HP67HP97

Users' Library Solutions Physics

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Programming Guide**, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

BLACK BODY THERMAL RADIATION	1
BLACK HOLE CHARACTERISTICS	9
SPECIAL RELATIVITY CONVERSIONS Provides relativistic conversions between rest mass, velocity, energy, and momentum.	13
THREE DIMENSIONAL SPECIAL RELATIVITY	17
EINSTEIN'S TWIN PARADOX Calculate real and relative time and age differential based on the Lorentz transform.	22
DELTA-VORBIT SIMULATOR	27
EQUATIONS OF PARTICLE MOTION	32
BALLISTICS TRAJECTORY COMPUTATIONS	37
ISOTOPE OVERLAP CORRECTIONS	43
CRITICAL REACTOR CODE	47
SEMI-EMPIRICAL NUCLEAR MASS FORMULA	54
CLEBSCH-GORDON COEFFICIENTS AND 3J SYMBOLS EVALUATION Uses Racah formula to evaluate coupling two states of angular momentum.	59
32-P REMAINING ON MM.DDYYYY GIVEN MCI ON EARLIER MM.DDYYYY Given millicuries of 32-P on date 1, this program calculates the decays per minute and counts per minute on date 2 as well as the number of days between date 1 and date 2.	64

Program Title Black Body Thermal Radiation										
Contributor's Name	Hewlett-Packard									
Address	1000 N. E. Circle Blvd.									
City	Corvallis	State	Oregon Oregon	Zip Code _	97330					

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Figure 1 is a representation of black body thermal emission as a function of wavelength. Note that as temperature increases, the area under the curves (total emissive power $E_{b(0-\infty)}$) increases. Also note that the wavelength of maximum emissive power λ_{max} shifts to the left as temperature increases.

This program calculates the wavelength of maximum emissive power for a given temperature, the temperature for which a given wavelength would be the wavelength of maximum emissive power, the total emissive power over all wavelengths, the emissive power at a particlular wavelength, the emissive power form zero to a specified wavelength, and the emissive power between specified wavelengths.

Equations:

$$\lambda_{\text{max}} T_{\lambda_{\text{max}}} = c_3$$

$$E_{b(0-\infty)} = \sigma T^4$$

$$E_{b\lambda} = \frac{2\pi c_1}{\lambda^5 (e^{c_2/\lambda T} - 1)}$$

$$E_{b(0-\lambda)} = \int_0^{\lambda} E_{b\lambda \ d\lambda}$$

$$= 2\pi c_1 \sum_{k=1}^{\infty} -T/kc_2 e^{-\frac{kc_2}{T\lambda}} \left[\left(\frac{1}{\lambda}\right)^3 + \frac{3T}{\lambda^2 kc_2} + \frac{6}{\lambda} \left(\frac{T}{kc_2}\right)^2 + 6\left(\frac{T}{kc_2}\right)^3 \right]$$

$$E_{b(\lambda_1 - \lambda_2)} = E_{b(0-\lambda_2)} - E_{b(0-\lambda_3)}$$

where

 λ_{max} is the wavelength of maximum emissivity in microns;

T is the absolute temperature in °R or K;

 $E_{b(0-\infty)}$ is the total emissive power in Btu/hr-ft² or Watts/cm²;

 $E_{b\lambda}$ is the emissive power at λ in Btu/hr-ft²- μ m or Watts/cm²- μ m;

 $E_{b(0-\lambda)}$ is the emissive power for wavelengths less than λ in Btu/hr-ft² or Watts/cm²;

 $\begin{array}{c} E_{b(\lambda_1-\lambda_2)} \ \ \text{is the emissive power for wavelengths between λ_1 and λ_2} \\ \qquad \qquad \text{in Btu/hr-ft}^2 \ \ \text{or Watts/cm}^2. \end{array}$

$$c_1 = 1.8887982 \times 10^7 \text{ Btu-}\mu\text{m}^4/\text{hr-ft}^2$$

= 5.9544 × 10³ W μ m⁴/cm²

$$c_2 = 2.58984 \times 10^4 \ \mu \text{m}^{\circ} \text{R} = 1.4388 \times 10^4 \ \mu \text{m}^{-} \text{K}$$

$$c_3 = 5.216 \times 10^3 \ \mu \text{m}^{\circ} \text{R} = 2.8978 \times 10^3 \ \mu \text{m}^{-} \text{K}$$

$$\sigma = 1.713 \times 10^{-9} \text{ Btu/hr-ft}^2 \cdot \text{°R}^4 = 5.6693 \times 10^{-12} \text{ W/cm}^2 \cdot \text{K}^4$$

$$\sigma_{\rm exp} = 1.731 \times 10^{-9} \ {\rm Btu/hr} \cdot {\rm ft^2} \cdot {\rm ^\circ R^4} = 5.729 \times 10^{-12} \ {\rm W/cm^2} \cdot {\rm K^4}$$

Sample Problem(s) Example 1:	
What percentage of the radiant output of	a lamp is in the visible range (0.4
to 0.7 microns) if the filament of the la	mp is assumed to be a black body
at 2400 K? What is the percentage at 2500	K?
Keystrokes: [f] [B]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Example 2: If the human eye was designed to work most visible spectrum runs from about 0.4 to 0	
temperature in degrees Rankine? Assume the	
the temperature calculated, find the frac	
power which falls in the visible range. F	ind the percentage of the sun's
radiation which has a wavelength less than	•
Keystrokes:	Outputs:
[f] [A]	1.713 x 10 ⁻³ Btu/hr-ft ² -°R ⁻
Compute mean of visible range.	_3
.4 [+] .7 [+] 2 [÷]	550.0 x 10 ⁻³ μm
Compute temperature of sun.	2
[B]	9.484 x 10 ³ °R
(continued)	

	Reference (s)
	Robert Siegel and John R. Howell, <i>Thermal Radiation Heat Transfer</i> , Volume 1, National Aeronautics and Space Administration, 1968.
ı	

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
7	Load side 1 and side 2.			
2	Store constants:			
	For English units (Btu, µm, hr, ft, °R)		f A	1.713x10 ⁻⁹
	For SI units (W, µm, cm, K)		f B	5.669×10^{12}
3	For experimental Stefan-Boltzman constant			
	instead of theoretical value press		f C	1.731×10 ⁻⁹
	·			or 5.729x10 ¹²
4	Calculate any or all of the following (T and			3.723710
	λ need only be input once):			
	A need only be input once;			
	Calculate) for a given Te	Т	A	λ
	Calculate λ_{max} for a given T;			$\frac{\lambda}{\max}$
	Calculate T such that \ is \ for T			T())
	Calculate T such that λ is λ _{max} for T;	λ		$T(\lambda_{max})$
	Calculate total emissive never	+		<u> </u>
	Calculate total emissive power;	T	L A L C	E _{b(0-∞)}
		+ -	[] []	
-	Calculate the emissive power at λ ;	T	A	λ Emax
		λ	B D	Ebλ
	Calculate the emissive power between zero			
	and λ;	T	[A] []	$\frac{\lambda}{max}$
-		λ	B E	E _{b(0-λ)}
	Calculate the emissive power between λ			
	and λ' .	T	A	$^{\lambda}$ max .
		λ	B [$T(\lambda_{max})$
		λ'	f E	$E_{b(\lambda-\lambda')}$
5	For a new case, go to steps 2, 3, or 4.			, ,
		 		
		ļ		
		l		

97Program	Listing	
-----------	---------	--

			71-1-8-1111			•	7
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBLc 21	16 11		057	5	0 5	
002	i	01	Store English	958		-62	
003	8	0 8		0 59	ϵ	<i>0</i> 6	
004	8	08	constants.	969	£	0 6	
	о 5			<i>061</i>	9	0 9	
005	8 7	98					
0 06		07		062	3	03	
007	9 8	0 9		863	EEX	-23	
908	8	98		864	CHS	-22	
009	2	02		<i>06</i> 5	1	01	
010	ST01	35 01		066	2	0 2	1
011	2	02		<i>067</i>	ST04	35 04	
012	E .	05		068	RTH	24	
				069		21 16 13	
013	5 8 9 8	0 8					Convert to exper-
014	3	09		070 071	1	0 1	$ imental \sigma. $
015	8	68		871	•	-62	
01 <i>6</i>		-62		972	Ø	00	
017	4	0 4		073	Í	01	
018	ST02	35 02		874	0	<i>0</i> 0	
019	5	<i>0</i> 5		075	5	0 5	1
020	2	<i>02</i>		97 <i>6</i>		35-35 04	
	<i>⊆</i> +			975 977	RCL4	36 0 4	
021	<u>.</u>	Ø 1					Store T and cal-
022	6	Ø6		078	RTN	24	culate λ_{max} .
023	ST03	35 <i>03</i>		079	*LBLA	21 11	max
024		-62		080	ST05	<i>35 05</i>	
025	1	ē1		081	RCL3	3 6 0 3	
026	7	<i>0</i> 7		082	X≇Y	-41	
027	*	01		083	÷	-24	
027	<u>।</u> उ	03		084	RTN	24	
	ن •			985	*LBLB	21 12	
829	<u> </u>	01					Store λ and calcu-
030	2	02		086	ST06	35 <i>06</i>	late T for which
031	EEX	-23		087	RCL3	36 Ø3	lace I for which
032	CHS	-22		889	X≇Y	-41	λ would be λ_{max} .
033	8	<i>0</i> 8		989	÷	-24	
034	STO4	35 04		090	RTN	24	
035	RTN	24		091	*LBLC	21 13	Calaulata E
				0 92	RCL5	36 05	Calculate $E_{b(0-\infty)}$.
<i>036</i>		16 12	Ctons CI constants				
037	5	0 5	Store SI constants.	093	¥2	53	
038	9	09		094	Υs	53	
039	5	0 5		095	RCL4	36 04	
040	4	Ø4		896	×	-35	
041		-62		097	RTN	24	
042	4	04		998	≭LBL D	21 14	
043	stoi	35 01		099	RCL1	36 01	
	3101			100	ENT!	-21	Calculate $E_{b\lambda}$.
044	÷	01					D A
045	4	Ø4		101	+	-55	l
046	4 3 9	<i>03</i>		102		16-24	
047	S	08		103		-35	
048	8	<i>0</i> 8		104	RCL6	36 0 6	
049	ST02	35 02		105		0 5	
050		02		106		31	
050 051	2 8 9 7	02 08		107		-24	
	ō					36 0 2	
0 52	2	09 27		108			
053	7	0 7		109		36 06	
054		-62		110		-24	
055	8	98		111	RCL5	36 Ø5	
0 56	STO3	35 03		112		-24	
1	- · 	· '	REGIS	TERS		·	
0	1	2	3 4	5	6	7	8 /T 9
λ	c ₁	c ₂	c ₃ σ	T	λ, λ		kc ₂ /T
S0	S1	S2		S5	S6	S7	S8 S9
Á	В		c	D		E	I
l [*]							

94Program Listing II

STEP	KEY ENTRY	KEY CODE		COMMENTS		STEP	,	KEY ENTRY		KEY CODE	E	COMM	ENTS
113	e×	33					69	XZY?		16-35			
114	1	01	1				70	GT01		22 01			l
115	-	-45					71	R↓		-31			
116	÷	-24					72	CLX		-5i			I
117		24					7 3	RCL7		36 07			1
118	*LBLE	21 15	Calcu	late E _{b(0-2}	٠,٠		74	ENT T		-21			
119	Ø	00		D(0-7	٠,		75°	+		-55			1
120		3 5 0 8					7 <i>6</i>	Pi		16-24			
121	ST07	35 0 7					77 77	×		-35			i
122		21 01					78	RCL1		36 Ø1			
123	R4	-31					79.	X		-35			l
124	CLX	-51					80 80	RTN		24			
125		36 08					81		21	16 15		Calculate	
126		36 02					82	ENTT		-21	- ['	carcurate	^L b(λ-λ').
127		36 05					83 83	ENT†		-21			
123		-24					84 84	GSBE		23 15			
129		-45					85 85	635E X ≠ Y		-4i			
130		35 0 8					86 86	RCL€		36 <i>06</i>			
131	3	03 03					86 87	STO0		35 00 35 00			1
132		-41											
133		-24					88	R↓ 6106		-31 75 02			l
134		36 0 6					89	STO€ CORE		35 06 23 15			
135		53					90	GSBE					I
136		-2 4					91	- 400		-45 17 71			
137		16-63					92	ABS DOLG		16 31 76 88			i
138		10 03 52					93	RCL0		36 00 35 00	1		
139		36 06					94	STO€		35 <i>06</i>			
140		-24					95	R4		-31	l		
141	-	-45				1	96	RTH	+	24	_		
		-45 06					+		+-		ㅢ'		
142 143		36 0 6				<u> </u>	+		+		_		
		36 06 -24					4		_		_		
144						200	\perp		_		_		
145		36 08 57					4		┷		_		
146		53					+		+-		_		l
147		-24				<u> </u>	+		+		_		1
148		-45					\perp		_		_		l
149		<i>06</i>					\perp				_		I
150		36 0 8					\perp		_		_		l
151		53				<u></u>	\perp		_		_		1
152		-24					\perp		1_		_		I
153		36 Ø8					\perp						
154		-24 55				210	\perp		4_				
155		-55					\perp		\perp				İ
156		36 08					\perp						
157		<i>36 06</i>					\perp		\perp				I
158		-24					\perp		1				l
159		33					\perp		1				l
160		-35				<u> </u>	\bot		1		\Box		l
161		36 Ø8					\bot		1				ĺ
162		-24				ļ	\bot	707.500	_				i
163		35-55 07				202	\bot		1		\Box		i
164		36 07				220	\bot		+		_		l
165		-24					+		\bot		_		l
166		-23				<u> </u>	+		+		\dashv		ĺ
167		-22				<u> </u>	+		+-		\dashv		l
168	5	0 5	1.45	DEL C		L		FLACC	1		Щ	ET CTATUS	
Α	В	. Ic	LAE	BELS ID _	ĪF			FLAGS	\dashv			ET STATUS	
l T→λ	λ→	T(λ _{may}) →E _h /	سم	→E _k ,	_→	$E_{h/\Omega}$	بد	U		FLAGS		TRIG	DISP
a Eng	× b SI	C EVE	0	d B A	e 、ı	<u> </u>	^)	1	T	ON OF		<u> </u>	FIV. T
Eng o	1 21	Exp	σ	3	λ.	→ □b(λ	- }¢	2	\dashv	0 🗆 🗷	_/	DEG Z	FIX 🗆
	<u> </u> ' E _h	(0-1)			<u> </u>	, ,				1		GRAD □ RAD □	SCI ENG
15	16	\ ' ' / 7		18	a			2		- ⊔ W2	□ /		

Program Title Black Hole C	Raracteriotics	
Contributor's Name Geoff Kind Address 1514 Oxford St City Berkeley	lol #301	
City Berkeley	State CA	Zip Code 94709

Program Description, Equations, Variables a black hole of mass (M) in grams has a Schwarzchild radius (Ls) in centimeters of: $R_{D} = \frac{2GM}{C^{2}} = (M) \cdot 1.484986855 \times 10^{-28}$ where G is the universal gravitational constant and C is the speed of light. The lifetime of a black hole (t) in seconds is given by: $+1 = M^3 \cdot (10^{-28}).$ The temperature of a black hole (K) in degrees Kelnn is K = 1026/M Operating Limits and Warnings M must be greater than zero

Underflow occurs for Rs when M< 6.734066343 X10

+2 M< 2.154434653 X10

24 Overflow occurs for K when M< 1.00000000 1X/0⁻⁷⁴
te M> 2.154434650 X10³³ RA>1,484986854X1072

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

ketch(es)								
		-				-		
			 		•			
						,		
				 		-		

		99 ×10 ³³ gm What we de radius, and lefetim	
is the	mass of the b	nadus of 6.96 X10 Plack Role? What is	the temperature?
Solution(s) /,)	1.99 EEX 33	D> 1.9900 × 1033 D> 2.9551 × 105	Ls
2)	6.96 (EEX) 10	$B = 75.0251 \times 10^{8}$ $C = 7.8806 \times 10^{7}$ $A = 76.9600 \times 10^{7}$	t _L
		D> 4.6869 X1038 B -> 2.1336 X16"	M

[deference(s) Harwet, Martin	astrophysical Concepts	Weley, New York
-			
L			

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter program			
	, <i>,</i> ,			
2.	Enter mass	M	D	m
	or Schwarzchild Radius	Rs		Rs
	or temperature	K	B	K
-				4
	or lifetime	せん	[_C_]	th
3.	Computer mana		D	m
	Compute mass			
	or Schwarzchild radius		A	Rs
				.,
-	or temperature		$\begin{bmatrix} B \end{bmatrix} \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$	K
	or letime		C	te
	or lifetime			
	For a different variable, go to 3			
	For a different variable, go to 3 For a new case, go to 2			
	Before any computations, at			
	least one of the four variables			
	Y /			
-	must have been entered or			
\vdash				
-	results will be impredictable			
	Note: a new value entered			
	The state of the s			
	for Rs, to or K causes the			
-				
	mass stored in memory to be			
	recolculated.			
	· · · · · · · · · · · · · · · · · · ·			

12

67 Program Listing I

STEP	KI	EY ENTRY	KEY CODE	<i>,</i>	COMM	IENTS	STEP	KEY ENTRY	KEY CODE		COMMENTS
001		EZ 3	31 25 11	&c/	lwarze Ra	shild		6	35.52		1026
	- R	6TO 0	35 71 03 22 00		Ra	dus		RXZY	3532	M=	K
		1	01				060	STO-3	33 0 3		
			83					RCLI	34 01		
ļ	+-	8	04	Rs	2			RRTN	3522	- 57	-
-	+	4	08	- 4				1 LBLC	31 25 13 35 71 03 22 00 43	Tife	ume
	+	3	09	M.	161198	6855X/026	3	6700	22.00	1	-18
010		8	09 08	1.	70 4 75	W 030 X/2		EEX	43	t2=1	m3,1020
		6	06						42 02	~	
	+	8	08				-	2	02		
	+-	3	مح مح				070	RCL3	3403		
	1 2	EEX	43					ENT	41		
		2	02						6 3		
	ل ــــــــــــــــــــــــــــــــــــ	8,	08					2 2 4 × × × × × × × × × × × × × × × × × ×	35 63		
ļ	+ 5	45	42					X V	7/	ļ	
020	+	CL3	34 o3 11					1070 L	33 62 35 22		
	3	TO O	33 00					ILALO	312500	Hen	terod valve ti, compute o mass
	1	RTN	25.22					1 5002	3302	1 of	ts, computer
		BLO	31 25 00 33 00 06 83	Her	itered	value	080	EEX	43	nei	o nais
-	┼~	5700	33 00	' K	s, con	rpute .	000	2 8	02		
	+		06 83	1/4	in m	aso		×	71	m-3	128
		7	07					X 3	71	111-2	102 10
ļ		3,	03 04	M =	./ 73	4066344		RYX	35 62		
030	+	-4	04	72	6,10	4066344 X/027		5403	35 63 33 c3		
000	+-	6	06					2012	33 03		
	+	6	06					RETN	3522		
		3	03					ILBLD	31 25 14	mai	20
	-	4	64				090	KF33	35 7/03	1	
-	+	FCX	04					6700	2200	If new	ed, display Else store we entered.
-	+-	EEX Q	43 02					RCL3 RIRTN	3403	enter	ed, display
	1	7	07					JIBLO	312500	old.	Elsestore
		×	7/					5003	33 0 3	nal	we entered.
040		to 3	33 03					A RITN	3522	,,,	
	+8	CLO	34 00 35 22				-	R/S	89		
		LBI B	31 25 12	Tan	0010	ture	†			Flag	noole
	TR	F? 3	31 25 12 35 71 03 22 00 43	المصر ا	que in	/	100			Des.	mode
	-	GTOO	22 00	K=	1026/	M			—	SAT	,
-	+	EEX	43 62		/		-		\	200	1
	+	2	02						(,	051	nettol rishus
		2CL 3	34 03						V	wie c	netial reduces
050		÷								Lab	elo used:
	+-5	TOI	33 01 35 22 31 25 00 33 01 43 02						-	A	B, C, D, O
	11	LBLO	31 25 00	de	tered.	valued					
	7	STOI	33 01	TK.	Comp	ente 1	110				
<u> </u>	+	EEX	43	מניה	win	aso					
 		d	02			REGI	STERS	L		L	
0 8	20	1 K	2 t _L	3	M	4	5	6	7	8	9
So		S1	S2	S3	<u> </u>	S4	S5	S6	S7	S8	S9
30		31	32	اددا		34	33	30	J ,		
Α		1	В	-	С	.	D		E	I	

Program Title	SPECIAL	RELATIVITY	CONVERS	ONS	
Contributor's Name	Cte Vista Grar	ein			
city Daly Cit	у		State	Ca	Zip Code 94014

Program Description, Equations, Variables This program provides relativistic conversions between the following quantities: rest mass (m); velocity (v, in units of c=1); energy (E), and momentum (P). Given any two it is possible to find the two unknowns by the following equations: (I)-- $E = m/SQRT(1-v^2)$ // (II)-- $E = SQRT(P^2+m^2)$ // (III)-- E = P/v(IV)-- P=vE // (V)-- P=SQRT(E^2 - m^2) // (VI)-- v=P/E // (VII) m=SQRT(E^2 - P^2) Data may be entered in any order and recalled at any time. The program scans the registers and, after determining if there is enough data to solve for the unknown, selects the appropriate subset of equations. If insufficient data, then the program displays Error. The following selection patterns are used: TO FIND: v.E v,E GIVEN: m,E use V, VI use IV, VII use I use IV v. P v. P v.m use II, VI use III, VII use III use I, IV E.P E,P m, P use VI use VII use II use V Because of the complexity of this program, a chart is provided

Because of the complexity of this program, a chart is provided on the next page which diagrams the access patterns used by each labeled subsection. Boxes are used to represent direct jumps, and circles represent subroutine calls. The user is advised to review this carefully before modifying this program.

Operating Limits and Warnings

all data must be positive. Velocity must be less than 1. ERROR message will be displayed if a real solution does not exist or the input data is outside these limits.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) 1) Find the velocity and momentum of an electron (m=.511 MeV) with a total energy of 1.0 MeV. 2) Given an E of 500 MeV and a P of 498 MeV/c, what is the particle's mass and velocity. 3) At .9c, and electron has an energy of 1.1723 MeV. Find its rest mass and momentum. 4) An electron is traveling at .3c. Find its momentum and energy. Solution(s) \underline{A} , .511, \underline{C} , 1, \underline{D} , \underline{B} , v=.8596c; \underline{E} , P=.8596MeV/c. 2) \underline{A} , 500, \underline{D} , 498, \underline{E} , \underline{B} , v=.996c; \underline{C} , m=44.6766 MeV3) \underline{A} , .9, \underline{B} , 1.1723, \underline{D} , \underline{C} , m=.511MeV; \underline{E} , P=1.0551MeV/c 4) \underline{A} , .3, \underline{B} , .511, \underline{C} , \underline{D} , \underline{E} =.5357MeV; \underline{E} , P=.1607 MeV/c

Reference(s) HP-65 library program #308 by this author.	

User Instructions

1 1	SPECI	AL RELATIV	ITY CONV	ERSIONS		7
	RESET	VELOCITY	MASS	ENERGY	MOMENTUM	

STEP	INSTRUCTIONS				PUT /UNITS		KEYS	OUTPUT DATA/UNITS
1	Load Side one of card							
2	Reset registers					Α		
3	TO ENTER A VARIABLE:							
		velocity		ν	-	В		v
		mass		m		C		m
		energy		E		D		E
		momentum		P)	E		Р
4	TO FIND A VARIABLES VALU	Æ:						
		velocity		200		L B		v
				non		L		
		mass		non non		C		m E
		energy				L		P
		momentum		non	ie .	E		P
	GO TO STEP 2 FOR EACH	NEW SET O	F					
	KNOWN VARIABLES							
1								
						[
						L		
				FLAGS	3		SET STATUS	
						LAGS	TRIG	DISP
			¹ -		- 0	ON OFF	DEG 🗷	FIX 🔀
			2 _		_ 1		GRAD □	SCI □
			3 6	lata?	2 3		RAD 🗆	ENG 🗆
		processor and the second						
		A reset	% eloc:	itv	c mas	LAB SS		momentum
		a					d eq.V,VII	e
		O I or Ø?						find m; v
		5	6 eq.		⁷ eq.	VI	$\sqrt{(1-v^2)}$	find P;⊽
I								

67 Program Listing I

16 STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	*LBL A	31 25 11	RESET	T	*TBT 8	31 25 08	• 37
			11221		х⇔у	35 52	v in X
	CL REG CF 3	31 43 35 61 03	l		asin	32 62	2
	R/S	84		060	cos	31 63	$SQRT(1-v^2)$
	*LBL B	31 25 12	FIND/STORE v		7	81	
	1	01	1		RTN	35 22	eq.I gives E
	GSB 0	31 22 00	store new v		*LBL E		FIND/STORE P
	RCL 2	34 02	l m		4	04	TIND/ STORE T
	x=0?	31 51	if m is unknown		GSB 0		store new P
010	<u>д</u> -0.1	22 01	then go to 1		x=0?	31 51	if v is unknown
	RCL 3		E		GTO 9	22 09	
<u> </u>	x≠0?	34 03 31 61	if E,m are known		RCL 2	34 02	then go to 9.
	GTO 3	22 03	then go to 3		x≠0?	31 61	if m, v known,
	GSB 6	31 22 06		070	GSB 8	31 22 08	then eq.I gives
	ENTER	41	-1.22 82.02	-	RCL 3	34 03	4 L •
-	*LBL 7	31 25 07			x=0?	31 51	If R ₃ contains
	R ▼		1		R ▼	31 51 35 53	$E(i.e.\neq 0)$, then
			P		RCL 1	34 01	this takes prior
	RCL 4	34 04	E				ity.
020	х⇔у	35 52	eq. VI gives v		X *TDT o	71	eq.IV gives P
020	1/	81	1 . · · · ·		*LBL c	32 25 13	if variable or
ļ	GTO C *LBL C	22 31 13 31 25 13			x=0?	31 51	
 		102 62 13	FIND/STORE m		 	81	result is not
	2	02	store new m	080	RTN	35 22	legitimate, end.
	GSB 0	31 22 00	if v is unknown	080	*LBL 0		check/store'x'
ļ	x=0?	31 51	then go to 4		ST I	35 33	store (i)
	GTO 4	22 04	1		F? 3		if data has been
	RCL 3	34 03	E		GTO b	22 31 12	, , ,
	Х	71	eq.IV gives P		RCL(i)	34 24	check contents
	LST x	35 82	E		x≠0?	31 61	of register'x'
030	x≠0?	31 61	if E is known,		R/S	84	and display if
	GTO 2	22 02	go to 2		RCL 1	34 01	good. Otherwise
	RCL 4	34 04	P		RTN	35 22	RCL v and return
	ENTER	41			*LBL b	35 22 32 25 1 2	RCL v and return STORE NEW "x"
	ENTER	41		090	R ♥	135 53	in register defi
	RCL 1	34 01	v ·		STO(i)	33 24	ned by (i)
	7	81	eq.III gives E		R/S	84	
	*LBL 2	31 25 02	eq. V or VII		*LBL 1	31 25 01	FIND v;m UNKNOWN
	ENTER	41			RCL 3	34 03	E E
	R▼	35 53			ENTER	41	1 -
040	GSB 3	31 22 03	$SQRT(x^2-y^2)$		GTO 7	22 02	eq.VI gives v
	R ↑	35 54	1		*LBL 4	31 25 NL	FIND m; v UNKNOWN
	x	71	eq.VII gives m		RCL 4	134 04	P
	GTO c	22 31 13			GTO d		go to d
	*LBL 3	31 25 03	1	100	*LBL 6	22 3 1 14 31 25 06	EQ. II
	 / ''''' 	81	find		RCL 2	34 02	m
	asin	32 62	$SQRT(1-y^2/x^2)$		GSB c	32 22 13	check validity
		31 63	~ (1.1.1 y / A /		RCL 4	34 04	P
	COS	35 22			GSB c		check validity
	RTN	21 05 41	ETND/CMODE E				$E=SQRT(m^2+P^2)$
050	*LBL D		FIND/STORE E		R → P	32 72	T-DMILT(III +L-)
000	3	03			RTN	35 22	FIND P:v UNKNOWN
	GSB 0 x=0?	131 22 00 131 54	store new E if v is unknown	-	*LBL 9 RCL 2	31 25 09 34 02	TIND LIA ONVIAOMIA
	GTO 6	22 06			*LBL d	34 02 32 25 1 4	<u></u>
		22 06 34 02	then go to 6.	110	GSB c	32 22 13	check validity
	RCL 2		if m is unknown				E E
	x=0? GTO 7	3 <u>1 51</u> 22 07	then go to 7.		RCL 3 GTO 2	34 03 22 02	eq.V orVII
	1 410 /	122 U/	DECI	TERS	MIU L	LL UL	- 1
0	1	1_12			6	7	l8 l9
	veloci	ity mass	energy homentum		ľ	ľ	
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
	1					ĺ	
A	1	_ B	lc	D		_ E	I
,		-					used

Program Title Three Dimensional Special Relativity

Contributor's Name William C. Wickes

Address Princeton University, Department of Physics

City Princeton State N.J. Zip Code 08540

Program Description, Equations, Variables

1. Given the components of any 4-vector, in particular

$$x^{\mu}=(x',y',z',ct')$$
 or $p^{\mu}=(p^{\chi},p^{y},p^{z},\underline{E}')$, calculate the components x^{μ} or

$$p^{\mu}$$
 in a frame in which the original frame is moving with velocity

$$\vec{\beta} = (\beta^{X}, \beta^{Y}, \beta^{Z},).$$

 \vec{p} = momentum

E = total energy

$$\vec{\beta} = \vec{v}/c$$
 $\vec{v} = \text{velocity}$

2. For any $\vec{\beta}$, calculate the time-dilation/length contraction factor γ .

3. For a 4-vector Δx^{μ} connecting any two space-time events, calculate the invariant interval $c\Delta \tau$.

Formulae:

$$\Delta \vec{x} = \Delta \vec{x}' + \vec{\beta} [(\gamma - 1) \frac{\vec{\beta} \cdot \vec{x}'}{\beta^2} + \gamma c \Delta t'] \qquad \beta = |\vec{\beta}| = [\beta^{x_1^2} \beta^{y_2^2} + \beta^{z_1^2}]^{1/2}$$

$$\Delta t = \gamma (t + \vec{\beta} \cdot \vec{x}/c^2) \qquad |\Delta \vec{x}| = [\Delta x^2 + \Delta y^2 + \Delta z^2]^{1/2}$$

$$\gamma = [1 - \beta^2]^{-1/2} \qquad c^2 \Delta \tau^2 = c^2 \Delta t^2 - |\Delta \vec{x}|^2$$

The coordinate frames are assumed to be synchronized so that the event (0,0,0,0) has the same coordinates in both frames.

Operating Limits and Warnings display " - $|c\Delta \tau|$ " For a spacelike interval, $c^2 \Delta \tau^2 < 0$, the calculator will

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Sample Problem(s) An observer moving relative to the Earth with velocity $\vec{\beta}$ =(.4,.5,.6) measures the coordinates of an event as x^{1} = (1,2,3,4).

- a) Give the coordinates relative to the Earth frame.
- b) What is the interval between the event and the origin (0,0,0,0)

Reference(s) J.D. Jackson, Classical Electrodynamics (J. Wiley & Sons, NY 1962)

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Set number space dimensions N	1,2,or 3	E	N
	(default is N=3)			
2.	Enter β (if N=3) (if N>1)	βX	↑	
	(if N>1)	β ^X β ^y		
		β Z	A	β ** *
				Υ
3.	Enter x^{μ} , (if N=3)	х		
	(if N>1)	у	<u> </u>	
		z	↑	
		ct	В	×
4.	Compute x^{μ}		C	x***(if N=3
				y***(if N>]
,				z***
				ct
5	Compute CΔτ		D	± cΔτ
, ·	Result is positive if cΔτ			<u>- 10Δ()</u>
	negative if c∆τ ————			
6	To calculate the speed β corresponding to a			
0.	dilation factor Y	Υ	f A	β
	dilation factor			
		1		
		-		

67 Program Listing I COMMENTS STEP KEY ENTRY

20		€ €			-		
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001				T			
001	LBL D	31 25 14			LST X	35 82	
	RLL 6	34 06			570 1	33 01	
	F? 0	35 71 00			xzx	35 52	
		22 04		060			
	5104			000	F?I	35 71 01	
	PLL 4	34 04			GTO 6	22 06	
	R -> P	32 72			R+	35 54	
			(1 5 3				
	E 3 1	35 71 01	Compute Exi2		570 2	33 02	, <u>, ,</u> ,
	GTO 4	22 04			RP	32 72	1/31
	PCL 5	34 05			LB1 6	31 25 06	
010							
010	R→P	32 72			310 A	33 11	
	LBL 4	31 25 04			cos-1	32 63	} VI-p22
	K2	32 54			SIN	31 /2	ζ γ' -β -
-	i					7 62	
	RCL7	34 07			1/2	35 62	
	ײ	32 54		070	510 B	33 12	~
	-	51	c2t2 - x2		PLL A	34 11	
			C C C L				1
	CHS	42			-x-	3184	DISPLAY B
1	*<0	31 71			ν₹y	35 52	
	5F 0		SPACELIKE ?		RTN	35 22	ا ہر
							
L	ABS	35 64	5F0		LBLB	31 25 12	
020	V2	31 54			<i>5</i> 10 7	33 07	
	F?2	35 71 02			R.V	35 53	
-		1 1 1	6				_
	CHS	42	- for SPACELIKE		5706	33 06	5 TO B
	RTN	35 22			R¥	35 53	/ ⁽³
	LBLa	32 25 /1	Calculate B	080	5704	33 04	
		72 -7 11	Calculate 13				
	STO B	33 12	from 7		R.J	35 53	
	X2	32 54	, 1802		570 5	33 05	
	1/2	35 62			PTN	35 22	_
	 						
	1	01			LBLC	31 25 13	
	_	51			GSB e	32 22 15	オ・ディ
030	CHS	42			RCL A	34 11) ^{/-}
							
	√×	31 54			χ2	32 54	
1	570 A	33 11			+	81	
	RTN	35 22			PLL B	34 12	
				090	1		. 1
	LBLe	32 25 15		090		01	
1	RLL 6	34 06	Compute Biz'	i	_	51	
	RCL 3	34 03	, , , , , , , , , , , , , , , , , , , ,		*	71	
		 	Compute B.z' = IBi x'i				
	×	71	= IB'K'		RLL B	34 12	
	FO?	35 71 ∞	ī'		PCL 7	34 07	
		35 22			×	71	
040	RTN						
040	RLL I	34 01			+	61	l
1	RCL 4	34 04		1	STO C	33 13	
	×	71			3	03	
							
L	+	61			570 0	33 00	USE RO AS COUNTER
	F?	35 71 01		100	ST I	35 33	l
	RTN	35 22			LBLO	31 25 00	compute one
							
	RCL 2	34 02			RLL O	34 00	component each
	RCL 5	34 05			オま	35 33	cycle
	×	71			PLL C	34 13	,
		61					i
050	+			 	RCL (1)	34 24	
050	RTN	35 22			×	7(
1	LBL A	31 25 11	Compute y		PC I	35 34	
	570 3	33 03	- ompore 7		3	03	
 							
	F70	35 71 00		140	+	61	
L	6TO 6	22 06		110	ST I	35 33	
	x≥y	35 52			CLX	44	
	RAP	32 72			RLL (1)	34 24	
	~ ~ 	1 76 (2)	DEC:	TEDO	,	74 64	
				STERS			To To
0	er 1 By	2 B7	3 β 4 4	5 2	6	7 ct	8 9
Count	er 13°	[[3]	β ³ y	̈χ.	3		
S0	S1	S2	S3 S4	S5 ~1	S6 .	S7 ct!	S8 S9
ا	١	1	S3 S4 y'	55 K1	S6 % 1	CT'	
							
Α	ا ا	B ~	С	D		E	USED
1	ß	~			l		0,50

Program Listing II

			, –		•			0			21
STEP	KEY ENTRY	KEY C	ODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	ENTS
	+		61								
	P=S	31	42	1			170			1	
	5TO (1)			i						1	
			24	ł			-			1	
	P 🗧 S	>1	42	ļ						4	
	2		02	ļ						1	
	F?0	35 71	06	One	cycle for N=	=1					
	570-0	33 5	100								
120	•		83	1						1	
	5	†	05	1						1	
<u> </u>	E31	35 71	0)	Tura	cycles for N	/=2				1	
	+				Cycles 101					1	
	570 - 0	33 5		ł			100			1	
	0		00	1			180]	
	5T I	35	7 33	İ							
	D52(1)	37	۷ 33	l							
	610 0		2 00							1	i
	RLL 7									1	
		32 22	- 15	Comp	oute ct					1	
130	658 €	12 22	. <i>'</i>	1			 			1	
130	+	+	61	ł						4	
	PCL B	34	12				L			1	-
	×		71	1						1	
	PZS	31	42	j							
	5TO 7		07	L			190]	
	-2-		84	Γ]	l
	RLL 6	34	06	1						1	
	-2-			1						1	
			84	ł			-			1	
	F?O	35 71								4	
	GTO 5	27	2 05							1	
140	PCL4	34	4 04	D136	PLAY RESULT	rs]	
	-x-	3	1 84								
	F?1	35 71	01	1							
	670 5		2 05	1						1	
	PLL 5		4 05	1			200			1	
 	+									1	
 	2825		5 05							4	
	PES		1 42	1			-			4	
	RTN		5 22							1	
	LBLE	31 25	15	1							
	ST I	35	73								
150	670 (1)	22	24		appropriate	2				1	
	LBL 1		0	1	• • •					1	
	CFI		01	+10	ags for N=1	١,				1	
	1				, or 3		\vdash			1	1
 	5F0	35 51		1	,		210			1	
<u></u>	12TN		22	ł			210			4	
	LBL 2		02	l			ļl			1	
	CFO	35 61	<u>∞</u>	1							
	SFI	35 51		1						1	
	RTN		- 22	1						1	
	LBL 3		- 03	1						1]
160	CEO	35 61		1			 			1	
				ł			\vdash			1	ļ
	CFI	35 61		ł			 			1	
<u></u>	RTN	35	- 22	ł			 			1	
				l			<u> </u>			1	
L		1		l			220			1	
<u></u>		1		l						1	ļ
		1		ı]	
				1							j
										<u> </u>	
				LAE	BELS			FLAGS		SET STATUS	
AFIB	3 → γ B σ75	, ,, , , ,	084	→ κ ^μ	D xx	E 141	}	0 N= 1			DICE
B	77	x' /		→ x"	CAY		N /		FLAGS	TRIG	DISP
a 024	>B b	c	:		d	e 034	方、ゼ	1 N=2	ON OFF	DEG 🗆	FIX 🗷
0 101	1151		155		3 /54	4 011			0 🗆 🗷	GRAD 🗆	SCI 🗆
								0,20		RAD 🗆	ENG 🗆
5145	665	7	7		8	9		3	3 🗆 🖼	,,,,,,	n_2
		i			L	L					

Program Title Einsteins Twin Paradox

Contributor's Name David M. Weingold

Address % Synergy Research P.O. Box 372

City Woodmere State N.Y. Zip Code 11598

Program Description, Equations, Variables

The program is arranged to calculate subjective and real time differential between an observer on Earth and the pilot of a vehicle accelerating near the speed of light. If you imagine twins at age 21. One becomes an astronaut and volunteers for the first interstellar flight. He takes off and travels at a ponderous speed of say 2.994444444*10**8 meters per second. In this situation it is accurate enough to call C the speed of light, 3*10**8. The astronaut travels for what he measures to be a year well past the sun at which time he fires retro and navigational engines, and turns around and heads toward Earth; the journey naturally takes another year. He is now 23 years old but when he steps from the ship his twin is over 37 years old! That over 16 years had passed on Earth. The explanation as to why this happened involves very complicated non Euclidian geometry and relativistic considerations of accelerating frame of reference too complicated for this discussion, it sufficies to say that in the event of tremendous accelerations such as the turning around of a space craft traveling near the speed of light that the order of magnitude of energy involved is extremely large and the consideration of it as it interelates to space as time is conceived as a fourth physical

Operating	Limits and	Warn	ings
-----------	------------	------	------

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Program Title Einsteins Twin Paradox

Contributor's Name David M. Weingold

Address % Synergy Research P.O. Box 372

City Woodmere State New York Zip Code 11598

Program Description, Equations, Variables dimension of space, the Universe is then conceived as a giant four dimensional sphere with a three dimensional surface. The space craft in its turning travels relative to the Earth, not as far along that fourth dimension and hence the differential between the twins age. The equations for this case are quite simple and adequate for this case. They consist primarily of the Lorentz transform i.e., $\sqrt{(1-\frac{V^2}{C^2})}$, where v is the velocity of the space craft relative to the Earth, and c is the universal constant, $3x10^8$ meters per second, the speed of light. The program inputs consist of speed of space craft in meters per second, time passed on Earth, time passed on board the craft, and the ages of the twins before the flights. With input T_E , time passed on Earth, the equation $T_S = T_E \sqrt{(1-\frac{V^2}{C^2})}$ gives $T_S \sqrt{["time passed on board"]}$ ship during journey. Input $T_S \sqrt{["time passed on board ship, and the equation: <math>T_S = \sqrt{[-V^2]} \sqrt{[-V^2]}$ gives you $T_E \sqrt{["time passed on board ship, and the equation: <math>T_E = \sqrt{[-V^2]} \sqrt{[-V^2]}$

Earth"] during journey. The label A clears and initiates the program. Lbl B is the input for average velocity of the craft. Lbl C is the input for time passed on earth in years and outputs time passed on board ship by hitting fC Lbl D input time passed on board ship fD give appropriate time passed on earth the E's give ages.

Operating Limits and Warnings Be certain that you enter the speed of the space craft in meters per second. All time and age entries must be in years. Outputs will be in years. Do not try to make the space travel at the speed of light, $\simeq (3.00 \times 10^8 \text{meters/second})$ as this will only show an error as should be and is implied by the theory of relativity.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

.6085 years passed in space

REFERENCE (S) Introduction to Special Relativity by James H. Smith (chp. 6) W.A. Benjam Inc., New York, Amsterdam 1965.

[A]

2.999111111 [EEX] 8 [B] 25 [C] [f] [C] -----

User Instructions

	Einstien	Twin Paradox	F-75-7 ()					
141	1 .	mtrs./sec.	$[f][C] \rightarrow (T_S)_S$	yrs [f][D]→(T _E)yrs [f][E] space	twins	age
	INT	speed of craft	(T _E)years	(T _S)years	age of	Earth		
	[A]	_ [B]	[c] _	[D] .	[E]	twin		

STEP	INSTRUCTION	ONS	INPUT	KEYS	OUTPUT
-			DATA/UNITS	KETS	DATA/UNITS
1.	Run tape				
2.	Hit [A] initiate clear re	egisters set display		<u> </u>	9.000+16
3.	Enter ship average veloc	ity in meters/sec	2.999+8	<u>B</u>	8.994+16
4.	Enter time passed on shi		1		3.155+07
5.	Calculate time passed on	Earth in years		f D	3.873+01
6.	Calculate how old Earth n		30		6.874+01
7.	Enter time passed on Ear	th in years	25		7.889+08
8.	Calculate time passed on	ship in years		T C	6.454-01
9.	Find age of space twin a	t end of journey	30	f E	3.064+01
	Always enter time in year	rs, and speed in mtrs			
	per second, to go to new or different amounts of				
	[A], and then continue from values.	rom step #3 with new			
	values.				
	If time passed outputs an	re decimals,			
ļ	multiplying by 365.25 com	nverts to days			
	* The ages used in the [[E] and [f] [E]]
	subroutines need not b				
	"participants" need no				
	·				
	Time passed outputs, or		-		
-	be viewed in fixed mode to	by hitting fix key.			{
	i.e., 3.873+01→38.73, or	0.8/3+01→08./3			¦
-]
-]
]
-]
					¦
					í
—	LAB	ELS Famel	FLAGS	SET S	TATUS
Initi	TR AVO SHIP IC 1. Passeu	Di passed He carch	n		RIG DISP
7 ,	² b CEarth T.to	dSpace T. e Space twi		ON OFF	G KS FIX □
√1- c	zroutine ship T.	to Earth I. F. age	Ź	1 □ 🛛 GR	AD □ SCI 🖫
	6 7	8 9	3	2 🗆 🛭 RAI 3 🗆 🛣	$\begin{array}{c c} D & \Box & ENG_9 \\ \end{array}$
		<u> </u>	J	3 KJ	

Program Listing I 26 STEP **KEY ENTRY** KEY CODE COMMENTS **KEY CODE COMMENTS** 001 *LBLA 21 11 -35 36 01 Enter Time 16-53 002 CLRG RCL1 Passed IN Space -12 003 SCI -35 CONVERT from -63 09 004 DSP9 RCL2 36 02 initiate Years To Seconds 005 CLX -51 b61 -35 STORE CONSTants STore IN RD 006 062 STOD 35 14 03 CLear Registers 007 6 06 b63 RTN Find Canal Store 008 0 00 064 *LBLd 21 16 14 Calculate $T_{E} = \frac{T_{S}}{V_{I} - \frac{V^{2}}{S_{S}^{2}}}$ 009 0 065 36 14 23 00 00 IN RA RCLD 010 STO0 00 066 GSB0 011 067 -24 02 36 00 RCLO 4 068 012 04 Store INR4 069 ⁰⁷⁰ -24 ST01 013 35 01 RCL1 014 36 01 03 015 06 -24 RCL2 36 02 05 <u>016</u> 072 -24 017 073 35 04 STO4 018 02 074 PSE 019 05 16 51 076 STO2 35 02 SPC 16-11 021 03 **-**23 PRTX EEX 022 24 21 00 078 RTN 28 023 08 *LBL0 079 024 53 36 12 RCLB 025 STOA 36 11 081 RCLA -24 RTN 24 026 082 *LBLB Enter ship Aug. Velocity 21 027 12 **b**83 CHS Square and Store X² STOB 028 53 **b84** 01 12 IN RB 029 085 54 RTN 24 086 **VX** 087 031 *LBLC 21 13 RTN 24 ENTER TIME Passed 36 00 *LBLE 032 RCL0 Calculate ON Earth in years 36 04 033 -35 36 01 RCL4 Earth Twin Final RCL1 convert To Seconds -55 034 + STore INRC 091 035 -35 16 51 PSE RCL2 036 36 02 092 SPC <u> 16-11</u> 037 **-**35 093 PRTX STOC 35 13 094 038 RTN 039 *LBLe RTN 24 095 16 1 Calculate Space 040 *LBLc <u> 16 13</u> 096 RCL3 36 03 Twin Finalage 041 Calculate RCLC 36 13 097 + **-**55 TS = TENI-R 042 GSB0 23 00 098 PSE 16 51 16-11 043 -35 099 100 SPC X STore R3 -14 RCL0 36 00 PRTX 044 -24 24 045 RTN 101 Space and Print 36 **01** =24 RCL1 51 R/S 046 047 048 RCL2 36 02 049 -24 STO3 35 03 051 PSE 16 51 16-11 -14 052 SPC PRTX 053 054 RTN 24 110 055 *LBLD RCLO 00 REGISTERS 3600 24 365.25 S7 Sq S8

Ctime passed | time passed | E

Earth in sectrocket in sec.

В

v

c²

Program Title Delta-V - Orbit Simulator

Contributor's Name Harold T. Coderre

Address 414 1915 Hall

Princeton

State New Jersey

Zip Code 08 540

Program Description, Equations, Variables This program calculates orbit parameters from initial position and velocity data both for elliptical and hyperbolic orbits in a plane. It is also possible to move the point of interest to anywhere along the orbit and then recalculate orbit parameters. Equations Used:

Energy:
$$E = \frac{1}{2}V_i^2 - \frac{GM}{Ri}$$

$$\theta' = \theta_i + \cos^{-1}\left(\frac{R_0}{R_i} - 1\right)$$

Semimajor Axes: $a = R_0/(1-\epsilon^2)$ Semiminor Axes: $b = a\sqrt{1-\epsilon^2}$ Period: $T = 2\pi\sqrt{\frac{a^2}{Gm}}$

Energy:
$$E = \frac{1}{2}V_i^2 - \frac{GM}{Ri}$$

Angular Momentum: $L = V \Gamma SIN (\alpha_i - \theta_i)$

Eccentricity: $E = \sqrt{1 + \frac{\lambda E L^2}{(GM)^2}}$
 $R_0 = \frac{L^2}{GM}$
 $$\alpha_{\text{NEW}} = \Theta_{\text{NEW}} + \sin^{-1}\left(\frac{\ell}{\nu_{\text{NEW}}} \cdot \hat{\eta}_{\text{NEW}}\right)$$

for a change in Velocity

Distance to Asymptote Vertex
$$S = R_{min} h - \frac{1}{4}$$
)
Angle between Asymptotes and $\Theta_a = \cos^{-1}(\frac{1}{4})$
Radius Vector

Operating Limits and Warnings All angles should be $0 \le \theta \le 360$. If $\hat{\theta}$ (A) gives a negative radius for a hyperbolic orbit (e>1) the orbit does not exist for the inputted 0. This program becomes ill-conditioned and inaccurate near degenerate conics (Circles, Parabolas and Straight lines). For added realism: avoid all orbits where Rmin < radius of the attracting body $(6.400 * 10^6 \text{ m for the Earth})$.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Reference(s) Goldstein: Classical Mechanics Chapt 3

User Instructions

		INPUT		ООТРОТ
STEP	INSTRUCTIONS	DATA/UNITS	KEYS	DATA/UNITS
1	Load side 1 and side 2			
2	Initialize Utility Registers	3600	STO 5	
		360	STOD	
		180	STO B	
3	Compute G * M + 6.	6732E-11	ENTERT	
	(Mass of attracting body (Kg))-	→ M	* \$TO 4	G * M
4	Enter initial position	R;	ENTERT	
	=	θί	fA	R _i
5	Enter initial velocity	V _i	ENTER†	
		αį	f B	V _Z
6	(Optional) Calculate the eccentricity		C	€
7	Calculate θ' and R_{\min} (program will pause to display ϵ)		D	θ΄
	pause to display €)		x = y	Rmin
8	(Step 8 must always be preceded by Step	7)		mirr
	For e<1: Calculate semimajor and		E	a
	semiminor Axes		x	ъ
	Calculate the Period T		R/S	T (Hrs)
	For e≥1: Calculate S		E	S
	Calculate 0a		R/S	θa
	(if e=1 program will return 0	for S)		
9	Position the Satellite at a given θ	е	A	Rnew
	Find new Speed		RCL 2	Vnew
	Find new Velocity B	earing	RCL 3	\propto_{new}
10	Introduce a change in Velocity	ΔV	ENTER	- ilen
		α_{Δ}	В	α_{new}
11	Now go back to step 6 or 7 and recalcul	ate		22011
	the orbit			
	Note on dimensions: All inputted distan	ces		
	and velocities should be in meters and			
	meters/sec. The Program will also outp	ut		
	in these units.			
	+For the Earth G * M = 3.98991 * 10 ¹⁴			

Note: All quantities listed Program Listing I

050	CLF O x \leq y STF O RCL 1 RCL 7 X**2 RCL 4 + STO 9 RCL O + 1 - BEARIN	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81 33 09 34 00 81 01 51 G 2 Speed	REGI 3 Speed Bearing 4 G * M S3 S4	1100 1110 STERS 5 3600 S5	RCL 8 X**2 - STO E LST X VX RCL E R/S RCL E X**2 LST X 6 Energ	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84 34 15 32 54 35 82 71	Semimajor Axis Semimajor Axis Remimajor Axis
050	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4 ÷ STO 9 RCL 0 †	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81 33 09 34 00 81 01 51	REGI	110 STERS	X**2 STO E LST X VX * RCL E R/S RCL E X**2 LST X *	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84 34 15 32 54 35 82 71	Axis →Semiminor Axis
050	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4 ÷ STO 9 RCL 0 †	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81 33 09 34 00 81 01	REGI	110	X**2 STO E LST X VX * RCL E R/S RCL E X**2 LST X *	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84 34 15 32 54 35 82 71	Axis →Semiminor Axis
050	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4 ÷ STO 9 RCL 0 †	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81 33 09 34 00 81 01	→Ro		X**2 STO E LST X Vx * RCL E R/S RCL E X**2 LST X	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84 34 15 32 54 35 82	Axis →Semiminor
050	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4 + STO 9 RCL 0	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81 33 09 34 00 81	→ _{Ro}		X**2 STO E LST X Vx * RCL E R/S RGL E X**2	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84 34 15 32 54	Axis →Semiminor
050	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4 + STO 9	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81	→ _{Ro}	100	X**2 - STO E LST X √x * RCL E R/S	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15 84	Axis →Semiminor
	x≤y STF 0 RCL 1 RCL 7 X**2 RCL 4	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04 81	\ p	100	X**2 - STO E LST X VX * RCL E	34 08 32 54 51 81 33 15 35 82 31 54 71 34 15	Axis →Semiminor
	x≤y STF O RCL 1 RCL 7 X**2 RCL 4	35 61 00 32 71 35 51 00 34 01 34 07 32 54 34 04		100	X**2 - STO E LST X \[\sqrt{x} \] *	34 08 32 54 51 81 33 15 35 82 31 54 71	Axis →Semiminor
	x≤y STF 0 RCL 1 RCL 7	35 61 00 32 71 35 51 00 34 01 34 07		100	X**2 - STO E LST X \[\sqrt{x} \]	34 08 32 54 51 81 33 15 35 82 31 54	
	x≤y STF 0 RCL 1	35 61 00 32 71 35 51 00 34 01		100	X**2 - STO E	34 08 32 54 51 81 33 15	
	x≤y STF 0	35 61 00 32 71 35 51 00		100	X**2 -	34 08 32 54 51 81	→Semimaion
-	х≤у	35 61 00 32 71		100	X**2 -	34 08 32 54 51	
		35 61 00		100	RCL 8 X**2	34 08 32 54	
		01 I			RCL 8		
	1		- moomuturottt				i
	STO 8	33 08	-> ECCENTRICITY		1	01	section
040	<u>+</u>	61 31 54		-	GTO 2 RCL 9	22 02 34 09	ellipse
040	1	01		-	TF O	35 71 00	
	÷	81			LBL E	31 25 15	
	X**2	32 54			RTN	35 22	
	RCL 4	34 04			RCL A	34 11	
	RCL 6	34 06 71		090	STO C	33 13	\longrightarrow R _{min}
	*	71		000	RCL 9		\n_
	2	02			1/X	35 62	
	X**2	32 54	MOMENTUM		+	61	
030	STO 7	33 07	->ANGULAR		Pause 1	35 72 01	
	RCL 2	34 <u>02</u> 71			RCL 8	34 08	
	*	71			GSB C	31 22 13	
	RCL O	34 00			TF 1	35 71 01	
	SIN	31 62			LBL D	31 25 14	
	RCL 1	34 01 51		080	RTN	34 08 35 22	
	RCL 3	34 03			CLF 1 RCL 8	35 61 01	
	STO 6	33 06	→ ENERGY		STO A	33 11	> θ′
020	_	51			GSB e	32 22 15	
	+	81			+	61	
	RCL 4	34 00			R#	35 53	
	RCL 4	81 34 04			Rf LBL 7	35 54 31 25 07	
	2	02			CHS	42	
	X**2	32 54		070	R↓	35 53	
	RCL 2	34 02			GTO 7	22 07	
	LBL C	31 25 13			x<0	31 71	
	SF 1 RTN	35 51 01 35 22			SIN *	31 62 71	
010	STO 2	33 02			LST X	35 82	
	х	35 52			COS	31 63	
	STO 3	33 03			-	51	
	LBL b	32 25 12			RCL 1	34 01	
	RTN	35 22			RCL 3	32 63 34 03	
	x∓y STO 0	35 52 33 00		060	GSB d COS-1	32 22 14	
STO 1		33 01	67		CCD d	81	
001	LBL a	32 25 11	/7		RCL 8	34 08	
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS

Program Listing II

STEP	KEY	ENTRY	KEY C	ODE		COMMENTS	S	TEP	KEY ENTRY	KEY C	ODE	COMM	ENTS
	RCL	4	34	04					RCL 1	34	01		
	+			81	1		170		RCL A	34	· 11]	
	VΧ		31						-		<u>51</u>		
	2			02	l				SIN	31	62		
	*			71	1				*		71	1	
	T		35	73	1				x > 0	31	81]	
	*			71	l				GTO 4	22	04	1	
120	RCL	5	34						CLX		44	1	
	÷			81		riod (Hrs)		RCL B	34	12		
	RTN		35	22	1				-		51 42	1	
	LBL		31 25	02	Hv.	perbola-			CHS				
	RCL	C	34		11.5	Section	180		RŤ	35	54		
	1			01	<u>'</u>	06001011			LBL 4	31 25	04		
	RCL	8	34						B.	35			
	1/X		35						RCL 1	34			
	_			_51					+		61		
	x≠	0	31	61] 20u	tput Zero			GSB e	32 22	15		
130	GTO	3	22	2 03	fo	r [°] a Parabo	ola		STO 3	33	00	$\rightarrow \alpha_{\text{new}}$	
	RTN		35	22	ノ				RCL 0	34	00	1134	
	LBL	3	31 25	03	1				RTN	3.	22		
				81	1				LBL B	31 25	12		
	R/S			84			190		хДу	35	52		
	RCL	8	34	80					→R	31	. 72		
	1/X		35	62					RCL 3	34	03		
	COS	-1	32	63	—→ θ α				RCL 2	34	02		
	RTN		35	22	1 "				→R	31	. 72		
	LBL	A	31 25	5 11					х	35	5 52		
140	STO		33	3 01	1				R↓	35	5 53		
	RCL		34	11	1				+		61		
	_			51	1				RI	35	5 53		
	cos		31		1				+		61		
	RCL		34	· 08	1		200		RT	3'			
	*			71	1				$\rightarrow P$	3; 3;	72		
	1			Ò1					STO 2	3:	72		
	+			61					х	34	5 52		
	RCL	9	34	09					GSB e	32 22	2 15		
	+			81	1				STO 3	31	3 03		
150	1/X STO		35	662]				SF 1	35 51 32 2	01]	
	STO	0	33	3 00	\rightarrow R _n	ew			RTN	3	22		
	RCL	4	34	04		•			LBL e	32 25	5 15		
	x =	У	35	5 52				L	RCL D	34	14	1	
	+			81	1		210		÷		81		
	RCL	6	34	06]			I	FRAC	32	2 83	1	
	+			61	1				1		01		
	2			02				\Box	+		61		
	*			71	1			T	FRAC	32	2 83 1 14	i	
	VΧ		31	. 54	1				RCL D	34	14	1	
160	STO		33	02		ew		$\perp I$	*		71		
	RCL		34		l .	···			RTN	32 25	22	1	
	RCL			00	l				LBL d				
	RCL	_2	34	02	Į		<u> </u>		INT	31	_83	4	
	*		ļ	71 81	1		220		x ≠ 0	31 35	61	1	
ļ	4		00 01	81	1		<u> </u>		RTN	35	61 22 44		
	GSB	<u>-q</u>	32 2	14	1		<u> </u>	-+	CLX	2,	44	1	
	SIN		32	62			<u> </u>		LST X		82	1	
	RCL	_7	34	07	L	BELS			RTN FLAGS	35	22	SET STATUS	
A A		В	-,- 1	C			E 🙃	_ _		+			
	<u></u>	L	· v		<u> </u>		E Gra		° e≽ 1	FLA		TRIG	DISP
$a \overline{R}$	14	J d	$\vec{r_1}$	С		d Adjust	e Mod			ON 0 □	OFF	DEG 🔀	FIX 🗆
0	-	1		2 _11	g a 3				2		×	GRAD 🗆	SCI 🛣
		6		<u> </u>	sed-	3 -used-	4 -us	eu-		$\frac{1}{2}$		RAD 🗆	ENG □
5		6	l	′ –u	sed-	8	9		3	3 🗆			n_6

Program Title EQUATIONS OF PARTICLE MOTION

Contributor's Name ERIK GOETZE

Address 1613 CAMULOS AVE.

City GLENDALE State CALIF Zip Code 91208

Program Description, Equations, Variables HERE ALL VARIABLES ARE IN 4, REPLACED WITH 1 (V40 + V4)t m1 m L U = DISTANCE COVERED BY IN WHICH PARTICLE += TIME nr 4 mr5 nr 6 (AVERAGE OVER time t PARTICLE nr7 EXPERIENCIAL IN TIME ! PROGRAM, GNEN AM THREE OUT OF THE ABOVE SOLVE THE ABOVE EXMITIONS FOR THE OTHER TWO m9 Operating Limits and Warnings IF YOU ARE SOLVING FOR V-INITIAL, YOU MUST BEFURE SOLVING GET BY PRESSING FOR THE OTHER UNKNOWN. THIS IS BELAUSE Vyo IS IN ALL THE IF THE DISPLAY Error WHEN YOU You HAVE RUUT, SIMPLE SWITCH AND SWITCH BACK TO PROGRAM MORE, PRESS SST PRESS

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

Program Description II

	88.00			
	-32.30			
Sample Problem(s) TEST	12.00		_	
EACH EQTN. GIVEN	Quad roots 2.00	GSBd		
ON PREVIOUS SHIET.	_ pause → 5.31	***	- 118.00 G	
Clear everything GSBe	0.14	***	4.965 G	SBB
Crear every crimggsge	Solve for V _g	GSBe		
Initial vol and as as asset	15.00	GSBD		
Initial vel. 256.00 GSED	-9.80	GSBE	103.95	
Final vel. 17.00 GSBC	2.50	GSBB -	- G.	SBe
Time (seconds) 8.60 GSBB	3.00	GSBd	33.00 G	SBC
Solve for y 1.00 GSBd	-9.50	***	- 32. 30 G	SBE
1173.90 ***		GSBe —	- 15.70 G	SBA
GSBe	7.00	GSBA	4.00 G	SBal
159.00 GSBD	1.80	GSBB	45. 86	***
4.80 GSBB	12.00	GSBD —	Solve for a $arepsilon$	SBe —
g down ↓ -9.80 GSBE	3.00	GSBd	24.70 6	SBC
Solve for dist. 1.00 GSBd	-4.22	***	44.30 G	SBD
650.30 * **		GSBe —	- 2. 00 G	
GSBe	-9.80		5.00 G	
12.00 GSBC	5.00		y down ↓ -9.80 :	
19.00 GSBD	23.00			SBe
-9.80 GSBE	3.00		3.00 G	
1.00 GSBd	l		- 18.00 G	SBD —
11.07 ***	Solve for $V_{y0}^{20.76}$	*** GSBe	. 2.50 G	
Solve for time GSBe	19.00		5.00 G	
29.00 GSBD	-9.80		-13.44	
0.00 GSBC		GSBB	0.	SBe
-32.30 GSBE	4.00		17.00 G	
2.00 GSBd	22.72			
0.90 ***		GSBe	9 99 0	
0.00 GSBe	14.80		5.00 6	
47.00 GSBA	2.71			***
28.00 GSBD	0.00			
7.00 GSBC	4.00			
2.00 GSBd	10.92			
2.69 ***	10152	GSBe		
GSBe				

Reference(s)_	Physics	BY	RESMUK	mm	HALLIDMY	CHAMP 3	PAGE 49	

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	LOAD SIDE 1 AND 2			
2	RESET		fe	0.00
	INPUT DISTANCE TRAVELLED	X DIS.	Ą	0.00
	(IF YOU DON'T KNOW THIS, GOTO STEP 4)			
4	INPUT AMOUNT OF TIME	KIME	B	0.00
	(IF YOU DON'T KNOW THIS, GOTO STEP 5)			
5	INPUT VELOCITY AT TIME t	X DIS/TIME	C	000
	(IF YOU DON'T KNOW THIS, GOTO STEP 5)			
6	INPUT VELOCITY AT TIME ZERO	X DIS/TIME	D	0.00
	(IF YOU DON'T KNOW THIS, GUTO STEP 7			
7	INDUT ACCELERATION	X DIS/TIME2	E	0.00
	(IF YOU DON'T KNOW THIS, GUTO STEP B			
8	INPUT NUMBER OF VARIABLE YOU DON'T			
	KNOW. (REFER TO CARD LABEL) *	X	ENTER	
9	SOLVE FOR THIS VARIABLE		4 9	ก.ทฤ
10	SOLVE FOR 2ND UNKNOWN	Y	4 4	m.mm
11	FOR NEW CASE, GOTO STEP 2			
*	WHEN VINIOUN, SOLVE			
	FOR IT FIRST, THEN STORE ITS VALUE	ļ		
	BY PRESSING D BEFORE SOLVING			
	FOR THE OTHER UNKNOWN			
		ļ		
		ļ		ļ
 				

			97 Pro	gram	Listi	ng I		35
STEP K	EY ENTRY	KEY CODE	COMM			EY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	7		0 57	*LBL9	21 09	
002	1	01	MR OF REI	o m ≥0 A7	0 58	RCL0	36 00	CALCUATE Y USING FORMULA NR 3
003	CF0	16 22 0 0	(Dis is sid		0 59	RCL5	<i>36 0</i> 5	Y ING FORMULA
004	GT00	22 00	۲	7.	969	÷	-24	MR 3
005	*LBLB	21 12	NR OF RE	STORED AT	061	RTN	24	ו
996	2	02	> TIME IS		0 62	≭LBL 2	21 02	
007	CF1	16 22 01			0 63	RCL5	<i>36 0</i> 5	
908	GT00	22 0 0	j	04	064	Pi	16-24	
009	≭LB LC 3	21 13 03	Y FINAL N	RICES	<i>06</i> 5	X=Y?	16-33	NO Ace
010 011	CF2	16 22 02	1 , , , ,		966	6T06	22 0 6	1 .
012	GT00	22 00)		867 860	F0?	16 23 00 22 07	NO 9
012	*LBLD	21 14) .	an REU	068 069	GTO7 RCL4	36 04	1)
014	4	04	> V INITIAL	Mrc 1-	979 979	X2	53	17
015	GT00	22 00	<u>ک</u> د) b	070 071	RCL5	36 0 5	t
016	*LBLE	21 15	} V INITIAL }	~	072	RCL1	36 0 1	OUND ROUT
017	5	0 5	<i>)</i> ''		073·	2	02) TAWAIT
018	*LBL0	21 00			874	x	-35	CIR E MA
019	STOI	35 4 <i>6</i>			075	x	-35	Tolan FORM
020	R↓	-31	STORE MR. 11	n reb	0 76	+	-55	EVALUATION EVALUATION FOR t VSING FORMULA
021	STO:	<i>35 45</i>	210100		9 77	1X	54	NR 6
022	RCL3	36 0 3	1		0 78	ST09	35 0 9	1
023	χz	53	1 .		8 79	RCL4	<i>36 04</i>	
024	RCL4	36 0 4	CALCULATE		989	CHS	-22	\
025	Χs	53	12-Vue		081	+	-55	1 1
<i>026</i>	-	-45	(Vy		0 82	LSTX	16-63	
027	2 ÷	02 -34			6 83	RCL9	36 0 9	
028 029	STO O	-24 35 00)		<i>0</i> 84	- DOL E	-45	
029 030	CLX	-51			985	RCL5	36 0 5	1 1
031	RTN	24			086 007	÷ PSE	-24 16 51	1 /
031 032	*LBL1	21 01			087 088	LSTX	16-63	/
033	F1?	16 23 01			6 89	X≠Y	-41	/
034	GT09	22 0 9	DON'T HAVE T	ME	898	R↓	-31	/
035	F2?	16 23 0 2	DON'T HAVE	Jr., 41	091	÷	-24	
0 36	GT08	22 0 8	DON'I HAVE	+IMT L	6 92	RTN	24	
037	RCL4	36 04)		893	*LBL7	21 07	!)
038	RCL3	36 8 3	1		094	RCL3	36 0 3	CALCULATE T
039	+	-55	CALCURATE	9	095	RCL4	36 04	USING FORMULA
949	RCL2	36 02	USING FO	RMULA	896	-	-4 5	USING TOTAL
041	X_	-35	(USING TO	1	0 97	RCL5	<i>36 0</i> 5	(nr. 4
842	2	0 2	1		0 98	÷	-24	
043	÷	-24	ノ		099	RTH	24	<u> </u>
044 045	RTN *LBL8	24 21 0 8			100	≉LBL6	21 0 6	
045 046	#LBL8 RCL4	21 0 0 36 04	}		101	RCL1	36 01	/ HAATE T
940 947	RCL2	36 02			102 103	2 ×	02 -35	CALCULATE T USING FORMULA MR 5
048	X	-35		16 U	103	RCL3	36 0 3	USING
049	RCL2	36 0 2	CALCURA	5-AMIRA	105	RCL4	36 0 4	\ MR 3
<i>0</i> 50	Χz	53	\ \(\circ\)	10.	106	+	-55	1
0 51	RCL5	36 05	NR	2	107	÷	-24	1
0 52	X	-35	ì		108	RTN	24	
0 53	2	8 2	j		109	≭LBL3	21 03	
054	÷	-24	/		110	F8?	16 23 00	no y
0 55	+	-55			111	GT09	22 89	-
956 I	RTN	24		REGIS	112	F1?	16 23 81	
0 Vy2 - Vy	DIST.	2 TIME	3 V FINAL	4 VIMIIM	⁵ Acceler.	6	7	8 9 b2-4ac
S0 Z	S1	S2	S3	S4	S5	S6	S7	S8 S9
Α		В	С		D		E	Ihr of UBEL+

97Program Listing II

STED KEY	Y ENTRY KEY	CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
		DATE:	E	169		36 05		
113	GTO ₄ 22 16	11	-	170		36 0 1	1 \ , and	nate byo 13
114	RCL1 36 2	01 02		171		0 2)) (18)	6 POPULA
115 116			.,	172		-35	ן (טאר	<u> </u>
117		-33 -02	KLUATE VE FORMULA			-35	1 / w.	·
118		-24 \ J	FORMULA	174	4 -	-45	1)	
119		84 (V	NR 8	175		54	1 /	
120		-45	M/~	178		24	!	
121	RTN	24	LLUATE VE	177		21 08	11	
122		09	SING FORMA	178		36 01	11 .	TE Vyo FURMULA
123	RCL4 36	04	and formul	175		02	Calcula	STORMULA
124		05 (U	51001	180		-35 36.00	>0,41M	, 1 012.
125		0 2 \ (mr 1	18: 18:		36 02 -24	1 , W	ii i
126		-35		183		36 0 3	1 1	
127		-55		184		-45	1)	
128	RTN 21 16	24		185		24		
129	#LBLa 21 16	~ <i>l</i>		186		21 05	1	
1 30 131	RCL4 36 X ²	04 53	V.	. 187		16 23 80	1	
131		93 91 C	ALUNATE !!	188		22 07	NO 4	
133		<i>85</i>	ALCULATE VI	185	9 F1? 1	16 23 01	no t	
134	2	02	me 9	190		22 0 6	1	
135		-35	ME 7	19:		<i>36 0</i> 1	1)	- a
136		-35		192		36 04	CALCIA	ATE CA FORMUA 15
137		-55		193		36 0 2	> Crub	FORM
138	1X	54 <i>)</i>		194		-35	(usino	15
139	RTH	24		19		-45 36. 00	1 Mc	•
148		0 4		190		36 0 2 53	1 1	
141	F0? 16 23			197 198		-24	1 1	
142	GTOЬ 22 16	12		199		0 2	1 1	
143	F1? 16 23			200		-35	1 /	
144	GTOc 22 16	13		28:		24	12	. a
145 146		05 -24		282		21 07	2 carcia	TE TA FORMUA 14
147				203		36 03	1 Carca	FORMUL
148		-33 NO Ac	L	204		36 04	OS INC	14
149		01		205	5 -	-45	USING	''
150		62		200	6 RCL2	36 02	1 \	
151		-24	HUTATE Vyo	201		-24	1/	
152		05 > CF	HULLATE VYON	A 200		24	K	<u> </u>
153						21 06	CALLER	ate u ,
154	х -	-35	nr 12			36 00	Concor	FORMUS 6
1 5 5	2	02	1"	21:		36 01	S MR I	6
156		-24)		212 213		-24 24	WIT.	1
157		-45				21 16 15	15	TING
158	RTN 21 16	24	LCULATE VYO			16 21 00	1 CONET B	ny setting N IN Rs
159	*LBLb 21 16	12	LCULATE VYOUS	A 210		6 21 01	L. MIS.	P W '''
16 0 161		03 CM	KING FOIL	217		6 21 02	1 / 1	
161		62 (\	ising to	218		16-24	1 \	
163		-35	la.	21		<i>35 05</i>	1 1	
164		-45		220		- 00	ノ	ITE VARIABLE 200/INE I
165	RTN	24		22:		24	المدالية	TE VINCE
166	*LBLc 21 16	\		222		21 16 14	I NI	ZOUTINE I
167		03		223		35 46	り ' .	İ
168	Χs		BELS	224	4 GTO:	22 45	SET STATUS	
STORE DIS	STORE IME	C	D STORE VIN.	ESTORIE ALL	OSET IF DIS HASNIT ENTER	FLAGS	TRIG	DISP
a Used)	b USED	c used	d SOLVE	le patt	1 SET IF TIME	ON OFF		
OSTORAGE	TOPED	2 CALL TIME	3 CALL V _F	4 (44 1/)	<u>Hasn'i enter</u> 25et IF Vf		DEG Æ 7 GRAD □	FIX ZX SCI □
-		-	10	OTIC VIVIT,	HASNI GIVIEN	3 2 3 □	RAD 🗆	ENG D
"CMC Au	UCAED	/ VSED	8 USED	a nred	J	3 🗀 🗆	L	n

Program Description I

Program Title	Ballistics Trajecto	ory Computations	
Contributor's Na	me David M. Ivey 2470 New Clinto	on Rd.	
City	Macon	State Ga.	Zip Code 31201

Program Description, Equations, Variables The Program computes remaining velocities,
energies, flight times, maximum rise and drops of bullets at user
specified intervals. Computations technically apply to ICAO conditions
which are satisfactory for most shooting conditions. The method uses
a Mayevski drag formulation (drag= Av ⁿ) with different constants for
different velocity zones. The program automatically selects the
correct constants. Program control is by Label A, the various data
outputs are done by Labels 2,3,4,5, and 6 so that users may easily
arrange output data order. Label 7 computes air resistance. Note
that maximum rise gives sight in data.
Use English Units Only
Operating Limits and Warnings Be sure to use ballistic coefficients based on
Ingall's Tables (most are, usual exceptions are foreign bullets). This
system works best when the coefficient (Cb) is greater than .150 and
velocities above that of sound. Most importantly however, use range
intervals no greater than 100yds, shorter intervals give better
accuracy. For typical rifles about 3% error occurs relative to numeric
integration techniques, at 1000yards.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s) Compute the complete trajectory of a 30/06 cartridge where the bullet weight is 165grain Sierra boat-tail (ballistic coefficient for this bullet=0.470) at a muzzle velocity of 2800ft/sec in 100yd. intervals out to 200yards.

```
Velocity IN Ft/sec
Energy IN Ft lbs
time in Seconds
                                                                  MUELLE Vel >2800.
                                                                  Bullet wt ->165.
                                                                         -- 6.470 ***
 Rise & drop in inches
                                                                    Range yds 100. ***
Solution(s) Input keystrokes
                                                                     Velocity 2588. ***
C_{b} = 0.470 \text{ STO } 6
                                                                     Energy
\Delta x=300feet STO 7
x_m = 200 yds = 600 ft use 601 to stop.
                                               Output =
      601 STO 8
                                                                                200. ***
w_{h} = 165 STO 9
                                                                               2385.
V_{2} = 2800 \text{ STO A}
                                                                               2084.
Set flags Zero and One to
                                                                                2.58 ***
output energy and rise Press A
                                                                                9.86 114
```

Reference(s) This program represents the first complete ballistic system without extensive numeric integration techniques or long tables. It was specifically developed for microcomputer applications. For more information regarding theoretical development, write the author.

DAVID M. IVEY

2470 NEW CLINTON RD. MACON.GEORGIA 31201 PH (912) 743-4206

Ballisties Trajectory Computations

A) Equations,

$$D = A v_i^N$$

$$Z' = \frac{2\Delta X}{C}$$

$$t_{\xi} = 2\Delta x \sum_{i} \frac{1}{\nu_i + \nu_{\xi}}$$

$$h = 48.26 t_{\xi}^{2}$$

$$E_{f} = \frac{W_{8}V_{f}^{2}}{450240}$$

(WB IN grains)

B) Note The constants A and N are stored in registors by the data card.

Mayerski Velocity Zones

Range of V	N	A>1
3600 to 2600	1.55	4.064882535(10-3)
2600 to 1800	1.70	1.247951766(10-3)
1800 to 1370	2.00	1.316(10 ⁻³)
1370 to 1230	3.00	9.569787630(108)
1230 to 970	5,00	6.336817507(10-14)

Location of Constants

The N A values occupy secondary storage registors. Zone Velocities occupy Registors B to E

Below is a print out of Register Contents:

4.064882535-83	10
i .5 5	11
1.247951766-03	12
1.7	13
1.3160000000-08	14
2.0	15
9.5 69787630-03	16
3.0	17
6.336817507-14	18
5.0	19
6.6	Ĥ
1800.0	В
1370.0	Ũ
1230.0	D
978.8	Ε
6.0	Ī
	-

10 Refers to I address of storage Registor

User Instructions

A				
1	Ballistics Trajectory fO=prints f1=energy and	Computations rise	Prgm	2
	Run	Clears	$C_{\mathcal{B}}$	_ /

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS	
1	Load Program Card, Both sides				
	Load Data Card, Bothsides				
	,				
2	Store Parameters Ballistic coefficien	t C _b	STO 6	Ср	
	Range Increment (ft)	Δx	STO 7	Δx	
	Maximum Range ft	X _m	STO 8	X _m	
	Bullet weight Grains		STO 9	wb	
	Muzzle Velocity	V 0	STO A	V	
3	Set Output status				
	Flag Zero set will Print ans, else p Flag One set will compute Energy and				
	according to Flag Zero's status				
4	Execute program Press LBL A				
	Prgm first outputs initial data			V	
	_			w _b	
				C _b	
	Then the computations:				
ļ				Range	
				Velocity	
				energy	
				time	
				rise	
				drop	
5	New Problem go to Step two after cleari	ng			
	by LBL C				
ļ					
6	To Community a halling to nection and he	Tue 114			
	To Compute a ballistic Coefficient by 1 STORE Range between	1 X	570 7	AX	
	KNOWN velocities	- A		~~	
	Enter Velocities	V:	\uparrow	V;	
		V;+1	E	-CB	

97 Program Listing I

			7/ " " ((7) -		41
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KI	EY ENTRY	KEY CODE	COMMENTS
€3	1 *LBLA	21 11	0 0 1 1	057	CHS	-22	
83		16 23 00	Pram Control	0 58	RCL4	36 0 4	
00		16-11	,	059	χz	53	
			Initial	969	 +	-55	
99		23 14					
99		<i>36 07</i>	Settings	061	- 1X	54	
ŪŪ	6 STG2	35 02	Je1111093	062	GSB1	23 01	
99	7 1	01	•	063	RTN	24	
99		<i>00</i>		064	≭LBL 3	21 03	ENPARA
00		35 46	1	965	RCL4	36 Ø4	
			Initial	066	X≢Y	-41	Energy Calculations
01		36 11	Data Output				
01		35 04	Data	067	+	-55	
01	2 GSB1	23 01		968	LSTX	16-63	
01	3 RCLS	36 <i>0</i> 9	Output	069	ST04	35 04	
01		23 81	'	979	XZY	-41	
01		36 06		071	ST03	35 Ø3	t de la constant de la constant de la constant de la constant de la constant de la constant de la constant de
				072	RCL4	36 04	i i
01		-63 03		073	χ2	53	
01		23 01					1
01		-63 00		074	RCL9	<i>36 </i>	1
01	9 F0?	16 23 0E		075	X	-35	
92		16-11		076	4	ē 4	į
0 2		21 12	Main Prom	077	5	<i>0</i> 5	
02 02		16 23 00	Main I Fam	0 78	ē	03	
			Main Pram Control	0 79	2	0 2	
02		16-11					
02		23 08	after.	080	4	04	
02	5 F0?	16 23 OL	1 / 1	081	Ū	00	
02	6 SPC	16-11	initialization	082	÷	-24	
02		23 62	_	0 83	F1?	16 23 01	
<i>02</i>		23 03	} data {Computations	084	GSB1	23 01	
			data	085	RTN	24	Flight
02		23 04	44	905			7797
93		23 05	Computations	086	∗LBL4	21 04	Flight Time Calenlations
03	1 GSB6	23 06		9 87	RCL3	36 03	Calenlations
93	2 RCL7	36 07		988	1/X	52	
03		35-55 02		0 89	2	02	
<i>03</i>		36 02	Range.	090	X	-35	
			12.57.2570	091	RCL7	36 07	
93		36 08	Lange decisions X; = XM				
03		16-35	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	092	X OT (E	-35	
03	7 RTH	24	\(\chi_{i} - \chi_{M}\)	093	ST+5	35-55 <u>@5</u>	
93	8 GTOB	22 12		094	X	-35	
93	_	21 01	Pause or	095	RCL5	<i>36 0</i> 5	
84		16 23 06	iamse or	096	DSP4	-63 04	
		22 16 11	Prints	097	F1?	16 23 81	
04				098	GSB1	23 01	
94		16 51	Routine				1
04		16 5 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	099	RTN	24	100, 11, 11, 110
04	4 RTN	24		100	≭ LBL5	21 05	Rise (Maximum
04	5 *LBLa	21 16 11		101	X2	53	Ordinate) calculations
04		-14		102	4	04	Drainate)
04		24		103	8	<i>08</i>	LA a lava la tions
			12.1 1 1	104	_	-62	124,124,170,00
04		21 02	Velocity Computations		•		}
04		36 <i>0</i> 4	Commutation) <	105	ے	0 2	
95	0 6SB7	23 07	Computations	106	ь	<i>0,6</i> −35	
0 5	1 RCL7	36 07	•	107	X		
05		- 3 5		108	DSF2	-63 62	1
9 5		0 2		109	GSB1	23 01	1
		-35		118	RTH	24	1
0 5				I			1
05	5 RCL6	<i>36 06</i>		111	*LBL6	21 96	I
05	6 ÷	-24	555	112	7	Q4	
			10 14	STERS	6	17	18 19
0	[1	² X;	used Vi	5 2 Vi+ K	° C _B	' AX	$ \chi_m \omega_B $
S0	. 01				S6	_ 1. S7	S8 -W S9
50 4.064(1	$(5^3)^{5}$ 1.5	5 1.24(10 ⁻³	1) S3 1.70 S4 1.31410 9	32.00	S6 9.57(10	3,00	S8 6.34(10) S9 5.00
T. COTU	· /1 - · · ·	- 1,:-1,,0	12,200		1	I=	1 11 11

° 1370

97 Program Listing II

42 STEP KE	Y ENTRY	KEY CODE		COMMENTS		STEP	KE	Y ENTRY	KEY CODE	COMM	IENTS
113	X		1/0/				69		22 16 12		
114	^3	-35 83	LBL				7Ø	*LBLe	21 16 15		
115	÷	-24	dro	putation			71	i	Ø1	l	
116	RCL4	35 04	11.	auto tian			72	4	Ø4		
117	RCLA	36 11	Long	Duration			73	STOI	35 4 <i>6</i>		1
118	÷	-24					74	GTOL	22 16 12		
119	ΔX	54	l					*LBL d	21 16 14		
120	2	<i>02</i>					76	ĺ	81	1	
121	X	-35	ĺ				77	5 0 7 07	<i>06</i>		
122	í +	ē1 -55					78 70	STOI	35 46	1	
123 124	X	-35					79 00	GTOb *LBLD	22 16 12 21 14	Clean	-5
125	GSB1	23 01					8 0 81	∓LBLU Ø	21 14 00	F 1 100 A	Posiston
126	RTN	24					82	STO2	35 <i>6</i> 2	Time	10.01
	*LBL7	21 07	S.	election	10		83	ST05	35 <i>0</i> 5	and	Range
128	2	<i>02</i>			1		84	RTH	24	Conn	ter
129	6	Ø6		t correc	7			*LBL8	21 08]	Registor Range ter ts In yards
130	EEX	-23		1 constan	ots		86	RCL2	36 02	Outpu	its
131	2	62					87	3	03	range	IN vard
132	XZY?	16-35	F.04	drag			88	÷	-24	1	/ %
133	GT00	22 00 -41		elections f correct constant drag whations urmines			89	DSP0	-63 00		l
134 135	X≢Y RCLB	36 12	C-0, 10	Livilations	•		90	GSB1	23 01		I
135 136	XZY?	16-35	dota	.~mines			91	RTN ≭LBL E	24 21 15	ballisti	<u>, </u>
137	GTŪc	22 16 13	10016	1 .			92 93	STO0	35 00	Cantisti	· +
138	XZY	-41	velo	city			94	XZY	-41	Coeffic	JON!
139	RCLC	36 13	701	ves.			95	STO1	35 <i>6</i> 1	Contowlar	tions
140	X4Y?	16-35	1 20				96	STO4	35 04		I
141	GTŪe	22 16 15					97	GSB7	23 07	1	i
142	X≢Y	-41					98	2	0 2		
143	RCLD	36 14					99	X	-35	Į.	
144	X≼Y?	16-35					90	RCL7	36 <u>0</u> 7		1
145	GTŪd	22 16 14					91	X	-35		l
146	i S	01 08					92	RCL1	36 01 57		
147 148	STÜI	35 46					93 94	χ2 euc	53 		
149	*LBLio	21 16 12		Oction 1			94 05	CHS RCL0	-22 36 00		
150	RCL4	36 04	1				95 96	KCE0 X2	50 56 53		
151	RCL:	36 45	1 4	oraq Calculatio			97 97	+	-55		ĺ
152	ISZI	16 26 46		la la latio	n7<		08 08	÷	-24		
153	RCL i	<i>36</i> 45	(-	200 100 100 100	""		09	GSE1	23 01		1
154	$X \neq Y$	-41					10	RTN	24		l
155	R↓	-31					11	R/S	51		
156	γ×	31									l
157	₽↑	16-31 -75									
158 159	x RTN	-35 24								4	l
159 160	*LBL0	21 00	bah	els Ø,C, e	0				+	1	
161	#EDE5	01	~050	را در در در در در در در در در در در در در	_	 			1	1	ĺ
162	ē	<i>8</i> 6	da	seure ect cons drag veloc	, ,				1	1	l
163	STOI	35 46	Corr	ect cons	tant					1	
164	GTÜb	22 16 12	-	1	situ	220]	
165	*LBLc	21 16 13	tor	rag vero	11)					1	
166	1	01 02	Zon	ne i						4	
167	2	02							-	1	
168	57 <i>0</i> 1	35 46	LAE	BELS			Т	FLAGS	1	SET STATUS	
Anitial Con	ot B use	2d C		Clears	EVM	$V_{i+1} \rightarrow C_B$	0	Prints	FLAGS	TRIG	DISP
aused	b Ws 4		nes	Zones	e Zo	Nes	1 D	oes of rise	ON OFF	DEG ⊠	FIX 🗷
Zones		t/Ause ²	Velocity	3 Energy	4 +	me	2		1 🗷 🗆	GRAD □	SCI □
Fise	6 1		rag	8 Range	9		3		2 X 3 X	RAD 🗆	ENG □ n <u>2,4,0</u>
					-		_				

Program Description I

Program Title ISOTOPE OVER	RLAP CORRECTIONS	
Contributor's Name Lawrence Address 206 Crest Ave.	I. Grossman	
City Ann Arbor	State MI	Zip Code <i>48/03</i>

Program Description, Equations, Variables Program Corrects for spillover between channels when two radioactive isotopes are being counted in a liquid scintillation spectrometer. Background subtraction for each isotope is also provided. Program may be used with single isotope. I sotopes X and y are counted in machine channels A and B, respectively. Let a = fractional sp: llover of isotope y from channel B to A. b = fractional spillover of isotope x from channel A to B. Cx = corrected counts/min isotope x in channel A = CA - a CB, where CA and CB are the Cy = CB-bCA Total counts/min coclope X = Cx (1+b) = Tx
Total counts/min coclope Total counts/min isotope y = Cy (1+a) = Ty **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11


```
Sample Problem(s) 2 isotopes. Sp: llove A - B = 10%, B- A= 20%, BkA = 10 cpm, Bkg= 50 cpm
For the following values of cts/min a and cts/min B, calculate corrected values and
totals.
sample.
                         B
         1000
                        500
                       1000
        2000
   3
      1400
                       2200
Solution(s) Keystrokes
                                                                                          (T_{Y})
                                                                               > 920
 [f] [A]
                                                                                        (next)
                                  9 0.00
 0.2 ENTER 10 [D]
                                                             1400 [A] 2200 [B][c] → 1078
                                                                                          (T_{k})
                                  → 0.20
 0.1 ENTER 50 [E]
                                                                                         (\tau_y)
                                  ₹ 0.10
                                                                              7 2462
  1 [6]
                                     1.00
                                                                                         (next)
 1000 [A] 500 [B] [C]
                                                (T_{x})
                                                            [A] [B]
                                    1010
                                                                                        (ETx)
                                                                              →) 4108
                                                (T_{y})
                                     430
                                                                                         (≤Ty
                                                                              -> 3812
                                              (next sample)
                                                                              70
                                                                                         (rejet)
2000 [A] 1000 [B] [C]
                                 → 2020
                                              (Tx)
```

Reference(s)	

User Instructions

1 Load side 1 2 Set for two isotopes 3 Eighter number of first sample 4 For simple isotope, enter factional spillower channel B.A. 5 If his isotopes, enter factional spillower channel B.A. 5 If his isotopes, enter factional spillower channel B.A. 6 Eighter countly find for channel B.A. 7 Eighter countly find for channel B.A. 8 Dutput corrected countly find for channel B.A. 8 Dutput corrected countly find for channel B.A. 9 For next sample or pair of samples, op to 6. 10 After last entry, obtains the G. all samples of isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs, the floor find isotope x and y (y xixi). After outputs isotope x and y xixii x and y xixii	STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
2 Set for two isolopes 3 Enter number of first sample 4 For single isotope, enter factional spillower channel BA background subtraction for channel A. 5 If two isotopes, enter factional spillower channel BB, background subtraction for channel BB, 6 Enter counts/min for channel BB, cpma 7 Enter counts/min for channel BB, cpma B Output correctal counts/min for channel BB, cpma B Output correctal counts/min for channel BB, it used) 9 For next sample or pair of samples, go to BB. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotopes; is cleared and the accumulation registers for total of all samples are cleared.		Load side /			
3 Enter number of first sample 4 For single isotope, enter factional spillower channel B>A. background subtraction for channel A. 5 If two isotopes, enter factional spillower channel B>B, background subtraction for channel B. 6 Enter counts/min for channel B. 7 Enter counts/min for channel B. 8 Output corrected counts/min for channel B. 9 Por next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotopes is channel by all samples of for bold of all samples are chancel. 6 Enter counts/min for channel B. 9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotopes is chancel and the accumulation registers for total of all samples are charced. 6 B 2 Tx 2 Ty 0	2	_		FA	0.00
4 For single isotope, enter factional spillover channel B>A, background subtraction for channel A. 5 If two isotopes, enter factional spillover channel A>B, background subtractional spillover channel B. 6 Enter counts/min for channel B. For 1 isotope, go to 8. Cpma 7 Enter counts/min for channel B. 8 Output correctal counts/min for channel B. 9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. 5 April BAB 6 A-B B B 7 A-B B B 6 A-B B B 7 A-B B B 6 A-B B B 7 A-B B B 7 A-B B B 7 A-B B B 7 A-B B B 7 A-B B B 8 A-B 8 A-B B 8 A-B		n:	f c	n;	
background subtraction for channel A. 5 If two isotopes, enter fractional spillover channel A.B. 6 Enter counts/min for channel B. 7 Enter counts/min for channel B. 8 Output corrected counts/min for channel B. 9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope; is cleared and the accumulation registers 6 or total of all samples are cleared.					
5 If two isotopes, enter fractional spillover channel A > B, background subtraction for channel B 6 Enter counts/min for channel A. for 1 isotope, go to 8. cpm A 7 Enter counts/min for channel B. 8 Output corrected counts/min for channel A, B (if osed) 9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total & all samples of isotope x and y (if usal). After outputs, the flag for two isotopes is cleared and the accumulation registors for total of all samples are cleared. 5 If two isotopes is cleared. 6 B Enter counts/min for channel B. C PMB				D	B→A
background subtraction for channel B 6 Enter counts/min for channel A. For 1 isotope, go to 8. CPMA 7 Enter counts/min for channel B. 8 Output corrected counts/min for channel A, B (if osed) 9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotope; is cleared and the accumulation registers for total of all samples are cleared. 6 B 2 Tx 2 Ty 0	5				
7 Enter counts/min for channel B. 8 Output corrected counts/min for channel A, B (if osed) 7 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if usal). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. Enter counts/min for channel B. Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Cpms B Tx Ty Ty Ty Ty Ty Ty Ty Ty Ty		background subtraction for channel B			A > B
B Dutput corrected counts/min for channel A, B (if used) Tx Ty (x used) Per next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotope; is chared and the accumulation registers for total of all samples are cleared.	6	Enter counts/min for channel A. For 1 isotope, go to 8.	CPM A	[A]	cpmp - Bkp
Ty (y used) 7 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. 5 Tx 5 Ty 0	7	Enter counts/min for channel B.	СРМВ	В	CPMS - BKE
9 For next sample or pair of samples, go to 6. 10 After lest entry, obtain total of all samples of isotope x and y (if usal). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. E. Tx	8	Dutput corrected counts/min for channel A, B (if used)		[c]	Tx
9 For next sample or pair of samples, go to 6. 10 After last entry, obtain total of all samples of isotope x and y (if used). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. 5 Tx		•			1 ' '
10 After last entry, obtain total of all samples of isotope x and y (if usal). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. E. Tx.					next ni
isotope x and y (if usal). After outputs, the flag for two isotopes is cleared and the accumulation registers for total of all samples are cleared. ETX Ty O			 		
for total of all samples are cleared. for total of all samples are cleared. £ Tx £ Ty 0	10		 		
for total of all samples are cleared. f B \(\frac{\f			 		ļ
£. Ty	-				T
0'	-	for total of all samples are cleared.		[B]	1 1
	-		-		1. /
To new set d. Samples, 29 10 2.	-		 		P
	μ	for new set of samples, go to 2.	 		
			 		
			 		
			 		
			 		
			1		
			†		
			 		
			<u> </u>		

67 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COM	MMENTS
001	FLBL D	31 25 14		T	X	7/		
	STO D	33 00	1		5TO +8	33 61 08	_{กี}	
	01.		store BKA, a				7	
<u> </u>	R+	35 53	1	060	570 9	33 09	⊢ , , .	
	STO I	33 01	1	060	RCL 7	34 07	_ output -	l×,
	RTN	35 22			- x-	31 84		
	+ LBL C	32 25 13	1		RCL 9	34 09	7 '	Ty (if fo set)
		35 33	store first sample no.				\dashv	,
	STI				Fo?	35 71 00	4	
<u></u>	RTN	35 22		↓	- x-	31 84	_	
	+ LBL E	31 25 15			157	31 34		
010	570 2	33 02			RCI	35 34		
	R+	35 53	store BkB, b		RTN	35 22	7	
<u> </u>			1					
ļ	5703	33 03		ļ	* LBL a	32 25 11	5F0 for	2 labels
	RTN	35 22			SF 0	35 51 00		
1	+LBL A	31 25 11	enter counts/min for A	070	RTN	35 22		
	RCL O	34 00	the bondymin (b) /		+ LBL b	32 25 12	7~ ^ -	
		51	channely subtract BkA,				المحاسم ا	otal x for
	1 11		store.		RCL 6	34 06		
	570 4	33 04			- x-	31 84	— all sample	s. total y
	RTN	35 22			RCL 8	34 08		
	* LBL B	31 25 12	enter counts/min for B		FO?	35 71 00	(If Fo set	t). CFO.
020	RCL 2	34 02			-x-	31 84	7	1.3.
-	Alek et		channel, subtract Bks,				- Clear acco	umulation
		51	store		CFO	35 61 00	registers.	
<u></u>	570 5	33 05	1 -,			00	1 1 1 1 1 1 1 1 1 1	•
	RTN	35 22			570 6	33 06	_	
	+ LBL C	31 25 13		080	570 8	33 08		
	RCL 4	34 04	1		ST I	35 33	7	
<u> </u>			Calculate Cx, Cy,	-			-	
ļ	RCL /	34 01	, '		RTN	35 22		
	RCL 5	34 05	Tx, Ty	L			_	
	X	71	'7 '1					
		51					7	
030	1		1			1	7	
-	 	01	1	-			\dashv	
L	RCL 1	34 01	i .		<u> </u>		4	
	RCL 3	34 03						
	X							
		71 51 81	1	090			٦	
<u></u>	÷	51			 		-	
	-	8/	4		 	 	-	
		01						
	RCL 3	34 03		1				
	<u>+</u>	61	1				7	
	X	2/	1		 	1		
040		7/ 33 61 06	1	-	 	 	-	
040	570+6	33 61 06				LABI	=1	
	570 7	33 07	ļ 	To	To	LADI	<u></u>	IF A
	DSPO	23 00	Counts/min	A B	15/min B out	but Tx.Ty	al Bokgl. A	57 Bakyol B
	RCL 5	34 05		h	Column D	1	d	e
 		34 03	ولمطمأ بر "	T	ما دوس	1st sample No.	-	
	RCL3		0	1	2		3	4
	RCL 4	34 04	l					
	X	71	5	6	7	1	8	9
		51	J					
	1	01]					
	RCL 1	34 0/	1		FLAGS		SET STATU	S
050			1		O Set for		TD10	DICD
050	RCL 3	34 03	1		2 kotopes	FLAGS	TRIG	DISP
	X	71	1		↓ 1	ON OFF		.
1	_	51				° 🗹 🖳	DEG 🗹	
	÷	81			\prod^2	1 🗆 💆		SCI 🗆
	1 ,	01	1	110	\square_3	 2 □ 🗗		ENG □
	PCII	34 AI	1		H°	3 🗆 🗹	· I	n 0
	RCL I		1		 			
	<u> </u>	61		<u></u>	<u></u>		_	
				STERS				Ta
0	1	2	3 4 4	5	6 / ~	⁷ C	18/	9 (
Backgrow	mla a	Background	B CA	CB	° ≥ C _X	C _x	آک (۷	Cy
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
	Ĭ.	_			1	1		
<u></u>			10	D		E	Tr Tr	
Α		В	С	ا		_		le Number
I				I			Samp	A TOWN DOWN

Program Description I

Critical Reactor Code Program Title

Richard D. Hyman Contributor's Name

23822 80th W. Address

City **Edmonds** State Washington

98020 Zip Code

Program Description, Equations, Variables The program estimates the parameters of a reactor with different fuels, moderator, fuel to moderator ratios, size, and shapes of the Its most important use is in indicating trends in certain changes of mod. etc.

$$\eta = \frac{\gamma_{235} \Sigma_{f}(235)}{\Sigma_{a}(235) + \Sigma_{a}(238)} = \gamma \frac{\sigma f}{\sigma a}$$

$$f = \frac{\sum aF}{\sum at} = \frac{\sum am \ Vm}{\sum_{aF} \ V_F} F + E$$

$$F_{(x)} = 1 + \frac{1}{2} (\frac{x}{2})^2 - \frac{1}{12} (\frac{x}{2})^4 + \frac{1}{48} (\frac{x}{2})^6 : x = \frac{a}{LF}$$

$$E(y,z) = 1 + \frac{z^2}{2} \left[\frac{z^2}{z^2 - y^2} \ln(\frac{z}{y}) - \frac{3}{4} + \frac{y^2}{4z^2} \right] : \frac{z = \frac{b}{LM}}{y = \frac{a}{LM}}$$

$$\rho = \exp - \left[\frac{N_F V_F I}{\sum_{m} \sum_{sm} V_m} \right] \quad I = A + C / \sqrt{a\rho}$$

$$B^2 = (\frac{\pi}{R})^2$$
sphere

$$\varepsilon = 1 + .3 \left(\frac{V_F}{V_m}\right)$$
 $P_L = \frac{1}{1 + B^2 L_T}$ $P_L = 3 \left(\frac{\pi}{R}\right)^2 \text{cube}$

$$B^2 = 3(\frac{\pi}{R})^2 \text{cube}$$

This program works best for low enrichment fuel, $(-7^2-5)\%$ this is much like a power reactor. The accuracy is only to be taken as an estimate. But the trends are good. Note: Radius of reactor is stored in S-6 register to change this you must change $[P \leftrightarrow S]$ [STO 6] $[P \leftrightarrow S]$

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

New data cards can be made for U^{235} Pu 299 fuels & H₂O, C, on D₂O moderators. The information needed on these cards can be found in John R. Lamarsh, Introduction to Nuclear Engineering.

```
P-0 = \rho - Density of Fuel
```

P-1 = MW - Molecular weight of fuel

P-2 = Atom density of fuel

P-3 = ΣaF - Microscopic cross section of fuel (abs.)(cm-1)

P-4 = Microscopic cross section of mod. (abs.) (cm-1)

P-5 = Const A

P-6 = Const C

 $P-7 = \Sigma m \Sigma sm$

P-8 = Microscopic fission cross section of fuel (in barns)

P-9 = # of nuetrons emitted per fission

S-8 = Diffusion length of moderator (cm)

S-9 = Diffusion length of fuel (cm)

A = Enrichment % of fissile fuel

B = Microscopic abs - cross section of fissile fuel (in barns)

C = Microscopic abs cross section of U^{238} (in barns)

D = Radius of fuel pin (cm)

E = Radius of fuel

All these must be set for different fuel + moderators this is why it is best to record this on a card.

Values for Diff. Fuel + Moderators

	U ²³⁵	Pu ²³⁹	н ₂ 0	D ₂ 0	С
ρ	19.1	21.45			
MW	238	239			
NF	.04833	.04938			
Σ a F					
Σam			.0222	2.9x10 ⁻⁵	.0002728
А	3.0	3.0			
С	38	38			
ΣmΣsm			1.46	.178	.0608
σf	580	742.5			
Υ	2.6	2.98			
Lm			2.85	170	59
L _F	1.55	2.0			
σ afiss	680	1011.3			
σ a 238	2.7	2.7			

Program Description 11

Sample Problem(s) What are the parameters of the reactor and is it critical if it is natural Uranium filled graphite moderated with a fuel pin radius of 1.02 cm and a fuel cell radius of 25.4 cm. The reactor is a sphere of radius 5 meters.

 η = 1.33 = # of neutrons produced per neutron abs in fuel

f = .811 = # of neutrons abs in fuel per neutron abs

 ρ = .98 = probability a neutron is not abs, in 238 uranium

 $\varepsilon = 1.0002$ = fast fission factor (from U²³⁸ fission)

PL= .879 = \underline{non} leakage probability

k = .936 = neutrons in generation n
neutrons in generation n-1

k<l so reactor is subcritical

Solution(s) Keystrokes assuming data has been stored.

A -----> 1.33

B -----> .811

C ----> .98

D ----> 1.0002

 $SF,1 \rightarrow E$ -----> .879

fE ----> .936

Reference(s) See Introduction to Nuclear Engineering,

John R. Lamarsh, Volume 1 pag 188, 198, 203, 202, 204, 227, 229-235, Addison-Wesley Publishing Co., 1975.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Load side 1 and side 2			
2.	Load data card			
3.	Optional: Sto fuel enrichment	%fiss fuel		
4.	Optional: Sto fuel ρ in radius	a/cm	STO D	
5.	Optional: Sto fuel cell radius	b/cm	STOLD	
6.	Optional: Sto radius of reactor	R/cm	ISTO 6	
			[P + S]	
	Optional: Clear flag 1 for cube reactor		h CF 1	
8.	Optional: Set flag 1 for sphere reactor Calculate n		h SF 1	n
	· · · · · · · · · · · · · · · · · · ·			f ''
10.	Calculate f	+		
11.	Calculate ρ Calculate ε			ρ
13.	Optional: Calculate K∞		f	K∞
14.	Calculate P ₁			P ₁
15.	Calcualte K		f e	K
16.	For new fuel or moderator go to 2			
17.	For same fuel and moderator go to 3			
	NOTE: Step 6 [$P \leftrightarrow S$] [STO 6] [$P \leftrightarrow S$]			
18.	Optional: Recall n		[P↔S] [RCL 10]	n
19.	Optional: Recall f		[P↔S] RCL 1.1	f
20.	Optional: Recall ρ		P S RCL 2	ρ
21.	Optional: Recall ε		[P_+,S] [RCL 3]	ε
22.	Optional: Recall P _L Optional: Recall K		$ \begin{array}{c} P \leftrightarrow S \\ \hline P \leftrightarrow S \\ \hline RCL 5 \end{array} $	P _L
23.	optional. Recall K		[P] []	

5	2
.)	_

STEP	KEY	ENTRY	KEY CODE	COMMENTS		STEP	KE	Y ENTRY	KEY CODE		COMMENTS
	901	*LBLA	21 11				957	6	06	•	
ì	902	1	Õi				958	γ×	31		
	903	0	0 0				059	4	0 4		
	904	0	00				960	8	0 8		
	905	RCLA	36 11				961	1/X	52		
	906		-45				062	X	-35		
	907	RCLA	36 11		_		063	RCLI	36 46		
	308 300	÷	-24 36 43	Calculates	n		964 875	4 Y×	04 71		
	909	RCLC	36 13 -75				065 066		31 01		
	910 911	X RCLB	-35 76 10				000 067	1 2	02		
	912	# +	36 12 -55				968 968	1/X	52 52		
	913	RCL8	-55 36 0 8				069	X	-35		
	914	RCL9	36 0 9				070 070	CHS	-22		
	915	X	-35				071	+	-55		
	916	X≢Y	-41				072	RCLI	36 46		
	917	÷	-24				073	χ2	53		
	318	P≢S	16-51				074		-62		
	319	STO0	35 0 0				0 75	5	0 5		
٤	<i>320</i>	ST05	<i>35 05</i>				<i>076</i>	X	-35		
6	921	P≢S	16-51				0 77	+	-55		
	922	RTN	24				0 78	1	Ø1		
		≭LBLB	21 12				079	+	-55		
	924	RCL0	36 00				080	RCLE	36 <u>15</u>		
	325	RCL1	36 01				081	χz	53		
	326	÷	-24				0 82	STOI	35 4 <i>6</i>		
	327	•	-62	Calculates	£		083	RCLD	36 14 57		
	928 929	6 0	06 00	carcurates	'		084 085	_ Χε	53 -45		
	930	2	02				086 086	RCLI	36 46		
	931	3	02 03				000 087	÷	-24		
	932	х	-35				0 88	X	-35		
	933	ST02	35 02				089	P≇S	16-51		
	334	RCLA	36 11				090	RCL4	36 04		
e	35	%	55				091	RCL3	36 0 3		
	336	RCLB	36 12				0 92	÷	-24		
	337	X	-35				0 93	Х	-35		
	938	1	01				<i>0</i> 94	P≠S	16-51		
	339	0	00				095	ST01	35 01		
	140	0	00				<i>096</i>	RCLE	36 15		
	341	RCLA	36 11				0 97	RCL8	36 0 8		
	942 943	RCL2	-45 36 02				098 099	÷ STOI	-24 35 46		
	944 944	XZY	-41				100	RCLD	36 14		
	145	%	55				101	RCL8	36 0 8		
	146	RCLC	36 13				102	÷	-24		
	47	X	-35				103	÷	-24		
	148	+	-55				104	LN	32		
8	149	ST03	35 03				105	RCLI	36 4 6		
	150	P≠S	16-51				106	Χs	53		
	151	RCLD	36 14				107	RCLD	36 14		
	52	RCL9	36 09				108	RCL8	<i>36 08</i>		
	53	÷	-24				109	÷	-24 53		ļ
	154 155	<u>.</u> 2	02 -24				110	λ5	53 -45		
	155 156	÷ STOI	-24 35 46				111 112	- RCLI	-45 36 46		
0	100	1		l3 l4	REGIS			6 6		8	9
0 ρ		MW fue	N fuel		Cam	5 A		С	Σ_{Sm}	σt	f25 Υ
so n		^{S1} f	S2 ρ	S3 ε S4 F	L	S5 K		^{S6} Radiu	S7 CM)	S8 L _N	1 S9 L _F
^A enr	rich	%	^Β σa fiss	.fuel ^C oa nonfis	s fuel	D a	(cm)		b(cm)	I	used

Program Listing II

						~	_			5,
STEP KI	EY ENTRY	KEY CODE	COMMENTS	S	STEP	KEY ENTRY	' K	EY CODE	COMM	IENTS
113	Χz	53			169	ex		33		
114	X≠Y	-41			176		1	16-51	1	
115	÷	-24			171			35 0 2	1	
116	X	- 3 5			172			35 05	1	
117		-62			173			16-51		- 0
118	7	0Z 07			174			24	End of	ρ
					175			21 14		
119	5	0 5								
120	-	-45			176		•	36 14 57	ł	
121	RCLD	36 14			177			53		
122	RCL8	36 0 8			178			35 46	l	
123	÷	-24		İ	179		•	36 15	١ , ,	
124	4	<i>0</i> 4			186			5 3	Calcu	ılates
125	÷	-24			181			36 46	ε	
126	RCLI	<i>36 46</i>			182			-45		
127	÷	-24			183	÷		-24		
128	RCLI	36 46			184			-62		
129	÷	-24			185	1		01		
130	+	-55			186	x		-35		
131	RCLI	36 46			187			01		
132	χz	53			188			-55		
133	X	-35			189			16-51		
134	2	0 2			196			35 0 3		
135	÷	-24			191			35 0 5		
136		01			192			16-51		
	. 1				193		•	24		
137	+	-55			194			21 15		
138	RCL1	36 0 1			195			16-51		
139	+	-55 50						16-31 16-24		
140	1/X	52 35 04	F. 4 . 6 6		196				Calcula	tes
141	ST01	35 01	End of f		197		•	36 0 6		
142	ST×5	35-35 05			198			-24	P_{L}	
143	₽≢S	16-51			199			53	_	
144	RTN	24			286			23 01		
145	*LBLC	21 13			201		•	22 01		
146	RCL0	36 0 0			202			0 3		
147	RCLD	36 14			203			-35		
148	X	-35		- 1	204			21 01		
149	1 X	54	1		205			35 46		
150	RCL6	36 0 6	Calculates	- 1	206	RCL8		36 0 8		
151	X≢Y	-41	ρ	- 1	207	7 GSB9		23 0 9		
152	÷	-24			208	3 ST04		35 04		
153	RCL5	36 0 5			209	ST×5	35-	35 0 5		
154	+	-55			210			16-51		
155	RCLD	36 14			21			24		
156	XS	53		Ì	212			21 09		
157	X	-35		İ	21			53		
158	RCL2	36 0 2		1	21			-35		
159	X	-35		Ì	215			01		
160	RCL7	36 0 7		İ	210			-55		
	KULT ÷			Ì	21			5 2		
161		-24 75 15		Ì	21			24		
162	RCLE	36 15 57		ŀ	21:		21	16 15		
163	χε	53		ł	221			16-51	Decs 11	ν
164	RCLD	36 14 53		ł					Recall	N
165	Χ²	53		ł	22			36 0 5		
166	-	-45		t	22.			16-51		
167	÷	-24		Ì	22	3 RTN		24	ı	
168	CHS	-22	LABELS			FLAGS			SET STATUS	
A n	B f	C	D	E D.		0		FLAGS	TRIG	DISP
n n			ρ ε	E PL		1	\dashv	ON OFF	Iniu	DISF
a	b	С	d	e		1	- 1	ON OFF	l	l

Α	η	^B f	c p	Dε	E P _I	0	FLAGS	TRIG	DISP
а		b	С	d	е	1	ON OFF	DEG 🖄	FIX 🖔
0		1 B	2	3	4	2	1 ⊠⊹→ ⊠ 2 □ 😡	GRAD □ RAD □	SCI □ ENG □
5		6	7	8	9 P	3	3 K	10.0	n5

Program Description I

Program Title Semi-Empirical Nuclear mass Formula

Contributor's Name Dan Shapira

Address Physics Division, Oak Ridge National Laboratory, Bldg.5500 X-10

City Oak Ridge State Tennessee Zip Code 37830.

Program Description, Equations, Variables A Semi Empirical formula is used to calculate approximate binding energies and mass excess for any nucleus with a given nuclear charge -Z and number of neutrons -N.

Definitions: Binding energy (B.E.) = Z * M + N * M - M(Z,N) M = proton mass(energy) in MeV, M = neutron mass in MeV M(N,Z) = mass of nucleus having Z protons and N neutrons. Mass Excess = M(Z,N) - A * amu A = Z + N, lamu = M(6,6)/12 --- 1/12 mass of 12 C

Weizsacker's Semi-Empirical mass formula contains seven terms

$$M(Z,N) = Z^*M_p + N^*M_n + E_V + E_S + E_C + E_{sym} + E_{pair}$$

$$E_V = -a1 * A , E_S = a2 * A^{2/3} , E_C = a3 * Z^2/A^{1/3}$$

$$E_{sym} = a4 * (Z-N)^2/A \qquad E_{pair} = + \text{ or } -34/A^{3/4} \text{ depending on whether } Z \text{ and } N \text{ are both odd or both even.}$$

$$E_{pair} = 0 \quad \text{for odd } A \text{ nuclei}$$

Operating Limits and Warnings The semiempirical formula has been derived from measured masses and binding energies and is expected to work for nuclei reasonably close to the valley of stability. Usually N ➤ Z especially for heavier nuclei.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s) Which one of the mass-25 isobars (Nuclei with same number of protons+neutrons) is stable.

A=25 isobars are nuclei that can have N(# of neutrons) = 10, 11, 12, 13, 14 etc. and at the same time Z(# of protons) = 15, 14, 13, 12, 11 respectively

The most stable Isobar will be the one that is most strongly bound nucleus.

The experimental observation is that the only stable Isobar of A=25 is the element Mg (Magnesium) which has Z=12 and N=13

One can make use of the semiempirical mass formula in predicting this result

For each Z and N in this group we shall calculate the binding energies (all the binding energies will be negative numbers) the largest number (in this case the most negative one) will belong to the most stable Isobar.

KEYSROKES	DISPLAY	COMMENTS
10, A	10	enter Z of Isobar
15, B	25	N of Isobar(mass displ
C	-180.69	Display Binding energy
11, A	26	new Z entered
14, B	25	new N entered
C	-193.53	Display binding energy
12, A, 13, B	25	enter new Z and N
C	-196.88	Display new binding ener
13, A, 12, B	25	New Z, N
C C	-190.75	Display new binding ener
14, A, 11, B	25	New Z, N
C	-175.14	New binding energy
•	10, A 15, B C 11, A 14, B C 12, A, 13, B C 13, A, 12, B	10, A 10 15, B 25 C -180.69 11, A 26 14, B 25 C -193.53 12, A, 13, B 25 C -196.88 13, A, 12, B 25 C -190.75 14, A, 11, B 25

From the results displayed - the Z=12, N=13 combination has the highest value of hinding energy.

Reference(s) De Shalit and Feshbach Theoretical Nuclear Physics

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load Program (sides 1 and 2)			
2a	Enter Number of protons in Nucleus	Z		A (=Z+N)
2ъ	Enter Number of Neutrons in Nucleus	N	В	A (=Z+N)
	From here on functions may be called on in an	у		
	order.			
	Get Binding Energy of nucleus (N,Z)			B.E.
	" " per nucleon		r/s	B.E./ A
	Get the Mass of nucleus (Z,N) = Total energy			M(Z,N)
	" " per nucleon		r/s	M(Z,N)/A
	Get the mass excess of nucleus (Z,N) " " per nucleon		E	M.E.
	" " " per nucleon		r/s	M.E./ A
	Get the Volume energy term " " per nucleon		fla	E
	, , , , , , , , , , , , , , , , , , ,		r/s	E _V / A
	Get Surface energy term		f b	E _s ,
	" per nucleon		r/s	E _s / A
	Get Coulomb (charge) energy term		$\begin{bmatrix} \mathbf{f} \end{bmatrix} \begin{bmatrix} \mathbf{c} \end{bmatrix}$	Е
	" " per nucleon		r/s	E ^C / A
	Get Symmetry (N vs Z) energy term " " per nucleon		f d_	
	" " per nucleon		[][r/s]	Esym/A
	Get Pairing energy term		fe	E
	" " per nucleon		[r/s	E ^p / A
	Note! the program is loaded with flags 0 and	1 on		
	When the first value of Z or N is ente	The same of the sa		
	0 is reset and program constants are 1	Ŭ		
	flag 0 now remains off!!. Hence allwa			
	remember to reset flag 0 before record			
	program on card.			
\vdash				
 				
				-
		L		

67 Program Listing I

STEP	KEY ENTRY	KEY CODE	- L	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	57 ENTS
001	LBLA	31 25 11				+	61	*** * * * * * * * * * * * * * * * * * 	
	STOI	33 01				RCLO	34 00		
ļ	RCL 2	34 02				•	83		
ļ	LBLO	31 R5 00			060	7	07		
	+	61				5	05		
	STO Ø	33 00				y ×	35 63		
	CF1	35 61 01				-	81		
	F ? Q	3571 00				GS B R	31 22 02		
	GSB 9	31 22 09				SF1	35 51 01		
010	RTN	35 22				RTN	35 22		
	LBL B	31 25 12				LBLZ	31 25 02		
-	STO 2	33 #2				RCL(2)	34 24		
	RCL 1	34 01				*	71		
	GTOP	22 00			070	RCI	35 34		
	LBL 1	31 25 01				9	09		
	F?1	35 71 61				+	61		
	RTN	35 22				STI	35 33		
ļ	8	08				XSA	3 5 52		
	S7 I	35 33				STO(2)	33 24		
020	RCL Ø	34 00				RCI	35 34		
	GSBR	31 22 02			<u> </u>	8	08		
	RCL1	34 61				- -	51		
-	GSB2	31 22 02			000	STI	35 33		
	RCL 2	34 02			080	RTN	35 22		
	GSBZ	31 22 02				UBL OU	32 25 11		
	RCLO	34 00			ļ	GSB 1	31 22 01		
	GSB2	31 22 02				RCL A	34 11		
	RCLØ	34 00				GT07	22 07		
030	3	03				LBL	32 25 12		
030	1/x	35 62				GSB1	31 22 01		
	y ^ x 2	35 63 32 54				RCLB	34 12		
						GTO 7	22 07 32 25 18		
	GSB2 RCL1	31 22 Ø2 34 01			090	LBLC	31 22 01		
	XCZ 2	32 54			090	RCLC	34 13		
		34 00					22 07		
	RCL Ø	03				6707 LBL d	32 25 14		
	3	35 62				GSB 1			
	1/× Y*	35 63				RCLD	31 22 01		
040	,	33 63				G707			
040	GSBZ	31 22 02				LBLE	22 07 32 25 15		
-	RCL 1	34 01				6SB1	31 22 4		
	RCL 2	34 02				RCLE	31 22 Ø1 34 15		
-	- KLZ Z	51			100	GTOF	22 07		
-	Χ²	32 54			F	LBL C	3 25 13		
-	RCL Ø	34 00			 	GSB1	31 22 01		
-	XCL W	37 00				1	31 62 01		
	- 6382	31 22 02				 a 	09		
1	1	01				STI	35 33		
050	CHS	42				GS134	31 22 04		
	RCL 1	34 01				6707	22 07		
	VX	35 63				LBLD	31 25 14		
	17	01				GSB1	31 25 14		
	CHS	91			110	1	01		
	RCLZ	34 02				7	.07		
	YX	35 63				STI	35 33		
					GISTERS				
° A	Z	² N	3	4	5	6	7	8-a.m.u.	9 M (p)
			S3 2	S4 C	S5 a ₅	S6	S7	S8 Z*M,	S9N×M
JM ($\frac{(m)}{2}$	E_{s}	S3 a	3 S4 Q4	D		E F		//~''n
A E	= 1	E_{s}		Ec		-sym	E Epain		

Program Listing II

STEP	KEY ENTR	Y KEY	CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	СОММ	ENTS
	GSB4	312	2 04			6	96		
	GT07		2 07		170	GSB8	3122 08	1	
	LBLE		5 15			1	01	1	
	GSB1	31 2				5	05	1	
	1		01				83	1	
	6		96			6	06	1	
	STI	1 20	5 33			10		-	
120		31 2	2 04			<u> </u>	08	1	
120	GSB4					CHS	42	ł	
-	LBL7	31 4	5 07			GSB8	31 22 08	4	
	RIS		84			1 1	01	4	
<u> </u>	RCLP		4 00			8	98	4	
	÷		81		180	•	83]	
	RTN		5 22			5	05		
	LBL 4	312	5 04			6	06	<u>]</u>	
	Φ		00			GSBS	31 22 08		
	5706	33	3 06			•	83	1	
	LBL 5	31 2	505			7	07	1	
130	ISZ		134			1 7	01	1	
	RCI		5.34			7	07	1	
-		- 	02				31 22 08	1	
	25		Ø5			ezeg	02	1	
	3		51		190	1 2		1	
	X = Ø	1 2	1 51		1.50	 	08	4	
						+ -	<u>83</u>	4	
	GTO 6		2 06			1		4	
	RCL(2)		4 24			GSBS	31 22 08	4	
	ST0+6		1 06			1 1	0.1	1	
	GT05		2 05			7	07	j	
140	LBL6	312	5 \$6			CHS	42]	
	RCL6		4 06			GSBX	312208		
	RTN		5 22			CFØ	35 61 OD]	
	LBL9	31 2	5 Ø9			RCL 4	34 60	1	
	7		07		200	RTN	35 22	1	
	STI	3	5 33			LBL &	31 25 08	1	
	9		09			ISZ	31 34	1	
	3		03			STO(2)	33 24	1	
	7	-	91			RTN	35 22	1	
			83			+ 1 1 1 1 1	23 22	1	
150	5		05					1	
130	0		00					4	
	4					 		4	
			94					4	1
	CHS	12.0	42					4	
-	GSB8	312			210			1	
	9		03						
 	3		03]	
L	\$		98]	
			83					_	i
	Ŧ		07						
160	9		09					1	
	3		03					1	
	GSB8	312	208					1	
			09			1		1	
	9 3 9		03		220			1	
	9		09			T		1	İ
	•		83					1	
	5		83 05					1	
	7		07					1	
			LAE	BELS		FLAGS	'T	SET STATUS	
A ENTE	R B E	NTER	CRE	DMIZNI	E M. Exce				
<u>Z</u>		<u>v</u>	W. E.	17(4,11)	71. EXGE	-24	FLAGS	TRIG	DISP
a Ev	b	Es	C-EC	d → E _{sym}	e-Epan	1 🔪	ON OFF	DEG 🗆	FIX 🗆
0	1 -		2 ~	3 \	4	2	0 X	GRAD	FIX □ SCI ⊠
		-			* •		2 0 0	RAD 🗆	ENG 🗆
5	6 .	~	7 ~	8	9 🛶	3	3 🗆 🗆		n 4

Program Description I

Program Title Clebsch-Gordon Coefficients and 3j Symbols Evaluation

Contributor's Name G. Richard Scott

Address 110 Donelsonwood Drive

City Nashville State Tennessee Zip Code 37214

Program Description, Equations, Variables This program will evaluate all valid Clebsch-Gordon Coefficients and/or "3j" symbols coupling two states of angular momentum which are small enough so that the capacity of the calculator's factorial function is not exceeded. The fundamental formula used by the program is the Racah Formula:

$$\begin{pmatrix}
j_{1} & j_{2} & J \\
m_{1} & m_{2} & -M
\end{pmatrix} = (-1)^{j_{1}-j_{2}+M} \sqrt{(j_{1}+m_{1})!(j_{1}-m_{1})!(j_{2}+m_{2})!(j_{2}-m_{2})!(J+M)!(J-M)!}$$

$$\times \underbrace{\sum_{j_{1}} (-1)^{t} \left[t!(J-j_{2}+t+m_{1})!(J-j_{1}+t-m_{2})!(j_{1}+j_{2}-J-t)!}_{\times (j_{1}-t-m_{1})!(j_{2}-t+m_{2})!}\right] - 1}_{\times (j_{1}-t-m_{1})!(j_{2}-t+m_{2})!}$$

$$w_{i}+h \triangle(j,j_{2}J) = \left[(j_{1}+j_{2}-J)!(j_{2}+J-j_{1})!(J+j_{1}-j_{2})! \right] = (j_{1}+j_{2}+J+1)!$$

SUBJECT TO THE RESTRAINTS ()
$$|j_1-j_2| \leq J \leq |j_1+j_2|$$

(2) $m_1+m_2=M$

Operating Limits and Warnings If any one term in the Racah formula is greater than 69, an error message will result (or else the calculator will display all 9's in the x-register). If illegitimate values are entered for j_1 , j_2 , and J or for m_1 , m_2 , and M, spurious results (ie, non-zero) may be obtained or the the calculator may get caught in a "loop" which will not terminate until the "t" value in the

Racah formula exceeds 69.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sample Problem(s) D = SUPPOSE THE G.G. COEFFICIENT $\langle j_1 j_2 m_1 m_2 | j_M \rangle$ is NEEDED with $j_1 = \frac{3}{2}$, $j_2 = 2$, $J = \frac{1}{2}$; $m_1 = \frac{1}{2}$, $m_2 = 0$, $M = \frac{1}{2}$. NOTE FOR SOLUTIONS: j, is "entered" by pressing "A"

j2 " " " " B

Jo " " " " C

m, " " " " f[A]

m2" " " f[B] M is KEYED IN AS - M and is "entered" by pressing f[c] @ IF THE 3j symol (i, i, J) was desired, IT IS STORED IN REGISTER E. Solution(s) 0 1.5 [A] 2[B] 2.5[C] .5[f][A] 0.[f][B] -.5[f][C] completes entry of data [D] starts program -> 2.927700221-01 (DIMENSIONLESS) @ [RCL] [E] 1.195228610-01 (DIMENSIONLESS)

Reference(s) MESSIAH, ALBERT, QUANTUM MECHANICS, VOLUME II, PP 1054-1058, NORTH-HOLLAND PUBLISHING CO. (AMSTERDAM) AND JOHN WILEY & SONS (NEW YORK), 1958.

(translated from the Junch edition)

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2			
2	Load j ₁ , j ₂ , J, m ₁ , m ₂ , -M:*			
	imput j ₁	j ₁	A	j ₁
	imput j ₂	j ₁	В	j ₁ j ₂ J
	imput J	J	C [J
	imput m ₁	m ₁	fA	m ₁
	imput m ₂	m ₂	f B	m ₂
	imput-M **	-M	fC	-M
3	Compute and output C.G. coefficient		D	C.G.
4	Optional: Output 3j symbol's value		RCL E	3j value
5	For a new case, go to step 2			
	**When data is entered as above, the			
	Clebsch-Gordon coefficient computed			
	is $\langle j_1 j_2 m_1 m_2 JM \rangle$, while the 3j			
	symbol which is computed is			
	(i, i, J)			
	$\begin{pmatrix} m_1 & m_2 - M \end{pmatrix}$			
	\\ \tag{m_1 \tag{m_2}}			
	* If an error is made while entering			
	data, it is suggested that step 2			
	be begun again.	†		
	20 220000000000000000000000000000000000	1		
		†		
ļ				
		 		
		 		
		 		
		 		
			[] []	
		 		
		 		-
		ļ		
		ll		

Program Listing I

			COMMENTS		EY ENTRY	KEY CODE	COMMENTS
001	*LBLA CLRG	21 <u>11</u> 16-53	CLEARS	0 57		54	
002			REGISTERS	0 58		35 <i>0</i> 4	STURES
003	₽≇S	16-51	AND STURES	05 9		Ø1	VA(1,1,1)
004	CLRG	16-53	j,	060		0 1	
005	ST01	35 <i>0</i> 1		061		35 4 6	COMPUTES
<i>006</i>	RTN	24		062		36 01	CM pores
007	*LBLB	21 12	STORES 12	063		<i>36</i> 45	
998	ST02	<i>35 02</i>	4	064		-55	_
009	RTN	24		0 65		16 52	
010	*LBLC	21 13	STORES	0 66		36 0 1	\sim 1
011	ST03	35 0 3		06 7		36 45	- <u>E</u> `
012	P≢S	16-51		9 68		-45	-3
013	RTN	24		069		16 52	$\stackrel{\cdot}{}$
014	*LBLa	21 16 11	-	979		-35	
015	ST01	<i>35 01</i>	STORES M,	071		35 0 5	
016	RTN	24	, 	972		16 26 46	2
017	*LBLb	21 16 12	STORES M2	073		<i>36 0</i> 2	
018	ST02	35 0 2	3/0203 112	074		36 45	
019	RTN	24		975	+	-55	
020	*LBLc	21 16 13	STORES -M	076	N:	16 52	2
021	ST03	35 <i>0</i> 3		077	RCL2	<i>36 02</i>	<u> </u>
022	P≇S	16-51		0 78	RCL:	<i>36</i> 45	
023	RTH	24		079	-	-45	
824	*LBLD	21 14	BEGINS	080	N:	16 52	\sim 1
025	RCL1	36 01	COMPUTATIONS	081	X	-35	<u></u>
026	RCL2	36 0 2	·	082		35-35 <i>0</i> 5	
027	RCL3	36 0 3	$\triangle(j,j,\mathcal{I})$	0 83		16 26 46	2
0 28	-	-45		084		36 0 3	
029	+	-55	15 COMPUTED	0 85		36 45	
030	N!	16 52		0 86		-55	(j+m,)! (j-m,)! (j-m,)! (j-M)! (j-M)!
031	ST04	35 04	IN STEPS	9 87		16 52	
032	RCL2	36 0 2	2 5 -57	88 8		36 0 3	>
033	RCL3	36 0 3		089	RCL:	<i>36</i> 4 5	
034	RCL1	36 01		090	-	-45	-
<i>035</i>	-	- 4 5		0 91	N!	16 52	
03 6	+	- 5 5		0 92		-35	1 7
037	N!	16 52		0 93		35-35 0 5	1 8 1
<i>038</i>	ST×4	35-35 0 4		094	RCL5	36 0 5	
039	RCL3	36 Ø3		095	4X	54	°-
040	RCL1	36 01 36 00		096		35 0 5	, ,
<i>041</i>	RCL2	36 0 2		0 97		36 0 1	COMPUTES (-1) 1-12+M
042	-	-45 FF		098		36 0 2	ا M+راز-رازر ب
043	+ 11 #	-55		099		36 45	(-1)
044 045	N! ST×4	16 52		100	+	-55	4
045 046		35-35 <i>0</i> 4		101	-,	-45	4
040 047	1 RCL1	01 75 01		102	1	0 i	4
047 04 8	RCL1	36 01 36 82		103	CHS	-22	1
040 049	RCL3	36 0 3		104	X≠Y	-41	1
050	# +	-55		105	YX CTOS	31 35 36	1
<i>050</i>	+	-55		106	STO6	35 <i>06</i>	1
0 52	+	-55		107	RCL4	36 04	MULTIPLES
0 53	'n!	16 52		108	RCL5	36 8 5	COMPUTED SQ.
<i>0</i> 54	RCL4	36 0 4		109 110	RCL6 X	36 0 6	RUOTS TOGETHER;
<i>0</i> 55	X≠Y	-41				-35	MULTIPLIES BY
6 56	÷	-24		111 112	X STOD	-35 75 14	(-1) STORES D
			REGIS	IEHS 112		35 14	
	1	2	3 4	5	6	7	8 9
	USE		USED USED	USE D	USE	D USET	S8 S9
	S1	S2	S3 S4	S5	S6	31	39
	USE	B USED	VSED C	D	1	TE	
JSE Ī)	1		USE	D	3' VAL	
1001		USED	USED	000	<u> -</u>	1 JJ VAL	

97 Program Listing II

				7 F -	. 08. 44.			7			63
STE	P KE	Y ENTFY	KEY C	ODE	COMMENTS	S		YENTDY	REA CUDE	COMM	ENTS
	113	CLX		51			169	+	-55		
					,		170	RCLI	36 46	4	
	114	SF0	16 21 (OMPUTE	-5	171	-	-45	ł	
	115	STOI	35 4	70	•					Į.	
	116	P≢S	16-3	51 <	SUMMATI	ON	172	X<0?	16-45	1	l
	117	RCL1	36 (Q i	20/11/11/11/11	•	173	GT03	22 8 3		
					N	1	174	N:	16 52	1	
	118	STOA	35 .	11			175	ST08	35 0 8	1	I
	119	RCL2	36 (6 2	RACAH					į	i
1	120	STOB	35 .	12			176	CF0	16 22 00	ł	
ł	121	RCL3	36 (FORMULA		177	RCL4	36 04		
+							178	RCL5	36 0 5		ł
1	122	STOC	35 .	13			179	RCL6	36 0 6	1	i
	123	₽≢S	16-	51 (STEPS						1
ſ	124	*LBL2	21 (180	X	-35		
ŀ	125	RCL3	36		113-198)	181	X	-35		
1						/	182	RCL7	36 0 7		
1	126	RCLI	36				183	RCL8	36 0 8		
	127	RCLA	36	11					-35		1
[128	+	_:	55			184	Х			
ŀ	129	+		55			185	X	-35		
1							186	RCLI	36 4 6		i
1	130	RCL2	36 (187	N!	16 52		i
	131	-		4 5					-35		l
	132	X<0?	16-4	45			188	X			i i
Ì	133	GT03	22 (189	1/X	5 2		1
ł						1	190	1	01		
}	134	N!	16 :			1	191	CHS	-22		
1	135	ST04	35 (192	RCLI	36 46		
	136	RCL3	36 t	0 3		- 1					I
	137	RCLI	36 4				193	γx	31		
1	138	+		55		i	194	X	-35		
1						ì	195	ST+9	35-55 0 9		
1	139	RCL1	36 (ł	196	ISZI	16 26 46		
1	140	RCLB	36			- }	197	GT02	22 8 2		
- 1	141	+	-:	5 5							
	142	_		45		1	198	GT02	22 0 2	CHECK	
1	143	X<0?	16-4			Ì	199	≉ LBL3	21 0 3	CHECK	13 / 11/1
1						Ì	200	ISZI	16 26 46	SEE IF	E finished;
1	144	GT03	22 (ł	281	F0?	16 23 00		
- 1	145	N!	16 3			- 1	202	GT02	22 02	IF 50	COMPUTES
- 1	146	ST05	35 l	0 5		l l					
1	147	RCL1	36 (01		- 1	203	RCL9	36 09	35 VA	, ,
1	148	RCL2	36 (204	RCLD	36 14	STORE	SIN
1	149			55		Ī	205	X	-35	Drie	TER E
ł		+				ł	206	STOE	<i>3</i> 5 15	KEGIS	TER C
ı	150	RCL3	36 t			ŀ	207	1	01		
- 1	151	RCLI	36 4	46		- 1		CHS	-22	COL	NPUTES
- 1	152	+	-:	5 5		1	208				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
- 1	153	_	-4	4 5		l	20 9	RCL1	36 01	CIF	BSCH-
1	154	X<0?	16-4			ſ	210	RCLC	36 13		
1						ı	211	-	-45	600	DON
	155	стоз	22 (ŀ	212	RCL2	36 0 2	606	
1	156	N:	16 :			ŀ	213	-	-45	CAEC	FICIENT
	157	ST06	35 l	0 6		l.		үх	31	(00)	P101676
- 1	158	RCL1	36 (01		L	214				
- 1	159	RCLI	36				215	RCL3	36 0 3		
- 1						1	216	2	8 2		
- 1	160	RCLA	36			T I	217	X	-35		
- 1	161	+		55		ŀ	218	1	01		
	162	-		45		ŀ	219	+	-55		
	163	X<0?	16-4	45		ŀ			54		
1	164	GT03	22 (0 3		Į.	220	1 X			
	165	H!	16			Ĺ	221	X	-35		
						[222	RCLE	<i>36</i> 15		
- 1	166	ST07	35 (- [223	Х	-35		
-	167	RCL2	36 (t	224	RTN			
	168	RCLB	36 3	12	BELS		- 224 	FLAGS		SET STATUS	
Α	ŧ	IR '	To	C —	D	ΙE	0				
[~	ال	□ J:	کا	<u> </u>	-> C.G	<u> </u>			FLAGS	TRIG	DISP
a	M			<u>с</u> – М	d	е	1		ON OFF	DEC .	
	<u>m,</u>	1	2			 				DEG 🗷	FIX □ SCI 🔀
0		1		2 carc	3 CALC	4	2		1 🗆 🔀	GRAD 🗆	FNG -
5		6		7	8	9	3		2 🗆 🕱	RAD 🗆	ENG n 9
ľ		1	1		I	1	1		3 □ 🛭		

Program Description I

Program Title	32-P REMAINING ON	MM. DD YYYY GIVE	EN MCI ON
EA	RLIER MM. DDYYYY		
Contributor's Name	GARY G. ALTMAI	V	
Address	3307 NORTHBROOK		
City	MIDDLETON	State WISCONSIA	Zip Code 535 6 2
('			•

Program Description, Equations, Variables JULIAN DAY NUMBER IS CALCULATED AS DESCRIBED IN THE 4P-67 STANDARD PAC PAGE 04-01; THE NUMBER OF DAYS BETWEEN DATE I AND DATE Z IS ALSO CALCULATED AS DESCRIBED IN THE HP-67 STANDARD PAC. 2. RADIOACTIVE DECAY: (INITIAL mCi) (0.5) = m Ci ON DATE 2, WHERE N = 14.3 / DDAYS = THE NUMBER OF HALF-LIVES OF 32P WHICH HAVE OCCURRED. SUBROUTINE D YIELDS: mC, ON DATE 2; (MCi w DATE Z) (2.Z X 109 DPM) = DPM ON DATE Z; AND (0.3) (DPM) = CPM ON DATE Z [ASSUMES 30% COUNTING EFFICIENCY AND NO QUENCHING] 4. SUBROUTINE & C YIELDS: (0.5) (CPM ON DATE I) = CPM ON DATE Z; AND [(2.2x107 DPM /mCi)/(CPM/.3)] = mCi ON DATE Z Operating Limits and Warnings PROGRAM FAILS IF DATE I = DATE Z IF DATE I IS MORE RECENT THAN DATE Z.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

ketch(es)										111111111111111111111111111111111111111					
						•							,		
		***************************************			Actions (consists and assessment of the	y a come more than one come	er teams as an an address conservations		and the same terrories						
		•					•		•					•	
	1		•				•				-	-			
			-				to a terrologica e describir de la constanta de la constanta de la constanta de la constanta de la constanta d								
				•			•	-	•					+	
		-			•					-		-		++	

Sample Problem(s) 1. HOW MANY DPM (AND CPM) REMAIN OF 4 0.135 mCi
BEP SAMPLE ? GIVEN: DATE OF SPECIFIC RADIOACTIVITY RATING
AS FEB 2, 1977; AND TODAY'S DATE APRIL 22, 1977.
2. HOW MANY CPM (AND MC;) REMAIN OF A
3.2 X106 CPM SAMPLE OF 32P AS MEASURED BY CHERENKON
RADIATION ON AVGUST 11, 1976 ?
Solution(s) 1. 2.071977 A (DISPLAY: 2443182) 4.221977B
(DISPLAY: 2443256.) C (DISPLAY: 74., THE NUMBER OF DAYS BETWEEN
FEB 7 AND APR 22) 0.135 D (DISPLAY: 8.2220 XID, 2.466 XID -
THE DPM AND THE CPM REMAINING)
2. 8.111976 A (2443002.) 4.221977 B (2443256.)
C /254 3 A 246 \ 2 2 554 C C (Address : 14
C (254. = DDAYS) 3.2 EEX 6 f C (ANSWERS: 14., 2.18 x 10 ⁻⁸ - 14 CPM REMAINING, 2.18 x 10 ⁻⁸ m Ci REMAINING,
LINKID - 14 CVM REMAINING, LINKID MCI REMAINING,

Reference(s) CALENDAR FUNCTIONS, PAGE 04-01 IN HP-67
STANDARD PAC, AND CHASE, G.D. & J.L. RABINOWITZ,
PRINCIPLES OF RADIOISOTOPE METHODOLOGY, BURGESS,
MINNEAPOLIS, MN (1962).

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
J.	LOAD SIDE I AND SIDE 2	_		
2.		DATE	A	JULIAN DAY #
3.		DATEZ	B	
4.		_		
	DATE ! AND DATE 2	_	C	A DAYS
5	(TO INDIT COM GO TO STEP 6)			
	(TO INPUT CPM GO TO STEP 6) INPUT MC: OF 32P AS OF DATE!	m Ci	D	DPM
				CPM
6.	INPUT CPM ON DATE !	CPM	f	CPM
				m C i
		1		
-				
				1
		<u> </u>		7
		 		7
				7
				i
				7
		<u> </u>		7
				j
		 		j
				
-				
-		 		
-				-

6: Program Listing I

STEP	KEY ENTRY	KEY CODE	U, COMMENTS				67
			COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001	f LBL A	31 25 11		57	5TO 7	33 •7	CALC
2	f FIX	31 23	CALC DDAYS	58	RCLA	34 11	DAY OF MONTH
3	DSP Z	23 02	AND PUT CONTROL	59	h XZY	35 52	
4	RCL 4	34 04	3 IN DISPLAY	060		34 06	
			3 12 01250117		ACI 6		
5	RCLC	3413		61	X	71	
6		51		6 Z	FINT	3183	
7	3	03		63	_	51	
8	GTO Ø	22 00			STO 6	33 08	
9				64			
	FLBLB	31 25 12	CALCULATE	65	Acr 7	34 07	Build (m-1).00
010	RC13	3 4 03	A DAYS AND PUT	66		01	PART OF DISPLAY
h	RCLC	34 13	2011/0	67	RCI 8	34 98	-
12	+	61	4 IN DISPLAY	68	f %	3182	
13	4	04		69			
						51	
14	F 161 0	31 25 00	STORE CONSTAIL	070		51	
15	h sto i	35 33	CODE	71	RCL 7	34 07	CORRECT M-1
16	h RV	35 53	STORE	72	1	01	AND Y' TO M
17	3	03		73	4	04	AND Y.
			CONSTANTS				<i>,</i> ,
18	6	06		74	÷	81	
19	5	05		ろ	GSB Z	31 22 02	
020	•	73		76	ACL 9	34 09	FINISH BUILDING
21	2	02		77	EEX	43	
	5			78			MM. DOYYYY
22		05			<u> </u>	06	RESULT AND DISPLAY
23	5005	33 05		7-9	- _	81	ANSWER.
24	3	03		080	+	61	
25	0	00		81	DSP 6	23 06	
26		83		8.5	h RTN	35 22	
		06					20000 1475
27	6			83	FIN 1	31 25 01	BREAK MATE
28	0	00		84	LRY	35 53	MPST INTO THE
29	0	00		85	^	41	INDIVIDUAL
030	1	01		86	FINT	3/83	COMPONENTS OF
31	5106	33 06				33 07	MM, 00, 4444.
			RETURN ADAYS	87	STO 7		21,117
32	hRV	35 53		81		51	
33	h RY	35 53	_ TO DISPLAY	89	EEX	43	
34	h F 3?	35 71 03	IF DATA INPUT	090	2	02	
35	670 1	22 01	GO TO 1	91	×	71	
36	h sti	33 24	STONE DDAYS	92		4)	
37	1	01	ACCORDING TO	93	FINT	31 83	
38	2	02	CONTROL MODE	94	570 8	33 08	
39	2	02		0 -	_	51	
040	•	83	CALC Y:	96	Eex	43	
			•				
41		01		97 98	4	04	
42		51		98	X	71	
43	nce 5	34 05		99	570 9	33 09	
44	+	81		100	RCL7	34 07	m+l
11-				161	1		****
45	FINT	31 83	- na'		<u>-</u>	01	
46	570 9	33 09	CALC M'.	102	<u> </u>	61	
47	nel 5	3405		103		41	m+1-> m'
48	×	71		104	h 1/x	35 62	M41 7 101
49		3/ 83		105	•	83	_
050							v_ v'
	h RCi	34 24		106	7	07	7-7
51		51		107	_	61	
52	CHS	42		108	CHS	42	
52 53	570 A	33 11		109	GSR Z	31 22 02	
54	ACL 6	3406		110	RCL 6	34 06	COMPUTE
55	+	81		111	×	71	JULIAN DAY
				112	FINT	31 83	NUMBER
56	FINT	31 83			+ 121	31 05	
				STERS			To To
0	1	2	3	⁵ 365.2	.5 630.600	7	8
			DAY I DAY 2	265.2	5 70.600	1 MM	DD YYYY
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
	İ						
A		_	C	D	•	E	I
		-	CYA A	ľ		I	CONTROL
USE	5 0		באגע בו	l .			

Program Listing II

STEP	KEY ENTRY	KEY	CODE		COMMENTS		STEP	KEY ENTRY	KEY CODE	COMM	MENTS
113	RCL 9	34	109				169	RCLZ	3402		
1/4	RCL5		+ 05				170	÷	81	n	
115		 	71				171	hy"	35 63	(½) ⁿ	
116	FINT	31	83				172	n 1/x	35 62		
117	4 +	-	61				173	RCLO	34 00		
118	RCL8	34	61				175	RCL 1	34 01		
120	h ST i	33	24				176	X	71		
121	1	1	01				177	9 sci	32 23		
122	7		07				178	DSP 4	23 04		
123	2	_	02				179	£-x-	31 84	DISPLA	y DPM
124	Φ		00				180	<u> </u>	41		
125	9	+	09				18)	•	83		
126			08				192	3	93 71		
127		_	61				187	t-x- X	31 84	DISPLAY	CPM
129	DSPO	23	00				185	h RTN	35 22) 13¥EIT,	
130	LRTN	_	5 22				186	gible	32 25 13		
131		31 2	5 02		NIVT TO TH WE HAS	15	187	500 A	33 11	STURE C	PM
132	TMIZ		31 83		T VALVE OF	=	188	RCL C	34 13		
133	5To +9	33	61 09		e >		189	RCLZ	34 02	ADAYS =	
134	2	<u> </u>	02		- Y±1		19/	-	&1 &3	14.3	' ^
136	X	†	71	•	= M± 12		192	5	05	•	
137			51			7)	193	hx=Y	35 52		
138	h RTN	3	5 22	(T +	for plus INDU	.)	194), v×	35 63	(土) "	
139	FLBLC		25 13	STO	re indut		195	RELA	34 11	4	
140	DSPO		23 00				196	X	71	2462	
141	570 C		33 13	16	INPUT FLA	G	197	f-x-	3184	DISPLAY	CPIO
143	h F3 h eTN		7103	TRU	E, THEN ST	OP	199	3	8 3		
144	RCL 4		4 04	con	PUTE A DI		200	<u> </u>	81		
145	RCL3		4 03	A	WD STOP		201	RCL 1	3401		
146	_		51				202	÷	81		
147	STOC		3 13				203	h RAW	35 22	DISPLAY	m Ci
148	h RTN		35 22				 				
149	4 F3		7103				-				
151	F GTO C	3/	ZZ 13	com	PUTE A DAY	5					
152	DSP 1		2301		•						
153	FLBLD	31	2514	584	RIZ CONSTAN	TS					
154	STO 0		33 00	310			210				
155	- } -	+	01								
156		+	83								
158	3		03								
159	570 2	3 7									
160	2		02								
161	•	4	83				ļ				
163	EEX	+	43				 				
164	9	1	09				220				
165	570	3	301								
166	FLBLE		2515	DD	MIS = n						
167	RCLC	+	02	14	•3						
168	~~ C	3	4 13	ΙΔΕ	BELS			FLAGS		SET STATUS	
A	В	2	C		ID	E		0			Bion
DATE	b BA	te 2	C A D		MC'-CPM	e		 	FLAGS ON OFF	TRIG	VARIES
			CPM-	»mCi	_	Ĭ.		<u> </u>	0 🗆 🔼	DEG 🕱	FIX 🗆
CALC	1		2		3	4		2	1 0 2 1	GRAD □ RAD □	SCI □ ENG □
5	6		7		8	9		3 INPVT	2 🗆 🖪	RAD 🗆	n

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering
Surveying
Civil Engineering
Navigation
Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis Portfolio Management/Bonds & Notes **Real Estate Investment Taxes Home Construction Estimating** Marketing/Sales **Home Management Small Business Antennas Butterworth and Chebyshev Filters** Thermal and Transport Sciences EE (Lab) Industrial Engineering **Aeronautical Engineering Control Systems Beams and Columns High-Level Math Test Statistics** Geometry

Reliability/QA

Medical Practitioner Anesthesia Cardiac **Pulmonary** Chemistry **Optics Physics Earth Sciences Energy Conservation Space Science** Biology **Games** Games of Chance **Aircraft Operation** Avigation **Calendars** Photo Dark Room **COGO-Surveying Astrology Forestry**

PHYSICS

These programs are drawn from a large range of disciplines within physics. The three major areas are nuclear physics, quantum physics and relativity theory.

BLACK BODY THERMAL RADIATION

BLACK HOLE CHARACTERISTICS

SPECIAL RELATIVITY CONVERSIONS

THREE DIMENSIONAL SPECIAL RELATIVITY

EINSTEIN'S TWIN PARADOX

DELTA-V—ORBIT SIMULATOR

EQUATIONS OF PARTICLE MOTION

BALLISTICS TRAJECTORY COMPUTATIONS

ISOTOPE OVERLAP CORRECTIONS

CRITICAL REACTOR CODE

SEMI-EMPIRICAL NUCLEAR MASS FORMULA

CLEBSCH-GORDON COEFFICIENTS AND 3j SYMBOLS EVALUATION

32-P REMAINING ON MM.DDYYYY GIVEN MCI ON EARLIER MM.DDYYYY