# IIP(07 I| 

Users' Library Solutions
Options/Technical Stock Analysis


## INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

## A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.
REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

## TABLE OF CONTENTS

PUT \& CALL OPTION FAIR VALUES (BLACK-SCHOLES) ..... 1This program computes the theoretical value of a put or' call'option based on the valuation formulas published by Black andScholes.
CALL OPTION EVALUATION ..... 6
This program computes call option 'values 'using the' Black-s'cholés
model. It also computes the implied empirical variance (variability) when the actual market value is entered.
ROUTINES FOR OPTION WRITERS ..... 11
 with consideration for dividends, the program calculates the maximum yield, cash flow yield, and high and low breakeven points.
EMPIRICAL CBOE CALL PRICING ..... 17
Using the Clasing empirical formulas', this 'program' ca'lcula'te's á fair call option price.
WARRANT \& OPTION HEDGING ..... 22
This program calculates cross' retúrn' and 'high' an'd Iow' b'reákéven points for various short sale ratios.
BULL SPREAD OPTION STRATEGY ..... 27
For various bull (vertical) spreads, this program calculates the upper and lower breakeven points and the percent movement necessary to reach them.
BUTTERFLY OPTIONS ..... 32
This program calculates 'the max'imum 'profit,' maximum 'os's, 'an'd the'upside and downside breakeven points for various butterfly optionstrategies.
stock price 30-week moving average with data storage ..... 36
This program allows both the data and the program for calculating a 30 -unit moving average to be stored on a single program card.
EXPONENTIAL SMOOTHING ..... 41
Exponential smoothing is a geometrically weighted moving áverage which can be used to locate and project significant trends in securities and commodities prices.
MULTIPLE LINEAR REGRESSION ..... 45
This program can be used to search for leading indicators of stock and commodities movements by analyzing past data for possible linear relationships.
CURVE FITTING, SELECTING BEST FUNCTION ..... 51
Four different mathematical functions are evaluated to determine the function which best represents the data; linear, power, exponential, and logarithmic. Program makes projections based on curve fit selected.

| Program Title PUT \& CALL OPTION FAIR VALUES | (BLACK-SCHOLES) |  |
| :--- | :--- | :--- | :--- |
| Contributor's Name | William B. Henderson |  |
| Address 160 Paseo de la Concha \#F   <br> City Redondo Beach, State California Zip Code |  |  |

Program Description, Equations, Variables This program computes the theoretical value of a European ${ }^{1}$ type put or call option using the valuation formulas of Black \& Scholes ${ }^{2,3}$. The following equations are used:

$$
\begin{aligned}
& \text { Call Option Value }=P_{\text {stock }} N\left(d_{1}\right)-P_{\text {strike }} N\left(d_{2}\right) \exp ^{-R t} \\
& \text { Put Option Value }=P_{\text {strike }} N\left(-d_{2}\right) \exp { }^{R t}-P_{\text {stogk }} N\left(-d_{1}\right) \\
& \text { where: } \begin{aligned}
d_{1} & =\frac{\ln \left(P_{\text {stock }} / P_{\text {strike }}\right)+\left(R+\frac{1}{2} V^{2}\right) t}{V \sqrt{t}} \\
d_{2} & =\frac{\ln \left(P_{\text {stock }} / P_{\text {strike }}\right)+\left(R-\frac{1}{2} V^{2}\right) t}{V \sqrt{t}}
\end{aligned} \\
& N(d)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d} \exp ^{-z^{2} / 2} d z \\
& N(-d)=1-N(d) \\
& \text { The Hedge Ratio for a Call Option }=N\left(d_{1}\right)
\end{aligned}
$$

$R$ is the appropriate interest rate expressed as a decimal.
$t$ is the remaining time to expiration in years.
$V$ is the variance rate of the return on the underlying security.

Operating Limits and Warnings The variance term in the equation must be the future variance of the underlying security for the option to be correctly priced. A more complete discussion of this term is available from the program author. A crude estimate of variance may be obtained from the formula:

$$
V=\frac{\text { Stock High }- \text { Stock Low }}{\frac{1}{2}(\text { Stock High }+ \text { Stock Low })} \text { during the past year. }
$$

Out-of-the-money options are extremely sensitive to this term and large errors in value may result from improper choices.

[^0]
## Sketch(es)

Sample Problem(s) A. What is the fair market price of a call option with a striking price of 65 and 91 calender days remaining to expiration? The current (risk free) interest rate for a 91 -day $T$-Bill is $4.65 \%$, the current stock price is $63 \frac{1}{4}$ and the estimated variance is 0.125.
B. What is the fair market price of a put option with the same conditions as (A)?
C. What is the value of the call option in (A) if the variance term is actually 0.175 ?
D. What is the Hedge ratio of the option in (C)?

|  | KEY IN: |  | DISPLAY: |
| :---: | :---: | :---: | :---: |
|  | 65, A | - | 65.00 (P ${ }_{\text {strike }}$ ) |
|  | $63.25, B$ | --- | 63.25 ( $\mathrm{P}_{\text {stock }}$ ) |
|  | 91, C | - | 0.25 (t) |
|  | .125,D | --- | $0.02\left(\mathrm{~V}^{2}\right)$ |
| Solution(s) | 4.65, E | --- | 0.05 (R) |


| SOLVE A: | fA | --- | 1.14 | Convert to 1/16ths: | $f \mathrm{C}$ | -- $12 / 16$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOLVE B: | fE | --- | 1.00 | Put/Call toggle |  |  |
|  | fA | --- | 2.14 | Convert to $1 / 16$ ths: | $f$ | -- $31 / 16$ |
| SOLVE C: | .175,D | --- | 0.03 |  |  |  |
|  | fE | --- | 0.00 | Put/Call toggle |  |  |
|  | fA | --- | 1.76 | Convert to $1 / 16$ ths: | fC | -- $112 / 16$ |
| SOLVE D: | $f B$ | -- | 0.45 |  |  |  |

Reference(s) (1) A European option can only be exercised at maturity. This differs from an American option which can be exercised at any time through maturity. (2) Black, Fischer and Myron Scholes; "The Pricing of Options and Corporate Liabilities". Journal of Political Economy (May/June 1973), pp 637-654.
(3) Black, Fischer; "Fact and Fantasy In the Use of Options". Financial Analysts Journal (July/August 1975), pp 36-72.

## User Instructions



| STEP | INSTRUCTIONS | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Key in Striking Price of Option | \$ | A | \$ |
| 2 | Key in Price of Underlying Stock | \$ | B | \$ |
| 3 | Key in \# Calender Days Remaining on Option | days | C | yrs. |
| 4 | Key in Variance | V | 1 D | $\mathrm{V}^{2}$ |
|  | or, if variance is unknown, estimate as |  | - |  |
|  | follows: |  | 1 |  |
|  | Key in stock's high for year, ENT | \$ |  |  |
|  | Key in stock's low for year | \$ | $f \quad \mathrm{D}$ | $\mathrm{v}^{2}$ |
| 5 | Key in appropriate interest rate | \% | E | R |
| 6 | Select Mode: |  |  |  |
|  | $0=$ Call Option* |  | $f \quad E$ |  |
|  | 1 = Put Option |  | $f \quad \mathrm{E}$ |  |
|  | *Machine is in call mode when card is loaded. |  | $\square \square$ |  |
| 7 | Solve for: |  | , |  |
|  | Option Value: |  | $f$ A | \$ |
|  | Hedge Ratio: |  | $f \quad \mathrm{~B}$ |  |
|  | Convert contents of X-register to 16ths: |  | $f \quad \mathrm{C}$ |  |
|  |  |  | $\square$ |  |
|  |  |  | $\square$ |  |
|  |  |  | $1$ |  |
|  |  |  | $\square$ |  |
|  |  |  | L |  |
|  |  |  | I |  |
|  |  |  | L |  |
|  |  |  | $1 \square$ |  |
|  |  |  | $1 \square$ |  |
|  |  |  | $\square$ |  |
|  |  |  | $\square$ |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | I |  |


| $4{ }_{\text {STEP }}$ | KEY ENTRY | Key code |  | LİS | $\operatorname{ling~}_{\text {KEY ENTRY }}^{\text {d }}$ | KEY Code | COMments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 01. | *LELH | Striking Pries |  | 657 | - |  |
|  | -0 | STOH | Striking Price |  | 058 | $\mathrm{X}+\mathrm{Y}$ |  |
|  | 002 | RTN |  |  | 859 | RCLI | $\} \begin{aligned} & x=d_{1} \\ & =d_{2}\end{aligned}$ |
|  | 004 | *LELE |  |  | 960 | + | $\int ¢=d_{2}$ |
|  | 005 | Stue | Stock Price. |  | 061 | 6SBu | $\leqslant-\leqslant-1 . \ldots N\left(d_{1}\right)$ or $N\left(-d_{1}\right)$ |
|  | 0106 | RTN |  |  | 662 | ST09 |  |
|  | 007 | * LELC |  |  | 063 | RCLE |  |
|  | 9108 | 3 | \# Calcrador Saves |  | 064 | $x$ |  |
|  | 069 | 6 | Remeior, |  | 065 | F0? | \}Put ? |
|  | 010 | 5 |  |  | $66 E$ | CHS | \}Put. |
|  | 611 | $\div$ | $\rightarrow$ yes, remainia |  | 0167 | $\mathrm{X}=1$ |  |
|  | 912 | STOC | $\rightarrow$ Nus. |  | 868 | 6SBE | $\leftarrow$ Solir $N\left(d_{2}\right)$ or $N\left(-d_{2}\right)$ |
|  | 013 | RTN |  |  | 069 | RCLA |  |
|  | 014 | *LBLa |  |  | 076 | $x$ |  |
|  | 815 | Stoe | Stack High $\uparrow$ |  | 071 | RCLC |  |
|  | 016 | F $\downarrow$ | Stact Loul |  | 818 | RCLE |  |
|  | 817 | STOT | Stant 2 ant |  | 073 | $x$ |  |
|  | 016 | RCL6 | $\rightarrow \sim V^{2}$ |  | 0.74 | $e^{x}$ |  |
|  | 019 | - |  |  | 8175 | $\cdots$ |  |
|  | 020 | RCLi ${ }^{\text {a }}$ |  |  | 876 | F0: |  |
|  | 021 | RCLE |  |  | 877 | CHS |  |
|  | 022 | + |  |  | 878 | - | \}put? |
|  | 023 | 2 |  |  | 079 | RTN | SPut? |
|  | 024 | $\div$ |  |  | 880 | *LEL6 |  |
|  | 025 | $\div$ |  |  | 881 | ST04 |  |
|  | 626 | *LELI |  |  | 882 | ABS | Subroutins for |
|  | 427 | $x^{\text {xa }}$ | Variance |  | 083 | - | evaluation of |
|  | 028 | STOL | $\rightarrow \mathrm{V}^{2}$ |  | 984 | 3 | Cumulatios normal |
|  | 829 | RTH |  |  | 685 | 3 | cumulat, en tuction |
|  | 836 031 | *LBLE | Iuterest fate (\%) |  | 886 887 | 2 | density function |
|  | [32 | $\bar{E}$ |  |  | 688 | 7 | $N(d)=\frac{1}{} e^{-z^{2} / 2} d z$ |
|  | 023 | $\div$ | $\rightarrow$ Decinal Equizalent |  | 889 | $\times$ | $N(A)=\frac{1}{\sqrt{27}} \int e^{-2 t} d z$ |
|  | 034 | stoe |  |  | 090 | 1 |  |
|  | 035 | RTN |  |  | 091 | + |  |
|  | 436 | *LELa |  |  | 092 | 1/x |  |
|  | 837 | RCLE | $\rightarrow$ Option Value |  | 893 | ST05 |  |
|  | 038 | RCLA |  |  | 894 | ${ }^{3}$ | 1 N(d) |
|  | 839 | $\div$ |  |  | 895 | $Y^{*}$ | - |
|  | 846 | LN |  |  | 896 | - | d |
|  | 841 | RCLC |  |  | 097 | 9 | Ref: |
|  | 042 | RCLE |  |  | 898 | 3 | Ref: |
|  | 843 | $x$ |  |  | 099 | 7 | Handbook of |
|  | 644 | ${ }^{+}$ |  |  | 100 | 2 | Mathematic. 1 |
|  | 645 | RCLC |  |  | 101 | 9 | Functions (AMS 55) |
|  | 046 | FCLL |  |  | 102 | $\delta$ | functions (AMS 55) |
|  | 047 048 | x vx |  |  | 103 | $\stackrel{x}{\text { RCL5 }}$ |  |
|  | 648 849 | ST01 |  |  | 184 | $\mathrm{RCLS}^{\mathbf{2}}$ | stegun |
|  | 850 | $\div$ |  |  | 186 | - | N.B.S. Publication |
|  | 051 | ENT $\uparrow$ |  |  | 107 | 1 | $p p 932$ |
|  | 852 | ENT $\uparrow$ |  |  | 108 | a | $p p \rightarrow \leq \angle$ |
|  | 053 | RCL1 |  |  | 109 | 0 | $\|\epsilon(d)\| \leqslant 10^{-5}$ |
|  | 055 | $\div$ |  |  | 111 | E |  |
|  | 056 | STO1 | REGISicno |  | 112 | 7 |  |
|  |  |  |  |  |  |  |  |
| 0 | ${ }^{1}$ Used |  | ${ }^{3} \quad{ }^{4}$ Used | ${ }^{5}$ Used | ${ }^{6}$ Low | High | .16 Hedge |
| So | S1 | S2 | S3 S4 | S5 | S6 | 57 | s8 ${ }^{\text {s9 }}$ |
| A Strit |  | Stock | ${ }^{c}$ t | D $v^{2}$ |  | E R | ${ }^{1}$ Used |



Program Description I
Program Title CALL OPTION EvAluation
contributor's Name RiChARD 6. DUNALD
Address 1561 BLACK HAWK $D R$
City Sunnyuate

Program Description, Equations, Variables THIS PROGRAN USES THE BLACK-SCHOLES FORMULA FOR THE PRICE OF CULL OPTTEAS ALONG WITH PORTION OF THE STANDARD PAC "CALCULAS AND 位TS OF $f(x)$." A SINGLE
FUNCTION OF MANY VARIABLES DEFINED AS

$$
f\left(B, R, t, P_{E}, P_{s}, V\right)=P_{s} g\left(d_{1}\right)-e^{-R t} g\left(d_{2}\right)
$$

$\begin{gathered}\text { WHERE } \\ d_{1}=\end{gathered} \frac{\ln \left(P_{S} / P_{E}\right)+\left(R+V^{2} / 2\right) t}{v \sqrt{t}}, d_{2}=\frac{\ln \left(P_{s} / P_{E}\right)+\left(R-v^{2} / 2\right) t}{v \sqrt{t}}$,
$g(x)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)$ WHERE THE APPROXIMATION FOR $g(x)$ is

$$
g(x)=\left\{\begin{aligned}
1-Q(x) & x \geqslant 0 \\
Q(x) & x<0
\end{aligned}\right\}
$$

LITRE $Q(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}\left\{y\left[4362-.12 y+.937 / y^{2}\right]\right\}$
with $y=\frac{1}{i+.3327|x|}$
$B=$ OPTION PRICE (DOLLARS), $R=$ INTEREST NATE (LITRE $5 \%$ IS ENTERED
AS 0.05 ), $t=$ TIME (YEARS), $P_{E}=$ STRIKE PRICE (DCLCMNS), $P_{S}=$ CURRENT STOCK PELE (DOLLARS), $V=V O L I T I L I T Y$

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIA DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Sketch(es)


calculate a) market - ASSigned volitility forr leach seriles
b) SLODE OF OOTVON PRILE WRT STOCK P.PICL
c) SLOPE OF DPTIN: PRICE wrt time
d) AUG ootmon price if vol wore 0.30 (HISTORIC Vowinity of HP stock)

Solution(s) a) KEY in may partametores: 1.0625 SJO 1,. 05 STO2, $56 / 365$ STO 3,80 STO 4, $75.55 T 05,0.3$ (GU003) S506, PROSS E, RESVLT $=0.21$.

Key in aug parametres: 3.75 Sto 1, $146 \div 365$ Sto 3, PRESS $E$, RESJUT $=0.26$
b) using ava pardameters: 0.26 sto 6, press $D$, Resunt $=0.44$
c) using aug parameters: press fd , result $=7.65 \% / y$ eand d) using aug parameters: $0.3=$ sto 6, press $C$, Resunt $=\$ 4.47$

Reference(s) Fischer Brack and Myrin Scholes, "the Pricinc. of ibatens and Corporare hiabilities," Joveral of Political Econamy 81 (May/Juiné1973)

BLACK-SCHOLES

$$
\begin{aligned}
& 1=\text { OPTION A, } 2=i, 3=t, 4=\text { STRIKE } \\
& 5=\text { STOCK }, 6=\text { VOHTHINITY }
\end{aligned}
$$

$$
f^{\prime}(B) \text { bon }
$$




## 67 Program Listing II




Program Description, Equations, Variables Usins the Black \& Scholes Model (compliments of T.I.) the value of a siven option may be calculated jiven stock \& strike prices, an intercst rate, the strick's volatility(see below), the days to expiry, and the dividends to be rucoivec in the interil!. 'Then the hedge ratio is calculated from which the number of options per share to write is determined. Once done, the max. yield on investment cash flow yielu, and the annual rate of retura on the lesser of these can be calculated. F'inally the hish ard low break-even points for the stock are figured alone with the point of maximum profit (shonld the ontion exnire or be exercized there).

## Equations

1) Cash flow return $=$ Premium divided by Stock Price
2) Premium = 非 Options written $X$ orice per ontion received

$$
\begin{array}{r}
\text { Value }=P_{\text {tock }} N\left(D_{1}\right)-P_{\text {ater }} N\left(D_{2}\right) e^{-R \Delta t} \\
\text { Where } D_{1}=\frac{\ln \left(P_{\text {tock }} \div P \cdot P \text { exee }\right)+\left(R+1 / 2 V^{2}\right) \Delta t}{V \sqrt{\Delta t}} \\
D_{2}=\frac{\ln \left(P_{\text {stokk }} \div P_{\text {exer }}\right)+\left(R-1 / 2 V^{2}\right) \Delta t}{V \sqrt{\Delta t}} \\
N\left(D_{1}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{D_{1}} e^{-1 / 2 t^{2}} d t
\end{array}
$$

Note: Based on the Black and Scholes model published in
Financial Analysts Journal, July - August 1975, page 65.
Operating Limits and Warnings Ontion value must be calculated first, then the hedge ratio, followed by the \#tn write. Only then can the returns (C/F \& MYOI) be figured. Iatte: enables the annual return to be determined. Now the high. low. max ooints can be calculated. The kivens are all renembered until user chanced.

One cain so directly from get, ins the mumer to arite to $\mathrm{H}, \mathrm{M}-\mathrm{H}$ without ficuring the annualized return first. i.e. sequence mist be $E, f c, f a, f c, f b$ ( $f$ a way be used any time after fd.)

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.
3) MYOI = Premium + (Strike - Stock prices) + dividends, all divided by dividends.
4) Annualized return $=$ (Days in year/days to expiry) $X$ lesser of $C / F$ or MYOI.
5) $\#$ Options to write $=1 /$ hedge ratio.
6) Downside protection (break-even) point = Strikeprice - premium
7) Maximum profit point $=$ Strike price
8) Upside protection point = ((Premium + strike - stock prices)/ \# Options which are uncovered) + Strike price. If options are fully covered, upside protection $=$ Strike price + premium.
*Volatility is the annual standard deviation of the return on the underlying stock. There are several ways of estimating it. One is to keep fitting various values into the equation until the actaal price equals the calculated price. Another is to use timis equation:

$$
\text { Volatility }=\frac{\text { High }- \text { Low }}{1 / 2(\text { High }- \text { Low })}
$$

where the highs and lows used are those of the stock over a period of time. Experience has shown using this method produces values which are too high. Thus use 6 months' highs and lows ( those printed in the newspapers during June \& July ) or dispense with dividing the denominator by 2.
*Be careful not to confuse volatility with beta. The beta of a stock or option measures the variability with respect to the market: i.e. if the market goes up ten points, how far should the stock go? Volatility, on the other harld, measures the stock or option's variability with respect only to itself. How much does this stock tend to move around. AT \& $T$ has an approximate volatility of .ll. National Semiconductor has an approximate volatility of .49: Almost 5 times as volatile. Most brokerage houses can provide you with the numbers they are using as of any given date

Purchase of a Call Option gives the buyer the right, over a specified period of time, to buy so many shares of the stock at a fixed price. Options are traded on several exchanges and move in price with the underlying stock, only with greater percent price changes because of the high leverage. There is usually a certain premiumbuilt in to the price of the option which represents the price you pay for the right to buy at a set price. The amount of the premium is emotionally determined, but its theoretical amount can be calculated by this model. Any variations from the theoretical, then, could represent potential profit. Normally most of the premium, if any, is lost by 30 days prior to expiration of the option. Writers of options like to see high premiums when they "write". Buyers of options like to see none.

* Do not confuse the use of the word premium here with that used above. Here it describes the difference between the selling price of the option and its intrinsic value due to the price of the underlying stock. Above, it means the entire amount of money an option writer obtains for writing the contract.


## Program Deseription II



Sample Problem(s) Given the stock of XYZ Corp. at $\$ 118.25$ per share, the Jan 120 option with 35 days to go, a dividend expected of $\$ 1.50$, the stock's volatility at .28 , and an interest rate of $6 \%$, what is the expected value of the option now? How many options should I write against 100 shares of the stock given its hedge ratio? What are the variously figured returns which I should expect? Where do I make the most money? Where are my break-even points?

| Solution(s) |  | Keystrokes | Display |  | Keystrokes | Display |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1) | $120 \uparrow 118.25$ [A] | \$120 | 9) | [fa] | 63.47\% |
|  | 2) | $35 \uparrow 1.50$ [C] | . 10 yr . | 10) | [fb] | "\$111.05", "\$120". |
|  | 3) | 6 [B] | . 06 |  |  | \$128.95 |
|  | 4) | . 28 [D] | . 28 |  |  |  |
|  |  | [E] (In 11 seconds) | \$3.60 |  |  |  |
|  | 6) | [fe] (In 7 seconds) | . 48 |  |  |  |
|  | 7) | [fd] | 200 sh. |  |  |  |
|  |  | (fc] | "8.83\%", 6 | 9\% |  |  |

Reference(s) "Fact \& Fantasy in the use of options" by Fischer Black (Financial Analysts Journal, July/August 75), "The Pricing of Options and Corporate Liabilities' by Black \& Scholes (Journal of Political Economy, May/June 73), "Listed Options by Bear Stearns, "A guide to AMEX options" from the American Stock Exchange. The Thompson \& McKinnon Option Letter.


67 Program Listing I




Program Description, Equations, Variables The input variables are the 52 week HIGH and LOW prices of the stock, the dividend yield ( $Y$ ) in percent, the time ( $T$ ) on the option in months, the current stock price (Ps), the exercise price of the option (Pe), and the call loan rate on money lent brokers (1).

Combining the high and low prices to form a standard measure of price volatility

$$
V=\frac{\text { HIGH }- \text { LOW }}{\left.\frac{(H I G H+L O W}{}\right)}
$$

Clasing fit the following curves to the CBOE data he studied:
for $P_{s} \geq P_{E}$
("in the money")
$\operatorname{Ps}\left\{\left(\frac{P s}{P_{E}}-1\right)\left(1-\frac{T}{45}\right)+T\left[.01+\frac{v}{180}-\frac{11-Y-I}{1200}\right]\right\}$
for $\mathrm{Ps}_{\mathrm{s}}<\mathrm{P}_{E}$
("out of the money)

$$
\operatorname{Ps}\left\{.4\left(\frac{P_{s}}{P_{E}}-1\right)+T^{1 / 2}\left[.0267+\frac{v}{30}-\frac{11-Y-I}{400}\right]\right\}
$$

These expressions yield the call premium in dollars. If the underlying stock is ex-dividend for the option period, the premium is reduced by [(months to maturity $\div 12$ ) $\times$ (Annual yield in \%)] per cent.
Operating Limits and Warnings The formulas are empirical fits. The premiums derived are only estimates. The formulas are not applicable to over-the-counter options since the underlying stocks on the CBOE are uniformly high-volume, large-number-of-sharesoutstanding stocks. Dividends are also handled differently on the two markets. Do not neglect to account for dividends, if applicable, per the last lines of the "program description" section above.

[^1]
## Program Description II

Sketch(es)

Sample Problem(s) A certain CBOE Stock yields 6\% in dividends, its 52 week range is 25 to 48 , last price 40 1/2. The call loan rate for brokers from N.Y. banks is $8 \%$.
a. What is the estimated premium for 3 month calls with \$45 strike price?
b. For 2 months at $\$ 35$ ?

Solution(s)
a) $8[\mathrm{E}] \quad 48 \uparrow 25[\mathrm{~A}] 40.5 \uparrow 6[\mathrm{~B}] 3 \uparrow 45$ [C] ans 2.25
b) $2 \uparrow 35$ [C] ans 7.38
c) $f[B] 6 \uparrow 50[C]$ ans 2.30

Reference(s) This program is a modification of the 65 user contributed program \#3942A written by Paul W. Snow. The 65 program was based on. Clasing, H.K. Jr. The Dow Jones - Irwin Guide to Put and Call Options, Homeword, Ill, Dow Jones Irwin, 1975 chapter 3.

11 Div pd?
Hi, Lo Div; Ps T; P excer
Brockers ${ }^{\text {rate }}$



97 Program Listing II


| Program Title WARRANT \& OPTION HEDGING |  |
| :--- | :--- | :--- |
| Contributor's Name HEWLETT PACKARD |  |
| Address 19310 PRUNERIDGE AVE |  |
| City CUPERTINO State CA | Zip Code 95014 |

Program Description, Equations, Variables
CROSS RETURN $=\frac{\text { CONVERSION PRICE }}{\frac{\text { conversion rate }}{\text { warrant price } x \text { number sold }+.5 \text { xstock price }+ \text { interest }}}$
$\begin{aligned} & \text { lower break- } \\ & \text { even point }\end{aligned}=\max \{0$, stock price-warrant price $x$ number sold $\}$
upper break-
even point =stock price-number warrants sold $x$ [warrant price + conversion price]
1 - conversion rate $x$ number of warrants sold

Cross Return $=\frac{\mathcal{J}^{\text {warrant }} \begin{aligned}\text { price-Max\{0, hypothetical price/conversion rate-stock price }\} \\ \text { +hypothetical stock price- stock price }\end{aligned}}{\text { warrant price } \times \text { number sold }+.5 \times \text { stock price }+ \text { interest }}$

## Operating Limits and Warnings

1.The dividends shoud'be the expected amount to be received over a year, since the time of payment is not used the calculated rate of return is the apparent rate rather than the true rate (a very small difference here).
2. The program assumes purchases on $50 \$$ margin at $10 \%$ interest.
3. The program assumes equity of $100 \%$ of the price on $\$ 5$ whichever is greater on the short sales.
4. program $I$ calculates the rate of return for the most favorable situation (1.e. stock closes at conversion price on the expiration date); program II should be used then.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Sketch(es)

## Sample Problem(s)

XYZ corporation stock is trading at $\$ 93 / 4$ and a warrant, convertible 1 for 1 at $\$ 34$, is selling for $\$ 1.75$ expiring in 547 days. For various investment strategies ${ }^{1}$ what is the maximum return (in percent) lower break even point and upper break even point. Further more, what are the possible returns if we assume various stock closing prices on the expiration date (eg \$5, \$10 and \$20 closing prices).


[^2]

| STEP | INSTRUCTIONS | INPUT DATA/UNITS | KEYS |  | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Days left until warrants expire | Days | $\uparrow$ |  | Days |
| 2 | Dividends earned over period | Div. | A |  | Div. |
| 3 | Conversion rate | C. rate | En |  | C. rate |
|  | Conversion price | C. price | Ente | $\cdots$ | C. price |
|  | Current warrant price | W. price | Ente |  | W. price |
|  | Current stock price | S. price | B | $\square$ | return |
|  |  |  | R/S |  | lower |
|  | negative or error infinity |  | R/S |  | break eve |
|  | If error appears, press clx |  |  |  | upper <br> break eve |
| 4 | Repeat for $i+1$ warrant sold for each share |  |  |  |  |
|  | of stock purchased |  | C |  |  |
|  |  |  | R/S |  | brewer ever |
|  |  |  | $\mathrm{R} / \mathrm{S}$ |  | brepar ever |
|  |  |  |  | $\cdots$ |  |
| 5 | Hypothetical wxpiration price |  | D |  | annual |
|  |  |  |  |  |  |
|  | Note: |  |  |  |  |
|  | Step 4 may be repeated as often as required or |  |  | $\square$ |  |
|  | Step 4 followed by Step 5 may be repeated as |  |  |  |  |
|  | often as required |  |  | , |  |
|  |  |  |  | 1 |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | ] |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | I |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | - |  |
|  |  |  |  | J |  |
|  |  |  |  | 1 |  |
|  |  |  |  |  |  |
|  |  |  |  | - |  |
|  |  |  |  | $\cdots$ |  |
|  |  |  |  | $\cdots$ |  |





## Program Description, Equations, Variables

Upside Breakeven = $\square$

Downside Breakeven $=R C_{S}-C_{L}$

Where:
$R=$ The ratio of the calls with higher exercise price sold short to the calls with lower exercise price purchased.
$C_{S}=$ Market Price of Calls Sold Short
$E_{S}=$ Exercise Price of Calls Sold Short
$C_{L}=$ Market Price of Calls Bought Long
$E_{L}=$ Exercise Price of Calls Bought Long

## Operating Limits and Warnings

On matched hedges, upside breakeven is infinite.
HP-65 will blink 0.00 Hit [CLX] to stop blinking.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Program Deseription II

## Sketch(es)

NONE

Sample Problem(s) I. Matched:
Buy 5 Oct. ITT 25's © 6
Sell 5 Oct. ITT 30's © 2 7/8
Calculate Upside and Downside Breakeven's and how much \% the stock moves.
II. Unmatched:

Buy 7 Oct. ITT 25's @ 6
Sell 10 Oct. ITT 30's @ $27 / 8$
Calculate Upside and Downside Breakeven's and what \% the stock moves

In both cases stock is now selling at $283 / 4$.

Solution(s) I. 5[A] 2.875[A] 30[A] 5[B] 6[B] 25[B] 28.75[C]
$D B E=[D]=28.13 \%$ change to reach downside $=[D]=-2.17 \%$
UBE $=[E]=\alpha[C L X]$ \% change to reach upside $=[E]=-100.00 \%$
II. 10[A] 2.875 [A] 30[A] 7 [B] 6 [B] 25 [B] 28.75 [C]
$\mathrm{DBE}=[\mathrm{D}]=26.89 \%$ change to reach downside $=[\mathrm{D}]=-6.46 \%$
$\mathrm{UBE}=[\mathrm{E}]=37.25 \%$ change to reach upside $=[E]=29.57 \%$

If II had followed I directly, input only 10[A] 7[B] [D] [D] [E] [E].

Reference(s) This program is a one for one translation of the 65 User's Library program \#3769 by Morris A. Nunes, based on an article by D. Turov called "Limitless Option" in Barrons, '75 p 9.




Program Title Butterfly Options

Contributor's Name Hewlett-Packard
Address 1000 Circle Blvd.
State Oregon
Zip Code 97330

Program Description, Equations, Variables
A butterfly option is actually the combination of one bull spread and one bear spread i.e. the purchase of one high, one low and the sale of two middle option on the same underlying stock. If the stock closes between the high and low strike prices (including consideration of commissions and premiums) the investor will generally profit with maximum profit occuring in the middle strike price. Program assumes a standard option commission of $\$ 25$ per option per transaction.

Calculation formulas are shown on the program listing using the following variables.

| $E_{L}=$ Lowest Exercise Price | $P_{L}=$ Price of Low Strike Option |
| :---: | :---: |
| $E_{M}=$ Middle Exercise Price | $\mathrm{P}_{\mathrm{M}}=$ Price of Middle Strike Option |
| $E_{H}=$ High Exercise Price | $P_{H}=$ Price of High Strike Option |
| $B E_{H}=$ Upside Breakeven Price |  |

Operating Limits and Warnings Always hit $E$ as the first step. Maximum "Profit" may be negative indicating merely ine minimum loss. Similarly, if premiums work out right, maximum "Loss" may be positive, equally minimum profit (and meaning no cash is needed as an investment).

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## NONE

Sample Problem(s) Given XYZ stock with the following options available and due simultaneously:

| Strike price | 40 | selling at | 13 | $1 / 4$ |
| :--- | :--- | :--- | :--- | :--- |
| Strike price | 50 | selling at | 7 |  |
| Strike price | 60 | selling at | $15 / 8$ |  |

Calculate maximum profit, maximum loss (investment), upside breakeven price, downside breakeven price if a butterfly is developed and commissions are assumed at $\$ 25$ per option per transaction.

Solution(s) E ; $40 \mathrm{~A} \quad 13.25 \mathrm{R} / \mathrm{S} \quad 50 \mathrm{R} / \mathrm{S} \quad 7 \mathrm{R} / \mathrm{S} \quad 60 \mathrm{R} / \mathrm{S} \quad 1.625 \mathrm{R} / \mathrm{S}$ yields $787.50=\max$ profit; B yields $-262.50=\max$ loss (equals investment); C yields 57.38 = upside breakeven price; D yields $42.13=$ downside breakeven price;

E initializes for new case. All 6 variables must be entered for each case.

Reference(s) A one for one translation of the 65 User's Library program 3768 by Morris A. Nunes.

| STEP | instructions | $\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$ | KEYS |  | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Initial program |  | E |  | 0.00 |
|  |  |  |  |  |  |
| 2 | Enter Exercise Price of Lowest Strike |  |  |  |  |
|  | Option | X. XXX | A | $\square$ | X. XX |
|  |  |  |  |  |  |
| 3 | Enter Market Price of Lowest Strike |  |  |  |  |
|  | Option | X. XXX | R/S |  | X. XX |
|  |  |  |  | - |  |
| 4 | Enter Exercise Price of Middle Strike |  |  |  |  |
|  | Option | X. XXX | R/S | $\square$ | X. XX |
|  |  |  |  |  |  |
| 5 | Enter Market Price of Middle Strike |  |  |  |  |
|  | Option | X. $\times \times X$ | $\mathrm{R} / \mathrm{S}$ |  | X. XX |
|  |  |  |  | $\cdots$ |  |
| 6 | Enter Exercise Price of Highest Strike |  |  |  |  |
|  | Option | X. XXX | R/S |  | X. XX |
|  |  |  |  |  |  |
| 7 | Enter Exercise Price of Highest Strike |  |  |  |  |
|  | Option \& Calculate Maximum Profit | $x .8 \times X$ | R/S |  | y.yy |
|  |  |  |  |  |  |
| 8 | Calculate Maximum Loss |  | D | $\square$ | Z.ZZ |
|  |  |  |  |  |  |
| 9 | Calculate Breakeven High Stock Price |  | C | $\square$ | a.aa |
|  |  |  |  |  |  |
| 10 | Calculate Breakeven Low Stock Price |  | D |  | b. bb |
|  |  |  |  | $\square$ |  |
| 11 | Go to new case - initial |  | E |  | 0.00 |
|  |  |  |  | $\square$ |  |
|  |  |  |  | $\square$ |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | $\square$ |  |
|  |  |  |  | $\square$ |  |
|  |  | FLAGS |  | ET STATUS |  |
|  | 0 |  | flags | TRIG | DISP |
|  | 1 |  | ON OFF |  |  |
|  | 2 |  | $1{ }^{1} \mathrm{\square}$ - | GRAD ${ }_{\text {a }}$ | ${ }_{\text {SCl }}$ |
|  | 3 |  |  | RAD $\square$ | $\begin{aligned} & \text { ENG } \\ & n-2 \end{aligned}$ |



## Program Description

Program Title 67 - STOCK PRICE 30-WEEK MOVING AVERAGE WITH DATA STORAGE

Contributor's Name
Address
City

Delmer D. Hinrichs
2116 S. E. 377th Ave.
Washougal
State Washington Zip Code

98671

Program Description, Equations, Variables This program allows both the data and the program for a 30-unit moving average to be stored on one card. This is especially convenient for calculating and periodic updating of 30 -week moving averages of stock prices. After loading the data and program from a card, the previous average may be displayed, and only the new data entered. The updated average is displayed after each data entry. When all available data have been entered, the updated data may be recorded on the card.

Data may be entered as 5-digit integers, as 3-digit integers plus quarter points, or as 2-digit integers plus eighth points. For example, using eighth points, for $251 / 8$ enter 25.1; for $567 / 8$ enter 56.7; for $38 \frac{1}{2}$ enter 38.4; for 17 enter 17; etc. All data to be averaged together must be entered in the same mode (integer, quarters, eighths)

The 30 data units are stored in 15 registers, two per register, as 5-digit integers. Data for quarter points or eighth points are also stored as 5-digit integers, but with the decimal point shifted. The decimal point is shifted back again before displaying the average. The data are not moved from register to register for each new entry, but only the oldest datum is replaced by the new datum, and the index is incremented. The "I" register contains both the index, and the sum of all the data stored as a decimal fraction

There is no output of an average until 30 units have been entered.
Entries are checked for format and size errors. Negative Nos. or zero are illegal. Do not clip side 1 of the card, to allow updating of the stored data.

Operating Limits and Warnings Put data on side 1 and program on side 2 of card. Clear registers and flags before starting a new series of data entries.
Press "Reset" only once after loading data and program.
After an erroneous entry ("Error" display) press "CLx", but do not Reset.
All data entries for a series must be in the same mode.
Be sure to press "f P ÆS" before loading data onto a card. Ignore "Crd" after data load. Max. size of whole No. is 5 digits for Integer; 3 digits for Quarter; 2 digits for Eighth

[^3]

| Sample Problem(s) |  |  | Calculate a 30-Week Moving Average of 1976 DJIA Data: |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Week | DJIA | Week | DJIA | Week | DJIA | Week | DJIA | Week | DJIA | Week | DJIA | Week | DJIA |
| 1 | 859 | 9 | 973 | 17 | 1001 | 25 | 1002 | 33 | 990 | 41 | 952 | 49 | 951 |
| 2 | 911 | 10 | 973 | 18 | 997 | 26 | 1000 | 34 | 974 | 42 | 937 | 50 | 973 |
| 3 | 930 | 11 | 988 | 19 | 996 | 27 | 1000 | 35 | 964 | 43 | 939 | 51 | 979 |
| 4 | 954 | 12 | 980 | 20 | 993 | 28 | 1003 | 36 | 989 | 44 | 965 | 52 | 986 |
| 5 | 975 | 13 | 1003 | 21 | 991 | 29 | 993 | 37 | 988 | 45 | 943 | 53 | 1005 |
| 6 | 955 | 14 | 992 | 22 | 975 | 30 | 991 | 38 | 995 | 46 | 928 |  |  |
| 7 | 958 | 15 | 968 | 23 | 964 | 31 | 985 | 39 | 1009 | 47 | 949 |  |  |
| 8 | 988 | 16 | 980 | 24 | 979 | 32 | 986 | 40 | 980 | 48 | 957 |  |  |

A moving average is correctly plotted in the center of the span of the averaged data. With a 30 -unit span, as with this program, the first average must then be plotted between the 15 th and the 16 th data points, as shown below. Thus the output always lags 15 weeks behind the current data, so the 15 most recent weeks have no average to plot.

For this example, the HP-67 was set to "DSP O", so that the output shown below was rounded to the nearest integer.


Reference(s) HP-65 Users' Library Program No. 03133


| STEP | InStructions | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | a) If new series (no data on card) clear Regist. |  | $f$ CL REG | - |
|  | b) If data from card, enter data (side 1 of card) |  |  | Crd |
| 2 | Enter program, side 2 of card |  |  | 0.00 |
| 3 | Prepare for data entry: |  |  |  |
|  | a) If new series, Initialize: |  | $f \quad e$ | 0.00 |
|  | b) If data from card, Reset: |  | E | 0.00 |
| 4 | If desired, display previous average: |  | D | Avg. |
| 5 | Enter data: a) Integers: | Entry | A | Avg. |
|  | or: b) Quarters: | Entry | B | Avg. |
|  | or: c) Eighths: | Entry | C | Avg. |
| 6 | Repeat Step 5 as desired |  |  |  |
|  |  |  |  |  |
| 7 | To store updated data on card: |  | $f \quad P \rightarrow S$ | -- |
|  |  |  | $f$ f/DATA | Crd |
|  | Enter card, side 1 |  |  | Crd |
|  | (Ignore second "Crd" display) |  |  |  |
|  |  |  |  |  |
| * | * * * * * * * * * ${ }^{\text {* }}$ | * * | *** * * | * * * |
|  | Notes: |  | $\square \square$ |  |
|  | 1) In Step 5, all entries must be in the same mode | (Integers, | $\square$ |  |
|  | Quarters, or Eighths). Quarters or Eighths af | e entered | $\square$ |  |
|  | as: (whole number). (No. of quarters or eight | s) | $\square$ |  |
|  | i.e., $253 / 8$ is entered as: "25.3, C" |  | $\square$ |  |
|  |  |  | [ |  |
|  | 2) In Step 5, no average is displayed until 30 ent | ries | $\square \square$ |  |
|  | have been made. Until then, "0.00" is displat | ed. | $\square$ |  |
|  |  |  | $\square \square$ |  |
|  | 3) If an illegal entry is made, there will be an | "Error" | $\square$ |  |
|  | display. Then press "CLx", go to Step 5, and | reenter | $\square \square$ |  |
|  | the number correctly. |  |  |  |
|  |  |  | $\square$ |  |
|  |  |  | $\square$ |  |
|  |  |  | $]$ |  |
|  |  |  | $\square$ |  |
|  |  |  | . |  |
|  |  |  | $\square$ |  |
|  |  |  | ] |  |
|  |  |  | $]$ |  |
|  |  |  |  |  |

67 Program Listing I

| STEP | KEY ENTRY | KEY COde | COMMENTS | STEP | KEY ENTRY | KEY CODE | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | $f$ LBL B | 312512 | Enter 1/4 Points |  | RCL (i) | 3424 | 30 Entries Yet? No, Display Zero Yes, Continue |
|  | h SF 0 | 355100 |  |  | g FrRAC | 32.83 |  |
|  | GTO 0 | 2200 |  |  | f $\mathrm{X}=0$ | 3151 |  |
|  | $f$ LBL C | 312513 | Enter 1/8 Points | 060 | h RTN | 3522 |  |
|  | h SF I | 355101 |  |  | 1 | 01 |  |
|  | $f$ LBL 0 | 312500 |  |  | h RC I | 3534 |  |
|  | f INT | 3183 |  |  | $g$ FRAC | 3283 |  |
|  | h LST x | 3582 |  |  | RCL 7 | 3407 |  |
|  | $g$ FRAC | 3283 |  |  | $\div$ | 81 |  |
| 010 | h F? 0 | 357100 | 1/4 Foints Entered? <br> Yes <br> 1/8 Points Entered? <br> Yes |  | h F? 0 | 357100 | 1/4 Points Entered? Yes |
|  | RCL 4 | 3404 |  |  | RCL 2 | 3402 |  |
|  | h F? 1 | 357101 |  |  | h F? 1 | 357101 | 1/8 Points Entered? Yes |
|  | RCL 8 | 3408 |  |  | RCL 3 | 3403 |  |
|  | X | 71 |  | 070 | X | 71 |  |
|  | + | 61 | Convert to DecimalConvert to Integer |  | h RTN | 3522 | Display Average |
|  | h F? 0 | 357100 |  |  | $g$ LBL $f e$ | 322515 | Initialize,New Data |
|  | RCL 2 | 3402 |  |  | h SF 2 | 355102 |  |
|  | h F? 1 | 357101 |  |  | $f$ LBL E | 312515 | Reset, Save Old Data |
|  | RCL 3 | 3403 |  |  | $f \mathrm{P} \rightarrow$ S | 3142 |  |
| 020 | $\div$ | 81 |  |  | EEX | 43 | Set for New Data? Yes |
|  | $f$ LBL A | 312511 | Enter Integers <br> Error Checking: <br> Entry $\leqslant$ Zero? <br> Entry Non-Integer? <br> Entry Oversize? |  | 1 | 01 |  |
|  | $f$ LN | 3152 |  |  | STO 1 | 3301 |  |
|  | h LST x | 3582 |  |  | h F? 2 | 357102 |  |
|  | $f$ INT | 3183 |  | 080 | h ST I | 3533 |  |
|  | h LST x | 3582 |  |  | EEX | 43 |  |
|  | g $\mathrm{x} \neq \mathrm{y}$ | 3261 |  |  | 2 | 02 |  |
|  | g SIN ${ }^{-1}$ | 3262 |  |  | CHS | 42 |  |
|  | RCL 5 | 3405 |  |  | STO 2 | 3302 |  |
|  | $g \mathrm{x} \leqslant \mathrm{y}$ | 3271 |  |  | EEX | 43 |  |
| 030 | $\mathrm{g} \mathrm{SIN}^{-1}$ | 3262 |  |  | 3 | 03 |  |
|  | h R $\downarrow$ | 3553 | ) |  | CHS | 42 |  |
|  | RCL (i) | 3424 |  |  | STO 3 | 3303 |  |
|  | $g$ FRAC | 3283 |  |  | 2 | 02 |  |
|  | h LST x | 3582 |  | 090 | - | 83 |  |
|  | $f$ INT | 3183 |  |  | 5 | 05 |  |
|  | RCL 5 | 3405 | \} Update Data |  | STO 4 | 3304 |  |
|  | $\div$ | 81 |  |  | EEX | 43 |  |
|  | h R 4 | 3554 |  |  | 5 | 05 |  |
|  | + | 61 |  |  | STO 5 | 3305 |  |
| 040 | STO (i) | 3324 |  |  | 3 | 03 |  |
|  | CLx | 44 |  |  | EEX | 43 |  |
|  | RCL 1 | 3401 | - |  | 7 | 07 |  |
|  | $\mathrm{h} \mathrm{R} \uparrow$ | 3554 |  |  | CHS | 42 |  |
|  | RCL 5 | 3405 |  | 100 | STO 7 | 3307 |  |
|  | $\div$ | 81 |  |  | 1 | 01 |  |
|  | $\mathrm{h} \mathrm{R} \uparrow$ | $35 \quad 54$ |  |  | - | 83 |  |
|  | - | 51 |  |  | 2 | 02 |  |
|  | f DSZ | 3133 | Update Sum and |  | 5 | 05 |  |
|  | RCL 3 | 3403 | $\}$ Increment Index |  | STO 8 | 3308 |  |
| 050 | X | 71 |  |  | CLx | 44 |  |
|  | h RC I | 3534 |  |  | h RTN | $35 \quad 22$ | Stop \& Display Zero |
|  | + | 61 |  |  | $f$ LBL I | 312501 | Subroutine to Reset Data Index |
|  | $g \mathrm{x} \leqslant \mathrm{y}$ | 3271 |  |  | 1 | 01 |  |
|  | f GSB 1 | 312201 |  | 110 | 5 | 05 |  |
|  | h ST I | 3533 |  |  | + | 61 |  |
|  | $f$ LBL D | 312514 | Display Average |  | h RTN | 3522 |  |
| REGISTERS |  |  |  |  |  |  |  |
| 0 | $1{ }^{1} 10$ | ${ }^{2} 0.01$ |  | ${ }^{5} 100000$ | 6 | 7 $3 \times 10^{-7}$ | $8{ }^{8} \quad 1.25$ |
| ${ }^{\text {So }}$ Data | S1 Data | S2 Data | S3 Data ${ }^{\text {S4 }}$ Data | S5 Data | S6 Data | ${ }^{\text {S7 }}$ Data | ${ }^{\text {S8 }}$ Data ${ }^{\text {S9 }}$ Data |
| A | Data | Data | Data | D D | Data | Data | I Index, Sum |

67 Program Listing II


| Program Title | Exponential Smoothing |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Contributor's Name | Ted Bright |  |  |  |
| Address | 40 Woodland Road |  |  |  |
| City | Fairfax | State California | Zip Code | 94930 |

## Program Description, Equations, Variables

Projections from time-series data are computed using a weighted moving average, eliminating the need to retain past observations.

First, a smoothed moving average, $S_{t+j}(x)$ is calculated from the current series value, $X_{t+j}$, and the prior average, $S_{t+i-1}(x)$, according to the formula:

$$
S_{t+i}(x)=\alpha X_{t+i}+(1-\alpha c) S_{t+i-1}(x) \text {, (recalled by keying } c \text { ) }
$$

where $\alpha$ is the smoothing constant, determined in the program as a function of the number of observations to be smoothed, $n$, by the relationship $\alpha=\frac{2}{n+1}$

The change in average, $C_{t+j}$, is simply:

$$
c_{t+i}=S_{t+i}(x)-S_{t+i-1}(x) \quad \text { (recalled by keying } f C \text { ) }
$$

From this is found a new trend, $T_{t+i}$, thru the equasion:

$$
\left.T_{t+i}=\alpha C_{t+i}+(1-\alpha) T_{t+i-1} \quad \text { (recalled by keying } D\right)
$$

Finally, expected demand, $\mathrm{D}_{\mathrm{t}+\mathfrak{i}+7}$, is defined as:

$$
D_{t+i+1}=s_{t+j}(x)+\frac{l-\alpha}{\alpha} T_{t+i} \quad \text { (displayed after each iteration) }
$$

With the entry of a new x value, a prediction error can be expressed as:

$$
e_{t+i}=D_{t+i}-x_{t+i} \quad \text { (recalled by keying } E \text { ) }
$$

The user may wish to increase the sensitivity of the program to anticipated trends with an increase in the value of $\alpha$ observing that $0<\alpha<1$.

The initial trend is assumed to be 0 unless a value is entered. OPERATING LIMITS AND WARNINGS
There being no prior value of $D$, e on the first iteration will be meaningless.

[^4]
## Program Deseription II



## Sample Problem(s)

The chart below shows six $(n=6)$ values, $x_{t+i}$, for 1971 thru 1976. The program, using an initial estimate for the smoothed average, $S_{t+i-1}(x)$, of 100 , will produce the remaining data, including a projected quantity, $D_{t+i+7}$, for 1977.

Initialize using the keystrokes 6[ $\uparrow$ ], 100[A].

Then enter the value of $x_{t+i}$ for 1971 (103), press [B], and observe that the output displayed agrees with the first solution under $D_{t+i+1}$. Press [C], $f[C],[D]$, and $[E]$, likewise noting the results in their respective columns. Enter the $X_{t+\hat{1}}$ values for each succeeding year followed by the keystrokes above each column.


## Reference(s)

Charles T. Clarke and Lawrence L. Schkade, Statistical Methods for Business Decisions (Cincinnati, Ohio: South-Western Publishing Co. 1969), pp 702-711.

EXPONENTIAL SMOOTHING





## Sketch(es)

Sample Problem(s)
18. Multiple Linear Regression

$$
\begin{gathered}
z=a+b x+c y \\
\Sigma z_{i}=a n+b \Sigma x_{i}+c \Sigma y_{i} \quad i=1,2, \ldots, n \\
\Sigma x_{i} z_{i}=a \Sigma x_{i}+b \Sigma x_{i}{ }^{2}+c \Sigma x_{i} y_{i} \\
\Sigma y_{i} z_{i}=a \Sigma y_{i}+b \Sigma x_{i} y_{i}+c \Sigma y_{i}{ }^{2} \\
c=\frac{A-B}{\left[n \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}\right]\left[n \Sigma y_{i}{ }^{2}-\left(\Sigma y_{i}\right)^{2}\right]-\left[n \Sigma x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)\right]^{2}}
\end{gathered}
$$

where:

$$
\begin{gathered}
A=\left[n \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}\right]\left[n \Sigma y_{i} z_{i}-\left(\Sigma y_{i}\right)\left(\Sigma z_{i}\right)\right] \\
B=\left[n \Sigma x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)\right]\left[n \Sigma x_{i} z_{i}-\left(\Sigma x_{i}\right)\left(\Sigma z_{i}\right)\right] \\
b=\frac{\left[n \Sigma x_{i} z_{i}-\left(\Sigma x_{i}\right)\left(\Sigma z_{i}\right)\right]-c\left[n \Sigma x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)\right]}{n \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}
\end{gathered}
$$

$$
\begin{gathered}
a=\frac{1}{n}\left(\Sigma z_{i}-c \sum y_{i}-b \Sigma x_{i}\right) \\
R^{2}=\frac{a \Sigma z_{i}+b \Sigma x_{i} z_{i}+c \sum y_{i} z_{i}-\frac{1}{n}\left(\Sigma z_{i}\right)^{2}}{\left(\Sigma z_{i}{ }^{2}\right)-\frac{\left(\Sigma z_{i}\right)^{2}}{n}}
\end{gathered}
$$



Reference (s)




## Program Description

| Program Title Curve Fitting, Selecting Best Function |  |
| :--- | :--- | :--- |
| Contributor's Name C.D. Bopp  <br> Address  <br> City Vak Ridge State Tern. | Zip Code 37830 |

```
Program Description, Equations, Variables This program compares the coefficients of determination for the four functions described in the HP67/97 Standard Pac Program 03. The function having the largest coefficient of determination is indicated by displaying a code number, as explained in the User Instructions.
```

Operating Limits and Warnings The calculating time is roughly about one minute. Negative coordinates are not admissable. ro enter another set of points, turn calculator off and on.

[^5] this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

## Sketch(es)

Sample Problem(s) Given the points ( $\mathrm{x}, \mathrm{y}$ ) 1,2; 2,3; 3,4; find (a) which of above-mentioned four correlations gives the highest coefficient of determination ( $C O D$ ), (b) compute the value of the $C O D$, ( $c$ ) with $x$ equal to 4 project the value for $y$, and ( $d$ ) compute the $C O D$ and project $y$ for two of the other three correlations.

```
Solution(s) Part (a): 2 (\uparrow) 1 (A) 3(\uparrow) 2(A) 4 (个) 3(A) (B) -> 1,
indicating that the linear fit is best (using the coding numbers as
described in the User Instructions).
Part (b):(RCL) (C) -> 1.000, the COD.
Part (c): 4 (E) -> 5.000, the projected y.
Part (d): (SF)(l) (GTO) (A) (GTO) (2) (R/S) (RCL) (C) >0.990, the COD for
the exponential fit. 4 (E) -> 5.77, the projected y.
    (GTO) (A) (GTO) (3) (R/S) (RCL) (C) ->0.978, the COD for the
logarithmic fit. 4 (E) }->4.40, the projected y
```

CURVE FITTING, FUNCTION SELECTION
1

$$
x \rightarrow \hat{y}
$$

| STEP | INSTRUCTIONS | INPUT DATA/UNITS | KEYS | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Load side 1 and side 2. |  |  |  |
| 2 | Input y value. | yi | ENTER |  |
| 3 | Input $x$ value. | Xi | A |  |
| 4 | Repeat steps 2 and 3 for all data pairs |  |  |  |
| 5 | Compute of the functions listed below |  | B | $\mathrm{N}, \mathrm{a}, \mathrm{b}$ |
|  | the one with the largest coefficient of |  | RCI C | $\mathrm{r}^{2}$ |
|  | determination $\mathrm{r}^{2}$. This function is |  | 1 |  |
|  | indicated by a number 1, 2, 3, or 4 |  |  |  |
|  | according to the following coding: |  |  |  |
|  | 1 Linear regression $y-a+b x$ |  |  |  |
|  | 2 Exponential Curve y $=a e^{\text {bx }}$ |  |  |  |
|  | 3 Logarithmic Curve $y=a+b \ln x$ |  |  |  |
|  | 4 Power Curve $y=a x^{b}$ |  |  |  |
|  | The quantities that are printed are the |  |  |  |
|  | code number ( $N$ ) designating the function |  |  |  |
|  | and the parameters $a$ and $b$ of this |  |  |  |
|  | and the parameters a and $b$ of this function. <br> The parameter |  |  |  |
|  | a is stored in register $A$. The para- |  |  |  |
|  | meter b is stored in register B. The |  |  |  |
|  | coefficient of determination $r^{2}$ is |  |  |  |
|  | stored in register C. |  |  |  |
| 6 | Optional: Make projection based on a | X | E | $\hat{\mathrm{y}}$ |
|  | known $x$ value. |  |  |  |
| 7 | Optional: Find the coefficient of |  | SF\| 1 |  |
|  | determination (COD) and the parameters |  | GTO ${ }_{\text {a }}$ |  |
|  | $a$ and $b$ for any of the other functions |  | GTO] [N |  |
|  | (than that selected). |  | $\mathrm{R} / \mathrm{S}$ | N |
|  |  |  | RGL $]$ C | $r^{2}$ |
|  |  | X | E ${ }^{1}$ |  |
|  |  |  | $1 \mid$ |  |
|  |  |  | $1 \mid$ |  |
|  |  |  | 1 |  |
|  |  |  | \| |  |
|  |  |  | I |  |
|  |  |  | 1 |  |
|  |  |  | \| 1 |  |
|  |  |  | \| |  |
|  |  |  | \| | |  |
|  |  |  | 11 |  |


| STEP | KEY ENTRY | KEY CODE | COMMENTS | STEP | KEY ENTRY | KEY CODE | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 001 | *LBLA | 2111 |  |  | STOO | 3500 |  |
|  | $\Sigma$ | 56 |  |  | 1 | 01 |  |
|  | ISTX | 16.63 |  |  | 7 | 07 |  |
|  | STOA | 3511 |  | 060 | GSB0 | 2300 |  |
|  | IN | 32 |  |  | STOE | 3515 |  |
|  | STOB | 3512 |  |  | GSBC | 2313 |  |
|  | X $\mathrm{F}^{\text {P }}$ | -41 |  |  | 1 | 01 |  |
|  | STOC | 3513 |  |  | F2? | 162302 |  |
|  | LN | 32 |  |  | STOD | 3514 |  |
| 010 | STOD | 35.14 |  |  | RTN | 24 |  |
|  | RCLB | 3612 |  |  | *LBL2 | 2102 |  |
|  | $\mathrm{P} \geqslant \mathrm{S}$ | 16-51 |  |  | SFO | $16 \quad 2100$ |  |
|  | $\Sigma$ | 56 |  |  | RCL6 | 3606 |  |
|  | RCLD | 3614 |  | 070 | STOI | 3501 |  |
|  | RCLA | 3611 |  |  | RCL7 | $36 \quad 07$ |  |
|  | $\times$ | -35 |  |  | STOE | 3515 |  |
|  | $\mathrm{ST}+3$ | 35-55-03 |  |  | 1 | 01 |  |
|  | RCLB | 3612 |  |  | 3 | 03 |  |
|  | RCLC | 3613 |  |  | GSBO | 2300 |  |
| 020 | $\times$ |  |  |  | STO3 | 3503 |  |
|  | ST+2 | 35-55 02 |  |  | 1 | 01 |  |
|  | $\mathrm{P} \geqslant \mathrm{S}$ | 76-57 |  |  | 4 | 04 |  |
|  | RTN | - 24 |  |  | GSBO | 2300 |  |
|  | *LBLB | 2112 |  | 080 | ST02 | 3502 |  |
|  | 0 | 00 |  |  | 1 | 01 |  |
|  | STOC | 3513 |  |  | 5 | 05 |  |
|  | GSBl | 2301 |  |  | GSB0 | 2300 |  |
|  | GSB2 | 2302 |  |  | STOO | 3500 |  |
|  | GSB3 | 2303 |  |  | GSBC | 2313 |  |
| 030 | GSB4 | 2304 |  |  | CFO | 162200 |  |
|  | RCLD | 3614 |  |  | 2 | 02 |  |
|  | STOI | 3546 |  |  | F2? | $16 \quad 23 \quad 02$ |  |
|  | GSBi | 2345 |  |  | STOD | $35 \quad 14$ |  |
|  | RCLD | 3614 |  | 090 | RTN | 24 |  |
|  | PRTX | -14 |  |  | $\because \mathrm{LBL} 3$ | 2103 |  |
|  | RCLA | 3611 |  |  | RCL4 | 3604 |  |
|  | PRTX | -14 |  |  | STO2 | $35 \quad 02$ |  |
|  | RCLB | 3612 |  |  | RCL5 | $36 \quad 05$ |  |
|  | PRTX | -14 |  |  | STOO | 3500 |  |
| 040 | R/S | 51 |  |  | 1 | 01 |  |
|  | *LBLI | 2101 |  |  | 2 | 02 |  |
|  | 1 | 01 |  |  | GSBO | 2300 |  |
|  | 8 | 08 |  |  | STO3 | $35 \quad 03$ |  |
|  | GSB0 | 2300 |  | 100 | 7 | 01 |  |
|  | STO3 | 3503 |  |  | 6 | 06 |  |
|  | 1 | 01 |  |  | GSBO | 2300 |  |
|  | 4 | 04 |  |  | STO1 | 3501 |  |
|  | GSBO | 2300 |  |  | 1 | 01 |  |
|  | STO2 | 3502 |  |  | 7 | 07 |  |
| 050 | 1 | 01 |  |  | GSBO | 2300 |  |
|  | 6 | 06 |  |  | STOE | 3515 |  |
|  | GSB0 | 2300 |  |  | GSBC | 2313 |  |
|  | STO1 | $\begin{array}{lll}35 & 01\end{array}$ |  |  | 3 | 03 |  |
|  | 1 | 01 |  | 110 | F2? | 162302 |  |
|  | 5 | 05 |  |  | STOD | 3514 |  |
|  | GSB0 | 2300 |  |  | RTN | 21 |  |
| REGISTERS |  |  |  |  |  |  |  |
| 0 used | 1 used | 2 used | $3^{3}$ used ${ }^{4} \sum \ln x$ | ${ }^{5} \sum(\ln 1)^{2}$ | $\left.)^{2}\right]^{6} \sum \ln y$ | ${ }^{7} \Sigma(\ln y)^{2}$ | $\left.{ }^{8} \sum \ln x \ln y\right\|^{9} n$ |
| So | S1 | S2 $\Sigma y \ln x$ | $\left.{ }^{53} \Sigma x \ln y\right\|^{54} \Sigma x$ | ${ }^{\text {S5 }} \Sigma x^{2}$ | ${ }^{56}$ sy | ${ }^{\text {S7 }} \Sigma y^{2}$ | ${ }^{58} \Sigma x y{ }^{\text {s9 }} \mathrm{n}$ |
| $a$ |  | 3 b | c $r^{2}$ | D us | cd | E used | I used |

97 Program Listing II


NOTES

## Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

## Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

```
Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine
```


## Mechanical Engineering Surveying <br> Civil Engineering Navigation Games

## Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

## Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

```
    Options/Technical Stock Analysis
Portfolio Management/Bonds & Notes
        Real Estate Investment
                    Taxes
    Home Construction Estimating
                Marketing/Sales
            Home Management
                Small Business
                Antennas
Butterworth and Chebyshev Filters
    Thermal and Transport Sciences
                EE (Lab)
            Industrial Engineering
            Aeronautical Engineering
                Control Systems
            Beams and Columns
                High-Level Math
                Test Statistics
                    Geometry
                Reliability/QA
```


## Medical Practitioner

Anesthesia
Cardiac
Pulmonary
Chemistry
Optics
Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

## OPTIONS AND TECHNICAL STOCK ANALYSIS

Includes a number of programs for evaluating put and call options, various option trading strategies, and several programs useful in technical stock analysis.

PUT \& CALL OPTION FAIR VALUES (Black-Scholes)
CALL OPTION EVALUATION
ROUTINES FOR OPTION WRITERS
EMPIRICAL CBOE CALL PRICING
WARRANT \& OPTION HEDGING
BULL SPREAD OPTION STRATEGY
BUTTERFLY OPTIONS
stock price 30-WEEK MOVING AVERAGE WITH DATA storage
EXPONENTIAL SMOOTHING
MULTIPLE LINEAR REGRESSION
CURVE FITTING, SELECTING BEST FUNCTION


[^0]:    This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
    NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]:    This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
    NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^2]:    Reference(s) ${ }^{\text {l }}$ One, two, ... warrants sold short for each purchase of stock
    ${ }^{2}$ Infinity: To clear press CLX and continue.
    ${ }^{3}$ Each additional press of $C$ produces an additional warrant sold ${ }^{1}$. For example the first $C$ you get 2 warrants, second C pressed three etc.

[^3]:    This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
    NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^4]:    This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
    NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^5]:    This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses

