HEWLETT-PACKARD

Users' Library Solutions

Reliability/QA

INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

- SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS Calculates predicted value from regression analysis constants, and standard normal deviate from standard deviation and specification limits. Also calculates x or y value at 90%, 95% or 99% limits about the regression line. Very useful for calculating a table of values from regression constants for determining probability of specification compliance in process control or EVOP applications.
- LOWER LIMIT OF RELIABILITY BINOMIAL DISTRIBUTION This program calculates the lower limit of reliability at a specified confidence level using the binomial distribution.
- RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS . 17 Computes the reliability and failure probability of a parallel system, series system or combination parallel/series system given mission time, number of components and component failure rates.
- MIL STD 883 CALCULATED LEAK RATE Gives the calculated leak from the measured leak rate using the equation given the MIL-STD-883, Method 1014, Condition A.

MLE: $\hat{\theta}$ FROM HAZARD RATE Given failure numbers and operating time for a sample test data, program computes differential operating times, maximum likelyhood estimator ($\hat{\theta}$) from operating times; failure dates [Z(t_i)]; parameter λ and finally MLE; $\hat{\theta}$ from hazard rate (i.e. λ).

- SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ . 43 This program calculates the reliability of the system when components or units of different failure rate λ are placed in series or parallel by using concept of unreliability to avoid tedious and lengthy calculations specially when system is in parallel.

Program Description I

Program Title RELIABILITY: INTRA-CLASS CORRELATION

Contributor's Name Address City Cor

Hewlett-Packard

1000 N.E. Circle Blvd.

Corvallis

State Oregon

Program Description, Equations, Variables, etc. Let the scores (measures) \mathbf{X}_{ij} represent the j-th subject's score on the i-th test (measurement). In the ANOVA model $\mathbf{X}_{ij} = \mathbf{\mu} + \mathbf{a}_j + \mathbf{e}_{ij}$, $\mathbf{\mu}$ the mean "true" measure over all subjects, \mathbf{a}_j the deviation of the j-th subject from that mean, and \mathbf{e}_{ij} the error in test i on the j-th subject, the reliability of the set of tests is the ratio $\mathbf{\rho}_I = \boldsymbol{\sigma}_A^2/\boldsymbol{\sigma}_X^2$, of true-difference variance to observed-score variance. This ratio is estimated by the formula

$$r_{I} = \frac{MS_{Bet} - MS_{With}}{MS_{Bet} + (c-1)MS_{With}}$$

where MS_{Bet} is the between mean squares, MS_{With} the within mean squares, and c is a factor dependent on sample size given by

$$c = \frac{1}{J-1} \left[\sum n_j - \frac{\sum n_j^2}{\sum n_j} \right]$$

where J is the number of subjects, n_j the number of test scores for subject j. Standard formulas are used for the mean squares, and the ANOVA F-ratio is computed as a by-product of the main program.

Operating Limits and Warnings This estimate is based on the ANOVA randomeffects model, and violations of its assumptions (e.g., normal distribution of the a_j , homogeneity of variances) should be held to a minimum for an accurate estimate. Winer (op. cit.) and other texts fully explain these assumptions and possible effects of departures. Most ill effects are minimized by use of equal n_j 's, for all j = 1, 2, ..., J.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

1

Sketch(es)

Sample Problem(s) The following data represent the scores of three subjects on repeated measurements of the same attribute. Compute the intra-class correlation (reliability) estimate and the ANOVA F. 1 2 5 6 j 3 4 8 5 12 1 10 14 11 8 2 6 9 13 17 16 3 13 10 14 Solution(s) $r_{I} = 0.36; F = 3.79$ Keystrokes: Outputs: [f][CLREG] 10 [A] 8 [A] ····· 11[A] [B] 6 [A] 9 [A] ···· 13[A] [B] 14 [A] 13 [A] ···· 16 [A] [B] [C] → 0.36 $[R/S] \rightarrow$ 3.79

Reference(s) Winer, B. J., <u>Statistical principles in experimental</u> <u>design</u>, pp. 165, 283-287, McGraw-Hill, 1971. This program is a translation of the HP-65 Users' Library Program # 03102A submitted by James M. Price.

User Instructions

	INTRA-CLASS CORRELATION			_	
	Σ_+ Subj r_I				
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KE	YS	OUTPUT DATA/UNITS
1	Enter program				
2	Initialize		f	REG	
3	(Repeat for i=1, 2,, n _j) Enter	X	A		i
4	(After all n _i Steps #3; repeat for	-0			
	j=1, 2,,J)		B		0.00
5	Compute r _I		C		rI
6	(Optional) Compute ANOVA F		R/S		F
	(degrees of freedom are found by:				
	RCL, 6, 1, - and RCL, 4, RCL, 6, -)				
	For new data, go to step 2.				

97 Program Listing I

STEP	KEY ENTR	Y KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COM	MENTS
001	*LBLA	21 11	accum. X	0 57	ST09	35 09	С	
002	51+7	35-55 07		058	RCL7	36 07		
003	X2 07.0	33 75 55 00	-	059	RCL8	36 08		
004	51†2 DCLO	33-33 02	accum, X ²	060	- DCL 7	-40 72 97		
003	RULO 1	30 00 B1		061		30 07 72 00		
000 007	1 1	-55		062	KULJ	30 87 G1		
007	STUS	75 Ø8	+	003 074		-45		
000	PTN	24	increment count	004		-4J 76 09		
00J 010	*I BL B	21 12		00.		-75		
R11	RCL 7	36 N7		867	' ^ ' +	-55		
012	ST+1	35-55 01		969	; ;	-24	2	
013	χ2	53		869	R/S	51	rI	
014	RCL8	36 08	$(\Sigma X)^2$	076	RCL7	36 07		
015	÷	-24		071	RCL8	36 08		
016	ST+3	35-55 03	$(\nabla \mathbf{x})^2/\mathbf{x}$	072	? ÷	-24	۳	
017	LSTX	16-63		073	7 R/S	51	-	
018	ST+4	35-55 04					1	
019	χ2	53	accum. IIj				1	
020	ST+5	35-55 05	accum. n_4^2				1	
021	1	Ø1	J					
022	ST+6	35-55 06						
023	CLX	-51					1	
024	5107	35 07		080			1	
025	5108	35 08					1	
026		24					1	
027		21 13					4	
020 030	RULJ	30 03 76 01					4	
023	KULI V2	57					4	
031	RCI 4	36 04					4	
032	÷	-24					ł	
033	-	-45					1	
034	RCL6	36 06		090			1	
035	1	01					1	
036	-	-45	df hotsoon				1	
037	÷	-24	MS between				1	
038	ST07	35 07	$\rightarrow R7$]	
039	RCL2	36 0 2	- K/					
040	RCL3	36 03						
041	-	-45						
042	RCL4	36 04					4	
043	RULE	36 06					1	
044 D15	- -	-40 -24	df within	100			4	
045	STUD	75 AR	MS within				ł	
040 047	RCLE	36 06	→ R8	├ ───┤			1	
048	1	00 00 Й1					1	
R49	-	-45					ł	
050	1/X	52		├ ───┤		1	SET STATUS	
051	RCL4	36 04				FLACE	TRIC	ספוח
05 2	RCL5	36 05						
053	RCL4	36 04					DEG 🛛	FIX 🕅
054	÷	-24		110				
055	-	-45		+				
056	X	-35					L	
	1	2		5	6	7	8	9
ľ	EEX-		$\Sigma n_j X_j^2 = \Sigma n_j$	Σn ²	J	used	used	с
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
L				h	I	l	_I	
A		B				-	ľ	

4

Program Description I

Program Title SPECIFICATION COMPLIANCE fr	om LIMITS and	REGRESSION ANALYSIS
Contributor's Name Hewlett-Packard Company		
Address 1000 N.E. Circle Boulevard		
City Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables $X_i = X_o + \Delta x$ A = intercept value B = slopeS = standard deviation $X_{i+1} = X_i + \Delta x$ L = lower specification limit U = Upper specification limit Y = ordinate $Y_i = A + B X i$ X = abscissa $\Delta x = change in X value$ Z = standard normal deviate $Z_{L} = \frac{Y_{1} - L}{c}$; $P_{L} = f(Z_{L})$ Note 1 subscripts: o = original value i = any other value u = upper limit $Z_u = \frac{U - Y_i}{S}$; $P_u = f(Z_u)$ Note 1 L = lower limit $Y_u = U - ZS$; $X_u = \frac{Y_u - A}{B}$ $Y_L = L + ZS$; $X_L = \frac{Y_L - A}{B}$ NOTE 1 : P_L and P_u are the probability of meeting the lower or upper specification limits respectively. They are found from a table of the normal probability distribution at the value of Z_L or Z_u in question. **Operating Limits and Warnings**

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

Sketch(es)	i	X	Yi	z_{L}	Zu	P_{L}	Pu	NOTE:
	0	15.00	42.50	-1.88	9.38	.030	1.000	obtain P _{I.} and
	1	20.00	50.00	0.00	7.50	.500	1.000	P ₁₁ from table
	2	25.00	57.50	1.88	5.63	.970	1.000	of normal
	3	30.00	65.00	3.75	3.75	1.000	1.000	distribution
	4	35.00	72.50	5.63	1.88	1.000	.970	
	5	40.00	80.00	7.50	0.00	1.000	.500	
	6	45.00	87.70	9.38	-1.88	1.000	.030	

Sample Problem(s) The following information is obtained from a regression analysis
for a linear equation: A = 20; B = 1.5; S = 4.0. What are the probabilities
of meeting specification limits of L = 50 and U = 80 as X varies from
15.0 to 45.0 in steps of 5.0? What are the X values at the specification
limits and the x and y values at the lower and upper 90% confidence limits?

Solution(s) Insert program: 20 +, 1.5 +, 4.0 +, 15.0 , [f] [A] 50 +, 80 +, 5.0 [R/S]
[A] y₀ = 42.50; [B] Z_L = -1.88; [C] Z_u = 9.38; [D] X₁ = 20.00; [A] y₁ = 50.00
[B] Z_L = 0.00; [C] Z_u = 7.50; [D] X_L = 25.00 . . . etc. to complete the

table shown under sketches.

For the x values at the specification limits [CLX] [E] $Y_L = 50.00$; [R/S] $X_L = 20.00$; [f] [STF] [1] [CLX] [E] $Y_u = 80.00$; [R/S] $X_u = 40.00$ For 90% limits [f][CLF][1]

 $[GTO][1][R/S][E] Y_{L90} = 55.13; [R/S] X_{L90} = 23.42; [f] [STF] [1] [GTO] [1] [R/S] [E] Y_{u90} = 74.87; [R/S] X_{u90} = 36.58$

Reference(s) This program is a translation of the HP - 65 Users' Library Program # 03202A submitted by George J. Sellers.

User Instructions

(1 SPECIFIC	CATION	COMPLIA	NCE	from	LIMITS an	d REGRESSION	ANALYSIS	Ż
	Yi		Zi		Zu	Xi+	-1 X,Y,	∆t,Z	/

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Enter A			
3	B		↑	
4	S		†	
5	Xo		f A	
6	L			
7	U			
8	Δ x		R/S	
9			A	Yo
10			В	ZT
11			С	Zu
12			D	X ₁₊₁
	Repeat 9 through 11 for each new X			
13	for X _L at L		CLX E	L
14	-		R/S	x _L
15	for X _u at U		[f][STF][1][CLX]	
16			E	U
17			R/S	Xu
18	for 90% limits	(f][CLF][1][GTO][1]
19			R/S E	YL90
20			R/S	X _{L90}
21		[f][STF][1][GTO][1]
22			R/S E	Yu90
23			R/S	X _{u90}
24	for 95% limits substitute GTO2 for GTO1			
	in steps 18 and 21			
25	for 99% limits substitute GTO3 for GTO1			
	in steps 18 and 21			
26	for X _L , Y _L at a given Z, enter Z		[f][CLF][1][E]	X ₇ at Z
27			R/S	X_{L}^{2} at Z
28	for X _u , Y _u at a given Z, enter Z		[f][STF][1][E]	Y _u at Z
29				X _L at Z
	Note: when calculating X and Y at U			
	flag 1 must be fSF1; at L flag 1			
	must be f ⁻¹ SF1.			

97 Program Listing I

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
801	*LBLa 21	16 11		057	RCL1	36 01		
002	STC8	35 08		058	-	-45		
003	<i>K</i> ↓ 0707	-31 75 07		859	RULZ	35 02		
004	5103	30 03		050		24		
00J 002		-31 75 00		061	K/ 3 +/ D/ 4	$\frac{JI}{21}$ θA		
000	5102	33 02 -71		062	#LBL4 CHC	-22		
007	640 STO1	-31 75 01		063	UND PCLE	76 86		
000	3101 D/C	33 ØI Ei		004 025	CTOS	30 00 22 05		
002	6705	J1 75 05		000	41 DI 1	21 01		
010	5105	-71		000 027	*LDL1 1	21 01 Ø1		
011 R12	STOR	31 75 06		001 069	1	-62		
012 R17	5786 RJ	-31		000 029		02 02		
013 014	STN4	35 04		00.7 070	8	02 08		
R15	CL X	-51		871	1	Й1		
015 016	ENT!	-21		872	7	Ø7		
R17	ENTT	-21		073	R∕S	51		
R18	ENTT	-21		674	*LBL2	21 02		
R19	R/S	51		075	2	02		
R20	*LELA	21 11		076	1	01		
821	RCL8	36 08		077	•	-62		
822	RCL2	36 02		078	6	Ø6		
023	X	-35		879	4	04		
024	RCL1	36 01		080	5	05		
025	+	-55		081	R∕S	51		
026	ST07	35 07		082	*LBL3	21 03		
627	R∕S	51		083	3	03		
028	*LBLB	21 12		084	2	02		
029	RCL4	36 04		085	•	-62		
030	-	-45		086	3	03		
031	RCL3	36 03		087	2	02		
032	÷	-24		088	3	Ø3		
033	R∕S	51		089	7	07		
034	*LBLC	21 13		090	R∕S	. 51		
035	RCL6	36 06						
036	RCL7	36 07						
037	-	-45						
038	RCL3	36 Ø3						
839	÷	-24						
646	R/S	51 21 (1						
041	#LBLU DCLO	21 14 72 60						
042	RULO	30 00 76 05						
843	KULJ	-55		100				
044 015	CTUO	75 00		100				
04J QA2	3100 P /S	55 66 51						
040 047	*! B! F	21 15		+		<u> </u>		
R48	ST09	35 89						
649	RCL3	36 03		+				
850	x	-35		┝───┼		1	SET STATUS	
051	F1? 16	5 23 01					TDIC	DIED
052	GTO4	22 04					IRIG	DISP
053	RCL4	36 04					DEG 🛛	FIX 😰
054	*LBL5	21 05		110			GRAD	sci 📋
055	+	-55			,	2 🗆 🖄	RAD 🗆	ENG 🗆
056	R∕S	51				3 🗆 🕱		n <u>∠</u>
			REGIS	STERS			<u></u>	0
0	1	2 P	³ с 4 т	5	6 11	⁷ v .	8 X.	9 A
	A			4 X 85		<u>*i</u>		S9
50	51	52	55 54	00		ľ		-
A]e	3	C	D		E	I	
							1	

Program Description I

ntributor's Name Hewlett - Pac	kard Company	
ddress1000 N.E. Circle Bouleva	rd	
ity Corvallis	State Oregon	Zip Code 97330

Program Description, Equations, Variables Case 1

Let X be the sample mean of a random sample of size n from a truncated exponential distribution with pdf.

$$f(\mathbf{x}) = \sigma^{-1} e^{-\mathbf{x}/\sigma} / (1 - e^{-\mathbf{x} \cdot \sigma}) \qquad 0 \leq \mathbf{X} \leq \mathbf{X}_{0}$$

The maximum likelihood estimator $\hat{\sigma}$ for σ is the solution of

$$\bar{X} - \hat{\sigma} + X_{\circ} (e^{X \circ / \hat{\sigma}} - 1)^{-1} = 0$$

Case 2

Let $X_{(1)} < X_{(2)} \cdot \cdot \cdot < X_{(r)}$ denote the first r order statistics from a random sample of size n from a distribution with pdf.

 $f(x) = \sigma^{-1} EXP (-(x-\theta)/\sigma)$ $\theta \leq X \leq \infty$

)

The minimum variance unbiased estimators for σ and θ are

$$\sigma^{*} = (r-1)^{-1} \sum_{j=2}^{r} (n-j) (X_{(j+1)} - X_{(j)})$$
$$\Theta^{*} = X_{(1)} - \sigma^{*/n}$$

Operating Limits and Warnings In case 1, σ is finite only if $X < X_0/2$. If $X > X_0/2$, then $\hat{\sigma}$ is infinite - this means that the truncated exponential distribution is not a good model for the observations. Program may not work when \overline{X} is very close to $X_0/2$.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

(cn(es)	
nio Problem(s)	
CASE 1	$X_{\circ} = 5, X = 2$
	······································
CASE 2	$n = 5, r = 4$ $X_{(i)}, j = 1,, 4 = 11.12, 12.55, 13.47, 14$
ation(e)	$\hat{\sigma} = 4.065$
CASE 1	0 - 4.005
CASE 1	
CASE 1 CASE 2	$\sigma^* = 3.567, \qquad \Theta^* = 10.407$
CASE 1 CASE 2 Keystrokes:	$\sigma^* = 3.567, \Theta^* = 10.407$: Outputs:
CASE 1 CASE 2 Keystrokes: 5 [ENT ⁺]	<pre>σ* = 3.567, Θ* = 10.407</pre> : Outputs: 2 [A] → 4.065
CASE 1 CASE 2 Keystrokes: 5 [ENT [†]] 5 [ENT [†]]	<pre>σ* = 3.567, Θ* = 10.407</pre> Cutputs: <pre>2 [A] → 4.065</pre> 4 [ENT [↑]] 11.12 [B] 12.55 [C] 13.47 [C]
CASE 1 CASE 2 Keystrokes: 5 [ENT [†]] 5 [ENT [†]] 14.58 [C]	σ * = 3.567, Θ * = 10.407 : Outputs: 2 [A] → 4.065 4 [ENT↑] 11.12 [B] 12.55 [C] 13.47 [C]] [D] → 3.567
CASE 1 CASE 2 Keystrokes: 5 [ENT↑] 5 [ENT↑] 14.58 [C] [E] →	σ* = 3.567, Θ* = 10.407 : Outputs: 2 [A] → 4.065 4 [ENT↑] 11.12 [B] 12.55 [C] 13.47 [C]] [D] → 3.567 10.407

Johnson and Kotz, "Continuous Univariate Distributions - 1", Houghton Mifflin Co., 1970. This program is a translation of the HP - 65 Users' Library Program # 03652A submitted by Richard Freedman.

User Instructions

	PARAMETER	ESTIMATION	(EXPONENT	DISTRIBUTION))	- z
[di]	ô	n,r,X°	^X (j)	σ*	⊝*	┛

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
	CASE 1			
2		X۰	+	
3	Note: X must be less than Xo/2	x	Α	σ
	For new Case 1 go to 2			
	CASE 2			
4		n		
5		r	↑	
6		X ₍₁₎	B	
7	Repeat 7 for j = 2,3,, r	$X_{(1)}$	C	j
8		())	D	σ*
9			E	Θ*
	for new Case 2 go to 4			
			The Property of the Property o	

97 Program Listing I

STEP		KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
001 002	#LDLH Stai	21 11 75 01	Iterate to find	057	R↓	-31	
002	STOR	35 01 35 03	root of likelihood	058	5103	35 Ø3 00	
000	R1	-31	equation	009 070	в стос	00 75 ac	
005	ST04	35 04	σ ← ο ー Δσ	000 021	5106 DTN	33 00 24	:
806	*LBL1	21 01		001 052	*(P)C	21 17	
887	RCL 1	36 Ø1		002	#LDLU DCI5	76 05	
808	GSBE	23 15		003 674		36 03 _4i	
000	ST02	35 02		004 0/F	A+1 CTOE	-41 75 05	
010	RCL 1	36 01		063 065	5105	35 05	
R11	+	-55		000	PCI 7	76 93	
R12	GSBE	23 15		001	RCL3	76 84	
013	RCL2	36 02		000	KUL4	-45	
R14	-	-45		002	~	-75	$S \neq S \neq (n-i)$
015	LSTX	16-63		070	ст <i>-е</i>	75-45 06	5 (5) (ii j)
R16	ENTT	-21		071 872	Prid	30 40 80 76 й4	(X ₍₁₎ - Last)
R17	×	-35		012	1	50 04 Ā1	07
018	X≓Y	-41		013		-55	
019	÷	-24		017	e T n A	75 04	
020	RCL1	36 01		075	DTN	24	
021	XZY	-41		010	+	21 14	
022	-	-45		077	ALDLD Pri 6	76 06	
R23	STC1	35 01		070 070	PCL 2	30 00 76 02	
824	LSTX	16-63		012	- KOLZ	-24	
025	ABS	16 31		000	STOF	75 06	
R26	EEX	-23	Continue	001	5106	33 8 0 94	
R27	3	03	iterations until	002	* 1 DI E	27	
R28	CHS	-22	Δσ < 0.001	003	#LDLL PCI 1	ZI 13 76 Bi	
R29	X2Y7	16-35		004	PCLE	30 01 76 06	[Note that label E
030	GTOI	22 01		. 80J . 80J	PCLO	76 07	is used twice
R31	RCL 1	36 01		000	RULJ	-24	intentionally]
032	RTN	24		. 001 . 000	-	-45	
R33	*LBLE	21 15		. <i>000</i> . 000	ETN.	-40	
834	ENT†	-21	Compute	000	KIN	1	1
835	ENTT	-21	likelihood	090			4
036	RCL4	36 04	equation				{ }
037	8₽Y	-41					
038	÷	-24					+ I
639	e×	33					{
640	1	01					1
841	-	-45					1
042	178	52					1
043	RCL4	36 04					1
044	X	-35		100			1
045	-	-45					1
846	RCL3	36 03					1
047	-	-45					1
048	RTN	24					1 1
049	*LBLB	21 12					t I
050	ST01	35 01				1	SET STATUS
051	ST05	35 05	^X (1)			+ +	
852	R↓	-31	last $\leftarrow X_{(1)}$				
053	1	01					DEG 🖬 FIX 🛛
054	ST04	35 04		110			GRAD 🛱 🛛 SCI 🗖
055	-	-45				2 🗆 🗓	RAD 🗆 ENG 🗆
056	ST02	35 02				3 🗆 🗶	n
			REGIS	TERS			
0	1	2	3 _ 4	5	6	7	8 9
	σ, Χ	(1) Temp, r-	-1 X, n j	Last	S	07	Used
S0	S1	S2	S3 S4	55	56	5/	30 29
		15 L					
A		R	C	U			

12

Program Description I

Program	Title LOWER LIMIT	OF RELIABILITY - BINOMIAL DISTRIBU	TION
Contribu Address	tor's Name Hewlett 1000 N.E. Circle	- P a ckard Company Boulevard	
City	Corvallis	State Oregon	Zip Code 97330

rogram Description, Equations, Variables
$(1 - \gamma) = \sum_{j=0}^{x} \left[\frac{N!}{j! (N - j)!} \right] P^{j} (1 - P)^{N-j}$
where N = total number of items tested
j = number of items failed
γ = confidence level (in decimal form .XX)
P = probability of failure
$(1-P)$ = reliability = $R_{L.X}$
$\alpha = \frac{(1-\gamma) - (1-\gamma)}{(1-\gamma)}$ allowable error
perating Limits and Warnings $N \leqslant 69$
$.50 < \gamma < .99$ for most cases γ will not work if outside this range.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

(
Sketch(es)					
Sample Problem(s	A) Twenty rocl	ket motors are	fired with one fa	ailure; what is	
the demonst	rated reliability	y at the lower	90% confidence 1	evel?	
	B) Fifty compo	onents are tes	ted at 1 1/2 times	s their normal	
rated loadi	ng; what is the r	maximum number	of failures that	can be obtained	
and still d	emonstrate a .87	reliability a	t a 95% confidence	e level?	
	C) What is the	rolishility	of 1 failure out	of 15 tests of	
the 90% con	fidence level ca	Loulated to for	ir decimal places	(α <u>≤</u> .001).	
Solution(s) A)	20 [†], 1 [A] [[B]	÷ 0.8	32	
B)	50 [†], 1 [A],	.95 [C]	0.9)1	
_,	50 [+] 2 [A]	95 [C]	0.8		
	JU [;], 2 [A],	.95 [0]	0.0		
	50 [↑], 3 [A],	.95 [C]	0.8		
	antenna daar anaa ahaa	only 2 failu	es can be obtaine	ġ	
C)	15 [†], 1 [A],	.001 [STO] [7	′][B] → 0.7	645	
			e e e a compañía de la compañía de l		
Reference (s)	This program is	a translation	of the HP - 65 Ua	ers' Library	
Program # 0	3820A submitted h	y George J. S	ellers.		· · · · · · · · · · · · · · · · · · ·

User Instructions

	LOWER LIMITS OF RELIABILITY - BINOMI	AL DISTRIBU	JTION Z	
STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Enter N			
3	Enter j			
4	for R _I an		B	R _T oo
				1.90
5	for R _{L.X} Enter .X		C	R _{L.X}
6	for α < .1 Enter α after step 3 α			
	go to step 4 or 5			

Program Listing I

STEP	KEY ENTR	Y KEY CODE	со	MMENTS	STEP	KEY ENTRY	I	KEY CODE		СОМ	MENTS
001	*LBLA	21 11			057	CHS		-22			
002	CLRG	16-53			058	X≠Y?		16-32			
003	STOI	35 46			059	GT01		22 01			
004	ST02	35 02			060	RCL7		36 07			
005	R↓	-31			061	RCL6		36 06			
006	ST01	35 01			062	RCL5		36 05			
007		-62			063	-		-45			
008	1	01			064	RCL5		36 05			
000	STO7	35 07			065	÷		-24			
RIR	CF1	16 22 01			066	ABS		16 31			
R11	ST05	35 05			067	X≦Y?		16-35			
012	STO3	35 03			068	GTO2		22 02			
R13	CI X	-51			069	RCL6		36 06			
010 014	ENT?	-21			070	RCL5		36 05			
Q15	ENTA	-21			071	+		-55			
016	ENTT	-21			072	2		02			
010 017	D/C	51			073	÷		-24			
017 010	WIRLC	21 17			074	RCL5		36 05			
010 010	*LDLC	21 13 Qi			875	÷		-24	1		
017	-	- 45			076	1		R İ			
020	-	-43			R77	+		-55			
021	003 0105	-22 75 af			678	RCL3		36 03			
022	3103 	30 80			Ø79	x		-35			
023	*LDLD	21 12			020			Ø2	1		
024		76 07			881	ے خ		-24			
025	RUL3	35 03			001	5072		25 ØZ			
026	-	-45			002	5105 B		00 00 00			
027	5104	35 04			000	STOF		75 <i>86</i>			
028	RCL2	36 02			007	CTOP		22 12			
029	5101	35 46			00J 00Z	+1012		21 82			
030	*LBL1	21 01			800	ALDLZ DCLA		21 02 76 04			
031	1	01			800	RUL4 D/C		30 04 51	1		
032	RCL1	36 01			000	K/ 3	+	51			
033	K!	16 52									
034	RCLI	36 46			090						
035	N !	16 52									
036	÷	-24									
037	RCL1	36 01									
638	RCLI	36 46					-				
Ø39	-	-45					-				
040	N !	16 52									
041	÷	-24					1				
042	RCL3	36 03					-				
043	RCLI	36 46					1				
044	У×	31			100						
045	X	-35					1				
046	RCL4	36 04					1				
047	RCL1	36 01									
048	RCLI	36 46					_				
849	-	-45					⊢.				I
050	үx	31					╄		SET S	TATUS	
051	x	-35			└── ↓		\square	FLAGS	TF	RIG	DISP
05 2	ST+6	35-55 06					\square	ON OFF			
053	DSZI	16 25 46					+	0 🗆 🖾	DE	GDX	
054	SF1	16 21 01			110		+		GR/		
055	RCLI	36 46			┣┣		+		HAL		
056	1	Ø1						JULA			L
				REGIS	STERS	6 4-		7			19
0	1 N	² i	³ P	$^{4}(\frac{1}{P} - P)$	້ (1 – ງ	$() \begin{bmatrix} 0 & (1 - 1) \\ 0 & (1 - 1) \end{bmatrix}$	γ)	μ́γ	° .		Logic
<u>C0</u>		J		$= \kappa_{I_{1}} \chi_{1}$	\$5	IS6	are	P S7			S9
50	51	52	33	34	33				1		
^					D		F			I	
^		ľ	ľ		-		[.				

Program Description I

Program TitleReliability and Probability of Failure of Series and Parallel SystemsContributor's NameHewlett-PackardAddress1000 N.E. Circle Blvd.CityCorvallisStateOregonZip Code97330

where k = number of parallel groupings in series

 $R_{i} = R_{i(j-1)} + (1 - R_{i(j-1)})R_{ij} \qquad 1 \ge j \ge n_{i}$ $R_{ij} = \exp(-\lambda_{ij}t)$

Operating Limits and Warnings n is a positive integer and $\lambda \ge 0$.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

User Instructions

\angle	RELIAB	ILITY AN LES AND	ID PROBAE PARALLEI	SYSTEMS	FAILURE				
	t	n _i	λ _{ii}	Q _s (t)	(dq)				dy

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize		F A	1.00
3	Enter mission time	t		t
4	Enter number of	ni	В	n _i
	parallel components			
5	Perform step 5 for	^λ ii	C	j
	i = 1, 2,, n-1	Ū		
6	Compute R _s (t)	$^{\lambda}$ in		R _s (t)
7	Compute Q _s (t)			Q _s (t)
	(optional)			
	(for new case, go			
	to step 2)			

Program Listing I

20								
STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COM	AENTS
001 800	¥LBLa Z1 p→c	15 11	Initialize	057	RCL6	36 06		
002	г+3 стпл	15-J1 75 Ød		058		-22		
003 004	ST04	35 05		809		-21		
007	ST05 ST09	75 ØS		860	, I	01 55		
003	5700	00 00 Ø1		061	+	-22		
000	etne	75 06		062	6102	22 02	1	
007 000	DTN	33 80 28						
000	KIN NIPLO	21 11		├ ───┼				
005 Q1Q	\$T05	25 05						
010	DTN	20 00	Store 1 in R ₆	+				
011		21 81	Display 1 in R ₆	┣────┣				
012	#LDL1	21 01	Enter t					
013	etoi	00 75 01	Initialize					
014	5101	33 01 75 07	Store O in R ₁ , R ₃	070				
013	3103 DCL2	33 03						
010	RULD	30 00						
017	RIN	24						
018	#LBLZ	21 02					l	
619	RIN	24						
020	*LBLB	21 12						
021	5108	30 08						
022	RIN	24						
023	*LBL3	21 03						
024	RCL1	36 01		080				
025	RTN	24						
Ø26	*LBLC	21 13	Display counter					
027	ENTŤ	-21	Calculate R.					
028	RCL5	36 05						
029	Х	-35						[
030	CHS	-22						
031	e×	33						
832	STO4	35 04						
033	RCL3	36 03						
034	CHS	-22		090				
035	ENTŤ	-21						
036	1	01						
037	÷	-55						
038	RCL4	36 04	$(1 \mathbf{P} (\mathbf{r}, \mathbf{r})) \mathbf{P}$				i	
039	х	-35	$(1 - R_{i}(j-1)) R_{ij}$					
040	RCL3	36 03						
041	+	-55						
842	STO3	35 03						
843	RCL1	36 01						
644	1	01	Undate counter	100				
045	+	-55	opulle counter					
046	ST01	35 01						
047	RCL8	36 08						
848	X≠Y?	16-32	Test counter					
849	GT03	22 03	lest counter					
050	RCL3	36 03					SET STATUS	
051	ENTT	-21						
052	RCL6	36 06	$B_{\alpha}(t)$			FLAGS	TRIG	DISP
053	x	-35	Store P (+)					
R54	STOE	35 06	Store NS(L)	110				sci 🗆
855	GT01	22 01					RAD 🗆	ENG 🗆
Ø56	*LBLD	21 14	Calculate $0_{-}(t)$			3 🗆 🕱	1	n_8
			REGIS	STERS				·
0	1	2	3 4 _	5	6	7	8	9
	Counte	r	$\left \begin{array}{c} R_{i(j-1)} \\ \end{array} \right \left \begin{array}{c} R_{ij} \\ \end{array} \right $	t	$R_{s}(t)$		ni	
S0	S1	S2	S3 S4	S5	S6	S7	S8	S9
							1	
A	В		С	D	1	E	I	
	1							

Program Description I

Program Title MIL-STD-883 CALCULATED LEAK RATE Hewlett-Packard **Contributor's Name** 1000 N.E. Circle Blvd. Address Corvallis State Oregon 97330 Zip Code City Program Description, Equations, Variables MIL-STD-883A Method 1014.1 Condition A_{2} requires a calculated leak rate using the equation $R = L \frac{P_E}{P_O} \sqrt{\frac{M_a}{M}} \left\{ 1 - \exp\left[-L \frac{t_1}{VP_O} \sqrt{\frac{M_a}{M}} \right] \exp\left[-L \frac{t_2}{VP_O} \sqrt{\frac{M_a}{M}} \right] \right\}$ To calculate L given the value for R. This equation must be solved iteratively for L. Solution is done using the Newton procedure for refining the trial values for L. The user is referred to MIL-STD-883 for the meaning and complete description of variables and test techniques. R = Measured leak rateL = Calculated leak rate cc/sec $P_{F} = Bomb$ pressure (usually 5 atm) t_1 = Pressurization time sec. P_{o} = Atmospheric pressure (1 atm) t_{o} = Time from end of pressure to measurement sec. $\frac{M}{a}$ = Ratio of molecular wts of air to tracer gas (assumed He) **Operating Limits and Warnings**

Mathematically there is no limit, but calculation time is less for 1% than for .01%. 1% is adequate for most experimental setups.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)	
------------	--

Sample Problem(s) For the inputs $R = 7.2 \times 10^{-8}$ $t_1 = 3600 \text{ sec}$ $t_2 = 300 \text{ sec}$ v = 1.1684 cc ERROR = .01 The program should return the value 8.058 -07. Keying RCL 3 will tell you that it took 6 iterations to obtain the answer.	
Solution(s) Keystrokes: Outputs: 7.2 [EEX][CHS][8][STO][8], 3600 [STO][1], 300 [STO][2], 1.1684 [STO][3], 2.678 [STO][4], .01 [STO][5] [SCI][DSP][3][A] → 8.058 -07 [RCL][3] → 6.000 00	
Reference(s) MIL-STD-883A "Military Standard Test Methods and Procedures for Microelectronics" Method 1014.1 Seal This program is a translation of the HP-65 Users' Library Program #041004	1

User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
l	ENTER PROGRAM			
2	INPUT DATA,			
	MEASURED RATE SCC/SE	C R	STO 8	R
	PRESSURIZATION TIME	SEC t ₁	STO 1	tl
	MEASUREMENT TIME SEC	t ₂	STO 2	t ₂
	PACKAGE VOLUME CC	v	STO 3	v
	RATIO MOL WT AIR TO	He a	STO 4	2.678
	ALLOWED ERROR	10 ⁻²	STO 5	
3	SET DISPLAY		DSP 3	
4	START PROGRAM		A	L
	L IS CALCULATED LEAK	RATE		
5	NUMBER OF ITERATIONS		RCL 3	n
	REQUIRED			
6	FOR NEXT CASE ENTER			
	MEASURED RATE	R	STO 8	R
	PRESSURIZATION TIM	t _l	STO 1	tl
	MEASUREMENT TIME	t ₂	STO 2	t ₂
	PACKAGE VOLUME	v	STO 3	v
7	START PROGRAM		Â	L

Program Listing I

24				5 1 ann						
STEP	KEY ENTRY	KEY CODE	COMM	IENTS	STEP	KEY ENTR	Y K		COM	MENTS
001	*LBLA	21 11	Start Cal	culation	057	, ST02		35 07		
802	RCL8	36 Ø8			R58	3 1		01		
003	CHS	-22			859	9 ST+3	35-3	55 03		
884	STO7	35 07			961	A GTOB		22-12		
005	RCL4	36 04			RE	RTN		24	TTT	
006	RCL3	36 03			86	* * BLC		21 13		
007	÷	-24			86	RCL7		36 07	Display	final L
008	ST×1	35-35 01			86			-22		
809	ST×2	35-35 02			86	5 R/S		51		
010	e	00			96	6 RTN		24		
011	STO3	35 03					1			
012	*LBLB	21 12								
013	RCL7	36 07	Begin 100	n						
014	RCL2	36 02			070					
015	х	-35	Carcular	eĸ						
016	€×	33					_			
017	RCL7	36 07								
018	RCL1	36 01								
019	×	-35							1	
020	e×	33								
021	1	01								
022	_	-45								
023	x	-35								
024	RCL4	36 04			080					
025	x	-35								
826	5	8 5								
827	x	-35								
R28	RCI 7	36 07								
R29	x	-35	1							
030	RCI 8	36 08	R ⁻							
000 071	-	-45	begin te	est						
872	STOR	75 06								
032	PCLS	76 08								
033	-	-24			000					
034	ARC .	16 71			090					
033 076	PCI 5	76 05								
030	VIVO	16-74								
031	0/1: CTOC	20 17	End test						ļ	
000	810C 8017	76 07								
037	RULI PCLE	30 01 76 06	Begin cal	lculation						
040	PCL 2	30 00 76 00	new L							
041	KULZ A	36 02 04								
042	7	04								
043	, e	- 75								
044 015	PCI 7	-33 76 07			100					
04J 04C	RULI	30 07								
040 047	<u>_</u>	-3J 02								
041 QAO	2 7	02 07							1	
040	(_	U/ _A5								
043 050	- PCI 1	-43 76 01					 		SET STATUS	
051 051	KULI V	30 01 _75							JET STATUS	
051 052	× 0017	-33 76 97						FLAGS	TRIG	DISP
032 057	KULI V	30 0/ _75					-+-'	ON OFF		
033 051	~ -	-00 -04			110					
034 055	-	-24					-+-			
000	+	-00					-+-			n_3
000	UHS	-22		DEOU						
<u> </u>	<u> </u>		3	HEGI	5 6	6 1	_	7 _	8	9
U	μ' tb	^د <u>ג</u> 2	v n	2.6785	ĭ 10 ^{−2}	° R [⊥] -	-R	Ľ	R	
50	S1	<u>S2</u>	S3	S4	S5	S6		S7	S8	S9
				-						
A		Тв			D		E	•	I	
l^			ľ							

Program Description I

Program T	itle MLE: $\hat{\theta}$	FROM HAZARD F	ATE	
Contributo	r's Name Hewlet	t-Packard Con	npany	
Address	1000 N.E. C11	cie Boulevard	1	
City	Corvallis		State Oregon	Zip Code 97330

Program Description, Equations, Variables Given the	test failure data of the sample, the
program computes differential failure t	imes (Δt_i); mean time to failure
(MTTF); failure rate $Z(t_i)$; parameter λ	(constant hazard rate) and $\hat{\theta}$ from
this hazard rate.	
Following formulas and variables are	used:
1) $\Delta t_{i} = t_{i} - t_{i-1}$;	where i = 0,1,2,3,n failures
2) MTTF = $\hat{\theta} = \Sigma t_i / N_o$;	where t _i = time to failures N _o = total # of failures
3) $Z(t_i) = \frac{n(t_i) - n(t_i + \Delta t_i)}{\Delta t_i}$	$\cdot \frac{1}{N_{s}(t_{i})}; \text{ where } [n(t_{i})-n(t_{i}+\Delta t_{i})]$ is # of failures in that time difference.
	$N_{s}(t_{i}) = #$ survived at t_{i} .
4) $\lambda = \frac{\Sigma Z(t_i)}{N_0} = \overline{Z}(t_i)$;	λ = parameter (hazard rate) i.e. mean of total Z(t _i)'s.
5) $\hat{\theta}_{Z(t)} = \frac{1}{\lambda}$; hazard rate	[MLE from hazard rate]
Operating Limits and Warnings	

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

etch(es)																							 	 		
	P	L	Ε	A	S	Ε	S	E	Е	A	Т	Т	A	С	H	Е	D	C	G F	A	. P	H				
													1							1						
																							 	 	-	
													-											-		

Sample Prob	olem(s) Ten t	ires were put on t	cesting m	achines with	n a known load and
rpm: r	esults were	as follows.			
FA	ILURE #	OPERATING TIM	2		
	1	6		Find t	the following:
	2			1) A	t: : differential time
	3	30		1) 1	failures
	4	45		2) MI	TF: mean time to failure
	5	62		3) Z(t); failure rate
	6	88			parameter
	7	114		4) λ	: constant hazard rate
	8	140		5) ML	E: ϑ from hazard rate
	9	190			
-	10	251			
Solution(s)	Failure #	Operating Time	Δti	Z(t _i)	
	1	6	6	0.0167	$\Sigma = \Sigma Z(t_i) = 0.1151$
	2	22	16	0.0069	$\lambda = \frac{1}{N_0} = \frac{10}{10}$
	3	30	8	0.0156	10
	4	45	15	0.0095	$\lambda = .01151$
	5	62	17	0.0098	
	7		26	0.0077	$A = \frac{1}{2}$
	/		26	0.0096	$\lambda = 86.8919$
	0	100	20	0.0128	
	10	251	61	0.0164	
	Σ	$t_i = 948$	ΣΖ(t ₁)	= 0.1151	

Reference(s) This program is a translation of the HP-65 Users' Library Program #05105A submitted by Ashok H. Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	[f] [REG]	0.00	(Clear registers)
251	[A]	251.00	(t ₁₀)
190	[R/S]	61.00	(Δt ₁₀)
	[R/S]	190.00	[Recall last input]
140	[R/S]	50.00	(\$ t 9)
	[R/S]	140.00	[Recall last input]
114	[R/S]	26.00	(Δt ₈)
	[R/S]	114.00	[Recall last input]
88	[R/S]	26.00	(Δt7)
	[R/S]	88.00	[Recall last input]
62	[R/S]	26.00	(Δt ₆)
	[R/S]	62.00	[Recall last input]
45	[R/S]	17.00	(Δt ₅)
	[R/S]	45.00	[Recall last input]
30	[R/S]	15.00	(Δt4)
	[R/S]	30.00	[Recall last input]
22	[R/S]	8.00	(Δt ₃)
	[R/S]	22.00	[Recall last input]
6	[R/S]	16.00	(Δt ₂)
	[R/S]	6.00	[Recall last input]
0	[R/S]	6.00	(Δt1)
	[R/S]	0.00	[Recall last input]
	[B]	94.80	(Ô)
6	[C]	0.0167	[Z(t ₁)]
16	[R/S]	0.0069	$[Z(t_2)]$
8	[R/S]	0.0156	[Z(t ₃)]
15	[R/S]	0.0095	[Z(t ₄)]
17	[R/S]	0.0098	[Z(t ₅)]
26	[R/S]	0.0077	[Z(t ₆)]
26	[R/S]	0.0096	[Z(t ₇)]
26	[R/S]	0.0128	[Z(t ₈)]
50	[R/S]	0.0100	[Z(t9)]
61	[R/S]	0.0164	$[Z(t_{10})]$

User Instructions

1	MLE: $\hat{\theta}$	FROM HAZARD	RATE				2
	A - L		P (1)			^	
Ľ	Δτ <u>i</u>	MLE 0	$Z(t_i)$	/	1	θZ(t)	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Initialize		RTN	
3	Clear Registers		f REG	0.00
4	Input last operating time	t _n	Α	tn
5	Input preceeding times	tr	R/S	Δti
	repeat 5 - 6 for			1
6	$t_r = r = n-1, n-2, \dots, 3, 2, 1, 0$		R/S	tr
				-
7	Compute MTTF: $\hat{\theta}$		В	θ
8	Input Δt_1 (first time diff.)	Δt ₁	С	Z(t ₁)
9	Input next time diff.			
	Δt_i ; i = 2,3,4,n-1,n	Δti	R/S	Z(t _i)
	Repeat 9 for i = 1,2,3,n			
10	Compute parameter λ		D	λ
11	Compute MLE: $\hat{\theta}$ from the hazard rate		E	MLE: $\hat{\theta}_{Z(t)}$
12	For new case go to step 2			
		ļ		
		ļ		
		ļ]		

			7 /	Program		sting I			29
STEP	KEY ENTR	Y KEY CODE		COMMENTS	STEP	KEY ENTRY	KEY CODE	COMM	IENTS
801	*LBLA	21 11	Calcu	late the					
002	*LBL3	21 03	oper	ating time					
003	ST+1	35-55 01	diff	erences	060			4	
004	R/S	51						4	
000 002	-	-45 16 05 46							
005 007	0321 CTO4	10 20 46 22 AA						1	
007	6104 6103	22 04 22 03						1	
009	*1 BL 4	21 04						1	
010	R/S	51							
011	LSTX	16-63							
012	GT03	22 03							
013	*LBLB	21 12						1	
014	RCL1	36 01	Calcu	late MTTF: $\hat{\theta}$	070			1	
015	RCLI	36 46						4	
016	CHS	-22						ł	
617	÷ 5	-24						4	
010 010		24						ł	
015	#LDLU 1/V	27 13	0-1	1				1	
R21	RCLT	32 36 46	(fai	late Z(t _i)				1	
R22	CHS	-22	(Iai	lure rate)				1	
023	÷	-24							
024	ST+2	35-55 02			080				
025	RCL2	3 6 0 2]	
026	DSP4	-63 04							
027	*LBL1	21 01						1	
028	R∕S	51			L			1	
029	1/X	52						4	
030	RCLI	36 46						-	
031	1 6745	01 75-55 05						1	
032 077	Dris	33-33 03 76 05						1	
833 R74	XTY	36 0J -41			090			1	
034	R1	-31						1	
036	+	-55						1	
037	÷	-24						1	
03 8	CHS	-22]	
839	ST+2	35-55 02							
040	GT01	22 01						-	
041	*LBLD	21 14	Calcu	late the				4	
042	RCL2	36 02	para	meter λ				4	
643 644	RULI	35 45 _33	(con	stant hazard	100			1	
044 QAS	спэ =	-22	rate	e)	100	+		1	
84E	NSP4	-67 Ø4						1	
847	RTN	24						1	
048	*LBLE	21 15	Calcu	late MLE:]	
049	GSBD	23 14						1	
050	17X	52	[°] Z (1	t)				SET STATUS	
051	DSP4	-63 04					FLAGS	TRIG	DISP
052	RTN	24					ON OFF		
			-		110				
			-						
			-				3 0 9		n_ <u>2</u>
			4	REGI	STERS	L	<u> </u>		
0	1	2	3	4	5	6	7	8	9
	USED	USED			USED			USED	50
S0	S1	S2	S3	S4	S5	S6	5/	50	39
				I	h		I	 	I
A		в	lc Ic	,	ľ		L	ľ	

Program Description I

Program Title MLE: $\hat{\theta}$ BY LEAST SQUARE METHO	D
Contributor's Name Hewlett-Packard	
Address 1000 N.E. CITCLE Boulevalu	
City Corvallis	State Oregon Zip Code 97550
Program Description, Equations, Variables The program uses least square techniq	ue to compute maximum likelihood
estimator. By using the probability	of survival R(t;)
where:	<u> </u>
$R(t_{1}) = \frac{N_{s}}{s}$	N_{c} = numbers survived at time t _i .
N _o	N = total number failed
	0
least square parameter $\lambda = -\frac{\sum_{i=1}^{n} t_{i} l_{n} R(t_{i})}{\sum_{i=1}^{n} t_{i}^{2}}$; for detail see page 4 of 7
and $\hat{\theta} = \frac{1}{\lambda}$;	maximum likelihood estimator
Operating Limits and Warnings	
(

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Developing θ by generating the parameter λ using reliability for least square method

Using Least Square Estimate

To Find value of parameter
$$\lambda$$

 $R(t_i) = e^{-\lambda t_i}$
 $\ln R(t_i) = -\lambda t_i$
 $s (\lambda) = \Sigma [\ln R(t_i) - (-\lambda t_i)]^2$

Now taking derivative w.r.t. λ on both sides and equating to zero for maximum we get:

$$\frac{d s(\lambda)}{d \lambda} = \Sigma^{2}[\ln R(t_{i}) + \lambda t_{i}] (t_{i}) = 0$$

$$\Sigma 2[\ln R(t_{i}) + \lambda t_{i}](t_{i}) = 0$$

$$\Sigma 2[t_{i} \ln R(t_{i}) + \lambda t_{i}^{2}] = 0$$

$$2\Sigma [t_{i} \ln R(t_{i}) + \lambda t_{i}^{2}] = 0$$

$$\prod_{i=1}^{n} t_{i} \ln R(t_{i}) + \lambda \prod_{i=1}^{n} t_{i}^{2} = 0$$

$$\lambda = \frac{-\frac{n}{\Sigma}}{\frac{1}{1}} t_{i} \ln R(t_{i})$$

$$\frac{n}{\Sigma} t_{i}^{2}$$

Program Description 11

 Sketch(es)

FAILURE #	OPERATING TIME	2
1	6	
2	22	FIND THE FOLLOWING:
3	30	1) probability of survival $R(t_i)$
4	45	2) MLE: θ by using least square mether
5	62	· · · · ·
6	88	
7	114	
8	140	
9	190	
10 Jution(s) For so	251	pages attached next 4 of 7 and 5 of 7.
10 lution(s) For so	251 olution please see	≥ pages attached next 4 of 7 and 5 of 7.
10 ution(s) For so	251 olution please see	≥ pages attached next 4 of 7 and 5 of 7.
10 lution(s) For so	251 olution please see	e pages attached next 4 of 7 and 5 of 7.
10 ution(s) For so erence(s) Authors	251 olution please see	a pages attached next 4 of 7 and 5 of 7.
10 Iution(s) For so erence(s) Authors This program is	251 olution please see s Own Notes On "Qu a translation of	a pages attached next 4 of 7 and 5 of 7. Nality Assurance and Reliability". the HP-65 Users' Library Program

COMPLETE KEYSTROKES FOR THE EXAMPLE

	Press	Dis	play
	[f] [REG]	0.00	[Clear Registers]
6	[A]	36.00	[t ²]
22	[A]	484.00	$[t_{2}^{\bar{2}}]$
30	[A]	900.00	$[t_{3}^{2}]$
45	[A]	2025.00	[t ²]
62	[A]	3844.00	[t ₅]
88	[A]	7744.00	[t ₆ ²]
114	[A]	12996.00	[t ₇]
140	[A]	19600.00	[t ₈ ²]
190	[A]	36100.00	[t ₉]
251	[A]	63001.00	[t ₁₀]
	[B]	0.9000	[R(t ₁)]
	[B]	0.8000	[R(t ₂)]
	[B]	0.7000	[R(t ₃)]
	[B]	0.6000	[R(t ₄)]
	[B]	0.5000	[R(t ₅)]
	[B]	0.4000	[R(t ₆)]
	[B]	0.3000	[R(t ₇)]
	[B]	0.2000	[R(t ₈)]
	[B]	0.1000	[R(t ₉)]
	[B]	0.0000	[R(t ₁₀)]

	PRES	S	DISPLA	ΔY
	.9	[C]	-0.1054	[ln R(t ₁)]
	. 8	[C]	-0.2231	$[\ln R(t_2)]$
	.7	[C]	-0.3567	$[\ln R(t_3)]$
	. 6	[C]	-0.5108	$[\ln R(t_4)]$
	. 5	[C]	-0.6931	$[\ln R(t_5)]$
	. 4	[C]	-0.9163	[ln R(t ₆)]
	.3	[C]	-1.2040	[ln R(t ₇)]
	, 2	[C]	-1.6094	[ln R(t ₈)]
	.1	[C]	-2.3026	[ln R(t ₉)]
	.0	→ (not possible)	+	[ln R(t ₁₀)]
	6	[D]	6.00	[t ₁]
.1054	[CHS	[R /S]	- 0.6324	$[t_1 \cdot \ln R(t_1)]$
2	22	[D]	22.0000	[t ₂]
.2231	[CHS	5] [R/S]	- 4.9082	[t ₂ · ln R(t ₂)]
3	30	[D]	30.0000	[t ₃]
.3567	[CHS	[R/S]	- 10.7010	$[t_3 \cdot ln R(t_3)]$
4	45	[D]	45.0000	[t ₄]
.5108	[CHS	5] [R/S]	- 22.9860	[t ₄ · 1n R(t ₄)]
(52	[D]	62.0000	[t ₅]
.6931	[CHS	5] [R/S]	- 42.9722	[t ₅ · 1n R(t ₅)]
8	88	[D]	88.0000	[t ₆]
.9163	[CHS	5] [R/S]	- 80.6344	[t ₆ · ln R(t ₆)]
1:	14	[D]	114.0000	[t ₇]
1.2040	[CHS	5] [R/S]	- 137.2560	$[t_7 \cdot \ln R(t_7)]$
14	40	[D]	140.0000	[t ₈]
1.6094	[CHS	5] [R/S]	- 225.3160	$[t_8 \cdot \ln R(t_8)]$
19	90	[D]	190.0000	[t ₉]
2.3026	[CHS	5] [R/S]	- 437.4940	$[t_9 \cdot \ln R(t_9)]$
[Delete]→2	51	[D]	251.0000	[t ₁₀]
only		[R/S]		$[t_{10} \cdot \ln R(t_{10})]$
-		[E]	152.3834	[0]

	ie λ =	$- \underbrace{\overset{10}{\Sigma} t}_{\overset{1}{i=1}} $	$\frac{\ln R(t_i)}{t_i^2}$	(as formed previo	ously)
1	t _i 6	$\frac{R(t_1)}{0.90}$	<u>ln R(ti</u>) - 0.1054	t <u>i</u> ln R(ti) - 0.6324	t 1 36
2	22	0.80	- 0.2231	- 4.9082	484
3	30	0.70	- 0.3567	- 10.7010	900
4	45	0.60	- 0.5108	- 22.9860	2025
5	62	0.50	- 0.6931	- 42.9722	3844
6	88	0.40	- 0.9163	- 80.6344	7744
7	114	0.30	- 1.2040	- 137.2560	12996
8	140	0.20	- 1.6094	- 225.3160	19600
9	190	0.10	- 2.3026	- 437.4940	36100
10	251	0.00			63001

 $\lambda = -962.90$ 146730

 $\lambda = -\frac{-962.90}{146730} = 0.0066 \quad \therefore \quad \widehat{\theta} = \frac{1}{\lambda} = 152.3834$

BY LEAST SQUARE ESTIMATE METHOD USING R(t)

User Instructions

1 MLE:	$\hat{\boldsymbol{\theta}}$ by least souare method		5
	$R(t_{i}) = L_{N}R(t_{i}) = t_{i}L_{N}R(t_{i})$	θ	

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter Program			
2	Initialize			
				0.00
3	Clear registers			0.00
4	Input t₁ (operating time)	t,		t ²
	repeat 4 for i = 1, 2, 3 n	1		Ł
5	Compute R(t _i) Probability of survival		B	R(t _i)
	repeat 5 for i = 1, 2, 3,n			
6	Input probability of survival R(t _i)			$L_{N} R(t_{i})$
	repeat 6 for i = 1, 2, 3, n			
7	Input operating time t;	t _i		t.
				- - 1
8	Input L _N R(t _i)	$L_N R(t_i)$	R/S	t _i L _N R(t _i)
	$\frac{1}{1 - 8 \text{ for } i = 1, 2, 3, \dots n}$			
9	Compute $\hat{\theta}$			θ
10				
10	For new case go to step 2			

Program Listing I

STED				eted			COMM	37
SIEP					KET ENIRT	KET CODE	COMM	
001	#LSLH V2	21 11 57	Compute t ²					
002	05 0741	J3 75_55 01						
000	5171	33-33 ØI Ø1		060				
004	ст+?	01 75_55 00						
005	9772 X 7 Y	-41						
887	RTN	24						
001	*I BI B	21 12	Compute D(t)					
889	RCL2	36 02	compute $K(t_i)$					
R1R	ENTT	-21	probability of					
811	ENTT	-21	Sulvival					
012	ENTT	-21						
013	1	Ū1						
814	ST+3	35-55 03		070				
015	RCL3	36 03						
016	XZY	-41						
017	R↓	-31						
018	-	-45						
019	X≠Y	-41						
020	÷	-24						
021	DSP4	-63 04						
822	RTN	24						
023	*LBLC	21 13	Input R(t _i)					
624	LN	32	Compute $\overline{L}_{N} R(t_{i})$	080				
625	RTN	24						
026	*LBLD	21 14	Input t _i					
027	ENTŤ	-21	-					
028	R∕S	51	Input L _N R(t _i)					
029	X	-35						
030	ST+4	35-55 04	Compute [t _i R(t _i)]					
031	RTN	24	-					
032	*LBLE	21 15						
033	RCL4	36 84	Compute θ					
634	RCLI	36 01		090				
635	÷	-24						
035	LH5	-22						
037		32 34						
► <u>838</u>	KIN	24						
040			4		+			
040			4					
-			4		+			
┠────┼			1					
+			1	100				
			4					
├ ───┼			1					
			1					
			1					
			1					
050			1				SET STATUS	
]			FLAGS	TRIG	DISP
			1			ON OFF		
			4		 			
┣───┤			4	110	+			
┝───┼			4					n_2
L					1			
	11		RE		6	7	8	9
0	Used	² Used	[#] Used Γ[t _i L _M R	(t _H)	ľ			
50	51	S2	S3 S4	S5	S6	S7	S8	S9
A		В	c	D		E	I	
ľ								

Program Description I

Program Title	SYSTEMS RELIABILT	Y - SERIES AN	D PARALLEL WIT	TH SAME	
	FAILU	RE RATE λ			
Contributor's Na	me Hewlett-Pack	ard Company			
Address	1000 N.E. Circle	Boulevard			
City	Corvallis		State Oregon	Zip Code	97330

Program Description, Equations, Variables Program calculates total systems reliability when units (composed of differential components) are placed in series or parallel, by using the concept of unreliability to calculate systems reliability in parallel, avoiding very lengthy and tedious calculations. Saves considerable amount of time. Equations used are as follows: j_i is number of components of corresponding λ_i λ_i is failure rate/hr of differential components (say r types) (where i = 1, 2, 3, ... r) $i^{\underline{z}}_{\underline{j}} \mathbf{j} \mathbf{i} \lambda_{\mathbf{i}}$; total failure rate/hr of a unit $-\underline{\zeta}^{n}_{i} \lambda_{i} j_{i} \cdot t$ Unit $R_s(t) = e$; Unit reliability for t hours. Unit $Q_s(t) = 1-R_s(t)$; Unit unreliability for t hours. Series $R_{sys} = \prod_{m=1}^{n} R_m = \prod_{m=1}^{n} e^{-\left[\sum_{i=1}^{r} \lambda_{ij} \cdot t\right]_m} = \left[e^{-\sum_{i=1}^{r} \lambda_{ij} \cdot t}\right]^n$ Series $Q_{sys} = 1 - R_{sys}$ Parallel R'_{sys} = $1 - \prod_{m=1}^{n} Q'_{m} = [1 - [1 - \prod_{m=1}^{n} [R_{s}(t)]_{m}]$ **Operating Limits and Warnings** All units placed in series or parallel <u>must</u> have same λ failure rate per hour.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description 11

	j		λiji	
1	2-diodes	$2.0 \times 10^{-6}/hr$	$4.0 \times 10^{-6}/hr$	
2	3-transistors	$10.0 \times 10^{-6}/hr$	$30.0 \times 10^{-6}/hr$	
	1-capacitor	$1.0 \times 10^{-6}/hr$	$1.0 \times 10^{-6}/hr$	
4	2-resistors	2.0 X $10^{-6}/hr$	4.0 X $10^{-6}/hr$	
Find for	t = 1000 hours; follow	ving:		
1) 2) 3) 4)	Reliability, unreliabili Series reliability R _{sys} ; Parallel unreliability Q Total failure rate/hour	ity of a unit: $R_s(x)$; unreliability fo Rays; reliability of an unit: $(\sum_{i=1}^{r} \lambda_i)$	t) & Q _s (t) r 3 units (n=3) for 3 units (n=3) j _i)	
Solution(s) $\sum_{i=1}^{r} \lambda_i j$	i = 3.9000000 -05			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Unit: F	$s_{s}(1000) = 0.961751$;	$Q_{s}(1000) = 0.038$	249	
Series System:	P(1000) = 0.880585	0(1000) = 0.110	415	
for n=3	Ksys / = 0.889383 ;	$Q_{\rm S}(1000) = 0.110$	47)	
for n=3 Parallel Syste for n=3	$m: Q'_{s}(1000) = 0.000056$; R' _s (1000) = 0.110	0.999944	
for n=3 Parallel Syste for n=3	$m: Q'_{s}(1000) = 0.000056$	<pre>Q_s(1000) = 0.110 ; R'_s(1000) =</pre>	0.999944	

Reference(s) Authors Own Notes on "Quality Assurance And Reliability".
This program is a translation of the HP-65 Users' Library Program
#05108A submitted by Ashok Doshi.

39

	[A]	0.00		
2	[EEX]	2.	00	
6		2.	06	
	[CHS]	2.	-06	[\lambda_1]
	[†]			
[2]				[# of components]
	[X]	0.00		
	[B]	4.000000000	-06	[Σ λ _i j _i]
10	[EEX]	10.	00	
6		10.	06	
	[CHS]	10.	-06	
	[†]	10.00000000	-06	
3		3.		
	[X]			
	[B]	3.40000000	-05	
	[EEX]	1.	00	
6		1.	06	
l	[CHS] [†]	1.000000000	-06	
1		1.		
	[X]	1.000000000	-06	
	[B]	3.500000000	-05	
2	[EEX]	2.	00	
6		2.	06	
	[CHS]	2.	-06	
	[†]	2.000000000	-06	
2		2.		
	[X]			
	[B]	3.90000000	-05	
1000	[C]	0.961751		[R _s (1000)]
1	[R/S]	0,038249		$[0_{3}(1000)]$
3	[D]	0.889585		[R(1) of when we input n=3 units in series]
]	[R/S]	0,110415		$[Q_{sys}^{(1000)}$ of 3 units in series]
3	[E]	0.000056		[Q's(1000) of 3 units
	[R/S]	0.999944		[R's(1000) of 3 units in parallel]

User Instructions

1 SYSTEM RELIABILITY - SERIES OR PARALLEL SYSTEM WITH SAME λ **7** Init $\Sigma \lambda_i j_i$ Unit $R_s(t) Q_s(t) R_{sys} Q_{sys}$ Parallel Parallel SYSTEM WITH SAME $\lambda_i z_i$

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
2	Initialize, clear registers		Α	0.00
3	Input λ_i for each component	λ.	↑	
4	Input j; # of components	j _i	X	λ _i ji
5	Sum & Recall $\Sigma \lambda_i \mathbf{j}_i$		В	Σ̄λ _i ji
	repeat 3-5 for i = 1, 2, 3,r			
6	Input time 't' for reliability	t	С	Unit R _s (t)
7	Calculate unreliability		R/S	Unit Q _s (t)
8	Input no. of units in series to calculate	n	D	Series R _{sv} e
	systems reliability in series			·
9	Calculate unreliability for new 'n'		R/S	Series Q _{svs}
	Go to step 8			J
10	Input no. of units in parallel for	n	E	Parallel
	systems unreliability			Q'sys
11	Calculate reliability of parallel system		R/S	Parallel
				R'sys
	For new 'n' go to step 8 or 10 as requires			
	For a new case go to step 2			
		<u> </u>		

97 Program Listing I

42				Siam					
STEP	KEY ENTR	Y KEY CODE	СОММЕ	ENTS	STEP	KEY ENTRY	KEY CODE	COMM	ENTS
001	*LBLA	21 11	Initialize	e, clear					
002	CLRG	16-53	registe rs	6					
003	RIN	24			060				
004	*LBLE	21 12 75 55 01			000				
005	S1+1	30-00 01	Calculate	Σ ^λ iji					
005	RULI	35 01	(total un	it Č					
007	561	-12	failure	rate)					
008	USPY	-63 09							
009	RIN	24							
616	*LBLU	21 13							
611	RCL1	36 01	Calculate	unit's					
012	X	-35	reliabili	ty and					
013	UHS	-22	unreliabi	.lity	070				
614	e^ ETU	33			070				
015	FIX	-11							
016	USPE	-63 06							
W17	5102	35 02							
018	R/S	51							
019	CHS	-22							
020	1	U1							
021	+	-55							
022	ST03	35 03							
023	RTN	24							
024	*LBLD	21 14			080				
625	RCL2	36 02	Calculate	Rsvs					
026	X‡Y	-41	reliabili	ty in					
027	γx	31	series fo	r 'n'					
023	FIX	-11	such unit	S					
029	DSP6	-63 06							
030	R∕S	51	Yield unre	liabilitv					
031	CHS	-22	in series	0					
032	1	<i>0</i> 1		Sys					
033	+	-55							
034	RTN	24			090				
035	*LBLE	21 15		0					
036	RCL3	36 03	unrolishi	Ysys lity to					
037	X≠Y	-41	find para	11cd					
038	Υ×	31	svetome r	oliob					
039	FIX	-11	for ini u	ellap.					
040	DSP6	-63 06		IIILS					
041	R∕S	51	Yields Row	6					
042	CHS	-22	reliabili	tv of					
043	1	01	svstem in	parallel					
044	+	-55		•	100				
045	RTN	24							
								SET STATUS	
050								SET STATUS	
┝────┼							FLAGS	TRIG	DISP
┝∔									
+					110				SCI
┠╂								RAD 🗆	ENG 🗆
┠────┼							3 0 0		n_ <u>_</u>
┝────┴			l	REGIS	STERS	1			
0	1	2	3	4	5	6	7	8	9
ľ	USED	USED	USED						
S0	S1	S2	S3	S4	S5	S6	S7	58	59
								1	
А		В	С		D		E	ľ	
1		1							

Program Description I

Program Title SY	STEMS RELIABILITY	- SERIES AND PARALI FAILURE RATE λ	EL WITH <u>DIFFEREN</u>	<u>r</u>
Contributor's Name Address	Hewlett-Packa N.E. Circle Boule	rd Company vard		
City Corval1	is	State Ore	egon Zi	ip Code 97330
Program Descriptio	n, Equations, Variables			
R _i = reliab uses unrelia	For series Llity of each comp ability concept to $\prod_{n=1}^{n} (1-e^{-\lambda}) = 0$	s system, program us ponent or unit) and o find reliability o	es R _{ss} = ⁿ R _i i=1 for parallel syst f the system. R _s	(where tem it sp = 1 - Q _{sp}
The	i=1 program is very u	A 1S IALLURE RATE/ USEFUL to check out	nour. any dependent fai	lures.
repairs, sa	nd by operation an	nd redundency of the	system.	
Operating Limits an	d Warnings			

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Program Description II

Sketch(es)	SERIES SYSTEM	PARALLEL SYSTEM

Sample Problem(s) Two retro rockets of differnet capacities with failure rates
6×10^{-6} F/Hr and 23 X 10^{-6} F/Hr respectively of a command module of a
spacecraft are to be mounted for maximum possible systems reliability for
re-entry. Find out systems reliability for 1000 hours. If they are mounted
in series or parallel. (Please refer to sketch above).
ie GIVEN: $t = 1000$
$\lambda_1 = 6 \times 10^{-6}$ Failures/hour
$\lambda_2 = 23 \times 10^{-6}$ Failures/hour
Solution(s) $R_{ss}(1000) = \Pi R_{t} = e^{-\lambda_1 t} \cdot e^{-\lambda_2 t} - e^{-6x^{10} - 6x^{1000}} - 23x^{10} - 6x^{1000} $
i=1 i=1
0 - (1000) = 0.02858/
$Q_{SS}(1000) = 0.028384$
$P_{1}(1000) = 1 0 [1 (1 P_{1}) (1 P_{2})] = 0 00000000000000000000000000000000$
$R_{sp}(1000) = 1 - Q_{sp} = [1 - (1 - R_1)(1 - R_2)] = 0.999864$
(1000) $(1 P) (1 P)$ $(1 -) t) (1 -) ot = 0$
$Q_{sp}(1000) = (1-R_1)(1-R_2) = (1-e^{-1})(1-e^{-2}) = 0.000136$
Reference(s) 1) "Probabilistic Reliability: An Engineering Approach"

Meterence(s) 1) "Probabilistic Keliability: An Engineering Approach" Martin Shooman, McGraw-Hill. 2) HP-65 Owners Handbook This program is a translation of the HP-65 Users' Library Program #05109A submitted by Ashok Doshi.

COMPLETE KEYSTROKES FOR THE EXAMPLE

	[f] [REG]	0.00		[Clear Registers]
	[DSP] [6]			
1000	•	1000		[Input Time t]
	[A]	1.00		
6	[EEX]	6.	00	
6		6.	06	
	[CHS]	6	06	[Input λ _i]
	[B]	0.994018		[Inter-mediate R _{ss}]
23	[EEX]	23.	00	
6		23.	06	
	[CHS]	23(06	[Input λ _i]
	[B]	0.971416		[R _{ss} - Reliability
	[C]	0.028584		[Q _{SS} - Unreliability
6	[EEX]	6.	00	in seriesj
6		6.	06	
	[CHS]	6(06	[Input λ_1]
	[D]	0,005982		[Q _{sp} - Intermediate
23	[EEX]	23	00	Unrellability in parallel
6		23	06	
	[CHS]	23 -(06	[Input λ_1]
	[D]	0.000136		[Q _{sp} -Unreliability in
	[E]	0,999864		[R _{sp} -Reliability in parallel]

User Instructions

1	SYSTEMS	RELIABILITY	IN	SERIES	AND	PARALLEL	DIFFERENT	λ	
	t	R _{ss}	_	Q_{ss}		Q _{sp}	R _{sp}		-

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Enter program			
	Anot program			
2	Clear registers		f REG	0.00
2	Taput time t	t	A	1.00
4	Input λ_{ℓ} for each component	λ.	B	Rec
	repeat 4 for $i = 1, 2, 3$ p	<u> </u>		series
	repeat 4 101 1 - 1, 2, 5,			
				Qss
5	Calculate unreliability (Series)			series
				0
6	Input λ_i for each of the component to	^ <u>i</u>		parallel
	report 6 for i = 1 2 2			
	repeat 6 101 1 - 1, 2, 3,n			
				D
	Calculate reliability of parallel system			parallel
				F
	For a new case go to step 2			

Program Listing I

STED					eted					47
					SIEP	KET ENIRT	_	KEY CODE	COMN	MENTS
001 802	WLDLH CT17	ZI II 75-55 07	Store	time and			-			
002	5175	30-33 00 Ø1	activ	ate storage			-			
000 804	€T+1	75-55 Ø1	regis	ter 1 and 4	060					
885	ST+4	35-55 04								
000 006	RTN	24								
000 007	#I BI B	21 12	Calcul	ato						
808	RCL 3	36 03	rolia	hility R						
809	X	-35	of th	e series			-			
R1R	CHS	-22	eveto	m 501105						
R11	е×	33	syste	щ						
R12	STX1	35-35 01								
013	RCL1	36 01	Violde	P _ corios			-			
014	RTN	24	TIEIUS	NSS-Selles	070					
015	*LBLC	21 13								
016	RCL1	36 01	Calcul	ata unrolinh						
817	CHS	-22	ili+w	of the						
013	1	<u>й</u> 1								
019	+	-55	serie	s system						
020	RTN	24	yield	s Q _{SS} or						
021	*LBLD	21 14	Series	s system						
8 22	RCL3	36 03		lel system						
823	Х	-35	for th	he use of						
024	CHS	-22	unrel	iability	080					
025	ex	33	concer	ot						
026	CHS	-22								
027	1	01								
028	+	-55								
029	STX4	35-35 04	vielde	0 for						
030	RCL4	36 04	parali	Sp 101						
031	RTN	24		lei system						
032	*LBLE	21 15							ľ	
033	RCL4	36 04	Calant							
034	CHS	-22		ite K _{sp}	090					
035	1	01	rellat	ollity of						
036	+	-55		lei system						
037	RTN	24		s R _{sp} for						
				lei system					[
			1							
040			1							
			1							
			1							
			1							
]		100					
			1							
]							
]							
050									SET STATUS	
			l					FLAGS	TRIG	DISP
								ON OFF		
			ł				\vdash	0 🗆 🛛	DEG 🛛	
			4		110		\vdash			
			ł				\vdash			n 6
				DECK	TEDO					
0	14	10	13		5	6		7	18	9
U	USED) (USED	USED	5	ľ		ľ	-	
S0	S1	S2	S3	S4	S5	S6		S7	S8	S9
50					-					
A		В	lc		D	I	E		I	
		⁻	ľ							

NOTES

NOTES

Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

Application Pacs

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

Users' Library

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

Users' Library Solutions Books

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

Options/Technical Stock Analysis	Medical Practitioner				
Portfolio Management/Bonds & Notes	Anesthesia				
Real Estate Investment	Cardiac				
Taxes	Pulmonary				
Home Construction Estimating	Chemistry				
Marketing/Sales	Optics				
Home Management	Physics				
Small Business	Earth Sciences				
Antennas	Energy Conservation				
Butterworth and Chebyshev Filters	Space Science				
Thermal and Transport Sciences	Biology				
EE (Lab)	Games				
Industrial Engineering	Games of Chance				
Aeronautical Engineering	Aircraft Operation				
Control Systems	Avigation				
Beams and Columns	Calendars				
High-Level Math	Photo Dark Room				
Test Statistics	COGO-Surveying				
Geometry	Astrology				
Reliability/QA	Forestry				

RELIABILITY/QUALITY ASSURANCE

Calculations related to reliability/quality assurance are included in this book, e.g., intra-class correlation, specific compliance, parameter estimation, lower limit and bounds of reliability, failure of serves, leak rate, maximum likelihood estimator, system reliability, distribution function, comparison of hazard models, etc.

RELIABILITY: INTRA-CLASS CORRELATION

SPECIFICATION COMPLIANCE FROM LIMITS AND REGRESSION ANALYSIS

PARAMETER ESTIMATION (EXPONENTIAL DISTRIBUTION)

- LOWER LIMIT OR RELIABILITY BINOMIAL DISTRIBUTION
- RELIABILITY AND PROBABILITY OF FAILURE OF SERIES AND PARALLEL SYSTEMS
- MIL STD 883 CALCULATED LEAK RATE
- MLE: $\hat{\theta}$ FROM HAZARD RATE
- MLE: $\hat{\theta}$ BY LEAST SQUARE METHOD
- SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH SAME FAILURE RATE λ
- SYSTEMS RELIABILITY-SERIES AND PARALLEL WITH DIFFERENT FAILURE RATE λ

1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14030 Printed in U.S.A. 00097-90205

Revision C 10-78