
HEWLETT-PACKARD

# HP-67/HP-97

#### Users' Library Solutions

#### Space Science



#### INTRODUCTION

In an effort to provide continued value to it's customers, Hewlett-Packard is introducing a unique service for the HP fully programmable calculator user. This service is designed to save you time and programming effort. As users are aware, Programmable Calculators are capable of delivering tremendous problem solving potential in terms of power and flexibility, but the real genie in the bottle is program solutions. HP's introduction of the first handheld programmable calculator in 1974 immediately led to a request for program solutions — hence the beginning of the HP-65 Users' Library. In order to save HP calculator customers time, users wrote their own programs and sent them to the Library for the benefit of other program users. In a short period of time over 5,000 programs were accepted and made available. This overwhelming response indicated the value of the program library and a Users' Library was then established for the HP-67/97 users.

To extend the value of the Users' Library, Hewlett-Packard is introducing a unique service—a service designed to save you time and money. The Users' Library has collected the best programs in the most popular categories from the HP-67/97 and HP-65 Libraries. These programs have been packaged into a series of low-cost books, resulting in substantial savings for our valued HP-67/97 users.

We feel this new software service will extend the capabilities of our programmable calculators and provide a great benefit to our HP-67/97 users.

#### A WORD ABOUT PROGRAM USAGE

Each program contained herein is reproduced on the standard forms used by the Users' Library. Magnetic cards are not included. The Program Description I page gives a basic description of the program. The Program Description II page provides a sample problem and the keystrokes used to solve it. The User Instructions page contains a description of the keystrokes used to solve problems in general and the options which are available to the user. The Program Listing I and Program Listing II pages list the program steps necessary to operate the calculator. The comments, listed next to the steps, describe the reason for a step or group of steps. Other pertinent information about data register contents, uses of labels and flags and the initial calculator status mode is also found on these pages. Following the directions in your HP-67 or HP-97 **Owners' Handbook and Program Listing I** and Program Listing I and Program Listing indicates on which calculator the program was written (HP-67 or HP-97). If the calculator indicated differs from the calculator you will be using, consult Appendix E of your **Owner's Handbook** for the corresponding keycodes and keystrokes converting HP-67 to HP-97 keycodes and vice versa. No program conversion is necessary. The HP-67 and HP-97 are totally compatible, but some differences do occur in the keycodes used to represent some of the functions.

A program loaded into the HP-67 or HP-97 is not permanent—once the calculator is turned off, the program will not be retained. You can, however, permanently save any program by recording it on a blank magnetic card, several of which were provided in the Standard Pac that was shipped with your calculator. Consult your **Owner's Handbook** for full instructions. A few points to remember:

The Set Status section indicates the status of flags, angular mode, and display setting. After keying in your program, review the status section and set the conditions as indicated before using or permanently recording the program.

REMEMBER! To save the program permanently, **clip** the corners of the magnetic card once you have recorded the program. This simple step will protect the magnetic card and keep the program from being inadvertently erased.

As a part of HP's continuing effort to provide value to our customers, we hope you will enjoy our newest concept.

#### TABLE OF CONTENTS

- LOCAL SIDEREAL TIME & OBLIQUITY FROM LOCAL STANDARD TIME . . . 6 Compute obliquity & local sidereal time from longitude, local standard time (and time zone), and any valid Gregorian date. Useful for preparing a table of local sidereal time as a function of local standard time for evening viewing of an object. Can also be used as a companion program for program -----, Astronomical Spherical Coordinate XFRM's.

- SPACE SCIENCE & TECHNOLOGY NO. (4) BALLISTIC MISSLE RANGE . . . 21 Program computes, for various planetary bodies, the range of a ballistic missile, given the burn-out altitude, velocity, and elevation angle. The maximum ordinate and elevation angle for maximum range is computed. Provision is made for target altitude.
- BINARY STAR EPHEMERIS Given the standard Binary Star Orbit parameters, compute the apparent position angle and angular separation of the companion relative to the primary star, for any date. Provision is made for automatic entry and recording of parameters. Parameters for two binary systems may be stored simultaneously.
- PRECESSION/GALACTIC COORDINATES Precesses equatorial coordinates (right ascension and declination). 38 Transforms equatorial coordinates to new galactic coordinates and vice versa.

- SPACE SCIENCE & TECHNOLOGY, NO. (5) KEPLER'S EQUATION . . . . . 43 Program computes the time after perifocus of a body travelling in an elliptical orbit. Conversely, program computes the true anomaly and focal radius at any time in the orbit. The vis viva velocity and path angle are also calculated.

| Program Title Precession of Righ        | + Ascension |                |
|-----------------------------------------|-------------|----------------|
| Contributor's Name Rex H Shudde         | 7041        |                |
| Address 27105 Arriba War<br>City Carmel | State CA    | Zip Code 9392/ |

Program Description, Equations, Variables het Xo, So and X, S denote the visit ascension and declination for the initial epoch to and the final epoch to and the Sinal epoch t, respectively. Then, where So = (2304.250 + 1.396 To)T+ 0.302 T2 + 0.018T2,  $Z = S_0 + 0."791T^2,$   $\Theta = (2004."682 - 0.853T_0)T - 0."426T^2 - 0."042T^3,$ ind to = 1900.0 + 100 To, and t = 1900.0 + 100 (To+T). To and T are measured in tropical centurios. **Operating Limits and Warnings** to and & are measured in hours, minutes, and seconds Note: The display is miticilized by DSP 4, but the cokylations are accurate to DSP 6 if desired.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

1

Sketch(es) Sample Problem(s) 1. Calculate the mean coordinates of Electantis for 1950.0 aiven that (Xo, So) for 1900.0 are 224 CEM 505 and - 80°56'15" 2. Using the initial 1900.0 data above, calculate the mean coordinates of E Octantis for 1 Nov. 1975 (Julian Day Number = 2442716 Solution(s) 1900 [FIA] 0.0000 = Th; 1950.0 FB 0.5000 = T; 22.0850 A - 80.5615 [E] 221.14m325 = X [R/5] - 80°41'23" 1. (1900 FA 0.0000 = To This need not be reenteral); 2442716 B C.7563 = T; 22.0850 A-80.5615 E 22617m235 = X [R/5] - EC 33'37" Reference(s) 1. P. Escobal, "Methods of Astrodynamics", Wiley 1968 2. "Explanatory Supplement to the Astronomical Ephemeris and the American Ephemaris and Nautical Almanace", Her Majesty's Stecheners Office,

London, 1961.



| STEP     | INSTRUCTIONS                                                   | INPUT<br>DATA/UNITS | KE               | EYS | OUTPUT<br>DATA/UNITS |
|----------|----------------------------------------------------------------|---------------------|------------------|-----|----------------------|
|          | Enter program cord                                             |                     |                  |     |                      |
| 1        |                                                                |                     |                  |     |                      |
|          | Enter the intial epoch. Either                                 | JD#                 | 4                |     |                      |
| <i>a</i> | Julian Day Number, or<br>Besselian Year (and Staction of year) | VYYY.FF             | A<br>S           |     | To                   |
|          | Dessellan Tear (and Trachmor gear)                             | //,/                |                  |     | 10                   |
| 3        | Aster step 2, enter the final epoch.                           |                     |                  |     |                      |
|          | E.ther                                                         |                     |                  |     |                      |
|          | Julian Day Number, or                                          | JD#                 | B                |     | ア                    |
| 6        | Besselian Year (and Some tim)                                  | YYYY.FF             | [ <del>}</del> ] | B   | T                    |
|          |                                                                |                     |                  |     |                      |
| 44       | Kea in do                                                      | HHMMSS              |                  |     |                      |
| 6        | Key in So<br>Compute X                                         | #DD. MMISS          | E                |     | HH.MM55              |
|          | Compute &                                                      |                     | R/S              |     | # DD. MM155          |
|          | Computer                                                       |                     |                  |     | 200.0000             |
| 5        | Repeat from either Step 2 or                                   |                     |                  |     |                      |
|          | Repeat from either Step 2 or<br>Step 3 as desired.             |                     |                  |     |                      |
|          | ~ /                                                            |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     | [                |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     | [ ]              |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
|          |                                                                |                     |                  |     |                      |
| L        |                                                                | I                   |                  | l   |                      |

| 4    |                  |                   | 67 Program                                         | Lis               | sting I       |                |                       |
|------|------------------|-------------------|----------------------------------------------------|-------------------|---------------|----------------|-----------------------|
| STEP | KEY ENTRY        | KEY CODE          | COMMENTS                                           | STEP              | KEY ENTRY     | KEY CODE       | COMMENTS              |
| 001  | FLBL A           | 312511            | Initial Epoch                                      |                   | RCL 1         | 3401           |                       |
|      | + 658 9<br>5TC 0 | 31 22 09<br>33 00 | JD#                                                |                   | <u> </u>      | 7/             |                       |
|      | R15              | 84                |                                                    | 060               | <u>4</u><br>2 | 04<br>02       |                       |
|      | FLBLB            |                   | Final Epoch JD#                                    | 1                 | k             | 06             |                       |
|      | F 4589           | 31 22 09          | Final Epach JD#<br>Compute<br>Procession<br>Angles |                   | -             | 51             |                       |
|      | FLBL7            | 31 25 07          | Compute                                            |                   | RCLI          | 3401           |                       |
|      | RCLC             | 34 00             | Precession                                         |                   | X             | 71             |                       |
|      | -                | 51                | Angles                                             |                   | E             | 08             |                       |
| 010  | 570 1            | 33 01             |                                                    |                   | 53            | 05             |                       |
|      | É                | 01                |                                                    |                   |               | 03             |                       |
|      | X                | 08                |                                                    |                   | RELO          | 3400           |                       |
|      | 3                | 03                |                                                    | 070               | X<br>-        | 171<br>57      |                       |
|      | C                | 00                |                                                    |                   | 2             | 02             |                       |
|      | 2                | 02                |                                                    |                   | c             | 00             |                       |
|      | +                | 61                |                                                    |                   | 0             | 00             |                       |
|      | RCL 1            | 3401              |                                                    |                   | 4             | 04             |                       |
|      | X                | 71                |                                                    |                   | 966           | 06             |                       |
| 020  |                  | 01                |                                                    |                   | E             | 08             |                       |
|      | 3                | 03                |                                                    |                   | 2<br>+        | 02             |                       |
|      | 9                | 06                |                                                    |                   | RCL 1         | 3401           |                       |
|      | RILO             | 3400              |                                                    | 080               | X             | 71             |                       |
|      | X                | 71                |                                                    |                   | RCL 5         | 34 05          |                       |
|      | $\frac{1}{4}$    | 61                |                                                    |                   | $\neq$        | 81             |                       |
|      | 2                | 02                |                                                    |                   | 570 4         | 3304           | store o               |
|      | 3                | 03                |                                                    |                   | REL 1         | 3401           |                       |
|      | 0                | 00                |                                                    | L                 | R15           | 84             |                       |
| 030  | 4                | 04                |                                                    |                   | FLBLE         | 31 25 15       | Input<br>initial X, 8 |
| -    | 2                | 02                |                                                    |                   | SHE           | 3174           | initial dist          |
|      | 5                | 05                |                                                    |                   | h XZY<br>FHE  | 35 52<br>31 74 |                       |
|      | +                | 61                |                                                    | 090               | J HE          | 01             |                       |
|      | RCL 1            | 3401              |                                                    |                   | 5             | 05             |                       |
|      | X                | 71                |                                                    |                   | ×             | 71             |                       |
|      | 3                | 03                |                                                    |                   | RCL 2         | 34 02          |                       |
|      | 6                | 06                |                                                    |                   | +             | 61             |                       |
|      | EEX              | 43                |                                                    |                   | hX=Y          | 3552           |                       |
| 040  | 5                | 05                |                                                    |                   | 1             | 01             |                       |
|      | 570 5<br>÷       | 33 05             |                                                    |                   | S RE<br>h Rt  | 31 72 35 53    |                       |
|      | 570 2            | E1<br>3302        | Store So                                           |                   | hx=Y          | 35 52          |                       |
|      | RCL I            | 3401              |                                                    | 100               | hRT           | 35 54          |                       |
|      | x x -            | 32 54             |                                                    |                   | \$ RK         | 3172           |                       |
|      | 17               | 07                |                                                    |                   | hX=Y          | 35 52          |                       |
|      | 9                | C9                |                                                    |                   | 5706          | 33 06          | Y-coord               |
|      | 1                | 01                |                                                    |                   | h RJ          | 35 53          |                       |
| 050  | X                | 71                |                                                    |                   | hX=Y<br>G-FP  | 35 52          |                       |
| 050  | RCL 5<br>÷       | 3465              |                                                    |                   | $h \neq f$    | 32 72<br>35 52 |                       |
|      | -<br>+           | 61                |                                                    |                   | RCLY          | 34 64          |                       |
|      | 570 3            | 3303              | Store Z                                            |                   | -             | 51             |                       |
|      | 4                | 04                |                                                    | 110               | hX=Y          | 35 52          |                       |
|      |                  | 07                |                                                    |                   | <i>⊊ R</i> ←  | 3/ 72          | Z-ccord               |
|      | CHS              | 42                | DEOL                                               |                   | 570 7         | 33 67          | E - (( 01 ( )         |
| 0    | 1                | 2 0               | 3 4                                                | STERS             | 6.            | , 7            | 8 9                   |
| ° To |                  | ² <b>S</b> u      | ³ Z ⁴ ⊖                                            | <sup>5</sup> 36ES | T Y-CCO       | al Z-ciont     |                       |
| S0   | S1               | S2                | S3 S4                                              | S5                | S6            | S7             | S8 S9                 |
|      |                  |                   |                                                    |                   |               |                |                       |
| Α    |                  | В                 | С                                                  | D                 |               | E              | I                     |
|      |                  |                   |                                                    |                   |               |                |                       |

|          |                         |                | 67 Program                                      | List         | ing H      |          | 5                                                           |
|----------|-------------------------|----------------|-------------------------------------------------|--------------|------------|----------|-------------------------------------------------------------|
| STEP     | KEY ENTRY               | KEY CODE       | COMMENTS                                        | STEP         | KEY ENTRY  | KEY CODE | COMMENTS                                                    |
|          | hRi                     | 3553           |                                                 |              | 0          | 00       | Trans Sorm                                                  |
|          | RCL6                    | 34 06          |                                                 | 170          | 0          | 00       | Bessielian<br>Epoch<br>to Tropical Centurits<br>Srom 1900.0 |
| L        | hx=Y                    | 35-52          | 4                                               |              |            | 51       | Frech                                                       |
|          | g app                   | 32 72          | 4                                               |              | /          | 01       | to Transallenturio                                          |
|          | h XZY                   | 35 52          | 4                                               |              | 0          | 00       | ie representation                                           |
|          | RCL3<br>+               | 34 03          | 4                                               |              | 0          | 81       | Jran 1900.0                                                 |
| 120      | 3                       | 61             | 4                                               |              | ÷<br>4 RTN | 3522     | 4                                                           |
|          | 6                       | 06             | 4                                               |              | 4 2.11     | 84       |                                                             |
|          |                         | 00             | 1                                               |              |            |          | 1                                                           |
|          | C                       | 81             | ]                                               |              |            |          | ]                                                           |
|          | 1                       | 01             |                                                 | 180          |            |          |                                                             |
|          | +                       | 61             |                                                 |              |            |          |                                                             |
|          | A FRAC                  | 32 83          |                                                 |              |            |          |                                                             |
|          | 2                       | 02             | 4                                               |              |            |          |                                                             |
| <b> </b> | 4                       | 04             | 4                                               |              |            |          | 4                                                           |
| 130      | X<br>A A HMIS           | 71<br>3274     |                                                 |              |            | ·        | {                                                           |
|          | R/S                     | 52 74          | Display New X                                   |              |            |          | {                                                           |
|          | RCL7                    | 34 07          | +                                               | +            |            |          | {                                                           |
|          | 5 5TN-1                 | 32 62          | Display New X<br>Display<br>New S               |              |            |          | 1                                                           |
|          | Than HMS                | 32 74          | new J                                           | 190          |            |          | ]                                                           |
|          | FLBL9                   | 27             |                                                 |              |            |          |                                                             |
|          |                         | 31 25 09       |                                                 |              |            |          |                                                             |
|          | 2                       | 62             | Transform                                       |              |            |          |                                                             |
|          | 4                       | 04             | Transform<br>Julian Day<br>Number               |              |            |          |                                                             |
| 140      | 5                       | C1<br>05       |                                                 |              |            |          |                                                             |
| 140      | 0                       | 00             | Number                                          |              |            |          |                                                             |
|          | 2                       | 02             | 4                                               |              |            |          |                                                             |
|          | 0                       | 00             | te<br>Tropical<br>Centuries<br>Srim<br>JOIGCO.C |              |            |          |                                                             |
|          | •                       | 83             | Tropical                                        | 200          |            |          |                                                             |
|          | 3                       | 03             | Centuries                                       |              |            |          |                                                             |
|          | i                       | 01             | Stim                                            |              |            |          |                                                             |
|          | 3                       | 03             |                                                 |              |            |          |                                                             |
|          |                         | 51             | NU1900.0                                        |              |            |          |                                                             |
| 150      | 5                       | 03             | 4                                               |              |            |          | 4                                                           |
| 150      | 6                       | 06<br>05       | 4                                               |              |            |          | •                                                           |
|          | 2                       | 02             | 4                                               |              |            |          |                                                             |
|          | $\overline{\mathbf{v}}$ | 04             |                                                 |              |            |          |                                                             |
|          | 0                       | 83             |                                                 | 210          |            |          |                                                             |
|          | 2                       | 02             | ]                                               |              |            |          | ]                                                           |
|          | 2                       | 02             | 1                                               |              |            |          |                                                             |
|          |                         | 81             | 4                                               |              |            |          |                                                             |
|          | h RTN                   | 3522           |                                                 | -            |            |          |                                                             |
| 160      | S LBLA<br>FGSB 8        | 32 25 11       | Indial Epuch<br>Besselium                       |              |            |          |                                                             |
|          | 570 0                   | 33.00          | Barcolin                                        |              |            |          |                                                             |
|          | R/S                     | E4             | Lessenan                                        |              |            |          |                                                             |
|          | GLBL 6                  | 3225 12        | Final Epoch<br>Besselian                        |              |            |          |                                                             |
|          | 15 G38 8                | 31 22 08       | Besselian                                       | 220          |            |          |                                                             |
|          | GTO 7                   | 2207           |                                                 |              |            |          |                                                             |
|          | FLBL 8                  | 312508         | 4                                               |              |            |          |                                                             |
|          | i<br>9                  | 09             | 1                                               |              |            |          |                                                             |
|          |                         |                | LABELS                                          |              | FLAGS      |          | SET STATUS                                                  |
| A        | · B L                   | - c            | D E                                             | ~            | 0          | FLAGS    | TRIG DISP                                                   |
| a i      |                         | c              | d e                                             |              | 1          | ON OFF   |                                                             |
|          |                         | 2              | 3 4                                             |              | 2          |          | DEG 🗹 FIX 🗹<br>GRAD 🗆 SCI 🗆                                 |
|          |                         |                |                                                 |              |            |          | GRAD □ SCI □<br>RAD □ ENG,□                                 |
| 5        | 6                       | <sup>7</sup> i | - <sup>8</sup> - <sup>9</sup>                   | $\checkmark$ | 3          | 3 🗆 🗆    | n_ <u>¥</u>                                                 |
|          |                         |                |                                                 |              |            |          |                                                             |

| Program Title Local Sixlereal Tim<br>Contributor's Name Rex H Shudde                                         |                     | Local Standard Time |
|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| Address 27105 Arriba Lucy<br>City Carmel                                                                     | State CA            | Zip Code 9352 /     |
| Program Description, Equations, Variables<br>1. Compute the number of days<br>rowthing by Richard C. Singles | Som OJan 1900 using | an unpublished      |

 $JU_{1500} = \left[\frac{2 \operatorname{Mull}(I, 1^{2}) + 7 + 365I}{12}\right] + D + \left[\frac{I}{48}\right] - \left[\frac{I}{1200}\right] + \left[\frac{I}{4600}\right] - \frac{1}{1200}\right] + \left[\frac{I}{4600}\right]$ where  $Y = \operatorname{Mear}$ ,  $M = \operatorname{Meanth}$ ,  $D - \operatorname{des}$ ,  $\operatorname{Legs}$  is the integer part of e.g. 2. Compute T, the number of Julian conturies Srin Greenwich Mean Noon, Jan O, 1960:  $T = (t_{G}/24 + JD)_{1500} - (5)/36525$ , where the Greenwich mean time  $t_{G} = (\operatorname{Iacal skindard time}) + (\operatorname{time-jone})_{3} + \operatorname{for} West_{3} - \operatorname{forEst}_{3}$ 3. Compute RG, the Greenwich mean sidereal time:  $R_{G} = (23925) + 864 - (164) + 547 + 0.057 + 3600 + t_{G} (\operatorname{mal} 24) \operatorname{heurs}_{3}$ 4. Compute LST, the local sidereal time: LST = RG - A/15where A is the geographical long, tude in degrees (+ Ser West,  $- \operatorname{for} \operatorname{Enst}_{3}$ . 5. Compute E, the mean obliquity of the ecliptic:  $E = (84422260 - 46845T - 505T^{2})/360000 \operatorname{degrees}_{3}$ 

**Operating Limits and Warnings** 

Negative dates (B.C.) are not properly handled by this calendar routine. Julian dates must be converted to Gregorian dates prior to usage.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

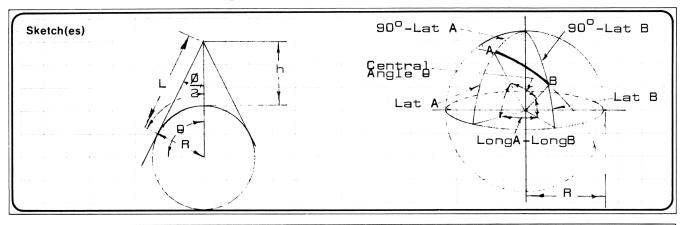
Sketch(es) Sample Problem(s) OBSERVATIONS are to be made From an observatory of 121°57' West Longitude at 2000, 2015, 2030, and 2045 hrs LOCAL STANdard TIME (TIME FORE 8). COMPUTE the LOCAL SideRALTIME FOR these hours FOR 14 October 1974. Also compute the obliquity FOR this date. LOCAL Standard Time LOCAL SI decal TIME 2000 211 25M 255 2015 Ż. 21h 40m 285 21h 55M 305 3. 2030 2045 4 22h 10m 335 Solution(s) Keystrokes: Outputs: 10,141974 IAI 121.57 BI 8 [C] 21.2525 20.00/E 21.4028 20,15 /EI 21,5530 20,30 ET 20,45 IET -22.1033 RISI -22,2633 Reference(s) "Explanatory Supplement to the Astronomical Ephemeris & Nautical Almanae," Here Majesty's Stationery OFFICE, London 1961.

| Local S. | ilereal Time | ¿ Cbligui           | ts from Local | Stel. Time                                  |   |
|----------|--------------|---------------------|---------------|---------------------------------------------|---|
|          | DDD. MMSS    | Time Zone<br>+ West |               | Local Stal Time<br>HH.MMSS<br>Compute Local | 7 |
|          | - East       | -East               |               | Siver Time HJO                              |   |

| STEP | INSTRUCTIONS                                                 | INPUT<br>DATA/UNITS | KEYS     | OUTPUT<br>DATA/UNITS |
|------|--------------------------------------------------------------|---------------------|----------|----------------------|
| 1    | Enter Program                                                |                     |          |                      |
|      |                                                              |                     |          |                      |
| 2    | Enter the date in the form MM. DDYYYY                        | MM. DDYYYY          | A        | JD1900               |
|      | where MM is the 2-digit month, DD is the                     |                     |          |                      |
|      | 2- digit day & YYYY is the 4-digit                           |                     |          |                      |
|      | Gregorian Year (Note that a decimal                          |                     |          |                      |
|      | point must separate MM from DD)                              |                     |          |                      |
|      |                                                              |                     |          |                      |
|      | In any order, enter:                                         |                     |          |                      |
| 3    | Longitudie in DOD, MM55<br>(+ Sor West, - Sor East)          | DDD.MNISS           | B        |                      |
|      | (+ Sor West, - Sor East)                                     |                     |          |                      |
|      |                                                              |                     |          |                      |
| 4    | Time zone as an integer digit(1)<br>(+ for West, - for East) | T. 2,               | <i>C</i> |                      |
|      | (+ for West, - for East)                                     |                     |          |                      |
|      |                                                              | ļ                   |          |                      |
|      | -1                                                           |                     |          |                      |
|      | Then:                                                        |                     |          |                      |
| 54   | Enter the Local Standard Time in                             | Loca 1 Standard     | E        | Loca.1               |
|      | HH.MM55 & Compute Local Sidereal                             | Time                |          | Sitereal Time        |
|      | Time in HH. MM55                                             |                     |          |                      |
| 6    | Compute abliquity of ecliptic                                |                     | R/S      | DD.MM55              |
|      |                                                              |                     |          |                      |
|      | $\mathcal{P}$                                                |                     |          |                      |
| 6    | Repeat step 5 or steps 3 through 5                           |                     |          |                      |
|      | for subsequent computations on the                           |                     |          |                      |
|      | same date                                                    |                     |          |                      |
| 7    | For a way date with Star                                     | <u> </u> ]          |          |                      |
| ⊢́−∣ | For a new date, repeat from Step 2.                          |                     |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              | łł                  |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              | łł                  |          |                      |
|      |                                                              |                     |          |                      |
|      |                                                              | <u> </u> ]          |          |                      |
|      |                                                              |                     |          |                      |

|           |             |                | <b>67</b> Pro                             | )gram        | Lis    | sting I             |                 |                                                                    | 9          |
|-----------|-------------|----------------|-------------------------------------------|--------------|--------|---------------------|-----------------|--------------------------------------------------------------------|------------|
| STEP      | KEY ENTRY   | KEY CODE       | COMN                                      | IENTS        | STEP   | KEY ENTRY           | KEY CODE        | COMMENTS                                                           |            |
| 001       | & LBL A     | 312511         | Un pack<br>clate<br>and<br>compu<br>.JDig |              |        | SINT                | 31 83           |                                                                    |            |
|           | 1           | 41             | Un pack                                   |              |        |                     | 51              | ]                                                                  |            |
|           | STUT        | 3183           | date                                      |              | 060    | hLSTX               | 3582            | 4                                                                  |            |
|           | 5101        | 51             | and                                       |              | 000    | 9<br>               | 04              | -                                                                  |            |
|           | EEX         | 43             | li stat 24                                | 1.           |        | 5 JUT               | 3183            | -                                                                  |            |
|           | ス           | CL.            | Compa                                     | <i>,</i> , , |        | +                   | 61              | 1                                                                  |            |
|           | X           | 71             | JD14                                      | 200          |        | 6                   | 06              | ]                                                                  |            |
| 010       | 1           | 41             | 4                                         |              |        | 9                   | 09              | _                                                                  |            |
| 010       | STO &       | 31 83<br>33 08 | 1                                         |              |        | 3                   | 03              | -                                                                  |            |
|           | 510 0       | 51             | 1                                         |              |        | 0                   | 00              | -                                                                  |            |
|           | EEX         | 43             |                                           |              |        |                     | 01              | -                                                                  |            |
|           | U U         | 04             | 1                                         |              | 070    |                     | 51              | -                                                                  |            |
|           | X           | 71             |                                           |              |        | 570 1               | 3301            |                                                                    |            |
|           | 1           | 01             |                                           |              |        | R15                 | 84              |                                                                    |            |
|           | 2           | 02             | 4                                         |              |        | SLBL C              | 312500          | Error routine                                                      | -          |
|           | 5769        | 3309           | 4                                         |              |        | <i>C</i><br>÷       | Cĩ<br>Qi        |                                                                    |            |
| 020       | X<br>RCL7   | ·71<br>34 01   | 1                                         |              |        | GTOC                | 81<br>22 CO     | 4                                                                  |            |
|           | +           | £1             |                                           |              |        | SLOL B              | 312512          |                                                                    | 7          |
|           | 3           | 03             |                                           |              |        | Ť                   | 41              | Convert long, tu                                                   | <i>c'e</i> |
|           | ļ           | 51             |                                           |              |        | SHE                 | 3174            | Convert long. tu<br>to time                                        |            |
|           | 1           | 41             |                                           |              | 080    | 1                   | 01              |                                                                    |            |
|           | 5706        | 3306           |                                           |              |        | 5                   | <u>C5</u>       | 4                                                                  |            |
|           | RCLÍ        | 3409<br>81     |                                           |              |        | ÷<br>575 3          | E1<br>3303      | 4                                                                  |            |
|           | & INT       | 3183           |                                           |              |        | h Rt                | 3553            | 4                                                                  |            |
|           | RCL 9       | 34 09          |                                           |              |        | R/s                 | 84              | 1                                                                  |            |
| 030       | X           | 71             |                                           |              |        | GTE C               | 22 00           | 1                                                                  |            |
|           | 1           | 51             |                                           |              |        | SLBLC               | 312513          | Store time                                                         |            |
|           | 1           | 41             |                                           |              |        | 5705                | 3305            | 3 cne                                                              |            |
|           | + 7         | 61             |                                           |              | 090    | R/S                 | 84              |                                                                    |            |
|           | +           | 61             |                                           |              | 090    | GTO C<br>FLBLE      | 12 CC<br>312515 |                                                                    |            |
|           | 3           | 03             |                                           |              |        | SHE                 | 31 74           | Store Local                                                        |            |
|           |             |                |                                           |              |        | RCL 5               | 34 05           | Standard time                                                      |            |
|           | 65          | 06<br>05       |                                           |              |        | +                   | 61              | and compute                                                        |            |
|           | RULE        | 3406           |                                           |              |        | STO A               | 33 11           | tà                                                                 |            |
| 040       | ×           | 71             |                                           |              |        | X                   | 02              | 4                                                                  |            |
|           | t<br>RCL 9  | 61             |                                           |              |        | ¥<br>. <del>:</del> | 04              | 4                                                                  |            |
|           | 1           | 34 69<br>81    |                                           |              |        | RCLI                | 3401            | 1                                                                  |            |
|           | f.<br>FINT  | 31 63          |                                           |              | 100    | +                   | 61              | 1                                                                  |            |
|           | RCL 8       | 34 68          |                                           |              |        | •                   | 83              | ]                                                                  |            |
|           | +           | 61             |                                           |              |        | 5                   | 65              | <b>.</b>                                                           |            |
|           | RULE        | 3406           |                                           |              |        | -                   | 51              | Compute and<br>store T                                             |            |
|           | - (c) · j · | C4<br>C8       |                                           |              |        | 3                   | 03              | store T                                                            |            |
| 050       | C'          | 81             |                                           |              |        | <b>U</b><br>5       | C5              | 1                                                                  |            |
|           | SINT        | 31 83          |                                           |              |        | 2                   | 02              | 1                                                                  |            |
|           | +           | 61             |                                           |              |        | 5                   | 02<br>05        |                                                                    |            |
|           | hLST X      | 3582           |                                           |              | 110    | ÷                   | E1<br>72 CO     | 4                                                                  |            |
|           | 2           | 02<br>05       |                                           |              | 110    | 570 C               | 33 CO<br>83     | <b>- -</b>                                                         |            |
|           | ···         | 81             |                                           |              |        | C C                 | <i>co</i>       | 1                                                                  |            |
|           |             |                |                                           |              | STERS  |                     |                 |                                                                    |            |
| °T        | 1JD140      | ° 6            | 3 Lorisi tuere                            |              | 5 T.Z. | $^{6}\mathcal{I}$   | 7 MM            | $^{8} \mathcal{P} \mathcal{O} \qquad ^{9} \mathcal{I} \mathcal{L}$ |            |
| S0        | S1          | S2             | in hours<br>S3                            |              | S5     | S6                  | S7              | S8 S9                                                              |            |
| 30        |             | 152            |                                           |              | 55     |                     |                 |                                                                    |            |
| A ,       | E           | <b>i</b> 3     | С                                         |              | D      |                     | E               | I                                                                  | $\neg$     |
| A<br>COMT | - ta        |                |                                           |              |        |                     |                 |                                                                    |            |

# 67 Program Listing II


| STEP | KEY ENTRY   | KEY CODE       |                                        | STEP |               | KEY CODE          | COMME           | ENTS                                  |
|------|-------------|----------------|----------------------------------------|------|---------------|-------------------|-----------------|---------------------------------------|
|      | 9           | CG             |                                        |      | -             | 51                |                 |                                       |
|      | ×           |                |                                        | 170  | PCLO          | 34 00             |                 |                                       |
|      | 8           | 71<br>68       |                                        |      | X             | 71<br>08          |                 |                                       |
|      | ٤           | CE             |                                        |      | E             | 08                |                 |                                       |
|      | 4           | 04             |                                        |      | 4             | C4<br>04          |                 |                                       |
|      |             | 00<br>01       |                                        |      |               | C2                |                 |                                       |
| 120  | ٤           | 08             |                                        |      | 2<br>8        | 08                |                 |                                       |
|      | 4           |                |                                        |      | 2             | 02                |                 |                                       |
|      |             | 04<br>83       |                                        |      | 6             | 06                |                 |                                       |
|      | 5           | 05             |                                        | 180  | 0             | 00                |                 |                                       |
|      | 4           | 04             |                                        |      | + 3           | 61<br>C3          |                 |                                       |
|      | +<br>RCLO   | 34 00          |                                        |      | 6             | 06                |                 |                                       |
|      | X           |                |                                        |      | EEX           | 43                |                 |                                       |
|      | 2           | 71<br>CZ       | Compute                                |      | 5             | 43<br>05          |                 |                                       |
|      | 2<br>3<br>9 | 03             |                                        |      | e<br>·        | 61                | 1               |                                       |
| 130  |             | 09             | Compute<br>RG                          |      | 570 2         | 33.02             | 4               |                                       |
|      | 2           | 02             |                                        |      | S-7HMS<br>R/S | 32.74             | 4               |                                       |
|      | 5           | 65             |                                        |      | K/3           | 32 74<br>E4<br>E4 | 1               |                                       |
|      | E           | 63<br>08       |                                        | 190  |               | ۲ ( )             | l               |                                       |
|      | 4           | 04             |                                        |      |               |                   | 1               |                                       |
|      | +           | 61             |                                        |      |               |                   |                 |                                       |
|      | 3           | 03             |                                        |      |               |                   |                 |                                       |
|      | 6           | C6<br>CC       |                                        |      |               |                   | 4               |                                       |
| 140  | 0           | <u> </u>       |                                        |      |               |                   | 1               |                                       |
|      | 4           | 81             |                                        |      |               |                   | 1               |                                       |
|      | RCLA        | 34 11          |                                        |      |               |                   |                 |                                       |
|      | +           | 61             |                                        |      |               |                   |                 |                                       |
| L    | RCL 3       | 3403           |                                        | 200  |               |                   |                 |                                       |
|      | - 2         | 51<br>62       |                                        |      |               |                   | 4               |                                       |
|      |             | 04             | Compute and                            |      |               |                   | 1               |                                       |
|      | 4.0         | 81             | display                                |      |               |                   | 1               |                                       |
|      | SFRAC       | 32.83          | Compute and<br>display<br>Local        |      |               |                   | 1               |                                       |
| 150  | <u> </u>    | 01             | Local                                  |      |               |                   |                 |                                       |
|      | +<br>S FRAC | 61             |                                        |      |               |                   | 4               |                                       |
|      | E FRAL<br>2 | 32 & 3<br>02   | Silereal<br>Time                       |      |               |                   | •               |                                       |
|      | 4           | 04             | Time                                   | 210  |               |                   | 4               |                                       |
|      | ×           | 7/             |                                        |      |               |                   | 1               |                                       |
|      | G-7HMS      | 32 74          |                                        |      |               |                   | ]               |                                       |
|      | R/5<br>5    | 64             |                                        |      |               |                   | 4               |                                       |
|      | 5           | 05<br>E3       | 4                                      |      |               |                   | 4               |                                       |
| 160  | 9           | 09             | Compute                                |      |               |                   | 1               |                                       |
|      | CHS         | 42             | Compute<br>and<br>display<br>oblignity |      |               |                   | 1               |                                       |
|      | RULO        | 3400           | and                                    |      |               |                   | 1               |                                       |
|      | X           | 71<br>CY       | display                                | 000  |               |                   | ł               |                                       |
|      | Y<br>6      | 64             |                                        | 220  |               |                   | 4               |                                       |
|      | R           | 06<br>08<br>64 | obligaity                              |      |               |                   | 1               |                                       |
|      | 4<br>4<br>5 | 64             |                                        |      |               |                   | ]               |                                       |
|      | 5           | <i>C5</i>      |                                        |      |               |                   |                 |                                       |
| A    | В           | c              | LABELS                                 |      | FLAGS         |                   | SET STATUS      |                                       |
| a    | b           | c              | d e                                    | -    | 1             | FLAGS<br>ON OFF   |                 | DISP                                  |
|      |             |                |                                        |      |               | 0 🗆 🗆             | DEG 🗹           | FIX 🗗<br>SCI 🗆                        |
| ° ~  | - 1         | 2              | 3 4                                    |      | 2             |                   | GRAD □<br>RAD □ |                                       |
| 5    | 6           | 7              | 8 9                                    |      | 3             | 2 🗌 🗌<br>3 🗌 🗌    |                 | ENG 🗆                                 |
| L    | k           |                | I                                      |      | I             |                   | L               | · · · · · · · · · · · · · · · · · · · |

| Program Title SPACE | SCIENCE AND TECHNOLOGY ND (1), HORIZON DISTANCE, |
|---------------------|--------------------------------------------------|
| GR                  | EAT CIRCLE DISTANCE                              |
| Contributor's Name  | ROBERT C. WYCKOFF                                |
| Address             | 9517 CORDERO AVE.                                |
| City                | TUJUNGA State CALIFORNIA Zip Code 91042          |

Program Description, Equations, Variables As a function of altitude, the slant distance to the horizon of a spherical body of radius R is given by (1) L =  $(2Rh + h^2)^{1/2}$ . The sub-tended angle  $\emptyset$  is given by (2) tan  $\emptyset/2 = R/L$ , and the central angle between the horizon and the sub-altitude point is (3) 90 -  $\emptyset/2.= 0$ The smaller great circle distance between two points on the sphere is given by the Law of Cosines of a Spherical Triangle, where the central angle is 0. (4) cos 0 =(sin LatA)(sin LatB) + cos (LongA). (cos LongB)(cos(LongA-LongB)) where Lat A, Lat B, Long A, and Long B are the usual geographical coordinates of the two points on the sphere. The distance over the surface along a great circle is given by (5) S = RO. The larger great circle central angle is given by 27- 9 where 9 is in radians. The greater great circle distance again follows from the RO relation. Southern latitudes are entered as (-) and Northern, as (+). Longitudes are entered as Eastern from 0 to 360 degrees and are all (+). In addition, to provide for common usage, both latitudes and longitudes are entered in degrees, minutes, and seconds. The radius of the spher is entered in km, but the values of L and S are given both in km and nautical miles. There appears to be no prohibition against either the latitude or longitude being 0,±90, 0 or 180/360 degrees respectively. Values of mean radii of various astronomical bodies are loaded from the program card into the secondary register, with the value for the moon being in R<sub>10</sub>, the first or closest planet Mercury, in R<sub>11</sub>, Venus, in fiz, earth in fiz etc. **Operating Limits and Warnings** Remember that when the second side of the card is loaded into the HP-67, the above constants are loaded first into the primary register. These then must be transfered to the secondary register. This is necessitated by the program being loaded on the first side of the card. Additional operating instructions are given on page 3. Provision is made for re-iterative operation.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.



Sample Problem(s) PROBLEM NO I: A satellite is orbiting the planet MARS in a circular, concentric orbit of constant altitude of 850 km. What is (a) the distance to the satellite from a fixed ground observation site as the satellite first appears above the horizon, (b) the total angle subtended by the diameter of MARS as seen from the satellite, (c) the angle at the center of MARS subtended by the sub-satellite point and the ground site, (d) the distance over the surface of MARS from the sub-satellite point and the ground site?

<u>PROBLEM NO II</u>: The Soviets announced the VENUS 9 and 10 landing coordinates of the descent capsules as 33°N, 293°E and 15°N, 295° East respectively. What is (a) the smaller angle at the center of VENUS between these two landing locations, (b) the smaller great circle distance between them, and (c), the larger great circle distance?

SOLUTION NO. I: Load both sides of the program card. Side 1 contains the program and side 2, the radii in km of the moon and planets in increasing distance from the sun, with the value for the moon in R10, MERCURY in R11, VENUS in R12, EARTH in R3, etc. After loading side 2. IMMEDIATELY interchange primary and secondary registers, since the presence of the program on side 1 "fooled" the HP-67 into believing Solution(s) side 1 was empty. Next enter 14 in display, press STO I1 RCL(1) and see in the display the contents of the storage register R14, or the radius of MARS in km as 3387.55. Store this value in primary register R0. Load 1.852 in R1, and 850 in R2. Press Key A for solution of (a) and observe 2545.85 km. Press R/S for solution in n. miles, which is 1374.65. Press R/S again to prepare for Key B operation. You again have 2545.85 in the display. Press Key B for solution (b) giving 106.15°. Key C gives (c) as 36.93°. Key D gives the distance over the surface (d) as 2183.21 km while R/S gives this distance in n. miles as 1178.84.

See page 2a for the solution of PROBLEM NO. II.

| Reference | (s) |
|-----------|-----|
|-----------|-----|

SPACE SCIENCE AND TECHNOLOGY NO. (1) HORIZON DISTANCE, GREAT CIRCLE DISTANCE.

SOLUTION NO. II : Place 12 in display. Press h STO I, RCL (i) and observe 6052 km as the radius of VENUS. Store this value in R<sub>0</sub>. Place 33 in R<sub>4</sub>, 293 in R<sub>5</sub>, 15 in R<sub>6</sub>, and 295 in R<sub>7</sub>. (If these were not given in even degrees, they MUST BE ENTERED AS DEGREES, MINUTES, AND SECONDS).

Press Key E for (a) and observe 18.09°. Press R/S and observe 1910.93 km as the solution for (b), with R/S again giving the solution in nautical miles as 1031.82. Press f Key A and observe 36,114.90 km as the solution for (c). R/S gives this greater distance in n. miles as 19,500.49

CAUTION: It is not advised to recall the constants from the secondary register by interchanging them with the primary register, since the primary registers are no longer filled with zeros, and the particular sequence of operations chosen can easily destroy certain values of the planetary radii originally placed in the secondary register.

Of course, the radius of ANY body can be stored in  $R_0$  for application to this program. Some additional planetary satellite radii, as mentioned on page 3, follow:

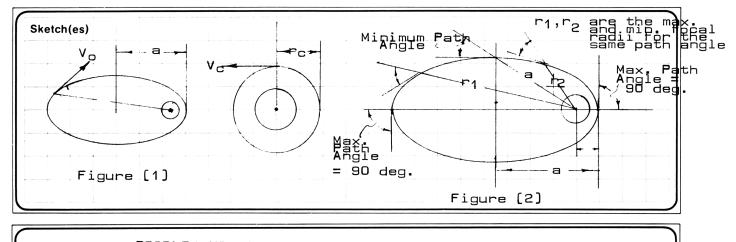
Jupiter: Io = 1670 km, Europa = 1460 km, Ganymede = 2550 km, Callisto = 2360 km

Saturn: Titan = 2440 km

Neptune:Triton = 2000 kmThe remaining planetaryNeptune:Triton = 2000 kmsatellites have much smallerradii, and have masses sosmall they probably do nothave even roughly a spherical shape (through gravitationaleffects).



| STEP   | INSTRUCTIONS                                                                                                         | INPUT<br>DATA/UNITS | KEYS                               | OUTPUT<br>DATA/UNITS |
|--------|----------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|----------------------|
| 1      | Load program, Side 1 first, side 2 last                                                                              |                     |                                    |                      |
| 2      | Interchange primary and secondary reg.                                                                               |                     |                                    |                      |
| З      | Recall desired planetary radius through                                                                              | h STO I, I          | CL (i)                             |                      |
| 4.     |                                                                                                                      |                     |                                    |                      |
|        | R <sub>1</sub> , the altitude h in R <sub>2</sub> , delta h<br>in R <sub>3</sub> (for re-iterative operation)        |                     |                                    |                      |
|        | Lat. A in $R_2$ , Long A in $R_5$ , Lat. B i                                                                         | n                   |                                    |                      |
|        | R <sub>6</sub> , and Long. B in R <sub>7</sub> , all in degre                                                        | es,                 |                                    |                      |
|        | minutes, and seconds, <u>NEVER DEC. DEG</u>                                                                          | REES.               |                                    |                      |
| 5.     | Key A computes L in km                                                                                               |                     |                                    | L in km              |
| 6      | R/S computes L in n. miles                                                                                           |                     | R/S                                | L in n. m.           |
| 7      | R/S for initializing Key B operation                                                                                 |                     |                                    | L in km              |
| 8      | Key B computes subtended total angle                                                                                 |                     |                                    | Ø in dec             |
| 9      | Key C computes central angle                                                                                         |                     |                                    | 🛛 in dec.<br>S in km |
| 0      | Key D computes distance S in km                                                                                      |                     |                                    |                      |
| 1<br>2 | R/S computes S in n. miles<br>FOR RE-ITERATIVE OPERATION , press R/S                                                 |                     |                                    | S in n. m.<br>new h  |
| 2      |                                                                                                                      | again.              | R/S                                |                      |
|        | (New h = h + delta h appears in displa<br>R/S again re-iterates Key A through D                                      | ۲J                  |                                    |                      |
|        |                                                                                                                      |                     |                                    |                      |
|        | Store proper value of planetary radiu                                                                                | s in Bo             |                                    |                      |
|        | through h-sto-i                                                                                                      |                     |                                    |                      |
| З      | Key E computes central angle between p                                                                               | ninte               |                                    | 8 smaller            |
| 0      | A and B for smaller great circle dis                                                                                 |                     |                                    |                      |
| 4      | R/S computes smaller great circle dist                                                                               | ance in W           | <pre>m   R/S    ]</pre>            | S in km [S           |
| 5      | R/S competes above in n. miles                                                                                       |                     |                                    | S in n.m.            |
| 6      | f Key A computes S larger in km                                                                                      |                     | F-A                                | S in km [L           |
| 7      | R/S computes larger S in n. miles                                                                                    |                     | R/S                                | S in n.m.            |
|        |                                                                                                                      |                     |                                    |                      |
|        | Secondary registers are loaded as follo                                                                              |                     | Notice that                        |                      |
|        | R <sub>10</sub> = Radius of Moon = 1739.29 km                                                                        | ws.                 | of the plane                       | tary bodies          |
|        | R <sub>11</sub> = '' '' Mercury = 2420.99 km                                                                         |                     | are entered :                      | ih order of          |
|        | R <sub>12</sub> = " " Venus = 6052 km<br>R <sub>13</sub> = " " Earth = 6371.017 km                                   |                     | their INCREAS                      |                      |
|        | R <sub>14</sub> = " " Mars = 3387.55 km                                                                              |                     | Earth, being                       | the THIRD            |
|        | R <sub>15</sub> = " " Jupiter = 71375 km                                                                             |                     | planet from t                      | the sun, has         |
|        | R <sub>16</sub> = " '' Saturn = 60400 km<br>R <sub>17</sub> = '' '' Uranus = 23500 km                                |                     | its radius lo<br>R <sub>1</sub> 3. | baded into           |
|        | R <sub>17</sub> = '' '' Uranus = 23500 km<br>R <sub>18</sub> = '' '' Neptune = 25000 km                              |                     |                                    |                      |
|        | R <sub>19</sub> = " " Pluto = 2930 km                                                                                |                     |                                    |                      |
|        | Additional planetary satellite radii as<br>on page <sup>2 a</sup> may be stored in R <sub>2O</sub> - R <sub>25</sub> | given               |                                    |                      |
|        | on page 2 a may be stored in R <sub>2O</sub> - Ros                                                                   | 3=                  |                                    |                      |


|      |                         |                       | 67 Program                  | n Lis        | sting I                 |                       | 15                           |
|------|-------------------------|-----------------------|-----------------------------|--------------|-------------------------|-----------------------|------------------------------|
| STEP |                         | KEY CODE              | COMMENTS                    | STEP         | KEY ENTRY               | KEY CODE              | COMMENTS                     |
| 001  | F-LBL-A                 | 31-25-11              |                             |              | RCL-4                   |                       |                              |
|      | RGL_2                   | 34-02                 |                             |              | FH                      | 31-74                 |                              |
|      | ENT                     | 41<br>32-54           |                             |              | f-cos                   | 31-63                 |                              |
|      | g-× <sup>2</sup>        |                       |                             | 060          | RCL-6                   | 34-06                 | Lat B                        |
|      | h X/Y                   | 35-52                 |                             |              | F-H                     | 31-74                 |                              |
|      | RCL-O                   | 34-00                 | R                           |              | f-cos                   | 31-63                 | cos B                        |
|      | 2                       | 02                    |                             |              | ×                       | 71                    |                              |
|      | ×                       | 71                    |                             |              | RCL-5                   | 34-05                 | Long A                       |
|      | ×                       | 71                    |                             |              | f                       | 31-74                 | g /.                         |
| 10   | +                       | 61                    |                             |              | RCL-7                   | 34-07                 | Long B                       |
|      | f-(x) <sup>½</sup>      | 31-54                 | L                           |              | f·H                     | 31-74                 |                              |
|      | R/S                     | 84                    |                             |              | -                       | 51                    |                              |
|      | ENT                     |                       |                             |              |                         |                       |                              |
|      |                         | 41                    |                             | 070          | h-ABS                   | <u>35-64</u><br>31-63 |                              |
|      | ENT                     | 41                    |                             | 0/0          | f-cos                   |                       |                              |
|      | RCL-1                   | <b>34-0</b> 1<br>81   | 1.852                       |              | × .                     | 71                    |                              |
|      | R/S                     | 01                    |                             |              | +                       | 61                    | -                            |
|      |                         | 05 50                 | L in n. miles               |              | g-cos                   | 32-63                 |                              |
|      | h-7                     | 35-52                 |                             |              | R/S                     | 84                    | 🛛 in dec. deg.               |
|      | h-RTN                   | 35-22                 |                             |              | g-Rad                   | 32-73                 |                              |
| 20   | F-LBL-B                 | 31-25-12              |                             |              | STO-8                   | 33-08                 |                              |
|      | RCL-0                   | 34-00                 | R                           |              | RCL-O                   | 34-00                 | R                            |
|      | h-7                     | 35-52                 |                             |              | ×                       | 71                    | RQ = S                       |
|      | •/• -                   | 81                    | tan Ø/2                     |              | R/S                     |                       | S in km (smaller             |
|      | g tan-1                 | 32-64                 |                             |              | RCL-1                   | 34-01                 | 1.852                        |
|      | 2                       | 02                    |                             | <sup>1</sup> | •/•                     | 81                    | 1.052                        |
|      |                         | 71                    | Ø                           |              | h-RTN                   | 35 32                 | S in n. miles                |
|      |                         | 71                    | Ø                           |              |                         |                       | 5 IN N. MITES                |
|      | h-RTN                   | 35-22                 | Ø in dec. deg.              |              |                         | 32-25-11<br>35-73     |                              |
|      | F-LBL-C                 | 31-25-13              |                             |              | h-"                     |                       |                              |
|      | 2                       | 02                    |                             |              | 2                       | 02                    |                              |
| 30   | <u> </u>                | 81                    |                             |              | ×                       | 71                    |                              |
|      | -                       | 09                    |                             |              | RCL-8                   | 34-08                 | θ                            |
|      | O                       | 00                    | 90                          |              | -                       | 51                    | ₽ <sub>1</sub>               |
|      | h-7                     | 35-52                 |                             |              | RCL-O                   | 34-00                 | R                            |
|      | -                       |                       | 90-ø = e                    | 090          | ×                       | 71                    | RØ <sub>1</sub>              |
|      | h-RTN                   | 35-22                 | 9 in dec. deg.              |              | R/S                     | 84                    | S <sub>1</sub> in km (larger |
|      | F-LBL-D                 | 31-25-14              |                             |              | RCL-1                   | 34-01                 | 1.852                        |
|      | g-RAD                   | 32-73                 | 0 in Rad.                   |              | ./.                     | 81                    |                              |
|      | RCL-O                   | 34-00                 | R                           |              | h-RTN                   |                       | S <sub>1</sub> in n. miles.  |
|      |                         | 71                    | RD = S                      |              |                         | 00 22                 | of in n. miles.              |
| 10   | R/S                     | 84                    | S in Km.                    |              |                         |                       |                              |
|      |                         |                       |                             |              |                         |                       |                              |
|      | RCL-1                   | 34-01                 | 1.852                       |              |                         |                       |                              |
|      | •/•                     | 81                    |                             | <b> </b>     |                         |                       |                              |
|      | A/S                     | 84                    | S in n. miles               |              |                         |                       |                              |
|      | RCL-3                   | 34-03                 | delta h                     | 100          |                         |                       |                              |
|      | <u> 6то+2</u>           | 33-61-02              |                             | L            |                         |                       |                              |
|      | RCL-2                   | 34-02                 | iterative h                 |              |                         |                       |                              |
|      | R/S                     | 84                    |                             |              |                         |                       |                              |
|      | F-GTO-A                 | 31-22-11              |                             |              |                         |                       |                              |
|      |                         | 31-25-15              |                             |              |                         |                       |                              |
| 50   | RCL-4                   | 34-04                 | Lat A                       |              |                         |                       |                              |
|      | fН                      | 31-74                 |                             |              |                         |                       |                              |
|      | f-sin                   | 31-62                 | sin A                       |              |                         |                       |                              |
|      |                         |                       | Lat B                       |              |                         |                       |                              |
|      | <u>F H</u>              | <u>34-06</u><br>31-74 | Lat D                       | 110          |                         |                       |                              |
|      | f-sin                   | 31-62                 | sin B                       |              |                         |                       |                              |
|      | ×                       | 71                    |                             |              |                         |                       |                              |
|      | 1                       |                       | RECI                        | STERS        | L                       |                       |                              |
| Bad  |                         | 2 -                   | Adelta h 41at A             | 51 000       |                         |                       | 8 U rad. 9                   |
|      | lius <sup>1</sup> 1.852 | ? [ h [km]            | ) delta h 4 Lạt A<br>(km) o | j'o'','9,    | ,A   <sup>6</sup> Laţ Ħ | <sup>7</sup> Loŋg,,B  | [prog]                       |
| 0    | S1                      | S2                    | S3 S4                       | S5           | S6                      | S7                    | S8 S9                        |
|      |                         |                       |                             |              |                         |                       |                              |
|      | I                       | <b>I</b>              | С                           | D            | T                       | E                     | I                            |
|      |                         |                       |                             |              |                         |                       |                              |
|      |                         |                       |                             |              |                         |                       |                              |

| Program Title   | SPAC | E SCIENCE   | AND  | TECHNOLOGY | ND.   | (z),  | VIS | VIVA | AND                 | PATH  |  |
|-----------------|------|-------------|------|------------|-------|-------|-----|------|---------------------|-------|--|
|                 | ANGL | E RELATIONS | 5    |            |       |       |     |      |                     |       |  |
| Contributor's N | lame | Robert C. V | Nyck | off        |       |       |     |      |                     |       |  |
| Address         |      | 9517 Corder | ro A | Ve.        |       |       |     |      |                     |       |  |
| City            |      | TUJUNGA     |      | Stat       | e Cal | lifor | nia | Zi   | p Code <sup>g</sup> | 91042 |  |
|                 |      |             |      |            |       |       |     |      |                     |       |  |

Program Description, Equations, Variables For a body moving in an ellipse, the VIS VIVA equation is (1)  $V_0 = \begin{bmatrix} 2 & -1 \\ r_0 & a \end{bmatrix}^{\frac{1}{2}}$  where  $V_0$  is the velocity of the body at a point on the ellipse where the focal radius is  $r_0$ , the semi-major axis is a, and u = GM, where G is the constant of Universal gravitation and M is the mass of the primary. The circular velocity is given by (2)  $V_c = \begin{bmatrix} \underline{u} \end{bmatrix}_2^{\frac{1}{2}}$  where  $r_c$  is the radius of the circular path. The escape velocity is given by (3)  $V_e = (2)^{\frac{1}{2}}V_c$ . From Kepler's Third Law, we have the period of the (4)  $T = \begin{bmatrix} 4 \\ -u \end{bmatrix}^{\frac{1}{2}}$  motion, T, given by (4)  $T = \begin{bmatrix} 4 \\ -u \end{bmatrix}^{\frac{1}{2}}$  Figure (1) on page 2 illustrates these parameters. The path angle Ø is given by (5)  $\sin \emptyset = \frac{\left[ua(1 - e^2)\right]^{\frac{1}{2}}}{r_{v_0}}$  where e is the eccentricity of the ellipse, (6)  $e = (a - r_m)$  where  $r_m$  is the periapsis distance. The larger and smaller focal radii for any given path angle otinis given by: (7)  $r = a - \frac{a}{\sin \beta} \left[ \sin^2 \beta - 1 + e^2 \right]^{\frac{1}{2}}$  Figure (2) on page 2 illustrates thes e parameters. The values of u for the planetary bodies, plus the moon and sun, are stored in the secondary registers on side No. 2 of the program card. Operating Limits and Warnings For an hyperbolic orbit, the value of the semimajor axis, a, is to be entered as a negative number. Other operating instructions are given on page (3)

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.



Sample Problem(s) <u>PROBLEM NO. 1:</u> An earth satellite vehicle is in a highly The semi-major axis is 300,000 km. Radar range data gives the distance to the problem a 200,000 km. Radar range data gives the distance from the center of the earth, what is this distance, (b), the circular velocity at an altitude of 1000 km, and (c), the escape velocity AT THIS ALTITUDE.

PROBLEM NO 2: A lunar probe is launched from Earth in an elliptical orbit with a semi-major axis of 200,000 km. The periaps s distance is 8000 km. The mid-course maneuver correction is to be performed at a distance of 100,000 km from the center of the Earth. What is [a], the path angle at the time and place of the mid-course correction, (b), the NEAREST distance from the center of the Earth to the probe when the path angle is 20 degrees.

<u>SOLUTION NO (1)</u>: Load both sides of program card. Recall contents of R13. Observe 3.986012 × 10. Place this value in R5. Place 200,000 in R1 and 300,000 in R5. Press Key A and observe Vo as 1.630135373 km/sec for (a). Place 1000 + the radius of the Earth (6371) = 7371 in R6. Press Key B and observe 7.353703163 km/sec for part (b). Key C gives 10.39970674 km/sec for the face of the Earth, which demonstrates the advantage of launch at the surface of the earth, which demonstrates the advantage of launching from a SOLUTION ND. (2): With both sides of program card entered, place 13 h st SOLUTION ND. (2): With both sides of program card entered, place 13 h st R6. Press Key A to load the square of the eccentricity, (2) in R5. Observe 2.445203059 in display as the VIS VIVA velocity. Press f Key A and observe 18.86359066 dec. degrees as the solution to (a). Press f Key B and observe the MAXIMUM focal radius as 318854.2098 km. Press R/S for the MINIMUM focal radius and observe 199981.1364 km as the solution to part (b).

Reference(s) Any standard work on ASTRODYNAMICS such as SPACE TECHNOLOGY - H. Seifert, John Wiley and Sons, Inc. or HANDBOOK OF ASTRONAUTICAL ENGINEERING - Koelle, McGraw-Hill. -----

```
Values of u, in {\rm km}^3/{\rm sec}^2 for various planetary satellites
```

| Primary | Satellite                                                                     | <u> </u>                                                                           |
|---------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Jupiter | Io<br>Europa<br>Ganymede<br>Callisto                                          | 4890<br>3130<br>10319<br>6455                                                      |
| Saturn  | Mimas<br>Enceladus<br>Tethys<br>Dione<br>Rhea<br>Titan<br>Hyperion<br>Iapetus | 2.523<br>5.722<br>43.035<br>68.465<br>146.67<br>9390<br>2.934 [less than]<br>92.17 |
| Neptune | Triton                                                                        | 8.803                                                                              |

SPACE SCIENCE AND TECHNOLOGY No. (2)



VIS VIVA, KEPLER'S THIRD LAW, AND PATH ANGLE.

**.** .

2

| STEP | INSTRUCTIONS                                                                                                                                                                                                                                                                               | INPUT<br>DATA/UNITS |    | KE          | /S | OUTPUT<br>DATA/UNITS |                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----|-------------|----|----------------------|-----------------|
| 1    | Load both sides of card. Interchange                                                                                                                                                                                                                                                       |                     |    |             |    |                      |                 |
|      | primary and secondary registers. Reda                                                                                                                                                                                                                                                      | 11                  |    |             |    |                      |                 |
|      | the appropriate value of u through ope<br>fh_RCL_(i). Place this in B Loa                                                                                                                                                                                                                  | eration d the       | [  |             |    |                      |                 |
|      | focal radius in R1, and the semi-major                                                                                                                                                                                                                                                     | axis                |    |             |    |                      |                 |
|      | Load both sides of card. Interchange<br>primary and secondary registers. Reda<br>the appropriate value of a through ope<br>of h-RCL [i]. Place this in R. Loa<br>focal radius in R1, and the semi-major<br>distance in R2. If KEPLER'S THIRD LAW<br>are desired, place the period, I, IN R | 3.                  | s  |             |    |                      |                 |
|      | Place the $_{\sim}$ periapsis distance, r $_{ m m}$ in  R                                                                                                                                                                                                                                  | 14 and th           | е  |             |    |                      |                 |
|      | path angle Ø in R <sub>6</sub> for path an <u>g</u> le dp                                                                                                                                                                                                                                  | eration.            |    |             |    |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             |    |                      | ,               |
| 2    | Key A gives the VIS VIVA velocity V <sub>o</sub>                                                                                                                                                                                                                                           |                     | A  |             |    | V <sub>o</sub> in km | / 56            |
| З    | Key B gives the circular velocity V $_{ m c}$                                                                                                                                                                                                                                              |                     | в  |             |    | V <sub>c</sub> in km | / 56            |
| 4    | Key C gives the escape velocity V <sub>e</sub>                                                                                                                                                                                                                                             |                     | C  |             |    | V <sub>e</sub> in km | /56             |
| 5.   | Key D gives the orbital period T in seco                                                                                                                                                                                                                                                   | nde                 |    | Ξή i        |    | T in sec             |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             |    |                      | •               |
| 6    | Key E gives the semi-major axis in km                                                                                                                                                                                                                                                      |                     | E  |             |    | a in km              |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             |    |                      |                 |
|      | For path angle computations, Key A mus                                                                                                                                                                                                                                                     | st                  |    |             |    |                      |                 |
|      | initially be pressed in order to compu                                                                                                                                                                                                                                                     |                     |    |             | 1  |                      |                 |
|      | load e <sup>c</sup> in R <sub>5</sub> . The VIS VIVA velocity                                                                                                                                                                                                                              |                     | [  | 1<br>1_(    | J  |                      |                 |
|      | appear in the display. Disregard this                                                                                                                                                                                                                                                      | 5 <b>.</b>          |    |             |    |                      | 0               |
| 7    | Key f-A gives the path angle $ ot\!\!\!/$ in dec. $^{ m c}$                                                                                                                                                                                                                                |                     | F/ |             |    | Ø in dec             | •               |
| 8    | Key f-B gives the larger focal radius, r                                                                                                                                                                                                                                                   | max.                | FE |             |    | r <sub>max</sub> in  | <m< td=""></m<> |
| 9    | R/S gives the smaller focal radius, r <sub>min</sub>                                                                                                                                                                                                                                       |                     | R/ | 'sl         |    | r <sub>min</sub> in  |                 |
|      | , <u>3</u> , mil                                                                                                                                                                                                                                                                           | 1-                  |    |             |    |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     | [  | ן ו<br>הריי |    |                      |                 |
|      | For Key C operation, Key B must first b                                                                                                                                                                                                                                                    | e                   |    |             |    |                      |                 |
|      | pressed, in order to compute the circul<br>velocity V <sub>c</sub> .                                                                                                                                                                                                                       | .ar                 |    |             |    |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             |    |                      |                 |
|      | Values of u in km <sup>3</sup> /sec <sup>2</sup> are on the side                                                                                                                                                                                                                           | 2                   |    |             |    |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             |    |                      |                 |
|      | of the program card, and can be placed i<br>the secondary register if desired.                                                                                                                                                                                                             |                     |    |             |    |                      |                 |
|      | Body u Register                                                                                                                                                                                                                                                                            |                     |    |             |    |                      |                 |
|      | Moon 4.90098 x 10 <sup>3</sup> R <sub>10</sub>                                                                                                                                                                                                                                             |                     |    |             |    |                      |                 |
|      | Mercury 2.15215 x 10 <sup>4</sup> R <sub>11</sub>                                                                                                                                                                                                                                          |                     |    |             |    |                      |                 |
|      | Venus 3.24815 x 10 <sup>5</sup> R12                                                                                                                                                                                                                                                        |                     | [  |             |    |                      |                 |
|      | Earth 3,986012x 10 <sup>5</sup> R <sub>13</sub>                                                                                                                                                                                                                                            |                     |    |             |    |                      |                 |
|      | Mars 4.30430 x 10 <sup>4</sup> R <sub>14</sub>                                                                                                                                                                                                                                             |                     |    |             |    |                      |                 |
|      | Jupiter 1.26658 x 10 <sup>8</sup> R <sub>15</sub>                                                                                                                                                                                                                                          |                     |    |             |    |                      |                 |
|      | Saturn 3.79416 x 10 <sup>7</sup> R <sub>16</sub>                                                                                                                                                                                                                                           |                     |    |             |    |                      |                 |
|      | Uranus 5.77892 $\times 10^6$ R <sub>17</sub>                                                                                                                                                                                                                                               |                     |    | Ξì          |    |                      |                 |
|      | <u>Neptune 6.85500 <math>\times 10^6</math> B<sub>18</sub></u>                                                                                                                                                                                                                             |                     | [  |             |    |                      |                 |
|      | Sun 1.324948x 10 <sup>11</sup> R <sub>19</sub>                                                                                                                                                                                                                                             |                     |    |             |    |                      |                 |
|      | Additional values of u for various sate.                                                                                                                                                                                                                                                   | lites               |    |             |    |                      |                 |
|      | are given on page 2a.                                                                                                                                                                                                                                                                      |                     |    |             |    |                      |                 |
|      |                                                                                                                                                                                                                                                                                            | in ac               |    |             |    |                      |                 |
|      | Re-iterative operation is not provided<br>much as generally discreet values of the                                                                                                                                                                                                         |                     | l  |             |    |                      |                 |
|      | parameters are desired.                                                                                                                                                                                                                                                                    | 5                   | l  |             | ]  |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    |             | ]  |                      |                 |
|      |                                                                                                                                                                                                                                                                                            |                     |    | 1           |    |                      |                 |

# 97 Program Listing I

| 20   |                    |              | 9/ Program                                    |                                     |                               | ig i                 |                                    |                        |
|------|--------------------|--------------|-----------------------------------------------|-------------------------------------|-------------------------------|----------------------|------------------------------------|------------------------|
| STEP | KEYENTRY           | KEY CODE     | COMMENTS                                      | STEP                                |                               | ENTRY                | KEY CODE                           | COMMENTS               |
| g    | 01 *LBLA           | 21 11        |                                               |                                     | 857                           | X≠Y                  | -41                                |                        |
|      | <i>02 2</i>        | 02           |                                               |                                     | 0 <b>5</b> 8                  | ÷                    | -24                                |                        |
|      | 03 RCL1            | 35 01        |                                               |                                     | 059                           | χ2<br>2725           | 53                                 |                        |
|      | 04 ÷               | -24<br>76 82 |                                               |                                     | 66 <b>0</b><br>671            | ST05                 | 35 85<br>81                        |                        |
|      | 05 RCL2<br>06 1/X  | 36 02<br>52  |                                               |                                     | 061<br>062                    | 1<br>X≠Y             | -41                                |                        |
|      | 87 -               | -45          |                                               |                                     | 663<br>663                    | -                    | -45                                |                        |
|      | 08 RCL0            | 36 00        |                                               |                                     | 064                           | RCL2                 | 36 02                              |                        |
|      | 09 X               | -35          | M                                             |                                     | 065                           | RCLØ                 | 36 <b>00</b>                       |                        |
|      | 10 JX              | 54           | ۷ <sub>o</sub>                                |                                     | 866                           | Х                    | -35                                |                        |
|      | 11 STO7<br>12 RTN  | 35 07<br>24  | V <sub>o</sub> in km                          |                                     | 667<br>oco                    | X<br>ru              | -35<br>54                          |                        |
|      | 12 #18LB           | 21 12        | 0                                             |                                     | 868<br>869                    | √X<br>RCL1           | 36 01                              |                        |
|      | 14 RCLØ            | 36 00        |                                               |                                     | 87 <b>8</b>                   | RCL7                 | 36 07                              |                        |
|      | 15 RCL1            | 36 01        |                                               |                                     | 071                           | Х                    | -35                                |                        |
|      | 16 ÷               | -24          | V                                             |                                     | 0 <b>72</b>                   | ÷                    | -24                                | Ø                      |
|      | 17 <i>IX</i>       | 54           | V <sub>c</sub><br>V <sub>c</sub> in km        |                                     | 073                           | SIN-                 | 16 41                              | Ø in dec. <sup>O</sup> |
|      | 18 RTN<br>19 *LBLC | 24<br>21 13  |                                               |                                     | 074<br>075                    | RTN                  | 24<br>21 16 12                     |                        |
|      | 19 #LBLC<br>20 2   | 02<br>02     |                                               |                                     | 075<br>076                    | *LBLb<br>RCL5        | 36 86                              |                        |
|      | 21 <b>J</b> X      | 54           |                                               |                                     | 077                           | SIN                  | 41                                 |                        |
|      | 22 ×               | -35          | V<br>V <mark>e</mark> in km                   |                                     | 078                           | ENTT                 | -21                                |                        |
|      | 23 RTN             | 24           | v <sub>e in Km</sub>                          |                                     | 079                           | ENTT                 | -21                                |                        |
|      | 24 *LBLD           | 21 14        |                                               |                                     | 080                           | X                    | -35                                |                        |
|      | 25 RCL2<br>26 3    | 36 02<br>03  |                                               |                                     | 0 <b>81</b><br>082            | X≠Y<br>RCL2          | -41<br>36 02                       |                        |
|      | 26 3<br>27 γ×      | 31           |                                               |                                     | во <u>г</u><br>9 <b>8</b> 3 - | XULZ<br>X <b>t</b> Y | -41                                |                        |
|      | 28 Pi              | 16-24        |                                               |                                     | 0 <b>8</b> 4                  | ÷                    | -24                                |                        |
|      | 29 X2              | 53           |                                               |                                     | 085                           | 0+0<br>∩+1           | -41                                |                        |
|      | 30 4               | 84           |                                               |                                     | 8 <b>86</b>                   | 1                    | 01                                 |                        |
|      | 31 X               | -35          |                                               |                                     | 887                           | -                    | -45                                |                        |
|      | 32 ×<br>33 RCL0    | -35<br>36 00 |                                               |                                     | 0 <b>8</b> 8<br>289           | RCL5<br>+            | 36 05<br>-55                       |                        |
|      | 33 KULU<br>34 ÷    | -24          |                                               |                                     | 667<br>890 -                  | ₹X                   | -53                                |                        |
|      | 35 JX              | 54           | Т                                             |                                     | 891                           | X                    | -35                                |                        |
| Ø    | 36 RTN             | 24           | T in seconds                                  |                                     | 892                           | ENTT                 | -21                                |                        |
|      | 37 *LBLE           | 21 15        |                                               |                                     | 8 <b>93</b>                   | RCL2                 | 36 <b>8</b> 2                      | `r(max) in km          |
|      | 38 RCLO            | 36 <b>00</b> |                                               |                                     | 694<br>                       | +                    | -55                                |                        |
|      | 39 RCL3<br>40 X2   | 36 03<br>53  |                                               |                                     | 095<br>096                    | R∕S<br>X≢Y           | 51<br>-41                          |                        |
|      | 40 A-              | -35          |                                               |                                     | 820<br>897                    | RCL2                 | 36 02                              |                        |
|      | 42 Pi              | 16-24        |                                               |                                     | 098                           | X≢Y                  | -41                                |                        |
|      | 43 X2              | 53           |                                               |                                     | 899                           | -                    | -45                                | r(min) in km           |
|      | 44 4               | 04           |                                               |                                     | 100                           | RTN                  | 24                                 |                        |
|      | 45 X               | -35          |                                               |                                     | -                             |                      |                                    | -                      |
|      | 46 ÷<br>47 3       | -24<br>03    |                                               |                                     | Ī                             |                      |                                    | ]                      |
|      | 48 17X             | 52           |                                               |                                     |                               |                      |                                    |                        |
| - O  | 49 YX              | 31           | а                                             |                                     |                               |                      |                                    | 4                      |
|      | 50 RTN             | 24           | a in km                                       |                                     |                               |                      |                                    |                        |
|      | 51 *LBLa           | 21 16 11     |                                               |                                     |                               |                      |                                    | ]                      |
|      | 52 RCL2<br>53 ENT† | 36 02<br>-21 |                                               |                                     |                               |                      |                                    |                        |
|      | 54 ENTT            | -21          |                                               | 110                                 |                               |                      |                                    | -                      |
| 6    | 55 RCL4            | 36 <b>04</b> |                                               |                                     |                               |                      |                                    | -                      |
|      | 56 -               | -45          | REGIS                                         | TERS                                | •                             |                      |                                    |                        |
| 0 u  | 1r <sub>o</sub>    | 2 a          | <sup>3</sup> T <sup>4</sup> r <sub>m</sub> km | <sup>5</sup> e <sup>2</sup><br>(pro |                               | °Ø dec               | o <sup>7</sup> V <sub>o</sub> (pro | 8 9                    |
| 50 U | S1 U               | km<br>S2 u   | S3 U S4 U                                     |                                     |                               | S6 u                 | S7 U                               | S8 U S9 U              |
| Moon | Mercu              | ury Venus    | Earth Mars                                    | Jupit                               |                               | Saturn               | Uranus                             | Neptune sun            |
| A    |                    | В            | С                                             | D                                   |                               |                      | E                                  | I                      |
|      |                    |              |                                               |                                     |                               |                      | l                                  |                        |

 Program Title
 SPACE SCIENCE AND TECHNOLOGY NO. (4), BALLISTIC MISSILE RANGE

 Contributor's Name
 Rex H. Shudde
 and Robert C. Wyckoff

 Address
 27105 Arriba Way

 Carmel
 California
 93921

 City
 Tujunga
 State
 California

Program Description, Equations, Variables Computation of the surface range of a ballistic missil is fairly common in the literature, but it is generall assumed that the launch and target point are located on the surface of the body. The unasymetric case is more difficult and seldom seen. This program, utilizing Newtonia 2-body theory, gives an exact solution. The basic assumptions are that the body is a sphere, is non-rotating, and has no atmosphere. The latter assumption is nearly correct, since the large portion of the trajectory is above the atmosphere. The various astronomical and planetary constants are held on a data card and are loaded into the primary and secondary registers, where the appropriate values of -he gravitational constant u, and the mean radius of the body r are selected as desired. The path of the missile is a portion of an ellipse of semi-major axis a, given by (1)  $1/a = \left[\frac{2}{R_1} - V_1^2/u\right]$ , where  $R_1$  is the radius of the body plus the altitude of burn-out, and  $V_1$  is the burn-out velocity. R& a are given km and  $V_1$  is in km/sec<sup>2</sup>. U is in km<sup>3</sup>/sec<sup>2</sup>. The semi-latus rectum of the ellipse is given by (2)  $p = \frac{(R_1 V_1 \cos \phi)^2}{...}$  where  $\phi$  is the elevation angle (to the local horizon) at burn-out. The eccentricity of the ellipse is (3)  $e = (1-p/a)^{1/2}$  The true anomaly of the launch point is given by (4)  $f_1 = \cos^{-1}[(p/R_1-1)1/e]$  where  $0 \le f_1 \le \Pi$  The true anomaly of the target point is given by (5)  $f_t = 2\Pi - \cos^{-1}[(p/R_t-1)1/e]$  where  $\Pi \le f_t \le 2\Pi$  Range over the surface between correction by perpendicularies through the launch and target points, is given by (6)  $S = R(f_t - f_1)$  where R is the radius of the body radius of the body + the altitude of the target loca**and** ngenerally equals  $R_t$ To compute the time of flight we need to calculate the eccentric anomalys,  $E_1$  and  $E_2$ (continued on page 1a) **Operating Limits and Warnings** The line of apses must separate the burn-out location and the target point, i.e, the elevation angle  $\emptyset$  at burn-out must be  $0 \langle \emptyset \langle \Pi/2 \rangle$ Observe operating conditions given on page 3. emember, the planetary constants are loaded in the registers from the data card in order of INCREASING DISTANCE from the sun, with the Moon, as 0, Mercury as 1, Venus as 2, Earth as 3, Mars as 4, Jupiter as 5, Saturn as 6, Uranus as 7, Neptune as 8 and Pluto as 9. Values for the sun are loaded in Register A, B. The numbers above RE NOT REGISTER NUMBERS, but index no's, used to recall the proper values from the regsiters

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

الله خله خله حله عليه خلية خله خله خله يوه جله جله حله ع

F#3

PREG

E<sub>1</sub> is given by (7) E<sub>1</sub> = 
$$\cos^{-1}\left[\left(1 - R_1/a\right)1/e\right]$$
 where  $0 \le E_1 \le \Pi$   
(8) E<sub>t</sub> =  $2\Pi - \cos^{-1}\left[\left(1 - R_t/a\right)1/e\right]$  where  $\Pi \le E_t \le 2\Pi$ 

The time of flight is given by

(9) 
$$t_s = \frac{a^{3/2}}{u^{1/2}} \left[ (E_t - E_1) - e(\sin E_t - \sin E_1) \right]$$

The maximum ordinate is given by

(10)  $h_m = a(1 + e) - R$  and the velocity at burn-out and max altitude are

(11) 
$$V_{c} = (u/R_{1})^{1/2}$$
 and  $V_{c,m} = (u/R+h_{m})^{1/2}$ 


The value of the semi-latus rectum which correspondes to the elevation angle for maximum surface range is

(12) 
$$P_{opt} = \frac{2}{\frac{1}{2a - R_t} + \frac{1}{2a - R_1}}$$
 while the value of  $\emptyset$  for maximum surface range is  
(13)  $\emptyset_{max} = \cos^{-1} \left[ \frac{(up_{opt})^{1/2}}{R_1 V_1} \right]$ 

Registers are Loaded as follows:

PREG

| 4.900980000+03           | $\tilde{\boldsymbol{\upsilon}}$ | 1.266580000+08          | $\tilde{e}$ |
|--------------------------|---------------------------------|-------------------------|-------------|
| 1.739290000+03           | 1                               |                         | -           |
| 2.152150000+04           | Z                               | 7.137500000+04          | ì           |
|                          | 3                               | 3.794160000+07          | 2           |
| 2.420990000+03           | -                               | 6.040000000+04          | 3           |
| 3.248150000+05           | 4                               |                         |             |
| 6.052000000+03           | 5                               | 5.778920000+06          | 4           |
| 3.986012000+05           | Б                               | 2.350000000+04          | 5           |
|                          | -                               | 6.855000000+06          | б           |
| 6.371017000+03           | 7                               | 2.500000000+04          | 7           |
| 4.304300000+04           | 8                               |                         |             |
| 3.387550000+03           | 9                               | 3,312370000+05          | δ           |
|                          |                                 | 2 <b>.930000</b> 000+03 | 9           |
| 1.324948000+11           | Ĥ                               | 1.324948000+11          | Ĥ           |
| 6.960000000+05           | E                               |                         |             |
| 0.000000000+00           | C                               | 6.96000000+05           | Б           |
|                          |                                 | 0.000000000+00          | C           |
| 0.000000000+00           | D                               | <b>0.00000000</b> +00   | Ē           |
| 0.000000000+00           | Ē                               |                         | -           |
| 0 <b>.00000</b> 00000+00 | I                               | 0.000000000000000       | Ē           |
| 0.000000000000           | •                               | 0.00000000000000        | I           |



Sample Problem(s) I An IRBM is launched vertically from the earth and after a gravity turn burns out at an altitude of 60 km, a burn-out velocity of 1.5 km/sec, and an elevation angle of 30 <sup>0</sup>. What is: (a) the range, (b) the maximum ordinate, (c) the flight time, (d) elev. angle for maximum range,  $\phi$  max. and (e) the maximum range. Calculate the above for a burn-out altitude of 20 km the same burn-out velocity II and a target altitude of 3 km. Use  $30^{\circ}$  for the elvation angle. III Perform problem I for the moon. SOLUTIONS: I Load program and data cards. Since Earth is the 3rd planet from the sun, place 3 in display. Do f-E. Enter 60, do f-A. Enter 1.5, do f-B. enter 30, do f-C, enter 0, do f-D. Key A gives 281.81 km for (a). Key B gives 90.14 km for (b). Key C gives 219.48 sec. for (c), Key D gives  $38.54^{\circ}$  for (d), Key A gives 290.32 km for (e). II Enter 20, do f-A. Enter 30, do f-C. Enter 3, do f-D. Key A gives 230.66 km for (a). Key B gives 49.76 km for (b). Key C gives 179.05 sec. for (c). Key D gives 42.50° for (d). Key A gives 250.78 km for (e). III Load data card again. The index no. for the moon is 0. Place 0 in display and do f-E. Enter 60, do f-A. Enter 1.5, do f-B. Enter 30, Solution(s) do f-C. Enter 0, do f-D. Key A gives 2725.60 km for (a). Key B gives 593.74 km for (b). Key C gives 3032.18 sec. for (c). Key D gives  $21.00^{\circ}$  for (d). Key A gives 2858.99 km for (e).

(1) HANDBOOK OF ASTRONAUTICAL ENGINEERING, by H. H. Koelle, Ch. 7, 1961.
 (2) NONSYMETRIC BALLISTIC RANGE, HEIGHT, TIME OF FLIGHT, AND OPTIMUM FLIGHT PATH ANGLE COMPUTATION WITH PROGRAMS FOR HP-65 CALCULATOR, R. H. Shudde, Naval Post-Graduate School Technical Report, NPS 555u76031, Mar 1976

SPACE SCIENCE AND TECHNOLOGY, No. (4), BALLISTIC MISSILE RANGE, 1 MAXIMUM ORDINATE, TIME OF FLIGHT, ELEVATION ANGLE FOR TAXIMUM RANGE

| [       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INPUT                           |                 | OUTPUT                       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|------------------------------|
| STEP    | INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATA/UNITS                      | KEYS            | DATA/UNITS                   |
| 1       | Load Program and Data Cards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 |                              |
| 2       | Select and enter body index no., do f-E (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                               | f-E             | u for index                  |
| 3       | Enter burn-out altitude, (in km) do f-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h                               | f-A             | h in km.                     |
| 4       | Enter burn-out velocity, (in km/sec-), do f-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v <sub>1</sub>                  | f-B             | V <sub>1</sub> in km/sec     |
| 5       | Enter elevation angle, dec. <sup>0</sup> , do f-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ø                               | f-C             | Ø in dec. <sup>0</sup>       |
| 6       | Enter target altitude (in km,; generally 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ht                              |                 |                              |
|         | do f-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | f-D             | h, in km                     |
| 7       | Key A computes Range in km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | Α               | S in km                      |
| 8       | Key B computes maximum ordinate in km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | В               | h in km                      |
| 9       | R/S computes circular vel (km/sec) for h <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | R/S             | V <sub>c,max</sub> in km/sec |
| 10      | R/S computes circular vel.(km/sec) for h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                               | R/S             | V <sub>c,h</sub> in km/sec   |
| 11      | Key C computes flight time in seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | С               | t <sub>s</sub> in sec        |
| 12      | Key D computes $\emptyset$ for maximum range, (dec. <sup>0</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                 | Ø max.                       |
| 13      | Key E computes any distance, Key A or B to n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | miles                           | E               | S, h <sub>max</sub> in n.m.  |
| 15      | Key E computes any distance, key n of B to no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | max                          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                        |                 |                              |
|         | Step 2 must be performed BEFORE any subsequen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t step.                         |                 |                              |
|         | Step 7 must be performed BEFORE any subsequen<br>If a new body is selected, DATA CARD and step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                 |                              |
|         | initially be performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                               |                 |                              |
|         | inicially be performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                 |                              |
|         | Primary and Secondary Registers are loaded f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fom the dat                     | a card as follo | ws:                          |
|         | Index No. Body u (km <sup>3</sup> /sec <sup>2</sup> ) Radius (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | km) Regist                      | ers             |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0^{3} 0/1$                     |                 |                              |
|         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $10^3 2/3$                      |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/5                             |                 |                              |
|         | $\frac{2}{3} = \frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{10^3}{10^3} \frac{6}{7}$ |                 |                              |
|         | $\frac{1}{4} \qquad \frac{1}{100} \frac{1}$                                                                                                                                                                                                                                                                                                                     | 03 8/9                          |                 |                              |
|         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>5</sup> A/B             |                 |                              |
|         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                 |                              |
|         | 5         Jupiter 1.26658 x 10 <sup>8</sup> 7.1375 x           6         Saturn 3.79416 x 10 <sup>7</sup> 6.0400 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $10^4_{4}$ 10/11                |                 |                              |
|         | $\frac{6}{6} \qquad \text{Saturn } 3.79416 \times 10^{7} \qquad 6.0400 \times 10^{7} \times 10^{7}$ | $10^4$ 12/13                    |                 |                              |
|         | 7 Uranus $5.77892 \times 10^{\circ}$ 2.3500 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $10^4$ 14/15                    |                 |                              |
|         | 8 Neptune $6.85500 \times 10^6$ 2.5000 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $10^4_{3}$ 16/17                |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103 18/19                       |                 |                              |
|         | Sun 1.324948 x10 <sup>11</sup> 6.96000 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10° A/B                         |                 |                              |
| <b></b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                 |                              |
|         | CAUTION: If the sun is used as the primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pody, no                        | in roathtar A   |                              |
|         | index number is used. Value of u<br>Recall contents of register B, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead in W                       | aieter C        |                              |
|         | Then go to step 3 etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LUau III I                      | 6-PCC P         |                              |
|         | Then go to step 5 ctc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                 |                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                 |                              |

(h)

#### 97 Program Listing I

|                                   |                                     |                                   |                  |                    | gram                            | 1/150                           | 1115 1                |                |          | 25                             |
|-----------------------------------|-------------------------------------|-----------------------------------|------------------|--------------------|---------------------------------|---------------------------------|-----------------------|----------------|----------|--------------------------------|
| STEP                              | KEY ENTRY                           | KEY CODE                          |                  | СОММЕ              | NTS                             |                                 | KEY ENTRY             | KEY CODE       | CON      | IMENTS                         |
| 801                               |                                     | 21 11                             |                  |                    |                                 | 057                             | D→R                   | 16 45          |          |                                |
| 002                               | RCLC                                | 36-13                             |                  |                    |                                 | 058                             | -                     | -45            |          |                                |
| 003                               | C RCLE                              | 36-14                             |                  |                    |                                 | <b>6</b> 59                     | RCLC                  | 36-13          |          |                                |
| 004                               | ÷                                   | -55                               |                  |                    |                                 | 060                             | X                     | -35            |          |                                |
| 005                               | STOP                                | 35 00                             |                  |                    |                                 | 861                             | RTN                   | 24             | Computes | Range in kn                    |
| 006                               | 2                                   | 02                                |                  |                    |                                 | 862                             | GTOØ                  | 22 00          | 1 .      | J                              |
| 007                               |                                     | -41                               |                  |                    |                                 | 063                             | *LBLB                 | 21 12          |          |                                |
| 008                               |                                     | -24                               |                  |                    |                                 | 864                             | RCL3                  | 36 03          |          |                                |
| 009                               |                                     | 36 12                             |                  |                    |                                 | 065                             | 1                     | Ū1             |          |                                |
| 010                               |                                     | 53                                |                  |                    |                                 | 066                             | +                     | -55            |          |                                |
| 011                               |                                     | $3\epsilon$ 11                    |                  |                    |                                 | 067                             | RCL1                  | 36 01          |          |                                |
| 012                               |                                     | -24                               |                  |                    |                                 | 068                             | 17X                   | 52             |          |                                |
| 013                               |                                     | -45                               | 0                |                    | 1                               | 069                             | X                     | -35            |          |                                |
| 014                               |                                     | 35 01                             | Comp             | utes 1             | /a                              | 070                             | RCLC                  | 36 13          |          |                                |
| 015                               |                                     | 36 00                             |                  |                    |                                 | 071                             | -                     | -45            |          | .                              |
| 015                               |                                     | 36 12                             |                  |                    |                                 | 072                             | R∕S                   | 51             | Computes | n max                          |
| 010<br>017                        |                                     | -35                               |                  |                    |                                 | 073                             | RCLC                  | 36 13          |          |                                |
| 012                               |                                     | -35<br>36 15                      |                  |                    |                                 | 874                             | +                     | -55            |          |                                |
|                                   |                                     |                                   |                  |                    |                                 | 875                             | RCLA                  | 36 11          |          |                                |
| 819                               |                                     | 42<br>75                          |                  |                    |                                 | 676                             | KOLH<br>X≓Y           | -41            |          |                                |
| 020<br>021                        |                                     | -35                               |                  |                    |                                 | 676                             | 0+1<br>÷              | -24            |          |                                |
| 021<br>022                        |                                     | 53                                |                  |                    |                                 | 677<br>678                      | -<br>7X               | -24<br>54      |          |                                |
| 022                               |                                     | 36 11                             |                  |                    |                                 |                                 |                       |                | 0        |                                |
| 023                               |                                     | -24                               | Compu            | tes p              |                                 | 679<br>800                      | R/S                   | 51             | Computes | v cmax                         |
| 624                               |                                     | 35 02                             | -                | -                  |                                 | 080                             | RCLA                  | 36 11          |          |                                |
| Ø25                               |                                     | 36 01                             |                  |                    |                                 | 081                             | RCLØ                  | 36 00          |          |                                |
| B25                               |                                     | -35                               |                  |                    |                                 | 082                             | ÷                     | -24            |          |                                |
| Ø27                               |                                     | Ø1                                |                  |                    |                                 | 083                             | 12                    | 54             |          |                                |
| 028                               |                                     | -41                               |                  |                    |                                 | 084                             | RTN                   | 24             | Computes | V I                            |
| 029                               | -                                   | -45                               |                  |                    |                                 | 685                             | GTOØ                  | 22 00          |          |                                |
| 030                               | . ZX                                | 54                                | Compu            | tec e              |                                 | <b>0</b> 86                     | *LBLC                 | 21 13          |          |                                |
| 031                               | STO3                                | 35 03                             | Compu            | Lese               |                                 | 087                             | 1                     | Ø1             |          |                                |
| 632                               | RCL2                                | 36 02                             |                  |                    |                                 | 688                             | RCLØ                  | 36 00          |          |                                |
| 633                               |                                     | 36 00                             |                  |                    |                                 | 089                             | RCL1                  | 36 01          |          |                                |
| 034                               |                                     | -24                               |                  |                    |                                 | 090                             | X                     | -35            |          |                                |
| 035                               |                                     | 01                                |                  |                    |                                 | 091                             | -                     | -45            |          |                                |
| Ø3E                               |                                     | -45                               |                  |                    |                                 | 092                             | RCL3                  | 36 03          |          |                                |
| 037                               |                                     | -41                               |                  |                    |                                 | 693                             | ÷                     | -24            |          |                                |
| 038                               |                                     | -24                               |                  |                    |                                 | 094                             | COS-'                 | 16 42          | 0        |                                |
| 039<br>039                        |                                     | 16 42                             |                  |                    |                                 | <b>0</b> 95                     | ST04                  | 35 04          | Computes | <sup>E</sup> 1                 |
| 040                               |                                     | 36 02                             | Compu            | tes f <sub>1</sub> |                                 | 09E                             | 1                     | 01             |          |                                |
| 041                               |                                     | 36 13                             |                  |                    |                                 | 097                             | RCLC                  | 36-13          |          |                                |
| 041<br>042                        |                                     | 36 13<br>36 09                    | 1                |                    |                                 | 898                             | RCL9                  | 36 09          |          |                                |
| 642<br>643                        |                                     | 36 05<br>-55                      |                  |                    |                                 | 099                             | +                     | -55            |          |                                |
|                                   |                                     |                                   | 1                |                    |                                 | 100                             | RCL1                  | 36 01          |          |                                |
| 044<br>045                        |                                     | -24                               |                  |                    |                                 | 101                             | X                     | -35            |          |                                |
| 045<br>045                        |                                     | 01<br>45                          | 1                |                    |                                 | 102                             | -                     | -45            |          |                                |
| 046<br>047                        |                                     | -45<br>76 07                      | 1                |                    |                                 | 102                             |                       | 36 03          |          |                                |
| 047<br>042                        |                                     | 36 03<br>04                       | 1                |                    |                                 | 103                             | RULU<br>÷             | -24            |          |                                |
| 048                               |                                     | -24                               | T                |                    |                                 | 104                             |                       | 16 42          |          |                                |
| 049                               |                                     | 16 42                             | 1                |                    |                                 | 105                             |                       | 16 42<br>16 45 |          |                                |
| 050                               |                                     | 02                                | 1                |                    |                                 | 105                             |                       | 16 43          |          |                                |
| 651                               |                                     | 16-24                             | 1                |                    |                                 |                                 |                       | 02<br>16-24    |          |                                |
| 052                               |                                     | -35                               | 1                |                    |                                 | 108                             |                       |                |          |                                |
| 053                               |                                     | -41                               | 4                |                    |                                 | 109                             |                       | -35            |          |                                |
| 854                               |                                     | 15 45                             |                  | _                  |                                 | 110                             |                       | -41            | Comments | F                              |
| 055                               |                                     | -45                               | Compu            | tes f <sub>t</sub> |                                 | 111                             | -                     | -45            | Computes | <sup>E</sup> t                 |
| . 056                             | X≠Y                                 | -41                               | L                |                    |                                 | 112                             | R÷D                   | 16 46          |          |                                |
|                                   |                                     | Ic                                | 1                |                    |                                 | STERS                           | - 6                   | 7              | 8        | 9                              |
| <sup>0</sup> R <sub>1</sub> ir kn | $1 \frac{1}{a}$ in                  | n <sup>2</sup> pink               | m <sup>3</sup> e |                    | <sup>4</sup> E1dec <sup>0</sup> | <sup>5</sup> E <sub>t</sub> dec | <b>°</b> <sup>6</sup> | <i>'</i>       | l'       | <sup>9</sup> h in km<br>Target |
|                                   | n km                                | S2                                | S3               |                    | s4                              | S5                              | S6                    | S7             | S8       | S9                             |
| S0                                | S1                                  | 52                                | 33               |                    |                                 |                                 |                       | -              |          |                                |
|                                   |                                     | <b>I</b>                          |                  | С                  |                                 | D                               |                       | E Ø dec O      | I        |                                |
| <sup>A</sup> u in                 | n km <sup>3</sup> /sec <sup>2</sup> | <sup>□</sup> V <sub>1</sub> in km | /sec             |                    | n kma                           | h in                            | km                    | w dec v        |          |                                |
| L                                 |                                     | -                                 |                  | L ~                |                                 | 11 11                           | r-111                 | 1              |          |                                |

# 97 Program Listing II

|                     |            |                                                   |                                 |              |           |                | co         |       |
|---------------------|------------|---------------------------------------------------|---------------------------------|--------------|-----------|----------------|------------|-------|
|                     | KEY ENTRY  |                                                   | COMMENTS                        | STEP         | KEY ENTRY | KEY CODE       | COMM       |       |
| 113                 | ST05       | 35 05                                             |                                 | 169          | RTN       | 24             |            |       |
| 114                 | D→R        | 16 45                                             |                                 | 170          |           | 22 00          |            |       |
| 115                 | X≠Y        | -41                                               |                                 | 171          |           | 21 15          |            |       |
| 116                 | D→R        | 16 45                                             |                                 | . 172        |           | 01             |            |       |
| 117                 | -          | -45                                               |                                 | 173          | •         | -62            |            |       |
| 118                 | RCL5       | 36 05                                             |                                 | 174          |           | 08             |            |       |
| 119                 | SIN        | 41                                                |                                 | 175          | 5         | 05             |            |       |
| 120                 | RCL4       | 36 04                                             |                                 | 176          | 2         | 02             |            |       |
| 121                 | SIN        | 41<br>45                                          |                                 | 177          |           | -24            |            |       |
| 122<br>123          | -<br>PCL 7 | -45<br>76 97                                      |                                 | 178          |           | 24             |            |       |
| 123                 | RCL3<br>×  | 36 03<br>-35                                      |                                 | 179          |           |                |            |       |
| 124                 | -          | -35                                               |                                 | 180          |           | 02<br>75       |            |       |
| 125                 | RCL1       | 36 Ø1                                             |                                 | 181          |           | -35            |            |       |
| 120                 | 1/X        | 52                                                |                                 | 182          |           | 35 46<br>36 45 |            |       |
| 127                 | 3          | 03                                                |                                 | 183          |           | 36 45          |            |       |
| 129                 | ENTŤ       | -21                                               |                                 | 184          |           |                |            |       |
| 130                 | 2          | 02                                                |                                 | 185          |           | 36 45<br>35 13 |            |       |
| 131                 | ÷          | -24                                               |                                 | 186          |           |                |            |       |
| 132                 | γ×         | 31                                                |                                 | 187          |           | -31            |            |       |
| 133                 | RCLA       | 36 11                                             |                                 | 188<br>189   |           | 35 11          |            |       |
| 134                 | TX         | 54                                                | ĺ                               | 105          |           | 51<br>16 11    |            |       |
| 135                 | ÷          | -24                                               |                                 | 190          |           | 35 14          |            |       |
| 136                 | X          | -35                                               |                                 | 191          |           | 50 14<br>51    |            |       |
| 137                 | RTN        | 24                                                | Computes t in sec               |              |           |                |            |       |
| 138                 | GTOØ       | 22 00                                             | Computes t <sub>s</sub> in sec. | 193          |           | 35 12          |            |       |
| 139                 | *LBLD      | 21 14                                             |                                 | 194          |           | 55 12<br>51    |            |       |
| 140                 | RCL1       | 36 01                                             |                                 | 196          |           |                |            |       |
| 141                 | 1/X        | 52                                                |                                 | 190          |           | 35 15          |            |       |
| 142                 | 2          | 02                                                |                                 | 198          |           | 51             |            |       |
| 143                 | x          | -35                                               |                                 | 199          |           |                |            |       |
| 144                 | RCLC       | 36 13                                             |                                 | 200          |           | 35 09          |            |       |
| 145                 | RCL9       | 36 09                                             |                                 | 201          |           | 55 55<br>51    |            |       |
| 146                 | ÷          | -55                                               |                                 |              | 1.00      | 01             |            |       |
| 147                 | -          | -45                                               |                                 |              |           |                | 1          |       |
| 148                 | 17X        | 52                                                |                                 |              |           |                | 1          |       |
| 149                 | RCL1       | 36 01                                             |                                 |              |           |                | 1          |       |
| 150                 | 17X        | 52                                                |                                 |              |           |                | 1          |       |
| 151                 | 2          | 02                                                |                                 |              |           |                | 1          |       |
| 152                 | X          | -35                                               |                                 |              |           |                | ]          |       |
| 153                 | RCLØ       | 36 00                                             |                                 |              |           |                | ]          |       |
| 154                 | -          | -45                                               |                                 | 210          |           |                |            |       |
| 155                 | 17X        | 52                                                |                                 |              |           |                |            |       |
| 156                 | +          | -55                                               |                                 |              |           |                | 1          |       |
| 157                 | 2          | 02                                                |                                 |              |           |                | 1          |       |
| 158                 | X≠Y        | -41                                               |                                 |              |           |                | 1          |       |
| 159                 | ÷          | -24                                               | Computes p opt.                 | $\vdash$     |           |                | 4          |       |
| 160<br>161          | RCLA<br>×  | 36 11<br>-75                                      |                                 | ┝∔           |           |                | 4          |       |
| 161                 | ×۲۲        | -35<br>54                                         |                                 | ┣∔           |           |                | 4          |       |
| 162                 | RCL0       |                                                   |                                 | ┣───┤        |           |                | 4          |       |
| 163<br>164          | RCLB       | 36 00<br>36 12                                    |                                 | 220          |           |                | 4          |       |
| 164<br>165          | KULB<br>X  | 36 12<br>-35                                      |                                 | 220          |           |                | 4          |       |
| 165                 | ÷          | -35<br>-24                                        |                                 | ┣───┼        |           |                | 1          |       |
| 165                 | cos-'      | $^{-24}$ 16 42                                    | Computes Ø max.                 | <b>├</b> ──┤ |           |                | 1          |       |
| 167                 | STOE       | 35 15                                             | computes v max.                 |              |           |                | 1          |       |
|                     |            | 00 10                                             | LABELS                          | •            | FLAGS     |                | SET STATUS |       |
| <sup>A</sup> S=Rang | B          | Ord. $\begin{bmatrix} C \\ t_s = T \end{bmatrix}$ |                                 | to n.m.      |           | FLAGS          | TRIG       | DISP  |
| a a                 | b.         |                                                   | d e                             | со неше      | 1         | ON OFF         |            | DISF  |
|                     | R/S        | = Circular \                                      | /el fot Max. Ord.               |              |           | 0 🗆 🗆          | DEG 🗆      | FIX 🗆 |
| 0                   | R/S        | = Circular \                                      | /elocity for Burn4Ou            | t Altitu     | фе        | 1 🗆 🗆          |            |       |
| 5                   | 6          | 7                                                 | 8 9                             |              | 3         | 2 🗌 🗌<br>3 🗌 🗍 | RAD 🗆      | ENG 🗆 |
| -                   |            |                                                   | 1 1                             |              |           |                |            |       |

| Program Title CELESTIAL POSITION                                            |
|-----------------------------------------------------------------------------|
| Contributor's Name JOSEPH R. HOBART                                         |
|                                                                             |
| Address 8723 BRADY AVENUE                                                   |
| City SPRING VALLEY State CA Zip Code 92077                                  |
|                                                                             |
| Program Description, Equations, Variables PROGRAM CALCULATES LOCAL SIDERIAL |
| TIME AND AZIMUTH AND ALTITUDE AND HOURLY RATES OF                           |
| CHANGE OF THE AZIMUTH AND ALTITUDE OF A CELESTIAL BODY                      |
| AS A FUNCTION OF DATE AND TIME, OBSERVER'S GEOGRAPHIC                       |
| · · · · · · · · · · · · · · · · · · ·                                       |
| POSITION, AND CELESTIAL COORDINATES OF THE BODY.                            |
| FORMATS: LATITUDE, LONGNITUDE, AND DECLINATION ARE IN                       |
| DEGREES - MINUTES - SECONDS; RIGHT ASCENSION AND ALL TIMES                  |
| ARE IN HOURS - MINUTES - SECONDS; AND AZIMUTH AND ALTITUDE                  |
| OUTPUTS ARE IN DECIMAL DEGREES.                                             |
|                                                                             |
| PROGRAM STEPS 72-78 ARE A SIDERIAL CONSTANT THAT                            |
| MATCHES THE ZEROTH HOUR OF O JANUARY FOR THE YEAR                           |
| GIVEN IN STEPS 8-11:                                                        |
| 61020 110 31283 8 11.                                                       |
| *                                                                           |
| CONSTANT = SIDERIAL TIME (DECIMAL HOURS) FOR Of JAN O                       |
| 24                                                                          |
|                                                                             |
| THE SIDERIAL TIME IS AVAILABLE IN THE UNIVERSAL AND                         |
| SIDERIAL TIMES TABLES OF AN EPHEMERIS. NOTE THAT THE                        |
| Operating Limits and Warnings INPUT SOUTHERN LATITUDES AND DECLI-           |
| NATIONS AND EASTERN LONGNITUDES AS NEGITAVE NUMBERS.                        |
| STEPS 8-11 AND 72-78 MUST BE CHANGED EACH                                   |
| YEAR. ANY INPUT OF MONTH AND DAY MUST BE                                    |
| PRECEDED BY LATITUDE AND LONGNITUDE INPUTS TO                               |
| ENSURE THE YEAR IS ENTERED INTO THE CALCULATION                             |
| FOR DAY OF THE YEAR.                                                        |
|                                                                             |
|                                                                             |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

| Program Title      |          |
|--------------------|----------|
| Contributor's Name |          |
| Address            |          |
|                    | Zip Code |

| Program Description, Equations, Variables VALUE FOR DECEMBER 31 OF ONE | ana ana amin'ny faritr'o dia mampiasa amin'ny fisiana amin'ny faritr'o dia mampiasa amin'ny faritr'o dia mampia |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| YEAR IS EQUIVELENT TO THE VALUE FOR JANUARY O O                        | F                                                                                                               |
| THE NEXT YEAR                                                          |                                                                                                                 |
|                                                                        |                                                                                                                 |
| * SOME CONSTANTS : 1977 ⇒ .276518                                      |                                                                                                                 |
| 1978 ⇒ .275851                                                         |                                                                                                                 |
| FOR APPARENT SIDERIAL TIME.                                            |                                                                                                                 |
| IF MEAN SIDERIAL TIME IS ACCEPTABLE:                                   |                                                                                                                 |
| 1976 ≥ .274436                                                         |                                                                                                                 |
| 1977 ≥, 276511                                                         |                                                                                                                 |
| 1978 ⇒ . 275848                                                        | an a                                                                        |
| 1979 ⇒ ,275185                                                         |                                                                                                                 |
| 1980 ⇒, 274522                                                         |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        | in an Warman a Maria ang Kang Kanalan ing Kanalan i                                                             |
|                                                                        |                                                                                                                 |
| Operating Limits and Warnings ENSURE DATE USED MATCHES GMT;            |                                                                                                                 |
| THE GMT DATE CHANGES AT O' GMT NOT AT O' LOCA                          | 12                                                                                                              |
| TIME .                                                                 |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |
|                                                                        |                                                                                                                 |

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

Sketch(es)

| Sample Problem(s) AT 1800 PST 15 JAN 1977 (0200 GMT 16 JAN), FOR<br>AN OBSERVER AT 32°42'N LATITUDE 117°05'W LONGNITUDE<br>FIND LOCAL SIDERIAL TIME AND THE POSITION OF VENUS AND<br>RATE OF CHANGE OF POSITION. FROM AN EPHEMERIS, VENUS<br>IS 7°20' 55.33" South Declination AND 22°56"47.42 <sup>5</sup><br>IN RIGHT ASCENSION AT THIS TIME. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solution: 32.42 ENT $\uparrow$ 117.05 $fA \rightarrow 1977$<br>1 ENT $\uparrow$ 16 $fB \rightarrow 16$ (DAY OF YEAR)<br>7.205533 CHS ENT $\uparrow$ 22.564742 $A \rightarrow 7$ .<br>2 B $\rightarrow 1^{h} 53^{m} 15.7^{s}$<br>C $\rightarrow 234.5^{\circ}$<br>D $\rightarrow 32.0^{\circ}$<br>$fC \rightarrow 12.453^{\circ}/HR$             |
| VENUS IS IN THE SOUTHWESTERN SKY 32° ABOVE THE<br>HORIZON; IT IS MOVING NORTHWARD 12.453° /HR<br>AND TOWARD THE HORIZON 10.437° / HR (NEGLECTING<br>ATMOSPHERIC REFRACTION).<br>$\mathcal{E} \rightarrow 2.03^{m} 17.4^{s}$<br>NEW LST (AFTER COMPUTING A) IS ORIGINAL GMT + 10 <sup>m</sup>                                                    |
| Reference (s) THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC,<br>PRINTED EACH YEAR BY THE U.S. GOVERNMENT PRINTING<br>OFFICE, WASHINGTON, D.C.                                                                                                                                                                                                     |

7

CELESTIAL POSITION LATTLONG MOTDAY DAZ DALT DECTRA GMT-LST AZ ALT LST

| STEP | INSTRUCTIONS                  | INPUT<br>DATA/UNITS | KEYS          | OUTPUT<br>DATA/UNITS |
|------|-------------------------------|---------------------|---------------|----------------------|
| /    | LOAD SIDES / AND 2            |                     |               |                      |
| 2    | INPUT LATITUDE AND LONGNITUDE | LAT / D.MS          | ENT           |                      |
|      |                               | LONG/D.MS           | FA            | YEAR                 |
| 3    | INPUT MONTH AND DAY           | 1 TO 12             | ENT           |                      |
|      |                               | 1 TO 31             | f   B         | YEAR DAY             |
| 4    | INPUT OBJECT DECLINATION AND  | DEC/D.MS            | ENT           |                      |
|      | RIGHT ASCENSION               | RA / H.MS           | A             |                      |
| 5    | CONVERT GMT TO LST            | GMT/H.MS            | $\mathcal{B}$ | LST / H.MS           |
|      | COMPUTE AZIMUTH               | ,                   | C             | DEG                  |
| 7    | COMPUTE ALTITUDE              |                     | $\mathcal{D}$ | DEG                  |
| 8    | COMPUTE A AZIMUTH / HOUR      |                     | f C           | DEG/HR               |
| 9    | COMPUTE A ALTITUDE / HOUR     |                     | $\dot{+}$ D   | DEG/HR               |
|      | , .                           |                     |               |                      |
|      | RETURN TO STEPS 4 OR 5 AS     |                     |               |                      |
|      | DESIRED. TO CHANGE MONTH      |                     |               |                      |
|      | AND DAY EITHER PERFORM STEP   |                     |               |                      |
|      | 2 FIRST OR ENTER YEAR IN      |                     |               |                      |
|      | STACK PRIOR TO MONTH. STEP    |                     |               |                      |
|      | 8 ADDS 10 MINUTES TO ORIGINAL |                     |               |                      |
|      | GMT.                          |                     |               |                      |
|      |                               |                     |               |                      |
|      | THIS PROGRAM WAS DESIGNED TO  |                     |               |                      |
|      | PROVIDE POSITIONING AND       |                     |               |                      |
|      | TRACKING DATA FOR A SEMI-     |                     |               |                      |
|      | PORTABLE ALT- AZ TELESCORE.   |                     |               |                      |
|      |                               |                     |               |                      |
|      | LST CAN BE RECALLED ANY TIME  |                     | ٤             | LST/H.MS             |
|      | AFTER STEP 5                  |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |
|      |                               |                     |               |                      |

| STEP     | KEY ENTRY                | KEY CODE             | COMMENTS      | STEP       |                                  | KEY CODE             | COMMENTS                              |
|----------|--------------------------|----------------------|---------------|------------|----------------------------------|----------------------|---------------------------------------|
| 001      | LBLa                     | 32 25 11             |               |            | $\rightarrow H$                  | 31 74                |                                       |
|          | DSP 5                    | 23 05                |               |            | STO 5                            | 33 05                | 1                                     |
|          | $\rightarrow H$          | 31 74                |               |            | RTN                              | 35 22                | 1                                     |
|          | STO 2                    | 33 02                |               | 060        | LBL B                            | 31 25 12             | 1                                     |
|          | $X \rightleftharpoons Y$ | 35 52                |               |            | SFO                              | 35 51 00             | 1                                     |
|          | $\rightarrow H$          | 31 74                |               |            | STOC                             | 33 13                |                                       |
|          | STO 1                    | 33 01                |               |            | RCL 2                            | 34 02                | 4                                     |
|          | 370 1                    | 01                   | ) MUST MATCH  |            | 3                                |                      | 4                                     |
|          | 9                        |                      |               |            |                                  | 03                   | 4                                     |
| 010      | 7                        | 09                   | > DATE OF     |            | 6                                | 06                   | 4 1                                   |
| 010      |                          | 07                   | COMPUTATION   |            | 0                                | 00                   | 4 1                                   |
|          | 7                        | 07                   | J             |            | STO7                             | 33 07                |                                       |
|          | DSPO                     | 23 00                |               |            | ÷                                | 81                   |                                       |
|          | RTN                      | 35 22                |               |            | 2                                | 01                   |                                       |
|          | LBLD                     | 32 25 12             |               | 070        | $\chi \rightleftharpoons \gamma$ | 35 52                |                                       |
|          | X <del>≈</del> Y         | 35 52                |               |            | -                                | 51                   |                                       |
|          | STO 4                    | 33 04                |               |            | •                                | 83                   | 7 SIDERIAL                            |
|          | 3                        | 03                   |               |            | 2                                | 02                   | ( CONSTANT                            |
|          | $x > \gamma$             | 32 81                |               |            | 7                                | 07                   | MUST                                  |
|          | GTO 1                    | 22 01                |               |            | 6                                | 06                   | ( MATCH                               |
| 020      | GSB 1                    | 31 22 01             |               |            | 5                                | 06                   | YEAR                                  |
| <u> </u> | $R\uparrow$              | 35 54                |               |            | ,                                |                      | STEPS                                 |
| <b> </b> |                          |                      |               |            | 8                                | 01                   | 8 TO 11                               |
|          | 4<br>÷                   | 04                   |               |            |                                  | 08                   |                                       |
| <b> </b> |                          | 81                   |               | 080        | <u>+</u>                         | 61                   | 4                                     |
| L        | FRAC                     | 32.83                |               | 080        | $x \neq \gamma$                  | 35 52                | 4                                     |
|          | X = O                    | 31 51                |               |            | $\rightarrow H$                  | 31 74                |                                       |
|          | 1                        | 01                   |               |            | 2                                | 02                   |                                       |
|          | RCL3                     | 34 03                |               |            | 4                                | 04                   |                                       |
|          | +                        | 61                   |               |            | ÷                                | 81                   |                                       |
|          | INT                      | 31 83                |               |            | RCL 3                            | 34 03                |                                       |
| 030      | RCL4                     | 34 04                |               |            | +                                | 61                   |                                       |
|          | •                        | 83                   |               |            | 1                                | 01                   |                                       |
|          | 4                        | 04                   |               |            | •                                | 83                   |                                       |
|          | ×                        | 7/                   |               |            | 0                                | 00                   |                                       |
|          | 2                        | 02                   |               | 090        | 0                                | 00                   |                                       |
|          | •                        | 83                   |               |            | 2                                | 02                   |                                       |
|          | 3                        | 03                   |               |            | 7                                | 07                   |                                       |
|          |                          | 61                   |               |            | 3                                |                      |                                       |
|          | +                        |                      |               |            | 7                                | 03                   | ł                                     |
|          | INT                      | 31 83                |               |            |                                  | 07                   |                                       |
| 0.10     | -                        | 51                   |               |            |                                  | 09                   |                                       |
| 040      | STO 3                    | 33 03                | -> YEAR DAY   |            | X                                | 71                   |                                       |
|          | RTN                      | 35 22                | - YEAR DAT    |            | +                                | 61                   |                                       |
|          | LBL 1                    | 31 25 01             |               |            | FRAC                             | 32.83                |                                       |
|          | R4                       | 35 53                |               |            | 2                                | 02                   | 1                                     |
|          | 1                        | 01                   |               | 100        | 4                                | 04                   | 1                                     |
|          | -                        | 51                   |               |            | ×                                | 7/                   |                                       |
|          | 3                        | 03                   |               |            | → H.MS                           | 32 74                |                                       |
|          | 1                        | 01                   |               |            | STO O                            | 33 00                |                                       |
|          | ×                        | 7/                   |               |            | DSP 5                            | 33 00<br>23 05       |                                       |
|          | <i>×</i>                 | 61                   |               | <b></b>    | DSP 5<br>RTN                     | 35 22                |                                       |
| 050      | STO 3                    | 33 03                |               |            | LBLC                             | 31 25 13             |                                       |
|          | RTN                      | 35 22                |               |            | RCLO                             | 34 00                |                                       |
|          | LBLA                     | 31 25 11             |               | <b> </b>   | CED                              | 35 61 00             |                                       |
|          | SE O                     | 35 51 00             |               |            | GSRO                             | 35 61 00<br>31 22 02 |                                       |
|          | SFO<br>GSB2              | 35 51 00<br>31 22 02 |               | 110        | CFO<br>GSB2<br>RCL6              | 34 06                |                                       |
|          | STO 6                    | 32 01                |               | <u> </u>   | -                                | 51                   |                                       |
|          | X≓Y                      | <u>33</u> 06<br>3552 |               |            | STO 8                            | 33 08                |                                       |
|          |                          |                      | DECI          | I<br>STERS | 5,00                             |                      |                                       |
| 0        | 1                        | 2                    |               | 5          | 6 0 (                            | 7                    | 8 9 01-                               |
| ° LST    | - LAT                    | - <sup>2</sup> 10NG  | 3YR DAY MONTH | DEC        | RA                               | 360                  | <sup>8</sup> LHA <sup>9</sup> SIN ALT |
| S0       | S1                       | S2                   | S3 S4         | S5         | S6                               | S7                   | S8 S9                                 |
| 1        |                          |                      |               |            |                                  |                      |                                       |
| A A      |                          | B                    | C             | D          | 1. 1                             | $E_{0}$              | I                                     |
| ^ AL     | -/                       | AZ                   | GMT           | ALT /      | AHLI                             | EAZ/AA               | Ź                                     |
|          |                          |                      |               |            |                                  |                      |                                       |

|               |                          | -          |                                      |                           |                |             |          |            |          |
|---------------|--------------------------|------------|--------------------------------------|---------------------------|----------------|-------------|----------|------------|----------|
| STEP          | KEY ENTRY                | KEY CODE   | COMMEN.                              | TS                        | STEP           | KEY ENTRY   | KEY CODE | COM        | MENTS    |
|               |                          |            |                                      |                           | T              |             |          | T          |          |
|               | RCL1                     | 34 01      |                                      |                           |                | LBLD        | 31 25 14 | 4          |          |
|               | SIN                      | 31 62      |                                      |                           | 170            | F?0         | 35 71 00 |            |          |
|               | RCL5                     | 34 05      |                                      |                           |                | GSBC        | 31 22 13 |            |          |
|               | SIN                      | 31 62      |                                      |                           |                | DSP /       | 23 01    |            |          |
|               | X                        | 7/         |                                      |                           |                | RCLA        | 34 11    | 1          |          |
|               |                          | 34 01      |                                      |                           |                |             | 22.04    |            |          |
|               | RCL 1                    |            |                                      |                           |                | <u>6704</u> |          |            |          |
|               | COS                      | 31 63      |                                      |                           |                | LBL2        | 31 25 02 | -          |          |
| 120           | RCL 5                    | 34 05      |                                      |                           |                | -> H        | 31 74    |            |          |
|               | COS                      | 31 63      |                                      |                           |                | )           | 01       | 1          |          |
|               | X                        | 7/         |                                      |                           |                | 5           | 05       |            |          |
|               |                          |            |                                      |                           |                |             |          | 4          |          |
|               | RCL8                     | 34 08      |                                      |                           |                | X           | 71       | 4          |          |
|               | COS                      | 31 63      |                                      |                           | 180            | RTN         | 35 22    |            |          |
|               | X                        | 71         |                                      |                           |                | LBLC        | 32 25 13 |            |          |
|               | +                        | 61         |                                      |                           |                | RCLA        | 34 11    | 1          |          |
|               | STO9                     | 33 09      |                                      |                           |                | STOD        | 33 14    | 1          |          |
|               |                          |            |                                      |                           |                |             |          |            |          |
|               | SIN-1                    | 32 62      |                                      |                           |                | RCL B       | 34 12    | 1          |          |
|               | STO A                    | 33 11      |                                      |                           |                | STO E       | 33 15    |            |          |
| 130           | RCL5                     | 34 05      |                                      |                           |                | RCLC        | 34 13    |            |          |
|               | SIN                      | 3/ 62      |                                      |                           |                | •           | 83       | 1          |          |
| <b> </b>      | RCL 9                    | 34 09      |                                      |                           |                | 1           |          | 1          |          |
|               |                          |            |                                      |                           |                |             | 01       | 4          |          |
|               | RCL1                     | 34 01      |                                      |                           |                | +           | 61       | 4          |          |
|               | SIN                      | 31 62      |                                      |                           | 190            | GSBB        | 31 22 12 | ]          |          |
|               | X                        | 7/         |                                      |                           |                | GSBC        | 31 22 13 | ]          |          |
|               | -                        | 51         |                                      |                           |                | RCLE        | 34 15    | 1          |          |
|               | RCL1                     | 34 01      |                                      |                           |                |             | 51       | 1          |          |
|               |                          |            |                                      |                           |                |             |          | 4          |          |
|               | COS                      | 3163       |                                      |                           |                | 6           | 06       |            |          |
|               | ÷.                       | 81         |                                      |                           |                | Х           | 71       |            |          |
| 140           | RCL A                    | 34 11      |                                      |                           |                | STOE        | 33 15    | 1          |          |
|               | COS                      | 31 63      |                                      |                           |                | DSP3        | 23 03    | 1          |          |
|               | ÷                        | 81         |                                      |                           |                |             |          |            | 7        |
|               |                          |            |                                      |                           |                | RTN         | 35 22    |            | C        |
|               | cos-1                    | 32 63      |                                      |                           |                | LBLd        | 32 25 14 |            |          |
|               | RCL 8                    | 34 08      |                                      |                           | 200            | RCLA        | 34 11    | ]          |          |
|               | SIN                      | 31 62      |                                      |                           |                | RCLD        | 34 14    | 1          |          |
|               | DSP 1                    | 23 01      |                                      |                           |                | -           | 51       | 1          |          |
|               |                          |            |                                      |                           |                | 1           |          | ł          |          |
|               | X<0                      | 31 71      |                                      |                           |                | 6           | 06       | 1          |          |
|               | GTO 3                    | 22 03      |                                      |                           |                | X           | 71       |            |          |
| 1             | R↓                       | 35 53      |                                      |                           |                | STO D       | 33 14    |            |          |
| 150           | RCL7                     | 34 07      |                                      |                           |                | DSP3        | 23 02    | ł          |          |
|               | $X \rightleftharpoons Y$ | 35 52      |                                      |                           |                | RTN         | 25 22    | -> A AL    | T        |
| <b>├</b> ───┤ |                          | 51         |                                      |                           | <b>├</b> ───┤  |             | ۲۲ در    | 1 / _ //   |          |
|               | ( = = = =                |            |                                      |                           | <b>├</b> ────┤ |             |          | 4          |          |
|               | STO B                    | 33 /2      | 1-                                   |                           |                |             |          |            |          |
|               | RTN                      | 35 22      | -> AZ                                |                           | 210            |             |          |            |          |
|               | LBL3                     | 31 25 03   |                                      |                           |                |             |          | 1          |          |
|               | RV                       | 35 53      |                                      |                           | <b>├</b> ───┤  |             |          | 1          |          |
|               | STO B                    | 22 12      |                                      |                           | ┣───┥          |             |          | 4          |          |
|               |                          | 33 12      | AZ                                   |                           | ┝───┤          |             |          | 1          |          |
|               | RTN                      | 35 22      | -> AZ                                |                           |                |             |          | 1          |          |
|               | LBL4                     | 31 25 04   |                                      |                           |                |             |          | 1          |          |
| 160           | RTN                      | 35 22      | -> ALT                               |                           |                |             |          | 1          |          |
|               | LBLE                     | 31 25 15   |                                      |                           |                |             |          | 1          |          |
|               | DSP 5                    | 23 05      |                                      |                           | ┣───┤          |             |          | 1          |          |
|               | RCLO                     |            |                                      |                           | ┝───┥          |             |          | 1          |          |
| <b>├</b> ───┤ |                          | 34 00      | -> / ST                              |                           |                |             |          | 1          |          |
|               | RTN                      | 35 22      | ->> LST                              |                           | 220            |             |          |            |          |
|               | LBLC                     | 31 25 13   |                                      |                           |                |             |          | 1          |          |
|               | DSP1                     | 23 01      |                                      |                           |                |             |          | 1          |          |
|               | RCL B                    | 34 12      |                                      |                           |                |             |          | 1          |          |
|               | GTO 4                    | 22 04      |                                      |                           | ┣───┤          |             |          | 1          |          |
| }             | 0707                     |            |                                      |                           | L              |             |          | OFT OTATIO |          |
|               | To To                    |            |                                      |                           |                | FLAGS       | +        | SET STATUS |          |
| DECT          | RAT GMT.                 | =LST -> F  | 12 -> AL                             | $\tau \vdash \rightarrow$ | LST            | CONTROL     | FLAGS    | TRIG       | DISP     |
| -             |                          |            | d                                    | P                         |                | 1           | ON OFF   |            |          |
| LATTL         | ONG1 MOT                 | DAYA C-> A | $A \ge d \rightarrow \Delta A$       | ALT                       |                | ľ           |          | DEG 🛛      | FIX 🛛    |
| 0             |                          | DAY 2H->   | 3.1.                                 | 4 -                       | 1              | 2           |          | GRAD       | SCI 🗆    |
|               |                          |            | $D \xrightarrow{3} A_{\overline{z}}$ |                           | ALT            |             |          | RAD 🗆      |          |
| 5             | 6                        | 7          | 8                                    | 9                         |                | 3           | 3 🗆 🖾    |            | ENG<br>n |
|               |                          |            |                                      |                           |                |             |          |            |          |

### **Program Description I**

Program Title BiNARY STAR EPHEMERIS Contributor's Name William C. Wickes Address Dept of Physics, Jadwin Hall, Princeton University City Princeton State NJ Zip Code 08540

Program Description, Equations, Variables For a given date, the program calculates the apparent position angle band angular separation p of a binary star system from the following equations: P= period of orbit "Mean Anomaly"  $M = \frac{2\pi}{P}(t-T) = E - e \sin E$ t = ephemeris Date T = epoch of periastron passage E = "eccentric anomaly" radius vector r = a (1 - Ecose) a = sem-major axis e = eccentricity  $\tan(\frac{2}{2}) = \sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2}$ v = "true anomaly" w = angle in true orbit  $\tan(\nu+\omega) = \tan(\theta-R) \sec i$ between line of nodes and periastron  $p = r\cos(\gamma + \omega)$ R = position angle of line of node i = inclination of true orbit to plane of sky Input data are P, T, e, a, w, i, R For any t, program computes p and O 0 = apparent position angle p = apparent angular separation Angular quantities are input and output in degrees. **Operating Limits and Warnings** 

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# **User Instructions**

|      | BINARY STAR EPHEMERIS<br>Date → P, 0 LOAD LOAD<br>Date → P, 0 DATA NHL Z                                                   | nd Star = 2         | z ≠ y |                      |
|------|----------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----------------------|
| STEP | INSTRUCTIONS                                                                                                               | INPUT<br>DATA/UNITS | KEYS  | OUTPUT<br>DATA/UNITS |
| 1.   | Load Orbit Parameters                                                                                                      |                     | B     |                      |
|      | a. As O: Flashes, data card                                                                                                |                     |       |                      |
|      | may be entered                                                                                                             |                     |       |                      |
|      |                                                                                                                            |                     |       |                      |
|      | b. If no card will entered,                                                                                                |                     |       |                      |
|      | data is entered manually.                                                                                                  |                     |       |                      |
|      | 1 through 7 will be displayed                                                                                              |                     |       |                      |
|      | during which successive orbit                                                                                              |                     |       |                      |
|      | parameters are entered. If                                                                                                 |                     |       |                      |
|      | no entry is made during pause                                                                                              |                     |       |                      |
|      | display, execution halls                                                                                                   |                     |       |                      |
|      | Enter in following order:                                                                                                  |                     |       |                      |
|      |                                                                                                                            | P (years)           |       |                      |
|      | <u> </u>                                                                                                                   | T (years)<br>e      |       |                      |
|      |                                                                                                                            |                     |       |                      |
|      | 4.                                                                                                                         | a (arc-sec)         |       |                      |
|      | <u>5.</u>                                                                                                                  | $\omega(\circ)$     |       |                      |
|      | <i>le</i><br>7.                                                                                                            | ί (°)<br>Γ (°)      |       |                      |
|      | [c. To resume after delayed entry                                                                                          |                     | r/s   |                      |
|      | [d. To enter nth parameter                                                                                                 | n                   | C     | nJ                   |
| 2.   | Enter ephemeris date                                                                                                       | t(year)             | A     | Р <b>.</b><br>Ө      |
| 3.   | For new date, go to 2.                                                                                                     |                     |       |                      |
| 4.   | For new star, saving old parameters                                                                                        |                     | D     |                      |
|      | Note: Following data entry,<br>"Crd" will display, indicating<br>that data may be recorded by<br>entering a magnetic card. |                     |       |                      |
|      |                                                                                                                            |                     |       |                      |

### **Program Description 11**

Sketch(es) Secondary PRIMARY Sample Problem(s) THE DOUBLE STAR SS-TAU has ORbital Clements AS FOLLOWS P = 91.044T = 1897.58y e = .604 a= 0." 561  $\omega = 131^{\circ}.28$ i = 52°.86 1 = 64°.28 Find the orbital pasitions For 1976.9 Solution(s) B → O, ; (when 1.000 d.splays) 91.044/<u>R/s</u> → "2", 1897.58 [R/s] → "3", 604 [R/s] → "4", 561 [R/s] → "5", 131°28 [R/s] → "6", 52°86 [R/S] → "7", 64°.28 [R/s] → "crd" TRIST 1976.9 AT -> 0" 498, 71.661 Reference(s) AITKEN, The Binary Stars (DOVER Publications, NEW YORK 1964)

| STEP     |                |                   |                                         |      |                |                  | 000005070    |
|----------|----------------|-------------------|-----------------------------------------|------|----------------|------------------|--------------|
| _        | KEY ENTRY      |                   | COMMENTS                                | STEP | KEY ENTRY      | KEY CODE         | COMMENTS     |
| 001      | LBLA           | 31 25 11<br>33 11 | Enter t                                 |      | ×              | 71               |              |
|          | STO A<br>RCL 2 | 34 02             |                                         |      | TAN-1<br>2     | 32 64            |              |
|          | -              | 54 62             |                                         | 060  |                | 71               |              |
|          | 2              |                   |                                         |      | X<br>Ríl 5     | 34 05            |              |
|          | ×              |                   | Compute M                               |      | +              |                  |              |
|          | π              | 71<br>3573        |                                         |      | ↑<br>↑         | 61               |              |
|          |                |                   |                                         |      |                | 41               |              |
|          | ×              | 34 01             |                                         |      | TAN            |                  |              |
| 010      | RCL 1          | <u> </u>          |                                         |      | RLL 6<br>COS   | 31 63            | Compute O-R  |
|          | 5708           | 33 08             |                                         |      | ×              | 17               |              |
|          | RAD            | 35 42             |                                         |      | TAN-1          | 32 64            |              |
|          | LIBLO          | 31 25 00          |                                         |      |                |                  |              |
|          | 1              | 41                |                                         | 070  | Kty            | <u> </u>         |              |
|          | SIN            | 31 62             |                                         |      | COS<br>RCL 8   | 3/1 63           | Compute p    |
|          | Ril 3          | 34 03             |                                         |      |                | 71               |              |
|          | ×              | 71                |                                         |      | X              | 35 52            |              |
|          | PCL 8          | 34 08             |                                         |      | K=y            | 31 63            |              |
|          | +              | 61                |                                         |      | COS            | 35 82            |              |
| 020      | +<br>-         |                   | _                                       |      | LSTX           | 35 53            |              |
|          | LST X          | 35 82             | Compute E<br>by iteration               |      | <b>R↓</b><br>+ |                  |              |
|          | 1              | 41                | by iteration                            |      | R†             | 35 54            | Compute O    |
|          | Rt             | 35 53             | -y reaction                             |      | RCL 7          | 34 07            |              |
|          | +              | 55 55<br>Si       |                                         | 080  | +              | 61               |              |
|          | ABS            | 35 64             |                                         |      | RV             | 35 53            |              |
|          | EEx            | 43                |                                         |      | ×<0            | 31 71            |              |
|          | CHS            | 42                |                                         |      | SFZ            | 35 51 02         |              |
|          | 5              |                   | Accorney 1/105                          |      | ABS            | 35 64            |              |
|          | xey            | 32 71             | /////////////////////////////////////// |      | STO B          | 33 12            |              |
| 030      | 5F 2           | 35 51 02          |                                         |      | CLX            | 44               |              |
|          | RT             | 35 54             |                                         |      | 1              |                  |              |
|          | FZ?            | 35 71 02          |                                         |      | 8              | 08               |              |
|          | GTO O          | 22 00             |                                         |      | 0              | 00               |              |
|          | 1              | 41                |                                         | 090  | Rt             | 3554             |              |
|          | cos            | 31 63             |                                         |      | F2 ?           | 35 71 02         |              |
|          | RCL 3          | 34 03             |                                         |      | +              | 61               |              |
|          | ×              | 71                |                                         |      | 360            | 63               |              |
|          | 1              | 01                |                                         |      | 6              | 06               | 1f 0 > 360°  |
|          | 2=3            | 35 52             | compute r                               |      | 0              | 00               |              |
| 040      | -              | 51                | COMPOLE (                               |      | x>y            | 32 81            | ⊖ - 360° → ⊖ |
|          | RLL 4          | 34 04             |                                         |      | CLX            | 44               |              |
|          | ×              | 71                |                                         |      | -              | 51               |              |
|          | STO 8          | 33 08             |                                         |      | STO C          | 33 13            |              |
|          | Rt             | 35 53             |                                         | 100  | RLL B          | 34 12            |              |
|          | 2              | 02                |                                         |      | -x-            | 31 84            | Display P    |
|          | <u>+</u>       | <b>8</b> i        |                                         |      | ×≠y            | 35 52            |              |
|          | TAN            | 31 64             |                                         |      | RTN            | 35 22            |              |
|          | PEG            | 35 41             |                                         |      | LBLB           | 31 25 12         | Enter data   |
|          | 1              | 01                | Compute y                               |      | CF 3           | 35 61 03         |              |
| 050      | Ril 3          | 34 03             |                                         |      | 7              | 07               |              |
|          | -+             | 61                |                                         |      | STI            | 35 33            |              |
|          | 1              | 01                |                                         | L    | 0              | 00               |              |
|          | RCL 3          | 34 03             |                                         |      | -2-            |                  | Display O to |
|          | -              | 51                |                                         | 110  | MERGE          | 32 41            | exter card   |
|          | +              | 81                |                                         |      | PAUSE          | 35 72            |              |
| <b> </b> | Vr             | 31 54             | DEOU                                    |      | F3?            | 35 71 03         |              |
| 0        | 1              | 2                 | 3 4 REGI                                | 5    | 6              | 7                | 8 9          |
| ľ        | Ρ.             | Γ,                | e, a,                                   | ໍ ພ, | l ì,           | E,               | ΰςερ         |
| S0       | S1             | S2                | S3 S4                                   | S5   | S6 .           | <sup>S7</sup> x, | S8 S9        |
| 1        | P <sub>2</sub> | T <sub>2</sub>    | er ar                                   | ິິພາ | S6<br>Lz       | _× >             | USED         |
| A        | <u> </u>       | B                 | C O                                     | D    |                | E                | I            |
|          | t              | P                 | ° Ø                                     |      |                |                  |              |
|          |                |                   |                                         |      |                |                  |              |

| STEP   | KEY ENTRY           | KEY CODE | COMMENTS                              | STEP | KEY ENTRY         | KEY CODE | COMMENTS        |
|--------|---------------------|----------|---------------------------------------|------|-------------------|----------|-----------------|
|        | RTN                 | 35 22    | [                                     |      |                   |          |                 |
|        | 1                   | 01       | 1                                     | 170  |                   |          | 1               |
|        | ST I                | 35 33    | 1                                     |      |                   |          | 1               |
|        | LBLI                | 31 25 01 | 1                                     |      |                   |          | 1               |
|        | CF3                 | 35 61 03 |                                       |      |                   |          | 1               |
|        | PAUSE               | 35 72    |                                       |      |                   |          | 1               |
|        | F3?                 | 35 71 03 |                                       |      |                   |          | 1               |
| 120    | GITO 3              | 22 03    | stop is no data                       |      |                   |          | 1               |
|        | RIS                 | 84       | entered                               |      |                   |          | 1               |
|        | LBL 2               | 31 25 02 |                                       |      |                   |          | 1               |
|        | 570 (i)             | 33 24    |                                       |      |                   |          | 1               |
|        | 152                 | 31 34    |                                       | 180  |                   |          | 1               |
|        | 7                   | 07       | 1                                     |      |                   |          | 1               |
|        | pc I                | 35 34    | 1                                     |      |                   |          | 1               |
|        | xey                 | 32 71    |                                       |      |                   |          | 1               |
|        | GTO i               | 22 01    | 1                                     |      |                   |          | 1               |
|        | ax                  | 44       |                                       |      |                   |          | 1               |
| 130    | W/DATA              | 31 41    |                                       |      |                   |          | ]               |
|        | RTN                 | 35 22    |                                       |      |                   |          | ]               |
|        | LBL D               | 31 25 14 |                                       |      |                   |          | ]               |
|        | Pts                 | 31 42    | P=s for new<br>Star                   |      |                   |          |                 |
|        | RTN                 | 35 22    |                                       | 190  |                   |          |                 |
|        | LBLC                | 31 25 13 |                                       | L    |                   |          | 4               |
|        | STI                 | 35 33    | Start data entry                      |      |                   |          |                 |
|        | GTO i               | 22 01    |                                       |      |                   |          |                 |
|        | LBLE                | 31 25 15 | Start data entry<br>at with parameter |      |                   |          |                 |
|        | XZY                 | 35 52    |                                       |      |                   |          |                 |
| 140    | RTN                 | 35 22    |                                       |      |                   |          |                 |
|        |                     |          |                                       |      |                   |          |                 |
|        |                     |          |                                       |      |                   |          | 4               |
|        |                     |          |                                       | 200  |                   |          | 4               |
|        |                     |          |                                       | 200  |                   |          |                 |
|        |                     |          |                                       |      |                   |          | 4               |
|        |                     |          |                                       |      |                   |          | 4               |
|        |                     |          |                                       |      |                   |          | 4               |
|        |                     |          |                                       |      |                   |          | 4               |
| 150    |                     |          |                                       |      |                   |          | 4               |
| 150    | +                   |          |                                       |      |                   |          | 4               |
|        |                     |          |                                       |      |                   |          | 4               |
|        | +                   |          |                                       |      |                   |          |                 |
|        | +                   | +        |                                       | 210  |                   |          | 1               |
|        | +                   | <u> </u> |                                       |      |                   |          | 1               |
|        | <u> </u>            | +        |                                       |      |                   |          | 1               |
|        | <u> </u>            | <u> </u> |                                       |      |                   |          | 1               |
|        | <u>†</u>            | <u> </u> |                                       |      |                   |          | 1               |
|        | <u> </u>            | 1        |                                       |      |                   |          | 1               |
| 160    | 1                   |          | 1                                     |      |                   |          | 1               |
|        | 1                   |          |                                       |      |                   |          |                 |
|        |                     |          |                                       |      |                   |          |                 |
|        |                     |          |                                       |      |                   |          | J               |
|        |                     |          |                                       | 220  |                   |          | Į               |
|        |                     |          |                                       |      |                   |          |                 |
|        | l                   | l        |                                       |      |                   |          | 4               |
|        | <b> </b>            | +        |                                       |      |                   |          | 4               |
|        | 1                   | L        | LABELS                                | 1    | FLAGS             |          | I<br>SET STATUS |
| A      | В                   | С        | D E                                   |      | 0                 |          |                 |
| DATE - | -> P, O LOAD        | PATA LUA | ON NewStar                            | x=y  |                   | FLAGS    | TRIG DISP       |
| а      | ь                   | с        | d e                                   |      | 1                 | ON OFF   | DEG 🗵 FIX 🖬     |
| 0      | , <sup>1</sup> USEI | 2 USE    | 3 4                                   |      | 2 USEP            |          | GRAD 🗆 SCI 🗆    |
| 5 USED | 6                   | 7        | 8 9                                   |      | OSEV              | 2 🗆 🗷    | RAD 🗆 ENG 🗆     |
| 5      | 0                   |          | 9                                     |      | <sup>3</sup> USED | 3 🗆 💌    | n               |
|        |                     |          |                                       |      |                   |          |                 |

### **Program Description I**

| Program Title      | ECESSION/GALACTIC CO  | OORDINATES     |                |
|--------------------|-----------------------|----------------|----------------|
| Contributor's Name | Edward J. Groth II    |                |                |
| Address            | Physics Dept., Prince | enn University |                |
| City               | Princeton, NJ         | State N J      | Zip Code 08540 |

Program Description, Equations, Variables 1. Precesses right ascension (a,) and declination (So) at an initial epoch (IE) to right ascension (a) and declination (S) at a final epoch (FE), Uses formulae given in the Explanatory Supplement to the Ephemeris, pp. 30-31. These formulue include the effects of general and luni-solar precession. 2. Converts 1950.0 equatorial coordinates (dso, 850) to new galachi longitude (1) and new gulactic latitude (b). Formulae ave given by Allen, Astrophysical Quantities, 3rd ed., p. 283. 3. Converts equatorial coordinates for any epoch to galactic coordinates by  $(\alpha_0, \delta_0) \rightarrow (\alpha_{50}, \delta_{50}) \rightarrow (l, b)$ 4. Converts galactic coordinates to equatorial coordinates for any epoch by  $(l, b) \rightarrow (\alpha_{50}, \delta_{50}) \rightarrow (\alpha, \delta)$ A. Epochs are in years, e.g. 1450.0 B. b and l ave in decimal degrees, S is in degrees, minutes, seconds, a is in hours, minutes, seconds. On input/output, Sorb is in y and a orl is in X. 0° ≤ l < 360°, 0<sup>h</sup> ≤ x < 24<sup>h</sup>. C. For operations 3 or 4 above, the tinal or initial epoch, respectively, must be 1950.0 and the precess flag (flag 1) must be set. Operating Limits and Warnings To prevent outputs in H.MS or D.MS formet from appearing as 10,5960 (lie. rounded 10,59597), the program rounds in HiMS format, converts to H format and converts buck to HiMS format. To prevent rounding, the no round flag (flago) must be set. Rounding should not be used with less than 3 digits to right of decimal point as it will not work properly when rounding from seconds to minutes or from minutes to hours/degrees in H.MS format.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL. Sketch(es)

| Sample Problem(s) The Abell Cluster 1650<br>$\alpha_{1855} = 12^{4} 52.^{8}8$<br>$\delta_{1855} = 28^{\circ} 46^{\circ}$ | 6 has 1855,0    | coordinates                |
|--------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|
| What are its galachi                                                                                                     | coordinates ?   |                            |
|                                                                                                                          |                 |                            |
|                                                                                                                          |                 |                            |
| Solution(s) { [f] [A]                                                                                                    | 1.0000          | (Set NORNO Flag)           |
| [f] [B]                                                                                                                  | 1,0000          | (set PRECESS Flag)         |
| Solution(s) [ [F] [A]<br>[F] [B]<br>Solution [ 1855 [A] 1950 [B]<br>28,4600 [ENTER] 12,5248                              |                 | (IE and FE)                |
| 28,4600 [ENTER] 12,5248                                                                                                  | 12,5248         | 8,1855, a,1855             |
| [0]                                                                                                                      |                 | l (decimal deg)            |
| [[h] [x ≠ y]                                                                                                             | 87,9582         | b (decimal deg)            |
| Transform ([f] [C], [h] [X = y]                                                                                          | ( interchange ] | E, FE, restore biny, Rinx) |
| buck to [E]                                                                                                              | 12,5248         | a 1855                     |
| results [h] [x=y]                                                                                                        | 28,4560         | δ <sub>1855</sub> (NU RNO) |

Reference(s) 1. Explanabry Supplement to the Astronomical Ephemeris and the American · Ephemeris and Nautical Almanac, 1961, London, Her Majesty's Stationery Office R. C.W. Allen, Astrophysical Quantities 3rd ed., 1973, University of London, Athlone Press.

### **User Instructions**

|      | PRECESSICN | /GALACTIC | COORDINATI | ES PROGRAM    | CARÙ  |
|------|------------|-----------|------------|---------------|-------|
|      | NO ROUND ? | PRECESS ? | IE 🗧 FE    | IE→y,FE→X     | 2     |
| (de) | 1E         | FE        | δ₀ tα₀→δ,α | Sta > b, e bt | l→S,× |

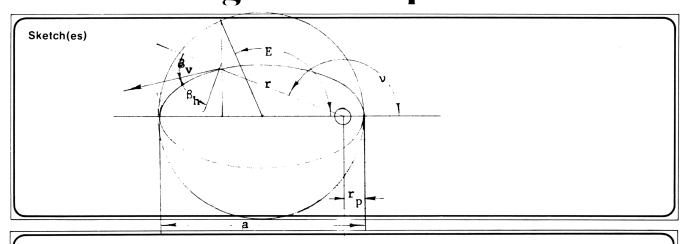
| STEP  | INSTRUCTIONS                                       | INPUT<br>DATA/UNITS | KEYS     | OUTPUT<br>DATA/UNITS                                                                                              |
|-------|----------------------------------------------------|---------------------|----------|-------------------------------------------------------------------------------------------------------------------|
|       | Load sides   and 2 of program card                 |                     |          |                                                                                                                   |
|       | Loud sides I and 2 of constants card               |                     |          |                                                                                                                   |
|       |                                                    |                     |          |                                                                                                                   |
|       | For Precession:                                    |                     |          |                                                                                                                   |
| 2     | Enter initial epoch (when loaded IE = 1900:0)      | IE (years)          | A        | $\begin{array}{c} IE \rightarrow Y \\ FE \rightarrow X \end{array}$                                               |
| 3     | Enter final epoch (when loaded FE = 1900,0)        | FE (yeavs)          | <b>B</b> | $\begin{array}{c} 2E \rightarrow Y \\ FE \rightarrow K \end{array}$                                               |
| 4     | Precess So, do to S, a                             | Sctao .             | C        | $s \rightarrow y$<br>$\alpha \rightarrow x$                                                                       |
|       | For new case with same ZE, FE, go to step +        |                     |          |                                                                                                                   |
|       | To change IE, go to step 2                         |                     |          |                                                                                                                   |
|       | To change FE, ge to skp 3                          |                     |          |                                                                                                                   |
|       |                                                    |                     |          |                                                                                                                   |
|       | 1950, O equatorial = galactic conversion:          |                     |          |                                                                                                                   |
| 5     | Transform 1950.0 S, a to b, l                      | S1950 € \$ 1950     |          | $b \rightarrow \gamma$<br>$l \rightarrow \chi$                                                                    |
| 6     | Transform b, l to 1950,0 S, a                      | 671                 | E        | SI950 -> Y<br>xi950 -> X                                                                                          |
|       |                                                    |                     |          |                                                                                                                   |
|       | Optional:                                          |                     |          |                                                                                                                   |
| 7     | Change NO ROUND flug                               |                     | + a      | I = NC ROUAD<br>O = ROUAD                                                                                         |
| 8     | Change PRECESS flag                                |                     | + 6      | I => PRECESS<br>O=> NO PREC                                                                                       |
| 9     | Exchange IE, FE leaving X, y unchanged             |                     | f c      | x, y unchanged                                                                                                    |
| 10    |                                                    |                     | f d      | $\begin{array}{c} \mathcal{I} \mathcal{E} \to \mathcal{J} \\ \mathcal{F} \mathcal{E} \to \mathcal{J} \end{array}$ |
|       |                                                    |                     |          |                                                                                                                   |
| 11    | Transform do, So at initial epoch to l, b          |                     |          |                                                                                                                   |
| 11 A* |                                                    |                     |          |                                                                                                                   |
| IIB   | •                                                  |                     |          |                                                                                                                   |
| 110   | Enter IE (step 2)                                  |                     |          |                                                                                                                   |
| 110   | $FE = 1950.0 \qquad (skp3)$                        |                     |          |                                                                                                                   |
| 11 E  | Transform de, Su io R, b                           | Scta                | D        | 6-1/                                                                                                              |
|       | For new case with same IE go to step 11E           |                     |          |                                                                                                                   |
|       |                                                    |                     |          |                                                                                                                   |
| 12    | Transform l, b to a, S at final epoch              |                     |          |                                                                                                                   |
| 12 Å  | Set NO ROUND Slug (Step 7)                         |                     |          |                                                                                                                   |
| 12 B  | •                                                  |                     |          |                                                                                                                   |
| 12 C  | IE = 1950.0 (step 2)                               |                     |          |                                                                                                                   |
| 120   | -                                                  |                     |          |                                                                                                                   |
| iz E  |                                                    | btl                 | <b>E</b> | $\begin{array}{c} S \rightarrow Y \\ x \rightarrow X \end{array}$                                                 |
|       | For new case with same FE go to skp 12E            |                     |          |                                                                                                                   |
|       | -                                                  |                     |          |                                                                                                                   |
| *     | Optional - avoids rounding of intermediate results |                     |          |                                                                                                                   |
|       | <b>,</b>                                           |                     |          |                                                                                                                   |

|                         |                        |                          | 67 Program                | n Lis            | sting I                                                               |                       | 41                                       |
|-------------------------|------------------------|--------------------------|---------------------------|------------------|-----------------------------------------------------------------------|-----------------------|------------------------------------------|
| STEP                    | KEY ENTRY              | KEY CODE                 | COMMENTS                  | STEP             | KEY ENTRY                                                             | KEY CODE              | COMMENTS                                 |
| <sup>001</sup> <b>A</b> | FLBLA                  | 31 25 11                 | EWTER NEW IE (MIE)        |                  | +                                                                     | 61                    |                                          |
|                         | 9                      | 01                       |                           |                  | R(LB<br>+                                                             | 34 12                 |                                          |
|                         | 0                      | 00                       |                           | 060              | R(L S                                                                 | 34 05                 |                                          |
|                         | С                      | 00                       |                           |                  | X                                                                     | 17                    |                                          |
|                         |                        | 51                       |                           |                  | STO I                                                                 | 33 01                 | Ø→1                                      |
|                         | ENTER<br>CHS           | <b>4</b> 1<br><b>4</b> 2 |                           | d                | GLBL <b>A</b><br>RCL 4                                                | 32 2 5 14<br>34 04    | IE-Y, FE-X                               |
|                         | R(L 4                  | 34 04                    |                           |                  | 1                                                                     | 57 04                 |                                          |
| 010                     | †                      | 61                       |                           |                  | 9                                                                     | 09                    |                                          |
|                         | ST0 +5-                |                          | FE - NZE → 5              |                  | 0                                                                     | 00                    |                                          |
|                         | h R +<br>5T0 +         | 35 53                    | N IE-1900 - 4             |                  | 0<br>                                                                 | 00<br>61              |                                          |
|                         | GT0 1                  | 22 01                    | GTU PREC CORST. JUD.      | 070              | STO 3                                                                 | 33 03                 |                                          |
| В                       | f LBL B                |                          | ENTER NEW FE (NFE)        |                  | RCL 5                                                                 | 34 05                 |                                          |
|                         | 1                      | 01                       |                           |                  | +                                                                     | 61                    |                                          |
|                         | 9                      | 09<br>00                 |                           |                  | RCL 3                                                                 | 34 03                 |                                          |
|                         | <u>с</u><br>0          | 00                       |                           |                  | h X Z Y<br>h RTN                                                      | <u>35 52</u><br>35 22 |                                          |
| 020                     |                        | 51                       |                           | С                | F LOL C                                                               | 31 25 13              | PRECESS                                  |
|                         | RLL 4                  | 34 04                    |                           |                  | + GSB 5                                                               | 31 22 05              | -> H, ROTATE                             |
|                         |                        | 51                       | NFE - 1E -> 5             |                  | FGSB 2                                                                | 31 22 02              | -+ HIMS, ROULD                           |
|                         | 570 5<br>f 401 1       | 33 03                    | UPDATE PREC CONST.        | <sup>080</sup> 5 | h RTN<br>FLBL S                                                       | 35 22                 | )                                        |
|                         | RCL 9                  | 34 09                    |                           |                  | J H←                                                                  | 31 74                 | , convert a, S to                        |
|                         | RLL S                  | 34 05                    |                           |                  | 1                                                                     | 01                    | deciminal degrees                        |
|                         | X                      | 17                       |                           |                  | 5                                                                     | 05                    |                                          |
|                         | RCL 8<br>t             | <u>34 08</u><br>61       |                           |                  | X                                                                     | 71<br>35 52           |                                          |
| 030                     | r<br>R(15              | 34 05                    |                           |                  | n x ≠ y<br>+ H←                                                       | 31 74                 | J                                        |
|                         | X                      | 7/                       |                           | 0                | FLBLO                                                                 | 31 25 00              | Retate sub.                              |
|                         | RCL4                   | 34 04                    |                           |                  | STO 3                                                                 | 33 03                 |                                          |
|                         | RIL 7                  | 34 07                    |                           | 090              | hx=y                                                                  | 35 52                 | 7 Robule about 2 by                      |
|                         | <u>×</u><br>+          | 7/                       |                           |                  | RCLÓ<br>†                                                             | 34 00                 | 7 Robute about 2 by<br>5 1st Euler angle |
|                         | RCL 6                  | 34 06                    |                           |                  | hx=y                                                                  | 35 52                 | 7                                        |
|                         | ÷                      | 61                       |                           |                  | fros                                                                  | 31 63                 | Convent to poler                         |
|                         | RCLS                   | 34 05                    |                           |                  | f Rt                                                                  | 3172                  |                                          |
| 040                     | X<br>570 0             | 7/<br>33 00              | $\zeta_{i} \rightarrow 0$ |                  | RCL 3<br>F SIN                                                        | 34 03<br>31 62        |                                          |
|                         | RCL 5                  | 34 05                    | 57                        |                  | $g \rightarrow P$                                                     | 32 72                 | J                                        |
|                         | g X <sup>2</sup>       | 32 54                    |                           |                  | hx=y                                                                  | 35 52                 |                                          |
|                         | RLL A                  | 34 1/                    |                           | 100              | RCL 1                                                                 | 34 01                 | Jand Euler angle                         |
|                         | ×                      | 71                       |                           | 100              | -<br>h x = y                                                          | 51<br>35 52           | Z Convert to rect in x-2                 |
|                         | 5TO 2                  | 33 02                    | z → 2                     |                  | f R <del>(</del>                                                      | 31 72                 | J plune                                  |
|                         | RCLE                   | 34 15                    |                           |                  | g sin-1                                                               | 32 62                 |                                          |
|                         | R(L5                   | 34 05                    |                           |                  | 510 3                                                                 | 33 03                 | } convert to polaria x-x                 |
| 050                     | X<br>RCL D             | 71<br>34 14              |                           |                  | $\begin{array}{c} h \ R \downarrow \\ g \rightarrow P \\ \end{array}$ | 32 72                 | plune                                    |
|                         | ·+                     | 61                       |                           |                  | h x ZY                                                                | 35 52                 |                                          |
|                         | RCL 5                  | 34 05                    |                           |                  | RCL 2                                                                 | 34 02                 |                                          |
|                         | X<br>RCL4              | 71<br>34 04              |                           | 110              | +                                                                     | 61                    | J third Euler anyle                      |
|                         | RILC                   | 34 13                    |                           |                  | 0                                                                     | 00                    |                                          |
|                         | X                      | 11                       |                           |                  | 8                                                                     | 08                    |                                          |
| 0                       | 1                      | 2                        | REGI                      | STERS            | 6 × 10                                                                | -3 7 X/0-8            | 8 8 x 10 <sup>-4</sup> 9                 |
| ٥<br>٢.                 | ' <del>(</del>         | É Z                      | Usrd [ IE - 1900          |                  | E 6.400694                                                            | 149 3.87177778        | 1 8,388888889 5,0 × 10 -                 |
| S0<br>167.7             | 5 <sup>S1</sup><br>62. | 6 <sup>S2</sup> - 57     | S3<br>used S4             | S5               | S6                                                                    | S7                    | 36 39                                    |
| A                       |                        | 3                        | x10-8<br>-2.369444444     |                  | x 10 <sup>-8</sup><br>3333333                                         | E X<br>- 1.16666666   | 10 <sup>-</sup> // I<br>67               |

|            |                             |                                       | / i i vși ani                                                                                        |                |                 |                    |                                       |
|------------|-----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------------|---------------------------------------|
| STEP       | KEY ENTRY                   | KEY CODE                              | COMMENTS                                                                                             | STEP           | KEY ENTRY       | KEY CODE           | COMMENTS                              |
|            | 0                           | 00                                    |                                                                                                      |                | S'TO 4          | 33 04              |                                       |
|            | +                           | ŵ J                                   |                                                                                                      | 170            | nRt             | 35 53              |                                       |
|            | 3                           | 03                                    |                                                                                                      | 6              | FLBL6           | 31 25 06           | INVERT EULER ANTLES                   |
|            | 6                           | 06                                    | GET                                                                                                  |                | RCL O           | 34 00              |                                       |
|            | 0                           | 00                                    | 0 = 2/2 < 360                                                                                        |                | C H S           | 42                 |                                       |
|            | <u>•</u>                    | 81                                    |                                                                                                      |                | RLL 2           | 34 02              | 4                                     |
|            | y FRAC                      | 32 83                                 |                                                                                                      |                | CIIS            | 42                 |                                       |
| 120        | 3                           | 03                                    | 4 1                                                                                                  |                | STDO            | 33 00              |                                       |
|            | 6                           | 06                                    |                                                                                                      |                | h Rt            | 35 53              |                                       |
|            | 0                           | 00                                    |                                                                                                      |                | STC 2           | 33 02              | •                                     |
|            | X                           | 71                                    | <i>)</i>                                                                                             | 180            | CLX             | <u>44</u><br>34 01 | •                                     |
|            | RCL 3                       | <u>34 03</u><br>35 22                 |                                                                                                      |                | RUI             | 42                 | 4                                     |
| 2          | h RTN                       |                                       | ⇒H.MS & ROUND SUB                                                                                    |                | CHS<br>STO 1    | 33 01              |                                       |
|            | JLBL2<br>G-H.MS             |                                       | 1                                                                                                    |                | h Rt            | 35 53              | 1                                     |
|            | hxex                        |                                       |                                                                                                      |                | h RTN           | 35 22              | 1                                     |
| <b></b>    | 1                           | 01                                    | 1                                                                                                    | a              | g LBLa          | 32 25 11           | NO ROUND FLAG TUGGLG                  |
| 130        | 5                           | 05                                    | 1                                                                                                    |                | h F ? O         | 35 71 00           | ]                                     |
|            |                             | 81                                    |                                                                                                      |                | GTO 3           | 22 03              | ]                                     |
|            | g → H.MS                    |                                       | $\alpha \rightarrow 14.M_5$                                                                          |                | nSFO            | 35 51 00           | ]                                     |
|            | hF?O                        | 35 71 00                              |                                                                                                      |                | )               | 01                 | 1                                     |
|            | h RTN                       | 35 22                                 |                                                                                                      | 190            | h RTN           | 35 22              | 4                                     |
|            | FRND                        | 31 24                                 | 17                                                                                                   | 3              | f 6863          | 31 25 03           | 4                                     |
|            | f He                        | 3174                                  |                                                                                                      |                | hCFO            | 35 61 00           |                                       |
|            | $g \rightarrow H,MS$        |                                       |                                                                                                      |                | 0               | 00                 |                                       |
|            | hxzy                        | 35 52                                 |                                                                                                      |                | h RTN           | 35 22              | TACALE                                |
| 140        | FRND                        | 31 24                                 | 4                                                                                                    | Ь              |                 |                    | PRELESS FLAG TOGGLE                   |
| 140        | f Ht                        | 31 74                                 |                                                                                                      |                |                 | 35 7101            | 4                                     |
|            | $g \rightarrow H.MS$        | -                                     | 1 /                                                                                                  |                | GTO 4<br>h SF I | 22 04              |                                       |
|            | h x <del>z</del> y<br>h RTN | <u>3552</u><br>3522                   | 1 /                                                                                                  |                | <u> </u>        | 55 57 01           | 1                                     |
| D          |                             |                                       | EQUAT> CAL.                                                                                          | 200            | h RTN           | 35 22              | 1                                     |
|            | h F ? I                     | 35 71 01                              |                                                                                                      | 4              |                 | 31 25 04           | 1                                     |
|            | f 65BC                      |                                       | SET => PRECESS                                                                                       |                | h(F)            | 356101             | 1                                     |
|            | FPZS                        |                                       | EULER ANOLES FOR CONV                                                                                |                | 0               | 00                 | ]                                     |
|            |                             | 31 22 05                              | -> H.MS, ROTATE                                                                                      |                | h RTN           | 35 22              |                                       |
|            | hx=y                        | 35 52                                 |                                                                                                      |                |                 |                    | CONTENTS OF DATA<br>REGISTERS - TO BE |
| 150        | FPZS                        | 31 42                                 | RESTORE REGS                                                                                         |                |                 |                    | STORED ON CONSTANTS                   |
|            | h RTN                       | 35 22                                 |                                                                                                      |                |                 |                    | CARD :                                |
| E          |                             | 31 25 15                              |                                                                                                      |                |                 |                    | 0-5. 0.0                              |
|            | FPZS                        | <u>3i 42</u>                          | GET EULER ANGLES<br>INVERT FOR INVERSE TRAD                                                          | 210            |                 |                    | 6. 6.400694444-3                      |
|            |                             | 31 22 06                              | INVERT FOR INVERSE INA                                                                               | <i>v</i> , 210 |                 |                    | 7. 3.877777778-8                      |
|            | h x=y                       | 3552                                  | RUTATE                                                                                               |                |                 |                    | 8. 8.388888889-9                      |
|            | <u> </u>                    | 31 22 00                              | -> H.MS + ROCAD                                                                                      |                |                 |                    |                                       |
|            | F 65B 6                     | 31 22 06                              | REINVERT ANGLES                                                                                      |                |                 |                    | 9,5.0-12                              |
|            | JP=S                        | 3142                                  | RESTORE REG'S                                                                                        |                |                 |                    | 10, 167.75                            |
| 160        | hF?1                        | 35 71 01                              | CHECK PREGESS FLAG                                                                                   |                |                 |                    | 11. 62.6                              |
|            | + GSB C                     | 31 22 13                              | SET => PRECESS                                                                                       |                |                 |                    | 12 57.0                               |
|            | h RTN                       | 35 22                                 | · · · · · · · · · · · · · · · · · · ·                                                                |                |                 |                    | 13-19. 0.0                            |
| <u>د</u>   | JLBLC                       | 32 25 13                              | EXCHANGE IE, FE                                                                                      | 000            |                 |                    | 20. 2,197222222 - 8                   |
|            | RCL 4                       | 34 04                                 |                                                                                                      | 220            |                 |                    | 21. 5.568561111-3                     |
|            | R(LS<br>CHS                 | <u>34 05</u><br>42                    |                                                                                                      |                |                 |                    | 222.369444444                         |
|            | 5705                        | 33 05                                 | 1                                                                                                    |                |                 |                    | 2310183333337-8<br>24161666666667-11  |
|            | -                           | 51                                    | 1                                                                                                    |                |                 |                    | 25. 0.0                               |
|            |                             | · · · · · · · · · · · · · · · · · · · | LABELS                                                                                               |                | FLAGS           |                    | SET STATUS                            |
| A<br>ENTER | R JE BENTE                  | RFE C PR.                             | ELESS DEQU-SGAL E                                                                                    | AL JEQU        | 0 C = ROUND     |                    | TRIG DISP                             |
| a NC RO    | UND D PREC                  | ESS C                                 | d e                                                                                                  |                | 1 C = NO PRECE  | U ON OFF           |                                       |
| FLAGI      |                             | TUGGLE IE                             | $\overrightarrow{FE}$ $\overrightarrow{FE} \rightarrow \chi, \overrightarrow{JE} \rightarrow \gamma$ |                | 1 = PRELESS     |                    |                                       |
| ROTATE     | S EULER                     | ANOLES + RO                           | CUNO CFO                                                                                             | (F )           | L               | 1 🗌 🗷              | GRAD 🗆 🛛 SCI 🗆<br>RAD 🗆 🖉 ENG 🗆       |
| 5 11. M S- |                             | ATS 7<br>ANOLES                       | 8 9                                                                                                  |                | 3               | 3 🗆 🗆              | n_4                                   |
|            |                             |                                       |                                                                                                      |                |                 |                    |                                       |

### **Program Description I**

| Program Title   | SPACE | SCIENCE AND | TECHNOLOGY, | NO.(5)   | KEPLER'S | EQUATION |     |       |
|-----------------|-------|-------------|-------------|----------|----------|----------|-----|-------|
| Contributor's N | ame   | Robert C. W | YCKOFF      |          |          |          |     |       |
| Address         |       | 9517 Corder | o Ave.      |          |          |          |     |       |
| City            |       | TUJUNGA     |             | State Ca | lifornia | Zip Co   | ode | 91042 |


Program Description, Equations, Variables Kepler's Equation is the only relation which introduces time after some epoch into the classical Newtonian two body dynamics. All other relations deal with the various position parameters of the body in orbit. Kepler's Equation is  $\Delta t = \frac{E - eSin E}{n}$   $\Delta t \text{ is the time after the time at perifocus, } E \text{ is the eccentric anomaly (See Figure L, Page 2), } e \text{ is the eccentric anomaly } C \text{ is the eccentric ano$ (1) eccentircity, and n is the mean motion in radians/sec, degrees/hr. etc. (3)  $E = \cos^{-1} \left[ \frac{1 - r/a}{e} \right]$  where r is the focal radius, and a is the semi-major axis. a is computed by (5)  $r = \frac{a(1-e^2)}{1+c(1-e^2)}$  where v is the true anomaly (See Figure 1) and (See  $r = \frac{a(1-e^2)}{1+e\cos\nu} \text{ where } \nu \text{ is the true anomaly (See Figure } 4\pi^2 \text{ and } 1 \text{ page 2}) \text{ e is computed}$ by (6)  $e = \begin{bmatrix} 1 - \frac{r_p}{a} \end{bmatrix} \text{ where } r_p \text{ is the periapsis distance from } 1 \text{ set } 1 \text{ s$ the primary.  $\mu$  = GM where G is the Constant of Universal Gnavitation and M is p is given by  $\frac{2\pi}{T}$ the mass of the primary The velocity of the body at a point on the ellipse, and the path angle are freq-The velocity of the body at a point in the point is a point in the point in the point is a point in the point in the point is a point in the point in the point is a point in the point in and The path angle to the local horizon is given by  $\beta_{\rm h} = 90 - \beta_{\rm v}$ (Continued Page la) Operating Limits and Warnings Equation (1) breaks down around 180 degrees, due to the cosine function rounding off to a value slightly larger than one. and beyond 360 degrees. The solution to the latter is to simply add the period initially to the time at perifocus and proceed on into the n+1 orbit. The actual region around 180 degrees is very small, being something like (179.995 to 180.005) degrees. Page 3 will show how to avoid this situation. For a new iteration involving Key C, the original value of  $\Delta v$  must be replaced in  $R_{L}$ , since it has been reduced through successive divisions by a factor of 5<sup>4</sup> in step 117. For Key C operation, the original value of  $\Delta v$  must be placed in R<sub>4</sub> after the end of an iteration, since it has been successively decreased by a factor of 5 during the first iteration process.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUEN-TIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL. The inverse process for equation (1) is another matter. The equation cannot be solved explicitly. It must be solved through a matter of successive approximations or iterations. We wish to solve for the true anomaly given a particular time for the body in the ellipse.

We start by entering a trial value of v and computing the time. If this time is less than the desired time, we augment the original value of v by  $\Delta v$  a sufficient number of times until the calculated time is greater than the true time. The value of  $v_x$  is then decreased by  $\Delta v$  and a smaller  $\Delta v$  established, saw 1/5 th  $\Delta v$ . The iteration is then performed until the computed time is again greater than the true time, and the process is repeated with ever smaller  $\Delta v$ 's. When the difference between the computed and true time is smaller than a predetermined interval, say 1 second (it can be any value from seconds down to fractions of seconds) the program stops and displays the true anomaly. Register y holds the associated focal radius.

# SPACE SCIENCE AND TECHNOLOGY No. (5) KEPLER'S EQUATION II



Sample Problem(s) A..satellite is in orbit about the moon, with a period of 3 hours, and a periapsis altitude of 50 km. On orbit x, the time at perifocus is 1653:19 GMT. What is:

a) The GMT when the true anomaly is  $40^{\circ}$ 

b) The velocity in the orbit at that time of a).

c) The focal distance (focal radius) at the above time.

- d) The path angle to the vertical at the above time.
- e) The true anomaly at a GMT of 1900:26 in the same orbit.
- f) The focal radius at the time in e).

SOLUTIONS: Load program. Place  $4.90098 \times 10^3$  (from the table on page 4a) which is  $\mu$  for the moon in  $R_A$ . Load the period,  $3 \times 60 \times 60 = 10800$  seconds in  $R_B$ . Place the periapsis distance from the center of the primary, 1739.29 + 50 =1789.29 km in  $R_C$ . The mean radius of the moon also is taken from page 4a. Place the perifocus time of 16.5319 in  $R_D$  and 3600 in  $R_E$ . Key A must be used to initialize. This computes the semi-major axis, the eccentricity, and  $2\pi/T = n$  in radians per second in  $R_O$ ,  $R_C$  and  $R_3$  respectively. Observe

and  $2\pi/T = n$  in radians per second in R<sub>0</sub>, R<sub>C</sub> and R<sub>3</sub> respectively. Observe 0.000581776 radians per second in display. Place 40 in display and do Key B. Program will pause and display 694 seconds, which will become 17.0453 GMT for the answer to part a). Key D gives 1.788 km/sec as answer to part b). Recall

Solution(s) contents of  $R_2$ , 1881.76 km for answer to part c)(The focal radius). Key h R.Key E gives 81.918° for the value of  $\beta_v$  for part d).

Place 20 for  $\Delta v$  in R. Place the new time of 19.0026 in R<sub>9</sub>. Let us place 0.0001 ) br one second) in R<sub>7</sub> which will determine that the program stops when the calculated time minus the true time is less than one second. Place a trial true anomaly of 200° in display. Press Key C. You will see displayed for two seconds each the values 6383, 7288. 8070, 7455, 7617, 7773, 7648, 7623, 7629, 7624, 7625, 7627 after which the program run will stop and display 228.256° as the value of v which results in the calculated time in orbit of 7627 seconds AFTER 1653:19 GMT. Roll down the stack to y and see 2752.31 km for the focal radius. These last two results are the solutions to part e) and f) respectively. One could modify the program at step 124 to do this by a R/S if desired.

Reference(s) Any standard text on Astrodynamics such as AN INTRODUCTION TO ASTRODYNAM-ICS by R. M. L. Baker and M. W. Makemson, Academic Press, New York 1960 or THEORETICAL PHYSICS by G. Joos, Hafner Publishing Co, Inc. New York or EINFUEHRUNG IN DIE THEORETISCHE PHYSIK by C. Schaefer, Walter de Gruyter & Co. Berlin and Leipzig, 1929 or JPL Technical Memorandum 33-414 DETERMINATION OF INTERPLANETARY TRAJECTORIES, H. F. Lesh 1968

### **User Instructions**

7

SPACE SCIENCE AND TECHNOLOGY, No. (5) KEPLER'S EQUATION

|      |                                                                                            | 1110117             |      |                         |
|------|--------------------------------------------------------------------------------------------|---------------------|------|-------------------------|
| STEP | INSTRUCTIONS                                                                               | INPUT<br>DATA/UNITS | KEYS | OUTPUT<br>DATA/UNITS    |
| 1    | Load program. Select the astronomical body                                                 |                     |      |                         |
|      | from the table below and load the value of $\mu$                                           |                     |      |                         |
|      | in R. Place the period, T, in seconds in $R_{\rm r}$                                       |                     |      |                         |
|      |                                                                                            |                     |      |                         |
|      | and the value of the periapsis distance (TO TH                                             |                     |      |                         |
|      | CENTER OF THE BODY) in R <sub>C</sub> . Place the time at                                  |                     |      |                         |
|      | periapsis in hh.mmss in R, and 3600 in $R_E$                                               |                     |      | a, e, n                 |
| 2    | Key A initializes the program by computing a,                                              |                     |      |                         |
|      | e, and n and placing them in $R_0$ , $R_c$ , and $R_3$                                     |                     |      |                         |
| 3    | Place the value of $v$ in display, for which the                                           | ν                   |      |                         |
|      | time is desired.                                                                           |                     |      |                         |
| 4    |                                                                                            |                     | В    | ∆t in sec.              |
| 4    | Key B computes the time after periapsis time<br>in seconds(displays for 2 seconds) and the |                     |      | t in hms                |
|      | final GMT value                                                                            |                     |      |                         |
|      |                                                                                            |                     |      |                         |
| 5    | After any operation of Key B, the vis viva vel-                                            |                     |      |                         |
|      | ocity and the path angles can be computed by                                               |                     |      |                         |
|      |                                                                                            |                     |      |                         |
| 6    | Key D computes the vis viva velocity in km/sec                                             |                     |      | v                       |
| 7    | Key E computes the path angle to the vertical                                              |                     | E    | β                       |
|      | R/S computes the path angle to the horizon                                                 | tal                 | R/S  | vert・<br>β              |
|      |                                                                                            |                     |      | horiz.                  |
| 0    | FOR DETERMINATION OF TRUE ANOMALY                                                          |                     |      |                         |
| 8    | Load the new time in hh.mmss in $R_9$ . Load in $R_7$                                      |                     |      |                         |
|      | a difference constant (generally tens or                                                   |                     |      |                         |
|      | fractions of one second, such as (00001 for a one second accuracy). Program will now       |                     |      |                         |
|      | stop when the difference netween the true and                                              |                     |      |                         |
|      | the calculated times is less than one second.                                              |                     |      |                         |
|      |                                                                                            |                     |      |                         |
| 9    | Place a trial value of the true anomaly in                                                 | trial v             |      |                         |
|      | the display.                                                                               |                     |      |                         |
| 10   | Key C will compute successive values of $\Delta t$ 's                                      |                     | C    | successive              |
|      | In seconds and successively display them for                                               |                     |      | $\Delta t$ 's and final |
|      | 2 seconds. The values quickly bracket the                                                  |                     |      | value of v              |
|      | correct <code>At in seconds (GMT at periapsis </code>                                      |                     |      | in dec. degree          |
|      | GMT at each computed value of $v_i$ 's, express                                            |                     |      |                         |
|      | in seconds) and stop when the difference is                                                |                     |      |                         |
|      | less than the value placed in R7. Displayed                                                | is                  |      |                         |
|      | the corresponding value of $v$ in decimal $^{0}$ .                                         |                     |      |                         |
| 11   | The corresponding focal radius is in the y regi                                            | ster.               |      |                         |
| 12   | At any part of the above, the value of the semi                                            | -major              |      |                         |
|      | axis is found in $R_0$ , the particular value of                                           | ν                   |      |                         |
|      | $(v + \Delta v)$ in R <sub>1</sub> , the focal radius r, in R <sub>2</sub> , the           |                     |      |                         |
|      | eccentricity in R <sub>c</sub> , the value of n in R <sub>3</sub> and                      | Δν                  |      |                         |
|      | in R <sub>4</sub>                                                                          |                     |      | <b>↓</b>                |
|      | -                                                                                          |                     |      |                         |
|      | See page 3a for additional informat                                                        | ion                 |      |                         |
|      |                                                                                            |                     |      |                         |
|      |                                                                                            |                     |      |                         |

46

#### SPACE SCIENCE AND TECHNOLOGY, No. (5) KEPLER'S EWUATION

#### 

Some experience is needed in choosing the initial value of v and  $\Delta v$ . Generally  $\Delta v$  will be less than v if some idea before hand is available as to the relative magnitude of the parameters. The period, expressed in seconds is very useful, as T/2 immediately is associated with a true anomaly value of 180°. If the value of the time is such that its difference from the periapsis time is greater (expressed in seconds) than one half the period, then  $\Delta v$  should be considerably less than vso that upon the first iteration, the value of  $v + \Delta v$  is not greater than 360 degrees. If the time, (in R<sub>9</sub>) is close to the periapsis time (say T/4 or less) then one should start with a relatively small v(say 60 degrees) and a large  $\Delta v$ , say 90 degrees. Care should be taken to see that the initial  $v + \Delta v$  does not equal 180 degrees, (for instance 120° and 60°) An error will then result. Simple start with a slightly different v or  $\Delta v$  (say 120 degrees and 59 degrees.

One can always start, in a completely unknown situation, with a small  $\nu$  and  $\Delta\nu$ , say 5 or 10 degrees, and 10 degrees for  $\Delta\nu$ . but then a large number of iterations will be probable. From a knowledge of the  $\Delta$  times,  $t_p - t_r$  or just  $t_p$  and the period (for Key B operation), one can make a sensible estimate of the initial value of  $\nu$  and  $\Delta\nu$ .

| Body            | µ in k   | m <sup>3</sup> /sec <sup>2</sup> | <u>R in k</u>      | <u>m</u>            |
|-----------------|----------|----------------------------------|--------------------|---------------------|
| Moon<br>Mercury | 4.90098  |                                  | 1.73929<br>2.42099 |                     |
| Venus           | 3.24815  | $x 10^{5}_{5}$                   | 6.052              | $x 10^{3}$          |
| Earth           | 3.986012 | $\times 10^{3}$                  | 6.371017           | $ \times 10^{3} $   |
| Mars            | 4.3043   | $x 10^4_8$                       | 3.38755            | $x 10^{7}$          |
| Jupiter         | 1.26658  | $x 10_{7}^{3}$                   | 7.1375             | $x 10^4$            |
| Saturn          | 3.79416  | $x  10'_{c}$                     | 6.0400             | $\times 10^4$       |
| Uranus          | 5.77892  | $x 10^{6}$                       | 2.3500             | $x 10^{4}_{4}$      |
| Neptune         | 6.85500  | $x 10^{6}_{5}$                   | 2.5000             | $x 10^{4}_{2}$      |
| Pluto           | 3.31237  | $x 10^{3}_{11}$                  | 2.960              | $x 10^{5}$          |
| Sun             | 1.324948 | $\times 10^{11}$                 | 6.9600             | x 10 <sup>5</sup>   |
| Titan           | 9.300    | $x 10^{3}$                       | 2.900              | $\times 10^{3}_{2}$ |
| Ιο              | 5.950    | $x 10^{3}$                       | 1.829              | $\times 10^{3}$     |
| Europa          | 3.250    | $x 10^{3}$                       | 1,500              | $x 10^{3}$          |
| Ganymede        | 9.940    | $x 10^{3}$                       | 2.500              | $x 10^{3}$          |
| Callisto        | 7.100    | $x 10^{3}$                       | 2.635              | x 10                |

3. 2

Values of  $\mu$  and the mean radius of various astronomical bodies follow

|     | KEPLER'S EQ               |                       | COMMENTS                              | STEP   | KEY ENTRY        | KEY CODE                 | COMMENTS              |
|-----|---------------------------|-----------------------|---------------------------------------|--------|------------------|--------------------------|-----------------------|
| 001 | f-LBL-A                   | 31-25-11              |                                       |        | g-RAD            | 32-73                    |                       |
|     |                           | 01                    |                                       |        | $h = \pi$        | 35-73                    |                       |
|     | RCL-B <sub>2</sub>        | 34-12                 |                                       | 060    | g-x y            | 32-81                    |                       |
|     | $g - x^2$                 | 32-54                 |                                       | 060    | GTO-1            | 22-01                    |                       |
|     | RCL-A                     | 34-11                 |                                       |        | GTO-2            | 22-02                    |                       |
|     | <b>X</b>                  | 71                    |                                       |        | E-LBL-1          | 31-25-01                 |                       |
|     | $\frac{h - \pi}{g - x^2}$ | 35-73                 |                                       |        | h-down           | 35-53                    |                       |
|     | <u>g - x</u><br>4         | <u>32–54</u><br>04    |                                       |        | h-down<br>GTO-3  | <u>35-53</u><br>33-03    |                       |
| 010 |                           | 71                    |                                       |        | E-LBL-3          | 31-25-03                 |                       |
|     | <b>X</b>                  | 81                    |                                       |        | f-sine           | 31-62                    |                       |
|     | h_1/4                     |                       |                                       |        | RCL-C            | 34-13                    |                       |
|     | h-x/y                     | 35-52                 |                                       |        |                  | 71                       |                       |
|     | <u> </u>                  | 03<br>81              |                                       | 070    | <u>x</u>         | 51                       |                       |
|     | $h - v^{X}$               | 35-63                 |                                       |        | RCL-3            | 34-03                    |                       |
|     | n - y                     | 33-00                 | computes a                            |        |                  | 81                       | $\Delta t$ in sec.    |
|     | RCL-C                     | 34-13                 |                                       |        | h-pause          | 35-72                    | At in sec.            |
|     | h - x/y                   | 34-13                 |                                       |        | h-deg            | 35-41                    |                       |
|     | n = x/y                   | 81                    |                                       |        | RCL-E            | 34-15                    |                       |
| 020 | + <u>/</u>                | 51                    | computes e                            |        |                  | 81                       | Δt in dec. hrs.       |
|     | STO-C                     | 33-13                 |                                       |        | g-hms            | 32-74                    | $\Delta t$ in hms     |
|     | $h - \pi$                 | 35-73                 | · · · · · · · · · · · · · · · · · · · |        | RCL-D            | 34-14                    |                       |
|     | 2                         | 02                    |                                       |        | h-hms+           | 35-83                    | t                     |
|     | x                         | 71                    |                                       | 080    | h-RTN            | 35-22                    | time after periapsi   |
|     | RCL-B                     | 34-12                 |                                       |        | f-LBL-2          | 31-25-02                 |                       |
|     | ./.                       | 81                    | computes n                            |        | h - x/y          | 35-52                    |                       |
|     | STO-3                     | 33-03                 |                                       |        | CLX              | 44                       |                       |
|     | h - RTN                   | 35-22                 | INITIALIZATION                        |        | 2                | 02                       |                       |
|     | f-LBL-B                   | 31-25-12              | Place v in x                          |        | x                | 71                       |                       |
| 030 | ST0-1                     | 33-01                 |                                       |        | h - x/y          | 35-52                    |                       |
|     | 1                         | 01                    |                                       |        | -                | 51                       |                       |
|     | h - x/y                   | 35-52                 |                                       |        | ENT              | 41                       |                       |
|     | 1                         | 01                    |                                       |        | GTO-3            | 22-03                    |                       |
|     | RCL-C                     | 34-13                 |                                       | 090    | E-LBL-C          | 31-25-13                 |                       |
| -   | g - x <sup>2</sup>        | 32-54                 |                                       |        | f-GSB-B          | 31-22-12                 |                       |
|     | -                         | 51                    |                                       |        | STO-8            | 33-08                    |                       |
|     | RCL-0                     | 34-00                 |                                       |        | RCL-9            | 34-09                    |                       |
|     | x                         | 71                    |                                       |        | gxy              | 32-81                    |                       |
| 040 | h- x/y<br>f -cos          | <u>35-52</u><br>31-63 |                                       |        | GTO-4            | 22-04                    |                       |
| 040 | RCL-C                     | 34-13                 |                                       |        | GTO-5            | 22-05                    |                       |
|     | x                         | 71                    |                                       |        | f-LBL-4          | 31-25-04                 |                       |
|     | 1                         | 01                    |                                       |        | RCL-1            | 34-01                    |                       |
|     | +                         | 61                    |                                       | 100    | RCL-4            | 34-04                    |                       |
|     | ./.                       | 81                    | computes r                            |        | +                |                          |                       |
|     | STO - 2                   | 33-02                 | computes t                            |        | GTO-C<br>f-LBL-5 | <u>22-13</u><br>31-25-05 |                       |
|     | RCL-0                     | 34-00                 |                                       |        | RCL-8            | 34-08                    |                       |
|     | •/•                       | 81                    |                                       |        | RCL-9            | 34-09                    |                       |
|     | -                         | 51                    |                                       |        | CHS              | 42                       |                       |
| 050 | RCL-C                     | 34-13                 |                                       |        | h-hms+           | 35-83                    |                       |
|     | ./.                       | 81                    |                                       |        | h-ABS            | 35-64                    |                       |
|     | h-RAD                     | 35-42<br>32-63        |                                       |        | RCL-7            |                          |                       |
|     | g - cos                   |                       | computes E                            |        |                  | 34-07<br>32-71           |                       |
|     | ENT                       | 41                    |                                       | 110    | g -x y<br>GTO-6  | 22-06                    |                       |
|     | ENT                       | 41                    |                                       |        | GTO-7            | 22-07                    |                       |
|     | RCL-1                     | 34-01                 |                                       |        | f-LBL-6          | 31-25-06                 |                       |
| 0   | I_                        | 2                     |                                       | ISTERS | 6                | 74- 3155                 | 8 9                   |
|     | Km v                      | r km                  | n Δν                                  | Ĭ      | Ĭ                |                          | (last) t <sub>x</sub> |
| S0  | S1                        | S2                    | S3 S4                                 | S5     | S6               | S7                       | S8 S9                 |
|     |                           |                       |                                       |        | 1                | 1                        | 1 1                   |

KEPLER'S EQUA.

KEY ENTRY

STEP

| •           | - ()     |      | ()        |
|-------------|----------|------|-----------|
| KEY CODE    | COMMENTS | STEP | KEY ENTRY |
| 34-01       |          |      |           |
| 34-04       |          | 170  |           |
| 51          |          |      |           |
| 34-04       |          |      |           |
| 34-04<br>05 |          |      |           |
| 81          |          |      |           |
| 33-04       |          |      |           |

| SIEP | KET ENTRI               | KET CODE           | COMMENTS                  | 5121          | RET ENTIT | RETCODE  | 001111     | 21110 |
|------|-------------------------|--------------------|---------------------------|---------------|-----------|----------|------------|-------|
|      | RCL-1                   | 34-01              |                           |               |           |          |            |       |
|      |                         | 34-04              | 1                         | 170           |           |          |            |       |
|      | RCL-4                   |                    |                           |               |           |          |            |       |
|      | -                       | 51                 |                           |               |           |          |            |       |
|      | RCL-4                   | 34-04              |                           |               |           |          |            |       |
|      | 5                       | 05                 |                           |               |           |          |            |       |
|      |                         | 81                 | 1                         |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
| 100  | ST0-4                   | <u>33-04</u><br>61 |                           |               |           |          |            |       |
| 120  | <del>_</del>            |                    |                           |               |           |          |            |       |
|      | GTO-C                   | 22-13              |                           |               |           |          |            |       |
|      | f-LBL-7                 | 31-25-07           |                           |               |           |          |            |       |
|      | RCL-2                   | 34-02              | r in x                    |               |           |          |            |       |
|      | RCL-1                   | 34-01              | v in x                    | 180           |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      | h-RTN                   | 35-22              | vinx; riny                |               |           |          |            |       |
|      | f-LBL-D                 | 31-25-14           |                           |               |           |          |            |       |
|      | 2                       | 02                 |                           |               |           |          |            |       |
|      | RCL-2                   | 34-02              |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
| 100  | •/•                     | 81                 |                           |               |           |          |            |       |
| 130  | RCL-0                   | 34-00              |                           |               |           |          |            |       |
|      | h - 1/x                 | 35-62              |                           |               |           |          |            |       |
|      | -                       | 51                 |                           |               |           |          |            |       |
|      |                         | 34-11              | 1                         |               |           |          |            |       |
|      | RCL-A                   | 71                 |                           | 190           |           |          |            |       |
|      | $\frac{x}{f - x^{1/2}}$ |                    |                           |               |           |          |            |       |
|      |                         | 31-54              |                           |               |           |          |            |       |
|      | h -RTN                  | 35-22              | V in km/sec.              |               |           |          |            |       |
|      | f-LBL-E                 | 31-25-15           |                           |               |           |          |            |       |
|      | 1                       | 01                 |                           |               |           |          |            |       |
|      |                         | 34-13              |                           |               |           |          |            |       |
| 1.40 | RCL-C                   |                    |                           |               |           |          |            |       |
| 140  | $g - x^2$               | 32-54              |                           |               |           |          |            |       |
|      | -                       | 51                 |                           |               |           |          |            |       |
|      | RCL-0                   | 34-00              |                           |               |           |          |            |       |
|      |                         | 71                 |                           |               |           |          |            |       |
|      | <b>X</b>                |                    |                           | 200           |           |          |            |       |
|      | RCL-A                   | 34-11              |                           | 200           |           |          |            |       |
|      | X                       | 71                 |                           |               |           |          |            |       |
|      | $\frac{x}{f - x^{1/2}}$ | 31-54              |                           |               |           |          |            |       |
|      | h-x/y                   | 35-52              |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      | RCL-2                   | 34-02              |                           |               |           |          |            |       |
|      | X                       | 71                 |                           |               |           |          |            |       |
| 150  | ./.                     | 81                 |                           |               |           |          |            |       |
|      | gesin -]                | 32-62              | β <sub>v</sub> (vertical) |               |           |          |            |       |
|      | <u>g-sin</u> 1<br>R/S   | 84                 | -                         |               |           |          |            |       |
|      | 9                       | 09                 |                           |               |           |          |            |       |
|      |                         |                    |                           | 210           |           |          |            |       |
|      | 0                       | 00                 |                           |               |           |          |            |       |
|      | h- x/y                  | 35-52              |                           |               |           |          |            |       |
|      | -                       | 51                 |                           |               |           |          |            |       |
|      | h-RTN                   | 35-22              | $\beta_h$ (horizontal)    |               |           |          |            |       |
|      |                         |                    | n `                       |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
| 160  |                         |                    |                           | <b>├</b> ───┤ |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           | 220           |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           | <b>├</b> ───┤ |           |          |            |       |
|      |                         |                    |                           | F             |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      |                         |                    |                           |               |           |          |            |       |
|      | _                       |                    | LABELS                    |               | FLAGS     |          | SET STATUS |       |
| А    | В                       | С                  | D E                       |               | 0         | FLAGS    | TRIG       | DISP  |
|      |                         |                    |                           |               | 1         |          |            | DIGF  |
| а    | р                       | с                  | d e                       |               | 1         | 0 0N OFF | DEG 🗆      | FIX 🗆 |
| 0    | 1                       | 2                  | 3 4                       |               | 2         |          | GRAD       |       |
|      | '                       | Ľ                  |                           |               |           |          |            | ENG 🗆 |
| 5    | 6                       | 7                  | 8 9                       |               | 3         | 2 🗆 🗆 3  |            | n     |
| 1    |                         |                    |                           |               |           | 3 🗌 🗌    |            |       |

COMMENTS

KEY CODE

### **Program Description I**

| Program Title     | Orbit Determination                           | he    | the Met. | had of Gauss   |
|-------------------|-----------------------------------------------|-------|----------|----------------|
| Contributor's N   | lame Kex H Shud<br>27105 Arriba Way<br>Carmel | dele  |          |                |
| Address .<br>City | Carme I                                       | State | Ĉ'n      | Zip Code 9392/ |

Program Description, Equations, Variables Griven IF, (X, Z, ) at t, and IF2 (X2, Z, Z) at t2, find IF, (dr. dr., dz.) at time t, . Let k = smutation constant (13/2 t - units) & p= normalized mass. Then compute Y = K(t2-t,); r = JIF, IF, i=1,2;  $Cos(v_{2}-v_{1}) = (I\Gamma_{1} \cdot I\Gamma_{2})/(\Gamma_{1}\Gamma_{2}); l = \frac{\Gamma_{1} + \Gamma_{2}}{4\sqrt{\Gamma_{1}\Gamma_{2}} \cos\left(\frac{v_{2}-v_{1}}{2}\right)} - \frac{1}{2}; one^{l}$   $M = \frac{\mu(\mu^{2})}{\left[2\sqrt{\Gamma_{1}\Gamma_{2}}\cos\left(\frac{v_{2}-v_{1}}{2}\right)\right]^{3}} \cdot \frac{4\sqrt{\Gamma_{1}\Gamma_{2}}\cos\left(\frac{v_{2}-v_{1}}{2}\right)}{\sqrt{\Gamma_{1}\Gamma_{2}}\cos\left(\frac{v_{2}-v_{1}}{2}\right)}$ Then set y = 1 and lexp through the following equations with yremains unchanged:  $\chi = m/y^2 - L$ ;  $Cos(\frac{E_2 - E_1}{2}) = 1 - 2\chi$ ;  $sin(\frac{E_2 - E_1}{2}) = \int 4\chi(1-\chi)$ ;  $\chi = [(E_2 - E_1) - sin(\frac{E_2 - E_1}{2})]/sin^3(\frac{E_2 - E_1}{2})$ ; and  $\begin{aligned} & = I + X(L+Z). \text{ When } \mu \text{ has stebilized, compute:} \\ & \alpha^{1/2} = \gamma \sqrt{\mu} / [2 \mu \sqrt{r_i r_i} \cos\left(\frac{-\partial_L - \partial_I}{2}\right) \sin\left(\frac{E_L - E_I}{2}\right)]; \quad f = I - \frac{\alpha}{r_i} \left[ I - \cos(E_L - E_i) \right]; \end{aligned}$ a= r - a3/2 [(E2-E,)-sin(E.-E,)]/Ip ; a'= alk, and finally, IT, = IT2-SIT1. The orbital elements of the body at time to are consider to be ir, and ir, . These arbital clements may be converted to classical elements usings companial program (). Operating Limits and Warnings This wetled suffers from instability of conversionce when the angle from IT, to IT, is preater than 90° It is also assumed that the orbit has an eccentricity of less than I, that is, the orbit is elliptical or circular.

This program has been verified only with respect to the numerical example given in *Program Description II*. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

# Program Description 11

| (                           |                                                                       |
|-----------------------------|-----------------------------------------------------------------------|
| Sketch(es)                  |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
| · · · ·                     | • • • • • • • • • • • • • • • • • • • •                               |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
| Sample Problem(s) Given the | following data: K= 0.07436574 (e.r.) 42/min,                          |
| $11 = 1.0 \in m$ and        | r, = (2.460809, 2.040523, 0.143819) e.r. at                           |
|                             |                                                                       |
|                             | = (1.988041, 2.503334, 0.314554) e.r. at                              |
| t2 = 15,0395328 n           | inutes, compute it, at t,=0min.                                       |
|                             |                                                                       |
|                             | 1.0000 ENT†<br>.07436574 GSBA                                         |
|                             | .0(43DJ(4 63Dh                                                        |
|                             | 0.00000000 ENT:                                                       |
|                             | .14381900 ENT:                                                        |
| Input:                      | 2.04052300 ENT:                                                       |
| ,                           | 2.46080900 GSEB                                                       |
|                             | 15.03953280 ENT:                                                      |
|                             | .31455400 ENT:                                                        |
|                             | 2.50333400 ENT:                                                       |
|                             | 1.98804100 GSEC                                                       |
|                             |                                                                       |
| Solution (a)                |                                                                       |
| Solution(s)                 |                                                                       |
|                             | G3EE                                                                  |
|                             |                                                                       |
| Output :                    | 0.00000000+00 T - Fenere                                              |
| Stuck                       | 1.160747099-02 Z ← Ż<br>3.356191327-02 Y ← Ż<br>-2.850818940-02 X ← Ž |
| contents                    | -2.850818940-02 X ~ ~                                                 |
|                             |                                                                       |
|                             | -¥                                                                    |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
| Reference (s)               |                                                                       |
| P.R. Escobal,               | "Methods of Orbit Determination",                                     |
|                             | Sons, 1965                                                            |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |
|                             |                                                                       |

# **User Instructions**

| Orbit I                                                                     | Determination      | a - Gauss                                               | s Method |         |   |
|-----------------------------------------------------------------------------|--------------------|---------------------------------------------------------|----------|---------|---|
| $ \begin{bmatrix} 1 \\ \mathbf{k} \end{bmatrix} \mu^{\uparrow \mathbf{k}} $ | t, TZ, 1<br>Z, TX, | $\frac{t_2 \uparrow Z_2 \uparrow}{Z_2 \uparrow \chi_2}$ |          | Compute | 7 |

| STEP     | INSTRUCTIONS                                                            | INPUT<br>DATA/UNITS | KEYS                | OUTPUT<br>DATA/UNITS     |
|----------|-------------------------------------------------------------------------|---------------------|---------------------|--------------------------|
|          | Enter program card.                                                     |                     |                     |                          |
|          |                                                                         |                     |                     |                          |
| 2        | Enter normalized mass                                                   | μ                   | $\boldsymbol{\tau}$ |                          |
|          | Enter providational constant                                            | 'k                  | A                   |                          |
|          |                                                                         |                     |                     |                          |
| 3        | Enter réserence point: time                                             | t,                  | 9                   |                          |
|          | (                                                                       | Z,                  | 7                   |                          |
|          | IT, components                                                          | 4.                  | 7                   |                          |
|          |                                                                         | Υ,                  | B                   | ~                        |
|          |                                                                         | •                   |                     |                          |
| 4        | Enter second point time                                                 | $t_2$               | 1                   |                          |
|          |                                                                         | Zz.                 | 1                   |                          |
|          | IT2 components                                                          | 42                  | 1                   |                          |
|          |                                                                         | X2                  | C                   |                          |
|          |                                                                         | ,- <u>-</u>         |                     |                          |
| 5        | Compute                                                                 |                     | E                   |                          |
| - J      | Comport                                                                 |                     |                     |                          |
| 6        | Output is auto mutically aviated                                        |                     |                     |                          |
| <u> </u> | Output is auto mutically printed<br>on the HP-97 (ignore T-register)    |                     |                     |                          |
|          | Bit me in the quint of the game                                         |                     |                     |                          |
| 2        | On the HP-67, roll the stack down                                       |                     |                     | ŕ                        |
|          | In able in it                                                           |                     | RV                  | ii.                      |
|          | to obtain IT,                                                           |                     | RU                  | <i>ž</i> ,<br><i>ž</i> , |
|          | Y, is in the X-resulter                                                 |                     |                     | Z                        |
|          | 2,                                                                      |                     |                     |                          |
|          | Ξ, ειγειά                                                               |                     |                     |                          |
| 0_       | Reach Sec. St. A. St. 2                                                 |                     |                     |                          |
|          | Repeat from Step 2 or Stip 3                                            |                     |                     |                          |
|          | or Step 4 as desired                                                    |                     |                     |                          |
|          | Note: The deall want data is                                            |                     |                     |                          |
|          | Note: The step 4 input data is                                          |                     |                     |                          |
|          | internally deshayed so do not repeat<br>step 3 without repeating slep 4 |                     |                     |                          |
|          | ing s winnows repearing step 4                                          |                     |                     |                          |
|          | Note: T. "Alars IM LIEL I"                                              |                     |                     |                          |
|          | NOTE: The "Classical Orb.tal Element"                                   |                     |                     |                          |
|          | Proprim can be used                                                     |                     |                     |                          |
|          | Immicoliately with no turther                                           |                     |                     |                          |
|          | input required.                                                         |                     |                     |                          |
|          |                                                                         |                     |                     |                          |
|          |                                                                         |                     |                     |                          |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                | <b>97</b> Program | Listing I                                                                                |                | 53                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|----------------|-------------------|------------------------------------------------------------------------------------------|----------------|----------------------------------------------|
| $ \begin{vmatrix} e^{22} & STOA & 35 & 11 & Dere & A & e^{52} & e^{-1-24} & D_{2} - t & D_{1} - t & A & e^{52} & e^{-1-24} & D_{2} - t & D_$ | ST       | ЕР К | EY ENTRY | KEY CODE       | COMMENTS          | STEP KEY ENTRY                                                                           | KEY CODE       | COMMENTS                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          | 21 11          | Store             |                                                                                          |                |                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          |                |                   |                                                                                          |                |                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          |                | FLE, K            |                                                                                          |                | $v_2 - v_i$                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          | 33 12          |                   |                                                                                          |                |                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          | 51             |                   |                                                                                          | -24            |                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          |                | Sture             |                                                                                          | 42<br>77 30    | $\left( \frac{v_2 - v_1}{v_2 - v_1} \right)$ |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          | 36 88<br>76 87 | $\cos\left(\frac{1}{2}\right)$               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                | $IF, \xi ti$      |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                |                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          |                |                   |                                                                                          | -35            | $-(-\partial_2 - \partial_1)$                |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          | 35 15          | r, r2 Cos( -2 )                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          | 36 80          |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 015  | *LBLC    | 21 13          |                   |                                                                                          | -55            |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 016  | ST04     | 35 84          |                   | 072 RCLE                                                                                 |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 017  |          |                | Store             |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                | I = f + 2         |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                | Λ                                            |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                | l                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          | 30 IL<br>-75   |                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |      |          |                | r 1               |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                | Compute:          |                                                                                          |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                |                   |                                                                                          |                |                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          |                | $\sim$            |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                | /                 |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                | M                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          | 16-51          | Fichance PES                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 034  |          | 34             |                   | <b>090</b> Sto0                                                                          |                | VGE isters                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 035  | RCL3     | 36 03          |                   | 091 R4                                                                                   |                |                                              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 036  | ÷₽       | 34             |                   | <b>0</b> 92 ST01                                                                         | 35 01          | Store Wiz &                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                | $\gamma_{i}$      |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | 36 04          |                   |                                                                                          |                | Indialize                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | 36 85          |                   |                                                                                          | 21 05          | Leop                                         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                | ,                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                | C                 |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                | 12                |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | 38 81<br>72 84 |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          |                |                   |                                                                                          |                | X                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | 36 85          |                   |                                                                                          |                | ,                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | - 35           |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | -55            |                   |                                                                                          | ēl             |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | RCL3     | 36 83          |                   | 107 RCL4                                                                                 |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | RCL6     | 36 06          | 11,0112           |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | -35            |                   |                                                                                          | - 35           |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |          | - 55           |                   |                                                                                          | 54             | $ Sin(\frac{E_2-E_1}{2}) $                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |      |          | 36 68          |                   |                                                                                          |                |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>—</b> | 056  | ÷        | -24            | DEGIO             |                                                                                          | £.             |                                              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      | 11       | 2              | 3 4               | 5 6                                                                                      | 7              | 8 3/2 9                                      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ľ        | r,   | X,       | E.             | Z1 Z2             | 22 22                                                                                    | -              |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S0       | m    | S1 L     | S2             | S3 S4 X           | $\frac{S_{5}}{S_{11}}\left(\frac{E_{2}-E_{1}}{2}\right) \stackrel{S_{6}}{E_{1}} = E_{1}$ | S7             |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A        | k    |          | В              | c t,              | $t_2 \neq r$                                                                             | E Used & C     | - <sup>5</sup> / <sub>k</sub> <sup>I</sup> 5 |

| 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | <i>**</i> 110514111                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| STEP KEY ENTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y KEY CODE                              | COMMENTS                                  | STEP KEY ENTRY        | KEY CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COMMENTS                                                                                          |
| 113 RCL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 169 1                 | ē.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
| 114 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 170 -                 | -45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 115 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -35                                     | $( \overline{E} - \overline{E} )$         | 171 ×                 | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 116 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45<br>>                                | $CCS\left(\frac{E_1-E_1}{2}\right)$       | 1 172 1               | ē.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
| 117 →F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >                                       | 2                                         | 173 +                 | -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 118 X#Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                           | 174 STOI              | 35 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 119 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 175 RCL9              | 36 <i>8</i> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |
| 120 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -35                                     |                                           | 176 SIN               | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
| 121 STO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 35 02                                 | $(E_2 - E_r)$                             | 177 LSTX              | 16-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 122 ENT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 178 -                 | -45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 123 SIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                           | 179 RCL8              | 36 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 124 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45                                     |                                           | 180 ×                 | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 125 RCL5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 36-85                                 |                                           | 181 RCLB              | 36 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 126 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 182 VX                | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 127 Y×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                           | 183 ÷                 | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 128 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -24                                     | Х                                         | 184 RCLD              | 36 ik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 129 RCL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 81                                   | , -                                       | 185 +                 | -55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                 |
| 130 RCL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 186 RCLA              | 36 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ر</u>                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 131 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -55                                     |                                           | 187 ÷                 | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | z' = z/k                                                                                          |
| 132 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -35                                     |                                           | 188 STOE              | 35 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-01                                                                                              |
| 133 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61                                      | (                                         | 189 DSP9              | -63 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                 |
| 134 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -35                                     | New value of y                            | 190 RCL4              | 36 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 135 RCL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 191 RCL1              | 36 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 136 X≠Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                           | 192 GSB8              | 23 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •<br>•                                                                                            |
| 137 STO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35-82                                   |                                           | 193 ST04              | 35 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ϋ́,                                                                                               |
| 138 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | Test for<br>conversionce                  | 194 RCL5              | 36 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 139 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | lest for                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | CON USY CENCE                             | 195 RCL2              | 36 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 140 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45                                     | Cert de serve e                           | 196 GSB8              | 23 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 141 FIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11                                     |                                           | 197 ST05              | 35 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 142 DSP9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -63 05                                  |                                           | 198 RCL6              | 36 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 143 RND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                           | 199 RCL3              | 36 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | los fort                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
| 144 X≠0?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16-42                                   | Loop & not<br>converser!                  | 200 GSB8              | 23 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 145 GTOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | Convers el                                | 201 STO6              | 35 <i>06</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z,                                                                                                |
| 146 RCLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 14                                   |                                           | 202 0                 | 0 <i>0</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathcal{L}_{i}$                                                                                 |
| 147 RCL6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 203 XZY               | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | TVM                                       | 204 RCL5              | 36 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 149 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -35                                     | 1 1 1 1                                   | 205 RCL4              | 36 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |
| 150 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ê2 - 62 - 62 - 62 - 62 - 62 - 62 - 62 - |                                           | 206 PRST              | 16-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Print stack                                                                                       |
| 151 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 207 R/S               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       | 01<br>55 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1- 1                                                                                            |
| 152 RCL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 208 GTO0              | 22 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Error display                                                                                     |
| 153 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 209 *LBL8             | 21 08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subractive                                                                                        |
| 154 RCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           | 210 SCI               | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20000000                                                                                          |
| 155 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | 211 RCLI              | 36 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                                                 |
| 156 RCL5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | c 1/2                                     |                       | -35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15-715                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Error display<br>Subroutive<br>$II_1 = \frac{II_2 - \int II_1}{2}$                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -24                                     |                                           | 213 -                 | ~45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ' g'                                                                                              |
| 158 RCL6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 36 86                                   | 1. 15                                     | 214 RCLE              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L L                                                                                               |
| 159 P≠S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | Exchange 15                               | 215 ÷                 | -24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   |
| 160 STO9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 09                                   | F-F                                       | 216 RTN               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
| 161 XZY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -41                                     | Q <sup>1/2</sup><br>Exchange P&S<br>E2-E1 | 217 R/S               | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | a 1/2                                     | 21/ K/3               | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 1                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33 88                                   |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | j l                                                                                               |
| 163 X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | a                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ן <b>ו</b>                                                                                        |
| 164 ST×8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35-35 08                                | a 3/2                                     | 220                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                 |
| 165 RCL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                 |
| 166 ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           | <b>├</b> ─── <b>├</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 1                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                           | <b>├</b> ─── <b>↓</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 1                                                                                               |
| 167 RCL9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ]                                                                                                 |
| 168 COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                      |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | LABELS                                    | FLAGS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SET STATUS                                                                                        |
| A Input B II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riti <sup>c</sup> Ir                    | zţtz D ECe                                | empule 0              | FLAGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TRIG DISP                                                                                         |
| $\begin{array}{c} A \\ Input \\ a \\ \end{array} \begin{array}{c} B \\ II \\ b \\ \hline \\ B \\ \hline \\ Frrur \\ 5 \\ \end{array} \begin{array}{c} B \\ II \\ \hline \\ B \\ \hline \\ \hline$ | c                                       | d e                                       | 1                     | ON OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |
| 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                       | 3 4                                       | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DEG 🗆 FIX 🗹<br>GRAD 🛛 SCI 🗆                                                                       |
| Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c c} GRAD_{X} & SCI & \square \\ RAD & \square & ENG_{Z} & \square \\ \end{array}$ |
| 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                       | 8 1 9 1                                   | .00p <sup>3</sup>     | $\begin{array}{c} 2 \\ 3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\$ |                                                                                                   |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                       |                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |

#### Hewlett-Packard Software

In terms of power and flexibility, the problem-solving potential of the Hewlett-Packard line of fully programmable calculators is nearly limitless. And in order to see the practical side of this potential, we have several different types of software to help save you time and programming effort. Every one of our software solutions has been carefully selected to effectively increase your problem-solving potential. Chances are, we already have the solutions you're looking for.

#### **Application Pacs**

To increase the versatility of your fully programmable Hewlett-Packard calculator, HP has an extensive library of "Application Pacs". These programs transform your HP-67 and HP-97 into specialized calculators in seconds. Each program in a pac is fully documented with commented program listing, allowing the adoption of programming techniques useful to each application area. The pacs contain 20 or more programs in the form of prerecorded cards, a detailed manual, and a program card holder. Every Application Pac has been designed to extend the capabilities of our fully programmable models to increase your problem-solving potential.

You can choose from:

Statistics Mathematics Electrical Engineering Business Decisions Clinical Lab and Nuclear Medicine Mechanical Engineering Surveying Civil Engineering Navigation Games

#### **Users' Library**

The main objective of our Users' Library is dedicated to making selected program solutions contributed by our HP-67 and HP-97 users available to you. By subscribing to our Users' Library, you'll have at your fingertips, literally hundreds of different programs. No longer will you have to: research the application; program the solution; debug the program; or complete the documentation. Simply key your program to obtain your solution. In addition, programs from the library may be used as a source of programming techniques in your application area.

A one-year subscription to the Library costs \$9.00. You receive: a catalog of contributed programs; catalog updates; and coupons for three programs of your choice (a \$9.00 value).

#### **Users' Library Solutions Books**

Hewlett-Packard recently added a unique problem-solving contribution to its existing software line. The new series of software solutions are a collection of programs provided by our programmable calculator users. Hewlett-Packard has currently accepted over 6,000 programs for our Users' Libraries. The best of these programs have been compiled into 40 Library Solutions Books covering 39 application areas (including two game books).

Each of the Books, containing up to 15 programs without cards, is priced at \$10.00, a savings of up to \$35.00 over single copy cost.

The Users' Library Solutions Books will compliment our other applications of software and provide you with a valuable new tool for program solutions.

| <b>Options/Technical Stock Analysis</b> | Medical Practitioner |
|-----------------------------------------|----------------------|
| Portfolio Management/Bonds & Notes      | Anesthesia           |
| Real Estate Investment                  | Cardiac              |
| Taxes                                   | Pulmonary            |
| Home Construction Estimating            | Chemistry            |
| Marketing/Sales                         | Optics               |
| Home Management                         | Physics              |
| Small Business                          | Earth Sciences       |
| Antennas                                | Energy Conservation  |
| Butterworth and Chebyshev Filters       | Space Science        |
| Thermal and Transport Sciences          | Biology              |
| EE (Lab)                                | Games                |
| Industrial Engineering                  | Games of Chance      |
| Aeronautical Engineering                | Aircraft Operation   |
| Control Systems                         | Avigation            |
| Beams and Columns                       | Calendars            |
| High-Level Math                         | Photo Dark Room      |
| Test Statistics                         | COGO-Surveying       |
| Geometry                                | Astrology            |
| <b>Reliability</b> / <b>QA</b>          | Forestry             |

#### SPACE SCIENCES

Precession, sidereal time, coordinates, distance, path angle relations, eclipse parameters, time of events, ballistic missile range, etc., are calculated by 10 programs in Space Sciences.

PRECESSION OF RIGHT ASCENSION AND DECLINATION

- LOCAL SIDEREAL TIME & OBLIQUITY FROM LOCAL STANDARD TIME
- SPACE SCIENCE & TECHNOLOGY No. (1) HORIZON DISTANCE, GREAT CIRCLE DISTANCE
- SPACE SCIENCE & TECHNOLOGY No. (2) VIS VIVA AND PATH ANGLE RELATIONS
- SPACE SCIENCE & TECHNOLOGY No. (4) BALLISTIC MISSILE RANGE
- **CELESTIAL POSITION**
- BINARY STAR EPHEMERIS
- PRECESSION/GALACTIC COORDINATES
- SPACE SCIENCE & TECHNOLOGY No. (5) KEPLER'S EQUATION
- ORBIT DETERMINATION BY THE METHOD OF GAUSS



1000 N.E. Circle Blvd., Corvallis, OR 97330 Reorder No. 00097-14028 Printed in U.S.A. 00097-90203 Revision C 12-78