HEWLETT-PACKARD

HP-67 HP-97

Users' Library Solutions Options/Technical Stock Analysis

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing I indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

PUT	& CALL OPTION FAIR VALUES (BLACK-SCHOLES)	•	1
CALL	OPTION EVALUATION This program computes call option values using the Black-Scholes model. It also computes the implied empirical variance (variability when the actual market value is entered.)	6
ROUT	INES FOR OPTION WRITERS In addition to calculating the fair option value (Black-Scholes) with consideration for dividends, the program calculates the maximum yield, cash flow yield, and high and low breakeven points.	•	11
EMPI	RICAL CBOE CALL PRICING Using the Clasing empirical formulas, this program calculates a fair call option price.	•	17
WARR	ANT & OPTION HEDGING This program calculates cross return and high and low breakeven points for various short sale ratios.	•	22
BULL	SPREAD OPTION STRATEGY For various bull (vertical) spreads, this program calculates the upper and lower breakeven points and the percent movement necessary to reach them.	•	27
BUTT	ERFLY OPTIONS This program calculates the maximum profit, maximum loss, and the upside and downside breakeven points for various butterfly option strategies.	•	32
STOC	K PRICE 30-WEEK MOVING AVERAGE WITH DATA STORAGE This program allows both the data and the program for calculating a 30-unit moving average to be stored on a single program card.	·	36
EXPO	NENTIAL SMOOTHING Exponential smoothing is a geometrically weighted moving average which can be used to locate and project significant trends in securities and commodities prices.	•	41
MULT	IPLE LINEAR REGRESSION This program can be used to search for leading indicators of stock and commodities movements by analyzing past data for possible linear relationships.	•	45
CURV	E FITTING, SELECTING BEST FUNCTION Four different mathematical functions are evaluated to determine the function which best represents the data; linear, power, exponent and logarithmic. Program makes projections based on curve fit selec	• ial ted	51

Program Description I

Program Title	PUT &	CALL	OPTION	FAIR	VALUES	(BLACK	-SCHOLE:	S)	
Contributor's Name	Will 160	iam B. Paseo (Henders ie la Co	on ncha #F	'n				
City	Redo	ondo Bea	ach,		State Ca	lifornia	2	Zip Code	90277

Program Description, Equations, Variables This program computes the theoretical value of a European¹ type put or call option using the valuation formulas of Black & Scholes^{2,3} The following equations are used: Call Option Value = $P_{stock}N(d_1) - P_{strike}N(d_2) \exp^{-Rt}$ Put Option Value = $P_{strike}N(-d_2) \exp^{Rt} - P_{stock}N(-d_1)$ where: $d_1 = \frac{\ln(P_{stock}/P_{strike}) + (R + \frac{1}{2}V^2)t}{V\sqrt{t}}$ $d_2 = \frac{\ln(P_{stock}/P_{strike}) + (R - \frac{1}{2}V^2)t}{V\sqrt{t}}$ $N(d) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{d} \exp^{-Z^2/2} dz$ N(-d) = 1 - N(d)The Hedge Ratio for a Call Option = $N(d_1)$ R is the appropriate interest rate expressed as a decimal. t is the remaining time to expiration in years. V is the variance rate of the return on the underlying security. Operating Limits and Warnings The variance term in the equation must be the future variance of the underlying security for the option to be correctly priced. A more complete discussion of this term is available from the program author. A crude estimate of variance may be obtained from the formula: $V = \frac{\text{Stock High} - \text{Stock Low}}{\frac{1}{2}(\text{Stock High} + \text{Stock Low})}$ during the past year. Out-of-the-money options are extremely sensitive to this term and large errors in

value may result from improper choices.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL. Sketch(es)

Sample Problem(s) A. What is the fair market price of a call option with a striking price of 65 and 91 calender days remaining to expiration? The current (risk free) interest rate for a 91-day T-Bill is 4.65%, the current stock price is $63\frac{1}{4}$ and the estimated variance is 0.125.

B. What is the fair market price of a put option with the same conditions as (A)?

C.	What	is	the	value	of	the	call	option	in	(A)	if	the	variance	term	is	actually
	0.17	5 ?														

D. What is the Hedge ratio of the option in (C)?

	KEY IN:	DISPLAY:
	65,A	 65.00 (P _{strike})
	63.25,B	 63.25 (P _{stock})
	91,C	 0.25 (t)
	.125,D	 $0.02 (v^2)$
Solution(s)	4.65, E	 0.05 (R)
SOLVE A:	fA	 1.14 Convert to 1/16ths: fC 1 2/16
SOLVE B:	fE	 1.00 Put/Call toggle
	fA	 2.14 Convert to 1/16ths: fC 3 1/16
SOLVE C:	.175,D	 0.03 (V ²)
	fE	 0.00 Put/Call toggle
	fA	 1.76 Convert to 1/16ths: fC 1 12/16
SOLVE D:	fB	 0.45

Reference(s) (1) A European option can only be exercised at maturity. This differs from an American option which can be exercised at any time through maturity.
(2) Black, Fischer and Myron Scholes; "The Pricing of Options and Corporate Liabilities". Journal of Political Economy (May/June 1973), pp 637-654.
(3) Black, Fischer; "Fact and Fantasy In the Use of Options". Financial Analysts Journal (July/August 1975), pp 36-72.

	FAIR	OPTION VALU	JE		
↓ 1 → VALUE	→ HEDGE	→ 1/16ths	HAL →V ²	PUT?	5
STRIKE	STOCK	# DAYS	VARIANCE	INT. RATE	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Key in Striking Price of Option	\$	Α	\$
2	Key in Price of Underlying Stock	\$	В	\$
3	Key in # Calender Days Remaining on Option	days	С	yrs.
4	Key in Variance	v	D	v ²
	or, if variance is unknown, estimate as			
	follows:			
	Key in stock's high for year, ENT	\$		
	Key in stock's low for year	\$	f D	v ²
5	Key in appropriate interest rate	%	E	R
6	Select Mode:			
	0 = Call Option*		fE	
	1 = Put Option		fE	
	*Machine is in call mode when card is loaded.			
7	Solve for:			
	Option Value:		fA	\$
	Hedge Ratio:		fB	
	Convert contents of X-register to 16ths:		fC	

Program Listing I

STEP	KEY ENTRY	KEY CODE	СОММ	ENTS	STEP	KEY ENTRY	KEY CODE		COMN	IENTS
	001	*LBLA	Striking	Price		05	7 -			
	002	STOA	2			05	5 X≢Y		(=d)	
	<i>6</i> 03	RTN				65:	9 RCL1	18 (: d.	
	004 805	*LBLB	Stuck Q.			06	9 + 1 CCDA	5		
	005	5106	STOCK MY	o C C		06. 07	1 6580 C CTOC	<- ○	Solve N	(di) or N(-di)
	005	KIN				66. 06	2 5109 7 DCLD			
	007 600	#LBLU	# Coloud	a. Daves		06. 06	3 RULB			
	000 000	3				00' 02'	4 A 5 EQQ	2	2	
	003 010	5	Remain	5		80. 86	5 F0: 5 FUC	18 Put	- /	
	610 611	- -		(A MARINA DA		26	7 ¥7Y	Γ		
	011 012	STOC	- 713,	د min 2		86	R CSRA	e 5	N/ NC	d_{2}) or N(- d_{2})
	013	RTN				86	9 RCLA			
	Й14	#LBL ai	-			07. 07.	9 X			
	015	STOE	Strek His	1 1		07	I RCLC			
	616	R↓		, ,		07.	2 RCLE			
	<i>0</i> 17	ST07	Stack LD	(,)		07.	3 X	ł		
	618	RCL6	$\rightarrow \sim \sqrt{2}$			874	4 e ^x			
	019	-	Ŷ			87:	5 ÷			
	020	RCL7				87	6 F0?			
	021	RCL6				07	7 CHS			
	022	+				87	s –	\$ PUT	- ?	
	023	2				07.	9 RTN	p ·	•	
	<i>0</i> 24	÷				08	0 *LBL0			
	025	÷				08	1 STO4			
	026	≢LBLD	Variance			0 8.	2 ABS	546,	routins	for
	027	X2	Vaviance			<i>0</i> 8.	3.	eva	lustin	of
	028 620	5100	\rightarrow \vee ²			68- 60	4 3 F 7	Cam	ulation	o normal
	029		-			68	5 3	de	1.4.	Inction
	030 071	#LDLE EEV	Interest &	late (7.)		00 00	ь <u>г</u>	Jer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/d
	031 072	2				00 68	(D 9 7			$\left(\frac{-\frac{2^{2}}{2}}{2}\right)$
	03Z 033	÷	> Deci -> l	Equivalent		88	9 X	NA) = $\sqrt{27}$	P de
	034	STOE				09. 09.	0 1)
	035	RTN				09	1 +		_	~
	036	*LBLa				09.	2 1/8			
	637	RCLB	- Option	Value		89.	3 STO5			\backslash
	038	RCLA	ľ			8 9-	4 उ		N(d)	$\mathbf{\lambda}$
	039	÷				89 :	5 Y*	-II		
	040	LN	1			0 9)	6.		(ط
	041	RCLC	ł			09	79	Par	`r	
	042	RCLE				6 9	8 3	<u>Nei</u>	_	
	043	x				0 9.	97	Ha	nd book	of
	644	+				10	0 2	Mat	Lemat:	est
	04J 845	RULL				10	1 9	Fur	ctions	(AMS 55)
	040 047	KLLD				10	20 7 v			(,
	047 GAQ	î.				10	3 A A DCI5	Ab	amow	12 \$
	040 049	STOI				10	4 KCLJ 5 V2	Ste	gun	
	045 050	5701 ÷				10	6		80	0.1.1:
	051	ENTT				10	7 1		5.20	abilitation
	852	ENTT				10	 8 2	1	pp 75	2
	053	RCL1				10	9 0		1	-5
	054	2				11	0 1	6	(d)	≤ 10
	055	÷				11	1 6	`	•	
	056	ST01		PECH	 	11.	27			
0	1	2	3	4	5 ,	6	7 . /. /	8	17	9 Hodan
	Used			Used	Used	Low	High		م ۱ رو	nesge
S0	S1	S2	S3	S4	\$5	S6	57	58		28
	I			1	D	I	l		II	L
* Stril	ы. ^В	Stock	Ľ	t		√ ²	- R		Us	ed

			97 P	'rogran	n Listi	ing II			5
STEP	KEY ENTRY	KEY COD	E	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
	113	6				169	+		
	114	- X				170	RTN +IPI2		
	115	RCL5				171	#LDL2 1		
	117	•				173	ENTT		
	118	4				174	RTN		
	119	3 6				175	#LBLe FØ2		
	121	1				170	GTO3	PUT/CAL	L
	122	8				178	SFØ	-	
	123	3				179	1 рти	1 oggie	
	124	ъ Х				180	xi BL3		
	126	+				182	CFØ		
	127	RCL4				183	8		
	128	X2 2				184	KIN D/C		
	130	÷				100	K7 U		
	131	e×							
	132	÷							
	133 174	P 2			190				
	135	x							
	136	1 X							
	137	÷ PCLA							
	130	FØ?							
	140	CHS	5						
	141	X(0?	{ PUT	2					
	142	6101 P.	5						
	143	CHS			200				
	145	1							
	146	+ 574							
	147 148	RIN #UBI1							
	149	R4						1	
	150	RTN							
	151	*LBLb				1			
	152	RTN	\rightarrow t	ledge Ratin					
	154	#LBLc			210				
	155	STOI		2					
	106	FRU	→ (installs of					
	158	1	X -	register in					
	159	6	Poi	sts . likths					
	160	ST08							
	161	RND							
	163	RCL8			220				
	164	X=Y?			220				
	165 164	ESB2							
	167	RCLI							
	168	INT	LA	BELS		FLAGS		SET STATUS	
A Str	k. B 5+00	ck C	# 0		E R	0 lsed	FLAGS	TRIG	DISP
a _{> Val}	b -> 1-10.1	ас С_	+ 16+6 s	$q H UT \rightarrow \Lambda_5 e$	· AIT?	1	0 ON OFF	DEG 🕑	FIX
0 Ma	1) 1 User	2	1::	3 Usen	4	2	1 [] [] 2 [] [4]	GRAD □ RAD □	SCI □ ENG □
5	6	7		8	9	3	3 🗆 🗗		n_2

Program Description I

Program Title	(ALL	OPTION	EVALUATION		
Contributor's Name Address / 36/ City אטק אמא ט	RICH BLA FLE	нко G, СКНАШК	Dじんみレの OR State	Сд	Zip Code 94087

Program Description, Equations, Variables THIS PROGRAM USES THE BLACK-SCHOLES FORMULA FOR THE PRILE OF CALL OPTIONS ALONG WITH PORTIONS OF THE STANDARD PAC "CALCULAS AND DECTS OF F(x)." A SINGLE FUNCTION OF MANY VARIABLES DEFINED AS $f(B, R, t, P_C, P_S, V) = P_S g(d_1) - e^{-Rt} g(d_2)$ WHERE $An (P_S/P_C) + (R + V/2)t$ $d_1 = \frac{1}{V \sqrt{t}} + \frac{1}{2} \operatorname{erf}(\frac{X}{T2})$ UHERE THE APPROXIMATION FOR g(x) is $g(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}(\frac{X}{T2})$ UHERE THE APPROXIMATION FOR g(x) is $g(x) = \begin{cases} 1 - Q(x) \times 30 \\ Q(x) \times <0 \end{cases}$ UHERE $Q(x) = \frac{e^{-x/2}}{V2T} \left\{ Y \left[-43L2 - .12y + .9371y^2 \right] \right\}$ $WITH <math>Y = \frac{1}{1 + .32271 |x|}$ B = OPTION PRICE (DOLLARS), R = INTEREST RATE (UHERE S% IS EXTERED AS 0.05), $t = TIME (YERRS), P_E = STRIKE PRICE (DOLLARS), P_S = CURRENT$ STDCK PRICE (DOLLARS), <math>Y = VOLITILITY

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL. Sketch(es)

Sample Problem(s) GIVEN THE GOLLOW, WC- PACKARD STOCK OLL 3/28/77 :	STATISTICS ON HEWLETT -
CALL OPTION EXPIRATION :	MAY AUG
OFJIDN PRICE :	11/16 3 ³ /4
DAYS REMAINING :	56 146
STRIKE PRICE :	80 80
STOCK PRICE :	751/2 751/2
CALCULATE a) MARKET - ASSIGNED	VOLITILITY FOR EACH SERIES
b) SLOPE OF OPTION P	PRICE WITE STOCK PRICE
c) SLOPE OF OPTION PRICE	RICE WITE TIME
d) AUG OPTION PRICE	IF VOL WERE 0.30 (HISTORIC
VOLITILITY OF HP	STOCK)
Solution(s) a) KEY IN MAY PARAMETERS 56/365 STO 3, 80 STO 4, 75.5 STO 5 PRESS E, RESULT = 0.21. KEY IN AUG PARAMETERS : 3.7 PRESS E, RESULT = 0.26 b) USING AUG PARAMETERS : 0.26 c) USING AUG PARAMETERS : 0.26 d) USING AUG PARAMETERS : 0.30 ST	5: 1.0625 STO 1, .05 STO 2, 5: 0.3 (GUETS) STO 6, 5 STO 1, 146 + 365 STO 3, STO 6, PRESS D, RESULT = 0.44 FO 6, PRESS C, RESULT = #4.47

Reference (s) FISCHER BLACK AND MYRON SCHOLES, "THE PRICINC OF EATIENS AND CORPORTOR LIABILITIES," JOURNAL OF POLITICAL ECONOMY 81 (MAY/JUNE 1973)

BLACK-SCHULES 1= OPTIOL A, 2= i, 3= t, 4 = STRIKE # 5= STP(K S, 6 = VOLITILITY **4**1 (hp) V٥L

f'(B) fuse

7

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	LOAD BOTH SIDES OF CARD			
2	ENTER DATION PARAMETERS			
	a) OPTION PRICE (DMIT IF TO BE CALCULATED	\$	STO I	B
	b) INTEREST RATE	DECIMAL	STO 2	R
	c) TIME	YEARS	ST0 3	t
	d) STRIKE PRICE	A	STO 4	Pa
	e) CURRENT STOCK PRICE	Ħ	50 5	P _s
	f) VOLATILITY	V	STO 6	V
3	OPTIONAL : TOGGLE PAUSE MODE		fe	1.00/0.00
4	CHOOSE DESIRED MODE			
	a) FOR OPTION PRICE			B(\$)
	b) FOR VOLITILITY			V
	c) FOR f'(B) WHE STOCK PRICE			f'(8) \$/s
	d) FOR F'(B) WIT TIME		fd	F'(B) K/YEAR
5	TO REPERT, GO TO STOP 2 AND			
	CHANGE ANY PARAMETER			

			67 Program	l Lis	sting I		9
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	* LBL A	3) 25 11)		RCLC	34 13	$(f(x + \frac{2^{k}}{1}) - f(x - \frac{4^{k}}{1}))$
	RUU	35 33			P. PTIC	81	ΔX
	¢ P≈s	31 42	> initialize	060	*LBL C	31 25 13	K
	STO(1)	33 24			1	01	1)
	FPSS	31 42	· · ·		FGBB A	31 22 11	
	DSP Z	23 02			0	00	> + (×)
	+ A KIN	222515	K		STO I	350	
010	h fo?	357100)		L RIN	35 22	\mathbf{D}
	GTOO	22 00	PAINE		ALBL E	31 25 15) USE NUMERICAL
	h SF O	35 51 00	TORGLE		6	06	DIFFERENTIAL
	P P = (01	/ /	070	F GSB A	31 22 11	TO GENERATE
	XKIN	35 22		070	I GSO A	3) 23	X: FROM
	* LDL U	00			RCLB	34 12	ILITIAL GUESS
	ACFO	35 61 00			670 0	22 00	
	& RTN	35 22	V		#LBL 6	3125 06	EVALUATE
	*LBL a	32 25 11	STORE &A		RCL D	34 00	$\int f(\mathbf{x}_i)$
020	X SF1	35 51 01	AND SET		FGSBI	31 22 01	
	& RTN	35 22) para		*LBL D	31 2500	ίτ ^α
	+LBL D	3125 14	$\int f'(x) \omega.r.t.$		RCLA	34 11	SECANT METHOD
	5	05	> STOCK PRICE	080	RCLD	3400	CALCULATES
	GTO 2	22 02	J		STO A	33 11	CORRECTION
	*LBL d	32 25 /4) $f'(x) \omega_{r}t$		- PCL N	31	FOR X VALUE
	+/RL2	3) 25 02	TIME		RCLB	34 17	AND SETS
	f GSB A	3) 22 11			STOD	33 14	VALUES FOR
030	*LBL B	31 25 12			-	51	NEL LIU,
	EEX	43	CHOOSE DEFAULT			81	1)
	CHS	42	% A CR		X	71	SUR CORFEETING
	KCLE	34.15	012 0,01%	090	RUD	34 00	
	L f1?	357101			hFo:	35 71 00	DISPLAY RADT
	h x=y	3552			L PSE	35 72	
	RR4	35 53			*	81	(CHANGE/X)
	+ %	31 82) IF X=0 USE 264		f x tol	31 24	
040	h LST X	35 82	RATHER THAN		GT96	22.06	ACCURATE :
	STOC	33 13	1 2 OF X AS DX		RCLO	34 00	LIE CO DISPLAY
	2	02)		ARTN	35 22	
	÷	81		100	*LBL 1	3) 25 01	START BLACK
	STD A	37 11	\rangle + (x - $\Delta x/z$)	100		34 0/-	Schorez Wallie 2
	STOO	33 00	/		q x ²	32.54	
	f GSB 1	3) 22 01			2	02	$\left \right\rangle \frac{1}{2}$
	STOD	33 14)		÷	81	=
050	RCLA	34 11			STO 8	3308	
030	KCL C	5715	$f(x + a \times h)$		5727	33 07	5 01
	STO O	33 00			RCLS	3408	1
	5 65B 1	312201			CHS	42	{ dz
	STO B	3312		110	7638 L	31 22 03	2
	~	51	l		RCL 4	3444	l
	1		REGI	STERS			
° X:	1 B	2 R	3 t 4 P_{e}	⁵ Ps	⁶ √	⁷ TEMP	"Temp "
S0	S1 B	S2 R	$s_3 t s_4 P_{\tilde{e}}$	S5 Ps	S6 √	ST TEMP	SB TEMP S9
A	X_{i-1}	^Β <i>f</i> (<i>x</i> _i)	с сх	D f	(x ₂₋₁)	E % 4	IVARIABLE

10			6	7 P	rogran	n]	Listi	ing H			
STEP		RY KEY	CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	×		71	1				•	83)	
	RCL 2	3	402	1 pr	tp=q(d)		170		09		
	X		71	(-				7	27)	
	g ex	3	252					1	01		
	4		81)				X	71		
120	RCLI		401					KCL 8	5408		
120	RCL 7	3	407)				(21		
	- x = y	3.	5 52					2	02		
	STO 7	3	3 07) Ps	g (d.)		180	X	7)	> Q(x)
	Lasa 3	$\begin{vmatrix} 3 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\frac{3}{2}$		J -				<u> </u>	1	
	RCLS	- 3	4 05					4	04		
	×		71	J				3	03		
	RCL7	3	4 07					<u> </u>			
130	f pss	3	142					+	61		
	RCLLi	3	4 24					RCL 8	34 08		
	f P=	3	142					<u> </u>	71		
	STOU		324	2			190	<u>kπ</u>	35 73		
	h RTN	3	5 22	S Ar	15			×	71		
	*LBL 2	312	502	、				fvx	3154		
	RCLZ	. 3	4 02	}				÷	81		
	PC13		61	1	(P_{4}) , (P_{4})	L		LPSG	34 0/		
140	× ×		71	len ("RE) + (K+2)	C		9 X ²	32 54		
	RCL 5		3405		VIE			2	οι		
	RCL4	ز <u>ا</u>	7404	>				÷	81		
	FW	3	1 52				200	<u> </u>	3232		
	+		61	1				& F2?	3571 02		
	RCL 6		34 06					L RTH	3522		
	RCL 3		81					<u> </u>	42		
	f vx		1154					+	61		
150	+		81	}				IL RTN	3522		
	& KTN	3	5 22	/							
	+ 195 4	310	1 42								
	STO 7	3	3 07				210				
	f x 40	3	171								
	l SF L	35 5	54	\							
	- K / 1 P		83								
	3		03	_	1						
160	3		03	5 1	+,3327/×1						
	7		07	1							
	×		71								
	1		01				220				
	1 1/x	3	562)							
	STO 8		3308								
	G X ²	3	254	1.41				FLACE		SET STATUS	
Α	В	- Clark	C		$P_{C'(w)} = P_{c'}$	E, ,-	1-0	0 DALLE	ELACE.	TPIC	
a J	X	\rightarrow + (χ_{c})		7(X)		e n	L-KOOT	1 N	ON OFF		0158
1.0	1		2 01.	11	t (x) WHE C	4 PA	NSE	7₀ ∆			FIX 🗗
PAUSE		-(×)	<u> - + (</u>	(Y d	⊂ ((x)	0		$\int Q(\mathbf{x}) \times 2d$		RAD 🗆	ENG 🗆
ľ	P		1'		l ^v	3		ľ			n

Program Description I

Program Title Rour	tincs for Option Writers				
Contributor's Name	John R. McGinley Jr.				
Address	23) East 9/th St.				
City	New York,	State	N.Y.	Zip Code	1.0022

Program Description, Equations, Variables Using the Black & Scholes Model (compliments of T.I.) the value of a given option may be calculated given stock & strike prices, an interest rate, the stock's volatility(see below), the days to expiry, and the dividends to be received in the interim. Then the hedge ratio is calculated from which the number of options per share to write is determined. Once done, the max. yield on investment cash flow yield, and the annual rate of return on the lesser of these can be calculated. Finally the high and low break-even points for the stock are figured along with the point of maximum profit (should the option expire or be exercised there).

Equations

1) Cash flow return = Premium divided by Stock Price

2) Premium = # Options written X price per option received

$Value = P_{stock} N(D_1) - P_{exer} N(D_2)e^{-R\Delta t}$	(continued on page 2)
Where $D_{t} = \frac{\ln(P_{stock} \div P_{exer}) + (R + \frac{1}{2}V^{2}) \Delta t}{V \sqrt{\Delta t}}$	
$D_2 = \frac{\ln(P_{stock} \div P_{exer}) + (R - \frac{1}{2}V^2) \Delta t}{V \sqrt{\Delta t}}$	
$N(D_i) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{D_i} e^{-\frac{1}{2}t^2} dt$	
<u>Note:</u> Based on the Black and Scholes model published in Financial Analysts Journal, July - August 1975, page 65.	

Operating Limits and Warnings Ontion value must be calculated first, then the hedge ratio, followed by the # to write. Only then can the returns (C/F & MYOI) be figured. Latter enables the annual return to be determined. Now the high, low. max points can be calculated. The givens are all remembered until user changed.

One can go directly from getting the number to write to L-M-H without figuring the annualized return first. i.e. sequence must be E, fe, fd, fc, fb.(fa may be used any time after fd.)

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

- 3) MYOI = Premium + (Strike Stock prices) + dividends, all divided by dividends.
- 4) Annualized return = (Days in year/days to expiry) X lesser of C/F or MYOI.
- 5) #Options to write = 1/hedge ratio.
- 6) Downside protection (break-even) point = Strikeprice premium
- 7) Maximum profit point = Strike price
- 8) Upside protection point = ((Premium + strike stock prices)/ # Options which are uncovered) + Strike price. If options are fully covered, upside protection = Strike price + premium.

*Volatility is the annual standard deviation of the return on the underlying stock. There are several ways of estimating it. One is to keep fitting various values into the equation until the actual price equals the calculated price. Another is to use this equation:

where the highs and lows used are those of the stock over a period of time. Experience has shown using this method produces values which are too high. Thus use 6 months' highs and lows (those printed in the newspapers during June & July) or dispense with dividing the denominator by 2.

*Be careful not to confuse volatility with beta. The beta of a stock or option measures the variability with respect to the market: i.e. if the market goes up ten points, how far should the stock go? Volatility, on the other hand, measures the stock or option's variability with respect only to itself. How much does this stock tend to move around. AT & T has an approximate volatility of .ll. National Semiconductor has an approximate volatility of .49: Almost 5 times as volatile. Most brokerage houses can provide you with the numbers they are using as of any given date

Purchase of a Call Option gives the buyer the right, over a specified period of time, to buy so many shares of the stock at a fixed price. Options are traded on several exchanges and move in price with the underlying stock, only with greater percent price changes because of the high leverage. There is usually a certain premium built in to the price of the option which represents the price you pay for the right to buy at a set price. The amount of the premium is emotionally determined, but its theoretical amount can be calculated by this model. Any variations from the theoretical, then, could represent potential profit. Normally most of the premium, if any, is lost by 30 days prior to expiration of the option. Writers of options like to see high premiums when they "write". Buyers of options like to see none.

* Do not confuse the use of the word premium here with that used above. Here it describes the difference between the selling price of the option and its intrinsic value due to the price of the underlying stock. Above, it means the entire amount of money an option writer obtains for writing the contract.

Program Description 11

Sample Problem(s) Given the stock of XYZ Corp. at \$118.25 per share, the Jan 120 option with 35 days to go, a dividend expected of \$1.50, the stock's volatility at .28, and an interest rate of 6%, what is the expected value of the option now? How many options should I write against 100 shares of the stock given its hedge ratio? What are the variously figured returns which I should expect? Where do I make the most money? Where are my break-even points?

Solution(s)	Keystrokes	Display	Keystrokes	Display
1)	120 ↑ 118.25 [A]	\$120 9)	[fa]	63.47%
2)	35 ↑ 1.50 [C]	.10 yr. 10)	[fb]	"\$111.05","\$120"
3)	6 [B]	.06		\$128.95
4)	.28 [D]	.28		
5)	[E] (In 11 seconds)	\$3.60		
6)	[fe] (In 7 seconds)	.48		
7)	[fd]	200 sh.		
8)	(fc]	"8.83%", 6.09%		

Reference(s) "Fact & Fantasy in the use of options" by Fischer Black (Financial Analysts Journal, July/August 75), "The Pricing of Options and Corporate Liabilities" by Black & Scholes (Journal of Political Economy, May/June 73), "Listed Options by Bear Stearns, "A guide to AMEX options" from the American Stock Exchange. The Thompson & McKinnon Option Letter.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load both sides of the card			
2.	Enter in order, strike price	Strike	Enter	
3	Enter in order stock cost price	Cost		Strike ny
5.	Inter in order, stock cost price	0031		berike pr
4	Enter interest rate	-1	B	Decimal i
5.	Enter number of days to expiry	days	Enter	
		14		Decimal Vm
6.	Enter dividends expected before expiry	aivs		Decimal II
7.	Enter volatility	vol'ty		vol'ty
8.	Calculate option's theoretical value			\$ Value
				ratio
9.	Calculate hedge ratio			14110
10.	Calculate number of options to write			# shares
	per 100			" Shares
11.	Calcualte MYOI and C/F returns in		fc	"MYOI",C/F
	percent			
12	Coloulate encoding a neturn			9
12.				/6
13.	Determine high & low break-even points		[fb]	"H","M",L
	and point of maximum profit			
	To calculate new option values with			
	differing givens, change only those			
	desired, the rest are retained in memory.			
 				

Program Listing I

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STE	P	KEY ENTRY	KEY CODE	cor	MMENTS	STEP	KE	YENTRY	ĸ	EY CODE		COMN	IENTS	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	001	*	f LBL C	31 25 13	Enter t	ime in days		RCI	. 1	31	+ 01				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			STO C	33 13	& divi	dend in \$		RCI	2	31	02				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			h x-y	35 52				$\frac{1}{2}$		81					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			3	03			060		'n	31	. 52				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5	05				+							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)	81				STTC			-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			STO 3	33 03				RCT	. 0	2					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$\frac{1}{h}$ $\frac{1}{x}$	35 62				2							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	010		STO E	33 15				÷		81					
h RTN 55 22 Enter Volatility * f LBL b 31 25 12 Enter Volatility * f LBL b 31 25 12 Enter Volatility $(x > x > 0)$ $(x > 0)$ $(x > 0)$ * f LBL b 31 25 12 Enter interest rate in form $2x \cdot x$ $(x > 0)$ $(x > 0)$ $(x > 0)$ 2 $(2 = 0)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ 2 $(2 = 0)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ 2 $(2 = 0)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ 2 $(2 = 0)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ $(x - 1)$ 4 $(x - 1)$ 5 $(x - 1)$ <td></td> <td></td> <td>h LST x</td> <td>35 82</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>61</td> <td></td> <td></td> <td></td> <td></td> <td></td>			h LST x	35 82				+		61					
* f LBL D 31 25 1k STO 4 33 0k h RTN 35 22 * f LBL 8 31 25 12 Enter volatility rest of 0 2 2 20 C CHS 42 STO 6 33 06 3 03 * f LBL E 31 25 15 Calculate option value STO 6 33 06 3 03 * f LBL E 31 22 0k RCL 1 3k 01 K 71 STO 8 13 22 0k RCL 7 3k 02 CHS 42 STO 6 33 06 3 03 3 03 3 03 4 $+ 61Calculate optionvalueSTO 9 33 09+ 631CHS 42Calculate optionvalueSTO 9 33 09+ 61CHS 42CHS 42$			h RTN	35 22			*	fI	BL 1	31	25 01				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		*	f LBL D	31 25 14	Enter V	'olatility		fx	> 0	31	. 81				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			STO 4	33 04			070	GTC	2	22	2 02				
* Γ LBL B 31 25 12 EEK 43 2 (22 3X.XX 2 (22 3X.XX 2 (22 3X.XX 3STO 5 31 05 1STO 5 31 05 3STO 6 33 06 3STO 7 33 07 FILL 4 31 25 04 4STO 7 33 07 FILL 4 31 25 04 5STO 7 33 07 FILL 4 31 03 3STO 7 33 07 FILL 4 34 04 3STO 7 33 07 FILL 4 34 04 3STO 7 33 07 FILL 4 34 04 3STO 7 33 07 FILL 4 34 03 3STO 7 33 07 FILL 4 37 FILL 4 37 FILL 4 37 FILL 4 37 FILL 4 37 FILL 4 3	L		h RTN	35 22				CHS		42					
Eax 43 rete in form 1 21 22 22 2 i 60 STO 5 33 05 33 06 33 03 i f LigL E 31 25 12 33 06 i f LigL E 31 25 12 12 12 02 i f LigL E 31 22 04 33 03 03 i f LigL E 31 22 02 02 02 02 i f LigL E 31 02 04 01 1 01 1 i f Cases 33 06 1 01 1 01 1 1 01 1		*	f LBL B	31 25 12	Enter i	nterest		n S PT		35	51 00				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L		EEX	43	rate 1	n form	^	CULC		31	25 02				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			2	02	77.72	•		BIC	, 0	33	. 00				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	020		- CMO 5					2		03					
* f Lak B. A. R. B. Z. 25 Calculate option 2 02 \hat{r} (CSB 5 31 22 05 \hat{r} <	020		510 <u>5</u> h RTN	35 22				1		03					
1 1 2 1 2 2 7 07 RCL 1 34 01 1 01 1 01 1 STO 8 33 06 1 1 01 1 01 STO 8 33 06 1 1 01 1 01 STO 8 33 06 1 1 01 1 01 STO 8 33 06 1 1 01 1 01 CBS 4 31 20 1 01 1 1 1 01		*	f LBL E	31 25 15	Calcula	te option		2		02					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			f GSB 5	31 22 05	value	-		7		07					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			RCL 1	34 01			080	X		71					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X	71				1		01					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			STO 8	33 08				+		61					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			f GSB 4	31 22 04				h	1/x	35	62				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			RCL 2	34 02				STC	9	33	09				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			X	71				•		83					
$\begin{array}{c crac} CBS & 42 \\ \hline g e^{X} & 32 52 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline CBS & 42 \\ \hline X & 71 \\ \hline 000 & RCL 8 & 34 00 \\ \hline + 61 \\ \hline h & RTN & 35 22 \\ \hline h & RCL 4 & 34 11 \\ \hline RCL 0 & 34 00 \\ 2 & 02 \\ \hline + & 61 \\ \hline - & 51 \\ \hline 070 1 & 22 01 \\ \hline + & 61 \\ \hline - & 51 \\ \hline 070 1 & 22 01 \\ \hline + & 61 \\ \hline - & 51 \\ \hline 070 1 & 22 01 \\ \hline + & 61 \\ \hline 100 & 3 & 03 \\ \hline 070 1 & 22 01 \\ \hline + & 61 \\ \hline 00 & 3 & 03 \\ \hline 050 & X & 71 \\ \hline STO 0 & 33 00 \\ \hline h & 1/x & 35 62 \\ \hline RCL 5 & 34 03 \\ \hline X & 71 \\ \hline STO 7 & 33 07 \\ \hline \hline \\ Name { Px } Px \\ \hline \\ S0 \\ \hline \\ S1 \\ \hline \\ S0 \\ \hline \\ S0 \\ \hline \\ S1 \\ \hline \\ $	030		RCL 7	34 07				1		01					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\rightarrow	CHS	42				2		02					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			g ex	32 52				CHS		42					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							090	A PCT	0	12					
R.L. 0 STO 0 33 14 Display option 3		-		3/1 08				g x	29	32	54				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				61						83					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			STO D	33 14				9		09					
* r LBL 4 31 25 04 value 7 07 040 RCL A 34 11 1 01 1 01 RCL 0 34 00 2 02 1 03 03 \div 81 - - 63 - - - 51 - 6 06 - - 51 - 6 06 - - - 51 - 6 06 * f LBL 5 31 25 05 Hedge ratio 2 02 * f LBL 5 31 25 05 SBR + 61 # f CL 3 34 03 + 61 - # f Var 31 54 STO 8 31 12 - STO 0 33 00 - - RCL 6 34 06 - RCL 5 34 05 - - - - - - STO 7 30 07 - - - - - - - Vol			h RTN	35 22	Display	option		3		03					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		*	f LBL 4	31 25 04	value			7		07					
RCL 0 $34 \ 00$ X 71 2 02 4 04 \div 81 4 04 $ 51$ 4 04 $ 51$ 6 06 $*$ f LBL 5 $31 \ 25 \ 05$ Hedge ratio 2 02 $*$ f LBL 5 $31 \ 25 \ 05$ Hedge ratio 2 02 $RCL 4$ $34 \ 04$ SBR $+$ 61 $RCL 3$ $34 \ 03$ $5H$ $+$ 61 $r \sqrt{r}$ $31 \ 54$ $STO B$ $33 \ 12$ $RCL 6$ $RCL 5$ $34 \ 03$ 71 $STO B$ $33 \ 12$ $RCL 5$ $34 \ 03$ 71 $STO 7$ $33 \ 07$ $REGISTERS$ $REGISTERS$ 81 $7 \ rt/prem \ B \ Used/$ $9 \ Used/$ $\sqrt{s5}$ 83 54 55 56 57 58 S_1 S_2 S_3 $S4$ $S5$ $S6$ 57 8 S_1 S_2 S_3 $S4$	040		RCL A	34 11				1		01					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			RCL 0	34 00				X		71					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\rightarrow	2	02				• •		03					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			÷	61			100	4							
* f LBL 5 31 25 05 Hedge ratio 2 02 RCL 4 34 04 SBR + 61 RCL 3 34 03 + 61 + 1 \sqrt{x} 31 54 RCL 9 34 09 X 050 X 71 RCL 6 34 09 050 X 71 RCL 6 34 09 1 \sqrt{x} 31 54 STO B 33 12 RCL 5 34 05 RCL 6 34 06 RCL 3 34 03 110 2 02 X 71 T 10 2 02 RCL 3 34 03 110 2 02 110 STO 7 33 07 REGISTERS 81 110 2 02 X 71 Stock 2 Strike 3 Decimal 4 5 Interest 6 Used / # 7 rt/prem 8 Used / MYOI 9 Used / MYOI Volt / MOSE Px Px S3 S4 S5 S6 S7 S8 S9 A OO B La(Ps/Ps) C Dividend O Ortion price 1 / Time <								6		63					
RCL 4 $34 + 04$ SBR $+$ 61 RCL 3 $34 + 03$ $+$ 61 $f \sqrt{x}$ $31 54$ $88R$ $+$ 61 $f \sqrt{x}$ $31 54$ $88R$ $+$ 61 050 x 71 81 x 71 STO 0 $33 00$ $833 12$ $833 12$ $h 1/x$ $35 62$ $RCL 6$ $34 06$ $g x^2$ $32 54$ RCL 3 $34 03$ x 71 x 71 $RCL 3$ $34 03$ x 71 x 71 x $RCL 3$ $34 03$ x 71 x	 	*	P LRI. 5		Hedge r	atio		2		02					
RCL 3 $34 \cdot 03$ f \sqrt{x} $31 \cdot 54$ 050 X 71 $RCL 9$ STO 0 $33 \cdot 00$ h $1/x$ $35 \cdot 62$ RCL 5 $34 \cdot 03$ RCL 5 $34 \cdot 03$ RCL 3 $34 \cdot 03$ RCL 4 3100 RCL 5 $34 \cdot 03$ RCL 6 $34 \cdot 06$ RCL 7 $34 \cdot 03$ RCL 8 3100 RCL 9 3100 RCL 9 $34 \cdot 03$ RCL 9 $34 \cdot 03$ RCL 9 $34 \cdot 03$ RCL 9 8100 Px 71 STO 7 $33 \cdot 07$ REGISTERS 91000 $\sqrt{101}$ $7 \cdot 17$ $\sqrt{101}$ $\sqrt{101}$ $\sqrt{101}$ $\sqrt{101}$ $\sqrt{101}$ $\sqrt{101}$ $\sqrt{101}$	 		RCL 4	34 04	SBR			+		61					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			RCL 3	34 03				+		61					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			f	31 54				RCL	9	34	09				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	050		X	71				X		71					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			STO O	33 00				STO	B	33	12				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$h \frac{1}{x}$	35 62				RCL	2	34	5)				
X71 \vdots 81STO 733 07REGISTERS $v\sqrt{aT}/wcce$ 2 Strike Px3 Decimal time45 Interest 6 Used/#7 rt/prem 8 Used/ MYOI8 Used/ pt $v\sqrt{aT}/wcce$ Px2 Strike Px3 Decimal time45 Interest 6 Used/#7 rt/prem 8 Used/ MYOI8 Used/ pt $v\sqrt{aT}/wcce$ Px2 Strike Px3 Decimal time45 Interest 6 Used/#7 rt/prem 8 Used/ MYOI9 Used/ ptS0S1S2S3S4S5S6S7S8S9AOOB B DC D D TC D D T dendD Option D T T Option D TII			RUL 5	34 05			110	2			J 4				
STO 733 07CHS $H2$ REGISTERS $\sqrt{\sqrt{5}}/MDSE$ 2 Strike 3 Decimal 4 5 Interest 6 Used/# 7 rt/prem 8 Used/ 9 Used/ $\sqrt{\sqrt{5}}/MDSE$ P_X P_X T me V olatility $Rate$ $Optn$ $MYOI$ c/f $S0$ $S1$ $S2$ $S3$ $S4$ $S5$ $S6$ $S7$ $S8$ $S9$ A $Optn$ B Lp(Ps/Pe) C Dividend D option price E 1/Time I				71				÷		81					
REGISTERS 0 1 Stock 2 Strike 3 Decimal 4 5 Interest 6 Used/# 7 rt/prem 8 Used/ 9 9 Used/ 7 rt/prem 8 Used/ 9 0 0 7 rt/prem 8 Used/ 9 0			STO 7	33 07				CHS		42					
0 1 Stock 2 Strike 3 Decimal 4 5 Interest 6 Used/# 7 rt/prem 8 Used/ 9 Used/ MYOI 9 c/f MYOI c/f C NYOI 5 S						REGIS	STERS				,			0.00	,
V 3° / Abse Px Px time Volatility Kate August August <td>0</td> <td>Ŧ/</td> <td>¹ Stock</td> <td>² Strike</td> <td>³Decima</td> <td>1 4</td> <td>⁵ Inter</td> <td>rest</td> <td>⁶Used/</td> <td>#</td> <td>7 rt/prem</td> <td>8 Us</td> <td>ed/</td> <td>⁹Used</td> <td>/10</td>	0	Ŧ/	¹ Stock	² Strike	³ Decima	1 4	⁵ Inter	rest	⁶ Used/	#	7 rt/prem	8 Us	ed/	⁹ Used	/10
$\begin{bmatrix} B \\ B \\ C \end{bmatrix} \begin{bmatrix} C \\ C \\ D \\ C \\ C$	V 44	1		Px	S3	Volatilit	S5		S6	лл	S7	S8	/**1 U	S9 /	-/
A O B D (Pa/Pe) C Dividend D Option price E 1/Time I	30			52		<u> </u>									
	A			B Ln(Ps/Pe)	Ср	ividend	D Optic	on r	rice	E	l/Time		I		

67 Program Listing II

STEP	KEY I	ENTRY	KEY (ODE		COMMENTS		STEP	KEY ENTRY	KEY	CODE	СОММ	ENTS
	ge	C	32 52	2				T	h RTN	35	22		_
	2		02					170 🛣	g LBL a	32	25 11	Calculate	Annual %
	hĦ		35 73	}					RCL 8	34	08	return	
	X		71						RCL 9	34	09		
	fJ	τ	31 54	ŀ					g x≻y	32	81		
	<u>.</u>		81						h x-y	35	52		
	RCL	В	34 12	2					RCL E	34	15		
120	X		71						Х	71			
	hF	2 0	35 71	. 00					h RTN	35	22		
	OTO	3	22 03	}				*	f LBL A	31	25 11	Enter str	ike price
	CHS		42						STO 1	33	01	& stock	cost
	1		01					180	h R↓	35	53		
	+		61						STO 2	33	02	4	
*	fL	SL 3	31 25	i 0 <u>3</u>					DSP 2	23	02	4	
	h CE	7 O	35 61	. 00					1	01		4	
	h RI	CN	35 22						_2	02		4	
*	g Li	BL e	32 25	5 15	Hedge	e Ra tio			CHS	42		4	
130	f GS	SB 5	31 22	2 05	Rou	tine		L	h ST I	35	33		
	STO	0	33 00)				*	h R↓	35	53	Calculate	e high &
	h RI	<u>CN</u>	35 22						h RTN	35	22	low brea	k-even
*	g LF	BL d	32 25	5 14	Dete	rmine # to		100	g LBL b	32	25 12	points.	Also max.
	EEX		43		writ	te in round	1	190	RCL 7	34	07	profit p	oint.
	2		02		loti	8			RCL 2	$\frac{34}{24}$	02	4	
	RCL	0	34 00)					RCL 1	54	01	4	
		<u>./x</u>	32 02	<u>.</u>								4	
	PDP		23 0)						2/	06	{	
140		<u>w</u>	31 24							01	00	ł	
140	510 V	0	33 00)					_	51		{	
	h Dr								$f \mathbf{v} = 0$	$-\frac{J}{21}$	51	1	
*			32 22	13	Cela		o nd		$\frac{1}{CTO} \frac{x}{6} = 0$	22	06	1	
<u> </u>		<u>a</u>	23 00	,	cast	n flow d	ana	200	÷	01	00	4	
	DOF	<u> </u>	25 02		ret	irn			f TRT 7		25 07	1	
	RCT	6	34 06						RCI 2	3/	$\frac{25}{02}$	1	
	V	<u>u</u>	71		1					61	.02	1	
	STO	7	33 07	,	1				f	31	8/	1	
	RCL	2	34 02						RCL 2	34	02	1	
150	RCL	C	34 13						f - x -	31	84	1	
	+		61						RCL 1	34	01]	
	+		61						RCL 7	34	07]	
	RCL	1	34 01						-	51			
	-		51					210	_f -x-	31	84	I	
L	h LS	тх	35 82		l				h RTN	35	22	1	
	÷		81						f LBL 6	31	25 06		
	EEX		43						RCL 7	34	07		
	2		02						GTO (i)	22	24	4	
160	X	0	71									4	
100	510	0	33 00)								4	
		- 7	3104									4	
	DOT	-{	34 01									1	
		_	81					220				1	
	ERS		42										
	2		02]					l		1	
	х		71										
	STO	9	33 09										
A CI-				0	LAE	BELS	IE		FLAGS			SET STATUS	
Pric	ce	[⊎] i		^C Tim	e-Div	[∪] Vol'ty	⊨Op	t Value	e ^U Used	F	LAGS	TRIG	DISP
^a Ann '	1 %	b L-M.	-Н	° MYC	C-C/F	d # Write	e He	dge R.	1	_	ON OFF		
0	r.	1 11	3	2 11	/ -	3 110-3	4		2				rix a ⊥ SCI □
E		Usec	1		u	Usea		ea		2		RAD 🗆	
l ^o Used		σ		/		o	9		3	2	□ ≭		n_2

Program Description I

Program Title	Empirical CBOE Call Prici	ng	
Contributor's	Name Hewlett-Packard		
Address	1000 Circle Blvd.		
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables The input variables are the 52 week HIGH and LOW prices of the stock, the dividend yield (Y) in percent, the time (T) on the option in months, the current stock price (Ps), the exercise price of the option (Pe), and the call loan rate on money lent brokers (1).

Combining the high and low prices to form a standard measure of price volatility

$$= \frac{\text{HIGH} - \text{LOW}}{(\frac{\text{HIGH} + \text{LOW}}{2})}$$

Clasing fit the following curves to the CBOE data he studied:

for $Ps \ge P_E$ ("in the money") $Ps\left\{\left(\frac{Ps}{P_E} - 1\right)\left(1 - \frac{T}{45}\right) + T\left[\frac{.01 + v - 11 - Y - I}{180 1200}\right]\right\}$

$$("out of the money) \qquad Ps\left\{.4\left(\frac{Ps}{P_E}-1\right)+\frac{1/2}{2}\left[.0267+\frac{v}{30}-\frac{11-Y-I}{400}\right]\right\}$$

These expressions yield the call premium in dollars. If the underlying stock is ex-dividend for the option period, the premium is reduced by [(months to maturity ±12) x (Annual yield in %)] per cent.

Operating Limits and Warnings The formulas are empirical fits. The premiums derived are only estimates. The formulas are not applicable to over-the-counter options since the underlying stocks on the CBOE are uniformly high-volume, large-number-of-shares-outstanding stocks. Dividends are also handled differently on the two markets. Do not neglect to account for dividends, if applicable, per the last lines of the "program description" section above.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

riogram Description II
Sketch(es)
Sample Problem(s) A certain CBOE Stock yields 6% in dividends, its 52 week range is 25 to 48, last price 40 1/2. The call loan rate for brokers from N.Y. banks is 8%.
a. What is the estimated premium for 3 month calls with \$45 strike price?
b. For 2 months at \$35?
Solution(s) a) 8 [E] 48 ↑ 25 [A] 40.5 ↑ 6 [B] 3 ↑ 45 [C] ans 2.25
b) 2 + 35 [C] ans 7.38
c) f [B] 6 ↑ 50 [C] ans 2.30
Reference(s) This program is a modification of the 65 user contributed program

Drogram Decemination II

#3942A written by Paul W. Snow. The 65 program was based on. Clasing, H.K. Jr. <u>The Dow Jones - Irwin Guide to Put and Call Options</u>, Homeword, Ill, Dow Jones -Irwin, 1975 chapter 3.

1 Div pd?			5
Hi, Lo	Div; Ps	T;P excer	Brockers ^{rate}

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Key in brockers rate	%	E	
3	a. 52 wk HIGH price	\$		
	b. 52 wk LOW price	\$\$		
4	a. Current stock price	¢		
	b Stock dividend vield	₽ %	B	
5	If a dividend is to be paid during span of			
	option press f[B]*	no input	f B	
6	a. Time to expiration (months)	months		
	b. Strike price	\$	С	Premium
	Evaluating an additional option on the same stock requires only step 5 (if applicable)			
	and step 6			
*	After pressing [C] the dividend to be paid			
	flag is cleared. If two or more stocks in			
	a row have dividends paid during the option			
	period, f[B] must be pressed each time.			
		<u> </u>		
	· · · · · · · · · · · · · · · · · · ·			

20			97 Program		ang i		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
[001	*LBLb	Dividende maid flag	1	054		
	002	SF2	(test cleared)		05 5	4	$(P_{S} = 1)$
	003	RTN			056	x	$.4 \left(\frac{13}{P_{r}}\right)^{-1}$
	004	*LBLA			057	•	'E
	<i>UU5</i>	ST06	LOW		0 58	6	
	005 007	XZY CTOY	HIGH		828	2	
	00/ 608	DTN			960	7	
	000 AA9	xi Bi B	-		061 062	RCL1	V/180
	610	XZY	Y	I	063	6	V/ 180
	011	ST03	-	I	864	x	V/30
	012	R↓	I		065	+	$(.0267 + \sqrt{30})$
	013	RCL4			066	RCL2	
	014	+	11-(Y+I)		067	-	400
	015	1			068	RCL5	- 400
	016				<i>U69</i>	4X	$P_{\rm S} = 1/2$
	017 G10	∆+1 			070 871	~	$.4 ('^{3}/P_{E}-1)+T^{1/2}(1) $
	010 A19				071 072	RCIZ	hann
	015 020	т Й			072 073	X	and '
	821	0	$\frac{11-1-1}{400}$		074	F2?	
	022	÷	400		075	GSB1	Dividends?
	8 23	ST02	<u> </u>		076	RTN	
	024	RCL1			077	≭LBL0	
	025	RCL6	HIGH-LOW		078	RCL7	Т,
	826	-			079	1	⁷ 45
	027	LSTX			030	RCL5	
	028	RCL1			081	4	
	029	+			082	5	
	630 871	ے ب	$V = \frac{HI - LO}{HI + LO}$		083 601	-	1 - T/45
	631 872	- -	$\left(\frac{HI+LO}{2}\right)$		004 025	x	(Ps/P _E -1)(1-T/45)
	833	1	2		000 086		•
	634	8			087	Ū	
	035	0			088	1	.01 + V/180
	036	÷			089	RCL1	
	037	ST01	V		090	÷	
	038	RCL3	180		091	RCL2	
	039	RTN	•••		092	3	[.01 + V - 11 - Y - I]
	040	*LBLC	STRIKE PRICE		093	÷	180 1200
	041 042	KLL3 VAV	STOCK PRICE		094 005		
	042 047	∆+1 ÷			093 095	KCLJ	т[•]
	040 044	- 1	Ps/P _E		030 897	÷	
	045	_			098 098	RCL3	$\overline{\mathbf{D}}$
	046	ST07	(^{PS/P} E) - I		0 99	X	PS 1(')(')+L']}
	847	R↓			100	F2?	
	048	STO5	TIME		101	GSB1	Dividends?
	049	RCL7	$(Ps/P_{-}) = 1>0 \rightarrow$		102	RTN	
	050	Ø			103	*LBLE	_
	051 050	XZY?	$Ps \ge P_E \rightarrow other$		104	ST04	1
	032 057	6100 8017	eqn	Ĺ	100	KIN	, J
⊢ ∔		RULI		110			4
					 		4
l			DEOIO	TEDO			l
0	1 V	12 11-Y-I		5 T	⁶ llood	7 PS-1	8 9
	180	400		1	Usea	PE	
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
		1					
^A 111,	Lo,Y,Ps	P _E ,T,Go	С	U	E		ľ

Program Listing II

STEP	KEY ENTRY	KEYO	ODE		COMMENTS		STEP	KEY ENTRY	κ	EY CODE	COMM	ENTS
	106	¥Ĺ₿	L1									
	107	RC.	L5	Dadu			170					
	108		2	кеаи	ce premium							
	110		÷	by T,	/12 xI%							
	111	RCI	L4									
	112		x 2									
	114		-									
	115	R	TN									
	116	K₂	15				180					
	-											
130												
							190					
								, 				
140												
140												
							200					
							200			·		
150												
							210					
160												
100												
							220					
							220					
	I			LAE	BELS			FLAGS			SET STATUS	
^ Used	^B U sed		c Use	d	D	^E Use	ed	0		FLAGS	TRIG	DISP
а	blised		с		d	е		1	0		DEG 🗆	FIX 🗆
haell	Pivide	ndn	2		3	4		2 Dividends			GRAD	SCI 🗆
5	L C		7		8	9		3	23			ENG ⊔ n

Program Description I

Program Title WARRANT & OPTION	HEDGING	
Contributor's Name HEWLETT PACKARD Address 19310 PRUNERIDGE AVE City CUPERTINO	State CA	Zip Code 95014
Program Description, Equations, Variables CROSS RETURN= CONVERSION PRICE <u>conversion rat</u> warrant price	<u>CE</u> + warrant price x number e x number sold + .5 xstock pr	sold-stock price ice + interest
lower break- even point = max{ 0,stock p	ric e- warrant price x number	sold}
upper break- even point =stock price-nu 1 - con	mber warrants sold x [warran version rate x number of war	nt price + conversion price] rants sold
warrant price- Cross Return= warrant price :	Max{0,hypothetical price/com +hypothetical stock pr x number sold + .5 x stock p	version rate-stock price} <u>cice- stock price</u> price + interest
<pre>Operating Limits and Warnings 1. The dividends shoud be the time of payment is not used rather than the true rate (2. The program assumes purcha 3. The program assumes equity short sales. 4. program I calculates the r stock closes at conversion used then.</pre>	expected amount to be receive the calculated rate of return a very small difference here ses on 50\$ margin at 10% into of 100% of the price on \$5 rate of return for the most of price on the expiration dat	<pre>ved over a year, since the urn is the apparent rate e). terest. whichever is greater on the favorable situation (i.e. te); program II should be</pre>

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)											
	-										
			n den namme an an an agus ann an an an An an								
		★ MARKET 1 1 1 1 10 10 10 10 10 10 10 10 10 10 1		na ann an Anna Anna an Anna an Anna an Anna An				 			
	······					• ••• •• •• •• ••					
					• • • • • • • • • • • • • • • • • • •						
······································											
	nan Èsaranan		ik anan karana		 		 i	 il.	i	 	

XYZ corporation stock is trading at \$9 at \$34, is selling for \$1.75 expiring i strategies ¹ what is the maximum return upper break even point. Further more, various stock closing prices on the exp prices).	3/4 and a warrant, convertible 1 for 1 n 547 days. For various investment (in percent) lower break even point and what are the possible returns if we assume iration date (eg \$5, \$10 and \$20 closing
Solution(s) Input	Output
Solution(s) Input 547 E↑.5 [A]	Output .50
Solution(s) Input 547 E↑ .5 [A] 1 ¹ E↑ 34 E↑ 1.75 E↑ 9.75 [B]	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX]
Solution(s) Input 547 E↑.5 [A] 1 ¹ E↑ 34 E↑ 1.75 E↑ 9.75 [B] 5 [D]	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX] -15.18%
Solution(s) Input 547 E↑.5 [A] 1 ¹ E↑ 34 E↑ 1.75 E↑ 9.75 [B] 5 [D] 10 [D]	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX] -15.18% 16.93
Solution(s) Input 547 E↑ .5 [A] 1 ¹ E↑ 34 .E↑ 1.75 .E↑ 9.75 [B] 5 [D] .10	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX] -15.18% 16.93 70.41
Solution(s) Input 547 Et .5 [A] 1 ¹ Et 34 Et 1.75 Et 9.75 [B] 5 [D] 10 [D] 20 [D] [C] ³	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX] -15.18% 16.93 70.41 100.95 [R/S] 6.25 [R/S] 61.75
Solution(s) Input 547 Et .5 [A] 1 ¹ Et 34 Et 1.75 Et 9.75 [B] 5 [D] 10 [D] 20 [D] [C] ³ 5 [D]	Output .50 133.28% [R/S] 8.00 [R/S] Error ² [CLX] -15.18% 16.93 70.41 100.95 [R/S] 6.25 [R/S] 61.75 -2.21

	three etc.
	sold 1 . For example the first C you get 2 warrants, second C pressed
3	Each additional press of C produces an additional warrant
2	Infinity: To clear press CLX and continue.
Reference (s)	One, two, warrants sold short for each purchase of stock

1 Days left until warrants expire Days 1 Days 2 Dividends earned over period Div. A Div. 3 Conversion rate C. rate Enter C. rate Conversion price C. price Enter C. price Current warrant price W. price Enter W. pri Current stock price S. price B return negative or error infinity If error appears, press clx Image: Conversion of stock purchased C. conversion	STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
2 Dividends earned over period Div. A Div. 3 Conversion rate C. rate Enter C. rate Conversion price C. price Enter C. price Current warrant price W. price Enter W. pri Current stock price S. price B return negative or error infinity I R/S break 4 Repeat for i + 1 warrant sold for each share C C	1	Days left until warrants expire	Days		Days
3 Conversion rate C. rate Enter C. rate Conversion price C. price Enter C. price Current warrant price W. price Enter W. price Current stock price S. price B return negative or error infinity R/S lower If error appears, press clx upper break 4 Repeat for i + 1 warrant sold for each share C. rate of stock purchased C. C. rate	2	Dividends earned over period	Div.	Α	Div.
Conversion priceC. priceEnterC. priCurrent warrant priceW. priceEnterW. priceCurrent stock priceS. priceBreturnCurrent stock priceS. priceBreturnImage: Stock priceImage: Stock priceImage: Stock priceImage: Stock priceImage: Stock purchasedImage: Stock purchased	3	Conversion rate	C. rate	Enter	C. rate
Current warrant priceW. priceEnterW. priceCurrent stock priceS. priceBreturnImage: Second Stock priceR/SImage: Second Stock priceBImage: Second Stock purchasedImage: Second Stock purchased		Conversion price	C. price	Enter	C. price
Current stock price S. price B return negative or error infinity R/S lower If error appears, press clx Image: Comparison of stock purchased C		Current warrant price	W. price	Enter	W. price
negative or error infinity R/S lower If error appears, press clx upper 4 Repeat for i + 1 warrant sold for each share Image: Color infinity		Current stock price	S. price	B	return
negative or error infinity R/S break If error appears, press clx If break 4 Repeat for i + 1 warrant sold for each share Image: Color of stock purchased Image: Color of stock purchased				R/S	lower
If error appears, press clx Image: classical state		negative or error infinity		R/S	break ever
4 Repeat for i + 1 warrant sold for each share		If error appears, press clx			break ever
of stock purchased	4	Repeat for i + 1 warrant sold for each share			
		of stock purchased		С	1000
R/S break e				R/S	break ever
R/S upper break e				R/S	break ever
5 Hypothetical wxpiration price D D	5	Hypothetical wxpiration price		D	return
Note:		Note:			
Step 4 may be repeated as often as required or		Step 4 may be repeated as often as required or			
Step 4 followed by Step 5 may be repeated as		Step 4 followed by Step 5 may be repeated as			
	<u> </u>				

Program Listing I

STEF	KEY	ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	001	*LBLA	21 11	Dividend $\rightarrow R_3$	85	7 1	Ø1	
	002	ST03	35 03	5	058	3 +	-55	
	003	X # Y	-41		859	9 LN	32	
	004	STOØ	35 ØØ	Days → R _O	060) 3	83	
	00 5	X≠Y	-41	0	061	6	<i>06</i>	
	0 06	RTN	24		062	? 5	65	
	0 07 - :	∗LBLB	21-12		063	5 X	-35	
	00 8	ST05	35 05	Stock price $\rightarrow R_{c}$	064	RCL0	36 0 0	
	009	F ↓	-31	C	065	5 ÷	-24	
	010	ST04	35 Ø4	Warr. price $\rightarrow R_{1}$	066	s ex	33	
	011	R↓	-31	4	067	· 1	Ū1	
	012	STOE	35 06	Conversion price	068	3 -	-45	
	013	R↓	-31	$\rightarrow R_{c}$	069	RCL3	36 03	D
	014	ST02	35 Ø2	Conversion rate	076	RCL7	36 0 7	
	015	Ū	ŪŪ	$\rightarrow R_{a}$	071	÷	-24	D/E
	016	STOI	35 46	2	072	? +	-55	
	017 🔅	≰LBLC	21 13		073	s eex	-23	Annual rate of
	018	DSZI	16 25 46		074	1 2	6 2	return
6	019	RCLI	36 46		075	5 X	-35	
	020	CHS	-22		076	5 R/S	51	
	021	RCL4	36 0 4		677	* X	-35	
	822	X	-35	5 K.	078	RCL5	36 Ø5	
	023	RCL6	36 8 6	B x WP	079	RCL4	36 04	SP – B x WP
	024	RCL2	36 0 2		086	RCLI	36 46	Lower breakeven
	025	÷	-24		081	CHS	-22	point
6	026	+	-55	$CP/CR + B \times WP$	082	? X	-35	
	027	RCL5	36 05		083	- 1	-45	
	0 28	-	-45	$CP/CR + B \times WP - SP$	084	R/S	51	
1	029	ST01	35 01		085	5 RCL5	36 05	
	030	5	0 5		086	5 RCLI	36 46	
	031	RCL4	36 04		087	CHS	-22	
	032	X≟Y?	16-35		088	RCL4	36 04	SP = B(WP + CP)
6	033	R↓	-31		089	RCL6	36 06	
	034	RCLI	36 46		090	9 +	-55	
6	935	CHS	-22		091	X	-35	
6	936	X	-35		092	-	-45	
l	037	•	-62		09.		01	
l	038	5	05		094	RULI	36 46	
6	039	RCL5	36 05	5 w CD	093		-22	
6	840	X	-35	.J X 31	090	$\mathbf{K} \mathbf{L} \mathbf{Z}$	36 82	Upper breakeven
6	841	+	-55		091	· X	-30	point
ŧ	842	1	61		050	· ·	-45	
	943	ک -	83		100	, .	-24	
	944 045		67		100) K∕⊃ ⇒IDID	21 1A	
	945	EEX	-23	≈ 10/365 x 5	101	CTOO	ZI 14 75 00	HSP - CP/CR
	846	ь сис	86 00	×.10/305 x .5	102	5105 7 Drig	33 00 76 06	
	047	LH5 DCLO	-22		10.	I Prio	76 82	
	048 040	RULU	36 80 76 05		10		-24	
	047 050	KLLJ	JO 0J -75		100	-	-45	
	050 051	÷.	-35	$10/365 \times 5 \times 1$	100		36 87	
	0JI 052	Â	-35	• SP	195	ENTT	-21	
	0J2 057	6T07	-JJ 75 07	Faulty $\rightarrow R_{-}$	190	FNT†	-21	
	053 051	DCI1	33 BI 76 DI	Equily 17	116	RL RL	-31	M = Max(0,
	004 055	V-V	JO 01 _d1	D (D	11	RI	-31	HSP - CP/CR)
	000 056	∩+1 ÷	-24	K/E	112	R I	-31	
		-	-27	REGIS			7	18 19
0 Dov		Return	$n \int Cony r c$	te Div Warr pr	Stock n	r	pr. Equity	HSP
SO		Neturi St	<u>S2</u>	S3 S4	S5	S6	S7	S8 S9
30	ľ							
A	1	T	В	C	D		E	I
								#warr. sold

26				97 P	Program	n]	List	ing H			
STEP	KEY	ENTRY	KEY CO	DDE	COMMENTS		STEP	KEY ENTRY	KEY CODE	COM	MENTS
	113	6	0	0]	
	114	X>Y? V≁V	16-3	4 1			170			4	
	116	R†	16-3	1						-	
	117	ST07	35 Ø	7]	
	118	R↓	-3	1						4	
	119 120	RCL4	-3 36 0	4						-	
	121	X≠Y	-4	1 Bx	(WP - M)						
	122	-	-4	5							
	123 124	RULI CHS	36 4 -2	б Э цер,	CD		180			{	
	125	X	-3	5 nor ·	- 51					-	
	126	RCL8	36 Ø	8						1	
	127	RCL5	36 0	5						4	
	128 129	- +	-4	0 5						-	
	130	RCL7	36 Ø	7							
	131	÷	-2	4]	
	132	1	0 -5	1						-	
	133 134	ĹN	-3	J 2			190			4	
	135	3	Ø	3						1	
	136	6	0	6							
	137	5 ~	0 -7	5						4	
	130 139	RCLO	-3. 36 Ø	U Ē						1	
	140	÷	-2	4						1	
	141	e×	3.	3 D/E						4	
	142 147	-	U -A	l 5 Tota	l annual rat					4	
•	144	RCL3	36 0	3 10La. 3	or return	e	200			1	
	145	RCL7	36 0	7						1	
	146	÷	-2	4 E						4	
	147 148	Ŧ FFX	-0.	0 3		ł					
•	149	2	Ũ.	2		t					
	150	X	-3:	5							
	151	₭⁄\$	5.	1		ł					
						ł					
	 						210			1	
						-					
						ł					
160						ŀ					
						ŀ					
						t					
	<u> </u>					ŀ	220				
						t					
						ŀ					
	L				BELS			FLAGS	T	SET STATUS	
A Used	1	B Use	d C	Used	D Used	E		0	FLAGS	TRIG	DISP
a		b	с		d	е		1	ON OFF		
0		1	2		3	4		2	0 ∐ ¥≟¥ 1 ∐ ¥∐X	DEG ♣♣ GRAD □	FIX ²⁴ SCI □
5		6	7		8	9		3	2 🗆 🏧	RAD 🗆	ENG, 🗆
		1							3 🗌 🛣		n <u> </u>

Program Description I

Program Title Bull Spread Option Strategy
Contributor's Name Hewlett-Packard
Address 1000 Circle Blvd.
City Corvallis State Oregon Zip Code 97330
Program Description Equations Variables
Upside Breakeven = $\frac{R (C_{S} + E_{S}) - (C_{L} + E_{L})}{R-1}$
Downside Breakeven = RC _S - C _L
Where:
R = The ratio of the calls with higher exercise price sold short to the calls with lower exercise price purchased.
C _S = Market Price of Calls Sold Short
E _S = Exercise Price of Calls Sold Short
C _L = Market Price of Calls Bought Long
E _L = Exercise Price of Calls Bought Long
Operating Limits and Warnings On matched hedges, upside breakeven is infinite.
HP-65 will blink 0.00 Hit [CLX] to stop blinking.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

27

Program Description II

Sketch(es)
N O N E
Sample Problem(s) I. Matched:
Buy 5 Oct. ITT 25's 0 6
Sell 5 Oct. ITT 30's @ 2 7/8
Calculate Upside and Downside Breakeven's and how much % the stock moves.
II. Unmatched:
Buy 7 Oct. ITT 25's @ 6
Sell 10 Oct. ITT 30's @ 2 7/8
Calculate Upside and Downside Breakeven's and what % the stock moves
In both cases stock is now selling at 28 3/4.
Solution(s) I. 5[A] 2.875[A] 30[A] 5[B] 6[B] 25[B] 28.75 [C]
DBE= [D] = 28.13 % change to reach downside = [D] = - 2.17%
UBE= $[E] = \alpha [CLX] \%$ change to reach upside = $[E] = -100.00\%$
II. 10[A] 2.875 [A] 30[A] 7 [B] 6 [B] 25 [B] 28.75 [C]
DBE = [D] = 26.89 % change to reach downside = [D] = -6.46%
UBE= $[E] = 37.25$ % change to reach upside = $[E] = 29.57\%$
If II had followed I dimently input only 10[4] 7[5] [5] [5] [5] [5]
IT II had followed I directly, input only IU[A] /[B] [D] [D] [E] [E].
This program is a one for one translation of the 65 User's Library
program #3769 by Morris A. Nunes, based on an article by D. Turov called
"Limitless Option" in Barrons, '75 p 9.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Input # of Options Sold Short	x		x.xxx
	·			
2	Input Price of Options Sold Short	у.ууу	A	у.уу
3	Input Exercise Price of Options Sold Short			
5		Ζ		2.22
4	Input # of Options Bought Long	x	B	x.xx
5	Input Price of Options Bought Long	у.ууу	В	у.уу
6	Input Exercise Price of Options Bought	Z		2.22
7	Input Current Underlying Stock Price	7		
	Input current onderlying Stock Price	Ζ		2.22
Q	Find Downside Proskoven Stock Drice			у.уу
	TTHE DOWNSTEE Breakeven SLOCK Price			
9	Find % Change from Current to DBE.		D	Z.ZZ
	-			
10	Find Upside Breakeven Stock Price		E	у.уу
11	Find % Change from current to UBE			Z.ZZ
	T			
	(#'s 1-7) where input data is different.			
	There is no need to enter new input data if it			
	is the same for that step as in the previous			
	problem.			

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
	91	*LBLA	Enter # Options		057	-	
	92 37	5101 576	Shorted		056	÷	
	003 004	KIN NEDIA		-	059	RTN _	V.
	004 005	STU5	Enter Price of		068	*LBLE	
	006	RTN	Options Shorted		061	RCL7	
	007	*LBLH		-	062	÷	Calculate Percent-
	008	ST03	Enter Exercise Price		U6 3	1	age Change in under
	009	RTN	Lot Uptions Shorted		064 065	-	lying Stock to go
	010	*LBLB	Enton # Ontions	•	00. 064		from Current Price
	011	ST0 4	Pought Long		000 067	× ×	to Upside Breakeven
	012	RTN			068	RTN	Price
	U13	*LBLB	Enter Price of	-	D 69	R/5	
	014	5105	Options Bought Long		1		
	013 015						
	017	STAG	Enter Exercise Price				
	61. 618	RTN	of Options BoughtLong				
	019	*LBLC *	-				1
	020	3T07	lying Stock Price				1
	021	RTN	Tyrng Stock Price				
	022	*LBLD	T				
	023	RCL6	Calculate Downside				
	024	RCL5	Breakeven Price us-	080			
	025	+	ing the formula:				
	026	RUL1					
	027 B20	RUL4	DBE=RCS - CL				
	020 029	PCL 2					4
	025 030	X					1
	031	-	I V				1
	032	RTN	•				1
	033	*LBLD					1
	034	RCL7		090]
	035	÷	Calculate Percentage				1
	036	1	Change in underlying				
	037	-	Stock to go from				4
	038	EEX	current price to				4
	033 940	ے ×	Downside Breakeven				4
	040 041	RTN	Price			and a first state of the state of	4
	042 R42	*LBLE					1
	043	RCL1	Calculate Upside				
	044	RCL4	Breakeven Price us-	100			1
	045	÷	ing the formula:				
	046	ST08	$I_{IBF} = R(C_{S} - E_{S}) - (C_{I} + E_{I})$				
	047	RCL2	R_1				
	648	RUL3	K = 1				
	042 050	+ x			 		•
	656 R51	Pri 5					4
	0 52	RCI 6					1
	053	+]
	054	-		110			
	055	RCL8			↓↓		
	056	1					
0	1	2Dnico	3 Exercise 4	5Price	6 Exercis	e7Current	8 Datis 9
, s	f# Short	t Short	Price Short # Long	Long	Price Lor	g Stock Pric	
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
					l		
А	В		C	U	E		ľ

			9	77 P	'rogran	1 Lis	ting 11				3-
STEP	KEY ENTRY	KEY CO	DDE		COMMENTS	STEP	KEY ENTRY	к	EY CODE	сомм	IENTS
						170					
										{	
120											
								+		1	
						180					
										1	
130										-	
						190					
										1	
								+		-	
										1	
140											
										1	
										4	
						200					
								+		4	
										1	
										-	
150								-			
										4	
						210				1	
		+				210				1	
										1	
										1	
160											
										4	
						220				1	
										-	
										•	
A C:	L			LAE	BELS	L	FLAGS	1		SET STATUS	
~ Short	ts ^B Long	s ^C	Curi	rent	Downside BE	Upside B	E 0		FLAGS	TRIG	DISP
a	D	C			e e		2	0			
5	6				8 9		3	- 2			
	1	1'			1 I [*]		1 °	1 3			II

Program Description I

Program Title Butterfly Options		
Contributor's Name Hewlett-Packard		
Address 1000 Circle Blvd.		
City Corvallis	State Oregon	Zip Code 97330
A butte	fly option is	actually the
combination of one bull spread and	one bear sprea	d i.e. the purchase
of one high, one low and the sale of	of two middle o	ption on the same
underlying stock. If the stock cl	oses between th	e high and low strike
prices (including consideration of	commissions an	d premiums) the
investor will generally profit wit	n maximum profi	t occuring in the
middle strike price. Program assu	nes a standard	option commission of
\$25 per option per transaction.		
Calculation formulas are shown on	the program lis	ting using the
following variables.		
E _L = Lowest Exercise Price	$P_{L} = Price of$	Low Strike Option
E _M = Middle Exercise Price	P _M = Price of	Middle Strike Option
E _H = High Exercise Price	P _H = Price of	High Strike Option
BE _H = Upside E	Breakeven Price	
Operating Limits and Warnings Always hit E as the	e first step. Max	imum "Profit"
may be negative indicating merely سنه mir	imum loss. Simil	arly, if
premiums work out right, maximum "Loss" n	nay be positive, e	qually minimum profit
(and meaning no cash is needed as an inve	estment).	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)						
		NONE				
Sample Problem(s)	Given XYZ	stock wi	th the fol	llowing op	tions ava	ilable
and due simult	aneously:	Stnika	nnico 10		-+ 10 1/4	

and due simultaneously: Strike price 40 selling at 13 1/4 Strike price 50 selling at 7 Strike price 60 selling at 1 5/8 Calculate maximum profit, maximum loss (investment), upside breakeven price, downside breakeven price if a butterfly is developed and commissions are assumed at \$25 per option per transaction. Solution(s) E; 40A 13.25 R/S 50 R/S 7 R/S 60 R/S 1.625 R/S yields 787.50 = max profit; B yields -262.50 = max loss (equals investment); C yields 57.38 = upside breakeven price; D yields 42.13 = downside breakeven price; E initializes for new case. All 6 variables must be entered for

each case.

Reference(s) A one for one translation of the 65 User's Library program 3768 by Morris A. Nunes.

7

STEP	INSTRUCTIONS		к	EYS	OUTPUT DATA/UNITS
1	Initial program		E		0.00
2	Enter Exercise Price of Lowest Strike				
	Option	X.XXX	A		X.XX
3	Enter Market Price of Lowest Strike				
	Option	<u>X.XXX</u>			X.XX
4	Enter Exercise Price of Middle Strike				
· · ·	Ontion	x x x x	R/S		X.XX
5	Enter Market Price of Middle Strike				
	Option	X.XXX	R/S		Χ.ΧΧ
6	Enter Exercise Price of Highest Strike	<u> </u>			V VV
	Option	X.XXX	R/S		X.XX
7	Enter Exercise Price of Highest Strike				
	Option & Calculate Maximum Profit				_у.уу
8	Calculate Maximum Loss		D		7 77
-					<i>L.LL</i>
9	Calculate Breakeven High Stock Price		С		a.aa
10	Calculate Breakeven Low Stock Price		D		b.bb
11	<u>Go to new case - initial</u>		E		0.00
		FLAGS		SET STATUS	
	0		FLAGS	TRIG	DISP
	1		ON OFF	DEG 🗔	FIX 🖾
	2		1 🗆 🛛		SCI □ ENG □
	3		3 🗆 🛛		n_2

41

(hp)

				97 I	Pro	gram	Lis	ting I					35
STEP		ŶŶ	KEY CODE	c	сомм	ENTS	STEP	KEY ENTRY	•			col	MMENTS
STEP	KEY ENTR	Y 000000000000000000000000000000000000	KEY CODE *LBLA ST04 R2S ST05 R017 RC17 RC16 RC17 RC17 <tr< td=""><td>971 Enter Enter Enter Enter Enter Enter Inter</td><td>$\begin{array}{c c} \mathbf{P}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{L}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{H}_{\mathbf{L}} & \mathbf{H}_{$</td><td>Price Exercise Price Exercise Price Calculate Maximum Profit</td><td></td><td>KEY ENTRY 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 07 08 08 09 09 09 09 09 09 09 09 09 09 09</td><td></td><td>KEY CODE RCL5 2 x RCL2 2 x + RCL4 - RCL3 - RCL3 - RCL3 - RCL3 - RCL3 - RCL5 2 XZY - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - - 5 - 6 ST07 6 ST07</td><td>Init Gene Stor</td><td>$2 (E_{H} + P_{M}) - E_{I} - P_{H} - P_{H} - 1.75 = 2 E_{M} - BE_{High} + .5 = 12 E_{High} + .5 = 12 E_{Hig$</td><td>Calculate BE High Calculate BE Low egisters a 100 N 7 tack</td></tr<>	971 Enter Enter Enter Enter Enter Enter Inter	$ \begin{array}{c c} \mathbf{P}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{L}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{M}_{\mathbf{L}} & \mathbf{H}_{\mathbf{L}} & \mathbf{H}_{$	Price Exercise Price Exercise Price Calculate Maximum Profit		KEY ENTRY 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 07 08 08 09 09 09 09 09 09 09 09 09 09 09		KEY CODE RCL5 2 x RCL2 2 x + RCL4 - RCL3 - RCL3 - RCL3 - RCL3 - RCL3 - RCL5 2 XZY - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - - 5 - 6 ST07 6 ST07	Init Gene Stor	$2 (E_{H} + P_{M}) - E_{I} - P_{H} - P_{H} - 1.75 = 2 E_{M} - BE_{High} + .5 = 12 E_{High} + .5 = 12 E_{Hig$	Calculate BE High Calculate BE Low egisters a 100 N 7 tack
		049 050 051 052 053 054 055 056	RCL7 x 1 7 5 5 RTN *LBLC		Ε ₁)-Ρ _μ =Χ;		110						
0	1100	From	2 OW Dri	co ³ Mid	From	Mid Price	⁵ High F	or ⁶ High Dw	ico	7 100	8		9
80		Exer	LUW Pri		ryei.			IS6	ice	S7	S8		S9
50	51		32	33									
Α		В		С			D		E			I	

Program Description I

Program Title 6	7 - STOCK PRICE 30-WEEK	MOVING AVERAGE WITH	DATA STORAGE
Contributor's Name Address	Delmer D. Hinrichs 2116 S. E. 377th Ave.		
City	Washougal	State Washingt	on Zip Code 98671

Program Description, Equations, Variables This program allows both the data and the program for a 30-unit moving average to be stored on one card. This is especially convenient for calculating and periodic updating of 30-week moving averages of stock prices. After loading the data and program from a card, the previous average may be displayed, and only the new data entered. The updated average is displayed after each data entry. When all available data have been entered, the updated data may be recorded on the card.

Data may be entered as 5-digit integers, as 3-digit integers plus quarter points, or as 2-digit integers plus eighth points. For example, using eighth points, for 25 1/8 enter 25.1; for 56 7/8 enter 56.7; for 38¹/₂ enter 38.4; for 17 enter 17; etc. All data to be averaged together must be entered in the same mode (integer, quarters, eighths)

The 30 data units are stored in 15 registers, two per register, as 5-digit integers. Data for quarter points or eighth points are also stored as 5-digit integers, but with the decimal point shifted. The decimal point is shifted back again before displaying the average. The data are not moved from register to register for each new entry, but only the oldest datum is replaced by the new datum, and the index is incremented. The "I"

register contains both the index, and the sum of all the data stored as a decimal fraction. There is no output of an average until 30 units have been entered.

Entries are checked for format and size errors. Negative Nos. or zero are illegal. Do not clip side 1 of the card, to allow updating of the stored data.

Operating Limits and Warnings Put data on side 1 and program on side 2 of card.

Clear registers and flags before starting a new series of data entries.

Press "Reset" only once after loading data and program.

After an erroneous entry ("Error" display) press "CLx", but do not Reset.

All data entries for a series <u>must</u> be in the same mode.

Be sure to press "f PZS" before loading data onto a card. Ignore "Crd" after data load. Max. size of whole No. is 5 digits for Integer; 3 digits for Quarter; 2 digits for Eighth.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample	e Probler	n(s)	Ca	alculat	e a 30-	-Week M	loving	Average	of 19	76 DJIA	Data:		
<u>Week</u>	DJIA	Week	DJIA	<u>Week</u>	DJIA	Week	DJIA	<u>Week</u>	DJIA	Week	DJIA	<u>Week</u>	DJIA
1	859	9	973	' 17	1001	25	1002	33	990	41	952	49	951
- 2	911	10	973	18	997	26	1000	34	974	42	937	50	973
3	930	11	988	[!] 19	996	27	1000	35	964	43	939	51	979
4	954	12	9 80	20	993	28	1003	36	989	44	965	52	986
5	975	13	1003	21	991	29	993	37	988	45	943	53	1005
6	955	14	992	22	975	30	991	38	995	46	928	•	
7	958	15	968	23	964	31	985	39	1009	47	949		
8	988	16	980	24	979	32	986	40	980	48	957	1	

A moving average is correctly plotted in the <u>center</u> of the span of the averaged data. With a 30-unit span, as with this program, the first average must then be plotted <u>between</u> the 15th and the 16th data points, as shown below. Thus the output always lags 15 weeks behind the current data, so the 15 most recent weeks have no average to plot.

For this example, the HP-67 was set to "DSP O", so that the output shown below was rounded to the nearest integer.

Week Solutio	DJIA Dn <u>(s)</u>	Avg	Week	DJIA	Avg	<u>Week</u>	DJIA	Avg	Week	DJIA	Avg	<u>Week</u>	DJIA	Avg
1	859		' 12	980		22	975	087	32	986	070	43	9 39	
2	911		13	1003		23	964	007	33	990	777	44	965	
- 3	930		14	992		24	979	901	34	974	911	45	943	
4	954		15	968	976	25	1002	900 080	35	964	975 975	46	928	
5	975		16	980	090	26	1000	097	36	989	075	47	949	
- 6-	955		17	1001	900	27	1000	901	37	988	915	48	957	
7	958		['] 18	99 7	902	28	1003	900	38	995	915	49	951	
8	988		19	996	095	29	993	0904	39	1009	310	50	973	
- 9	973		20	993	905	30	991	905	40	980		51	979	
10	973		1 21	991	905	31	985	902	41	952		52	986	
11	988		22	975	900	32	986	980	42	937		53	1005	

Reference(s) HP-65 Users' Library Program No. 03133

Stock Price 30-Week Moving Average with Data Storage Initialize

Integers 🔳 Quarters 🔳 Eighths

		Display		Reset
--	--	---------	--	-------

7

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	a) If new series (no data on card) clear Regist.		f CL REG	
	b) If data from card, enter data (side 1 of card)			Crd
2	Enter program, side 2 of card			0.00
3	Prepare for data entry:			
	a) If new series, Initialize:		fe	0.00
	b) If data from card, Reset:		E	0.00
4	If desired, display previous average:		D	Avg.
5	Enter data: a) Integers:	Entry	A	Avg.
	or: b) Quarters:	Entry	В	Avg.
	or: c) Eighths:	Entry	C	Avg.
6	Repeat Step 5 as desired			
7	To store updated data on card:		f PZS	
			f W/DATA	Crd
	Enter card, side l			Crd
	(Ignore second "Crd" display)			
*	* * * * * * * * * * * *	* * *	* * * *	* * *
	<u>Notes:</u>			
	1) In Step 5, all entries must be in the same mode	(Integers,		
	Quarters, or Eighths). Quarters or Eighths a	e entered		
	as: (whole number).(No. of quarters or eight)	s)		
	i.e., 25 3/8 is entered as: "25.3, C"			
	2) In Step 5, no average is displayed until 30 en	ries		
	have been made. Until then, "0.00" is display	red.		
	3) If an illegal entry is made, there will be an	"Error"		
	display. Then press "CLx", go to Step 5, and	reenter		
	the number correctly.			

1

(hp)

				67	Program	n Lis	sting I							
STEP	KEY	ENTRY	KEY CODE	•	COMMENTS	STEP		KEY	CODE		COM	MENT	39 S	
001	f LBI	Б	31 25 12	Ente	r 1/4 Points		RCL (i)		34 24					
	h SF	0	35 51 00				g FRAC		32 83					
	GTO ()	22 00				f x= 0		31 51	30	Entrie	es Ye	et?	
	f LBI	<u> </u>	31 25 13	Ente	r 1/8 Points	060	h RTN		35 22	No	, Disp	lay	Zero	
	h SF	1	35 51 01				1		01	Ye	s, Con	tim	ıe	
	f LBI		31 25 00				h RC I		35 34	1				
	f IN	r	31 83				g FRAC		32 83	1				
	h LS.	l' x	35 82				RCL 7		34 07	1				
	g FR	AC	32 83	- /.			7		81	1/1 Doints Entone 10				
010	<u>h F?</u>	0	35 71 00	1/4	Points Entered?		h F? 0	35	71 00	1/4	Point	s Er	itered?	
	RCL 4	4	54 04	res			RCL 2		34 02	Ye	S			
	h F?	<u> </u>	35 71 01	1/8	Points Entered?		<u>h F? 1</u>	35	<u>71 01</u>	1/8	Point	s Er	ntered?	
	RCL C	5	24 08	ies		070	RCL 3 34			Ye	s			
	X		71	Conv	ant to Decimal	070				.				
	+			COIIV	ert to Decimal		n RTN		35 22	Dis	play A	vera	age	
	h F?	0	35 71 00	4			g LBL f e	32	<u>25 15</u>	Ini	tializ	e,Ne	ew Data	
	RCL 2	2	<u>54 02</u>				h SF 2	35	51 02					
	n F?	<u> </u>					I TRT E		25 15	Res	et,Sav	'e 01	ld Data	
000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		()	ant to Interior		I P S	 	31 42	1					
020	-			Conv	ert to integer	EEX		43	l					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{21}{31}$ $\frac{25}{52}$ $\frac{11}{52}$	Ente	r Integers				01	1					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ISTU I	75	$\frac{3301}{7102}$	Cat	for V			
		<u>ר א</u>	27 02			080		22	75 77	Set	10r N	ew	Jata?	
		L T	75.90	T.	on Charleiner		n ST 1		25 22	Ie	S			
	n LS	1° X	<u> </u>		or checking:		LEEX	·	43	l				
		-y 1-1	32 62	\sum_{m}	try < Zero?	,			12					
	PCL 5 34.05			try Non-Integer:				42	ĺ					
	RCL 5 54 05		L Eur	try oversize:		<u>2 טוט</u> אַקּק		13	ĺ					
030	$g x \le y$ 32 71 30 $g x \le y$ 32 62					3		4)	ĺ					
	B DT	<u> </u>	75 53						42					
	BCL.	(i)	34 24	<				<u> </u>	4 <u>2</u> 33 03	ł				
	Ø FR	<u>AC</u>	32 83				2		02					
	h LS	T x	35 82			090	•		83	1				
	f IN	<u></u> ጥ	31 83				5	1	05	1				
	B(T.	<u>-</u> ה	34.05	Um	date Data		STID 1	1	33 04	ĺ				
	<u>·</u>	/	81	$\int \int $	auto buta		EEX		43	1				
	h R I		35 54				5	1	05	i i				
	+		61				STO 5	1	33 05	1				
040	STO	(i)	33 24]			3		03	1				
	CLX	<u></u>	44				EEX	1	43	l				
	RCL	1	34 01)			7		07	1				
	h R 🕈	•	35 54				CHS		42	1				
	RCL	5	34 05			100	STO 7		33 07	1				
	÷		81				1		01	1				
	h R 🕯		35 54				•		83					
	-		51				2		02					
	f DS	Z	31 33	Up	date Sum and		5		05	l .				
	RCL	3	34 03	<pre>[In</pre>	crement Index		STO 8		33 08	l				
050	X		71				CLx		44	l				
	h RC	I	35 34				h RTN		35 22	Sto	o & Di	spla	av Zero	
	+	,	61				f LBL 1	31	<u>25 01</u>	Sub	routin	e to	Reset	
	g X S	<u>y</u>	32 71			110			01	Da	ta Ind	ex		
	L GD	<u>, 1</u>	<u>JI 22 01</u> ZE ZZ			110	+		61					
	I D D		22 22	Dien	low Avorago	- · · · · · · · · · · · · · · · · · · ·	h RUM		35 22					
f LBL D 31 25 14			⊥ <u>∠</u> 14	180	RFC	h RTN			11 6.4					
0	1		2	3	4	5	6	7_	7	8	~~	9		
		10	0.01	0	.001 2.5	10000	00	3	x 10 '	$\frac{1}{1}$	•25	-		
S0 Date	S1	Data	S2 Data	S3 L	ata S4 Data	S5 Data	a Data	S7	Data	58 I	Data	59	Data	
A			B		c	D		E			I	1	_	
	Data		Data		Data		Data		Data		Ind	ex,	Sum	

67 Program Listing II

STEP	KEY E	INTRY	KEY	CODE	COMMENTS			STEP	KEY ENTRY	KEY CODE	COMM	ENTS
								170			4	
								170			4	
											1	
											-	
											4	
120											1	
]	
											4	
								180			1	
											1	
											4	
											-	
											1	1
130											4	
											4	
											1	
								190			-	
											4	
											1	
140											4	
											4	
											1	
								200			4	
								200			4	
											1	
											4	
											4	
150											1	
											4	
										······	4	
								210			1	
]	
											4	
											1	
100											1	
160											-	
											-	
]	
								220			4	
											1	
											-	
	1		l		L	BELS			FLAGS	L	SET STATUS	
AInter	gers	BQuart	ters	C Eigt	ths	D Display	E Re	set	0 Quarters	S FLAGS	TRIG	DISP
a		b		C		d	fini	tialize	1 Eighthe	ON OFF		
0 grin		1 Subr	utino	2		3	4		2 Cot "T"			SCI
5	,	6	a or the	7		8	9		3 Set "1"	2 🗆 🖻	RAD 🗆	ENG 🗆
							1			3 🗆 🗖		···

Program Description I

Program Title E	xponential Smoothing				
Contributor's Name	Ted Bright				
Address	40 Woodland Road				
City	Fairfax	State	California	Zip Code	94930
City	Fairfax	State	California	Zip Code	9493

Program Description, Equations, Variables Projections from time-series data are computed using a weighted moving average,
eliminating the need to retain past observations.
First, a smoothed moving average, $S_{t+i}(x)$ is calculated from the current series value, X_{t+i} , and the prior average, $S_{t+i-1}(x)$, according to the formula: $S_{t+i}(x) = \alpha X_{t+i}^{++1}(1-\alpha c) S_{t+i-1}(x)^{-}$, (recalled by keying c)
where α is the smoothing constant, determined in the program as a function of the
number of observations to be smoothed, n, by the relationship $\alpha = \frac{-\pi}{n+1}$
The change in average, t_{t+1} , is simply:
$t+i^{-3}t+i(x) - 5t+i-1(x)$ (recalled by keying (c)
From this is found a new trend, T_{t+i} , thru the equasion: $T_{t+i} = \alpha C_{t+i}^{+(1-\alpha)} T_{t+i-1}$ (recalled by keying D)
Finally, expected demand, D_{++i+1} , is defined as:
$D_{t+i+1} = S_{t+i}(x) + \frac{1-\alpha}{\alpha}T_{t+i}$ (displayed after each iteration)
With the entry of a new x value, a prediction error can be expressed as: e _{t+i} =D _{t+i} - X _{t+i} (recalled by keying E)
The user may wish to increase the sensitivity of the program to anticipated trends
with an increase in the value of α observing that $0 \ll <1$.
The initial trend is assumed to be 0 unless a value is entered.
OPERATING LIMITS AND WARNINGS
There being no prior value of D, e on the first iteration will be meaningless.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

41

Program Description II

Sample Problem(s)

The chart below shows six (n=6) values, x_{t+i} , for 1971 thru 1976. The program, using an initial estimate for the smoothed average, $S_{t+i-1}(x)$, of 100, will produce the remaining data, including a projected quantity, D_{t+i+1} , for 1977.

Initialize using the keystrokes $6[\uparrow]$, 100[A].

Then enter the value of x_{t+i} for 1971 (103), press [B], and observe that the output displayed agrees with the first solution under D_{t+i+1} . Press [C], f[C], [D], and [E], likewise noting the results in their respective columns. Enter the X_{t+i} values for each succeeding year followed by the keystrokes above each column.

Keystrokes			В	C	fc	D	E
					Change in		
			Expected Demand	Smoothed Average	Smoothed Average	Trend	Error
	i	× _{t+i}	D _{t+i+1}	S _{t+i} (x)	C _{t+i}	T _{++i}	e _{++i}
	0			100		0	U · I
1971	1	103	101.47	100.86	.86	.24	_
1972	2	90	95.98	97.76	-3.10	71	11.47
1973	3	108	101.50	100.68	2.93	.33	-12.02
1974	4	101	101.42	100.77	.09	.26	.50
1975	5	98	99.88	99.98	79	04	3.42
1976	6	96	97.96	98.84	-1.14	35	3.88

Reference (s)

Charles T. Clarke and Lawrence L. Schkade, <u>Statistical Methods for Business</u> <u>Decisions</u> (Cincinnati, Ohio: South-Western Publishing Co. 1969), pp 702-711.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	OUTPUT DATA/UNITS	
1.	Enter program			
2.	Enter number of values to be smoothed (not	n		n
	required if α option selected in step 4)			
3	Enter initial estimate of smoothed average	$S_{++i-1}(x)$	Δ	
0.	Enter Interal estimate of smoothed average	UT 1 1		α
4.	Optional: Select smoothing constant	$0 \le \alpha \le 1$	fa	α
5.	Optional: Select initial trend	T _{t+i-l}	fd	T _{t+i-l}
		Y		D
6.	Enter first value for smoothing repeat	^t+i		^U t+i+l
	step 6 for each succeeding value			
7	Recover (once per i) from erroneous X		f	D _{++i}
/.	(Return to step 6 and continue with correct			LT
	value)			
8.	Recall smoothed average		C	S _{t+i} (x)
				<u> </u>
9.	Recall change in average			^t t+i
10	Pocall trond			T
10.				<u>t+1</u>
11.	Recall forecast error		E	e _{t+i}
12.	Recall number of values smoothed		fe	i
	(For a new series go to step 2)			

97 Program Listing II

AA	
_	

STEP		Y KEY CODE	COMMENTS	STEP	к	EY ENTRY		KEY CODE		COM	MENTS
00	1 * LBLA	21 11	Initialization routin	ne	857	RTN		24	Dt+i	ti disp	olayed
00	2 CLRG	16-53			8 58	≭l Bib	21	16 12	erro	or reco	overy routine
88	3 ST03	35 03	S(1) (X)		A 59		14	25 46	decr	iment	I
88	4 CIX	-51	541-125		055	Prid		36 11	Tet	-1	
88	5 1	B 1	ħ		BC1	ST05		35 A5	Til	~1	
88	с. с.	-55			001	Dri Q		76 89	544	1-1 (X))
88	7 2	A2	& computed		002	CT07		75 07	Serie	~ (x)	
90	0 V+V	-41			003	5103		35 83	Det		
00	0 ∩+i 0 ±	-24			064	KULO CTOD		30 00	Dit	1	
00 Q1	2 - 0 +1010	21 60	r		063	5102		33 82	Det	disc	laved
01	0 #LDL0 1 CTAA	ZI 00 75 AA	æ		000	KIN		24	e.		ral a meting
01	1 3100 2 1	33 88			067			21 13	264	(\sqrt{a})	spraytouring
01	Z 1 7 0701	75 01		-	068	KUL3		30 03	24+		
01	A Dria	75 00	{1-2 computed		063	KIN	~	24	~	disp	lav routine
01	4 KULU 5 CT_1	75-45 01			070	TLBLC	2.	1 10 13	Cet	1 015 0	
01	ן פור ג ג אדמ	3J-4J 01 24	a discloyed	ł	0/1	KUL4		36 04	C++	1	
01	0 KIN 7 +1 Di	24	a cispidy en	ł	072	KIN		24	-	مارده	lay routine
01	Γ FLDLQ Ο CTOR	21 10 11	S Option Pooline		073	*LBLU		21 14	1++	,	, cy · ci
01	0 5100	22 00	built mutine	•	674	KCL5		36 83	16+	ı	
U I	7 FLULU 0 0707	ZI 12 75 07	Pt+1+1 rounne	ł	075	RTN	-	24	~ ~	, .	
82	0 5107	30 07	14+1	•	076	*LBLd	2.	1 16 14	TE+	, ent	ry routine.
62	I RULZ	36 0 2	De+1	ł	077	ST05		35 85	Tt+	1	
62	2 5108	35 88	Ut+1 copied	ł	078	RTN		24	0	·	la constitut a
02	3 RULS	36 83	St+1-1(X) for error	-	079	*LBLE		21 15	e.e+	arsp	ay roune
02	4 5109 5 DOLE	30 89	String (recovery		080	RCLE		36 06	641		
02	5 RULS	36 85	THI-1 (routime		0 81	RTN	_	24	1 -1	chla.	nautine
82	6 STUA	35 11	Teri-1 J		0 82	<i>*LBLe</i>	2.	1 16 15	a	spiey	/ 1001 m.C.
62	7 1521	16 26 46	1 indexed	ł	0 83	RCLI		36 46	1		
62	8 RULZ	36 02		+	084	RTN		24			
82	9 RCL7	36 07	Xt+ise++i computed	-	085	R∕S		51			
63	U -	-45			_		+				
63	1 \$106	35 06	e++;)	000			+		1		
83	Z KULI	36 07	Xt+i	2.3	_		+		4		
83	3 RULU	36 00					+		4		
63	4 X	-35		090	_		+		4		
83	J KULI	36 01	$(S_{+}, (S_{+}, (x)))$				+		4		
03	6 KULJ	36 83	Stri-1 (X) computed	í			╋		1		
03	/ X	-35					+		ł		
63	8 1	-55					+-		4		
03	9 STU3	35 03	564100				+		4		
64	U RCLY	36 89	5++i-1(x)				+		4		
84		-45	Ctti computed	-			╋		ł		
54.	2 5104	30 U4 70 00	Leti				+		1		
64	S KULU	30 88	~ \				╋		1		
64		-33		100			+		{		
64	J KULI S DOLE	30 Ul 76 OF	Tui				+		1		
04	D KLLJ 7 -	30 00	1++1-1/computed				+		1		
04	ί Ă Q ⊥	-33 _55					+		1		
04	0 CTAE	-JJ 75 af	T				+				
04.	2 3103 9 2014	3J 03 72 Bi	1- x				+1		SET S	TATUS	
00 05	U RULI 1 DOLA	30 01 75 AA	x \				+1		т	RIG	DISP
03. DE	⊥ RULU 2 ∸	JO 00 _34		122			+	ON OFF			
03. AF	2 T 7 V	-24	Duite				+	0 🗆 🗷	DE	G 🛛	FIX 🛛
80- 05-	א נ דותם א	-33 76 A7	St+1 (x) (computed	110	-		Ħ	1 🗆 🗵	GR	AD 🗆	SCI 🗆
00' 05'	+ KULJ 5 ⊥	30 0 3 _55						2 🗌 🕱	RAI		ENG 🗆
00 05	υ τ ς εταγ	-JJ 75 80	Dt+i+i				\Box	3 🗌 🗷			
60	0 3102	33 62	RE	GISTERS				I= V ·	Te 🖻	,	
0 x	ne^{1} $l=c$	× 2 Dt+i+1	3 St+i(x) 4Ct+i	5 T+ i	,	6 e++i		7 Xtti Value inser	18 D	t+i d for	Saved for
constan	+	demand	moving avg. average	trer	d	foreca	\$ +	at t.+i	lerre	r recover	error recovery
So Ttil-1	S1	S2	S3 S4	55		56		5/	30		39
Crear recov	ery	<u>l</u>				l			1	IT 7	
A		в	C				C			time	period

ontributor's Name	HEWLETT DACKADD COMDANV		
	Corvallis Division		
·	1000 N.E. Circle Boulevard		7:- 0- 4-
Ity	Corvallis, OR 97330	state	
rogram Descriptio	n, Equations, Variables		
•	This program performs a least squar	es multiple linear regression for	a series of
	data points x, y, z. Linear regress	ion is a statistical method for	finding a
	straight line that best fits a set of dat	ta points. The equation of this s	raight line
	(z) variables and is of the from:	ween independent (x and y) and	
	z = a	+ bx $+$ cy	
	Independent variables are input by p	ressing B . If one or more of the	data points
	was entered incorrectly, simply re-e	nter the incorrect value(s) and p	ress f A.
	Then continue as before. The thre pressing C .	e coefficients (a, b, c) are cal	culated by
	In addition, the program also calcula	tes the coefficient of determinati	on $r^2(\mathbf{D})$.
	This is an indication of the "goodn	ess of fit" for the calculated str	aight line,
	values closer to 0.	alues closer to 1 indicate "better	f fits than
	Having determined the equation (the	ne 🖪 key) the user can then n	roject esti-
	mates of z for given x, y values (). The sums (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; Σy_i ; Σz_i), the sum (Σx_i ; Σy_i ; $\Sigma $	ne sums of
	squares $(\Sigma x_i^2; \Sigma y_i^2; \Sigma z_i^2)$, and the s	ums of cross products ($\Sigma x_i y_i$; Σ	$x_i z_i; \Sigma y_i z_i)$
	are stored in registers 7-9, 4-6, a	nd 1-3 respectively.	
	An option is available (1 E) to	automatically print/pause the	calculated
	values. Pressing [7] [5] sets and clean	rs the print option. Successive u	se of f E
	will alternately display 1.00 and 0.00	0, indicating that the print/pause	mode is on
	of off respectively.	1999 - 199	
		hallon variation de la constante de la constant	
perating Limits and	d Warnings		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)		
-		
Sample Problem(s)	18. Multiple Linear Regression	
	z = a + bx + cy	
	$\Sigma_{z_i} = an + b\Sigma_{x_i} + c\Sigma_{y_i}$ $i = 1, 2,, n$	
	$\Sigma x_i z_i = a \Sigma x_i + b \Sigma x_i^2 + c \Sigma x_i y_i$	
	$\Sigma y_i z_i = a \Sigma y_i + b \Sigma x_i y_i + c \Sigma y_i^2$	
	$c = \frac{A - B}{\left[n\Sigma x_{i}^{2} - (\Sigma x_{i})^{2}\right] \left[n\Sigma y_{i}^{2} - (\Sigma y_{i})^{2}\right] - \left[n\Sigma x_{i}y_{i} - (\Sigma x_{i})(\Sigma y_{i})\right]^{2}}$	
	where:	
	$A = \left[n\Sigma x_i^2 - (\Sigma x_i)^2\right] \left[n\Sigma y_i z_i - (\Sigma y_i) (\Sigma z_i)\right]$	
	$B = \left[n\Sigma x_i y_i - (\Sigma x_i) (\Sigma y_i)\right] \left[n\Sigma x_i z_i - (\Sigma x_i) (\Sigma z_i)\right]$	
	$b = \frac{\left[n\Sigma x_i z_i - (\Sigma x_i) (\Sigma z_i)\right] - c \left[n\Sigma x_i y_i - (\Sigma x_i) (\Sigma y_i)\right]}{(\Sigma x_i)^2}$	
Solution(s)	$a = \frac{1}{n} (\Sigma z_i - c \Sigma y_i - b \Sigma x_i)$	
	$R^{2} = \frac{a \Sigma z_{i} + b \Sigma x_{i} z_{i} + c \Sigma y_{i} z_{i} - \frac{1}{n} (\Sigma z_{i})^{2}}{\sum_{i} 2 \sum_{j} (\Sigma z_{i})^{2}}$	
	$(2z_i^2) - \frac{\sqrt{2z_i^2}}{n}$	
Reference (s)		

Program Description II

S	keto	h(es)															
	rana daaraa in L																	
	and a second second							•										
-																		
				1												 	 	
-														 	 		 an advance of	
									-			•	•				 	
																	•	· · · · · · · · · · · · · · ·
1											 				-			

Sample Problem(s)	Example 1:			
	A commercial land appra section of a local communi	iser has examined 5 vaca	nt lots in the downtown	
	values as shown below. B	ased on this data, what is	the relationship between	
	depth, frontage, and lot va predicted value would a lo	lue? What is the coefficien of have with a 50 foot der	t of determination? What th and 70 foot frontage?	
	With a 75 foot depth and			
	Lot Depth (feet)	Lot Frontage (feet)	Lot Value	
	70 90	70.8 60.0	\$101,000 82,190	
	85	90.0 70.0	170,000	
	100	60.0	90,000	
	Keystrokes:	Outputs:		
	A 70 ENTER ↑ 70.8 ENTER ↑	101000 B		
	90 ENTER↑ 60 ENTER↑ 821	90 B		
	40 ENTER+ 70 ENTER+ 100	юоо в ЮОО в		
	100 ENTER+ 60 ENTER+ 90	000 B → 5.00	(number of entries)	
Solution(s)	C		(a) (b)	
	R/S	→ 2892.02	(c)	
	Hence, $z = -118499.03$ -	+ 314.71x + 2892.02y		
	D	→ 0.98	(r ²)	
	50 ENTER♦ 70 E	→ 99678.08	(value of 50×70 foot lot)	
	75 ENTER♦ 80 E	→ 136466.08	(value of 75×80	

Reference (s)

47

1	Multiple Linear Regression	5
Σ- Start	P? Σ + _→a;b;c _→r ² _ x↑y→2̂	

STEP		INSTRUCT	ONS		INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
	STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS				
	1	Load side 1 and side 2						
	2	Optional: Select print/pause						
		mode		08	1.00 or	0.00		
	3	Initialize (START)		A	0.00)		
	4	Key in x and y, and correspond-						
		ing z value	x					
			у					
			Z	B	# entr	ies		
	5	Repeat step 4 for all x, y, z data						
		pairs.						
	6	If a data pair was input incor-			Ι			
		rectly, re-enter incorrect x, y, z			Ι			
		values	x	ENTER+				
			У]			
			Z	D A	# entries	6 - 1		
	7	Calculate coefficients:		C	а			
				R/S	b			
				R/S	С			
	- 7	If the print/pause mode is on						
		(1.00), b and c are auto-		gio in mon				
		matically calculated.						
	8	Optional: Calculate the coeffi-						
		cient of determination: r ²		D	r²			
	9	Optional: Key in x and y values						
		and calculate the estimated			I			-
	•	z value. (This may be repeated						
		as often as desired.)	x	ENTER +				
			у	G	Ŷ			
	10	For a new case, go to step 2.						

			97	Pro	gram	List		ng I						49
STEP KE		KEY CODE		сомм	ENTS	STEP	KE	YENTRY	KEY C	ODE		сомі	MENTS	
001	*LBLA	21 11				05	7	-	-	45				
00 2	CLRG	16-53				05	8	STOI	35	46				
003	CF 1	16 22 01		Initi	alize	U5 07	9	K∳ ∵⇒	-	51				
004	0 574	66				06 86	1	6982	27	33 A2				
885 885	KIN	24				90 86	2	ST+:	35-55	45				
000 007	≉LDLD STOC	21 12				06	3	RTN	00 00	24				
88	6700 R4	-31				06	4	*LBLC	21	13				
889	STOB	35 12	Inpu	t. x v		06	5	RCLØ	36	00				
010	R ↓	-31		i''	i'-i	06	6	RCL4	36	04	Ca	lcula	te a,	b,c
011	STOA	$35 \ 11$				06	7	X	-	35				
012	FØ?	16 23 0 6				86	8	RCL7	36	07				
013	GSBS	23 08				06	9	Χ-	_	33 15				
014	7	67	Comp	ute Sx	ΣV Σ7	07 07	10 1	- 5700	75	4J 14				
015 015	5101	30 46	oomp		i'''i''i	87 87	2	RCLA	36	лч Ай				
010 017	6581	-31 23 Al		Σx_i^{\prime} ,	$\sum_{i} y_{i}^{2} y_{i}^{2} y_{i}^{2}$	07	3	RCL3	36	03				
017 018	8301	20 01 08	Σx.y	.,Σy.z	.,Σz.x.	07	4	X	-	35				
019	STOI	35 46	1-	1 - 1	1 1 1	07	5	RCL8	36	8 8				
020	RCLB	36 12				07	6	RCL9	36	09				
021	F0?	16 23 00				07	7	Х	-	35				
022	GSB6	23 06				87	8	-	-	45				
023	GSB1	23 01				87.	9	X	-	35 17				
024	9	8 9				88 00	0	Brig	30	13 QQ				
025	STUI	35 46				00 88	2	RCL0 PCI1	30	00 Gii				
026 027	RULU	36 13 16 27 80				0 8	3	X	-	35				
021	г0: Ссре	27.06				08	4	RCL7	36	07				
020 029	ESR1	23 00				08	5	RCL8	36	08				
029	RCLA	36 11				88	6	x	-	35				
031	RCLB	36 12				8 8	7	-	-	45				
032	Х	-35				08	8	STOA	35	11				
033	GSB2	23 0 2				<i>08</i> .	9	RCLØ	36	0 6				
034	ST+1	35-55 01				69 00	0	RULZ	36	02 75				
035	RCLA	36 11				07 QQ	2	PCIZ	36	3J 07				
036	RULU	36 13				R9	3	RCL 9	36	89				
037 070		27 02				09	4	x	-	35				
030 039	ST+2	35-55 02				09	5	-	-	45				
848	RCLB	36 12				<i>09</i>	6	STOB	35	12				
041	RCLC	36 13				0 9	7	Х	-	35				
842	х	-35				09	8	RCLC	36	13				
043	GSB2	23 02				89	9	XZY	-	41 45				
044	ST+3	35-55 03				10	0	Prin	76	4) 14				
045	1	01				10	2	PCIA	36	14 RR				
045	6582 CT+0	23 02 75-55 00				10	3	RCL5	36	0 5				
047 949	DCIA	33-3 3 00 36 0 0				10	4	x	-	35				
040 049	FA?	16 23 00				10	5	RCL8	36	0 8				
050	GSB6	23 06				10	6	χ2		53				
051	RTN	24				10	7	-	-	45				
0 52	*LBL1	21 01	Subro	outine	for	10	8	X	-	35				
6 53	GSB2	23 02		ΣΧ	i,	10	9	RCLA	36	11 57				
054	ST+i	35-55 45		ΣΧ	, ² ,	11	1	-	-	JJ 45				
85 5	RCLI	<i>36</i> 46			I	11	2	÷	-	24				
026	3	U 3	10		REGIS		-	6 – 4	17	 	8	54	7 0	7
'n	ĽΣ×iλ	$i \int \Sigma x_i z$	i ³ Σ	^y i ^z i	^τ Σ× _i ^z	ັΣy _i ²		ັ ^{ΣΖ} ί	• ′	^{∠x} i		- 7 1		-1
S0	S1	S2	S3		S4	S5		S6	S7		S8		S9	
						_						•		
A Used		B ⊎sed		C Us	sed	Use	ed		E U	sed		י י	sed	

Program Listing II

STEP KEY	ENTRY	KEY CODE		COMMENTS		STEP	KE	Y ENTRY	KEY CODE	COMN	IENTS
113	STOC	35 13					169	F0?	16 23 0 0		
114	RULB	36 12					170	6566 Pri r	23 06 76 17		
115	RCLC	36 13					172	X	-35		
117	х	-35					173	X≠Y	-41		
118	-	-45					174	RCLB	36 12		
119	RCLD	36 14					175	X	-35		
120	÷ etnp	-24 75 12					176	+ Prio	-33 76 11		
121	RCL9	36 09				-	178	+	-55		
123	RCLC	36 13					179	GT09	22 09	Correction	ı of
124	RCL8	36 08				[180	*LBLa	21 16 11	input va	alues.
125	Х	-35				[181	SF1	16 21 01		
126		-45				-	182	GSBB	23 12		
127	RULB RCI7	36 12 36 97				-	183	LFI PTN	16 22 01 24		
129	X	-35				-	185	#LBLe	21 16 15	Print inst	tructions
130	-	-45				•	186	F0?	16 23 00		
131	RCLØ	36 00					187	GT05	22 0 5		
132	÷	-24				[188	SFØ	16 21 00		
133	STOA	35 11	a			-	189	1	01 24		
134	6567 Dri D	23 07 76 19	Ь			-	190	KIN +I DI S	24		
135	GSB9	23 09	D			-	192	#LDLJ Й	21 6J AA		
137	RCLC	36 13	С			-	193	CFØ	16 22 00		
138	GT09	22 0 9					194	RTN	24		
139	≭LB LD	21 14				[195	*LBL7	21 07		
140	RCLA	36 11				-	196	F0?	16 23 00		
141	RCL9	36 UY _75	Calci	1_{2+2} n^2		ŀ	197	SPU	16-11		
142	A Pri R	-3J Re 12	ιατιυ	llate r		ŀ	196 199	WLBLJ FØ?	21 07 12 97 00		
144	RCL2	36 02				ŀ	200	RT06	22 86		
145	X	-35					201	R∕S	51		
1 4 6	÷	-55				t	202	RTN	24		
147	RCLC	36 13					203	≭ LBL6	21 06		
148	RCL3	36 03					204	PRTX	-14		
143 150	× +	-30 -55				-	200	- KIN +1 R/ 2	29 21 82	Change si	an for
151	RCL9	36.09				•	200	#LDL2 F1?	16 23 01	cor	rection.
152	χ2	53					208	CHS	-22		
153	RCLØ	36 00				[209	RTN	24		
154	÷	-24					210	*LBL8	21 08		
155	- PCLC	-43 72 02					211	SPC	16-11		
156	RCLO RCL9	36 00 36 09					212	6709 R/S	22 0 9 51		
158	X2	53					210	N/ 0	51		
159	RCLØ	36 00							1	J	
160	÷	-24								4	
161	-	-45								4	
162	- 50707	-24 02 87								4	
163	xi BL F	21 15	0.1			220	+		1	4	
165	X≠Y	-41	Calcu	late 2 for						1	
166	F0?	16 23 00	give	en x,y.						4	
167	GSB8	23 08					+		ł	4	
168	XZY	-41	LA	BELS			T	FLAGS	1	SET STATUS	
^A Start	^B ∑+	^C a;b	;c	^D r ²	E	^ Z	0	Print	FLAGS	TRIG	DISP
^a Σ-	b	С		d	^e Pr	int?	1 C	orrect	ion ON OFF		
0	1 s	ed ² Use		3	4		2			GRAD	SCI 🗆
⁵ Used	⁶ Us	ed ⁷ Us	ed	⁸ Used	9	lsod	3		$- 2 \square \mathbf{X} \\ 3 \square \mathbf{X}$	RAD 🗆	ENG ∐ n

Program Description I

C C				
Contributor'	sName C.D. Bopp			
City C	lak Ridge	State ¹	l'enn. Zip Code	37830

Program Description, Equations, Variables This program compares the coefficients of determination for the four functions described in the HP67/97 Standard Pac Program 03. The function having the largest coefficient of determination is indicated by displaying a code number, as explained in the User Instructions.

Operating Limits and Warnings The calculating time is roughly about one minute. Negative coordinates are not admissable. To enter another set of points, turn

calculator off and on.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) Given the points (x,y) 1,2; 2,3; 3,4; find (a) which of above-mentioned four correlations gives the highest coefficient of determination (COD), (b) compute the value of the COD, (c) with x equal to 4 project the value for y, and (d) compute the COD and project y for two of the other three correlations.

Solution(s) Part (a): 2 (\uparrow) 1 (A) 3 (\uparrow) 2 (A) 4 (\uparrow) 3 (A) (B) \rightarrow 1, indicating that the linear fit is best (using the coding numbers as described in the User Instructions). Part (b):(RCL) (C) \rightarrow 1.000, the COD. Part (c): 4 (E) \rightarrow 5.000, the projected y. Part (d): (SF)(1) (GTO) (A) (GTO) (2) (R/S) (RCL) (C) \rightarrow 0.990, the COD for the exponential fit. 4 (E) \rightarrow 5.77, the projected y. (GTO) (A) (GTO) (3) (R/S) (RCL) (C) \rightarrow 0.978, the COD for the logarithmic fit. 4 (E) \rightarrow 4.40, the projected y.

Reference(s)

CURVE FITTING, FUNCTION SELECTION

(h)

y_i**↑ x**i SELECT

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Load side 1 and side 2.				
2	Input y value.	Уi	ENTER		
3	Input x value.	Xi	A		
4	Repeat steps 2 and 3 for all data pairs	•			
5	Compute of the functions listed below		В	N, a, b	
	the one with the largest coefficient of determination r^2 . This function is		RCL C	r ²	
	indicated by a number 1, 2, 3, or 4 according to the following coding:				
	<u>l Linear regression y - a + bx</u> 2 Exponential Curve y <u>-</u> ae				
	<u>3 Logarithmic Curve y - a + blnx</u> 4 Power Curve y - ax ^b				
	The quantities that are printed are the				
	code number (N) designating the function				
	and the parameters a and b of this function. The parameter				
	a is stored in register A. The para- meter b is stored in register B. The				
	coefficient of determination r^2 is stored in register C.				
6	Optional: Make projection based on a	x	E	ŷ	
	known x value.				
7	Optional: Find the coefficient of		SF 1		
	determination (COD) and the parameters		GTOA		
L	a and b for any of the other functions		GTON		
	(than that selected).		R/\$	N	
	·		RCLC	r 2	
		x	E	у	

7

x→ ŷ

Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11			STOO	35 00	
	٤	56		L	1	01	
	LSTX	16_63			7	07	
	STOA	35 11		060	GSBO	23 00	
	LN	32			STOE	35 15	
	<u>ŞTOB</u>	35 12			GSBC	23 13	
	A T Y	-41			ļ1	01	
	STOC	35 13			F2?	16 23 02	
010						35 14	
010	RCLB	32 14			MIN MIDT 2	21 02	
	Pa s	16-51				16 21 02	
	5	56			BCT 6	36 06	
	RCLD	36 1/1		070	STOL	35 01	
	RCLA	36 11			BCL7	36 07	
	X	- 35			STOF		
	ST + 3	35-55 03					
	RCLB	36 12			3	03	
	RCLC	36 13.			GSBO	23 00	
020	×	- 35			STO3	35 03	
	ST+2	35-55 021			1	01	
	P ≑ S	16-51			4	04	
	RTN	24			GSBO	23 00	
	*LBLB	21 12		080	ST02	35 02	
	0	· 00			1	01	
	STOC	35 13			5	05	
	GSB1	23 01.			GSB0	23 00	
	GSB2	23 02			STOO	35 00	
000	GSB3	23 03			GSBC	$\frac{23}{13}$	
030	GSB4	$\frac{23}{22}$ 04			CFO	16 22 00	
		30 14			2	02	
	CODI	22 15					
	BCID	26 14		090	DOW	35 14	
					ATRI 3	21 03	
		26 11			RCT)	36 04	
					STO2	35 02	
	RCLB	36 12			RCL5	36 05	
	PRTX	-14			STOO	35 00	
040	R/S	51			1	01	
	*LBL1	21 01			2	02	
	1	01			GSBO	23 00	
	8	08			ST03	35 03	
	GSBO	23 00		100	1	01	
	ST03	35 03			6	06	
	1	01			GSBO	23 00	
	4	04			STO1	35 01	
	GSBO	23 00				01	
050	ST02	35 02				07	
	-				GSBU STOF	25 15	
	GSBO	23.00			GSBC	23 13	
	STOI	35 01			3	03	
	1	01		110	F2?	16 23 02	
	5	05			STOD	35 14	
	GSBO	23 00		l	RTN	24	
	1	2	REGIS	STERS	6	7 /	18 19
used	used	^c used	°used ⁴ ≤lnx	ั <i>≦</i> (ln	$x)^{2} \stackrel{\circ}{\leq} \ln y$	$\int \mathcal{L}(\ln y)^2$	ź lnx lny n
50	S1	⁵² Zylnx	SZXINY SA EX	55 E X	2 ⁵⁶ £ Y	°' ≲ y²	sty h
A	a	в	c r ²	D US	εd	e hsed	use (

Program Listing II

STEP	KEY EN	ITRY	KEY COD	DE	COMMENTS		STEP	KEY ENTRY	KEY CODE		ENTS
	*LBL	Ŧ	21 (04				RCLC	36_1	3	
	SFO	16	5 21 1	00			170	x≯y?	16-3	4	
	RCL8		36	08				GTOĞ	22 0	6	
	ST03		35	03				x ÷ y	-4	1	
	RCL4		36	04				STOC	35 1	3	
	ST02		35	02				SF2	16 21 0	2	
	RCL6		36	06				LBL6	21 0	6	
120	STOL		35	01				1	0	1	
	RCL5		36	05				GSBO	23 0	0	
			35					2	0	2	
			36	0/			100	GSBO	23 0	<u>C</u>	
	STOE		35	15_			180	RCLB	36 1	2	
	GSBC		_ <u></u>	13				x	- 3	5	
	CFO	16	5 22 (00				-	-4	5	
	4		(04				RCL9	36 0	9	
	FZ?	<u> 1</u> 6	$\frac{23}{25}$	02				÷	-2	4	
120	STOD		35 1	4				FO?	16 23 0		
130	RTN			24				e^ gmo (<u></u>	्र	
	- * TBTC	2	21	13				STOA	35 1	<u></u>	
	3			231					21 0	<u>4</u>	
	1 G S BO		_234				190			6	
	GSBO		23 ($\frac{02}{00}$				DL		<u>.0</u>	
	1								26 1		
	GSB0		23 ($\frac{1}{20}$					204		
	x			35				*LBLF	21 1	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
	RCL9		36 (<u> </u>				RCLD	36 1		
140	2			2)1				STOT	35 /	6	
	-		-[45				R¥	- 3		
	STOB		35	12				GTOi	22 Ji	5	
	0			00				*LBL1	21 0	1	
	GSBO		23 (00]			200	RCLB	36 1	2	
	2			02]				х	- 3	5	
	GSBO		_23 (00_				RCLA	36 ī	ĺ	
	x2			53				+	-5	5	
	RCL9		36 (09				RTN	2	4	
	÷		-	24				*LBL2	21 0	2	
150	-		-1	45				RCLB	36_1	2	
	İ		-	24				x		5	
	RCLB			ΤΞ				er .	2/ 1	1	
	хту			44			210	RCLA	<u> </u>	늰	
	STOR		_35_				210				
	x - y		-	45				MIN	<u> </u>	4	
	3			02							
	17			011				BCTB	26 1	2	
	GSR0		23	00				X	2	र्ड	
160	1			01				RCT.A	36 1	ĩ	
	GSB0		23	00				+	_ 5	5	
	x2			53				RTN	2	24	
	RCL9		36 0	19-				*LBIД	21 0)Ц	
	÷		-	24			220	RCLB	36 1	2	
	-		-	45				y ^x		31	
	4		-					RCLA	36 1	1	
	F1?	1	6_23.	01				X DOWN	- 3	5	
	STOC	I	35	مر الخل						SET STATUS	
Α 4	I. IB				D	E	٨	0 1		JET 314103	
<u>y(</u> τ)		≁∪, Α,	P	use0	d	X	→y	Used	FLAGS		DISP
d	D		c		u	e		' used		DEG 🗷	FIX 🕱
⁰ use	d 1	used	2	used	³ used	4 u	sed	² used] 1 ⊡ 🌶	GRAD	SCI 🗇
5	6	herd	7		8	9	-	3		RAD 🗆	ENG 🗆
		4						1			

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability/QA	Forestry

OPTIONS AND TECHNICAL STOCK ANALYSIS

Includes a number of programs for evaluating put and call options, various option trading strategies, and several programs useful in technical stock analysis.

PUT & CALL OPTION FAIR VALUES (Black-Scholes) CALL OPTION EVALUATION ROUTINES FOR OPTION WRITERS EMPIRICAL CBOE CALL PRICING WARRANT & OPTION HEDGING BULL SPREAD OPTION STRATEGY BUTTERFLY OPTIONS STOCK PRICE 30-WEEK MOVING AVERAGE WITH DATA STORAGE EXPONENTIAL SMOOTHING MULTIPLE LINEAR REGRESSION CURVE FITTING, SELECTING BEST FUNCTION

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14009 Printed in U.S.A. 00097-90184 Revision B 11-77