
– Page 1 –

– Page 2 –

HP-71 BASIC MADE EASY

by Joseph Horn

Copyright 1985, SYNTHETIX
P.O. Box 1080

Berkeley, CA 94701-1080
U.S.A.

Printed in the United States of America

– Page 3 –

HP-71 BASIC MADE EASY
by Joseph Horn

Published by: SYNTHETIX

All rights reserved. This book, either in whole or in part, may not
be reproduced or transmitted in any form or by any means,
electronic or mechanical without the written consent of the
publisher. The programs contained herein may be reproduced for
personal use. Permission is hereby given to reproduce short
portions of this book for the purposes of review.

Library of Congress Card Catalog Number: 84-51753
ISBN: 0-9612174-3-X

This electronic form of the book was last edited by

the author on 9 February 2019. Please inform him
of typos and errors so that they can be corrected:

joehorn@holyjoe.net

– Page 4 –

TABLE OF CONTENTS

Introduction ... 5

Chapter 1:
The Three Modes ... 8

Chapter 2:
CALC Mode... 12

Chapter 3:
Keyboard BASIC Mode .. 44

Chapter 4:
BASIC Vocabulary... 50

Chapter 5:
Variables .. 53

Chapter 6:
Files... 79

Chapter 7:
The Clock and Calendar ..102

Chapter 8:
PEEK$ and POKE ...108

Chapter 9:
Program BASIC ..114

Postscript:
The HP-71 Answer Man Service128

Appendix:
HP-71 Quick Reference Guide130

– Page 5 –

INTRODUCTION

Hewlett-Packard calls the HP-71 an “open” machine. They have
made all its Internal Design Specifications available to the public.
Trouble is, “the public” is not the average HP-71 user! The
documentation comes in huge indigestible volumes, and they cost
an arm and a leg. Even if you can afford these esoteric tomes, you
probably don’t want to spend the rest of your life trying to
understand them. So your HP-71 is still not “open” to you...

Hence this book. Unlike the unwieldy HP Internal Design
Specifications, “HP-71 BASIC Made Easy” was written with you in
mind. Its purpose is not to document every byte in the HP-71, but
to give you just those facts and tips about the HP-71 that you can
put to immediate use, secrets that the Owner’s Manual and
Reference Manual didn’t tell you. The book also has a collection of
programs that show how to put these secrets to real-world use. If
you have any questions that remain unanswered by this book, at
the end you’ll find a terrific offer: the HP-71 Answer Man service,
free of charge!

Please remember that this book is not intended to replace the
Owner’s Manuals. It complements them. If you found those books
incomprehensible, begin reading this one and they will become
clearer as you progress in HP-71 expertise. On the other hand, if
the HP Manuals were pretty clear already, skip the easy stuff in
this book and enjoy the wealth of PEEK$ and POKE information
near the end, and browse through the BASIC and machine-
language programs. You’ll be glad you did!

Although the contents have been carefully checked, the author
makes no guarantee about this book. HP has every right to revise
the HP-71 operating system, and it is possible that future HP-71’s
will not respond the way this book indicates. If version-
independent programming is essential to you, the only practical
way is with the excellent HP-71 FORTH/ASSEMBLER ROM

– Page 6 –

combined with the HP-71 IDS (Internal Design Specification),
which allows you to use the HP-71 function entry points, which HP
has promised will remain the same in all future ROM revisions.

Thanks must go first to my brother James L. Horn, who first got
me interested in computers and introduced me to PPC, and is
always a source of moral support and intellectual challenge. This
book is dedicated to him.

A warm thank-you goes to Karen Dodson, who put up with all the
times I crashed the college computer back in the mid-1970’s. Karen
exemplifies for me what a “Real Programmer” is; one day I
proudly put before her an uncommented listing of my latest
program, quite sure that it was the most convoluted and
wonderfully unreadable code ever concocted. With one glance, she
not only saw what the purpose of the program was, but even
suggested a shorter and faster way of doing it.

Thanks also to the late James Davidson, who wrote the famous
HP-25 Library, and taught us all what a truly “elegant solution” is,
in 49 bytes or less.

Without Richard Nelson (founder of PPC and CHHU, and editor of
small-computer magazines for over ten years), this book would
certainly not exist. My heartfelt thanks go to Richard for all his
work and encouragement; may his tribe increase.

Jeremy Smith deserves a jolly thank-you for all his enthusiasm
which is so contagious that sometimes I wonder if my excitement
with these gadgets is my own or actually some of his which has
rubbed off!

Finally, I thank Keith Jarett for publishing the book, and having
patience with my schedule. (This book is a concrete example of
Hofstadter’s Law: “Things take longer than you expect, even when
you take Hofstadter’s Law into account”.) His patience allowed me

– Page 7 –

to prune the verbosities and clarify the obfuscations. So the reader
owes Keith a word of thanks too!

Joseph K. Horn [CHHU Member #13]
St. Michael’s Prep.
1042 Star Route
Orange, California USA 92667

SUB ANYTIME @ DISP "(714) 633-2041" @ END SUB

– Page 8 –

CHAPTER 1:

THE THREE MODES OF OPERATION

When you first got your new HP-71, I’ll bet that you thought you
were just getting one machine! (I’m not alluding to the fact that
most 71 owners wind up buying all kinds of peripherals!)

Fact is, the HP-71 is really three machines inside one case. And
you can use whichever one you need, or all three if you wish!

CALC MODE

The first machine that the HP-71 behaves like is an awesome
scientific calculator with more features than any other calculator,
period. When you put the HP-71 into “CALC mode”, it becomes a
calculator that’s so simple to use that you can use it right away
with no special training; yet it’s so powerful that after reading the
CALC MODE chapter in this book, you’ll be a keyboard wizard!

CALC Mode doesn’t let you write programs, but you can solve
formulae for several different values and only have to type the
formula once! You can solve problems that are similar, without
having to retype the whole thing (just change what’s different).
What you may have been using a programmable calculator for in
the past, you can now do faster and easier in CALC mode, and all
without writing a single program!

KEYBOARD BASIC MODE

The normal state of the HP-71 (the state after the batteries are first
put in) is KEYBOARD BASIC mode. In this mode, you can type
anything at all into the display, and when you press the big

– Page 9 –

[ENDLINE] key, the HP-71 tries to figure out what you want, and it

does it. And when that’s done, it goes idle again, ready for you to
type another “command”. You are Aladdin, and the HP-71 is the
Genie from the lamp, and it’s awaiting your every command (you
get more than three !).

Of course, you have to type your commands in the right way. For
example, you must spell them correctly. And you must use only the
words that the HP-71 knows. For example, if you type the
command BEEP OR ELSE, the HP-71 will not be able to obey your

command because that’s not how the BEEP command works on
the HP-71.

The language the HP-71 “speaks” is called BASIC. BASIC is
tremendously easy to learn, which is how it got its name. It’s so
basic that a kid could learn it (and they do!). So if the HP-71
seemed frightening, put your fear right out of your mind, because
it really is eagerly awaiting your every command, and learning its
language is as easy as reading a fun little book! (This one.)

PROGRAM BASIC MODE

If you take a bunch of BASIC commands and string them together,
you have what’s called a “program”. Just as the programs they sell
at a concert give a list of the pieces of music in the order they are to
be played, a computer program is nothing other than a list of
commands in the order they are to be done. Once you learn how to
give commands to the HP-71 in KEYBOARD BASIC mode, you are
ready to write programs!

This book will tell you everything you need to know about
programming. You’ll find out how to figure out which commands
to use, then how to write them on paper in program form, then
how to get them all neatly stored into the HP-71’s memory.

– Page 10 –

Then the magic begins! After you get the commands stored in
memory, all you have to do is press the [RUN] key on the HP-71,

and all those commands get done *ZAP* in a flash! And to do them
again, just press RUN again!

The real beauty of PROGRAM BASIC mode isn’t the time it saves
you, though that’s nice. The best thing of all is that these
collections of commands (programs) work on ANY HP-71. So what,
you ask? “I only have one HP-71,” you say. Ah! But there are
thousands of other people who also have one HP-71, and just think
of all the programs they’re writing! It is probable that another
HP-71 owner has already written a program to do exactly what you
want! That’s why membership in a club that supports the HP-71,
and membership in the HP-71 User’s Library, is more than smart.

Matter of fact, many folks use their HP-71 only in PROGRAM
BASIC mode, because they filled it up with other people’s
programs, and just run them all the time. They’ve customized their
HP-71 into a personalized machine, perfect for precisely their
needs. This sort of thing is possible in PROGRAM BASIC mode.
Just think how personalized your HP-71 will be by time you finish
this book!

USING ALL THREE MODES

This book is attempting a mighty task. Not only does it explain how
to use CALC mode thoroughly, and how to speak in KEYBOARD
BASIC mode, and how to use PROGRAM BASIC mode, but it also
will try to make clear the places where they overlap!

The HP-71 is truly schizoid. It isn’t really three machines. The
HP-71 merely seems like several machines in one, to make life
easier. After a while, you’ll understand how you can calculate in
KEYBOARD BASIC mode. You can even run BASIC programs
from CALC mode! By then, you will be able to think of the HP-71
not as three machines, but as one machine with a splittable

– Page 11 –

personality.

And as soon as you can use the HP-71 as one powerful machine,
rather than as a collection of three less powerful machines, then at
that time you can be called an HP-71 expert. You may not know
what’s happening under the hood, but you know how to drive it on
every terrain at full speed, and that, by golly, makes you an expert
driver!

Here’s my guarantee: If you read this book cover to cover, and do
the examples shown, I personally guarantee that you’ll be an
HP-71 expert!

Let’s start with CALC mode.

– Page 12 –

CHAPTER 2:

CALC MODE

First, turn on the HP-71 by pressing the [ON] key in the lower left

corner. After the HP-71 turns on, the [ON] key is no longer called

[ON] (because it’s already on!), but is called [ATTN] which stands

for “attention”. Type the number 12345 (with the number keys),

and press [ATTN]. The number goes away! Think of [ATTN] as the

“panic button”; when you hit it, whatever is happening gets
zapped.

Right now, you should see a > character in the display, followed
by a square block that’s blinking. The > tells you that you’re in
KEYBOARD BASIC mode. The blinking block is called the
“cursor”. The cursor tells you where you’re going to type next.
When the cursor is shaped like a block (∎), it is called the “replace
cursor” because whatever you type replaces what used to be there.

Try typing your name into the display. The [SPC] key is used to

put spaces in (like the space bar on typewriters and computer
keyboards). Before you press [ATTN] to clear it out, press the left-

arrow and right-arrow keys (between the [RUN] and [SPC] keys)

to get used to moving the cursor around. Notice that pressing the
arrow keys alone just moves the cursor one place left or right, but
if you press the blue [g] key first, the arrow keys move the cursor

all the way to the right or left end of the line. And if you press the
gold [f] key first, the left arrow key backspaces and erases the

letter it lands on, whereas the right arrow key deletes the letter it’s
on now and moves everything else up to fill in the hole.

From now on in this book, keystrokes will be written in
abbreviated form. Rather than saying “Press the gold [f] key and

then press the left arrow key”, I will say [f][LEFT]. More

– Page 13 –

accurately, this keystroke sequence is called [f][BACK] or simply

[BACK] because the gold [f] key always uses the words written in

gold above the keys; see how “BACK” is written above the left
arrow key? So too, the blue [g] key activates the blue things on

the front of the keys. The letter keys have nothing printed in blue;
the [g] key is the upper/lowercase shift key for the letters, just like

on a typewriter. If it seems backwards, press [f][up-arrow] to

switch it to normal. This is the Lowercase Lock key; it flip-flops
between upper and lower case.

Notice that you can press [f][I/R] to change the shape of the

cursor from a block (∎) to an arrow (⌫). The arrow cursor is called
the “insert cursor” because it inserts what you type into the line,
not just on top of it like the replace cursor does. The insert cursor
is handy when you accidentally leave out a letter; you can insert it
without having to retype the whole line.

To turn off the HP-71, press [f][ATTN], which is the [OFF] key. If

you power-down in KEYBOARD BASIC mode, then the next time
you turn the HP-71 on it will still be in KEYBOARD BASIC mode.

THE HP-71 CALC MODE

To put the HP-71 into CALCulator mode, press the gold [f] key,

and then press the comma [,] key, which has the word “CALC”

printed above it in gold. From now on, this keystroke sequence will
be abbreviated [f][CALC] or simply [CALC]. You enter and exit

CALC mode by pressing [CALC]. If you turn the HP-71 off while in

CALC mode, you will still be in CALC mode next time you turn the
HP-71 back on.

Let’s try some problems in CALC mode. Type 12+34+56 and look

at the display. Your keystrokes and the display are:

– Page 14 –

12+34+56

46+56

(46 is the intermediate answer of 12+34, of course). Now suppose
we realize that we made a mistake, and it wasn’t supposed to be 56,
but 52. We could press [ATTN] and start all over. But there’s a

better way!

Just press [BACK]. And now look at the display:

[BACK]

46+5

so now press 2 and you’ll see exactly what we wanted:

2

46+52

So correcting an error near the right end of the display is easy with
the [BACK] key.

Here’s a handy hint: if you want to press [BACK] more than once,

don’t press the gold [f] key each time; just press and hold it down,

then go ahead and press [BACK] as many times as you want, while

still holding [f] down. Matter of fact, if you hold the [BACK] key

down for more than a second or so, it automatically repeats, rapid-
fire, so you don’t have to wear out your finger hitting it!

The gold [f] key and the blue [g] act two ways: as true

prefix keys (press and release to change the meaning of your
next keystroke) AND as true shift keys (press and hold down

– Page 15 –

to change the meaning of your next keystrokes while held down).

The problem now in the HP-71 is 12+34+52. How can we tell?
Here’s another handy hint: at any time during a calculation, if you
want to see the whole problem, just press the up-arrow key, then
press [ENDLINE] (NOT down-arrow!) to get back to where you

were before:

[UP]

12+34+52

[ENDLINE]

46+5

Now suppose that we realize that we made another mistake. It
wasn’t supposed to be 12; It should have been 19, say. What now?
Don’t use [BACK]! That would take too long and besides, it would

wipe out the whole calculation! Just press the up-arrow key again,
and use the left and right-arrow keys to move the cursor to the
offensive digit, and type the correct one. Simple!

[UP][RIGHT] 9

19+34+52

Of course, you need only press [ENDLINE] to continue!

[ENDLINE]

53+52

which is just what we wanted. To get the final answer, press

– Page 16 –

[ENDLINE]:

[ENDLINE]

105

USING THE LAST RESULT IN THE NEXT CALCULATION
WITH RES

Now suppose you want this answer, 105, in your next calculation.
There are four ways of doing it. The first and obvious way to use
105 in your next calculation is to type it in every time you want it.
This works, but is the tough way.

The second way to get 105 in your next calculation is to use the
RES function. RES (for “result”) is automatically set to the last
answer you got. In our case it’s 105. (RES is similar to the
“LASTX” function found on HP RPN calculators).

You can type RES from the keyboard (that takes three keystrokes)

or you can press the [RES] key by pressing the gold [f] key and

then the [ENDLINE] key that has “RES” printed above it in gold

(that takes two keystrokes). Either way works the same, even if you
type res in lower-case letters!

Let’s try to evaluate
105

105 5
105 30

+ ∗

−
 using RES:

RES+

105+

See how the value of RES is pulled out automatically? Let’s keep
going:

– Page 17 –

5*RES/

105+525/

and finish up with:

(RES-30

105+525/(105-30)

If you see 110-30 instead, you forgot to open the parenthesis! If so,

press up-arrow and insert the (into the calculation by pressing
[I/R].

If we pressed [ENDLINE] right now, we’d get the final answer. But

let’s go slower to see what’s happening. Notice that the cursor is
blinking on top of a right parenthesis. It “knows” that we are
supposed to close a parenthesis! Let’s look at the intermediate
answer by closing that parenthesis:

)

105+525/(75)

Now here’s a special trick of CALC mode! The [RUN] key is

magical. Instead of pressing [ENDLINE] and crashing full-steam

into the final answer, watch what happens when you press [RUN]

instead:

[RUN]

105+7

How about that! We are looking at the intermediate answer of
525

75
.

– Page 18 –

Let’s finish up:

[ENDLINE]

112

USING THE VALUE OF RES BY TYPING ()

A nifty feature of CALC node is that an empty pair of parentheses
() are automatically filled with the value of the last RESult. Since

RES is 112 now (our result above), let’s set it to 105 (like before).
To set RES to 105, just type 105 and press [ENDLINE]:

105 [ENDLINE]

105

Now let’s calculate, like before,
105

105 5
105 30

+ ∗

−
. But this time, use

() instead of RES:

()+

105+

See how () gets filled with 105? Keep going:

5*()/

105+525/

This next one is tricky. You have to open the parentheses for the
denominator (105-30), but you also are using () for 105. So you

– Page 19 –

need to press (twice:

(()-30

105+525/(105-30)

Doesn’t that look familiar! Press [ENDLINE] to get the answer, 112

again.

This () feature of CALC mode can be used all kinds of ways. It is

especially nice when the HP-71 supplies parentheses
automatically.

For example, we now have 112 as our last RESult. Suppose we
want to find the square root of this. All you have to do is press:

[SQR][ENDLINE]

10.5830052443

If that happened too fast, try this. Type 112 [ENDLINE] to make

112 the RESult again. Now let’s do it this way:

[SQR]

SQR()

with the cursor blinking on top of a right parenthesis. Now press:

)

SQR(112)

See how 112 gets put between the parentheses? Now press:

– Page 20 –

[RUN]

10.5830052443

This brings up a very important point about the [RUN] key in

CALC mode. We have the answer to 112 in the display, but it’s
still on the calculation side (right side) of the display. The HP-71 is
still waiting to continue with more math, and doesn’t know we’re
done. That’s because we haven’t pressed [ENDLINE] yet, of course.

But notice what that means about RES. We haven’t changed it yet;
it’s still 112! To prove that, press [ON] to clear the display, then:

()

(112)

This can be used to good advantage! If you want to perform a
bunch of calculations on RES without changing its value, then just
be sure to get each answer by pressing [RUN], and never press

[ENDLINE]. That way, RES will never change, because it only

changes when you press [ENDLINE]!

Here’s another nice feature of CALC mode. You don’t even need
RES or () to see the value of RES. Just clear the display by

pressing [ATTN], and then press [ENDLINE]:

[ATTN][ENDLINE]

112

– Page 21 –

USING VARIABLES IN CALCULATIONS

If you really want to keep a value available for multiple use, you
don’t have to use RES or (). You can save any number under its

own name, and use that name any time you need the number.

For example, suppose you want to use 2 several times. You
certainly are not going to type in 1.41421356237 each time! Nor do
you need to type SQR(2) each time, either! All you need to do is

save it under a name (a letter) and then use that name.

Let’s call it “S” for “S”quare root. All you need to do is:

S=SQR(2 [ENDLINE]

1.41421356237

(Remember, CALC mode closes all pending parentheses for you
when you press [ENDLINE]! You don’t need to close them

yourself).

We’ve just done three things: calculated 2 , displayed it, and saved
it under the name “S”. It’s the “S=” above that did the saving; the
rest did the calculating. Any time you want to save a number, just
type its name followed by an = and then the number (or
calculation).

Any time you want to use 2 now, you may merely type the letter

S. Let’s find
2

2 17
12

+ − . Using S for 2 , that’s expressed as:

S+17-S/12 [ENDLINE]

18.2963624322

– Page 22 –

Did you notice how S changed into 1.41421356237 every time we
used it? That’s a lot easier than typing the number in, isn’t it! We
have assigned S that value, and it’ll keep it as long as we want,
even if you turn off the HP-71. (Exiting CALC mode and running a
BASIC program may stomp it out, though).

We can change the value of S to anything we want any time by just
saying S=. Since its value can vary like this, it’s called a “variable”,
as in algebra.

Note for advanced thinkers: In the above example, S contains the
number 1.41421356237. It does not contain the expression SQR(2).
When you use S, it merely pulls its value off a shelf, it doesn’t re-
calculate it each time. So if you define S=A+B, S gets assigned the
value of the current value of A plus the current value of B; it does
not get assigned to always and everywhere be A+B. Otherwise,
changing the value of A would change the value of S! That would
not only be a confusing mess, but it would make variables work
slower. If you really do wish to have variables that change value
when other variables change, then what you want are called “user
defined functions”, which we’ll discuss when we get into BASIC.
User defined functions do work in CALC mode!

Variables in CALC mode can be any letter of the alphabet. If that’s
not enough (!), then you can also use letters followed by a single
digit 0 through 9. So L, U, K and E are all perfectly fine variables
because they are single letters. So are C3, P0, R2 and D2, because
they are a single letter followed by a single digit. But AA is no
good, because it’s two letters. If you try to use AA in CALC mode
it’ll freak out. Likewise 3M is no good, because the digit is in front.
And T42 won’t work because there are two digits. Try assigning
lots of variables lots of things, and using them in calculations of
your own devising.

Subscripted variables, like X(8), can also be used, but they gobble
up memory and are cumbersome in CALC mode. We’ll discuss

– Page 23 –

their better uses when we get into BASIC.

If you ever want to save the current RESult into a variable, you
don’t need to use X=RES or X=(). Since merely pressing

[ENDLINE] gives the value of RES, all you have to do is type X=

and press [ENDLINE]! Try it: type 1+2 [ENDLINE] to put 3 into

RES. Now type X= and press [ENDLINE]. You just saved 3 into X!

After messy calculations, this is a handy thing to know.

NEGATIVE NUMBERS

How would you calculate 12 times negative 5? You could use
12*(-5), but that’s wasting a keystroke. It’s easier to use:

12*-5 [ENDLINE]

-60

It looks funny to see 12*-5, but why not? Division by negative

numbers works just as nicely: 12/-5.

BUT!!! (And this is a big “but”.) Don’t try to raise numbers to
negative powers this way! 12 raised to the negative 5th power
cannot be typed in as 12^-5. Look what happens:

12^-

WRN:Illegal Context

(If the error message flashed by too quickly for you to read it, then
press and hold down the [ERRM] key. It’s a very handy key!)

To use negative powers, you must enclose the power in
parentheses:

– Page 24 –

12^(-5 [ENDLINE]

4.01877572016E-6

This result, of course, is so small that the HP-71 displays it in
scientific notation. It means 4.081877572016 times 10 to the –6
power, which is written the normal way like this:

0.00000401877572016

but the poor HP-71 can’t handle numbers that long! The reason

512− is so small is that 512− is the same as saying
5

1

12
 which is equal

to
1

248832
, a very small number.

If you are wondering why you can multiply and divide by negative
numbers but not raise to negative powers without resorting to
parentheses, it’s all because of the order in which the HP-71 does
its math. Here’s the scoop.

How would you calculate on paper this problem: 41 2 3+ ⋅ ? Of course,
you’d first raise 3^4, getting 81; then you’d multiply 2 times that,

getting 162, and finally you’d add 1 to that, getting 163, the answer.
Notice that you did not calculate this problem left-to-right, even
though left-to-right is the normal way of doing things. Why?
Because powers are more important than multiplications, and
multiplications are more important than additions. You simply
know that powers “come before” multiplications, and
multiplications “come before” additions.

This “coming before” idea is called algebraic hierarchy, or the
order of operations. The HP-71 has algebraic hierarchy built in,
and you must be familiar with it to use it well. In the following
chart, the operations at the top are the “most important” ones, and

– Page 25 –

they “come before” the ones lower on the chart.

THE HP-71 ALGEBRAIC HIERARCHY

(1) () Parentheses. (Nested ones first, from the inside out).

(2) Functions (SQR, SIN, MOD, etc.).

(3) ^ (Powers).

(4) – (Negative), + (Positive), and NOT.

(5) * (Multiplication), / (Division), % (Percent), and \ or DIV

(Integer Division).
(6) + (Addition) and – (Subtraction).

(7) < (Less Than), = (Equal To), > (Greater Than), # (Not Equal To),

? (Unordered With), and any combination of these.

(8) AND.

(9) OR, and EXOR.

Notice that this answers the negative powers dilemma. 12*-5

But powers come before negation. 12^-5 doesn’t work because the

HP-71 tries to perform the power raising before negating the 5.
12^-5 makes as much sense to the HP-71 as does 12^*5. It makes

no sense at all!

The reason powers come before negations is to make sure that
expressions like -12^4 evaluate correctly. -12^4 does not mean

negative twelve, raised to the 4th power. -12^4 means 12 raised to

the 4th power, negated. Try it; -12^4 gives –20736, as it should.

That’s different from (-12)^4.

Although the + (Positive) function is listed in the table above, it is a

totally useless function. Pressing 12*+5 is okay, but it works just as

works fine because negation comes before multiplication. So the
HP-71 first negates the 5, getting 12*(-5), and then it multiplies.

– Page 26 –

well if you leave the + out. Matter of fact, if you key redundant +

signs into a BASIC program, the HP-71 politely removes them!

MULTIPLE-ARGUMENT FUNCTIONS

Most functions, like LOG, SIN, FACT and so on, operate on just
one number. For example, press:

[FACT] 14 [ENDLINE]

87178291208

Here we see the factorial of 14 (written as 14!). The FACT function
took 14 and gave out 14!, a very big number.

The number that a function takes in parentheses is called its
“argument”. Here, the argument of the FACT function was 14.

Most functions have only one argument. But several have two or
more arguments, and it is usually important to put the right
number in the right order.

For example, the RMD function gives the remainder after a
division. Suppose you cut a large pizza into fifteen pieces. Four
people each have the same number of pieces until there are too few
left to go around. How many pieces are left? This is the remainder
of 15 divided by four. In HP-71 BASIC (and CALC mode), it is
expressed as RMD(15,4):

RMD(15,4 [ENDLINE]

3

So there are three pieces of pizza left, and four poor starving

– Page 27 –

college students sitting there watching them get cold. (They are
going to college to figure out how to solve this mind-boggling math
problem).

Notice that we wrote RMD(15,4). The order of the numbers is

important! Try RMD(4,15) and see what happens. Of course, it

gives you the remainder of 4 divided by 15, which is 4.

THE COMMAND STACK

As we have seen, pressing the up-arrow button in CALC mode lets
you edit the current calculation. What it really does is put you in
the bottom (most recent level) of the “command stack”. Every time
you press [ENDLINE] in CALC mode, not only does RES change,

but so does the command stack. Your entire calculation, no matter
what it was, gets shoved up onto the bottom of the command stack,
lifting the older commands there higher, until the one on the top
gets bumped off the top of the stack and falls into the hungry black
hole that gobbles up commands too old to stay on the stack.

Try pressing up-arrow several times right now. You’ll see the most
recent thing you did, first. Above that you’ll find the next most
recent command line. Each higher line in the stack is an older and
older command, until you reach the top of the stack (be careful!
Don’t fall in the black hole!) which contains your least recently
used command.

The HP-71 not only allows you to look at these commands, but to
re-use them however you wish! If you wish to re-execute an old
calculation, simply get it into the display by pressing the arrow
keys until you see it, and then press [ENDLINE]. It’ll not only get

executed, but it’ll get pulled out of the stack and placed nicely on
the bottom for you!

– Page 28 –

Even better, you can edit old commands too. If you want to re-
execute an old calculation with just one number changed, then find
it in the stack, edit it to look the way you want, then press
[ENDLINE]. No need to re-type the whole calculation!

The command stack is five commands high in a normal HP-71. But
there are ways of making the stack bigger, so that it can hold more
commands. It can be expanded to hold up to 16 commands! The
theory behind that, and a program to do it, are presented later in
this book. But first we have to understand BASIC, which is our
next topic.

HP-71 CALC mode. It beats AOS, and it even beats RPN once you
get used to using the command stack. Several hours of practice will
pay off in many more hours of time saved as you fly through
calculations that before gave you the willies. Everything’s visible;
no hidden numbers, no hidden operations. Everything’s logical; no
bizarre mixture of pre-and postfix notation, like AOS (Texas
Instruments’ calculator logic). Everything’s clear; no bizarre new
logic to learn, like RPN (Hewlett-Packard’s calculator logic).

Ready to try some real-world examples?

EXAMPLE 1. Silas Farmer delivers tomatoes to the cannery twice
daily. On Monday he delivered 25 metric tons and 27 tons. On
Tuesday he delivered 19 tons and 23 tons. Both days the cannery
paid him $55 per ton, minus 2% because of blight on the tomatoes.
On Wednesday, Silas delivered 26 tons and 28 tons, and the
cannery paid him $57.50 per ton, minus 3%. What is Farmer’s total
net income for Monday through Wednesday?

REAL-WORLD EXAMPLES OF CALC-MODE USAGE

– Page 29 –

Solution: Write the problem out in algebraic form:

Monday’s & Tuesday’s Tomato Value: ()55 25 27 19 23M = ⋅ + + +

Deduction for Monday’s & Tuesday’s tomato blight: 2%M
Wednesday’s Tomato Value: ()57.5 26 28W = ⋅ +

Deduction for Wednesday’s tomato blight: 3%W
Total Net Income: 2% 3%M M W W− + −

Next, key the calculations in the order indicated:

1: M=55*(25+27+19+23)

2: W=57.5*(26+28)

3: M-2%M+W-3%W � 8078.45

Answer: $8078.45 net income.

EXAMPLE 2. Engineer P.C. Bord has determined that in an RC
circuit, the total impedance is 77.8 ohms and the voltage lags
current by 36.5°. What are the values of the resistance, and the
capacitive reactance in the circuit?

Solution: Use the formulae ()cosX R a= ⋅ & ()sinY R a= ⋅ for the

conversion of polar to rectangular form. In this case:

R=77.8 (the total impedance; the polar magnitude here)
A=36.5 (the current lag; the angle here)
Resistance = ()cosR A⋅

Capacitive Reactance = ()sinR A⋅

Key the calculations in the order indicated:

1: R=77.8

2: A=36.5

– Page 30 –

3: R*COS(A) � 62.54

4: R*SIN(A) � −46.28

Answer: Resistance is 62.54 ohms, and reactance is −46.28 ohms.

Alternate Solution: If you have the Math Pac ROM plugged into
your HP-71, you can convert polar to rectangular form in one step:

1: RECT((77.8, −36.5)) � (62.54,−46.28)

EXAMPLE 3. Five students took a test, and earned grades of 95%,
90%, 88%, 94%, and 93%. What was the average grade?

Solution:
sum of items

Average
number of items

= .

1: (95+90+88+94+93)/5 � 92

Answer: 92 is the average grade.

EXAMPLE 4. You wish to find the sum of the numbers from 1 to
50, and you forget the formula. Rather than waste time trying to
rediscover the formula, you grab your HP-71 and start adding in
CALC mode 1+2+3+4+5...

Unfortunately, when you hit 36, the HP-71 beeps, says “Line Too
Long”, and seems to freak out.

The HP-71 can only handle lines up to 96 characters long. This
applies to CALC mode too. If you need to perform a calculation
longer than that, break it up into shorter pieces, and then use RES
or () to connect the pieces.

– Page 31 –

In this example, we would add chunks of the desired sum, and use
() to get the subtotals:

1: 1+2+3+4+5+6+7+8+9+10 � 55

2: ()+11+12+13+14+15+16+17+18+19+20 � 210

3: ()+21+22+23+24+25+26+27+28+29+30 � 465

4: ()+31+32+33+34+35+36+37+38+39+40 � 820

5: ()+41+42+43+44+45+46+47+48+49+50 � 1275

Answer: 1+2+3...+48+49+50=1275.

Alternate Solution: You suddenly remember the formula for the

sum of the numbers from 1 to N is ()1
2

N
N + :

1: 50/2*(50+l) � 1275

This is considerably easier! In general, if you get the “Line Too
Long” message, you are doing things the hard way. You should
look for the simpler way of doing it.

Note: If you get the “Line Too Long” message, the HP-71 will do its
best to let you save time. It automatically puts you into the bottom
of the command stack, where you will see the whole long line you
just typed. Press [g][right-arrow] and edit the right end of the

line, then press [ENDLINE] to get a subtotal (or intermediate

result), and then use RES or () to continue.

EXAMPLE 5. You wish to evaluate 5 4 3 27 12 54 22 11 1x x x x x− + − + −
with values of x {0, 0.1, 0.2}. You know how to do it on an HP hand-
held calculator with RPN logic; you would use Horner’s Method to
avoid powers and round-off errors. But the HP-71 method is not
obvious. How to do it?

– Page 32 –

Solution: Use Horner’s Method! Just subtract one from the highest
power, and type that many parentheses, and go from there. In our
example, the highest power is 5, so we type four parentheses and
go from there:

1: X=0

2: ((((7*X-12)*X+54)*X-22)*X+11)*X-1 � −1

3: X=.1

4: [UP][UP][ENDLINE] � −.06713

5: X=.2

6: [UP][UP][ENDLINE] � .73504

Answer: ƒ(0)=−1, ƒ(0.1)=−0.06713, ƒ(0.2) = 0.73504.

Note: We used the command stack in a tricky way here. We used a
variable (X) to stand for 0, 0.1, and 0.2 to avoid having to type the
whole equation again. We then set X to different values, and used
the formula intact from the command stack. Whenever you have to
repeat a calculation with slightly different values, do it this way.
You’ll soon be addicted to the command stack!

EXAMPLE 6. Derek Lobos, the interior decorator, has four
picture hangers in his living room, and he owns seven framed
paintings. To keep a fresh look, he wants to re-arrange the
paintings every month, and once in a while bring a new painting
out of the closet and retire one of the ones displayed. This offers
many possible permutations! How long will it be before every
possible arrangement has been used, when Derek must go
shopping for a new painting?

Solution: The formula for the permutations of X things taken Y at a

time is
()

!

!

X

X Y−
. The exclamation point stands for the factorial

function, which on the HP-71 is written FACT. Since Derek wants

– Page 33 –

to re-arrange every month, and there are 12 months in a year, we
must divide the number of permutations by 12 to see how many
years Derek has before he must go shopping:

1: FACT(7)/FACT(7-4)/12 � 70

Answer: Derek is all set for the next 70 years!

Alternate solution: You could also use a user-defined function
nicely here.

EXAMPLE 7. The Fonch Hotel in San Placebo, California, catches
on fire. The top of a very sturdy 22-foot long rainspout comes loose
from the side of the hotel. It falls forward, pivoting at ground level,
until it crunches to a halt propped against the side of the Clutch
Cargo Bank across the street. Amazingly, the pipe does not break,
or even bend. The street is 18 feet wide. A fire truck, 7 feet tall and
8 feet wide, needs to pass under the pipe. Can it make it?

Solution: The pipe forms a hypotenuse with the street as one leg of
the right triangle. Pythagoras tells us how to find the other leg,
which is the height of the pipe on the bank wall. We can use a
proportion to calculate the height of the pipe 8 feet away from that
wall (the width of the truck), and if it’s more than 7 feet, the truck
will fit under the pipe.
1: W=SQR(22^2-18^2) � 12.65

2: (18-8)*W/18 � 7.03

Answer: Yes. The pipe rests on the bank wall 12.65 feet up, and the
height of the pipe 8 feet away from the wall is 7.03 feet up, which
gives just enough clearance for the fire truck. The Famous Fonch
Hotel is saved, and they all live happily ever after.

– Page 34 –

FUNCTIONS THAT WORK IN CALC MODE

The following list of functions is just a fraction of the number of
commands that the HP-71 can use. But when it’s in CALC mode,
these are the only ones you can use. To really get good at CALC
mode usage, go through this list and try all the examples given.
Once you know these functions, you know CALC mode! (If you
have the MATH PAC ROM or other plug-ins that add more
functions to CALC mode, check the Quick Reference Guide for the
ROM for examples of each function.)

+ performs the addition of two numbers.

1+2 gives 3.

− performs the subtraction of two numbers, or negates one.

7-3 gives 4.

-7 gives −7.

-7-3 gives −10.

-7--3 gives −4 (negative 7 minus negative 3 = −7+3 = −4)

* performs the multiplication of two numbers.

3*4 gives 12.

(l+2)*(3+4) gives 21 (3 times 7).

12/2*2 gives 12.

12/(2*2) gives 3.

/ performs the division of two numbers.

12/2/2 gives 3. (12 divided by 2, all divided by 2)

12/2^2 gives 3. (12 divided by 2 squared = 12/4)

12/2+2 gives 8. (12 divided by 2, plus 2)

(3+4+6+7)/(1+2+3+4) gives 2.

^ raises the first number to the power of the second number.

2^5 gives 32 (2 to the 5th power)

FACT(10)/2^8 gives 14175 (10 factorial divided by 2 to the

8th power)
Note that you can use ^ to find roots:

65536^(1/4) gives 16 (because 65536 raised to the ¼ power

– Page 35 –

means the same thing as the 4th root of 65536).
% is the same as * but divides the answer by 100.

6%24 gives 1.44 (6 percent of 24 is 1.44)

24+6%24 gives 25.44 (24 plus 6%)

ABS(x) returns the absolute magnitude of x.

ABS(-3) gives 3

ABS(0) gives 0

ABS(5) gives 5

ACOS(x) returns the angle that has x as its cosine.

ACOS(.5) gives 60 (in DEGREES mode)

ACOS(0) gives 90

ACOS(-1) gives 180

ACS(x) is the same as ACOS above.

AF returns the current Accuracy Factor of the clock.

AF(x) does the same but then sets it to x.

AF(1537) gives the old AF and then sets it to 1537.

AND performs a logical AND on two numbers:

0 AND 0 gives 0

0 AND 2 gives 0 (2 or any non-zero number)

3 AND 0 gives 0

4 AND 5 gives 1

AND means “Exactly both”
ANGLE(x,y) returns the angle from the x-axis to point (x,y).

ANGLE(3,4) gives 53.13 (in DEGREES mode)

ANGLE(.5,SQR(3)/2) gives 60

ANGLE(-1,0) gives 180

ASIN(x) returns the angle that has x as its sine.

ASIN(.5) gives 30 (in DEGREES mode)

ASIN(0) gives 0

ASIN(-1) gives −90

ASN(x) is the same as ASIN above.

ATAN(x) returns the angle that has x as its tangent (slope).

ATAN(1) gives 45 (in DEGREES mode)

ATAN(SQR(3)) gives 60

– Page 36 –

ATAN(INF) gives 90

ATN(x) is the same as ATAN above.

CEIL(x) returns the integer ceiling above x.

CEIL(-1.7) gives −1

CEIL(-1) gives −1

CEIL(1) gives 1

CEIL(1.7) gives 2

CLASS(x) returns the “class” code of x.

CLASS(INF) gives 4, the code for +INF

CLASS(MINREAL) gives 2, the code for denormalized

numbers
CORR(x,y) returns a correlation coefficient.

CORR(2,4) gives the correlation between the current stat

array variables #2 and #4. There must be a statistic array
defined and containing data. The creation of stat arrays is not
done in CALC mode.

COS(x) returns the cosine of angle x.

COS(60) gives .5

COS(180) gives −1

COS(0) gives 1

DATE returns the date in YYDDD format; YY=year, DDD=day#.

DEG(x) converts x radians into degrees.

DEG(PI) gives 180 because PI radians = 180°.
DIV divides two numbers, returns only the quotient, and throws

away the remainder.
12 DIV 5 gives 2 (5 goes into 12 twice)

DATE DIV 1000 gives the current year.

Note: the backslash “\” character (ASCII code 92) may be

assigned to a key as a typing aid and used as DIV.
DVZ returns −7, the number of the Division-By-Zero flag.

DVZ gives −7

FLAG(DVZ) gives 1 if a division-by-zero error has occurred, 0

if not.
FLAG(DVZ,0) does the same but also clears the flag.

– Page 37 –

FLAG(0,FLAG(DVZ)) makes it visible in flag 0.

TRAP(DVZ) gives the current division-by-zero trap value.

TRAP(DVZ,2) does the same but also sets it to 2.

EPS returns 1.E−499, the smallest normalized positive number.

ABS(CLASS(X)=2)=(ABS(X)<EPS) returns 1, because if a

number is smaller than EPS, it is denormalized, and
therefore has a class of 2.

ERRL returns the BASIC program line number of the last error.

ERRL gives 0 if no BASIC program errors have occurred.

ERRN returns the number of the last error.

ERRN gives 4 (if TRAP(DVZ)=0) after trying to calculate

ERRN gives 11 (if TRAP(IVL)≠2) after trying to calculate

ASIN(2).
EXOR performs a logical Exclusive OR on two numbers.

0 EXOR 0 gives 0

0 EXOR 1 (or any other non-zero number) gives 1

1 EXOR 0 gives 1

1 EXOR 1 gives 0

EXOR means “one or the other but not both”
EXP(x) returns e (2.71828182846) raised to the power x.

EXP(1) gives 12 significant digits of e.

EXP(27.6310211159) gives 999999999971.

EXPM1(x) is the same as EXP(x)-1, but more precise.

EXPM1(PI/1E7) gives 3.14159314707E-7 (12 digit accuracy)

EXP(PI/1E7)-1 gives .00000031416 (5 digit accuracy).

Use EXPM1 when x is close to zero.
EXPONENT(x) returns the exponent (decapower) of x.

EXPONENT(10) gives 1

EXPONENT(100) gives 2

EXPONENT(999) gives 2

EXPONENT(1000) gives 3

EXPONENT(x) is more accurate than IP(LOG10(x)):

EXPONENT(10/3*3) gives 0, which is correct.

TAN(90) because error #4 is “TAN=Inf”.

– Page 38 –

IP(LOG10(10/3*3)) gives 1, which is wrong.

FACT(x) returns the factorial of x.

FACT(6) gives 720, which is 6 5 4 3 2 1⋅ ⋅ ⋅ ⋅ ⋅ .

FACT(8) gives 40320, which is 8 7 6 5 4 3 2 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .

FACT(0) gives 1 (by definition).
FLAG(x) returns the value (0 or 1) of flag x.

FLAG(0) gives the value of flag 0, shown in the display.

FLAG(INX) gives the value of the Inexact flag.

FLAG(-3) gives the value of the Continuous On flag.

FLAG(x,y) returns flag x and then sets it to the value of y.

FLAG(-2,0) enables the beeper.

FLAG(-2,1) disables the beeper.

FLAG(-10,1) sets RADIANS mode.

FLAG(-10,0) sets DEGREES mode.

FLOOR(x) returns the integer floor below x.

FLOOR(-1.7) gives −2.

FLOOR(-1) gives −1.

FLOOR(1) gives 1.

FLOOR(1.7) gives 1.

FNvar, with “var” being any valid variable; user-defined.

FP(x) returns the fractional part of x.

FP(-1.7) gives −.7

FP(-1) gives −0

FP(1) gives 0

FP(1.7) gives .7
INF returns the value Inf (mathematical infinity).

SQR(INF) gives Inf

1/0 gives Inf after TRAP(DVZ,2)

FACT(255) gives Inf after TRAP(OVF,2)

INT(x) returns the greatest integer ≤x. Same as FLOOR(x).

INX returns −4, the value of the Inexact Result flag.
Used just like DVZ.

IP(x) returns the integer part of x.

IP(-1.7) gives −1.

– Page 39 –

IP(-1) gives −1.

IP(1) gives 1.

IP(1.7) gives 1.

IVL returns −8, the number of the Invalid Operation flag.

Used just like DVZ.
KEYDOWN returns 1 if a key is being pressed; 0 if not.

Useful in CALC mode only inside FN functions.
LET assigns a value to a variable.

X=5 is the same as LET X=5 (LET may be omitted).

X=1+2+3+4 gives 10 and sets variable X equal to 10.

F3=FLAG(3) stores flag 3’s setting into variable F3.

N(3,4)=153 stores 153 into N’s 3rd row, 4th column.

LGT(x) returns the common logarithm (base 10) of x.

LGT(10) gives 1

LGT(100) gives 2

LGT(1000) gives 3

LGT(10^5) gives 5

LN(x) returns the natural logarithm (base e) of x.

LN(10) gives 2.3

LN(100) gives 4.6

LN(1000) gives 6.9

LN(EXP(5)) gives 5

LOG(x) is the same as LN(x); it is not log base 10!

LOGP1(x) is the same as LOG(x+l), but more precise.

LOGP1(PI/1E12) gives 3.14159265359E−12 which is right.

LOG(PI/1E12+1) gives 0, which is wrong.

Use LOGP1 whenever x is close to zero.

LOG10(x) is the same as LGT(x).

MAX(x,y) returns the larger number, x or y.

MAX(2,3) gives 3

MAX(3,2) gives 3 (order doesn’t matter)

MAX(-7,-8) gives −7

MAX(A,MAX(B,C)) gives the MAX of A & B & C

MAX(X,0) is the same as X*(X>0)

– Page 40 –

MAXREAL returns the largest positive finite number.

MAXREAL gives 9.99999999999E499

MEAN returns the average of your accumulated statistics.

MEAN gives the mean of the first variable in your statistic

array. There must be a statistic array defined and containing
data. The creation of stat arrays is not done in CALC mode.

MEAN(x) returns the average of variable number x. See MEAN.

MEM returns the number of unused RAM bytes in main memory.

MEM(x) is like MEM but for RAM or ROM bytes in :PORT(x).

The number of unused ROM bytes is useless information.
MIN(x,y) returns the smaller number, x or y.

MIN(2,3) gives 2

MIN(3,2) gives 2 (order doesn’t matter)

MIN(-7,-8) gives −8.

MIN(A,MIN(B,C)) gives the MIN of A & B & C

MIN(X,0) is the same as X*(X<0)

MINREAL gives the smallest possible positive number.

MINREAL is a denormalized number.

MINREAL generates an error if TRAP(UNF) is not 2.

MINREAL gives 0.00000000001E−499 after TRAP(UNF,2)

MOD(x,y) returns x modulo y (defined as x-y*INT(x/y)).

MOD(x,y) always gives a number between 0 and y.

MOD(12,5) gives 2 (because when you keep subtracting 5

from 12, the number you get between 0 and 5 is 2).
MOD(-12,5) gives 3 (because when you keep adding 5 to −12,

the number you get between 0 and 5 is 3).
MOD(12,-5) gives −3 (because when you keep adding −5 to

12, the number you get between −5 and 0 is −3).
NAN returns NaN (Not-a-Number), a value that has no value.

0/0 returns an error when TRAP(IVL) is not 2.

0/0 returns NaN after TRAP(IVL,2).
NOT x returns the logical NOT of x.

NOT X gives 1 if X=0; 0 if X is not 0.

FLAG(0,NOT FLAG(0)) flip-flops flag 0.

– Page 41 –

OR performs a logical OR on two numbers.

0 OR 0 gives 0

0 OR 2 (or any non-zero value) gives 1

3 OR 0 gives 1

4 OR 5 gives 1

OR means “either one or the other or both”
OVF returns −6, the number of the Overflow flag.

Used just like DVZ.

PI returns 3.14159265359, twelve significant digits of pi.

PI*R^2 gives the area of a circle with radius R.

Note: PI in the HP-71 is not equal to the mathematical

constant π. PI stops at the twelfth digit; π is an irrational

number that never stops. So in RADIANS mode, sin(π)=0
but SIN(PI) isn’t 0.

PREDV(x) returns a statistically predicted value based on x.

PREDV(x) uses the current statistical array and selected

linear regression variables to predict y based on x. There
must be a statistic array defined and containing data, and the
LR function must be performed. The creation of stat arrays

and the LR initialization are not done in CALC mode.

RAD(x) converts x degrees into radians.

RAD(180) gives PI because 180° = PI radians.

RED(x,y) returns x reduced by y (defined as x-y*IROUND(x/y)).

RED(x,y) always gives a number between -y/2 and y/2.

“IROUND” in the definition is the “nearest” integer.
RED(12,5) gives 2 because when you keep subtracting 5

from 12, the nearest you get to 0 is at 2.
RED(13,5) gives −2 because when you keep subtracting 5

from 13, the nearest you get to 0 is at −2.
RES returns the value of the last result.

RES is set every time you press [ENDLINE] in CALC mode.

() is another way to get the value of RES.

13^PI gives 3159.04819859, then:

RES^(1/PI) gives 13 (if done right after 13^PI).

– Page 42 –

RMD(x,y) returns the remainder of x/y (defined x-y*IP(x/y)).

RMD(x,y) always gives a number between 0 and y*SGN(x).

The sign of the answer is the same as the sign of x.
RMD(12,5) gives 2 because 12 divided by 5 leaves a

remainder of 2.
RMD(-12,5) gives −2 because 12 divided by 5 leaves a

remainder of 2, and −12 is negative.
RND returns a random number between 0 and 1.

RND<RND gives 0 half the time, and 1 the other times.

SDEV returns the sample standard deviation for variable #1.

SDEV gives the standard deviation (Sn-1) of the sample data

accumulated under the first variable in your statistic array. If
the data is not a sample but an entire population, the
standard deviation (Sn) may be calculated with SDEV after

ADDing the MEAN. For SDEV to work, there must be a statistic

array defined and containing data. The creation of stat arrays
and the accumulation of data into them is not done in CALC
mode.

SDEV(x) is the same but it works on variable #x. See SDEV.

SGN(x) returns the sign of x.

SGN(−37) gives −1

SGN(0) gives 0

SGN(−0) gives −0

SGN(153) gives 1

SIN(x) returns the sine of angle x.

SIN(30) gives .5 (in DEGREES mode)

SIN(90) gives 1

SIN (180) gives −0

SIN(270) gives −1

SQR(x) returns the square root of x.

SQR(9) gives 3

SQR(25) gives 5

SQR(12345654321) gives 111111

SQRT(x) is the same as SQR(x).

– Page 43 –

TAN(x) returns the tangent of angle x.

TAN(45) gives 1 (in DEGREES mode)

TAN(90) gives an error, or MAXREAL, or Inf, depending on

the current setting of TRAP(DVZ).
TIME returns the number of seconds since last midnight.

TIME gives a number between 0 and 86399.99

RMD(TIME,60) gives the sweep second hand reading.

RMD(TIME,3600) DIV 60 gives the minute hand reading.

TIME DIV 3600 gives the hour hand reading (24 Hr. clock).

TOTAL returns the total of the first statistic variable.

TOTAL gives the sum of the data accumulated under the first

variable in your statistic array. For TOTAL to work, there must

be a statistic array defined and containing data. The creation
of stat arrays and the accumulation of data into them is not
done in CALC mode.

TOTAL(x) does the same but for variable #x.

TRAP(x) returns the current value of trap number x.

TRAP(INX) gives 0 if the Inexact Result Trap is 0; it gives 1 if

the trap is 1, and 2 if the trap is 2.
TRAP(x,y) does the same but also sets the trap to y.

TRAP(INX,2) gives the value of the Inexact Result Trap, then

sets it to 2.
UNF returns −5, the number of the Underflow flag.

UNF gives −5

FLAG(UNF) gives 1 if an underflow has occurred; else 0.

FLAG(UNF,0) does the same but also sets the flag to 0.

TRAP(UNF,2) gives the value of the Underflow Trap and then

sets it to 2.

– Page 44 –

CHAPTER 3:

KEYBOARD BASIC MODE

When you are in CALC mode, there is a little “CALC” sign in the
display. This is called the “CALC annunciator” because it
announces that you are in CALC mode. There are other
annunciators, but we’ll jump off that bridge when we get to it. For
now, please exit CALC mode if you’re in it, by pressing
[f][CALC]. The CALC annunciator should turn off.

Whenever the CALC annunciator is turned off, you are in BASIC
mode. Just as CALC mode was expecting you to key in
mathematical calculations, BASIC mode expects you to key in
commands in the BASIC language.

If you are in BASIC mode and need to perform a calculation, you
have two options. You may enter CALC mode, perform your
calculation, and go back to BASIC mode. Or, you may simply
perform the calculation in BASIC mode!

For example, let’s do the same calculation we did before. It was:

105+5*105/(105-30)

To do this in BASIC mode, simply type the whole thing in as you
see it, but don’t press [ENDLINE] yet. You’ll see

 >105+5*105/(105-30)

in the display. Remember, the > means that you’re in
KEYBOARD BASIC mode. Notice that BASIC isn’t giving any
intermediate answers, as CALC did. Here’s a general rule:

– Page 45 –

KEYBOARD BASIC IGNORES YOU UNTIL YOU END THE
LINE!

Since 105+5*105/(105-30) is a command in HP-71 BASIC, as

soon as you press [ENDLINE] the HP-71 interprets it and obeys

your command:

[ENDLINE]

112

If you wish to use the command stack in BASIC mode, you can’t
just press the [UP] key as you do in CALC mode; you have to press

[g][CMDS] first to get into the command stack, and then you can

move up and down the stack with the arrow keys. Try that now.
Pressing [ENDLINE] when you’re in the command stack will re-

execute the command displayed. And you can use the [LEFT] and

[RIGHT] arrows to move the cursor around on a command,

allowing you to change it before executing it! Don’t forget the
insert cursor (press [f][I/R] to get it) that allows you to insert

things!

Here’s another rule to remember:

THE HP-71 IS EASY TO USE BECAUSE IT HAS A COMMAND
STACK!

So you the sooner you get used to jumping into the command stack
and using what’s there, the sooner you’ll find the HP-71 a breeze to
use.

THE HP-71 BASIC LANGUAGE

The display should look like this:

– Page 46 –

>▓

The > means “Hi, I’m BASIC; what do you want?” The blinking
blob (the replace cursor) means “Type on top of me”.

Before we try any commands, be sure that the Lower Case Lock is
on. It is easy to do this. Press any letter. If it is a capital (upper
case) letter, press the [f][LC] key. Press [ATTN] to clear the

display. From now on in this book, I will assume that you leave the
Lower Case Lock on.

Here we go! Press these letter keys: [B][E][E][P]. You should

see:

>beep▓

This is a command in BASIC that tells the computer to make a
sound that a tone-deaf person might mistake for a musical note!
Then why doesn’t the computer beep? Remember, the command is
ignored until you press [ENDLINE]! Go ahead and press

[ENDLINE] now, and listen to the beautiful beep.

Notice that BEEP is on the keyboard, printed in gold above the
[L] key. As you may have guessed, you can get the command BEEP

without typing it by merely pressing the gold [f] key and then

pressing the [L] key. This is abbreviated [f][BEEP] or merely

[BEEP]. Notice that this “typing aid” key types BEEP in upper case

letters, regardless of the setting of the Upper Case Lock. This way
you’ll be able to tell in this book whether you have to type it
yourself (it’ll be in lower case letters) or whether it has a typing aid
key (it’ll be in upper case letters).

Since you have to press [ENDLINE] for any command to get

carried out, from now on I won’t bother to tell you to press

– Page 47 –

[ENDLINE]. If I say to execute the BEEP command, or if I simply

say that you should BEEP, I mean that you should type BEEP and

press [ENDLINE]. I don’t, of course, mean that you should beep.

You may if you wish, however.

To see the power of BASIC, execute this command:

FOR x=1 TO 10 @ x @ NEXT x

You just told the HP-71 to count from 1 to 10, which it did! (We will
cover FOR, TO and NEXT later). If it seemed awfully slow (about
half a second for each number), that’s because the HP-71 slowed it
down on purpose to give you time to watch the numbers. If you
want to speed it up to 1/10th of a second for each number, use this
command:

delay .1

Now enter the command stack by pressing [g][CMDS], and go up

the stack until you find the FOR command you typed above, and

press [ENDLINE] to re-execute it. See how fast the HP-71 counts to

10 now! Try DELAY 0, and see it really rip! In general, the DELAY

command merely tells the HP-71 to slow down displays by the
number of seconds you specify.

There are several other commands in BASIC that control how
things are displayed. CONTRAST is a nice one that lets you
change the contrast of the display. If the display seems too dim, try
executing

contrast 12

or an even higher contrast. If the display is too dark, with all the
dots looking like they’re on, then try

– Page 48 –

contrast 6

or an even lower contrast. The “normal” CONTRAST (after the
batteries are first put in) is CONTRAST 9. I keep mine set to
CONTRAST 7 because I slouch in my chair. You will no doubt find
your favorite CONTRAST too. If you use it both sitting down and
standing up, you’ll probably set it to a low CONTRAST while
sitting and a high one while standing.

So far, all our calculations were done in the HP-71’s standard
display mode. That means that all 12 digits of the answer are
shown, unless there are trailing zeros, which are of course chopped
off. For example, 1/4 gave .25 (not .250000000000), but 1/7 gave

.142857142857 (not .14).

There are three other display modes available, if you want them.
To make answers look like money, you can

fix 2

What this does is instruct the HP-71 to show two fixed digits after
the decimal point, regardless of what they are. So 1/4 still shows
0.25, but 1/7 now shows 0.14 with the rest chopped off. Note well:
this “FIX” display mode only affects the display! It does not chop
anything off internally. It is just like the FIX function on HP, TI,
CASIO, and other calculators.

To go back to the standard display mode, execute

std

This returns the display to normal. Also available are SCI and
ENG, just like scientific calculators have. If you

sci 4

– Page 49 –

then answers are displayed in scientific notation with four digits
after the decimal point. So too,

eng 3

sets the display to show all answers in engineering notation (same
as scientific notation but the exponent is always a multiple of
three), with three digits after the first digit.

Notice that these display modes and the contrast you set all keep
working in CALC mode. But to change them, you have to be in
BASIC mode.

Until we get to the chapter on PROGRAM BASIC mode, I will
assume that you are trying all the examples given, right on the
keyboard. We can’t begin writing BASIC programs until we know
how to speak KEYBOARD BASIC. The next several chapters will
show you how to use KEYBOARD BASIC to its utmost.

The lesson of this chapter has been that you’re in KEYBOARD
BASIC mode when you have to type commands in BASIC and
press [ENDLINE] to get anything done. Next chapter, we’ll look at

the fundamental rules of BASIC grammar.

– Page 50 –

CHAPTER 4:

BASIC VOCABULARY

Unlike English, which has a zillion types of words (nouns,
pronouns, verbs, adjectives, adverbs...), HP-71 BASIC has only four
types of words. These four types of words are:

(1) STATEMENTS (or COMMANDS). When you type BEEP, you

are commanding the HP-71 to emit a sound. You aren’t looking for
an answer to something; you just want to tell the machine to do
something internally. All words and expressions that tell the HP-71
to do something, without giving a number or string back to you,
are called “statements”. I often call them “commands” in this book.
The two terms mean the same thing. If an analogy to English
helps, you may think of statements (or commands) as VERBS;
verbs in the imperative mood: Hey, you! BEEP! Sometimes
statements allow numbers after them to modify the action of the
command. For example, BEEP 1000 emits a beep twice as high as
the normal BEEP. Notice that the 1000 is not in parentheses.
Statements never require parentheses.

(2) FUNCTIONS. When you type SIN(45), you are looking for the

answer of a math problem: the sine of 45°. The SIN part is the
function; the 45 part is the argument of the function, and the
parentheses show where the argument starts and stops. So
SIN(45+45) is very different from SIN(45)+45. Using our

English analogy, functions are like adjectives, with their arguments
being like nouns. When I say “blue house”, Blue is an adjective
operating on the noun House. The word “blue” is a function that
turns its argument blue! SIN is an adjective that modifies the noun
45 into a sine.

Functions that have arguments always require parentheses. Some

– Page 51 –

functions (like PI, DVZ, RES, etc.) do not need any argument and
therefore do not use parentheses.

(3) POSTFIXES. When you type CFLAG ALL, you are commanding

the HP-71 to clear all the user flags (0 thru 63). The word CFLAG is
a statement, as discussed above. The word ALL is not a statement,
because by itself it means nothing. Try typing ALL by itself and see

what happens; it’s not a valid expression. It is allowed after
CFLAG because it modifies the CFLAG command. Since these
type of words always come after statements, I call them “postfixes”
throughout this book. In English we modify verbs with adverbs; in
BASIC we modify commands with postfixes. CFLAG ALL in
English: Hey you! Clear the flags, completely! This analogy is not
perfect, however. In English, adverbs can modify verbs and
adjectives. In BASIC, postfixes only modify statements, not
functions. So don’t get hung up on the analogy between postfixes
and adverbs!

(4) OPERATORS. The “operators” (+ , −, *, /, &, etc.) are akin to

prepositions in English. Like prepositions, they never come at the
end of the sentence, and may begin short or complicated phrases.
Their use is almost identical to the normal way we write algebra,
e.g. 1+2*(3−7) which translates into English as “One with two
threes without sevens”, sort of.

Unfortunately, as in English, some BASIC words can be used in
more than one way. OFF by itself is a statement, but BEEP OFF
uses OFF as a postfix! ANGLE is both a function (as in
ANGLE(x,y)) and a postfix (as in OPTION ANGLE DEGREES)!

So don’t memorize which words are statements, which words are
functions, which words are postfixes, and which words are
operators. Their use determines what type of words they are. Some
words allow more than one type of use.

– Page 52 –

All these types of words are familiar to you. There is only one that
I’ve been keeping a secret. It is the “at” (@) symbol. It exactly
parallels the words “and then” in English. Suppose I want to tell
the computer “BEEP, and then BEEP 1000”. Rather than typing it
in two lines, I can just:

BEEP @ BEEP 1000

The “@” symbol “concatenates” (joins) the two commands into one
long command. You may use @ as often as you wish; you can type
commands all strung together up to 96 characters in length. But
HEED MY WARNING!!! The @ symbol is just as dangerous as
“and then” is in English! Do you know people who tell you a story
and then tell you another one and then they bring in some
unnecessary details and then they mention how their aunt’s doing
and then they tell another story and then and then and then?
Conversation with people like that is frustrating at best. Run-on
sentences have caused more headaches, loss of temper, broken
marriages and murder than all other causes combined! If you start
talking to your HP-71 that way, be careful! It might not turn on one
day!

Seriously, don’t overuse @. It’s nice. It’s even necessary for some
things, like keyboard FOR-NEXT loops (more on that later). And it
lets you load a whole ton of commands into the command stack!
But don’t get into the habit of pressing @ when you should press
[ENDLINE]. Otherwise, your programs will be written the same
way, and that makes debugging them more difficult. More on this
when we get to the chapter on PROGRAM BASIC mode.

In this chapter we saw the rules of BASIC grammar. Next we’ll see
how to use BASIC to manipulate variables in ways not possible in
CALC mode.

– Page 53 –

CHAPTER 5:

VARIABLES IN KEYBOARD BASIC

In CALC mode, we saw how to assign values to variables. For
instance, we typed W=SQR(22^2-18^2) to place 12.65 into N, the

height of the Fonch’s fallen rainspout against the bank wall. This
also works in BASIC mode. Matter of fact, variables keep their
value between BASIC and CALC mode! If you set a variable in one
mode, you can use that value in the other mode by using that
variable. This is one way to have CALC and BASIC overlap.

But variables are more powerful in BASIC mode than in CALC
mode! You can do things in BASIC that you just can’t do in CALC
mode. For example, in BASIC you can tell the HP-71 to consider X
not to be just one number, but to be the name of a whole list of
numbers (say 100 numbers) all hiding under the name X. Or you
can clear all your variables in one fell swoop! You can dump
variables into a “file” in memory, safe from harm, so that later on
you can load the variables back from the file (like a built-in disk
drive!). And best of all, you can put English words or any other text
(not just numbers) into variables too!

DECLARING VARIABLES

In CALC mode, we have been using variables to stand for
numbers. These variables, like the PI function, are always 12 digits
long. So if you key X=1/3, and then key X, you see that X was set

to .333333333333, which isn’t really ⅓; it’s just the first 12 digits of ⅓
(which is as close to the real value of ⅓ as the computer can

handle). If you key X=1/4, then X is set to .25, which is still 12

digits; the last ten digits are zeros!

– Page 54 –

So X contains 12 digits. This is the maximum precision that a
variable can have on the HP-71. But variables can have less
precision if you want them to. If you want a variable to have its full
12-digit precision, then you should tell the HP-71 so. This is called
“declaring” the precision of the variable. The way to declare 12-
digit precision for the variable X is to type:

real x

The reason we call it “real” is because as far as the computer is
concerned, 12-digit precision gives you the real answer. It doesn’t
care that it chops off everything after the 12th digit; it did the best
it could! So it calls the number a real number. (Later we’ll discuss
the TRAP and FLAG functions that let you discover exactly when
the HP-71 did or did not chop something off past the 12th digit. For
most people, 12 digits of precision is more than enough!)

But suppose that 12 digits is too much for you, and you hate seeing
all those digits all over the display! Let’s say you just want 5-digit
precision. You have two options.

One option is to change the display mode to FIX 5, which shows
everything with 5 digits precision. This method has two
drawbacks. First, it shows everything with 5 digits, even when
there are trailing zeros, and that can really get annoying. Second,
FIX 5 is only a display mode; inside the machine, the numbers are
still 12 digits long, and so what you see is not what you’ve got, and
that can get confusing. For example, in FIX 5 mode, setting X to
1/3 sets X to .333333333333. Now, 3*X shows as 1.00000, but RES-1

(which seems like it should be 0) gives −1.00000E−12, which is
scientific notation for −0.000000000001. The reason for this “error”
is obvious in STD display mode.

The other option is to actually force X to have only 5-digit
precision, this way:

– Page 55 –

short x

After executing this command, X will be set to 0. Try it, and then
set X=1/3. Notice that X is not set to the usual .333333333333

(twelve digits) but to .33333 (five digits). This is not a display mode;
X was actually set to only the first five digits of ⅓! Now (in STD

mode) our problem of 3*X looking like 1 is solved. 3*X gives .99999,

which is clearly not 1. (The round-off error, almost invisible in
REAL precision, becomes more obvious in SHORT precision.)

There is one more type of precision, called INTEGER precision. If
you type

integer x

then X can’t hold any fraction digits at all, and can only be integers
(whole numbers) from −99999 to +99999. So if you now set X=1/3,

X contains only 0 (because 1/3 is closer to 0 than to 1). If you set
X=2/3, however, X becomes 1 (because 2/3 is closer to 1 than to 0).

Important note! You can change the precision of variables any
time, but remember three things if you do. First, whenever you
change a variable’s precision by declaring a new precision, its old
value is lost, and its new value is always 0. Second, changing one
variable’s precision effects only the precision of that one variable,
and does not effect anything else whatsoever! For example, if you
set a short variable equal to ⅓, then RES gets the full 12-digit value
of ⅓, even though the variable only stores 5 digits of it. Variables
can have different precisions, but the HP-71 calculations (like the
PI function) are always carried out to 12 digits. (Actually, if you
care, calculations are carried out to 15-digit accuracy inside, and
sometimes to even greater precision, but when the calculating is
done the answer gets rounded to 12 digits, so you might as well
think of it as 12 digit precision!) Third and most important of all,
variables keep their precision (and value) when you enter and exit

– Page 56 –

CALC mode. So be forewarned (since there is no mention of this in
the handbook) that the precision of your CALC calculations
depends on the precision of the variables you use! You cannot
expect X=2/3 to work right if X is an INTEGER variable.

Quiz. After keying the following commands, what would the
display show in STD mode? And why? Now try it.

short x

x=1/3

1/3-x

DIMENSIONING VARIABLES

So far we’ve been using X to stand for just one number (albeit a
variable number). But suppose you want to store a whole list of
numbers in the computer; say, the first-class USA postal rates per
ounce. You don’t have to use a mess of different variables, like this:

A= 20

B= 37

C= 54

D= 71

E= 88

F=105

G=122

⁝ = ⁝

You may do it this way if you wish, but there’s a better way.

In mathematics, we often use expressions like P1, and P2, and P3, to
stand for different numbers. Matter of fact, you can even say Pn to
stand for the “nth” number in the “P” list. (In this example, P3 is
the postage for 3 ounces; Pn would be the postage for n ounces.)
Such notation is called “subscript notation” because the little

– Page 57 –

number is written below the variable. And a list of numbers under
one name like this is usually called an “array”.

In BASIC, we also have subscripted variables, and they are called
“arrays” too. But before you can use an array, you have to declare
it. That way, the computer can set up the memory needed to store
all the numbers you need. How much memory it takes depends on
how long your array is, and that is up to you.

Suppose you need an array containing the seven numbers above.
First decide what precision you need. Since all seven are integers,
we might as well use integer precision (it saves memory too). The
way to declare an integer array called P containing seven numbers
is:

integer p(7)

The number in parentheses after p tells the computer how many
numbers will be in the array. Similarly, you type the subscript
numbers in parentheses too:

p(l)= 20

p(2)= 37

p(3)= 54

p(4)= 71

p(5)= 88

p(6)=105

p(7)=122

So if you want to find the postage for 3 ounces, you just type p(3),

and there it is: 54 cents. So to find P4 you just type p(4). And guess

what! You can even do what they do in mathematics; you can refer
to Pn by typing p(n). Try this: n=5, and then p(n). You should see

88, because Pn=88 when n=5.

Some strange people aren’t satisfied with just lists of numbers in a

– Page 58 –

line, called arrays; they want a whole box of numbers, called a
“matrix” (pronounced MAY-tricks). For example, they might want
to store this arrangement of numbers

1 2 3 4

2 3 4 5

5 6 7 8

− −

−
 − −

into a single variable, as in heavy mathematics. Since it’s a matrix,
let’s call it M. In math, we’d say the number in the first row and
first column is M1,1=l, and the number in the third row, fourth
column is M3,4=−8. Guess what! The HP-71 works with matrices
just like with arrays! All you have to do is specify how many rows
and how many columns you want. Since matrix work usually needs
great precision, let’s create a real-precision 3 by 4 matrix and call it
M:

real m(3,4)

To put the values into M, it’s just like with the array:

m(1,1)= 1

m(1,2)= 2

m(1,3)=−3

m(1,4)=−4

m(2,1)= 2

m(2,2)= 3

m(2,3)=−4

m(2,4)= 5

m(3,1)= 5

m(3,2)=−6

m(3,3)= 7

m(3,4)=−8

what is M2,3? Just type m(2,3) and see −4 displayed.

– Page 59 –

If a variable with one subscript is called an array, and a variable
with two subscripts is called a matrix, what is a variable with three
subscripts called? It’s not called anything, because the HP-71 can’t
do it. But notice that HP books refer to the number of subscripts as
the “dimension” of the variable. Arrays are one-dimension
variables, and matrices are two-dimension variables. So another
term for “declaring” an array or matrix is “dimensioning” it.
Matter of fact, REAL X(100) and DIM X(100) are identical

commands! You can use DIM in place of REAL if you like. Never
forget that DIM does more than just dimension the variable; it also
declares its precision.

But what’s a regular old, plain, simple variable without any
subscripts called? If X=1/3, X isn’t an array or a matrix. It’s called
a “scalar” variable (pronounced SKAY-ler). Scalar variables
contain a scalar number: one single number without fringe
benefits. Scalars are what most mere mortals need most of the
time. If you need an array once in a while, or even a matrix, it’s
nice to know that the HP-71 handles them easily.

By the way, if you buy the HP-71 MATH PAC ROM, it’ll let you
work with arrays and matrices in fantastic ways. It lets you add
arrays in a single stroke; you can multiply matrices in a single
command; invert a matrix in a single command; solve systems of
equations in a single command; perform finite fourier transforms,
solve for the roots of functions, and more, all in one swell foop. If
you are a serious user of arrays or matrices, you might consider
buying the Math Pac, because of the time it saves in array
processing.

Note: if you try to use a variable in a way contrary to its declared
type, you’ll get an error message. If P is an array, you can’t say
P=4. If you do, you’ll see the “Data Type” error displayed. If you

want to clear an array or matrix out of memory entirely, use the
DESTROY command. To zap our P array and M matrix, type:

– Page 60 –

destroy p,m

completely destroys it! The variable is no longer a matrix, array,
scalar, or anything at all. It no longer exists. If your arrays and
matrices start gobbling up memory, you may have to DESTROY
one or two of them to avoid getting the dreaded “Insufficient
Memory” error. If you are really hard up for memory, you can blow
away all of your variables at once by this command:

destroy all

Even though this command sounds ominous (the only one more
frightening is END ALL, discussed later), don’t hesitate to use it,
because all it clears is your variables. It doesn’t destroy anything
else!

COMPLEX DATA TYPE

The HP-71 was designed with five basic variable types. We’ve
already seen REAL, SHORT and INTEGER types (all of which
permit subscripts). The fourth variable type is called COMPLEX,
and represents “complex” numbers like 3-4i (where “i” stands for

the square-root of negative one). Unfortunately, when the design
team at HP finished writing the operating system for the HP-71, it
was 80K long, and they only had room for 64K. So they had to chop
out some features from the operating system and put them into
optional ROM’s that you can buy. One such feature that got the axe
was the complex data type. The HP-71 can have complex variables,
but unless you have the MATH ROM you can’t do anything with
them. Matter of fact, the command that declares variables to be of
complex precision is itself inside the MATH ROM! So if you need
complex (or imaginary) numbers, buy the MATH ROM, which
handles them even better than the HP-15C does.

The DESTROY command doesn’t just clear a variable; it

– Page 61 –

As mentioned before, don’t forget that variables keep their
precision when you enter and exit CALC mode. They also keep
their dimensions. If you need an array in CALC mode, just
dimension it in BASIC and go back into CALC. If you have the
MATH ROM, you can even use COMPLEX variables in CALC
mode!

Final note: if you “re-dimension” an array, that is, if you declare it
to have the same precision but a different number of elements,
then the array is NOT automatically filled with zeros! It is merely
shortened (in which case some values are lost) or lengthened (with
zeros). The same goes for matrices; if re-dimensioned, the values in
a matrix are re-arranged (row by row, not column by column) but
not cleared automatically. There are no restrictions on re-
dimensioning arrays or matrices. If the precision is changed,
however, all the values are cleared. Try this with a few small arrays
and matrices to get the hang of it.

STATISTICS

Nothing significant is said in this book about the built-in statistics
functions (STAT, CLSTAT, ADD, DROP, TOTAL, MEAN, SDEV,
CORK, LR, and PREDV) because the HP-71 Owner’s Manual
covers the topic so well. If you need the stat functions, read the
Owner’s Manual and do all the examples there. They even describe
how to fit data to various curves, with examples!

STRING VARIABLES

All the variables discussed above have one thing in common: they
store numbers. But what if you want to store your name, or an
English word, into a variable?

When you store a number into a real-precision variable, you are

– Page 62 –

storing how many digits? 12. Always. Even if you just store the
number 3 into the real variable X, X still contains 12 digits (11 of
which are zeros). You already know this. X is just one number,
containing 12 digits.

But if you want to store, say, the word “Hello” into a variable, you
don’t want to store digits at all. You want to store five letters all
strung together. Since we don’t want a number but a “string” of
characters, the variable that stores it is called a “string variable”.

String variables look like regular (numeric) variables except that
they have a dollar sign ($) after them. For instance, try this:

N$="Hello"

N$ (pronounced “N string”) is the string variable, and we are
setting it equal to the string “Hello”. To see what N$ contains, do
like we’ve been doing for numeric variables; just type the name of
the variable and press [ENDLINE].

You may be puzzled that we set N$ to “Hello” including the
quotation marks, but when you look at the contents of N$ it merely
shows Hello without any quotation marks around it. The quotation
marks in our original assignment statement, N$="Hello", are just

there to tell the computer that Hello is a string, not a number. If
you type PI, you get the number 3.14159265359. But if you type

"PI", you get the word PI. Try it.

DECLARING STRING VARIABLES

If you don’t declare the precision of a numeric variable, the HP-71
assumes you want REAL precision. In a similar manner, the HP-71
assumes that your string variables should contain 32 characters or
less. You can type N$="Hello" without dimensioning N$ because

“Hello” is less than 32 characters long. But if you were to type this:

– Page 63 –

N$="These are times that try men's souls"

you would get a “string overflow” error because N$ cannot hold
more than 32 characters. If you want a string to hold more than 32
characters, you must dimension it. If you want N$ to hold up to 100
characters, type:

DIM N$[100]

Notice the square brackets. Square brackets in the HP-71 refer to
the position of a character in a string. So DIM N$[100] means “allot
memory for N$ up to its 100th character”. If you need an array of
strings, just remember that the dimension goes first, inside
parentheses, and the string size goes second, inside square
brackets, like this:

DIM N$(7)[100]

which sets up memory for 7 strings containing up to 100 characters
each. They are referred to as N$(l), N$(2) and so on. The HP-71
does not support string matrices, but if you need them we’ll see a
way of faking them when we get to the chapter on PROGRAM
BASIC. Quick! What does DIM N$[96],X,Y,Z do? Right! It

declares N$ to 96-character length, and declares X, Y and Z to
REAL precision.

SPECIAL STRING FUNCTIONS

Functions that operate on numbers are called numeric functions
(surprise!), and functions that operate on strings are called (let me
hear you, all together now) string functions! There are a lot fewer
string functions than numeric functions. No wonder! The HP-71 is
primarily a number-crunching machine. It is happiest taking the
SQR(X) or FACT(253). It becomes unhappy when asked to take the
SQR(“Fred”) or FACT(“Hello”). Since these are not valid

– Page 64 –

expressions, the HP-71 says so. Try it. Notice too that CALC mode
is strictly for number crunching; it does not allow any strings or
string functions.

One very useful string function is LEN. It gives you the length of
the string specified. For example, try:

len(n$)

which gives you the length of n$, which should be 5 because n$ is
equal to “Hello” which is 5 characters.

The numeric functions discussed before all have one thing in
common: you may use a numeric variable as their argument, e.g.
SIN(Y), or you may use a literally spelled-out number, e.g.
SIN(17.7). The same is true of string functions. You may use a
string variable, e.g. LEN(N$), or you may use a literally-spelled out

string (inside quotation marks), e.g. LEN("Hello"). A literally-

spelled out expression, whether numeric or string, is called a
“literal”. An example of a numeric literal is 1537. An example of a
string literal is "Hello". You may use either the double quotation

mark (") or the single quotation mark (') to delineate literal

strings, but don’t get them mixed up! If you start a string with
double quotes, end it with double quotes: if you start it with single
quotes, end it with single quotes. The HP-71 sometimes seems to
change double quotes into single quotes (we’ll see examples of this
in key assignments and in program labels) but you may type either
one as you please.

Note to philosophers: notice that PI is neither a variable (it cannot
vary) nor a literal (it contains no digits). It is a function. A
philosopher of mathematics would say “That is a contradiction in
terms; functions have to be functions OF something, but PI has no
argument and always gives the same value, and therefore is not a
function but a CONSTANT.” I agree whole-heartedly. PI should be

– Page 65 –

called a constant, but it isn’t. It is called a function. This solves the
dilemma of what to call similar functions, like RES. RES acts like a
constant (it gives a value, and has no arguments), but it does vary.
It can’t be called a variable, though, because the proper way to
assign values to variables does not work with RES (try RES=12345

and see what happens). So we just call it a function.

Speaking of RES, notice that RES is never a string. The value of
RES is changed every time a numeric variable is assigned a value
(or whenever a value is displayed or printed). RES is never
changed from a string operation.

SQUARE BRACKETS and SUBSTRINGS

Type these commands:

DIM N$[96]

N$="These are limes that try men's souls"

N$[ll,24]

What do you see? You should see three words. The square
brackets at the end of the string are special modifiers that tell how
much of the string to use. The 11 means “start at the 11th
character” and the 24 means “stop at the 24th character”. So we
just got part of N$, from the 11th to 24th character. A small string
taken from a bigger string is called a “substring”.

If you only use one number, it is taken to be the “start” number
only. Using the command stack so that you don’t have to retype it,
try this expression:

N$[11]

Here’s the best part about substrings. Suppose you don’t want
“limes” in that string but “times”. Using substrings, you can
change part of N$ into something else:

– Page 66 –

N$[11,11]="t"

N$

Now you see “These are times that try men’s souls”. Try this:

N$[ll,ll]="the T"

N$[26,26]="d"

N$[38,39]="le"

N$

You should see a new sentence, about the poor man’s wet weather
doormat!

Although not mentioned in the HP literature, notice that square
brackets can modify not just strings but even substrings! Try this:

N$[LEN(N$)/2][3,5]

This means that you want the 3rd through 5th character of the
second half of N$, which is “hat”. Since this involves two substring
concepts (“second half” and “3rd through 5th character”), doing it
with double square brackets is logical. Doing it according to the
HP books, we’d need

N$[LEN(N$)/2+2,LEN(N$)/2+4]

to do it! Note well, however, that assignment statements can only
have one set of brackets on the left side of the equals sign.
N$[10,20]="XYZ" is okay, but N$[10,20][2,4]="!" is not valid.

Here’s another tidbit not in the manual. You might wish to insert
something into the middle of a string. To do that, specify a
substring that starts where you want but has no length:

N$[10,0]="INSERTED TEXT"

To insert text at the very beginning of a string, you may use N$[1,0]
or N$[0,0], whichever you prefer.

– Page 67 –

Quiz! Suppose I$=“123456789”. What is I$[3,6]? What is I$[6]?
What does I$[3,7]="−" do to I$? Guess. Try it.

Note to the curious: The HP-71 is consistently algebraic in CALC
mode; all functions come before the number(s) involved, and all
operators come between. The same is true for all HP-71 functions,
even the string functions... except for the square brackets. They
always come at the end. If you are used to other BASIC’s way of
doing substrings (with functions like MID$, LEFT$ and RIGHT$),
square brackets may take a bit of getting used to. If you’ve never
worked with BASIC before, you’ll find square brackets easy to use.

AMPERSAND (&)

As square brackets allow us to chop up strings into smaller strings,
the ampersand (&) allows us to join strings together into longer
strings. For example,

"ABC"&"123"

gives a result of “ABC123”. The “&” can be thought of as an “and”;
it tacks the two strings together. Some people think of the “&” as a
“+”, as if it “adds” the two strings together. This can be
misleading. When you add 1+2, you don’t get 12; but "1"&"2"

gives "12". Rather than +, the & symbol is more like the @

symbol, the statement concatenator, which joins multiple
statements together in one line. So we’ll call “&” the “string
concatenator”.

Notice that you can combine square brackets and ampersands in
amazing ways. For example,

"ABCDEFG"[2,6]&"1234567"[3,5]

– Page 68 –

gives “BCDEF345” because we concatenated the 2nd through 6th
characters of “ABCDEFG” with the 3rd through 5th characters of
“1234567”. But notice that

("ABCDEFG"[2,6]&"1234567")[3,5]

gives “DEF” because that’s the 3rd through 5th characters of
"ABCDEFG"[2,6]&"1234567". Using parentheses like this is the

only way to have square brackets refer to more than the
immediately previous string. Remember the algebraic hierarchy
we learned for the mathematical functions? Multiplication “comes
before” addition. Same here; square brackets “come before”
ampersands in string evaluation. I guess we could call it “string
function hierarchy”, but nobody else does, so I won’t. Just
remember that parentheses are more important than brackets, and
brackets are more important than ampersands.

CHR$ and NUM

CHR$ (“Character string”) is a handy function that changes a
number into a single-character string. For instance, try this:
CHR$(74)&CHR$(72). You should see “JH” in the display. That’s

because the 74th character that the HP-71 knows is “J”, and the
72nd character is “H”. These numbers are called the ASCII
(pronounced “ASK-ee”) codes of their corresponding characters.
When the HP-71 stores a string, it actually is storing a string of
ASCII codes; when you display the string, it converts each code
into the appropriate character. I did not include an ASCII code
table in this book because an excellent one comes with your HP-71,
on pages 41-45 of the HP-71 Quick Reference Guide (“Pocket
Guide”) which you ought to keep in the 71’s carrying case at all
times.

You may object that you can get “JH” by typing “JH”, so what do

– Page 69 –

you need CHR$ for? You need it for characters that you can’t type.
For example, the backslash character (\) is not on the keyboard. It

is ASCII code 92. If you want to display it, just use CHR$(92).

So CHR$ takes an ASCII code number and gives you the
corresponding character. The inverse function is called NUM
(“Number”). NUM takes a character and gives you its ASCII code
number. For example, NUM("J") gives 74, because the ASCII code

number for “J” is 74. Notice that upper-case letters have different
codes than lower-case letters. NUM only looks at the first character
of its argument, so you can send it long strings. For example,
NUM("Jack Horner") gives 74 too. Everything after the first

character (J) is ignored by NUM.

You can use CHR$ and NUM to pack a lot of numbers into very
little memory. For example, if you have 100 numbers to store,
ranging from 0 to 255, then you can store them all in a string as
ASCII characters. This takes only a fraction of the memory that
would be required by an array.

Example: Let’s do it with an array first, then see how it’s done with
a string. To make an array named “A” of 100 integers, you would
type INTEGER A(100). To set the 17th one equal to 153, you’d type

A(17)=153. To get the 17th one back out again, you’d just type

A(17). Now let’s do it with a string. To create a string named “A$”

100 characters long, you type DIM A$[100]. To set the 17th

character equal to ASCII code 153, you type
A$[17,17]=CHR$(153). To get the ASCII code for the 17th

character back out, you type NUM(A$[17]).

STR$ and VAL

Have you noticed that every time you display a number, the HP-71
adds a space onto the front and back of it? Try this:

– Page 70 –

X=153 @ "Price = $";X

What we want, of course, is

Price = $153

but that’s not what we get. Instead, we see

Price = $ 153

with a space between the $ and the 153. We can get rid of the space
by using the STR$ (“String string”) function. The STR$ function
takes a number and turns it into a string that looks exactly like the
number as it would be displayed, except that it does not add those
dumb spaces! So type

"Price = $";STR$(X)

and you’ll see

Price = $153

Using STR$ just to eliminate spaces, however, is like using the
HP-71 in just CALC mode. It’s okay, but a waste of power! The real
power of the STR$ function lies in the way it allows you to use
numbers as strings. Many functions only work on strings, so if you
want to use that function on a number, use STR$ first. For
example, the LEN function only tells you the length of strings, not
the length of numbers. Suppose you want to find out how long the
display of X would be. You can display it and count the display
positions. Or you can use LEN(STR$(X)). Try it. This principle

applies to all string functions; to use them on numbers, just use
STR$ first, to turn the number into a string.

The opposite function is VAL (“Value”). VAL takes a string, and

– Page 71 –

turns it back into a number. For example, type A$="153". Now

suppose you want to get the number 153 back out of A$. You can’t
use NUM; that just gives ASCII code number of the first character,
which we don’t want at all. Use VAL(A$); this gives us 153 back.

But VAL is a lot more powerful than that! It can also evaluate
entire mathematical expressions. For example, if A$="1+2*3^4",

then VAL(A$) is 163, same as if you typed 1+2*3^4 in CALC

mode!

But here’s the real clincher of the VAL function. You can send it
strings that contain variables, and it evaluates them correctly! For
example, set A$="PI*R^2". That’s the formula for the area of a

circle with radius R. To find the area of a circle with radius 7, just
set R=7 and then type VAL(A$) to see 153.938040026, the area. To

use long, complicated strings with lots of variables, be sure that
you DIMension the string first. This ability of VAL to evaluate

expressions is the heart of some of the most powerful programs
written for the HP-71.

Note: even though we have not yet discussed programming, we
have seen two ways of “programming” the HP-71 to do repetitive
calculations. The first method is in CALC mode, and uses the
command stack. Expressions using variables are evaluated in
CALC mode, then the variables are changed, and then the
expression is recovered from the command stack and re-evaluated.
The second method was just discussed; expressions are placed into
strings, and evaluated with the VAL function, then the variables
are changed, then the string is re-evaluated with the VAL function.

Of these two methods, CALC is easier for one or two functions. But
the command stack is not high enough if you have many functions
to be evaluated. In this case, use the string and VAL method.
There is practically no limit to the number of string expressions
you can have in memory at once. For example, you can store one
expression in A$, another in B$, and so on. The trick will be

– Page 72 –

remembering the name of each one! You can always look at A$, of
course! All you have to do is type A$ and press [ENDLINE].

POS, UPRC$, VER$

There are only three more string functions, and they’re unrelated
to each other. The first is POS (“Position”), and is used to find
substrings inside longer strings.

Type A$="These are times that toy men's souls." Notice

the typo: it should be “try”, not “toy”. We have already seen how to
change the “o” into an “r”, using square brackets, but it requires
knowing where the “o” is inside the string. Doing it by hand is a
payne. So let’s have the computer do it! Type POS(A$,"o") and

you’ll see 23. This means that “o” is the 23rd character in A$. POS
looks for the string you specify, and tells you where it is first found.
Luckily, the “o” we want is the first one in the string! To change it
to “r” as it should be, type:

A$[RES,RES]="r" @ A$

I used RES because RES’s memory is better than mine! Hint: get
used to using RES a lot. It’s a handy function. Just as good HP-41
owners use LASTx all over the place, good HP-71 owners should
use RES a lot. I have yet to see a program that puts RES to
significant use. This will no doubt change as ’71 users become
more experienced.

Now, suppose you want to find not the first “m” in a string, but the
second? There are two ways of doing this. You can specify just a
portion of the string in the POS function by using square brackets;
POS(A$[15],"m") looks for “m” in just the 15th through last

characters of A$. The other way is by having POS itself specify
which portion of the string to search; POS(A$,"m",15) searches

– Page 73 –

for “m” in A$ starting at the 15th character of A$. So to find the
second “m” in A$, type POS(A$,"m",POS(A$,"m")+1), which

should give 26, because we told the computer to find the first “m”,
add 1, and then search for “m” starting at that position.

Never forget that functions don’t have to have timid numbers as
their arguments; they can be awesome expressions of any
complexity you can dream up! As your BASIC expertise increases,
you’ll actually find it easier to use nested arguments like this, just
as in English we easily use grammatical structures that are no
doubt difficult for the foreign student to understand. Thank
goodness that the HP-71 speaks BASIC better than any of us ever
will!

Gloat note: The HP-41 has limited ASCII string ability. If you
create an ASCII (TEXT) file in its extended memory consisting of a
single record containing 253 “A”s followed by a single “B”, and
then use the POSFL function to search for 23 “A”s followed by a
single “B”, it takes the HP-41 one minute and 7 seconds to find it.
The HP-71 eats strings for breakfast. Using the POS function to
find 23 “A”s followed by a “B” in a string consisting of 253 “A”s
followed by a “B” takes less than three tenths of a second! If you
are an HP-41 graduate, don’t worry about string functions taking a
long time on the HP-71. They don’t. They’re even faster than string
functions in Microsoft® BASIC as found on most home computers
from the TRS-80® to the IBM® PC.

Another handy string function is UPRC$ (“Uppercase String”). If
you want to see all the lowercase letters in A$ in uppercase
(capitalized), just use UPRC$(A$). Note well: UPRC$ does not
change its argument; it merely returns the uppercase version of it.
If you want to change A$ itself into uppercase, you have to type
A$=UPRC$(A$). This applies to all functions; they don’t change the

argument, but merely return something based upon the argument.

– Page 74 –

Suppose we want to find the first “e” in a string, regardless of
whether it’s upper or lowercase. Here’s how you do it:

POS(UPRC$(A$),"E")

which looks through the uppercase version of A$ for “E”. Notice
that A$ itself isn’t changed to uppercase! This method is often used
in HP-71 programs.

One more string function: VER$ (“Version String”). Type VER$
and see what it gives. If you see only HP71:1BBBB, then you have
the basic, bare-bones, original HP-71 with nothing plugged into the
ports. (If you see other things after the HP71 version string, it
indicates that you have other LEX files plugged into ports or
floating around in RAM, and you can probably guess by looking at
VER$ what they are!) The “BBBB” stands for the version of the
four internal ROMs. The first marketed version of the HP-71 was
the BBBB version (if you have an AAAA version, you do not need
to read this book!). An HP-71 bought later may have higher version
letters. Later models of HP-71 (e.g. HP-71C) will certainly have
higher version letters. For example, the HP-41C went through
several versions, and then they came out with the HP-41CV which
had more RAM inside, and then they released the HP-41CX which
had more RAM and more ROM. My HP-41CX is the original CX,
and its three ROMs’ version letters are NFL! So VER$ will become
an important function as time goes by. HP will update your ROMs
to newer version ones for a nominal fee.

Do you understand the string functions? Programs and routines
and hints that utilize them all can be found after the chapter on
PROGRAM BASIC.

LET

So far, when we wanted to assign a value to a variable, we simply

– Page 75 –

stated the equality. For example, to set X equal to PI, we simply
said X=PI. There is another way of saying the same thing, and

beginners find it less confusing:

LET X=PI

The command “LET” is a BASIC statement which means what it
says, somewhat as in the sentence “Let the show begin!” or “Let
them eat cake!” Personally, I think it should have been called SET.
And it should rain beer. But it doesn’t!

How would you add 1 to X? Of course, you’d type X=X+1. But such

a statement would give a mathematician the shakes; how on earth
can X=X+1? If you are a purist, you may type LET X=X+1 instead,

which makes more sense. Operationally, however, the two
statements are identical. The LET command is always optional.

FOR / NEXT

Suppose you want to do a command several times. You have two
options. The obvious solution is to go ahead and do it several times
yourself. For example, to BEEP ten times, you may type BEEP and

press [ENDLINE] ten times. Of course, you’d use the command

stack to shorten your work.

There is a better way. All we need is a “counter” that counts from 1
to 10, and BEEPs along the way. You can use any variable as the
counter. Let’s use X, because it’s my favorite variable. Here’s the
scenario. I tell the HP-71 to BEEP for all values of X from 1 to 10.
The HP-71 then sets X to 1, BEEPs, goes to the next X (2), BEEPs
again, goes to the next X (3), BEEPs, and so on, until it BEEPs for
an X value of 10, then stops. Try this:

FOR X=l TO 10 @ BEEP @ NEXT X

– Page 76 –

(The spaces here, as always, are optional.) Remember that the “@”
symbol is the “statement concatenator” that strings commands
together. We have three commands here. FOR X=1 TO 10 means

“Use X as a counter from 1 to 10.” By itself, this would only set X
equal to 1. But if followed on the same line by “NEXT X”, the X
will count from 1 to 10, and all the statements concatenated
between the FOR and the NEXT will get executed along the way!
Try changing the 10 to other numbers (use the command stack!).
Try changing the BEEP to other commands (try just X).

This ability to “loop” from the keyboard is very useful, especially
when you use the counter value itself. Suppose you wish to clear a
portion of an array. Do you see why

FOR X=10 TO 20 @ M(X)=0 @ NEXT X

would clear M(10), M(11), M(12), ... M(20) to zero?

Besides specifying the starting and stopping place for the counting,
you can even specify how much to count by:

FOR X=200 TO 2000 STEP 100 @ BEEP X @ NEXT X

sings a silly ditty. Try it and drive your cat mad. What was
happening, of course, was the HP-71 BEEPing at a frequency of
200 Hz, then 300 Hz, then 400 Hz, and so on, up to 2000 Hz. “STEP
100” means “add 100 to the counter each time you go to its NEXT
value.” If no STEP is specified, as before, then the default step of 1
is used.

Sometimes an infinite loop is useful. Try this:

FOR X=l TO INF @ TIME$ @ NEXT X

How about that! A running digital clock, and we didn’t even write a
program! If the display looks jumpy (some seconds lasting too long,

– Page 77 –

others too short) then type

delay 0,0

That tells the HP-71 to use no delay between things that are
displayed. Normally there is ½ a second between displays. To set
the display back to its normal delay, type

delay .5

The FOR / NEXT loop is one of the most powerful devices BASIC
offers. There is no limit to the uses for it. Suppose you want to add
the numbers from 1 to 100, and have forgotten the formula, and
don’t want to look it up, and don’t want to bother adding them
yourself. Try this!

T=0 @ FOR X=l TO 100 @ T=T+X @ NEXT X @ T

This means “Clear the running total (T), then add the numbers 1 to
100 to the running total, then display the running total.” In less
than two seconds the total (5050) is displayed!

You can count backwards in a loop too! Just use a negative STEP.
After typing DELAY 1, type the following all on one line and then

press [ENDLINE]:

FOR X=10 TO 1 STEP -1 @ "T MINUS";X;"SECONDS" @

NEXT X @ "LIFT OFF!"

The only trouble was “1 seconds”, but what do you want, good
grammar or a good time? Can you figure out how to fix it to say “1
second”? An inelegant solution is:

FOR X=10 TO 2 STEP -1 @ "T MINUS";X;"SECONDS" @

NEXT X @ "T MINUS 1 SECOND" @ "LIFT OFF!"

– Page 78 –

Try inventing wild and crazy FOR / NEXT loops on your own.
Most heavy users of variables inevitably wind up becoming heavy
users of FOR / NEXT loops. They are not only useful time savers,
they’re also fun!

In this chapter we’ve seen how to use variables to hold data from
the keyboard. In the next chapter we’ll see another, more
permanent way of storing data in the HP-71.

– Page 79 –

CHAPTER 6:

HP-71 DATA FILES

So far we’ve used the HP-71 as a calculator. It hasn’t really kept
much information in memory for us except in the form of variables.
Admittedly, this can be a lot of information, especially if you have
arrays or matrices floating around. But variables have two big
drawbacks. First, their number is limited (I use X, Y, Z, J and K,
and A$, B$ and C$ almost exclusively), and it’s easy to wipe out the
value of a variable by using it for something else. It’s like a blank
cassette that you record music onto, only to realize too late that it
wasn’t really blank. Variables have no “erase prevention tab” like
cassettes do! Variables were designed to vary. Their second big
drawback is that if you get a lot of them haunting your machine,
and you want to DESTROY a few to recover the memory they’re
using up, there is no function that tells you whether a variable
exists or not. You have to DESTROY ALL. And that wipes out ALL
of your variables, whether they were important or not.

To solve this dilemma, HP provided us with a way of saving data in
a more permanent block of memory. These blocks of memory are
immune to the DESTROY command, and are called “data files”.
The HP-71 can be thought of as a filing cabinet, with each drawer
being a file full of data.

Before we can put data into a data file, we have to first create the
data file. It’s sort of like dimensioning an array; we have to tell the
computer to set aside enough memory for the data.

There are several kinds of files that the HP-71 can have, and each
is for specific purposes:

– Page 80 –

Let’s cover these one at a time.

SDATA FILES

One of the most confusing chapters of the HP-71 Owner’s Manual
is Section 14, “Storing and Retrieving Data,” all about how to use
“files”. After reading that section, I was convinced that the book
was written by somebody who never used an HP-71! The book
even implies that there are two kinds of files: sequential-access
files, and random-access files, which is not at all true!

WHAT IS AN SDATA FILE?

“SDATA” stands for “stream Data” and is a file type designed for
compatibility with the HP-41. But don’t let this suggest that
SDATA files are only for HP-41 owners! In fact, I use SDATA files
more than DATA files, yet I’ve never placed HP-41 data into them!
You may even find SDATA files the most useful file type the ’71
offers.

HOW TO CREATE AN SDATA FILE

If you want to keep an array (say, a 100-element array called A) in a
file, then an SDATA file is your answer. To create a 100-element
SDATA file called MYDATA, use the command:

BASIC BASIC programs
KEY Key assignments
DATA Numbers and Strings

SDATA Numbers
TEXT Strings

----------------- -----------------------------------
FILE TYPE INTENDED CONTENTS

BIN and LEX Machine-Language programs
FORTH FORTH-language programs

– Page 81 –

CREATE SDATA MYDATA,100

This creates 100 “records” numbered 0 through 99, and fills them
with zero for you.

HOW TO ASSIGN A CHANNEL NUMBER

Rather than referring to your SDATA file by its full name, the
HP-71 allows you to assign a number to it, and then refer to the file
by that number. This handy “nickname” number is called the file’s
“channel number.” Use television channel numbers as an analogy:
you don’t have to dial a station’s full name (e.g. KNBC, WWTV,
etc.), but can merely dial channel #2.

To assign a channel number to your file, use the command:

ASSIGN #1 TO MYDATA

From now on, you don’t have to refer to “MYDATA” again, but can
merely refer to channel #1. (Note: Other versions of the BASIC
language have an “OPEN” command. In HP-71 BASIC, “ASSIGN”
performs the same operation.) You can have more than one
channel assigned at one time, each one to a different file.

HOW TO RECALL A RECORD

The 100 numbers in “MYDATA” (whoops; I mean in #1) are called
“records”, one number per record (the HP-41 calls them
“registers”, and the British call them “stores”). The records are
themselves numbered sequentially starting at 0 (for the first
record) on up. It would seem that the first record ought to be called
record 1, but it isn’t, and I can’t tell you why. That’s just life.

To read the value of any particular record, you must specify three
things: the channel number of your file, the record number, and a
variable that you wish to “catch” the record’s value. For example,

– Page 82 –

READ #1,10;X

reads the value of record 10 (in channel #1) and stuffs it into the
variable X. You can then PRINT X or do whatever you want with
it. Don’t worry; this does not “assign” X to record 10! Changing the
value of X will not change the value of record 10.

HOW TO STORE A RECORD

Storing a value into a record is similar:

PRINT #l,10;X

“prints” the value of X into record 10, replacing whatever had been
there. Note that this does not “insert” X into your file, like
inserting a card into a deck. It replaces record 10’s old value with
the value of X. (We’ll see an easy way of inserting/deleting records
below). You don’t have to use a variable; you can use a literal
number instead of “X”.

HOW TO FIND HOW MANY RECORDS EXIST

When PRINTing or READing records to/from an SDATA file, you
may use any record number at any time, provided that it exists.
This may seem obvious, but it isn’t true of DATA files! DATA files
can be a pain! As I said, SDATA files are very nice. If you forget
how many records your SDATA file contains, an easy way to find
out is to CAT it, and divide its byte length by 8. For example, if you
type CAT MYDATA (sorry, CAT doesn’t use channel numbers!),
you’ll see

MYDATA SDATA 800

in the display. This means that MYDATA is an SDATA file, and is
800 bytes long. Divide 800 by 8, and you get 100, the number of

– Page 83 –

records it contains.

I personally always reserve record 0 to contain how many records
there are, and then use the other records for my actual data.

STORING/RECALLING MORE THAN ONE NUMBER AT A
TIME

There are some tricks I haven’t mentioned. If you want to store or
recall more than one number at once, you can do it in a single
command! For example,

READ #1,12;X,Y,Z,T

reads record 12 into X, record 13 into Y, record 14 into Z and
record 15 into T! Likewise,

PRINT #1,12;X,Y,Z,T

stores X into record 12, Y into record 13, and so on. This is very
handy when you have a handful of variables that you wish to store
and recall as a group.

But even better is the ability to store and recall whole arrays in one
fell swoop. Suppose you have the array of 100 numbers mentioned
above, from DIM A(100). You wish to recall MYDATA into the
entire array. All it takes is:

READ #1,0;A()

to read all 100 values! (The parentheses indicate that A is an array,
but they are optional. I never use ’em myself.) The HP-71
recognizes A as an array, and simply keeps reading from channel
#1 until the array is filled. Of course, if the array is bigger than the
file, you’ll get an error message. By the way, you can mix array
variables and regular variables in a single READ command, like
READ #1,15;J(),K,G(),P(),Q. Just make sure you don’t run off

– Page 84 –

the end of the file!

PRINTing arrays is just as easy:

PRINT #1,0;A()

stores all of array A into the file, starting at record 0. Again, the
parentheses are optional. If you wish to store or recall a matrix, put
a single comma between the parentheses like this (,) to indicate a
matrix. Or you can omit the parentheses altogether, which I find
less confusing.

Since an SDATA file is simply a linear list of numbers, you can
store an array and recall it as individual numbers, or mix & match
however you like. The fact that you stored single numbers, or
arrays, or matrices, is remembered only by you. The file only
contains the numbers themselves.

SEQUENTIAL ACCESS

So far, when PRINTing or READing to/from an SDATA file, we’ve
been specifying the record number desired. This is called “random
access” to the file, because we are able to access any record we
randomly desire. But notice something!

When we READ #1,12;X,Y,Z,T we didn’t tell the ’71 to place

record 13 into Y; it did it automatically. We specified record 12,
which placed the “file pointer” there. After reading record 12 into
X, the ’71 automatically moved the pointer forward one record, and
thus read record 13 into Y. And so on, until it read record 15 into T,
and once again moved the pointer forward one record. So after this
command is finished, the pointer is sitting on record 16. Suppose
we then give the command:

READ #1;L

– Page 85 –

What do you think will happen? We didn’t specify which record to
use! But the pointer is on record 16, so of course record 16 gets
read into L, and then the pointer is moved ahead to record 17. This
is called “sequential access” because it accesses the records
sequentially, one after the other. Notice that there is no such thing
as a sequential file or a random-access file! Any file can be
accessed randomly or sequentially.

HOW TO MOVE THE FILE POINTER

To place the file pointer wherever you want it, use the RESTORE
command. To point at record 57, for example:

RESTORE #1,57

And from there you can access the file sequentially to your heart’s
delight. But you can’t READ past the end of the file, of course! If
you try, you’ll get an error.

BUT!! Here’s the magic of sequential access. You can PRINT
sequentially past the end of the file! Suppose we do the following:

READ #1,99;X

That reads record 99 (the last record) into X, and moves the file
pointer to record 100 (which doesn’t exist). Then if we

PRINT #1;PI

the ’71 performs a miracle! It does not give an error! It actually
expands the file to 101 records long, and places the value of PI into
record 100 (and moves the pointer to record 101)! Now if you CAT
MYDATA, you’ll see that it is 808 bytes long. All the hassle of
memory shifting etc. is automatically done for you! PRINTing

HOW TO EXPAND A FILE

– Page 86 –

more than one number (as a list or as an array) also works past the
end of the file!

Notice, however, that RESTORE is a random-access type of
animal, and so you cannot RESTORE the pointer to a non-existing
record. The only way to set the pointer “above” the file is by
READing or PRINTing the highest-numbered record. This makes
sense, since this is normally done by a previous sequential PRINT.

HOW TO INSERT/DELETE A RECORD

When you combine the ability to expand a file with the ability to
PRINT a whole array at once, you get the ability to insert a new
record into the file. Suppose our file is 100 records long, and we
wish to insert a new record, X, between records 52 and 53 (thus
becoming the new record 53, and raising the old record 53 up to
record 54 and so on). All it takes is:

DIM T(100-53)

READ #1,53;T

PRINT #1,54;T

PRINT #1,53;X

which takes about 0.7 seconds to execute! No need for a special
INSERT command! READING an array and PRINTING it
somewhere else allows not only insertion, but also deletion,
rotation, and more!

HOW TO DE-ASSIGN A CHANNEL NUMBER

To “close” a file and de-assign its channel number, you may use
the ASSIGN command like this:

ASSIGN #1 TO ""

This assigns channel #1 to “nothing” and makes MYDATA

– Page 87 –

unavailable to READ and PRINT commands until assigned again.
Notice that the END command also closes all open files. Of course,
PURGEing an open file not only closes it (for good!) but also de-
assigns its channel number.

Note well! Whenever HP-71 memory is “reconfigured,” all open
channels get closed! This is not obvious in the Owner’s Manual.
Memory reconfiguration occurs in three instances: when FREE
PORT is executed, when CLAIM PORT is executed, and when the
contents of any plug-in ports are changed (except plugging or
unplugging the card reader, which is not a soft-addressed device).
So don’t do any of these when files are open, or they’ll get closed,
possibly resulting in a suspended program failing to be able to
CONTinue.

SDATA TIDBITS

There are dire warnings in the Owner’s Manual about “end-of-file
markers” and “loss of data” and other bizarre things. Pay no
attention to it. None of it applies to SDATA files, just DATA files.
As I said, SDATA files are very nice!

One thing was left unsaid about SDATA files: You can only store
numbers in them, not strings (through “normal” operations). If you
have an HP-41 and its HP-IL module, you can have fun dumping
numbers AND alpha strings into SDATA files on the HP-71!

It may be obvious by now that manipulating files from the
keyboard is not too easy. It was really meant to be done from a
program. However, saving an array for safekeeping in a file is a
common practice, as well as using a FOR / NEXT loop to
manipulate the file. To reverse a 100-element array A, for example:

PRINT #1,0;A

FOR X=0 TO 99 @ READ #1,X;A(100-X) @ NEXT X

– Page 88 –

In general, the complexity of file usage is outweighed by the fact
that files are safe places to put data. The slings and arrows of
outrageous functions like DESTROY do not affect files.

FILES IN GENERAL

Now that you have some data in an SDATA file, you can do some
wonderful things with it. There are a lot of BASIC statements that
deal with files. If you type CAT ALL, you’ll see the top of the
“catalog” of files in memory. Pressing the up and down arrow keys
allows you to scroll through the catalog, and pressing the right and
left arrow keys lets you see the entire catalog entry for each file.
The display shows the important facts: the file’s name, its security
type, its file type, and its size in bytes.

File names are always 1 to 8 letters long. The first character must
be a letter, but after that you can use numbers and/or letters. To
change the name of a file, just type

RENAME FRED TO BILLY

That would give the FRED file the new name BILLY. To kill a file
from memory, all it takes is

PURGE BILLY

and BILLY is cleared from memory. Be sure you really want to do
this before doing it, because there is no easy way to retrieve a
purged file! It is as good as gone.

But suppose you have a really important file that should never be
purged? Then you can protect it! Type

SECURE FRED

and the FRED file’s security type shown in the CATalog changes to

– Page 89 –

“S”. This means that you can read from the file but you can’t write
to it or purge it. To write new data into it, just

UNSECURE FRED

and write whatever you like. A good idea is to UNSECURE a file,
ASSIGN it a channel number, then SECURE it right away. That
way you can write to it (because it was UNSECURE when you
opened it) but you can’t purge it (because it is SECURE).

If you wish to make a copy of the file in memory, so that you can
play with one copy and have the other copy as a backup for safety’s
sake, then simply

COPY FRED TO BILLY

This makes a new file in memory called BILLY that is identical to
FRED in all respects except name.

If you have a card reader, tape drive, disk drive or other mass
memory device, then you can even COPY the file onto a mass
memory medium. This allows you to keep truckloads of data on
file, and COPY it back into the HP-71 as needed. The proper
BASIC syntax for the operation of these optional devices is not
described in this book.

TEXT FILES

Unlike SDATA files, which can only store numbers, TEXT files can
only store strings, and can only store sequentially. Other than
these two huge differences, SDATA and TEXT files work very
much alike. To create a TEXT file, you

CREATE TEXT MYWORDS

This creates a TEXT file called MYWORDS. To open the file,

– Page 90 –

ASSIGN #1 TO MYWORDS

and to write data into it,

PRINT #1;"This is a test"

Even though you can only write sequentially to TEXT files, you
may read either sequentially or randomly.

Even though TEXT files store everything as text, you can pretend
to store numbers in them and read numbers back out. For
example, you could

PRINT #1;12345

and later READ #1;X and find the number 12345 in X. But you

could also READ #1;A$ and find “12345” in A$. You see, TEXT

files store numbers as text, and if read back into numeric variables,
the text is translated back into a number. Numbers in text form
generally take up more memory than regular numbers, so don’t
use text files to store a lot of numbers!

DATA FILES

As you recall, SDATA files can only store numbers, not words,
names, street addresses, and so on. If you need to store a mixture
of numbers and text in a file, then a DATA file is what you need!

You also remember that an SDATA file can only hold one number
in each record. Guess what! DATA files can hold as many items
(numbers or words) as you wish. This allows you to keep logically
related items all together in one record.

HOW TO CREATE A DATA FILE

Unlike SDATA files, whose records are always 8 bytes long, DATA

– Page 91 –

files’ records can be as short or as long as you like. Unfortunately,
this means that you have to figure out how long you want them to
be! It’s not that difficult; you just figure how many numbers and
words you wish to store in each record. Here’s an example.

Let’s say we want to write a Telephone Number program that
stores the names of friends and their telephone numbers in a
DATA file. Since DATA files allow multiple items in each record,
let’s put each person’s name and telephone number in one record.
So we would like to store “Richard J Nelson” and his telephone
number 7145490581 all in one record of a DATA file.

We must first answer the vital question: What is the maximum
length of the text we wish to store in each record? If you can’t
answer that because you have no idea how long your text might be,
then you shouldn’t use a DATA file; use a TEXT file, which doesn’t
care how long your text is.

In our case of a telephone number program, let’s agree to limit the
names to 21 letters long. The rule for record length in a DATA file
is:

Total Maximum String Length PLUS
3 bytes for each string PLUS
8 bytes for each number.

Since we have one string of 21 characters, and one number, our
telephone DATA file needs 21 + 3 + 8 bytes per record, for a grand
total of 32 bytes! (Your own custom DATA files will of course have
different record lengths).

Let’s name our phone data file “PDATA”. But before you create a
file you have to decide how many records you want! Let’s reserve
room for 50 names and phone numbers. RECAP: we want a DATA
file called PDATA with 50 records of 32 bytes each. Here’s how it’s
done:

– Page 92 –

CREATE DATA PDATA,50,32

Just remember to put the number of records first, then the record
size. Since the number of records is logically more important, it is
easy to remember that it comes first. Also, remember that when
you create SDATA files, you only specify the number of records,
because record length is automatically set to 8 bytes (enough for
one number).

HOW TO ASSIGN A CHANNEL NUMBER

You assign a channel number to DATA files in exactly the same
way as SDATA files:

ASSIGN #1 TO PDATA

From now on, you refer not to “PDATA” but to #1.
RANDOM ACCESS STORAGE

To store a record, write its entire contents to the file at once. For
example,

PRINT #1,5;"Phineas McLanagan",1234567

writes Finny’s name and phone number into record #5. Notice that
the first item is a string, and the second is a number. You must
keep track of which items are of what type, so that recalling them
into the right type of variable is easy. Unlike TEXT files, DATA
files insist that numbers get read into numeric variables, and
strings get read into string variables, and never strings into
numbers or vice versa.

SEQUENTIAL ACCESS STORAGE

It can be done, but it makes a mess out of the file, with strings
spanning records and other nastiness. Unless you know precisely

– Page 93 –

what you’re doing, don’t try it.

RANDOM ACCESS RECALL

To pull out the contents or a particular record:

READ #1,5;N$,P

reads record 5’s contents into two variables, N$ and P. If the
record does not contain a string and then a number, you’ll get an
error when you try this! If you did the above random access
storage example, then N$ now contains Finny’s name, and P is his
phone number.

Unlike SDATA files, attempting to recall a DATA file record that
hasn’t yet been written to yields an error. To avoid this, some
programmers like to fill new files with blank data right away. I
prefer to keep track of which records have contents and which
don’t.

SEQUENTIAL ACCESS RECALL

As with SDATA files, failure to specify which item you wish to
recall results in the recalling of the next item. Unlike SDATA files,
however, DATA file records can contain more than one item! For
example,

READ #1;N$,P

would now read record #6, since we just read record 5 above. On
the other hand,

READ #1;N$

would read only the name in record 6. Note well! After doing this,
the file pointer is left in limbo, floating between two items in a

– Page 94 –

record. Then we could

READ #1;P

to get that person’s phone number.

STORING/RECALLING MORE THAN ONE RECORD AT A
TIME

Sorry! It can’t be done. Remember how we could READ a whole
bunch of records at once from SDATA files? You can’t do that with
DATA files. If you try, you’ll get an error when it hits the end of the
record.
Well, I lied. You can sort of do it if your data is all strings or all
numbers. Then you can read an array or matrix as described for
SDATA files. But remember that storing an array or matrix into a
file is a form of sequential access, and that is guaranteed to mess
up a DATA file! I had an application once that used the first half of
a file randomly and the second half sequentially, but when I tried
to figure out how it worked after several months of disuse I almost
had a mental hernia.

MOVING THE FILE POINTER

RESTORE works on DATA files exactly the same way as it does on
SDATA files. It places the pointer at the beginning of the specified
record. For example,

RESTORE #1,5

places the pointer at the beginning of record 5.

Unfortunately, there is no way to RESTORE the pointer within a
record. To place the pointer within a record, you must recall some
items from it without recalling the entire record, as described
above. This leaves the pointer sitting at the end of the last item

– Page 95 –

recalled. Although it is possible, leaving pointers floating around
within records is of dubious utility and is a Bad Thing because
you’ll never understand what’s happening even if you did it.

DATA TIDBITS

The warning against sequential access storage is because the
HP-71 has a nasty feature called the “end-of-file marker.” After
every sequential access PRINT to the file, the HP-71 stores an end-
of-file marker in the record just written. This prevents sequential
recalling beyond that point. Luckily, it does not affect random
access operations. The Owner’s Manual overstates the dangers of
the end of file marker. It does NOT result in the loss of all data
beyond it! You can read sequentially up to, and after, an end-of-file
marker! It just prevents a sequential READ to go through that
point. And it is ignored by random access READS.

If you try to store too much in a record, you’ll get an error. For
example, if we tried to store a record into our PDATA file with a
name longer than 21 letters long, the HP-71 wouldn’t have enough
room to do it. If you keep getting this sort of error, re-CREATE the
file with longer records. Unfortunately, there is no way of
lengthening records directly. If you wish to do this, CREATE
another file with the new record length, then loop through the old
file, storing its contents into the new file. Then the old file can be
PURGEd.

Examples of the above ideas about DATA files can be found in a
program called “PHONE”. See Chapter 9 for the listing,
instructions, and comments.

KEY FILES

On of the handiest features of the HP-71 is its ability to redefine
what the keys do. I had to bite my tongue to keep from telling you
about it until now!

– Page 96 –

Suppose you use the DESTROY command a lot (I do!). And
suppose you almost never use the RETURN key (I don’t!). Rather
than letting RETURN (the gold-shifted D key) gobble up keyboard
space, and typing DESTROY yourself all the time, you can actually
change the RETURN key into a DESTROY key!

Try this. Type exactly as shown:

KEY "fD","DESTROY ";

and of course press [ENDLINE]. Now press the USER key (gold-

shifted 0 key) until you see the little “USER” light up in the lower
left corner of the display.

Now press the RETURN key. Magic!! Instead of RETURN, the
display shows DESTROY, with the cursor following it ready for
you to continue typing!

This key assignment only works in USER mode (i.e. when the
USER annunciator is on). If you want to clear it altogether, type

KEY "fD"

and the RETURN key will operate normally whether or not you’re
in USER mode.

In general, to assign anything to a key, type the statement KEY
followed by the key’s name in quotation marks, then a comma, and
then the assignment in quotation marks. If the key name or
assignment is in a string variable, you can use it instead of the
literal string.

Notice that the assignment above ended with a semicolon (;) . That

meant that the cursor was supposed to stay there and let you keep
typing. There are two other kinds of assignments.

– Page 97 –

If you omit the semicolon from an assignment, then pressing the
key will type the assigned string and then press [ENDLINE]

automatically. For instance, I use CAT ALL and DESTROY ALL
so much that I assigned ALL to the FACT key (above =) . But since
ALL is always the last thing I type before pressing [ENDLINE], I

let the HP-71 do it for me:

KEY "f=","ALL"

So in USER mode, I get CAT ALL and DESTROY ALL in two
keystrokes!

The third type of key assignment is spooky and should be used
with caution. If you end an assignment with a colon (:) instead of a
semicolon, the assignment is done without even showing up in the
display! Try this:

KEY "f(","TIME$":

and now press the AUTO key (above the open parenthesis key) in
USER mode. Notice how the time appears immediately without
“TIME$” being typed in the display? This type of assignment,
since it works mysteriously, should only be used when you are
certain that you’ll remember what’s going on. Pressing a key and
seeing a result without having a clue why you got that result can be
disconcerting.

If you ever forget what a key’s assignment is, just press VIEW
(above the period) and then press and hold the desired key. Its
assignment will be shown, preceded by a semicolon, colon, or
space to indicate which type of assignment it is.

To change a key’s assignment, the best way is with the FETCH
command. For example, FETCH KEY "f(" would bring

– Page 98 –

DEF KEY 'f(','TIME':

into the display with the cursor waiting for you to type over it. (The
DEF is optional, somewhat as LET is optional).

To see all current key assignments, the best way is to set the
DELAY to 8 (to hold each key in the display) and then type

LIST KEYS

Press the right and left arrow keys to see any assignment longer
than the display, and press any other key to move on to the next
key. After all the assignments are seen, be sure to reset the DELAY
to your normal setting (.5 is standard).

During a CAT ALL, you will notice a file called “keys”. Its file type
is “KEY”. This is the file that contains your key assignments. You
can COPY, PURGE, SECURE and perform any other file
command to “keys” that you can do to any other file. However, be
warned that the HP-71 will only consider “keys” to be the active
assignments. If you RENAME KEYS TO FRED, you’ll lose your
key assignments! To revive them, just RENAME FRED TO KEYS.
This allows you to have more than one key assignment file in
memory, and then select which one you wish to be active by
renaming it to “keys”.

BASIC FILES

Finally! We have arrived at BASIC files! And you thought you’d get
there on the first page!

DATA files are collections of data. TEXT files are collections of
text. KEY files are collections of key assignments. So BASIC files
are obviously collections of BASIC commands.

– Page 99 –

The value of keeping a collection of BASIC commands in memory
is not so that we can look at it and type the commands ourselves all
over again. The magic of a BASIC file is that the HP-71 can be told
to execute the entire collection of commands all at once!

There is a special name for a collection of commands which a
computer executes all at once. It is called a “program”. The art of
putting together such collections of commands is called the art of
programming. The person who does it is called a programmer. If
the commands are in the BASIC language, then you have a BASIC
program, written by a BASIC programmer. The HP-71 is the
ultimate tool for BASIC programmers. Besides knowing BASIC, it
can collect BASIC commands into a BASIC file, and then execute
the entire file full of commands at once. All this in a handheld
machine!

As you did a CAT ALL, you saw a file called “workfile” of file type
“BASIC”. Let’s play with that one.

To get into the “workfile”, simply type the command EDIT. (It is

above the Z key). After that, to make sure it’s empty, type the
command PURGE. (Above the V key). We now have an empty

“workfile” to play with.

Although the intricacies of programming will be explained in a
later chapter, here’s a foretaste of its joys. Type these lines,
pressing [ENDLINE] after each:

10 "I AM A PROGRAMMER!"

20 BEEP 800
30 "THIS IS EASY!"

40 BEEP 650

50 GOTO 10

This is a program, a list of five commands. Notice how they did not
get executed as you typed them. The reason was because they

– Page 100 –

started with numbers (called “line numbers”). Whenever you type
a command but precede it by a number, the HP-71 figures that you
don’t want it executed but instead you want it stored as a line of a
program. In our case, these lines got stored in “workfile”. Press the
up and down arrow keys to move up and down through the
program, and press the [RUN] key to execute the program. Press

[ON] to stop it.

The “workfile” is designed as a BASIC programmer’s scratch pad.
Never put important programs into the workfile! Real programs
should have their own names. To create a BASIC file with a real
name, all you do is

EDIT ULAMCONJ

to create a BASIC file called ULAMCONJ. You may RENAME,
PURGE, SECURE etc. any BASIC file. More on that later!

FORTH FILES

FORTH is a computer language that the HP-71 can speak if you
plug in the optional HP 82441A FORTH/Assembler ROM, or the
HP 82490A HP-41 Translator Pac, or any other module that
contains the FORTH kernel. With such a module installed, you can
write and run FORTH programs. Some say that FORTH is faster
than BASIC. All I know is, when it comes to complex tasks I find
BASIC a lot faster to write. Maybe FORTH runs faster, but BASIC
is sure friendlier!

BIN and LEX FILES

The HP-71 doesn’t really speak BASIC. I don’t really speak Greek,
but I could translate a Greek newspaper article into English if I
could use my dictionary and grammar book and if you gave me
enough time. That’s what the HP-71 does. It doesn’t really speak

– Page 101 –

BASIC; it translates it slowly, bit by bit, into the language it really
does understand.

The native language of the HP-71, as for all computers, is called
Machine Language. It’s a horrible gobbledygook mess of jumbled
up numbers that makes no sense to normal humans. But it’s what
the machine speaks, and so it’s very fast. A program written
completely in machine language runs circles around the same
program written in BASIC. Trouble is, a complex BASIC program
that takes 10 hours to write might take 10 years to write in machine
language. It’s possible, but a pain. Machine language programs live
in BIN and LEX files.

A BIN file (it stands for BINary) is a complete program, like a
BASIC file. A LEX file (it stands for Language EXtension) adds
new functions and commands to BASIC. Both can be written
through an intermediate language called Assembly Language. It is
comprehensible by gifted humans and those with nothing else to
do. If you have the FORTH/Assembler ROM, you can write
assembly language programs yourself, assemble them into
machine language, and then run them. If you’re gifted and have
nothing else to do!

Although this book is supposed to be about BASIC, at the end we’ll
see a way of keying LEX and BIN files into memory without
buying the FORTH module! Several wonderful LEX files are
floating around in the HP-71 backwaters, and the technique
presented at the end of the book will allow you to use them without
having to buy anything else.

– Page 102 –

CHAPTER 7:

THE HP-71 CLOCK & CALENDAR

Of all the functions in the HP-71, the internal real-time clock is
probably the simplest to use, yet the hardest to explain! The
Owner’s Manual was little help to me. I hope my explanation is
useful to you.

Right now, set the date, using the SETDATE command. It works
like this:

setdate "85/07/04"

sets the date to 4th of July, 1985. Remember to arrange the year,
month and day in descending order. HP used this order (not a
standard way to write the date!) because it is logical, just like
numbers, with the most important number at the left and least
significant number at the right.

To get the date back out of the computer, just type

date$

(“Date String”). You’ll see the date just as you set it. Of course,
tomorrow it’ll be tomorrow’s date. By the way, you may use “1985”
instead of “85”, but you don’t need to. Matter of fact, if you use
“00” it’ll know you mean “2000”! And so on up to 2059. If you are
actually reading this book after 2059 or before 1960 (equally
unlikely), then you must spell out the whole year with all four
digits.

Before you set the time, please be aware of two things.
First, all clocks drift away from the real time. Given enough time,
any clock will get a little bit ahead or behind true time. The speed

– Page 103 –

at which it gets wrong is called its “rate of drift” or simply its
“drift”. Lousy clocks have erratic drifts; they speed up and slow
down depending on the temperature, humidity, chance, and other
unpredictable factors. Good clocks have predictable drifts; they are
always slow or always fast, and by a precise amount. So you can
correct a good clock by adding or subtracting a precise
“adjustment factor” to compensate for the drift.

Second, the HP-71 has a very good clock in it. It drifts, but by a
very predictable amount. And best of all, the HP-71 has a variable
“adjustment factor” built right in, which allows you to
automatically add or subtract the clock’s drift, and obtain a
practically perfect timepiece! Of course, if you lock your HP-71 in
the freezer for a week and then lock it in the glove compartment of
your dune buggy and go blazing through the desert for a week, I
guarantee that the clock will become somewhat inaccurate, if not
stop altogether! Dependable use of the clock and the adjustment
factor (called “accuracy factor” in some HP literature) assumes a
reasonably constant overall environment. So if you bought your
HP-71 from a previous user, don’t trust the adjustment factor he or
she swears is the right one.

Having said that, here’s how to set the clock and adjustment factor.

When starting out from scratch, always reset the adjustment
factor:

reset clock

This doesn’t clear the time; it merely clears the adjustment factor
and any accumulated drift.

Next, set the time, like this:

settime "19:00:00"

– Page 104 –

using the right hours, minutes and seconds. (NB: The HP-71 uses
“military” 24-hour time. The hour after midnight is 00, not 12. If it’s
PM, add 12 to the clock time to get 24-hour time. Midnight is
00:00:00; the previous second is 23:59:59). Remember, the
command will not be carried out until you press [ENDLINE], so

type a time a little bit in the future. About half a second before that
time arrives, press [ENDLINE]. A trick I use is to type in a time like

settime "09:00:01"

which is one second after the hour; then, when the radio gives the
9 o’clock tone, I press [ENDLINE]. This gets it close enough!

To see the time (anytime) just use the TIME$ function:

time$

Now that we have the clock set to an exact time, tell the HP-71 that
it really is the exact time:

exact

The EXACT command doesn’t change the time any. It merely
stores current time and date safely in memory, for use next time
you set the time.

Now let a week or two go by. Don’t worry about the drift; the
HP-71 calculates it for you. Just set the time once again (making
sure it’s right!) and when it’s exact, execute EXACT once again.
The second execution of EXACT sets the adjustment factor
automatically, which begins correcting the clock automatically.
You should now have a very accurate clock! Of course, after
several months or so you may notice a little drift; just set the exact
time and execute EXACT once again to really make the clock
exact!

– Page 105 –

If you change time zones or change daylight savings time, don’t
reset the time. Use the ADJUST command. If the time becomes an
hour greater, use:

adjust "01:00:00"

and if it becomes an hour less, use:

adjust "-01:00:00"

Adjusting by whole hours or multiples of 30 minutes does not affect
your adjustment factor, so using ADJUST is better than using
SETTIME to correct the time when the time change is not due to
drift but time zone or daylight savings time change. If you specify
an adjustment that isn’t a multiple of 30 minutes, then the HP-71
will consider that a drift, and will modify the accumulated drift. It
is better to use SETTIME to correct for drift automatically. You
may use ADJUST to do it, if you know the exact amount of drift.

If you have your clock adjusted correctly (its drift is now
compensated for by the appropriate adjustment factor), but then
find out that the time standard you set it by was off by a certain
amount, you can’t use SETTIME or ADJUST to correct the time,
because SETTIME changes the accumulated drift, and ADJUST
does too if the adjustment is small. In this case, use the ADJABS
(“Adjust Absolute”) command.

adjabs 0.3

adds exactly 3 tenths of a second to the running clock without
affecting the adjustment factor in any way. In my case, after
getting my clock exact by the radio, I subtract eight tenths of a
second to account for the time between hearing the time tone and
the pressing of [ENDLINE] (about .3 seconds) and the amount of

time it takes SETTIME to work (about .5 seconds):

– Page 106 –

adjabs -.8

As soon as you have an adjustment factor that seems to be working
well for you, be sure to find out what it is and write it down. To see
your currect adjustment factor, type

af

and jot it down somewhere. That way, if you ever get a Memory
Lost (which clears the time, date, and adjustment factor), you can
set the adjustment factor manually without waiting weeks or
months first. If your AF is 1000, then you can set it to 1000
manually by typing

af(1000)

This not only tells you what the AF is but also sets it to 1000.
Remember to execute EXACT first!

There are two other time/date functions, of dubious utility. TIME
gives the number of seconds since last midnight, in hundredths of
a second. This can be used to time things, by subtracting the
starting TIME from the ending TIME, as long as you don’t run past
midnight!

DATE gives the year and day-of-year as a single number. For
example, if DATE gives 85231, then it’s the 231st day of 1985 (my
30th birthday!). Some business applications require knowing the
day of year; MOD(DATE,1000) gives it. Unfortunately, if your

HP-71’s VER$ is 1BBBB, then your DATE has a bug in it that
makes the day of year unreliable. Years whose second-to-last digit
is odd, and whose last digit is 2 or 6, give the wrong day of year for
dates beginning with March 1st (they are 1 too low). Hopefully later
versions of the HP-71 ROMs will correct this bug.

Note: the HP-71 clock is more reliable than the HP-75 clock, which

– Page 107 –

became notorious for its seemingly random errors. The reason for
its errors was simple. The time is stored in memory, and the
computer has to pull it out one number at a time (just like any
other data). But suppose the time “kerchunks” (changes) right in
the middle of the process of pulling it out? You then get half of the
old time and half of the new time strung together. The HP-71
design team was aware of this possibility, and de-kerchunked its
clock by performing two clock reads in a row and comparing them
to see if a kerchunk had occurred. Hence a reliable clock.

– Page 108 –

CHAPTER 8:

PEEK$ AND POKE!

Of all the keywords in HP-71 BASIC, the two which receive the
least treatment in the Owner’s Manual and Reference Manual are
PEEK$ and POKE. And no wonder! These two keywords allow you
to romp through memory, discovering what HP would rather leave
unseen, and even change anything anywhere in memory! A
programmer without PEEK$ and POKE who suddenly comes into
their possession is like graduating from a barber to a brain
surgeon!

Enough praise. What are some practical uses of PEEK$ and
POKE?

The primary value of PEEK$ is that it lets you get certain values
that are otherwise unavailable. Suppose your program thrashes
flags 0 through 63. You could save them in 64 variables, but that
would take a lot of memory and time.

PEEK$ to the rescue. The flags 0 through 63 reside in 16 nibbles of
memory at hex address 2F6E9. So to save all 64 flags, we just say

F$=PEEK$("2F6E9",16)

and they are all stuffed into F$ in no time. When we’re done
playing with the flags, we can just

POKE "2F6E9",F$

to restore all 64 flags to their original position!

The primary use of POKE is for control purposes. There is simply
no way to do certain things without POKing the HP-71 right in the

– Page 109 –

ribs. Suppose you want to have a program keep running, and not
be interrupted, even if somebody presses the [ON] key? The only

way is to

POKE "2F441","F"

which disables the ON key from interrupting programs. It is re-
enabled by POKE "2F441","0". Control like this is not available

any other way.

Although the programs in this book contain a wealth of PEEK$
and POKE examples, here is a table of the primary hex addresses
that are useful or interesting to PEEK$ and POKE.

CAUTION!! POKEing around indiscriminately is unwise, as it can
easily result in a Memory Lost, or even worse, a crash so bad that
you’ll have to send it in to get fixed. Simple caution and a little
common sense should suffice to avoid such problems.

How do PEEK$ and POKE work? When you store a number in
memory, say 1234 in X, each digit takes up a piece of memory
called a “nibble”. Whereas most computers are “byte” (8-bit)
oriented machines, the HP-71 is nibble (4-bit) oriented. Every
nibble in memory has its own unique address, from 0 to 1048575.
To simplify addresses, PEEK$ and POKE don’t refer to addresses
as such huge numbers. Instead they use the hex version of them.
Use the HTD and DTH$ functions to get an idea of what numbers
look like in hex. For example, DTH$(112233) tells us that the

decimal number 112233 is represented as 1B669 in hex (try it!), and
HTD("1B669") converts it back to decimal.

You already know that when you perform the CONTRAST
command, the display’s contrast changes. You can set it to
anything from 0 through 15. In hex, that’s 0 through F. This
suggests that the display contrast is stored somewhere in memory

– Page 110 –

as a single nibble, and in fact that’s exactly true. It resides in the
nibble whose address number is 189438. In hex (use DTH$ to see
this) that number is 2E3FE. So we should be able to use PEEK$
and POKE to look at and change the contrast nibble.

Try this. CONTRAST 7 to set the contrast to 7. Then

PEEK$("2E3FE",1) and you’ll see 7, the contrast nibble! Now

CONTRAST 10 and peek again (use the command stack). This time

it shows A. Why A? Because “A” is hex for 10. Use HTD to see this:

HTD(PEEK$("2E3FE",1))

and see 10!

We can also use POKE to change the contrast nibble. It is silly,
because we can change it with the CONTRAST command, but this
is instructive and immediately recognizable. Try this:

POKE "2E3FE","4"

Notice that the contrast immediately changes to 4! That’s because
we told the HP-71 to poke a “4” into memory starting at nibble
address “2E3FE” which is the contrast nibble. CAUTION! Don’t
try other addresses, and don’t try poking things longer than one
digit long! That’ll mess up memory and possibly cause a serious
crash.

Here is a partial table of useful addresses in hex. Some of these are
only for PEEKing at, other for POKING, and some for both. Just
be careful!

ADDR #NIBS WHAT IT IS

2C014 (1) Card Reader present (0 if NOT present)

2E100 (2) Annunciators on left side of display

2E34C (2) Annunciators on right side

– Page 111 –

ADDR #NIBS WHAT IT IS

2E350 (16) Display row drivers (reset by INIT: 1)

2E3FE (1) Display contrast

2E3FF (1) Display controller (l=on, 2=blink)

2F438 (4) Cold Start Constant (Memory Lost if changed)

2F43C (5) Interrupt vector (Bad crash if changed)

2F441 (1) ATTN-key disabler (0=enabled)

2F443 (1) Key buffer pointer

2F444 (15) Key buffer (2 nibs per keycode)

2F471 (2) Number of characters to the left of window

2F473 (2) Length of WINDOW minus 1

2F47C (2) Buffer pointer to first displayed character

2F47E (2) Buffer pointer to cursor

2F480 (96*2) Display buffer (2 nibs per character)

2F540 (96/4) Display readability mask (1 bit per character)

2F576 (5) Address of top of Command Stack

2F58A (5) Address of bottom of Command Stack

2F59E (5) FOR / NEXT stack address

2F5A3 (5) GOSUB stack address

2F5A8 (5) Address of active variable space

2F5AD (5) CALL stack address

2F5B2 (5) Address of absolute end of memory

2F5B7 (5) Parameter chain address

2F6C6 (5) INPUT buffer address

2F6CB (4) AUTO increment

2F6D9 (64/4) System flags (-1 to -64), 1 bit per flag

2F6E9 (64/4) User flags (0 to 63), 1 bit per flag

2F6F9 (5) IEEE traps (INX, UNF, OVF, DVZ, IVL)

2F761 (2) Bitmap of pending alarms

2F763 (12) Accumulated time drift

2F77B (12) Time that the adjustment factor was last set

2F787 (6) Adjustment factor

2F7AD (3) Name of the STAT array variable

2F7B0 (1) Trace mode (0=OFF, 2=FLOW, 4=VARS, 6=both)

2F7B2 (8*2) LOCK password (2 nibs per character)

2F7C2 (34) RES (holds any result, even COMPLEX numbers)

2F7E4 (4) ERRN (Error number)

2F7E8 (4) Current line number (of a non-running program)

2F5BE (26*7) Variable chain (7 nibs for A vars, 7 for B...)

2F76F (12) Time that the clock was last set

2F6FE (15) Random number seed for RND

– Page 112 –

ADDR #NIBS WHAT IT IS

2F7EC (4) ERRL (Last line on which an error occurred)

2F870 (1) Multi-line FN flag (0=not multi-line)

2F946 (2) Character rate (the second DELAY argument)

2F948 (2) Line rate (the first DELAY argument)

2F94F (2) WIDTH setting

2F956 (2) Current PRINT column position

2F958 (2) PWIDTH setting

2F95A (1) Length of ENDLINE string (0, 1, 2 or 3)

2F95B (3*2) ENDLINE string

2F967 (2) Key definition string length (2 nibs per byte)

2F969 (1) Key type

2F96A (5) Address of key definition string

2F96F (2) Current channel number being accessed

2F976 (1) Number of Command Stack entries minus one

2F977 (5) Clock speed /16

2F986 (1) Complex IMAGE flag (0=not complex)

That ought to be enough to keep you busy for a while!

Notice that a program can grab all the user flags in one step, for
example U$=PEEK$("2F6E9",16), then use the flags any way at

all, and then nicely reset them all in one step again,
POKE "2F6E9",U$. The same applies to other settings, like the

TRAPS, WIDTH and so on.

There is no normal way to get the current random number. Every
time you use RND, it generates a new one. One way to get the old
one out is:

POKE "2F7C2","999"&PEEK$("2F701",12)&"0" @ R=RES

This places the current random number seed into the RES register
and grabs it from there into the variable R.

Note well that numbers are stored backwards in HP-71 memory!
For example, type PI and then peek at RES by:

– Page 113 –

PEEK$("2F7C2",16)

and you’ll see PI backwards:

0009535629514130

The leading three zeros are the exponent (backwards), and the
trailing zero is the positive sign (9 is negative). The moral is this: if
you want to store anything in memory with POKE, be sure it’s
going in backwards!

This can complicate things. Suppose you want to pull out the clock
speed, divide it by two, and store it back in memory. You have to
PEEK$ it, reverse the entire string, convert it to a number with
HTD, divide by two, change it back to hex with DTH$, reverse the
string again, and finally POKE it into place. If you have REV$ in
memory, you can:

but you have to have the LEX file that gives you REV$. By the way,
the result of the above is that all BEEPs speed up twice as fast and
sound twice as high!

The most exciting use I’ve found for PEEK$ and POKE is the
ability to enter LEX files from the keyboard! HP said in the
Owner’s Manuals that it couldn’t be done, and in some other
documentation they admitted that maybe it could. See the
program called MAKELEX (in the next chapter) that lets you add
REV$ and other fantastic new machine-language functions to your
HP-71!

POKE "2F977",REV$(DTH$(HTD(REV$(PEEK$("2F977",5)))/2))

– Page 114 –

CHAPTER 9:

PROGRAM BASIC

Here’s what you’ve been waiting for! And I hate to disappoint you,
but you have learned so much in these past 124 pages that I
haven’t really got much left to teach you! You have already typed a
program into the HP-71 and run it. What more could you want?

Complete mastery of BASIC programming comes with experience,
not by reading more about it. However, one can accelerate one’s
experience by perusing others’ programs. So let me here just
mention a final few meatballs of wisdom before launching into a
baker’s dozen of exemplary programs for you to pick through to
see how it’s really done.

First of all, if you wish to start typing in a program that is already
written, don’t type it into the workfile! Rather, type

EDIT PASSWORD

if it’s going to be called PASSWORD, or whatever the name might
be. Remember, the workfile is reserved for your scratchpad work!

If you key in a program and it doesn’t seem to work, don’t forget
that pressing the up and down arrow keys lets you look at the
program and change what’s in them. The commands TRACE VARS,

TRACE FLOW, and TRACE OFF are very helpful in finding bugs in

programs.

Little extra niceties, like the AUTO statement, are not covered by
this book, because they are so simple and are treated well enough
by the owner’s manual. Now that you know BASIC well enough to
converse with the HP-71, be sure to sit down and read both

– Page 115 –

manuals thoroughly. You’ll be amazed that what used to seem
impossible to comprehend is now very simple. Even the very
complex topics (like IMAGE and PRINT USING) are best understood

by doing HP’s examples.

And since learning a language is best done by imitation, here is a
potpourri of BASIC programs selected not only to give you a good
cross-section of various types of programming but also because
many of them may prove useful to you.

You should first key in the program as listed. Then you should try
out the program and plow through it line by line and figure out
how it works. Then try to modify it to work some slightly different
way. Or try a major overhaul; you’ve got nothing to lose, and
BASIC to gain!

CALORIES – A Jogger’s Calorie Calculator

10 DIM U,D,T,T1,C @ INPUT "Lbs? ";W

20 IF W<120 OR W>220 THEN 120

30 INPUT "Miles? ";D

40 IF D<=0 THEN 120

50 INPUT "Min.Sec? ";T

60 IF T<=0 THEN 120

70 Tl=IP(T)+FP(T)/.6

80 IF T/D<5.33 THEN BEEP @ DISP "Too Fast" @ END

98 IF T/D>10.67 THEN BEEP @ DISP "Too Slow" @ END

100 C=(W*(.735993-(T1/D*.01325))+3.6)*D

110 DISP "Calories Used:";IP(C+.5) @ END

120 BEEP @ DISP "Out of Range"

After taking a healthy jog, run the above program. It asks you how
much you weigh, how far you jogged and how long it took you. It
then calculates how many calories you burned off by your exercise.
This is a simple program that illustrates IF / THEN comparisons,
and the concept of screening out unwanted inputs.

– Page 116 –

CMDSTK – A Command Stack expander / compressor

CMDSTK BASIC 265

10 SUB CMDSTK(X) @ POKE "2f441","1" @ STD

20 DEF FNR$(A$)=A$[5]&A$[4,4]&A$[3,3]&A$[2,2]&A$[1,1]

40 DIM S$[X*6] @ A=HTD(FNR$(PEEK$("2F576",5)))

50 FOR Y=1 TO X @ S$=S$&"000300" @ NEXT Y

60 E$=FNR$(DTH$(A+X*6)) @ POKE "2F580",E$&E$&E$

70 POKE DTH$(A),S$ @ POKE "2F976",DTH$(X-1)[5]

80 POKE "2F441","0" @ END SUB

You can’t RUN this program; you have to CALL it like this:

CALL CMDSTK(5)

When you do, the command stack will be made to have 5 entries,
which is the normal number. Using 10 instead of 5 creates a
command stack that has ten entries! Up to a 16-high stack is
possible, and the minimum is 1.

TOKENIZE

TOKENIZE BASIC 142

1 ! Any line here

10 SUB A @ N=256 @ DIM A$[N] @ A$=ADDR$(CAT$(0))

20 A$=PEEK$(DTH$(HTD(A$)+55),N)

30 A$=A$[1,POS(A$,"0F0100")-1]

40 PLIST 1,9 @ DISP A$;" (";STR$(LEN(A$));")"

This is a self-referential program. All it does is list its own first line,
and then show it in its internal representation and its memory size
in nibbles. For example, type

1 BEEP 153

30 X=IP(MIN(MAX(X,1),16))

– Page 117 –

and then CALL A (two keystrokes). First you see 1 BEEP 153, then

8EB0351 (7). This means that BEEP 153 is “tokenized” internally
as 8EB0351 (8E is BEEP, and B0351 is 153), a total of 7 nibbles.
This serves two purposes. It is fascinating to use this program to
figure out how the HP-71 tokenizes various functions and
statements. But it is especially useful when you think of two
similar ways to program something and don’t know which one
takes less memory. For example:

1 DIM M(3) @ M(1)=1 @ M(2)=2 @ M(3)=3

and
1 DIM M(3) @ READ M @ DATA 1,2,3

both do exactly the same thing. Which takes less memory? Enter
each as TOKENIZE’s first line, and then CALL A to find out each
one’s nibble count.

SIEVE – The Ancient Sieve of Eratosthenes

10 REAL K,Q,T,X @ DESTROY P @ OPTION BASE 1

20 INPUT "Primes up to? ";Q @ T=(Q-1) DIV 2 @ INTEGER P(T)

30 DISP "2" @ FOR K=1 TO (SQR(Q)-1)/2 @ IF P(K) THEN 50

40 DISP STR$(K+K+1) @ FOR X=3*K+1 TO T STEP X-K @ P(X)=1 @ NEXT X

50 NEXT K @ FOR K=K TO T @ IF P(K)=0 THEN DISP STR$(K+K+1)

60 NEXT K @ END

Run the above program, and input a number (say, 100 or 1000)
where you want it to stop. The program will list all the prime
numbers up to that limit amazingly fast. It goes slow at first, but
then the primes simply pour out. If they aren’t, maybe your
DELAY is not 0. This program illustrates array usage and the trick
of using the counter variable of a FOR / NEXT loop in the STEP
statement.

– Page 118 –

ERRORS

10 DIM X @ DELAY 0,0 @ POKE "2F7E6","00"

20 POKE "2F443","0" @ INPUT "Error #? ";X

30 X=MOD(X,249)

40 IF X>97 AND X<228 THEN X=229 ELSE IF X=228 THEN X=97

50 POKE "2F7E4",DTH$(MOD(X,16))[5]&DTH$(X DIV 16)[5]

60 DISP STR$(X);'"';ERRM$;'"'

70 IF NOT KEYDOWN THEN 70

80 IF KEYDOWN("#51") THEN X=X+1 @ GOTO 30

90 IF KEYDOWN("#50") THEN X=X-1 @ GOTO 30

100 IF KEYDOWN THEN 20 ELSE 70

RUN ERRORS, and you will be asked for an error number. Input

something like 10 or 20, and see the error message that
corresponds to that number. Now press the down arrow key to
move down through the “error catalog”, or press up-arrow to move
up. Pressing any other key re-prompts for an error number input.
Notice how the program grabs a key and sees if it is held down to
allow it to repeat just as CAT ALL does. The POKE in line 10 is
necessary in case the last error before running the program was a
LEX-file or ROM error, in which case this POKE clears it.

PHONE – A telephone directory program

10 DIM N$[21],S$[21],P,N,R,M

20 ON ERROR GOTO 370

30 UNSECURE PHDAT @ ASSIGN #1 TO PHDAT @ READ #1;N,M

40 DISP "Ready" @ ON ERROR GOTO 50

50 GOTO KEY$

60 'Q': PRINT #1,0;N,M @ DISP "Done" @ END

70 'P': IF R=0 THEN 90

80 DISP USING "'('3*')'3*'-'4*";P @ GOTO 50

90 DISP "No such record" @ GOTO 50

100 'N': IF R=0 THEN 90

110 DISP N$ @ GOTO 50

120 'D': IF R=0 THEN 90

130 IF R=N THEN 150

140 READ #1,N;N$,P @ PRINT #1,R;N$,P

150 R=0 @ N=N-1 @ DISP "Deleted" @ GOTO 50

160 'A': IF N=M THEN DISP "No room" @ GOTO 50

– Page 119 –

170 N$="" @ S$="" @ N=N+1 @ R=N

180 ON ERROR GOTO 190

190 LINPUT "Name: ",N$;N$ @ IF N$="" THEN 190

200 ON ERROR GOTO 210

210 INPUT "Phone #: ",S$;S$ @ P=VAL(S$)

220 PRINT #1,R;N$,P @ GOTO 40

230 'S': IF N=0 THEN 90 ELSE LINPUT "Search: ";S$ @ S$=UPRC$(S$)

240 FOR R=1 TO N @ READ #1,R;N$,P

250 IF POS(UPRC$(N$),UPRC$(S$))=0 THEN 270 ELSE DISP N$;"?"

260 ON POS("YN",KEY$)+1 GOTO 260,80,270

270 NEXT R @ R=0 @ GOTO 90

280 'Z': DISP "Zap ALL";N;"names?"

290 ON POS("YN",KEY$)+1 GOTO 290,300,40

300 PURGE PHDAT @ GOTO 370

310 'F': IF N=0 THEN 90 ELSE R=R+1 @ IF R>N THEN R=1

320 READ #1,R;N$,P @ GOTO 110

330 'B': IF N=0 THEN 90 ELSE R=R-1 @ IF R<1 THEN R=N

340 GOTO 320

350 'U': IF R=0 THEN 90 ELSE S$=STR$(P) @ GOTO 180

360 'M': DISP "A,B,D,F,M,N,P,Q,S,U,Z?" @ GOTO 50

370 OFF ERROR @ INPUT "How many records? ";M @ N=0

380 CREATE DATA PHDAT,M+1,32 @ ASSIGN #1 TO PHDAT

390 PRINT #1;N,M @ GOTO 40

This program does a lot of work in a small space. It stores names
and telephone numbers in a DATA file, and lets you search for
names to find a phone number quickly. When you first run the
program, it asks you how many names you’ll want MAXIMUM in
your directory. Give a reasonable number, say 30. To Add a name
& phone number, just press A.

Note: input phone numbers as numbers; no spaces, parentheses,
dashes or stuff like that. So you’d input my phone number as
7146332041.

To browse Forward or Backwards through the names, press F or
B. To see the Phone number of a displayed name, press P. To see
their Name again, press N.

To Update a displayed person, press U and correct their name
and/or phone number. To Delete a person altogether, press D
when they are displayed.

– Page 120 –

To Search for somebody, press S. Input a few crucial letters in that
person’s name. A name will appear followed by a question mark. If
it’s the right person, press Y; if not, press N to continue searching.

To Zap the entire directory and start with a clean slate, press Z.
You’ll be asked if you really meant it; press N if you didn’t, or Y if
you did.

To Quit for the day, press Q. (DON’T press ON!)

If you ever forget which items are in the above Menu of commands,
just press M. The active letters will appear on the screen.

This program illustrates many tricks. Program labels are directly
paired to keystrokes for programming ease (look at line 50!). Menu-
driven programs are always more enjoyable to use than ones in
which you have to remember everything or answer a hundred
questions before anything gets done. Error trapping weeds out
most common input errors. Deletion by file shrinking is rare in
programming, but the technique used here of replacement by the
last record is fast and easy.

MAKELEX – A Lexfile Creator

Note: The string in line 60 contains exactly 16 dashes.

10 SFLAG -1 @ ON ERROR GOTO 30 @ DESTROY ALL

20 PURGE DUMMY

30 ON ERROR GOTO 220

40 INPUT '# of bytes: ';N

50 CREATE TEXT DUMMY,N

60 A=HTD(ADDR$('DUMMY')) @ A1=A @ P$="----------------"

70 Q=1 @ X=0 @ INPUT '000: ',P$;A$ @ C$=A$ @ GOSUB 200

80 Q=2 @ X=l @ GOSUB 190

90 A$=A$&C$ @ A=A+37 @ N=N*2+31 @ Q=3 @ SFLAG 5

100 FOR X=2 TO N DIV 16-1

110 GOSUB 190

120 IF FLAG(5) THEN C$=C$[6]

130 POKE DTH$(A),C$ @ A=A+16-5*FLAG(5,0) @ NEXT X @ Q=4

– Page 121 –

140 DISP DTH$(X)[3]; @ INPUT ': ',P$[1,MOD(N,16)];C$

150 GOSUB 200

160 L=LEN(C$) @ IF C$[L,L]='-' THEN C$=C$[1,L-1] @ GOTO 160

180 OFF ERROR @ CFLAG -1 @ END

190 DISP DTH$(X)[3]; @ INPUT ': ',P$;C$

200 DISP DTH$(X)[3]; @ INPUT ' ck ','--';C1$

210 S=0 @ FOR Z=1 TO LEN(C$) @ S=IP(NUM(C$[Z,Z])*Z+S) @ NEXT Z

220 IF C1$=DTH$(MOD(S,256))[4] THEN RETURN

230 DISP 'Checksum Error' @ BEEP @ POP @ ON Q GOTO 70,80,110,140

240 DISP 'Error: '&ERRM$ @ BEEP @ GOTO 180

This program was written by Stephen Tobiasson and Thomas
Fange. It is a gem of BASIC code! It lets you take the listing of a
LEX file or BIN file and type it directly into the HP-71. This allows
you to do what ordinarily costs many dollars: enter valuable LEX
files without a card reader, HP-IL mass storage device, or barcode
reader.

Run the program. First input the number of bytes that is printed at
the top of the LEX file listing. Then key in the hex code of the file,
starting with line 000. Don’t type the spaces; they are merely for
visual benefit. After each line of code, next input its checksum byte
as printed to the right of the line of code. Proceed thus until the
last line, after which the program will automatically end. TURN
THE HP-71 OFF AND BACK ON to link the new LEX file into the
LEX file chain. Its functions will now be available!

Example: The following is a listing of the LEX file that adds the
REV$ function to BASIC. Try inputting it with the above program:

REVLEX ID#5D 36 bytes

0123 4567 89AB CDEF ck

000: 2554 65C4 5485 0202 B1

001: 802E 0052 0010 1000 2D

002: 8400 0D51 0100 0000 3D

170 POKE DTH$(A),C$ @ POKE DTH$(A1),A$

– Page 122 –

003: F710 0000 0000 0000 A7

004: 0710 00F7 2554 6542 FE

005: 101F F411 048F E83B C7

Once REVLEX is in memory, the REV$ function becomes
available from the keyboard and in all programs. Type:

REV$("This is a test of string reversal")

and see “lasrever gnirts fo tset a si sihT” in a flash! REV$ can
reverse a 14000-byte long string in one second! That is so much
faster than BASIC it isn’t even funny. Good thing that BASIC is
powerful enough to let us create REVLEX!

Here’s another useful function: KEYWAIT$.

KEYWAIT ID#52 58 bytes

0123 4567 89AB CDEF ck

000: B454 9575 1494 4502 BB

001: 802E 0053 9080 2058 AB

002: 3700 0251 0100 0000 D2

003: F710 0000 0000 0000 A7

004: 0E10 00FF B454 9575 9C

005: 1494 4542 101F F001 5C

006: 3610 8137 1098 F2C6 90

007: 0045 1119 1351 1813 20

008: 48D8 ACA1 8F12 7006 38

009: BDF 9C

This LEX file was written by HP. KEYWAIT$ is like KEY$ in that
it returns the most recently pressed key off the top of the key

006: 18DC 32F0 0E

– Page 123 –

buffer. But there is one major difference. If the key buffer is empty,
KEY$ returns an empty string. KEYWAIT$, as its name implies,
instead waits for a key to be pressed. And best of all, the HP-71 is
held in a low power-drain mode, so it doesn’t eat your batteries!
Replacing KEY$ with KEYWAIT$ in the above PHONE program
(all 3 places) would substantially reduce the power drain of the
program. KEYWAIT$ is used in the following program called
“SMATTER”.

SMATTER – An unbreakable Coding / Decoding program

10 ! S.M.A.T.T.E.R ! (C) 1984 Joseph Horn

20 DIM A$[96],K,X @ DELAY 9,0 @ STD

30 DISP "Code Decode More Quit"

40 A$=KEYWAIT$ @ IF A$="Q" THEN 130 ELSE IF A$="M" THEN 70

50 IF A$="C" THEN K=1 ELSE IF A$="D" THEN K=-1 ELSE 40

60 OPTION ROUND NEG @ INPUT "Key#: ";X @ RANDOMIZE X

70 LINPUT "Text: ";A$ @ IF A$="" THEN 30 ELSE PRINT "{";

80 FOR X=1 TO LEN(A$) @ IF A$[X,X]<" " OR A$[X,X]>"z" THEN 120

90 RANDOMIZE 10^(RND*100)

100 POKE "2f6fe",STR$(FLAG(-12,RND<RND)+1)

110 PRINT CHR$(MOD(NUM(A$[X,X])+IP(RND*92)*K-32,91)+32);

120 NEXT X @ PRINT "}" @ GOTO 30

130 OPTION ROUND NEAR @ RANDOMIZE @ DELAY 0,0 @ DISP "Done" @ END

“SMATTER” is an acronymn for “Self Modifying Algorithm
Transcryptor That’s Essentially Random.” It requires the
KEYWAIT$ lex file, listed above. When you see the menu on the
display, press the first letter of the desired function: Code, Decode,
More (of the same message), or Quit. When asked for the key
number, input a secret number that only you and your
correspondent know. It can be anything at all, like SQR(150+PI).

Just don’t use zero! Type in one line of text at a time, and continue
by typing the next line. Press [ENDLINE] by itself to return to the

menu. Braces are printed around the coded/decoded lines to make
any leading or trailing spaces visible. I think it’s an uncrackable
code. It doesn’t fall to any cryptanalysis scheme I’ve ever read
about. Can you find a way to crack it?

– Page 124 –

Here are some more LEX files that you might find interesting and
useful.

LOCKOFF ID#5C 33 bytes

 0123 4567 89AB CDEF ck

000: C4F4 34B4 F464 6402 B8

001: 802E 0094 4032 0141 F8

002: 6400 0C50 0000 0000 23

003: FE00 0000 0800 001F 7F

004: F200 431D F961 4000 09

005: 342B 7F21 37AF 0151 23

006: 7 37

LOCKOFF doesn’t add any new keywords to BASIC, but it does do
an amazing thing. It automatically clears the LOCK password as
soon as you turn the HP-71 on! College students find this especially
nice, because “friends” love setting bizarre passwords on your
HP-71, resulting in your vital programs getting blown away. Just
keep this LEX file in memory and nobody can LOCK your
machine!

CURLEX ID#5E 110 bytes

 0123 4567 89AB CDEF ck

000: 3455 25C4 5485 0202 A0

001: 802E 0004 1231 7041 F3

002: 0E00 0E50 0000 0000 4B

003: FE00 0000 0800 001F 7F

004: F31B 1961 4000 DB10 87

– Page 125 –

005: B317 F8FC 4631 4901 D6

006: 1BD7 0011 BD71 188F 24

007: B14B 1DA3 1F99 62D0 3E

008: 310A 962C 0003 1446 C5

009: 7003 134A F0AE AAF2 00

00A: 3141 8FB3 4B1A DA10 87

00B: 3078 F534 B107 8F53 90

00C: 4B10 7108 11B8 F1C3 C6

00D: 2011 BA5E 4801 0B59 6B

00E: E118 068F B14B 1068 5D

00F: FB14 B106 840 AD

CURLEX doesn’t add any new keywords either, but it makes
programming a lot easier! When you wish to look at a long line, it
takes a while to move the cursor around. Wouldn’t it be nice if the
blue-shifted arrow keys moved the cursor not all the way to the
end of the line, but just to the other end of the display, in 21-
character jumps? Guess what! As long as CURLEX is in memory
AND you are in USER mode, then that’s exactly what those keys
do! Try it. Just don’t use ’em in CALC mode, because you can get
funny results. This LEX file was written by John Baker, foremost
HP-71 LEX file wizard!

CLOCKDSP ID#52 328 bytes

 0123 4567 89AB CDEF ck

000: 34C4 F434 B444 3505 72

001: 802E 0055 4032 0141 E4

002: 4920 0259 2920 0000 95

003: F710 0000 0E10 0000 84

004: 0BD1 00D9 34C4 F434 BF

005: B492 1FF9 6950 5031 6D

006: 1B13 5112 1CB1 378B A4

– Page 126 –

007: 6A11 3510 B3B1 4A3B E4

008: 4C43 4021 5DB0 01FC 2F

009: 79F2 1530 A044 4000 44

00A: D48F 3E32 09F6 10CF DC

00B: B11D F241 BFD3 1000 10

00C: 01B1 09F2 1101 5071 75

00D: 6F11 1150 7191 4DB1 09

00E: 4420 313D 8FC4 6314 48

00F: 606A C08F 2B52 1BF6 EB

010: BF68 1E8F 9223 18F2 E1

011: 5231 20AE 6F23 0AF2 63

012: F2AE 9BF2 30AB F2BF BA

013: 2AEB 1B11 9F21 5271 D0

014: 0118 F152 7100 1612 25

015: 7154 0303 1601 5401 AC

016: 600D 5CE1 9102 0310 A8

017: 214C 2EAF 2328 0DAF A8

018: 7201 368F CB91 01B1 A4

019: 74F2 1423 300C 015C A4

01A: 3239 1271 1B87 4F21 FD

01B: 460B 8410 B154 31B1 85

01C: 49F2 146D 7001 B149 D6

01D: F2DB 1443 13D8 F106 5E

01E: 318F 2B52 11B1 49F2 9F

01F: 146D 7001 B149 F2DB E0

020: 1443 13D8 FAF5 3167 21

021: EEA7 000C 7000 14A3 59

022: 10E9 6224 7350 3070 60

023: E061 5101 F174 F233 B6

024: 0051 15D3 1F87 4F21 81

025: 470B 8410 B155 37A6 28

026: F8D8 4A80 7310 3080 BB

027: E0E1 5107 C7F6 5EF1 1B

– Page 127 –

028: FC79 F215 3001 8DCF C2

029: 2508 FA2C 200E 1101 5F

02A: EC00 008D B2E2 08D E4

CLOCKDSP is a long LEX file but I can’t live without it! As soon
as you see it in action, you’ll love it too. It adds two new commands
to BASIC: CLOCK ON, and CLOCK OFF.

After executing CLOCK ON, the HP-71 will display a running
digital clock in the right side of the display, yet magically you can
still type and do anything you want, just like normal, in the left side
of the display! It even works in CALC mode! CLOCK OFF clears it
from the display and returns control of the entire display to you.
Since it must protect the clock portion of the display from being
typed over, it effectively performs a WINDOW 13 command once
every second, thereby making WINDOW a useless function while
the clock is on. CLOCK OFF resets the WINDOW to normal,
whether the clock is on or not. This LEX file was written by HP.

– Page 128 –

Postscript:

THE HP-71 ANSWER-MAN SERVICE

Do you have any questions about your HP-71? Here is a terrific
offer that is absolutely FREE! (Well, actually it is included in the
price of this book, but I won’t mention that). If you ever would like
a personal answer to your own personal HP-71 questions, here’s all
you have to do:

(1)Write the question as clearly as possible on a piece of paper.
(2)Place a stamp and your address on a postcard.
(3)Place both your letter and the postcard in an envelope.
(4)Address the envelope to the author:

Joseph K. Horn
1042 Star Rt.
Orange, CA 92667

(5)Put enough postage on the envelope and mail it.

As soon as I can, I’ll write the answer on the postcard and mail it
back to you. If the above instructions are not carried out as listed, I
cannot guarantee a reply. There is no limit to the number of times
you may utilize this service.

Please note! Any question whose answer can fit on a postcard is
okay! I don’t care how mind-bogglingly complex or how mind-
bogglingly simple your question may be. The complex ones are a
challenge. The simple ones are a relief, answerable sometimes with
just a page reference to this book. Either way, you get an answer,
as long as the answer can fit on a postcard. Under no
circumstances will I try to write a 100-line BASIC program on the
back of a postcard! 99, maybe, but not 100. Also, please don’t ask
me to enclose things like magnetic cards with my reply, because it

– Page 129 –

is too difficult to enclose things in postcards.

DISCLAIMER: This service is offered solely by the author, not by
the publisher or any other party. Do not mail questions or
complaints regarding this service to any address other than the
one listed above. Using this service implies consent for your
question (but not name or address) to be used in future
publications without recompense. This service will remain active
until five years after the HP-71 has been removed from the official
Hewlett-Packard Price List, at which time it will be terminated.
Although the answers received from The HP-71 Answer Man will
be as accurate as possible, no guarantee is expressed or implied,
and under no circumstances will the author be held liable for their
inexactness, inapplicability, or for subsequent or consequent
damages due to their use. This legal mumbo-jumbo is required
because there are mean-spirited people in this world that find it
easier to sue than think; pay it no mind if you are a real HP-71
user.

– Page 130 –

HP-71 Quick Reference Guide

These are the keywords and other words used by the bare-bones
HP-71 as well as the HP-71 Math Pac (HP 82480A), HP-71 HP-IL
Interface (HP 82401A), HP-71 FORTH/Assembler ROM (HP
82441A), and a few common HP-71 User’s Library Lex Files.
Keywords in the bare-bones machine are followed by a page
reference to the HP-71 Reference Manual that comes with the
HP-71. All other keywords are followed by a reference to the ROM
or LEX file in which they are found.

Keywords whose meaning or pronunciation is not obvious are
followed on the next line by a rough English translation.

The syntax notation used here is the same as the notation used by
all HP Quick Reference Guides, except for the use of \ instead of /,

and the addition of curly brackets { } when needed for grouping.
Example: ADJUST (seconds \ time string) means type

ADJUST spelled just like that, then type either a number of seconds

or a time string, but you must use one or the other. Square
brackets, as usual, mean it’s optional. Example: CONT [line

number \ label] means type CONT spelled just like that, then

you may type a line number or a label if you wish, but you don’t
have to use either one.

[] optional

{ } required

\ either/or

UPPERCASE WORD keyword, to be spelled exactly as seen

() , ; etc. to be used exactly as seen

-- AAAA --

ABS (number). p.10

---“Absolute Value”---

– Page 131 –

ACOS (number). p.11

---“Arc Cosine”---

ACOSH (number). MATH ROM

---“Inverse Hyperbolic Cosine”---

ACS (number). p.11

---“Arc Cosine”---

ADD [number list]. p.12

ADDR$ (filespec string). p.13

---“Address String”---

ADJABS (seconds 0 to ±360000 \ time string 00:00:00

to ±99:59:59). p.14

---“Adjust Absolute”---

ADJUST (seconds 0 to ±360000 \ time string 00:00:00

to ±99:59:59). p.15

AF [(seconds ±10 to ±8388608)]. p.17

---“Accuracy Factor”---

ALL. Postfix. See CAT, CFLAG, DELETE, DESTROY, END, PURGE,

SFLAG.

&. String concatenator: string & string. p.307

---“And”---

AND. Operator: number AND number. p.19

ANGLE (x number, y number). p.20

ANGLE. Postfix. See OPTION.

ARC (number). MATH ROM

---“Argument”---

– Page 132 –

ASIN (number). p.22

---“Arc Sine”---

ASINH (number). MATH ROM

---“Inverse Hyperbolic Sine”---

ASN (number). p.22

---“Arc Sine”---

ASSIGN # channel number TO {filespec \ * \ '' \

'*'}. p.23

ASSIGN IO assign code list string. HPIL ROM

@. Statement concatenator: statement @ statement. p.306

---“At”---

ATAN (number). p.25

---“Arc Tangent”---

ATANH (number). MATH ROM

---“Inverse Hyperbolic Tangent”---

ATH (number). p.25

---“Arc Tangent”---

AUTO [start line number [,increment]]. Keyboard Only.

p.26

-- BBBB --

BASE. Postfix. See OPTION.

BASIC. Postfix. See TRANSFORM.

BEEP [frequency in Hz [,duration in sec] \ ON \

OFF]. p.28

BINAND (number, number). HPIL ROM

---“Binary And”---

– Page 133 –

BINCMP (number). HPIL ROM

---“Binary Complement”---

BINEOR (number, number). HPIL ROM

---“Binary Exclusive Or”---

BINIOR (number, number). HPIL ROM

---“Binary Inclusive Or”---

BIT (number, bit number). HPIL ROM

BSTR$ (number, base number). MATH ROM

---“Base String”---

BVAL (string, base number). MATH ROM

---“Base Value”---

BYE. p.30

-- CCCC --

CALL [subprogram name [(actual parameter list)] [IN

filespec]]. p.31

CARD. Postfix. See CAT, COPY.

CAT [ALL \ KEYS \ CARD \ filespec \ :MAIN \ :PORT \

device]. p.35

---“Catalog”---

CAT$ (file number [,device string]). p.38

---“Catalog String”---

CEIL (number). p.40

---“Ceiling”---

CFLAG {ALL \ MATH \ flag number list -32 to 63}. p.41

---“Clear Flag”---

– Page 134 –

CHAIN filespec. p.42

CHARSET string. p.43

---“Character Set”---

CHARSET$. p.46

---“Character Set String”---

CHR$ (number 0 to 255). p.47

---“Character String”---

CLAIM [:]PORT (port number p.dd). Keyboard Only. p.48

CLASS (number). p.49

CLEAR [device \ LOOP]. HPIL ROM

CLOCK. Postfix. See RESET.

CLSTAT. p.51

---“Clear Statistics”---

CNORM (array). MATH ROM

---“Column Norm”---

COMPLEX var list. MATH ROM

CON. Postfix. See MAT.

---“Constant Matrix”---

CONJ (number). MATH ROM

---“Conjugate”---

CONT [line number \ label]. Keyboard Only. p.52

---“Continue”---

CONTRAST number 0 to 15. p.54

CONTROL {ON \ OFF} [loop number 1-3]. HPIL ROM

CONTROL. Postfix. See PASS.

– Page 135 –

COPY [filespec \ CARD \ KEYS] [TO {filespec \

:device \ CARD \ KEYS)]. p.55

COPY [filespec \ device \ LOOP] TO [filespec \

device \ LOOP]. HPIL ROM

CORR (var number, var number). p.58

---“Correlation”---

COS (number). p.59

---“Cosine”---

COSH (number). MATH ROM

---“Hyperbolic Cosine”---

CREATE {TEXT \ LIF1 \ DATA \ SDATA} filespec [,file

size [,record len]]. p.60

CREATE ALL. THEOLOGY ROM

-- DDDD --

DATA [data list]. Program Only. p.62

DATA. Postfix. See CREATE

DATE. p.65

DATE$. p.66

---“Date String”---

DEBUG. User’s Library LEXflle #2, ID=53 hex. With DEBUGGER

ROM only.

DEF. Postfix. See END.

---“Definition”---

– Page 136 –

DEF FNnumeric var [(parameter list)] [= expr].

Program Only. p.67
---“Define Function”--- e.g. DEF FNA(X) is “Define Function A of

X”

DEF FNvar$ [[string len]] [(parameter list)]

[=expr]. Program Only. p.67

DEF FNA$(X$) is “Define Function A-String of X-String”

[DEF] KEY key name string [,assigned string [;\ :]].

p.69
---“Define Key”---

DEFAULT {EXTEND \ ON \ OFF}. p.72

DEG (number of radians). p.73

---“Degrees”---

DEGREES. p.74

DEGREES. Postfix. See OPTION.

DELAY line rate in sec [,scroll rate in sec]. p.75

DELETE (ALL \ start line number [,final line

number]}. Keyboard Only. p.77

DELETE #channel number, record number. FORTH or TEXT

EDITOR ROM

DESTROY {ALL \ var list}. p.78

DET or DETL. MATH ROM

---“Last Determinant”---

DET (square matrix). MATH ROM

---“Determinant”---

DEVADDR (device). HPIL ROM

---“Device Address”---

– Page 137 –

DEVAID (device). HPIL ROM

---“Device Accessory ID”---

DEVID$ (device). HPIL ROM

---“Device ID String”---

DIM numeric var [(dim limit 1 [,dim limit 2])]. p.79

---“Dimension”---

DIM var$ [(dim limit)] [[string len]]. p.79

DISP [expr \ TAB(number) [{;\ ,} expr]] [; \

,]... p.82

---“Display”---

DISP USING image ; [expr] [;\ ,]... p.84

DISP$. p.86

---“Display String”---

DISPLAY IS {device \ *}. HPIL ROM

DIV. Operator: number DIV number. p.87

---“Integer Divide”---

\. Operator: number \ number. p.311

---“Integer Divide”--- (same as DIV)

DOT (vector, vector). MATH rom

DROP [number list]. p.88

DTH$ (decimal number). p.89

---“Decimal to Hex String”---

DVZ. p.90

---“Division by Zero”---

– Page 138 –

-- EEEE --

EDIT [filespec]. Keyboard Only. p.91

EDPARSE$ (command string). FORTH or TEXT EDITOR ROM

---“Editor Parse String”---

EDTEXT filename. FORTH or TEXT EDITOR ROM

---“Edit Textfile”---

ELSE. Postfix. See IF.

ENABLE INTR mask number. HPIL ROM

---“Enable Interrupt”---

END [ALL]. p.93

END DEF. Program Only. p.94

---“End Definition”---

END SUB. p.94

---“End Subprogram”---

ENDLINE [string]. p.96. Defines characters sent after carriage

return.

ENG number 0 to 11. p.97

---“Engineering”---

ENTER {device \ LOOP} [USING image] [; var list].

HPIL ROM

EPS. p.99

---“Epsilon”---

ERRL. p.100

---“Error Line”---

ERRM$. p.101

---“Error Message String”---

– Page 139 –

ERRN. p.102

---“Error Number”---

ERROR. Postfix. See OFF, ON.

ESCAPE string, key code number. FORTH ROM

ESCAPE. Postfix. See RESET.

EXACT. p.103

!. Same as @ REM. p.242

---“Remark”---

EXOR. Operator: number EXOR number. p.105

---“Exclusive Or”---

EXP (number). p.106

---“e to the x power”---

EXPM1 (number). p.107

---“e to the x power, minus 1”---

EXPONENT (number). p.108

EXTEND. Postfix. See DEFAULT.

-- FFFF --

FACT (number). p.109

---“Factorial”---

FETCH [line number \ label]. Keyboard only. p.110

FETCH KEY key name string. Keyboard only. p.111

FGUESS. MATH ROM

---“Function Guess”---

– Page 140 –

FILESZR (filename string). FORTH or TEXT EDITOR ROM

---“File Size in Records”---

FIX number 0 to 11. p.112

FLAG (flag number [,new value 0 or 1]). p.114

FLOOR (number). p.115

FLOW. Postfix. See TRACE.

FNORM (array). MATH ROM

---“Frobenius Norm”---

FNROOT (first guess, second guess, function of

FVAR). MATH ROM

---“Function Root”---

FNvar = expr. Inside multi-line FN definition only. p.116

---“Function”--- e.g. FNA=Q is “Function A equals Q”

FNvar [(parameter list)]. p.116

e.g. FNA is “Function A”

FNvar. Postfix. See DEF, LET.

FOR var = start number TO final number [STEP

increment]. p.118

FORTH. FORTH ROM. Keyboard only.

FORTH$. FORTH ROM

---“Forth String”---

FORTHF. FORTH ROM

---“Forth Floating-point”---

FORTHI. FORTH ROM

---“Forth Integer”---

– Page 141 –

FORTHX command string [,parameter list]. FORTH ROM

---“Forth Execute”---

FOUR. Postfix. See MAT.

---“Fourier Transform”---

FP (number). p.121

---“Fractional Part”---

FREE [:] PORT (port number p.dd). p.122

FVALUE. MATH ROM.

---“Function Value”---

FVAR. MATH ROM.

---“Function Variable”---

-- GGGG --

GAMMA (number). MATH ROM

GDISP string. p.124

---“Graphically Display”---

GDISP$. p.127

---“Graphic Display String”---

GO {SUB \ TO}. See GOSUB, GOTO.

GOSUB {line number \ label}. p.129

GOSUB. Postfix. See ON.

GOTO {line number \ label}. p.131

GOTO. Postfix. See ON.

– Page 142 –

-- HHHH --

HPIL. Postfix. See RESET.

---“H.P.I.L.”--- (Hewlett-Packard Interface Loop; HP people say
“Pill”)

HTD (hex string 0 to FFFFF). p.133

---“Hex to Decimal”---

-- IIII --

IBOUND. MATH ROM

---“Integration Bounds”---

IDN. Postfix. See MAT.

---“Identity Matrix”---

IF expr THEN {statement \ line number \ label}

[ELSE {statement \ line number \ label}]. p.134

IMAGE [# {pg ctrl item \ ,}] format string. p.136

IMPT (number). MATH ROM

---“Imaginary Part”---

IN. Postfix. See CALL.

INF. p.150

---“Infinity”---

INITIALIZE [volume] device [,directory size]. HPIL

ROM

INPUT [prompt string [,default string];] variable

list. p.151

INSERT #channel number, record number; string.

FORTH or TEXT EDITOR ROM

– Page 143 –

INT (number). p.154

---“Integer”---

INTEGER variable list [(dims after each)]. p.155

INTEGRAL (low limit, high limit, error limit,

function of IVAR). MATH ROM

INTO. Postfix. See TRANSFORM.

INTR. Postfix. See ENABLE, ON.

---“Interrupt”---

INV. Postfix. See MAT.

---“Inverse Matrix”---

INX. p.157

---“Inexact”---

IO. Postfix. See ASSIGN, LIST, OFF, RESTORE.

---“I. O.”--- (stands for “Input/Output”)

IP (number). p.158

---“Integer Part”---

IROUND (number). MATH ROM

---“Integer Round”---

IS. Postfix. See DISPLAY, KEYBOARD, PRINTER.

IVALUE. MATH ROM

---“Integration Value”---

IVAR. MATH ROM

---“Integration Variable”---

IVL. p.159

---“Invalid”---

– Page 144 –

-- KKKK --

KEY key name string [,assigned string [; \ :]]. p.69

---“Define Key”---

KEY. Postfix. See DEF, FETCH.

KEY$. p.160

---“Key String”---

KEYBOARD IS {device \ *}. FORTH ROM

KEYDEF$ (key name string). p.162

---“Key Definition String”---

KEYDOWN [(key name string)]. p.164

KEYS. Postfix. See CAT, COPY, LIST, PLIST, PURGE, RENAME,

SECURE, UNSECURE.

KEYWAIT$. User’s Library LEXfile »1, ID=52 hex.

---“Keywait String”---

-- LLLL --

LBND (array, {1 \ 2}). MATH ROM

---“Lower Bound”---

LBOUND (array, {1 \ 2}). MATH ROM.

---“Lower Bound”---

LC [ON \ OFF]. p.166

---“Lower Case”---

LEN (string). p.167

---“Length”---

[LET] var = expr. p.168

– Page 145 –

[LET] FNvar = expr. Only inside multi-line FN definition.

p.168

LGT (number). p.178

---“Log Base Ten”---

LIF1. Postfix. See CREATE, TRANSFORM.

---“Lif One”--- (Logical Interchange Format One)

LINPUT [prompt string [,default string];] var$. p.171

---“Line Input”---

LIST [start line number [,final line number]]. p.173

LIST filespec [,start line or key number [final

line or key number]]. p.173

LIST KEYS [,start key number [final key number]].

p.173

LIST IO. HPIL ROM

LN (number). p.176

---“Natural Log”---

LOCAL [device \ LOOP]. HPIL ROM

LOCAL LOCKOUT [loop number 1-3]. HPIL ROM

LOCK password string. p.175

LOCKOUT. Postfix. See LOCAL.

LOG (number). p.176

---“Natural Log”--- (same as LN, log base e, not log base 10)

LOG10 (number). p.176

---“Log Base 10”---

LOG2 (number). MATH ROM

---“Log Base 2”---

– Page 146 –

LOGP1 (number). p.177

---“Natural Log of x-plus-1”---

LR y var number, x var number [,intercept var

[,slope var]]. p.179

---“Linear Regression”---

-- MMMM --

MAIN. Postfix. See CAT.

MAT array = array. MATH ROM

---“Matrix”---

MAT array = (number). MATH ROM

MAT array = CON [(number [, number])]. MATH ROM

MAT array = IDN [(number, number)]. MATH ROM

MAT array = ZER[O] [(number [, number])]. MATH ROM

MAT INPUT array list. MATH ROM

MAT DISP [USING image ;] array list. MATH ROM

MAT PRINT [USING image ;] array list. MATH ROM

MAT array = - array. MATH ROM

MAT array = array + array. MATH ROM

MAT array = array - array. MATH ROM

MAT array = (number) * array. MATH ROM

MAT array = array * array. MATH ROM

MAT array = TRN (array) * array. MATH ROM

– Page 147 –

MAT array = INV (array). MATH ROM

MAT array = TRN (array). MATH ROM

MAT array = SYS (array, array). MATH ROM

MAT complex array = PROOT (real array). MATH ROM

MAT complex array = FOUR (complex array). MATH ROM

MATH. Postfix. See CFLAG, SFLAG.

MAX (number, number). p.181

---“Maximum”---

MAXREAL. p.182

---“Maximum Real Number”---

MEAN [(var number)]. p.183

MEM [(port number p.dd)]. p.184

---“Memory”---

MERGE filespec [,start line or key number [,final

line or key number]]. p.186

MIN (number, number). p.188

---“Minimum”---

MINREAL. p.189

---“Minimum Real Number”---

-. Operator: number – number. p.309

---“Minus”---

MOD (number, number). p.190

---“Modulo”---

MSG$ (message number). User’s Library LEXfile #l, ID=52 hex.

---“Message String”---

– Page 148 –

-- NNNN --

NAME filespec. p.191

NAN. p.192

---“Not-a-Number”---

NAN$ (not-a-number). MATH ROM

---“Not-a-Number String”---

NEAR. Postfix. See OPTION.

NEG. Postfix. See OPTION.

---“Negative”---

- number or NaN. Negative unary operator. p.309

---“Negative”---

NEIGHBOR (number, direction number). MATH ROM

NEXT numeric var. p.118.

NOT number. p.193

NUM (string). p.194

---“Character Number”---

-- OOOO --

OFF. p.195

OFF {ERROR \ TIMER # timer number}. p.195

OFF. Postfix. See BEEP, CONTROL, DEFAULT, LC, STANDBY, TRACE,

USER.

OFF {INTR \ IO}. HPIL ROM.

– Page 149 –

ON number {GOSUB \ GOTO \ RESTORE} line number and

label list. p.199

ON ERROR {GOSUB \ GOTO} {line number \ label}. p.197

ON INTR {GOSUB \ GOTO} {line number \ label}. HPIL

ROM
---“On Interrupt”---

ON TIMER # timer number, seconds {GOSUB \ GOTO}

{line number \ label}. p.201

ON. Postfix. See BEEP, CONTROL, DEFAULT, LC, STANDBY, USER.

OPTION ANGLE {DEGREES \ RADIANS}. p.204

OPTION BASE {0 \ 1}. p.204

OPTION ROUND (NEAR \ NEG \ POS \ ZERO). p.204

OR. Operator: number OR number. p.206

OUTPUT {device \ LOOP} [USING image] [; output

list]. HPIL ROM

OVF. p.207

---“Overflow”---

-- PPPP --

PACK device. HPIL ROM

PACKDIR device. HPIL ROM

---“Pack Directory”---

PASS CONTROL [device \ LOOP]. HPIL ROM

PAUSE. p.208. Program only.

– Page 150 –

PCRD. Card Reader only.

---“Private Card”---

PEEK$ (hex address string, number of nibbles). p.299

---“Peek String”---

PI. p.210

---“π”---

PLIST [start line number [,final line number]]. p.211

---“Print List”---

PLIST filespec [,start line or key number [,final

line or key number]]. p.211

PLIST KEYS [,start key number [,final key number]].

p.211

POKE hex address string, data string. p.213

POLAR (number). MATH ROM

POP. p.215

PORT. Postfix. See CAT, CLAIM, FREE, SHOW.

POS (string being searched, substring looked for

[,start number]). p.216

---“Position”---

POS. Postfix. See OPTION.

---“Positive”---

PREDV (number). p.218. Must be initialized by executing LR.

---“Predicted Value”---

PRINT [expr \ TAB(number) [{;\ ,} expr]] [; \ ,]...

p.219

PRINT USING image ; [expr] [;\ ,]... p.219

– Page 151 –

PRINT #channel number [, record number]; [data \

array] [,...]. p.223

PRINTER IS {device \ *}. HPIL ROM

PRIVATE filespec. p.225

PROJ (number). MATH ROM

---“Projective Infinity”---

PROOT. Postfix. See MAT.

---“Polynomial Roots”---

PROTECT. p.226. Card Reader only.

PURGE [filespec \ KEYS \ ALL]. p.227

PUT keyname string. p.229

PWIDTH number. p.230

---“Printer Width”---

-- RRRR --

RAD (number). p.231

---“Radians”---

RADIANS. p.232

RADIANS. Postfix. See OPTION.

RANDOMIZE [number]. p.233

READ [#channel number [, record number] ;] {var \

array} [,...]. p.234,6

READDDC. HPIL ROM

---“Read Device Dependent Command”---

– Page 152 –

READINTR. HPILROM

---“Read Interrupt”---

REAL var [(number [, number])] [,...]. p.238

RECT (number). MATH ROM

---“Rectangular”---

RED (number, number). p.240

---“Reduce”---

REM. p.242. Abbreviated form: !.

---“Remark”---

REMOTE {device \ LOOP}. HPIL ROM

RENAME [filespec \ KEYS] TO {filespec \ KEYS}. p.243

RENUMBER [new start [, increment [, old start [,

old final]]]]. p.245

RENUMBER 1,1,1,1. Compiles all branches without renumbering

anything.

REPLACE #channel number, record number; string.

FORTH or TEXT EDITOR ROM.

REPT (number). MATH ROM

---“Real Part”---

REQUEST status number. HPIL ROM

RES. p.247

---“Result”---

RESET [CLOCK]. p.248

RESET HPIL [loop number 1-3]. HPIL ROM

RESET ESCAPE. FORTH ROM

– Page 153 –

RESTORE [line number \ label]. p.249

RESTORE IO [loop number 1-3]. HPIL ROM

RESTORE #channel number [, record number]. p.250

RESTORE. Postfix. See ON.

RETURN. p.251

RMD (number, number). p.252

---“Remainder”---

RND. p.254

---“Random Number”---

RNORM (array). MATH ROM

---“Row Norm”---

ROUND. Postfix. See OPTION.

RUN [line number \ filespec [, {line number \

label}]]. p.255

-- SSSS --

SCALE10 (number, integer number). MATH ROM

SCI number from 0 to 11. p.257

---“Scientific”---

SCROLL position number. User’s Library LEXfile #1, ID=52.

SDATA. Postfix. See CREATE.

---“Stream Data”---

SDEV [(var number)]. p.259

---“Standard Deviation”---

– Page 154 –

SEARCH (string, col number, start rec, end rec,

channel). FORTH or TEXT EDITOR ROM

SECURE [filespec \ KEYS]. p.260

SEND hpil message list. HPIL ROM

SETDATE {date number \ date string}. p.262

SETTIME {time number \ time string}. p.264

SFLAG {ALL \ MATH \ flag number list -32 to 63}.

p.267
---“Set Flag”---

SGN (number). p.268

---“Sign”---

SHORT var [(number [, number])] [,...]. p.269

SHOW [:]PORT. p.271

SIN (number). p.272

---“Sine”---

SINH (number). MATH ROM

---“Hyperbolic Sine”---

SPOLL (device). HPIL ROM

---“Status Poll”---

SQR (number). p.273

---“Square Root”---

SQRT (number). p.273

---“Square Root”---

STANDBY {ON \ OFF \ timeout number [, verify

interval number]). HPIL ROM

STARTUP command string. p.274

– Page 155 –

STAT array [(number of vars)]. p.275

---“Statistics”---

STATUS. HPIL ROM

STD. p.277

---“Standard”---

STEP. Postfix. See FOR.

STOP. p.279

STR$ (number). p.280

---“String String”---

SUB subprogram name [(formal parameter list)]. p.282

---“Subprogram”---

SUB. Postfix. See END.

SYS. Postfix. See MAT.

---“System of Equations”---

-- TTTT --

TAB. Postfix. See DISP, PRINT.

--- (short for “tabulator”) ---

TAN (number). p.284

---“Tangent”---

TANH (number). MATH ROM

---“Hyperbolic Tangent”---

TEXT. Postfix. See CREATE, TRANSFORM.

THEN. Postfix. See IF.

TIME. p.285

– Page 156 –

TIME$. p.286

---“Time String”---

TIMER. Postfix. See OFF, ON.

TO. Postfix. See ASSIGN#, COPY, FOR, RENAME.

TOTAL [(var number)]. p.287

TRACE {FLOW \ VARS \ OFF}. p.288

TRANSFORM [filespec] INTO {BASIC \ TEXT \ LIF1}

[new filespec]. p.289

TRAP (flag number [,new value 0 or 1]). p.293

TRIGGER [device \ LOOP]. HPIL ROM

TRN. Postfix. See MAT.

---“Transpose Matrix”---

TYPE (number \ string \ array). MATH ROM

-- UUUU --

UBND (array, {1 \ 2}). MATH ROM

---“Upper Bound”---

UBOUND (array, {1 \ 2}). MATH ROM

---“Upper Bound”---

UNF. p.295

---“Underflow”---

UNPROTECT. p.296. Card Reader only.

UNSECURE [filespec \ KEYS]. p.297

– Page 157 –

UPRC$ (string). p.298

---“Uppercase String”---

USER [ON \ OFF]. p.299

USING. Postfix. See DISP, ENTER, OUTPUT, PRINT.

-- VVVV --

VAL (string). p.300

---“Value”---

VARS. Postfix. See TRACE.

---“Variables”---
VER$. p.301

---“Version String”---

-- WWWW --

WAIT (number of seconds). p.302

WIDTH number. p.303

WINDOW first column number [, last column number].

p.305

-- ZZZZ --

ZER. Postfix. See MAT.

---“Zero Matrix”---

ZERO. Postfix. See MAT, OPTION.

---“Zero Matrix”---

– Page 158 –

USERS’ GROUPS

Two international users’ groups support the HP-71 calculator. Any
serious HP-71 programmer should join one or both of these
groups. For further information and membership applications,
send $1 to:

Club of HP Handheld Users
2545 W. Camden Place
Santa Ana, CA 92704
U.S.A.

or

PPC
P.O. BOX 9599
Fountain Valley, CA 92728
U.S.A.

– Page 159 –

GET THE MOST FROM YOUR HP-71!

The HP-71 sets new standards for handheld performance. HP-71

BASIC Made Easy supplements your Owner’s Manual in several
important areas to help you realize your HP-71’s full potential,
from quick keyboard calculations to BASIC to machine language.

Learn how to calculate efficiently and confidently using CALC
mode and the command stack. You may find that you like the
HP-71’s CALC mode even more than the RPN logic used on the
HP-41 and other HP calculators.

General tips on keyboard BASIC are followed by details on how
and where to use PEEK and POKE. Several BASIC application
programs provide instruction in programming technique besides
being useful in themselves.

One application program lets you key in machine language
programs from numeric listings. The examples show you just how
powerful these machine language programs can be. Carve out a
continuous clock display at the right side of the display window;
reverse a 14,000 character string in 1 second!

A 20-page alphabetical syntax guide lists hundreds of HP-71
keywords. HP-71 BASIC Made Easy is an excellent tutorial and an
essential reference. Find out how much fun your HP-71 can be!

ISBN: 0-9612174-3-X

	HP-71B Basic Made Easy
	Table of Contents
	Introduction
	Chapter 1: The Three Modes of Operation
	Calc Mode
	Keyboard Basic Mode
	Program Basic Mode
	Using All Three Modes

	Chapter 2: Calc Mode
	The HP-71 Calc Mode
	Using the Last Result in the Next Calculation with RES
	Using the Value of RES by Typing ()
	Using Variables in Calculations
	Negative Numbers
	The HP-71 Algebraic Heirarchy
	Multiple-Argument Functions
	The Command Stack
	Real World Examples of Calc Mode Usage
	Functions that Work in Calc Mode

	Chapter 3: Keyboard Basic Mode
	Chapter 4: Basic Vocabulary
	Charpter 5: Variables in Keyboard Basic
	Declaring Variables
	Dimensioning Variables
	Complex Data Type
	Statistics
	String Variables
	Declaring String Variables
	Special String Functions
	Square Brackets and Substrings
	Ampersand (&)
	CHR$ and NUM
	STR$ and VAL
	POS, UPRC$, VER$
	LET
	FOR / NEXT

	Chapter 6: HP-71 Data Files
	SDATA Files
	What is an SDATA File?
	How to create an SDATA File
	How to Assign a Channel Number
	How to Recall a Record
	How to Store a Record
	How to Find How Many Records Exist
	Storing/Recalling More Than One Number at a Time
	Sequential Access
	How to Move the File Pointer
	How to Expand a File
	How to Insert/Delete a Record
	How to De-assign a Channel Number
	SDATA Tidbits

	Files in General
	Text Files
	Data Files
	How to Create a Data File
	How to Assign a Channel Number
	Sequential Access Storage
	Random Access Recall
	Sequential Access Recall
	Storing/Recalling More Than One Record at a Time
	Moving the File Pointer
	Data Tidbits

	Key Files
	BASIC Files
	FORTH Files
	BIN and LEX Files

	Chapter 7: The HP-71 Clock & Calendar
	Chapter 8: PEEK$ and POKE
	Chapter 9: Program BASIC
	Postscript: The HP-71 Answer-Man Service
	HP-71 Quick Reference Guide
	Get the Most from your HP-71

