HIP(OTHPOT
 Users' Library Solutions
 Reliability/QA

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions - hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service-a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantiai savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 Owners' Handbook and Programming Guide, "Loading a Program" (page 134, HP-67; page 119, HP-97), key in the program from the Program Listing I and Program Listing II pages. A number at the top of the Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your Owner's Handbook for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent-once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your Owner's Handbook for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, clip the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

TABLE OF CONTENTS

RELIABILITY: INTRA-CLASS CORRELATION 1Using a one-way ANOVA layout, this program estimates the ratio of variancedue to treatment (CF. true scores) to total or "Observed" variance. Thisis interpreted as a measure of the extent to which group membership isrelated to the magnitude of the observed score. In turn, this can be usedto estimate the reliability of a measurement with the treatment levelsbeing subjects.
SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS 5
Calculates predicted value from regression analysis constants, and standar'd normal deviate from standard deviation and specification limits. Also calculates x or y value at 90%, 95% or 99% limits about the regression line. Very useful for calculating a table of values from regression constants for determining probability of specification compliance in process control or EVOP applications.
PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION) 9
Computes (1) the maximum likelihood estimate for the scale parameter' of an exponential distribution which is singly truncated on the right, and (2) the minimum variance unbiased estimate for the parameters of a two-parameter exponential distribution which is singly censored on the right.
LOWER LIMIT OF RELIABILITY - BINOMIAL DISTRIBUTION 13
This program calculates the lower limit of reliability at a s'pecified confidence level using the binomial distribution.
RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS 17
Computes the reliability and failure probability of a parallel system, series
system or combination parallel/series system given mission time, number of
components and component failure rates.
MIL - STD - 883 CALCULATED LEAK RATE 21
Gives the calculated leak from the measured leak rate using the equation given the MIL-STD-883, Method 1014, Condition A.
MLE: $\hat{\theta}$ FROM HAZARD RATE 25
Given failure numbers and operating time for' a sámple 'te'st' da'ta', pro'grám computes differential operating times, maximum likelyhood estimator ($\hat{\theta}$) from operating times; failure dates $\left[Z\left(t_{j}\right)\right]$; parameter λ and finally MLE; $\hat{\theta}$ from hazard rate (i.e. λ).
MLE: $\hat{\theta}$ BY LEAST SQUARE METHOD 30
Given the test failure data; program 'compute's maximum'likeiyhood ést'imátór using' least square technique. It also computes the probability of survival which helps compute the reliability of any given subject.
SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH SAME FAILURE RATE λ38Given different number of components and the corresponding failure rates λ of asystem, program calulates reliability (probability of survival); unreliability;total systems reliability when put in series and total systems reliability whenput in parallel by using unreliability concept. NOTE: All such units inseries or parallels must have same λ.
SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ, This program calculates the reliability of the system when components or units of different failure rate λ are placed in series or parallel by using concept of unreliability to avoid tedious and lengthy calculations specially when system is in parallel.
City Corvallis State Oregon Zip Code 97330

Program Description, Equations, Variables, etc. Let the scores (measures) $X_{i j}$ represent the j-th subject's score on the i-th teat (measurement). In the ANOVA model $X_{i j}=\mu+a_{j}+e_{i j}, \mu$ the mean "true" measure over all subjects, a_{j} the deviation of the j-th subject from that mean, and $e_{i j}$ the error in test i on the j-th subject, the reliability of the set of tests is the ratio $\rho_{I}=\sigma_{A}^{2} / \sigma_{X}^{2}$, of true-difference variance to observed-score variance. Ihis ratio is estimated by the formula

$$
r_{I}=\frac{M S_{B e t}-M S_{W i t h}}{M S_{B e t}+(c-I) M S_{W i t h}}
$$

where $M S_{B e t}$ is the between mean squares, $M S_{W i t h}$ the within mean squares, and c is a factor dependent on sample size given by

$$
c=\frac{1}{J-1}\left[\sum n_{j}-\frac{\sum n_{j}^{2}}{\sum n_{j}}\right]
$$

where J is the number of subjects, n_{j} the number of test scores for subject j. Standard formulas are used for the mean squares, and the ANOVA F-ratio is computed as a by-product of the main program.

Operating Limits and Warnings
This estimate is based on the ANOVA randomeffects model, and violations of its assumptions (e.g., normal distribution of the a_{j}, homogeneity of variances) should be held to a minimum for an accurate estimate. Winer (op. cit.) and other texts fully explain these assumptions and possible effects of departures. Most ill effects are minimized by use of equal n_{j}^{\prime} 's, for all $j=1,2, \ldots, J$.

[^0]
Program Description II

Sketch(es)

Sample Problem(s) The following data represent the scores of three subjects on repeated measurements of the same attribute. Compute the intra-class correlation (reliability) estimate and the ANOVA F.

j	1	2	3	4	5	6
1	10	8	5	12	14	11
2						
3	6	9	8	13		
14	13	10	17	16		

Solution(s) $\quad r_{I}=0.36 ; \quad \mathrm{F}=3.79$
Keystrokes:
Outputs:
[f][CLREG] 10 [A] 8 [A] $\cdots \cdot 11$ [A] [B]
6 [A] 9 [A] \cdots 13[A] [B]
14 [A] 13 [A] ... 16 [A] [B]

$$
\begin{array}{rll}
{[\mathrm{C}]} & \rightarrow & 0.36 \\
{[\mathrm{R} / \mathrm{S}]} & \rightarrow & 3.79
\end{array}
$$

Reference(s) Winer, B. J., Statistical principles in experimental design, pp. 165, 283-287, McGraw-Hill, 1971.

This program is a translation of the HP-65 Users' Library Program 非 03102A submitted by James M. Price.

INTRA-CLASS CORRELATION

$1 \Sigma+$ Subj rI \longrightarrow 包

1-1 1-1

STEP	instructions	$\begin{array}{c\|} \hline \text { INPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$	KEYS		$\begin{array}{\|c\|} \hline \text { OUTPUT } \\ \text { DATA/UNITS } \\ \hline \end{array}$
1	Enter program				
2	Initialize		f	REG	
3	(Repeat for $i=1,2, \ldots, n_{j}$) Enter	$\mathrm{X}_{\text {ij }}$	A		i
4	(After all n_{j} Steps \#3; repeat for				
	$\mathrm{j}=1,2, \ldots, \mathrm{~J})$		B		0.00
5	Compute r_{I}		C		$\mathrm{r}_{\text {I }}$
6	(Optional) Compute ANOVA F		R / s		F
	(degrees of freedom are found by:				
	RCL, 6, 1, - and RCL, 4, RCL, 6, -)				
	For new data, go to step 2.				

4			97 Drasior	HiN	- ¢			
STEP	KEY ENTRY	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
001	*LELA	2111	accum. X	057	ST09	3509	c	
002	$5 \mathrm{~T}+7$	35-55 67	accum. X	058	RCL 7	3607		
003	X	53		059	RCLE	3608		
004	ST+2	35-55 42	accum, X^{2}	060	-	-45		
005	RCLE	3688		061	RCL 7	3607		
006	1	01		062	RCL9	3649		
007	+	-55		063	1	61		
008	STOE	3548	increment count	064	-	-45		
009	RTH	24	increment count	065	RCLE	3608		
010	*LELE	2112		066	x	-35		
011	RCL 7	3687		867	+	-55		
012	ST+1	35-55 011		068	\cdots	-24		
013	Ve	53		069	R/S	51	I	
014	RCLS	3616	(EX) ${ }^{2}$	070	ECL 7	3607		
015	\div	-24	recall cell size	071	RCL 8	3608		
016	$S T+3$	35-55 03	$(\Sigma X)^{2} / n$	072	\cdots	-24	F	
017	LSTX	16-63		873	F. 5	51		
018	ST+4	35-55 64	ccum. ${ }^{\text {n }}$					
019		53	accum. n_{j}					
020	ST+5	35-55 05	accum. $\mathrm{n}_{\mathrm{j}}^{2}$					
021	1	01	,					
022	ST+E	35-55 66						
023	CLX	-51						
024	ST07	3507		080				
025	STOE	3545						
026	RTN	24						
027	* 2 ELC	2113						
828	RCL 3	3603						
029	RCLI	3601						
030	XE	5.3						
031	RCL4	3684						
032	\div	-24						
033	-	-45						
034	RCLE	3606		090				
035	1	61						
036	-	-45	df between					
037	\div	-24	MS between					
038	Stor	3507	MS between					
039	RCL2	3602						
040	RCL 3	3603						
041	-	-45						
042	RCL4	3604						
843	RCLE	3606						
044	-	-45	df within	100				
045	\doteqdot	-24						
046	stoe	3508	MS within					
047	RCLE	3686						
048	1	011						
049	-	-45						
850	1%	52					SET STATU	
051	RCL 4	$36 \quad 04$				FLAGS	TRIG	DISP
052	RCL5	3605				ON OFF	TRIG	DISP
053	RCL4	$36 \quad 04$				$\bigcirc \square{ }^{\circ}$		
054	\doteqdot	-24		110		$1 \square$ -	GRAD \square	SCI \square
055	-	-45 -35				$\begin{array}{lll} 2 & \square & \text { 篊 } \\ 3 & \square & \mathbb{X} \end{array}$	RAD \square	$\begin{aligned} & \text { ENG } \square \\ & \mathrm{n} 2 \end{aligned}$
056	x	-35						
REGISTERS								
0		$\left.\right\|^{2} \Sigma \Sigma X_{i j}^{2}$	${ }^{3} \Sigma \mathrm{n}_{\mathrm{j}} \mathrm{X}^{2}{ }_{j}{ }^{4}{ }^{4} \mathbf{\Sigma} \mathrm{n}_{\mathrm{j}}$	${ }^{5} \mathbf{\Sigma} \mathrm{n}^{2}$	${ }^{6} \mathrm{~J}$	${ }^{7}$ used	${ }^{8}$ used	${ }^{9} \mathrm{c}$
So		」-32	S3	S5	S6	S7	S8	S9
A	B		C	D		E ${ }^{\text {I }}$		

Program Description

Program Title SPECIFICATION COMPLIANCE from LIMITS and REGRESSION ANALYSIS

Contributor's Name Hewlett-Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis
State Oregon
Zip Code 97330

Program Description, Equations, Variables

$$
\begin{aligned}
& X_{i}=X_{0}+\Delta x \\
& X_{i+1}=X_{i}+\Delta x \\
& Y_{i}=A+B X i \\
& Z_{L}=\frac{Y_{i}-L}{S} ; P_{L}=f\left(Z_{L}\right) \text { Note } 1 \\
& Z_{u}=\frac{U-Y_{i}}{S} ; P_{u}=f\left(Z_{u}\right) \text { Note } 1 \\
& Y_{u}=U-Z S \quad ; X_{u}=\frac{Y_{u}-A}{B} \\
& Y_{L}=L+Z S \quad ; \quad X_{L}=\frac{Y_{L}-A}{B}
\end{aligned}
$$

NOTE $1: P_{L}$ and P_{u} are the probability of meeting the lower or upper specification limits respectively. They are found from a table of the normal probability distribution at the value of Z_{L} or Z_{u} in question.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	\mathbf{i}	$\mathrm{X}_{\mathbf{i}}$	$\mathrm{Y}_{\mathbf{i}}$	Z_{L}	$\mathrm{Z}_{\mathbf{u}}$	P_{L}	$\mathrm{P}_{\mathbf{u}}$	NOTE:
	0	15.00	42.50	-1.88	9.38	.030	1.000	obtain P_{L} and
	1	20.00	50.00	0.00	7.50	.500	1.000	P_{u} from table
	2	25.00	57.50	1.88	5.63	.970	1.000	of normal
	3	30.00	65.00	3.75	3.75	1.000	1.000	distribution
	4	35.00	72.50	5.63	1.88	1.000	.970	
	5	40.00	80.00	7.50	0.00	1.000	.500	
	6	45.00	87.70	9.38	-1.88	1.000	.030	

Sample Problem(s)
The following information is obtained from a regression analysis for a linear equation: $A=20 ; B=1.5 ; S=4.0$. What are the probabilities of meeting specification limits of $L=50$ and $U=80$ as X varies from 15.0 to 45.0 in steps of 5.0 ? What are the X values at the specification limits and the x and y values at the lower and upper 90% confidence limits?

Solution(s) Insert program: $20 \uparrow, 1.5 \uparrow, 4.0 \uparrow, 15.0$, [f] [A] $50 \uparrow, 80 \uparrow, 5.0$ [R/S]
[A] $y_{0}=42.50 ;[B] Z_{L}=-1.88 ;[C] Z_{u}=9.38 ;[D] X_{1}=20.00 ;[A] y_{1}=50.00$
[B] $Z_{L}=0.00 ;[C] Z_{u}=7.50 ;[D] X_{L}=25.00$. . . etc. to complete the table shown under sketches.

For the x values at the specification limits [CLX] [E] $\mathrm{Y}_{\mathrm{L}}=50.00$;
$[\mathrm{R} / \mathrm{S}] \mathrm{X}_{\mathrm{L}}=20.00$; [f] [STF] [1] [CLX] [E] $\mathrm{Y}_{\mathrm{u}}=80.00 ;[\mathrm{R} / \mathrm{S}] \mathrm{X}_{\mathrm{u}}=40.00$
For 90\% limits [f][CLF][1]
[GTO][1][R/S][E] $\mathrm{Y}_{\mathrm{L} 90}=55.13$; [R/S] $\mathrm{X}_{\mathrm{L} 90}=23.42 ;[\mathrm{f}][\mathrm{STF}][1][\mathrm{GTO}][1][\mathrm{R} / \mathrm{S}][\mathrm{E}]$
$Y_{u 90}=74.87 ;[R / S] X_{u 90}=36.58$

Reference(s) This program is a translation of the HP - 65 Users' Library
Program 非 03202A submitted by George J. Sellers.

8
STEP KEY ENTRY KEY CODE
001
002
004
005
006
007
008
009
$\begin{array}{rrr}010 & 5 T 05 & 3565 \\ 011 & R 4 & -31 \\ 012 & 5 T 06 & 3566 \\ 013 & F 4 & -51\end{array}$
013
015
016
017
018 EN
020 *
022
023
025
626
627
020 KLBL
030
032
033
034
03
$\begin{array}{ll}035 & R \\ 036 & \mathrm{~K}\end{array}$
038 R
839
040
041 *
0

0

046	R. 5	51
047	*LELE	2115
848	STOS	3509
649	RCL 3	3663
850	X	-35
051	F1?	162301
052	ET04	2284
053	RCL4	3644
054	*LEL5	2145
055	+	-55
056	R/S	51

*LELa	211611
STCE	3568
FV	-31
STOS	3506
Fi'	- 1
STOE	350
R】	- 1
STO1	3501
R/E	51
STOS	356
R ${ }^{\text {d }}$	-31
STOE	7568
F.	- $\overline{31}$

CL: 35
64
-51
-21
-21
51
$21 \quad 51$
3609
3642
-35
3641
-55
5507
51
2112
36044

-	
RCL	36
63	

$\begin{array}{cc}= & -24 \\ R & 21\end{array}$
LELC
2113
3606
3687
-45
$36 \quad 03$
-24
$\begin{array}{rrr}R / E & 51 \\ * L E L D & 2114\end{array}$
$\begin{array}{ll}\text { RCLE } & 3668 \\ \text { RCL5 } & 3605\end{array}$
$\begin{array}{cc}\text { RCL5 } & 36 \quad 05 \\ + & -55 \\ 5708 & 35\end{array}$ -

3
-
CLE 36 ,

KEY CODE
COMMENTS
\square

050
059
059
RCL1
$36 \quad 01$

$$
\text { RCL2 } 3602
$$

061
062
063
064

$\mathrm{R} \leqslant$
*LBL4 2104 RCLE उE EO
865
a6e * *LELI 210.01
068
?

69
870
872
672
073
RF
$\times L B L 2$
$21 \begin{array}{r}51 \\ 62\end{array}$
42
61
-62
77
876
879
480
681
682

982	* LELS	2103
683	3	65
084	2	62
685	.	-62
086	3	63
087	2	02
488	3	05
089	7	© ${ }^{\circ}$
090	FS	51

690		$\mathrm{R} \leqslant$

Program Title PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION)

Contributor's Name Hewlett - Packard Company
Address 1000 N.E. Circle Boulevard
City Corvallis
State Oregon
Zip Code 97330

Program Description, Equations, Variables

Case 1

Let X be the sample mean of a random sample of size n from a truncated exponential distribution with pdf.

$$
f(x)=\sigma^{-1} e^{-x / \sigma}\left(1-e^{-x o / \sigma)} \quad 0 \leqslant x \leqslant X_{0}\right.
$$

The maximum likelihood estimator $\hat{\sigma}$ for σ is the solution of

$$
\bar{x}-\hat{\sigma}+x_{0}\left(e^{x^{\circ} / \hat{\sigma}}-1\right)^{-1}=0
$$

Case 2

Let $X_{(1)}<X_{(2)} \cdot \cdots<X_{(r)}$ denote the first r order statistics from a random sample of size n from a distribution with pdf.

$$
f(x)=\sigma^{-1} \operatorname{EXP}(-(x-\theta) / \sigma) \quad \theta \leqslant x \leqslant \infty
$$

The minimum variance unbiased estimators for σ and θ are

$$
\begin{aligned}
& \sigma^{*}=(r-1)^{-1} \sum_{j=2}^{r}(n-j)\left(X_{(j+1)}-X_{(j)}\right) \\
& \theta^{*}=X_{(1)}-\sigma^{* / n}
\end{aligned}
$$

Operating Limits and Warnings In case $1, \sigma$ is finite only if $X<X_{0} ; 2$. If $X>X_{0} / 2$, then $\hat{\sigma}$ is infinite - this means that the truncated exponential distribution is not a good model for the observations. Program may not work when $\overline{\mathrm{X}}$ is very close to $\mathrm{X} \circ / 2$.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sample Problem(s)
CASE 1
$X \circ=5, \quad X=2$

CASE 2
$n=5, r=4 \quad X_{(j)}, j=1,--, 4=11.12,12.55,13.47,14.58$

Solution(s)
CASE $1 \quad \hat{\sigma}=4.065$
CASE $2 \quad \sigma^{*}=3.567, \quad \theta^{*}=10.407$

Keystrokes:
5 [ENTT] $2[\mathrm{~A}] \rightarrow$
5 [ENT个] 4 [ENT个
11.12 [B] 12.55
[C] 13.47 [C]
14.58 [C] [D] \rightarrow 3.567
$[\mathrm{E}] \rightarrow$
10.407

Reference (s)
Johnson and Kotz, "Continuous Univariate Distributions - 1", Houghton Mifflin Co.., 1970.
This program is a translation of the HP - 65 Users' Library Program \# 03652A submitted by Richard Freedman.

STEP	InStructions	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
	CASE 1			
2		X°	4	
3	Note: X must be less than X 。/2	$\overline{\mathrm{X}}$	A	$\hat{\sigma}$
			$\square \square$	
	For new Case 1 go to 2			
			-	
			,	
	CASE 2			
4		n	4	
5		r	\uparrow	
6		$\mathrm{X}(1)$	B - \square	
7	Repeat 7 for $\mathrm{j}=2,3, \ldots, r$		C \square	j
8			D [σ^{*}
9			E]	θ^{*}
			$\square \square$	
	for new Case 2 go to 4			
			\square	
			\square	
			-	
			[
			[
			\square	
			\square	
			\square	
			-	
			\square	
			\square	
			-	
			\square	

$\begin{aligned} & \text { STEP } \\ & 001 \end{aligned}$	KEY ENTRY * LELA	KEY CODE
002	5701	2561
003	ST03	3543
004	Et	-31
005	5704	3504
006	*LEL1	21 -1
067	RCLi	36. 11
008	GSEE	2515
009	STOZ	5502
010	RCL1	3601
611	+	-55
012	GSEE	2315
013	RCLE	36 42
014	-	-45
015	LSTX	16-6.3
016	ENT \uparrow	-21
017	χ	-35
618	$\mathrm{X}+\mathrm{Y}$	-41
019	\div	-24
029	RCLI	3601
021	$X+Y$	-4i
022	-	-4.5
023	STC1	3501
824	LSTX	16-6.3
025	AES	1631
026	EEX	-23
027	3	03
028	CHS	-22
029	$X \leq Y ?$	16-35
036	GTO1	2201
631	RCL1	3681
032	RTH	24
033	* \quad LBLE	2115
034	ENT*	-2i
035	ENT \uparrow	-21
036	KCL4	36. 04
037	$\mathrm{X}+\mathrm{Y}$	-41
038	\doteqdot	-24
839	ϵ^{x}	33
848	1	61
841	-	-45
042	1\%	52
243	RCL 4	3604
044	x	-35
045	-	-45
046	RCLE	36.43
047	-	-45
048	RTN	24
049	*LELE	2112
050	STO1	3501
051	STOS	3504
852	R \downarrow	-31
053	1	01
054	5704	3504
855	-	-45
056	STO2	3502

Program Description, Equations, Variables

$$
(1-\gamma)=\sum_{j=0}^{x}\left[\frac{N!}{j!(N-j)!}\right] P^{j}(1-P)^{N-j}
$$

where $N=$ total number of items tested
$\mathbf{j}=$ number of items failed
$\gamma=$ confidence level (in decimal form . XX)
P = probability of failure
$(1-P)=$ reliability $=R_{L . X}$
$\alpha=\frac{(1-\gamma)-(1-\gamma) \text { calculated }}{(1-\gamma)} \quad$ allowable error

Operating Limits and Warnings $\quad \mathrm{N} \leqslant 69$
$.50<\gamma<.99$ for most cases γ will not work if outside this range.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sample Problem(s) A) Twenty rocket motors are fired with one failure; what is the demonstrated reliability at the lower 90% confidence level?
B) Fifty components are tested at $1 / 2$ times their normal rated loading; what is the maximum number of failures that can be obtained and still demonstrate a . 87 reliability at a 95% confidence level?
C) What is the reliability of 1 failure out of 15 tests of the 90% confidence level calculated to four decimal places ($\alpha \leq .001$).

Solution(s) A) 20 [\uparrow], 1 [A] [B]
$\rightarrow 0.82$
B) 50 [\uparrow], 1 [A], . 95 [C]
0.91

50 [t], 2 [A], . 95 [C]
0.88
$50[\uparrow], 3[A], .95$ [C]
0.85
only 2 failures can be obtained
C) $15[\uparrow], 1$ [A], $.001[S T O][7][B] \rightarrow 0.7645$

Reference(s) This program is a translation of the HP - 65 Users' Library Program \# 03820A submitted by George J. Sellers.

16

Program Description, Equations, Variables Given the mission time t, number of parallel components n_{i}, failure rates $\lambda_{i j}$ and reliability block diagram of a parallel, series or combination parallel/series system, the program calculates the following values:

$$
\text { Probability of Failure } Q_{s}(t)=1-R_{s}(t)
$$

$$
\text { Reliability } R_{s}(t)=\prod_{i=1}^{k} R_{i}(t)
$$

$$
\text { where } k=\text { number of parallel groupings in series }
$$

$$
\begin{aligned}
R_{i} & =R_{i(j-1)}+\left(1-R_{i(j-1)}\right) R_{i j} \quad 1 \geqslant j \geqslant n_{i} \\
R_{i j} & =\exp \left(-\lambda_{i j} t\right)
\end{aligned}
$$

Operating Limits and Warnings n is a positive integer and $\lambda \geqslant 0$.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without relianceupon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sketch(es)

Sample Problem(s)
Find the system reliability and probability of failure of the system represented on the line above, given the following failure rates and mission time:

$$
\begin{array}{rlrl}
\lambda_{11} & =2 \times 10^{-4} & \text { failures/hour } \\
\lambda_{12} & =1.5 \times 10^{-2} & " 1 \\
\lambda_{21} & =3.4 \times 10^{-3} & " 1 \\
\lambda_{22} & =1.2 \times 10^{-2} & \prime \prime \\
\lambda_{23} & =2.5 \times 10^{-2} & \prime \prime \\
t & =10 \text { hours } &
\end{array}
$$

Solution(s)
DSP 8
f A 10 A 2 B . 0002 C .015 C
3 B . 0034 C .025 C .012 C $\rightarrow .99888578\left(R_{s}(t)\right)$
D

$$
\rightarrow .00111422\left(Q_{s}(t)\right)
$$

Reference (s)

Bazovsky, Igor, Reliability Theory and Practice, pgs. 17, 89, 98 Prentice Hall, 1961

This program is a translation of the HP-65 Users' Library program \#03869A submitted by James E. Wells.

STEP	Instructions	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	Enter program				
2	Initialize		f	A	1.00
3	Enter mission time	t	A		t
4	Enter number of	n_{i}	B		n_{i}
	parallel components				
5	Perform step 5 for	$\lambda_{i j}$	C		j
	i $=1,2, \ldots, n-1$				
6	Compute $\mathrm{R}_{\mathrm{s}}(\mathrm{t})$	$\lambda_{\text {in }}$	C		$\mathrm{R}_{\mathrm{s}}(\mathrm{t})$
7	Compute $\mathrm{Q}_{\mathrm{S}}(\mathrm{t})$		D		$Q_{s}(t)$
	(optional)				
	(for new case, go				
	to step 2)				

97 Program Listing I

Program Description I

Program Title MIL-STD-883 CALCULATED LEAK RATE

Contributor's Name
Hewlett-Packard
Address
1000 N.E. Circle Blvd.
City Corvallis
State Oregon
Zip Code 97330

Program Description, Equations, Variables

MIL-STD-883A Method 1014.1 Condition A_{2} requires a calculated leak rate using the equation

$$
R=L \frac{P_{E}}{P_{0}} \sqrt{\frac{M_{a}}{M}}\left\{1-\exp \left[-L \frac{t_{1}}{V P_{0}} \sqrt{\frac{M_{a}}{M}}\right]\right\} \exp \left[-L \frac{t_{2}}{V P_{0}} \sqrt{\frac{M_{a}}{M}}\right]
$$

To calculate L given the value for R. This equation must be solved iteratively for L. Solution is done using the Newton procedure for refining the trial values for L.

The user is referred to MIL-STD-883 for the meaning and complete description of variables and test techniques.

```
\(\mathrm{R}=\) Measured leak rate
\(\mathrm{L}=\) Calculated leak rate cc/sec
\(P_{E}=\) Bomb pressure (usually 5 atm)
\(t_{1}=\) Pressurization time sec.
\(P_{0}=\) Atmospheric pressure (1 atm)
\(t_{2}=\) Time from end of pressure to measurement sec.
\(\frac{M_{a}}{M}=\) Ratio of molecular wts of air to tracer gas (assumed He)
```


Operating Limits and Warnings

Mathematically there is no limit, but calculation time is less for 1% than for . 01%. 1% is adequate for most experimental setups.

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

Sample Problem(s)

For the inputs
$R=7.2 \times 10^{-8}$
$t_{1}=3600 \mathrm{sec}$
$t_{2}=300 \mathrm{sec}$
$v=1.1684 \mathrm{cc}$
ERROR = . 01
The program should return the value $8.058-07$. Keying RCL 3 will tell you that it took 6 iterations to obtain the answer.

Solution(s) Keystrokes:
Outputs:

```
7.2 [EEX][CHS][8][STO][8], 3600 [STO][1], 300 [STO][2],
1.1684 [STO][3], 2.678 [STO][4], .01 [STO][5]
[SCI][DSP][3][A] }\quad->8.058 -07
[RCL][3] }->6.000 0
```

Reference (s)
MIL-STD-883A "Military Standard Test Methods and Procedures for Microelectronics"

Method 1014.1 Seal
This program is a translation of the HP-65 Users' Library Program 非04109A submitted by Richard T. Lamoureux.

User Instructions

MIL-STD-883 LEAK RATE
 GO

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS		OUTPUT DATA/UNITS
1	ENTER PROGRAM				
2	INPUT DATA,				
	MEASURED RATE SCC/S¢	C R	ST0	8	R
	PRESSURIZATION TIME	SEC t_{1}	STO	1	t_{1}
	MEASUREMENT TIME SEG	t_{2}	STO	2	t_{2}
	PACKAGE VOLUME CC	v	STO	3	v
	RATIO MOL WT AIR TO	He a	STO	4	2.678
	ALLOWED ERROR	10^{-2}	STO	5	
3	SET DISPLAY		DSP	3	
4	START PROGRAM		A		L
	L IS CALCULATED LEAK	RATE			
5	NUMBER OF ITERATIONS		RCL	3	n
	REQUIRED				
6	FOR NEXT CASE ENTER				
	MEASURED RATE	R	STO	8	R
	PRESSURIZATION TIME	t_{1}	STO	1	t_{1}
	MEASUREMENT TIME	t_{2}	STO	2	t_{2}
	PACKAGE VOLUME	v	STO	3	v
7	START PROGRAM		A		L

Program Description I

Program Title MLE: $\hat{\theta}$ FROM HAZARD RATE		
Contributor's Name Hewlett-Packard Company		
Address 1000 N.E. Circle Boulevard		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables Given the test failure data of the sample, the program computes differential failure times ($\Delta \mathrm{t}_{\mathbf{i}}$); mean time to failure (MTTF); failure rate $Z\left(t_{i}\right)$; parameter λ (constant hazard rate) and $\hat{\theta}$ from this hazard rate.

Following formulas and variables are used:

1) $\Delta t_{i}=t_{i}-t_{i-1}$;
where $i=0,1,2,3, \ldots n$ failures

$$
\begin{aligned}
& \mathrm{t}_{\mathbf{i}}=\text { time to failures } \\
& \mathrm{N}_{\mathbf{O}}=\text { total } \# \text { of fallures }
\end{aligned}
$$

$$
\text { 3) } Z\left(t_{i}\right)=\frac{n\left(t_{i}\right)-n\left(t_{i}+\Delta t_{i}\right)}{\Delta t_{i}} \cdot \frac{1}{N_{s}\left(t_{i}\right)} \text {; }
$$

3) $Z\left(t_{i}\right)=\frac{n\left(t_{i}\right)-n\left(t_{i}+\Delta t_{i}\right)}{\Delta t_{i}} \cdot \frac{1}{N_{S}\left(t_{i}\right)}$; where $\left[n\left(t_{i}\right)-n\left(t_{i}+\Delta t_{i}\right)\right]$
is \# of failures in that
time difference.
$N_{S}\left(t_{i}\right)=\#$ survived at t_{i}.
4) $\lambda=\frac{\Sigma Z\left(t_{i}\right)}{N_{0}}=\bar{Z}\left(t_{i}\right) \quad ; \quad \lambda=$ parameter (hazard rate) i.e. mean of total $Z\left(t_{i}\right)^{\prime} s$.

$$
\text { 5) } \underset{\underset{\underset{\sim}{\text { hazard }}}{\text { rate }}}{\hat{\theta}_{\mathrm{Z}}(t)}=\frac{1}{\lambda} \text {; }
$$

[MLE from hazard rate]

Operating Limits and Warnings

> This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
> NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAAGES IN CONNECTIN WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Deseription II

Sample Problem(s) Ten tires were put on testing machines with a known load and rpm: results were as follows.

FAILURE \#
OPERATING TIME

Reference(s) This program is a translation of the HP-65 Users' Library Program非05105A submitted by Ashok H. Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	[f] [REG]	0.00	(C1ear registers)
251	[A]	251.00	(t_{10})
190	[R/S]	61.00	$\left(\Delta t_{10}\right)$
	[R/S]	190.00	[Recall last input]
140	[R/S]	50.00	(Δt_{g})
	[R/S]	140.00	[Recall last input]
114	[R/S]	26.00	($\Delta \mathrm{t}_{8}$)
	[R/S]	114.00	[Recall last input]
88	[R/S]	26.00	(t_{t})
	[R/S]	88.00	[Recall last input]
62	[R/S]	26.00	($\Delta \mathrm{t}_{6}$)
	[R/S]	62.00	[Recall last input]
45	[R/S]	17.00	($\Delta \mathrm{t}_{5}$)
	[R/S]	45.00	[Recall last input]
30	[R/S]	15.00	($\Delta \mathrm{t}_{4}$)
	[R/S]	30.00	[Recall last input]
22	[R/S]	8.00	($\Delta \mathrm{t}_{3}$)
	[R / S]	22.00	[Recall last input]
6	[R/S]	16.00	(Δt_{2})
	[R/S]	6.00	[Recall last input]
0	[R/S]	6.00	($\Delta \mathrm{t}_{1}$)
	[R/S]	0.00	[Recall last input]
	[B]	94.80	($\hat{\theta}$)
6	[C]	0.0167	[$2\left(t_{1}\right)$]
16	[R/S]	0.0069	[$\mathrm{Z}\left(\mathrm{t}_{2}\right)$]
8	[R/S]	0.0156	[$\mathrm{Z}\left(\mathrm{t}_{3}\right)$]
15	[R/S]	0.0095	[$2\left(t_{4}\right)$]
17	[R/S]	0.0098	[$2\left(t_{5}\right)$]
26	[R/S]	0.0077	[$2\left(\mathrm{t}_{6}\right)$]
26	[R/S]	0.0096	[$2\left(\mathrm{t}_{7}\right)$]
26	[R/S]	0.0128	[$\mathrm{Z}(\mathrm{t} 8)$]
50	[R/S]	0.0100	[$\mathrm{z}(\mathrm{tg})$]
61	[R/S]	0.0164	[Z (t10)]

Program Title MLE: $\hat{\theta}$ BY LEAST SQUARE METHOD		
Contributor's Name Hewlett-Packard Address 1000 N. E. Circle Boulevard City \quad Corvallis State	Oregon	Zip Code 97330

Program Description, Equations, Variables

The program uses least square technique to compute maximum likelihood estimator. By using the probability of survival $R\left(t_{i}\right)$
where:

$$
R\left(t_{i}\right)=\frac{N_{s}}{N_{o}}
$$

$$
\begin{aligned}
N_{s} & =\text { numbers survived at time } t_{i} \\
N & =\text { total number failed }
\end{aligned}
$$

$$
N_{0}=\text { total number failed }
$$

$\underset{\text { parameter }}{\operatorname{least} \text { square }} \lambda=-\frac{\sum_{i=1}^{n} t_{i} 1_{n} R\left(t_{i}\right)}{\sum_{i=1}^{n} t_{i}^{2}} ; \quad$ for detail see page 4 of 7
and $\hat{\theta}=\frac{1}{\lambda} ;$ maximum likelihood estimator

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENtial damages in connection with or arising out of the furnishing, use or performance of this program MATERIAL.

DEVELOPING θ BY GENERATING THE PARAMETER λ USING RELIABILITY FOR LEAST SQUARE METHOD

Using Least Square Estimate

To Find value of parameter λ

$$
R\left(t_{i}\right)=e^{-\lambda t_{i}}
$$

$$
\ln R\left(t_{i}\right)=-\lambda t_{i}
$$

$s(\lambda)=\Sigma\left[\ln R\left(t_{i}\right)-\left(-\lambda t_{i}\right)\right]^{2}$
Now taking derivative w.r.t. λ on both sides and equating to zero for maximum we get:

$$
\begin{aligned}
& \frac{d s(\lambda)}{d \lambda}=\Sigma^{2}\left[\ln R\left(t_{i}\right)+\lambda t_{i}\right]\left(t_{i}\right)=0 \\
& \sum 2\left[\ln R\left(t_{i}\right)+\lambda t_{i}\right]\left(t_{i}\right)=0 \\
& \Sigma 2\left[t_{i} \ln R\left(t_{i}\right)+\lambda t_{i}^{2}\right]=0 \\
& 2 \Sigma\left[t_{i} \ln R\left(t_{i}\right)+\lambda t_{i}^{2}\right]=0 \\
& \sum_{i=1}^{n} t_{i} \ln R\left(t_{i}\right)+\lambda \sum_{i=1}^{n} t_{i}^{2}=0 \\
& \lambda=\frac{-\sum_{i=1}^{n} t_{i} \ln R\left(t_{i}\right)}{\sum_{i}^{n} t_{i}^{2}}
\end{aligned}
$$

Sample Problem(s) Ten tires were put on testing machines with a known load and rpm. The test results of failures were as follows: FAILURE 非 OPERATING TIME

1	6	
2	22	FIND THE FOLLOWING:
3	30	1) probability of survival $R\left(t_{i}\right)$
4	45	$2)$ MLE: θ by using least square method
5	62	
6	88	
7	114	
8	140	
9	190	

Solution(s) For solution please see pages attached next 4 of 7 and 5 of 7 .

Reference(s) Authors Own Notes On "Ouality Assurance and Reliability". This program is a translation of the HP-65 Users' Library Program \#05106A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

Press [f] [REG]		Display	
		0.00	[Clear Registers]
6	[A]	36.00	[t_{1}^{2}]
22	[A]	484.00	[t_{2}^{2}]
30	[A]	900.00	[t_{3}^{2}]
45	[A]	2025.00	[t_{4}^{2}]
62	[A]	3844.00	[t_{5}^{2}]
88	[A]	7744.00	[t_{6}^{2}]
114	[A]	12996.00	[t_{7}^{2}]
140	[A]	19600.00	[t_{8}^{2}]
190	[A]	36100.00	[t_{g}]
251	[A]	63001.00	[t_{10}^{2}]
	[B]	0.9000	$\left[R\left(t_{1}\right)\right]$
	[B]	0.8000	$\left[R\left(t_{2}\right)\right]$
	[B]	0.7000	$\left[R\left(t_{3}\right)\right]$
	[B]	0.6000	$\left[R\left(t_{4}\right)\right]$
	[B]	0.5000	$\left[R\left(t_{5}\right)\right]$
	[B]	0.4000	[R($\left.\mathrm{t}_{6}\right)$]
	[B]	0.3000	[$\mathrm{R}\left(\mathrm{t}_{7}\right)$]
	[B]	0.2000	$\left[R\left(t_{8}\right)\right]$
	[B]	0.1000	$\left[R\left(t_{9}\right)\right]$
	[B]	0.0000	$\left[R\left(\mathrm{t}_{10}\right)\right]$

	PRESS	DISPLAY	
. 9	9 [C]	-0.1054	[$\ln \mathrm{R}\left(\mathrm{t}_{1}\right)$]
	8 [C]	-0.2231	[$\ln \mathrm{R}\left(\mathrm{t}_{2}\right)$]
. 7	7 [C]	-0.3567	[$\ln \mathrm{R}\left(\mathrm{t}_{3}\right)$]
. 6	6 [C]	-0.5108	[1n $R\left(t_{4}\right)$]
	5 [C]	-0.6931	[$\ln \mathrm{R}\left(\mathrm{t}_{5}\right)$]
. 4	4 [C]	-0.9163	[$1 \mathrm{n} R\left(\mathrm{t}_{6}\right)$]
	3 [C]	-1.2040	[1n $R\left(t_{7}\right)$]
	2 [C]	-1.6094	[1n $R\left(t_{8}\right)$]
	1 [C]	-2.3026	[1n $R\left(t_{9}\right)$]
	$0 \rightarrow$ (not possible)	--	$\leftarrow\left[\operatorname{ln~} R\left(\mathrm{t}_{10}\right)\right]$
	6 [D]	6.00	[t_{1}]
. 1054	[CHS] [R/S]	- 0.6324	[$\mathrm{t}_{1} \cdot \ln \mathrm{R}\left(\mathrm{t}_{1}\right)$]
22	2 [D]	22.0000	[t_{2}]
. 2231	[CHS] [R/S]	- 4.9082	$\left[t_{2} \cdot \ln R\left(t_{2}\right)\right]$
30	0 [D]	30.0000	[t_{3}]
. 3567	[CHS] [R/S]	- 10.7010	$\left[t_{3} \cdot \ln R\left(t_{3}\right)\right]$
	5 [D]	45.0000	[t_{4}]
. 5108	[CHS] [R/S]	- 22.9860	$\left[t_{4} \cdot \operatorname{ln~R~}\left(\mathrm{t}_{4}\right)\right]$
	2 [D]	62.0000	[t_{5}]
. 6931	[CHS] [R/S]	- 42.9722	$\left[\mathrm{t}_{5} \cdot \ln \mathrm{R}\left(\mathrm{t}_{5}\right)\right]$
	8 [D]	88.0000	[t_{6}]
. 9163	[CHS] [R/S]	- 80.6344	$\left[\mathrm{t}_{6} \cdot \operatorname{ln~R~}\left(\mathrm{t}_{6}\right)\right]$
114	4 [D]	114.0000	[t_{7}]
1.2040	[CHS] [R/S]	- 137.2560	$\left[\mathrm{t}_{7} \cdot \operatorname{ln~} \mathrm{R}\left(\mathrm{t}_{7}\right)\right.$]
140	0 [D]	140.0000	[t_{8}]
1.6094	[CHS] [R/S]	- 225.3160	$\left[t_{8} \cdot \operatorname{ln~R~}\left(\mathrm{t}_{8}\right)\right]$
190	0 [D]	190.0000	[g_{9}]
2.3026	[CHS] [R/S]	- 437.4940	$\left[t_{9} \cdot \operatorname{ln~} \mathrm{R}\left(\mathrm{t}_{9}\right)\right]$
[Delete] $\rightarrow 251$	1 [D]	251.0000	[t_{10}]
this one only	[R/S]	--	($\left.\mathrm{t}_{10} \cdot \ln \mathrm{R}\left(\mathrm{t}_{10}\right)\right]$
	[E]	152.3834	[旬]

BY LEAST SQUARE ESTIMATE METHOD USING R(t)

	ie	$\begin{array}{r} 10 \\ -\quad \sum_{i=1} \\ \hline \end{array}$	$\mathrm{n} R\left(\mathrm{t}_{\mathbf{i}}\right)$	(as formed previously)	
		$\sum_{i=1}^{\sum_{i}^{0}} t_{i}^{2}$			
1	$\frac{t_{i}}{6}$	$\frac{R\left(t_{j}\right)}{0.90}$	$\frac{\ln \mathrm{R}\left(\mathrm{t}_{j}\right)}{-0.1054}$	$\frac{t_{i} \ln R\left(t_{i}\right)}{-0.6324}$	$\frac{t^{2}}{36}$
2	22	0.80	- 0.2231	- 4.9082	484
3	30	0.70	- 0.3567	- 10.7010	900
4	45	0.60	- 0.5108	- 22.9860	2025
5	62	0.50	- 0.6931	- 42.9722	3844
6	88	0.40	-0.9163	- 80.6344	7744
7	114	0.30	- 1.2040	- 137.2560	12996
8	140	0.20	- 1.6094	- 225.3160	19600
9	190	0.10	- 2.3026	- 437.4940	36100
10	251	0.00	--	--	63001
			$\lambda=-962.90$		146730
	$\therefore \quad \lambda=-\frac{-962.90}{146730}$			$\therefore \tilde{\theta}=\frac{1}{\lambda}$	152.3834

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program		-	
2	Initialize		RTN \square	
			\square	
3	Clear registers		f REG	0.00
			\square	
4	Input t_{i} (operating time)	t_{i}	A	t_{i}^{2}
	repeat 4 for $i=1,2,3, \ldots n$		\square	
			\square	
5	Compute $\mathrm{R}\left(\mathrm{t}_{\mathbf{i}}\right)$ Probability of survival		B	$R\left(t_{i}\right)$
	repeat 5 for $i=1,2,3, \ldots n$		\square	
6	Input probability of survival $R\left(t_{i}\right)$	$\mathrm{R}\left(\mathrm{t}_{\mathrm{i}}\right)$	C -	$\mathrm{L}_{\mathrm{N}} \mathrm{R}\left(\mathrm{t}_{\mathrm{i}}\right)$
	repeat 6 for $i=1,2,3, \ldots n$		$\square \square$	
			$\square \square$	
7	Input operating time t_{i}	t_{i}	\square	t_{i}
			\square	
8	Input $\mathrm{L}_{\mathrm{N}} \mathrm{R}\left(\mathrm{t}_{\mathrm{i}}\right)$	$\mathrm{L}_{\mathrm{N}} \mathrm{R}\left(\mathrm{t}_{\mathrm{i}}\right)$	$\mathrm{R} / \mathrm{S} \square$	$t_{i} L_{N} R\left(t_{i}\right)$
	repeat $7-8$ for $i=1,2,3, \ldots n$		-	
			\square	
9	Compute $\hat{\theta}$		E	$\hat{\theta}$
10	For new case go to step 2		\square	
			\square	
			,	
			,	
			\square	
			\square	
			\square	

Program Title	SYSTEMS RELIABILTY - SERIES AND PARALLEL WITH SAME			
FAILURE RATE λ				
Contributor's Name Hewlett-Packard Company				
Address 1000 N.E. Circle Boulevard				
City	Corvallis	State Oregon	Zip Code	97330

Program Description, Equations, Variables Program calculates total systems reliability when units (composed of differential components) are placed in series or parallel, by using the concept of unreliability to calculate systems reliability in parallel, avoiding very lengthy and tedious calculations. Saves considerable amount of time. Equations used are as follows:
j_{i} is number of components of corresponding λ_{i}
λ_{i} is failure rate/hr of differential components (say r types) (where $i=1,2,3$, ... r)
$\sum_{i=1}^{r} j i \lambda_{i}$; total failure rate/hr of a unit

$$
-\sum_{1}^{n} \lambda_{i} j_{i} \cdot t
$$

Unit $R_{S}(t)=e \quad$; Unit reliability for t hours.
Unit $Q_{S}(t)=1-R_{S}(t)$; Unit unreliability for t hours.

Series $Q_{\text {sys }}=1-R_{\text {sys }}$
Parallel $R_{\text {sys }}^{\prime}=1-\prod_{m=1}^{n} Q_{m}^{\prime}=\left[1-\left[1-\prod_{m=1}^{n}\left[R_{s}(t)\right]_{m}\right]\right.$

Operating Limits and Warnings

All units placed in series or parallel must have same λ failure rate per hour.

[^1]
Sketch(es)

SERIES CONFIGURATION
PARALLEL CONFIGURATION

Sample Problem(s) The given electrical unit has following components with corresponding failure rates:

chronological order i	$\begin{aligned} & \text { \# of } \\ & \text { components } \\ & \mathbf{j} \end{aligned}$	ε failure rate/hr/comp. λ	
1	2-diodes	$2.0 \times 10^{-6} / \mathrm{hr}$	$4.0 \overline{\times 10}^{-6} / \mathrm{hr}$
2	3-transistors	$10.0 \times 10^{-6} / \mathrm{hr}$	$30.0 \times 10^{-6} / \mathrm{hr}$
3	1-eapacitor	$1.0 \times 10^{-6} / \mathrm{hr}$	$1.0 \times 10^{-6} / \mathrm{hr}$
4	2-resistors	$2.0 \times 10^{-6} / \mathrm{hr}$	$4.0 \times 10^{-6} / \mathrm{hr}$

Find for $t=1000$ hours; following:

1) Reliability, unreliability of a unit: $R_{S}(t) \& Q_{S}(t)$
2) Series reliability $R_{\text {sys }}$; unreliability for 3 units ($n=3$)
3) Parallel unreliability Qsys; reliability for 3 units ($n=3$)
4) Total failure rate/hour of an unit: ${\left.\underset{1}{r} \lambda_{i} j_{i}\right) ~}_{\text {) }}$

Solution(s) $\sum_{i=1}^{f} \lambda_{i} j_{i}=3.9000000 \quad-05$
Unit: $\quad R_{S}(1000)=0.961751 ; Q_{S}(1000)=0.038249$

Parallel System: $Q_{s}^{\prime}(1000)=0.000056 ; R_{s}^{\prime}(1000)=0.999944$
\quad for $n=3$

Reference(s) Authors Own Notes on "Quality Assurance And Reliability".
This program is a translation of the HP-65 Users' Library Program \#05108A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

[A]	0.00		
2 [EEX]	2.	00	
6	2.	06	
[CHS]	2.	-06	$\left[\lambda_{i}\right]$
[\uparrow			
[2]			[\# of components]
[X$]$	0.00		
[B]	4.000000000	-06	$\left[\begin{array}{ll}\Sigma & \lambda_{i} j_{i}\end{array}\right]$
10 [EEX]	10.	00	
6	10.	06	
[CHS]	10.	-06	
[+]	10.000000000	-06	
3	3.		
[X]			
[B]	3.400000000	-05	
[EEX]	1.	00	
6	1.	06	
[CHS] [\uparrow]	1.000000000	-06	
1	1.		
[X]	1.000000000	-06	
[B]	3.500000000	-05	
2 [EEX]	2.	00	
6	2.	06	
[CHS]	2.	-06	
[\dagger	2.000000000	-06	
2	2.		
[X$]$			
[B]	3.900000000	-05	
1000 [C]	0.961751		[$\mathrm{R}_{\text {S }}(1000)$]
[R / S]	0.038249		${ }_{[R}^{\left(1000 Q_{S}\right.} \underset{\text { when we }}{(1000)]}$
3 [D]	0.889585		[$\mathrm{R}_{\text {sys }} \mathrm{n}=3$ when we input
[$\mathrm{R} / \mathrm{S}]$	0.110415		[Qsys ${ }^{100}$) of 3 units in series]
3 [E]	0.000056		[Q's (1000) of 3 units in paralle1]
[R/S]	0.999944		[$\mathrm{R}^{\prime}{ }_{\mathrm{s}}(1000)$ of 3 units in parallel]

1 SYSTEM RELIABILITY - SERIES OR PARALLEL SYSTEM WITH SAME $\lambda \tau$

STEP	instructions	$\begin{gathered} \text { INPUT } \\ \text { DATA/UNITS } \end{gathered}$	KEYS		OUTPUT
1	Enter program				
2	Initialize, clear registers		A		0.00
3	Input λ_{i} for each component		\uparrow		
4	Input j_{i} \# of components	j_{i}	X	\square	$\lambda_{i}{ }^{j}{ }_{i}$
5	Sum \& Recall $\sum \lambda_{i} j_{i}$		B		$\Sigma \lambda_{i} j_{i}$
	repeat $3-5$ for $i=1,2,3, \ldots r$				
6	Input time 't' for reliability	t	C		Unit $\mathrm{R}_{\mathrm{S}}(\mathrm{t})$
7	Calculate unreliability		R/S		Unit $\mathrm{Q}_{\mathrm{S}}(\mathrm{t})$
8	Input no. of units in series to calculate	n	D		Series $\mathrm{R}_{\text {Sy }}$
	systems reliability in series				
9	Calculate unreliability for new ' n '		R/S		Series $\mathrm{Q}_{\text {sy }}$
	Go to step 8				
10	Input no. of units in parallel for	n	E		Parallel
	systems unreliability				Q'sys
11	Calculate reliability of parallel system		R/S		Parallel
				$\left.\square \square^{-}\right]$	R^{1} sys
	For new ' n ' go to step 8 or 10 as requires				
				\square	
	For a new case go to step 2				
				\square	
				\square	
				\square	
				\square	

Program Description I

Program Description, Equations, Variables
For series system, program uses $R_{s s}=\prod_{i=1}^{n} R_{i} \quad$ (where
 uses unreliability concept to find reliability of the system. $R_{s p}=1-Q_{s p}$ (where $Q_{s p}=\frac{n}{i=1}\left(1-e^{-\lambda_{i} t}\right) . \quad \lambda$ is failure rate/hour.

The program is very useful to check out any dependent failures, repairs, sand by operation and redundency of the system.

Operating Limits and Warnings

This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

SERIES SYSTEM
SERIES SYSTEM

PARALLEL SYSTEM

Sample Problem(s) Two retro rockets of differnet capacities with failure rates $6 \times 10^{-6} \mathrm{~F} / \mathrm{Hr}$ and $23 \times 10^{-6} \mathrm{~F} / \mathrm{Hr}$ respectively of a command module of a spacecraft are to be mounted for maximum possible systems reliability for re-entry. Find out systems reliability for 1000 hours. If they are mounted in series or parallel. (Please refer to sketch above).
ie GIVEN: $\quad t=1000$
$\lambda_{1}=6 \times 10^{-6}$ Failures/hour
$\lambda_{2}=23 \times 10^{-6}$ Failures/hour

Solution(s)

$$
\begin{aligned}
& R_{s \mathrm{~S}}(1000)=\prod_{i=1}^{n} R_{i}=e^{-\lambda_{1} t} \cdot e^{-\lambda 2 t}=e^{-6 \times 10-6} \times 1000 \cdot e^{-23 \times 10-6 \times 1000}=0.97141 \\
& Q_{s \mathrm{~S}}(1000)=0.028584 \\
& R_{\mathrm{sp}}(1000)=1-Q_{s p}=\left[1-\left(1-R_{1}\right)\left(1-R_{2}\right)\right]=0.999864 \\
& Q_{s p}(1000)=\left(1-R_{1}\right)\left(1-R_{2}\right)=\left(1-e^{-\lambda_{1} t}\right)\left(1-e^{-\lambda_{2} t}\right)=0.000136
\end{aligned}
$$

Reference(s) 1) "Probabilistic Reliability: An Engineering Approach" Martin Shooman, McGraw-Hill.
2) HP-65 Owners Handbook

This program is a translation of the HP-65 Users' Library Program 非05109A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

1 SYSTEMS RELIABILITY in SERIES AND PARALLEL DIFFERENT $\lambda \quad$ 乙
$t \quad \mathrm{R}_{\text {SS }} \quad \mathrm{Q}_{\text {SS }} \quad \mathrm{Q}_{\text {Sp }} \quad \mathrm{R}_{\text {Sp }}$

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:
Statistics
Mathematics
Electrical Engineering
Business Decisions
Clinical Lab and Nuclear Medicine

Mechanical Engineering Surveying
 Civil Engineering
 Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs $\$ 9.00$. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a $\$ 9.00$ value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at $\$ 10.00$, a savings of up to $\$ 35.00$ over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis
Portfolio Management/Bonds \& Notes
Real Estate Investment
Taxes
Home Construction Estimating Marketing/Sales
Home Management
Small Business
Antennas
Butterworth and Chebyshev Filters
Thermal and Transport Sciences
EE (Lab)
Industrial Engineering
Aeronautical Engineering
Control Systems
Beams and Columns
High-Level Math
Test Statistics
Geometry
Reliability/QA

Medical Practitioner
Anesthesia
Cardiac
Pulmonary
Chemistry Optics Physics
Earth Sciences
Energy Conservation
Space Science
Biology
Games
Games of Chance
Aircraft Operation
Avigation
Calendars
Photo Dark Room
COGO-Surveying
Astrology
Forestry

RELIABILITY/QUALITY ASSURANCE

Calculations related to reliability/quality assurance are included in this book, e.g., intra-class correlation, specific compliance, parameter estimation, lower limit and bounds of reliability, failure of serves, leak rate, maximum likelihood estimator, system reliability, distribution function, comparison of hazard models, etc.

RELIABILITY: INTRA-CLASS CORRELATION

SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS

PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION)
LOWER LIMIT OR RELIABILITY - BINOMIAL DISTRIBUTION
RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS
MIL - STD - 883 CALCULATED LEAK RATE
MLE: $\hat{\theta}$ FROM HAZARD RATE
MLE: $\hat{\theta}$ BY LEAST SQUARE METHOD
SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH SAME FAILURE RATE λ
SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ

[^0]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

[^1]: This program has been verified only with respect to the numerical example given in Program Description II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.
 NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

