>DCLO       | 22 00<br>36 08                  |                               | 060        | 9              | 09               |                                           |
| 004        | RCLS               |                                 | Yrs+(8)                       | 061        | GTO7           | 22 07            | 1                                         |
| 005<br>005 | RTN                | 24                              |                               | 061<br>062 | *LBL4          | 21 04            | 1                                         |
| 006        | *LBL0              | 21 00<br>17 15                  |                               | 062<br>063 | *LDL4<br>8     | 08               |                                           |
| 007        | X < 0 ?            | 16-45                           |                               | 063<br>064 | GT07           | 22 07            | 1                                         |
| 008        | ۲ <b>۷</b><br>متعد | 54<br>75 ee                     | Yrs→(8)                       | 064<br>065 |                | 1 16 14          | Torso, A&P                                |
| 009        | STO8               | 35 08                           |                               | 065<br>066 |                | 1 10 14<br>Øl    |                                           |
| 010        |                    | 5 22 00                         |                               | 068<br>067 | 1<br>8         | 01<br>08         | 1                                         |
| 011        |                    | 5 22 01                         |                               | 067        |                | 6 23 00          |                                           |
| Ø12        | 4                  | 04<br>17 35                     |                               | 060<br>069 | GT05           | 22 05            | 1                                         |
| 013        | XZY?               | 16-35<br>20. et                 |                               | 009<br>070 |                | 6 23 01          | 1                                         |
| 014        | GT01               | 22 01                           |                               | 070<br>071 | GT05           | 22 05            | 1                                         |
| 015        |                    | 5 21 00<br>76 00                |                               | 071<br>072 | GT03<br>GT07   | 22 03<br>22 07   | 1 1                                       |
| 616        | RCLS               | 36 08                           |                               | 072<br>073 | *LBL5          | 21 05            | 1                                         |
| 017        | RTN                | 24                              |                               | 073        | CLX            | -51              | 1                                         |
| 018        | *LBL1              | 21 01                           |                               | 074<br>075 | 1              | 01               | † 1                                       |
| 019        | CLX                | -51                             |                               | 075<br>076 | 6              | 86               | 1                                         |
| 020        | 1                  | 01                              |                               | 076<br>077 | GTO7           | 22 07            | 1                                         |
| 621        | Ø                  | 00                              |                               | 073        | *LBLE          | 22 07<br>21 15   | Leg, R&L                                  |
| 622        | XZY?               | 16-35                           |                               | 073<br>079 |                | 21 15<br>01      |                                           |
| 823        | GTOS               | 22 08                           |                               |            | 1              | 01<br>08         | 1                                         |
| 624        |                    | 21 01                           |                               | 080        | 8<br>500 t     | 00<br>6 23 00    | 1                                         |
| 025        | RCLS               | 36 08                           |                               | 081        | F0? 1:<br>GT06 | 22 06            | 4                                         |
| 026        | RTN                | 24                              |                               | 082<br>887 |                |                  | 4                                         |
| 027        | *LBL8              | 21 08                           |                               | 083<br>004 | GTO7           | 22 07<br>21 06   | 1                                         |
| 028        | RCL8               | 36 08                           |                               | 684<br>805 | *LBL6<br>CLX   | 21 06<br>-51     | {                                         |
| 629        | RTN                | 24                              |                               | 085<br>006 |                | -51<br>01        | { }                                       |
| 030        |                    | 16 11                           | Clear total                   | 086<br>897 | 1              |                  |                                           |
| 631        | CLX                | -51                             |                               | 087        | 6<br>0707      | 06<br>22 87      | ł                                         |
| 032        | ST09               | 35 09                           |                               | 688        | GT07           | 22 07            | Genitalia                                 |
| 033        | RTN                | 24                              |                               | 689<br>000 |                | 1 16 15          | Genicalia                                 |
| 034        | *LBLB              | 21 12                           | Head                          | 090<br>801 | 1              | 01<br>21 97      | {                                         |
| 035        |                    | 16-12                           | Heau                          | 091<br>092 | *LBL7<br>EEX   | 21 07<br>-23     | -                                         |
| 036        |                    | 23 00                           |                               | 692<br>693 | 2              | -23<br>02        | -                                         |
| 037        | STO2               | 22 02                           |                               | 693<br>094 |                | -24              | + I                                       |
| 038        |                    | 23 01                           |                               |            | ÷<br>X         | -35              | 4                                         |
| 039        | GTO3               | 22 03                           |                               | 095<br>096 |                | -35<br>5-55 09   | 4                                         |
| 040        | 9                  | 09 .                            |                               | 096<br>097 |                | 24               |                                           |
| 041        | GTO7               | 22 07                           |                               | 098<br>098 | R/S            | 51               |                                           |
| 042<br>047 | *LBL2              | 21 02                           |                               | 020        | Nº O           | 01               | 1                                         |
| 043        | 1                  | 01<br>07                        |                               | 100        |                |                  |                                           |
| 044<br>045 | 6<br>0707          | . 06<br>22.67                   |                               |            |                |                  | 4                                         |
| 045<br>010 | GT07               | 22 07<br>21 03                  |                               | +          |                |                  |                                           |
| 046<br>647 | *LBL3              | 21 03<br>01                     |                               | +          |                |                  | 1                                         |
| 047<br>048 | 1<br>2             | 01<br>02                        |                               |            |                |                  | 1                                         |
| 048<br>049 | ST07               | 02<br>22 07                     |                               |            |                |                  | 1                                         |
| 649<br>050 | *LBLC              | 22 07<br>21 13                  | Nooli                         |            |                |                  | 1                                         |
| 050<br>051 | *LDLC<br>2         | 21 13<br>02                     | Neck                          |            |                |                  | 1                                         |
| 051<br>052 | GTO7               | - 02<br>22-07                   |                               |            |                |                  | 1                                         |
| 052<br>053 |                    | 16 13 ·                         |                               | +          |                |                  | ]                                         |
| 633<br>654 | RCL9               | $\frac{16}{36}$ $\frac{13}{69}$ | Recall total                  | 110        |                |                  |                                           |
| 055<br>055 | PRTX               | -14                             |                               |            |                |                  | 1 1                                       |
| 055<br>055 | RTN                | -14 - 24                        |                               |            |                |                  |                                           |
|            | 17.1.11            |                                 |                               | STERS      |                |                  |                                           |
| 0          | 1                  | 2                               | 3 4                           | 5          | 6              | 7                | <sup>8</sup> Age(Yrs.) <sup>9</sup> Total |
| S0         | S1                 | S2                              | S3 S4                         | S5         | S6             | S7               | S8 S9                                     |
|            |                    |                                 |                               | D          |                |                  |                                           |
| A          | E                  | 5                               | С                             | U          |                | E                |                                           |
|            |                    |                                 |                               |            |                |                  |                                           |

#### **Program Description I**

| Program Title | e 67 Fluid & Electrolyt  | es/Potassium Balance |                       |
|---------------|--------------------------|----------------------|-----------------------|
|               | (Scribner)               |                      |                       |
| Contributor's | Name Richard C. Rodgers, | M.D.                 |                       |
| Address       | 2045 Oak Street, Apt.    | 3                    |                       |
| City          | San Francisco            | State California     | <b>Zip Code</b> 94117 |
|               |                          |                      |                       |

Program Description, Equations, Variables The present author has fit an empirical equation to the Nomogram of Scribner et al. 17), such that:  $(\% \Delta K) = \frac{\log (K) - 4.734 + .556 (pH)}{1.15 \times 10^{-2}}$  $K = 10 [1.15 \times 10^{-2} (\% \Delta K) + 4.734 - .556 (pH)]$  $pH = \frac{1.15 \times 10^{-2} (\% \text{ K}) + 4.734 - \log (\text{K})}{.556}$ where; K,  $\triangle K = mEq$ also, K capacity is calculated as mFq from: 45 mEq/kg Normal 35 mEq/kg п .... Moderate wasting 32 25 23 " п Marked wasting 20

**Operating Limits and Warnings** See reference 1 concerning proper clincial use of data resulting from program.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

| Sketch(es)                      |                                                                 |
|---------------------------------|-----------------------------------------------------------------|
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
| Sample Problem(s)               |                                                                 |
|                                 | with pH = 7.18, k = 4.5, Estimate % $\Delta K$ and $\Delta K$ . |
| Pt. wt. = 150 lbs.              |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
|                                 |                                                                 |
| Solution(s) [f][E]>             | -1. (non-print)                                                 |
| 150[CHS][A]>                    | 3062 mEq, K capacity                                            |
| 7.18[D] 4.5[f][D][E]><br>[R/S]> | -8, % K<br>-236, ∆K, mEq.                                       |
| OR [f][E]>                      |                                                                 |
| 150[CHS][A]>                    |                                                                 |
| 7.18[D]>                        |                                                                 |
| 4.5[f][D]>                      |                                                                 |
| [E]>                            | -8,% K; -236∆K, mEq.                                            |

Reference(s) Scribner <u>Et Al</u>., Fluid and Electrolyte Balance, 1963 (available from University Washington Bookstore).

## **User Instructions**

|      | Fluid & Lytes/Potassium Balance<br><u>Muscle Mass wt.(KG,-lb)→K cap.</u><br>Normal Mod.Wasting Marked Wast.<br><b>₽ ₽ ₽</b> | ↔pH(7-7.7)<br>↔ K(1.5-9) | →%∆K,∆K <b>Z</b><br>% K→Sto |                      |
|------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|----------------------|
| STEP | INSTRUCTIONS                                                                                                                | INPUT<br>DATA/UNITS      | KEYS                        | OUTPUT<br>DATA/UNITS |
| 1.   | Enter program card sides 1 & 2                                                                                              |                          |                             |                      |
| 2.   | To change between print & non-print                                                                                         |                          |                             |                      |
|      | <pre>mode, press "f e" if l appears, IM print mode;</pre>                                                                   |                          | f E                         | 1,Print              |
|      | If _1 then in non-print                                                                                                     |                          |                             | -1,nonprint          |

| 2. | To change between print & non-print                        |         |            |   |             |
|----|------------------------------------------------------------|---------|------------|---|-------------|
|    | <pre>mode, press "f e" if l appears, IM print mode;</pre>  |         | f          | Ε | 1,Print     |
|    | If -1, then in non-print                                   |         | f          | E | -1,nonprint |
|    |                                                            |         |            |   |             |
| 3. | Input pt. wt. in-lbs. or KG, for                           |         |            |   |             |
|    | a) normal build, males                                     | KG,-1bs | Α          |   | K cap.mEq.  |
|    | b) normal build, females                                   |         | f          | A |             |
|    | c) moderate wasting, males                                 |         | B          |   | "           |
|    | d) moderate wasting, females                               |         | f          | В |             |
|    | e) marked wasting, males                                   |         | L C        |   |             |
|    | f) makred wasting, females                                 | н       | _ <b>f</b> |   |             |
|    |                                                            |         |            |   |             |
| 4. | Input pH (or, if no data input,calculate                   |         |            |   |             |
|    | value from data already stored).                           |         | D          |   | рН          |
|    |                                                            |         |            |   |             |
| 5. | Input K (or, no data input, calculate value                |         |            |   |             |
|    | from data already stored).                                 |         | f          |   | К           |
|    |                                                            |         |            |   |             |
| 6. | Input % $\Delta K$ and store it, or calculate % $\Delta K$ |         |            |   |             |
|    | and ∆K(mEq) if no data entered.                            |         | E          |   | %∆K         |
|    |                                                            |         | R/S        |   | ∆K          |
|    |                                                            |         |            |   |             |
| 7. | Repeat any of above steps in any order                     |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   | ļ]          |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |
|    |                                                            |         |            |   |             |

### 97 Program Listing I

| 40          |              |           | <b>91</b> Program   |             | ing i       |                |             |
|-------------|--------------|-----------|---------------------|-------------|-------------|----------------|-------------|
| STEP        | KEY ENTRY    | KEY CODE  | COMMENTS            | STEP        | KEY ENTRY   |                | COMMENTS    |
| 801         | *LBLA        | 21 11     | Normal male         | 057         | Ø           | . 00           |             |
| 002         | GSB1         | 23 01     |                     | 058         | 1           | 01             |             |
| 803         | 4            | 04        |                     | 059         | 1           | 01             |             |
| 004         | 5            | 05        |                     | 060         | 5           | 05             |             |
| 005         | GTOØ         | 22 00     |                     | 061         | X           | -35            |             |
| 005         |              | 21 16 11  | Normal female       | 062         | 4           | 04             |             |
| 607         | GSB1         | 23 01     |                     | 063         | :           | -62            |             |
| 003<br>883  | 3            | 03<br>05  |                     | 064         | 7           | 07             |             |
| 669<br>619  | 5<br>GTO0    | 22 00     |                     | 065         | 3           | 03             |             |
| 010<br>011  | *LBLB        | 21 12     | Mod. Wasting male   | 066<br>867  | 4           | 04<br>EE       |             |
| 011<br>012  | GSB1         | 23 01     | nout nastring marc  | 067<br>060  | +<br>RCLC   | -55            |             |
| 013         | 3            | 83        |                     | 063<br>069  | LOG         | 36 13<br>16 32 |             |
| 013<br>014  | 2            | 02        |                     | 065<br>070  | -           | -45            |             |
| 014         | GTOO         | 22 00     |                     | 870         |             | -62            |             |
| 016         |              | 21 16 12  | Mod. Wasting Female | 072         | 5           | 05             |             |
| 017         | GSB1         | 23 01     | near nasonny ranare | 072<br>073  | 5           | 05             |             |
| 018         | 2            | 02        |                     | 073         | 6           | 06             |             |
| 019         | 5            | 05        |                     | 675         | ÷           | -24            |             |
| 020         | GTOØ         | 22 00     |                     | 076         | *LBL3       | 21 03          | Store pH    |
| 021         | *LBLC        | 21 13     | Marked Wasting      | 677         | STOB        | 35 12          |             |
| 022         | GSB1         | 23 01     | Male                | 078         | DSF2        | -63 02         |             |
| 023         | 2            | 02        |                     | 679         | F0?         | 16 23 00       |             |
| 024         | 3            | Ø3        |                     | 080         | PRTX        | -14            |             |
| 025         | GTOØ         | 22 00     |                     | 681         | RTN         | 24             |             |
| 026         | *LBLc        | 21 16 13  | Marked Wasting      | 082         | *LBLd       | 21 16 14       | Potassium K |
| 027         | GSB1         | 23 01     | Female              | 083         | <b>F3</b> ? | 16 23 03       |             |
| <b>0</b> 28 | 2            | 02        |                     | 084         | GTO4        | 22 04          |             |
| 029         | Ø            | <i>30</i> |                     | 085         | RCLD        | 36 14          | Calculate K |
| 030         | *LBL0        | 21 00     |                     | <b>0</b> 86 | •           | -62            |             |
| 031         | X .          | -35       |                     | Ø87         | 0           | 00             |             |
| 032         | STOA         | 35 11     |                     | 088         | 1           | 61             |             |
| 033         | DSP0<br>520  | -63 00    |                     | 689         | 1           | 01             |             |
| 034<br>075  | F0?          | 16 23 00  |                     | 090         | 5           | <i>0</i> 5     |             |
| 035<br>074  | PRTX         | -14<br>24 |                     | 091         | X           | -35            |             |
| 036<br>037  | RTN<br>*LBL1 | 21 01     |                     | 052         | RCLB        | 36 12          |             |
| 637<br>638  | X>0?         | 16-44     |                     | 893<br>804  |             | -62            |             |
| 039<br>039  | GT02         | 22 02     |                     | 094<br>805  | 5           | 05<br>05       |             |
| 040<br>040  | CHS          | -22       |                     | 095<br>096  | 5<br>6      | 05<br>06       |             |
| 841         | 01.0         | -62       |                     | 058<br>057  | X           | -35            |             |
| 042         | 4            | 04        |                     | 098<br>098  | -           | -45            |             |
| 043         | 5            | 05        |                     | <b>0</b> 99 | Â           | 04             |             |
| 044         | 3            | 03        |                     | 100         | ż           | -62            |             |
| 045         | E            | 06        |                     | 101         | 7           | 67             |             |
| 046         | Х            | -35       |                     | 102         | 3           | 03             |             |
| 047         | *LBL2        | 21 02     |                     | 103         | 4           | 04             |             |
| 048         | ST07         | 35 07     |                     | 104         | ÷           | -55            |             |
| 049         | F0?          | 16 23 00  |                     | 105         | 10×         | 16 33          |             |
| <b>6</b> 50 | PRTX         | -14       |                     | 106         | *LBL4       | 21 04          | Store K     |
| 651         | RTN          | 24        | I                   | 107         | STOC        | 35-13          | JUIEN       |
| 052         | *LBLD        | 21 14     | рН                  | 108         | DSP1        | -63 01         |             |
| 053         | F3?          | 16 23 03  |                     | 109         | F0?         | 16 23 00       |             |
| 054<br>055  | GTO3         | 22 03     |                     | 110         | PRTX        | -14            |             |
| 055<br>056  | RCLD         | 36 14     | Calculate pH        | 111         | RTN         | 24             | Store %∆K   |
| 05 <i>6</i> |              | -62       | REGIS               | 112<br>TEBS | *LBL5       | 21 05          |             |
|             | 1            | 2         |                     | 5           | 6           | 7              | 8 9         |
|             |              |           |                     | 0.5         |             | Wt.(KG)        | S8 S9       |
| 0           | S1           | S2        | S3 S4               | S5          | S6          | 5/             | 20 29       |
| K C         |              | B         |                     | D           | /           | E              | I           |
|             | pacity       | рН        | Serum K             | %∆          | \<br>       |                |             |

## 97 Program Listing II

|                     |             |              |          | ., –     |          |     | <b>.</b> |                   |          |                 | 41             |
|---------------------|-------------|--------------|----------|----------|----------|-----|----------|-------------------|----------|-----------------|----------------|
| STEP                | KEY ENTR    | γ κεγά       | CODE     |          | COMMENTS |     | STEP     | KEY ENTRY         | KEY CODE | COMM            | ENTS           |
| · · · · ·           | OTOF        | 75 1         | <i>.</i> |          |          |     |          |                   |          | 1               |                |
| 113                 | STOD        | 35-1         |          |          |          |     | 170      |                   |          | -               |                |
| 114                 | F0?         | 16 23 0      | Ū        |          |          |     | 170      |                   |          | -               |                |
| 115                 | PRTX        | -1           | 4        |          |          |     |          |                   |          |                 |                |
| 115                 | RTN         | 2            |          |          |          |     |          |                   |          |                 |                |
| 117                 | *LBLE       | 21 1         |          | %∆K,∆    | V        |     |          |                   |          | 1               |                |
|                     |             |              |          | //// , L |          |     |          |                   |          | 1               |                |
| 118                 | <b>F</b> 3? | 16 23 0      |          |          |          |     |          |                   |          | 4               |                |
| 119                 | GTO5        | 22-0         | 5        | C - 1 -  |          |     |          |                   |          | 1               |                |
| 120                 | RCLC        | 36-1         | 3        | Laicu    | late %∆K |     |          |                   |          |                 |                |
| 121                 | LOG         | 16-3         |          |          |          |     |          |                   |          |                 |                |
| 122                 |             |              |          |          |          |     |          |                   |          | 1               |                |
|                     | 4           |              |          |          |          |     |          |                   |          | 1               |                |
| 123                 | •           | -6           |          |          |          |     | 100      |                   |          | 4               |                |
| 124                 | 7           | Û            | 7        |          |          |     | 180      |                   |          |                 |                |
| 125                 | 3           | Ð            | 3        |          |          |     |          |                   |          |                 |                |
| 126                 | 4           | 0            |          |          |          |     |          |                   |          | 1               |                |
|                     | 1           | -4           |          |          |          |     |          |                   |          | 1               |                |
| 127                 | -           |              |          |          |          |     |          |                   |          | 4               |                |
| 128                 | RCLB        | 36-1         |          |          |          |     |          |                   |          | 1               |                |
| 129                 |             | -6           |          |          |          |     |          |                   |          | 1               |                |
| 130                 | 5           | 0            | 5        |          |          |     |          |                   |          |                 |                |
| 131                 | Ę           | 0            |          |          |          |     |          |                   |          | 1               |                |
|                     | 5<br>6      | 0            |          |          |          |     |          |                   |          | 1               |                |
| 132                 |             |              |          |          |          |     |          |                   |          | 4               |                |
| 133                 | Х           | -3           |          |          |          |     |          |                   |          | 1               |                |
| 134                 | ÷           | -5           |          |          |          |     | 190      |                   |          | ]               |                |
| 135                 |             | -6           | 2        |          |          |     |          |                   |          |                 |                |
| 136                 | e           | Ø            |          |          |          |     |          |                   |          | 1               |                |
|                     |             | Ũ            |          |          |          |     |          |                   |          | 1               |                |
| 137                 | 1           |              |          |          |          |     |          |                   |          | 4               |                |
| 139                 | 1           | Ū            |          |          |          |     |          |                   |          |                 |                |
| 139                 | 5           | Ū.           | 5        |          |          |     |          |                   |          |                 |                |
| 140                 | ÷           | -2           | 4        |          |          |     |          |                   |          | 1               |                |
| 141                 | STOD        | 35 1         |          |          |          |     |          |                   |          | 1               |                |
|                     | DSPØ        | -63 0        |          |          |          |     |          |                   |          | 4               |                |
| 142                 |             |              |          |          |          |     |          |                   |          | 1               |                |
| 143                 | F0?         | 16 23 Ø      |          |          |          |     |          |                   |          |                 |                |
| 144                 | PRTX        | - j -        |          |          |          |     | 200      |                   |          |                 |                |
| 145                 | F0?         | 16 23 0      | Ũ        |          |          |     |          |                   |          | 1               |                |
| 146                 | GT07        | 22 0         |          |          |          |     |          |                   |          | -               |                |
|                     |             |              |          |          |          |     |          |                   |          | 4               |                |
| 147                 | R∕S         | 5            |          | Calcu    | ılate ∆K |     |          |                   |          |                 |                |
| 148                 | *LBL7       | 21 0         |          |          |          |     |          |                   |          |                 |                |
| 149                 | RCLA        | 36-1         | 1        |          |          |     |          |                   |          | 1               |                |
| 150                 | RCLD        | 36 1         | 4        |          |          |     |          |                   |          | 1               |                |
|                     | *           | 5            |          |          |          |     |          |                   |          | 1               |                |
| 151                 |             |              |          |          |          |     |          |                   |          | 4               |                |
| 152                 | F8?         | 16 23 Ø      |          |          |          |     |          |                   |          | 1               |                |
| 153                 | PRTX        | -1           |          | Duint    | Ontion   |     |          |                   |          |                 |                |
| 154                 | RTN         | 2            | 4        | rr int   | : Option |     | 210      |                   |          | 1               |                |
| 155                 |             | 21 16 1      | 5        |          |          |     |          |                   |          | 1               |                |
| 156                 | DSP0        | -63 0        |          |          |          |     |          |                   |          | 4               |                |
|                     |             |              |          |          |          |     |          |                   |          | 4               |                |
| 157                 | F0?         | 16 23 0      |          |          |          |     |          |                   |          |                 |                |
| 158                 | GTO6        | 22 Ø         |          |          |          |     |          |                   |          |                 |                |
| 159                 | SFØ         | 16 21 0      |          |          |          |     |          |                   |          | 1               |                |
| 160                 | 1           | 0            |          |          |          |     |          |                   |          | 1               |                |
| 161                 | RTN         | 2            |          |          |          |     |          |                   |          | 4               |                |
|                     |             |              |          |          |          |     |          |                   |          | 4               |                |
| 162                 | *LBL6       | 21 0         |          |          |          |     |          |                   |          | ]               |                |
| 163                 | CFØ         | 16 22 0      |          |          |          |     |          |                   |          |                 |                |
| 164                 | 1           | Ø            |          |          |          |     | 220      |                   |          | 1               |                |
| 165                 | CHS         | -2.          |          |          |          |     |          |                   |          | 1               |                |
| 166                 | RTN         | 2            |          |          |          |     |          |                   |          | 1               |                |
|                     | R/S         | 5            |          |          |          |     |          |                   |          | 1               |                |
| 167                 | K ≤ 3       |              | <b>،</b> |          |          |     |          |                   |          | 4               |                |
| L                   |             |              |          |          |          |     | L        |                   | l        | I               |                |
|                     |             |              |          | LAE      | BELS     |     |          | FLAGS             |          | SET STATUS      |                |
| <sup>A</sup> Normal | BMOO        | d.<br>sting♂ | cMark    |          | D        | E→% | K→STO    | 0                 | FLACE    | TRIC            | DISP           |
|                     | Was         | sting        |          |          | → pH     |     | ∖K→SIU   | Used              | FLAGS    | TRIG            | 0158           |
| a (                 | þ þ         | 1 4          | с "      | 9        | d        | е   | TI       | 1                 | ON OFF   |                 |                |
|                     | '           | · /          |          | '        | ↔ K      | 4   | TH       | 2                 |          | DEG 😡<br>GRAD 🗋 | FIX 🙀<br>SCI 🗖 |
| 0                   | 1           |              | 2        |          | 3        | 4   |          | ć                 |          |                 |                |
| 5                   | 6           |              | 7        |          | 8        | 9   |          | <sup>3</sup> Used |          | RAD 🗆           |                |
|                     |             |              |          |          |          |     |          | USEU              | 3 🗆 🎽    |                 | ···            |

#### **Program Description**

| Contributor's Name Charles W. Boll INGER<br>Address 644 Long show Drive<br>City Bremerton State WA8h Zip Code 98310<br>Program Description, Equations, Variables<br>Height, weight and age can be imput in English on metric kerns. Program computes and store<br>estimated blood volume for weight and age groups (below or above 10 years old).<br>Guien the number of drops per m1. of inhabenous delivery system, one soutine<br>gries the sodium nitroprusoide doze in mag/min as well as recommended<br>solution strength in percent and adminus tration rate in cleops/min.<br>grien the surgery statuing time (hours and minutes since last Inteke, usually muchaj<br>program calculates body surgare area and hournal fluid seguirement (1500/m²/24'<br>and deficit, then the surgeries laguirement (2500 m1/m²/24') and will gue surgical<br>represent and total deficit.<br>Juien systelic and diestolic blood pressures, calculates mean article pressure<br>of a laboratory - determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Such Het and Jor in LBL d.<br>For repeat cases, of if no laboratory value available, ender Het and use LBL d<br>When finding delivered concentration first time, use of southie LBL e will store<br>upporpressure for agent in use. Repeat performances sequire only delivert<br>and kettle flows to LBL E, unless agent an timperature changes. | Program Title Aues thesiology Paramet  | ers                     |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|------------------------------|
| City Bremerton State WA8h Zip Code 98310<br>Program Description, Equations, Variables<br>Height, weight and age can be input in English on metric terms. Program computes and store<br>estimated blood volume for weight and age groups (below on above 10 years old).<br>Guien the number of drops per mil. of nithavenous delivery system, one nontine<br>grives the sollium nitroprusside dore in mcg/min as well as recommended<br>solution strength in percent and adminus tration rate in clops/min.<br>griven the surgery starting time (hours and minutes since last hutake, usually miching<br>program calculates body surface area and normal fluid requirement (1500 <sup>m</sup> / <sup>2</sup> /24 <sup>4</sup><br>and deficit, then the surgical requirement (2500 ml/m <sup>*</sup> /24 <sup>4</sup> ) and will gue surgical<br>represent and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressure<br>of a laboratory - determined blood volumes is available, it should be used in<br>preference to jigure calculated and stored in E. Enter Het and UN in LBL d.<br>For repeat cases, of if no laboratory value available, man Het and use hold be<br>when finding delivered concentration first time, use of routine kBL e will store<br>upperpressure for agent in use. Repeat performances require only delivent                                                                           |                                        |                         |                              |
| City Bremerton State WA8h Zip Code 98310<br>Program Description, Equations, Variables<br>Height, weight and age can be input in English on metric terms. Program computes and store<br>estimated blood volume for weight and age groups (below on above 10 years old).<br>Guien the number of drops per mil. of nithavenous delivery system, one nontine<br>grives the sollium nitroprusside dore in mcg/min as well as recommended<br>solution strength in percent and adminus tration rate in clops/min.<br>griven the surgery starting time (hours and minutes since last hutake, usually miching<br>program calculates body surface area and normal fluid requirement (1500 <sup>m</sup> / <sup>2</sup> /24 <sup>4</sup><br>and deficit, then the surgical requirement (2500 ml/m <sup>*</sup> /24 <sup>4</sup> ) and will gue surgical<br>represent and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressure<br>of a laboratory - determined blood volumes is available, it should be used in<br>preference to jigure calculated and stored in E. Enter Het and UN in LBL d.<br>For repeat cases, of if no laboratory value available, man Het and use hold be<br>when finding delivered concentration first time, use of routine kBL e will store<br>upperpressure for agent in use. Repeat performances require only delivent                                                                           | Address 644 Longshaw Drive             |                         |                              |
| Height, weight and age can be input in Erghish on metric terms. Program computes and store<br>estimated blood volume for weight and age groups (below on above 10 years old).<br>Given the number of drops per ml. of inhavenous delivery system, one southine<br>gives the sodium mitroprusside dore in mcg/min as well as secommended<br>solution strength in percent and administration rate in deops/min.<br>Juien the surgery starting time (hours and minutes since last intake, usually midig<br>program calculates body surgere area and normal fluid requirement (1500 <sup>th</sup> / <sup>2</sup> /24 <sup>th</sup><br>and deficit, then the surgeral requirement (2500 ml/m <sup>2</sup> /24 <sup>th</sup> ) and will give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean artical pressur<br>of a laboratory-determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LISL d.<br>For seperat cases, of if no laboratory value available, enter Het and use LOLD<br>When finding delivered concentration first time, use of southine LBL e will store<br>vapor pressure for agent in use. Repeat performances segure only delivert                                                                                                                                                                       | City Bremerton                         | State WA84              | Zip Code 98310               |
| Height, weight and age can be input in Erghish on metric terms. Program computes and store<br>estimated blood volume for weight and age groups (below on above 10 years old).<br>Given the number of drops per ml. of inhavenous delivery system, one southine<br>gives the sodium mitroprusside dore in mcg/min as well as secommended<br>solution strength in percent and administration rate in deops/min.<br>Juien the surgery starting time (hours and minutes since last intake, usually midig<br>program calculates body surgere area and normal fluid requirement (1500 <sup>th</sup> / <sup>2</sup> /24 <sup>th</sup><br>and deficit, then the surgeral requirement (2500 ml/m <sup>2</sup> /24 <sup>th</sup> ) and will give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean artical pressur<br>of a laboratory-determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LISL d.<br>For seperat cases, of if no laboratory value available, enter Het and use LOLD<br>When finding delivered concentration first time, use of southine LBL e will store<br>vapor pressure for agent in use. Repeat performances segure only delivert                                                                                                                                                                       |                                        |                         |                              |
| estimated blood volume for weight and age group (below or above 10 years old).<br>Given the number of drops per ml. of intravenous delivery system, one southine<br>gives the solium nitroprusside dore in mcg/min as well as seconsmended<br>solution strength in percent and adminus tration rate is deops/min.<br>Juen the surgery starting time (hours and minutes surve last hitske, usually mulmij<br>program calculates body surface area and normal fluid sequirement (1500/m²/24)<br>and deficit, then the surgical sequirement (2500 m1/m²/24) and will give surgical<br>requirement and total deficit.<br>Juen systolic and diastolic blood pressures, calculates mean arterial pressur<br>J a laboratory - determined blood volumes is available, it should be used in<br>prekrence to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For seperat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af southie LBL e will store<br>upperpressure for agent in use. Repeat performances seguire only delivert                                                                                                                                                                                                                                                                                                                                        |                                        |                         | 0                            |
| Given the number of drops per m1. of inhavenous delivery system, one soutine<br>gives the sodium nitroprusaide dore in mcg/min as well as recommended<br>solution strength in percent and adminio tration rate in cliops/min.<br>Juen the surgery stating time (hours and minutes since last intake, usually mulmij<br>program calculates body surface area and normal fluid requirement (1500 <sup>m2</sup> /27 <sup>4</sup><br>and deficit, then the surgical requirement (2500 m1/m <sup>2</sup> /27 <sup>4</sup> ) and will give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>24 a laboratory determined blood valumes is available, it should be used in<br>preterence to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af soutine LBL e will store<br>vapor pressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                          | Height, weight and age can be input in | English or medrie terms | . Program computes and store |
| Given the number of drops per m1. of inhavenous delivery system, one soutine<br>gives the sodium nitroprusaide dore in mcg/min as well as recommended<br>solution strength in percent and adminio tration rate in cliops/min.<br>Juen the surgery stating time (hours and minutes since last intake, usually mulmij<br>program calculates body surface area and normal fluid requirement (1500 <sup>m2</sup> /27 <sup>4</sup><br>and deficit, then the surgical requirement (2500 m1/m <sup>2</sup> /27 <sup>4</sup> ) and will give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>24 a laboratory determined blood valumes is available, it should be used in<br>preterence to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af soutine LBL e will store<br>vapor pressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                          | estimated blood volume for weight a    | und age group (below    | ar above 10 years old).      |
| solution strength in percent and adminus tration rate in deops/min.<br>Juien the surgery starting time (hours and minutes since last intake, usually muching<br>program calculates body surface area and normal fluid requirement (1509 <sup>th</sup> /m <sup>2</sup> /24 <sup>th</sup><br>and deficit, then the surgical requirement (2500 m1/m <sup>2</sup> /24 <sup>th</sup> ) and will give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>4 a laboratory - determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LBLd.<br>For sepert cases, of if no laboratory value available, enter Het and use LBLD<br>When finding delivered concentration first time, use of soutime LBL e will store<br>vapor pressure for agent in use. Repeat performances require only delivent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | given the number of drops per ml. of   | f intravenous de livery | system, one soutine          |
| Juien the surgery starting line (hours and minutes since last hutake, usually midnig<br>program calculates body surface area and normal fluid requirement (1500 <sup>m/m2</sup> /24 <sup>4</sup> )<br>and deficit, then the surgical requirement (2500 m1/m <sup>2</sup> /24 <sup>4</sup> ) and will gue surgical<br>requirement and total deficit.<br>Guien systolic and diastolic blood pressures, calculates mean asterial pressur<br>24 a laboratory - determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af routine LBL e will store<br>vapor pressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gives the sodium nitroprusside do      | se in mag/min as wel    | l as recommended             |
| Juien the surgery starting line (hours and minutes since last hutake, usually midnig<br>program calculates body surface area and normal fluid requirement (1500 <sup>m/m2</sup> /24 <sup>4</sup> )<br>and deficit, then the surgical requirement (2500 m1/m <sup>2</sup> /24 <sup>4</sup> ) and will gue surgical<br>requirement and total deficit.<br>Guien systolic and diastolic blood pressures, calculates mean asterial pressur<br>24 a laboratory - determined blood volumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af routine LBL e will store<br>vapor pressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                         |                              |
| program calculates body surface area and normal fluid requirement (1505/m²/24'<br>and deficit, then the surgical requirement (2500 m1/m²/24') and unit give surgical<br>requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>of a laboratory - determined blood volumes is available, it should be used in<br>preference to jigure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL d.<br>When finding delivered concentration first time, use af routine LBL e will store<br>vapor pressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                         |                              |
| and deficit, then the surgical reguirement (2500 m1/m <sup>7</sup> /24 <sup>4</sup> ) and will give surgical<br>regurement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>of a laboratory - determined blood valumes is available, it should be used in<br>preference to figure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af soutime LBL e will store<br>vaporpressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                         |                              |
| requirement and total deficit.<br>Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>If a laboratory-determined blood volumes is available, it should be used in<br>preference to figure calculated and stared in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het. and use LBL D<br>When finding delivered concentration first time, use af routine LBL e will stare<br>vaporpressure for agent in use. Repeat performances require only dilvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and deficit, then the surgical regu    | irement (2500 m1/m2/244 | ) and will give surgical     |
| Given systolic and diastolic blood pressures, calculates mean arterial pressur<br>If a laboratory-determined blood volumes is available, it should be used in<br>preference to jigure calculated and stored in E. Enter Het and BV in LBL d.<br>For repeat cases, of if no laboratory value available, enter Het and use LBL D<br>When finding delivered concentration first time, use af soutime LBL e will store<br>vaporpressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | requirement and total deficit.         |                         |                              |
| If a laboratory - determined blood volumes is available, it should be used in<br>preference to jigure calculated and stored in E. Enter Het and BV in LBLd.<br>For repeat cases, of if no laboratory value available, enter Het and use LBLD<br>When finding delivered concentration first time, use af routine LBL e will store<br>vaporpressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | quien systolic and diastolic bla       | od pressures, calculat  | is mean arterial pressur     |
| preference to jigure calculated and stored in E. Enter Het and BV in LBLd.<br>For repeat cases, of if no laboratory value available, enter Het and use LBLD.<br>When finding delivered concentration first time, use af routine LBL e will store<br>vaporpressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If a laboratory- determined blood (    | solumes is available,   | it should be used in         |
| For repeat cases, of if no la boratory value available, enter HCt. and use LBLD<br>When finding delivered concentration first time, use af routine LBL e will store<br>vaporpressure for agent in use. Repeat performances require only diluent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                         |                              |
| When finding delivered concentration first time, use af soutine LBL e will stare<br>vaporpressure for agent in use. Repeat performances require only delivent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                         |                              |
| vaporpressure for agent in use. Repeat performances require only delvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vaporpressure for accent in use.       | Repeat serlor mances    | require only delvent         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | 8                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                         |                              |

Use 24 hour clock. If a patient has been NPO since 0400 instead of 0000, and surgery begins at 0800, use "4.0" to enter toutine B. If prevalent barometric pressure other than 960, alter program prior to use <u>Clinical</u>: Acceptable loss assumes and depends on full hydration. Combining hydration figures (LBh B) and ABL (BHD): when amount equal to ABL is shed, HCT will be 30% Serum protein measured periodically - defect replaced with albumin. Packed PBC's for Hether 0%

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

| Sketch(es)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Problem(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Oratient is 68.5 "tall, 175", age 41 enter data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 Surgery begins at 9:15. Patient NPO since mid-might. What is starting deficit .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| requirements? What is the status at 10:25? Pt has received 1100 ml in havenously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| how is his hydration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3 Patients hematocrit is 45%. What is a cceptable loss? During procedure, hematocrit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pound to be 25070. Hydration is good. How many ml. of packed RBC to transfuse?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (negative sign indicates difference between acceptable loss and RBC's to infuse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ( At this temperature, the vapor pressure of Wonderthane is 170. Diluon 2500 ml. Kattle flow 120.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| What is delivered concentration? how flow technique : Fo is 2000 nd, Kettle glow 80:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (5) Intravenous sets administer 12 drops/min. How is sodium mitroprusside to be geven?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solution(s) (3 45 [D] -> 1852 ml. ABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\bigcirc 68.5 \uparrow 175^{\ddagger} HI LfJ[a] \longrightarrow 5556 (E.I.B.V). 25 [D] \longrightarrow -278 mIRBC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ② 9.15 [B] → 1.94 BB M2 ③ 2500+ 120+ 170[fe] → 1.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -> 121 DEFR Normally 2000+ 80 (E] -> 1.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ->- 1122 Starting deficit ml.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -> 202 Surgical EFR (=) 12 [4][6] -> 192 μg/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10:25 [P/s] -> "236" Surgical deficit -> 0.01000 % sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 1358 Total deficit -> 23 drops/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1100 [+] $\rightarrow -258$ Remaining deficit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Company Rill on the source of |
| Reference (s) Mazze, Richard I: Intraoperature fluid therapy - ASA Refresher Course - 1976<br>Lawson, N.W. et. al : A dosage nonogram for socherin - introprusside - viduced hypotension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lawson, N.W. et al : H dosage nonogram for sochorn - introprusside - induced hypotension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Under anesthesia. Hues + Huals 55: 574-579, 1916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benne H, Edward J: Fluid replacement in infants and children - ASA Refresher Course 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Forman, Eric J.: Acceptable blood loss computation - personal communication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

### **User Instructions**

|      | AN         | ESTHESIA | PARAME  | TERS |                |                    |     |
|------|------------|----------|---------|------|----------------|--------------------|-----|
|      | a: ENGLISN | b:gtt/ml |         |      | d: Het t EBV   | e: Fot Fut Pr      | 5   |
| (hp) | ΗτωτΑ      | Jime ->  | T-> P/s | MAP  | ■ Hct ↑ -> ABL | ∎Fъ↑Fv <b>∮→</b> % | . / |

| STEP | INSTRUCTIONS                                                                                                                                             | INPUT<br>DATA/UNITS | KEYS    | OUTPUT<br>DATA/UNITS |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|----------------------|
| 1.   | Load program side 1 and side 2.                                                                                                                          |                     |         |                      |
| 2.   | Enter patient data Height in inches or cm                                                                                                                | Н                   | ENTER 1 |                      |
|      | Weight in pounds or kg                                                                                                                                   | ω                   | ENTERT  |                      |
|      | Age : if above entered in English units ( mah/pourd)                                                                                                     | A                   | fa      | EBV                  |
|      | Age : if above entered in English units (inch/pound)<br>if above entered in Metric units (cm/kg)                                                         | A                   | FI      | EBV                  |
|      |                                                                                                                                                          |                     |         |                      |
| З.   | To find body surface area and fluid factors:                                                                                                             |                     |         |                      |
|      | To find body surface area and fluid factors:<br>Input start of surgery or huie NPO                                                                       | H.M                 | В       | BSA (m2)             |
|      | 1 0 1                                                                                                                                                    |                     |         | NORMAL EFR           |
|      |                                                                                                                                                          |                     |         | STARTING DEFICIT     |
|      |                                                                                                                                                          |                     |         | SURGICAL EFR         |
|      | FOR PRESENT STATUS, INPUT Present Line                                                                                                                   | H.m                 | R/S     | "Sung Det            |
|      | For PRESENT STATUS, INPOT Present time<br>Fluid administered may be added to last figure for<br>balance figure (positive value, overbad; negative, def   |                     |         | TotAL DEFICIT        |
|      | balance figure (positive value overbad; regative del                                                                                                     | ici d)              |         |                      |
|      |                                                                                                                                                          |                     |         |                      |
| 4.   | For soduir nitroprusside administration, injout number<br>of drops/ml of I.V. administration set<br>(recompute with different set type if drops too high |                     |         |                      |
|      | of drops/ml of I.V. administration set                                                                                                                   | gtt /ml.            | f b     | Admin: 19/100        |
|      | ( recompute with different set type it drops too hick                                                                                                    | <i>γ</i> ,          |         | 2 solution           |
|      | on two low.)                                                                                                                                             |                     |         | Admin: gH/min.       |
|      |                                                                                                                                                          |                     |         | ,                    |
| 5.   | For mean asterial pressure In put systelic                                                                                                               | Sys.                | ENTER 1 |                      |
|      | For mean asterial pressure In put systolic<br>IN pur diastolic                                                                                           | Dias                | C       | M.D.P. um 4          |
|      |                                                                                                                                                          | 0,110               |         | 7                    |
| 6.   | For acceptable blood Loss, input hemotocrit                                                                                                              | Hst.                | ENTERT  |                      |
|      | if EBV determined, input                                                                                                                                 | EBV                 | f d     | ABL (md)             |
|      | For acceptable blood loss, input hemotocrit<br>if EBV determined, input<br>for new case, or if EBV not known, input hem                                  | Her                 | D       | OR                   |
|      | , , , , , , , , , , , , , , , , , , , ,                                                                                                                  |                     |         | - RBC (m1)           |
|      |                                                                                                                                                          |                     |         |                      |
| 7.   | For delivered concentration, Input delivered flow                                                                                                        | FD (ul)             | ENTERT  |                      |
|      | Input kette flow                                                                                                                                         | Fr (ml)             | ENTERI  |                      |
|      | Input uppor press                                                                                                                                        | Pv (mm Hz)          | fe      | 70 conc.             |
|      | for new case, same agent, same temp:                                                                                                                     |                     |         | /                    |
|      | Input diluent flow                                                                                                                                       | FD (ml)             | ENTER 1 |                      |
|      | Input kettle flow                                                                                                                                        | Fy (ml)             | E       | % соис.              |
|      | , , , , , , , , , , , , , , , , , , ,                                                                                                                    | · · · · ·           |         |                      |
|      |                                                                                                                                                          |                     |         |                      |
|      |                                                                                                                                                          |                     |         |                      |
|      |                                                                                                                                                          |                     |         |                      |
|      |                                                                                                                                                          |                     |         |                      |

## 97 Program Listing I

| STED               |                  |                        |      |                       |             | ()            |               | 45                   |
|--------------------|------------------|------------------------|------|-----------------------|-------------|---------------|---------------|----------------------|
|                    |                  |                        |      | COMMENTS              |             | EY ENTRY      | KEY CODE      | COMMENTS             |
| 001<br>002         |                  | 21 16 11<br>35 13      |      | e & convert           | <b>0</b> 57 | 2             | 02            | Compare dose with    |
| 002<br>003         |                  | 30 13<br>-31           | pati | ent data              | <b>0</b> 58 | XZY?          | 16-35         | constants to deter-  |
|                    |                  |                        |      |                       | <b>0</b> 59 | GT01          | 22 01         | mine proper con-     |
| <i>804</i>         |                  | <b>B</b> 2             |      |                       | 060         | CLX           | -51           | centration           |
| 005                |                  | -62                    |      |                       | 061         | 2             | 02            |                      |
| 006                |                  | 02<br>02               |      |                       | 062         | 5             | <i>0</i> 5    |                      |
| 007                |                  | ÛÜ                     |      |                       | <b>8</b> 63 | X¥Y?          | 16-35         |                      |
| 008                |                  | 65                     |      |                       | 864         | GTO2          | 22 <b>0</b> 2 |                      |
| 009                |                  | -24                    |      |                       | 065         | EEX           | -23           |                      |
| 010                |                  | 35 12                  |      |                       | 066         | 5             | 05            |                      |
| 011                |                  | -31                    |      |                       | 067         | ÷             | -24           |                      |
| 012                |                  | 02                     |      |                       | <b>86</b> 8 | <b>≭</b> LBL0 | 21 00         |                      |
| 013                |                  | -62                    |      |                       | 069         | DSP5          | -63 05        |                      |
| 014                |                  | 65                     |      |                       | 070         | PRTX          | -14           | Display concentra-   |
| 015                | 4                | <b>Ū</b> 4             |      |                       | 071         | DSPØ          | -63 00        | tion in percent.     |
| 016                | X                | -35                    |      |                       | 072         | CLX           | -51           |                      |
| 017                | ' GTO3           | 22 03                  |      |                       | 073         | LSTX          | 16-63         |                      |
| 018                | *LBLA            | 21 11                  | Ctor | a notiont data        | 074         | ÷             | -24           | Determine proper     |
| 019                |                  | 35 13                  | Stor | e patient data        | 075         | X             | -35           | administration rate  |
| 020                |                  | -31                    | 1    |                       | 876         | PRTX          | -14           |                      |
| 021                |                  | 35 12                  |      |                       | 877         | SPC           | 16-11         |                      |
| 822                |                  | -31                    | 1    |                       | 077<br>078  | RTN           | 24            |                      |
| 022                |                  | 21 03                  |      |                       | 070<br>079  | *LBL1         |               |                      |
| 023                |                  | 35 11                  |      |                       |             |               | 21 01         |                      |
|                    |                  | 35 11<br>36 13         |      |                       | 080         | 1/X           | 52            |                      |
| <i>825</i>         |                  |                        |      |                       | 081         | GTOO          | 22 00         |                      |
| <b>0</b> 26        |                  | <i>61</i>              |      | he patient older      |             | <b>≭LBL</b> 2 | 21 02         |                      |
| 027                |                  | <u>00</u>              | than | 10 years?             | 083         | 2             | 02            |                      |
| 028                |                  | 16-35                  |      |                       | 084         | Х             | -35           |                      |
| 029                |                  | 16 44                  |      | eliminate             | 085         | EEX           | -23           |                      |
| 036                |                  | 07                     | adde | end. (wt. x 70)       | 086         | 3             | 03            |                      |
| 031                |                  | 00                     |      |                       | 087         | ÷             | -24           |                      |
| 032                |                  | -55                    |      |                       | <b>0</b> 88 | GTOØ          | 22 00         |                      |
| 033                | RCLB             | 36-12                  |      |                       | 089         | RTN           | 24            |                      |
| 034                | X                | -35                    |      |                       | 090         | *LBLB         | 21 12         |                      |
| 035                | STOE             | 35 15                  |      |                       | 091         | HMS→          | 16 36         |                      |
| 036                | RTN              | 24                     |      |                       | <b>8</b> 92 | STOØ          | 35 00         |                      |
| 037                |                  | 21 16 12               |      |                       | 093         | RCLB          | 36 12         | Compute body surface |
| 038                |                  | 36-13                  |      |                       | 094         |               | -62           | area.                |
| 039                |                  | 36 12                  | Com  | ute dose of sod.      | 095         | 4             | 04            |                      |
| 048                |                  | -24                    |      | oprusside based       | 096         | 2             | 82            |                      |
| 041                |                  | 82                     |      | ge/wt.                | 097         | 5             | 05            |                      |
| 042                |                  | -62                    |      | ige/wc•               | 098         | ں<br>۲×       | 31            |                      |
| 043                |                  | 02<br>06               |      |                       | 098<br>099  | RCLA          | 36 11         | 1                    |
| 043<br>044         |                  | 00<br>03               |      |                       | 099<br>100  | RULH          |               | 4                    |
| 045<br>045         |                  | -22                    |      |                       |             | ;             | -62           | 1                    |
| 045<br>046         |                  | -35                    |      |                       | 101         | 7             | 07<br>00      | 1                    |
|                    |                  |                        |      |                       | 102         | 2             | 02            |                      |
| 047                |                  | 33<br>67               |      |                       | 103         | 5             | <b>0</b> 5    | 4                    |
| 048                |                  | 07<br>07               |      |                       | 104         | ΥX            | 31            | 1                    |
| 049                |                  | <b>0</b> 4             |      |                       | 105         | •             | -62           | 4                    |
| 050                |                  | 08<br>                 |      |                       | 106         | e             | 00            | 4                    |
| 051                |                  | -62                    |      |                       | 107         | 0             | 00            | 4                    |
| 652                |                  | 07                     |      |                       | 108         | 7             | 07            | 4                    |
| 053                |                  | -35                    |      |                       | 109         | 1             | 01            | 4                    |
| 054                |                  | -14                    |      |                       | 110         | 8             | 08            | 4                    |
| 855                |                  | 16-24                  |      |                       | 111         | 4             | <b>0</b> 4    | 4                    |
| . 056              | 5 EEX            | -23                    |      |                       | 112         | Х             | -35           |                      |
|                    |                  |                        |      | REGIS                 |             | 10            | 1             | 8 9                  |
| <sup>0</sup> Start | 1 Vapo           |                        | 3    | 4                     | 5           | 6             | 7             | 8 9                  |
|                    | <u>c press</u> u | ire                    |      | C.4                   | <u> </u>    | S6            | S7            | S8 S9                |
| <sup>S0</sup> hrs. | S1               | S2                     | S3   | S4                    | S5          | 30            | 57            |                      |
|                    |                  |                        |      |                       | D           | L             | E ,           | I                    |
| <sup>A</sup> Heigh | t (am)           | <sup>B</sup> Weight (1 | cg)  | <sup>C</sup> Age (yr) | BSA (M      | 2)            | EBV (r        | nl) Used             |
|                    |                  | ,                      |      |                       |             | ,             | 1             |                      |

# 97 Program Listing II

| 46<br>STER | VE         |                      | KEV /   |                |         | COMMENTS                                     |               | STEP           |            |             | ĸ  | EY CODE                    | COMM       | IENTS             |
|------------|------------|----------------------|---------|----------------|---------|----------------------------------------------|---------------|----------------|------------|-------------|----|----------------------------|------------|-------------------|
| STEP       | ке<br>113  | Y ENTRY              |         | CODE<br>35     | <b></b> |                                              |               |                | 69         | -           |    | -45                        | 1          |                   |
|            |            | DSP2                 | -63     |                |         |                                              |               |                | 170        | X<0?        |    | -45<br>16-45               | Does pt. h |                   |
|            | 114        |                      |         |                |         |                                              |               |                | 71         | GT04        |    | 22 84                      | than HCI . | 30% <b>-</b> jump |
|            | 115        | PRTX                 |         | 14<br>eo       |         |                                              |               |                | 172        | RCLI        |    | 22 <b>04</b><br>36 46      |            |                   |
|            | 116        | DSP0                 | -63     |                |         |                                              |               |                | 173        |             | •  |                            | Divide aco |                   |
|            | 117        | STOD                 | 35      |                |         |                                              |               |                | 174        | ÷           |    | -24                        |            | loss by HC        |
|            | 118        | 1                    |         | 01<br>05       |         | l EFR is                                     |               |                |            | PRTX<br>RTN |    | -14<br>24                  | to find A  | 3L                |
|            | 19         | 5                    |         | 05<br>00       | 1500m   | 1/m2/24 <sup>h</sup>                         |               |                | 175        |             |    |                            |            |                   |
|            | 120        | 0                    |         | 00<br>00       |         |                                              |               |                | 176        | *LBL4       |    | 21 84                      | Adjust fig |                   |
|            | 121        | Ø                    |         | 00<br>75       |         |                                              |               |                | 177        | EEX         |    | -23                        | ml. red bl | lood cell         |
|            | 122        | x                    |         | 35<br>AG       |         |                                              |               |                | 178        | 2<br>÷      |    | <b>0</b> 2                 | deficit    |                   |
|            | 123        | 2                    |         | 02<br>04       |         |                                              |               |                | 179        |             |    | -24                        |            |                   |
|            | 124        | 4                    |         | 04<br>07       |         |                                              |               |                | 180<br>181 | PRTX<br>RTN |    | -14<br>24                  |            |                   |
|            | 125        | ÷<br>DDTV            |         | 24             |         |                                              |               |                | 182        | *LBLe       | 21 | 16 15                      |            |                   |
|            | 126        | PRTX                 |         | 14<br>00       |         |                                              |               |                | 183        | ST01        |    | 16 1J<br>35 01             | Store vapo | or pressur        |
|            | 127<br>128 | RCL0<br>X            | 36      | 00<br>35       |         |                                              |               |                | 184        | 5101<br>R↓  | ,  | -31                        |            |                   |
|            |            |                      |         |                |         |                                              |               |                |            |             |    | -31<br>21 15               | Calgulate  | delivered         |
|            | 129        | CHS                  |         | 22<br>1 A      |         |                                              |               |                | 185<br>192 | *LBLE       |    |                            |            |                   |
|            | 130        | PRTX                 |         | 14             |         |                                              |               |                | 186        | RCL1        |    | 36 01<br>-75               | concentrat |                   |
|            | 131        | RCLD                 | 36      |                | 0       | anl 1997                                     |               |                | 187        | x<br>X≢Y    |    | -35<br>-41                 |            |                   |
|            | 132<br>133 | 2<br>5               |         | 02<br>05       | Surgi   | cal EFR is 1/m <sup>2</sup> /24 <sup>h</sup> |               |                | 188<br>189 | ×∓⊺<br>7    |    | -41<br>07                  |            |                   |
|            |            |                      |         |                | 2500m   | 1/m²/2411                                    |               |                |            |             |    | 07<br>06                   |            |                   |
|            | 134<br>135 | 0<br>0               |         | 00<br>00       |         |                                              |               |                | 190<br>191 | 6<br>0      |    | 06<br>00                   |            |                   |
|            | 136        | X                    |         | 88<br>35       |         |                                              |               |                | 192        | RCL1        |    | 36 <b>0</b> 1              |            |                   |
|            | 136        | 2                    |         | 33<br>02       |         |                                              |               |                | 192        | RULI<br>-   |    | -45                        |            |                   |
|            | 138        | 2<br>4               |         | 02<br>04       |         |                                              |               |                | 193        | x           |    | -45                        |            |                   |
|            | 130        | ÷                    |         | 04<br>24       |         |                                              |               |                | 195        | ÷           |    | -35<br>-24                 |            |                   |
|            | 140        | <del>.</del><br>PRTX |         | 24<br>14       |         |                                              |               |                | 195        | ĒĒX         |    | -23                        |            |                   |
|            | 140        | SPC                  | - 16    |                |         |                                              |               |                | 197        | 2           |    | -23<br>02                  |            |                   |
|            | 142        | R/S                  |         | 51             |         |                                              |               |                | 198        | x           |    | -35                        |            |                   |
|            | 143        | HMS→                 | 16      |                | L       |                                              | _             |                | 199        | DSP1        | -  | 63 Ø1                      |            |                   |
|            | 144        | RCLØ                 | 36      |                |         | duration of                                  |               |                | 200        | PRTX        |    | -14                        |            |                   |
|            | 145        | -                    |         | 45             |         | ry to prese                                  | ent           |                | 201        | DSPØ        | -  | 63 00                      |            |                   |
|            | 146        | Х                    |         | <del>3</del> 5 | time    |                                              |               |                | 202        | SPC         |    | 16-11                      |            |                   |
|            | 147        | PSE                  | 16      |                |         |                                              |               |                | 203        | RTN         |    | 24                         |            |                   |
|            | 148        | -                    |         | 45             |         | deficit ger                                  |               |                | 1          | K / H       | I. | 24                         |            |                   |
|            | 149        | RTN                  |         | 24             |         | since start                                  | t of          |                |            |             |    |                            | -          |                   |
|            |            | *LBLC                | 21      |                | surge   |                                              |               |                |            |             | -  |                            | 4          |                   |
|            | 151        | STOI                 | 35      |                |         | ay total de                                  | efi-          |                |            |             |    |                            | -          |                   |
|            | 152        | -                    |         | 45             | cit     |                                              |               |                |            |             | -  |                            | -          |                   |
|            | 153        | 3                    |         | 93<br>03       | 1       | arterial                                     |               |                |            |             | +  |                            | 1          |                   |
|            | 154        | ÷                    |         | 24             | press   | ure:                                         |               | 210            |            |             | +  |                            | 1          |                   |
|            | 155        | RCLI                 | 36      |                | Sys     | -Dias<br>-Dias                               |               |                | <u> </u>   |             | +  |                            | 1          |                   |
|            | 156        | +                    |         | 55             | 1       | 3                                            |               |                |            |             | +  |                            | 1          |                   |
|            | 157        | RTN                  |         | 24             | 1       |                                              |               |                |            |             | +  |                            | 1          |                   |
|            |            | <b>≭</b> LBLa        |         |                | 1       |                                              |               |                | <b> </b>   |             | +  |                            | 1          |                   |
|            | 159        | STOE                 | 35      |                | Store   | est. blood                                   | 7             |                | <u> </u>   |             | +  |                            | 1          |                   |
|            | 160        | R4                   |         | 31             | 1       | from labora                                  |               |                |            |             | +  |                            | 1          |                   |
|            |            | *LBLD                | 21      |                |         | determinat                                   |               |                |            |             |    |                            | 1          |                   |
|            | 162        | STOI                 | 35      |                |         |                                              |               |                |            |             | 1  |                            | 1          |                   |
|            | 63         | RCLE                 | 36      |                | Find    | est. red ce                                  | -11           |                |            |             |    |                            | 1          |                   |
|            | 64         | X                    |         | 35             | mass    |                                              | ~++           | 220            | <b></b>    |             | 1  |                            | 1          |                   |
|            | 65         | 3                    |         | 03             | linass  |                                              |               |                |            |             |    |                            | ]          |                   |
|            | 166        | ø                    |         | 00             | 1       |                                              |               |                |            |             |    |                            | ]          |                   |
|            | 67         | RCLE                 | 36      |                | 1       | act est. re                                  |               |                |            |             |    |                            | 1          |                   |
|            | 68         | Х                    |         | 35             |         | mass @ HCT                                   | 30%           |                | L          |             |    |                            | 1          |                   |
| Δ          |            | Te                   |         |                | LAE     | BELS                                         | Te            |                |            | FLAGS       |    | ·····                      | SET STATUS |                   |
|            |            | a <sup>B</sup> BSA   |         |                | A.P.    | A.B.L.                                       |               | s conc         |            |             |    | FLAGS                      | TRIG       | DISP              |
| aconve     | ert        | & bSod               | , nitro | te .           |         | d ABL<br>Lad EBV                             |               | conc.<br>suppl | آل<br>مہر  |             |    |                            | DEG 🛛      | FIX 🗹             |
| A Core     | -dat       | 2                    |         |                | riger   | <sup>3</sup> Compute EB                      | 14            |                | 12         |             |    |                            | GRAD       | SCI 🗆             |
| 5          | (b)        |                      | at tSOU |                | at tson | Compute EB                                   | $\frac{W}{Q}$ | ampute         | RB         | 0           |    | $2 \square \mathbb{Z}_{1}$ | RAD 🗆      | ENG 🗆             |
| Ľ          | (0)        | Ľ                    |         | ľ              |         | Ŭ                                            | Ĵ             |                | ľ          |             | 3  | 3 🗆 💋                      |            | n_ <b>O</b>       |

#### **Program Description I**

#### Program Title DISCOUNTED CASH FLOW ANALYSIS NET PRESENT VALUE

| Contributor |
|-------------|
| Address     |
| City        |

's Name HEWLETT-PACKARD COMPANY Corvallis Division 1000 N.E. Circle Boulevard Corvallis, OR 97330 State

Zip Code

| Program Description, E | quations, Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                        | Assuming a minimum desired yield (cost of capital, discount rate), this pro-<br>gram finds the present value of the future cash flows generated by the invest-<br>ment and subtracts the initial investment from this amount. If the final net<br>present value is a positive value, the investment exceeds the profit objectives<br>assumed. If the final net present value is a negative value, then the investment is<br>not profitable to the extent of the desired yield. If the net present value is zero,<br>the investment meets the profit objectives. | <ul> <li>M. N.</li> <li>M. N.</li> <li>M. N.</li> <li>M. N.</li> <li>M. N.</li> </ul> |
|                        | The function associated with the $\bigcirc$ key (#) is designed to accommodate those situations where a series of the cash flows are equal. You enter the number of times these equal periodic cash flows occur with $\bigcirc$ , and then the amount only once with $\bigcirc$ . The program automatically assumes 1 for #. If the cash flow occurs only once, there is no need to enter anything for #.                                                                                                                                                       |                                                                                       |
|                        | Zero must be entered for all periods with no cash flow. When a cash flow other than the initial investment is an outlay (additional investment, loss, etc.) the value must be entered as a negative number with <b>CHS</b> .                                                                                                                                                                                                                                                                                                                                    | (11) and (1                                                                           |
|                        | Cash flows are assumed to occur at the end of cash flow periods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
|                        | This program can also be used to find the present value of a series of irregular cash flows that cannot be accommodated by the DIRECT REDUCTION LOANS program by simply entering zero as the initial investment.                                                                                                                                                                                                                                                                                                                                                |                                                                                       |
|                        | An option is provided to print the initial investment and the NPV after each cash flow. Pressing <b>1 E</b> sets and clears the print flag. Successive use of <b>1 E</b> will alternately display 1.00 and 0.00, indicating that the print mode is on or off respectively.                                                                                                                                                                                                                                                                                      | 2                                                                                     |
| Operating Limits and W | arnings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

| Sketch(es)                                                         |
|--------------------------------------------------------------------|
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
| Sample Problem(s)3.Discounted Cash Flow Analysis—Net Present Value |
| $NPV_{k} = -INV + \sum_{k=1}^{n} \frac{CF_{k}}{(1+i)^{k}}$         |
| where:                                                             |
| n = number of cash flows<br>$CF_k = k^{th} cash flow$              |
| $NPV_k$ = net present value after k <sup>th</sup> cash flow        |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
| Solution(s)                                                        |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |
| Reference (s)                                                      |
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |

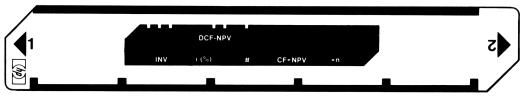
#### Sketch(es)

| ample Problem(s) | Example 1:                  |                                                       |  |
|------------------|-----------------------------|-------------------------------------------------------|--|
|                  | An investor has an opportur | nity to purchase a piece of property for \$70,000. If |  |
|                  |                             | his type of investment is 13.75%, and the after-tax   |  |
|                  |                             | llows, should the investor purchase the property?     |  |
|                  | Year                        | Cash Flow (\$)                                        |  |
|                  | 1                           | \$14,000                                              |  |
|                  | 2                           | 11,000                                                |  |
|                  | 3                           | 10,000                                                |  |
|                  | 4<br>5                      | 10,000                                                |  |
|                  | 6                           | 10,000<br>9,100                                       |  |
|                  | 7                           | 9,000                                                 |  |
|                  | 8                           | 9,000                                                 |  |
|                  | 9                           | 4,500                                                 |  |
|                  | 10                          | 71,000 (property sold<br>in 10 <sup>th</sup> year)    |  |
|                  | Keystrokes:                 | Outputs:                                              |  |
|                  | 70000 A 13.75 B             |                                                       |  |
|                  |                             |                                                       |  |
|                  |                             | flow)                                                 |  |
|                  |                             | -49190.92 (NPV after 2 cash                           |  |
| olution(s)       |                             | flows)                                                |  |
| sharron(s)       | 3 8 10000 6                 | -31172.57 (NPV after 5 cash                           |  |
|                  |                             | flows)                                                |  |
|                  | 0100                        | → -26971.76 (NPV after 6 cash                         |  |
|                  | 9100 D                      |                                                       |  |
|                  |                             | flows)                                                |  |
|                  | 2 C 9000 D                  |                                                       |  |
|                  |                             | flows)                                                |  |
|                  | G                           | 8.00 (checking that we've                             |  |
|                  |                             | entered 8 periods cash                                |  |
|                  |                             | flows so far)                                         |  |
|                  | 4500 🖸                      |                                                       |  |
|                  | —                           | flows)                                                |  |
|                  | 71000 D                     | → 879.93 (NPV after 10 cash                           |  |
| eference (s)     |                             | flows)                                                |  |
| eference (s)     |                             | nows)                                                 |  |
|                  | Since the final NPV is posi | tive, the investment meets the profit objectives.     |  |
|                  |                             |                                                       |  |
|                  |                             |                                                       |  |

#### **Program Description 11**

| Sketch(es)       |                                                                                             |
|------------------|---------------------------------------------------------------------------------------------|
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
|                  |                                                                                             |
| ample Problem(s) | Example 2:<br>The Cooper Company needs a new photocopier and is considering leasing the     |
|                  | equipment as an alternative to buying. The end-of-the-year net cash cost of each option is: |

| PURCHASE            |               |
|---------------------|---------------|
| Year                | Net Cash Cost |
| 1                   | \$ 533        |
| 2                   | 948           |
| 3                   | 1,375         |
| 4                   | 1,815         |
| 5                   | 2,270         |
| Total Net Cash Cost | \$6,941       |
| LEASE               |               |
| Year                | Net Cash Cost |
| 1                   | \$1,310       |
| 2                   | 1,310         |
| 3                   | 1,310         |
| 4                   | 1,310         |
| 5                   | 1,310         |
| Total Net Cash Cost | \$6,550       |


Looking at total cost, leasing appears to be less. But, purchasing costs less the first two years. Mr. Cooper knows that he can make a 15% return on every dollar he puts in the business; the sooner he can reinvest money, the sooner he earns 15%. Therefore, he decides to consider the **timing of the costs**, discounting the cash flows at 15% to find the present value of the alternatives. Which option should he choose?

| Keystokes:           | <b>Outputs:</b> |
|----------------------|-----------------|
| PURCHASE             |                 |
| 0 A 15 B 533 D 948 D |                 |
| 1375                 | 4250.71         |

| Reference (s) | LEASE $0 \land 5 \bigcirc 1310 \bigcirc \longrightarrow 4391.32$                                                                                                                                                                                       |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | Leasing has a present value cost of \$4391.32, while purchasing has a present value cost of \$4250.71. Since these are both expense items, the lowest present value is the most desirable. So, in this case, purchase is the least costly alternative. |  |

Solution(s)

### **User Instructions**



| STEP |                                       | INSTRUCTI                                             | ONS                 |                                               |          | INPUT<br>DATA/UNITS | KEYS | OUTPUT<br>DATA/UNITS |
|------|---------------------------------------|-------------------------------------------------------|---------------------|-----------------------------------------------|----------|---------------------|------|----------------------|
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      | STEP                                  | INSTRUCTIONS                                          | INPUT<br>DATA/UNITS | KEYS                                          |          |                     |      |                      |
|      | 1                                     | Load side 1.                                          |                     |                                               |          |                     |      |                      |
|      | 2                                     | Optional: Select                                      |                     |                                               |          |                     |      |                      |
|      |                                       | print/pause mode.                                     |                     | 00                                            | 1.00 c   | or 0.00             |      |                      |
|      | 3                                     | Key in                                                |                     |                                               |          |                     |      |                      |
|      | · · · · · · · · · · · · · · · · · · · | <ul> <li>Initial investment amount</li> </ul>         | INV                 | A                                             | IN       | IV                  |      |                      |
|      |                                       | <ul> <li>Periodic interest (discount) rate</li> </ul> | i (%)               | B                                             | i (      | %)                  |      |                      |
|      | 4                                     | Key in the number of equal                            |                     |                                               | 1        |                     |      |                      |
|      | -                                     | cash flows if greater than 1.                         | #                   | C                                             | #        |                     |      |                      |
|      | 5                                     | Key in cash flow amount(s) and                        |                     | 1                                             | <u>†</u> |                     |      |                      |
|      |                                       | calculate net present value.                          | CF                  |                                               | NP       | v                   |      |                      |
|      | 6                                     | Optional: Display total number                        |                     |                                               | 1        |                     |      |                      |
|      |                                       | of cash flows entered so far.                         |                     | g                                             | n        |                     |      |                      |
|      | 7                                     | For next cash flow(s) go to                           |                     | <u>+                                     </u> | +        |                     |      |                      |
|      |                                       | step 4.                                               |                     | +                                             |          |                     |      |                      |
|      | 8                                     | For a new case go to step 2.                          |                     | +                                             | 1        |                     |      |                      |
|      |                                       | I of a new case go to step 2.                         |                     | <b>_</b>                                      | .L       |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |
|      |                                       |                                                       |                     |                                               |          |                     |      |                      |

### Program Listing I

| STEP             | KEY ENTRY   | KEY CODE           | COMMENTS                  | STEP KEY ENTRY KEY CODE COMMENTS           |
|------------------|-------------|--------------------|---------------------------|--------------------------------------------|
| 001<br>002       | *LBLA       | 21 11              |                           | 057 *LBLe 21 16 15                         |
|                  | CHS         | -22                | –NPV→R                    | 058 F0? 16 23 00 Print option.             |
| 003              |             | 35-11              | $0 \rightarrow R_{9}^{A}$ | 059 GTO1 22 01                             |
| 004              |             | 00                 | 1→R<br>1→R<br>10          | 060 SF0 16 21 00                           |
| 005              |             | 35 09              | 10                        | 061 1 01                                   |
| 006              |             | <u>01</u>          |                           | 062 RTN 24                                 |
| 007              |             | 35 13              |                           | 063 *LBL1 21 01                            |
| 008              |             | 36 11              |                           | 064 0 00                                   |
| 009              |             | -22                |                           | 065 CF0 16 22 00                           |
| 010<br>011       | GSB9<br>RTN | 23 09<br>24        |                           | 066 RTN 24                                 |
| 012              |             | 24<br>21 12        | i/100→R <sub>B</sub>      | 067 *LBL9 21 09<br>060 500 16 27 00        |
| 012<br>013       |             | -23                | I'V TOO TRB               | 068 F0? 16 23 00<br>069 GT02 22 02         |
| 013<br>014       |             | 02                 |                           | 070 R/S 51                                 |
| 015              |             | -24                |                           | 071 RTN 24                                 |
| 016              |             | 35 12              |                           | 072 *LBL2 21 02                            |
| 017              |             | 16-63              |                           | 073 PRTX -14                               |
| 018              |             | -35                |                           | 074 R/S 51                                 |
| 019              |             | 24                 |                           |                                            |
| 020              |             | 21 13              | #→R <sub>C</sub>          |                                            |
| 021              |             | 35 13              |                           |                                            |
| 022              |             | 24                 |                           |                                            |
| 023              | *LBLD       | 21 14              |                           |                                            |
| 024              | STOD        | 35-14              |                           | 080                                        |
| 025              |             | Ø1                 |                           |                                            |
| 026              |             | 36-12              |                           |                                            |
| <b>0</b> 27      |             | -55                | Calculate present         |                                            |
| 028              |             | 36-13              | value of series.          |                                            |
| 029              |             | 35-55 09           |                           |                                            |
| 030              |             | 31                 |                           |                                            |
| 031              |             | 35 15              |                           |                                            |
| 032              |             | 36 11              |                           |                                            |
| <b>03</b> 3      |             | -35                |                           | 090                                        |
| 034<br>075       |             | 36 15              |                           | 030                                        |
| 035<br>074       |             | Ū1                 |                           |                                            |
| 036<br>037       |             | -45<br>36-12       |                           |                                            |
| 037<br>038       |             | -24                |                           |                                            |
| 030<br>039       |             | 36 14              |                           |                                            |
| 040              |             | -35                |                           |                                            |
| 041              |             | -55                |                           |                                            |
| 042              |             | 35 11              |                           |                                            |
| 043              |             | Ū1                 |                           |                                            |
| 044              |             | 36 12              |                           | 100                                        |
| 045              | +           | -55                |                           |                                            |
| 04 <i>6</i>      |             | 36 09              |                           |                                            |
| 047              |             | 31                 |                           |                                            |
| 048              |             | -24                |                           |                                            |
| 049              |             | 01                 |                           | FLAGS SET STATUS                           |
| 050<br>051       |             | 35 13              |                           | FLAGS INIC DISI                            |
| 051<br>050       |             | -31                | Reset n to l.             | 1 ON OFF<br>0 □ ☑ DEG ☑ FIX ☑              |
| 052<br>057       |             | 23 09<br>24        |                           |                                            |
| 053<br>054       |             | 24<br>21 15        |                           | 110 2 C 🕅 RAD 🗆 ENG                        |
| 054<br>055       |             | 21 15<br>36 09     | Recall ∑n.                | 3 □ X   n_2                                |
| 055<br>056       |             | 36 09<br>24        |                           |                                            |
| L                |             |                    |                           | ISTERS                                     |
| 0                | 1           | 2                  | 3 4                       | <sup>5</sup> 6 7 8 <sup>9</sup> Σ <b>n</b> |
| SO               | S1          | S2                 | S3 S4                     | S5 S6 S7 S8 S9                             |
|                  |             |                    |                           |                                            |
| <sup>A</sup> NPV |             | <sup>B</sup> i/100 | с #                       | D CF E (1+i) <sup>n</sup> I                |
|                  |             | 1                  | Î                         |                                            |

#### **Program Description I**

| Program Title      | INCOME PROPERTY ANALYSIS |       |        |          |       |
|--------------------|--------------------------|-------|--------|----------|-------|
| Contributor's Name | JACK B. BUSTER           |       |        |          |       |
| Address            | P. O. BOX 8062           |       |        |          |       |
| City               | ANCHORAGE                | State | ALASKA | Zip Code | 99508 |

Program Description, Equations, Variables Capitalization Rate = <u>Net Operating Income</u> Purchase Price Taxable Income = Net Operating Income - Depreciation - Interest Spendable Income = Net Operating Income - Payments - Income tax Spendable Income Rate = <u>Spendable Income</u> Equity Equity Income = Net Operating Income - Interest - Income tax Equity Income Rate = <u>Equity Income</u> Equity Interest = PMT  $\int 12 - \frac{(1 + i)}{i} \frac{12 - n}{i} \left[ 1 - (1 + i)^{-12} \right]$ 

The above variables are the generally accepted parameters for the analysis and evaluation of income properties. This program follows the standard NIREB recommended format. Net Operating Income is gross income decreased by vacancies and operating expenses.

#### **Operating Limits and Warnings**

This program will operate with only one level of mortgage, i.e. properties with second mortgages cannot be analyzed by this program. This valuation or analysis technique is ubiquitous particularily since it takes explicit tax consequences into consideration.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| riogiam Description H | Program | Description |  |
|-----------------------|---------|-------------|--|
|-----------------------|---------|-------------|--|

Sketch(es)

|                                                              |                |                              |                |                       | apartment comple                       |
|--------------------------------------------------------------|----------------|------------------------------|----------------|-----------------------|----------------------------------------|
|                                                              |                |                              |                |                       | te, taxable inco.<br>quity income rate |
| The following                                                |                |                              | Tale, equily I | ncome, and eq         | fuity income rat                       |
| Purchase Pric                                                | -              | <i>app19</i> .<br>750,000.00 | Inflation/An   | preciation ra         | <b>t</b> o.                            |
| Loan Amount                                                  | •              | 635,000.00                   | Current year   |                       |                                        |
| Interest rate                                                |                | 9 3/4%                       | Next year:     |                       |                                        |
| Land Value                                                   |                | 95,000.00                    | Next Year:     |                       |                                        |
| Building life                                                |                | 35 years                     | Thereafter:    |                       |                                        |
| Monthly payme                                                |                |                              | merearter:     | - 8 1/2%              |                                        |
| Net Operating                                                |                |                              |                |                       |                                        |
| Income tax br                                                |                | 40%                          |                |                       |                                        |
| Income cax bi                                                |                | AMPLE SOLUTION               |                |                       |                                        |
| <b>Cap rate</b> = 15                                         |                | Year 2                       |                |                       |                                        |
| Taxable                                                      |                |                              | 54,742.55      | rour i                | Year 5                                 |
|                                                              |                |                              | 23,506.10      |                       | •                                      |
|                                                              |                | 10.04 %                      |                | 28,573.12<br>7.65 %   |                                        |
|                                                              |                | 44,585.28                    |                |                       | 7.12 %                                 |
|                                                              | 33.43 %        |                              |                | ,                     |                                        |
| Nace                                                         | JJ.4J %        | 23.39 %                      | 10.00 %        | 15.93 %               | 14.17 %                                |
| <b>Solution(s)</b> Input v<br>Interest Rate<br>Monthly Payme | STO B          | ( 8125)                      | SOLVE AS FOLLO | WS:                   |                                        |
| Loan Amount                                                  | STO D          | • •                          | Initialize     |                       |                                        |
| Purchase Pric                                                | e STO <b>O</b> |                              | re variables   |                       |                                        |
| N.O. INCOME                                                  | STO 1          |                              | Capitaliza     |                       |                                        |
|                                                              | 510 2          |                              | Taxable In     |                       |                                        |
| Economic Life                                                | amo -          |                              |                |                       | endable Income l                       |
| Land value                                                   | STO 3          |                              |                |                       |                                        |
|                                                              | STO 3<br>STO 4 |                              | Equity Inco    | -                     | y Income Rate                          |
| Land value                                                   |                | (7) Key                      | in inflation : | rate                  | -                                      |
| Land value                                                   |                | (7) Key<br>(8) E -           |                | rate<br>otals for one | year                                   |

Reference(s) National Institute of Real Estate Brokers income property analysis data sheet.

# **User Instructions**

|          | INCOME PR | OPERTY ANALYS | 515    |      |       |
|----------|-----------|---------------|--------|------|-------|
|          |           | CDENDADIE     |        | NDVM |       |
| f start  | TAXABLE   | SPENDABLE     | EQUITY | NEXT | · · / |
| CAP RATE | INCOME    | INCOME        | INCOME | YEAR | _ /   |
|          |           |               |        |      |       |

| STEP   | INSTRUCTIONS                              | INPUT<br>DATA/UNITS | ĸ   | EYS   |     | OUTPUT<br>DATA/UNITS | ]        |
|--------|-------------------------------------------|---------------------|-----|-------|-----|----------------------|----------|
| 1      | Load sides 1 and 2                        |                     |     |       |     |                      | ]        |
| 2      | Initialize                                |                     | f   | А     |     |                      |          |
| 3      | Input Data:                               |                     |     |       |     |                      | 1        |
|        | Interest rate per period                  |                     | STO | B     |     |                      |          |
|        | Monthly payment                           |                     | STO | C     |     |                      | 1        |
|        | Loan amount                               |                     | STO | D     |     |                      | 1        |
|        | Purchase price                            |                     | STO | 0     |     |                      | 1        |
|        | Net Operating Income                      |                     | STO | 1     |     |                      | 1        |
|        | Remaining economic life of improvements   |                     | STO | 2     |     |                      |          |
|        | Land value                                |                     | STO | 3     |     |                      | 1        |
|        | Investor's income tax bracket (as a %)    |                     | STO | 4     | Ì   |                      | 1        |
| 4      | CALCULATE Capitalization Rate             |                     | A   | [     |     | Cap Rate             | 1 %      |
| 5      | CALCULATE Taxable Income                  |                     | B   | Ì     |     | Taxable              | 1        |
| 5      | CALCULATE Net Spendable Income and Rate   |                     | c   |       | i I | Spendable            | \$<br>\$ |
| 5<br>7 | CALCULATE Equity Income and Rate          |                     |     | Ì     | í   | Equity               | \$       |
| /<br>8 | Input current inflation/appreciation rate |                     |     | 1     | lue | ars beyond           | -1       |
| _      |                                           |                     |     | 1     |     |                      | -<br>ye  |
| 9      | Return to step 5 for the next year        |                     |     | 1     |     |                      | -        |
|        |                                           |                     |     | 1     |     |                      | -        |
|        |                                           |                     |     |       |     |                      | -        |
|        |                                           |                     |     |       |     |                      |          |
|        |                                           |                     |     | l     |     |                      |          |
|        |                                           |                     |     |       |     |                      |          |
|        |                                           |                     |     |       | 1   |                      | 1        |
|        |                                           |                     |     | Ì     | 1 I |                      | 1        |
|        |                                           |                     |     | Ì     | i   |                      | 1        |
|        |                                           |                     |     | 1     | i   |                      | 1        |
|        |                                           |                     |     | 1     | 1   |                      | 1        |
|        |                                           |                     |     | 1     |     |                      | -        |
|        |                                           |                     |     | 1     | 1   |                      | -        |
|        |                                           |                     |     |       |     |                      | -        |
|        |                                           |                     |     |       |     |                      | 4        |
|        |                                           |                     |     |       |     |                      |          |
|        |                                           |                     |     | l     |     |                      |          |
|        |                                           |                     |     |       |     |                      |          |
|        |                                           |                     |     | [     |     |                      | 1        |
|        |                                           |                     |     |       |     |                      | 1        |
|        |                                           |                     |     | 1     |     |                      |          |
|        |                                           |                     |     | 1     |     |                      | 1        |
|        |                                           | ┟────┤              | i 1 | l<br> | 1   |                      | -        |
|        |                                           | <b> </b>            |     | l     |     |                      | -        |
|        |                                           |                     |     |       | ]   |                      |          |

## 67 Program Listing I

| STEFA | ∩ KBY ENTR₽ | KEY CODE                  | COMMENTS             | STEP           | KEY ENTRY        | KEY CODE    | COMMENTS          |
|-------|-------------|---------------------------|----------------------|----------------|------------------|-------------|-------------------|
| 01 *  | f LBL A     | 31 25 11                  |                      |                | 1                | 01          |                   |
|       | RCL 1       | 34 01                     | ]                    |                | 2                | 02          | ]                 |
|       | RCL 0       | 34 00                     | Figure Cap Rate      |                | STO 8            | 33 08       |                   |
|       | Divide      | 81                        | 5 1                  | 060            | CHS              | 42          |                   |
|       | EEX         | 43                        |                      |                | x <sub>u</sub> x | 35 63       |                   |
|       | 2           | 02                        | 1                    |                | 1                | 01          | ]                 |
|       | X           | 71                        | 1                    |                | xZy              | 35 52       | 1                 |
|       | h RTN       | 35 22                     | 1                    |                | -                | 51          | 1                 |
| *     | f LBL B     | 31 25 12                  | 1                    |                | RCL 5            | 34 05       | 1                 |
| 10    | DSP 2       | 23 02                     | 1 Figure start abt 1 |                | RCL 8            | 34 08       | 1                 |
|       | h F? 0      | 35 71 00                  | Figure straight li   | n <del>o</del> | RCL A            | 34 11       | Interest          |
|       | GTO 1       | 22 01                     | Depreciation         |                | _                | 51          | Calculation       |
|       | 1           |                           | 4                    |                | y <sup>x</sup>   | 35 63       |                   |
|       | RCL 0       | 34 00                     | 4                    | 070            | RCL 9            | 34 09       | Routine           |
|       | RCL 3       | 34 03                     | 4                    |                |                  |             | 4                 |
|       | -           | 51<br>34 02               | 4                    |                | Divide           | 81          | 4                 |
|       | RCL 2       |                           | 4                    |                | X                | 71          | 4                 |
|       | Divide      | 81                        | 4                    |                | RCL 8            | 34 08       | 4                 |
|       | STO 2       | 33 02                     |                      | .              | xžy              | 35 52       | 4                 |
|       | 1           | 01                        | 4                    |                | -                | 51          | 4                 |
| 20    | RCL B       | 34 12                     | 1                    |                | RCL C            | 34 13       | 4                 |
|       | f %         | 31 82                     | Figu <b>r</b> e      |                | X                | 71          | 1                 |
|       | STO 9       | 33 09                     | Loan                 |                | h RTN            | 35 22       |                   |
|       | +           | 61                        | Amortization         | *              | f LBL C          | 31 25 13    |                   |
|       | STO 7       | 33 07                     | Period               | 080            | RCL 4            | 34 04       | Figure            |
|       | RCL C       | 34 13                     | 101104               |                | EEX              | 43          | Spendable         |
|       |             |                           | 1                    |                | 2                | 02          | spendable         |
|       | RCL 9       | <u>34 09</u><br>81        | 4                    |                | Divide           | 81          | 4                 |
|       | Divide      |                           | 4                    |                |                  |             | 4                 |
|       | Enter       | 41                        | 4                    |                | RCL 3            | 34 03       | 4                 |
|       | Enter       | 41                        | 4                    |                | X                | 71          | 4                 |
| 30    | RCL D       | 34 14                     | 4                    |                | STO 7            | 33 07       | 4                 |
|       | -           | 51                        | 4                    |                | RCL C            | 34 13       | 4                 |
|       | Divide      | 81                        |                      |                | RCL 8            | 34 08       | 4                 |
|       | f LN        | 31 52                     |                      |                | X                | 71          |                   |
|       | RCL 7       | 34 07                     | ]                    | 090            | STO E            | 33 15       |                   |
|       | f LN        | 31 52                     | 1                    |                | +                | 61          |                   |
|       | Divide      | 81                        |                      |                | CHS              | 42          |                   |
|       | STO A       |                           |                      |                | RCL 1            | 34 01       | 1                 |
| *     |             | 33 1 <u>1</u><br>31 25 01 | 1                    | ·              | +                | 61          | 1                 |
|       | f GSB 0     | 31 22 00                  | 1                    |                | -x-              | 31 84       | show spendable    |
| 10    | STO 6       | 33 06                     | 4                    |                | RCL 0            | 34 00       |                   |
|       |             |                           | Figure               |                |                  |             | 4                 |
|       | RCL 2       | 34 02                     | Accumulated          |                | RCL D            | 34 14       | 4                 |
|       | +           | 61                        | Interest for         |                | -<br>STO 9       | 51<br>33 09 | 4                 |
|       | CHS         | 42                        | 12_months            | 100            |                  |             | 4                 |
|       | RCL 1       | 34 01                     |                      | 100            | Divide           | 81          | 4                 |
|       | +           | 61                        | 4                    |                | EEX              | 43          | 4                 |
|       | STO 3       | 33 03                     | Figure               |                | 2                | 02          | 4                 |
|       | h RTN       | 35 22                     | Taxable              | <b> </b>       | X                | 71          | about mate        |
| *     |             | 31 25 00                  | 4                    | L              | h RTN            | 35 22       | <u>s</u> how rate |
|       | RCL B       | 34 12                     | 1                    | *              | f LBL D          | 31 25 14    | 4                 |
| 50    | EEX         | 43                        |                      |                | RCL 7            | 34 07       |                   |
|       | 2           | 02                        | ]                    |                | RCL 6            | 34 06       | Figure            |
|       | Divide      | 81                        | ]                    |                | +                | 61          | Equity            |
|       | STO 9       | 33 09                     | ]                    |                | CHS              | 42          |                   |
|       | 1           | 01                        |                      | 110            | RCL 1            | 34 01       | Income            |
|       | +           | 61                        | ]                    |                | +                | 61          |                   |
|       | STO 5       | 33 05                     | 1                    |                | -x-              | 31 84       | show equity       |
|       |             |                           | REGI                 | STERS          |                  |             |                   |
|       | 1           | 2                         | 3 4                  | 5              | 6                | 7           | 8 9               |
|       | ice N.O.I.  |                           | Land val. tax rate   | used           | used             | tax         | 12 used           |
| )     | S1          | S2                        | S3 S4                | S5             | S6               | S7          | S8 S9             |
| -     |             |                           |                      |                |                  |             |                   |
|       |             | L                         | <del></del>          | t              |                  |             | I                 |
| Loa   |             | В                         | IC                   | D              |                  | E           | 11                |

### 6) Program Listing II

| 0750      |                   |                          |                 |           |           |          | <b>COM</b> | 57          |
|-----------|-------------------|--------------------------|-----------------|-----------|-----------|----------|------------|-------------|
| STEP      | KEY-ENTRY         | KEY CODE                 | COMMENTS        | STEP      | KEY ENTRY | KEY CODE | COMN       | IENIS       |
|           | RCL 9<br>Divide   | 34 09<br>81              | -               | 170       |           |          | 4          |             |
|           | EEX               | 43                       | 4               | 170       |           |          | 4          |             |
|           | 2                 | 02                       |                 |           |           |          | 4          |             |
|           | 2<br>X            | 71                       | •               |           |           |          | 4          |             |
|           | h RTN             | 35 22                    | 1               |           |           |          | {          |             |
| *         | f LBL E           | 31 25 15                 |                 |           |           |          | 4          |             |
| 120       |                   | <u>31 23 15</u><br>34 15 | Adjust for      |           |           |          | 4          |             |
|           | RCL E             | <u>34 15</u><br>34 06    | inflation and   |           |           |          | 4          |             |
|           | RCL 6             | 51                       | housekeep for   |           |           |          | {          |             |
|           | CHS               | 42                       | new year's run  |           |           |          | 1          |             |
|           | RCL D             | 34 14                    | new year's full | 180       |           |          | 1          |             |
|           | +                 | 61                       | 1               |           |           |          | 1          |             |
|           | STO D             | 33 14                    |                 |           |           |          | 1          |             |
|           | h 🖌               | 35 53                    |                 |           |           |          |            |             |
|           | STO E             | 33 15                    |                 |           |           |          | 1          |             |
|           | RCL 0             | 34 00                    | 1               |           |           |          | 1          |             |
| 130       | xZ y              | 35 52                    | 1               |           |           |          | 1          |             |
|           | f %               | 31 82                    | 1               |           |           |          | 1          |             |
|           | +                 | 61                       | ]               |           |           |          | 1          |             |
|           | STO 0             | 33 00                    |                 |           |           |          | ]          |             |
|           | RCL 1             | 34 01                    |                 | 190       |           |          | ]          |             |
|           | RCL E             | 34 15                    |                 |           |           |          | 1          |             |
|           | f %               | 31 82                    |                 |           |           |          | 1          |             |
|           | +                 | 61                       |                 |           |           |          |            |             |
|           | STO 1             | 33 01                    |                 |           |           |          |            |             |
|           | h SF 0            | 35 51 00                 |                 |           |           |          |            |             |
| 140       | RCL A             | 34 11                    |                 |           |           |          |            |             |
|           | RCL 8             | 34 08                    |                 |           |           |          |            |             |
|           | -                 | 51                       |                 |           |           |          |            |             |
|           | STO A             | 33 11                    |                 | 200       |           |          |            |             |
|           | f ISZ             | 31 34                    |                 | 200       |           |          |            |             |
|           | h RC I            | 35 34                    |                 |           |           |          |            |             |
|           | DSP 0             | 23 00                    |                 |           |           |          |            |             |
|           | <u>h RTN</u>      | 35 22                    |                 |           |           |          |            |             |
| *         | g LBL a<br>h CF 0 | 32 25 11                 |                 |           |           |          |            |             |
| 150       | f CL REG          | 35 61 00<br>31 43        | Initialize      |           |           |          |            |             |
| 130       | CL X              | 44                       |                 |           |           |          |            |             |
|           | DSP 2             | 23 02                    |                 |           |           |          |            |             |
|           | h RTN             | 35 22                    |                 |           |           |          |            |             |
|           |                   |                          |                 | 210       |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
| <b></b>   |                   |                          |                 |           |           |          | 1          |             |
| <b></b>   |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
| 160       |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
|           |                   |                          |                 | 220       |           |          |            |             |
|           |                   |                          |                 |           |           |          |            |             |
|           | łi                |                          |                 |           |           |          |            |             |
|           |                   |                          |                 | <b>├</b>  |           |          |            |             |
|           |                   | L                        | LABELS          |           | FLAGS     | 1        | SET STATUS |             |
| A         | В                 | С                        | D E             |           | 0         |          |            |             |
| Çap       | Rate Taxa         | uble Spe                 |                 | Next Year | Togqle    | FLAGS    | TRIG       | DISP        |
| a<br>Init | b<br>tialize      | с                        | d e             |           |           | ON OFF   | DEG 🕱      | FIX 🕱       |
| 0         | 1                 | 2                        | 3 4             |           | 2         | 1 🗆 🔂    | GRAD 🗆     | SCI 🗆       |
| 5         | 6                 | 7                        | 8 9             |           | 3         | 2 🗆 🔂    | RAD 🗆      | ENG 🗆       |
|           | _                 | Î                        | ľ               |           | I         | 3 🗆 🞽    |            | n_ <b>2</b> |

#### **Program Description I**

| Program Title In              | come Tax Planning - I                   |                  |                |
|-------------------------------|-----------------------------------------|------------------|----------------|
| Contributor's Name<br>Address | Richard D. Rutter<br>Arthur Young & Co. | 780 N. Water St. |                |
| City                          | Milwaukee                               | State Wi         | Zip Code 53202 |

**Program Description, Equations, Variables** This program calculates regular, alternative, and and average income taxes for individuals using IRS forms 1040, schedule D, and schedule G. Although the program was originally written prior to the Tax Reducation and Simplification Act of 1977 (which effects 1977 returns) the changes in the law have only had a minor effect on the program results. The tax amount computed for ordinary income differs slightly from that arrived at through the use of Table A through D (adjusted incomes less than \$20,000 (\$40,000 for joint returns)) but the differences are well within the tolerances required for tax planning. For filing purposes, the new tables (A through D) should be used for calculating ordinary income wherever specified by the IRS. If schedule x, y, and z are specified for tax computation, however, the program answers are exact.

The following mnemonics are in the accompanying documentation

| OTI                                           | = | Form | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Line                                      | 34 |  |
|-----------------------------------------------|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----|--|
| The second second second second second second |   |      | CONTRACTOR AND AND A STREAM OF A DESCRIPTION OF A DESCRIP | a an an and a second second second second |    |  |
|                                               |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |    |  |

| - |      | ptions | х | 750) |
|---|------|--------|---|------|
| - | 3200 | Joint  |   |      |

or 1600 Separate

or

2200 Single

-(.5 x C G)

C G = Capital Gains (Schedule D, line 13)

4 yr TI = Total Taxable income for preceding 4 years (see next page)

Computed tax amounts do not include the income tax credit. For the exact net tax amount, use the program Tax Computation Schedule and the tax on ordinary income generated by this program.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

### **Program Description I**

| Zip Code |
|----------|
| -        |

| 4 Yr TI - The increase in personal exemption for the current year (1977) has<br>resulted in an increase in the 4 year base period total as implemented<br>in the new income averaging schedule G. The effect is an increase in<br>the averaged tax of approximately.5%. For planning purposes this is<br>not a significant amount. However, if the exact income averaged tax |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| is desired, add the following amounts to the 4 year taxable income.<br>+ \$2133 Joint                                                                                                                                                                                                                                                                                        |
| or                                                                                                                                                                                                                                                                                                                                                                           |
| + \$1067 Separate                                                                                                                                                                                                                                                                                                                                                            |
| or                                                                                                                                                                                                                                                                                                                                                                           |
| + \$1467 Single                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                              |
| Operating Limits and Warnings                                                                                                                                                                                                                                                                                                                                                |
| Tax calculations cannot be performed for values less than \$1,000 (if attempted,                                                                                                                                                                                                                                                                                             |
| error code '9' will flash in the display). All input data must conform with                                                                                                                                                                                                                                                                                                  |
| the following limits: OTI ≥ \$1,000                                                                                                                                                                                                                                                                                                                                          |
| CG > 0                                                                                                                                                                                                                                                                                                                                                                       |
| 4 vr TI > 0                                                                                                                                                                                                                                                                                                                                                                  |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description II

|                                         | 1 1     |                                             |
|-----------------------------------------|---------|---------------------------------------------|
| Sketch(es)                              |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         | 1       |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
| • • • • • • • • • • • • • • • • • • • • |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
| Sample Problem(s)                       |         |                                             |
| -                                       |         |                                             |
| Mr. and Mrs. Smith will file a joi      | nt retu | rn claiming 2 exemptions for tax year 1977. |
|                                         |         |                                             |
| The following data are applicable.      |         |                                             |
| 1040 Line 34                            | 100-000 |                                             |
|                                         |         |                                             |
| Capital Gains (CG)                      | 10,000  |                                             |
|                                         |         |                                             |
| 4 Year 11                               | 160,000 |                                             |
|                                         |         |                                             |
|                                         | GSBA    |                                             |
| 100000.00                               | ENTT    | line 34                                     |
| 750.00                                  |         |                                             |
| 2.00                                    |         |                                             |
| 1500.00                                 |         | net exemption                               |
|                                         | +++     |                                             |
| 00500 00                                | -       |                                             |
| 98500.00                                |         | standard deduction                          |
| 3200.00                                 |         |                                             |
| 95300.00                                | ***     |                                             |
|                                         |         | capital gains                               |
| 10000.00                                | STOC    |                                             |
| 2.00                                    | ÷       |                                             |
|                                         |         |                                             |
| 90300.00                                | ***     | -1/2 C G                                    |
|                                         | STOB    |                                             |
|                                         | 5106    | OTI                                         |
|                                         |         |                                             |
| 160000.00                               |         | 4 yr TI                                     |
|                                         | GSBE    |                                             |
|                                         |         |                                             |
| 3.60                                    |         |                                             |
| 42360.00                                | Ζ       | regular                                     |
| 41860.00                                | U .     |                                             |
| 40529.00                                | X       | alternative                                 |
|                                         |         | averaged                                    |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
| Reference (s)                           |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |
|                                         |         |                                             |

## **User Instructions**

|      | INCOME | ТАХ | PLANNIN | G - I |       |     |         | (Fo | rm 10 | D40)<br>D,G) |   |
|------|--------|-----|---------|-------|-------|-----|---------|-----|-------|--------------|---|
|      |        |     | 1       | — S   | T 0 R | Е — |         | (Sc | hed.  | D,G)         | 7 |
| (hp) | START  |     | OTI     |       | CG    |     | 4 YR TI |     | RUN   |              |   |

| STEP | INSTRUCTIONS                                                                                                                     | INPUT<br>DATA/UNITS | KE        | YS         | OUTPUT<br>DATA/UNITS |
|------|----------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|------------|----------------------|
| 1.   | Load program card sides 1 and 2                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
| 2.   | Start by specifying tax table card 1 or 2 to                                                                                     | 1 or 2              |           |            | 1 or 2               |
|      | be loaded. Be sure to select the pair of tax                                                                                     |                     |           |            |                      |
|      | table cards to correspond to the type of tax<br>return (E.G. joint return). 'l' or '2' will                                      |                     |           |            |                      |
|      | flash in the display until the specified tax table card has been loaded. During execution                                        |                     |           |            |                      |
|      | the program will automatically request tax                                                                                       |                     |           |            |                      |
|      | table card loading (if necessary) by flashing<br>'l' or '2' in the display until the required<br>tax table card has been loaded. |                     |           |            |                      |
| 2    | Store the following data:                                                                                                        | 0T I                | ST0       | <br>  B    | OTI                  |
| 5.   | Store the forfowing data.                                                                                                        | CG                  |           |            | CG                   |
|      |                                                                                                                                  | 4 Yr TI             | STO       | D          | 4 YR TI              |
| 4.   | Run the program to calculate regular, alter-                                                                                     |                     | E         |            | '3.00'               |
|      | native, and averaged taxes. Results are left                                                                                     |                     |           |            | 'Reg Tax'            |
|      | in the stack and may be reviewed by:                                                                                             |                     |           |            | 'Alt Tax'            |
|      |                                                                                                                                  |                     | g         | STK        | 'Ave Tax'            |
|      | NOTE: Execution times range from 3-45 seconds.                                                                                   |                     |           |            |                      |
| 5.   | Tax calculations must be for taxable amounts ab                                                                                  | ove                 |           |            |                      |
|      | <pre>\$1,000. If a tax calculation for a lesser</pre>                                                                            |                     |           |            |                      |
|      | amount is attempted. The program will halt                                                                                       |                     |           |            |                      |
|      | with error code '9' in the display.                                                                                              |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     |           |            |                      |
|      |                                                                                                                                  |                     | · · · · · | <u>.</u> 1 |                      |

### **User Instructions**

| TAX                                             | TABLE CARD 1 (or                                   | 2)                                                    |        |
|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|--------|
| Married-Joint<br>Married-Separate<br>Individual | \$1,000-39,999<br>\$1,000-19,999<br>\$1,000-19,999 | (or \$40,000 +)<br>(or \$20,000 +)<br>(or \$20,000 +) | (۲<br> |

| STEP |            |                          | INSTRUCTIONS         | INPUT<br>DATA/UNITS    | KEYS | OUTPUT<br>DATA/UNITS |                                       |
|------|------------|--------------------------|----------------------|------------------------|------|----------------------|---------------------------------------|
| 1.   | Reco       | ord the follo            | wing data on         | pairs of data          |      |                      |                                       |
|      | card       | ls for use wi            | th Income Tax        |                        |      |                      |                                       |
|      | II p       | rograms. Re              | cord only the        |                        |      |                      |                                       |
|      |            | <u>you will us</u>       |                      |                        |      |                      |                                       |
|      | REG        | MARRIED-                 | MARRIÉD-             | INDIVIDUAL             |      |                      |                                       |
|      |            | JOINT                    | SEPARATE             |                        |      |                      |                                       |
|      |            | CARD 1                   |                      |                        |      |                      |                                       |
|      | RO         | 1.0401                   | 1.0201               | 1.0201                 |      | STO O                |                                       |
|      | R1         | 1.0001415                | 0.                   | 0.                     |      | STO 1                |                                       |
|      | R2         | 2.0002916                | 0.                   | 0.                     |      | STO 2                |                                       |
|      | R3         | 3.0004517                | 1.0001416            | 1.0001416              |      | STO 3                |                                       |
|      | R4         | 4.0006219<br>8.0013822   | 2.0003119            | 2.0003119              |      | STO 4                |                                       |
|      | R5         |                          | 4.0006922            | 4.0006921<br>6.0011124 |      | STO 5                |                                       |
|      | R6         | 12.0022625               | 6.0011325            |                        |      | STO 6                |                                       |
|      | R7<br>R8   | 16.0032628<br>20.0043832 | 8.0016328            | 8.0015925              |      | STO 7                |                                       |
|      |            |                          |                      |                        |      | STO 8                |                                       |
|      | R9         | 24.0056636               | 12.0028336           | 12.0026329             |      | STO 9                |                                       |
|      | RO         | 28.0071039               | 14.0035539           | 14.0032131             |      | P S                  |                                       |
|      |            |                          | 16.0043342           |                        | _    |                      |                                       |
|      | R 1        | 32.0086642               |                      | 16.0038334             |      |                      |                                       |
|      | R 2<br>R 3 | 36.0103445<br>52000.     | 18.0051745<br>26000. | 18.0045136<br>38000.   |      | ST0 2<br>ST0 3       |                                       |
|      | K 3        |                          | 20000.               | 30000.                 |      | P S W/DATA           |                                       |
|      |            | <u>CARD 2</u>            | 2.0202               | 2.0202                 |      |                      |                                       |
|      | RO<br>R1   | 2.0402<br>40.0121448     | 2.0202               | 20.0052338             |      |                      |                                       |
|      | R2         | 44.0140650               | 22.0070350           | 22.0059940             |      | STO 2                | · · · · · · · · · · · · · · · · · · · |
|      | R2<br>R3   | 52.0180653               | 26.0090353           | 26.0075945             |      | STO 3                |                                       |
|      | R4         | 64.0244255               | 32.0122155           | 32.0102950             | 1    | STO 4                |                                       |
|      | R5         | 76.0310258               | 38.0155158           | 38.0132955             | 1 1  | ST0 5                |                                       |
|      | R6         | 88.0379860               | 44.0189960           | 44.0165960             |      | STO 6                |                                       |
|      | R7         | 100.0451862              | 50.0225962           | 50.0201962             |      | STO 7                |                                       |
|      | R8         | 120.0575864              | 60.0287964           | 60.0263964             |      | STO 8                |                                       |
|      | R9         | 140.0703866              | 70.0351966           | 70.0327966             |      | STO 9                |                                       |
|      |            |                          |                      |                        |      | P S                  |                                       |
|      | RO         | 160.0835868              | 80.0417968           | 80.0393968             |      | ST0 1                |                                       |
|      | R 1        | 180.0971869              | 90.0485969           | 90.0461969             |      | STO 2                |                                       |
|      | R_2        | 200.1109870              | 100.0554970          | 100.0530970            |      | STO 3                |                                       |
|      | R 3        | 52000.                   | 26000.               | 38000.                 |      | P S W/DATA           |                                       |
|      |            |                          |                      |                        |      |                      |                                       |

#### 97 Program Listing I

|                    |              |     |                | 7/   |                    | gram                  |       | 511         | ng i           |   |                |         |     | 63                  |
|--------------------|--------------|-----|----------------|------|--------------------|-----------------------|-------|-------------|----------------|---|----------------|---------|-----|---------------------|
| STEP K             | EY ENTRY     | 1   | KEY CODE       |      | COMM               | ENTS                  | STEP  | KE          | Y ENTRY        | к | EY CODE        | C       | OMN | IENTS               |
| 801                | *LBL0        |     | 21 80          | -    |                    |                       | 1     | <b>8</b> 57 | LSTX           |   | 16-63          |         |     |                     |
| <b>88</b> 2        | EEX          | -   | -23            |      | Calcul             |                       |       | <b>8</b> 58 | STOO           |   | 35 00          |         |     |                     |
| 883                | 3            | 1   | 03             |      | ubrout             | ine                   |       | 059         | R4             |   | -31            |         |     |                     |
| 004                | ÷            |     | -24            | Forn | at Tax             | Table                 |       | 060         | INT            |   | 16 34          |         |     |                     |
| 885                | STOE         |     | 35 15          |      | ch Arg             |                       |       | 861         | X=Y?           |   | 16-33          |         |     |                     |
| 806                | 1            | -   | 01             |      | rgumen             |                       |       | 862         | GT09           |   | 22 09          |         |     |                     |
| 887                | XZY?         |     | 16-35          |      | ; with             |                       |       | 063         | R4             |   | -31            |         |     |                     |
| 008                | GTOE         |     | 22 06          |      | r code             | . 'Q'                 |       | 064         | GT03           |   | 22 03          |         |     |                     |
| 889                | 9            |     | 69             |      |                    |                       |       | 065         | #LBL9          |   | 21 09          |         |     |                     |
| 818                | R/S          | 1   | 51             | 1    |                    |                       |       | 866         | F2?            |   |                | Exit fo | n i | nitial              |
| 011                | #LBL6        |     | 21 06          | Doto | rmine              | which                 |       | 067         | RTH            |   | - (            | Tax Tab |     |                     |
| 012                | RCLI         |     | 36 46          |      |                    | x table               |       | 068         | #LBL5          |   | 21 05          |         | Ie  | LUdu                |
| 013                | FRC          | -   | 16 44          |      | require            |                       |       | 069         | RCLI           |   | 36 46          | Tax Tab | le  | Search              |
| 014                | EEX          | 1   | -23            |      |                    |                       |       | 070         | FRC            |   | 16 44          | Routine | ;   |                     |
| 015                | 3            | t   | 03             |      |                    | argument              |       | 071         | 1              |   | I              | Dowform |     | diment              |
| 016                | x            | 1   | -35            |      | Table              |                       |       | 872         | 2              |   | 00             | Perform |     |                     |
| 017                | ENT†         |     | -21            |      | e stor             |                       |       | 073         | +              |   | EE             |         |     | through             |
| 018                | INT          |     | 16 34          |      | Frac).             |                       |       | 074         | STOI           |   | 35 46          | Tax Tab |     | · · · · ·           |
| 019                | RCLE         | -   | 36 15          |      |                    | • • • • • • • •       |       | 075         | *LBL7          |   | 31 07          |         |     | ng) until           |
| 020                | XIY          | 1   | -41            |      |                    | e other               |       | 076         | RCLE           |   | 76 15          | correct |     |                     |
| 021                | X>Y?         | 1   | 16-34          |      | of th              |                       |       | 077         | RCLI           |   | 36 45          |         |     | en branch           |
| 022                | GT01         | -   | 22 01          |      |                    | or '2')               |       | 078         | INT            |   | 15 74          |         |     | culation            |
| 023                | 2            | : ' | 02             |      |                    | ry, and               |       | <b>0</b> 79 | X£Y?           |   | 16-35          | routine | •   |                     |
| 824                | GTOB         | •   | 22 12          |      | ch to              |                       |       | 080         | GT08           |   | 22 08          |         |     |                     |
| 825                | #LBL1        | -   | 21 01          |      |                    | routine               |       | 081         | DSZI           |   | 25 46          |         |     |                     |
| 026                | 1            |     | 81             | Else | , bran             | ch to Tax             |       | 082         | GT07           |   | 22 07          |         |     |                     |
| 827                | *LBLB        |     | 21 12          |      | e Sear             | ch                    |       | <b>8</b> 83 | *LBL8          |   | 21 88          |         |     |                     |
| 828                | Rt           |     | 16-31          | rout | ine                |                       |       | 084         | RCLi           |   | 36 45          | Tax Cal |     | ation               |
| 829                | FRC          |     | 16 44          |      |                    |                       |       | <b>0</b> 85 | FRC            |   | 16 44          | Routine | ;   |                     |
| 030                | EEX          | - ( | -23            |      |                    |                       |       | <b>0</b> 86 | EEX            |   | -23            |         |     |                     |
| 031                | 1            |     | 01             |      |                    |                       |       | <b>0</b> 87 | 5              |   | 85             |         |     |                     |
| 032                | x            |     | -35            |      |                    |                       |       | 088         | x              |   | -35            |         |     |                     |
| <b>0</b> 33        | ÍNT          |     | 16 34          |      |                    |                       |       | <b>8</b> 89 | ENTT           |   | -21            |         |     |                     |
| <b>6</b> 34        | X=Y?         |     | 16-33          |      |                    |                       |       | <i>090</i>  | INT            |   | 16 34          |         |     |                     |
| 835                | GT05         |     | 22 85          |      |                    |                       |       | <b>89</b> 1 | EEX            |   | -23            |         |     |                     |
| <b>8</b> 36        | R4           |     | -31            |      |                    |                       |       | <b>0</b> 92 | 1              |   | 01             |         |     |                     |
| 037                | GT03         |     | 22 83          |      |                    |                       |       | 093         | x              |   | -35            |         |     |                     |
| <b>8</b> 38        | *LBLA        |     | 21 11          | Entr | v for              | initial               |       | 094         | X₽Y            |   | -41            |         |     |                     |
| <b>8</b> 39        | SF2          | 12  | 21 02          |      | Table              |                       |       | 095         | FRC            |   | 16 44          |         |     |                     |
| 03.5<br>040        | *LBL3        | 10  | 21 03          |      |                    |                       |       | 095<br>096  | RCLE           |   | 36 15          |         |     |                     |
| 641                | RCLO         |     | 36 00          |      | Table              | Load                  |       | 097         | RCLI           |   | 36 45          |         |     |                     |
| 642                | ABS          |     | 16 31          | Rout | ine                |                       |       | <b>8</b> 98 | INT            |   | 16 34          |         |     |                     |
|                    |              |     | -31            |      |                    |                       |       |             | -              |   | -45            |         |     |                     |
| <b>84</b> 3<br>044 | R+<br>1      |     | -31<br>01      |      | ested              |                       |       | 099<br>100  | EEX            |   | -23            |         |     |                     |
| 044<br>045         |              |     | 03             |      |                    | or '2')               |       | 101         | 3              |   | -23<br>03      |         |     |                     |
|                    | ST01         |     | 83<br>35 46    | is i | n R <sub>x</sub> . | Loop                  |       | 102         | 3<br>X         |   | -35            |         |     |                     |
| 646<br>847         |              |     | -41            | unti | 1 rêqu             | ested                 |       | 102         | x              |   | -35            |         |     |                     |
| 847<br>849         | XZY          |     | 21 02          | half | f of Ta            | x Table               |       | 103         | ×<br>+         |   | -35            |         |     |                     |
| 048<br>940         | #LBL2        |     |                | is 1 | oaded.             |                       |       |             |                |   |                |         |     |                     |
| 849                | MRG          |     | 16-62<br>16 51 |      |                    |                       |       | 185         | RTN<br>+I RI E |   | 24             |         |     |                     |
| 850                | PSE          | 17  |                |      |                    | le Split'             |       | 106         | *LBLE<br>RCLB  |   | 21 15          | Mainlin | e   |                     |
| 851                | F3?          | 10  | 23 03<br>22 04 | vait | ie in K            | ן (Frac)              |       | 107         | KLLB<br>GSE0   |   | 36 12<br>23 00 |         |     | Alternative         |
| 052<br>057         | GT04<br>GT02 |     | 22 04          |      |                    |                       |       | 108<br>109  | 6380<br>Sto0   |   | 23 00<br>35 00 | Tax     |     |                     |
| 853                |              |     | 22 82          |      |                    |                       |       |             |                |   | 55 66          | Compute | Ta  | x on OTI            |
| 854                | *LBL4        |     |                |      |                    |                       |       | 110         | 5              |   | <b>0</b> 5     | Store i | n F |                     |
| 855                | RCLO         |     | 36 00          |      |                    |                       |       | 111         | EEX            |   |                |         |     | υ.                  |
|                    | STOI         |     | 35 46          | L    |                    | REGIS                 | SIERS | 112         | 4              |   | 04 I           |         |     |                     |
| • Accum.           | 1 Tax        |     | 2              | 3    |                    |                       | 5     |             | 6              |   | 7              | 8       |     | 9                   |
| Tax Amt            | Table        |     | +              |      |                    |                       |       |             |                |   |                | +       |     | >                   |
| SO Tax             | S1           |     | S2             | S3C  | onstan             | <sup>S4</sup> Ave Tax | S5    |             | S6             |   | S7             | S8      |     | <sup>S9</sup> Work  |
| Table              |              |     | >              | 38/  | 26/520             |                       |       |             |                |   |                | L       |     |                     |
| Δ                  | Tax          | в   | ΛΤΤ            |      |                    | G                     | D 4 Y | R TI        |                | E | Work           |         |     | Control(Int)        |
| Âlt.               | Iax          |     | OTI            |      |                    | u                     | - I   |             |                |   |                | Ta      | ble | <u>Split(Fra</u> c) |

## 97 Program Listing II

| 64               |                |                  | 77 1 1 05 1 4111                      |                                       |                   |                 |                                      |
|------------------|----------------|------------------|---------------------------------------|---------------------------------------|-------------------|-----------------|--------------------------------------|
| STEP P           |                | KEY CODE         | COMMENTS                              | STEP                                  | <b>KEY ENTRY</b>  | KEY CODE        | COMMENTS                             |
|                  |                |                  |                                       | · · · · · · · · · · · · · · · · · · · |                   |                 | Compute tax on AVD TT                |
| 113              |                | 36 13            | 1                                     | 169                                   |                   | 36 14           | Compute tax on 4YR TI                |
| 114              | X=0?           | 16-43            | ] If CG = $0$                         | 17                                    | 9 GSB0            | 23 <b>00</b>    | Leave in R <sub>x</sub>              |
| 115              | SF2            | 16 21 02         | Set Flag 2                            | 17                                    | I RCLO            | 36 00           |                                      |
| 116              |                | 16-35            | If CG < 50000                         | 17:                                   |                   | -41             | Compute 4 $(R_0 - R_x)$              |
|                  |                | 22 16 13         |                                       |                                       |                   |                 | - ~                                  |
| 117              |                |                  | Branch to LBL c                       | 17.                                   |                   | -45             | Add to R <sub>O</sub>                |
| 118              |                | -41              | If C G 50000                          | 174                                   | 4 4               | 84              |                                      |
| 119              | 4              | 04               | Add 12500 To R <sub>0</sub>           | 17                                    | 5 x               | -35             |                                      |
| 120              |                | -24              | / nuu 12000 10 Ng                     | 17                                    |                   | 35-55 <b>00</b> |                                      |
|                  |                | 35-55 00         |                                       |                                       |                   |                 | 1                                    |
| 121              |                |                  |                                       | 17                                    |                   | 22 16 11        | Leave O in R <sub>O</sub>            |
| 122              |                | 02               | Compute Tax on                        | 17                                    |                   | 21 16 12        |                                      |
| 123              | Х              | -35              | (OTI + 25000)                         | 17:                                   | 90                | 88              | 1                                    |
| 124              |                | 36 12            |                                       | 18                                    |                   | 35 88           |                                      |
| 125              |                | -55              | Subtract from R <sub>O</sub>          | 18                                    |                   |                 |                                      |
|                  |                |                  | , , , , , , , , , , , , , , , , , , , |                                       |                   |                 | Store                                |
| 126              |                | 23 00            |                                       | 18:                                   |                   | 36 00           | Averaged Tax                         |
| 127              | ST-0           | 35-45 00         |                                       | 18                                    | 3 P‡S             | 16-51           | in P                                 |
| 128              | RCLB           | 36 12            |                                       | 18                                    |                   | 35 84           | in R <sub>54</sub>                   |
| 129              |                | 36 13            | Compute Tax on                        |                                       |                   | 16-51           |                                      |
|                  |                |                  | $(OTI + \frac{CG}{2})$                | 18                                    |                   |                 | Destans A VD TT                      |
| 130              |                | <b>8</b> 2       | $\int (011 + \frac{1}{2})$            | 18                                    |                   | 36 14           | Restore 4 YR TI                      |
| 131              | ÷              | -24              | Property IDL d                        | 18                                    | 7.                | -62             | in R <sub>O</sub>                    |
| 132              |                | -55              | Branch to LBL d                       | 18                                    |                   | 03              |                                      |
| 133              |                | 23 00            | 1                                     | 18                                    |                   | -24             | 1                                    |
|                  |                |                  | 4                                     |                                       |                   |                 |                                      |
| 134              |                | 22 16 14         | 4                                     | 19                                    |                   | 35 14           |                                      |
| 135              | *LBLc          | 21 16 13         | If CG 50000                           | 19                                    | 1 RCLB            | 36 12           | Calculate                            |
| 136              | 4              | 84               |                                       | 19.                                   | 2 RCLC            | 36 13           | Regular Tax                          |
| 137              |                | -24              | Compute <u>CG</u>                     | 19                                    |                   | 02              | Compute Tax on                       |
|                  |                |                  | 4 4 00                                |                                       |                   |                 |                                      |
| 138              |                | 21 16 14         | Add (Tax on $OTI + \frac{CG}{2}$ )    | 19                                    |                   | -24             | $(\text{OTI} + \frac{\text{CG}}{7})$ |
| 139              |                | 35-55 00         |                                       | 19                                    | 5 +               | -55             |                                      |
| 140              | RCLO           | 36 00            | or $(\frac{CG}{4})$ to $R_0$          | 19                                    | 6 GSBØ            | 23 00           | Leave in R <sub>x</sub>              |
| 141              |                | 16 23 02         | , ,                                   | 19                                    |                   | 03              | Display ^                            |
|                  |                | 00               | If CG=0,Alt. Tax=0                    |                                       |                   |                 |                                      |
| 142              |                |                  |                                       | 19                                    |                   | -41             | '3.00'                               |
| 143              |                | 35 11            | Store Alt.Tax in R <sub>A</sub>       | 19.                                   |                   | 36 11           | 'Regular Tax'                        |
| 144              | RCLB           | 36 12            | Calculate income                      | 20                                    | 0 P‡S             | 16-51           | 'Alternative Tax'                    |
| 145              | RCLC           | 36 13            | avonaged tay                          | 20                                    |                   | 36 <b>84</b>    | 'Averaged Tax'                       |
| 146              |                | 02               | averaged tax                          |                                       |                   | 16-51           | Averageu Tax                         |
|                  |                |                  | Calculate OTI+CG                      | 20.                                   |                   |                 |                                      |
| 147              |                | -24              | -                                     | 20                                    |                   | 16-14           |                                      |
| 148              | ÷              | -55              |                                       | 20                                    | 4 RTN             | 24              |                                      |
| 149              | RCLD           | 36 14            | If 4 Yr TI=0                          | 20                                    | 5 R/S             | 51              |                                      |
| 150              |                | 16-43            | 1                                     |                                       | •                 |                 |                                      |
|                  |                | 22 16 12         | Branch to LBL b                       |                                       |                   |                 |                                      |
| 151              |                |                  | 4                                     |                                       |                   |                 |                                      |
| 152              |                | -62              | Compute .3(4Yr TI)                    |                                       |                   |                 |                                      |
| 153              | 3              | 83               |                                       |                                       |                   |                 |                                      |
| 154              | x              | -35              | ] Store in R <sub>A</sub>             |                                       |                   |                 |                                      |
| 155              |                | 35 14            | 1 "                                   | 1                                     |                   |                 | 1                                    |
|                  |                |                  | If (OTI+CG) -                         |                                       |                   |                 |                                      |
| 156              |                | -45              | <b>1 1 1 1 1 1 1 1 1 1</b>            | <b>├</b> ─── <b>├</b>                 |                   | +               |                                      |
| 157              |                | 03               | .3(4YR TI)                            |                                       |                   | -               | 4 1                                  |
| 158              | EEX            | -23              | < 3000                                |                                       |                   |                 | J                                    |
| 159              |                | 83               |                                       |                                       |                   |                 | 1                                    |
| 160              |                | -41              | Branch to LBL b                       |                                       |                   |                 | 1 I                                  |
|                  |                |                  | 1                                     | F                                     |                   | +               | 4 1                                  |
| 161              |                |                  | 4                                     |                                       |                   |                 | -                                    |
| 162              | GTOL           | 22 16 12         | . Compute Tax on                      |                                       |                   |                 |                                      |
| 163              | 5              | 05               |                                       |                                       |                   |                 |                                      |
| 164              |                | -24              | $[(0TI + \frac{CG}{2}3(4YRTI)]]$      | 220                                   |                   |                 | 1                                    |
|                  |                | 36 14            |                                       |                                       |                   | -               |                                      |
| 165              |                |                  | - 5                                   | F+                                    |                   |                 |                                      |
| 166              |                | -55              | + 4 YR TI]                            | ┣───╂                                 |                   | +               | 4 1                                  |
| 167              | esb0           | 23 00            |                                       |                                       |                   |                 | -                                    |
| , 168            | ST00           | 35 00            | Store in Ro                           |                                       |                   |                 |                                      |
|                  |                |                  | LABELS                                |                                       | FLAGS             |                 | SET STATUS                           |
| <sup>A</sup> 038 | вО             | 27 <sup>C</sup>  | D E                                   | 102                                   | 0                 | FLAGS           | TRIG DISP                            |
|                  |                |                  | 121 d 124 e                           | -                                     | 1                 | ON OFF          |                                      |
| a 177            | <sup>b</sup> 1 | 74 <sup>c</sup>  | 131   <sup>a</sup> 134   <sup>e</sup> |                                       |                   |                 | DEG KU FIX KU                        |
| 0 001            | 1              | 2 2              | 045 3 040 4                           | 053                                   | <sup>2</sup> Used |                 | GRAD C SCI C                         |
| 001              |                | 25 2             | 045 040                               | 051                                   | <sup>2</sup> Used |                 |                                      |
| <sup>5</sup> 064 | <sup>6</sup> C | 011 <sup>7</sup> | 071 <sup>8</sup> 079 <sup>9</sup>     | 058                                   | 3                 |                 | n_2                                  |
| <del>_</del>     |                |                  |                                       |                                       |                   |                 |                                      |

#### **Hewlett-Packard Software**

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

#### **Application Pacs**

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

#### **Users'** Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

#### **Users' Library Solutions Books**

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

| <b>Options/Technical Stock Analysis</b> | Medical Practitioner |
|-----------------------------------------|----------------------|
| Portfolio Management/Bonds & Notes      | Anesthesia           |
| Real Estate Investment                  | Cardiac              |
| Taxes                                   | Pulmonary            |
| Home Construction Estimating            | Chemistry            |
| Marketing/Sales                         | Optics               |
| Home Management                         | Physics              |
| Small Business                          | Earth Sciences       |
| Antennas                                | Energy Conservation  |
| Butterworth and Chebyshev Filters       | Space Science        |
| Thermal and Transport Sciences          | Biology              |
| EE (Lab)                                | Games                |
| Industrial Engineering                  | Games of Chance      |
| Aeronautical Engineering                | Aircraft Operation   |
| Control Systems                         | Avigation            |
| Beams and Columns                       | Calendars            |
| High-Level Math                         | Photo Dark Room      |
| Test Statistics                         | COGO-Surveying       |
| Geometry                                | Astrology            |
| <b>Reliability/QA</b>                   | Forestry             |

#### **MEDICAL PRACTITIONER**

A collection of medical programs of general interest, including calculations of blood pressure and pacemaker rate averages, burn area and fluid balance, blood gas interpretation, body weight and blood alcohol. Also included are several personal business, tax and investment programs for the professional.

BLOOD PRESSURE AVERAGES AND MEAN ARTERIAL PRESSURE

PACEMAKER RATE AND INTERVAL AVERAGER

**BLOOD ALCOHOL** 

HUMAN POST-TRAUMA EPILEPSY SEIZURE PREDICTION

BEDSIDE BLOOD-GAS INTERPRETER

BODY DENSITY, FAT AND LEAN MASS FROM SKINFOLDS

ESTIMATING OBESITY, BODY FAT SURFACE AREA & TOTAL BODY WATER

FLUID & ELECTROLYTES/BODY BURN AREA

FLUID & ELECTROLYTES/POTASSIUM BALANCE (SCRIBNER)

ANESTHESIOLOGY PARAMETERS

DISCOUNTED CASH FLOW ANALYSIS - NET PRESENT VALUE

INCOME PROPERTY ANALYSIS

INCOME TAX PLANNING - I



1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14005 Printed in U.S.A. 00097-90180 Revision C 4-79