
HEWLETT-PACKARD

HP-67/HP-97

Users' Library Solutions

Photo Dark Room

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

MACRO-PHOTOGRAPHY AND ENLARGING	1
TIME, F-STOP, MAGNIFICATION, PAPER SPEED, ENLARGING FACTORS An interchangeable solution involving time, f-stop, magnification, paper speed.	6
COLOR PRINTING FACTORS	10
COLOR PRINTING FACTORS; NEW PAPER	15
SUBTRACTIVE COLOR-PRINTING FILTERS; DENSITY CORRECTION Keeps track of filters and f-number corrections.	19
TRI-COLOR PRINT EXPOSURE (PHOTO)	23
COLOR PRINT PROCESSING IN DRUM. Gives the color print developing time in a drum for any value of presoak water temperature and developer temperature.	27
CIBACHROME RECIPROCITY CORRECTION	31
PRINT VIEWING DISTANCE Finds proper viewing distance from enlargement size and lens focal length.	35
PHOTO/IMAGE DISPLAY PARAMETERS	39
IMAGE PROJECTION DATA	43

Program Title ^{Macr}	o-photography and Enlargi	ng	
Contributor's Name Address City	Hewlett-Packard Corvallis Division, 1000 Corvallis,	N. E. Circle Blvd., State ^{OR}	Zip Code 97330

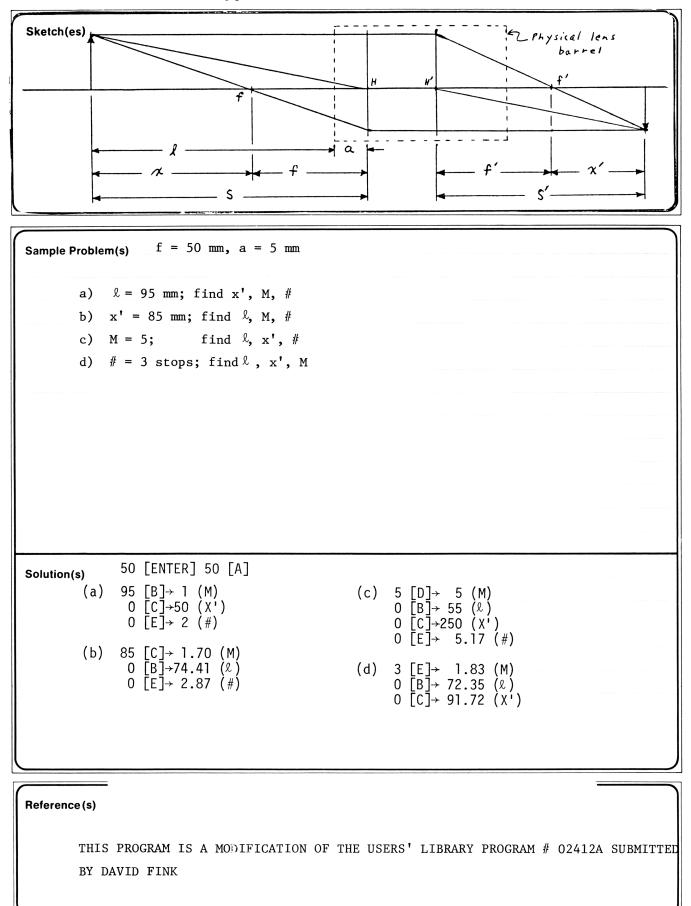
Program Description, Equations, Variables Given the focal length of a lens, the distance from the physical front of the lens barrel to the first principal plane, and only one of the following four quantities, the program will calculate any or all of the other three: object distance (or for enlarging, projection distance) to front of lens barrel, bellows extension, magnification, number of stops additional exposure required.

The principal planes of a thick lens or a lens system are two planes so located that if object distances are measured from the first principal plane and image distances are measured from the second principal plane, the thin-lens formula will hold.

The distance, "a", between the front of the lens barrel and the first principal plane is found by using the lens backwards to form an image of a distant object and then measuring the distance from the front of the lens barrel to the image. Subtract this distance from the marked focal length to obtain "a" (the result may be negative). For an enlarging lens, the distant object should be on the same side of the lens as the negatives normally are. "a" may be set to 0 if the object distance, "l", is not to be an input or output, or l \gg a.

Operating Limits and Warnings Be aware that many lenses have focal lengths a few millimeters longer or shorter than the nominal values marked on them.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.


NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program 1	Title 97 - Macro-photography	and Enlarging		
Contributo Address	or's Name Hewlett-Packard, C 1000 N. E. Circle Blvd.	corvallis Divis	ion	
City	Corvallis,	State	OR	Zip Code 97330

Program Description, Equations, Variables	See sketch, next page.
$\frac{1}{s} + \frac{1}{s} = \frac{1}{f}$	Gaussian form of lens equation.
$xx' = f^2$	Newtonian form of lens equation.
$M = \frac{s'}{s} = \frac{f}{x} = \frac{x'}{s}$	Magnification.
$E = (\frac{s}{f})^2 = (1 + M)^2$	Exposure correction factor.
$\# = \frac{\ln E}{\ln 2} = [2\ln (1+M)]/\ln 2$	Number of stops.
These equations are used in the	e following combinations:
x' = fM $M = 2^{\#/2} - 1$	
$# = \frac{2 \ln (\frac{1+a}{1+a-f})}{1 = \frac{f^2}{r_1} + f - a}$	
$1 - \frac{1}{x} + 1 - a$	
Operating Limits and Warnings	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

1					DATA/UNITS
	Enter program				
2	Enter "a"	а	1		а
3	Enter focal length	f	A		а
4	Enter any one of object distance	1	В		М
	or bellows exten.	x'	C		<u>M</u>
	or magnification	М	D		М
	or # of stops For incorrect entry, redo step 4.	#			M
5	Print on 97 or display on 67		f	A	
	object distance,				1
	bellows exten.,				x '
	magnification,				М
	and # of stops.				#
6	For a new case with same lens, go to 4				
7	For a new lens, go to 2.				
	To use these instructions for enlarging,				
	consider the photographic paper as the				
	object, and the negative as the image.				

Program Listing I

				// i i vgi am		7411	••••••			3
STEP		EY ENTRY		COMMENTS	STEP	KE	Y ENTRY	KEY CODE		COMMENTS
	001	¥LBLA	21 11			057	2	8 2		
	002	ST01	35 01	Store f	t	0 58	x	-35		
	003	X≠Y	-41		[6 59	2	82 82		
	004	ST06	35 06	Store a	ſ	055 060	LN	32		
	0 05	RTN	24		r i		÷			
	00 6	*LBLB	21 12	Initialize flag and	ł	0 61		-24		
	0 07	SF1	16 21 Ø1	u s e 1 to calculate		0 62	GT05	22 05		
	808	GT02	22 02	all other	ł	0 63	*LBLa	21 16 11		
	00 9	≭LBL C	21 13	quantities.	ł	864	RCL2	36 02		/ 1
	010	SF1	16 21 01	Initialize flag and	ł	065	RCL3	36 03	Print	disp results
	011	GTO3	22 03	use χ' to calculate		0 66	RCL4	36 04		
	012	\$ LBLD	21 14	all other quantitie		067	RCL5	36 05		
	013	SF1	16 21 01	Initialize flag and		068	PRST	16-14		
	014	GT04	22 0 4	use M to calculate		069	RTN	24		
	015	*LBLE	21 15			+			-	
	016	SF1	16 21 01	all other quantitie Initialize flag and	P	+				
	017	*LBL5	21 05	use # to calculate					-	
	018	ST05	35 05	all other quantitie	6					
	019	2	02	Store #						
	020	RCL5	36 05			+		+	_	
	021	2	00 00 02	Calculate M (#)						
	022	÷	-24					+		
	022	÷ γx	-24 31	1	L			+		
	023 024	1	51 01		000			+		
	024 025		-45	If flag 1 is off,	080					
		- F1?		Store M and stop;						
	026		16 23 01 22 02	otherwise, turn						
	027	GT06 GT04	22 06 75 07	flag 1 off and						
	028	ST04	35 04	calculate all						
	029	RTN	24	quantities.						
	030	≭ LBL6	21 06							
	031	CF1	16 22 01							
	032	≭ LBL4	21 04							
	033	ST04	35 0 4	Store M						
	034	RCL1	36 01		090	1				
	035	Х	-35	Calculate x'(M)		1				
	03 6	≭LBL 3	21 03	1					7	
	037	ST03	35 03	1 .						
	038	RCL1	36 01	Store x'		+			-	
	039	ENT†	-21	1					-	
	040	Х	-35	Calculate 1 (x')					-	
	041	RCL3	36 03	1		1		1	-1	
	042	÷	-24	ł		+		1	-	
	043	RCL1	36 01	1		+		+	-1	
	044	+	-55	1	100			+	-1	
	045	RCL6	36 06	1		+			-1	
	046	-	-45	1		+		+	-	
	040 047	≭LBL 2	21 02	4				+	-1	
	048 048	ST02	35 02	Store 1					_	
	040 849	RCL6	35 02 36 06					SET	STATUS	
	042 050	KULD +	-55	4			F		TRIG	DISP
	050 051	ENT†	-55 -21	Calculate # (1)			 _'	ON OFF		
				4			o	🗆 😿 🛛 D	EG 🙀	FIX 😰
	052 057	ENT†	-21 76-01	4		+] 1		RAD 🗆 🛛	SCI
	053 054	RCL1	36 01	1	110	+	2		AD 🗆	ENG_ n2
	054 055	-	-45	1			3			··
	055 052	÷	-24	4		-		1	-	
h	85 6	LN			STERS	1		1		
		1.		3 4	STERS		6	7	18	9
0		'	2		_		-	ľ	ľ	
S0		S1	S2		S5		S6	S7	S8	S9
30			52				-	-		
A		1	B	C	D			E		
I^			Ĩ	-						
			1					1		

Program Title T	ME, F-STOP, MAGNIFICAT	TION, PAPER SPEED	
EN	LARGING FACTORS		
Contributor's Name	Hewlett-Packard, Corv	vallis Division	
Address	1000 N. E. Circle Bly	7d.	
City	Corvallis,	State OR	Zip Code 97330

Program Description, Equations, Variables The program relates four variables used in photographic printing or enlarging: Time (seconds), f-stop, MAGNIFICATION (M) and paper PRINTING INDEX (P_T). It uses the following formulas:

1) seconds =
$$\frac{K}{P_{I}} \cdot M^{2} \cdot f^{2}$$

2) f-stop = $\sqrt{\frac{\sec \cdot P_{I}}{K \cdot M^{2}}}$
3) M = $\sqrt{\frac{\sec \cdot P_{I}}{K \cdot f^{2}}}$

4) $P_I = \frac{K}{\sec} \cdot M^2 f^2$

The factor K must be determined once by the user. It varies with the equipment used (Type enlarger, Lamp Wattage, etc.) To obtain K, a satisfactory print is made and the printing data entered in this formula:

 $K = \frac{\text{Exposure Time (sec)} \cdot P_{I}}{(f-\text{stop})^2 \cdot (\text{Magn.})^2}$

Operating Limits and WarningsThe program will accept all practical values of f-stop,Magnification M, Paper Printing Index (PI) and exposure times.Paper printing indexes are published by KODAK (see page 2 References) or may beobtained by comparison printing when using brands with no published PI data.Certain f: stops on lenses are rounded off. Program will compute exact f-stop.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

64	32	16	.8	.4	2	1 .	Relative Transmission f-stop
2.8	4.0	5.6	8.0	11	16	22	as marked true f-stop (see Reference below).
2.83	4.0	5.66	8.0	11.3	16	22.63	Actelence below).

The following sample problem was run with a K-factor (see Note: Sample Problem(s) page 1) of 31.25: 1) First Print Data: $P_{I} = 3200$, f-11, M = 4.5, 24 seconds New Print: M=10, $P_T = 2000$, f-5.6, sec = ? 2) Printing Time for f:56, M = 50 (largeprint), P_I = 3200, sec = ? 3) $P_I = 3200$, M = 5, Time = 16 sec, f-stop = ? Typical P_I values: Kodabromide: Grade 1 = 5000 Grade 2 = 3200Grade 3 = 2000Grade 4 = 1250Solution(s) 1) New exposure time: [E]5.6 [B]10 [C]2000 [D][F][A] 49 seconds 2) 5.6[B] 50[C] 3200[D][F][A] 765 seconds 3) 16[A] 5[C] (3200[D]) [F][B]

 Reference(s)
 PHOTOGRAPHIC PAPERS, KODAK PROFESSIONAL DATA BOOK #G-1;

 ENCYCLOPEDIA OF PHOTOGRAPHY, FOCAL PRESS, ENTRY: DIAPHRAGMS (f-numbers)

 THIS PROGRAM IS A MODIFICATION OF THE USERS' LIBRARY PROGRAM # 02411A

 SUBMITTED BY HARRY C. JOEL

	→SEC	→F:STOP	→M	→PI		7
(hp)	SEC→	F:STOP→	M→	∎ ^P I→	INIT	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Determine K factor (see page 1)			
	and enter in Program Form (page 4)			
	Key entry 1 through 5 in form KK.kk (tens,			
	units, tenths and one-hundreds)			
2	Enter Program			
3	INITIALIZE		E	
4	INPUT 3 of the following			
	TIME	seconds	Α	sec.
	f:STOP	f-stop	B	f-stop
	MAGNIFICATION	M	C	M
	PAPER PRINTING INDEX	PI	D	Рт
5	COMPUTE REMAINING VARIABLE			1
	TIME		FA	
	f-STOP		F B	
	MAGNIFICATION		F C	
	(see note) PAPER PRINTING INDEX			
6	To change any input and calculate effect on			
0	remaining variables go to step 4. ONE, TWO			
	OR THREE VALUES MAY BE CHANGED.			
*				
	Note: K can be stored in register 5 instead of changing the program.			
	of changing the program.			
	Note: P _I is usually an Input but may be			
	computed for other purposes.			

Program Listing I

			1			' 51 ann								5
STEP KE	Y ENTRY	KEY	CODE		COMM	IENTS	STEP	ĸ	EY ENTRY	ŀ	EY CODE		COMM	MENTS
001	*LBLE	21	15					057	*LBLD		21 14	Store	. D	
0 0 2	3		03					05S	STŪ4		35 04	Store	I '	
683	1		01					059	RTN		24	(or c	alcu	late for
004			62	This	facto	or must be				21	16 14			purpose
005						l by user,		060	*LBLd	21				known P _T)
006 006	2 5					1 31.25		061	RCL5		36 05	C. 6.	, um	I'
		35			ample			062	RCL1		36 01			
007	ST05			19 9	ашрте	UIIIy		063	÷		-24			
008	RTN		24					064	RCL3		36 03			
0 0 9	*LBLA	21		_				Ø65	RCL2		36 02			
010	ST01	35				calculate		866	Х		-35			
011	RTN			time				067	ENT†		-21			
012	*LBLa 2	21 16	11					068	Х		-35			
613	RCL5	- 36	05					069	Х		-35			
014	RCL3	36	03					070	ST04		35 04			
015	RCL2	36						071	RTN		24			
016			35					0/1	K I N		27			
017	ENTT		21											
618	X		-35							+				
								_		_				
019	RCL5	36						_						
620	X		-35											
021	RCL4	36												
022	÷		-24											
023	ST01	35												
024	RTN		24				080							
025	*LBLB	21	12	a .				+		+				
026	ST02	35	n 2 1		e or C	alc.				-				
027	RTN		24	f-st	ор					+				
		21 16						_		+				
020	RCL1	36						_						
								_						
030	RCL5	36												
031	÷		-24											
032	RCL4	36												
033	X		35							1-				
034	RCL3	36	03				090			+				
035	ENTT	-	21						· · · · · · · · · · · · · · · · · · ·	+				
036	x		35							+				
037	÷		24					_						
038	48		54											
039	ST02	35								 				
			24											
040	RTN #LBLC	21						_						
041 042				Stor	e or C	alc.								
042	STO3	35	03	M										
043	RTN		24											
044		21 16					100			1				
045	RCL1	36						1		1				
0 4 6	RCL5	36								+				
847	÷		-24					-+		+-				
048	RCL4	36	64							+				
849	X		35							+				
050	RCL2	36								<u></u> +-r		SET ST	ATIIS	
051	ENTT		21							╀╌╊				
052	X		35					_		+	FLAGS	TRI	G	DISP
052 053	÷		-24							+	ON OFF	0.50		
854	۶X		54							+				FIX 😡
		35					110			+		GRA		
055 054	STO3										2 🗆 🛛	RAD		ENG n_2
056	RTN		24								3 🗆 🕱			
						REGIS	TERS							
0	¹ secon	ds^2	f-stop	3 m	agn	4 P	⁵ k		6		7	8		9
			2 5000		~6	⁴ P _I					07	20		<u> </u>
S0	S1	S2		S3		S4	S5		S6		S7	S8		S9
	L					⊥	<u> </u>		1	E				L
A	E	3			С		D			E		1,		

Program Title	7 - COLOR	PRINT	ING F	FACTORS	
Contributor's Name	CARY E				
Address	3939 B	DWELL	DR.	#D438	
City	FREMON	U T	State	CA	Zip Code 94538

Program Description, Equations, Variables THIS PROGRAM COMPUTES VARIABLES IN PRINTING MOST COLOR MATERIALS EKTALOLOR RC, EKTACHROME RC AND PANALURE FOR EXAMPLE. MAGNIFICATION AND LENS-TO-PAPER DISTANCE FACTORS. FILTER PACK CHANGES AND LENS APERTURE CHANGES ARE OUTPUT. RECIPROCITY CORRECTION IS APPLIED WHEN PRINTING TIME IS CHANGED. VALUES ARE PROJECTED BY CURVE FITTING ROUTINES AND HAVE BEEN CHECKED AGAINST KODAR'S "COLOR DATAGUIDE." EXPOSURE FACTOR LOG = FISTOP CHANGE (LOG A = LOG A 2 LOG THE ENLARGER LENS 15 CONSIDERED A POINT LIGHT SOURCE WHERE LIGHT INCREASES AND DECREASES INVERSELY WITH THE SAYARE OF THE DISTANCE. AN APPROXIMATE RECIPROCITY FACTOR FOR BLACK AND WHITE WOULD BE: FACTOR 1. 192 × . 176-). ALSO SEE "PETERSON'S PHOTOGRAPHIC, June 1976 p.7

Operating Limits and Warnings Y, M, C Filter values apply to Kodak CC and CP filters and may vary slightly according to different manufacturers. For dichroic filters see <u>Printing Color Slides</u>, Kodak, 1975 p. 14. Reciprocity is approximate with Cibachrome and will require testing. Accuracy decreases over extreme limits. Answars (time) are rounded to nearest Vio second.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)		•				
• • • • • • • • • • • • • • • • • • •	 	and a second	· · · · · · · · · · · · · · · · · · ·	•		
ana para da seconda de composito de contra contr	 	aller an		 •		
	 n an		1 · · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • • •	
	 antar na talan ang ang ang ang ang ang ang ang ang a			 	•	

Sample Problem(s) 1.) a trial print has been exposed for 20 seconds with filter pack 404, 104, 20M at a magnification of 5x. A new print will be made with a modified filter pack 404,207,20M, 5M, The magnification will be 9X. Determine the required exposure, and (2.) the operture increase required if the time is not changed. (3.) The print has been exposed at f/11 for 23 seconds. The optimum f/stop of your EL-Nikkor lens is 5.6. What should the exposure be? Solution(s) (1) 40 [F/b] [A] [B] 10 [F/B] [A] 20 [F/c] [A] 25 20 [F/6][6] 20 [F/c][B] 5 [F/c][B][R/5] 1.18 5 [ENTERA] 9 [E] 2.78 [R/S] 3.29 (combined) factor 20[c] 85 seconds (2.) [D] 1.72 F/stops (3.) 2 [CH5][D] .25 23[C] 4.3 seconds Reference(s) Kodak Color Dataguide, 1974 ed. p37-41 (The Kodak "CC Computer" is the Gasis of the program.)

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
$\left \right\rangle$	OPTIONAL: Find density of filters	e.q.	40	
	OPTIONAL: Find density of filters in CP filter pack.	40M	FC	.28
1.	Load sides 1 and 2.			
2.	densities (5) of original filter pack	D.nn	A	Σō,
	(individually or grouped)			
3.	densities (5) of original filter pack (individually or grouped) densities of new filter pack	Б.nn	B	Σ Dr
4.	exposure factor for filter change		R/S	Factor
5.	clear LAJLB] For new calculations	0. 5	Α	0,00
6.	change one filter only add	Б	B	
			R/5	Factor
	subtract	D	A	
			R/S	Factor
7.	change to different aparture a. open lens b. stop down			
	a. open lens	n.n stops n.n "	CHSD	factor
	b. stop down	n.n "		factor
	c. factor computed (or time) compute f/stop change			
	compute ristop change		D	F's tor-
9	^		ENTER 1	
0.	original magnification	n.n	ENTER	factor
9	new magnification	n.n orcm		TUCION
	or original lens to paper distance new lens to paper distance	<u>n.n orc</u> n. ""	F e	factor
	new rens to paper aistudee			14:104
10.	Combination of factors			
	first factor computed ABDE	or fle		
	first factor computed A, B, D, E second factor computed " " "	n w	R/S	combined Factor
11.	after computing any of above factors or combinations			
	factors or combinations			
	ingut previous time (T,)	n,n		
	,	seconds	c	T2
12.	FISTOP change required if time			
	F/stop change required if time remains constant, after computing any factors or combinations			
	uny tactors of combinations		D	f S decr.
	·			
		l		

			67 Progran	n Lie	sting I		13
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	FLBLC	21 25 13			X	71	
	STO C RCL D	<u>33</u> 13 34 14			9 10× GTO 5	32.53	-
	X	71		060	FLBLE	31 25 15	4
	STO 9	33 09 34 14					
	RCL D	34 14	- 1000 O		++,	01 (61 32.54 35.52	magnification
	6 X > Y	22 91	en arge		0 X2 X XEY	32 54	5
	GTO I	22 01	enlarge or reduce?		n <u>^-</u> /	<u> </u>	
010	LYZY	25 52			÷.	61	
	F 658 2	31 22 02 34 09			<u>g x²</u>	32 54	
	KCL Y	10 10	Reduce exposure, remove reciprocity correction		GTO 5	81	
	GTO O	22 00		070	aLBLE	22 05	- I
	FLBLI	31 25 01			Pq X2	32 54	Lens to paper distance
	RCL D	34 14	Raduro		h XZY	35 52	paper
	h VX	35 62	Prosure.		g xr	32 54	a stard
	RCLC	34 13	Comove		GTO 5	22 05	0131401
020	÷	81	reciprocity		FLELA	22.05 31.25 11 31.51	
	RCL D	34 14	correction		X=0	31 51	
	- i/	35 (2			6700	22.00	
	FLALO	31 25 00		080	\overline{o}	00	
	h CF 3	35 61 03			GTO 4	22 04	
	DSP 1	23 01			FLBLO	31 25 00	initialize
	FRND	31 24 23 02			STO A STO B	33 1	minglize
	DSP 2 h RTN	25 02	•		h RTN	33 12 35 22	A,B
030	FLBL 2	31 25 02			FLBLB	31 25 12	1
	FLN	35 22 31 25 02 31 52			2	02	
	•	83	Reciprocity Correction Log Projection			01	Sum
	2	01	Correction	090	L ST T	31 25 04 35 33 35 52	Sum A,B
	8	08	Los projection		h XZY	35 52	.,,
	7	07			$ 5T_0+(i) $	33 61 24	
	×	71			RCL(I)	34 24	
	ġ	83			h RTŃ RCL B	35 22 34 12	
040	8	08			RCL A	34 11	
	3	03			-	51	
	4	04			g 10×	32 53	
	+	35 22		100	FLBL J RCL D	31 25 05	hold previous
	H RTN FLBL D	31 25 14			hXZY	35.52	filter in STK
	h f? 3	31 25 14 35 71 03	FSTOP		STO D	33 14	for possible
	GTO 3	22 03	change		hCF 3	356103	compination
	RCL D	34 14	flstop change		h RTN	35 22	hold previous filter in STK for possible combination of factors
050	FLOG	51 53			STO D	33 14	
0.50	FLOG	31 53	v		h RTN	35 22	
	-	81			Q LBL b	32 25 12	Yollow
	H RTN FLBL 3	35 22		110	F ;	83	Litare
	FLBL 3	31 25 03			<u> </u>	01	Yellow filters Power projection
	FLOG	62 31 53			8	08	1000 projection
0	1	2		ISTERS	6	7	8 9 uncort.
							time
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
AZD	Filtore	BE D Nom Filt	ers Input time	Dexpo	s.Factor	E	A,B control
1119							

67 Program Listing II

STEP KEY ENTRY KEY CODE COMMENTS STEP KEY ENTRY KEY CODE COMMENTS $h \cdot x^*$ $5 \cdot g$ $6 \cdot g$											KEY CODE	COMM	ENTS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	STEP						COMMENTS		STEP	KEY ENTRY	KET CODE	T	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		h Y^		35	63			-	170			-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			00			ł				1	
$ \frac{1}{20} \frac{1}{2} $]	
$ \frac{1}{10} + \frac{1}{10}$		Ī			01			[
$ \frac{1}{10} + \frac{1}{10}$		X			71							4	
$ \frac{1}{10} + \frac{1}{10}$		h RTI	N	35	22	•						4	
$ \frac{1}{10} + \frac{1}{10}$	120	g LBL	C	32 2	5 13			-				4	
$ \frac{1}{10} + \frac{1}{10}$					- 82	Maa	onta					4	
$ \frac{1}{10} + \frac{1}{10}$		0			00	<i>L</i>	ner i	ł				1	
$ \frac{1}{10} + \frac{1}{10}$		6			06	20	usity	Ì	180			1	
$ \frac{1}{10} + \frac{1}{10}$		×			71			[]	
$ \frac{1}{10} + \frac{1}{10}$					83	live	antion					4	
$ \frac{1}{10} + \frac{1}{10}$		ļ ģ			00	P'						4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>4</u>			77							4	
$\frac{1}{10} + \frac{1}{10} $	130	+ +		21	6/							4	
$\frac{1}{10} + \frac{1}{10} $		6 / A/	5	32 2	C 74							1	
$\frac{1}{10} + \frac{1}{10} $	 		0		\$3							1	
$\frac{1}{10} + \frac{1}{10} $		0			00	$c \sim c$]	
$\frac{1}{10} + \frac{1}{10} $		0			00				190			4	
$\frac{1}{10} + \frac{1}{10} $					03	- Fil	tar ,					4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-11	d	ensity					4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					83	line	4					4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5			05	p'	rejection					4	
$\frac{h}{20} \times TN - 3.5 22$ 200 200 200 200 200 200 200 200 200 200 200 200 200 210 20 20 20 20 20 20 20 2	140	+			Ø / I	,	4					1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		h RT	⁻ N	- 35	22]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									200			4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									200			4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	150											4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		+										-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									210			4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	160											4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+										1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									220			4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+										4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1										1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 10			C	LAB	ELS					SET STATUS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	^ <u> </u>	5, 8	<u>s</u> i	52	NEN	TIME	LENSCHL	NEW	MAG->1	۲		TRIG	DISP
OUSED REDUCE 2 RECIPE. 3 F/STOP 4 2 D 2 1 0 GRAD 0 SCI 0	а	b 🗸		Ď				eLP	DA LANDO	1			FIX 🕅
SCOMPUTE 6 7 8 9 3 input 2 X RAD ENG FACTOR 7 8 9 3 input 3 X n n	0,1<	ON IP			2 REC	IPR.	3 E/STAP	4 5	<u>5</u>	2		GRAD	SCI 🗆
FACTOR I INPUT 3 D X I	5COM	PUTE 6	XPC	BURE	T	CURUE	8		U	3 +	2 🗆 🗙		
	FAC	TOR			Ľ			Ľ		[Input	3 🗆 📈		n_ ~ _

Program Title COL	OR PRINTING-FACTORS;	NEW PAPER	
Contributor's Name Address	Hewlett-Packard, Co 1000 N. E. Circle F		
City	Corvallis	State OR	Zip Code 97330

Program Description, Equations, Variables
New Printing-Pack = (New Box C Factors) - (Old Box C Factors)
+ (Old Printing-Pack)
New Exposure Time = (01d Exposure Time) (New Box Speed) (01d Box Speed)
New Exposure Value = [(New Exposure Time)-(Old Exp. Time)] (Old Exp. Time) 100 + (working f/number)] (Old Exp. Time)
Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

15

Sketch(es) Sample Problem(s) You are printing color prints with a filter pack of 35y + 20M with a working f/number of f/5.6 and a 35-second exposure time when you run out of paper. The printing factors of the old box are: 00y + 10 M + 25C, Speed = 105. The printing factors of the new box are: 20y + 00M + 05C, speed = 85. 1) What is your new printing pack? 2) What is your new exposure time? 3) If you leave your exposure time constant, what will your new £/number be? 1) 20[↑] 0[↑] 5[A] / 0[↑] 10[↑] 25[B] / 35 [↑] 20 [↑] 0[C] → Solution(s) \rightarrow New Printing pack = 75y + 30M 2) $35[\uparrow] 105[\uparrow] 85[0] = 28.33$ seconds 3) 5.6[E] = 7.93 \simeq f/8 THIS PROGRAM IS A TRANSLATION OF THE HP-65 USERS LIBRARY PROGRAM Reference (s) #01410A SUBMITTED BY STUART A. RIGG.

PRINTING FACTORS(CP) - NEW PAPER Old Print New Box Old Box Pack Exp. Date Exp. Value

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	New Box Printing Factors:			
	Yellow	CP Value		
	Magenta	CP Value		
	Cyan	CP Value	Α	0.00
3	Old Box Printing Factors:			
	Yellow	CP Value		
	Magenta	СР		
	Cyan	CP	В	0.00
4	Old Printing Pack:			
	Yellow	CP Value	↑] []	
	Magenta	СР		
	Cyan	CP	C	yellow- new pack
			R/S	magenta new pack cyan-
			R/S	cyan- new pack
5	New Exposure Time:			
	01d Exposure	Seconds		
	01d Box Speed			
	New Box Speed			new expos. (seconds)
				(Seconds)
6	New Exposure Value:			
Ů	Working F/Number		E	new F/number
	For a new case, go to step 2.			
		L	·	

18

97 Program Listing I

STEP	KE	Y ENTRY	KEY CODE	СОММ		STEP	KE		KEY CODI		COM	MENTS
	001	*LBLH	21.11				+		T	- -	00111	
	002	JERG JERG	15-53				057 050	rclə	36 88			
	003	ST03	35 83				058 059	-	-45			
	004	E.	-31	Ness Dees (1 - 1			EEX	-23			
	005	ST02	35 02	New Box (060 073	2	82			
	006	0.02 R↓	-31	Correctio	on Storage		061 070	÷	-24			
	007	STOI	35 81				062 063	RCLS	36 0E			
	008	CLX	-51					X	-35			
	0 09	RTN	24				064 065	CHS	-22			
	010	*LBL5	21 12				065 066	PRTX	-55			
	011	37-3	35-45 03				005 067	RTN	-1-			
	012		-31	Old Box (068 068	Kin K∕S	24	1		
	013	ST-2	35-45 82	Correctio			000	K∕ Ə	51	1		
	614	E. E	-31	Factors;		070						
	015	ST-1	35-45 01	computati	ions.							
	016	CLX	-51									
	017	RTN	24	Old Color	-Printing							
	018	*LBLC	21 13	Pack \rightarrow Se								
	019	CHS	-22	Computat:			1		1			
	020	R4	-31	-					1	_		
	020 021	CHS	-22	Eliminat			1		1	_		
	022	CH3 R↓	-31	neutral o	lensity.		1		1			
	022 023	CHS	-22		-		1					
	023	R1	16-31			080				_		
	025	RŤ	16-31						1			
	025 026	GSBB	23 12				1			_		
	020 027	RCL3	20 12 36 83				+					
	027 028		36 03 36 02				1			_		
	0 20 029	RCL2 X2 YC							1			
			16-34				1		1			
	030	N≠1 5513	-41				+					
	031	RCL1	36 81				+					
	0 32	X> Y?	16-34				+					
	033	040 A+1	-41	Final Pr	inting	090	+		+			
	034 075	ENT1	-21	Pack	liicilig							
	035	ENTI	-21	FACK			+		•			
	036	GSB5	23 12				+					
	037	RCL1	36 01				+		+			
	038	PRTX	-14				+					
	039	R∕S	51				+		1			
	640	RCL2	36 82				+		1			
	641	FRIN	-11				+					
	042	_R∕S	51				+					
	043	RCL3	36 03			100	+					
	044	PRTX	-14				+		1			
	045	RTN	24				+		1			
	046	*LBLD	21 14				+		+			
	047	∆+1	-41						+			
	048	÷	-24				1		†			
	649	X∓Y	-41	New Expo	sure		1		+	SET	STATUS	
	050	STOS	35 88	Time Sec			+					
	051	X	-35	TIME DEC	01103				FLAGS		RIG	DISP
	052	ST07	35 87				+				EG 🕱	FIX 🕱
	053	FRIX	-14	New Expo		110	1					SCI
	054	RTN	24	Value F/			1					ENG 🗆
	055	*LBLE	21 15				1		3 🗆 🖸			n2_
	0 56	RCL7	36 07 -		REGIS	TERS	4					
0		1	2	3		5		6	New Ex	· · · ·		9
		Yello		Cyan		-			Rate	E	kp.Rate	
S0		S1	S2	S3	S4	S5	1	S6	S7	S8		S9
<u> </u>		L,			1	D					1.	1
А			В	С		U			E		I	
											1	

Program Title	SUBTRACTIVE COLOR-PRINTING F	ILTERS;	DENSITY	CORRECTION	
Contributor's Nam	e Hewlett-Packard, Corvallis 1000 N. E. Circle Blvd.	s Divis:	Lon		
City	Corvallis	State	OR	Zip Code	97330

Program Description, Equations, Variables Program compares given values with the pre- programmed values to provide running sum of f-number corrections. Given the							
working f-Number (in step 2), program will provide running working f							
	1						
	1.2 MIL						
Operating Limits and Warnings Value of filters must be $\leq \pm 50$ CP or cc.							
This program has been verified only with respect to the numerical example given in <i>Program Description II</i> . User this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and upon any representation or description concerning the program material.							

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	
Sample Problem(s) (Filters: 25; 5; 10; 20; 30; 40; 50 CP) ← Standard Values
	initial printing-pack is 15y + 20M. You find you must add 35y + 10M to
	et the color-balance of your print. By how many f/numbers will your
and an and a second	re change?
	nange a printing-pack from 90M + 40C to 5M + 50C; if your initial per is 5.6, what is your final f/number?
	ing your last CP Pack (5M + 50C) to 5y + 35C will give what f/number?
	printing-pack is 25y + 40C; changing your pack to 10y + 5C will require
-	adjustment in exposure?
Solution(s) $1)$	[E]10[A] 5[A] 20[B] \rightarrow -0.67 f/stops (increase in exposure) (decrease in f-number)
2)	<pre>[E]5.6 [STO] [7] 50 [CHS] [B] 30[CHS][B] 5[CHS][B] 10[C] → f/6.93 (new f/number)</pre>
3)	5 [CHS] [B] 5[A] 10[CHS][C] 5[CHS][C] → f/7.93 (new f/number)
4)	[E]10[CHS][A] 5[CHS][A] 30[CHS][C] 5[CHS][C] →Increase of 1.33 F/stops
	(Decrease in exposure)

Reference (s)

THIS PROGRAM IS A MODIFICATION OF THE USERS' LIBRARY PROGRAM # 01412A SUBMITTED BY STUART A. RIGG.

	SUBTRACTIVE CP FILTER DENSITY		7 FNIT	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	ENTER PROGRAM			
2	TO INITIALIZE FOR NEW CASE		E	
3	FOR RUNNING - WORKING F-NUMBER	Starting F/#	STO 7	
	*OFTIONAL	FITTED		
4	YELLOW FILTERS	+VALUES		F-VALUE
	OR/AND			
,		+ VALUES		
4	MAGENTA FILTERS	⊥ VALUES		F-VALUE
	OR/AND			
	CYAN FILTERS	FILTER +VALUES		F-VALUE
		- VALUES		
	* POSITIVE VALUES DENOTE: INCREASE IN F-			
	NUMBER AND . DECREASE IN EXPOSURE			

22

97 Program Listing I

~-														
STEP			KEY CODE		COMM		STEP	-	Y ENTRY	. К	EY CODE		COM	MENTS
	001 002	≭LBL A ©	21 11 00		putati			057	X>Y?		16-34			
		-		ye1	low-fi	lter		6 58	GTO2		22 Ø2			
	003 00x	X> Y?	16-34	fac	tors			059	R∔		-31			
	004 AAF	SF2	16 21 02 71					0 60	5		05			
	005	R∔	-31					061	1		61			
	0 06	ABS	16 31					062	X>Y?		16-34			
	0 07	1	01					8 63	GT03		22 03			
	808	Ū	00					064	Ū		00			
	0 09	<u>X>Y?</u>	16-34					065	÷		-24			
	010	GT00	22 00					066	*LBL0		21 00			
	0 11	R↓	-31					067	RCL7		36 07			
	012	4	84		_			068	RTN		24			
	013	i	01			is neg,		069	*LBLE		21 15			
	014	X>Y?	16-34	set	flag	2		070	CLRG		16-53			
	015	GT01	22 01					071	RTN		24	Vo	1	a larga.
1	016	R↓	-31					072	*LBL1		21 01			oo large;
i	017	5	05					073	* LDL 1		01		spiay	error.
	0 18	1	61					074	бтор		22 14			
	0 19	X>Y?	16-34					075	*LBL2		21 02			
	020	GT02	22 02	Val	ue to 1	large:		076 076	#LDL2 2		21 02 02			
	021	0	. 00		play e			076 077	GTOD		22 14			
	022	÷	-24								22 14 21 03			
	023	*LBLB	21 12			agenta-		078 070	*LBL3					
	024	<i>+LDLD</i> 0	21 12	fil	ter fa	ctors.		0 79	3		03 01 11			
	025	X> Y?	16-34					080	*LBLD		21 14	Fi	nish	
	026	SF2	16 21 02					081	ENTŤ		-21	co	mputat	ions.
	020 027	5r2 R↓	-31					082	3		03		-	
	027 028	ABS	-31 16-31					083	÷		-24			ered value
								084	F2?	16	23 02	ne		
	029	5	<i>0</i> 5					085	Chs		-22	Ye	s → CI	
	030	X>Y?	16-34					0 86	CF2		22 02	No	→ Co	ontinue
	031	GTOØ	22 00					087	ST-7	35	-45 07	Σ	Factor	r to R-7
	032	R↓	-31	1 76	. 1	•		8 88	RCL7		36 07			
	0 33	2	02			is neg,		0 89	R∕S		51	Rea	ad Σ	
	034	1	Ø1	set	flag	2.		+		+		4		
	035	X>Y?	16-34									1		
	036	GT01	22 01	1										
i	037	R↓	-31											
	038	5	05]		
1	039	1	B1											
	040	X > Y?	16-34											
	041	GTO2	22 02	1 1 1 1		1.0]		
	042	Ø	00			large;]		
	043	÷	-24	dis	play e	rror.]		
	044	*LBLC	21 13			yan-filter	100			1		1		
	045	Ø		fac	tors.							1		
	046	X>4?	16-34	TF -	value	is neg,		1		1		1		
	047		16 21 02		flag			1		1		1		
	048	R↓	-31		TTAR	£•		1		1		1		
	0 49	ABS	16 31	1				1		1		1		•
	050	н <i>ьз</i> 2	10 31 02	1				1		<u>†</u> Γ		SET S	TATUS	
	05i	2 1	02 01	1				1		+			RIG	DISP
	051 052	X>Y?	16-34	1				1		╆╋	FLAGS ON OFF	11	10	015P
				1				1		+		DF	G 🙀	FIX 🕱
	053 054	GTC1	22 Ø1 71				110	1			1 🗆 💢		AD 🗍	SCI 🗆
	054 055	R∔	-31	1				1			$2 \square \overline{\Omega}$			ENG n 2
	055 05 <i>5</i>	4	<i>64</i>	1				1			3 🗆 😥			n
. (056	1	01	L		REGIS	STERS	1						
0		1	2	3		4	5		6		7 / "	8		9
											Σ F/ #			
S0		S1	S2	S3		S4	S5	1	S6		S7	S8		S9
<u> </u>							D						I	
A			В		С		U			E			1	

Program Title TR	I-COLOR PRINT EXPOSUR	Е (РНОТО)		
Contributor's Name Address	Hewlett-Packard, Cor 1000 N. E. Circle Bl			
City	Corvallis	State OR	Zip Code	97330

Program Description, Equations, Variables Red, green, and blue exposure times, in seconds, used to produce a color test print by the tri-color additive exposure system are stored in HP67/97. If test print is off-color or too dark, or too light, the desired correction is inserted and new exposure times calculated to bring new print into color balance and proper density. This program balances a color wheel in the same manner as an automobile wheel by adding and subtracting weights placed 120° around the circumference to pull center of balance into the hub. Sine curve is used to place the red, green, and blue weights on the wheel and exposure factors are calculated logarithmically. LBLA will shift color without changing print density since weight added to one side is subtracted from the other. Overall print density is corrected with LBL B.

Operating Limits and Warnings No correction is made for extremely short (under 10 seconds) or long (more than 60 seconds) exposure reciprocity.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) B-M	COLOR WHEEL	
Sketch (es) $\frac{11}{12}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{11}{12}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{10}$ $\frac{11}{12}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{12}$ $\frac{12}{10}$ $\frac{12}{12}$ 12	COLOR SE BLUE BLUE-CYAN CYAN GREEN CYAN GREEN YELLOW RED-YELLOW	CTOR 1234567090
G-Y G	RED-MAGENTA MAGENTA BLVE - MAGENTA	12

Sample Problem(s) A trial print is made by exposing the color print paper fll through the red, green, and blue filters for 25 secs. each. After processing and drying the print and inspecting it in white light, it is determined to be 7 1/2 units too red-yellow and 1/2 stop too light. If badly off color, it may require two attempts to zero in. Bear in mind that if too dark and test print is not ad badly off color as it appears and vice-versa, add an extra 10 units of color compensation for each 1/3 to 1/2 stops of under exposure and vice-versa.

Solution(s) 25 [ENT↑] [ENT↑] [C] which was the red, green, and blue test print
 exposure times.
 8 [ENT↑] for red-yellow sector
 17.5 [CHS] for 7 1/2 units too much and 1/2 stop too light.
 [A] →
 For density correction:

.5 (for half stop darker) [B] \rightarrow

Reference(s) CAMERA 35 JAN/FEB, 1972 ISSUE A NEW LOOK AT ADDITIVE FILTRATION PRINTING TRY TRI-COLOR BY JOHN J. SCOTT. THIS PROGRAM IS A MODIFICATION OF THE USERS' LIBRARY PROGRAM #01620A SUBMITTED BY JOHN J. SCOTT.

TRI-C	OLOR PRINT	EXPOSURE		5
OLOR	DENSITY	STORE	PRINT	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	ENTER PROGRAM			
2	STORE TEST PRINT RED TIME IN R1	SECONDS	ENTER	RED SECS
3	STORE TEST PRINT GREEN TIME IN R2	SECONDS	ENTER	GREEN
4	STORE TEST PRINT BLUE TIME IN R3	SECONDS	C 3	BLUE
5	ENTER COLOR SECTOR NUMBER OF COLOR TO BE		ENTER	
	CHANGED FROM WHEEL PAGE 2	1 THRU 12		
6	INSERT UNITS OF DESIRED COLOR CHANGE (SAME			
	UNITS AS COMMON SUBTRACTIVE FILTERS 10 OR 20			
	OR 30, ETC.). IF COLOR IN PRINT IS TO BE			
	INCREASED, USE POSITIVE VALUE. IF COLOR IN			
	THIS SECTOR IS TO BE DECREASED CHS TO			
	NEGATIVE. ACTUALLY COLOR WILL BE AFFECTED			
	ALL AROUND THE WHEEL. IT IS THE PRE-			
	DOMINANT SECTOR WE DEAL WITH. COMPUTE			
	COLOR-CORRECTED TIMES TO BE USED FOR NEXT			ANSWERS IN STACK
	PRINT. CO	UNITS OF LOR CHANGE		0.0
				RED SECONDS GREEN
				SECONDS BLUE
				SECONDS
7	IF LIGHTER OR DARKER PRINT IS DESIRED, WITH-			
	OUT CHANGING LENS SETTING, INSERT SHIFT IN f			
	STOPS (INCLUDING FRACTIONAL VALUES) POSITIVE			
	FOR DARKER AND NEG. FOR LIGHTER. TIMES			ANSWERS IN
	STORED IN R1, R2, AND R3 WILL BE COMPUTED			STACK
	AND RE-STORED.		B	0.0
	EXAMPLE: INSERT25			RED SECONDS
	FOR 1/4 f STOP CHANGE TO A			GREEN
	LIGHTER PRINT.			BLUE
8	TO RECALL TIMES FOR NEXT PRINT AND PRINT ON		D	0.0
	97 OR DISPLAY ON 67.			RED
				GREEN
				BLUE

T Z Y X

Т

Y X T Z Y X

97 Program Listing I

STEP KE	EY ENTRY	KEY CODE	СОММ		STEP	KE		ĸ	EY CODE	COM	MENTS
			COMM		SIEF	057	6		00 00	COM	
001	*LBLA	21 11				057 058	e RCLi		00 36 01		
0 02	•	-52	Calculate			059 059	RCL2		36 02		
003	ũ	<u> 30</u>	color tim			055 060	RCL3		36 02 36 03		
004	2	82		163.		061	FRST		16-14		
005	× _	-35				062	RTN		24	Chama tri	
0 06	5	83				063	*LBLC		21 13	Store ti	mes
007 000	÷	-24	Color shi	ft factor.		064	ST03		35 03		
0 08 009	ST04 X≠Y	35 04 -41				065	R.↓		-31		
003 010	0+1 3	03				066	ST02		35 02		
010 011	0	00 00				067	R∔		-31		
012	X	-35	Short deg	. on		068	ST01		35 01		
013	ST05	35 85	color whe			0 69	RTN		24		
010 014	SIN	41				070	R∕S		51		
015	χ.	-35	Sine plot	:	J	I		I			
016	18×	16 33	Red expos	uro							
017	ST×1	35-35 31	factor	ure							
018	RCL5	36 85						_			
019	1	81	Corrected	l red		 		_			
020	2	02	seconds								
021	${\cal B}$	3 8						╂──			
022	÷	-55	Sin curve	phase	 	+		╂			
023	SIN	41	shift	Funde	080	+		+			
624	RCL4	36 04						-			
025	Х	-35	Green exp	osure				+			
0 26	10×	<i>16 33</i>	factor					+			
0 27	ST×2	35-35 02									
0 28	RCL5	36 05	Corrected	lgr.				-			
629	2	02	seconds	C		1					
030	4	04 						1			
031	Ø	00 55	Sin curve	e phase							
0 32	+ 074	-55	shift	-							
033 034	SIN RCL4	41 35 04			090						
034 035	KUL4 X	-35	Blue owne	au r o							
035 036	10×	-33 16 33	Blue expo factor	sure							
0 37	ST×3	35-35 03	Corrected	1 5100							
038	DSP1	-63 01	secs	Dine							
039	GTOD	22 14	3603								
040	*LBLB	21 12				-					
0 41		-62	Calculate	print							
042	3	03	density of								
043	X	-35			100			+			
04 4	1	Ø1						+			
0 45	Ũ	88				+		+			
946	X∓Y	-41	D evelopment	f				+			
047	Y×	31	Exposure	lactor				1			
048	ENTT	-21						1			
6 49	ENTT	-21				1				SET STATUS	5
050 051	ENTT	-21	Red secor	de				\Box	FLAGS	TRIG	DISP
051	ST×1	35-35 01	Red Secor	142				\square	ON OFF		
852 857	R↓ ST×2	-31 75-75 02	Green sec	ronde				\square	0 🗆 😰	DEG 🕱	FIX 😡
0 53 0 54	51×2 R¥	35-35 02 -31	Blue seco		110			+		GRAD	
054		-31 35-35 03	Print/dis					++	2 🗆 😧 3 🗆 😧		ENG n_2
. 0 55 0 56	si⊼3 ≰LBLD	35-33 63 21 14		-							
0	1	2	3	4 REGIS	5 5		6		7	8	9
					0.5		66		S7	S8	S9
S0	S1	S2	S3	S4	S5		S6		3/	30	39
A	.1	В	С	1	D			E		I	

Program Title	COLOR PRINT PROCESS	ING IN DRUM		
Contributor's Name Address	Hewlett-Packard, Con 1000 N. E. Circle B		ion	
City	Corvallis	State	OR	Zip Code 97330

Program Description, Equations, Varia	
	presoak water temperature in the drum, and developer
temperature, from 70 degree	es F to 120 degrees F, for Unicolor B, RZ, and AR
chemistry. The formula is	
$\log_{10}^{c} = K012 \text{ Tps} -$.00643 T _D
Where Tps = presoak wate	er temperature in degrees F.
T _D = developer to	emperature in degrees F.
K = a constant v	which depends on the Unicolor chemistry being used.
t = developing	time
The values of K are:	
Chemistry	K
В	1.983
AR	2.290
R2	2.427
operating Emilie and Warnings	velop by time and temperature using the programs if you
	at a different color balance will probably be apparent
	ures. So, be consistent, keep processing temperatures
constant, at least durin	ng one processing session.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es) Find the developing time in minutes when using Unicolor Type AR Sample Problem(s) chemistry, with 110 degrees F. Presoak water temperature in the Unicolor Drum, and 30 degrees F. developer temperature. Enter 2[D] for Unicolor AR Key in 110 degrees F. Presoak water Solution(s) Chemistry. temperature, and press key [A]. Key in 80 degrees F. developer temperature, and press key [B]. Press key [C] for the answer = 2.85 minutes developing time. Since developing times to the nearest 1/2 minute are usually used, this answer would be considered as 3 minutes. Unicolor Tech Newsletter #21, July 21, 1975, prepared by Mr. Bob Reference(s) Chapman of Unicolor Division Photo Systems, Inc., 7200 Huron River Drive, Dexter, Michigan 48130. THIS PROGRAM IS A MODIFICATION OF THE USERS' LIBRARY PROGRAM #04587A

SUBMITTED BY ROBERT W. KOTZEBUE, SR.

COLOR PRINT PROCESSING IN DRUM UNICOLOR B CHEM. CARD NO. 1

Water Temp Dev Temp Dev Temp

3

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter 1 for B chemistry or enter 2 for AR			
	chemistry or enter 3 for R2 chemistry	CHEMISTRY CODE	D	
		UCD1		
2	Key in presoak water temperature in			
-	degrees F.	DDD.	A	
	degrees r.			
3	Var de las las entre transmission de la sur P			
3	Key in developer temperature in degrees F.	DDD.	B	
4	Press key [C] to calculate the developing			
	time in minutes.			M.MM
		- i		
		1		
 				
├				
├				

7

97 Program Listing I

STEP K	EY ENTRY	KEY CODE	СОММ		STEP	KE		KE	Y CODE		COMMENT	s
001	*LELD	21 14				057 050	ENTT		-21			
002	1	81				0 58	RCL1	•	36 81			
8 83		16-34				0 59	-	-	-45			
004		22 00				060	RCL2		36 02	1		
605		-31	Enter che	mistry		061	-		-45	1		
006	4	C 4	code			062	18×		(6 33			
007	X¥V?	15-35				063	RTH		24			
00 8		22 88				064	≭LB L9		21 09			
009		-31				Ø65	2		<i>82</i>			
010		35 11				066			-62			
011		24				067	4		04			
012		21 68				068	2 7		02			
013		88	Error			069	7		87			
014		-24				070	ENTT		-21	R2	Chem	
015		21 13				071	RCL1		35 01			
015 016		21 13 36 11				072	-	•	-45	1		
018 017		00 II 06				073	RCL2	-	36 02			
017 018		-55	Developin	g time		074	-	``	-45	1		
						075	18×		16 33			
0 19		35 45 00 45				075 076	RTK	•	24 - 24	1		
020		22 45							24 51			
021		21 11				077	R≓S		J1			
022		-62				+		+		1		
0 23		08			080	+		+		1		
0 24		01	Propost +	omn		+		+		-		
025		82	Presoak t	շահ.	 					4		
026		-35						+		-		
0 27		35 81						+		4		
028		24				I				4		
029		21 12						_		1		
030		-62				1						
Ø31		82 82								1		
032		63										
033		05	Der-1	t								
034		84	Developer	Cemp	090							
035		63										
035 036		-35										
036 037		-33 35 02								1		
		30 02 24								1		
0 38 070]		
0 39 640		21 07 91								1		
6 40 071	ĺ	01 - 50						1		1		
641	•	-62	1			1		1		1		
64 2		89 80				1		1		1		
043		08 07			100	1		+		1		
044		03	B Chem		 	+		+		1		
045		-21				+		+		1		
046		36 01						+		1		
047		-45						+		1		
0 48		35 Ø2				+		+		1		
0 49		-45				+		+		1		
050		1 <i>6 3</i> 3						+		1		
051		24				+		+		1		
0 52	*LBLS	21 08						+		1		
053		62			110			+		1		
		-62	AR Chem			1		+		1		
854		02				<u> </u>		+		1		
054 055	4	03		DECIG	L STERS	1		1		I		
05 5		€1 ¬			5	T	6	7		8	9	
	9		3	4				11		1 ×	1×	
05 5		2 Dev.	3	4	5							
05 5	<u>)</u> IPresoak		3 S3		S5		S6	S	7	S8	S9	
05 5	9 ₁Presoak Temp.	2 Dev. Temp.						S	7	S8	S9	
05 5	9 ₁Presoak Temp.	2 Dev. Temp.						S' E	7	S8	S9	

Program Title	CIBACHROME RECIPROCITY C	CORRECTIO	N		
Contributor's Name	HEWLETT-PACKARD				
Address	1000 NE. CIRCLE BLVD. CORVALLIS	.	OP	7. 0. 1	07220
City	CORVALLIS	State	OR	Zip Code	9/330

Computes exposure times and filter pack Program Description, Equations, Variables corrections from desired theoretical exposure change. Reciprocity failure and filter correction data from the reference are programmed as $\log t_2 = 1.279 D + \log t_1$ $Y = -3 \log^2 t_2 + 15 \log t_2 - 6.4$ $-7.2 \log^2 t_2 + 1.08 \log t_2 + 1.12$; $t_2 < 30 \text{ sec}$ C = $-20 \log t_2 + 16.5$; t₂ > 30 sec where $t_1 = Exposure$ time for test print D = Desired Log exposure change t₂ = Exposure time for new print Y = Yellow filtration correction for reciprocity failure C = Cyan filtration correction for reciprocity failure Note: 0 filtration correction corresponds to 3 sec exposure Published data are given from 3 to 300 sec. actual Operating Limits and Warnings $\,^{1}\cdot\,$ exposure time. Reciprocity curve is log-log linear over entire region and can thus probably be extrapolated beyond 300 sec. Yellow filtration appears assymptotic to +12 as 300 sec is approached and cyan filtration is log-log linear beyond 30 sec. User should understand that numbers computed beyond 300 sec. are 2. Filters are accurate to ± 2 units (0.02 density). extrapolations. 3. Published data pertain to type D material but program is primarily used by author successfully with type A.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s) 1) A test print was correctly color balanced but 1 stop (0.3 log units) under exposed at 15 sec. Find the new exposure and filter pack changes
required.
2) A pleasing print is made with 300 sec. exposure time. It is desired to shorten
this time to speed production. The enlarger lens is opened 3 stops (.9 log units)
requiring a reduction of a like amount in exposure time. Find the new exposure
time and filter pack changes.
Note: a) A 1 stop change corresponds to a doubling or halving of exposure. Log
2 = .3 Thus a .1 change corresponds to $1/3$ stop.
b) Filtration changes are given as 100 times the log of the filter density
as is the common practice.
Solution(s) 1) 15 A 7 (Yel filter Rel. to 3 sec. exp.)
R/S -8 (Cyan filter Rel. to 3 sec. exp.) optional
.3 B 36 New exposure time, sec
C 3 Add 3 yel (log Dens = $.03$)
D -7 Subtract 7 Cyan (log Dens = .07) 2) 300A 12 (Cyan filter Rel. to 3 sec.)
.9[CHS]B 21 New exposure time, sec.
C = 4 Remove 4 yel (.04)
D 23 Add 23 Cyan (.23)

Reference (s)	CIBACHROME PRINT TYPE D CCP-D 182
a construction and a construction of the	Technical Data Booklet No. 23, Feb., 1973
	Ciba-Geigy Photochemie Ltd., Fribourg, Switzerland.
	THIS PROGRAM IS A TRANSLATION OF THE HP-65 USERS' LIBRARY PROGRAM
· · · · · · · · · · · · · · ·	#04507A SUBMITTED BY ANDREW J. DELANGE

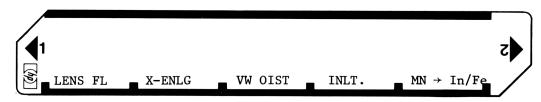
		CIBACH	ROME RECIPR	OCITY	7
(<i>qh</i>)	t ₁	∆d_t j ^t 2	■ ^Y CORR		

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load program			
2	Enter last print t ₁	sec.	Α	Y filter log_units
2a*	Compute C Filter		R/S	C filter log units
3	Compute New t	Log Exp. Change	B	
4	Compute Y Filter Chg	ondige	C	Tog units
5	Compute C Filter Chg			t2 <u>sec</u> Ay log units ∆C log units Y new log units C new log units
5 6*	New Y filter		RCL 7	Y new
7*	New C Filter		RCL 8	C new
/~	New C Filler			log units
*OB	TIONAL, CORRECTIONS RELATIVE TO 3-SECOND EXPOS	URE		
		1		
		1		

04								
STEP KE	Y ENTRY	KEY CODE	COMMENTS	STEP	KE	Y ENTRY	KEY CODE	COMMENTS
								00111121110
	*LBLA	21 11			057	2	Ø2	
002	DSPØ	-63 00			0 58	ENTŤ	-21	
003	LOG	16 32	Input Test Exp., t ₁		059	1	ð 1	
004	ST01	35 01	1		060	-	-62	
005	GSBE	23 15						
			Compute Y and C		061	0	00	
066	rcl8	36 08	-		062	8	08	
067	STO3	35 03	STO C IN3		063	RCL1	36 01	
00 8	RCL7	36 07	310 C INS		064	Х	-35	1.08 log t ₂ +1.12
609	ST02	35 82			065	÷	-55	<u> </u>
	R/S	51	STO Y in 2 & DSPLY					
016					066	RCL1	36 01	
011	RCL3	36 83			0 67	ENTT	-21	
012	R∕S	51	DSPLY C		068	X	-35	
013	*LBLE	21 12			0 69	7	8 7	
014	1	01			070		-62	
	-	-62						1.08 logt ₂ +1.12-
015	•				071	2	02	-7
016	2	<i>02</i>			072	Х	-35	2.2 log ⁻ t ₂
017	7	07			073	-	-45	-
018	9	09			074	ST08	35 08	
019	λ	-35			075	1	01	Sto C
			Input Desired Dens.			1		
020	RCL1	36 01	$\log t_{2} = 1.279d + \log$		076	•	-62	
021	÷	-55	new exp.		677	4	84	
022	STO1	35 01			078	3	88	
023	10×	16 33			079	RCLĪ	36 01	
024	RTN	24	Display new exp.					1
					886	X≟Y?	16-35	log t ₂ , log 30
-	¥LBLC	21 13	Compute filter		081	RTK	24	-
026	GSBE	23 15	changes		0 82	RCL1	36 01	linear portion
0 27	RCL7	36 07	Compute new Y		0 83	2	02	-
028	RCL2	36 02	Recall new Y		0 84	Ū	00	
		-45	Recall old Y					
0 29	-		Difference		0 85	Х	-35	
030	RTN	24	Change in Y filtra-		8 86	CHS	-22	
031	*LBLD	21 14	tion		087	1	01	
032	RCL8	36 08	Compute C change		088	6	06	
033	RCL3	36 03	Recall new C					
			Recall old C		0 89	:	-62	16.5-20 log t ₂
034	-	-45	Difference		090	5	Ø5	10. J-20 10g L ₂
035	RTN	24	Change in C filtration		091	+	-55 .	
036	*LBLE	21 15			092	ST08	35 08	STO C
037	6	86	Y & C computation		0 93	RTN	24	STO C
038		-62						
	•			1	094	R∕S	51 .	
039	4	Ø4	-6.4		ł		+	
040	CHS	-22			 			
041	ENTŤ	-21						
042	ب	01 05						
	5	05 05	log t					
043	5	00 74 74	log t ₂	100	+		<u> </u>	
844	RCL1	36 01			+		 	
045	X	-35 -55					l	
046	÷	-55	15 log t ₂ -6.4					
047	RCL1	35 01						
		-21	log t ₂					
0 48	ENT†	-21			+		tt	
84 9	Х	-35 03 -35			+		<u> [</u>	SET STATUS
050	3	63	2 1 0 .				+	
051	Х	-35	3 log 2t ₂				FLAGS	TRIG DISP
052	-	-45				_	ON OFF	
052		75 07	$15 \log t = 2 \log^2$					DEG 😡 FIX 😠
0 53	STO7	35 07	15 log t ₂ -3 log ² t ₂ -6.4	110			ON OFF 0	GRAD 🗆 🛛 SCI 🗆
854	1	01	t ₂ -6.4		1		2	RAD 🗆 ENG 🖵
0 55		-62	STO Y		+			RAD \square ENG $\frac{\square}{2}$
856	i	81			1			
	·			STERS		-		
0	1	2	3 4	5		6	7	8 9
S0	S1	S2	S3 S4	S5		S6	S7	S8 S9
A	L	В	С	D			E	I
			ĭ	-			-	

Program Description I

Program Title								
Contributor's Name Hewlett-Packard, Corvallis Division								
Address	1000 N. E. Cir	1000 N. E. Circle Blvd.						
City	Corvallis	State OR	Zip Code 97330					


Program Description, Equations, Variables (VIEWING DISTANCE) ("X"- ENLARGEMENT) (LENS FOCAL LENGTH) = (VIEWING DISTANCE) ("X" ENLARGEMENT) = (LENS FOCAL LENGTH) ("X" ENLARGEMENT) (LENS FOCAL LENGTH) (VIEWING DISTANCE) = PRINT MAGNIFICATION **DIAMETERS:** WHERE: $(N_1)^2 + (N_2)^2$ $N_1 \equiv ONE NEGATIVE SIDE$ $N_2 \equiv$ Second and Perpendicular NEGATIVE SIDE $P_1 \equiv ONE PRINT SIDE$ $(P_1)^2 + (P_2)^2$ $P_2 \equiv$ 2ND 1 PRINT SIDE Operating Limits and Warnings LENS FOCAL LENGTH AND VIEWING DISTANCE VALUES MUST BE A MILLIMETER INPUT.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es) Sample Problem(s) A) A photo was taken with a 135 mm lens and enlarged 8 times (negative size). What is the proper viewing distance in feet necessary to maintain proper subject perspective? B) You have a photo you wish to be viewed from 20 feet. It was taken with a 105 mm lens. How many diameters enlargement should the print be? C) You wish a 12X print which will be viewed from 1800 mm. What focal length lens should you use? D) Your negative size is 24 mm X 36 mm; your print size is 508.00 mm X 762.00 mm. What is the magnification factor? A) 3.54 feet. [D]135 [A]8 [B][E][R/S] \rightarrow 3.54 Solution(s) B) 58.06X[D]105 [A]20[f][B][C] → 58.06X (negative size) C) 150.00 mm lense [D]12 [B]1800 [C] → 150.00 D) 21.17 X 24[ENT⁺] 36[ENT⁺] 508[ENT⁺] 762[F][A] \rightarrow 21.17 X THIS PROGRAM IS A MODIFICATION OF THE USERS' LIBRARY PROGRAM #01411A Reference (s) SUBMITTED BY STUART A. RIGG.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	ENTER PROGRAM			
2	INITIALIZE		D	
	(TO FIND:)			
3	LENS FOCAL LENGTH	"X"-ENLG	В	0.00
	(OR) MM	VW. OST	С	LENS FL(MM)
3	DIAMETERS ENLARGEMENT MM	LENS FL	Α	0.00
	(OR) MM	VW. OST	C	"X" ENLG
3	VIEWING DISTANCE FOR PRINTS MM	LENS FL	Α	0.00
		"X"-ENLG	в	VW-OST (MM)
4	$MM \rightarrow INCHES-FEET$	MM	E	INCHES
			R/S	FEET
	TO FIND DIAMETERS ENLARGEMENT			
5	NEGATIVE SIZE (TWO SIDES 1)	MM		
		MM		
	PRINT SIZE (TWO SIDES 1)	MM		
		MM	f A	"X"-ENLG
6	FEET → MM	FEET	fC	MM
7	INCHES \rightarrow MM	INCHES	f C	MM
	(FOR A NEW CASE GO TO STEP 2)			
	* LENS FOCAL LENGTH AND VIEWING DISTANCE			
	MUST BE IN MILLIMETERS.			
		_		

					/			
STEP K	EY ENTRY	KEY CODE	COMMENTS	STEP	KE	Y ENTRY	KEY CODE	COMMENTS
061	*LBLA	21 11	LENS FOCAL LENGTH		057	RTN	24	
002	ST01	35 01			0 58	+	-55	
	CLX	-51	ROUTINE		0 59	X≢Y	-41	
003								
004	RCL2	36 02			060	÷	-24	
0 05	X≠Y?	16-32	CHECK FOR PREVIOUS		061	RTN	24	
0 06	GT04	22 04	ENTRIES		062	≭LB L2	21 02	
007	RCL1	36 01			0 63	RCL3	36 03	
00 8	GTO1	22 01			0 64	RCL2	36 02	
00 9	¥LBL4	21 84			0 65	Ø	00	END ROUTINE
0 10	1	01			066	X=Y?	16-33	
011	RCL1	36 01			067	RTN	24	
012	X	-35			068	+	-55	
013	X	-35			069	÷	-24	
013 014	RTN	24			070	RTN	24	
		27 07 70	DIAMETERS ENLARGE-					
015	*LBLB	21 12			071		21 16 11	
016	STO2	35 02	MENT		072	÷₽	34	
017	CLX	-51			073	STC4	35 04	DIAMETERS
0 18	RCL1	35 81			074	R↓	-31	DIAMETERS
B 19	X≠Y?	16-32			0 75	R↓	-31	MAGNIFICATION
0 20	GT05	22 05			076	÷₽		
821	RCL2	36 02			677	RCL4	36 84	
022	GT01	22 01			078	X≠Y	-41	
023	*LBL5	21 05	CHECK FOR PREVIOUS		079	÷	-24	
023		01	ENTRIES		080	RTN	24	
	1 nev a							
0 25	RCL2	36 02			0 81		21 16 12	$FE \rightarrow MM$
026	X	-35			0 82	1	01	
0 27	X	-35			0 83	2	Ø2	
0 28	RTN	24			0 84	X	-35	
029	*LBLC	21 13	VIEWING DISTANCE		085	*LBLc	21 16 13	
030	STO3	35 03			086	2	02	
031	CLX	-51			0 87	5	85	
032	RCL1	36 81	CURCE FOR DREVIOUS		6 88		-62	$IN \rightarrow MM$
033	X=Y?	16-33	CHECK FOR PREVIOUS		089	4	04	
0 34	GT02	22 02	ENTRIES		090	X	-35	
								1
0 35	RCL3	36 03			0 91	RTN	24	1
036	X≠Y	-41			092	R∕S	51	1
037	÷	-24			+			4
0 38	RTN	24					+	4
039	*LBLD	21 14						4
848	CLRG	16-53	INITIALIZE				+	4
041	RTN	24		L			+	4
042	*LBLE	21 15		L				4
843	2	02]
6 44	5	02 05		100				J
	5	-62						
8 45 846	•		$\text{NM} \rightarrow \text{IN} \rightarrow \text{FT}$]
046	4	04 04			1		1	1
04 7	÷	-24			1			1
04 8	R∕S	51			+		+	1
0 49	1	01			+		+ [SET STATUS
050	2	02			+		+ +	
0 51	÷	-24		<u> </u>	+		FLAGS	TRIG DISP
052	RTN	24		 	+			
053	¥LBL1	21 01		110	+			DEG 坂 FIX 坂 GRAD □ SCI □
0 54	RCL3	36 83	END ROUTINE		+			GRAD □ SCI □ RAD □ ENG □
0 55	RCEO Ø	88		 	+		$\begin{array}{c c} 2 & \Box & \mathbf{x} \\ \hline 3 & \Box & \mathbf{x} \end{array}$	n_2
8 55 8 56	X=Y?	16-33			1			
	<u>A-1?</u>			STERS				
0	1	2	3 4	5		6	7	8 9
S0	S1	S2	S3 S4	S5		S6	S7	S8 S9
A	- I] B	c	D			E	I
1								

Program Description I

Program Title	PHOTO/IMAGE DISPLAY PAR	AMETERS							
Contributor's Name	Contributor's Name Hewlett-Packard, Corvallis Division								
Address	1000 N. E. Circle Blve.								
City	Corvallis	State	OR	Zip Code 97330					

Program Description, Equations, Variables Photo or image interpretation can be accomplished from photographic film, projected, or displayed on closed circuit TV viewing systems. This program computes parameters of interest that can be determined from known system and data characteristics. Computation sequence is to solve for scale, pixel dimensions, number of pixels, scan lines per pixel, magnification for 1 line/ pixel portrayal, and maximum viewing distance for visual acuity limiting. All quantities are stored for later review. Input data coverage (naut. mi.)-[f][LBLA] Calculate Scale Input data field (inches). <u>n.mi.</u> x <u>12 in.</u> x <u>6076 ft.</u> in. ft. n. mi. Scale, manual entry_ Input res. ele (LBL A) Calculate pixel dimension size (ft.) $=\frac{12 \text{ in./ft.}}{x}$ ft. scale pixel Pixel dim, man. entry (LBL B) Calculate pixels across scan Input scan disp. dimdisplay dimen. In. (Inches) <u>in/ pixel</u> Pixel/scan, man. entry~ Input display scan-(LBL C) Calculate lines/pixel lines (number) display scan lines pixel/scan (R/S) Calculate mag. for 1 line/pix pixel = line [f][LBLD] Calculate in,/scan line Disp. pixel dim. Display dimension in. scan lines (inches) entry (LBL D) Calculate max view dist. for 1 minute are visual acuity limiting in./scan line - 2 - Tan 30 sec arc (LBL E/PS's)Recall parameters and solutions [f] [LBLB] Auto Display. The manual entry provision allows starting anywhere in the program for individual computation.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Utilize th	e program to dete	rmine paramete	ers for a photo image
Sample Problem(s) covering 10	nautical miles o	ver a 2.5-inch	field. Assume 50 foot
resolution. Consider TV	display on a 17 - i	nch monitor wi	th a 10.2-inch vertical
dimension (4/3 aspect rat	io), utilizing a	1225 line rast	er (1190 active line scans).
Enter data coverage Enter data field	10 nmi.	↑	
Enter resolution element	2.5 in. [f][A] 50 ft.	A	291648 (: 1) 0.00206 in.
Enter scan display dimins	.10.2 in.	B	4958.02
Enter display lines	1190	Č	0.24
Find magnification		R/S	4.17
Find Max. viewing dist.	[f][D][D		29.47 in.
Recall quantities.		E R/S	291648 0.0021
		R/S	4958.0160
		R/S	0.2400
		R/S	4.1664
		R/S	29.4672
		R/S	1190.0000
		R/S	10.2000
Solution(s) #2 Find pixel dimensions scale.	for a resolution	element of 20	ft. on a 100,000 : 1
Enter scale	100,000	†	
Enter Resolution ele.	20 ft.	Å	0.00240 in.
			0.00240 111.
Reference (s)			
•••			

٢	4 1
	ð,

SCALE (AUTO REVIEW 1) IN./SCAN LINE PHOTO / IMAGE DISPLAY PARAMETERS DIST. LN/PIX PIXEL NUMBER

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Enter data coverage (naut. miles)	Naut. mi.	↑	
3	Enter data field dimension (inches).	Inches	f A	Scale
4	If step 2 & 3 not used, enter scale	Scale		1
5	Enter resolution element size (feet)	Feet	Α	pixel size
6	If step 5 not used, ent data pixel dim.	(inches)		
7	Enter scanning display dimension (inches)	Inches	B	number pixels
8	If step 7 not used, ent 1 dim. pixel number	Dim		
9	Enter number of display scan lines		C	lines pixel
10	Find magnification for 1 line/pixel		R/S	mag
11	If steps 7 & 9 used (for 1 line/pixel)		F D	inches scan line
12	If steps 7 & 9 not used, ent display pixel			
	dim.	(inches)		
13	Find limiting visual acuity distance		D	inches
14	Recal quantities			
	Reg. 1 Scale			
	Reg. 2 Data pixel dimension		R/S	
	Reg. 3 Number of pixels across disp.		R/S	
	Reg. 4 Scan lines/pixel		R/S	
	Reg. 5 Magnification for 1 line/pixel		R/S	
	Reg. 6 Visual acuity limit distance		R/S	
	Reg. 7 Display scan lines		R/S	
	Reg. 8 Display dimension	- '	R/S	
	Return to step 14 Reg. 1		R/S	
15	To automatically display the quantities or		FBB	
	print them on 97			
		-		
		44		

STEP	KE	Y ENTRY	KEY CODE	COMMENTS	STEP			KEY CODE	COMMENTS
			ai iz ii			057		51	1
		*LDL0. ÷	21 16 11 -24	ENTER DATA COV. (†)		058	RCL2		
	902 907		07	ENTER DATA FIELD		059	R∕S		
	803 204	2	82 82			060	RCL3	36 03	
	904 205	2 9	89 89			061	R∕S	51	
	005 205	2				062	RCL4	36 04	
	006	1	81			063	R∕S		
	007	2	02 75	CALCULATE SCALE		064	RCL5	36 05	
	008	X				0 65	R/S	50 50	
	009	DSP2	-63 02			0 66	RCL6	36 06	
	010	3T01	35 01			0 67	R/S	50 50	
	011	RTN	24			0 68	RCL7	36 Ø7	
		*LBLA	21 11	ENT. RES ELE SIZE					
	013	1	01			069 070	R/S		
	014	2				070 071	RCL8		
6	015	Х	-35	CALCULATE PIXEL		071		51	
(016	X ≠ ?	-41	DIMENSION		072	GTOE	22 15	
	017	÷	-24	DIFIENSION		073		21 16 12	
	018		-63 05			074	DSP4	-63 04	AUTOMATIC PRINT
	019	ST02	35 02			075	RCL1	36 01	
	020	RTN	24			076	RCL2	36 82	
	020 021	*LBLE	21 12 35 08			077	RCL3	36 03	
	022	STC8	75 08	ENT SCAN. DISP DIM		078	RCL4	36 84	
	022 023	3100 X≠Y	-41	CALCULATE NUMBER		079	PRST	16-14	
	023 024	n+: ÷	-24	OF PIXELS ACROSS		080	RCL5	36 05	
				DISPLAY		081	RCL6	36 06	
	025 005	DSP2	-63 02	DISPLAT		082	RCL7		
	026	STO3	35 83			083	RCLS	36 88	
	027	RTN	24	ENT DISPLAY SCAN		084	PRST	16-14	
		*LBLC	21 13	LINES		0 85	RTN	24	SET UP FOR SCAN-
	029	ST07	35 07	21120		0 86		21 16 14	
	030	X≠Y	-41						
	031	÷	-24	CALCULATE LINES/		0 87	RCLS	36 08 76 07	PIXEL DIMENSION
	032	DSF2	-63 02	PIXEL		0 88	RCL7	36 07	
	033	ST04	35 84			0 89	÷	-24	
	034	R∕S	51			090	RTN	24	
é	035	1/X	52			0 91	R∕S	. 51	
6	036	ST05	35 05	CALCULATE MAG FOR					4
	037	RTN	24	1 LINE/PIXEL				+	4
6	0 38	*LBLD							4
	039	2	Ø2	ENT. SCAN DISP					4
	040	÷	-24	PIX				 	4
	041	-	-62						4
	042	Ø	80	CALCULATE MAX.				 	4
	042 043	0	66	VIEWING DISTANCE				l	4 .
	043 044	8	96	FOR 1 MIN. ARC	100				4
	044 045	е 1	01 01	VISUAL ACUITY				ļ	4
	04J 046	-	01 84					ļ	1
		4 5							1
	047 040	о 4	85 24			1			4
	948 940		84					L	L
	04 9	4	04				FLAGS		SET STATUS
	850 251	÷	-24			D0		FLAGS	TRIG DISP
	951	DSP2	-63 82					ON OFF	T
	952	ST06	35 86	RECALL ALL STORED				0 🗆 🛛	DEG 🛛 FIX 😰
	953	RTH	24		110	2		1 🗆 🖾	
		*LBLE	21 15	QUANTITIES.		3			RAD ENG
	955	DSP4	-63-84					3 🗆 🙀	n_2
	356	RCL1_	38 01		STERS				
0		1	2	3 4	5		6	7	8 9
							0.0		
S0		S1	S2	S3 S4	S5		S6	S7	S8 S9
			<u></u>						
Α			В	С	D			E	I

Program Description I

Program Title IM	AGE PROJECTION DATA			
Contributor's Name Address	Hewlett-Packard, Corvall 1000 N. E. Circle Blvd.	is Division		
City	Corvallis	State OR	Zip Code	97330

Program Description, Equations, Variables Provides unknown required to select proper lens, projection distance, screen size when 2 are known, then gives maximum viewing area, estimates seating capacity, gives minimum and maximum viewing distances, uses film format factor stores in R4, works for 8, Super 8, 16 mm 35 full and half frame, 110, 126, 127, 120 (2 1/4 sq) film sizes and for 5, 7, 10 "overhead projectors. [Format factors for different sizes can be figures closely by formula 2.16 x width of original (in mm)] provides for conversion formula 2.16 x width of original (in mm)] provides for conversion of inches to feet and mm to inches.

Formula(s) F = Factor L = Full Length S = Screen width 0 = DistanceTo find Distance = (s + F) X L

TO TING DIStance	
To find Lens	$= D \div (s \div F)$
To find <u>S</u> creen	$= F X (D \div L)$
Viewing Area	$= S^2 + 11$
Minimum Dist.	= S X 2
Maximum Dist.	= S X 4
Capacity	= (Viewing Area) + 6 (6 sq' per person)

Operating Limits and Warnings FORMAT VS. FACTOR ROUTINE

Run or store new factor in R4 to change format. _ 110 film factor assumes 110 projector is used, which may result in slight error if 35 mm projector used. Similarly for other sizes not shown in proper projector. - Viewing area, capacitiesetc., are estimated and actual figures vary depending on room characteristics and seating arrangement, etc. Recommend reduction by 25% for audience comfort.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)	FORMAT VS.	FACTOR REFERENCE (F)		Ì
[A] 16 (mm) F (4.68)	[B] 127 F (18)	[C] 120 (21/4 ^{sq}) F(26.4)	[D] 10 (10x10) F(120)	[E] S
[R/S] 8 (mm) F (2.54)	[R/S] 126 F (12.6)		[R/S] 7 (7x7) F (84)	T O R
[R/S] 58 (^{super})	×	[R/S] 35.5 1/2 frame	[R/S] 5 (5x5)	E S
F (2.09)	F (7.35)	F (10.8)	F (60)	''F'' IN
				R 4

Sample Problem(s) Projector showing 35 mm slides on 8' screen requires what <u>distance</u> [1] to fill screen? Lens is 80 mm. Being limited to 6' projection distance what <u>size</u> [2] is image? This is unsatisfactory, so what lens [3] would solve problem? Since only the projection distance is limited, what is the estimated viewing area [4], audience capacity [5], and minimum [6] and maximum [7] viewing distances?

NOTE: Screen or image size is only required data for [4], [5], [6], [7], and previous problems need not be solved first.

Solution(s) [f] [C] = 120, [R/S] = 35 (mm), [f] [E] = 15.96; 80 [E] = 3.15", [B] = 0, 8 (ENTER), 12 (X), (C)=0; A 18.9' [1]; 6[A] = 0, [C] = 30.4" [2]; 96[C] = 0, [B] = 1.0" [3] [D] = 8.37.8^{sq'}[4]; R/S = 140 people [5]; R/S = 16.0' min [6]; R/S = 48.0' max [7]

Reference(s) Various slide rule calculators as available from knox, radiant, daylite screen manufacturers.

This program is a modification of the Users' Library program #0377A submitted by Harry M. Sweeney

	MOTION	SMALL LARGE	OVER	STORE FACTOR	7
		IMAGE PROJECTION DATA			
(hp)	FEET	LENS SCREEN	CAP	MM→IN	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	к	EYS	OUTPUT DATA/UNITS
1	Load side 1 and 2				
2	Select proper format from				
	a. Motion picture label 16mm		f	A	16
	and for regular 8mm		R/S		8
	and for super 8mm		R/S		58
	b. Small format label (127)		f	B	127
	and for 127 Instamatic		R/S		126
	and for 110 Instamatic		R/S		110
	c. Large format label (120/220)		f	C	120
	and for 35mm full frame		R/S		36
	and for 35mm 1/2 frame		R/S		35.5
	or				
	d. Overhead format label (10X10)		f	D	10
	and for 7 X 7 size		R/S		7
	and for 5 X 5 size		R/S		5
3	Convert and store factor	Format	f	E	Factor
	or				
4	Enter other format				
	a. Store any known format factor without				
	use of tables	Factor	STO	4	
	or				
	b. Estimate unknown format factor without use				
	of tables by entering original image				
	width (longest OlM.) and	MM	†	2	
	multiply by 2.16		•		
			6	X	Factor
	Store in R4		STO	4	
5	Input known variables:				
	a. Projection distance	Feet	Α		0
	and/or				
6	Focal length or	Inches	B		0
	Focal Length	MM	E		0
	and/or				
	c. Screen image size (width)	Inch	C		0
	then				
6	Find unknown:				

TEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
6	a. Projection distance	0	A	Feet
	or			
	b. Focal length	0	В	Inch
	or			
	c. Screen image size (width)	0	C	Inch
	Then: (Optional)			
7	Find Suggested Seating Area		D	Sq. Feet
	and then: (Optional)			
8	Find capacity of area	Area	R/S	People
	and then: (Optional)			
9	Find minimum viewing distance		R/S	Feet
	And then: (Optional)			
10	Find maximum viewing distance		R/S	Feet
	NOTE: Only screen size (Step 3) is			
	required for computations in Steps 7			
	through 10.			
	For new problem, repeat Steps			
	5 through correcting variables affected only.			
	Repeat Steps 2 through 4 only if format			
	changed.			

					S • • • • • •		74 I						
STEP	KE	Y ENTRY	KEY CODE	COMM	ENTS	STEP	KE	YENTRY	к	EY CODE		CO	MENTS
	001	¥LBL A	21 11				057	DSP1		-63 ØI	1		
	002	DSF1	-63 81	"FEET" PR	OJECTION		05 8	RCL3		36 03	RC	l "So	REEN"
	002 003	DOI 1 E	00 00	DISTANCE			0 59	ENTŤ		-21			
							060	~		-35	50	UARE	
	004	X=Y?	18-33	"FEET" UN	KNOUN?		061			01	54	UARE	
	005	GTOÍ	22 01	CALCULATE				4					
	006	R↓	-31	CALCULAIT	•		0 62	ن		01			
6	007	ST01	35 01				063	÷		-24	S ²	÷ 11	_
6	908	Ø	00	"FEET" KN	OWN-STORE		0 64	R∕S		51	DI	SPLAY	AREA
6	009	RTN	24	R1 - DISP			065	6		66			
	010	¥LBL1	21 01				066	÷		-24	(S	2 🔺 -	1) + 6
	011	RCL3	36 03	CALCULATE	"FEET"		067	DSPØ		-63 00			
	012 012	RCL4	36 83	ROUTINE RCL "SCRE	ENU		068	R∕S		51	AU	DIENO	CE CAPACITY
				RCL FACTO	R		069	DSF1		-63 01			
	013	÷	-24				070	RCL3		36 83	RC	T "C	REEN"
	014	RCL2	36 02	RCL "LENS	"								
	015	X	-35				671	6		06		÷ 12	X 2 = SAME
	016	ST01	35 01	STORE "FE	= "FEET"		0 72	÷		-24	S	÷ 6	<i></i>
(017	RTN	24				073	R∕S		51	MI	NIMUN	1 DISTANCE
	018	*LBLE	21 12	DISPLAY "	FEET.		074	3		03	S	÷ 12	$X = \frac{1}{2}$
	B 19	DSF 1	-63 01	"LENS" RO	UTINE		075	Х		-35	C	• 12 • 6 2	, <u> </u>
				LENS KU	UIINE		076	R∕S		51	б	÷ 0 4	
	020	8	00				077	*LBLE		21 15	MI	NTWN	1 DISTANCE
	021	X=Y?	16-33	"LENS" UN	KNOWN?		078	DSP2		-63 02	CO	NVFR	MM INTO
	022	GTO2	22 02	CALCULATE								CHES	
	023	R↓	-31	CALCULATE	•		0 79	2		62	IN	CHES	
6	024	ST02	35 82	STORE "LE			086	5		05			
	025	8	00	SIOKE LE	NS KZ		0 81			-62			
	626	RTN	24	DISPLAY C			0 82	4		04			
		*LBL2					083	÷		-24			
	027		21 82	CALCULATE			084	RTH		24	IN	CHES	
	028	RCL1	36 01	RCL "FEET	11		085	*LBLe	04	16 15		01120	
	0 29	RCL3	36 03	RCL "SCRE	EN"						ST	ORE 1	FACTOR IN
(030	RCL4	36 04	RCL "FACT			0 86	DSP2		-63 02	R4		
(031	÷	-24				0 87	R∔		-31			
	032	÷	-24	FEET + (S	÷F) =		0 88	ST04		35 04			
	033	ST02	35 02				089	RTN		24			
				"LENS" ST	ORE R2		090	*LBLe	21	16 11			
	034	RTN	24	DISPLAY "	LENS"		091	DSPØ		-63 00			
	035	*LBLC	21 13	DIGI MII						00 00			
	036	DSP1	-63 01	"SCREEN"	ROUTINE		092	4					
	037	Ø	00				6 93	•		-62	16	MM	FACTOR
(038	X=Y?	16-33				0 94	6		06			noron
	039	GTO3	22 03	"SCREEN"	UNKNOWN		095	8		02			
	040 040	0,00 R↓	-31	CALCULATE	!		096	ENT†		-21			
							097	1		Ø1			
	041 040	ST03	35 03	"SCREEN"	KNOWN		098	ő		86			
	042	0	00		DTODIAU A		0 99	R∕S		51	16	MM D	LSPLAY
	043	RTN	24		DISPLAY 0								
(0 44	≭LBL 3	21 63	CALCULATE	SCREEN		100	2		02 50			
	045	RCL1	36 31	RCL "FEEI			101	•		-62			
	0 46	RCL2	36 02				102	5		05	RE	GULA	R 8MM
	047 047	÷	-24	RCL "LENS			103	4		04	FA	CTOR	
		RCL4	35 04				104	ENTŤ		-21		-	
	048 040			RCL "FACI			105	8		02			
	649	X	-35	"SCREENS"	=FX(FEET		106	R∕Š		51	8M	M DI	SPLAY
	050	ST03	35 03	÷L)			100	r, 5 2		82			
	051	R∕S	51	STORE "SC				4					
(052	1	Ō1	AND DISPL	AY		108	:		-62	R	FACT	
1	053	2	<i>82</i>		· · · · · · · · · · · · · · · · · · ·		109	Ø		00	0	THOI	
	0 54	÷	-24	CONVERT 1			11D	9		89			
	055	RTN	24	VIEWING F	OUTINE		111	ENTT		-21			
	056 056						1		1		1		
	036	*LBLD	21 14		REGIS			<u>^</u>	r	7			
0		1	2	3	4 FACTOR	0		6		7	8		9
						26		S6		S7	S8		S9
S0		S1	S2	S3	S4 S	55		30	ľ	07	30		53
<u> </u>				- <u> </u>	└ ┤ ,	C			Ε			I	
Α			В	С	ľ	ر			l C			l .	
I													

STEP KE		KEY CODE	COMMENTS	STEF			KEY CODE	COMMENTS
<u>112</u>	5	05						
112	8	63 63			166	ENT	-21	
113	R∕Š	51	"S"8 DISPLAY		167	3	<i>33</i>	
114		21 16 12			168	5	05 60	
115	∔LBL € DSF0	-63 00			169	•	-62	
117		-05 00 01			178	5	05	
117	1 8	02	127 FACTOR		171	DSP1	-63 01	35MM 1/2 FRAME
118	ENTT	-21			172	R∕S	51	DISPLAY $(.5 = 1/2)$
119	ENII	81			173		21 15 14	
120	- -	02			174	DSPG	-63 00	
	2 7	02 07			175	1	81	100 1107101
122		51	127 DISPLAY		176	2	02	120 = "10X10"
123	R∕Ş	01			177	Ū.	66	FACTOR
124	1 2	82	126 FACTOR		178	ENT†	-21	
125			120 morok		179	1	81	
126	6	-62 86			180	Ū	00	"10X10" DISPLAY
127					181	R/3		R IUXIU DISPLAT
128 128	ENT1	-21			182	8	08	5
129	1	01 02			183	4	04	'"7X7" FACTOR
130	2	82 87			184	ENT	-21	
131	6	85	126 DISPLAY		185	7	07 	
132	R∕S	51 97	120 DISPLAT		186	R∕S.	51	"7X7" DISPLAY
133	7	07 62			187	6	0 <i>E</i>	1
134	3 5	-62	110 FACTOR		188	Ū	00	"5X5" FACTOR
135	ک -	83 05	110 PACION		189	ENTŢ	-21	
136		Ø5			190	5	05	4
137	ENT†	-21			191	R/S	51	"5X5" DISPLAY
138	Î,	01 		L			I	JAJ DISILAI
139	1	01						4
140	0	00	110 570514					4
141	R∕S	51	110 DISPLAY					4
142		21 15 13		200			+	4
143	DSPØ	-63 00						4
144	2	02						4
145	6	05	120 FACTOR					4
146	•	-62			_			4
147	4	04						4
148	ENTT	-21						4
149	1	01						4
150	2	02						4
151	8	88					 	4
152	R∕3	51	120 DISPLAY	210			+	4
153	1	01					 	4
154	5	Ø5						4
155	:	-62	35 FULL FRAME				†	4
156	9	89 86	FACTOR				 	4
157	Б 5074	Ø6					<u> </u>	1
158	ENT†	-21					t	1
159	3	Ø3 05						1
160	5	85 51	35MM DISPLAY					1
161	R∕3	51					<u> </u>	1
162	i	81 99	220			t	1
163	8	80 - 62	35MM HALF FRAME				1	1
164		-62	FACTOR					1
165	3	88]
							1	
A	в	С	LABELS D	E	0	FLAGS		SET STATUS
							FLAGS	TRIG DISP
а	р	с	d	е	1		0N OFF 0 🗌 🕱	DEG 🛛 FIX 🖾
0	1	2	3	4	2			GRAD SCI
5	6	7	8	9			2 🗆 🔀	$\begin{array}{c c} \text{RAD} & \square & \\ \text{RAD} & \square & \\ n \underline{\qquad} n \underline{n n} n n$
-	ľ	ľ	Ĭ	Ŭ	ľ		3 🗆 🕱	n_ <u>_</u>

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing / Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability/QA	Forestry

PHOTO DARK ROOM

If you ever work in a darkroom developing film or enlarging, these programs will save you time and effort. Eliminate the guesswork by using these programs to compute the various parameters.

MACRO-PHOTOGRAPHY AND ENLARGING

TIME, F-STOP, MAGNIFICATION, PAPER SPEED, ENLARGING FACTORS COLOR PRINTING FACTORS COLOR PRINTING FACTORS; NEW PAPER SUBTRACTIVE COLOR-PRINTING FILTERS; DENSITY CORRECTION TRI-COLOR PRINT EXPOSURE (PHOTO) COLOR PRINT PROCESSING IN DRUM CIBACHROME RECIPOCITY CORRECTION PRINT VIEWING DISTANCE PHOTO/IMAGE DISPLAY PARAMETERS IMAGE PROJECTION DATA

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14022 Printed in U.S.A. 00097-90197 Revision C 3-79