

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program **solutions** — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

PULMONARY MEDICINE/MALE SPIROMETRY STANDARDS	1
PULMONARY MEDICINE/FEMALE SPIROMETRY STANDARDS	6
PULMONARY PROGRAM SERIES	1
LUNG DIFFUSION	3
WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS	7
VENTILATOR SETUP AND CORRECTIONS (RADFORD)	3
ARTERIAL CO2 NORMALIZATION	0
BLOOD ACID-BASE STATUS	4
VIRTUAL PO2 AND O2 SATURATION AND CONTENT This program calculates virtual oxygen tension, then uses it to calculate % oxygen saturation from the hemoglobin dissociation curve. Given the hemoglobin content it calculates the oxygen content of the blood.	9
ANAEROBIC PCO2 AND pH CHANGE	6

TABLE OF CONTENTS (CONTINUED)

ANAEROBIC PO2 CHANGE This program corrects PO2, measured at 37°C,to body temperature and converts PO2 between any two temperatures.	50
DEAD SPACE FRACTION The respiratory exchange ratio, alveolar minute volume and ratio of dead space to tidal volume may be calculated with this program.	54
ALVEOLAR - ARTERIAL OXYGEN TENSION DIFFERENCE	59
PHYSIOLOGIC SHUNT AND FICK Calculation of the Fick cardiac output and physiologic shunt fraction are performed with this program.	63
BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS	67

Program Title	67 - Pulmonary Medicine/M	lale Spirom	etry Sta	ndards	
Contributor's Name	Richard C. Rodgers M 2045 Oak Street Apt 3	I.D.			
City Sa	n Francisco	State	CA	Zip Code	94117

Program Description, Equations, Variables Provides calculation of predicted & percent predicted values of the following for male subjects: Predicted values of: (Ht in cm, age in yrs.) $VC = (0.58 \cdot Ht) - (.025 \cdot Age) - 4.24(liters)$ Vital Capacity $FEV = (.036 \cdot Ht) - (.032 \cdot Age) - 1.26(liters)$ Forced Expiratory Volume* $MEFR = (.043 \cdot Ht) - (.047 \cdot Age) + 2.07(liters/sec)$ Max. Expiratory Flow Rate $MVV = (.9 \cdot Ht) - (1.51 \cdot Age) + 27(1)$ Max. Ventilatory Volume ** $RV = (.03 \cdot Ht) + (.015 \cdot Age) - 3.75 (liters)$ Residual Volume $TLC = (.094 \cdot Ht) - (.015 \cdot Age) - 9.17 (liters)$ Total Lung Capacity $FRC = (.051 \cdot Ht) - 5.05(liters)$ Funct. Residual Capacity $FEF = (.02 \cdot Ht) - (.04 \cdot Age) + 2(liters/sec)$ Forced Expiratory Flow Actual FEF is = (.5.VC)/At(liters/sec) (from 25% to 75%) 25% VC = $.25 \cdot VC$ 75% VC = .75 · VC * After one second ** After twelve seconds **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s) Given Ht. = 72 in, Age = 2 predicted levels, % predicted for VC &	
Solution(s) 72[CHS][A] 28[f][A] 5.2[B]> [f] [B]> 4.43 &, FEV, [C]> 8.62 &/s, MEFR [f] [C]> 449.31 &.MVV [D]> 2.16 &, RV [f] [D]> 7.60 &, TLC [E] 4.28 &, FRC	<pre>> 5.67 %, VC pred; 91.76% predicted [f][E]>4.54%/sFEF_{PRED};1.30(display only .40[R/S]>3.90(display only) 1.0[R/S]>4.33%/s,FEF_{AC}. 95.50% PRED.</pre>
Reference(s) 1) Morris, J.F., Koski, A., & L.C. Joh 2) Bates et.al ., <u>RESP. FTN, IN DISEA</u> 3) HP 65 program #00189A.	nson, <u>AM. REV. RESP. DI</u> S., 57: 103 (1971) <u>SE,</u> Saunders (1971)

User Instructions

1	PULMONARY	//MALE STAND	ARDS		7
Age(yrs)	FEVן	MVV	TLC	FEF → %	
Ht(cm,-in)	VC	MEFR	RV	FRC	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1.	Enter sides 1 and 2 of card			
2.	Input height	cm or -in	A	cm
3.	Input age	yrs	A	yrs.
4.	Input measured value (optional) and calculate:			
	a) Predicted VC*			
	b) Predicted FEV1*		f b	$FEV_1(k)$ *
	<pre>c) Predicted MEFR* d) Predicted MVV*</pre>		C f	MEFR(2/S)*
				MVV(L)* RV(L)*
	e) Predicted RV* f) Predicted TLC*		f	TLC(2)*
	g) Predicted FRC*		E	FRC(2)*
	5) ······			
	* Followed by % of predicted if measured value			
	was input initially.			
5.	Input measured VC (not necessary if entered			
	above), calculate predicted FEF and display 25% VC	VC(2)	f	FEFpr(%/S) 25% VC
	25% VC			25% VL
				
6.	Input time associated with this value from			
	spirogram and display 75% VC	t25%	R/S	75% VC
	Spirogram and arophay yow to			
7.	Input time associated with this value	t75%	R/S	
8.	Actual FEF is now displayed,			FEF _{ac} (l/S)
	followed by % Predicted			% Pred.

97 Program Listing I

4 STEP К	EY ENTRY	KEY CODE		OTED V			
The same second s			COMMENTS		EY ENTRY		COMMENTS
0 01	*LBLA	21 11	Convert & store HT	057	*LBLC	21 13	MEFR routine
0 02	X>0?	16-44		0 58	RCLŪ	36 00	
003	GTOØ	22 00		059		-62	
0 64	CHS	-22		060	0	ŬŪ .	
005	2	0 2		061	4	Ū 4	
0 06		-62		062	3	03	
007	5	0 5		063	Х	-35	
00 8	4	04		064	RCL1	36 01	
009	X	-35		065		-62	
010	*LBLØ	21 00		066	Ũ	00	
011	STOO	35 00	HT→(o)	067	4	04	
012	RTN	24		068	7	07	
013		21 16 11	Store age	0 69	x	-35	
014	ST01	35 01	Age →(1)	070		-45	
015	RTN	24			2	-4J 02	
016	*LBLB	21 12	VC routine	071	2		
0 17	\$T02	35 02	VC →(2)	072	:	-62	
018	RCLØ	36 00		073	Ø	<i>00</i>	
0 19		-62		074	7	07	
	•			075	+	-55	
020 021	0 5	00 05		076	GTO2	22 02	MVV routine
021 022	5	05 40		077	*LBLc	21 16 13	ioutine
0 22	8	08 75		078	RCLØ	36 00	
023	X	-35		079		-62	
024	RCL1	36 01		080	9	0 9	
025	:	-62		081	Х	-35	
026	0	00		082	RCL1	36 01	
0 27	2	02		8 83	1	Ø 1	
028	5	0 5		084		-62	
029	Х	-35		085	5	05	
030	-	-45		086	1	01	
031	4	Ū 4		087	x	-35	
0 32		-62		088	-	-45	
033	2	0 2		089	2	40 02	
034	4	Ø 4		003	7	02 Ø7	
035	-	-45				-55	
036	GT02	22 62		091 000	+ • • • • • •	-JJ 22 02	
037		21 16 12	FEV, routine	0 92	6702 		RV routine
038	RCLØ	36 00		0 93	*LBLD	21 14	
039		-62		0 94	RCLØ	36 00	
040	Ø	00		0 95	•	-62	
040	3	03		096	Ũ	00	
041	6	06		097	3	03	
		-35		0 98	Х	-35	
043 044	X DCL1			099	RCL1	36 01	
044 045	RCL1	36 01 -62		100	•	-62	
045 042	•	-62		101	Ø	80	
046	Ø	00 07		102	1	01	
8 47	3	0 3 60		103	5	0 5	
0 48	2	02 DE		104	Х	-35	
049	Х	-35		105	+	-55	
050	-	-45		106	3	0 3	
051	1	01		107		-62	
0 52	•	-62		108	7	07	
0 53	2	02		109	5	05	
054	6	0 6		110	-	-45	
055	-	-45		111	GT02	22 02	
056	GT02	22 0 2					
				ISTERS			
⁰ HT (CM)	1 Age (yı	$(s)^2$ VC action	$tual t_{25\%}^{4}$ FEF pre	5	6	7	8 9
			=====		0.0	67	S8 S9
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
					1	Te	
A		В	С	D		E	I
						l	

4

97 Program Listing II

STED KI							OTED					COM	5 MENTS
112	EY ENTRY *LBLd		CODE		COMMENTS		STEP		Y ENTRY	KEY CO			
113	RCLØ		00	HIC I	Jucine			68 Z 0	5		5		
114			-62					69 70	× R∕S	-3			
115	0		00					70 71	ST03	5 35 0		t _{25%} →(3)	
116	9		09	•				72 72	RCL2	36 0		25%	
117	4		Ø4					73		-6			
118	x	-	-35					74 74	7	8			
119	RCL1	36						75	5				
120		-	-62					76	x	-3			
121	0		0 0					77	R∕S	5			
122	1		01					78	RCL3	36 0			
123	5		0 5					79	-	-4			
124	х		-35					80	RCL2	36 0			
125	-	-	-45					81	•	-6			
126	9		0 9					82	5	Ū			
127	•	-	-62					83	Х	-3			
128	1		01					84	X₽Y	-4			
129	7		07				1	85	÷	-2			
130	-		-45				1	86	PRTX	-1			
131	GTO2	22		EDC -			1	87	RCL4	36 Ø			
132	*LBLE	21		FRC r	outine			88		16 21 0			
133	RCLØ	36						89	6703	22 0			
134 135	0	-	-62 00						*LBL2	21 0			
135 136	0 5		00 05					91	PRTX	-1			
136	1		01 01						*LBL3	21 0			
137	x	-	-35					93	F3?	16 23 0			
138	5		05					94	GTO4	22 0			
140	5	-	-62					95 92	RTN	2			
141	Ø		0 0						*LBL4	21 0			
142	5		05					97 00	÷	-2			
143	-	-	-45					98 00	EEX	-2			
144	GT02	22						99 66	2	0			
145	*LBLe			FEF r	outine			00 01	X PRTX	-3 -1			
146	RCLØ	36						02 02	RTN	-1			
147			-62					02 03	R/S	5			
148	Ø		00					00	N/ 0	1	•		
149	2		0 2										
150	Х	-	-35										
151	RCL1	36											
152	•		62										
153	Ø		00				210			1			
154	4		<u>64</u>							1			
155	Х		-35										
156	-		45										
157	2		02 •55										
158 159	+ ST 04	- 35		FEF p	red								
159	PRTX		04 14										
160	FRIA F3?	16 23											
162	GT01	10 23					┝───┥			 			
163	RCL2	36					220						
164	*LBL1	21											
165	ST02	35								<u> </u>			
166	•		-62							<u> </u>			
167	2		02										
				LA	BELS				FLAGS			SET STATUS	
A HT	B 1	IC	С	MEFR	D RV	E	FRC	0		FLAC		TRIG	DISP
a			C		d			1		ON	OFF		
Ğ AGE		L		MVV	TLC	4	FEF	2		0	2	DEG 🐔	FIX 124
			2							1 🗆		GRAD □ RAD □	SCI □ ENG □
5	6		7		8	9		3		3			ENG 🗆 n_2
						_		-					

Program Title 67 - PULMONARY MEDICINE/ FE	MALE SPIROMETRY	STANDARDS
Contributor's Name Richard C. Rodgers, M	.D.	
Address 2045 Oak Street Apt 3		
City San Francisco	State Calif	Zip Code 94117

rogram Description, Equations, Variables			
Predicted values of:	(Ht in cr	n, age in yrs.)
VC= (.045·Ht) - (.024·age)	- 2.852	(liters)	Vital Capacity
$FEV_1 = (.035 \cdot Ht) - (.025 \cdot age)$	- 1.932	(liters)	Forced Expiratory Volume*
MEFR= (.057.Ht) - (.036.age)	- 2.532	(liters/sec.)	Max.Expiratory Flow Rate
MVV= (.762·Ht) - (.81·age)	- 6.29	(liters)	Max.Ventilatory Volume**
RV= (.024.Ht) + (.012.age)	- 2.63	(liters)	Residual Volume
TLC= (.078.Ht) - (.01.age)	- 7.36	(liters)	Total Lung Capacity
FRC= (.047·Ht) - 4.86 (li	ters)		Funct.Residual Capacity
			(liters/sec.)Forced Expirator Flow (from 25% to 75%
Actual FEF= (.5 VC)/ Δ t, where Δ t = [25% []]	
25%VC = .25VC			
75%VC = .75VC			
*After one second			
**After twelve seconds			
Operating Limits and Warnings			
Operating Linns and Warnings			

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

ketch(es)										
				· ·			• • • • • • • • • • • • • • • • • • • •			
		denator - anne de conserva conse				• -		, <u> </u>	• • • •	•
	· · · · · · · · · · · · · · · · · · ·	and a second segment of the second	 anna an air a tha an an an air an	• • • •		•			•	÷
	•		 an contact and the second				 	•		
			 ana anaista i bi ini	•		40	 •		+	
					· · · · · · · · · · · · · · · · · · ·			-	•	
									and all the second s	

-	n., age = 28 yrs., measured VC = 3.0 liters, te all predicted levels and % predicted values
	card sides 1 & 2: 60 [CHS] [A] 28[f] [A] des 1 & 2: 3[B] → 3.33 ^Q , VC pred; ^{89.98} predicted [f] [E]→3.46 ^Q /s, FEF _{pred} ; 0.75 (display only) .40 [R/S]→ 2.25 (display only)
[D] → 1.36ℓ, RV [f] [D] → 4.25ℓ, TLC [E] → 2.30ℓ, FRC	1.0 [R/S]→ 2.50 ℓ/s, FEF _{ac} 72.23 % predicted

Reference(s) 1) Morris et al., AM. REV. RESP. DIS., 57: 103 (1971).
2) Bates et al., RESP FTN. IN DISEASE, Saunders (1971).
3) HP-65 program #00190A

User Instructions

7

 PULMONARY/FEMALE STANDARDS

 FEV.
 MVV

 TLC
 FEF→%

 VC
 MEFR

 RV
 FRC

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter sides 1 & 2 of "Male Spirometry			
	Standards" program			
2	Input height	cm or -in	A	cm
	Input age	yrs	f A	yrs.
4	Enter sides 1 & 2 of "Female Standards" program			_
5	Input measured value (optional)and calculate:			
	a) predicted VC*		в	VC (^ℓ) *
	b) predicted FEV_1 *		fB	FEV1 (L) *
	c) predicted MEFR*		C	MEFR(L/S)*
	d) predicted MVV*		fC	MVV (²) *
	e) predicted RV*		D	RV (^ℓ) *
	f) predicted TLC*		f D	TLC (²) *
	g) predicted FRC*		E	FRC (2) *
	*followed by % of predicted if measured value			
	was input initially.			%pred.
	Input measured VC (not necessary if input above			
	under 5a), calculate predicted FEF and	VC (L)	f E	FEF _{rr} (l/s)
	Display 25% VC	<u> </u>		25%VC
7	Input time associated with this value (from			
	spirogram) and display 75% VC	t25%	R/S	75% VC
		2		
8	Input time associated with this value	t75%	R/S	
	Actual FEF is now displayed, followed by	/3*		FEFac(%/S)
- <u> </u>	& predicted			%pred.
	<u> </u>			
 				
 				
L	l	L		1

			97 Pr o	gram	Listi	ng I				9
STEP KI	EY ENTRY	KEY CODE	COMM	ENTS	STEP K	EY ENTRY	KEY CODE		COMMENTS	-
601	*LBLB		VC routine		0 57	-	-45			
002	ST02		VC→(2)		0 58	2	82			
0 03	RCLØ	36 00			0 59		-62			
B 64		-62			060	5	05			
00 5	Ø	00			061	3	8 3			
00 6	4	64			0 62	2	82			
00 7	5	05			063	-	-45			
00 8	Х	-35			064	GT02	22 8 2			
80 9	RCL1	36 01			065	*LBLc	21 16 13	MVV	routine	
010	•	-62			. 066	RCLØ	36 0 0			
011	0	60			. 067		-62			
012	2	02			. 0 68	7	87			
013	4	0 4			0 69	6	8 6			
014	x	-35			070	2	0 2			
015	-	-45			071	X	-35			
016	2	0 2			072	RCL1	36 Ø1			
017 010	•	-62			073	:	-62			
01 8 010	8 F	08 65		ļ	. 074	8	0 8			
0 19 000	5	05 60			075	1	Ū1			
020 021	2 -	82 -45			0 76	Х	-35			
021 022					. 0 77	-	-45			
0 22 007	GT02	22 02 16 12 ¹	FEV, routir		0 78	6	0 6			
023 024		16 12 · 36 00	ILV, IOUCII		. 879	:	-62			
8 24	RCLØ	-62			0 80	2	02			
0 25 004	•	-62 00			081	9	0 5			
026 027	0 3	03			082	-	-45			
027 028	5	03 05			8 83	6702	22 02	RV 1	coutine	
020 029	X	-35		ł	084	*LBLD	21 14			
025 030	RCL1	36 01			. 0 85	RCLO	36 00			
030 031	RULI	-62			0 86	•	-62			
0 32	Ø	00			0 87	Ŭ 2	00 02			
032 033	2	02			088 089	4	02 04			
034	5	05			0 05 0 90	т Х	-35			
035	x	-35			0 90	RCL1	-35 36 01			
036	_	-45			092	KULI	-62			
037	1	Ū1			0 93		00			
038	-	-62			8 94	1	61			
0 39	9	09			895	2	02			
640	9 3	03			096	x	-35			
041	2	02			0 97	+	-55			
042	-	-45			098	2	02			
043	GTO2	22 02			099	-	-62			
044	*LBLC		MEFR routin	ne	100	6	0 6			
045	RCLØ	36 ØØ			101	3	03			
046		-62		[102	-	-45			
047	Ø	00		[103	GT02	22 0 2			
048	5	Ø 5		ĺ	104	*LBLd	21 16 14	TLC	routine	
049	7	67		ļ	105	RCLØ	36 00			
050	X .	-35			106	1	01			
051	RCL1	36 01			107	7	07			
052	•	-62			108	4	04			
05 3	Ŭ	0 0			109	X≠Y	-41			
054	3	0 3		ł	110	X>Y?	16-34			
055 057	6	06 75		ł	111	GTO5	22 05			
056	Х	-35 _		REGIS	TERS		1	1		
0 um (Cm)		² VC actu	3			6	7	8	9	
	-		25%	⁴ FEF pred						
S0	S1	S2	S3	S4	S5	S6	S7	S8	S9	
A	l				D	1	E		1	
A	В		С						-	

Program Listing II

10	97 P i	rogram	Listii	ng H			
		COMMENTS		EY ENTRY	KEY CODE	COMM	ENTS
— 112 X Հ Y	-41		168	CHS	-22		
113 CLX 114 #LBL6 2	-51 1 06		169 170	x	-35 -45		
114 +6660 2	-55		170	1	-45 01		
116 .	-62		172		-62		
117 0	00		173	3	0 3		
118 7 119 8	07 08		174	+ стол	-55	FEF pred	
119 8 120 ×	-35		175 176	STO4 PRTX	35 04 -14	TEL PLET	
	6 01		177		16 23 83		
122 .	-62		178	GTO1	22 01		
123 0	00 01		179		36 02		
124 1 125 ×	01 -35		180 181	*LBL1 STO2	21 01 35 02		
126 -	-45		181		-62		
127 7	87		183	2	02		
128 .	-62		184	5	05		
129 3 130 6	0 3		185	X	-35		
130 6 131 -	06 -45		186 187	R∕S STO3	51 35 03	$+ \rightarrow (2)$	
	2 02		188		36 02	t _{25%} →(3)	
	1 05		189		-62		
134 XZY	-41		190		07 05		
135 CLX 136 1	-51 01		191 192	5 ×	0 5 -35		
	2 06		192		51		
138 *LBLE 2	1 15 FRC rot	utine	194		36 03		
	6 00		195		-45		
140 . 141 0	-62 00		196 197	RCL2	36 02 -62		
141 0 142 4	04		197	5	-62 05		
143 7	07		199	x	-35		
144 ×	-35		200	X≠Y	-41		
145 4	84		201	÷	-24		
146 . 147 8	-62 08		202 203	PRTX RCL4	-14 36 04		
148 6	06		200		16 21 03		
149 -	-45		205	GT03	22 03		
	202 615 FEF row		206	*LBL2	21 02		
151 *LBLe 21 1 152 RCL0 3	6 66	actile	207 208	PRTX *LBL3	-14 21 03		
153 .	-62		200		16 23 03		
154 0	0 0		210	GT04	22 04		
155 2	8 2		211	RTN	24		
156 × 157 RCL1 3	-35 6 01		212 213	*LBL4 ÷	21 0 4 -24		
158 .	-62		213	EEX	-23		
159 0	00		215	2	02	-	
160 3	03		216	X	-35		
161 × 162 -	-35 -45		217 218	PRTX RTN	-14 24		
	6 01		218	R/N R/S	24 51		
164 X2	53			13 V			
165 6	06						
166 EEX 167 5	-23 05						
167 5	LAB	ELS		FLAGS		SET STATUS	
A B VC			2C 0		FLAGS	TRIG	DISP
a b FEV		^d TLC ^e FE				DEG 街	FIX 🔺
0 1		3 4	2		1 L K	GRAD 🗆	SCI 🗆
5 6	7	8 9	3		$\begin{array}{c c} 2 & \Box & \mathbf{x} \\ 3 & \Box & \mathbf{x} \end{array}$	RAD 🗆	ENG □ n
					3 🗆 🖌		

PULMONARY PROGRAM SERIES

The following programs may be used in a series to carry out the many calculations in a particular medical procedure. The following is an example from a respiratory intensive care unit. This example is fairly complicated. Before attempting it, read over the detailed instructions for each of the programs and try the included examples. In these examples values stored in memory for later use are underlined. When recalled from memory (so that they do not need to be reentered), they are enclosed in brackets.

Respiratory Intensive Care Example:

This is an example of the types of complicated calculations that might be done in a respiratory intensive care situation with integral blood gas lab. Many entered and calculated parameters are used by later programs. Calculations start from uncorrected blood parameters and it is assumed that O_2 saturations are not measured. Venous blood parameters are computed first, so that arterial values will be left in memory for later use in the ventilation/ perfusion calculations. O_2 saturation and content is calculated before temperature correction.

PROGRAM	INPUTS	OUTPUTS
VENOUS BLOOD: BLOOD ACID - BASE STATUS	PCO ₂ =44 mmHg; pH=7.375; Hgb=15 gm/100 ml	TCO ₂ =26.22 mmol/% BE=0.01 mEq/%
VIRTUAL PO2 & O2 SATURATION & CONTENT	$\frac{PO_2=40 \text{ mmHg}; (PCO_2); (pH):}{BT = 39^{\circ}C}$ (VPO_2); (Hgb)	VPO ₂ =34.64 mmHg (in display, reg.) Est. Sat. =66.54%; C _v O ₂ = 13.48 Vol.%
ANAEROBIC PCO ₂ & pH CHANGE	(PCO ₂); (pH); (BT)	$PCO_2 = 4802 \text{ mmHg}; \text{ pH} = 7.35$
ANAEROBIC PO2 CHANGE	(SAT); (PO ₂); (BT)	PO ₂ =46.15 mmHg
ARTERIAL BLOOD: BLOOD ACID-BASE STATUS	$\frac{PCO_2 = 40 \text{mmHg}}{(\text{Hgb})}; \text{ pH=7,4};$	TCO ₂ =25.18 mmol/ l BE = -0.04mEq/ l
VIRTUAL PO2 & O2 SATURATION & CONTENT	PO ₂ = 90mmHg; (PCO ₂); (pH); (BT) (VPO ₂); (Hgb)	$\frac{\text{VPO}_2 = 80.59 \text{ mmHg}}{(\text{in display reg.})}$ Est. Sat. = 95.91% C _a O ₂ = 19.53 Vol. %
ANAEROBIC PCO2 & pH CHANGE	(PCO ₂); (pH); (BT)	PCO ₂ =43.65 mmHg; pH=7.37
ANAEROBIC PO2 CHANGE	(SAT); (PO ₂); (BT)	PO2 =102.19 mmHg

VENTILATION/PERFUSION:

DEAD SPACE FRACTION	$\dot{v}_{CO_2} = 240 \text{ ml/min};$ $\dot{v}_{O_2} = 300 \text{ ml/min}; (P_aCO_2);$ $\dot{v}_E = 7.4 /min$	$R_{0} = 0.80; \dot{V}_{A} = 4.74 \text{l/min};$ $V_{D}/V_{T} = 0.36$
ALVEOLAR-ARTERIAL OXYGEN TENSION DIFFERENCE	$P_1O_2 = 200 \text{ mmHg}; (P_aO_2); (P_aCO_2); (R_Q)$	A-a Diff =46.12mmHg; $P_AO_2 = 148.31 \text{ mmHg}$ (in display reg.)
VIRTUAL PO2 & O2 SATURATION	(P _A O ₂); (Hgb)	Sat. = 98.91% C _A O ₂ =20.34 Vol. % (in display reg.)
PHYSIOLOGIC SHUNT & FICK	$(C_AO_2); (C_aO_2); (C_vO_2);$ $(\dot{V}O_2)$	CO = 4.96 l/min; SHUNT = 11.85%
BODY SURFACE AREA (Dubois)	Ht = -69 in.; Wt =52kg (CO)	Ht =175.26 cm; BSA = 1.63 m ² ; C $I = 3.04 \ \ell/min/m^2$.

For repetitive series of calculations we recommend that you make up a work sheet for recording the entries and results, and make copies of it. This will not only serve as a guide to insure that programs are run in the correct sequence, but it will also serve as a record of calculations completed. It should be in a format which will permit direct inclusion in the patient's record.

Contributor's Name	Hewlett Packa	ard					
Address	1000 N.E. Cir	cle Boulev	ard				
City	Corvallis		State	Oregon	2	Zip Code	97330

Equation Used:

DLCO=	V _A (0.084)	Tn	FACAR	0.3
DLCO-	t _{BH}	тп	F_CAR	FACO

Note:

The initial concentration of carbon monoxide (F_ICO) is assumed to be 0.3%. If a different standard value for F_ICO is desired, it may be entered for use as desired by pressing [f] [A].

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

 Sketch(es)
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

 .
 .

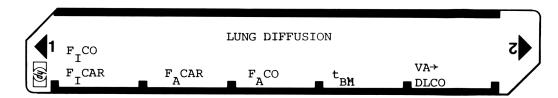
 .
 .

 .
 .

 .
 .

 .
 .

 .
 .


 .
 .

Sample Problem(s) 1) In this example, the carrier gas is helium. Calculate the lung diffusing capacity using an initial helium concentration of 10%, an alveolar helium concentration of 8%, an alveolar carbon monoxide concentration of 0.159%, an initial carbon monoxide concentration of 0.3%, a breath holding time of 10 seconds, and an alveolar volume of 4930 milliliters. 2) For same data; calculate lung diffusing capacity assuming an initial carbon monoxide concentration of 0.45%. Solution(s) 1) 10 [A] 8[B] .159 [C] 10 [D] 4930 [E] \rightarrow 17.05 ml CO/min./mmHg 2) If problem 1) has already been run: .45 [f] [A] 4930 [E] →33.84 ml/CO/min/mmHg. If problem 1) has not been run then do: .45 [f] [A] and return to 1).

Reference(s) This program is a modification of the Users' Library program #00191A submitted by Hewlett Packard.

Comroe, et.al., The Lung, Year Book Medical Publishers Inc., 1962.

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
1'	Optional: if F_TCO other than 0.3% is to be			
	used enter it	F _T CO,%	f A	F _T CO%
2	Input in any order	-		-
	FICAR	8	Α	F _I CAR
	and F _A CAR	8	в	F_CAR
	and F_CO	96		F_CO
	and t _{BH}	seconds		t _{BH}
3	Input V_A and calculate DLCO	V _A (ml)	E	DLCO
	Detailed User Instructions:			
	The program requires five items of input			
	information. They may be input in any order			
	with the exception of the alveolar volume			
	which must be input last. The program is			
	operated as follows: Input initial			
	concentration of carrier in percent (F ₁ CAR)			
	press [A]. Input alveolar carrier concentration	on		
	in percent (F ₂ CAR), press [B]. Input alveolar			
	carbon monoxide concentration in percent			
	(F _A CO), press [C]. Input breath hold time in			
	seconds (t _{BH}), press [D]. Input alveolar			
	volume in milliliters (V _A), press [E], and			
	the display shows the lung diffusing capacity			
	(DLCO).			

Program Listing I

10			97 Program		sing i		
16 STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
0 0		21 16 11	Store F _I CO (%)				
00		-21	I				
00	3 ENT†	-21					
00		-62		060			
00		03					1
00		-24					
00		35 04	Sto modified F_{I}^{CO}				
00							
00		-31	Display F _T CO				
01 01		24 21 11	Input F _I CAR				
01 01		35 01	Impac I I and				
01		24					
01		21 12		070			
01 01		35 02	Input F _A CAR				
01		24					
01		21 13	Input F _A CO				
01	8 ST03	35 03	A				
01	9 RTN	24					
02		21 14	Input t _{BH}				
0 2		35 08					
02		24					
0 2		21 15	Input VA & calculate	080			
0 2		-21	DLCO	080			
02 02		-62 00					
02 02		08					
02		64 64					
02		-35					
03		36 08					
03		-24					
03		36 0 2					
0 3		-21					
03		36 01		090			
0 3	-	-24					
<i>0</i> 3		-62					
03 03	7 3 0 E00	03 16 23 00	Was $E CO$ stored?				
03 03	o F0: 9 GSB1	23 01	Was F _L CO stored? Yes				
04 04		36 03	105				
04		-24					
04		-35					
84	3 LN	32					
04		-35		100			
04		-14	DLCO				
Ø4		24					
04 04		21 01 76 04	Recall reg 4 &		ll		
04 04		36 04 -35	calc. F _I CO				
04. 05		-35 24			FLAGS		SET STATUS
05 05		51			0 F _I CO	FLAGS	TRIG DISP
			_			ON OFF	
						0 🗌 🛛	DEG 🔀 FIX 🛛
├ ───┤			4	110	2		
├ ───┼			4		3	2 🗆 🕱 3 🗆 🙀	RAD ENG n_2
		1	L DECIG	STERS			
0	1	2	3 4	5	6	7	8 9
	F _T CA	R F _A CAR	F _A CO F _T CO/.3				t _{BH}
S0	S1	S2	S3 S4	S5	S6	S7	S8 S9
				-	l		
Α		В	С	D	E	E	I
		L					

Program Title	WATER VAPOR PRESSURE AND RES	PIRATORY GAS CONVERSION	NS			
Contributor's Name Users' Library, Hewlett-Packard Company						
Address	1000 N.E. Circle Bouleva	ard				
City	Corvallis	State Oregon	Zip Code	97330		

Program Description, Equations, Variables This program allows the user to convert among three commonly used systems of respiratory gas volume measurement. The first part calculates water vapor pressure at a given ambient temperature; the result is used in converting to or from ambient conditions. It may be used alone if only the partial pressure of water vapor is desired. The balance of the program is used for the actual conversion of the gas volumes. Equations Used: $P_{H_2O} = 10^{a+bT_A^{-1}} + cT_A^{-2} + dT_A^{-3}$ where ТА = ambient temperature, K а = 7.522467b = -1223.31= -222 613.7С d = 12 323 432 PH20 = water vapor pressure, torr **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title	WATER VAPOR PRES	SURE AND RESPIRATOR	GAS CONVERSIONS	
Contributor's Name				
Address				
City		State	Zip Code	

Program De	escription, Equations, Variables
	$V_{\text{STPD}} = \frac{P_{\text{BAR}} - P_{\text{H}_2\text{O}}}{T_{\text{A}}} V_{\text{ATPS}} \frac{273}{760}$
	$V_{STD} = \frac{\binom{P_{BAR} - 47}{310}}{310} V_{BTPS} \frac{273}{760}$
	$V_{ATPS} = \frac{T_A}{(P_{BAR} - P_{H_2O})} V_{STPD} \frac{760}{273}$
	$B_{BTPS} = \frac{310}{(P_{BAR} - 47)} V_{STPD} \frac{760}{273}$
ATPS	= Ambient temperature and pressure saturated with water vapor:
	$P=P_{BAR}-P_{H_2O}, T=T_A$
BTPS	= Body temperature and pressure saturated with water vapor:
	$P_{H_2O} = 47 \text{mmHg}, T = 310 \text{K}$
STPD	= Standard temperature and pressure dry: P=760 mmHg, T=273K
PBAR	= Barometric pressure, mmHg or torr
v	= Volume at condition indicated by subscript
Operating L	imits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)							
		· •	· · ·	· • • • •	· · · · · · · · · · · · · · · · · · ·	•	
						· · · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·		·	
n en							
	с	· • • · · · · • • · · · · · · · · · · ·	an a			• · · •	
							1
							-
				4 V	• • •		4
					·		_
Sample Problem(s)	Гарана Тарана		c –	• • • • •	· · · · · · · · · · · · · · · · · · ·		
1. Convert 4.3 liters BTPS at a	parometr	ic pressu	re of 74	13 mmHg	to the	equivalent	
volume at STPD.	and the second	_					
2. Convert a volume of 4.81 lite	ers ATPS	at 83° Fal	hrenheit	and a	pressui	re of	
765 mmHg to BTPS.							
						1 (10) (1000-1010) ¹	
Solution(s)							
1. 743 [A] 4.3 [C] [E] [D] \rightarrow 3.4	7 liters	, STPD					
2. 83 [CHS] [f] [A] \rightarrow 28.94 mmHg		,					
765 [A] 4.81 [B] [E] [C] → 5.		S. RTPS					
	J. IICEI	-, -110					
· · · · · · · · · · · · · · · · · · ·							
Reference(s) This program is a modi	fication	of the Us	sers' Li	brary	program	# 00192A	
submitted by Hewlett-Packard.							

The water vapor pressure program is an approximation to the water vapor pressure table in Scientific Tables published by Ciba-Giegy Limited, 7th Edition, 1970, and is valid for temperatures T, such that $0 < T \le 100^{\circ}C$.

The gas conversions are based on the ideal gas laws and closely approximate the tables in Scientific Tables.

User Instructions

7

WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS TEMP $\rightarrow P_{H_2O}$ PBAR ATPS BTPS STPD \rightarrow

STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS		OUTPUT DATA/UNITS
1	Load side 1 and side 2						
	If conversion between BTPS and STPD only is						
	needed go to 3; otherwise go to 2.		- [
2	Input ambient temp and calculate water		[
	vapor pressure	°C or -°F		f		A	P (mmHg)
3	Input P _{BAR}	P _{BAR} (mmHg	, [А			PBAR (mmHg)
	and volume at ATPS	volume	[В			volume
	or volume at BTPS	volume		С			volume
	or volume at STPD	volume		D			volume
4	Calculate desired volume at						
	ATPS			Е		В	volume
	BTPS		[Е		С	volume
	STPD			Е		D	volume
5	For a new case with same water vapor condition	5					
	go to step 3 otherwise go to step 2						
	go to step 5 other and go to step 2						
	Detailed User Instructions:						
	In order to convert between BTPS volumes and						
	STPD volumes, only steps 3 & 4 need be used.						
	In such a case input the barometric pressure						
	in millimeters of mercury and press [A].						
	Next, input the volume of the gas in either		[
	BTPS units or STPD units, and press either						
	[C] or [D] to define the volume system.						
	Next, press [E] and then either [D] or [C]						
	depending on the conversion desired.						
	If conversion is desired to or from ATPS						
	conditions the entire program must be used. To						
	do this, input the ambient temperature						
	(positive for °C, negative for °F), and press						
	[f] [A]. Next, input the barometric pressure i	n					
	millimeters of mercury and press [A]. Then,						
	input the volume to be converted, followed						
	by the units of volume. (For example, if 5						
	liters STPD is to be converted, press [5] then						
	press [D].) Next, press [E] then press the						
	key corresponding to the system in which the						
	volume is desired.						

20

			7/ FTU	gram		ing i			21
STEP	KEY ENTRY	KEY CODE	СОММІ	ENTS	STEP K		KEY CODE	СОММ	
0 01			Input tom		657	4	04		
00 2		16-44	Input tempe	erature &	05 8		03		
003		22 00	if in °F, o	convert to	1 000		0 2		
004		0 3			060		36 01		
005		02 55			061		-35		
006		-55			062		36 01		
007 000		01 -62			0 63		-21		
00 8		-62 08			864		-35		
00 9		-22			0 65		-35		
010 011		-24			066		-55		
012		21 00			0 67		16 33		
012 013		21 00 02			068 069		35 08	Store & pri	nt water
013		07			0 70		-14 24	vapor press	
815		03			070 071		24 21 11	vapor press	Jure
016		-55	°K = °C + 2	273	072	ST01	35 01	Store P BAR	
017		35 02			073	RTN	24	BAR	
018		52			0 74	*LBLB	21 12		
019		35 01			075	#LBL0 F1?	16 23 01	Input or ou	ידנומדו
020		07	Calculate w		076	GT01	22 01		.cpuc.
021		-62	vapor pr	ressure	0 77	ST04	35 04		
022		05			078	RCL2	36 82	Convert ATE	PS to STPD
023	3 2	02			0 79	RCL1	36 01		
024		0 2			080	RCL8	36 08		
025		04			081	*LBL4	21 04		
026		06			082	-	-45		
027		07			083	÷	-24		
028		-21			084	÷	-24	Convert to	STPD
025		01			0 85		-62		5112
03(9 2	0 2			0 86	3	03		
03:	1 2	02			0 87	5	8 5		
032		0 3			0 88	9	8 9		
030		-62			0 89	2	0 2		
034	¥ 3	03			090	X	-35		
03:		01			091	ST03	35 0 3		
036		36 Ø1			8 92	RCL4	36 04		
037		-35			0 93	RTN	24		
038		-45				*LBL1	21 01		
035		02			0 95	RCL3	36 0 3	Convert STR	D prev-
040		0 2			0 96	RCL2	36 02	iously stor	
04.		02			0 97	RCL1	36 01	ATPS	
04:		06			098	RCL8	36 0 8		
04		01 07			0 99	*LBL3	21 03		
04		0 3			100	-	-45		
04		-62			101	÷	-24	4	
04(07 74 01			102	×	-35		
8 4) 84)		36 01			103	2	02	1	
048		-21 -35			104	<u>.</u>	-62	1	
84 <u>9</u> 05					105	7	0 7	1	
050 051		-35 -45			106 107	- 8 - 4	08 64	1	
05: 05:		-45 01			107 108	- 4 x	04 -35	1	
05. 05:		02			108	PRTX	-35 -14	Print resul	.t
05. 05:		02 03			110		-14 16 22 01	clear flag	
05: 05:		03 02			111	RTN	24		
05. 05.		03			112	*LELC	21 13		
				REGIS	ULU3				
0	¹ 1/T,P _B	AR^2 T(K)	3	4	5	6	7	⁸ PH2O	9
			6.2	<u>C4</u>	05	86	C 7	<u> </u>	39

S6

S3

С

S2

в

S4

S5

D

S7

Е

0

S0

Α

S1

97 Program Listing I

S9

S8

I

Program Listing II

STEP	KEY EN	TRY	KEY C	ODE	-	COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММІ	ENTS
	3 F:	17	16 23 (01								
11			22 (1			170]	
11 11		U4 3	35 (04 03							4	
11		1			Set st	ack for	ł				-	
11		ê	i	00		sion from E	3TPS				1	
11	9 RCI	L1	36 i	01		D and go to					1	
12		4		04 07								
12		7 04	22	07 04							4	
12 12			22								-	
12			36					180			1	
12	5	3	i	03								
12		1		01 00	Sot st	ack for cor	-170					
12		0	36	00	1	from STPD					4	
12 12		4			BTPS						4	
13		7		07							-1	
13			22								-	
13	32 *LB		21								1	
13			16 23	01 00								
13			22 35		Input,	output?		190			4	
13 13		103 11 tr		03 24	Store	STPD					-	
13			21			0112					-	
13		L3	36								-	
13	39 PR	TX	-	14	Pecall	and print					1	
14			16 22	01	STP							
14		2TN		24 15	Clear	flag					4	
	42 *LB 43 S		21 16 21								4	
		RTN			Set fl	lag for cald		200			-{	
		?/S		51	ations						-	
											1	
H+			+		4						_	
150					4						-	
150					4						-	
			1		1						-	
					1							
]			210				
					4						_	
					4		ľ				-	
			+		4						-	
			1		1		ĺ				-	
160					1							
					4						4	
			+		4						-	
			+		4			220			-1	
			+		1						-	
					1							
					4						_	
l						BELS			FLAGS	L	SET STATUS	
A P _{BAP}	р В	ATI		C BTI			E _{cal}	culate	0			
	b	AII		c		d	e		1	FLAGS	TRIG	DISP
·I↔Ρ									calcula	te o 🗆 😾	DEG 🛛 🔉	FIX 🔀
0	2 1	cons	st	² coi	nst	³ calc	4 STP	D	2		GRAD □ RAD □	
5	6			7		8	9		3	$\begin{array}{c c} 2 & \Box & \mathbf{y} \\ 3 & \Box & \mathbf{X} \end{array}$		ENG D

Program Title	VENTILATOR	SETUP AND	CORRECT	IONS (RAD	FORD)		
Contributor's N Address	ame 1000 N.E.		_	Hewlett-	Packard Company	7	
City	Corvallis			State	Oregon	Zip Code	97330

Program Description, Equations, Variables This program calculates the initial tidal volume for a ventilator patient. The first part calculates an approximation to the Radford nomogram tidal volume with correction for ventilator dead space only. The second part corrects the tidal volume for altitude, patient's temperature, daily activity, use of a tracheotomy tube, and metabolic acidosis in anesthesia. Equations Used: = Alveolar minute volume =10 (C1LOG WT+C2)/100 m1/min. VA = Alveolar tidal volume = $\frac{V_A}{r}$ ml TV_{A} TV bas = Basal tidal volume = (V_{T_A} + Wt (lbs)) ml TVcorr = Basal tidal volume + ventilator dead space where = Breathing rate (breaths per minute) r **Operating Limits and Warnings** Warning: This program yields an approximation to the Radford nomogram. The nomogram may not be applied with confidence to patients with muscular activity or abnormal lung function. Apply only the corrections which pertain to the patient for whom the program is being run.

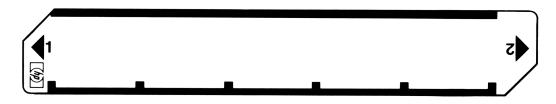
This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

ntributor	's Nan	ne			
dress y				State	Zip Code
ogram D	escrip	tion, Equ	uations, Variables		
For	fema	les:			
			124; Wt ≼ 8kg	Correction	15:
	°1	=	61;8kg <wt≼23kg</wt		
			44.2;Wt>23kg		re:+5% per °F above 99°(rect
					+5% per 2000' above sea lev
			193;Wt≼8kg	Activity:	+10%
	C ₂	=	249;8kg<₩t≼23kg		1
			272;Wt>23kg	Tracheotor	my: $-\frac{1}{2}$ body weight in pounds
For	male	s;		Metabolic	acidosis in anesthesia:+209
	c1	=	124:Wt≼8kg		
	T		61;Wt>8kg		
	C ₂	=	193;Wt≼8kg		
	2		249;Wt>8kg		

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.


Sketch(es)	
	•

	•
	•
	•
Sample Problem(s)	
Example:	
1) Calculate the predicted tidal volume for a 170 pound comatose male	e having
a breath rate of 15 breaths per minute, ventilator dead space of 25 m	illiliters,
fever of 101° Fahrenheit, who is located 500 feet above sea level.	
2) What would be the corrected tidal volume if this patient were in r	metabolic
acidosis?	
Solution(s) 1) 170 [CHS] [A] 1[B] 15[C] [D] →462.15m1, Basal Tidal Volume	
Solution(s) 170 [CHS] [A] I[B] $15[C]$ [D] $\rightarrow 462.15mI$, Basal Tidal Volume 25 [E] $\rightarrow 487.15mI$, Tidal Volume Corrected for Deadspace	
101 [CHS] [f] [A] →535.86ml, TVcorr (body temp corr.)	a
500 [CHS] [f] [B] \rightarrow 542.56ml, TVcorr (altitude corr.)	
2) [f] [E] →651.07ml, TVcorr. for metabolic acidosis	
Reference(s) This program is a modification of the Users' Library Program	#00193A
submitted by Hewlett-Packard.	
Radford, Edward P., "Ventilation Standards for Use in Artificial R	espiration,"
Journal of Applied Physiology, 7:451, 1955.	•

User Instructions

VENTILATOR	SETUP	AND	CORRECTIONS	(RADFORD)		7
TEMP WT	ALT SEX		ACTIVE RATE	TRACH →T VBAS	MET ACID DS _V →TV _C	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load sides 1 and 2			
2	Input weight (+Kg or -1b.)	Kg or -lb	A	Wt,(Kg)
3	Input sex (O for female, 1 for male)	O=F,1=M	B	O = F,1=M
4	Input breathing rate	BR/min	С	BR/min
5	Calculate basal tidal volume		D	TVbas (ml)
6	Input ventilator dead space	DS , ml	E	rV _{corr(ml)}
7		°C or -°F	fA	TV _{COrr} (ml)
8	Input altitude (+meters, -feet)	m or -ft	fB	TV _{corr} (ml)
9	For minor daytime activity			
	(non comatose)		f C	TV _{corr} (ml)
	or, for tracheotomy		fD	TV _{COrr} (ml)
	or, for metabolic acidosis during anesthesia		f	TV _{COTT} (ml)
	Detailed User Instructions:			
	To calculate the tidal volume required by a			
	patient, load the program into the calculator.			
	Then input patient's weight in kilograms will			
	be displayed. Next, input patient's sex: [0]			
	for female, or [1] for male, and press [B].			
	Input breathing rate at which the patient will			
	be ventilated and press [C]. To calculate			
	basal tidal volume (uncorrected) press [D].			
	This value is the tidal volume approximation			
	to the Radford nomogram.			
	Next, input ventilator dead space, followed			
	by [E], giving the tidal volume corrected for			
	the ventilator dead space.			
	The remainder of the program applies the			
	corrections specified in the Radford nomogram.			
	Input patient's temperature in degrees Celsius			
	or in degrees Fahrenheit negatively and press			
	[f] [A] to obtain the tidal volume corrected			
	for patient temperature. Next input altitude			
	in meters or in feet negatively and press [f]			
	[B] to obtain tidal volume corrected for			
	altitude. To correct tidal volume for minor			
	daytime activity of a non-comatose patient,			

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	Detailed User Instructions: con't			
	Press [f] [C]. If patient is fitted with a			
	tracheotomy or endotracheal tube, press [f] [D]			
	to obtain the corrected tidal volume. If the			
	ventilator is being used during the administ-			
	ration of anesthesia and the patient exhibits			
	metabolic acidosis, press [f] [E] to obtain			
	corrected tidal volume.			
	corrected tidal volume.			
	Note:			
	Apply only the corrections which pertain to			
	the patient for whom the program is being run.			
· · · · · ·				

97 Program Listing I

28								
STEP KE	Y ENTRY	KEY CODE	COMMENTS		Y ENTRY	KEY CODE	CON	
001	*LBLA	21 11		0 57	2	0 2		
0 02	X<0?	16-45		0 58	x	-35		
003	GSBØ	23 00		059	÷	-55		
0 04	ST06	35 06	Store wt as Kg	060	ST01	35 01		
005	RTN	24		0 61	PRTX	-14		
	*LBLØ	21 00	Convert LB to Kg	062	RTN	24		
007	2	02		063	*LBL1	21 01	Tidal vol	
0 08	-	-62		0 64	*LULI 2	02		
000 009	2	02		0 65	3	03	females	
		-22				36 8 6	Constant	inputs
010	CHS			0 66	RCL6		conscane	Inpues
011	÷	-24		0 67	X≟Y?	16-35		
012	RTN	24		0 68	GTO2	22 02		
	*LBLB	21 12	Store cor	069	2	0 2		
014	STO3	35 03	Store sex	0 70	7	07		
015	RTN	24		071	- 2	0 2		
016	*LBLC	21 13		072	ENTT	-21		
017	ST08	35 08	Store heart rate	0 73	4	Ø 4		
018	RTN	24	store neure ruce	074	4	04		
	*LBLD	21 14		075		-62		
020	RCL3	36 03		076	2	02	1	
021	X=0?		Male or female?	077	GT04	22 04		
022	GTO1	22 01		078	*LBLE	21 15	Calculate	DC
022 023	*LBL2		Tidal volume for			36 01	carcurace	v
		21 02 08	male	0 79	RCL1			
0 24	8		•	0 80	+	-55		
025	RCL6	36 06	Constant inputs	081	ST01	35 Ø1		
026	X≦Y?	16-35		0 82	PRTX	-14		
0 27	GT03	22 03		0 83	RTN	24	Tomporatu	ro correct
0 28	2	02		0 84	*LBLa	21 16 11		re correct-
029	4	64		085	X>0?	16-44	ion	
0 30	9	09		0 86	GT0 0	22 0 0		
031	ENTT	-21		0 87	GT01	22 01		
032	6	0 6		088	*LBL0	21 00	convert °	C to °F
033	1	Ø 1		0 89	1	01	CONVELC	
034	GTO4	22 04		090	-	-62		
	*L6L3	21 03		0 91	8	02 08		
0 36		01				-35		
	1			0 92	×			
0 37	9	8 9 87		0 93	3	0 3		
0 38	3	0 3		094	2	02		
039	ENTT	-21		0 95	+	-55		
040	1	01		096	CHS	-22		
0 41	2	8 2		097	*LBL1	21 01		
042	4	04		0 98	CHS	-22		
0 43	*LBL4	21 04	Common male/female	099	9	0 9		
044	RCL6	36 06	calc.	100	9	0 9		
045	LOG	16 32		101	-	-45		
04 6	X	-35		102	0	00		
047	+	-55		103	X>Y?	16-34	Is temp	<99°F?
048	EEX	-23		104	GTOØ	22 00	-	correction
049	2	02		105	+	-55	,	
0 50	÷	-24		106		-62	Do tempe	rature
051	10×	16 33		107	Ū	02 00	correc	
052	RĈĽ8	36 08		107	5	05	COLLEC	
053 053	RULO ÷	-24						
	RCL6			109	X	-35 74 01		
054 055		36 06 00		110	RCL1	36 Ø1		
055 057	2	8 2		111	X	-35		
056	•	-62	L	I I I			4	
0	1	2	3 4	5	6	7	8	9
	TV		SEX		WT. (K	a)	RATE	
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
Α	E	3	С	D		E	I	

28

97 Program Listing II

										29
	YENTRY	KEY CO		COMMENTS	STEF		EY ENTRY	KEY CODE	COMM	ENTS
112	RCL1	36 01			1	167		21 16 15	Metabolic	acid
113	+	-55				168	RCL1	36 81		on of +209
114	ST01	35 01				169	•	-62		
115	PRTX	-14				170	2	ŬŹ		
116	RTN	24				171	X DOL:1	-35		
117	*LBLØ	21 88				172 173	RCL1	36 Ø1		
118	RCL1	36 01				173	+ 0070	-55		
119	RTN	24		ude correction		175	PRTX RTN	-14		
120		21 16 12				176	R/N R/S	24		
121	X<0?	16-45		s or feet		110	K/ D	51		
122	GTOZ	22 02			180					
123	3	0 3		rt meters to					4	
124		-62		et if necessar	Х	_			4	
125	2 8	02 08							4	
126		-22				_			4	
127	CHS								4	
128 129	× *LBL2	-35 21 02						+	4	
		-22						+	4	
130 131	CHS 2	-22 02							{	
131 132	EEX	-23			 			+	1	
132	3	-20 03	-	titude correct	190	-			1	
133	÷	-24		n	<u> </u>			1	1	
134	RCL1	36 01							1	
135	X	-35							1	
136		-62						+	4	
137	Ū	02							4	
130	5	05							4	
135	x	-35							1	
140	RCL1	36 01							1	
142	+	-55							1	
143	sto1	35 01			200				1	
144	PRTX	-14							1	
145	RTN	24							1	
146	*LBLc	21 16 13							1	
147	RCL1	36 01						1	1	
148		-62		ity addition of	£	+			1	
149	1	01							1	
150	x	-35							1	
151	RCL1	36 01							1	
152	+	-55				1			1	
153	ST01	35 01			210	1			1	
154	PRTX	-14						1	1	
155	RTN	24						1	1	
156		21 16 14							1	
157	RCL1	36 01		. correction]	
158	RCL6	36 06]	
159	1	Ű]	
160		-62								
161	1	Ū)	1]	
162	Х	-35	5						1	
163	-	-45			220				1	
164	ST01	35 Ø	i		L	_			4	
165	PRTX	-14			 			l	4	
166	RTN	24	4						4	
}		1		BELS	1	<u> </u>	FLAGS	L	SET STATUS	
A	В	С				0	I LAUS			
WT	SEX		RATE	TV _{BAS} DS	v→TV			FLAGS	TRIG	DISP
a TEMP	b ALT	C			T ACI			0 0 0FF	DEG 🏞	FIX 🗗
0	1	2		3 4		2		1 🗆 🛛 🛛	GRAD 🗆	SCI 🗆
USED 5	USE 6		USED	CONST. CA	LC.	3		2 🗆 🔀	RAD 🗆	ENG D
Ĺ	ľ	Ľ		ľ		Ŭ		3 🗆 🙀		n

Program Title ARTERIAL CO NORMALIZATION			
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle Boulevard		
City	Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables The Arterial CO, Normalization Program calculates the additional dead space (DS ADD) needed in a hypocaphic ventilator patient's breathing circuit to raise the arterial CO2 partial pressure (P CO2) to 40 millimeters of mercury (mmHg). Equations Used: $DS_{ADD} = \frac{TV-DS}{40-\Delta P_{CO2}} (40-P_aCO_2)$ $\Delta P_{co2} = P_a CO - P_E CO_2 \text{ or } P_a CO_2 - 5 \text{ if } P_E CO_2 \text{ is not entered}$ TV-DS=TV - $[1.47Wt(kg)+DS_p]$ **Operating Limits and Warnings** The additional dead space required by this program must be inserted into the patient's breathing circuit without changing the ventilator rate or tidal volume. Measure and input the mixed expired CO2 partial pressure if lung function is abnormal.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)					
		n an	а — — — — — — — — — — — — — — — — — — —		
	••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • •	• • • • •	•
		• 00000 mm - 1 1 mm -		•	
	na serie de la composition de		· ···· · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		terreter terreter and the second s			
Sample Problem(s)					
Calculate the additi					
of 25 mmHg with norm	al lung status	having a tid	al volume of	900 ml and a	present
dead space of 25ml.	and an experimental of the second				
anta penyatratika atau bagan na anta dan ana anana baran anta k. Kataka ana atau di 1900 k. Kataka					
Solution(s)					
50 [A] 25[B] 900[D]	25[E]→343.50ml,	additional	dead space		
					· · · · · · · · · · · · · · · · · · ·
and the second difference of the second difference with the second second second second second second second se					
Reference(s) This progr	ram is a transl	ation of the	HP-65 Users'	Library Prog	ram
#00194A, submitted by				u_y 1109	
					~
Suwa, Kunio; Geffin, Dead Space Requirement					
Dead Space Requirement v 29, 1968 Nov-Dec.					

	ARTERIAL CO ₂ NORMALIZATION		2	
	WT P _a CO ₂ P _E CO ₂	TV I	$DS_{p} \rightarrow DS_{add}$	J
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input patient weight	kq or-lb	A	Wt(kg)
3	Input P _a CO ₂	mmHg	в	PaCO2 (mmHg
4				
	Otherwise input P _E CO ₂	mmHg		P _E CO ₂
5	Input present tidal volume	TV(ml)	D	
6	Input present dead space and calculate addit-			
	ional dead space.	DS(ml)	E	DS (ml)
	Detailed User Instructions:			
	To calculate the additional dead space for the			
	hypocapnic patient, first input the patient's			
	weight in kilograms, or in pounds followed by			
	[CHS]. Press [A] to display the patient's			
	weight in kilograms. Next, input the patient's			
	P_aCO_2 in mmHg and press [B]. If the patient's			
	lung status is abnormal, the mixed expired			
	CO_2 partial pressure ($P_{\overline{E}}CO_2$) must be measured			
	and input followed by [C]. If the patient's			
	lung function is normal, this step may be			
	bypassed, and the $P_{\overline{E}}CO_2$ is assumed to be 5			
	millimeters of mercury less than the P_aCO_2 .			
	Next, input the patient's present tidal volume			
	in milliliters, and press [D]. Finally, input			
	the present ventilator dead space in milliliter	5		
	and press [E]. The display now contains the			
	additional rebreathing dead space which must be			
	added to the patient's circuit to achieve			
	P_CO_ normalization.			
				JJ
				1 1

					5 1 a		ung i			33
STEP	KEY EI	NTRY	KEY CODE	COMME	NTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
90	عنيه من	51.6	21 11	Transford					T	
		BLA (0?	21 11 16 -4 5	Input weigh	it				1	
00 00				Lb?					1	
0 0 00		581 197	23 01 75 oc	Yes		060			1	
0 0		106	35 8 6	Sto wt in K	(g				1	
00		RTN	24	Convert 1b.	to Ka				1	
	96 *LE		21 01		CO NG				1	
<u>00</u>		2	0 2						1	
00		•	-62						4	
00		2	0 2						4	
01		CHS	-22						4	
01		÷	-24						4	
01		RTN	24	Input P CO	£				-	
01	13 *LE	BLB	21 12	Input P _a CO ₂ calculate P	CO				1	
01	14 ST	T01	35 01	carcurate r	E ^{CO} 2	070			1	
01	15	5	05							
01		-	-45							
01		T08	35 08						1	
01		CL1	36 01						1	
01		RTN	24						Ĭ	
		BLC	21 13	Store P_E^{CO} 2]	
02		T08	35 08	E ^{CO} 2						
02		RTN	24]	
		BLD	21 14	Store TV					1	
02		T07	35 07			080			1	
									1	
02 02		RTN	24	Calculate a	dditional				1	
	26 *L U		21 15	dead space.	uur er onur				1	
02		CL6	36 06	acaa space.					1	
02		1	01						1	
	29	•	-62						4	
	30	4	64						4	
03		7	07						ł	
	32	х	-35						4	
	33	+	-55			000			4	
03	34 R(CL7	36 07			090			ł	
03	35 🛛 🕹	X≠Y	-41						ł	
03		-	-45							
03		4	Ũ4						ļ	
03		0	66							
03		CLI	36 01							
04		CL8	36 08							
84		-	-45							
04		-	-45]	
84	47	÷	-24]	
04	10 14	4	-24 04			100				
04	45	4 Ø	04 00							
									1	
84		CL1	36 Ø1						1	
04		-	-45						1	
04		X	-35						1	
04		RTX	-14						1	
05		RTN	24						SET STATUS	
05	51	R∕S	51					FLAGS	TRIG	DISP
Т		†		1				ON OFF		
				1		110			DEG 🐮	FIX 🛛 🕉
				1				1 🗆 🖌	GRAD 🗆	SCI 🗆
├ ─── ↑				1				2 .	RAD 🗆	ENG D
<u>├</u> [⊥]				1	BEGIS	STERS		3 🗆 🛣	L	n
0	1		2	3		5	6	7	8	9
ľ	P	a ^{CO} 2	-	-			Wt.	TV	P_CO S8 ^E 2	USED
S0	S1	-	S2	S3 5	S4	S5	S6	S7	S8 ^D Z	S9
1										
A		В	-	l c		D	T	E	I	

Program	Title BLOOD A	CID-BASE STATUS				
Contribut Address	or's Name 1000 N.E. C	Users' Library, Circle Boulevard	Hewlett-Pack	ard Company		
City	Corvallis		State	Oregon	Zip Code	97330

Program Description, Equations, Variables This program computes total plasma CO₂ and base excess from PCO₂, pH and hemoglobin concentration.

Equations:

Total plasma CO2 is calculated from the Henderson-Hasselbalch equation:

 $TCO_2 = s \cdot PCO_2 [1+10 ^{pH-pK}]$

where

 TCO_2 = total CO_2 in plasma, mmol/ ℓ s = solubility of CO_2 in plasma, mmol/ ℓ (taken to be 0.0307) PCO_2 = partial pressure of CO_2 in the blood, mmHg pK = 6.11

This does not take into account the small temperature dependence of both s and pK, nor the pH dependence of pK. For this reason the formula for TCO_2 will be most accurate if 37° C values for PCO_2 and pH are used.

Operating Limits and Warnings

While Thomas has shown that this equation may produce large errors for very abnormal conditions, it matches the Siggaard-Andersen nomogram for $[BE]_{b}$, to within + 1 mEq/ ℓ in most cases.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Title BLOOD ACID - BASE STAT	າບຣ	
-		
Contributor's Name		
Address		
City	State	Zip Code
Program Description, Equations, Variables The base excess is calculated f	rom an equation sugges	sted by Siggaard-Andersen:
[BE] _b = (1-0.0143 Hgb)	• ([HCO ₃] - (9.5 + 1.	.63 Ндb) (7.4-рН) -24)
where		
[BE] _b = Base Excess in	n m Eq/l of blood	
Hbg = Hemoglobin con	ncentration in g/100 ml	L
and plasma [HCO3] is calculated	from the Hendersen-Ha	asselbalch equation in the
form $[HCO_3] = s \cdot PCO_2 \cdot 10$	рн – рк	
$[HCO_3] = S \cdot PCO_2 + 10$		
Siggaard-Andersen used 38°C val	ues for PCO_2 and pH.	Only small errors will result
from using 37°C values, but bod	y temperature correcte	ed values should not be used
if the patient has any signific		
values are known, the "Anaerobi	2	
correct them back to 37°C. (Se	e special instructions	s for that program).
Operating Limits and Warnings		
This program has been verified only with respect to t this program material AT HIS OWN RISK, in reliance upon any representation or description concerning t	e solely upon his own inspection o	ogram Description II. User accepts and uses of the program material and without reliance
NEITHER HP NOR THE CONTRIBUTOR MAKES AN PROGRAM MATERIAL, INCLUDING, BUT NOT LIMI FOR A PARTICULAR PURPOSE, NEITHER HP NOR	Y EXPRESS OR IMPLIED WARRAN TED TO, THE IMPLIED WARRANT	IES OF MERCHANTABILITY AND FITNESS

TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM

MATERIAL.

Sketch(es)
Sample Problem(s) PCO ₂ = 45 mmHg pH = 7.35 Hgb = 16 g/100 m1
Solution(s) 45 [A] 7.35 [B] 16 [C] [D] $\rightarrow 25.39 \text{ mmol/l TCO}_2$
$[E] \rightarrow -1.36 \text{ mEq/l}, [BE]_{b}$ $[f] [B] \rightarrow 24.01 \text{ mmol/l}, \text{ HCO}_3^-]$
Reference(s) This program is a translation of the HP-65 Users' Library Program
00195A submitted by Hewlett-Packard Company. Siggaard-Andersen, "Titratable Acid or Base of Body Fluids." Annals New York Academy of Sciences 133: 41-48, 1966. Thomas, L.J. Jr., "Algorithms for Selected
Blood Acid-Base and Blood Gas Calculations, "J.Appl.Physiol. 33: 154-158, 1972.

	BLOOD ACID-BASE STATUS					\mathbf{J}
	\mathbb{A}^1 RCL PCO ₂ [HCO $\overline{3}$]				5	
	PCO ₂ pH Hgb →	- TCO ₂ -	+ B	E	. /	
STEP	INSTRUCTIONS	INPUT DATA/UNITS		ĸ	EYS	OUTPUT DATA/UNITS
1	Load side 1 of card	DATA/UNITS	Γ			DATA/ONITS
2	Recall PCO2 if previously stored		[f	A	PCO ₂ , mmHg
3	Input PCO ₂	PCO2, mmHg	Ē	A		pH(if stored)
4	Input pH	рН		в		Hgb(if stored
5	Input Hgb	Hgb(gm/100m]	ı)[с		Hgb(gm/100m1)
6	Calculate TCO2			D		TCO2 (mmol/l)
7	Calculate BE			E		[BE] (mEq/l)
8	Recall[HCO3 ⁻]			f	в	HCO3 (mmo1/l)
	Detailed User Instructions					
	If PCO ₂ has been previously stored, it may be					
	recalled after entering the program card by					
	pressing [f] [A]. If not, input PCO and					
	press [A]. The pH will be recalled if					
	previously stored. If not, input pH and					
	press [B]. The Hgb will be recalled if					
	previously input. If not, input Hgb and					
	press [C].					
	Drogg [D] to obtain mgo in mal/() Drogg					
	Press [D] to obtain TCO ₂ in mmol/L. Press					
	[E] to obtain [BE] in mEq/l. [D] must be					
	pressed before [E]. The plasma [HCO3-] may be obtained by pressing [f] [B].]		
	obtained by pressing [1] [B].					
			Γ			
			Ē			
			[]			

20			97 Prog i	'am			ng I			
		KEY CODE	COMMENTS		STEP		YENTRY	KEY CODE	COM	MENTS
001 002	*LBLa 2 RCL5	1 16 11 36 05	Decall DCO			57	PRTX	-14		
002 003	EEX	-23	Recall PCO2			58	RTN	24		
004	2	02				59	*LBLE	21 15	Calculate	base exces
005	÷	-24				60 61	RCL9	36 09 01		
006	RTN	24	Tabut DCO			62	1	-62		
007	*LBLA	21 11	Input PCO2			63	6	06		
00 8	EEX	-23				64	3	0 3		
00 9 010	2 x	02 -35				65	Х	-35		
011	INT	16 34				66	9	0 9		
012	RCL5	36 05				67 20		-62 05		
01 3	FRC	16 44				68 69	5 +	-55		
014	+	-55	Ghama DGO			70 70	RCL1	36 01		
015	ST05	35 0 5 36 06	Store PCO2			71	7	07		
016 017	RCL6 EEX	36 06 -23	Recall pH			72		-62		
018	3	03				73	4	04		
019	÷	-24				74	-	-45		
020	RTN	24				75 76	x RCL8	-35 36 08		
021	*LBLB	21 12				76 77	KULO +	-55		
022	EEX	-23				78	2	02		
0 23	3	0 3 75				79	4	Ø 4		
024 025	× INT	-35 16 34				80	-	-45		
025 026	RCL6	36 06	Input pH			81	1	Ŭ1		
0 27	FRC	16 44				82	RCL9	36 Ø9		
028	+	-55				83 84	7 0	07 00		
029	ST06	35 06				85	÷	-24		
030	RCL9	36 09	Recall Hgb			86	_	-45		
0 31 030	RTN	24				87	х	-35		
032 033	*LBLC STO9	21 13 35 09	Input Hgb			88	PRTX	-14		
0 34	RTN	24				89	RTN	24		
035	*LBLD	21 14	Calculate TCO ₂			90 91	*LBLb RCL8	21 16 12 36 08	Recall [HO	:0 ₃ -]
0 36	RCL6	36 06	2			92 -	PRTX	-14		
037	EEX	-23				93	RTN	24		
0 38 070	3	03 -24				94	R∕S	51		
039 040	÷ STO1	35 01				I			4	
041	6	06						+	-	
042		-62							-	
043	1	01]	
044	1	01			100]	
045 046	- 10×	-45 16 33							4	
84 0 847	RCL5	16 33 36 05							-	
048	3	60 60							-	
049	2	02							1	
0 50	5	0 5							SET STATUS	
051 050	.7	8 7						FLAGS	TRIG	DISP
052 053	÷ x	-24 -35						ON OFF	T	
003 054	st08	-35 35 08			110				DEG I ^X GRAD □	FIX 🖄 SCI □
0 55	LSTX	16-63								ENG 🗆
0 56	+	-55						3 0 1		n_2
	1.			REGI	STERS			7	0	
0	1 USED	2	3 4		5 PCO 2. P	0_	6 pH.BT	7	8 НСОЗ	9 Hgb
S0	S1	S2	S3 S4		S5	-2	S6	S7	S8	S9
А	В		С		D			E	I	
L								l		

Program Title VIRTUAL PO2 AND 02 SATURATION	AND CONTENT		
Contributor's Name Hewlett-Packard Company Address 1000 N.E. Circle Boulevard			
City Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables The first part of this program computes virtual PO_2 for use in estimating O_2 saturation. Generally, it will be more convenient to calculate venous values first, as arterial values are frequently needed in other programs and, thus, will be left in the storage registers after both calculations. The equation solved is $VPO_2 = PO_2 \cdot 10^{[0.024(37-BT) + 0.48(pH-7.4) + 0.06(10gPCO_2)]}$ which is a hybrid of the equation used by Thomas and that used by Kelman. There is some disagreement regarding the best value of the pH multiplier, 0.48 being used by most workers, but see, for example, Kelman. The second part of the program estimates 0_2 saturation of blood from virtual $P0_2$ and computes 0_2 content. If the actual 0_2 saturation is known, 0_2 content may be computed difectly. Equations: The part of the program for estimating 0_2 saturation is based on the polynomial curve fit of Thomas, where VPO2 is in mmHg. $O_2 \text{ Sat} = \frac{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2045(\text{VPO}_2)^2 + 2000(\text{VPO}_2)}{(\text{VPO}_2)^4 - 15(\text{VPO}_2)^3 + 2400(\text{VPO}_2)^2 - 31,100(\text{VPO}_2) + 2,400,000}$ This calculation assumes that the oxygen dissociation curve for the hemoglobin is normal. The O_2 content is computed from C_xO_2 (Vol.%)= 1.34 $\cdot \frac{SAT(\%)}{100}$ · Hgb(g/100ml) + 0.0031 PO₂ (mmHg) Operating Limits and Warnings Virtual PO_2 is not in any way a real physiologic PO_2 . Its only function is for use in estimating O_2 saturation, and it should never be confused with PO2 corrected to body temperature. Furthermore, it must always be calculated from blood parameters measured at or corrected to 37°C. The calculation will give inaccurate results for fetal hemoglobin, present in babies less than six months old, and for some abnormal adult hemoglobins and certain other blood conditions. The results of the estimation and any subsequent calculations based on it, should be viewed with caution unless the dissociation curve has been previously established to be normal. If both PO_2 and O_2 saturation are measured, the program may be used as a convenient mean to check for the normality of the dissociation curve.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

DETAILED USER INSTRUCTIONS:

Input PO₂, PCO₂, and pH measured at 37°C. Input body temperature in degrees C. If PO₂ has been previously input, recall it by pressing [f] [A] then press [f] [B]. Otherwise, input PO₂ and press [f] [B]. For each variable after PO₂, stored values will be recalled. If none have been input, recalled values will generally be zero. It is important to input pH and body temperature exactly, as these have a great influence on the calculation of virtual PO₂. Errors, especially in body temperature, can result in large errors in VPO₂ and, hence, estimated saturation. PCO₂ has relatively little influence. Press the buttons from left to right and do not skip any. The virtual PO₂ remains in the display for immediate entry in calculation of O₂ saturation and content. It is not stored in place of the measured PO₂. The PO₂, PCO₂, and pH remain in memory. Note that separate storage registers are not maintained for arterial and venous values, only the most recent ones will be stored.

To compute O_2 content, input the PO_2 , O_2 saturation, and hemoglobin concentration. After PO_2 is input, an estimated O_2 saturation is calculated, based on a standard dissociation curve. This will only be meaningful if a virtual PO_2 (VPO₂) from the first part of the program is input. The estimated O_2 saturation may be accepted simply by pressing [B], or a measured value can be input. If Hgb was previously input, it will be recalled. If the calculated O_2 content is to be stored as arterial or venous for later use in Fick cardiac output or physiologic shunt calculations, press the appropriate button. Regardless of which content is computed first, CaO₂ is left in the display for convenience in case the ANATOMIC SHUNTS program is to be run next.

If 0_2 saturation of blood is to be estimated from $P0_2$, it is important to input the virtual P02 calculated in the first part of the program. A large error can result from inputting measured $P0_2$ without the corrections. The program may be used to compare estimated 0_2 saturation with measured 0_2 saturation, to obtain a rough idea of the variation of the dissociation curve from normal. This will be especially sensitive with partly unsaturated venous blood where the slope of the curve is fairly steep. When computing content for purposes of estimating physiologic shunt and Fick cardiac output, it is always best to measure the saturation. Small variations in the dissociation curve can cause considerable error in the shunt and cardiac output calculations and because the effect is not the same on venous blood as on the higher saturation arterial blood.

The calculated O_2 content includes both the dissolved oxygen and the hemoglobin bound oxygen. If only O_2 saturation was measured, and not PO_2 , an estimated PO_2 should be input to obtain the maximum accuracy in the content calculation. The estimate for PO_2 need only be rough as the effect is very small, unless the patient is breathing an oxygen-enriched atmosphere and PO_2 is well above 100 mmHg.

To compute equivalent alveolar blood 0_2 content, enter the equivalent $P_A 0_2$, rather than the virtual $P 0_2$. The $P_A 0_2$ can be calculated by the A-a 0_2 DIFFERENCE program. In this case, the resulting 0_2 content should not be stored as either arterial or venous, but simply left in the display register

for use at the beginning of the PHYSIOLOGIC SHUNT AND FICK programs which should be executed next. Thus, the over-all sequence should be to compute venous content first, arterial content second, and alveolar content last. The PHYSIOLOGIC SHUNT AND FICK program may then be run without having to enter any new O_2 content data.

Sketch(es) Sample Problem(s) 1) For the following patient data calculate virtual PO₂ and from it estimated 0_2 saturation and 0_2 content. Store the value as venous 0_2 content. $PO_2 = 75 \text{ mmHg}$ $PCO_2 = 45 \text{ mmHg}$ pH = 7.35 $BT = 40^{\circ}C$ Hgb = 16 gm/100 m12) Calculate est. 0_2 saturation and 0_2 content assuming the PO₂ was actually 75 mmHg. **Solution(s)** 1) 75 [f] [B] 45 [f] [C] 7.35 [f] [D] 40 [f] [E] \rightarrow 59.71 mmHg VPO₂ $[A] \rightarrow 90.92 \text{ est. SAT\%}$ [B] 16 [C] → 19.68 0₂ Content % [E] → 0.00 (19.68% stored as venous 0, content. No previously stored arterial 02 content is present.) 2) [f] [A] [A] → 95.08 est SAT% [B] [C] \rightarrow 20.62 0, Content Reference(s) Thomas, L.J. Jr., "Algorithms for Selected Blood Acid-Base and Blood Gas Calculations," J. Appl. Physiol. 33: 154-158, 1972

Kelman, G. Richard, "Digital Computer Subroutine for the Conversion of Oxygen Tension into Saturation," J. Appl. Physiol. 21: 1375-1376, 1966. This program is a modification of the Users' Library Programs # 00196A and # 00197A submitted by Hewlett-Packard.

	1 VIRTUAL PO_2 AND O_2 SATURATION AND $RCL PO_2 PO_2 PCO_2$		ית-א'	VDO -	5	
	RCL PO ₂ PO ₂ PCO ₂ VPO ₂ , PAO ₂ SAT Hgb+Cont	pH E CaO ₂ C	v0	VP02 2	┛╱	
STEP	INSTRUCTIONS	INPUT DATA/UNITS		к	EYS	OUTPUT DATA/UNITS
1	Load side 1 and side 2	PO	[
2	If PO ₂ was previously input, recall it		[f	Α	PO ₂ (mmHg)
3	INPUT PO2 if not recalled in step 2	PO2(mmHg)	ſ	f	В	PCO ₂ (if store
4	INPUT PCO ₂ if not recalled in step 3	PCO ₂ (mmHg)	[f	C	
5	INPUT pH if not recalled in step 4	pH	ſ	f	D	pH(if stored)
6	INPUT BT if not recalled in step 5		[BT(if stored)
Ĵ	and calculate virtual PO ₂	BT (°C)	ſ	f	Е	bi(ii stoled)
7	INPUT virtual PO ₂ from previous step or		ſ			
	alveolar P_AO_2	VP020rPA02	ſ	A		oot SAT (9)
8	INPUT est. SAT% from step 2 and recall Hgb	VIO 2011 AO 2	L [A		est,SAT(%)
	if previously stored (use actual SAT		L F			
			L			
9	if known) INPUT Hgb	est, SAT%	L ر	B C		<u>Hgb(if sto</u> red
		Hgb(g/100ml	ן ו . ו	<u> </u>		Cx02 (Vo1%)
10	If calculated O ₂ content is to be stored		l ſ			
	as arterial	CaO ₂ (Vo1%)	L	D		CaO ₂ (Vo1%)
	or as venous	Cv0 ₂ (Vo1%)		Е		CaO ₂ (Vo1%)
			[
			[
			ſ			
			1			
			[
			ſ			
			ſ			
			l í			
			L			
			L	J		
			l			
			l			
			l			
			[
			[
			l			
]		
			1			

44										
STEP K	EY ENTRY	KEY CODE	COMM	ENTS	STEP KE	EY ENTRY	KEY CODE		COMN	MENTS
001	*LELa	21 16 11			8 57	Х	-35			
			Decell DO		05 8	X≠Y	-41			
0 02	RCL5	36 05	Recall PO ₂	2			03			
0 03	FRC	16 44			0 59	3				
004	EEX	-23			0 60	7	07			
005	3	03			061	-	-45			
006	x	-35			0 62	2	0 2			
					063	-	-62			
0 07	RTN	24				•				
00 8	*LBLb	21 16 12			064	. 4	04			
009	EEX	-23			065	Х	-35			
010	3	03	Turnut DO		066	-	-45			
011	ST08	35 08	Input PO ₂		067	4	0 4			
			and recal	LI PCO ₂	068	EEX	-23			
012	÷	-24								
013	ST01	35 01			0 69	3	03			
0 14	RCL5	36 05			0 70	RCL5	36 05			
015	EEX	-23			071	÷	-24			
					072	LOG	16 32			
016	2	<i>02</i>					06			
017	÷	-24			073	6				
018	RTN	24			074	Х	-35			
019	*LBLc	21 16 13			075	÷	-55	1		
020	EEX	-23	Tarat Das		076	EEX	-23			
			Input PCO		077	2	02			
021	2	0 2	and recal	Ll pH						
022	X	-35			0 78	÷	-24	1		
023	INT	16 34			079	10×	16 33			
024	RCL1	36 01			080	GSBa	23 16 11			
		-55			081	х	-35			
025	+				082	PRTX	-14			
026	ST05	35 05							02	
027	RCL6	36 06			0 83	RTN	24			
0 28	RCL8	36 08			084	*LBLA	21 11			
029	÷	-24			0 85	ST01	35 01	Tn	Dut VD	
					0 86	ENTT	-21		put VP	-
030	RTN	24						a	nd cal	.culate
031	*LBLd	21 16 14			0 87	X	-35	e e	stimat	ed SAT
032	RCL8	36 08			0 88	ST08	35 0 8			
033	х	-35	Tranut all		0 89	ENTT	-21			
034	INT	16 34	Input pH		090	Х	-35			
						RCL8	36 08			
0 35	ST01	35 01			091					
036	RCL6	36 06			0 92	RCL1	36 01			
0 37	FRC	16 44			093	Х	-35			
038	RCL8	36 08			094	1	0 1			
					095	5	05			
039	X	-35								
84 0	RTN	24			0 96	Х	-35			
Ū41	*LBLe	21 16 15			097	-	-45			
042	ENTŤ	-21			0 98	ENTT	-21			
04 3	ENTT	-21			099	ENTT	-21			
					100	RCLS	36 08			
844	RCL8	36 08								
6 45	÷	-24			101	2	0 2			
0 46	RCL1	36 01			102	4	0 4			
047	+	-55			103	0	00			
048	ST06	35 06		UDO	104	Ø	0 0			
			Calculate	^{VP0} 2	105	x	-35			
04 9	RCL8	36 08		-						
0 50	÷	-24			106	+	-55			
051	7	87			107	X≠Y	-41			
0 52	-	-62			108	RCL8	36 08			
0 53		04			109	2	02			
	7				110	Ū	00			
054	-	-45								
055	4	64			111	4	04			
0 56	8	08			112	5	05			
	-			REGIS	STERS					
0	1'Used	2	3	4	5	6	7	8 U	sed	9 Jah
ľ	used	PO2	Cv02	Ca0 ₂	Used	Used			SAT	й НдЪ
S0	S1	S2	2 	6	S5	S6	S7	S8		S9
00	[]		1-5		-					
		<u> </u>		I	D	1	E	I	I	·
А		В	С		U				1.	
		1	1				1		1	

44

		ç)7 P	rograi	n I	list	ing H			45
STEP KEY	' ENTRY	KEY CODE	-	COMMENTS		STEP	KEY ENTRY	KEY CODE	СОММ	
113	X	-35				1	69 ST03	35 03	Store CvO	
114	+	-55					70 RCL4	36 04	Recall Ca	
115	RCL1	36 01					71 RTN	24		- 2
116	2	02				1	72 R/S	51		
117	EEX	-23								
118	3	03								
119	х	-35								
120	+	-55								
121	X≠Y	-41			Ļ					
122	RCL1	36 01			- F					
123	3	03			-	180				
124	1	01			F	180			{	
125	1	01 00			F				-	
126	0	00 00			⊢				4	
127	0	00 -35			- F				•	
128	X _	-35 -45			⊢				1	
129 130	- 2	-4J 02			ŀ		<u> </u>		1	
130 131	ے 4	02 04			┣				1	
132	EEX	-23			ŀ				1	
133	5	05			F		<u> </u>		1	
134	+	-55			-	190			1	
135	÷	-24			F				1	
136	EEX	-23							1	
137	2	02							1	
138	Х	-35]	
139	ST08	35 08	Est.	SAT						
140	PRTX	-14]	
141	RTN	24								
	*LBLB	21 12	Inpu	ıt SAT						
143	ST08	35 0 8	-		Ļ				1	
144	RCL9	36 09				200			1	
145	RTN	24			L L				4	
	*LBLC	21 13			- F				-	
147	STO9	35 09 36 00	Calc	ulate Conte	ent				4	
148	RCL8	36 08			⊢				4	
149	1	01 07			ŀ				4	
150	3 4	03 04			⊦				4	
151 152	4 X	-35			ŀ				4	
152	X	-35			ŀ				1	
153	RCL1	36 01			l t	210			1	
154		00 01 03			ŀ		1		1	
155	3 1	01			ŀ				1	
157	×	-35			F				1	
158	+	-55			F				1	
159	EEX	-23			F]	
160	4	Ø4			ľ]	
161	CHS	-22							1	
162	х	-35							1	
163	PRIX	-14			ļ				4	
164	RTN	24				220			4	
	*LBLD	21 14	Stor	e CaO ₂	┝		+		4	
166	ST04	35 04			⊦		+		1	
167	RTN	24			⊦	an a			1	
168	*LBLE	21 15	LA	BELS			FLAGS		SET STATUS	
A PO ₂	B SAT	С		D	EC	v0 ₂	0	FLAGS	TRIG	DISP
102	1.		υ 	Ca0 ₂		and the second	1	ON OFF		
^a PO _a	F02	10	02	d pH	V	2 ^{PO} 2		ON OFF	DEG 🛛	FIX 🕅 SCI □
0	1	2		3	4		2			
5	6	7		8	9		3	2 🗆 🖄 3 🗆 🕅	RAD 🗆	ENG 🗆 n_2
	1				1					

Contributor's Name Hewlett-Packard Address 1000 N.E. Circle Boulevard City Corvallis State Oregon Zip Code 97330 Program Description, Equations, Variables Corrections of PCO2 and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: PCO2 (BT) = PCO2 (37) · 10 ^{0.019(T-37)} pH(BT) = pH(37) - 0.0146 (T-37) pH(BT) = pH(37) - 0.0146 (T-37)	Program Title ANAEROBIC PCO ₂ and p ^H CHANGE
CityCorvallisStateOregonZip Code97330Program Description, Equations, VariablesCorrections of PCO_2 and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	Contributor's Name Hewlett-Packard
Program Description, Equations, Variables Corrections of PCO_2 and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$ pH(BT) = pH(37) - 0.0146 (T-37)	Address 1000 N.E. Circle Boulevard
Corrections of PCO ₂ and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	City Corvallis State Oregon Zip Code 97330
Corrections of PCO ₂ and pH for anaerobic temperature change are calculated. The equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extreme conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	
<pre>equation for pH is a simplification of a formula from Severinghaus. It ignores the pH and BE dependent terms. This introduces a very small error except at extrem conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: PCO₂(BT) = PCO₂(37) · 10^{0.019(T-37)} pH(BT) = pH(37) - 0.0146 (T-37) </pre>	
<pre>the pH and BE dependent terms. This introduces a very small error except at extrem conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: PCO₂(BT) = PCO₂(37) · 10^{0.019(T-37)} pH(BT) = pH(37) - 0.0146 (T-37) </pre>	-
conditions of acid-base status and large temperature shifts. For example, at a pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	
pH of 7.2 or 7.6, the error is 0.0013 pH units per °C. Equations Used: $PCO_{2}(BT) = PCO_{2}(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	
Equations Used: $PCO_{2}(BT) = PCO_{2}(37) \cdot 10^{0.019(T-37)}$ $pH(BT) = pH(37) - 0.0146 (T-37)$	
$PCO_{2}(BT) = PCO_{2}(37) \cdot 10^{0.019(T-37)}$ pH(BT) = pH(37) - 0.0146 (T-37)	
pH(BT) = pH(37) - 0.0146 (T-37)	Equations Used:
	$PCO_2(BT) = PCO_2(37) \cdot 10^{0.019(T-37)}$

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)								
Skeichles		encong a super contra						
							• • •	
n an		n na se						
			n ganne a a g an chad ar	Maria		1999		
	and the second sec	n an	n na ser an		e na mara agas da da cara ana ana			
				с. с. х.	* · · · ·			
	·	n af ann an star an star	1				la na An 1970 - Charles Commendation and	
Sample Problem(s)								
$PCO_2 =$	45 mmHg							
	7.35							
BT =	40°C							
Solution(s)								
45[B]	7.35 [C] 40	1 → 51	31 mmHcr.	DOO				
	1.00 [0] -0							
		$[E] \rightarrow 7.3$	31 pH (BT)					
							(c) I F F C REAL CONTRACTOR STRUCTURE	
····	· · · · · · · · · · · · · · · · · · ·							
Reference(s) Thi	s program is	- tranel		LLA UD-6		T - L han any		

Severinghaus, John W., "Blood Gas Calculator," Journal of Applied Physiology, May 1966.

ANAEROBI	C PCO2 AND P	H CHANGE			7
→RCL	PCO ₂	рН	BT→PCO2	→pH	
PCO ₂	(37°)	(37°)	(BT)	(BT)	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If PCO ₂ was previously stored recall it		A	PCO2
	Input PCO ₂ (37°)	PCO ₂ (mmHg)	B	pH(if stored)
4	Input pH (37°)	pH(37°)	C	BT(if stored)
5	Input BT and calculate PCO ₂			
	(BT)	BT(°C)	D	PCO ₂ (mmHg)
6	Compute pH(BT)		E	рН (ВТ)
	Detailed User Instructions:			
	If Sat. was previously stored in memory, it can			
	be recalled by pressing [A]. If not, skip [A]			
	and input Sat. press [B]. If PO (37°) was			
	previously stored, it will appear. If not,			
	input it. Press [C]. If body temperature			
	was previously stored, it will appear. If not,			
	input it in °C. Press [D]. PO2(BT) will			
	appear and be stored in memory.			
	PO ₂ (BT) replaces the 37°C value in memory with			
	the body temperature value. Therefore,			
	calculation based on the 37°C values in			
	programs for virtual PO ₂ and O ₂ saturation &			
	content should be accomplished before this			
	program is run. If O ₂ saturation has not been measured, it should be estimated by using			
	program for "Virtual PO2 and O2 Saturation &			
	Content."			
	This program may also be used to convert PO_2			
	between any two temperatures, for example, from			
	body temperature to 37°C. To do this, first			
	determine what the desired temperature change i	5		
	in °C. Add this to 37°C algebraically, and			
	enter the result as BT. For example, suppose			
	values known at 41°C are to be converted to			
	37°C. The temperature change is -4°C. Add thi	5		
	to 37°C, resulting in 33°C. Executing the			
	program with BT=33°C will then result in the			
	37°C value for PO ₂ .			

			// i logian			49
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTRY		COMMENTS
001	*LBLA	21 11	Recall PCO2	057 RTN	24	
0 02	RCL5	36 05		0 58 *LBLE	21 15	
003	B EEX	-23		0 59 RCL1	36 01	
004		02		060 3	0 3	Calculate pH
005		-24		0 61 7	0 7	calculate ph
006		24	Display PCO ₂	0 62 +	-55	
007		21 12	Enter PCO ₂	063 EEX	-23	
008		-23		86 4 3	0 3	
009		02		065 ÷	-24	
010		-35		8 66 RCL6	36 0 6	
011		16 34		067 RCL1	36 01	
012		36 05		0 68 1	01	
012		16 44		0 69 4	84	
013 014		-55		070 .	-62	
014 015		35 05		0 71 6	06	
				072 ×	-35	
016		36 06		0 73 -	-45	
017		-23				
018		0 3			16 34 -55	
019		-24			-55	
0 20		24	Display pH	076 STO6	35 06	
021		21 13	Enter pH	077 EEX	-23	
0 22		-23	-	0 78 3	0 3	
023		0 3		079 ÷	-24	
024		-35		080 PRTX	-14	
025	INT	16 34		081 RTN	24	
0 26		36 06		0 82 R/S	51	
027		16 44				
028		-55				
029		35 06				
030		16-63				
031		-23				1
0 32		03			1	1 1
032 033		-35				1 1
033 034		-33		090		1 1
			Display BT			1
0 35		21 14	Enter BT			4
036		<i>03</i>		}	+	-
037		07	Calculate PCO		+	4
0 38		-45	calculate reo ₂			4
039		35 01				4
040		-62			+	4
041		00				4
042		01				4
043	9	0 9				4
644	i x	-35		100		4 1
045		16 33				1
846		36 05				
047		-35				1
0 48		16 34				1
049		36 05				
050		16 44				SET STATUS
051		-55			- FLAGS	TRIG DISP
0 52		35 Ø5			ON OFF	
052 053		-23				DEG 🔊 FIX 🍱
054 054		-23		110		GRAD 🗆 🛛 SCI 🗆
054 055		-24			2 🗆 🗴	BAD D ENG D
					3 🗆 🖾	$n \underline{2}$
056	PRTX	-14	REGI	STERS		_
0	1	2	3 4	5 6	7	8 9
	Δт			PCO2.PO2 pH.BT		
S0	S1	S2	S3 S4	S5 56	S7	S8 S9
А	E	3	С	D	E	I

Program Title A	NAEROBIC PO CHANC	GE	
Contributor's Name	Hewlett-Packard		
Address	1000 N.E. Circle	Boulevard	
City	Corvallis	State Oregon	Zip Code 97330

This program corrects PO2, measured at 37°C, to Body Temperature.
Equation Used:
Correction of PO ₂ for anaerobic temperature change is calculated taking into
account the exchange of oxygen between HgbO2 and the dissolved state at high
saturation. Below 80% Sat., the relation is approximately
$\frac{\Delta \log PO}{\Delta T} 2 = 0.031$
This factor falls at higher saturations, approaching 0.006 at 100% Sat. The
curve given by Severinghaus has been approximated by the following equation in
this program.
$\frac{\Delta \log PO}{\Delta T} = \frac{3130-62.5 \text{ sat } + 0.312008 \text{ sat}^2}{100,000-1993\text{ sat}+9.9313\text{ sat}^2}$ Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	and and a second property of the second s			
	nanata sa kanata mana sa na sa sa sa ka sa	• • · · • • · · · ·		
	· · · · · · · · · · · · · · · · · · ·			
	1			
		na in the state		· · · · · · · · · · · · · · · · · · ·

	Sat.	=90%	
	Р0 ₂	=75 mmHg	
	BT	=40°C	
ution(s)			
9	0 [В]	75[C] 40[D]→92.31mmHg, PO ₂ (BT)	

21 (3): 1108-1116,1966. This program is a translation of the HP-65 Users' Library Program #00199A submitted by Hewlett-Packard.

	ANAEROBIC	PO2 CHANGE				7
[dy]	→RCL SAT	SAT	^{PO} 2 ■ (37°)	BT→PO ₂ ■ (BT)	_	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	If it was previously stored recall SAT		Α	SAT (%)
3	Input SAT%	SAT%	В	PO, (if stored)
4	Input PO ₂ (37°)	PO2(mmHg)		BT(if stored)
5	Input BT and compute PO ₂ (BT)	вт (°С)	D	PO2(mmHg)
	Detailed User Instructions:			
	This program corrects PCO_2 and pH, measured at			
	37°C, to body temperature. It replaces 37°C			
	values in memory with the body temperature			
	values. Therefore, calculation based on the 37	°C		
	values in programs for "Blood Acid-Base Status"			
	and "Virtual PO2" should be accomplished before			
	this program of "Anaerobic PO ₂ Change" is run.			
	If PCO ₂ (37°) was previously stored in memory, i	t		
	can be recalled by pressing [A]. If not, skip			
	[A] and input PCO ₂ (37°). Press [B]; if pH			
	(37°) was previously stored, it will appear.			
	If not, input it. Press [C], if body			
	temperature was previously stored, it will appear. If not, input it in °C. Press [D];			
	PCO, (BT) will appear and be stored in memory.			
	Press [E]; pH(BT) will appear and be stored in			
	memory.			
	This program may also be used to convert PCO ₂			
	and pH between any two temperatures, for exampl	е,		
	from body temperature to 37°C. To do this,			
	first determine what the desired temperature			
	change is in °C. Add this to 37°C algebraicall	γ,		
	and input the result as BT. For example, suppo	se		
	values known as 41°C are to be converted to			
	37°C. The temperature change is -4°C; this,			
	when added to 37°C, results in 33°C. Executing			
	the program with BT=33° will then result in 37°	С		
	values for PCO2 and pH.			
				I

			//			53
STEP K	EY ENTRY	KEY CODE	COMMENTS	STEP KEY ENTRY	KEY CODE	COMMENTS
001	*LBLA	21 11	Recall Sat if store	057 1	01	
002	RCL8	36 08		8 58 3	03	
		24				
003	RTN		Enter Sat.	059 ×	-35	
004	*LELB	21 12	Encer Sac.	060 RCL8	36 08	
005	ST08	35 0 8		061 1	0 1	
00 6	RCL5	36 0 5	Display PO ₂	062 9	0 9	
80 7	GSBE	23 15		063 9 064 3	0 9	
00 8	RTN	24	Patan DO	064 3	03	
009	*LBLC	21 13	Enter PO ₂	065 X	-35	
010	EEX	-23		0 66 -	-45	
011	3	03	Entangle with PCO ₂		-23	
	÷	-24				
012			in R ₅	068 5	05	
013	RCL5	36 05		069 +	-55	
014	INT	16 34		0 70 ÷	-24	
015	+	-55		071 RCL1	36 01	
016	ST05	35 0 5		072 3	83	
017	RCL6	36 06	Display BT	073 7	87	
018	GSBE	23 15		074 -	-45	
0 19	RTN	24		075 ×	-35	
0 20	*LBLD	21 14	Enter BT	076 10×	16 33	
021	ST01	35 01		077 RCL5	36 0 5	
0 22	EEX	-23		078 GSBE	23 15	
023	3	0 3		079 ×	-35	
024	÷	-24		080 GSBC	23 13	
0 25	RCL6	36 06		081 RCL5	36 05	
026	INT	16 34	Calculate PO ₂	082 GSBE	23 15	
0 27	+	-55	2	083 PRTX		
					-14	Display PO ₂
028	STO6	35 06		084 RTN	24	2
0 29	RCL8	36 88		0 85 *LBLE	21 15	Subroutine
030	XS	53		08 6 FRC	16 44	
031		-62		0 87 EEX	-23	
032	3	03		68 8 3	0 3 .	
033	1	01		0 89 ×	-35	
034	2	02		090 RTN	24	
0 35	2 0	00		091 R/S	51	1
	0	00		031 K/3	51	1 1
036	0					1
0 37	8	08				ł
0 38	Х	-35				4 1
039	RCL8	36 08				4
040	6	0 6				4 1
841	2	0 2				1 1
842	-	-62]
043	5	05				
043 044	x	-35		100]
	~	-45				1
045						1
046	3	03				1 1
0 47	1	01				4 1
04 8	3	03				4 1
0 49	0	ŪŬ				
050	+	-55				SET STATUS
051	RCL8	36 08			- FLAGS	TRIG DISP
052	X2	53			ON OFF	
	9	8 9				DEG 🐮 FIX 🗶
057	7	-62		110		
053 054	-					
054						
054 055	9	0 9			3 🗆 🖈	n
054					3 🗆 🕱	n
054 055 056	9	09 03		ISTERS		
054 055	9 3	0 9	REG	5 6	7	8 9
054 055 056 0	9 3 1 BT (°C)	09 03	3 4	5 PCO ₂ •PO ₂ PH•BT	7	8 9 SAT.
054 055 056	9 3	09 03		5 6	7	8 9
054 055 056	9 3 BT (°C) S1	05 03	3 4 S3 S4	5 PCO ₂ •PO ₂ S5 S6	7 S7	8 9 SAT. S8 S9
054 055 056	9 3 1 BT (°C)	05 03	3 4	5 PCO ₂ •PO ₂ PH•BT	7	8 9 SAT.

Program Title DEA	D SPACE FRACTION				
Contributor's Name	Hewlett-Packard				
Address	1000 N.E. Circle Boulevar	đ			
City	Corvallis	State	Oregon	Zip Code	97330

Program Description, Equations, Variables

This program calculates respiratory exchange ratio, alveolar minute volume, and ratio of dead space to tidal volume.

Equations Used:

Respiratory exchange ratio,

$$R_{Q} = \frac{VCO_{2} \text{ (ml/min STPD)}}{VO_{2} \text{ (ml/min STPD)}}$$

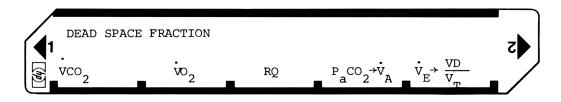
Alveolar minute volume,

$$V_{A}$$
 ($\ell/min BTPS$) = $\frac{0.863 VCO_{2} (ml/min STPD)}{P_{a}CO_{2} (mmHg)}$

Ratio of dead space to tidal volume,

$$V_{\rm D}/V_{\rm T} = \frac{V_{\rm E} - V_{\rm A} (\ell/\min \text{ BTPS})}{V_{\rm E} (\ell/\min \text{ BTPS})}$$

These may be found in most standard texts on respiratory gas exchange.


Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)		
	.	
	e en an a a a a a	· · · · · · · · · · · · · · · · · · ·
Sample Problem(s)		
VCO2 =266m1/minSTPD		
VO ₂ =280ml/min STPD		
$P_aCO_2 = 45 mmHg$		
V =7 l/min BTPS		
	· · · ·	
Solution(s) $266 [A] 280[B] \rightarrow 0.95, R_{Q}$		
Solution(s) $266 [A] 280 [B] \rightarrow 0.95, R_Q$ [C] 45[D] $\rightarrow 5.10^{l}/min, BTPS$		
7 [E] →0.27,V _D /V _T		
or if desired:		
280 [B] .95[C]		
45 [D] →5.10ℓ/min, BTPS		
7 [E] →0.27, $V_{\rm D}^{\rm V}/V_{\rm T}$		
or, if R_Q is not desired:		
266 [A] 45 [D] →5.100/min, 7 [E]→ 0.27, V /V	BTPS	

Reference(s) Otis, A.B., <u>Handbook of Physiology</u>, VOL 1, Sec 3, P.681-698. This program is a translation of the HP-65 Users' Library Program #00200A submitted by Hewlett-Packard.

STEP	INSTRUCTIONS	INPUT DATA/UNITS		۲	EYS	OUTPUT DATA/UNITS	
1	Enter program		[
2	Input VCO2	VCO ₂ (mil/r	in	Α		VO2(if stor	ed)
3	Input VO ₂	VO ₂ (ml/mir	, [В		R_0 P_CO_(if st	
4				С		$P_{a}C\tilde{O}_{2}$ (if st	cored)
5	Input R if not displayed Input P_{a}^{CO} and calculate V_{A}	R_{Q} $P_{2}CO_{2}$ (mmHc)	D		V _A (l/min)	
	Input $V_{\rm E}$ and calculate $V_{\rm D}$ / $V_{\rm T}$	V _E (^l /min)		E		$v_{\rm D}/v_{\rm T}$	
	Detailed User Instructions:						
	CO_2 output ($\dot{V}CO_2$) and O_2 uptake ($\dot{V}O_2$) are						
	input in milliliters per minute, STPD. If the						
	experimental values are not measured in STPD,						
	they should be converted prior to input. The						
	HP-67/97 may be used as a four-function cal-						
	culator between input entries for purposes of						
	unit conversion. If a separate program is to						
	be used for conversion the conversion should be	done					
	prior to running this series of programs, as						
	some patient data may be lost from memory.						
	The values of $\dot{V}CO_2$ and $\dot{V}O_2$ are stored in memory for use by later programs. If $\dot{V}O_2$ has been						
	for use by later programs. If VO ₂ has been	/					
	previously stored by the Fick calculation						
	program, it will be recalled automatically.						
	After R appears, press [C] to store VCO_2 and						
	VO2. PCO2 will appear if previously stored.						
	The \dot{V}_{A} is output (displayed) in liters per minute BTPS. If, after computing \dot{V}_{A} , it is						
	desired to calculate the ventilation/perfusion] [
	ratio (V_A/Q) , and $Q(CO)$ is already known,		[
	simply enter \dot{Q} , press [$\dot{\cdot}$], and the V_{A}/\dot{Q} ratio						
	will be displayed. Input total ventilation,] [
	\dot{V}_{E} in ℓ/min . BTPS. The V_{D}/V_{T} ratio will appear.] [
	To compute actual dead space, utilize the] [
	HP 67/97 as a four-function calculator and] [
	either multiply by tidal volume, if known, or		[
	enter \dot{v}_{p} again, divide by respiratory rate to obtain tidal volume, and then press [X] to						
	obtain <code>tidal volume</code> , and then press [X] to						
	obtain actual dead space volume.		[[
	It is possible to input R and either $\dot{V}CO_2$						
	It is possible to input R and either $\dot{V}CO_2$ or $\dot{V}O_2$, rather than both $\dot{V}CO_2$ and $\dot{V}O_2$. When 2						
	doing this, press only the button for which dat						
	(con'	t)					

DEAD SPACE	E FRACTION				7
vco ₂	vo ₂	RQ	P_CO_→V a_2→V_A	$\dot{v}_{E} \rightarrow \frac{v_{D}}{v_{T}}$	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
	is being input. For example, input VO_2 , press			
	[B], input R_{Q} , press [C]. The HP 67/97 will calculate the missing \dot{VCO}_{2} and store both \dot{VCO}_{2} and \dot{VO}_{2} .			
	calculate the missing VCO, and store both			
	$\dot{V}CO_2$ and $\dot{V}O_2$.			
	Since VO is not needed in the calculation			
	of \dot{V}_{a} and V_{D}/V_{T} , it need not be input if R is	not		
	Since \dot{VO}_{A} is not needed in the calculation of \dot{V}_{A} and V_{D}/V_{T} , it need not be input if R_{Q} is desired. In this case, input \dot{VCO}_{A} , press [A] input P_{CO}_{A} , press [D], input \dot{V}_{E} , press [E].			
	input P CO, press [D], input V_E , press [E].			
	\dot{v}_{CO} will not be stored in memory in this case.			
	2			

58					<i>7 </i>	vgram			115 1				
STEP K	EY ENTRY		EA CO			MENTS	STEP	KE	EY ENTRY	KE	CODE	C	OMMENTS
0 01	*LBLA		21 11	l l	Enter VCC)	05	57	EEX		-23	L	D 00
002	SFØ	16 2	21 00			Ζ		58	2		62	Entangl	
003	ST01	3	35 01					59	х		-35	1 with	PO2 in R5
004	RCL2	3	36 02		Dignlay g	stored VO2		50	INT	t	5-34	1	
005	RTN		24		bispiay s	2						1	
006	*LBLB		21 12				00		RCL5		5 05	1	
	SF1		21 01		Enter VO			52	FRC	10	5 44	4	
007					_	-		53	+		-55	1	
00 8	ST08		35 08				00	54	ST05	3	5 05		
009	F0?		23 00		If VCO ₂ e	entered cal-	00	55	R∔		-31		
010	GTOØ	ź	22 0 0		culate			66		3	5 01	1	
011	CLX		-51	Ι,	Else disp			67	PRTX		-14	Display	v _n
012	RTN		24	1	cise dist	Jiay U		68	RTN		24		А
	*LBL0	;	21 00		Calc of	P.				2		Enter V	,
014	RCL1		36 01		Calc. of	٢Q		69	*LBLE	2	1 15		E
		•	-41					70	ENTT		-21		
015	X≠Y							71	ENTT		-21		
016	÷		-24				01	72	RCL1	- 30	6 01	Calc. V	
0 17	PRTX		-14				0	73	-		-45		
018	RTN		24					74	X≠Y		-41		
019		ź	21 13		Enter R _O			75	÷		-24	1.	
020			23 00	P		ontorrad					-14	Display	v _D /v _m
021	GTOØ		22 00		Was VCOŽ	entered		76	PRTX				יי
					Yes			77	RTN	-	24	L	
0 22	GT01		22 01		No, calc.	VCO2		78	*LBL1		1 01	Calcula	
023			21 00			2	0	79	F1?	16 2		Was VO2	input?
024	F1?		23 01		Was VO ₂ e	entered	0	80	GTO0	2	2 00	Yes, go	to 0
025	GTO2	2	22 02		Yes, go t			81	CLX		-51	No, err	
0 26	RCL1		36 01		No, calc.			82	÷		-24	, 011	-
0 27	X≠Y		-41	ľ	NO, CAIC.	v02		83	RTN		24		
028	÷		-24							0			
029	ST08	-	35 08					84	*LBL0		100		
					Save VO ₂			85	RCL8	3	6 08		
030	*LBL2		21 02		-			86	х		-35		
031	RCL1	•	36 01				0	87	ST01	3	5 01		
032	EEX		-23		Entanglo	VOSTICO	0	88	GTO2	- 2	2 02		
033	4		04	·	Sincangre	vo2evco5		89	R/S		51		
034	÷		-24										
035	FRC		16 44									1	
036	RCL8		36 08							+		-	
037	INT		16 34									4	
		•										4	
038	+		-55									4	
0 39	STO2		35 02		Store in	R ₂							
848	CFØ		22 00			2							
041	CF1	16 2	22 01										
042	RCL5		36 05							1		1	
043	EEX		-23							1		1	
044	2		02				100			<u> </u>		-	
045	÷		-24				100			+		-	
045 046	RTN									 		4	
			24 21 14	I	Display H Enter P _a C	°_ ^{CO} 2				 		4	
047	*LBLD		21 14]	Enter P_C	ະອີ				ļ		1	
048	RCL1	•	36 01		a	۷						1	
04 9	•		-62							L		L	
050	8 6		08						FLAGS			SET STA	TUS
051	6		06					-0	vco ₂ ?		LAGS	TRIG	DISP
0 52	3		03	:	STPD →BTE	S		- <u>-</u> -	<u>····</u> 2··	-+-'	ON OFF		
053	x		-35					'	vo ₂ ?	0		DEG	🛛 FIX 😡
054	X≠Y		-41				110	2		-1		GRAD	
					a 1					2			
055 057	÷		-24	. (Calc. V _A			3		3			n_ <u>2</u>
056	LSTX		16-63					_		<u> </u>	<u> </u>	<u>.</u>	~
	1.				10		STERS		Ic.			8	9
0	$vco_2/$	/va	² vo ₂ .	vco		4	⁵ P ₂ CO ₂	. P		ľ		^v v ₂	9
<u>eo</u>	S1		<u>2</u> S2		2 S3	S4	<u> </u>	<u> </u>	S6	S7		S8	S9
S0		ľ	52		33	34	55						
A	1	В			l c		D		L	E		I	
^		ľ			Ľ		2			-			
		1											

Program Title	ALVEOLAR-ARTERIAL OXYGEN TENSION DIFFERENCE	
Contributor's Name	Users' Library, Hewlett-Packard Company	
	1000 N.E. Circle Boulevard	
Address	1000 N.E. CIICLE Boulevard	
City	Corvallis State Oregon Zip Code 97330	2

Program Description, Equations, Variables

This program calculates the difference between alveolar and arterial oxygen concentration. One approximation has been made in the equation for $P_{A}O_{2}$. In the third term, which is a small correction factor, the F_1^0 has been derived by dividing the P_{102}^{0} by 760, the nominal barometric pressure at sea level. The error introduced will be negligible unless measurements are being made at a very high altitude and very high inspired oxygen tension. Equations Used: where $P_1O_2 = \frac{F_1O_2^{(\%)}}{100} \cdot P_{\text{Barometer}} (\text{mmHg})$ $R_{Q} = \frac{VCO_{2} \text{ (ml/minSTPD)}}{VO_{2} \text{ (ml/min STPD)}}$ **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

ketch(es)			

Sample Problem(s)
$P_1 O_2 = 150 \text{mmHg}$
$P_{a}O_{2}^{o} = 100 \text{mmHg}$
$P_{a}C_{2} = 45$ mmHg
R =0.95
Solution(s)
150 [A] 100 [B] 45[C] .95[D] →3.10 mmHg, A-a diff. [E] → 103.10 mmHg, $P_A O_2$
A 2
Reference(s) This program is a translation of the HP-65 Users' Library Program
#00201A submitted by Hewlett-Packard

West, John B., "Ventilation/Blood Flow and Gas Exchange", 2nd ed., Blackwell Scientific Publication, Oxford, 1970.

	$\begin{array}{c c} \bullet & \bullet \\ \bullet & & \bullet \\ \bullet &$	Q→A−a ∹	PP _{A⁰2}	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Input P ₁ O ₂ *	P_1O_2 (mmHg)	A	PO2(if stored)
	Input P O	P_O_(mmHg)	в	PCO_(if stored)
	Input P_CO	PCO (mmHo		R _o (if stored)
	Input R _O and calculate A-a	R R Q	D	$A = aO_2 (mmHg)$
	Calculate P _A O ₂	Q	E	$P_{\Lambda}O_2$ (mmHg)
				n
	* The stored PO_2 will be recalled. If this is			
	the arterial P _a O ₂ , simply press [B]. Otherwise			
	input the value and press [B]. Repeat for	'		

STEP

	a 2	a ²					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Input P_CO	PCO (mmHo	r)	C			R _O (if store
	Input R and calculate A-a	R Q	l	D			$\tilde{A-aO_2}$ (mmHg)
6	Calculate P _A O ₂	Ŷ	[E			$P_{A}O_{2}$ (mmHg)
			[n
	* The stored PO $_2$ will be recalled. If this is] [
	the arterial P_aO_2 , simply press [B]. Otherwise						
	input the value and press [B]. Repeat for PCO ₂ , using [C]. If CO_2 output and O_2 uptake						
	were previously input, R _Q will be computed and						
	recalled. Otherwise, input R and press [D]. The A-aO ₂ difference will now appear on the display. To derive P_AO_2 press [E]. This		[
	value is left in the display register and is		 	_			
	ready for input into"Virtual PO _{2 & O2} Saturati	on & Conter	t"	Ĺ	L	4	
	alveolar O2 content and physiologic shunt are				[
	to be calculated.						
			[]	
					[
						i t	
			[[i t	
			ו ן		[
			l		[4	
						4	
						1	
						ī Ī	
			[i t	
			ا ا				
			l				
			[
						i t	
			ו ן		[i t	
			1		[
			ļ			4	

62					*5 • • • • • • • •		74 8						
	EY ENTRY	KEY CODE			IENTS	STEP	K	EY ENTRY	к	EY CODE		COM	MENTS
001	¥LBLĤ	21 11	Ente	r ^P 1 ^O 2		e	157	-		-45			
002	ST08	35 08		12		e	958	RCL1		36 01			
003	RCLE	36 05				É	359	Х		-35			
004	FRC	16 44			-		160	RCL8		36 08			
005	EEX	-23	Unta	ngle P	⁰ 2		<i>161</i>	7		Ø7			
006	3	03					62	6		0 6			
007	X	-35					<i>1</i> £3	Ø		00			
9 08	RTN	24					164	÷		-24			
005	*LBLB	21 12	Ente	r P _a O ₂			165	Х		-35			
010	EΕΧ	-23		d 2			666	+		-55			
011	3	03	Enta	ngle w	ith PCO2		67	RCL8		36 08			
012	÷	-24	in	PO2	2		68	+		-55			
013	RCL5	36 05	1	Z			<i>169</i>	S701		35 01			
014	INT	16 34					176	RCL5		36 05			
015	÷	-55	1				971	FRC		16 44	Compu	+ o].	-a diff.
016	ST05	35 0 5					172	EEX		-23	compu	LEA	a uiii.
017	EEX	-23	Unta	ngle P	co,		173	3		03			
018	2	62			2		974	X		-35			
019	÷	-24					175	_		-45	1		
020	RTN	24					176 176	PRTX		-14			
021	*LBLC	21 13	Fnter				177	RTN		24			
822	ST01	35 01		r P _a CO			,, , 178 -	*LBLE		21 15	h		0
023	EEX	-23	Entai	ngle w	ith PaO2		179	RCL1		36 01	Displ	ay P _F	A ^O 2
024	2	02	iı	n R ₅	u 2		180 180	PRTX		-14		-	
0 25	Х	-35		5			181 181	ETN					
026	INT	16 34								24 51			
027	PCL5	36 05				6	182	R∕S		51			
028	FRC	16 44					1		T				
029	+	-55							+		4		
030	ST05	33 05							+		4		
031	RCL9	36 09	Save	Ugh							-		
632	RCL2	36 Ø2	Save	пдр					+		4		
033	FRC	16 44									-		
034	RCL2	36 02				090			+		-		
035	INT	16 34									-		
036	Ø	10 84 00							+		-		
0 37	X=Y?	16-33									-		
0 38	GTG1	22 01							+		4		
039 039	8701 R4	-31									-		
035 048	EEX	-97							+		1		
040	4 EEA	-23 04	Compi	te R_Q		 			1		1		
041 042	÷	-24		~							1		
042 043	÷	-24							1		1		
043 044	*LBL1	21 01				100			+		1		
044 045	Rt Rt	16-31	Resto	ore Hgl	b						1		
04 0 04 6	ST09	35 09									1		
040 047	5705 R4	-31	Displ	ay 0 d	or R				1		1		
048	RTN	24			Ŷ				1		1		
040 049	*1BLD	21 14	Entor	• R					<u> </u>		1		
049 050	RCL1	21 14 36 01	Compy	R R R R R R R R R R R R R R R R R R R	r				1		SET ST	ATUS	
050 051	CHS	-22	Compt	' A	2				<u>† </u>				
0 52	CH5 X≠Y	-22							 	FLAGS ON OFF	TRI	u	DISP
0 52 0 53	^+/ ÷	-41 -24							t- (DEG	X	FIX 🗶
003 054	- LSTX					110			· ·	1 🗆 🖌	GRA	D	SCI 🗆
	17X	16-63 50								2	RAD		ENG ₂
055 654		52								2 k 3 k			n
056 L	1	Ū1			REGIS	STERS			· · · · ·				
0	1	2	3			5		6	7	7	8		9
		PaCO2 USED				USED					P _I O	2	Hgb
S0	S1	S2	S3		S4	S5		S6	S	57	S8		S9
				-									
Α		В		С		D			E		I		

62

Program Title	PHYSIOLOGIC SHUNT AND	FICK		
Contributor's Name	HEWLETT-PACKARD			
Address	1000 N.E. Circle Boulevar	đ		-
City	Corvallis	State Oregon	Zip Code 97330	

Program Description, Equations, Variables

The Fick cardiac output and physiologic shunt fraction are calculated from arterial, venous and alveolar oxygen concentration and oxygen intake. Equations Used:

$$CO(\ell/min) = \frac{VO_2 \quad (ml/minSTPD) \cdot 100(\%)}{(C_aO_2 - C_VO_2 \quad (vol.\%) \cdot 1000 \quad (ml/\ell))}$$
Phys. Shunt =
$$\frac{C_AO_2 - C_aO_2}{C_AO_2 - C_VO_2}$$

These are the standard Fick cardiac output and physiologic shunt equations. If measured O_2 saturations are used, these equations will be accurate.

Operating Limits and Warnings

If the content values have been derived from saturation estimates on PO₂ measurements for arterial and venous blood, the results should be viewed with caution unless the patients oxygen dissociation curve has been established to be normal.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)					
	anna a' sha anna ag far sha an Anna agar an sha				
	• · · · · · • · · • · · • • • • • • • •				
	general and an annual and an				

Sample Problem(s)
$C_{A_2}^{O} = 20 \text{ vol.}$
$C_{a2}^{O} = 18 \text{ vol.}$
$C_{V}O_{2}^{O} = 15 \text{ vol.}$
V_2 VO_2 = 250 ml/min. STPD
2
Solution(s)
20 [A] 18 [B] 15[C] 250 [D] \rightarrow 8.33 ℓ/min (CO)
[E] → 40.00% (SHUNT)

Reference(s) This program is a translation of the HP-65 Users' Library Program #00202A submitted by Hewlett-Packard. Comroe, Julius H., Jr., et al. The Lung, 2nd ed., Year Book Medical Publishers, Inc. Chicago, 1962, p.345. Yang, Sing San, et al, From Cardiac Catheterization Data to Hemodynamic Parameters, F.A.Davis Co., Phil., 1972, p.21.

)	
	PHYSIOLOGIC SHUNT AND FICK $C_{A^{0}2}$ $C_{a^{0}2}$ $C_{v^{0}2}$ $C_{v^{0}2}$ $C_{v^{0}2}$	0 ₂ →C0	→ <u>S</u>	SHUNT	رت م	J	
STEP	INSTRUCTIONS	INPUT DATA/UNITS		KE	rs	OUTPUT DATA/UNITS	1
1	Enter program						1
2	Input CAO2	C_O_(Vol.%)		A		C ₀₂ (if s	tored
3	Input C _a O ₂	A 2 C _a O ₂ (Vol.%)		B		C _V O ₂ (if s	
. 4	Input C _V O ₂	C _V O ₂ (Vol.%)	1	С		VO2(if st	
5	Input VO ₂ and calculate CO	VO ₂ (ml/mir		D		CO(l/min)	
6	Calculate shunt %	_] []
	Detailed User Instructions:] [
	If arterial and venous O_2 contents have been] [
	previously calculated and stored, and if] [
	"Virtual PO2 & O2 Saturation" has been used imm	ediately	[
	previous to calculate equivalent alveolar conte	ent	[
	then it will not be necessary to re-enter any		[
	content values. The $C_A O_2$ will be in the displa	uy	[
	register ready for entry. If the values are						
	not stored, they may simply be entered. The						
	\dot{VO}_2 , osygen uptake, will be recalled if prev-		[[
	iously entered. If not, it should be entered						
	in ml/min. STPD. The Fick cardiac output] [
	results from pressing [D]. Pressing [E] will cause the physiologic blood shunt to be						
	displayed, expressed as a percent.						
	After cardiac output is calculated, stroke						-
	volume may be calculated by heart rate and		(1
	multiplying by 1000 (to convert from 1 to ml).]
	Alternatively, cardiac index may be calculated		[1
	by dividing by body surface area.						
	If the program is to be used to calculate outpu	it.		······			
	only, it is not necessary to input $C_{A_{2}}^{O}$. Howeve						1
	[A] should be pressed to start the program		1 (1
	anyway.		[1
							1
]
]]
			[]
] (] []
]]]
			1				1

			97 Program	n Lis	sting I			
ТЕР	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	IENTS
00		21 11	Enter C _A O ₂					
0 0		35 B1 36 B4	Dignlaw C. O					
66		36 04	Display $C_A^{O_2}$	060				
00 00		24	Deter C O					
00 00		21 12 35 04	Enter $C_A O_2$					
00 00		36 03	Dignlay C O					
00 00		24	Display C _V O ₂					
00 00		21 13	Enter C O					
01 01		35 03	Enter CVO2					
61		36 02	Display VO ₂					
61		24	_					
	3 *LBLD	21 14	Enter VO_2					
Ø1		16 34		070				
Ø1		36 02						
01	e FRC	16 44						
61		-55						
01		35 02						
61		36 04						
02		36 03						
<i>8</i> 2		-45						
Ø2		-24						
02		Ø1		080				
02		<u>90</u>						
Ø2		-24						
02 02		35 08 23						
02		-23			+			
02 02		02 -35						
62 63		16 34						
00 03		36 07						
03 03		16 44						
03		-55						
03		35 07	Display CO	090				
03		36 08						
03		-14						
03		24						
03		21 15	Compute shunt					
03		36 01	compute shund					
04	10 RCL4	36 04						
ЮĄ		-45						
04		36 01						
64		36 03		100				
Ũ4		-45						
Ū 4		-24						
04 0		-23 02						
04 04		-35						
e- 04		-14						
05 05		24					SET STATUS	
05 05		51				- FLAGS	TRIG	DISP
						ON OFF		1
		 	4	110		0 🗆 🖄	DEG 🗷 GRAD 🗆	FIX X
		ł	1	H	1			SCI C
+		<u> </u>	1					ENG n_2
				GISTERS				
-	¹ C _A O ₂	² USED	${}^{3}C_{V}O_{2}$ ${}^{4}C_{a}O_{2}$	5	6	7	8	9
	A 2	S2	<u> </u>	S5	S6	USED S7	CO S8	S9
	31	32			ľ	- /		
	T	В	c	D	•	E	I	

Contributor's Name Hewlett-Packard Company Address 1000 N.E. Circle Boulevard	
Addross 1000 N.E. Circle Reviewand	
Address 1000 N.E. CITCLE BOULEVARD	
City Corvallis State Oregon Zip Code 97330	

Program Description, Equations, Variables This program calculates body surface area by either the method of DuBois or the method of Boyd. In both cases, the required inputs are height and weight, which may be input either in metric (cm, kg) or English (in., lb.) units. Quantities in English units should be input as negative numbers. If cardiac output is given, the cardiac index can also be calculated.

Equations:

Let Ht be height, Wt be weight, and BSA be the body surface area in m^2 .

Ht (cm) = 2.54 Ht (in.)

Wt (kg) = 0.45359237 Wt (1b.)

DuBois:

BSA $(m^2) = Ht (cm)^{0.725}$. Wt $(kg)^{0.425}$. 7.184 X 10^{-3}

Boyd:

BSA $(m^2) = Wt (g)^{0.7285} - 0.0188 \log Wt$ · Ht $(cm)^{0.3} \cdot 3.207 \times 10^{-4}$

$$CI = \frac{CO(1/min)}{BSA (m^2)}$$

Operating Limits and Warnings The Du Bois formula for BSA is undefined for children with a BSA less than 0.6 m². In such cases BSA should be calculated by the Boyd formula.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)
Sample Problem(s) 1) Patient is 176 cm in height and weighs 63.5 kg. What is his body surface area by both the DuBois and Boyd methods? A patient 60 inches in height and 100 pounds in weight has a cardiac output of 5 1/min. Calculate the body surface area and cardiac index by DuBois. What is the cardiac index using the Boyd BSA?
Solution(s) 1) 176 [A] 63.5 [B] [C] \rightarrow 1.78 m ² (DuBois) [D] \rightarrow 1.76 m ² (Boyd)
2) 60 [CHS] [A] 100 [CHS] [B] [C] \rightarrow 1.39 m ² (DuBois) 5 [E] \rightarrow 3.59 1/min m ² (CI, DuBois)
$[D] \rightarrow 1.40 \text{ m}^2 \text{ (Boyd)}$
[f] [E] \rightarrow 5.00 (Recalls CO, Stored above) [E] \rightarrow 3.57 1/min m ² (CI, Boyd)
Reference(s) D. DuBois and E.F. DuBois, Clin. Cal. 10, Arch. Int. Med., <u>17</u> ,863,1916. Edith Boyd, <u>Growth of the Surface Area of the Human Body</u> , U. of Minnesota Press, 1935, p. 132. This program is a modification of the Users' Library Programs # 00203A and
00204A submitted by Hewlett-Packard.

	BODY SURFACE AREA for CARDIO PULMONA Height Weight DuBois Bo	I	RCL CO CO → CI	۲ ۲		
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS]
1	Load Sides 1 and 2					1
2	Input Patient Height Ht	t(+cm or -in	n) A		Ht (cm)]
3		t(+kg or -11			Wt (kg)	1
4	Calculate BSA: By DuBois		C C		BSA (m ²)	1
	By Boyd		D		BSA (m ²)]
5	Recall cardiac output (if previously stored)		f	E	CO (1/min)	
6	Input CO and calculate CI	CO (1/min)	Е		CI(1/min m	1 2)
						1
						1
						1
	DETAILED USER INSTRUCTIONS					1
						1
	The height and weight may be input in eit	ner metric				1
	or English units. If English units are used,					1
	must be input as negative values. This is acc					1
	by pressing [CHS] after the number is input, I	-				1
	the program button is pressed. The metric equ					1
	will appear in the display.					1
	Press [C] or [D] to obtain body surface a	ea.				1
	which will also be stored in the calculator's					1
	If cardiac output has been previously calculated	-	[[]		1
	may be recalled by pressing [f] [E]. Alternat					1
	it may be input. In either case, pressing [E]					1
	yield cardiac index by means of the last body					1
	area calculated.					1
						1
						1
						1
						1
						1
			[]			1
						1
						1
						1
						1
						1
						1
						1
						1

70			77 i i 051 ani					
	EY ENTRY	KEY CODE	COMMENTS		EY ENTRY	KEY CODE	CON	MENTS
00 1	∗LBLA	21 11	Enter Ht.	057		-62		
002	X>0?	16-44	If cm store	0 58	3	03		
003	GT01	22 01		0 59	γ×	31		}
004	CHS	-22	If inches, convert	060	RCL6	36 06		1
005	2	Ø2	to cm and store	061	EEX	-23		
006		-62		062	3	03		
007	5	05		063	x	-35		
008	4	04		0 64	ENTT	-21		
009	X	-35		065		16 32		
		21 01			LOG			
010	*LBL1			066	:	-62		
011	STO5	35 05	Store Ht.	0 67	0	00		
012	RTN	24		06 8	1	01		
013	*LBLB	21 12	Enter Wt.	069	8	08		
014	X>0?	16-44	If kg store	0 70	8	08		
015	GT02	22 02	-	071	Х	-35		
016	CHS	-22	If 1bs., convert	0 72		-62		
017	2	02	to kg and store	073	7	07		
018	-	-62		074	2	02		
019	2	02		075	8	08	ł	
015 020	÷	-24		075 076	。 5	05 05		
020 021	*LBL2	21 02						
				077 072	- 0 Y	-45		
022	STO6	35 06 04	Store Wt.	078	γx	31	ł	
023	RTN	24		0 79	÷	-24		
024	*LBLC	21 13	Calculate BSA	0 80	3	03		
0 25	RCL5	36 05	by DuBois	081	1	01		
. 026		-62	5	0 82	1	Ø1		
027	7	07		083	8	08		
028	2	02		084	÷	-24		
029	5	05		085	STO1	35 01		
030	γx	31		0 86	EEX	-23	m 1	
031	RCL6	36 06		0 87		02	Tangle w	
		-62			.2		and sto	
0 32	•			0 88	÷	-24	100 CO	+ .01 BSA
033	4	0 4		0 89	RCL7	36 07		
034	2	02		0 90	INT	16 34		
035	5	05		091	+	-55		
036	Υ×	31		0 92	ST07	35 07		
037	Х	-35		093	RCL1	36 01		
0 38	1	01		0 94	PRTX	-14		
039	3	03		095	RTN	24		
040	9	09		0 96	*LBLe	21 16 15	Untangle	and
041	-	-62		0 97	RCL7	36 07	recall	
042	2	02		098	EEX		recall	0
042 043	÷	-24				-23		
				0 99	.2	02		
044 045	STO1	35 01 -27		100	÷	-24		
045	EEX	-23	Tangle with CO	101	RTN	24		
046	2	02 04	and store as	102	*LBLE	21 15	Calculat	e CI
047	÷	-24	100 CO + .01 BSA	103	EEX	-23	untangl	e CO with
04 8	RCL7	36 07		104	2	0 2	BSA and	
049	INT	16 34		105	Х	-35		
0 50	+	-55		106	INT	16 34		
051	ST07	35 07		107	RCL7	36 07		
052	RCL1	36 0 1		108	FRC	16 44		
053	PRTX	-14		100	+	-55		
054	RTN	24		110	ST07	35 07		
055	*LBLD	21 14	Calculate BSA	111	LSTX	35 67 16-63		
055	RCL5	36 05	by Boyd					
000	KULJ	30 03		112 SIENS	÷	-24		
0	1	2	3 4	5	6	7	8	9
	BSA			HT.	WT.	Used		
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
						,		
A	E	3	С	D		E	I	

70

				97 P	rogran	n Lis	ting				-
STEP) KEY	ENTRY	KEY CODE		COMMENTS	STEP			KEY CODE	сомм	7 [°] ENTS
	113	EEX	-23		00111121110		T				
	114	4	0 4			170				1	
		÷	-24							4	
	116 117	PRTX RTN	-14 24	-						4	
	118	R/S	51							1	
			L]	
120				4						4	
				-						4	
	-			1						1	
						180					
				4							
				-						4	
				-						1	
										1	
130				4						4	
				-						4	
				-						1	
						190					
				-						4	
				-						1	
				1						1	
	_			1							
140				4						1	
				-						4	
				-			-			1	
						200]	
				4						1	
				-						4	
				-						1	
										1	
150											
	_			-						4	
				-			-		· · · · · · · · · · · · · · · · · · ·	1	
				1		210]	
				4						1	
				-						4	
	-			4							
]]	
160				4						4	
				-						4	
				-			-			1	
						220					
 				-						4	
				1							
				1			1				
A		В	C Du		BELS	E	FLA	GS		SET STATUS	
H	t	b Wt.	Du	Bois	Boyd d	E CI	1		FLAGS	TRIG	DISP
а			с			e RCL CO			ON OFF 0 [] [X] 1 [] [X] 2 [] [X] 3 [] [X]	DEG 🛛	FIX 🙀 SCI 🗖
0			Ht. ² St	o. Wt.	1	4	2			GRAD □ RAD □	
5		6	7		8	9	3		$3 \square \Delta$		
L		1					L				

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner
Portfolio Management/Bonds & Notes	Anesthesia
Real Estate Investment	Cardiac
Taxes	Pulmonary
Home Construction Estimating	Chemistry
Marketing/Sales	Optics
Home Management	Physics
Small Business	Earth Sciences
Antennas	Energy Conservation
Butterworth and Chebyshev Filters	Space Science
Thermal and Transport Sciences	Biology
EE (Lab)	Games
Industrial Engineering	Games of Chance
Aeronautical Engineering	Aircraft Operation
Control Systems	Avigation
Beams and Columns	Calendars
High-Level Math	Photo Dark Room
Test Statistics	COGO-Surveying
Geometry	Astrology
Reliability / QA	Forestry

PULMONARY

A group of programs for carrying out common pulmonary function calculations. A number of programs may be used in sequence for extensive calculations such as required in a respiratory intensive care unit. Included are programs for ventilator setup and adjustment, blood-gas, acid-base and respiratory status calculations.

PULMONARY MEDICINE/MALE SPIROMETRY STANDARDS

PULMONARY MEDICINE/FEMALE SPIROMETRY STANDARDS

PULMONARY PROGRAM SERIES

LUNG DIFFUSION

WATER VAPOR PRESSURE AND RESPIRATORY GAS CONVERSIONS

VENTILATOR SETUP AND CORRECTIONS (RADFORD)

ARTERIAL CO. NORMALIZATION

BLOOD ACID-BASE STATUS

VIRTUAL PO2 AND O2 SATURATION AND CONTENT

ANAEROBIC PCO. AND pH CHANGE

ANAEROBIC PO. CHANGE

DEAD SPACE FRACTION

ALVEOLAR - ARTERIAL OXYGEN TENSION DIFFERENCE

PHYSIOLOGIC SHUNT AND FICK

BODY SURFACE AREA FOR CARDIO PULMONARY PROGRAMS

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14037 Printed in U.S.A. 00097-90212 Revision B 3-78